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Abstract

Numerical simulation of the Oldroyd-B type viscoelastic fluids is a very challenging prob-
lem. The well-known “High Weissenberg Number Problem” has haunted the mathemati-
cians, computer scientists, and engineers over 40 years. When the Weissenberg number,
which represents the ratio of elasticity to viscosity, exceeds some limits, simulations done
by standard methods break down exponentially fast in time. However, some approaches,
such as the logarithm transformation technique can significantly improve the limits of
the Weissenberg number until which the simulations stay stable. We should point out
that the global existence of weak solutions for the Oldroyd-B model is still open. Let
us note that in the evolution equation of the elastic stress tensor the terms describing
diffusive effects are typically neglected in the modelling due to their smallness. However,
when keeping these diffusive terms in the constitutive law the global existence of weak
solutions in two-space dimension can been shown.

This main part of the thesis is devoted to the stability study of the Oldroyd-B vis-
coelastic model. Firstly, we will show that the free energy of the diffusive Oldroyd-B
model as well as its logarithm transformation are dissipative in time. Further, we will
develop free energy dissipative schemes based on the characteristic finite element and
finite difference framework. In addition to that, the global linear stability analysis of the
diffusive Oldroyd-B model will also be discussed.

The next part of the thesis deals with the error estimates of the combined finite element
and finite volume discretization of a special Oldroyd-B model which covers the limiting
case of Weissenberg number going to infinity. Theoretical results are confirmed by a
series of numerical experiments, which are presented in the thesis, too.
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Kurzdarstellung

Numerische Simulation viskoelastischer Flüssigkeiten vom Oldroyd-B Typ ist ein sehr
komplexes Problem. Tatsächlich beschäftigt das bekannte “high Weissenberg number
problem” viele Mathematiker, Informatiker und Ingenieure seit längerer Zeit. Wenn
die Weissenberg-Zahl, die das Verhältnis zwischen der Elastizität und der Viskosität
des Fluides beschreibt, eine gewisse Schranke übersteigt, sind die Standardverfahren
instabil und die Lösung exponentiell schnell in der Zeit wächst. Anderseits gibt es einige
Ansätze, wie, z.B., die logarithmische Transformation, die eine deutliche Verbesserung
der Stabilität des Verfahrens und die Erhöhung der Schranke der Weissenberg-Zahl, für
welche die numerischen Simulationen stabil bleiben, erweisen.

Wir möchten darauf hinweisen, dass die globale Existenz schwacher Lösungen für das
Oldroyd-B Modell noch immer offen bleibt. Bei der Modellierung der Zeitevolution des
elastischen Spannungstensors werden typischerweise die Diffusionseffekte aufgrund ihrer
Kleinheit vernachlässigt. Werden allerdings diese Diffusionsterme beibehalten, kann die
globale Existenz schwacher Lösungen in zwei Raumdimension gezeigt werden.

Der Hauptteil dieser Doktorarbeit ist den Stabilitätsuntersuchungen für die viskoe-
lastischen Flüssigkeiten vom Oldroyd-B Typ gewidmet. Als Erstes wird gezeigt, dass die
freie Energie des diffusiven Oldroyd-B Modells sowie die logarithmische-Transformation
dissipativ in der Zeit sind. Weiterhin entwickeln wir dissipative numerische Verfahren, die
auf der charakteristischen Finiten-Elementen-Methode und Finiten-Differenzen-Methode
basieren. Darüber hinaus wird die lineare Stabilitätsanalyse des diffusiven Oldroyd-B
Modells diskutiert. Der nächste Teil der Arbeit befasst sich mit den Fehlerschätzungen
des kombinierten Finiten-Elementen- und Finiten-Volumen-Verfahrens für ein spezielles
Oldroyd-B Modell mit der undendlichen Weissenberg-Zahl. Theoretische Ergebnisse wer-
den durch eine Reihe von numerischen Experimenten, die in der Arbeit vorgestellt sind,
bestätigt.
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1 Introduction

1.1 Complex fluids, non-Newtonian fluids

Complex fluids

In the early study of Newton, he found in the one dimensional simple flow that the
inertial friction force is proportional to the velocity gradient. Later on, Navier and Stokes
extended the relation to multidimensional flow. They show that relationship between
the shear stress T and strain rate γ is linear

T = ηγ. (1.1)

Here, the viscosity η which is the ratio between stress and shear rate is independent on
the shear rate or its history. Fluids following this law are called Newtonian fluids for
memorizing Newton’s great contribution.

Nowadays, materials encountered in industry, biology and even in daily life often fall
out the classical models of Newtonian fluids. They are categorized as complex fluids,
showing non-linear viscous behaviours, as well as viscoelastic properties. A broad class
of materials are included in this category: suspensions or solutions of macromolecules
such as polymers, colloidal fluids, foams, micellar and liquid-crystal, molten materials,
etc. More vivid examples are milk, yoghurt, ketchup, cosmetics, detergent, toothpaste,
shampoo, paints, varnish and glaze industries, inks, adhesives, sealants as well as blood.

What makes complex fluids so popular is because of their microstructures, which
exhibits interesting mechanical properties. The understanding of the rheology of complex
fluids is expected to help solving challenging problems in physics, chemistry, and even
medicine [6].

Non-Newtonian property

Complex fluids are non-Newtonian. The stress inside the fluids exhibits a non-linear re-
sponse to the strain rate and the viscosity can even be time dependent. Most commonly,
the viscosity of the non-Newtonian fluids is dependent on shear rate or shear rate history.
Some non-Newtonian fluids with shear-independent viscosity, however, still exhibit nor-
mal stress-differences or other non-Newtonian behaviours. Basic types of non-Newtonian
behaviours include shear thickening, shear thinning and Bingham plastic.

Shear thickening

For a shear thickening fluid, the viscosity increases when increasing the shear rate. A
good example is the corn starch dissolved in water. When stirred slowly it looks milky,
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Figure 1.1: Shear stress/strain rate relationship of the different types of non-Newtonian
fluids.

when stirred vigorously it becomes a very viscous liquid.

Shear thinning

For a shear thinning fluid, the viscosity decreases when increasing the shear rate. A
familiar example is paint. Paint should flow readily off the brush but not drip excessively
when being painted to the wall.

Bingham plastic

Bingham plastic fluids have a linear relationship of the shear stress and strain rate,
but require a finite yield stress before starting to flow. Examples are clay suspensions,
toothpaste, chocolate and mustard.

Figure 1.1 depicts the relationship between the shear stress and strain rate for different
types of non-Newtonian fluids.

1.2 Viscoelastic fluids

Viscoelasticity is one of the most significant features arose in non-Newtonian fluids. Vis-
cous materials resist shear flow and strain linearly in time when a stress is applied, while
elastic materials quickly return to the original state once the stress is removed. Literally,
viscoelastic fluids exhibit both viscous and elastic characteristics when deformed.

There are basically two approaches for the derivation of the viscoelastic fluid mod-
els. One is to propose the constitutive law which describes the relationship between
the stress and strain rate. Another route starts with modelling the behaviour of the
micro-structures for the feature of viscoelastic fluids. In what follows, we will give an
introduction to some classic viscoelastic models originated from both sides.
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1.2.1 Macro models

In classical mechanics, one describes from the macroscopic point of view the constitutive
law for the viscoelastic fluid. Different models of this type can be found in literature, see
for example the book by Joseph [47] and Renardy [77].

Comparing with Newtonian fluids, the constitutive law for viscoelastic fluids is rather
complex. The viscosity depends not only on the current motion, but also on the history
of the strain rate. Depending on this relationship is linear or not, we have linear or
nonlinear models.

Linear models

When viscosity depends linearly on the strain rate history, we have linear viscoelastic
models. The Boltzmann theory [15] of linear viscoelasticity gives

T(t) =

t∫

−∞

G(t− s)γ(s)ds,

where γ(t) is the strain rate, T(t) is the resulting stress, and the viscosity is the integral
of G:

η =

∞∫

0

G(s)ds.

Maxwell’s theory of linear viscoelasticity proposes an ordinary differential equation

T + λ
∂T

∂t
= ηγ, (1.2)

where λ represents the relaxation time, which is a measure of the fluid’s memory period.
Further, if we add another linear term, i.e. the time derivative of γ, then we arrive at

the Jeffrey model

T + λ
∂T

∂t
= η(γ + λr

∂γ

∂t
). (1.3)

where λr > 0 is the retardation time.

Nonlinear models

Before going to the nonlinear viscoelastic models, we first introduce the concept of ob-
jective derivative.

δaA

δt
:=

DA

Dt
− W · A + A · W − a(D · A + A · D), −1 ≤ a ≤ 1, (1.4)

where
DA

Dt
=
∂A

∂t
+ u · ∇A (1.5)

is the material derivative. The rest terms on the right hand side are due to the rheology.
W = ∇u−∇uT

2
is the anti-symmetric part of the velocity gradient. The symmetric part

3



of the velocity gradient D = ∇u+∇uT

2
is the so-called rate of deformation. Start from

here, the shear rate of the fluids will be represented by the rate of deformation γ =
∇u + ∇uT = 2D.

By choosing a = 1, −1 or 0, the objective derivative (1.4) becomes the upper convected
derivative (1.6a), lower convected derivative (1.6b), or co-rotational derivative (1.6c).
One can refer to Joseph [47] or Bird [14] for their derivations.

∇

A :=
DA

Dt
− ∇u · A − A · ∇uT , (1.6a)

∆

A :=
DA

Dt
+ ∇uT · A + A · ∇u, (1.6b)

◦

A :=
DA

Dt
− W · A + A · W. (1.6c)

Replacing the time derivative in Maxwell model (1.2) with the upper convected deriva-
tive (1.6a), we get the Upper-convected model (UCM)

T + λ
∇

T = 2ηD. (1.7)

Similarly, the lower-convected (1.6b) and co-rotational (1.6c) derivatives lead to the
Lower-convected and the Co-rotational Maxwell model, respectively.

Adding some additional terms to the UCM model, we will arrive at some other popular
models. For example, adding a term proportional to T2 leads to the Giesekus model [37,
36]

T + λ
∇
T +

1

2G
T2 = 2ηD. (1.8)

Another example is the Phan-Thien-Tanner (PTT) model [72], which can be derived by
adding a term proportional to f(trT)T based on the UCM model:

T + λ
∇
T + f(trT)T = 2ηD. (1.9)

We can also obtain the Johnson-Segalman model [46] by adding a term proportional to
TD + DT, i.e.

T + λ
∇

T + ξ(TD + DT) = 2ηD. (1.10)

Starting from the Jeffrey model (1.3) and replacing the time derivative with the ob-
jective derivative (1.4), we have

T + λ
δaT

δt
= 2η(D + λr

δaD

δt
). (1.11)

Depending on how we choose the parameters a , we may cover a wide range of viscoelastic
models. By choosing a = 1 which means the upper-convected derivative (1.6a), we arrive
at the Oldroyd-B model,

T + λ
∇
T = 2η(D + λr

∇
D). (1.12)

Applying the lower convected (1.6b) and co-rotational (1.6c) derivatives lead to the

4



Oldroyd-A and co-rotational Oldroyd model, respectively.

1.2.2 Kinetic models

Instead of using the macro constitutive law, there are also theories which describe the
molecular property or micro-structures of the viscoelastic fluids, cf. the contributions by
Öttinger [69], by Bird et al. [14], by Renardy [77] and etc. For such approaches, the
stress tensor can be obtained as a function of the configurations of the micro-structures,
of which additional variables are required for the description, and thus leads to higher
dimensional systems.

The dilute solution theory is one of the well-known molecular theories for viscoelastic
fluids. In this theory the polymer molecules are treated individually and do not meet
each other. Moreover, each molecule is treated as a chain of beads and springs or beads
and rods. The simplest model is the dumbbell model consisting of two beads connected
by a spring. Considering the linear Hooke law for the spring force

f = HR, (1.13)

where R is the orientation vector of the dumbbell, one can obtain the Hookean-dumbbell
viscoelastic model, which further leads to the UCM and Oldroyd-B model [54, 77]. For
the nonlinear force, i.e.

f = γ(|R|2)R, (1.14)

one can derive the finitely extensible nonlinear elastic (FENE) model, cf. [9, 54, 77] and
etc.

There are also other type of molecular theories, such as the network theories and
the reptation theories. In the network theories polymers are considered as a network
of springs linked at junction points. The PTT model was originally derived using the
network theories in the paper by Phan-Thien and Tanner [72]. The reptation theories
is a middle ground between the two above extremes where the polymer molecules are
treated individually, but constrained by a “tube” formed by other molecules. Example
is the Doi-Edwards model [28].

1.3 Literature overview

In this thesis we will focus on the Oldroyd-B type viscoelastic fluids. First of all, we will
give a review of the literature from both the analytical and numerical aspects.

1.3.1 Existence and uniqueness results

The early study of the existence results for viscoelastic flow can be found in [76] by
Renardy, which covers the case of Oldroyd-B model. We refer the readers to Guillopé
and Saut [38] for the local existence, uniqueness, and the global existence for small data,
see also Fernández-Cara, Guillén and Ortega [35], Lin, Liu and Zhang [60] and references
therein. Let us mention Constantin and Sun [23] for the global existence and uniqueness
of weak solution for small data. See also Arada and Sequeira [5] for the global existence
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and uniqueness of small and suitably regular data in bounded domain. For the theoretical
study on the global strong solutions in exterior domain, we refer to the result of Hieber,
Naito and Shibata [41].

The first global in time existence result was contribution by Lions and Masmoudi [61].
They consider the co-rotational Oldroyd model and show the global existence for two and
three dimensional flow, where the co-rotational derivative (1.6c) is taken into account.

In the recent work of Barrett and Boyaval [8] the so-called diffusive Oldroyd-B model
was studied from both numerical as well as analytical point of view. The global existence
of weak solution has been presented for two dimensional space. The diffusive Oldroyd-B
model has also been studied by Constantin and Kliegl in [22] and the global regularity
in two dimensional space has been proven. Indeed, the diffusive term do exist in the
physical modelling [9]. The neglect of the diffusion term in relative models is due to the
smallness of the diffusion coefficient, as pointed out in [10, 11, 79, 27]. We would like to
emphasize that the diffusive term is not a regularization but an inherent mechanism.

1.3.2 Numerical methods

The earlier work on numerical simulations of the Oldroy-B and relative viscoelastic mod-
els were realized mostly by using the standard finite difference (FD), finite volume (FV) or
finite element (FE) method. Examples are contribution by Keunings, Crochet and their
cooperators [25, 48, 51, 49, 63] (FE), Wapperom, Keunings and Legat [85] (backward-
tracking Lagrangian particle method), Crochet, Davies and Walters [24] (FD-FE scheme),
Wapperom and Webster [86, 87], Aboubacar, Matallah and Webster [1], Nadau and Se-
queira [65] (hybrid FV-FE scheme), Phillips and Williams[73] (semi-Lagrangian finite
volume), Xue, Phan-Thien and Tanner [88] (FV) and etc. Without exception, all these
methods break down at a moderate high Weissenberg number. This interesting phe-
nomenon is named as “High Weissenberg Number Problem (HWNP)”. Although it has
been reported since the earlier 1980s, the mechanism has not been fully understood
[49, 50, 84].

Up to now no approach has been found to solve this problem. Nevertheless, some
approaches significantly improved the stability, especially the logarithm conformation
transformation approach proposed by Fattal and Kupfermann [33, 34]. They reformu-
late the constitutive law with the logarithm of the conformation tensor based on the
knowledge that the numerical method established on polynomials can not catch the
exponential growth of the conformation tensor. Further, this approach has been imple-
mented by themselves [34, 44], Turek et al. [26, 70], Alves et al. [2], Pan and Hao [40, 71]
and etc in different framework.

Recently, Balci et al. developed the square-root transformation approach by reformu-
late the constitutive law with the square root of the conformation tensor [7]. Both of the
above two methods naturally preserve in the discrete level the positivity of the confor-
mation tensor. The above approaches are further concluded as the kernel-conformation
transformation by Alfonso et al. [3]. These stabilization approaches have been compared
by Chen et al. [19] in the FV framework. There are also other types of positivity pre-
serving approaches such as methods applying the direct discretization of the objective
derivative, cf. [56, 57, 58, 83].
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1.4 Overview of the thesis

The thesis deals with numerical study of some viscoelastic fluids. It is a well-known
fact, that the classical, the so-called Oldroyd-B viscoelastic model yields many open
problems both from analytical as well as numerical point of view. We do not have global
existence of solutions and can not solve numerically the Oldroyd-B equations for arbitrary
Weissenberg numbers. The aim of this thesis is to analyze the reasons and propose some
solutions to stabilize numerical simulations.

The thesis is organized as follows: In Chapter 2 we describe the Oldroyd-B model
and propose three types of numerical methods for their approximation. In particular,
there are the characteristic finite element, combined finite difference-finite volume and
characteristic finite difference methods. We will study entropy stability for the diffusive
Oldroyd-B model. Furthermore, in Chapter 3 we analyze the entropy stability of the
proposed numerical schemes. We will be able to prove that the characteristic finite ele-
ment scheme and the characteristic finite difference scheme are indeed entropy stable for
diffusive models with arbitrary Weissenberg numbers. Except of entropy stability, which
is a suitable tool for nonlinear analysis, we also shortly present global linear stability
method and apply it to the Oldroyd-B equations, cf. Section 3.1. At the end of Chapter
3, cf. Section 3.4, we present experimental results using the characteristic finite element
scheme and characteristic finite difference scheme.

Finally, the Chapter 4 is devoted to a numerical study of a special nonlinear viscoelastic
model that has been studied in [60, 52]. This chapter presents and summarizes the results
that have been published in [62].

The thesis concludes with short summary and open questions presented in Chapter 5.
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2 Oldroyd-B type models and their

numerical approximations

In this chapter, we will present the Oldroyd-B type viscoelastic models. First we will
give a detailed description of the Oldroyd-B model. In additional to that the diffusive
models will be introduced. The second part is devoted to introducing some stabilization
techniques, especially the logarithm transformation approach [33, 34]. Further, we extend
the diffusive model to the logarithm reformulation. Moreover, we study the energy
stability of the model and propose our numerical schemes for the related models.

2.1 Oldroyd-B viscoelastic model

Modelling of the viscoelastic fluids starts with the mass and momentum conservation law
for the incompressible fluids:

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ ∇ · T, (2.1a)

∇ · u = 0, (2.1b)

where ρ is the fluid density, u is the velocity, p is pressure, the stress tensor T is a function
of the rate of deformation tensor D, where D(u) = (∇u+∇uT )/2. For Newtonian fluids
the relationship is a linear constitutive law

T = 2µ0D.

For the viscoelastic Oldroyd-B fluids, the constitutive law follows (1.12)

T + λ
∇

T = 2µ0(D + λr

∇

D). (2.1c)

Now we decompose the stress tensor T into two parts. They are the purely viscous
component 2µ0αD with α = λr

λ
, and the so-called extra stress τ , which contributes to

some elastic properties,
T = τ + 2µ0αD. (2.2)

According to this decomposition, we can simplify the equation (2.1c) or (1.12) to its
elastic part

λ
∇
τ + τ = 2µ0(1 − α)D, (2.3)
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and rewrite the momentum equation (2.1a) as

ρ(
∂u

∂t
+ u · ∇u) = −∇p + µ0α∆u + ∇ · τ . (2.4)

The combined system (2.1b), (2.3) and (2.4) is called the Oldroyd-B model for the
incompressible fluids.

2.1.1 Dimensionless equations

Let L, T be the characteristic length and time of the flow. The characteristic velocity
is straightforward U = L

T
. The Weissenberg number is defined as the ratio of relaxation

time and the characteristic flow time We = λ
T

= λU
L

, where the relaxation time λ is a
kind of characteristic time property of the viscoelasticity. Now we use “ ∼ ” to express
the dimensionless variables [65],

x̃ =
x

L
, t̃ =

t

T
=
tU

L
, ũ =

u

U
, (2.5)

Viscosity is already dimensionless µ̃ = µ0. The Reynolds number is given as Re = ρUL
µ0

.

The characteristic value for pressure and stress is S = µ0U
L

, thus we have

p̃ =
p

S
=

Lp

µ0U
, τ̃ =

τ

S
=

Lτ

µ0U
. (2.6)

Substituting the dimensionless variables into the Oldroyd-B model, we obtain





ρU2

L
(∂ũ

∂t̃
+ ũ · ∇ũ) = µ0U

L2 (∇p̃+ α∆ũ) + µ0U
L2 ∇ · τ̃ ,

U∇ · ũ = 0,

(TWe)µ0U2

L2

(
∂τ̃

∂t̃
+ ũ · ∇τ̃ − ∇ũ · τ̃ − τ̃ · (∇ũ)T

)
+ µ0U

L
τ̃ = 2(1 − α)µ0U

L
D̃.

Simplifying the above system and omitting “ ∼ ”, we derive the dimensionless system
for the Oldroyd-B model

Re(
∂u

∂t
+ u · ∇u) = −∇p + α∆u + ∇ · τ , (2.7a)

∇ · u = 0, (2.7b)

We
(∂τ
∂t

+ (u · ∇)τ − ∇u · τ − τ · (∇u)T
)

+ τ = 2(1 − α)D. (2.7c)

Now, we introduce the conformation tensor σ as

σ =
We

1 − α
τ + I. (2.8)
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Substituting (2.8) into (2.7c) and using the fact that
∇
I = −2D, we can rewrite the

constitutive equation in terms of conformation tensor σ:

∂σ

∂t
+ (u · ∇)σ − ∇u · σ − σ · (∇u)T =

1

We
(I − σ). (2.9)

The conformation tensor σ is symmetric positive definite (SPD), while the extra stress
tensor τ is only symmetric. One can refer to [18, 43] for the proof of the positivity of
the conformation tensor. In what follows we will concentrate on the conformation tensor
variable σ for the Oldroyd-B system as we want to benefit from the positivity property.
Switching to the conformation tensor variable, the Oldroyd-B model (2.7) becomes

Re(
∂u

∂t
+ u · ∇u) = −∇p + α∆u +

1 − α

We
∇ · (σ − I), (2.10a)

∇ · u = 0, (2.10b)

∂σ

∂t
+ (u · ∇)σ − ∇u · σ − σ · (∇u)T =

1

We
(I − σ). (2.10c)

As mentioned in the previous chapter, the global existence of the weak solutions for the
Oldroyd-B model has not been proven. However, the global existence results have been
proved for the relative diffusive model [8], where an additional diffusive term is added
in the constitutive law (2.10c). It is further showing by Barrett and Süli [12] that the
diffusive term is not a regularizing term but an outcome of the physical modelling. The
diffusive Oldroyd-B model reads

Re(
∂u

∂t
+ u · ∇u) = −∇p + α∆u +

1 − α

We
∇ · (σ − I), (2.11a)

∇ · u = 0, (2.11b)

∂σ

∂t
+ (u · ∇)σ − ∇u · σ − σ · (∇u)T =

1

We
(I − σ) + ε∆σ. (2.11c)

2.2 Logarithm transformation

As already pointed out in the previous section the Oldroyd-B model is very challenging
particularly in the high Weissenberg case. To overcome this problem several approaches
have been studied in the literature. We should point out that up to now no simula-
tion technique has been found to solve this problem. Nevertheless, some approaches
significantly improved and stabilized the numerical simulations. In what follows we
describe the logarithm conformation representation (LCR) approach proposed by Fat-
tal and Kupfermann[33, 34] avoid the numerical blowup in the case of high We. The
main idea of this approach is to replace the conformation tensor by a new variable
ψ(x, t) = lnσ(x, t) through eigenvalue computations (ln A = R ln ΛRT ).

The reformulation starts with rotating the conformation tensor σ into its main prin-
ciple axis

RTσR = diag{λi}, (2.12)

where λi, i = 1, · · · , d, is an eigenvalue, d = 2, 3 is the dimension, R is the eigenvector
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matrix, which is orthogonal. The goal is to design a symmetric matrix B which commutes
with the conformation tensor σ, a pure rotation matrix Ω and an additional dummy part
Nσ−1 where N,Ω are anti-symmetric matrices in terms of the velocity gradient

∇u = B + Ω + Nσ−1. (2.13)

Subsequently, we will present how to get this decomposition in two dimensions. If σ is
proportional to the unit tensor,

B = D(u), Ω = 0, N = (∇u − D(u))trσ/2. (2.14)

Otherwise, we get the decomposition in the following steps:
Step-1, diagonalizing the conformation tensor,

(
λ1 0
0 λ2

)
= RTσR. (2.15)

Step-2, calculating an intermediate matrix

(
m11 m12

m21 m22

)
= RT (∇u)R.

Step-3,

N = R

(
0 n

−n 0

)
RT , B = R

(
m11 0

0 m22

)
RT , Ω = R

(
0 ω

−ω 0

)
RT , (2.16)

where n = (m12 + m21)/(λ−1
2 − λ−1

1 ), and ω = (λ2m12 + λ1m21)/(λ2 − λ1). Substituting
the decomposition (2.13) into the constitutive equation (2.9),

∇u · σ + σ · (∇u)T = (B + Ω + Nσ−1)σ + σ(B + Ω + Nσ−1)T

= Bσ + Ωσ + N + σB + σΩT + σ(Nσ−1)T

= Bσ + Ωσ + N + Bσ − σΩ − σ((σ−1)T N)

= 2Bσ + Ωσ − σΩ,

then we get the following reformulation of the constitutive law

∂σ

∂t
+ (u · ∇)σ − (Ωσ − σΩ) − 2Bσ =

1

We
(I − σ). (2.17)

2.2.1 Constitutive equation for the logarithm formulation

As our goal is to get the evolution equation for ψ, we decompose the equation (2.17)
into four parts according to reference [33]:

(1) Advection:
∂σ

∂t
+ (u · ∇)σ = 0 implies

∂ψ

∂t
+ (u · ∇)ψ = 0.
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(2) Rotation:
∂σ

∂t
= Ωσ − σΩ implies

∂ψ

∂t
= Ωψ −ψΩ.

Indeed, the solution for σ(t) is σ(t) = eΩtσ0e
−Ωt. Let S = eΩt. Its transpose matrix is

ST = e(Ωt)T

= e−Ωt. As Ω is skew-symmetric, its exponential matrix is orthogonal. Thus
we have ST = S−1.

Let ψ0 = lnσ0 = R ln Λ0RT and V = SR, where Λ0 = diag{λi(t = 0)} the eigenma-
trix. The matrix R is orthogonal, thus V is also orthogonal and V−1 = VT . Then we
have

σ(t) = Sσ0ST = SRΛ0R
T ST = VΛ0VT ,

and

ψ(t) = ln(σ(t)) = ln(VΛ0VT ) = V ln Λ0VT = SR ln Λ0R
T ST = Sψ0ST = eΩtψ0e

−Ωt,

which means
∂ψ

∂t
= Ωψ −ψΩ.

(3) Extension:
∂σ

∂t
= 2Bσ implies

∂ψ

∂t
= 2B.

It is easy to find that the solution for σ(t) is σ(t) = e2Btσ0. Let ψ0 = lnσ0. From
the fact that B commutes with σ0 we have also that 2Bt commutes with ψ0. Thus
e2Bteψ0 = e2Bt+ψ0 , and ψ(t) = ln(σ(t)) = ln(e2Bt+ψ0) = 2Bt+ψ0, which means ∂ψ

∂t
= 2B.

(4) Sources:

∂σ

∂t
=

1

We
(I − σ) implies

∂ψ

∂t
=

1

We
(σ−1 − I) =

1

We
(e−ψ − I).

From the above four steps we can derive the following transformation of the constitutive
law,

∂ψ

∂t
+ (u · ∇)ψ − (Ωψ −ψΩ) − 2B =

1

We
(e−ψ − I). (2.18)

We have the whole system reformulated using the logarithm transformation





Re(∂u

∂t
+ u · ∇u) = −∆p + α∆u + β

W e
∇ · (eψ − I),

∇ · u = 0,
∂ψ
∂t

+ (u · ∇)ψ − (Ωψ −ψΩ) − 2B = 1
W e

(e−ψ − I),
(2.19)

where β = 1 − α. In (2.11) we have presented the diffusive Oldroyd-B model. It should
be noted that the logarithm transformation of the diffusive term is not straightforward,
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and for this reason we propose a new diffusive logarithmic model.

Re(
∂u

∂t
+ u · ∇u) = −∆p + α∆u +

β

We
∇ · (eψ − I), (2.20a)

∇ · u = 0, (2.20b)

∂ψ

∂t
+ (u · ∇)ψ − (Ωψ −ψΩ) − 2B =

1

We
(e−ψ − I) + ε∆ψ. (2.20c)

In particular we show later its stability and in some cases even experimental convergence.

2.2.2 Remarks on the stability analysis

When one tries to solve the Oldroyd-B system numerically, using any standard stable
method, the solution diverges exponentially fast in time, even at moderately large values
of We. The conformation tensor has been observed to grow unbounded exponentially
fast. In order to analyze the reasons of arising instability we will perform stability
analysis for a simplified toy model. In the next part we follow Fattal and Kupfermann
[34] and consider one-dimensional linear equation for φ = φ(x, t), x ∈ [0, 1],

∂φ

∂t
+ a(x)

∂φ

∂x
− b(x)φ = − 1

We
φ, (2.21)

with a(x), b(x) > 0 and boundary condition φ(0, t) = 1, and steady state

φ(x) =
∫ x

0
exp

(
b(x′) −We−1

a(x′)

)
dx′. (2.22)

This equation represents a field φ(x, t) that is convected to the right with velocity a(x)
and grows exponentially at a rate b(x) − We−1. With reference to Oldroyd-B model,
a(x) plays the role of velocity field u(x, t), and b(x) plays the role of the deformation
rate ∇u(x, t).

Suppose we solve (2.21) numerically using, for example, a first order upwind scheme,

φk+1
j = φk

j − aj∆t

∆x
(φk

j − φk
j−1) + ∆t(bj − 1

We
)φk

j , (2.23)

where aj = a(xj), bj = b(xj). Rewrite the equation in the following form:

φk+1
j = [1 − aj∆t

∆x
+ ∆t(bj − 1

We
)]φk

j +
aj∆t

∆x
φk

j−1.

Then it is at least necessary to have the following inequality

1 − aj∆t

∆x
+ ∆t

(
bj − 1

We

)
≤ 1, (2.24)

which implies that the Weissenberg number should be rather small We ≤ 1/bj, or

We > 1/bj , with ∆x ≤ aj

bj −We−1
. (2.25)
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This condition has to hold at all mesh points. It is not a CFL condition on time step,
but a restriction on the spacial mesh size. This stability criterion has the following
interpretation: the spatial profile of φ(x, t) is exponential, therefore any standard scheme
which is based on a polynomial reconstruction of fluxes underestimates the flux at the
right edge of every computational cell. Thus, the rate at which the field φ is removed
from a computational cell fails to balance its multiplicative growth rate, resulting in a
numerical blowup. This scenario remains unchanged if the first order upwind scheme is
replaced by a higher-order method; a higher-order scheme increases the critical mesh size
by, at most, an order of one factor. The use of implicit schemes does not help either.

To generalize the above analysis to viscoelastic flows, assume a fixed velocity field u(x)
(as would be obtained by a stable steady state), and consider the Oldroyd-B model,
reference [34] gives a stability condition

∆x ≤ |u|
2
√

− det(∇u) −We−1
.

We revert our attention to the scalar equation (2.21). The restriction on the mesh size is
removed at once by a change of variables ψ = lnφ, in which case ψ satisfies the equation

∂ψ

∂t
+ a(x)

∂ψ

∂x
− b(x) = − 1

We
, (2.26)

with boundary condition ψ(0, t) = 0. Now even a first-order upwind scheme

ψk+1
j = ψk

j − aj∆t

∆x
(ψk

j − ψk
j−1) + ∆t(bj − 1

We
), (2.27)

no longer imposes restrictions on the size of ∆x! While this stable behavior may be
attributed to the transformation of multiplicative growth into additive growth. The
reason for the stability is also connected to the improved treatment of the convection
term. To see this, exponentiate equation (2.27) to regain the equation for φk

j

φk+1
j = (φk

j )(1−aj∆t/∆x)(φk
j−1)

aj∆t/∆xe∆t(bj −W e−1), (2.28)

and expand the multiplicative source exp(b∆t) ∼ 1 + b∆t. We get first order in space
and time

φk+1
j = (φk

j )(1−aj∆t/∆x)(φk
j−1)

aj∆t/∆x + ∆t(bj −We−1)φk
j , (2.29)

still there is no restriction on ∆x.

2.2.3 Kernel-conformation representation

There are also other kinds of conformation transformation representation, such as kernel-
conformation [3] and the square-root [7] transformation. The kernel-conformation trans-
formation is givens as

ψ = loga σ, a > 0, and ψ = σ
1
k . (2.30)
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In the former case, the transformation is expressed as

∂ψ

∂t
+ (u · ∇)ψ = Ωψ −ψΩ +

2

ln a
B +

1

ln aWe
(ψ−k − I). (2.31)

This transformation is equivalent to the log-transformation when a = e.

In the latter case the transformation is expressed as

∂ψ

∂t
+ (u · ∇)ψ = Ωψ −ψΩ +

2

k
Bψ +

1

kWe
(ψ1−k −ψ). (2.32)

It leads to the square-root transformation if k = 2. According to reference [3], it is better
to choose a < 10 for the former case and k ∈ [−2,−16] for the latter case.

Comparing the with log-transformation, we need to take care of the restriction of
space interval ∆x for the square-root transformation. Our extensive numerical experi-
ments indicate that the log-transformation yields more stable results than square-root
transformation.

2.3 Entropy stability analysis of the diffusive Oldroyd-B

models

In this section we introduce a free energy for the viscoealastic models. The free energy
consists of kinetic and elastic energy. The elastic energy is shown to be the entropy of
the polymers in the fluid, cf. [42]. The entropy stability we are studying here is actually
the stability of the free energy.
For the Oldroyd-B model, the free energy on bounded domain T reads,

F (u,σ) =
Re

2

∫

T
|u|2 +

β

2We

∫

T
tr(σ − lnσ − I). (2.33)

On the other hand for the log-formulation (2.19), it is given as follows

F (u, eψ) =
Re

2

∫

T
|u|2 +

β

2We

∫

T
tr(eψ −ψ − I). (2.34)

The kinetic term Re
2

∫
T |u|2 is always non-negative. As we will show later, see (2.35b), the

entropy
∫

T tr(σ−lnσ−I) is also non-negative, provided σ is symmetric positive-definite.

It has been shown by Boyaval et al. [18] that the free energy for the Oldroyd-B model
decreases in time evolution. Such models are called dissipative models. Further, they
constructed energy dissipative numerical schemes. However, their numerical solutions
did not converge in the sense of mesh refinement.

We extend their results to the diffusive models. First we prove that the free energy
for the diffusive Oldroyd-B model decreases in time exponentially fast to zero. Then
we can show that this property also applies to the diffusive model in case of logarithm
transformation.
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2.3.1 Some useful preliminary properties

Before studying the stability of our diffusive viscoelastic models we first summarize some
useful preliminaries. The first two lemmas have been used by Boyaval et al. [18].

Lemma 2.3.1. [18] Let σ, τ ∈ Rd×d be two symmetric positive-definite matrices, we
have:

tr lnσ = ln detσ, (2.35a)

σ − lnσ − I is symmetric positive semi-definite and tr(σ − lnσ − I) ≥ 0, (2.35b)

σ + σ−1 − 2I is symmetric positive semi-definite and tr(σ + σ−1 − 2I) ≥ 0, (2.35c)

tr(στ ) = tr(τσ) ≥ 0, (2.35d)

tr((τ − σ)σ−1) = tr(τσ−1 − I) ≥ ln det(τσ−1) = tr(ln τ − lnσ), (2.35e)

tr((ln τ − lnσ)τ ) ≥ tr(τ − σ). (2.35f)

Proof. We start the proof with eigen-decomposition. As σ and τ are symmetric positive-
definite matrices, we have σ = R1ΛRT

1 and τ = R2ΓRT
2 , where Λ = diag{λi}, Γ =

diag{γi}. λi > 0, and γi > 0, i = 1, . . . , d are eigenvalues of σ and τ , respectively. We
have denoted by d the number of all eigenvalues. Let Q =

√
ΛRT

1 , then we have

σ = QT Q. (2.36)

By using the fact that the eigenvalues of lnσ are lnλi, we get immediately (2.35a), i.e.

tr lnσ =
∑

i

ln λi = ln
∏

i

λi = ln detσ.

Let us note that both the summation as well as the product are realized for all i = 1, . . . d.
The proofs of (2.35b) and (2.35c) are almost the same. Obviously, σ − lnσ − I and

σ + σ−1 − 2I are symmetric matrices. Their eigenvalues are f1(λi) = λi − lnλi − 1
and f2(γi) = γi + γ−1

i − 2, respectively. It is easy to check that f1(x) ≥ f1(1) = 0 and
f2(x) ≥ f2(1) = 0 for any x ∈ R

+, which means the eigenvalues of the two matrices are
always non-negative. Thus the two matrices are symmetric positive semi-definite and
their trace are non-negative, which accomplishes the proof of (2.35b) and (2.35c).

The proof of (2.35d) starts with the definition of trace, tr(στ ) =
∑
ij
σijτ ji and

tr(τσ) =
∑
ij
τ ijσji. As

∑
ij
τ ijσji =

∑
ij
σijτ ji, we obtain tr(τσ) = tr(στ ). Consequently,

by using equation (2.36) we get

tr(τσ) = tr(στ ) = tr(QT Qτ ) = tr(QτQT ). (2.37)

Let x be any non-zero vector and y = QT x = R1

√
Λx. As Λ > 0, we have

|y|2 = yT y = (R1

√
Λx)T R1

√
Λx = xT

√
ΛRT

1 R1

√
Λx = xT Λx > 0.

This means y is non-zero. Noticing that τ is positive-definite we get

xT (QτQT )x = (QT x)TτQT x = yTτy > 0.
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Thus QτQT is symmetric positive-definite, and tr(QτQT ) > 0. Combining with equa-
tion (2.37) we obtain (2.35d), i.e.

tr(τσ) = tr(στ ) = tr(QτQT ) = tr(QτQT ) > 0.

Equation (2.35e) is an extension of equation (2.35d).
Let A = Qτ−1QT . According to the proof of (2.35d), we get tr(στ−1) = trA and A is
symmetric positive-definite .
Then the proof of (2.35e) is equivalent to show tr(A − I) ≥ ln det A for any symmetric
positive-definite matrix A, which derives from (2.35a) and (2.35b).
Let O = R2R

T
1 . Obviously O is orthonormal as R1 and R2 are orthonormal. Thus

we have
∑
j

(Oij)
2 = 1 for all i, i = 1, 2, 3. Thanks to this property, we can show the

derivation of (2.35f) as follows,

tr((lnσ − ln τ )σ − (σ − τ )) =
∑

i

(λi lnλi − λi) +
∑

j

γj −
∑

i,j

(Oij)
2λi ln γj

=
∑

i


(λi lnλi − λi)

∑

j

(Oij)
2


+

∑

j

(
γj

∑

i

(Oij)
2

)
−
∑

i,j

(Oij)
2λi ln γj

=
∑

i,j

(Oij)
2 ((γj − λi) − λi(ln γj − ln λi)) .

Since x− y ≥ y(lnx− ln y) for all x, y > 0, we obtain (2.35f), i.e.

tr((lnσ − ln τ )σ − (σ − τ )) ≥ 0,

which concludes the proof.

Lemma 2.3.2. [18] For any symmetric positive-definite matrix σ(t) ∈ (C1([0, T )))
d(d+1)

2 ,
we have ∀t ∈ [0, T ):

(
d

dt
σ) : σ−1 = tr(σ−1 d

dt
σ) =

d

dt
tr(lnσ), (2.38)

(
d

dt
lnσ) : σ = tr(σ

d

dt
lnσ) =

d

dt
trσ. (2.39)

Proof. Since σ(t) ∈ (C1([0, T )))
d(d+1)

2 is a symmetric positive-definite matrix, detσ is
positive and C1([0, T )). Thus, we get the classical Jacobi formula (2.38), i.e.

d

dt
tr(lnσ) =

d

dt
ln(detσ) = (1/ detσ)

d

dt
detσ = tr(σ−1 d

dt
σ) = (

d

dt
σ) : σ−1.

For the proof of the second equation, we set ψ = lnσ and then we can show

(
d

dt
lnσ) : σ = tr(σ

d

dt
lnσ) = tr(eψ

d

dt
ψ) = tr(

d

dt
eψ) =

d

dt
trσ.

The following lemma will be useful in the evaluation of the diffusive terms in the energy
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estimate.

Lemma 2.3.3. Let σ, τ ∈ Rd×d be symmetric positive-definite matrices, f1 be an in-
creasing function, and f2 be a decreasing function, we have:

(σ − τ ) : (f1(σ) − f1(τ )) ≥ 0, (2.40)

(σ − τ ) : (f2(σ) − f2(τ )) ≤ 0, (2.41)

∇σ : ∇σ−1 ≤ 0, (2.42)

∇(lnσ) : ∇σ ≥ 0. (2.43)

Proof. Applying the eigen-decomposition to σ and τ in d dimensions, we have σ =
R1ΛRT

1 , τ = R2ΓRT
2 . Λ = diag{λi},Γ = diag{γi}, i = 1, · · · , d. λi and γi are eigenval-

ues of σ and τ . R1 and R2 are orthonormal eigenvector matrices. Let O = RT
2 R1, then

O is also orthonormal.

tr(σf(τ )) = tr(R1ΛRT
1 R2f(Γ)RT

2 ) = tr(RT
2 R1ΛRT

1 R2f(Γ)) = tr(OΛOTf(Γ))

=
∑

i,j

(OΛ)ij(O
Tf(Γ))ji =

∑

i,j

(
(
∑

k

OikΛkj)(
∑

k

Okjf(Γ)ki)

)
=
∑

i,j

(
(OijΛjj)(Oijf(Γ)ii)

)

=
∑

i,j

(
O2

ijλjf(γi)

)
.

Similarly, we have
tr(τf(σ)) =

∑

i,j

(O2
ijf(λj)γi).

As O is orthonormal,
∑
i

O2
ij = 1 for any j, j = 1, · · ·d.

tr(σf(σ)) =
∑

j

(λjf(λj)) =
∑

j

(
λjf(λj)

∑

i

O2
ij

)
.

Similarly, we have

tr(τf(τ )) =
∑

i

(γif(γi)) =
∑

i

(
γif(γi)

∑

j

O2
ij

)
.

Combining the above four equations we get

(σ − τ ) : (f(σ) − f(τ ))

= tr((σ − τ ) · (f(σ) − f(τ ))) = tr(σf(σ) + τf(τ ) − τf(σ) − σf(τ ))

=
∑

j

(
λjf(λj)

∑

i

O2
ij

)
+
∑

i

(
γif(γi)

∑

j

O2
ij

)
−
∑

i,j

(
O2

ijf(λj)γi

)
−
∑

i,j

(
O2

ijλjf(γi)

)

=
∑

j

λj

∑

i

O2
ij(f(λj) − f(γi)) +

∑

i

γi

∑

j

O2
ij(f(γi) − f(λj))

=
∑

i,j

O2
ij(f(λj) − f(γi))(λj − γi).
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If f is an increasing function, we get (2.40)

(σ − τ ) : (f(σ) − f(τ )) ≥ 0,

otherwise we get (2.41)
(σ − τ ) : (f(σ) − f(τ )) ≤ 0.

Now we go to the derivation of (2.42) and (2.43).

∂σ

∂x
:
∂f(σ)

∂x
= lim

dx→0

σ(x+ dx) − σ(x)

dx
:
f(σ(x+ dx)) − f(σ(x))

dx
.

For x > 0 we know that f(x) = ln(x) is an increasing function, and f(x) = 1
x

is a
decreasing function. Using (2.40) and (2.41) we get

∂σ

∂x
:
∂ ln(σ)

∂x
≥ 0,

∂σ

∂x
:
∂(σ)−1

∂x
≤ 0.

Analogously, the above inequalities also hold for other space dimension. Thus we have

∇σ : ∇ lnσ ≥ 0, ∇σ : ∇(σ)−1 ≤ 0,

which concludes the proof.

2.3.2 Stability results

Theorem 2.3.4. (energy estimates for the diffusive Oldroyd-B model)
Let (u, p,σ) be a smooth solution to system (2.11), supplied with homogeneous Dirichlet
boundary condition for velocity, and zero Neumann boundary condition for σ. Further,
we assume that σ is initially symmetric positive-definite. The free energy satisfies:

d

dt
F (u,σ) + α

∫

T
|∇u|2 +

β

2We2

∫

T
tr(σ − lnσ − I) ≤ 0. (2.44)

This estimate implies that F (u,σ) decreases in time exponentially fast to zero.

Proof. First we get by computing the inner product of the momentum equation (2.11a)
and the velocity

Re

2

d

dt

∫

T
|u|2 + α

∫

T
|∇u|2 +

β

We

∫

T
∇u : σ = 0. (2.45)

Then we take the trace of transport equation (2.11c) for the conformation tensor. This
yields

d

dt

∫

T
trσ = 2

∫

T
∇u : σ+

1

We

∫

T
tr(I−σ)+ε

∫

T
∆σ : I = 2

∫

T
∇u : σ+

1

We

∫

T
tr(I−σ).

(2.46)
Multiplying the transport equation (2.11c) for the conformation tensor with σ−1 leads
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to ∫

T

dσ

dt
: σ−1 = 2

∫

T
tr(∇u) +

1

We

∫

T
tr(σ−1 − I) + ε

∫

T
∆σ : σ−1. (2.47)

Substituting (2.38) into (2.47), and using the fact that tr(∇u) = div u = 0, we have

d

dt

∫

T
tr(lnσ) =

1

We

∫

T
tr(σ−1 − I) − ε

∫

T
∇σ : ∇σ−1. (2.48)

Now, combing (2.45) + β
2W e

× (2.46) - β
2W e

× (2.48) and using the inequality (2.42) implies
(2.44), i.e.

d

dt

∫

T

(
Re

2
|u|2 +

β

2We
tr(σ − lnσ − I)

)
+
∫

T

(
α|∇u|2 +

β

2We2
tr(σ + σ−1 − 2I)

)

=
εβ

2We

∫

T
∇σ : ∇σ−1 ≤ 0.

By (2.35c) we have tr(σ + σ−1 − 2I) ≥ 0, thus F (u,σ) decreases in time as dF
dt

≤ 0. It
is easy to check that σ−1 is also a symmetric positive-definite matrix. Substituting σ−1

to (2.35b) yields
tr(σ−1 + ln(σ) − I) ≥ 0,

thus we obtain

tr(σ + σ−1 − 2I) = tr(σ − lnσ − I) + tr(σ−1 + ln(σ) − I) ≥ tr(σ − lnσ − I).

Using the Poincaré inequality, we know that there exists a constant Cp > 0 depending
on the domain T such that for all u ∈ H1

0 (T ),

∫

T
|u|2 ≤ Cp

∫

T
|∇u|2.

Consequently, we have

d

dt
F (u,σ) ≤ − α

Cp

∫

T
|u|2 − β

2We2
tr(σ − lnσ − I)) ≤ − min

(
2α

Re Cp
,

1

We

)
F (u,σ).

Now we can apply the Gronwall inequality and obtain

F (u,σ) ≤ F (u(t = 0),σ(t = 0)) exp

(
− min

(
2α

Re Cp
,

1

We

)
t

)
.

Theorem 2.3.5. (energy estimates for the diffusive logarithmic Oldroyd-B model)
Let (u, p,ψ) be a smooth solution to system (2.20), supplied with the homogeneous Dirich-
let boundary condition for velocity, and with the zero Neumann boundary condition for
ψ. Further, we assume that initially eψ is a symmetric positive-definite tensor. The free
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energy satisfies:

d

dt
F (u, eψ) + α

∫

T
|∇u|2 +

β

2We2

∫

T
tr(eψ + e−ψ − I) ≤ 0. (2.49)

From this estimate, we also obtain that F (u, eψ) decreases in time exponentially fast to
zero.

Proof. Again by computing the inner product of the momentum equation and the velocity
we get

Re

2

d

dt

∫

T
|u|2 + α

∫

T
|∇u|2 +

β

We

∫

T
∇u : eψ = 0. (2.50)

Then, multiplying the transport equation for the logarithmic conformation tensor with
eψ − I implies

d

dt

∫

T
tr(eψ−ψ) =

∫

T
(Ωψ−ψΩ+2B) : (eψ−I)+

1

We
tr(2I−eψ−e−ψ)+ε

∫

T
∆ψ : (eψ−I).

(2.51)
Let us note that

∫

T
(Ωψ −ψΩ) : (eψ − I) =

∫

T
(Ωψ −ψΩ) : eψ = 0,

and ∫

T
B : (eψ − I) =

∫

T
∇u : eψ −

∫

T
trB =

∫

T
∇u : eψ.

For the diffusive terms, using Lemma 2.3.3 we get

∫

T
∆ψ : (eψ − I) = −

∫

T
∇ψ : ∇eψ ≤ 0.

Then equation (2.51) can be written as

d

dt

∫

T
tr(eψ −ψ) = 2

∫

T
(∇u) : eψ +

1

We
tr(2I − eψ − e−ψ) − ε

∫

T
∇ψ : ∇eψ. (2.52)

In order to eliminate the term
∫

T ∇u : eψ, we compute (2.50) + β
2W e

× (2.52) and use
the inequality (2.42). This yields (2.49), i.e.

d

dt

∫

T

(
Re

2
|u|2 +

β

2We
tr(eψ −ψ − I)

)
+
∫

T

(
α|∇u|2 +

β

2We2
tr(eψ + e−ψ − 2I)

)

= − εβ

2We

∫

T
∇ψ : ∇eψ ≤ 0.

We now follow the proof of Theorem 2.3.4 and it is clear that F (u, eψ) decreases expo-
nentially fast to zero in time.
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2.4 Characteristic finite element method

In this section we shall present the characteristic finite element scheme for the diffusive
Oldroyd-B models.

The idea of the characteristic method is to consider the trajectory of the fluid particle
and discretize the material derivative Du

Dt
= ∂u

∂t
+u·∇u along the characteristic path dx

dt
=

u. The advantage is that the resulting system matrix of the discrete scheme is symmetric.
This is advantageous when applying the implicit time approximation since we can apply
standard linear algebraic solvers for symmetric matrices. The characteristic finite element
method (FEM) for Navier-Stokes equations has been studied by [31, 74, 75, 81]. The
second order in time scheme has been studied by Boukir et al. [16]. In [68] Notsu and
Tabata developed a single time step second-order scheme, see also [13, 78]. Further, a
pressure-stabilized P1/P1 element approximation within characteristic FEM method is
proposed by Notsu and Tabata [66, 67]. Similar results can be found in [45].

2.4.1 Weak formulation

We start with introducing suitable functional spaces and the corresponding weak for-
mulation. Let T be a bounded domain in R

d, d = 2, 3, V ≡ H1
0 (T )d, Q ≡ L2

0(T ) and
W ≡ H1(T )d×d be the function spaces for velocity, pressure and conformation tensor.
Here H1(T ) and H1

0 (T ) are the well-known Sobolev spaces, the function space L2
0(T ) is

given as

L2
0(T ) ≡ {q ∈ L2(T );

∫

T
qdx = 0}.

Further, let (·, ·) denote the L2−inner products in the vector- and matrix- function spaces.
The bilinear forms are defined as follows

a0(u,v) = 2α(D(u),D(v)), b(u, q) = −(∇ · u, q),

A((u, p), (v, q)) = a0(u,v) + b(u, q) + b(v, p).

Definition 1. A weak solution of the problem (2.11) is a triple {(u, p,σ)(t)}t∈(0,T ) ⊂
V ×Q×W , such that for any test function (v, q,φ) ∈ V ×Q×W and almost any time
t ∈ (0, T ), we have

(
Re

Du

Dt
(t),v

)
+ A((u, p)(t), (v, q)) =

α

We
(σ(t),∇v), (2.53a)

(
Dσ

Dt
(t),φ

)
+ ε(∇σ(t),∇φ) = (∇u(t)σ(t) + σ(t)∇u(t)T ,φ)

+
1

We
(I − σ(t),φ). (2.53b)

Definition 2. A weak solution of problem (2.20) is a triple {(u, p,ψ)(t)}t∈(0,T ) ⊂ V ×
Q × W , such that for any test function (v, q,φ) ∈ V × Q × W and almost any time
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t ∈ (0, T ), we have

(
Re

Du

Dt
(t),v

)
+ A((u, p)(t), (v, q)) =

α

We
(eψ(t),∇v), (2.54a)

(
Dψ

Dt
(t),φ

)
+ ε(∇ψ(t),∇φ) = (Ω(t)ψ(t) +ψ(t)Ω(t) − 2B(t),φ)

+
1

We
(e−ψ(t) − I,φ). (2.54b)

Here, Ω and B come from the decomposition (2.13), and their value can be derived from
equation (2.14), or (2.16).

The initial conditions are
(
u0, p0,σ0(ψ0 = lnσ0)

)
∈ V × Q × W , where σ0 is a

symmetric positive-definite matrix. We would like to repeat that the question on the
existence of global weak solutions is still an open problem in general. The first results
for (2.53) have been obtained in [8, 22].

2.4.2 Discretization schemes

In what follows we formulate the characteristic FEM.
As usual, P1(K) denotes polynomial space of linear functions on a finite element

K ∈ Th, Th is the triangulation of T̄ (=
⋃

K∈Th
K), and hK is the diameter of the element

K. We assume that our triangulation is regular, cf. [21].
First, let us define some suitable function spaces Xh,Mh,Σh, Vh, Qh, Sh in the following

way

Xh ≡ {vh ∈ C0(T̄h)d; vh|K ∈ P1(K)d, ∀K ∈ Th}, Vh ≡ Xh ∩ V,

Mh ≡ {qh ∈ C0(T̄h); qh|K ∈ P1(K), ∀K ∈ Th}, Qh ≡ Mh ∩Q,

Σh ≡ {φh ∈ C0(T̄h)d×d;φh|K ∈ P1(K)d×d, ∀K ∈ Th},Wh ≡ Σh ∩W.

Further, we introduce some standard interpolation operators [21]

Π
(1)
h : C0(T̄h)d → Xh, Π

(2)
h : C0(T̄h) → Mh, Π

(3)
h : C0(T̄h)d×d → Σh.

Let ∆t denote the time step and NT the total number of time steps. We state our
characteristic finite element scheme for the diffusive Oldroyd-B model (2.11):

Find {(un+1
h , pn+1

h ,σn+1
h )}NT −1

n=0 ⊂ Vh×Qh×Wh such that for any test function (vh, qh,φh) ∈
Vh ×Qh ×Wh and for n = 0, · · · , NT − 1 it holds

(
Re

un+1
h − un

h ◦ Xn

∆t
,vh

)
+ A((un+1

h , pn+1
h ), (vh, qh)) + Sh(pn+1

h , qh) = − α

We
(σn+1

h ,∇vh),

(2.55a)
(
σn+1

h − σn
h ◦ Xn

∆t
,φh

)
+ ε(∇σn+1

h ,∇φh) = (∇un+1
h σn+1

h + σn+1
h (∇un+1

h )T ,φh)

+
1

We
(I − σn+1

h ,φh). (2.55b)
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Here the function Xn(tn) : x ∈ T 7→ Xn(t, x) ∈ T defines the characteristic

{
D
Dt

Xn(t, x) = un
h(Xn(t, x)), ∀t ∈ [tn, tn+1],

Xn(tn+1, x) = x.
(2.56)

Furthermore, the pressure stabilization term is defined as Sh(p, q) = −δ∑K∈Th
h2

K

∫
K ∇p∇q

and δ > 0 is a suitable parameter. For the diffusive model in the case of logarithmic
transformation (2.20), the characteristic FEM reads:

Find {(un+1
h , pn+1

h ,ψn+1
h )}NT −1

n=0 ⊂ Vh×Qh×Wh such that for any test function (vh, qh,φh) ∈
Vh ×Qh ×Wh and for n = 0, · · · , NT − 1, we have

(
Re

un+1
h − un

h ◦ Xn)

∆t
,vh

)
+ A((un+1

h , pn+1
h ), (vh, qh)) + Sh(pn+1

h , q) = − α

We
(eψ

n+1
h ,∇v),

(2.57a)
(
ψn+1

h −ψn
h ◦ Xn

∆t
,φh

)
+ ε(∇ψn+1

h ,∇φh) = (Ωn+1
h ψn+1

h +ψn+1
h Ωn+1

h − 2Bn+1
h ,φh)

+
1

We
(e−ψn+1

h − I,φh), (2.57b)

The schemes (2.55) and (2.57) are implicit in time. In order to obtain a numerical solu-
tion to such schemes we apply the fixed point iterations. Let us present the characteristic
FEM for (2.55) in Algorithm 1.

Algorithm 1 Characteristic FEM for the diffusive Oldroyd-B model

1: Given un
h, p

n
h,σ

n
h, set un,0 = un

h,σ
n,0
h = σn

h, p
n,0
h = pn

h.
2: for ℓ = 0, 1, · · · do

3: solve the equation (2.55) with explicit RHS:

(
Re

u
n,ℓ+1
h − un

h ◦ Xn)

∆t
,vh

)
+ A((un,ℓ+1

h , pn,ℓ+1
h ), (vh, qh)) + Sh(pn,ℓ+1

h , qh)

= − α

We
(σn,ℓ

h ,∇vh),
(
σ

n,ℓ+1
h − σn

h ◦ Xn

∆t
,φh

)
+ ε(∇σn,ℓ+1

h ,∇φh) +
1

We
(σn,ℓ+1,φh)

= (∇u
n,ℓ
h σ

n,ℓ
h + σn,ℓ

h (∇u
n,ℓ
h )T ,φh) +

1

We
(I,φh).

4: if (‖wn,ℓ+1 − wn,ℓ‖ ≤ ξ‖wn,ℓ‖ for w ∈ {u, p,σ} and ξ is small enough) then

5: break
6: end if

7: end for

8: Update solution: un+1 = un,ℓ+1, pn+1 = pn,ℓ+1,σn+1 = σn,ℓ+1.
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An analogous algorithm can be written for the characteristic FEM (2.57), cf. Algo-
rithm 2.

Algorithm 2 Characteristic FEM for the diffusive Oldroyd-B model using log-
transformation

1: Given un
h, p

n
h,ψ

n
h, set un,0 = un

h,ψ
n,0
h = ψn

h, p
n,0
h = pn

h.
2: for ℓ = 0, 1, · · · do

3: solve the equation (2.57) with explicit RHS:

(
Re

u
n,ℓ+1
h − un

h ◦ Xn)

∆t
,vh

)
+ A((un,ℓ+1

h , pn,ℓ+1
h ), (vh, qh)) + Sh(pn,ℓ+1

h , qh)

=
α

We
(eψ

n,ℓ

h ,∇vh),
(
ψ

n,ℓ+1
h −ψn

h ◦ Xn

∆t
,φh

)
+ ε(∇ψn,ℓ+1

h ,∇φh) = (Ωn,ℓ
h ψ

n,ℓ
h +ψn,ℓ

h Ω
n,ℓ
h − 2B

n,ℓ
h ,φh)

+
1

We
(e−ψn,ℓ

h − I,φh).

4: if (‖wn,ℓ+1 − wn,ℓ‖ ≤ ξ‖wn,ℓ‖ for w ∈ {u, p, eψ} and ξ is small enough) then

5: break
6: end if

7: end for

8: Update solution: un+1 = un,ℓ+1, pn+1 = pn,ℓ+1,ψn+1 = ψn,ℓ+1.

2.5 Combined finite difference-finite volume scheme

The aim of this section is to propose another numerical scheme for the logarithm transfor-
mation of the diffusive Oldroyd-B model (2.20), the so-called combined finite difference-
finite volume (FD-FV) scheme. In the following, we describe more details about the
space and time discretization.

We first discretize the domain Th by dividing it into M ×N regular rectangular mesh
cells. Let Ki,j, i = 1, · · · ,M, j = 1, · · · , N , denote an arbitrary cell, hx be the mesh
size in x-direction, and analogously hy be the mesh size in y-direction. Then the so-
called staggered approximation is applied for the fluid flow field. It means that the
discretization nodes for velocity component U and V are the midpoints of edges in x− or
y−direction, respectively, where U, V denote the x and y components of the velocity, cf.
Figure 2.1. Furthermore, nodes for pressure p and logarithm of the conformation tensor
ψ are at the cell centers.
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Figure 2.1: Discretization of the staggered mesh.

2.5.1 Discretization scheme

Assume we have the velocity field un = (Un, V n), pressure pn and log-conformation
tensor ψn at n-th time step tn. In order to obtain stable results at next time step tn+1,
a fully implicit time discretization will be implemented. In the following, we will split
our numerical simulation of the system (2.20) in two halves.

In the first part we apply the FV method for the transport equation of the log-
transformation of the conformation tensor (2.20c). Specifically, we have

(ψn+1 −ψn)i,j

∆t
= − 1

|Ki,j|
∑

sk

n(sk) · un+1(sk)H(ψn+1
i,j ,ψn+1

ik,jk
)|sk| + ε∆hψ

n+1
i,j

+ (Ωn+1ψn+1 −ψn+1Ωn+1 + 2Bn+1)i,j +
1

We
(e−ψn+1 − I)i,j,

(2.58)

where ∆t is the time step, |Ki,j| is the volume of mesh cell Ki,j, Kik,jk
(k = 1, 2, 3, 4) are

the neighbors of cell Ki,j, sk is the interface between the cell Ki,j and Kik ,jk
, |sk| is its

length, n(sk) and u(sk) are the outer normal and velocity of cell Ki,j at the interface
sk. Ωi,j and Bi,j are calculated due to the decomposition of velocity gradient ∇hui,j

described in Section 2.2, see formulas (2.14)–(2.16). The discrete gradient operator for
velocity is defined as

∇hui,j =

(
δxUi,j δyUi,j

δxVi,j δyVi,j

)
. (2.59a)
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where

(δxU)i,j :=
Ui+1/2,j − Ui−1/2,j

hx
, (δyV )i,j :=

Vi,j+1/2 − Vi,j−1/2

hy
,

(δyU)i,j :=
Ui+1/2,j+1 + Ui−1/2,j+1 − Ui+1/2,j−1 − Ui−1/2,j−1

4hy

,

(δxV )i,j :=
Vi+1,j−1/2 + Vi+1,j+1/2 − Vi−1,j−1/2 − Vi−1,j+1/2

4hx

,

(2.59b)

The discrete Laplace operator for ψ is defined as

∆hψi,j :=
1

h2
x

(ψi+1,j − 2ψi,j +ψi−1,j) +
1

h2
y

(ψi,j+1 − 2ψi,j +ψi,j−1). (2.60)

Moreover, H(ψi,j,ψik,jk
) is the upwind value that is used in the approximation of the

integral of the convection term
∫

Ki,j
(un+1 · ∇hψ

n+1)Ki,j
:

H(ψi,j,ψik,jk
) =

{
ψi,j if n(sk) · u(sk) ≥ 0,
ψik,jk

if n(sk) · u(sk) < 0.
(2.61)

In the second part, we apply a suitable FD approximation for the flow equations (2.20a)
and (2.20b). The idea of this part follows the lecture notes of Seibold [80]. The convection
terms u·∇u are approximated as ∇·(u⊗u), and the pressure terms are treated implicitly
by using the Chorin projection. For more details, the FD approximation reads,

Re
(Un+1 − Un)i+1/2,j

∆t
= − Reδx(Un+1)2

i+1/2,j − Reδy(Un+1V n+1)i+1/2,j − (δxp
n+1)i+1/2,j

+ α∆hU
n+1
i+1/2,j + (δxσ

n+1
11 )i+1/2,j + (δyσ

n+1
12 )i+1/2,j , (2.62a)

Re
(V n+1 − V n)i,j+1/2

∆t
= − Reδx(Un+1V n+1)i+1/2,j −Reδy(V n+1)2

i+1/2,j − (δyp
n+1)i,j+1/2

+ α∆hV
n+1

i,j+1/2 + (δxσ
n+1
21 )i,j+1/2 + (δyσ

n+1
22 )i,j+1/2, (2.62b)

∇h · un+1
i,j :=δxU

n+1
i,j + δyV

n+1
i,j = 0. (2.62c)

Here the discrete difference operators for the convection terms are defined as follows

(δxU
2)i+1/2,j :=

(
(Ūh)2 − γ|Ūh|Ũh

)
i+1,j

−
(
(Ūh)2 − γ|Ūh|Ũh

)
i,j

hx
,

(δy(UV ))i+1/2,j :=
(ŪvV̄ h − γ|V̄ h|Ũv)i+1/2,j+1/2 − (ŪvV̄ h − γ|V̄ h|Ũv)i+1/2,j−1/2

hy

,

(δx(UV ))i,j+1/2 :=
(ŪvV̄ h − γ|Ūv|Ṽ h)i+1/2,j+1/2 − (ŪvV̄ h − γ|Ūv|Ṽ h)i−1/2,j+1/2

hx
,

(δyV
2)i,j+1/2 :=

(
(V̄ v)2 − γ|V̄ v|Ṽ v

)
i,j+1

−
(
(V̄ v)2 − γ|V̄ v|Ṽ v

)
i,j

hy

,

(2.63)
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where

(Ūh)i,j :=
Ui−1/2,j + Ui+1/2,j

2
, (Ũh)i,j :=

Ui+1/2,j − Ui−1/2,j

2
,

(Ūv)i+1/2,j+1/2 :=
Ui+1/2,j + Ui+1/2,j+1

2
, (Ũv)i+1/2,j+1/2 :=

Ui+1/2,j+1 − Ui+1/2,j

2
,

(V̄ h)i+1/2,j+1/2 :=
Vi+1,j+1/2 + Vi,j+1/2

2
, (Ṽ h)i+1/2,j+1/2 :=

Vi+1,j+1/2 − Vi,j+1/2

2
,

(V̄ v)i,j :=
Vi,j+1/2 + Vi,j−1/2

2
, (Ṽ v)i,j :=

Vi,j+1/2 − Vi,j−1/2

2
,

γ = min(1.2∆t · max(max |Ui+1/2,j |,max |Vi,j+1/2|), 1).

(2.64)

The approximation of convection terms becomes averaged central difference for γ = 0,
and conservative upwind for γ = 1.
The Laplace operator ∆h for the discrete velocity components is given as

∆hUi+1/2,j := δ2
xUi+1/2,j + δ2

yUi+1/2,j , ∆hVi,j+1/2 := δ2
xVi,j+1/2 + δ2

yVi,j+1/2, (2.65)

where

δ2
xUi+1/2,j :=

Ui−1/2,j − 2Ui+1/2,j + Ui+3/2,j

h2
x

, δ2
xVi,j+1/2 :=

Vi+1,j+1/2 − 2Vi,j+1/2 + Vi−1,j+1/2

h2
x

,

δ2
yUi+1/2,j :=

Ui+1/2,j+1 − 2Ui+1/2,j + Ui+1/2,j−1

h2
y

, δ2
yVi,j+1/2 :=

Vi,j−1/2 − 2Vi,j+1/2 + Vi,j+3/2

h2
y

.

(2.66)
The discrete difference operators for the conformation tensor components are defined as
follows

δx(σ11)i+1/2,j :=
(σ11)i+1,j − (σ11)i,j

hx

, δy(σ22)i,j+1/2 :=
(σ22)i,j+1 − (σ22)i,j

hy

,

δy(σ12)i+1/2,j :=
(σ12)i+1,j+1 + (σ12)i,j+1 − (σ12)i+1,j−1 − (σ12)i,j−1

4hy
,

δx(σ21)i,j+1/2 :=
(σ21)i+1,j + (σ21)i+1,j+1 − (σ21)i−1,j − (σ21)i−1,j+1

4hx

.

(2.67)

The discrete difference operators for the pressure terms are defined as

δxpi+1/2,j :=
pi+1,j − pi,j

hx
, δypi,j+1/2 :=

pi,j+1 − pi,j

hy
. (2.68)

In order to solve the nonlinear system of (2.58) and (2.62) implicitly, we use the fix
point iteration approach. Let ℓ represent the iteration step and un,ℓ, pn,ℓ,ψn,ℓ be the
solution of the ℓ-th iteration. Starting from ℓ = 0, we get the solution of next iteration
step ℓ+ 1 in the following way:
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Step1: Viscoelastic part

We first approximate the viscoelastic part (2.58) in the following steps:
a) Decompose the velocity gradient ∇hu

n,ℓ
i,j to obtain Ω

n,ℓ
i,j and B

n,ℓ
i,j according to (2.14)–

(2.16) in Section 2.2.
b) Approximate equation (2.58) in an explicit manner

ψ
n,ℓ+1
i,j − ε∆t∆hψ

n,ℓ+1
i,j = ψn

i,j − ∆t

|Ki,j|
∑

sk

n(sk) · u(sk)H(ψn,ℓ
i,j ,ψ

n,ℓ
ik,jk

)|sk|

+ ∆t(Ωn,ℓ
i,jψ

n,ℓ
i,j −ψn,ℓ

i,j Ω
n,ℓ
i,j + 2B

n,ℓ
i,j ) +

∆t

We
(e−ψn,ℓ

i,j − I),

(2.69)

c) Update the conformation tensor

σ
n,ℓ+1
i,j = eψ

n,ℓ+1
i,j . (2.70)

Step2: Navier-Stokes part

Approximation of the fluid part (2.62) is realized by the Chorin projection method in
two steps.
a) We first neglect the influence of pressure and solve the following part

ut − α∆u = −u · ∇u + ∇ · σ.

More precisely, it reads

(
1

∆t
− α∆h

)
U∗

i+1/2,j =
1

∆t
Un

i+1/2,j − δx(Un,ℓ)2
i+1/2,j − δy(Un,ℓV n,ℓ)i+1/2,j

+
1 − α

We

(
δx(σn,ℓ+1

11 )i+1/2,j + δy(σn,ℓ+1
12 )i+1/2,j

)
,

(
1

∆t
− α∆h

)
V ∗

i,j+1/2 =
1

∆t
V n

i,j+1/2 − δx(Un,ℓV n,ℓ)i,j+1/2 − δy(V n,ℓ)2
i,j+1/2

+
1 − α

We

(
δx(σn,ℓ+1

21 )i,j+1/2 + δy(σn,ℓ+1
22 )i,j+1/2

)
.

(2.71)

b) In the next step we need to approximate the pressure terms ut = ∇p, i.e.,

Un,ℓ+1
i+1/2,j − U∗

i+1/2,j

∆t
= −δxp

n,ℓ+1
i+1/2,j ,

V n,ℓ+1
i,j+1/2 − V ∗

i,j+1/2

∆t
= −δyp

n,ℓ+1
i,j+1/2. (2.72)

This is realized by the following pressure projection step:

b1) Compute Fi,j = ∇h · u∗
i,j.

b2) Solve Poisson equation − ∆hp
n,ℓ+1
i,j = − 1

∆t
Fi,j to get pn,ℓ+1

i,j .

b3) Update velocity field u
n,ℓ+1
i,j = u∗

i,j − ∆t∇hp
n,ℓ+1
i,j , which is divided in two parts:

Un,ℓ+1
i+1/2,j = U∗

i+1/2,j − ∆tδxp
n,ℓ+1
i+1/2,j, and V n,ℓ+1

i,j+1/2 = V ∗
i,j+1/2 − ∆tδyp

n,ℓ+1
i,j+1/2.
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Here, the discrete difference operators are defined as follows

∇h · ui,j := δxUi,j + δyVi,j,∆hpi,j := δ2
xpi,j + δ2

ypi,j,

δ2
xpi,j :=

pi−1,j − 2pi,j + pi+1,j

h2
x

, δ2
ypi,j :=

pi,j−1 − 2pi,j + pi,j+1

h2
y

,
(2.73)

where δxUi,j and δyVi,j are computed using (2.59).
The incompressibility condition (2.20b) is naturally satisfied. Indeed, we have

∇h · u
n,ℓ+1
i,j = ∇h · u∗

i,j − ∆t∇h · (∇hP
n,ℓ+1
i,j ) = Fi,j − ∆t∆hP

n,ℓ+1
i,j = 0.

Finally, we state the algorithm for the combined scheme (2.58) and (2.62) as:

Algorithm 3 Combined FD-FV scheme

1: Given un, pn,ψn, set un,0 = un,ψn,0 = ψn, pn,0 = pn.
2: for ℓ = 0, 1, · · · do

3: solve the viscoelastic equation (2.69)
4: update the conformation tensor with equation (2.70)
5: solve the Navier-Stokes part (2.71) and (2.72)
6: if (‖vn,ℓ+1 − vn,ℓ‖ ≤ ξ‖vn,ℓ‖ for v ∈ {u, p,σ(= eψ)} and ξ is small enough) then

7: break
8: end if

9: end for

10: Update solution: un+1 = un,ℓ+1, pn+1 = pn,ℓ+1,ψn+1 = ψn,ℓ+1.

2.6 Characteristic finite-difference method

In the next chapter we want to investigate the nonlinear stability of the numerical
schemes. Although we will be able to show that the discrete entropy is decreasing in
time for the characteristic FEM schemes, it was not possible to show the same entropy
stability result for the combined FD-FV method. The reason is that in the combined
FD-FV method we cannot control the sign of the convective terms. However in the
characteristic method we can assume that due to conservatism

∫

Th

ψn
h =

∫

Th

ψn
h ◦ Xn(tn), (2.74)

for ψ to be the elastic stress tensor, similarly to that in [18]. Thus we have decided to
apply characteristic FD method to the Oldroyd-B model (2.20). The characteristic FD
method is similar to the combined FD-FV method. The only difference is that the time
derivative and the convective terms in the evolution equation of the stress tensor are
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realized by the characteristic approach. More precisely, we have instead of (2.58)

(ψn+1 −ψn ◦ Xn)i,j

∆t
=(Ωn+1ψn+1 −ψn+1Ωn+1 + 2Bn+1)i,j

+
1

We
(e−ψn+1

i,j − I) + ε∆hψ
n+1
i,j .

(2.75)

Analogously, we replace (2.69), which is the fix point iteration of (2.58), by

ψ
n,ℓ+1
i,j − ε∆t∆hψ

n,ℓ+1
i,j =ψn

i,j ◦ Xn + ∆t(Ωn,ℓ
i,jψ

n,ℓ
i,j −ψn,ℓ

i,j Ω
n,ℓ
i,j + 2B

n,ℓ
i,j )

+
∆t

We
(e−ψn,ℓ

i,j − I).
(2.76)

In what follows we introduce the algorithm about how to evaluate the old time step
value ψn

i,j ◦Xn for the particle which is currently located at i, j-th cell center. The current
position of the particle is

x(i, j) = (xi, yj) =
(
(i− 1/2)hx, (j − 1/2)hy

)
. (2.77)

Now we approximate the position of the particle at the previous time step according to
the trajectory (2.56)

x′(i, j) = (xi′ , yj′) =
(
xi − (Ūh)n

i,j∆t, yj − (V̄ v)n
i,j∆t

)
, (2.78)

where Ūh
i,j and V̄ v

i,j are computed using (2.64).

Let i′ = x′/hx +0.5, j′ = y′/hy +0.5 and iL = ⌊i′⌋, iR = iL +1, jL = ⌊j′⌋, jR = jL +1,
where ⌊x⌋ returns the largest integer not greater than x. Suppose that x′ is surrounded
by the points {Pk, k = 1, 2, 3, 4} (see Figure 2.2), where

x(Pk) = x(iPk
, jPk

). (2.79)

It is obvious that iP1 = iP3 = iL, iP2 = iP4 = iR, jP1 = jP2 = jL, jP3 = jP4 = jR. We
approximate the old time step value at old position x′ = (xi′ , yj′)) in the following way:

ψn
i,j ◦ Xn =

4∑

k=1

wkψ
n(Pk) (2.80)

where wk = (1 − iPk
+ i′)(1 − jPk

+ j′) represents the weight of k − th point, see Figure
2.2.
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Figure 2.2: Characteristic position.

We conclude the implicit discretization of the characteristic FD method as a combi-
nation of (2.62) and (2.75). Further, we state the characteristic FD scheme as:

Algorithm 4 Characteristic FD scheme

1: Given un, pn,ψn, set un,0 = un,ψn,0 = ψn, pn,0 = pn.
2: for ℓ = 0, 1, · · · do

3: solve the viscoelastic equation (2.76)
4: update the conformation tensor with equation (2.70)
5: solve the Navier-Stokes part (2.71) and (2.72)
6: if (‖vn,ℓ+1 − vn,ℓ‖ ≤ ξ‖vn,ℓ‖ for v ∈ {u, p,σ} and ξ is small enough) then

7: break
8: end if

9: end for

10: Update solution: un+1 = un,ℓ+1, pn+1 = pn,ℓ+1,ψn+1 = ψn,ℓ+1.
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3 Stability analysis of the numerical

schemes for the Oldroyd-B type

fluids

In this chapter, we first study the stability of the diffusive Oldroyd-B type fluids (2.11)
using the linear stability analysis model. According to our simulations, we found that
employing diffusive model for the transport equation of the conformation tensor helps to
obtain stable results. Furthermore, we have investigated nonlinear stability by applying
the energy dissipative method and have demonstrated how to control discrete entropy
of our characteristic FEM. The energy stability has been studied by Boyaval et al. [18,
17] for the Oldroyd-B model(2.10), and the log-transformation of the Oldroyd-B model
(2.19). Herein, we have incorporated the results to the relative diffusive models (2.11),
(2.20). Finally, we study the entropy stability of the characteristic FD scheme for the
system (2.20).

3.1 Global linear stability

In the research of the stability analysis for ODEs, the linear stability approach plays
an important role. The main idea is to linearise the problem at a stationary point.
The solution to the linearised system is just a perturbation of this stationary solution.
Then the stability of the stationary state is reduced to the question: if the perturbed
solution will decrease or increase in time, which is controlled by the eigenvalues of the
corresponding linear system cf., e.g., [82].

3.1.1 Arnoldi algorithm

In this subsection we will give an introduction to the approximation of the eigenvalues
of the matrix A for a linear system of ordinary differential equations

∂v

∂t
= Av,v(0) = v0. (3.1)

The solution to the linear problem (3.1) at time T is

v(T ) = Bv(0),

where B = eAT [77].

Let λA, λB and φA,φB be the eigenvalues and corresponding eigenvector of matrix A
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and B, respectively, i.e.
AφA = λAφA, BφB = λBφB.

Then we have

BφA = exp(AT )φA =
∞∑

n=0

(AT )n

n!
φA =

∞∑

n=0

(λAT )n

n!
φA = exp(λAT )φA.

This indicates that the eigenvector of A is also the eigenvector of B, and the relationship
between eigenvalues is

λB = exp(λAT ),

which can also be written as

λA = {log |λB| + i arg λB}/T.

The approximate eigensystem of B can be expressed by a Krylov subspace κM =
{ζ1, ζ2, · · · , ζM}, where {ζi, i = 1, · · ·M} is the orthogonal basis vector of the subspace
κM .

Given a random initial vector ζ we normalize it to get ζ1 = ζ/‖ζ‖2. Substituting
ζ1 into the linear system (3.1) as the initial value, we derive the solution at time T :
v(T ) = Bζ1. Then Bζ1 can be decomposed as the linear combination of ζ1 and ζ2

Bζ1 = h1,1ζ1 + h2,1ζ2,

where h1,1 = Bζ1 ·ζ1, h2,1 = ‖Bζ1 −h1,1ζ1‖2, and ζ2 = (Bζ1 −h1,1ζ1)/h2,1 is perpendicular
to ζ1.

Similarly, given ζ1, · · · , ζi, we could get hj,i, j = 1, · · · i + 1 and ζi+1 in the following
steps: solve the linear system and get Bζi. Decompose it as Bζi =

∑i
j=1 hj,iζj +hi+1,iζi+1

with hj,i = Bζi · ζj . Let r = Bζi − ∑i
j=1 hj,iζj , then we have hi+1,i = ‖r‖2 and ζi+1 =

r/hi+1,i. We should point out that ‖ζj, j = 1, · · · ,M + 1‖ = 1.

Repeat until i = M . In the case that M is large index and hM+1,M is small, we obtain

Bζi =
M∑

j=1

hj,Mζj + hM+1,MζM+1
∼=

M∑

j=1

hj,Mζj .

Altogether, we have
B [ζ1, · · · , ζM ] = [ζ1, · · · , ζM ]H,

where

H =




h1,1 h1,2 · · · h1,M

h2,1 h2,2 h2,M

. . .
. . .

...
hM,M−1 hM,M



.

Let λH and φH be the eigenvalue and eigenvector of H , i.e., HφH = λHφH , we obtain

B [ζ1, · · · , ζM ]φH = [ζ1, · · · , ζM ]HφH = [ζ1, · · · , ζM ]λHφH = λH [ζ1, · · · , ζM ]φH .
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Thus the relationship of eigenvalue and eigenvector between the matrix H and B is

λB = λH ,φB = [ζ1, · · · , ζM ]φH .

Now the eigenvalue problem of the linear system is reduced to solve the eigenvalue of
upper Hessenberg matrix H . The eigenvalues and eigenvectors of H can be found by
some standard algorithm, e.g. QR algorithm.

The real part of λA is important in order to study the global stability of the linear
system. Re(λA) > 0 indicates that |v| increases in time, the perturbation is amplified.
On the other hand, if Re(λA) < 0, the perturbed solution will decrease to zero. Thus
the flow will approach the stable steady state. Consequently, we can use such algorithm
to analyze the stability of linear ODE.

3.1.2 Linearised Oldroyd-B model

Let v = (u, p,σ) be a solution of the Oldroyd-B model (2.11). Further let v̄ = (ū, p̄, σ̄)
be a steady state. Assume that u = ū + ũ, p = p̄+ p̃,σ = σ̄ + σ̃, where ṽ = (ũ, p̃, σ̃) is
a small perturbation.
The steady state should satisfy the governing equations,





Re(∂ū

∂t
+ ū · ∇ū) = −∆p̄ + α∆ū + β

W e
∇ · (σ̄ − I)

∇ · ū = 0
∂σ̄
∂t

+ (ū · ∇)σ̄ − ∇ū · σ̄ − σ̄ · (∇ū)T = 1
W e

(I − σ̄) + ε∆σ̄
(3.2)

Subtracting equation (3.2) from equation (2.11) we get the linearised system for the
perturbations ũ, p̃, σ̃,





Re(∂ũ

∂t
+ ū · ∇ũ) = −∆p̃+ α∆ũ + β

W e
∇ · σ̃ − (ũ · ∇)ū

∇ · ũ = 0
∂σ̃
∂t

+ (ū · ∇)σ̃ + (ũ · ∇)σ̄ = ∇ūσ̃ + σ̃∇ū + ∇ũσ̄ + σ̄∇ũ − 1
W e
σ̃ + εσ̃

(3.3)

Numerically we solve this system with the characteristic finite element method described
in Section 2.4. The Algorithm 1 is applied by changing the original Oldroyd-B model with
the perturbation equations (3.3). Further, the explicit time discretization is implemented
by constraining the iteration step ℓ = 0. In order to study the global linear stability, we
calculate the eigenvalue of matrix A with the Arnoldi algorithm described in the Section
3.1.1.

3.1.3 Test

We consider the plane Couette flow. The stationary state for the Couette flow reads,

ū =

(
y
0

)
, σ̄ =

(
1 + 2We2 We

We 1

)
.

In the test we set M = 100, M × M is the size of matrix H , and T = 1. We compared
largest eigenvalues for different diffusive coefficients and for different meshes size h. From
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Table 3.1 we observe stability when ε is of hi, i = 0, 1, where ε is the diffusion coefficient,
and h is the mesh size. When ε decrease to h2, we can notice that we lose the stability
again. Our results indicates that the Oldroyd-B model gets linearly unstable for very
small diffusion coefficient in the transport equation for the elastic stress tensor.

P
P
P
P
P
P
P
P
P

We
1/h

8 16 32 64 128 256

ε = 0
0.5 -0.238922 -0.199503 -0.0294619 0.240331 0.355994 0.70052
1 0.0259079 0.14204 0.440585 0.743758 0.941699 1.35596

ε = h0

0.5 -0.53498 -0.587195 -0.619283 -0.636759 -0.645558 -0.650033
1 -0.126213 -0.137673 -0.147381 -0.151533 -0.154073 -0.155247

ε = h1

0.5 -0.57535 -0.614261 -0.664393 -0.704338 -0.730504 -0.75039
1 -0.204993 -0.262254 -0.322263 -0.350343 -0.377132 -0.321198

ε = h2

0.5 -0.594292 -0.426336 -0.211495 -0.109401 -0.0308632 0.262292
1 -0.288596 -0.193508 0.0688591 0.376316 0.465567 0.83494

Table 3.1: Largest real part of the eigenvalues for different diffusion coefficients.

3.2 Entropy stability for the characteristic FEM

In this section, we will show that our characteristic FEM schemes for diffusive Oldroyd-B
models are energy dissipative.

3.2.1 Entropy stable characteristic FEM for the diffusive Oldroyd-B

model

In this subsection, we will study the energy stability of the characteristic FEM for the
diffusive Oldroyd-B model (2.11).

Lemma 3.2.1. Let (un
h, p

n
h,σ

n
h)0≤n≤NT

be a solution to (2.55), supplied with homogeneous
Dirichlet boundary condition for velocity, and zero Neumann boundary condition for σ.
Further, we assume that σh is initially symmetric positive-definite. Then the free energy
of the system (2.55)

F n
h = F (un

h,σ
n
h) =

Re

2

∫

Ω
|un

h|2 +
β

2We

∫

Ω
tr(σn

h − ln(σn
h) − I) (3.4)

satisfies

F n+1
h − F n

h +
∫

Ω

Re

2
|un+1

h − un
h|2 + ∆t

∫

Ω
2αCk|∇un+1

h |2 +
β

2We2
tr(σn

h + (σn
h)−1 − I) ≤ 0.

(3.5)
In particular, the sequence (F n

h )0≤n≤NT
is non-increasing.
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Proof. We choose

(
un+1

h ,−pn+1
h , β

2W e
(I − (σn+1

h )−1)

)
as a test function for the system

(2.55), and get

0 =
∫

Ω

(
Re

un+1
h − un

h ◦Xn(tn)

∆t
· un+1

h + 2αD(un+1
h ) : D(un+1

h ) +
β

We
σn+1

h : ∇un+1
h

)

+ δ
∑

K∈Th

h2
K(∇pn+1

h )2 +
β

2We

∫

Ω

(
σn+1

h − σn
h ◦Xn(tn)

∆t
: (I − (σn+1

h )−1)

− (∇un+1
h σn+1

h + σn+1
h (∇un+1

h )T ) : (I − (σn+1
h )−1) − 1

We
(I − σn+1

h ) : (I − (σn+1
h )−1)

+ ε∇σn+1
h : ∇(I − (σn+1

h )−1)

)
.

It should be noted that due to conservatism we have assumed that [18]

∫

Ω
un

h ◦Xn(tn) =
∫

Ω
un

h, (3.6)

which also holds for conformation tensor σh and its logarithm ψh.
For the approximation of material derivative we have

∫

Ω
(un+1

h − un
h ◦Xn(tn)) · un+1

h =
∫

Ω

|un+1
h |2 − |un

h ◦Xn(tn)|2
2

+
(un+1

h − un
h ◦Xn(tn))2

2

=
∫

Ω

|un+1
h |2 − |un

h|2
2

+
1

2
(un+1

h − un
h ◦Xn(tn))2 ≥

∫

Ω

|un+1
h |2 − |un

h|2
2

.

Using the Korn inequality, we have

∫

Ω
D(un+1

h ) : D(un+1
h ) ≥ Ck

∫

Ω
|∇un+1

h |2.

Now let us go to the conformation tensor part.

∫

Ω
(σn+1

h − σn
h ◦Xn(tn)) : (I − (σn+1

h )−1)

=
∫

Ω
tr(σn+1

h − σn
h ◦Xn(tn)) + (σn

h ◦Xn(tn) − σn+1
h ) : (σn+1

h )−1.

Using (2.35f) for σn
h ◦Xn(tn) and σn+1

h we obtain

∫

Ω
(σn

h ◦Xn(tn) − σn+1
h ) : (σn+1

h )−1 ≥
∫

Ω
tr(lnσn

h ◦Xn(tn) − lnσn+1
h ).
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Thus we have
∫

Ω
(σn+1

h − σn
h ◦Xn(tn)) : (I − (σn+1

h )−1)

≥
∫

Ω
tr(σn+1

h − σn
h ◦Xn(tn)) + tr(lnσn

h ◦Xn(tn) − lnσn+1
h )

=
∫

Ω
tr(σn+1

h − lnσn+1
h ) − tr(σn

h − lnσn
h),

where we have used the fact that
∫

Ω tr(σn
h − σn

h) ◦Xn(tn) =
∫

Ω tr(σn
h − lnσn

h), cf.(3.6).
Let us note that

(∇un+1
h σn+1

h + σn+1
h (∇un+1

h )T ) : (I − (σn+1
h )−1) = 2

∫

Ω
∇un+1

h : σn+1
h ,

and
(I − σn+1

h ) : (I − (σn+1
h )−1) = tr(2I − (σn+1

h )−1 − σn+1
h ).

Consequently, we obtain

F n+1
h − F n

h ≤ −
∫

Ω

Re

2
|un+1

h − un
h|2 − ∆t

∫

Ω
2αCk|∇un+1

h |2 − β

2We2
tr(σn

h + (σn
h)−1 − I),

which is the inequality (3.5). Since every term on the right hand side is negative, the
sequence F n

h is non-increasing.

3.2.2 Entropy stable characteristic FEM for the diffusive

Oldoroyd-B model using log-transformation

In this subsection we will study the diffusive Oldroyd-B model (2.20), where the log-
transformation has been applied for the elastic stress tensor.

Lemma 3.2.2. Let (un
h, p

n
h,ψ

n
h)0≤n≤NT

be a solution to (2.57), supplied with homogeneous
Dirichlet boundary condition for velocity, and with the zero Neumann boundary condition
for ψh. Further, we assume that initially eψh is a symmetric positive-definite tensor.
Then the free energy of the system (2.57)

F n
h = F (un

h, e
ψn

h ) =
Re

2

∫

Ω
|un

h|2 +
β

2We

∫

Ω
tr(eψ

n
h −ψn

h − I) (3.7)

satisfies

F n+1
h −F n

h +
∫

Ω

Re

2
|un+1

h −un
h|2+∆t

∫

Ω
2αCk|∇un+1

h |2+
β

2We2
tr(eψ

n
h +e−ψn

h −I) ≤ 0. (3.8)

In particular, the sequence (F n
h )0≤n≤NT

is non-increasing.

Proof. We choose

(
un+1

h ,−pn+1
h , β

2W e
(eψ

n+1
h −I)

)
as a test function for the system (2.57),
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and get

0 =
∫

Ω

(
Re

un+1
h − un

h ◦Xn(tn)

∆t
· un+1

h + 2αD(un+1
h ) : D(un+1

h ) +
β

We
eψ

n+1
h : ∇un+1

h

)

+
∑

K∈Th

h2
Kδ(∇pn+1

h )2 +
β

2We

∫

Ω

(
ψn+1

h −ψn
h ◦Xn(tn)

∆t
: (eψ

n+1
h − I)

− (Ωn+1
h ψn+1

h −ψn+1
h Ωn+1

h + 2Bn+1
h ) : (eψ

n+1
h − I) − 1

We
(I − eψ

n+1
h ) : (eψ

n+1
h − I)

+ ε∇ψn+1
h : ∇(eψ

n+1
h − I)

)
.

Similar to the proof of Lemma 3.2.1, we have

∫

Ω
(un+1

h −un
h◦Xn(tn))·un+1

h ≥
∫

Ω

|un+1
h |2 − |un

h|2
2

,
∫

Ω
D(un+1

h ) : D(un+1
h ) ≥ Ck

∫

Ω
|∇un+1

h |2.

Moreover, we have

∫

Ω
(ψn+1

h −ψn
h◦Xn(tn)) : (eψ

n+1
h −I) =

∫

Ω
(ψn+1

h −ψn
h◦Xn(tn)) : eψ

n+1
h −tr(ψn+1

h −ψn
h◦Xn(tn)).

Using (2.35f) for eψ
n+1
h and ψn

h ◦Xn(tn), we get

(ψn+1
h −ψn

h ◦Xn(tn)) : eψ
n+1
h ≥ tr(eψ

n+1
h − eψ

n
h◦Xn(tn)).

Thus we obtain
∫

Ω
(ψn+1

h −ψn
h ◦Xn(tn)) : (eψ

n+1
h − I) ≥

∫

Ω
tr(eψ

n+1
h −ψn+1

h ) −
∫

Ω
tr(eψ

n
h −ψn

h) ◦Xn(tn)

=
∫

Ω
tr(eψ

n+1
h −ψn+1

h ) −
∫

Ω
tr(eψ

n
h −ψn

h),

where we have used the fact that
∫

Ω tr(eψ
n
h −ψn

h) ◦Xn(tn) =
∫

Ω tr(eψ
n
h −ψn

h), cf.(3.6).
Let us note that
∫

Ω
(Ωn+1

h ψn+1
h −ψn+1

h Ωn+1
h ) : (eψ

n+1
h − I) =

∫

Ω
(Ωn+1

h ψn+1
h −ψn+1

h Ωn+1
h ) : eψ

n+1
h = 0,

∫

Ω
Bn+1

h : (eψ
n+1
h − I) =

∫

Ω
∇un+1

h : eψ
n+1
h −

∫

Ω
trBn+1

h =
∫

Ω
∇un+1

h : eψ
n+1
h ,

and
(I − eψ

n+1
h ) : (eψ

n+1
h − I) = tr(eψ

n+1
h + eψ

n+1
h − 2I).

Consequently, we obtain

F n+1
h − F n

h ≤ −
∫

Ω

Re

2
|un+1

h − un
h|2 − ∆t

∫

Ω
2αCk|∇un+1

h |2 − β

2We2
tr(eψ

n
h + e−ψn

h − I),

which is the equation (3.8). Since every term on the right hand side is negative, the
sequence is non-increasing.
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It should be pointed out that this dissipative property is a very important tool that
demonstrates the nonlinear stability of our characteristic FEM for both diffusive Oldroyd-
B models (2.11), (2.20).

3.3 Entropy stable characteristic FD scheme for the

diffusive Oldroyd-B model using log-transformation

In this section we will show that the characteristic FD scheme also dissipates the free
energy. To this end, we need to introduce some useful discrete integration by parts
techniques.

3.3.1 Discrete integration by parts

Before showing the nice properties for the terms used in the characteristic finite difference
scheme we firstly describe some fundamental formulas in one dimension. In this case we
discretize a computational domain T into M cells. Let h denote a mesh size and assume
that Ti is the i− th cell, with function u sitting at vertexes, while p, ψ are at cell centers.
Consequently, we have the discrete values ui±1/2, pi, ψi, i = 1, 2, · · · ,M .

Lemma 3.3.1. Assume we have the zero Dirichlet boundary condition for u and the
Neumann boundary condition for ψ, i.e. uM+1/2 = u1/2 = 0, ψ0 = ψ1, ψM+1 = ψM .
Then the following discrete integration by parts formulas hold

1

h

M∑

i=1

(ui+1/2 − ui−1/2)pi = −1

h

M−1∑

i=1

(pi+1 − pi)ui+1/2 = −1

h

M∑

i=1

(pi+1 − pi)ui+1/2, (3.9a)

1

h

M∑

i=1

(ui+1 − ui−1)ψi = −1

h

M∑

i=1

ui(ψi+1 − ψi−1). (3.9b)

Proof. Let us consider the difference of the first and second terms of (3.9a). Direct
computation yields

1

h

M∑

i=1

(ui+1/2 − ui−1/2)pi +
1

h

M−1∑

i=1

(pi+1 − pi)ui+1/2

=
1

h

(
M∑

i=1

ui+1/2pi −
M−1∑

i=1

ui+1/2pi +
M−1∑

i=1

ui+1/2pi+1 −
M∑

i=1

ui−1/2pi

)

=
1

h

(
uM+1/2pM − u1/2p1

)
= 0,

where we have used the boundary condition uM+1/2 = u1/2 = 0. Moreover, since
uM+1/2 = 0 we also have

M∑

i=1

(pi+1 − pi)ui+1/2 = (pM+1 − pM)uM+1/2 +
M−1∑

i=1

(pi+1 − pi)ui+1/2 =
M−1∑

i=1

(pi+1 − pi)ui+1/2.
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The equality (3.9b) can be shown in an analogous way

M∑

i=1

(ui+1 − ui−1)ψi +
M∑

i=1

ui(ψi+1 − ψi−1) =
M∑

i=1

(ui+1ψi − uiψi−1) +
M∑

i=1

(uiψi+1 − ui−1ψi)

= uM+1ψM − u1ψ0 + uMψM+1 − u0ψ1 = (uM+1 + uM)ψM − (u1 + u0)ψ1

= 2uM+1/2ψM − 2u1/2ψ1 = 0,

which concludes the proof.

Now let us consider the characteristic finite difference scheme in two-dimensional case.
Accordingly, we divide the computational domain Th into M × N regular rectangular
mesh cells and use the same the space discretizations, cf. Figure 2.1. Assume that we
have homogeneous Dirichlet boundary for velocity and Neumann boundary for every
conformation tensor component σ, i.e.,

U1/2,j = UM+1/2,j = Vi,1/2 = Vi,N+1/2 = 0, Ūv
i,1 = Ūv

i,N = V̄ h
1,j = V̄ h

M,j = 0,

σ0,j = σ1,j , σM+1,j = σM,j , σi,0 = σi,1, σi,N+1 = σi,N , i = 1, · · · ,M, j = 1, · · · , N,
(3.10)

where the superscript “−” represents averaging and the definition of the average operators
can be found in (2.64). Recall the definition of the derivative operators (2.63), (2.65) and
(2.67) used in the characteristic FD discretization (2.62), we show the following three
discrete integration by parts results with the help of Lemma 3.3.1.

Lemma 3.3.2. For the discrete difference of the transport terms (2.63) appearing in the
momentum equation (2.62) the following properties hold

M−1∑

i=1

N∑

j=1

(
Uδx(U2)

)
i+1/2,j

≥ 1

4

M−1∑

i=1

N∑

j=1

(Ui+1/2,j)
2

(
(δxU)i+1,j + (δxU)i,j

)
, (3.11a)

M−1∑

i=1

N∑

j=1

(Uδy(UV ))i+1/2,j ≥ 1

4

M−1∑

i=1

N∑

j=1

(Ui+1/2,j)
2

(
(δyV )i,j + (δyV )i+1,j

)
, (3.11b)

M∑

i=1

N−1∑

j=1

(V δx(UV ))i,j+1/2 ≥ 1

4

M∑

i=1

N−1∑

j=1

(Vi,j+1/2)
2

(
(δxU)i,j+1 + (δxU)i,j

)
, (3.11c)

M∑

i=1

N−1∑

j=1

(
V δy(V 2)

)
i,j+1/2

≥ 1

4

M∑

i=1

N−1∑

j=1

(Vi,j+1/2)
2

(
(δyV )i,j+1 + (δyV )i,j

)
. (3.11d)

Proof. The proof of (3.11a) starts with splitting the discrete derivative δx(U2)i+1/2,j into
two parts, the part containing γ and the central difference part

δx(U2)i+1/2,j = δγ
x(U2)i+1/2,j + δC

x (U2)i+1/2,j ,

where

δγ
x(U2) = γ

(|Ūh|Ũh)i,j − (|Ūh|Ũh)i+1,j

hx
, δC

x (U2) =
(Ūh)2

i+1,j − (Ūh)2
i,j

hx
.
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Applying (3.9a) in x-direction on the “γ” term we have

M−1∑

i=1

N∑

j=1

(
Uδγ

x(U2)
)

i+1/2,j
=

M−1∑

i=1

N∑

j=1

γ
(|Ūh|Ũh)i,j − (|Ūh|Ũh)i+1,j

hx
Ui+1/2,j

=
γ

hx

M−1∑

i=1

N∑

j=1

(|Ūh|Ũh)i,j(Ui+1/2,j − Ui−1/2,j) =
2γ

hx

M−1∑

i=1

N∑

j=1

|Ūh
i,j|(Ũh

i,j)
2 ≥ 0.

(3.12)

Applying twice the formula (3.9a) in x-direction for the central difference part we get

M−1∑

i=1

N∑

j=1

(
UδC

x (U2)
)

i+1/2,j

=
N∑

j=1

(
1

hx

M−1∑

i=1

(
(Ūh

i+1,j)
2 − (Ūh

i,j)
2
)
Ui+1/2,j

)
=

N∑

j=1

(
− 1

hx

M∑

i=1

(Ui+1/2,j − Ui−1/2,j)(Ū
h
i,j)

2

)

=
N∑

j=1

(
− 1

hx

M∑

i=1

(Ui+1/2,j − Ui−1/2,j)
Ui+1/2,j + Ui−1/2,j

2
Ūh

i,j

)

=
N∑

j=1

(
− 1

2hx

M∑

i=1

(U2
i+1/2,j − U2

i−1/2,j)Ū
h
i,j

)
=

N∑

j=1

(
1

2hx

M−1∑

i=1

(Ūh
i+1,j − Ūh

i,j)U
2
i+1/2,j

)

=
N∑

j=1

(
1

4hx

M−1∑

i=1

(Ui+3/2,j − Ui+1/2,j + Ui+1/2,j − Ui−1/2,j)U
2
i+1/2,j

)

=
1

4

M−1∑

i=1

N∑

j=1

U2
i+1/2,j

(
δxUi+1,j + δxUi,j

)
.

(3.13)
Summing up (3.12) and (3.13) straightly leads to (3.11a).

Analogously, the proof of (3.11b) is done by using the decomposition of the discrete
derivative of UV with respect to y δy(UV )i+1/2,j = δγ

y (UV )i+1/2,j + δC
y (UV )i+1/2,j, where

δγ
y (UV )i+1/2,j+1/2 = γ

(|V̄ h|Ũv)i+1/2,j−1/2 − (|V̄ h|Ũv)i+1/2,j+1/2

hy

,

δC
y (UV )i+1/2,j+1/2 =

(ŪvV̄ h)i+1/2,j+1/2 − (ŪvV̄ h)i+1/2,j−1/2

hy

.

By applying the formula (3.9a) in y-direction, it is easy to show the following inequality

M−1∑

i=1

N∑

j=1

(
Uδγ

y (UV )
)

i+1/2,j
=

M−1∑

i=1

N∑

j=1

γ
(|V̄ h|Ũv)i+1/2,j−1/2 − (|V̄ h|Ũv)i+1/2,j+1/2

hy
Ui+1/2,j

=
γ

hy

M−1∑

i=1

N∑

j=1

(|V̄ h|Ũv)i+1/2,j+1/2(Ui+1/2,j+1 − Ui+1/2,j)

=
2γ

hy

M−1∑

i=1

N∑

j=1

|V̄ h
i+1/2,j+1/2|

(
Ũv

i+1/2,j+1/2

)2 ≥ 0.

(3.14)
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In addition, we show the following equality as well

M−1∑

i=1

N∑

j=1

(
UδC

y (UV )
)

i+1/2,j

=
1

hy

M−1∑

i=1

N∑

j=1

(Ūv
i+1/2,j+1/2V̄

h
i+1/2,j+1/2 − Ūv

i+1/2,j−1/2V̄
h

i+1/2,j−1/2)Ui+1/2,j

=
M−1∑

i=1


− 1

hy

N−1∑

j=1

(Ui+1/2,j+1 − Ui+1/2,j)Ū
v
i+1/2,j+1/2V̄

h
i+1/2,j+1/2




= − 1

2hy

M−1∑

i=1

N−1∑

j=1

(
U2

i+1/2,j+1 − U2
i+1/2,j

)
V̄ h

i+1/2,j+1/2

=
1

2hy

M−1∑

i=1

N∑

j=1

(
V̄ h

i+1/2,j+1/2 − V̄ h
i+1/2,j−1/2

)
U2

i+1/2,j

=
1

2hy

M−1∑

i=1

N∑

j=1

U2
i+1/2,j

(
Vi,j+1/2 + Vi+1,j+1/2

2
− Vi,j−1/2 + Vi+1,j−1/2

2

)

=
1

4

M−1∑

i=1

N∑

j=1

U2
i+1/2,j (δyVi,j + δyVi+1,j) .

(3.15)

Summing up (3.14) and (3.15) together yields (3.11b).

The proof of (3.11c) is more or less similar. First step is to split the derivative
δx(UV )i,j+1/2 into two parts

δx(UV )i,j+1/2 = δγ
x(UV )i,j+1/2 + δC

x (UV )i,j+1/2,

where

δγ
x(UV )i,j+1/2 = γ

(|Ūv|Ṽ h)i−1/2,j+1/2 − (|Ūv|Ṽ h)i+1/2,j+1/2

hx
,

δC
x (UV )i,j+1/2 =

(ŪvV̄ h)i+1/2,j+1/2 − (ŪvV̄ h)i−1/2,j+1/2

hx
.

Applying (3.9a) in x-direction for the “γ” term gives

M∑

i=1

N−1∑

j=1

(V δγ
x(UV ))i,j+1/2 =

M∑

i=1

N−1∑

j=1

γ
(|Ūv|Ṽ h)i−1/2,j+1/2 − (|Ūv|Ṽ h)i+1/2,j+1/2

hx
Vi,j+1/2

=
γ

hx

M∑

i=1

N−1∑

j=1

(|Ūv|Ṽ h)i+1/2,j+1/2(Vi+1,j+1/2 − Vi,j+1/2)

=
2γ

hx

M∑

i=1

N−1∑

j=1

|Ūv
i+1/2,j+1/2|(Ṽ h

i+1/2,j+1/2)2 ≥ 0.

(3.16)
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Similarly, for the central difference part we have

M∑

i=1

N−1∑

j=1

(V δx(UV ))i,j+1/2

=
1

hx

M∑

i=1

N−1∑

j=1

(
(ŪvV̄ h)i+1/2,j+1/2 − (ŪvV̄ h)i−1/2,j+1/2

)
Vi,j+1/2

=
N−1∑

j=1

(
− 1

hx

M−1∑

i=1

Ūv
i+1/2,j+1/2V̄

h
i+1/2,j+1/2(Vi+1,j+1/2 − Vi,j+1/2)

)

=
N−1∑

j=1

(
− 1

2hx

M−1∑

i=1

Ūv
i+1/2,j+1/2

(
V 2

i+1,j+1/2 − V 2
i,j+1/2

))

=
N−1∑

j=1

(
1

2hx

M∑

i=1

V 2
i,j+1/2(Ū

v
i+1/2,j+1/2 − Ūv

i−1/2,j+1/2)

)

=
1

4hx

M∑

i=1

N−1∑

j=1

V 2
i,j+1/2(Ui+1/2,j+1 + Ui+1/2,j − Ui−1/2,j+1 − Ui−1/2,j)

=
1

4

M∑

i=1

N−1∑

j=1

V 2
i,j+1/2 (δxUi,j+1 + δxUi,j) .

(3.17)

Summing up (3.16) and (3.17) together represents (3.11c).

Finally, making use of (3.9a) in y-direction we obtain (3.11d) in the following way.
First, we split δy(V 2)i,j+1/2 into two parts

δy(V 2)i,j+1/2 = δγ
y (V 2)i,j+1/2 + δC

y (V 2)i,j+1/2,

where

δγ
y (V 2)i,j+1/2 = γ

(|V̄ v|Ṽ v)i,j − (|V̄ v|Ṽ v)i,j+1

hy
,

δC
y (V 2)i,j+1/2 =

(V̄ v)2
i,j+1 − (V̄ v)2

i,j

hy

.

Then it is obvious that the following inequality for the “γ” part holds true

M∑

i=1

N−1∑

j=1

(
V δγ

y (V 2)
)

i,j+1/2
=

M∑

i=1

N−1∑

j=1

γ
(|V̄ v|Ṽ v)i,j − (|V̄ v|Ṽ v)i,j+1

hy

Vi,j+1/2

=
γ

hy

M∑

i=1

N−1∑

j=1

(|V̄ v|Ṽ v)i,j(Vi,j+1/2 − Vi,j−1/2)

=
2γ

hy

M∑

i=1

N−1∑

j=1

|V̄ v
i,j|(Ṽ v

i,j)
2 ≥ 0.

(3.18)
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For the central difference part δy(V 2) we have

M∑

i=1

N−1∑

j=1

(
V δy(V 2)

)
i,j+1/2

=
M∑

i=1


 1

hy

N−1∑

j=1

(
(V̄ v

i,j+1)
2 − (V̄ v

i,j)
2
)
Vi,j+1/2


 =

M∑

i=1


− 1

hy

N∑

j=1

(Vi,j+1/2 − Vi,j−1/2)(V̄
v

i,j)
2




=
M∑

i=1


− 1

2hy

N∑

j=1

(V 2
i,j+1/2 − V 2

i,j−1/2)(V̄
v

i,j)


 =

M∑

i=1


 1

2hy

N−1∑

j=1

(V̄ v
i,j+1 − V̄ v

i,j)V
2

i,j+1/2




=
M∑

i=1


 1

2hy

N−1∑

j=1

(
Vj+3/2 + Vi,j+1/2

2
− Vi,j+1/2 + Vi,j−1/2

2

)
V 2

i,j+1/2




=
1

4

M∑

i=1

N−1∑

j=1

V 2
i,j+1/2

(
δyVi,j+1 + δyVi,j

)
.

(3.19)
Combination of the (3.18) and (3.19) leads to (3.11d), which concludes the proof.

The next lemma is to show the discrete derivative calculus for the Laplace terms
defined in (2.65).

Lemma 3.3.3. Let us define

|∇hUi+1/2,j |2 :=
1

2

(
(δxU)2

i+1,j + (δxU)2
i,j + (δyU)2

i+1/2,j+1/2 + (δyU)2
i+1/2,j−1/2

)
,

|∇hVi,j+1/2|2 :=
1

2

(
(δxV )2

i+1/2,j+1/2 + (δxV )2
i−1/2,j+1/2 + (δyV )2

i,j+1 + (δyV )2
i,j

)
.

Then we have the following properties for the Laplace terms used in the momentum
equations (2.62),

M−1∑

i=1

N∑

j=1

(∆hU)i+1/2,j Ui+1/2,j ≤ −
M−1∑

i=1

N∑

j=1

|∇hUi+1/2,j |2, (3.20a)

M∑

i=1

N−1∑

j=1

(∆hV )i,j+1/2 Vi,j+1/2 ≤ −
M∑

i=1

N−1∑

j=1

|∇hVi,j+1/2|2. (3.20b)

Proof. Firstly, we have by direct computation and discrete integration by parts formula
(3.9a) in x-direction

M−1∑

i=1

N∑

j=1

(
δ2

xU
)

i+1/2,j
Ui+1/2,j =

1

h2
x

M−1∑

i=1

N∑

j=1

(Ui+3/2,j + Ui−1/2,j − 2Ui+1/2,j)Ui+1/2,j

= −1

2

1

h2
x

M−1∑

i=1

N∑

j=1

(
4U2

i+1/2,j − 2Ui+3/2,jUi+1/2,j − 2Ui+1/2,jUi−1/2,j

)

= − 1

2h2
x

M−1∑

i=1

N∑

j=1

(
(Ui+3/2,j − Ui+1/2,j)

2 + (Ui+1/2,j − Ui−1/2,j)
2
)

− 1

2h2
x

L1,
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where

L1 :=
M−1∑

i=1

N∑

j=1

(
2U2

i+1/2,j − U2
i+3/2,j − U2

i−1/2,j

)
=

N∑

j=1

(
U2

3/2,j − U2
M+1/2,j + U2

M−1/2,j − U2
1/2,j

)

=
N∑

j=1

(
U2

3/2,j + U2
M−1/2,j

)
≥ 0,

due to boundary condition. Thus we obtain

M−1∑

i=1

N∑

j=1

(
δ2

xU
)

i+1/2,j
Ui+1/2,j ≤ − 1

2h2
x

M−1∑

i=1

N∑

j=1

(Ui+3/2,j − Ui+1/2,j)
2 + (Ui+1/2,j − Ui−1/2,j)

2

= −1

2

M−1∑

i=1

N∑

j=1

(δxU)2
i+1,j + (δxU)2

i,j .

(3.21)

Applying the same arguments for U in y-direction we obtain

M−1∑

i=1

N∑

j=1

(
δ2

yU
)

i+1/2,j
Ui+1/2,j

=
1

h2
y

M−1∑

i=1

N∑

j=1

(
(Ui+1/2,j+1 + Ui+1/2,j−1 − 2Ui+1/2,j)Ui+1/2,j

)

= −1

2

1

h2
y

M−1∑

i=1

N∑

j=1

(
4U2

i+1/2,j − 2Ui+1/2,j+1Ui+1/2,j − 2Ui+1/2,j−1Ui+1/2,j

)

= − 1

2h2
y

M−1∑

i=1

N∑

j=1

(
(Ui+1/2,j+1 − Ui+1/2,j)

2 + (Ui+1/2,j − Ui+1/2,j−1)
2 + L2

)

= − 1

2h2
y

M−1∑

i=1

N∑

j=1

(
(Ui+1/2,j+1 − Ui+1/2,j)

2 + (Ui+1/2,j − Ui+1/2,j−1)
2
)

= −1

2

M−1∑

i=1

N∑

j=1

(
(δyU)2

i+1/2,j+1/2 + (δyU)2
i+1/2,j−1/2

)
,

(3.22)

where we have used the fact that

L2 :=
M−1∑

i=1

N∑

j=1

(
2U2

i+1/2,j − U2
i+1/2,j+1 − U2

i+1/2,j−1

)

=
M−1∑

i=1

(
U2

i+1/2,1 − U2
i+1/2,N+1 + U2

i+1/2,N − U2
i+1/2,0

)

=
M−1∑

i=1

(
U2

i+1/2,1 − U2
i+1/2,0 + U2

i+1/2,N − U2
i+1/2,N+1

)
= 0,

due to boundary condition.
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For the completeness of the proof we also present the results for V . First we have

M∑

i=1

N−1∑

j=1

(
δ2

xV
)

i,j+1/2
Vi,j+1/2

=
1

h2
x

M∑

i=1

N−1∑

j=1

(
Vi+1,j+1/2 + Vi−1,j+1/2 − 2Vi,j+1/2

)
Vi,j+1/2

= −1

2

1

h2
x

M∑

i=1

N−1∑

j=1

(
4V 2

i,j+1/2 − 2Vi+1,j+1/2Vi,j+1/2 − 2Vi−1,j+1/2Vi,j+1/2

)

= − 1

2h2
x

M∑

i=1

N−1∑

j=1

(
(Vi+1,j+1/2 − Vi,j+1/2)

2 + (Vi,j+1/2 − Vi−1,j+1/2)
2
)

− 1

2h2
x

L3

= − 1

2h2
x

M∑

i=1

N−1∑

j=1

(
(Vi+1,j+1/2 − Vi,j+1/2)

2 + (Vi,j+1/2 − Vi−1,j+1/2)
2
)

= −1

2

M∑

i=1

N−1∑

j=1

(
(δxV )2

i+1/2,j+1/2 + (δxV )2
i−1/2,j+1/2

)
,

(3.23)

where we have used

L3 :=
M∑

i=1

N−1∑

j=1

(
2V 2

i,j+1/2 − V 2
i+1,j+1/2 − V 2

i−1,j+1/2

)

=
N−1∑

j=1

(
V 2

1,j+1/2 − V 2
M+1,j+1/2 + V 2

M,j+1/2 − V 2
0,j+1/2

)

=
N−1∑

j=1

(
V 2

1,j+1/2 − V 2
0,j+1/2 + V 2

M,j+1/2 − V 2
M+1,j+1/2

)
= 0.

Similarly, we also have

M∑

i=1

N−1∑

j=1

(
δ2

yV
)

i,j+1/2
Vi,j+1/2

=
1

h2
y

M∑

i=1

N−1∑

j=1

(
(Vi,j+3/2 + Vi,j−1/2 − 2Vi,j+1/2)Vi,j+1/2

)

= −1

2

1

h2
y

M∑

i=1

N−1∑

j=1

(
4V 2

i,j+1/2 − 2Vi,j+3/2Vi,j+1/2 − 2Vi,j−1/2Vi,j+1/2

)

= −1

2

1

h2
y

M∑

i=1

N−1∑

j=1

(
(Vi,j+3/2 − Vi,j+1/2)

2 + (Vi,j+1/2 − Vi,j−1/2)
2 + L4

)

≤ −1

2

1

h2
y

M∑

i=1

N−1∑

j=1

(
(Vi,j+3/2 − Vi,j+1/2)

2 + (Vi,j+1/2 − Vi,j−1/2)
2
)

= −1

2

M∑

i=1

N−1∑

j=1

(
(δyV )2

i,j+1 + (δyV )2
i,j

)
.

(3.24)
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Here we have analogously as before

L4 :=
M∑

i=1

N−1∑

j=1

(
2V 2

i,j+1/2 − V 2
i,j−1/2 − V 2

i,j+3/2

)
=

M∑

i=1

(
V 2

i,N−1/2 − V 2
i,1/2 + V 2

i,3/2 − V 2
i,N+1/2

)

=
M∑

i=1

(
V 2

i,N−1/2 + V 2
i,3/2

)
≥ 0.

Combining the above equations (3.21), (3.22), (3.23) and (3.24), we conclude that (3.20a),
(3.20b) hold.

Our next goal is to demonstrate the discrete derivative calculus for the elastic stress
tensor defined in (2.67) and velocity gradient defined in (2.59).

Lemma 3.3.4. Denoting for simplicity A = σ11, B = σ12, C = σ22 allows us to rewrite
σ on the finite difference cell Ki,j as

σi,j =

(
A B
B C

)

i,j

.

Let

S1(σ,u) :=
M−1∑

i=1

N∑

j=1

(
(δxA+ δyB)U

)
i+1/2,j

+
M∑

i=1

N−1∑

j=1

(
(δxB + δyC)V

)
i,j+1/2

, (3.25a)

S2(σ,u) :=
M∑

i=1

N∑

j=1

(∇uh : σ)i,j =
M∑

i=1

N∑

j=1

(
(δxU)A + (δyU)B + (δxV )B + (δyV )C

)
i,j
.

(3.25b)

Then the following identity holds

S1(σ,u) + S2(σ,u) = 0. (3.26)

Proof. Firstly, we have by applying the formula (3.9a) on
(
(δxA)U

)
i+1/2,j

that

M−1∑

i=1

N∑

j=1

(
(δxA)U

)
i+1/2,j

=
1

hx

M−1∑

i=1

N∑

j=1

(Ai+1,j −Ai,j)Ui+1/2,j

= − 1

hx

M∑

i=1

N∑

j=1

(Ui+1/2,j − Ui−1/2,j)Ai,j = −
M∑

i=1

N∑

j=1

(
(δxU)A

)
i,j
,

(3.27)

and analogously for the term
(
(δyC)V

)
i,j+1/2

we obtain

M∑

i=1

N−1∑

j=1

(
(δyC)V

)
i,j+1/2

=
1

hy

M∑

i=1

N−1∑

j=1

(Ci,j+1 − Ci,j)Vi,j+1/2

= − 1

hy

M∑

i=1

N∑

j=1

(Vi,j+1/2 − Vi,j−1/2)Ci,j = −
M∑

i=1

N∑

j=1

(
(δyV )C

)
i,j
.

(3.28)
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We have for the discrete y-derivative of U slightly more tedious calculation

M−1∑

i=1

N∑

j=1

(
(δyB)U

)
i+1/2,j

=
1

4hy

M−1∑

i=1

N∑

j=1

(Bi+1,j+1 − Bi+1,j−1)Ui+1/2,j + (Bi,j+1 − Bi,j−1)Ui+1/2,j

=
1

4hy

M−1∑

i=1

N∑

j=1

(Bi,j+1 −Bi,j−1)Ui−1/2,j + (Bi,j+1 −Bi,j−1)Ui+1/2,j

+
1

4hy

N∑

j=1

(
(BM,j+1 − BM,j−1)UM−1/2,j − (B1,j+1 −B1,j−1)U1/2,j

)

=
1

2hy

M−1∑

i=1

N∑

j=1

(Bi,j+1 −Bi,j−1)Ū
h
i,j +

1

4hy

N∑

j=1

(BM,j+1 − BM,j−1)UM−1/2,j

=
1

2hy

M∑

i=1

N∑

j=1

(Bi,j+1 −Bi,j−1)Ū
h
i,j − 1

2hy

N∑

j=1

(BM,j+1 −BM,j−1)Ū
h
M,j

+
1

4hy

N∑

j=1

(BM,j+1 − BM,j−1)UM−1/2,j =
1

2hy

M∑

i=1

N∑

j=1

(Bi,j+1 −Bi,j−1)Ū
h
i,j

= − 1

2hy

M∑

i=1

N∑

j=1

(Ūh
i,j+1 − Ūh

i,j−1)Bi,j = −
M∑

i=1

N∑

j=1

(δyUB)i,j ,

(3.29)

where we have applied (3.9b). Similar result holds for x-derivative of velocity V

M∑

i=1

N−1∑

j=1

(
(δxB)V

)
i,j+1/2

=
1

4hx

M∑

i=1

N−1∑

j=1

(Bi+1,j −Bi−1,j)Vi,j−1/2 + (Bi+1,j − Bi−1,j)Vi,j+1/2

+
1

4hx

M∑

i=1

(
(Bi+1,N −Bi−1,N)Vi,N−1/2 − (Bi+1,1 − Bi−1,1)Vi,1/2

)

=
1

2hx

M∑

i=1

N−1∑

j=1

(Bi+1,j −Bi−1,j)V̄
v

i,j +
1

4hx

M∑

i=1

(Bi+1,N − Bi−1,N)Vi,N−1/2

=
1

2hx

M∑

i=1

N∑

j=1

(Bi+1,j −Bi−1,j)V̄
v

i,j − 1

2hx

M∑

i=1

(Bi+1,N − Bi−1,N)V̄ v
i,N

+
1

4hx

M∑

i=1

(Bi+1,N − Bi−1,N)Vi,N−1/2

= − 1

2hx

M∑

i=1

N∑

j=1

(V̄ v
i+1,j − V̄ v

i−1,j)Bi,j = −
M∑

i=1

N∑

j=1

(
δxV )B

)
i,j
.

(3.30)

Combining (3.27)–(3.30) together we obtain (3.26).
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3.3.2 Entropy stability

Now we will proceed with the main result of this section which demonstrates the dissi-
pation of the free energy.

Lemma 3.3.5. Let (Un
i+1/2,j , V

n
i,j+1/2, p

n
i,j,σ

n
i,j)0≤n≤NT

be a solution of the discrete charac-
teristic FD scheme, which is the combination of (2.62) and (2.75), supplied with boundary
conditions (3.10). Then the free energy

F n
h =

Re

2




M−1∑

i=1

N∑

j=1

(Un
i+1/2,j)

2 +
M∑

i=1

N−1∑

j=1

(V n
i,j+1/2)

2


+

1 − α

2We

M∑

i=1

N∑

j=1

tr
(
eψ

n −ψn − I
)

i,j

(3.31)
satisfies

F n+1
h − F n

h + α∆t




M−1∑

i=1

N∑

j=1

|∇hU
n+1
i+1/2,j |2 +

M∑

i=1

N−1∑

j=1

|∇hV
n+1

i,j+1/2|2



+
∆t(1 − α)

2We2

M∑

i=1

N∑

j=1

tr(eψ
n+1

+ e−ψn+1 − 2I)i,j ≤ 0.

(3.32)

In particular, the sequence (F n
h )0≤n≤NT

is non-increasing.

Proof. Let us first recall the finite difference part of the characteristic FD scheme for
the momentum equation, and make the following operations: we multiply (2.62a) with
Ui+1/2,j , (2.62b) with Vi+1/2,j, (2.62c) with pi,j and sum them together. Let

S :=
M−1∑

i=1

N∑

j=1

(
Re

(Un+1 − Un)i+1/2,j

∆t
+Re

(
δx(Un+1)2 + δy(UV )n+1

)
i+1/2,j

)
Un+1

i+1/2,j

−
(
α(δ2

xU
n+1 + δ2

yU
n+1) − δxp

n+1 +
1 − α

We
(δxσ

n+1
11 + δyσ

n+1
12 )

)

i+1/2,j
Un+1

i+1/2,j

+
M−1∑

i=1

N∑

j=1

(
Re

(V n+1 − V n)i,j+1/2

∆t
+Re

(
δx(UV )n+1 + δy(V n+1)2

)
i,j+1/2

)
Vi,j+1/2

−
(
α(δ2

xV
n+1 + δ2

yV
n+1) − δyp

n+1 +
1 − α

We
(δxσ

n+1
21 + δyσ

n+1
22 )

)

i,j+1/2
Vi,j+1/2

+
M∑

i=1

N∑

j=1

(
δxU

n+1 + δyV
n+1

)
i,j
pi,j.

(3.33)
Obviously, we have S = 0. It is easy to get

(Un+1
i+1/2,j − Un

i+1/2,j) · Un+1
i+1/2,j =

(Un+1
i+1/2,j)

2 − (Un
i+1/2,j)

2

2
+

(Un+1
i+1/2,j − Un

i+1/2,j)
2

2

≥
(Un+1

i+1/2,j)
2 − (Un

i+1/2,j)
2

2
.

(3.34)
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Similarly

(V n+1
i,j+1/2 − V n

i,j+1/2) · V n+1
i,j+1/2 ≥

(V n+1
i,j+1/2)

2 − (V n
i,j+1/2)

2

2
. (3.35)

Using Lemma 3.3.2 and the fact that (δxU + δyV )i,j = 0 we also obtain

M−1∑

i=1

N∑

j=1

(
Uδx(U2)

)
i+1/2,j

+
M−1∑

i=1

N∑

j=1

(
Uδy(UV )

)
i+1/2,j

= 0,

M∑

i=1

N−1∑

j=1

(
V δx(UV )

)
i,j+1/2

+
M∑

i=1

N−1∑

j=1

(
V δy(V 2)

)
i,j+1/2

= 0.

(3.36)

For the pressure terms we have

M−1∑

i=1

N∑

j=1

(
(δxp)U

)
i+1/2,j

=
1

hx

N∑

j=1

M−1∑

i=1

(pi+1,j − pi−1,j)Ui+1/2,j

= − 1

hx

N∑

j=1

M∑

i=1

(Ui+1/2,j − Ui−1/2,j)pi,j = −
M∑

i=1

N∑

j=1

(
(δxU)p

)
i,j
,

and similarly,
M∑

i=1

N−1∑

j=1

(
(δyp)V

)
i,j+1/2

= −
M∑

i=1

N∑

j=1

(
(δyV )p

)
i,j
.

Thus we have

M−1∑

i=1

N∑

j=1

(
(δxp)U

)
i+1/2,j

+
M∑

i=1

N−1∑

j=1

(
(δyp)V

)
i,j+1/2

+
M∑

i=1

N∑

j=1

(
(δxU)p+(δyV )p

)
i,j

= 0. (3.37)

Using (3.25), (3.34), (3.35), (3.37) and Lemma 3.3.3 we derive

0 = S ≥ α − 1

We
S1(σ,u) +

M−1∑

i=1

N∑

j=1

Re
(Un+1

i+1/2,j)
2 − (Un

i+1/2,j)
2

2∆t
+ α|∇hU

n+1
i+1/2,j |2

+
M∑

i=1

N−1∑

j=1

Re
(V n+1

i,j+1/2)
2 − (V n

i,j+1/2)
2

2∆t
+ α|∇hV

n+1
i,j+1/2|2.

(3.38)

Now we consider the transport equation for the elastic stress tensor ψ and multiply

(2.75) with (eψ
n+1
i,j − I). This leads to

0 = S ′ =
M∑

i=1

N∑

j=1

(ψn+1 −ψn ◦Xn)i,j

∆t
: (eψ

n+1 − I)i,j

−
(

Ωn+1ψn+1 −ψn+1Ωn+1 + 2Bn+1 +
1

We
(e−ψn+1 − I) + ε∆hψ

n+1
)

i,j
: (eψ

n+1 − I)i,j.

(3.39)
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Similar to the proof of Lemma 3.2.2 we have

M∑

i=1

N∑

j=1

(ψn+1 −ψn ◦Xn)i,j : (eψ
n+1
i,j − I) ≥

M∑

i=1

N∑

j=1

(
tr(eψ

n+1
i,j −ψn+1

i,j ) − tr(eψ
n
i,j −ψn

i,j)
)

M∑

i=1

N∑

j=1

(
Ωn+1ψn+1 −ψn+1Ωn+1 + 2Bn+1

)
: (eψ

n+1
i,j − I) =

M∑

i=1

N∑

j=1

2∇un+1
i,j : eψ

n+1
i,j

M∑

i=1

N∑

j=1

(e−ψn+1
i,j − I) : (eψ

n+1
i,j − I) = −

M∑

i=1

N∑

j=1

tr(e−ψn+1
i,j + eψ

n+1
i,j − 2I).

(3.40)
For the diffusive terms, we first obtain

M∑

i=1

N∑

j=1

∆hψ
n+1
i,j : eψ

n+1
i,j = −

M∑

i=1

N∑

j=1

∇hψ
n+1
i,j : ∇he

ψn+1
i,j

= −
M∑

i=1

N∑

j=1

(ψn+1
i+1,j −ψn+1

i−1,j) : (eψi+1,j − eψi−1,j )

−
M∑

i=1

N∑

j=1

(ψi,j+1 −ψi,j−1)
n+1 : (eψi,j+1 − eψi,j−1)n+1 ≤ 0,

(3.41)

where we have used (2.40). Then it is easy to show

M∑

i=1

N∑

j=1

∆ψn+1
i,j : I

=
M∑

i=1

N∑

j=1

tr(ψi+1,j +ψi,j+1 − 4ψi,j +ψi−1,j +ψi,j−1)
n+1

=
M∑

i=1

tr(ψi,N+1 −ψi,N −ψi,1 +ψi,0)
n+1 +

N∑

j=1

tr(ψM+1,j −ψM,j −ψ1,jψ0,j)
n+1

= 0,

(3.42)

due to the corresponding boundary condition.
Combining (3.40), (3.41), (3.42) together yields

0 = S ′ ≥ − 2S2(σ,u)

+
M∑

i=1

N∑

j=1

1

∆t
tr
(
(eψ

n+1 −ψn+1) − (eψ
n −ψn)

)
i,j

+ tr(eψ
n+1

+ e−ψn+1 − 2I)i,j.

(3.43)
Multiplying (3.43) with a factor 1−α

2W e
, summing with (3.38) and using (3.26) together
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with Lemma 3.3.4 leads to

M−1∑

i=1

N∑

j=1

Re
(Un+1

i+1/2,j)
2 − (Un

i+1/2,j)
2
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2
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N∑

j=1

1
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1 − α

We
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(eψ
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+
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2We2
tr(eψ
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+ e−ψn+1 − 2I)i,j
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(3.44)

Consequently, the sequence {F n}NT
n=0 is non-increasing since we have

F n+1 − F n ≤ −∆t

(
α
(M−1∑

i=1

N∑

j=1

|∇hU
n+1
i+1/2,j |2 +

M∑

i=1

N−1∑

j=1

|∇hV
n+1

i,j+1/2|2
)

+
1 − α

2We2

M∑

i=1

N∑

j=1

tr(eψ
n+1

+ e−ψn+1 − 2I)i,j

)
≤ 0.

(3.45)

Using the discrete integration by parts formulas from the previous subsection we have
shown that the characteristic FD method also dissipates the free energy.

3.4 Numerical results

In this section, we will test our numerical Algorithms 1, 2, 3, 4 proposed in the previous
chapter with some benchmark problems. Our aim is to demonstrate the performance
of these numerical methods. We first study the numerical influence of the Weissenberg
number We and the diffusion coefficient ε. Furthermore, the experimental order of
convergence will be studied.

The first benchmark test we will analyze is the driven cavity problem, and the second
is 4:1 planar contraction channel problem.

3.4.1 Driven cavity

Our first test case is the lid-driven cavity problem. The geometry and mesh of the
problem is given in Figure 3.1. The computational domain is Th = [0, 1]2. The initial
conditions are taken to be

u = 0,σ = I. (3.46)

A Dirichlet boundary condition is set for velocity

u =

{
(16x2(1 − x)2, 0)T , if y = 1, x ∈ (0, 1),
0, else.

(3.47)
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u

Figure 3.1: Geometry and mesh for the cavity flow problem.

Further, we choose extrapolated boundary condition for the conformation tensor and its
logarithm, which means

∂σ

∂n
= 0, or

∂ψ

∂n
= 0, (3.48)

where n is the outer normal of the boundary.

Non-diffusive Oldroyd-B model

Before presenting the results for the diffusive model, we first show some typical figure
of the original Oldroyd-B model (2.19) using the log-transformation. Here we choose
the combined FD-FV scheme, Algorithm 3, and set ε = 0. The mesh size is set to
hx = hy = 1/64, and the time step size is set as ∆t = CFL hx

max(|u|)
.

In Figure 3.2 we show the streamline of different Weissenberg number We = 0.5, 1, 3, 5
at time 30 and Re = 1. The figure gives obvious vertex shifting phenomenon: the center
of the vertex shifts to the left as We increases. Moreover, some vortexes origin at the
right boundary for large We.

In Figure 3.3 we show the kinetic energy and the free energy defined by (2.34) . It is
observed that the kinetic energy decreases for increasing the Weissenberg number We.
The kinetic and free energy for We ≤ 3 are more or less tending to a steady state, while
for large We = 5 the energy is oscillating for long time.
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Re = 1,  We=0.5,  t = 30
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Figure 3.2: Streamline for the non-diffusive Oldroyd-B model, computed by the combined
FD-FV scheme, Algorithm 3.

Table 3.2: L2-norm error with respect to mesh refinement of the non-diffusive Oldroyd-B
model for σ11: ‖σ11(h)−σ11(h/2)‖, computed by the combined FD-FV scheme,
Algorithm 3.

mesh size h We = 0.5 We = 1 We = 3
1/32 0.3502 1.5846 4.8967
1/64 0.5006 3.3141 10.8242
1/128 0.7181 5.3517 18.5389
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Figure 3.3: Kinetic and free energy for the non-diffusive Oldroyd-B model, computed by
the combined FD-FV scheme, Algorithm 3.
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(a) σ11
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(b) ψ11

Figure 3.4: Conformation tensor component along x = 0.5 at t = 30, Re = 1, computed
by the combined FD-FV scheme, Algorithm 3.

We show in Figure 3.4 σ11 and ψ11 along the line x = 0.5, which are the first component
of the conformation tensor and the logarithm tensor at t = 30, Re = 1 for different We.
Figure 3.4a obviously shows that σ11 grows exponentially large near the top boundary
y = 1 for largeWe. Standard methods fail to capture the exponential profile is thought to
be one of the reasons for the “HWNP”. Thanks to the logarithm transformation approach,
we are able to capture its logarithm, which is polynomial, see Figure 3.4b. This confirms
the remark in Section 2.2.2. However, we can not say that the “HWNP” is solved as the
numerical results do not converge in the sense of mesh refinement, see Table 3.2.

As mentioned before, standard methods without using log-transformation can not
solve the problem for high Weissenberg number, i.e. We > 1. The advantage here is
that the combined FD-FV scheme increases the Weissenberg limits with the help of the
log-transformation.
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Diffusive Oldroyd-B model

Now we switch to the diffusive Oldroyd-B model (2.20) where the log-transformation has
also been applied. Solving the system with the FD-FV scheme, Algorithm 3, by setting
ε = 0.01, we even get convergent results for We = 1, see Table 3.3.

Table 3.3: L2-norm error with respect to mesh refinement and experimental order of
convergence of the diffusive Oldroyd-B model for u, p,∇u and σ, computed
by the combined FD-FV scheme, Algorithm 3.

mesh size h e(uh) e(ph) e(∇uh) e(σh)
1/32 1.18e-02 1.03e-03 1.40e-00 4.83e-01
1/64 3.84e-03 3.06e-04 7.38e-01 2.29e-01
1/128 8.43e-04 6.50e-05 2.62e-01 8.10e-02

EOC
1/32 1.62 1.75 0.92 1.08
1/64 2.19 2.23 1.49 1.50

Influence of the Weissenberg number and the diffusion coefficient ε

This subsection aims to study the effects of the Weissenberg number We and the diffusion
coefficient ε in the diffusive Oldroyd-B model (2.20) using the log-transformation. We will
focus on the variation of the free energy components defined in the beginning of Section
2.3, which are the kinetic energy and entropy, according to the choice of parameters
in the case of the driven cavity problem. The test is based on the characteristic finite
element scheme, Algorithm 2, and the mesh used here is M4, see in Table 3.4.

For the study of the influence of the Weissenberg number, we fix the diffusion coefficient
ε. By setting ε = 1, 1e − 2, 1e − 3, we present the kinetic and entropy of the diffusive
Oldroyd-B model for different Weissenberg numbers We = 0.1, 0.5, 1, 5, 50 in Figures
3.5, 3.6 and 3.7. We can clearly see, that the kinetic energy decreases, while the entropy
is increasing in time. Moreover, with increasing We, the entropy increases, while the
kinetic energy behaves in a more complex way. Comparing with small diffusion coefficient
ε = 1e− 3, larger coefficient, ε = 1e− 2 or ε = 1, stabilizes more the results.

59



0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

t

Kinetic energy

 

 

We=0.1
We=0.5
We=1
We=5
We=50

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

t

Entropy

 

 

We=0.1
We=0.5
We=1
We=5
We=50

Figure 3.5: Kinetic energy and entropy of the diffusive Oldroyd-B model (2.20) for dif-
ferent Weissenberg numbers, ε = 1, computed by characteristic FEM, Algo-
rithm 2.
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Figure 3.6: Kinetic and entropy for the diffusive Oldroyd-B model (2.20), ε = 0.01,
computed by characteristic FEM, Algorithm 2.
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Figure 3.7: Kinetic energy and entropy of the diffusive Oldroyd-B model (2.20) for dif-
ferent Weissenberg numbers, ε = 1e − 3, computed by characteristic FEM,
Algorithm 2.

In the next experiment, we fix the Weissenberg number We and study the influence
of the diffusion coefficient ε. By setting We = 0.5 and 5, we show the results of kinetic
energy and entropy for different diffusion coefficients ε = 1e − 3, 1e − 2, 1e − 1, 1 in
Figure 3.8 and 3.9, respectively. We can notice that for higher ε; ε ≥ 1e − 2, we have
almost constant behaviour of the kinetic energy and entropy.
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Figure 3.8: Kinetic energy and entropy of the diffusive Oldroyd-B model (2.20) for dif-
ferent diffusion coefficients ε at We = 0.5, computed by characteristic FEM,
Algorithm 2.

61



0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

t

Kinetic energy

 

 

ε=1e−3
ε=1e−2
ε=1e−1
ε=1

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

t

Entropy

 

 

ε=1e−3
ε=1e−2
ε=1e−1
ε=1

Figure 3.9: kinetic energy and entropy of the diffusive Oldroyd-B model (2.20) for dif-
ferent diffusion coefficients ε at We = 5, computed by characteristic FEM,
Algorithm 2.

Comparison of different discretization schemes

In this test case we want to compare the behavior of the numerical methods: Algorithm 4
and Algorithm 2, that we have introduced and studied analytically in Sections 3.2 and
3.3, respectively, for the diffusive logarithm Oldroyd-B model (2.20).

For the characteristic FD method, we set the mesh size to be hx = hy = 1/64 =
0.015625. Time step is chosen as

∆t = CFL
hx

max(|U |, |V |) , with u = (U, V ), (3.49)

where CFL is chosen as 0.6. For the characteristic FEM method, our triangular mesh
information is M4 which is given in Table 3.4.

Table 3.4: Mesh information of the characteristic FEM.

mesh number of mesh point number of element average mesh size
M1 94 154 1.27e-01
M2 330 594 6.37e-02
M3 1278 2426 3.15e-02
M4 4987 9716 1.58e-02 .

The mesh size of M4 is comparable with the above FD discretization. Now let us
compare their results. First we choose a small diffusion coefficient ε = 0.01 and represent
the kinetic energy in Figure 3.10.
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(c) We=3
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(d) We=5
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(e) FEM
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Figure 3.10: Kinetic energy of the diffusive Oldroyd-B model (2.20) for different Weis-
senberg numbers, computed by characteristic FEM 2 and characteristic FD
4.

We see clearly that the kinetic energy computed by the characteristic FEM is bigger
than that of the characteristic FD scheme. For both scheme, the kinetic energy is de-
creasing in time. Moreover, if We < 1 the absolute value for different We are decreasing,
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while if We > 1 the absolute values increase for increasing We, see the values of the
steady state in Figure 3.10e and 3.10f.

Experimental convergence analysis

The aim of this section is to analyze the experimental order of convergence of differ-
ent numerical schemes and various Weissenberg numbers for the diffusive Oldroyd-B
model (2.20), where the logarithm transformation has been applied. Let φh denote the
numerical solution and φ be the corresponding exact solution. We define the L2−norm
for the characteristic FD scheme

‖φh‖L2 =


 ∑

K∈Th

(φh|K)2|K|



1/2

, ‖φh‖H1 =


‖φh‖2

L2 +
∑

K∈Th

(∇hφh|K)2|K|



1/2

. (3.50)

In the characteristic FEM we have used the P1 elements. Let Pi, i = 1, 2, 3, be the three
nodal points of the element K and ϕi ∈ P1(K), i = 1, 2, 3, be the corresponding local
basis functions,

ϕi(x, y) =
ai + bix+ ciy

2|K| (3.51)

where |K| is the area of element

|K| =
1

2
det




1 x1 y1

1 x2 y2

1 x3 y3


 =

1

2
(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1) (3.52)

and
a1 = x2y3 − x3y2, b1 = y2 − y3, c1 = x3 − x2, (3.53)

etc., with cyclic rotation of indices 1, 2, and 3, cf. [89]. Further we have φh(x, y)|K =
3∑

i=1
φh(Pi)ϕi(x, y). Now we define the norm as

‖φh‖L2 =

(
∑

K∈Th

∫

K

3∑

i=1

3∑

j=1

φh(Pi)ϕi(x, y)φh(Pj)ϕj(x, y)

)1/2

, (3.54a)

‖φh‖H1 =

(
‖φh‖2

L2 +
∑

K∈Th

∫

K

3∑

i=1

3∑

j=1

∇hφh(Pi)ϕi(x, y) · ∇hφh(Pj)ϕj(x, y)

)1/2

. (3.54b)

Further, we denote the L2-error as e(φh) = ‖φh −φ‖L2 and H1-error e1(φh) = ‖φh −φ‖H1 .
In our experiment the exact solution φ is replaced by the solution computed at a very
fine mesh as the exact analytical solution is not available. The experimental order of
convergence (EOC) is defined as

EOC = log2

(
e(φh)/e(φh/2)

)
. (3.55)

Tables 3.5,3.6,3.7 and 3.8 illustrate the mesh convergence results of the characteristic
finite element method at t = 30 for different Weissenberg numbers.
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Table 3.9 performs the mesh convergence results for characteristic finite difference
method Algorithm 4 at t = 4 with different Weissenberg numbers.

Table 3.5: Error norms and EOC for diffusive Oldroyd-B model (2.20), ε = 0.01, We=0.5,
computed by characteristic FEM, Algorithm 2.

Error
h e(uh) e(ph) e(σh) e1(u) e1(ph) e1(σh)

1/8 1.77e-02 2.11e-01 4.46e-01 6.24e-01 6.97e-01 6.33e+00
1/16 5.32e-03 5.88e-02 1.04e-01 3.45e-01 2.32e-01 3.35e+00
1/32 1.23e-03 2.36e-02 2.87e-02 1.64e-01 8.74e-02 1.69e+00
1/64 3.41e-04 8.77e-03 8.57e-03 8.05e-02 3.90e-02 8.39e-01
1/128 8.89e-05 3.97e-03 2.37e-03 4.08e-02 1.87e-02 3.97e-01

EOC
1/8 1.73 1.84 2.10 0.85 1.58 0.92
1/16 2.12 1.32 1.85 1.07 1.41 0.99
1/32 1.85 1.43 1.74 1.03 1.17 1.01
1/64 1.94 1.14 1.85 0.98 1.06 1.08

Table 3.6: Error norms and EOC for diffusive Oldroyd-B model (2.20), ε = 0.01, We=1,
computed by characteristic FEM, Algorithm 2.

Error
h e(uh) e(ph) e(σh) e1(u) e1(ph) e1(σh)

1/8 1.84e-02 2.42e-01 1.05e+00 6.33e-01 7.55e-01 1.45e+01
1/16 5.41e-03 6.74e-02 2.29e-01 3.49e-01 2.35e-01 6.64e+00
1/32 1.26e-03 2.63e-02 6.14e-02 1.65e-01 8.91e-02 3.17e+00
1/64 3.40e-04 1.06e-02 2.19e-02 8.14e-02 3.97e-02 1.60e+00
1/128 8.46e-05 4.61e-03 7.51e-03 4.14e-02 1.90e-02 7.58e-01

EOC
1/8 1.76 1.84 2.20 0.86 1.68 1.13
1/16 2.10 1.36 1.90 1.08 1.40 1.07
1/32 1.89 1.32 1.48 1.02 1.17 0.99
1/64 2.00 1.20 1.55 0.98 1.06 1.08
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Table 3.7: Error norms and EOC for diffusive Oldroyd-B model (2.20), ε = 0.01, We=5,
computed by characteristic FEM, Algorithm 2.

Error
h e(uh) e(ph) e(σh) e1(u) e1(ph) e1(σh)

1/8 1.56e-02 1.84e-01 2.12e+00 5.85e-01 5.55e-01 3.15e+01
1/16 4.69e-03 9.74e-02 1.06e+00 3.19e-01 2.19e-01 1.86e+01
1/32 1.08e-03 3.07e-02 3.27e-01 1.51e-01 8.18e-02 8.05e+00
1/64 3.16e-04 1.21e-02 1.31e-01 7.54e-02 3.68e-02 4.12e+00
1/128 9.00e-05 4.61e-03 4.32e-02 3.85e-02 1.72e-02 1.98e+00

EOC
1/8 1.73 0.91 0.99 0.88 1.34 0.76
1/16 2.11 1.67 1.70 1.07 1.42 1.21
1/32 1.78 1.34 1.32 1.01 1.15 0.97
1/64 1.81 1.39 1.60 0.97 1.10 1.05

Table 3.8: Error norms and EOC for diffusive Oldroyd-B model (2.20), ε = 0.01, We=50,
computed by characteristic FEM, Algorithm 2.

Error
h e(uh) e(ph) e(σh) e1(u) e1(ph) e1(σh)

1/8 1.37e-02 1.16e-01 3.21e+00 5.52e-01 4.33e-01 3.54e+01
1/16 3.93e-03 4.99e-02 1.23e+00 2.99e-01 1.88e-01 2.09e+01
1/32 8.03e-04 1.70e-02 3.38e-01 1.39e-01 7.47e-02 8.40e+00
1/64 1.97e-04 7.01e-03 9.71e-02 7.29e-02 3.54e-02 4.23e+00

EOC
1/8 1.80 1.22 1.38 0.88 1.21 0.76
1/16 2.29 1.55 1.86 1.10 1.33 1.31
1/32 2.02 1.28 1.80 0.93 1.07 0.99
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Table 3.9: Error norms and EOC for diffusive Oldroyd-B model (2.20), ε = 0.01, com-
puted by characteristic finite difference method, Algorithm 4.

(a) We=0.5

Error
h e(uh) e(ph) e(∇uh) e(σh) e1(uh) e1(σh)

1/8 2.59e-02 4.06e-04 2.15e-01 3.21e-01 2.17e-01 5.77e+00
1/16 7.87e-03 1.27e-04 7.11e-02 1.23e-01 7.16e-02 3.02e+00
1/32 1.85e-03 3.60e-05 1.95e-02 4.15e-02 1.96e-02 1.03e+00
1/64 3.44e-04 9.00e-06 4.58e-03 1.21e-02 4.59e-03 2.93e-01

EOC
1/8 1.72 1.68 1.60 1.38 1.60 0.93
1/16 2.09 1.82 1.87 1.57 1.87 1.55
1/32 2.43 2.00 2.09 1.78 2.09 1.82

(b) We=1

Error
h e(uh) e(ph) e(∇uh) e(σh) e1(uh) e1(σh)

1/8 2.70e-02 3.30e-04 2.25e-01 7.38e-01 2.26e-01 1.06e+01
1/16 7.93e-03 9.20e-05 7.54e-02 2.44e-01 7.58e-02 5.58e+00
1/32 1.88e-03 2.50e-05 2.23e-02 7.81e-02 2.24e-02 1.91e+00
1/64 3.84e-04 7.00e-06 5.88e-03 2.39e-02 5.89e-03 5.61e-01

EOC
1/8 1.77 1.84 1.58 1.60 1.58 0.92
1/16 2.08 1.88 1.76 1.64 1.76 1.55
1/32 2.29 1.84 1.92 1.71 1.92 1.77

(c) We=5

Error
h e(uh) e(ph) e(∇uh) e(σh) e1(uh) e1(σh)

1/8 2.50e-02 1.57e-04 2.08e-01 1.45e+00 2.10e-01 1.93e+01
1/16 7.08e-03 3.90e-05 6.31e-02 4.39e-01 6.35e-02 9.70e+00
1/32 1.69e-03 9.00e-06 1.64e-02 1.79e-01 1.65e-02 3.37e+00
1/64 3.24e-04 3.00e-06 3.67e-03 6.71e-02 3.69e-03 1.04e+00

EOC
1/8 1.82 2.01 1.72 1.72 1.72 0.99
1/16 2.07 2.12 1.94 1.29 1.94 1.53
1/32 2.38 1.58 2.16 1.42 2.16 1.70

3.4.2 4 to 1 contraction flow

In this test we will consider one of the most well-known benchmarks for the viscoelastic
fluids, the so-called 4:1 contraction problem. Hereby, the Algorithm 2 will be studied
for the diffusive Oldroyd-B model (2.20) as well as the non-diffusive model (2.19). Let
us point out that the log-transformation has been applied for both models. Previous
studies on the numerical simulation of this problem can be found, e.g. [1, 4, 32, 39, 59,
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64, 65, 73, 85, 88]. One of the main difficulties is the singularity at the re-entrant corner
due to the abrupt contraction [39, 65].

−20

inflow

outflow

0

1

4

50

Figure 3.11: Geometry of 4:1 contraction flow.

As shown in Figure 3.11, the computational domain is taken to be from x = −20 to
x = 50, the upstream has a width of 8 while downstream’s width is set to be 2. Similar
to [19] we use only the upper half of the computational domain as it is symmetric with
respect to x axis.

We assume the flow to be fully developed at the inlet. A parabolic Dirichlet condition
is used for the velocity

U =
1

8
(1 − y2/16), V = 0, with u = (U, V ). (3.56a)

The inflow boundary condition for the conformation tensor can be analytically derived
[30, 32]

σ =

(
1 + 2(We∂U

∂y
)2 We∂U

∂y

We∂U
∂y

1

)
. (3.56b)

Analogously to many references, e.g. [59, 65], we assume that the downstream length
is long enough such that the flow at outlet is also fully developed, which leads to the
Dirichlet condition for the velocity at outlet

U =
1

2
(1 − y2), V = 0. (3.56c)

In comparison to that, the zero Neumann boundary condition is also applied at the
outlet for velocity. If not specified, the boundary condition at the outlet is set according
to (3.56c). Moreover, no-slip conditions are imposed on the solid walls and symmetry
conditions are specified on the symmetric axis.

σ12(x, 0) = V (x, 0) = 0. (3.56d)
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Other parameters are chosen similarly to the above references.

α = 1/9, Re = 0.

Figure 3.12: Mesh of 4:1 contraction flow, created by “FreeFEM++-cs” [55].

The center of the computational mesh for the 4:1 contraction flow is shown in Figure
3.12, with a local refinement near the abrupt contraction corner. Details of the mesh
are as follows. Total number of mesh points, elements are np = 26538, ne = 50874.
Maximum, minimum and mean values of the mesh diagram are (hmax, hmin, hmean) =
(2.05e− 01, 1.62e− 02, 7.29e− 02).

Non-diffusive Oldroyd-B model

We first present the results of the non-diffusive Oldroyd-B model (2.19). Figure 3.14
shows the results of We = 3 at t = 1. We can see a big vertex at the up corner of abrupt
contraction. The pressure is decreasing along the x axis.

In Figure 3.15 we compare the results for different Weissenberg numbers. Figure 3.15a
indicates that the pressure is decreasing along the x axis, with a gradual decline rate in
the upstream region and a steeper rate in the downstream channel. Moreover, it can be
concluded that bigger We cause to smaller pressure drop at outlet with respect to the
inlet pressure. Velocities of different We are almost the same. In Figures 3.15c and 3.15d
we can see that there are jumps for the conformation tensor at the contraction corner,
and the jumps are larger for large We.

Diffusive Oldroyd-B model

In the following test we will present the results for the diffusive Oldroyd-B model. Fig-
ures 3.16 and 3.17 show the results of different We for ε = 0.01 and 1, respectively.
Similar to the non-diffusive model, the pressure is decreasing along x-axis and larger We
cause to smaller pressure drop. The jumps of the conformation tensor around the con-
traction corner are bigger for larger We. Comparing with the results of smaller diffusion
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coefficients, e.g. ε ≤ 0.01, the results of larger diffusion (ε = 1) are quite different. First,
the value of pressure at the inlet are getting smaller. The second point is that velocity
in the downstream region along the x-axis are getting larger for larger We (see Figure
3.17b), which almost does not change for small diffusion coefficients ε ≤ 0.01 (see Figures
3.16b and 3.15b). The conformation tensor in the downstream region is also changing
for different We. The values are getting smaller for larger We. The last point is that
both velocity and conformation tensor have a jump of the magnitude 1e − 2 near the
outlet for ε = 1.

In the next experiment, we study the influence of different outlet boundary conditions
for velocity. By setting ε = 0.01, 1 and We = 5 we show the results in Figure 3.18. It can
be observed that, both velocity and conformation tensor at the outlet are more stable in
the case of applying Dirichlet boundary condition for velocity.

In Figure 3.13 we show the results of kinetic energy and free energy for different
Weissenberg numbers. With the increase of We, the kinetic energy are the same while
the entropy is increasing in a short time.
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(a) Kinetic energy
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(b) Entropy

Figure 3.13: Evolution of the diffusive Oldroyd-B model, ε = 0.01 for different We:
kinetic energy and entropy, computed by characteristic FEM, Algorithm 2.

From the above two test problems we conclude that the diffusive model is more stable.
In the driven cavity test we have observed the mesh convergent results of the diffusive
Oldroyd-B model even for very high Weissenberg numbers, where the logarithm trans-
formation has been applied. Our numerical experiments demonstrate that the flow in
the 4:1 contraction channel is a much severe test case. Although we were able to obtain
numerically stable results for We = 10, the mesh convergence has not been achieved.
This can be of our future research.
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(a) Streamlines

(b) Pressure: min=0, max=19.2

(c) Conformation tensor σ11: min=0.398, max=4.54

(d) Conformation tensor σ12: min=-2.05, max=0.8

(e) Conformation tensor σ22: min=0.745, max=2.76

Figure 3.14: Results of the non-diffusive Oldroyd-B model at We = 3, t = 1, from up to
down are streamline, contour lines for pressure, σ11, σ12 and σ22, computed
by characteristic FEM, Algorithm 2.
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(a) Pressure along y = 0
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(b) Velocity component U along y = 0
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(c) σ11 along y = 0
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(d) σ22 along y = 0

Figure 3.15: Results of the non-diffusive Oldroyd-B model at t = 1 along the symmetric
axis y = 0 for different We: pressure p, velocity component U , conformation
components σ11 and σ22, computed by characteristic FEM, Algorithm 2.
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(a) Pressure along y = 0
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(b) Velocity component U along y = 0
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(c) σ11 along y = 0
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(d) σ22 along y = 0

Figure 3.16: Results of the diffusive Oldroyd-B model, ε = 0.01, at t = 1 along the
symmetric axis y = 0 for different We: pressure p, velocity component U ,
conformation components σ11 and σ22, computed by characteristic FEM,
Algorithm 2.
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(a) Pressure along y = 0
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(b) Velocity component U along y = 0
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(c) σ11 along y = 0
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(d) σ22 along y = 0

Figure 3.17: Results of the diffusive Oldroyd-B model, ε = 1, at t = 1 along the sym-
metric axis y = 0 for different We: pressure p, velocity component U ,
conformation components σ11 and σ22, computed by characteristic FEM,
Algorithm 2.
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(a) Pressure along y = 0
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(b) Velocity component U along y = 0
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(c) σ11 along y = 0
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(d) σ22 along y = 0

Figure 3.18: Results of the diffusive Oldroyd-B model, at t = 1 along the symmetric axis
y = 0 for different ε and different outlet boundary conditions: pressure p,
velocity component U , conformation components σ11 and σ22, computed by
characteristic FEM, Algorithm 2.

75





4 Error analysis of the finite element

and finite volume methods for a

special Oldroyd-B model

This chapter is a part of the work [62]. We will study a variation of the classical Oldroyd-
B visocelastic model (4.1), which has been theoretically studied by Lin et al. [60].

Concerning this model, we should mention that the question of global in time existence
of weak solutions is still open. On the other hand, the local existence of strong solutions
has been proven in [20, 53, 52], as well as in [60], where the global in time existence of
regular weak solution has also been presented.

The aim of this chapter is to present the error analysis of a finite element-finite volume
(FE-FV) approximation of the problem.

The chapter is organized as follows. In Section 4.1 we will introduce the model and its
FE-FV approximation. The main result on the convergence rates as well as its proof will
be stated in Section 4.2. In the last section we will validate theoretical error estimates
by the numerical experiments.

4.1 Modelling and numerical approximations

4.1.1 Governing equations

We consider in a bounded domain Ω ⊂ R
2 the following viscoelastic model, which can

be achieved as a limiting case of the Oldroyd-B model when the relaxation time goes to
infinity. Note that this assumption is equivalent to the fact that the Weissenberg number
We is set to infinity.

∂tu + u · ∇u = −∇p+ ∆u + ∇ · (FFT ), (4.1a)

∇ · u = 0, (4.1b)

∂tF + u · ∇F = ∇uF. (4.1c)

The system is closed with the no-slip boundary condition

u|∂Ω = 0 (4.1d)

and the initial condition
u(0, ·) = u0, F(0, ·) = F0. (4.1e)

Indeed, when setting the elastic part of the stress tensor τ = FFT we recover the
Oldroyd-B model (2.7) with We → ∞. This is achieved simply through multiplying
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(4.1c) by FT and summing the result with its transpose

∂tτ + u · ∇τ − ∇uτ − τ∇uT = 0. (4.2)

Assumptions on regularity of the solution to (4.1). It has been proven in [60, Theorem
2.2] that for initial data of the form

F0 = ∇ × Φ0, ∇Φ0 ∈ W k,2(Ω), u0 ∈ W k,2(Ω), k ≥ 2, (4.3)

there exists a positive time T , which depends only on ‖∇ϕ0‖2,2 and ‖u0‖2,2, such that
the system (4.1) possesses a unique solution in the time interval [0, T ] with

∂j
t ∇αu ∈ L∞(0, T ;W k−2j−|α|,2(Ω)) ∩ L2(0, T ;W k−2j−|α|+1,2(Ω)),

∂j
t ∇αF ∈ L∞(0, T ;W k−2j−|α|,2(Ω)),

(4.4)

for all j and α satisfying 2j + |α| ≤ k.
In accordance with (4.3)–(4.4), we set the following assumptions on the regularity of

the exact solution (u, p,F)

∂tu ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

u ∈ L∞(0, T ;W 2,2(Ω)) ∩ L2(0, T ;W 3,2(Ω)),

∂tF ∈ L∞(0, T ;L2(Ω)),

F ∈ L∞(0, T ;W 2,2(Ω)).

(4.5)

From (4.1b) and (4.1c) we further obtain

∇p = div(FF⊤) − ∂tu− div(u⊗ u) + ∆u ∈ L2(0, T ;W 1,2(Ω)),

∂tF = ∇uF − u · ∇F ∈ L∞(0, T ;W 1,2(Ω)).
(4.6)

4.1.2 Approximation

Let {Th}h>0 be a family of partitions of Ω into triangles and h be the largest edge in
Th. For any T ∈ Th and k = 0, 1, 2, . . . we denote by Pk(T ) the space of k-th order
polynomials on T . We define the spaces

Wh := {v ∈ W 1,2
0 (Ω;R2); ∀T ∈ Th : v|T ∈ P2(T )2},

Lh := {q ∈ L2
0(Ω) ∩ C(Ω); ∀T ∈ Th : q|T ∈ P1(T )},

Xh := {G ∈ C(Ω;R2×2); ∀T ∈ Th : G|T ∈ P1(T )2×2},
Zh := {G ∈ L2(Ω;R2×2); ∀T ∈ Th : G|T ∈ P0(T )}.

Let e be an interior edge shared by elements T1 and T2. Define the unit normal vectors
n1 and n2 on e pointing exterior to T1 and T2, respectively. For a function ϕ, piecewise
smooth on Th, with ϕi = ϕ|Ti

we define the average {ϕ} and the jump [ϕ] :

{ϕ} =
1

2
(ϕ1 + ϕ2), [ϕ] = ϕ1n1 + ϕ2n2 on e ∈ E0

h,
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where E0
h is the set of all interior edges. For a vector-valued function φ, piecewise smooth

on Th, we define the average and the jump analogously

{φ} =
1

2
(φ1 + φ2), [φ] = φ1 · n1 + φ2 · n2 on e ∈ E0

h.

Let β be a vector-valued function, continuous across e. The upwind value of a quantity
βϕ is defined as follows:

{βϕ}u =





βϕ1 if β · n1 > 0,

βϕ2 if β · n1 < 0,

β{ϕ} if β · n1 = 0.

We introduce the following space semi-discretizations of (4.1).

Finite element-finite volume approximation. Find (uh, ph,Fh) ∈ C1([0, T ];Wh) ×
C([0, T ];Lh) × C1([0, T ];Zh) such that

• for all (vh, qh,Gh) ∈ Wh × Lh × Zh and t ∈ (0, T ) the following integral identities
hold:

(∂tuh(t),vh) − (uh(t) ⊗ uh(t),∇vh) + (∇uh(t),∇vh)

− (ph(t), div vh) + (Fh(t)F⊤
h (t),∇vh) = 0, (4.7a)

(qh, divuh(t)) = 0, (4.7b)

(∂tFh(t),Gh) +
∑

e∈E0
h

({uh(t)Fh(t)}u, [Gh])e − 1

2
(divuh(t)Fh(t),Gh)

− (∇uh(t)Fh(t),Gh) = 0; (4.7c)

• uh and Fh satisfy the initial conditions: for all v ∈ Wh and G ∈ Zh

(uh(0, ·),v) = (u0,v), (Fh(0, ·),G) = (F0,G). (4.8)

For the approximate problem (4.7) we assume that the existence of a unique global in
time solution satisfies the inequality

sup
τ∈(0,T )

‖uh(τ, ·)‖2
2 + sup

τ∈(0,T )
‖Fh(τ, ·)‖2

2 +
∫ T

0
‖∇uh‖2

2 ≤ C, (4.9)

where C > 0 depends on the data (Ω, u0, F0), but is independent of h > 0.

Some preliminary properties. For the regular triangular family Th, the discrete spaces
Wh, Lh, Xh and Zh enjoy the following properties:
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• (inf-sup condition) There exists a constant C > 0 independent of h > 0 such that
for all qh ∈ Lh

sup
vh∈Wh, vh 6=0

(qh, div vh)

‖vh‖1,2
≥ C‖qh‖2; (4.10)

• (interpolation into Wh) There exists an operator Πu
h : W 1,2

0 (Ω;R2) → Wh such that

– for all v ∈ W 1,2
0 (Ω;R2)∩W k,q(Ω;R2), 1 ≤ q ≤ ∞, k ∈ {1, 2, 3}, r ∈ {0, . . . , k}:

‖Πu
hv − v‖r,q ≤ Chk−r‖v‖k,q, (4.11)

where C > 0 is independent of h > 0;

– for all v ∈ W 1,2
0 (Ω;R2) and qh ∈ Lh:

(qh, div Πu
hv) = (qh, div v); (4.12)

• (interpolation into Lh) There exists an operator Πp
h : L2

0(Ω) → Lh and a constant
C > 0 independent of h > 0, such that

‖Πp
hs− s‖r,q ≤ Ch2−r‖s‖2,q (4.13)

for all s ∈ L2
0(Ω) ∩W 2,q(Ω), 1 ≤ q ≤ ∞, r ∈ {0, 1};

• (interpolation into Xh) There exists an operator ΠF
h : L2(Ω;R2×2) → Xh and a

constant C > 0 independent of h > 0, such that

‖ΠF
h G − G‖r,q ≤ Ch2−r‖G‖2,q, (4.14)

for all G ∈ W 2,q(Ω;R2×2), 1 ≤ q ≤ ∞, r ∈ {0, 1}.

• (interpolation into Zh) There exists an operator Π0
h : L2(Ω;R2×2) → Zh and a

constant C > 0 independent of h > 0, such that

‖Π0
hG − G‖q ≤ Ch‖G‖1,q, (4.15)

for all G ∈ W 1,q(Ω;R2×2), 1 ≤ q ≤ ∞.

4.2 Error estimates

The aim of this section is to show the error estimates for the combined FE-FV approxi-
mation. Before presenting the main result we first introduce a similar result of a standard
finite element approximation from [62].

4.2.1 Error estimates for a standard finite element approximation

Finite element approximation. Find (uh, ph,Fh) ∈ C1([0, T ];Wh) × C([0, T ];Lh) ×
C1([0, T ];Xh) such that
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• for all (vh, qh,Gh) ∈ Wh × Lh × Xh and t ∈ (0, T ) the integral identities (4.7a),
(4.7b) and the following equality hold true

(∂tFh(t),Gh) − (uh(t) · ∇Gh,Fh(t)) − 1

2
((divuh(t))Fh(t),Gh)

− (∇uh(t)Fh(t),Gh) = 0; (4.16)

• uh and Fh satisfy the initial conditions: for all v ∈ Wh and G ∈ Xh

(uh(0, ·),v) = (u0,v), (Fh(0, ·),G) = (F0,G). (4.17)

For the finite element approximation we have the following lemma.

Lemma 4.2.1. Let the family {Th}h>0 be regular, the initial data (u0,∇ × Φ0) satisfy
u0,∇Φ0 ∈ W 2,2(Ω) and [0, T ] be the maximal time interval in which the strong solution
(u, p,F) to (4.1) exists. Then there exist constants h0 > 0 and C > 0 such that for all
h ∈ (0, h0) it holds

‖u− uh‖L∞(0,T ;L2(Ω)) + ‖∇(u− uh)‖L2(0,T ;L2(Ω))

+ ‖F − Fh‖L∞(0,T ;L2(Ω)) ≤ Ch, (4.18)

where (uh, ph,Fh) is the solution to (4.7a), (4.7b), (4.16) and (4.17).

Proof. Lemma 4.2.1 is a part of the Theorem 1 in [62], we refer the readers to this paper
for the details of the proof. In what follows we will sketch the proof for the sake of
consistency. Let us denote the errors eu := u − uh, ep := p − ph and eF := F − Fh.
In order to derive estimates of these errors in suitable norms we make the following
decomposition

eu = (u− Πu
hu) + (Πu

hu− uh) =: ηu + δu.

Similarly, we introduce ep = ηp + δp, eF = ηF + δF and

ηp := p − Πp
hp, δp := Πp

hp − ph, ηF := F − ΠF
h F, δF := ΠF

h F − Fh.

The first part of the errors is the interpolation error, which is already estimated using
the property of the interpolation operators, cf. the preliminary results introduced in the
last section.

sup
τ∈(0,T )

‖ηu(τ, ·)‖2
2 ≤ Ch4 sup

τ∈(0,T )
‖u(τ, ·)‖2

2,2,

∫ T

0
‖∇ηu‖2

2 ≤ Ch4
∫ T

0
‖u‖2

3,2,

sup
τ∈(0,T )

‖ηF (τ, ·)‖2
2 ≤ Ch4 sup

τ∈(0,T )
‖F(τ, ·)‖2

2,2.
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Hence, with the help of (4.5) we obtain

sup
τ∈(0,T )

(
‖eu(τ, ·)‖2

2 + ‖eF (τ, ·)‖2
2

)
+
∫ T

0
‖∇eu‖2

2 ≤ Ch4

+ sup
τ∈(0,T )

(
‖δu(τ, ·)‖2

2 + ‖δF (τ, ·)‖2
2

)
+
∫ T

0
‖∇δu‖2

2. (4.19)

Thus the proof of (4.18) is deduced to control the second part(δ-terms) in the previous
inequality by Ch2.

Due to the initial conditions (4.17) it holds that ‖δu(0)‖2 = ‖δF (0)‖2 = 0. Hence, for
any τ ∈ (0, T ) we have

1

2

(
‖δu(τ, ·)‖2

2 + ‖δF (τ, ·)‖2
2

)
+
∫ τ

0
‖∇δu‖2

2

=
1

2

(
‖δu(τ, ·)‖2

2 − ‖δu(0, ·)‖2
2 + ‖δF (τ, ·)‖2

2 − ‖δF (0, ·)‖2
2

)
+
∫ τ

0
‖∇δu‖2

2

=
∫ τ

0
[(∂tδu, δu) + (∂tδF , δF ) + (∇δu,∇δu)]

=
∫ τ

0
[(∂teu, δu) + (∂teF , δF ) + (∇eu,∇δu)]

−
∫ τ

0
[(∂tηu, δu) + (∂tηF , δF ) + (∇ηu,∇δu)] = J1 + J2. (4.20)

The last integral can be estimated using the Hölder and the Young inequality and
(4.11)–(4.14)

J2 ≤
(∫ T

0
‖∂tηu‖2

2

)1/2 (∫ τ

0
‖δu‖2

2

)1/2

+

(∫ T

0
‖∂tηF ‖2

2

)1/2 (∫ τ

0
‖δF ‖2

2

)1/2

+

(∫ T

0
‖∇ηu‖2

2

)1/2 (∫ τ

0
‖∇δu‖2

2

)1/2

≤ 1

2

∫ τ

0
‖δu‖2

2 +
1

2

∫ T

0
‖∂tηu‖2

2 +
1

2

∫ τ

0
‖δF ‖2

2 +
1

2

∫ T

0
‖∂tηF ‖2

2

+ α
∫ τ

0
‖∇δu‖2

2 +
C

α

∫ T

0
‖∇ηu‖2

2

≤ 1

2

∫ τ

0
‖δu‖2

2 + Ch2
∫ T

0
‖∂tu‖2

1,2 +
1

2

∫ τ

0
‖δF ‖2

2 + Ch2
∫ T

0
‖∂tF‖2

1,2

+ α
∫ τ

0
‖∇δu‖2

2 +
Ch4

α

∫ T

0
‖u‖2

3,2. (4.21)

Here α > 0 is a sufficiently small coefficient to be specified later. The regularity of the
solution (4.5), (4.6) implies that

J2 ≤ 1

2

∫ τ

0
‖δu‖2

2 +
1

2

∫ τ

0
‖δF ‖2

2 + α
∫ τ

0
‖∇δu‖2

2 + Ch2 +
Ch4

α
. (4.22)

For the estimates of the first integral J1 on the r.h.s. of (4.20) we need to use the
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control equations of the errors.

Equations satisfied by the errors. Multiplying (4.1) with vh ∈ Wh, qh ∈ Lh and
Gh ∈ Xh, respectively, and integrating over Ω, we obtain for a.a. t ∈ (0, T ) the following
identities

(∂tu(t),vh) − (u(t) ⊗ uh(t),∇vh) + (∇u(t),∇vh)

− (p(t), div vh) + (F(t)F⊤(t),∇vh) = 0, (4.23a)

(qh, divu(t)) = 0, (4.23b)

(∂tF(t),Gh) − (u(t) · ∇Gh,F(t)) − (∇u(t)F(t),Gh) = 0. (4.23c)

Taking the difference of (4.23) and the finite element approximation (4.7a), (4.7b) and
(4.16) we obtain

∫ T

0

[
(∂teu,vh) − (eu ⊗ u+ u⊗ eu,∇vh) + (∇eu,∇vh) − (ep, div vh)

+ (FF⊤ − FhF⊤
h ,∇vh)

]
= 0, (4.24a)

∫ T

0
(qh, div eu) = 0, (4.24b)

∫ T

0
(∂teF ,Gh) − (uiF − uhiFh, ∂iGh) +

1

2
((divuh)Fh,Gh)

− (∇uF − ∇uhFh,Gh) = 0 (4.24c)

for any (vh, qh,Gh) ∈ L2(0, T ;Wh) × L2(0, T ;Lh) × L2(0, T ;Xh).

Now the J1 term can be substituted from (4.24) as follows

J1 =
∫ τ

0

[
(eu ⊗ u+ uh ⊗ eu,∇δu) + (ep, div δu) − (FF⊤ − FhF⊤

h ,∇δu)

+ (uiF − uhiFh, ∂iδF ) +
1

2
((divuh)Fh, δF ) + (∇uF − ∇uhFh, δF )

]

=:
∫ τ

0

6∑

j=1

Tj ,

where the estimates of the terms T1, . . . , T6 are, cf. [62],

∫ τ

0
T1 ≤ 3α

∫ τ

0
‖∇δu‖2

2 +
C

α3

∫ τ

0
‖uh‖2

1,2‖δu‖2
2 +

Ch4

α
. (4.25)

∫ τ

0
T2 ≤ α

∫ τ

0
‖∇δu‖2

2 +
Ch2

α
. (4.26)

∫ τ

0
T3 + T6 ≤ 3α

∫ τ

0
‖∇δu‖2

2 + C
∫ τ

0

(
1

α
+ ‖u‖3,2

)
‖δF ‖2

2 + Ch2 +
Ch4

α
. (4.27)
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∫ τ

0
T4 + T5 ≤ 2α

∫ τ

0
‖∇δu‖2

2 +
C

α

∫ τ

0
‖δF ‖2

2 + Ch2 + Ch4. (4.28)

Gronwall’s inequality for the errors and the end of the proof. Collecting (4.22),
(4.25), (4.26), (4.27), (4.28) and inserting the result to (4.20), we obtain

1

2

(
‖δu(τ)‖2

2 + ‖δF (τ)‖2
2

)
+ (1 − Cα)

∫ τ

0
‖∇δu‖2

2

≤ C
∫ τ

0

(
1 +

‖uh‖2
1,2

α3

)
‖δu‖2

2 + C
∫ τ

0

(
1

α
+ ‖u‖3,2

)
‖δF ‖2

2 +
C

α

(
h2 + h4

)
.

Choosing α sufficiently small and using the Gronwall inequality we obtain for h ∈ (0, h0)

sup
(0,T )

‖δu‖2
2 + sup

(0,T )
‖δF ‖2

2 +
∫ T

0
‖δu‖2

1,2 ≤ Ch2.

This in accordance with (4.19) completes the proof of Lemma 4.2.1.

4.2.2 Error estimates of the combined finite element - finite volume

approximation

The aim of this subsection is to present the error estimates for the FE-FV approximation
proposed in Section 4.1.2. In advance of that let us introduce the following lemma on
the multiplicative trace inequality, which will be useful in the proof of Theorem 4.2.4.

Multiplicative trace inequality In the error analysis of the finite element-finite volume
scheme we will need the following variant of multiplicative trace inequality.

Lemma 4.2.2. Let F ∈ W 2,2(Ω). Then there exists a constant c > 0 independent of h
such that ∑

e∈E0
h

‖F − Π0
hF‖4,e ≤ ch3/4‖F‖2,2. (4.29)

Before the proof of this statement, we first state the following auxiliary result.

Lemma 4.2.3. There exists a constant c > 0 independent of h and T, such that for
T ∈ Th, v ∈ H1(T ), h ∈ (0, h0) we have

‖v‖4
L4(∂T ) ≤ c

[
4‖v‖3

L6(T )|v|H1(T ) +
d

hT
‖v‖4

L4(T )

]
. (4.30)

We refer the proof of Lemma 4.2.3 to [29, Lemma 3.1], see also [62, Lemma 3]. Holding
the property (4.30), we can prove Lemma 4.2.2.
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Proof of Lemma 4.2.2. Set v = F − Π0
hF , where F ∈ W 2,2(Ω). Then it holds

‖F − Π0
hF‖4

L4(∂T ) = ‖ηF ‖4
L4(∂T ) ≤ c1

[
4h3‖F‖3

W 1,6(T )|F |H1(T ) +
2

h
h4‖F‖4

W 1,4(T )

]
≤

≤ c2

[
h3‖F‖4

W 2,2(T ) + h3‖F‖4
W 2,2(T )

]
≤

≤ c3h
3‖F‖4

W 2,2(T ).

This implies

∑

e∈E0
h

‖F − Π0
hF‖4,e ≤ ch3/4‖F‖2,2.

Now let us state the main result on the error rates.

Theorem 4.2.4. Let the family {Th}h>0 be regular, the initial data (u0,∇ × Φ0) satisfy
u0,∇Φ0 ∈ W 2,2(Ω) and [0, T ] be the maximal time interval in which the strong solution
(u, p,F) to (4.1) exists. Then there exist constants h0 > 0 and C > 0 such that for all
h ∈ (0, h0) it holds

‖u− ūh‖L∞(0,T ;L2(Ω)) + ‖∇(u− ūh)‖L2(0,T ;L2(Ω))

+ ‖F − F̄h‖L∞(0,T ;L2(Ω)) ≤ Ch3/4, (4.31)

where (ūh, p̄h, F̄h) is the solution to (4.7)–(4.8).

The essential difference in the proof of error estimates for the solution of problem
(4.7)–(4.8) is in the term u · ∇F. It is therefore sufficient to estimate the error of

∫ T

0


(u · ∇F, δF ) −

∑

e∈E0
h

({uhFh}u, [δF ])e +
1

2
(divuhFh, δF )


 . (4.32)

Proof. (Error estimate for term u · ∇F)
Let us first denote by F one component of the tensor F, similarly by Gh one component
of Gh. Then we can write

(u · ∇F,Gh) =
∑

T ∈Th

∫

T
div(uF)Gh dx =

∑

T ∈Th

∫

∂T
(u ·n)F [Gh] dS

=
∑

e∈E0
h

∫

e
{uF}[Gh] dS.

For the approximate solution it holds

∫

e
{uhFh}u [Gh] dS =

∫

e
{uhFh}[Gh] dS +

∫

e

|uh · n|
2

[Fh][Gh] dS ∀ Gh ∈ Zh.
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Thus, we can rewrite (4.32) as follows

. . . =
∫ T

0

∑

e∈E0
h

∫

e
{(u− uh)F}[δF ] dS dt+

∫ T

0

∑

e∈E0
h

∫

e
{uh(F − Fh)}[δF ] dS dt+

+
∫ T

0

∑

e∈E0
h

∫

e

|uh ·n|
2

[F − Fh][δF ] dS dt+
1

2

∫ T

0

∫

Ω
divuhFhδF =

=
4∑

i=1

Ii.

In what follows, we will estimate these terms separately.
Term I1.

I1 =
∫ T

0

∑

e∈E0
h

∫

e
{(u− uh)F}[δF ] dS dt =

∫ T

0

∑

T ∈Th

∫

∂T
(u− uh) ·n F δF dS dt =

=
∫ T

0

∑

T ∈Th

∫

T
div

(
(u− uh)F

)
δF dx dt =

=
∫ T

0

∫

Ω
div δu FδF dx dt+

∫ T

0

∫

Ω
div ηu FδF dx dt+

+
∫ T

0

∫

Ω
δu · ∇F δF dx dt+

∫ T

0

∫

Ω
ηu · ∇F δF dx dt ≤

≤
∫ T

0
c1‖∇δu‖2,Ω‖F‖2,2,Ω‖δF ‖2,Ω + c2‖∇ηu‖2,Ω‖F‖2,2,Ω‖δF ‖2,Ω+

+
∫ T

0
c3‖δu‖4,Ω‖∇F‖4,Ω‖δF ‖2,Ω + c4‖ηu‖4,Ω‖∇F‖4,Ω‖δF ‖2,Ω ≤

≤ α
∫ T

0
‖∇δu‖2

2 +
C

α

(
sup
(0,T )

‖F‖2,2

)2 ∫ T

0
‖δF ‖2

2+

+ C
∫ T

0
‖δF ‖2

2 + Ch4
(

sup
(0,T )

‖F‖2,2

)2 ∫ T

0
‖u‖2

3,2.

Terms I2 + I4 .

I2 =
∫ T

0

∑

e∈E0
h

∫

e
{uh(F − Fh)}[δF ] dS dt =

=
∫ T

0

∑

e∈E0
h

∫

e
{uhδF }[δF ] dS dt+

∫ T

0

∑

e∈E0
h

∫

e
{uhηF }[δF ] dS dt = A1 + A2
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A1 =
∫ T

0

∫

Ω

1

2
divuhδ

2
F dx dt = −

∫ T

0

∫

Ω

1

2
div euΠ0

hFδF dx dt− I4

= −
∫ T

0

∫

Ω

1

2
div ηuΠ0

hFδF dx dt−
∫ T

0

∫

Ω

1

2
div δuΠ0

hFδF dx dt− I4

≤ C
∫ T

0
‖ηu‖1,2‖δF ‖2 + C

∫ T

0
‖∇δu‖2‖δF ‖2 − I4

≤ Ch2 + α
∫ T

0
‖∇δu‖2

2 +
C

α

∫ T

0
‖δF ‖2

2 − I4.

A2 ≤
∫ T

0

∑

e∈E0
h

∫

e

|uh · n|
2

{|ηF |}|[δF ]| dS dt

≤
∫ T

0

∑

e∈E0
h

‖c1/2
e [δF ]‖2,e‖c1/2

e ‖4,e‖{|ηF |}‖4,e

≤ α
∫ T

0

∑

e∈E0
h

‖c1/2
e [δF ]‖2

2,e +
C

α
h3/2

(
sup
(0,T )

‖F‖2,2

)2 ∫ T

0
‖∇uh‖2

2 dt,

where the trace inequalities for ηF and ce were used and ce = |uh·n|
2
. Further, we have

I3 =
∫ T

0

∑

e∈E0
h

∫

e

|uh · n|
2

[ηF ][δF ] dS dt+
∫ T

0

∑

e∈E0
h

∫

e

|uh · n|
2

[δF ][δF ] dS dt =

= B1 +B2,

where B1 can be estimated in the same way as A2 and

B2 =
∫ T

0

∑

e∈E0
h

‖c1/2
e [δF ]‖2

2,e.

Finally, we can derive

(1 −α)
∫ T

0

∑

e∈E0
h

‖c1/2
e [δF ]‖2

2,e ≤ Cα
∫ T

0
‖∇δu‖2

2 +
C

α

∫ T

0
‖δF ‖2

2 +Ch3/2 +Ch2 +Ch4, (4.33)

this concludes the proof.

4.3 Numerical experiments

In order to demonstrate validity of our theoretical error estimates we perform experimen-
tal error analysis. Let us consider the flow in a rectangular domain Ω = (0, 1)2 driven
by the boundary condition

u =





(4x(x− 1), 0) if y = 1,

(0, 0) otherwise,
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eu ∇eu ep eF

h L∞(L2) EOC L2(L2) EOC L2(L2) EOC L∞(L2) EOC
1/8 2.08e-02 2.11 1.77e+02 1.00 4.19e+02 0.96 1.37e-01 0.73
1/16 4.80e-03 2.02 8.85e+01 1.00 2.14e+02 0.99 8.21e-02 0.89
1/32 1.18e-03 2.00 4.42e+01 0.99 1.07e+02 1.00 4.41e-02 0.94
1/64 2.95e-04 2.00 2.21e+01 0.99 5.36e+01 1.00 2.29e-02 0.95
1/128 7.37e-05 1.10e+01 2.68e+01 1.17e-02

(a) FEM

eu ∇eu ep eF

h L∞(L2) EOC L2(L2) EOC L2(L2) EOC L∞(L2) EOC
1/8 2.07e-02 2.00 1.77e+02 1.00 4.73e+02 0.88 1.94e-01 0.73
1/16 5.16e-03 1.40 8.87e+01 0.98 2.55e+02 0.94 1.16e-01 0.88
1/32 1.94e-03 1.34 4.47e+01 0.98 1.33e+02 0.96 6.33e-02 0.90
1/64 7.67e-04 1.35 2.25e+01 0.98 6.83e+01 0.97 3.37e-02 0.91
1/128 3.00e-04 1.13e+01 3.47e+01 1.78e-02

(b) FEM-dual FVM

eu ∇eu ep eF

h L∞(L2) EOC L2(L2) EOC L2(L2) EOC L∞(L2) EOC
1/8 4.22e-02 0.86 3.61e-01 0.86 2.94e-01 1.27 1.58e-01 0.88
1/16 2.32e-02 1.25 1.98e-01 1.04 1.22e-01 1.54 8.56e-02 1.07
1/32 9.73e-03 1.82 9.62e-02 1.22 4.22e-02 1.76 4.09e-02 1.23
1/64 2.77e-03 2.25 4.14e-02 1.59 1.25e-02 2.03 1.75e-02 1.59
1/128 5.81e-04 1.38e-02 3.06e-03 5.80e-03

(c) FDM-FVM

Table 4.1: Error norms and experimental order of convergence for driven cavity problem.

with the initial conditions u0 = (0, 0), F0 = I. We have compared the following three
methods:

a) finite element method (FEM) for velocity, pressure and viscoelastic stress,

b) FEM for velocity and pressure, dual finite volume method (FVM) for viscoelastic
stress,

c) finite difference method (FDM) for velocity and pressure, FVM for viscoelastic
stress.

The case a) is a standard finite element method based on the Taylor-Hood finite
elements of the fluid part (piecewise quadratic velocity and piecewise linear pressure)
combined with the piecewise linear approximation of the deformation gradient F. In
the case b) the deformation gradient was approximated by piecewise constants on dual
elements, that arise by connecting the barycenters of primary elements with the edge
midpoints. In the case c) we have combined the finite difference approximation of the
fluid equations with the finite volume approximation of the deformation gradient F, cf.
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Section 2.5. Setting σ = FFT and replacing (2.58) by

Fk+1
i = Fk

i − ∆t

|Ti|
∑

j∈S(i)

Hi j(F
k
i ,F

k
j ) + (∇hu

k)iF
k
i , (4.34)

we can follow Algorithm 3 in Section 2.5 for the simulation.
In order to compute experimental error orders we use a series of regular triangular

meshes consisting of 8 to 256 elements in each direction (methods a) and b)) as well as
regular rectangular meshes with 4 to 128 elements (method c)). Calculations were run
for the time interval (0, 0.2) with a fixed time step 0.001 that satisfies the CFL stabil-
ity condition for the finest mesh. Our experimental error analysis, that is presented in
Table 4.1, yields the results comparable with the theoretical results, cf. Theorem 4.2.4.
Indeed, simulations using the standard finite element method a) confirm the first order
error for ∇u in L2(0, T ;L2(Ω)) and for F in L∞(0, T ;L2(Ω)). Moreover, we also show
that the pressure p is approximated in L2(0, T ;L2(Ω)) with the first order and the ve-
locity u with the second order error in L∞(0, T ;L2(Ω)). The same experimental orders
of convergence are obtained by the combined finite element-dual finite volume method
b). Note however that the we have a slightly worse convergence for the velocity mea-
sured in L∞(0, T ;L2(Ω)) than in the finite element method a), though still superlinear.
These experimental results also indicate that our theoretical error estimate (4.31) may
be suboptimal for u. Furthermore, the experimental error analysis of the combined finite
difference-finite volume method indicates the second order error for u in L∞(0, T ;L2(Ω))
as well as for pressure p in L2(0, T ;L2(Ω)) and the superlinear convergence for ∇u in
L2(0, T ;L2(Ω)) and for F in L∞(0, T ;L2(Ω)), see Table 4.1.

In what follows we present graphs of the solution in the final time T = 0.2. In Fig-
ure 4.1 we plot the streamlines, pressure and velocity components. Figure 4.2 presents
all components of the deformation gradient F. Further, Figure 4.3 illustrates time evo-
lution of the kinetic energy 1

2
u2 and the L2-norm of the stress tensor F computed by

the combined FD-FV and FE-FV methods, respectively. Although the kinetic energy is
non-increasing, we see clearly that L2-norm of the stress tensor is increasing in time.

In this chapter we have studied a special variant of the Oldroyd-B visocelastic model
having the limiting relaxation time going to infinity. Assuming global in time existence of
enough regular weak solution we have presented the error estimates of a combined FE-FV
method. More precisely, we have combined the lowest order Taylor-Hood finite element
discretization of the flow part (piecewise quadratic velocity and piecewise linear pressure)
with a piecewise constant finite volume approximation for the deformation gradient. The
theoretical result presented in Theorem 4.2.4 shows the errors of order O(h3/4) for the
combined FE-FV method. The result is confirmed by numerical experiments, too.
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Figure 4.1: Graph of the solution at the final time T = 0.2: streamline (top left), pressure
(top right) and velocity components u1 and u2 (bottom), computed by the
combined FD-FV method.
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Figure 4.2: Graph of the solution at the final time T = 0.2; four components of the
deformation gradient Fij , i, j = 1, 2, from the top left to the bottom right,
computed by the combined FD-FV method.
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the combined FD-FV and FE-FV method, respectively.
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5 Summary and outlook

In this thesis we have studied viscoelastic fluids, that are modeled by the Oldroyd-B
equations. It is a well-known fact, that this classical Oldroyd-B model yields many open
problems both from analytical as well as numerical point of view. We do not have global
existence of solutions and can not solve numerically the Oldroyd-B equations for arbitrary
Weissenberg numbers. The main part of the thesis is devoted to the stabilization study
of the numerical simulations for the Oldroyd-B type viscoelastic models.

In Chapter 1 we have described the fundamental results of the viscoelastic flows and
presented an overview of the available literature for the Oldroyd-B viscoelastic model.
In Chapter 2 we have firstly described the modelling aspects of the Oldroyd-B system.
In particular, we have introduced the diffusive Oldroyd-B model. Further, the so-called
logarithm transformation stabilization approach was discussed. We extended the loga-
rithm formulation to the diffusive model. Besides of that, the entropy stability of the
both diffusive models, with and without logarithmic transformation, was studied. For
the approximation of the Oldroyd-B type models several numerical methods were pre-
sented. In particular, we have developed and studied the characteristic finite element,
combined finite difference-finite volume and characteristic finite difference methods.

In Chapter 3 the entropy stability of these methods was analyzed. We have proved
that the characteristic FEM and characteristic FD method are entropy stable for diffusive
models with arbitrary Weissenberg numbers. Except of the entropy stability, which is a
suitable tool for nonlinear analysis, we have also presented global linear stability method
and apply it to the Oldroyd-B equations, cf. Section 3.1.

At the end of Chapter 3, cf. Section 3.4, we have presented experimental results using
the combined FD-FV method, the characteristic finite element scheme and characteristic
finite difference scheme. It has been observed that the diffusive models are more stable
for high Weissenberg number. One interesting result, that we would like to emphasize
is the fact that the mesh convergence was also observed for high Weissenberg numbers
using the diffusive Oldroyd-B model with the logarithmic transformation.

Chapter 4 is devoted to the error estimates of a special Oldroyd-B model that covers
the limit of Weissenberg number going to infinity. This chapter presents and summarizes
the results that have been published in [62]. Based on the assumption of [60, 52] we
have achieved a suitable convergence order of the combined finite element - finite volume
approximation. Theoretical results have been verified by numerical experiments.

The current numerical study is in two space dimensions. Future goal is to extend these
results to three space dimensions.

The question of suitable boundary conditions for viscoelastic fluids is still not com-
pletely clear. The boundary effect which plays an important role, is ignored in most of
the situations. We would like to study the effects of different boundary conditions in our
future research as well.

From the molecular point of view, the complex behavior of the viscoelastic fluids
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originates from their micro structures. It is also interesting to study the role of the
microscopic effects by using the kinetic models for viscoelastic fluids based on the Fokker-
Planck equation.
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