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Chapter 1 Introduction 

 

 

A ferroelectric material exhibits a spontaneous polarization at zero electric field. The material holds 

two or more discrete, stable or metastable, polarization states between which it can switch upon an 

applied electric field. In this Chapter, the principles of ferroelectricity are reviewed. The microscopic 

origin of ferroelectricity is discussed from both an ab initio and a phenomenological point of view. 

The ferroelectricity in polymers is specifically reviewed from monomeric to the macroscopic device 

level. After introducing the basic background, the motivation and outline of this thesis are presented. 
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1.1 Fundamentals of ferroelectricity  

Ferroelectric materials refer to a group of materials with spontaneous polarization that can be 

switched by an applied electric field higher than the coercive field [1]. The term ferroelectricity is 

used in analogy to ferromagnetism, which had already been known when ferroelectricity was 

discovered in 1920 in Rochelle salt by Valasek [2] [3]. Thus, the prefix ferro, meaning iron, was used 

to describe the property despite the fact that most ferroelectric materials do not contain iron.  

Ferroelectric materials are featured by the hysteretic relation between the electric displacement, D, (or 

polarization, P) and the applied electric field, E. By applying an alternating electric field with an 

amplitude higher than the coercive field, a D-E hysteresis loop can be recorded. The D-E loops of 

Pb(Zr,Ti)O3 (PZT) and of the random copolymer of vinylidene fluoride with trifluoroethylene 

[P(VDF-TrFE)]  capacitors are presented in Fig. 1.1.1 respectively as examples.  

 

FIG. 1.1.1 D-E hysteresis loops of (a) Pb(Zr,Ti)O3 (PZT) ceramic- and (b) the random copolymer of vinylidene 

fluoride with trifluoroethylene [P(VDF-TrFE)] thin-film capacitors.  

 

Origin of ferroelectricity 

Microscopically, ferroelectric materials consist of polar unit cells. The polarity of the unit cells is due 

to atomic or molecular displacement for ionic or molecular crystals (semi-crystalline) respectively, as 

schematically illustrated in Fig. 1.1.2.  

 

Fig. 1.1.2 Schematics of the unit cell of lead zirconate titanate (PZT) (a) and -PVDF (b). The blue arrow 

denotes the polarity of the unit cell. Figure adapted from Ref [4]. 

a a b

https://en.wikipedia.org/wiki/Ferromagnetism
https://en.wikipedia.org/wiki/Rochelle_salt
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In 1992, Cohen has conducted electronic-structure calculations on the ferroelectric perovskites 

BaTiO3 and PbTiO3 [5]. He investigated the ferroelectric stability based on atomic displacement in the 

unit cell, the so-called “ferroelectric distortion”, in the ground state. The ground-state energy was 

obtained for various atomic displacements of Ti; a double-well energetics indicates that a spontaneous 

polar unit cell, corresponding to the ferroelectric phase, is energetically favoured. His calculations 

suggested that the hybridization between the titanium 3d states and the oxygen 2p states is essential 

for ferroelectricity; when this hybridization is inhibited the nonpolar cubic phase becomes the most 

stable one, yielding no ferroelectricity. Furthermore he showed that the long-range Coulomb energy 

favours ferroelectricity whereas the short-range covalent interactions favour the nonpolar cubic phase. 

He concluded for general ferroelectric perovskites, ABO3, that hybridization between the B cation and 

the oxygen anion is essential to weaken the short-range repulsions and to allow the ferroelectric 

transition. This delicate balance of the short-range forces favouring the cubic phase and the 

long-range forces favouring the ferroelectric phase makes the ferroelectric-paraelectric phase 

transition sensitive to defects and chemical composition. 

At the same period of time, the modern definition of polarization, known as the Berry-phase theory of 

polarization [6] [7] [8], was established. The polarization results from the distribution of the electron 

wavefunction in a periodic lattice and is defined as: 
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where the first term at the right side is the contribution from electrons and the second term is the 

contribution arising from the positive point charges eZs
ion

 located at atomic positions rs. unk is the 

Bloch function for the n-th level in k-space, satisfying unk+G = exp(-iG∙r)unk where G is a translational 

reciprocal lattice vector. The spontaneous polarization, i.e. non-zero P at zero electric field, is 

unambiguously determined by the electronic structure and ion displacement in the unit cell when the 

system is in the ground state.  

 

Order-disorder transition 

As discussed above, the phase transition between the polar and nonpolar crystal structures, e.g. 

PbTiO3 from tetragonal to cubic at 766 K [5], is structural type, often termed “displacive” phase 

transition. The appearance and disappearance of ferroelectricity, however, can also be an 

order-disorder type phase transition where the polarity of a single unit cell is maintained whereas the 

vanishing of ferroelectricity results from the disordered alignment of each polar unit cells [9]. The 

antiferroelectric phase [10] is an example. 

Monte Carlo simulations based on a first-principles Hamiltonian have suggested that the 

cubic-tetragonal transition in BaTiO3, which used to be thought of as displacive, may be better 

described as of the order-disorder type [11]. Quadrupole perturbed Ti NMR measurements [12] have 

shown that Ti atoms are disordered between several off-centre sites in the paraelectric phase near the 

Curie temperature, Tc, and order into well-defined positions below Tc, which confirms the presence of 

the order-disorder type in the ferroelectric-paraelectric phase transition of BaTiO3. 
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In the ferroelectric polymers PVDF and P(VDF-TrFE), X-ray diffraction measurements have 

confirmed that the ferroelectric-paraelectric phase transition at Tc is structural, similar to the 

displacive transition in ionic ferroelectrics, as nicely reviewed by Tashiro and Kobayashi [13]. During 

the transition, the unit cell changes from the polar  form, consisting of two all-trans chains, into the 

 form, consisting of two tg
+
tg

-
 chains with antiparallel moments, leading to a zero net polarity. It is 

recently suggested however, that at the  relaxation temperature, T ≈ 250 K for P(VDF-TrFE) (70/30 

mol. %), the PVDF unit cell undergoes an order-disorder transition from a disordered 3/1 helical 

conformation above T to an all-trans order below T [14]

In summary, the emergence of ferroelectricity requires both a polar structure of the unit cells and the 

ordered alignment of the unit cells. The ferroelectric-paraelectric transition in different materials, or in 

a same material but at different experimental conditions, can originate from either or hybrid 

mechanisms.  

 

Classic description of ferroelectrics 

Despite the intensive studies on the electronic structures at the microscopic level, the classic Clausius 

model [15] still provides the most widely used scenario of the macroscopic polarization. The 

macroscopic polarization, P, is regarded as the sum of individual dipoles, pi, within the volume V, 

which reads: 

V

p

P
i

i
                   (1.1.2) 

In the ferroelectric phase, the dipole moments, pi, are non-zero, and the dipoles are energetically 

favoured to align parallel at zero electric field, resulting in the spontaneous macroscopic polarization. 

The ferroelectric material as a thermodynamic system is characterized by the Helmholtz free energy, 

F, or Gibbs free energy, G, depending on the state parameters taken. The free energy expanded with 

the macroscopic polarization, P, known as the Landau-Devonshire theory [16] [17], is widely used for 

studying the ferroelectric-paraelectric phase transition and the polarization dynamics for instance at 

applied electric field and mechanical stress. Polarization switching described within the Landau phase 

transition framework shall be elaborated in Chapter 2.  

 

 

1.2 PVDF-based polymer ferroelectric thin films 

Since the 1970s, PVDF and P(VDF-TrFE) have been increasingly gaining interests from the 

ferroelectric community [18] [19]. Compared with their inorganic counterparts, these ferroelectric 

polymers possess special advantages such as easy processability, flexibility and low cost [20]. 

PVDF-based ferroelectric materials are compatible with low temperature flexible substrates enabling 

up-scaling by large-area solution processing. PVDF-based ferroelectric capacitors maintain a 

remanent polarization and coercive field constant upon bending with a radius of curvature down to 1 

cm, which makes them ideal candidates for flexible electronics or system-in-foil applications [21] 
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[22]. As an example, high performance non-volatile polymer memories on banknotes have recently 

been realized [23]. 

The polar units at different length scale in a PVDF thin film are schematically presented in Fig. 1.2.1. 

Below we shall discuss the structural features and the resulting polarity from the molecular level to 

the macroscopic scale. 

 

FIG. 1.2.1 Schematics of the relation between polarization and structural features of -PVDF from the 

molecular to the macroscopic device level. Figure adapted from Ref. [20]. (a) An all-trans chain consisting of 

-[CH2-CF2]- monomers. (b) A primitive unit cell of a -PVDF crystal. (c) The crystalline lamella and amorphous 

regions. (d) The grains and domains in a PVDF thin film.  

 

Monomeric 

The polymer chains consist of many elementary repeating units, termed as monomers. In PVDF, 

fluorine atom forms highly polar bonds with carbon, as -CF2-, yielding a dipole moment of 2 debye 

[20]. These highly polar monomers are the elementary dipolar units in our investigated system. 

 

Monomeric sequence and chain conformation 

At this level we are talking about the intra-chain structure. In an ideal PVDF chain, the monomeric 

units -CH2- (head) and -CF2- (tail) sequence alternates during polymerization forming the periodic 

head-to-tail configuration. However, this sequence can be broken by “inappropriately” inserted 

segments forming head-to-head and tail-to-tail defects [24]. These intra-chain defects cause the 

average dipole moment of the chain per monomeric unit to be reduced [20], and are an origin of 

nucleation sites in the process of both crystallization and polarization switching, c.f. Chapters 2,4 and 

6. 

In the melt or solution, polymer chains coil randomly. In the solid state, chains tend to crystallize into 

regular conformations. The most favorable torsional bond arrangements have substituents at 180° to 

each other, termed as trans, or at ± 60°, termed as gauche
±
; but actual torsion angles commonly 

deviate somewhat from these values. The all-trans conformation yields the highest polarity, which is 

perpendicular to the chain. A schematic of an all-trans chain is shown in Fig. 1.2.1 (a). 
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Chain packing 

The ability of molecules to adopt polar conformations is not sufficient to ensure polarity of their 

resulting crystals, as these molecules may be crystallographically packed in a lattice so as to cancel 

each other’s moment. An example is -PVDF, whose unit cell contains two tg
+
tg

-
 chains with 

antiparallel dipole moments leading to zero net polarity. This is the ground state for PVDF 

homopolymer [25]. The most polar phase of PVDF is the  phase, whose unit cell consisting of two 

all-trans chains are packed parallel, as schematically shown in Fig. 1.2.1 (b). In this type of packing, 

the fluorine and hydrogen atoms of neighbouring chains are approximately at the same level, which is 

energetically favoured and plays a major role in stabilizing the crystalline structure of -PVDF. The 

presence of TrFE in the copolymer P(VDF-TrFE) increases the crystallinity, and makes the  phase 

the most favoured phase [20].  

Typically, after solution processing, e.g. spin-coating, and thermal annealing, a thin film of 

P(VDF-TrFE) solidified on the substrate phase-separates into grains of polycrystalline and amorphous 

regions. The crystallinity is about 50 % [26]. Within the crystals, the chains are packed, forming the 

lamellae of -phase PVDF, as schematically shown in Fig. 1.2.2 (a). Within the amorphous regions, 

the chains are randomly coiled, with no contribution to the polarity, as schematically shown in Fig. 

1.2.1 (c,d). The topography of an annealed P(VDF-TrFE) thin film measured by scanning electron 

microscopy (SEM) is shown in Fig. 1.2.2 (b). The rice-like grains form the lamellae of the -phase 

PVDF. 

 

FIG. 1.2.2 (a) Lamellae of -PVDF after thermal annealing, adapted from Ref. [13]. (b) Scanning electron 

microscope (SEM) micrograph of a 500 nm-thick P(VDF-TrFE) film spin-coated on a quartz substrate. Prior to 

SEM measurement, the film has been annealed at 140 °C for 2 hours. 

 

Domains 

Now we are at the macroscopic level. In a partially polarized ferroelectric material, one can expect 

two scenarios: (i) the whole material is identically polarized to a value between the plus and minus 

saturated polarization values, or (ii) the polarization is spatial inhomogeneous. In P(VDF-TrFE) thin 

films, the situation (ii) is practically observed. A region sharing a same local polarization is referred to 

as a domain [9]. Domains are widely present in ferroelectric materials, including Langmuir-Blodgett 

PVDF ultrathin films, epitaxial oxide thin films, spin-coated P(VDF-TrFE) thin films and bulk 

ceramics.  

The morphology of the out-of-plane domains measured on a P(VDF-TrFE) film on a Au bottom 

electrode by piezoresponse force microscopy (PFM) is presented in Fig. 1.2.3 (b). The topography of 
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the same region is presented in Fig. 1.2.3 (a) as comparison. 

 

FIG. 1.2.3 Piezoresponse force microscope images. (a) Topography of a 500 nm-thick P(VDF-TrFE) film 

spin-coated on Au bottom electrode. (b) Out-of-plane piezoresponse phase image scanned in the same region as 

(a). 

 

It can be seen from Fig. 1.2.3 that the domains are not limited by the grain boundaries in the 

spin-coated P(VDF-TrFE) thin film. In Chapter 5, we shall specifically study the domain morphology 

with the PFM. When the polarization of different domains is added up over the whole material, the 

macroscopic polarization is obtained; the experimental verification of this relation is also presented in 

Chapter 5.  

 

 

1.3 Motivation of the thesis 

The remanent polarization at zero electric field and the capability of being switched between multiple 

stable states make ferroelectric materials good candidates for non-volatile memories. Practically, 

ferroelectric materials are commercially available and have been applied to ferroelectric 

random-access memories (FeRAM) for computers and radio frequency identification (RFID) cards 

[27]. 

For application in data storage, three factors are crucial: (i) a fast writing/reading speed, (ii) a reliable 

data retention, and (iii) a slow degradation during a large number of writing/reading cycles. These 

challenges have attracted a wide research interest from both industry and academia, since they are not 

only of practical interests but trigger intriguing fundamental questions related to the ferroelectric 

materials as well.  

It is the major scope of this thesis to study the polarization-related device physics motivated by the 

aforementioned practical requirements. We focus on thin films of the ferroelectric polymer 

poly-vinylidene-fluoride (PVDF) and its random copolymers with trifluoroethylene [P(VDF-TrFE)]. 

We shall show that the conclusions derived also apply to inorganic ferroelectric materials such as 

Pb(Zr,Ti)O3, and BaTiO3.  
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Polarization switching 

The polarization switching refers to the reversal of macroscopic polarization upon applied electric 

field. The understanding of the mechanism of polarization switching is crucial to improve the 

write/reading speed in ferroelectric-based memories.  

The theory of polarization switching was first developed by Devonshire [17] based on the framework 

of Landau mean-field phase transition [16], and later was incorporated with the consideration of 

spatial inhomogeneity by Ginzburg [28], now termed as the Landau-Ginzburg-Devonshire theory [1]. 

The essential of the LGD theory is that the polarization switching is a predetermined result of 

lowering the free energy of the system. The LGD theory elegantly characterized the coercivity and the 

hysteresis of ferroelectric materials during their polarization switching. The LGD deals with ideal 

perfect ferroelectric single crystals in which the polarization switching is termed as the intrinsic 

switching. Practical materials contain dipolar defects such as local misaligned polar cells, for which 

an unsolvable contradiction between theoretical and experimental values of the coercive field occurs. 

For example, the coercive field of P(VDF-TrFE) predicted by the LGD theory is in the order of 

magnitude of GV/m whereas that obtained experimentally is typically 50 MV/m.  

It has been well known nowadays that the polarization switching in practical ferroelectric devices is 

mediated by nucleation and growth of multidomains, termed as the extrinsic switching [29]. During 

this process, sporadic dipolar defects with polarity parallel to the applied field modify the energetic 

landscape, lowering the barrier for local dipolar reversal thus acting as nucleation centres for the 

growing switched regions (ferroelectric domains). In Chapter 2 we show with Monte-Carlo 

simulations that the presence of such defects significantly lowers the coercive field; within the 

framework of the LGD theory, introducing a reasonable percentage of such defects yields the values 

and their frequency dependence of the coercive field comparable to device-level results measured 

from ferroelectric capacitors.  

For applications, often it is the macroscopic polarization at the device level that matters. To this end, a 

statistical model for describing the growing ferroelectric domains is sufficient and elegant. The 

canonical statistical model for the extrinsic switching has been developed by Kolmogorov [30], 

Avrami [31] and Ishibashi [32] by the 1970s, now well known as the KAI model [29]. The beauty of 

the KAI model is that starting from simple and clear physical scenario it derives an explicit 

description of the reversed polarization as a function of elapsed time, and can quantitatively fit 

switching transients measured on a wide range of ferroelectric materials. Despite the simple physical 

scenario and the usually successful fit to measured switching transients, the quantitative explanation 

of the model parameters, i.e. the switching time and the Avrami index, is still a non-trivial issue. It is 

especially elusive that the Avrami indices, which should equal to the dimensionality of the 

ferroelectric system according to conventional KAI model, are often found non-integers. Furthermore, 

several non-KAI models have been increasingly proposed, especially for disordered and nanoscale 

ferroelectric systems [33] [34] [35] [36]. Such a debate has triggered our study on the switching 

dynamics in disordered polymer ferroelectric thin films. Our discussion on the switching dynamics is 

elaborated in Chapter 4.  

Viewed from another aspect, the growth of ferroelectric domains is often taken as the motion of the 

domain walls which separate different domains [37]. Such a motion of the domain walls among 

defects is categorized into the creep type [38] which has a generic form in diverse elastic systems. The 
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depinning force in the creep formula is a key parameter. A possible origin of the depinning force in 

disordered ferroelectric systems is unexpectedly implied from our measurements. We discuss this part 

in Chapter 6. 

 

Local probing of ferroelectric domain walls 

To gain in-depth understanding of the polarization-related device physics of ferroelectric materials, a 

direct visualization of ferroelectric domains is of great help. The piezoresponse force microscopy 

(PFM), which is based on monitoring piezoelectric surface deformation induced by the electrically 

biased probing tip, has proven to be one of the most powerful tools in visualization and manipulation 

of ferroelectric domains. The PFM technique was first developed in 1992 by Guethner and Dransfeld 

[39] to detect polarized regions in thin films of the ferroelectric random copolymer 

poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)]. Since then the PFM technique has been 

adapted for experiments such as sub-micron study of static domain morphology [40] [41], polarization 

switching [42] [43], domain-wall motion [38], non-linear dynamics of domains [44] and domain 

manipulation [38] [45] in a wide variety of ferroelectric materials.  

In the PFM measurements, a ferroelectric sample is poled and measured by a PFM tip which contacts 

the top surface of the sample and can be electrically biased. In terms of poling, or in other words, 

exciting, the sample, there are two main methods in PFM [46]: local or global excitation. In the local 

excitation method, there is no top electrode; the ferroelectric material is poled by the biased PFM tip, 

which scans the bare top surface of the sample. In the global excitation method, the ferroelectric 

material is poled in a capacitor using the top electrode, through which the domains are imaged by 

PFM.  

The local excitation method allows in situ investigation of fine structures of domains [40] [41] and 

field-induced domain-wall motion [38] with high resolution. The drawback, however, is that the 

electric field generated by the PFM tip is inhomogeneous, which hampers quantitative analysis of the 

field-induced signal [46]. Moreover, the spot under the PFM tip acts as an artificial nucleation site. 

Due to the high local electric field, the tip actively drives the nucleation and domain growth process 

[45], which significantly differs from the scenario of stochastic nucleation and multi-domain growth 

during macroscopic polarization switching in a homogeneous electric field [29]. 

On the other hand, in the global excitation method, due to the presence of the top electrode, the 

sample is exposed to a homogeneous electric field. By using this method, the growth of domains 

could successfully be correlated to polarization switching transients [42] [43], verifying the statistical 

theory of multi-domain growth proposed by Kolmogorov, Avrami and Ishibashi [30] [31] [32]. 

Remarkably, the global excitation method allows one to quantitatively bridge the microscopic 

domains with the electrically measured macroscopic polarization. However, the major drawback of 

the global excitation method is that the resolution is limited due to the presence of the top electrode 

[47] [48]. 

We note that an alternative PFM method is to investigate in-plane capacitors, where both electrodes 

are in a common plane with the ferroelectric material on the substrate [49] [50]. The ferroelectric 

material is poled via the in-plane electrodes and probed by the PFM tip above the sample. This 

method generates a homogeneous electric field inside the ferroelectric material without sacrificing the 
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intensity and resolution of the piezoresponse signal. However, unlike the top-view images by 

conventional PFM measurements, with planar capacitors one visualizes the lateral growth of the 

domains from side view. In that way, the lateral growth of domains is restricted to one dimension, 

along the parallel electrodes; this geometry may lead to different polarization switching mechanism 

from that in commonly used ferroelectric devices with a vertical structure. 

Our goal is to simultaneously achieve high resolution and a homogeneous poling electric field 

distribution, and meanwhile keep the vertical structure of the ferroelectric device such that the lateral 

growth is not restricted. To this end, we have developed a measurement technique, called global 

excitation and local probing method. In Chapter 5, this technique will be elaborated. 

 

Polarization fatigue 

The fatigue, i.e. the reduction of the remanent polarization upon poling cycles, is vital to the 

application of ferroelectric devices.  

The fatigue of inorganic ferroelectric thin films has been intensively investigated, as reviewed by Refs. 

[51] [52]. It has been reported that the fatigue of PZT capacitors could be due to local phase 

decomposition [53] [21]: under electrical bipolar stress the ferroelectric PZT perovskite phase is 

transformed into the paraelectric pyrochlore phase, which has been confirmed by Micro Raman 

measurements. Upon annealing the fatigued capacitor in oxygen ambient, the original ferroelectric 

perovskite PZT phase was completely restored. Therefore, it was concluded that fatigue is a generic 

problem of inorganic ferroelectric materials. The origin was argued to be the formation of oxygen 

vacancies causing a local, uncompensated high depolarization field.        

Contrary to inorganic ferroelectrics, reports on fatigue of organic ferroelectrics are limited. The most 

studied organic ferroelectric materials are PVDF and its random copolymer with trifluoroethylene, 

P(VDF-TrFE). Fatigue in organic ferroelectric capacitors is a major problem as the spontaneous 

polarization is typically halved already after less than 10
6
 cycles [52]. Fatigue depends on 

experimental parameters such as temperature, the type of electrodes and the frequency and amplitude 

of the applied waveform [54] [55] [56]. It has been reported for P(VDF-TrFE) that fatigue increases 

with increasing driving voltage and decreasing frequency. Bipolar driving leads to polarization fatigue, 

while unipolar switching does not. Application of polymer electrodes, such as 

poly(3,4-ethylenedioxythiophene) stabilized with polystyrene sulfonic acid (PEDOT:PSS), has been 

shown of improving the programming cycle endurance [23]. Evidences imply that fatigue also depend 

on the degree of crystallinity [57]. 

Fatigue in organic ferroelectric materials has been ascribed to charge trapping: injected charges get 

trapped at crystalline boundaries and defects, thereby pinning the domain walls and reducing the 

polarization [55]. Increasing the crystallinity concomitantly reduces the number of defects and grain 

boundaries, resulting in increased reliability. The use of poorly conducting polymer electrodes, or the 

introduction of an interfacial blocking layer, diminishes charge injection and, hence, fatigue [58]. 

However, apart from the intrinsic mechanisms, e.g. charge trapping, fatigue can have an extrinsic 

origin, such as delamination of the top electrode. A few reports [22] [59] mention this delamination 

and suggest a temperature rise due to the heat dissipation upon continuous cycling as the origin [22]. 
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Strangely, the reported endurance of the P(VDF-TrFE) capacitors, which suffer the delamination of 

the top electrodes, is similar to that of the samples whose fatigue mechanism was argued to be 

intrinsic in other literatures. This implies that the endurance of commonly used PVDF-based polymer 

ferroelectric materials should be hampered by extrinsic reasons rather than by the intrinsic endurance 

of the ferroelectric polymers themselves. To clarify the real bottle-neck of the endurance of 

PVDF-based ferroelectric capacitors, we have systematically investigated the fatigue of P(VDF-TrFE) 

thin-film capacitors. The detailed experiments and interpretation are described in Chapter 7. 

 

 

1.4 Outline of the thesis 

This thesis is focused on the device physics related to the ferroelectric polarization in P(VDF-TrFE) 

thin films. Our investigation is based on macroscopic electrical measurements and nanoscale scanning 

probe measurements. Modeling at mesoscopic level is involved. The main text of the thesis is 

organized as following. 

Polarization switching within the framework of the Landau-Ginzburg-Devonshire theory is discussed 

in Chapter 2 where we apply the Metropolis algorithm to simulate the evolution of ferroelectric 

domains. The polarization and strain as function of the electric field is simultaneously obtained.  

The experimental details on device fabrication and measurements are described in Chapter 3. 

In Chapter 4, the switching dynamics in disordered ferroelectric thin films is discussed. Transients of 

the polarization switching are systematically investigated at various electric fields and temperature. 

The transients are quantitatively interpreted. Using a random walk model we demonstrate that the 

observed switching dynamics can be attributed to a domain growth mechanism where domains are 

circular at low electric field with few nucleation sites, whereas at high field irregular entangled 

domains are formed.  

We elaborate on the piezoresponse force microscopy investigation of ferroelectric domains in 

Chapter 5. By chemical etching of the top electrode of the ferroelectric capacitor, we are able to 

locally probe the bare surface of the pre-poled ferroelectric material. With this method, we 

systematically study the ferroelectric domains generated during polarization switching. We show for 

the first time an explicit correlation between the mean value of the out-of-plane piezoresponse phase 

and the macroscopic polarization. Reliability of the measurements has been demonstrated by 

comparing the remanent polarization measured before etching away and after re-evaporating the top 

electrode. The underlying origin for the retention of domains in bare ferroelectric thin films is 

discussed. The morphology of domains discussed in Chapter 4 is directly visualized and presented in 

Chapter 5.  

Depolarization in ferroelectric materials, an important data-loss process in memories, has been studied 

in pioneering works since the 1970s, albeit under quasi-static conditions. To study the dynamics of 

depolarization one resorts to the empirical Merz law, which gives the polarization switching time as a 

function of electric field, normalized to the so-called activation field. The Merz law has been used for 

decades; its origin as domain-wall depinning has recently been corroborated by first-principles-based 

molecular dynamics simulations. In Chapter 6, we experimentally investigate domain-wall depinning 
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by measuring the dynamics of depolarization in ferroelectric thin films. We find that the boundary 

between thermodynamically stable and depolarizing regimes can be described by a single constant, 

Psat0ferroEc. Among different multidomain ferroelectric materials the values of coercive field, 

dielectric constant and polarization vary by orders of magnitude; the value for PsatferroEc however 

is comparable, implying a relation between activation-, depolarization- and intrinsic coercive field. 

We propose that the causality naturally holds, when domain-wall depinning originates from collective 

switching of polarized regions near pinning sites. 

The polarization of the ferroelectric polymer P(VDF-TrFE) decreases upon prolonged cycling. 

Understanding of this fatigue behavior is of great technological importance for the implementation of 

P(VDF-TrFE) in random-access memories. In Chapter 7 we study the fatigue in thin-film capacitors 

by systematically varying the frequency and amplitude of the driving waveform. We show that the 

fatigue is due to delamination of the top electrode. The origin is accumulation of gases, expelled from 

the capacitor, under the impermeable top electrode. The gases are formed by electron-induced phase 

decomposition of P(VDF-TrFE), similar as reported for inorganic ferroelectric materials. When the 

gas barrier is removed and the waveform is adapted, a fatigue-free ferroelectric capacitor based on 

P(VDF-TrFE) is realized. The capacitor can be cycled for more than 10
8
 times without a sign of 

fatigue, approaching the programming cycle endurance of its inorganic ferroelectric counterparts. 

Chapter 8 is a brief review on recent focus on the in-plane polarization. The in-plane component of 

polarization is attracting more and more interest as these studies reveal novel phenomena such as local 

insulator-metal transitions and topological phase transitions. Two topics are specifically chosen, which 

are charged domain walls and in-plane vortices. The understanding of the vortices may enable 

utilizing the new dimension, i.e. the in-plane component, of the polarization for novel non-volatile 

memory devices where the density of information storage is greatly enhanced.   
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Chapter 2 Theory of polarization switching 

 

 

We have conducted Monte-Carlo simulations based on the Landau-Ginzburg-Devonshire theory. It is 

found that even in defect-free samples, polarization switching is not collective, but mediated with the 

formation and growth of domains; the extracted coercive field, however, is comparable with the 

intrinsic coercive field as derived from Landau theory for collective switching. Subsequently, 

disordered pinning sites are incorporated into the simulation. It is observed that the pinning sites act as 

nucleation centers during polarization switching. The presence of the disordered pinning sites 

significantly lowers the coercive field, turning the switching mechanism from intrinsic to extrinsic. By 

presuming a linear relation between the tentative flipping waiting time in the MC simulation with the 

realistic time, we have simulated the time-resolved domain configurations and polarization states. The 

hysteresis loops of the polarization and strain vs. electric field are simulated. The characteristics and 

their frequency dependence are in good agreement with experimental data.  
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2.1 Intrinsic and extrinsic switching 

Polarization switching refers to the reversal of the macroscopic polarization under for instance applied 

electric field or mechanical stress. The microscopic origin of polarization switching is the 

reorientation of the dipoles which are either the polar ions in a ferroelectric ionic crystal or the polar 

monomers in a ferroelectric polymer. A polarization state with lower energy of the system is 

energetically more favoured. When an electric field against the polarization direction is applied, the 

dipoles tend to reorient to lower the free energy. Macroscopically this leads to polarization switching 

from an energetically instable (metastable) state to an energetically stable state.  

Devonshire first introduced the Landau mean-field phase transition theory to ferroelectrics, known as 

the Landau-Devonshire (LD) theory [17] [16]. According to the LD theory, the free energy of the 

ferroelectric system is a single valued function of the mean polarization over the material. In this 

scenario, all the dipoles flip upon applied electric field collectively without spatial inhomogeneity. 

Later, the spatial gradient of the polarization is incorporated into the free energy, known as the 

Ginzburg term [28] and the developed theory is referred to as the Landau-Ginzburg-Devonshire (LGD) 

theory. The essential of the LGD theory is that the spatial inhomogeneity of the polarization is taken 

into account, hence the polarization is a function of position and the free energy is a functional of the 

spatial variant polarization and its gradient. Specifically, the extra Ginzburg term is the energetic 

penalty for spatial inhomogeneity. 

The LD and the LGD theory elegantly characterize the coercivity and hysteresis of ferroelectric 

materials during polarization reversal. The polarization switching mechanism described by the LD or 

the LGD is commonly termed as the intrinsic switching. In intrinsic switching, macroscopic 

polarization reversal is hindered by a large energy barrier which can hardly be overcome by thermal 

fluctuations. The experimentally obtained coercive field, however, is typically an order of magnitude 

lower than that predicted by the LD or the LGD theory. For example, the coercive field of 

P(VDF-TrFE) predicted by the LD and LGD theory is in the order of magnitude of GV/m whereas 

that obtained experimentally is typically 50 MV/m. 

Intrinsic switching is expected only in defect-free homogeneous ferroelectric single crystals. Practical 

ferroelectric materials contain disordered pinning sites which are sporadic spots with a polarization 

orientation opposite to the macroscopic polarization. When an electric field against the macroscopic 

polarization and higher than the coercive field is applied, these pinning sites tend to flip their 

neighbouring sites via Coulomb interaction and mechanical strain. Hence these pinning sites act as 

nucleation centers. The presence of the nuclei greatly lowers the energy barrier to the extent that can 

be overcome by thermal fluctuations; such a thermal activated process is termed as extrinsic switching. 

In extrinsic switching, the coercive field strongly depends on the temperature, and is typically much 

lower than the intrinsic coercive field. 

In this Chapter, we conduct Monte-Carlo (MC) simulations based on the LGD theory. With the LGD 

coefficients, we determine the free energy as a function of the spatial variant polarization. The 

evolution of the domains is simulated via minimizing the free energy. Disordered pinning sites are 

incorporated into the simulation. By assuming a linear relation between the tentative flipping waiting 

time in the MC simulation with the realistic time, we have simulated the time-resolved domain 

configurations and polarization states. The hysteresis loops of the polarization- and strain vs. the 

electric field are simulated. The characteristics and their frequency dependence are in good agreement 
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with experimental data. 

 

 

2.2 Landau-Ginzburg-Devonshire theory 

Based on the mean-field phase transition theory of Landau, Devonshire developed the free-energy 

description of a ferroelectric system, which is now referred to as the Landau-Devonshire theory. In a 

homogeneous ferroelectric material, the macroscopic polarization, P, is chosen as the order parameter, 

with which the free energy is expanded as: 

  EPPPPPF 
642

6

1

4

1

2

1
              (2.2.1) 

where ,  and  are Landau coefficients, and E is the electric field within the ferroelectric material. 

The last term in the right hand side of Eq. (2.2.1) implies that the electric field tends to align the 

polarization parallel to the field to lower the free energy. The stability of the ferroelectric system 

requires the (local) minimization of the free energy, which reads: 

0
δ

δ

0
δ

δ

2

2





P

F

P

F

                  (2.2.2) 

The solution to Eq. (2.2.1) and Eq. (2.2.2) yields an explicit relation between the polarization, P, and 

the electric field, E. The calculated relation for P(VDF-TrFE), using the reported values for Landau 

coefficients [60] [61], is presented in Fig. 2.2.1 as the blue curve. The region between a and b is 

instable. At the position a, further increase of the electric field leads to macroscopic polarization 

reversal from a to a’ as indicated by the black arrow, and so is the case from b to b’; the positions a 

and b correspond to the coercive field.  

 

FIG. 2.2.1 The P-E relation for P(VDF-TrFE) calculated using Landau-Devonshire theory. The Landau 

coefficients are taken from Ref. [61]. 
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The coercive field obtained here is about 0.5 GV/m, which is an order of magnitude higher than the 

experimentally obtained value. We notice however, that different values for the Landau coefficients 

are also reported [62], which leads to a coercive field of about 1.5 GV/m.  

Ginzburg took the spatial inhomogeneity of the order parameter and the energy expense in forming 

domain walls into account. Later, other contributions such as the coupling between polarization and 

mechanical stress and the dipole-dipole interaction were incorporated into the free energy. Generally, 

the full-termed free energy reads [63]: 
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              (2.2.3)  

where the terms on the right-hand side refer to Landau-Devonshire energy, electrostatic energy, 

Ginzburg gradient energy, elastic energy, electrostrictive energy and dipole-dipole energy, 

respectively. 

We consider the out-of-plane domains. The order parameter is the normal component of polarization, 

P3. The mean-field Landau-Devonshire energy, fL, is formulated as an expansion to P3, to sixth order, 

which reads: 
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Here, P3 denotes the z-component of polarization.  and T0 are phenomenological parameters, 

and their values have been determined by molecular-dynamics simulations [62] or experiments on 

Langmuir-Blodgett P(VDF-TrFE) ultrathin films [61]. 

fE is the electrostatic energy when the ferroelectric material is exposed to an electric field, E, which 

reads: 
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where 0 is the vacuum permittivity and r is the dielectric constant of the ferroelectric material. 

The Ginzburg term, fG, describes the energy expense caused by domain walls where there are 

polarization gradients. As we only consider the polarization normal to the film, in the free energy only 

the terms with ∂P3 are included. In ferroelectric thin films, it is a reasonable simplification to 

disregard the gradient perpendicular to the film, i.e. ∂P3/∂z is regarded as zero. Hence the Ginzburg 

term can be expressed as: 
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where K1 and K2 are gradient coefficients related to the energy expense in creating polarization 

gradients in the transverse direction and along the chain respectively.  

As an elastic medium, the ferroelectric material stores the elastic energy, fel, when there is elastic 

displacement. Here only the elastic displacement normal to the film is considered. In addition, we 
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ignore the shear stress. With these simplifications, we write the elastic energy as: 
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where c33 is the elastic constant and u3 is the strain normal to the film. 

fes is the electrostrictive energy. Similar as dealing with the elastic energy, here we only consider the 

z-component of the response to the z-component of input. The electrostrictive term then reads: 
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where Q33 is the electrostrictive coupling coefficient.  

fdip is the energy corresponding to the dipole-dipole interaction. Due to this term, the ferroelectric 

system favours head-to-tail dipole alignment. In our current work, in-plane polarization is not taken 

into account, and the polarization normal to the film is regarded as identical. The energetic difference 

caused by dipole-dipole interaction then is orders-of-magnitude less than that caused by the previous 

terms. For computing convention, we let fdip ≡ 0. 

With the full-termed free energy, the remaining task is to find its minima at a given electric field. The 

free energy now is no longer a single valued function of the polarization, but a function of the 

spatial-variant polarization which is separated in to different domains. The evolution of the domains, 

equivalent to the evolution of the spatial distribution of polarization, P(r), is typically described by the 

Landau-Khalatnikov equation [61], also referred to as the time-dependent Ginzburg-Landau (TDGL) 

equation [62] [64]: 
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where Pi denotes the i-th component of the polarization, L is a kinetic coefficient, and  is a is a 

random thermal noise function [62] [63].   

An alternative approach in simulating polarization reversal is Monte-Carlo simulation using the 

Metropolis algorithm. The physical scenario is straightforward. Since the evolution of polarization 

and free energy is facilitated by thermal fluctuations of the local order parameter, one can directly 

model the variation of the local order parameter, P(r), instead of solving Eq. (2.2.9). Whether the 

variation is energetically favored is judged by its impact on the corresponding change of free energy, 

according to Boltzmann statistics: variations which lower the free energy have a higher probability to 

be accepted. With statistically large number of local variations, the domains evolve towards the 

configuration of minimum free energy. This approach has been successfully applied to study the 

domain pattern of BaTiO3 films evolving from the paraelectric phase to the ferroelectric phase at zero 

field [65] and has been applied to study the zero-field domains in restricted systems in equilibrium 

[66]. A recent work applied this MC method to study the electrocaloric effect in BaTiO3 thin films 

[67].  

We note that all these aforementioned studies are on inorganic ferroelectric materials, and defects are 

seldom taken into account. Below we elaborate our Monte-Carlo simulation for P(VDF-TrFE) 
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ferroelectric thin films. We also take disordered pinning sites into account.  

 

 

2.3 Monte-Carlo simulation  

The Monte-Carlo simulation is performed on a 2D N × N square lattice with periodic boundary 

conditions. Each lattice site represents a 1 nm × 1 nm region. On the lattice site r, the local 

polarization in z-direction is denoted as P3(r). Note that P3(r) is the mean polarization within the 

corresponding 1 nm × 1 nm region, and takes values continuously ranging from –Ps to +Ps, where Ps 

is the spontaneous polarization. The strain at the site r is denoted as u3(r). The simulation proceeds as 

follows. In each simulation cycle, a fluctuation is generated at a randomly chosen site. The 

strain/polarization at the site is randomly varied. Consequently, the free energy F is recalculated and 

compared with the value before the tentative variation to obtain the difference ΔF. The variation is 

accepted with the probability p: 
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In each simulation cycle, we update the values of P3 and u3 at a randomly chosen site by the standard 

Metropolis procedure for the relaxation of electric dipole and elastic strain in the lattice [66], and the 

macroscopic polarization and strain are the averaged values of local polarization, P3, and local strain, 

u3, over the whole film, denoted as P and u, respectively. Here, a reasonable assumption is that the 

response time of elastic strain is far shorter than that for dipole relaxation, such that when a new 

dipole moment is given, the mechanical equilibrium is instantly established [68] [69]. In our present 

simulation, we give ten times more chances to the strain relaxation, given one time for the dipole to 

relax so that the local mechanical equilibrium conditions can be satisfied. The number of simulation 

cycles scales with the dimension of the lattice system. We normalize it to the number of lattice, N × N, 

defined as a single Monte-Carlo Step (mcs). 1 mcs means each lattice site have undergone a tentative 

flipping on average; its reciprocal value has the meaning of the generation rate of thermal 

perturbations to the dipoles.  

Here, we have chosen N = 100, corresponding to a region of 100 nm × 100 nm. For each simulation, 

we let the system first evolve at zero-field for 10
5
 mcs to reach equilibrium. Afterwards, a sinusoidal 

waveform of electric field is applied. Spatial distribution of polarization and strain is recorded in each 

mcs. The macroscopic polarization and strain is the average over lattice sites. The parameters used for 

simulation are listed in Table 2.3.1. 

 

 

 



- 19 - 
 

TABLE 2.3.1 The parameters used for P(VDF-TrFE). 
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2.4 Effects of disordered pinning sites 

The simulated P-E hysteresis loop subject to a sinusoidal electric field with an amplitude of 1.5 GV/m 

and a period of 1.7 × 10
7
 mcs is presented in Fig. 2.4.1. This ramping frequency is chosen such that 

the P-E loop is simulated in a quasi-static. The simulated loop is presented with red curve in Fig. 2.3.1 

(a) in which Fig. 2.2.1 is replotted in blue curve as a comparison. The remanent polarization, Pr, is 10 

µC/cm
2
. The coercive field is about 0.5 GV/m. Fig. 2.4.1 (b) is a snapshot of domain morphology at P 

≈ 0.7Pr. Spatial inhomogeneity of polarization can be seen, indicating that the polarization reversal 

is meditated by nucleation and growth of domains, a result of thermal fluctuations, in agreement with 

the observation in Ref. [62]. The spatial variation of the local polarization, though, is smooth, without 

sharp domain walls, in agreement with the TDGL simulations reported in Ref. [62]. For comparison, 

the P-E relation derived from the mean-field Landau-Devonshire theory, in which the physical 

scenario is the collective switching without nucleation and the formation of domains [72], is plotted 

with red curve in Fig. 2.4.1 (a). We find that inhomogeneous switching yields a similar coercive field 

as that for the collective switching. The P-E relation is also similar except for the instable region. 

Therefore, a defect-free ferroelectric thin film is expected to exhibit the properties of intrinsic 

switching, regardless if polarization switching is nucleation-meditated or collective.  

 

FIG. 2.4.1 P-E hysteresis loop and domains formation for P(VDF-TrFE) thin films. (a) The blue curve is 

analytically calculated using Landau-Devonshire theory where the polarization is the z-component of P3 

averaged over the whole film. The red curve is obtained by the Monte-Carlo simulation with the full-termed free 

energy, c.f. Eq. (2.2.3). (b) The distribution of polarization in a 50 nm × 50 nm region, snapshotted at a 

macroscopic polarization of about 0.7Pr.  
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Commonly used ferroelectric materials are polycrystalline thin films or ceramics that are by nature 

not defect-free [73] [35] [74]. There is energetic and spatial disorder due to, for instance, misfit 

dislocations [75] [76], defects in conformation and molecular packing of macromolecular chains [34], 

and grain boundaries [77] [78]. The presence of these defects lowers the barrier for polarization 

reversal. The macroscopic polarization switching in ferroelectric materials with defects involves 

anisotropic growth of individual domains, termed as extrinsic switching [29]. Here we simulate a 

P(VDF-TrFE) thin film with defects. We specifically investigate the effects of the pinning sites, i.e. 

the sporadic small regions with fixed polarity which cannot be switched by an applied electric field. 

To maintain a metastable polarization within these regions, a typical dimension as several nanometers 

is calculated, termed as the size of critical nuclei [79]. Pinning sites with a smaller dimension generate 

and annihilate in dynamic equilibrium, with net contribution to the macroscopic polarization. Here, a 

critical nucleus is modeled as one site with fixed polarity corresponding to a 1 nm × 1 nm region. We 

assume that the percentage of pinning sites with opposite polarity is equal. The presence of the 

pinning sites lowers the value of the remanent polarization; in an extreme case when all sites are 

pinned, i.e. 50 % are up and 50 % are down, the remanent polarization is zero. We have found that a 

density of 1.7 % yields a remanent polarization of 8 µC/cm
2
, which is roughly the experimentally 

measured value. 

With 1.7 % disordered pinned sites (half up and half down) introduced, we have studied the P-E 

hysteresis loop at various periods of the sinusoidal electric field counted in Monte-Carlo Steps (mcs). 

The derived coercive field against the period of the electric field is presented in the inset of Fig. 2.4.2. 

The coercive field decreases with increasing value of the period counted in mcs. With the 

frequency-dependence of coercive field known from experiments, we can correlate the Monte-Carlo 

Step, mcs, with the elapsed time, t, assuming: 

Rtmcs                    (2.4.1) 

where R is a constant, the rate of the tentative flipping in the Monte-Carlo simulation, or the  

generation rate of the thermal perturbations in the scenario of thermally activated dipolar flipping. 

When R = 10
10

, we find good agreement between the simulated results and the measured results in the 

frequency dependence of the coercive field, as presented in Fig. 2.4.2. We notice that the tentative 

flipping, or generation rate of perturbations, could relate to the phonon modes as discussed in Ref. [80] 

where a frequency of 10
12

 has been taken. 
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FIG. 2.4.2 Frequency dependence of the coercive field. The solid symbols are experimentally measured. The 

hollow symbols are obtained from the Monte-Carlo simulation and the frequency is derived as R/mcs, c.f. Eq. 

(2.4.1). The inset shows the dependence of the simulated coercive field on Monte-Carlo Steps (mcs). 

 

With Eq. (2.4.1) and R = 10
10

, we have then correlated our simulated results counted in mcs with the 

results measured as a function of frequency. The P-E loop and the strain, S, vs. the electric field, the 

S-E loop simulated for a 100 nm × 100 nm P(VDF-TrFE) thin film are presented in Fig. 2.4.3 (a) and 

Fig. 2.4.3 (b) respectively. The ramping electric field has a sinusoidal waveform with amplitude of 

300 MV/m and frequency of 0.5 kHz. Our simulation yields a coercive field of about 90 MV/m at 0.5 

kHz, in good agreement with experimentally obtained value. The piezoelectric coefficient, d33, 

extracted from simulated S-E loops yields about -5 pC/N. We note that this d33 counts only the 

contribution from the crystalline part. In reality, the coupling between the crystalline part and the 

amorphous part also contributes to the piezoelectric coefficient, which leads the value of d33 extracted 

from measurements to be about -30 pC/N [4]. 

The domain morphology and the distribution of the strain are simultaneously obtained. The domains 

and the local strain at three intermediate states are presented in Figs. 2.4.3 (c,e,g), (d,f,h), respectively. 

The least deformed regions (strain being zero) contour the domain wall. Note that the local 

polarization at one site is the value averaged over the 1 nm × 1 nm region.  
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FIG. 2.4.3 Simulated results for a 100 nm × 100 nm P(VDF-TrFE) thin film with 1.7 % pinning sites. The 

frequency of the ramping electric field is 0.5 kHz. (a) The simulated P-E field loop, from which the coercive 

field reads about 90 MV/m. (b) The simulated S-E loop, from which the piezoelectric coefficient, d33, is 

extracted as -5 pC/N. (c, e, g) The domain patterns at three intermediated polarization states. (d,f,h) The spatial 

distribution of strain at the intermediate polarization states corresponding to (c,e,g) respectively. 
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From the simulation it is clear that the pinning sites keep the dipoles in their vicinity parallel to their 

own polarity. The presence of pinning sites leads to strong spatial inhomogeneity; domains with 

opposite polarity can be clearly seen. The domains are highly irregular and entangled, which agrees 

with the morphology of the out-of-plane domains measured with piezoresponse force microscopy. 

 

 

2.5 Summary 

In this Chapter, we have studied the polarization switching in ferroelectric thin films based on the 

Landau-Ginzburg-Devonshire theory. A full-termed free energy is used, consisting of e.g. the 

Landau-Ginzburg term, the electrostriction energy and elastic energy. We have conducted the 

Monte-Carlo simulation using Metropolis algorithm where the tentative flipping is correlated with 

thermal perturbations. Due to thermal perturbations, even in defect-free samples, polarization 

switching is not collective, but mediated with the formation and growth of domains. Nevertheless, in 

defect-free ferroelectric thin films, the spatial inhomogeneity of the polarization is relatively small, 

and the extracted coercive field is comparable with the intrinsic coercive field derived from Landau 

theory for collective switching. Subsequently, disordered pinning sites are incorporated into the 

simulation. It is observed that the pinning sites act as nucleation centers during polarization reversal. 

The presence of the disordered pinning sites significantly lowers the coercive field, turning the 

switching mechanism from intrinsic to extrinsic. By assuming a linear relation between the tentative 

flipping waiting time in the MC simulation with the real time, we have simulated the time-resolved 

domain configurations and polarization states. The hysteresis loops of the polarization- and strain vs. 

the electric field are simulated. The characteristics and their frequency dependence are in good 

agreement with experimental data.  
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Chapter 3 Device fabrication and characterization 

 

 

In this Chapter, we elaborate the details of the experiments conducted in this thesis, such as the device 

fabrication, electrical characterization and scanning probe microscopy methods. Electrical 

measurements based on the Sawyer-Tower circuit are the main technique used in this thesis. The 

measurements yield explicit values of the electric displacement a function of applied electric field, 

both quasi-statically and dynamically. To investigate depolarization, a linear capacitor with various 

values of capacitance in series with the ferroelectric capacitor is used to tune the compensation of the 

depolarization field in the ferroelectric material. The piezoresponse force microscopy is used to 

visualize the ferroelectric domains. Details about other auxiliary characterization techniques are 

described as well. 
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3.1 Spin-coated P(VDF-TrFE) thin films 

Capacitors were fabricated on thermally oxidized silicon monitor wafers on which 50 nm thick Au 

bottom electrodes on a 2 nm Ti adhesion layer were photolithographically defined. Thin P(VDF-TrFE) 

films were spincoated at 2000 rpm from a 5 wt% solution in methylethylketone. The thickness, as 

measured with a DEKTAK surface profilometer, amounted to about 500 nm. To enhance the 

crystallinity and hence the ferroelectric properties, the samples were subsequently annealed in vacuum 

at 140 °C for 2 hours. A Au top electrode was evaporated through a shadow mask. The device area 

varied from 0.059 mm
2
 to 1.38 mm

2
. A photograph of the finished capacitor array and a schematic 

representation of the comprising capacitors’ layout are presented in Fig. 3.1.1.   

 

FIG. 3.1.1 A photograph of the finished capacitor array. The layout consists of discrete photolithographically 

defined Ti/Au bottom contacts with evaporated common Au top electrodes. The device area varies from 0.059 

mm
2
 to 1.38 mm

2
. A schematic representation of the comprising capacitors’ layout and the chemical structure of 

P(VDF-TrFE) are indicated. The thickness of the ferroelectric layer is about 500 nm. 

  

 

3.2 Electrical measurements 

Sawyor-Tower circuit 

The electrical properties of ferroelectric capacitors are characterized by the Sawyer-Tower setup 

consisting of a Tektronix AFG3102 function generator, a LeCroy waverunner LT372 oscilloscope, a 

Krohn-Hite 7602M wide-band amplifier and a reference capacitor. The schematic of the 

Sawyer-Tower circuit is presented in Fig. 3.2.1.  

 

FIG. 3.2.1 A schematic of the Sawyer-Tower circuit. 
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A voltage is applied to the ferroelectric capacitor, CFE, and the reference capacitor, Cref, by the 

function generator through the amplifier, and is recorded through the first channel of the oscilloscope, 

denoted as U1. The voltage on the reference capacitor is measured through a second channel of the 

oscilloscope, denoted as U2. The polarization of the ferroelectric thin film is compensated by free 

charges at the electrodes. According to the Maxwell equation at the boundary of the ferroelectric 

material and the electrode, the density of free charges at the electrode is equal to the electric 

displacement, D, of the ferroelectric material. Therefore, at electrostatic equilibrium, the equations for 

the electric field and the electric displacement of the ferroelectric film as: 

  dUdUUE
FE 121

                (3.2.1) 

2
UCD

refFE
                   (3.2.2) 

where d is the thickness of the ferroelectric capacitor. The reference capacitor is chosen such that U2 is 

negligible compared with U1 and, therefore, can be omitted in Eq. (3.2.1). The ferroelectric 

polarization, with the induced polarization excluded, of the ferroelectric thin film reads: 

EDP
FE


0

                  (3.2.3) 

where FE is the linear dielectric constant of the ferroelectric material, which is typically 3500 and 12 

for PZT507 ceramics and P(VDF-TrFE) polycrystalline thin films respectively. Specifically, when E = 

0, P = D strictly holds, where the polarization is called remanent polarization. Generally, P ≈ D is a 

sufficiently good approximation. It is experimentally straightforward to measure D whereas P is 

convenient for discussion. In this thesis, except for conceptual description, we shall not emphasize the 

difference between P and D. 

The characteristic D-E loop is measured by applying an alternating (AC) voltage. To eliminate the 

time during which the voltage amplitude is high, we choose a triangular waveform instead. The 

characteristic switching time of P(VDF-TrFE) is in the order milliseconds, and seconds for PZT 

ceramics. To quasi-statically measure the D-E loop, the applied AC voltage should have a frequency 

not higher than the reciprocal switching time. On the other hand, the reference capacitor discharges 

through the oscilloscope (impedance of 1 M). For a reference capacitor of 680 nF, for example, the 

time constant for discharging is 0.68 s. This means, after 0.68 seconds, U2 decreases to 1/e of its 

original value, although the polarization of the ferroelectric material does not change. Eq. (3.2.2) is 

severely violated when the measurement is longer than the time constant for discharging. Therefore 

the frequency of the applied AC should be higher than the reciprocal time constant for discharging. 

From previous considerations we can see that there are two advantages of choosing a large reference 

capacitor: (i) it makes the approximation in Eq. (3.2.1) more accurate, (ii) it elongates the time 

constant for discharging. However, a too large reference capacitor leads to slow response of the 

reference capacitor to the polarization variation in the ferroelectric capacitor. This time constant is 

estimated as the RC constant of the reference capacitor and the resistance of the cable between CFE 

and Cref.  
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The RC constants are important in the transient measurements. We have carefully chosen the elements 

to eliminate the influence from RC. 

 

Switching transient measurement 

The switching transient has been measured on a Sawyer-Tower setup as schematically shown in Fig. 

3.2.1. We apply a negative pulse to fully polarize the capacitor to -Pr. Subsequently, we short the 

capacitor to ensure that any extra charges at the electrodes are removed; only the compensating 

charges, equal to the remanent polarization, remain. We then apply a positive square pulse. The pulse 

duration is long enough to enable the ferroelectric thin film reach complete polarization reversal. We 

measure the voltage drop over the reference capacitor and hence obtain the polarization as a function 

of time. Afterwards, the same positive square pulse is applied to measure the non-switching 

contribution. Subtracting the two transients then yields the net polarization as a function of time. A 

typical measurement protocol is presented in Fig. 3.2.2, where the polarization has been normalized 

by 2Pr. The difference from discrete Positive-Up-Negative-Down (PUND) measurements [74] is that 

only two pulses are needed to obtain the full polarization transient, i.e. the polarization as a function 

of time. The large number of quasi-continuous data points allows an accurate determination of the 

Avrami index. With this measurement procedure, fatigue is suppressed as the number of polarization 

reversals is drastically reduced. The experimental data are highly reproducible; after measuring the 

full data set, the original polarization transients were reproduced, yielding similar values for the fitting 

parameters. 

 

FIG. 3.2.2 Typical example of a measured polarization transient. After fully polarizing the capacitor to -Pr and 

shortening the contacts for 10 s, a positive square pulse is applied. The blue dots present the total change of the 

charge on the reference capacitor after the first pulse. The measurement is repeated using a second positive 

square pulse. The green dots represent the non-switching dielectric contribution. The black dots are obtained by 

subtracting the two transients and represent the net polarization. 
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Quasi-static measurements of polarization and strain vs. electric field 

The quasi-static measurements are performed with a Radiant Precision Multiferroic Test System 

(Radiant Technologies, Inc.). The fundamental principle is the same as the Sawyer-Tower circuit, with 

improvement in preventing the discharging of the sensing elements hence enabling measurements at a 

frequency as low as 0.1 Hz with acceptable accuracy. During the voltage sweep, the electric 

displacement and the strain, i.e. the relative change in thickness, are simultaneously obtained. The 

strain is obtained by measuring the mechanical displacement of a bulk electrode on the thick 

ferroelectric sample during polarization variation.  

 

Tuning the internal electric field by a serial capacitor 

In a conventional Sawyer-Tower circuit, a voltage, Vapp, is applied to a ferroelectric capacitor and 

subsequently the electric displacement, D, of the ferroelectric material is measured over a reference 

capacitor. The internal field in the ferroelectric material, Eferro, is derived as the applied voltage 

divided by the thickness, d, of the ferroelectric material.  

To study suppression of polarization we use a linear capacitor, Cser, in series with the ferroelectric 

capacitor, Cferro. The applied voltage is then shared by the linear capacitor and the ferroelectric 

capacitor, and reads: 

serferroapp
VVV                   (3.2.4) 

where Vferro and Vser are the voltage drops over the ferroelectric- and serial capacitor, respectively. The 

values can be given as: 

ferro
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VV             

 (3.2.5) 

where P and A are the ferroelectric polarization and the surface area of the ferroelectric capacitor, 

respectively. To satisfy the electro-neutrality between Cferro and Cser, PACVQQ
ferroferroserferro

 , 

we get: 

ferroser
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ferro
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



              (3.2.6) 

We note that this equation is identical to Eq. (2) in Ref. [81]. Experimentally, the electric displacement, 

D, is directly extracted from the Sawyer-Tower measurements, and is regarded as fundamental 

variable [82]. To obtain the internal field within the ferroelectric material, we eliminate the 

ferroelectric polarization, P, by noting that: 
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P
d

V
D

ferroferro



0

                (3.2.7) 

As the area of the ferroelectric capacitor, A, is given by Cferrodferro, the electric field inside the 

ferroelectric material is derived as: 

ser

ferro

ferro
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ferro
C

CD
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V
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
0

              (3.2.8) 

Using the expression for the depolarization field, Edep = -P/(0ferro), and taking Eq. (3.2.8), we get: 
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       (3.2.9) 

As compared to a single ferroelectric capacitor, the internal field relates to the depolarization field, 

Edep, tuned by the ratio of the capacitances of the ferroelectric- and the linear serial capacitor, 

Cferro/Cser. 

This net field by a serial capacitor is also schematically indicated in the sketch below: 

 

FIG. 3.2.3 Schematics of compensation of depolarization field. (a) Depolarization field in a free-standing 

ferroelectric material. (b) Ferroelectric-only capacitor. (c) Ferroelectric capacitor with an additional serial 

capacitor. 

 

For a ferroelectric-only capacitor the charges in the electrodes fully compensate the polarization, such 

that at zero bias there is no net field in the ferroelectric material. In case of an additional serial 

capacitor, where due to charge neutrality the amount of free charges on both capacitors is equal, the 

depolarization field is not fully compensated. This leads to a net field inside the ferroelectric capacitor 

that is opposite to the electric field in the serial capacitor. At zero bias therefore the voltage drop over 

both capacitors is equal, but of opposite sign, such that the total voltage is zero. The smaller the 

capacitance of the serial capacitor the higher the net field in the ferroelectric material will become, as 

demonstrated by Eqs. (3.2.8) and (3.2.9).  
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Transient displacement measurements during depolarization 

We first fully depolarized the ferroelectric capacitor by applying an alternating voltage with 

decreasing amplitude [83]. Subsequently the linear capacitor was discharged by shorting the 

electrodes, to ensure electro-neutrality between the ferroelectric- and linear capacitor. Then we 

applied a square pulse over the serially connected capacitors. The amplitude was high enough to fully 

polarize the ferroelectric capacitor. Contrary to quasi-static Sawyer-Tower measurements, the applied 

voltage was abruptly set to zero Volt and the resulting transient of the electric displacement, D(t), was 

recorded. 

 

Fatigue measurements 

The degradation of polarization with poling cycles and time was performed on a Radiant Precision 

Multiferroic Test System (Radiant Technologies, Inc.) using a bipolar triangular or sinusoidal 

waveform. The frequency and amplitude were varied deliberately. After a preconfigured number of 

cycles the remanent polarization was determined by a positive-up-negative-down (PUND) 

measurement. We investigated scaling of fatigue with device area. Within device to device variations 

we could not identify statistically significant differences in programming cycle endurance.    

Scanning electron micrographs were acquired with a Hitachi SU8000 SEM. The sample was exposed 

under analytical SEM working conditions, using a 10 kV acceleration voltage with an extractor 

working current of 20 μA, corresponding to a probe current of 1.1 nA. Micrographs were recorded 

intermittently during the exposure using a low voltage of 1 kV, at a probe current of ~ 50 pA. The top 

electrode of the capacitor was grounded using carbon tape. 

 

3.3 Piezoresponse force microscopy (PFM) 

We have developed a global excitation and local probe method for PFM investigation of domains 

with high resolution. Ferroelectric polarization as a function of electric field was measured using a 

Sawyer-Tower circuit as described previously. PFM measurements were conducted on a Bruker 

Dimension Icon Scanning Probe Microscopy (Bruker, Germany) using SCM-PITW probe (Bruker, 

Germany, conductive: 2.8 N/m 75 kHz, Pt/Ir Coating). We have chosen an AC frequency of 15 kHz 

and an amplitude of 5 V, significantly below the coercive voltage (30V for a 500 nm film); hence the 

PFM measurements did not affect the ferroelectric polarization. The topography and the PFM phase 

were obtained simultaneously from the same region.  

To chemically remove the top electrode, we used a solution of I2/KI/H2O with weight ratio of 1:4:40. 

A drop of the Au etchant was dripped on the surface of the top electrode. After 20 seconds, the drop 

with the dissolved Au was sucked back with a glass pipet without touching the sample. After this 

process, the PFM tip directly scanned the exposed ferroelectric film. 
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PFM detects the local piezoelectric deformation of a sample caused by an applied electric field from 

the tip of a scanning force microscope. Regarding details on the operational mechanism we refer to 

one of the numerous reviews [84]. In most PFM publications only images of the out-of-plane phase 

are shown. The piezoelectric response of the sample is either in phase or out of phase with respect to 

the alternating voltage applied to the tip. The PFM phase therefore, ideally, only yields two values, 

namely 0° and 180°. We note that even if the polarization vector is not oriented exactly normal to the 

sample surface, the phase still yields one of these two binary values. 

The displacement of the PFM cantilever induced by piezoresponse is proportional to the piezoelectric 

coefficient, d33, and is consequently proportional to the polarization [46]. Since d33 of P(VDF-TrFE) is 

negative [4], an out-of-plane phase of 0° means that the polarity of the domains is opposite to the 

PFM tip (henceforth referred to as “up” domain), hence a positive tip bias results in an expansion of 

the domain and the piezoresponse is in-phase with the driving voltage; correspondingly, a phase of 

180° indicates that the polarization of the domain points away from the PFM tip (“down” domain). In 

practice however, due to the finite size of the PFM tip, ultrafine structures, e.g. atomic-scale domains, 

cannot be fully resolved by PFM. This leads to smeared domain images and spatially averaged values 

for the phase [48], which can then assume continuous values between 0° and 180°. 

After the PFM measurements, we re-evaporated Au on the samples as the new top electrodes. The 

new top electrodes can easily be aligned as the capacitor arrays have a cross-bar layout. After 

re-evaporation, we measured the remanent polarization with the Sawyer-Tower setup.  The 

unchanged polarization verified the liability of the PFM measurements.  
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Chapter 4 Switching dynamics in disordered 

ferroelectric thin films
*
 

 

 

Switching, i.e. polarization reversal, of disordered ferroelectric P(VDF-TrFE) thin films has been 

investigated at a wide range of applied electric field and temperature. The measured polarization 

transients can be quantitatively described by a compressed exponential function as originally 

formulated by Kolmogorov, Avrami and Ishibashi (KAI model). The phenomenological parameters 

switching time and Avrami index are related to the velocity and morphology of domain walls, 

respectively. We show that the switching time depends exponentially on electric field as described by 

the Merz law. The experimentally obtained Avrami index is independent of temperature but decreases 

with applied electric field from 1.55 at low field to 1.0 at 300 MV/m, indicative of an 

out-of-equilibrium dynamics of the growing domains. Using a random walk model we demonstrate 

that the observed switching dynamics are in agreement with a domain growth mechanism where 

domains are circular at low electric field with few nucleation sites, whereas at high field irregular 

entangled domains are formed. The density of nucleation sites is extracted as 1.5 % of the monomeric 

units in our work. Switching transients on capacitors where the nuclei density has been artificially 

increased exhibit 1D-like growth, as predicted by our model. 

  

                                                             
* Publication: D. Zhao, I. Katsouras, K. Asadi, P. W. M. Blom, and D. M. de Leeuw, Phys. Rev. B 92, 214115 (2015). 
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4.1 Kolmogorov-Avrami-Ishibashi (KAI) model 

Before the invention of the computer, the sophisticated interactions of the dipoles at domain-walls 

made the general calculation of the dynamics of polarization switching based on the 

Landau-Ginzburg-Devonshire (LGD) theory unfeasible. In practical device level, it is often the 

physics relating to the macroscopic polarization at micron- or larger scale that is concerned: 

simulations based on full-termed LGD theory are on one hand limited by computing capability for 

investigating large areas and on the other hand often not needed. To phenomenologically describe the 

dynamics of polarization switching, a statistical model was developed, known as the 

Kolmogorov-Avrami-Ishibashi (KAI) model [30] [31] [32].  

The KAI model describes the (extrinsic) switching as a process of the nucleation and unrestricted 

expansion of the domains in which the dipoles reorient from anti-parallel to the applied electric field 

to parallel to the applied electric field. The KAI model assumes that polarization switching of a 

uniformly polarized sample under an applied electric field E takes place in four steps: (i) nucleation of 

domains; (ii) longitudinal growth of domains in the direction of the applied electric field; (iii) 

transverse growth of domains; and (iv) coalescence of domains until the polarization in the entire 

region is reversed. For thin films, steps (i) and (ii) are orders of magnitude faster than the last two 

steps [42] [85]. The transient of the polarization switching, therefore, is dominated by the transverse 

growth and coalescence of domains. The change in polarization with time P(t) is proportional to the 

area of growing sporadic domains Si as [29] 

  
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where S0 is the area of the sample and Pr is the remanent polarization, viz. the saturated polarization at 

zero electric field. The basic assumption of the KAI model is that, once nucleated, a domain can 

unrestrictedly expand in an electric field as 

 n

i
vtS ~                   (4.1.2) 

where v is a constant domain-wall velocity and t is the time. The normalized change in polarization 

can then be expressed by the compressed exponential function 

 





























n

r
t

t
PtP

0

exp12               (4.1.3) 

where t0 is a characteristic switching time. The Avrami index n depends on the dimensionality of the 

domains and takes only integer values; the value is 3 for single crystals and 2 for epitaxial thin films. 

For polycrystalline films, however, it is common experimental practice either to force the Avrami 

index n to be 2 or to consider it as an arbitrary fitting parameter. The switching time follows the 

empirical Merz law [86]: 
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where E is the applied electric field, Eact is the so-called activation field which is proportional to the 

domain-wall energy, and t∞ is the switching time at infinite applied electric field. The Merz law is 

observed in many systems ranging from single crystals [86], through bulk ceramics [87] and thin 

films [42] [35], to organic-ferroelectric composites [88]. The KAI model and Merz law have been 

successfully applied to single crystals and epitaxial films. In disordered inorganic polycrystalline 

films, however, the switching dynamics, especially over long time scales, cannot be quantitatively 

explained by the conventional theory of homogeneous nucleation and domain growth. As summarized 

in Ref. [33], for any choice of parameters the function of Eq. (4.1.3) leads to a steplike shape on a 

logarithmic time scale that is nearly symmetric with respect to its inflection point. Polarization 

reversal reported for inorganic polycrystalline films, however, exhibits asymmetric curves with 

extended quasilinear tails. As a consequence, switching in these systems cannot be described by a 

single switching time t0. Polarization switching is then explained by assuming a broad distribution of 

switching time over the polycrystalline film [42] [35] [33] [36]. The variation in switching time can 

be due to local variations in electric field. 

The most commonly used organic ferroelectric material is the random copolymer of vinylidene 

fluoride with trifluoroethylene [P(VDF-TrFE)]. Polarization switching in this material has been 

extensively investigated [74] [89] [61] [34] [90] [91]. Switching in ultrathin Langmuir-Blodgett films 

is intrinsic [61], facilitated by a coherent, collective rotation of dipoles [72]. However, switching in 

thicker films is extrinsic, driven by nucleation of reversed domains and subsequent domain-wall 

motion. Polarization reversal has been measured as a function of composition of the copolymer, 

applied electric field, and temperature. Experimental techniques applied are piezoresponse force 

microscopy (PFM) and measurement of electrical displacement or switching current as a function of 

time. In general the switching time follows the empirical Merz law [Eq. (4.1.4)] and the polarization 

reversal can be described with the compressed exponential function of Eq. (4.1.3). Extracted Avrami 

indices vary between 1 and 5. An extremely high Avrami index has been ascribed to a delay in 

nucleation [43]. However, non-KAI mechanisms have also been reported, claiming that the switching 

could not be described by a single switching time and a unique Avrami index [33].  

P(VDF-TrFE) is a semicrystalline polymer; the crystallinity is about 50% [26]. The microstructure 

depends on the molecular weight and its distribution, as well as on the processing details, such as the 

solvents and annealing conditions used. Polarization switching will in turn depend on the details of 

the microstructure and the presence of defects and structural disorder introduced in the synthesis of 

P(VDF-TrFE). Recently, the switching dynamics of P(VDF-TrFE) (70/30) have been systematically 

investigated over an unprecedentedly wide range of temperature, frequency, and electric field [74]. 

The data could be interpreted using Merz law and the KAI equation derived for nucleation and 

unrestricted growth of domains. The extracted Avrami index increased from 1 to 3 with both 

increasing electric field and increasing temperature. The value of 3 was interpreted as an indication of 

isotropic growth. Due to strong inter-chain coupling the domains nucleate and grow simultaneously in 

all directions. This conclusion is surprising, since the longitudinal growth, in the direction of the 

electric field, is much faster than the lateral, transverse growth. 

We note that the determination of the Avrami index is challenging as it is extremely sensitive to the 

slope of the polarization transient at the inflection point. The polarization evolution with time was 

determined in Ref. [74] using a Positive-Up-Negative-Down (PUND) pulse sequence. A first pulse 

sets the polarization state. The following two pulses with opposite polarity to the first one then 
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measure the switching and non-switching polarization, respectively. The difference is the net 

switching polarization. The number of discrete data points however is limited, and we found that 

experimentally obtaining reliable data is hampered by e.g. depolarization during the waiting time and 

discharging of the reference capacitor in the Sawyer-Tower setup. Reliable values for the Avrami 

index could not be extracted. Therefore, we measure the full polarization transient using a previously 

reported yet overlooked procedure [89]. The accurately measured switching transient allows us to 

accurately determine both the switching time and the Avrami index. We show that the extracted 

Avrami index is independent of temperature and monotonously decreases with increasing electric field 

from 1.55 to 1.0. A random walk model is used to simulate the growing domains during polarization 

reversal. The concept is borrowed from stochastic models describing far-from-equilibrium dynamics 

[92] [93], such as spinodal phase decomposition. The calculated morphology varies from circular 

domains that corresponds to the conventional KAI model, to highly irregular, entangled domains as 

have been reported for PFM measurements on P(VDF-TrFE) nanomesas [34] and ultra-thin films [61]. 

The random walk model qualitatively explains the change in Avrami index with electric field and is 

used to estimate the density of nucleation sites. 

 

 

4.2 Characteristic parameters extracted from switching transients 

Avrami index 

Polarization transients have been measured as a function of applied electric field and temperature. As 

an example, transients measured at room temperature at electric fields between 60 MV/m and 120 

MV/m are presented in Fig. 4.2.1 (a). Similarly, transients measured at an electric field of 80 MV/m at 

temperatures between 253 K and 333 K are presented in Fig. 4.2.1 (b). The solid lines are fits to the 

compressed exponential function of Eq. (4.1.3). An excellent agreement is obtained. From the fit the 

values for the Avrami index n and the switching time t0 are obtained. The extracted values of the 

Avrami index are presented as a function of applied electric field at temperature between 193 K and 

333 K in Fig. 4.2.1 (c). The non-integer value is independent of temperature and monotonically 

decreases with applied electric field from 1.55 at low fields to 1.0 at 300 MV/m. This behavior is 

counter to the previous literature report [74] that shows an index that increases from 1 to 3 with both 

increasing electric field and increasing temperature. For completeness, the measured remanent 

polarization Pr is presented in Fig. 4.2.1 (d). The polarization is independent of temperature but 

slightly increases with increasing applied electric field, as reported earlier [26]. 
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FIG. 4.2.1 (a) Typical polarization transients measured at room temperature at electric field between 60 MV/m 

and 120 MV/m. (b) Typical polarization transients measured at an electric field of 80 MV/m at temperatures 

between 253 K and 333 K. The solid lines are fits to the compressed exponential function of Eq. (4.1.3). (c) 

Extracted value of the Avrami index presented as a function of applied electric field between 50 MV/m and 300 

MV/m at temperatures between 193 K and 333 K. The value is independent of temperature and monotonously 

decreases with applied electric field from 1.55 at low fields to 1.0 at 300 MV/m. The dashed line is a guide to 

the eye. (d) The measured remanent polarization, Pr, as a function of electric field at temperatures between 193 

K and 333 K.  

 

Switching time 

The extracted switching time t0 at temperatures between 190 K and 333 K is presented as a function of 

reciprocal electric field in Fig. 4.2.2 (a). The symbols show that the switching time follows the 

empirical Merz law as given by Eq. (4.1.4). The fitted lines are extrapolated to infinite electric field. 

The obtained value for the switching time at infinite applied electric field converges to 4 ns, in good 

agreement with reported values for P(VDF-TrFE) [74] [89]. From the polarization transients we 

estimate the order of magnitude of the domain-wall velocity as the lattice constant of 0.25 nm [94] 

over the switching time. The estimated domain-wall velocity at room temperature is presented in Fig. 

4.2.2 (b) as a function of reciprocal electric field. For comparison, reported experimental values 

extracted by measuring the lateral growth of domains by PFM [95], represented by the orange dots, 

are included as well. A fair agreement is obtained at high electric field. The deviation at low electric 

field, corresponding to a very small domain-wall velocity, might indicate deviations from the Merz 
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law, as has been ascribed to the local disorder potential in literature [91] [96].  

 

Activation field 

The extracted values for the activation field vary from 800 MV/m to about 2500 MV/m, and are 

presented as a function of reciprocal temperature by the blue symbols in Fig. 4.2.2 (c). For 

comparison, previously reported values [74] for the activation field are included, represented by the 

green symbols. The solid line is a fit through the origin. A fair agreement is obtained.  

The activation field is related to the domain-wall energy. In ferroelectric materials, regions with 

different polarization are separated by elastic domain walls. The application of an electric field favors 

one polarization state over the other. Dipolar reversal at the domain walls leads to domain-wall 

motion, which is typically described by a creep velocity [38]. The reciprocal domain-wall velocity is 

proportional to the switching time [32] [96]. In the creep of domain walls, the driving force is the 

applied electric field. The proportionality coefficient, Eact, is then directly proportional to the 

domain-wall energy according to the phenomenological model of Miller and Weinreich [37], given for 

the case when the depolarization energy of the opposite domain nucleus can be disregarded as [74]: 

TkPcE
Bsdwact

/
2                 (4.2.1) 

where c is the width of the domain wall that can be approximated by the lattice constant of the unit 

cell, sdw is the domain wall energy, Ps is the spontaneous polarization, kB is the Boltzmann constant 

and T is the absolute temperature. The 180°-domain-wall energy as extracted from the fit in Fig. 4.2.2 

(c) amounts to about 60 mJ/m
2
, in good agreement with the value reported in Ref. [74]. 

The activation field is typically much larger than the experimentally determined value of the coercive 

field. This means that the polarization actually reverses while the initial state is still metastable [97]. 

We present the value of the coercive field as measured using a triangular waveform with a frequency, f, 

of 100 Hz, as a function of the extracted activation field in Fig. 4.2.2 (d). The change of polarization 

with electric field, as observed in the hysteresis loop, depends on the rate at which the hysteresis loop 

is traversed and thus on both the frequency and waveform [97]. A few papers have addressed the 

relation between polarization, activation field and coercive field. A phenomenological expression has 

been suggested [98]: 
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                 (4.2.2) 

where g may be regarded as the displacement velocity of domains per volt. For BaTiO3 it was found 

that the term gEc has a large value and can be approximated as a constant. The coercive field then 

depends linearly on activation field. The solid line in Fig. 4.2.2 (d) is a linear fit through the origin for 

P(VDF-TrFE), cf. Eq. (4.2.2). A qualitative agreement is obtained, which shows that the coercive field 

is about an order of magnitude lower than the activation field. We note that the coercive field is 

frequency dependent. In practice, typically a power-law dependence is reported [74] [99] [100]. 
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FIG. 4.2.2 (a) The characteristic switching time, t0, as a function of reciprocal applied electric field. The lines 

are fits according to Eq. (4.1.4), extrapolated to zero reciprocal electric field. (b) Domain-wall velocity at room 

temperature as a function of reciprocal electric field. The black line is estimated assuming a velocity equal to the 

P(VDF-TrFE) lattice constant of 0.25 nm over the switching time. The dots are reported experimental values 

extracted from PFM measurements on growing domains [95]. (c) The activation field as a function of reciprocal 

temperature. The blue symbols represent the values extracted from the fit of the data in Fig. 4.2.2 (a) using Eq. 

(4.1.4). The green symbols represent the values reported in Ref. [74]. The solid line is a linear fit through the 

origin. (d) Coercive field measured at 100 Hz as a function of activation field. The red line is a linear fit through 

the origin. The black dashed line represents the coercive field obtained from the iteratively calculated hysteresis 

loops using Eq. (4.1.3). 

 

The previously reported analytical relation between activation field and coercive field is purely 

phenomenological and relies on several assumptions and approximations. We can extract the 

activation field as a function of the coercive field directly from the measured transients, as follows. 

We iteratively calculate the hysteresis loop using the switching parameters, t0 and n, extracted from 

polarization transients as input. To that end, we consider that a time-varying electric field, e.g. a 

triangular profile, is applied. Then at each time t, the electric field is known. The polarization at time t 

+ t follows from the polarization at time, t, as: 
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where P(∞) is the saturated polarization. Hence the polarization can be numerically calculated as a 

function of time and converted into polarization as a function of electric field. From the resulting 

reconstructed hysteresis loops, the coercive field can be extracted and plotted as a function of the 

activation field. The results are represented by the dashed line in Fig. 4.2.2 (d). A reasonable 

agreement with the measured data is obtained.  

 

 

4.3 Random-walk model for disordered ferroelectric thin films 

Here we present a random walk model to qualitatively connect the switching transients and the 

Avrami index with the morphology of growing domains. P(VDF-TrFE) is a semi-crystalline polymer 

with a crystallinity of about 50% [26]. Polarization reversal will depend on the details of the 

microstructure. However, for simplicity, here we consider each monomeric unit as a single dipole. The 

film is then approximated as a single, uniform 2-dimensional square lattice of dipoles. In our 

capacitors the applied electric field is perpendicular to the film plane, hence we consider only 

out-of-plane switching. Initially, all dipoles are aligned except for a certain number of dipoles with a 

pinned, opposite orientation. These randomly distributed dipoles act as nucleation sites [29]. Chemical 

defects are regarded as the main origin [101]. Nucleation sites can also arise due to the presence of 

passive layers, such as oxidized or delaminated electrodes generated during device preparation and 

measurement [102] [103]. 

We apply abruptly an electric field to switch the dipoles. The system becomes metastable as it still 

maintains the initial macroscopic polarization. The energy of the electric field is much larger than the 

thermal energy, kBT, hence the switching is an out-of-equilibrium process. The switching is triggered 

by the excess electrical energy. We model the polarization reversal as a series of N-step random walks. 

A single random walk is started. After stochastically dissipating the excess energy over N lattice sites, 

the random walk ends. A new random walk starts that again dissipates the excess energy over N lattice 

sites. The random walks ensue sequentially without temporal overlap.    

The energy is dissipated regardless of the site’s initial polarization state. However, when the dipole 

moment is opposite to that of the electric field, the dipole is flipped. The flipped dipole is stable only 

when it is in close vicinity to one or more flipped dipoles; otherwise the dipole immediately flips back. 

This implies that growth of domains with stable polarization reversal can only start at a nucleation site, 

despite the fact that the random walks are generated throughout the dipole lattice. 

The higher the electric field, the more lattice sites, N, can be perturbed. Hence we call N the 

perturbation strength of a single random walk. We randomly generate a certain number of nucleation 

sites; their density normalized to the number of lattice sites is nuclei. Then we calculate the 

morphology as a function of N, and the cumulative number of random walks, .  

 

Simulated domain morphology 

Fig. 4.3.1 presents snapshots of the calculated morphology, extracted for a normalized polarization of 

about 35 %. The arrows indicate an increase in nucleation density and an increase in perturbation 
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strength. Fig. 4.4.1 shows that the geometry of the domains changes from circular to highly irregular. 

We first consider the limit of low nuclei density, the top row snapshots of Fig. 4.3.1. The single 

domains grow independently, without interference of other domains, provided that the perturbation 

strength is low. The growth then requires a large number of perturbations. In addition, at each point of 

the perimeter of the growing domains, the growth rate is the same due to statistical averaging of the 

perturbations. Consequently, the scenario of the conventional KAI model is reproduced and circular 

domains are obtained, as shown on the top left snapshot of Fig. 4.3.1.  

With increasing perturbation strength, the domains become irregular; unflipped dipoles remain inside 

the domains as indicated by the sporadic white regions surrounded by the black regions. The growth 

rate at the perimeter of the domains gets anisotropic, as previously suggested by Monte-Carlo 

modeling [79]. 

When the nucleation density is high, then even at low perturbation strength the domains cannot grow 

unrestricted. As shown in the bottom part of Fig. 4.3.1, from the very beginning entangled domains 

are formed. Consequently, the conventional KAI model is not applicable. In the limit of a very high 

nuclei density, the domains are so close to each other that even small perturbations yield 

interconnected, entangled domains. The growth of entangled domains has been experimentally 

demonstrated by PFM measurements on both inorganic and organic ferroelectric materials, in 

Pb(Zr,Ti)O3 (PZT) capacitors [42], (PZT)0.95(BiFeO3)0.05 sol-gel thin films [104], BiFeO3
 
thin films 

[40] and P(VDF-TrFE) crystalline nanomesas [34] or ultra-thin films [61].  

 

Calculated switching transients 

The change in polarization, ∆P, normalized by the remanent polarization, 2Pr, is obtained as the 

number of flipped sites, the black regions in Fig. 4.3.1, over the total number of lattice sites. For all 

values of perturbation strength and nuclei density, the normalized polarization as a function of 

cumulative number of random walks can be perfectly described with a compressed exponential 

function:   
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by adjusting the fit parameters 0 and n’. The fit parameter 0 is the number of cumulative random 

walks needed to reach a normalized polarization of 63 %. Both  and 0 are normalized to the number 

of lattice sites. The functional dependence of Eq. (4.3.1) is not surprising. The physical properties of 

systems in which the dynamics become progressively slower with time, are typically described by a 

compressed exponential function [105]. Compressed exponential dynamics are typically found for 

slow relaxation processes in out-of-equilibrium systems. An example is the change in physical 

properties of disordered quenched materials, such as glasses, gels and foams, during aging [105]: the 

physical properties depend on the time elapsed since the material was quenched, and the dynamics 

become progressively slower as the sample ages. Here, this condition holds for the calculated 

normalized polarization as a function of the number of random walks, since random walks within a 

domain do not contribute to its growth; only random walks at the perimeter of the domains can 

contribute. Hence the efficiency of random walks decreases with increasing normalized polarization. 
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FIG. 4.3.1 Calculated domain morphology as a function of nuclei density, nuclei, and perturbation strength, N. 

The morphology is presented for a normalized polarization of about 35 %. Black areas represent flipped dipoles. 

The corresponding calculated Avrami indices are presented in Fig. 4.3.2 (a).  

 

The extracted fitting parameters, n’ and 0, are presented in Fig. 4.3.2 as a function of perturbation 

strength, N, for various nucleation densities, ρnuclei. The variation in the Avrami index, n’, correlates to 

the calculated domain morphology. At very low density of nucleation sites and moderate perturbation 

strength, domains are circular and grow unrestrictedly, as shown in Fig 4.3.1. The scenario for the 

conventional KAI model is reproduced and the calculated Avrami index, n’, is equal to 2, as expected. 

With increasing nuclei density and increasing perturbation strength, the domains no longer grow 

independently, but coalesce. Fig. 4.3.1 shows that in the limiting case, irregular, highly entangled 

domains are formed. This situation is characterized by an Avrami index of 1, indicative of growing 

1D-wires.  
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FIG. 4.3.2 (a,b) Values of the fitting parameters, n’ and 0, as extracted from calculated normalized polarization 

as a function of cumulative number of random walks using Eq. (4.3.1). 0 is the number of cumulative random 

walks to reach 63% polarization reversal, normalized to the number of lattice sites. The values of n’ and 0 are 

presented as a function of perturbation strength, N, and of the nuclei density, ρnuclei. The density of nucleation 

sites has been varied between 10
-6

 and 2×10
-1

. The corresponding calculated domain morphologies are presented 

in Fig. 4.3.1. 

 

The extracted value of 0 is presented in Fig. 4.3.2 (b) on a double logarithmic scale as a function of 

perturbation strength. We first consider the case in which the perturbation strength is unity, meaning 

that each random walk immediately ends after being generated. At very low nuclei density the random 

walk has a small probability of contributing to stable domain growth. Hence the number of random 

walks needed for polarization reversal is orders of magnitude larger than the number of lattice sites. 

However, the random walks get more effective when the nuclei density increases. At very high density, 

each random walk contributes to domain growth as is reflected by a value of 0 of about unity.  

Now we increase the number of sites that a single random walk can reach. With a high value of N, 

almost all these steps are effective and contribute to growth. Hence 0 tends to depend linearly on 1/N 

as shown in Fig. 4.3.2 (b). At the same time, 0, the number of cumulative random walks to reach 63% 

polarization reversal, normalized to the number of lattice sites, corresponds to the switching time, t0. 

Experimentally, the switching time depends exponentially on reciprocal electric field. We assume that 

0 is directly proportional to t0. Then, automatically, lnN increases with electric field, meaning that the 

number of sites each random walk can reach increases exponentially with electric field. The 

correlation between lnN and E implies that the Avrami index extracted from polarization transients, cf. 

Fig. 4.2.1 (c), may be compared with the Avrami index extracted from the random walk model, cf. Fig. 

4.3.2 (a). The similarity implies that the monotonous decrease of the experimental Avrami index with 

increasing electric field is due to a change in morphology from circular domains to highly irregular 

entangled domains. 

 

Verification of density of nucleation sites 

Furthermore, regardless of the detailed relation between electric field and perturbation strength, the 

index extracted at low electric field is by definition identical to the index calculated at low 
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perturbation strength. The experimentally determined index converges to 1.55, cf. Fig. 4.2.1 (c). This 

value is obtained for a nucleation density of about 0.015, meaning that for 1.5 % of the monomeric 

units there is a nucleation site. Chemical defects are regarded as the main origin. A comparable 

density of head-to-head defects in PVDF between 6 % and 9 % has been derived from NMR 

measurements [24]. The nuclei density is expected to depend on the purity and molecular weight of 

the P(VDF-TrFE) polymer and the processing conditions of the capacitors. A systematic investigation 

was not attempted. We note however, that polarization transients on fatigued capacitors, where a high 

defect density is expected, indeed yielded an Avrami index close to unity. The dependence of Avrami 

index on morphology is corroborated by measuring capacitors where the nuclei density was 

artificially enhanced, as presented in Fig. 4.3.3. We start by depolarizing a capacitor. The polarization 

is close to zero meaning that initially about half of the dipoles are reversed. The microstructure, 

calculated by time-dependent Ginzburg-Landau approach, consists of small heterogeneous domains 

[62]. The reversed regions act as artificial nucleation sites. Polarization transients were measured. The 

extracted Avrami index is unity for all values of the applied electric field, as expected for a high nuclei 

density, cf. Fig. 4.3.2 (a).      

 

FIG. 4.3.3 Polarization transients measured at room temperature at an electric field of 80 MV/m of a 

depolarized and of a fully polarized ferroelectric P(VDF-TrFE) capacitor. The depolarized capacitor switches 

from the initial polarization of 0 to +Pr (blue dots). The fully polarized capacitor switches from –Pr to +Pr 

(green dots). The solid red lines are fits to the data using Eq. (3.3.3) with n equal to 1 and 1.5, respectively. 

 

 

4.4 Summary 

In summary, we have investigated the switching dynamics of P(VDF-TrFE) thin films by measuring 

polarization reversal transients at a wide range of applied electric field and temperature.  The 

transients can be described by a compressed exponential function using the characteristic switching 

time and Avrami index as fitting parameters. Contrary to literature reports the Avrami index is 

independent of temperature and decreases with applied electric field from 1.55 at low fields to 1.0 at 

300 MV/m. The switching time depends exponentially on electric field as described by the Merz law. 
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The extracted activation field is an order of magnitude larger than the measured coercive field as 

confirmed by numerical calculations. A random walk model is used to simulate the growing domains 

during polarization reversal. The concept is borrowed from models describing far-from-equilibrium 

dynamics, such as spinodal phase decomposition. The monotonous decrease of the Avrami index with 

increasing electric field is due to a change in morphology from circular domains to highly irregular, 

entangled domains. The density of nucleation sites is derived as 1.5 % of the monomeric units. The 

modeling is supported by measuring polarization transients on capacitors where the nuclei density was 

artificially enhanced. The methodology may also be applied to investigate the dynamics of other 

binary systems with nucleation and non-equilibrium growth. 
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Chapter 5 Piezoresponse force microscopy study of 

ferroelectric domains  

 

 

In this Chapter, the macroscopic polarization of a ferroelectric capacitor is correlated with the local 

domain morphology. To this end, a ferroelectric capacitor is poled to a set polarization state in a 

Sawyer-Tower setup. After chemically removing the top electrode, the exposed ferroelectric is locally 

probed with piezoresponse force microscopy. The domains without the top electrode are 

thermodynamically stable for weeks in ambient environment, as proven by comparing the remanent 

polarization measured before etching away and after re-depositing the top electrode. Out-of-plane 

PFM phase images show a random distribution of domains with up and down polarity. We 

unambiguously demonstrate a linear correlation between the mean PFM phase and the macroscopic 

polarization. As a demonstration of the insights the global excitation and local probing method can 

provide, we show how thermal and electrical depoling can result in identical macroscopic polarization, 

yet completely different domain morphologies. 
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5.1 Global excitation and local probing method  

Scanning probe microscopy (SPM) techniques have revolutionized the field of ferroelectricity by 

providing an opportunity for non-destructive visualization of sub-micron ferroelectric domains [106]. 

One of the most widely used SPM techniques is piezoresponse force microscopy (PFM), which is 

based on monitoring piezoelectric surface deformation induced by the electrically biased probing tip 

[46]. The PFM technique was first developed in 1992 by Guethner and Dransfeld [39] to detect 

polarized regions in thin films of the ferroelectric random copolymer 

poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)]. Since then the PFM technique has proven 

to be one of the most powerful approaches for sub-micron study of static domain morphology [40] 

[41], polarization switching [42] [43], domain-wall motion [38], non-linear dynamics of domains [44] 

and domain manipulation [38] [45] in a wide variety of ferroelectric materials.  

In terms of exciting the sample, there are two main methods in PFM [46]: local or global excitation. 

In the local excitation method, there is no top electrode; the ferroelectric material is poled by the 

biased PFM tip, which scans the bare top surface of the sample. In the global excitation method, the 

ferroelectric material is poled in a capacitor using the top electrode, through which the domains are 

imaged by PFM.  

The local excitation method allows in situ investigation of fine structures of domains [40] [41] and 

field-induced domain-wall motion [38] with high resolution. The drawback, however, is that the 

electric field generated by the PFM tip is inhomogeneous, which hampers quantitative analysis of the 

field-induced signal [46]. Moreover, the spot under the PFM tip acts as an artificial nucleation site. 

Due to the high local electric field, the tip actively drives the nucleation and domain growth process 

[45], which significantly differs from the scenario of stochastic nucleation and multi-domain growth 

during macroscopic polarization switching in a homogeneous electric field [29]. 

On the other hand, in the global excitation method, due to the presence of the top electrode, the 

sample is exposed to a homogeneous electric field. By using this method, the growth of domains 

could successfully be correlated to polarization switching transients [42] [43], verifying the statistical 

theory of multi-domain growth proposed by Kolmogorov, Avrami and Ishibashi [30] [31] [32]. 

Remarkably, the global excitation method allows one to quantitatively bridge the microscopic 

domains with the electrically measured macroscopic polarization. However, the major drawback of 

the global excitation method is that the resolution is limited due to the presence of the top electrode 

[47] [48]. 

We note that an alternative PFM method is to investigate in-plane capacitors, where both electrodes 

are in a common plane with the ferroelectric material on the substrate [49] [50]. The ferroelectric 

material is poled via the in-plane electrodes and probed by the PFM tip above the sample. This 

method generates a homogeneous electric field inside the ferroelectric material without sacrificing the 

intensity and resolution of the piezoresponse signal. However, unlike the top-view images by 

conventional PFM measurements, with planar capacitors one visualizes the lateral growth of the 

domains from side view.  

To simultaneously achieve high resolution and a homogeneous poling electric field distribution, we 

report here a global excitation and local probing method. A ferroelectric P(VDF-TrFE) thin-film 



- 47 - 
 

capacitor is set to a given polarization state under an applied homogeneous electric field. 

Subsequently the top electrode is chemically etched away, without affecting the underlying 

ferroelectric layer. The exposed ferroelectric film can then be locally probed by a PFM tip with high 

resolution. We show that even without the top electrode the domains are thermodynamically stable for 

weeks in ambient environment; the possible origin is discussed. We unambiguously demonstrate a 

linear correlation between the mean out-of-plane PFM phase and the macroscopic polarization. As an 

application of the method, we visualize the domain morphologies of electrically and thermally 

depoled ferroelectric capacitors. We show that even when arriving at an identical final macroscopic 

polarization, the two depoling procedures result in widely different domain morphologies.  

 

 

5.2 PFM phase analysis and macroscopic ferroelectric polarization 

The schematics of a PFM tip scanning over “up” and “down” domains are presented in Fig. 5.2.1 (a). 

Fig. 5.2.1 (b) shows a typical PFM topography of a partially polarized ferroelectric capacitor. The 

measurement was carried out on the surface of the 100 nm thick Au top electrode. The image shows 

the characteristic rice- or needle-like P(VDF-TrFE) grains [107]. The small particles on top of the 

needles are thermally evaporated Au granulates. The corresponding PFM phase image, which was 

measured simultaneously with the topography, is shown in Fig. 5.2.1 (c). The phase is spatially 

homogeneous. Discrete domains, as expected for a partially polarized ferroelectric thin-film capacitor, 

can hardly be detected. The lack of resolution is due to the presence of the thick top electrode, which 

damps the piezoelectric response of the underlying ferroelectric material, a well-known drawback of 

the global excitation method. To improve the resolution we therefore etched away the Au top 

electrode. The topography after the selective removal of the Au top electrode is presented in Fig. 5.2.1 

(d).  The topography before and after etching is similar, indicating that the P(VDF-TrFE) grains were 

unaffected. The PFM phase image after etching is shown in Fig. 5.2.1 (e). The resolution improved 

dramatically. Discrete domains locally probed by the PFM tip can clearly be distinguished. Hence, in 

our proposed method, we now can globally set the polarization of the capacitor using a Sawyer-Tower 

setup and locally measure the PFM phase of the ferroelectric layer after etching. We note that this 

procedure is only possible when the polarization remains stable even after removal of the top 

electrode. In the following sections we will demonstrate that this is indeed the case and provide a 

tentative interpretation.  
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FIG. 5.2.1. Topography and out-of-plane PFM phase. (a) Schematics of the PFM tip scanning over “up” and 

“down” domains. (b) Topography of a P(VDF-TrFE) capacitor covered by a 100 nm Au top electrode. (c) The 

corresponding out-of-plane PFM phase. (d) Topography of the exposed P(VDF-TrFE) thin film after chemically 

removing the Au top electrode. (e) The corresponding out-of-plane PFM phase. The corresponding color bars 

indicate the height and the value for the out-of-plane PFM phase. 

 

We have previously shown that the macroscopic polarization in a ferroelectric capacitor can be set to 

any value below the saturated polarization by designed voltage pulses [83]. Here we first polarized the 

P(VDF-TrFE) capacitor to the fully negative polarization state, -Pr. The polarization was consequently 

pointing down, away from the tip. Subsequently, we applied a positive voltage pulse with an 

amplitude of 30 V to set the P(VDF-TrFE) capacitor to a given intermediate polarization state, defined 

by the pulse duration, as shown in the inset of Fig. 5.2.2 (a). The corresponding transients of the 

electric displacement versus time for the two different pulse durations are presented in Fig. 5.2.2 (a). 

The final set polarization increases with increasing pulse duration. 

In order to locally probe the ferroelectric polarization, we need to measure the PFM phase with high 

resolution. To this end, the top electrode was removed. The two PFM phase images corresponding to 

the two different final polarization states are presented in Fig. 5.2.2 (a). Additionally, we show the 

PFM phase image for the initial state corresponding to -Pr as reference. The bright regions correspond 

to “down” domains, whose polarization is oriented away from the PFM tip. The fraction of the dark 

regions in the PFM phase images, which correspond to “up” domains, increases with increasing pulse 

duration.  
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To quantify the phase images, we analyzed the statistical distribution of the PFM phase values. The 

resulting histograms are presented in Figs. 5.2.2 (b-d). For the fully negatively polarized film, the 

phase exhibits a single peak at around 140°. The fact that the PFM phase deviates from 180° implies 

that the full saturation is not reached due to the presence of defects with misaligned polarity [29] 

[108]; moreover, a small portion of dipoles might have switched back when the applied poling field is 

removed [109] [110]. Upon applying the poling pulses, the polarization reverses as is reflected in the 

PFM phase images. The peak in the histogram at 140° that corresponds to fully negatively polarized 

P(VDF-TrFE), decreases; meanwhile a new peak at around 20°, corresponding to a fully positively 

polarized sample, appears. The presence of the two peaks in the histogram for the intermediate state 

reflects the presence of both “up” and “down” domains, which are spatially mixed.  

 

FIG. 5.2.2. Intermediate polarization states and corresponding PFM phase histograms. (a) Switching transients 

of two capacitors, which were fabricated on the same substrate. The capacitors were programmed to two 

different polarization states by voltage pulses with an amplitude of 30 V and a width of 3 ms and 5 ms, 

respectively, as schematically presented in the inset. The PFM phase images for the initial, fully negatively 

polarized, state and the two corresponding intermediate polarization states are shown. The notation  indicates a 

“down” domain, with a polarization oriented downwards in the plane of the substrate. The notation ʘ indicates 

an “up” domain. (b-d) Statistical distribution of the PFM phase values for the initial and the two intermediate 

polarization states.  

 

To correlate the phase with the macroscopic polarization, we quantitatively analyze the histograms of 

the PFM phase. For each P(VDF-TrFE) film, we calculate the mean value of the phase by integrating 

the histogram obtained for an arbitrarily chosen area of 5 µm × 5 µm. We deliberately varied the pulse 

duration to get a large number of intermediate states; a pristine capacitor was used for each state. The 

polarization at zero field was obtained from Sawyer-Tower measurements. Afterwards, the Au top 

electrode was removed and the mean PFM phase was obtained from the histogram. The light blue dots 

in Fig. 3 show the polarization as a function of the mean value of the PFM phase. The polarization 

monotonously decreases with increasing mean value of the PFM phase. The data can be described by 

a linear relation. Extrapolating to PFM phase values of 0° and 180°, we obtain a polarization of ±9 

µC/cm
2
. This corresponds to the value for the saturated polarization, when all dipoles are aligned in 
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parallel [111]. The difference between the extrapolated saturated polarization and the experimentally 

obtained remanent polarization is due to back-switching [109] [110] and the presence of defects with 

misaligned polarity [29] [108]. 

 

FIG. 5.2.3. The electrically measured macroscopic polarization as a function of the mean value of the 

out-of-plane phase measured by PFM. The ferroelectric capacitors were programmed in various intermediate 

states, whose polarization was measured with a Sawyer-Tower setup. Then the top electrodes were etched away 

and PFM measurements were conducted on the exposed P(VDF-TrFE) thin film. The data are presented by the 

light blue circles. The PFM measurements were repeated after storing the films in ambient atmosphere for a 

week and subsequently new Au top electrodes were evaporated at the same spots. The macroscopic polarization 

was re-measured. The data are presented by the dark blue circles. The dashed line is a linear fit to the measured 

data. 

 

We note again that the PFM phase only depends on the component normal to the surface. The phase 

measurement cannot distinguish between domains that are perfectly perpendicular, and off-axis 

domains that exhibit an angle with respect to the surface normal. The phase response is in both cases 

the same. For a binary system, in which the domains can only be oriented “up” or “down”, the 

polarization depends by definition linearly on the mean PFM phase. P(VDF-TrFE) is not a perfect 

binary system, but a semi-crystalline polymer. The fact that the polarization still depends linearly on 

the PFM phase implies that the off-axis domains for “up” and “down” orientation apparently cancel 

each other out statistically. 

Even without the top electrode, the domains of the P(VDF-TrFE) film are stable over time in ambient 

conditions. We performed PFM measurements again after the samples had been stored in ambient 

conditions for a week. We did not find any change in the mean value of the PFM phase. The 

morphology of the domains remained unchanged. We then re-evaporated Au on the samples as the 

new top electrodes. The new top electrodes can easily be aligned as the capacitor arrays have a 

cross-bar layout. After re-evaporation, we measured the remanent polarization with the Sawyer-Tower 

setup. As shown by the dark blue circles in Fig. 5.2.3, no change in the macroscopic polarization was 

observed, confirming that the exposed domains are stable in ambient conditions.  

The remarkable retention of polarization, even in the absence of a top electrode, is further confirmed 

by measuring the remanent polarization of free-standing 30 µm thick P(VDF-TrFE) foils. In order to 
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polarize the foil, we used mechanically removable brass electrodes. The polarization states were 

retained for weeks. This stability is surprising, as the depolarization field, which is as high as 1 GV/m 

for a fully polarized P(VDF-TrFE) layer, is, in a free-standing film, not compensated for by counter 

charges from an electrode. Several secondary compensation mechanisms have been proposed, such as 

screening by ionic species as a result of dissociative water adsorption [44] [112], electrochemical 

equilibria by external oxygen partial pressure [113] and interfacial charges by oxygen vacancies [114].  

We note, however, that net charges, e.g. ions, alone cannot be the reason for the stabilization in our 

case. Presence of ions would lead to a substantial built-in field upon re-evaporation of the top 

electrode, resulting in a pronounced horizontal shift when measuring the D-E hysteresis loop (imprint). 

When measuring the D-E hysteresis loop we should then see a huge horizontal shift. However, the 

experimentally observed shift was less than 10 MV/m, which corresponds to a surface density of net 

charges less than 0.01 µC/cm
2
, by far lower than the necessary surface charge density to counter 

balance the depolarization field.  

This contradiction can be resolved if we assume that the adsorbed species form an electrical double 

layer. Since a double layer is electrically neutral, its presence does not cause a built-in field. We note 

that the adsorption of neutral polar molecules such as H2O and their role in screening mechanism have 

been suggested via density functional calculations [115]; the adsorption of CH3OH and CO2 on 

BaTiO3 and PZT has been experimental verified by temperature-programmed desorption and scanning 

surface potential microscopy measurements [116]. In summary, although the detailed mechanism for 

domain stability remains elusive, Fig. 5.2.3 unambiguously demonstrates that the domains and the 

polarization are not affected by removal of the top electrode. 

 

 

5.3 Domain morphology during polarization switching 

The global excitation and local probing method can be used to study domain morphology as a 

function of macroscopic polarization. As an example, here, we compare the domain morphology of 

two different capacitors with zero polarization. One capacitor was electrically depoled by applying an 

alternating electric field with gradually decreasing amplitude [83]. The other capacitor was thermally 

depoled by annealing above the Curie temperature. 

Figs. 5.3.1 (a) and 5.3.1 (b) show the PFM topography and phase images for the electrically depoled 

film after etching the Au top electrode. The morphology of the ferroelectric domains does not 

completely overlap with the film topography: a single domain can cross over different P(VDF-TrFE) 

grains and within a single grain there can exist multiple domains. Due to stochastic nucleation and 

anisotropic growth “up” and “down” domains are randomly distributed [117] [118]. This is in direct 

contrast to ordered ferroelectric materials, in which the domains are ordered stripes predetermined by 

the Kittel-Mitsui-Furuichi law [119] [120].  

The phase image is quantified in the histogram shown in Fig. 5.3.1 (c). A bimodal distribution is 

observed with peak values around 20° and 140°. The dashed line shows the mean value by integration. 
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It is about 90°, corresponding to zero macroscopic polarization, in agreement to the data presented in 

Fig. 5.2.3. On average, the area of “up” and “down” domains is the same.   

The PFM topography and phase images for the thermally depoled film are presented in Figs. 5.3.1 (d) 

and 5.3.1 (e), respectively. The topography is the same as for the electrically depoled film, which 

proves that the thermal depoling process does not affect the film’s morphology. The PFM phase image, 

however, is completely different. The thermally depoled film shows a homogeneous PFM phase, in 

which single domains cannot be distinguished. This is reflected in the extracted histogram of Fig. 

5.3.1 (f), which exhibits one single peak at 90°. Apparently, the domains are smaller than the 

resolution a PFM tip can achieve; each pixel corresponds to the average of several “up” and “down” 

domains and, therefore, the phase yields 90°. Although the two capacitors exhibit the same 

macroscopic polarization, their domain morphology is completely different.  

 

FIG. 5.3.1. Domains of electrically and thermally depoled P(VDF-TrFE) capacitors. Images were obtained after 

chemically removing the top electrodes. (a) Topography of the exposed P(VDF-TrFE) thin film in the 

electrically depoled capacitor. (b) The corresponding PFM phase image. (c) Histogram of the PFM phase values. 

The dashed line indicates the mean value obtained by integration. (d) Topography of the exposed P(VDF-TrFE) 

thin film in the thermally depoled capacitor. (e) The corresponding PFM phase image. (f) Histogram of the PFM 

phase values.  
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5.4 Summary 

In conclusion, we have demonstrated a global excitation and local probing method for the 

investigation of ferroelectric domains with high resolution. A ferroelectric P(VDF-TrFE) capacitor is 

poled to a set polarization state in a Sawyer-Tower setup. Subsequently, the top electrode is 

chemically removed, without affecting the surface of the ferroelectric material. Afterwards the 

ferroelectric domains are locally probed by PFM. We show a linear relation between the PFM phase 

and the macroscopic polarization. The global excitation and local probing method can be used to 

study domain morphology as a function of macroscopic polarization. As an example, we have shown 

that the domain morphology between thermally and electrically depoled ferroelectric thin capacitors is 

completely different, although the macroscopic polarization is the same.  
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Chapter 6 Depolarization field and domain-wall 

depinning mechanism 

 

 

Depolarization in ferroelectric materials, an important data-loss process in memories, has been studied 

in pioneering works since the 1970s, albeit under quasi-static conditions. To study the dynamics of 

depolarization one resorts to the empirical Merz law, which gives the polarization switching time as a 

function of electric field, normalized to the so-called activation field. The Merz law has been used for 

decades; its origin as domain-wall depinning has recently been corroborated by first-principles-based 

molecular dynamics simulations. Here we experimentally investigate domain-wall depinning by 

measuring the dynamics of depolarization in ferroelectric thin films. We find that the boundary 

between thermodynamically stable and depolarizing regimes can be described by a single constant, 

Psat0ferroEc. Among different multidomain ferroelectric materials the values of coercive field, 

dielectric constant and polarization vary by orders of magnitude; the value for PsatferroEc however 

is comparable, implying a relation between activation-, depolarization- and intrinsic coercive field. 

We propose that the causality naturally holds, when domain-wall depinning originates from collective 

switching of polarized regions near pinning sites.  



- 55 - 
 

6.1 Depolarization field 

The existence of a depolarization field in polarized ferroelectric materials was first experimentally 

demonstrated in the 1970s [121] [122]. In the pioneering work of Wurfel et al. [122], a triglycine 

sulfate ferroelectric film was sandwiched between a metal electrode and a p-type silicon counter 

electrode. The ferroelectric material could be poled when the Si-semiconductor was strongly 

illuminated. The photo-generated charge carriers then could stabilize the ferroelectric polarization. 

However, after switching off the light, only half of the polarization loop was observed, since only 

accumulation of majority carriers can provide sufficient compensation. Without compensating charges 

the ferroelectric material cannot maintain the remanent polarization due to the presence of a high 

depolarization field. 

A polarized ferroelectric material exhibits a depolarization field given by [81]: 

ferro

dep

P
E


0

                  (6.1.1) 

where P is the ferroelectric polarization, 0 and ferro are the vacuum permittivity and static dielectric 

constant, respectively. As a typical example, for the ferroelectric random copolymer 

poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)], the depolarization field can be estimated 

as 1 GV/m with a saturated polarization of 7 C/cm
2
 and a static dielectric constant of 10 taken. This 

field is an order of magnitude higher than the coercive field, Ec, of about 50 MV/m. The polarization 

is expected to be instable, but can be stabilized in a ferroelectric capacitor as the metallic electrodes 

provide free charges that fully compensate the depolarization field, yielding a zero internal electric 

field inside the ferroelectric material.   

When the depolarization field is not fully compensated, the remanent polarization is suppressed. 

Incomplete compensation practically can for instance be due to the occurrence of a “dead layer” 

between the electrodes and the ferroelectric material [123] [124], or due to the finite screening length 

in metallic electrodes [121] [125] [126]. Another example is the ferroelectric field-effect transistor 

[127]; the semiconducting layer causes an uncompensated depolarization field that limits data 

retention.  

The “dead layer” and finite screening length are typically modeled in an equivalent circuit comprising 

a linear capacitor in series with the ferroelectric capacitor [123] [124] [126]. This circuit yields a 

relation between depolarization field and suppressed remanent polarization, and has been verified by 

quasi-static hysteresis loop measurements [81]. Yet the dynamics of the polarization evolving from the 

fully saturated to the suppressed state have not been investigated. 

Here, we study the depolarization dynamics. We use a ferroelectric capacitor in series with a linear 

capacitor to tune the compensation of the depolarization field. We used two classic ferroelectric 

materials, viz. P(VDF-TrFE) and Pb(Zr,Ti)O3 (PZT).  After applying a voltage pulse the electric 

displacement is measured as a function of time, from which the internal electric field is derived. The 

transients are quantitatively described by a generalized Kolmogorov-Avrami-Ishibashi (KAI) 

formalism, and feature a negative differential capacitance during the whole depolarization process. A 

depolarization diagram, constructed from the normalized displacement as a function of the ratio of the 
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capacitances, shows depolarizing and thermodynamically stable regimes. The boundary between these 

regimes defines a unique constant, comprising coercive field, dielectric constant and saturated 

polarization, Psat/0ferroEc, of about 16. This experimentally derived constant is identical for PZT and 

P(VDF-TrFE). Remarkably, the values of Psat/0ferroEc for different ferroelectric materials, in which 

switching is mediated by nucleation and growth of domains, are comparable, although the values of 

coercive field, dielectric constant and polarization vary by orders of magnitude; the constant is 

therefore expected to be universal for multidomain ferroelectric materials. It is further deduced that 

the depolarization field is comparable to the activation field for domain-wall depinning in disordered 

ferroelectric systems, Edep ~ Eact; the correlation with intrinsic switching, i.e. collective rotation of 

dipoles, is discussed. We argue that the relation extracted between the depolarization field and 

activation field implies that the domain-wall depinning originates from collective switching of 

polarized regions near pinning sites in ferroelectric thin films. 

 

 

6.2 Suppression of the remanent polarization 

The displacement versus applied voltage, D-Vapp, hysteresis loops of ferroelectric-only capacitors 

comprising PZT or P(VDF-TrFE) are presented in Fig. 6.2.1 (a) and 6.2.1 (d), respectively. Values 

extracted for the coercive field amounted to 1 MV/m and 50 MV/m, and values extracted for the 

remanent polarization amounted to 38 C/cm
2
 and 7 C/cm

2
, all in good agreement with literature 

[128] [26].  

The hysteresis loops of a ferroelectric capacitor, Cferro, in series with different linear capacitors, Cser, 

are presented in Fig. 6.2.1 (b) and 6.2.1 (e) for PZT and P(VDF-TrFE) respectively. At high bias all 

loops are saturated with the same value for the displacement as the ferroelectric-only capacitor. For 

higher ratios of Cferro/Cser, a higher applied voltage is needed to fully polarize the ferroelectric 

capacitor. All loops have an identical apparent coercive voltage, independent of the ratio Cferro/Cser, as 

at zero displacement there are no net free charges in the electrodes and hence the equivalent circuit is 

a ferroelectric-only capacitor. 
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FIG. 6.2.1 Quasi-static hysteresis loops. (a,d) Electric displacement vs. applied voltage measured 

quasi-statically at 1 Hz on a PZT507 and P(VDF-TrFE) ferroelectric-only capacitor, respectively. The insets 

schematically show the measurement circuit. (b,e) Electric displacement vs. applied voltage measured at 1 Hz 

on a PZT507 and P(VDF-TrFE) ferroelectric capacitor in series with different linear capacitors. The ratio of 

capacitances varies from 0 (black line), to 3 (blue line) for PZT507 and to 0.3 (blue line) for P(VDF-TrFE). (c,f) 

Reconstructed D-Eferro loops.  

 

To obtain the intrinsic properties of the ferroelectric material, we reconstructed the hysteresis loops as 

a function of the electric field inside the ferroelectric material, Eferro, which is derived in Section 3.3 

as:  

ser

ferro

ferro
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              (6.2.1) 

where Vapp is the applied voltage and d is the thickness of the ferroelectric layer. Note that due to the 

incomplete compensation at Vapp = 0 the net field Eferro gives rise to a voltage drop over the 

ferroelectric capacitor that is equal, but with opposite sign, to the voltage drop over the serial 
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capacitor. The D-Eferro loops derived from Eq. (6.2.1) are presented in Fig. 6.2.1 (c) for PZT and Fig. 

6.2.1 (f) for P(VDF-TrFE). The reconstructed loops for various Cferro/Cser ratios all collapse and are 

identical to that of the ferroelectric-only capacitor. We note, however, that Eq. (6.2.1) applies only 

when the leakage current through the serial capacitance is negligible, which is the case in our work. 

An artificial interfacial layer [129] or fatigue-induced delamination [102] can lead to resistive 

interfacial layers with “threshold conduction”; there the measured D-Vapp loops behave broadened 

instead of tilted, and the serial-capacitor model is no longer valid [130]. 

 

FIG. 6.2.2 Suppression of polarization. Apparent remanent polarization, i.e. the displacement at zero applied 

voltage, as a function of the ratio of capacitances, Cferro/Cser, for (a) PZT and (b) P(VDF-TrFE) in serial circuits. 

The hollow symbols are extracted from Figs. 1b,e. Black dots are obtained from transient measurements. Solid 

lines present graphically extracted values. (c,d) Graphical derivation of the apparent remanent polarization from 

the D-Eferro loop of ferroelectric-only capacitors of PZT and P(VDF-TrFE), respectively. As an example, the 

derived values for Cferro/Cser of 0.01, 0.1 and 10 are marked with coloured squares.  

 

The apparent remanent polarization, i.e. the displacement at zero applied bias, is extracted from the 

hysteresis loops of Figs. 6.2.1 (b), (e) and presented by the hollow symbols as a function of the ratio 

Cferro/Cser in Figs. 6.2.2 (a), (b).  

The value for the apparent remanent polarization can also be graphically determined from the 

hysteresis D-Eferro loop of the ferroelectric-only capacitor [131]. In a serial circuit the internal electric 

field in the ferroelectric material, at zero applied bias, is given by Eq. (6.2.1) as Eferro = 
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-D×(Cferro/Cser)/(0ferro), and presented as straight lines in Figs. 6.2.2 (c), (d) for three different ratios 

of capacitances. Each cross point is by definition equal to the apparent remanent polarization. The 

values derived are presented as the coloured squares. The solid lines in Figs. 6.2.2 (a), (b) are 

graphically extracted as a function of the ratio Cferro/Cser. A good agreement with the apparent 

remanent polarization extracted from the quasi-static D-Vapp hysteresis loops, c.f. Fig. 6.2.1, is 

obtained for both PZT and P(VDF-TrFE), which legitimates our derivation below of the internal field 

from the displacement using Eq. (6.2.1).  .  

 

 

6.3 Dynamics of depolarization  

The suppression of polarization was hitherto investigated by measuring quasi-static hysteresis loops, 

where the electric field changes gradually. It might be, however, that the final polarization state is 

different when a high applied electric field is abruptly switched off. The polarization in this case is 

initially still saturated leading to a huge depolarization field that is no longer fully compensated. The 

ferroelectric material is expected to depolarize. However, the final polarization state is not a priori 

known; one might even expect macroscopic polarization reversal as an overshoot effect.  

Here we investigate the depolarization dynamics. We applied a voltage pulse, high enough to fully 

polarize the ferroelectric capacitor. Then the applied voltage abruptly dropped to 0 V, and we recorded 

the transient of the electric displacement, D(t). A schematic representation of the applied pulse and the 

measured response is given in the inset of Fig. 6.3.1 (a). At the end of the applied pulse there is a fast 

discharge of the induced polarization. Afterwards, the ferroelectric polarization dominates the 

transient. As a typical example, a set of transients of a PZT capacitor in series with three different 

serial capacitors are presented in Fig. 6.3.1 (a). The electric displacement drastically decreases within 

the first 100 ms. Subsequently, the displacement only slightly decreases with time and stabilizes after 

a few seconds. When the displacement is stabilized we disconnect the serial capacitor and measure the 

first two D-Vferro hysteresis loops of the ferroelectric-only capacitor, presented in Fig. 6.3.1 (b). The 

starting point of the first loop agrees with the ending point of the transient measurement yielding the 

retained polarization. The second loop was measured as a reference and found to coincide with the 

first loop, excluding experimental artefacts. The retained polarization is presented in Fig. 6.2.2 (a), (b) 

as a function of the ratio Cferro/Cser. The values measured for PZT are similar to those obtained from 

the quasi-static measurements; for P(VDF-TrFE) the values slightly deviate. However, no overshoot is 

observed for either ferroelectric material. We therefore conclude that the final polarization state in the 

dynamic depolarization measurements is identical to the suppressed polarization state reached 

quasi-statically. The transients for P(VDF-TrFE) are presented in Fig. 6.3.1 (c). The solid lines are 

depolarization transients calculated with the Kolmogorov-Avrami-Ishibashi (KAI) formalism [30] [31] 

[32] [29] [74], adapted to a time-dependent electric field [118] and Merz law [86] [132]. The good 

agreement implies that depolarization is due to domain switching without macroscopic polarization 

reversal. 

From the measured transients of displacement, D-t, of Fig. 6.3.1 (c) the field inside the ferroelectric 

material, Eferro, is calculated using Eq. (6.2.1). The time-dependent internal electric field is presented 
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in Fig. 6.3.1 (d) for the two different capacitance ratios. Solid lines are iteratively calculated using the 

KAI formalism. Fig. 6.3.1 (d) shows that the final internal field is about equal to the coercive field, as 

will be explained further below. 

During depolarization, both the internal electric field and the displacement are decreasing with time. 

However, as their signs are opposite, as shown in Figs. 6.3.1 (c), (d), the depolarization transients 

feature a negative differential capacitance. An NDC as a transient phenomenon has been reported in 

ferroelectric capacitors during polarization reversal [133] [134] [135]. Here, the NDC is the derivative 

of the amount of free charges at the ferroelectric capacitor, Qferro, with internal voltage, Vferro, and the 

absolute value is by definition equal to the serial capacitance:  
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where we used Eq. (6.2.1) for the relation between D and Eferro at zero applied external bias. The NDC 

is constant during the whole depolarization process, unlike in the case of bipolar switching [133]. 

 

FIG. 6.3.1 Depolarization dynamics. (a) Transients of the electric displacement of a PZT507 ferroelectric 

capacitor (Cferro = 14 nF) with various serial capacitors. The circuit and transient measurement are schematically 

described in the inset. The transients for Cser as 6 µF, 330 nF and 110 nF are presented with grey, light blue and 

blue lines respectively. (b) Reading the retained polarization by measuring the ferroelectric-only capacitor after 

depolarization. (c,d) Displacement and internal field as a function of time. The dynamics of the displacement, 

after a fast discharge of the induced polarization shown by the double arrow, are given by the solid lines, as 

obtained by numerical calculation. The curves correspond to the serial capacitances of 4.4 nF (blue line) and 890 

pF (red line). Cferro of P(VDF-TrFE) here is 260 pF. 

 

To measure the depolarization transient, we apply a voltage pulse, high enough to fully polarize the 

ferroelectric capacitor. The initial value of displacement is taken after the fast discharge of the induced 

polarization, as shown in the inset of Fig. 6.3.1 (a). The initial and final internal fields are calculated 

from the corresponding displacement using Eq. (6.2.1) and presented in Fig. 6.3.2 as a function of 

Cferro/Cser. When the initial internal field is much lower than the coercive field, the initial and final 

internal fields are identical; there is no depolarization. However, when the initial internal field is much 
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higher than the coercive field, the ferroelectric material depolarizes until the final internal field is 

stabilized at the coercive field, regardless of the ratio Cferro/Cser.  

 

FIG. 6.3.2 Internal electric field. (a,b) Internal electric field as a function of the ratio of capacitances for PZT 

and P(VDF-TrFE), respectively. The red circles represent the initial electric field, directly after the applied 

voltage drops to zero and the induced polarization is discharged. The blue circles represent the retained values 

after depolarization. The dashed lines represent the coercive field. 

 

Such a difference from a ferroelectric-only capacitor can be understood as follows. The depolarization 

field is always fully compensated by countercharges in the electrodes; at zero applied bias the internal 

field is always zero. However, when a serial capacitor is connected, incomplete compensation results 

in a finite internal field, as shown by Eq. (6.2.1). When this internal field is lower than the coercive 

field, the system is thermodynamically stable; there is no switching and no depolarization. If the 

initial internal field is higher than the coercive field, then domains will switch, leading to 

depolarization. The internal field decreases concomitantly with polarization. When the internal field 

becomes lower than the coercive field, a stable state is obtained. In the depolarized ferroelectric 

material an internal electric field as high as the coercive field remains. Consequently, the ratio of 

capacitances can also be used to tune the non-linear optoelectronic properties of ferroelectric 

materials.   

 

 

6.4 Depolarization diagram 

Figs. 6.3.1 (c), (d) imply a relation between the coercive field, the displacement and the ratio of 

capacitances, which can be elucidated by plotting the displacement as a function of Cferro/Cser. In order 

to compare different ferroelectric materials, we normalize the displacement by the saturated 

polarization, Psat, which is the ferroelectric polarization when all the dipoles are aligned. The 
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depolarization measurements are summarized in the depolarization diagram presented in Fig. 6.4.1. 

For a given ratio of capacitances we apply a voltage pulse to set a polarized state and then remove the 

bias. Each point in the diagram represents a set displacement as a function of the ratio of capacitances.  

The diagram shows depolarizing and thermodynamically stable regimes. The stability boundary 

separating the two regimes is obtained when the internal field is equal to the coercive field. The 

boundary, presented by the grey line, is derived from Eq. (6.2.1) and reads: 
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                 (6.4.1) 

The light-grey area of Fig. 6.4.1 represents states in which the set displacement is smaller than both 

the boundary value and the saturated polarization. These are intermediate polarization states, which 

are reported to be thermodynamically stable [83]. The internal field is zero when the ferroelectric 

capacitance is much smaller than the serial capacitance. For a given displacement the internal field 

increases with Cferro/Cser and reaches the coercive field at the boundary. 

The dark grey area represents fully saturated states reached at very high applied bias. The 

displacement is equal to the saturated ferroelectric polarization plus the linear displacement, Psat + 

oferroEferro. Upon removing the applied bias the induced polarization is discharged and the 

displacement reduces to the saturated polarization, Psat. There is no depolarization and the remanent 

polarization is equal to the saturated polarization.  

When the set displacement is higher than the boundary value, i.e. in the white region of Fig. 6.4.1, the 

ferroelectric material depolarizes. As an example, we replotted the measurements of Fig. 6.3.1 (c). 

The green circle denotes the set state and the arrow indicates the measured depolarization. After 

depolarization the remanent polarization in the final state is equal to the boundary value of the 

displacement at that ratio of capacitances. This depolarization process is corroborated by replotting 

the transients of Fig. 6.3.1 (c) in the depolarization diagram. The final internal field is equal to the 

coercive field. The depolarization transient features an NDC. The absolute value of the NDC is equal 

to the serial capacitance during the whole depolarization process.  

We replotted the retained displacement for both P(VDF-TrFE) and PZT, c.f. Fig. 6.2.2, in the 

depolarization diagram. The data points for both materials overlap and are identically described by the 

stability boundary, Eq. (6.4.1). This means that for both materials the normalized displacement D/Psat 

is a unique linear function of (Cferro/Cser )
-1

, with the same proportionality constant, Psat/0ferroEc, of 

about 16. We calculated this constant for other ferroelectric materials. The derived values are 

presented in Table 6.4.1. Among different ferroelectric materials the values of coercive field and 

dielectric constant vary by orders of magnitude. Remarkably, for all ferroelectric materials a 

comparable value for Psat/0ferroEc is obtained, suggesting that this constant is universal. 
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TABLE 6.4.1 Values of Psat/0ferroEc extracted for ferroelectric materials. 

Ferroelectric material Code 
Psat * 

(C/cm
2
) 

Ec 

(MV/m) 
ferro Psat/0ferroEc Reference 

P(VDF-TrFE) **  7 50 10 16  

 PVDF  7 60 10 13  

 PVDF  10 115 9 11 [136] 

PZT PZT507 40 1.0 3500 14  

“ PZT4 35 1.3 1260 27  

BaTiO3 
SPS-nano 

0.6µm 
24 0.35 5250 16 [137] 

“ 
Sample A 

1.3µm 
20 0.36 5000 14 [138] 

SrBi2Ta2O9  15 3.0 400 16 [139] 

Nylon-11  6 60 5 25 [140] 

trialkylbenzene-1,3,5-tricarboxamide 

BTA-C10 

100°C 

1Hz 

4 30 10 17 [141] 

“ 

BTA-C18 

100°C 

1Hz 

2.5 20 10 16 [141] 

Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 BNKT70 37 3.2 1000 14 [142] 

“ BNKT94 37 7 400 17 [142] 

Sr0.15(Na0.5Bi0.5)0.85TiO3 25°C 27 2 1000 17 [143] 

 

*The saturated polarization, Psat, is taken from the maximum polarization of the ferroelectric-only capacitor.   

**Presented values are obtained at ambient temperature. In Section 6.6 we show that the value of Psat0ferroEc 

remains constant between 213 K and 333 K. 

 

 

The common value found for PsatferroEc relates the depolarization field to the activation field for 

polarization switching. The switching time in ferroelectric materials follows the empirical Merz law 

[86] [132]:  
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where E is the applied electric field and Eact is the activation field [79], describing the onset of domain 

wall motion [38] [96]. The activation field is typically one order of magnitude higher than the 

coercive field [144], and hence the coercive field times the proportionality constant of 16 is 

approximately equal to the activation field [118].  
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The proportionality constant can be derived from the phenomenological model of Miller and 

Weinreich, originally derived for 180
°
 domain-wall motion in BaTiO3 [37]. The activation field, Eact, 

is approximated as [74]: 
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                  (6.4.3) 

where c is the width of the domain wall, σdw is the domain-wall energy; kB is the Boltzmann constant, 

and T is the absolute temperature. Each domain grows from a critical nucleus with an internal energy, 

U
*
, approximated as: 
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The proportionality constant of about 16 we derived corresponds, within this model, to U
*
/ kBT. A 

range of values for U
*
 has been reported [74], e.g. 29 kBT for thin films P(VDF-TrFE), 15 kBT for 

PVDF Langmuir Blodgett films, 40 kBT for BaTiO3 and 10 kBT for PZT, leading to a range of the 

proportionality constant of 10 to 40. 

On the other hand, the term Psatferro is the depolarization field in fully polarized ferroelectric 

materials. The unique proportionality constant then implies that the activation field for domain-wall 

motion is about equal to the depolarization field:  

depact
EE ~                    (6.4.5) 

 

FIG. 6.4.1 Depolarization diagram of ferroelectric materials. The normalized displacement is presented as a 

function of the ratio of capacitances. The diagram shows the stability for any set state at zero applied bias. The 

boundary between thermodynamically-stable states and depolarizing states is the grey line calculated with the 
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inset formula. The blue and red symbols represent the normalized, retained displacement using P(VDF-TrFE) 

and PZT capacitors connected with serial capacitors, respectively. The green arrow is reproduced from Fig. 

6.3.1 (c). The green circle denotes the set state and the arrow indicates the measured depolarization. 

 

 

6.5 Origin of activation field 

Merz law, c.f. Eq. (6.4.2), is a special case of domain-wall motion in generic creep systems, 

describing propagation of elastic objects driven by an external force in the presence of a pinning 

potential [38], such as domains in ferroelectric [38] and magnetic materials [145], or vortices in 

type-II superconductors [146]. At zero temperature, domain walls are pinned when the external 

driving force, f, is below a certain threshold depinning force, fd. At finite temperature, when f < fd, 

domain-wall motion is thermally activated and the velocity, v, follows the creep formula [38]: 
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where U is a depinning energy barrier and  is an exponent related to the type of disorder. For 

polycrystalline ferroelectric materials is reported to be about unity [38] [79] [96] [74] [118] and the 

activation field can be regarded as a depinning field. The experimentally found relation between 

depolarization field and activation field implies that depinning is due to overcoming the 

depolarization field.   

Pinning sites in ferroelectric materials are point defects with a fixed polarity [38] [96]. Dipoles in the 

vicinity tend to align in parallel to the polarity of the pinning site. We propose that depinning of the 

domain wall requires collective switching of these polarized regions. Their internal electric field is the 

depolarization field, which has to be overcome in order to move the domain walls. Hence the 

depolarization field is the onset of domain-wall creep and hence similar to the activation field, Edep ~ 

Eact. Interestingly, by expanding and keeping the leading term of the Landau-Devonshire free energy, 

one finds that the depolarization field is approximately equal to the thermodynamic coercive field [29], 

or often termed as intrinsic coercive field, Edep ~ Eint,c. Consequently, the depolarization- and activation 

field should be of the same order of magnitude as the intrinsic coercive field, Edep ~ Eact ~ Eint,c. This 

relation is supported by the experimentally determined values for the intrinsic coercive field for 

ultrathin films of PbTiO3 [147] and Langmuir-Blodgett films of P(VDF-TrFE) [60].   
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6.6 Temperature dependence 

To investigate the temperature dependence of PsatferroEc, we have measured the saturated 

polarization, dielectric function and the coercive field of P(VDF-TrFE) ferroelectric-only capacitors at 

temperatures ranging from 213 K to 333 K.  

The real part of the dielectric constant is presented as a function of frequency for various temperatures 

in Fig. 6.6.1 (a). The dielectric loss is measured to be 2 % or less. The dielectric constant is almost 

frequency-independent below 10 kHz and slightly decreases at higher frequency. We take for the 

value of the static dielectric constant, ferro, the dielectric constant at 1 kHz. Fig. 6.6.1 (a) shows that 

the value of the static dielectric constant increases with temperature from 6 at 213 K to 11 at 333 K.  

The temperature dependence of the coercive field, Ec, is presented in Fig. 6.6.1 (b). The values of Ec 

were extracted from quasi-static D-E hysteresis loops, measured in a Sawyer-Tower configuration at 

100 Hz. As typical examples, hysteresis loops measured at three temperatures, viz. 213 K, 253 K and 

333 K, are shown in the inset. The value of the coercive field monotonously decreases with increasing 

temperature from 115 MV/m at 213 K to 40 MV/m at 333 K. From the hysteresis loops we extracted 

the value of the saturated polarization, Psat, which slightly decreases from 8.8 µC/cm
2
 at 213 K to 6.6 

µC/cm
2
 at 333 K. We note that the hysteresis loops indicate that the remanent polarization is almost 

equal to the saturated polarization; the difference in displacement between high bias and zero bias is 

dominated by the induced polarization, ferroE.  

We calculated the value of PsatferroEc using the extracted values of saturated polarization, static 

dielectric constant, and coercive field. As shown in Fig. 6.6.1 (c) the value is about 16 and 

independent of temperature between 213 K and 333 K. The constant value implies that at all 

temperatures the depolarization field, Edep, is equal to the activation field, Eact. The calculated 

depolarization field is presented as a function of temperature in Fig. 6.6.1 (d), together with the 

activation field independently extracted from polarization switching measurement [118]. For all 

temperatures a perfect agreement is obtained, demonstrating that the relation Edep ~ Eact holds for 

P(VDF-TrFE) within a wide range of temperatures.  
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FIG. 6.6.1 Temperature dependence of P(VDF-TrFE) ferroelectric-only capacitors. (a) The real part of the 

dielectric constant as a function of frequency at various temperatures between 213 K (black line) to 333 K (light 

purple line). (b) The coercive field extracted from quasi-statically measured D-E hysteresis loops as a function 

of temperature. Hysteresis loops were measured at 100 Hz. Typical examples at three temperatures are shown in 

the inset. (c) Calculated value of PsatferroEc as a function of temperature. (d) The calculated depolarization 

field and the independently extracted activation field as a function of the temperature. Edep is calculated using 

the measured values of ferro and Psat. Eact is extracted from polarization switching measurements [118]. 

 

 

6.7 Summary 

In conclusion, we have investigated the dynamics of depolarization in ferroelectric thin films. To tune 

the compensation of the depolarization field we used a ferroelectric capacitor in series with linear 

capacitors. The stability of any set polarization state is summarized in a depolarization diagram that 

shows depolarizing and thermodynamically stable regimes. The boundary separating the two regimes 

is obtained when the internal electric field is equal to the coercive field, and yields a unique relation 

among the coercive field, dielectric constant and saturated polarization, PsatferroEc. This 

experimentally derived constant is identical for PZT and P(VDF-TrFE) and equal to about 16. Among 

different ferroelectric materials the values of coercive field, dielectric constant and polarization vary 

by orders of magnitude. Remarkably however, the values for PsatferroEc are comparable. The 
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constant value implies that for a wide range of ferroelectric materials the depolarization field is 

comparable to the activation field for domain-wall creep. We propose that depinning of domain walls 

requires collective switching of polarized regions near the pinning sites. This mechanism naturally 

leads to the relation Edep ~ Eact. We argue that the depolarization- and activation field are of the same 

order of magnitude as the intrinsic coercive field. 
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Chapter 7 Polarization fatigue of P(VDF-TrFE) 

ferroelectric capacitors
*
 

 

 

The polarization of the ferroelectric polymer P(VDF-TrFE) decreases upon prolonged cycling. 

Understanding of this fatigue behavior is of great technological importance for the implementation of 

P(VDF-TrFE) in random-access memories. However, the origin of fatigue is still ambiguous. Here we 

investigate fatigue in thin-film capacitors by systematically varying the frequency and amplitude of 

the driving waveform. We show that the fatigue is due to delamination of the top electrode.  The 

origin is accumulation of gases, expelled from the capacitor, under the impermeable top electrode. 

The gases are formed by electron-induced phase decomposition of P(VDF-TrFE), similar as reported 

for inorganic ferroelectric materials. When the gas barrier is removed and the waveform is adapted, a 

fatigue-free ferroelectric capacitor based on P(VDF-TrFE) is realized. The capacitor can be cycled for 

more than 10
8
 times, approaching the programming cycle endurance of its inorganic ferroelectric 

counterparts.  

                                                             
*
 Publication: D. Zhao, I. Katsouras, M. Li, K. Asadi, J. Tsurumi, G. Glasser, J. Takeya, P. W. M. Blom, and D. M. de Leeuw, 

Sci. Rep. 4, 5075 (2014). 
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7.1 Fatigue of ferroelectric capacitors 

Due to the spontaneous polarization whose direction may be reversed by applying an external 

electrical field, the polarization can be used as a Boolean “0” and “1” in ferroelectric random access 

memories (FeRAM). Here, the binary information is stored in a capacitor and retrieved by applying a 

switching voltage to obtain a high or a low charge displacement current response, depending on 

whether the internal polarization was aligned or not with the direction of the applied field. The 

read-out is therefore destructive. If the polarization direction was changed during the read-out 

operation then a reset voltage needs to be applied afterwards. During these numerous read and write 

operations the spontaneous polarization decreases. Although this so-called polarization fatigue has 

been thoroughly investigated, its origin, especially for organic ferroelectrics, is still under debate.  

Experimental data for the reduction of the spontaneous polarization of inorganic ferroelectric thin 

films under electrical stress have been reviewed by Tagantsev et al. in 2001 [51]. The dependence of 

fatigue on amplitude, frequency and profile of the driving electric field was discussed and models 

such as domain wall pinning and nucleation inhibition were reviewed. Experimental characteristics 

and explanations of polarization fatigue in inorganic thin films, bulk ceramics and single crystals have 

also been reviewed by Lou in 2009 [52]. Capacitors consisting of SrBi3TaO9 (SBT) exhibit virtually 

fatigue-free behavior. The endurance is better than 10
12

 cycles [148]. In contrast, traditional 

Pb(Zr,Ti)O3 (PZT) capacitors with Pt electrodes are prone to fatigue. Although the degradation 

behavior can be improved by using conductive oxide electrodes such as RuO2, IrO2 and SrRuO3 [51],
 

the polarization still decreases after 10
4
 to 10

9 
cycles. The number of cycles at which the polarization 

starts to decrease is comparable for thin films, bulk ceramics and single crystals [52], which indicates 

that a similar degradation mechanism is responsible for the polarization fatigue. Reported models 

typically comprise two steps [51]: (i) electrical stress leads to formation or redistribution of defects 

and (ii) these imperfections influence the spontaneous polarization. For instance, electro-migration of 

oxygen vacancies can form extended defects capable of pinning domain walls. The oxygen vacancies 

can also lead to the formation of a dead interface layer at the electrodes. Furthermore, it has been 

reported that the fatigue of PZT capacitors could be due to local phase decomposition [53] [21]. 

Under electrical bipolar stress the ferroelectric PZT perovskite phase is transformed into the 

paraelectric pyrochlore phase, as confirmed by Micro Raman measurements. Upon annealing the 

fatigued capacitor in oxygen ambient, the original ferroelectric perovskite PZT phase was completely 

restored. Therefore, it was concluded that fatigue is a generic problem of inorganic ferroelectric 

materials. The origin was argued to be the formation of oxygen vacancies caused by a local, 

uncompensated high depolarization field.        

Contrary to inorganic ferroelectrics, reports on fatigue of organic ferroelectrics are limited. The most 

studied organic ferroelectric materials are poly(vinylidene-difluoride) (PVDF) and its random 

copolymer with trifluoroethylene, P(VDF-TrFE). They are investigated due to their potential 

application in transducers, sensors, actuators and memories. As compared to inorganic ferroelectrics, 

the remanent polarization is about one order of magnitude lower and the coercive field one order of 

magnitude higher. However, the advantage of organic ferroelectric materials is compatibility with low 

temperature flexible substrates and the possibility for up-scaling by large-area solution processing. 

The remanent polarization and coercive field of ferroelectric capacitors did not change upon bending 

with a radius of curvature down to 1 cm, which illustrates that organic ferroelectrics are ideal 
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candidates for flexible electronics or system-in-foil applications [22] [149]. As an example, high 

performance non-volatile polymer memories on banknotes have recently been realized [23].  

Fatigue in organic ferroelectric capacitors is a major problem as the spontaneous polarization is 

typically halved already after less than 10
6
 cycles [52]. Fatigue depends on experimental parameters 

such as temperature, the type of electrodes and the frequency and amplitude of the applied waveform 

[54] [59] [56]. It has been reported for P(VDF-TrFE) that fatigue increases with increasing driving 

voltage and decreasing frequency. Bipolar driving with either sinusoidal, triangular, or rectangular 

waveforms introduces polarization fatigue, while unipolar switching does not. Application of polymer 

electrodes, such as poly(3,4-ethylenedioxythiophene) stabilized with polystyrene sulfonic acid 

(PEDOT:PSS), leads to improved programming cycle endurance [22]. We also note that since 

ferroelectric polymers are semi-crystalline, fatigue may depend on the degree of crystallinity [57].  

Fatigue in organic ferroelectric materials has been ascribed to charge trapping. Injected charges get 

trapped at crystalline boundaries and defects, thereby locking the domain walls and reducing the 

polarization [55]. Increasing the crystallinity concomitantly reduces the number of defects and grain 

boundaries, resulting in increased reliability. The use of poorly conducting polymer electrodes, or the 

introduction of an interfacial blocking layer, diminishes charge injection and, hence, fatigue [58]. 

Apart from the intrinsic domain wall pinning mechanism, fatigue can have an extrinsic origin, such as 

delamination of the top electrode. A few reports [149] [56] mention this delamination and suggest a 

temperature rise due to the heat dissipation upon continuous cycling as the origin [149].         

Here we systematically investigate fatigue of P(VDF-TrFE) thin-film capacitors. We deliberately 

varied the frequency and amplitude of the applied waveform. Both unipolar and bipolar switching is 

considered. We used Au, PEDOT:PSS or PEDOT:PSS covered with Au as top electrode. We show that 

fatigue is due to delamination of the top electrode. The polarization then decreases proportionally to 

the decreased electrode area. Thermal and piezoelectric stress is ruled out as the origin. We show that 

the delamination is due to formation of gases that are expelled from the capacitor. The origin is argued 

to be electron-induced phase decomposition of the P(VDF-TrFE), similar as reported for the inorganic 

ferroelectric material PZT. The mechanism is supported by inducing similar damage using high 

current densities in a scanning electron microscope. We show that when the gas barrier is removed 

and the waveform is adapted, a fatigue-free ferroelectric capacitor based on P(VDF-TrFE) is realized. 

The capacitor can be cycled for more than 10
8
 times, approaching the programming cycle endurance 

of its inorganic ferroelectric counterparts [148].  

 

 

7.2 Fatigue of P(VDF-TrFE) capacitors with Au electrodes 

As an example we present typical fatigue measurements on a ferroelectric P(VDF-TrFE) capacitor in 

Fig. 7.2.1. Au is used as the top electrode. The displacement loops are presented in Fig. 7.2.1 (a) as a 

function of the cumulative number of cycles. The pristine capacitor exhibits a coercive field of 60 

MV/m and a remanent polarization of 7 μC/cm
2
, in good agreement with literature values [26]. Upon 

continuous cycling the coercive field remains constant but the polarization decreases severely. Fig. 
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7.2.1 (b) shows the corresponding remanent polarization as a function of the cumulative number of 

cycles. The polarization is already halved after about 10
5
 cycles. Comparable numbers have been 

reported in literature [149] [150]. The inset shows optical micrographs of the pristine and degraded 

capacitor. The black framed micrograph shows that the top electrode of the pristine capacitor is 

smooth, while the red framed micrograph shows that in the fatigued capacitor the top electrode 

exhibits bumps and may have been delaminated.  

 

FIG. 7.2.1 (a) Evolution of the displacement loops of a P(VDF-TrFE) ferroelectric capacitor with Au top 

electrode under continuous cycling. The measurements were performed using a bipolar triangular waveform 

with a frequency of 1 kHz and the amplitude of 60V. (b) The extracted remanent polarization as a function of the 

cumulative number of cycles. The arrows indicate the data points corresponding to the displacement loops of 

Fig. 7.2.1 (a). The inset shows optical micrographs of the pristine and degraded capacitor. The black and red 

framed micrographs show the top electrode of the pristine and fatigued capacitor, respectively. In the fatigued 

capacitor the top electrode shows bumps and may have been delaminated.  

 

To pinpoint the origin of the measured fatigue we deliberately varied the amplitude and the frequency 

of the bipolar triangular waveform. The normalized polarization as a function of the cumulative 

number of cycles is presented in Fig. 7.2.2. The frequency was fixed at 100 Hz and the amplitude was 

varied from 20 to 80 V. At the amplitude of 20 V the applied electric field is smaller than the coercive 

field. Hence the ferroelectric polarization does not switch. Not surprisingly, the intermittently 

measured remanent polarization is constant. Under these measurement conditions the capacitor does 

not switch and is fatigue-free. As soon as the applied field becomes larger than the coercive field, the 

ferroelectric material switches, and the polarization decreases with increasing cumulative number of 

cycles. Fig. 7.2.2 shows that the degradation is bias dependent. The onset of degradation is at about 

10
4
 cycles, but the fatigue rate strongly increases with increasing bias. 

The data show that fatigue only occurs when the polarization is switched. This is in perfect agreement 

with reported so-called unipolar cycling [59]. The electric field then varies from zero to above the 

coercive field. The ferroelectric polarization does not switch and the capacitor shows no fatigue. A 

similar conclusion can be drawn from the frequency dependence, as will be discussed below.  

Fig. 7.2.2 shows that the polarization initially increases. The polarization enhancement has been 

observed previously, where it was reported that it might be due to field-induced recrystallization [150]. 

We note that a similar enhancement can be found, upon close inspection, in other reported data sets, 
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both for organic [151] [152] and inorganic ferroelectrics [52]. In all our measurements there is an 

apparent correlation between the polarization enhancement and the onset of degradation. However, 

the origin is still elusive.  

 

FIG. 7.2.2 The normalized polarization as a function of the cumulative number of cycles. The frequency was 

fixed at 100 Hz and the amplitude was varied from 20 V to 80 V. At an amplitude of 20 V the applied electric 

field is smaller than the coercive field. The data show that the degradation is bias dependent. The onset of the 

degradation is at about 10
4
 cycles, but the degradation rate strongly increases with increasing bias. The inset 

depicts the capacitor layout, where a P(VDF-TrFE) thin film is sandwiched between two Au electrodes. 

 

The bias dependence suggests that fatigue is related to the switching of the polarization. To 

substantiate this observation we investigated fatigue as a function of frequency. The frequency was 

varied from 10 Hz to 100 kHz. The amplitude of 40 V corresponds to an electric field larger than the 

coercive field. The normalized polarization as a function of the cumulative number of cycles is 

presented in Fig. 7.2.3 (a). At high frequency, here 100 kHz, the capacitor is fatigue-free. The 

polarization does not change with the number of cycles. The reason is that at this frequency the 

ferroelectric does not switch. This is in agreement with the bias dependence, which shows that 

polarization switching is a prerequisite for fatigue. From the frequency dependence we can further 

infer that a high electric field alone does not induce fatigue. Fig. 7.2.3 (a) shows that fatigue is 

observed for those frequencies at which the polarization switches. The initial polarization increase is 

comparable to that of Fig. 7.2.2. The onset of degradation is at about 10
4
 cycles. The degradation is 

almost frequency independent, which suggests that fatigue is dominated by the number of switching 

events.  
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FIG. 7.2.3 Frequency dependence of fatigue. (a) The normalized polarization as a function of the cumulative 

number of cycles. The amplitude was fixed at 40V and the frequency was varied from 10 Hz to 100 kHz. At 

high frequency polarization switching is impeded and therefore the capacitor is fatigue-free. The onset of the 

degradation is at about 10
4
 cycles. (b) Replotted data of normalized polarization as a function of the cumulative 

time. 

 

The optical micrograph in Fig. 7.2.1 (b) shows that delamination of the top Au electrode may occur 

during the fatigue measurements. When the delamination is due to thermal stress it should depend on 

the dissipated energy, which is equal to the dissipated power times the cumulative time. Therefore, we 

replotted the data of Fig. 7.2.3 (a) not as a function of the cumulative number of cycles but as a 

function of cumulative time. As N is the number of cycles and f is the frequency, N/f is the cumulative 

time. Contrary to previous reports [59] [153] that show universal scaling, the data of Fig. 7.2.3 (b) do 

not collapse on a single curve. A clear trend appears. The higher the frequency, the faster the 

degradation is. We note that the time scales involved are in the order of 10
2
-10

3
 seconds.  

In summary, the occurrence of fatigue in a ferroelectric P(VDF-TrFE) capacitor requires polarization 

switching driven by a bipolar waveform. The fatigue depends on the frequency and amplitude of the 

applied waveform. These dependencies suggest a power-related problem, which might lead to the 

observed electrode delamination. However, in the following section we show that thermal stress can 

be disregarded. 

 

 

7.3 Mechanism  

In this section, we reveal the origin of polarization fatigue of P(VDF-TrFE) thin-film capacitors. The 

observed frequency dependence and the amplitude dependence of fatigue suggest that the fatigue may 

relate to power-related processes. Besides, we argue that degradation is due to delamination of the Au 

top electrode of the fatigued capacitor, as indicated in Fig. 7.2.1 (b), where the polarization is 

diminished proportionally to the reduced electrode area. This suggests that the degradation of the 

P(VDF-TrFE) capacitors may be an extrinsic device problem rather than the chemical degradation of 

the ferroelectric material.  
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Thermal analysis 

To estimate the temperature rise we approximate the capacitor as a zero-thickness spherical source 

with constant flux over its area, placed on top of a homogenous semi-infinite substrate. In this case, 

the thermal resistance is given by: 

)3/(8
2

aR
th

                     (7.3.1) 

where a is the radius of the sphere and  is the thermal conductivity of the substrate [154].  The 

temperature rise, ΔT, is then equal to the input power, Pin, multiplied by the thermal resistance: 

thin
RPT                          (7.3.2)  

The input power is generated by switching the ferroelectric polarization. The leakage current can be 

disregarded. We verified that the dissipated energy per cycle is equal to the area in the displacement 

hysteresis loop. To that end, we recorded the displacement current and we integrated the instantaneous 

power I(t)V(t) over the period of one cycle. The obtained values are equal to the area of the 

displacement loop for all frequencies at which the ferroelectric switches. We approximate this area by 

2Pr∙2Vc. The dissipated energy per cycle is then given by:  

2

,
22 atEPE

crcyclein
                   (7.3.3) 

where Pr is the remanent polarization, Ec is the coercive field, t the thickness of the ferroelectric layer 

and 
 is the surface area of the capacitor. The total dissipated power is the frequency, f, times the 

energy per cycle. The temperature rise follows from: 

  )3/32( taEfPT
cr

                         (7.3.4)                                                                              

We calculated the temperature rise using a remanent polarization of 7 μC/cm
2
, a coercive field of 60 

MV/m, a frequency of 1 kHz and a layer thickness of 500 nm. The dissipated power per unit area is 

then ~8 kW/m
2
. We take a typical surface area of 1 mm

2
 and for the thermal conductivity we use 

either 1 W/m·K, a typical value for glass and thermally grown SiO2, or 100 W/m·K, a typical value 

for the highly doped crystalline silicon wafer used as the substrate. The calculated temperature rise is 

4 
o
C and 0.04 

o
C respectively, orders of magnitude too low to account for thermal delamination.  

To verify these estimations we measured the temperature rise of a segmented polymeric light emitting 

diode on glass. For an input power of 1 kW/m
2
 we estimated a temperature rise of 1.7 

o
C for a 

segment with a radius of 2 mm. Here we have assumed that all input power is converted into heat. The 

estimated value did nicely agree with the experimental value, as measured for the segmented display, 

of about 2 
o
C.   
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The time scale for thermal delamination is off by orders of magnitude as well. The time constant, , is 

the product of the thermal capacitance of all material that has to be heated and the thermal resistance.  

  )/exp(1)(
max

tTtT                   (7.3.5) 

where
thth

VRq . We take a volumetric heat capacity, qth, of 2 Ws/cm
3
K. The longest time scale is 

obtained when we assume that the whole substrate, with a volume V, has to be heated. The time 

constant is then at most seconds, still orders of magnitude smaller than the experimental time at which 

fatigue sets in. We note that the time scale, Eq. (7.3.5), does not depend on the dissipated power but 

only on the substrate properties. Experimentally, however, fatigue rate increases with frequency, 

hence with increasing dissipated power. Delamination therefore cannot be due to thermal stress. 

Finally, we used a simplified thermal model. By adapting the thermal resistance, albeit that the values 

then are unrealistic, a large temperature rise or a long time scale can be calculated. However, these 

values cannot be obtained simultaneously. A large temperature rise and a long time scale are mutually 

exclusive. Hence, in summary, fatigue and delamination of the top electrode cannot be due to thermal 

stress. 

 

Mechanical frustration induced by inverse piezoelectricity 

The modelling of the previous section proved that degradation cannot be due to thermal stress induced 

by the dissipated power. However, P(VDF-TrFE) is not only ferroelectric but also piezoelectric. The 

delamination of the top electrode might then be due to the piezoelectric response of the P(VDF-TrFE) 

layer. Application of an electrical field leads to a contraction in the direction of the field and to a 

simultaneous expansion in the lateral direction. The resulting lateral strain leads to a mechanical stress 

at the interface between the top electrode and the P(VDF-TrFE) thin film. The top Au electrode is not 

compliant, which means that the generated stress cannot be accommodated. Therefore, the top 

electrode delaminates. The strain, i.e. the relative change in the lateral dimension, l, is in first order 

approximation directly proportional to the applied electric field, l/l = d31∙E. Fig. 7.2.2, however, 

shows that there is no fatigue when the amplitude corresponds to a field below the coercive field. The 

P(VDF-TrFE) film still exhibits a piezoelectric response though. Therefore, piezoelectricity can be 

ruled out as the origin of fatigue.  

 

Electrically induced phase decomposition 

With thermal delamination and mechanical frustration ruled out, the remaining possible origin of the 

delamination is gas expelled from the capacitor upon cycling. The gases are formed by phase 

decomposition of P(VDF-TrFE), induced by the high internal electric fields generated upon switching 

the polarization.  
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Gas formation is not unexpected. The radiation chemistry of the homopolymer, PVDF, is 

well-established and covered in two thorough reviews [155] [156]. During electron beam irradiation 

or -radiolysis, PVDF undergoes elimination of HF. The following mechanism has emerged. Electrons 

are injected and trapped at defects, grain boundaries or domain walls. At a given applied external 

electric field the capacitor is in static equilibrium. All molecular dipoles are compensated for, either 

internally or by counter-charges at the electrodes. The internal electric field is negligible and the 

trapped charges remain fixed. However, when the polarization switches temporarily large 

depolarization fields occur. Hot electrons are injected and trapped electrons are accelerated by this 

internal electric field. The charge carriers have enough energy to abstract F
-
 ions, which in turn initiate 

unzipping reactions of the PVDF chains. As a result HF is formed together with unsaturated carbon 

bonds and cross-linked moieties. The polyene bonds have been identified by optical and infrared 

absorption measurements, while Raman measurements have confirmed that H
+
 and F

-
 ions are formed 

in unzipping chain reactions [157]. These reactions only occur when the polarization switches. The 

gas emission has been monitored using permeable grid electrodes [158]. Gases were predominantly 

produced at the negatively charged electrode and only during polarization switching. The threshold 

for gas emission corresponded to the coercive field. Under constant electric field the gas emission 

decreased by at least an order of magnitude.    

To confirm the gas-induced delamination, we looked at the temporal evolution of the electrode 

morphology. Fig. 7.3.1 shows in-situ optical micrographs taken during a fatigue measurement. The Au 

electrode of the pristine capacitor is smooth. During cycling small bumps are formed. With time the 

number of bumps increases, they grow in size and finally coalesce into macroscopic bubbles. The 

gold electrode acts as a gas barrier. The gas expelled from P(VDF-TrFE) is accumulated at the 

interface forming bumps that grow in time. Finally, the top electrode is delaminated, which is visible 

by the naked eye. 

 

FIG. 7.3.1 Temporal evolution of the electrode morphology. In-situ optical micrographs on the same spot, taken 

during a fatigue measurement of a P(VDF-TrFE) capacitor with Au electrodes. The fatigue measurement was 

performed using a bipolar triangular waveform with a frequency of 1 kHz and an amplitude of 60 V. The left 

micrograph shows that the Au electrode of the pristine capacitor is smooth. The right micrograph shows that the 

top electrode is delaminated, which is visible by the naked eye. 

 

We note that the gas volume required for delamination can be produced by a negligible amount of 

decomposed polymer. Hence, it is not surprising that the phase decomposition cannot be detected 
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electrically, such as in leakage current or in direct reduction of polarization. Furthermore, we note that 

for organic ferroelectrics the effect is very pronounced because the electrode is not covalently bound 

to the polymer layer. The adhesion between the polymer layer and the electrode is limited to van der 

Waals forces.  

Prerequisites for fatigue are therefore both the presence of injected and/or trapped charges and 

switching of the polarization. This explains why fatigue can be less pronounced when using poorly 

injecting electrodes and why fatigue only occurs under bipolar switching. Furthermore it might 

explain the dependence on the waveform. Triangular or sinusoidal pulses yield similar programming 

cycle endurance, while the use of rectangular pulses, with abrupt variations in electric field, inevitably 

leads to an enhanced fatigue behavior. We expect that this mechanism also explains the initial 

enhancement of the remanent polarization upon cycling. However, we could not pinpoint the direct 

link. Electrons injected in the pristine polymer might yield extra compensation charges that can 

stabilize the polarization of parts in the film that had not yet been polarized. 

Local phase decomposition has been reported as a generic fatigue mechanism for inorganic 

ferroelectrics. Optical micrographs of fatigued PZT capacitors showed dark spots due to holes in the 

Pt top electrode. The delaminated holes are due to evaporation of oxygen and/or Pb/PbO from the 

interface [53]. Micro Raman measurements, performed in the micron size holes, showed that the 

ferroelectric perovskite phase was transformed into the paraelectric pyrochlore phase. Upon annealing 

the degraded capacitor in an O2 ambient, the perovskite phase and the accompanying ferroelectric 

polarization was restored. The phase decomposition was initiated by large depolarization fields that 

occur when the polarization is switched. It has been argued that the same mechanism holds for other 

inorganic ferroelectrics such as BaTiO3. Here we have shown that it explains fatigue in the organic 

ferroelectric P(VDF-TrFE).       

The phase decomposition mechanism is confirmed by electron beam-induced damage in a scanning 

electron microscope. A high probe current was used to expose a pristine capacitor. Real-time images 

were recorded during the exposure. The composite SEM micrograph in Fig. 7.3.2 shows the time 

evolution (left to right) of a growing bump on the top Au electrode (light gray area). 

 

FIG. 7.3.2 Electron-beam induced damage. A pristine capacitor (left) is exposed to a 10 keV electron beam 

under analytical SEM conditions with a high probe current of ~1 nA. Real-time images were recorded during 

the exposure. The composite SEM micrograph shows the time evolution (left to right) of a growing bump on the 

top Au electrode (light gray area).  
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7.4 Fatigue-free P(VDF-TrFE)-based capacitors 

We have shown that the delamination of the top electrode is caused by accumulation of volatile 

components expelled from the capacitor and blocked by the top electrode. The gases are generated 

when the polarization switches. The delamination can be avoided by adapting the waveform of the 

cycling and/or by adapting the layout of the capacitor. The waveform controls the gas generation and 

diffusion rate. In the adapted layout of the capacitor configuration the gas barrier is removed. 

In Fig. 7.4.1 we varied the duty cycle of the waveform. We cycled the capacitor with a triangular 

waveform of 100 Hz. The red curve shows the normalized polarization as a function of the cumulative 

number of cycles for continuous cycling. The polarization rapidly decreases and is halved after 

approximately 5×10
4
 cycles. The resulting morphology of the top electrode is schematically depicted 

in the inset. Next, we adapted the duty cycle. The continuous cycling was interrupted every second 

with a waiting time of up to 10 seconds, as schematically depicted in the inset of Fig. 7.4.1. The 

cycling endurance increases with waiting time, as shown by the blue (5 s waiting time) and green (10 

s waiting time) curves. The measured dependence on duty cycle can be explained as follows. While 

switching gas is generated by phase decomposition of P(VDF-TrFE). During the waiting time the gas 

can diffuse out of the capacitor. Gas accumulation at the interface between the P(VDF-TrFE) layer 

and the top electrode is thereby prevented. The reduced delamination results in improved 

programming cycle endurance.  

 

FIG. 7.4.1 Improved programming cycle endurance. Fatigue measurement of a P(VDF-TrFE) capacitor with Au 

electrodes. The measurement was performed using a variable duty cycle. The red curve shows the normalized 

polarization as a function of the cumulative number of cycles for continuous cycling with a bipolar triangular 

waveform with a frequency of 100 Hz and an amplitude of 40V. The inset depicts the resulting morphology of 

the top electrode. The blue and green curves correspond to measurements where the continuous cycling was 

interrupted every second with a waiting time of 5 and 10 seconds, respectively. The programming cycle 

endurance increases with decreasing duty cycle. 

 

To further enhance the endurance and to substantiate the relevance of gas-induced delamination, we 

varied the capacitor layout. We changed the gold electrode, which is impermeable to gases, to the 

polymeric conductor PEDOT:PSS, whose gas diffusion coefficient is orders of magnitude higher. 
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FIG. 7.4.2 Fatigue-free P(VDF-TrFE) ferroelectric capacitors. Fatigue measurement of a P(VDF-TrFE) 

capacitor with a PEDOT:PSS top electrode. The red curve shows the normalized polarization as a function of 

the cumulative number of cycles for continuous cycling with a bipolar triangular waveform with a frequency of 

100 Hz and an amplitude of 40 V. The blue curve corresponds to measurements using a waiting time of 5 

seconds and a frequency of 1 kHz. The inset depicts the facilitated gas diffusion through the top polymeric 

electrode. A fatigue-free capacitor is realized with a programming cycle endurance of 10
8
 cycles. 

 

Fig. 7.4.2 shows the normalized polarization as a function of the cumulative number of cycles for a 

PVDF-TrFE capacitor with a PEDOT:PSS top electrode. The red curve shows fatigue under 

continuous operation. Although improved with respect to a Au top electrode, the capacitor still shows 

fatigue. Optical inspection did show that the morphology of the top electrode changes. With time, 

micro-voids on the surface of the PEDOT:PSS electrode become clearly visible. By introducing a 

waiting time of 5 seconds, represented by the blue data points, a fatigue-free capacitor is realized. The 

inset depicts the facilitated gas diffusion through the polymeric top electrode. In this case, the 

morphology of the electrode does not change. However, when we apply an additional Au capping 

layer, the PEDOT:PSS/Au stack becomes impermeable to volatile components and the fatigue 

behavior resembles that of capacitors with Au-only electrodes, c.f. Fig. 7.2.1. Without Au, using only 

a PEDOT:PSS electrode and by reducing the duty cycle, there is no degradation up to 10
8
 cycles. The 

programming cycle endurance of the P(VDF-TrFE) capacitor approaches that of its inorganic 

ferroelectric counterparts. 

 

 

7.5 Summary 

We have systematically investigated fatigue of P(VDF-TrFE) thin-film capacitors. In a capacitor with 

Au electrodes the coercive field remains constant but the polarization severely decreases under 

continuous cycling. A thermal analysis showed that thermal stress can be disregarded. To pinpoint the 

origin of the measured fatigue we deliberately varied the amplitude and the frequency of the applied 

bipolar waveform. The dependence on amplitude shows that fatigue is related to the switching of the 
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polarization. The onset of degradation is at about 10
4
 cycles, but the degradation rate strongly 

increases with increasing amplitude. The frequency dependence shows that at low frequency the 

polarization unambiguously decreases with the number of cycles. At high frequency the capacitor is 

fatigue-free because the polarization does not switch.  

We argue that the origin of fatigue in P(VDF-TrFE) capacitors is delamination of the Au top electrode, 

as can be seen from in-situ optical micrographs. The delamination is due to gases formed by phase 

decomposition of the P(VDF-TrFE), induced by the high internal electric fields that occur when the 

polarization switches. The mechanism is confirmed by inducing similar damage using high current 

densities in a scanning electron microscope. We show that when the gas barrier is removed and the 

waveform is adapted to control the gas generation and diffusion rates, a fatigue-free capacitor is 

realized. The P(VDF-TrFE)-based ferroelectric capacitor can be cycled more than 10
8
 times. 
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Chapter 8 Perspective: in-plane polarization and 

vortices in ferroelectrics 

 

 

Hitherto, all our focuses are on the out-of-plane polarization, i.e. the polarization perpendicular to the 

ferroelectric thin film as well as the direction of the applied electric field. The aforementioned 

macroscopic polarization specifically refers to the out-of-plane polarization, consisting of domains 

with up or down polarity, whereas the in-plane polarization is disregarded. In thin-film ferroelectric 

devices, it is the out-of-plane polarization that enables their application in information storage, as the 

out-of-plane polarization can be aligned and switched among multiple states by applied static electric 

field and maintains the value when the electric field is removed. The in-plane-polarization however, 

has no net macroscopic effect when that within the whole thin film is added up, therefore is for a long 

time of no practical interests. 

With the development of the techniques in visualizing and engineering the domains in smaller and 

smaller scale, local properties of domain walls become increasingly interesting in recent decades 

[159]. Contemporarily, it has been shown that in low-dimensional ferroelectric materials, there exists 

exotic topological phase transition, which greatly broadens the scope and capability of future 

in-plane-polarization related applications. In this Chapter, we briefly review reported recent progress 

in the research of the in-plane polarization in ferroelectric materials. 
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8.1 Charged domain walls 

The charged domain walls (CDWs) refer to a type of ferroelectric domain walls where the net bound 

charges exist. In general, adjacent domains are naturally forced towards equilibrium with electrostatic 

neutrality in between, e.g. the 180° out-of-plane domain walls. Charged domain walls can arise in two 

circumstances. In the first case, when the equilibrium neutral domain-wall configuration is slightly 

perturbed, for example during polarization switching, the domain walls become weakly charged due 

to the in-plane polarization divergence [160]. These weakly charged domain walls are usually instable 

and tend to relax to low-energy, uncharged orientations after removal of the external field unless 

pinned by local defects [161]. Another situation of the charged domain walls, termed as the strongly 

charged domain walls, refers to a type of domain walls formed with a “head-to-head” or “tail-to-tail” 

in-plane polarization configuration [162]. With the participation of the clamping effect of two 

ferroelastic states, the strongly charged domain walls with such “head-to-head” or “tail-to-tail” 

polarization configuration can be stabilized without defect pinning [160].   

The bound charges at charged domain walls can gather free charges to eliminate the depolarization 

field [160] [161]. The gathered free charges at the charged domain walls form degenerated 

quasi-two-dimensional electron gas with metallic free-carrier concentration, resulting in a local 

insulator-metal transition [163] [164] [165] [166] [160]. Such a transition is directly reflected by the 

local conductivity. J-V measurements on weakly charged domain walls show transient, enhanced 

conductivity 10-10
3
 times that of the bulk [166]. The intrinsic conductivity on strongly charged 

domain wall with “head-to-head” configuration in BaTiO3 was found 10
8
-10

10
 higher than bulk with 

the thickness of the domain wall as 10-100 nm taken into consideration [160]. Furthermore, the 

conductivity as a function of the temperature was obtained in Ref. [160], showing the metallic 

behaviour as ~[1+a∙(T-T0)]
-1

. These finding are not of fundamental interest, but also suggest potential 

applications such as ultra-high-density information storage based on charged-domain-wall induced 

resistive switching [161]. 

The bound charges at the charged domain walls can also affect the properties of the surrounding 

material with an in-plane depolarization field incompletely compensated. This depolarization field 

leads to the rotation of the polarization as schematically shown in Ref. [167], and enhanced dielectric 

and piezoelectric response of each domain [167]. A ferroelectric material with dense patterns of 

charged domain walls are therefore expected to have strongly enhanced piezoelectric properties, 

promising for high-performance devices for energy harvesting, transducers, and etc.  

 

 

8.2 In-plane vortices and skyrmionic configurations  

The swirling field textures, e.g. vortices, anti-vortices, are now widely recognized as objects of both 

fundamental interest and technological relevance. The formation of such in-plane flux-closure 

structures is regarded as a result of chiral interactions. Ferroelectrics, lacking such chiral interactions, 

have long been left aside in this quest. 
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The interactions governing the ferroelectric material is the long-range Coulomb interaction and 

short-range covalent interaction [5]. In nanostructured ferroelectrics, the long-range Coulomb 

interaction is truncated due to lack of periodicity, and the short-range interaction is significantly 

modified near the surface boundary [168]. Based on first-principles-derived effective Hamiltonian 

approach coupled with Monte Carlo simulations, Fu et al. found robust vortex patterns of the in-plane 

polarization in barium titanate quantum dots and wires [168]. Later, they conducted ab initio studies 

on free-standing nanoparticles of Pb(Zr0.5Ti0.5)O3 solid solution [169], and pointed out that the 

formation of such vortex pattern belongs to a topological phase transition, where a new order 

parameter as the toroid moment is defined as: 

   


i

ii
N pRG

1
2                 (8.2.1) 

where N is the number of cells in the simulation, pi is the local dipole of cell i located at Ri. The 

out-of-plane component of toroid moment, Gz, increases sharply below 600 K while being zero at 

higher temperature. They also found that the specific heat exhibits a hump around 550 K, which 

further confirmed the existence of a phase transition. Below the transition temperature, the vortex 

configuration was found energetically more stable than the periodic 180° domains with an 

out-of-plane polarization; in other words, the system prefers spontaneous vortex to spontaneous 

polarization. 

The vortex structure was found bistable, as the toroid moment, G, can be equivalently parallel or 

anti-parallel to the plane norm. The two states can be accessed via and alternating magnetic field 

which interacts with the toroid moment by generating a curling electric field: 

t




B
E                   (8.2.2) 

And the coercive field was defined as ∂B/∂t needed to switch the toroid moment, unlike a static 

electric field switching the out-of-plane polarization in ferroelectrics thin films or bulks. 

The data storage via switchable macroscopic toroid moment could be superior to using spontaneous 

polarization for the following reasons [169]. Firstly, generating a magnetic field does not require 

electrode contact which is challenging for make in nanoscale devices. Secondly, the vortex phase does 

not exhibit macroscopic polarization or produce a strong electric field that has long-range character. 

Therefore the vortex structure in a single nanoparticle can be switched without modifying the states of 

its neighbouring particles, and hence the toroid carriers of information can be packed considerably 

more densely than the conventional carriers of polarization, giving rise to remarkable improvement in 

the density of ferroelectric recording. The minimum diameter that they found to be able to generate 

bistable toroid states is 3.2 nm, enabling a storage density of 60 Tbit/inch
2
. The stability of the 

vortices was found depending on the strain. First-principle based simulations on perovskite 

nanoparticles [170] have suggested: (i) unstrained flat nanoparticles transform into a vortex state with 

an in-plane curling polarization, (ii) under strong enough compressive strain the vortex state is no 

longer stable and gives way to a 180° domain phase. 
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The existence and stability of in-plane flux-closure configurations in geometrically confined 

nano-ferroelectrics have also been tested using phase-field simulations [171] [172] where Helmholtz 

free energy consists of the Landau-Ginzburg term, the electrostatic energy, the elastic energy, the 

surface energy etc. In the nano-ferroelectric materials, the trend to minimize the residual stress and the 

stray field leads to the formation of closed circuits of 90° domains.  

The predicted existence of in-plane vortices in geometrically confined ferroelectrics further intrigued 

the search for electrical skyrminons in ferroelectric materials. Skyrmions are topologically protected 

objects which are stable against perturbations. The topological charge is defined as: 

  yxQ
yx

dd
4

1
  uuu


              (8.2.3) 

where u denotes the normalized local dipole moment. The topological charge takes integral numbers 

whose change relates to topological phase transitions. The skyrmionic configuration in ferromagnets 

[173] [174] and anti-ferromagnets [175] has been intensively studied and remains an active field. To 

find the counterpart in ferroelectrics is of fundamental interest. The formation of skyrmions in 

magnets has been ascribed to the chiral Dzyaloshinskii-Moriya interaction [176] [177] which is absent 

in ferroelectrics. However, the geometrical confinement in nanoscale ferroelectric materials may 

enable formation of skyrmions as hinted from the existence of vortices in such materials [178].  

Nahas et al. simulated the cylindrical BaTiO3 nanowire with a radius of 2.7 nm embedded in a SrTiO3 

matrix to study electrical skyrmions [178]. They first performed a temperature annealing under an 

external electric field of 100 MV/m along the plane norm. On reaching 15 K, the field was set to zero 

and further relax the dipole configuration. The resulting relaxed configuration features a co-existence 

of a spontaneous polarization along the plane norm and a flux-closure vortex structure; the topological 

charge calculated was 0, meaning that the structure was topologically trivial. However, when the state 

was subject to an electric field against the plane norm, with value of about 16.5 MV/m, the 

topological charge sharply changes to 1, indicating the formation of topologically non-trivial 

skyrmion. The formed skyrmions were stable, and can be as small as a few nanometers. Their findings 

widened the scope and capabilities of future skyrmion-based applications. 

Experimental evidences [179] [41] [180] for in-plane vortices in ferroelectrics are currently very rare. 

Via piezoresponse force microscopy, images of in-plane vortices formed by bundles of in-plane nano 

domains have been reported [41]. The dimension of such vortices, however, is of hundreds of 

nanometers. The vortices were found to occur spontaneously and can also be produced by external 

electric field. Contrary to theoretical predictions, the vortices were found in large-area ferroelectric 

thin films, not just in nanodots, and were found not limited by geometric grain boundaries [41]. 

Physical origins of such contradictions with simulation results [168] [169] [170] [178] remain elusive; 

observation of in-plane vortex in atomic scale, as has been achieved for 180° flux-closure domains 

near interfaces [181] and ferroelectric/paraelectric superlattices [182], is yet to be explored. 
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Summary 

 

 

In summary, we have systematically investigated the device physics of polarization in ferroelectric 

thin films, including polarization switching, evolution of ferroelectric domains,  retention of various 

polarization states,  mechanism of domain-wall depinning, and the mechanism of polarization 

fatigue. This thesis consists of experimental investigations and theoretical modeling. 

Chapter 1 is a short introduction to the fundamentals of ferroelectricity and PVDF-based ferroelectric 

polymers. The microscopic origin of ferroelectricity has been discussed from both an ab initio and a 

phenomenological point of view. The ferroelectricity in polymers has been reviewed from monomeric 

to macroscopic device level. The theory and computer simulation of polarization switching has been 

elaborated in Chapter 2. The hysteresis loops of the polarization- and strain vs. the electric field have 

been simulated and shown good agreement with experimental data. Chapter 3 described the 

experimental details on device fabrication and measurements. In Chapter 4, the transients of the 

polarization switching have been systematically investigated as a function of electric field and 

temperature. A random walk model has been presented that correlates the observed switching 

dynamics with the morphology of ferroelectric domains. We have elaborated the piezoresponse force 

microscopy investigation in Chapter 5. We have shown for the first time an explicit correlation 

between the mean out-of-plane piezoresponse phase and the macroscopic polarization. The underlying 

origin for the retention of domains absent of screening free charges at conductive electrodes has been 

discussed. The domain morphology discussed in Chapter 4 has been directly visualized. The 

measurement of the dynamics of depolarization has surprisingly allowed us unraveling the universal 

mechanism of domain-wall depinning and the long-standing puzzle of the origin of Merz law. The 

story has been discussed in depth in Chapter 6. In Chapter 7, we have investigated the fatigue in 

P(VDF-TrFE) thin-film capacitors. We have demonstrated that the fatigue is due to delamination of 

the top electrode caused by the accumulation of gases formed by electron-induced phase 

decomposition of P(VDF-TrFE). We have shown an ultra-endurable ferroelectric capacitor based on 

P(VDF-TrFE) when the gas can be released, approaching the programming cycle endurance of its 

inorganic ferroelectric counterparts. Chapter 8 is a briefly review on recent research progresses on 

in-plane polarization as a future outlook of this thesis, in which two topics, i.e. the in-plane vortices 

and the charged domain walls, have been specifically chosen. 

  



- 87 - 
 

Acknowledgement 

 

 

It is difficult to express my innumerous thanks with words to all those who have made my pursuit for 

PhD a lifelong unforgettable memory. Nevertheless, I would like to deliver my acknowledgement, 

which is far beyond words, to them in this part. 

I would like to give special thanks to Prof. Dr. Dago de Leeuw at the Max-Planck Institute for 

Polymer Research (MPIP) for his supervision as well as his strong impetus on my development in 

academia. I feel so lucky to have the chance to learn from and discuss with such a world-famous 

scientist so frequently, several times per day, to be precise. His help to my improvement is multiple, 

including scientific knowledge, experimental techniques, the way of writing and presenting, the 

matters of dealing with people and etc. Dago has deeply influenced my attitude towards research. He 

is an extremely dedicated scientist, spending all day time in the lab or discussing or writing with 

students, which I not only appreciate but also take as exemplar. Dago has convinced me of the 

importance of a full dataset instead of merely “useful” data. “You’ve had an expectation before the 

measurement; then you treat the rest data which do not support your expectation as useless. It’s not 

the correct way!” he once told me. I shall keep this in mind forever. I also treasure the off-duty time 

with him: the lunches together, the days of traveling after conferences in Italy, in Singapore, in China 

and in Germany, the time we drinking beer after paper finalized...  

I thank Prof. Dr. Paul Blom (MPIP) for his helpful support both administratively and scientifically. It 

is my great honor to once be a member of this group which I have had known from uncountable 

brilliant publications and had being longing for during writing my Bachelor thesis five years ago. 

Discussing with Paul is always inspiring and pleasant without any pressure, which I enjoy a lot. 

I thank Prof. Dr. Hans-Joachim Elmers (Johannes-Gutenberg University Mainz) and Prof. Dr. Mathias 

Kläui (JGU) for helpful discussions and advices.  

I am grateful to my colleagues as well as co-authors, Dr. Ilias Katsouras, Dr. Mengyuan Li, Dr. Kamal 

Asadi and Mr. Thomas Lenz, for excellent collaboration. While Ilias introduced me into ferroelectrics 

and paved the way for high-quality research in our lab, Thomas explored shoulder by shoulder with 

me, and we have made remarkable progresses together. 

I am grateful to Mrs. Petra Pausch (MPIP) for her generous help in administrative affairs, and by the 

way, thanks for the information of the amazing concerts. I do owe many thanks to Mr. Hans-Peter 

Raich, Mr. Frank Keller, Mr. Gunnar Glass and Mr. Uwe Rietzler (MPIP) for their technical support. 

It is their professional effort that guarantees our productive research. 



- 88 - 
 

I thank Prof. Dr. Edmund Boschitz (Karlsruhe Institute of Technology, Germany) for his warm help 

ranging from career-wise advices to life philosophy. We met in his seminar in the Department of 

Physics at Peking University in 2009. Since then we maintain a friendship which I treasure a lot. And 

I do appreciate his words to me: focus on your Holy Grail; things like money and reputations are 

secondary and come automatically.  

I thank Dr. Hans-Peter Loebl (Philips Research Laboratory, Aachen, Germany) and Prof. Dr. Uli 

Lemmer (KIT) for supervising my Master thesis and Prof. Dr. Lixin Xiao and Prof. Dr. Zhijian Chen 

(Peking University, China) for supervising my Bachelor thesis. Their patient guidance made my way 

to PhD application possible. 

I thank Mr. Junto Tsurumi and Mr. Yu Yamashita (The University of Tokyo, Japan), Mr. Cheng Guo, 

Mr. Haonan Huang and Mr. Lian Duan (Peking University, China) for research assistance.  

I appreciate fruitful discussions with my friends in the field of ferroelectrics all over the world, 

especially Dr. Zhen Huang (Swiss Federal Institute of Technology in Lausanne, Switzerland) and Dr. 

Linze Li (The University of Michigan, USA). 

I also thank my friends in other field of scientific research, whom are Dr. Yuki Nagata, Dr. Fen-Yen 

Lin and Mr. Zhijun Chen (MPIP), Dr. Binghong Han and Miss Lili Yu (Massachusetts Institute of 

Technology, USA), Mr. Yanhao Tang (Michigan State University, USA), Mr. She Chen (Tsinghua 

University, China), Dr. Ziyao Wang (Philips Research Laboratory, Aachen, Germany), Mr. Qing Shi 

(McGill University, Canada), Mr. Bin Xu (Princeton University, USA), Mr. Yongxi Ou (Cornell 

University, USA), Dr. Xinyi Li (Swiss Federal Institute of Technology in Zurich, Switzerland), Mr. 

Wenping Cui (Rheinische Friedrich-Wilhelms University Bonn, Germany), Mr. Ta-Shun Chou 

(Friedrich-Alexander University Erlangen-Nürnberg, Germany), and Mr. Zhengqi Wang (KIT), for 

their inspiring comments from other aspects of view.   

At the occasion of finishing this thesis, I would like to mention my parents. They have created an 

atmosphere full of love in which I grew up. Their love is my greatest fortune. They have provided me 

with best family education and have encouraged me developing my hobbies, choosing my career and 

leading my life independently. It is always my greatest pride to have such a family. Last but not least, 

I would like to express my infinite love to my parents to whom I am in debt in all respects. 谁言寸草

心，报得三春晖!   



- 89 - 
 

List of publications
*
 

 

1.  D. Zhao, T. Lenz, I. Katsouras, P. W. M. Blom, and D. M. de Leeuw, Global excitation and local 

probing of ferroelectric domains, Org. Electron. 47, 189 (2017).  

2. J. M. Perez, D. Zhao, T. Lenz, I. Katsouras, D. M. de Leeuw, and N. Stingelin, 

Solid-state-processing of δ-PVDF, Mater. Horiz. 4, 408 (2017). 

3. M. Ghittorelli, T. Lenz, H. Dehsari, D. Zhao, K. Asadi, P. W. M. Blom, Z. Kovacs-Vajna, and D. 

M. de Leeuw, Quantum tunnelling and charge confinement in organic ferroelectric memory diodes, 

Nature Commun. 8. 15741 (2017). 

4. D. Zhao, I. Katsouras, K. Asadi, W. A. Groen, P. W. M. Blom, and D. M. de Leeuw, Retention of 

intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage, 

Appl. Phys. Lett. 108, 232907 (2016).  

5. I. Katsouras, K. Asadi, M. Li, T. B. Van Driel, K. S. Kjær, D. Zhao, T. Lenz, Y. Gu, P. W. M. 

Blom, D. Damjanovic, M. M. Nielsen, and D. M. De Leeuw, The negative piezoelectric effect of the 

ferroelectric polymer poly (vinylidene fluoride), Nature Mater. 15, 78 (2016). 

6. D. Zhao, I. Katsouras, K. Asadi, P. W. M. Blom, and D. M. de Leeuw, Switching dynamics in 

ferroelectric P(VDF-TrFE) thin films, Phys. Rev. B 92, 214115 (2015). 

7. I. Katsouras, D. Zhao, M. Spijkman, M. Li, P. W. M. Blom, D. M. de Leeuw, and K. Asadi, 

Controlling the on/off current ratio of ferroelectric field-effect transistors, Sci. Rep. 5, 12094 (2015). 

8. T. Lenz, D. Zhao, G. Richardson, I. Katsouras, K. Asadi, G. Glasser, S. Zimmermann, N. 

Stingelin, C. Roelofs, M. Kemerink, P. W. M. Blom, and D. M. de Leeuw, Microstructured organic 

ferroelectric thin film capacitors by solution micromolding, Phys. Status Solidi A 212, 10 (2015). 

9. D. Zhao, I. Katsouras, M. Li, K. Asadi, J. Tsurumi, G. Glasser, J. Takeya, P. W. M. Blom, and D. 

M. de Leeuw, Polarization fatigue of organic ferroelectric capacitors, Sci. Rep. 4, 5075 (2014). 

  

                                                             
*
 Publications related to PhD topic. 



- 90 - 
 

References 

 

 

[1]  K. Rabe, Ch. H. Ahn, J. -M. Triscone, Physics of Ferroelectrics: A Modern Perspective, Heidelberg: 

Springer, 2007.  

[2]  J. Valasek, Phys. Rev. 15, 537 (1920).  

[3]  J. Valasek, Phys. Rev. 17, 4 (1921).  

[4]  I. Katsouras, K. Asadi, L. M., T. van Driel, K. S. Kjær, D. Zhao, T. Lenz, Y. Gu, P. W. M. Blom, D. 

Damjanovic, Nielsen, M. and D. M. de Leeuw, Nature Mater. 15, 78–84 (2016).  

[5]  R. E. Cohen, Nature 358, 136-138 (1992).  

[6]  R. Resta, Ferroelectrics 136, 51 (1992).  

[7]  R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).  

[8]  R. Resta, Rev. Mod. Phys. 66, 899 (1994).  

[9]  C. Kittel, Introduction to Solid State Physics 7th Ed., New York: Wiley, 1996.  

[10]  G. Shirane and R. Pepinsky, Phys. Rev. 91, 812 (1953).  

[11]  W. Zhong and D. Vanderbilt, Phys. Rev. Lett. 73, 13 (1994).  

[12]  B. Zalar, V. V. Laguta and R. Blinc, Phys. Rev. Lett. 90, 3 (2003).  

[13]  K. Tashiro and M. Kobayashi, Phase Trans. 18, 213-246 (1989).  

[14]  B. B. Tian, X. F. Bai, Y. Liu, P. Gemeiner, X. L. Zhao, B. L. Liu and Y. H. Zou, Appl. Phys. Lett. 106, 

092902 (2015).  

[15]  R. Clausius, Die Mechanische Behandlung der Electrica, Berlin: Vieweg, 1879.  

[16]  L. D. Landau and E. M. Lifshitz, Statistical Physics, Oxford: Pergamon, 1959.  

[17]  A. F. Devonshire, Philos. Mag. 40, 1040 (1949).  

[18]  H. Kawai, Jpn. J. Appl. Phys. 8, 975 (1969).  

[19]  J. G. Bergman, Jr., J. H. McFee, G. R. Crane, Appl. Phys. Lett. 18, 203 (1971).  

[20]  A. J. Lovinger, Science 220, 4602 (1983).  

[21]  X. Lou, M. Zhang, S. A. T. Redfern and J. F. Scott, Phys. Rev. B 75, 224104 (2007).  

[22]  M. A. Khan, U. S. Bhansali, X. X. Zhang, M. M. Saleh, I. Odeh and H. N. Alshareef, Appl. Phys. 

Lett. 101, 143303 (2012).  

[23]  M. A. Khan, U. S. Bhansali and H. N. Alshareef, Adv. Mater. 24, 2165-2170 (2012).  

[24]  G. Botelho, S. Lanceros-Mendez, A. Gonçalves, V. Sencadas and J. Rocha, J. Non-Cryst. Solids 354, 

72 (2008).  

[25]  D. C., W. N. Mei, W.-G. Yin, J. Liu, J. R. Hardy, S. Ducharme and P. A. Dowben, Phys. Rev. B 69, 

235106 (2004).  

[26]  T. Furukawa, Phase Trans. 18, 143 (1989).  

[27]  J. F. Scott, Ferroelectric Memories, Heidelberg: Springer, 2000.  



- 91 - 
 

[28]  V. L. Ginzburg, Fiz. Tverd. Tela 2, 2031 (1960).  

[29]  A. Tagantseve, L. Cross and J. Fousek, Domains in Ferroic Crystals and Thin Films, New York: 

Springer, 2010.  

[30]  A. Kolmogorov, Izv. Akad. Nauk USSR; Ser. Math. 3, 355 (1937).  

[31]  M. Avrami, J. Chem. Phys. 7, 1103 (1939).  

[32]  Y. Ishibashi and Y. Takagi, J. Phys. Soc. Jpn. 31, 506 (1971).  

[33]  Y. Genenko, S. Zhukov, S. Yampolskii, J. Schutrumpf, R. Dittmer, W. Jo, H. Kung, M. Hoffmann 

and H. von Seggern, Adv. Funct. Mater. 22, 2058 (2012).  

[34]  P. Sharma, T. J. Reece, S. Ducharme and A. Gruverman, Nano Lett. 11, 1970 (2011).  

[35]  J. Y. Jo, H. S. Han, J. G. Yoon, T. K. Song, S. H. Kim and T. W. Noh, Phys. Rev. Lett. 99, 267602 

(2007).  

[36]  A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross and M. Tsukada, Phys. Rev. B 66, 214109 

(2002).  

[37]  R. Miller and G. Weinreich, Phys. Rev. 117, 6 (1960).  

[38]  T. Tybell, P. Paruch, T. Giamarchi and J. Triscone, Phys. Rev. Lett. 89, 9 (2002).  

[39]  P. Guethner and K. Dransfeld, Appl. Phys. Lett. 61, 1137 (1992).  

[40]  G. Catalan, H. Béa, S. Fusil, M. Bibes, P. Paruch, A. Barthélémy and J. F. Scott, Phys. Rev. Lett. 100,  

027602 (2008).  

[41]  Y. Ivry, D. P. Chu, J. F. Scott and C. Durkan, Phys. Rev. Lett. 104, 207602 (2010).  

[42]  A. Gruverman, D. Wu and J. F. Scott, Phys. Rev. Lett. 100, 097601 (2008).  

[43]  Y. Takahashi, N. Tomoda and T. Furukawa, Polym. J. 47, 249 (2015).  

[44]  A. V. Ievlev, S. Jesse, A. N. Morozovska, E. Strelcov, E. A. Eliseev, Y. V. Pershin, A. Kumar, V. Shur 

and S. V. Kalinin, Nature Phys. 10, 59-66 (2014).  

[45]  L. J. McGilly, P. Yudin, L. Feigl, A. K. Tagantsev and N. Setter, Nature Nanotechnology 10, 145-150 

(2015).  

[46]  A. Kholkin, S. V. Kalinin, A. Roelofs and A. Gruverman, "Chapter I.6," in Scanning Probe 

Microscopy, New Yor, USA, Springer, 2007.  

[47]  S. V. Kalinin, B. J. Rodriguez, S. Kim, S. Hong, A. Gruverman and E. A. Eliseev, Appl. Phys. Lett. 

92, 152906 (2008).  

[48]  S. V. Kalinin, A. N. Morozovska, L. Q. Chen and B. J. Rodriguez, Rep. Prog. Phys. 73, 056502 

(2010).  

[49]  R. Gysel, A. K. Tagantsev, I. Stolichnov, N. Setter and M. Pavius, Appl. Phys. Lett. 89, 082906 

(2006).  

[50]  R. G. P. McQuaid, L. J. McGilly, P. Sharma, A. Gruverman and J. M. Gregg, Nature Commun. 2, 404 

(2011).  

[51]  A. K. Tagantsev, I. Stolichnov, E. L. Colla and N. Setter, J. Appl. Phys. 90, 1387-1402 (2001).  

[52]  X. Lou, J. Appl. Phys. 105, 024101 (2009).  

[53]  X. Lou, M. Zhang, S. A. T. Redfern and J. F. Scott, Phys. Rev. Lett. 97, 177601 (2006).  

[54]  G. Zhu, X. Luo, J. Zhang, Y. Gu and Y. Jiang, IEEE T. Dielect. El. In 17, 1172-1177 (2010).  



- 92 - 
 

[55]  G. Zhu, Y. Gu, H. Yu, S. Fu and Y. Jiang, J. Appl. Phys. 110, 024109 (2011).  

[56]  X. Zhang, H. Xu and Y. Zhang, J. Phys. D: Appl. Phys. 44, 155501 (2011).  

[57]  H. Xu, J. Zhong, X. Liu, J. Chen and D. Shen, Appl. Phys. Lett. 90, 092903 (2007).  

[58]  H. Xu, X. Liu, X. Fang, H. Xie, G. Li, X. Meng, J. Sun and J. Chu, J. Appl. Phys. 105, 034107 

(2009).  

[59]  G. Zhu, Z. Zeng, L. Zhang and X. Yan, Appl. Phys. Lett. 89, 102905 (2006).  

[60]  S. Ducharme, V. M. Fridkin, A. V. Bune, S. P. Palto, L. M. Blinov, N. N. Petukhova and S. G. Yudin, 

Phys. Rev. Lett. 84, 175 (2000).  

[61]  G. Vizdrik, S. Ducharme, V. M. Fridkin and S. G. Yudin, Phys. Rev. B 68, 094113 (2003).  

[62]  R. Ahluwalia, M. Sullivan, D. Srolovitz, J. Zheng and A. Huan, Phys. Rev. B 78, 054110 (2008).  

[63]  H. Hu and L. Q. Chen, J. Am. Ceram. Soc. 81, 3 (1998).  

[64]  S. Jesse, B. J. Rodriguez, S. Choudhury, A. P. Baddorf, I. Vrejoiu, D. Hesse, M. Alexe, E. A. Eliseev, 

A. N. Morozovska, J. Zhang, L. Chen and S. V. & Kalinin, Nature Mater. 7, 209-215 (2008).  

[65]  B. L. Li, X. P. Liu, F. Fang, J. L. Zhu and L. J. M., Phys. Rev. B 73, 014107 (2006).  

[66]  F. Xue, X. S. Gao and J. M. Liu, J. Appl. Phys. 106, 114103 (2009).  

[67]  Y. Ma, K. Albe and B. Xu, Phys. Rev. B 91, 184108 (2015).  

[68]  L. F. Wang and J. M. Liu, Appl. Phys. Lett. 89, 092909 (2006).  

[69]  H. L. Hu and L. Q. Chen, Mater. Sci. Eng. A 238, 182 (1997).  

[70]  T. Furukawa and N. Seo, Jpn. J. Appl. Phys. 29, 675 (1990).  

[71]  S. M. Nakhmanson, M. B. Nardelli and J. Bernholc, Phys. Rev. Lett. 92, 115504 (2004).  

[72]  J. F. Scott, Adv. Mater. 22, 5315 (2010).  

[73]  N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. 

Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. 

Appl. Phys. 100, 051606 (2006).  

[74]  W. J. Hu, D.-M. Juo, L. You, J. Wang, Y.-C. Chen, Y.-H. Chu and T. Wu, Sci. Rep. 4, 4772 (2014).  

[75]  T. J. Yang, Venkatraman Gopalan, P. J. Swart and U. Mohideen, Phys. Rev. Lett. 82, 4106 (1999).  

[76]  M. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe and U. Gösele, Nature Mater. 3, 

87-90 (2004).  

[77]  R. C. Buchanan, T. R. Armstrong and R. D. Roseman, Ferroelectrics 135, 1 (1992).  

[78]  Y. Wu, X. Li, A. M. Jonas and Z. Hu, Phys. Rev. Lett. 115, 267601 (2015).  

[79]  Y. Shin, I. Grinberg, I. Chen and A. Rappe, Nature 449, 881-884 (2007).  

[80]  M. Kühn and H. Kliem, Phys. Stat. Sol. (b) 1, 213-223 (2008).  

[81]  C. T. Black, C. Farrell and T. J. Licata, Appl. Phys. Lett. 71, 2041-2043 (1997).  

[82]  M. Stengel, N. A. Spaldin and D. Vanderbilt, Nature Phys. 5, 304-308 (2009).  

[83]  D. Zhao, I. Katsouras, K. Asadi, W. A. Groen, P. W. Blom and D. M. de Leeuw, Appl. Phys. Lett. 

108, 232907 (2016).  

[84]  E. Soergel, J. Phys. D: Appl. Phys. 44, 464003 (2011).  

[85]  A. Kuroda, S. Kurimura and Y. Uesu, Appl. Phys. Lett. 69, 1565 (1996).  



- 93 - 
 

[86]  M. Merz, Phys. Rev. 95, 690 (1954).  

[87]  S. Zhukov, Y. A. Genenko, O. Hirsch, J. Glaum, T. Granzow and H. von Seggern, Phys. Rev. B 82, 

014109 (2010).  

[88]  A. Nautiyal, K. Sekhar, N. Pathak, N. Dabra, J. Hundal and R. Nath, Appl. Phys. A 99, 941 (2010).  

[89]  T. Furukawa and G. Johnson, Appl. Phys. Lett. 38, 1027 (1981).  

[90]  I. Stolichnov, P. Maksymovych, E. Mikheev, S. V. Kalinin, A. K. Tagantsev and N. Setter, Phys. Rev. 

Lett. 108, 027603 (2012).  

[91]  P. Sharma, T. Nakajima, S. Okamur and A. Gruverman, Nanotechonlogy 24, 015706 (2013).  

[92]  T. Witten and L. Sander, Phys. Rev. Lett. 47, 19 (1981).  

[93]  P. Meakin, Fractals, Scaling and Growth Far from Equilibrium, New York: Cambridge University 

Press, 1998.  

[94]  R. Naber, B. de Boer, P. W. M. Blom and D. M. de Leeuw, Appl. Phys. Lett. 87, 203509 (2005).  

[95]  Z. Xiao, S. Poddar, S. Ducharme and X. Hong, Appl. Phys. Lett. 103, 112903 (2013).  

[96]  J. Jo, S. Yang, T. Kim, H. Lee, J. Yoon, S. Park, Y. Jo, M. Jung and T. Noh, Phys. Rev. Lett. 102,  

045701 (2009).  

[97]  R. Landauer, D. Young and M. Drougard, J. Appl. Phys. 27, 752 (1956).  

[98]  C. Pulvari and W. Kuebler, J. Appl. Phys. Lett. 29, 1315-1321 (1958).  

[99]  Y. So, D. Kim, T. Noh, J. Yoon and T. Song, Appl. Phys. Lett. 86, 092905 (2005).  

[100]  S. Yang, J. Jo, T. Kim, J. Yoon, T. Song, H. Lee, Z. Marton, S. Park, Y. Jo and T. Noh, Phys. Rev. B 

82, 174125 (2010).  

[101]  C. Nelson, P. Gao, J. Jokisaari, C. Heikes, C. Adamo, A. Melville, S. Baek, C. Folkman, B. 

Winchester, Y. Gu, Y. Liu, K. Zhang, E. Wang, J. Li, L. Chen, C. Eom, D. Schlom and X. Pan, 

Science 334, 968-971 (2011).  

[102]  D. Zhao, I. Katsouras, M. Li, K. Asadi, J. Tsurumi, G. Glasser, J. Takeya, P. W. M. Blom and D. M. 

de Leeuw, Sci. Rep. 4, 5075 (2014).  

[103]  R. Gysel, I. Stolichnov, A. Tagantsev, N. Setter and P. Mokrý, Appl. Phys. Lett. 103, 084120 (2008).  

[104]  B. Rodriguez, S. Jesse, A. Baddorf and S. Kalinin, Phys. Rev. Lett. 98, 247603 (2007).  

[105]  L. Cipelletti and L. Ramos, Curr. Opin. Colloid Interface Sci. 7, 228-234 (2002).  

[106]  A. Gruverman and A. Kholkin, Rep. Prog. Phys. 69, 2443 (2005).  

[107]  T. Lenz, D. Zhao, G. Richardson, I. Katsouras, K. Asadi, G. Glasser, S. Zimmermann, N. Stingelin, 

C. Roelofs, M. Kemerink, P. Blom and D. de Leeuw, Phys. Status Solidi A 212, 10 (2015).  

[108]  Y. Ehara, S. Yasui, T. Oikawa, T. Shiraishi, N. Oshima, T. Yamada, Y. Imai, O. Sakata and H. 

Funakubo, Appl. Phys. Lett. 108, 21 (2016).  

[109]  D. Fu, K. Suzuki, K. Kato and H. Suzuki, Appl. Phys. Lett. 82, 13 (2003).  

[110]  T. Furukawa, T. Nakajima and Y. Takahashi, IEEE T. Dielect. EL. In. 13, 5 (2006).  

[111]  S. M. Nakhmanson, M. B. Nardelli and J. Bernholc, Phys. Rev. Lett. 92, 11 (2004).  

[112]  S. Tong, W. Jung, Y. -Y. Choi, S. Hong and A. Roelofs, ACS Nano 10, 2568-2574 (2016).  

[113]  M. J. Highland, T. T. Fister, D. D. Fong, P. H. Fuoss, C. Thompson, J. A. Eastman, S. K. Streiffer and 

G. B. Stephenson, Phys. Rev. Lett. 107, 187602 (2011).  



- 94 - 
 

[114]  M. F. Chisholm, W. Luo, M. P. Oxley, S. T. Pantelides and H. Lee, Phys. Rev. Lett. 105, 197602 

(2010).  

[115]  G. Geneste and B. Dkhil, Phys. Rev. B 79, 235420 (2009).  

[116]  D. Li, M. H. Zhao, J. Garra, A. M. Kolpak, A. M. Rappe, D. A. Bonnell and J. M. Vohs, Nature 

Mater. 7, 473-477 (2008).  

[117]  P. Sharma, T. Reece, D. Wu, V. M. Fridkin, S. Ducharme and A. Gruverman, J. Phys.: Condens. 

Matter. 21, 485902 (2009).  

[118]  D. Zhao, I. Katsouras, K. Asadi, P. W. M. Blom and D. M. de Leeuw, Phys. Rev. B 92, 214115 

(2015).  

[119]  C. Kittel, Phys. Rev. 70, 965 (1946).  

[120]  T. Mitsui and J. Furuichi, Phys. Rev. 90, 193 (1953).  

[121]  R. R. Mehta, B. D. Silverman and J. T. Jacobs, J. Appl. Phys. 44, 3379-3385 (1973).  

[122]  P. Wurfel, I. P. Batra and J. T. Jacobs, Phys. Rev. Lett. 30, 1218-1221 (1972).  

[123]  M. Stengel and N. A. Spaldin, Nature 443, 679-682 (2006).  

[124]  M. Stengel, D. Vanderbilt and N. A. Spaldin, Nature Mater. 8, 392-397 (2009).  

[125]  D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S. Lee, Jong-Gul Yoon, T. K. Song and T. W. Noh, 

Phys. Rev. Lett. 95, 237602 (2005).  

[126]  G. Gerra, A. K. Tagantsev, N. Setter and K. Parlinski, Phys. Rev. Lett. 107603, 96 (2006).  

[127]  T. P. Ma and J. -P. Han, IEEE Electron. Device Lett. 23, 386-388 (2002).  

[128]  J. Holterman and P. Groen, An Introduction to Piezoelectric Materials and Components, Stichting 

Applied Piezo, 2012.  

[129]  M. Mai, B. Martin and H. Kliem, J. Appl. Phys. 110, 064101 (2011).  

[130]  A. K. Tagantsev and G. Gerra, J. Appl. Phys. 100, 051607 (2006).  

[131]  U. Robels, J. H. Calderwood and G. Arlt, J. Appl. Phys. 77, 4002-4008 (1995).  

[132]  E. Fatuzzo and W. J. Merz, Phys. Rev. B 116, 61-68 (1959).  

[133]  A. Khan and e. al., Nature Mater. 14, 182-186 (2015).  

[134]  J. Jo and e. al., Nano Lett. 15, 4553-4556 (2015).  

[135]  P. Zubko and e. al., Nature doi: 10.1038 (2016).  

[136]  L. M. and e. al., Nature Mater. 12, 433-438 (2013).  

[137]  Y. Tan and e. al., Sci. Rep. 5, 9953 (2015).  

[138]  I. Fujii, M. Ugorek and Trolier-McKinstry, J. App. Phys. 107, 104116 (2010).  

[139]  K. Amanuma, T. Hase and Y. Miyasaka, Appl. Phys. Lett. 66, 221-223 (1995).  

[140]  J. W. Lee, Y. Takase, B. A. Newman and J. I. Scheinbeim, J. Polym. Sci. Pol. Phys. 29, 279-286 

(1991).  

[141]  A. V. Gorbunov and e. al., Phys. Chem. Chem. Phys. 18, 23663-23672 (2016).  

[142]  K. Yoshii, Y. Hiruma, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys. 45, 4493-4496 (2006).  

[143]  K. Sakata and Y. Masuda, Ferroelectrics 7, 347-349 (1974).  

[144]  H. H. Wieder, J. Appl. Phys. 28, 367-369 (1957).  



- 95 - 
 

[145]  S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 80, 

849 (1998).  

[146]  G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin and V. M. Vinokur, Rev. Mod. Phys. 66, 

1125-1388 (1994).  

[147]  M. J. Highland, T. T. Fister, M. Richard, D. D. Fong, P. H. Fuoss, C. Thompson, J. A. Eastman, S. K. 

Streiffer and G. B. Stephenson, Phys. Rev. Lett. 105, 167601 (2010).  

[148]  C. de Araujo, J. Cuchiaro, D. McMillan, M. C. Scott and J. F. Scott, Nature 374, 627-629 (1994).  

[149]  M. A. Khan, U. S. Bhansali, M. N. Almadhoun, I. N. Odeh, D. Cha and H. N. Alshareef, Adv. Funct. 

Mater. 24, 10 (2014).  

[150]  S. Yuan, X. Meng, J. Sun, Y. Cui, J. Wang, L. Tian and J. Chu, Phys. Lett. A 375, 1612-1614 (2011).  

[151]  F. Fang, W. Yang, C. Jia and X. Luo, Appl. Phys. Lett. 92, 222906 (2008).  

[152]  Y. Mabuchi, T. Nakajima, T. Furukawa and S. Okamura, Appl. Phys. Express 4, 071501 (2011).  

[153]  M. Dawber and J. F. Scott, Appl. Phys. Lett. 76, 1060-1062 (2000).  

[154]  H. Carlslaw and J. Jaeger, Conduction of heat in solids, 2nd ed, Oxford: Oxford University Press, 

1959.  

[155]  J. S. Forsy and D. J. T. Hill, Prog. Polym. Sci. 25, 101-136 (2000).  

[156]  B. J. Lyons, Radiat. Phys. Chem. 45, 159-174 (1995).  

[157]  W. Eisenmenger and H. Schmidt, in Proc. 10th, Symp. Int. IEEE Symp. Electrets (ISE10), Athens, 

1999.  

[158]  E. Bihler, K. Holdik and W. Eisenberger, IEEE Trans. Electr. Insul. 22, 207–210 (1987).  

[159]  G. Catalan, J. Seidel, R. Ramesh and J. F. Scott, Rev. Mod. Phys. 84, 119 (2012).  

[160]  T. Sluka, A. K. Tagantsev, P. Bednyakov and N. Setter, Nature Commun. 4, 1808 (2013).  

[161]  L. Li, J. Britson, J. R. Jokisaari, Y. Zhang, C. Adamo, A. Melville, D. G. Schlom, L. Q. Chen and X. 

Q. Pan, Adv. Mater. 28, 6574-6580 (2016).  

[162]  C. L. Jia, S. B. Mi, K. Urban, I. Vrejoiu, M. Alexe and D. Hesse, Nature Mater. 7, 57-61 (2007).  

[163]  Y. Watanabe, M. Okano and A. Masuda, Phys. Rev. Lett. 86, 332 (2001).  

[164]  B. M. Vul, G. M. Guro and I. Ivanchik, Ferroelectrics 6, 29-31 (1973).  

[165]  M. Y. Gureev, A. K. Tagantsev and N. Setter, Phys. Rev. B 83, 184104 (2011).  

[166]  P. Maksymovych, A. N. Morozovska, P. Yu, E. A. Eliseev, Y. H. Chu, R. Ramesh, A. P. Baddorf and 

S. V. Kalinin, Nano Lett. 12, 209 (2012).  

[167]  T. Sluka, A. K. Tagantsev, D. Damjanovic, M. Gureev and N. Setter, Nature Commun. 3, 748 (2012).  

[168]  H. Fu and L. Bellaiche, Phys. Rev. Lett. 91, 25 (2003).  

[169]  I. I. Naumov, L. Bellaiche and H. Fu, Nature 432, 737-740 (2004).  

[170]  I. Naumov and A. M. Bratkovskzy, Phys. Rev. Lett. 101, 107601 (2008).  

[171]  J. Slutsker, A. Artemev and A. Roytburd, Phys. Rev. Lett. 100, 087602 (2008).  

[172]  W. J. Chen, Y. Zheng, B. Wang, D. C. Mab and F. R. Ling, Phys. Chem. Chem. Phys. 15, 7277-7285 

(2013).  

[173]  W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. 



- 96 - 
 

Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis and A. Hoffmann, Science 349, 6245 

(2015).  

[174]  S. Woo, K. Litzius, B. Krüger, M. -Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, 

M. Weigand, P. Agrawal, I. Lemesh, M. A. Mawass, P. Fischer, M. Kläui and G. S. D. Beach, Nature 

Mater. 15, 501-506 (2016).  

[175]  J. Barker and O. A. Tretiakov, Phys. Rev. Lett. 116, 147203 (2016).  

[176]  I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241-255 (1958).  

[177]  T. Moriya, Phys. Rev. 120, 91-98 (1960).  

[178]  Y. Nahas, S. Prokhorenko, L. Louis, Z. Gui, I. Kornev and L. Bellaiche, Nature Commun. 6, 8542 

(2015).  

[179]  A. Gruverman, D. Wu, H. -F. Fan, I. Vrejoiu, M. Alexe, R. J. Harrison and J. F. Scott, J. Phys.: 

Condens. Matter 20, 342201 (2008).  

[180]  R. G. P. McQuaid, A. Gruverman, J. F. Scott and J. M. Gregg, Nano Lett. 14, 4230-4237 (2014).  

[181]  C. -L. Jia, K. W. Urban, M. Alexe, D. Hesse and I. Vrejoiu, Science 331, 1420-1423 (2011).  

[182]  A. K. Yadav, C. T. Nelson, S. L. Hsu, Z. Hong, J. D. Clarkson, C. M. Schlepütz, A. R. Damodaran, P. 

Shafer, E. Arenholz, L. R. Dedon, D. Chen, A. Vishwanath, A. M. Minor, L. Q. Chen, J. F. Scott, L. 

W. Martin and R. Ramesh, Nature 530, 198 (2016).  

 

 

 


