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Die Bestimmung empirischer Potentiale für amorphes
Siliziumdioxid

Ein grundlegendes Verständnis von amorphem Siliziumdioxid (SiO2) ist von großer
Bedeutung für die Geowissenschaften und die Mineralogie, als auch für Anwendungen in
der Glasindustrie. Von grundlegendem Interesse ist SiO2 auch, da es das Paradebeispiel
eines Glasbildners mit einer tetraedrischen Netzwerkstruktur ist. Viele Anstrengun-
gen sind in der Vergangenheit unternommen worden, um die mikroskopischen Eigen-
schaften von SiO2 mit Hilfe von klassischen Molekulardynamik(MD)-Simulationen zu
verstehen. In MD-Simulationen werden die interatomaren Wechselwirkungen mit effek-
tiven Potentialen modelliert, ohne dabei explizit die elektronischen Freiheitsgrade zu
berücksichtigen. In dieser Arbeit wird mittels einer Ab-Initio-Simulationsmethode, der
sog. Car-Parrinello-Molekulardynamik (CPMD) [Phys. Rev. Lett. 55, 2471 (1985)],
ein effektives Potentialmodell für SiO2 parametrisiert. Das resultierende neue Potential
wird mit dem sog. BKS-Potential [Phys. Rev. Lett. 64, 1955 (1990)] verglichen, das
in den letzten 10 Jahren in vielen Simulationsstudien zu SiO2 verwendet wurde.

Als erster Schritt werden CPMD-Simulationen von flüssigem SiO2 bei 3600K
durchgeführt, um strukturelle Eigenschaften aus der CPMD mit denen resultierend
aus dem BKS-Modell zu vergleichen. Das BKS-Modell führt zu einer etwas kleineren
Si-O-Bindungslänge und zu einer etwas größeren Si-Si-Bindungslänge. Außerdem wer-
den die Winkelverteilungsfunktionen nicht gut durch das BKS-Modell beschrieben. So
finden wir für das BKS-Modell einen mittleren SiOSi-Winkel von 147◦, während die
CPMD-Simulation einen SiOSi-Winkel von 135◦ liefert.

Unser Ziel ist es, ein klassisches Born-Mayer/Coulomb-Paarpotential mit den
CPMD-Rechnungen zu parametrisieren. Zu diesem Zweck verwenden wir die Kraftan-
passungsmethode von Ercolessi und Adams [Europhys. Lett. 26, 583 (1994)]. Die
CPMD-Konfigurationen und die zugehörigen interatomaren Kräfte werden für die Fit-
prozedur verwendet. MD-Simulationen mit dem resultierenden Potentialmodell führen
zu einer Struktur, die sich stärker als im Fall des BKS-Modells von der aus der CPMD-
Simulation gewonnenen Struktur unterscheidet.

Deshalb wird ein anderes Fitkriterium auf Grundlage der Paarkorrelationsfunk-
tionen aus der CPMD verwendet. Mit diesem Ansatz erhalten wir eine bessere
Übereinstimmung mit den CPMD-Resultaten als mit dem BKS-Modell. Dies gilt in
Bezug auf Paarkorrelationsfunktionen, Winkelverteilungen, Strukturfaktoren, Dichte
und Druck, sowie die phononische Zustandsdichte. Bei tiefen Temperaturen sind
die Selbstdiffusionskonstanten etwa ein Faktor 3 größer als die mit dem BKS-Modell
berechneten, allerdings zeigen sie eine ähnliche Temperaturabhängigkeit.

Um die Transferabilität des neuen Potentials zu testen, werden auch Rechnun-
gen an kristallinen Systemen durchgeführt. Die Gleichgewichtsgeometrie als auch
die elastischen Konstanten von α-Quarz bei 0K werden mit dem neuen Potential
sehr gut beschrieben, obwohl bei seiner Parametrisierung keinerlei Informationen über
kristalline Phasen eingegangen sind.

Wir haben ein neues Paarpotentialpotential für SiO2 parametrisiert, das eine
Verbesserung gegenüber bisherigen Paarpotentialmodellen darstellt. Die Fitmethod-
ologie, die in dieser Arbeit entwickelt wurde, kann auch auf andere netzwerkbildende
Systeme angewandt werden, so z.B. Mischungen von SiO2 mit anderen Oxiden (Al2O3,
K2O, Na2O, etc.).
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Development of empirical potentials for amorphous silica

Amorphous silica (SiO2) is of great importance in geoscience and mineralogy as well
as a raw material in glass industry. Its structure is characterized as a disordered con-
tinuous network of SiO4 tetrahedra. Many efforts have been undertaken to understand
the microscopic properties of silica by classical molecular dynamics (MD) simulations.
In this method the interatomic interactions are modeled by an effective potential that
does not take explicitely into account the electronic degrees of freedom. In this work,
we propose a new methodology to parameterize such a potential for silica using ab

initio simulations, namely Car-Parrinello (CP) method [Phys. Rev. Lett. 55, 2471
(1985)]. The new potential proposed is compared to the BKS potential [Phys. Rev.
Lett. 64, 1955 (1990)] that is considered as the benchmark potential for silica.

First, CP simulations have been performed on a liquid silica sample at 3600 K.
The structural features so obtained have been compared to the ones predicted by the
classical BKS potential. Regarding the bond lengths the BKS tends to underestimate
the Si-O bond whereas the Si-Si bond is overestimated. The inter-tetrahedral angular
distribution functions are also not well described by the BKS potential. The corre-

sponding mean value of the ŜiOSi angle is found to be ≃ 147◦, while the CP yields to

a ŜiOSi angle centered around 135◦.
Our aim is to fit a classical Born-Mayer/Coulomb pair potential using ab initio

calculations. To this end, we use the force-matching method proposed by Ercolessi
and Adams [Europhys. Lett. 26, 583 (1994)]. The CP configurations and their corre-
sponding interatomic forces have been considered for a least square fitting procedure.
The classical MD simulations with the resulting potential have lead to a structure that
is very different from the CP one.

Therefore, a different fitting criterion based on the CP partial pair correlation
functions was applied. Using this approach the resulting potential shows a better
agreement with the CP data than the BKS ones: pair correlation functions, angular
distribution functions, structure factors, density of states and pressure/density were
improved. At low temperature, the diffusion coefficients appear to be three times
higher than those predicted by the BKS model, however showing a similar temperature
dependence.

Calculations have also been carried out on crystalline samples in order to check
the transferability of the potential. The equilibrium geometry as well as the elastic
constants of α-quartz at 0 K are well described by our new potential although the
crystalline phases have not been considered for the parameterization.

We have developed a new potential for silica which represents an improvement over
the pair potentials class proposed so far. Furthermore, the fitting methodology that
has been developed in this work can be applied to other network forming systems such
as germania as well as mixtures of SiO2 with other oxides (e.g. Al2O3, K2O, Na2O).
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Chapter 1

Introduction

Silica (SiO2) is one of the most abundant oxides on the earth’s surface. About 95%
of the minerals in the earth’s crust are silicates, with silica being the basis oxide.
Silica is also present in our everyday’s life from pane windows to optic fibers and
semiconductors. For its abundance and its technological interest silica has been and is
still widely and intensively studied.

From a physicochemical point of view, it is interesting to study silica as it has
an extremely rich phase diagram, see Fig. 1.1. Moreover silica can undergo a glass
transition at a temperature Tg, which occurs when the liquid phase is cooled using a
sufficiently rapid quenching rate. This temperature Tg is defined as the temperature
for which the viscosity of the system is equal to 1013 Poise1.

It is also worthwhile to study silica as it may be considered as a prototype for glass
formers exhibiting a network structure. In the low pressure domain, all the crystalline
allotropic forms as well as liquid and vitreous silica are composed of corner sharing SiO4

tetrahedra, see Fig. (1.2). Moreover the Si-O bond is considered being half covalent
and half ionic according to Pauling [114, 115] which accounts for the stiffness of the
network. For these reasons there has been intense interest in studying the structural
and dynamical properties of the liquid and the glass.

From a geological point of view the abundance of silica in the earth’s mantle im-
plies that its response to extreme conditions of temperature and pressure has a great
importance for constructing valuable geophysical models of the earth’s interior. Unfor-
tunately investigating experimentally silica at extreme conditions is hard to achieve.
Because of its high melting temperature (≃ 2000K) and of its tendency to evaporate
above T = 2143K at ambient pressure, silica can hardly be investigated in laborato-
ries [104, 132]. Fortunately, the general framework of thermodynamics, classical and
quantum mechanics combined to the increasing power of computers allow one to carry
out realistic and predictive simulations for different kinds of materials and for different
length/time scales.

Quantum mechanics is the most relevant approach for understanding matter at the
small length scale as it gives full access to the microscopic structural details. Nev-
ertheless, because of the many-body problem it is not possible to solve directly the

11013 Poise= 1012 Pa.s
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1. Introduction

Figure 1.1: Phase diagram of silica [83].

Figure 1.2: Sketch of a SiO4 tetrahedra, the silicon atom is represented in yellow, the
surrounding oxygen atoms are represented in red.
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Schrödinger equation that describes the space- and time-dependence of quantum me-
chanical systems. Approximations as well as numerical algorithms have been proposed
to circumvent the many-body problems. However even the efficient Density Functional
Theory (DFT) method [72, 84] which describes the electrons of a system at the quan-
tum level with a minimum of calculation coupled to the efficient Car-Parrinello method
[25] used for describing the time evolution of the wavefunction are too complex for the
studies of systems containing more than 200 atoms and for intermediate and long time
scales (t > 30 ps 2).

The quantum mechanics can be related to the classical one through the Ehrenfest’s
theorem [45]. Microscopic systems can be accurately described by means of classical
mechanics, provided that the length scale of the particles considered are compatible
with the typical length scale of the system (bond length, volume per particle, etc...).
Depending on their spatial extent, called the de Broglie wavelength3 [166] λT , the
atoms can be described using either the quantum or the classical equations of motion.
This length is the typical distance over which the precise location of a particle remains
uncertain due to Heisenberg’s principle. When λT is small compared to any relevant
length scale of the system (bond length), the quantum nature of fluctuations can be
ignored [29]. For silicon and oxygen atoms at 300K the de Broglie wavelengths are
equal to 0.19Å and 0.25Å, respectively whereas the Si-O bond length in silica is equal
to 1.6Å. According to these statements the framework of classical mechanics can be
considered valid for describing SiO2 at the atomic level. A classical mechanics approach
requires the definition of a potential energy function, which describes the interactions
between the particles. These potentials are also called force fields by chemists and
biologists.

Constructing such potential involves two steps. Firstly an analytical form has to
be assumed for the potential which depends explicitely on the degrees of freedom of
the system under consideration (particle’s positions, dipoles, angles, dihedral angles,
etc...). Secondly one has to propose an actual parameterization for the functions that
constitute the analytical form previously chosen. These potentials can be classified
in two main classes according to the type of data retained for their parameterization.
Some researchers have parameterized their potentials considering experimental data.
On the contrary, some other people have fitted potentials using only first-principle

data.
In this work we aim to propose a new and simple effective potential for describing

liquid silica. The new potential should satisfy the following conditions:

• The potential should have a simple analytical form so as to allow the studies
of large systems (> 10000 particles ) for time scales of the order of 1 − 100
nanoseconds4.

21 picosecond = 10−12 second
3According to the Boltzmann distribution p =

√
2πmkBT where T is the temperature, m is the

mass of the particle, kB is the Boltzmann constant and p is the mean momentum of the particle. The
wavelength of a particle is given by the de Broglie relation λT = h

p . Consequently the wavelength of

a particle can be defined as a function of the temperature λT = h√
2πmkBT

.
41 nanosecond = 10−9 second.
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1. Introduction

• The force-field should be parameterized using ab initio data following the force-
matching procedure of Ercolessi and Adams [46] in order to have a good descrip-
tion of the microscopic interactions.

• We should provide a general methodology for deriving effective potentials from
Car-Parrinello simulations. This methodology should be flexible enough to in-
clude the contribution of other species to silica into the potential. These species
can be network modifiers like potassium, or sodium ions that enter generally in
the composition of industrial glasses.

Before describing this methodology let us briefly recall the main advances made in
this topic during the last thirty years. The first effective potential for silica has been
proposed in 1976 in the pioneering work by Woodcock et al. [160]. This first potential
is a pair potential for the liquid phase having a Born-Mayer-Huggins form:

VBM(rij) =
qiqj
rij

+ Aij exp (−bijrij) −
cij
r6
ij

, (1.1)

where rij stands for the interatomic distance between atoms i and j, while the param-
eters qi, qj , Aij, bij and cij were chosen with “little expectation of success” according
to Woodcock et al. [160]. The silicon and oxygen charges in silica were considered to
be similar to their ionic charges in contradiction with the well known semi-ionic nature
of the silicon and oxygen atoms in silica [114, 115]. The typical atomic radius (∝ b−1

ij )
for the silicon and oxygen have been set arbitrarily equal to the ones of beryllium and
fluorine respectively. Nevertheless this first attempt gave results which were qualita-
tively in good agreement with recent simulations. The parameters of this potential
have been re-used for a different ansatz by Soules [136]. Interactions with some ad-
ditional ions have been included in this new potential. The parameterization of this
model is still debatable, as no methodological approach has been proposed for fitting
the extra parameters. Thereafter this potential has also been modified by Feuston
et al. [50] by including some angular terms [138], the parameterization was still con-
troversial as the angular parameters were chosen to favor a perfect SiO4 tetrahedral
geometry. Later, another group [130] proposed an empirical potential suited for the
study of α-quartz (see Fig. 1.3). This potential was fitted so as to reproduce as close
as possible the experimental data such as structural features and dielectric and elastic
properties for quartz. The fittings were now carried out using least square procedures
requiring minimization algorithms. Unfortunately this potential was solely designed

for the crystalline structure as the ÔSiO angles of the SiO4 tetrahedra were enforced to
stay close to their ideal values (109◦ 28”). Nevertheless, this potential gives predictive
results for α-quartz. Another potential has also been proposed for perovskite (MgSiO3)
[100, 101] using the same fitting methodology.

Some promising steps have been made in the works of Lasaga [88] and Tsuneyuki
[149]. This time the Born-Mayer parameters are fitted with a view to reproducing
first-principles descriptions rather than experimental data. The quantum systems un-
der consideration were made of single molecules of orthosilicic acid (Si(OH)4) and or-
thosilicate ions (SiO−

4 ) described using ab initio simulations. The structure of α-quartz

4



and β-cristobalite were found in fairly good agreement [88, 149] with the experimental
results. The Tsuneyuki and Lasaga potentials were promising considering the nature
of the system used for their fits. The Tsuneyuki potential (also called TTAM poten-
tial) has been also used by Chelikowsky and coworkers [30], who have included to the
TTAM potential the potential ansatz of Lasaga and Gibbs [88] for the description of
the angular dependent terms. The angular dependent terms have been modified using
some new parameters. Their aim was to reproduce the experimental dependence of

the ÔSiO angle in α-quartz with respect to the pressure. The angular parameters were
very different from the one proposed by Lasaga [88], underlining the high sensitivity
of the interdependency of each parameters with respect to the others.

The BKS potential [9] has partially used the fitting methodology of Lasaga and
Gibbs [88] and Tsuneyuki et al. [149]. The goal here was to propose a potential based
upon microscopic basis for the nearest-neighbor interactions. The system chosen for the
fit was still a single molecule of orthosilicic acid. As the range of the interatomic forces
goes beyond nearest neighbors some complementary informations have been considered
in the fit using some macroscopic data that can be derived from microscopic consid-
erations such as elastic constants. This simple potential reproduces with accuracy the
structure and elastic constants of α-quartz [9, 109] and was shown to give predictive
results (structure, phonons, phases transition) for the liquid phase of silica [75, 153].
Thereafter the BKS potential has been extended to other species (aluminum, phos-
phorus, sodium and chlorine) by using the methodology previously proposed for pure
silica [85]. This extended potential was designed for the study of zeolites5. Later, the
same group proposed empirical force-fields using a somewhat different ansatz (called
BJS potential) including some dipolar terms [17, 18]. This potential was solely based
on quantum considerations made on single molecules of silicic acid and pyrosilicic acid
(HO)3SiOSi(OH)3. Using this potential the stability of different crystalline phases have
been checked together with the potentials proposed in Ref. [9, 79, 149]. Even if some
minerals studied in their work such as Lovdarite [105] and VPI-7 [4] were not properly
described by the BKS potential [9] it appears to be superior to the BJS potential.

Lately force fields with environment dependent atomic charge distributions have
been developed. With the increase of the computer capabilities recent potentials be-
came more and more complex including many body effects and requiring on the fly
minimization procedure. The Polarizable Ion Model (PIM) potential proposed by Wil-
son and Madden [155, 156] takes into account the distortion of the electronic cloud
surrounding atoms due to their environment. For this purpose eighteen additional de-
grees of freedom are associated to anions (oxygen atoms). These degrees of freedom are
associated to five groups of variables which describe electrostatic dipoles, quadrupoles,
and ionic distortions of monopolar, dipolar and quadrupolar symmetry. The time evo-
lution of these degrees of freedom is carried out using an extended Lagrangian. In
practice such a potential is not suitable for simulating big systems on long time scales.
Moreover the PIM potential has not been optimally fitted, as the pair interactions have
been taken from the old potential proposed by Woodcock et al. [160]. Demiralp et al.

5Zeolites are minerals that have a micro-porous structure
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1. Introduction

[35] also proposed a charge variable potential parameterized using empirical data rela-
tive to crystalline phases. However this potential has to be considered with attention
since the results presented in Ref. [35] have not been reproduced in a later work [68].

Recently a new potential ansatz which attempts to describe all the polarizability
effects that may intervene in ionic system has been proposed by Tangney et al. [144].
The data considered for the parameterization of this potential have been derived from
ab initio simulation of liquid silica. The ab initio potential energy surface as well as
the ab initio forces have been used as an input to the fitting procedure according to the
considerations made by Ercolessi [46]. Despite some promising results [68, 92, 144] this
potential is not convenient for studying glassy systems as it appears that simulations
with this potential are a factor 100 slower than those with the BKS potential [67].

More complete details corresponding to the aforementioned potentials as well as
some others force-fields can be found in the Refs. [9, 16, 17, 18, 30, 35, 41, 50, 51, 66,
70, 79, 85, 86, 88, 100, 101, 130, 133, 134, 136, 144, 149, 152, 155, 156, 160].

This overview of the previous works carried out on silica underlines the very high
interest of the scientific community toward the physics of silica.

The present document is organized as follows: in chapter 2 the classical and quan-
tum molecular dynamics techniques and algorithms used in the present simulations
will be presented. The following chapter 3 will be concerned with the ab initio simula-
tions made on liquid silica. These simulations are absolutely compulsory for fitting an
empirical potential based on microscopic considerations. In preamble to this tests on
α-quartz and β-cristobalite have been carried out to validate our ab initio approach.
In chapter 4 we shall present the results of the first parameterizations done using the
atomic forces issued from the first-principles simulations. These potentials are checked
by classical molecular dynamics simulations and compared to the BKS potential [9].
A way of circumventing the time consuming Ewald summation systematically used for
describing ionic and semi-ionic system is presented in chapter 5. Chapter 6 focuses
on a new approach for fitting an effective potential which fitted observables are the
pair correlation functions used for characterizing the structure of amorphous systems.
This potential is compared to the widely used BKS potential [9] and to the available
experimental results. The conclusion will expose the main advances we have proposed
in this field as well as some perspectives.

6



Figure 1.3: α-quartz crystal, this mineral comprises 12.0% of the crust of the earth by
volume.

Figure 1.4: Molten silica being processed in a glass-work.
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Chapter 2

Simulation methods

ab initio
(FCI,CC,MP4, ...)

DFT
(Hybrids,GGA,LDA, ...)

QM/MM

Reactive Force Field

Molecular Mechanics Pair Potentials

Soft spheres
Hard spheres

Continuous field

N−Body Potentials

Figure 2.1: Simulation methods classified from the most complex ones (left side) suited for
small system/time length to the simplest ones (right side) suited for large system/time
length.

In this thesis we aim at investigating the properties of silica at the microscopic scale
using computer simulations. For this purpose, lots of different approaches can be used,
see Fig. 2.1. The choice of the simulation method depends on three main factors: The
level of accuracy of the description, the efficiency of the algorithms compared to the
number of particles under consideration, and the nature of the observables one wants to
investigate. The most quantitative approaches take into account the electronic degrees
of freedom using quantum mechanics descriptions. These approaches are often called
first-principles or ab initio methods. Among this class of method one can distinguish
two main currents based upon different hypothesis. On the one hand there is the
Hartree-Fock theory represented by the full configuration interaction (FCI), coupled
cluster (CC), etc, see left part of Fig. 2.1.

On the other hand, one has the Density Functional Theory (DFT) [72, 84], that
can also be used with different levels of accuracy namely: Hybrid functionals, General
Gradient Approximation (GGA) or Local Density Approximation (LDA). Because of
the complex nature of the interactions these methods can be only used on relatively
small time and length scales since they are very time consuming.

To circumvent the CPU time issue some intermediate levels of approximation have
been proposed, see right part of Fig. 2.1. These methods describe the interactions
between the atoms on a classical effective level, and thereby, different simplifications

9



2. Simulation methods

can be distinguished. Chemical reactions involving transformations of molecular species
can be described using reactive force fields [43, 110, 139, 140]. Bonds, angular and
dihedral interactions in molecules can explicitely be reproduced by means of molecular
mechanics potentials, metallic interactions using N-body potentials, and very simple
systems can be quantitatively simulated using pair potentials1.

The characteristics of materials are given within specific thermodynamical condi-
tions, and so we also need to define the thermodynamical ensembles NVE, NVT, etc...

as well as the state variables we want to investigate. Classes of computational al-
gorithms for simulating the behavior of various thermodynamical systems have been
developed for this purpose (Monte Carlo and Molecular Dynamics). In this chapter we
will introduce the concept of Molecular Dynamics (MD).

1Due to their simplicity, pair potentials are often used for the description of strong glass formers.
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2.1 Classical simulations

2.1 Classical simulations

Within the framework of classical simulations, the electronic degrees of freedom are no
longer explicitely taken into account. The energy and the forces of a system are now
described by the means of effective interactions between atoms. These effective inter-
actions try to reproduce at best the relevant microscopic properties (screening of ionic
charges, polarization effects, directional bonding, etc ...). The nuclei are considered
as point particles and the equations of motion are integrated using the principles of
classical mechanics. In spite of these crude assumptions, this approach represents an
excellent approximation for a wide range of materials and is routinely used for inves-
tigating relatively big systems (N ≃ 103 − 106 atoms) on relatively large time scales
(τ ≃ 1 ns- 1 µs).

2.1.1 General considerations

Equations of motion As already stated in the introduction of this chapter we want
to investigate the static and dynamical features of silica. Consequently we have to
compute the time dependence of given number of observables. Moreover, we want
to lie at the microscopic scale, this means that for a N particles system we have to
solve explicitely the 3N coupled 2nd-order differential equations describing the time
dependence of the particle’s motion according to Newton’s laws:

dpi
dt

= Fi, i ∈ {1, . . . , N} (2.1)

where Fi is the total force applied on particle i, mi is the mass of the particle i while ri
and pi stands for the position and momentum of particle i, respectively. The velocities
and forces are respectively defined by:

vi(t) =
dri(t)

dt
(2.2)

pi(t) = mivi(t) (2.3)

Fi(t) = −∇iV ({rj(t)}) (2.4)

here V ({ri}) stands for the interatomic potential.
When considering isolated systems2 the direct integration of Eq. (2.1) leads to the

conservation of the total energy Etot.:

Etot. = Ekin. + Epot. (2.5)

Ekin. =
1

2

∑

i

miv
2
i (2.6)

Epot. = V ({ri}) (2.7)

in Eqs. (2.6) and (2.7), Ekin. and Epot. refer to the kinetic and to the potential part of
the total energy, respectively.

2A isolated system has no interaction with an outside system, not even energy can flow into or out
of an isolated system.
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2. Simulation methods

2.2 Statistical mechanics and MD simulations

Ensemble The ergodic hypothesis3 states that for an isolated system of total energy
Etot. = E, the time average of any quantity A({ri,pi}t=0, t) at time t, defined at t = 0
by the particles position and momentum {ri,pi}t=0, is equivalent to the ensemble
average of this quantity:

lim
t→∞

1

t

∫ t

0

dt′A({ri,pi}t=0, t
′) =

∫ ∫
dridpiA({ri,pi}t=0, 0)δ [E −Etot.({ri,pi}t=0)]

∫ ∫
dridpiδ [E −Etot.({ri,pi}t=0)]

.

(2.8)
According to this statement one can study the average behavior of a many-particle
system by computing the time evolution of that system and averaging the quantity
of interest over a sufficiently long time. The ensemble of configurations spanned by
the integrals in the left hand of Eq. (2.8) consists of copies of the isolated system
under consideration. Each identical system in the ensemble has a common fixed to-
tal energy E expressed by the Dirac function in Eq. (2.8), but different coordinates
{ri,pi} in the phase space (i.e. different microstates). Such an ensemble is referred
as microcanonical ensemble, or NVE ensemble. The framework of molecular dynamics
is particularly suited for the investigation of microcanonical ensembles. Nonetheless,
some methods have been developed in order to sample different ensembles such as the
canonical ensemble (NVT). These approaches are introduced in section 2.2.2.

State variable The thermodynamic state of a system can be characterized by its state
variables. Some usual state variables such as the volume and the number of particles
are directly accessible in molecular dynamics as the number of particles is constant
and the volume is simply defined by the dimensions of the box. Some others variables
need to be defined such as the instantaneous temperature or pressure.

The definition of the instantaneous temperature T (t) is:

T (t) =

N∑

i=1

miv
2
i (t)

kBNf
, Nf = 3N − 3 (2.9)

where kB is the Boltzmann constant, N represents the number of particles, and Nf is
the number of degrees of freedom.

An instantaneous pressure for pairwise additive interactions is given by the virial
theorem:

P (t) =
NkBT (t)

V
+

1

3V

∑

i<j

F(rij) · rij . (2.10)

The above relation is derived in Appendix A.

3The ergodic hypothesis is valid for systems at equilibrium (liquids, crystals), not for vitreous
phases.
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2.2 Statistical mechanics and MD simulations

2.2.1 Algorithm

The integration of the equations of motion performed at a microscopic level is called
molecular dynamics simulation. As most of the time it is not possible to solve ana-
lytically the coupled equations of motion one has to use numerical algorithms called
integrators. To achieve these integrations it is necessary to discretize time using a time
step δt. A good integrator has to fulfill few basic conditions:

• Conciliates large time step and simple formulation for efficiency purpose;

• Preserve the mechanical constraints (conservation laws);

• Being time-reversible4 and preserving the phase space volume according to the
Liouville theorem5.

Among these classes of well-behaved algorithms the most widespread one is the velocity
Verlet algorithm. This algorithm is based on a Taylor expansion of the positions of
particles with respect to time:

ri(t+ δt) = ri(t) + vi(t)δt+
Fi(t)

2mi
δt2 (2.11)

Fi(t+ δt) = Fi(ri(t+ δt)) (2.12)

vi(t+ δt) = vi(t) +
Fi(t+ δt) + Fi(t)

2mi
δt. (2.13)

The corresponding error for both positions and velocities is of order O(δt4), moreover
to achieve the integration of the equation of motions one needs to assume that time
is discretized in interval δt. These approximations are responsible for the non-exact
conservation of the total energy. In practice, during a MD simulation the total energy
fluctuates around a given value. According to the results of previous simulations the
relative fluctuations of the energy should be limited below the limit ∆Etot./Etot. < 10−5,
this value was shown to be convenient for a proper integration of the equation of motions
[1].

The time step δt used for the integration has to be carefully chosen. It should be as
large as possible to avoid any waste of computational time. But if the time step is too
large energy conservation is not guaranteed. Regarding the velocity Verlet algorithm,
an optimal compromise can be found according to that fluctuations of the total energy
σ2
Etot.

= 〈E2
tot.〉 − 〈Etot.〉2 scales like δt2 [1], see Fig. 2.2. In the context of this work we

have considered a time step of 1.6 fs which was small enough to guarantee a negligible
drift of the total energy for high (T= 6100 K) and intermediate temperatures (T= 2750
K) compared to the experimental melting point of pure silica (Tmelt ≃ 2000 K).

4As equations of motion of classical mechanics are time-reversible.
5The Liouville’s theorem states that if the distribution of microstates is uniform in phase space

initially, they will remain so at all times.
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Figure 2.2: Left panel: The time dependence of the total energy represented for different
time steps for a 1152 atoms sample at 6100K. Right panel: The standard deviation of
the total energy σ2

Etot.
= 〈E2

tot.〉 − 〈Etot.〉2 as a function of the time step δt, the averaged
fluctuations scale like δt2 for time step up to 2 fs. The dotted line correspond to the
quadratic regression σEtot. ∝ δt2

2.2.2 Thermostats

The natural ensemble in MD simulations is the microcanonical ensemble. Nevertheless,
it is possible to realize simulations in other ensembles such as canonical ensemble using
appropriate algorithms. From a statistical point of view, a canonical ensemble consists
of copies of closed systems6. These systems are coupled to an external heat bath that
impose its temperature T . In practice we can bring a system to the target temperature
using thermostats. In this work two different kinds of thermostats have been used, the
Andersen thermostat and the Nosé-Hoover thermostat.

Andersen thermostat With this method the velocities and so the momenta pi of the
particles are modified randomly according to a Maxwell-Boltzmann distribution law
P (pi):

P (pi) =

(
β

2πmi

)3/2

exp
[
−βp2

i /2mi

]
, with β =

1

kBT
. (2.14)

The new momenta have to fulfill an additional constraint: The total momentum of the
system has to be zero. A direct consequence of this distribution is that the transla-
tional kinetic energy per particle satisfies the equipartition theorem, kBT = mi 〈v2

i 〉.
The strength of the coupling is determined by the frequency wtherm. = 1/∆t of the
connection to the “heat bath”. A constant-temperature simulation now consists of the
following steps:

1. Start with an initial set of positions and momenta {ri,pi}t=tn and integrate the
equations of motion for a time tn+1 = tn + ∆t;

2. All the particles undergo a collision with the heat bath;

6Closed system: Can interchange energy and mechanical work with surroundings but not matter.
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2.2 Statistical mechanics and MD simulations

3. As the total momentum Ptot. =
∑

imivi is not null the N velocities vi must be
shifted:

vi := vi −
Ptot.

Nmi
(2.15)

4. The N velocities are rescaled to the target temperature according to equation
(2.9):

vi := αvi, with, α =

√

kBTN
∑

imiv
2
i

. (2.16)

Nosé-Hoover thermostat The approach of Nosé [112] is based on the use of an
extended Lagrangian. In this method an extra coordinate ν is introduced. This coor-
dinate can be interpreted as a scaling factor of the time step (in the following, the real
time of the simulation is denoted by t′ and the virtual time variable by t). According
to this definition the real and virtual momenta and coordinates are given by:

r′i = ri (2.17)

p′
i = pi/ν (2.18)

ν ′ = ν (2.19)

t′ = t/ν. (2.20)

In order to tune the overall kinetic energy, and consequently the temperature, of the
system on-the-fly, the coordinate ν has to be coupled into the equations of motion.
The Lagrangian of the extended system proposed by Nosé is:

LNosé =
∑

i

1

2
miν

2ṙ2
i − V ({ri}) +

1

2
Qν̇2 − s

β
ln ν (2.21)

where Q is an effective ”mass” associated to ν, and s corresponds to the number of
degree of freedom of the system considered. The corresponding Hamiltonian is [112]:

HNosé =
∑

i

p2
i

2miν2
+ V ({ri}) +

p2
ν

2Q
+
s

β
ln ν (2.22)

The system described by this equation is microcanonical and its partition function can
be written:

Ω(E) =

∫

ΠN
i=1dpidridpνdνδ [HNosé({ri,pi}, pν , ν) − E] (2.23)

= C

∫

ΠN
i=1dp′

idri exp

[

−3N + 1

s
βH({ri,p′

i})
]

(2.24)

where C is a normalization constant, in the above equations, we have used the “real”
momentum p′

i = pi/ν and introduced H, the Hamiltonian of the real system:

H({ri,p′
i}) =

∑

i

p′2
i

2mi
+ V ({ri}). (2.25)
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2. Simulation methods

The corresponding Nosé equations of motion are given by:

dr′i
dt′

=
p′
i

mi
(2.26)

dp′
i

dt′
= −∂V

∂r′i
− p′νν

′p′
i/Q (2.27)

1

ν ′
dν ′

dt′
= p′νν

′/Q (2.28)

d (ν ′p′ν/Q)

dt′
=

(
∑

i

p′
i
2

mi
− skBT

)

/Q (2.29)

According to an original idea proposed by Hoover [73] the above equations can be
expressed in a more convenient way by introducing the following notations: ξ = ln ν
and pξ = νpν . Moreover, if one sets s = 3N , the equations of motion (2.26-2.29) using
the real variables (here the primed notations have been left out) become:

dri
dt

=
pi

mi
(2.30)

dpi
dt

= −∂V
∂ri

− pξpi/Q (2.31)

dpξ
dt

=
∑

i

p2
i

mi

− 3NkBT (2.32)

dξ

dt
= pξ/Q. (2.33)

If the instantaneous temperature of the system is above/below the temperature T
imposed by the thermostat, the momentum pξ increases/decreases, see Eq. (2.32). The
momentum pξ is connected to the time evolution of momenta pi by means of a friction
term pξpi/Q, see Eq. (2.31). If the instantaneous temperature is far from the target
temperature the momentum pξ will regulate the magnitude of the friction terms, thus,
the temperature of the system is controlled. The frequency of the thermostat should
be chosen as some characteristic frequency of the system ω, for which one wishes to
insure a maximal coupling between particles and thermostat [97]. To achieve this, the
mass of the thermostat should be set according to the relation: Q ∼ 3NkBT/ω

2.

2.2.3 Periodic boundary conditions

It is obvious that one can only study a system having a limited number of particles
using computer simulations. The particles are contained in a finite cell having a specific
geometry. Most of the properties of a homogeneous macroscopic system are considered
to be independent of the interfaces. For example if one considers the energy of a
macroscopic system, the neglect of the surface energy is in fact an good approximation
as the corresponding error made by neglecting the surface energy is insignificant. The
ratio of the surface energy to bulk energy is proportional to N−1/3, which is negligible
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2.2 Statistical mechanics and MD simulations

for a macroscopic system made of N ≃ 1024. On the contrary in MD simulations
one can simulate systems made of N < 107 atoms, the influence of the surface is still
significant for these scales, consequently computer simulations have to deal with finite
size effects 7. In order to simulate bulk phases it may be crucial to choose periodic
boundary conditions (PBC) that mimic the presence of an infinite bulk surrounding our
N -particle system, i.e. the original system is surrounded by its replicas according to
the initial cell geometry, see Fig. 2.3. If a particle leaves the central cell for the left one,
it will be immediately replaced by an atom coming from the right cell, thus the system
does not feel any wall or vacuum area. Moreover this method preserve the conservation
of the total energy and so the total momentum. Nevertheless special care have to be
taken, since for example, the total energy of the system is not rotationally invariant8

as shown in Fig. 2.3. The use of PBC has a direct consequence on the properties
investigated. In practice particles may interact with their own replicas, in such case
one has to carefully assess the relevance of the properties of the system investigated.
For example the normal modes having wavelengths greater or equal to the cell size are
meaningless, this feature is described in more details in section (3.2.1).

Figure 2.3: Left panel: The original pattern and the replicated system revealing a tetra-
hedral network, silicon (yellow) atoms surrounded by oxygens (red) atoms. Right panel:
Similar pattern compared to the left panel rotated and duplicated, here the tetrahedral
network is totally broken pointing out the rotational dependence of the energy.

2.2.4 Interaction potential

Interaction potentials are the keystone of any molecular dynamics simulation as by their
means one can probe the phase space through the resolution of the equations of motion.
According to this point of view they hold all the structural and thermodynamical
informations of a system.

Formally, one can decompose the potential energy into different contributions:

V =
∑

i

V1(ri) +
1

2!

∑

i,j 6=i

V2({rij}) +
1

3!

∑

i,j 6=i,k 6=i,j

V3({rij, rik}) + . . . (2.34)

7To a system having N particles within a box of volume V with a corresponding density ρ = N/V
one can associate a typical length L ∝ N1/3 as N = ρV and V ∝ L3, the Surface/Volume ratio scales
like N−1/3. For a cubic system made of 106 atoms this ratio is equal to 6%.

8The angular momentum is not constant
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The first contribution corresponds to the self energy of the system which is assumed to
be zero by convention. Higher order interactions (Vn, n > 3) are hardly tractable and
the computational time required for the computation of the energy and forces can be
prohibitive9. For this reason, in the next section, we will mainly expose technical and
practical details related to pair interactions.

2.2.4.1 Short range interactions

A short range term is usually defined as one in which the spatial interaction falls off
faster than r−d, where d is the dimensionality of the system [1]. For ionic compounds
the most common choice is the Buckingham/Born-Mayer potential [22]:

VBM(rij) = Aij exp (−bijrij) −
cij
r6
ij

(2.35)

where rij stands for the interatomic distance between two particles i and j, and Aij ,
bij , cij are the parameters of the potential. When using such potential, only the closest
j-particles surrounding the particle i are required for an accurate computation of the
energy and forces applied on i. The influence of the other particles can be dropped
out providing only very slight changes in the physical description of the system10. In
practice, one has to define a cutoff distance rcut which is consistent with the energy
conservation and computation efficiency constraints. Interatomic distances beyond this
limit are not considered.

Sometimes, the cutoff radius rcut may be larger than the simulation cell, in such
case atoms replicas have to be taken into account, see Fig. 2.4. In particular, this is
a crucial issue for crystalline structures properties, where the energy is expressed as a
sum over the lattice vectors (a,b, c). The total energy of the system is expressed:

V =
∑

ℓ,m,n

∑

i,j

′ 1

2!
V trunc

2 (rij + ℓa +mb + nc), (2.36)

where the primed sum indicates that, for l = m = n = 0, the i = j terms are omitted.
On the contrary, for cutoff distances lower than the lattice parameters, the atoms

do not interact with their own images (see Fig. 2.5), and the previous sum can be
restricted to the nearest images of particles. In practice computing the nearest distances
of particles surrounding a given atom rNI

ij can be implemented in a very simple way
using the following definition:

rNI
ij = rij − h

[
h−1rij

]

NINT , (2.37)

where [. . . ]NINT denotes the nearest integer values and the matrix h is defined by the
lattice vector (h = ((a)(b)(c))). Then the coordinates will be always within the box
centered at the origin of the coordinates system.

9The computational time τ needed for a n-order contribution for N particles scales like the binomial
coefficient

(
n
N

)
, for n = 4 ⇒ τ ∝ N4

10The truncation may lead to systematic shifts in the pressure.
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Figure 2.4: The cutoff distance is beyond the cell dimensions rcut > Lbox/2, the atoms
interact with atoms belonging to cell replicas.

Figure 2.5: The interactions are truncated for rcut < Lbox/2, the red atoms interact with
the nearest ions images belonging to the sphere.

Smoothing the potential The natural way to truncate a potential consists in using
a spherical cut-off radius. A brute force truncation will lead to discontinuities in the
energy and forces unless the potential smoothly tends to zero at that distance by design.
To avoid discontinuity in the energy due to the potential truncation at rcut a constant
shift can be added so that the energy at the cutoff boundary becomes zero, see Eq.
(2.38). The continuity of the forces is also determining for the stability of the dynamics
as forces are involved at each step of the velocity Verlet algorithm, see Eqs. (2.11-2.13).
This issue can be solved using a smoothing function Grcut

(r) that goes to zero at rcut:

V shifted
2 (rij) = V2(rij) − V2(rcut) (2.38)

V trunc
2 (rij) =

{
V shifted

2 (rij)Grcut
(rij) : rij ≤ rcut

0 : rij > rcut
(2.39)

Grcut
(rij) = exp

(

− γ2

(rij − rcut)
2

)

. (2.40)

19
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For our simulations we have retained the smoothing function given by Eq. (2.40). Here,
the factor γ in the exponent can be seen as length scale over which the potential function
is smoothened. The function, Eq. (2.40), makes the potential and its derivatives
continuous.
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Figure 2.6: Left panel: Shifted potential for the Si-O short ranged part of the Born-Mayer
potential using the BKS parameterization [9]. Right panel: Shifted and softened potential
for the Si-O short range part of the BKS [9] potential.

Saving CPU time The calculation of the forces is the most time consuming stage
during a MD simulation, see Eq. (2.12). It can be worthwhile to use a ”Verlet list”
so as to minimize the overall computational time required for simulation. As stated
in the previous paragraph the short range contributions of interatomic potentials are
truncated beyond a chosen distance rcut. For a “large” system, i.e. a system with a
typical cell dimension Lbox that satisfies the inequality11 rcut < Lbox/2, some pairs of
atoms {ij} separated by a distance rcut < rij < Lbox/2 do not interact. According to
this statement it is possible to enhance the speed of the calculation of the forces. Listing
all the pairs of atom that belong to the range below rcut is an expensive process which
scales like O(N2). In practice, one can avoid using such time consuming procedure at
each time step by listing all pairs of atoms {ij} fulfilling the constraint rij < rv, where
rv > rcut. An illustrative example of such list (or ”Verlet list”) is given in Fig. 2.7,
where we have represented the particles surrounding a given particle i, the particles
within the sphere defined by rcut interact with particle i, but only particles belonging
to the sphere of radius rv have been considered for the calculation of the interatomic
distances.

This list must be updated when a particle belonging to the list has moved by more
than |rv − rcut|/2 12. A more simple method consists in updating the list after a

11This constraint is imposed by the periodic boundary conditions.
12If the positions of two particles i and j, defined at t = 0 by ri and rj respectively, have been

changed by |rv − rcut|/2 at t = ∆t then the interatomic distance at t = ∆t rij(t = ∆t) is limited as
follows: rij(t = 0) − |rv − rcut| ≤ rij(t = ∆t) ≤ rij(t = 0) + |rv − rcut|
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2.2 Statistical mechanics and MD simulations

given number of steps, the refreshing rate depending both on the thickness of the layer
|rv − rcut| and on the temperature investigated.

On one hand, the cutoff rv of the ”Verlet list” should not be too large otherwise
one takes into account lots of non interacting pairs of atoms, on the other hand using
a very small value of |rv − rcut| implies frequent updates of the list. By using a Verlet
list one can significantly reduce the overall computational time required for molecular
dynamics simulations, as the main part of the calculations scale like O(N).

rcut

rv

i

Figure 2.7: The Verlet list: A particle i interacts with those particles within the cutoff
radius rcut. The Verlet list contains all the particles within a sphere of radius rv.

Very short range interactions The dispersion terms ∝ r−6 and the attractive
Coulomb interactions diverge for low distances. Consequently, force fields using such
terms tend to have an infinitely negative potential energy. The BKS potential [9] is
an illustrative example: In Fig. 2.8 we have represented in dashed line the potential
energy corresponding to the O-O and Si-O interactions. If nothing is done to prevent
such shortcomings, the particles of the system may fuze together permanently. In or-
der to circumvent this issue, Horbach and Kob [75] have truncated the BKS below
Rcut = 1.43847 Å for the O-O term and below 1.19412 Å for the Si-O term, these nu-
merical values correspond to the local maxima of the BKS for the O-O and Si-O pairs
respectively. Below these cutoffs the missing part of the potential has been replaced
by quadratic terms. The parameters of the repulsive wall are defined so as to ensure
the continuity of the interatomic potential and its derivative at Rcut. In practice, these
spurious quadratic parts do not play any significant role as the corresponding bond
lengths are rather unlikely even for high temperatures (T ≥ 6100K).
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Another way to solve the diverging short range issue consists in adding repulsive
terms to the potential [60]:

V rep
2 (rij) = 4εij

(
σij
rij

)24

. (2.41)

The power law dependence ensure a strong decrease of the repulsive potential for
distances beyond σij. As this method does not require any linking between the potential
and the repulsive terms, it has been widely used in the simulations described in chapter
6. An illustrative example of the addition of a repulsive potential to the BKS is
represented by the dashed lines in Fig. 2.8.
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Figure 2.8: Attractive diverging behavior for the BKS O-O and Si-O interactions (dashed
line) curbed by the means of additional terms added to the potential (solid line). The
local maximum of the pair potentials are represented using vertical lines located at Rcut =
1.19412Å and Rcut = 1.43847Å.

2.2.4.2 Long range interactions

When considering an ionic or iono-covalent system, the Coulomb interaction is by far
the dominant term and can represent typically, up to 90% of the total energy. The
interactions between two particles i and j with charges qi and qj separated by a distance
rij are described by Coulomb’s law:

V Coul.
ij (rij) =

qiqj
4πε0rij

. (2.42)

Thus, the total electrostatic energy (V Coul.) of a system consisting of point charges is:

V Coul. =
∑

i

∑

j 6=i

V Coul.
ij (rij). (2.43)
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2.2 Statistical mechanics and MD simulations

The computation of this energy requires special attention as the interaction between
ions decays like 1/rij whereas the number of interacting ions increases with the surface
area of a sphere of radius 4πr2. Hence, the energy density of interactions increases
with distance, rather than decaying, therefore it is necessary to take into account long
range interactions for the calculation of the Coulomb energy. The Coulomb energy
for periodic systems is only a conditionally convergent series13. Many approaches have
been developed to increase the speed of convergence of the Coulomb energy, one can
mention the solution proposed by Evjen [48], or the particle mesh method proposed by
Hockney and Eastwood [71]. However, by far the most widely employed method is the
one proposed by Ewald [49]. The slow converging series involving the interactions of
point charges can be formally splitted in two fast converging contributions. In practice
the point charges surrounding an atom i are lessened by subtracting Gaussian charge
distributions, see Fig. 2.9. These screened interactions (V Real) can be computed effi-
ciently in the real space, see Fig. 2.10. Thereafter, the missing terms accounting for
the interactions between the point charge centered on the atom i and the compensat-
ing screening charges (V Rec. ) are transformed by means of a Fourier transform and
computed efficiently in the reciprocal space, see Fig. 2.11. The underlying physical
considerations accounting for this formal decomposition are now exposed in the rest of
this section.

δ+

(a)

(b)

(c)

δ−

Figure 2.9: (a) A one-dimensional particle configuration connected to its periodic replicas.
(b) The point charge distributions related to the above configuration. (c) A simplified
representation of a periodic Gaussian distribution of charges ρPBC(r) in continuous line,
the self term ρSelf

i (r) is represented by the dashed curves.

General consideration In a real physical system the overall charge of an ion results
from the counterbalancing contributions of the negative charge of electrons and the

13A series or integral is said to converge absolutely if the sum or integral of the absolute values of
the summand or integrand is finite. A conditionally convergent series or integral is one that converges
but does not converge absolutely.
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positive charges of protons. In this section we assume that the charge distribution of
a given ion i is a point charge, although, electrons move along on atomic orbitals ac-
cording to the principles of quantum mechanics. As a consequence, these ionic charges
can not rigorously be considered as being point charges, and they should have a spa-
tial distribution z(r). The electrostatic energy of Eq. (2.43) can be rewritten in this
context:

V Coul. =
1

2

n∑

i=1

∫

qiz(ri − r)φi(r)dr (2.44)

where φi(r) has been derived from the charge density ρi(r) using the Poisson’s equation:

−∇2φi(r) = 4πρi(r), (2.45)

where ρi(r) is the contribution of particle i to the overall charge distribution. In a
periodic system, with a geometry defined through the lattice vectors {a,b, c}, the
charge density surrounding a given atom i is given by:

ρi(r) =
∑

ℓ,m,n

∑

j

′
qjz(rj − r + ℓa +mb + nc) (2.46)

where the prime sum
∑′ excludes all the j = i terms for l = m = n = 0. The charge

density ρi(r) can be splitted in two contributions ρPBC(r) and ρSelf
i (r):

ρi(r) =
∑

ℓ,m,n

∑

j

qjz(rj − r + ℓa +mb + nc) − qiz(ri − r) (2.47)

= ρPBC(r) + ρSelf
i (r) (2.48)

ρPBC(r) =
∑

ℓ,m,n

∑

j

qjz(rj − r + ℓa +mb + nc) (2.49)

ρSelf
i (r) = qiz(ri − r) (2.50)

(a)

(b)

Figure 2.10: (a) Point charge and their screening Gaussian distributions superimposed.
(b) The point charges (black stick) are screened by the Gaussian charge distributions
(continuous curve).

24



2.2 Statistical mechanics and MD simulations

Reciprocal space sum In this section we want to evaluate the interaction of a point
charge with the surrounding Gaussian screening distribution. These interactions are
represented in Fig. 2.11. To achieve this calculation we take advantage of the peri-
odicity of the system to transform the electrostatic Gaussian distribution by means
of Fourier transforms. The electric potential corresponding to this charge distribution
can be computed straightforwardly in the reciprocal space using the Poisson equation.

In Eq. (2.48), the charge density has been splitted into two terms. The first one
ρPBC(r) corresponds to the total charges distributions, and this term is invariant by
translation14. The second term, ρSelf

i (r) accounts for the self-charge of atom i. If one
assumes a Gaussian charge distribution centered on each atom, the periodic part of
the density, see Eqs. (2.48), can then be expressed in the real space in a simple form:

ρPBC(r) =
∑

ℓ,m,n

∑

j

qj(α/π)
3
2 exp

[
−α|r − (rj + ℓa +mb + nc) |2

]
. (2.51)

In the Fourier/reciprocal space this density is expressed as:

ρPBC(k) =
∑

j

qj exp (−ik · rj) exp
(
−k2/4α

)
. (2.52)

The parameter α determines the magnitude of the screening charge, see Fig. 2.12.

Figure 2.11: Sketch of the interactions in the reciprocal space, the sum of all the inter-
actions between the point charge (black stick) and the periodic Gaussian charges dis-
tribution (continuous and dashed) account for the reciprocal energy term V PBC. The
self interaction term V Self represents the spurious interaction of the point charge with
its own Gaussian distribution (dashed). The Coulomb energy in the reciprocal space ex-
pressed as V Rec. = V PBC−V Self is represented by the interaction with all the continuous
distributions.

Solving the Poisson equation, see (2.45), in the reciprocal space and proceeding to
a backward Fourier transformation15 leads to the electrostatic potential φPBC [53]:

φPBC(r) =
∑

k 6=0

∑

j

4πqj
k2

exp [ik · (r − rj)] exp
(
−k2/4α

)
(2.53)

= φRec.
i (r) + φSelf(r) (2.54)

where φRec.(r) and φSelf(r) correspond to the electrostatic potentials related to the
charge distributions ρRec.(r) and ρSelf(r) defined in Eqs. (2.47) and (2.50), respectively.

14ρPBC(r) = ρPBC(r + T) where T is a vector of the Bravais lattice.
15The Fourier transform is a linear operator that maps functions to other functions: Considering a

function f(r), the corresponding Fourier transform f̃(k) is given f̃(k) =
∫

drf(r) exp(−ik · r).
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Figure 2.12: Representation of the Gaussian charge density ρ(r) =
(
α
π

) 3
2 exp

(
−αr2

)
, intro-

duced in Eq. (2.51).

The energy of a point charge V PBC in the periodic potential φPBC(r) can be derived
using Eqs. (2.44) and (2.53) and by considering a point charge distribution z(r) =
δ(r − ri) in Eq. (2.44):

V PBC({ri}) =

n∑

i=1

∫

qiδ(ri − r)φPBC(r)dr (2.55)

=
n∑

i=1

qiφ
PBC(ri) (2.56)

=
n∑

i=1

qiφ
Rec.(ri)

︸ ︷︷ ︸

V Rec.({ri})

+
n∑

i=1

qiφ
Self(ri)

︸ ︷︷ ︸

V Self({ri})

(2.57)

This value needs to be corrected as we have considered the interaction of the point
charge with its own electrostatic field φSelf

i (r), see Fig. 2.11. It can be straightforwardly
shown that this term is equal to:

V Self({ri}) =
∑

i

∫

qiδ(r)

φSelf
i (r)

︷ ︸︸ ︷

qierf (
√
αr)

r
dr (2.58)

= (α/π)
1
2

∑

i

q2
i (2.59)

where erf(x) is the error function is defined erf(x) ≡
∫ x

0
exp (−u2) du, and the comple-

mentary error function, defined as erfc(x) ≡ 1 − erf(x).
Hence, the interaction energy in the reciprocal space is given by:

V Rec.({ri}) = V PBC({ri}) − V Self({ri}) (2.60)
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=
1

2

∑

k 6=0

∑

i,j

4πqiqj
Ωk2

exp [ik · (ri − rj)] exp
(
−k2/4α

)

− (α/π)
1
2

∑

i

q2
i . (2.61)

where Ω represents the volume of the simulation cell.

Real space sum The energy of an atom in the real space is given by the calculation of
the interactions of the point charges of the atom considered with the screening Gaussian
distributions charges of its surrounding neighbors. These distributions are represented
in Fig. 2.10. The electrostatic field φReal

i can be derived using the expression of both
Coulomb field ( qi

r
) and the electric field corresponding to a Gaussian charge distribution

given by Eq. (2.58):

φReal
i (r) =

qi
r
− qierf (

√
αr)

r

=
qierfc (

√
αr)

r
. (2.62)

Replacing the above results in Eq. (2.44) leads to the following expression for the real
part of the Coulomb energy:

V Real =
1

2

∑

i6=j

qiqj
erfc(

√
αrij)

rij
(2.63)

Practical aspects The total electrostatic interactions of a point charges system ex-
pressed using the Ewald summation is given by summing the contributions of the terms
(2.61) and (2.63):

V Coul. =
1

2

∑

i6=j

qiqj
erfc(

√
αrij)

rij
− (α/π)

1
2

∑

i

q2
i

+
1

2

∑

k 6=0

∑

i,j

4πqiqj
Ωk2

exp [ik · (ri − rj)] exp
(
−k2/4α

)
(2.64)

This splitting of the Coulomb potential in a sum of two fast converging contributions
enhances the calculation speed of the electrostatic energy. The screening parameter α
tunes the spatial extent of the screening Gaussian distribution and has to be defined
consistently with the cutoff radii of the real and reciprocal contributions. Large values
of α correspond to significant screening in the real space, the reciprocal term represents
the main contribution to the Coulomb energy. On the contrary, when using a small
value of α the Coulomb energy is mainly represented by the real space term, see Fig.
2.12.

All these parameters can be defined so as to ensure a good balancing of the error
and a good balancing of the the computation time in both real and reciprocal space
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for a given specified accuracy A> |ECoul. − ECoul.
Ewald| [121], [78]:

rcut =

(− ln (A)

α

) 1
2

, and kmax = 2α
1
2 (− ln (A))

1
2 . (2.65)

A short glimpse underlining the influence of the different parameters α, and kmax is
given in Fig. 2.13.
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Figure 2.13: Convergence of the electrostatic energy as a function of the Gaussian parameter
α represented for different values of the cut off radius in the reciprocal space (kmax).
The system under consideration is made of 114 atoms, contained in a cubic box (Lbox =
11.98Å), the cut off distance in the real space is fixed to 10Å. For an accuracy A = 10−10,
the optimal parameters are α = 0.230 and kmax = 4.605Å−1 accounting for 1568 wave-
vectors.
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2.3 Ab initio methods

In physics a calculation is said to be from first principles if it starts directly at the level
of fundamental laws of physics and does not make assumptions such as model and fit-
ting parameters. This is also known as ab initio. For example, calculation or simulation
of molecular electronics systems by directly solving the complex Schrödinger equation
is considered as an ab initio calculation. Some of the basic concepts of quantum me-
chanics, simplifying hypotheses and numerical approaches for solving the Schrödinger
equation will now be exposed in this section. These elements are compulsory for the un-
derstanding of the relevant criteria used to choose the appropriate approach for study-
ing the system one wants to investigate. Hence we will mainly present the methods
used of calculation for the structure of poly-electronic systems such as the Hartree-Fock
(HF) methods and Density Functional Theory approach (DFT).

2.3.1 The Schrödinger equation

Quantum mechanics is a more fundamental theory than Newtonian mechanics in the
sense that it provides accurate and precise descriptions for many phenomena that the
”classical” Newtonian theory simply cannot explain on the atomic and subatomic level.
A brief presentation of the first principles is given in this section. According to the
postulates of quantum mechanics a state (or wave function) of a microscopic system is
defined by a unit ray16 in a complex Hilbert space. Formally, each vector (or quantum
state) in the ray can be decomposed in a sum of basis vectors of the Hilbert space. The
natural basis adapted to our system calculation will be presented in section (2.3.3).

The time evolution of the state vector |ψ〉 of a poly-electronic system is given by
the time dependent Schrödinger equation:

i~
d

dt
|ψ ({ri}, {Ri}, t)〉 = H(t)|ψ ({ri}, {Ri}, t)〉, (2.66)

where, the electronic and ionic positions are denoted by {ri} and {Ri}, respectively.
The reduced Planck constant is denoted by ~ and H is the quantum Hamiltonian.
In many situations, the energy operator H does not depend on time. Then it can be
shown that the time-dependent Schrödinger equation simplifies to the time-independent
Schrödinger equation:

H|ψ ({ri}, {Ri})〉 = Eψ ({ri}, {Ri})〉. (2.67)

The Hamiltonian of the many-electrons systems contains both kinetic and Coulombic
contributions:

H =
n∑

i=1

−∇2
i

2mi

+
N∑

I=1

−∇2
I

2MI

+
n∑

i=1

∑

j=1;j<i

zizje
2

rij
+

n∑

i=1

N∑

I=1

ziZIe
2

|ri −RI |
+

n∑

I=1

N∑

J=1;J<I

ZIZJe
2

RIJ

.

(2.68)

16A ray is a one-dimensional subspace, two vectors belong to the same ray and so, represent the
same state if they differ only by a phase factor.
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In this expression the charge and mass of electrons are denoted by zi, and mi respec-
tively, whereas the charges and mass of ions are denoted by Zi, and Mi respectively.
Regarding the kinetic energy, the correspondence between the quantum Hamiltonian
and the classical one is made straightforward assuming the following definition for the
quantum impulsion operator:

Pi = −i~∇i and so Ekin. =
∑

i

〈P 2
i 〉

2mi

= 〈ψ({ri})|
∑

i

−∇2
i

2mi

|ψ({ri})〉. (2.69)

In Eq. (2.68) the electronic degrees of freedom {ri} and the ionic ones {Ri} are
coupled. The adiabatic17 approximation commonly used to decouple these variables
for a conservative system is presented in section (2.3.2). The time integration of Eq.
(2.68) is tackled in section (2.3.6).

In this work we have also performed simulations for crystalline phases. In practice,
an ideal crystal can be described by assuming that a wave function must be periodic
on a certain Bravais lattice, and for this purpose, one has to define a specific set
of boundary conditions (so-called Born-Von Karman boundary conditions). For such
systems, the wavefunctions of independent particles can be classified using the Bloch
theorem:

ψk(r) = exp(ik · r)uk(r), (2.70)

where ψk(r) is an eigenfunction (or Bloch function) identified by its crystal momentum
k and uk(r) is a function which has to satisfy the translational invariance property of
the crystal (uk(r) = uk(r+ ℓa+mb+nc)). Using these notations, the Hamiltonian of
independent particles of the system can then be rewritten:

H(k)ui,k(r) =

[

−(∇ + ik)2

2m
+

N∑

I=1

zZIe
2

|r − RI |

]

ui,k(r) = εi,kui,k(r) (2.71)

where εi,k corresponds to the ith-eigenvalue of the Hamiltonian at given k. These
eigenvalues are usually represented with respect to their k-variable in the so called
band diagram [82], each band corresponds to a given state i. It is worthwhile to note
that any intrinsic properties fi of a crystal have to be calculated by averaging the k-
dependent property fi,k over the all crystal momenta18. In practice, many calculation
can be carried out at a zero crystal momentum (k = 0), so called Γ point according to
the Bouckaret, Smoluchowski and Wigner notation.

2.3.2 The adiabatic approximation

Introduction This approximation was originally proposed by M. Born and J. R. Op-
penheimer in 1927 [21] to simplify the many-body problem due to the ion-electron
coupling in quantum mechanics. It consists of two steps: In the first step the nuclear

17In quantum mechanics an adiabatic process is an infinitely slow change in the Hamiltonian of a
system. Adiabatic processes are important idealizations of ”sufficiently slow” processes.

18fi = 1
ΩBZ

∫

ΩBZ

dkfi,k, where ΩBZ is the volume of the first Brillouin zone.
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kinetic and Coulomb energy are neglected, that is, the corresponding operators are sub-
tracted from the total molecular Hamiltonian. In the remaining electronic Hamiltonian
(Helec.) the nuclear positions enter as parameters. The electron-nucleus interactions are
not removed and the electrons still ”feel” the Coulomb potential of the nuclei clamped
down at certain positions in space19. The electronic Schrödinger equation:

Helec.|ψ({ri})〉{Ri} = Eelec.,{Ri}|ψ({ri})〉{Ri} (2.72)

is solved for a fixed nuclear geometry. The electronic energy eigenvalue Eelec.,{Ri}

depends on the chosen positions {Ri} of the nuclei. Varying these positions {Ri} in
small steps and repeating the resolution of the electronic Schrödinger equation, one
obtains Eelec.,{Ri} as a function of {Ri}. This is the potential energy surface (PES):
Eelec.({Ri}). In the second step of the Born-Oppenheimer approximation the nuclear
kinetic and Coulomb energy are reintroduced and the Schrödinger equation for the
nuclear motion is solved.

Decoupling the ionic and electronic wavefunction The physical object of interest
in this theory is the ionic and electronic wavefunction Θ. This wavefunction depends on
the microscopic positions of the particles constituting the system, namely the nuclear
positions (R1,R2, . . . ,RN) and the electronic positions (r1, r2, . . . , rn).

Θ(r1, r2, . . . , rn,R1,R2, . . . ,RN) (2.73)

Starting from the Schrödinger equation with a time-independent Hamiltonian (H) one
should in principle solve the following equation:

HΘ(r1, . . . , rn,R1, . . . ,RN) = EΘ(r1, . . . , rn,R1, . . . ,RN) (2.74)

with H defined as follow:

H =

n∑

i=1

−∇2
i

2mi
+

N∑

I=1

−∇2
I

2MI
+

n∑

i=1

∑

j=1;j<i

zizje
2

rij
+

n∑

i=1

N∑

I=1

ziZIe
2

|ri −RI |
+

n∑

I=1

N∑

J=1;J<I

ZIZJe
2

RIJ
.

(2.75)
An exact resolution to the Schrödinger’s equation of a system of electrons and nucleus is
not affordable because of the many-body problem. As a consequence one has to make
appropriate approximations and hypotheses so as to simplify this equation. A very
valuable approximation is the Born-Oppenheimer (BO) approximation which asserts
that electronic and nuclear motions can be decoupled. This assumption is reliable
considering the difference in the mass ratio between nucleus and electron, mp/me ≃
183620. Assuming that the momenta of electrons and nuclei are similar, one can assert

19This first step of the BO approximation is therefore often referred to as the clamped nuclei
approximation.

20The proton mass is mp = 1.67262171(29)−27 kg, the electron mass is me = 9.1093826(16)−31 kg,
the ratio mp/me ≃ 1836
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that the heavy nuclei move more slowly than the light electrons. This approximation
leads to the following factorization [98]:

Θ(r1, . . . , rn,R1, . . . ,RN) = ψR1,...,Rn
(r1, . . . , rn) × Ω(R1, . . . ,RN). (2.76)

The function ψ depends explicitly on the electronic positions {r1, . . . , rn} and para-
metrically on the nuclear positions {R1, . . . ,RN} as it must be consistent with the
electronic Hamiltonian that contains Ri dependent terms. The ionic wavefunction is
defined by Ω(R1, . . . ,Rn). Thus, the Hamiltonian H of Eq. (2.75) can be decom-
posed in two parts, one depending on the electronic positions as well as on the ionic
and electronic momenta Helec.; the other depending solely on the ionic positions and
momentum Hnucl.:

H =
n∑

i=1

−∇2
i

2mi

+
n∑

i=1

∑

j=1;j<i

zizje
2

rij
+

n∑

i=1

n∑

I=1

ziZJe
2

|ri −RJ |
︸ ︷︷ ︸

Helec.

+
N∑

I=1

−∇2
I

2MI

+
n∑

I=1

∑

J=1;J<I

ZIZJe
2

RIJ

︸ ︷︷ ︸

Hnucl.

.

(2.77)
Using this assumption one can solve the time independent Schrödinger equation in two
steps, by first solving the electronic equation (2.78) thereafter solving the Eq. (2.79)
using the solutions of (2.78):

〈ψ†|Helec.|ψ〉 = Eelec.(R1, . . . ,Rn) (2.78)

〈Θ†|H|Θ〉 = 〈Ω†|Eelec(R1, . . . ,Rn)|Ω〉 + 〈Θ†|Hnucl.|Θ〉 (2.79)

= 〈Ω†|〈ψ†|Helec.|ψ〉|Ω〉 + 〈Θ†|Hnucl.|Θ〉 (2.80)

The total Hamiltonian can be diagonalized by first solving the Schrödinger equation
using the electronic Hamiltonian and considering frozen ionic positions, see Eq. (2.78).
Then the ionic wavefunction is obtained by solving the Schrödinger equation using the
electronic wavefunction see Eq. (2.79-2.80). Generally this approximation is considered
excellent for non degenerated electronic states. Otherwise, if there exist a small gap21

in the electronic excitation spectrum smaller than typical energies of nuclear motion,
then the nuclear motion may couple with some the electronic states.

2.3.3 Hilbert’s space basis set

The first postulate of quantum mechanics states that the wavefunction describing a
state is built upon a basis of the Hilbert space. An appropriate choice of the basis
set depends on the nature of the system. In this work we are considering a periodic
system22 that matches with the use of plane waves:

fk(r) =
1√
Ω

exp (ik · r) . (2.81)

21The electronic gap or band gap generally refers to the energy difference between the top of the
valence band/highest unoccupied orbital and the bottom of the conduction band/lowest occupied
orbital.

22Using the Born-von Karman periodic boundary conditions
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In theory a wavefunction should be described by means of a complete basis of vectors23.
In practice it is not possible to handle such kind of basis set, the wavefunction is
described using a finite number of plane waves. According to the quantum definition of
the momentum operator, see Eq. (2.69), the number of plane waves can be defined using
an energy cutoff Ecut as the kinetic energy of plane waves is equal to Ek = ~2k2/2me,
All the plane waves with an energy Ek < Ecut are taken into account for the calculation
of the wavefunction.

Thus a wavefunction ψ(r) can be represented as a linear combination of these basis
functions:

ψ(r) =
∑

k

cikfk(r) (2.82)

Using Fourier transform, these functions can also be defined as a set of values on a
equally spaced grid in real space, see Fig. 2.14.

Figure 2.14: Left panel: Atomic configuration of a 78 atom sample. Right panel: Repre-
sentation of the corresponding electronic density using grid points of space.

Contrary to the Gaussian basis set24 mainly used for the calculation of molecules in
vacuum, plane waves are non centered functions as they do not depend on the position
of the nucleus. Thus, wavefunctions build using plane waves do not carry any extra
additional dependence on the nuclei positions by construction. As a consequence one
get rids of the spurious Pulay terms [119, 120] which parasite the calculation of the
interatomic forces. These terms account for the explicit dependence of the electronic
cloud with respect to the ions positions. The electronic wavefunction is coupled to the
ionic positions through the Schrödinger equation, but the basis set used for building
the wavefunction should not depend on the ionic positions.

Nevertheless, unlocalized basis may bring some shortcomings, for example, refined
descriptions of complex oscillatory behavior of the wavefunction may require lots of

23In such case the basis set is infinite.
24These orbitals centered on an atom at a given position R have the following analytical form

φ(r − R) = (2α/π)3/4e−α|r−R|2

33



2. Simulation methods

plane waves. To get around of this problem one can make a clever use of pseudopo-
tentials to avoid the complex nodal structure of core states. The pseudopotential are
described in section (2.3.4). Another aspect which may be pointed out in this context
concerns the heterogeneous systems (simple molecules in a box for example) made with
large vacuum regions may also demand lots of plane waves even for a restricted amount
of electrons.

2.3.4 Pseudopotential

The electrons of an atom can be classified in two groups: The core electrons and the
valence electrons. By definition core states are localized close to the nuclei, whereas
the valence states belong to the outer shell25 of the electronic structures. When in-
vestigating real systems of elements heavier than He, one is faced with the problem of
the tightly bound core states (|ψcore〉) which affect the shape of the wavefunction of
valence state (|ψval.〉) close to the nucleus. According to the principles of quantum me-
chanics the eigenstates of any given Hamiltonian are orthogonal, and as a consequence,
the overlapping integral between the valence and the core states 〈ψcore|ψval.〉, is equal
to zero. This orthogonality constraint accounts for the rapid oscillatory behavior of
the valence wave function close to the nucleus. This region of space characterized by
rapid oscillations of the wave function can be defined by a core radius Rc. The rapid
variations of the wavefunction close to the nucleus have two consequences. First the
kinetic energy of electrons is rather high in the vicinity of the ions, see Eq. (2.69).
Some relativistic effects connected to this high kinetic energy level have to be taken
into account, and this is also true for the core electrons. These relativistic effects can
be described using the Dirac equation[38, 39]. Unfortunately solving this equation
or even the simplified relativistic Hamiltonian (fine structure Hamiltonian) for all the
electrons is not affordable because of computer resource limitation.

What is more, the complex oscillatory behavior of the valence states can only
be accurately described by means of several basis functions at the expense of the
computational efficiency, see section (2.3.3). Some approximations have been proposed
to simplify the Hamiltonian resolution, considering the core states as chemically inert
which means that they are not perturbated by the electronic structure of other atoms,
and well-separated from the valence states. By doing so, the influence of the core
electrons can be mimicked by adding terms (the so called pseudopotentials or PP) to
the Hamiltonian. The eigenvalues and eigenfunctions of this extended Hamiltonian
are called pseudo-valence eigenvalues and pseudo-valence wavefunctions. In this work
we have considered the norm-conserving pseudopotentials according to the criteria
proposed by Hamman and coworkers [61].

25Orbitals with the same value of the principal quantum number n are said to comprise a ”shell”
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2.3.5 Solving the Schrödinger equation

2.3.5.1 Hartree-Fock approximation

Theory This method is a mean field method based upon a first idea of D. R. Hartree
and then improved by V. Fock in the 1930’s [52]. Their aim was to factorize the
electronic wavefunction into 1-variable orthonormal independent contributions (called
spin orbitals or also molecular orbitals, χi) to overcome the many-body problem due
to electron interactions. However this cannot be done in a trivial way due to the
intrinsic nature of electrons. The antisymmetry or Pauli exclusion principle implies
that electrons (which are fermions) are strongly correlated, as they are not allowed to
share the same quantum state. To fulfill this principle, a many-electron wavefunction
has to be antisymmetric with respect to the interchange of two electrons (both space
coordinates and spin) with the spin orbitals χ. This can be formally expressed by the
following property of the wavefunction, according to the notation of Eq. (2.66):

ψ(r1, . . . , ri, . . . , rj, . . . , rn,R1, . . . ,RN) = −ψ(r1, . . . , rj, . . . , ri, . . . , rn,R1, . . . ,RN).
(2.83)

The wavefunction ψ(r1, . . . , rn) solution of the electronic Hamiltonian is decomposed in
an antisymmetric combination of molecular orbitals by means of a Slater determinant:

ψ(r1, . . . , rn) =
1√
n!

∣
∣
∣
∣
∣
∣
∣
∣
∣

χi(r1) χj(r1) · · · χk(r1)
χi(r2) χj(r2) · · · χk(r2)

...
...

. . .
...

χi(rn) χj(rn) · · · χk(rn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.84)

The electronic Hamiltonian of Eq. (2.77) can formally be decomposed into two
contributions:

Helec =
n∑

i=1

−∇2
i

2m
+

n∑

i=1

N∑

J=1

ziZJe
2

|ri −RJ |
+

n∑

i=1

∑

j=1;j<i

zizje
2

rij
(2.85)

Helec = θ1({ri}) + θ2({ri}) (2.86)

h(r) = −∇2

2m
+

N∑

I=1

zZJe
2

|r− RJ |
(2.87)

θ1({ri}) =
N∑

i=1

h(ri) (2.88)

θ2({ri}) =
∑

j=1;j<i

zizje
2

rij
(2.89)

The first term θ1 represents the sum of one-electron contribution h(r) of the kinetic en-
ergy and Coulomb interactions with the nuclei. The term θ2 accounts for the Coulomb
interactions between electrons. Using the orthonormality constraint of the molecular
orbitals 〈χi|χj〉 = δij and the antisymmetric properties of the wavefunction one can
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simplify the Eq. (2.78). The total electronic energy of the system can then be expressed
as:

E({χa}) = 〈ψ|Helec|ψ〉 =

n∑

a

[χa|h|χa] +
1

2

n∑

a

n∑

b

[χaχa|χbχb] − [χaχb|χbχa] (2.90)

with

[χa|h|χb] =

∫

dr1χ
∗
a(r1)h(r1)χb(r1) (2.91)

[χaχb|χcχd] =

∫

dr1dr2χ
∗
a(r1)χ

∗
b(r1)r

−1
12 χc(r2)χd(r2). (2.92)

Then, it is convenient to introduce the following operators:

• The Coulomb operator Jb that represents the average Coulomb interaction be-
tween two electrons (ignoring the Pauli exclusion principle):

Jb(r1)χa(r1) =

{∫

dr2χ
∗
b(r2)r

−1
12 χb(r2)

}

χa(r1) (2.93)

• The exchange operator Kb:

Kb(r1)χa(r1) =

{∫

dr2χ
∗
b(r2)r

−1
12 χa(r2)

}

χb(r1) (2.94)

which balances the overestimated contribution of the Coulomb operator.

In fact, because of the Pauli exclusion principle, electrons having the same spin
orientation are not allowed to occupy simultaneously the same positions. It is possible
to support this argument by defining the probability P (ri, rj) of finding simultaneously
electron i at dri and electron j at drj:

P (ri, rj)dridrj =

∫

. . .

∫

dr1 . . . drn|ψ(r1, . . . , ri, . . . , rj, . . . , rn)|2dridrj, (2.95)

Imposing ri = rj in Eq. (2.83) yields:

ψ(r1, . . . , ri, . . . , ri, . . . , rn) = 0, (2.96)

and thus, P (ri, rj)dridrj = 0, the region around an electron in which no other electron
with parallel spin can go is called a Fermi hole. Because of these Fermi holes, the
electrostatic energy of electrons is overestimated as the Coulomb operator does not
make any distinction between correlated and uncorrelated pairs of electrons.

According to the variational principle one knows that the energy of a ground state
of a quantum system E0 is the lower bound of any energies given by approximate
wavefunctions for this system. To derive the Hartree-Fock equations the electronic
energy E must be minimized with respect to the spin orbitals. In addition to this we
suppose that spin orbitals are orthonormal. This condition must be taken into account
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by the minimization procedure. The Lagrange multipliers method is devoted to this
task leading to the following set of equations:

δL = δE −
n∑

a

n∑

b

εbaδ[χa|χb] = 0 (2.97)

n∑

a

n∑

b

εbaδ[χa|χb] =

n∑

a

n∑

b

εba[δχa|χb] + c.c. (2.98)

δE =

n∑

a

[δχa|h|χa] +
1

2

n∑

a

n∑

b

[δχaχa|χbχb] − [δχaχb|χbχa] + c.c. (2.99)

where c.c. stands for the conjugate values of the left terms, and the variables εba are
the Lagrange multipliers.

Following the operator formalism introduced above the Hartree-Fock equation is
now given by:

δL =
n∑

a

∫

r1δχ
∗
a(r1)

{

h(r1)χa(r1) +
∑

b

(Jb(r1) −Kb(r1))χa(r1)

−
n∑

b

εabχb(r1)

}

= 0 (2.100)

which leads to the set of Hartree-Fock equations:

f(r1)|χa〉 =

[

h(r1) +
∑

b

(Jb(r1) −Kb(r1))

]

|χa〉 =

n∑

b

εab|χb〉 (2.101)

Solving the Hartree-Fock equation The Fock operator f can be interpreted as an
average potential experienced by the ith electron due to the presence of the other
electrons. This average potential depends on the others spin orbitals. Therefore the
Hartree-Fock equations are non-linear and self-consistent. Consequently they must be
solved iteratively. This procedure is called the Self Consistent Field (SCF) method.
For further details see [143].

2.3.5.2 Density Functional Theory (DFT)

This approach has been introduced in the early 60’s by the theorem exposed by P.
Hohenberg and W. Kohn[72]. Their aim was to get rid of the many-body wavefunction,
that depends on 3×n electronic spatial coordinates, and replace it by the more simple
electronic density that simply depends on three spatial coordinates, see Eq. (2.102).
The main features of this method will now be outlined.
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Theory The physical object of importance in this theory is the electronic density, the
density ρ(r) of any given system of particles is directly derived from the many-body
wavefunction corresponding to this quantum system:

ρ(r) =

∫

. . .

∫

dr2 . . . drnψ
∗(r, r2, . . . , rn)ψ(r, r2, . . . , rn). (2.102)

The keystones of this theory can be summarized as follows:

• All properties of the electronic ground state and hence of a molecular system at
ground state can be completely determined by the ground state density ρ0;

• The energy of systems having the same type and number of particles in any given
external potential can be given using a universal functional. The density that
minimize the functional is the exact ground state.

These are existence theorems but no functional and so no solutions can be directly
derived from these statements. In order to proceed two assumptions have been proposed
by Kohn and Sham in 1964 [84]:

• The exact ground state density ρ0(r) can be represented by the ground state
density of an auxiliary system (described by an auxiliary Hamiltonian) of non-
interacting particles, see Eq. (2.103). This hypothesis is known as the ”non-

interacting-V-representability”:

EKS[ρ0(r)] = E[ρ0(r)]. (2.103)

This property does not hold for excited states ρ(r):

EKS[ρ(r)] 6= E[ρ(r)]. (2.104)

• The auxiliary Hamiltonian is given by the sum of the usual kinetic operator and
an auxiliary potential Veff(r).

The goal is to propose a relevant starting formulation for the functional. Using the
previous formalism from the Hartree-Fock theory one can easily express the electronic
density in term of orbitals φi(r):

ρ(r) =
n∑

i

fi|φi(r)|2. (2.105)

where the fis represent the integer occupation number of the orbitals.
Following the Kohn-Sham ansatz, almost all the operators of the Hamiltonian can

be formally expressed in terms of density-dependent terms:

• Ts[ρ(r)] represents the kinetic contribution to the energy;

• Vext(r) stands for the nucleus-electron interaction potential;
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• EHartree[ρ(r)] stands for the classical electron-electron interactions;

• Exc[ρ(r)] accounts for the exchange correlation contribution due to the Pauli
exclusion principle which correlates electrons, as stated by Eqs. (2.83) and (2.96).

Using the above notations, the auxiliary Hamiltonian can be explicitely expressed as:

EKS[ρ(r)] =
1

2

n∑

i

fi|∇φi(r)|2

︸ ︷︷ ︸

Ts[ρ(r)]

+

∫

drρ(r)
∑

I

ZIe

|RI − r|
︸ ︷︷ ︸

Vext(r)

+ (2.106)

1

2

∫

dr1dr2
ρ(r1)ρ(r2)

|r1 − r2|
︸ ︷︷ ︸

EHartree[ρ(r)]

+
∑

I,J

ZIZJe
2

RIJ
+ Exc[ρ(r)].

The constrained minimization of this functional (2.106) with respect to the one elec-
tron orbitals by means of the Lagrange multipliers method leads to the Kohn-Sham
equations:

1

fi

∂EKS[ρ(r)]

∂φi(r)
=

[

−1

2
∇2 + Vext(r) +

δEHartree

δρ(r)
+
δExc

δρ(r)

]

︸ ︷︷ ︸

HKS

φi(r) = εiφi(r) (2.107)

which can be reformulated by the following Schrödinger equation:

(HKS − εi)φi(r) = 0 (2.108)

where HKS is the effective Hamiltonian and εi are its corresponding eigenvalues. The
functional derivative of the exchange correlation energy is called the exchange correla-
tion potential:

Vxc[ρ(r)] =
δExc

δρ(r)
(2.109)

The exact expression for the exchange correlation functional is unknown and some
additional hypotheses have to be considered. The simplest approximation relies on
the assumption that the exchange-correlation energy density at each point corresponds
to the one of the homogeneous electron gas. However, even for such a simple model
system the expression of the correlation energy has to be calculated numerically with
Monte Carlo methods. This approximation is called the Local Density Approximation
(LDA), see (2.110). Some more advanced approximations, the so-called Generalized
Gradient Approximations or GGA, are based on more complex operators making use
of the density gradient of mth order, see (2.111).

ELDA
xc [ρ(r)] =

∫

drρ(r)εLDA
xc (ρ(r)) (2.110)

EGGA
xc [ρ(r)] =

∫

drρ(r)εGGA
xc (ρ(r);∇nρ(r)) . (2.111)
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2.3.5.3 Choosing the appropriate method

As discussed in the previous subsection, the Hartree-Fock approach requires the diago-
nalization of the matrix associated to the Fock operator. This is a calculation of order
M3, where M stands for the number of elements of the basis set (number of plane
waves or number of Gaussians). Furthermore, the 4-index matrix elements needed
to compute the Fock matrix scales like a M4 process. This makes the Hartree-Fock
method useful for single molecules made with a rather small number of electrons by
means of Gaussian basis set. In this work we aim at performing MD simulations of
relatively large systems (100 atoms) on relatively long time scale (up to 10 ps). Thus
the more computationally tractable DFT method has been favored for this task.

2.3.6 Ab initio molecular dynamics

As already mentioned earlier, the direct resolution of the time dependent Schrödinger
equations is not affordable due to both mathematical (many-body problems) and nu-
merical problems (CPU time). Several approaches (Ehrenfest, Born-Oppenheimer,
Car-Parrinello molecular dynamics) have been developed in order to circumvent these
difficulties.

2.3.6.1 Born-Oppenheimer molecular dynamics

The complicated time-dependent equations of motion linking the ionic wavefunction
and the electronic wavefunction is simplified assuming that ions are classical particles,
and that electronic wavefunctions depend implicitly on time [90]. The electronic and
the ionic degrees of freedom are coupled through the adiabatic approximation, see sec-
tion (2.3.2), and for this reason this method is called the Born-Oppenheimer molecular
dynamics method (BOMD). The equations of motions of the BOMD are:

MIR̈ = −∇I (minψ0
{〈ψ0|He|ψ0〉}) (2.112)

E0|ψ0 〉 = He|ψ0 〉 (2.113)

Here, the time-dependence of the electronic degrees of freedom follows from the para-
metrical dependence of the electronic wavefunction with respect to the nuclear posi-
tions. This approach is time consuming as the minimum of energy of the electronic
system has to be reached self consistently for each time step.

2.3.6.2 Car-Parrinello molecular dynamics

The aim of this method is to avoid any systematic energy minimizations of the elec-
tronic wavefunction. To achieve this goal the wavefunction is coupled more explicitely
to the time variable by introducing a fictitious dynamics of the electrons. This cou-
pling is considered fictitious as it is not grounded on any physical assumption. The
Car-Parrinello (CP) molecular dynamics (CPMD) should be regarded as an on-the-fly
optimization scheme [53, 99]. This method relies on the use of an extended Lagrangian
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considering the wavefunction as a function of its one-particle orbitals φi. The functional
derivatives with respect to the one-particle orbitals can then be interpreted as classical
fields that drive the wavefunction to its minimum [99]. As ions and electrons evolve
altogether it is not possible to converge to the electronic ground state corresponding
to the instantaneous ionic configuration at each time step. This means that the in-
stantaneous wavefunction and so the associated forces do not correspond to the BO
forces. Some orthonormality constraints are also included in the extended Lagrangian
through a set of Lagrange multipliers (Λij). A fictitious kinetic term with a fictitious
mass (µ) is added to the Lagrangian [25, 99, 151]:

L = µ
∑

i

∫

dr〈φ̇i(r)|φ̇i(r)〉 +
1

2

∑

I

MIṘ
2
I − E [{φi}, {RI}] (2.114)

+
∑

i,j

Λij

(∫

drφ∗
i (r)φj(r) − δij

)

.

The corresponding Euler-Lagrange equations of motion derived from Eq. (2.114) are:

µφ̈i(r, t) = − δE

δφ∗
i (r, t)

+
∑

j

Λijφj(r, t), (2.115)

MIR̈ = −∇IE [{φi},R] . (2.116)

The conserved quantity associated to this Lagrangian is:

Etot. =
∑

i

1

2
µi

〈

φ̇i|φ̇i
〉

+
∑

I

1

2
MIṘ

2
I + 〈ψ0|He|ψ0〉 . (2.117)

Following the adiabatic approximation and according to the variational principle, the
wavefunction has to be close to its ground state during a molecular dynamics simula-
tion. The electronic degrees of freedom must evolve adiabatically. As a consequence
the fictitious mass µ controlling the inertia of the orbitals has to be checked to ensure
a proper decoupling of the electrons with respect to the nuclei. Two competing criteria
have to be taken into account. The fictitious mass has to be chosen such that the lowest
electronic eigenfrequency is above the highest phonon frequency26. On the contrary
setting µ to very low values to ensure a proper decoupling of the ionic and electronic
degrees of freedom can be realized at the expense of the computational time efficiency
as the maximum length of the molecular dynamics time step δtmax is proportional to
[113]:

δtmax =

(
µ

Ecut

)1/2

, (2.118)

here Ecut represents the cutoff used for defining the plane waves basis set, see section
(2.3.3).

During a well-conditioned CP run the electronic wavefunction should be always
close to the BO surface (i.e. the minimum energy ground state). Due to the addition

26These electronic vibration mode scale with µ−1/2
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of electronic terms in the Lagrangian the total ionic momentum is not equal to zero at
each time step. However this does not disturb the physical time evolution due to the
smallness and boundness of the observed differences and the intrinsic averaging effect
of small-amplitude high-frequency oscillations within a few molecular dynamics time
steps. The accuracy of the simulation can be monitored through the fictitious kinetic
energy associated to the electronic wavefunction (∝ 1/2

∑

i µiφ̇
2
i ). To remain close to

the Born-Oppenheimer surface the electronic temperature has to remain close to zero.
The standard CP works for systems with a gap. The typical minimum frequency

of the electronic mode wmin
e is connected to the band gap27 Egap through:

wmin
e ∝

(
Egap

µ

)1/2

. (2.119)

When considering metallic or metal-like systems for example, the electronic gap is very
small or even vanishes (Egap → 0), in such systems zero-frequency electronic modes
wmin
e = 0 overlap with the phonon spectrum, the adiabaticity28 does not hold anymore.

The energy flow (and so the corresponding temperature drift) from ions to electrons can
be counterbalanced by thermostats [137], this method is especially useful for systems
having a small electronic gap Egap.

2.3.6.3 Choosing the appropriate method

In this work we have used the Car-Parrinello approach for two main reasons. First
the CP approach only needs a single orthogonalization process at each time step which
is by far more tractable than the full systematic diagonalizations required by the BO
molecular dynamics. Moreover the energy conservation is accurately fulfilled which
makes the CP method applicable to the microcanonical ensemble. On the contrary
the BO molecular dynamics leads to some systematic drift, the total energy is hardly
conserved with this method, in practice it has to be coupled with ionic thermostats
[99].

2.4 Characterization of the samples

The molecular dynamics trajectories we obtained by means of the aforementioned ap-
proaches have been characterized using standard observables. The definition of these
observable and their physical fundaments are described in this section.

2.4.1 Structural analysis

Pair distribution function The number of atomic pairs dnαβ given for two definite
species α and β (α,β ∈ {Si,O}) separated by a distance ranging in between r and r+dr

27The electronic gap Egap refers to the energy difference between the top of the valence band and
the bottom of the conduction band, where electrons are able to jump from one band to another.

28Refer to section (2.3.2) for the definition of quantum adiabaticity.
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can be formally given as a function of the pair correlation function (PDF) gαβ(r) by:

dnαβ =
Nαβ

V
gαβ(r)4πr

2dr with Nαβ =

{
Nα (Nα − 1) if α = β

NαNβ if α 6= β
(2.120)

where Nα and Nβ represent the number of atoms α and β. The function gαβ(r) can
also be defined using the local (particle) density ραβ(r) as follows:

ραβ(r) =
Nα∑

i=1

Nβ∑

j=1,j 6=i

δ(r− ri + rj), α, β = {Si, O}. (2.121)

Using the above function (2.121) one can define the pair distribution function gαβ(r)
(also named pair correlation function) of Eq. (2.120) as:

gαβ(r) =
V

Nαβ
〈ραβ(r)〉 . (2.122)

In the above equation 〈·〉 stands for the ensemble average. By construction gαβ(r) = 1
for an ideal gas. For a non ideal system any deviation of gαβ(r) from unity reflects
correlations between the particles due to the intermolecular interactions [53]. The pair
distribution function describes the density of interatomic distances in a material. The
PDF presents some characteristic oscillations for short and intermediate distances. The
first maximum represents the average distance between an atom of type α and its first
neighbors of type β, the second peak corresponds to the second neighbors shell, etc ...
For large distances these oscillations vanish to converge slowly to 1, and this accounts
for the equiprobability of spatial atomic distributions.

Structure factor Scattering experiments give direct access to informations in the
reciprocal space. To establish a connection between experiment and simulation it can
be worthwhile to calculate the partial structure factors which are given via the Fourier
transform of the corresponding pair correlation function:

Sαβ(k) = 1 +
Nαβ

V

∫

exp [−ik · r] gαβ(r)dr with α, β ∈ {Si,O} (2.123)

The structure factor can be expressed as a sum using the definition of Eq. (2.121) in
Eq. (2.123):

Sαβ(k) =
1

N

〈
Nα∑

i=1

Nβ∑

j=1

exp [ik · rij ]
〉

(2.124)

To compare our results for the structure factors to the experimental results ex-
tracted from the neutron diffraction for real silica we have also calculated the neutron
scattering function Sn(|k|)29:

Sn(|k|) =
1

NSib
2
Si +NOb

2
O

N∑

i=1

N∑

j=1

bibj 〈exp [ik · rij]〉 (2.125)

29In the expression of Sn(|k|) we use the norm of k as we assume the system is isotropic, this
assumption is valid for a liquid or an amorphous system.
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where the bi are the neutron scattering lengths, for further details see [63]. Sears [131]
has reported for bSi and bO the values 0.4149−12 cm and 0.5803−12 cm, respectively.

Angle distribution functions In order to further characterize the local structure of a
given material one can use the angular distribution functions. The angles are defined
between a particle j and two particles belonging to the neighborhood of j. The particles
neighboring the particle j have a distance compatible with the first peak of the PDF.
These distributions are especially suited for investigating the geometry of networks.
Silica is a strong glass former made of interconnected tetrahedral patterns, see Fig.

2.15. The probability distributions of the ÔSiO and ŜiOSi angles give information
about the intra-tetrahedral and inter-tetrahedral geometry, respectively (see Fig. 2.15).
The probability Pdαβγ(θ) of having an angle θ between atoms of type α, β and γ is given
by:

Pdαβγ(θ) =
1

N

〈
Nα∑

i=1

Nβ∑

j=1

Nγ∑

k>i

δ(θijk − θ)Θ(rαβ − rij)Θ(rβγ − rjk)

〉

(2.126)

where Θ(x) stands for the Heaviside function which screens out the irrelevant bond
lengths. The maximum bond lengths (rαβ , rβγ) are defined through the first minima
of the Si-O partial pair correlation function30. The constant N is a normalization
constant.

OSiO

SiOSi

Figure 2.15: Sketch of the specific angles defined in a silica network.

30≃ 2.35Å.
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Chapter 3

Ab Initio simulation

In this thesis we aim at describing with accuracy the interactions between atoms in
silica. These interactions can be described with details at the atomic level by means of
ab initio simulations. In the previous chapter we have introduced the main principles of
quantum mechanics along with the hypothesis/approximations and numerical methods
commonly assumed to solve the many-body problem arising from the electron-electron
interactions. Choosing the appropriate approximation can be motivated by physical
assumptions, but most of the time setting up the appropriate parameters can be seen
as an art. In this chapter we will expose the different parameters chosen for silica and
the methodological approach followed to generate liquid silica models by means of ab

initio simulations.
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3.1 Parameters calibration: Energies, forces, stresses

CPMD All the ab initio calculations carried out in this work have been made using
CPMD 3.9.2

1 [25, 33, 99]. The CPMD code is a parallelized plane wave/pseudopotential
implementation of Density Functional Theory, particularly designed for ab initio molec-
ular dynamics.

Functional The choice of the right exchange functional correlation, already described
in section (2.3.5.2), is of great importance. In the past silica polymorphs have been
extensively investigated using DFT. D. R. Hamann [62] has compared features issued
from both LDA and GGA functional approximations for the high pressure phase tran-
sition in between α-quartz and stishovite. In this study it was demonstrated that GGA
yields correct relative energies and reasonably good prediction of the transition pres-
sure. However, the structural parameters are less accurate than those predicted by LDA
calculations. Moreover, local density approximation has been extensively used in pre-
vious work on silica phases, especially for its amorphous and liquid form, and has been
reported to give reliable results when compared to experiments [10, 11, 12, 127, 128].
In this work we have used the LDA form proposed by Goedecker et al. [55].

Pseudopotential Pseudopotentials are of great importance in ab initio simulations
as they mimic the influence of the core states on the valence wavefunctions. By using
these potentials one gets rid of numerically handling the core states which are not any
longer explicitely considered. The pseudopotential formulations proposed by Bachelet-
Haman-Schlüter [6] and Troullier-Martins [148] have been respectively used for the
silicon and oxygen atoms according to the methodology proposed in previous works
[10].

Energy Cutoff As mentioned in section (2.3.3), the energy cutoff parameter de-
termines the accuracy of the wavefunctions and all its related features such as en-
ergy/forces/stress tensor. This cutoff dependence has been checked on an amorphous
system of 114 atoms, see Figs. 3.1, 3.2 and 3.3. Covalent interactions in silicates are
mostly controlled by the oxygen electrons, for an accurate description of the densely
charged parts of the electronic density, namely the two oxygen lone pairs and the four
bindings sp3 orbitals of silicon, one should consider an energy cutoff higher than 70
Ry, see Fig. 3.1. For these values, see Figs. 3.1 and 3.2, the energy and the forces are
reasonably converged. The stress tensor, see appendix (A), is more problematic, even
if this quantity can be considered as a first order energetic feature like forces. In prac-
tice we know that the convergence of the stress tensor is hard to achieve, in classical
simulations using the BKS potential the stress tensor was found to be sensitive to the
short range cutting distance [153]. In quantum simulations a proper convergence of
the stress tensor is also difficult to achieve with a 70 Ry cutoff2 as illustrated by Fig.

1http://www.cpmd.org/
2The stress tensor is calculated by summing many atomic and non-local contributions. The overall

error cumulated while summing all the individual contribution may account for the imprecision of the
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Figure 3.1: The total electronic energy (in Hartree unit, 1 Ha= 2 Ry) as function of the
energy cutoff.
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Figure 3.2: The x-component of the force for a silicon atom and for an oxygen atom
represented as a function of the energy cutoff for a sample of liquid silica made of 114
atoms..

3.3. We opted for a 130 Ry cutoff3 for the calculation of the forces that are destined

stress tensor when using a 70 Ry cutoff.
3For a cubic box made of 114 atoms with Lbox ≃ 12 Å, a 70 Ry cutoff accounts for 459329 plane

waves, while using a 130 Ry cutoff requires 1162083 plane waves, the energy cutoff Ecut is defined as
the squared value of the reciprocal vector. The scaling factor between the two numbers of planewaves
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Figure 3.3: Diagonal (ii) and off-diagonal (ij) components of the stress tensor Π represented
with respect to the energy cutoff. The internal pressure P is given by P = Π11+Π22+Π33.
.

to be used in the fitting procedure in chapter (4). The 130 Ry cutoff has been chosen
consistently with the results of our calculations presented on Fig. 3.3 and to the values
reported in the literature [145]. A 70 Ry cutoff has been used for the CP molecular
dynamics runs.

3.2 Crystalline phases: Pseudo-Potential validation

Introduction Investigating crystalline phases by means of first-principles approaches
can be viewed as an evidential test for checking the validity of the simulation parame-
ters. Crystals show translational invariance properties which are compatible with the
periodic boundary conditions used in simulation. According to Bloch’s theorem, see
section (2.3.1), accurate simulations can be carried out on such system even with a
restrained number of atoms by averaging over k-points. Due to the symmetric proper-
ties of crystals only few parameters (lattice constants and asymmetric parameters) are
needed to define their overall structure. Moreover, these parameters can be experimen-
tally determined with a great accuracy [154, 103, 161]. For this reason the comparison
of the predicted structure to the experimental one can be envisaged as an enlightening
test for the simulation parameters (functional, pseudopotentials and cutoff). These
tests have partially been carried out by M. Benoit and coworkers [10] but the precise
influence of the stress tensor on the lattice parameters calculation has not been tackled.
In this section we clarify this issue.

is (130/70)3/2 = 2.828 = 1162083/459329.
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3.2 Crystalline phases: Pseudo-Potential validation

3.2.1 α-quartz

The α-quartz, see Fig. 3.4 is the stable crystalline phase of silica. Its stability domain
goes from 0 K to 846 K at 1 bar, above 846 K α-quartz undergoes a phase transition
to β-quartz. As α-quartz is very stable for low temperatures there is no need to
take into account the effects of the thermal expansion to accurately reproduce the cell
parameters, a simple optimization procedure is sufficient in this case. Moreover, due
to this high stability at standard conditions of pressure and temperature, α-quartz has
been widely investigated by experiments. Moreover, quartz can be considered as being
a low-symmetrical polymorph of silica (fewer internal constraints than β-cristobalite
for example), which means that several parameters are required to define properly the
structure. For all these reasons α-quartz can be regarded as a relevant crystalline phase
for testing the chosen pseudopotentials.

Figure 3.4: Left panel: α-quartz network of interconnected tetrahedra in the conventional
setting. Right panel: The atomic structure of α-quartz according to the space group
P3121, the silicon atoms are represented by small spheres, while oxygen atoms are rep-
resented by big spheres.

Geometry optimization With a view to checking whether the ab initio methodol-
ogy we have set up is able to predict the equilibrium structure of α-quartz, we have
performed two kinds of geometric optimizations. In the first case the atomic positions
are relaxed at constant cell parameters. In the second case, both atomic positions and
cell parameters are optimized. As stated in appendix A the forces applied on the cell
are proportional to the stress tensor, thus while optimizing the cell parameters we can
checked if the internal pressure of the system were reliably described, see Eq. (A.63).
The simulations have been carried out using 2× 2× 2 trigonal unit cell corresponding
to a 72 atom sample.

As reported by Xu [165] and Chelikowsky [31] the energy band diagram of α-quartz
for valence states is relatively flat and thus one can consider that calculations can
be limited to the Γ point only as energetic features do not depend on the crystal
momentum, see section (2.3.1). The results are presented in Table 3.1. The structure
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is in very good agreement with the experimental one and comparable with the ones
given in literature using the same kind of methodology [94, 62]. It is worthwhile to note
that for the frozen cell case the internal pressure is badly reproduced (≃ −3 GPa). This
negative pressure accounts for the volume contraction observed during the full lattice
optimization.

Parameters Experiment fixed cell error[%] relaxed cell error[%]

a[Å] 4.9124 - - 4.850 1.27
c[Å] 5.4038 - - 5.350 0.99
α[◦] 90. - - 90.1 0.11
β[◦] 90. - - 89.9 0.11
γ[◦] 120. - - 120.1 0.08

V[Å−3] 112.933 - - 108.850 3.68
u 0.4701 0.471 0.19 0.464 1.29
x 0.4139 0.414 0.24 0.411 0.70
y 0.2674 0.265 0.89 0.283 5.83
z 0.2144 0.212 1.12 0.212 1.12

Table 3.1: Cell parameters for α-quartz crystal. The results corresponding to the ab initio

simulations have been carried out at 0K on a 72 atoms sample using Ecut = 130 Ry.

Phonon density of states A phonon is a quantized mode of vibration occurring in a
rigid lattice. The study of phonons is an important part of solid state physics, because
phonons play a major role in many of the physical properties of solids, including the
thermal and electrical conductivities of materials. At low temperature these vibrations
can be treated within the harmonic approximation. The distribution of vibrational
states (VDOS) over frequency g(ν) gives the number of vibrational states having a
frequency in the range ν and ν + dν.

Within the harmonic approximation the potential energy of the system V can be
written as a function of ui which corresponds to the displacement of the atoms i from
its equilibrium positions r0

i :

u0
i = ri − r0

i (3.1)

Using the above notation the potential energy V of the system can be expressed:

V ({r}) ≃ V ({r0}) +
∑

i,α

(
∂V ({r})
∂ri,α

)

{r0}

ui,α +
∑

i,α;j,β

(
∂2V ({r})
∂ri,α∂rj,β

)

{r0}

ui,αuj,β, (3.2)

here ui,α represents the Cartesian coordinates of the displacement ui with α ∈ {x, y, z}.
The coupled equations of motion of the system are:

mi
∂2ri

∂t2
= Fi(r) = −∂E({r})

∂ri
(3.3)
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mi
∂2ui,α
∂t2

= −
∑

j,β

Ci,α;j,βuj,β, (3.4)

where

Ci,α;j,β =

(
∂2V ({r})
∂ri,α∂rj,β

)

{r0}

. (3.5)

Using the above equation one can define the dynamical matrix:

Di,α;j,β =
1

√
mimj

Ci,α;j,β. (3.6)

The system of equations described in Eq. 3.4 can be solved in the harmonic approxi-
mation where the vibrational modes at frequency w are described by displacements:

ui(t) = ui exp(ıwνt). (3.7)

so that Eq. 3.4 becomes for each i:

−w2
νmiui,α = −

∑

j,β

Ci,α;j,βuj,β (3.8)

The full solution for all vibrational states is the set of independent oscillators, each
with vibrational frequency wν determined by the classical equation:

det

∣
∣
∣
∣

1
√
mimj

Ci,α;j,βuj,β − w2
ν

∣
∣
∣
∣
= 0 (3.9)

The associated set of vectors corresponding to a given eigenfrequency give the normal-
ized direction for the displacement of each atoms at wν .

In this work the VDOS of α-quartz has been calculated and processed using the
correction function derived by Taraskin and Elliot [146] with a view to comparing it
to the neutron scattering experiments carried out by Strauch [141], see Fig. 3.5.

This correction function connects the vibrational density of states given by simu-
lation (named ”true” vibrational density of states according to the nomenclature of
Ref. [146] ) with the one measured in inelastic neutron experiments. Experimentally,
the VDOS is extracted from an analysis of the dynamical structure factor4 which is
only roughly proportional to the true VDOS. However the inelastic neutron scattering
VDOS gins(ν) can be connected to the true VDOS g(ν) using the correction function
C(ν) as follows:

gins(ν) = C(ν)g(ν) (3.10)

where C(ν) is given by:

C(ν) ≃ 1 +
mSi + 2mO

b2Si + 2b2O
[ρSi(ν) − ρ

(0)
Si ]

(
b2Si

mSi

− b2O
mO

)

(3.11)

4S(Q, ω) = 1

2π~N〈b2〉
∫∞
∞
∑

i,i′ bibi′
〈
eıQ.Ri(0)eıQ.Ri′ (t)

〉
eıωtdt
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ρSi(νj) =
∑

i∈Si

|eji |2/
∑

ℓ

|ejℓ|2 (3.12)

ρ
(0)
Si =

NSimSi

NSimSi +NOmO

. (3.13)

In the above equations mi represents the mass of the atom i, bi is the scattering cross
section, Ni is the number of atoms of species i, N = NSi + NO stands for the total
number of atoms considered. The vector e

j
i corresponds to the displacement of the

particle i at frequency νj .
The experimental spectrum of α-quartz presented in Fig. 3.5 has been built by

summing of the contributions of the different dispersion branches given in Ref. [141].
The density has then been smoothed using a Gaussian broadening of width 2σ =
1.05 THz. It is worthwhile to note that neutron scattering experiments may lack of
precision in the low frequency range, below 8 THz, as the Brillouin zone has not been
homogeneously sampled [141]. We note that the calculated high-frequency double peak
position is in very good agreement with experimental data. This was not the case for
a similar calculation using the DFT LDA reported by Roma et al. [123] on a 2× 2× 1
supercell (36 atoms) when the positions and the widths of this high frequency band
do not agree with experimental data. In the intermediate frequency range (10 to 30
THz), the peak heights and frequencies are qualitatively well reproduced.
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Figure 3.5: Vibrational density of states of α-quartz. The experimental data at 20K from
[141], and present ab initio data at 0K.

Molecular dynamics Car-Parrinello molecular dynamics simulations have been car-
ried out on the crystalline sample at 300 K using the experimental lattice parameters.
The temperature investigated is low (Tmelt ≃ 1500 K), the ions move with small am-
plitude around their equilibrium positions. Moreover the electronic gap, see section
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3.2 Crystalline phases: Pseudo-Potential validation

(2.3.6.2), in α-quartz is well-defined see Fig. 3.9, as a consequence there is no need to
use the ionic and electronic thermostats, see section (2.3.6.2). The normalized differ-
ential correlation function Tn(r) has been computed and compared to the experimental
data provided by Tucker and coworkers [150]. The TCF can be defined using the partial
pair correlation function gij(r):

Tn(r) =

∑

i,j∈{Si,O} cibicjbj(gij(r) − 1)
∑

i∈{Si,O}(cibi)
2

+ 1, (3.14)

where ci = Ni/N (Ni corresponds to the number of atoms i considered, whereas N
stands for the total number of atoms), bi is the neutron scattering cross section of atom
i. Apart from the first peak height, all the peaks are well localized and well reproduced
(see Fig. 3.6). The first peak is connected to the Si-O bond at 1.60 Å. The second
peak accounts for the O-O distances the small pre-peak a 3.05 Å corresponds to the
Si-Si pair.
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Figure 3.6: In black, the ab initio pair correlation function as defined in Eq. (3.14). The
overall length of the simulation is equal to 11.5 ps, the average temperature is equal
to 308K. In red the experimental G(r), the small peaks at 2.15Å and the pre-peaks
surrounding the Si-O peaks at 1.6Å can be considered as noise.

3.2.2 β-cristobalite

The β-cristobalite is the stable crystalline phase of silica for high temperature. Its sta-
bility domain ranges from 1743K to 2000K at 1 bar. Above 2000K the crystal melts.
Although the structures of most SiO2 polymorphs are well known, the determination of
structure of β-cristobalite has been controversial, with at least five different structural
forms proposed up to now [8, 111, 116, 162, 163]. Many studies on cristobalite refer

53



3. Ab Initio simulation

to its hypothetical “ideal” form as proposed by Wyckoff [164], this structure is repre-
sented in Fig. 3.7. In this section we will refer to the structure proposed by Wright
and Leadbetter [161], this crystal is different from the one proposed by Wyckoff, the
structure can be visualized as resulting from rotations of about ±20◦ of each SiO4

tetrahedron of the ideal structure, see Fig. 3.8.

Figure 3.7: Left panel: β-cristobalite network of interconnected tetrahedra. Right panel:
The atomic structure of β-cristobalite, the silicon atoms are represented by small spheres,
oxygen atoms are represented by big spheres.

Figure 3.8: Left panel: Ideal β-cristobalite structure. Right panel: The β-cristobalite
structure proposed by Wright and Leadbetter [161], the SiO4 tetrahedron of the ideal
structure are rotated.

Geometry optimization Like the α-quartz case, two kinds of optimization have been
achieved. The system under consideration here was made of 3 × 2 × 2 tetragonal
body-centered unit cells. The corresponding results are compiled in Table 3.2. It
was not possible to proceed to constrained optimizations according to the point group
symmetry properties5. As a consequence all the atomic positions were affected by

5The CPMD code is mainly devoted to ab initio molecular dynamics, not especially suited for the
crystalline optimization.
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the optimization process. Nonetheless only slight changes were observed (< 5%), and
the resulting structure is in good agreement with the one given by Liu and coworkers
[93]. These results have to be considered with care as the optimization process used
in this case does not take into account thermal effects which can have some influence
on the structure, for example thermal expansion accounting for an increase of the cell
parameters and cell volume.

Parameters Experiment fixed cell error[%] relaxed cell error[%]

a[Å] 5.0424 - - 5.0263 0.31

c =
√

2a[Å] 7.131 - - 7.1083 0.31
α[◦] 120. - - 120.7 0.58
β[◦] 120. - - 120.7 0.58
γ[◦] 90. - - 89.12 0.98

V[Å−3] 90.652 - - 88.67 2.19
x 0.09 0.086 4.44 0.086 4.44

Table 3.2: Cell parameters for β-cristobalite crystal. The results corresponding to the ab

initio data have been carried out at 0K on a 72 atoms sample using a 130 Ry cutoff.

3.2.3 Electronic structure

The electronic structure can be characterized by means of the electronic density of
states (EDOS). The EDOS g(E) quantifies the number of allowed quantum energy
levels per unit volume of the system, within the energy range E to E+dE. To achieve
the calculation of the EDOS the wavefunction of the system has been quenched to
the Born-Oppenheimer surface and the Kohn-Sham orbitals and their corresponding
eigenvalues have been calculated. Crystals as α-quartz and β-cristobalite are made of

regular tetrahedra, the Si-O bond lengths and both ÔSiO and ŜiOSi angles are well-
defined. This allows a straight interpretation of the electronic density of states as the
crystalline symmetry enhances the degeneracy of the electronic states accounting for
the characteristic peaks in the density of states. The peaks near −20.0 eV correspond
to the oxygen 2s states, the ones included in the range going from −10.0 eV to −5 eV
correspond to Si sp3 hybridized orbitals bonded to O 2p orbitals, see Fig. 3.10, and the
states above −5.0 eV and below 0 eV correspond to the oxygen 2p non-bonding orbitals
[14], the band gap given by our calculations is equal to 5.8 eV . This result is smaller
than the experimental one of 9 eV reported for α-quartz [59, 69] 6. Such a discrepancy
was expected as LDA calculations are well known for underestimating the experimental
band gap, nevertheless this result is compatible with precedent calculations carried out
on such systems [14, 127], and are also consistent with previous experimental results
reported by V. P. Zakaznova-Herzog et al. [167].

6The band gap for pure silicon at 300K is Eg = 1.11 eV, for germanium Eg = 0.67 eV, both are
indirect transitions [82].
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Figure 3.9: Electronic density of states of α-quartz and β-cristobalite (Egap ≃ 5.8 eV). The
Fermi levels (the energy of the highest occupied quantum state) have been conventionally
set to 0, the spectrum has been smoothed used a Gaussian broadening of width 2σ = 0.40
eV.
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Figure 3.10: Linear combination of s and p orbitals corresponding to sp3 orbitals .

3.3 Liquid silica: Practical aspects

Introduction The structure of silica at low pressure is characterized by a continuous
network of SiO4 tetrahedra connected by their vertices. For this reason amorphous
and liquid forms of silicon dioxide are often considered as a prototypical example of
a network-forming disordered material. The strength of the bonding makes defects in
silica such as three or five-coordinated silicon atoms rather unlikely [13]. Unfortunately,
structural rearrangement and thus relaxation need bond breakings. Therefore creating
and sampling realistic glasses requires rare reordering events and is a challenging task
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through first-principle methods.

3.3.1 Sample generation

The natural procedure to generate a liquid configuration using molecular dynamics
consists in melting a crystal. Quenching and thermalizing silica samples in this man-
ner by first-principles methods is computationally very expensive. Therefore, in this
work, we follow the methodology proposed by Benoit et al. [10]. First liquid sam-
ples are equilibrated by means of classical molecular dynamics and then the resulting
configuration was used as starting point for the CPMD runs. The liquid phase is thus
accessible at lower CPU time cost, since part of the equilibration are carried out within
the framework of classical molecular dynamics. The classical sample considered was
made of 216 atoms using the BKS potential [9]. A β-cristobalite sample has been
molten at a very high temperature (7000K) and then cooled down to 3600K. From this
sample we extracted and thereafter equilibrated a subset of 114 atoms contained in a
11.98 Å box corresponding to a density of 2.2 g.cm−3. The corresponding final atomic
configuration and velocities were considered as input data for the CPMD run. The first
3.5 ps of the CP dynamics has not been taken into account for the calculations of the
different observables, the CPMD simulation last for 16 ps. The time step considered
for the simulations was 0.0725 fs and the fictitious electronic mass for the CP dynamics
was set to µ = 600 a.u.

3.3.2 Thermostats

Ionic thermalization The ionic temperature has been kept close to 3600 K using
Nosé-Hoover chains thermostats [73, 112], see section (2.2.2). This approach consists
in adding chains of interconnected dissipative terms to some degrees of freedom of the
system. It is preferable to use chains of Nosé-Hoover thermostats instead of a single
Nosé-Hoover term to ensure a homogeneous sampling of the phase space [96]. In this
case chains made of four thermostats have been used. Each chain was coupled to each
nuclear degree of freedom of the system (”massive thermostating approach”). This
procedure shortened considerably the equilibration period [117]. Furthermore, these
terms require a fictitious mass parameter Q calibrated in order to synchronize the
thermostating chain to a typical phonon frequency of the nuclear system [97]. The
characteristic peaks (∼ 32 − 35 THz) in the high frequency domain shown in Fig. 3.5
have been used as a reference for setting the mass parameters.

Electronic thermalization The electronic density of states has been computed using
our 114 atom samples and compared to the density of α-quartz (see Fig. 3.11). In
the molten silica sample the band gap is significantly reduced in this case. Problems
may arise because of the small gap that may lead to zero-frequency electronic modes
which might overlap with the phonon spectrum7 ( see section (2.3.6.2)). To tone down

7wmin
ion ≪ wmin

elec., with wmin
elect. ∝

(
Egap

µ

)1/2
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the electronic temperature and so to ensure adiabaticity, Nosé-Hoover thermostating
chains have been coupled to the orbital degrees of freedom [99]. Preceding attempts
done without electronic thermostats lead to systematic drifts as shown in Fig. 3.12.
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Figure 3.11: Electronic density of states of SiO2 at 3600K (Egap ≃ 1.29 eV), the spectra
have been smoothed using a Gaussian broadening 2σ = 0.40 eV.
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Figure 3.12: Ionic temperature (solid) and electronic (dashed) kinetic energy represented as
a function of time. The ions are thermalized by means of Nosé-Hoover chain thermostats,
the electronics orbitals are not connected to any thermostat.
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3.4 Liquid silica: Comparison to classical simulation

In this section we present the results of our Car-Parrinello simulations. Systematic
comparisons have been made with classical molecular dynamics carried out using the
BKS potential. The classical simulations have been done with a system of 1152 atoms,
the density set to 2.2 g/cm3 in agreement with the ab initio simulations.

3.4.1 Pair correlation function

The ab initio simulations have been carried out at high temperature (3600 K). Very
few experiments have been made on molten silica samples as accurate diffraction mea-
surements on high temperature liquids imply many technical difficulties, especially on
liquid silica which evaporates quickly above 2410 K [104]. For these reasons a compari-
son between theory and experiments is difficult to achieve. Recently, Mei and coworkers
[104] have investigated the structure of liquid SiO2 (2100◦C) at 1 atm. by means of
x-ray diffraction.

Experimentally, the average Si-O bond increases upon heating the glass from 1.597
Å at 25◦C to 1.626 Å in the temperature range 1870 K < T < 2370 K [104]. These
results are consistent with the CPMD simulation within the NVT ensemble where the
average distance is found equal to 1.625 Å. Previous simulation made on liquid silica
by means of ab initio simulations predict an equilibrium distance of 1.67 Å for the Si-O
bond [128].

The average coordination number Zαβ(r) representing the average number of atom
β surrounding an atom α as a function of the distance rαβ has also been calculated,
see Fig. 3.14. For a distance rαβ = 2.36 Å corresponding to the first minimum of
gSiO(r) the average coordination numbers for the Si-O and O-Si are equal to 4 and 2
respectively. The silicon atoms are surrounded by four oxygens whereas the oxygens
are surrounded by two silicon atoms, which support the assumption that a strong
tetrahedral network exists even at high temperatures. As no few many experimental
data referring to the liquid state were available, the structure of our system has also
been compared to the one corresponding to the experimental vitreous phase, see Table
3.3. The results given by simulations are in very good agreement with the experiments.

The ab initio simulations have also been compared to the MD simulations with
the BKS potential. The partial pair correlation function corresponding to both clas-
sical and first-principles simulations is shown in Fig. 3.13. It appears that the BKS
potential systematically overestimates the maxima of the peaks. Indeed, the sample
configurations as given by the BKS potential are more structured than the ones given
by CPMD. This can be seen as a remaining effect of the nature of the system (crystal)
chosen for the fitting of the BKS. As can be seen in Table 3.3 the positions of the first
peaks of the partial pair correlation function for the O-O and Si-O pair are quite well
reproduced, whereas the Si-Si peak is predicted at 3.123 Å for the BKS whereas the
CPMD simulations describe the first Si-Si peak at 3.097 Å.
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Experiments Theory
Peaks positions [Å]

Mozzi [108] Grimley [57] Mei [104] CPMD BKS

first 1.62 1.608 1.626 1.625 1.601
SiO

second 4.15 - - 4.031 4.0495
first 2.65 2.626 - 2.647 2.616

OO
second 4.95 - - 4.991 4.977
first 3.12 3.077 - 3.097 3.123

SiSi
second 5.18 - - 5.098 5.151

Table 3.3: Localization of the first and second nearest-neighbor peaks in the radial distri-
bution function g(r).
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Figure 3.13: The different partial pair distribution functions. The solid line correspond
to the ab initio simulations. In dashed lines the classical results as given by the BKS
potential.

3.4.2 Angular distribution function

The angular distribution function characterizes the geometry of the tetrahedral net-

work. The plots representing the intra-tetrahedral angle ÔSiO and the inter-tetrahedral

angle ŜiOSi are shown in Fig. 3.16. The average inter-tetrahedral angle, as predicted
by CPMD, is found to be equal to 105◦8, the experimental results [104] support a 107◦±2◦

value. The value of the ŜiOSi angle is linked to the nature of the tetrahedral network.
Tetrahedra are connected together to form rings, examples of rings are given in Figs.
3.15: A ring can be defined as a closed loop of covalent bonds formed in the struc-
ture. A network dominated by 6-membered rings is consistent with an average angle

8Close to the value suited for the perfect tetrahedral system 109◦.
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Figure 3.14: Coordination number Zαβ(r) representing the average number of β species
surrounding an α atom as a function of the distance rαβ.

of ≃ 147◦. On the other hand an increase of the ratio of 3-membered rings supports a

decreasing of the ŜiOSi angle. As shown by Raman experiments [102], at high temper-
ature the 3-membered rings topology is more significantly represented. These results

are in qualitative agreement with the theory where the average ŜiOSi value is localized
at 136◦, whereas the experimental value is estimated at 138◦ [104].

The classical simulations give an overall good description of the intra-tetrahedral
angle. Nevertheless, the classical inter-tetrahedral angle is not in good agreement with
the ab initio results where the average angle is found equal to 147◦, comparable to the
experimental values for low temperatures.

Figure 3.15: Sketch of a ring of size n = 4 in a silica network.
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Figure 3.16: Angular distribution function corresponding to the classical and first-principle

simulations. The first SiO neighbor shell as been defined using a 2.35Å cutoff.

3.4.3 Mean squared displacement

One of the simplest quantities to study the dynamics of a fluid system on a microscopic
level is the mean squared displacement (MSD) 〈r2(t)〉 of a tagged particle (of type α):

〈
r2
α(t)

〉
=

1

Nα

Nα∑

l=1

〈
|rl(t) − rl(0)|2

〉
(3.15)

According to the Einstein relation the MSD is proportional to the self-diffusion
constant (Dα) for the long time scale:

lim
t→∞

〈r2
α(t)〉
t

= 6Dα (3.16)

The MSD computed for our classical and ab initio simulations are shown in Figs.
3.17 and 3.18. Here, it is not possible to directly compare the two kinds of simulation
as the ab initio dynamics features is affected by the thermostats connected to the
ions. The effects of thermostats in the CPMD simulations may account for the absence
of the small bumps that are yet described in the BKS MSD for intermediate time
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3.4 Liquid silica: Comparison to classical simulation

scales (at 240 fs), see Figs. 3.17 and 3.18. These small bumps correspond to the so-
called boson peak which is a vibrational feature at low frequencies [1-2 THz] whose
precise origin is currently still a matter of debate [75]. As we have not reached the
diffusive regime we are not able to proceed to a proper extraction of the self-diffusion
constant. Nevertheless the dynamics in CPMD simulations using Nosé-Hoover chains
of thermostats seems to be more diffusive than the classical dynamics given by the
BKS potential.
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Figure 3.17: Time dependence of the silicon mean squared displacement corresponding to
the CPMD simulations (solid lines) and to the BKS simulations (dashed lines).

3.4.4 Pressure

The pressure gives informations relative to the mechanical stability of the system. The
pressure is connected to the stress tensor Π by the following relation:

P =
1

3
Tr (Π) +

NkBT

V
. (3.17)

Further details concerning the stress tensor are given in Appendix A. As already stated
in the previous section (3.1) and illustrated in Fig. 3.3, the stress tensor requires a
large plane wave cutoff (≥ 130 Ry). Because of a prohibitive computational time cost
ab initio molecular dynamics simulations were not accessible. Nevertheless, for the few
equally spaced configurations extracted for the purpose of the force fitting we have
computed the pressure using a 130 Ry cutoff. Due to the poor ensemble averaging9

one can hardly assert whether or not the value of the pressure is fully converged. The

9Only 100 configurations have been used for this calculation
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Figure 3.18: Time dependence of the oxygen mean squared displacement corresponding to
the CPMD simulations (solid lines) and to the BKS simulations (dashed lines).

estimated average value of pressure is −6.9± 1.6 GPa10. On the one hand, our system
exhibits a strong negative pressure at 3600 K for a 2.2 g/cm3 density, which means that
it tends to increase its density. One the other hand experimental data [7] shows that
the density of SiO2 decreases for temperature above 1820K (1.929 g.cm−3 at 2322K).
These results show that even if our estimation of the pressure is qualitative, this value
is in strong disagreement with experiment. This bad agreement can be understood
from the hardness of silica, the bulk modulus K11 reported in the literature at 1773K
is K = 17.57 GPa [91], qualitatively an isotropic variation of the volume of 10% leads
to a change in the pressure of ≃ 1.75 GPa (0.1K = 1.75). It is also worthwhile to
mention that during the optimization of the crystalline structure, small changes of the
cell parameters were leading to significant changes of the stress tensor, for example a
change of the volume of 5% of α-quartz cell leads to a change of the internal pressure
of 10.2 GPa. Consequently, due to the sensitiveness of the stress tensor with respect to
the cell parameters one can easily understand that even slight changes in the density
may lead to wrong values of the internal pressure.

10The kinetic contribution to the pressure is not dominant. It can be derived form the ideal gas
equation, 〈Pkin〉 = ρRT/MSiO2

: With ρ = 2200 kg.m−3, MSiO2
= 60.0843 g.mole−1, the kinetic

pressure is found equal to 1.09 GPa.
11The bulk modulus is defined K = −V (∂P/∂V )T = 1/χT where χT is the isothermal compress-

ibility.
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3.5 2-body potential approximation

3.5 2-body potential approximation

Introduction Even if bondings in silica can be accurately described by means of ab

initio calculation through many-body interactions, it can be worthwhile to ask whether
the classical pair interactions approach works according to the encouraging results given
by the BKS potential. In this section we have tried to investigate the nature of the
effective bonding as described by first-principles methods.

3.5.1 Analytical Approach

Formally, the interaction potential and all its connected features such as forces and
stresses can be decomposed in a sum of 1-,2-,..., N -body interactions for a system
made of N atoms, see Eq. (2.34). Following the encouraging results shown by the
BKS potential our working hypothesis consist in considering the ab initio interactions
dominated by two-body terms.

Two-body potential For any system described by two-body interactions it is possible
to rebuild the pair potential by means of the total effective forces applied on the atoms.
By definition the total force applied on an atom i is given by:

Fi =
∑

j 6=i

−∂V2({rij})
∂rij

eij with eij =
rij

rij
(3.18)

Hence, by deriving the scalar product of the force by the unitary interatomic vector
eij , one can retrieve the value of the second derivative of the potential:

(
∂ (Fi · eij)

∂rij

)

ri

= −∂
2V2({rij})
∂r2

ij

, where: eij · ekl 6= 0. (3.19)

From Eq (3.19) it is straightforward to calculate the potential by successive integrations.

N-body potential For a system characterized by N -body interactions the preceding
approach is a more delicate issue. The example of a system presenting only three-
body interactions is quite instructive. In this case, the dependence of the interatomic
force Fij applied an atom i by an atom j with respect to the interatomic distances
rij is not null and cannot be assigned to any two-body interactions, see Eq. (3.19)
and Fig. 3.19. Indeed, a formal decomposition of the different contributions is not
feasible. Furthermore, special care has to be taken when extracting the effective two-
body interactions part of a N -body interacting system. Contrary to the idealized two-
body case, the surrounding environment12 may play a role. This two-body potential
assumption will not give much more informations concerning the exact shape of an
underlying effective two-body potential. It could be seen as a mean of quantifying the
effective nature of the interactions (qualitative potential energy shape, minimum of the
Si-O attractive energy term, effective range, etc...).

12Here we take into account all the atoms and we exclude the i and j atoms.
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Figure 3.19: Interactions between particles i, j and k are described only by a three-body
potential that describes repulsion between bond pairs. Assuming that the bond lengths
are constant (rigid bond) the partial force applied on atom i Fijk = P + R (in red) is
perpendicular to the interatomic vector rik. The pair term P depends on the interatomic
distance rij although no pair potentials are used for the description of the potential
energy.

3.5.2 Practical Considerations

In practice, one considers a given pair of atom {ij} and then by slightly perturbating
the interatomic distance rij one can evaluate the numerical values of the effective pair
potential. In the following part of the text, this method will be called “perturbative
approach/method”. For this purpose, one has considered a small backward/forward
displacements ε/2 of an atom j along the interatomic direction eij (see Fig. 3.20). The
distance between the two atoms i and j is slightly perturbed by a quantity ε. Then,
the corresponding forces are calculated by:

F±
i = Fi ({R1, . . . ,Rj ± ε× eij , . . . ,RN}) (3.20)

Here the quantity of interest is the centered differences between the initial forces and
the perturbed ones (see Fig. 3.20):

∆F±
i := Fi − F±

i (3.21)

using the interatomic vector eij the quantity ∆F±
i can be formally decomposed in two

contributions R and P:

∆F±
i =

(
∆F±

i · eij
)
eij + ∆F±

i −
(
∆F±

i · eij
)
eij (3.22)

P :=
(
∆F±

i · eij
)
eij (3.23)

R := ∆F±
i −

(
∆F±

i · eij
)
eij = ∆F±

i − P (3.24)

where P refers to the pair term contribution and R refers to the residual contributions
due to the high-order interactions:

∆F±
i

∆Rij
=

∆F±
i

ǫ

ǫ→0−→ ∂Fi

∂rij
. (3.25)
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Figure 3.20: Representation of the force differences applied on a given atom i after a small
perturbation of the position of atom j. The perturbation ε has to be collinear to the
interatomic axe.

In the previous section we have outlined the importance of the surrounding en-
vironment when using N -body potential. As the effective force may depend on the
environment, force perturbation and calculation have been carried out on carefully
chosen configurations computed along the ab initio molecular dynamics simulation
presented in section (3.3). The typical configurations considered have to contain the
appropriate pairs of atoms corresponding to distances for which the second derivative
of the potential has to be computed. This criterion ensures that the distance one inves-
tigates occurred “naturally” during the simulation, thus one does not need to proceed
to any artificial and arbitrary displacements of ions.

To ensure a good convergence of the results, perturbations are computed on two
independent samples made of 78 atoms and averaged. As the method is time consuming
(372 ab initio wavefunctions have to be optimized for the force calculation) previous
tests have been done on a model system using the BKS potential. The numerical
results stemming from these simulations were in good agreement with the analytical
ones. The ε step used for the numerical computation of the derivatives has been set to
0.1 Å. The distances considered for retrieving the effective pair interaction were hold in
the intervals [1.9−5.0] Å (124 calculations13), [1.4−5.0] Å (114 calculations), [2.4−5.0]
Å (104 calculations) for the O-O, Si-O, and Si-Si pairs, respectively.

Results The collinearity ratio defined by |P|/|∆F±
i |, according to the notation intro-

duced in Eqs. (3.22) and (3.23), gives an information concerning the prominence of
the pair interactions in the overall force due to the displaced atom j on the reference
atom i considered, see previous section. The three collinearity ratios corresponding
to the O-O, Si-O and Si-Si terms are represented on Figs. 3.21. Firstly, it appears
that the force pair term P contributes mainly to the interactions, and this statement
is especially true for the Si-Si interaction. In the network of silica, the oxygen atoms

bridge two adjacent silicon atoms, and the corresponding ŜiOSi angle is mainly defined

by the orientation of the oxygen 2p atomic orbitals. Bending this ŜiOSi angle should be
energetically penalizing as the two electronic clouds centered close to the oxygen atoms
can hardly overlap due to Pauli’s principle (two electrons repulsion) and due to their

13The total number of calculation for a given pair of species if given by number of interval 10 ∗
(5.0 − 1.9) = 31 multiplied by two because of the backward/forward displacements and multiplied by
two as two different configurations at each distance have been considered.
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3. Ab Initio simulation

dipolar interactions. However we can see from Fig.3.21 that the expected three-body
effects of the bridging oxygens between two silicon atoms are negligible.

On the other hand, the O-O interactions seem to be more affected by the N -body
interactions. The many-body perturbations (contributions of 3-, 4-, ... body interac-
tions) are more significant for distances greater than 3 Å. This distance corresponds
to the sphere containing the first oxygen neighbors. The three-body effects linked to

directional covalent bonds are more significant for the ÔSiO angle than compared to

the ŜiOSi one. Even if the electronic cloud between oxygen and silicon is mainly lo-
calized on the oxygen atom, its distortion has a weaker influence than the repulsion

occurring between Si-O sp3 orbitals and dipolar moment. The smaller ÔSiO angle
and the relative compactedness of oxygens (oxygens that are unwilling to overlap) sur-
rounding silicon atoms may explain these observations. The forces computed using
the perturbative approach are plotted in Fig. 3.23. In this figure one can see that the
O-O interactions are weaker than the Si-Si ones. Consequently, the relative collinearity
ratio associated to the O-O interactions is more sensitive to statistical errors and may
not properly describe the bonding14.

The effective forces given by the perturbative method are given in Fig. 3.23. As
expected the interaction between pair of atoms for the same species are repulsive, the
O-O term is less repulsive than the Si-Si one. The Si-O term is repulsive for the very
short distances and shows a minimum at 1.9 Å (the equilibrium position for the Si-O
term is at 1.6 Å).

The direct comparison with the classical forces, see Fig. 3.23, shows that the BKS
interactions are stronger than the ones computed using this perturbative approach. A
possible explanation can be found by recalling how the BKS parameters were fitted
[9]. The procedure proposed by van Beest et al. [9] mainly focus on a limited set
of features corresponding to α-quartz, indeed, such symmetrical structures does not
disclose a wide variety of bond distances and angles. For example, in a perfect crystal
the pair distribution function is represented by a discrete distribution of the distances15,
whereas for a liquid/glass the pair distribution function is continuous.

Nevertheless the position of the minimum of the Si-O interaction given by the BKS
potential is in good agreement to the one given using the perturbative approach, see Fig.
3.23. This results is somehow surprising as for an effective pair potential, the position
of such minimum results from the complex interplay between all the contributions of
different pairs potential.

The perturbative approach demonstrated that the forces in silica calculated by
means of ab initio method can mainly be described by pair terms, see Figs. 3.21.
Moreover this effective potential energy shape calculated using CPMD is consistent
with the one given by BKS potential. Considering these results we have proposed in

14In Eq. (3.25) the derivative of the potential is calculated using the ratio ∆F±
i /∆Rij . If the

potential is weak for a distance Rij , then ∆F±
i ≃ 0 ≃ ∆Rij , the calculation of the ratio ∆F±

i /∆Rij

can not be precisely determined.
15The BKS potential parameters have been optimized for some well-defined distances quantified by

the integer numbers (ℓ, m, n) using the following relation: rij(ℓ, m, n) = |ri − rj + ℓa+ mb+ nc| where
a, b and c stands for the cell vectors of α-quartz.
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3.5 2-body potential approximation

the next chapter to reoptimize the BKS potential ansatz in order to reproduce at best
the forces given by the ab initio approach.
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Figure 3.21: The |P|/|∆F| ratio quantifying the nature of the forces (two-body, n-body) is
represented on this three plots.
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Figure 3.22: Partial pair correlation function for a 144 atomic system at 3600K simulated
using CPMD.
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Figure 3.23: The effective forces computed through the perturbative approach using first-
principle description (solid lines), the system was made of 78 atoms contained in a 10.558
Å box, for a SiO2 sample at 3600K. The corresponding BKS forces are represented in
dotted lines.
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Chapter 4

Force-matching procedure
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Figure 4.1: Schematic representation of the force matching procedure.

First-principles simulations are not computationally tractable for systems contain-
ing more than ≃ 102 atoms and for time scale larger than ≃ 101 ps. Simulations of big
systems for long time scales can only be achieved using classical potential. A variety
of approaches have been proposed over the years to build these potentials. At one
extreme, some groups chose to fit the potential (that is to parameterize the functions
which appear in its analytical form) using available experimental data. At the other
extreme, other groups try to start from a first-principles description of the material
and use their simulation results to fit a classical potential. Of course, the latter ap-
proach is the most satisfactory as any experimental result reproduced by means of
first-principle fitted potential can be interpreted as the results of microscopic contribu-
tions whereas the former fitting method is more likely to reproduce artificially exper-
imental results. Moreover first-principles molecular dynamics codes allow to generate
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large quantities of useful and reliable data, such as forces acting on atoms in a variety
of different geometries and coordinations under lots of different conditions (different
densities, temperatures, pressures, etc). In this work we have used the force-matching
procedure proposed by Ercolessi [46] so as to define a classical potential based upon
first-principle considerations. This procedure was found to be convenient for fitting
potentials using ab initio data for amorphous phases for which no elastic constants or
lattice parameters can be defined. This approach consists of a numerical optimization
procedure which tries to match as closely as possible the ab initio-derived forces to
the ones derived from a classical potential. The results given by the classical potential
so obtained have to be checked and for this purpose simulations must be realized to
see whether the classical results are consistent with the ab initio one. The overall
procedure that we have followed is given in Fig. 4.1.
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4.1 General fitting approach

Introduction Potential fittings should not be considered as a science, but as an ”art”,
as we do not know a priori which kind of ansatz are appropriate for the description of
our system and which features are relevant for the fitting of the analytical form assumed
for our potential. One can imagine using (or even mixing) different contributions such
as stress tensors, energies, forces, angular distributions, structure factors etc... in order
to improve the description of the system. In this section we introduce the general
methods, criteria and algorithms we have set up in order to find the optimal set of
parameters suited for the potential energy ansatz we assumed.

4.1.1 The ansatz for the potential

Motivation The Born-Mayer potential including Coulombic interactions, see also sec-
tion (2.2.4.1), has been retained in this work as its formulation is relatively simple
(pairwise interactions):

V =
∑

i<j

V (rij) =
∑

i<j

[
qiqj
rij

+ Aij exp (−bijrij) −
cij
r6
ij

]

, (4.1)

where rij stands for the interatomic distance between atoms i and atoms j, while
{Aij , bij , cij, qi} are the parameters of the potential. This potential form1 has the ad-
vantage that it has a pairwise form which is quick and easy to evaluate, so that large
system sizes and long times may be simulated with relative ease. Furthermore this
kind of potential parameterized using the BKS parameters [9] has already given some
encouraging results [9, 75, 153]. For example the short- and medium-range structure of
the glass are quite well reproduced [75, 153], as well as the characteristic double peak
structure of the vibrational density of state in the vitreous phase [12]. Furthermore,
the crystalline properties of α-quartz (elastic constants and cell parameters) and the
α to β quartz phase transition are also properly described [109]. Moreover it is also
convenient to choose the Born-Mayer potential combined together with Coulomb inter-
actions as many groups have already studied silica using this ansatz [75, 80, 153]. From
a practical point of view, a reparameterization of a potential implies minor changes in
the simulation programs compared to the amount of work needed to code routines for
complex potential that makes use of self-consistent many body interactions [144].

The Born-Mayer potential The Born-Mayer potential [22] is one of the most
widespread potentials for simulating ionic systems. This rigid ion model is mostly
suited for the description of pure ionic systems such as sodium chloride. But many
features typical for a iono-covalent system are left out, such as the three-body inter-
actions due to directional sp3 bondings and repulsion between lone pairs of electrons
and bonded electrons. This potential assumes that ions are rigid in the sense that they

1The Born-Mayer potential is defined by two terms: V BM
2 (rij) = Aij exp(−bijrij) − cij/r6. The

repulsive term Aij exp(−bijrij) is also called Buckingham potential.
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cannot become aspherically distorted and they cannot change their size/charge in the
condensed phase according to their environment.

Interactions in pure ionic system can be divided into two main contributions:

• Coulomb interactions as the dominant interaction in ionic systems;

• Covalent interaction, due to the Pauli exclusion principle the overlapping of the
electronic clouds of ions is energetically penalized.

These two contributions have been explicitely taken into account in the definition of the
analytical expression of the potential, see Eq. (4.1). The terms 1/r and 1/r6 originally
account for the Coulomb interaction [82] and the exponential term originally accounts
for the repulsive interactions between ions due to the Pauli principle. In practice the
exact physical contributions of each term can hardly been disentangled as the fitting
procedure cannot split the ab initio forces into different physical contributions. The
numerical parametrization of the Born-Mayer potential is an effective parametrization,
we are not allowed to interpret the physical meaning of each parameters separately.

Least squares criterion A fitted potential is considered to be succesful if, by consid-
ering it, one generates statical and dynamical features that are as close as possible to
the original ones used for defining its parameters. As a consequence, finding a proper
set of parameters comes to minimizing the discrepancies between the original and the
predicted data. In order to define the magnitude of these discrepencies we need to
define a suited estimator. The estimator used for the fits has to fulfill some basic con-
straints. Firstly its goal is to quantify the discrepancy between the original data and
the data given by the fitted model. Secondly the estimator has to be flexible enough
to take into account some numerical fluctuations. Most of the time, the original data
are not free of numerical noise, even for a perfect model some differences will remain.
Additionnally, its formulation has to be simple so as to facilitate the use of efficient
numerical minimization algorithms.

The original data we may use for fitting our potential ansatz have occured with
a certain likelihood. For example some theoretical data are calculated within a given
accuracy (structure factors computed using ab initio molecular dynamics or experi-
mental values for the phase transition temperature [87]) and hence we have to take
into account the measurement errors (called noise) in the definition of the estimator
by means of the standard deviations σi.

For fitting N observables yi {i ∈ 1, . . . , N} that depends on some degree of freedom
xi to a model function/functional f(xi; a1, . . . , aM) depending on M adjustable param-
eters2 aj , {j ∈ 1, . . . ,M}. We have used an arbitrary criterion the so-called Chi-Square
(χ2) defined as:

χ2(a1, . . . , aM) =

[
N∑

i=1

(yi − f(xi; a1, . . . , aM))2

σ2
i

]

. (4.2)

2yi and xi may not have the same dimension, in simulation the stress tensor has 6 components
whose values depends on the atomic positions (for a system made of N atoms this represents 3N
variables).
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The value of χ2 is always greater or equal to 0, χ2 = 0 would correspond to an “ideal”
model function/functional. If the observable yi is described with a good accuracy the
corresponding standard deviation σi is small and so 1/σi is large, on the contrary is the
observable yi is poorly described 1/σi is small. In the above definition the standard
deviation acts like a weighting factor that favors the accurate data over the inaccurate
ones.

Minimization methods Ab initio calculations are carried out using N -body interac-
tions computed by means of a self-consistent algorithm. According to this statement
one can easily understand that parameters used for a simple two-body potential de-
scription may hardly reproduce the ab initio data. To tackle these issues, robust and
very general algorithms are required to find the minima in the parameter space [118].
These algorithms rely on a simple Taylor expansion of χ2 around a given set of param-
eter a(0) = {a(0)

1 , a
(0)
2 , . . . a

(0)
M } that we are now explaining:

χ2(a) = χ2(a(0))+ (a−a(0)) ·∇χ2(a(0))+
1

2
(a−a(0))† ·D · (a−a(0))+O((a(0))3) (4.3)

where the matrix D is also named the Hessian matrix of the function χ2 defined as:

(D)ij =
∂2χ2(a)

∂a
(0)
i ∂a

(0)
j

. (4.4)

Two kinds of situation can be encountered during the optimization process:

• The parameters a are far from any minimum and therefore the χ2(a) can be found
using the iterative steepest descent algorithm (the set of parameter a at iteration
l is labeled a(l)) based upon the first term of its Taylor expansion. The gradient
−∇χ2(a(n)) indicates the direction from a point a(n) to reach the minimum of
the function χ2. This gradient is called the steepest descent direction [98]. At
step n+1 the improved set of parameters a(n+1) is given by the gradient ( scaled
with an adjustable step length const. or an adjustable vector ) according to the
following equation:

a(n+1) = a(n) − const.∇χ2(a(n)). (4.5)

• Close to the minimum, the gradient is negligible and it cannot be used anymore.
To gain accuracy and efficiency second order methods based on the Hessian (D)
are necessary:

a(n+1) = a(n) + D
−1[−∇χ2(a(n))] (4.6)

Starting from its definition of χ2, see Eq. (4.2) the gradient components of χ2 can
be expressed as:

∂χ2

∂ak
= −2

N∑

i=1

[yi − f(xi; a)]

σ2
i

∂f(xi; a)

∂ak
. (4.7)
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The Hessian components can be defined as:

∂χ2(a)

∂ak∂al
= 2

N∑

i=1

1

σ2
i

[
∂f(xi; a)

∂ak

∂f(xi; a)

∂al
− [yi − f(xi; a)]

∂2f(xi; a)

∂ak∂al

]

. (4.8)

For practical purpose the second term in the expression of the Hessian are considered
to be negligible when one is close to the minimum as [yi − f(xi; a)] ≃ 0:

∂χ2(a)

∂ak∂al
≃ 2

N∑

i=1

1

σ2
i

[
∂f(xi; a)

∂ak

∂f(xi; a)

∂al

]

(4.9)

These two minimization algorithm can be artfully mixed together according to the
proposition of Levenberg and Marquardt [118]. The Levenberg and Marquardt algo-
rithm is presented in the following section.

Levenberg-Marquardt minimization: Marquardt following a first idea of Levenberg
proposed to mix together the two aforementioned methods allowing the whole pro-
cedure to switch from the gradient technique to the Hessian one as the minimum is
approached. For this purpose one can introduce the following notations based on the
Eqs. (4.6), (4.7) and (4.8):

βk := −1

2

∂χ2

∂ak
, αkl :=

1

2

∂2χ2

∂ak∂al
, and ∆al = a

(n+1)
l − a

(n)
l (4.10)

Using the above definition of βk and αkl, the Eqs (4.5), and (4.6) can be rewritten as:

M∑

l=1

αkl∆al = βk and ∆al = const.βl (4.11)

respectively. Thus the parallel between the two approaches becomes now prominent.
The steepest descent method requires the use of a typical step length for updating the
vector parameter (∆al in Eq. (4.11)). The components for the rescaling vector may
not have the same magnitude as the parameters of the model do not play equivalent
role. It is possible to propose relevant starting values of the rescaling vector from the
diagonal terms of the Hessian matrix:

∆al =
1

λαll
βl or ∆alλαll = βl (4.12)

where λ stands for an arbitrary rescaling term. The idea of Levenberg and
Marquardt[118] consists in mixing the steepest descent and the second order method
using the Hessian by changing the parameter λ. The numerical algorithm consists in
solving iteratively the following set of linear equations:

M∑

i=1

αij(1 + λδij)∆aj = βi, with α′
ij = αij(1 + λδij) (4.13)

For λ ≫ 1 the redefined Hessian (α′
ij) is diagonal dominant, leading to the gradient

approach, whereas for λ≪ 1, the Hessian approach is used.
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4.2 Force-matching method

Introduction The very first potential proposed for silica [160] was based on naive con-
siderations that complex ab initio methods could not be afforded. The usual procedure
at that time consisted in fixing directly as many parameters as possible using very sim-
ple chemical and/or physical considerations. For example, Coulomb charges were set to
the ionic ones even for iono-covalent compounds [160]. The remaining parameters were
fitted so as to reproduce some experimental data. Crystalline phases have been mainly
used for this purpose, and features such as elastic constants, dielectric constants, bulk
modulus, asymmetric parameters were equally used for the parameterization of the
remaining parameters [9].

This method has many limitations: Firstly, because of their simple analytical forms
classical potentials fitted using data relative to a given phase can hardly be transferable3

to another phase. For example a potential fitted on crystalline phases might not be
accurate for molten silica. Moreover lots of experimental results used for the fits of
these potential are macroscopic features. A potential fitted using macroscopic data
may artificially reproduce these features as the local informations have not been taken
into account. On the contrary an “ideal” effective potential should be able to mimic
at best the local interactions (interatomic forces) and consequently it should be able
to mimic also macroscopic features.

The “force-matching” method of Ercolessi and Adams [46] has been proposed so as
to circumvent these shortcomings. This method is a numerical optimization procedure
which tries to match as closely as possible to the ab initio data (forces, stress tensor,
elastic constant, etc...) using a classical potential. It has been applied first to aluminum
systems [46] and thereafter has been widely used for other compounds and for different
kind of potentials: Spline potentials [77], many-body polarizable potentials [144], etc
...

Merit function To evaluate the accuracy of the fit one needs to define the χ2 function
(also named “merit function”), we have first considered the ab initio forces:

χ2 =
1

3N

〈
N∑

i=1

∑

α∈(x,y,z)

[

FCP
i,α − FClass.

i,α

σi

]2〉

(4.14)

where:

- FCP
i,α refers to the spatial components of the ab initio forces for a given atom i;

- FClass.
i,α refers to the spatial components of the classical forces for a given atom i;

- σi stands for the standard deviation of the ab initio force distribution for a given
atom i;

- N is the number of atoms of a given atomic sample;

3The ability of a potential to work properly in different environments is called transferability.
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4. Force-matching procedure

- 〈·〉 denotes the averaging over different samples.

The standard deviations do not depend on the configuration sample as all the samples
are supposed to be equivalent for the fit. Nevertheless these coefficients depend on the
atoms as the forces have not the same statistical distribution for silicons or for oxygens,
see Fig. 4.2. The definition of σi is:

σi =

√

〈FCP
i

2〉 − 〈FCP
i 〉2. (4.15)

The σi can be approximated by the following expression:

σi ≃
√

〈FCP 2
i 〉 ≃ |〈FCP

i 〉| as 〈FCP
i 〉 ≃ 0. (4.16)

Consequently, Eq. (4.14) becomes:

χ2 ≃ 1

3N

〈
N∑

i=1

∑

α∈(x,y,z)

[

FCP
i,α − FClass.

i,α

|〈FCP
i 〉|

]2〉

. (4.17)

The relative error4 of the forces can then be introduced:

δForce
i =

|FCP
i − FClass.

i |
|〈FCP

i 〉| (4.18)

the χ2 can then be considered as the squared value of the relative error associated to
the forces averaged over the positions of the particles:

χ2 ≃ 1

3N

〈
N∑

i=1

δForce
i

2

〉

. (4.19)

4.2.0.1 Practical aspects

The Forces For a two-body potential the components of forces FClass.
i applied on an

atom i can be defined:

FClass.
i =

∑

k 6=i

FClass.
ij with FClass.

x,i = −
∑

j 6=i

∂V (rij)

∂rij
.
xi − xj
rij

(4.20)

FClass.
x,i =

∑

j 6=i

FClass.
ij .

xi − xj
rij

. (4.21)

Here rij stands for the interatomic distance between atoms i and j, FClass.
ij is the

classical interatomic forces applied on atom i by atom j, and x is one the Cartesian
coordinates of the atom i. The minimization procedure is based upon the calculation

4In numerical analysis, the relative error in some data is the discrepancy between an exact value
and some approximation to it.
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Figure 4.2: Distribution of ab initio forces for a 114 atoms system at 3600K. The black
and red curves represent the raw data for silicon and oxygen, the green and blue curves
represent the corresponding approximated Gaussian distribution.

of the gradient of the forces with respect to the Born-Mayer potential parameters, see
section (4.1.1). These components can be derived using (4.20):

∂FClass.
ij

∂qi
=

{ −2qi
r2ij
.
rij

rij
, if qi = qj

2qj
r2ij
.
rij

rij
, if qj = −2qi

(4.22)

∂FClass.
ij

∂Aij
= bij exp(−bijrij).

rij

rij
(4.23)

∂FClass.
ij

∂bij
= Aij exp(−bijrij)(1 − bijrij).

rij

rij
(4.24)

∂FClass.
ij

∂cij
= − 6

r7
ij

rij

rij
(4.25)

where the constant αij depends on the species under consideration. If i refers to a silicon
atom and j refers to an oxygen atom then αij = −1/2. On the contrary if i is an oxygen
atom and j is a silicon atom αij = −2. Due to the charge neutrality (

∑

i qi = 0) the
derivative of the Coulomb terms is simple to handle despite the complicated Ewald
summation term.

Atomic configurations The original data used for the fitting have been taken from
the ab initio simulations discussed in chapter (3). The first 3.5 ps of the CPMD
corresponding to the ballistic regime (〈r2(t)〉 ∝ t2) have not been used, see also Figs.
3.17 and 3.18. We have used the part of the dynamics corresponding to the plateaux and
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4. Force-matching procedure

beyond to be sure that the configuration samples were properly relaxed. One hundred
configurations have been taken from the ab inition molecular dynamics trajectory.
These configurations were separated from each others by a constant time interval of
160 fs.

Fitting parameters In our quantum simulations the wavefunctions are developed on
plane waves basis (i.e. Fourier decomposition of an infinite periodic system, see also
section (2.3.3)), the atoms are interacting with the others and also with their peri-
odic images (the Fourier decomposition of the wavefunction supposes that the system
is infinitely periodic). Due to the periodic boundary positions the only exploitable
interatomic distances are the ones below Lbox/2.

In our case this length Lbox/2 = 5.99Å as we have 38 SiO2 molecules. This corre-
lation length is very small and might affect the fitting. In order to check whether the
system size has an influence of on the fitted potential some ab initio simulations have
also been carried out on a smaller system made of 78 atoms (i.e. Lbox/2 = 5.28 Å for
26 SiO2 molecules). Fitting have been made both for the 78 atoms system and for the
114 atoms system. In Fig. 4.3, the differences between the two obtained potentials
are shown. The χ2 and the parameters of the two resulting potentials are tabulated
in Table 4.1. Some changes occur in the parameters with respect to the system size,
the magnitudes of these changes is linked to the typical distances (first maxima of the
g(r)) between atomic pairs. The Si-O terms are less affected than the O-O terms or
the Si-Si terms. It can be easily understood that the geometry of the system affects
the accuracy of the fitting. In silica, the SiO4 tetrahedra are linked by their vertices,
so all the closest silicon atoms surrounding a given silicon atom are linked by bridging
oxygens. As a consequence the Si-Si terms of the potential are partially blurred by non

trivial three-body interactions (ŜiOSi energy terms). Nevertheless, the whole χ2 is not
changed significantly, and as one can see in Fig. 4.3 the curves representing the two
different potentials do not show any significant changes.
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-20
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V
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SiSi
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Figure 4.3: Influence of the system size on the force fitted potential.

Usually classical potentials used for ionic system are described by the addition of
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4.2 Force-matching method

Parameters 78 atoms 114 atoms

χ2 0.180509 0.173765
qSi [C] 1.340998 1.374323
AOO [eV ] 761.216893 666.333770
bOO [Å−1] 2.761536 2.748299
cOO [eV Å6] 60.514256 41.663842
ASiO [eV ] 26892.664010 26486.505961
bSiO [Å−1] 5.197433 5.184248
cSiO [eV Å6] 145.701309 145.456110
ASiSi [eV ] 2773.666970 3976.776182
bSiSi [Å−1] 2.728367 2.794342
cSiSi [eV Å6] 671.387028 882.596651

Table 4.1: Parameter sets extracted from two different ab initio trajectories.

long and short range terms, which in our case are the Coulomb term and Born-Mayer
term respectively. For the short range term, no explicit values can be proposed a priori,
and the atoms may interact with their periodic images. These particles-particles replica
interactions play a significant role in crystalline structure calculations for example.

To check whether the interactions with the periodic replicas of the atoms play a
role some fitting have been made using different cutoffs for the Born-Mayer potential
larger than Lbox/2 (see Figs. 4.5 and 4.4). As it can be seen in Fig. 4.4 the cutoff
does not seem to have a major influence on χ2. This can be easily understood as the
parameters only vary from their average value by less than 20%, see Fig. 4.5. Note that
even if the Coulomb interactions are computed using the Ewald summation, which take
explicitely into account the interactions with the periodic replicas, the silicon charge
vary slightly with respect to the cutoff. This effect is due to the complicated interplay
between the long and short rang contributions of the potential. To be on the safe side
all the fittings presented in the following section have been made using a rcut = 10Å
cutoff.

In this work two different potential ansatz have been considered. First, following
the considerations of van Beest et al. [9, 85] no short range term has been assigned to
the silicon-silicon part of the potential. Practically this allows a reduction of 10% of the
computational time. These potentials without any short range Si-Si terms are named
in the following part of the text ”constrained” potentials. These constrained potentials
ansatz have led to good results for the BKS potential [19, 68, 75, 153]. Secondly, if the
Si-Si short ranged interactions are considered the corresponding potentials are named
in the following part of the text ”unconstrained” potentials.

In order to check the influence of the ab initio parameters on the final results two
kind of pseudopotentials have been tested for the computation of the original forces.
The first calculations have been made using the pseudopotentials described in Ref [10]
(labeled NCPP for Norm Conserving Pseudopotential in the following) using a cutoff
Ecut = 130 Ry. These pseudopotentials are designed for an accurate description of
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Figure 4.4: Influence of the short range cutting distance on the χ2, for 100 configurations
extracted from an ab initio molecular dynamics runs at 3600K.

the inner atomic orbitals. Consequently these PP must be developed on a large plane
waves basis set in order to describe their rough shape, see also section (2.3.4).

Another series of simulations have been made using the ultrasoft pseudopotentials
proposed by the group of D. Vanderbilt (VDB PP) that have shown some abilities in
reproducing the right crystalline parameters for a wide variety of crystalline phases [94].
These pseudopotentials are smooth and so they require small energy cutoff by design,
in the present case a cutoff of Ecut = 40 Ry has been used following the reference [94].

4.2.0.2 Results

Fitting Results To ensure a good exploration of the parameter space, different start-
ing parameters have been used as input. The final results are quite insensitive to the
initial parameters. It turns out that one minimum of the χ2 is clearly localized by the
Levenberg-Marquardt algorithm. The fitting results for the different ansatz made on
a 114 atoms liquid system are summarized in Table 4.3.

After a whole fitting process the final χ2 associated to an unconstrained set of pa-
rameters is equal to 0.17 while for the constrained case it is equal to 0.18. Surprisingly
the accuracy of the fit is comparable even if three degrees of freedom have been con-
strained. However the parameters are quite different and lead to different potential
energy curves, see Fig. 4.6. In addition to this, it appears that the different pseudopo-
tentials used for the computation of the forces do not lead to very different results, even
if the parameters are slightly different and the corresponding potential energy curves
are quite similar (see Fig. 4.7).

For an appropriate comparison, the χ2 associated to the BKS potential has also
been calculated, a value of 1.21 has been found this means that the description of the
forces have been improved by a factor 7. Following the considerations leading to Eq.
(4.16) of the relative error in the description of the forces using the BKS is equal to
110% whereas the force fitted potential gives a relative error of 42%.
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Figure 4.5: Influence of the short range cutting distance on the parameters, for 100 config-
urations taken from an ab initio molecular dynamic at 3600K. All the parameters have
been rescaled using their corresponding values calculated for a 10Å cutoff.

These preliminary results seems to indicate that the BKS potential appears to be
inaccurate for the force computation of liquid silica. Even if the structure and the elastic
constants are well reproduced, the forces are not accurate. This fact may underline a
lack of transferability of the BKS potential that is mostly suited to crystalline phases by
construction. These results indicate that the underlying microscopic interactions (pair
interactions) summed for calculating the elastic constants5 are not properly described.
These shortcomings illustrate the limitation of the empirical fitting approach used for
the BKS.

Molecular Dynamics Simulation The classical-forces derived from the force fitted
potentials are now very close to the ab initio forces. Nevertheless, simulations have to
be carried out to check whether the force fitted potential gives results similar to the ab

initio ones. Firstly one has to check the static features such as the angular distribution
functions, the pair correlation functions, or the pressure. To achieve this, some classical
molecular dynamics have been made in the NVT ensemble (the temperature was kept
constant by means of a stochastic collision algorithm, see section 2.2.2). The sample
were made of 1152 atoms in a 25.904 Å cubic box corresponding to a density of 2.2
g/cm3, and the temperature was set equal to 3600 K. For these classical simulations the
short range part of the potential has been cutoff at 5.5 Å following the methodology
proposed by K. Vollmayr et al. [153]. Even if this cutoff is not the one used in the
fitting routine it has been shown that it has no significant effects on the structure

5The elastic constants (Cij) represent the second derivatives of the energy density with respect to

strain (εi) defined in Appendix A, Cij = 1
V

(
∂2V

∂ǫi∂ǫj

)

.
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N. C. P.P. [10] VDB P.P. [94]
Parameters BKS

const. unconst. constr. unconst.
χ2 1.21 0.18 0.17 0.18 0.17
qSi [C] 2.4 1.51 1.37 1.52 1.406121
AOO [eV ] 1388.77300 566.034828 666.333770 600.322980 695.838375
bOO [Å−1] 2.76 2.742411 2.748299 2.771985 2.776613
cOO [eV Å6] 175.00 22.175162 41.663842 25.665206 43.614650
ASiO [eV ] 18003.7572 24068.698306 26486.505961 22524.405722 24657.035366
bSiO [Å−1] 4.87318 5.178984 5.184248 5.211330 5.216538
cSiO [eV Å6] 133.5381 128.571683 145.456110 111.922618 126.274364
ASiSi [eV ] - - 3976.776182 - 4521.106337
bSiSi [Å−1] - - 2.794342 - 2.819346
cSiSi [eV Å6] - - 882.596651 - 965.488324

Table 4.2: Different sets of parameters given by the fitting procedure.

[64]. The potential collapse of particles which may be induced by the 1/r6 terms of
the classical potential for small distances has been controlled by means of a repulsive
Lennard-Jones potential, see section (2.2.4.1). The simulation length has been set to
10 ps. According to the previous results of J. Horbach and W. Kob [75] for the BKS
potential, this time is long enough to reach the diffusive regime at T = 3600 K.

Results The pair distribution function are shown in Figs. 4.8 and 4.9. Apart from the
location of the first peak for the Si-O pair, the others peak positions and the peak height
are in strong disagreement with the ab initio results. The plots representing the pair
correlation functions given by the VDB set of parameters have not been represented
here as they show the same quantitative features.

The angular distributions have also been computed, and the corresponding results

for the for ÔSiO and ŜiOSi angle are in strong disagreement with the ab initio results,
see Figs. 4.10, 4.11. A close inspection of the configurations reveals lots of edge sharing
tetrahedra (or two-membered rings), see Fig. 4.12, which account for the bump presents

at 90◦ for the ŜiOSi angle distribution function. These two-membered rings lead to a
shortening of the Si-Si distances, and thus explains the wide Si-Si peaks for the pair
correlation function.

A reliable pair potential has to fulfill several basic requirements. Firstly it has to
give reasonable description of the structure. Secondly, once the structure has been
properly described one can check the dynamical properties of the model. There is no
need to check whether the dynamical features are well reproduced if the static features
are not. For example, it is necessary to describe properly the structure of the vitreous
state (static properties) so as to compute the corresponding vibrational density of states
(dynamical properties). The static properties given by the potentials we fit using the
ab initio forces are in strong disagreement with the original data and consequently no
further investigation have been done within this simple force-matching scheme.
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Figure 4.6: Potential energy curves for
the constrained and unconstrained set
of parameters set using the NCPP
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4.3 Extended criterion: Stress tensor

Introduction As we have seen in the previous section classical potentials derived for
silica using a simple force matching procedure using only the ab initio forces do not lead
to satisfactory results. In addition to their bad structural predictions such force-fields
were also giving a negative pressure (≃ −1 GPa). The pressure is usually computed
using the stress tensor whose components are defined by the sum of the interatomic
forces multiplied by the associated interatomic distances. As a consequence, the stress
tensor is quite sensitive to the medium and long range forces, and thus, this feature
could help refining the description of the potential. Moreover, a system with a negative
internal pressure is not stable as it tends to cavitate. According to the work of P.
Tangney [129, 145], including the stress tensor in the fitting criterion can help refining
the pressure and so improving the stability of the system.

4.3.1 Practical Aspects

Extended χ2 Because of its different microscopic definition, the stress tensor cannot
simply be added to the initial merit function, see Eq. (4.14). We have proposed a new
definition of χ2

Θ, based in Eq. (4.14) which includes the stress tensor components in
our fitting procedure:

χ2
Θ = Θχ2

Force + (1 − Θ)χ2
Stress (4.26)

χ2
Force =

1

3N

〈
N∑

i=1

∑

α∈(x,y,z)

[

FCP
i,α − FClass.

i,α

σi

]2〉

(4.27)

χ2
Stress =

1

9

〈
3∑

u,v=1

[
ΠCP
uv − ΠClass.

uv

]2

σuv

〉

(4.28)
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Figure 4.8: Comparison of the partial pair correlations function. Bold lines correspond to
ab initio calculations and dashed lines to simulations with the constrained potential (see
text).

where:

Θ balances the contribution of the forces and the stress tensor components in the
definition of the extended χ2

Θ, Θ ∈ [0, 1];

Πuv denotes the stress tensor elements, ΠCP
uv corresponds to the ab initio stress

tensor and ΠClass.
uv corresponds to the classical one;

σuv is the standard deviation of the ab initio stress tensor6.

The physical considerations leading to the analytical definition of the stress tensor for
the short and long range terms can be found in appendix A. To fit the stress tensor
one needs to compute its derivatives with respect to the potential parameters. For the
short range part of the potential these derivatives are found to be given by:

Πα,β = − 1

Ω

∂V

∂εα,β
= − 1

Ω

∑

i<j

∂V (rij)

∂rij

rij,αrij,β
rij

(4.29)

∂Πα,β

∂Aij
= − 1

Ω

∂2V

∂Aij∂εα,β
= − 1

Ω

∑

i<j

−bij exp (−bijrij)
rij,αrij,β
rij

(4.30)

∂Πα,β

∂bij
= − 1

Ω

∂2V

∂bij∂εα,β
= − 1

Ω

∑

i<j

Aij exp (−bijrij) (bij − Aij)
rij,αrij,β
rij

(4.31)

6σ11 = 2.0866060 GPa, σ12 = 1.7711912 GPa, σ13 = 1.4110304 GPa, σ22 = 2.3733704 GPa,
σ23 = 1.3618785 GPa, σ33 = 2.2730932 GPa.
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Figure 4.9: Comparison of the partial pair correlations function. Bold lines correspond to
ab initio calculations and dashed lines to simulations with the unconstrained potential
(see text).

∂Πα,β

∂cij
= − 1

Ω

∂2V

∂bij∂εα,β
= − 1

Ω

∑

i<j

6

r7
ij

rij,αrij,β
rij

. (4.32)

Here Ω stands for the volume of the cell considered. For the long range term, a simple
expression is obtained due to the neutrality constraint linking the silicon charges and
the oxygen charges:

∂Παβ

qi
= − 1

Ω

∂2V

∂qi∂εαβ
(4.33)

=
1

2qi
Παβ . (4.34)

As no value for the balancing factor Θ can be proposed a priori, five sets of fittings
have been carried out by setting its value to 0.005, 0.25, 0.50, 0.75, 0.995 and 1. A
constrained potential (frozen Si-Si parameters) and an unconstrained one have been
considered here.

4.3.2 Results

Fitting results During the optimization process some numerical instabilities have
been observed for the unconstrained potential. Indeed, the ASiSi and bSiSi parameters
were diverging and for this reason we will only discuss the fitting results obtained for
the constrained potential.

As can be seen in Fig. 4.14 even slight perturbations (Θ = 0.995) of the χ2
Θ lead to

significant improvements of the stress tensor. This implies that one can improve the
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Figure 4.10: Comparison of the angular
distribution function. Bold lines cor-
respond to ab initio calculations and
dashed lines to simulations with the
constrained potential (see text).
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Figure 4.12: Edge sharing tetrahedra.

tensorial features without loosing accuracy on the forces and this for a wide range of
values for Θ (∈ [0.25−0.75]). This has to be correlated to the stability of the parameters
in this range as can be seen in Fig. 4.13. The overall χ2 (χ2 = χ2

Force + χ2
Stress)

of the system is optimal around Θ = 0.50 (see Figs. 4.14 and 4.15) consequently
optimizations of the parameters have been carried out for this value. A comparison of
these parameters with the force fitted ones (Θ = 1) is given in Table 4.3. The stress

Chi-Square corresponding to the force-fitted parameters χ2
Stress

Θ=1
= 2.54 has been

significantly lowered by the fitting procedure using the stress weighted criterion, by a
factor 25. (χ2

Stress
Θ=0.5

= 0.10), the accuracy of the description of the forces is unspoilt.
The ionic charges as well as the Si-O parameters are somewhat changed (qΘ=1

Si = 1.505,
qΘ=0.5
Si = 1.447, AΘ=1

SiO = 24063.405609, AΘ=0.5
SiO = 25228.921758), in contrast to this the

O-O parameters have been significantly modified. Classical simulations in the NVT
ensemble have been made using the new potential (see Fig. 4.16). Unfortunately these
results are comparable to the previous one given using a pure force fitting approach.

As previously mentioned, see section (3.4.4), the pressure in the CP simulations
is in strong disagreement with the experimental results. To circumvent this problem
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Figure 4.15: Variation of χ2
Force as a function of the balancing parameter Θ.

and to improve the structural features, another series of fitting have been made using
the ab initio data relative to the forces mixed with an arbitrary null stress tensor. A
potential enforced to simulate a null stress tensor may avoid an overall falling down of
the tetrahedral network. The corresponding numerical results are given in Table 4.3.
Generally, for a simple classical potential, forces and stress tensors are connected to
the first derivatives of the potential. As a consequence, a potential that reproduces
accurately the forces may also describe properly the stress tensor. This assumption is
consistent with the accuracy of the fit for the Θ = 0.5 potential as both the χ2

Stress and
the χ2

Force have been significantly improved, see Figs. (4.15), (4.14). On the contrary,
by setting artificially the stress tensor to zero we break the consistency between the
stress tensor and the forces. As a consequence it is difficult to improve simultaneously
the χ2

Stress and the χ2
Force as the physical connection between the ab initio forces and

the associated stress tensor does not hold anymore. This explanation accounts for the
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4. Force-matching procedure

BKS Θ = 1 Θ = 0.5
Parameters

a.i. Stress 0 Stress a.i. Stress 0 Stress a.i. Stress 0 Stress
χ2

Stress 0.96 8.57 2.54 0.92 0.10 0.81
χ2

Force 1.21 0.18 0.18 0.18
qSi [C] 2.4 1.505497 1.44749 1.489117
AOO [eV ] 1388.7730 565.908889 1358.848936 422.540596
bOO [Å−1] 2.76 2.741589 2.903263 2.668126
cOO [eV Å6] 175. 22.340312 141.887703 2.546299
ASiO [eV ] 18003.7572 24063.405609 25228.921758 23643.106335
bSiO [Å−1] 4.87318 5.178611 5.178662 5.187982
cSiO [eV Å6] 133.5381 128.598107 137.227850 124.729092

Table 4.3: BKS original set of parameters compared to the ones obtained using definition
(4.26) for the χ2 and for two values of Θ. The abbreviation a.i. means that the ab initio

observables have been taken into consideration for the fit.

value of 0.81 of the χ2
Stress we obtained after fitting the null stress tensor for Θ = 0.5,

whereas we obtained a value of 0.10 when using the ab initio stress tensor for the
fit. This underlines the lack of physical insight assumed when using a fictitious stress
tensor. Moreover these new parameters are similar to the ones given for Θ = 1,
which is consistent with the inaccurate results obtained during a molecular dynamics
simulations using the force-field fitted with a null stress tensor, see Fig. 4.17.
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Figure 4.16: Pair correlation function
issued from the ab initio force/stress
data.
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Figure 4.17: Pair correlation function is-
sued from the potential fitted using
both ab initio forces mixed with a null
stress tensor.

It is worthwhile to note that the stress tensor given by the BKS potential is closer
to the ab initio results than to the assumed null stress tensor. This can be easily
interpreted as the BKS is mainly devoted to the description of the more dense crys-
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4.4 Spline potential

talline phases 7. The equilibrium density of silica as given by the BKS potential (2.3
g.cm−3) was found to be somewhat superior to the experimental one (2.2 g.cm−3), see
Ref. [75]. Consequently, a silica system having a density of 2.2 g.cm−3 is character-
ized by a negative pressure (components of the stress tensor must be negative) when
described by the BKS potential. This statement accounts for the smaller value of the
χ2

Stress obtained when using the stress tensor given by the ab initio (whose components
are also negative) calculations rather than the null stress tensor. However, even if the
BKS potential tends to underestimate the pressure of the system, it leads to quanti-
tative good structural results. In contrast to this, the fitted potential given for Θ = 1
better reproduces the null stress tensor than the BKS although it gives totally wrong
structural features.

4.4 Spline potential

In the preceding section we have not been able to propose any satisfactory sets of
parameters. These unsuccessful attempts could be explained by the intrinsic limitations
imposed by the analytical form retained for the potential. To check this hypothesis
we have developed a more general fitting approach, based on the hypothesis that the
potential has not a Born-Mayer functional form anymore. Hence we have opted for
a more flexible formulation based on cubic splines. This method has already been
proposed for different materials by F. Ercolessi [46] and S. Izvekov [77].

4.4.1 Practical aspects

A spline function f(x) is defined on a grid of variables (x0, y0),(x1, y1),...,(xn, yn) [118].
The spline function is a sum of piecewise cubic polynomial functions Si(x) which in-
terpolate the gap between adjacent points (xi, yi) and (xi+1, yi+1), see Fig. 4.18:

f(x) =

n∑

i=0

Si(x) (4.35)

where Si(x) functions has the following definition:

Si(x) =

{
0, if x ∈] −∞, xi[∪]xi+1,+∞[
ai(x− xi)

3 + bi(x− xi)
2 + ci(x− xi) + di, if x ∈ [xi, xi+1]

The spline coefficients can be defined through the following constraints:

Si(xi) = yi, Si(xi+1) = yi+1,

S ′
i(xi) = ci, S ′

i(xi+1) = ci+1.

7ρα−quartz = 2.6495 g.cm−3.
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4. Force-matching procedure

The condition of second-order continuity S ′′
i−1(xi) = S ′′

i (xi) can be formulated using
the matrix formalism:
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(4.36)

where hi, fi and gi are defined as:

hi = xi+1 − xi (4.37)

fi = 2(h−1
i−1 − h−1

i ) (4.38)

gi =
3

h2
i−1

(yi − yi−1) +
3

h2
i

(yi+1 − yi) . (4.39)

The resolution of the tridiagonal system leads to the coefficients ci. The polynomial
coefficients ai and bi can be retrieved using the following relations:

ai =
1

h2
i

(ci + ci+1) +
2

h3
i

(yi − yi+1) (4.40)

bi =
3

h2
i

(yi+1 − yi) −
1

hi
(ci+1 + 2ci) (4.41)

x i x i+1

y y

y

x

i i+1
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Figure 4.18: Sketch of a cubic spline interpolation.

To enhance the accuracy of the force fit we have described the derivative of the
interaction potential V2, and not the potential itself, through the cubic spline interpo-
lation:

∂V2(r)

∂r
= f(r; {xi, yi}) (4.42)
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4.4 Spline potential

The parameters defining the spline function are now the ordinates of the curves, {yi}.
According to the Levenberg-Marquardt procedure, the derivatives of the force with
respect to the parameters have to be calculated:

∂2V2(r)

∂r∂yi
=
∂f(r; {xi, yi})

∂yi
. (4.43)

To achieve this, one needs to solve the system of equations obtained by differentiating
the matrix relation (4.36):

∂ (TD ·C)

∂yi
=

∂G

∂yi
(4.44)

TD · ∂C
∂yi

=
∂G

∂yi
, as

∂TD

∂yi
= 0, (4.45)

where
∂gi−1

∂yi
=

3

h2
i−1

,
∂gi
∂yi

= 3

(
1

h2
i−1

− 1

h2
i

)

,
∂gi+1

∂yi
= − 3

h2
i

(4.46)

4.4.2 Results

The spline method requires various input data: The distance and the interatomic
force corresponding to the pair of species considered at that distance. Considering
different sets of fixed distances the fitting procedure finds the optimal values of the
forces. The potential has been fitted using 21 configurations taken from an NVT ab

initio simulation at 3600K using 78 atoms. Different attempts have been made in
order to evaluate the optimal repartition of the fixed interatomic distances required
for the fit. Step lengths of 0.2 ± 0.1 Å have been considered8. Indeed smaller step
lengths were detrimental to the smoothness of the potential (small fluctuations were
observed) whereas large length steps could miss some shouldering of the potential. A
polynomial repulsive interaction has been added to the spline potential so as to avoid
particle fusion, see also section (2.2.4.1). The interatomic forces given by the spline
procedure are presented in Figs. 4.19 and 4.20. Two different potentials have been
considered. As it can be seen in Fig. 4.19 the Si-Si interatomic force represented in
green exhibits shouldering. This potential will be referred as the Spline 1 potential.
Another potential fitted on the same grid points using some constraints (using some
fixed points 9) in order to soften the irregular outline of the Spline 1 potential has been
proposed. This second potential is referred as Spline 2, see Fig. 4.20. Some attempts
have been made for proposing potentials having an extended length scale but these
potential were not satisfactory as they were described by non monotonic functions.

8The following grids of point have been used: For O-O in-
teractions {1.8, 2.0, 2.2, 2.5, 2.7, 2.9, 3.1, 3.3}, for the Si-O interactions
{1.2, 1.3, 1.4, 1.6, 1.8, 2.0, 2.2, 2.6, 2.8, 3., 3.1, }, for the Si-Si interactions
{2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4}

9At 2.7Å the spline function corresponding to the Si-O force has been set equal to 0.125 eV.Å−1.
The spline function corresponding to the Si-Si interactions has been taken from another spline fit.
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Figure 4.19: The force fitted spline ansatz.

Some NVT simulations have been carried out on 78 atoms samples at 3600K to
check the validity of this approach. The angular and the pair correlation functions
given by the splines potentials have been calculated for this purpose and are presented
in Figs. 4.21 and Figs. 4.22. The pair correlation functions are in good agreement
with the ab initio ones. Unfortunately, the angular distribution functions are poorly
described by the spline potentials, the heights and positions of the peaks do not match

to the CPMD simulations. One can note a strong shouldering in the ŜiOSi angular
distribution function which corresponds to an excess of edge-sharing tetrahedra already
pinpointed in section (4.2.0.2). Some additional simulations have been made using a
600 atoms sample at 3600K using the Spline 1 potential and the corresponding pair
correlation functions are compared to the ab initio ones in Fig. 4.23. This time, the
simulation made on a bigger sample are in strong disagreement with the reference data:
The peaks heights and positions are not properly reproduced, especially for the Si-Si
pair correlation function. These strong disagreements can be explained by the very
short range of the spline potentials. For this reason no further attempts have been
made using this class of potential.
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Figure 4.20: The force fitted spline ansatz using constrained sets of points.
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Figure 4.21: Left panel: Pair correlation functions of silica calculated using the Spline 1
potential (dashed line) compared to the pair correlations given using the CPMD simu-
lation (solid line). Right panel: Pair correlation functions of silica calculated using the
Spline 2 potential (dashed line) compared to the pair correlations given using the CPMD
simulation (solid line).
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Figure 4.22: Left panel: Angular distribution functions of silica calculated using the Spline
1 potential (dashed line) compared to the angular distributions given using the CPMD
simulation (solid line). Right panel: Angular distribution functions of silica calculated
using the Spline 2 potential (dashed line) compared to the angular distributions given
using the CPMD simulation (solid line)
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Figure 4.23: Pair correlation functions of silica calculated using the Spline 1 potential
(dashed line) on a 600 atom sample compared to the pair correlations given using the
CPMD simulation (solid line).
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Chapter 5

Screening potential

Pauling [114, 115] classified the Si-O bonding in silicates as being 50% covalent and
50% ionic. For this reason almost all the potentials available in the literature describe
silicates using both covalent (short range) and Coulomb (long range) terms. The
electrostatic energy is expressed as a conditionally convergent sum which can, e.g., be
computed by means of the Ewald method (see section (2.2.4.2)). The calculation of
the long range term is time consuming. For a three-dimensional N particle system
with periodic boundary conditions in all three spatial directions, the computational
load for Ewald method scales like O(N3/2). Whereas the energy corresponding to
the short range interaction computed using a “Verlet list” scales like O(N). Some
methods and algorithms have been proposed to reduce the computational cost such
as the particle-particle and particle-mesh methods [36, 71] for which the scaling is
proportional to O(N logN) [53], unfortunately these methods are based on complex
algorithms and are only suited for very big systems. In addition to this, the calculation
of some features such as elastic constants or shear viscosity via Green-Kubo relation
are more complicated and less efficient when Ewald sums have to be considered [28].
For all these reasons, a reliable finite range pair potential to simulate silica is highly
desirable. In this chapter we assume that due to screening effects the long-range
Coulomb interactions in typical ionic systems can be truncated. According to this
assumption we have parameterized a short range Coulomb-like potential and compared
the results obtained using this potential to the ones extracted from simulations made
using Ewald summation.
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5. Screening potential

5.1 Fitting procedure

Introduction Almost all the previous methods proposed to avoid the time consuming
Ewald summation are build upon physical considerations [34, 37, 56, 71, 89, 158, 159].
In this work we have adopted a different point of view. Thus we tried to check whether
the long range interactions could be mimicked accurately using an effective potential.
The force-matching approach followed in this section is similar to the one presented
in chapter 4. A given analytical form for the Coulomb interactions is assumed, there-
after this potential is fitted so as to reproduce classical forces computed using Ewald
summations corresponding to the liquid phase of silica. This new potential is used in
molecular dynamics simulations and the results are compared to the original data used
for the fitting in order to check its accuracy.

5.1.1 Practical considerations

Analytical form The analytical form retained is similar to the one firstly proposed
by H. Yukawa in the 30’s. This potential is mainly used for the description of the
interactions in colloidal systems. In these systems the effective electric field surrounding
charged particles is screened by the ions and counter-ions present in the solvent and the
effective electrostatic interactions φ(rij) for a pair of atom {ij} separated by a distance
rij with charges qi and qj respectively can be expressed as [124]:

φ(rij) = Dij
1

4πǫ0

qiqj
rij

exp (−rij/∆ij) . (5.1)

Here Dij mimics the relative permittivity of the material and ∆ij represents a typi-
cal screening length. This potential is short ranged and reproduces the behavior of
Coulomb’s forces for short and intermediate ranges. It is worthwhile to mention that
systems involving Yukawa interaction should be considered with some special care in
the case where the interactions cannot be neglected if the screening length of the sys-
tem is larger than the simulation cell parameters (∆ij > Lbox/2). Then it is necessary
to introduce a specific summation method similar to the Ewald summation [125]. Nev-
ertheless, in such cases it is not recommendable to substitute the Yukawa potential by
a Coulomb’s one as the Ewald method corresponding to the Yukawa potential is even
more time consuming than the Ewald summation used for Coulomb’s interactions.

The Yukawa potential, presented in Eq. (5.1) is a short range potential, which
can be cut off at distance rcut and regularized using the following function (see Sec.
2.2.4.1):

Grcut(rij) = exp

(

− γ2

(rij − rcut)
2

)

. (5.2)

In order to minimize the influence of the cutoff function, see Eq. 5.2, for the
description of both forces and their derivatives we applied the smoothing function to
the first derivative of the potential presented in Eq. (5.1) and not to the potential
itself as it is usually reported in the literature. This method has been retained as it
enhances the accuracy of the description of the forces.
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Thus, the screened pair potential V Yuk.
2 (r) we have used for the MD simulations is:

V Yuk.
2 (rij) =

∫ rij

rcut

dφ(r)

dr
Grcut

dr. (5.3)

dV Yuk.
2 (rij)

drij
=

dV Yuk.
2 (rij)

drij
Gcut(rij). (5.4)

This method is convenient as it is also computationally less expansive. Indeed the forces
are expressed as a single term, see Eq. (5.4) whereas the derivative of a potential ψ(r)
smoothed directly by the smoothing function Grcut

(r), ψ(r) = φ(r)Grcut
(r), would lead

to the calculation of one additional term:

dψ(rij)

drij
=
dφ(rij)

drij
Gcut(rij) + φ(rij)

dGcut(rij)

drij
. (5.5)

Nevertheless, some calculations have been made using the potential φ(rij) and the
comparison between the simulations made using the potential V Yuk.

2 , φ(rij) and the
original simulations of J. Horbach [74, 75] are presented in section (5.1.2). The trunca-
tion method presented in Eq. (5.1) will be referenced as the “force smoothing method”,
whereas the truncation method presented in section (2.2.4.1) will be referenced as the
“potential smoothing method”.

The typical screening distance of the smoothing function Gcut(r) is given by the
parameters γ. In this work a value of 2 Å has be retained to ensure a smooth decrease
of the potential. The electrostatic energy described by Eq. (5.3) has not anymore a
simple analytical expression. One has to compute the potential using an integration
method (the Simpson’s method in our case [118]) and then store it onto a grid. The
length step retained for the integration has been set equal to 10−4 Å 1.

Fitting parameters: The following definition of the merit function has been used for
the fit:

χ2 ({F}) =

〈

1

3N

N∑

i=1

1

σ2
i

∣
∣FBKS

i − FYuk.
i

∣
∣
2

〉

(5.6)

σi =
√

〈(FBKS
i )2〉 − 〈FBKS

i 〉2. (5.7)

The fits have been performed using the Levenberg Marquardt algorithm, see section
4.1.1. The configuration database needed for these fits has been taken from previous
NVE simulations of liquid silica carried out by Horbach [74]. We have not considered
any ab initio calculations as our aim was to reproduce by means of a Yukawa ansatz the
effects of the long ranged Coulomb terms without changing the covalent/short ranged
contributions. This task is not doable using CPMD as due to the complexity of the ab

1The distance range for which the interactions have been precomputed start from 0.5Å up to 10Å,
this represents 95000 points representing a total of 3.9 Megabytes.
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initio ansatz it is not possible to disentangle the different physical contributions of the
ab initio forces (long ranged/short-ranged).

These samples are made of 8016 particles contained in a 48.37 Å cubic box corre-
sponding to a density of 2.37 g/cm3. As the BKS potential shows a diverging behavior
for very short distances, quadratic terms mimicking strong repulsive interactions have
been considered by Vollmayr et al. [153] and Horbach and Kob [75] in their simulation,
see also section (2.2.4.1). To quantify the dependence of the parameters with respect
to the temperature, fits have been made for the whole set of temperatures investigated
by Horbach. The original potential parameters (cutoffs, smoothing factors, etc) have
been used for the computation of the Born-Mayer forces (Aij exp(bijrij) − cij/r

6
ij, see

also section 4.1.1). Different sets of atomic configurations and the corresponding forces
(short and long range terms) are used as an input for the fitting procedure. We have
also taken into account the contribution of the repulsive interactions to the overall
forces since at high temperatures (T > 5200K) this distance range is also probed by
the particles. The occurrence and the influence of these repulsive terms on the fitting
results were supposed to be physically irrelevant since the quadratic terms have been set
up arbitrarily. Nevertheless attempts made without taking explicitely these repulsive
terms into account were leading to significant bumps in the temperature dependence
of the DY , ∆ and χ for high temperatures.

5.1.2 Results

Some attempts have been made to fit the Yukawa potential in a unconstrained way
where different parameters {Dij, ∆ij} were assigned for the different kinds of pairs
(O-O, Si-O, and Si-Si). These tries did not give rise to satisfactory results as they
were leading to mechanically unstable structures characterized by a negative pressure
(typically ≃ −20 GPa). Indeed, the addition of extra degrees of freedom with a view
to lowering χ2 were made at the expense of the charge neutrality constraint. These
results illustrate that the fitting criterion should be cautiously handled, as an attempt
to lower the χ2 may be in disagreement with the physics of the system. To get rid
of this neutrality issue a single set of parameters (Dij = DY , ∆ij = ∆) valid for
all the pairs has been retained. Two kinds of fits have been carried out. Firstly we
have investigated different cutoffs for a given temperature. Afterwards, we have used
different sets of configurations corresponding to different temperatures using a fixed
cutoff to check the influence of the temperature.

Potential/force cutoff Fits have been carried out using a 10Å cutoff for the two
different potential ansatz described in the previous section (5.1.1). The forces computed
using the smoothing potential approach exhibit a strong unphysical shoulders, see
Fig. 5.1. This observation is consistent with the value of the χ2 (for a 10Å cutoff
χ2 = 0.002494). Indeed, χ2 is two times larger for the smoothed-potential φ(r) defined
in Eq. (5.5), than the value obtained for the force cut potential V Yuk.

2 (r) defined in Eq.
(5.3).
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Figure 5.1: Force between a pair of silicon particles as a functions of the interparticle
distance for different potentials: The Coulomb potential, the Yukawa potential using a
potential smoothing function and the Yukawa potential using a force smoothing function.
The fits have been made with a 10Å cutoff using configurations extracted from simulations
made at 3760K. In the inset is represented the second derivatives of the potential.

Subsequently molecular dynamics simulations have been made using these two po-
tential ansatz. The static properties have been compared to the original data of J.
Horbach [75] used for the fit. For this purpose we have represented in Fig. 5.2 the func-
tion ∆gSiSi(r) corresponding to the difference between the original Si-Si pair correlation
function of Horbach [75] and the simulations made using the force-fitted potential. The
function ∆gSiSi(r) is defined as:

∆gSiSi(r) = gEwald
SiSi (r) − gYuk.

SiSi (r). (5.8)

The differences are significantly larger for the potential smoothing method in agreement
with our previous results regarding to the values of the χ2. Due to the better results
given by this method in following part of this chapter we will refer solely to the force
smoothing approach.

Cutoff dependence The χ2 and the couple of fitted parameters {DY ,∆} are respec-
tively displayed in Fig. 5.3, 5.4 and 5.5. For large cutting distance rcut, see Eqs. (2.40)
and (5.3), one expects to converge to the Coulomb potential, {DY ,∆} → {1,∞} which
is consistent with the results presented in Figs. 5.4 and 5.5. It is worthwhile to note
that the values of the χ2 plotted in Fig. 5.3 are very low compared to the values ob-
tained using the force fitted potential obtained from ab initio simulations, see Table
4.3. From this statement we can assert that the Coulomb components of the BKS
forces are accurately described by our Yukawa ansatz.

103



5. Screening potential
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Figure 5.2: The differences between the partial Si-Si pair correlation function corresponding
to the BKS and to the Yukawa potential (potential cut + force cut), the simulation have
been realized at 6100K.

The plot corresponding to the ∆ parameter shows the strongest dependence with
respect to the cutoff, ∆(rcut). Consequently, this parameter has been retained for the
interpretation of the connection between the pair distribution functions and the cutoff
used for the fits. In Fig. 5.5 one can clearly distinguish two extrema of ∆(rcut) at
6.1 Å and 6.7 Å. The maximum at 6.1 Å is connected to the maximum of the Si-O
pair correlation function represented in Fig. (5.6). For such distances, half of the Si-O
pairs are not taken into account, the electro-neutrality is not ensured, the screening can
hardly be effective. The extremum at 6.7Å is a minimum of ∆(rcut), for this distance
all the partial pair correlation functions are close to one. Recalling the definition of
the pair correlation function this means that all the ions involved within this cutoff
make a whole neutral ensemble2, and then the screening is more effective. Beyond
6.7Å, the screening length parameter shows a monotonic decrease, but the slope of
the curves can still be interpreted by means of the partial pair correlation functions.
The effect occurring for 6.7Å is still observed for 7.9Å and 9.01Å, but this time, they
have to be linked to the minimum of the derivative of ∆(rcut). For 7.3Å, ∆ is rapidly
increasing and this corresponds to the heterogeneous environment shown by the partial
pair correlation functions, with maxima for gSiSi(r) and gOO(r) and a minimum for the
gSiO(r).

Temperature/cutoff dependence Even if the variations of DY and ∆ over the whole
temperature range are gentle, see Figs. 5.7 and 5.8, the surrounding environment still
plays an important role on the parameters. An increasing value of the cutoff used

2The charge surrounding a silicon atom QSi(r) contained in a layer of thickness dr and of radius
r is given by QSi(r) = (qSigSiSi(r) + 2qOgSiO(r))4πr2, if gSiSi(r) = gSiO(r) ≃ 1, QSi(r) ≃ 0.
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Figure 5.3: χ2 dependence with respect to the cutting distance. The input configurations
for the fits have been taken from a molecular dynamics simulation on a 8016 particles
model of liquid silica computed using the BKS potential at 3580K.
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d∆/drcut . The configurations used for this fit have been extracted form a T=3580K
simulation.
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Figure 5.7: The temperature dependence of the prefactor DY for different cutoffs rcut ∈
{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}.

for the fitting comes with a softening of the temperature dependence of the {DY ,∆}
parameters. These results were expected as for large cutoffs rcut the corresponding
values of DY and ∆ converge to {1,∞} as the Coulomb potential does not depend on
the temperature.

Physically, the value of ∆ obtained using the minimization procedure results from
a compromise. On the one hand, a large screening length ∆ should be used to recover
a ”bare” Coulomb potential. On the other hand, the introduction of a finite distance
cutoff rcut produces large errors due to incorrect charge balance [158]. In the present
scheme this is compensated by screening more strongly the Coulomb interaction by
using a smaller screening length ∆. Thus the results of Fig. 5.8 indicate that charge
neutrality is best satisfied, for a fixed cutoff value rcut, if the temperature is high, so
that a larger screening length ∆ can be used at high temperatures. This suggest that
charges are screened on a smaller lengthscale when temperature is high, that is when
the system is more disordered.

5.2 Liquid silica

Simulations have been carried out to check the reliability of the Yukawa potential. As
we aim at comparing quantitatively the Yukawa potential to the BKS one, simulations
have been done using the same physical conditions (temperatures, density) and param-
eters for the smoothing function for the short range potential as proposed by Horbach
[75] and presented in section (2.2.4.1). The samples investigated were made of 1002
atoms, the time step δt = 0.16 fs, the density ρ was the one previously retained by
Horbach and Kob [75] ρ = 2.37 g.cm−3, the simulation time as well as the temperature
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Figure 5.8: The temperature dependence of the screening length ∆ for different cutoffs
rcut ∈ {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}.

are also taken in agreement with Ref. [75].

Parameter sets As stated in the previous section the Yukawa parameters DY and ∆
show a slight temperature dependence. Therefore simulations have been carried out
using different sets of parameters obtained from fits of data at 3250K, 6100K as well as
the ones “averaged” (arithmetic mean) over the whole temperature range to check their
influence on the static features of the system, see Table 5.1. The corresponding results
are plotted in Figs. 5.9 and 5.10. The partial pair correlation functions and structure
factor calculated for the three different potentials are all very similar, the corresponding
pressures have also been calculated and similar results have been also found (≃ 1.13
GPa). Consequently, the choice of the parameters set is not so crucial regarding static
features. The dependence of the dynamical features has been investigated too, see
Fig. 5.11. The mean squared displacement of silicon and oxygen appear to depend
only slightly on the parameters set considered. If not explicitely mentioned all the
simulations presented in the next section have been performed using the “averaged”
parameters.

The effects of the potential range have also been investigated. Following the pre-
vious methodology, fits have been made for different cutoff rcut (6 Å, 8 Å and 10 Å)
and thereafter their arithmetic averages over the temperatures investigated for the fits
have been considered for simulations. The results of these simulations are shown in
Fig. 5.12. As it can be seen, the cutoff has a significant impact on the physics of
the system. The pair correlation function for the Si-Si term is strongly affected as
some peaks are out-of-phase for large distances. Furthermore, the systems simulated
using the 6 Å and 8 Å cutoff potentials are more diffusive than the 10 Å one, see Fig.
5.13. This underlines the sensitivity of the system with respect to the potential range.
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5.2 Liquid silica

For the simulations presented in this text we opted for a rcut = 10 Å potential as the
parameters DY and ∆ show only a weaker dependence with respect to the cutting
distance beyond this limit, see Fig. 5.4.

Temperature[K] DY ∆[Å]

3250 1.072 5.405
6100 1.062 6.452

arithmetic mean 1.070 5.650

Cutoff[Å] DY ∆[Å]

6 1.208 3.876
8 1.114 4.608
10 1.070 5.650

Table 5.1: Left table: Sets of parameters given for 10Å fits at 3250K, 6100K, and averaged
over the whole temperature range previously studied by J. Horbach [75]. Right table:
Thermal averages of the parameters for different cutoffs.
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Figure 5.9: The Si-Si partial pair correlation functions computed at 3250K using the Yukawa
potential for three different sets of parameters {DY , ∆} corresponding to the different
temperatures given in Table 5.1. The value used for rcut was set to 10 Å.

5.2.1 Static properties: Comparison to the BKS model

The main structural features have been computed and compared to the correspond-
ing BKS data on 8016 atoms systems, i.e. the pair correlation functions, the angle
distribution functions and static structure factors.

Pair correlation functions The Si-Si pair correlation function is the most sensitive
to changes made on Coulomb potential as the Si-Si interaction consists only in an
electrostatic term. However the statements made here are also valid of the O-O and
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Figure 5.10: The Si-Si structure factor computed at 3250K using the Yukawa potential for
three different sets of parameters {DY , ∆} corresponding to the different temperatures
given in Table 5.1. The value used for rcut was set to 10 Å.
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Figure 5.11: Time dependence of the mean squared displacements of silicon and oxygen
atoms at 3250K using the Yukawa potential for three different sets of parameters {DY , ∆}
corresponding to the different temperatures given in Table 5.1. The value used for rcut

was set to 10 Å.

Si-O pairs. In Fig. 5.14 the pair correlation functions are presented for three different
temperatures (3000K, 4000K and 6100K). For short distance (< 6.3Å) no differences
can be detected between the pair correlation functions computed using the Yukawa
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Figure 5.12: The partial Si-Si pair correlation functions at T = 3250K computed using the
three different cutoffs rcut given in Table 5.1.
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Figure 5.13: The mean squared displacements at T = 3250K computed using the three
different cutoffs rcut given in Table 5.1.

potential and the ones obtained with Ewald summation. Beyond the second neighbor
shell (> 6.3Å) the peaks positions are shifted, and these shifts increase with increasing
distance. Moreover slight discrepancies can be noticed regarding the heights of the
peaks. However, compared to the crude adjustments made to the Coulomb poten-
tial one can consider that the Yukawa results are in reasonable agreement with the
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simulations made using the Ewald summation.
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Figure 5.14: Si-Si pair correlation function computed using a 10Å cutoff (black lines) and
compared to the corresponding BKS data (red lines) for 3000K, 4000K and 6100K.

Static Structure Factors Using the definitions given in section (2.4.1) we have com-
puted the partial structure factors Sαβ(q) and plotted it in Fig. 5.15.For large wavevec-
tors (q > 3.5Å−1) the Yukawa potential correctly reproduces the Ewald data. This is
not surprising as we already know from the preceding paragraph that the Yukawa
potential reproduces with a good accuracy the local structure. The peak at 1.6 Å−1

corresponds to the so-called first sharp diffraction peak (FSDP). This peak accounts
for the local chemical ordering of tetrahedron-like structures. Its position is connected
to the distance between neighboring tetrahedra. This feature is properly reproduced
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5.2 Liquid silica

by the Yukawa potential. In contrast to this the peak heights and positions at 2.7Å−1

are underestimated.
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Figure 5.15: Partial structure factors for 3000K. The inset focuses on the Si-Si peak at 2.7

Å−1.

Angular distribution functions The local geometry characterized by the angular dis-
tribution functions has already been discussed in section 3.4.2. These quantities have
been computed and compared for three different temperatures, see Figs. 5.16 and 5.17.
The Yukawa simulations show a very good agreement with the corresponding Ewald
ones. Such probability distributions involve triplets of bonded atoms separated by a
maximum distance of 4.7Å3. This is again consistent with our previous statement that
the screened potential only shows small discrepancies for large distances keeping the
local structure unmodified.

5.2.2 Dynamic properties: Comparison to the BKS model

Mean squared displacement The relevance of this quantity for the investigation of
dynamic properties of the system has already been discussed in one of the previous
chapter, see section (3.4.3). The time dependence for these quantities is shown in
Figs. 5.18 and 5.19. Three main regimes can be distinguished at low temperatures:
The short time scales are characterized by a ballistic motion of the particles4. Thus,
the MSD is proportional to t2. Intermediate time scales are characterized by the β-
relaxation process [13]. A plateau-like region is present and this plateau becomes more
pronounced with decreasing temperature. This regime is due to the cage effect. The

3Defined equal to two times the minimum of the first peak of gSiO(r) located at 2.35Å
4r(t) ≃ r(0) + ṙt
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Figure 5.16: ÔSiO angle distributions for three temperatures corresponding to the BKS
and Yukawa force-fields.
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Figure 5.17: ŜiOSi angle distributions for three temperatures corresponding to the BKS
and Yukawa force-fields.

particle is trapped by its surrounding neighbors. At long times, the particle exhibits a
diffusive motion and thus the MSD shows a linear time dependence, according to the
Einstein relation.

For high temperatures, no discrepancies can be noted between the Yukawa and the
BKS data. However, for low temperatures, the Yukawa dynamics is more diffusive than
the BKS ones. The diffusion constants for silicon and oxygen Dα have been represented
in Fig. 5.20 as an Arrhenius plot. Whereas at the highest temperature, T = 6100K
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5.2 Liquid silica

Yukawa and Ewald methods yield the same values forDα within the statistical accuracy,
at lower temperatures the Yukawa values are about a factor of 2 higher that the ”exact”
Ewald values. From both methods similar activation energies (similar slopes) are found
for the temperature dependence of Dα in the low-temperature regime.

It is worthwhile to notice that the shouldering in the MSD usually observed for the
BKS at 0.2 ps is still present in the simulation with Yukawa, see Figs. 5.18 and 5.19.
This peak [3] is related to the so-called Boson peak which is a vibrational feature for
low frequency whose precise origin is still a matter of debate, see Courtens et al. [32].
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Figure 5.18: Time dependence of the mean squared displacement of silicon atoms for the
BKS and the Yukawa potential.

Vibrational density of states Using the description given in section (3.2.1), we have
calculated the vibrational density of states (VDOS) by means of the velocity auto-
correlation function. For this purpose ten independent samples equilibrated at 3000K
have been quenched to 300K using a infinite quench rate5. The samples have then been
annealed for 1 ns. Thereafter the VDOS has been extracted and averaged from NVE
runs made over runs of 20 ps.

Within the harmonic approximation (i.e. small atomic displacements from their
equilibrium positions) the displacements of an atom j from its equilibrium positions
uj(t) at time t can be decomposed in contributions of normal modes of frequency wν :

uj(t) =
∑

ν

Aν
√
Nmj

exp(−ıwν)ej,ν (5.9)

5The temperature has not been progressively lowered, but instantaneously.
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Figure 5.19: Time dependence of the mean squared displacement of oxygen atoms for the
BKS and the Yukawa potential.
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Figure 5.20: Arrhenius plots of the self-diffusion constants for Ewald and Yukawa methods.

The prefactor Aν is connected to the amplitude of the displacements and N represents
the number of atoms considered and mj is the mass of the particle j considered. The
vectors ej,ν are called the displacement vectors, they depend on the particle considered
j and also on the vibrational mode ν. The displacement vectors are all orthonormal:

∑

j

|ej,ν|2 = 1, and
∑

j

ej,µ · ej,ν = δµ,ν . (5.10)
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The velocity of the j-th atom in a harmonic system can be derived form Eq. 5.9:

u̇j(t) =
−ı

√
Nmj

∑

ν

Aνwν exp(−ıwνt)ej,ν . (5.11)

According to this definition the kinetic 〈Kν〉 and the potential energy 〈Vν〉 (〈Kν〉 = 〈Vν〉
within the harmonic approximation) can be expressed as follows:

〈Kν〉 =
A2
νw

2
ν

2N
(5.12)

Thus, the overall energy of the system 〈Eν〉 is:

〈Eν〉 =
A2
νw

2
ν

N
. (5.13)

This mean energy can also be expressed using the Bose-Einstein statistic:

〈Eν〉 = ~wν

[
1

2
+ n(ν)

]

(5.14)

n(ν) = [exp(~wν/kBT ) − 1]−1 . (5.15)

In the classical limit (~w/kBT ≪ 1) the occupation number n(ν) reduces to:

n(ν) +
1

2
≃ kBT

~w
, (5.16)

the total energy of the system is given by the following expression:

〈Eν〉 =
A2
νw

2
ν

N
= kBT (5.17)

Thus the mass weighted velocity autocorrelator is:

∑

j

mj 〈u̇j(t) · u̇j(0)〉 =
∑

ν

〈
w2
νA

2
ν

N
exp(−ıwνt)

〉

(5.18)

=
∑

ν

w2
νA

2
ν

N
〈exp(−ıwνt)〉 (5.19)

=
∑

ν

w2
νA

2
ν

N
cos(wνt) (5.20)

= kBT
∑

ν

cos(wνt). (5.21)

The Fourier transform g(w) of Eq. 5.21 is:

g(w) =

∫ ∞

0

1

kBT

∑

j

mj 〈u̇j(t) · u̇j(0)〉 exp(−ıwt)dt (5.22)
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=

∫ ∞

0

∑

ν

cos(wνt) exp(−ıwt)dt (5.23)

∝
∑

ν

δ(w − wν) (5.24)

The function g(w) is a sum over the frequencies of the normal modes wν of δ(w −wν)
functions.

Fortunately the density of states of a correlation function can be obtained without
calculating the correlation function by using the Wiener-Khintchine theorem [40]. The
density of state g(wν) can be expressed:

g(w) =
1

N

[
∑

i

∫

miu̇i(t) exp(−ıwt)dt
]2

. (5.25)

Where N is a normalization constant.
The results shown in Fig. 5.21 are in very good agreement compared to the BKS

ones. The small discrepancies in the peak heights are most likely due to some cooling
rate effects as reported by Vollmayr and coworkers [153]. The VDOS corresponding to
the low frequency domain is accurately reproduced. The vibrational modes accounting
for the low frequency domain correspond to delocalized motions of particles correlated
over long distances. This results should be viewed as an encouraging clue that the
short range Yukawa ansatz is able to describe the low frequency domain of the VDOS.
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Figure 5.21: Vibrational density of state computed via the velocity-velocity autocorrelation
function. The results computed using the Yukawa potential have been averaged over
ten independent simulations (1002 atoms) at 300K. The BKS plots have been calculated
using two different samples made of 8016 particles.
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5.3 Crystalline structure

5.2.3 Thermodynamical properties: Pressure

Experimentally it has been observed that amorphous silica shows a maximum in the
temperature dependence of the density at 1820K, [24]. This density anomaly is qual-
itatively reproduced by the BKS although overestimated (≃ 4700K). For the purpose
of comparison our simulations have been carried out within the NVE ensemble and
as a consequence the density is constant during the simulation. However the density
anomaly is also reflected by the pressure dependence of the system with respect to
the temperature. For the different temperatures investigated we have computed the
corresponding pressure according to the virial theorem (see Appendix A) and plotted
in Fig. 5.22. Even if the Yukawa potential systematically overestimates the average
pressure by 0.2 GPa, the overall temperature dependence of the pressure is preserved
although shifted. The temperature corresponding to the minimum of the pressure in
this range is kept constant. The temperature at which the pressure remains constant
for the low temperature domain is slightly underestimated by the Yukawa potential,
also, the height of the plateau is overestimated.
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Figure 5.22: Pressure as a function of the temperature. The black crosses represent the
pressure obtained with the BKS potential using Ewald summation. The red crosses
represent the pressure obtained using the Yukawa potential.

5.3 Crystalline structure

In this chapter we have assumed that the electrostatic interactions can be screened
for amorphous system. This hypothesis may not hold anymore when considering crys-
talline structures. In section (5.1.2) we stated that the introduction of a finite distance
cutoff rcut produces large errors in the description of the effective interactions applied
on a given atom due to incorrect charge balance [158]. If the system is disordered,
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5. Screening potential

the charge neutrality is best satisfied and the screening length is small. In contrast
to this when considering crystalline phases (ordered phases) the charge neutrality may
not be fullfiled and the Yukawa ansatz could be in total disagreement with the results
obtained using the Ewald method. This section will investigate some properties of the
Yukawa potential related to α-quartz. These results are compared to the BKS ones.

5.3.1 Equilibrium geometry

The equilibrium geometry of a 243 atoms sample is computed by relaxing the atomic
coordinates in order to minimize the forces using a simple steepest descent algorithm,
see section 4.1.1. During the minimization procedure, the properties of the space group
symmetry, see Table 5.2 have to be preserved [20]. This constraint reduces the number
of degrees of freedom, as only four fractional coordinates {u, x, y, z} are necessary to
define the inner cell structure of α-quartz. The atomic positions {u, x, y, z} of atoms
κ = 1 and κ = 4, see Table 5.2, have been modified according to the forces, and
the rest of the atomic coordinates have been updated according to the space group
symmetry. The presence of residual constraints on the system is checked by computing
all the effectives atomic forces. The stability of the structure has been checked using
the Hessian matrix6 of the system.

No attempts have been made to optimize the cell parameters, as we already know
from our preceding simulations on liquid silica that the pressure is overestimated (+0.2
GPa). This shift of the internal pressure would affect the lattice parameters as the
lattice cell would naturally tend to increase. The short range part of the potential used
in this minimization was truncated at 10 Å cutoff and regularized by an exponential
function. This cuttoff distance has been chosen as for the BKS potential it is giving
the exact lattice properties originally predicted by van Beest et al. [9].

Equivalent
position

Species κ (x1,x2,x3)

1 (u, 0, 0)
3a Si 2 (0, u, 2

3
)

3 (u, u, 1
3
)

4 (x, y, z)
5 (y, x, 2

3
− z)

6 (y, x− y, z + 2
3
)

6c O
7 (x, y − x, 1

3
− z)

8 (y − x, x, z + 1
3
)

9 (x− y, y, z)

Table 5.2: Asymmetric unit coordinates according to the P3121 space group.

6The Hessian matrix is the matrix of the second derivatives of energy with respect to the coordi-
nates. If a system lie in a local minimum the small variations of the atomic positions can be described
by convex quadratic terms ((H)ii ≥ 0)
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5.3 Crystalline structure

Asymmetric
Coordinates

BKS Yukawa Error(%)

u 0.465 0.458 1.55
x 0.427 0.428 -0.28
y 0.272 0.278 -2.42
z 0.208 0.210 -0.95

Table 5.3: Comparison of the force fields for α-quartz.

The structure thus obtained is stable according to the eigenvalues of the Hessian.
The geometry optimization leads to the results shown in Table 5.3. The structure given
by the BKS potential is comparable to the one given using the Yukawa potential.

5.3.2 Vibrational density of states

The vibrational density of state (VDOS) g(ν) gives informations about the relative
number of normal modes g(ν)dν having a frequency in the range ν and ν + dν. This
quantity can be measured by neutron scattering experiment [26, 44, 141, 157]. Moreover
this technique can give access to more precise informations such as phonon dispersion
curves. Numerically these quantities can be computed within the harmonic approxi-
mation, assuming that atoms make only small displacements around their equilibrium
positions (∂V (r)

∂ri,α
= 0). Consequently the dynamics of the system can be described by

second order contributions.
t wν .
The density of states of BKS and Yukawa potential are compared in Fig. 5.23. The

spectra overlap almost perfectly, and only slight discrepancies in the peak positions are
noticeable in the high frequency domain. The peak heights are also in good agreement.
It is whortwhile noting that the low frequencies domain is not affected at all by cutting
off the long range interactions.
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5. Screening potential

0 5 10 15 20 25 30 35 40
ν[THz]

0

0.02

0.04

0.06

0.08

0.1

V
D

O
S

 [T
H

z-1
]

BKS pot, relaxed lattice, and asymetric units
Yukawa pot, BKS lattice, and BKS coordinates
Yukawa pot, BKS lattice, and  Yukawa coordinates

Figure 5.23: Vibrational density of states for α-quartz. Three different kinds of computa-
tions have been carried out on the α-quartz: In black, the VDOS as given by the BKS
potential, in red the VDOS of the Yukawa potential using the BKS geometric parameters,
in blue the density of Yukawa potential using the relaxed coordinates given in Table 5.3.
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Chapter 6

Structural fitting procedure

The preceding fitting attempts made using the fitting to the ab initio forces have
not been considered satisfactory as they were leading to an inaccurate description of
the structure of silica. The structure has been considered a posteriori for validating
the force-fitted potential, whereas it could have been directly considered into the fit.
This proposition have already been discussed in the previous works of Lyubartsev and
Laaksonen [95] and Soper [135] by means of reverse Monte Carlo (RMC) simulation.
Lyubartsev and Laaksonen tried to reproduce the effective potential between the ions in
aqueous NaCl solutions. To this end, they used the ion-ion radial distribution functions
computed from molecular dynamics simulations. Soper also used the similar approach
in order to propose an effective potential for water. The structural features can be
expressed as a function of the parameters of the potential considered at the expense
of strong approximations [63], for this reason the parameter space has been probed
by these authors [95, 135] via a random walk in search for set of optimal parameters
that is consistent with structural data. This algorithm is not fully satisfactory as the
stochastic RMC approach is not a fast and accurate optimization method. In this
chapter we will present the fast converging approach followed to take explicitely into
account the structure given using the first-principles approach.
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6. Structural fitting procedure

6.1 Fitting procedure

In chapter 4 we showed that fitting a pair potential ansatz for silica does not work as
the structure of silica is not properly described. In this chapter we will propose a new
criterion (χ2) based on the structure given by the ab initio simulations.

We aim at taking explicitely into account some characteristic functions related to
the structure. In view of the nature of the data considered any optimization algo-
rithms based on the gradient method can hardly be performed. Indeed structural
features1 cannot be expressed in a simple analytical way as a function of the potential
parameters. As a consequence the gradients corresponding to these structural quanti-
ties, necessary for any efficient minimization procedure (see section 4.1.1), cannot be
derived analytically. In some previous works, [95, 135] this difficulty has been circum-
vented by means of stochastic reverse Monte-Carlo procedures at the expense of both
convergence speed and accuracy of the results. In this work, we opted for the more di-
rect approach by computing explicitely the derivatives of the pair correlation functions
The fitting method retained for this purpose is the Levenberg-Marquardt algorithm,
already discussed in section (4.1.1).

6.1.1 Practical considerations

Fitting criterion We assume a Born-Mayer Coulomb form for the interatomic poten-
tial, see Eq. (1.1).The structural merit function (χ2) chosen for the fits is analog to
the force merit function, see Eq. (4.14) of chapter 4. The forces in Eq. (4.14) have
been replaced by the partial pair correlation. We chose the following definition for χ2

for the fits:

χ2
g(r) =

LBox
2∆∑

ℓ=0

χ2
g(r)(ℓ) (6.1)

=

LBox
2∆∑

ℓ=0

[

gCPMD
αβ (∆ℓ) − gBM

αβ (∆ℓ; {qi, Aij, bij , cij})
σCPMD
g(r)

]2

, (6.2)

where {qi, Aij, bij , cij} stand for the Coulomb and Born-Mayer parameters. The simu-
lation cell is cubic and the typical box length is Lbox. The distances are discretized by
means of the length step ∆.

- The gCPMD
αβ (ℓ∆) correspond to the partial pair correlation functions (α, β ∈

{Si,O}) at distance rℓ = ℓ∆ computed using CPMD;

- The gBM
αβ (ℓ∆) correspond to the partial pair correlation functions (α, β ∈ {Si,O})

at distance rℓ = ℓ∆ computed using the classical Born-Mayer potential;

1The structural quantities are given via thermal averages, see also section (2.2). This means that
they can only be computed over a whole NVT run.
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6.1 Fitting procedure

- σCPMD
g(r) correspond to the standard deviation of the ab initio partial pair corre-

lation function, in this context we assumed that σCPMD
g(r) do not depend on the

distance;

An example of the calculation of χ2
g(r), using the constrained force fitted potential de-

fined in Table 4.3, is given in Figs. 6.1, 6.2 and 6.3. The heights of the peaks of the
pair correlation functions decreases to 1 for increasing distance, see section (2.4.1), and
as a consequence the differences between the partial pair correlation functions corre-
sponding to the CPMD calculation and to the classical trajectory vanish, by design, for
large distances, limℓ→∞ χ2

g(r)(ℓ) = 0. The magnitudes of the discretized contributions

(χ2
g(r)(ℓ)) to the overall χ2

g(r) decrease for increasing distances. Consequently fitting

made using the χ2
g(r) will describe more accurately the local structure characterized

by high peaks compared to the intermediate and long range structure. In order to
counterbalance this effect and thus to emphasize the sensitiveness of the fits on the
intermediate and long range scale some other χ2 have been considered:

χ2
rg(r) =

LBox
2∆∑

ℓ=0

χ2
rg(r)(ℓ) (6.3)

=

LBox
2∆∑

ℓ=0

[

(∆ℓ)gCPMD
αβ (∆ℓ) − (∆ℓ)gBM

αβ (∆ℓ; {qi, Aij , bij, cij})
σCPMD
rg(r)

]2

(6.4)

χ2
4πr2g(r) =

LBox
2∆∑

ℓ=0

χ2
4πr2g(r)(ℓ) (6.5)

=

LBox
2∆∑

ℓ=0

[

4π(∆ℓ)2gCPMD
αβ (∆ℓ) − 4π(∆ℓ)2gBM

αβ (∆ℓ; {qi, Aij, bij , cij})
σCPMD

4πr2g(r)

]2

.(6.6)

In the following, we will refer to the definitions given by Eqs. (6.2), (6.4), and (6.6)
as g(r), rg(r) and 4πr2g(r) criterion, respectively. The different standard deviations
are all considered equivalent σCPMD

g(r) = σCPMD
rg(r) = σCPMD

4πr2g(r) = 1. The choice accounting
for these different definitions can be understood from the following example: Suppos-
ing that the classical pair correlation function g(rl)

BM differs from the ab initio one
g(rl)

CPMD by a quantity ε at a distance rl, g(rl)
BM + ε = g(rl)

CPMD.

- If rl = ∆ℓ > 1/
√

4π Å, then:

χ2
g(r)(ℓ) = ε2 < χ2

rg(r)(ℓ) = (∆ℓε)2 < χ2
4πrg(r)(ℓ) = (4π(∆ℓ)2ε)2 (6.7)

- If rl = ∆ℓ < 1/
√

4π Å, then:

χ2
4πrg(r)(ℓ) = (4π(∆ℓ)2ε)2 < χ2

rg(r)(ℓ) = (∆ℓε)2 < χ2
g(r)(ℓ) = ε2. (6.8)

These different χ2 are also explicitely described on Figs. (6.4) and (6.5).
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Figure 6.1: The partial pair correlation functions corresponding to the ab initio simulations
(in red) and to the classical simulation made using a force fitted potential (black). Both
simulations have been carried out at 3600K. 114 particles have been considered for the
ab initio simulation whereas a 1152 atoms sample have been used for the classical sim-
ulations. For clarity the differences in between the black and the red curves have been
shifted downward by 2.
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Figure 6.2: The squared differences in between partial pair correlation functions (solid line),
and their corresponding integral form (dashed line).

Derivative calculation As the dependence of gαβ(r) with respect to the potential
parameter has no simple analytical expression, the derivatives necessary for the cal-
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Figure 6.3: The χ2 defined for the structural fitting procedure accounts for the sum of the
integral of the squared difference of the partial pair correlation functions.
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Figure 6.4: The plots representing rgij(r) and ∆ [rgij(r)].

culation of both gradient and Hessian matrix have been computed numerically. We
proceed here by finite centered differences εζi:

∂gαβ(rℓ; {ζ})
∂ζi

= lim
εζi

→0

gαβ(rℓ; {. . . , ζi + εζi , . . .}) − gαβ(rℓ; {. . . , ζi − εζi, . . .})
2ǫi

. (6.9)

The variable ζi stands for one of the parameters of the Born-Mayer potential, ζi ∈
{qSi, Aij , bij, cij}. For this purpose, NVT simulations have to be carried out. The sys-
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Figure 6.5: The r2gij(r) and ∆
[
r2gij(r)

]
plots. The classical simulations have been made

in the NVT ensemble on a 1152 atoms sample at 3600K. The ab initio simulations are
already described on chapter (3.4.1).

tem under consideration consists of 1152 atoms in a cubic box using periodic bound-
ary conditions. The density was set to 2.2 g/cm3 corresponding to a box length
Lbox = 25.904 Å). The simulations last for 10 ps, this time range has been retained
in agreement with the previous simulations of Horbach [74]. Changes in the potential
which occur at each optimization step lead to significant increase of the temperature.
To circumvent any energy conservation and stability problems, see also section (2.2.1),
a time step of 1 fs has been retained for the simulations. The changes in the potential
lead also to other side effects: As already stated in section (2.2.4.1) the Born-Mayer
form has some drawbacks due to the presence of dispersive term (∝ 1/r6) that may
lead to diverging behavior for very short distances. To avoid these effects some arti-
ficial repulsive interactions effective2 at very small distances have been added to the
potential:

Vrep. =
Dij

r24
ij

. (6.10)

The repulsive parameters are presented in Table 6.1. However it is worthwhile to
note that these repulsive potentials may gives spurious local minima in the potential
energy shape. These repulsive terms are efficient providing that the changes in the
initial parameter sets are small. To get rid of relaxations effects due to changes in the
potential occurring at the beginning of each simulation the first fifth of the trajectory
is not taken into account for the calculation of the χ2.

2The quadratic term previously used in the simulations of Vollmayr et al. [153] and Horbach and
Kob [75] cannot be applied in this context. The repulsive quadratic terms they proposed suppose
that one knows the position of the local maximum of the Si-O interaction term for example. However
during a fitting process this maximum is not necessarily defined.
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6.1 Fitting procedure

Pair Dij [eV.Å24]

O-O 112.916259141
Si-O 29.272378219
Si-Si 3423204.14631

Table 6.1: Numerical values of the repulsive parameters required for the stability of the
simulations, the repulsive potential is outlined on Eq. (6.10).

The parameters present in the Born-Mayer terms are not all equivalent (magnitude,
prefactor/exponent), changes of some given parameters affect more the structural and
dynamical features of the system considered. As a consequence different steps εζi have
to be defined for the different parameters of the potential. It is wortwhile to note that
for averaging reasons (noise in the gαβ(r)) the values also depend on the simulation
length. The values of εζi are somewhat chosen ad hoc. The guess εζi has been set
proportional to the BKS parameters for the O-O and Si-O term3, the parameters
corresponding to the Si-Si interaction have been chosen equal to the previous results
given by the force-matching procedure. Underestimated values of εζi may lead to
variations in the gαβ(r) below their statistical errors, thus giving spurious results. In
contrast to this, overestimated values might miss some fine details of the local structure
and can also be detrimental to the accuracy of the convergence of the parameters. The
final values retained are summarized in Table 6.2.

To check the stability of the procedure we have proceeded to preliminary tests on
an oversimplified case. For these tests we wanted to reproduce the liquid structure
given by the BKS potential. The guess parameters used for this purpose were obtained
by making arbitrary changes on the BKS ones4. However the results were striking as
the optimized set was different from what we expected, although the structures were
similar. Numerically it appears that there is not an unique relationship between the
site-site pair potential and the site-site pair correlation function5. Taking this into
consideration, one has to carefully define the guess parameters. Different starting sets
of parameters can lead to different local minima of the χ2. In this work, the initial sets
of parameters considered are the force fitted ones which in spite of a poor description
of the structure give a good description of the forces (χ2

Force ≃ 0.18).

6.1.2 Fitting

Similar to the approach followed in section (4.2.0.1) we have realized two kinds of
fits. In the first set of optimization the Si-Si terms have been constrained to zero
whereas in the second sets we allowed an overall relaxation of the parameters. The

3The proportionnality factor has been chosen among the following list:
{0.001, 0.002, 0.005, 0.010, 0.020, 0.050, 0.100}

4The test has been carried out using the folowing values {qSi = 2.8, AOO = 2600.77300, bOO =
2.76, cOO = 100.0, ASiO = 12000.7572, bSiO = 4.87318, cSiO = 75.0}

5This is not true anymore when one adopts a pure mathematical point of view [47].
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Figure 6.6: Derivatives of the Si-O pair correlation function with respect to the Coulomb
charge for different distances (rℓ = ∆ℓ, ℓ ∈ [0;  LBox/2∆]). Different infinitesimal step εqSi

have been defined to test the convergence of the results. The parameter set used for the
dynamics have been defined in Table 6.2, the step for the discretization of the g(r) is
∆ = 0.02Å.

Parameters Value εmin εav εmax

qSi [C] 2.4 0.05 0.075 0.1
AOO [eV] 1388.773 70. 105. 140.
bOO [Å−1] 2.76 0.03 0.085 0.14
cOO [eV.Å6] 175. 8.75 13.125 17.5
ASiO [eV] 18003.7572 180. 540. 900.
bSiO [Å−1] 4.87318 0.01 0.03 0.05
cSiO [eV.Å6] 133.5381 1.5 4.1 6.7

ASiSi [eV] 3976.776 200. 300. 400.
bSiSi [Å−1] 2.7943 0.014 0.03 0.056
cSiSi [eV.Å6] 882.59 44.13 66. 88.26

Table 6.2: Parameters values and their corresponding εζi step. Three values are given here
corresponding to the lower limit, to the upper one, and to the average value used for the
fit. The O-O and Si-O parameters are the BKS parameters, the Si-Si parameters are the
ones given by the force fitting procedure.

results are compiled in Tables 6.3, 6.4 and 6.5. The comparison between the partial
contributions of the rg(r)unconst. potential and the BKS are given in Fig. 6.26. The
most satisfying set of parameters is the one given using the g(r) and the rg(r) criteria
in their unconstrained form (reliable angular distribution functions and pair correlation
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6.1 Fitting procedure

functions). The corresponding structural quantities are displayed in Figs. 6.7, 6.8, 6.9
and 6.10.

Some attempts have been realized to check whether the output parameter sets
resulting from the structural fitting procedure could be reinjected into the input of the
force fitting procedure. Unfortunately, the optimized parameters given by the force
fitting procedure were reconverging to their preceding values, these results are shown
in Table 6.6. It is interesting to note that the force criterion6 χ2

force is not drastically
affected. On the contrary, forces are still in better agreement than compared to the
BKS potential. Furthermore, it appears that the structural fitting criterion, see Eq.
(6.2), emphasizing the optimization of the local structure affects less the description of
the forces whereas the long range 4πr2g(r) criterion leads to significant discrepancies
with respect to the forces.

Parameters g(r)const. g(r)unconst.

qSi [C] 1.932431 1.820380
AOO [eV] 608.524841 723.064941
bOO [Å−1] 2.630410 2.649810
cOO [eV.Å6] 16.564278 46.315239
ASiO [eV] 25525.568359 27694.904297
bSiO [Å−1] 5.164890 5.190189
cSiO [eV.Å6] 135.081451 145.668900
ASiSi [eV] - 3161.797607
bSiSi [Å−1] - 2.877782
cSiSi [eV.Å6] - 582.533447

Table 6.3: Force-field parameters given using the g(r) fitting criterion.

Parameters rg(r)const. rg(r)unconst.

qSi [C] 1.983317 1.910418
AOO [eV] 753.638245 659.595398
bOO [Å−1] 2.731122 2.590066
cOO [eV.Å6] 13.243844 26.836679
ASiO [eV] 23867.341797 27029.419922
bSiO [Å−1] 5.153327 5.158606
cSiO [eV.Å6] 127.584831 148.099091
ASiSi [eV] - 3150.462646
bSiSi [Å−1] - 2.851451
cSiSi [eV.Å6] - 626.751953

Table 6.4: Force-field parameters given using the rg(r) fitting criterion.

6See definition in Eq. (4.14).
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6. Structural fitting procedure

Parameters 4πr2g(r)const. 4πr2g(r)unconst.

qSi [C] 2.011609 1.934870
AOO [eV] 669.314575 913.573547
bOO [Å−1] 2.675462 2.661725
cOO [eV.Å6] -15.721647 56.550533
ASiO [eV] 25654.265625 26934.230469
bSiO [Å−1] 5.216061 5.182786
cSiO [eV.Å6] 128.086639 144.906982
ASiSi [eV] - 2057.579102
bSiSi [Å−1] - 2.789539
cSiSi [eV.Å6] - 526.447327

Table 6.5: Force-field parameters given using the r2g(r) fitting criterion.

Initial Final
Criterion Constraints

χ2
force χ2

force

constr. 0.45 0.18
g(r)

unconstr. 0.40 0.17
constr. 0.55 0.18

rg(r)
unconstr. 0.54 0.17
constr. 0.79 0.18

4πr2g(r)
unconstr. 0.74 0.17

Table 6.6: Shown on this table, the χ2 obtained from the force as defined in Eq. (4.14), the
starting parameters are the ones presented in the above Tables 6.3, 6.4, and 6.5. The χ2

values are given before and after the optimization process.

6.2 Liquid silica

6.2.1 Pair correlation functions

In this chapter, the pair correlation functions have been regarded as a fitting observable.
Consequently, the agreement with respect to the ab initio data is rather good, see Figs.
6.11-6.16. The height and the position of the first peaks are generally well described.
The g(r) potential is the most accurate in this distance range. Nonetheless, the rg(r)
potential gives reliable results for the Si-Si pair. Regarding to the BKS potential, it
appears that it systematically underestimates the position of the first peaks, whereas
the second peak height and position are even more accurately described than compared
to the fitted potentials, see Figs. (6.13) and (6.15).
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Figure 6.7: Compared on this figure the classical (solid), given by the g(r)unconst. criterion,
and the ab initio (dashed) pair correlation functions.
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Figure 6.8: Compared on this figure the classical (solid), given by the g(r)unconst. criterion,
and the ab initio (dashed) angular distribution functions.

6.2.2 Angular distribution functions

The comparison of the angular distribution functions to the ab initio data are presented
in Figs. 6.17 and 6.18. The case of the BKS force field is quite instructive. As already

mentioned the radial distribution functions are quite well described and even the ÔSiO
angular distribution function is in good agreement with the CPMD data. Nonetheless,

133



6. Structural fitting procedure

1 2 3 4 5 6
r[Å]

0

1

2

3

4

5

6

7

8

9

10

g ij(r
)

Ab initio
Structural FIT

SiO

OO SiSi

Figure 6.9: Compared on this figure the classical (solid), given by the rg(r)unconst. criterion,
and the ab initio (dashed) pair correlation functions.
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Figure 6.10: Compared on this figure the classical (solid), given by the rg(r)unconst. criterion,
and the ab initio (dashed) angular distribution functions.

the ŜiOSi plot exhibits differences when compared to the ab initio data. The very
good prediction of the structural potentials are somehow surprising, especially for the
intertetrahedral angles. The shapes, the positions and the heights of the peaks are
in good agreement with the ab initio data. From this point, we will only consider
the unconstrained rg(r) potential in the following sections because of its ability in
reproducing the structure of liquid silica.
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Figure 6.11: The O-O radial distribution functions for different methods and potentials at
T = 3600K.
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Figure 6.12: An expanded view of the first and second peaks of the O-O radial distribution
functions for different methods and potentials.

6.2.3 Structure factors

The neutron scattering function (NSF) defined in section 2.4.1 has been calculated for
the simulation realized using the rg(r)unconstr. potential and compared to the previous
results of Horbach and Kob [75] and also to the experiments of Susman et al. [142], see
Fig. (6.19). The sample considered for the calculation of this quantity has been taken
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Figure 6.13: The Si-O radial distribution functions for different methods and potentials.
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Figure 6.14: An expanded view of the first and second peaks of the Si-O radial distribution
functions for different methods and potentials.

from sixteen independent simulations properly thermalized at 2440K and quenched to
300 K. The rg(r)unconstr. gives results that are very similar to the BKS, the minima
at 2.2 Å−1 and 6.4 Å−1 are still underestimated by our potential when compared to
the experimental data. The position and the height of the peaks above 2.2 Å−1 is in
good agreement with the experiments. However the position and the height of the first
sharp diffraction peak (FSDF) is better reproduced (slightly shifted on the left) by the
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Figure 6.15: The Si-Si radial distribution functions for different methods and potentials.
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Figure 6.16: An expanded view of the first and second peaks of the Si-Si radial distribution
functions for different methods and potentials.

rg(r)unconstr. potential in comparison to the BKS potential.

6.2.4 Pressure

As the density anomaly is a rather peculiar feature of silica, we have tested to what
extent our rg(r) potential was able to reproduce it. For this purpose we varied the
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Figure 6.17: The ÔSiO distribution function for different methods and potentials.
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Figure 6.18: The ŜiOSi distribution function for different methods and potentials.

short range cutoff to check its influence on the pressure profile, and thereafter to set
the equilibrium density of the system for a given temperature range. The tempera-
ture dependence of the pressure is presented in Fig. 6.20. We see that the pressure
is mainly shifted towards lower values as the cutoff is increased. This profile is satis-
factory as the system exhibits only a slight temperature dependence. We have opted
for a 6.5Å cutoff that appears to be compatible with the mechanical stability of the
system (p > 0). However, the data are incomplete as it was not possible to investigate
quantitatively temperatures below T = 2440K, due to CPU time limitation. In the
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Figure 6.19: Comparison of the neutron scattering functions of different potentials to ex-
periment: The BKS potential (in black) from Ref. [75], the rg(r)unconstr. potential (in
red) and the experimental neutron scattering functions from Meyer et al. [106] (green
crosses) and the one from Susman et al. [142] (blue crosses).

low temperature domain the pressure does not depend on the temperature, moreover
if a the new potential is able to predict a negative thermal expansion (characterized by
a minimum in p(T )) this would occur below T = 3000K i.e. closer to the experiment
compared to the BKS7. These results have to be envisaged as encouraging clues that
the potential describes liquid silica quite reasonably.

7The minimum in the temperature dependence of the pressure for the BKS potential corresponds
to T = 4500K
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Figure 6.20: Temperature dependence of the pressure given by the rg(r)unconst. force field.
The different curves correspond to different cutting distances rcut. The BKS simulations
have been carried out using 8016 atoms samples while the rg(r) simulations have been
realized on samples with 1152 atoms.

6.3 Dynamic properties

6.3.1 Vibrational density of states

The vibrational density of states has also been investigated to check whether the po-
tential is able to properly reproduce the ab initio results. For this purpose, sixteen
independent runs properly thermalized at 2440K have been considered and quenched
down to 300K using an infinite quench rate. Here a 6.5 Å cutoff has been retained
whereas in the preceding sections a 5.5 Å cutoff has been chosen. The density of states
has been extracted using the Fourier transform of the velocity autocorrelation function,
see section 5.2.2. The results have been compared to the ones of Horbach [74] and to
the ones given in Ref. [12], see Fig. 6.21. From this direct comparison one can observe
that the typical double peak pattern for the high frequency domain is predicted by
both BKS and rg(r) force fields. Regarding BKS, this feature is clearly well described
and somewhat overestimated, but one has to keep in mind that these features have
been directly taken into account for the fitting of the potential. Indeed, van Beest and
coworkers [9] have used the stretching (Td) and the bending (D2h) modes to adjust
the O-O and the Si-O terms. These modes are directly involved in this double peak
structure. In contrast our rg(r) potential has only been fitted on the structure starting
from an optimized force fitted set of parameters. Moreover the shape of the double
peaks structure, as described by our rg(r) potential, can be improved by further inves-
tigations at lower temperatures. Indeed some cooling rate effects [153] may account for
the lack of precision in the description of this part of the spectrum. Another distinction
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Figure 6.21: Vibrational density of states for vitreous silica. The curves corresponding to
the rg(r) and BKS potentials have been computed using the velocity autocorrelation
function at 300K on samples containing 1152 and 8016 atoms, respectively. The ab initio

data have been computed at 0K using the dynamic matrix on a 78 atoms samples. For
clarity the curves for the rg(r) and BKS force fields have been shifted upward by 0.03
and by 0.07, respectively.

can be made in between the two classical potentials in that the BKS clearly exhibits
a spurious shouldering at 26 THz whereas our potential shows only a single peak in
this frequency range at 21.8 THz, slightly underestimated when compared to the 23.7
THz given by CPMD. These results connected to the high frequency domain should
be considered as encouraging. Regarding the rest of the curves the results shown by
the BKS and the rg(r) potential are similar. However, some deeper investigations are
necessary, especially in the range going from 16 THz to 27 THz, to check whether our
potential leads to more precise results [12].

6.3.2 Diffusion

Calculations have been carried out to investigate the diffusive dynamics described by
our force-field. The mean squared displacements and the Arrhenius plot of the diffusion
constants8 are represented in Figs. 6.22, 6.23 and 6.24. The BKS gives a dynamics
which is less diffusive than the one described by our potential: The diffusion constants
differ by a factor three in the low temperature domain (T ≃ 2440 K). The temperature
dependence of the diffusion constant can be reliably well described by an Arrhenius fit
for the low temperature domain (T ≤ 3000 K). This Arrhenius dependence is consis-

8In an Arrhenius plot the diffusion constant are represented as a function of the inverse temperature
D = A exp(−EA/kBT ).
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6. Structural fitting procedure

tent with the experimental sighting for strong glass former such SiO2. The activation
energies are 4.51 eV and 4.97 eV for oxygen and silicon respectively9. These values
are close compared to the ones given for the BKS potential provided by Horbach et al.

[75], 4.66 eV and 5.18 eV for oxygen and silicon, respectively. These numbers compare
well with the ones determined in experiments at significantly lower temperatures, 4.7
eV for oxygen [107] and 6 eV for silicon [23]. However according to Hemmati and
Angell [5] some special care needs to be taken when considering these quantities since
activation energies as well as diffusion constants depend much more sensitively on the
potential than structural quantities.
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Figure 6.22: In black: Time dependence of the mean squared displacement of Si atoms for
rg(r)unconst. potential for different temperatures (2580 K, 2750 K, 2900 K, 3000 K, 3250
K, 3580 K, 4000 K, 4300 K and 5200 K). The cutoff used for the short range terms was
6.5Å. The system under consideration was made of 1152 atoms. In red: Time dependence
of the MSD of the BKS potential for (2750 K, 2900 K, 3000 K, 3250 K, 3580 K, 4000 K,
4300 K and 5200 K) the system under consideration was made of 8016 atoms, see Ref.
[75].

6.4 Crystalline structure

In this section we compare the lattice energy minimization of quartz using the new
potentials g(r), rg(r) and the BKS. Here we aim at testing the transferability of our
potential on a very different phase of silica: α-quartz. As we have not implemented the
calculation of the elastic constants in our codes we have used the version 3.0.1 of the

9The results of the fits give: DSi = 110.2665 exp(−4.97/kBT ) cm2.s−1, and DO =
27.9104 exp(−4.51/kBT ) cm2.s−1.
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tial for different temperatures (2580 K, 2750 K, 2900 K, 3000 K, 3250 K, 3580 K, 4000
K, 4300 K and 5200 K). The cutoff used for the short range terms was 6.5Å. The system
under consideration was made of 1152 atoms. In red: Time dependence of the MSD of
the BKS potential for (2750 K, 2900 K, 3000 K, 3250 K, 3580 K, 4000 K, 4300 K and
5200 K) the system under consideration was made of 8016 atoms, see Ref. [75].
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GULP
10 code developed by Gale and coworkers [54]. The optimizations have been done

on a primitive α-quartz cell11 made of nine atoms, the distance defined for the potential
truncation has been set to 10 Å according to the value already defined in section 5.3.1.
Note that the repulsive interactions mentioned in section 6.1.1 have not been required
in this case. The lattice energy minimizations are summarized in Table 6.7 and their
corresponding elastic constants are given in Table 6.8. As already mentioned, the
BKS has been fitted so as to perfectly reproduce the asymmetric coordinates and the
elastic constants of α-quartz. As a consequence, most of the predicted results match
almost perfectly. Nonetheless, it is striking to note that the g(r)-potential is in close
agreement to the experimental data, even as precise as the BKS when dealing with the x
and y asymmetric coordinates. Regarding the rg(r)-potential, the lattice optimization
yields to fairly good results even if one can deplore the misleading description of the z
asymmetric coordinate.

The elastic constants have also been checked. These quantities are quite sensitive
to the force field as they are defined via the second derivatives of the potential energy
U with respect to the components of the strain (see appendix A.2.1):

Cij =
1

V

(
∂2U

∂εi∂εj

)

(6.11)

thereby describing the mechanical hardness of the material with respect to deformation.
The BKS has been fitted so as to explicitely reproduce these constants too, though
forces are not properly described, see section 4.2.0.2. Furthermore it is interesting to
mention that these constants at T = 0 K correspond very closely to the experimental
data at T = 300 K while the agreement is less good for the T = 300 K simulations12, see
also Fig. 6.25 [109]. Somehow the BKS results should be regarded as fitting artefacts
as the underlying microscopic interactions accounting for the elastic constants are not
properly described13. Regarding the new force-fields, one can see that the g(r)-potential
is in disagreement with experiments (Cij for i 6= j). In contrast to this, the rg(r)-force
field gives quite reliable results.

10http://www.ivec.org/GULP/
11See Table 5.2 for details related to the space group properties.
12The experimental values change slightly with temperature [103], by about ±2 GPa.
13The second derivatives of the energy ∝ Cij are properly described whereas the forces are not in

agreement with the ab initio simulation, see chapter 4.
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Figure 6.25: Elastic constants of α-quartz as a function of temperature. Solid lines show
experimental data from Carpenter et al. [27]. Symbols show simulation results of Ref.
[109] using the BKS potential. The transition temperature from the α-quartz to the
β-quartz form is TBKS

trans. = 740 ± 5K whereas the experimental transition temperature is
TExp.

trans. = 846K.

BKS g(r)unconst. rg(r)unconst.Parameters Exp. [154]
value error % value error % value error %

V [Å3] 112.933 115.201 2.01 113.179 -1.76 121.677 7.74
a [Å] 4.91239 4.940922 0.58 4.910 -0.61 5.04502 2.69
b [Å] 4.91239 4.940922 0.58 4.910 -0.61 5.04502 2.69
c [Å] 5.40385 5.448928 0.83 5.412 -0.55 5.52019 2.15
u 0.4701 0.4648 1.13 0.4589 2.38 0.4731 0.64
x 0.4139 0.4268 3.12 0.4201 1.49 0.4268 3.12
y 0.2674 0.2715 1.53 0.2802 4.78 0.2597 2.87
z 0.2144 0.2085 2.75 0.2167 1.07 0.2012 6.16

Table 6.7: Prediction of α-quartz structure, compared with experiment. The asymmetric
coordinates are defined in Table 5.2.
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Figure 6.26: Represented on these figures the comparisons between the rg(r)unconstr. po-
tential and the BKS one. In dashed lines are represented the diverging behavior for
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represented the potentials and their added repulsive contributions used in the molecular
dynamics simulations.
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6.4 Crystalline structure

BKS g(r)unconst. rg(r)unconst.Elastic Constant [GPa] Exp. [103]
value error % value error % value error %

C11 86.8 90.6 4.19 78.0 -10.74 91.9 5.87
C33 105.8 107.0 1.13 111.8 0.89 91.3 -13.42
C44 58.2 50.2 -13.74 43.2 -1.53 46.8 -19.41
C66 39.9 41.2 3.26 30.4 -23.81 42.6 6.76
C12 7.0 8.1 15.71 17.2 145.71 6.6 -5.71
C13 19.1 15.2 20.41 25.6 34.03 18.3 -3.14
C14 -18.0 -17.6 2.22 -9.6 46.66 -14.5 20.00

Table 6.8: Elastic constants for α-quartz calculated at 0K for different force fields, the
experimental results are given at room temperature (T = 298K).
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Discussion and Conclusions

In this work, different approaches for the development of classical force-fields for amor-
phous silica are investigated. These approaches are based on first-principles calcula-
tions. The main goal has been to find a simple and efficient model potential that is
well-suited for large scale molecular dynamics computer simulations. In most of pre-
vious works, potentials are fitted using peculiar methods, by mixing experimental and
theoretical data or by using highly complex analytical expression for the potential.
For these reasons potential fitting is mostly considered as an art. In the scope of this
thesis we aimed at clarifying the methodology in order to propose a rational way of
fitting potentials suited for pure oxides but applicable also on mixed oxides and to
more complex systems.

This work can be divided into four parts. Molten silica samples have first been
generated and simulated by means of Car-Parrinello molecular dynamics (CPMD). In
CPMD, the electronic degrees of freedom are taken into account explicitely by a density
functional theory and thus this method can be classified as an ab initio method. Some
inherent shortcomings connected to this approach have been underlined in the scope
of this work. Far from being the panacea the ab initio simulations have shown a poor
ability to reproduce crucial features such as pressure and thus mechanical stability, for
molten silica characterized by a strong negative pressure of −6.9 GPa. Some dynamical
features such as the diffusivity have also been found in disagreement when compared
to experiments. However, despite all these limitations, the crystalline phases were
accurately predicted and most of the structural features connected to the molten phase
were also consistent with experiments.

According to the fitting scheme proposed by Ercolessi and Adams the ab initio

database only composed of configurations and forces have been considered at first. In
spite of strong improvements in the description of the forces when compared to the
BKS potential (χ2

Force improved by a factor 7.6) our potentials turned out to lead to
unphysical results. To overcome these limitations we have taken into account additional
observables in the fitting procedure such as stress tensor without success. Even the
addition of extra degrees of freedom into the potential formulation, through the use
of spline functions to enhance the flexibility of our potential were not satisfying at all.
These results were consistent with precedent observations made on liquid germania [64]
and embedded atom models of gold [58].

In the end the potentials developed using the force matching procedure turned out
to be inaccurate as they were not able to reproduce properly the structural properties
of silica. However, at first stage these properties should be envisaged as being the most
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crucial one so as to discriminate different classical potentials, as many features such
as the vibrational density of states or diffusion constants can not be interpreted and
connected to experiments without any proper description of the structure.

The failure of the spline approach highlighted the issue of the interactions range
in silica. Most of the time, rigid ion potentials are computed by means of Ewald
summation. In this work, we have investigated whether this complicated integration
scheme for the Coulomb interaction is compulsory and to which extent one is able to
mimic it through the force matching procedure using a Yukawa ansatz. The results
were in semi-quantitative agreement, as larger cutoff should be used to yield to better
results [28]. Nonetheless, features such as static properties, vibrational density of
states or temperature dependence of the pressure were very comparable to ones given
by means of Ewald summation.

In the forth part of this work we have developed a structural matching procedure
with three different criteria using the ab initio partial pair correlation functions. The
initial guess parameters used for this procedure were the ones resulting from the force
matching procedure. The sets of potentials so obtained turned out to be in very good
agreement with the structure, as required by the optimization scheme, but they were
also found to be able to accurately describe the forces.

We carried out microcanonical and canonical simulations to investigate the ther-
modynamical properties of our potential. The temperature dependence of the pressure
which is a very peculiar feature of silica appears to be qualitatively described although
complementary simulations at low temperature need to be envisaged.

The vibrational density of states is in fairly good agreement with experiment espe-
cially in the high frequency domain. The very characteristic double peak feature in the
range starting from 30 THz to 38 THz should no longer be considered as an enforced
result connected to the data considered for the fit as at this time our potential has not
been fitted using explicitely normal modes of vibrations contrarily to the BKS.

Surprisingly the properties of crystalline phases as predicted by our potential were
found to be in very good agreement with experiments. The asymmetric coordinates, the
cell parameters and second order quantity such as elastic constants were quantitatively
well reproduced. These encouraging preliminary results underline the transferable na-
ture of our potential although it has solely been fitted considering the liquid phase.

In this thesis we have mainly demonstrated that the accuracy of the model poten-
tials are not necessarily gained by increasing its complexity. This work is evidently
a methodological one as we developed a rational way of extracting simple classical
force-fields based only upon ab initio calculations. The main perspectives is now to
develop the same kind of potentials for other oxides like germania, or to develop poten-
tial suited for mixtures of SiO2 with alkali ions. Regarding the present potential some
deeper investigations are still required so as to check all its thermodynamical features
in the low temperature ranges for example.
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Appendix A

Stress tensor

A.1 Virial theorem

In molecular dynamics simulations the pressure can be defined via the virial theorem.
In this section we present the general consideration leading to the definition of pressure
used in molecular dynamics simulation for pairwise additive interactions. Considering
a N particle system contained in a cubic box of volume V = L3. The virial V is defined
[63]:

V =

N∑

i=1

ri · Fi (A.1)

where ri stands for the position of a particle i and Fi is the force applied on this particle.
The virial theorem makes the connection between the potential and the kinetic energy
〈T 〉 :

2 〈T 〉 = −
N∑

k=1

〈Fk · rk〉 . (A.2)

A.1.1 Demonstration

General considerations It is possible to make a connection between the virial and
the kinetic energy of the system. For this purpose one has to consider the second
derivative of the squared position of a particle with respect to time:

¨(r2
i ) = 2ṙ2

i + 2ri · r̈i. (A.3)

By multiplying the above expression by mi, the mass of particle i and by calculating
the sum over all the particles we have:

N∑

i=1

mi
¨(r2
i ) = 2

N∑

i=1

(
miṙ

2
i + ri ·mir̈i

)
. (A.4)
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The second member of Eq. (A.4) can be simplified using the Newton’s second law:

N∑

i=1

mi
¨(r2
i ) = 2

N∑

i=1

(
miṙ

2
i + ri · Fi

)
(A.5)

This equation can be simplified by considering the ensemble average 〈·〉 of the macro-

scopic quantity
∑N

i=1mi
¨(r2
i ) which is equal to zero for any system at equilibrium:

0 =

〈

2
N∑

i=1

(
miṙ

2
i + ri · Fi

)

〉

(A.6)

〈
N∑

i=1

ri · Fi

〉

=

〈
N∑

i=1

miṙ
2
i

〉

(A.7)

〈V〉 = 2 〈T 〉 . (A.8)

here we have used the usual definition of the kinetic energy for a system made of N
particles, Ekin. =

1
2

∑N
i=1miv

2
i .

The forces applied on the system have two origins:

• The intermolecular contribution to the forces applied on a particle i by the other
particles j referred to Fint.

i ;

• The external interactions between the particles i and the walls of the box referred
to Fext.

i .

According to these definitions we can split the virial in two contributions:

V = Vint. + Vext. (A.9)

V =
N∑

i=1

ri · Fint.
i +

N∑

i=1

ri · Fext.
i . (A.10)

Each of these contributions are developed in the two following sections.

Internal contribution If we consider the expression of the quantity Vint. for a system
described by pair interactions we can rewrite the internal contribution of the virial as:

Vint. =

N∑

i=1

ri · Fint.
i (A.11)

= −
N∑

i=1

ri ·
∑

j 6=i

∇iV2(rij) (A.12)

=
N∑

i=1

ri ·
∑

j 6=i

Fij (A.13)
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(A.14)

Newton’s third equation states that:

Fij = −Fji. (A.15)

Using this relation we can simplify the expression given by Eq. (A.13):

Vint. =
N∑

i=1

∑

j 6=i

ri · Fij (A.16)

=

N∑

i=1

∑

j<i

ri · Fij + rj · Fji (A.17)

=

N∑

i=1

∑

j<i

ri · Fij − rj · Fij (A.18)

= −
N∑

i=1

∑

j<i

rij · Fij . (A.19)

External contribution The molecules of the gas interact with the confining box when
they collide with the walls. So as to simplify the calculation of the external contribution
of forces to the virial we can define the origin of our system at one corner of the box
as illustrated in Fig. A.1. The force applied by the box to the particles are normal to
the side of the walls. So the contributions of the sides {adeh}, {defc} and {abcd} to
the external forces since the scalar product r · Fext. is zero:

Vext. =
N∑

i=1

ri ·
(
Fext.
i,{adeh} + Fext.

i,{defc} + Fext.
i,{abcd}

)

︸ ︷︷ ︸

0

+
N∑

i=1

ri·
(
Fext.
i,{ehgf} + Fext.

i,{abgh} + Fext.
i,{bcfg}

)
.

(A.20)
The remaining three contributions can be calculated easily as illustrated in Fig. A.2,
as the scalar product ri · Fext.

i,{bcfg} can be expressed as:

ri · Fext.
i,{bcfg} = −LFext.

i,{bcfg}. (A.21)

According to the usual definition of the pressure:

P =

〈
∑N

i=1 F
ext.
i

〉

L2
, or PV =

〈
N∑

i=1

F ext.
i

〉

L (A.22)

we can express the external contributions of each side of the box to the virial as:

〈Vext.〉 = −3PV (A.23)
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a b

c

f

gh

L
(L,0,0)

x

y
(0,L,0)

z

(0,0,L)
e

d
(0,0,0)

r i

Figure A.1: Sketch representing a cubic box. The corners are named by letters
{a, b, c, d, e, f, g, h}, the origin of the system coordinates is located at the corner {d},
the x-, y- and z- axis of the Cartesian system are joined to the lines (da) (dc) (de) of the
box.

Equation of state The kinetic energy of the system and the temperature can be
connected according to the equipartition theorem:

〈Ekin.〉 =
3

2
NkBT. (A.24)

If one injects the results of Eqs. (A.9), (A.23), (A.24) in Eq. (A.8) one finds:

3

2
NkBT =

3

2
PV −

〈

1

2

N∑

i<j

rij · Fij

〉

(A.25)

or P =
NkBT

V
+

1

3V

〈
N∑

i<j

rij · Fij

〉

(A.26)

which is the general equation of state for a gas described by pairwise additive interac-
tions. As we will see in section A.2, the second term of Eq. (A.26) can be connected
to the stress tensor.

A.2 General expression

In some more complex cases where the interatomic interactions are described by N -
body potentials the pressure can be calculated using the stress tensor. The stress tensor
components Πuv, (u, v) ∈ {1, 2, 3} are defined by the sum of two contributions:

• A kinetic contribution Πkin.
uv ;
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b
c

f
g

α
L

x

y

r

F

i

i

Figure A.2: Sketch representing the contribution to the virial of the interactions of the wall
{bcfg}. The external force Fext.i,{bcfg} is perpendicular to the wall.

• The partial derivative of the potential energy with respect to the strain compo-
nents, Πpot.

uv .

Πuv = Πkin.
uv + Πpot.

uv (A.27)

These contributions will now be calculated.

A.2.1 General definitions

The strain tensor is used to define a slight homogeneous deformation of a crystal cell1.
The lattice parameters can be summarize using the matrix formalism:

h =





a1 b1 c1
a2 b2 c2
a3 b3 c3



 , (A.28)

where a1, a2, a3 stand for the component of the lattice vector a. The Voigt strain
tensor [20] is defined as:

ε =
1 + ε11

1
2
ε12

1
2
ε13

1
2
ε21 1 + ε22

1
2
ε23

1
2
ε31

1
2
ε32 1 + ε33

. (A.29)

The subscripts can be redefined giving:

ε11 = ε1, ε22 := ε2, ε33 := ε3,

ε12 = ε21 := ε6, ε13 = ε31 := ε5, ε23 = ε32 := ε4.

1The concepts and notations introduced in this section are not only valid for crystals but also in
continuum mechanics.
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A.2.2 Kinetic contribution

The kinetic contribution to the stress tensor is simply defined by:

Πkin.
uv =

N∑

i=1

miv
u
i v

v
i . (A.30)

If one considers the trace of this tensor we can recognize the first term of the left part
of equation A.26:

Tr
(
Πkin.
uv

)
=

∑

u∈{x,y,z}

N∑

i=1

miv
u
i v

u
i (A.31)

=
N∑

i=1

miv
2
i (A.32)

= 2T (A.33)

A.2.3 Potential contribution

Direct space contribution The derivative of the total potential energy of a pair
potential, see equation (A.34), with respect to the strain can be straightforwardly
calculated:

V2 =
∑

i<j

V2(rij) (A.34)

∂V2

∂εαβ
=

∑

i<j

∂V2(rij)

∂εαβ
(A.35)

=
∑

i<j

∂V2(rij)

∂rij

∂rij
∂r2

ij

∂r2
ij

∂εαβ
. (A.36)

The squared interatomic distance r2
ij can be easily expressed using the tensorial nota-

tion :

r2
ij = rij · rij (A.37)

= hXij · hXij (A.38)

= X
†
ijh

†hXij, (A.39)

where Xij stands for the reduced coordinates of the rij: rij = hXij. If a small de-
formation is applied to the cell of the system by means of the strain tensor the new
distances r′ij can the be expressed by the following expression:

r2′

ij = r′ij · r′ij (A.40)
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= h′Xij · h′Xij (A.41)

= εhXij · εhXij (A.42)

= X
†
ijh

†
(
ε†ε
)
hXij (A.43)

= r
†
ij

(
ε†ε
)
rij . (A.44)

Here h′ stands for the new deformed cell. The strain tensor is symmetric by defini-
tion as a consequence the derivative of the components of the strain tensor can be
straightforwardly calculated:

∂r2′

ij

∂εαβ
= r

†
ij

∂
(
ε†ε
)

∂εαβ
rij (A.45)

∂
(
ε†ε
)

∂εαβ
=

∂
(
ε2
)

∂εαβ
= 2 ·

δ1α,1β
1
2
δ1α,2β

1
2
δ1α,3β

1
2
δ2α,1β δ2α,2β

1
2
δ2α,3β

1
2
δ3α,1β

1
2
δ3α,2β δ3α,3β

. (A.46)

using equation (A.36) and (A.46) the expression of the strain tensor components are
given by:

∂V2

∂ε1
=

∑

i<j

∂V2(rij)

∂εi
(A.47)

=
∑

i<j

∂V2(rij)

∂rij

rij,xrij,x

rij
(A.48)

∂V2

∂ε2

=
∑

i<j

∂V2(rij)

∂rij

rij,yrij,y

rij
(A.49)

∂V2

∂ε3
=

∑

i<j

∂V2(rij)

∂rij

rij,zrij,z

rij
(A.50)

∂V2

∂ε4

=
1

2

∑

i<j

∂V2(rij)

∂rij

rij,yrij,z

rij
(A.51)

∂V2

∂ε5
=

1

2

∑

i<j

∂V2(rij)

∂rij

rij,xrij,z

rij
(A.52)

∂V2

∂ε6

=
1

2

∑

i<j

∂V2(rij)

∂rij

rij,xrij,y

rij
(A.53)

Reciprocal space contribution The previous equations (A.47-A.53) holds for the
direct space term of the potential. In some case one needs to express the stress tensor
of interactions expressed in the reciprocal space, i.e. for the Ewald summation, which
can be computed using the same methodology. The first step consists in calculating
the derivative of a slightly modified reciprocal vector k′,

∂k2′

∂εαβ
= k†

∂
(
ε†ε
)−1

∂εαβ
k. (A.54)
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As the derivative of the inverse of a matrix A can be expressed as

∂A−1

∂x
= −A−1

∂A

∂x
A−1 (A.55)

by injecting the results of A.55 into A.54 one obtains:

∂k2′

∂εαβ
= −k†

(
ε†ε
)−1 ∂

(
ε†ε
)

∂εαβ

(
ε†ε
)−1

k. (A.56)

Now, if we consider an infinitely small perturbation, we have:

∂k2

∂εαβ
= −k†

∂
(
ε†ε
)

∂εαβ
k as

(
ε†ε
)−1 ≃ 1. (A.57)

The derivative of the volume Ω can also be straightforwardly calculated:

Ω′ = |εh| (A.58)

Ω′ = |ε||h| (A.59)

∂Ω′

∂εαβ
=

∂|ε|
∂εαβ

|h| (A.60)

∂|ε|
∂εαβ

=
∂ [(1 + ε11)(1 + ε22)(1 + ε33) + θ(ε2)]

∂εαβ
. (A.61)

The zeroth order term in ε gives:

∂Ω

∂εαβ
= δαβΩ (A.62)

It is whortwhile to note that the “forces” applied on the cell can be connected to
the stress tensor through the following identity:

Πpot.
uv = − 1

Ω

∑

s

∂Etotal

∂hus
h†
sv. (A.63)

Ewald summation When substituting equation (A.53), (A.57) and (A.62) in the
Ewald summation (2.64) one obtains the general expression of the stress tensor for a
system of interacting point charges [99]:

ΩΠpot.
αβ = − ∂V2

∂εαβ
(A.64)

=
1

2

∑

i6=j

qiqj
r2
ij

[
erfc(

√
αrij)

rij
+ 2

√
α

π
exp

(
−αr2

ij

)
]

rij,αrij,β (A.65)

+2
π

Ω

∑

k 6=0

exp(−k2/4α)

k2

[

δαβ − 2
1 + k2/4α

k2
kαkβ

]
∑

i,j

exp [ik · (ri − rj)]

Using the above equation and the relations expressed in Eqs. (A.27) and (A.30) one
can calculate the contributions of the long range interactions to the stress tensor.
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