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Abstract

Gauge-theory scattering amplitudes are a necessary ingredient to describe collision
experiments. The method based on Feynman diagrams becomes computationally difficult
to use in practice when the number of particles involved increase or when more precision is
required. The search for new methods of computation of scattering amplitudes for gauge
theories involves several ideas, which lead to improvement of the current techniques and
to establish new ones. The new techniques and concepts lead to a better understanding of
perturbative quantum field theory. In this thesis, the Cachazo-He-Yuan (CHY) formalism
based on the scattering equations and the Bern-Carrasco-Johansson (BCJ) duality are
used to compute amplitudes in Quantum Chromodynamics (QCD) at tree-level. These
formalisms can naturally be utilized to explore gravity amplitudes by the BCJ double
copy mechanism. This mechanism is used to study relations between QCD amplitudes
and gravity. One of the main results of this thesis is the proof of the CHY representation
of QCD, towards finding a closed integrand of the CHY representation. The second result
is the proposal of a new gravitational theory built from QCD amplitudes, which may
be relevant for discussions about dark matter. Finally, with the aid of the techniques
introduced in this thesis, relations among Einstein-Yang-Mills and Yang-Mills amplitudes
are explored.
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Zusammenfassung

Streuamplituden in Eichtheorien sind grundlegende Bausteine, um Kollisionsexperimente
zu beschreiben. Die auf Feynman-Diagrammen basierende Methode wird rechnerisch
aufwendig, sobald viele Teilchen involviert sind oder mehr Präzision benötigt wird. Die
Suche nach neuen Methoden zur Berechnung von Streuamplituden in Eichtheorien schließt
mehrere Ansätze ein, welche zur Verbesserung der aktuellen Methoden, aber auch zur
Entwicklung von neuen Methoden führen. Die neuen Methoden und Konzepte führen zu
einem besseren Verständis der pertubativen Quantenfeldtheorie. In dieser Dissertation
werden der auf Streugleichungen basierende Cachazo-He-Yuan(CHY)-Formalismus sowie
die Bern-Carrasco-Johansson(BCJ)-Dualität benutzt, um Streuamplituden in der Quan-
tenchromodynamik (QCD) auf Tree-Level zu berechnen. Diese Formalismen können des
Weiteren zur Untersuchung von Gravitationsamplituden durch den BCJ-Double-Copy-
Mechanismus herangezogen werden. Diese Prozedur wird zur Diskussion von Beziehungen
von Amplituden in QCD und Gravitation verwendet. Ein Hauptresultat dieser Dissertation
ist der Beweis der CHY-Darstellung von QCD-Amplituden mit dem Ziel eine geschlossene
Form des Integranden in der CHY-Darstellung zu finden. Ein weiteres Ergebnis besteht im
Vorschlag einer neuen Theorie für Gravitation, die aus QCD-Amplituden aufgebaut wird,
die auch für Überlegungen hinsichtlich Dunkler Materie relevant sein könnte. Abschließend
werden, mit Hilfe der in dieser Dissertation eingeführten Methoden, Beziehungen zwischen
Einstein-Yang-Mills und Yang-Mills-Amplituden untersucht.
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Notations and conventions

We use the mostly minus signature ηµν = diag(+1,−1,−1,−1) for the Minkowsky metric.

In the computation of amplitudes all particles are considered to be outgoing.

Calligraphic letters An andMn are used for n-point full amplitudes. Uppercase letters
An and Mn are used for n-point primitive amplitudes, where the color and coupling
information has been extracted.

The set of external momenta, polarization vectors, and helicities is denoted by p =

(p1, p2, . . . , pn), ε = (ε1, . . . , εn), and h = (h1, . . . , hn), respectively.

Kinematic invariants are normalized according to

εab = εa · εb, ρab =
√

2εa · pb, sab = 2(pa · pb).

Orderings of primitive amplitudes are indicated by the labels w, v. The ordering w̄

is obtained from the ordering w = l1 . . . ln−1ln by exchanging the last two letters, i.e.,
w̄ = l1 . . . lnln−1.

Unless stated otherwise z is the tuple z = (z1, z2, . . . , zn) for an amplitude in the CHY
representation. The upper index in z(j) denotes the j-th solution of the scattering
equations.

Parke-Taylor factors are denoted by C(w, z), where w is some ordering. The differences
zi − zj in in these factors are denoted by zij .

The Kawai-Lewellen-Tye kernel S[u|v̄] is usually indexed by the orderings u and v̄ as Suv̄.

Generators of the Lie algebra are normalized according to

[T a, T b] = i
√

2fabcT c, Tr(T aT b) = δab.
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Chapter 1
Introduction

The quantum theory of fields (QFT) is the theoretical framework that describes the
fundamental constituents of matter. A particular model in this framework, known as
the standard model of particle physics, describes accurately processes at distances of
1× 10−18 m. Recently, experiments at the Large Hadron Collider (LHC) have discovered
the missing piece of the standard model of particle physics—the Higgs boson. However,
this model is incomplete since it does not include gravitational interactions—among other
things. The reason is that gravitational interactions seem to be relevant at distances of
10−35 m—the Plank scale—or equivalently, at extremely high energies. The Standard
Model is then an effective description of the interactions far below the Planck scale, which
is composed by a set of quantum field theories known as gauge theories, e.g., the strong
interactions of quarks and gluons are described by quantum chromodynamics (QCD).

At very large distances, we have the standard cosmological model, which describes
gravitational interactions and explains the geometry and evolution of the universe. This
model is based on the Einstein’s classical field equations of general relativity. One of the
biggest challenges in contemporary theoretical (high energy) physics is to unify these
models into a single framework. One approach to reach such unification is to develop
a complete theory able to describe gravitational interactions at arbitrary high energies,
hence requiring a method of quantization of gravity. Several attempts to formulate such
a theory have been made over the years, one of them being string theory. Interestingly, it
might be that the problem is unsolvable because gravity emerges from other phenomena,
e.g., from entanglement as has been recently suggested [1].

Although we do not have the ultimate quantum theory of gravity, we can still
perturbatively quantize gravity using ordinary methods in quantum field theory (QFT).
The main obstacle is that the theory inevitably has to be treated as an effective field
theory due to the well-known problem that the resulting theory is non-renormalizable.
Perturbative quantum gravity then will be a theory valid far below the Planck scale. The
quantum theory of fields is then able to describe effectively perturbative quantum gravity

1



2 1. Introduction

and the standard model of particles in a single framework. This rather conservative point
of view is the one we will adopt in this work.

We will be mainly concerned with observables coming from scattering experiments,
which theoretically can be computed from S-matrix elements—amplitudes of probability.
The S-matrix elements are formed by objects called scattering amplitudes, which in the
framework of perturbative quantum field theory can be computed via Feynman diagrams.
QFT is based on the principles of quantum mechanics and special relativity plus the
requirement of the cluster decomposition principle [2]. This principle reflects the fact
that separated experiments in space will have uncorrelated results. In QFT, the Feynman
rules follow from these principles. They appear as a recipe for keeping track of the
perturbative expansion of an exponential function—the Dyson series. Quantum field
theory then provides a method to compute observables perturbatively in a Feynman
diagrammatic expansion. It is well-known that the number of these diagrams increases
rapidly as the number of particles involved increases. In theories like QCD or gravity, it
is also well-known that the number of terms in the diagrammatic expansion grows very
fast. In the case of gravity, even the simplest cases are computationally prohibitive due
to the huge number of terms in the expansion. Fortunately, for current phenomenological
applications in scattering experiments, the quantum effects of gravity can be neglected. In
contrast, for QCD applications we require as many terms as possible in order to increase
the precision of the theoretical predictions.

In principle, it is possible to sort out the technical difficulty by using computational
techniques but it turns out that in some cases the task is out of reach even for modern
computers.

The main motivation for the modern approach to the S-matrix is the computation of
the scattering amplitudes, avoiding the issues generated by the traditional QFT method,
i.e., too many diagrams, too many terms, gauge redundancy, etc. It is a challenge to
improve our understanding of quantum field theory methods to deal with these issues
and to give alternative methods in the cases where the Feynman diagrammatic approach
becomes unpractical. Another motivation for the search of new methods and possibly a
new framework is the fact that many times the final results in the diagrammatic expansion
are extremely simple, thus indicating a hidden simplicity at the level of amplitudes.

1.1 Ingredients for a modern approach to amplitudes

Historically, one can arguably state that the study of scattering amplitudes and its
properties in its modern form comes from the beginning of the study of dispersion in
electrodynamics via the Kramer-Krönig relation—dispersion relations are inspired on this
relation. This points to the first element on which the modern description of scattering
amplitudes is based, i.e., the use of the complex analytic properties of amplitudes and
in general complex numbers. This is, of course, not specific to the study of scattering
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amplitudes, but it is a fundamental tool in modern approaches to amplitudes. Actually,
the importance of complex quantities and the analytical properties of the amplitudes
led to the S-matrix program, which aimed at computing the matrix elements using only
the analytical properties of the S-matrix and the postulates of quantum mechanics and
special relativity, and considering all interactions to be short-range [3].

The S-matrix program developed in the study of the dual resonant models and then
transformed in what is known generically as string theory. String theory methods are the
second main ingredient in the current research of scattering amplitudes. In particular,
we use the idea from string theory methods, that scattering amplitudes can be recasted
into an integral which encodes the analytical properties—poles and branch cuts—and
contains all physical information. This is not unique to string theory methods, but it is a
source of inspiration for finding new methods to obtain amplitudes.

In string theory the S-matrix is obtained from the amplitudes, which can be computed
via the recipe of inserting vertex operators V on the string world-sheet. For example, at
tree-level the n-particle amplitude reads

Astrings
n = gn−2 〈ψ1|V2∆V3 · · ·∆Vn−1|ψn〉 , (1.1)

where ∆ are the analogous to propagators in QFT and the vertex insertions Vi depend
on the particle type [4]. Once the insertions have been made this formula transforms into
a standard integral, i.e., we have an integral representation of the scattering amplitude
for strings. For example, a typical amplitude for open strings schematically becomes

Astrings
n = gn−2

∫
dΩf(x1, . . . , xn)

∏

1≤i<j≤n−1

(xi − xj)2α′pi·pj , (1.2)

where the measure dΩ results from a gauge fixing procedure1. This amplitude describes
extended objects (strings) which in the infinite tension limit (α′ → 0)—also called field
theory limit—correspond to QFT amplitudes. In this sense, the amplitudes for particles
are “represented” by the amplitudes of strings such that

Aparticles
n = lim

α′→0
Astrings
n . (1.3)

It is also possible to write amplitudes in quantum field theory as in string theory by doing
first quantization and writing an expression analogous to Eq.(1.1) for particles, but with
insertions of operators in a world-line. This is not the point of view we are interested here.

1Going from Eq.(1.1) to a simplified integral like Eq.(1.2) is a highly non-trivial task which requires
the whole machinery of string methods.
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What we would like is a representation of quantum field theory amplitudes as integrals in
a certain auxiliary space, i.e., amplitudes of particles expressed as an integral instead of a
sum over Feynman diagrams.

Additionally, from relations between open and closed string amplitudes it is possible
to deduce a relation between gauge theory amplitudes and gravity amplitudes—the
Kawai-Lewellen-Tye relations [5]. Schematically these relations are represented as the
“equation”

gravity = gauge× gauge. (1.4)

The third ingredient is the study of gauge amplitudes, from which it is possible to obtain
gravitational amplitudes by squaring gauge theory ones. In this sense, we have access to
a simplified method for computing gravitational amplitudes without Feynman diagrams
whenever we have access to amplitudes in gauge theories.

On the side of quantum field theory developments, the introduction of spinor products
and the use of helicity amplitudes is another ingredient in current approaches to amplitudes.
When the amplitude involves large sets of Feynman diagrams, it is more convenient to
calculate matrix elements with external definite helicities. Therefore, using a well suited
set of variables that describe particles is the fourth ingredient in the current approach to
amplitudes. In particular helicity methods are relevant for QCD amplitudes involving only
gluons, also known as pure Yang-Mills amplitudes. In fact, one of the most important
results obtained in the field of amplitudes was obtained for the scattering of gluons, where
two of them have certain helicity configurations. The Parke-Taylor formula [6] gives the
amplitude squared for the scattering of n gluons—with particle 1 and 2 having negative
helicity—expressed in terms of the invariant products pi · pj as

|An(1−2−3+ · · ·n+)|2 = cn(g,N)

[
(p1 · p2)4

∑

P

1

(p1 · p2)(p2 · p3) · · · (pn · p1)

]
, (1.5)

where the coefficient cn(g,N) has a dependence on the number of colors N and the
coupling constant g. The sum runs over all permutations P of 1, . . . , n. This compact
result corresponds to the sum of 220 Feynman diagrams for the case of 6 gluons and
559405 diagrams for the case of 9 gluons. It serves to illustrate that the quantum field
theory approach based on Feynman diagrams becomes unpractical to handle this problem,
although the result is extremely simple. This formula has been the classical example for
the methods in scattering amplitudes and can be generalized in many ways. For instance,
a similar formula appears for the amplitudes of the maximally supersymmetric Yang-Mills
theory and in the field limit of amplitudes in string theory.
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Another use of the spinor helicity amplitudes came with the introduction of twistor
variables as the central objects in the amplitude. This was emphasized by Witten in
2003 [7], who found that topological string theory and the Fourier transform into twistor
space of scattering amplitudes are connected. For example, Witten found that the color
independent Parke-Taylor amplitude—also known as the Maximally Helicity Violating
(MHV) amplitude—can be written as

An(λi, µi) = gn−2

∫
d4x

n∏

i=1

δ2(µiȧ + xaȧλ
a
i )f(λi) (1.6)

where f(λi) is an integrand which only depends on the spinors λi. This approach was the
starting point of representations of amplitudes supported on the solutions of a particular
set of equations. In the original Witten’s formulation these equations are given by

0 = µiȧ + xaȧλ
a
i , (1.7)

which localize the Parke-Taylor amplitude on a zero degree curve. If x is complex, the
Parke-Taylor amplitude localizes in a Riemann sphere (CP1).

The fact that we can separate the amplitude in a color independent part—for example
in Eq.(1.6)—was found almost simultaneously using QFT methods and string theory
inspired methods. This simplification of the computation of gluon amplitudes is known
as the color decomposition of the amplitude [8,9] and we take it as the fifth ingredient. It
amounts to the separation of the information about the color and the kinematics of the
amplitude into a color dependent part and a gauge invariant kinematic part known as the
primitive (partial) amplitude. The color decomposition for the scattering of n gluons was
originally written as

An =
∑

{1,2,...,n}′
Tr(T a1 . . . T an)m(p1, ε1; p2, ε2; . . . ; pn, εn), (1.8)

where the sum is over (n− 1)! noncyclic permutations of {1, . . . , n} and the T ’s are the
matrices of the symmetry group in the fundamental representation. The problem then
reduces to the calculation of the cyclic gauge invariant primitive amplitudes m, which we
consider as a basis of the full amplitude An. The (n− 1)! primitive amplitudes are not
independent because there are some relations among them. First, there are Kleiss-Kuijf
relations [10], which relate amplitudes with different color orderings allowing us to reduce
the number of basis amplitudes to (n − 2)!. These results were obtained in the search
for a simplified computation of gluon amplitudes. Some time had to pass until this basis
could be further reduced. The Bern-Carrasco-Johansson (BCJ) relations [11] which relate
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amplitudes with different orderings and different coefficients allow us to reduce the basis
amplitudes to (n− 3)!.

The BCJ relations were proposed by invoking a procedure which resembles the color
decomposition with an additional requirement on the construction of the kinematic and
color dependent parts. The scattering amplitude of gluons is represented as a sum of
color dependent part ci and a kinematic part ni by

An(1, 2, . . . , n) = i gn−2
∑

i

nici
(
∏
j
p2
j )i
, (1.9)

where the sum runs over color ordered trivalent diagrams and both ci and ni satisfy
Jacobi-like identities. This is the Bern-Carrasco-Johansson duality—also known as the
color-kinematics duality. We consider the color-kinematics duality as the sixth ingredient in
the modern approach to scattering amplitudes. The BCJ construction gives a gravitational
theory by invoking the idea gravity = gauge× gauge. This is the double copy procedure,
which tells us that the numerators ni obtained for the gauge theory can be recycled to
build a gravitational amplitude as

Mn = i
(κ

2

)n−2∑

i

niñi
(
∏
j
p2
j )i
, (1.10)

where κ is the gravitational coupling constant. The sum runs over the same set of diagrams
of the gauge theory and we are allowed to use a second set of numerators ñ from another
gauge theory [12].

The six ingredients mentioned so far appear in the formulation of a representation
of tree-level scattering amplitudes which involves an auxiliary space that encodes the
kinematics—a Riemann sphere. In analogy to Witten’s formula, the integral representation
of amplitudes is located at solutions of a set of equations called the scattering equations

n∑

j=1
j 6=i

sij
zi − zj

= 0, i = 1, . . . , n, (1.11)

where sij = (2pi ·pj) are the usual Mandelstam invariants. On the support of the scattering
equations, Cachazo, He, and Yuan (CHY) proposed an elegant representation—valid in
D-dimensions—of amplitudes for scalar, gluons, and gravitons [13,14]
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M(s)
n =

∫
dnz

vol SL(2,C)

∏′

i

δ

(
n∑

j=1
j 6=i

sij
(zi − zj)

)(
Tr(T a1T a2 · · ·T an)

(z1 − z2) · · · (zn − z1)
+ . . .

)2−s

(Pf ′Ψ)s,

(1.12)

where s = 0, s = 1 and, s = 2 indicates scalars, gluons, and gravitons, respectively.2

Details of this formula are one of the main subjects of this work and we delay their precise
definition. The delta functions under the integral sign in the above equation completely
localizes the integral which means that there are no integrations to be done. The result
is then a sum over the evaluations of the solutions of the scattering equations. This
is the CHY representation of amplitudes and we can consider it as a combination of
several ingredients in the modern approach of scattering amplitudes. This formula has
the following properties:

1. It uses complex variables in order to reproduce the analytical properties of tree-level
amplitudes (poles).

2. It is an integral representation similar to a string amplitude but describing particles.

3. The gravitational amplitude (s = 2) can be thought as a realization of the idea
“gravity as the square of a gauge theory”.

4. It uses a well suited set of variables, which are directly relevant to the process,
i.e., Mandelstam variables. However, we can also use spinor variables and compute
specific helicities.

5. The color decomposition can be embedded in the CHY representation as can be
seen from the traces in Eq.(1.12).

6. Although it is a nontrivial fact, there is an equivalence between the color kinematics
duality and the CHY representation.

Hence, the CHY representation is an extraordinary tool to explore contemporary aspects
of scattering amplitudes at tree-level3.

In this brief description of the developments in scattering amplitudes we have pointed
out how each ingredient simplifies the task of the computation of amplitudes. Starting
with the simple fact that complex variables are at the heart of the analytic properties of
the S-matrix, we culminated with the CHY representation which nicely combines in a
single formula several ingredients of the modern approach of scattering amplitudes. These

2This formula can be considered as a generalization of the Roiban-Spradlin-Volovich [15], which is
valid in 4-dimensions.

3The CHY representation has been extended at loop level.
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are the ingredients we will consider throughout this work and use them for our modern
approach to amplitudes in QCD and gravity.

Conceptually, the sixth ingredient is very interesting as it reveals aspects of amplitudes
that cannot be formally deduced—as far as we know—from quantum field theory. It
also relevant for discussions regarding locality and unitarity which many times are not
manifest in modern formulations of the S-matrix.

1.2 About this work

In this work, we will focus on amplitudes in QCD and pure Yang-Mills. We will explore
their relations with perturbative quantum gravity in light of the recent methods developed
to obtain gravity amplitudes from gauge theory, specifically the color-kinematics duality
and the CHY representation. As we will see, these are equivalent methods to obtain
gravity amplitudes from the point of view of gravity as the square of a gauge theory.

This work is organized as follows. In Chapter 2, we set the playground by defining
the basic objects of interest: the S-matrix, observables, Feynman rules for theories of
various spins, etc. In particular we give a brief introduction to QFT in the approach by
Weinberg and briefly mention other methods of field quantization. We also introduce the
canonical quantization of perturbative gravity via Feynman diagrams. The conventions
we follow are summarized in Appendix A. Lastly, we present some ingredients in current
approaches to scattering amplitudes. In particular the color-kinematics duality and the
double copy procedure by Bern-Carraco-Johansson. In Chapter 3, we deal with the CHY
formalism. We present the scattering equations and the general features of the formalism
without specifying integrands. We then give explicit integrands and present the methods
for computation of residues, which we are fully developed in Appendix B. In Chapter 4,
we deal with gauge theories and introduce one of the main results of this work, i.e., the
CHY representation of primitive QCD amplitudes. An important tool for the proof of
this representation is the construction of a basis of amplitudes which we present in detail
in Appendix C. In Chapter 5, inspired on the CHY formalism, we describe a gravitational
theory built from QCD amplitudes by generalizing the Kawai-Lewellen-Tye kernel, which
describes double copies of massless or massive fermions and briefly discuss its relevance
for dark matter. Also in Chapter 5, we prove the recently proposed Stieberger-Taylor
relations among Einstein-Yang-Mills amplitudes and Yang-Mills amplitudes generalizing
them for the case of several gravitons. The summary and conclusions are presented in
Chapter 6.



Chapter 2
Review of S-matrix theory

The scattering matrix or S-matrix is the quantity that allow us to obtain probability
amplitudes of the transition from an initial state to a final state. This is the quantity
that ultimately can be measured in a laboratory in the form of cross sections and decay
rates. In order to compute the S-matrix, the principles of quantum mechanics and special
relativity have to be satisfied, namely unitarity and Lorentz invariance. In QFT, these
properties are manifest and therefore the principles are automatically satisfied. Actually,
it is possible to start with the most general features of the S-matrix that come from
quantum mechanics and special relativity to obtain the matrix elements without reference
to a specific Lagrangian. The old “S-matrix” program is based on this idea. Research in
this area was performed during the 1960s but partially abandoned in view of the success
of QCD as the theory of strong interactions.

One of the features of the old S-matrix program that remains, in what can be considered
as the current S-matrix program, is the study of the analytic properties of amplitudes.
Over the years, some of the current ingredients for computing amplitudes have been
developed in the frameworks of QFT and string theory, e.g., the color-decomposition
of gauge amplitudes, Berends-Giele recursions, and unitarity methods. In the last two
decades, several ideas have appeared that revitalized the old S-matrix program, e.g., the
Britto-Cachazo-Feng-Witten recursion relations, generalized unitarity, and representations
of the S-matrix supported on solutions of equations. This work is a follow-up of these
ideas.

In this Chapter, we revisit the approach based on Feynman diagrams from QFT and
present several theories relevant for later Chapters. We present various methods which are
at the heart of the current approach of amplitudes. This review aims to be comprehensive
but it is not exhaustive.

9



10 2. Review of S-matrix theory

2.1 The scattering matrix

This Section is inspired on the classical treatments on the subject. For general features of
the S-matrix we follow R. J. Eden et’al [3], while for the development of Feynman rules
we follow S. Weinberg [2]. Original sources can be found in these references.

In a typical experiment we are interested in the physical process where particles
interact in a small region for a short period of time. The particle content is known
long before the particles interact and long after they have interacted. This situation
corresponds to a collision of particles or to a decay depending on the number of initial
particles. Schematically, we have the reaction

α1 + α2 + · · · −→ β1 + β2 + . . . , (2.1)

where αi labels the initial particles and βi the final particles. These are multi-labels
containing the information about the four momenta pi, the spin z component σi, and the
particle type ni. We can enumerate the particles because at both ends of the process the
particles do not interact. We can then pack all multi-states of one particle into a single
multi-particle state, which describes initial (final) free states in the far past (future) of
the process. We label these states by α and β, respectively.1 These states are known as
“in” and “out” and we write

|α, in〉 , |β, out〉 (2.2)

to describe asymptotic initial states and final states, respectively. They build a complete
set of orthonormal states, i.e.,

1 =

∫
dβ |β, out〉 〈β, out| , 1 =

∫
dα |α, in〉 〈α, in| . (2.3)

The integration measure is defined as the sum over all the discrete quantum numbers
such as spin and particle type and integration over continuous quantum numbers.

We can use these states to obtain the probability amplitude of the transition between
the “in” state to the “out” state, which from quantum mechanics reads

〈β, out|α, in〉 . (2.4)

Since both states correspond to measured states with definite quantum numbers, they
should be related somehow. Formally, we say that they are isomorphic—since they

1Here α collects all the labels for each state, i.e., α = α1;α2; . . . and similarly for β.
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only differ by how they are labeled—and we define the operator S as the operator that
transforms an “out” state into an “in” state

|α, in〉 ≡ S |α, out〉 , (2.5)

which trivially leads to the recognition of the coefficients 〈β, out|α, in〉, as the matrix
elements of a unitary operator S defined through

S =

∫
dγ |γ, in〉 〈γ, out| . (2.6)

Therefore, the matrix elements of the S-operator are given by

Sβα = 〈β, out|α, in〉 = 〈β, in|S|α, in〉 = 〈β, out|S|α, out〉 , (2.7)

where we used the unitarity of S, i.e.,

SS† = S†S = 1. (2.8)

The unitarity of the S-operator reflects the fact that probabilities are conserved—a
constraint that has to be present in calculations based on quantum mechanics. In fact,
this was one of the postulates of the old S-matrix program.

The next step is to introduce special relativity, i.e., to make the “in” states and “out”
states to furnish a representation of the inhomogeneous Lorentz group. This requires to
express the “in” and “out” states to be asymptotic states of free multi-particle states |α〉
and |β〉, respectively. For example, we have for the “in” state

|α, in〉 = lim
τ→∞

U−τ |α〉 , (2.9)

where the operator U−τ takes the free state from the long past. We have a similar
expression with the opposite sign for the out state. The states |α〉, |β〉 are time independent
state eigenvectors of the free Hamiltonian of the system H0. These states are classified
according to its transformation under the inhomogeneous Lorentz group. The one particle
states are normalized by

〈p|p′〉 ≡ δ(p′ − p) = (2π)32p0δ(p′ − p). (2.10)
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Thus, we can redefine the S-matrix elements of (2.7) in terms only of free states through

Sβα = 〈β|S|α〉 ≡ δ(β − α) + (2π)4δ4(pβ − pα)Aβα, (2.11)

where we have denoted byA the part of the S-matrix that represents the actual interactions.
The quantity Aβα is know as the scattering amplitude.2

In addition to Lorentz invariance of the S-matrix—defined in terms of the transfor-
mation rules of the asymptotic states—states could have symmetries acting by unitary
transformations on the particle species labels, leading to internal symmetries which will
commute with the S-matrix.

2.1.1 Observables

In order to make contact with experiments, we have to relate the scattering amplitude
with the quantities that we can measure, i.e., observables. Quantum mechanics tells
us that in order to obtain observables, we have to compute the probability amplitude
of the transition α→ β (recall that α and β may contain several particles). Thus, the
probability of the transition is simply the square of the S-matrix. We can idealize the
system as being in a box of volume V interacting for a time T such that the probability
per unit time—the transition rate—is given by the master formula

dΓ ≡ dP

T
=

(2π)3Nα+4V 1−Nα
∏
α

(2π)32Eα
δ4(pβ − pα)|Aβα|2

dβ∏
β

(2π)32Eβ
, (2.12)

where we have defined dβ as the product d3p for each final particle. This quantity
becomes a decay rate for Nα = 1 and the case Nα = 2 corresponds to the differential
cross section after dividing by the incoming flux. However, the situation can be more
complicated when the particles under consideration are composed by others, such as
the collisions of protons at the LHC. In these cases we have to take into account the
inner structure of the proton by using the parton model. Furthermore, in such complex
situations we do not detect all particles in the final state and in some cases we simply
cannot record all the information about these final states. Thus, the expected value of an
observable O in scattering experiments involving protons can be written as a convolution
of the parton distribution functions f and its perturbative calculation, i.e.,

〈O〉 =
1

N
f ⊗

∫
O(pα, pβ)dΓ (2.13)

2Typically the S-matrix is defined as δ(β − α) + i(2π)4δ4(pβ − pα)Tβα, where Tβα is the “transition
matrix” element. The amplitude is then iTβα.
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where the ⊗ represents the convolution and N is a normalization factor which include the
information about the flux and multiplicity of the outgoing particles. As indicated, the
observable O depends in general of the initial and final sets of momenta, i.e., pα and pβ ,
respectively. This formula is valid for a large set of observables which are infrared safe,
that is, observables which have a continuous limit when one of more particles become
unresolved, in other words they are insensitive to the emission of soft or collinear particles.
Some examples of infrared observables include the so-called “jet shape” characteristics of
hadronic events. These observables measure some property of the final hadronic states,
e.g., the thrust, spherocity and the C-parameters can be used to identify pencil-like events
and spherical events. Special cases of Eq.(2.13) include:

Elementary particles: In this case the initial states do not involve protons, hence
eliminating the convolution functions. The observable then simplifies to

〈O〉 =
1

N

∫
O(pβ)dΓ. (2.14)

A typical example of this type of situation is the electron-positron scattering.

Composite particles: In general, one has to calculate the observable as an integral
over nα parton distribution functions

〈O〉 =
1

N

∫ nα∏

i=1

f(xi)dxi

∫
O(pβ)dΓ. (2.15)

Notice that the special case of O = 1—choosing an appropriate normalization factors—
corresponds to the total cross section σ and the total decay rate Γ for Nα = 2 and Nα = 1,
respectively. For future reference we present Lorentz invariant versions of these formulas.
The total cross section3 reads

σ =
1∏

i=1
ni!

(2π)4

4
√

(p1 · p2)2 −m2
1m

2
2

∫
δ4(pβ − pα)|Aβα|2

dβ∏
β

(2π)32Eβ
, (2.16)

3Here we divide (2.12) by the flux factor j =
√

(p1 · p2)2 −m2
1m

2
2/(V E1E2), which in an arbitrary

frame of reference reads

j =

√
(v1 − v2)2 − (v1 × v2)2

V
,

where v1,v2 are the velocities of the colliding particles. This coincides with the usual definition of flux
density whenever v1 is parallel to v2, since in that case j = |v1 − v2|/V [16].
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where we have included a symmetry factor counting the number ni of identical particles
of type i in the final state.

For the decay rate we have

Γ =
1∏

i=1
ni!

(2π)4

2E1

∫
δ4(pβ − pα)|Aβα|2

dβ∏
β

(2π)32Eβ
. (2.17)

Additional factors appear whenever we sum over spins.

2.2 Clusters and Quantum Fields: the Hamiltonian approach

Up to this point, we have not discussed how to obtain the scattering amplitudes Aβα that
appear in our expressions for observables. In this Section, we discuss how to compute these
amplitudes using perturbation theory via the Feynman diagrammatic approach. Here, we
will follow the approach by Weinberg [2] using the cluster decomposition principle as the
main ingredient to introduce quantum fields.4

There is a logical requirement which can be taken as the starting point of our discussion:
Experiments far away from each other should not be correlated. In other words, the
matrix elements obtained by spatially separated laboratories should factorize. Let us
denote by A (B) the multi-particle state formed by combining N initial (final) states in
N different laboratories far away from each other.5The factorization property indicates
that the S-matrix satisfies

SBA −→ SB1A1SB2A2 · · ·SBNAN , (2.18)

if for i 6= j, all particles in the states Ai and Bi are at great spatial distance from all
particles in Aj and Bj . The factorization property of Eq.(2.18) can be written in terms
of the so called connected S-matrix. Let us define recursively the connected part of the
operator S by

〈β|S |α〉 =
∑

⋃
i
βi=β,

⋃
i
αi=α

∏

i,j

〈αi|SC |βj〉 , (2.19)

4Following this approach is not free of caveats. Nevertheless, it allows a systematic way of constructing
the S-matrix starting from the basic principles of Quantum Mechanics and special relativity. Discussion
about the possible caveats can be found in e.g., Ref. [17].

5This means that we have Ai −→ Bi for i = 1, . . . , N , A = A1+A2+· · ·+AN and B = B1+B2+· · ·+BN
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where the sum runs over all partitions into clusters of the set of initial and final particles.6

The start of the recursion occurs when there is a single particle with momentum p and p′

in the initial and final state, respectively. We define the start of the recursion by

SCp′p ≡ Sp′p = 〈p′|p〉 , (2.21)

In Fig.2.1 we represent graphically the definition of the connected part of the S-matrix.

= =

=
∑

+

S

S

=S +
∑

+
∑

SC

SC

SC

SC

SC

SC

Figure 2.1: Graphical representation of the connected part of the S-matrix. The sum runs
over the permutations of the labels of the states.

From the Figure we can see the recursive structure of this definition7. The definition
of connected amplitudes then allows us to state the cluster decomposition principle as the
requirement: The connected part of the S-matrix, which is denoted by SBA must vanish
when any one or more particles in the states B and/or A are far away in space from
the others [2]. This requirement implies that the connected part of the S-matrix will
contain a single Dirac delta function which impose 3-momentum conservation and energy
conservation. This is the reason behind Eq.(2.11). Hence, the connected part SC of the
S-matrix is given by

SCβα = (2π)4δ4(pβ − pα)Aβα. (2.23)

6For example, in the case of two bosonic particles in the initial and final states, we have

〈β1β2|S |α1α2〉 = 〈β1β2|SC |α1α2〉+ 〈β1|SC |α1〉 〈β2|SC |α2〉+ 〈β1|SC |α2〉 〈β2|SC |α1〉 . (2.20)

7For example, in the case of two bosonic particles we have

〈β1β2|S |α1α2〉 = 〈β1β2|SC |α1α2〉+ δ(pβ1 − pα1)δ(pβ2 − pα2) + δ(pβ1 − pα2)δ(pβ2 − pα1). (2.22)
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In addition, the cluster decomposition principle implies that Aβα should be “smooth”. The
smoothness means that it has to allow poles and branch cuts, but no other singularities
such as Dirac delta functions.

The interaction will satisfy the cluster decomposition principle if the Hamiltonian
operator can be expressed as a sum of products involving creation and annihilation
operators, i.e., if

H =
∞∑

N=0

∞∑

M=0

∫
Dq′Dq

N∏

n=1

a′
†
n

M∏

m=1

amhNM (q, q′), (2.24)

where Dq′ = dq′1 · · ·dq′N , Dq = dq1 · · ·dqM , and the coefficients hNM contain a single
Dirac delta function. Notice that we are already considering that the Hamiltonian is
normal ordered. Now, for a Hamiltonian with an interaction term V we have that the
complete Hamiltonian is given by

H = H0 + V, (2.25)

which by standard time-dependent perturbation theory8 leads to the Dyson series for the
S-operator, i.e,

S =
∞∑

n=0

(−i)n

n!

∞∫

−∞

n∏

j=1

dtjT{V (tj)}, (2.26)

where T denotes time ordering. For n = 0 we define the time ordered product T{V (tj)}
as the unit operator9. To make Lorenz invariance manifest, we write the perturbation
potential as

V (t) =

∫
d3xHI(x, t), (2.27)

which allows us to write the matrix elements as

Sβα =

∞∑

n=0

(−i)n

n!

∞∫

−∞

d4x1 · · · d4xn 〈β|T{HI(x1) · · ·HI(xn)} |α〉 . (2.28)

8For a recent treatment see Chapter 8 of Ref. [18].
9Equivalently, we extend the usual definition of a product from 1 to 0 to hold for operators as well.
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This will be Lorentz invariant if HI(x) commutes at space-like or light-like separations,
i.e., if

[
HI(x),HI(x′)

]
= 0, for (x− x′)2 ≤ 0. (2.29)

Quantum field theory then emerges as the necessity of writing the interaction Hamil-
tonian constructed out of creation and annihilation operators—to satisfy the cluster
decomposition principle—and the requirement to be a scalar under Lorentz transforma-
tions. In order to fulfill these requirements we are forced to write HI(x) out of local field
operators φl(x) defined through

φl(x) ≡
∑

σ,n

∫
d3p

(2π)3Ep

(
ul(p, σ, n)a(p, σ, n)e−ip·x + vl(p, σ, n)a†(p, σ, nc)eip·x

)
, (2.30)

where l indicates the type of particle and the representation of the homogeneous Lorentz
group by which the field transforms. The creation and annihilation operators satisfy
commutation/anti-commutation relations

[
a(p, σ, n), a†(p′, σ, n)

]
∓

= (2π)32Epδ
3(p− p′), (2.31)

with ∓ the commutation and anti-commutation relations for bosons and fermions, respec-
tively. From this point of view, the Lorentz-invariant differential equations that the fields
satisfy are nothing more than a reminder of the conventions used to construct irreducible
representations of the homogeneous Lorentz group. Therefore, we do not need a classical
Lagrangian density to back up the quantum description of particles. However, the easiest
way of getting an interaction which satisfies Lorentz invariance and other symmetries is
to start with a classical Lagrangian density.

Once we convince ourselves that fields are necessary, we continue by writing the
general interaction term using fields and their adjoints. In general, we have

HI(x) =
∑

i

giHI i(φl, φ†l ). (2.32)

The S-matrix elements can be computed from Eqs.(2.28), (2.30), (2.32). Explicitly, the
Dyson series10 reads

10Interactions with derivatives are also taken into account, they are just fields with different coefficients
in Eq.(2.30)
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Sβα =
∞∑

n=0

(−i)n

n!

∫
d4x1 · · · d4xn 〈0| · · · aβ2aβ1T{HI(x1) · · ·HI(xn)}a†α1

a†α2
· · · |0〉 .

(2.33)

This formula—after some manipulations—is what we need to obtain the S-matrix in any
theory with a given interaction Hamiltonian. Using the standard commutation relations
of creation and annihilation operators, we can compute terms in Eq.(2.33) at a given
order in HI . The final result is computed by summing over all the possible ways of pairing
creation and annihilation operators in Eq.(2.33), which can be systematized with the aid
of the Wick’s theorem [19]. This procedure results into diagrammatic rules to compute
the terms in the expansion—the Feynman rules in position space or momentum space.
Notice that because we have constructed the theory using the cluster decomposition
principle—see Eq.(2.23)— we have only to consider connected diagrams.

Summarizing, this point of view focus on first principles of quantum mechanics and
special relativity including the cluster decomposition principle, without assuming previous
knowledge of a classical field theory. As we have mentioned, the equations of motion
of the field operators are a consequence of our conventions on the representations of
the homogeneous Lorentz group. Furthermore, this approach makes the unitarity of the
S-matrix explicit by construction. In addition, we have included locality by introducing
the cluster decomposition principle since it allows the S-matrix to have poles and branch
cuts.11

2.2.1 Example

Before presenting the Feynman rules to obtain matrix elements, let us give an example
of the formalism using creation and annihilation operators. We illustrate the procedure
using Eqs.(2.24), (2.30), and (2.33). One of the “simplest” examples—from the QFT point
of view—consists of an interaction term with three real bosonic fields φ of a single specie.
This method does not require a classical Lagrangian density because the bosonic fields
φ already satisfy the Klein-Gordon equations. Nevertheless, if we were using canonical
quantization, the interaction we would like to study corresponds to the Lagrangian density

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + LI =

1

2
∂µφ∂

µφ− 1

2
m2φ2 − λφ3. (2.34)

Hence, the interaction Hamiltonian reads

HI = −LI = λφ3. (2.35)

11A nice modern discussion of this can be found in Chapter 24 of Ref. [20]
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The bosonic interaction corresponds to the case n = 1, σ = 0 in Eq.(2.30). In our
normalization ul = vl = 1, thus the field operator simplifies to

φ(x) =

∫
d̃p
(
a(p)e−ip·x + a†(p)eip·x

)
, (2.36)

where the Lorentz invariant differential form is defined through

d̃p ≡ d3p

(2π)3Ep
. (2.37)

In normal ordered form, the expansion (2.24) of the interaction Hamiltonian (see Eq.(2.27))
becomes

HI = λ

∫
d̃q1d̃q2d̃q3

[
ei(−q1−q2−q3)·xa†1a

†
2a
†
3 + ei(q1−q2−q3)·xa†2a

†
3a1 + ei(−q1+q2−q3)·xa†1a

†
3a2

+ ei(q1+q2−q3)·xa†3a1a2 + ei(−q1−q2+q3)·xa†1a
†
2a3 + ei(q1−q2+q3)·xa†2a1a3

+ ei(−q1+q2+q3)·xa†1a2a3 + ei(q1+q2+q3)·xa1a2a3

]
,

where ai ≡ a(qi). After relabeling, we obtain

HI = λ

∫
d̃q1d̃q2d̃q3

[
e−i(q1+q2+q3)·xa†1a

†
2a
†
3 + 3e−i(−q1+q2+q3)·xa†2a

†
3a1

+ 3e−i(q1−q2−q3)·xa†1a2a3 + ei(q1+q2+q3)·xa1a2a3

]
. (2.38)

Let us use this interaction Hamiltonian to calculate the trivial matrix element for the
process 1→ 2 + 3. This is the lowest order in the Dyson series, that is

Sp2p3|p1
= −i

∫
d4x 〈0|a(p3)a(p2)HI(x)a†(p1)|0〉 . (2.39)

We shall use the first Wick’s theorem applied to the creation and annihilation operators to
evaluate this expression. This theorem states that the product of creation and annihilation
operators is the sum of all possible paired normal products:

A1A2 · · ·An = : A1A2 . . . An : +
∑

k 6=l
Ckl : A1 . . . An :

+
∑

i 6=j
Cij


∑

k 6=l
Ckl : A1 . . . An :


+ . . . , (2.40)
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where

Ckl : A1 . . . An : ≡ C(AkAl) : A1 . . . Ak−1Ak+1 . . . Al−1Al+1 . . . An : , (2.41)

where the dots indicate that we have to sum over all possible 3-contractions, 4-contractions,
etc. The contraction of operators is defined by

C(AkAl) = 〈0|AkAl |0〉 , (2.42)

which is usually denoted by C(AkAl) = AkAl.

The vacuum expectation value of a normal ordered product vanishes, therefore we
have to consider products of the maximum number of contractions which in our example
is 3. Then Eq.(2.39) yields

Sp2p3|p1
= −iλ

∫
d4x

∫
d3q1d3q2d3q3

[
3ei(q1−q2−q3)·x(δ(p3 − q3)δ(p2 − q2)δ(p1 − q1)

+ δ(p3 − q2)δ(p2 − q3)δ(p1 − q1)
)]
, (2.43)

where we have used the commutation relations of creation and annihilation operators.
After integration of the Dirac delta functions, we obtain

Sp2p3|p1
= −6iλ

∫
d4x
[
ei(p1−p2−p3)·x

]
= −6iλ(2π)4δ(p1 − p2 − p3). (2.44)

Therefore, from Eq.(2.23) the “amplitude” for this process reads

Ap2p3|p1
= −6iλ. (2.45)

At lowest order in λ, we do not have propagators thus we only have to contract creation
and annihilation operator with fields at the same point. This gives six possible pairings
and simplifies our result. The appearance of a numerical factor motivates the introduction
of a factor of 1/m! for an interaction containing m identical fields.

In the general case, we also have pairings of fields at different times. Hence, we require
the main Wick’s theorem and the formulas

〈0|a(p)φ(x)|0〉 = eip·x, 〈0|φ(x)a†(p)|0〉 = e−ip·x, 〈0|T{φ(x)φ(y)}|0〉 = i∆(x− y),

(2.46)



2.2. Clusters and Quantum Fields: the Hamiltonian approach 21

where the Feynman propagator is defined by

∆(x− y) =

∫
d4k

(2π)4

e−ik·(x−y)

k2 −m2 + iε
. (2.47)

In order to deal with time ordered products of operators, we replace the contractions in
Eq.(2.40) by “time contractions”, i.e.,

C(AkAl)→ 〈0|T{AkAl} |0〉 , (2.48)

in particular C(φ(x)φ(y)) = i∆(x− y).

Let us see how these rules work for the process 1 + 2→ 3 + 4. At the lowest order in
λ, we have

Sp3p4|p1p2
=

(−iλ)2

2

∫
d4x

∫
d4x′ 〈0|a(p4)a(p3)T (φφφφ′φ′φ′)a†(p2)a†(p1)|0〉 . (2.49)

Here, we should have 4 operators to be contracted with a and a†. Hence a possible term
that contributes reads

g(x, x′) = i 〈0| a(p4)a(p3) : φφφ′φ′ : a†(p2)a†(p1) |0〉∆(x− x′). (2.50)

This term can be conveniently represented by the first Feynman diagram in Fig.2.2.
Inserting the contraction formulas (2.46) and the definition of the propagator (2.47), we
obtain

g(x, x′) = i

∫
d4k

(2π)4

e−i(x−x′)·kei(p3+p4)·xe−i(p1+p2)·x′

k2 −m2 + iε
. (2.51)

The diagrams can be used to obtain the symmetry factor, which corresponds to the 4!

possible permutations of the legs times 3 different types of contractions. Therefore,

Sp3p4|p1p2
= (2.52)

i
(−iλ)2

2
(3× 4!)

[∫
d4k

(2π)4

∫
d4x

∫
d4x′

e−i(x−x′)·kei(p3+p4)·xe−i(p1+p2)·x′

k2 −m2 + iε
+ . . .

]
,
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Figure 2.2: Contributing 4-point diagrams for the process 1 + 2→ 3 + 4 in position space.
The term in Eq.(2.50) is represented by diagram a).

where the dots indicate the remaining diagrams—see b) and c) in Fig.2.2. After some
algebra the above expression simplifies to

Sp3p4|p1p2
=− 36iλ2(2π)4δ4(p1 + p2 − p3 − p4) (2.53)

×
[

1

(p1 + p2)2 −m2 + iε
+

1

(p1 − p3)2 −m2 + iε
+

1

(p1 − p4)2 −m2 + iε

]
,

where we see again the convenience of introducing the factor 1/3! at the beginning.
Ignoring this factor we see that the amplitude (2.23) for this process reads

Ap3p4|p1p2
= (2.54)

− iλ2

[
1

(p1 + p2)2 −m2 + iε
+

1

(p1 − p3)2 −m2 + iε
+

1

(p1 − p4)2 −m2 + iε

]
.

We proceed with the discussion of the general rules for constructing the S-matrix
using Feynman rules. These rules are derived from the Hamiltonian interaction.

2.2.2 Feynman rules

In this Section we summarize the rules for outgoing particles in momentum space. The
reason of considering only outgoing particles is that we assume crossing symmetry, i.e.,
we consider the process

0→ β1 + β2 + · · ·+ ᾱ1 + ᾱ2 + . . . , (2.55)

which amounts to make the transformation (−pi)→ pi for the momenta of the incoming
particles. This is a formal procedure that extends the domain of the analytic function
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which describes the amplitudes. It exchanges an incoming particle P to its outgoing
antiparticle P̄ . The S-matrix always contains a global four-momentum conservation
imposed by the cluster decomposition principle (See Eq.(2.23)). In addition, momentum
conservation is imposed at each vertex in a Feynman diagram. Therefore, for a process
involving n particles, the following rules in momentum space tells us how to construct
the amplitude:

Aᾱβ|0 ≡ A(p1, p2, . . . , pn), (2.56)

where we only specify the dependence on the momenta pi, i = 1, . . . , n, but in general
it depends on the quantities u∗l (pi, σi, k) and vl(p

′
i, σ
′
i, k) as well. Consider a general

Hamiltonian interaction

HI = −LI =
∑

i

giHI i(φl, φ†l ), (2.57)

which may depend on the adjoint of the fields. The Feynman rules in momentum space
for outgoing particles contain factors:

(i) For each outgoing particle of type k: u∗l (p
′, σ′, k).

(ii) For each outgoing anti-particle of type k: vl(p′, σ′, k).

(iii) For each vertex of type i:

V µ1...µk = −igif
µ1...µk(ip). (2.58)

The function fµ1...µk(ip) accounts for the possibility of derivatives in the interaction
and in general it will be a matrix with additional Lorentz indices12.

(iv) For each internal line with momentum k:

i
Plm(k)

k2 −m2 + iε
. (2.59)

The polynomial Plm depends on the representation of the inhomogeneous Lorentz
group, e.g., for scalars Plm = 1. It may contain additional group factors in the case
of gauge theories.

12 In the next section we consider several cases.
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(v) For each loop an integration:

∫
d4l

(2π)4
. (2.60)

(vi) Additional combinatoric factors coming from the symmetry under relabelings of the
vertices and a factor (−1) for a closed fermion loop.

In this list, the only item that is not completely specified is the vertex, which depends on
the interaction polynomial (2.57).

2.2.3 Other methods to derive the Feynman rules

The canonical approach to the S-matrix assumes that we have a classical field theory
which satisfies a definite set of field equations, e.g., Maxwell equations, Klein-Gordon
equations, or Dirac equations. We can then construct a Lagrangian density which leads
to these equations and use it to obtain the Hamiltonian of the theory and follow the
procedure of Section 2.2.2. Alternatively, we can postulate a Lagrangian density to
obtain a new theory following the same steps. The Hamiltonian is then quantized by
replacing the fields by operators and imposing canonical commutation relations. In this
formalism the S-matrix is obtained in terms of Green’s functions of the interacting theory
through the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [21]. The Green’s
functions are the vacuum expectation values of the time-ordered products of the fields in
the non-interacting theory. The Feynman rules are then obtained by manipulating the
time ordered products using the Wick’s theorem.

Equivalently, we can obtain the Green’s functions by using the Feynman path integral
approach. In this approach, the Green’s functions can be computed as functionals of
classical fields. With these functions it is possible to obtain an arbitrary Green function
from a generating functional, which gives the connected contributions of the S-matrix.

A standard source for the canonical formalism is C. Itzykson et’al [22]. Modern
treatments of canonical quantization, which include the spinor helicity formalism are
Refs. [20, 23].

2.3 From scalar particles to gravitons

Let us give the interactions and Feynman rules for several theories which are relevant
for this work. In each case we give the classical Lagrangian density, then identify the
Hamiltonian interactions and the interaction vertices in order to obtain the Feynman
rules.
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2.3.1 Spin 0: Bi-adjoint scalar

In this Section, we introduce a rather sophisticated version of the cubic interaction (2.34).
Let φaa′ a massless scalar field transforming under the group U(N)× U(N). This field is
known as the bi-adjoint scalar [24]. It is defined by the interacting Lagrangian density

L =
1

2
∂µφab∂µφ

ab − 1

3!
λfa1a2a3f b1b2b3φa1b1φa2b2φa3b3 , (2.61)

where φaa′ can be thought as the coefficients of the tensor valued field φ ≡ φaa′T a ⊗ T a′ .
In general the groups do not have to be the same, but here we concentrate in this case.
The fields transform under U(N)× U(N) as

δφab = εa1fa1a2aφa2b, (2.62)

and similarly for the second U(N) index. These fields satisfy the equations of motion

∂2φab +
λ

2
faa2a3f bb2b3φa2a3φb2b3 = 0. (2.63)

From the Lagrangian, we can read off the interaction potential

HI = λ
1

3!
fa1a2a3f b1b2b3φa1b1φa2b2φa3b3 , (2.64)

which after integration by parts yields the kinetic term

−1

2
φaa1

(
δa1bδaa2∂2

)
φa2b. (2.65)

Hence the vertex and the polynomial Plm for the Feynman rules (See Eqs.(2.58)-(2.59))
read

V = −iλfa1a2a3f b1b2b3 (2.66)

P = δa1b1δa2b2 (2.67)

In Chapter 3, we shall compute some amplitudes of this theory. This theory is an
ingredient for the computation of gravity amplitudes, as we shall study in Chapter 5.
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2.3.2 Spin 1 and 1/2: Gauge Theories

The SU(N) Yang-Mills Lagrangian density reads

L = −1

4
Tr(FµνFµν), (2.68)

where the field strength Fµν is a N ×N matrix field defined by

Fµν ≡
i
√

2

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − i

g√
2

[Aµ,Aν ] . (2.69)

The covariant derivative is defined by

Dµ = ∂µ − i
g√
2

Aµ(x), (2.70)

where the is an implicit unit matrix multiplying the partial derivative. The factors of
√

2

appear due to our normalizations for the generators of the Lie group

[T a, T b] = i
√

2fabcT c, Tr(T aT b) = δab. (2.71)

In order to derive the Feynman rules, we have to add a gauge fixing term and a ghost
term in the Lagrangian. The latter is only needed for diagrams involving loops. We will
be mainly interested in tree level amplitudes, hence we will ignore the ghost term. The
Feynman rules depend on the choice of a gauge fixing term. A typical procedure is to
decompose the traceless hermitian matrix fields Aµ and Fµν as

Aµ = AaµT
a, Fµν = F aµνT

a, (2.72)

and add to the Lagrangian a the Rξ gauge fixing term

Lgf = −1

2
ξ−1∂µAaµ∂

νAaν . (2.73)

In this gauge, the Lagrangian plus gauge fixing reads
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L+ Lgf =− 1

2

(
∂µA

a
ν∂

µAνa − ∂µAaν∂νAµa + ξ−1∂µAaµ∂
νAaν

)

− gfabc∂µAaνAµbAνc −
1

4
g2fabcfadeAbµA

c
νA

µdAνe, (2.74)

which gives the interaction Hamiltonian:

−LI = gfabc∂µA
a
νA

µbAνc +
1

4
g2fabcfadeAbµA

c
νA

µdAνe, (2.75)

and a quadratic term

1

2
Aµa

(
δabηµν∂

2 − δab∂µ∂ν + δabξ−1∂µ∂ν

)
Aνb. (2.76)

The quadratic terms yield a polynomial Plm for the propagator (2.59)

Pµa;νb =δab(−ηµν + (1− ξ)pµpν
k2

). (2.77)

In this case we have two types of interactions: a three-gluon vertex and a four-gluon
vertex. The three gluon vertex reads

V a,b,c
µνρ (p, q, r) =− gfabc [ηµν(p− q)ρ + ηνρ(q − r)µ + ηρµ(r − p)ν ] . (2.78)

We can similarly obtain the four-gluon vertex, but we shall not need this vertex for our
calculations. These rules can be straightforward used to compute tree-level amplitudes
but they contain many terms even for the simplest processes. For this reason, we will
turn our attention to color-ordered Feynman rules, which reduce the number of terms to
compute.

Let us consider the Lagrangian density (2.68) and let us work with the matrix fields
without the decomposition (2.72). A convenient gauge choice which simplifies tree-level
computations is the Gervais-Neveu gauge [25]. In this gauge we add to the Lagrangian13

the term

Lgf = −1

2
Tr
(
∂µAµ − i

g√
2

AµAµ

)2

. (2.79)

13See e.g., Chapter VI.B of [26]
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Thus, the Lagrangian in Eq.(2.68) and the gauge fixing term can be written explicitly in
terms of the matrix field Aµ as

L+ Lgf =
1

2
Tr
(

Aµ∂2Aµ + i
√

2g
(
∂µAνAµAν − ∂µAνAνAµ + ∂µAµA2

)
+
g2

2
AµAνAµAν

)
,

(2.80)

where we have used integration by parts and properties of the trace. Integrating by parts,
we can rewrite this Lagrangian as

L+ Lgf = Tr
(

1

2
Aµg

µν∂2Aν − i
√

2g∂µAνAνAµ +
g2

4
AµAνAµAν

)
, (2.81)

which can be used to derive the color-ordered Feynman rules for N ×N matrix fields14.
From (2.81), the three-gluon-vertex and the four-gluon-vertex read

Vµ,ν,ρ(p, q, r) =− i
√

2[ηµν(p)ρ + ηνρ(q)µ + ηρµ(r)ν ], (2.82)

Vµ,ν,ρ,σ =iηµνηρσ, (2.83)

respectively. The polynomial for the propagator (2.59) reads

Pµν =− ηµν . (2.84)

Notice that we have absorbed the dependence of the coupling in these rules, which will
reappear as a general factor in the amplitude.

Those rules yield color-ordered primitive amplitudes, i.e., amplitudes with a fixed order
in the legs. This can be seen as follows. Consider the 3-gluon interaction in Eq.(2.81)

Lggg = −i
√

2gTr(T aT bT c)∂µAaνA
νbAµc, (2.85)

where we have used (2.72). In combination with the Fierz identity

(T a)ji (T
b)ml = δliδ

j
m −

1

N
δji δ

m
l , (2.86)

the amplitude can be written as
14See Chapters 79-80 of Ref. [23] and Ref. [27]
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A(p1, p2, . . . , pn) = gn−2
∑

noncyclic
permutations

Tr(T a1T a2 · · ·T an)A(p1, p2, . . . , pn), (2.87)

where the primitive amplitudes A(p1, p2, . . . , pn) are cyclic ordered, gauge invariant objects.
The sum runs over noncyclic permutations of {1, 2, . . . , n}. Notice the overall coupling
factor.

We can also include quarks in the fundamental representation of SU(N) by adding to
the Lagrangian

LM = −iΨ̄( /D −m)Ψ, (2.88)

which can be used to derive the color-ordered rule for the fermion-anti-fermion-gluon
vertex and the corresponding fermion polynomial

Vµ = ig
γµ√

2
, (2.89)

P = /p+m. (2.90)

The inclusion of quarks modify the trace structure and the decomposition (2.87), however
the general structure is preserved. We postpone the details about this decomposition for
Section 2.4.3.

2.3.3 Spin 2: Gravity using Feynman diagrams

The procedure we have followed requires a supporting classical Lagrangian density to
derive the Feynman rules. We have access to such a Lagrangian density in the case of
gravitation—the Einstein-Hilbert Lagrangian. However, there are well-known problems
regarding the renormalization of the theory and the complexity of the Feynman rules
that we obtain in doing so. The conservative point of view is to consider the theory
in the language of effective field theory, i.e., a theory which is valid at low energies in
comparison with the Planck scale [28]. In this way we do not worry about the issues of
renormalization and we treat the theory using ordinary methods of quantization [29].

The Feynman rules for gravity are known at least since the sixties thanks to the works
of DeWitt and Feynman [30–33]. As in any QFT, we make a perturbative expansion
of the Einstein-Hilbert action15 in powers of the coupling constant κ2 = 32πGN (in the
Gauss unit system). The Einstein-Hilbert action is given by

15Perturbative gravity is not renormalizable since we have a coupling κ2 = 32πGN that carries
dimensions of length.
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SEH =
2

κ2

∫
d4x
√−gR (2.91)

with the metric tensor gµν , and g = det gµν . R is the Ricci scalar gµνRµν , with

Rµν =∂νΓλµλ − ∂λΓλµν + ΓσµλΓλνσ − ΓσµνΓλλσ, (2.92)

Γλµν =
1

2
gλσ(∂µgσν + ∂νgσµ − ∂σgµν). (2.93)

Performing the expansion around flat space ηµν = diag(+1,−1,−1,−1) such that

gµν = ηµν + κhµν , (2.94)

leads to the Feynman rules of gravity. In the de Donder gauge—also known as harmonic
gauge, where ∂βhαβ = 1/2∂αh—the propagator reads

Dµν;ρσ(q) =
i

2

1

q2 + ε
(−ηµνηρσ + ηµσηνρ + ηµρηνσ) . (2.95)

Now, the three-graviton vertex in DeWitt notation reads [30–32]

τµα,νβ,σγ(k1, k2, k3) = sym
(

1

2
P3(k1 · k2ηµνηαβησγ) + many terms

)
, (2.96)

which in total has around 100 terms. If we want to compute the scattering amplitude
of, say 4 gravitons, we need also to use the four-point vertex which we will not show
here. These expressions can be found in a simplified notation in Ref. [34]. We can add
interaction with matter by adding the minimal coupling

Lmatter = −κ
2
hµνT

µν , (2.97)

where

Tµν =
2√−g

δ
√−gLmatter

δgµν
. (2.98)

For example, we have for scalar particles
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√−gLmatter =
√−g

(
1

2
gµνDµφDνφ−

1

2
m2φ2

)
. (2.99)

After expansion in powers of κ, this Lagrangian yields the interaction vertex [35]

V µν(p1, p2) = i
κ

2

[
−pµ2pν1 − pν2pµ1 + ηµν(p2 · p1 +m2)

]
. (2.100)

The straightforward quantization is conceptually simple but very difficult to use in practice.
Tractable problems appear where matter is involved and a few particles are involved, e.g.,
in Chapter 5 we will consider a tractable four-point example. More simplification occurs
when we specify the helicities, because many terms vanish. As we will see in Section 2.4,
there is an alternative method which involves a relation between gauge and gravity at
the level of amplitudes. With this method, we avoid computing amplitudes from the
Feynman rules of gravity but instead we obtain them from gauge theory.

2.4 Modern techniques

After revisiting the standard approach to the S-matrix, we are ready to introduce the
relevant improvement to this approach. Most of this material is available in the literature—
except some recent material, e.g., the color-kinematics duality for QCD amplitudes. Some
parts of this review are based on the recent book by Elvang and Huang [36,37] and the
recent review [38]. The main differences from those references are the conventions for
the generators of the group and the metric16. Other helpful reviews include [39,40] and
references therein.

2.4.1 Massless amplitudes in four dimensions

Amplitudes in four space-time dimensions for massless particles can be better described
in terms of spinor variables. These are a set of kinematic variables which exploit the fact
that the complexified Lorentz group SO(3, 1,C) is locally isomorphic to two copies of the
complex special linear group SL(2,C)× SL(2,C). This motivates the realization of the
four momentum vector pµ as a bi-spinor paȧ, where paȧ labels the (1

2 ,
1
2) representation of

the Lorentz group17. The map from pµ to paȧ can be made using the chiral part of the
Dirac matrices, i.e.,

16We use the mostly plus signature of the Minkowsky metric and include a factor of
√

2 in the
normalization of the generators.

17This is a finite dimensional spinor representation, not to be confused with the infinite dimensional
representation for spinor fields.
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paȧ ≡ pµ(σµ)aḃ =

(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)
, (2.101)

where a and ȧ label the spinor index for each chirality. For massless particles p2 = 0,
which implies that the momenta can be written as the product

paȧ = λaλ̃ȧ, (2.102)

where λa and λ̃ȧ are two-vectors. We will use Dirac notation for the two-vectors, i.e.,

λa → |p]a λ̃ȧ → 〈p|ȧ . (2.103)

Using spinors, the relevant quantities and properties for computing n-point amplitudes
can be summarized as follows:

Antisymmetry : 〈ij〉 = −〈ji〉 , [ij] = −[ji], (2.104)

Momentum conservation :

n∑

i=1

[ji] 〈ik〉 = 0, (2.105)

Lorentz invariants : sij = (pi + pj)
2 = 〈ij〉 [ji], (2.106)

Polarization Vectors : ε+µ (p, q) =
[p|γµ |q〉√

2 〈qp〉
, ε−µ (p, q) = −〈p| γµ|q]√

2[qp]
, (2.107)

Schouten identity : 〈ri〉 〈jk〉+ 〈rj〉 〈ki〉+ 〈rk〉 〈ij〉 = 0. (2.108)

Other relevant properties are summarized in Appendix A.1. These can be used to compute
amplitudes with definite helicities in terms of spinors products18.

It is interesting to note that the spinor representations are unique up to scaling. The
reason is that the momentum is invariant under the rescalings

|p〉 → t |p〉 , |p]→ t−1|p], (2.109)

which is called little group scaling19. This property can be used to establish a general
feature of amplitudes of massless amplitudes

18For a full treatment of the spinor-helicity formalism see Ref. [36]
19The litte group is the subgroup of the homogeneous Lorentz group which leaves invariant a standard

momentum of an on-shell particle. See p.66 of Ref. [2]
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A
(
{|1〉 , |1], h1}, . . . , {ti |i〉 , t−1

i |i], hi}, . . . , {|n〉 , |n], hn}
)

= (2.110)

t−2hi
i A ({|1〉 , |1], h1}, . . . , {|i〉 , |i], hi}, . . . , {|n〉 , |n], hn}) .

Together with general kinematic properties of the 3-particle momenta, this can be used
to determine the full structure of the 3-point amplitudes [41]. In combination with a
recursive procedure, this can be used to obtain the n-point amplitude with fixed helicities
and hence all amplitudes. Theories with this property are called constructible. The
kinematics tell us that a 3-point amplitude can only depend either on angle or square
spinor products of the external momenta20. Suppose the amplitude only depends on angle
spinors, i.e.,

A3(1h12h23h3) = i c 〈12〉x12 〈13〉x13 〈23〉x23 , (2.111)

where c is constant to be determined and xij have to be determined using the litte group
scaling. Eq.(2.110) gives the system of equations

−2h1 = x12 + x13, −2h2 = x12 + x23, −2h3 = x13 + x23, (2.112)

therefore

A3(1h12h23h3) = i c 〈12〉h3−h1−h2 〈13〉h2−h1−h3 〈23〉h1−h2−h3 . (2.113)

For example, the three-gluon amplitude where h1 = h2 = −1 and h3 = +1 yields

A3(1−2−3+) = i
〈12〉4

〈12〉 〈23〉 〈31〉 , (2.114)

where we have multiplied and divided by 〈12〉 and used dimensional analysis to set the
constant equal to the one.

2.4.2 BCFW recursion relations

The constructibility of amplitudes requires a recursive method to build up higher point
amplitudes from lower ones. Factorization properties of amplitudes in combination with
analytic properties of amplitudes were used by Britto, Cachazo, Feng, and Witten [42,43]

20To determine which type of spinor products we should use dimensional analysis.
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to construct a recursion based on the complexification of a subset of the involved momenta.
Consider the complexified version of the amplitude An(1, 2, . . . , n), which we denoted by
An(z). At tree-level, the singularities of the amplitudes are poles, hence by considering
the quantity A(z)/z we have

An(0) +
∑

Poles of An(z)

Res
(
An(z)

z

)
+An(∞) = 0, (2.115)

which follows from the Cauchy’s theorem. The last term corresponds to the residue of
the pole at infinity. If A(z) vanishes in the limit z →∞, then

An ≡ An(0) = −
∑

Poles of An(z)

Res
(
An(z)

z

)
. (2.116)

The point is that the poles of An(z) occur when the propagators are on-shell, thus the
amplitude factorizes into two on-shell parts

An = −
∑

I

AL(z)
i

P 2
I

AR(z), (2.117)

where we sum over all possible factorization channels I as shown in Fig.2.3. This gives a
gauge invariant formula to recursively construct higher point amplitudes.

=
∑

n,k

PI

An Ak+1 An−k+1

1̂
n

k k − 1

2̂

3

1

2

n− 1
n

Figure 2.3: The BCFW recursion. The complexification of legs 1 and 2 have been indicated
with a hat. The sum over factorization channels is implemented as a sum over amplitudes
containing k legs times the amplitude containing the remaining points. This sum also runs
over the possible helicity configurations indicated by h. Note that the “propagator” PI is
on-shell.

Since we have access to the 3-point amplitudes in various theories, we can construct
n-point amplitudes recursively whenever the amplitude satisfies
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An(z)→ 0, for z →∞. (2.118)

This behavior can be estimated by inspecting the contributing Feynman diagrams [36]. In
conclusion, we have a method to determine constructible amplitudes, which is particularly
useful in combination with the spinor-helicity formalism. In this case, the complexification
of momenta is achieved through shifts on the spinor variables which preserve momentum
conservation, while keeping shifted particles on-shell. A BCFW-shift of the legs i, j—called
a [i, j〉-shift—reads

|̂i] = |i] + z|j], |ĵ] = |j], |̂i〉 = |i〉 , |ĵ〉 = |j〉 − z |i〉 . (2.119)

Let us illustrate the concept of BCFW-constructibility for the case of the 4-point amplitude
in scalar QED21. Let us consider the amplitude for two scalar and two gauge bosons

A4(φφ∗γ+γ−) ≡ A4(123+4−), (2.120)

where the gauge bosons have different helicities. The first ingredients are the 3-point
amplitudes, which for scalar QED corresponds to h1 = h2 = 0, and h3 = ±1 in Eq.
(2.113), hence the 3-point amplitudes for the helicities ± of the photons read

A3(φ, φ∗, γ−) ≡ A3(123−) = i
〈13〉 〈23〉
〈12〉 , (2.121)

A3(φ, φ∗, γ+) ≡ A3(123+) = i
[13][23]

[12]
, (2.122)

where the second line is obtained by using complex conjugation. These results can be
easily verified using Feynman diagrams. Now, let us consider a [4, 3〉 BCFW-shift:

|4̂] = |4] + z|3], |3̂] = |3], |4̂〉 = |4〉 , |3̂〉 = |3〉 − z |4〉 . (2.123)

We have two factorization channels as shown in Fig.2.4, which we label as D1 and D2.

21Scalar QED is defined by the Lagrangian density

L = −1

4
FµνF

µν + |Dµφ|2 −
1

4
λ|φ|4,

where Dµφ = ∂µφ+ ieAµφ.
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A4(123
+4−) = +

2

4− 3+

1
D2

P̂13

2

3+ 4−

1
D1

P̂23

Figure 2.4: Scalar QED 4-point amplitude as a sum over factorizations channels. The
blobs indicate on-shell amplitudes.

Then, the amplitude is given by the sum of the factorization channels

A4(123+4−) ≡ D1 +D2

= −Â3(2P̂233̂+)
i

P̂ 2
23

Â3(−P̂2314̂−)− Â3(1P̂133̂+)
i

P̂ 2
13

Â3(−P̂1324̂−), (2.124)

which using Eqs.(2.121), (2.122) yields

D1 = −i
〈4P̂23〉 〈14〉 [P̂233]

〈1P̂23〉 [P̂232] 〈23〉
. (2.125)

Using 〈i|P |j] = 〈ip〉 [pj] and properties of the spinor products summarized in the Appendix
A, we obtain

D1 = i
〈14〉 〈42〉
〈23〉 〈13̂〉

. (2.126)

The next step is to find the location of the pole. Since 0 = P̂ 2
23 = 〈23〉 − z23 〈24〉, then

z23 = 〈23〉 / 〈24〉. Therefore,

〈13̂〉 =
〈24〉 〈13〉 − 〈23〉 〈14〉

〈24〉 , (2.127)

which leads to

D1 = i
〈14〉 〈24〉2
〈23〉 〈21〉 〈34〉 . (2.128)

For the second diagram, similar steps lead to
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D2 = i
〈24〉 〈14〉2
〈13〉 〈21〉 〈43〉 . (2.129)

Using the properties (2.104)-(2.108), we obtain

A4(123+4−) = i
〈14〉 〈24〉
〈21〉 〈43〉

(
−〈24〉
〈23〉 +

〈14〉
〈13〉

)
. (2.130)

Finally, with the aid of the Schouten identity (2.108) and massaging (2.130), we obtain

A4(123+4−) = −i
〈14〉 〈24〉
〈23〉 〈13〉 . (2.131)

In this example, we have shown that using only the little group scaling and the BCFW
recursion relations, we can recover the 4-point amplitude A4(123+4−) without using
Feynman diagrams. However, this process will fail for the general amplitude in scalar
QED due to the existence of a boundary term—for example it fails for the 4-point
amplitude A4(φ, φ∗, φ, φ∗), where the BCFW recursion will give an amplitude for a
specific value of the scalar coupling [36].

Gravity and pure Yang-Mills are examples of BCFW constructible theories due to the
good large z behavior. BCFW recursions work very well for theories which fall off as 1/z

under a BCFW-shift. Sometimes the behavior is 1/z2, which leads to relations among
amplitudes [44].

Let us end this section by introducing the most famous formula in amplitude theory.
The 3-point Parke-Taylor formula, where two gluons i, and j have negative helicity, can
be derived from the little group scaling (see Eq.(2.114)). Then, using BCFW recursion
relations we can show that the Parke-Taylor formula (MHV amplitude) for n gluon
scattering is given by

An(1+2+ . . . i− . . . j− . . . n+) = i
〈ij〉4

〈12〉 〈23〉 · · · 〈n1〉 , (2.132)

which up to color factors and coupling and squaring yields Eq.(1.5).

2.4.3 Color decomposition and primitive amplitudes

In our first encounter with gauge theories, we have seen that information about the gauge
group can be encoded only in terms containing single traces. This was the result (2.87),
which can be obtained by introducing the Gervais-Neveu gauge and use the Fierz identity.
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Alternatively, this result may be obtained from color-dependent Feynman rules (2.78)
after reorganizing the terms and by using the gauge group identity:

fabc = − i√
2
Tr(T aT bT c − T cT bT a), (2.133)

where the generators T a and the structure constant fabc are normalized according to
Eq.(2.71). In this way, the amplitude can be written in terms of the single trace factors

Tr(T a1T a2 · · ·T an), (2.134)

which then yields Eq.(2.87).

In QCD we have quark interactions (see Eq.(2.88)). These appear in the color-
dependent Feynman rule

V µ,a
ij (p, q, r) = ig

T aij√
2
γµ, (2.135)

which is the color-dependent version of Eq.(2.89). This interaction contains indices of
the fundamental representation of the gauge group. Hence, the color decomposition will
have indices from the fundamental representation of SU(N). For example, an amplitude
containing one quark pair contains single trace terms of the form

(T a1T a2 · · ·T an)ij . (2.136)

Our aim is to write the amplitude only in terms of single traces of the generators of
the gauge group. We can achieve this by the methods discussed above. The bottom line
is that the color structure of the amplitude can be separated by writing it as sum over
cyclic ordered gauge invariant primitive amplitudes22

An(p1, p2, . . . , pn) ≡ An(12 . . . n). (2.137)

Here we have introduced the usual notation for primitive amplitudes by labeling only the
external particles and the fixed order. Primitive amplitudes are gauge invariant objects
with a fixed order indicated by the string (12 · · ·n). In this context, the ordering (12 · · ·n)

22Primitive amplitudes are also known as partial amplitudes for pure Yang-Mills where are equivalent
concepts. They differ when fermions are added or when we increase the number of loops.



2.4. Modern techniques 39

is different from, say, (134 . . . n). For pure Yang-Mills at tree-level, the separation into
primitive amplitudes and color factors reads

An = gn−2
∑

σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n))An(σ(1) . . . σ(n)), (2.138)

where the sum runs over noncyclic permutations of {1, 2, . . . , n}, or equivalently over the
elements of the set Sn/Zn. The procedure of writing the amplitudes separating the color
information from the kinematic information was found by Berends-Giele [8] using QFT
methods23 and by Mangano-Parke [9] inspired on string theory gauge amplitudes—color
factors correspond to the Chan-Paton factors [4]. The color decomposition is independent
of the level in perturbation theory—tree or loop level. It is always possible to perform
the color decomposition procedure at loop-level.24 Schematically, the color decomposition
at L-loops reads

AL−loopn = gn+2(L−1)
∑

k

CL−loopn,k PL−loopn,k , (2.139)

where Pk,n labels the kth primitive amplitude and Cn,k are the color factors. In this
thesis we will focus on tree-level amplitudes and consequently we will use Eq. (2.138). In
Appendix A.1, we summarize the Feynman rules to compute primitive amplitudes.

2.4.4 Basis of pure Yang-Mills primitive amplitudes

The color decomposition of the amplitude runs over (n− 1)! primitive amplitudes, which
can be further reduced by invoking relations among the primitives as we will see in the
next Section. We frequently say that these amplitudes form a basis and that the relations
among amplitudes shrink the basis. In order to introduce these relations we introduce
some notation. First, let us define the alphabet Agluons as the particle content of the pure
Yang-Mills primitive amplitude and their corresponding labels25, i.e.,

Agluons = {g1, g2, . . . , gn} = {1, . . . , n}, (2.140)

where we have associated gluons to labels in the set {1, . . . , n}. The elements of the
alphabet are called letters li, which we can associate to a given gluon. Notice that
the label itself is, of course, not relevant but the relative order of the letters. Ordered
sequences of letters are called words

23The decomposition into gauge invariant and color parts was studied in Ref. [45]
24It a highly nontrivial task as shown e.g. in [46,47]
25The full treatment of this technology is discussed in the Appendix C.
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w = l1l2 . . . ln. (2.141)

We also define the reversed word wT by

wT = lnln−1 . . . l1, (2.142)

and the no-word or zero-length word by e. The words in an alphabet form an algebra with
the product operation being the shuffle26. The shuffle product of two words w1 = l1l2 . . . lk

and w2 = lk+1 . . . lr is defined by

w1 � w2 = l1l2 . . . lk � lk+1 . . . lr =
∑

shuffles σ

lσ(1)lσ(2) . . . lσ(r), (2.143)

where the sum runs over all permutations σ that preserve the relative order of l1, l2, . . . , lk
and lk+1, . . . , lr. Words w in the alphabet Agluons will encode the particle content of the
amplitude and we will write simply An(w) when the focus is on the ordering. In this sense,
we can think of the amplitude An as linear operator on the vector space of orderings. Let
λ1, λ2 be two numbers and let w1, w2 be two orderings in a basis W0, then we have27

An(λ1w1 + λ2w2) = λ1An(w1) + λ2An(w2). (2.144)

2.4.4.1 Relations among primitive gauge amplitudes

Primitive amplitudes are not independent of each other. Actually the trace structure
already tells us to sum over noncyclic permutations, i.e., over (n−1)! primitive amplitudes.
The trace structure gives us the cyclic relations, i.e.,

An(12 . . . n) = An(2 . . . n1). (2.145)

Studying the sum over Feynman diagrams contributing to each primitive amplitude gives
us the reflexion property28

26It is a vector space over a number field k with an additional operation� called the vector multiplication.
The vector operation is commutative and associative, and the unit element is e.

27Notice that this depends on the proper definition of a sum of words, which is guaranteed because the
set of words form an algebra.

28Interestingly, these relations follow immediately from the properties of the Koba-Nielsen amplitudes
in string theory(See e.g., [48]).
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An(12 . . . n) = (−1)nAn(n n− 1 . . . 1). (2.146)

If we take one of the particles as a photon—equivalently by setting one of the generators
T a = 1—implies that Eq. (2.138) vanishes, thus giving the U(1) decoupling identify

An(12 . . . n) +An(213 . . . n− 1n) +An(231 . . . n− 1n) · · ·+An(234 . . . 1n) = 0.

(2.147)

The reflexion identity and the U(1) decoupling identity can be understood as special
cases of the Kleiss-Kuijf (KK) relations [10]. Let us use words and let use think on the
amplitude as a linear operator. Let

w1 = lα1 lα2 . . . lαj , w2 = lβ1 lβ2 . . . lβn−2−j , (2.148)

be two sub-words such that

{l1} ∪ {w1} ∪ {w2} ∪ {ln} = {l1l2 . . . ln}. (2.149)

Then the Kleiss-Kuijf relations read

An(1w1lnw2) = (−1)n−2−jAn(l1(w1 � wT2 )ln). (2.150)

Then the reflexion property and the U(1) decoupling identity correspond to the cases
where the w1 = e and w2 = lβ1 , respectively.

Thus far the relations do involve only relations where the coefficients of the amplitudes
are unity. In Ref. [11], Bern, Carrasco, and Johansson (BCJ) found that there are relations
among primitive amplitudes which involve kinematic coefficients. These relations are
called the fundamental BCJ relations

n−1∑

i=2




n∑

j=i+1

2p2 · pj


An(13 . . . i 2 i+ 1 . . . n− 1n) = 0. (2.151)

They allow us to reduce the number of quantities to compute and consequently shrink
the basis. In fact, by using the BCJ relations the number of independent amplitudes to
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compute becomes (n− 3)!. As we will see in Section 2.4.5, these relations are implied by
a duality between color and kinematics.

2.4.4.2 Basis for pure Yang-Mills amplitudes

In Section 2.4.4.1, we saw that primitive amplitudes in pure Yang-Mills are cyclic invariant,
and satisfy KK and BCJ relations. Let us now define the basis of amplitudes characterized
by words in the alphabet Agluons, which results after imposing these relations. The most
general set of words for the alphabet (2.140) is given by the set of words containing each
letter once, i.e.,

W0 = {l1, l2, . . . , ln|li ∈ Agluons, li 6= lj , for i 6= j}, (2.152)

which contains n! elements. Starting with words in W0 we use the cyclic relations to fix
one of the legs in w. By fixing the first letter to l1 = 1, we have the basis

W1 = {l1, l2, . . . , ln|li ∈ Agluons, li 6= lj , for i 6= j, l1 = 1}, (2.153)

which has (n− 1)! elements. KK relations can be used to fix a second letter, which we
choose to be the last letter ln. Then, the basis

W2 = {l1, l2, . . . , ln|li ∈ Agluons, li 6= lj , for i 6= j, l1 = 1, ln = n} (2.154)

describes amplitudes in the KK basis containing (n− 2)! elements. Finally, we can impose
the BCJ relations to fix a third letter. We choose the letter ln−1 and thus the BCJ basis
reads

B ≡W3 = {l1, l2, . . . , ln|li ∈ Agluons, li 6= lj , for i 6= j, l1 = 1, ln−1 = n− 1, ln = n},
(2.155)

which contains (n− 3)! elements.

2.4.5 Color-kinematics duality

We have seen that relations among amplitudes shrink the basis, hence it is interesting to
study their origin. While cyclic relations and KK relations do not involve coefficients with
a dependence on the kinematic invariants, the BCJ relations involve kinematic coefficients.
Let us see how these coefficients appear in relations among amplitudes, i.e, how BCJ
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relations are derived [11]. The four point-relation can be easily derived from the photon
decoupling identity, i.e.,

A4(1234) +A4(2134) +A4(2314) = 0. (2.156)

This identity follows from the dependence on the Mandelstam variables of the amplitudes,
thus implying that these amplitudes should be proportional to each other [11]. This leads
to

tA4(1234) = uA4(1243),

sA4(1234) = uA4(1324), (2.157)

tA4(1324) = sA4(1342),

which tells us that we can shrink the basis of amplitudes from (4− 2)! to (4− 3)!. Here
as usual s = (p1 + p2)2, t = (p1 + p4)2, and u = (p1 + p3)2.

Let us illustrate how these relations can be derived for the case of 4-points. The
photon decoupling identity—special case of the KK-relations—tell us that only two of
these amplitudes are independent. We will fix the legs 1 and 4 in the color decomposition,
then the KK basis is given by the following amplitudes

A4(1234), A4(1324). (2.158)

Suppose we can write the 4-point amplitudes as a sum over the poles appearing in the
corresponding Feynman diagrams, i.e.,

A4(1234) =
n(12; 34)

s
+
n(23; 41)

t
,

A4(1342) =
n(13; 42)

u
+
n(34; 21)

s
, (2.159)

A4(1324) =
n(13; 24)

u
+
n(32; 41)

t
.

We are labeling the numerators n(ij; kl) by the corresponding poles—the quartic contact
terms have been reabsorbed in the diagrams with cubic interaction. Furthermore, we
assume that the numerators n(ij; kl) satisfy antisymmetry and the Jacobi-like identity
[11,49], i.e.,
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n(ij; kl) = −n(ji; kl), n(ij; kl) + n(jk; il) + n(ki; jl) = 0, n(ij; kl) = n(lk; ji).

(2.160)

Using these constraints for the amplitudes in the KK-basis, we have a system of equations
with coefficient matrix

Θ =




1
s

1
t

1
u −1

t − 1
u


 . (2.161)

The rank of this matrix is 1 as can be easily seen by multiplying the second row by u/s.
This implies that there are relations among the primitive amplitudes. For instance, we
have

A4(1234) =
n(12; 34)

s
+
n(23; 41)

t
=
u

s
A4(1324) +

(
u

s

(
1

t
+

1

u

)
+

1

t

)
n(23; 41),

(2.162)

which gives the second line in Eq.(2.157), since the second term in Eq.(2.162) vanishes.
Usually, the numerators are labeled by the pole they correspond, for instance it is
customarily to define:

ns ≡ n(12; 34), nt ≡ n(23; 41), nu ≡ n(13; 24). (2.163)

Then the Jacobi-like identity in (2.160) reads

nu − ns + nt = 0, (2.164)

in clear analogy to the color factor accompanying the corresponding diagrams—see
Fig(2.5).

The generalization of this procedure is known as color-kinematics duality—also known
as BCJ duality—which states that the n-point gluon amplitude can be written as

Atree
n = i gn−2

∑

i∈trivalent

nici∏
αi

sαi
, (2.165)
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Figure 2.5: Trivalent diagrams for the amplitude A4. The color factors satisfy the Jacobi
identity cu − cs + ct = 0.

.

where ni satisfy Jacobi identities whenever ci does. The sum runs over the set of (2n−5)!!

trivalent color ordered diagrams. In practice, one consider the numerators as being
unknowns and consider the set of equations for the primitives [11]

0 =nα − nβ + nγ , (2.166)

An =i
∑

i∈trivalent

ni∏
αi

sαi
. (2.167)

Then we construct (n − 3)! equations for the numerators in terms of an amplitude
basis (independent of the KK relations). There will be (n− 2)! equations for the color
factors, hence the same number of Jacobi-like identities for the numerators. This leaves
(n− 2)!− (n− 3)! unspecified numerators which can be set to zero. The color-kinematics
duality is the concept behind relations among amplitudes involving kinematic coefficients,
i.e., the fundamental BCJ relations (2.151).

2.4.6 Two approaches to obtain gravity amplitudes

2.4.6.1 KLT relations

Primitive amplitudes in the color decomposition (2.138) can be related to gravity am-
plitudes thanks to the Kawai-Lewellen-Tye (KLT) relations [5]. These relations were
originally found in the context of string theory methods and they reflect the fact that a n
point amplitude of a closed string (gravity) can be obtained from n-point amplitudes of
open strings (Yang-Mills). In the context of string theory these relations depend on kine-
matic variables and the string tension (1/2πα′). In the infinite tension limit—quantum
field theory limit—corresponding to α′ → 0 they become a relation between gravity Mn
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and primitive gauge theory amplitudes An. This is the origin of the concept of squaring
a gauge theory to obtain gravity, which is usually written as

gravity = gauge× gauge. (2.168)

Let us denote the full gravitational amplitudes in terms of the primitives by

Mn(p1, p2, . . . , pn) =
(κ

2

)n−2
Mn(p1, p2, . . . , pn). (2.169)

At 3-points the gravity amplitude can be obtained from the little group scaling
property. For n = 3, the amplitude for gravitons may be written as a product of angle
brackets, i.e.,

M3(1−22−23+2) = i 〈12〉x12 〈23〉x23 〈13〉x13 , (2.170)

where ±2 represents the helicity. Using the little group scaling (2.110) we have three
equations and three unknowns:

2 = x12 + x13, 2 = x12 + x23, −2 = x13 + x23, (2.171)

which can be easily solved giving the 3-point amplitude

M3(1−22−23+2) = i
〈12〉6

〈23〉2 〈13〉2
. (2.172)

Alternatively, we can square the Parke-Taylor formula for n = 3

M3(1−22−23+2) = −A3(1−12−13+1)2 = −
(

〈12〉4
〈12〉 〈23〉 〈31〉

)2

, (2.173)

where up to a factor of (−i) gives (2.172). If we increase the number of points, we would
acquire double poles which have to be canceled by inserting kinematic factors. These
kinematic factors were obtained by KLT and are the heart of the KLT relations. Using
the gluon alphabet (2.140), up to five points the KLT relations read [5]
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M4 = −is23A4(1234)A4(1324), (2.174)

M5 = −is23s45A5(12345)A5(13254)− is24s35A5(12435)A5(14253), (2.175)

where the amplitudes An in the right hand side are primitive amplitudes obtained from
the decomposition of full amplitudes in the color trace basis (2.138). The cancellation of
double poles become more involved as the number of particles increases. This behavior
can be traced to the fact that in the right hand side of the KLT relations we have a
product of fixed ordered amplitudes while in the left-hand side there is no fixed ordering29.

We can work out the 4-point MHV gravity amplitude M4(1−2−3+4+) using the spinor
helicity formalism. Starting with the 4-point MHV gluon amplitude

A4(1−, 2−, 3+, 4+) = i
〈12〉4

〈12〉 〈23〉 〈34〉 〈41〉 = i
[34]4

[12][23][34][41]
, (2.176)

we obtain

M4 = i t
〈12〉4

〈12〉 〈23〉 〈34〉 〈41〉
[34]4

[13][32][24][41]
= i
〈12〉4 [34]4

stu
, (2.177)

where s = (p1 + p2)2 = 〈12〉 [12]. In this example we have avoided mixing the helicities of
the particles, but this is not mandatory—helicities of particles in both gauge amplitudes
are the same. Actually, by taking linear combination of polarization vectors, we may
obtain amplitudes for dilatons and axions.

In principle, if we have access to a recursive method to obtain gauge amplitudes to
arbitrary n, then we can obtain all gravity amplitudes provided we have access to the
kinematic factors of the KLT relations. These factors for general n were obtained in
Ref. [51]. Using QFT methods, the kinematic factors have been obtained in Refs. [52, 53].
The kinematic factors are expressed in terms of the so called momentum kernel S[w1|w2]

[54]—also known as KLT kernel. For two words w1 = l1 . . . ln and w̄2 = k1 . . . knkn−1, the
momentum kernel is defined by

S[w1|w̄2] = (−1)n
n−2∏

i=2


sl1li +

i−1∑

j=2

θw̄2(lj , li)slj li


 , (2.178)

with

29A nice review on the KLT relations is Ref. [50].
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θw̄2(lj , li) =





1 if lj comes before li in the sequence k2, k3, . . . kn−2,

0 otherwise.
(2.179)

If we use the BCJ basis (2.155) for the gauge amplitudes, then the KLT relations for
n-point gravity amplitudes read

Mn(12 . . . n) = −i
∑

w1,w2∈B
An(w1)S[w1|w̄2]An(w̄2). (2.180)

An important feature of the momentum kernel is its dependence on the kinematic invariants
and the order of the amplitudes indicated by w1, w2. Notice that the complicated
expression for the momentum kernel is needed since gravity amplitudes are not color
ordered, hence any combination of external momenta can appear as poles.

As an example, let us consider the 5-point gravity amplitude. In this case the basis is
given by B = {12345, 13245} and the momentum kernel in matrix form reads

S5 =

(
−s12 (s13 + s23) −s12s13

−s12s13 −s13 (s12 + s23)

)
, (2.181)

where rows and columns are labeled by 12345 and 13245. The original form of the KLT
relations can be recovered back using BCJ relations. This kernel is an important object
in this work and we postpone its general treatment for later chapters. In Chapter 3, we
use it to describe the KLT orthogonality, which is a property of the scattering equations.
In Chapters 4 and 5, we generalize the KLT kernel in two directions: first by allowing
masses in the particles and by including fermions.

2.4.6.2 Double copy procedure

In Ref. [11] Bern-Carrasco-Johansson argued that the numerators constructed for the
gauge theory via the color-kinematics duality could be used to write gravity amplitudes
at tree level by making a double copy of the numerators such that

Mtree
n = i

(κ
2

)n−2 ∑

i∈trivalent

niñi(∏
αj

sαj
) , (2.182)

where the tilde indicates that the numerators could be from a different gauge theory
which satisfies color-kinematics duality as well [12, 55]. The double copy procedure is
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another incarnation of gravity as the square of a gauge theory. The double copy is also
connected with the CHY representation as we will explore in Chapter 5.

2.5 Loop techniques

Although this work is concerned with tree-level amplitudes, there is one method which
allows us to recycle amplitudes at tree-level to compute loop-level amplitudes. This is
the method of generalized unitarity, which is based on the unitarity of the S-matrix.
Expressing S = 1 + iT and from Eq.(2.8), we have

T − T † = i T †T . (2.183)

This equation translates into a relation between tree-level and loop-level amplitudes after
expanding T in powers of the coupling constant g

T = g2T (0) + g4T (1) + . . . , (2.184)

where the superscript indicates tree-level (0), 1-loop (1), etc. This equation express
the relations among discontinuities between a k-loop amplitude and a product of lower
loop amplitudes. In terms of Feynman diagrams the information about discontinuities
is obtained by the “Cutkosky” rules [56], which are obtained by cutting diagrams and
integrating them as

Disc(T ) =

∫
dµA1A2... (2.185)

where dµ is an appropriate phase space and Ai are lower loop amplitudes. In the case
of the maximal cuts, the factors Ai are tree-level amplitudes. The information about
the cuts can be used effectively if we have access to a decomposition of the amplitude in
terms of a basis of scalar integrals—for example, using the Passarino-Veltman reduction
method [57]—meaning that we can express the amplitude as

ALn =
∑

i

CiI
(L),i
n , (2.186)

where Ci are kinematic coefficients and i runs over the set of master integrals. Then the
information about the discontinuities of the amplitude match the discontinuities of the
Feynman integral, i.e.,
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Disc A(L)
n =

∑

i

CiDisc I(L),i
n . (2.187)

This yields the coefficients Ci as

Ci =
∑

states

A(1)A(2) · · ·A(n), (2.188)

where A(i) are tree level amplitudes—in the case of the generalized unitarity with maximal
cuts. This method allows us to connect tree-level amplitudes and loop amplitudes whenever
a basis of integrals is known. For example, the 1-loop amplitude may be written in terms
of m-gon integrals as follows:

A1-loop =
∑

i

c
(i)
D I

(i)
D +

∑

j

c
(j)
D−1I

(j)
D−1 + · · ·+

∑

k

c
(k)
2 I

(k)
2 + rational terms, (2.189)

where I(m) are m-gon scalar integrals, which are illustrated in Fig.2.6.

A
1−loop
n = c1 + c2 + rational+ c4+ c3

Figure 2.6: Representation of the unitarity method. The contributing integral topologies
and the rational terms are shown. The coefficients can be obtained with the help of tree-level
amplitudes.

The last term correspond to rational functions which do not have branch cuts, hence
appearing as a consequence of the regularization procedure. This method has been
systematized and used for a variety of theories, including QCD30. Finally, since the
method of generalized unitarity allows us to recycle tree-level amplitudes, we could use the
color-kinematics duality at tree-level to conclude that it is also possible to find numerators
satisfying Jacobi-like identities whenever color factors do. Therefore, the color-kinematics
duality and the double copy can be elevated at loop-level

30See e.g., [58] and references therein
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A(L)
n = gn−2+2L

∑

j

∫ L∏

l=1

dDpl
(2π)D

1

Sj

cjnj∏
αj

sαj
, (2.190)

M(L)
n =

(κ
4

)n−2+2L∑

j

∫ L∏

l=1

dDpl
(2π)D

1

Sj

njñj∏
αj

sαj
, (2.191)

where we include symmetry factors Sj .

2.6 Comments

In this Chapter we have studied several techniques to compute amplitudes using the
traditional methods of quantum field theory and later using the modern methods inspired
in string theory. From the purely practical point of view, one of the aims of the current
research in scattering amplitudes is to exploit generalized unitary to recycle tree-level
amplitudes and use them to compute gauge and gravity amplitudes. To achieve this, a
nontrivial fact is to find a suitable basis of integrals, which by itself is a full research area. In
addition, one would like to extend these methods to theories which are relevant to describe
the particle content of the standard model. Here we have focused on amplitudes involving
gluons because they are relevant for the hard scattering part of the computation of cross
sections. However, the real problem appears when we compute loop-level amplitudes with
fermions and gluons, i.e., QCD amplitudes.

On the other hand, conceptually it is not clear how the new methods can be understood
as a manifestation of unitarity, locality, Lorentz invariance, gauge invariance, etc. In other
words, whether the old idea of formulating an S-matrix only using physical information
is possible. In this conceptual front one may ask for example: what is the S-matrix as
low-level object without locality or gauge invariance? Even more, what are the ultimate
symmetries of the S-matrix that make evident the simple structure of the final result?
Finally, is there a realization of the cluster decomposition principle which makes evident
a construction such as the color-kinematics duality? These are questions that can be
studied in a recent framework developed by Cachazo, He, and Yuan, which is the topic of
the next Chapter. This method nicely connects with all the methods discussed in this
Chapter, which motivated the review.



Chapter 3
Scattering Equations and the CHY
formalism

The formalism developed by Cachazo, He, and Yuan (CHY) based on the scattering
equations reflects very well the idea of “amplitudes without Feynman diagrams”. It
relies on the localization of the kinematic invariants of the amplitude in an auxiliary
space—Riemann sphere—which encodes the factorization properties of the amplitude.
This localization is realized by a map from the Riemann sphere to momentum space,
keeping the momenta of the external particles on-shell. In order to determine this map,
the scattering equations have to be satisfied. The amplitude is then written as an integral
over all possible maps from the space of kinematics to the Riemann sphere—these maps
imply the scattering equations. In other words, we localize an integral on the punctured
Riemann sphere and the amplitude becomes the sum over the evaluations on the solutions
of scattering equations.

The CHY formalism transforms the problem of summing over Feynman diagrams to a
problem in algebra—that of finding the solutions of a set of equations—or to a problem
in algebraic geometry, where it is not necessary to solve the equations but instead use
residue calculation techniques. These views are obviously connected by the fact that the
scattering equations are a set of polynomial equations in many variables.

This Chapter is organized as follows: In Section 3.1, we introduce the scattering
equations and its properties. In Section 3.2, we introduce the general features of the CHY
formalism as a contour integral and as a sum over solutions. We study some integrands
and give some examples in Sections 3.3 and 3.4, respectively. We end this Chapter with a
discussion of the CHY-formalism.

3.1 The scattering equations

Historically, the scattering equations were first formulated by Fairle and Roberts in 1972
as a minimization requirement of the Koba-Nielsen formula for the scattering of n open

52
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strings [59]. They also appeared as the Weierstrass condition for an isometric coordinate
system in the minimization problem of a two-dimensional surface embedded in a four
dimensional space [60]. Then, they appeared in the work by Gross and Mende on the high
energy behavior of string theory, when they studied the saddle point approximation [61].
A generalized version valid in D-dimensions reappeared in the work by CHY in 2013 [62],
where they were dubbed them as the scattering equations. We will follow their procedure
to derive the scattering equations, which fits more in the modern approach to amplitudes.

The scattering equations in D = 4 were also known in the context of the connected
formalism as pointed out by Cachazo in Ref. [63], where the scattering equations localize
the integrals of the amplitudes. This approach was inspired in the framework introduced
by Witten in 2003 [7], as we pointed out in the Introduction. In this framework, amplitudes
are Fourier transformed from spinor variables to twistor variables. Then, amplitudes are
supported on solutions of a set of equations in twistor space. These equations map points
in twistor space to the Riemann sphere (see, e.g., [64]).

Remember that the formulation of scattering amplitudes in terms of spinor or twistor
variables simplifies the description of amplitudes. By writing amplitudes in terms of
spinor products we are changing the variables of interest to be |p〉, |p], and the helicities
h. However, spinor variables are tied to D = 4 dimensions and in principle they are valid
only for massless particles1. Nevertheless, in the massless case, spinors become the right
variables to describe the kinematics of the process and can also be used to recursively
obtain higher point amplitudes as we have seen in Section 2.4.

According to the cluster decomposition principle, singularities appear in the form
of poles or branch cuts for certain values of the momenta—usually as Lorentz invariant
products. Therefore, a convenient way to write an amplitude would be in terms of spinor
or momentum variables and an additional object (or space) which takes care of the
singularities of the amplitude. The idea behind the scattering equations is to introduce
an additional space which takes care of the singularities and embeds the factorization
properties of the amplitude, together with a map which connects the kinematic space
to the additional space [66]. The additional space turns out to be the space of all
possible Riemann spheres with n marked points2, in other words, the moduli space of
n-punctured spheresM0,n. Thus, the scattering equations connect the singularities of
the scattering amplitude and its factorization channels to the singularities of the moduli
space of Riemann spheres with n marked points.

3.1.1 Finding the scattering equations

Let us describe the necessary ingredients for the scattering equations. In a physical process
involving n particles, the momentum configuration space Kn consists of the collection

1The formalism can be used for massive particles but the results depend on reference vectors [65].
2A brief description of this space can be found in Appendix B.
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of momenta pi subject to momentum conservation and on-shell conditions3. We write
formally

Kn =

{
(p1, p2, . . . , pn) ∈ (CM)n|

n∑

i=1

pi = 0, and p2
i = 0

}
, (3.1)

where pi ∈ CM is the momentum in complexified Minkowski space in D-dimensions. The
n-tuple p = (p1, p2, . . . , pn) of momentum vectors belongs to Kn. We define the kinematic
invariants for the scattering of n massless particles formed by Lorentz invariant products
of subsets of momenta as

sA ≡ sl1l2...la = (pl1 + · · ·+ pla)2, (3.2)

where l1, l2, . . . , la ∈ A ⊂ {1, 2, . . . , n}. These are the Mandelstam variables which
characterize the singularities of the amplitude. Now, let us consider the complex projective
line CP1 with n marked points—denoted by zi, i = 1, . . . , n. The space CP1 is isomorphic
to the Riemann sphere Ĉ = C ∪ {∞}. The map between points in Riemann sphere to
momentum space is given by

pµi =
1

2πi

∮

|z−zi|=δ
dz

Pµ(z)
n∏
j=1

(z − zj)
, i = 1, . . . , n, (3.3)

where the integral is over a small counter-clockwise oriented circle {|z−z0| = δ} around zi,
for any sufficiently small δ (see Fig. 3.1). The map Pµ(z) is a collection of D polynomials
of degree n − 2, which we have to determine. This object is a map from the Riemann
sphere to the null cone in complexified Minkowski space, therefore the on-shell conditions
p2
a = 0 impose [62]

Pµ(z)Pµ(z) = 0. (3.4)

There is an alternative approach due to Fairle and Roberts [59,60] to determine the
scattering equations. In this approach, the scattering equations are obtained as a way to
replace the Virasoro conditions for closed strings with the condition of the vanishing of
ω(z)2, where ω(z) is a map from the Riemann sphere to complexified Minkowski space,
i.e., ω : CP1 → CM. Explicitly

3Here we will focus on the massless case but the massive case can be treated similarly [67].
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z4×
zn×

z1×

z2×
z3×

Pµ(z)

S2

. . .

Figure 3.1: The map P (z)µ has a simple pole for each marked point i.

ωµ(z) =
n∑

j=1

pµj
z − zj

. (3.5)

Using momentum conservation, we see that this map is equivalent to the integrand of
(3.3), since

ωµ(z) =
cµ0 + cµ1z + · · ·+ cµn−2z

n−2

n∏
j=1

(z − zj)
, (3.6)

where cµi are the coefficients of the polynomials Pµ(z). Using (3.5), we have the condition

n∑

i,j=1

pi · pj
(z − zi)(z − zj)

= 2
n∑

i=1

1

(z − zj)
n∑

j=1

pi · pj
(zi − zj)

= 0. (3.7)

This equation must be valid for all z, in particular it should be free of double and simple
poles, thus implying p2

i = 0 and the scattering equations, respectively. Therefore, the
scattering equations for the momentum configuration space of n massless particles are
given by

fi(z, p) ≡
n∑

j=1
j 6=i

2pi · pj
zi − zj

= 0, i = 1, . . . , n, (3.8)

where zi are the locations of the punctures and z = (z1, . . . , zn) denotes the dependence on
all the punctures. This formula is Möbius invariant which reflects that we have a CP1 with
n punctures. The solutions will correspond to n distinct points on CP1 modulo Möbius
transformations, thus the solutions of the scattering equations are points in the moduli
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space of Riemann spheres with n marked points M0,n. This establish the connection
between the space of kinematic invariants pi · pj andM0,n.

The scattering equations can also be derived directly from string theory [68]. They
appear in the context of the ambitwistor string theory—loosely speaking, string theory in
a target space made of null geodesics in complexified spacetime [69]. In this context, ω(z)

is a 1-form, i.e.,

ωµF (z) = ωµ(z)dz, (3.9)

and the scattering equations enforce the vanishing of the residues of ω2
F (z) at (n − 3)

points [70], i.e.,

resziω
2
F (z) = fi(z, p) = 0. (3.10)

In this context, there is a natural loop-level generalization by increasing the genus of the
Riemann surface, thus giving the scattering equations again as the vanishing of the residues
of the 1-loop generalization of ω2

F (z) plus an additional constraint on ω2
F (z) [71–73].

3.1.2 Properties of the scattering equations

Möbius invariance. The scattering equations are invariant under Möbius transforma-
tions, which are defined through the mapping

g : CP1 → CP1, g(zi) =
azi + b

czi + d
, i ∈ {1, . . . , n}, (3.11)

where a, b, c, and d are complex such that ad − cb 6= 0. These transformations
form a group isomorphic to SL(2,C)/Z2 = PSL(2,C). The group operation of these
transformations can be realized as function composition or as matrix multiplication.
Möbius invariance implies the identities:

n∑

j=1

fj(z, p) = 0,

n∑

j=1

zjfj(z, p) = 0,

n∑

j=1

z2
j fj(z, p) = 0. (3.12)

Therefore only (n− 3) equations are independent.

Factorization. The scattering equations factorize into two sets when one of the Man-
delstam variables vanishes. Let us denote by sA with A ⊂ {1, . . . , n} the vanishing
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Mandelstam variable. Suppose that za = zA + εxa + O(ε2), as ε → 0, for a ∈ A,
and za /→zA for a /∈ A, then

n∑

j∈A
j 6=i

pipj
xi − xj

= 0, i ∈ A,

pipA
zi − zA

+
n∑

j /∈A
j 6=i

pipj
xi − xj

= 0, i /∈ A, (3.13)

with pA =
∑

i∈A pi. Hence, for sA = 0, the scattering equations factorize in two
sets:

1. The first set for the momenta (pi, i ∈ A;−pA) with associated variables
(xi, a ∈ A;∞).

2. The second set for the momenta (kA; ki, i /∈ A) with associated variables
(zA; zi, i /∈ A).

The factorization properties of the scattering equations mimic the factorization
properties of the moduli spaces of Riemann spheres. This is a well-known fact in
string amplitudes where the physical singularities of the amplitudes are connected
with the behavior of moduli spaces at infinity (see e.g., Section 2.3 of [74]).

KLT orthogonality. Among the properties that were presented in the seminal work by
CHY [62], there is an orthogonality-like relation on the support of the solutions of
the scattering equations. There are (n− 3)! solutions of Eq.(3.8), which we denote
by

z(j) = (z
(j)
1 , . . . , z(j)

n ), j = 1, . . . , (n− 3)! (3.14)

Let consider a solution z(j) of the scattering equations and define the (n − 3)!

dimensional vectors

Cj ≡ C(w, z(j)) =
1

z
(j)
l1l2
· · · z(j)

lnl1

, C̄j ≡ C(v̄, z(j)) =
1

z
(j)
l1l2
· · · z(j)

lnln−1
z

(j)
ln−1l1

,

(3.15)

with orderings w = l1 . . . ln−1ln and v̄ = l1 . . . lnln−1, respectively. Here we have
used the notation zii − zlj = zlilj . The KLT orthogonality states that these vectors
satisfy
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〈Ci, C̄j〉
〈Ci, C̄i〉

1
2 〈Cj , C̄j〉

1
2

= δij , (3.16)

where the inner product 〈•, •〉 is defined by

〈Ci, C̄j〉 =
∑

w∈B

∑

v∈B
C(w, z(i))S[w|v̄]C(v̄, z(j)), (3.17)

where B is a basis of (n− 3)! orderings of the legs l1, . . . , ln. The size of the basis is
such that three legs are fixed4. The KLT momentum kernel S[w|v̄] was introduced
in Section 2.4.6. Choosing {1, 2, . . . , n} as the set of labels, the basis is constructed
by setting l1 = 1, ln−1 = n− 1, and ln = n.

3.1.3 Polynomial form of the scattering equations

The scattering equations become a system of (n−3) rational equations after removing the
redundancy due to Möbious invariance. They can be transformed to system of polynomial
equations as was shown by Dolan and Goddard in Ref. [75]. This form is suitable for
finding its solutions employing usual techniques available in the literature, for example via
the Gröbner basis. In addition, tools from algebraic geometry can be used to simplify the
contour integrals in the CHY formalism to avoid finding the solutions—a short summary
of Gröbner basis and some relevant tools from algebraic geometry can be found in the
Appendix B.

In order to introduce the polynomial form of the scattering equations let us consider
a subset

S ⊆ {2, . . . , n− 1}. (3.18)

We also define

pS =
∑

i∈S
pi, zS =

∏

i∈S
zi, (3.19)

where by definition p∅ = 0 and z∅ = 1. In addition, we define the homogeneous polynomials
in (n− 3) variables as

4See Appendix C for details about basis of amplitudes.
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hm(z, p) =
∑

S⊂{2,...,n−1}
|S|=m

p2
SzS . (3.20)

The scattering equations are then equivalent to set of equations

hm(z, p) = 0, 1 ≤ m ≤ n− 3. (3.21)

This set of equations defines a zero dimensional algebraic variety—in other words the
solutions of the equations are a set of points—dubbed as the scattering variety [76]

Vn(p) = {z ∈ Cn−3|hm(p, z) = 0; 1 ≤ m ≤ n− 3}. (3.22)

Bezout’s theorem tell us that Vn(p) consists of (n− 3)! points as was found empirically
by CHY. Since the scattering equations have finitely many common zeros in Cn−3, we
can focus on the ideal I generated by the polynomials hm, i.e.,

I = 〈h1, . . . , hn−3〉 . (3.23)

Therefore, if we want to find the zeros of the ideal I we may use the Gröbner basis
method. This requires the introduction of a Gröbner basis for the ideal I [77]. However,
the computation of Gröbner basis is computationally challenging when the number of
equations increase. However, Bosma, Søgaard, and Zhang showed that the polynomials hm
form a simpler basis called the Macaulay H-basis for the ideal I [78]. Let us briefly review
this notion. Let R = C[z1, . . . , zn] be a ring of polynomials in n variables z1, z2, . . . , zn

over the field of complex numbers5. A set of polynomials {b1, . . . , bk} ⊂ I is an H-basis
for I ⊆ R if for all P ∈ I if there exists polynomials q1, . . . , qk ∈ R such that

P =

k∑

j=1

qjbj , (3.24)

with deg qj ≤ deg P − deg bj . Alternatively, for any polynomial P ∈ R we define the
initial form of P “in(P )” as the homogeneous part of P of degree deg P . Thus, the
condition for a set of polynomials {b1, . . . , bk} ∈ R for being an H basis reads

5We can choose an arbitrary number field.
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〈in (I)〉 = 〈in (b1), . . . , in (bk)〉 . (3.25)

The scattering polynomials form an H-basis and thus any polynomial P ∈ R of degree d
can be reduced with respect to the scattering polynomials {h1, . . . , hn−3} as

P =
n−3∑

j=1

qjhj + P̃ , (3.26)

where the remainder P̃ is bounded by d∗ = (n− 3)(n− 4)/2, i.e., d > d∗.

In this work, we concentrate on the scattering polynomials seen as the ideal (3.23)
and hence we concentrate in the Gröbner basis method, instead of the H-basis method.

3.1.4 Solutions of the scattering equations

We are ready to review the solutions of the scattering equations. The solutions have been
studied extensively in the literature. Let us mention some selected works.

First, in the original form of the scattering equations (3.8) the numerical solutions
were studied by CHY finding that the number of solutions is (n− 3)! [62]. Solutions for
special kinematics were studied in Ref. [79], where they were associated with the zeros of
Jacobi polynomials. In 4D the solutions can be found in terms of spinor products and
momentum twistor variables [80]. In 4D at four points a solution was also known since
the works of Fairle and Roberts [60]. Finally, 4D solutions were studied in Refs. [75,81].
Second, with the introduction of the polynomial form of the scattering equations by Dolan
and Goddard [75] the problem of finding the solutions became a well-defined problem
in algebraic geometry, therefore many techniques were proposed, e.g., using elimination
theory [82,83]. Finally, Cachazo, Mizera, and Zhang found that in certain regions of the
space of kinematic invariants the solutions are real6.

Let us review the solutions for the simplest cases.

3.1.4.1 Three points

The trivial case correspond to n = 3 external particles, where the solutions are completely
fixed by Möbius invariance. Therefore, in this case there is only one solution, namely

z(1) = (∞, 1, 0), (3.27)

6This may be used to find a CHY representation only using real numbers [84].



3.1. The scattering equations 61

which also sets our convention for the fixed values of zi. In general, we fix:

z1 =∞, z2 = 1, zn = 0. (3.28)

3.1.4.2 Four points

In this case Eqs. (3.20)-(3.21) give

0 = s12z2 + s13z3, (3.29)

therefore

z(1) = (∞, 1,−s12

s13
, 0). (3.30)

3.1.4.3 Five points

Things start to become a bit more exciting with n = 5 particles where we have the
equations:

0 = s12z2 + s13z3 + s14z4,

0 = s123z2z3 + s134z4z3 + s124z2z4. (3.31)

This system of equations can be easily solved using the ’Solve’ command of Mathe-

matica. However, for illustration purposes we shall use the method of elimination via
Gröbner bases. The scattering polynomials generate the ideal I5, i.e.,

I5 = 〈s12z2 + s13z3 + s14z4, s123z2z3 + s134z4z3 + s124z2z4〉 , (3.32)

which in lexicographic order (See Appendix B.2) leads to the Gröbner basis:

g1 = s14s134z
2
4 + (s14s123 − s13s124)z4 + s12s134z4 + s12s123,

g2 = s13z3 + s14z4 + s12,

g3 = s123z3 + s134z4z3 + s124z4, (3.33)
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where the set of equations gi = 0, i = 1, 2, 3 have the same solutions as (3.31). However, g1

is a polynomial in one variable7 which can be easily solved and inserted in the remaining
equations. Therefore, the solutions read

z(1) = (3.34)
(
∞, 1,− s12

2s13
− s124

2s134
+

s14s123

2s13s134
−
√
Q

2s13s134
− s12

2s14
− s123

2s134
+

s13s124

2s14s134
+

√
Q

2s14s134
, 0
)
,

z(2) = (3.35)
(
∞, 1,− s12

2s13
− s124

2s134
+

s14s123

2s13s134
+

√
Q

2s13s134
,− s12

2s14
− s123

2s134
+

s13s124

2s14s134
−

√
Q

2s14s134
, 0
)
,

where Q = (−s14s123 + s13s124 + s12s134)2 − 4s12s13s124s134.

3.1.4.4 Six points

At six points, the problem becomes very difficult to handle through the Mathematica

command “Solve”. The equations in this case are

0 = s12z2 + s13z3 + s14z4 + s15z5,

0 = s123z2z3 + s134z4z3 + s135z5z3 + s124z2z4 + s125z2z5 + s145z4z5,

0 = s1234z2z3z4 + s1245z2z5z4 + s1345z3z5z4 + s1235z2z3z5, (3.36)

where now the Gröbner basis is formed by 25 elements. The first element in the basis
depends only on z5 and is a sextic polynomial

g1 =(s2
15s135s145s

2
1345)z6

5 + (s124s135s
2
1345s

2
15 + s123s145s

2
1345s

2
15 + 12 terms)z5

5 + . . .

(3.37)

The rather lengthy size of the basis and coefficients is a very well-known problem of the
lexicographic monomial order, but it illustrates the technical problem in this approach.
We can do better by choosing another monomial ordering or by using another technique
for elimination. A general procedure for solving these equations using resultants is worked
out in Ref. [83].

It should be clear that despite its apparent simplicity, it is a nontrivial task to solve
analytically the scattering equations for higher number of particles. One can do a bit

7This is a general result from elimination theory, see e.g., Ref. [85], Chapter 3.
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better numerically, e.g., using generic kinematics it is possible to find the solutions up to
10 points using the Nsolve command of Mathematica in some hours.

However, as we shall see in the following Sections we may use the polynomial form
of the scattering equations to compute global residues and thus we shall not need to
solve the scattering equations—we may use that the polynomials form a H-basis to
compute residues as well. Nevertheless, the concept of evaluating over solutions—but
not necessarily the explicit evaluation—will be important whenever we use the KLT
orthogonality (3.17), which has a dependence on the solutions.

3.2 CHY-formalism

The scattering equations can be used to write an integral representation of amplitudes
for scalars, gluons, and gravitons in the same spirit as the Roiban-Spradlin-Volovich
connected formula for amplitudes in N = 4 SYM [15]. The idea is to write an integral of
I(z, p, ε) dΩCHY, where I(z, p, ε) may depend on the polarization vectors ε. The rational
function I satisfies the properties of an amplitude and dΩCHY represents the integration
over maps from the space of kinematic invariants toM0,n [86]. The CHY proposal for
the n-point amplitude reads

An(p, ε) =

∫
I(z, p, ε)dΩCHY, (3.38)

where the covariant and permutation invariant “measure”

dΩCHY =
dz1dz2 · · · dzn
vol PSL(2,C)

∏′

a

δ (fa) (3.39)

restricts the integration over za to the solutions of the scattering equations. The modified
product is defined by

∏′

a

Xa = (−1)(i+j+k)zijzjkzkl
∏

a6=i,j,k
Xa, (3.40)

where Xa is an arbitrary expression. This product restricts the integration to the (n− 3)

independent equations (See Section 3.1.2). The PSL(2,C) invariant measure is constructed
by fixing three of the values of zi, say, p, q, and r such that

dz1dz2 · · · dzn
vol PSL(2,C)

= (−1)(p+q+r)zpqzqrzrp
∏

a6=p,q,r
dza, (3.41)
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where the sign makes the quantity PSL(2,C) invariant. Explicitly, the measure reads

dΩCHY = (−1)(p+q+r)zpqzqrzrp
∏

a6=p,q,r
dza

∏′

a

δ (fa) . (3.42)

Thus, the task is reduced to finding the rational integrand I(z, p, ε). In order to find
a PSL(2,C) invariant integrand I(z, p, ε) we have to ask which properties should the
amplitude satisfy for a given theory such that it reproduces the S-matrix. A systematic
procedure to obtain integrands is yet unknown, however a classification and the relations
among theories with a known representation can be found in Ref. [87]. These theories are
also studied from the point of view of the ambitwistor models in Ref. [88].

The Dirac delta functions completely localize the integral on the solutions of the
scattering equations, hence there are no integrations to do. This can be easily shown
by invoking a property of multi-residues, which allows us to rewrite Eq.(3.38) as a
contour integral using a known prescription for writing a residue as a Dirac delta8. This
prescription amounts to the substitution

dΩCHY =
dz1dz2 · · · dzn
vol PSL(2,C)

∏′

a

1

fa
(3.43)

in Eq. (3.39). Thus, the explicit contour integral reads

An(p, ε) =
(−1)(i+j+k+p+q+r)

(2πi)n−3

∮

O
I(z, p, ε)(zijzjkzki)(zpqzqrzrp)

∏

a6=i,j,k

1

fa

∏

a6=p,q,r
dza,

(3.44)

where the contour O encloses the inequivalent solutions of the scattering equations. This
is the form used for the proof of the CHY-formula by Dolan and Goddard [89]. In order
to solve this integral, let us consider the computation of the Grothendieck residue9

resz(j)
(

g(z)

f1(z) · · · fn(z)

)
=

1

(2πi)n

∫

Γf (δ)

g(z)

f1(z) · · · fn(z)
dz, dz = dz1 ∧ · · · ∧ dzn,

(3.45)

where we recall that z = (z1, z2, . . . , zn). If z(j) is solution of f1 = 0, f2 = 0, . . . , fn = 0,
then the Jacobian of f = (f1, . . . , fn) [90], i.e.,

8This particular prescription is given in Eq. (B.11) of Appendix B, where some important features of
multi-residues are briefly discussed.

9Details of this formula are described in Appendix B.3.
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Jf (z
(j)) = det

(
∂fa
∂zb

(z(j))

)
(3.46)

is nonzero and

resz(j)
(

g(z)

f1(z) · · · fn(z)

)
=

g(z(j))

Jf (z(j))
. (3.47)

Then, for each solution z(j) of f we have the result (3.47). The full result is then the
global residue10

Res{f}(g(z)) =
∑

z(j)∈solutions

res{z(j)}(ω). (3.48)

If we want to use this property for the whole set of the scattering equations, we notice that
the determinant of the Jacobian vanishes. Furthermore, in Eq.(3.44) we are integrating
over (n− 3) variables and we have (n− 3) equations. Therefore, we have to consider only
(n− 3) equations. The Jacobian of the transformation (3.46) can be obtained from the
n× n matrix Φ given by

Φab =
∂fa
∂zb

=





sab
(za − zb)2

, a 6= b,

− ∑
j=1
j 6=a

saj
(za − zj)2

, a = b.

(3.49)

We then delete the rows {i, j, k} and the columns {p, q, r}. We denote the resulting
(n− 3)× (n− 3) matrix by Φijk

pqr. Therefore, using Eq. (3.48) for the integral (3.44) we
obtain

An(p, ε) = (−1)i+j+k+p+q+r
∑

z(j)∈ solutions

(zijzjkzki)(zpqzqrzrp)
I(z, p, ε)

det(Φijk
pqr)

∣∣∣∣∣
z=z(j)

, (3.50)

where “solutions” is the set of (n− 3)! solutions. It is customary to define the reduced
determinant of the matrix Φijk

rst as

10Ibid.
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det′(Φ) = (−1)i+j+k+r+s+t det(Φijk
rst)

(zijzjkzki)(zrszstztr)
, (3.51)

where we have introduced again a sign to make the reduced determinant independent of
the choice of {i, j, k} and {r, s, t}. Let us now define

J(z, p) =
1

det′(Φ)
. (3.52)

Therefore, we can write the integral as a sum over all the evaluations of the solutions of
the scattering equations, i.e.,

An(p, ε) =
∑

solutions j

J(z(j), p)I(z(j), p, ε). (3.53)

where the z(j) indicates the evaluation of the j-th solution in the expression and the sum
runs over (n−3)! elements. Notice that we write “solutions j” to indicate “z(j) ∈ solutions”.
The Jacobian transforms as

J(g(z), p) =




n∏

j=1

1

(czj + d)4


 J(z, p) (3.54)

under PSL(2,C). Therefore, the integrand must transform as

I(g(z), p, ε) =




n∏

j=1

(czj + d)4


 I(z, p, ε). (3.55)

Of course, we may use the polynomial form of the scattering equations to derive
these results following a similar procedure. Taking z1 →∞, z2 = 1, and zn → 0 in the
polynomial form of the scattering equations, we can write the contour integral as [75, 77]

An(p, ε) =
1

(2πi)n−3

∮

O
Ĩ(z, p, ε) dΩ̃CHY. (3.56)

The integrand Ĩ(z, p, ε) is defined by
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Ĩ(z, p, ε) ≡I(z, p, ε)
n∏

i=1

(zi − zi+1)2, (3.57)

where by definition zn+1 = z1, i.e., we have an inverse Parke-Taylor factor squared.
Similarly, dΩ̃CHY is given by

dΩ̃CHY ≡
z2

zn−1

n−3∏

m=1

1

hm

∏

2≤j<k≤n−1

(zj − zk)
n−2∏

i=2

zi
(zi − zi+1)2

dzi+1. (3.58)

In this work we will be interested in the CHY representation as a sum over solutions
(Eqs.(3.51)-(3.53)) and as a contour integral based on the polynomial form of the scattering
equations (Eqs. (3.56)-(3.58)).

The contour integrals just introduced can be systematically solved using multi-residues
and using the fact that the scattering polynomials form an H-basis [77, 78]. An iterative
procedure to solve these integrals was proposed in Ref. [91]. In addition, integration rules
can be used to perform these integrals as shown in Refs. [92, 93].

3.3 Integrands in the CHY-formula

We are ready to discuss the integrands appearing in (3.53) and (3.57) modulo inverse
Parke-Taylor factors. These integrands are required to have the properties of an amplitude,
i.e., on the support of the scattering equations they factorize, and they have the correct
soft behavior. Let us introduce the integrands of the original CHY proposal, which using
our conventions reads

A(s)
n (p, ε) = i

∫
dΩCHY

(
Tr(T a1T a2 · · ·T an)

(z1 − z2)(z2 − z3) · · · (zn − z1)
+ . . .

)2−s
(Pf ′Ψ)s (3.59)

for s = 0, 1, 2. Here we identify three fundamental integrands for each value of s:

Is(z, p, ε) = i

(
Tr(T a1T a2 · · ·T an)

(z1 − z2)(z2 − z3) · · · (zn − z1)
+ . . .

)2−s
(Pf ′Ψ)s, (3.60)

for scalars s = 0, gauge bosons s = 1, and gravitons s = 2. From these integrands, we
identify a Parke-Taylor factor (also called a cyclic factor) given by

C(w, z) =
1

(zl1 − zl2)(zl2 − zl3) · · · (zln − zl1)
, (3.61)
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where z denotes the dependence on the zli ’s. Here we are using the ordering w = l1 . . . ln

with li ∈ {1, 2, . . . , n}, and li 6= lj for i 6= j. These factors are the unevaluated vectors
of the KLT orthogonality defined in Eq.(3.15). We also identify a permutation invariant
factor E(z, p, ε) corresponding to a reduced Pfaffian11

E(z, p, ε) ≡ Pf′Ψ =
(−1)i+j

zij
PfΨij

ij(z, p, ε), (3.63)

where the 2n× 2n antisymmetric matrix Ψ(z, p, ε) is defined as follows:

Ψ(z, p, ε) =

(
A −CT

C B

)
, (3.64)

with the n× n matrices A, B, and C given by12

Aab =




sab
zab
, a 6= b,

0, a = b,
, Bab =





εab
zab
, a 6= b,

0, a = b,
, Cab =





ρab
zab
, a 6= b,

− ∑
j=1, j 6=a

ρab
zaj
, a = b,

,

(3.65)

where we define εab = εa · εb and ρab =
√

2εa · pb. The matrix Ψij
ij(z, p, ε) denotes the

(2n− 2)× (2n− 2) matrix, where the rows and columns i and j of Ψ have been removed
(1 ≤ i < j ≤ n).

Henceforth, we will drop the information about the color and focus on primitive
amplitudes, therefore we write for scalars, gluons and gravitons, respectively

A(0)
n (p, w, w̃) ≡ m(w|w̃) =

i

(2πi)n−3

∮

O
dΩ̃CHY

n∏

i=1

(zi − zi+1)2C(w, z)C(w̃, z), (3.66)

A(1)
n (p, w) ≡ An(p, w) =

i(−1)n

(2πi)n−3

∮

O
dΩ̃CHY

n∏

i=1

(zi − zi+1)2C(w, z)E(z, p, ε), (3.67)

A(2)
n (p) ≡Mn(p) =

i

(2πi)n−3

∮

O
dΩ̃CHY

n∏

i=1

(zi − zi+1)2E(z, p, ε)2, (3.68)

11The Pfaffian of a 2n× 2n skew symmetric matrix satisfy det(A) = Pf(A)2. It is defined by

Pf(A) =
1

2nn!

∑
σ∈S2n

sign(σ)

n∏
i=1

Aσ(2i−1),σ(2i), (3.62)

where sign(σ) is the signature of the permutation.
12A refined version which makes manifest the Möbius invariance of the matrix C was proposed in

Ref. [94].
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where in the scalar case we have allowed the cyclic factors to have distinct orderings w
and w̃. The minus sign in Eq.(3.67) was introduced to find amplitudes in agreement with
the Feynman rules in Appendix A.1. The fact that gravity amplitudes are not ordered
is manifest in Eq.(3.68), where we see that there is no dependence on the cyclic factor
C—this is implicit in (3.59), where the term involving the cyclic factor becomes one.
The factors C(w, z) and E(z, p, ε) are the basic ingredients of the known theories that
admit a CHY representation. Notice that they transform as expected under Möbius
transformations, i.e.,

C(w, g(z)) =




n∏

j=1

(czj + d)2


C(w, z), (3.69)

E(g(z), p, ε) =




n∏

j=1

(czj + d)2


E(z, p, ε), (3.70)

in agreement with Eq. (3.55). These transformations under PSL(2,C) constrain the
space of theories that admit a CHY representation, but it is possible to generalize these
factors to “CHY represent” other theories. The known representations are obtained by
generalizing those ingredients. Furthermore, theories like Einstein-Yang-Mills, Einstein-
Maxwell, the nonlinear sigma model, etc, can be obtained by compactifying, squeezing,
and generalizing the factor E(z, p, ε). These operations and the theories which result
from them are discussed in Ref. [87]. This ends our review of the integrands of the CHY
representation. In the following Section, we give examples of computations using these
formulas for the scalars, gluons and gravitons for simple cases.

3.4 Elementary examples

For simplicity, in this Section we give some worked examples up to four points. The main
point of these examples is to illustrate the algebraic approach using computer algebraic
geometry techniques. In the Appendix B, we give an example up to n = 6 for the scalar
theory. Details of residues and the generalities of the algorithm are presented in Appendix
B.3.

We call the algebraic approach the approach based on the computation of the multi-
variate residues from the point of view of algebraic geometry. Hence, we are interested in
the master formula for the global residues. i.e.,

Res
(

N(z)

f1(z) · · · fn(z)

)
= Res{f}(N(z)) ≡ 〈N(z), 1〉 , (3.71)
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where the last equality we write the sum over residues as an inner product. This approach
makes the computation of residues a computer algebra problem.

3.4.1 Scalar theory

Let us start with Eq.(3.66) which computes amplitudes for the bi-adjoint scalar. Its
Lagrangian was introduced in Chapter 2, where the Feynman rules were also introduced.

3.4.1.1 Sum over solutions

Let us start with an example of Eq.(3.53). The integrand is given by

I = i C(w, z)C(w̃, z). (3.72)

For n = 4 there is one solution of the scattering equations (see Section 3.1.4). The
Jacobian reads

J(z(1), p) = −
s12

2x2

(
s12

s13
+ x

)2

s13
2

(
s12

(x−1)2
+ s23(

s12
s13

+1
)
2

+ s24

) , (3.73)

where we have chosen {i, j, k} and {r, s, t} to be {1, 3, 4}. Here x is a placeholder for the
third component of z(1). With the orderings w = 1234 and w̃ = 1324, the integrand reads

I(z(1), p) = i C(1234, z(1))C(1324, z(1)) = i
s13

4

s12 (s12 + s13) 2(x− 1)x2 (s13x+ s12)
,

(3.74)

hence taking the limit x→∞, we obtain

m(1234|1324) = lim
x→∞

J(z(1), p)I(z(1), p)

=− i
s12s13

s24s12
2 + 2s13s24s12 + s13

2 (s23 + s24)

=− i
1

s12 + 2s24 − s13

=i
1

s14
.



3.4. Elementary examples 71

We can verify that this is the correct result in many ways, for example using Feynman
diagrams13.

3.4.1.2 Algebraic approach

This approach is based on Eq. (3.66). For n = 4 we have

dΩ̃CHY =
z2

z3

1

h1
z23

z2

z2
23

dz3, (3.75)

therefore

m(1234|1324) = (3.76)

i

(2πi)

∮

O

(
1

z12z23z34z41

1

z13z32z24z41

)
(z12z23z34z41)2

∣∣∣∣z1→∞
z4=0

(
z2

z3

z23

h1

z2

z2
23

dz3

)
,

where we have grouped the integrand and the measure separately. Inserting the scattering
equation h1 and taking the limits, the integral becomes

m(1234|1324) =
i

(2πi)

∮

O

(
−z3

z2

)(
z2

2

z23

1

z3(s12z2 + s13z3)
dz3

)
.

Setting z2 = 1 and performing the contour integral, we obtain

m(1234|1324) =
i

(2πi)

∮

O
− dz3

1− z3

1

s12 + s13z3
(3.77)

=i
1

s14
, (3.78)

which coincides with the result of the sum over solutions. Here, the procedure is straight-
forward because we have only one integral to perform. In the case where more integrals
are needed, we can use the global residue theorem (See. e.g., [89]). However, the method
proposed by Søgaard and Zhang based on the Bezoutian matrix in algebraic geometry is
more convenient. Let us follow the algorithm based on the Bezoutian matrix14.

1. Calculate the basis. The aim of this algorithm is to use Eq.(3.71) as an inner
product. Therefore we need a basis and its dual. For the ideal I = 〈s12 + s13z3〉,
the Gröbner basis in Degree reverse lexicographic monomial order reads

13An interesting approach to verify these results is to use the recursive algorithm by Mafra [95] based
on the perturbiner approach [96].

14Details can be found in Appendix B.3.
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g1 = s13z3 + s12. (3.79)

A canonical linear basis—all monomials of degree lower than z3—in the quotient
ring C[z3]/I is given by {ei} = {1}.

2. Calculate the dual basis ∆i.

(a) Compute the 1× 1 Bezoutian matrix:

B =
(s12 + s13z3)− (s12 + s13y1)

z3 − y1
= s13. (3.80)

(b) Define the associated Gröbner basis by setting zi → yi:

g̃1 = s13y1 + s12. (3.81)

(c) Calculate the polynomial division of det(B) over G⊗G:

det(B) = 0× (s12 + s13z3) + 0× (s13y1 + s12) + s13 × 1. (3.82)

(d) The remainder of the above division gives the dual basis as the coefficients of
the basis (i.e., the coefficients of e1 = 1), hence ∆i = {s13}.

3. Compute the inverse of (1− z3) with respect to the ideal J = 〈s12 + s13z3, 1− z3〉.
This inverse is obtained by computing the Gröbner basis of J and writing

1 = (s13z3 + s12)
1

s12 + s13
+ (1− z3)

s13

s12 + s13
, (3.83)

hence the polynomial inverse of (1− z3) is (−s13/s14).

4. The global residue is then given by

Res

(
− 1

(1− z3)

)
= Res

(
s13

s14

)
. (3.84)

The numerator can be expressed in terms of the basis ei and the unity can be
decomposed in terms of the dual basis, i.e.,
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s13

s14
=

(
s13

s14

)
e1,

1 =
1

s13
∆1, (3.85)

respectively. Finally,

m(1234|1324) =i Res

(
− 1

(1− z3)

)

=i 〈s13

s14
, 1〉

=i
s13

s14

1

s13
〈e1,∆1〉

=i
1

s14
, (3.86)

as expected.

It may look involved, but this algorithm can handle more complex cases once a computer
algebra implementation is performed15. Notice that the power of this method is that we
have successfully computed the contour integral without solving the scattering equations.

3.4.2 Yang-Mills

The simplest example is the 3-point amplitude, where of course there are no integrations
to do. In this case, the amplitude is fixed and is given by

A3(123) = Ĩ(z, p, ε)
∣∣∣z1→∞
z4→0
z2→1

= −i
√

2(ε12ρ31 + ε23ρ12 + ε13ρ23), (3.87)

where we remind the reader that ρij =
√

2εi · pj and εij = εi · εj . Let us now work with
Yang-Mills for n = 4 with the ordering w = 1234. In this case the integrand reads

Ĩ(z, p, ε) = i(z12z23z34z41)2C(1234, z)E(z, p, ε) = i(z12z23z34z41)E(z, p, ε), (3.88)

where explicitly

15For this example we have used Mathematica and the Package MathematicaM2 [97] which integrates
Macaulay2 [98].
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E(z, p, ε) =
ρ13ε23ρ41

z12z13z14z23
− ε13ρ23ρ41

z12z13z14z23
+

ρ14ε24ρ31

z12z13z14z24
− ε14ρ24ρ31

z12z13z14z24
+
ε12ρ31ρ41

z2
12z13z14

+
ρ13ε23ρ42

z12z13z23z24
− ε13ρ23ρ42

z12z13z23z24
+

ρ13ε23ρ43

z12z13z23z34
− ε13ρ23ρ43

z12z13z23z34
+
ε12ρ31ρ42

z2
12z13z24

− ε13ρ24ρ43

z12z13z24z34
+

s34ε13ε24

z12z13z24z34
+

ρ13ρ24ε34

z12z13z24z34
− ρ13ε24ρ34

z12z13z24z34
+
ε12ρ31ρ43

z2
12z13z34

+
ρ14ε24ρ32

z12z14z23z24
− ε14ρ24ρ32

z12z14z23z24
+
ε12ρ32ρ41

z2
12z14z23

+
ρ14ε23ρ43

z12z14z23z34
− s34ε14ε23

z12z14z23z34

+
ε14ρ23ρ34

z12z14z23z34
− ρ14ρ23ε34

z12z14z23z34
+

ε14ρ24ρ34

z12z14z24z34
− ρ14ε24ρ34

z12z14z24z34
− ε12ρ34ρ41

z2
12z14z34

+
ε12ρ32ρ42

z2
12z23z24

+
ε12ρ32ρ43

z2
12z23z34

− ε12ρ34ρ42

z2
12z24z34

− s34ε12ε34

z2
12z

2
34

. (3.89)

The measure is the same as in the scalar case, i.e.,

dΩ̃CHY =
dz3

(1− z3)z3(s12 + s13z3)
. (3.90)

For concreteness, let us consider the MHV amplitude A4(1−2−3+4+). Using the spinor-
helicity formalism16, and choosing the reference vectors to be q1 = q2 = p3 and q3 = q4 =

p2, we have

ε1−3+ = ε1−2− = ε2−4+ = ε3+4+ = ε2−3+ = ρ2−3+ = ρ3+2− = 0, (3.91)

where we have indicated the helicities by the superscripts ±. We have the integrand

Ĩ(z, p, ε)
∣∣∣z1→∞
z4→0
z2→1

= −2i ρ2−4+ρ3+4+ε1−4+(1− z3). (3.92)

In principle, we need to generate the inverse of (1− z3) and (z3) which are given by

−s13

s14
, −s13

s12
, (3.93)

respectively, but in this example we only require the inverse of z3. This can be seen as
follows:

16See Appendix A
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A4(1−2−3+4+) =− 2iρ2−4+ρ3+4+ε1−4+Res

(
(1− z3)

(1− z3)z3

)

=− 2iρ2−4+ρ3+4+ε1−4+ 〈−
s13

s12
, 1〉

=− 2iρ2−4+ρ3+4+ε1−4+ 〈
−s13

s12
, 1〉

=2iρ2−4+ρ3+4+ε1−4+
1

s13

s13

s12
〈e1,∆1〉

=2iρ2−4+ρ3+4+ε1−4+
1

s12
. (3.94)

Finally, inserting the spinor products we obtain

A4(1−2−3+4+) = 2i

(
−〈24〉 [43]√

2[32]

)(
[34] 〈42〉√

2 〈23〉

)(
−〈12〉 [43]

〈24〉 [31]

)
1

〈12〉 [12]
, (3.95)

which yields

A4(1−2−3+4+) = i
〈12〉4

〈12〉 〈23〉 〈34〉 〈41〉 . (3.96)

3.4.3 Gravity

In this example, we will compute the MHV amplitude for gravity. This amplitude was
introduced in Chapter 2 in the context of the KLT relations. Here, we recover this
amplitude using the CHY formalism and the Bezoutian matrix method. The contour
integral reads

M4(1−−2−−3++4++) =
i

2πi

∮

O
4ε21−4+ρ

2
2−4+ρ

2
3+4+(z3 − 1)2 dz3

(1− z3)z3(s12 + s13z3)
.

(3.97)

We have all the necessary ingredients to compute this amplitude from the examples above.
The residue computation gives
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M4(1−−2−−3++4++) =4iε21−4+ρ
2
2−4+ρ

2
3+4+Res

(
1− z3

z3

)

=4iε21−4+ρ
2
2−4ρ

2
3+4+ 〈−

s13

s12
(1− z3), 1〉

=4iε21−4+ρ
2
2−4ρ

2
3+4+ 〈−

s13

s12
− 1, 1〉

=4iε21−4+ρ
2
2−4ρ

2
3+4+

1

s13

(
−s13

s12
− 1

)

=4iε21−4+ρ
2
2−4ρ

2
3+4+

(
s23

s12s24

)
. (3.98)

In the third line we have used that the residue only depends on the class of the numerator.
In other words, we have considered the remainder of N(z) = q(z) + r(z) with respect to
the grevlex monomial order, which gave a representative of [N ] ∈ C[z3]/I17. Using the
result of the MHV amplitudes for gluons, we have

M4(1−−2−−3++4++) = 2s23A4(1−2−3+4+)

×
(
−〈24〉 [43]√

2[32]

)(
[34] 〈42〉√

2 〈23〉

)(
−〈12〉 [43]

〈24〉 [31]

)
1

〈24〉 [24]
,

(3.99)

which after some algebra simplifies to the KLT relation (2.175) for n = 4, i.e.,

M4(1−−2−−3++4++) =s23A4(1−2−3+4+)

(
[34]4

[13][32][24][41]

)

=− iA4(1−2−3+4+) s23 A4(1−3−2+4+). (3.100)

3.5 Comments on the CHY-formalism

In this section we have presented the main features of the CHY-formalism based on the
scattering equations. We introduced the different equivalent flavors of the formalism to
write amplitudes.

First, we can use it as a recipe for localizing integrals on the solutions of the scattering
equations, in analogy with Witten’s formalism. Actually this makes clear that the
CHY-formula can be understood as the generalization of the connected formalism by
Roiban-Spradlin-Volovich-Witten [15]. In this way, we can think of the CHY-formula as
an abstract “Fourier transform” fromM0,n to the kinematic space. The integrand playing
the role of Fourier transformed amplitude. The relation of the CHY-formula with string

17See details in the Appendix B.3
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integrals is, of course, no coincidence. The precise connection was shown in Ref. [68]. In
Ref. [69] the CHY formulas were understood from the point of view of the ambitwistor
string.

Second, we can view amplitudes as the result of performing the contour integral such
that the result is a sum over evaluations of the scattering equations. Formally, this solves
the problem if we have at our disposal the solutions of the scattering equations, which of
course is the big elephant in the room18. Nevertheless, as a sum over solutions, we can use
the KLT orthogonality and study the CHY formula as a problem in linear algebra. For
instance, we may investigate under which circumstances one can invert the CHY formula
and investigate the space of CHY integrands which reproduce known amplitudes. In the
next Chapter, we will use this approach to prove that QCD admits a CHY representation
and in Chapter 5 to show relations among amplitudes in Einstein-Yang-Mills Theory.

Third, we can view amplitudes in the CHY formalism as a well-defined problem in
algebraic geometry, i.e., as a contour integral with the contour enclosing the solutions of
the scattering equations. This transforms the problem into a problem of computational
residue calculation. Indeed, in the examples presented in this Chapter, we have seen that
the amplitudes ultimately can be computed as an inner product, i.e.,

A(s)
n (p, w, ε) = 〈N (s)

CHY, 1〉 , (3.101)

where the numerator is theory dependent. This amounts to decompose the numerator
in an algebraic basis {ei} and the unity in a dual basis {∆i}. The versatility of the
CHY-formalism makes it a conceptual tool for the understanding of amplitudes.

Finally, let us think what does the CHY-formula tell us about amplitudes at tree-level.
In all flavors of the CHY formula, we compute the connected part of the S-matrix without
computing an explicit integral, drawing a Feynman diagram, using Hilbert space, using
creation and annihilation operators, and most important we did not use the Lagrangian
at any point in the description. Of course, we may rephrase this sentence and say that we
have computed a QFT amplitude without actually using QFT. It is very interesting then
to ask: where are the elements of special relativity and quantum mechanics encoded in the
CHY-formula? By construction, the formula contains Lorentz invariant products and it
also encodes unitarity and locality through factorization—in analogy to BCFW recursions.
It is also very interesting to ask whether one can deduce from QFT—where unitarity and
locality (local poles) arise from first principles and the cluster decomposition principle—a
formalism like the CHY19. Concretely, we may pose the question of how a formula like the
Dyson series (Eq.(2.33)), which makes explicit the ingredients of QFT, can be mapped
to the CHY-formula. Of course one can pose the same question for other approaches to

18As we have seen, solving the scattering equations is a highly nontrivial problem.
19An equivalence to Feynman diagrams was studied in Ref. [99].
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QFT, e.g., Feynman path integrals. One of the main obstacles to address those questions
is the lack of a guiding physical principle such as the cluster decomposition principle in
QFT, which tells us that singularities occur in the form of poles or branch cuts.

In the next Chapters, we will first find another theory which fits into the CHY
formalism and then show the interplay with the color-kinematics duality. The connection
to this duality may be used as a tool to make the connection with QFT.



Chapter 4
QCD in the CHY formalism

In this Chapter we continue our study of the CHY representation but now we focus on
pure Yang Mills and QCD. We discuss the necessary ingredients for a CHY representation
of QCD to exist and how the building blocks should be redefined—namely the permutation
invariant factor E(z, p, ε) and the cyclic factor C(w, z). The known theories that admit
a CHY representation in one way or another can be related to modifications of those
fundamental building blocks. We give the necessary modifications to these building blocks
and prove that we can represent QCD as a sum over evaluations of the solutions of the
scattering equations. We end with a brief account of the search for a closed integrand for
the CHY representation of QCD.

4.1 Pure Yang-Mills amplitudes

Before studying QCD, let us study the simpler case of pure Yang-Mills amplitudes, i.e.,
amplitudes containing only gluons. The color decomposition for pure Yang-Mills which we
reviewed in Section 2.4.3 separates the color information from the kinematic information.
The kinematic information is contained in the gauge invariant and color independent
primitive amplitudes. These amplitudes have a fixed ordering and depend on a set of
polarization vectors1 ε and momentum vectors p. The color decomposition of the full
gauge amplitude in terms of these primitives reads

An(p, ε) =
∑

σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n))A(pσ(1), εσ(1); pσ(2), εσ(2); . . . ; pσ(n), εσ(n)), (4.1)

where the ordering of the legs is specified by the permutations σ and the sum runs over
noncyclic permutations of the set {1, 2, . . . , n}. We use the notation

1Recall that ε stands for the whole collection of polarization vectors and similarly for the whole
collection of momentum vectors p.
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An(σ, p, ε) ≡ A(pσ(1), εσ(1); pσ(2), εσ(2); . . . ; pσ(n), εσ(n)), (4.2)

indicating that we are interested in the ordering specified by σ. Furthermore, we set an
alphabet

A = {g1, . . . , gn} = {1, 2, . . . , n}, (4.3)

indicating the particle content and their corresponding labels. Of course, we can choose
other labels for the alphabet A since we are interested on the relative ordering of the
letters in this alphabet and not on their labels2. The alphabet was defined so we can
work with sequences of letters

w = l1l2 . . . ln, (4.4)

which are called words. The letters li specify the particle content as well—in pure Yang-
Mills all particles are gluons so this information is not particularly useful. The space of
words inside and alphabet form a vector space V of orderings3 and therefore we can define
a basis B of the vector space. In order to find the basis of the space, consider the most
general set of words such that ever letter of the alphabet occurs exactly once, i.e.,

W0 = {l1, l2, . . . , ln|li ∈ A, li 6= lj , for i 6= j}. (4.5)

The sum in Eq.(4.1) is equivalent to a sum of (n− 1)! elements, where one of the letters
is fixed and consider all permutations of the remaining (n− 1) letters [37,100]. A possible
basis is then given by

W1 = {l1l2 . . . ln ∈W0|l1 = g1}. (4.6)

In this sense the amplitude An can be taken as a linear operator in the space of words w
with basis W1 (See Section 2.4.4). The color decomposition in this language reads

An(p, ε) =
∑

w∈W1

Tr(T al1T al2 · · ·T aln )An(w, p, ε). (4.7)

2See Appendix C.
3Ibid.
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In the CHY representation of pure Yang-Mills we also have one fixed letter in w. Conse-
quently, the basis B will have (n− 1)! orderings [14] as well. Expressing the primitive
amplitudes An(w, p, ε) in the CHY representation (3.38), we have

An(p, ε) = i
∑

w∈W1

∫
dΩCHY Tr(T al1 · · ·T aln )C(w, z)E(z, p, ε). (4.8)

It should be clear that we can work with the primitive amplitudes exclusively. Although
in Eq.(4.8) we wrote the CHY-formula using only orderings in W1, the formula is valid
for all primitive amplitudes, i.e., for the set of orderings W0. Following the rules outlined
in Chapter 3 (See Eq.(3.53)), the CHY representation of pure Yang-Mills primitive
amplitudes reads

Aw ≡ An(w, p, ε) = i
∑

solutions j

J(z(j), p)C(w, z(j))E(z(j), p, ε), ∀w ∈W0, (4.9)

where w stands for orderings and j labels the j−th solution of the scattering equations.
It is remarkable that the CHY representation allows us to separate the information of
the scattering amplitude even more than the original color decomposition. The color
decomposition separates the color structure of Yang-Mills from the gauge invariant
part, which is the primitive amplitude. Furthermore, the CHY-formula permits the
factorization of the information: the ordering is encoded in the Parke-Taylor factor C and
the permutation invariant factor E which is gauge invariant and permutation invariant.
This has similarities with the color-kinematics duality where a similar factorization occurs
but in that case the factorization is encoded in the algebra of numerators—for instance
see Section 2.4.5. We add to our list of “worded equations” the CHY representation of
gauge theories as factorization of information, i.e,

full gauge = color× cyclic× permutation. (4.10)

We would like to determine the additional conditions that the building blocks of
the CHY representation should satisfy besides the properties imposed by the scattering
equations (e.g., PSL(2,C) invariance). In order to study these conditions, let us first
assume that we are in the situation where we can compute the primitive amplitudes in
pure Yang-Mill by other means, e.g., Feynman diagrams, BCFW, Berends-Giele, etc.
Then, we want deduce the conditions that allow the factorization of information in the
CHY representation. In other words, we are first concerned with the problem of existence.

The first step is to set is a basis of amplitudes and determine if amplitudes in this
basis have a CHY representation. The basis can be set by shrinking the set W1 after
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imposing KK and BCJ relations4 giving Nbasis = (n− 3)! orderings. We choose the basis
to be

B = {l1l2 . . . ln ∈W0|l1 = g1, ln−1 = gn−1, ln = gn}. (4.11)

Thinking of the amplitude as an operator in the space of words—as we did in Section
2.4.4—such that Aw in Eq.(4.9) is the Nbasis-dimensional vector

Aw ≡ iMwjEj , w ∈ B, (4.12)

where there is an implicit sum over repeated indices. We have defined the Nbasis×Nsolutions

matrix as

Mwj = J(z(j), p)C(w, z(j)), w ∈ B. (4.13)

Notice that Eq.(4.12) is satisfied if we can invert it, in other words if we find a permutation
invariant factor Ej such that

Ej = −i
∑

v∈B
NjvAv = −iNjvAv, (4.14)

where the matrices N and M satisfy

MwjNjv = δwv. (4.15)

Thinking ahead, we have avoided the use of the inverse matrix since we are thinking
in the general case where the matrices may be rectangular. The sum runs over the
Nsolutions = (n − 3)! solutions, which is the same number of elements in the basis.
Therefore, in this case we have square matrices.

In Section 3.1.2, we met the key property of the scattering equations that can be
used to prove Eq.(4.14)—the KLT orthogonality—i.e., the property which relates cyclic
factors and the KLT momentum kernel when evaluated at solutions of the scattering
equations [14,62]. The KLT orthogonality reads

4 In pure Yang-Mills, due to relations among primitive amplitudes, the size of the basis is Nbasis =
(n− 3)! as we reviewed in Section 2.4.4.1
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〈Ci, C̄j〉
〈Ci, C̄i〉

1
2 〈Cj , C̄j〉

1
2

= δij , (4.16)

where

〈Ci, C̄j〉 =
∑

w∈B

∑

v∈B
C(w, z(i))Swv̄C(v̄, z(j)). (4.17)

Here we emphasize that the momentum kernel Swv̄ can be thought as a matrix in the
space of words w, where the bar in v indicates that we modify the last two letters in the
ordering of the Parke-Taylor factor. We can relate to the momentum kernel to the CHY
formula because the Jacobian in (4.9) is given by

J(z(j), p) =
1

〈Cj , Cj〉
, (4.18)

which can be used to find the inverse of Swv̄

(
S−1

)
wv̄

=

(n−3)!∑

j=1

C(w, z(j))J(z(j), p)C(v, z(j)). (4.19)

where we have used matrix notation in the space of orderings for S[w|v̄]5. Thus, the unit
matrix in the space of orderings can be recovered as the product

∑

u∈B
Swū

(
S−1

)
ūv

=

(n−3)!∑

j=1

∑

u∈B
SwūC

j(ū, z(j))J(z(j), p)C(v, z(j)) = δwv. (4.20)

We write explicitly the dependence on the j’th solution to indicate that we do not evaluate
the momentum kernel. Therefore, setting

Njv =
∑

u∈B
SvūC(ū, z(j)), (4.21)

gives the desired N matrix in Eq.(4.14). Then the permutation invariant factor is given
by Ej = −iNjvAv. Explicitly

5Notice the importance of the fact that (n− 3)! is the dimension of the space of solutions and the
dimension of B
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Ej = −i
∑

v∈B

∑

u∈B
SvūC(ū, z(j))Av. (4.22)

The factor E satisfies (4.12) since

Aw = MwjNjvAv = δwvAv = Aw. (4.23)

Notice the importance of the KLT orthogonality for this result. It is also clear that we
obtain another equivalent representation, if we multiply the matrices N, M by an arbitrary
nonzero number and its inverse, respectively. Hence, the representation (4.23) is not
unique.

In conclusion, we have proved that the amplitudes in the basis B have a CHY
representation—which in this case we already knew—but what about the set W0\B,
or the whole W0? Notice that the information about the orderings w enters through
C(w, z(j)) in Mwj , therefore the question is if the amplitude defined as

Âw
?
= iMwjEj , ∀w ∈W0, (4.24)

gives all possible amplitudes provided Ej is given by Eq.(4.22). Keeping in mind that
in this case the matrix Mwj has dimension n!×Nsolutions. If this is the case, then Âw is
an arbitrary primitive Yang-Mills amplitude and it must be cyclic, satisfy KK relations,
and satisfy BCJ relations [101]. In other words we should prove that Eq.(4.24) satisfy
these relations. The first requirement is met by recognizing that we have been calling the
Parke-Taylor factors cyclic factors C(w, z(j)) because of course they are cyclic. Similarly,
the cyclic factors satisfy KK relations and on the support of the scattering equations they
also satisfy BCJ relations [62]. We conclude that the permutation invariant factor Ej
defined through Eq.(4.22) can be used for all amplitudes.

Once we have shown that the representation exist, one would like to find a permutation
invariant factor which does not depend on other amplitudes—in pure Yang-Mills this
factor is the reduced Pfaffian. This procedure gives an integrand of the CHY-formalism,
which in view of the procedure outlined in Section 3.2, is given by

I(z, p, ε) = −i C(w, z)
∑

v∈B

∑

u∈B
SvūC(ū, z)Av, ∀w ∈W0, (4.25)

which, of course, we knew. Of course, this integrand is not very useful for applications
since it is not closed in the sense that it depends on Av. Nevertheless, this procedure is
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useful when we want to show that such formula exists, for example with QCD. Another
way of thinking is to consider the amplitudes in the integrand as given—computed with
other method e.g., Feynman diagrams—and then show that using the contour integral
we return to the same amplitude [101]. Before proceeding with the case of QCD, let
us consider an example for the construction of a basis and the connection between the
integrand and the amplitude.

4.1.1 Example

Consider the n = 4 primitive Yang-Mills amplitude. This amplitude contains only gluons,
hence the alphabet reads

A4 = {g1, g2, g3, g4} = {1, 2, 3, 4}. (4.26)

The basis B contains one element, which we choose to be B = {w1 = 1234}. Recalling
that the cyclic factor for a given ordering w = l1 . . . ln reads

C(w, z) =
1

(zl1l2)(zl2l3) · · · (zlnln−1)
, (4.27)

where as before zli − zlj = zlilj . The permutation invariant factor was introduced in
Chapter 2, which explicitly reads

E(z, p, ε) = Pf′ Ψ =
(−1)i+j

zij
Pf Ψij

ij(z, p, ε), (4.28)

where the elements of the matrix Ψij
ij(z, p, ε) are defined in Eqs.(3.64)-(3.65). For n = 4

we have one independent solution of the scattering equations (Eq.(3.30)) and therefore
we have 1 × 1 matrices. We would like to check that Eq.(4.22) and Eq.(4.28) give the
same results evaluated at the solutions of the scattering equations. Therefore, the cyclic
factor is simply

C(1234, z) =
1

(z12)(z23)(z34)(z41)
, (4.29)

while the cyclic factor with the ordering w̄1 reads

C(1243, z) =
1

(z12)(z24)(z43)(z31)
. (4.30)
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For the reduced Pfaffian, we delete the first and second row as well as the first and second
column. We obtain

E(z, p, ε) = − 1

z12
Pf




0 s34
z34

−ρ13
z13

−ρ23
z23

4∑
i=1
i 6=3

ρ3i
z3i

ρ43
z34

− s34
z34

0 −ρ14
z14

−ρ24
z24

−ρ34
z34

4∑
i=1
i 6=4

ρ4i
z4i

ρ13
z13

ρ14
z14

0 ε12
z12

ε13
z13

ε14
z14

ρ23
z23

ρ24
z24

− ε21
z12

0 ε23
z23

ε24
z24

−
4∑
i=1
i 6=3

ρ3i
z3i

ρ34
z34

− ε31
z13

− ε32
z23

0 ε34
z34

−ρ43
z34

−
4∑
i=1
i 6=4

ρ41
z41

− ε41
z14

− ε42
z24

− ε43
z34

0




, (4.31)

where we have used the conventions of Chapter 3, i.e., εab = εa · εb and ρab =
√

2εa · pb. In
order to compare Eq.(4.22) and Eq.(4.28), we will use the freedom to multiply and divide
for a nonzero constant. The reason behind this normalization is our choice of fixed values
for the solutions which contain infinity. Equivalently, we normalize the Pfaffian and the
Parke-Taylor factors6 by the square root of the Jacobian in agreement with Eq.(4.16).
Thus, we want to show that

(√
J(z, p)Pf′Ψ

)∣∣∣
z=z(j)

=
√
J(z(j), p)

∑

v∈B

∑

u∈B
SvūC(ū, z(j))Av, (4.32)

for n = 4. The full expressions for the reduced Pfaffian and the Jacobian have been
calculated in Chapter 3 (See Eq.(3.89) and Eq.(3.73)). Evaluating the LHS of Eq.(4.32),
we have

LHS = s13

√
s12

s13

[
− ε13ε24 −

s13

s14
ε14ε23 −

s13

s12
(ε12ε34) +

1

s14

(
− ε12ρ32ρ42 − ρ13ε23ρ42

+ ε13ρ23ρ42 + ρ14 (−ε24) ρ32 + ε14ρ24ρ32

)
+

s13

s12s14

(
ε12ρ32ρ43 − ε13ρ23ρ43

+ ρ13ε23ρ43 + ρ14ρ23 (−ε34) + ε14ρ23ρ34 + ρ14ε23ρ43

)
+

1

s12

(
ε12ρ34ρ42

+ ρ13ρ24 (−ε34) + ρ13ε24ρ34 + ε13ρ24ρ43 − ε14ρ24ρ34 + ρ14ε24ρ34

)]
. (4.33)

The momentum kernel is given by S[1234|1243] = s12, hence the RHS becomes

6See Sections 3-4 of Ref. [14]
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RHS =s13

√
s12

s13

[
−A4(1234)

]
. (4.34)

Inspecting the LHS we observe that it has the correct pole structure. For instance, the
first term in the LHS corresponds to the 4-gluon vertex diagram. Similarly, we have
poles for the remaining diagrams for the primitive amplitude A4(1234). Therefore the
LHS term in brackets is in fact the 4-gluon amplitude. If we specialize in the helicities
h1 = h2 = −1 and h3 = h4 = +, we can easily see that the term in brackets is the MHV
amplitude. Using the reference vectors q1 = q2 = p3 and q3 = q4 = p2, we have (see
Example in Section 3.4.2)

ε1−3+ = ε1−2− = ε2−4+ = ε3+4+ = ε2−3+ = ρ2−3+ = ρ3+2− = 0. (4.35)

Therefore, the LHS reduces to

LHS = s13

√
s12

s13

[
− ρ2−4+ρ3+4+ε1−4+

s12

]
, (4.36)

which up to the normalization factor is the MHV amplitude (3.94). In this example,
we have seen two of the ingredients we need for other theories, i.e., we need a basis of
amplitudes B and a proper definition of the permutation invariant factor E.

4.2 CHY representation of QCD

In the first Section we have seen how to prove that a certain gauge amplitude admits a
CHY representation. The main requirement is the invertibility of Eq.(4.12) in the sense of
Eq.(4.23). We would like to test if a formula similar to Eq.(4.12) exists for a theory which
includes fermions or more generally QCD. This part of the thesis is based on Ref. [102]
by the author, Alexander Kniss, and Stefan Weinzierl.

There are several reasons to suspect that such representation exists. First, there is a
correspondence between the color-kinematics duality and the CHY representations for
pure Yang-Mills7 and it was found that the duality extends to QCD amplitudes [103], thus
indicating that QCD may also have a CHY representation. Second, there is a formula for
N = 4 SYM which employs the 4-dimensional version of the scattering equations known
as the Roiban-Spradin-Volovich (RSV) formula [15] which contains the pure gluonic sector.
In addition, it is possible to obtain massless QCD amplitudes from N = 4 SYM by taking
subsets of the amplitudes in the supersymmetric theory, associating gluinos with quarks,

7We will explore this correspondence in the next Chapter.
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and to avoid the N = 4 scalar sector [104]. Furthermore, for amplitudes containing only
external gluons or a single quark line it is well known that in fact the amplitudes in both
theories are equivalent. In third place, QCD amplitudes can be obtained by the generalized
version of the BCFW recursions8 that we studied in Chapter 2. The CHY formalism has
been established for theories which accept BCFW recursions or generalizations of them9.
These observations represent indirect evidence of the existence of such a formula. In this
Section we will show that this formula exists and give a generalized version of Eq.(4.12)
for QCD primitive amplitudes.

Let us proceed with the issue of existence of a CHY representation of QCD based on
the scattering equations. We will proceed in analogy with the pure Yang-Mills case. Let
us summarize the main differences between the pure Yang-Mills case and QCD:

• Quarks can be massive which implies we need to use the massive version of the
scattering equations.

• The basis of amplitudes B depends on the number of fermions, thus in general the
matrices in the generalization Eq.(4.12) will not be square matrices.

• The KLT orthogonality holds only for the subset of QCD amplitudes with only
gluons.

• Pairs of quarks can have an arbitrary orientation. Then we have to set a standard
orientation.

We will address each point independently. Our goal is to show that QCD primitive
amplitudes can be written as

An(w, p, ε) = i
∑

solutions j

J(z(j), p)Ĉ(w, z(j))Ê(z(j), p, ε), (4.37)

where the hats indicate the generalization of the ingredients of the CHY representation.
Equivalently, let Npermutations = n! and define the Npermutations×Nsolutions matrix M̂wj as

M̂wj = J(z(j), p)Ĉ(w, z(j)), (4.38)

and the Nsolutions vector Êj as

Êj = Ê(z(j), p, ε). (4.39)

8BCFW with massive particles, see. e.g., [105]
9For example, effective theories like the non linear sigma model admit a CHY representation but the

usual BCFW shifts do not work and need to be generalized [106,107].
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With this notation we can write Eq.(4.37) in analogy to Eq.(4.12) as follows

Aw = iM̂wjÊj . (4.40)

Notice that the dimension of the matrix M̂ indicate that our goal is to show that Eq.(4.40)
is valid for all w ∈W0.

4.2.1 Massive scattering equations

QCD amplitudes contain two types of particles: massless gauge bosons (gluons) g and
massive or massless fermions (quarks) q. The configuration space of n external particles
with ng gluons and 2nq quarks reads

Kn =

{
(p1, p2, . . . , pn) ∈ (CM)n|

n∑

i=1

pi = 0, p2
gj = 0, and p2

qj = p2
q̄j = m2

qj

}
, (4.41)

where pi ∈ CM is the momenta in complexified Minkowski space in D dimensions. The
n-tuple p = (p1, p2, . . . , pn) of momentum vectors belong to Kn. The massive scattering
equations amount to the replacement

sij → 2pi · pj + 2∆ij , (4.42)

in the massless scattering equations. Hence

fi(z, p) ≡
n∑

j=1
j 6=i

2pi · pj + 2∆ij

zi − zj
= 0, i = 1, . . . , n. (4.43)

In order to preserve PSL(2,C) invariance we must impose the conditions [67]

n∑

j=1
j 6=i

∆ij = m2
i , ∆ij = ∆ji. (4.44)

Assuming that all nq quarks have different flavors, we have that to every external quark
qa corresponds an external anti-quark q̄a with the same mass ma. In this case, we impose
the conditions (4.44) by setting
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∆qaq̄a = ∆q̄aqa = m2
qa , (4.45)

and ∆ij = 0 in all other cases. These constraints can be easily understood if we consider
massive particles as massless particles in higher dimensional space [108]. Since the
scattering equations are valid in any space-time dimension, consider a theory in D + nq

space-time dimensions. In this theory, the a-th quark carries—in the a-th extra dimension—
a momentum component mqa and the anti-quark of flavor a carries —in the a-th extra
dimension—the momentum component (−mqa). Suppose we have

Pi = (pj |κj), (4.46)

in D + nq space-time dimensions. The scattering equations then read

n∑

j=1
j 6=i

2Pi · Pj
zi − zj

= 0, i = 1, . . . , n, (4.47)

which imply Eq.(4.43) with ∆ij = −κiκj . We take the signature of the metric to be
(+,−, . . . ). Thus, the Jacobian in Eq.(3.49) is given in terms of the modified matrix

Φab =
∂fa
∂zb

=





2pa·pb+2∆ab

(za−zb)2
a 6= b,

− ∑
j=1,j 6=a

2pa·pb+2∆ab

(za−zj)2 a = b.
(4.48)

as

J(z, p) =
1

det′(Φ)
, (4.49)

in analogy with the massless case as we discussed in Chapter 3.

4.2.2 Basis of primitive amplitudes

Unlike pure Yang-Mills, the basis of amplitudes in QCD will depend on the number of
quarks. In total, the basis for pure Yang-Mills has (n− 3)! elements after using KK and
BCJ relations (See Section 2.4.4). In contrast, only a subset of QCD primitive amplitudes
satisfy BCJ relations [103,109], therefore the basis depends on this subset. For a n-point
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QCD primitive amplitude containing 2nq quarks and ng gluons, we have n = ng + 2nq.
The size of the basis is given by

Nbasis =





(n− 3)!, nq ∈ {0, 1},
(n− 3)!

2(nq−1)
nq !

, nq ≥ 2.
(4.50)

Notice that due to

2(nq − 1)

nq!
=

2

nq

1

(nq − 2)!
≤ 1, for nq ≥ 2, (4.51)

we have

Nbasis ≤ Nsolutions, (4.52)

where Nsolutions = (n − 3)! is the number of inequivalent solutions of the scattering
equations. This condition is essential for finding a CHY representation for tree-level
primitive QCD amplitudes.

In analogy with our procedure for pure Yang-Mills, the basis of amplitudes consists of
amplitudes with orderings specified by words w in a given alphabet A of labeled particles
which can be quarks qa, anti-quarks q̄a and gluons gi.10 We will assume without loss of
generality that the quarks have different flavors, hence in general the alphabet reads

A = {q1, q2, . . . , qnq , q̄1, q̄2, . . . , q̄nq , g1, g2, . . . , gn}. (4.53)

Remember that the most general basis is a set of words with n letters, such that every
letter from this alphabet occurs exactly once. This basis is given by all possible words
corresponding to all permutations of the letters, i.e.,

W0 = {l1, l2, . . . , ln|li ∈ A, li 6= lj for i 6= j}, (4.54)

which has n! elements. The inclusion of quarks requires a mechanism which takes into
account that primitive amplitudes with crossed fermions lines vanish. This is done by

10 For example, if we have an amplitude of 2 pairs of quark anti-quark and one gluon the alphabet and
a possible choice of labels reads

A5 = {q1, q2, q̄1, q̄2, g1} = {l1, l2, . . . , l5} = {1, 2, 3, 4, 5}.
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introducing Dyck words [110,111]. Dyck words can be easily understood as all possible
ways of matching opening and closing brackets11. Non-matching brackets correspond
to crossed quark lines and therefore we avoid these configurations by using Dyck words.
Generalizing this procedure, we introduce nq distinct opening and closing brackets

(i, )i, (4.55)

respectively. These brackets only match if they have the same index (flavor). There are

NDyck =
(2nq)!

(nq + 1)!
(4.56)

“generalized Dyck words” of length 2nq. In addition, we define as the standard orientation
for a quark line as follows. A quark of flavor i is associated with an opening bracket (i

and the corresponding anti-quark of flavor i is associated with a closing bracket )i
12. We

define a projector P on the letters of the alphabet such that

P (qi) = (i, P (gi) = empty, P (q̄i) =)i, (4.57)

where “empty” denotes that the inclusion of gluons does not give brackets. We then set,

Dycknq = {w ∈W0|P (w) is a generalized Dyck word.}, (4.58)

which contains all words, without crossed fermions lines and where fermions lines have
the standard orientation13. For amplitudes in an arbitrary orientation we can use cyclic
invariance, KK relations, and “no-crossed-fermion-lines” relations to reduce them to the
standard orientation [110,111]—these relations are studied in Appendix C.

We set the basis of primitive QCD amplitudes depending on the number of quarks as
follows

B =





{l1l2 . . . ln ∈W0|l1 = g1, ln−1 = gn−1, ln = gn}, nq = 0,

{l1l2 . . . ln ∈W0|l1 = q1, ln−1 = gn−2, ln = q̄1}, nq = 1,

{l1l2 . . . ln ∈ Dycknq |l1 = q1, ln−1 ∈ {q̄2, . . . , q̄nq}, ln = q̄1}, nq ≥ 2.

(4.59)

11For example if we have two types of brackets (), {}, w1 = (){}, w2 = {()} are valid (generalized)
Dyck words, while w3 = {)(} is not valid.

12This definition is not cyclic invariant. Cyclic invariance is recovered by using KK relations to fix
particle 1 to be q1 and particle n to be q̄1

13For example, for the alphabet A = {q1, q2, g1, q̄1, q̄2} = {1, 2, 3, 4, 5}, the generalized Dyck words with
the standard orientation are 31245, 13245, 12345, . . . , 31524, 13524, 15324, . . . , etc.
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This basis fixes three letters in the alphabet, in analogy with the basis of pure Yang-
Mills in Eq.(4.59) which was obtained by using cyclic invariance, KK relations and BCJ
relations. In QCD, we can use cyclic invariance and KK relations but only a set of
primitive amplitudes satisfy BCJ relations14.

Let us review how to build this basis starting with an arbitrary amplitude An(w) with
w ∈W0 and express it as a linear combination of amplitudes An(wj) with wj ∈ B. Cyclic
invariance can be used to fix particle 1 to be g1 (case nq = 0) or to be q1 (case nq ≥ 1).
This defines a subset of W0 given by

W1 =




{l1l2 . . . ln ∈W0|l1 = g1}, nq = 0,

{l1l2 . . . ln ∈W0|l1 = q1}, nq ≥ 1.
(4.60)

We can fix an additional letter in W0—equivalently we fix a second letter in W1—by
using KK relations. We set the particle n to be gn (case nq = 0) or to be q̄1 (case nq ≥ 1).
Then, we define the subset

W2 =




{l1l2 . . . ln ∈W1|ln = gn}, nq = 0,

{l1l2 . . . ln ∈W1|ln = q̄1}, nq ≥ 1.
(4.61)

Amplitudes with crossed lines vanish, and fermions with a non-standard orientation can be
expressed in terms of amplitudes with the standard orientation15. Using these “relations”,
we can define a subset of W3 where the quark lines are standard oriented and there are
no crossed lines. Recalling Eq.(4.58), we have

W3 =




W2, nq ≤ 1,{
w ∈W2|w ∈ Dycknq

}
, nq ≥ 2.

(4.62)

Finally, we use the fundamental BCJ relations for QCD to fix the position of particle
(n− 1) to be gn−1 (case nq = 0), to be gn−2 (case nq = 1) or to remove any gluon from
position (n − 1) (case nq > 1). The latter means that we must have an anti-quark in
position (n− 2). The basis is then given by

B =





{l1l2 . . . ln ∈W3|ln−1 = gn−1}, nq = 0,

{l1l2 . . . ln ∈W3|ln−1 = gn−2}, nq = 1,

{l1l2 . . . ln ∈W3|ln−1 ∈ {q̄2, . . . , q̄nq}}, nq ≥ 2,

(4.63)

14See Appendix C.2.1.
15See Appendix C.2.2.
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which contains all words with three fixed letters. We have the inclusions

W0 ⊇W1 ⊇W2 ⊇W3 ⊇ B. (4.64)

This chain of inclusions is crucial for the proof of the existence of the CHY representation
of QCD.

Recall that in pure Yang-Mills, once we have found a valid permutation invariant
factor E in the basis of primitive Yang-Mills amplitudes, we wanted to show that the
same factor could be used for all amplitudes. In order to do this, the amplitude (4.24)
had to satisfy cyclic invariance, KK, and BCJ relations. This idea can be used for QCD as
well. The concept behind this procedure is that we may view the amplitude An as a linear
operator on the n!-dimensional vector space of words V with basis W0. Assuming there is
another operator Ân in V , the question we want to address is under which conditions
these two operators are identical. This is the case if and only if they agree on all basis
vectors of V , i.e.,

Â(w) = An(w), ∀w ∈W0. (4.65)

Like in pure Yang-Mills we know that amplitudes in QCD An(wi) satisfy some relations.
If An and Ân are identical operators, we must have the same relations among the hatted
amplitudes Â(wi). Therefore, we first check that the amplitudes agree on the basis B
and then check that the images of Ân satisfy the same relations as QCD amplitudes. In
other words, it is sufficient to check that:

1. Ân is cyclic invariant for all w ∈W0.

2. Ân satisfies the KK relations for all w ∈W1.

3. Ân does not have crossed fermion lines and can be brought16 to the standard
orientation for all w ∈W2.

4. Ân satisfies the fundamental BCJ relations for all w ∈W3.

5. Ân agrees with An for all w ∈ B, i.e., Ân(w) = An(w), ∀w ∈ B.

Starting with words w ∈ B—recall the chain of inclusions (4.64)—we can show that
these conditions are sufficient to prove Eq.(4.65) as follows:

• Condition 5 guarantees that An(w) = Ân(w) for all w ∈ B
16 Via “orientation relations”. See Eq.(C.25)
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• Condition 4 guarantees that Ân(w), w ∈ W3\B may be expressed as a linear
combination of Ân(w′), w′ ∈ B. Therefore it agrees with An(w) in W3\B—the
same relation holds for An(w), w ∈ W3\B and An(w′), w ∈ B—and since it also
agrees in B, it agrees in the complete set W3.

• Condition 3 guarantees that Ân(w), w ∈W2\W3 can be expressed as a combination
of amplitudes An(w′), w′ ∈ W3, which coincides with the relations that An(w),
w ∈W2\W3 and An(w′), w′ ∈W3 satisfy17. Therefore, Ân(w) = An(w) in W2.

• Condition 2 tells us that Ân(w), w ∈ W1\W2 satisfy KK relations, which A(w)

satisfy as well. Therefore, they agree in the complete W1.

• Condition 1 ensures that Ân(w) and An(w) agree on W0.

4.2.2.1 Example of a basis

Before proceeding with the ingredients of the CHY representation let us give an example
of the basis of amplitudes. Consider alphabet

A6 = {q1, q2, q3, q̄3, q̄2, q̄1} = {1, 2, 3, 4, 5, 6}, (4.66)

for primitive QCD amplitudes with n = 6 particles. Since we have only quarks, we have
nq > 2 and therefore the basis is built by fixing the position of the particle 1 to be q1,
particle 6 to be the corresponding anti-quark q̄1, and particle 5 to be, either q̄2 or q̄3.
Thus, in terms of brackets we have to consider the structures

(1•i•j•k)2)1, (1•i•j•k)3)1, (4.67)

where the bullets indicate either a opening bracket or a closing bracket and the subscripts
indicate the flavor. The remaining flavor in each case corresponds to the brackets (i, )i,
i = 2, 3, and may be used to construct only one type of generalized Dyck word, i.e., (i)i,
i = 2, 3. Therefore, the allowed Dyck words are

(1(2(3)3)2)1, (1(3)3(2)2)1, (1(3(2)2)3)1, (1(2)2(3)3)1, (4.68)

and the basis reads

B = {123456, 134256, 132546, 125346}. (4.69)
17Eq.(C.25).
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4.2.3 Generalized cyclic factor

Let us start with the definition of the building blocks of the CHY representation. QCD
contains pure gluonic amplitudes, which we know can be represented by the standard
cyclic factor (See e.g., Eq.(4.27)). Therefore, a natural choice is that the generalized cyclic
factor Ĉ(w, p) agrees with the standard cyclic factor(Parke-Taylor factor) C(w, p) for
(nq = 0). In addition, for amplitudes with a single quark line (nq = 1) and for amplitudes
with the standard orientation and (nq ≥ 2), we choose standard Parke-Taylor factors as
well.

We define our alphabet as

A = {1, 2, . . . , n}, (4.70)

corresponding to the external legs of the primitive amplitude, and associate to each
external leg j the complex variable zj . The standard cyclic factor is then given by

C(w, z) =
1

(zl1l2)(zl2l3) · · · (zlnln−1)
, (4.71)

where w = l1l2 . . . ln ∈ W0. The standard cyclic factor satisfies cyclic invariance, KK
relations, and BCJ relations. The latter is only satisfied on the support of the scattering
equations. In analogy with the amplitudes, it is convenient to view C(w, z) and Ĉ(w, z)

as linear operators on the vector space of words with basis W0, i.e.,

C(λ1w1 + λ2w2, z) = λ1C(w1, z) + λ2C(w2, z), (4.72)

Ĉ(λ1w1 + λ2w2, z) = λ1C(w1, z) + λ2C(w2, z). (4.73)

We proceed by defining the generalized cyclic factor Ĉ, in each set of words:

1. For w ∈ B, the orientation is standard for nq ≥ 2, therefore Ĉ(w, z) = C(w, z), as
we said at the beginning.

2. For w ∈W3, we set Ĉ(w, z) = C(w, z), since in this set amplitudes are also standard
oriented.

3. For w ∈W2\W3—the subset of words which give nonstandard oriented amplitudes
but which satisfy KK relations—we first define

Ĉ(w, z) = 0, (4.74)



4.2. CHY representation of QCD 97

for all words corresponding to crossed fermions lines. For words with no crossed
fermion lines we relate Ĉ(w, z) to a linear combination of Ĉ(wi, z)’s with wj ∈W3—
in analogy with the amplitudes, see Eq.(C.25). Let xk and yk be sub-words defined
by

xk = li1 li2 . . . lir , yk = lj1 lj2 . . . lis . (4.75)

For these words we have

Ĉ(xk−1qixkq̄jwk+1qjykq̄iyk−1, z) =

(−1)|wk+1|+1
r∑

a=0

s∑

b=0

Ĉ(xk−1qili1 . . . liaqjw
′
k+1q̄jljb+1

. . . ljs q̄iyk−1, z),

(4.76)

with

w′k+1 = (lia . . . lir)� wTk+1 � (lj1 . . . ljb). (4.77)

This relation allows us to define recursively the generalized cyclic factor for words
with w ∈ W2\W3 in terms of generalized cyclic factors Ĉ(w, z) of words with
w ∈W3. Therefore, Ĉ(w, z) with w ∈W2\W3 is a linear combination of standard
cyclic factors.

4. For w ∈ W1\W2—words which are cyclic invariant but do not have two fixed
legs—we set

Ĉ(l1w1lnw2, z) = (−1)|w2|Ĉ(l1(w1 � wT2 )ln, z), (4.78)

which defines the generalized cyclic factor for words, where the letter ln is not fixed
in the last place in terms of generalized cyclic factors for words where ln occurs in
the last place. These are the KK relations (2.150).

5. For w ∈W0\W1—words which do not have fixed any leg—we set

Ĉ(w1l1w2, z) = Ĉ(l1w2w1, z), (4.79)
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which defines the generalized factor where the letter l1 does not appear in the first
place in terms of generalized cyclic factors for words, where the letter l1 occurs in
the first place. This is simply cyclic invariance.

4.2.4 Generalized permutation invariant factor

We proceed with the definition of the generalized permutation invariant factor Ê(z, p, ε).
Recall that in Yang-Mills we had KLT orthogonality, which helped us to find two matrices
such that MwjNjv = δwv, thus giving the permutation invariant factor E(z, p, ε) in
Eq.(4.14). In QCD, we only have KLT orthogonality in a subset of words, corresponding
to nq ≤ 2 since in these cases the amplitude basis has (n− 3)! elements (See Eq.(4.50)).
We would like to use KLT orthogonality in this subset.

Consider the restriction of w ∈ B (for nq ≥ 2) and the associated Nbasis ×Nsolutions

sub-matrix of (4.38) which we denote by M̂ red
wj . This is the (rectangular) matrix18, which

we are interested to invert. In addition, this matrix will be defined in terms of a standard
cyclic factor C(w, z) since w ∈ B. For w ∈ B, the generalized cyclic factors coincides
with the standard one, hence the entries of M̂ red

wj are given by

M̂ red
wj = J(z(j), p)C(w, z(j)), w ∈ B. (4.80)

Therefore, we require that M̂ red
wj and N̂ red

vj satisfy

M̂ red
wj N̂

red
jv = δwv, (4.81)

where N̂ red
jv is the right inverse of M̂ red

wj . If this condition is met, the generalized permuta-
tion invariant factors reads

Êj = −iN̂ red
jv Av, v ∈ B. (4.82)

in analogy with the pure Yang-Mills case (see Eq.(4.14))

The information of the flavors does not enter in the definition of the individual entries
of the matrix M̂ red

wj , i.e., it only affects the set B, giving all possible indices w ∈ B of M̂ red
wj .

As the flavor information is to a large extent irrelevant, we will consider the alphabet

A = {1, 2, . . . , n}, (4.83)

18(Nbasis ≤ Nsolutions)
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with the implicit understanding that we may recover the information about the flavor
of the particles if needed. For this alphabet, the basis W2 obtained by imposing KK
relations is given by

W2 = {l1l2 . . . ln ∈W0|l1 = 1, ln = n}. (4.84)

As we pointed out at the beginning of this Section, the case nq ≤ 2 reduces to pure
Yang-Mills —keeping in mind that there is an additional flavor structure—and therefore
we give a name to this basis. Let

Bnq≤2 = {l1l2 . . . ln ∈W0|l1 = 1, ln−1 = n− 1, ln = n}, (4.85)

be the basis of words which describes amplitudes with (nq ≤ 2) which is obtained after
using cyclic, KK, and BCJ relations. In this basis M̂ red

wj is a square matrix which we
identify by removing the hat:

M red
wj = J(z(j), p)C(w, z(j)), w ∈ Bnq≤2, (4.86)

which satisfies

M red
wj N

red
jv = δwv, N red

iw M red
wj = δij (4.87)

with

N red
jv =

∑

u∈Bnq≤2

SvūC(ū, z(j)). (4.88)

Notice that here we extend the definition of the KLT kernel to account for the masses of
the quarks. For w1 = l1 . . . ln ∈ Bnq≤2 and w2 = k1 . . . kn ∈ Bnq≤2, we define

Sw1w̄2 ≡ S[w1|w̄2] = (−1)n
n−2∏

i=2


2pl1pli + 2∆l1li +

i−1∑

j=2

θw̄2(lj , li)
(
2pljpli + 2∆lj li

)

 ,

(4.89)

with
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θw̄2(lj , li) =





1 if lj comes before li in the sequence k2, k3, . . . kn−2,

0 otherwise.
(4.90)

This in agreement with the pure Yang-Mills case (see Eqs.(4.20), (4.21)).

Let us study the case nq > 2, where Nbasis < Nsolutions. The matrix M̂ red
wj is rectangular

of dimensions Nbasis ×Nsolutions with the first index given by w ∈ B. If M̂ red
wj has full row

rank,i.e.,

rank M̂ red
wj = Nbasis, (4.91)

then a right inverse N̂ red
jv exists and we can establish Eq.(4.81). The right inverse may

not be unique. We are interested in a right-inverse such that the entries in the j-th row of
N̂ red
jv depends only on z(j), but not on other solutions of the scattering equations. From

Eq.(4.59), we know that B does not have a fixed letter in position (n− 1), therefore in
general

B * Bnq≤2, (4.92)

which makes the determination of the rank difficult. In order to sort out this, we recall
that the standard cyclic factors satisfy BCJ relations on the support of the scattering
equations, i.e.,

C(w, z(j)) = Fww′C(w′, z(j)), w ∈ B, w′ ∈ Bnq≤2, (4.93)

where a sum over w′ is understood. The entries of the Nbasis × Nsolutions matrix Fww′
are defined in Eq.(C.42) of Appendix C. The entries of Fww′ depend only o the scalar
products 2pipj but not on z(j). Inserting this equation in Eq. (4.80) and using (4.86), we
have

M̂ red
wj = J(z(j), p)Fww′C(w′, z(j)) = Fww′M

red
w′j , w ∈ B, w′ ∈ Bnq≤2. (4.94)

Notice that the case nq ≤ 2 is trivially included in Eq.(4.94) by taking Fww′ to be the
Nsolutions × Nsolutions identity matrix. The matrix M red

w′j has rank Nsolutions and it is
invertible. It follows that M̂ red

w′j has rank Nsolutions if and only if the matrix Fww′ has rank
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Nbasis. This can be checked for generic kinematics 19. We will assume that Fww′ has rank
Nbasis, i.e.,

rank Fww′ = Nbasis. (4.95)

Notice that Eq.(4.95) is a pure kinematical statement, in other words it is independent of
the solutions of the scattering equations. Assuming, from now on that the matrix Fww′
has maximal row rank, the Nbasis ×Nbasis-dimensional matrix FFT is invertible and the
Nsolutions ×Nbasis matrix

G = FT (FFT )−1 (4.96)

defines a right inverse to F:

Fuv′Gv′w = δuw. (4.97)

Setting N̂red = NredG gives the desired N̂red in Eq.(4.81) since

M̂ red
wj N̂

red
jv = Fww′M

red
w′jN

red
ju Guv = δwv. (4.98)

Therefore, we set

Êj = −iN̂ red
jw Aw, (4.99)

where a sum over w ∈ B is understood. This equation is QCD version of Eq.(4.14), which
was set for pure Yang-Mills. Putting everything together we obtain

Ê(z(j), p, ε) = −i
∑

u,v∈Bnq≤2

∑

w∈B
Suv̄GuwC(v̄, z(j))An(w, p, ε) ≡ −i CSTGAn. (4.100)

A few comments are in order: First, notice that the dependence on the solutions of
the scattering equations is isolated on the factor C(v̄, z(j)), which actually allows us to
take this factor to Cn. Therefore, the unevaluated generalized factor

19We verified for all cases with n ≤ 10 that Fww′ has rank Nbasis. Furthermore, by a suitable ordering
of the bases B and Bnq≤2 the matrix can be brought into an upper triangular block structure. It is
therefore sufficient to show that all (square) matrices on the main diagonal have full rank.
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Ê(z, p, ε) = −i
∑

u,v∈Bnq≤2

∑

w∈B
Suv̄GuwC(v̄, z)An(w, p, ε), (4.101)

is one of the building blocks of the CHY-integrand for QCD. Second, for nq > 2 notice
that Eq.(4.100) is not unique due to the non-uniqueness of the right inverse of Fww′ .
However, this fact does not affect the primitive amplitudes as we can show as follows. Let
us parametrize the general form of the right-inverses as

Gw′w +
(
δw′w′2 −Gw′w1Fw1w′2

)
Xw′2w

, (4.102)

with an arbitraryNsolutions×Nbasis-dimensional matrixXw′w. Plugging this into Eq.(4.100)
we find

Ê(z(j), p, ε)→ Ê(z(j), p, ε)− iN red
jw′

(
δw′w′2 −Gw′w1Fw1w′2

)
xw′2 , (4.103)

with some arbitrary Nsolutions-dimensional vector xw′ . This arbitrariness does not affect
expressions of the form

i
∑

solutions j

J(z(j), p)Ŷ (z(j))Ê(z(j), p, ε), (4.104)

as long as Ŷ (z(j)) has an expansion in Ĉ(w, z(j)), i.e.,

Ŷ (z(j)) =
∑

w∈B
cwĈ(w, z(j)). (4.105)

Then, we may write

J(z(j), p)Ŷ (z(j)) =
∑

w∈B
cwM̂

red
wj , (4.106)

and then we have
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i
∑

solutions j

∑

w∈B
cwM̂

red
wj

[
Êj − iN red

jw′

(
δw′w′2 −Gw′w1Fw1w′2

)
xw′2

]
= (4.107)

i
∑

solutions j

∑

w∈B
cwM̂

red
wj Êj ,

since

M̂ red
wj N

red
jw′ = Fwu′M

red
u′jN

red
jw′ = Fww′ and Fww′

(
δw′w′2 −Gw′w1Fw1w′2

)
= 0. (4.108)

For tree-level QCD amplitudes, we will always have that the factor Ŷ in Eq.(4.104) is in
the form (4.105). Therefore, we have shown that the non-uniqueness of the right-inverse
does not affect tree-level QCD amplitudes.

4.2.5 Proof of the CHY representation

The proof consists on checking the conditions at the end of Section 4.2.2. Recall that we
want to show Eq.(4.40), i.e.,

Ân(w) = An(w), ∀w ∈W0,

where

Ân(w) = i
∑

solutions j

J(z(j), p)Ĉ(w, z(j))Ê(z(j), p, ε). (4.109)

We proceed in the order of inclusions (4.64).

1. For w ∈ B, we have

Ân(w) = M̂wjN̂
red
jw′Aw′ = M̂ red

wj N̂
red
jw′Aw′ = Aw. (4.110)

Therefore Ân(w) = An(w).

2. For w ∈W3\B, we have to verify the fundamental BCJ relation, i.e.,

n−1∑

i=2

(
n∑

k=i+1

2p2 · pk
)
Â(l1l3 . . . lil2li+1 . . . ln−1ln) = 0, (4.111)
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which translates into a condition for the generalized cyclic factor Ĉ. We must have

n−1∑

i=2

(
n∑

k=i+1

2p2pk

)
Ĉ(l1l3 . . . , lil2li+1 . . . ln−1ln, z

(j)) = 0 (4.112)

for all solutions of the scattering equations. For w ∈ W3, the generalized cyclic
factor coincides wit the standard Parke-Taylor factor and therefore satisfies BCJ
relations on the support of the scattering equations.

3. For W2\W3, we have to consider only the cases with no-crossed fermion lines. In
this case we have that the amplitudes Ân have to satisfy the orientation relations.
However, this information is encoded in the generalized cyclic factor Ĉ which in this
case satisfy the orientation relations (4.76). Hence, they are also satisfied by Ân.

4. We repeat this argumentation for w ∈W1\W2. The definition of Ĉ in this subset is
such that it satisfies KK relations and therefore Ân(w) satisfies them as well.

5. For w ∈ W0\W1, the Parke-Taylor factors satisfy cyclic invariance and therefore
Â(w) satisfies them as well.

This completes the proof of Eq.(4.40). We have shown that any tree-level primitive QCD
amplitude has a CHY representation in the form of Eq.(4.37) with Ĉ defined in Section
4.2.3 and Ê defined in Section 4.2.4. The generalized cyclic factor can always be expressed
as a linear combination of standard Parke-Taylor factors. By construction all elements
transform properly under PSL(2,C). The QCD integrand depends on the basis through
Ĉ, hence for w ∈ B, we have

IQCD(z, p, ε) = −i C(w, z)
∑

u,v∈Bnq≤2

∑

w∈B
Suv̄GuwC(v̄, z)An(w, p, ε), w ∈ B. (4.113)

where we have used the fact that the generalized cyclic factor for w ∈ B coincides with
the Parke-Taylor factor. Of course, we can give the integrand for any w ∈W0 using the
generalized cyclic factor. Notice that Ê is the same for all w ∈W0, just as in the case of
pure Yang-Mills.

4.3 Examples

Example 4.3.1. A rather trivial but illustrative example is the case of two pairs of
massless quarks. The alphabet reads
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A4 = {q1, q2, q̄2, q̄1} = {1, 2, 3, 4}, (4.114)

and the relevant bases are given by

B ={1234}, Bnq≤2 = {1234}, B̄nq≤2 = {1243}. (4.115)

The matrix 1× 1 matrix G is trivial since F = 1. Then, the permutation invariant factor
reads

Ê(z, p, ε) =− i
∑

v∈B̄nq≤2

∑

w∈B
cv̄wC(v̄, z)A4(w). (4.116)

where cv̄w =
∑

u S[u|v̄]G. With these ingredients, the permutation invariant factor reads,

Ê(z, p, ε) = −i
(
s12C(1243, z)A4(1234)

)
, (4.117)

Suppose we are interested in the non-standard oriented amplitude A4(1324), then the
generalized cyclic factor is given by

Ĉ(1324, z) = −Ĉ(1234, z) = −C(1234, z). (4.118)

Therefore the integrand of the CHY representation for A4(1324) reads

IQCD(z, p, ε) = i C(1234, z)s12C(1243, z)A4(1234). (4.119)

Using this integrand in the general expression for the CHY at 4-points (Eqs.(3.56)-(3.58)),
we have

ĨQCD(z, p, ε) = i(z12z23z34z41)2C(1234, z)s12C(1243, z)A4(1234) = i
z23z41

z24z31
s12A4(1234).

(4.120)

This equation requires that
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Res
(
z23z41

z24z31
s12

1

z3(1− z3)

)
= −1, (4.121)

where the factor 1/(z3(1− z3)) comes from the measure. Using our conventions for the
fixed values of z1, z2 and z4 and Eqs.(3.92)-(3.94), we can happily check that

Res
(
z23z41

z24z31
s12

1

z3(1− z3)

)
= s12Res

(
1

z3

)
= s12 〈−

s13

s12
, 1〉 = −s12

1

s12
= −1, (4.122)

as expected.

It is interesting to see that in this simple case we can make an educated guess about
the integrand without referring to the amplitude A4(1234). Notice that

Res
(
− 1

1− z3

)
= 〈s13

s14
, 1〉 =

1

s14
〈e1,∆1〉 =

1

s14
, (4.123)

which is pole associated with the amplitude A4(1234). Hence, the integrand for A4(1324)

after normalization should reduce to

ĨQCD(z, p, ū, v) = − 1

1− z3
(ū1γ

µv4) (ū2γµv3) . (4.124)

Therefore our educated guess for the full integrand reads

ĨQCD(z, p, ū, v) = (z12z23z34z41)2 (C(1234, z)C(1324, z) (ū1γ
µv4) (ū2γµv3)) . (4.125)

In other words, we use the integrand of the double ordered scalar amplitude m(1234|1324)

in Eq.(3.76) times the Lorenz invariant products involved in the amplitude. Of course, the
point is that we have a method to generate the required poles for any tree-level amplitude
but we would like a compact closed form of the integrand.

Example 4.3.2. Let us consider now a 6-point example. Consider the alphabet

A6 = {q1, q2, q3, q̄3, q̄2, q̄1} = {1, 2, 3, 4, 5, 6}. (4.126)

The relevant bases are given by
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B ={123456, 134256, 132546, 125346}, (4.127)

Bnq≤2 ={123456, 124356, 132456, 134256, 142356, 143256}, (4.128)

B̄nq≤2 ={123465, 124365, 132465, 134265, 142365, 143265}. (4.129)

In order to compute the matrix G we need to compute the corresponding matrix F and
use

G = FT (FFT )−1. (4.130)

The matrix F of rank 4 is obtained in Eq.(C.53) in Appendix C. Then,

Ê(z, p, ε) = −i
∑

v∈Bnq≤2

∑

w∈B
cv̄wC(v̄, z(j))A6(w, p, ε), (4.131)

where

cv̄w =
∑

u∈Bnq≤2

Suv̄Guw. (4.132)

The matrix S6 reads

S6 = θ12θ13θ14




a12,3a123,4
θ13θ14

a12,3a12,4
θ13θ14

a123,4
θ14

a13,4
θ14

a12,3
θ13

1
a12,3a12,4
θ13θ14

a12,4a124,3
θ13θ14

a12,4
θ14

1
a124,3
θ13

a14,3
θ13

a123,4
θ14

a12,4
θ14

a13,2a123,4
θ12θ14

a13,2a13,4
θ12θ14

1
a13,2
θ12

a13,4
θ14

1
a13,2a13,4
θ12θ14

a13,4a134,2
θ12θ14

a14,2
θ12

a134,2
θ12

a12,3
θ13

a124,3
θ13

1
a14,2
θ12

a14,2a124,3
θ12θ13

a14,2a14,3
θ12θ13

1
a14,3
θ13

a13,2
θ12

a134,2
θ12

a14,2a14,3
θ12θ13

a14,3a134,2
θ12θ13




,

(4.133)

where we have used the notation

θlilj =2plilj + 2∆li,lj , (4.134)

al1l2...lk,li =θl1li + θl2li + · · ·+ θlkli . (4.135)



108 4. QCD in the CHY formalism

The next step is to compute the right inverse and the coefficients cv̄w. The results are
lengthy due to the inverse matrix in Eq.(4.130) and can be checked numerically.

Now, suppose we are interested in the amplitude A6(153426) which corresponds to a
non-standard oriented amplitude. The first task is then to orient the generalized cyclic
factor using Eq.(4.76). Performing this procedure gives

Ĉ(153426, z) = −Ĉ(124356, z) = Ĉ(123456, z) = C(123456, z). (4.136)

Finally, using matrix notation, we have that the integrand for A6(153426) reads

IQCD(z, p, ε) = −i C(123456, z)
(
CTSG

)
A6, (4.137)

where C, and A6 are vectors of orderings v̄ and w, respectively.

4.4 Outlook

The main result in this Chapter is the construction of all the building blocks of the CHY
representation for QCD amplitudes. These building blocks allow us to write an integrand
of the CHY representation which depends on other QCD amplitudes. The generalized
permutation invariant factor Ê in Eq.(4.100) is valid for any ordering of the primitive
amplitude. In contrast, the generalized cyclic factor Ĉ contains the information about
the external ordering and it depends on the primitive amplitude of interest. In general, Ĉ
will be a combination of standard Parke-Taylor factors. The fact that we can give all the
ingredients proves the existence of the CHY representation of QCD, which is valid in D
dimensions.

However, it would be desirable to have a closed form of the generalized permutation
invariant factor like in the pure gluonic case, where the reduced Pffafian computes all the
necessary poles and Lorenz products (See Section 4.1.1). Most of the hints that made us
suspect that a CHY representation for QCD exist may be invoked again to suspect that a
closed formula exists as well. In particular, the hint for massless QCD in 4D, which is the
argument that we can use N = 4 SYM to construct QCD amplitudes and therefore a
CHY representation is strong due to the closed formula introduced by Dixon, et’al [104].
In Ref. [112] He and Zhang followed this path to construct a closed formula for massless
QCD amplitudes in 4D in the connected formalism. The connected formalism can be seen
as a 4D version of the CHY formalism, thus requiring a translation from the D-scattering
equations to the 4D-scattering-equations [113]. The search for this formula is still an
open problem.



Chapter 5
QCD and Gravity

QCD and gravity seem to be unrelated theories at various levels. At the level of the
Lagrangian they contain different types of interactions, which generate a limited number
of Feynman rules in the case of QCD and an infinite number of them in the case of gravity.
They also differ in the fact that QCD is renormalizable in the traditional sense—meaning
that we can redefine a finite number of parameters such that the quantities computed are
finite. In contrast, gravity is not renormalizable and necessarily has to be regarded as an
effective field theory.

However, at the level of amplitudes we have seen that for pure gluonic amplitudes
the KLT relations connect gauge and gravity. These relations, originally introduced in
the context of string theory, represented a new way of studying perturbative quantum
gravity. In this paradigm, one invokes that the square of a gauge theory amplitude
corresponds to a gravity amplitude. This paradigm adopts various forms. First, the
original formulation based on the KLT relations in the field theory limit—or in terms
of the KLT kernel. We have seen in Chapter 2 that these relations contain kinematic
factors that cancel double poles and deal with the fact that gravity has not fixed ordering.
Second, In Chapter 2 we also have seen that using the color kinematics duality and the
double copy procedure—which gives a recipe of constructing gravity amplitudes as a sum
over trivalent graphs—constitutes another implementation of the paradigm. Finally, the
CHY formalism of Chapters 3 and 4 gives a third way of squaring gravity by simple
substitution of the cyclic factor C in Yang-Mills for a permutation invariant factor E.

In this Chapter, we study the squaring of a QCD primitive amplitude and consider
the resulting gravitational theory. We also study the relations between amplitudes of
gravitons and gluons (Einstein-Yang-Mills) and pure gluonic amplitudes proposed by
Stieberger and Taylor. In the former case we use the KLT kernel and the double copy
procedure and in the latter we use the CHY to prove these relations.

109
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5.1 Squaring a gauge theory

In Section 2.4.6, we have seen that the KLT momentum kernel and the color kinematics
duality are two methods to square a gauge theory. Actually, we can recover the KLT
kernel from the numerators and vice versa as was shown in Ref. [11]. This connection
was made explicit in Ref. [54] where the numerators were expressed in terms of the KLT
kernel1. In the case of the CHY representation, the color kinematics duality and the
double copy procedure is equivalent to the transformation [62]

C(w, z)→ E(z, p, ε) (5.1)

in Eq.(3.67). Hence, we have three flavors of the equation

gravity = gauge× gauge. (5.2)

1. Using the KLT momentum kernel S[w1|w̄2] (Eq.(2.178))

Mn ≡Mn(1, 2, . . . , n) = −i
∑

w1,w2∈B
An(w1)S[w1|w̄2]An(w̄2), (5.3)

where the gauge amplitudes are in the BCJ basis2.

2. By constructing BCJ numerators ni and ñi for amplitudes in two gauge theories
(which may be the same), the gravitational amplitude reads

Mn = i(−1)n−3
∑

i

niñi∏
αi

sαi
, (5.4)

where the sum runs over (2n− 5)!! trivalent diagrams.

3. By making the replacement C(w, z)→ E(z, p, ε) in

An(p, w) =
i(−1)n

(2πi)n−3

∮

O
dΩ̃CHY

n∏

i=1

(zi − zi+1)2C(w, z)E(z, p, ε). (5.5)

1In this case the numerators correspond to the kinematic factors appearing in the multi-peripheral
expansion of gravity (See e.g., Chapter 13 in Ref. [36])

2This form is convenient for our purposes, this relation can be presented in several ways as discussed
in Refs. [52, 114]
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It is interesting to see how these approaches are equivalent by finding their connection
with the KLT momentum kernel.

5.1.1 The KLT matrix and color-kinematics duality

The color-kinematics duality instructs us to decompose the full gauge amplitude in
terms of color factors ci and numerators ni which satisfy Jacobi relations and can be
computed from trivalent graphs. An alternative formulation of this duality appears by first
considering the color decomposition by Del Duca, Dixon, and Maltoni (DDM) [115,116].
Using the KK basis (2.154), this decomposition reads

An(p, ε) =
∑

w∈W2

cwAn(w), (5.6)

where the color factors are given by

cw = fa1al2ab1fab1al3ab2 · · · fabn−3
aln−1

an . (5.7)

These color factors can be computed from multi-peripheral diagrams (ladder type diagrams)
shown in Fig.5.1.

. . .

1

l2 l3 ln−1

n

Figure 5.1: Multi-peripheral diagrams for words w = 1l2 . . . ln−1n. The words are in the
set W2, where two of the letters are fixed, i.e., l1 = 1, ln = n. The set W2 contains (n− 2)!
elements.

An observation made in Ref. [55] is that when the numerators satisfy the color
kinematics duality they have the same structure as color factors3, and therefore there is a
dual formula for gauge amplitudes given by

An(p, ε) =
∑

w∈W2

nwA
dual
n (w), (5.8)

3An interesting issue is then to determine the kinematic algebra of the numerators [117].
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where the kinematic factors nw are numerators of Fig.5.1 and the dual amplitudes Adual
n

can be computed from primitive amplitudes by replacing kinematic numerators by color
factors [118] of a cubic theory. Then the dual form (5.8) implies that the gravitational
amplitude has the dual form

Mn =
∑

w∈W2

nwM
dual
n (w) =

∑

w∈W2

nwAn(w), (5.9)

where the corresponding dual amplitude is a gauge primitive amplitude. Now, these
numerators have an explicit form in terms of the KLT momentum kernel [54]. For
w = 1l2 . . . ln−1ln, we have

nw =





−i
∑
v∈B

S[w|v̄]An(v̄), ln−1 = n− 1,

0 else ,
(5.10)

where B is the BCJ basis4. This formula is what connects the KLT kernel to the
color-kinematics duality and the double copy procedure (See also Ref. [119]).

Furthermore, if we restrict the amplitude to the BCJ basis, we found in Chapter 4
that the permutation invariant factor for pure Yang-Mills is given by

E(z, p, ε) = −i
∑

v∈B

∑

u∈B
SvūC(ū, z)Av, (5.11)

hence

E(z, p, ε) =
∑

w2∈W2

nw2C(w̄2, z), (5.12)

where the numerators have to be restricted to the BCJ basis [14]. Similarly, the decompo-
sition (5.6) for the full amplitude can be expressed in terms of the color factors (5.7) by
defining

C(z) =
∑

w∈W2

cwC(w, z), (5.13)

where C is the color dependent factor for the full amplitude. Using this factor the
CHY-representation reads

4See Section 2.4.4
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An(p, ε) =
i(−1)n

(2πi)n−3

∮

O
dΩ̃CHY

n∏

i=1

(zi − zi+1)2C(z)E(z, p, ε). (5.14)

Using Eq.(5.12) and the substitution C → E—including color for the case of the full
amplitude—transforms

An(p, ε)→


 ∑

w2∈W2

nw2


 i(−1)n

(2πi)n−3

∮

O
dΩ̃CHY

n∏

i=1

(zi − zi+1)2C(w2, z)E(z, p, ε)

=


 ∑

w2∈W2

nw2


An(w2), (5.15)

which coincides with the dual form of the gravitational amplitude in Eq.(5.9). This
rather simple observation can be made explicit by using a expansion in terms of trivalent
diagrams and thus showing that indeed the numerators and color factors satisfy Jacobi
relations and that the double copy procedure is equivalent to the substitution C → E [14].

The bottom line of this discussion is to realize that we can move from one realization
(color-kinematics-duality) of gravity = gauge× gauge to CHY by using the KLT momen-
tum kernel. We can take for example Eq.(5.3) as the starting point, then use Eq.(5.10) to
move to the dual form of gravity (5.9) and finally insert the CHY representation (5.14) to
obtain a squared permutation invariant factor. Given the importance of the KLT kernel,
we would like to explore all its flavors, and more important to relate it with the quantities
we already know.

5.1.2 The KLT matrix and the CHY representation

The KLT momentum kernel was found and proved using recursive methods in QFT (via
BCFW) and properties of the S-matrix [52] and then studied in the context of string
theory in Ref. [54]. We have defined the elements of the KLT kernel S[w1|w2] in Eq.(2.178).
Now, from the double copy procedure it is clear that the KLT relations arise from the
substitution of the numerators in Eq.(5.4). This fact becomes obvious after dualizing the
gravity amplitude.

Then, the remaining task is to identify the KLT kernel from the CHY representation.
This was done by CHY using the KLT orthogonality of the scattering equations (See
Section 3.1.2). An easy way to find the connection is to consider again the substitution
C → E, which we know generates gravity, i.e.,
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Mn =


 ∑

w2∈W2

nw2


 i(−1)n

(2πi)n−3

∮

O
dΩ̃CHY

n∏

i=1

(zi − zi+1)2C(w2, z)E(z, p, ε). (5.16)

Now, the permutation invariant factor in Eq.(5.11) was obtained by inverting the
CHY formula using KLT orthogonality (See Chapter 3). Inserting the permutation factor
E in Eq.(5.16), we obtain

Mn =
∑

w2∈W2

nw2

∑

v∈B

∑

u∈B
Svū

(
1

(2πi)n−3

∮

O
dΩ̃CHY

n∏

i=1

(zi − zi+1)2C(w2, z)C(ū, z)

)
Av.

(5.17)

According to Eq.(5.9), Eq.(5.17) implies that the inverse of the KLT matrix is given by
the double ordered scalar amplitudes (Eq.(3.66)), i.e.,

(S−1)uv̄ = −i m(u|v̄) ≡ −i muv, (5.18)

where now the rows and columns of the matrices S and m in (5.18) correspond to orderings.
The distinction between v and v̄ is not relevant since this relation hold within the BCJ
basis. Remember that this basis contains already (n− 3)! elements, i.e, the same number
of solutions of the scattering equations. This fact was considered in Eq.(4.19) where we
used the solution space to obtain the inverse of the KLT kernel. In conclusion, the KLT
kernel can be computed as the inverse of the matrix m(w1|w2), i.e.,

S = i (m)−1. (5.19)

Finally, the double ordered amplitudes m(w1|w2) can be understood as a sum over
trivalent graphs G, which are consistent with the orderings w1 and w2 [14]

m(w1|w2) = i (−1)n−3+nflip(w1,w2)
∑

G∈T (w1)∩T (w2)

∏

e∈E(G)

1

se
. (5.20)

where T (w1) ∩ T (w2) is the set of compatible diagrams with external orderings. The
quantity nflip(w1, w2) is the number of flips needed to transform any diagram from
T (w1) ∩ T (w2) with ordering w1 into a diagram with external ordering w2. The set of
internal edges e for each graph G is denoted by E(G) (See Fig.5.2).
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G

∼

nflip = 1

1

2 3 4

5
w1 = 12345

1

2 4 3

5
w2 = 12435

e e

Figure 5.2: Flip operation. Two diagrams G with orderings w1 and w2 are equivalent after
exchanging edges 3 and 4. We associate invariants se to the internal edges e.

In conclusion, we can compute the components of the KLT matrix using the momentum
kernel definition, as the limit of the string momentum kernel, as the inverse of the matrix
made of double ordered amplitudes or equivalently, as a sum over trivalent graphs.

5.1.3 Double copies of gluons

The quantized gravitational field have polarizations tensors εµν multiplying creation an
annihilation operators. These functions are reminders of the representation of the Lorentz
group, which in the case of gravity is the tensor representation. There are two physically
significant polarization tensors for gravity, which in the helicity representation of states
correspond to the helicities ±2. Now, for each helicity the polarization tensors of gravity
satisfy

ε+
µν ≡ ε++

µν = ε+
µ ε

+
ν , ε−µν ≡ ε−−µν = ε−µ ε

−
ν , (5.21)

where ε±µ are ordinary spin 1 polarization vectors. Defined in this way, the polarization
tensors are traceless and transverse. In Chapter 2, we used implicitly this property when
we used the spinor helicity formalism in e.g., Eq.(2.177). Now, on the RHS of Eq.(5.3)
there is no instruction to assign specific helicities to the amplitudes and therefore we have
the freedom to choose

ε+−
µν = ε+

µ ε
−
ν , ε−+

µν = ε−µ ε
+
ν , (5.22)

which can be used to construct linear combinations of scalar states—the symmetric
combination corresponds to a dilaton and the antisymmetric to an axion. That these
correspond to scalar states can be seen from the little group scaling (See Section 2.4.1).
In this sense, the squaring of amplitudes in gauge theories produces gravity coupled to
dilatons and axions.
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The same discussion holds from the BCJ double copy procedure and the CHY formalism
where all quantities involved depend only on gluon polarizations. In this sense, we say
that gravitons are double copies of gluons.

5.1.4 Examples

Example 5.1.1. Let us start with n = 4. The relevant basis reads W2 = {1234, 1324}
and from Eq.(5.10) the numerators are given by

n1234 = −is12A4(1243), n1324 = 0 (5.23)

therefore

M4 =
(
−is12A4(1243) 0

)(A4(1234)

A4(1324)

)
= −is12A4(1234)A4(1243), (5.24)

which trivially recovers the KLT relation (2.174) at 4-points (after using BCJ relations).
The KLT matrix in this case contains one element which corresponds to inverse of
m(1234|1243), i.e,

S = i m−1 = s12, (5.25)

which can be easily checked with the methods of Chapter 3. Let us now use Eq.(5.20).
For the orderings w1 = 1234, w2 = 1243, we have the trees5 shown in Fig. 5.3.

Therefore,

nflip = 1, T (w1) ∩ T (w2) = {[2, [3, 4]]}, (5.26)

and

m(1234|1243) = i
1

s12
. (5.27)

5Here we use the leg 1 as the root of the three and use the notation [R,L] to denote the right and left
tree.
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w1 = 1234

w2 = 1243

1

2 3

4
1

2 3

4

1

2 4

3
1

2 4

3

Figure 5.3: Trivalent graphs for the orderings 1234, 1243. For 1234, the threes are [2, [3, 4]],
[[2, 3], 4] and similarly for 1243. There is only one tree compatible with these orderings,
namely [2, [3, 4]].

Example 5.1.2. For n = 5, the relevant bases are

W2 ={12345, 12435, 13245, 13425, 14235, 14325}, (5.28)

B ={12345, 13245}, B̄ = {12354, 13254}.

The numerator matrix reads

nT =




is12 (s13 + s23)A5(12354) + is12s13A5(13254)

0

is12s13A5(13254) + is13 (s12 + s23)A5(13254)

0

0

0




, (5.29)

which reproduces Eq.(2.175). The relevant ordered trivalent diagrams for m(12345|12354)

are shown in Fig. 5.4.

Then, only the first and second diagrams are compatible with both orderings, hence

T (w1) ∩ T (w2) = {[2, [3, [4, 5]]], [[2, 3], [4, 5]]}, (5.30)
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Figure 5.4: Trivalent graphs for n = 5 for the orderings w1 = 12345, w2 = 12354. Using
the leg 1 as the root, we have 5 trivalent graphs and two compatible with both orderings,
namely [2, [3, [4, 5]]] and [[2, 3], [4, 5]].

and

m(12345|12354) = i

(
1

s12s123
+

1

s23s45

)
. (5.31)

We can also calculate the other contributing double ordered amplitudes, giving

m = i


−

(
1

s12s123
+ 1

s23s123

)
1

s32s123

1
s32s123

−
(

1
s13s123

+ 1
s32s123

)

 , (5.32)

which has the inverse

m−1 = −i s123

(
− s12(s13+s23)
s12+s13+s23

− s12s13
s12+s13+s23

− s12s13
s12+s13+s23

− s13(s12+s23)
s12+s13+s23

)
(5.33)

hence

S−1 = i m−1 = −
(
s12 (s13 + s23) s12s13

s12s13 s13 (s12 + s23)

)
(5.34)

in agreement with Eq.(2.181).

5.2 Double copies of gluons and fermions

This section is based on Ref. [120] by the author, Alexander Kniss, and Stefan Weinzierl.
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A natural question to ask is whether the idea of squaring a gauge theory to obtain
gravity extends for other theories besides pure Yang-Mills. Notice that the double copy
construction by BCJ gives already an affirmative answer to this question. As we pointed
out, the numerators in Eq.(5.4) can be of two different gauge theories and therefore not
only holds for pure Yang-Mills. Furthermore, unlike the KLT kernel based approach6,
the double copy procedure has been conjectured to hold for loop level amplitudes as
well [12]. In this sense, the double copy procedure is a more general realization of the
concept of squaring a gauge theory. In particular, it can be applied to a wider range
of gravitational theories, specially but not exclusively those including supersymmetry7.
The idea of the double copy has also been considered at the classical level by studying
solutions to Einsteins equations and their relations to Yang-Mills solutions, in particular
for black hole solutions [125–128].

A possible route in the construction of gravitational amplitudes—which results from
the square of gauge theory amplitudes—is first investigate whether the associated gauge
theory satisfies color-kinematics duality. The second step is to study the resulting
gravitational theory and determine which amplitudes are computed by the double copy
procedure.

In the case of QCD, Johansson and Ochirov found that QCD amplitudes satisfy color
kinematics duality [103]. Hence, a natural question is what is the gravitational theory
obtained by squaring QCD primitive amplitudes. In addition, one would like to know
if we have three equivalent approaches to compute the amplitudes of such gravitational
theory as in Section 5.1.

5.2.1 Color kinematics for QCD amplitudes

Recall that the idea of the color kinematics duality is to expand the full amplitude in
terms only of cubic diagrams. In the case of QCD, these cubic diagrams contain flavor
conserving vertices and unflavored vertices. Therefore, the number of diagrams depend on
the number of quark lines. For a n point QCD amplitude with ng gluon and 2nq quarks,
we denote the set of (2n− 5)!!/(2nq − 1)!! trivalent graphs by U . For each diagram G we
denote by E(G) the set of internal edges and by se and me the Lorentz invariants and
the mass of the corresponding internal edge e. In Ref. [103] it was established that QCD
exhibit color-kinematics duality, i.e., that we can write QCD amplitudes as

AQCD
n = i

∑

G∈U

C(G)N(G)

D(G)
, (5.35)

where the denominators D are the propagators of the graph G, i.e.,

6A recent proposal for KLT at loop level has been presented in Ref. [121].
7For reviews see Refs. [122,123]. Pure gravities are considered in Ref. [124].
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D(G) =
∏

e∈E(G)

(
se −m2

e

)
. (5.36)

The color kinematics duality then states that for graphs G1, G2, G3

C(G1) + C(G2) + C(G3) = 0⇒ N(G1) +N(G2) +N(G3) = 0, (5.37)

Notice that there is an arbitrariness in the sign of the numerators N . The usual convention
is trivially recover by making N(G2)→ −N(G2). This modifications do not change the
residues that the numerators correspond to [11]. This can be easily seen in the following
Example.

Example 5.2.1. Consider the case n = 5 with two pairs of quarks and one gluon. The
alphabet reads A = {q1, q2, g1, q̄2, q̄1} = {1, 2, 3, 4, 5}. The set of diagrams is shown in
Fig.5.5. The decomposition (5.35) reads

AQCD
5 = (5.38)

i

(
C1N1

s24s15
+

C2N2

s24(s13 −m2
1)

+
C3N3

s24(s35 −m2
1)

+
C4N4

s15(s23 −m2
2)

+
C5N5

s15(s34 −m2
2)

)
,

where

C1 =− i
√

2fa3ab(T a)i2j4(T b)i1j5 , (5.39)

C2 =(T a3)i1j(T
b)jj5(T b)i2j4 , C3 = −(T b)i1j(T

a3)jj5(T b)i2j4 , (5.40)

C4 =− (T b)iij5(T a3)i2j(T
b)jj4 , C5 = (T a3)j4i(T

b)ii2(T b)iij5 . (5.41)

3 3 3

3

1 1

55 351515 12 4 2 4 2 4 42 42

Figure 5.5: Feynman diagrams for the full amplitude AQCD
5 (1, 2, 3, 4, 5).

Hence, the color factors satisfy



5.2. Double copies of gluons and fermions 121

C1 + C2 + C3 = 0, C1 + C3 + C4 = 0, (5.42)

therefore from the color-kinematics duality, the numerators satisfy

N1 +N2 +N3 = 0, N1 +N3 +N4 = 0, (5.43)

which can be checked from Feynman diagrams. From (5.38), we see e.g. that we may
redefine N2 → −N2 and obtain the signs of Eqs.(2.166).

We can also write the color-kinematics duality for primitive amplitudes. For an
amplitude with the ordering dictated by a word w ∈ B, where B is some suitable basis,
we have

An(p, w, ε) = i
∑

G∈T (w)

N(G)

D(G)
, (5.44)

where the sum runs over the set of ordered trivalent graphs denoted by T (w). Also, the
numerators N(G) satisfy Jacobi-like identities whenever the corresponding color factors
do.

Since we are considering bases for amplitudes in QCD, we will use the BCJ basis that
we used in Chapter 4. An account of the basis and the relations that are used at each
point to obtain the basis is reviewed in Appendix C. For the benefit of the reader, we
rewrite the basis. For an amplitude with n = ng + 2nq particles the size of the basis is
given by

Nbasis =





(n− 3)!, nq ∈ {0, 1},
(n− 3)!

2(nq−1)
nq !

, nq ≥ 2.
(5.45)

A possible basis is given by

B =





{l1l2 . . . ln ∈W0|l1 = g1, ln−1 = gn−1, ln = gn}, nq = 0,

{l1l2 . . . ln ∈W0|l1 = q1, ln−1 = gn−2, ln = q̄1}, nq = 1,

{l1l2 . . . ln ∈ Dycknq |l1 = q1, ln−1 ∈ {q̄2, . . . , q̄nq}, ln = q̄1}, nq ≥ 2.

. (5.46)

Examples of the basis are given in Sections 4.2.2.1, 4.3.
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5.2.2 Double copies of fermions

Since we have color kinematics duality for QCD amplitudes, we would like to use the
double copy procedure and determine the resulting gravitational theory. In the same sense
as gravitons can be thought as double copies of gluons, we propose that the resulting
gravitational theory contains particles with wavefunction coefficients [120]

ūλλ̃αβ ≡ ūλαūλ̃β, vλλ̃αβ ≡ vλαvλ̃β , (5.47)

where ūλλ̃αβ corresponds to the double copy of a fermion and vλλ̃αβ to the double copy of an
anti-fermion. With the numerators of Eq.(5.44), we can then compute the gravitational
theory, i.e.,

Mn = i(−1)n−3
∑

G∈U

N(G)N(G)

D(G)
, (5.48)

where the sum runs over all trivalent diagrams with and without flavor.

Example 5.2.2. n = 4. Let us consider first the alphabet A = {q1, q2, q̄2, q̄1} = {1, 2, 3, 4}.
The set of flavor conserving trivalent diagrams U contains 3!!/3!! elements, therefore we
need to find one numerator, which can be read from

A4(1234) = i
N(G1)

s23
⇒ N(G1) = −iA4(1234)s23. (5.49)

The gravitational amplitude in this case is simply

M4 = i
A4(1234)s2

23A4(1234)

s23
= iA4(1234)s23A4(1234). (5.50)

Next, consider the alphabet A = {q1, g1, g2, q̄1} = {1, 2, 3, 4}, then we have 3!!/1!! diagrams
(Fig.5.6). Here, the basis has a single element, namely B = {1234}. Hence,

A4(1234) = i

(
N(G1)

s23
+

N(G2)

s12 −m2

)
. (5.51)

From the color-kinematics duality

C(G1)− C(G2) + C(G3) = 0⇒ N(G1)−N(G2) +N(G3) = 0, (5.52)
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3 3 3

414121 4 2 2

Figure 5.6: Feynman diagrams with for the full amplitude AQCD
4 (1, 2, 3, 4)

.

and therefore

A4(1234) = iN(G1)

(
1

s23
+

1

s12 −m2

)
+ i

N(G3)

s12 −m2
, (5.53)

which leaves (4− 2)!− (3− 1)! numerators unspecified. We set them to zero. In particular,
for N(G3) = 0, we obtain

N(G1) = −iA4(1234)

(
s23(s12 −m2)

s23 + s12 −m2

)
= N(G2). (5.54)

Therefore, the gravity amplitude reads

M4 = iA4(1234)2

(
1

s23
+

1

s12 −m2

)(
s23(s12 −m2)

s23 + s12 −m2

)2

, (5.55)

which simplifies to

M4 = iA4(1234)

(
2p2 · p3(2p1 · p2)

−2p2 · p4

)
A4(1234). (5.56)

The pure gluonic case can be treated in the same way. Actually, the pure gluonic case
gives the original double copy procedure.

5.2.3 Generalized KLT kernel

We have already constructed a gravitational theory which contains double copies of
fermions and gravitons—it also contains dilatons and axions due to the helicity com-
binations ±. A natural question to ask is whether the KLT matrix of Sec.5.1.2 or a
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generalization of it can be used to describe this new theory. For n = 4, the KLT kernel
contains a single element, namely S[1234, 1243] = s12, which does not correspond to the
required value to cancel the double poles of the amplitude with two quark lines (See
Eq.(5.50)). Therefore, we need a new KLT kernel that cancel the appropriate poles for
such amplitude. In addition, it must lead to the standard KLT matrix for the pure gluonic
case.

From our comments at the beginning of the Chapter, we know that the KLT kernel
was found in the context of string theory by taking the field theory limit of the relation
between open and closed strings. In this new situation we do not have access to such
supporting theory and therefore we cannot generalize the KLT kernel in this way. However,
we do have an alternative procedure to obtain the KLT kernel in CHY formalism—as the
inverse of the matrix formed by double ordered scalar amplitudes. In this case, we do
not have access to the CHY representation of this new theory, then the last option is to
generalize the KLT kernel in terms of ordered trees in analogy with Eq.(5.20).

Since QCD amplitudes can be decomposed in terms on only diagrams with two types
of trivalent vertices, namely the three-gluon vertex and the quark-gluon vertex, it is
natural to consider ordered trees with two types of vertices—in the same sense that we
decompose gluonic ordered amplitudes in terms only of trivalent vertices with one type of
vertex.

Consider the basis B in Eq.(5.46). Let use then denote by T̃ (w) the set of all ordered
tree diagrams with trivalent flavor-conserving vertices and external ordering w ∈ B. These
diagrams have two types of vertices: a vertex with three unflavored particles (gluon-vertex)
and a vertex with two flavored particles and one unflavored particle (quark-gluon vertex).
The number of diagrams in this set depends on the number of quarks nq. In order
to obtain the KLT kernel let us first consider the double ordered flavored amplitude
mn(p, w, w̃). For two orderings w2, w2 ∈ B, we define the Nbasis × Nbasis dimensional
matrix m by

mw1w2 = i(−1)n−3+nflip(w1,w2)
∑

G∈T̃ (w1)∩T̃ (w2)

∏

e∈E(G)

1

se −m2
e

, (5.57)

where the sum runs over the set of all diagrams compatible with both orderings w1 and
w2 denoted by T̃ (w1) ∩ T̃ (w2). The masses of the internal edges e are denoted by me.
The number of flips to transform any diagram from T̃ (w1)∩ T̃ (w2) with external ordering
w1 into a diagram with external ordering w2 is denoted by nflip(See Fig.5.2). We define
the momentum kernel as the inverse of the matrix m, i.e.,

S = i m−1. (5.58)
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Finally, the gravitational amplitude in terms of the generalized KLT kernel is given by

Mn(p, ε, ε̃) = −i
∑

w,w̃∈B
An(p, w, ε)Sww̃An(p, w̃, ε). (5.59)

Notice that we use a product of color ordered amplitudes An(p, w, ε) to get an unordered
gravitational amplitude Mn(p, ε, ε̃). This is the proper generalization of the KLT kernel
when one wants to add fermions, i.e., with nq > 0. The essential ingredient is the
restriction to diagrams with flavor-conserving vertices. We have checked that this is
consistent with the color-kinematic-duality for n ≤ 8.

5.2.3.1 Examples

Example 5.2.3. Let us consider the cases with n = 4 for the alphabets in Example 5.2.2.

(a) For two quark lines of masses m, m′, there is a single ordered flavor conserving
diagram and one elements in the basis, therefore

S = i m−1 = im(1234|1234)−1 =
i

−i

(
1

s23

)−1

= −s23. (5.60)

(b) For a single quark line of mass m, there are two ordered flavor conserving diagrams
and the basis contains a single element, namely B = {1234}. Hence,

S = i m−1 = im(1234|1234)−1 =
i

−i

(
1

s23
+

1

s12 −m2

)−1

=
2p1 · p22p2 · p3

2p2 · p4
.

(5.61)

(c) The unflavored case corresponds to the usual scalar double ordered amplitude
m(1234|1234) which gives

S−1 = −(
1

s
+

1

t
) =

st

u
(5.62)

Example 5.2.4. If we have n = 5 and only gluons, things get more interesting and we
have

B = {12345, 13245}. (5.63)
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Consider the double copy of and amplitude containing two unflavored vertices. Here we
have nq = 0, and we have two possible diagrams with a single ordering. The 1× 1 matrix
is

m = −(
1

s
+

1

t
) =

u

st
,

⇒

M4 = −i
st

u
A4(1234)2. (5.64)

If we want to recover the conventional KLT relations we have to remember the BCJ
relations [11]

sA4(1234) = uA4(1324), (5.65)

thus recovering the usual KLT relation.

The procedure is the same if we increase the number of points, so it becomes only
technically more challenging. In Eq. (5.64) we square the amplitude producing double
poles and we have to be sure that these double poles are canceled with the aid of the
momentum kernel. Starting with n = 8, nq = 4 we have a non-factorizable polynomial in
the denominator, which zeros are spurious singularities. To solve the issue we have to use
a generalized gauge transformation.

5.2.4 Amplitudes

After computing several examples for the generalized KLT kernel, we are ready to consider
the resulting gravitational amplitudes. The full gravitational amplitude reads

Mn =
(κ

2

)n−2
Mn(p, ε, ε̃), (5.66)

in the Gauss unit system with κ =
√

32πGN . We would like to compute 4-point amplitudes
involving double copies of fermions, which are the most relevant for phenomenological
applications. In Examples 5.2.3, we have calculated the necessary kernels. The gravita-
tional amplitudes are constructed from 4-point primitive amplitudes. We consider the
amplitude

A4 = A4

(
qλ11 , gλ22 , gλ33 , qλ44

)
, (5.67)
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which corresponds to an amplitude involving a single quark line of mass m. Particles are
labeled by their helicities. Similarly, the amplitude involving two quark lines of masses m
and m′ reads

A′4 = A′4

(
qλ11 , q′2

λ2 , q′3
λ3 , qλ44

)
. (5.68)

The Feynman diagrams required to calculate these amplitudes are shown in Fig.5.7. Using
the Feynman rules of Chapter 2, we have

A4 =
i

t
ū1

[
ε2 · ε3/p2

+ p3 · ε2/ε3 − p2 · ε3/ε2

]
v4 −

i

2(s−m2)
ū1

[
/ε2(/p1

+ /p2
+m)/ε3

]
v4,

(5.69)

and

A′4 = − i

2
(ū1γ

µv4)
1

s23
(ū2γµv4). (5.70)

1 4

2 3 2 3

1 4 41

2 3

A′
4 A4

Figure 5.7: Feynman diagrams for the amplitude A′4 (left) and for A4 (right).

Using these primitives and the KLT kernels (Section 5.2.3), we obtain

M4(dλ1λ̃11 , hλ2λ̃22 , hλ3λ̃33 , d
λ4λ̃4
4 ) = −i

(
κ2

4

)
2p1p22p2p3

2p1p4
(5.71)

×A4

(
qλ11 , gλ22 , gλ33 , qλ44

)
A4

(
qλ̃11 , gλ̃22 , gλ̃33 , qλ̃44

)
,

where d(d̃) labels the double copy of a fermion(anti-fermion) and h labels a graviton.
Similarly the amplitude involving only double copies of fermions reads



128 5. QCD and Gravity

M4(dλ1λ̃11 , d′2
λ2λ̃2 , d

′
3

λ3λ̃3
, d
λ4λ̃4
4 ) =i

(
κ2

4

)
(2p2p3 + 2m′

2
) (5.72)

×A4

(
qλ11 , q′2

λ2 , q′3
λ3 , qλ44

)
A4

(
qλ̃11 , q′2

λ̃2 , q′3
λ̃3 , qλ̃44

)
.

Notice the minus sign in Eq.(5.72) due to Eq.(5.60). This sign is responsible for an
attractive 1/r-potential in the classical limit.

5.2.5 Cross sections and dark matter

In this section, we will compute cross sections for various processes. For the computation,
we will consider all possible spins states for the double copies, i.e., λ, λ̃ = ±. In this way,
the spin sums for M4 and M′4 factorize into two individual spin sums for A4 and A′4,
respectively. First, let us consider the amplitude

|M4|2 =
κ4

16

(2p1p2)2(2p2p3)2

(2p1p3)2

(
|A4|2

)2
. (5.73)

From Eq.(5.69) we can compute the spin summed amplitude

|A4|2 =
1

2

[
3 +

4s

t
+

2(s−m2)2

t2
+
t+ 4m2

s−m2
+

4m4

(s−m2)2

]
, (5.74)

which we can use to compute the cross section for the annihilation process

d̄1d4 → h2h3. (5.75)

The cross section corresponds to the case8 Nα = 2 in Eq.(2.12), leading to Eq.(2.16). The
cross section reads

σ =
(2π)4

4
√

(p1 · p4)2 −m4

∫
δ4(p2 + p3 − p1 − p4)|M4|2

d3p2d3p3

(2π)32E2(2π)32E3
. (5.76)

In the center of momentum frame, this integral becomes

8After normalizing with flux
√

(p1 · p4)2 −m4/(V E1E4). See comments Section 2.1.1.
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σ =
16πG2

N

2E12E4|p1

E1
− p4

E4
|

− t
2
−χ

2∫

− t
2

+χ
2

dx
1

χ

x2t2

(x+ t)2

(
|A4|2

)2
, (5.77)

where x = s−m2 and χ =
√
t(t− 4m2). After integration, the cross section reads

σ =
4π2G2

N

2E12E4|p1

E1
− p4

E4
| (5.78)

×
[

7

60
t2 +

16

15
m2t+

103

15
m4 + 8

m6

t
− 4

m4

χt

(
t2 + 4m2t− 4m4

)
ln

(
t+ χ

t− χ

)]
,

where the quantity

2E12E4|
p1

E1
− p4

E4
| (5.79)

represent the incoming flux of particles d̄1 and d4 in the center of momentum frame. Let
us now consider the gravitational amplitude (5.72)

∣∣M′4
∣∣2 =

κ4

16

(
2p2p3 + 2m′

2
)2 (
|A′4|2

)2
. (5.80)

Using Eq. (5.70), the spin summed amplitude reads

|A′4|2 =
1

2

[
2(u−m2 −m′2)2

t2
+

2u

t
+ 1

]
. (5.81)

Let us analyze the process

d̄1d4 → d′2d̄
′
3, (5.82)

i.e., the annihilation of the pair d̄1d4 followed by the creation of the pair d′2d̄′3. In this
case, we have the cross section
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σ =
4π2G2

N

2E12E4|p1

E1
− p4

E4
|

√
t− 4m′2

t

[
7

30
t2 +

4

5
(m2 +m′

2
)t+

16

15
(m4 +m′

4
) +

64

15
m2m′

2

+
32

15

m2m′2(m2 +m′2)

t
+

32

5

m4m′4

t2

]
. (5.83)

The amplitude (5.70) is relevant for the graviton exchange process as well, i.e., for
d4d
′
3 → d1d

′
2. Using the replacements

t = −P
2(1 + z)

2
, u = 2m2 + 2m′

2
+

1

2
P 2(1 + z)− s (5.84)

where

P 2 =
(s−m2 −m′2)2 − 4m2m′2

s
, (5.85)

the differential cross section reads

dσ

dz
=

2πG2
N

s

[
4

(s−m2 −m′)2

P 4(z + 1)2
− 4

s(s−m2 −m′2)2

P 2(z + 1)

+ (s−m2 −m′2)2 +
1

16
(4s− P 2(z + 1))2

]
. (5.86)

In the non-relativistic limit we have s− (m+m′)2 � (m+m′)2, or equivalently p�M .
Hence, expanding in powers of

ε =
s− (m+m′)2

(m+m′)2
' |p|

2

M2
= 2

E

M
, (5.87)

we obtain

dσ

dz
=

8πG2
Nm

2m′2(m+m′)2

|p|4(z + 1)2
=

2πG2
Nm

2m′2

E2(z + 1)2
, (5.88)

where |p| is the magnitude of the momentum of the scattered double copies d, and E is
the total kinetic energy. It is interesting to compare this result with the Rutherford cross
section. In order to compare, let us consider a related gravity amplitude, i.e., the cross
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section for the exchange of a graviton by two scalar particles. The relevant Feynman rule
for this interaction is given by [35,129]

〈p2|V (1)µν |p1〉S=0 = i
κ

2
[−pµ2pν1 − pν2pµ1 + ηµν(p2 · p1 +m2)]. (5.89)

For scalar particles of masses m, m′, we obtain

MS=0
4 (1, 2, 3, 4) = i

κ2

16

[
(m2 +m′2)(4s− 2t+ 4u)− 4(m4 +m′4)− 2s2 + t2 − 2u2

t

]
,

(5.90)

which in the nonrelativistic limit leads the differential cross section

dσ

dz
=

2πGN
2m2m′2(m+m′)2

Z2 (s− (m+m′)2)2 =
2πGN

2m2m′2

4E2(z + 1)2
. (5.91)

The cross section in Eq.(5.88) is four times larger than the usual Rutherford cross section
(Eq.(5.91)). The reason is that in the nonrelativistic limit, the internal propagator is
almost on-shell and we have to sum over all possible polarizations, i.e, ++, +−, −+, −−,
therefore the amplitude is two times larger than an amplitude which only exchanges ++

and −−.

In this model, we have double copies of fermions which interact only gravitationally.
Since these particles can be massive and thus non-relativistic, the model we propose
may be relevant for the discussion of dark matter. This is because so far all evidence of
dark matter is gravitational.9 As the double copies only interact gravitationally they are
dissipationless, compatible with the dark matter halos around galaxies. Since they only
interact gravitationally, the cross sections are tiny and the explanation of dark matter
relic abundance would require a non-thermal mechanism.

Finally, a realistic analysis should restrict the analysis to states of equal spin, thus
removing the mixed polarization states +−, −+, which can be achieved by considering
these states as ghosts [124]. These degrees of freedom are common, but not exclusive,
to string theories, where they correspond to dilatons and axions. Alternatively, we may
describe these states in the context of scalar-tensor theories of gravity. However, these
theories are strongly constrained by experiments in the solar system10.

9See e.g., Section 25 in Ref. [130].
10See Section 21 of Ref. [130].
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5.3 Einstein-Yang-Mill relations

In the past Section we have seen that gauge theories (including QCD) and gravitational
theories are connected in several equivalent ways: the KLT kernel, the double copy, and
the CHY formalism. We also learn in Section 5.1.2 that we can move from one to another
realization of the concept “gravity as the square of gauge theory”. For example, in the last
Section, starting with the color kinematics duality for QCD primitives, we generalized
the KLT kernel by invoking a CHY-like recipe to build the KLT kernel. In this Section,
we proceed with another example of the relations between gauge theories and gravity
theories that can be easily understood from the CHY representation. This Section is
based on Ref. [131] by the author, Alexander Kniss, and Stefan Weinzierl.

Consider a theory of gravitons and gluons, i.e., Einstein-Yang-Mills theory. Although
we will not perform any computation with it, let us introduce the Lagrangian density of
the theory. In the Gauss unit system it reads

LEYM =
2

κ2

√
−det gR− 1

4

√
−det g gµνgρλF aµρF

a
νλ, (5.92)

where gµν is the metric tensor, and R is the usual Ricci scalar (See Section 2.3.3). In this
theory, the Feynman rules are obtained by straightforward use of the methods in Chapter
2 by expanding the metric tensor

gµν = ηµν + κh(1)
µν + . . . (5.93)

and collecting the relevant terms in the expanded Lagrangian density.

In the case of the KLT relations, the connection between gravity and gauge amplitudes
was first studied in the context of string theory by relating closed and open strings.
These relations then were shown to hold in the field theory limit. Similarly, the relations
between Einstein-Yang-Mills (closed string plus open string) and gauge theory (only
open strings) have been studied in the context of string theory using the so called “disk
relations” [132–135]. In Ref. [136], Stieberger and Taylor found a relation between single
trace field theory amplitudes involving a single graviton and an arbitrary number of
gluons and pure gauge amplitudes. Schematically they found that for an amplitude in
Einstein-Yang-Mills with a single graviton we have

gravity⊕ gauge = α(p, ε)⊗ gauge, (5.94)

where α(p, ε) is a purely kinematic coefficient. Let us introduce some notation for the
amplitudes. We denote by
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AEYM
n,n−1(pλ1σ(1), . . . , p

λn−1

σ(n−), p
λnλn
n ) ≡ AEYM

n,n−1(σ, p, ε, ε̃), (5.95)

the primitive EYM amplitude with a single graviton and (n − 1) bosons of helicities
λj ∈ {+,−}. The graviton is labeled by n as can be inferred from the helicity labels.
These primitives are gauge invariant objects with a fixed order specified by σ. Similarly,
we denote by

AYM
n (pλ1σ(1), . . . , p

λn
σn) ≡ AYM

n (σ, p, ε), (5.96)

the primitive YM amplitude with ordering σ. Using this notation, the Stieberger-Taylor
relations read

AEYM
n,n−1(pλ11 , . . . , p

λn−1

n−1 , p
λnλn
n ) = −

n−2∑

j=1

(
√

2qj · ελnn )AYM
n (pλ11 , . . . p

λj
j , p

λn
n , p

λj+1

j+1 , . . . p
λn−1

n−1 )

(5.97)

where

qj =

j∑

k=1

pk. (5.98)

The minus sign in Eq.(5.97) comes from our conventions of for the field strength tensor
Fµν (See Sec. 2.3.2). The Stieberger-Taylor relations were found by using the low energy
limits of string theory amplitudes and by considering appropriate soft and collinear limits.
In Ref. [136] the question of whether Eq.(5.97) could be derived withing the framework
of the CHY formalism was posed. In Ref. [131] we gave an affirmative answer to this
question. Notice that these relations resembles the KLT relations with a “kernel” which
now also depends on the polarizations. let us explore the ingredients to find Eq.(5.97)
within the CHY.

5.3.1 CHY integrand for Einstein-Yang-Mills

In Ref. [137], CHY introduced the integrand for EYM primitives. The integrand is
composed by the usual ingredients, i.e., the standard Parke-Taylor factor C and a
specialization of the permutation invariant factor E. We will be interested in the standard
building blocks but specialized for a subset of particles. For an amplitude with r gravitons
and n− r gauge bosons, we define the Parke-Taylor factor by
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Cr(σ, z) =





1, r = 0,

0, r = 1,

1
zσ(1)σ(2)zσ(2)σ(3)···zσ(n)σ(1)

, 2 ≤ r ≤ n,
(5.99)

where σ ∈ r with 2 ≤ r ≤ n. Similarly, for a subset {i1, i2, . . . , ir} ⊆ {1, 2, . . . , n} with
1 ≤ r ≤ n, we denote the corresponding polarization vectors by ε′ = (ε

λi1
i1
, . . . , ε

λir
ir

). For
this subset, we define a (2r)× (2r) antisymmetric matrix Ψ(z, p, ε′) through

Ψ(z, p, ε′) =

(
A −CT

C B

)
, (5.100)

with

Aab =





siaib
ziaib

, a 6= b

0, a = b
, Bab =





εiaib
ziaib

, a 6= b

0, a = b
, Cab =





ρiaib
ziaib

, a 6= b

− ∑
j=1, j 6=a

ρiaib
ziaj

, a = b
,

(5.101)

where we used our conventions, i.e., εiaib = εia · εib and ρiaib =
√

2εia · pib . Notice that
the sum in the diagonal entries of Cab is over (n− 1) terms and not just (r − 1) terms.
This definition of the matrix Ψ is a slight modification of Eqs.(3.64)-(3.65). It has chosen
to be valid for the subset of labels under consideration. Now, the factor Er is defined as
follows

Er(z, p, ε
′) =





1, r = 0,

Pf Ψ(z, p, ε′), 1 ≤ r ≤ (n− 2),

0, r = n− 1,

Pf′Ψ(z, p, ε), r = n,

(5.102)

where the reduced Pfaffian Pf′Ψ is defined in Eq.(3.63). With these ingredients we can
then write the CHY representation of three types of amplitudes in Einstein-Yang-Mills
theory. Without loss of generality we consider the first r particles to be gauge bosons,
while the particles labeled from (r + 1) to n are gravitons. We then set the polarization
tuples as follows
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ε = (ελ11 , . . . , ελrr , ε
λr+1

r+1 , . . . , ε
λn
n ),

ε̃ = (ε
λr+1

r+1 , . . . , ε
λn
n ), (5.103)

Hence, the CHY integrand for Einstein-Yang-Mills reads

IEYM(z, σ, ε, ε′) = Cr(σ, z)En(z, p, ε)En−r(z, p, ε). (5.104)

This integrand can be used in any of the flavors of the CHY representation that we
have studied so far: in Eq.(3.38) as a multivariate contour integral supported on the
scattering equations, in Eq.(3.53) as a sum over the solutions of the scattering equations,
or as a multivariate contour integral supported on the polynomial form of the scattering
equations in Eq.(3.56). By construction the cases r = n and r = 0 recover pure Yang-Mills
amplitudes and pure graviton amplitudes, respectively.

5.3.2 One graviton

The CHY representation for EYM corresponds to the case r = n− 1 in Eq.(5.104), hence
with the definitions of Eq.(3.56)-(3.58) , we have

AEYM
n,n−1(σ, ε, ε̃) =

i(−1)n

(2πi)n−3

∮

O
dΩ̃CHY

n∏

i=1

(zi − zi+1)2Cn(σ, z)En(z, p, ε)E1(z, p, ε̃),

(5.105)

and for pure Yang-Mills

AYM
n (σ, ε, ε̃) =

i(−1)n

(2πi)n−3

∮

O
dΩ̃CHY

n∏

i=1

(zi − zi+1)2Cn(σ, z)En(z, p, ε). (5.106)

Now, the proof of Eq.(5.97) is based on the “Eikonal” identify for Parke-Taylor factors,
i.e.,

n−2∑

l=k

zl − zl+1

(zl − zn)(zn − zl+1)
=

zk − zn−1

(zk − zn)(zn − zn−1)
, (5.107)

which can be proved by repeated use of the identity
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zk − zl+1

(zk − zn)(zn − zl+1)
+

zl+1 − zl+2

(zl+1 − zn)(zn − zl+2)
=

zk − zl+2

(zk − zn)(zn − zl+2)
. (5.108)

Consider the integrand of the LHS of Eq.(5.97). In terms of the blocks of the CHY
representation, we have

LHS = Cn−1(1, . . . , n− 1)EnE1, (5.109)

where we have used the shorthand notation Cr(1, 2, . . . , r) = Cr(1, 2, . . . , r, z) and we
have excluded common factors inside the integrand. The polarization factor E1 is the
Pfaffian of a 2× 2 matrix which simplifies to

E1 =−
n−1∑

k=1

ρkn
zk − zn

(5.110)

=
ρnn

zn−1 − zn
+
n−2∑

k=1

ρkn
zn−1 − zn

−
n−2∑

k=1

ρkn
zk − zn

(5.111)

=−
n−2∑

k=1

ρkn
zk − zn−1

(zk − zn)(zn − zn−1)
. (5.112)

In the second line we have separated the n− 1 element in the sum and used momentum
conservation. In the third line we used the fact that pn · εn = 0. Then, we have

LHS = −Cn−1(1, . . . , n− 1)En

n−2∑

k=1

ρkn
zk − zn−1

(zk − zn)(zn − zn−1)
. (5.113)

Let us now focus on the RHS of Eq.(5.97), at the level of the integrand we have

RHS =−
n−2∑

l=1

√
2ql · εnEnCn(1, . . . , l, n, l + 1, . . . , n− 1) (5.114)

=− En
n−2∑

l=1

l∑

k=1

√
2pk · εnCn(1, . . . , l, n, l + 1, . . . , n− 1). (5.115)

Exchanging the order of the summations and using

Cn(1, . . . , l, n, l + 1, . . . , n− 1) =
zl − zl+1

(zl − zn)(zn − zl+1)
Cn−1(1, . . . , n− 1), (5.116)
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we obtain

RHS = Cn−1(1, . . . , n− 1)En

n−2∑

k=1

√
2pk · εn

n−2∑

l=k

zl − zl+1

(zl − zn)(zn − zl+1)
. (5.117)

Eq.(5.113) and Eq.(5.117) are equal if for all k ≤ (n− 2) and n ≥ 3, we have

n−2∑

l=k

zl − zl+1

(zl − zn)(zn − zl+1)
=

zk − zn−1

(zk − zn)(zn − zn−1)
. (5.118)

This is precisely the Eikonal identity of Eq.(5.107) and completes the proof of Eq.(5.97).

5.3.3 More than one graviton

We would like to discuss generalizations of Eq.(5.107) towards tree-level single trace
amplitudes with r gauge bosons and (n− r) gravitons11. In Chapter 3, we learned that
for words w in the BCJ basis B we have

AYM
w = iMwjEj , w ∈ B, (5.119)

where Mj is defined in Eq.(4.13). Equivalently, after solving the contour integral the
EYM amplitude becomes

AEYM = iGjEj = J(z(j), p)Cr(σ, z
(j))En−r(z

(j), p, ε)En(z(j), p, ε), (5.120)

where

Gj ≡ J(z(j), p)Cr(σ, z
(j))En−r(z

(j), p, ε). (5.121)

Thus, we may express Einstein-Yang-Mills amplitudes with (n− r) gravitons as a linear
combination of Yang-Mills amplitudes with cyclic order w ∈ B if we find coefficients
αw(σ, p, ε̃) such that

Gj = αwMwj , w ∈ B, (5.122)

11In Ref. [138] an explicit generalization up to three gravitons was given.
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where αw ≡ αw(σ, p, ε̃). In other words, we need to find the inverse of Mwj in order to
find the coefficients αw. In Chapter 3, we computed this inverse (see Eqs.(4.14)-(4.21)),
which is given by

Njv =
∑

w∈B
S[w|v̄]Cn(v̄, z(j)). (5.123)

Since MwjNjv = δwv, the coefficients αw can be easily found to be

αw = GjNjw. (5.124)

Therefore

AEYM
n,r (σ, ε, ε̃) =

∑

w∈B
αw(σ, p, ε̃)AYM

n (w, p, ε). (5.125)

In general, the coefficients depend on the basic building blocks of the CHY representation
and the Jacobian, hence we can write the coefficients as a contour integral following the
general rules of Chapter 3, i.e.,

αw(σ, p, ε̃) =
i

(2πi)n−3

∑

v∈B
S[w|v̄]

∮

O
dΩCHYIα, (5.126)

where

Iα ≡ Cr(σ, z)Cn(v̄, z)En−r(z, p, ε), (5.127)

or the integrand for the contour formula based on the polynomial scattering equations

Ĩα =
n∏

i=1

(zi − zi+1)2Iα. (5.128)

The techniques to solve these contour integrals have been studied in Chapter 3. In
particular, we know that we do not require to solve the scattering equations if we use the
Bezoutian matrix method for the computations of the residues (See Appendix B.3). The
construction of a basis is discussed in Chapter 2 and a summary is given in Appendix C.
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Very recently, several methods for the computation of the coefficients αw have been
proposed. A recursive approach based on gauge invariance was introduced in Ref. [139],
while from the color-kinematics duality and the double copy, a semi-recursive approach
was developed in Ref. [140]. In the CHY formalism, another recursive approach based on
the expansions of the Pfaffian was proposed in Ref. [141].

5.3.4 Example

Let us give an example for the computations of the coefficients in Eq.(5.125). Let us
consider the case n = 4 for the amplitude of r = 2 gauge bosons and 2 gravitons. The
basis B of gauge amplitudes contains a single element, namely B = {1234}. For the
permutation of two gauge bosons we take σ = (1, 2). We will follow the algebraic approach
based on the Bezoutian matrix (See Examples in Section 3.4 and Appendix B.3). The
measure reads

dΩ̃CHY =
dz3

(1− z3)z3(s12 + s13z3)
, (5.129)

and after using our conventions for z1, z2, and z4, we have

Ĩα

∣∣∣z1→∞
z4→0
z2→1

=− z2
3ρ32ρ42 + z3ρ32ρ42 + ρ32ρ43 − z3ρ32ρ43 − ρ34ρ42 − z2

3ρ34ρ42 + 2z3ρ34ρ42

− s34z3ε34 −
s34ε34

z3
+ 2s34ε34. (5.130)

Therefore, on the support of the scattering equations we have

αw(σ, p, ε̃) =s12Res
(
ρ32ρ42 +

ρ32ρ43

z3
+ ρ34ρ42 −

ρ34ρ42

z3
+
s34ε34

z3
− s34ε34

z2
3

)

=s12

[
s34ε34

(
〈−s13

s12
, 1〉 − 〈s

2
13

s2
12

, 1〉
)

+ (ρ32ρ43 − ρ34ρ42) 〈−s13

s12
, 1〉

+ ρ32ρ42 + ρ34ρ42

]

=s12

[
s34ε34

(
− 1

s12
− s13

s2
12

)
− (ρ32ρ43 − ρ34ρ42)

1

s12
+ (ρ32ρ42 + ρ34ρ42)

1

s13

]
,

where we have used that the inverse of 1/z3 is given by (−s13/s12). Using momentum
conservation and the fact that ρii = 0, we obtain

AEYM
4,2 = t

[
ε34 +

ρ32ρ41

t
+
ρ31ρ42

u

]
AYM

4 (1234), (5.131)
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where the polarizations in ρij are the graviton polarizations, i.e., ρij =
√

2ε̃i · pj and
similarly for εij .

5.4 Remarks

In this Chapter, we have studied three equivalent approaches to relate perturbative
quantum gravity and Yang-Mills based on the concept of gravity as the square of gauge
theory: the KLT kernel approach, the CHY representations, and the double copy. We
have seen that this concept can be used also to relate gravity and QCD and to relate
Einstein-Yang-Mills to pure Yang-Mills. Except in the case of QCD, the relations between
gravity and gauge have been first found in the context of string theory methods and then
shown in the context of the S-matrix to be valid in D-dimensions. An important tool
to establish results in D dimensions is the CHY representation based on the scattering
equations.

A problem that can be posed from the results in this Chapter goes as follows. For
the double copy construction of QCD based on the color kinematics duality, we have
established the corresponding generalized KLT kernel. In analogy with pure Yang-Mills,
we can write Eq.(5.59) as

Mn =
∑

w̃∈B
nw̃A

QCD
w̃ , (5.132)

where nw̃ ≡
∑

w∈B A
QCD
w Sww̃. Since the numerators in the pure gravity amplitude

(Eq.(5.9)) can be thought as the dual of the color factors of the decomposition by Del
Duca et al., it would be interesting to explore how the numerators in Eq.(5.132) can
be associated with the color factors in the decomposition by Johansson and Ochirov in
Ref. [103]. This would give insight about the CHY representation of the gravitational
theory proposed in Section 5.2.

This problem is an example of the more general question of how to make the color
kinematics duality manifest in the CHY representation. We know from Ref. [14] that
we can always define numerators associated with trivalent graphs and that they satisfy
Jacobi-like identities. However, an open problem is how to make this duality manifest
on the factor E of the CHY representation. For example, for gluons we know that the
permutation invariant factor can be expanded in terms of numerators as we did in (5.12).
An algorithm for the construction of these numerators explicitly for pure Yang-Mills, was
introduced in Refs. [142,143]. A similar problem can be posed for single trace Einstein-
Yang-Mills amplitudes, which have a CHY representation and satisfy color kinematics
duality.



Chapter 6
Summary and outlook

In this thesis, we have explored several aspects of the modern developments of scattering
amplitudes aimed towards its application to QCD. To this end, in Chapter 2 we have
first explored the foundations of the theory of scattering amplitudes in the framework
of quantum field theory. We emphasized the approach by Weinberg that leads to the
diagrammatic Feynman rules of quantum field theory. In this approach, the Feynman
diagrams to calculate S-matrix elements arise as a logical consequence of the basic
principles of quantum mechanics, i.e., special relativity, and the cluster decomposition
principle. In particular, the analytic properties of the S-matrix arise as a physical
restriction on the connected part of the S-matrix, namely the cluster decomposition
principle, which leads to the fact that we have poles and branch cuts as singularities.
These are the basic analytic ingredients of any S-matrix approach, including the ones we
have studied in this thesis.

We then presented some recent techniques of computation of amplitudes. We briefly
reviewed the BCFW method for tree-level amplitudes, which uses the basic analytic
properties, the complexification of momenta, and the factorization properties of the
amplitude to recursively compute higher point amplitudes involving lower point amplitudes.
In combination with the little group property it is a powerful method for computation.
The BCFW method illustrates another main point in the philosophy of current methods
in scattering amplitudes, i.e., the use of only physical on-shell information in order to
obtain the full amplitude. The color decomposition of amplitudes is a key element for
the treatment of amplitudes in gauge theories. In particular, we have seen that the color
decomposition provides a useful concept in the treatment of amplitudes—we can use a
basis of amplitudes characterized by orderings (words) and that we can treat amplitudes as
operators in the space of orderings. This was a key element for subsequent developments
in the thesis. Another relevant concept is the color-kinematics duality and the double
copy which relate gauge theories and gravity. We treated perturbative gravity in this
sense, i.e., as connected to a gauge theory through the concept of gravity as the square of
a gauge theory. We presented two equivalent methods to square a gauge theory: the KLT
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kernel based method and the double copy by BCJ. Although tree level amplitudes can be
computed using recursive techniques—hence the problem is ultimately solved—tree level
amplitudes are an important ingredient for loop-level amplitudes through the method
of generalized unitarity, which we briefly reviewed. The techniques outlined in Chapter
2 are at the heart of current approaches towards amplitudes for gauge theories and in
particular QCD.

In Chapter 3, we reviewed the recently proposed CHY representation based on the
scattering equations for amplitudes in several theories. We emphasized that we can think
of the CHY representation in basically two ways: as a sum over the solutions and as a
contour integral. The later is very useful for explicit computations due to the complexity
of finding the solutions of the scattering equations, as we have shown in Sec.3.1. It
allows us to skip the step of solving the scattering equations and obtain the amplitudes
using e.g., methods in computational algebraic geometry. Nevertheless, amplitudes as
a sum over solutions and the concept of basis of amplitudes can be combined to study
existence of CHY representations. We have presented the general features of the CHY
representations and emphasized that on the support on the scattering equations they
allow us to give several properties of the amplitudes without having a closed integrand.
Therefore, an important issue in the CHY representation is to find such an integrand.
Once the integrand is known, we could use the techniques outlined in Sec.3.2, e.g., using
multi-residues, or numerically solving the scattering equations. In particular, we used the
method based on the Bezoutian matrix to compute the integral. Using this method, the
amplitude can be though as an inner product of polynomials with support on the algebraic
variety formed by the scattering equations as was proposed by Søgaard and Zhang. Thus,
the CHY formalism can be thought as a well-defined problem in algebraic geometry where
the physical input comes from the integrand. It would be desirable to find a method
to obtain this integrand within the framework of algebraic geometry on the grounds of
the general features of the S-matrix. A possible route to follow is to make explicit the
color kinematics duality on the building blocks of the CHY formalism, hence finding
a relation to trivalent graphs and ultimately to the Feynman diagrammatic approach1.
Furthermore, if these numerators are local (i.e., not rational functions) then the pole
structure of the amplitude would be encoded in a collection of polynomials instead of
rational functions—The reason is that we can invert the denominators with respect to
the ideal generated by the scattering equations as we studied in Section 3.4.

In Chapter 4, one of the main results of this work was introduced. We have proved
that QCD primitive amplitudes admit a CHY representations by giving the explicit blocks
of the integrand of the CHY representation. This new result adds a theory to the list
of theories compatible with the CHY formalism. This representation describes QCD
amplitudes in D-dimensions with the full particle content of QCD at tree-level, thus
describing massive or massless quarks. Hence, it shows that the CHY representations

1A different route to reach the Feynman diagrammatic expansion was followed in Ref. [99] using graph
expansions.
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could also be used to describe realistic tree level amplitudes with fermions, which are
relevant for current experiments. However, this result is only a partial success since we
lack a closed formula for the building blocks of the CHY representation—as we discussed
in Chapter 3, it would be desirable to obtain a closed expression for the generalized
permutation invariant factor which does not depend on any amplitude. The main result
of this Chapter is the formulation of the generalized cyclic factors and the generalized
permutation invariant factor given in Sections 4.2.3 and 4.2.4, respectively. With the
notation of Chapter 4, the main result is given by the CHY integrand

IQCD(z, p, ε) = −i C(w, z)
∑

u,v∈Bnq≤2

∑

w∈B
Suv̄GuwC(v̄, z)An(w, p, ε), w ∈ B. (6.1)

An important element for the proof of the CHY representation was the concept of a
basis B of amplitudes and to consider amplitudes as operators in the space of orderings.
In order to construct the basis of amplitudes the fact the QCD primitives satisfy BCJ
relations was fundamental. That QCD satisfy these relations was conjectured in Ref. [103]
and we proved to be valid for an arbitrary number of particles in Ref. [109].

The problem of the closed CHY formula for the QCD integrand is related to the
understanding of the properties that a CHY integrand should satisfy—besides Möbius
invariance—and to the space of theories which admit a CHY representation. One of
the problems is that, unlike the known closed formulas for CHY representations, QCD
mixes spin one and spin one-half and we lack a description of only fermions in the CHY
representation. In this direction some progress has been made from the ambitwistor
formulation of the CHY formalism [69,70,88]. Finding such formula for QCD is certainly a
big challenge and it would reveal a new face of realistic quantum field theories. Combined
with the fact that integrands of the known CHY representations can be written as
polynomials, it would reveal a new structure for realistic gauge theories, i.e., that the
amplitude is completely determined by the scattering variety and the ideal formed by the
scattering polynomials.

In Chapter 5, we introduced the second main result of this work. We introduced
amplitudes for a new gravitational theory which is built from QCD primitive amplitudes
using two different methods: a generalized version of the KLT matrix and via the color
kinematics duality and double copy procedure by BCJ. This theory contains double copies
of fermions which may be massive or massless. With the notation of Chapter 5, the main
result of this section is the introduction of the generalized KLT matrix such that the
gravitational amplitude reads

Mn(p, ε, ε̃) = −i
∑

w,w̃∈B
An(p, w, ε)Sww̃An(p, w̃, ε), (6.2)
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where the procedure to compute the generalized KLT kernel is given in Section 5.2.3. An
interesting aspect of this theory is that it contains massive particles which interact only
gravitationally, i.e., there an interaction vertex of the double copy and a graviton. Thus,
we can study the non-relativistic limit of the graviton exchange between two double copies
of fermions. Given that the evidence of dark matter so far is gravitational, we argued that
these particles could be relevant to the discussion of dark matter. In fact, considering that
gravity and gauge amplitudes are closely related—via the concept gravity as the square of
a gauge theory—one can argue that conceptually perturbative gravity arises from gauge
theory. Of course, classically this is not obvious at all since one must explain how the
equivalence principle arises from gauge theory. However, at the level of amplitudes the
concept of gravity as the square of gauge theory can be used to explain how the symmetries
of (super)gravity arise from the symmetries of (super)Yang-Mills [144]. Furthermore, the
recent developments on the classical double copy [125–128] represent a new perspective of
the relationship between gravity and gauge theories. The gravitational theory proposed
in this Chapter could then serve for further explorations of how gravitational symmetries
arise from gauge theories. It would also be interesting to explore the classical double copy
version of this theory.

Finally, in Chapter 5 we explored another aspect of the relationship between gauge
theories and gravity. The Stieberger-Taylor relations between Eintein-Yang-Mills theory
with one graviton and pure Yang-Mills were shown in the context of the CHY representa-
tion. This showed a new role of the CHY representation, i.e., as a tool to find relations
among amplitudes. We proved that these relations can be extended for an arbitrary
number of gravitons. With the notation of Section 5.3.3, we have proved

AEYM
n,r (σ, ε, ε̃) =

∑

w∈B
αw(σ, p, ε̃)AYM

n (w, p, ε). (6.3)

The coefficients in this expansion can be obtained using the methods of Chapter 3 for
contour integrals and thus we do not require to solve the scattering equations to find
them. Furthermore, those coefficients are given as inner products on the support of the
ideal generated by the scattering polynomials, thus these coefficients are computed from
polynomials instead of rational functions.

The obvious continuation of this thesis is to generalize these methods for computation
at loop-level. The straightforward path follows from generalized unitarity as mentioned
at the end of Chapter 3. Basically by using the CHY formula at tree level as an input in
the computation of the coefficients for the expansion of amplitudes in terms of master
integrals. A more ambitious goal may be to generalize the CHY formalism at loop level.
There are several proposals to generalize the CHY construction at loop level. First, using
the ambitwistor string there is an obvious generalization by promoting the Riemann
sphere to a torus as in any string theory formulation of scattering amplitudes. However, in
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Refs. [72,73], it was shown that it is possible to write loop integrands for massless particles
by pinching the torus and getting a Riemann surface with two extra punctures. A similar
approach was followed for the case of two loop integrands [145]. Another alternative
is to consider higher dimensional tree level amplitudes with n+ 2 particles and obtain
from it a loop amplitude with n particles by integrating out two of the particles and
additionally dimensional reduction. This was the approach used in Ref. [146] and shown
to be equivalent to the construction based on ambitwistor strings. A third approach
emerges by considering the so called elliptic scattering equations, i.e., a generalization
of the scattering equations in a genus one surface. This leads to a prescription for
loop amplitudes analogous to the CHY formula [147]. Therefore, at loop level there
are equivalent approaches that can be used to obtain loop amplitudes, but still there is
not a systematic method to compute loop integrands. As in the case of tree-level, the
guiding concept for the construction of loop amplitudes in the CHY representation is the
color kinematics duality which is known to hold at one loop and two loops and it was
conjectured to be valid at all loops [12, 148]. For example, it would be desirable to relate
loop numerators for gauge theories and the known integrands for gauge theories in, say,
the ambitwistor construction of loop amplitudes.

In loop calculations based on generalized unitarity, once the set of master integrals is
known, the problem is (in principle) solved. The set of master integrals are known to
be described in the language of algebraic geometry. In particular, integrals as periods
of algebraic curves. It is well-known that a class of Feynman integrals can be computed
as iterated integrals in the moduli space of Riemann spheres with n marked points (See
e.g., [149]). Hence, the same language is applicable to describe the main ingredients of
loop amplitudes and tree level amplitudes, i.e., algebraic geometry. In the string method
tree-level and loop level are characterized precisely by the genus of algebraic curves, hence
providing a direct connection between algebraic geometry and the S-matrix. However,
there are well-known conceptual difficulties that arise in the string framework as a physical
theory. Thus, it would be interesting to find an alternative version of the S-matrix that
connects loop level and tree level using the language of algebraic geometry. For example,
amplitudes for SYM N = 4 were found to be volumes of a mathematical object called the
amplituhedron, which is a generalization of a Grassmannian manifold [150]. This is an
example of what could be an alternative to the S-matrix that neither requires a Feynman
diagrammatic expansion nor the postulation of strings.

In this work, we presented various representations of the S-matrix that could lead to
such alternative version of the S-matrix. In particular, the color-kinematics duality and
the CHY representation are two formalisms that encode unitarity and locality in different
ways, in comparison with the Feynman approach. The alternative version of the S-matrix
should also encode these properties, but it may be that they are not manifest or that
they arise from unexpected restrictions in the amplitudes (See e.g., [151]). In any case,
it is the opinion of the author that the CHY representations and the color-kinematics
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duality are two faces of an algebraic geometric formulation of the S-matrix.



Appendix A
Feynman rules and spinors

A.1 Summary of Feynman rules for Yang-Mills

Here we summarize the color-ordered Feynman rules for gauge amplitudes. In 4D, for
outgoing particles we have the factors:

• External outgoing fermion qi, helicity ±

[i|, 〈i| . (A.1)

• External outgoing anti-fermion qi, helicity ±

|i], |i〉 . (A.2)

• Polarization vectors with reference momenta q

ε+µ (p, q) =
[p|γµ |q〉√

2 〈qp〉
, (A.3)

ε−µ (p, q) =− 〈p| γµ|q]√
2[qp]

. (A.4)

In the Gervais-Neveu gauge [25] the color-ordered Feynman rules for the three-gluon
and four-gluon vertices are given by [23,36,65]
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Vµ1,µ2,µ3(p1, p2, p3) =

p1, µ1

p3, µ3

p2, µ2
=− i

√
2[ηµ1µ2(p1)µ3 + ηµ2µ3(p2)µ1 + ηµ3µ1(p3)µ2 ],

(A.5)

Vµ1,µ2,µ3,µ4 =

µ1

µ4 µ3

µ2

=i(ηµ1µ3ηµ2µ4). (A.6)

Additionally, we have the fermion-gluon-antifermion vertex

µ = i
γµ√

2
, (A.7)

with a minus sign for the anti-fermion-gluon-fermion vertex. The massless propagators
are given by

νµ
p =− i

ηµν
p2
, (A.8)

p =i
/p

p2
. (A.9)

A.2 Useful identities

〈a| γµ|b] 〈c| γµ||d] = 2 〈ac〉 [db], (A.10)

|p〉 [p|+ |p] 〈p| ≡ /p, (A.11)

〈a| γµ|b]pµ = 〈ap〉 [pb]. (A.12)

Using these conventions and identities, the n = 4 MHV-amplitude reads

A[1−, 2−, 3+, 4+] = i
〈12〉4

〈12〉 〈23〉 〈34〉 〈41〉 . (A.13)



Appendix B
Mathematical tools from algebraic
geometry

B.1 Moduli spaces

Formally, a moduli space is an equivalence class of a given mathematical structure.
Conceptually, a moduli space can be understood as a “space of possibilities”. Suppose
we want to describe the space of all possible lines passing through the origin in a plane.
We can characterize the space by introducing a circle as shown in Fig. B.1, where we see
that this space is topologically homeomorphic to a circle since every line meets the circle
in exactly two points except the horizontal line through the x-axis which is associated
with the origin. Thus, the moduli space of all lines through the origin is the projective
line P1 ' S1 [152]. In this example, the mathematical structure we are considering is the
affine line A and resulting moduli space is the circle S1. We want to study the algebraic
properties of these spaces, which means that we would like to think on both spaces as
algebraic curves and use the tools of Algebraic Geometry.

In physics, moduli spaces appear in different contexts being the application to string
theory amplitudes a well-known example. They are also connected to the computation of
Feynman path integrals where we integrate over all possible states to obtain correlation
functions. For example, in gauge theories we integrate over the space of inequivalent
gauge potentials A—the moduli space of gauge potentials Mod(A)—via the path integrals

∫

[A]∈Mod(A)

eiS([A])D([A]), (B.1)
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x

y

S1

Figure B.1: The moduli space of lines passing through the origin

where are [A] are all physical states, i.e., an equivalence class of connections modulo gauge
transformations [153]. Another example of the use of moduli spaces is in the computation
of periods in [149].

B.1.1 Important example

The moduli space of Riemann spheres—genus 0 curves—with n ≥ 3 marked points is
defined through

M0,n = {(z1, z2, . . . , zn) ∈ CPn|zi distinct}/PSL(2,C), (B.2)

where CP1 ' C ∪ {∞} denotes the Riemann sphere.

B.2 Algebraic concepts

Polynomials are algebraic objects that we can add and multiply but not necessarily
divide1. The algebraic structure with these features is called a ring usually denoted by R.
Polynomials have coefficients in a given number field2 k. The ring of polynomials in n
variables with coefficients in this field is denoted by k[x1, . . . , xn]. Given any collection of
polynomials f1, . . . , fn, we can generate an ideal I by considering all polynomials that
can be built up from them by multiplication by an arbitrary polynomial and by taking
sums. In the following paragraphs we give some useful definitions.

1The material that follows is standard. We follow the note [154] and Ref. [155].
2Most of the time this field is the field of complex numbers C.
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Ideal. Let f1, . . . , fs ∈ k[x1, . . . , xn]. Let 〈f1, . . . fn〉 denote the ideal I generated by f1,
. . . , fn, i.e.,

I = 〈f1, . . . , fn〉 = {p1f1 + · · ·+ psfs|pi ∈ k[x1, . . . , xn] for i = 1, . . . , s}

The generating set of polynomials is also called a basis of the ideal. This basis is
finite due to the Hilbert Basis Theorem.

Algebraic variety. Computationally the notion of the ideal emerges as the necessity of
solving a system of polynomials equations defined by the generators of the ideal I,
i.e, the problem of finding the zeros of the set of equations fi = 0. The set of zeros
of the system of polynomial equations defines a variety V which formally reads

V(I) = {(z1, . . . , zn) ∈ Cn|fi(z1, . . . , zn) = 0, for all fi ∈ I}. (B.3)

Gröbner basis. The variety does not change if we make a change of basis of the ideal I
in k[x1, . . . , xn] . In particular, we can compute a Gröbner basis G with elements
gi, i = 1, . . . , r. Before defining the Gröbner bases, let us introduce some useful
definitions.

We say that a Gröbner basis generates the same ideal I, i.e.,

I = 〈f1, . . . , fn〉 = 〈g1, . . . , gr〉 . (B.4)

Then, the varieties satisfy V(f) = V(g), in other words they define the same variety.
The Gröbner basis depends on the definition of a monomial order. A monomial in the
variables x1, . . . , xn is the product xa ≡ xa11 · · ·xann for ai nonnegative integers. A
monomial order ≺ is a total (linear) order, compatible with multiplication (xa ≺ xb ⇒
xa+c ≺ xb+c), and it is a well ordering, meaning that for a nonempty collection of
monomials there is a smallest element with respect to ≺. In particular, the constant
polynomial is the smallest, i.e., 1 ≺ xa for all nonnegative integers a. We set the
ordering in the variables such that x1 � x2 � · · · � xn. There are three usual
monomial orderings:

Lexicographic. xa ≺lex x
b if the first elements ai, bi in a, b from the left, which

are different, satisfy ai < bi. In the case of two variables x1, x2, we have

1 ≺lex x2 ≺lex x
2
2 ≺lex x

3
2 ≺lex · · · ≺lex x1 ≺lex x2x1 ≺lex x

2
2x1 ≺lex . . . (B.5)

Degree lexicographic. xa ≺grlex x
b if we have
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n∑

i=1

ai <
n∑

i=1

bi, or if
n∑

i=1

ai =
n∑

i=1

bi, and xa ≺lex x
b.

Equivalently, we compare the total degree and break ties by the lexicographic
order. In the case of two variables x1, x2

1 ≺grlex x2 ≺grlex x1 ≺grlex x
2
2 ≺grlex x1x2 ≺grlex x

2
1 ≺lex x

3
2 ≺grlex x1x

2
2 ≺grlex . . .

(B.6)

Degree reverse lexicographic. xa ≺grevlex x
b if we have

∑n
i=1 ai <

∑n
i=1 bi, or

if
∑n

i=1 ai =
∑n

i=1 bi and the first elements ai, bi in a, b from the right, which
are different, satisfy ai > bi. In the case of two variables this order is the same
as the “grlex” order. However, in the case of three variables, for example we
have

x2
1x2x3 ≺grevlex x1x

3
2. (B.7)

Let us now define the Gröbner basis. Given a monomial order we have a leading
term lt(f), a leading power lp(f), and a leading coefficient lc(f) in any polynomial
f ∈ k[x1, . . . , xn]. A set of nonzero polynomials G = {g1, . . . , gr} contained in the
ideal I, is called Gröbner basis for the ideal I, if and only if for all f ∈ I such that
f 6= 0, there exists i ∈ 1, . . . , r such that lp(gi) divides lp(f) [156].

Example B.2.1. For instance, consider the ideal

I = 〈x2 + 2xy − x− 1, x2 − 8x+ y2〉

with Gröbner basis

G =
{

2xy + 7x− y2 − 1, x2 − 8x+ y2, 53x+ 10y3 − 11y2 + 2y − 39
}

(B.8)

in “grlex” order. The leading polynomials of I and G are given by

lp(x2 + 2xy − x− 1) = lp(x2 − 8x+ y2) = x2, (B.9)
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which can be divided by lp(x2 − 8x+ y2) = x2. The reduced Gröbner basis can be
computed from any generating set of I by a method introduces by Buchberger in
1965 [157]. In practice we can use a computer algebra system.

B.3 Multivariate residues and the CHY representation

The CHY formula can be written as a contour integral in many variables as was shown
by Dolan and Goddard [89]. For this reason we would like to introduce some definitions
of multivariate residues. This Section has as prerequisite Section B.2.

B.3.1 Generalities

In one variable, the residue of a holomorphic function h with an isolated singularity
z0 ∈ C is defined by [90]

resz0(h) =
1

2πi

∫

|z−z0|=δ

h(z)dz ≡ 1

2πi

∮

O

h(z)dz, (B.10)

where we integrate over a small counter-clockwise oriented circle {|z − z0| = δ} around
z0 for any sufficiently small δ. We will specialize in rational functions h(z) = g(z)/f(z),
where g and f are polynomials in z. We can use Dirac delta functions as a prescription
to write the residue of a meromorphic 1-form3 ω = g(z)/f(z)dz by defining

resf (ω) ≡
∫

dz g(z)δ(f(z)). (B.11)

This prescription is based on the property of the Dirac delta function

δ(f(x)) =
δ(x− xi)
|f ′(xi)|

, (B.12)

which is valid for an arbitrary function with a simple zero at x = xi. Thus,

∫
dz g(z)δ(f(z)) =

∫
dz g(z)

δ(z − zi)
|f ′(zi)|

=
g(zi)

|f ′(zi)|
. (B.13)

For multiple zeros of f we have the global residue, i.e., we sum over of local residues.
This sum is identified with the symbol in uppercase “Res”, thus

3The definition as a 1-form makes it invariants under local change of coordinates.
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Resf (g) =
∑

zi∈Zf

reszi
g(z)

f(z)
, (B.14)

where Zf is the set of poles Zf = {zi ∈ C : f(zi) = 0}. Let us define the property of
duality in one variable, which can be generalized to the multivariate case.

Duality. If we write h = f/q, with Zf ∩ Zq = ∅, then by the Nullstellensatz, there exists
polynomials r, s, such that 1 = rf + sq. It follows that the sum of local residues

∑

zi∈Zf

reszi
g(z)

f(z)
= Resf (gs), (B.15)

coincides with the global residue of the polynomial gs.

In many variables, we consider a meromorphic n-form ω depending on the variables

z = (z1, . . . , zn), z ∈ Cn, (B.16)

given by

ω =
g(z)

f1(z) · · · fn(z)
dz, dz = dz1 ∧ · · · ∧ dzn, (B.17)

where fi, g are holomorphic functions such that f1, . . . , fn share a single zero at z = z0.
The local Grothendieck residue is defined through the contour integral [158,159]

res{f ,z0}(g(z)) = res{z0}(ω) ≡ 1

(2πi)n

∫

Γf (δ)
ω, (B.18)

where Γf (δ) is the real n cycle Γf (δ) = {z ∈ Cn| |fi(z)| = δi}, oriented by the n-form
such that d(arg(f1)) ∧ · · · ∧ d(arg(fn)) ≥ 0, where δi are sufficiently small positive real
numbers. In analogy with the single variable case, we define the global residue as

Res(ω) ≡ Res{f}(g(z)) =
∑

zi∈Z(f)

res{zi}(ω), (B.19)

where Z(f) ⊂ Cn denotes the nonempty zero set of the polynomials f1, . . . , fn—in other
words the associated algebraic variety. We also have the duality property and the
transformation property which we reproduce.
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Transformation law. Let s1, . . . , sn ∈ C[z] have finitely common roots such that

si =
n∑

j=1

Aijfj , Aij ∈ C[z], i = 1, . . . , n. (B.20)

Then, for g ∈ C[z],

Res
(

g dz

f1 · · · fn

)
= Res

(
g det(Aij) dz
s1 · · · sn

)
. (B.21)

Duality. A polynomial g ∈ C[z] lies in the ideal I = 〈s1, . . . , sn〉 if and only if

Resf (sg) = 0, ∀si ∈ C[z]. (B.22)

B.3.2 Global residues from the Bezoutian matrix

We will summarize the algorithm by Søgaard and Zhang to compute residues based on
the scattering equations [77]. The mathematical statements and proofs can be found
in [90, 159]. For additional examples and exercises see the lectures by Zhang [160] and by
Weinzierl [38]. Recently, a Mathematica package which automatize some these methods
has been released [161].

The orderings of the Gröbner basis will be taken as “grlex” unless stated otherwise.
Consider the following problem in multivariate residue calculus. For the rational polyno-
mial N = P/Q, P,Q ∈ R such that {f1, . . . , fn, Q} have no common zeros, i.e., we want
to calculate

Res{f} (N) = Res{f}

(
P

Q

)
. (B.23)

The first step in the algorithm is to invert the polynomial Q with respect to f—for
nondegenerate residues—such that

Res{f} (N) = Res{f}
(
PQ̃
)
, (B.24)

where the inverse is denoted by Q̃. The inverse is in the ring R.

Polynomial inverse. Compute the Gröbner bases of the ideal I = 〈f1, . . . , fn, Q〉 in
some monomial order and record the converting matrix4 such that

4This algorithm depends on the extraction of this matrix which cannnot be obtained by conventional
computer algebra software like Mathematica, see Ref. [77] for an alternative algorithm
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1 = a1f1 + · · ·+ a1f1 +QQ̃, (B.25)

where a1, . . . an, Q ∈ R. The inverse is given by Q̃.

Computing the residue. The residue is obtained as the inner product

Resf (N) ≡ 〈N, 1〉 , (B.26)

in R/I. In order to compute we have to find a basis {ei} and a dual basis {∆i} of
R/I such that

[N ] =
∑

i

λiei,

1 =
∑

i

µi∆i, (B.27)

where λi, µi ∈ C. The notation [N ] means that we have to care only about a
representative of the class of numerators [N ] of N in R/I. The residue in then
computed as

〈N, 1〉 =
∑

i

λiµi. (B.28)

In particular if one of the coefficients in the dual basis is a constant ∆r, then 5

Resf (N) = 〈 N
∆r

,
∆r

∆r
〉 =

λr
∆r

, (B.29)

if not, proceed by performing the polynomial division with respect to a Gröbner
basis in some monomial order such that N(z) = q(z) + r(z), the remainder r(z) ∈ R
is the representative of [N ].

1. Find the basis. This can be achieved by computing the Gröbner basis G of
I in grlex and drop the leading terms of each element of G with respect to
“grlex”.

5This can be understood as the fact that the scattering polynomials build an H-basis [78].
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2. Find the dual basis. Let us first compute the associated G̃ by setting xi → yi.
For example, if the variables are {x, y} the associated basis G̃ could be, say in
variables {u, v}. Second, we compute the n× n Bezoutian matrix

Bij ≡
fi(y1, . . . , yj−1, zj , . . . , zn)− fi(y1, . . . , yj , zj+1, . . . , zn)

zj − yj
(B.30)

,

where fi are the members of the ideal I.

Compute the G ⊗ G and perform the polynomial reduction of detB with
respect to G⊗G and obtain the remainder.

r =
∑

i

ai(y)ei(z). (B.31)

The dual basis is obtained by the replacement yi → zi in ai(y), thus giving
∆i = ai(z).

3. Compute the residue. The residue can be calculated using Eqs.(B.27)-(B.28)
or simply using (B.29) if there is a constant term in the dual basis.

Example B.3.1. Let I = 〈x2 + 2xy − x− 1, x2 − 8x+ y2〉 and let N = 1/(1 − x).
Calculating Gröbner basis in degree lexicographic monomial order, results into

1 =
−4

27

(
x2 − 8x+ y2

)
+

(2y + 1)

27

(
x2 + 2xy − x− 1

)

+
(1− x)

27

(
2xy − 3x+ 4y2 + 2y + 28

)
, (B.32)

therefore the polynomial inverse of (1− x) can be obtained from Eq.(B.25), i.e.,

Q̃ = (2xy − 3x+ 4y2 + 2y + 28)/27. (B.33)

For this ideal, the Gröbner basis is given by

G =
{

2xy + 7x− y2 − 1, x2 − 8x+ y2, 53x+ 10y3 − 11y2 + 2y − 39
}
. (B.34)

Then the basis can be read off from this equation

ei =
{
y2, x, y, 1

}
. (B.35)
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We proceed with the computation of the dual basis. We need the Bezoutian matrix

B =

(
u+ x+ 2y − 1 2u

u+ x− 8 v + y

)
, (B.36)

and

G⊗ G̃ ={2xy + 7x− y2 − 1, x2 − 8x+ y2, 53x+ 10y3 − 11y2 + 2y − 39,

2uv + 7u− v2 − 1, u2 − 8u+ v2, 53u+ 10v3 − 11v2 + 2v − 39}, (B.37)

which produces the remainder

r =− 2ux+ uy − 7u

2
+

5v2

2
+ vx+ 2vy − v − 7x

2
+

5y2

2
− y + 1

=
5

2
(y2) +

(
1

2
(−4u+ 2v − 7)

)
x+

(
1

2
(2u+ 4v − 2)

)
y +

1

2

(
−7u+ 5v2 − 2v + 2

)
.

(B.38)

Hence the dual basis reads

{∆i} =

{
5

2
,
1

2
(−4x+ 2y − 7),

1

2
(2x+ 4y − 2),

1

2

(
−7x+ 5y2 − 2y + 2

)}
. (B.39)

Putting all together, we have

Res{f}

(
1

(1− x)

)
= 〈2xy

27
− x

9
+

4y2

27
+

2y

27
+

28

27
, 1〉

= 〈−10x

27
+

5y2

27
+

2y

27
+

29

27
, 1〉

= 〈 5

27
e1 −

10

27
e2 +

2

27
e3 +

29

27
,
2

5
∆1〉

=
2

27
. (B.40)

B.3.3 Six-point example for the scalar bi-adjoint

In this section, we give a n = 6 example using the Bezoutian matrix method. Consider the
double ordered amplitudem(123456|153246). The amplitude from the CHY representation
reads
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m(123456|153246) =
i

(2πi)n−3

∮

O
dΩ̃CHY

6∏

i=1

(zi − zi+1)2C(123456, z)C(153246, z)

∣∣∣∣∣z1→∞
z2=1
z4=0

(B.41)

with

dΩ̃CHY =
dz3dz4dz5 z3 (1− z4) z4 (1− z5) (z3 − z5)

h1h2h3 (1− z3) z5 (z3 − z4) (z4 − z5)
. (B.42)

Taking the limit for z1, we obtain

m(123456|153246) =
i

(2πi)n−3

∮

O

dz3dz4dz5 z3 (1− z4) z4 (1− z5) (z3 − z5)

h1h2h3 (1− z3) z5 (z3 − z4) (z4 − z5)

×
(
−z5 (z3 − z4) (z4 − z5)

(z4 − 1) z4 (z3 − z5)

)
. (B.43)

After some simplifications the amplitude—in terms of the inner product (B.26)—becomes

m(123456|153246) = i 〈z3 (z5 − 1)

(1− z3)
, 1〉 . (B.44)

First, we will calculate the dual basis and determine if it contains a constant term, thus
simplifying the computation due to Eq. (B.29). The basis can be easily calculated giving

{ei} =
{
z3

5 , z4z5, z
2
5 , z4, z5, 1

}
. (B.45)

For the dual basis we find the term

∆1 = −s15
2s135s145s1345

s13s145 − s14s135
. (B.46)

The next step is to determine the inverse of Q = (1− z3) with respect to I = 〈h1, h2, h3〉.
Using the Gröbner basis method we obtain

Q̃ = A+Bz4 + Cz5 +Dz3z5 + Ez4z5 + Fz2
5 +Gz3z

2
5 +Hz3

5 , (B.47)

which unfortunately generates huge coefficients of the Mandelstam variables. The next
step is to compute the remainder of (z3 (z5 − 1)) Q̃ with respect to C[z3, z4, z5]/ 〈h1, h2, h3〉
leading to
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[(z3 (z5 − 1)) Q̃] = λ1z
3
5 + . . . , (B.48)

where again the coefficients of this decomposition are huge rational functions of the
Mandelstam variables. Since we have a constant term in the dual basis, we can use
Eq.(B.29) and our result is simply the coefficient of z3

5 in the last equation. Therefore

m(123456|153246) = −i
(s13s145 − s14s135)λ1

s15
2s135s145s1345

, (B.49)

which we can check numerically. It reproduces the desired result, i.e.,

m(123456|153246) = i
1

s23s234s2345
. (B.50)

In this example we see that the bottleneck of this method is the computation of the
inverse with respect to R/I. This is tied to the computation of the Gröbner basis, which is
computationally time-consuming. For these reasons, a more convenient method would be
the use of the H-basis which is a less refined version of the Gröbner basis. In combination
with the transformation law, it can be used to simplify calculations.



Appendix C
Relations and bases for gauge
amplitudes

In this Appendix, we review the construction of bases for QCD primitive amplitudes at
tree-level. First we review notation. We consider the special case of pure Yang-Mills and
proceed with QCD.

C.1 Primitive QCD amplitudes at tree level

Let us consider a primitive amplitude with n external particles containing ng gluons and
nq quark-antiquark pairs [162], i.e., we have

n = ng + 2nq. (C.1)

Without loss of generality we assume that the quarks have different flavors. The quarks
may be massless or massive. We label the quarks by q1, q2, . . . , qnq , the corresponding
anti-quarks by q̄1, q̄2, . . . , q̄nq , and the gluons by g1, g2, . . . , gng . Then, the alphabet reads

A = {q1, q2, . . . , qnq , q̄1, q̄2, . . . , q̄nq , g1, g2, . . . , gn}. (C.2)

Sequences of letters are called words and they form an algebra. We denote these words
by w = l1l2 . . . ln and by wT = lnln−1 . . . l1 the reversed words. The set of words form an
algebra over a number field k, where the unit element corresponds to the empty word e.
The product operation corresponds to the shuffle product defined by

161
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l1l2 . . . lk � lk+1 . . . lr =
∑

shuffles σ

lσ(1)lσ(2) . . . lσ(r), (C.3)

where the sum runs over all permutations σ that preserve the relative order of l1, l2, . . . , lk
and lk+1 . . . lr. The product is commutative and associative. Let w1, w2 be two words,
then we have:

e� w1 = w1, (C.4)

w1 � w2 = w2 � w1, (C.5)

(w1 � w2)� w3 = (w1 � w2)� w3. (C.6)

The most general set of words with n letters, is the set such that each letter occurs exactly
once. This set is given by

W0 = {l1, l2, . . . , ln|li ∈ A, li 6= lj , for i 6= j}, (C.7)

which contains n! elements. For w ∈W0, we write

An(w) or An(l1l2 . . . ln) (C.8)

to encode the information about the external ordering. We will take An as a linear
operator in the space of words, i.e., for λ1, λ2 ∈ k and w1, w2 ∈W0. we have

An(λ1w1 + λ2w2) = λ1An(w1) + λ2An(w2), (C.9)

which is a convenient way to think when we consider relations among primitive amplitudes.

C.1.1 Special case: pure Yang-Mills

As we showed in Chapter 2.4.4, the alphabet for n point amplitude in pure Yang-Mills is
given by

Agluons = {g1, g2, . . . , gn} = {1, . . . , n}, (C.10)
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formed by letters li that we associate to a given gluon. In Section 2.4.4.1, we have seen
that primitive amplitudes in pure Yang-Mills are cyclic invariant and satisfy KK and
BCJ relations. Therefore, starting with the set W0—all words where each letter occurs
once—the associated bases after imposing the relations are given by

W1 = {l1l2 . . . ln ∈W0|l1 = 1}, (C.11)

W2 = {l1l2 . . . ln ∈W0|l1 = 1, ln = n}, (C.12)

B = {l1l2 . . . ln ∈W0|l1 = 1, ln−1 = n− 1, ln = n}, (C.13)

where the number of elements in the bases is (n− 1)!, (n− 2)!, and (n− 3)!, respectively.
We refer to W2 as the KK basis and to B as the BCJ basis.

C.2 QCD

In general, the alphabet consists of quark and gluon labels as in Eq.(C.2). The basis has
to take into account the especial case where all particle are gluons. Therefore, Eqs.(C.11)–
(C.13) will be part of the definition of the general basis. On the other hand, we have
the case where all particles are quarks and therefore we have to set a new basis, which
also takes into account this situation. Therefore, in general the basis has specific legs
fixed. The particle content (the letter) in each leg corresponds to either a quark or a
gluon depending on the total number of quarks.

C.2.1 Relations for QCD amplitudes

Primitive QCD amplitudes are cyclic invariant, i.e.,

An(l1l2 . . . ln) = An(l2 . . . lnl1), (C.14)

and satisfy the KK relations introduced in Eq.(2.150). This can be understood from the
fact that primitive QCD amplitudes can be expanded in terms of diagrams with only
antisymmetric cubic vertices [11]. For the alphabet (C.2), let

w1 = lα1 lα2 . . . lαj , w1 = lβ1 lβ2 . . . lβn−2−j , (C.15)

be two sub-words such that

{l1} ∪ {w1} ∪ {w2} ∪ {ln} = {l1l2 . . . ln}. (C.16)
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Then the KK relations for QCD amplitudes mimic the pure gluon case

An(l1w1lnw2) = (−1)n−2−jAn(l1(w1 � wT2 )ln). (C.17)

Primitive QCD amplitudes with (nq > 1) vanish when two or more fermions lines cross,
in other words non-planar configurations of the amplitudes vanish. The reason is that
crossed fermion lines can only be drawn in planar way with flavor-changing currents,
which are not allowed in QCD and therefore the amplitudes vanish. Thus, we have

An(. . . qi . . . qj . . . q̄i . . . q̄j . . . ) = An(. . . qi . . . q̄j . . . q̄i . . . qj . . . ) = 0. (C.18)

For amplitudes with at least one gluon there are further relations. Assuming that particle
2 is a gluon, i.e.,

l2 = gα, α ∈ {1, . . . , ng}. (C.19)

Then, the fundamental Bern-Carrasco-Johansson relations for QCD mimic the pure gluon
case, i.e.,

n−1∑

i=2




n∑

j=i+1

2p2 · pj


An(l1l3 . . . li l2 li+1 . . . ln−1 ln) = 0. (C.20)

These relations were conjectured for QCD in Ref. [103] and then we proved them for the
general case in Ref. [109]. A proof based on a symmetry of the amplitudes was found for
pure Yang-Mills and then for QCD in Ref. [163] and Ref. [164], respectively.

C.2.2 Orientation of fermion lines

Non-crossed fermion lines can have an arbitrary orientation. For example, consider the 6

point amplitude with 3 fermion lines and the alphabet

A6 = {q1, q2, q3, q̄3, q̄2, q̄1} = {1, 2, 3, 4, 5, 6}. (C.21)

Consider the fermion line configuration in Fig.C.1, where we have drawn the fermion lines
in a disk. The quark line 3-4 can have two different orientations .
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a) b)

Figure C.1: Two orientation of the fermion line 3-4.

For an arbitrary configuration of quark lines let us define the standard orientation as
the orientation where for each quark flavor, each quark appears before its corresponding
anti-quark when reading clockwise starting at the quark 1. Let us consider for simplicity
the alphabet

A = {1, 2, . . . , 2nq}, (C.22)

which describes amplitudes with only quarks. Cyclic invariance and the KK relations
allow us to fix two letters, which we choose to be the first and last, i.e., l1 = q1, ln = q̄1.
In the example of Fig.C.1, case b) has already the standard orientation.

In the general case, we have the following algorithm [110,111]:

Assigning levels.

(i) The quark line q1, q̄1 is already in the standard orientation. Assign to this
fermion line the level 0.

(ii) Assign the level 1 to quark lines not separated by another fermion line from
the fermion line of level 0.

(iii) Iterate this procedure and assign the level k to all fermion lines, which are not
separated by another fermion line of level (k − 1), and which have not been
assigned any level before.

Orienting.

(i) Bring all fermion lines of level 1 into the standard orientation

(ii) Iterate for the level 2, 3, etc.
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(iii) At level k: Consider the amplitude

An(xk−1qixkq̄jwk+1qjykq̄iyk−1), (C.23)

where xk−1, xk, wk+1, yk, and yk−1 are sub-words. We assume that the fermion
line qi-q̄i is of level (k−1) and that all fermion lines contained in the sub-words
xk−1 and yk−1 have already been oriented. The sub-words xk and yk may
contain further fermion lines of level k and higher level. The sub-word wk+1

may contain fermion lines of level (k + 1) and higher (See Fig.C.2).

1 n

qj

y
k

q̄j

qi q̄i

x k

wk+1

li1 lj1

ljslir

Figure C.2: Quark line graph for the orientation of the fermion line q̄j-qj . Quark lines of
level (k − 1) bounded by the quark line qi-q̄i are already oriented. Sub-words o level k may
contain fermion lines of level k or higher.

(iv) Orient the fermion line qi-q̄i, respecting the orientations of all fermion lines
with level ≤ k. Let us write

xk = li1 li2 . . . lir , yk = lj1 lj2 . . . ljs . (C.24)

Then
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An(xk−1qixkq̄jwk+1qjykq̄iyk−1) =

(−1)|wk+1|+1
r∑

a=0

s∑

b=0

An(xk−1qili1 . . . liaqjw
′
k+1q̄jljb+1

. . . ljs q̄iyk−1),

(C.25)

with

w′k+1 = (lia . . . lir)� wTk+1 � (lj1 . . . ljb) (C.26)

Comments:

• All fermions lines of w′k+1 are of level (k + 1) or higher.

• Some amplitudes in Eq.(C.25) may be zero due to the crossed fermion lines. This
is either the case if a quark-anti-quark pair from xk is split between li1 . . . lia and
w′k+1, or if a quark-anti-quark pair from yk is split between w′k+1 and ljb+1

. . . ljs .

• The inclusion of gluons does not modify the general structure of the orientation,
and is already considered in Eq.(C.25).

Eq.(C.25) is referred to the “fermion orientation relations”.

Example C.2.1. Consider the alphabet

A7 = {q1, q2, q3, g1, q̄3, q̄2, q̄1} = {1, 2, 3, 4, 5, 6, 7}. (C.27)

Suppose we have the non-standard oriented amplitude A7(1543267), which can be drawn
in a disk as shown in Fig.(C.3). The quark line 1− 7 is already oriented and has level 0.
At level 1, the quark line 3− 5 has the wrong orientation and the line 2− 6 is already
oriented. Therefore, we need only one iteration. For this amplitude we have x0 = y0 = e

and

x1 = e, w2 = 4, y1 = 26, (C.28)

which means that r = 0, s = 2. Therefore, we have
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1 7

3

6

2

5

4

Figure C.3: Disk diagram of an amplitude with non-standard orientation in the line q3-q̄3.

A7(1543267) =

2∑

b=0

A7(13w′2,b5ljb+1 . . . ljs7)

=A7(13w′2,15267) +A7(13w′2,2567) (C.29)

where b labels the two shuffles. In the first term w′2,1 = e� 4� e = 4 and in the second
w′2,2 = e� 4� 2 = 24 + 42. Therefore,

A7(1543267) =A7(1345267) +A7(1342567) +A7(1324567)

=A7(1345267) +A7(1324567). (C.30)

In Fig.C.4, we have drawn the orientation diagram of each term in Eq.(C.30).

5 2

1 7

63

4

1 7

63

4

1 7

63

4
2 55 2

Figure C.4: Resulting amplitudes with the correct orientation. The second diagram
vanishes due to the no-crossed fermion lines relations.

C.2.3 The QCD basis

We are ready to construct the basis of amplitudes based on the relations among primitive
QCD amplitudes. These relations are



C.2. QCD 169

1. Cyclic invariance (Eq.(C.14)).

2. KK relations. (Eq.(C.17)).

3. No-crossed fermion lines. (Eq.(C.18)).

4. Orientation relations. (Eq.(C.25)).

5. BCJ relations. (Eq.(C.20)).

The first two relations are easily handled by fixing two letters in the basis and they
must include the pure Yang-Mills case. Therefore, the KK basis reads

W2 =




{l1l2 . . . ln ∈W0|l1 = g1, ln = gn}, nq = 0,

{l1l2 . . . ln ∈W0|l1 = q1, ln = q̄1}, nq ≥ 1.
(C.31)

Next we have to construct a set of words such that the crossed-fermion lines are not
considered. This is done by associating quark lines of flavor i, with opening (i and closing
brackets )i. There are two possible orientations for each fermion line, either

qi → (i, q̄i →)i, (C.32)

or

q̄i → (i, qi →)i. (C.33)

We define the standard orientation of fermions lines by requiring that every quark
corresponds to an opening braket and every anti-quark corresponds to a closing bracket,
i.e., the standard orientation is given by Eq.(C.32). In agreement with the discussion of
orientation relations in the last section.

Consider the alphabet A in Eq.(C.22). A generalized Dyck word is any word in this
alphabet with properly matched brackets. Defining the projector P , such that

P (qi) = (i, P (gi) = e, P (q̄i) =)i, (C.34)

we set

Dycknq = {w ∈W0|P (w) is a generalized Dyck word}. (C.35)
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Words which do are not oriented according to Eq.(C.32) can be brought to the standard
orientation with the aid of Eq.(C.25). Therefore, the basis obtained after imposing the
no-crossed relations and the orientation relations reads

W3 =




{l1l2 . . . ln ∈W0|l1 = g1, ln = gn}, nq ≤ 1,{
l1l2 . . . ln ∈W0|l1 = q1, ln = q̄1, l1l2 . . . ln ∈ Dycknq

}
, nq ≥ 2.

(C.36)

Finally, imposing the fundamental BCJ relations, we can fix the letter ln−1 to be a gluon
whenever we have up to 1 quark pair. Otherwise, we choose the letter ln−1 to be one of
the remaining anti-quarks by removing any gluon from position (n− 1). Therefore, the
BCJ basis reads

B =





{l1l2 . . . ln ∈W0|l1 = g1, ln−1 = gn−1, ln = gn}, nq = 0,

{l1l2 . . . ln ∈W0|l1 = q1, ln−1 = gn−2, ln = q̄1}, nq = 1,

{l1l2 . . . ln ∈ Dycknq |l1 = q1, ln−1 ∈ {q̄2, . . . , q̄nq}, ln = q̄1}, nq ≥ 2.

(C.37)

C.2.4 The matrix F

In this section of the appendix we define the entries of the matrix Fww′ occurring in
Eq.(4.93). The flavor information can be neglected and therefore we consider the alphabet

A = {1, 2, . . . , n}. (C.38)

This alphabet coincides with the pure Yang-Mills case, but it contains massive particles.
Making the formal substitution Agluons → A in Eqs.(C.11)-(C.13), we can use the bases
W1, W2, and B. For a sub-word w = l1l2 . . . lk, we set

S(w) =
∑

σ∈Sk

lσ(1)lσ(2) . . . lσ(k). (C.39)

Let w1 = l1l2 . . . lj and w2 = lj+1lj+2 . . . ln−3 be two sub-words, such that

w = 1w1(n− 1)w2n

is a word in W2. For convenience, we set ln−2 = n− 1. The standard cyclic factors satisfy
the BCJ relations and we have
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C(w, z(j)) = Fww′C(w′, z(j)). (C.40)

The sum runs over all words occurring in

1(w1 � S(w2))(n− 1)n. (C.41)

For a given w we define Fww′ = 0 whenever w′ does not appear in the sum of Eq.(C.40).
Otherwise, the coefficients are given for w′ = 1σ1σ2 . . . σn−3(n− 1)n = 1σ(n− 1)n by the
elements [11]

Fww′ =

n−3∏

k=j+1

F(1σ(n− 1)|lk)
ŝn,lk,...,ln−3

, (C.42)

where for ρ = 1σ(n− 1) the function F(ρ|lk) is given by

F(ρ|lk) = (C.43)




tlk−1∑
r=1
G(lk, ρr) if tlk < tlk+1

−
n−1∑

r=tlk+1
G(lk, ρr) if tlk > tlk+1





+





ŝn,lk,...,ln−3 if tlk−1
< tlk < tlk+1

−ŝn,lk,...,ln−3 if tlk−1
> tlk > tlk+1

0 else




.

ta denotes the position of leg a in the string ρ, except for tln−2 and tlj , which are always
defined to be

tln−2 = tln−4 , tlj = n. (C.44)

For j = n− 4 this implies

tln−2 = tln−4 = n. (C.45)

The function G is given by
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G(lk, ρr) =





2plkpρr + 2∆lkρr if ρr = 1, (n− 1)

2plkpρr + 2∆lkρr if ρr = lt, and t < k

0 else




. (C.46)

We used the notation

ŝα1,...,αk =
∑

i<j

(2pαipαj + 2∆αiαj ). (C.47)

This formula for Fww′ generalizes the matrix Fww′ appearing in the general BCJ relations
for QCD [11,103], since in this form it holds for massive particles as well. The general
form of the BCJ relations reads

An(w) =
∑

w′

Fww′An(w′), (C.48)

where w = 1w1(n− 1)w2n ∈W2 and where any type of particle may occurs in the sub-
words w1 and w2. The general BCJ relations of Eq.(C.48) follow from the fundamental
BCJ relations, while the latter arise from the behavior at infinity of the BCFW-deformed
amplitudes [44].

Example C.2.2. Let us see how to use Eq.(C.48) in practice. Consider the 6-point
amplitude A6(132546), then w1 = 32 and w2 = 4. The sum runs over

1(32� S(4))56 = 132456 + 134256 + 143256, (C.49)

and the decomposition (C.48) reads

A6(132546) =F132546,132456A6(132456) + F132546,134256A6(134256) (C.50)

+ F132546,143256A6(143256)

=− (s45 + s46)A6(132456)

s46
+
s14A6(143256)

s46
+

(s14 + s34)A6(134256)

s46
.

(C.51)

Notice that for the trivial case w2 = e, the shuffle product has only one term and
necessarily A6(1w56) = A6(1w56), therefore these coefficients are set to one. Suppose
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we have the amplitudes A6(123456), A6(125346) and A6(134256), hence the amplitude
matrix A reads

A =




A6(123456)

A6(125346)

A6(132546)

A6(134256)



. (C.52)

We have already calculated one of the rows of the matrix F and two of their coefficients
are one. The last and second row can be easily calculated giving

F = (C.53)

−




0 0 −1 0 0 0
s13s45
s46s346

s13(s24+s45)
s46s346

(s13+s23)s45
s46s346

(s14+s24)(s35s346)
s46s346

s14(s23+s35+s346)
s46s346

s14(s35+s346)
s46s346

s45+s46
s46

− s14+s34
s46

0 0 − s14
s46

0

0 −1 0 0 0 0




with the amplitude matrix in the RHS of (C.48) given by

A′ =




A6(132456)

A6(134256)

A6(123456)

A6(124356)

A6(143256)

A6(142356)




. (C.54)

Notice that the order in the rows and columns is arbitrary. Once obtained, can write
this matrix showing an upper triangle block structure. Actually, this observation may
be used as a sufficient condition for the proof of the row rank of the matrix F, which we
conjectured in Section 4.2.4. We use this to give evidence of the full row rank of F, up to
n ≤ 10 [102].
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