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1 Introduction

Linear homogeneous differential equations of order n with polynomial coefficients

L := pn(x)y
(n) + . . . + p1(x)y

′
+ p0y = 0

play a prominent role in many areas of mathematics. The set of singular points of L, denoted
by Σ, consists of the roots of pn(x) and possibly ∞; points of P1 \ Σ are called ordinary. If for
0 ≤ i ≤ n− 1 the pole order of pi(x)/pn(x) at a singular point p ∈ C is less than n− i+ 1, the
singular point p is called a regular singular point. The point at ∞ is called regular singular, if
the same is true for 0 after a coordinate change z = 1/x. A linear homogeneous differential
equation is called Fuchsian, if all its singular points are regular singular. Fuchsian differential
equations are of special interest, since differential equations appearing naturally in algebraic
and complex geometry are usually of this type. Locally near any ordinary point p of P1 there
are n over C linear independent solutions of L. Their behavior under analytic continuation
along a loop in P1 \ Σ is encoded in the monodromy representation, whose image in GLn(C)
is called monodromy group. The analytic techniques to determine this group are very lim-
ited. For order greater than three our knowledge of generators of the monodromy group is
restricted to rigid cases, where the global monodromy is fixed by local data. This is the case
for generalized hypergeometric differential equations, which were investigated by A. H. M.
Levelt and F. Beukers, and G. Heckman [BH89, Lev61]. For more general rigid cases genera-
tors of the monodromy group can be computed with an algorithm developed by N. M. Katz
in the formulation of M. Dettweiler and S. Reiter [Kat82,DR07]. To handle general non-rigid
cases a method that computes approximations of generators of the monodromy group of a
general Fuchsian differential equation is desirable. In several papers [CC86, CC87a, CC87b]
D. V. and G. V. Chudnovsky outline an efficient computer implementable approach based
on the classical Frobenius method. In Chapter 2 we give the necessary definitions and state-
ments from the theory of differential algebra and differential equations. Furthermore we
recall in detail the approach of D. V. and G. V. Chudnovsky and describe our implementa-
tions. Throughout this thesis these implementations are tested for two types of differential
equations. Second order differential equations from the theory of Riemann uniformization
and fourth order differential equations occurring in mirror symmetry for Calabi-Yau three-
folds. In the first case the crucial observation is that we are able to compute approximations
of matrices generating the monodromy groups with precision as high as necessary to get
plausible guesses of their traces as algebraic numbers. In the second case with respect to a
special basis we are able the identify the entries as elements of Q(ζ(3)/(2πi)3).

A Fuchsian group Γ is a discrete subgroup of PSL2(R) which acts on the upper half plane
H as Möbius transformations. The quotient X = H/Γ can be equipped with a complex struc-
ture and thus is a Riemann surface. Two generator Fuchsian groups with compact quotient X
are certain triangle groups and groups with signature (1; e) or (0; 2, 2, 2, q). The first entry in
the signature is the genus of X and the remaining numbers describe the branching data of the
uniformizing map φ : H → H/Γ. Up to conjugation a Fuchsian group with two generators α
and β can be described completely by the trace triple (tr(α), tr(β), tr(αβ)). Arithmetic Fuch-
sian groups are those which are commensurable with the embedding into PSL2(R) of the
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norm one elements of an order of a quaternion algebra. Arithmetic triangle groups and arith-
metic Fuchsian groups of signature (1; e) were classified in terms of the their trace triples by T.
Takeuchi [Tak83, Tak77a]. Later P. Ackermann, M. Näätänen, and G. Rosenberger also classi-
fied arithmetic Fuchsian groups with signature (0; 2, 2, 2, q) [ANR03]. In the first two sections
of Chapter 3 we recall this classification and present the foundations of hyperbolic geometry.
If one chooses coordinates on H and H/Γ, there is no general method to determine the uni-
formizing map φ explicitly. The multivalued inverse φ−1 is the quotient of two solutions of
a Fuchsian differential equation D of degree two, called uniformizing differential equation.
In Section 3.3 we explain which information about D can be extracted from the signature
of Γ directly. In particular, for triangle groups D can be immediately determined from the
signature of Γ as a hypergeometric differential equation. For Fuchsian groups with signature
(1; e) or (0; 2, 2, 2, q) either D itself or a pullback of D to P1 has four singular points. If three
of these points are assumed to be 0, 1,∞, the signature of Γ determines D up to the location
of the fourth singular point A and an additional accessory parameter C. Section 3.5 describes
how we used the algorithms obtained in Chapter 2 to determine candidates for A and C. We
use that the monodromy group of D divided out by its center coincides with Γ. Hence, to
find the uniformizing differential equation for a given arithmetic Fuchsian group with trace
triple T, one has to determine A and C such that the trace triple of the monodromy group of
D(A,C) matches T. This approach was used by D. V. and G. V. Chudnovsky in [CC89] for
(1; e)-groups, where they also list some A and C for some cases. We are able to apply the
numerical monodromy method to get approximations of A and C, such that both parameters
coincide with algebraic numbers of plausible height and degree up to high precision. Section
3.4 reviews algorithms designed for the recognition of algebraic numbers given by rational
approximations. In the case of groups with signature (1; e) we profited from the work of J.
Sijsling, who used the theory of algebraic models of Shimura curves to compute A in many
cases [Sij13]. We found our results to be true whenever the uniformizing differential equation
is listed in the literature and use the theory of Belyi maps to prove one further case.

Mirror symmetry is a physical theory that entered mathematics several years ago and the
process of turning it into a mathematical theory is still ongoing. One of the first constructions
was done by P. Candelas and his collaborators for a generic quintic threefold in P4 with
Hodge numbers h1,1(X) = 1 and h1,2(X) = 101. By an orbifold construction they found a
topological mirror Calabi-Yau threefold X

′
with h1,1(X

′
) = 101 and h2,1(X

′
) = 1. Hence X

′

varies in a deformation family X over a one-dimensional base, whose Picard-Fuchs equation
can be computed explicitly. It is a generalized hypergeometric differential equation of order
four with singular points {0, 1/3125,∞}. In a special basis, the monodromy along a loop
encircling only 1/3125 once in counterclockwise direction is a symplectic reflection

x 7→ x− 〈x,C〉C,

with C = (H3, 0, c2(X)H/24, c3(X)λ), where the complex number λ is defined as ζ(3)/(2πi)3

and H is the first Chern class of the ample generator of Pic(X). Furthermore to X one can
assign three characteristic numbers, namely the degree H3, the second Chern number c2(X)H
and c3(X), the Euler number of X. For all known topological mirror partners (X,X

′
), that is

Calabi-Yau threefolds with h1,1(X) = h2,1(X
′
) and h2,1(X) = h1,1(X

′
), with h1,1(X

′
) = 1 we are

able make the same observation as for the quintic example using approximations of genera-
tors of the monodromy group. The right formulation to understand this observations seems
to be M. Kontsevich’s categorical approach to mirror symmetry. Following this approach,
certain projective Calabi-Yau varieties should come in pairs (X,X

′
), where Db(X) is equiv-

alent to DFuk(X
′
) as well as Db(X

′
) is equivalent to DFuk(X). The category Db(X) is the



3

well studied bounded derived category of coherent sheaves. The second category DFukb(X)
depends on the symplectic structure of X and is called derived Fukaya category. To explain
the occurrence of H3, c2H, c3 and λ we can reformulate an approach of L. Katzarkov, M. Kont-
sevich, and T. Pantev [KKP08] and H. Iritani [Iri09, Iri11]. They introduced the characteristic
class Γ̂X as a square root of the Todd class. If δi are the Chern roots of TX, it is defined by

Γ̂X := Γ̂(TX) = ∏
i

Γ(1+ δi),

where Γ(1+ δi) is defined by the series expansion of the classical Γ-function

Γ(1+ z) = exp

(
−γz +

∞

∑
l=2

ζ(l)

l
(−z)l

)
.

If h1,1(X
′
) = 1 the geometric monodromy transformation induces an autoequivalence

ρ : π1(B \ Σ, b) → Auteq(DFuk(X
′
)).

Under mirror symmetry autoequivalences of DFuk(X
′
) should correspond to autoequiva-

lences of Db(X). Especially a spherical twist ΦOX
along OX is expected to correspond to a

generalized Dehn twist with respect to a Lagrangian sphere [ST01]. On the level of cohomol-
ogy such a Dehn twist is described by the Picard-Lefschetz formula. On the other hand the
passage from Db(X) to cohomology via the Γ-character

E• 7→ (2πi)deg/2 ch([E•]) ∪ Γ̂X

yields that ΦH
OX

with respect to a distinguished basis and a suitable bilinear form is a sym-
plectic reflection with reflection vector (H3, 0, c2H/24, c3λ). The local system VC with fiber
VC,b = H3(X

′
b,C) can be described by solutions of its Picard-Fuchs equation L . And the mon-

odromy of L coincides with the monodromy of VC . Fuchsian differential equations that share
certain algebraic and arithmetic properties of Picard-Fuchs equations of Calabi-Yau three-
folds are called CY(3)-equations. Finitely many CY(3)-equations are known and collected
in [AESZ10, Str12]. We expect that many of these equations actually are Picard-Fuchs equa-
tions and that it is possible to recover topological invariants of certain Calabi-Yau threefolds
with h1,1 = 1. In Chapter 4 we recall the characterization of CY(3)-equations and introduce
the Γ-character. We furthermore recall how H. Iritani used the Γ-character to define mirror
equivalent lattices in two variations of Hodge structure attached to X and X

′
. Finally, in Sec-

tion 4.6.3 we apply the algorithms of Chapter 2 to produce a list of triples (H3, c2H, c3), we
find many more such triples than Calabi-Yau threefolds with h1,1 are known.





2 Monodromy of Linear Differential Equations

2.1 Differential Operators and Differential Modules

2.1.1 Basic Notions

In this section we will recall basic definitions and properties of scalar differential equations,
matrix differential equations, differential operators, and differential modules and explain how
this four objects are related. A complete reference is the book [PS03] by M. van der Put and
M. F. Singer. For a ring R a derivation is an additive map

(·)′ : R → R

that satisfies the Leibniz rule

(rs)
′
= rs

′
+ rs

′
, for r, s ∈ R.

A ring R with a derivation is called a differential ring, if R is in addition a field, then R is
called a differential field. A differential extension of the differential ring R is a differential ring
S such that the derivation of S restricts to the derivation of R. An element c ∈ R is called
a constant of R, if c

′
= 0. The most prominent examples of differential rings are the rational

functions C(x), the ring of formal Laurent series C((x)) and its algebraic closure, the ring of
Puiseux series. In this cases the constants are the algebraically closed field C. For the rest of
this section k will always denote a differential field and C its field of constants. At first we
define differential modules.

Definition 2.1.1 (Differential module) For a differential field k, a differential module is a finite
dimensional k-vector space (M, ∂) equipped with an additive map ∂ : M → M, that has the property

∂( fm) = f
′
m + f ∂(m),

for all f ∈ k and m ∈ M.

With respect to a basis e1, . . . , en of a differential module M define the matrix A = (ai,j)i,j ∈
Matn(k) by ∂(ei) = −∑

n
j=1 aj,iej. For a general element m = ∑ fiei of M the element ∂(m) has

the form
n

∑
i=1

f
′
i ei −

n

∑
i=1

(

∑
j

ai,j f j

)
ei

and the equation ∂(m) = 0 translates to (y
′
1, . . . , y

′
n)

t = A(y1, . . . , yn)t. Extending the deriva-
tion component-wise to kn this leads to the definition of a matrix differential equation or a system
of first order differential equations.

Definition 2.1.2 (Matrix differential equation) An equation y
′

= Ay with A ∈ Matn(k) and
y ∈ kn is called a linear matrix differential equation or a system of linear differential equations.
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A different choice of the basis of M results in a different matrix differential equation, if y is
replaced by Bỹ for B ∈ GLn(k) the matrix equation changes to

ỹ
′
=
(
B−1AB− B

′
B
)
ỹ.

We say that two matrix differential equations are equivalent, if they correspond to the same
differential module, that is if they can be translated into each other by a differential change of
basis. Given any matrix differential equation y

′
= Ay, A ∈ GLn(k) it is possible to reconstruct

a differential module by setting M = kn with standard basis e1, . . . , en and derivation given by
∂ei = ∑

n
j=1 aj,iej. A matrix F ∈ GLn(R), where R is an differential extension of k with the same

set of constants, is called a fundamental matrix for the equation y
′
= Ay, if F

′
= AF holds. The

third notion we introduce is that of a scalar linear differential equation.

Definition 2.1.3 (Linear scalar differential equation) A linear (scalar) differential equation
over the differential field k is an equation L(y) = b, b ∈ k, with L(y) defined by

L(y) := y(n) + an−1y
(n−1) + . . . + a1y

′
+ a0y,

where (·)(j) denotes the j-times application of the derivation (·)′ . If b = 0 the equation L(y) = b
is called homogeneous, otherwise it is called inhomogeneous. The natural number n is called the
degree or the order of L.

A solution of L(y) = b is an element f of a differential extension of k such that L( f ) = b. The
solutions of L(y) = 0 build a C-vector space. A set of n C-linear independent solutions of an
order n scalar linear differential equation is called a fundamental system. The companion matrix
of the equation L(y) = y(n) + an−1y

(n−1) + . . . + a1y
′
+ a0 = 0 is defined as

AL :=




0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . 1
−a0 −a1 −a2 −a3 . . . −an−1




.

For any differential extension k ⊂ R the solution space

{y ∈ R|L(y) = 0}

of L(y) = 0 is isomorphic to the vector space of solutions y
′
= ALy defined as

{
Y ∈ Rn|Y ′ − ALY = 0

}
,

where the isomorphism is given as y 7→
(
y, y

′
, . . . , y(n−1)

)
. In the next section it is explained

how a scalar differential equation can be assigned to a differential module.

2.1.2 Differential Operators and Dual Modules

In this section we add the assumption that the constants C of k are an algebraically closed
field of characteristic 0. To be able to speak about scalar differential equations in a more
algebraic way we introduce the ring of differential operators.
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Definition 2.1.4 The ring D := k[∂] of differential operators with coefficients in k consists of all
expressions of the form an∂n + . . . + a1∂ + a0, n ∈ N0, ai ∈ k, where the addition is defined in the
obvious way and the multiplication is uniquely determined by ∂a := a∂ + a

′
.

The degree of L is the natural number m such that am 6= 0 and ai = 0 for i > m, the degree
of 0 is defined to be −∞. The action of a differential operator on a differential extension of k
is defined by ∂i(y) = y(i), thus the equation L(y) = 0 for L ∈ D has the same meaning as a
scalar differential equation. The greatest common left divisor of two differential operators L1, L2
(GCLD) is the unique monic generator of the left ideal L1D+ L2D, the same construction done
with the right ideal DL1 + DL2 yields the greatest common right divisor (GCRD). A differential
module M over k can be described as a left D-module such that dimk M < ∞. The structure of
left D-modules is described by Proposition 2.9 of [PS03].

Proposition 2.1.5 Every finitely generated left D-module has the form Dn or Dn ⊕ D/DL with
n ≥ 0 and L ∈ D. Especially every D-module of finite k dimension n is isomorphic to D/DL.

To describe L in the above proposition we introduce cyclic vectors.

Definition 2.1.6 An element e ∈ M of a differential module M is called a cyclic vector if e, ∂e, . . .
generate M as k-vector space.

The existence of a cyclic vector e of a differential module is for example assured by [Kat87].
For a differential module D/DL the operator L is the minimal monic operator of degree n
annihilating the cyclic vector e. To be more precise, if e is a cyclic vector of M ∼= D/DL, where
L is of order n, the n + 1 vectors B =

{
e, ∂e, . . . , ∂n−1e, ∂ne

}
satisfy a relation

an∂ne + an−1∂n−1e + . . . + a1∂e + a0e, aj ∈ k.

Hence, any choice of a cyclic vector assigns a differential operator to a differential module.
The transpose of the matrix representing ∂ in the basis B is a companion matrix. From
this observation it follows that any matrix differential equation is equivalent to a matrix
differential equation in companion form. Two differential operators L1 and L2 are of the same
type if the differential modules ML1 = D/DL1 and ML2 = D/DL2 are isomorphic. This
property can be formulated purely in terms of differential operators.

Proposition 2.1.7 For two monic differential operators L1 and L2 the differential modules ML1 and
ML2 are isomorphic exactly if there are elements R, S ∈ D of degree smaller than n such that L1R =
SL2 and GCDR(R, L2) = 1.

Proof The desired isomorphism is given by [1] 7→ [R]. �

As expected, the dual differential module M∗ of M is defined as the module of k-module homo-
morphisms from M to the trivial differential module of dimension one denoted Homk(M, k).
In general the k-vector space Homk((M1, ∂1), (M2, ∂2)) for two differential k-modules is turned
into a differential k-module itself by setting

∂(l(m1)) = l(∂1(m1))− ∂2(l(m1)) for m1 ∈ M1.

Suppose that M ∼= D/DL, then M∗ is isomorphic D/DL∗, where L∗ is the formal adjoint of L
defined as the image i(L) of the involution i : D → D, i(∑ ai∂

i) = ∑(−1)i∂iai. This can be
proven by checking that the element of M∗ defined by e∗(∂ie) = δi(n−1) is a cyclic vector with
L∗e∗ = 0.
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If for a differential module M of dimension n over k there is a non-degenerate (−1)n sym-
metric bilinear form 〈·, ·〉 : M× M → k with

(〈·, ·〉)′ = 〈∂·, ·〉 + 〈·, ∂·〉,
the adjunction map M → M∗, a 7→ 〈a, ·〉 gives an isomorphism of M and its dual M∗. Hence
if M ∼= D/DL, then L and L∗ are of the same type. The following proposition will be of
special importance in Chapter 4.

Proposition 2.1.8 Let M be a differential C(z)-module of rank n with non-degenerate (−1)n-symmetric
pairing 〈·, ·〉 : M × M → k with the above compatibility property and let e be a cyclic vector with
minimal operator L such that

〈e, ∂ie〉 =

{
α, i = n− 1

0, else
, α 6= 0

then there is α ∈ C(z) such that Lα = αL∗.

Proof Let e1 := e, . . . , en := ∂n−1e be a basis of M and let e∗1 , . . . , e
∗
n be the dual basis of M∗

as k-vector space with e∗i (ej) = ∂ij. Then 〈e, ·〉 = α(∂n−1e)∗, α = 〈e, ∂en−1〉 by the property
of the bilinear form and (∂n−1e)∗ is cyclic vector of M∗ with minimal operator L∗. Since
〈∂a, ·〉 = ∂∗〈a, ·〉 the equality

0 = 〈L(e), ·〉 = L(〈e, ·〉) = (Lα)((∂n−1e)∗)

is true. But L∗ is the minimal monic operator that annihilates (∂n−1e)∗, thus Lα = βL∗.
Together with the fact that deg(L) = deg(L∗) and that the leading coefficients of L and L∗ are
1 the equality of α and β follows. �

For n = 4 this can be expressed in terms of the coefficients of

L = δn +
3

∑
i=0

ai∂
i,

as

a1 =
1
2
a2a3 + a

′
2 −

3
4
a3a

′
3 −

1
2
a
′′
3 .

2.2 Series Solutions of Linear Differential Equations

Consider a differential operator

D := an(x)∂nx + an−1(x)∂n−1
x + . . . + a0(x)

with coefficients analytic throughout the neighborhood of a point p ∈ P1 and denote the set
of points where some of the ai have poles by Σ = {x1, . . . , xr}. A point of Σ is called a singular
and a point in P1 \ Σ is called an ordinary point of L. As described on page four of [Poo60]
Cauchy’s theorem says that the solutions of this differential equation build a C-local system
of rank n on P1 \ Σ. In particular, their exist n solutions linear independent over C locally at
an ordinary point p. In this section we will show that a similar result can be obtained if p is
a regular singular point of the differential equation and introduce the necessary definitions.
Following the pages from 396 of E. L. Ince’ book [Inc56] and the articles [CC86,CC87b] written
by G. V. and D. V. Chudnovsky we collect what is classically known about the construction
of the solution space of a linear homogeneous differential equation in a neighborhood of a
point p ∈ P1, with special emphasis on the Frobenius method.
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2.2.1 Indicial Equation, Spectrum and the Riemann Scheme

From now on we restrict to differential operators with regular singular points.

Definition 2.2.1 (Fuchsian differential operator) A point p ∈ C is called a regular singular
point of the linear homogeneous differential operator L with analytic coefficients if the pole order of
aj(x)/an(x) is less than n− j+ 1 for j = 1, . . . , n− 1. The point at infinity is called regular singular
if 0 is a regular singular point of the differential equation one obtaines after the change of coordinates
z = 1/x. L is called Fuchsian if all singular points of L are regular singular.

The property of p being a regular singular point of L can also be formulated as a growth
condition of the solutions of L locally at p. For simplicity we assume p = 0, this is not a
constraint, because any point on the projective line can be mapped to zero by x 7→ x− p or
x 7→ 1/x. We define an open sector S(a, b, r) as the set of nonzero complex numbers with
absolute value smaller than r and argument between a and b. A function f (x) on S(a, b, r) is
said to be of moderate growth on S(a, b, r), if there is ǫ > 0, N ∈ Z>0 and c ∈ R such that

| f (x)| < c
1

|x|N

for x ∈ S(a, b, r) and |x| < ǫ. The claim, known as Fuchsian criterion, says that 0 is a regular
singular point of a linear homogeneous differential equation exactly if it has a fundamental
system B, where all elements of B are of moderate growth on any open sector S(a, b, ρ) with
|a − b| < 2π and ρ sufficiently small, see Theorem 5.4 of [PS03]. In the rest of this text we
concentrate on differential operators L ∈ C[x][∂x ] with polynomial coefficients qi. If qn is the
coefficient of ∂nx , the singular points of L are the roots of qn, and possibly ∞. If p is a regular
singular point, L can always be written as

L = pn(z)z
n∂nz + pn−1(z)z

n−1∂n−1
z + . . . + p0(z)

for z = x− p, polynomials pi(z) and pn(0) 6= 0. Denote the i-th coefficient of the polynomial
pj(z) by pji, i = 0, . . . ,m, where m is the highest degree of any of the polynomials pi(z). To
find a solution of L set up a function in the variable x with an additional parameter σ

f =
∞

∑
j=0

f j(σ)zj+σ

and try to determine σ and f j(σ) for n ≥ 0 such that L( f ) = 0 holds. With the notation
(σ)k := σ(σ − 1) · . . . · (σ − k + 1) for the Pochhammer symbol and

Fl(σ) :=

{
∑

n
k=0 pkl(σ)k 0 ≤ l ≤ m

0, else
,

one has

L( f ) =
∞

∑
t=0

(
m

∑
l=0

ft−lFl(t− l + σ)

)
zt+σ.

Solving L( f ) = 0 with the assumption ft = 0 for t < 0 coefficientwise for ft(σ) leads to the
linear equations

f0F0(σ) = 0
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and
m

∑
l=0

ft−lFl(t− l + σ) = 0.

This means that the sequence ft(σ), t > 0 of rational functions has to be a solution of a
homogeneous linear difference equation of rank m+ 1. If the coefficients ft(σ) are computed from
to the recurrence relation above,

L( f ) = f0F0(σ)

holds and for f0 6= 0 the series f is a solution of L exactly if σ is substituted by a root ν of
F0(σ).

Definition 2.2.2 (Indicial equation, local exponents, spectrum) The polynomial F0(σ) of degree
n is called indicial equation of L at p. Its roots are called local exponents and the n-tuple of all local
exponents counted with multiplicities is called spectrum.

At an ordinary point F0(σ) simplifies to pn0(σ)n which has roots 0, . . . , n− 1. The local data
of L, that is the set of singular points and the corresponding exponents can organized as the
so called Riemann scheme.

Definition 2.2.3 (Riemann scheme) If the singular points of a Fuchsian differential operator L of
degree n are x1, . . . , xr with corresponding local exponents (e11, . . . , e

1
n), . . . , (er1, . . . , e

r
n), these data

can be conveniently displayed as Riemann scheme

R(L) :=





x1 x2 . . . xr

e11 e21 . . . er1
e12 e22 . . . er2
...

...
...

e1n e2n . . . ern





.

The calculations to obtain the indicial equation can be tedious, but the following two propo-
sitions explain how to simplify them.

Proposition 2.2.4 If p ∈ C is an ordinary or regular singular point of

L := ∂n + q1(x)∂n−1 + . . . + qn(x), qi ∈ C(x)

the indicial equation of L at p is

σ(σ − 1) · . . . · (σ − n + 1) + c1σ(σ − 1) · . . . · (σ − n + 2) + . . . + cn−1σ + cn = 0,

where ci := limx→p(x− p)iqi(x). Similarly, with bi = limx→∞ xiqi(x) at ∞ one has

σ(σ + 1) · . . . · (σ + n− 1) − b1σ(σ + 1) · . . . · (σ + n− 2) + . . . + (−1)n−1bn−1σ + (−1)nbn = 0.

At p = 0,∞ it is even easier if the differential operator is written as

L = δn + an−1δn−1 + . . . + an,

with δ = x∂x and rational functions aj.

Proposition 2.2.5 The indicial equation of

L =
n

∑
j=0

aj(x)δj =
m

∑
j=0

ãi(δ)xj, ãm 6= 0

at 0 is ã0(σ) = 0 and at ∞ it reads ãm(σ) = 0.



2.2 Series Solutions of Linear Differential Equations 11

There is a relation between all local exponents of a Fuchsian differential operator.

Proposition 2.2.6 (Fuchs relation) Let L be a Fuchsian differential operator of degree n with ratio-
nal function coefficients. Define sp as the sum over the local exponents at p. Then the Fuchs relation

∑
p∈P1

(
sp −

(
n

2

))
+ 2
(
n

2

)
= 0

holds.

Proof Note that sp = (n2) for regular points p and the series in the lemma is a finite sum. By
Proposition 2.2.4 we have

sp =

(
n

2

)
− Resp(q1(x)), p ∈ C and s∞ = −

(
n

2

)
− Res∞(q1(x)).

Subtracting (n2) on both sides and adding up yields the claim. �

This proposition stays true for differential operators with algebraic coefficients, see [Sai58].

2.2.2 The Method of Frobenius

We return to the construction of a fundamental system of

L = pn(x)x
n∂nx + pn−1(x)x

n−1∂n−1
x + . . . + p0(x) with pn(0) 6= 0,

but this time we restrict to a neighborhood of p = 0. By Cramers rule the solutions ft(σ) of
the recurrence

m

∑
l=0

ft−lFl(t− l + σ) = 0

are

ft =
f0

F0(σ + 1) · . . . · F0(σ + t)
Pt(σ), t ≥ 1

for a polynomial

Pt(σ) := (−1)t

∣∣∣∣∣∣∣∣∣∣∣

F0(σ + 1) 0 . . . 0 0 F1(σ)
F1(σ + 1) F0(σ + 2) 0 0 F2(σ)

...
...

. . .
...

...
...

Ft−2(σ + 1) Ft−3(σ + 2) F1(σ + t− 2) 0 Ft−1(σ)
Ft−1(σ + 1) Ft−2(σ + 2) . . . F2(σ + t− 2) F1(σ + t− 1) Ft(σ)

∣∣∣∣∣∣∣∣∣∣∣

independent of f0. If the spectrum consists of n distinct local exponents νi with multiplicity
one, whose pairwise differences are not integers, the above procedure yields n solutions of L.
Inspection of the leading powers proves that these solutions are C-linear independent. If for
a local exponent νi the sum νi + n for a natural number n is again a local exponent, F0(νi + n)
will vanish and the above recurrence cannot be used to associate a solution of L to the local
exponent νi. This can be fixed if f0 is replaced by

c0F
s
0(σ) := c0F0(σ + 1) · . . . · F0(σ + s),
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where s is the maximal integer distance between νi and any other local exponent νj with
ℜ(νi) ≤ ℜ(νj) and c0 is a nonzero complex constant. Again, if σ is chosen as a local exponent
ν the right hand side of

L( f ) = c0F
s
0(σ)

vanishes and f (x, ν) is a solution of L. If there are local exponents with multiplicity greater
than one or with integer difference, the discussed procedure is in general not adequate to
produce n linear independent solutions and we have to employ a method going back to F. G.
Frobenius [Fro68]. Up to now f (x, σ) is a formal expression and the reasoning that f (x, σ) is
convergent is postponed until Section 2.2.4. Indeed, the radius of convergence coincides with
the smallest absolute value of one of the nonzero singular points of L and the convergence
is uniform in σ, if σ varies in a vicinity of one of the local exponents. This allows us to
differentiate f (x, σ) with respect to σ. Two local exponents with non-integer difference can
be treated independently, hence we may assume without loss of generality that the difference
of any two local exponents is an integer. Then S := (ν0, . . . , νk) ordered descending according
to the real parts of the local exponents can be written as

S = (νi0 , . . . , νi1−1, νi1 , . . . , νi2−1, . . . , νil , . . . , νil+1−1),

with νij = νij+1 = . . . = νij+1−1, j = 0, . . . , l and νi0 = ν0, νil = νk. Set s = ν0 − νk and consider
the group vi0 = . . . = νi1−1 of local exponents. Let ∂σ act on xσ by ∂σ(xσ) := xσ log(σ) and
extend this action to CJxσ[log(x)]K. Since ∂σ commutes with ∂x the equality

L(∂rσ f ) = ∂rσ (L( f )) = c0∂rσF
s
0(σ),

where ∂rσ f has the explicit expression

∂rσ f (x, σ) =
r

∑
i=0

(
r

i

)
∂iσ ( f (x, σ)) log(x)r−i,

is true. Thus ∂iσ f (x, σ)
∣∣

σ=ν0
is a solution of L for i = 0, . . . , i1 − 1, because by definition ν0 is

a i1-fold root of F0(σ). Equally, for j = 1, . . . , l the polynomial Fs
0(σ) vanishes with order ij at

νij−1
and

∂tσ f (x, σ)
∣∣

σ=νij−1
, t = ij, . . . , ij+1 − 1

also solve L. We summarize the method of Frobenius in the following theorem.

Theorem 2.2.7 Let L be a differential operator of degree n with 0 a regular singular point. The vector
space of multivalued solutions of L in a vicinity of 0 has dimension n. In particular, if

S =
(
νi0 = . . . = νi1−1, . . . , νil−1

= . . . = νk
)

is as above, k + 1 linear independent solutions of L are

yl(x) =
l

∑
j=0

(
l

j

)
f j(x, σ)

∣∣
σ=νl

log(x)l−j

with analytic functions f j(x, σ).

We will refer to this basis as Frobenius basis, it is unique up to the choice of c0, we fix c0 = 1.
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2.2.3 Explicit Recurrences

Once the method of Frobenius is established we see that in general it is unsuited for a com-
puter implementation, because a huge amount of computations in the field of rational func-
tions have to be carried out. The goal of this section is to give some slight modifications to
replace, whenever possible, the computations with rational functions by computations with
complex numbers, which are usually cheaper in both time and memory. To start we fix con-
ventions for fundamental systems at ordinary points. If 0 is an ordinary point the spectrum
of L at 0 is (n− 1, . . . , 0). To gain a solution yj corresponding to the local exponent j one may
choose initial conditions

ft(j) =

{
1, t = j

0, t < 0 or 0 < t < n− 1− j

and the linear difference equation for the remaining coefficients reads

ft(j) =
m

∑
l=0

ft−l

(
d1

∑
k=0

pkl(t− l + j)k

)
, t ≥ n− 1− j.

An advantage of this choices is that for the fundamental matrix (Fij)i,j≤n with Fij = ∂
j−1
x yi−1

the identity Fij
∣∣
x=0= Idn holds. In the next step we explain how the coefficients of solutions

of L at a regular singular point can be computed as solution of an inhomogeneous difference
equation. Assume again that L has the spectrum

S = (ν0, . . . , νi1−1, νi1 , . . . , νi2−1, . . . , vil , . . . , νk),

at 0, where S is exactly as in the last section. The solution corresponding to ν := νr is

f =
r

∑
l=0

(
r

l

)
fl log(x)r−l = fr + R with fl ∈ C{xν}

If the series fl , l = 0, . . . , r− 1 are already known, the second summand of

0 = L( f ) = L( fr) + L

(
r−1

∑
l=0

(
r

l

)
fl log(x)r−l

)

is an element of C{xν}. The coefficients of fr are subject to an inhomogeneous difference
equation

m

∑
j=0

frt−lFl(t− l + ν) = Rt,

where fkl is the coefficient of fk at xl+ν and Rt is the coefficient of R at xt+ν. To give Rt

explicitly we introduce some new notation. For an integer n define

⌊n⌉ :=

{
n, n 6= 0

1, n = 0

and

n!∗ :=

{
n!, n > 0
(−1)−n−1

(−n−1)! , n ≤ 0
.
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By an elementary calculation or in [Rom93] one can find a convenient way to express ∂nx(log(x)k), k ∈
Z explicitly as

∂nx(log(x)k) =
1

−n!∗

(
k

∑
j=0

(−1)j(k)jc
j
−n log(x)k−j

)
x−n,

where the rational numbers cjn for n ∈ Z and j ∈ Z>0 are recursively defined by

nc
j
n = c

j−1
n + ⌊n⌉cjn−1

with initial conditions

c0n =

{
1, n ≥ 0

0, n < 0
and c

j
0 =

{
1, j = 0

0, j 6= 0
.

This gives a proposition, which enables us to write down Rt explicitly.

Proposition 2.2.8 For a complex number m and a natural number k

∂nx

(
xm log(x)k

)
=

n

∑
j=0

(
n

j

)
(m)j

(
k

∑
l=0

(−1)l(k)lc
l
j−n log(x)k−l

)
xm−n

j− n!∗

holds.

Hence, the inhomogeneous part can be computed as

Rt =
n

∑
k=0

m

∑
j=0

r−1

∑
l=0

(
r

l

)
qkj flt−j

k

∑
s=0

(
k

s

)
(t− j + ν)s(−1)r−l(r− l)!cr−l

s−k

s− k!∗
.

Suitable initial values to recover the solution in the Frobenius basis are fr0 = 1 and

frt =

(
F0(σ) · . . . · F0(σ + ν0 − νk)

F0(σ) · . . . · F0(σ + t)
Pt(σ)

)(r)

∣∣∣
σ=ν

for t = 1, . . . ,m.

We compare three different implementations whose functionality include the computation
of N coefficients of a full Frobenius basis at an ordinary or regular singular point of a lin-
ear homogeneous differential equation L. The first one is offered by the DEtools package
included in the standard distribution of Maple 12 (A), the second (B) and third (C) one are
implemented by the author following the discussion in this section. In one case the im-
plementation is done in Maple (B) in the other case the programming language C with the
library gm
 [EGTZ12] was used for time consuming computations and the facilities of Maple
were used to manage the input and output. The code is available at [Hof12b]. In all case the
computations were done using floating point arithmetic with an accuracy of 300 digits. The
two example equations are relevant in this text, one of degree two is

L1 :=
(
x(x− 1)(x +

2
27

)

)
∂2x +

(
1
2
(x− 1)(x +

2
27

) + x(x +
2
27

) + x(x− 1)
)

∂ +
3
64

x− 1
144

and another one of degree four is

L2 := (x4 − 256x5)∂4x + (6x3 − 2048x4)∂3x + (7x2 − 3712x3)∂2x − (1280x2 + x)∂x − 16x.

We compute the Frobenius basis of L1 and L2 at two different points, the first point pa := 1
256

is an ordinary point of L1 and a singular point of L2 and the second point pb := 1
81 is vice

versa an ordinary point of L2 and a singular point of L1. The Tables 2.2.3 and 2.2.3 compare
the performance of the implementations (A), (B) and (C). The reason that implementation
(C) performs slower than the maple routines probably stems from the slow data transfer
when passing the input, a disadvantage that becomes less important if several solutions are
computed in one program fetch.
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L1 L2

A B C A B C

Intel Core2 CPU @ 2.13GHz, 1 GB Ram 181s 0.8s 0.6s 1206s 2.5s -

23 x Intel Xeon CPU @ 2.67GHz, 128 GB Ram 186s 0.3s 0.5s 878s 14.5s -

Table 2.1: Runtime in seconds for N = 500 for L1 and L2 and base point pa

L1 L2

A B C A B C

Intel Core2 CPU @ 2.13GHz, 1 GB Ram 197s 1.7s - 446s 0.8s 0.7s

23 x Intel Xeon CPU @ 2.67GHz, 128 GB Ram 187s 0.6s - 460s 0.8s 1.4s

Table 2.2: Runtime in seconds for N = 500 for L1 and L2 and base point pb

2.2.4 Convergence and Error Bounds

As claimed in Section 2.2.2 we will show the convergence of a series solution

f =
∞

∑
i=0

fi(σ)xi+σ

obtained as explained above. Additionally we gain error bounds | f (x0, ν) − f N(x0, ν)| for
truncations f N(x, σ) := ∑

N
i=0 fi(σ)xi+σ of those solutions. If zero is an ordinary or regular

singular point of the differential operator L, we already know that there are polynomials
pk(x) such that L can be written as

L = pn(x)x
n∂nx + . . . + p0(x) ∈ C[x][∂x ],

After multiplication by 1/pn(x) this differential operator reads

E =
n

∑
k=0

Rk(x)x
k∂kx with Rn(x) = 1.

with rational function coefficients. Let d be the smallest absolute value of any of the zeros of
qn(x) and R = d− ǫ for ǫ > 0 arbitrary small. If E is applied to f (x, σ) one finds

E( f (x, σ)) =
∞

∑
i=0

n

∑
k=0

fiRk(x)(i + σ)kx
i+σ

and since in the series expansion of

c(x, i + σ) := (σ + i)d1 + (σ + i)d1−1Rd1−1(x) + . . . + R0(x)

no negative powers of x occur it can be written as

∑
j≥0

cj(σ + i)xj.
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Cauchy’s integral theorem allows the estimation

|jcj(i + σ)| ≤ 1
2π

∣∣∣∣∣

∫

|x|=R

c
′
(x, i + σ)

xj
dx

∣∣∣∣∣ ≤
M(i + σ)

Rj−1 ,

where M(i+ σ) is the upper bound for c
′
(x, i+ σ) on the boundary ofUR(0). If i is sufficiently

big, the recursion for fi(σ) gives

| fi(σ)| =

∣∣∣∣∣−
1

c0(i + σ)

(
i−1

∑
j=0

f j(σ)ci−j(j + σ)

)∣∣∣∣∣ ≤
1

|c0(i + σ)|

(
i−1

∑
j=0

∣∣∣∣ f j(σ)
M(j + σ)

Ri−1−j

∣∣∣∣

)
.

If the last term of this inequality is called Fi, then

Fi =
| fi−1|M(i− 1 + σ)

|c0(i + σ)| +
|c0(i− 1+ σ)|
|c0(i + σ)|

1
R
Fi−1 ≤

(
M(i− 1+ σ)

|c0(i + σ)| +
|c0(i− 1+ σ)|
|c0(i + σ)|

1
R

)
Fi−1.

holds. By choosing Ai = Fi, i > M (M big enough) and computing ai as solution of the first
order recursion

ai =

(
Q1(i + σ) + Q2(i + σ)

1
R

)
ai−1 =

(
M(i− 1+ σ)

|c0(i + σ)| +
|c0(i− 1+ σ)|
|c0(i + σ)|

1
R

)
ai−1

one finally gets
| fi(σ)| ≤ Fi ≤ ai, i > N.

With the notation Mi for the upper bound of |R′
i(x)| on ∂UR(0) the number M(i + σ) is

bounded by ∑
n−1
j=0 (i + σ)jMj, |x| ≤ R and therefore

lim
i→∞

M(i− 1 + σ)

c0(i + σ)
= 0,

what gives

lim
i→∞

ai
ai−1

=
1
R
,

hence the radius of convergence of f (x, σ) equals R. All the examples we are interested in
have rational local exponents only, hence we may assume that σ is real. Now choose a point
x0 ∈ UR(0) and δ > 0 and compute N ≫ 0, such that

r := | f (x0, σ) − f N(x0, σ)| ≤
∞

∑
i=N

|aix0|i ≤ δ.

Notice that

ai = C
i

∏
j=M

Q1(j + σ) + Q2(j + σ)
1
R
, C =

M

∏
j=0

Fj,

since Q1(i+ σ) + Q2(i + σ) |x0 |R is monotonous for i ≫ 0 and converges to |x0|
R for i → ∞, there

is an i0 such that C ∏
N
i=M Q1(i0 + σ) + Q2(i0 + σ) |x0|R = ǫ ≤ 1. This yields

r ≤
∞

∑
i=N+1

ǫi <
1

1− ǫ
−

N−1

∑
i=0

ǫi =
ǫN

1− ǫ

and explains how N has to be chosen. If one takes r as 10−µ and remembers the definition of
ǫ, to obtain an error smaller than r one has to compute more than

(
log10

( |x0|
R

))−1

µ(1 +O(1))

coefficients of the solution f (x, σ) and furthermore all the constants depend on the differential
equation and can be made explicit.
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2.3 Analytic Continuation and the Monodromy Group

2.3.1 Towards Optimal Approximated Analytic Continuation

Again let L be a Fuchsian differential equation of degree n with singular set Σ. For a fun-
damental system Fp we define the local monodromy of L at p by the equation MFp(x) =
Fp(x exp(2πi)). Although the local monodromy is easily computed, its global equivalent is
harder to control. For a representative of γ ∈ P1 \ Σ with base point p, analytic continua-
tion along γ transforms a fundamental matrix Fp into F̃p and since Fp and F̃p are two bases
of the same vector space, the solution space of L, analytic continuation yields an element
Mγ ∈ GLn(C) as

F̃p = FpMγ.

Since analytic continuation on P1 \ Σ only depends on the homotopy class of a path, there is
the well defined notion of the monodromy representation.

Definition 2.3.1 (Monodromy representation) The representation

ρ : π1(P1 \ Σ, p) → GLn(C), γ 7→ Mγ.

is called monodromy representation. Its image ρ (π1(P \ Σ, p)) is called monodromy group.

If we fix the composition of loops as

σγ(t) =

{
γ(2t), 0 ≤ t ≤ 1

2

σ(2t− 1), 1
2 ≤ t ≤ 1

,

the map ρ is a homeomorphism. Sometimes in the literature some other conventions like
F̃p = MγFp are used. If Σ = {p1, . . . , ps} ∪ {∞}, the fundamental group π1(P \ Σ, p) is
generated by loops γ1,γ2, . . . ,γs starting at p and encircling exactly one of the finite points
in Σ in counterclockwise direction, with the additional property that composition of paths
γsγs−1 . . . γ1 is homotopic to a path γ∞ encircling ∞ once in clockwise direction. The images
of theses paths under ρ are called Mγ1 ,Mγ2 , . . . ,Mγs and Mγ∞

. This situation can be depicted
in familiar way as shown in Figure 2.3.1. For two regular points x1 and x2, with Fx2(x2) = Idn

Figure 2.1: Generators of the fundamental group of P1 \ {p1, . . . , ps}

and x2 lying in the disc of convergence of the entries of Fx1 , a matrix M ∈ GLn(C) such that

Fx1(x) = Fx2(x).M

holds, is determined by the equality

Fx1(x2) = Fx2(x2).M = M.
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To do the analytic continuation of Fp(x) along a path γ, one has to choose points x0, . . . , xm,
xm+1 = x0, which constitute a polygon Pγ with vertices xi, i = 0, . . . ,m + 1 homotopic to γ,
such that Fxi(x) converges at xi+1. Repeated usage of Fxi(xi+1) = Fxi+1(xi+1)Mi = Mi gives

M−1
γ =

m+1

∏
i=1

Mm+1−i.

Sometimes the choice of a base point x0 is not only crucial with regard to the complexity of
the calculations, but has a deeper meaning, see Chapter 4. Especially a tangential basepoint
at a regular singular point should be allowed. If γ is not a loop but a path with different
start and endpoint the computations above can be made equally, the resulting matrix Mγ is
called connection matrix. In general it is not possible to compute closed expressions for the
elements of Fxi and the evaluations Fxi(xi+1). The most famous exception is the generalized
hypergeometric differential equation

D(α1, . . . , αn, β1, . . . , βn) := (θ + β1 − 1) · . . . · (θ + βn − 1) − z(θ + α1) · . . . · (θ + αn),

where αi, βi ∈ C, 1 ≤ i ≤ n. D(α1, . . . , αn, β1, . . . , βn) has Riemann scheme

R(D) :=





0 1 ∞

1− β1 0 α1

1− β2 1 α2
...

...
...

1− βn−1 n− 1 αn−1

1− βn γ αn





,

with γ = ∑ β j − ∑ αj. Suppose αj 6= βk, j, k = 1, . . . , n and let M0, M1 and M∞ be standard
generators of the monodromy group of D. There exists a non-zero element

v ∈
n−2⋂

j=0

M
−j
∞

(
ker(M−1

0 − M∞)
)

and M
j
∞v, j = 0, . . . , n− 1 build the so called Levelt basis [Lev61]. Define complex numbers

Ai, Bi by
n

∏
i=1

(z− αj) = zn + A1z
n−1 + . . . + An.

and
n

∏
i=1

(z− β j) = zn + B1z
n−1 + . . . + Bn,

then again by Levelt’s work [Lev61] with respect to the Levelt basis generators of the mon-
odromy group of D(α1, . . . , αn, β1, . . . , βn) are expressed as

M∞ =




0 0 . . . 0 −An

1 0 . . . 0 −An−1

0 1 . . . 0 −An−2

. . .
0 0 . . . 1 −A1




, M0 =




0 0 . . . 0 −Bn

1 0 . . . 0 −Bn−1

0 1 . . . 0 −Bn−2

. . .
0 0 . . . 1 −B1




−1

.
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In various papers during the 1980’s they described their vision of a computer algebra system
which, amongst other things, is capable to compute a high precision approximation of the
above monodromymatrices, see for example [CC87a]. Additionally they did some implemen-
tations and included it in IBMs SCRATCHPAD II, but it seems as if these implementations
are not available. Some of the ingredients needed are already implemented [Pfl97]. When we
started our implementations there was no complete package available which takes a Fuch-
sian linear differential equation as input and returns approximations of the generators of its
monodromy group. By now the package NumGfun by M. Mezzarobba described in [Mez10]
and based on theoretical considerations of J. van der Hoeven [Hoe07] parallels our approach
in some aspects. Nevertheless we introduce the package MonodromyApproximation that is
designed for the applications in the subsequent chapters. If

f =
n

∑
i=0

(
n

i

)
f̃i log(x)n−i =

n

∑
i=0

∞

∑
j=0

fij(x− p)σ+j log(x)n−i

is a solution of a Fuchsian differential equation on P1 we denote its truncation after N coeffi-
cients by

f N :=
n

∑
i=0

N

∑
j=0

fij(x− p)σ+j log(x)n−i.

Additionally denote a fundamental matrix of L locally at p, which is build from truncations
of solutions and derivatives thereof by FN

p . At first we will focus on the case where the base
point x0 chosen in the monodromy representation is an ordinary point of L. As pointed out
in Section 2.3.1 for ordinary points p of L there is always a unique fundamental matrix which
evaluates to the identity at p. If a polygon with vertices x0, x1, . . . , xm, xm+1 = x0 in the class
of γ ∈ π1(P1 \ Σ, p0) is chosen such that xi lies in the region of convergence of Fxi+1 denote
MN

γ,i = FN
xi

(xi+1). Then an approximation of the monodromy along γ is obtained as

(MN
γ )−1 =

m+1

∏
i=1

MN
γ,m+1−i.

Sometimes a practical drawback of this method is that the entries of the approximations of
the monodromy matrices get big if the entries of Fpi(x)|x=pi−1 are big. Often this problem can
be avoided by a slight modification. Denote again the vertices of a polygon P homotopic to
the γ by p0, p− 1, . . . , ps = p0, and fundamental matrices of L at pi by Fpi but this time chose
pi, i = 0, . . . , s such that the region of convergence Ui and Ui+1 of Fpi resp. Fpi+1 overlap for
0 ≤ i ≤ s. As another choice pick a point ei+1 ∈ Ui ∩Ui+1 and find an invertible matrix Mi

such that
Fpi(x)|x=ei = Fpi+1(x)|x=ei .Mi.

Again, the monodromy of L along γ is

M−1
γ =

m+1

∏
i=1

Mm+1−i.

and it is clear how to obtain an approximation MN
γ . This is also the way one should choose

if at least one of the expansion points is singular. Analytic continuation depends only on the
homotopy type of the path γ, but the choice of a polygon p with vertices pi in the homotopy
class of γ is crucial with respect to the efficiency of the computation of MN

γ with a given error
‖MN

γ − Mγ‖ < r. We already analyzed the error r that occurs if instead of a solution f0 of
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a linear differential equation the truncation f N0 is evaluated at a point x1. It was not hard to
obtain this asymptotics, but to find the best choice of P is very hard. In some special cases a
solution is claimed as the following proposition that can be found as Propositions 4.1 and 4.2
of [CC87a].

Proposition 2.3.2 1. Let l ⊂ C be the line from 1 to pn ∈ R+, where 1 is an ordinary point. As-
sume that for each two points p1, p2 on l the singular points where the minimamin {pi − σ|σ ∈ σ} , i =
1, 2 are achieved coincide and equals 0, i.e. there is exactly one closest singular point for all

points on the line l, then the points pi have to be chosen as pi = p
i/(m+1)
f in , where m is defined as

[log(p f in)/ log(γ)] and γ is the solution of

log(t− 1)
log(t)

+
t

t− 1
= 0.

2. If C is a circle whose center is a singular point q and whose radius is smaller than the half of the
distance from q to any other singular point, the vertices pi have to build a regular 17-gon on C.

In Appendix A a manual and an example calculation of MonodromyApproximation can be
found, the whole package is available at [Hof12b].



3 Uniformizing Differential Equations

A discrete subgroup Γ of PSL2(R) is called Fuchsian group and its elements act on the upper
half plane H as Möbius transformation. The quotient X(Γ) = H/Γ can be equipped with a
complex structure and is therefore a Riemann surface. An important class of Fuchsian groups
are congruence subgroups of SL2(Z) which lead to modular curves, that can be compacti-
fied by adding finitely many cusps. An immediate generalization of congruence subgroups
are arithmetic Fuchsian groups. A group is called arithmetic if it is commensurable with the
embedding into Mat2(R) of the group of elements of norm one of an order of a quaternion
algebra. If Γ is a an arithmetic Fuchsian group, then X(Γ) can be realized as a projective
algebraic curve defined by equations with coefficients in a number field. In Section 3.1.3 we
briefly review the basic facts on arithmetic Fuchsian groups. Special attention is paid to the
case where Γ has signature (1; e) or (0; 2, 2, 2, q). In the first case, the quotient X(Γ) has genus
one and the projection φ : H → H/Γ branches at exactly one point with branching index e.
In the second case, X(Γ) has genus zero and branching data (2, 2, 2, q). Arithmetic Fuchsian
groups of signature (1; e) were classified by K. Takeuchi in [Tak83] and arithmetic Fuchsian
groups with signature (0; 2, 2, 2, q), where q is odd, were classified in [ANR03] and [MR83].
As we explain in Section 3.3 the inverse ω of φ can be realized as the quotient of two linearly
independent solutions of a differential equation L, called the uniformizing differential equation.
Recently, J. Sijsling gave a list of equations for projective curves that yield models for sev-
eral of the Riemann surfaces associated to the groups Γ from Takeuchi’s list [Sij13]. If such a
model is known, it determines the local data of the uniformizing equation. In the special cases
when Γ is commensurable with a triangle group the theory of Belyi maps can be applied to
construct the uniformizing differential equation as pullback of a hypergeometric differential
equation. In general, one complex parameter, called the accessory parameter, remains unde-
termined. In the case of (0; 2, 2, 2, q) groups the local data are not known completely and
the problem of finding uniformizing differential equations varies with two dimensional com-
plex moduli. In Section 3.5, we apply the method to compute high precision approximations
of the generators of the monodromy group of a linear Fuchsian differential equation from
Chapter 2 to approach the determination of the accessory parameter and the missing local
data. Finally, with one exception, we obtain a complete list of candidates for uniformizing
differential equations for arithmetic Fuchsian groups with signature (1; e) and (0; 2, 2, 2, q).

3.1 Hyperbolic Geometry and Fuchsian Groups

An accessible introduction to hyperbolic geometry and Fuchsian groups is the book [Kat92]
by S. Katok. The missing proofs of most claims made below can be found there. The standard
references for basic statements from algebraic number theory include the book [Neu99] by
J. Neukirch. Finally, we recommend M.-F. Vignéras’ text [Vig80] for facts on quaternion
algebras.



22 3 Uniformizing Differential Equations

3.1.1 Shortcut through Hyperbolic Geometry

The main goal of this section is to introduce the notion of the signature of a Fuchsian group
and to have a closer look at Fuchsian groups with two generators. An element of the set of
isometries of the upper half plane

T ∈ PSL2(R) =

{
z 7→ T(z) =

az + b

bz + d

∣∣ ad− bc 6= 0
}

∼= SL2(R)/ {±1}

is called Möbius transformation and has two lifts to SL2(R), namely
(
a b
c d

)
and

(
−a −b
−c −d

)
. The

trace of T is defined as the absolute value of the trace of one of its lifts. The extension of the
action of T to the extended upper half plane H∗ = H ∪R ∪{∞} is as expected. A transformation
T is said to be elliptic if tr(T) < 2, parabolic if tr(T) = 2 and hyperbolic if tr(T) > 2. By solving
T(z) = z, one finds that elliptic transformations have two complex conjugated fixed points,
hyperbolic transformations have two fixed points in R ∪ {∞} and parabolic transformations
have one fixed point in R ∪ {∞}. The names come from the fact that invariant curves of
elliptic (hyperbolic) transformations are ellipses (hyperbolas). An elliptic element is always
conjugated to (

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
with θ ∈ [0, 2π),

where parabolic resp. hyperbolic elements are conjugated to

±
(
1 1
0 1

)
resp.

(
λ 0
0 1/λ

)
, λ ∈ R.

Note that a transformation that fixes ∞ is necessarily of the form z 7→ az+b
d with a > 0

and either hyperbolic or parabolic. In the first case its other fixed point is b
1−a . Points in

H that are fixed by an elliptic transformation are called elliptic points, these which are fixed
by hyperbolic transformations are called hyperbolic points, and the points which are fixed by
parabolic transformations are called cusps. The group PSL2(R) can be identified with the
quotient of a subset of R4 and therefore carries a natural topology. Discrete subgroups are of
special importance.

Definition 3.1.1 (Fuchsian group) A discrete subgroup of PSL2(R) is called Fuchsian group.

For a Fuchsian group Γ two points of H∗ are said to be Γ- congruent or equivalent if there exists
an element T ∈ Γ such that T(u) = v, i.e. u and v are in the same Γ-orbit.

Definition 3.1.2 (Elementary Fuchsian group) A Fuchsian group Γ which acts on H∗ with at
least one finite orbit is called elementary.

This is equivalent to the equality tr([A, B]) = 2, whenever A, B ∈ Γ have infinite order. The
equivalence class of an elliptic point is called an elliptic cycle and the order of an elliptic cycle
is the order of the stabilizer of any of its representatives. The closure F of an nonempty open
subset F◦ of H is called a fundamental domain of the action of a Fuchsian group Γ on H∗ if

• ⋃T∈Γ T(F) = H

• F◦ ∩ T(F◦) = ∅ for all T ∈ Γ except the identity

holds. The set {T(F)|T ∈ Γ} is called a tessellation of H. To give a fundamental domain that
has nice properties for any Fuchsian group, we have to recall that the upper half plane can
be equipped with a metric

ds =
√

dx2 + dy2)/y.
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The hyperbolic length h(γ) of a piecewise differentiable path γ : [0, 1] → H, t 7→ x(t) + iy(t) is
given by

h(γ) =

1∫

0

dt



√(

dx

dt

)2

+

(
dy

dt

)2

 /y(t)

and the hyperbolic distance d(z,w) between the points z,w ∈ H is defined as

d(z,w) = infγ h(γ),

where γ is any piecewise differentiable path joining z and w. The geodesics are semicircles
and straight lines orthogonal to the real line. Fundamental domains with some nice features
are

Dp(Γ) = {z ∈ H|d(z, p) ≤ d(T(z), p) for all T ∈ Γ} ,
called Dirichlet fundamental domains.

Theorem 3.1.3 For a Fuchsian group Γ and p ∈ H not fixed by any nontrivial transformation from
Γ the set Dp(Γ) is a connected fundamental domain of Γ.

The boundary of Dp(Γ) is a countable union of closed sides Si which are closed segments of
geodesics or closed intervals of the real line, that are called free edges. The intersections of two
distinct sides is either a point or empty. Such intersection points and elliptic fixed points of
order two are called a vertices.
The limit set Λ(Γ) of a Fuchsian group is the set of all accumulation points of orbits of the
action of Γ on H, it is a subset of R ∪ {∞}. Groups where Λ(Γ) = R ∪ {∞} are of special
interest, since they are related to Fuchsian groups with nice fundamental domains.

Definition 3.1.4 (Fuchsian group of the first and second kind) If the limit Λ(Γ) of a Fuchsian
group Γ coincides with R ∪ {∞} then Γ is called of the first kind otherwise it is called of the second
kind.

The hyperbolic area for a subset A ⊂ H is

µ(A) =
∫

A

dxdy

y2
,

for any two fundamental domains F1, F2 of the same Fuchsian group Γ one has µ(F1) =
µ(F2) and a fundamental invariant is found. It is reasonable to define the covolume vol(Γ)
of a Fuchsian group as the hyperbolic volume of its fundamental domains. Theorems 4.5.1
and 4.5.2 of [Kat92] relate Fuchsian group of the first kind and Fuchsian groups with finite
covolume.

Theorem 3.1.5 If a Fuchsian group Γ has a convex fundamental domain with finitely many sides and
is of the first kind, then Γ has a fundamental region of finite hyperbolic volume. If a Fuchsian group Γ

has a fundamental region of finite hyperbolic area then Γ is of the first kind.

Hence, if Dp(Γ) has only finitely many sides and no free edges, Γ has finite covolume and
is therefor of the first kind. Each equivalence class of a cusp or an elliptic point of order
bigger than two shows up as a vertex of a Dirichlet domain. These two types of vertices can
be distinguished, because cusps are by definition in R ∪ {∞}. The elliptic points of order
two are not visible immediately in Dp(Γ), because the corresponding elliptic transformations
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are rotations by π. The discussion of side pairings will resolve this problem. That is the
one-to-one correspondence between the set

Γ∗ =
{
T ∈ Γ|T(Dp(Γ)) ∩ Dp(Γ) 6= ∅

}

and the sides of Dp(Γ), especially sides on which lies a representative of an elliptic cycle
correspond to elements of Γ∗ of order two.
The quotient H/Γ for a Fuchsian group Γ of the first kind is an oriented surface of genus
g that becomes compact after the addition of the finitely many points corresponding to the
cusps and marked points corresponding to elliptic cycles. Now we have collected enough
information to give the definition of the signature of a Fuchsian group of the first kind.

Definition 3.1.6 (Signature) If the Fuchsian group of the first kind Γ has n elliptic cycles of orders
e1, . . . , en and r cusps and the quotient H∗/Γ has genus g, then the signature of Γ is defined as

(g; e1, . . . , en; r).

A group G is said to admit a presentation 〈s | r〉 = 〈s1, . . . , sn | r1, . . . , rt〉 := Fs/Nr, where Nr

is the smallest normal subgroup of the free group Fs on the symbols s1, . . . , sn, that contains
the words r1, . . . , rt ∈ Fs, if there is an isomorphism of groups G ∼= 〈s | r〉. If this isomorphism
φ is realized by extending Si 7→ si for i = 1, . . . , n, we use

〈S1, . . . , Sn| R1, . . . , Rt〉, Rj := φ(rj)

to denote G. Poincaré’s theorem states that the signature determines a presentation.

Theorem 3.1.7 A Fuchsian group with signature (g; e1, . . . , en, r) admits a presentation

〈α1, . . . , αg, β1, . . . , βg,γ1, . . . ,γn, ρ1, . . . , ρr |γei
i = 1,

g

∏
i=1

[αi, βi] · γ1 · . . . · γn · ρ1 · . . . · ρr〉.

The covolume of Γ can be expressed in terms of this presentation.

Theorem 3.1.8 The covolume of a Fuchsian group Γ with signature (g; e1, . . . , en; r) is

vol(Γ) = 2π

(
2g− 2+ r +

n

∑
i=1

(
1− 1

ei

))
.

Conversely, if g, r ≥ 0 and ei ≥ 2 for i from 1 to n with 2g− 2 + r + ∑
n
i=1

(
1− 1

ei

)
> 0, there is a

Fuchsian group of signature (g;m1, . . . ,mn, r).

Proof The first complete proof was given by B. Maskit [Mas71]. �

The covolume of a finite index subgroup ∆ of a Fuchsian group Γ is determined by the index
[Γ : ∆].

Proposition 3.1.9 Given a finite index subgroup ∆ of the Fuchsian group Γ, the index [Γ : ∆] and
the covolumes are related by

[Γ : ∆] =
vol(∆)

vol(Γ)
.

Thus the covering map H/∆ → H/Γ has degree vol(∆)/vol(Γ).
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3.1.2 Two-Generator Fuchsian Groups

Amongst Fuchsian groups of the first kind the simplest are groups with two generators.
Non-elementary two-generator Fuchsian groups were considered by R. Fricke and F. Klein
and these authors were aware of a classification. We will rely on a series of papers mainly
from N. Purzitzky and G. Rosenberger, to state this classification, that for example in terms
of presentations can be found in [PRZ75]. The next definition is intended to simplify the
notation.

Definition 3.1.10 ((1;e)-group, (0;2,2,2,q)-group) We will call a Fuchsian group with signature
(1; e) resp. (0; 2, 2, 2, q) a (1; e)-group resp. a (0; 2, 2, 2, q)-group.

Before passing to the classification theorem of two-generator Fuchsian groups, recall that [a, b]
denotes the commutator aba−1b−1.

Theorem 3.1.11 A non-elementary two-generator Fuchsian group has one and only one of the follow-
ing presentations.

(1; e)-groups triangle groups

(1; e, 0), e ≥ 2 (0; r, s, t; 0), 1
r + 1

s + 1
t < 1

(1;−; 1) (0; r, s; 1), 1
r + 1

s < 1
(0; r, 2), r ≥ 2

(0, 2, 2, 2, q)-groups (0,−, 3)
(0; 2, 2, 2, q; 0), gcd(q, 2) = 1

Often a slightly different notation is used, that is the occurrence of a cusp is denoted by ∞, for
example (2, 3,∞) denotes the triangle group with signature (0; 2, 3; 1). The triangle groups
are named after the shape of their fundamental regions and they are widely used to depict
spectacular tessellations of the unit disc as shown in Figure 3.1 for the (3, 3, 5)-triangle group
1 . This picture also illustrates the origin of the name triangle group.

Figure 3.1: Tessellation of the unit disc by a (3,3,5)-group

In Section 3.3 we explain that the uniformizing differential equations of triangle groups can
be obtained easily, hence our special interest lies in (1; e) and (0; 2, 2, 2, q)-groups. If q is odd,
a Fuchsian group Γ = 〈s1, s2, s3, s4〉 with signature (0; 2, 2, 2, q) is indeed generated by two
elements. Denote x1 = s1s2 and x2 = s2s3 and let H be the subgroup of Γ generated by x1 and
x2. The equality

x1(x1x2)
−1x2 = s1s2(s1s2s2s3)

−1s2s3 = (s1s2s3)
2 = s−2

4

1This picture is available under public domain from http://en.wikipedia.org/wiki/File:H2
he
kers_335.png

http://en.wikipedia.org/wiki/File:H2checkers_335.png
http://en.wikipedia.org/wiki/File:H2checkers_335.png
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yields that even powers of s4 are elements of H and s4 is contained in H because

1 = s
q
4 = s2k+1

4 = s2k4 s4 for k ≥ 0.

From
x1x2 = s1s2s3s1 = (s4)

−1s1

we get s1 ∈ H and finally one concludes that also the remaining generators s2, s3 are elements
of H. The above is not true if q is even.

Lemma 3.1.12 If q is even the group ∆ generated by x1 and x2 is a normal subgroup of Γ of index 2

and H has the presentation 〈x1, x2|[x1, x2]e/2 = 1〉.
Proof That [x1, x2]p/2 = 1 holds in ∆ is clear from the fact that

[s1s2, s2s3] = (s1s2s2s3s
−1
2 s−1

1 s−1
3 s−1

2 )

can be conjugated to
s1(s1s2s2s3s

−1
2 s−1

1 s−1
3 s−1

2 )s−1
1 = (s1s2s3)

−1.

As explained in Chapter 4 of [LS77] a Reidemeister-Schreier computation can be used to
determine the index and a presentation, see also Corollary 3.3 in [PK78]. �

A statement converse to Lemma 3.1.12 is also true.

Lemma 3.1.13 Each (1; e)-group is contained in a (0; 2, 2, 2, 2e)-group with index two.

This is well known and we give a topological proof later. By arguments of N. Purzitzky and
G. Rosenberger [PR72] and [Pur76] given two hyperbolic transformations there is a simple
criterion when two hyperbolic elements of PSL2(R) generate a (1; e)-group or a (0; 2, 2, 2, q)-
group.

Proposition 3.1.14 1. Two hyperbolic transformations A, B ∈ PSL2(R) with [A, B]e = 1 gener-
ate a Fuchsian group exactly if tr([A, B]) = −2 cos(π/e).

2. Two hyperbolic transformations A, B ∈ PSL2(R) generate a (0; 2, 2, 2, q)-group exactly if
tr([A, B]) = −2 cos(2π/q) and (2, q) = 1.

Moreover, the GL2(R) conjugacy classes of the last mentioned types of groups can be char-
acterized by the following theorem whose parts can be found as Theorem 2 in [PR72] and as
Theorem 3.6 in [PK78].

Theorem 3.1.15 If Γ is presented as

〈A, B | [A, B]p〉 ⊂ PGL2(R),

with p ≥ 2 or
〈S1, S2, S3, S4 | S21, S22, S23, S

p
4 , (S1S2S3S4), 〉 ⊂ PGL2(R)

with (2, p) = 1, p ≥ 3, then G is conjugated over GL2(R) to one and only one group

G(λ, µ, ρ) =
〈(

0 1
−1 λ

)
,
( 0 ρ
−1/ρ µ

)〉
,

where

λ2 + µ2 + (ρ + 1/ρ)2 − λµ(ρ + 1/ρ) = 2− 2 cos(cπ/p),λ ≤ µ ≤ (ρ +
1
ρ
) ≤ 1

2
µλ, 2 < λ < 3,

with c = 1 in the first case and c = 2 in the second case.
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As indicated above, the investigation of (1; e) and (0; 2, 2, 2, q)-groups as groups generated
by side pairings of certain polygons has a very long tradition. It was already considered by
H. Poincaré and R. Fricke and F. Klein [FK97]. For instance if A, B ∈ PSL2(R) generate a
(1; e)-group Γ and x is the fixed point of the elliptic element [A, B], the maps A and B are the
side pairings of the hyperbolic polygon P with vertices x, Ax, Bx, ABx and angle sum 2π

e . The
theory of side pairings shows that P is a fundamental domain for Γ. After suitable choices
the fundamental domain of a (1; e)-group in the unit disc can be depicted as a quadrilateral
as in Figure 3.2. If x = tr(A), y = tr(B), and z = tr(AB) for hyperbolic transformations

x
Ax

Bx ABx

Figure 3.2: Fundamental domain of a (1; e) group

A, B are given, the triple (x, y, z) determines the group 〈A, B〉 up to GL2(R) conjugation. The
generators A, B fulfilling the conditions from Proposition 3.1.14 and 3.1.2 are clearly not fixed
by the signature. For example the elementary transformations

i) A1 = B, B1 = A ii) A2 = AB, B2 = A−1 iii) A3 = A−1, B3 = ABA−1

do not change the generated group i.e 〈A, B〉 = 〈A1, B1〉. The elementary transformations
affect the trace triple (x, y, z) as

i) (x1, y1, z1) = (y, x, z) ii) (x2, y2, z2) = (z, x, y) iii) (x3, y3, z3) = (x, y, xy− z).

By Proposition 3.2 of [PK78] finitely many of the operations i)-iii) will transfer (A, B) to a
minimal generating tuple with trace triple (λ, µ, ρ + 1/ρ), that by definition satisfies

λ2 + µ2 + (ρ + 1/ρ)2 − λµ(ρ + 1/ρ) = 2− 2 cos(cπ/p),λ ≤ µ ≤ (ρ +
1
ρ
) ≤ 1

2
µλ, 2 < λ < 3,

where c = 1 in case of a (1, e)-group and c = 2 in the case of a (0; 2, 2, 2, p)-group. Hence, to
check if a Fuchsian (1; e)-group or a (0; 2, 2, 2, p)-group 〈A, B〉 generated by two hyperbolic
transformations is a member of the conjugation class of a Fuchsian group with a minimal
triple (x, y, z) it is enough to check if (tr(A), tr(B), tr(AB)) can be transformed into (x, y, z)
with finitely many elementary transformations. In the next chapter, we face the problem that
the matrices A and B will have complex entries and a priori we do not know if it is possible
to find a G ∈ GL2(C) such that AG and BG have real entries. Because of the following
lemma from page 115 of [MR02] it is possible to decide if a discrete subgroup Γ of PSL2(C)
i.e. a Kleinian group is conjugated to a Fuchsian group in terms of the trace field Q(tr Γ) :=
Q(tr γ̃|γ ∈ Γ), where γ̃ is a lift of γ ∈ PSL2(C) to SL2(C).

Lemma 3.1.16 A non-elementary Kleinian group Γ ⊂ PSL2(C) is conjugated to a subgroup of
PSL2(R) exactly if Q(tr Γ) ⊂ R.

Further by Lemma 3.5.2 of [MR02] we know that in the case of two generator groups it is easy
to compute the trace field.

Lemma 3.1.17 If Γ ⊂ PSL2(C) is generated by two elements A, B the trace field is

Q(tr(Ã), tr(B̃), tr(ÃB)).
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3.1.3 Arithmetic Fuchsian groups

There are infinitely many conjugacy classes of (1; e)-groups and (0; 2, 2, 2, q)-groups, but only
finitely many of these are arithmetic. To define arithmetic Fuchsian groups, quaternion alge-
bras are crucial.

Definition 3.1.18 (Quaternion-algebra) For two elements a, b of a field F of characteristic not equal
to 2, the algebra Fi⊕ Fj⊕ Fk⊕ F1 with multiplication given by i2 = a, j2 = b and ij = ji = k is
denoted by (a,bF ) and called the quaternion algebra determined by a and b.

Two familiar examples of quaternion algebras are the Hamiltonian quaternion algebra (−1,−1
R

)

and the matrix algebra (1,1F ) ∼= M2(F). We will see that after passing to a completion of F,
quaternion algebras are governed by the above two examples. The equivalence classes of
Arichmedean values are called infinite places, their non-Arichmedean counterparts are called
finite places. Ostrowski’s theorem for number fields classifies places. Every infinite place is
equivalent to a place of the form x 7→ |ι(x)|, where ι : F →֒ C is an embedding of F into the
complex numbers and | · | is the usual absolute value. If ι(F) ⊂ R the corresponding infinite
place is called real place. Every finite place is equivalent to a p-adic valuation | · |p for a unique
prime ideal p ⊂ OF. After passing to the completion with respect to any real place or finite
place, there are only two choices for a quaternion algebra up to isomorphism.

Lemma 3.1.19 Given an embedding ν : F →֒ R the quaternion algebra (a,bF ) ⊗F,ν R is either iso-

morphic to M2(R) or (−1,−1
R

). The same dichotomy is true for (a,bF ) ⊗F Fν for a finite place ν with R

replaced by Fν.

In the first case, (a,bF ) is said to be split or unramified and non-split or ramified otherwise. Given
a totally real number field, the set of ramified places determines the quaternion algebra up
to isomorphism.

Theorem 3.1.20 The cardinality of the set of ramified places of a quaternion algebra over a number
field F is finite and even. Conversely, given a finite set S of places of even cardinality, there is a
quaternion algebra that ramifies exactly at the places in S. Furthermore two quaternion algebras are
isomorphic exactly if their sets of ramifying places coincide.

Wewill only consider quaternion algebras which are split at the identity φ1 and non-split at all
other infinite places. By this restriction we can assure, that the corresponding Shimura variety
is a curve [Mil05]. Denote the isomorphism (a,bF ) ⊗F,1 R → M2(R) by j. The discriminant
D(A) of a quaternion algebra A is the set of finite ramifying places of A. Together with
the assumption on the ramifying behavior at infinity above, the discriminant determines A
up to isomorphism. Finally, to give the definition of arithmetic Fuchsian groups we have to
introduce orders in quaternion algebras.

Definition 3.1.21 (Order) A finitely generated OF submodule of (a,bF ) is said to be an order if it is a
subring of (a,bF ).

An element x of a quaternion algebra (a,bF ) can be written as x = f0i + f1 j + f2k + f3, fi ∈ F
and

|x| := f 20 − a f 21 − b f 22 + ab f 23

introduces a norm. Denote all elements of norm 1 of an order O by O1.

Definition 3.1.22 (Arithmetic Fuchsian group) A Fuchsian group Γ is called arithmetic if there
is a quaternion algebra Q with order O and σ ∈ PSL2(R), such that σ−1Γσ is commensurable with
P
(
j(O1)

)
. Since Q is uniquely determined up to isomorphism, it is called the quaternion algebra

associated to Γ.
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Recall, that two groups G and H are commensurable if their intersection G ∩ H is of finite
index in both G and H. It is natural to ask which of the two generator groups of the last
section are arithmetic. For triangle groups the answer was given by K. Takeuchi in [Tak77a].
Two Fuchsian triangle groups with the same signature are conjugated over GL2(R), hence if
a Fuchsian triangle group is arithmetic can be read off from its signature. The finite list of
signatures of arithmetic triangle groups are given as Theorem 3 in [Tak77a]. The classification
of PGL2(R) conjugacy classes of Fuchsian groups of signature (1; e) and (0; 2, 2, 2, q) heavily
relies on Takeuchi’s result [Tak75] that the arithmeticy of a Fuchsian group is implied by
properties of its trace field.

Theorem 3.1.23 A Fuchsian group of the first kind is an arithmetic Fuchsian group if and only if

• k1 = Q(trγ | γ ∈ Γ) = Q(x, y, z) is a totally real number field and tr Γ ⊂ Ok1

• for every Q-isomorphism σ : k1 → R such that σ does not restrict to the identity on k2 =
Q((trγ)2|γ ∈ Γ) the norm |σ(tr(γ))| is smaller than two for all γ 6= Id

In the case of (1; e) and (0; 2, 2, 2, q)-groups with minimal trace triple (x, y, z), it is furthermore
possible to give the corresponding quaternion algebra as
(
a, b
k2

)
, with a = x2(x2 − 4), b = −x2y2(2 + 2 cos(π/e)) resp. b = −x2y2(2+ 2 cos(2π/q)).

This was used by Takeuchi in [Tak83] to obtain all minimal trace triples of generators of the
conjugacy classes of arithmetic Fuchsian groups with signature (1, e). The analogous list for
(0; 2, 2, 2, q)-groups was compiled in two steps. First in [MR83] and [MR92] C. Maclachlan and
G. Rosenberger determined possible values for q, the degree of k1 over Q and the discriminant
dk1 . In a second step R. Ackermann, M. Näätänen and G. Rosenberger listed minimal trace
triples for each conjugation class of arithmetic (0; 2, 2, 2, q)-groups [ANR03].

Example 3.2 Consider the hyperbolic transformations represented by the matrices

A =

(
1 2√

7/2− 1
√
7− 1

)
, B =

(
(3−

√
5)/2 3−

√
5

(
√
7− 3)/2 (2

√
7+

√
5− 3)/2

)
.

As (x, y, z) = (tr(A), tr(B), tr(AB)) = (
√
7,
√
7, 3) and tr([A, B]) = 0 = −2 cos(π/2) and

[A, B]2 =
(−1 0

0 −1

)

the group generated by A and B is a (1; 2)- group. The corresponding quaternion algebra is

Q :=
(
x2(x2 − 4),−2(x2y2)

k2

)
=

(
21,−98

k2

)
,

where k2 = Q(x2, y2, xyz) = Q and the discriminant of Q is (2)(7).

3.3 Orbifold Uniformization and Differential Equations

3.3.1 Schwarzian Differential Equations, Orbifolds and Belyi Maps

In this section we recall shortly the classical theory of orbifold uniformization. A reference
which explains the mathematical as well as the historical aspect of the uniformization of
Riemann surfaces is the book [dSG11] by the writers H. P. de Saint-Gervais. For the proofs of
the claims below see the Chapters four and five of M. Yoshida’s book [Yos87].
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Definition 3.3.1 (Orbifold) Let X be a complex manifold and Y ⊂ X a hypersurface, which splits
as Y = ∪jYj in irreducible components. Furthermore, associate to every Yj a natural number bj ≥ 2
or ∞. The triple (X,Y, (bj)j) is called an orbifold if for every point in X \ ∪j

{
Yj|bj = ∞

}
there is

an open neighborhood U and a covering manifold which ramifies along U ∩ Y with branching indices
given by (bj)j.

If the above local coverings can be realized globally, this definition can be subsumed as:

Definition 3.3.2 (Uniformization) If there is a complex manifold M and a map φ : M → X which
ramifies exactly along the hypersurfaces Yj with the given branching indices bj, then the orbifold
(X,Y, (bj)j) is called uniformizable and M is called a uniformization.

An important special case are Belyi maps.

Definition 3.3.3 (Belyi map) A Belyi map is a holomorphic map φ(x) : M → P1 from a compact
Riemann surface M to the projective line that branches only above {0, 1,∞}.
Because of its relation to a certain differential equation usually the multivalued inverse φ(x)−1

is considered.

Definition 3.3.4 (Developing map) If the uniformization M of the orbifold (X, B, (bj)j) is simply
connected, the multivalued inverse of the projection φ : M → X is called developing map.

From now on, we will restrict to the case where X is the quotient of the upper half plane
by a Fuchsian group and therefore M coincides with the upper half plane itself. Then the
hypersurface Y is just a finite set of points. To the developing map to a linear differential
equation we need the following notion.

Definition 3.3.5 (Schwarzian derivative) The Schwarzian derivative S(w(x)) of a non-constant
smooth function w(x) of one complex variable x is

(S(w(x)) :=

(
w

′′

w′

)′

− 1
2

(
w

′′

w′

)2

=
w

′′′

w′ − 3
2

(
w

′′

w′

)2

The crucial property of the Schwarzian derivative is its PGL2(C) invariance.

Proposition 3.3.6 For an element of PGL2(C) represented as
(
a b
c d

)
the equality

S(w(x)) = S

(
aw(x) + b

cw(x) + d

)

holds.

Proof See Proposition 4.1.1 of [Yos87]. �

For a local coordinate x on X, the inverse map ω = φ−1(x) is PGL2(C)-multivalued, conse-
quently the Schwarzian derivative is a single-valued map on X. By the next proposition the
developing map can be described as ratio of to solutions of a differential equation with single
valued coefficients.

Proposition 3.3.7 Let ω(x) be a non-constant PGL2(C)-multivalued map, then there are two C-
linearly independent solutions y0(x), y1(x) of the differential equation

Luni := u
′′
+

1
2
S(ω(x))u = 0,

such that ω(x) = y0(x)
y1(x)

.
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Noting that this proposition goes back to H. A. Schwarz makes the notions of the next defi-
nition obvious.

Definition 3.3.8 (Uniformizing differential equation) If ω(x) is the developing map of an orb-
ifold (S,Y, (bj)j), the differential equation Luni from Proposition 3.3.7 is called uniformizing differ-
ential equation or Schwarzian differential equation of (S,Y, (bj)j).

The quotient of two linearly independent solutions ω0(x),ω1(x) of a linear differential equa-
tion

u
′′
+ p1(x)u

′
+ p2(x)u

of degree two is determined up to the action of PSL2(C). The class of ω1(x)/ω0(x) under
this action is called projective solution. Two differential equations that have the same projective
solutions are called projectively equivalent. If f is an algebraic function and ω a solution of
L, then the differential equation L̃ whose solution is fω is projectively equivalent to L. The
function f is a solution of the differential equation

L f = u
′ − f

′

f
u = 0,

the local exponents of L f at xi are ordx=xi f . If L f has Riemann scheme

{
x1 . . . xm+1 = ∞
e1 . . . em+1

}
,

the Riemann scheme R(L̃) of L̃ can be obtained from R(L) by adding ei to each local ex-
ponent of L at xi. This possibly introduces new singularities, but the projectivization of the
monodromy group does not change, since the monodromy matrices at the new singularities
are multiples of the identity. Among all projectively equivalent differential equations there
is always one with vanishing coefficient at u

′
and this can be obtained from L by replacing a

solution u of L by exp(−1/2
∫
p1dx)u.

Definition 3.3.9 (Projective normal form) A linear differential equation

u
′′
+ p1(x)u

′
+ p2(x)u = 0

of degree two is said to be in projective normal form if p1 = 0.

Note, that the uniformizing differential equation is in projective normal form. It is seen from
the local behavior of the developing map that the Riemann scheme of Luni is





α1 . . . αm αm+1 = ∞

1−1/b1
2 . . . 1−1/bm

2
−1−1/bm+1

2
1+1/b1

2 . . . 1+1/bm
2

−1+1/bm+1
2



 .

if all the bj are finite. If bj = ∞ the spectrum at the corresponding singular point αi is {0}.
This happens if the point αi is a cusp of H/Γ. If Γ is a hyperbolic triangle group than m = 2
and the uniformizing differential is projectively equivalent to the hypergeometric differential
equation

x(x− 1)u
′′
+ (c− (a + b + 1)x)u

′ − abu = 0.

with Riemann scheme { 0 1 c

0 0 a
1− c c− a− b b

}
.
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Assume that the triangle group Γ is presented as

Γ = 〈A, B| Aq = Bq = (AB)r〉,

then the projection φ : H → H/Γ branches at three points with branching data (q, p, r).
If these points are chosen to be 0, 1,∞ the uniformizing differential equation has Riemann
scheme 




0 1 ∞

1+1/p
2

1+1/q
2

−1+1/r
2

1−1/p
2

1−1/q
2

−1−1/r
2





.

By comparison of this two Riemann schemes the parameters a, b, c can be determined by

1
p

= |1− c|, 1
q

= |c− a− b|, 1
r

= |a− b|.

It was possible to read off the differential equation, because it is determined by its Riemann
scheme alone. In general the uniformizing differential equation cannot be computed from Γ

directly. In the case of a (0; 2, 2, 2, q) group the uniformizing differential equation is projec-
tively equivalent to

L = P(x)u
′′
+

1
2
P(x)

′
u

′
+ (n(n + 1)x + C)y = 0, n =

1
q
− 1

2

with P(x) = 4(x− x1)(x− x2)(x− x3) and a complex constant C. This differential equation is
called algebraic Lamé equation and the complex number C is referred to as accessory parameter.
The accessory parameter of a Lamé equation does not affect the local exponents and the
location of the singularities of L. That L is closely related to a uniformizing differential
equation related to a (0; 2, 2, 2, q)-group can be explained by a closer look at the Riemann
schemes of Luni and L

R(L) =





x1 x2 x3 ∞

0 0 0 − n
2

1
2

1
2

1
2

n+1
2



 and R(Luni) =





x1 x2 x3 ∞

1−1/2
2

1−1/2
2

1−1/2
2 − n

2 + 3/4
1+1/2

2
1+1/2

2
1+1/2

2
n+1
2 + 3/4





.

Then Luni can be obtained from L by changing the solution y to (x− x1)
−1/4(x− x2)−1/4(x−

x3)−1/4y. Lamé equations are very classical objects in mathematics, they were first investi-
gated in connection with ellipsoidal harmonics, see Chapter IX of [Poo60]. They are special
cases of Heun equations, that is general differential equations on P1 of order two with four
singular points at 0, 1, A and ∞. The Riemann scheme of a Heun equation is

{
0 1 A ∞
0 0 0 α

1− γ 1− δ 1− ǫ β

}
,

and it can be written as

u
′′
+ (

γ

x
+

δ

x− 1
+

ǫ

x− A
)u

′
+

αβx− C

x(x− 1)(x− A)
u = 0.

These kind of equations reentered the focus of number theorists at the latest when the con-
nection between the sequences showing up in Apéry’s proof [Ape79] of the irrationality of
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ζ(3) with a certain Heun equation became clear [Dwo81]. The equation associated to Apéry’s
proof is

L3 := (x4 − 34x3 + x)y
′′′

+ (6x3 − 153x2 + 3x)y
′′
+ (7x2 − 112x + 1)y

′
+ (x− 5)y = 0

its solution space is spanned by squares of solutions of

L2 := (x3 − 34x2 + x)y
′′
+ (2x2 − 51x + 1)y

′
+ 1/4(x− 10)y = 0,

which indeed is up to coordinate change a Heun equation. There are two specific power
series related to L3

A(x) =
∞

∑
n=0

n

∑
k=0

(
n

k

)2(n + k

k

)2

xn

and

B(x) =
∞

∑
n=0

n

∑
k=0

(
n

k

)2(n + k

k

){ k

∑
m=1

1
m3 +

k

∑
m=1

(−1)m−1

2m3(nm)(n+m
m )

}
.

The series A(x) is a solution of L3 since its coefficients An are solutions of the recurrence
equation

(n + 1)un+1 = (34n3 + 51n2 + 27n + 5)un − n3un−1

with initial values A0 = 1 and A1 = 5 and the coefficients of B(x) satisfy the same recurrence
with initial values B0 = 0 and B1 = 6. Furthermore the coefficients An and Bn satisfy |An −
ζ(3)Bn| < (

√
2− 1)4N which implies the irrationality of ζ(3) as explained in [Ape79], see

also [SB85] for a link with Chapter 4.
Sometimes the theory of Belyi maps helps to determine the accessory parameter C. If a
(0; 2, 2, 2, q)−group Γ is contained in a triangle group ∆ the uniformizing differential equation
L2(u(x)) = 0 for H/Γ is a pull-back of the uniformizing differential equation L1(y(z)) = 0 for
H/∆, that is L2(u(x)) = 0 can be obtained from L1(y(z)) = 0 by substituting the unknown
function y(z) with

y(z) 7→ f (x)y(φ(x)),

where φ is a rational function and f is a product of powers of rational functions. To explain
which pullback transformations along finite coverings φ : P1 → P1 are of hypergeometric
to Heun type it is necessary to describe the behavior of the Riemann scheme under such
pullbacks. The Frobenius method introduced in Chapter 2 allows us to compute a basis B of
the solution space of a linear Fuchsian differential equation in a vicinity of a regular singular
point s, if B does not contain any logarithmic solution then s is called a non-logarithmic singu-
larity of L. A non-logarithmic singularity with local exponent difference 1 is called irrelevant.
An irrelevant singularity s can always be turned into an ordinary point by conjugating L with
(x− s)k, where k is the smallest local exponent of L at s.

Proposition 3.3.10 Let φ : P1 → P1 be a finite covering and let L1(x) be a second order Fuchsian
differential equation. Denote the branching order of φ at p ∈ P1 by dp and denote by L2(z) the
pullback of L1(x) along φ.

1. If φ(p) is a singular point of L1, then p is an ordinary point or an irrelevant singularity of L2
exactly if either dp > 1 and the exponent difference at φ(p) equals 1/dp, or dp = 1 and φ(p) is
irrelevant.

2. If φ(p) is an ordinary point of L1, then p is an ordinary point or an irrelevant singularity of L2
exactly if φ does not branch at p.
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3. If e1 and e2 are the local exponents of L1 at φ(p) then the local exponents of L2 at p equal
de1 + m and de2 + m for a an integer m.

Proof This claim is Lemma 2.4 of [Vid09]. �

If less than two of the three exponent differences of L1 are equal 1
2 and if L1 has no basis of

algebraic solutions, the hypergeometric to Heun pullbacks φ can be classified up to Möbius
transformations. It turns out that in all possible cases the rational function φ is a Belyi map.
This is done in a paper by M. van Hoeji and R. Vidunas [HV12] and in a second paper [VF12]
by G. Filipuk and R. Vidunas. The limitations on L1 mentioned above are made to exclude
degenerated cases with finite or infinite dihedral monodromy groups. The first paper lists all
(klm)-minus-n-hyperbolic Belyi maps.

Definition 3.3.11 ((klm)-minus-n-hyperbolic Belyi maps) If 1
k + 1

l + 1
m < 1 then a Belyi map

φ(x) : P1 → P1 is called (klm)-minus-n-hyperbolic, if there is at least one branching point of order
k, l,m above 0, 1,∞ and all but n0 points above 0 have branching order k, all but n1 points above 1 have
branching order l and all but n∞ points above ∞ have branching order m, where n0 + n1 + n∞ = n.

The (klm)-minus-4-hyperbolic Belyi maps are exactly those finite coverings φ(x) : P1 → P1

that transform a hypergeometric differential equation with fixed local exponent differences
1/k, 1/l, 1/m to Heun differential equations. The assumption on the existence of points with
special branching index in each fiber is made to exclude some parametric pullbacks. That is
pullbacks with less than three fixed local exponent difference, since these parametric hyper-
geometric to Heun transformations are listed the second mentioned paper. This and similar
techniques were used by J. Sijsling in the case of (1; e)-groups in [Sij12a].
If none of the methods discussed above works another approach is to recover the uniformiz-
ing differential equation Luni from its monodromy group M. Denote the set of points above
which the projection H → X branches by Σ and let b a point outside of Σ. The representation

ρ0 : π1(X \ Σ, b) → Γ ⊂ PSL2(C)

associated to the covering H → X describes the change of branches of the developing map
under analytic continuation along loops in π1(X \ Σ, b). Hence ρ0 is conjugated to the projec-
tivized monodromy representation

ρ̃ : π1(X \ Σ, b) → GL2(C) → PGL2(C).

of Luni. In the case of a (1; e)-group Γ1 the genus of the X equals one, a claim in the group
theoretic discussion in the last section was that this group is contained in a (0; 2, 2, 2, 2e)-
group Γ2 with index 2. Hence, we can restrict to uniformizing differential equations on the
projective line. We will give a topological explanation for the relation between (1; e)-groups
and (0; 2, 2, 2, 2e)-groups. Since we deal with arithmetic Fuchsian groups whose associated
quaternion algebra is not Mat2(Q) only, the Riemann surface X = H/Γ1 will have no cusps
and can assumed to be compact. Hence it can be realized as an elliptic curve, that in an affine
chart can be given in the form

E : y2 = 4x3 + ax + b, a, b ∈ C.

The map π : E → P1 \ Σ, (x, y) 7→ x is a twofold cover of P1 \ {x1, x2, x3,∞}, branching of
index two at the points of Σ := {x1, x2, x3,∞}, where xi are the roots of P(x) := 4x3 + ax + b.
Thus the uniformizing differential equation LΓ1

uni of Γ1 is the pullback of the uniformizing
differential equation LΓ2

uni of Γ2. And LΓ1
uni is defined on the projective line furnished with a
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local coordinate x. To relate the monodromy representation of LΓ2
uni with our initial group

Γ1, it is enough to understand how the fundamental group of P1 \ Σ lifts to the fundamental
group of X. We recall the standard construction of the fundamental group of an pointed
elliptic curve as branched two fold covering of the four times punctured sphere. Cut the
Riemann sphere from x1 to x2 and from x2 to ∞, expand the cuts a little and glue two copies
of this cut sphere along the cuts with opposite orientation. The fundamental group of the
pointed elliptic curve is generated by lifts of the loops δ and γ as in Figure 3.3. Hence the

x1

x0 ∞

x2δ

γ

γ

δ

Figure 3.3: Connection of π1(E) and π1(P1 \ Σ)

monodromy of LΓ1
uni along δ coincides with the monodromy of LΓ2

uni along a loop γ1γ2 and
the monodromy of LΓ1

uni along γ coincides with the monodromy of LΓ2
uni along γ∞γ−1

2 ∼ γ3γ1.
Thus we can identify Γ with the group generated by M3M1 and M1M2 up to multiplication by
scalars. Note that M3M1M1M2 = M3M2. This relation between the monodromy of LΓ1

uni and
the Fuchsian group Γ1 can also been established, in the spirit of F. Klein and H. Poincaré, by a
look at the image of a quotient y = y1

y0
of the upper half. Then suitable analytic continuation of

y and the Schwarz reflection principle would exhibit how certain elements of the monodromy
group of LΓ1

uni coincide with side pairings of the fundamental domain of Γ1. This is exactly
the way how the monodromy of the hypergeometric function is related to triangle groups.
As explained in Chapter 2 a basis of the solution space of the algebraic Lamé equation L at a
regular point can be given by two power series and in a vicinity of any of the finite singular
points it is given by

y0(x) =
∞

∑
n=0

an(x− xi)
n and

y1(x) = (x− xi)
1
2

∞

∑
n=0

bn(x− xi)
n

with a0 = b0 = 1, whose quotient is y0(x)
y1(x)

= (x − xi)
1
2 ∑

∞
n=0 cn(x − x0)n. Similarly since

− n
2 − n−1

2 = − 1
2e the shape of this quotient at infinity is

(
1
x

) 1
2e ∞

∑
n=0

cn

(
1
x

)n

.

Again from Chapter 2 we know, that the local exponents at an ordinary point p of a Fuchsian
equation L of order two are 0 and 1. The ansatz

yσ(t) =
∞

∑
i=0

an(σ)(t− p)n+σ = 0, σ ∈ {0, 1}
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provides a basis of the solution space of L locally at p consisting of convergent power series.
Adding derivatives a fundamental matrix can be found as

Fp =

(
y1(t) y

′
1(t)

y0(t) y
′
0(t)

)
.

The radius of convergence equals [Σ, p], the minimal distance from p to any of the singular
points of L. Especially if

L = (4x3 + ax + b)u
′′
+

1
2
(4x3 + ax + b)

′
u

′
+ (n(n + 1)x + C)y = 0, n =

1
e
− 1

2

the coefficients are computed recursively as

an(σ) = − a((j− 1 + σ)(j− 2+ σ) + (j− 1+ σ))aj−1

b(n + σ)(n− 1+ σ)

+
(n(n + 1) + C− 4(j− 2+ σ)(j− 3+ σ))aj−2

b(n + σ)(n− 1+ σ)

− (6(j− 3+ σ))aj−3

b(n + σ)(n− 1+ σ)
, n ≥ 3.

The initial conditions, i.e. the values of a0, a1 and a2 could be chosen arbitrarily with at least
one ai 6= 0, but we will fix them as a0 = 1, a1 = 0 and a2 = 0. With the method from Chapter
2 it is possible to compute approximations of generators of the monodromy group. Four
points on the Riemann sphere can always be mapped to 0, 1, A,∞ by a Möbius transformation.
That means given a (1; e)-group or a (0; 2, 2, 2, q)-group the uniformizing differential equation
depends on two parameters, A and the accessory parameter C. It is explained in [Iha74] that
A and C have to be elements of Q and moreover in a suitable coordinate they have to be
elements of a number field that can be determined from Γ directly. An explanation of this
would need the of discussion of class field theory and canonical models of Shimura curves.
We avoid this highly advanced theory and try to approximation A and C to high precision to
be able to identify them as algebraic numbers. In general the identification is not easy, thus
we have to review known methods that accomplish this task.

3.4 Identification of Algebraic Numbers given by

Rational Approximations

3.4.1 Roots of Polynomials with Integer Coefficients

To describe an algebraic number α the degree and the height are essential. If g ∈ Z[x] is the
minimal polynomial, the degree of α is defined as the degree of g and the height of α is
|g|∞ the biggest absolute values of any of the coefficients of g. Assume that α̃ is a rational
approximation of an algebraic number α of degree n and height bounded by N, that is a
complex number α̃ such that |α − α̃| < ǫ, ǫ > 0. In this section we will answer the question
which assumptions on ǫ, n, N and g(α̃) one has to impose to be able to conclude that alpha
is a root of the irreducible polynomial g ∈ Z[x]. At first we give a lower bound for the value
of a polynomial g ∈ Z[x] at an algebraic number α.

Lemma 3.4.1 If α ∈ C is a root of the irreducible non-zero polynomial h ∈ Z[x] of degree m with
|α| < 1 and if g ∈ Z[x] is a nonzero polynomial of degree n with g(α) 6= 0, then

|g(α)| ≥ n−1|h|−m
2 |g|1−n

2 ,
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where
∣∣∑n

i aix
i
∣∣
2 :=

√
∑

n
i |ai|2.

Proof See Proposition 1.6 of [KLL88]. �

This lemma yields the desired result.

Corollary 3.4.2 For two nonzero polynomials h, g ∈ Z[x] of degree n resp. m, where h is irreducible
and α ∈ C, |α| < 1 is a root of h such that g(α) 6= 0, the inequality

|g(α)| ≥ n−1(n + 1)−m/2(m + 1)(1−n)/2|h|−m
∞ |g|1−n

∞

holds.

Proof Notice that for a polynomial of degree n one has | f |22 ≤ (n + 1)| f |∞ and combine this
inequality with Lemma 3.4.1. �

Lemma 3.4.3 If α is an algebraic number of degree n and height bounded by N together with a
complex number α̃ such that |α − α̃| < ǫ and if g ∈ Z[x] is polynomial of degree n, then

|g(α̃)| < n−1(n + 1)−n+1/2|g|−n
∞ N1−n − nǫ|g|∞

implies the upper bound
|g(α)| < n−1(n + 1)−1+1/2|g|−n

∞ N1−n.

Proof Notice that for complex α with |α| < 1 the difference |g(α) − g(α̃)| is strictly smaller
than nǫ|g|∞ and that the triangle inequality yields |g(α)| − |g(α̃)| < |g(α) − g(α̃)|. The claim
follows immediately.

Combining Lemma 3.4.1 and the previous Lemma 3.4.3 we obtain the corollary below.

Corollary 3.4.4 If an algebraic number α of degree n and height bounded by N and a polynomial
g ∈ Z[x] of degree n satisfy

|g(α)| < n−1(n + 1)−n+1/2|g|−n
∞ N1−n

then α is a root of g.

Hence to identify an algebraic number α we need the data (N, n, α̃, g), where N is the height
of α, the degree of α is n, the rational number α̃ is an approximation of α with |α − α̃| < ǫ and
g ∈ Z[x] is a polynomial such g(α̃) fulfills the estimation in Lemma 3.4.3. If only N, n and α̃
are given in general it is not easy to find a suitable polynomial g, but some useful algorithms
are available.

3.4.2 Integer Relation Finding and Lattice Reduction Algorithms

Given a real number a rational number α known up to a given precision of n decimal digits,
we are interested in testing if there is an algebraic number α with minimal polynomial with
low degree and small height N which coincides with x up to the specified precision. One
possibility is to use a direct integer relation algorithm that tries to find a relation c0 + c1x +
. . . + cnx

n = 0 with coefficients ci ∈ Z and therefore a candidate for the minimal polynomial
of α. Several such algorithms as PSLQ or the algorithms presented in [QFCZ12] and [HJLS86]
are available. Usually an algorithm of this type will either find an integer relation or will
return an upper bound B such that no integer relation between the xi exists with coefficient
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vector (c0, . . . , cn) of norm smaller then B. A second approach makes use of lattice reduction
algorithms like the one presented by Lenstra-Lenstra-Lovasz [LLL82] named LLL to find a
sequence (c0, c1, . . . , cn) of elements of Z such that c0 + c1x + . . . + cnx

n is small. We will
shortly review both approaches. The PSLQ-algorithm was developed and investigated by H.
R. P. Ferguson and D. H. Bailey, the abbreviation PSLQ refers to partial sum and the lower
trapezoidal orthogonal decomposition. Given a vector x = (x1, . . . , xn) ∈ Rn an integer
relation algorithm tries to find a relation c1x1 + . . . + cnxn = 0 with r = (c1, . . . , cn) ∈ Zn, r 6=
0. That PSLQ provides such a relation is content of the following theorem from [FBA96]. Note
that the PSLQ algorithm depends on a real parameter λ.

Theorem 3.4.5 Assume that n ≥ 2 and that there is an integer relation for x = (x1, . . . , xn) exists,
fix γ > 2/

√
3 and ρ = 2 in the real case and γ >

√
2 and ρ =

√
2 in the complex case and determine

τ as solution of
1
τ2 =

1
ρ2

+
1

γ2 .

If x is normalized such that |x| = 1 and rx is the integer relation of x with smallest norm and if
1 < τ < 2, the PSLQ algorithm returns an integer relation r for x in no more than

(
n

2

)
log(γn−1rx)

log τ

steps. Moreover, in this case the discrepancy between |r| and |rx | can be estimated by

|r| ≤ γn−2rx.

Before explaining the lattice reduction approach, the notion of a reduced lattice basis has to
be introduced. Given a basis b1, . . . , bn of Rn equipped with a positive definite scalar product
〈·, ·〉 and the induced norm | · | the Gram-Schmidt process turns this basis into an orthogonal
basis b∗1 , . . . , b

∗
n, defined by

b∗i = bi − ∑
j=1..i−1

µi,jb
∗
j , where µi,j =

〈bi, b∗i 〉
〈b∗j , b∗j 〉

.

Since several divisions have to be done in the Gram-Schmidt process, it will not work if Rn is
replaced by a lattice and the notion of an orthogonal basis has to be replaced.

Definition 3.4.6 (LLL-reduced basis) The basis b1, . . . , bn of a lattice L ⊂ Rm, m ≥ n is calledLLL reduced if

|µi,j| ≤
1
2
, 1 ≤ i, j ≤ n

and

|b∗i |2 ≥
(
3
4
− µ2

i,i−1

)
|b∗i−1|2, i ≤ 2

where b∗i is the result of the Gram-Schmidt process as above.

Such a basis approximates an orthogonal one and its vectors are short, the precise formulation
of this claim is the following theorem that can be found in any textbook on computational
number theory, for example Chapter 2 of [Coh93] or in the original paper [LLL82].

Proposition 3.4.7 For a LLL reduced basis b1, . . . , bn of a lattice L ⊂ Rn let det(L) be the absolute
value of the determinant of the matrix (bi)i=1,...,n, then L has the following four properties
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• det(L) ≤ ∏
n
i=1 |bi| ≤ 2n(n−1)/4 det(L)

• |bj| ≤ 2i−1/2|b∗i |, 1 ≤ j ≤ i ≤ n

• |b1| ≤ 2(n−1)/4 det(L)1/n and

• for any set of linearly independent vectors x1, . . . , xm we have
|bj| ≤ 2(n−1)/2max(|x1|, . . . , |xm|), 1 ≤ j ≤ m

Proof This is Proposition 2.6.1 of [Coh93]. �

Note, that in such a basis b1 is short compared to other vectors x from L i.e |b1| ≤ 2(n−1)/2|x|.

Theorem 3.4.8 Given any basis of a lattice L there exists an algorithm that returns a LLL-reduced
basis in polynomial time in the number of digits in the input. In addition the algorithm outputs a
integer matrix that describes the reduced basis in terms of the initial basis.

Proof Such an algorithm was first constructed in [LLL82] by A. K. Lenstra, H. W. Lenstra,
and L. Lovasz. �

The algorithm in the proof is usually referred to as LLL-algorithm. Suppose that α̃ is a decimal
approximation of the algebraic number α ∈ Q and that a natural number n ≥ 1 and an integer
K are given. Then a polynomial f ∈ Z[x] of degree n whose value at α is small can be found
using the LLL-algorithm as follows. Consider the lattice L in Rn+2 spanned by the rows of the
(n + 1) × (n + 2) matrix

A :=




1 0 . . . 0 K
0 1 . . . 0 ⌊Kα̃⌋
...

...
...

...
0 0 . . . 1 ⌊Kα̃n⌋


 ∈ Rn+1,n+2.

If B is build row by row from the vectors that constitute a reduced basis of the lattice spanned
by the rows of A, there exists a matrix M ∈ Gln+1,n+1(Z) such that B = MA. For the first
row (c0, . . . , cn+1) of B the special shape of A yields

cn+1 = c0K + c1⌊Kα̃⌋ + . . . + cn⌊Kα̃n⌋.

The size of the value of the polynomial

f (x) = c0 + c1x + . . . + cnx
n

at α is relatively close to cn+1/K and cn+1 is expected to be small, because it is one component
of the first vector of a LLL-reduced basis. Hence, f is a good candidate for the minimal
polynomial of α. For our purpose the crucial characteristic of an algorithms that tries to
find minimal polynomials is rather the input precision needed than the running time. To get
an indication of the numerical stability of the three algorithms we compiled Table 3.1. The
data listed in the first column is a chosen algebraic number α. To obtain the entries of the
remaining columns, we computed numbers αi = ⌊α10i⌋/10i. Then we ran all three algorithms
for increasing i > 1 and marked the i where the correct minimal polynomial occurred the first
time and the i at which the algorithms started to produce a continuous flow of correct output.
One input parameter is the expected degree of the minimal polynomial, if this degree is lower
than the actual degree the algorithms cannot succeed. If it is greater than the actual degree
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n LLL PSLQ(1.99) PSLQ(√4/3) LLL PSLQ(1.99) PSLQ(√4/3)

α
4 6/6 13/23 12/12

β
37/37 44/44 44/44

5 6/6 12/23 11/11 42/44 46/46 46/46
6 8/8 11/13 11/11 49/49 69/65 60/60

10 11/11 8/12 14/14 77/77 97/97 97/97

Table 3.1: Input precision needed for PSLQ and LLL for α =
√
2 +

√
3 and β =

(
√
2+

√
3)

223217

the minimal polynomial can occur as an factor of the output. We used the values γ = 1.99
and γ =

√
4/3 as parameter for PSLQ. Various implementations are available for both PSLQ

and LLL, we used the LLL implementation of Maple 12 and the PSLQ implementation provided
by P. Zimmermann at Loria [Zim04]. In recent years, slight algorithmic improvements were
made [QFCZ09]. Moreover, there are estimates on the precision of the input depending on the
degree and the height of the algebraic number α under consideration needed to guarantee the
success of the various algorithms [QFCZ12]. Since our experiments did not show substantial
improvements compared to LLL and PSLQ and since most of the estimations are too rough to
yield practical benefit, we will not touch these topics.

3.5 Approximation of Uniformizing Differential

Equations

3.5.1 The Case of (1;e)-Groups

Recently, J. Sijsling [Sij13] constructed Weierstraß-equations for 56 members of isomorphism
classes of the elliptic curves associated to the 73 conjugacy classes of arithmetic (1; e)-groups.
In the remaining cases he is able to give isogeny classes. If the elliptic curve is known, the
local data of the uniformizing differential equation i.e. the Riemann scheme can be read off
immediately. Whenever Γ is commensurable with a triangle group in [Sij12a] he addition-
ally used Belyi maps to determine the accessory parameters of the uniformizing differential
equations. We will use his results and numerical methods in the next section to tackle the
problem of the determination of accessory parameters by investigating the monodromy of
the uniformizing differential equations. This approach was also used by G. V. and D. V.
Chudnovsky, as they list only 14 cases in [CC89], it is not clear how many cases they handled
successfully. In a talk in Banff in 2010 [Beu10] F. Beukers stated that J. Sijsling used similar
numerical methods and was again successful in a few cases. But there is no complete list of
accessory parameters available. Once we gained the insights from the last sections a possible
numerical approach is straight forward. Namely, we have to determine

L := P(x)u
′′
+

1
2
P(x)

′
u

′
+ (n(n + 1)x + C)u = 0, C ∈ C, n =

1
2e

− 1
2

with set of singular points Σ such that the conjugacy class of the projectivization of the
monodromy group of L coincides with a prescribed group from Takeuchi’s list. Recall that
this equality can be read off from the trace triple

M := (tr(M3M2), tr(M1M2), tr(M3M1)) ,

where the Mi are generators of the monodromy group associated to standard generators γi

of π1(P1 \ Σ). If L is a uniformizing differential equation, the entries of M will be real, hence
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it is reasonable to consider the real valued functions f , g : C3 → R given by

f (x, y, z) := max {ℑ(x),ℑ(y),ℑ(z)} and g(x, y, z) := |ℑ(x)| + |ℑ(y)| + |ℑ(z)|.

If we assume P as x(x− 1)(x− A), then in the 56 cases whereWeierstraß-equations are known
from J. Sijsling’s work A and thereby the Riemann schemes are known. In the remaining
cases where only the isogeny class of E is accessible we have to compute a list of isogenous
elliptic curves first. We start with one member of the isogeny class of E and computed all
elliptic curves Ẽ, such that there is an isogeny ρ : E 7→ Ẽ of degree bounded by a given
n ∈ N to obtain a list of possible values for A. The tools provided by J. Sijsling [Sij12b]
and the functionality of the computer algebra system magma [BCP97] are very helpful. For a
fixed complex number C, truncations of elements y0, y1 of a fundamental system of L at an
ordinary point p can be computed explicitly as

yNσ (x) =
N

∑
i=0

an(σ)(x− p)n+σ, σ ∈ {0, 1}

and completed to a truncated fundamental matrix Fp by

FN
p =

(
yN1 (t) yN1

′
(t)

yN0 (t) yN0
′
(t)

)
.

An approximation of the monodromy with respect to the basis y0, y1 along a loop γ of π1(P \
Σ) is

Aγ(C) =
m−1

∏
j=0

FN
pm−j

(pm−j−1),

where the pi are m suitable points on a representative of γ. The goal is to find a value for C
such that for the triple

A(C) := (tr(A3(C)A2(C)), tr(A1(C)A2(C)), tr(A3(C)A1(C))), Ai(C) := Aγi
(C)

the real numbers f (A(C)) and g(A(C)) are small and such that A(C) is close to a triple in the
list given by Takeuchi. Indeed, it is not necessary to match the listed triple exactly, but only up
to elementary transformations, since this does not change the projectivization of the generated
group. It is the content of a theorem of E. Hilb, see [Hil08], that for a fixed Riemann scheme
of an algebraic Lamé equation corresponding to the uniformizing differential equation of a
quotient of H by a (1; e)-group there is an infinite but discrete subset of accessory parameters
in the complex plane such that f (M) = 0 and g(M) = 0. This oscillatory phenomenon can
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Figure 3.4: f (A) for n = −1/4 and three different values of A

be made visible by computing f (A(C)) for some combinations of A and C and n = − 1
4 . The
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Figure 3.5: f (A(C)) for n = −1/4 and A = (2−
√
5)2 on a logarithmic scale

results are shown in the Figures 3.4 and 3.5. In Figure 3.4 the values of the singular point A
are (2−

√
5)2, 7

10 and − 58
100 . In Figure 3.5 we have chosen a logarithmic scale on the y-axis

and interpolated the graph for C 7→ f (A(C)).
A list that contains f (A(C)) for many values of A and C and all values of n that occur

in [Tak83] and [ANR03] is provided in [Hof12a]. A priori we do not have any assumption on
the magnitude or the argument of the uniformizing C, but luckily numerical investigations
suggest, that it has small absolute value. This leads to the following two algorithms, that try
to find a good candidate for the accessory parameter. If the coefficients of the elliptic curve E
are real, we use Algorithm 1 to approximate C. All computations are done in multi precision
arithmetic as provided by the C library mp
 [EGTZ12] or the computer algebra system Maple.
Algorithm 1: Approximation of the accessory parameter for (1; e)-groups (real coefficients)

input : S

if | f (A(C1)| < ex then
return C1

else if | f (A(0)| < ex then
return 0

else
t = C1/2
while | f (A(t)| > ex do

t = (S1+ S2)/2
if sgn( f (A(t))) = sgn( f (A(S1))) then

S=(t,S2)
else

S=(S1,t)
end
adjust N and the length of the mantissa

end
return t

end

Start by choosing a small number ex and C1, such that the signs of f (A(0)) and f (A(C1))
differ and build the pair S = (S1, S2) = ( f (A(0)), f (A(C1))) which is used as input of Al-
gorithm 1. The output is a real number Ca such that f (A(Ca)) < ex. Adjust N and the
mantissa means that in every step the number of coefficients in the power series expansion
of the solutions and the length of the mantissa are chosen as short as possible to guarantee
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that the errors made by the truncation and by cutting off the involved floating point numbers
is smaller than the precision we have already achieved in A(C) compared to the target traces
M(C). If the accessory parameter is expected not to be real, we use Algorithm 2 with input
parameter r ≪ 1 and C = 0. The running time of the Algorithms 1 and 2 depends mainly

Algorithm 2: Approximation of the accessory parameter for (1; e)-groups (complex coefficients)

input : t,C
if g(A(C)) < 0 then

return C;
else

while g(A(C)) > ex do
cont = f alse;
for k = 0 to 7 do

CC = C + r exp(2πi/k)
if g(A(CC) < g(A(C)) then

C = CC; cont = true; adjust N and the length of the mantissa; break;
end
if cont = f alse then

r = r/2;
end

end

end
return C;

end

on two factors. The first factor is the value chosen for ex and this choice again is governed by
the expected height and the expected degree of the accessory parameter of the uniformizing
differential equation. This two quantities govern the precision needed to identify ex as alge-
braic number as explained in Section 3.4.1. The second factor is the position of the singular
points as the configuration of the singular points mainly determines the number of expan-
sion points pi needed in the approximation of the monodromy. Hence, in the simplest cases
after a view minutes we obtained a promising candidate for the accessory parameter, but in
the more complex cases the computer had to run for several hours. Once we obtained an
algebraic number Calg as candidate we checked that A(Calg) coincides with the trace triple
of a set of generators of the groups in Takeuchi’s list up to at least 300 digits. The elliptic
curves and accessory parameters found in this way are listed in the Tables 3.2-3.9 below. If
the elliptic curve under consideration is a model of H/Γ, where Γ is an arithmetic Fuchsian
group associated to (a,bF ) we use the label nd/nDr, where

• nd: the discriminant of the coefficient field F of (a,bF )

• nD: the norm of the discriminant of the associated (a,bF )

• r: roman number used to distinguish cases with equal nd and nD.

to encode H/Γ. This labels are chosen in accordance with [Sij13]. The data in the tables
below is the label nd/nDr an equation for the corresponding elliptic curve

E : y2 + x3 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

the candidate for the accessory parameter C and the the squares of the entries of the corre-
sponding trace triple. The polynomial P which specifies the coefficients of the differential
equation L can be recovered from E by the substitution of y by 1

2(y− a1x− a3) and the elim-
ination of the x2 term. If an algebraic number γ is involved in the coefficients of E or the
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given trace triples has a complicated radical expression, we give some digits of its floating
point expansion and its minimal polynomial fγ. Whenever all nonzero singular points of
L have non-vanishing real part the base point p is chosen as the imaginary unit i, elsewise
it is chosen as 0. The singular points ti, i = 1, . . . , 3, which are the roots of P are ordered
according to the argument of the complex number ti − p. This fixes the loops γi and hence
the corresponding trace triple.

nd/nDr elliptic curve / accessory parameter / trace triple

1/6i y2 + xy + y = x3 − 334x− 2368

C = − 79
64

(5, 12, 15)

1/6ii y2 = x3 − x2 − 4x + 4

C = 1
16

(8, 6, 12)

1/14 y2 = x3 + 23220x − 2285712

C = 9
8

(7, 7, 9)

5/4i y2 = x3 −
(
− 1

2

√
5+ 1

2

)
x2 −

(
8 + 3

√
5
)
x− 25

2 − 11
2

√
5

C = − 5
32 − 1

32

√
5(

3+
√
5, 6+ 2

√
5, 7+ 3

√
5
)

5/4ii y2 +
(
3
2 + 1

2

√
5
)
y = x3 −

(
− 1

2

√
5+ 1

2

)
x2 −

(
− 329

2 + 111
2

√
5
)
x + 769

2 − 287
2

√
5

C = − 5
128 + 1

128

√
5(

7
2 + 3

2

√
5, 6+ 2

√
5, 72 + 3

2

√
5
)

5/4iii y2 + xy + y = x3 −
(
− 1

2

√
5+ 1

2

)
x2 −

(
101
2 + 45

2

√
5
)
x− 1895

2 − 847
2

√
5

C = − 5
64 − 1

32

√
5(

9
2 + 3

2

√
5, 92 + 3

2

√
5, 72 + 3

2

√
5
)

8/7i y2 = x3 +
√
2x2 −

(
142

√
2+ 202

)
x− 1170

√
2− 1655

C = − 15
16 − 5

8

√
2(

3+
√
2, 12 + 8

√
2, 13+ 9

√
2
)

8/7ii y2 = x3 +
√
2x2 −

(
142

√
2+ 202

)
x− 1170

√
2− 1655

C = − 15
16 + 5

8

√
2(

3+ 2
√
2, 5+ 3

√
2, 5+ 3

√
2
)

8/2 y2 = x3 − x

C = 0(
3+ 2

√
2, 5+ 3

√
2, 5+ 3

√
2
)
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12/3 y2 = x3 −
(√

3− 1
)
x2 −

(
65
√
3+ 111

)
x + 348

√
3+ 603

C = 5
8 + 5

16

√
3(

8 + 4
√
3, 3+

√
3, 9+ 5

√
3
)

12/2 y2 = x3 + ax2 + x + 3
√
3− 5

C = 0(
4 + 2

√
3, 4+ 2

√
3, 4+ 2

√
3
)

13/36 y2 +
(
3+

√
13

2

)
y = x3 − 5601845

2 −
(
60077−16383

√
13

2

)
x + 1551027

2

√
13

C = − 1625
128 + 375

128

√
13

(
5
2 + 1

2

√
13, 16 + 4

√
13, 332 + 9

2

√
13
)

13/4 y2 +
(
3+

√
13

2

)
y = x3 −

(
3+

√
13

2

)
x2 −

(
275+75

√
13

2

)
x− 1565−433

√
13

2

C = − 65
128 − 15

128

√
13(

11+3
√
13

2 , 11+3
√
13

2 , 7+
√
13

2

)

17/2i y2 + xy + (γ + 1) y = x3 + γx2 − (−61γ + 157) x + 348γ − 896

γ = 1−
√
17

2

C = −55+20γ
64(

5+
√
17

2 , 10+ 2
√
17, 21+5

√
17

2

)

17/2ii y2 + xy + (a + 1) y = x3 + ax2 − (−61γ + 157) x + 348γ − 896

γ = 1+
√
17

2

C = −55+20γ
64(

7+
√
17

2 , 5+
√
17, 13+3

√
17

2

)

21/4 y2 +
(

γ2+19γ+15
14

)
y = x3 −

(
γ2−9γ+15

14

)
x2 −

(
99γ3−144γ2−618γ−1451

14

)
x

− 88γ3−505γ2−777γ−555
14

fγ = x4 − 4x3 − x2 + 10x + 43, γ = −1.292− 1.323i

C = 15−5
√
21+56i

√
3−24i

√
7

128(
15+3

√
21

2 , 5+
√
7
√
3

2 , 17+3
√
7
√
3

2

)

24/3 y2 = x3 −
(
− 1

16γ3 − 1
8γ2 − 1

2γ + 1
)
x2

−
( 17295

4 γ3 − 14243
8 γ2 − 60459γ + 155218

)
x

+ 8148639
8 γ3 − 697026γ2 − 25765125

2 γ + 34343808

fγ = x4 − 8x2 + 64, γ = −2.450− 1.414i

C = 4027
288 − 137

24

√
6+ 17

36 i
√
2− 37

96 i
√
3(

5 + 2
√
2
√
3, 3+

√
6, 9+ 3

√
6
)

33/12 y2 + xy = x3 −
(
−3−

√
33

2

)
x2 −

(
141
2 − 27

2

√
33
)
x + 369

2 − 63
2

√
33
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C = 55
576 − 5

288

√
33(

7+
√
11
√
3

2 , 9+
√
33

2 , 6+
√
33
)

49/56 y2 + xy + y = x3 − 874− 171x

C = − 55
64(

3ρ2 + 2ρ − 1, 3ρ2 + 2ρ − 1, ρ2 + ρ
)

ρ = 2 cos( π
7 )

81/1 y2 + xy + y = x3 − x2 − 95x− 697

C = − 15
64(

ρ2 + ρ + 1, (ρ + 1)2, (ρ + 1)2
)

fρ = x3 − 3x− 1, ρ = 1.879

148/1i y2 = x3 −
(
464γ2 − 320γ − 1490

)
x2 + x

fγ = x3 − x2 − 3x + 1, γ = 2.170

C = 1363+292γ−424γ2

16(
γ2 + γ,γ2 + 2γ + 1,γ2 + γ

)

148/1ii y2 = x3 −
(
464γ2 − 320γ − 1490

)
x2 + x

fγ = x3 − x2 − 3x + 1, γ = 0.311

C = 1363+292γ−424γ2

16(
−12γ2 + 8γ + 40,−γ2 + γ + 4,−13γ2 + 9γ + 42

)

148/1iii y2 = x3 −
(
464γ2 − 320γ − 1490

)
x2 + x

fγ = x3 − x2 − 3x + 1, γ = 1.481

C = 1363+292γ−424γ2

16(
γ2 − 3γ + 2,γ2 − 2γ + 1,γ2 − 3γ + 2

)

229/8i y2 = x3 −
(
663γ2 − 219γ − 2485

)
x2 −

(
−30778γ2 + 13227γ + 109691

)
x

fγ = x3 − 4x− 1, γ = 2.115

C = 205
2 + 105

16 γ − 105
4 γ2

(
γ + 2, 8γ2 + 16γ + 4, 8γ2 + 17γ + 4

)

229/8ii y2 = x3 −
(
663γ2 − 219γ − 2485

)
x2 −

(
−30778γ2 + 13227γ + 109691

)
x

fγ = x3 − 4x− 1, γ = −0.254

C = 205
2 + 105

16 γ − 105
4 γ2

(
−3γ2 + γ + 13,−γ2 + 5,−4γ2 + γ + 16

)

229/8iii y2 = x3 −
(
663γ2 − 219γ − 2485

)
x2 −

(
−30778γ2 + 13227γ + 109691

)
x

fγ = x3 − 4x− 1, γ = −1.860

C = 205
2 + 105

16 γ − 105
4 γ2
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(
γ2 − 2γ,γ2 − 2γ + 1,γ2 − 2γ

)

725/16i y2 + xy + γy = x3 + x2 − (−447γ + 4152) x− 85116γ + 59004

fγ = x2 − x− 1, γ = 1.618

C = 205−300γ
64(

−2ρ3 + 5ρ2 − ρ − 1,−2ρ3 + 5ρ2 − ρ − 1,−ρ3 + 3ρ2 + ρ
)

fρ = x4 − x3 − 3x2 + x + 1, ρ = −1.355

725/16ii y2 + xy + γy = x3 + x2 − (−447γ + 4152) x− 85116γ + 59004

fγ = x2 − x− 1, γ = −0.618

C = 205−300γ
64(

9ρ3 − 13ρ2 − 21ρ + 19, ρ3 − 2ρ2 − 2ρ + 4, 9ρ3 − 13ρ2 − 21ρ + 19
)

fρ = x4 − x3 − 3x2 + x + 1, ρ = −0.477

1125/16 y2 + 1/15
(

γ5 + γ4 + 17γ3 + 14γ2 + 13γ + 19
)
xy

+ 1
4629075

(
γ7 + 211776γ6 + 471599γ5 + 182985γ4 + 3251185γ3 + 8290968γ2

+9151653γ + 7962897) y− x3 − 1
4629075

(
γ7 + 520381γ6 + 162994γ5 − 125620γ4

−1995100γ3 + 3970498γ2 − 3192547γ + 5185452
)
x2

− 1
149325

(
−12692863γ7 + 86428787γ6 − 164116067γ5 + 518100715γ4

−967426690γ3 + 3757504646γ2 − 3892822254γ + 10486471269
)
x

+ 10639239397
925815 γ7 − 26847806027

925815 γ6 + 17109768152
185163 γ5 − 4243037037

28055 γ4 + 595858143338
925815 γ3

− 316402671731
308605 γ2 + 2018798518646

925815 γ − 2030456532221
925815

fγ = x8 − 6x7 + 22x6 − 48x5 + 135x4 − 312x3 + 757x2 − 999x + 1471

γ ∼ 2.327 + 1.936i

C = − 2129
1234420 a

7 − 42497
29626080 a

6 − 50863
7406520 a

5 − 173
16833 a

4 − 746393
11850432 a

3 − 9461581
59252160 a

2

− 11911217
59252160 a− 4076357

9875360

(−ρ3 + ρ2 + ρ + 1,γ2 − γ, ρ2 − 2ρ + 1)

fρ = x4 − x3 − 4x2 + 4x + 1, ρ = −1.956

Table 3.2: Ramification index 2

nd/nDr elliptic curve / accessory parameter / trace triple

1/15 y2 + xy + y = x3 + x2 − 135x− 660

C = − 55
54

(5, 16, 20)

1/10 y2 + xy + y = x3 + 26− 19x

C = 95
432

(10, 6, 15)
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1/6i y2 + xy + y = x3 + x2 − 104x + 101

C = 67
432

(8, 7, 14)

1/6ii y2 = x3 − x2 + 16x− 180

C = 1/27

(8, 8, 9)

5/9 y2 +
(
1+

√
5

2

)
y = x3 +

(
1
√
5

2

)
x2 −

(
495+165

√
5

2

)
x− 4125+1683

√
5

2

C = − 245−49
√
5

216(√
5+ 3, 7+ 3

√
5, 9+ 4

√
5
)

5/5 y2 + xy + y = x3 + x2 − 110x− 880

C = − 35
108(

5+ 2
√
5, 5+ 2

√
5, 7+3

√
5

2

)

8/9 y2 = x3 −
(
2
√
2+ 4

)
x2 −

(
154

√
2+ 231

)
x− 1064

√
2− 1520

C = − 20+10
√
2

27(
4
√
2+ 6, 4

√
2+ 6, 3+ 2

√
2
)

12/3 y2 +
√
3y = x3 −

(
−
√
3+ 1

)
x2

C = 0(
4+ 2

√
3, 4+ 2

√
3, 7+ 4

√
3
)

13/3i y2 + xy + y = x3 + x2 − (−495γ − 637) x + 9261γ + 12053

fγ = x2 − x− 3, γ = 2.302

C = − 35
108(

4+
√
13, 11+3

√
13

2 , 4+
√
13
)

13/3ii y2 + xy + y = x3 + x2 − (−495γ − 637) x + 9261γ + 12053

fγ = x2 − x− 3, γ = −1.303

C = − 35
108(

5+
√
13

2 , 22 + 6
√
13, 47+13

√
13

2

)

17/36 y2 + xy + γy = x3 − γx2 − (19694γ + 30770) x− 2145537γ − 3350412

γ = 1+
√
17

2

C = − 6545+1540
√
17

432(
5+1

√
17

2 , 13 + 3
√
17, 29+7

√
17

2

)

21/3 y2 = x3 −
(
− 6γ7+7γ6−30γ5+4γ4−108γ3+90γ2+42γ−75

8

)
x2

−
(
7γ7−41γ6−20γ5−126γ4+180γ3−108γ2+51γ−63

192

)
x
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C = 75−42γ−90γ2+36γ3−4γ4+30γ5−7γ6+6γ7

144

fγ = x8 + 3x6 + 12x4 − 9x2 + 9, γ = 0.770 + 0.445(
5+

√
7
√
3

2 , 10+ 2
√
7
√
3, 23+5

√
21

2

)

28/18 y2 +
(√

7+ 1
)
y = x3 −

(√
7 + 1

)
x2 −

(
944

√
7+ 2496

)
x + 25532

√
7+ 67552

C = 1295
576 + 185

216

√
7(

6+ 2
√
7, 3+

√
7, 8+ 3

√
7
)

49/1 y2 +
(
γ2 + 1

)
y = x3 −

(
−γ2 − γ − 1

)
x2 −

(
649γ2 + 910γ + 131

)
x

−21451γ2 − 21320γ + 6760

fγ = x3 − x2 − 2x + 1, γ = 1.802

C = − 10+40γ+40γ2

27(
4ρ2 + 3ρ − 1, 4ρ2 + 3ρ − 1, ρ2 + ρ

)

ρ = 2 cos( π
7 )

81/1 y2 + y = x3 − 7

C = 0
(
ρ2, ρ2, ρ2

)

ρ = −1/
(
2 cos( 5π

9 )
)

Table 3.3: Ramification index 3

nd/nDr elliptic curve / accessory parameter / trace triple

8/98 y2 + xy + y = x3 − 55146− 2731x

C = − 1575
256(

3 +
√
2, 20+ 12

√
2, 21 + 14

√
2
)

8/7i y2 = x3 −
(
4
√
2− 14

)
x2 −

(
32
√
2− 48

)
x

C = 3+6
√
2

16(
8 + 4

√
2, 4+

√
2, 10 + 6

√
2
)

8/2i y2 + xy = x3 −
(
1−

√
2
)
x2 −

(
38
√
2 + 51

)
x− 160

√
2− 227

C = − 87
256 − 15

64

√
2(

3 + 2
√
2, 7+ 4

√
2, 7+ 4

√
2
)

8/2ii y2 = 4x3 − (1116
√
−2+ 147)x − (6966

√
−2− 6859)

C = (−78
√
−2−123)
27 , taken from [Sij12a](

3 + 2
√
2, 9+ 4

√
2, 6+ 4

√
2
)

8/7ii y2 = x3 −
(
−4

√
2− 14

)
x2 −

(
−32

√
2− 48

)
x
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C = 3−6
√
2

16(
4+ 2

√
2, 6+ 2

√
2, 8+ 5

√
2
)

8/2iii y2 + xy = x3 −
(√

2+ 1
)
x2 −

(
−38

√
2+ 51

)
x + 160

√
2− 227

C = − 87
256 + 15

64

√
2

fα = 5184x4 + 59616x3 + 171252x2 + 10404x + 248113, α = 0.1891 + 1.1341i(
5+ 2

√
2, 6+ 4

√
2, 5+ 2

√
2
)

2624/4ii y2 + xy + y = x3 −
(
1+

√
2
)
x2 −

(
−391

√
2 + 448

)
x + 4342

√
2− 6267

C = − 387
256 + 69

64

√
2

(
ρ, ρ, ρ + 2

√
ρ + 1

)

fρ = x4 − 10x3 + 19x2 − 10x + 1, ρ = 7.698

2624/4i y2 + xy + y = x3 −
(
1−

√
2
)
x2 −

(
391

√
2 + 448

)
x− 4342

√
2− 6267

C = − 387
256 − 69

64

√
2

(ρ1, ρ2, ρ2)

fρ1 = x4 − 10x3 + 31x2 − 30x + 1, ρ1 = 4.965

fρ2 = x5 − 41x4 + 473x2 − 1063x2 + 343x− 19, ρ2 = 19.181

2304/2 y2 −
√
3y = x3 − 1

C = 0

(ρ, ρ, ρ)

ρ = 3+
√
2
√
3+

√
2+

√
3

Table 3.4: Ramification index 4

nd/nDr elliptic curve / accessory parameter / trace triple

5/5i y2 + γy = x3 − γx2 − (4217γ + 2611) x− 157816γ − 97533

fγ = x2 − x− 1, γ = 1.6180

C = − 1083+495
√
5

200(
7+1

√
5

2 , 14 + 6
√
5, 16+ 7

√
5
)

5/180 y2 + xy + y = x3 − 2368− 334x

C = − 651
400(√

5+ 3, 9+ 3
√
5, 21+9

√
5

2

)

5/5ii y2 + γy = x3 − γx2 − (4217γ + 2611) x− 157816γ − 97533

fγ = x2 − x− 1, γ = −0.618

C = − 1083+495
√
5

200(
6+ 2

√
5, 4+

√
5, 17+7

√
5

2

)
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5/5iii y2 = x3 + x2 − 36x− 140

C = − 6
25(

6 + 2
√
5, 6+ 2

√
5, 7+3

√
5

2

)

5/9 y2 + xy + y = x3 + x2 + 35x− 28

C = 3
100(

9+3
√
5

2 , 9+3
√
5

2 , 15+5
√
5

2

)

725/25i y2 +
(
γ2 + γ

)
y = x3 −

(
−γ3 − γ2 + 1

)
x2 −

(
135γ3 + 316γ2 − 136γ + 2

)
x

−4089γ3 − 6001γ2 + 3228γ + 1965

fγ = x4 − x3 − 3x2 + x + 1, γ = 0.738

C = −24+18γ−12γ2−12γ3

25

(ρ1, ρ2, ρ2)

fρ1 = x4 − 3x3 + 4x− 1, ρ1 = 2.356, fρ2 = x4 − 4x3 + 3x− 1, ρ2 = 3.811

725/25ii y2 +
(
γ2 + γ

)
y = x3 −

(
−γ3 − γ2 + 1

)
x2 −

(
135γ3 + 316γ2 − 136γ + 2

)
x

−4089γ3 − 6001γ2 + 3228γ + 1965

fγ = x4 − x3 − 3x2 + x + 1, γ = 2.0953

C = −24+18γ−12γ2−12γ3

25

(ρ1, ρ2, ρ2)

fρ1 = x4 − x3 − 3x2 + x + 1, ρ1 = 2.095

fρ2 = x4 − 8x3 + 10x2 − x− 1, ρ2 = 6.486

1125/5 y2 + (γ + 1) y = x3 −
(
−γ3 + γ2 + 1

)
x2 −

(
2γ3 − 7γ2 + 5γ + 1

)
x

+6γ3 − 14γ2 − 2γ + 12

fγ = x4 − x3 − 4x2 + 4x + 1, γ = 1.338

C = 0

(ρ, ρ, ρ)

fρ = x4 − 3x3 − x2 + 3x + 1, ρ = 2.956

Table 3.5: Ramification index 5

nd/nDr elliptic curve / accessory parameter / trace triple

12/66i y2 + xy +
(
1−

√
3
)
y = x3 −

(√
3+ 1

)
x2

−
(
836− 405

√
3
)
x− 4739

√
3+ 7704

C = 53−387
√
3

54(
3+

√
3, 14+ 6

√
3, 15+ 8

√
3
)
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12/66ii y2 + xy +
(√

3+ 1
)
y = x3 −

(
1−

√
3
)
x2

−
(
405

√
3+ 836

)
x + 4739

√
3+ 7704

C = 53+387γ
54(

6+ 2
√
3, 5+

√
3, 9+ 4

√
3
)

Table 3.6: Ramification index 6

nd/nDr elliptic curve / accessory parameter / trace triple

49/91i y2 + xy + ay = x3 + x2 −
(
10825γ2 − 24436γ + 8746

)
x

−995392γ2 + 2235406γ − 797729

C = − 815
196 + 495

49 γ − 30
7 γ2

fγ = x3 − x2 − 2x + 1, γ = 0.445
(
ρ2 + 1, 16ρ2 + 12ρ − 8, 17ρ2 + 13ρ − 9

)

ρ = 2 cos( π
7 )

49/91ii y2 + xy + ay = x3 + x2 −
(
10825γ2 − 24436γ + 8746

)
x

−995392γ2 + 2235406γ − 797729

C = − 815
196 + 495

49 γ − 30
7 γ2

fγ = x3 − x2 − 2x + 1, γ = −1.247
(
ρ2 + ρ, 5ρ2 + 3ρ − 2, 5ρ2 + 3ρ − 2

)

ρ = 2 cos
(

π
7

)

49/91iii y2 + xy + ay = x3 + x2 −
(
10825γ2 − 24436γ + 8746

)
x

−995392γ2 + 2235406γ − 797729

fγ = x3 − x2 − 2x + 1, γ = 1.802

C = − 815
196 + 495

49 γ − 30
7 γ2

(
2ρ2 + ρ, 2ρ2 + ρ, 3ρ2 + ρ − 1

)

ρ = 2 cos
(

π
7

)

49/1 y2 + xy + y = x3 − 70− 36x

C = − 55
196(

2ρ2, 2ρ2 + 2ρ, 4ρ2 + 3ρ − 2
)

ρ = 2 cos
(

π
7

)

Table 3.7: Ramification index 7

nd/nDr elliptic curve / accessory parameter / trace triple

81/51i y2 = x3 −
(
−446γ2 − 836γ − 214

)
x2 −

(
−375921γ2 − 706401γ − 199989

)
x
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C = − 1309
243 − 3206

243 γ − 1529
243 γ2

fγ = x3 − 3x− 1, γ = 1.879
(
ρ2 + 1, 4ρ2 + 8ρ + 4, 5ρ2 + 9ρ + 3

)
, ρ = 2 cos( π

9 )

81/51ii y2 = x3 −
(
−446γ2 − 836γ − 214

)
x2 −

(
−375921γ2 − 706401γ − 199989

)
x

− 1309
243 − 3206

243 γ − 1529
243 γ2

fγ = x3 − 3x− 1, γ = 1.879
(
ρ2 + 2ρ + 1, ρ2 + 2ρ + 1, ρ2 + ρ + 1

)
, ρ = 2 cos( π

9 )

81/51iii y2 = x3 −
(
−446γ2 − 836γ − 214

)
x2 −

(
−375921γ2 − 706401γ − 199989

)
x

C = − 1309
243 − 3206

243 γ − 1529
243 γ2

fγ = x3 − 3x− 1, γ = −0.607 + 1.450i
(
ρ2 + 2ρ + 2, ρ2 + 2ρ + 1, ρ2 + 2ρ + 2

)
, ρ = 2 cos( π

9 )

Table 3.8: Ramification index 9

nd/nDr elliptic curve / accessory parameter / trace triple

14641/1 y2 + y = x3 − x2 − 10x− 20

C = − 14
121(

ρ3 − 2ρ, ρ3 − 2ρ, ρ2 − 1
)
, ρ = 2 cos( π

11)

Table 3.9: Ramification index 11

The correctness of the suggested accessory parameters is proven whenever the Fuchsian
group is commensurable with a triangle group, i.e. the uniformizing differential equation is
a pullback of a hypergeometric differential equation, these 25 cases can be found in [Sij12a].
The cases 1/15 with e = 3 can be found in D. Krammer’s article [Kra96], the case 1/6i was
found by N. D. Elkies in [Elk98]. Whenever the quaternion algebra is defined over the rational
numbers, S. Reiter determined the accessory parameter in [Rei11]. In principal it should be
possible to adapt Krammer’s method to prove the correctness at least a few more cases. The
Tables 3.2 - 3.9 emphasize the equations for the elliptic curves, for convenience we added a
list of A and C̃ such that the pullback of the uniformizing differential equation to P1 is

P(z)u
′′
+

1
2
P(z)

′
u

′
+

(
C̃− (n(n− 1))

4
z

)
u = 0

with
P(z) = z(z− 1)(z− A) and C̃ = C/4.

and n = 1
2 − 1

2e in Appendix B.

3.5.2 The Case of (0;2,2,2,q)-Groups

The ad hoc method of the last section worked because only one complex parameter had to be
determined. In the case of (0; 2, 2, 2, q)-groups the Riemann scheme is not known completely
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and two complex parameters have to be found. Hence, we must take a closer look on methods
for multidimensional root finding. Given a real valued continuous function f : R → R using
the intermediate value theorem, it is not hard to decide if there is a real number x0 such
that f (x0) = 0. In general it is not possible to compute x0 explicitly. The bisection method
in combination with Newton approximation and modifications for the case of multiple or
clustered roots yield useful tools for the approximation of zeros of f . But to increase the rate
of convergence usually a close inspection of the function f is needed. If the derivative of f
is not available or the computation of its value at a given point up to a given accuracy is
to expensive, the tangent in the Newton approximation method can be approximated by a
suitable secant. The situation gets much more involved, if f is replaced by a system of maps

fl(x1, . . . , xn), l = 1, . . . , n,

that can also be written as the vector valued problem

F(x) = ( f1, . . . , fn) = 0.

We will follow the account in Chapter 14 of [Act70] and Section 2 of [MC79] and restrict
to elementary local methods. Keeping our goal in mind , that is to compute uniformizing
differential equations, only methods that work if the partial derivatives of F are unknown are
useful. One instance of such a method is the discretized multidimensional Newton method. For
the vector x ∈ R define the Matrix A(x) as an approximation of the Jacobi-Matrix of F at x
by

A(x)ei =
(F(x + hiei) − F(x))

hi
, 1 ≤ n,

where ei is the i-th column of the n-dimensional identity matrix and the parameter hi = hi(x)
has to be chosen as

hi =





ǫ|xi|, xi 6= 0

hi = ǫ, otherwise
.

The positive real constant ǫ is the square root of the precision available and with the above
notation the discretized multidimensional Newton method can be implemented as in Algo-
rithm 3.
The major problem is to find a suitable starting value xin and one has to put high effort

Algorithm 3: The discretized multidimensional Newton method (dN)

Input: A procedure that evaluates F(x) at x0 ∈ Rn and δ > ǫ and an initial value xin
Output: An approximation of a zero of F or an error
Set x0 = xin and i = 0.
while F(xi) > δ do

Construct the approximated Jacobi Matrix A(xi).
Solve the system of linear equations A(xi)δxi − F(xi).
Set xi+1 := xi + δxi and i := i + 1.

end

in developing global methods. Since we are not interested in pushing forward the the-
ory of numerical root finding methods and since we have some heuristics where the zeros
of the functions under consideration should be located from Section 3.5 a naive problem-
oriented approach seems to be adequate. Hence, we try the vertices of an equidistant lattice
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L = [c1, . . . , cn] × . . .× [c1, . . . , cn] as values for xin. Let MonApp(A,C, n) be a procedure that
given (A,C, n) returns the trace triple

A(A,C) = M(ℜ(A),ℑ(A),ℜ(C),ℑ(C))

of a the Lamé equation

L := P(x)u
′′
+

1
2
P(x)

′
u

′
+ (n(n + 1)x + C)u = 0,

with P(x) = 4x(x − 1)(x − A). Combining MonApp with the discretized Newton method
(dN) and a permutation σ on {1, 2, 3} gives the following Algorithm 4, where A0 and C0 are
two suitable initial values.
With one exception, we are able to give combinations of algebraic numbers A and C of plausi-

Algorithm 4: The algorithm for (0; 2, 2, 2, q)-groups

Input: (x, y, z) trace triple of a (0; 2, 2, 2, q)-group, a natural number maxit, real numbers δ,
ℜ(A0), ℑ(A0),ℜ(C0), ℑ(C0), σ ∈ S3.

Output: Two complex floating point numbers A and C.
Start algorithm dN(F, δ , maxit , xin), with
F : R4 → R4, (u, v,w, t) 7→ (σ(A(u, v,w, t))1− x, σ(A(u, v,w, t))2− y, σ(A(u, v,w, t))3− z) and
xin = (uin, vin,win, tin) = (ℜ(A0),ℑ(A0),ℜ(C0),ℑ(C0))

ble height and degree such that A(A,C) coincides with the traces triples describing arithmetic
Fuchsian (0; 2, 2, 2, q)-groups up to at least 300 digits. Our results are listed in Appendix B.
There seem to be two mistakes in the list of trace triples of arithmetic (0; 2, 2, 2, q)-groups in
[ANR03]. In the case 7/49/1i we assume that (ρ + 3, 4ρ2 + 4ρ, 5ρ2 + 4ρ− 2) has to be replaced
by (ρ + 3, 4ρ2 + 4ρ, ρ2 + 5ρ− 1) and in the case 3/49/1i instead of (ρ2 + ρ, 4ρ2 + 4ρ, 2ρ2 + ρ + 1)
it should be (ρ2 + ρ, ρ2 + 2ρ + 1, 2ρ2 + ρ + 1), where ρ = 2 cos(π/7). In both cases the version
in [ANR03] is not minimal and it is easily checked that our suggestion yields the correct as-
sociated quaternion algebra.

We discuss the case 2/49/1ii, where the correctness of our suggested differential equation
can be proven easily using the theory of Belyi maps as explained in Section 3.3. The associ-
ated Quaternion algebra with discriminant (1) defined over the field F = Q(cos(π/7)) with

discriminant 49 is Q = (a,bF ), where a = 2 cos
( 1
7π
)

+ 4
(
cos

( 1
7π
))2

and b = −2 cos
( 1
7π
)
−

12 cos
( 1
7π
)2 − 24 cos

( 1
7π
)3 − 16 cos

( 1
7π
)4
. The order OF[Γ] is maximal, hence by line 10 of

Table 3 of [Tak77b] the embedded Fuchsian group ∆2,3,7 := ρ(OF[Γ]1) is the triangle group
with signature (0; 2, 3, 7) and clearly Γ ⊂ OF[Γ]1. The covolume of Γ is −2 + 3

2 + 2
3 = 1

3 and
vol(∆2,3,7) = −2+ 1

2 + 1
3 + 1

7 = 1
42 , thus the covering H/Γ → H/∆2,3,7 has degree 7 by Propo-

sition 3.1.9. The monodromy group of the uniformizing differential equation for H/∆2,3,7 is
neither finite nor infinite dihedral, hence the uniformizing differential equation for H/Γ must
be one of the finite coverings listed in [HV12] and [VF12]. There is no suitable parametric
case and there occurs only one (237)-minus-4-hyperbolic Belyi map φ(x) : P1 → P1 such that
the pullback of

u
′′
+

(
1
2
x +

2
3(x− 1)

)
u

′
+

13
7056x(x − 1)u

along φ(x) is a Lamé equation with exponent differences 1
2 ,

1
2 ,

1
2 ,

1
3 . This Belyi map is called

G35 in [HV12] and reads

φ(x) = − (47 + 45a)
(
28x2 − 35x− 7ax + 8+ 4a

)3

27 (4 x− 3− a)7
.
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Applying this pullback it is easy to check that the uniformizing differential equation we
obtained with our numerical method is the correct one.



4 Monodromy of Calabi-Yau Differential
Equations

In this Chapter we explain why the following conjectures are plausible.

Conjecture 1 With respect to the normalized Frobenius basis the monodromy group of a Picard-Fuchs
equation of a one parameter family of Calabi-Yau manifolds of dimension n is a subgroup of

GLn

(
Q

(
ζ(3)

(2πi)3
,

ζ(5)
(2πi)5

, . . . ,
ζ(m)

(2πi)m

))
,

where m is the biggest odd number smaller than or equal to n. Moreover, if with respect to the
normalized Frobenius basis there is a reflection with reflection vector

(a0, 0, a2, . . . , an)

the numbers ai have an interpretation as polynomial expressions in numerical invariants of a Calabi-
Yau variety with hj,j = 1, j = 1, . . . , ⌊n/2⌋.

At least for dimension three we can formulate a version of this conjecture purely in terms of
differential equations.

Conjecture 2 If L is CY(3)-operator with N-integral instanton numbers, with respect to the normal-
ized Frobenius basis the monodromy group is contained in

GL4

(
Q

(
ζ(3)

(2πi)3

))
.

If there is a symplectic reflection with reflection vector (a, 0, b, cλ) with λ = ζ(3)
(2πi)3

, the rational

numbers a, b and c have an interpretation as numerical topological invariants a = H3 , b = c2(X)H
24 ,

c = χ(X) of a Calabi-Yau threefold X with h1,1 = 1.

In our explanation mirror symmetry is crucial, the book [CK99] by D. A. Cox and S. Katz
collects most of the early approaches to mirror symmetry made during the outgoing 20th
century. Whenever a claim is not proven or no citation is given, a proof can be found in this
book.

4.1 The Famous Mirror Quintic

The attention of the mathematical community was brought to a physical phenomenon called
mirror symmetry by an article of P. Candelas, X. C. della Ossa, P. S. Green and L. Parkes.
There they stated an explicit conjecture on the number of rational curves on a general quintic
threefold X ⊂ P4 [COGP91]. This is an example of a three-dimensional Calabi-Yau manifold.
For the first Chern class H of an ample generator of the Picard group of the quintic the
degree d := H3, the second Chern number c2(X)H and the Euler characteristic c3(X) are
5, 50 and −200. They are important due to the classification theorem of Wall [Wal66] stating
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that the diffeomorphism type of a Calabi-Yau threefold is completely determined by c2(X)H
,H3 and the Hodge numbers. To define Calabi-Yau manifolds we recall the basic facts from
Hodge theory. A pure Hodge structure of weight k is a finitely generated Z-module VZ with the
additional data of a Hodge decomposition

V := VZ ⊗Z C =
⊕

p+q=k

V p,q,

where V p,q = Vq,p. TheHodge numbers hp,q are the dimensions of the C-vector spaces V p,q. An-
other way of presenting the data of a Hodge structure is the finite decreasing Hodge filtration
F• of complex subspaces Fp of V, satisfying the condition F0 = V and

V = Fp ⊕ Fk−p+1.

We can construct the filtration from the decomposition by

Fp := Vk,0 ⊕ . . .⊕V p,k−p

and vice versa the Hodge decomposition is obtained from the Hodge filtration by setting

V p,q := Fp ⊕ Fq.

The Weil operator of a Hodge Structure (VZ, F•) is defined as the automorphism

C : V → V, v 7→ ip−qv for v ∈ V p,q.

A polarization of Hodge structure is a (−1)k symmetric bilinear form

Q : VZ → VZ

such that the C-linear extension of Q to V satisfies

• The orthogonal complement of Fp is Fk−p+1

• The hermitian form Q(Cu, v) is positive definite.

If everywhere in the above discussion Z is replaced by Q, we speak of a Q-Hodge structure.
A morphism of Hodge structure is a morphism of Z-modules whose complexification respects
the Hodge decomposition. If V is the Z-module (2πi)kZ, k ∈ Z, then VZ ⊗ C = V−k,−k and
V becomes a Hodge structure of weight −2k, called Z(k). Indeed, (V,V i,j) is up to morphism
the unique Hodge structure of weight −2kwith a underlying rank one Z-module, it is usually
called the Tate Hodge structure.
The prototype of a Hodge structure is the decomposition

Hk(X,C) := Hk(X,Z) ⊗Z C =
⊕

k=p+q

Hp,q(X)

of the k-th cohomology of a compact Kähler manifold X of dimension n in classes of closed
(p, q)-forms. To get a polarization we have to choose a Kähler form ω and restrict to primitive
cohomology groups

Hn−k
0 (X,C) := ker

(
· ∧ ωk+1 : Hn−k(X,C) → Hn+k+2(X,C)

)
.
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These vector spaces decompose as

Hk
0(X,C) ∼=

⊕

p+q=k

H
p,q
0 (X),

where
H

p,q
0 (X) := Hp,q(X) ∩ H

p+q
0 (X,C).

If we define the bilinear form Q : Hn−k(X,C) × Hn−k(X,C) → C as

Q(α, β) =
∫

X
α ∧ β ∧ ωk, α, β ∈ Hn−k

0 (X,C),

then Hk
0(X,C) together with (−1)k(k−1)/2Q builds a polarized variation of Hodge struc-

ture. In this geometric situation the Hodge numbers are subject to special symmetries since
complex conjugation yields Hp,q(X) = Hq,p(X), the Hodge ∗-operator induces Hp,q(X) ∼=
Hn−q,n−p(X), and Hp,q(X) ∼= Hn−p,n−q(X) is true by Serre duality.

Definition 4.1.1 (Calabi-Yau manifold) A Calabi-Yau manifold is a compact Kähler manifold X of
complex dimension n which has trivial canonical bundle, and vanishing Hodge numbers hk,0(X) for
0 < k < n.

A one dimensional Calabi-Yau manifold is an elliptic curve, a Calabi-Yau manifold of dimen-
sion 2 is a K3 surface, and Calabi-Yau manifolds of dimension three are often called Calabi-Yau
threefolds. For later use we remark that for Calabi-Yau threefolds the vanishing of H5(X,C)
implies, that the primitive part H3

0(X,C) is all of H3(X,C). The Hodge numbers can be
displayed as a “Hodge diamond”. In the case of a Calabi-Yau threefold it looks like

1
0 0

0 h2,2 0
1 h2,1 h1,2 1

0 h1,1 0
0 0

1

.

The unobstructedness theorem for Calabi-Yau manifolds of dimension n due to F. A. Bo-
gomolov [Bog78], G. Tian [Tia87] and A. N. Todorov [Tod89] tells that the moduli space of
complex structures of a n-dimensional Calabi-Yau manifold is a manifold of dimension hn−1,1.
Candelas considered the special pencil that can be defined by the equation

Xt =
{
[x0 : . . . : x4] ∈ P4| ft = 0

}
,

where
ft = x50 + x51 + x52 + x53 + x54 − 5tx0x1x2x3x4.

For t /∈
{
0, t5 = 1

}
the variety Xt has Hodge numbers h1,1(Xt) = 1 and h1,1(Xt) = 101. The

group G :=
{
(a0, . . . , a4) ∈ (Z/5Z)5|∑ ai = 0

}
acts on P4 diagonally by multiplication with

a fixed fifth root of unity ζ

(x0, . . . , x4) 7→ (ζa0x0, . . . , ζa4x4).

The quotient
X

′
t = Xt/G
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is singular but for t 6= 0,∞ and t5 6= 1 this singularities can be resolved to obtain a Calabi-Yau
manifold X̌

′
t with h2,1(X̌

′
t) = 1 and h2,1(X̌

′
t) = 101. One observes that the Hodge diamonds

1 1
0 0 0 0

0 1 0 0 101 0
1 101 101 1 → 1 1 1 1
0 1 0 0 101 0

0 0 0 0
1 1

.

of Xv and X̌
′
t are related by a ninety degree rotation. This phenomenon is called topological

mirror symmetry for Calabi-Yau threefolds, it is easily generalized to higher dimension as

hp,q(X) = hdim(X
′
)−p,q(X

′
) and hp,q(X

′
) = hdim(X)−p,q(X). Despite the fact that such pairs

cannot exist for rigid Calabi-Yau manifolds, since for a Kähler manifold h1,1 is always nonzero
it appears that this phenomenon is true for a big class of Calabi-Yau threefolds. Coming back
to the quintic mirror using the Griffiths-Dwork method and the coordinate change z = (5t)−5

one can compute the differential equation

L = (θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4))y = 0, θ = z
d

dz
,

that is solved by the periods of X
′
. The differential equation L has singularities at 0, 1

3125 and
∞. Since L is a generalized hypergeometric differential equation its solutions can be expressed
as Mellin-Barnes integrals, this was for example used in [CYYE08] to express generators M0

and M1/3125 of the monodromy group of L with respect the Frobenius basis with a certain
normalization.

Definition 4.1.2 If y0, . . . yn−1 is the Frobenius basis of a differential operator of order n, the basis

ỹj =
yj

(2πi)j j!
for j = 0, . . . , n− 1

is called normalized Frobenius basis.

At a MUM-point of a linear differential equation of order four the monodromy with respect
to the normalized Frobenius basis is always equal to

M0 =



1 0 0 0
1 1 0 0
1
2 1 1 0
1
6

1
2 1 1


 .

The monodromy along a loop starting at 0 and encircling the single singular point 1/3125
turns out to be

M 1
3125

=




1− 200λ −25/12 0 −5
0 1 0 0

−250/3λ −125/144 1 −25/12
8000λ2 250/3λ 0 1+ 200λ


 , λ =

ζ(3)
(2πi)3

.

The real number ζ(3) is the value of the Riemann ζ-function ζ(s) := ∑
∞
n=1

1
ns at three. One

observes that the entries of M1/3125 are in the field Q(λ),λ = ζ(3)
(2πi)3

and that the geometric in-
variants introduced above can be read off from the last row. In our specific example the occur-
rence of H3, c2H and c3 was expected, because the analytic continuation of a special solution
at 1/3125 to 0 as computed in [COGP91] expressed in a special coordinate already involved
these invariants. The local exponents of L at 1

3125 are 0, 1, 1, 2 and the rank of M1/3125 − Id4
equals one. We call such points conifold points.
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Definition 4.1.3 (Conifold point) A singular point p of a Fuchsian differential equation L of order
four is called conifold point if the spectrum of L at p is [0, 1, 1, 2] and if the local monodromy has the
Jordan form

Mp =




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

The choice of the name conifold is justified by the observation that in the quintic example
at 1

3125 the mirror X̌
′
t acquires a double point. The Yukawa coupling K(q) of a differential

equation with a MUM-point at 0 can be expanded as Lambert series

K(q) = n00 +
∞

∑
n=0

Cnq
n = n00 +

∞

∑
l=1

nl
0l

3ql

1− ql
,

with coefficients given as

n00 = C0 and n0l =
1
l3 ∑

d|l
µ

(
l

d

)
Cd ∈ for l > 0,

where µ is the Möbius function. For L one observes that the numbers n0l are integral.

Definition 4.1.4 (Genus 0 - instanton numbers) The coefficients n0l of the Lambert series expan-
sion of K(q) are called genus 0-instanton numbers.

These numbers are related to the Clemens conjecture, that a general quintic hypersurface
in P4 contains only finitely many rational curves of any degree d. The work of various
authors [Kat86, JK96, Cot05, Cot12] confirms the Clemens conjecture for d ≤ 11. Attempts to
solve this conjecture and if it is true to compute the number of rational curves of degree d
have a long tradition going back to H. C. H. Schubert [Sch79], who calculated the number of
lines as 2875. For conics S. Katz found the number 609250 [Kat86]. In [COGP91] P. Candelas
and his collaborators discovered that with n0l = 5 for l = 1, 2 the instanton numbers n0l of the
Picard-Fuchs equation of the mirror quintic coincide with these numbers computed before.
G. Ellingsrud and S. A. Strømme confirmed that the number of twisted cubics coincides with
the value 317206375 of n03. A discussion of the numbers n0l and actual curve counting can be
found in [Pan98]. If L is a Picard-Fuchs equation of a family of Calabi-Yau threefolds with
topological data c2H, H3 and c3, with the notation of [BCOV93, SE06] the genus one instanton
numbers are computed as solution of

c2H

24
+

∞

∑
d=1

∞

∑
k=1

(
1
12

n0d + n1d

)
dqkd = ∂t log

(
z(q)1+c2H/12 f (z)

y4−c3/12
0

∂t
∂z

)

The function f (z) is called holomorphic anomaly and conjectured to have the form

f (z) := ∏
i

(di(z))
pi ,

where di are the over R irreducible factors of the leading coefficient z4 ∏i(di(z))
ki of L. Fur-

thermore the rational numbers pi conjecturally equal − 1
6 , if the roots of di(z) are conifold

points, in general it is an open question how to choose values for pi. In the physical litera-
ture this process of obtaining n1 from n0 is known as topological recursion relation. For the
quintic example the first three numbers n10, n

1
1, n

1
2 coincide with the number of elliptic curves
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of degree 0, 1 and 2 on a general quintic, but as in the genus zero case the connection with
the number of curves is more subtle, for example n14 = 3721431625 but the number of elliptic
curves on a general quintic is 3718024750 [ES96]. If Xt is considered as a hypersurface in
the toric variety P4, there is another well known construction to obtain a mirror X̌t. For the
quintic threefold Xt it states that the mirror of X̌

′
t is the resolution of the compactification of

an affine variety X
′
t ⊂ T ∼= (C∗)4 defined as zero locus of

Ft(x) := 1− t f (x)

where f is the Laurent polynomial

f := x1 + x2 + x3 + x4 +
1

(x1x2x3x4)
∈ Z((x1, x2, x3, x4)).

A holomorphic 3-form on X
′
t is

ωt := Res
X
′
t

(
Ω

Ft

)

with

Ω =
dx1 ∧ dx2 ∧ dx3 ∧ dx4

x1x2x3x4

and on X
′
t there exists a 3-cycle γt whose Leray coboundary is homologous to

Γ = {x1, . . . , x4| |xi| = ǫi} , ǫi > 0.

Hence, if [ f k]0 denotes the constant term of f k the fundamental period

φ f (t) :=
∫

γ(t)
ωt =

(
1

2πi

)4 ∫

Γ

Ω

Ft

can be expressed as generating series of f k0 by the equality

φ f (t) =

(
1

2πi

)4 ∫

Γ

Ω

1− t f
=

(
1

2πi

)4 ∫

Γ

∞

∑
k=0

f ktkΩ =

(
1

2πi

)4 ∞

∑
k=0

∫

Γ
f ktkΩ

=
∞

∑
k=0

∫

Γ
f ktk =

∞

∑
k=0

[ f k]0t
k.

After a change z = t5 of coordinates

φ f (z) =
∞

∑
k=0

(5k)!
(k!)5

zk

is a solution of the Picard-Fuchs equation L obtained above.

4.2 Characteristics of Picard-Fuchs Equations of

Calabi-Yau Threefolds

The aim of this section is to collect properties of Picard-Fuchs differential equations and to
investigate characteristics that a Picard-Fuchs operator of certain families of three dimensional
Calabi-Yau manifolds have. Such an operator will be called CY(3)-operator. Necessarily, this
definition will be preliminary, since it is not known which conditions attached to a differential
equation assure its origin as Picard-Fuchs equation. Some of the properties of a Picard-Fuchs
equations are related to variations of Hodge structure, hence it is necessary to recall the basic
definitions thereof. There is plenty of literature on this topic, see for example [PS08].
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4.2.1 Variations of Hodge Structure and Picard-Fuchs Equations

Let B be a complex manifold, a variation of Hodge structure (VHS) of weight k on B consists
of a local system VZ of finitely generated Z-modules and a finite decreasing filtration F •

of holomorphic subbundles of the holomorphic vector bundle V := VZ ⊗Z OB. These two
items have to be subject to the following two properties. For each b ∈ B the filtration F •

b of
VZ,b ⊗Z C defines a pure Hodge structure of weight k on VZ,b. The flat connection

∇ : V → V ⊗OB
Ω1

B, ∇(s f ) = s⊗ d f ,

whose sheaf of horizontal sections is VC := ZV ⊗Z C satisfies Griffiths transversality

∇(F p) ⊂ F p−1 ⊗ Ω1
B.

The data of a variation of Hodge structure can be presented as the quadruple (V ,∇,VZ,F •).
The trivial variation of Hodge structure, that induces the Hodge structure Z(k) on each fiber
is denoted by Z(k)B.
A polarization of a variation of Hodge structure of weight k on B is a morphism of variations

Q : V ⊗ V → Z(−k)B,

which induces on each fiber a polarization of the corresponding Hodge structure of weight
k. The definition of a variation of Hodge structure is inspired by results on the behavior
of the cohomology groups Hk(Xb,Z) in a family of complex manifolds as pointed out by P.
Griffith in [Gri68a, Gri68b]. A family of compact Kähler manifolds is a proper submersive
holomorphic mapping π : X → B from a Kähler manifold X to the complex base manifold B.
Each fiber Xb = π−1(b) is a smooth n-dimensional manifold. The local system

Rkπ∗Z =
{
Hk(Xb,Z)

}
b∈B

on B determines the holomorphic vector bundle Hk defined by

Hk := Rkπ∗Z ⊗Z OB.

In this geometric situation the connection∇ is called Gauss-Manin connection. The subbundles

F p =
{
FpHk(Xb)

}
b∈B

⊂ Hk

together with ∇ satisfy Griffiths transversality and the resulting variation of Hodge structure
is said to be geometric. Assume the base B to be one-dimensional with a local coordinate t
centered at a p ∈ B and consider the variation of Hodge structure (Hn,∇, Rnπ∗Z,F •). An

element L = ∑
n
j aj(t)∂

j
t of the stalk C{t}[∂t ] at t of the sheaf of differential operators acts

on F0 by extending ∂tω(t) := ∇ ∂
∂t

ω(t) for a fixed local section ω(t) of Fn. If L annihilates

ω(t), the differential equation L(y) = 0 associated to the differential operator L is called
Picard-Fuchs equation. For a locally constant n-cycles γt the equality

d

dt

∫

γt

ω(t) =
∫

γt

∇ ∂
∂t

ω(t)

implies that the periods
∫

γ
ω are solutions of L(y). In the case of families of Calabi-Yau

threefolds with h2,1 = 1 the C-vector space H3(X,C) has dimension four and ω , ∇∂/∂t ,
∇2

∂/∂t, ∇3
∂/∂t, ∇4

∂/∂t must be linear dependent over C{t}, hence the order of the Picard-Fuchs
differential equation is ≤ 4.
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Example 4.3 An elliptic surface π : X → P1 is said to be in Weierstraß-normalform if the
smooth fibers at t are given by

y2 = 4x3 − g2(t)x− g3(t)

with non-constant J-function

J(t) :=
g2(t)3

∆(t)
, ∆ = g2(t)

3 − 27g3(t)2.

The periods of differentials of the first kind
∫

γ
dx
y satisfy the differential equation

y
′′
(t) + p(t)y

′
(t) + q(t)y(t) = 0,

of degree two, where the coefficients are given by

p =
g
′
3

g3
− g

′
2

g2
+

J
′

J
− J

′′

J
′

and

q =
J
′

144J(J − 1)
+

∆
′

12∆

(
p +

∆
′′

∆
− 13∆

′

12∆

)
.

This was already known to F. Klein [KF90], a nice account together with a classification
of elliptic surfaces with three singular fibers can be found in U. Schmickler-Hirzebruch’s
diploma thesis [SH85].

4.3.1 Monodromy and Limiting Mixed Hodge Structure

Given a ring A and a local system of A-modules V on a topological space S, which is locally
and globally path connected, the monodromy representation of V is a map

ρ : π1(S, s) → AutA(Vs), s ∈ S.

For any loop γ : [0, 1] → S with base point s the pullback γ∗V is again a local system and
γ∗V is trivial since [0, 1] is simply connected. This yields the identification of γ∗V0

∼= Vγ(0)
with γ∗V0

∼= Vγ(1) and hence the map ρ.

Definition 4.3.1 (Monodromy representation of a local system) The map

ρ : π1(S, s) → AutA(Vs), s ∈ S.

is called the monodromy representation of the local system V , its image is called monodromy group.

The monodromy of a variation of Hodge structure is the monodromy of the underlying
local system. Note that for a geometric variation of Hodge structure the action of ρ(γ) is
compatible with the Poincaré pairing. In the following we restrict to the case of a variation of
Hodge structure V over the punctured disc ∆∗ := ∆ \ {0} and describe its limiting behavior
over ∆. Denote the image of ρ(γ) of a simple loop γ generating the fundamental group
π1(∆∗, p) by T. The local monodromy theorem going back to A. Borel and A. Landmann,
which can be found as Theorem 6.1 of [Sch73], says that T is quasi-unipotent and that its
eigenvalues are roots of unity. An endomorphism is called quasi-unipotent, if there are a
natural number e and n such that

(Te − Id)n = 0.
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Equivalently, on the level of Picard-Fuchs equations this translates to the property that the
local exponents at 0 are all rational. After eventually pulling back V along an e-fold cover one
can assume e = 1. Construct the nilpotent endomorphism N as 1

2πi times the logarithm of T,
where the logarithm is defined as

log(T) = (T − Id) − (T − Id)2

2
+ . . . + (−1)n+1 (T − Id)n

n
.

In [Del70] P. Deligne describes how N is used to obtain a natural extension of V and ∇ to ∆.
Choose a flat multivalued frame φ1(t), . . . , φk(t), then

ej(t) := φj(t)t
−N , j = 1, . . . , k

is single valued and F := 〈e1(t), . . . , ek(t)〉 determines the extension of V to Ṽ over ∆. With
respect to F the connection reads

∇̃ = d− N
dt

t
.

This connection on Ṽ has a simple pole at the origin and the residue of the connection at
t = 0 is −N. This two properties determine the canonical extension up to isomorphism. The
connection ∇ is an instance of regular singular connection.

Definition 4.3.2 (Regular singular connection) A regular singular connection on the Riemann
surface B with singular locus Σ = {b1, . . . , br} ⊂ B is a pair (V ,∇) of a vector bundle V and a
morphism of sheaves of groups ∇ : V → V ⊗ Ω1

B(log(Σ)) that satisfies the Leibniz rule

∇( fm) = d f ⊗m + f∇(m).

for local sections f of OB and m of VC .

The sheaf Ω1
B(log(Σ)) is the sheaf of differential one forms that possess poles at most of order

one at points of Σ. In particular, it follows that Picard-Fuchs equations are Fuchsian equa-
tions. W. Schmid [Sch73] showed that the Hodge-subbundles F p of V extend to holomorphic
subbundles of the canonical extension Ṽ , hence F•lim := F •

0 is a filtration on the fiber V0 of the
canonical extension Ṽ . The canonical isomorphism between the C-vector spaces Ṽ0 and Vb

induces an action of N on F0
lim, which satisfies N(F

p
lim) ⊂ F

p−1
lim . Thus N induces a map

N : Fp
lim/F

p+1
lim → F

p−1
lim /Fp

lim.

If δ = t∂t, Griffith transversality ∇̃δ(F̃ p) ⊂ F̃ p−1 is also true for the extended connection and
we get a second linear map

∇̃δ : Fp
lim/F

p+1
lim → F

p−1
lim /Fp

lim

and these two maps are related by
∇̃δ = −N.

Denote the Z-module generated by 〈e1(0), . . . , ek(0)〉 by V0
Z, then in general (V0

Z,F •
0 ) is not a

Hodge structure. Again P. Deligne found the right notion to fix this misfortune, he introduced
mixed Hodge structures.

Definition 4.3.3 (Mixed Hodge structure) A mixed Hodge structure (MHS) V consists of a Z-
module VZ, the increasing weight filtration

. . . ⊂ Wm−1 ⊂ Wm ⊂ Wm+1 ⊂ . . .
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on VQ and the decreasing Hodge filtration

. . . ⊃ Fp−1 ⊃ Fp ⊃ Fp+1 ⊃ . . .

on VC. for each m, these two filtrations are required to satisfy the condition, that the induced filtration

FpGrWm := Im
(
Fp ∩Wm → GrWm

)

on
GrWm := Wm/Wm−1

is a Q-Hodge structure of weight m.

For a geometric variation of Hodge structure of the punctured disc the weight filtration in-
teracting with F•lim can be defined using the nilpotent logarithm of the monodromy N.

Definition 4.3.4 (Monodromy weight filtration) Suppose that V is a finite dimensional vector
space over a field of characteristic zero, and suppose that N is nilpotent endomorphism on V. Then
there is a unique increasing filtration W•(N) of V, called the monodromy weight filtration such
that

1. N(Wl(N)) ⊂ Wl−2(N) and

2. Nl := GrWk+l → GrWk−l , l ≥ 0 is an isomorphism.

After the shift WnV0 = Wk−n, the following theorem holds.

Theorem 4.3.5 The logarithm of the monodromy acts on V0 and builds together with F•lim a mixed
Hodge structure.

If the indicial equation of a differential equation on P1 of order n at a point x0 equals (σ − l)n

then by the discussion of Section 2.2.2 the monodromy at x0 is maximal unipotent. Thanks to
the tools from Hodge theory we are ready to prove that for Picard-Fuchs equations of families
of Calabi-Yau manifolds the converse is also true.

Proposition 4.3.6 If the Picard-Fuchs equation of a family of Calabi-Yau threefolds

f : X → B \ {b1, . . . , br}

over a one dimensional base B has maximal unipotent monodromy at bj, the indicial equation at bj is

(λ − l)4 = 0

Proof Our proof is guided by the proof on Page 79 in [CK99]. All we need to is to show that
for a local generator ω(z) of F̃3 the set ω,∇δω,∇2

δω,∇3
δω are linear independent near z = 0

and then read of the indicial equation of the corresponding differential operator. The first
step is to verify the decomposition

F3
lim ⊕W5 = H3(X,C).

Note W6 = H3(X,C) and W5 = ker(N3) by definition. The linear map N is nilpotent with
N4 = 0 but N3 6= 0, this implies dim(W6/W5) = 1. Because Fi

lim = 0, i = 4, 5, 6 their quotients
(W6 ∩ Fi

lim)/W5, i = 4, . . . , 6 are zero, too. Since Fp induces a Hodge structure of weight 6 this
implies (W6 ∩ F3

lim)/W5 6= {0} and therefor F3 ∩W5 6= {0} = {0}. The decomposition above
of H3(X,C) shows that a local basis ω of F̃3 evaluated at 0 is not contained in the kernel of
N3 and

ω(0),N(ω(0)),N2(ω(0)),N3(ω(0))
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constitute a basis of H3(X,C).
Recall that the action of ∇̃δ and −N coincide on F

p+1
lim /Fp

lim. In other words ∇̃j(ω)(0) and

(−N)j(ω(0)) differ only by elements of F4−j
lim , j = 1, . . . , 3. Together with N(F

p
lim) ⊂ F

p−1
lim and

dim(F
p
lim) = 4− p this yields the linear independence of ω,∇δ(ω),∇2

δ(ω),∇3
δ(ω) at z = 0. In

this basis the Picard-Fuchs equation is

(
∇̃4

δ + f3(z)∇̃3
δ + f2(z)∇̃2

δ + f1(z)∇̃δ + f0(z)
)

ω = 0

with indicial equation

f (λ) = λ4 + f3(0)λ3 + f2(0)λ2 + f1(0)λ + f0(0).

Since we were able to write the connection ∇̃ in a local basis of F̃ at z = 0, we can conclude
that the residue of the connection, which reads




0 1 0 0
0 0 1 0
0 0 0 1

− f0(0) − f1(0) − f2(0) − f3(0)


 ,

is −1/2πi log(T) = −N. Using the nilpotency of N it follows that fi(0) = 0, i = 1, . . . , 3 and
f (λ) = λ4. �

This leads to the definition of a MUM-point.

Definition 4.3.7 (MUM-point) If p ∈ P1 is a singular point of a Fuchsian differential equation L
of order n and the indicial equation of L at p is σn = 0, the point p is called a MUM-point.

Families of Calabi-Yau manifolds do not need to have a point of maximal unipotent mon-
odromy. Three-dimensional families without this property were constructed by J. C. Rohde
in [Roh09] and also considered by A. Garbagnati and B. van Geemen in [GG10,Gar13]. In this
case the Picard Fuchs equation is of order two. Further examples with Picard-Fuchs equa-
tions of order four were found by S. Cynk and D. van Straten [CS13]. Up to now we obtained
Picard-Fuchs equations locally from holomorphic vector bundles on a Riemann surface Bwith
a connection, hence the coefficients are holomorphic functions. Since Serre’s GAGA principle
is true for vector bundles with regular singular points over the projective line and passing
to a generic point turns an algebraic vector bundles with regular singular connections into a
C(z)-module, we can assume that the coefficients of the Picard-Fuchs equations are rational
functions. Furthermore we can employ D-module techniques if we investigate the variation
of cohomology of families of projective varieties over P1. Details can be found in Chapter six
of [PS03] by M. van der Put and M. F. Singer and in N. M.Katz’ article [Kat82]. For the vector
bundle Hdim(X) the role of a cyclic vector is played by the holomorphic n-form ωn,0, that by
Griffiths transversality satisfies

∫

X
ωn,0 ∧∇ωn,0

{
= 0, i 6= dim(X)

6= 0, i = dim(X)
.

Hence we can apply Proposition 2.1.8 to conclude that the differential module ML associated
to a Picard Fuchs operator of a one-parameter family of Calabi-Yau varieties L is self dual.
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4.3.2 Arithmetic Properties

In this section we follow the books by Y. André [And89] and by B. Dwork, G. Gerotto, and
F. J. Sullivan [DGS94] to explain the behavior of the denominators of coefficients of power
series expansion of monodromy invariant periods of a family of projective manifolds over a
smooth curve.

Definition 4.3.8 (G-function) A power series f = ∑
∞
i=0 fix

i ∈ QJxK, where all coefficients are in a
fixed number field K with ring of integers OK, is called G-function if

1. for every embedding jv : K → C, ∑ jv( fi)x
i is analytic at 0.

2. there is a sequence (dn)n∈N with subi
{ 1

i log(di)
}

< ∞ such that dnym ∈ OK, m = 0, . . . , n
for all n.

3. there is a linear homogeneous differential operator D ∈ K(x)[dx] with D( f ) = 0.

If we do not demand that f solves a differential equation and strengthen the condition on the
coefficients of f , we get the notion of globally boundedness.

Definition 4.3.9 (Globally bounded) A Laurent series f ∈ K((x)) ⊂ Q((x)) is called globally
bounded, if f has the following two properties.

1. For all places v of K the radius of convergence of the embedded series is nonzero.

2. There exists a nonzero natural number N such that f ∈ OK[ 1
N ]((x)).

If f ∈ Q[ 1x ]{x} is a convergent Laurent series, the statement that f is a globally bounded
G-function can be rephrased in terms of N-integrality.

Definition 4.3.10 (N-integral) A formal power series f = ∑
∞
i=0 aix

i ∈ QJxK is called N-integral if
a natural number N ∈ N∗ exists such that such Niai ∈ Z.

For convergent power series with Q-coefficients that solve differential equations the coin-
cidence of globally boundedness and N-integrality is an immediate consequence from the
definitions.

Proposition 4.3.11 A convergent power series f with coefficients in Q is a globally bounded G-
function exactly if it is N-integral and if there exist a linear homogeneous differential equation L such
that f solves L.

The diagonalization operator is a map δ : K((x1, . . . , xn)) → K((x)) which sends a Laurent
series ∑ ai1 ,...,inx

i1 · . . . · xin to ∑ ak,...,kx
k. Via series expansion this map δ can also be interpreted

as a map on the rational functions in n-variables. A series in the image of δ is called a diagonal.
On page 26 of [And89] it is explained that diagonals and globally bounded G-functions are
closely related.

Lemma 4.3.12 The diagonal of a rational function f ∈ KJxK is a globally bounded G-function.

Extending results of G. Christol and H. Fürstenberg in the one variable case, J. Denef and
L. Lipschitz described in Section 6 of [DL87] the relation between diagonals of algebraic
functions in n variables and that of rational functions in 2n variables.

Proposition 4.3.13 Any diagonal of an algebraic function in n variables can be written as the diagonal
of a rational function in 2n variables.
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This is used on page 185 of [And89] to describe periods of certain families of projective
varieties.

Theorem 4.3.14 Let f : X → B \ {b0, . . . , bs} be a family of projective smooth varieties of dimension
n over a smooth curve B defined over K ⊂ Q with local coordinate x near b0. Assume that f extends
to a projective morphism f

′
: X

′ → B such that ( f
′
)−1(b0) is a simple normal crossing divisor.

Then there is a basis ωi of logarithmic n-forms such that for any n-cycle γb invariant under the local
monodromy at b0 the Taylor expansion of 1

(2πi)n

∫
γb

(ωi)b in x is the diagonal of an algebraic function

in n + 1 variables and therefor a globally bounded G-function.

Hence the unique holomorphic solution y0 of a Picard-Fuchs equation of a family of projective
Calabi-Yau threefolds Xz with maximal unipotent monodromy defined over Q is N-integral.
As explained in Chapter 2 and in Proposition 4.3.6. If the corresponding Picard-Fuchs equa-
tion has a MUM-point, there are two further solutions y1, y2

y0 := 1+ a1z + a2z + . . .

y1 := log(z)y0 + f1, f1 ∈ zC{z}
y2 := log(z)2y0 + 2 log(z) f1 + f2, f2 ∈ zC{z}

The theory of elliptic curves suggests to consider the exponential of the quotient τ = y1/y0.

Definition 4.3.15 (q-coordinate and mirror map) If L is a Fuchsian linear differential equation of
order greater than one in the coordinate z with maximal unipotent monodromy at 0 the q-coordinate
is defined as

q(z) := exp
(
2πi

y0(z)ln(z) + y1(z)

y0(z)

)
= z exp

(
2πi

y1(z)

y0(z)

)
∈ zCJzK.

Its inverse z(q) is called mirror map.

Analytic continuation along a small loop around zero carries τ = y1/y0 to τ + 1, hence q is
single valued locally at 0. In the case of Picard-Fuchs equations of families of elliptic curves
we directly touch Chapter 3. For example in [Dor00] it is proven that the q-series z(q) of a
degree two Picard-Fuchs equation L of a family of elliptic curves is a modular form exactly if L
is a uniformizing differential equation. More general for Picard-Fuchs equations of families of
elliptic curves q(z) of the corresponding Picard-Fuchs equation is N-integral. The same is true
for families of K3 surfaces whose Picard-Fuchs equation can be written as a symmetric square
of a second order Fuchsian equation. Now we restrict to the case of Picard-Fuchs differential
equations of Calabi-Yau threefolds with a MUM-point. For certain hypergeometric Fuchsian
differential equations including the famous quintic example, that are mostly known to be
Picard-Fuchs equations of families of Calabi-Yau threefolds, Krattenthaler and Rivoal prove
the N-integrality of the Taylor coefficients of q(z) in [KR10]. More cases can be found in the
work of E. Delaygue [Del12]. In [Vol07] V. Vologodsky announces that the N-integrality of
q(z) is true for a wide range of families of Calabi-Yau threefolds. Using the coordinate q the
Picard Fuchs differential equation has a special local normal form.

Proposition 4.3.16 Consider a self-dual linear homogeneous differential equation L of order 4 with 0
a MUM-point and q-coordinate as above, then L can be written as

L = θ2
1

K(q)
θ2, θ = q

d

dq
, K(q) = N0

(
(q

d

dq
)2 (y2(q)/y0(q))

)
∈ CJqK.
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Proof This equality can be found by a direct computation as in Section 5.21 of [Inc56] com-
bined with the relation of the coefficients of L induced by self-duality of L. Another complete
account is Section 3.4 of [Bog12].

The above local invariant multiplied by an integer N0K(q) is called Yukawa coupling and it
has a geometric interpretation. If L is the Picard Fuchs equation of a family of Calabi-Yau
threefolds with a MUM-point at 0, then in Chapter 5.6 of [CK99] it is explained that for a
suitable multiplicative constant K(q) coincides with

∫

Xz

ω(z) ∧ dn

dzn
ω(z),

where ω(z) is a top dimensional holomorphic form. A discussion of K(q) in terms of exten-
sion data of Hodge structure is P. Deligne’s article [Del96]. The Yukawa coupling is a local
invariant of a differential equation and can be used to check if two differential equations are
related by a formal change of coordinates. The discussion of the sections above enables us to
give a characterization of Picard-Fuchs differential equations of families of three dimensional
Calabi-Yau threefolds with a MUM-point.

• The differential operator L is irreducible, Fuchsian and of order four.

• The differential module ML is self-dual and monodromy group is conjugated to a sub-
group of SP4(Z).

• 0 is a MUM-point.

• The unique holomorphic solution 1 + O(z) near 0 is N-integral and all occurring local
exponents are rational.

• The q-coordinate q(z) is N-integral.

Characterization (CY(3)-equation) A differential equation that matches the properties listed above
is called CY(3)-equation.

It will become clear in Section 4.4.2 why we emphasized the existence of a MUM-point The
N-integrality of q(z) implies the N-integrality of z(q) and by Formula (2.3) of [AZ06] also
the N-integrality K(q). Given a Fuchsian equation it is in general not possible to determine
if it is a CY(3)-equation, since usually the N-integrality properties can only check for finitely
many coefficients. As indicated by example 4.8 it seems to be necessary to add at least the
N-integrality of the genus 0 instanton numbers to the characterization of CY(3)-equations.
Several years ago G. Almkvist, C. van Enckevort, D. van Straten, and W. Zudilin started to
compile a still growing list of CY(3)-equations [AESZ10] that is also available as an online
database [Str12].

4.4 Reconstruction of Topological Data

4.4.1 Homological Mirror Symmetry and the Γ̂-Class

Homological mirror symmetry (HMS) tries to formulate the mirror phenomenon in categorical
terms. The necessary material on derived categories is covered in Huybrecht’s book [Huy06]
and the book [GM10] by S. I. Gelfand and Y. I.Manin . To get an impression how (HMS)
should look like we start with the case of elliptic curves studied by E. Zaslow and A. Polischuk
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in [ZP98]. For an elliptic curve M = C/(Z ⊕ τZ) and its dual M̃ = (R2/(Z ⊕ Z)) they
proved an equivalence Db(M) ≈ F0(M̃), where F0(M̃) is obtained from F(M̃). The objects
of F(M̃) are pairs Ui = (Li, Ei) of special Lagrangian submanifolds Li equipped with certain
line bundles Ei.

Definition 4.4.1 (Special Lagrangian submanifold) For a Calabi-Yau manifold X of complex di-
mension n a special Lagrangian submanifold L is a Lagrangian submanifold of X with ℑ(Ω|L) = 0,
where Ω is a nowhere vanishing holomorphic n-form on X.

By Proposition 7.1 of [GHJ03], special Lagrangian manifolds are volume minimizing in their
homology class, for the elliptic curve M̃ they correspond to lines with rational slope. The
morphisms of F(M̃) are defined as

Hom(Ui,Uj) = C#{Li∩L j} ×Hom(Ei, Ej).

The construction for elliptic curves was inspired by Kontsevich’s proposal to call two smooth
algebraic complex varieties X and X

′
mirror equivalent if for Db(X) and the derived Fukaya

category DFuk(X
′
) there are equivalences

Mir : Db(X)
≈−→ DFuk(X

′
), Db(X

′
)

≈−→ DFuk(X).

This definition comes with a conjecture that Calabi-Yau threefolds come in pairs satisfying
the above equivalences [Kon95]. Note, that Db(X) depends only on the complex structure
of X and DFuk(X

′
) depends on the symplectic structure of X

′
. We do not try to survey

the constructions of DFuk(X
′
) and refer to [FOOO10] for an extensive discussion. Some

slightly different versions of this conjecture are (partially) proven in special cases. Results
are due to K. Fukaya (Abelian varieties) [Fuk02], M. Kontsevich and Y. Soibelmann (torus
fibrations) [KS01], P. Seidel (quartic K3 surfaces, genus two curve) [Sei03, Sei11], D. Auroux,
L. Katzarkov, and D. Orlov (weighted projective planes) [AKO08], M. Abouzaid and I. Smith
(4-torus) [AS10], A. Efimov (curves of higher genus) [Efi11], K. Ueda (toric del Pezzo surfaces)
[Ued06], Y. Nohara and K. Ueda (quintic threefold) [NU11] and N. Sheridan (Calabi-Yau
hypersurfaces in projective space) [She11]. If homological mirror symmetry is true, a natural
question is how to build a mirror X

′
from X. The points on X

′
parameterize the sheaves

Op and by homological mirror symmetry also certain objects Lp of DFuk(X). If these are
true Lagrangian subvarieties an inspection of the Ext-groups of Op suggests that Lp should
be a Lagrangian torus together with a local system on it. The following theorem by R. C.
McLean [McL98] explains why the local systems necessarily have to be added.

Theorem 4.4.2 The moduli space of special Lagrangian submanifolds L is a smooth manifold B with
TLB ∼= H1(L,R) ∼= Rn.

Hence, there are not enough Lagrangian submanifolds to get a matching of those with Op.
This suggested to consider special Lagrangian tori L with an U(1)-flat C → L-connection
∇. Finally, we get an alternative formulation of the mirror symmetry phenomenon, the
Strominger-Yau-Zaslow (SYZ) [SYZ96] picture. It formulates mirror symmetry as the exis-
tence of dual special Lagrangian torus fibrations

X
π

��
>>

>>
>>

>>
X

′

π
′

����
��

��
�

B

,
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where the preimage of a generic point π−1(p) is a special Lagrangian torus T and (π
′
)−1

is a dual torus Ť defined by Hom(π1(T),U(1)). Hence, the mirror X
′
is constructed as

{(L,∇), L is a fibre of π,∇ ∈ Hom(π1(T),U(1))}. The way back from (SYZ) to topological
mirror symmetry for Calabi-Yau threefolds is indicated in the first chapter of [Gro09]. By a
similar argument using Ext as above for Op, the structure sheaf OX is expected to correspond
to a Lagrangian sphere.
Recall that the group freely generated by isomorphism classes [X] of coherent sheaves on X
divided out by the relations [X] + [Z] = [Y], if X,Y, and Z fit in a short exact sequence

0 // X // Y // Z // 0

is called Grothendieck K-group K(X). A passage from Db(X) to the K-group K(X) is given
as the map

Db(X) → K(X), F • 7→ [F •] := ∑(−1)i[F i].

The common passage from K(X) to H∗(X,Q) is via the Chern character

ch : K(X) → H∗(X,Q).

In various situations the Mukai map v = ch(−)
√

td(X) is relevant. Recently, L. Karzakov,
M. Kontsevich, and T. Pantev [KKP08] introduced the Γ̂-character to define a variant of the
Mukai map.

Definition 4.4.3 (Γ̂-character) For E ∈ K(X) denote the r-th Chern class by cr(E) and the Chern
roots by δi and define the Euler-Mascheroni constant as

γ := lim
n→∞

(
1+

1
2

+ . . . +
1
n
− log(n)

)
.

For a projective smooth variety the map Γ̂ : K(X) → H∗(X,C) from the K-group to complex coho-
mology defined by

Γ̂(E) := ∏
i

Γ(1+ δj)

is called Γ̂-character. The map Γ̂(1+ δ) is defined as exp
(
−γδ + ∑

∞
l=2

ζ(l)
l (−δ)l

)
and Γ̂X := Γ̂(TX)

is called Γ-class.

The Γ̂-class can be seen as an almost square root of the Todd class

td(E) :=
r

∏
i=1

1
1− exp(δi)

= 1+
c1(E)

2
+

c21(E) − 2c2(E)

12
+

c1(E)c2(E)

24
+ . . . .

The key to understand this is Euler’s reflection formula for the classical Γ-function

Γ(1+ z)Γ(1− z) = zΓ(z)Γ(1− z) =
πz

sin(πz)
=

2πiz

exp(πiz)(1− exp(−2πiz))
,

and the series expansion

log(Γ(z + 1)) = −γz +
∞

∑
l=2

ζ(l)

l
(−z)l , |z| < 1.

That yields

Γ̂∨
XΓ̂Xe

πic1(X) = (2πi)
deg
2 td(TX),
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where (2πi)deg /2 acts on H2k(X) by multiplication with (2πi)k. We also define the map
ψ : K(X) → H∗(X,C) by

ψ : K(X) → H∗(X,C), E 7→ (2πi)−n
(
(2πi)deg/2 ch(E) ∪ Γ̂X

)
,

that can be extended to Db(X) by ψ(E•) := ψ([E•]). The map ψ is compatible with the
Euler-bilinear form χ and the pairing

QM : H∗(X,C)× H∗(X,C) → C, (α, β) 7→ (2πi)n
∫

X
α∨ ∪ β ∪ exp(πic1(X)/2).

To be more precise let
χ(F , E) := ∑(−1)i dimHom(F , E [i])

the Euler pairing for complexes F , E , then

χ(E ,F) = χ(X, E∨ ⊗ ch(F)) = (2πi)−n
∫

X
(2πi)deg/2

(
ch(E∨) ∪ ch(F) ∪ td(X)

)

= (2πi)n
∫

X
(2πi)−2n

(
(2πi)

deg
2 ch(E∨) ∪ Γ̂∨

X ∪ (2πi)
deg
2 ch(F) ∪ Γ̂X

)
exp(

πic1(X)

2
)

= QM(ψ(E),ψ(F)),

where we applied the Riemann-Roch-Hirzebruch theorem in the first row. For Calabi-Yau
manifolds the paring QM coincides with QA introduced in Section 4.4.2. H. Iritani used
the Γ̂-class to prove a mirror correspondence for Calabi-Yau hypersurfaces in toric varieties.
To explain his account we have to introduce quantum cohomology and Landau-Ginzburg
models.

4.4.2 Gromov-Witten Invariants and the Dubrovin Connection

In this section let X be a projective variety of dimension n with vanishing odd cohomology,
set H∗(X) :=

⊕n
k=0 H

2k(X,Q). Assume that H2(X,Z) and H2(X,Z) are torsion free and
choose two basis {Ta} and

{
Tb
}
, a, b = 0, . . . ,N of H∗(X,Q) with

〈Ta, Tb〉 = δab.

Furthermore, put τ = t01 + ∑
N
i=1 tiT

i and τ = τ
′
+ τ2, where τ

′ ∈ ⊕
k 6=2 H

2k(X) and τ2 =

∑
l
i=1 tiT

i and τ0,2 = t0T0 + τ2. Frequently we will consider the zero locus Y →֒ X of a generic
section of a decomposable rank r vector bundle

E = L1 ⊕ . . .⊕Lr ,

where we assume Li, i = 1, . . . , r and c1(TX)− ∑
r
i=1 Li to be nef. To define quantum multipli-

cation it is necessary to state what Gromov-Witten invariants and stable maps are.

Definition 4.4.4 (n- pointed stable map) For a projective algebraic variety a genus g n-pointed
stable map is a connected complex curve C of genus g with n marked points (C, p1, . . . , pn) and a
morphism f : C → X, such that

1. the curve C posses at worst ordinary double points.

2. the points p1, . . . , pn are distinct.
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3. if Ci is a rational component and if f is constant on Ci, then Ci contains at least three nodal or
marked points.

4. if the arithmetic genus equals one and there are no marked points, then f is not constant.

The third and fourth property assures that there are only finitely many automorphisms of an
n-pointed stable map ( f ,C, p1, . . . , pn). Denote the moduli stack of genus zero, n-pointed
stable maps with f∗(C) = d ∈ H2(X,Z) by M0,n(X, d) and its coarse moduli space by
M0,n(X, d) [MB96]. If the evaluation maps at the i-th point are denoted by evi, Gromov-Witten
invariants can be defined as follows.

Definition 4.4.5 (Gromov-Witten invariants with gravitational descendents) For classes γi in
H∗(X), nonnegative integers di, and d ∈ H2(X,Z) the n-pointed Gromov-Witten invariants with
gravitational descendents are defined as

〈ψd1γ1, . . . ,ψdnγn〉0,n,d :=
∫

[M0,n(X,d)]virt
ψd1
1 ev∗1(γ1) ∪ . . . ∪ ψdn

n ev∗n(γn).

where [M0,n(X, d)]virt is the virtual fundamental class of M0,n and ψi is the first Chern class of the
line bundle over M0,n(X, d), whose fiber at a stable map is the cotangent space of the coarse curve at
the i-th marked point.

The virtual fundamental class was introduced exactly to be able to define the above integral
in general. Sometimes we can avoid the use of this advanced technology, for example if X is
smooth and convex, that is if for all maps f : P1 → X, we have H1(P1, f ∗(TX)) = 0. Then
by [FP95] M0,n(X, d) is a projective orbifold of dimension n + dim(X) −

∫
d ωX − 3 and we

can drop the label virt in the above definition. Here an orbifold of dimension m is a variety
locally equivalent to a quotient U/G, where G ⊂ GLm(C) is a finite group which contains
no non-trivial complex reflections and U ⊂ Cm is a G-stable neighborhood of the origin. If
di = 0 for all i, then

〈γ1, . . . ,γn〉0,n,d := 〈ψ0γ1, . . . ,ψ0γn〉0,n,d
are called Gromov-Witten invariants. By the so called effectivity axiom for a smooth projective
variety X the genus zero Gromov-Witten invariants 〈·, . . . , ·〉0,l,d are nonzero only if d lies in
the integral Mori cone

MZ(X) :=
{
∑ ai[Ci] | ai ∈ N0,Ci effective

}

of effective curves or if m ≤ 2 and d = 2. The degree axiom furthermore implies that for ho-
mogeneous classes γi the genus 0 Gromov-Witten invariants with gravitational descendents
are nonzero only if

n

∑
i=1

(degγi + 2di) = 2dimX + 2〈ωX, d〉 + 2n− 6.

Gromov-Witten invariants are used to define the big quantum ring QH∗(X), that is a defor-
mation of the usual ring structure on H∗(X,C). It depends on an element of

KC(X) :=
{

ω ∈ H2(X,C) | Im(ω) is Kähler
}
/ Im(H2(X,Z) →֒ H2(X,C)),

which is called a complexified Kähler class.
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Definition 4.4.6 (Big quantum product) For α, β ∈ H∗(X,C) the big quantum product is de-
fined as

α ∗bigτ β = ∑
l≥0

∑
d∈MZ(X)

N

∑
k=0

1
l!
〈α, β, τ

′
, . . . , τ

′
, Tk〉0,l+3,dT

ke〈d,τ2〉qd,

where qd = e2πi
∫
d ω, 〈d, τ2〉 =

∫
d τ2, τ = τ2 + τ

′ ∈ H∗(X), and ω ∈ H2(X,C) is a complexified
Kähler class.

Remark that the dependence on ω and τ2 is redundant in this context since 2πiω + τ2 is
a class in H2(X,C), nevertheless sometimes the explicit dependence on the complexified
Kähler moduli space is important. To be more precise, notice that the dependency on τ2 is
exponential and the big quantum product actually varies over

H0(X) ⊕ H2(X)/2πiH2(X,Z) ⊕ H>2(X,C),

where 2πiH2(X,Z) acts on H2(X,C) by translation. Assuming the convergence of ∗bigτ the
so called WDVV equations guarantee its associativity. In general it is not known if the above
product converges, one possibility to overcome this problem is to consider the formal ring

RJt0, . . . , tNK with R := QJqd, d ∈ MZ(X)K and interpret ∗bigτ as product on R. If X is not
projective the effectivity axiom does not hold and the even more general Novikov ring has to
be introduced, see Section 5 of [Man99]. Note that in the large structure limit τ = q = 0 or
equivalently q = 1, τ

′
= 0, and ℜ(e〈τ2,d〉) → −∞ the quantum product coincides with the

usual cup product. Whenever we consider ∗bigτ not as a formal product, we assume that ∗bigτ

converges for τ in

U :=
{

τ ∈ H∗(X)|ℜ(〈τ2, d〉) ≤ −M for all d ∈ MZ(X), ‖τ
′‖ < e−M

}
,

for a constant M > 0 and a norm ‖·‖ on H∗(X). The big quantum product involves all genus
zero Gromov-Witten invariants, it is useful to consider a restriction that only involves three
point genus zero Gromov-Witten invariants. Two similar ways to restrict to a product, which
involves three pointed Gromov-Witten invariants only, are to set τ = 0 or τ

′
= 0 and q = 1.

In the first case the resulting family of products will vary over KC(X) and in the second
case over H2(X,C)/2πiH2(X,Z). As formal products on RJt0, . . . , tNK these two restrictions
coincide if we set qd = e〈d,τ2〉.

Definition 4.4.7 (Small quantum product) For fixed ω the abelian group
⊕

k H
k(X,C) together

with the product

α ∗τ2 β := ∑
d∈MZ(X)

N

∑
k=1

〈α, β, Tk〉0,3,dTkqd

is called small quantum cohomology ring.

If X is a Fano variety by Proposition 8.1.3 in [CK99] the small quantum product is a finite sum
and hence defines a proper product on H∗(X). If odd cohomology vanishes both ring struc-
tures introduced above are equipped with a grading by setting deg(qd) :=

∫
d ωX and deg(Ti)

as half of the usual degree. The small quantum ring is well understood for homogeneous
varieties, for example quantum analogues of the classical Giambelli and Pieri formulas are
known, see the survey [Tam07] for references. We will follow [Buc03] and [Ber97] to review

the case of the Grassmanian of planes in four space X = Gr(2, 4) →֒ P(42)−1 = P5. The smooth
projective variety X has dimension four and an additive basis B of

⊕
k H

2k(X,Z) can be given
in terms of Schubert classes as
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H8 H6 H4 H2 H0

ω2,2 ω2,1 ω1,1 ω1,0 ω0,0

ω2,0

.

Since H2(X,Z) ∼= Z generates the ring H∗(X,Z) and is itself additively generated by a single
element ω1,0 the small quantum product can be considered as a product on H∗(X,Q)⊗Q Q[q].
Denote the image of the canonical embedding of ωλ ∈ H∗(X,Z) into H∗(X,Q)⊗Q Q[q] by σλ.
For Gr(2, 4) the small quantum product is completely determined by giving the multiplication
with ω1,0. From Section 8 of [Buc03] we know that the small quantum product with σ10
expressed in the basis {σ00, σ10, σ11, σ20, σ21σ22} is given by the matrix

MGr(2,4) :=




0 0 0 0 q 0
1 0 0 0 0 q
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0




.

We recalled this construction to exhibit an prototypical example of a situation we assume to
be in, that is the odd cohomology vanishes, there is no torsion and H2(X,Z) is generated
by a single element. The small quantum product can be used to define a connection on the
trivial holomorphic vector bundle F : H∗(X) × (U × C) → (U × C) over U × C with fibers
H∗(X,C).

Definition 4.4.8 (Extended Dubrovin connection) The meromorphic flat extendedDubrovin con-
nection ∇ on F is defined by

∇i :=
∂

∂ti
− 1

z
Ti∗bigτ , ∇z := z

∂

∂z
− 1

z
E ∗bigτ +µ,

where

E := c1(TX) +
N

∑
i=1

(
1− deg(Tk)

2

)
tkTk

is the Euler vector field and µ ∈ End(H∗(X)) is the Hodge grading operator defined by

µ|Hk(X,C) :=
1
2
(k− n)IdHk(X,C)

and z is a coordinate on C. For z = 1 the extended Dubrovin connection reduces to the Dubrovin
connection.

The bundle F together with the action of ∇ on the sections OF can also be considered as a
D-module denoted QDM(X), where the action of the ring of differential operators

D := OU [z]〈z∂z , ∂0, . . . , ∂N〉

on sections σ of OF is defined by extending

∂iσ = ∇i(σ) and z∂zσ = z∇z(σ).

The horizontal sections of the connection ∇ are solutions of a system of differential equations
in several variables

∇i(σ) = 0, i = 0, . . . ,N

∇z(σ) = 0.
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The partial differential equation L(t1, . . . , tN , ∂1, . . . , ∂N , z)(y) = 0 associated to the above sys-
tem is called extended quantum differential equation. If z = 1, the differential equation

L(t1, . . . , tN , ∂1, . . . , ∂N , 1)(y) = 0

is called quantum differential equation. If we furthermore restrict F to H2(X,C) and H2(X,Z)
isomorphic to Z, the quantum differential equation L(t) is a linear homogeneous differential
equation in one variable.

Example 4.5 For Gr(2, 4) the Dubrovin connection restricted to H2(X,C) with z = 1 is
(
q
d

dq
− MGr(2,4)

)
y(q) = 0.

After choosing the cyclic vector v := (1, 0, 0, 0, 0, 0) this is equivalent to the differential equa-
tion

θ5q − 2q(2θq + 1), θq = q
d

dq
.

Note that this differential equation is not Fuchsian, since the singular point at ∞ is not regular
singular. The index of Gr(k, n) is n, hence the first order differential system ∇z(σ) = 0 with
respect to the basis B is

z
∂

∂z
+

4
z
MGr(2,4) +




− 1
2 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2




.

With the same cyclic vector v as above this is equivalent to the differential equation

z4(2θz + 7)(2θz + 1)(θz + 2)3 − 4096qθz , θz = z
d

dz
.

If Y is a Calabi-Yau manifold the Dubrovin connection induces the natural A-model variation
of Hodge structure, see Section 8.5 of [CK99]. We restrict to the case where ι : Y →֒ X is a
Calabi-Yau hypersurface in the n-dimensional ambient variety X. Let Ũ = ι∗(U) ∩ H2(Y)

then α ∈ ι∗(H2(X,Z)) acts on Ũ by translation with (2πi)α and we denote Ũ
′ by U

′
. Define

the ambient cohomology classes as H∗
amb(Y) := Im(ι∗ : H∗(Y) → H∗(X)). By Corollary 2.5

of [Iri09] the small quantum product respects ambient classes, hence it is possible to restrict
the Dubrovin connection to Famb := H∗

amb(Y) ×U
′ → U

′
as

∇A
amb : H

∗
amb(Y)⊗OU ′ → H∗

amb(Y) ⊗ Ω1
U

′ .

The connection ∇A
amb induces on HA

amb a variation of Hodge structure.

Definition 4.5.1 (Ambient A-VHS) The quadruple (HA
amb,∇A,F •,QA) is called ambient A-variation

of Hodge structure, it consists of the locally free sheaf HA
amb := H∗

amb ⊗OU
′ , the flat Dubrovin con-

nection ∇A, the Hodge filtration F p
A :=

⊕
j≤2(n−1−p) H

j
amb(Y) and the pairing

QA(α, β) = (2πi)n−1
∫

Y
α∨ ∪ β,

where α∨ is defined as ∑ (i)kαk, if α = ∑k αk ∈ H∗(X,C) =
⊕

k H
k(X,C).
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An important feature of the (extended) Dubrovin connection ∇ is that a fundamental system
of horizontal sections of ∇ can be given explicitly in terms of gravitational descendents. Let

zdeg /2 act on α ∈ H∗(X,C) by z
deg/2
|Hk(X,C)

= zk/2 IdHk(X,C).

Proposition 4.5.2 The End(H∗(X)) valued function

S(τ, z)α = e
−τ0,2

z α − ∑
(d,l) 6=(0,0)
d∈MZ(X)

N

∑
k=1

Tk

l!

〈
e−τ0,2/zα

z− ψ1
, Tk, τ

′
, . . . , τ

′
〉

0,l+2,d
e〈τ2,d〉

implies multivalued maps

si(τ, z) := S(τ, z)z−
deg
2 zρTi, i = 1, . . . ,N

that build a fundamental system of flat sections of ∇, where ρ denotes the first Chern class of
the tangent bundle ρ = c1(TX). Each si is characterized by its asymptotic behavior si(τ, z) ∼
z−deg /2zρe−τ2Ti in the large radius limit.

Notice that after the expansion

1
z− ψ1

=
∞

∑
k=0

(1/z)k+1(ψ1)
k

the symbol
〈

e−τ0,2/zα
z+ψ1

, Tk, τ
′
, . . . , τ

′
〉
0,l+2,d

is explained by

∑
l

〈
α

z− ψ1
, β,γ, . . . ,γ

〉

0,l+2,β
=

∞

∑
k=0

(1/z)k+1 ∑
l

〈ψk
1α, β,γ, . . . γ〉0,l+2,β.

Proof The idea of the proof goes back to A. Givental. The horizontality of si in the direction
ti is worked out as Proposition 2 of [Pan98]. The rest is Proposition 2.4 of [Iri09].

By Lemma 10.3.3 of [CK99] the generating function of 〈si, 1〉 can be defined as follows.

Definition 4.5.3 (JX-function) The H∗(X,C) valued function

JX(τ, z) = eτ0,2/z

(
1+ ∑

d∈MZ(X)

N

∑
k=0

qd
〈

Tk
z− ψ1

, 1
〉

0,2,d
Tk

)
= eτ0,2(1+O(z−1)),

where qd = e〈d,τ2〉 is called Givental J -function.

To define an analogue for ι : Y →֒ X given as the zero set of a global section of the decom-
posable vector bundle E , it is necessary to introduce a twisted version of the Gromov-Witten
invariants. The vector bundle over M0,k(X, d) whose fiber over f is H0(C, f ∗(E)) is denoted
by Ed,k and the vector bundle whose fibers over f consist of sections s ∈ H0(C, f ∗(E)) that
vanish at the i-th marked point is denoted by E ′

(d,k,i). These vector bundles fit into the exact
sequence

0 // E ′
d,k,i

// Ed,k // e∗i (E) // 0 .

and twisting with cn(E ′
d,n,n) yields the twisted Gromov-Witten invariants and the function JE .
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Definition 4.5.4 (Twisted Gromov-Witten invariants and JE ) With assumptions as in Defini-
tion 4.4.5 of the untwisted Gromov-Witten invariants with gravitational descendents we define twisted
Gromov Witten-invariants with gravitational descendents for the vector bundle E as

〈γ1ψd1 , . . . ,γnψdn〉E0,n,d :=
∫

[M0,n(X,d)]virt
ev∗1(γ1) ∪ ψd1

1 ∪ . . . ∪ ev∗n(γn) ∪ ψdn
1 ctop(E

′
d,n,n)

and a corresponding function JE by

JE (τ, z) := eτ0,2

(
1+ ∑

d∈MZ(X)

N

∑
k=0

qd
〈

Tk
z− ψ1

, 1
〉E

0,2,d
Tk

)

In the next section we see that the J -function associated to a toric variety is closely related
to the I-function.

4.5.1 Giventals Approach and Landau-Ginzburg Models

The necessary material on toric manifolds can be found in W. Fulton’s book [Ful93]. Let
M ∼= Zn be a lattice and N = Hom(M,Z) be the dual lattice. Denote MR = M ⊗ R,
NR = N ⊗ R and define the dual pairing 〈·, ·〉 : M× N → R. A fan Σ is a collection of cones
{σ ⊂ NR} with σ ∩ −σ = {0} and σ = ∑ R≥0bi, bi ∈ N, such that any face of a cone in Σ

is again a cone in Σ. A cone with the first mentioned property is called strongly convex and
a cone with the second mentioned property is called a polyhedral cone. There is a standard
procedure that associates a toric variety XΣ to any fan. The toric variety XΣ is projective
exactly if Σ admits a strictly convex piecewise linear support function φ : NR → R. The
set of l-dimensional cones of Σ is denoted by Σ(l). Much information of XΣ is encoded as
combinatorial data of Σ, for example X is compact exactly if

⋃
σ∈Σ σ = NR and XΣ is smooth

if and only if for every σ ∈ Σ the generators of σ can be extended to a basis of the Z-module
N. In addition, XΣ is an orbifold exactly if the generators of all cones of Σ are R-linear
independent. A fan with this property is called simplicial. The set of irreducible subvarieties
of dimension one Di, i = 1, . . . ,m of XΣ that are mapped to themselves under the torus action
correspond to the elements of Σ(1). Denote the line bundles associated to Di by O(Di) and
their first Chern classes by ξDi

. A toric divisor is a sum ∑ aiDi with integer coefficients ai.
Especially the canonical bundle ωXΣ

can be given in terms of the divisors Di as O (−∑ Di).
The primitive generators w1, . . . ,wm ∈ N of the elements of Σ(1) define a map β : Zm → Zn

mapping the standard basis vectors ei to wi. In toric mirror symmetry as introduced in [Bat94]
another approach using polytopes is used. Given an n-dimensional polytope ∆ ⊂ MR with
integral vertices its supporting cone C∆ is defined as

C∆ := 0∪ {(x0, x1, . . . , xn) ∈ R ⊕ MR | (x1/x0, . . . , xn/x0) ∈ ∆, x0 > 0} .
Then a projective toric variety X∆ can be defined as the projective spectrum Proj S∆ of the
subring S∆ of C((x0, . . . , xn)) whose C-basis are monomials xm0

0 · . . . · xmn
n with (m0, . . . ,mn)∈

C∆. That for toric projective varieties these two approaches are equivalent is a standard fact in
toric geometry and is explained in Section 2 of [Bat94]. Starting with a polytope ∆ for every
l-dimensional face τ ⊂ ∆ define the cone σ(τ) ⊂ MR consisting of the vectors λ(p − p

′
),

where λ ∈ R≥0, p ∈ ∆, p
′ ∈ τ, and the dual cone σ̌(τ). The fan Σ(∆) with XΣ(∆) = X∆

consists of the cones σ̌(τ), where τ runs over all faces of ∆. Conversely, the construction of
a polytope ∆ ⊂ MR from a fan Σ ⊂ NR involves the choice of the strictly convex piecewise
linear function φ on Σ. The convex polytope ∆(Σ, φ) is constructed as

∆(Σ, φ) :=
⋂

σ∈Σ(n)

(−h|σ + σ̌),
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where the restriction h|σ is considered as an element of M. A lattice polytope ∆ ⊂ M of
dimension n with interior lattice point 0 is called reflexive if the dual polytope

∆◦ = {v ∈ NR | 〈m, v〉 ≥ 1,m ∈ ∆} .
is a again lattice polytope. This construction is involutional (∆◦ = ∆). In [Bat94] V. Batyrev
used this construction to associate to a family of Calabi-Yau hypersurfaces in a toric variety
X∆ another family of Calabi-Yau varieties in X∆◦ . The prelude on toric varieties allows us to
define the IE -function associated to a subvariety Y →֒ X = XΣ defined by the vector bundle
E = L1 ⊕ . . .⊕Lr. This function depends only on combinatorial data of Σ and the first Chern
classes ξLi

of Li.

Definition 4.5.5 (I -function) The H∗(X) valued function

IE (q, z) := e〈d,τ2〉/z


 ∑

d∈MZ(X)

qd
r

∏
a=1

∏
〈d,ξEa〉
v=−∞ (ξLa

+ vz)

∏
0
v=−∞ (ξLa

+ vz)

v

∏
j=1

∏
0
v=−∞

(
ξDj

+ vz
)

∏
〈ξDj

,d〉
v=−∞

(
ξDj

+ vz
)




is called Givental I-function. If E = 0 we write IX := I0.
One of A. Giventals insights in [Giv98] was that the function JE and IE are identical up to
change of coordinates. Such a direct relation cannot exist if we consider IE of a complete
intersection Y, since JY takes values in H∗(Y) but the image of IY lies in H∗(X), indeed this
was the reason why we introduced twisted Gromov-Witten invariants in the last section. The
next theorem clarifies why the additional variable z was needed.

Theorem 4.5.6 Let X denote a non-singular compact Kähler toric variety and Y ⊂ X be a non-
singular complete intersection with positive first Chern class c1(TY). The function IE (q, z) has an
expansion

IE = f (q) + g(q)/z +O(z−2)

and the equality

f (q)JE (η(q), z) = IE (q, z), η =
g(q)

f (q)

holds.

If E = 0 the asymptotic expansion simplifies to

IX = 1+ g(q)/z +O(z−2),

and IX(q, z) = JX(g(q), z) holds. If moreover X is Fano then g(q) = Id. The map η(q) :
{(q1, . . . , ql) | 0 < |qi| < ǫ} → H≤2(X,C)/2πiH2(X,Z) is called mirror map. Much work has
been done to transfer Theorem 4.5.6 to more general situations, see for example [Kim99,
Lee08]. In view of mirror symmetry the crucial fact about IE (τ, z) is that it solves a partial
differential equation Pd.

Proposition 4.5.7 With θq j := qj∂q j = ∂tj the function IE is a solution of the partial differential
equation

Pd := ∏
ρ:〈ζDρ ,d〉>0

〈ζDρ ,d〉−1

∏
k=0

(
N

∑
j=1

(〈ζDρ , d〉θq j) − kz

)

∏
i:〈ζEi ,d〉<0

−〈ζLi
,d〉+1

∏
k=0

(
−

r

∑
j=1

(〈ζLi
, d〉θq j)− kz

)

− qd ∏
ρ:〈ζDρ ,d〉<0

〈ζDρ ,d〉+1

∏
k=0

(
N

∑
j=1

(〈ζDρ , d〉θq j)− kz

)

∏
i:〈ζEi ,d〉>0

〈ζLi
,d〉−1

∏
k=0

(
−

r

∑
j=1

(〈ζLi
, d〉θq j)− kz

)
.
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It was again A. Givental who observed that another solution of Pd is given by an integral of

the form
∫

Γ
eW

0
q/zω related to a Landau-Ginzburg model that is constructed from the combi-

natorial data of the fan Σ.

Definition 4.5.8 (Landau-Ginzburg model) A Landau - Ginzburg model is a not necessary
compact quasi projective variety X together with a smooth map W : X → C called potential.

The most important special case is X = (C∗)n and W a Laurent polynomial. A partition
I0 ⊔ . . . ⊔ Ir of {1, . . . ,m} such that ∑i∈Ij

Di is nef for 1 ≤ j ≤ r is called nef partition. If XΣ

is smooth, β : M → Zm, u 7→ (u(w1), . . . , u(wm))t for integral primitive vectors w1, . . . ,wm of
Σ(1) and D : Zm → Pic(XΣ), v 7→ ∑ viO(Di) build the exact divisor sequence

0 // M
β

// Zm D
// Pic(XΣ) // 0 .

If Pic(XΣ) is isomorphic to H2(X,Z) tensoring with C∗ yields the exact sequence

0 // T := Hom(N,C∗) // (C∗)m
pr

// H2(X,C∗) // 0 .

The exact divisor sequence splits, hence there is a section l of D : Zm → H2(X,Z). After
choosing an isomorphism H2(X,C∗) ∼= (C∗)m−n and a basis {q1, . . . , qm−n} of (C∗)m−n the
section l can be given as a matrix (lia)1≤i≤m,1≤a≤m−n. The mirror of the zero locus Y →֒ X of
a general section of E defined by a nef partition I0 ⊔ . . . ⊔ Ir is constructed as

Y
′
q :=

{
t ∈ T| W1

q (t) = 1, . . . ,Wr
q(t) = 1

}
,

where

W
j
q := ∑

i∈Ij

m−n

∏
a=1

(qliaa )
n

∏
k=1

t
(wi)k
k , j = 1, . . . , r

and t1, . . . , tm−n are coordinates for T. The set I0 defines the potential on Y
′
(q) as

W0
q := ∑

i∈I0

m−n

∏
a=1

(qliaa )
n

∏
k=1

t
(wi)k
k .

Two special cases are I0 = ∅ and I0 = {1, . . . ,m}, in the first case Y
′
(q) is Calabi-Yau and

in the second case X
′
q = Y

′
q is a mirror family for the toric variety X itself. The potential W0

q

is sometimes called Hori-Vafa potential since it has been considered by K. Hori and C. Vafa
in [HV00].

Example 4.6 The rays Σ(1) of the fan defining P4 are the standard vectors of Z4 and the
vector ∑

4
i=1−ei, thus the divisor sequence is

0 // Z4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 −1 −1 −1




// Z5
( 1 1 1 1 1 )

// Z // 0 .

If I0 = ∅ and I1 = {1, 2, 3, 4, 5}, then Y is the zero locus of a general section of the line bundle
associated to the anticanonical divisor −KP4 and hence Y is Calabi-Yau. The section l can
simply be taken as l(c) = (0, . . . , 0, c)t ∈ Zn+1, c ∈ Z and the Laurent-polynomial defining
the mirror Y

′
q inside (C∗)4 is

W1
q (t) = t1 + t2 + t3 + t4 +

q

t1 · . . . · t4
.
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If there is a resolution of singularities of the compactification Y
′

q of Y
′
q, it is denoted by Y̌

′
q

and we call (Yq, Y̌
′
q) a Batyrev mirror pair. Especially if Y

′
q is a three-dimensional Calabi-

Yau hypersurface by [Bat94] there is a Zariski open subset of Breg ⊂ B = H2(X,C∗), such
that for q ∈ Breg a crepant resolution always exists. Actually the resolution is constructed
from a resolution X

′ → T of a toric compactification of T. Recall that crepant resolutions
preserve the triviality of the canonical bundle. In general such a resolution does not exist and
orbifold singularities cannot be avoided. Once the construction of the the (k− 1)-dimensional
hypersurface Y̌

′
q is established, it is straightforward to define a second variation of Hodge

structure. The Poincaré residue Res(ω) ∈ Hk−1(Y̌
′
q) for ω ∈ Hk−1(X̌

′ \ Y̌ ′
q) is defined by the

equality ∫

γ
Res(ω) =

1
2πi

∫

Γ
ω,

where Γ is a tube of a (k− 1)-cycle γ of Y̌
′
q.

Definition 4.6.1 (Residue part) The residue part Hk−1
res (Y̌

′
q) is the Q-subspace of Hk−1(Y̌

′
q) defined

as the image of the residue map

Res : H0(X̌
′
,Ωk

X̌′ (∗Y̌ ′
q)) → Hk−1(Y̌

′
q),

where Ωk
X̌
(∗Y̌ ′

q) is the space of algebraic k-forms on X̌
′
with arbitrary poles along Y̌

′
q.

Denote the subbundle of Rk−1pr∗CB with fibers at q ∈ Breg given by Hk−1
res (Y̌

′
q) by HB,Q and

consider the locally free sheaf
HB := HB,Q ⊗Q OBreg

.

Together with the Gauss-Manin connection ∇B, the filtration

F p
B :=

⊕

j≥p

H
j,k−1−j
res (Y̌

′
q)

and the polarization QB(α, β) := (−1)
(k−2)(k−1)

2
∫
Y̌′
q

α ∪ β build a polarized variation of Hodge
structure.

Definition 4.6.2 (residual B-model VHS) The quadruple (HB,∇B,F •
B ,QB) is called residual B-

model VHS.

4.6.1 Toric Mirror Correspondence with Γ̂-Integral Structure

We follow the treatment of H. Iritani in [Iri09, Iri11], but instead of working with orbifolds we
restrict to the case of compact toric manifolds. A similar but more algebraic strategy can be
found in the article [RS10] by S. Reichelt and C. Sevenheck. Both approaches try to formulate
mirror symmetry as isomorphism of certain D-modules with matching integral structures. As
before we restrain to the case of hypersurfaces, where Y

′
q is given by a single equation W1

q (t).
And we give a natural Z-structure inside HB,Q spanned by vanishing cycles. If C denotes the
set of critical points of Wq := W1

q the relative homology group Hk(T,Y
′
q,Z) is isomorphic to

RZ,q := Hk(T,
{
ℜ(Wq(t)) ≫ 0

}
,Z) ∼= Z|C|.

The group RZ,q is generated by Lefschetz thimbles collapsing at the points of C. Furthermore
it fits into the exact sequence

0 // Hk(T) // Hk(T,Y
′
q)

∂
// Hk−1(Y

′
q) // Hk−1(T) // 0 ,
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where the boundary map ∂ maps a Lefschetz thimble to the corresponding vanishing cycle
in Y

′
q. The vanishing cycle map

vc : Hk(T,Y
′
q) → Hk−1(Y̌

′
q)

is defined as the composition of ∂ with the passage to the smooth manifold Y̌
′
q and the

Poincaré duality map

Hk−1(Y
′
q)

∂
// Hk−1(Y

′
q) // Hk−1(Y̌

′
q)

PD
// Hk−1(Y̌

′
q) .

The image of vc is described in Lemma 6.6 of [Iri11].

Lemma 4.6.3 The image of the map vc coincides with Hk−1
res (Y̌

′
q).

Hence the residual B-model variation of Hodge structure is equipped with a natural lattice.

Definition 4.6.4 The vanishing cycle structure Hvc
B,Z is defined as the image of Hk(T,Y

′
q,Z) under

the map vc.

The crucial point of Iritani’s work is that he is able to specify a lattices in the A-model via
the Γ-character from K-theory to cohomology that matches with Hvc(B,Z) under the mirror
correspondence. For a Calabi-Yau hypersurface ι : Y →֒ X denote the subset of elements of
K(Y) such that ch(E) ∈ H∗

amb(Y) by Kamb(Y).

Definition 4.6.5 (A-model lattice) For E ∈ K(Y) satisfying ch(E) ∈ H∗
amb(Y) define a ∇A-flat

section by

sol(E)(τ) := (2πi)−(k−1)S(τ, 1)(Γ̂Y ∪ (2πi)deg/2 ch(E)).

Then the local system Hamb
A,Z in HA = ker∇A ⊂ HA is defined by

Hamb
A,Z := {sol(ι∗(E))|E ∈ K(X)} .

We have collected all definitions needed to state H. Iritani’s theorems in the suitable context.

Theorem 4.6.6 Let ι : Y →֒ X a subvariety of the toric variety X and (Y, Y̌
′
) be a Batyrev mirror

pair, then there is an isomorphism

MirY : (HA
amb,∇A,F •

A,QA) → (HB,∇B,F •
B ,QB)

in a neighborhood of 0 with an induced isomorphism of Z-local systems

MirZ
Y : Hamb

A,Z
∼= Hvc

B,Z.

of local systems. Moreover, if E ∈ ι∗K(X) or E = Op, the A-periods identify with B-periods as

QA(φ, sol(E)(η(q))) =
∫

CE
Res

(
dt1 ∧ . . . ∧ tn

(Wq(t) − 1)t1 · . . . · dtn

)

for any section φ of HA and some integral (n− 1)-cycle CE .
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4.6.2 Special Autoequivalences

For a homological mirror pair (X,X
′
) of n-dimensional Calabi-Yau manifolds autoequiva-

lences of Auteq(DFuk(X
′
)) should correspond to autoequivalences of Db(X). We are con-

cerned with autoequivalences of Db(X) induced by tensoring with a line bundle L and
Seidel-Thomas twists. Recall that the map ψ was defined in Section 4.4.1 as

ψ : K(X) → H∗(X,C), E 7→ (2πi)−n
(
(2πi)deg/2 ch(E) ∪ Γ̂X

)
.

If the first Chern class of the ample generator L ∈ Pic(X) ∼= Z is H, from the multiplicativity
of the Chern character we get

ψ(ζ ⊗L) = (2πi)−n
(
(2πi)

deg
2 (ch(ζ) ∪ ch(L)) ∪ Γ̂X

)
= ψ(ζ) ∪ (2πi)

deg
2 eH .

It follows that the tensor product with L on the level of cohomology is

α 7→ α(2πi)
deg
2 eH.

With respect to the basis Hn−j

(2πi)j
, j = 0, . . . , n this is described by the matrix M⊗L with entries

(M⊗L)i,j =

{
1

(i−j)! , i ≥ j

0, else
.

If furthermore X has dimension three the matrix M⊗L simplifies to




1 0 0 0
1 1 0 0
1
2 1 1 0
1
6

1
2 1 1


 .

The matrix M⊗L coincides with the local monodromy of a Fuchsian differential equation at a
MUM-point with respect to the normalized Frobenius basis at this point. In addition consider
X

′
as generic fiber of a family p : X → P1 that posses an A1-singularity in a specific fiber Xc.

The geometric monodromy Mγ along a loop γ in P1, that encircles c exactly once and avoids
encircling further special basepoints, is a symplectic Dehn twist corresponding to a vanishing
sphere S. As explained in [Sei00] to any Lagrangian sphere S in X

′
it is possible to associate

a symplectic automorphism τS called generalized Dehn twist, that induces an autoequivalence
of the symplectic invariant DFuk(X). On the level of homology Hn(X,Q) the map Mγ is
described by the Picard-Lefschetz formula

α 7→ α + (−1)(n−1)n/2〈α, δ〉δ,

where δ is the homology class of S and n = dim(X). R. P. Thomas and P. Seidel proposed
certain autoequivalences mirroring generalized Dehn twist. We have to introduced Fourier-
Mukai transformations to understand their claim.

Definition 4.6.7 (Fourier-Mukai transformation) For two smooth complex projective varieties X,
Y and projections π1 : X × Y → X and π2 : X × Y → Y the Fourier-Mukai transform for
P ∈ Db(X × Y) is the exact functor

ΦP : Db(X) → Db(Y), φP(G) = Rπ2∗(π∗
1G ⊗L P).
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A cohomological analog of ΦP can be defined as

ΦH
α : H∗(X,C) → H∗(Y,C), β 7→ π2∗(α ∪ π∗

1(β)), α ∈ H∗(X × Y).

Using the Riemann-Roch-Grothendieck formula and the projection formula, analogue to Sec-
tion 5.2 of [Huy06], one sees that via ψ the Fourier-Mukai transforms ΦP and ΦH

ψ(P) are
compatible, that is the diagram

Db(X)
φP

//

ψ([·])
��

Db(Y)

ψ([·])
��

H∗(X,C) //
φH

ψ([P ])
// H∗(Y,C)

is commutative. An instance of Fourier-Mukai transforms of special interest is induced by a
spherical object.

Definition 4.6.8 (Spherical object) A complex E• ∈ Db(X) is called spherical if

• ExtiX(E, E) ∼=
{

C, if i = 0, dimX

0, otherwise

• E⊗ ωX
∼= E

that is if Ext∗(E, E) ∼= H∗(Sn,C) for the n-sphere Sn.

For Calabi-Yau varieties the second condition is trivially true since ωX = OX . Two examples
of spherical objects are the structure sheaf OX and line bundles on X. Using spherical objects
P. Seidel and R. P. Thomas introduced special autoequivalences of Db(X) [ST01].

Definition 4.6.9 (Spherical twist) The Fourier-Mukai transform TE : Db(X) → Db(X) associated
to

PE = Cone(π∗
2E∨ ⊗ π∗

1E → ∆∗(OX)),

where ∆ : X →֒ X × X is the diagonal embedding is called a spherical twist.

The spherical twist TE is an autoequivalence

TE : Db(X) → Db(X).

The descent TH
ψ(E •) of TE • to the level of cohomology spherical twist can be described fairly

easy.

Lemma 4.6.10 Let E• be a spherical object and X a Calabi-Yau manifold. Then TH
ψ(E •) : H

∗(X,C) →
H∗(X,C) is given as

TH
E (α) = α −QM

(
α,ψ([E•])∨

)
ψ([E•]).

Proof Similar to the proof of Lemma 8.12 in [Huy06]. �

For a Calabi-Yau variety X the Chern class ci(X) for i = 1 and i > dim(X) vanish, hence
exp(πic1(X)/2) equals one. Moreover, the Chern character of OX is trivial, thus ψ(OX) =
(2πi)−nΓ̂X. To express ΦH

OX
with respect to the basis 1/(2πi)n , . . . ,Hn/(2πi),H3, we have to

expand

Γ̂(TX) = exp

(
−γ

n

∑
i=1

δi + ∑
l≥2

(−1)lζ(l)

l

n

∑
i=1

δli

)
.
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as series in the Chern classes c1(X), . . . , cdim(X)(X). We use Newton’s identities, which express
δl1 + . . . + δln as polynomial in the elementary symmetric polynomials in δi. For a Calabi-Yau
manifold of dimension smaller than seven the Γ̂-class simplifies to

Γ̂(TX) =1− ζ(2)c
′
2 − ζ(3)c

′
3 +

(
1
2

ζ(2)2 +
1
2

ζ(4)
)

(c
′
2)

2 − ζ(4)c
′
4

+ (ζ(5) + ζ(2)ζ(3)) c
′
2c

′
3 − ζ(5)c

′
5 + (ζ(2)ζ(4) + ζ(6)) c

′
2c

′
4

−
(
1
3

ζ(6)(c
′
2)

3 +
1
6

ζ(2)3
)

(c
′
2)

3 +

(
1
2

ζ(3)2 +
1
2

ζ(6)
)

(c
′
3)

2 − ζ(6)c
′
6

+ (ζ(7) + ζ(3)ζ(4)) c
′
3c

′
4 −

(
1
2

ζ(3)ζ(4) + ζ(2)ζ(5) +
1
2

ζ(2)2ζ(3) + ζ(7)
)

(c
′
2)

2c
′
3

+ (ζ(2)ζ(5) + ζ(7)) c
′
5c

′
2 − ζ(7)c

′
7,

where

c
′
j =

{
cj(X), j ≤ dim(X)

0, else
.

Recall that the Bernoulli numbers can be used to express the values of the ζ-function at even

positive integers ζ(2n) = (−1)n−1 (2π)2n

2(2n)! B2n. Especially for dimension three the Γ̂-class is

Γ̂(TX) = 1− ζ(2)c2(X) − ζ(3)c3(X) = 1− π2c2(X)

6
− ζ(3)c3(X).

Hence with respect to the basis 1
(2πi)n ,

H
(2πi)n−1 , . . . ,Hn the spherical twist ΦH

OX
reads

α 7→ α −QM(α,C)C.

where in dimension n ≤ 7 the vector C = (C1, . . .Cn+1) is given by

C1 = Hn, C2 = 0, C3 =
1
24

c2H
n−2, C4 = c3H

n−3λ3, C5 =

(
− 1
25325

c4 +
1

27325
c22

)
Hn−4,

C6 =

(
1
233

c2c3λ3 −
1
32

(c2c3 − c5)λ5

)
Hn−5,

C7 =

(
1

2633517
c6 −

1
2733517

c23 +
31

21033517
c32 −

11
2833517

c2c4 +
1
2
c23λ2

3

)
Hn−6

C8 =

((
− 1
25325

c4c3 +
1

27325
c22c3

)
λ3 −

1
322

c2(c2c3 − c5)λ5

)
Hn−7

−
(
(c4c3 + c5c2 − c7 − c22c3)λ7

)
Hn−7

and λn := ζ(n)
(2πi)n . For dim(X) = 3 the vector C reads

C = (H3, 0, c2H/24, c3λ3).

Coming back to mirror symmetry it is crucial to reobserve M. Kontsevich’s discovery that
for the quintic threefold the matrices for ⊗ψ(L) and ΦH

OX
coincide with the generators of the

monodromy group of the Picard-Fuchs equation of the mirror quintic written with respect
to the normalized Frobenius basis. The monodromy should be considered as an autoequiv-
alence of the category DFuk(X

′
). Remember that we assumed X

′
to be a a generic fiber of

family of Calabi-Yau manifolds of dimension n. Let L be its Picard-Fuchs equation, where L



4.4 Reconstruction of Topological Data 87

has a MUM-point 0 and a further singular point c corresponding to a fiber with an A1 singu-
larity. Then by the discussion above we have two candidates mirroring the autoequivalences
induced by the monodromy transformations M0 and Mc. The monodromy at the MUM-point
is expected to correspond to the map given by tensoring with L and the reflection Mc should
correspond to the spherical twist φH

OX
. Because Op ⊗L = Op, the torus mirror equivalent to

Op should be invariant under the action of M0. Thus with respect to the Frobenius basis of L
at 0, the monodromy invariant torus is given up to a scalar as the holomorphic solution. The
monodromy Mc is a reflection

x 7→ x + (−1)(n−1)n/2〈x,C〉C

at a Lagrangian vanishing sphere S represented by C. The object of Db(X) mirroring S
is expected to be OX . Since we have χ(OX ,Op) = 1 the monodromy invariant symplec-
tic/symmetric form 〈·, ·〉 on the solution space of L at 0 should be normalized such that
〈T, S〉 = 1. This can be made explicit with respect to the normalized Frobenius basis, where
the form 〈·, ·〉 is represented by the matrix




s

0 −s
...

∓s 0
±s




for a complex number s. The monodromy invariant torus is described by v1 = (0, 0, . . . , 0, 1)
and δ is represented by a vector C = (C1, . . . ,Cn+1), the constant s is fixed by 〈v1,C〉 = C1s =
1. One observes that with this choices the observation for the quintic can be extended to the
14 hypergeometric CY(3)-equations listed in [AESZ10]

C = (a, 0, b/24, cλ) .

Since in this cases mirror constructions are known a = H3, b = c2H, and c = c3 can be
checked.

4.6.3 Numerical Experiments and Statistics from the Database

Content of this section is to review the numerical monodromy calculations done for all CY(3)-
equations from [AESZ10,Str12] and some further examples. To apply the method from Chap-
ter 2 we have to fix some choices. To any Fuchsian differential equation of order n with a
MUM-point the Frobenius method introduced in Section 2.2 associates the normalized Frobe-
nius basis

yi =
1

(2πi)ii!

(
i

∑
k=0

(
i

k

)
fk(z) log(z)i−k

)
, i = 0, . . . , n− 1,

in neighborhood of 0. If Σ = {σ1, . . . , σr} denotes the set of singular points of L the goal is
to find approximations of the images of representatives of standard generators of the funda-
mental group π1(P1 \ Σ) under the monodromy representation

π1(P1 \ Σ, b) → GL(V0),

where V0 is the vector space spanned by the normalized Frobenius basis. Therefor choose a
point b ∈ P1 \ Σ such that for i 6= j the distance

dij := inf
{
p− σj|p ∈ li, i 6= j

}
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of the lines li that connect b with any of the σj is not zero. The numbers rj defined as

rj = (min
{

σi − σj, dij|i, j = 1 . . . , r for i 6= j,
}
∪
{
|σj − b|

}
)/3,

the smallest among them will be denoted by rmin. Denote the arguments of b− σj by

τj = arg(σj − b)

and compute pj f in and nj as

pj f in = σj − rj exp(2πiτj) and nj = ⌈|pj f in − b|/rmin⌉.

Then points p̃jk are computed as

p̃jk = b + k(pj f in − b)/n for k = 0, . . . , nj.

and among p̃jk the points pjk are determined algorithmically as follows. Set pj0 = p̃j0 and set
k, l = 1, as long as p̃jk 6= p̃jnj

determine rjl = min
{
pjl − σm,m = 1, . . . , r

}
. If |p̃jk − pjl | > rjl/3,

set pjl = p̃jk and increase l and k by 1, otherwise increase k by 1. Finally set the value of mj = l.
Now it easy to determine the remaining pjk as

pjm j+l = σj − rj exp(2πi(τj + l/17)), l = 1, . . . , 18

and
pjm j+17+l = pjm j−l, l = 1, . . .mj.

Points p0k on the line connecting 0 and b are computed by the same equivariant choice with
p̃00 = 0 and p̃0s f in and with the same selection rule as above. These choices are not optimal but
they work fine and they assure convergence and contrary to Chapter 3 only a comparatively
small amount of computations has to be done. Figure 4.6.3 indicates how paths and expansion
points are chosen. Consider the series of hypergeometric differential operators

Figure 4.1: Choice of pathes for CY(3)-equations

Lk := θk − 2kz(2θ + 1)k, 2 ≤ k ≤ 8.

At 0 the monodromy is maximally unipotent and the monodromy entries of M0 in the nor-
malized Frobenius basis are

(M0)i,j =

{
1

(i−j)! , i ≥ j

0, else
.

Using the methods from Chapter 2 with the choices fixed above or exploiting the rigidity of
the monodromy tuple of Lk, we find the second generator of the monodromy group Mk

c . It is
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in each case Mk
c is a reflection x 7→ x + (−1)(k−1)(k−2)/2〈x,Ck〉kCk with

C2 = (4, 0), C3 = (8, 0, 1)

C4 = (16, 0, 8/3,−128λ3)

C5 =

(
32, 0,

20
3
,−320λ3,

11
36

)

C6 =

(
64, 0, 16,−768λ3,

16
15

,−192λ3 + 2304λ5

)

C7 =

(
128, 0,

112
3

,−1792λ3,
49
15

,
1568
3

λ3 − 5376λ5, ,−
703
360

+ 12544λ2
3

)

C8 =

(
256, 0,

256
3

,−4096λ3,
416
45

,−4096
3

λ3 − 12288λ5,

256
945

+ 32768λ2
3,−

6656
45

λ3 − 4096λ5 − 36864λ7

)
.

From now we restrict to CY(3)-operators and set λ := λ3. We call a conifold point of a
CY(3)-equation fruitful if the corresponding reflection vector with respect to the normalized
Frobenius basis is (a, 0, b/24, cλ) for rational numbers a, b and c. Originally this observation
was our reason to start the development of computer tools that are able to approximate
generators of the monodromy group.

Example 4.7 An example of an operator with fruitful conifold points is

L1 := θ4 − 4z (2θ + 1)2
(
11θ2 + 11θ + 3

)
− 16z (2θ + 1)2 (2θ + 3)2 ,

with Riemann scheme

R(L1) =





− 11
32 − 5

32

√
5 0 − 11

32 + 5
32

√
5 ∞

0

1

1

2

0

0

0

0

0

1

1

2

1
2
1
2
3
2
3
2





.

It was computed as Picard-Fuchs equation of a mirror of a complete intersection X = X(1, 2, 2) ⊂
Gr(2, 5) using toric degenerations in [BCFKS98]. The monodromy group is generated by

M0 ≈




1 0 0 0

1 1 0 0

1/2 1 1 0

1/6 1/2 1 1


 , M− 11

32+ 5
32

√
5 ≈




1− 120λ −17/6 0 −20

0 1 0 0

−17λ −289/720 1 −17/6

720λ2 17λ 0 1+ 120λ


 ,

M− 11
32− 5

32

√
5 ≈




−480λ − 10/3 −46/3 −40 −80

240λ + 13/6 26/3 20 40

−92λ − 299/360 −529/180 −20/3 −46/3

2880λ2 + 52λ + 169/720 92λ + 299/360 +240λ + 13/6 +480λ + 16/3


 .

The linear map M− 11
32+ 5

32

√
5 is a symplectic reflection with reflection vector

C1 = (20, 0, 17/6,−120λ) .
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The vector corresponding to M− 11
32− 5

32

√
5 is

C2 =

(
40,−20,

23
3
,−13

6
− 240λ

)
.

Indeed, it can be checked that the numbers 20, 68, and −120 coincide with H3, c2H and c3 of
X. Recall also the identity

∫
X c3 = χtop.

We present some CY(3)-operators with unusual properties.

Example 4.8 The operator

L1 = θ4 − 8z(2θ + 1)2(5θ2 + 5θ + 2) + 192z2(2θ + 1)(3θ + 2)(3θ + 4)(2θ + 3)

was constructed by M. Bogner and S. Reiter in [BR12], it has Riemann scheme

R(L2) =





0 x1 x2 ∞

0

0

0

0

0

1

1

2

0

1

1

2

1
2
2
3
4
3
3
2





,

where the singular points x1 ≈ 0.0115 − 0.0032i and x2 ≈ 0.0115 + 0.0032i are the roots of
6912x2 − 160X + 1. Up to degree 200 the Yukawa coupling

K(q) = 1+ 8q− 5632q3 − 456064q4 − 17708032q5 − 435290112q6 − 1114963968q7 +O
(
q8
)

has integral coefficients but the genus 0 instanton numbers seem not to be N-integral. Ap-
plying the monodromy approximation method we were not able to identify all entries of the
monodromy matrices at the conifold points. Some of them seem to be integers and some
conjecturally involve log(2). The traces of products of our approximations of M0, Mx1 and
Mx2 are very close to integers. This indicates that further points should be added to the
characterization of CY(3)-equations, for example one should insist on the N-integrality of the
genus 0-instanton numbers.

The next example shows that more than one fruitful conifold point can occur.

Example 4.9 The operator

L3 :=θ4 − z
(
2000θ4 + 3904θ3 + 2708θ2 + 756θ + 76

)

+ z2
(
63488θ4 + 63488θ3 − 21376θ2 − 18624θ − 2832

)

− z3
(
512000θ4 + 24576θ3 − 37888θ2 + 6144θ + 3072

)
+ 4096z4(2θ + 1)4

associated to the degree 5 Pfaffian constructed by A. Kanazawa [Kan12] has Riemann scheme

R(L3) =





0 x1
1
16 x2 ∞

0

0

0

0

0

1

1

2

0

1

3

4

0

1

1

2

1
2
1
2
1
2
1
2





,
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where xi are the roots of 256x2 − 1968x + 1 and the monodromy at the two conifold points is
described by the two reflection vectors

Cx1 =

(
5, 0,

19
12

,−100λ

)
and Cx2 =

(
20, 0,

1
3
,−400λ

)
.

Only x1 is the closest nonzero singular point of L3, but x1 as well as x2 are fruitful.

Another oddity occurs for the following operator, the potential Euler number is positive.

Example 4.10 Let

L4 :=θ4 − z
(
756θ4 + 1080θ3 + 810θ2 + 270θ + 36

)

+ z2
(
174960θ4 + 419904θ3 + 440316θ2 + 215784θ + 38880

)

− 314928z3(2θ + 1)2(13θ2 + 29θ + 20) + 34012224z4(2θ + 1)2(2θ + 3)2.

It has Riemann scheme

R(L4) :=





0 1
432

1
108 ∞

0

0

0

0

0

1

1

2

0
1
2
3
2

2

1
2
1
2
3
2
3
2





and one fruitful conifold point at 1
432 . The monodromy M 1

432
in the normalized Frobenius

basis is a reflection in (9, 0, 54 , 12λ). That suggest that c3 equals 12, but it follows from the
shape of the Hodge diamond and the definition of the Euler number, that this is not possible
for Calabi-Yau manifolds with h1,1 = 1. For other examples of this kind, see the Tables 4.2
and C.2.

A similar incompatibility happens also for c2 and H3.

Example 4.11 The CY(3)-operator

L5 :=θ4 − z
(
73θ4 + 578θ3 + 493θ2 + 204θ + 36

)

− z2
(
10440θ4 − 20880θ3 − 99864θ2 − 77184θ − 21600

)

+ z3
(
751680θ4 + 4510080θ3 + 1829952θ2 − 1306368θ − 933120

)

+ z4
(
27247104θ4 − 106748928θ3 − 299718144θ2 − 246343680θ − 67184640

)

− z5
(
1934917632(θ + 1)4

)

has Riemann scheme

R(L5) =





− 1
72 0 1

81
1
72

1
64 ∞

0
1
3
4

0
0
0
0

0
1
1
2

0
1
1
2

0
1
1
2

1
1
1
1





.

There are three reflection vectors associated to L5

C 1
81

= (144, 0, 0, 1056λ),C 1
72

= (432,−72, 0, 3168λ),C 1
64

= (324,−108, 0, 2376λ),
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and the monodromy at M− 1
72
is trivial. The vector C 1

81
belongs to a fruitful conifold point, but

there is no Calabi-Yau manifold X with h1,1 = 1 and c3(X) = 1956 and c2(X).H = 0.

Extending the work of C. van Enckevort and D. van Straten [SE06], we were able to confirm
the first part of Conjecture 2 for all differential equations in [Str12,AESZ10].
If a monodromy representation ρ : π1(P1 \ Σ) → GLn(C) comes from a geometric variation
of Hodge structure, there must be a monodromy invariant lattice corresponding to integral
cohomology of the underlying family of varieties and an integral representation

ρZ : π1(P1 \ Σ, t) → Aut(Hn(Xt,Z)).

In [DM06] C. Doran and J. Morgan pointed out recalling constructions of B. Green and M.
Plesser [GP90], that from the viewpoint of mirror symmetry the difference between the ρ
and ρZ is crucial. Namely, parallel to the construction of the mirror X

′
as resolution of the

quotient X/G of the quintic

x50 + . . . x54 + 5ψx0 · . . . · x4 = 0

as explained above two further families of Calabi-Yau manifolds can be constructed. Compare
the quotients of the quintic by the two actions

g1 :(x0 : . . . : x4) 7→ (x0 : µx1 : µ2x2 : µ3x3 : µ4x4)

g2 :(x0 : . . . : x4) 7→ (x0 : µx1 : µ3x2 : µ1x3 : x4),

the first action is free and the quotient X1 is smooth with h1,1 = 1 and h2,1 = 21, after a
suitable resolution of singularities the second quotient X

′
2 has Hodge numbers h1,1 = 21 and

h2,1 = 1. Therefor X
′
2 varies in a family over a one dimensional base, that can determined

to be P1 \ Σ and the corresponding Picard-Fuchs equation coincides with the Picard-Fuchs
equation of X

′
. The difference is reflected by the lattices spanned by the periods. Stimulated

by this observation they classified integral variations of Hodge structure which can underly
families of Calabi-Yau threefolds over P1 \ {0, 1,∞}. Their classification is based on a special
lattice. Namely, if the monodromy T0 at 0 is maximal unipotent and if the monodromy T1 at 1

is unipotent of rank 1 then set Ni = Ti − Id choose a nonzero vector v ∈ kerN0. Furthermore
define m ∈ R by (N0)3(N1v) = −mv and if m 6= 0

B :=
{
N1(v),N0(N1(−v)),

N2
0 (N1(−v))

m
, v
}
.

Definition 4.11.1 (Doran-Morgan lattice) The Z-span of B is called Doran-Morgan lattice.

In Appendix C we give a table of the form, that collects the data of CY(3)-equations with
monodromy invariant Doran-Morgan lattice. The entries in reflection vector are labeled ecr ,
where r is the minimal positive integer such that the corresponding reflection is of the form
x 7→ cx− 〈x, ecr〉ecr .

differential operator
H3

Riemann symbol
c2H
c3
|H|
cr
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Yukawa coupling K(q)
genus 0 instanton numbers

exponents in the holomorphic anomaly
genus 1 instanton numbers

geometric description
integral monodromy with respect to the Doran-Morgan lattice

reflection vectors

Table 4.1: Presentation of the data attached to a CY(3)-equation

In the tables below we omitted any reference to a differential equation since a searchable
extended version of [AESZ10] is available online athttp://www.mathematik.uni-mainz.de/CYequations.
and some of the data is covered in Appendix C. The label BKn stands for number n
from [BK10]. Sometimes it happens that the entries of the reflection vector corresponding
to a reflection at a conifold point c has entries in Q(λ) only after an additional factor n is
introduced as

x 7→ x− n〈x,C〉C.
For an interpretation of the factor n see Appendix A of [SE06]. In Table C.1 of Appendix C
we denote the vector C with the symbol vnc . If we ignore the Doran-Morgan lattice and con-
centrate on CY(3)-equations with a fruitful conifold point, we find about 230 such equations
in [Str12]. The corresponding values for H3, c2H, and c3 are listed in Table 4.2. If a Calabi-Yau
threefold with h1,1 and matching topological invariants is known, a description is given in the
column origin. To identify the corresponding CY(3)-equations and find references for the geo-
metric realization check the column L. An ∗ indicates that the differential operator producing
the triple (H3, c2H, c3) has monodromy invariant Doran-Morgan lattices and hence appears
in Appendix C. Otherwise the corresponding operator can be found in [Str12]. Remark that
the dimension of the linear system |H| equals c2H/12 + H3/6.

H3 c2H c3 L origin H3 c2H c3 L origin

1 22 -120 ∗ X(6,6)⊂P5(1,1,2,2,3,3) 1 34 -288 ∗ X(10)⊂P4(1,1,1,2,5)

1 46 -484 ∗ X(2,12)⊂P5(1,1,1,1,4,6) 2 -4 432 ∗ −
2 20 -16 ∗ − 2 32 -156 ∗ X(3,4)⊂P5(1,1,1,1,1,2)

2 44 -296 ∗ X(8)⊂P4(1,1,1,1,4) 3 30 -92 ∗ −
3 42 -204 ∗ X(6)⊂P4(1,1,1,1,2) 4 -8 640 −
4 16 136 − 4 28 -60 ∗ −
4 28 -32 ∗ − 4 28 -18 −
4 28 24 − 4 40 -144 ∗ X(4,4)⊂P5(1,1,1,1,2,2)

4 52 -256 ∗ X(2,6)⊂P5(1,1,1,1,1,3) 5 38 -100 ∗ X5 Pfaffian

5 38 -102 ∗ − 5 50 -200 ∗ X(5)⊂P4

5 62 -310 ∗ − 6 36 -72 ∗ −
6 36 -64 ∗ − 6 36 -56 −
6 48 -156 ∗ X(4,6)⊂P5(1,1,1,2,2,3) 6 72 -366 −
6 72 -364 − 7 34 -36 −
7 46 -120 ∗ X7 Pfaffian 8 8 216 −
8 32 -20 ∗ − 8 32 -8 ∗ −
8 32 6 − 8 32 48 −
8 44 -92 ∗ − 8 44 -78 −
8 56 -176 ∗ X(2,4)⊂P5 8 80 -400 −
8 92 -470 − 9 30 12 ∗ −
9 54 -144 ∗ X(3,3)⊂P5 10 40 -50 ∗ −

http://www.mathematik.uni-mainz.de/CYequations
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H3 c2H c3 L origin H3 c2H c3 L origin
10 40 -32 ∗ − 10 52 -120 −
10 52 -116 ∗ X10 Pfaffian 10 64 -200 ∗ X → B5 [2:1]

11 50 -92 ∗ − 11 50 -90 ∗ −
11 50 -88 ∗ − 12 24 -144 −
12 24 80 − 12 24 304 −
12 36 52 ∗ − 12 48 -88 −
12 48 -68 ∗ − 12 48 -60 ∗ −
12 60 -144 ∗ X(2,2,3) ⊂ P6 12 72 -224 −
12 132 -676 − 13 58 -120 ∗ 5 × 5 Pfaffian⊂P6

14 8 -100 − 14 56 -100 ∗ −
14 56 -98 ∗ − 14 56 -96 ∗ X → B [2:1]

15 54 -80 ∗ − 15 54 -76 ∗ X → B [2:1]

15 66 -150 ∗ X(1,1,3)⊂Gr(2,5) 16 16 -40 −
16 16 320 − 16 40 40 −
16 40 68 − 16 52 -72 ∗ X → B [2:1]

16 52 -58 ∗ − 16 52 -44 ∗ −
16 64 -128 ∗ X(2,2,2,2)⊂P7 16 64 -72 −
16 88 -268 − 17 62 -108 ∗ X → B [2:1]

18 -36 960 − 18 12 -92 X → B [2:1]

18 48 -52 − 18 60 -92 ∗ −
18 60 -90 ∗ X

′
(2,2,3)⊂P6 18 60 -88 ∗ X

′
(2,2,3)⊂P6

18 60 -64 − 18 72 -162 −
18 72 -158 ∗ − 18 72 -156 −
19 58 -76 BK 40 20 44 12 −
20 56 -72 − 20 56 -64 ∗ −
20 68 -128 − 20 68 -120 ∗ X(1,2,2)⊂Gr(2,5)

21 66 -104 ∗ X → B [2:1] 21 66 -102 ∗ −
21 66 -100 ∗ X → B [2:1] 22 16 -92 ∗ −
22 64 -92 BK 56 22 64 -86 ∗ −
22 64 -84 ∗ − 23 62 -74 ∗ −
24 48 48 − 24 48 160 −
24 72 -120 − 24 72 -116 ∗ X(1,1,1,1,1,1,2)⊂X10

24 72 -112 − 24 84 -162 −
24 120 -344 − 25 70 -100 ∗ −
26 20 -100 − 26 68 -86 ∗ −
26 68 -72 − 28 40 -144 −
28 64 -88 − 28 76 -116 ∗ X(1,1,1,1,2)⊂Gr(2,6)

29 74 -104 ∗ BK 50 29 74 -100 ∗ −
30 72 -90 − 30 72 -86 ∗ −
30 72 -80 − 30 72 -76 −
32 20 -74 − 32 32 192 −
32 32 304 − 32 56 80 −
32 80 -116 ∗ X(1,1,2)⊂LGr(3,6) 32 80 -88 −
33 6 -276 − 33 78 -108 −
34 76 -90 ∗ − 34 76 -88 ∗ −
36 0 -204 − 36 60 -6 −
36 60 36 − 36 72 -128 −
36 72 -72 ∗ − 36 72 -60 −
36 72 -48 − 36 84 -128 −
36 84 -120 ∗ X(1,2)⊂X5 36 84 -16 −
36 108 -156 − 38 80 -92 ∗ −
40 52 180 − 40 64 -116 −
40 64 -16 − 40 76 -30 −
40 88 -128 − 42 84 -112 −
42 84 -108 − 42 84 -98 ∗ −
42 84 -96 ∗ X(1,1,1,1,1,1)⊂Gr(3,6) 42 84 -84 −
44 92 -128 ∗ BK 58 46 88 -106 −
47 86 -90 ∗ − 48 72 12 −
48 72 28 − 48 84 -92 −
48 84 -86 − 48 96 -128 −
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H3 c2H c3 L origin H3 c2H c3 L origin
48 96 -16 − 52 -8 -172 −
52 88 -144 − 52 100 -144 −
54 72 -18 − 56 80 -64 ∗ −
56 92 -92 ∗ X(1,1,1,1)⊂F1(Q5) 56 92 -78 −
57 90 -84 ∗ Tjøtta’s example 60 84 100 −
60 96 -132 − 60 96 -110 −
61 94 -86 ∗ − 64 64 160 −
64 112 -36 − 68 20 880 −
70 100 -100 − 72 0 816 −
72 72 72 − 72 72 192 −
72 72 216 − 72 72 264 −
72 120 -128 − 80 104 -88 −
80 128 -176 − 84 108 -108 −
90 108 -90 − 91 106 -78 ∗ BK 41

96 48 472 − 96 96 -32 −
96 108 -76 BK 39 97 106 -64 ∗ BK 24

102 108 -74 BK 38 112 160 -464 −
112 160 -296 − 116 116 -80 ∗ BK 43

117 114 -72 ∗ BK 37 120 120 -80 −
128 128 -128 − 128 176 -296 −
132 132 -408 − 132 132 -96 −
144 0 -288 − 144 0 1056 −
144 192 -400 − 150 120 -50 −
153 90 -126 − 160 160 -128 −
162 108 216 − 162 132 -88 −
208 160 -128 − 216 48 -328 −
216 144 -72 − 230 140 -80
252 72 -160 − 288 216 -216 −
324 276 -528 − 350 -280 -2450 7×7 Pfaffian⊂P6

378 -252 -882 X(1,1,1,1,1,1,1)⊂ Gr(2,7) 396 120 -464 −
400 -320 -1600 X25 Pfaffian 432 288 -1152 −
456 312 -1104 − 460 40 -160 ∗ −
500 140 -1100 − 504 240 -304 −

Table 4.2: Potential topological data

In all cases the fruitful conifold point that yielded the numbers in Table 4.2 was positive,
real and the non-zero singular point closest to zero. Some Calabi-Yau 3-folds with numerical
invariants (c2H,H3, c3) and h1,1 = 1 that do not appear in the tables above are known. We
list this numbers and the places where the associated 3-folds were constructed in Table 4.3,
compare it with the list by G. Kapustka [Kap13].

H3 c2H c3 source H3 c2H c3 source
7 58 -156 [Kap09] 10 62 -116 [Kap09]
12 84 -120 [Kap09] 13 82 -102 [Kap09]
14 80 -84 [Kap09] 14 80 -86 [Kap09]
14 68 -120 [Kap09] 15 78 -68 [Kap09]
15 54 -78 [Ton04] 15 54 -84 [Lee08]
16 52 -60 [Kap13, Ton04] 17 50 -44 [Kap13, Ton04]
17 50 -64 [Lee08] 18 60 -84 [Lee08]
19 58 -74 [Kap13] 19 58 -76 [Lee08]
20 56 -60 [Kap13] 22 64 -92 [Lee08]
24 60 -50 [Kap13] 29 74 -96 [Lee08]
30 72 -96 [Lee08] 34 76 -96 [Kap09]
34 76 -98 [Kap09] 35 ? -50 [KK10]
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Table 4.3: Numerical invariants that do not appear in the database

Remark that in the list by M. Kreuzer and V. Batyrev [BK10] more cases then these displayed
in Table 4.2 are, but it includes some subtleties we do not fully understand, hence its entries
are omitted in Table 4.3.
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A MonodromyApproximation Manual

MonodromyApproximation[Monodromy℄ - approximation of generators of the monodromygroup of a Fu
hsian differential operator withpolynomial 
oeffi
ients in a fixed basisCalling Sequen
eMonodromy(dop, basept, singularities, soi, nterms,NumberOfDigits,IntermediateBasePoint)Parametersdop - Fu
hsian differential operator with polynomial
oeffi
ients or a CYeqnbasept - an ordinary or regular singular point of dopsingularities - (optional) a list 
ontaining the finite regularsingular points of dopsoi - (optional) a list of finite regular singular pointsaround whi
h the monodromy shall be 
omputednterms - (optional) degree up to whi
h elements of theFrobenius basis are approximated, default = 50NumberOfDigits - (optional) Number of Digits used in the involvedfloating point 
omputations, default = 100IntermediateBasePoint - (optional) Repla
es basept by IntermediateBasePointin the 
hoi
e of paths and 
omputes finally abase 
hange from Intermediate Basepoint to basept,default = noneDes
riptionGiven a Fu
hsian differential operator of order n i.e. an element of C[x℄<dx>with highest dx degree n this pro
edure 
omputes an approximation of themonodromy along standard loops gamma_i, i=1,..,nops(soi) with basepointbasept, en
ir
ling the i-th of the singular points in soi. If soi is notgiven it is set to singularities, if moreover singularities and soi are notpassed to this pro
edure both values are set to a list that 
ontains allfinite singular points of dop. The monodromy matri
es depend on a 
hoi
e of abasis, here all the matri
es are expressed with respe
t to a Frobenius basis(f_1,..,f_n) at basept. If basept is an ordinary point, the Frobenius basisis made unique by the requirement that diff(f_i(x) ,x , j)|x=basept =delta_ij,i,j=0..n-1. At a regular singular point it 
oin
ides with the basisobtained in [1℄ on Page 403. The leading 
oeffi
ient of the solution
orresponding to the lo
al exponent at basept, whose real part has biggestabsolute value amongst the absolute values of all real parts of lo
alexponents, is 
hosen as one. The loops gamma_i en
ir
le exa
tly the i-thentry of soi, and they are homotopi
 to loops 
omposed of l_i, 1/l_i and 
_i,where l_i is a straight line from l_i to (l_i + soi[i℄)*(1-eps), 1/l_i is l_iwith opposed dire
tion and 
_i is a 
ir
le with 
enter soi[i℄ and radius eps.The real number eps is smaller than half the distan
e between any two elementsof singularities. If an entry soi[j℄ of soi lies on gamma_i, 
hosen as above,l_i and hen
e 1/l_i are modified su
h that l_i passes soi[j℄ on the right.The output out is an Array, where every entry is a list that 
ontains anelement soi[j℄ of soi as first entry and the approximated monodromy alonggamma_j as se
ond entry.



98 A MonodromyApproximation ManualThe monodromy around infinity 
an be obtained as the produ
tout[n℄[2℄*...*out[1℄[2℄, where n=ArrayTools[Size℄(out)[2℄. Noti
e thatNumberOfDigits influen
es the speed of the 
omputations.[1℄ E.L.In
e, Ordinary Differential Equations, Dover Publi
ations.Examples>L:=(z�2-16*z�3) *dz�2+(z-32* z�2) *dz-4*z:>singularpoints(L);[0, 1/16, infinity℄>Monodromy(L,0,NumberOfDigits=10);part1appr.50.000000% finishedappr.100.000000% finishedpart2:finished
[[ [1.0000000035+0.1394273099*10�-9I -1.0000000029-0.1787021475*10�-8I ]
[[0, [ ],
[[ [-0.1562919793*10�-8-0.60349839708*10�-9I 1.00000000125+0.1374597546*10�-8I ]

[ [1.0000000086+0.4572612526*10�-8I -0.1538629501*10 �-9-0.491967522*10�-9I ]]]
[[1/16, [ ]]]
[ [4.0000000035-0.2936308422*10�-7I 0.9999999896-0.5788312051*10�-8I ]]]See AlsoMonodromyApproximation[FrobeniusBasis℄, MonodromyApproximation[singularpoints℄
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B List of Accessory Parameters C and Location
of the Singular Point A for (1; e) and
(0; 2, 2, 2, q)-Type Equations

In the tables below for an algebraic number σ we denote is minimal polynomial by fσ, we also use the
notation

wd =

{
(1+

√
d)/2 d ≡4 1√

d/2 d ≡4 0
.

If with our choices for A and C and generators of the monodromy group, we do not match the trace
triples from [Tak83,ANR03] exactly, but only up to elementary transformation this is indicated with a
superscript star (·, ·, ·)∗.

B.1 (1;e)-Type

2/1/6/i (5, 12, 25)

A = 3
128 , C = − 13

211

2/1/6/ii (6, 8, 12)

A = 1
4 , C = − 1

64

2/1/14 (7, 7, 9)

A = 1
2 + 13

98 i
√
7, C = − 3

128 − 15
6272 i

√
7

2/5/4i (2w5 + 2, 4w5 + 4, 6w5 + 4)

A = (2−
√
5)2, C = −5+2

√
5

26

2/5/4ii (3w5 + 2, 3w5 + 2, 4w5 + 4)

fA = 8388608x6− 25165824x5 + 3361993x4 + 35219054x3 + 3361993x2− 25165824x
+ 8388608, A ∼ 0.5− 0.1258i

fC = 219902325555200x6 + 30923764531200x5+ 1624023040000x4 + 39005952000x3

+ 433866640x2 + 2367480x+ 11881, C ∼ −0.0234+ 0.0023i

2/5/4iii (3w5 + 2, 3w5 + 3, 3w5 + 3)

A = 243
1024 + 171

1024 i
√
15 , C = − 293

16384 − 45
16384 i

√
15

2/8/7i (w8 + 3, 8w8 + 12, 9w8 + 13)

fA = x4 − 7058x3 + 13771x2 − 7058x+ 1, A ∼ 0.0001

fC = 16384x4 + 294912x3 + 22144x2 + 448x+ 1, C ∼ −0.0025

2/8/7ii (2w8 + 3, 3w8 + 5, 3w8 + 5)

fA = x4 + 7054x3 − 7397x2 + 686x− 343, A ∼ 0.02431+ 0.2192i

fC = 16777216x4− 298844160x3− 19570688x2− 316672x− 1679,

C ∼ −0.0104− 0.00404i
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2/8/2 (2w8 + 4, 2w8 + 4, 4w8 + 6)

A = −1, C = 0

2/12/3 (w12 + 3, 4w12 + 8, 5w12 + 9)

A = −56
√
3+ 97, C = 1

4

√
3− 7

16

2/12/2 (2w12 + 4, 2w12 + 4, 2w12 + 4)

A = 1
2 + 1

2 i
√
3, C = − 3

128 − 1
128 i

√
3

2/13/36 (w13 + 2, 8w13 + 12, 9w13 + 12)

A = 1
2 − 71

512

√
13, C = − 3

128 + 49
8192

√
13

2/13/4 (w13 + 3, 3w13 + 4, 3w13 + 4)

fA = 8388608x6− 25165824x5 + 1731245917x4− 3420548794x3 + 1731245917x2

− 25165824x+ 8388608, A ∼ 0.0024+ 0.07008i

fC = 8796093022208x6 + 1236950581248x5 + 167777206272x4 + 11199264768x3

+ 304328016x2 + 2956824x+ 9477, C ∼ −0.0075− 0.0013i

2/17/2i (w17 + 2, 4w17 + 8, 5w17 + 8)

A = 897
2048 − 217

2048

√
17 , C = − 5

256 + 1
256

√
17

2/17/2ii (w17 + 3, 2w17 + 4, 3w17 + 5)

A = 1151
2048 − 217

2048

√
17 , C = − 7

256 + 1
256

√
17

2/21/4 (w21 + 2, 3w21 + 6, 3w21 + 7)

fA = 512x4 − 72577x3 + 8532738x2− 72577x+ 512, A ∼ 0.004253+ 0.006475i

fC = 536870912x4 + 386334720x3 + 210057216x2 + 1990512x+ 4761,

C ∼ −0.0048− 0.00013i

2/24/3 (w24 + 3, 2w24 + 5, 2w24 + 6)

fA = x4 − 10x3 + 99x2 − 10x + 1, A ∼ 4.9492+ 8.5731i

fC = 1327104x4 + 184320x3 + 14464x2 + 224x + 1, C ∼ −0.0602− 0.0704i

2/33/12 (w33 + 3,w33 + 4, 2w33 + 5)

A = − 27
256 + 21

256

√
33, C = − 419

36864 − 17
12288

√
33

2/49/56 (ρ2 + ρ, 3ρ2 + 2ρ − 1, 3ρ2 + 2ρ − 1), ρ = 2 cos(π/7)

A = 7
16384 + 181

16384 i
√
7, C = − 1609

262144 − 59
262144 i

√
7

2/81/1 (ρ2 + ρ + 1, ρ + 1, ρ + 1), fρ = x2 + 3x + 1, ρ ∼ 1.8749

fA = 536870912x6− 1610612736x5 + 4380314097x4− 6076273634x3 + 4380314097x2

− 1610612736x+ 536870912, A ∼ 0.1099+ 0.4559i

fC = 562949953421312x6 + 79164837199872x5+ 4990992187392x4

+ 3705530256x2 + 41846328x+ 205209, C ∼ −0.0143− 0.0078i

2/148/1i (ρ2 + ρ, ρ2 + ρ, ρ2 + 2ρ + 1), fρ = x3 − x2 − 3x + 1, ρ ∼ 2.1700

fA = 1048576x6− 3145728x5 + 11894784x4− 18546688x3 + 11134976x2

− 2385920x− 1, A ∼ 0.5000+ 0.1796i

fC = 1099511627776x6 + 154618822656x5 + 9663676416x4 + 339738624x3

+ 6422528x2 + 52224x+ 59, C ∼ −0.0234− 0.0033i
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2/148/1ii (−ρ2 + ρ + 4,−12ρ2 + 8ρ + 40,−13ρ2 + 9ρ + 42), fρ = x3 − x2 − 3x + 1, ρ ∼ 0.3111

fA = x6 − 2385926x5 + 794639x4 + 2133996x3 + 794639x2− 2385926x+ 1
A ∼ 0.2386 107

fC = 68719476736x6 + 218667522457600x5 + 16703513690112x4+ 403826540544x3

+ 3574460416x2 + 28113024x+ 32041, C ∼ −3181.9549

2/148/1iii (ρ2 − 2ρ + 1, ρ2 − 38ρ + 1, ρ2 − 3ρ + 1), fρ = x3 − x2 − 3x + 1, ρ ∼ −1.4811

fA = x6 + 2385920x5− 11134976x4 + 18546688x3− 11894784x2 + 3145728x
− 1048576, A ∼ 0.06202+ 0.3467i

fC = 1048576x6− 3336306688x5− 527106048x4− 31684608x3− 888320x2

− 11472x− 59, C ∼ −0.01256− 0.006139i

2/229/8i-iii fA = 70368744177664x6− 211106232532992x5 + 251740951674880x4

− 151638182461440x3 + 41307815036519x2− 673095894631x+ 128

fC = 18446744073709551616x6 + 2594073385365405696x5 + 138442257832345600x4

+ 3479181207797760x3 + 40391778507776x2+ 158376087888x+ 94437631

fρ = x3 − 4x− 3

(ρ + 2, 8ρ2 + 16ρ + 4, 8ρ2 + 17ρ + 4), ρ ∼ 2.1149

A = 0.5258 1010, C = −0.3790 107

(−ρ2 + 5,−3ρ2 + ρ + 13,−4ρ2 + ρ + 16), ρ ∼ −0.2541

A ∼ 0.0173, C ∼ −0.0058

(ρ2 − 2ρ, ρ2 − 2ρ, ρ2 − 2ρ + 1), ρ ∼ −1.8608

A ∼ 0.5000+ 0.5571i, C ∼ −0.0234− 0.0094i

2/725/16i-ii fA = 1125899906842624x12− 6755399441055744x11+ 136821011054293902426112x10

− 684104993346974635786240x9 + 1757642980655831621406585093x8

− 7026467292737554031663236116x7 + 10538743192140415080955291166x6

− 7026467292737554031663236116x5 + 1757642980655831621406585093x4

− 684104993346974635786240x3 + 136821011054293902426112x2

− 6755399441055744x+ 1125899906842624
fC = 1237940039285380274899124224x12+ 348170636049013202315378688x11

+ 863153097029983946725277040640x10 + 202294494402175426090594467840x9

+ 277793431812290829267278757888x8 + 49419318523299691438415020032x7

+ 3593115692247716116274610176x6 + 129328085927179185372463104x5

+ 2340174744709681011356928x4+ 19846988436629919916800x3

+ 82407159639508548064x2 + 162154973676768816x+ 120863826843029

fρ = x4 − x3 − 3x2 + x− 1

(−ρ3 + 2ρ2 + ρ,−2ρ3 + 5ρ2 − ρ + 1,−2ρ3 + 5ρ2 − ρ + 1), ρ ∼ −1.3356

A ∼ 0.00003+ 0.0088i, C ∼ −0.0048− 0.00018i

(9ρ3 − 13ρ2 − 21ρ + 19, ρ3 − 2ρ2 − 2ρ + 4, 9ρ3 − 13ρ2 − 21ρ + 19)∗, ρ ∼ −0.4772

A ∼ 0.9999− 0.00009i , C ∼ −0.0444+ 0.2017i

2/1125/16 (ρ2 − ρ, 9ρ2 − 2ρ + 1,−ρ3 + ρ2 + ρ + 1), fρ = x4 − x3 − 4x2 + 4x + 1, ρ ∼ −1.9562
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fA = 2097152x4− 16009797x3 + 61379722x2− 16009797x+ 2097152

A ∼ 3.6819+ 3.6993i

fC = 2199023255552x4 + 297931571200x3 + 16036157440x2 + 278544560x+ 1551245

C ∼ −0.0553− 0.0363i

3/1/15 (5, 16, 20)

A = 1
81 , C = − 1

2134

3/1/10 (6, 10, 15)

A = 5
32 , C = − 67

2932

3/1/6ii (7, 8, 14)

A = 32
81 , C = − 31

1296

3/1/6i (8, 8, 9)

A = 1/2+ 7
16 i

√
2 , C = −1/36− 5

576 i
√
2

3/5/9 (2w5 + 2, 6w5 + 4, 8w5 + 5)

A = 1
2 − 19

128

√
10 , C = − 1

36 + 29
4608

√
10

3/5/5 (3w5 + 2, 4w5 + 3, 4w5 + 3)

A = 640
6561 + 1264

6561 i
√
5 , C = − 431

26244 − 26
6561 i

√
5

3/8/9 (2w8 + 3, 4w8 + 6, 4w8 + 6)

A = 2
243 + 22

243 i
√
2 , C = − 5

486 − 1
486 i

√
2

3/12/3 (2w12 + 4, 2w12 + 4, 4w12 + 7)

A = 1
2 , C = − 1

36

3/13/13i (2w13 + 3, 2w13 + 3, 3w13 + 4)

fA = 47775744x4− 95551488x3 + 63231232x2− 15455488x− 81

A ∼ 0.5000− 0.2710i

fC = 12230590464x4 + 1358954496x3 + 48844800x2 + 616448x+ 991

C ∼ −0.0277+ 0.0059i

3/13/13ii (w13 + 2, 12w13 + 16, 13w13 + 17)

fA = 481x4 − 15455812x3− 16864282x2− 15455812x+ 81, A ∼ 90813.585

fC = 1679616x4 + 599664384x3 + 10297440x2 + 171632x+ 289, C ∼ −357.00751

3/17/36 (w17 + 2, 6w17 + 10, 7w17 + 11)

A = 59113
64 − 14337

64

√
17 , C = − 29087

9216 + 783
1024

√
17

3/21/3 (w21 + 2, 4w21 + 8, 5w21 + 9)

A = 8−3
√
7

24
, C = 5

√
7−16
2632

3/28/18 (w28 + 3, 2w28 + 6, 3w28 + 8)

A = 1
2 − 5

32

√
7, C = −1/36+ 115

18432

√
7

3/49/1 (ρ2 + ρ, 4ρ2 + 3ρ − 2, 4ρ2 + 3ρ − 2), ρ = 2 cos(π/7)
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fA = 1594323x6− 4782969x5 + 6704530690x4− 13401089765x3 + 6704530690x2

− 4782969x+ 1594323, A ∼ 0.0001+ 0.0154i
fC = 8264970432x6 + 1377495072x5 + 1393200000x4 + 147714120x3 + 4860160x2

+ 44242x+ 121, C ∼ −0.0061− 0.0003i

3/81/1 (ρ2, ρ2, ρ2), ρ = −1
2 cos(5π/9)

A = 1
2 + 1

2 i
√
3 , C = − 1

36 − 1
108 i

√
3

4/8/98 (3+
√
2, 20+ 12

√
2, 21+ 14

√
2)

A = 1
2 − 181

512

√
2 , C = − 15

512 + 155
8192

√
2

4/8/7i (4+
√
2, 8+ 4

√
2, 10+ 6

√
2)

A = 3
4 − 1

2

√
2 , C = − 1

32 + 1
64

√
2

4/8/2i+iii fA = 131072x4− 420864x3 + 425777x2− 9826x+ 4913

fC = 2199023255552x4+ 271656681472x3 + 11168448512x2 + 154082816x+ 702961

(3+ 2
√
2, 7+ 4

√
2, 7+ 4

√
2)

A ∼ 0.0058582+ 0.10808i, C ∼ −0.010254− 0.0026200i

(5+ 2
√
2, 5+ 2

√
2, 6+ 4

√
2)

A ∼ 1.5996+ 0.8002i, C ∼ −0.0515+ 0.0141i

4/8/2ii (3+ 2
√
2, 6+ 4

√
2, 9+ 4

√
2)

fA = 531441x8− 64796436x7 + 3009036438x6− 6026830596x5 + 3361388930x4

− 423440384x3 + 150933504x2− 8388608x+ 2097152, A ∼ −0.0278− 0.1643I

fC = 981442558066553631277056x8 + 602610274368410534019072x7

+ 146932327534616710742016x6 + 10415653268576658259968x5

+ 321388066379823906816x4 + 4937075259269087232x3 + 40344446803654656x2

+ 169641680184576x+ 292036636097, C ∼ −0.0066+ 0.0022i

4/8/7ii (4+ 2
√
2, 6+ 2

√
2, 8+ 5

√
2)

A = −11+ 8
√
2 , C = 17

256 − 1
16

√
2

4/2624/4i-ii fA = 2251799813685248x12− 13510798882111488x11 + 30030912007767588864x10

− 150030711049085255680x9 + 190609290527682649577x8

+ 137598485396077709404x7− 416391183966934846602x6

+ 137598485396077709404x5 + 190609290527682649577x4

− 150030711049085255680x3 + 30030912007767588864x2

− 13510798882111488x+ 2251799813685248
fC = 633825300114114700748351602688x12+ 222829207071368449481842360320x11

+ 306274690779075730907590557696x10 + 82716199087120919896994611200x9

+ 9914106848589680637422600192x8 + 648609089172833816197201920x7

+ 24732547659337126861864960x6 + 549364377983268991795200x5

+ 6738722599361240434944x4 + 41208401069204094720x3

+ 124531476866368864x2 + 245447096786160x+ 446471492969

(ρ + 2, (1+ 2
√
2)ρ + 5+ 2

√
2, (1+ 2

√
2)ρ + 5+ 2

√
2), ρ = (1+

√
13+ 8

√
2/2)

A ∼ 0.00004+ 0.0086i,C ∼ −0.0057− 0.0002i

(ρ2, ρ2, (ρ + 1)2), ρ = (1+
√
2+

√
7+ 2

√
2)/2
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A ∼ 0.5000+ 0.0359i, C ∼ −0.0292− 0.00087i

4/2304/2 (ρ2, ρ2, ρ2), ρ = (2+
√
2+

√
6)/2

A = 1
2 − 1

2 i
√
3 , C = − 15

512 + 5
512 i

√
3

5/5/5i-ii fA = 15625x4− 21726500x3 + 130650166x2− 21726500x+ 15625

fC = 4000000x4 + 21216000x3 + 2406496x2 + 41008x+ 121

(w5 + 3, 12w5 + 8, 14w5 + 9)

A ∼ 0.0007, C ∼ −0.0037

(2w5 + 3, 4w5 + 4, 7w5 + 5)

A ∼ 0.1704, C ∼ −0.01628

5/5/180 (2w5 + 2, 6w5 + 6, 9w5 + 6)

A = 3
128 , C = − 397

51200

5/5/5iii (3w5 + 2, 4w5 + 4, 4w5 + 5)

A = 8
125 + 44

125 i , C = − 2
125 − 1

125 i

5/5/9 (3w5 + 3, 3w5 + 3, 5w5 + 5)

A = 1/2+ 7
48 i , C = − 3

100 − 17
4800 i

5/725/25i-ii fA = 1220703125x12− 7324218750x11 + 1283128503506015625x10

− 6415642450391406250x9 + 411308601830106418034x8

− 1606740552698643640886x7 + 2401128929644272961329x6

− 1606740552698643640886x5 + 411308601830106418034x4

− 6415642450391406250x3 + 1283128503506015625x2

− 7324218750x+ 1220703125

fC = 1953125000000000000x12 + 703125000000000000x11

+ 11775224156250000000000x10 + 3532544043750000000000x9

+ 727714526413400000000x8 + 98348635231716000000x7

+ 7673023770098440000x6 + 334234551232497600x5

+ 7831619538672864x4 + 91790301677904x3

+ 522279444004x2 + 1301037324x+ 1148429

(ρ + 2, (w5 + 1)ρ + 2w5 + 2, (w5 + 1)ρ + 2w5 + 2), ρ = (w5 +
√
13w5 + 9)/2

A ∼ 0.0016+ 0.0567iC ∼ −0.0087847− 0.0014537i

((5w5 + 2)ρ − 2w5 + 1, ρ, (5w5 + 2)ρ − 2w5 + 1)∗, ρ = (w5 + 3+
√
7w5 + 6)/2

A ∼ 0.9999+ 0.00003i, C ∼ −0.0576− 0.8 10−6i

5/1125/5 (ρ2, ρ2, ρ2), ρ = (1+ w5 + (2−w5)
√
33w5 + 21)/2

A = 1
2 + 1

2 i
√
3 , C = − 3

100 − 1
100 i

√
3

6/12/66i (3+
√
3, 14+ 6

√
3, 15+ 8

√
3)

A = 47
128 − 27

128

√
3 , C = − 409

18432 + 21
2048

√
3

6/12/66ii (5+
√
3, 6+ 2

√
3, 9+ 4

√
3)

A = 81
128 − 27

128

√
3 , C = − 79

2048 + 21
2048

√
3
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7/49/91i-ii fA = 5764801x6− 10990807933574x5 + 19901483769167x4− 17824198550292x3

+ 19901483769167x2− 10990807933574x+ 5764801
fC = 23612624896x6 + 69010305710080x5+ 10098549495552x4 + 533695914240x3

+ 13079230960x2 + 157473912x+ 212521

(ρ2 + 1, 16ρ2 + 12ρ − 8, 17ρ2 + 13ρ − 9), ρ = 2 cos(π/7)

A ∼ 0.19065 107, C ∼ −2922.45570

(5ρ2 + 3ρ − 2, ρ2 + ρ, 5ρ2 + 3ρ − 2)∗, ρ = 2 cos(π/7)

A ∼ 0.9999+ 0.0108i, C ∼ −0.0550− 0.0002i

(2ρ2 + ρ, 2ρ2 + ρ, 3ρ2 + ρ − 1), ρ = 2 cos(π/7)

A ∼ −0.0945− 0.9955i, C ∼ −0.0173+ 0.0190i

7/49/1 ρ = 2 cos(π/7), (2ρ2, 2ρ2 + 2ρ, 4ρ2 + 3ρ − 2)

A = 1/2− 13
64

√
2 , C = − 3

98 + 107
12544

√
2

9/81/51ii-iii fA = 43046721x6 + 170877413376x5− 286160283648x4+ 235414355968x3

− 129828716544x2 + 14545846272x− 4848615424

fC = 93703341895520256x6− 1186330581652543488x5− 163434666011132160x4

− 8465909889680640x3− 216226514722320x2− 2661536591640x− 13023828271

(4ρ2 + 8ρ + 4, ρ2 + 1, 5ρ2 + 9ρ + 3)∗, ρ = 2 cos(π/9)

A ∼ 0.3147+ 0.7282i, C ∼ −0.0258− 0.0155i

(ρ2 + ρ + 1, 2ρ2 + 2ρ + 1, 2ρ2 + 2ρ + 1), ρ = 2 cos(π/9)

A ∼ 0.0225+ 0.2111i, C ∼ −0.0133− 0.0051i

(ρ2 + 2ρ + 1, ρ2 + 2ρ + 2, ρ2 + 2ρ + 2), ρ = 2 cos(π/9)

A ∼ 0.3147− 0.7282i, C ∼ −0.0258+ 0.0155i

11/114/1 ((ρ2 − 1)2, (ρ3 − 2ρ)2, (ρ3 − 2ρ)2), ρ = 2 cos(π/11)

fA = 43046721x6 + 170877413376x5− 286160283648x4+ 235414355968x3

− 129828716544x2 + 14545846272x− 4848615424, A ∼ 0.31474+ 0.77830i

fC = 93703341895520256x6− 1186330581652543488x5− 163434666011132160x4

− 8465909889680640x3− 216226514722320x2− 2661536591640x− 13023828271

C ∼ −0.025847− 0.015507i

Table B.1: A and C for (1;e)-groups
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B.2 (0;2,2,2,q)-Type

3/1/10 (5, 8, 10)

A = 2
27 , C = − 1

144

3/1/6 (6, 6, 9)

A = 1
2 , C = − 5

288

3/5/11i ( 7+
√
5

2 , 6+ 2
√
5, 13+5

√
5

2 )

fA = +729x4 − 93393x3 + 24277x2− 93393x+ 729, A ∼ 0.0078

fC = 47775744x4 + 24883200x3 + 693760x2 + 8800x+ 25, C ∼ −0.0038

3/5/5 (3+
√
5, 5+

√
5, 5+ 2

√
5)

A = 5
32 , C = − 43

4608

3/5/11ii (4+
√
5, 4+

√
5, 7+3

√
5

2 )

fA = 161051x4− 322102x3 + 251528x2− 90477x− 729, A ∼ 0.5000+ 0.5654i

fC = 854925705216x4 + 59369840640x3 + 1427256320x2 + 13768400x+ 33725

C ∼ −0.017361− 0.0070870i

3/8/2i (3+
√
2, 8+ 4

√
2, 8+ 5

√
2)

A = 58
27 − 41

27

√
2 , C = − 11

432 + 7
432

√
2

3/8/2ii (4+
√
2, 4+ 2

√
2, 5+ 3

√
2)

A = 783− 1107
2

√
2 , C = −2+ 45

32

√
2

3/8/2iii (3+ 2
√
2, 4+ 2

√
2, 4+ 2

√
2)

A = 4
27 − 10

27 i
√
2 , C = 1

216 i
√
2− 5

432

3/12/2 (3+
√
3, 6+ 2

√
3, 6+ 3

√
3)

A = 1/2− 5
18

√
3 , C = − 5

288 + 19
2592

√
3

3/13/3i-ii fA = 729x4 − 1458x3 + 18472x2 − 17743x+ 1

fC = 429981696x4 + 29859840x3 + 1244160x2 + 25200x+ 43

( 5+
√
13

2 , 10+ 2
√
13, 19+5

√
13

2 )

A ∼ 0.00005, C ∼ −0.001871

( 7+
√
13

2 , 4+
√
13, 4+

√
13)

A ∼ 0.5− 4.9080i, C ∼ −0.0173+ 0.0364i

3/17/2i ( 5+
√
17

2 , 7+
√
17, 13+3

√
17

2 )

A = − 109
512 + 27

512

√
17 , C = − 1

288

3/17/2ii ( 7+
√
17

2 , 9+
√
17

2 , 5+
√
17)

A = 4
27 + 1/27

√
17 , C = − 7

864 − 1
864

√
17

3/28/2 (3+
√
7, 4+

√
7, 5+

√
7)

A = 59
54 − 17

54

√
7+ i

(
59
54 − 17

54

√
7
)
, C = − 25

1152 + 1
288

√
7+ i

(
− 1

96 + 1
384

√
7
)
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3/49/1

i+iii+iv
fA = 19683x6− 2171256516x5 + 1397790000x4 + 1484145149x3 + 1397790000x2

− 2171256516x+ 19683

fC = 330225942528x6 + 55864750768128x5 + 3657093414912x4 + 76970233856x3

+ 652291584x2 + 4120272x+ 5041

(ρ2 + 1, 4ρ2 + 4ρ, 5ρ2 + 4ρ − 2), ρ = 2 cos(π/7)

A ∼ 0.9065 10−5, C ∼ −0.00153

(ρ2 + ρ + 1, ρ2 + ρ + 1, 2ρ2 + 2ρ + 1), ρ = 2 cos(π/7)

A ∼ −0.6737− 0.7389i, C ∼ −0.0034+ 0.0077i

(ρ2 + ρ, 2ρ2 + ρ, 2ρ2 + ρ)∗, ρ = 2 cos(π/7)

A ∼ 0.9956+ 0.0928i,−0.0285− 0.0013i

3/49/1ii (ρ2 + ρ, ρ2 + 2ρ + 1, 2ρ2 + ρ + 1), ρ = 2 cos(π/7)

fA = 729x4 − 15039x3 + 94156x2− 15039x+ 729, A ∼ 0.0819+ 0.0368i

fC = 334430208x4 + 56512512x3 + 3028480x2 + 35728x+ 121

C ∼ −0.00731− 0.00053i

3/81/1 (ρ2 + ρ + 1, ρ2 + ρ + 1, ρ2 + ρ + 1), ρ = 2 cos(π/9)

A = 1/2+ 1/2 i
√
3 , C = − 5

288 − 5
864 i

√
3

3/148/10i (−ρ + 1, 2ρ2 + 2, 2ρ2 − ρ), fρ = x3 + 3x2 − x− 1, ρ ∼ −3.2143

fA = 25x3 − 11187282x2 + 11206938x+ 2, A ∼ 447490.2782

fC = 74649600x3 + 44553431808x2 + 1464840720x+ 1505621, C ∼ −596.8012

3/148/1i-iii fA = 256x6 − 768x5 + 968448x4− 1935616x3 + 1434240x2− 466560x+ 19683

fC = 195689447424x6 + 20384317440x5 + 14212399104x4 + 946012160x3

+ 23083008x2 + 236160x+ 775

fρ = x3 + 3x2 − x− 1

(ρ2 + 2ρ + 1,−2ρ + 2, ρ2), ρ ∼ −3.2143

A ∼ −0.0516, C ∼ −0.0045

(−3ρ2 − 8ρ + 7,−ρ2 − 2ρ + 4,−3ρ2 − 8ρ + 7), ρ ∼ −0.4608

A ∼ 0.9998− 0.0162i, C ∼ −0.03047+ 0.0002i

(ρ2 + 4ρ + 3, ρ2 + 4ρ + 3, ρ2 + 4ρ + 4), ρ ∼ 0.6751

A ∼ −0.1481− 0.9889i, C ∼ −0.0092+ 0.0107i

3/148/10ii+iii fA = 2x3 − 11206944x2 + 11226600x− 19683

fC = 8192x3 + 48757248x2 + 1772256x+ 4819

fρ = x3 + 3x2 − x− 1

(−ρ2 − 3ρ + 3,−8ρ2 − 20ρ + 20,−9ρ2 − 23ρ + 20), ρ ∼ −0.4608

A ∼ 0.5603 107, C ∼ −5951.7761

(ρ2 + 3ρ + 2, 2ρ2 + 8ρ + 6, 3ρ2 + 11ρ + 5), ρ ∼ 0.6751

A ∼ 0.0017, C ∼ −0.0029

3/169/1 (ρ2 + 2ρ + 1, ρ2 + 3ρ + 1, ρ2 + 3ρ + 1), fρ = x3 + x2 − 4x + 1, ρ ∼ 1.3772
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fA = 47775744x6− 143327232x5 + 442771321x4− 646663922x3 + 442771321x2

− 143327232x+ 47775744, A ∼ 0.0865+ 0.4068i

fC = 253613523861504x6 + 26418075402240x5 + 1247751475200x4

+ 33565248000x3 + 524410000x2 + 4375000x+ 15625, C ∼ −0.0101− 0.0052i

3/229/1i-iv fA = x6 − 891800283x5− 323471580x4− 69682060x3− 4875984x2

− 95499x− 19683
fC = 12230590464x6 + 7861915024883712x5 + 217846257352704x4

+ 2464230920192x3 + 14182917888x2 + 41406720x+ 48889

fρ = x3 − 4x + 1

(−ρ + 2, 4ρ2 − 8ρ + 4, 4ρ2 − 9ρ + 3), ρ ∼ −2.1149

A ∼ 0.89180 109, C ∼ −642807.45145

(−ρ + 3, ρ2 − ρ + 1, ρ2 − 2ρ + 1), ρ ∼ −2.1149

A ∼ −0.1244 C ∼ −0.0047

(−ρ2 + 5,−ρ2 − ρ + 9,−2ρ2 + 9), ρ ∼ 0.2541

A ∼ 0.0139+ 0.0564i,C ∼ −0.0057− 0.0008i

(ρ2 + ρ, ρ2 + 2ρ, ρ2 + 2ρ + 1), ρ ∼ 1.8608

A ∼ −0.1330− 0.1865i, C ∼ −0.0057+ 0.0024i

3/257/1i-iv fA = 531441x12 + 525251601918x11− 475583068628109x10

+ 145091741406011523x9− 3841484122217531779x8

+ 43878639793619887759x7 + 69223798388103989790x6

+ 43878639793619887759x5− 3841484122217531779x4

+ 145091741406011523x3− 475583068628109x2

+ 525251601918x+ 531441
fC = 981442558066553631277056x12− 1199077445317811899012743168x11

− 3440174380065968166971375616x10− 3443531295087114516770586624x9

− 640027283299903105017053184x8− 51268426832963262581047296x7

− 1047547175657894370607104x6− 11527552895164335783936x5

− 82454945396470054912x4− 379096792445173760x3

− 1022891518176000x2− 1414076126000x− 738480625

fρ = x3 + 3x2 − 2x− 1

(−ρ + 1, ρ2, ρ2 + 1), ρ ∼ −3.4909

A ∼ 438.48055+ 242.68545i, C ∼ −1.3264− 0.77538i

ρ ∼ −0.3434, (−ρ2− 3ρ + 4,−2ρ2 − 5ρ + 7,−2ρ2 − 5ρ + 8)

A ∼ 0.0390+ 0.0336i,C ∼ −0.0059− 0.0004i

ρ ∼ 0.8342, (4ρ2 + 16ρ + 8, ρ2 + 3ρ + 1, 5ρ2 + 19ρ + 6)∗

A ∼ −989258.4449,C ∼ 1224.6146

ρ ∼ 0.8342, (ρ2 + 4ρ + 2, ρ2 + 4ρ + 2, ρ2 + 4ρ + 4)

A ∼ −0.7732− 0.6341i,C ∼ −0.0023+ 0.0066i

3/316/4i-iii fA = 1024x3 + 31488x2− 12831x+ 2

fC = 48922361856x3− 5796790272x2− 113303664x− 213223

fρ = x3 + x2 − 4x− 2
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(−ρ + 2, 2ρ2 − 2ρ, 2ρ2− 3ρ − 1), ρ ∼ −2.3429

A ∼ 0.0002, C ∼ −0.0021

ρ ∼ −0.4707, (−ρ2 + 6,−ρ2 − ρ + 6,−2ρ2 − ρ + 9)

A ∼ 0.4020,C ∼ −0.0151

ρ ∼ 1.8136, (ρ2 + 2ρ + 2, ρ + 3,−ρ2 + 3ρ + 2)∗

A ∼ −31.1522,C ∼ 0.1357

3/725/11i-iv fA = 531441x8− 7891391272196808x7 + 46388145761677494x6

− 114530990676764355x5 + 152068472373343405x4− 114530990676764355x3

+ 46388145761677494x2− 7891391272196808x+ 531441

fC = 2282521714753536x8 + 20292714330884747034624x7

+ 3566712813962857021440x6 + 261462413303098638336x5

+ 10245236898074460160x4 + 226912926838304768x3 + 2712430618683648x2

+ 14116763723456x+ 7527124081

fρ = x4 + x3 − 3x2 − x + 1

(−ρ + 2,−4ρ3 + 4ρ2 + 4ρ,−4ρ3 + 4ρ2 + 3ρ − 1), ρ ∼ −2.0953

A ∼ 0.14849 1011, C ∼ −0.88905 107

(−ρ3 + ρ2 + 1, ρ2,−ρ3 + ρ2 + 1)∗, ρ ∼ −2.0953

A ∼ 0.9999+ 0.0004i, C ∼ −0.0323− 0.6730 10−5

(ρ3 + 2ρ2 + 1, ρ2 + 2ρ + 1, ρ3 + 2ρ2 + 1)∗, ρ ∼ 1.3557

A ∼ 0.9396− 0.3421i, C ∼ −0.0253+ 0.0044i

(ρ3 + 3ρ2 + ρ, ρ3 + 2ρ − ρ, ρ3 + 3ρ2 + ρ)∗, ρ ∼ 1.3557

A ∼ 0.9995− 0.0312i, C ∼ −0.0298+ 0.0004i

3/1957/3i-iv fA = x8 − 34334530121767x7 + 154100700344272x6− 283384691457345x5

+ 251323610679999x4− 131558602718961x3 + 43854675535269x2

− 1549681956x+ 387420489

fC = 347892350976x8 + 4628177261915812134912x7

+ 582293076125484580864x6+ 29619345250861449216x5

+ 776123466778607616x4 + 11083998534221824x3

+ 84089886272256x2 + 284269141584x+ 339773323

fρ = x4 − 4x2 + x + 1

(−ρ + 2,−4ρ3 + 8ρ2,−4ρ3 + 8ρ2 − ρ − 1), ρ ∼ −2.0615

A ∼ 0.34335 1014, C ∼ −0.13303 1011

(ρ3 − 4ρ + 3, 3ρ3 − ρ2 − 11ρ + 8, 3ρ3 − ρ2 − 11ρ + 8), ρ ∼ −0.3963

A ∼ 0.4417 10−5 − 0.0029i, C ∼ −0.0031+ 0.00004i

(−ρ3 − ρ2 + 4ρ + 4,−2ρ3 − ρ2 + 7ρ + 3,−2ρ3 − ρ2 + 7ρ + 3), ρ ∼ 0.6938

A ∼ 0.2078− 0.6103i,−0.0127+ 0.0074i

(ρ3 + ρ2 − 2ρ + 1, ρ3 + ρ2 − 2ρ + 1, ρ2 + 2ρ + 1), ρ ∼ 1.7640



110 B List of Accessory Parameters and Singular Points

A ∼ 1.5362− 0.8440i, C ∼ −0.0298+ 0.0089i

3/2000/5 (ρ2 − ρ, ρ3 − 2ρ − ρ + 2, ρ3 − ρ2 − 3ρ + 1), fρ = x4 − 4x3 + x2 + 6x + 1, ρ ∼ 2.9021

fA = 729x4 − 6480x3 + 22105x2 − 31250x+ 15625, A ∼ 3.1332+ 1.5177i

fC = 2418647040000x4 + 341297971200x3 + 18345533184x2

+ 440949888x+ 3978349, C ∼ −0.0404− 0.0128i

3/4352/2i-ii fA = 531441x8− 64796436x7 + 3009036438x6− 6026830596x5 + 3361388930x4

− 423440384x3 + 150933504x2− 8388608x+ 2097152

fC = 981442558066553631277056x8+ 602610274368410534019072x7

+ 146932327534616710742016x6 + 10415653268576658259968x5

+ 321388066379823906816x4 + 4937075259269087232x3

+ 40344446803654656x2 + 169641680184576x+ 292036636097

fρ = x4 − 8x2 + 8x + 1

(−2ρ3 − 3ρ2 + 11ρ + 2,−4ρ3 − 6ρ2 + 23ρ + 3,−4ρ3 − 6ρ2 + 23ρ + 4), ρ ∼ 1.5266

A ∼ 59.9283+ 42.6784i, C ∼ −0.26185− 0.17555i

(ρ3 + 2ρ2 − 4ρ, 2ρ3 + 4ρ2 − 9ρ − 1, 3ρ3 + 5ρ2 − 15ρ + 1), ρ ∼ 1.8085

A ∼ 0.0513+ 0.1517i, C ∼ −0.0077− 0.0021i

3/24217/1i-v The polynomials fA and fC of degree 30 can be found in [Hof12a].

fρ = x5 − 5x3 − x2 + 3x + 1

(ρ4 − ρ3 − 4ρ2 + 2ρ + 3, ρ4 − ρ3 − 4ρ2 + 2ρ + 3, ρ2 − 2ρ + 1), ρ ∼ −1.9600

A ∼ −0.9877− 0.1558i,C ∼ −0.0001+ 0.0016i

(tr1, tr2, tr3), tr1 = −2ρ4 + ρ3 + 9ρ2 − 2ρ − 1, tr2 = −4ρ4 + 3ρ3 + 18ρ2 − 9ρ − 5,

tr3 = −4ρ4 + 3ρ3 + 18ρ2 − 9ρ − 5, ρ ∼ −0.7728

A ∼ 0.0018+ 0.0615i,C ∼ −0.0055− 0.0008i

(3ρ4 − ρ3 − 14ρ2 + 2ρ + 8, 3ρ4 − ρ3 − 15ρ2 + 2ρ + 10, 3ρ4 − ρ3 − 15ρ2 + 2ρ + 10),

ρ ∼ −0.3697

A ∼ 0.0413+ 0.2845i,−0.0086− 0.0037i

(ρ4 − ρ3 − 5ρ2 + 4ρ + 5,−2ρ4 − ρ3 + 9ρ2 + 6ρ + 1,−2ρ4 − ρ3 + 9ρ2 + 6ρ + 1),

ρ ∼ 0.8781

A ∼ 0.00001i+ 0.0051i,C ∼ −0.0034− 0.00008i

(2ρ3 + 3ρ2 − 3ρ − 1, 2ρ3 + 3ρ2 − 3ρ − 1, ρ + 2)∗, ρ ∼ 2.1744

A ∼ 0.5− 0.0392i,C ∼ −0.0173+ 0.0005i

3/38569/1

i|ii|iv|vi
The minimal polynomials fA and fC of degree 20 can be found in [Hof12a].

fρ = x5 + x4 − 5x3 − x2 + 4x− 1

(−ρ4 − 2ρ3 + 4ρ2 − 1, ρ2, ρ4 + ρ3 − 4ρ2 − 2ρ + 3), ρ ∼ −2.5441

A ∼ −0.2714− 0.5108i, C ∼ −0.0062+ 0.0059i

(−ρ4 − ρ3 + 4ρ2 + 1, ρ3 + ρ2 − 4ρ + 2, ρ3 − 5ρ + 4), ρ ∼ −1.1101

A ∼ 2.2678+ 0.8703i, C ∼ −0.0355− 0.0082i

(tr1, tr2, tr3), tr1 = −2ρ4 − 3ρ3 + 8ρ2 + 6ρ − 2



B.2 (0;2,2,2,q)-Type 111

tr2 = −49ρ4 − 7ρ3 + 15ρ2 + 15ρ − 4

tr3 = −4ρ4 − 7ρ3 + 15ρ2 + 16ρ + 4, ρ ∼ 0.7015

A = 0.0053+ 0.0064i , C = −0.0038− 0.00009i

(ρ4 + 2ρ3 − 3ρ2 − 3ρ + 3, ρ4 + 2ρ3 − 3ρ2 − 3ρ + 3, ρ2 + 2ρ + 1), ρ ∼ 1.6460

A ∼ 0.5+ 0.4948i , C ∼ −0.0173− 0.0063

3/38569/1iii The minimal polynomials fA and fC of degree 20 can be found in [Hof12a].

(tr1, tr2, tr2), tr1 = ρ4 + ρ3 − 5ρ2 − ρ + 5, tr2 = 9ρ4 + 12ρ3 − 41ρ2 − 23ρ + 30

fρ = x5 + x4 − 5x3 − x2 + 4x− 1, ρ ∼ 0.3067

A = 1.000006− 0.00001i , C = −0.0331+ 0.2309 10−6

3/38569/1v

fρ = x5 + x4 − 5x3 − x2 + 4x− 1, ρ ∼ 1.6460

(tr1, tr2, tr3), tr1 = −ρ4 − ρ3 + 5ρ2 + 2ρ − 1

tr2 = 8ρ4 + 20ρ3 − 8ρ2 − 16ρ + 8, tr3 = 7ρ4 + 19ρ3 − 3ρ2 − 14ρ + 4

no candidates for A and C known

5/5/2i+ii fA = 3125x2 − 3000x− 121
fC = 200000x2 + 11000x+ 61

( 7+
√
5

2 , 12+ 4
√
5, 13+ 5

√
5)∗

A ∼ 0.9987,C ∼ −0.0487

(3+
√
5, 8+ 2

√
5, 17+7

√
5

2 )

A ∼ −0.0387,C ∼ −0.0062

5/5/9 ( 9+
√
5

2 , 6+ 6
√
5, 8+ 3

√
5)

fA = 3125x4 − 37625x3 + 62141x2− 37625x+ 3125, A ∼ 0.097978

fC = 204800000x4 + 40448000x3 + 2387456x2 + 54112x+ 361, C ∼ −0.011256

5/5/2iii (3+
√
5, 15+5

√
5

2 , 7+ 3
√
5)

fA = 3125x4 − 46000x3 + 2182902x2− 46000x+ 3125, A ∼ 7.34947+ 25.3812i

fC = 12800000x4 + 2112000x3 + 520272x2 + 7344x+ 27,C ∼ −0.075132− 0.18092i

5/5/2iv (5+
√
5, 5+ 5

√
5, 15+5

√
5

2 )

A = −1 , C = 0

5/5/19 ( 7+3
√
5

2 , 11+3
√
5

2 , 11+3
√
5

2 )

fA = 3125x4 + 25125x3− 31984x2 + 13718x− 6859, A ∼ 0.1321+ 0.4968i

fC = 128000000000x4 + 1600000000x3− 372640000x2− 12089200x− 122849,

C ∼ −0.0168− 0.0094i

5/725/19i+iii fA = 9765625x8 + 121056848828125x7− 419346380575000x6

+ 598919028196875x5− 305309425863109x4 + 7019894136811x3

− 2339964744279x2 + 27436x− 6859
fC = 16384000000000000000000x8− 244987125760000000000000000x7

− 37635776081920000000000000x6− 2219387018240000000000000x5

− 61509916794598400000000x4− 786470380331264000000x3

− 4716359237371040000x2− 12089932237804400x− 10850689723109

fρ = x4 + x3 − 3x2 − x + 1
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(ρ2 − ρ + 1, ρ2 − ρ + 1, ρ2 − 2ρ + 1), ρ ∼ −2.0953

A ∼ 1.2280+ 0.9736i,C ∼ −0.0399− 0.0158i

(8ρ3 + 20ρ2 + 4ρ − 4, ρ2 + ρ + 1, 9ρ3 + 22ρ2 + 3ρ − 4)∗, ρ ∼ 1.3557

A ∼ −0.1239 108,C ∼ 14952.9811

5/725/19ii+iv fA = 6859x8 − 27436x7 + 2339964744279x6− 7019894136811x5

+ 305309425863109x4− 598919028196875x3 + 419346380575000x2

− 121056848828125x− 9765625
fC = 11507492454400000000x8 + 2416573415424000000x7

+ 22516905758047600640000x6 + 3546389344510830182400x5

+ 437763975876967071744x4 + 29674012833985572864x3

+ 884263559008833024x2 + 10019598658093584x+ 10850689723109

fρ = x4 + x3 − 3x2 − x + 1

(−2ρ3 + 3ρ2,−2ρ3 + 3ρ2, ρ2)∗, ρ ∼ −2.0953

A ∼ 0.5− 18470.3094i,C ∼ −0.0262+ 44.2344i

(ρ2 + 2ρ + 1, ρ3 + 3ρ2 + 2ρ + 1, ρ3 + 3ρ2 + 2ρ + 1), ρ ∼ 1.3557

A ∼ 0.5+ 11.26139,C ∼ −0.02625− 0.09833i

5/2225/2i-iv fA = 9765625x8 + 77448046875x7 + 10966824884375x6− 37076606993375x5

+ 51789770686056x4− 37076606993375x3 + 10966824884375x2

+ 77448046875x+ 9765625

fC = 41943040000000000x8− 897685913600000000x7 + 487766517350400000x6

+ 86206751178752000x5 + 5330548124942336x4 + 155797232070656x3

+ 2126369278976x2 + 10323832736x+ 15124321

fρ = x4 + 5x3 + 4x2 − 5x− 1

(−ρ + 1,−ρ3 + 4ρ + 1,− 3
2ρ3 − 2ρ2 + 2ρ + 1

2 ), ρ ∼ −3.4383

A ∼ −0.00013,C ∼ −0.0026

(ρ2 + 2ρ + 1, ρ2 + 2ρ + 1,− 1
2ρ3 + 2ρ + 1

2 )
∗, ρ ∼ −3.4383

A ∼ 1.20494, C ∼ −0.0459

(ρ3 + 6ρ2 + 10ρ + 5, ρ2 + 3ρ + 2, 32ρ3 + 9ρ2 + 14ρ + 7
2 ), ρ ∼ 0.7566

A ∼ −0.0067,C ∼ −0.0048

(4ρ2 + 4ρ + 4, 52ρ3 + 5ρ2 + 3ρ + 1
2 ,

5
2ρ3 + 5ρ2 + 3ρ + 1

2 ), ρ ∼ 0.7566

A ∼ 0.6535+ 0.7569i,C ∼ −0.0297− 0.0136i

5/3600/2 fA = 3125x4 + 750x3 + 25018x2 + 750x+ 3125

fC = 1638400000x4 + 100352000x3 + 4425344x2 + 76912x+ 529

fρ = x4 − 4x3 + 3x2 + 14x + 1

(
1
3

ρ2 +
1
3

ρ +
1
3
,
1
3

ρ3 − 2
3

ρ2 − 2
3

ρ + 3,
1
3

ρ3 − 1
3

ρ2 − 4
3

ρ +
4
3
), ρ ∼ 3.8025

A ∼ −0.0135− 0.3561i, C ∼ −0.0124+ 0.0069i

7/49/1i+iii+v
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fA = 823543x6 + 219801946x5− 349963243x4 + 260346983x3− 130234464

x2 + 73167x− 24389

fC = 1625527855624486912x6− 1857746120713699328x5

− 220782954203578368x4− 9004835937341440x3− 167836041028096x2

− 1233603358848x− 3039746921

(4ρ2 + 3ρ − 1, ρ2 + ρ, 4ρ2 + 3ρ − 1)∗, ρ = 2 cos(π/7)

A ∼ −268.4851 C ∼ 1.25462

(ρ + 3, 4ρ2 + 4ρ, ρ2 + 5ρ − 1), 2 cos(π/7)

A ∼ 0.00009+ 0.01369i C ∼ −0.0061− 0.0003i

(ρ2 + 2ρ + 1, ρ2 + 2ρ + 2, ρ2 + 2ρ + 2), ρ = 2 cos(π/7)

A ∼ 0.2953− 0.7095i, C ∼ −0.0235+ 0.0141i

7/49/1ii+iv The polynomials FA and FC of degree 18 can be found in [Hof12a].

(ρ2 + ρ, 4ρ2 + 3ρ − 2, 4ρ2 + 4ρ), ρ = 2 cos(π/7)

A ∼ 0.0134+ 0.0022i, C ∼ −0.0064− 0.00005i

(ρ2 + 2ρ + 1, ρ2 + 2ρ + 1, 3ρ2 + ρ − 1)

A ∼ 0.5+ 0.3624i, C ∼ −0.0286− 0.0080i

7/81/6
(2ρ + 4, 2ρ + 4, ρ2 + 4ρ + 4), ρ = 2 cos(π/9)

A = −1, C = 0

Table B.2: A and C (0;2,2,2,q)-groups
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C CY(3)-Equations with Monodromy Invariant
Doran-Morgan Lattice

In this Appendix we list the data of CY(3)-equations with monodromy invariant Doran-Morgan lattice
as announced in Chapter 4.

Operator

H3




0 a ∞

0
0
0
0

a1
a2
a3
a4

∞1

∞2

∞3

∞4





c2H

c3

|H|
1/a

Yukawa coupling K(q)

g0 instanton number

exponents in holomorphic anomaly

g1 instanton numbers

geometric description

monodromy with respect to the Doran-Morgan lattice

reflection vectors

θ4−144z(6θ + 1)2(6θ + 5)2

1




0 1
186624 ∞

0
0
0
0

0
1
1
2

1
6
1
6
5
6
5
6





22

−120

2

186624

1+ 67104q+ 6778372896q2 + 771747702257664q3 + 91640648916794239776q4 +O(q5)

n01 = 67104, n02 = 847288224, n03 = 28583248229280, n04 = 1431885139218997920,
n05 = 88985016340513371957600, n06 = 6335857687001825322018363168

e 1
3125

= − 1
6

n11 = 360, n12 = 40691736, n13 = 4956204918240, n14 = 616199133057629184,
n15 = 76418673008601139234704, n16 = 9453033616452720472691303904

X(6, 6) ⊂ P5(1, 1, 2, 2, 3, 3) [KT93]
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M0 =




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1


, M 1

186624
=




1 −2 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1 1
186624

=(1, 0, 1112 ,−120λ)

θ4−80z(10θ + 1)(10θ + 3)(10θ + 7)(10θ + 9)

1




0 1
800000 ∞

0
0
0
0

0
1
1
2

1
10
3
10
7
10
9
10





34

−288

3

800000

1+231200q+97726516000q2+45924147895040000q3+22409898166582504500000q4+O(q5)

n01 = 231200, n02 = 12215785600, n03 = 1700894366474400, n04 = 350154658851324656000,
n05 = 89338191421813572850115680, n06 = 26107067114407746641915631734400

e 1
800000

= − 1
6

n11 = 280, n12 = 207680680, n13 = 161279120326560, n14 = 103038403740690105440,
n15 = 59221844124053623534386928, n16 = 32373322447001008788291066015840

X(10) ⊂ P4(1, 1, 1, 2, 5) [Mor92]

M0 =




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1


, M 1

800000
=




1 −3 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1 1
800000

=(1, 0, 1712 ,−288λ)

θ4−144z(12θ + 1)(12θ + 5)(12θ + 7)(12θ + 11)

1




0 1
2985984 ∞

0
0
0
0

0
1
1
2

1
12
5
12
7
12
11
12





46

−484

4

2985984

1+678816q+1101481164576q2+1865163478016858112q3+O(q4)

n01 = 678816, n02 = 137685060720, n03 = 69080128815414048, n04 = 51172489466251340674608,
n05 = 46928387692914781844159094240, n06 = 49273154611117098740758501416679344

e 1
2985984

= − 1
3

n11 = 249312, n12 = 188143760304, n13 = 239409825319593792,
n14 = 345368875891797981326112, n15 = 534346826439271590322258006656,
n16 = 861937915820071377248390457113456544

X(2, 12) ⊂ P5(1, 1, 1, 1, 4, 6)

M0 =




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1


, M 1

2985984
=




1 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1



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v1 1
2985984

=(1, 0, 2312 ,−484λ)

θ4 − z
(
528+ 6272θ + 28032θ2 + 43520θ3 + 6400θ4

)

+z2
(
5799936+ 48627712θ + 104333312θ2− 206045184θ3− 139984896θ4

)

+z3
(
2264924160+ 28185722880θ + 116098334720θ2 + 128849018880θ3− 393257943040θ4

)

+1717986918400z4(4θ + 1)(2θ + 1)2(4θ + 3)

2




− 1
5120 0 1

16384
1
256 ∞

0
1
3
4

0
0
0
0

0
1
1
2

0
1
1
2

1
4
1
2
1
2
3
4





20

−16

2

16384

1+8224q+27267872q2+419644487680q3+3494992695847712q4+O(q5)

n01 = 16448, n02 = 6814912, n03 = 31084776256, n04 = 109218520893120,
n05 = 564955143278513856, n06 = 3186807897019572948416

e 1
16384

= − 1
6 , e 1

256
= − 1

3

n11 = 16, n12 = −130544, n13 = 689912000, n14 = 8769686911936, n15 = 113420969633710496,
n16 = 1293678778019568775232

M0 =




1 0 0 0
1 1 0 0
0 2 1 0
0 0 1 1


, M− 1

5120
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, M 1

256
=




−3 −6 −4 −2
4 7 4 2
−4 −6 −3 −2
4 6 4 3


, M 1

16384
=




1 −2 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1 1
16384

=(2, 0, 56 ,−16λ), v21
256

=(4,−4, 53 ,−32λ − 7
3 )

θ4 − 48z(6θ + 1)(4θ + 1)(4θ + 3)(6θ + 5)

2




0 1
27648 ∞

0
0
0
0

0
1
1
2

1
6
1
4
3
4
5
6





32

−156

3

27648

1+7776q+111624480q2+1807441496064q3+30421658654563104q4+O(q5)

n01 = 15552, n02 = 27904176, n03 = 133884554688, n04 = 950676829466832,
n05 = 8369111295497240640, n06 = 84404875193344648810224

e 1
27648

= − 1
6

n11 = 8, n12 = 258336, n13 = 5966034464, n14 = 126729436130280, n15 = 2512147219945401744,
n16 = 47773385611506721364256

X(3, 4) ⊂ P5(1, 1, 1, 1, 1, 2) [KT93]

M0 =




1 0 0 0
1 1 0 0
0 2 1 0
0 0 1 1


, M 1

27648
=




1 −3 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1



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v1 1
27648

=(2, 0, 43 ,−156λ)

θ4 − 16z(8θ + 1)(8θ + 3)(8θ + 5)(8θ + 7)

2




0 1
65536 ∞

0
0
0
0

0
1
1
2

1
8
3
8
5
8
7
8





44

−296

4

65536

1+14752q+515354400q2+19220227397632q3+742177793308740384q4+O(q5)

n01 = 29504, n02 = 128834912, n03 = 1423720546880, n04 = 23193056024793312,
n05 = 467876474625249316800, n06 = 10807872280363954752338400

n11 = 0, n12 = 41312, n13 = 21464350592, n14 = 1805292092664544,
n15 = 101424054914016355712, n16 = 4922755386485603458880576

e 1
65536

= − 1
6

X(8) ⊂ P4(1, 1, 1, 1, 4) [Mor92]

M0 =




0 0 0 0
1 1 0 0
0 2 1 0
0 0 1 1


, M 1

65536
=




0 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1 1
65536

=(2, 0, 116 ,−296λ)

θ4 − z
(
168+ 1844θ + 21388/3θ2 + 31712/3θ3 + 18544/3θ4

)

−z2
(
125440+ 2871808/3θ + 13438976/9θ2− 26054656/9θ3− 30232576/9θ4

)

+z3
(
1376256+ 25690112θ + 127991808θ2 + 117440512θ3− 4130603008/9θ4

)

−822083584/9z4(4θ + 1)(2θ + 1)2(4θ + 3)

3




− 349
8192 − 85

8192

√
17 0 − 349

8192 + 85
8192

√
17 3

896 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
4
1
2
1
2
3
4





30

−92

3

2792+ 680
√
17

1+ 4300
3 q+ 14150636

3 q2+ 45949064056
3 q3+ 159011444150764

3 q4+ 562830048549808300
3 q5+O(q6)

n01 = 4300, n02 = 1768292, n03 = 1701817028, n04 = 2484553593752, n05 = 4502640388398432,
n06 = 9350482662153015820

e− 349
8192− 85

8192

√
17 = − 1

6 , e− 349
8192+ 85

8192

√
17 = − 1

6

n11 = 6, n12 = 14606, n13 = 61126060, n14 = 244952566097, n15 = 957433739298066,
n16 = 3670123673483108140

M0 =




1 0 0 0
1 1 0 0
0 3 1 0
0 0 1 1


, M− 349

8192− 85
8192

√
17 =




−3 −14 −6 −4
2 8 3 2
−2 −7 −2 −2
0 0 0 1


, M 3

896
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


,

M− 349
8192+ 85

8192

√
17 =




1 −3 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1



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v1− 349
8192− 85

8192

√
17
=(6,−3, 2,−184λ− 3

4 ), v
1
− 349

8192+ 85
8192

√
17
=(3, 0, 54 ,−92λ)

3




0 1
11664 ∞

0
0
0
0

0
1
1
2

1
6
1
3
2
3
5
6





42

−204

4

11664

1+2628q+16078500q2+107103757608q3+738149392199844q4+5191459763880422628q5+O(q6)

n01 = 7884, n02 = 6028452, n03 = 11900417220, n04 = 34600752005688,
n05 = 124595034333130080, n06 = 513797193321737210316

e 1
11664

= − 1
6

n11 = 0, n12 = 7884, n13 = 145114704, n14 = 1773044315001, n15 = 17144900584158168,
n16 = 147664736456807801016

X(6) ⊂ P4(1, 1, 1, 1, 2) [Mor92]

M0 =




1 0 0 0
1 1 0 0
0 3 1 0
0 0 1 1


, M 1

11664
=




1 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




λ 1
11664

= 1

θ4 − z
(
2432θ4 + 2560θ3 + 1760θ2 + 480θ + 48

)

+z2
(
1314816θ4 + 540672θ3− 918528θ2− 522240θ − 76800

)

−z3
(
160432128θ4− 254803968θ3− 212336640θ2− 60162048θ − 5898240

)

−452984832z4(3θ + 1)(2θ + 1)2(3θ + 2)

4




− 1
64 0 1

1728
1

384 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
3
1
2
1
2
2
3





28

−60

3

1728

1+320q+488992q2+533221376q3+603454817056q4+702313679160320q5+O(q6)

n01 = 1280, n02 = 244336, n03 = 78995712, n04 = 37715895504, n05 = 22474037733120,
n06 = 15381013322524080

e− 1
64

= − 1
6 , e 1

1728
= − 1

6

n11 = 8, n12 = 3976, n13 = 4042656, n14 = 4551484672, n15 = 5317338497296,
n16 = 6288978429686080

M0 =




1 0 0 0
1 1 0 0
0 4 1 0
0 0 1 1


, M− 1

64
=




−3 −16 −6 −4
2 9 3 2
−4 −16 −5 −4
2 8 3 3


, M 1

384
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, M 1

1728
=




1 −3 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 1
64
=(8,−4, 73 ,−120λ − 5

6 ), v
1
1

1728
=(4, 0, 76 ,−60λ)
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θ4 −z
(
112+ 1152θ + 4480θ2 + 6656θ3 + 1792θ4

)

+z2
(
94208+ 655360θ + 884736θ2− 3670016θ3− 2686976θ4

)

−z3
(
8388608+ 50331648θ + 100663296θ2 + 201326592θ3 + 805306368θ4

)

−1073741824z4(2θ + 1)4

4




− 11
512 − 5

512

√
5 − 1

512 0 − 11
512 + 5

512

√
5 ∞

0
1
1
2

0
1
3
4

0
0
0
0

0
1
1
2

1
2
1
2
1
2
1
2





28

−32

3

1408+ 640
√
5

1+992q+791328q2+1720469504q3+2620368415520q4+4515256579220992q5+O(q6)

n01 = 3968, n02 = 395168, n03 = 254884224, n04 = 163772976512, n05 = 144488210535040,
n06 = 141987141593265952

e− 11
512− 5

512

√
5 = − 1

6 , e− 11
512+ 5

512

√
5 = − 1

6

n11 = 0, n12 = −312, n13 = 1486080, n14 = 5487324248, n15 = 12342963136768,
n16 = 25799163366493536

M0 =




1 0 0 0
1 1 0 0
0 4 1 0
0 0 1 1


, M− 1

512
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, M− 11

512− 5
512

√
5 =




1 0 0 0
3 5 1 0

−12 −16 −3 0
12 16 4 1


,

M− 11
512+ 5

512

√
5 =




1 −3 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 11
512− 5

512

√
5
=(0,−4, 2,− 11

6 ), v1− 11
512+ 5

512

√
5
=(4, 0, 76 ,−32λ)

θ4−16z(4θ + 1)2(4θ + 3)2

4




0 1
4096 ∞

0
0
0
0

0
1
1
2

1
4
1
4
3
4
3
4





40

−144

4

4096

1+928q+1965856q2+4613478400q3+11199994153760q4+27748101800636928q5+O(q6)

n01 = 3712, n02 = 982464, n03 = 683478144, n04 = 699999511744, n05 = 887939257620352,
n06 = 1289954523115535040

e 1
4096

= − 1
6

n11 = 0, n12 = 1408, n13 = 6953728, n14 = 26841853280, n15 = 88647278203648,
n16 = 266969312902302592

X(4, 4) ⊂ P5(1, 1, 1, 1, 2, 2) [KT93]

M0 =




1 0 0 0
1 1 0 0
0 4 1 0
0 0 1 1


, M 1

4096
=




1 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1 1
4096

=(4, 0, 53 ,−144λ)
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θ4 − 48z(6θ + 1)(2θ + 1)2(6θ + 5)

4




0 1
6912 ∞

0
0
0
0

0
1
1
2

1
6
1
2
1
2
5
6





52

−256

5

6912

1+1248q+4778784q2+18441406464q3+73593869806368q4+299366057720821248q5+O(q6)

n01 = 4992, n02 = 2388768, n03 = 2732060032, n04 = 4599616564224, n05 = 9579713847066240,
n06 = 22839268002374163616

e 1
6912

= − 1
6

n11 = 0, n12 = −504, n13 = 1228032, n14 = 79275665304, n15 = 633074010435840,
n16 = 3666182351841110880

X(2, 6) ⊂ P5(1, 1, 1, 1, 1, 3) [KT93]

M0 =




1 0 0 0
1 1 0 0
0 4 1 0
0 0 1 1


, M 1

6912
=




1 −5 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1 1
6912

=(4, 0, 136 ,−256λ)

θ4 − z
(
72+ 714θ + 12723/5θ2 + 18306/5θ3 + 10449/5θ4

)

−z2
(
42624/5+ 248832/5θ − 69984/25θ2− 10240992/25θ3− 9051264/25θ4

)

−z3
(
1741824/5+ 13436928/5θ + 186437376/25θ2 + 60466176/5θ3 + 458535168/25θ4

)

+53747712/25z4(3θ + 1)2(3θ + 2)2

5




0 71
1728 − 17

1728

√
17 5

432
71
1728 + 17

1728

√
17 ∞

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
3
1
3
2
3
2
3





38

−102

4
1917
2 + 459

2

√
17

1+ 2043
5 q+ 2234187

5 q2+480506616q3+ 2753509074507
5 q4+ 3221857487091168

5 q5+O(q6)

n01 = 2043, n02 = 279018, n03 = 88982631, n04 = 43023544380, n05 = 25774859896713,
n06 = 17683308060957072

e 71
1728− 17

1728

√
17 = − 1

6 , e 71
1728+ 17

1728

√
17 = − 1

6

n11 = −425, n12 = −62094, n13 = −26244689, n14 = −15374152562, n15 = −10137191467518,
n16 = −6952996463048562

M0 =




1 0 0 0
1 1 0 0
0 5 1 0
0 0 1 1


, M 71

1728+ 17
1728

√
17 =




1 −3 −1 −1
0 1 0 0
0 3 2 1
0 −3 −1 0


, M 5

432
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


,

M 71
1728− 17

1728

√
17 =




1 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v171
1728− 17

1728

√
17
=(5, 0, 1912 ,−102λ), v171

1728+ 17
1728

√
17
=(5, 0, 7

12 ,−102λ)
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θ4 − z
(
2000θ4 + 3904θ3 + 2708θ2 + 756θ + 76

)

+z2
(
63488θ4 + 63488θ3 − 21376θ2 − 18624θ − 2832

)

−z3
(
512000θ4 + 24576θ3 − 37888θ2 + 6144θ + 3072

)
+4096z4(2θ + 1)4

5




0 123
32 − 55

32

√
5 1

16
123
32 + 55

32

√
5 ∞

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
2
1
2
1
2
1
2





38

−100

4

984+ 440
√
5

1+444q+457276q2+514376472q3+603706740028q4+722659323926444q5+O(q6)

n01 = 2220, n02 = 285520, n03 = 95254820, n04 = 47164553340, n05 = 28906372957040,
n06 = 20291945542090480

e 123
32 − 55

32

√
5 = − 1

6 , e 123
32 + 55

32

√
5 = − 1

6

n11 = 0, n12 = 460, n13 = 873240, n14 = 1498922217, n15 = 2306959237408,
n16 = 3311397401576040

X5 Pfaffian [Kan12]

M0 =




1 0 0 0
1 1 0 0
0 5 1 0
0 0 1 1


, M 123

32 − 55
32

√
5 =




1 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


, M 1

16
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


,

M 123
32 + 55

32

√
5 =




1 −10 −4 −4
0 1 0 0
0 15 7 6
0 −15 −6 −5




v1123
32 − 55

32

√
5
=(5, 0, 1912 ,−100λ), v1123

32 + 55
32

√
5
=(10, 0, 16 ,−200λ)

θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4)

5




0 1
3125 ∞

0
0
0
0

0
1
1
2

1
5
2
5
3
5
4
5





50

−200

5

3125

1+575q+975375q2+1712915000q3+3103585359375q4+5732647222191200q5+O(q6)

n01 = 2875, n02 = 609250, n03 = 317206375, n04 = 242467530000, n05 = 229305888887625, n06 =
248249742118022000
e 1
3125

= − 1
6

n11 = 0, n12 = 0, n13 = 609250, n14 = 3721431625, n15 = 12129909700200, n16 =
31147299732677250

X(5) ⊂ P4 [COGP91,Mor92]

M0 =




1 0 0 0
1 1 0 0
0 5 1 0
0 0 1 1


, M 1

3125
=




1 −5 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1 1
3125

=(5, 0, 2512 ,−200λ)
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θ4 − 12z(6θ + 1)(6θ + 5)(11θ2 + 11θ + 3) −144z2(6θ + 1)(6θ + 5)(6θ + 7)(6θ + 11)

5




− 11
864 − 5

864

√
5 0 − 11

864 + 5
864

√
5 ∞

0
1
1
2

0
0
0
0

0
1
1
2

1
6
5
6
7
6
11
6





62

−310

6

2376+ 1080
√
5

1+684q+2027196q2+5282248824q3+14402599055676q4+39917806117038684q5+O(q6)

n01 = 3420, n02 = 1266570, n03 = 978194100, n04 = 1125202892850, n05 = 1596712244681520,
n06 = 2593390973297156910

e− 11
864− 5

864

√
5 = − 1

6 , e− 11
864+ 5

864

√
5 = − 1

6

n11 = 1, n12 = −612, n13 = −3437966, n14 = 524538556, n15 = 45789504955347,
n16 = 237013737988236480

M0 =




1 0 0 0
1 1 0 0
0 5 1 0
0 0 1 1


, M− 11

864− 5
864

√
5 =




−9 −30 −6 −4
5 16 3 2

−15 −45 −8 −6
10 30 6 5


, M− 11

864+ 5
864

√
5 =




1 −6 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 11
864− 5

864

√
5
=(−10, 5,− 17

3 , 620λ + 29
12 ), v

1
− 11

864+ 5
864

√
5
=(5, 0, 3112 ,−310λ)

θ4 − z
(
1296θ4 + 1824θ3 + 1284θ2 + 372θ + 40

)

+z2
(
299008θ4 + 299008θ3 + 2048θ2 − 36352θ − 6656

)

−z3
(
21233664θ4 + 12582912θ3 + 8060928θ2 + 3145728θ + 458752

)
+16777216z4(2θ + 1)4

6




− 1
512 0 1

784 ∞

0
1
2
1
3
2

0
0
0
0

0
1
1
2

1
4
3
4
7
4
9
4





36

−72

4

784

1+196q+137892q2+80832040q3+50551083172q4+32597782628196q5+O(q6)

n01 = 2352, n02 = 206544, n03 = 35925264, n04 = 9478302240, n05 = 3129387132288,
n06 = 1184285394173424

e 1
1024

= − 1
6 , e 1

16
= − 1

3

n11 = −322, n12 = −28415, n13 = −5756564, n14 = −1708233758, n15 = −595308482782,
n16 = −218747404004982

M0 =




1 0 0 0
1 1 0 0
0 6 1 0
0 0 1 1


, M 1

16
=




1 −6 −2 −2
0 1 0 0
0 6 3 2
0 −6 −2 −1


, M 1

128
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, M 1

1024
=




1 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1



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v1 1
1024

=(6, 0, 32 ,−72λ), v21
16
=(12, 0, 1,−144λ)

θ4 − z
(
1164θ4 + 2328θ3 + 1630θ2 + 466θ + 50

)
+4z2(2316θ2 + 4632θ + 1907)(θ + 1)2

−4624z3(2θ + 5)(2θ + 1)(θ + 1)(θ + 2)

6




0 1
1156

1
4 ∞

0
0
0
0

0
1
1
2

0
0
1
1

1
2
1
2
5
2





36

−64

4

1156

1+266q+154826q2+102898706q3+70788595914q4+49700857746766q5+O(q6)

n01 = 1596, n02 = 115920, n03 = 22866320, n04 = 6636416352, n05 = 2385641171832,
n06 = 982250381786688

e 1
1156

= − 1
6 , e 1

4
= − 2

n11 = 0, n12 = 138, n13 = 174464, n14 = 169718436, n15 = 152047741248, n16 = 127834237726406

M0 =




1 0 0 0
1 1 0 0
0 6 1 0
0 0 1 1


, M 1

4
=




5 20 7 5
−4 −13 −4 −2
12 30 7 0
−4 −2 2 5


, M 1

1156
=




1 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1 1
1156

=(6, 0, 32 ,−64λ)

θ4 − 12z(4θ + 1)(3θ + 1)(3θ + 2)(4θ + 3)

6




0 1
1728 ∞

0
0
0
0

0
1
1
2

1
4
1
3
2
3
3
4





48

−156

5

1728

1+324q+298404q2+291395880q3+293151164580q4+300655662948324q5+O(q6)

n01 = 1944, n02 = 223560, n03 = 64754568, n04 = 27482893704, n05 = 14431471821504,
n06 = 8675274727197720

e 1
1728

= − 1
6

n11 = 0, n12 = 27, n13 = 161248, n14 = 381704238, n15 = 638555324400, n16 = 891094220156286

X(4, 6) ⊂ P5(1, 1, 1, 2, 2, 3) [KT93]

M0 =




1 0 0 0
1 1 0 0
0 6 1 0
0 0 1 1


, M 1

1728
=




1 −5 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1 1
1728

=(6, 0, 2,−156λ)
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49θ4 − z
(
53424θ4 + 105336θ3 + 74718θ2 + 22050θ + 2352

)

+z2
(
524448θ4 + 457056θ3− 309084θ2 − 247296θ − 40320

)

−z3
(
1181952θ4− 653184θ3− 722304θ2− 154224θ − 6048

)
−15552z4(3θ + 1)(2θ + 1)2(3θ + 2)

7




−5/4− 13
18

√
3 0 −5/4+ 13

18

√
3 7

36 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
3
1
2
1
2
2
3





46

−120

5

540+ 312
√
3

1+ 1434
7 q+ 825642

7 q2+ 504268878
7 q3+ 19233419562

7 q4+ 205848453920184
7 q5+ 134452784879321598

7 q6+O(q7)

n01 = 1434, n02 = 103026, n03 = 18676572, n04 = 4988009280, n05 = 1646787631350,
n06 = 622466594325132

e−5/4− 13
18

√
3 = − 1

6 , e−5/4+ 13
18

√
3 = − 1

6

n11 = 0, n12 = 26, n13 = 53076, n14 = 65171037, n15 = 63899034076, n16 = 54697568345378

X7 Pfaffian [Kan12]

M0 =




1 0 0 0
1 1 0 0
0 7 1 0
0 0 1 1


, M−5/4− 13

18

√
3 =




−5 −26 −6 −4
3 14 3 2
−9 −39 −8 −6
3 13 3 3


, M 7

36
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


,

M−5/4+ 13
18

√
3 =




1 −5 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1−5/4− 13
18

√
3
=(−14, 7,− 10

3 , 240λ + 13
12 ), v

1
−5/4+ 13

18

√
3
=(7, 0, 2312 ,−120λ)

64θ4 − z
(
1344+ 11392θ + 37832θ2 + 52880θ3 + 40048θ4

)

+z2
(
55080+ 603504θ + 2945457θ2 + 7054398θ3 + 4961601θ4

)

−z3
(
46661832+ 310309056θ + 703721925θ2 + 328850442θ3 + 28137942θ4

)

+z4
(
1364563341+ 8824636854θ + 19667155185θ2 + 7044191406θ3− 13777903170θ4

)

−z5
(
54717165360+ 250598877786θ + 177615553815θ2− 804313632978θ3 + 15138096885θ4

)

+z6
(
409632597036+ 1885188099474θ + 3457857004488θ2 + 4765272014700θ3

+7334386417422θ4
)

+z7
(
11046132982368+ 51778748354850θ + 98034430218516θ2

+92511363727332θ3 + 39006657093987θ4
)

+102521921742603z8(θ + 1)4

8




x1 x2 − 7
594 − 1

1782

√
1497 0 x3 − 7

594 + 1
1782

√
1497 1

27 ∞

0
1
1
2

0
1
1
2

0
1
3
4

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
1
1
1





32

−20

4

1/x3
f (x) = 6561x3 + 2430x2 + 457X− 1, x1 = −0.1863− 0.1891i, x2 = −0.1863+ 0.1891i, x3 =

0.0022, x4 = − 7
594 − 1

1782

√
1497, x5 = − 7

594 + 1
1782

√
1497

1+ 713
8 q+ 210249

8 q2+ 61728653
8 q3+ 17129939529

8 q4+ 5011823039963
8 q5+ 1489022944012557

8 q6+O(q7)

n01 = 1426, n02 = 52384, n03 = 4572440, n04 = 535304040, n05 = 80189168628,
n06 = 13787248908096

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6 , e 1

27
= − 1

3



126 C CY(3)-Equations with Monodromy Invariant Doran-Morgan Lattice

n11 = 2, n12 = 10, n13 = 21650, n14 = 8692206, n15 = 2823202414, n16 = 905305771966

M0 =




1 0 0 0
1 1 0 0
0 8 1 0
0 0 1 1


, Mx4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, Mx1 =




−9 −38 −8 −4
10 39 8 4
−55 −209 −43 −22
40 152 32 17


,

M 1
27

=




1 −6 −2 −2
0 1 0 0
0 6 3 2
0 −6 −2 −1


, Mx5 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, Mx3 =




1 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


, Mx2 =




11 −6 0 −4
10 −5 0 −4
−25 15 1 10
10 −6 0 −3




v1x1=(16, 16, 173 ,−40λ + 7
3 ), v

1
x2
=(16,−16, 173 ,−40λ − 7

3 ), v
1
x3
=(8, 0, 43 ,−20λ),

v21
27
=(16, 0, 23 ,−40λ)

θ4 − z
(
320θ4 + 896θ3 + 608θ2 + 160θ + 16

)

−z2
(
86016θ4 + 245760θ3 + 267264θ2 + 137216θ + 25600

)
−65536z3(2θ + 1)2(23θ2 + 55θ + 39)

−8388608z4(2θ + 1)2(2θ + 3)2

8




− 1
64 0 1

512 ∞

0
1
2
3
2
2

0
0
0
0

0
1
1
2

1
2
1
2
3
2
3
2





32

−8

4

512

1+128q+32800q2+10330112q3+3296727840q4+1080607664128q5+358443314231296q6+O(q7)

n01 = 1024, n02 = 32672, n03 = 3060736, n04 = 412086880, n05 = 69158890496,
n06 = 13275677921056

e− 1
64

= − 1
2 , e 1

512
= − 1

6

n11 = −16, n12 = 1968, n13 = −15168, n14 = 12312352, n15 = 3892748768, n16 = 1390131583872

M0 =




1 0 0 0
1 1 0 0
0 8 1 0
0 0 1 1


 , M− 1

64
=




−3 −8 −1 0
1 −1 −1 −1
0 32 11 8
−4 −40 −11 −7


 , M 1

512
=




1 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v11
512

=(8, 0, 43 ,−8λ)

θ4 − z
(
32+ 288θ + 960θ2 + 1344θ3 + 768θ4

)

−z2
(
4352+ 25600θ + 36864θ2− 26624θ3 − 41984θ4

)

+z3
(
16384+ 196608θ + 720896θ2 + 786432θ3 − 458752θ4

)
−262144z4(2θ + 1)4

8




− 11
128 − 5

128

√
5 0 − 11

128 + 5
128

√
5 1

32 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
2
1
2
1
2
1
2





44

−92

5

352+ 160
√
5

1+128q+54944q2+21610496q3+9167755040q4+3961492400128q5 +O(q6)
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n01 = 1024, n02 = 54816, n03 = 6403072, n04 = 1145962512, n05 = 253535513600,
n06 = 64206844371872

e− 11
128− 5

128

√
5 = − 1

6 , e− 11
128+ 5

128

√
5 = − 1

6

n11 = 0, n12 = 48, n13 = 26624, n14 = 17431712, n15 = 10116397056, n16 = 5458349643392

M0 =




1 0 0 0
1 1 0 0
0 8 1 0
0 0 1 1


 , M− 11

128− 5
128

√
5 =




−5 −28 −6 −4
3 15 3 2

−12 −56 −11 −8
6 28 6 5


 , M 1

32
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

M− 11
128+ 5

128

√
5 =




1 −5 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 11
128− 5

128

√
5
=(−16, 8,− 11

3 , 184λ + 7
6 ), v

1
− 11

128+ 5
128

√
5
=(8, 0, 116 ,−92λ)

θ4 − 16z(4θ + 1)(2θ + 1)2(4θ + 3)

8




0 1
1024 ∞

0
0
0
0

0
1
1
2

1
4
1
2
1
2
3
4





56

−176

6

1024

1+160q+92448q2+52836352q3+31071312672q4+18608176284160q5+O(q6)

n01 = 1280, n02 = 92288, n03 = 15655168, n04 = 3883902528, n05 = 1190923282176,
n06 = 417874605342336

e 1
1024

= − 1
6

n11 = 0, n12 = 0, n13 = 2560, n14 = 17407072, n15 = 24834612736, n16 = 23689021707008

X(2, 4) ⊂ P5 [LT93]

M0 =




1 0 0 0
1 1 0 0
0 8 1 0
0 0 1 1


 , M 1

1024
=




1 −6 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1 1
1024

=(8, 0, 73 ,−176λ)

θ4−9z(3θ + 1)2(3θ + 2)2

9




0 1
729 ∞

0
0
0
0

0
1
1
2

1
3
1
3
2
3
2
3





54

−144

6

729

1+117q+47061q2+19273095q3+8102791125q4+3469276285992q5 +O(q6)

n01 = 1053, n02 = 52812, n03 = 6424326, n04 = 1139448384, n05 = 249787892583,
n06 = 62660964509532

e 1
729

= − 1
6



128 C CY(3)-Equations with Monodromy Invariant Doran-Morgan Lattice

n11 = 0, n12 = 0, n13 = 3402, n14 = 5520393, n15 = 4820744484, n16 = 3163476678678

X(3, 3) ⊂ P6 [LT93]

M0 =




1 0 0 0
1 1 0 0
0 9 1 0
0 0 1 1


 , M 1

729
=




1 −6 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v11
729

=(9, 0, 94 ,−144λ)

θ4 − z
(
465θ4 + 594θ3 + 431θ2 + 134θ + 16

)

+z2
(
42000θ4 + 30576θ3 − 15136θ2 − 14144θ − 2816

)

−z3
(
1030720θ4− 231936θ3− 335424θ2− 82176θ − 2304

)

−z4
(
2222080θ4 + 4788224θ3 + 4386816θ2 + 1992704θ + 372736

)
+3211264z5(θ + 1)4

10




− 11
64 − 5

64

√
5 0 − 11

64 + 5
64

√
5 1

56 1 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
1
1
1





40

−50

5

176+ 80
√
5

1+55q+15375q2+3147040q3+682334735q4+153499785680q5+35067730548360q6+O(q7)

n01 = 550, n02 = 19150, n03 = 1165550, n04 = 106612400, n05 = 12279982850, n06 = 1623505897500

e− 11
64− 5

64

√
5 = − 1

6 , e− 11
64+ 5

64

√
5 = − 1

6 , e1 = − 1
3

n11 = 0, n12 = 50, n13 = 8800, n14 = 2205000, n15 = 571891188, n16 = 145348448125

M0 =




1 0 0 0
1 1 0 0
0 10 1 0
0 0 1 1


 , M− 11

64− 5
64

√
5 =




−19 −120 −24 −16
10 61 12 8
−50 −300 −59 −40
25 150 30 21


 , M1 =




1 −60 −18 −18
0 1 0 0
0 100 31 30
0 −100 −30 −29


 , M 1

56
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M− 11

64+ 5
64

√
5 =




1 −5 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 11
64− 5

64

√
5
=(40,−20, 203 ,−200λ − 5

3 ), v
1
− 11

64+ 5
64

√
5
=(10, 0, 53 ,−50λ), v21=(60, 0, 0,−300λ)

25θ4 − z
(
8080θ4 + 21920θ3 + 15460θ2 + 4500θ + 500

)

−z2
(
1070336θ4 + 2198528θ3 + 1617536θ2 + 844800θ + 186000

)

−3840z3(2θ + 1)(5672θ3 + 9500θ2 + 8422θ + 2689)
−294912z4(2θ + 1)(1208θ3 + 2892θ2 + 2842θ + 969)
−28311552z5(2θ + 1)(6θ + 5)(6θ + 7)(2θ + 3)

10




− 1
16 − 5

192 0 1
432 ∞

0
1
4
3
4
1

0
1
3
4

0
0
0
0

0
1
1
2

1
2
5
6
7
6
3
2





40

−32

5

432

1+ 492
5 q+16700q2+4709784q3+ 5844318764

5 q4+ 522739598492
5 q5+ 399663654969976

5 q6+O(q7)

n01 = 984, n02 = 20752, n03 = 1744328, n04 = 182632352, n05 = 24363833568, n06 = 3700589179056
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e− 1
16

= − 1
2 , e 1

432
= − 1

6

n11 = 0, n12 = −5, n13 = 2608, n14 = 1122718, n15 = 508591872, n16 = 180758602038

M0 =




1 0 0 0
1 1 0 0
0 10 1 0
0 0 1 1


 , M− 5

192
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M− 1

16
=




−1 4 2 2
−2 −13 −3 −2
26 128 25 14
−26 −110 −19 −9


 ,

M 1
432

=




1 −5 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v11
432

=(10, 0, 53 ,−32λ)

25θ4 − z
(
700+ 6100θ + 19620θ2 + 27040θ3 + 13760θ4

)

−z2
(
4240+ 20160θ − 1536θ2 − 112128θ3− 93696θ4

)

−z3
(
5120+ 30720θ + 70656θ2 + 122880θ3 + 180224θ4

)
4096z4(2θ + 1)4

10




0 17
16 − 3/4

√
2 5

16
17
16 + 3/4

√
2 ∞

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
2
1
2
1
2
1
2





52

−116

6

512

1+ 444
5 q+ 26556q2 + 8110392 q3 + 12797926956

5 q4 + 4108561110444
5 q5 +O(q6)

n01 = 888, n02 = 33084, n03 = 3003816, n04 = 399931068, n05 = 65736977760,
n06 = 12365885835028

e 17
16−3/4

√
2 = − 1

6 , e 17
16+3/4

√
2 = − 1

6

n11 = 0, n12 = 1, n13 = 2496, n14 = 2089392, n15 = 1210006912, n16 = 571433264626

X10 Pfaffian [Kan12]

M0 =




1 0 0 0
1 1 0 0
0 10 1 0
0 0 1 1


 , M 17

16−3/4
√
2 =




1 −4 −1 −1
0 1 0 0
0 −8 −1 −2
0 8 2 3


 , M 5

16
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

M 17
16+3/4

√
2 =




1 −2 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v117
16−3/4

√
2
=(10, 0, 136 ,−116λ), v117

16+3/4
√
2
=(10, 0, 16 ,−116λ)

θ4 − 4z(4θ + 1)(4θ + 3)(11θ2 + 11θ + 3) −16z2(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7)

10




− 11
128 − 5

128

√
5 0 − 11

128 + 5
128

√
5 ∞

0
1
1
2

0
0
0
0

0
1
1
2

1
4
3
4
5
4
7
4





64

−200

7

352+ 160
√
5

1+92q+40508q2+15805784q3+6398889276q4+2631769894092q5+1095690103233560q6+O(q7)
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n01 = 920, n02 = 50520, n03 = 5853960, n04 = 999820120, n05 = 210541591520,
n06 = 50726392934600

e− 11
128− 5

128

√
5 = − 1

6 , e− 11
128+ 5

128

√
5 = − 1

6

n11 = 0, n12 = 3, n13 = −1840, n14 = 340006, n15 = 1947267584, n16 = 1647668878150

X
(2:1)−−→ B5 [Bor96]

M0 =




1 0 0 0
1 1 0 0
0 10 1 0
0 0 1 1


 , M− 11

128− 5
128

√
5 =




−9 −40 −6 −4
5 21 3 2

−30 −120 −17 −12
20 80 12 9


 , M− 11

128+ 5
128

√
5 =




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 11
128− 5

128

√
5
=(20,−10, 193 ,−400λ − 7

3 ), v
1
− 11

128+ 5
128

√
5
=(10, 0, 83 ,−200λ)

121θ4 − z
(
2662+ 22506θ + 71555θ2 + 98098θ3 + 53273θ4

)

−z2
(
59532+ 295768θ + 93484θ2 − 1373824θ3− 1248736θ4

)

−z3
(
250272+ 1258224θ + 2319504θ2 + 4101504θ3 + 8191552θ4

)

z4
(
2048(2θ + 1)(1964θ3 + 3078θ2 + 1853θ + 419)

)
−262144z5(2θ + 1)(θ + 1)2(2θ + 3)

11




0 13
4 − 15

8

√
3 11

128 1 13
4 + 15

8

√
3 ∞

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

0
1
1
2

1
2
1
1
3
2





50

−92

6

208+ 120
√
3

1+ 741
11 q+

178597
11 q2+ 41208006

11 q3+ 10069083813
11 q4+ 2499999425491

11 q5+ 628361122601062
11 q6+O(q7)

n01 = 2223, n02 = 66696, n03 = 4578585, n04 = 471979932, n05 = 59999986194,
n06 = 8727237239100

e 13
4 − 15

8

√
3 = − 1

6 , e1 = − 1
6 , e 13

4 + 15
8

√
3 = − 1

6

n11 = −472, n12 = −11820, n13 = −1031768, n14 = −128119382, n15 = −18826534176,
n16 = −3071067757512

M0 =




1 0 0 0
1 1 0 0
0 11 1 0
0 0 1 1


 , M 13

4 + 15
8

√
3 =




−35 −246 −48 −36
12 83 16 12
−30 −205 −39 −30
−6 −41 −8 −5


 , M1 =




1 −12 −3 −3
0 1 0 0
0 24 7 6
0 −24 −6 −5


 , M 11

128
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M 13

4 − 15
8

√
3 =




1 −6 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v113
4 − 15

8

√
3
=(11, 0, 2512 ,−92λ), v31=(33, 0, 14 ,−276λ), v113

4 + 15
8

√
3
=(66,−22, 132 ,−552λ − 11

6 )
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121θ4 − z
(
2783+ 23595θ + 75295θ2 + 103400θ3 + 50875θ4

)

−z2
(
4444+ 29513θ + 160382θ2 + 417688θ3 + 277543θ4

)

+z3
(
72226+ 423489θ + 558926θ2− 679428θ3− 834163θ4

)

+z4
(
94818+ 425155θ + 555785θ2− 506572θ3− 1395491θ4

)

−z5
(
49505+ 307104θ + 338255θ2− 57118θ3 + 1438808θ4

)

−z6
(
33242+ 146466θ + 278875θ2 + 453366θ3 + 689717θ4

)

−z7
(
12958+ 79268θ + 196650θ2 + 234764θ3 + 114532θ4

)
−1444z8(θ + 1)4

11




x1 x2 x3 − 25
76 − 1

76 i
√
1047 − 25

76 + 1
76 i

√
1047 0 x5 ∞

0
1
1
2

0
1
1
2

0
1
1
2

0
1
3
4

0
1
3
4

0
0
0
0

0
1
1
2

1
1
1
1





50

−90

6

1/x5

f (x) = x4 + 78x3 + 374x2 + 425x− 1, x1 = −72.9532, x2 = −3.2563, x3 = −1.7927,
x5 = 0.0023

1+ 795
11 q+

177259
11 q2+ 43057371

11 q3+ 10641704107
11 q4+ 2680205182670

11 q5+ 683390292486259
11 q6+O(q7)

n01 = 795, n02 = 22058, n03 = 1594688, n04 = 166273857, n05 = 21441641455, n06 = 3163843746539

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6 , ex5 = − 1

6

n11 = 0, n12 = 0, n13 = 1353, n14 = 810927, n15 = 355799260, n16 = 129995248341

M0 =




1 0 0 0
1 1 0 0
0 11 1 0
0 0 1 1


 , Mx3 =




−5 −34 −6 −4
3 18 3 2

−15 −85 −14 −10
6 34 6 5


 , Mx2 =




−13 −56 −8 −4
14 57 8 4

−112 −448 −63 −32
77 308 44 23


 , Mx1 =




33 12 −12 −16
8 4 −3 −4

−216 −81 82 108
232 87 −87 −115


 , M− 25

76+ 1
76 i

√
1047 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx5 =




1 −6 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , M− 25

76− 1
76 i

√
1047 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




v1x1=(−44,−11, 796 , 360λ− 71
12 ), v

1
x2
=(22,−22, 556 ,−180λ − 17

6 ), v1x3=(22,−11, 113 ,−180λ − 11
12 ),

v1x5=(11, 0, 2512 ,−90λ)

121θ4 − z
(
2904+ 24684θ + 79068θ2 + 108768θ3 + 48048θ4

)

+z2
(
50688+ 204864θ − 399968θ2− 2703872θ3− 1989248θ4

)

−z3
(
1297296+ 7767936θ + 17613696θ2 + 22758912θ3 + 23232768θ4

)

−18432z4(964θ2 + 1360θ + 669)(2θ + 1)2 −5308416z5(2θ + 1)2(2θ + 3)2

11




x1 x2 − 11
192 0 x3 ∞

0
1
1
2

0
1
1
2

0
1
3
4

0
0
0
0

0
1
1
2

1
2
1
2
3
2
3
2





50

−88

6

1/x3
f (x) = 2304 x3 + 1664 x2 + 432 x − 1, x1 − 0.3623− 0.2407i, x2 = −0.3623 + 0.2407i, x3 =
0.0023
1+ 852

11 q+
173428

11 q2+ 45311064
11 q3+ 11202581876

11 q4+ 2869555773852
11 q5+67415462809928q6+O(q7)
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n01 = 852, n02 = 21572, n03 = 1678156, n04 = 175037632, n05 = 22956446184, n06 = 3433194654748

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = 456, n14 = 678687, n15 = 331237816, n16 = 129451529224

M0 =




1 0 0 0
1 1 0 0
0 11 1 0
0 0 1 1


 , M− 11

192
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx2 =




−3 −14 −2 −1
4 15 2 1

−32 −112 −15 −8
24 84 12 7


 ,

Mx3 =




1 −6 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




5 −3 0 −1
4 −2 0 −1

−12 9 1 3
4 −3 0 0




v1x1=(11, 11, 5512 ,−88λ + 23
12 ), v

1
x2
=(11,−11, 5512 ,−88λ − 23

12 ), v
1
x3
=(11, 0, 2512 ,−88λ)

16θ4 − z
(
288+ 2400θ + 7636θ2 + 10472θ3 + 5128θ4

)

−z2
(
26424+ 143496θ + 285795θ2 + 241290θ3 + 85527θ4

)

−z3
(
784728+ 4313736θ + 7404372θ2 + 1481328θ3− 1265787θ4

)

−z4
(
8612406+ 34179894θ + 29773818θ2− 29597400θ3− 22024548θ4

)

−z5
(
39234780+ 121404744θ − 67263372θ2− 479110464θ3 + 54377568θ4

)

−z6
(
102509064+ 240211332θ − 66371076θ2 + 85030560θ3 + 1465359984θ4

)

−17006112z7(2θ + 1)(100θ3 + 162θ2 + 95θ + 21) +1224440064z8(2θ + 1)(θ + 1)2(2θ + 3)

12




x1 x2
1

144 − 1
144

√
129 0 x3

1
144 + 1

144

√
129 1 ∞

0
1
1
2

0
1
1
2

0
1
3
4

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
2
1
1
3
2





48

−68

6

108+ 90 3
√
2+ 72 22/3

x1 = −0.1682− 0.0224i , x2 = −0.1682+ 0.0224i, x3 = 1/18 3
√
2+ 1/36 22/3 − 1/9

1+ 229
4 q+ 41605

4 q2+ 4011113
2 q3+ 1574502533

4 q4+79377665526q5+ 32327149677353
2 q6+O(q7)

ex1 = − 1
6 , ex2 = − 1

6 , e1/18 3√2+1/36 22/3−1/9 = − 1
6 , e1 = − 1

2

n01 = 687, n02 = 15516, n03 = 891333, n04 = 73802856, n05 = 7620255885, n06 = 897976267932

n11 = 0, n12 = 3, n13 = 816, n14 = 419154, n15 = 127865136, n16 = 35697233591

X
2:1−→ B(conj) [Lee08]

M0 =




1 0 0 0
1 1 0 0
0 12 1 0
0 0 1 1


 , M 1

144− 1
144

√
129 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx2 =




−3 −15 −2 −1
4 16 2 1

−36 −135 −17 −9
28 105 14 8


 ,

M1 =




1 −12 −3 −3
0 1 0 0
0 24 7 6
0 −24 −6 −5


 , M 1

144+ 1
144

√
129 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




1 −6 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 ,

Mx1 =




5 −3 0 −1
4 −2 0 −1

−12 9 1 3
4 −3 0 0



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v1x1=(12, 12, 5,−68λ + 2), v1−0.1682+0.0224i=(12,−12, 5,−68λ− 2),
v1
1/18 3√2+1/36 22/3−1/9

=(12, 0, 2,−68λ), v31=(36, 0, 0,−204λ)

9θ4 − z
(
216+ 1764θ + 5556θ2 + 7584θ3 + 3216θ4

)

+z2
(
56448+ 309504θ + 547840θ2 + 206848θ3− 57344θ4

)

−z3
(
552960+ 1179648θ − 3096576θ2− 8257536θ3− 1703936θ4

)

+524288z4(8θ2 − 28θ − 33)(2θ + 1)2 −16777216z5(2θ + 1)2(2θ + 3)2

12




− 3
64 0 3

64 − 1/32
√
2 1

16
3
64 + 1/32

√
2 ∞

0
1
3
4

0
0
0
0

0
1
1
2

0
1
1
2

0
1
1
2

1
2
1
2
3
2
3
2





48

−60

6

192+ 128
√
2

1+ 220
3 q+9508q2+ 7226392

3 q3+479007908q4+ 307427260220
3 q5+21981433037800q6+O(q7)

n01 = 880, n02 = 14152, n03 = 1070544, n04 = 89812200, n05 = 9837672320, n06 = 1221190589976

e 3
64−1/32

√
2 = − 1

6 , e 1
16

= − 1
6 , e 3

64+1/32
√
2 = − 1

6

n11 = 2, n12 = −193, n13 = 5844, n14 = −184904, n15 = 88380254, n16 = 32082363158

M0 =




1 0 0 0
1 1 0 0
0 12 1 0
0 0 1 1


 , M− 3

64
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M 3

64+1/32
√
2 =




−3 −14 −2 −1
4 15 2 1

−32 −112 −15 −8
24 84 12 7


 , M 1

16
=




−7 −36 −6 −4
4 19 3 2

−24 −108 −17 −12
16 72 12 9


 , M 3

64−1/32
√
2 =




1 −6 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v13
64−1/32

√
2
=(12, 0, 2,−60λ), v11

16
=(24,−12, 4,−120λ− 2), v13

64+1/32
√
2
=(12,−12, 4,−60λ− 2)

θ4 − 12z(3θ + 1)(2θ + 1)2(3θ + 2)

12




0 1
432 ∞

0
0
0
0

0
1
1
2

1
3
1
2
1
2
2
3





60

−144

7

432

1+60q+15012q2+3625944q3+897077412q4+225801372060q5+57520045923048q6+O(q7)

n01 = 720, n02 = 22428, n03 = 1611504, n04 = 168199200, n05 = 21676931712, n06 = 3195557904564

e 1
432

= − 1
6

n11 = 0, n12 = 0, n13 = 64, n14 = 265113, n15 = 198087264, n16 = 89191834992

X(2, 2, 3) ⊂ P6 [LT93]
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M0 =




1 0 0 0
1 1 0 0
0 12 1 0
0 0 1 1


 , M 1

432
=




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v11
432

=(12, 0, 52 ,−144λ)

169θ4 − z
(
59397θ4 + 117546θ3 + 86827θ2 + 28054θ + 3380

)

+z2
(
102176θ4 − 28384θ3 − 286368θ2− 185536θ − 33904

)

+z3
(
17152θ4 + 319488θ3 + 279296θ2 + 79872θ + 6656

)
−4096z4(2θ + 1)4

13




− 349
512 − 85

512

√
17 0 − 349

512 + 85
512

√
17 13

16 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
2
1
2
1
2
1
2





58

−120

7
349
2 + 85

2

√
17

1+ 647
13 q+

129975
13 q2+ 25451198

13 q3+ 5134100919
13 q4+ 1052276876647

13 q5+ 218297309057358
13 q6+O(q7)

n01 = 647, n02 = 16166, n03 = 942613, n04 = 80218296, n05 = 8418215008, n06 = 1010635571652

e− 349
512− 85

512

√
17 = − 1

6 , e− 349
512+ 85

512

√
17 = − 1

6

n11 = 0, n12 = 0, n13 = 176, n14 = 164696, n15 = 78309518, n16 = 26889884220

5× 5 P f a f f ian ⊂ P6 [Ton04]

M0 =




1 0 0 0
1 1 0 0
0 13 1 0
0 0 1 1


 , M− 349

512− 85
512

√
17 =




−7 −42 −6 −4
4 22 3 2

−28 −147 −20 −14
16 84 12 9


 , M 13

16
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M− 349

512+ 85
512

√
17 =




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 349
512− 85

512

√
17
=(26,−13, 163 ,−240λ − 19

12 ), v
1
− 349

512+ 85
512

√
17
=(13, 0, 2912 ,−120λ)

49θ4 − z
(
784+ 6370θ + 19558θ2 + 26376θ3 + 14784θ4

)

−z2
(
43008+ 217392θ + 270444θ2− 164064θ3 − 273120θ4

)

z3
(
178080+ 1256976θ + 3122752θ2 + 2593920θ3− 852992θ4

)

−1216z4(1189θ2 + 2533θ + 1646)(2θ + 1)2 739328z5(2θ + 1)2(2θ + 3)2

14




− 1
4 0 71

256 − 17
256

√
17 7

76
71
256 + 17

256

√
17 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
2
1
2
3
2
3
2





56

−100

7

142+ 34
√
17

1+ 274
7 q+ 49194

7 q2+ 7597750
7 q3+ 1261271338

7 q4+ 212395784024
7 q5+ 36184435325694

7 q6+O(q7)

n01 = 548, n02 = 12230, n03 = 562776, n04 = 39413192, n05 = 3398332540, n06 = 335040997028

e− 1
4

= − 1
6 , e 71

256− 17
256

√
17 = − 1

6 , e 71
256+ 17

256

√
17 = − 1

6
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n11 = −132, n12 = −2699, n13 = −159420, n14 = −14367228, n15 = −1477695728,
n16 = −166270901243

X
2:1−→ (conj) [Lee08]

M0 =




1 0 0 0
1 1 0 0
0 14 1 0
0 0 1 1


 , M− 1

4
=




−7 −44 −6 −4
4 23 3 2

−32 −176 −23 −16
20 110 15 11


 , M 71

256+ 17
256

√
17 =




1 −5 −1 −1
0 1 0 0
0 10 3 2
0 −10 −2 −1


 , M 7

76
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M 71

256− 17
256

√
17 =




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 1
4
=(28,−14, 173 ,−200λ − 5

3 ), v
1
71
256− 17

256

√
17
=(14, 0, 73 ,−100λ), v171

256+ 17
256

√
17
=(14, 0, 13 ,−100λ)

θ4 − z
(
295θ4 + 572θ3 + 424θ2 + 138θ + 17

)
+z2

(
1686θ4 + 1488θ3 − 946θ2 − 962θ − 202

)

−z3
(
2258θ4 − 1032θ3 − 1450θ2 − 318θ + 8

)
−z4

(
519θ4 + 1056θ3 + 870θ2 + 342θ + 54

)

+9z5(θ + 1)4

14




x1 0 x2
1
3 x3 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
1
1
1





56

−98

7

1/x2

f (x) = x3 − 57x2 − 289x+ 1, x1 = −4.6883, x2 = 0.0035, x3 = 61.6848

1+42q+6958q2+1126104q3+189077294q4+32226733042q5+5559518418328q6+O(q7)

n01 = 588, n02 = 12103, n03 = 583884, n04 = 41359136, n05 = 3609394096, n06 = 360339083307

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = 196, n14 = 99960, n15 = 34149668, n16 = 9220666042

7× 7− P f a f f ian ⊂ P6 [Rød00]

M0 =




1 0 0 0
1 1 0 0
0 14 1 0
0 0 1 1


 , Mx3 =




1 −105 −25 −25
0 1 0 0
0 294 71 70
0 −294 −70 −69


 , M 1

3
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx2 =




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




−27 −168 −24 −16
14 85 12 8
−98 −588 −83 −56
49 294 42 29




v1x1=(56,−28, 283 ,−392λ − 7
3 ), v

1
x2
=(14, 0, 73 ,−98λ), v1x3=(−70, 0, 73 , 490λ)

θ4 − z(θ + 1)(285θ3 + 321θ2 + 128θ + 18) +z2
(
480+ 2356θ + 2674θ2 − 2644θ3 − 3280θ4

)

+z3
(
180+ 2880θ + 10296θ2 + 9216θ3 − 7668θ4

)
+216z4(2θ + 1)(22θ3 + 37θ2 + 24θ + 6)

+432z5(2θ + 1)(θ + 1)2(2θ + 3)
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14




− 37
12 − 7/6

√
7 − 1

6 0 − 37
12 + 7/6

√
7 1 ∞

0
1
1
2

0
1
3
4

0
0
0
0

0
1
1
2

0
1
1
2

1
2
1
1
3
2





56

−96

7

148+ 56
√
7

1+45q+6805q2+1175382q3+197837973q4+34183942295q5+5968573821982q6+O(q7)

n01 = 630, n02 = 11830, n03 = 609434, n04 = 43275568, n05 = 3828601532, n06 = 386851930360

e− 37
12−7/6

√
7 = − 1

6 , e− 37
12+7/6

√
7 = − 1

6 , e1 = − 1
3

n11 = 0, n12 = 0, n13 = 28, n14 = 74298, n15 = 30490376, n16 = 8955874396

X
2:1−→ B [Lee08]

M0 =




1 0 0 0
1 1 0 0
0 14 1 0
0 0 1 1


 , M− 1

6
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M− 37

12−7/6
√
7 =




1 0 0 0
5 15 1 0

−70 −196 −13 0
60 168 12 1


 ,

M1 =




−15 −84 −12 −8
8 43 6 4

−56 −294 −41 −28
32 168 24 17


 , M− 37

12+7/6
√
7 =




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 37
12−7/6

√
7
=(0, 14,−7, 83 ), v

1
− 37

12+7/6
√
7
=(14, 0, 73 ,−96λ), v21=(56,−28, 283 ,−384λ − 10

3 )

9θ4 − z
(
126+ 999θ + 3036θ2 + 4074θ3 + 2433θ4

)

−z2
(
2424+ 7494θ − 17551θ2 − 88948θ3 − 73291θ4

)

−z3
(
3360+ 41400θ + 232288θ2 + 647928θ3 + 759472θ4

)

+z4
(
11328+ 252608θ + 1243408θ2 + 2783968θ3 + 2886416θ4

)

+z5
(
307712+ 1081728θ + 348160θ2− 3189632θ3− 4262912θ4

)

−z6
(
243712+ 938496θ + 1139968θ2− 463872θ3− 2202368θ4

)

+z7
(
368640+ 1382400θ + 1818624θ2 + 872448θ3 + 30720θ4

)
−147456z8(θ + 1)4

15




x1 0 x2
11
24 − 1/24

√
85 x3

11
24 + 1/24

√
85 x4 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

0
1
3
4

0
1
1
2

1
1
1
1





54

−80

7

1/x2

f (x) = x4 + 104x3 − 827x2 + 241x− 1, x1 = −4.6072, x2 = 0.0042, x3 = 0.3008, x4 = 2.6771

1+ 100
3 q+ 15140

3 q2+ 1974097
3 q3+ 275879716

3 q4+ 39280630850
3 q5+ 5654754934913

3 q6 +O(q7)

n01 = 500, n02 = 9400, n03 = 365555, n04 = 21551920, n05 = 1571225230, n06 = 130897058930

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6 , ex4 = − 1

6

n11 = −110, n12 = −1925, n13 = −99134, n14 = −7376990, n15 = −641829038,
n16 = −60993384877
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M0 =




1 0 0 0
1 1 0 0
0 15 1 0
0 0 1 1


 , Mx1 =




−59 −390 −54 −36
30 196 27 18

−230 −1495 −206 −138
120 780 108 73


 , Mx4 =




1 −18 −4 −4
0 1 0 0
0 45 11 10
0 −45 −10 −9


 , M 11

24+1/24
√
85 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




1 −5 −1 −1
0 1 0 0
0 10 3 2
0 −10 −2 −1


 ,

M 11
24−1/24

√
85 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx2 =




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1x1=(90,−45, 14,−480λ− 13
4 ), v1x2=(15, 0, 94 ,−80λ), v1x3=(15, 0, 14 ,−80λ), v1x4=(−30, 0, 12 , 160λ)

25θ4 − z
(
375+ 3000θ + 9200θ2 + 12400θ3 + 5975θ4

)

−z2
(
7350+ 32700θ + 70230θ2 + 96180θ3 + 51810θ4

)

−z3
(
76050+ 375300θ + 642195θ2 + 330210θ3 + 68355θ4

)

−z4
(
275670+ 1023300θ + 1343601θ2 + 448794θ3 − 279666θ4

)

−z5
(
417555+ 1226340θ + 549585θ2− 1428030θ3− 373410θ4

)

−z6
(
38880− 422820θ − 1565163θ2− 1465290θ3 + 296217θ4

)

+z7
(
72900+ 151632θ − 189540θ2− 682344θ3− 472392θ4

)
−104976z8(θ + 1)4

15




x1 −1 x2
5
24 −

√
105
24 0 x3

5
24 +

√
105
24 ∞

0
1
1
2

0
1
1
2

0
1
1
2

0
1
3
4

0
0
0
0

0
1
1
2

0
1
3
4

1
1
1
1





54

−76

7

1/x3

f (x) = x3 + 13/3x2 + 82
27x− 1

81 , x1 = −3.4527, x2 = −0.8847, x3 = 0.004

n01 = 570, n02 = 9204, n03 = 392025, n04 = 23615994, n05 = 1762778535, n06 = 150397140660

ex1 = − 1
6 , e−1 = −1, ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = 90, n14 = 51513, n15 = 14907408, n16 = 3445286666

1+38q+ 24734
5 q2+705683q3+ 503832606

5 q4+14689821163q5+ 10828597680479
5 q6+O(q7)

X
2:1−→ B [Lee08]

M0 =




1 0 0 0
1 1 0 0
0 15 1 0
0 0 1 1


 , M 5

24−1/24
√
105 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx2 =




1 0 0 0
5 16 1 0

−75 −225 −14 0
65 195 13 1


 ,

M−1 =




7 −18 −6 −6
0 1 0 0

−24 72 25 24
30 −90 −30 −29


 , Mx1 =




−47 −378 −54 −36
24 190 27 18

−168 −1323 −188 −126
64 504 72 49


 ,

M 5
24+1/24

√
105 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1x1=(90,−45, 12,−456λ− 5
4 ), v

6
−1=(−90, 0, 212 , 456λ− 6), v1x2=(0, 15,− 15

2 ,
11
4 ),

v1x3=(15, 0, 94 ,−76λ)
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θ4 − 3z(3θ + 1)(3θ + 2)(11θ2 + 11θ + 3) −9z2(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5)

15




− 11
54 − 5

54

√
5 0 − 11

54 + 5
54

√
5 ∞

0
1
1
2

0
0
0
0

0
1
1
2

1
3
2
3
4
3
5
3





66

−150

8
297
2 + 135

2

√
5

1+36q+6732q2+1118403q3+191549196q4+33295313286q5+5856252011883q6+O(q7)

n01 = 540, n02 = 12555, n03 = 621315, n04 = 44892765, n05 = 3995437590, n06 = 406684089360

e− 11
54− 5

54

√
5 = − 1

6 , e− 11
54+ 5

54

√
5 = − 1

6

n11 = 0, n12 = 0, n13 = −1, n14 = 13095, n15 = 17230617, n16 = 6648808836

X(1, 1, 3) ⊂ Gr(2, 5) [BCFKS98]

M0 =




1 0 0 0
1 1 0 0
0 15 1 0
0 0 1 1


 , M− 11

54− 5
54

√
5 =




−9 −50 −6 −4
5 26 3 2

−45 −225 −26 −18
30 150 18 13


 , M− 11

54+ 5
54

√
5 =




1 −8 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 11
54− 5

54

√
5
=(30,−15, 7,−300λ− 9

4 ), v
1
− 11

54+ 5
54

√
5
=(15, 0, 114 ,−150λ)

θ4 − z
(
8+ 64θ + 196θ2 + 264θ3 + 216θ4

)
−z2

(
2464+ 12416θ + 19504θ2 + 4896θ3 − 6672θ4

)

+z3
(
5888+ 110592θ + 406784θ2 + 491520θ3 + 42496θ4

)

−28672z4(2θ + 1)(38θ3 + 45θ2 + 12θ − 2) −802816z5(2θ + 1)(θ + 1)2(2θ + 3)

16




− 11
32 − 5

32

√
5 − 1

16 0 − 11
32 + 5

32

√
5 1

28 ∞

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
2
1
1
3
2





52

−72

7

88+ 40
√
5

1+20q+3488q2+356096q3+39026464q4+4439059520q5+513809807360q6+O(q7)

n01 = 320, n02 = 6936, n03 = 211008, n04 = 9755744, n05 = 568199616, n06 = 38059959096

e− 11
32− 5

32

√
5 = − 1

6 , e− 1
16

= − 1
6 , e− 11

32+ 5
32

√
5 = − 1

6

n11 = 0, n12 = 6, n13 = 640, n14 = 79386, n15 = 11424640, n16 = 1561536328

X
2:1−→ B, (conj) [Lee08]
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M0 =




1 0 0 0
1 1 0 0
0 16 1 0
0 0 1 1


 , M− 1

16
=




−7 −48 −6 −4
4 25 3 2

−40 −240 −29 −20
28 168 21 15


 , M− 11

32− 5
32

√
5 =




−51 −256 −28 −16
39 193 21 12

−468 −2304 −251 −144
364 1792 196 113


 , M 1

28
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M− 11

32+ 5
32

√
5 =




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 11
32− 5

32

√
5
=(64,−48, 623 ,−288λ − 13

2 ), v1− 1
16
=(32,−16, 193 ,−144λ − 11

6 ),

v1− 11
32+ 5

32

√
5
=(16, 0, 136 ,−72λ)

θ4 − z
(
16+ 120θ + 352θ2 + 464θ3 + 264θ4

)

+z2
(
3328+ 16768θ + 31552θ2 + 28672θ3 + 11136θ4

)

−512z3(2θ + 1)(166θ3 + 465θ2 + 477θ + 158) +24576z4(2θ + 1)(3θ + 2)(3θ + 4)(2θ + 3)

16




0 1
216

1
16 ∞

0
0
0
0

0
1
1
2

0
1
2
3
2
2

1
2
2
3
4
3
3
2





52

−58

7

216

1+32q+3712q2+439808q3+53816352q4+6701036032q5+843992670208q6+O(q7)

n01 = 512, n02 = 7360, n03 = 260608, n04 = 13453160, n05 = 857732608, n06 = 62517942720

e 1
216

= − 1
6 , e 1

16
= − 1

2

n11 = 2, n12 = −103, n13 = 1160, n14 = 1389, n15 = 6142532, n16 = 1301356132

M0 =




1 0 0 0
1 1 0 0
0 16 1 0
0 0 1 1


 , M 1

16
=




−3 −12 −1 0
0 −4 −1 −1
8 84 15 12
−8 −69 −11 −8


 , M 1

216
=




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v11
216

=(16, 0, 136 ,−58λ)

θ4 − z
(
16+ 128θ + 400θ2 + 544θ3 + 128θ4

)
+z2

(
256+ 512θ − 8192θ2 − 38400θ3− 22272θ4

)

−z3
(
77824+ 417792θ + 864256θ2 + 983040θ3 + 827392θ4

)

−196608z4(2θ + 1)(22θ3 + 45θ2 + 38θ + 12) −9437184z5(2θ + 1)(θ + 1)2(2θ + 3)

16




x1 x2 − 1
48 0 x3 ∞

0
1
1
2

0
1
1
2

0
1
3
4

0
0
0
0

0
1
1
2

1
2
1
1
3
2





52

−44

7

237.2400
f (x) = x3 + 3/16 x2 + 7

512 x − 1
16384 , x1 = −0.0959− 0.0727i, x2 = −0.0959 + 0.0727i, x3 =

0.0042
1+48q+2208q2+680448q3+61958432q4+10111586048q5+1260786432000q6+O(q7)
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n01 = 768, n02 = 4320, n03 = 403200, n04 = 15489056, n05 = 1294283008, n06 = 93391536992

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = 0, n14 = −1932, n15 = 2406912, n16 = 1241264448

M0 =




1 0 0 0
1 1 0 0
0 16 1 0
0 0 1 1


 , M− 1

48
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx2 =




−4 −19 −2 −1
5 20 2 1

−60 −228 −23 −12
50 190 20 11


 ,

Mx3 =




1 −7 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




6 −3 0 −1
5 −2 0 −1

−20 12 1 4
10 −6 0 −1




v1x1=(16, 16, 376 ,−44λ + 17
6 ), v1x2=(16,−16, 376 ,−44λ − 17

6 ), v1x3=(16, 0, 136 ,−44λ)

θ4 − 16z(2θ + 1)4

16




0 1
256 ∞

0
0
0
0

0
1
1
2

1
2
1
2
1
2
1
2





64

−128

8

256

1+32q+4896q2+702464q3+102820640q4+15296748032q5+2302235670528q6+O(q7)

n01 = 512, n02 = 9728, n03 = 416256, n04 = 25703936, n05 = 1957983744, n06 = 170535923200

e 1
256

= − 1
6

n11 = 0, n12 = 0, n13 = 0, n14 = 14752, n15 = 8782848, n16 = 2672004608

X(2, 2, 2, 2) ⊂ P7 [LT93]

M0 =




1 0 0 0
1 1 0 0
0 16 1 0
0 0 1 1


 , M 1

256
=




1 −8 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v11
256

=(16, 0, 83 ,−128λ)

289θ4 − z
(
4046+ 31790θ + 94826θ2 + 126072θ3 + 64668θ4

)

−z2
(
22644+ 96424θ + 40116θ2 − 274304θ3 − 249632θ4

)

−z3
(
19176+ 71196θ + 83140θ2 + 132192θ3 + 264720θ4

)

+z4
(
128(2θ + 1)(196θ3 + 498θ2 + 487θ + 169)

)
−4096z5(2θ + 1)(θ + 1)2(2θ + 3)

17




0 x1
17
32 x2 x3 ∞

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

0
1
1
2

1
2
1
1
3
2





62

−108

8

1/x1

f (x) = x3 − 2x2 + 55
4 x− 1/16, x1 = 0.0045, x2 = 0.9977+ 3.5701i, x3 = 0.9977− 3.5701i

1+ 478
17 q+

62750
17 q2+ 7715998

17 q3+ 977992734
17 q4+ 125750597228

17 q5+ 16359251957822
17 q6+O(q7)

n01 = 478, n02 = 7784, n03 = 285760, n04 = 15280156, n05 = 1006004774, n06 = 75737241572
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ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = 16, n14 = 14215, n15 = 4980596, n16 = 1184399584

[Kap09] conj and X
2:1−→ B, (conj) [Lee08]

M0 =




1 0 0 0
1 1 0 0
0 17 1 0
0 0 1 1


 , Mx2 =




−11 −90 −12 −9
4 31 4 3

−24 −180 −23 −18
8 60 8 7


 , M 17

32
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




1 −8 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




13 −39 −6 −9
4 −12 −2 −3

−44 143 23 33
28 −91 −14 −20




v1x1=(17, 0, 3112 ,−108λ), v1x2=(51,−17, 214 ,−324λ − 17
12 ), v

1
x3
=(51, 17, 214 ,−324λ + 17

12 )

81θ4 − z
(
972+ 7452θ + 21933θ2 + 28962θ3 + 17937θ4

)

+z2
(
9504+ 89280θ + 391648θ2 + 805888θ3 + 559552θ4

)

−z3
(
539136+ 3186432θ + 7399680θ2 + 8902656θ3 + 6046720θ4

)

+32768z4(2θ + 1)(340θ3 + 618θ2 + 455θ + 129) −4194304z5(2θ + 1)(θ + 1)2(2θ + 3)

18




0 3
32 − 1/16

√
2 9

128
3
32 + 1/16

√
2 1 ∞

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

0
1
1
2

1
2
1
1
3
2





60

−92

8

96+ 64
√
2

1+ 205
9 q+ 25853

9 q2+ 2635999
9 q3+ 286186109

9 q4+ 31754637080
9 q5+ 3558892191935

9 q6 +O(q7)

n01 = 410, n02 = 6412, n03 = 195244, n04 = 8942508, n05 = 508074190, n06 = 32952680836

e 3
32−1/16

√
2 = − 1

6 , e 3
32+1/16

√
2 = − 1

6 , e1 = − 1
3

n11 = −88, n12 = −1103, n13 = −47248, n14 = −2697812, n15 = −183760064, n16 = −13666811772

X
2:1−→ B [Lee08]

M0 =




1 0 0 0
1 1 0 0
0 18 1 0
0 0 1 1


 , M1 =




−23 −186 −24 −18
8 63 8 6

−56 −434 −55 −42
24 186 24 19


 , M 3

32+1/16
√
2 =




1 −6 −1 −1
0 1 0 0
0 12 3 2
0 −12 −2 −1


 , M 9

128
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M 3

32−1/16
√
2 =




1 −8 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v13
32−1/16

√
2
=(18, 0, 52 ,−92λ), v13

32+1/16
√
2
=(18, 0, 12 ,−92λ), v21=(108,−36, 11,−552λ− 3)

9θ4 − z
(
108+ 837θ + 2487θ2 + 3300θ3 + 1776θ4

)

−z2
(
3312+ 14904θ + 18041θ2 − 6652θ3 − 13801θ4

)

−2z3θ(−7236− 28365θ − 29160θ2 + 8461θ3)
+z4

(
1344− 5376θ − 40908θ2− 72576θ3 − 43092θ4

)
−1176z5(θ + 1)2(3θ + 2)(3θ + 4)
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18




−7/4− 11
36

√
33 −1 0 −7/4+ 11

36

√
33 3

14 ∞

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

2
3
1
1
4
3





60

−90

8
189
2 + 33

2

√
33

1+ 73
3 q+

8597
3 q2+ 900712

3 q3+ 99593429
3 q4+ 11156137948

3 q5+ 1263937305152
3 q6+ 144430573438735

3 q7+O(q8)

n01 = 438, n02 = 6393, n03 = 200142, n04 = 9336078, n05 = 535494618, n06 = 35109344331

e−7/4− 11
36

√
33 = − 1

6 , e−1 = − 1
2 , e−7/4+ 11

36

√
33 = − 1

6

n11 = 0, n12 = 0, n13 = 38, n14 = 12972, n15 = 3064596, n16 = 571253789

X
′
(2, 2, 3) ⊂ P6 [Kap09]

M0 =




1 0 0 0
1 1 0 0
0 18 1 0
0 0 1 1


 , M−1 =




−23 −156 −18 −12
12 79 9 6

−120 −780 −89 −60
72 468 54 37


 , M−7/4− 11

36

√
33 =




−101 −576 −60 −36
68 385 40 24

−816 −4608 −479 −288
561 3168 330 199


 , M 3

14
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M−7/4+ 11

36

√
33 =




1 −8 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1−7/4− 11
36

√
33
=(108,−72, 27,−540λ− 7), v3−1=(108,−54, 18,−540λ− 9

2 ),

v1−7/4+ 11
36

√
33
=(18, 0, 52 ,−90λ)

θ4 − z
(
12+ 94θ + 282θ2 + 376θ3 + 180θ4

)
−z2

(
768+ 3736θ + 6820θ2 + 6080θ3 + 2256θ4

)

−z3
(
16(2θ + 1)(286θ3 + 813θ2 + 851θ + 294)

)
−192z4(2θ + 1)(4θ + 3)(4θ + 5)(2θ + 3)

18




− 1
4 0 1

192 ∞

0
1
2
3
2
2

0
0
0
0

0
1
1
2

1
2
3
4
5
4
3
2





60

−88

8

192

1+26q+2810q2+310586q3+34547706q4+3911285026q5+447867658394q6+O(q7)

n01 = 468, n02 = 6264, n03 = 207040, n04 = 9715752, n05 = 563225040, n06 = 37322278752

e− 1
4

= − 1
2 , e 1

192
= − 1

6

n11 = 0, n12 = 0, n13 = 8, n14 = 9144, n15 = 2658096, n16 = 543849616

X
′
(2, 2, 3) ⊂ P6 [Kap09]

M0 =




1 0 0 0
1 1 0 0
0 18 1 0
0 0 1 1


 , M− 1

4
=




−5 −18 −1 0
1 −3 −1 −1
6 144 23 18

−14 −154 −21 −15


 , M 1

192
=




1 −8 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v11
192

=(18, 0, 52 ,−88λ)
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θ4 − z
(
12+ 100θ + 305θ2 + 410θ3 + 205θ4

)

−z2
(
3168+ 14976θ + 23744θ2 + 16256θ3 + 4064θ4

)

−z3
(
87480+ 336492θ + 391668θ2 + 186336θ3 + 31056θ4

)

−z4
(
806400+ 2730240θ + 2562624θ2 + 940032θ3 + 117504θ4

)

−3456z5(16θ2 + 80θ + 35)(2θ + 5)2 −10368z6(2θ + 11)(2θ + 7)(2θ + 5)(2θ + 1)

18




− 1
3 x1 x2 − 1

4 0 x3 ∞

0
1
1
2

0
1
1
2

0
1
1
2

0
1
2
1
2
1

0
0
0
0

0
1
1
2

1
2
5
2
7
2
11
2





72

−158

9

72+ 60 3
√
2+ 48 22/3

f (x) = 3456x3 + 1728x2 + 216x − 1,x1 = −0.2522− 0.0336i, x2 = −0.2522 + 0.0336i, x3 =
0.0044

1+25q+3593q2+471229q3+61337801q4+8137269025q5+1091984845133q6+O(q7)

n01 = 450, n02 = 8028, n03 = 314136, n04 = 17250246, n05 = 1171766736, n06 = 90998697528

e− 1
3

= − 1
3 , ex1 = − 1

6 , px2 = − 1
6 , p− 1

4
= − 1

2 , px3 = − 1
6

n11 = 6, n12 = −333, n13 = 2862, n14 = −56697, n15 = −7376388, n16 = 176313699

M0 =




1 0 0 0
1 1 0 0
0 18 1 0
0 0 1 1


 , M− 1

4
=




163 936 104 72
−91 −523 −58 −40
990 5688 629 432
−621 −3564 −393 −269


 , M− 1

3
=




−863 −4536 −456 −288
504 2647 266 168

−5832 −30618 −3077 −1944
3888 20412 2052 1297


 , Mx2 =




−54 −315 −35 −25
22 127 14 10

−198 −1134 −125 −90
121 693 77 56


 ,

Mx3 =




1 −9 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




56 −135 −15 −25
22 −53 −6 −10

−198 486 55 90
121 −297 −33 −54




v2− 1
3
=(432,−252, 108,−3792λ− 30), v1x1=(90, 36, 15,−790λ + 5), v1x2=(90,−36, 15,−790λ− 5),

v1x3=(18, 0, 3,−158λ)

25θ4−z
(
5840θ4 + 7360θ3 + 5780θ2 + 2100θ + 300

)

+z2
(
395776θ4 + 698368θ3 + 622976θ2 + 303680θ + 59760

)

−z3
(
11575296θ4 + 26542080θ3 + 29159424θ2 + 15344640θ + 3018240

)

+z4
(
331776(2θ + 1)(232θ3 + 588θ2 + 590θ + 207)

)
−191102976z5(2θ + 1)(θ + 1)2(2θ + 3)

20




0 1
144

5
144

1
16 ∞

0
0
0
0

0
1
1
2

0
1
3
4

0
1
2
1
2
1

1
2
1
1
3
2





56

−64

8

144

1+ 76
5 q+

8748
5 q2+ 670648

5 q3+ 54245932
5 q4+ 4567806076

5 q5+ 390123944568
5 q6+ 33588669380104

5 q7+O(q)

n01 = 304, n02 = 4336, n03 = 99344, n04 = 3389824, n05 = 146169792, n06 = 7224504912

e 1
144

= − 1
6 , e 1

16
= − 2

3

n11 = 2, n12 = −61, n13 = 164, n14 = 5660, n15 = 1164454, n16 = 145922950
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λ 1
144

= 1

v11
144

=(20, 0, 73 ,−64λ)

θ4 − 4z(2θ + 1)2(11θ2 + 11θ + 3) −16z2(2θ + 1)2(2θ + 3)2

20




− 11
32 − 5

32

√
5 0 − 11

32 + 5
32

√
5 ∞

0
1
1
2

0
0
0
0

0
1
1
2

1
2
1
2
3
2
3
2





68

−120

9

88+ 40
√
5

1+20q+2236q2+221960q3+22593852q4+2331442020q5+243349644568q6 +O(q7)

n01 = 400, n02 = 5540, n03 = 164400, n04 = 7059880, n05 = 373030720, n06 = 22532353740

e− 11
32− 5

32

√
5 = − 1

6 , e− 11
32+ 5

32

√
5 = − 1

6

n11 = 0, n12 = 0, n13 = 0, n14 = 1537, n15 = 882496, n16 = 214941640

X(1, 2, 2) ⊂ Gr(2, 5) [BCFKS98] and [Kap09]

M0 =




1 0 0 0
1 1 0 0
0 20 1 0
0 0 1 1


 , M− 11

32− 5
32

√
5 =




−9 −60 −6 −4
5 31 3 2

−60 −360 −35 −24
40 240 24 17


 , M− 11

32+ 5
32

√
5 =




1 −9 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 11
32− 5

32

√
5
=(40,−20, 233 ,−240λ − 13

6 ), v1− 11
32+ 5

32

√
5
=(20, 0, 176 ,−120λ)

441θ4 − z
(
4410+ 33516θ + 97545θ2 + 128058θ3 + 69069θ4

)

−z2
(
272580+ 1348200θ + 2137700θ2 + 923360θ3− 154240θ4

)

z3
(
97440+ 1861776θ + 6723376θ2 + 7894656θ3 + 1706176θ4

)

−1280z4(2θ + 1)(1916θ3 + 2622θ2 + 1077θ + 91) −102400z5(2θ + 1)(θ + 1)2(2θ + 3)

21




x1 x2 0 x3
21
80 ∞

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
2
1
1
3
2





66

−104

9

1/x3

f (x) = x3 + 25
2 x

2 + 149
64 x− 1

64 , x1 = −12.3108, x2 = −0.1957, x3 = 0.0065

1+ 361
21 q+

12867
7 q2+ 3253105

21 q3+14062309q4+ 27032665361
21 q5+ 834346677435

7 q6 +O(q7)

n01 = 361, n02 = 4780, n03 = 120472, n04 = 4613592, n05 = 216261320, n06 = 11588133060

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = 10, n14 = 3240, n15 = 745650, n16 = 126956518

X
2:1−→ B [Lee08]
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M0 =




1 0 0 0
1 1 0 0
0 21 1 0
0 0 1 1


 , Mx2 =




−9 −62 −6 −4
5 32 3 2

−65 −403 −38 −26
45 279 27 19


 , Mx1 =




−63 −332 −28 −16
48 250 21 12

−752 −3901 −328 −188
576 2988 252 145


 , M 21

80
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




1 −9 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1x1=(84,−63, 532 ,−416λ − 31
4 ), v1x2=(42,−21, 8,−208λ− 9

4 ), v
1
x3
=(21, 0, 114 ,−104λ)

49θ4 − z
(
539+ 4067θ + 11781θ2 + 15428θ3 + 7945θ4

)

z2
(
28723θ4 + 40708θ3 + 13260θ2 − 1337θ − 896

)

−z3
(
32126θ4 + 38514θ3 + 26511θ2 + 10731θ + 1806

)

+z4
(
10010θ4 + 19558θ3 + 14784θ2 + 5005θ + 616

)
+121z5(θ + 1)4

21




x1 0 x2
7
11 x3 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
1
1
1





66

−102

9

1/x2

f (x) = x3 + 84 x2 − 159x+ 1, x1 = −85.8522, x2 = 0.0063, x3 = 1.8458

1+ 129
7 q+ 12585

7 q2+ 1119036
7 q3+ 102049833

7 q4+1347689322q5+125997790260q6+O(q7)

n01 = 387, n02 = 4671, n03 = 124323, n04 = 4782996, n05 = 226411803, n06 = 12249769449

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = 1, n14 = 1854, n15 = 606294, n16 = 117751416

M0 =




1 0 0 0
1 1 0 0
0 21 1 0
0 0 1 1


 , Mx1 =




−209 −1470 −150 −100
105 736 75 50

−1197 −8379 −854 −570
693 4851 495 331


 ,

Mx3 =




1 −6 −1 −1
0 1 0 0
0 18 4 3
0 −18 −3 −2


 , M 7

11
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx2 =




1 −9 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1x1=(210,−105, 32,−1020λ− 29
4 ), v1x2=(21, 0, 114 ,−102λ), v1x3=(−21, 0, 14 , 102λ)

49θ4−z
(
588+ 4410θ + 12726θ2 + 16632θ3 + 8064θ4

)

+z2
(
29232+ 145824θ + 245172θ2 + 140832θ3 + 14256θ4

)

−z3
(
111888+ 413532θ + 373140θ2− 54432θ3 − 57456θ4

)

−z4
(
1296(2θ + 1)(36θ3 + 306θ2 + 421θ + 156)

)
−5184z5(2θ + 1)(3θ + 2)(3θ + 4)(2θ + 3)

21




− 7
12 0 x1 x2 x3 ∞

0
1
3
4

0
0
0
0

0
1
1
2

0
1
1
2

0
1
1
2

1
2
2
3
4
3
3
2





66

−100

9

1/x1

f (x) = x3 − 2
3x

2 + 7
54x− 1

1296 , x1 = 0.0061, x2 = 0.3303+ 0.1284i, x3 = 0.3303− 0.1284i
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1+ 138
7 q+ 12186

7 q2+ 1160706
7 q3+ 105559194

7 q4+ 9868791888
7 q5+ 931278113874

7 q6+ 88626516807792
7 q7+O(q8)

n01 = 414, n02 = 4518, n03 = 128952, n04 = 4947516, n05 = 236851002, n06 = 12934401960

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = −2, n14 = 441, n15 = 466830, n16 = 108083098

X
2:1−→ B [Lee08]

M0 =




1 0 0 0
1 1 0 0
0 21 1 0
0 0 1 1


 , M− 7

12
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx2 =




−9 −60 −6 −4
5 31 3 2

−60 −360 −35 −24
40 240 24 17


 ,

Mx1 =




1 −9 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




11 −18 −2 −4
5 −8 −1 −2

−45 81 10 18
25 −45 −5 −9




v1x1=(21, 0, 114 ,−100λ), v1x2=(42,−21, 7,−200λ− 9
4 ), v

1
x3
=(42, 21, 7,−200λ + 9

4 )

121θ4−z
(
19008θ4 + 27456θ3 + 20988θ2 + 7260θ + 968

)

−z2
(
91520+ 413248θ + 495712θ2− 151552θ3 − 414208θ4

)

−z3
(
855040θ4 − 9123840θ3− 12730560θ2− 6642240θ − 1236400

)

−z4
(
51200(2θ + 1)(4θ + 3)(76θ2 + 189θ + 125)

)

+z5 (2048000(2θ + 1)(4θ + 3)(4θ + 5)(2θ + 3))

22




x1 0 x2
11
160 x3 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
2
3
4
5
4
3
2





16

−92

5

1/x2

f (x) = 5120x3 − 512x2 − 128x + 1, x1 = −0.1206, x2 = 0.0076, x3 = 0.2130

1+ 148
11 p+1500p2+ 1191064

11 p3+ 93433204
11 p4+ 7526589148

11 p5+ 613847321112
11 p6 +O(p7)

n01 = 296, n02 = 4088, n03 = 88216, n04 = 2919272, n05 = 120425424, n06 = 5683760312

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 1, n13 = 8, n14 = 5210, n15 = 709632, n16 = 83326750

Mx1 =




−5 −56 −6 −4
3 29 3 2

−54 −504 −53 −36
48 448 48 33


, M0 =




1 0 0 0
1 1 0 0
0 22 1 0
0 0 1 1


, Mx2 =




1 −7 −1 −1
0 1 0 0
0 −14 −1 −2
0 14 2 3


, M 11

160
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, Mx3 =




1 −5 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1x1=(44,−22, 253 ,−184λ − 7
3 ), v

1
x2
=(22, 0, 83 ,−92λ), v1x3=(22, 0, 23 ,−92λ)
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121θ4 − z
(
1210+ 8954θ + 25707θ2 + 33506θ3 + 18403θ4

)

+z2
(
6600+ 34540θ + 132850θ2 + 282980θ3 + 192470θ4

)

−z3
(
91872+ 461736θ + 909804θ2 + 983928θ3 + 669988θ4

)

+z4
(
268000+ 1245200θ + 2285400θ2 + 2054000θ3 + 815800θ4

)

−20000z5(4θ + 3)(θ + 1)2(4θ + 5)

22




0 71
128 − 17

128

√
17 11

50 1 71
128 + 17

128

√
17 ∞

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

0
1
1
2

3
4
1
1
5
4





64

−86

9

71+ 17
√
17

1+ 181
11 q+

16325
11 q2+ 1273798

11 q3+9489423q4+ 8664158931
11 q5+ 726894174086

11 q6+ 61499016073403
11 q7+O(q8)

n01 = 362, n02 = 4036, n03 = 94342, n04 = 3261479, n05 = 138626540, n06 = 6730489668

e 71
128− 17

128

√
17 = − 1

6 , e1 = −1, e 71
128+ 17

128

√
17 = − 1

6

n11 = 0, n12 = 0, n13 = 6, n14 = 2289, n15 = 461850, n16 = 69825441

M0 =




1 0 0 0
1 1 0 0
0 22 1 0
0 0 1 1


 , M 71

128+ 17
128

√
17 =




−19 −235 −30 −25
4 48 6 5
−8 −94 −11 −10
−12 −141 −18 −14


 , M1 =




1 −36 −6 −6
0 1 0 0
0 108 19 18
0 −108 −18 −17


 , M 11

50
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M 71

128− 17
128

√
17 =




1 −9 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v171
128− 17

128

√
17
=(22, 0, 83 ,−86λ), v61=(−132, 0, 2, 516λ), v171

128+ 17
128

√
17
=(110,−22, 133 ,−430λ − 4

3 )

121θ4 − z
(
1210+ 9075θ + 26323θ2 + 34496θ3 + 16687θ4

)

−z2
(
24266+ 106953θ + 202166θ2 + 207620θ3 + 90362θ4

)

−z3
(
53130+ 217437θ + 415082θ2 + 507996θ3 + 245714θ4

)

−z4
(
15226+ 183269θ + 564786θ2 + 785972θ3 + 407863θ4

)

−z5
(
25160+ 279826θ + 728323θ2 + 790148θ3 + 434831θ4

)

−z6
(
61152+ 303576θ + 586744θ2 + 562248θ3 + 290888θ4

)

−z7
(
39040+ 172960θ + 310160θ2 + 274400θ3 + 104560θ4

)
−12800z8(θ + 1)4

22




− 143
64 − 19

64

√
57 −1 x1 x2 0 − 143

64 + 19
64

√
57 ∞

0
1
1
2

0
1
2
1
2
1

0
1
3
4

0
1
3
4

0
0
0
0

0
1
1
2

1
1
1
1





64

−84

9
143
2 + 19/2

√
57

x1 = − 17
40 − i

√
591
40 , x2 = − 17

40 + i
√
591
40

1+ 193
11 q+

15977
11 q2+ 1311583

11 q3+ 108130089
11 q4+ 9055523068

11 q5+ 766967495303
11 q6+ 65496406190814

11 q7+O(q8)

n01 = 386, n02 = 3946, n03 = 97140, n04 = 3378566, n05 = 144888366, n06 = 7101538592

e− 143
64 − 19

64

√
57 = − 1

6 , e−1 = − 7
6 , e− 17

40−1/40 i
√
591 = − 1

6 , e− 143
64 + 19

64

√
57 = − 1

6

n11 = 0, n12 = 0, n13 = 0, n14 = 1383, n15 = 382260, n16 = 64967349
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M0 =




1 0 0 0
1 1 0 0
0 22 1 0
0 0 1 1


 , M−1 =




−3 16 4 4
−2 −37 −5 −4
64 756 91 68
−62 −626 −71 −51


 , M− 143

64 − 19
64

√
57 =




1 0 0 0
7 25 1 0

−168 −576 −23 0
154 528 22 1


 , M− 17

40+1/40 i
√
591 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M− 143

64 + 19
64

√
57 =




1 −9 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , M− 17

40−1/40 i
√
591 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




v1− 143
64 − 19

64

√
57
=(0, 22,−13, 133 ), v1− 143

64 + 19
64

√
57
=(22, 0, 83 ,−84λ)

529θ4 − z
(
4232+ 31211θ + 89608θ2 + 116794θ3 + 75233θ4

)

−z2
(
205712+ 850862θ + 787393θ2 − 999924θ3− 1357863θ4

)

−z3
(
801872+ 1413672θ − 1750568θ2− 2179848θ3 + 6206392θ4

)

+z4
(
7128704+ 27267488θ + 35445392θ2 + 15278304θ3− 980880θ4

)

−1905152z5(4θ + 3)(θ + 1)2(4θ + 5)

23




x1 x2 0 x3
23
244 ∞

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

3
4
1
1
5
4





62

−74

9

1/x3

f (x) = x3 + 113
512 x

2 + 121
512 x− 1

512 , x1 = −0.1145− 0.4745i, x2 = −0.1145+ 0.4745i, x3 = 0.0082

1+ 308
23 q+

28516
23 q2+ 1911881

23 q3+ 137544292
23 q4+ 10175353058

23 q5+ 759826639561
23 q6+ 57197214710139

23 q7+O(q8)

n01 = 308, n02 = 3526, n03 = 70799, n04 = 2148684, n05 = 81402822, n06 = 3517706942

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = 30, n14 = 3185, n15 = 418076, n16 = 46375234

M0 =




1 0 0 0
1 1 0 0
0 23 1 0
0 0 1 1


 , Mx2 =




−11 −111 −12 −9
4 38 4 3

−40 −370 −39 −30
20 185 20 16


 , M 23

244
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




1 −9 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




13 −42 −6 −9
4 −13 −2 −3

−52 182 27 39
32 −112 −16 −23




v1x1=(69, 23, 254 ,−222λ + 17
12 ), v

1
x2
=(69,−23, 254 ,−222λ − 17

12 ), v
1
x3
=(23, 0, 3112 ,−74λ)

θ4 − 2z(2θ + 1)2(17θ2 + 17θ + 5) +4z2(2θ + 1)(θ + 1)2(2θ + 3)

24




0 17
4 − 3

√
2 17

4 + 3
√
2 ∞

0
0
0
0

0
1
1
2

0
1
1
2

1
2
1
1
3
2





72

−116

10

68+ 48
√
2
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1+14q+1226q2+93830q3+7275722q4+572383514q5+45521513426q6+3649815392986q7+O(q8)

n01 = 336, n02 = 3636, n03 = 83392, n04 = 2727936, n05 = 109897632, n06 = 5057935376

e 17
4 −3

√
2 = − 1

6 , e 17
4 +3

√
2 = − 1

6

n11 = 0, n12 = 0, n13 = 0, n14 = 66, n15 = 121056, n16 = 29099400

X(1, 1, 1, 1, 1, 1, 2) ⊂ X10 [Bor96]

M0 =




1 0 0 0
1 1 0 0
0 24 1 0
0 0 1 1


 , M 17

4 +3
√
2 =




−49 −370 −35 −25
20 149 14 10

−240 −1776 −167 −120
140 1036 98 71


 , M 17

4 −3
√
2 =




1 −10 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v117
4 −3

√
2
=(24, 0, 3,−116λ), v117

4 +3
√
2
=(120,−48, 15,−580λ− 4)

θ4 − z
(
124θ4 + 242θ3 + 187θ2 + 66θ + 9

)
+z2

(
123θ4 − 246θ3 − 787θ2 − 554θ − 124

)

+z3
(
123θ4 + 738θ3 + 689θ2 + 210θ + 12

)
−z4

(
124θ4 + 254θ3 + 205θ2 + 78θ + 12

)

+z5(θ + 1)4

25




−1 0 123
2 − 55

2

√
5 1 123

2 + 55
2

√
5 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
1
1
1





70

−100

10
123
2 + 55

2

√
5

1+13q+1037q2+71563q3+5082637q4+365174388q5+26527553579q6+1942800852474q7+O(q8)

n01 = 325, n02 = 3200, n03 = 66250, n04 = 1985000, n05 = 73034875, n06 = 3070310300

e−1 = − 1
3 , e 123

2 − 55
2

√
5 = − 1

6 , e 123
2 + 55

2

√
5 = − 1

6

n11 = 0, n12 = 0, n13 = 0, n14 = 325, n15 = 109822, n16 = 19018900

X25 Pfaffian [Kan12] and [Kap09] and X
2:1−→ B [Lee08]

M0 =




1 0 0 0
1 1 0 0
0 25 1 0
0 0 1 1


 , M−1 =




−19 −140 −12 −8
10 71 6 4

−150 −1050 −89 −60
100 700 60 41


 , M 123

2 + 55
2

√
5 =




1 −100 −16 −16
0 1 0 0
0 375 61 60
0 −375 −60 −59


 , M1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M 123

2 − 55
2

√
5 =




1 −10 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v2−1=(100,−50, 503 ,−400λ − 25
6 ), v1123

2 − 55
2

√
5
=(25, 0, 3512 ,−100λ), v1123

2 + 55
2

√
5
=(−100, 0, 103 , 400λ)
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169θ4 − z
(
1352+ 9802θ + 27651θ2 + 35698θ3 + 19565θ4

)

−z2
(
37024+ 166296θ + 222964θ2 + 8344θ3 − 91844θ4

)

−z3
(
1664− 86112θ − 516192θ2− 899136θ3 − 240768θ4

)

−z4
(
530688+ 1974144θ + 2242816θ2 + 795392θ3 + 926848θ4

)

+z5
(
265216+ 971776θ + 999680θ2 − 462336θ3− 1558272θ4

)

+z6
(
225280+ 1794048θ + 4510720θ2 + 4159488θ3 + 566272θ4

)

+z7
(
606208+ 2621440θ + 4505600θ2 + 3768320θ3 + 1343488θ4

)
+262144z8(θ + 1)4

26




x1 − 11
32 −

√
329
32 x2 0 x3 − 11

32 +
√
329
32 1 ∞

0
1
1
2

0
1
3
4

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
1
1
1





68

−86

10

1/x3

x1 = −4.3623, x2 = −0.3967, x3 = 0.0090

1+ 151
13 q+

11639
13 q2+ 710062

13 q3+ 46057399
13 q4+ 3023016151

13 q5+ 200434389518
13 q6+ 13398630711365

13 q7+O(q8)

n01 = 302, n02 = 2872, n03 = 52586, n04 = 1438930, n05 = 48368256, n06 = 1855867296

ex1 = 1, ex2 = 1, ex3 = 1, e1 = 2

n11 = 0, n12 = 0, n13 = 2, n14 = 620, n15 = 106358, n16 = 13419013

M0 =




1 0 0 0
1 1 0 0
0 26 1 0
0 0 1 1


 , Mx2 =




−9 −72 −6 −4
5 37 3 2

−80 −576 −47 −32
55 396 33 23


 , M− 11

32−1/32
√
329 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M1 =




1 −14 −2 −2
0 1 0 0
0 42 7 6
0 −42 −6 −5


 , M− 11

32+1/32
√
329 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




1 −10 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




−35 −280 −24 −16
18 141 12 8

−270 −2100 −179 −120
171 1330 114 77




v1x1=(104,−52, 463 ,−344λ− 10
3 ), v1x2=(52,−26, 263 ,−172λ − 13

6 ), v1x3=(26, 0, 176 ,−86λ),
v21=(−52, 0, 13 , 172λ)

θ4 − 2z(2θ + 1)2(13θ2 + 13θ + 4) −12z2(2θ + 1)(3θ + 2)(3θ + 4)(2θ + 3)

28




− 1
4 0 1

108 ∞

0
1
1
2

0
0
0
0

0
1
1
2

1
2
2
3
4
3
3
2





76

−116

11

108

1+10q+774q2+46558q3+2924294q4+184776760q5+11815272594q6+761379437052q7+O(q8)

n01 = 280, n02 = 2674, n03 = 48272, n04 = 1279040, n05 = 41389992, n06 = 1531603276

n11 = 0, n12 = 0, n13 = 0, n14 = 27, n15 = 26208, n16 = 5914124

X(1, 1, 1, 1, 2) ⊂ Gr(2, 6) [BCFKS98]



151

M0 =




1 0 0 0
1 1 0 0
0 28 1 0
0 0 1 1


 , M− 1

4
=




−11 −80 −6 −4
6 41 3 2

−108 −720 −53 −36
78 520 39 27


 , M 1

108
=




1 −11 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 1
4
=(56,−28, 313 ,−232λ − 17

6 ), v11
108

=(28, 0, 196 ,−116λ)

841θ4 − z
(
5046+ 37004θ + 104748θ2 + 135488θ3 + 76444θ4

)

−z2
(
673380+ 3166336θ + 5070104θ2 + 2977536θ3 + 363984θ4

)

−z3
(
3654000+ 11040300θ + 4670100θ2− 7725600θ3− 3417200θ4

)

+10000z4(2θ + 1)(68θ3 + 1842θ2 + 2899θ + 1215) −5000000z5(2θ + 1)(θ + 1)2(2θ + 3)

29




x1 x2 0 x3
29
100 ∞

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
2
1
1
3
2





74

−104

11

1/x3

f (x) = x3 + 64
125 x

2 + 21
500 x− 1

2000 , x1 = −0.4053, x2 = −0.1172, x3 = 0.0105

1+ 248
29 q+

20056
29 q2+ 1045364

29 q3+ 60210776
29 q4+ 3490781248

29 q5+ 204636408340
29 q6+ 12085634303424

29 q7+O(q8)

n01 = 248, n02 = 2476, n03 = 38708, n04 = 940480, n05 = 27926248, n06 = 947385848

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = 2, n14 = 248, n15 = 44576, n16 = 5163998

X
2:1−→ B [Lee08] , ♯50 [BK10]

M0 =




1 0 0 0
1 1 0 0
0 29 1 0
0 0 1 1


 , Mx2 =




−11 −82 −6 −4
6 42 3 2

−114 −779 −56 −38
84 574 42 29


 , M 29

100
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

Mx3 =




1 −11 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




−38 −228 −15 −9
26 153 10 6

−559 −3268 −214 −129
442 2584 170 103




v1x1=(87,−58, 934 ,−312λ − 41
6 ), v1x2=(58,−29, 323 ,−208λ − 35

12 ), v
1
x3
=(29, 0, 3712 ,−104λ)

841θ4 − z
(
6728+ 47937θ + 132733θ2 + 169592θ3 + 87754θ4

)

z2
(
5568+ 57768θ + 239159θ2 + 424220θ3 + 258647θ4

)

−z3
(
76560+ 336864θ + 581647θ2 + 532614θ3 + 272743θ4

)

z4
(
75616+ 332792θ + 552228θ2 + 421124θ3 + 130696θ4

)
−3468z5(θ + 1)2(3θ + 2)(3θ + 4)

29




0 x1
29
34 x2 x3 ∞

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

0
1
1
2

2
3
1
1
4
3





74

−100

11

1/x1
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f (x) = x3 − 67
27 x

2 + 34
9 x− 1

27 , x1 = 0.0099, x2 = 1.2358+ 1.4920i, x3 = 1.2358− 1.4920i

1+ 285
29 q+

19181
29 q2+ 1097187

29 q3+ 63857645
29 q4+ 3762105410

29 q5+ 223978352483
29 q6+ 13441541586898

29 q7+O(q8)

n01 = 285, n02 = 2362, n03 = 40626, n04 = 997476, n05 = 30096841, n06 = 1036931650

n11 = 0, n12 = 0, n13 = 0, n14 = 34, n15 = 22154, n16 = 4012456

M0 =




1 0 0 0
1 1 0 0
0 29 1 0
0 0 1 1


 , Mx2 =




−14 −138 −12 −9
5 47 4 3

−65 −598 −51 −39
35 322 28 22


 , M 29

34
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




1 −11 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




16 −51 −6 −9
5 −16 −2 −3

−80 272 33 48
50 −170 −20 −29




v1x1=(29, 0, 3712 ,−100λ), v1x2=(87,−29, 314 ,−300λ − 23
12 ), v

1
x3
=(87, 29, 314 ,−300λ + 23

12 )

25θ4 −z
(
175+ 1250θ + 3480θ2 + 4460θ3 + 2365θ4

)

−z2
(
5490+ 21790θ + 28834θ2 + 9272θ3 − 3946θ4

)

−z3
(
5760+ 6210θ − 20646θ2 − 34560θ3 − 6174θ4

)

−z4
(
9234+ 32886θ + 37098θ2 + 8424θ3 − 6723θ4

)
−6561z5(θ + 1)4

30




− 46
81 − 13

81

√
13 −1 0 − 46

81 + 13
81

√
13 5

9 ∞

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
1
1
1





72

−86

11

46+ 13
√
13

1+ 46
5 q+

2914
5 q2+ 152056

5 q3+ 8239874
5 q4+ 451221546

5 q5+ 24960879448
5 q6+ 1391968205352

5 q7+O(q8)

M− 46
81− 13

81

√
13 =




−97 −875 −70 −49
42 376 30 21

−672 −6000 −479 −336
406 3625 290 204


, M−1 =




−69 −560 −42 −28
35 281 21 14

−630 −5040 −377 −252
420 3360 252 169


,

M0 =




1 0 0 0
1 1 0 0
0 30 1 0
0 0 1 1


, M− 46

81+ 13
81

√
13 =




1 −11 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


, M 5

9
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




v1− 46
81− 13

81

√
13
=(210,−90, 24,−602λ− 5), v1− 46

81+ 13
81

√
13
=(30, 0, 3,−86λ)

θ4 − 8z(2θ + 1)2(3θ2 + 3θ + 1) +64z2(2θ + 1)(θ + 1)2(2θ + 3)

32




0 3/16− 1/8
√
2 3/16+ 1/8

√
2 ∞

0
0
0
0

0
1
1
2

0
1
1
2

1
2
1
1
3
2





80

−116

12

48+ 32
√
2

1+8q+512q2+27008q3+1420320q4+75771008q5+4083679232q6+221804832768q7+O(q8)

n01 = 256, n02 = 2016, n03 = 32000, n04 = 709904, n05 = 19397376, n06 = 604985440

n11 = 0, n12 = 0, n13 = 0, n14 = −8, n15 = 1024, n16 = 1220032
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X(1, 1, 2) ⊂ LGr(3, 6) [Bor96]

M0 =




1 0 0 0
1 1 0 0
0 32 1 0
0 0 1 1


 , M3/16+1/8

√
2 =




−17 −156 −12 −9
6 53 4 3

−96 −832 −63 −48
60 520 40 31


 , M3/16−1/8

√
2 =




1 −12 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1
3/16−1/8

√
2
=(32, 0, 103 ,−116λ), v1

3/16+1/8
√
2
=(96,−32, 10,−348λ− 8

3 )

289θ4 − z
(
1734+ 12138θ + 33218θ2 + 42160θ3 + 21998θ4

)

−z2
(
81600+ 368492θ + 590936θ2 + 359008θ3 + 57748θ4

)

−z3
(
209304+ 673812θ + 503748θ2− 308160θ3 − 258456θ4

)

−z4
(
634896+ 1736136θ + 665192θ2− 1331072θ3− 415360θ4

)

+z5
(
167808+ 1054320θ + 2103024θ2 + 1285632θ3− 449280θ4

)

+z6
(
42048+ 516960θ + 1011360θ2 + 9216θ3 − 975360θ4

)

−z7
(
338688+ 1476864θ + 2492928θ2 + 1990656θ3 + 663552θ4

)

−18432z8(4θ + 3)(θ + 1)2(4θ + 5)

34




− 3
16 −

√
897
48 x1 x2 − 1

4 0 x3 − 3
16 −

√
897
48 ∞

0
1
3
4

0
1
1
2

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

3
4
1
1
5
4





76

−90

12

1/x3

x1 = −0.6314− 1.4335i, x2 = −0.6314+ 1.4335i, x3 = 0.0127

1+ 118
17 q+

7102
17 q2+ 308566

17 q3+ 14342686
17 q4+ 669855868

17 q5+ 31621056670
17 q6+ 1504072957540

17 q7+O(q8)

n01 = 236, n02 = 1746, n03 = 22848, n04 = 447987, n05 = 10717692, n06 = 292784640

n11 = 0, n12 = 0, n13 = 0, n14 = 44, n15 = 8208, n16 = 952663

M0 =




1 0 0 0
1 1 0 0
0 34 1 0
0 0 1 1


 , M− 1

4
=




−11 −92 −6 −4
6 47 3 2

−132 −1012 −65 −44
96 736 48 33


 , M−3/16−1/48

√
897 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx2 =




−14 −156 −12 −9
5 53 4 3

−80 −832 −63 −48
45 468 36 28


 , M−3/16+1/48

√
897 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

Mx3 =




1 −12 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




16 −54 −6 −9
5 −17 −2 −3

−90 324 37 54
55 −198 −22 −32




v1x1=(102, 34, 172 ,−270λ + 11
6 ), v1x2=(102,−34, 172 ,−270λ − 11

6 ), v1− 1
4
=(68,−34, 343 ,−180λ − 17

6 ),

v1x3=(34, 0, 196 ,−90λ)
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289θ4 − z
(
2023+ 13872θ + 37400θ2 + 47056θ3 + 24905θ4

)

z2
(
30600+ 131852θ + 250034θ2 + 263164θ3 + 124030θ4

)

−z3
(
91800+ 402084θ + 691362θ2 + 589356θ3 + 233550θ4

)

z4
(
122472+ 510300θ + 815022θ2 + 609444θ3 + 193185θ4

)
−59049z5(θ + 1)4

34




0 1
81

17
27 1 ∞

0
0
0
0

0
1
1
2

0
1
3
4

0
1
2
1
2
1

1
1
1
1





76

−88

12

81

1+ 126
17 q+

6910
17 q2+ 316026

17 q3+865566q4+ 692407376
17 q5+ 32912055322

17 q6+ 1576716644916
17 q7+O(q8)

M0 =




1 0 0 0
1 1 0 0
0 34 1 0
0 0 1 1


 , M1 =




−9 −46 −1 1
0 −15 −2 −2
40 616 59 50
−40 −504 −44 −35


 , M 17

27
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M 1

81
=




1 −12 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v11
81
=(34, 0, 196 ,−88λ)

θ4−z
(
73θ4 + 98θ3 + 77θ2 + 28θ + 4

)
+z2

(
520θ4 − 1040θ3 − 2904θ2 − 2048θ − 480

)

+z3
(
4160θ4 + 24960θ3 + 26688θ2 + 11520θ + 1792

)

−z4
(
37376θ4 + 99328θ3 + 113152θ2 + 63488θ + 14336

)
+32768z5(θ + 1)4

36




− 1
8 0 1

64
1
8 1 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
1
1
1





72

−72

12

64

1+5q+341q2+12263q3+480213q4+19293880q5+788899463q6+32438437820q7+O(q8)

n01 = 180, n02 = 1512, n03 = 16344, n04 = 269928, n05 = 5556636, n06 = 131481144

p− 1
8

= − 1
6 , p 1

64
= − 1

6 , p1 = − 2
3

n11 = 0, n12 = 0, n13 = 4, n14 = 189, n15 = 14112, n16 = 848138

M0 =




1 0 0 0
1 1 0 0
0 36 1 0
0 0 1 1


, M− 1

8
=




−11 −96 −6 −4
6 49 3 2

−144 −1152 −71 −48
108 864 54 37


, M1 =




1 −36 −4 −4
0 1 0 0
0 108 13 12
0 −108 −12 −11


, M 1

8
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, M 1

64
=




1 −12 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 1
8
=(72,−36, 12,−144λ− 3), v11

64
=(36, 0, 3,−72λ), v11=(72, 0, 0,−144λ)



155

θ4 − 6z(2θ + 1)2(3θ2 + 3θ + 1) −108z2(2θ + 1)(θ + 1)2(2θ + 3)

36




−1/12− 1/18
√
3 0 −1/12+ 1/18

√
3 ∞

0
1
1
2

0
0
0
0

0
1
1
2

1
2
1
1
3
2





84

−120

13

36+ 24
√
3

1+6q+378q2+16422q3+752634q4+34419006q5+1595351322q6+74451566286q7+O(q8)

n01 = 216, n02 = 1674, n03 = 21888, n04 = 423144, n05 = 9912672, n06 = 265889088

n11 = 0, n12 = 0, n13 = 0, n14 = 0, n15 = 432, n16 = 374244

X(1, 2) ⊂ X5 [Bor96]

M0 =




1 0 0 0
1 1 0 0
0 36 1 0
0 0 1 1


 , M−1/12−1/18

√
3 =




−13 −100 −6 −4
7 51 3 2

−168 −1200 −71 −48
126 900 54 37


 , M−1/12+1/18

√
3 =




1 −13 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1−1/12−1/18
√
3
=(72,−36, 13,−240λ− 7

2 ), v
1
−1/12+1/18

√
3
=(36, 0, 72 ,−120λ)

361θ4 − z
(
26030θ4 + 49780θ3 + 39691θ2 + 14801θ + 2166

)

+z2
(
39521θ4 − 3916θ3 − 106779θ2− 95266θ − 25384

)

+z3
(
31008+ 140904θ + 237336θ2 + 158232θ3 + 13192θ4

)
−80z4(θ + 1)(499θ3 + 1411θ2 +

1378θ + 456) +12800z5(θ + 1)4

38




−1 0 71
64 − 17

64

√
17 19

20
71
64 + 17

64

√
17 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
1
1
1





80

−92

13
71
2 + 17/2

√
17

1+ 113
19 q+

5729
19 q2+ 230018

19 q3+ 9405345
19 q4+ 388177863

19 q5+ 16178756810
19 q6+O(q7)

n01 = 226, n02 = 1404, n03 = 17030, n04 = 293738, n05 = 6210844, n06 = 149801122

n11 = 0, n12 = 0, n13 = 0, n14 = 1, n15 = 1444, n16 = 258932

M0 =




1 0 0 0
1 1 0 0
0 38 1 0
0 0 1 1


 , M−1 =




−35 −300 −18 −12
18 151 9 6

−432 −3600 −215 −144
306 2550 153 103


 , M 71

64+ 17
64

√
17 =




1 −9 −1 −1
0 1 0 0
0 36 5 4
0 −36 −4 −3


 , M 19

20
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M 71

64− 17
64

√
17 =




1 −13 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v3−1=(228,−114, 35,−552λ− 8), v171
64− 17

64

√
17
=(38, 0, 103 ,−92λ), v171

64+ 17
64

√
17
=(−38, 0, 23 , 92λ)
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9θ4 − z
(
519θ4 + 1020θ3 + 816θ2 + 306θ + 45

)

−z2
(
2258θ4 + 10064θ3 + 15194θ2 + 9546θ + 2166

)

+z3
(
1686θ4 + 5256θ3 + 4706θ2 + 1350θ + 12

)
−z4

(
295θ4 + 608θ3 + 478θ2 + 174θ + 26

)

+z5(θ + 1)4

42




x1 0 x2 3 x3 ∞

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

1
1
1
1





84

−98

14

1/x2

f (x) = x3 − 289 x2 − 57 x + 1, x1 = −0.2133, x2 = 0.0162, x3 = 289.1971

1+ 14
3 q+238q2+ 24584

3 q3+ 906122
3 q4+11062338q5+410527768q6+ 46010329400

3 q7+O(q8)

n01 = 196, n02 = 1225, n03 = 12740, n04 = 198058, n05 = 3716944, n06 = 79823205

n11 = 0, n12 = 0, n13 = 0, n14 = 0, n15 = 588, n16 = 99960

X(1, 1, 1, 1, 1, 1, 1) ⊂ Gr(2, 7) [BCFKS98]

M0 =




1 0 0 0
1 1 0 0
0 42 1 0
0 0 1 1


 , Mx3 =




1 −84 −9 −9
0 1 0 0
0 392 43 42
0 −392 −42 −41


 , M3 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx2 =




1 −14 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx1 =




−13 −112 −6 −4
7 57 3 2

−196 −1568 −83 −56
147 1176 63 43




v1x1=(84,−42, 14,−196λ− 7
2 ), v

1
x2
=(42, 0, 72 ,−98λ), v1x3=(−126, 0, 72 , 294λ)

θ4 − z
(
65θ4 + 130θ3 + 105θ2 + 40θ + 6

)
4z2(4θ + 3)(θ + 1)2(4θ + 5)

42




0 1
64 1 ∞

0
0
0
0

0
1
1
2

0
1
1
2

3
4
1
1
5
4





84

−96

14

64

1+5q+229q2+8429q3+307941q4+11381005q5+424644781q6+15963252737q7+O(q8)

n01 = 210, n02 = 1176, n03 = 13104, n04 = 201936, n05 = 3824016, n06 = 82568136

n11 = 0, n12 = 0, n13 = 0, n14 = 0, n15 = 84, n16 = 74382

X(1, 1, 1, 1, 1, 1) ⊂ Gr(3, 6) [BCFKS98]

M0 =




1 0 0 0
1 1 0 0
0 42 1 0
0 0 1 1


 , M1 =




−35 −378 −24 −18
12 127 8 6

−252 −2646 −167 −126
156 1638 104 79


 , M 1

64
=




1 −14 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1



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v11
64
=(42, 0, 72 ,−96λ), v21=(252,−84, 21,−576λ− 5)

θ4 − 4zθ(θ + 1)(2θ + 1)2 −32z2(2θ + 1)(2θ + 3)(11θ2 + 22θ + 12)
−1200z3(2θ + 1)(2θ + 3)2(2θ + 5) −4864z4(2θ + 1)(2θ + 3)(2θ + 5)(2θ + 7)

44




x1 x2 − 1
16 0 x3 ∞

0
1
1
2

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

1
2
3
2
5
2
7
2





92

−128

15

1/x3

f (x) = x3 + 7
38 x

2 + 1
152 x− 1

4864 , x1 = −0.1018− 0.0132i, x2 = −0.1018+ 0.0132i, x3 = 0.0195

1+4q+220q2+7672q3+279772q4+10121004q5+372031816q6+13748223416q7+O(q8)

n01 = 176, n02 = 1188, n03 = 12496, n04 = 192192, n05 = 3562592, n06 = 75782652

ex1 = − 1
6 , ex2 = − 1

6 , e− 1
16

= − 1
6 , ex3 = − 1

6

n11 = 0, n12 = 0, n13 = 0, n14 = 3, n15 = −352, n16 = 12776

X
2:1−→ A∗

22 [Bor96], ♯58 [BK10]

Mx3 =




1 −15 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , M0 =




1 0 0 0
1 1 0 0
0 44 1 0
0 0 1 1


 , M− 1

16
=




−15 −120 −6 −4
8 61 3 2

−240 −1800 −89 −60
184 1380 69 47


 , Mx2 =




−20 −207 −12 −9
7 70 4 3

−168 −1656 −95 −72
112 1104 64 49


 , Mx1 =




22 −75 −6 −9
7 −24 −2 −3

−140 500 41 60
84 −300 −24 −35




v1x1=(132, 44, 272 ,−384λ + 19
6 ), v1x2=(132,−44, 272 ,−384λ− 19

6 ), v1− 1
16
=(88,−44, 473 ,−256λ− 25

6 ),

v1x3=(44, 0, 236 ,−128λ)

2209θ4 − z
(
11045+ 72897θ + 190021θ2 + 234248θ3 + 116983θ4

)

−z2
(
161022+ 701851θ + 1135848θ2 + 790072θ3 + 208867θ4

)

+z3
(
38352+ 149319θ + 383912θ2 + 637644θ3 + 370857θ4

)

−z4
(
1770676+ 5161283θ + 4424049θ2 + 511820θ3− 291161θ4

)

+z5
(
2151− 260936θ − 750755θ2− 749482θ3 − 406192θ4

)

+z6
(
483678+ 2462238θ + 4118877θ2 + 2450250θ3 + 143235θ4

)

+z7
(
21870+ 119556θ + 287226θ2 + 335340θ3 + 154548θ4

)
−236196z8(θ + 1)4

47




1
108 − 1

108

√
10153 x1 0 x2 x3 x4

1
108 + 1

108

√
10153 ∞

0
1
3
4

0
1
1
2

0
0
0
0

0
1
1
2

0
1
1
2

0
1
1
2

0
1
3
4

1
1
1
1





86

−90

15

1/x2

f (x) = 81x4 − 50x3 + 90x2 + 53x − 1, x1 = −0.4351, x2 = 0.0183, x3 = 0.5170 + 1.133i,
x4 = 0.5170− 1.133i
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1+ 189
47 q+

8021
47 q2+ 250668

47 q3+ 7994901
47 q4+ 256127689

47 q5+ 8289702164
47 q6+ 270201445577

47 q7+O(q8)

n01 = 189, n02 = 979, n03 = 9277, n04 = 124795, n05 = 2049020, n06 = 38377054

ex1 = − 1
6 , ex2 = − 1

6 , ex3 = − 1
6 , ex4 = − 1

6

n11 = 0, n12 = 0, n13 = 0, n14 = 0, n15 = 103, n16 = 28519

M0 =




1 0 0 0
1 1 0 0
0 47 1 0
0 0 1 1


 , Mx1 =




−13 −122 −6 −4
7 62 3 2

−217 −1891 −92 −62
161 1403 69 47


 , M 1

108− 1
108

√
10153 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




−17 −207 −12 −9
6 70 4 3

−144 −1656 −95 −72
90 1035 60 46


 , M 1

108+ 1
108

√
10153 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

Mx2 =




1 −15 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx4 =




19 −66 −6 −9
6 −21 −2 −3

−138 506 47 69
84 −308 −28 −41




v1x1=(94,−47, 443 ,−180λ − 41
12 ), v

1
x2
=(47, 0, 4312 ,−90λ), v1x3=(141,−47, 454 ,−270λ − 29

12 ),
v1x4=(141, 47, 454 ,−270λ + 29

12 )

49θ4 − z
(
14θ(46θ3 + 52θ2 + 33θ + 7)

)

−z2
(
25088+ 106680θ + 170532θ2 + 115392θ3 + 29328θ4

)

−z3
(
561568+ 1780464θ + 1927728θ2 + 716160θ3 + 45760θ4

)

−z4
(
1561088+ 3332608θ + 379392θ2 − 3031040θ3− 1141760θ4

)

+z5
(
3112960+ 17940480θ + 32292864θ2 + 21626880θ3 + 2850816θ4

)

+z6
(
3670016+ 11010048θ + 4718592θ2− 12582912θ3− 11534336θ4

)
−z7

(
33554432(θ + 1)4

)

56




− 1
4 − 1

16 0 1
32

7
32 ∞

0
1
2
3
2
2

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
1
1
1





80

−64

16

32

v2− 1
16
=(112,−56, 563 ,−128λ − 14

3 ), v11
32
=(56, 0, 103 ,−64λ)

49θ4 − z
(
196+ 1274θ + 3276θ2 + 4004θ3 + 1876θ4

)

−z2
(
7672+ 32900θ + 54004θ2 + 41064θ3 + 12732θ4

)

−z3
(
9520+ 45192θ + 82048θ2 + 67200θ3 + 20704θ4

)

−z4
(
8352+ 34416θ + 54768θ2 + 40704θ3 + 12288θ4

)
−2304z5(θ + 1)4

56




− 11
8 − 5/8

√
5 − 7

6 − 1
4 0 − 11

8 + 5/8
√
5 ∞

0
1
1
2

0
1
3
4

0
1
1
2

0
0
0
0

0
1
1
2

1
1
1
1





92

−92

17

22+ 10
√
5

1+ 20
7 q+

778
7 q2+ 19676

7 q3+75014q4+1973360q5+ 368887198
7 q6+ 9904071512

7 q7+ 267539368234
7 q8+O(q9)

n01 = 160, n02 = 758, n03 = 5824, n04 = 65540, n05 = 884064, n06 = 13661732

n11 = 0, n12 = 0, n13 = 0, n14 = 0, n15 = 0, n16 = 3916
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X(1, 1, 1, 1) ⊂ F1(Q5) [Bor96]

M0 =




1 0 0 0
1 1 0 0
0 56 1 0
0 0 1 1


 , M− 1

4
=




−15 −144 −6 −4
8 73 3 2

−304 −2736 −113 −76
232 2088 87 59


 , M− 7

6
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

M− 11
8 −5/8

√
5 =




−13 −140 −6 −4
7 71 3 2

−252 −2520 −107 −72
182 1820 78 53


 , M− 11

8 +5/8
√
5 =




1 −17 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v1− 11
8 −5/8

√
5
=(112,−56, 473 ,−184λ − 19

6 ), v1− 1
4
=(112,−56, 533 ,−184λ − 25

6 ),

v1− 11
8 +5/8

√
5
=(56, 0, 236 ,−92λ)

361θ4 −z
(
13300θ4 + 23522θ3 + 18981θ2 + 7220θ + 1083

)

−z2
(
64745θ4 + 368006θ3 + 609133θ2 + 412756θ + 102258

)

z3
(
172719θ4 + 329346θ3 − 321921θ2− 738720θ − 304722

)

z4
(
46656θ4 + 841266θ3 + 1767825θ2 + 1347192θ + 354294

)
−177147z5(θ + 1)4

57




−1 − 35
486 − 13

486

√
13 0 − 35

486 + 13
486

√
13 19

27 ∞

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

1
1
1
1





90

−84

17
35
2 + 13/2

√
13

1+ 49
19q+

2065
19 q2+ 47596

19 q3+64075q4+ 30769924
19 q5+ 789487276

19 q6+ 20341733041
19 q7+ 527558864785

19 q8+O(q9)

n01 = 147, n02 = 756, n03 = 5283, n04 = 56970, n05 = 738477, n06 = 10964412

n11 = 0, n12 = 0, n13 = 0, n14 = 0, n15 = 102, n16 = 7884

Tjøtta′s example [Tjø01]

M0 =




1 0 0 0
1 1 0 0
0 57 1 0
0 0 1 1


 , M− 35

486− 13
486

√
13 =




−15 −146 −6 −4
8 74 3 2

−312 −2847 −116 −78
240 2190 90 61


 ,

M−1 =




−35 −486 −24 −18
12 163 8 6

−360 −4860 −239 −180
228 3078 152 115


 , M 19

27
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M− 35

486+ 13
486

√
13 =




1 −17 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




v2−1=(342,−114, 512 ,−504λ − 9
2 ), v

1
− 35

486− 13
486

√
13
=(114,−57, 18,−168λ− 17

4 ),

v1− 35
486+ 13

486

√
13
=(57, 0, 154 ,−84λ)

3721θ4 − z
(
184769θ4 + 339892θ3 + 285297θ2 + 115351θ + 18605

)

+z2
(
1215215θ4 + 3428132θ3 + 4267228θ2 + 2572675θ + 611586

)

−z3
(
3188970θ4 + 11354418θ3 + 16751367θ2 + 11517471θ + 3023892

)

+z4
(
3713526θ4 + 14631030θ3 + 22018716θ2 + 14703201θ + 3661038

)
−1594323z5(θ + 1)4
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61




0 x1 x2 x3
61
81 ∞

0
0
0
0

0
1
1
2

0
1
1
2

0
1
1
2

0
1
3
4

1
1
1
1





94

−86

18

1/x1

f (x) = x3 − 200
243 x

2 + 47
243 x− 1

243 x1 = 0.0236, x2 = 0.3997+ 0.1216i, x3 = 0.3997− 0.1216i

1+ 163
61 q+

5203
61 q2+ 129628

61 q3+ 3104211
61 q4+ 74976288

61 q5+ 1827344980
61 q6+ 44837600887

61 q7+O(q8)

n01 = 163, n02 = 630, n03 = 4795, n04 = 48422, n05 = 599809, n06 = 8459307

n11 = 0, n12 = 0, n13 = 0, n14 = 0, n15 = −2, n16 = 264

M0 =




1 0 0 0
1 1 0 0
0 61 1 0
0 0 1 1


 , Mx2 =




−20 −261 −12 −9
7 88 4 3

−231 −2871 −131 −99
154 1914 88 67


 , M 61

81
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

Mx1 =




1 −18 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx3 =




22 −78 −6 −9
7 −25 −2 −3

−196 728 57 84
119 −442 −34 −50




v1x1=(61, 0, 4712 ,−86λ), v1x2=(183,−61, 574 ,−258λ − 37
12 ), v

1
x3
=(183, 61, 574 ,−258λ + 37

12 )

8281θ4 + z
(
91θ(782θ3 − 1874θ2 − 1210θ − 273)

)

−z2
(
2515785θ4 + 11622522θ3 + 15227939θ2 + 9962953θ + 2649920

)

−z3
(
59827597θ4 + 258678126θ3 + 432607868θ2 + 348819198θ + 110445426

)

−z4
(
612043042θ4 + 2998881218θ3 + 5901995820θ2 + 5439732380θ + 1915723890

)

−z5
(
3762840342θ4 + 21226829058θ3 + 47503242813θ2 + 48522700563θ + 18479595006

)

−z6
(
15265487382θ4 + 98210309094θ3 + 244753624741θ2 + 271941545379θ + 110147546634

)

−z7
(
42103272002θ4 + 304487632282θ3 + 831965057114θ2 + 991829482602θ + 422269162452

)

−2z8(θ + 1)(39253400626θ3 + 275108963001θ2 + 654332416678θ + 521254338620)
−z9(θ + 1)(θ + 2)(94987355417θ2 + 545340710193θ + 799002779040)
−1540z10(θ + 1)(θ + 2)(θ + 3)(43765159θ + 149264765)
−21292817700z11(θ + 1)(θ + 2)(θ + 3)(θ + 4)

91




x1 x2 x3 − 1
3 x4 x5 x6 x7 0 x8 ∞

0
1
3
4

0
1
1
2

0
1
1
2

0
1
1
2

0
1
1
2

0
1
1
2

0
1
3
4

0
1
1
2

0
0
0
0

0
1
1
2

1
2
3
4





106

−78

24

1/x8

x1 = − 573
1540 − 1

1540

√
48049, x2 = −0.3432+ 0.0271i, x3 = −0.3432− 0.0271i, x4 = −0.2588+

0.1605i, x5 = −0.2588− 0.1605i, x6 = − 573
1540 + 1

1540

√
48049, x7 = −0.1815, x8 = 0.0419

1+ 118
91 q+

3102
91 q2+ 50770

91 q3+ 116850
13 q4+ 1875374

13 q5+ 213286578
91 q6+ 3475499411

91 q7+ 8140409970
13 q8+O(q9)

v1x2=(−637, 273,− 785
12 , 546λ + 47

4 ), v1x3=(637, 273, 78512 ,−546λ + 47
4 ),

v
5
2

− 1
3
=(910,−455, 3653 ,−780λ − 275

12 ), v1x4=(273,−91, 794 ,−234λ − 43
12 ),

v1x5=(273, 91, 794 ,−234λ + 43
12 ), v

1
x7
=(182,−91, 793 ,−156λ − 67

12 ), v
1
x8
=(91, 0, 5312 ,−78λ)
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9409θ4 + z
(
97θ(1727θ3− 2018θ2 − 1300θ − 291)

)

−z2
(
1652135θ4 + 13428812θ3 + 16174393θ2 + 10216234θ + 2709792

)

−z3
(
81753435θ4 + 364126194θ3 + 568639497θ2 + 443115594θ + 138000348

)

−z4
(
1175502862θ4 + 5423394464θ3 + 10006378570θ2 + 8869415520θ + 3049275024

)

−z5
(
9726250397θ4 + 50507429234θ3 + 106108023451θ2 + 103964102350θ + 38537290992

)

−z6
(
308040167808+ 781527778884θ + 733053660150θ2 + 312374434824θ3 + 52762935894θ4

)

−z7
(
195453433908θ4 + 1313199235080θ3 + 3399527062044θ2 + 3901093356168θ

+1619360309088)
−144z8(θ + 1)(3432647479θ3+22487363787θ2+50808614711θ+38959393614)
−432z9(θ + 1)(θ + 2)(1903493629θ2 + 10262864555θ+14314039440)
−438048z10(θ + 1)(θ + 2)(θ + 3)(1862987θ + 5992902)
−368028363456z11(θ + 1)(θ + 2)(θ + 3)(θ + 4)

97




x1 x2 x3 x4 x5 x6 x7 − 38
169 + 1

1014

√
2805 0 x8 ∞

0
1
3
4

0
1
1
2

0
1
1
2

0
1
1
2

0
1
1
2

0
1
1
2

0
1
1
2

0
1
3
4

0
0
0
0

0
1
1
2

1
2
3
4





106

−64

25

1/x8
f (x) = 7457x5 + 6100x4 + 1929x3 + 257x2 + 7x − 1, x1 = − 38

169 − 1
1014

√
2805, x2 = −1/4 +

1/12i
√
3, x3 = −1/12 i

√
3− 1/4, x4 = −0.24+ 0.1101i, x5 = −0.24− 0.1101i, x6 = −0.1911+

0.0840i, x7 = −0.1911− 0.0840i, x8 = 0.0441

1+ 136
97 q+

2472
97 q2+ 47872

97 q3+ 650664
97 q4+ 10423511

97 q5+ 155806080
97 q6+ 2415791668

97 q7+ 37201788328
97 q8+O(q9)

e−1/4+1/12 i
√
3 = − 1

3 , e−1/12 i
√
3−1/4 = − 1

3 , ex4 = − 1
6 , ex5 = − 1

6 , ex6 = − 1
6 , ex7 = − 1

6 , ex8 = − 1
6

n01 = 136, n02 = 292, n03 = 1768, n04 = 10128, n05 = 83387, n06 = 721092, n07 = 7043124,
n08 = 72658472, n09 = 792624984

n11 = 0, n12 = 0, n13 = 0, n14 = 0, n15 = 0, n16 = 0, n17 = 292, n18 = 59024, n19 = 2373710

[BK10] [Met12] 1/t + y +t/x +zt/x + zt/xy + 1/z +x/z + y/zt + x/zt + xy/zt + y/t + t/y +
t/xy + y/x + 1/x + zt/y + t + 1/y + x + x/t + 1/zt + z +z/y

Mx8 =




1 −25 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , M0 =




1 0 0 0
1 1 0 0
0 97 1 0
0 0 1 1


 , M− 38

169+ 1
1014

√
2805 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

M− 38
169− 1

1014

√
2805 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Mx6 =




−19 −232 −6 −4
10 117 3 2

−660 −7656 −197 −132
510 5916 153 103


 ,

Mx7 =




21 −38 −2 −4
10 −18 −1 −2

−310 589 32 62
160 −304 −16 −31


 , Mx4 =




−84 −1220 −35 −25
34 489 14 10

−2023 −29036 −832 −595
1462 20984 602 431


 ,

Mx5 =




86 −250 −15 −25
34 −99 −6 −10

−1275 3750 226 375
714 −2100 −126 −209


 , Mx2 =




−47 −780 −24 −18
16 261 8 6

−880 −14300 −439 −330
608 9880 304 229


 ,

Mx3 =




49 −198 −12 −18
16 −65 −4 −6

−672 2772 169 252
400 −1650 −100 −149



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v2−1/4+1/12 i
√
3
=(582,−194, 792 ,−384λ − 43

6 ), v2−1/12 i
√
3−1/4

=(582, 194, 792 ,−384λ + 43
6 ),

v1x4=(−485, 194,− 529
12 , 320λ + 49

6 ), v1x5=(485, 194, 52912 ,−320λ + 49
6 ),

v1x6=(194,−97, 793 ,−128λ− 67
12 ), v

1
x7
=(194, 97, 793 ,−128λ + 67

12 ), v
1
x8
=(97, 0, 5312 ,−64λ)

841θ4+z
(
58θ(24θ3 − 198θ2 − 128θ − 29)

)

−z2
(
177136θ4 + 691816θ3 + 994356θ2 + 688228θ + 188384

)

−z3
(
2102832θ4 + 9659088θ3 + 17790572θ2 + 15356196θ + 5102376

)

−z4
(
11324992θ4 + 63288032θ3 + 139163592θ2 + 139170872θ + 51970096

)

−z5
(
16(θ + 1)(2152040θ3 + 12186636θ2 + 24179373θ + 16560506)

)

−32z6(θ + 1)(θ + 2)(1912256θ2 + 9108540θ + 11349571)
−10496z7(θ + 1)(θ + 2)(θ + 3)(5671θ + 16301) −24529152z8(θ + 1)(θ + 2)(θ + 3)(θ + 4)

116




− 1
2 − 29

82 x1 x2 − 1
6 0 x3 ∞

0
1
2
1
2
1

0
1
3
4

0
1
1
2

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

1
2
3
4





116

−80

29

1/x3

f (x) = x3 + 21
38 x

2 + 7
76 x− 1

152 , x1 = −0.3028− 0.1803i, x2 = −0.3028+ 0.1803i, x3 = 0.0530

1+ 24
29 p+

600
29 p2+ 7692

29 p3+ 104024
29 p4+ 1329024

29 p5+ 17522196
29 p6+ 229724960

29 p7+ 3038654040
29 p8+O(p9)

♯43 [BK10]

M− 1
2

=




13 336 10 8
−16 −303 −8 −6
1508 27248 703 520
−1244 −22016 −562 −413


, M− 29

82
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, M− 1

6
=




−23 −280 −6 −4
12 141 3 2

−984 −11480 −245 −164
780 9100 195 131


, Mx1 =




−89 −813 −15 −9
60 543 10 6

−5520 −49864 −919 −552
4680 42276 780 469


,

M0 =




1 0 0 0
1 1 0 0
0 116 1 0
0 0 1 1


, Mx3 =




1 −29 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


, Mx2 =




−26 −465 −12 −9
9 156 4 3

−612 −10540 −271 −204
432 7440 192 145




v1x1=(348,−232, 1652 ,−240λ− 61
3 ), v1x2=(348,−116, 492 ,−240λ − 25

6 ),
v1− 1

6
=(232,−116, 1013 ,−160λ − 43

6 ), v1x3=(116, 0, 296 ,−80λ)

169θ4 − z
(
13θ(56θ3 + 178θ2 + 115θ + 26)

)

−z2
(
28466θ4 + 109442θ3 + 165603θ2 + 117338θ + 32448

)

−z3
(
233114θ4 + 1257906θ3 + 2622815θ2 + 2467842θ + 872352

)

−z4
(
989585θ4 + 6852298θ3 + 17737939θ2 + 19969754θ + 8108448

)

−z5(θ + 1)(2458967θ3 + 18007287θ2 + 44047582θ + 35386584)
−9z6(θ + 1)(θ + 2)(393163θ2 + 2539029θ + 4164444)
−297z7(θ + 1)(θ + 2)(θ + 3)(8683θ + 34604) −722007z8(θ + 1)(θ + 2)(θ + 3)(θ + 4)



163

117




− 13
11 − 1

3 x1 x2 − 5
26 − 3

26 i
√
3 − 5

26 + 3
26 i

√
3 0 x3 ∞

0
1
3
4

0
1
1
2

0
1
1
2

0
1
1
2

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

1
2
3
4





114

−72

29

1/x3

f (x) = 153x3 + 75x2 + 14x− 1, x1 = −0.2721− 0.2165i, x2 = −0.2721+ 0.2165i, x3 = 0.0541

1+ 11
13 p+

251
13 p2+ 3476

13 p3+ 43259
13 p4+ 554636

13 p5+ 7159364
13 p6+ 92648427

13 p7+ 1205037307
13 p8+ 15738154598

13 p9

n01 = 99, n02 = 270, n03 = 1155, n04 = 6048, n05 = 39933, n06 = 298152, n07 = 2431008,
n08 = 21181536, n09 = 194298162, n010 = 1856260278

e− 1
3

= − 2
3 , ex1 = − 1

6 , ex2 = − 1
6 , e− 5

26− 3
26 i

√
3 = − 1

6 , e− 5
26+ 3

26 i
√
3 = − 1

6 , ex3 = − 1
6

n11 = 0, n12 = 0, n13 = 0, n14 = 0, n15 = 0, n16 = 4, n17 = 270, n18 = 13608, n19 = 412956,
n110 = 9525240

♯37 [BK10]

M− 13
11

=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, M− 1

3
=




−87 −1112 −24 −16
44 557 12 8

−3564 −45036 −971 −648
2772 35028 756 505


, Mx1 =




−194 −2045 −40 −25
117 1228 24 15

−10296 −107976 −2111 −1320
8424 88344 1728 1081


, M− 5

26− 3
26 i

√
3 =




−89 −819 −15 −9
60 547 10 6

−5580 −50778 −929 −558
4740 43134 790 475


,

M0 =




1 0 0 0
1 1 0 0
0 117 1 0
0 0 1 1


, Mx3 =




1 −29 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


, M− 5

26+ 3
26 i

√
3 =




−26 −468 −12 −9
9 157 4 3

−621 −10764 −275 −207
441 7644 196 148


, Mx2 =




−94 −1460 −35 −25
38 585 14 10

−2793 −42924 −1028 −735
2052 31536 756 541




v1− 1
3
=(468,−234, 64,−288λ− 25

2 ), v1x1=(585,−351, 4494 ,−360λ − 99
4 ),

v1x2=(585,−234, 2154 ,−360λ − 19
2 ), v1− 5

26− 3
26 i

√
3
=(351,−234, 3334 ,−216λ − 41

2 ),

v1− 5
26+ 3

26 i
√
3
=(351,−117, 994 ,−216λ− 17

4 ), v1x3=(117, 0, 194 ,−72λ)

529θ4 − z
(
46θ2(1+ 2θ + 136θ2)

)
−z2

(
84640+ 279312θ + 359900θ2 + 219704θ3 + 30356θ4

)

+z3
(
1010160+ 3070914θ + 3791849θ2 + 2342274θ3 + 573259θ4

)

+z4
(
6697440+ 14044860θ + 7955470θ2− 622660θ3 − 1223510θ4

)

−z5
(
600(θ + 1)(16105θ3 + 133047θ2 + 320040θ + 245740)

)

+z6
(
18000(θ + 2)(θ + 1)(3107θ2 + 16911θ + 22834)

)

−z7 (810000(133θ + 404)(θ + 3)(θ + 2)(θ + 1)) +72900000z8(θ + 1)(θ + 2)(θ + 3)(θ + 4)

460




− 1
6 1/10− 1/10

√
5 0 1

10
23
90 1/10+ 1/10

√
5 1

3
1
2 ∞

0
1
1
2

0
1
1
2

0
0
0
0

0
1
1
2

0
1
3
4

0
1
1
2

0
1
1
2

0
1
1
2

1
2
3
4





40

−160

80

−5/2+ 5/2
√
5



164 C CY(3)-Equations with Monodromy Invariant Doran-Morgan Lattice

1+ 2
23q+

146
23 q

2+ 731
23 q

3+ 8850
23 q4+ 49377

23 q5+ 441947
23 q6+ 2779674

23 q7+ 23564946
23 q8+ 162177716

23 q9+O(q10)

f=x+y+z+t+xy/z/t +z ∗ t/x/y +1/x +1/y+1/z+1/t

v5− 1
6
=(1150,−460, 6556 ,−400λ − 55

3 ), v2
1/10−1/10

√
5
=(460,−230, 2003 ,−160λ − 85

6 ),

v11
10
=(230, 0, 356 ,−80λ), v2

1/10+1/10
√
5
=(460, 0, 53 ,−160λ), v

5
2
1
3
=(1150,−115, 503 ,−400λ − 25

12 ),

v
5
2
1
2
=(1150,−230, 2056 ,−400λ − 25

6 )

Table C.1: Data for CY(3)-equations

There are some CY(3)-equations, where the conjectural Euler number c3 = χ is positive. For a non-
rigid Calabi-Yau threefold with h1,1 = 1 the Euler number χ = ∑(−1)khk(X) = 2(h1,1− h2,1) is always
non-positive. How can this obeservation be explained?

θ4−z
(
5136+ 60544θ + 368000θ2 + 614912θ3− 356096θ4

)

+z2
(
1974730752+ 15712911360θ + 61209575424θ2− 130572877824θ3 + 12117344256θ4

)

+z3
(
49313740750848+ 450868486864896θ + 1308771024371712θ2 + 1803473947459584θ3

−3619472019554304θ4
)

+4155203974946881536z4(2θ + 1)4

2




− 1
221184 0 1

65536
1

20736 ∞

0
1
3
4

0
0
0
0

0
1
1
2

0
1
1
2

1
2
1
2
1
2
1
2





−4

432

0

65536

1+177184q −15680097504q2+1220253371840512q3 −86514372798045623520q4+O(q5)

n01 = 354368, n02 = −3920068672, n03 = 90389138641728, n04 = −2703574149448922688,
n05 = 94971334528752533472960, n06 = −3678015597891519388084890432

e 1
65536

= − 1
6 , e 1

20736
= − 1

3

n11 = 34896, n12 = −1124168368, n13 = 39188280020416, n14 = −1550804822070880448,
n15 = 66023230138668566653472, n16 = −2963420565422181103061855424

M0 =




1 0 0 0
1 1 0 0
0 2 1 0
0 0 1 1


, M− 1

221184
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, M 1

20736
=




−3 −2 −4 −2
4 3 4 2
−4 −2 −3 −2
12 6 12 7


,M 1

65536
=




1 0 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




λ 1
65536

= 1, λ 1
20736

= 2

θ4 − z
(
756θ4 + 1080θ3 + 810θ2 + 270θ + 36

)

+z2
(
174960θ4 + 419904θ3 + 440316θ2 + 215784θ + 38880

)

−z3
(
314928(2θ + 1)2(13θ2 + 29θ + 20)

)
+34012224z4(2θ + 1)2(2θ + 3)2

9




0 1
432

1
108 ∞

0
0
0
0

0
1
1
2

0
1
2
3
2
2

1
2
1
2
3
2
3
2





30

12

4

432
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1+90q+17658q2+4094586q3+948074490q4+227600757090q5+55358315201178q6+O(q7)

n01 = 810, n02 = 19764, n03 = 1364832, n04 = 133320492, n05 = 16387254504, n06 = 2306596295376

e 1
432

= − 1
6 , e 1

108
= − 1

2

n11 = 36, n12 = −3132, n13 = 45384, n14 = −2170512, n15 = 256245660, n16 = 118464898680

M0 =




1 0 0 0
1 1 0 0
0 9 1 0
0 0 1 1


, M 1

108
=




−2 −6 −1 0
0 −2 −1 −1
3 24 8 6
−3 −21 −6 −4


, M 1

432
=




1 −4 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




λ 1
432

= 1

θ4−z
(
40+ 316θ + 3076/3θ2 + 4256/3θ3 + 496/3θ4

)

+z2
(
117376/3+ 197248θ + 2838400/9θ2− 748544/9θ3− 1035776/9θ4

)

+z3
(
131072/3+ 7106560θ + 276926464/9θ2 + 42041344θ3− 7389184/3θ4

)

+z4
(
2228224/9(2θ + 1)(2242θ3 + 1419θ2 − 1047θ − 733)

)

−z5 (2424307712/3(2θ + 1)(3θ + 2)(3θ + 4)(2θ + 3))

12




− 3
544 0 1

432
1
64

1
32 ∞

0
1
3
4

0
0
0
0

0
1
1
2

0
1
1
2

0
1
1
2

1
2
2
3
4
3
3
2





36

52

5

432

1+ 484
3 p − 48788

3 p2+ 22124392
3 p3 −311442268p4+ 692669188484

3 p5+ 12207068987320
3 p6 +O(q7)

n01 = 1936, n02 = −24636, n03 = 3277616, n04 = −58392376, n05 = 22165414016,
n06 = 226056424300

e 1
432

= − 1
6 , e 1

64
= − 1

6 , e 1
32

= − 1
3

n11 = 48, n12 = −6636, n13 = 598912, n14 = −64584123, n15 = 6217443376, n16 = −735479566808

M0 =




1 0 0 0
1 1 0 0
0 12 1 0
0 0 1 1


, M− 3

544
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, M 1

32
=




−7 −26 −4 −2
8 27 4 2

−64 −208 −31 −16
56 182 28 15


,

M 1
64

=




−7 −32 −6 −4
4 17 3 2

−24 −96 −17 −12
20 80 15 11


, M 1

432
=




1 −5 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1




λ 1
432

= 1, λ 1
64

= 1, λ 1
32

= 2

Table C.2: Data for CY(3)-equations with positive c3
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Zusammenfassung

In vielen Teilgebieten der Mathematik ist es wünschenswert, die Monodromiegruppe einer homo-
genen linearen Differenzialgleichung zu verstehen. Es sind nur wenige analytische Methoden zur
Berechnung dieser Gruppe bekannt, daher entwickeln wir im ersten Teil dieser Arbeit eine numeri-
sche Methode zur Approximation ihrer Erzeuger. Im zweiten Abschnitt fassen wir die Grundlagen der
Theorie der Uniformisierung Riemannscher Flächen und die der arithmetischen Fuchsschen Gruppen
zusammen. Außerdem erklären wir, wie unsere numerische Methode bei der Bestimmung von uni-
formisierenden Differenzialgleichungen dienlich sein kann. Für arithmetische Fuchssche Gruppen mit
zwei Erzeugern erhalten wir lokale Daten und freie Parameter von Lamé Gleichungen, welche die zu-
gehörigen Riemannschen Flächen uniformisieren. Im dritten Teil geben wir einen kurzen Abriss zur
homologischen Spiegelsymmetrie und führen die Γ̂-Klasse ein. Wir erklären wie diese genutzt werden
kann, um eine Hodge-theoretische Version der Spiegelsymmetrie für torische Varitäten zu beweisen.
Daraus gewinnen wir Vermutungen über die Monodromiegruppe M von Picard-Fuchs Gleichungen
von gewissen Familien f : X → P1 von n-dimensionalen Calabi-Yau Varietäten. Diese besagen ers-
tens, dass bezüglich einer natürlichen Basis die Monodromiematrizen in M Einträge aus dem Körper
Q(ζ(2j + 1)/(2πi)2j+1, j = 1, . . . , ⌊(n− 1)/2⌋) haben. Und zweitens, dass sich topologische Invarian-
ten des Spiegelpartners einer generischen Faser von f : X → P1 aus einem speziellen Element von M
rekonstruieren lassen. Schließlich benutzen wir die im ersten Teil entwickelten Methoden zur Verifizie-
rung dieser Vermutungen, vornehmlich in Hinblick auf Dimension drei. Darüber hinaus erstellen wir
eine Liste von Kandidaten topologischer Invarianten von vermutlich existierenden dreidimensionalen
Calabi-Yau Varietäten mit h1,1 = 1.

Abstract

In many branches of mathematics it is eligible to understand the monodromy group of a homogeneous
linear differential equation. But only few analytic methods to compute this group are known. Hence,
in the first part of this thesis we develop a numerical method to approximate its generators. In
the second part we summarize the basics of uniformization of Riemann surfaces and of arithmetic
Fuchsian groups. Furthermore we explain how our numerical method can be useful when computing
uniformizing differential equations. For arithmetic Fuchsian groups with two generators we obtain
the local data and the accessory parameter of a Lamé equation uniformizing the associated Riemann
surface. In the third part we briefly review homological mirror symmetry and introduce the Γ̂-class.
We explain how it can be used to prove a Hodge-theoretic version of mirror symmetry for toric
varieties. We gain conjectures on the monodromy group M of Picard-Fuchs equations of certain
families f : X → P1 of n-dimensional Calabi-Yau varieties. The first part of these conjectures tells
that with respect to a natural basis the entries of the matrices in M are contained in the field Q(ζ(2j+
1)/(2πi)2j+1, j = 1, . . . , ⌊(n− 1)/2⌋). The second part of the conjectures is that topological invariants
of the mirror partner of a generic fiber of f : X → P1 are reconstructible from a special element
of M. Finally, we apply our numerical method to verify the conjecture mainly in dimension three.
Additionally we compile a list of candidates of topological invariants of conjecturally existing three-
dimensional Calabi-Yau varieties with h1,1 = 1.
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