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Abstract

The aim of this work is to explore, within the framework of the presumably

asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole

spacetimes, in particular in the case of rotating black holes. We have analysed

this problem by exploiting the scale dependent Newton’s constant implied by the

renormalization group equation for the effective average action, and introducing an

appropriate “cutoff identification” which relates the renormalization scale to the

geometry of the spacetime manifold. We used these two ingredients in order to

“renormalization group improve” the classical Kerr metric that describes the space-

time generated by a rotating black hole.

We have focused our investigation on four basic subjects of black hole physics.

The main results related to these topics can be summarized as follows. Concerning

the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads

to a smooth deformation of the classical critical surfaces. Their number remains

unchanged. In relation to the Penrose process for energy extraction from black

holes, we have found that there exists a non-trivial correlation between regions of

negative energy states in the phase space of rotating test particles and configurations

of critical surfaces of the black hole. As for the vacuum energy-momentum tensor

and the energy conditions we have shown that no model with “normal” matter, in

the sense of matter fulfilling the usual energy conditions, can simulate the quantum

fluctuations described by the improved Kerr spacetime that we have derived. Finally,

in the context of black hole thermodynamics, we have performed calculations of the

mass and angular momentum of the improved Kerr black hole, applying the standard

Komar integrals. The results reflect the antiscreening character of the quantum

fluctuations of the gravitational field. Furthermore we calculated approximations to

the entropy and the temperature of the improved Kerr black hole to leading order in

the angular momentum. More generally we have proven that the temperature can

no longer be proportional to the surface gravity if an entropy-like state function is

to exist.



Zusammenfassung

Das Hauptziel dieser Arbeit ist die Untersuchung von Quanteneffekten in der

Raumzeit schwarzer Löcher im Rahmen der vermutlich asymptotisch sicheren Quanten-

Einsteingravitation, wobei insbesondere rotierende schwarze Löcher betrachtet wer-

den. Grundlage der Untersuchungen ist die skalenabhängige Newton-Konstante,

die sich aus der Renormierungsgruppengleichung der effektiven Mittelwertwirkung

ergibt, sowie eine “Cutoff-Identifikation”, die die Renormierungsskala zur Geome-

trie der Raumzeitmannigfaltigkeit in Beziehung setzt. In diesem Rahmen wird eine

“Renormierungsgruppenverbesserung” der klassischen Kerr-Metrik durchgeführt, die

die Raum

zeit eines rotierenden schwarzen Loches beschreibt.

Die Untersuchungen konzentrieren sich auf vier zentrale Fragestellungen der

Physik schwarzer Löcher. Die jeweils wichtigsten Ergebnisse zu diesen Themen

können folgendermaßen zusammengefasst werden. Hinsichtlich der kritischen Flächen,

d.h. der Horizonte und statischen Grenzflächen, zeigt es sich, daß die Quanteneffekte

zwar zu einer Deformation der entschprechenden klassischen Flächen führen, deren

Art und Anzahl aber unverändert bleibt. Im Zusammenhang mit dem Penrose-

Prozess zur Energieextraktion aus schwarzen Löchern wurde eine nichttriviale Ko-

rrelation zwischen den Parameterbereichen negativer Energie für rotierende Test-

teilchen und den kritischen Flächen gefunden. In Bezug auf den Energieimpulstensor

des Vakuums und seiner Positivitätseigenschaften wurde gezeigt, daß es kein Modell

mit “normaler” Materie, d.h. solcher, die die üblichen Energiebedingungen erfüllt,

geben kann, dessen Materie die berücksichtigten Quanteneffekte simuliert. Umfan-

greiche Untersuchungen beschäftigen sich mit der Thermodynamik dieser schwarzen

Löcher. Ihre Masse und ihr Drehimpuls wurden über die Komar-Integrale berech-

net; die Ergebnisse spiegeln den anti-abschirmenden Charakter der Quantenfluk-

tuationen der Metrik wider. Weiterhin wurden in führender Ordnung bzgl. des

Drehimpulses Quantenkorrekturen zur Entropie und Temperatur schwarzer Löcher

berechnet. Es wurde allgemein gezeigt, daß wenn man die Existenz einer Entropie-

ähnlichen Zustandsfunktion fordert, nach der Renormierungsgruppenverbesserung

die Temperatur nicht mehr in der üblichen Weise durch die Oberflächengravitation

gegeben sein kann.
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Chapter 1

Introduction

The aim of this work is to explore, within the framework of the presumably asymp-

totically safe Quantum Einstein Gravity, quantum corrections to black hole space-

times, in particular in the case of rotating black holes. Having this in mind, this

introductory chapter is intended to outline the procedure we implement in order to

reach this goal. It is organized in the following way: The first section is a short

overview of the above mentioned field of research. It is intended to acquaint the

reader with the main results of the field without further explanation of its basic

concepts. In sections 1.2, 1.3 and 1.4 we present more extensively those concepts

and tools which are fundamental for our purposes. Also some relevant results from

previous works are included and explained. In the discussion (section 1.5) we fur-

ther analyse the results presented in the previous sections, we state in particular how

they must be interpreted, and how they will be implemented in the next chapters.

1.1 Asymptotically Safe Quantum Einstein

Gravity: An Overview

During the past decade a lot of efforts went into the exploration of the nonper-

turbative renormalization behavior of Quantum Einstein Gravity [1]-[16]. In [1] a

functional renormalization group (RG) equation for gravity has been introduced;

it defines a Wilsonian RG flow on the theory space consisting of all diffeomor-

phism invariant action functionals for the metric gµν . In [1] it has been applied to

the Einstein-Hilbert truncation which allows for an approximate calculation of the

beta-functions of Newton’s constant and the cosmological constant. The complete
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flow pattern was found in [4], and higher derivative truncations were analyzed in

[3, 5, 10]. Matter fields were added in refs. [2, 9], and in [12] the beta-functions of

[1] and [3] were used for finding optimized RG flows. The most remarkable result

of these investigations is that the beta-functions of [1] predict a non-Gaussian RG

fixed point [8]. After detailed studies of the reliability of the pertinent truncations

[3, 4, 5, 12] it is now believed that it corresponds to a fixed point in the exact

theory and is not an approximation artifact. It was found to possess all the nec-

essary properties to make quantum gravity nonperturbatively renormalizable along

the lines of Weinberg’s “asymptotic safety” scenario [17, 18], thus overcoming the

notorious problems related to its nonrenormalizability in perturbation theory. We

shall refer to the quantum field theory of the metric tensor whose infinite cutoff limit

is taken at the non-Gaussian fixed point as Quantum Einstein Gravity or “QEG”.

This theory should not be thought of as a quantization of classical general relativity.

Its bare action is dictated by the fixed point condition and is therefore expected to

contain more invariants than the Einstein-Hilbert term only. Independent evidence

pointing towards a fixed point in the full theory came from the symmetry reduction

approach of Ref. [19] where the 2-Killing subsector of the gravitational path integral

was quantized exactly.

Except for the latter investigations, all recent studies of the asymptotic safety

scenario in gravity made use of the approach outlined in [1]. It is based upon the

concept of the effective average action [20, 21, 22], a specific continuum implementa-

tion of the Wilsonian renormalization group. In its original form for matter theories

in flat spacetime it has been applied to a wide range of problems both in particle

and statistical physics. As compared to alternative functional RG approaches in the

continuum [23] the average action has various crucial advantages; the most impor-

tant one is its similarity with the standard effective action Γ. In fact, the average

action is a scale dependent functional Γk depending on a “coarse graining” scale k

which approaches Γ in the limit k → 0 and the bare action S in the limit k → ∞.

The close relationship of Γk and the standard Γ was often crucial for finding the

right truncations of theory space encapsulating the essential physics.

Another advantage of the average action is that it defines a family of effective

field theories {Γk, 0 ≤ k < ∞} labeled by the coarse graining scale k. If a physical

situation involves only a single mass scale, then it is well described by a tree level

evaluation of Γk, with k chosen to equal that scale. In particular, the stationary
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points of Γk have the interpretation of a k-dependent field average (approaching the

standard 1-point function for k → 0).

In gravity the effective average action of [1] is a diffeomorphism invariant func-

tional of the metric: Γk[gµν ]. Here the analogous average field 〈gµν〉k satisfies the

“effective Einstein equations”

δΓk

δgµν(x)
[〈g〉k] = 0. (1.1)

A given quantum state |Ψ〉 of the gravitational field implies an infinite family of

average metrics: {〈gµν〉k, 0 ≤ k < ∞}. A scale dependence of the metric [29]

has profound consequences since 〈gµν〉k describes a geometry of spacetime which

depends on the degree of “coarse graining”, or the “resolving power” of the “micro-

scope” with which it is looked upon. In the case of QEG, it has been shown [3, 5]

that this scale dependence leads to fractal properties of spacetime, and that in the

scaling regime of the non-Gaussian fixed point, corresponding to sub-Planckian dis-

tances, the fractal dimension of spacetime equals 2. In particular, making essential

use of (1.1) and the effective field theory properties of Γk, the spectral dimension

[24] has been calculated; it was found to interpolate between 4 at macroscopic,

and 2 at microscopic distances [25]. In [26], Connes et al. speculated about the

possible relevance of this dimensional reduction for the noncommutative geometry

of the standard model. Remarkably, exactly the same dimensional reduction has

been found in Monte Carlo simulations within the causal dynamical triangulation

approach [24, 27, 28].

1.2 Renormalization Group Improvement of Black

Hole Spacetimes:

General Procedure

The procedure we implement in this work for finding the leading quantum corrections

to black hole spacetimes is based on the following two key premises:

1. The Newton constant, as well as the cosmological constant, play the role of a

coupling constant, in the sense used in effective field theories. They are given

by the prefactors of the
∫

d4x
√−gR and

∫
d4x

√−g-terms, respectively, in a

derivative expansion of the effective action. As in any effective field theory,
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such coupling constants run under renormalization group transformations. We

shall use the scale dependent couplings implied by the RG equation for the

effective average action.

2. Similarly as in the familiar renormalization group derivation of the Uehling cor-

rection to the Coulomb potential in massless QED [30, 32] where one identifies

the RG scale k with the inverse of the radial distance, we introduce an analo-

gous “cutoff identification”, which relates k to the geometry of the spacetime

manifold. The situation will be more complicated than in QED since this cut-

off identification must be invariant under general coordinate transformations,

as required by general relativity [30]. The key step consists in replacing in

the black hole metric the classical Newton constant by the running coupling

G = G (k) where, in turn, k is expressed in geometrical terms via the cutoff

identification.

The application of this “renormalization group improvement” to the Kerr metric for

rotating black holes is presented in the next two sections. In section 1.3 we give

a general presentation of the framework upon which this work is based. Its main

conceptual tool is the effective average action and the asymptotic safety hypothesis

for Quantum Einstein Gravity. More specifically, we derive an explicit formula for

the running of the Newton constant, using the Einstein-Hilbert truncation of the

space of action functionals in order to solve the exact renormalization group equation

(ERGE) for the effective average action Γk. In section 1.4 we present the infrared

cutoff identification, the second element of our improvement procedure.

1.3 The Running Newton Constant

The two objectives of this section are to give the theoretical basis for understanding

the running of the Newton constant in the framework of Quantum Einstein Gravity,

and to present the main steps of the derivation of a simple approximate formula for

this running [30]. For this purpose we shall present concepts like the asymptotic

safety scenario, the effective average action and the Einstein-Hilbert truncation.

They are included in the respective subsections.
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1.3.1 General Framework: Asymptotically Safe Quantum

Einstein Gravity

The criterion of perturbative renormalizability has been a valuable key for under-

standing the structure of fully predictive quantum field theories [33, S. 12.3]. It

requires that the theory has a finite set of terms in the (bare) Lagrangian, which

are invariant under specific symmetries, and provides finite results for every physical

quantity; every infinity that appears can be “absorbed” into a finite set of undeter-

mined parameters whose values must be fixed by the experiment [33]. This demand

applies no matter how the quantization of the specific theory is performed. If the

quantization of the theory is performed using an expansion of the generating func-

tional Z in some small coupling then it should be “renormalizable” according to the

well known perturbative renormalization theory. For the case of general relativity

(GR) derived from the Einstein-Hilbert action

SEH =
1

16πG

∫
d4x

√−g {−R + 2Λ} (1.2)

the perturbative renormalization by an expansion in G has failed. The theory is

perturbatively non-renormalizable, since the coupling G has the dimension of a

length squared [33].

Nevertheless, the possibility of absorbing all infinities can be recovered if the

constraint of having only a finite set of terms in the Lagrangian is not required[33].

If one includes every possible term allowed by the symmetry conditions, renormaliz-

ability is again accomplished in a more general way, where infinitely many coupling

constants are available to absorb every ultraviolet divergence coming from arbitrar-

ily high order loop integrals [33, 17].

This generalized framework gives a new interpretation to physical theories like GR

which are known to provide a good approximation within a specific (“classical”)

regime, in particular theories which work only at the low energy scales. At higher

scales, other terms which are highly supressed at lower scales, but are present in

the most general Lagrangian consistent with the symmetries, become relevant. This

interpretation is the basis of the effective field theories (EFT) which are able to

predict quantum corrections at low energies.

In every EFT there exists a fundamental scale1 that defines in an absolute way

the orders of magnitude of every term in the general Lagrangian and therefore how

1For quantum gravity it is the Planck scale
(
≈ 1019GeV

)
.
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much they are suppressed at lower energies2. When this scale is reached the EFTs

loose any predictability, since infinitely many terms must be taken into account and

their respective renormalized couplings are unknown parameters of the theory. As

a result, we would have an infinite set of unpredicted parameters, to be taken from

the experiment.

A natural question turns out to be: what happens at the fundamental scale

where the EFTs loose their predictability?

The asymptotic safety hypothesis proposes that the theory which would explain

phenomena at this scale and above, continues to be a quantum field theory (no

strings or anything else!). More especifically, it is “one in which the finite or in-

finite number of generalized couplings do not run off to infinity with increasing

energy”[17] but hit a so-called fixed point in the space of coupling constants. It is a

special point in this space that remains invariant under the renormalization group

transformations.

For QCD the fixed point happens to be at zero values for all the essential cou-

plings. This is called a Gaussian fixed point (GFP), which leads in this case to the

familiar asymptotic freedom. Nevertheless, a fixed point could also be realised at

non-zero values, in this case it is called a non-Gaussian fixed point (NGFP). The

latter is expected to be the case for Quantum Einstein Gravity.

The theory space is the formal framework where the asymptotic safety hypoth-

esis is implemented [14]. It is defined to be the space of all action functionals

which depend on a given set of fields and are invariant under certain symmetries.

In particular, for Einstein Gravity, the symmetry transformations are the general

coordinate transformations, and the field is the metric tensor field. The infinitely

many generalized couplings gi needed to parametrize a general action functional are

local coordinates on the theory space. This space carries an important geometrical

structure, namely a vector field of beta functions βi (g1, g2...). It is necessary in

order to describe the “RG running” of every gi in the mass scale k. The evolution

equation for gi (k) is given by

k∂kgi (k) = βi (g1, g2, · · · ) (1.3)

By definition, the renormalization group (RG) trajectories, i.e. the solutions to the

“exact renormalization group equations” (1.3) are the integral curves of the vector

2In fact these terms turn out to be supressed by factors of the ratio of the typical energy of

some set of physical phenomena and the fundamental energy scale.
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field βi defining the “RG flow”.

The parameter k defines a lower limit for the integration of high energy modes in

the generating functional of the specific quantum field theory to be studied. In this

sense k must be intepreted as an infrared cutoff of the theory, and as a result, (1.3)

must be understood as the equation that governs the dependence of the couplings gi

on the variation of the cutoff k, when the number of field-modes that are integrated

out increases or decreases.

The asymptotic safety hypothesis assumes that the βi’s have a common zero at

a point with coordinates g∗i not all of which are zero. Given such a NGFP of the

RG flow one defines its ultraviolet critical surface SUV to consist of all points of

theory space which are attracted into it in the limit k → ∞. A specific quantum

field theory is defined by a RG trajectory which exists globally, i.e. is well behaved

all the way down from ”k = ∞” in the UV to k = 0 in the IR. The key idea of

asymptotic safety is to base the theory upon one of the trajectories running inside

the hypersurface SUV since these trajectories are manifestly well-behaved and free

from fatal singularities, blowing up couplings, etc, in the large-k limit. Moreover,

a theory based upon a trajectory inside SUV can be predictive, the problem of an

increasing number of undetermined parameters which plagues effective field theories

does not arise [14, 17]. If ∆ ≡ dim SUV is finite, there exists only a ∆-parameter

family of different quantum theories, i.e. there are only ∆ undetermined parameters

which must be taken from the experiment.

1.3.2 The Effective Average Action

As already mentioned in the last section, the couplings gi parametrize a general

action functional. In the framework of the effective average action, this action is

defined to depend parametrically, via the running couplings, gi ≡ gi(k) on the mass

scale k which has the interpretation of an IR cutoff [22, 34]. We denote the effective

average action by Γk [gµν , ...] where the dots stand for possible matter fields. The

running with k results from adding a k−dependent IR cutoff term ∆kS to the

classical action in the standard Euclidean functional integral [1]. This term gives a

momentum dependent mass square Rk (p2) to the field modes with momentum p.

It is designed to vanish if p2 À k2, but suppresses the contribution of the modes

with p2 < k2 to the path integral. When regarded as a function of k, Γk describes

a curve in theory space that interpolates between the classical action S = Γk→∞
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and the conventional effective action Γ = Γk=0. The change of Γk induced by an

infinitesimal change of k is described by a functional differential equation, the exact

RG equation or “ERGE”. In a symbolic notation it reads

k∂kΓk =
1

2
Tr

[
k∂kRk

(
Γ

(2)
k + Rk

)−1
]

(1.4)

where Γ
(2)
k is the Hessian of Γk with respect to the dynamical fields. For a detailed

discussion of this equation we must refer to the literature [1]. Suffice it to say that

expanding Γk [gµν , · · · ] =
∑
i

gi (k) Ik [gµν , · · · ] in terms of diffeomorphism invariant

field monomials Ik [gµν , ...] with coefficients gi (k) , equation (1.4) assumes the com-

ponent form (1.3). In the next subsection we illustrate this procedure within a

simple approximation.

1.3.3 Einstein-Hilbert Truncation and the Running New-

ton Constant

In general it is impossible to find exact solutions to equation (1.4) and we are forced

to rely upon approximations. A powerful nonperturbative approximation scheme

is the truncation of theory space where the RG flow is projected onto a finite-

dimensional subspace. In practice one makes an ansatz for Γk that comprises only

a few couplings and inserts it into the RG equation. This leads to a, now finite, set

of coupled differential equations of the form (1.3).

The simplest approximation one might try is the ”Einstein-Hilbert truncation”

[1, 3] defined by the ansatz

Γk [gµν ] = (16πGk)
−1

∫
ddx

√
g

{
−R (g) + 2λ̄k

}
(1.5)

It applies to a d-dimensional Euclidean spacetime and involves only the cosmological

constant λ̄k and the Newton constant Gk as running parameters. By inserting

(1.5) into the RG equation (1.4) one obtains a set of two β−functions
(
βλ, βg

)
for

the dimensionless cosmological constant λk ≡ k−2λ̄k and the dimensionless Newton

constant gk ≡ kd−2Gk, respectively. They describe a two-dimensional RG flow on

the plane with coordinates g1 ≡ λ and g2 ≡ g. The resulting equations (1.3) are

given by [30, 1]:

∂tg = (d − 2 + ηN) g (1.6)
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and

∂tλ = − (2 − ηN) λ +
1

2
g (4π)(1− d

2) × (1.7)

×
[
2d (d + 1) Φ1

d
2

(−2λ) − 8dΦ1
d
2

(0) − d (d + 1) ηN Φ̃1
d
2

(−2λ)
]

Here t ≡ ln k and

ηN (g, λ) =
gB1 (λ)

1 − gB2 (λ)
(1.8)

is the anomalous dimension of the operator
√

gR and the functions B1 (λ) and B2 (λ)

are given by

B1 (λ) ≡ 1

3
(4π)(1− d

2) ×

×
[
d (d + 1) Φ1

d
2
−1

(−2λ) − 6d (d − 1) Φ2
d
2

(−2λ) − 4dΦ1
d
2
−1

(0) − 24Φ2
d
2

(0)
]

B2 (λ) ≡ −1

6
(4π)(1− d

2)
[
d (d + 1) Φ̃1

d
2
−1

(−2λ) − 6d (d − 1) Φ̃2
d
2

(−2λ)
]

(1.9)

with the cutoff-dependent “threshold functions” (p = 1, 2, ...)

Φp
n (y) =

1

Γ (n)

∫ ∞

0

dz zn−1R(0) (z) − zR(0)′ (z)

[z + R(0) (z) + y]
p (1.10)

Φ̃p
n (y) =

1

Γ (n)

∫ ∞

0

dz zn−1 R(0) (z)

[z + R(0) (z) + y]
p

They depend explicitly on the cutoff function R(0) (z) with z ≡ p2/k2. This function

is related to the momentum dependent mass Rk (p2) and has to satisfy the conditions

R(0) (0) = 1 and R(0) (z) → 0 for z → ∞. For explicit computations we use the

exponential form

R(0) (z) =
z

ez − 1
(1.11)

It is important to distinguish between R, Rk, and R(0) (z). R is the curvature

scalar that defines together with the cosmological constant, the Einstein-Hilbert

action. The operator Rk describes the transition from the high-momentum to the

low-momentum regime. It depends on the dimensionless function R(0) which inter-

polates smoothly between R(0) (0) = 1 and limu→∞ R(0) (u) = 0. Except for these
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two conditions the function R(0) (z) is arbitrary. For further details about the ef-

fective average action in gravity and the derivation of the above results we refer to

[1].

Considering General Relativity as the low energy effective field theory of Quan-

tum Einstein Gravity we identify the standard Einstein-Hilbert action with the

average action Γkobs
. Here kobs is some typical ”observational scale” at which the

classical tests of general relativity have confirmed the validity of the Enstein-Hilbert

action. In order to find an approximate solution to the flow equation we assume

that also for k > kobs i.e. at higher momenta, Γk is well approximated by an action

of the Einstein-Hilbert form. Concerning the observed values for the couplings, we

set G (kobs) = G0 and λ̄ (kobs) ≈ 0. Furthermore, since at least within our approx-

imation, there is essentially no running of these couplings between kobs (the scale

of the solar system, say) and cosmological scales (k ≈ 0) we may set kobs = 0 and

identify the measured couplings with

G (0) ≡ G0 (1.12)

and

λ̄ (0) ≈ 0 (1.13)

Finally, since in the present work we are not dealing with cosmological scales, we

assume that λ̄ ¿ k2 for all scales of interest, so that we may approximate λ (k) ≈
0. In that case we may also neglect the evolution equation (1.7) for λ , and we

substitute B1 (0) and B2 (0) in (1.8) so that we have

ηN (g) =
gB1

1 − gB2

(1.14)

with

B1 ≡ B1 (0) = −
(

1

3π

) [
24Φ2

2 (0) − Φ1
1 (0)

]
(1.15)

B2 ≡ B2 (0) = −
(

1

6π

) [
18Φ̃2

2 (0) − 5Φ̃1
1 (0)

]
(1.16)

Assuming d = 4 in the following (no extra dimensions!) we stay with (1.6) in the

form

k∂kg = (2 + ηN) g = β (g (k)) (1.17)
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where the anomalous dimension is

ηN (g) =
gB1

1 − gB2

(1.18)

and β (g) is given by

β (g) = 2g

(
1 − ω′g

1 − B2g

)
(1.19)

We also defined

w ≡ −1

2
B1, ω′ = w + B2 (1.20)

For the exponential cutoff (1.11) we have explicitly

Φ1
1 (0) =

π2

6
, Φ2

2 (0) = 1

Φ̃1
1 (0) = 1, Φ̃2

2 (0) =
1

2

and, as a result,

w =
4

π

(
1 − π2

144

)
, B2 =

2

3π

The evolution equation (1.17) displays two fixed points g∗ for which β (g∗) = 0

holds. There exists an infrared attractive (Gaussian) fixed point at gIR
∗ = 0 and an

ultraviolet attractive (non-Gaussian) fixed point at

gUV
∗ =

1

ω′

The UV fixed point separates in a natural way a weak coupling regime
(
g < gUV

∗
)

from a strong coupling regime where gUV
∗ < g. Since the β−function in (1.19) is pos-

itive for g ∈
[
0, gUV

∗
]

and negative otherwise, the renormalization group trajectories

which result from (1.17) with (1.19) fall into the following three classes:

1. Trajectories with g (k) < 0 for all k. They are attracted towards gIR
∗ for k → 0.

2. Trajectories with g (k) > gUV
∗ for all k. They are attracted towards gUV

∗ for

k → ∞.

3. Trajectories with g (k) ∈
[
0, gUV

∗
]

for all k. They are attracted towards

gIR
∗ for k → 0 and towards gUV

∗ for k → ∞.
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In the present work we deal exclusively with the third class. The first class

implies a negative Newton constant, therefore we discard it, and the second class

is not connected to a low energy regime where the Einstein-Hilbert truncation is

known to be a good approximation. Therefore we discard it too.

The differential equation (1.17) with (1.19) can be integrated analytically to yield

g

(1 − ω′g)
w
ω′

=
g (k0)

[1 − ω′g (k0)]
w
ω′

(
k

k0

)2

(1.21)

This expression cannot be solved for g = g (k0) in closed form. However, it is obvious

that this solution interpolates between the IR behavior g (k) ∝ k2 for k → 0 and

g (k) → 1
ω′ for k → ∞.

In order to obtain an approximate analytic expression for the running Newton

constant we observe that the ratio ω′

w
is actually very close to unity. Numerically

one has w ≈ 1.2, B2 ≈ 0.21, ω′ ≈ 1.4, gUV
∗ ≈ 0.71 so that ω′

w
≈ 1.18 is indeed close to

1. Replacing ω′

w
→ 1 in eq. (1.21) yields a rather accurate approximation with the

same general features as the exact solution. In this case we can easily solve (1.21)

to get:

g (k) =
g (k0) k2

wg (k0) k2 + [1 − wg (k0)] k2
0

(1.22)

This function is an exact solution to the renormalization group equation with the

approximate anomalous dimension ηN = −2wg + O (g2) which is the first term in

the perturbative expansion of eq. (1.18):

ηN = −2wg

[
1 +

∞∑

n=1

(B2g)n

]

Remarkably, for the trajectory (1.22) the quantity B2 g (k) remains negligibly small

for all values of k. It assumes its largest value at the UV fixed point where B2 gUV
∗ =

0.15. Thus equation (1.22) provides us with a consistent approximation.

In terms of the dimensionful Newton constant G (k) ≡ g(k)
k2 eq. (1.22) reads

G (k) =
G (k0)

1 + wG (k0) [k2 − k2
0]

(1.23)

As mentioned before we set k0 = 0 and G (0) ≡ G0. Hence

G (k) =
G0

1 + wG0k2
(1.24)
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where G0 has to be identified with the experimentally observed value of the Newton

constant. On the other hand w is a constant which depends on the choice of the

cutoff function R(0) (see (1.20) and (1.15)). In statistical mechanics language, the

quantity w is “non-universal”. As a result, G (k) cannot be directly observable. On

the way from G (k) to an observable quantity a second source of non-universality

(R(0)-dependence) must show up which compensates for the R(0)-dependence of w.

We shall come back to this point in a moment.

We can use the parameter w to switch off quantum effects since:

1. It is proportional to ~

2. In the approximation ω′

w
→ 1 that we are assuming when we use expression

(1.24), w is the only one constant related to the running, and it is a prefactor

to k2.

3. As mentioned before, within the approximation to RG-improvement of black

hole spacetimes we are applying, we recover Classical General Relativity for

k = kobs = 0.

From (1.24) we see that when we go to higher momentum scales k, G (k) decreases

monotonically. For small k we have

G (k) = G0 − wG2
0k

2 + O
(
k4

)
(1.25)

while for G−1
0 ¿ k2 the fixed point behavior sets in and G (k) “forgets” its infrared

value:

G (k) ≈ 1

wk2

Remarkably, for k → ∞, i.e. at very high energies, Newton’s constant vanishes!

Whenever in our analysis of Kerr black holes we need the explicit form of the function

G (k) we shall employ the approximate formula (1.24).

1.4 Identification of the Infrared Cutoff

As already mentioned in section 1.2, we implement a diffeomorphism invariant cut-

off identification, similar in spirit to the identification made in the renormalization

group based derivation of the Uehling correction to the Coulomb potential in mass-

less QED [30, 32]. In that derivation, one starts from the classical potential energy
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Vcl (r) = e2

4πr
and replaces e2 by the running gauge coupling in the one-loop approx-

imation:

e2 (k) =
e2 (k0)

1 − b ln
(

k
k0

) ; b ≡ e2 (k0)

6π2
(1.26)

Since, in the massless theory, r is the only dimensionful quantity which could define

a scale, it is reasonable to identify the renormalization point k with the inverse of

the distance r. Thus we write

V (r) =
e2

(
1
r0

)

4πr

[
1 + b ln

(r0

r

)
+ O

(
e2

)]
(1.27)

which is the correct (one-loop, massless) Uehling potential, usually derived by more

conventional perturbative methods [32]. We can interpret, in this case, the success

of the improvement e2 → e2 (k) , k (r) ∝ 1
r

in recovering expression (1.27), by saying

that it encapsulates the most important effects which the quantum fluctuations exert

on the electric field produced by a point charge.

A similar process can be carried out in order to RG improve exact solutions of

the Einstein field equations. We expect in this case, in analogy to QED, that for

k ≈ kobs the running of Newton’s constant represents the most important quantum

correction to the classical solutions. In order to respect diffeomorphism invariance,

an invariant analogous to the identification k (r) ∝ 1
r

must be found. In this work

we propose a position dependent IR-cutoff of the form

k (P ) =
ξ

d (P )
(1.28)

where d (P ) is a distance scale which provides the relevant cutoff for the Newton

constant when a test particle is located at the point P of the black hole spacetime.

Furthermore, ξ is a constant of order unity that accounts for our lack of knowledge

about the exact physical mechanism of IR-cutoff.

A possibility of implementing the diffeomorphism invariance required by general

relativity is to define d (P ) to be the proper distance from a fixed initial point P0 to

the final point P along some curve C, with respect to the classical metric which we

want to improve:

d (P ) =

∫

C

√
|ds2| (1.29)

There is still some ambiguity as for the correct identification of the spacetime curve

C. However, certain universal features will be found when we analyse different
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curves in the relevant (asymptotic) regimes. Hence consistent approximations can

be obtained. This analysis will be systematically carried out for the Kerr metric in

chapter 3. For the Schwarzschild spacetime it has been performed in [30].

Concerning the intepretation of ξ the following remarks are in order. If we

substitute (1.28) in (1.24) we get

G (P ) =
G0d

2 (P )

d2 (P ) + G0w̄
(1.30)

with w̄ = wξ2. Eq. (1.30) represents the position dependence of the running G.

(Implicitly G (P ) depends via d (P ) also on the parameters of our physical system

such as the mass and the angular momentum of the black hole.) Eq. (1.30) shows

that w and ξ occur exclusively in the form of their product that we have called w̄ =

wξ2. The numerical value of this product cannot be obtained by renormalization

arguments alone: w is a non-universal constant since its value depends on the shape

of the function R(0) and also ξ is unknown as long as one does not identify the specific

cutoff for a concrete process. In a sense, the product w̄ = wξ2 can be determined

experimentally by measuring the asymptotic correction to Newton’s law. As a result,

the nonuniversalities of w and ξ2 should cancel to some extent in a consistent ab

initio calculation. (See [30] for a discussion of this point.)

1.5 Discussion

In section 1.2 we have presented the two guiding ideas of the method we will use

in this work for RG improving solutions of the classical Einstein equations. In this

sense equations (1.24) and (1.28) with (1.29) are the main results to be applied

in the next chapters. We emphasize that, since we take only into account the

running of Newton’s constant among the infinitely many couplings in the most

general diffeomorphism invariant Langrangian, our procedure is safe only if we don’t

go too far away from kobs and if the RG corrections are not too big.

It is worthwhile, at this stage, to analyse the physical mechanism behind the scale

dependence in (1.24) and its further implementation, via the cutoff identification

(1.28)[35]. We can start again by analysing the easier case of the running electric

charge. In this case, the combination of quantum mechanics and special relativity

converts the vacuum of electrodynamics into a sea of virtual electron-positron pairs

which are continuously created and anihilated. When we immerse an external test
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charge into this sea, it gets polarized in very much the same way as an ordinary

dielectric. The polarization cloud of the virtual e+ + e− pairs surrounding the test

charge tends to screen it, and it appears to be larger at small distances and smaller

at large distances. In an experiment which resolves length scales l ≡ k−1 one

measures the effective charge e (k) which includes the effect of this polarization of

the vacuum. As a consequence of this screening mechanism the classical Coulomb

potential is replaced by the more complicated quantum corrected Uehling potential

from (1.27). At least in the limit of massless electrons, this potential is directly

related to the running charge.

Guided by the analogy with the running electric charge, it is tempting to spec-

ulate on how quantum gravitational effects might modify Newton’s law and lead to

a scale dependence of G. It is plausible to assume that in the large distance limit

the leading quantum effects are described by quantizing the linear fluctuations of

the metric, gµν . One obtains a free field theory in a possibly curved background

spacetime whose elementary quanta, the gravitons, carry energy and momentum.

The vacuum of this theory will be populated by virtual graviton pairs, and the

central question is how these virtual gravitons respond to the perturbation by an

external test body which we immerse in the vacuum. Assuming that also in this

situation gravity is universally attractive, the gravitons will be attracted towards

the test body. Hence it will become “dressed” by a cloud of virtual gravitons sur-

rounding it so that its effective mass seen by a distant observer is larger than it

would be in absence of any quantum effects. This means that while in QED the

quantum fluctuations screen external charges, in quantum gravity they have an an-

tiscreening effect on external test masses. This entails Newton’s constant becoming

a scale dependent quantity G (k) which is small at small distances l ≡ k−1, and

which becomes large at larger distances. This behavior is similar to the running

of nonabelian gauge coupling in Yang-Mills theory and it is exactly the behavior

actually found within the Einstein-Hilbert truncation.
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Chapter 2

The Kerr Metric: An Exact

Solution of Einstein’s Equation for

Rotating Black Holes

In this chapter we present a historical introduction to the Kerr metric and its prop-

erties without giving rigorous proofs, leaving the ones which are needed for the

purposes of this work to the subsequent chapters.

The Kerr metric in the (t̂, x, y, z)-system of coordinates used in Kerr’s original

article from 1963 reads [36]

ds2 = −dt̂2 + dx2 + dy2 + dz2 +
2mr

r4 + a2z2
× (2.1)

×
[
dt̂2 +

r

a2 + r2
(xdx + ydy) +

a

a2 + r2
(ydx − xdy) +

z

r
dz

]2

with r2 defined as the solution to the equation

r4 − r2
(
ρ2 − a2

)
− a2z2 = 0

where ρ2 ≡ x2+y2+z2. The metric (2.1) depends on the two independent parameters

m and a. Written in this way (in the so-called Kerr-Schild coordinates) it shows

almost directly its asymptotic flatness. For a = 0 it reduces to the Schwarzschild

spacetime, which indicates that m is related to the mass of a gravitational source.

Concerning a, already in the same article, Roy P. Kerr proposes this solution of the

Einstein equations as representing the gravitational field outside a rotating source

with an angular momentum given by J ≡ ma/G0. The formal demonstration for

this interpretation came in 1968 when Jeffrey M. Cohen calculated the angular
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momentum of the source by integrating over the whole Kerr metric field [37], leaving

no doubt of the meaning of this solution. The importance of the Kerr metric in

studying the phenomenon of gravitational collapse reached a fundamental level with

the so-called “no hair” theorem by Brandon Carter in 1970 [38] which was inspired

by earlier results from Werner Israel for the cases of the Schwarzschild and Reissner-

Nordström spacetimes [39]. The no-hair theorem from Carter demonstrates that,

under reasonable physical conditions, the Kerr spacetime is the final state of any

realistic, asymptotically flat gravitational collapse configuration, and therefore the

resulting black hole depends exclusively on two parameters, namely m and a. (For

more details see [38].)

For a study of the symmetries of the Kerr spacetime, the form (2.1) is not quite

appropiate, since its Cartesian-like character shadows the axial symmetry around

the rotation axis of the source. In 1967, Robert Boyer and Richard Lindquist found

a coordinate system which shows the axial symmetry more clearly. Besides, it re-

duces to the standard form of the Schwarzschild metric for a = 0. It contains only

one mixing term (a dtdϕ term) so that this metric resembles the metric of a ro-

tating Minkowski spacetime (see section 2.2 on frame dragging) [40]. The so-called

Boyer-Lindquist (B-L) representation results from applying the following interme-

diate coordinate transformation to (2.1) [41]:

cos θ =
z

r
(2.2)

(r − ia) eiϕ̂ sin θ = x + iy

u = t̂ + r

A further transformation is then needed to eliminate the resulting dudr and dϕ̂dr

cross terms:

du = dt +
r2 + a2

∆
dr (2.3)

dϕ = dϕ̂ − a

∆
dr (2.4)

Here we introduced

∆ ≡ ∆ (r) ≡ r2 + a2 − 2mr

The final result in the (t, r, θ, ϕ)-coordinate system has the general form

ds2 = gttdt2 + 2gtϕdtdϕ + grrdr2 + gθθdθ2 + gϕϕdϕ2 (2.5)
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with the following (covariant) components of the metric:

gtt = −
(

1 − 2MG0r

ρ2

)
, grr =

ρ2

∆
, gϕϕ =

Σ sin2 θ

ρ2

gθθ = ρ2 , gtϕ = −2MG0ra sin2 θ

ρ2
(2.6)

Here we introduced the abbreviations

ρ2 ≡ r2 + a2 cos2 θ (2.7)

∆ ≡ r2 + a2 − 2MG0r (2.8)

Σ ≡
(
r2 + a2

)2 − a2∆ sin2 θ (2.9)

and the definition of the “geometric mass”,

m ≡ MG0 (2.10)

Inverting the metric we obtain the following contravariant components:

gtt = − Σ

ρ2∆
, grr =

∆

ρ2
, gϕϕ =

∆ − a2 sin2 θ

ρ2∆ sin2 θ

gθθ =
1

ρ2
, gtϕ = −2MG0ra

ρ2∆
(2.11)

It is clear from (2.6) and (2.11) that the components of the Kerr metric in the B-L

representation are symmetric under rotations in ϕ. For a = 0 we get directly from

(2.6) the standard representation of the Schwarzschild metric [42]:

ds2 = −
(

1 − 2MG0

r

)
dt2 +

dr2

(
1 − 2MG0

r

) + r2
(
dθ2 + sin2 θdϕ2

)
(2.12)

We will use the B-L respresentation (2.6) or (2.11) in most of the calculations of

this thesis.

Another important representation of the Kerr and Schwarzschild spacetimes cor-

responds to the Eddington-Finkelstein (E-F) coordinate system(s). The E-F coordi-

nates are the result of transforming the coordinates t and ϕ of the B-L coordinates

according to one of the following two possibilities [60, 57]:

• Ingoing E-F coordinates (“Ingoing Patch”)

dv = dt + dr∗ (2.13)

dψ = dϕ + dr# (2.14)
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• Outgoing E-F Coordinates (“Outgoing Patch”)

du = dt − dr∗ (2.15)

dχ = dϕ − dr# (2.16)

The differentials of the functions r∗ = r∗ (r) and r# = r# (r) are defined as

dr∗ ≡
[
r2 + a2

∆ (r)

]
dr

dr# ≡
[

a

∆ (r)

]
dr (2.17)

The relations (2.17) can be integrated explicitly, with the result

r∗ (r) =

∫
(r2 + a2)

∆ (r)
dr = r +

mr+√
m2 − a2

ln

∣∣∣∣
r

r+

− 1

∣∣∣∣ −
mr−√
m2 − a2

ln

∣∣∣∣
r

r−
− 1

∣∣∣∣

r# (r) =

∫
a

∆ (r)
dr =

a

2
√

m2 − a2
ln

∣∣∣∣
r − r+

r − r−

∣∣∣∣ (2.18)

where r± ≡ m ±
√

m2 − a2. Thus the transition from the B-L to the ingoing E-F

coordinates reads explicitly

v = t + r∗ (r) , r = r , θ = θ , ψ = φ + r# (r) (2.19)

while for the outgoing E-F coordinates

v = t − r∗ (r) , r = r , θ = θ , χ = φ − r# (r) (2.20)

The sets of coordinates (u, χ) and (v, ψ) are in fact labels for outgoing and ingoing

null geodesics in the Kerr spacetime, respectively [60]. Therefore the coordinate sys-

tems with xµ = (u, r, θ, χ) and xµ = (v, r, θ, ψ) are called, respectively, the outgoing

and ingoing E-F coordinate systems, or the outgoing and ingoing E-F patches. The

components gαβ of the Kerr spacetime in E-F coordinates are given by

ds2 = −
(

1 − 2G0Mr

ρ2

)
du2 − 2drdu + 2a sin2 θdχdr +

−4G0Mar sin2 θ

ρ2
dχdu +

Σ sin2 θ

ρ2
dχ2 + ρ2dθ2 (2.21)

for the outgoing patch, and

ds2 = −
(

1 − 2G0Mr

ρ2

)
dv2 + 2drdv − 2a sin2 θdψdr +

−4G0Mar sin2 θ

ρ2
dψdv +

Σ sin2 θ

ρ2
dψ2 + ρ2dθ2 (2.22)
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for the ingoing patch. We will use the E-F coordinate systems, especially the ingoing

patch, in cases where the B-L representation leads to coordinate singularities.

In the next sections we present the most important features of the Kerr metric

which can be divided into the following four topics [53, 60]:

• Critical Surfaces.

• Frame Dragging.

• Energy Extraction.

• Thermodynamics.

We will come back in more detail to all of them in chapters 4, 5, 6 and 7, respectively,

where we look at the consequences of including the running of Newton’s constant.

2.1 Critical Surfaces

The coordinate singularity at r = 2m in the Schwarzschild metric (2.12) defines a

spherical surface with two important properties. A first characteristic is that proper

distances ds2 change their sign there. This can be seen by staying at some fixed

radius r0 :

ds2
∣∣
r0

= g00|r0
dt2 = −

(
1 − 2m

r0

)
dt2 (2.23)

ds2 changes from negative values at r0 > 2m, going through zero at r0 = 2m,

to positive values at r0 < 2m. The zeros of g00 define infinite redshift points in

spacetime, as will be explained in chapter 5. Therefore the Schwarzschild surface

r = 2m is also called an infinite redshift surface. The second property corresponds

to a one way character of r = 2m (see figure 2.1). Every massive or massless particle

that crosses this surface from outside cannot come back to a r0 > 2m position. The

term “event horizon” is related to this last property.

The Kerr metric splits the Schwarzschild surface r = 2m into two different

external surfaces, r+ and rS+ (θ) (see figure 2.2), one for each of the above mentioned

properties. The infinite redshift surface rS+ (θ) is also called the static limit. Inside

of it, it is located the one-way surface r+ or event horizon. This splitting causes

interesting features of the rotating black hole, as it will be explained in the next

paragraphs. From now on, we will call the two classes of surfaces critical surfaces
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(there are four in total) when we are refering to common properties of the both of

them. In the next two subsections we give a qualitative description of these surfaces.

2.1.1 Event Horizon

The “one way” character is present when a (hyper-)surface in spacetime contains

only light-like tangent vectors. Then this surface can be crossed by timelike or light-

like trajectories in only one direction. This is called a null hypersurface (see figure

2.1). Every normal vector to this surface is also light-like.
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vα

vα

Fig. 2.1.
One-Way Surface: A particle crossing a null hypersurface
is not able to cross it in the opposite direction, since it is
bounded by a lightcone tangent to the surface.

Every hypersurface S in spacetime is determined by a function Φ (x) such that

Φ (x) = const for every point in S. A vector vα tangent to S is defined by the

gradient of Φ (except for a constant):

vα = AΦ,α (2.24)

Imposing the one-way condition of vα being tangent to a null hypersurface means

setting:

vαvα = 0 (2.25)

Here vα = gαβvβ and gαβ are the metric components of a specific spacetime the

components (2.6) of the Kerr metric in our case. By substituting vα and vα in

(2.25) one gets the following equation (For more details, see subsection 5.1.2):

grr = 0 (2.26)
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which, by using grr from (2.11), leads directly to:

∆ (r) ≡ r2 + a2 − 2mr = 0 (2.27)

Equation (2.27) is an algebraic second order equation in r with the following two

solutions:

r+ = m +
√

m2 − a2 (2.28)

r− = m −
√

m2 − a2

They are the radii of the internal and external event horizons H±, respectively. The

external r+ has more physical relevance, since it is a direct boundary for points in

spacetime which can still causally exert an influence to the observers at infinite r.

The surface at r− is also called the Cauchy horizon and it has relevance in the study

of the internal structure of black holes [56]. One can easily see that for all values of

a and m

r− ≤ m ≤ r+ ≤ 2m (2.29)

which means that rotation of the source (a 6= 0) shrinks the radius of the event

horizon. On the other hand when a = 0, r+ goes to 2m and the Cauchy horizon r−

coincides with the origin of coordinates.

2.1.2 Static Limit

The redshift of wavelengths for a light signal propagating in a gravitational field from

a rest-source, at the point xs in spacetime, to infinity, is given by (see subsection

5.1.1 and [41])

λ∞ =
λ0√

gtt (xs)
(2.30)

where λ0 denotes the proper wavelength of the signal and λ∞, the wavelength of the

signal observed at infinity. Then the condition for an infinite redshift is given by

gtt (xs) = 0 (2.31)

which, using (2.6), turns out to be

r2 + a2 cos2 θ − 2mr = 0 (2.32)
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this is again an algebraic second order equation in r, which leads to the following

solutions:

rS+ (θ) = m +
√

m2 − a2 cos2 θ (2.33)

rS−
(θ) = m −

√
m2 − a2 cos2 θ

The surfaces coming from (2.33) and (2.28) are shown in figure 2.2. From this

figure we see that rS−
(θ) and r− are contained in r+ and that r+ ≤ rS+ (θ) where

the equality holds at the poles. The fact that the outer infinite redshift surface

is outside the outer event horizon means that particles can move inside the region

bounded by these two surfaces and eventually come out again. It can be shown

(see section 2.3 in this chapter and chapter 6) that precisely by going into this

region, test particles can extract energy from the rotating black hole (the so-called

Penrose process); therefore this region is called the active region of a black hole or

the ergosphere.

The name “static limit” for the surfaces in (2.33) comes from the behavior of

rotation frequencies for photons and massive particles (see also subsections 4.3.2 and

4.3.3). From the line element (2.5) we deduce that rotating photons at fixed r and

θ fulfill the following general condition:

ds2 = gttdt2 + gtϕdtdϕ + gϕϕdϕ2 ≡ 0 (2.34)

After parametrizing spacetime curves fulfilling (2.34) by t we can obtain the rotation

frequency ΩLight from

(
ds

dt

)2

= gtt + gtϕΩLight + gϕϕΩ2
Light ≡ 0 (2.35)

where ΩLight is defined by:

ΩLight =
dϕ

dt

∣∣∣∣
( r, θ = const , ds2 = 0 )

The two solutions of (2.35) are given by ΩLight = Ω± where

Ω± ≡ ω ±
√

ω2 − gtt

gϕϕ

(2.36)

with the abbreviation

ω ≡ − gtϕ

gϕϕ

(2.37)
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Fig. 2.2.

The four critical surfaces for the Kerr spacetime.
The ergosphere, or active region, is the region
bounded by the external static limit at rS+ (θ) and
the external event horizon at r+.

The frequencies Ω+ and Ω− represent the rotation frequencies of photons flying in

opposite directions; Ω+ is related to photons that rotate in the same sense as the

rotation of the black hole, if a is positive (co-rotating photons); and Ω− is equiva-

lently related to photons rotating in the opposite sense (counterrotating photons).

On the other hand ω is called the dragging frequency and its interpretation will be

given in the next section.

By definition, timelike trajectories are bounded by lightcones. For rotating par-

ticles this can be expressed, for the case of interest, by the following inequality (see

also subsection 4.3.3):

Ω− < Ωt-like < Ω+ (2.38)

For gtt = 0, at the infinite redshift surface, we get Ω− = 0. This means that

counterrotating photons are static at this surface as seen by an observer at infinity.

As a consequence of (2.38), no massive particle can be static there. Going into the

ergosphere reduces the size of the allowed interval of values in (2.38) even more
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and not even light can be static (see figure 2.3 and also section 4.3 for an extensive

analysis).

Figure 2.3 shows the r-dependence of Ω± for rotating photons in the Kerr space-

time at the equatorial plane (θ = π/2). The allowed values of Ωt-like for timelike

particles can be read off as the vertical interval bounded by Ω+ and Ω−. Its size

also depends on r. The frequency Ω− goes through zero precisely at the static limit

surface rS+ where gtt ≡ 0. The interval of allowed Ωt-like values reduces to zero size

at the event horizon r+, where Ω+ = Ω−. We define Ω±|r+
as the frequency of

rotation of the black hole and we call it simply ΩH:

ΩH ≡ Ω±|r+
(2.39)

Below r+ no particle rotating at constant radius is allowed to exist anymore. Every

particle or photon unavoidably falls towards the center of the black hole. Substi-

tuting the components (2.6) of the Kerr spacetime into the expression (2.36) for Ω±

when Ω+ = Ω− leads to the following formula for ΩH
1:

ΩH =
a

(r+)2 + a2
(2.40)

Notice that ΩH in (2.40) is a function of the parameters of the black hole M and J ,

and the frequency of rotation is a constant on the whole event horizon.

1For more details see section 4.3.3 in chapter 4.
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tion at constant radius is still possible until the event
horizon r+ is reached. At this point the three frequen-
cies coalesce and every particle unavoidably falls to-

wards r = 0.

Fig. 2.3.

2.1.3 Extremal Black Hole

A black hole with a maximum spinning rate a = J/M is called an extremal black

hole. For the Kerr spacetime, this is the maximum rate for r± in (2.28) to be still

real-valued. From (2.28) we deduce that this is achieved for a = M or J = M2. As

a result, we have rextr
+ = rextr

− = G0M . The astrophysical importance of the extremal

black hole relies on the fact that most of the spinning systems that can collapse to

form a black hole, like massive stars, galactic nuclei, etc, are likely to be near to the

maximum spinning rate [43].

35



2.2 Inertial Frame Dragging

“An additional tangential rocket thrust is required to prevent orbiting,

that is to keep the fixed stars in steady position overhead... Spacetime

is swept around by the rotating black hole: Spacetime itself on the

move [53, F-7].”

Taylor & Wheeler.

The existence of a non-zero mixing component gtϕ leads to an important characteris-

tic of general axially symmetric spacetimes and in particular of the Kerr spacetime:

the so called gravitational dragging of inertial frames. Such a mixing term appears

even for the simple case when we let flat Minkowski spacetime rotate around one of

its spatial axes, say the z axis, with a constant angular frequency ωMink (see figure

2.4). The coordinate transformation leading to this spacetime reads:

ϕ̄ = ϕ + ωMinkt (2.41)

dϕ̄ = dϕ + ωMinkdt

By substituting (2.41) in the Minkowski metric given by

ds2 = −dt2 + r2(dθ2 + sin2 θdϕ2) (2.42)

we get the following line element:

ds2 = −
(
1 − r2ω2

Mink sin2 θ
)
dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ̄2

−2ωMinkr
2 sin2 θdtdϕ̄ (2.43)

The interpretation of this metric is the following. The equivalence principle tells us

that (2.43) represents a gravitational field coming from a source whose potential, in

the Newtonian limit, can be identified in the following way:

Φ (r, θ) ≡ −1

2
ω2

Minkr
2 sin2 θ (2.44)
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Fig. 2.4.
The coordinate transformation ϕ̄ = ϕ + ωMinkt that
goes from a Minkowski spacetime at rest to a rota-
ting one with angular frequency ωMink generates a
mixed component gtϕ = −ωMinkr

2 sin2 θ in the line
element, in analogy with the frame dragging term
gtϕ in the Kerr metric (2.6).

Using the same principle we can also identify the term ωMinkr
2 sin2 θ with a function

α (r, θ) which has dimensions of angular momentum per unit mass and would be

due to the rotation of the gravitational source:

α (r, θ) ≡ ωMinkr
2 sin2 θ (2.45)

Then we can write (2.43) as follows:

ds2 = − (1 + 2Φ) dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ̄2 − 2α (r, θ) dtdϕ̄ (2.46)

Though not exactly the same2, (2.46) resembles the approximate solution found by

Lense and Thirring in 1918 for the exterior field of a spinning sphere of constant

density. It is the limit of the Kerr metric for small angular momentum and weak

fields [44],[41]. As a conclusion of this analysis we can say that metric components

mixing terms in time and angular coordinates can be interpreted, using the equiv-

alence principle, either as terms due to rotating gravitational sources or as terms

2A radial gravitational term is missing, which would come, via the equivalence principle, from

a radial acceleration, additional to the rotation of the Minkowski spacetime.
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related to rotating flat spacetimes. This twofold interpretation is connected to the

concept of dragging of inertial reference frames, which will be explained in the next

subsection.

2.2.1 Inertial Frame Dragging

Two photons are simultaneously emitted
in opposite directions by an observer which
rotates with a frequency Ω near to a rota-
ting gravitational source. If Ω = ω, the ob-
server receives the photons back simulta-
neously, even if ω 6= 0. This observer is thus
defined to be in a dragged inertial frame,
with dragging frequency ω.

Fig. 2.5.

J

ω = Ω

An inertial reference frame at some point of the Kerr spacetime can be experimen-

tally defined by performing the following experiment (see fig. 2.5). Two opposite

light rays are emitted simultaneously by a rotating observer with frequency Ω from

a point on the circumference defined by the values r and θ. In a flat spacetime the

light rays will come back simultaneously only in the case when Ω = 0, since the

rotation frequencies Ω− and Ω+ are equal in magnitude and opposite in sign. But

in a curved spacetime like (2.6) or (2.46) this is not necessarily the case. We define

an inertial reference frame to be one in which simultaneously emitted opposite light

rays come back simultaneously, no matter which is the value of the frequency of ro-

tation of the emitter. From the definitions (2.36) and (2.37) for Ω± and ω it can be
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shown that it is precisely the rotation frequency Ω = ω that fulfills this requirement.

In fact, the opposite traveling times are given by [57, Exercise 33.3, pag 895]:

∆t+ =
2π

Ω+ − Ω
(2.47)

∆t− =
2π

Ω − Ω−

If they are equal then we have

Ω =
Ω+ + Ω−

2
(2.48)

which is precisely the case for Ω = ω defined in (2.36) and (2.37). Since ω is in

general 6= 0 we can say that an inertial reference frame is being dragged with a

dragging frequency ω, as seen by an observer at infinity. For the case of the Kerr

metric, ω has always a positive value and it is equal to Ω+ = Ω− precisely at the

event horizon (see figure 2.3). In chapter 4 (S. 4.3.1) we interpret ω also as a rotation

frequency of zero angular momentum observers (ZAMO’s) and we calculate it for

the renormalization group improved Kerr metric.

2.3 Energy Extraction

The existence of negative energy states for test particles moving near to a rotating

black hole leads, as we shall explain in more detail in chapter 6, to the possibility

of extraction of energy from that black hole. Such a process of energy extraction is

called a Penrose process.

Figure 2.6 describes schematically this process; it includes a composite system A

of two particles B and C which crosses the static limit and reaches a negative energy

state inside the ergosphere, near to the event horizon. Particle B with negative

energy falls into the black hole decreasing in this way the total amount of its internal

energy. The conservation of energy for the whole system (black hole + test particles)

predicts therefore an equivalent increase of energy for particle C when it comes back

to its final state at r = ∞.

39



Fig. 2.6.

Penrose Process
The system A, composed by two particles B and C,
enters the ergosphere with initial energy E0 as mea-
sured at infinity. Near the event horizon, particle
B reaches a negative energy state before crossing it.
Particle C comes back to infinity with an energy
E1 > E0.

We define the total energy Etot before that particle B crosses the event horizon

as

Etot = E0 + E0
BH (2.49)

where E0 is the energy of the composite system A, and E0
BH is the initial energy

of the black hole. At the same time we define E0 as the sum of initial energies of

particles B and C:

E0 = E0
B + E0

C (2.50)

When the composite system enters the ergosphere and system B reaches a negative

energy, we define

E1
B < 0 (2.51)

such that the energy of the black hole is reduced to

E1
BH = E0

BH −
∣∣E1

B

∣∣ (2.52)
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when particle B falls into it. The energy of particle C when it reaches infinity after

leaving the black hole is given by

E1 = Etot − E1
BH (2.53)

where we have only used the conservation of energy. Substituting (2.52) in (2.53)

and using (2.50) leads to:

E1 = E0 +
∣∣E1

B

∣∣ (2.54)

The last equation shows that the final energy of particle C is greater than the initial

energy of the composite system A, whereas (2.52) tells that the energy of the black

hole has decreased. As a result we conclude that we have extracted energy from the

black hole.

In 1970 D. Christodolou showed that the energy a black hole can provide through

the Penrose process is only rotational [49]. He proved that there exists an irreducible

mass Mirr given by the remnant mass that is left after the complete rotational energy

has been delivered. The final state of the black hole corresponds to a Schwarzschild

spacetime with mass Mirr. In this sense we say that a black hole is “alive” if it has

an angular momentum J 6= 0. As long as an event horizon H+ with r+ = MG0 +√
(MG0)

2 − (J/M)2 exists, the highest amount of angular momentum a black hole

is allowed to have is given by J = G0M
2, the extremal configuration3. Under this

condition the extremal state is the most “alive” configuration of parameters J and

M a black hole can assume.

In chapter 6 we describe the consequences for the process of energy extraction

from the black hole of a renormalization group improvement of the Kerr metric via

the running of the Newton constant.

2.4 Thermodynamics

The connection between the dynamics of black holes and the laws of thermody-

namics was proposed at the beginnings of the 1970’s in a series of articles that in-

clude, among others, the fundamental contributions of J. Bekenstein and S. Hawking

3To date, the available theoretical and experimental evidence points towards the validity of

the so-called “cosmic censorship hypothesis” that tells that every gravitational collapse leads to a

singularity surrounded by an event horizon. In other words, there exist no “naked singularities”

in nature [52].
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[45, 46]. Based upon previous results about the dynamics of black holes that in-

teract with surrounding bodies [49], Bekenstein formulated in 1973 the generalized

first and second laws of thermodynamics. They involve the entropy and the tem-

perature of the black hole, where the entropy is identified (up to a constant) with

the area A of the event horizon and the temperature with its surface gravity κ [45].

Almost simultaneously, J. M. Bardeen, B. Carter and S. Hawking formulated the

four laws of black hole dynamics in agreement with the results of Bekenstein. In

addition they presented the zeroth and third laws to complete the framework of the

thermodynamics of black holes.

In 1975, S. Hawking gave a statistical interpretation of the temperature of the

black hole by proving that quantum mechanical effects cause black holes to create

and emit particles as if they were black bodies with a temperature proportional to

κ [65]. It is thus possible for a black hole to be in thermal equilibrium with other

thermodynamic systems. The laws of black-hole mechanics, therefore, are nothing

but a description of the ordinary thermodynamics of black holes [60].

In this section we review the four laws of black hole mechanics, exploiting the

Kerr spacetime as an illustrative example. We start with the definitions of area and

surface gravity and their relation to the mass and angular momentum of a Kerr

black hole through Smarr’s formula.

2.4.1 Area and Surface Gravity

The area A of the event horizon H is defined as the surface integral in spacetime

given by

A =

∮

H

√
σd2θ (2.55)

where σ is the determinant of σab which is the metric induced from gαβ in the

surface H, and d2θ ≡ dθ1dθ2 with θa angular coordinates on H. The area of the Kerr

event horizon is given by4

A = 4π
(
r2
+ + a2

)
(2.56)

Notice that A in (2.56) is a function of the parameters of the black hole, M and J ,

through the functions r+ (M,J) defined in (2.28) and a = J/M .

4For further details on definition (2.55) and on how the area is calculated for the Kerr black

hole, see appendix I.
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The surface gravity κ of a black hole is defined as the force required by an observer

at infinity in order to hold (with an infinitely long, massless string) a particle of unit

mass stationary at the event horizon. This can be expressed as follows:

κ ≡ acc∞ (r+) (2.57)

For a spherically symmetric spacetime with metric

ds2 = −f (r) dt2 + f−1dr2 + r2dΩ2 , (2.58)

definition (2.57) leads to the following result for κ:

κ =
1

2
f ′ (r+) (2.59)

In particular, for the Schwarzschild spacetime we have κ = 1/4MG0.

The surface gravity can also be calculated by exploiting specific identities fulfilled

by the Killing vectors of the respective spacetime at the event horizon, provided

this event horizon has the property of being a Killing horizon, namely, a horizon

generated by a Killing vector field.

The surface gravity of the Kerr black hole is given by5:

κ =

√
(G0M)2 − a2

r2
+ + a2

(2.60)

Notice that κ in (2.60) depends only on the parameters M and J . This means that

it is constant on the whole event horizon. This fact is related to the zeroth law

of black hole thermodynamics. On the other hand notice also that κ = 0 for the

extremal Kerr black hole with MG0 = a. This fact is related to the third law. We

present these laws later in this section.

2.4.2 Smarr’s Formula

Smarr’s formula is an algebraic relationship satisfied by the parameters M and J of

a classical black hole, its area A, the surface gravity κ, and the angular frequency

of the event horizon, ΩH. It was discovered by Larry Smarr in 1973 [47]. For the

classical Kerr black hole, Smarr’s formula reads

M = 2ΩHJ +
κA

4πG0

(2.61)

5For further details on the mentioned identities, and how κ is calculated for the Kerr black hole,

see appendix H.
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Here we have

ΩH =
a

r2
+ + a2

, κ =
(r+ − m)

r2
+ + a2

, A = 4π(r2
+ + a2)

r+ = m +
√

m2 − a2 , a =
J

M
, m = MG0 (2.62)

It is a matter of simple algebra to show that the expressions in (2.62) satisfy the

formula (2.61). Nevertheless, Smarr’s formula is not only a property of Kerr black

holes. It can be shown to hold true for all black hole spacetimes that are stationary

and axially symmetric [60]. The proof does not require the explicit form of the

solution.

2.4.3 The Zeroth Law

The zeroth law of black hole mechanics states that the surface gravity of a stationary

black hole is uniform over the entire event horizon. We have already seen in sub-

section 2.4.1 that this statement is indeed true for the specific case of a Kerr black

hole, but the scope of the zeroth is much wider: The black hole need not be isolated

and its metric need not be the Kerr metric. The only requirement is the black hole

to be stationary. For a rigorous demonstration of the zeroth law see [46, 48].

2.4.4 The First Law

The first law of classical (G = G0 = const) black hole thermodynamics states that

if we consider a quasi-static process in which a stationary black hole of mass M ,

angular momentum J , and surface area A is transformed to a new stationary black

hole with parameters M + δM , J + δJ , A + δA, the changes in mass, angular

momentum and surface area are related by

δM − ΩHδJ =

(
κ

8πG0

)
δA (2.63)

The derivation of equation (2.63) does not make any reference to a specific solution

of the Einstein field equations, like the Kerr spacetime. It relies only upon the

stationary character of the black hole that performs the process, and the quasi-static

property of the process itself. In particular, for the Kerr spacetime the functions

A ≡ A (M,J), ΩH ≡ ΩH (M,J) and κ ≡ κ (M,J) are given in (2.62). They do

indeed satisfy (2.63).
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Appealing to its analogy with the first law of standard thermodynamics, (2.63)

is interpreted as

δM − ΩHδJ = TδS (2.64)

where

T =
κ

2π
(2.65)

and

S =
A

4G0

(2.66)

are the black hole’s temperature and entropy, respectively.

2.4.5 The Second Law

The second law of black-hole dynamics states that if the null energy condition is

satisfied6, then the surface area of a black hole can never decrease:

δA ≥ 0 (2.67)

This area theorem was established by S. Hawking in 1971 with no mention of the

analogy between area and entropy [50].

2.4.6 The Third Law

The third law of black hole dynamics states that if the stress-energy tensor is

bounded and satisfies the weak energy condition, then the surface gravity of a black

hole cannot be reduced to zero within a finite advanced time. A precise formulation

of this law was given by Werner Israel in 1986 [51, 60].

2.5 Structure of this Thesis

In chapter 1 we have already presented the procedure of renormalization group

improvement of black hole spacetimes. We will apply this procedure to the Kerr

spacetime in the next chapters of this work. The motivation of the review in the

present chapter has not only been to present the Kerr metric as the main subject of

6For a discussion of the energy conditions, see chapter 7.
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study in this work, but also to give an organized presentation of its properties. This

presentation is a guide for the organization of the next chapters. This organization

is the following:

After explaining how to implement the cutoff identification in chapter 3 and

presenting the improved Kerr metric and some general features in chapter 4, we move

to the analysis of critical surfaces in chapter 5, the Penrose process in chapter 6, and

the black hole thermodynamics in chapter 8. We also include an additional chapter

concerning the energy conditions (chapter 7), briefly mentioned in this chapter. We

dedicate the final Chapter 9 to the conclusions and an outlook.
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Chapter 3

The Cutoff Identification

In chapter 1 we defined in (1.29) the distance d (P ) as

d (P ) =

∫

C

√
|ds2| (3.1)

and a diffeomorphism invariant cutoff identification was proposed in the form of

(1.28), given by

k (P ) =
ξ

d (P )
(3.2)

Since d (P ) depends on the choice of the path of integration, it is important to

analyse various special cases in order to find universal characteristics and to discuss

the advantages and drawbacks of the different choices. The two kinds of paths

analysed in this chapter, namely the radial and circular paths, are by no means

exhaustive, but at least representative, in the sense that a generic, exclusively r

dependent asymptotic behavior is found for both of them. Finding (but not formally

proving) this general asymptotic property of invariant distances for the Kerr metric

and discussing its consequences for a RG improvement via the running Newton

constant are the main goals of this chapter.

3.1 Radial Path for Schwarzschild and

Kerr Metrics

A natural path C in (3.1) to start with is a straight line in space from the origin to

the point P (See figure 3.1).
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m = 5 , a = 4

Fig. 3.1.

Straight line path from the origin to a point P in
the Kerr spacetime (t = constant).

In the B-L representation it can be parametrized by the r-coordinate together with

t = t0, ϕ = ϕ0, θ = θ0 where (t0, r, θ0, φ0) are the coordinates of the point P . From

(2.6) we find for the line element along this path, since dt = dθ = dϕ = 01,

ds2 = grrdr2 =

(
ρ2

∆

)
dr2 =

(
r2 + a2 cos2 θ

r2 + a2 − 2mr

)
dr2

so that

d (P ) ≡ d (r, θ) =

∫

C

√
|ds2| =

∫ r

0

√∣∣∣∣
r′2 + a2 cos2 θ

r′2 + a2 − 2mr′

∣∣∣∣dr′ (3.3)

The two roots of the discriminant ∆ (r) ≡ r2+a2−2mr appearing in the denominator

of the integrand are given in (2.28) as follows:

r+ = m +
√

m2 − a2 (3.4)

r− = m −
√

m2 − a2

1As a matter of convenience we use, only in this chapter and its related appendices, the geo-

metrical mass m = MG0 instead of the explicit product MG0, because for the time being we are

not dealing with any improvement of G0.
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These roots lead to the following three regions of integration (See fig. 3.2.):




Region 1: r < r−

Region 2: r− < r < r+

Region 3: r+ < r

(3.5)

In figure 3.2 we see that the discriminant in (3.3) changes sign at r− and r+ and there-

fore the absolute value in the integrand is to be interpreted differently for every re-

gion in (3.5).

0 2 4 6 8 10

-5

0

5

10

15

∆
(r

)

m = 5 , a = 4

r− r+

Region 1 Region 2 Region 3

r

Fig. 3.2.
The quadratic function ∆ (r) defines three
separate regions for the integration in (3.3).

0 2 4 6 8 10 12 14

-20

0

20

40

∆
(r

)
=

r
(r

−
2m

) m = 5 , a = 0

2m

r

Region 1 Region 2

Fig. 3.3.
For the Schwarzschild spacetime, ∆ (r) de-
fines only two regions for the integration
in (3.3) with a = 0.

Instead of attempting to integrate expression (3.3), which does not seem to be an

easy task, we will restrict our analysis to certain special cases which, however, can

give us insight into the main physical features of an improvement like (1.24) using

(3.2) with (3.3).

3.1.1 d (P ) for the Schwarzschild Metric

The Schwarzschild metric is recovered from (2.6) by setting a = 0. For this case the

roots in (3.4) reduce to:

r+ = 2m (3.6)

r− = 0
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Hence we have only two regions of integration as seen in figure 3.3, namely:





Region 1: r < 2m

Region 2: 2m < r
(3.7)

In this case the invariant distance (3.3) is reduced to:

d (P ) ≡ d (r) =

∫ r

0

r′√∣∣1 − 2m
r′

∣∣
(3.8)

The integration in (3.8) gives the following results (See appendix B, S. B.1):

d (r) =





d1 (r) = −
[√

2mr − r2 + m arctan
(

m−r√
2mr−r2

)]
+

(
mπ
2

)
for r < 2m

d2 (r) = πm +
√

r (r − 2m) + m ln
(

r−m+
√

r2−2mr
m

)
for 2m < r

(3.9)

For large values of r we can expand d2 (r) of (3.9) to get the following asymptotic

behavior:

d (r) = r − m + mπ + m ln

[
2 (r − m)

m

]
+ O

(
1

r

)
(3.10)

Figure 3.4 shows the compound function d (r) from (3.9). It can be seen that it

is continuous at r = 2m but with infinite slope as expected from the form of the

integrands. The asymptotic behavior of (3.10) as r goes to infinity is also visible.
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d (r) = r

m = 5

2m

r
Fig. 3.4.

d (r) vs. r plot for the invariant distance function (3.9)
of the Schwarzschild spacetime.
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3.1.2 d (P ) for the Kerr Metric Restricted to the Equatorial

Plane

For the Kerr metric at the equatorial plane, the invariant distance integral (3.3) in

B-L coordinates is reduced to the following form

d (r) ≡ d
(
r,

π

2

)
≡

∫ r

0

√∣∣∣grr

(
r′,

π

2

)∣∣∣dr′ =

∫ r

0

√∣∣∣∣
r′2

r′2 + a2 − 2mr′

∣∣∣∣dr′

(3.11)

More explicitly,

d (r) =





∫ r

0
r′dr′√

r′2+a2−2mr′
if ∆ (r) > 0

∫ r

0
r′dr′√

2mr′−r′2−a2
if ∆ (r) < 0

(3.12)

The behavior of the grr component in the equatorial plane through the three regions

in (3.5) is depicted in figure 3.5. It changes its sign at r− and r+. As a consequence,

the absolute value in the integrand (3.11) has to be interpreted differently from one

region to another. Performing the integrations for every region separately we get

three different expressions for d (r). During the calculation it is useful to exploit that

the radii r± of the horizons in (3.4) satisfy the algebraic equation (2.27), r2
± + a2 −

2mr± = 0.
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Fig. 3.5.
A grr vs. r plot. The roots of ∆ (r) = r2 + a2 − 2mr defi-

ne two vertical asymptotes r = r± that separate three di-
fferent regions of integration in (3.11).
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The results for every region are the following (see (B.10), (B.11) and (B.19) in

appendix B):

d (r) =





d1 (r) if r < r−

d2 (r) if r− < r < r+

d3 (r) if 0 < r− < r+ < r

(3.13)

where d1, d2 and d3 are defined as:

d1 (r) =
√

r2 + a2 − 2mr + m ln

(−r + m −
√

r2 + a2 − 2mr

|a − m|

)
− a

(3.14)

d2 (r) =
m

2
ln

∣∣∣∣
m + a

m − a

∣∣∣∣ − a −
√

2mr − r2 − a2

+m arctan

(
r − m√

2mr − r2 − a2

)
+

mπ

2
(3.15)

d3 (r) =
√

r2 + a2 − 2mr + m ln
(
r − m +

√
r2 + a2 − 2mr

)
+

πm − a − m ln |m − a| (3.16)

It is not difficult to see that the expressions (3.14), (3.15) and (3.16) reduce to the

Schwarzschild expressions (3.9) when a = 0.

Figure 3.6 shows the dependence on r of d (r) defined in (3.13), for a given value

of m and different values of a < m approaching m. The continuous and regular

behavior at r− and r+ are preserved for this case as long as a < m. The slope at

the two event horizons is infinite as expected. When a ↗ m the two event horizons

coalesce at r− = r+ = m and the expressions (3.14), (3.15) and (3.16) diverge. We

discuss this special case of an extremal black hole at the end of this chapter.

3.1.3 Corrections Outside the Equatorial Plane

In this section we expand the integrand in (3.3) for small θ in order to see how

much the results for d(r) in (3.14) to (3.16) change when we move away from the

equatorial plane at θ = π/2. The resulting integrals are also carried out for the

three regions 1, 2 and 3 specified in (3.5). (For more details see appendix B, section

B.3). The results are the following:
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Fig. 3.6.
d (r) vs. r plots for the composite distance function in
(3.14), (3.15) and (3.16) of the Kerr spacetime at the
equatorial plane. The “colors” run form black to gray
for increasing a.

d (r, θ) =





d1 (r, θ) if r < r−

d2 (r, θ) if r− < r < r+ :

d3 (r, θ) if 0 < r− < r+ < r

(3.17)

Here d1 (r, θ), d2 (r, θ) and d3 (r, θ) have been evaluated to leading order cos2 θ:

d1 (r, θ) ≈
√

r2 − 2mr + a2 + m ln
(
−r + m −

√
r2 − 2mr + a2

)
(3.18)

+
a cos2 θ

2
ln

(
r

a2 − mr + a
√

r2 − 2mr + a2

)
− F1 (r0, θ, a,m)

d2 (r, θ) ≈ F1 (r−, θ, a,m) − F1 (r0, θ, a,m) (3.19)

−
√

2mr − r2 − a2 + m arctan

(
r − m√

2mr − r2 − a2

)

+
a cos2 θ

2
arctan

[
mr − a2

a
√

2mr − r2 − a2

]

−F2 (r−, θ, a,m)

d3 (r, θ) ≈ −F1 (r0, θ, a,m) + F2 (r+, θ, a,m) − F2 (r−, θ, a,m)

+
√

r2 − 2mr + a2 + m ln
(
r − m +

√
r2 − 2mr + a2

)

+
a cos2 θ

2
ln

( −r

a2 − mr + a
√

r2 − 2mr + a2

)
(3.20)
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We define r0 as a constant, arbitrarily near to zero. The r-independent functions

F1 (r0, θ, a,m), F1 (r−, θ, a,m), F2 (r−, θ, a,m), F2 (r+, θ, a,m), F1 (r+, θ, a,m) are

given by (see appendix B, S.B.3):

F1 (r0 < r−, θ, a,m) =
√

r2
0 − 2mr0 + a2 + m ln

(
−r0 + m −

√
r2
0 − 2mr0 + a2

)

+
a cos2 θ

2
ln

(
r0

a2 − mr0 + a
√

r2
0 − 2mr0 + a2

)

(3.21)

F1 (r−, θ, a,m) = F1 (r+, θ, a,m) = m ln
(√

m2 − a2
)

+
a cos2 θ

2
ln

(
1√

m2 − a2

)

(3.22)

F2 (r−, θ, a,m) = −πm

2
− πa cos2 θ

4
(3.23)

F2 (r+, θ, a,m) =
πm

2
+

πa cos2 θ

4
(3.24)

From (3.21) we conclude that we cannot set r0 = 0 since there would result a ln r0

divergence in the angular dependent term of F1 (r0 < r−, θ, a,m). However, this non-

regular behavior does not represent any problem, since the difference F1 (r, θ, a,m)−
F1 (r0 < r−, θ, a,m) in (3.18) is finite and positive as long as r0 < r, due to the mono-

tonically increasing behavior of F1 as a function of r. It is zero precisely for r = r0.

As a result we have d1 (r) ↘ 0 for (r0, r) ↘ 0 such that always r0 < r.

In figure 3.7 we plot the analytical results in (3.18), (3.19) and (3.20) for different

values of a. We see that for all θ ≈ π
2
, cos2 θ ¿ 1, we get a similar behavior of

d (r, θ) as in the equatorial plane (compare to figure 3.6). This indicates that the

invariant distance (3.3) behaves smoothly near to θ = π
2
.

Furthermore, figure 3.8 shows that, for this approximation, varying θ near to π
2

means shifting d (r, θ) by a finite amount without changing its shape in a visible way.
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Fig. 3.7.
d (r, θ) vs. r plots for the composite approximate invariant
distance function in (3.18), (3.19) and (3.20) from the
Kerr spacetime near to the equatorial plane (cos2 θ ¿ 1).
We follow the same convention for the grayscale as in fig-

ure 3.6.

0 5 10 15 20 25 30

0

20

40

60

80

100

d
(r

,θ
)

a = 7m = 10

d (r) = r

θ = 0◦

θ = 54◦
θ = 90◦

r− r+

r

Fig. 3.8.
d (r, θ) vs. r plots for the composite approximate invariant
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A remarkable fact which follows from the results (3.19) and (3.20) is that, sim-

ilarly as in the equatorial plane, the distances they define are not regular for the

extremal case a = m, as can be seen in (3.22). This behavior indicates that our

cutoff identification should become unreliable when the angular momentum is too

large.

There is another reason to expect that our treatment might become unreliable

close to extremality. As the cutoff identification we are applying to the Kerr space-

time is inspired by the example of massless QED where the only dimensionful quan-

tity is r we have to be careful in our case, since besides the radial distance we have

two more possible dimensionful quantities on which the cutoff could depend, namely,

M and a. (An analogous complication arises in massive QED.) while we believe on

the basis of the analysis in [30] that k = ξ/d (P ) encapsulates the leading quantum

effects for Schwarzschild black holes, this does not follow from simple dimensional

analysis since the mass M sets a second scale, independent of 1/d (P ). By continuity

we may assume that also for Kerr black holes k = ξ/d (P ) is a sensible cutoff iden-

tification, provided their angular momentum is not too large. Close to extremality

where the angular momentum defines a new independent scale this cutoff identifi-

ication might break down, however. Therefore we shall analyze only that portion of

the (m, a)-parameter space where a ¿ m so that we are far away from extremality.

In this regime k = ξ/d(P ) should be the correct cutoff identification, to leading

order.

3.1.4 The Asymptotic Regime r → ∞
Expanding d3 of (3.20) for r → ∞ and neglecting terms of orders 1

r
or smaller we

get the following distance function (See Appendix B, section B.4):

d (r, θ) ≈ r − m + m ln (2 (r − m)) + F (θ, a,m) (3.25)

Here

F (θ, a,m) =
a cos2 θ

2
ln

(
1

m − a

)
− F1 (r0, θ, a,m)

+F2 (r+, θ, a,m) − F2 (r−, θ, a,m)

comprises only r-independent terms. From (3.25) it is clear that as r → ∞ every

contribution coming from F (θ, a,m) is subdominant. (Except for the extremal case

m = a, which we shall not consider.) As a result, we conclude that, at large distances,
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the θ-dependence of d (r, θ) is of minor importance compared to its r-dependence. In

fact, in the following we shall often neglect the θ-dependence in a first aproximation.

3.2 Reduced Circumference

In this section we consider circular paths C. The reduced circumference R of a

circular path C is defined as:

R ≡ Perimeter

2π
=

1

2π

∫

C

√
|ds2| (3.26)

It can be used to define in an invariant way the size of a spherical object without

refering directly to its radius. Since we are dealing with a black hole, this is quite a

suitable definition which could eventually be used in our procedure of a cutoff iden-

tification, setting k = ξ/(2πR). The parametrization of C can be done in spherical

coordinates by putting the singularity at the origin and setting t and r fixed (see

figure 3.9).

The orientation of the path of integration in (3.26) defines every time a new R

for the same value of r, as seen in figure 3.9. By choosing different orientations we

can see the axial dependence of the reduced circumference. For simplicity we choose

an equatorial path and a meridian one to compare. As seen in the last section for

the case of d (r, θ), we are interested in finding series expressions for the different

invariant integrals we are analysing, in order to find common asymptotic behaviors.

We do that in the next two sections for the above mentioned paths.

3.2.1 Reduced Circumference for the Kerr Spacetime (Equa-

torial Plane)

For the equatorial path C1 in figure 3.9 we use the parametrization ϕ 7→ xµ (ϕ) =

(t = t0, r, θ = π
2
, ϕ) leading to dxµ (ϕ) = (0, 0, 0, 1)dϕ. So the line element along

C1 becomes ds2 = gϕϕ

(
r, π

2

)
dϕ2. By integration we get the following length of the

path C1:

Req (r) =
1

2π

∫ 2π

0

√∣∣∣gϕϕ

(
r,

π

2

)∣∣∣dϕ (3.27)
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C1

C2

C3

Fig. 3.9.
Three different circular paths, defining three different

orientations of the reduced circumference.

This expression, in the case of a flat geometry and also for the Schwarzschild space-

time, corresponds to the radial coordinate, namely

Req (r) = r

Nevertheless, this is not the case for general curved spaces and in particular not for

the Kerr spacetime. By substituting in (3.27) the gϕϕ

(
r, π

2

)
component from (2.6)

we find:

Req (r) =
1

2π

∫

C1

√
|ds2| =

1

2π

∫ 2π

0

√∣∣∣gϕϕ

(
r,

π

2

)∣∣∣dϕ =
∣∣∣gϕϕ

(
r,

π

2

)∣∣∣

=

√√√√
∣∣∣∣∣
Σ

(
r, π

2

)

r2

∣∣∣∣∣

As a result,

Req (r) =

√
r2 + a2 +

2ma2

r
(3.28)

This function is different from r precisely if a 6= 0. For large distances and small a,

the leading terms of (3.28) are given by:

Req (r) = r

(
1 +

a2

2r2
+

ma2

r3
+ O

(
a4

r4

))

(3.29)
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3.2.2 Reduced Circumference for the Kerr Spacetime (Merid-

ian Plane)

For the meridian path C3 we use the parametrization θ 7→ xµ (θ) = (t0, r, θ, ϕ0),

where t0,r and ϕ0 are constants. Then ds2 is simplified to ds2 = gθθdθ2 = (r2 + a2 cos2 θ) dθ2.

The resulting reduced circumference reads

Rme (r) =
1

2π

∫

C3

√
|ds2| =

1

2π

∫ 2π

0

√
r2 + a2 cos2 θdθ

=
4

2π

(√
r2 + a2

)
E

(
a2

a2 + r2

)
(3.30)

where E (x) denotes a complete elliptic integral. The solution in (3.30) can be

expanded for large r and small a, as follows (see appendix B, section B.5.):

Rme = r

(
1 +

a2

4r2
− a4

8r4
+ O

(
a6

r6

))
(3.31)

3.2.3 The Asymptotic Regime r → ∞
By neglecting terms of order 1

r
or smaller in (3.29) and (3.31) for Req and Rme

respectively, we stay finally with the result R = r both for the equatorial and the

meridian path. It is to be expected that other paths with arbitrary orientation

provide the same asymptotic result. At subdominant order differences will appear,

but no major qualitative changes.

Figures 3.10 and 3.11 show the r dependence of Rme and Req, respectively, for

different values of a. The asymptotic behavior R ≈ r for r → ∞ is obvious in every

plot. For the case a = 0, namely, the Schwarzschild metric the exact equality R = r

is recovered. It is also remarkable that the reduced circumference shows no special

behavior at the event horizons r− and r+, since its r-derivative, for both cases, is

regular at every r > 0. It can also be seen that Req and Rme are well behaved at

a = m in contrast to the integrals d (r) or d (r, θ) analysed in the previous sections.

For the case of the equatorial plane, figure 3.11 shows that Req diverges as r → 0

for any nonzero a, in contrast to the regular behavior for the meridian Rme. The

eventual consequences of this behavior have to be seen with care since the reliability

of our approach is restricted to distance scales which are not too far away from the

range of validity of classical general relativity. Presumably, to be on the safe side, d =

Req should not be used in the regime where it deviates too strongly from the linear

behavior, i.e. for too small values of r.
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Rme (r) vs. r plots for the reduced circumference function
in (3.30), using a meridian path in the Kerr spacetime li-
ke C3 in figure 3.9. The “colors” run from black to gray for
increasing a.
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Req (r) vs. r plots for the reduced circumference function
in (3.28), using an equatorial path in the Kerr spacetime li-
ke C1 in figure 3.9. The “colors” run from black to gray for
increasing a.
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3.3 Discussion

In chapter 1 we have emphasized that it is to be expected that the most important

quantum correction to a classical solution of the Einstein equations near to the

scale at which general relativity holds, would come from the running of the Newton

constant. Nevertheless, the closer to the Planck scale we are, the more we need

to take into account the contribution of more complicated invariant terms in the

Lagrangian of Quantum Einstein Gravity. Therefore we should try, in our simplified

approach, to stay in a safe region, not too close to the Planck scale where our

assumption holds. This means that we have to choose large enough masses of our

black holes, and stay at long enough distances to its center. This means also, after

looking at the behavior of the integrals we have studied in this chapter, that we can

work with an exclusively r-dependent cutoff identification, either coming from radial

paths, from reduced circumferences, or from the proper length of any similar path. In

fact, the θ-dependence of d (r, θ) is always comparatively weak and we do not believe

that θ-dependent predictions can be made reliably within the present approach. As

far as it is possible, we will do the analysis in the subsequent chapters by assuming

a generic r-dependent Newton constant G (r) without making any reference to the

specific cutoff identification.

Concerning our ansatz k = ξ/d(P ) for the cutoff identification, we recall the

analysis in subsection 3.1.3 related to its limitations for the extremal case a = m,

where one more mass scale comes into play: In the next chapters we restrict our

analysis to the regions of the (m, a)-parameter space where a ¿ m, so that k =

ξ/d(P ) is still the correct cutoff identification, to leading order.

We emphasize that the above mentioned limitations (staying away from the

Planck scale, etc.) are limitations of the improvement scheme only, not to the

underlying quantum theory of gravity, QEG. The later is likely to be valid for all

distance scales, in particular beyond the Planck scale where the fixed point behavior

sets in.
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Chapter 4

General Features of the Improved

Kerr Metric

In this chapter we present the improved Kerr metric and we extend to this case

the analysis of the behavior of rotating test particles presented in chapter 2 for the

classical Kerr spacetime. We get as a result from this analysis generalized formulas

for the dragging frequency, frequencies of rotating photons and the frequency of

rotation at the event horizon ΩH. We find also generalizations of the equations for

the critical surfaces. Furthermore we introduce the Killing vectors as an appropiate

mathematical tool which simplifies many calculations and gives new formal inter-

pretations to these calculations in relation to the symmetries of the improved Kerr

spacetime.

4.1 The Improved Kerr Metric

Now we are already able to write down explicitly the improved Kerr metric in the

B-L representation, using the running Newton constant (1.24) with the r dependent

cutoff identification

k =
ξ

d (r)
(4.1)

This is a spherically symmetric simplification of (1.28) that we are able to introduce

only now, after the analysis from the last chapter. It leads to the following formula

for G (r) by substituting it in (1.24)

G (r) =
G0d

2 (r)

d2 (r) + w̄G0

(4.2)
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The Kerr metric improved with the coupling G (r) from (4.2) by substituting G0 →
G(r) into the classical components in (2.6), reads

gtt = −
(

1 − 2MG (r) r

ρ2

)
, grr =

ρ2

∆I (r)
, gϕϕ =

ΣI (r, θ) sin2 θ

ρ2

gθθ = ρ2 , gtϕ = −2MG (r) ra sin2 θ

ρ2
(4.3)

with the definitions

ρ2 ≡ r2 + a2 cos2 θ (4.4)

∆I (r) ≡ r2 + a2 − 2MG (r) r (4.5)

ΣI (r, θ) ≡
(
r2 + a2

)2 − a2∆I (r) sin2 θ (4.6)

Similarly for the contravariant components we have from (2.11):

gtt = − ΣI

ρ2∆I

, grr =
∆I

ρ2
, gϕϕ =

∆I − a2 sin2 θ

ρ2∆I sin2 θ

gθθ =
1

ρ2
, gtϕ = −2MG (r) ra

ρ2∆I

(4.7)

It is important to emphasize that the set of components (4.3) of the improved Kerr

metric, or equivalently (4.7), are the main object of study all along this thesis.

The results from this chapter rely on the assumption of an exclusively r-dependent

Newton’s constant G (r). In principle, the specific form of G (r) might come from

the improvement outlined in chapter 3, but how G(r) arises from G (k) plus a cutoff

identification is irrelevant. Only G as a function of r will matter here. In this sense

we have called these results “general features”. They will be revisited in the next

chapters for more specific purposes.

4.2 Killing Vectors

Killing vectors determine the symmetries on a Riemannian manifold, in our case,

the spacetime. They are defined to fulfill the so-called Killing equation given by [59,

P. 377]:

∇µXν + ∇νXµ = 0 (4.8)

Represented in a system of coordinates, Killing vectors are related to cyclic coordi-

nates xκ of the metric tensor gµν ; they fulfill:

∂gµν

∂xκ
= 0 (4.9)
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The Killing vector X(k) associated to xκ is given by [57]

X(k) =
∂

∂xκ
(4.10)

or written in components

Xµ

(k) =
∂xµ

∂xκ
= δµ

k (4.11)

For the special case of the improved Kerr metric we know that, in the B-L

representation, the coordinates t and ϕ are cyclic:

∂gµν

∂t
= 0 ,

∂gµν

∂ϕ
= 0 (4.12)

Then we define as special cases of (4.10) the following Killing vectors (for a more

formal proof see appendix G)

t =
∂

∂t
, ϕ =

∂

∂ϕ
(4.13)

Although we are refering to B-L coordinates, it is clear that t and ϕ are coordi-

nate independent vector fields. In fact we will represent them in other coordinates

whenever this is necessary. The representation of t and ϕ in the B-L coordinates

xµ = (t, r, θ, ϕ) ≡ (xt, xr, xθ, xϕ) reads

tµ ≡ ∂xµ

∂t
= δµ

t , ϕµ ≡ ∂xµ

∂ϕ
= δµ

ϕ (4.14)

Since t and ϕ are the only cyclic variables in gµν a general Killing vector of the Kerr

spacetime can be written as a linear combination of the vectors in (4.13):

η = αt + βϕ (4.15)

Here α and β are constants (See Appendix G for a proof).

4.2.1 Representing Conserved Quantities with

Killing Vectors

The four-velocity of a point particle is defined as follows:

uµ ≡ dxµ

dτ
≡ ẋµ (4.16)

Using the (− + ++) signature of the metric we can write

−dτ 2 = ds2 = gµνdxµdxν (4.17)
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which leads to the following relation for the components in (4.16)

−1 = uνu
ν

Quite generally, if ξµ is a Killing vector then for the motion along a geodesic the

following conservation law holds true [60]

ξµu
µ = constant (4.18)

Using (4.18) we can relate the components of the Killing vectors to the conserved

quantities in the specific spacetime. For the improved Kerr metric we have

E = −tµu
µ (4.19)

L = ϕµu
µ

which are related, respectively, to the energy and angular momentum of test particles

moving in the improved Kerr spacetime. These quantities will be important in

chapter 6, when we deal with the possibility of extracting energy from the improved

Kerr black hole.

4.3 Three Families of Observers

In chapter 2 we introduced the concepts of dragging of inertial reference frames,

static limit and event horizon. These concepts are related to certain kinematical

conditions for observers in the surroundings of the improved Kerr black hole 1. In

this section we reinterpret these concepts by setting the above mentioned kinematical

conditions, namely by defining three different classes of observers, and we deduce

generalizations of the formulas for the critical surfaces and the angular frequencies

Ω± and ω, presented in chapter 2, now for the improved Kerr spacetime. We close

the section by showing that there is a distinguished angular frequency at the event

horizon which depends exclusively on the parameters M and J and which plays, as

we will see in chapter 8, an important role in black hole thermodynamics.

1We use the expression “observers” in the sense that any observer has the size of a test particle

and is, as a consequence, subject to the kinematics of test particles. But, on the other hand, also in

the sense that point-like systems can carry out measurements which define properties of spacetime.
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4.3.1 Zero Angular Momentum Observers (ZAMOs) and

Dragging Frequency

For this kind of observers it holds that L = 0. From (4.19) we have then:

0 = ϕµuµ = ϕµgµν

dxν

dτ
(4.20)

For the B-L coordinates we have:

ϕµ = δµ
ϕ (4.21)

Then, by substituting (4.21) in (4.20) we get

0 = gϕϕ

dϕ

dτ
+ gϕt

dt

dτ
(4.22)

Parametrizing (4.22) by the time coordinate t we have:

0 = gϕϕ

dϕ

dt
+ gϕt (4.23)

We define Ω to be the angular coordinate (or “bookkeeper”) velocity. In the B-L

representation we can write:

Ω ≡ dϕ

dt
(4.24)

Thus the ZAMO’s angular velocity reads:

ΩZAMO (r, θ) ≡ ω ≡ − gϕt

gϕϕ

(4.25)

This is precisely the dragging frequency (2.37) from chapter 2. So we can interpret an

observer in a dragged inertial reference frame also as an observer with zero angular

momentum, measured at infinity.

Substituting the expressions for the improved Kerr metric components into (4.25)

we get:

ω (r, θ) =
2G (r) Mar

ΣI

(4.26)

We can calculate the asymptotic behavior for r → ∞. Using that ∆I ≈ r2, ΣI ≈ r4

for r → ∞ we obtain

ω (r → ∞, θ) ≈
2G (r → ∞) J

r3
(4.27)

with

J = aM

From (4.2) we see that G (r → ∞) = G0. As a result, we conclude from (4.27) that

the dragging goes to zero at infinity as it happens before the improvement.
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4.3.2 Static Observers

A point like observer following a given worldline is called static if there is no relative

motion between him (or her) and the flat spacetime at infinity. The concept of a

static limit is directly related to the existence of such observers. Therefore it’s inter-

esting for us to investigate under which conditions they are realized. By definition,

the four-velocity of static observers is proportional to the Killing vector tµ:

uµ = γtµ

The factor γ is given by

γ ≡ (−gµνt
µtν)−

1
2

so that

uµu
µ = γ2tµtµ = (−gανt

αtν)−1 tµtµ = −1

The motion of static observers is not geodesic. They must be held in place by a rocket

engine, for example, which pulls the observer with a counterdragging frequency

−ω given by (4.25).

Static observers exist only in those portions of the (improved) Kerr spacetime

where tµ is timelike. The “static limit” is reached when tµ becomes a null vector,

i.e. when

γ−2 ≡ −gµνt
µtν = −gtt = 0 (4.28)

Or more explicitly, in Boyer-Lindquist coordinates, when

r2 − 2G (r) Mr + a2 cos2 θ = 0 (4.29)

This is precisely a generalization of equation (2.32) from chapter 2, with the iden-

tification m ≡ G0M . We denote the outer (inner) solution of (4.29) by rI
S±

, in

accordance with the definition of the classical static limit in chapter 2. The super-

script “I” is for “improved”. We will return in chapter 5 to (4.29), when we analyse

the static limit surfaces for different versions of d (r) in the cutoff identification (4.1).

4.3.3 Stationary Observers

A way of defining event horizons, different from the definition via one-way surfaces,

is related to the existence of stationary observers. By definition, stationary observers
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move with a constant angular velocity Ω ≡ dϕ

dt
in the ϕ direction. They are termed

“stationary” because they perceive no time variation in the gravitational field of an

axially symmetric black hole. Their four-velocity involves a special case of (4.15)

and is given by

uµ = [γ (tµ + Ωϕµ)]|(r,θ fixed) (4.30)

where the four vector defined as

ξµ = tµ + Ω|(r,θ fixed) ϕµ (4.31)

is a Killing vector evaluated at the location of the rotating particle. The factor γ is

given by γ ≡ (−gµνξ
µξν)−

1
2 or, more explicitly, by

γ−2
∣∣
(r,θ fixed)

= −gµν (tµ + Ωϕµ) (tν + Ωϕν)|B-L
(r,θ fixed)

= −gϕϕ

(
gtt

gϕϕ

− 2Ωω + Ω2

)∣∣∣∣
B-L

(r,θ fixed)

(4.32)

The Killing vector in (4.31) contains the same information about the motion as the

four-velocity because γ is simply a constant normalization coefficient. As we shall

see in chapter 8, this vector plays an important role in finding the surface gravity

at the event horizon of the Kerr black hole.

Stationary observers exist only in those portions of the spacetime where tµ +

Ω|(r,θ fixed) ϕµ is timelike, that is where 2:

γ−2 > 0 (4.33)

By exploiting that gϕϕ > 0 , ∀ r > 0 , ∀ θ 6= 0, π, we can conclude from (4.32) that

the inequality

gtt

gϕϕ

− 2Ωω + Ω2 < 0 (4.34)

is fulfilled for stationary observers. It is equivalent to (4.33). This last inequality

for Ω is satisfied if

Ω− < Ω < Ω+ (4.35)

with Ω± given as in (2.36):

Ω± = ω ±
√

ω2 − gtt

gϕϕ

(4.36)

2From now on we supress the specification “(r,θ fixed)” for the stationary observers.
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Using (4.28), (4.29) and (4.36) we shall now analyse the behavior of these fre-

quencies when a test particle crosses the static limit SI
+. We perform this analysis

by looking at the three cases r > rI
S+

, r = rI
S+

and r < rI
S+

in turn. In every case

we use the fact that G (r), gϕϕ and ω are positive everywhere (to verify it see (4.2)

and (C.4)).

1. The Case r > rI
S+

Here it holds that

gtt = r2 − 2G (r) Mr + a2 cos2 θ < 0 (4.37)

which implies the inequality:

√
ω2 − gtt

gϕϕ

=

√
ω2 +

∣∣∣∣
gtt

gϕϕ

∣∣∣∣ > ω (4.38)

By applying (4.38) to (4.36) we infer that

Ω− < 0 < Ω+ (4.39)

If we compare (4.39) with (4.35), Ω− < Ω < Ω+, we conclude that Ω = 0 is

allowed and the observer can be static. (See Figure 4.1.)

2. The Case r = rI
S+

For this case we have the static limit condition

gtt = r2 − 2G (r) Mr + a2 cos2 θ = 0 (4.40)

which, by inserting (4.40) in (4.36), leads to

Ω− = 0 , Ω+ = 2ω

We see that Ω− changes sign at r = rI
S+

where gtt = 0. In this case only

counterrotating light rays are seen static at infinity. (See figure 4.2.)

3. The Case r < rI
S+

For this case we have already crossed the static limit surface and it holds that

gtt = r2 − 2G (r) Mr + a2 cos2 θ > 0 (4.41)
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so that we can write

√
ω2 − gtt

gϕϕ

=

√
ω2 −

∣∣∣∣
gtt

gϕϕ

∣∣∣∣ < ω (4.42)

and as a consequence we get

0 < Ω− < Ω+

Together with Ω− < Ω < Ω+ this implies that Ω = 0 cannot be realized: there

exist no static observers anymore. No observers can avoid rotating in the same

sense of the black hole. (See Figure 4.3.)

So far, we have done an analysis of the behavior of rotating observers that cross

rI
S+

. If the observer stays inside and infinitesimally near to the static limit surface,

it is expected to exist a finite sized interval (Ω−, Ω+) where stationary observers

can exist. Once this interval is reduced to zero, by going further inside, we have

no available stationary states for rotating observers. This is an indication that an

event horizon is reached, namely, a surface which defines the end of the existence of

stationary observers. This is a different definition as the one given in chapter 2, and

is based on the concept of stationary observers. We analyse further this definition

in the next paragraph.

Coalescence of Frequencies at the Event Horizon. We start finding a formula

for Ω± in terms of the B-L coordinates. By substituting the components of (4.3)

and definition (4.25) in (4.36) we get the following expression (see appendix D):

Ω± = ω ± ρ2
√

∆I

ΣI sin θ
(4.43)

By imposing Ω− = Ω+ to (4.43) we can find a formula for the event horizon’s surface

of the improved Kerr spacetime. From

Ω− = Ω+ (4.44)

it follows that

ω +
ρ2
√

∆I

ΣI sin θ
= ω − ρ2

√
∆I

ΣI sin θ

and we get

∆I = 0 (4.45)
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or more explicitly

r2 + a2 − 2G (r) Mr = 0 (4.46)

We define the angular frequency ΩH of the black hole’s event horizon by

ΩH ≡ ω|∆I=0 = Ω+|∆I=0 = Ω−|∆I=0 (4.47)

As a consequence of (4.44), the accessible interval of frequencies for stationary ob-

servers given by (4.35) is reduced to a single value at the horizon, and only counter-

rotating light is able to be stationary, being forced to move with the angular velocity

ΩH, see figure 4.4.

Notice that ξµξµ = gtt/gϕϕ − 2ωΩ + Ω2 = 0 at the event horizon H. The Killing

vector ξ becomes light-like. This means that ξ is a tangent vector to H. An event

horizon with such a property of having Killing vectors as tangent vectors is called a

Killing horizon.

Equations like (4.28) and (4.45) will be found again in chapter 5 for different

physical considerations.

From (4.47) and (4.26) we can get an expression for the rotation frequency of

light ΩH at the radial value rI
+, which, by definition is the radius of the outer event

horizon and which solves equation (4.46)

ΩH ≡ ω
(
rI
+, θ

)
=

2G
(
rI
+

)
MarI

+

ΣI (rI
+, θ)

(4.48)

with

ΣI

(
rI
+, θ

)
=

[(
rI
+

)2
+ a2

]2

− a2∆I

(
rI
+

)
sin2 θ =

[(
rI
+

)2
+ a2

]2

(4.49)

this equation turns out to be independent of θ. By inserting (4.49) in (4.48) we get

ΩH (M,a) =
a

(rI
+)

2
+ a2

(4.50)

where we have used the fact that rI
+ fulfills (4.46), namely

(
rI
+

)2
+ a2 = 2G

(
rI
+

)
Mr (4.51)

Eq. (4.50) is an important formula. It has the same appearance for the classical

and the improved Kerr metric (see [60, P. 190]), but r+ and rI
+ are different functions
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of M and a. In addition it is clearly coordinate independent since it is only a function

of the parameters of the black hole a and M . Therefore we will use it no matter

how we represent the improved Kerr spacetime.

We summarize this section by means of various figures. Figures 4.1 to 4.4 show

several configurations of the roots Ω± of the polynomial Ω2−2ωΩ+gtt/gφφ. The an-

gular frequency Ω of rotating particles is subject to Ω− ≤ Ω ≤ Ω±. If Ω = Ω±, the

rotating particles are photons. Since the angular frequency Ω of a timelike rotating

observer is by definition bounded by Ω±, the configuration of these light frequencies

determine their kinematical properties. We can distinguish the following cases:

Fig. 4.1: If Ω− < 0 < Ω+, a rotating observer can be in a static state with Ω = 0.

Fig. 4.2: At the static limit r = rI
S+

counterrotating photons reach zero coordinate

tangential velocity. Every rotating observer is compelled to rotate with a positive

angular frequency Ω such that 0 < Ω < Ω+.

Fig. 4.3: For 0 < Ω− < Ω+ observers cannot remain static. These observers have

crossed the static limit surface rI
S+

.

Fig. 4.4: At the event horizon the angular frequencies for photons Ω− and Ω+

coalesce and stationary observers are not allowed anymore. Light rotates with a

frequency ΩH.
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Different configurations of the roots Ω±.
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Chapter 5

Critical Surfaces of the Improved

Kerr Metric

In this chapter we find equations for the critical surfaces of the improved Kerr metric,

as generic expressions involving the distance function d (r), and we solve them either

analytically or numerically for specific choices of this distance function. Keeping in

mind the limitations of our method we discuss the impact of quantum gravity on

these critical surfaces, their shape, number and type. To this end we rely on the

d (r) = r approximation as a crucial tool of the analysis. The reasons are the relative

simplicity of the equations it leads to, its property of being the first leading term of

d (r) in the r → ∞ regime, and also, as we shall see in subsection 5.2.2, the fact that

it leads to locally stable solutions of the equations for the critical surfaces. We shall

be particularly interested in the transition from the clasical to the quantum regime

and to see at least the onset of the new effects showing up at the Planck scale. The

plots we present employ dimensionless quantities. As a result, the Planck scale is

reached when the quantities approach the unity.

This chapter is divided into three sections, namely:

Section 5.1 Derivation of the equations for critical surfaces, to be solved with a

generic d (r).

Section 5.2 Solution of the equations in section 5.1 and analysis of physical con-

sequences, exploiting the properties of the d (r) = r approximation.

Section 5.3 Discussion
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5.1 General Equations for Improved Critical Sur-

faces

5.1.1 Infinite Redshift Surfaces

In chapter 2 we presented the infinite redshift surfaces S± for the classical Kerr

spacetime, given by

rS+ (θ) = m +
√

m2 − a2 cos2 θ (5.1)

rS−
(θ) = m −

√
m2 − a2 cos2 θ

We also emphazised there and in chapter 4, by analysing the angular frequencies

of rotating test particles (or observers), that these surfaces are also a boundary for

static observers, therefore they are called static limit surfaces. In this subsection we

come back to the infinite redshift character of these surfaces and we deduce again

the condition given in (4.29):

r2 − 2G (r) Mr + a2 cos2 θ = 0 (5.2)

We go further by applying the cutoff identification (4.1) and we establish a condition

similar to (5.2) but depending on d (r).

The redshift of signals due to gravity can be understood as a consequence of a

position dependent proper time dilation. The proper time interval dτ (xµ) measured

by a local observer at xµ corresponds to a longer proper time dt measured by an

observer at infinity in an asymptotically flat spacetime. The quantity t measured

by this asymptotic observer is usually chosen as the time coordinate. The square

root of the metric component gtt relates both intervals [41]:

dτ (xµ) =
√

gtt (xµ) dt (5.3)

Suppose now that n maxima of a wave of frequency ν0 are emitted in proper time

dτ s (xµ) from a source at xµ. Then

n = ν0dτ s (xµ
s ) (5.4)

or using (5.3),

n = ν0

√
gtt (xµ

s ) dt (5.5)
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At infinity one certainly receives n maxima, but the frequency and time duration of

the wave train have changed. There we have an equation similar to (5.4):

n = ν∞dt (5.6)

Thus by comparing (5.5) and (5.6) we get the following result for the relation of the

two frequencies:

ν∞ = ν0

√
gtt (xµ

s ) (5.7)

For wavelengths we have an inverse relation to (5.7):

λ∞ =
λ0√

gtt (xµ
s )

(5.8)

Therefore it is clear that we have an infinite redshift if:

gtt (xµ
s ) = 0 (5.9)

Applying (5.9) to the improved Kerr metric leads precisely to the condition (4.28)

for the static limit surface. In B-L coordinates we have equation (5.2):

r2 + a2 cos2 θ − 2MG (r) = 0 (5.10)

By using (4.2) for G (r) we get:

d2 (r)
(
r2 + a2 cos2 θ − 2MG0r

)
+ G0w̄

(
r2 + a2 cos2 θ

)
= 0 (5.11)

We will return to this equation (more specifically, its dimensionless version) in sec-

tion 5.2 when we implement specific expressions for d (r), and we look for corrected

static limit surfaces.

5.1.2 One Way Surface

In this subsection we come back to the one-way character of event horizons. By

imposing the one-way condition (2.25) to the vectors tangent to a two-dimensional

surface in the improved Kerr spacetime, we are able to reproduce equation (4.46)

for the event horizon and also the equation (2.27) for the classical Kerr spacetime

as a particular case. We confirm in this way two different properties of the same

class of surfaces, namely, that the event horizon in the improved Kerr spacetime is
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a surface which can be crossed in one direction only, and also a surface which is a

boundary for stationary observers.

Since the improved Kerr metric (4.3) is static and axially symmetric, any surface

with these symmetries can be defined in B-L coordinates via a function Φ (r, θ) by

requiring:

Φ (r, θ) = const (5.12)

A vector normal to the surface is obtained as the gradient of Φ, possibly up to a

constant:

vα = A∂αΦ (5.13)

In the B-L coordinates (t, r, θ, φ) we have explicitly

vα = A

(
0 ,

∂Φ

∂r
,

∂Φ

∂θ
, 0

)
(5.14)

Raising the index of vα according to

vα = gαβvβ = gαtvt + gαrvr + gαθvθ + gαϕvϕ (5.15)

yields with (5.14):

vα = A

[
gαr

(
∂Φ

∂r

)
+ gαθ

(
∂Φ

∂θ

)]
(5.16)

= A

(
0 , grr

(
∂Φ

∂r

)
, gθθ

(
∂Φ

∂θ

)
, 0

)
(5.17)

Let us now assume that vα is a null vector, satisfying

vαva = 0

so that

grr

(
∂Φ

∂r

)2

+ gθθ

(
∂Φ

∂θ

)2

= 0 (5.18)

Being null, vα is both normal and tangent to the surface Φ = const, which is a null

hypersurface in this case.

Expression (5.18) is a partial differential equation that can be solved for Φ (r, θ)

by separation of variables only grr/gθθ depends exclusively on r or θ. This is the

case for the components in (4.7) because

grr

gθθ
= ∆I (r) = a2 + r2 − 2G(r)Mr (5.19)
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which is indeed only r dependent. We propose then the separation ansatz

Φ (r, θ) = R (r) Θ (θ) (5.20)

which leads to

(
1

Θ

dΘ

dθ

)2

= −grr

gθθ

(
1

R

dR

dr

)2

(5.21)

after inserting (5.20) in (5.18) and dividing by Φ2. As a result, every side of (5.21)

is a constant, since each of them depends on only one variable. For the right hand

side we write:

(
1

Θ

dΘ

dθ

)2

= λ > 0 (5.22)

Solving for Θ we find the following:

dΘ

dθ
=

√
λΘ (θ) (5.23)

Θ (θ) = Be
√

λθ (5.24)

This solution is not periodic in θ. Therefore Φ (r, θ) does not properly define a

surface, unless λ = 0. Hence we conclude that our equations lead to a function Φ

depending exclusively on r. We obtain the differential equation for R (r) as follows:

grr

gθθ

(
1

R

dR

dr

)2

= 0 (5.25)

This equation leaves only two possibilities:

grr

gθθ
= 0

dR

dr
= 0

The second equation leads to a constant Φ = const which does not define a 2-

dimensional surface. Therefore we turn to the first equation,

grr

gθθ
= 0 ,

which leads directly to:

r2 + a2 − 2MG (r) r = 0 (5.26)
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This is the equation of the event horizon, already given in (4.46). We have shown

in this way that the event horizon is a null hypersurface.

Inserting the expression (4.2) for G (r) in (5.26) leads to

d2 (r)
[
r2 + a2 − 2MG0r

]
+ G0w̄

(
r2 + a2

)
= 0 (5.27)

Eq. (5.27) is a dimensionful equation for event horizon surfaces, where a generic

d (r) is included. In section 5.2 we will solve a dimensionles version of this equation

and we look for corrected event horizons.

5.1.3 Dimensionless Variables and the Unified Equation for

Critical Surfaces

As already mentioned at the beginning of this chapter, the use of dimensionless

variables normalized with respect to the Planck scale helps in getting insight in how

improvement changes the properties of black holes. Using the definitions in (A.7)

we can transform the surface equations (5.11) and (5.27) to dimensionless equations.

We also use the radial proper distance in Planck units

d̃ (r̃) ≡ d (r)√
G0

Hence

d̃2 (r̃) G0 = d2 (r)

so that we have for the static limit

d̃2 (r̃)
(
r̃2 + ã2 cos2 θ − 2m̃r̃

)
+ w̄

(
r̃2 + ã2 cos2 θ

)
= 0 (5.28)

and similarly for the event horizon

d̃2 (r̃)
[
r̃2 + ã2 − 2m̃r̃

]
+ w̄

(
r̃2 + ã2

)
= 0 (5.29)

An obvious feature of equations (5.11) and (5.27), and likewise of (5.28) and (5.29)

is that they differ only by the terms that include a or ã. Thus we can define a

constant b which unifies the equations for the static limit and the horizon:

b =





a cos θ for the static limit.

a for the event horizon.
(5.30)
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In a similar way we define the dimensionless variable:

b̃ =





ã cos θ for the static limit.

ã for the event horizon.
(5.31)

Now we can write one unified “master” equation replacing (5.11) and (5.27) or (5.28)

and (5.29). Namely, for the dimensionful radius we have

d2 (r)
(
r2 + b2 − 2MG0r

)
+ G0w̄

(
r2 + b2

)
= 0 (5.32)

while for the dimensionless radius

d̃2 (r̃)
(
r̃2 + b̃2 − 2m̃r̃

)
+ w̄

(
r̃2 + b̃2

)
= 0 (5.33)

The dimensionless equation (5.33) yields solutions r̃ whose scale is normalized with

respect to the Planck scale. We will concentrate primarily on solving this equation.

It defines in a natural way the following 2-parameter family of functions whose zeros

are to be found:

Qw̄

b̃
(r̃) ≡ d̃2 (r̃)

(
r̃2 + b̃2 − 2m̃r̃

)
+ w̄

(
r̃2 + b̃2

)
(5.34)

Depending on the choice for b̃ given by (5.31), the roots of Qw̄

b̃
will define the

corrected static limit or event horizon surfaces for the Kerr metric, respectively.

5.2 Solutions for the Critical Surfaces and

Physical Consequences

We come now to the second part of this chapter where we assume a specific form

of d (r) and we look for solutions of the equations (5.28) and (5.29), for the static

limit and the event horizon, respectively.

We start in subsection 5.2.1 with a general analysis of the equations (5.34) with

d (r) = r. We present the solutions of these equations, when it is possible, and their

properties. We also present special important cases, like the extremal black hole.

In subsection 5.2.2 we present the stability properties of the related solutions. We

conclude the section (subsections 5.2.3 and 5.2.4) with the analysis of several plots

of the solutions and surfaces we have found.
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5.2.1 Critical Surfaces for the Approximation d (r) = r:

General Features

For d (r) = r the cutoff identification is given by the simplest non-trivial expression:

k (r) =
ξ

r
(5.35)

After substituting (5.35) in (4.2) we find the following running G (r):

G (r) =
G0r

2

r2 + w̄G0

(5.36)

By substituting (5.36) in (5.32) and (5.33), respectively, we have

r4 − 2MG0r
3 + r2

(
b2 + G0w̄

)
+ G0w̄b2 = 0 (5.37)

r̃4 − 2m̃r̃3 + r̃2
(
b̃2 + w̄

)
+ w̄b̃2 = 0 (5.38)

For d (r) = r the equation of the critical surfaces is a polynomial in r. As a result,

the respective function Qw̄

b̃
(r) is the following:

Qw̄

b̃
(r̃) = r̃4 − 2m̃r̃3 + r̃2

(
b̃2 + w̄

)
+ w̄b̃2 (5.39)

In the next two sections we describe the physical content of equation (5.38) by

analysing several cases, corresponding to different values of the free parameters w̄

and b̃. These cases are:

1. Classical Schwarzschild critical surfaces
(
w̄ = 0 , b̃ = 0

)
.

2. Classical Kerr critical surfaces
(
w̄ = 0 , b̃ 6= 0

)
.

3. Improved Schwarzschild critical surfaces
(
w̄ 6= 0 , b̃ = 0

)
.

4. Improved Kerr critical surfaces
(
w̄ 6= 0 , b̃ 6= 0

)
.

We shall refer to cases 1 to 3 as “particular cases” and the fourth case as the “general

case”.
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Particular Cases

1. The simplest case which results from setting w̄ = 0 and b̃ = 0 leads to the

well-known Schwarzschild singularities. Equation (5.38) is reduced to:

Q0
0 (r̃) ≡ r̃3 (r̃ − 2m̃) = 0 (5.40)

Clearly the solutions of (5.40) are either r̃ = 0, the singularity at the origin,

or r̃ = 2m̃ the coordinate singularity that defines the event horizon.

2. The case 2 defined by w̄ = 0 , b̃ 6= 0 converts (5.38) to the factorized fourth-

order equation given by:

Q0
b̃
(r̃) ≡ r̃2

(
r̃2 − 2m̃r̃ + b̃2

)
= 0 (5.41)

The solutions of (5.41) are either r̃ = 0 or the couple of solutions

r̃b̃±
= m̃ ±

√
m̃2 − b̃2 (5.42)

Depending on the interpretation of b̃ we have either the solutions for the event

horizon r̃± = m̃ ±
√

m̃2 − ã2, when b̃ = ã, or the static limit r̃S±
= m̃ ±√

m̃2 − ã2 cos2 θ, when b̃ = ã cos θ. Dimensionful versions of these solutions

can be found by multiplying r̃ by lPl =
√

G0, namely:

r± = MG0 ±
√

(MG0)
2 − a2

rS±
= MG0 ±

√
(MG0)

2 − a2 cos2 θ (5.43)

Or using m = MG0 we have:

r± = m ±
√

m2 − a2 (5.44)

rS±
= m ±

√
m2 − a2 cos2 θ (5.45)

This is the unified way of presenting the critical surfaces of the Kerr spacetime,

as already given in equations (2.28) and (2.33) of chapter 2.

3. The case 3 with b̃ = 0, w̄ 6= 0 gives us the critical surfaces of the improved

Schwarzschild spacetime [30]. In this case we have the polynomial equation

(5.38) reduced to

Qw̄
0 (r̃) ≡ r̃2

(
r̃2 − 2m̃r̃ + w̄

)
= 0 (5.46)
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which is equivalent to (5.41) if we perform the identification b̃2 → w̄. As a

result, the solutions of (5.46) have a similar form to the solutions of (5.41).

In this case we have again the singularity at the origin r̃ = 0 and two event

horizons for the improved Schwarzschild spacetime given by:

r̃I
Sch±

= m̃ ±
√

m̃2 − w̄ (5.47)

Now multiplying (5.47) by lpl gives a dimensionful version for the radii of the

event horizons:

rI
Sch±

= MG0 ±
√

(MG0)
2 − G0w̄ (5.48)

Or equivalently using m = MG0:

rI
Sch±

= m ±
√

m2 − G0w̄ (5.49)

The existence of two different radii rI
Sch±

represents the splitting of the Schwarz

schild event horizon due to the RG-improvement into a set of two horizons

which had been found and discussed in detail in Ref. [30].

Concerning the Planck scale, the value of M will be considered large in relation

to a critical mass Mcr equal or near to the Planck mass Mpl. Following [30]

we define Mcr to be the mass at which the two radii rI
Sch+ and rI

Sch− merge to

a unique value rI
Sch-cr. From (5.48) we have [30]:

Mcr ≡
√

w̄

G0

=
√

w̄ mpl (5.50)

so that

G0 (Mcr)
2 = w̄ (5.51)

Mcr is the lowest amount of mass a black hole configuration in the improved

Schwarzschild spacetime is allowed to have. There exists no event horizon for

M < Mcrit. We call the state with M = Mcr the “critical” quantum black

hole [30].

The similarity of (5.48) with the radii rRN
± of the Reissner-Nordström spacetime

is clear if we identify the charge e of the black hole with
√

w̄. In particular,

the “critical” quantum black hole with M = Mcr corresponds to the extremal

charged black hole with e =
√

G0M .
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We also define the related geometric critical mass to be,

mcr ≡ G0Mcr (5.52)

Thus the dimensionless ratio Mcr/M can be exploited as an expansion param-

eter when M >> Mcr. We denote this ratio as m̄,

m̄ ≡ Mcr

M
=

mcr

m
(5.53)

where m ≡ MG0 is the geometrical mass of the black hole.

Since w̄ ∝ O (~) the classical case (no improvement) corresponds to Mcr = 0

or m̄ = 0. As a result, the classical limit (~ → 0) and the heavy mass limit

(M → ∞) will coincide for all results obtained in this work.

The radii rI
Sch±

in (5.49) can be expressed as functions of m̄ as follows:

rI
Sch±

= m ± m

√

1 − (mcr)
2

m2
= m ± m

√
1 − m̄2 (5.54)

Expanding (5.54) in m̄ leads to

rI
Sch+

= m

[
2 − m̄2

2
+ O

(
m̄4

)]

rI
Sch−

= m

[
m̄2

2
+ O

(
m̄4

)]
(5.55)

In the limit M À Mcr we observe that rI
Sch+

→ 2m and rI
Sch−

→ 0. This

corresponds to the classical limit where the radius of the event horizon is the

Schwarzschild radius 2m and the inner event horizon coincides with the origin

of coordinates where the singularity of the Schwarzschild black hole is supposed

to be. As M → Mcr, rI
Sch+

deviates smoothly from the classical value 2m and

rI
Sch−

grows out of the origin.

Analysis of the General Case w̄ 6= 0 , b̃ 6= 0

For the case w̄ 6= 0, b̃ 6= 0 associated to the improved Kerr spacetime, we have to

deal with a fourth order polynomial. In principle there could exist four complex

solutions for (5.39) but we must restrict r̃ to the physical region given by r̃ ∈ R and

r̃ ≥ 0. An analysis of the extrema for Qw̄
0 (r) leads to an additional simplification.

84



For the special case d (r) = r we are so far dealing with, these extrema can be found

analytically. The condition for a critical point is:

dQw̄

b̃

dr̃

∣∣∣∣
r̃crit

= 2r̃
[
2r̃2 − 3m̃r̃ + b̃2 + w̄

]∣∣∣
r̃crit

= 0 (5.56)

The solutions of equation (5.56) are r̃crit = 0 and:

r̃1,2 =
3m̃

4

[
1 ±

√
1 − 8

9m̃2

(
b̃2 + w̄

)]
(5.57)

From the last expression we conclude that the positivity of the discriminant 1 −
8

9m̃2

(
b̃2 + w̄

)
gives a constraint on the existence of non-trivial extrema, namely:

0 ≤ 1 − 8

9m̃2

(
b̃2 + w̄

)
≤ 1 (5.58)

From now on we refer only to r̃1,2 as real positive roots of (5.56), namely roots

which fulfill (5.58). The maximum or minimum character of these extrema can also

be analytically established. The second derivative of Qw̄

b̃
is given by:

d2Qw̄

b̃

dr̃2
= 2

[
2r̃2 − 3m̃r̃ + b̃2 + w̄

]
+ 2r̃ [4r̃ − 3m̃] (5.59)

As a result we have for the stationary point at the origin:

d2Qw̄

b̃

dr̃2

∣∣∣∣∣
r̃crit=0

= b̃2 + w̄ > 0 (5.60)

As a consequence we have a local minimum at r̃crit = 0 1. On the other hand, by

combining (5.57) and (5.59) we can write:

d2Qw̄

b̃

dr̃2

∣∣∣∣∣
r̃1,2

= 2r̃1,2 [4r̃1,2 − 3m̃]

Here we have used the fact that r̃1,2 fulfills eq. (5.56). As a result we have:

d2Qw̄

b̃

dr̃2

∣∣∣∣∣
r̃1,2

=





9m̃2

2

√
1 − 8

9m̃2

(
b̃2 + w̄

) [√
1 − 8

9m̃2

(
b̃2 + w̄

)
− 1

]
< 0 for r̃1

9m̃2

2

√
1 − 8

9m̃2

(
b̃2 + w̄

) [
1 +

√
1 − 8

9m̃2

(
b̃2 + w̄

)]
> 0 for r̃2

(5.61)

1Here we assumed, as always, that w̄ > 0 as it is predicted by the renormalization group

equation.
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From (5.61) we conclude that r̃1 is a local maximum and r̃2 is a local minimum.

Furthermore, since we have two minima and only one maximum at r̃ ≥ 0, and since

the minimum at r = 0 is positive
(
Qw̄

b̃
(0) = b̃2w̄

)
it follows that Qw̄

b̃
(r̃) has at most

two real, strictly positive zeros, see figure 5.1. We shall denote these zeros by r̃I
b̃−

and r̃I
b̃+

, respectively.

The Quantum Extremality Condition

As already mentioned in chapter 2 the extremal Kerr event horizon occurs when the

two solutions r± degenerate to just one, r+ = r−. This happens when m = a and as a

result rextr = m = a, as one can easily see from (5.44). We shall search for analogous

extremality conditions in the new cases 3 and 4 of the improved Schwarzschild and

Kerr spacetimes, respectively.

The extremal black hole of the improved Schwarzschild spacetime is reached for

m̃2 = w̄, as one can derive from (5.47). Therefore we have rI
sc-extr = McritG0 =

√
G0w̄. We call Mcrit the critical mass and it plays an interesting role related to the

problem of the final state of a black hole that evaporates due to the emmision of

Hawking radiation [30].

The condition of extremality can be generalized to the improved Kerr metric by

requiring that r̃I
b̃+

= r̃I
b̃− is a single double root of Qw̄

b̃
. This double zero coincides

with the minimum at r̃2, see Fig. 5.2. By a straightforward algebraic process one

can get to the following simplification of that condition (see appendix E)

r̃2
2

2

{
b̃2 + w̄ − m̃r̃2

}
+ w̄b̃2 = 0 (5.62)

with

r̃2 =
3m̃

4

[
1 +

√
1 − 8

9m̃2

(
b̃2 + w̄

)]
(5.63)

Eq. (5.62) with (5.63) defines a curve in the two dimensional (m̃, ã) parameter space.

All points (m̃, ã) on this curve are extremal black holes; they have a degenerate

horizon. We refer to (5.62) and (5.63) as the quantum extremality condition. We

can see immediately that from (5.62) we recover the above mentioned extremal

horizons as particular cases. In the general case we solve (5.62) for m̃ and describe

the curve by a function m̃ = m̃ (ã).

Knowing that w̄ is a fixed parameter of the theory we plot the function m̃ = m̃ (ã)

obtained by numerically solving (5.62) and (5.63) in Fig. 5.3. We observe that there
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are deviations from the linear behavior of the classical extremal Kerr black hole given

by m̃ (ã) = ã, when ã goes to zero. For ã = 0, m̃ reaches its minimum at
√

w̄. On

the other hand, for ã → ∞, m̃ (ã) approaches the classical behavior, namely m̃ → ã.
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Figures 5.1 and 5.2 show two configurations of the fourth-order polynomial Q̃(r̃) defined
in (5.39). Its roots represent radial coordinates of critical surfaces in the improved Kerr
spacetime, assuming d(r) = r and k = ξ/d(r). Depending on the parameter values one
has either two, one or no zeros in the positive real domain.

Fig. 5.1: Two roots, r̃I
b̃− and r̃I

b̃+
of Q̃(r̃). They correspond to radial coordinates of

two event horizons or two static limits, depending on the interpretation of b̃.
Fig. 5.2: Extremal case: The roots r̃I

b̃− and r̃I
b̃+

degenerate to one value given by r̃2

in (5.62) and (5.63).
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ã

w̄ = 1

Fig. 5.3.
The m̃ (ã) dependence given by the “quantum extremality condition”
for the extremal improved Kerr black hole with d(r) = r. The dashed
line represents the m̃ (ã) = ã dependence of the classical Kerr spacetime.

For ã → 0, m̃ assumes its minimum value at
√

w̄, and for ã → ∞ m̃ a-
pproaches the classical behavior, namely m̃ → ã.



Common Points of H-Surfaces and S-Surfaces

In this paragraph we prove a general property of both the classical and the improved

event horizons and static limits, namely that, except at θ = 0 and π, no S-surface

intersects or touches any H-surface.

Assume a point (r, θ, φ) is on both a S and a H-surface. Hence r and θ satisfy

both of the two equations in (5.38), for the event horizon with b = a and the static

limit with b = a cos θ. Subtracting the first from the second equation gives:

a2 sin2 θ
(
r2 + w̄

)
= 0 , (5.64)

For a 6= 0 , θ 6= 0, π this equation has no solution. As a result, there exists no

(r, θ, φ) lying on both an S and an H-surface except for the poles.

5.2.2 Structural Stability of the Polynomials Qb
w̄ (r) and

Status of the d (r) = r Approximation

We have done so far a first analysis of the behavior of critical surfaces in the approx-

imation d (r) = r which becomes exact asymptotically. Before going into further

features of these solutions, it is important to clarify to what extent the results we

are finding for this approximation have a general qualitative meaning and which

properties change when we apply the exact form of d (r) to equation (5.34) instead

of d (r) = r. More generally, we would like to know how the results behave, when

we slightly change the function G = G (r). There are two important aspects related

to this question that we must consider, namely:

• We would like to know whether the classical critical surfaces of the Kerr space-

time, defined by the solutions of the polynomial (5.41), are stable, or on the

contrary the RG-improvement leads to a drastic change of their number and

form. This question is related directly to the “structural stability” of the

mentioned polynomial.

• On the other hand, it is also important to analyse the stability of solutions

of the equation (5.39) when the approximation d (r) = r is replaced by, more

accurate functions d (r).

In order to analyse these aspects we present in the next paragraphs a short intro-

duction to the concept of structural stability of analytical functions in one variable
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[54], as it is used in the context of catastrophe theory usually. It is important to

emphasize that we are mainly interested in analyzing the stability of the zeros of

functions like (5.39) or (5.41), which are directly related to the critical surfaces H±

and S±. Even though the definition of structural stability is based upon properties

of the critical points of a function rather than upon its zeros, we can consider the

zeros as critical points of the integrals of the functions in (5.39) or (5.41)2. We define

Q̄ (r) to be the definite integral in r of Q (r):

Q̄ (r) ≡
∫ r

r0

Q (r′) dr′ (5.65)

As a result, if r1 is a zero of Q (r), it is also a critical point of Q̄ (r):

dQ̄

dr

∣∣∣∣
r1

= Q (r1) = 0 (5.66)

Once the concept of structural stability is presented we proceed to analyse the two

above mentioned aspects in the subsequent paragraphs. We close this subsection

with a summary and an analysis of the results obtained.

Structural Stability of Functions in One Variable

The concept of structural stability is introduced in the framework of catastrophe

theory as a basic tool in the analysis of the behavior of critical points of analytical

functions, under infinitesimal variation of these functions. We say that two functions

f1 (r) and f2 (r) are of the same type, or equivalent, if they have the same config-

uration of critical points with the same properties, near r = 0. The analysis can

be easily extended to other points r 6= 0 of the real line by performing coordinate

translations. To determine whether or not a function f (r) is stable we compare it

with a generica neighbouring function fα given by

fα (r) = f (r) + α (r) (5.67)

where α (r) is analytic and infinitesimally small, together with all its derivatives.

We say that f (r) is structurally stable at r = 0 if it is equivalent to fα (r) for all

sufficiently small, smooth functions α (r).

2We work in this subsection with polynomials like Qw̄

b̃
(r̃) that are defined for dimensionless

variables. Nevertheless, from now on and until the end of this chapter, we omit for simplicity the

tilde that denotes the dimensionless character.
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The concepts of degeneracy and non-degeneracy of critical points give a useful

tool to demonstrate the structural stability of analytical functions. We proceed now

to explain it.

A critical point u of f1 is called non-degenerate if its second derivative at u does

not vanish. Thus we have for u

df

dr

∣∣∣∣
r=u

= 0 (5.68)

This is the criticality condition. And additionally we have

d2f

dr2

∣∣∣∣
r=u

6= 0 (5.69)

for the non-degeneracy property. Non-degeneracy turns out to be a very useful

property of critical points. It can be shown, for example, that every non-degenerate

critical point is isolated. This means that there exist no other such points in the

infinitesimal vicinity of that point [54]. Other important properties of critical points

depend on their degenerate or non-degenerate character [54]. In particular, in the

vicinity of non-degenerate critical points, the function f is structurally stable [54].

In that case we simply say that the respective critical point is structurally stable.

Furthermore, it can be proved that a critical point is structurally stable if and only

if it is nondegenerate; hence every degenerate point is structurally unstable [54, 55].

As a result, it is sufficient to verify expression (5.69) in order to demonstrate the

structural stability of f at u. We will use this method in the next paragraphs in

order to check the stability of functions in the classical and improved cases. As

mentioned before, we analyse the solutions of Q (r) = 0 as being critical points of

Q̄ (r), the integral of Q (r). In addition we also study the critical points of Q (r)

themselves.

Stability of the Zeros of Qw̄
b

From the previous subsection we know that there exist at most two positive solutions

rI
b± of Qw̄

b such that

Qw̄
b

(
rI
b±

)
= 0 (5.70)

More explicitly we have

Qw̄
b

(
rI
b±

)
≡

(
rI
b±

)2
[(

rI
b±

)2
+ b2 − 2mrI

b± + w̄
]

+ w̄b2 = 0 (5.71)
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The second derivative of Q̄w̄
b evaluated at rI

b± is given by

d2Q̄w̄
b

dr2

∣∣∣∣
rI
b±

=
dQw̄

b

dr

∣∣∣∣
rI
b±

= 2rI
b±

[
2
(
rI
b±

)2 − 3mrI
b± + b2 + w̄

]
(5.72)

If we substitute
(
rI
b±

)2
+ b2 − 2mrI

b± + w̄ = −w̄b2/
(
rI
b±

)2
from (5.71) in (5.72) we

find

d2Q̄w̄
b

dr2

∣∣∣∣
rI
b±

= 2

[(
rI
b±

)3 − m
(
rI
b±

)2 − w̄b2

rI
b±

]
=

2

rI
b±

[(
rI
b±

)4 − m
(
rI
b±

)3 − w̄b2
]
6= 0

(5.73)

This is different from zero except for a finite number of values for rI
b±, four at most,

according to the fundamental theorem of algebra. As a result we can assert that the

critical points rI
b± are always stable except for a finite number of special cases.

Since the typical behavior of Qw̄
b (r) is the one presented in figures 5.1 and 5.2,

we conclude that the only possibility that d2Q̄w̄
b /dr2

∣∣
rI
b±

= 0 , with rI
b± real positive

values, is the extremal case when rI
b+ = rI

b− ≡ rI
b(extr). In that case rI

b(extr) is a critical

point of Qw̄
b and we have:

dQw̄
b

dr

∣∣∣∣
rI
b(extr)

=
d2Q̄w̄

b

dr2

∣∣∣∣
rI
b(extr)

= 0 (5.74)

As a consequence from (5.74) the degenerate critical point rI
b(extr) in the extremal

case is unstable.

Alternatively, we conclude from (5.73) that all rI
b± 6= rI

bextr are structurally stable

(all non-extremal cases). This means that we do not expect any dramatic qualitative

changes in the critical surfaces H± and S± for small changes of Q̄w̄
b which might come

from corrections to d (r) = r, for example. More specifically, we only expect a small

shifting of the solutions rI
b± of figure 5.1.

Stability of Critical Points of Qw̄
b

In subsection 5.2.1 we have already found the critical points of the polynomial

Qw̄
b ≡ r2 (r2 + b2 − 2mr) + w̄ (r2 + b2). They solve equation (5.56)

dQw̄
b

dr

∣∣∣∣
rcrit

= 2r
[
2r2 − 3mr + b2 + w̄

]∣∣
rcrit

= 0

The solutions are given in (5.57) as follows:

rcrit =





r0 = 0

r1,2 = 3m
4

[
1 ±

√
1 − 8

9m2 (b2 + w̄)
] (5.75)
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We have also found the second derivative of Qw̄
b at the critical points. At r0 it is

d2Qw̄
b

dr2

∣∣∣∣
r0=0

= b2 + w̄ > 0 (5.76)

and at r1,2 they read

d2Qw̄
b

dr2

∣∣∣∣
r1,2

=





9m2

2

√
1 − 8

9m2 (b2 + w̄)
[√

1 − 8
9m2 (b2 + w̄) − 1

]
< 0 for r1

9m2

2

√
1 − 8

9m2 (b2 + w̄)
[
1 +

√
1 − 8

9m2 (b2 + w̄)
]

> 0 for r2

(5.77)

From (5.76) and (5.77) we conclude that the polynomial Qw̄
b is structurally stable

at all critical points, r0 = 0 and r1,2.

The Polynomial Q̄w̄=0
b for the Classical Kerr Spacetime

The stability at rb± in the classical case is proved by substituting w̄ = 0 in (5.71)

and (5.73), as follows. Equation (5.71) is reduced to equation (5.41) given by

Qw̄=0
b (r) ≡ r2

(
r2 − 2mr + b2

)
= 0 (5.78)

where its solutions are r0 = 0, rb± = m±
√

m2 − b2 as mentioned in subsection 5.2.1.

The second derivative of Q̄0
b at each of these solutions is given by

d2Q̄0
b

dr2

∣∣∣∣
r0=0

≡ dQ0
b

dr

∣∣∣∣
r0=0

= 2 (r0)
2 (r0 − m) = 0 (5.79)

d2Q̄0
b

dr2

∣∣∣∣
rb±

≡ dQ0
b

dr

∣∣∣∣
rb±

= 2 (rb±)2 (rb± − m)

= ±2 (rb±)2
√

m2 − b2 6= 0 (5.80)

The stability implied by equation (5.80) tells us that the values rb± change

smoothly by the improvement. They are identified with rI
b± when w̄ 6= 0. If rb±

were not stable, even their existence as real solutions of Q0
b could not be garanteed

after small changes of Q̄0
b .

On the other hand from (5.79) we deduce that the solution r0 = 0 is unstable.

The specific consequence of this instability arising when we switch on w̄ smoothly

can be deduced by comparing Qw̄=0
b with Qw̄

b at r0 = 0, as follows. From (5.71) and

(5.78) we have
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Qw̄
b (r) = Qw̄=0

b (r) + w̄r2 + w̄b2 (5.81)

The polynomial Qw̄=0
b is changed by two different terms w̄r2 and w̄b2. We analyse

separately their impact on the properties at r0 = 0. First, adding w̄r2 to Qw̄=0
b shifts

the coefficient b2 of r2 by an amount of w̄, since we have

(Qw̄
b )

(1)
(r) ≡ Qw̄=0

b (r) + w̄r2 = r4 − 2mr3 +
(
b2 + w̄

)
r2 (5.82)

=
[
r2 − 2mr +

(
b2 + w̄

)]
r2

This means that the structure of Qw̄=0
b is not changed. The solutions of (Qw̄

b )(1) = 0

are given by

r0 = 0

r
(1)
b± = m ±

√
m2 − (b2 + w̄)

As a result we only have a smooth shift of rb± depending on the value of w̄. Fur-

thermore, the number of zeros stays the same for all infinitesimal w̄.

As a second instance, adding w̄b2 changes the original structure of Qw̄=0
b , since

the polynomial Qw̄=0
b has no constant term. The direct consequence of this is that

r0 = 0 is not a solution of Qw̄=0
b = 0 anymore. This can be considered an effect of

the instability of r0 = 0.

Since w̄ is positive, no additional roots are expected to appear, so we stay with

rI
b±, which are the result of a smooth shift of rb±. Other consequences were con-

ceivable if the improvement would lead to a negative value of w̄, or if an additional

term αr could be added. This is not the case, however, so the final conclusion of

this analysis is that the improvement with d (r) = r causes only a smooth change of

the solutions rb± for all infinitesimal w̄.

At the extremal case m = b we have from (5.80)

d2Q̄w̄=0
b

dr2

∣∣∣∣
rb(extr)

= 0 (5.83)

As a result, the degenerate solution rb(extr) is again unstable.

The stability of the critical points of Qw̄=0
b is proved by substituting w̄ = 0 in

(5.76) and (5.77), as follows

d2Qw̄=0
b

dr2

∣∣∣∣
r0=0

= b2 > 0 (5.84)

93



d2Qw̄=0
b

dr2

∣∣∣∣
r1,2

=





9m2

2

√
1 − 8b2

9m2

[√
1 − 8b2

9m2 − 1

]
< 0 for r1

9m2

2

√
1 − 8b2

9m2

[
1 +

√
1 − 8b2

9m2

]
> 0 for r2

(5.85)

The nonzero expressions in (5.84) and (5.85) show that Qw̄=0
b is stable in the vicinity

of the critical points of the Kerr spacetime, r0, r1 and r2, since for this case b 6= 0

strictly. It important to notice that r0 = 0 is stable as critical point of Qw̄=0
b but

unstable as solution of Qw̄=0
b = 0.

The Improved Schwarzschild Spacetime

Concerning the structural stability, the improved Schwarzschild and the classical

Kerr spacetimes are analogous since the polynomials Q̄w̄
b=0 and Q̄w̄=0

b are equivalent

when we identify b2 with w̄. As a result, for the improved Schwarzschild spacetime

we find expressions analogous to (5.80) and (5.83). The stability is thus established

at rI
Sch±

, too, except for the extremal case m2 = w̄, and for r0 = 0.

Concerning the critical points of (5.46), we find expressions analogous to (5.84)

and (5.85) when we identify b2 with w̄. As a result, r0 = 0, r1 and r2 are also stable.

The Classical Schwarzschild Spacetime

The polynomial for the classical Schwarzschild spacetime (w̄ = 0 and b = 0) is given

by:

Q0
0 (r) ≡ r3 (r − 2m) = 0 (5.86)

The solutions of (5.86) are r0 = 0 and rSch = 2m. Since d2Q̄0
0/dr2

∣∣
rSch=2m

= 8m3 > 0

we conclude that the Schwarzschild event horizon rSch is also stable. On the contrary

r0 = 0 is unstable as in the previous cases.

This instability is responsible of the increasing number of critical surfaces when

we switch on b, to come back to the Kerr spacetime. Comparing Qw̄=0
b (r) and Q0

0 (r)

from (5.78) and (5.86) we have

Qw̄=0
b (r) = Q0

0 (r) + b2r2 (5.87)

Equation (5.87) indicates that a small perturbation of the form b2r2 added to Q0
0 (r)

94



is enough to change its structure of zeros. In that case we have the three zeros

r0 = 0 (5.88)

rb+ = m +
√

m2 − b2 ≈ 2m

rb− = m −
√

m2 − b2 ≈ 0

Notice that rb− approaches r0 = 0 for b2 → 0. We say in this case that r0 = 0 is

unfolded into two solutions r0 = 0 and rb− when we turn on smoothly b2 = 0 to

b2 6= 0. On the contrary, since rSch = 2m is stable, it neither unfolds nor disappears,

but changes smoothly from 2m to rb+ = m +
√

m2 − b2.

We find the critical points of Qw̄=0
b=0 by substituting b = 0 and w̄ = 0 into (5.75).

As a result we have

rSch
crit =





r0 = 0

r1 = 0

r2 = 3m
2

(5.89)

Additionally, from (5.76) we find that the second derivative at r1 = r0 = 0 vanishes:

d2Qw̄=0
b=0

dr2

∣∣∣∣
r0=r1=0

= 0 (5.90)

We conclude that we have a degenerate critical point at the origin. The instability

is obvious in this case since the number of critical points changes when we move the

parameters w̄ = 0 and b = 0 towards non-zero values. The critical point r2 stays

nevertheless stable, as its second derivative is always positive:

d2Qw̄=0
b=0

dr2

∣∣∣∣
r2

= 9m2 > 0 (5.91)

Summary

The goal of the present subsection has been to give a basis for the intepretation of

the behavior of critical surfaces calculated by applying the approximation d (r) = r

in the cutoff identification κ = ξ/d (r). Since this identification, entails an intrinsic

undefiniteness in the choice of d (r), this undefiniteness is tranported to the problem

of finding critical surfaces of the improved Kerr spacetime, as one can notice from the

generic character of equation (5.34). Nevertheless, we have chosen the approximation
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d (r) = r as the most appropiate due to its simplicity, and also because it entails

the relevant qualitative features, that other more complicate expressions for d (r)

also reproduce. The smooth shift of the classical critical Kerr surfaces and the

conservation of their number for all infinitesimal w̄ are two remarkable examples of

such qualitative features.

The stability of the solutions and critical points of the equation (5.38) coming

from this approximation is to be considered only locally, according to its definition

presented in this subsection. Radical changes, like the appeareance of degenerate

roots or the non-existence of real positive solutions, appear when we abandon the

asympotic region and get more near to the Planck or the extremal configuration.

These are precisely the regions where our procedure looses its applicability. Exam-

ples of this “unreliable behavior” will be presented in the next subsection.

5.2.3 The Radius of Critical Surfaces as a Function of the

Mass of the Black Hole

In this subsection we analyse the behavior of the solutions rb± and rI
b± when we

move the mass of the black hole from large values corresponding to macroscopic

black holes to values near to the Planck scale. For a fixed b these radii are functions

of m only. We start the analysis with the rb± of the classical Kerr spacetime.

The Radii rb± of the Classical Kerr Spacetime

In Figures 5.4 to 5.7 we show the m-dependence of r± and rS± for the classical Kerr

spacetime, calculated by solving numerically the equations r2 − 2mr + b2 = 0, for

a = 5 and different values of the polar angle θ. The extremal black hole is reached at

m = a = 5. For m < a the radii r± are not real-valued, and the surfaces H± do not

exist. Nevertheless the static limits S± exist until the extremal surface is reached

at m = |a cos θ|. At the poles where θ = 0, π (Fig. 5.4), H± and S± coincide. On

the other hand, at the equator (Fig. 5.7), the radii of S± are rS+ = 2m and rS− = 0.

A different sort of r vs. m plot will prove interesting and useful later on. It is

obtained when we constrain the fraction α ≡ a/m to be fixed. This fraction goes

from α = 0 for a Schwarzschild configuration with m ≡ mirr, the irreducible mass,

to α = 1 for the extremal state m ≡ a. The constant α defines how “alive” is the

black hole in the terms explained in chapter 2. If α = const we have for the Kerr
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black hole

r± (m) = mβ± , rS± (m) = mγ± (5.92)

where β± ≡ 1 ±
√

1 − α2 and γ± ≡ 1 ±
√

1 − α2 cos2 θ are also constants. The rb±

vs. m plots reduce, for the classical Kerr black hole, to straight lines crossing the

origin, as one can corroborate in figures 5.8 to 5.11.

Since 0 ≤ α ≤ 1, the radii rb± are defined for all m ≥ 0 in such plots, even for

values near to mpl. This is an exclusive property of the functions rb± = m±
√

m2 − b2

of the classical Kerr spacetime. In this sense we say that the radii rb± are insensitive

to the closeness of the Planck scale. The improvement changes the conditions for the

existence of critical surfaces, and the respective functions rb± (m) for the improved

Kerr spacetime are not defined for all m ≥ 0, as we shall see in the next paragraphs.
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Figures 5.4 to 5.7 show for the classical Kerr black hole the m-dependence of the radii rb±
for a = 5 and several values of θ. They exist until the extremal configurations are reached:
m = a = 5 for r±, and m = 5 |cos θ| for rS±. Continuous lines represent r± whereas dashed
lines represent rS±.

Fig. 5.4: For θ = 0, π, the radii r± and rS± coincide.
Figs. 5.5 and 5.6: For arbitrary values of θ 6= π

2
, r± and rS± are split into four different

surfaces with rS− < r− < r+ < rS+.
Fig. 5.7: At the equatorial plane rS− = 0 and rS+ = 2m.
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Figures 5.8 to 5.11 show the linear dependence of the radii rb± (m) of the classical Kerr me-
tric α ≡ a

m
= 0.5 and several values of θ. Continuous lines represent r± and dashed lines

represent rS±.

Fig. 5.8: For θ = 0, π, the radii r± and rS± coincide.
Figs. 5.9 and 5.10: The four surfaces rS± and r±.
Fig. 5.11: At the equatorial plane, rS− = 0 and rS+ = 2m.
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Improved Metric with d (r) = r

We already discussed in subsection 5.2.1, the improvement with d (r) = r leads to

the equations (5.38) for the radii rI
b±. We have solved these equations numerically

for m as independent variable. In figures 5.12 to 5.15 we display the improved radii

rI
b± together with the classical ones, rb±, as functions of m, with a, w̄ and θ fixed.

The upper and lower branches of the curves correspond to Sclass,I
+ , Hclass,I

+ and Sclass,I
− ,

Hclass,I
− , respectively. The continuous lines represent radii of H surfaces, the dashed

ones represent radii of S surfaces.

We observe that for small enough m the radii rclass,I
± coalesce and then disappear.

This coalescence occurs for the extremal black hole with m = a for the classical

case, and m ≈ a after the improvement. Since the radii rclass,I
± are θ-independent, we

conclude that two spherical surfaces merge into one. For lower masses there exists

no event horizon.

A similar coalescence of radii happens for rclass,I
S± at even lower masses. Since

this coalescence occurs for configurations with no event horizon where our method

becomes questionable, we don’t consider it in the further for analysis. As predicted

by the stability of rb±, the improvement with d (r) = r shifts rb± smoothly to the

radii rI
b± for mpl ¿ m. The extremal points are also moved smoothly to higher

values of m, as compared to the classical situation.

In figures 5.16 to 5.19 we present plots with the fraction a/m and w̄ fixed. A

marked separation from the linear dependence of rb± is present in the improved radii.

This separation becomes important when m ≈
√

w̄ until the extremal configuration

is reached. We conclude that the extremal states observed in these plots are a

consequence of the improvement, since they don’t exist previously and w̄ is the only

fixed parameter.
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Figures 5.12 to 5.15 show the m-dependence of the radii rb± (thick lines) and rI
b± (thin

lines) for w̄ = 1, a = 5 and several values of θ. The continuous lines represent r± and rI
±.

The dashed lines represent rS± and rI
S±. As predicted by the stability of rb±, the im-

provement with d (r) = r shifts rb± smoothly to the radii rI
b± for mpl ¿ m. The extre-

mal points are also moved to higher values of m.

Fig. 5.12: For θ = 0, π, event horizons and static limits coincide.
Figs. 5.13 and 5.14: For arbitrary values of θ 6= π

2
, there are eight different radii,

the four classical rb±, and the four quantum corrected rI
b±.

Fig. 5.15: At the equatorial plane, rS− = 0 and rS+ = 2m.
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Figures 5.16 to 5.19 show the m-dependence of the classical radii rb± (thick lines) and im-
proved rI

b± (thin lines) for fixed (a/m) = 0.5, w̄ = 4 and several values of θ. The continuous
lines represent r± and rI

±. The dashed lines represent rS± and rI
S±. As predicted by the sta-

bility of rb±, the improvement with d (r) = r shifts rb± smoothly to the radii rI
b± for mpl

¿ m. The linear m-dependence of the radii is seen to be violated by the improvement.

An extremal configuration of the improved black hole is also visible near to
√

w̄ = 2.
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Exact d(r) from B-L Coordinates at the Equatorial Plane

We have tested the stability of the radii rI
b± obtained from the d (r) = r approxima-

tion by solving the general equation (5.33) for the critical surfaces with the exact

form (3.13) of d (r) at the equator. Since expression (3.13) is a complicated com-

posite function, we have addressed the problem numerically. We developed a code

in C language that calculates the solutions of (5.33) with d (r) in (3.13) by means

of the bisection method. Figures 5.20 to 5.23 present plots that were performed

with data produced by the C program. These plots show the range from m = a to

m = 20 of the improved radii with the exact d (r) at the equator, for w̄ = 5, and a

increasing from a = 0 to a = 15. What we see is a rather similar m-dependence as in

the approximation with d (r) = r. This confirms the stability of this approximation

which we discussed above, and it justified our use of d (r) = r in many of the later

investigations.
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a = 0 , w̄ = 5 , θ = π
2

Fig. 5.20.

a = 5 , w̄ = 5 , θ = π
2

Fig. 5.21.

a = 10 , w̄ = 5 , θ = π
2

Fig. 5.22.

a = 15 , w̄ = 5 , θ = π
2

Fig. 5.23.

Figures 5.20 to 5.23 show the m-dependence of the improved radii rI
b± obtained from

the exact d (r) given in (3.13) to (3.16) at θ = π
2
, for w̄ = 5 and several values of a.

The gray curves are the improved static limits rI
S±, the black ones

are the improved event horizons rI
±.

Fig. 5.20: For a = 0, H and S coincide.
An extremal configuration is visible in the improved Schwarzschild spacetime.
Figs. 5.21 to 5.23: The range from m = a to m = 20 is shown for the improved H’s and S’s.
The pattern of curves is similar as in the d (r) = r approximation.
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5.2.4 2-dimensional Plots

In this subsection we explore the 2-dimensional shape of the critical surfaces im-

proved with d (r) = r. The plots we present are build after solving equations (5.38)

numerically, iterating θ from 0 to 2π. They represent cross sections through the

black hole along a φ = constant plane.

Figures 5.24 and 5.25 show the critical surfaces of the classical and improved

Kerr spacetimes, for m = 6, a = 5 and w̄ = 4. The continuous curves are event

horizons, whereas the dashed ones are static limit. Figure 5.26 presents both the

classical and improved surfaces combined in one plot, for an equal set of parame-

ters. Thick curves belong to the classical black hole, thin lines to the improved one.

The smooth displacement of the classical surfaces due to the improvement is note-

worthy. Notice also that the intersection at the poles of event horizons and static

limits, characteristic of the classical Kerr surfaces, is still present in the improved

counterpart as we have proved in subsection 5.2.1.
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Classical critical surfaces for m = 6,
a = 5, w̄ = 0.
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Improved critical surfaces for m = 6,
a = 5, w̄ = 4.
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Classical plus improved critical surfaces
for m = 6, a = 5, w̄ = 4.
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5.3 Discussion

After the calculation and the analysis of the critical surfaces in this chapter, we

come to the following two main conclusions:

• The improvement with the running Newton’s constant leads, at least in the

asymptotic regime where d (r) ≈ r, only to a smooth displacement of the clas-

sical critical surfaces. Their number remains unchanged. This is a consequence

of the local stability of the solutions rb±, established in section 5.2.

• A new type of extremal configuration related to the parameter w̄ appears as a

consequence of the improvement. This configuration is reached at the Planck

scale, with m ≈
√

w̄, and it has to be distinguished from the extremal state

reached at m ≈ a that is related to the classical extremal black hole. This

separation of extremal states has been verified analytically with the d (r) = r

approximation and numerically by performing the r vs. m plots with a/m

fixed. The general case is described by the quantum extremality condition

given in (5.62) with (5.63). It is represented graphically in Fig. 5.3.
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Chapter 6

Penrose Process for Energy

Extraction

6.1 Introduction

In this chapter we concentrate first on finding the dynamical conditions for a test

particle to reach the negative energy state which is needed for the Penrose process to

be carried out. Then we determine the allowed negative energy kinematical region

which results from bounding the rotation of massive test particles by the rotation

of clockwise and counterclockwise light rays. The main consequence of a running

Newton constant consists in a dependence of the topology of this allowed region on

the mass of the black hole, in contrast to the monotonous behavior for the bare Kerr

spacetime. This dependence is shown in a set of correlated graphics at the end of

the chapter.

6.2 Conservation of Energy of Test Particles and

Negative Energy Constraint

Since t is a cyclic variable for a test particle in the improved Kerr metric, the

canonical momentum pt is conserved. Correspondingly there exists a Killing vector

tµ that leads to the following expression for the conserved energy of a test particle

moving around an improved Kerr black hole:

E ≡ −pµt
µ = −pt (6.1)
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As mentioned in chapter 4. Using (6.1) we can write E explicitly using the B-L

coordinates:

E = −pt = −mgµt

dxµ

dτ

= −m

[
gtt

dt

dτ
+ gϕt

dϕ

dτ

]

= −m

[
−

(
1 − 2MG (r) r

ρ2

)
dt

dτ
−

(
2MG (r) ra sin2 θ

ρ2

)
dϕ

dτ

]

therefore we can write

E

m
=

(
1 − 2MG (r) r

ρ2

)
dt

dτ
+

(
2MG (r) ra sin2 θ

ρ2

)
dϕ

dτ
(6.2)

where m is the mass of the test particle. Factorizing the differentials we obtain

E

m
=

[(
1 − 2MG (r) r

ρ2

)
+

(
2MG (r) ra sin2 θ

ρ2

)
Ω

]
dt

dτ
(6.3)

where Ω is defined as:

Ω ≡ dϕ

dt
(6.4)

This is a general equation for the conserved energy of a test particle moving in the

Kerr spacetime; it depends, among other variables, on the rotation frequency of the

particle, Ω.

The result in (6.3) leads to a constraint on Ω if we want to reach zero or negative

energy states for the test particle. This constraint,

E ≤ 0 ,

reads in explicit form

[(
1 − 2MG (r) r

ρ2

)
+

(
2MG (r) ra sin2 θ

ρ2

)
Ω

]
≤ 0

Since gϕt = 2MG(r)ra sin2 θ

ρ2 > 0 ∀ r, θ we can write:

Ω ≤ Ω0 ≡ − gtt

gϕt

=
2MG (r) r − ρ2

2MG (r) ra sin2 θ
(6.5)

Similarly we have for the tangent “bookeeper velocity” [53]

(
ds

dt

)∣∣∣∣
(r,θ,t)=const

= gϕϕ

(
dϕ

dt

)2

= R2 (r, θ) Ω2
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we define vtan in terms of the reduced circumference R (r, θ) by

vtan ≡ R (r, θ)
dϕ

dt
, R (r, θ) > 0 ∀ r, θ (6.6)

Then the constraint (6.5) can equivalently be written as

vtan ≤ v0 ≡ R (r, θ)

(
2MG (r) r − ρ2

2MG (r) ra sin2 θ

)
(6.7)

with

R (r, θ) =
√

gϕϕ =

√
ΣI sin2 θ

ρ2
(6.8)

The eqs. (6.5) and (6.7) are equivalent constraints, formulated in terms of an-

gular frequencies or bookeeper velocities, respectively. In our following analysis

we prefer (6.7) since we stay with (v, r) as the usual kinematical quantities for a

description of the motion of point particles.

For a first discussion we restrict our analysis to the equatorial plane which sim-

plifies the expressions and retains the behavior we are trying to describe. Then the

reduced circumference R
(
r, π

2

)
can be simplified to using

ΣI

(
r,

π

2

)
=

(
r2 + a2

)2 − a2∆ = r4 + r2a2 + 2Ma2G (r) r

It assumes the form

R
(
r,

π

2

)
=

√
ΣI

(
r, π

2

)

r2
=

√
r2 + a2 +

2Ma2G (r)

r

Hence the condition (6.7) is reduced to

vtan ≤ 1

a

√
r2 + a2 +

2Ma2G (r)

r

(
1 − r

2MG (r)

)
≡ veq

0 (6.9)

where veq
0 is defined to be the zero energy bookkeeper tangential velocity at the

equator.

6.3 Negative Energy Kinematical Regions

As mentioned at the beginning of this chapter, the rotational motion of a mate-

rial test particle is bounded by the rotation of light rays. The constraint given by

(6.9) applies only to particles in the allowed kinematical region (no tachyons!). Its
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dependence on the radial coordinate r can be visualized by plotting the bookeeper

tangential velocities of zero energy test particles together with the tangential veloc-

ities of light rays, in order to determine graphically the above mentioned allowed

regions. For the light rays we can use the result in (4.36) in order to write:

vlight
± = R (r, θ) Ω± = R (r, θ)

(
ω ±

√
ω2 − gtt

gϕϕ

)
(6.10)

Combining vlight
± from (6.10) with veq

0 (6.9) for the tangential velocity at the

equator we obtain the plots shown in figures 6.1, 6.2 and 6.3. We have included

also the dragging velocity vdragging = R (r, θ) ω. The graphics employ dimensionless

quantities. For the respective definitions, see appendix A.

From the behavior of the functions displayed in Figs. (6.1), (6.2) and (6.3) we

can conclude that there are negative energy regions which are characterized by two

intersection points where the tangential velocities meet. Next we show that these

points occur precisely at the static limits rI
S+ and the event horizon rI

+. We start

with the event horizon intersection point by looking at the definitions (4.25), (4.36)

and (6.5) at rI
+:

ω|rI
+

= − gϕt

gϕϕ

∣∣∣∣
rI
+

, Ω0|rI
+

= − gtt

gϕt

∣∣∣∣
rI
+

, Ω±|rI
+

=

√
gtt

gϕϕ

∣∣∣∣
rI
+

(6.11)

We recall also that the radius of the horizon rI
+ fulfills equation (5.27) 1:

(
rI
+

)2
+ a2 − 2MG

(
rI
+

)
rI
+ = 0 (6.12)

1We use already the dimensionless quantities defined in appendix A. For simplicity we supress

the tildes ˜ used on this appendix.
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The (r, v (r)) kinematical configurations for test particles rotating around
a Kerr black hole, inside the ergosphere and with negative energy, can be
seen as the area in the v (r) vs. r plot which is bounded by the v− (r) curve
for the tangent velocity of counterrotating light rays and the veq

0 (r) curve
for zero energy rotating test particles. The case shown corresponds to the
classical Kerr metric at the equatorial plane.
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A similar plot as 6.1, but for the improved Kerr spacetime, using d (r) = r
and also restricted to the equatorial plane. For r < r+ all curves differ subs-
tantially from their classical counterparts, but there still does exist a region
of allowed negative energy states (r, θ).
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In this figure a more precise improvement is implemented. We use
d (r) coming from integrals (3.14), (3.15) and (3.16) calculated at
the equatorial plane. We see that the shape of the curves change sig-
nificantly, especially inside the external event horizon, but the nega-
tive energy region is still present for the chosen values M = 3 and

a = 2.7.

The relevant components gµν at rI
+ in the B-L representation are given by:

gtt|rI
+

= −
(

1 − 2MG (r) r

ρ2

)∣∣∣∣
rI
+

=
a2 sin2 θ

ρ2|rI
+

(6.13)

gϕϕ|rI
+

=
ΣI sin2 θ

ρ2

∣∣∣∣
rI
+

=

[(
rI
+

)2
+ a2

]2

sin2 θ

ρ2|rI
+

(6.14)

gϕt|rI
+

= −2MG
(
rI
+

)
rI
+a sin2 θ

ρ2|rI
+

(6.15)

Substituting (6.13), (6.14) and (6.15) in (6.11) we get explicitly

ω|rI
+

=
2MG

(
rI
+

)
rI
+a

[
(rI

+)
2
+ a2

]2 =
2MG

(
rI
+

)
rI
+a

[2MG (rI
+) rI

+]
2 =

a

2MG (rI
+) rI

+

Ω±|rI
+

=

√√√√
a2

[
(rI

+)
2
+ a2

]2 =
a

(rI
+)

2
+ a2

=
a

2MG (rI
+) rI

+

Ω0|rI
+

=
a

2MG (rI
+) rI

+
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Then all the frequencies in (6.11) are equal at rI
+:

ω|rI
+

= Ω±|rI
+

= Ω0|rI
+

=
a

2MG (rI
+) rI

+

=
a

(rI
+)

2
+ a2

(6.16)

By multiplying with R
(
rI
+, θ

)
, the equalities in (6.16) for the rotation frequencies

imply directly the equality for the tangential velocities at rI
+. In this way we have

shown that one of the intersection points which characterizes the negative energy

region is an event horizon.

For showing that the other intersecting point lies at the static limit rI
S+ we

proceed as follows: In this case we concentrate only on the light and zero energy

frequencies Ω− and Ω0 respectively, since ω and Ω+, as seen in the figures 6.1 to 6.3,

do not intersect them at rI
S+, and we use the static limit condition (5.11) given by:

(
rI
S+

)2
+ a2 cos2 θ − 2MG

(
rI
S+

)
rI
S+ = 0 (6.17)

Then we obtain the metric components

gtt|rI
S+

= −
(

1 − 2MG (r) r

ρ2

)∣∣∣∣
rI
S+

= −
((

rI
S+

)2
+ a2 cos2 θ − 2MG

(
rI
S+

)
rI
S+

ρ2|rI
S+

)
= 0

(6.18)

gϕϕ|rI
S+

=
ΣI sin2 θ

ρ2

∣∣∣∣
rI
S+

=

{[(
rI
S+

)2
+ a2

]2

− a2 ∆|rI
S+

sin2 θ

}
sin2 θ

ρ2|rI
S+

(6.19)

gϕt|rI
S+

= −2MG
(
rI
S+

)
rI
S+a sin2 θ

ρ2|rI
S+

(6.20)

As a consequence we get

ω|rI
S+

= − gϕt

gϕϕ

∣∣∣∣
rI
S+

= −2MG
(
rI
S+

)
rI
S+a

ΣI |rI
S+

= − 2MG
(
rI
S+

)
rI
S+a

[(
rI
S+

)2
+ a2

]2

− a2 ∆|rI
S+

sin2 θ

Ω0|rI
S+

= − gtt

gϕt

∣∣∣∣
rI
S+

= 0

Ω±|rI
S+

= ω|rI
S+

±
√(

ω|rI
S+

)2

− gtt

gϕϕ

∣∣∣∣
rI
S+

= ω|rI
S+

± ω|rI
S+

These relations entail for Ω− and Ω+

Ω−|rI
S+

= 0 , Ω+|rI
S+

= 2 ω|rI
S+
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Moreover, what is the relevant statement in the present context,

Ω0|rI
S+

= Ω−|rI
S+

= 0 (6.21)

This is the final result we wanted to show, namely that the zero energy frequency

equals the frequency for counterrotating light rays at the static limit surface and they

are zero there. Again by multiplying with the reduced circumference R this result

also establishes the equality for the respective tangential velocities.

The results in (6.16) and (6.21) tell us that the two intersection points that define

the negative energy region, occur at the event horizon rI
+ an the static limit rI

S+,

respectively.

6.4 (M, a)-Dependence of the Negative Energy

Regions

In chapter 5 we saw the non-linear behavior of the rI
± and rI

S± vs. m̃ figures (with
a
m̃

fixed) for the improved Kerr black hole in contrast to the linear shape for the

classical Kerr metric. Since the negative energy region is directly related to rI
+ and

rI
S+, it is to be expected that this region will also depend on m̃ similarly as rI

+ and

rI
S+ do, for each case, classical and improved. It can be concluded that in fact this

is the case by analysing a set of representative figures that shows the m-dependence

of this region. We present this set of figures at the end this section.

What we observe for the classical Kerr metric is that the negative energy region

changes its size with m, but not its shape. This is due to the linear m-dependence

of r± and rS±. For the improved black hole the shape changes smoothly with m,

the difference becoming dramatic compared to the classical case when m ≈ mPl.

The set of figures is divided in two sets of correlated plots for θ = π
2

(Equator):

the first one for the classical Kerr metric (Figures 6.4 to 6.7) and the second one

for the d (r) = r improvement (Figures 6.8 to 6.19). The respective left hand side

and right hand side plots are correlated in the sense that they were computed with

the same a/m̃ ratio, and that they show the same rI
+ and rI

S+ values. By this

arrangement we can see directly the relation between the shapes of the rI
+ and rI

S+

vs. m̃ graphics and those ones of the negative energy regions. We have chosen

a/m̃ = 0.9 in all plots so that the negative energy regions are as visible as possible.

The plots related to the improved Kerr spacetime were obtained with w̄ = 1.
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The set of figures 6.4 to 6.7 shows clearly the above mentioned “invariance” with

respect to m of the shape of negative energy regions in the classical Kerr spacetime.

That means, no matter how small (or big) m̃ is, energy extraction will always be

possible, provided m ≥ a.

As for the improved spacetime, Fig. 6.8 shows the region of negative energy for

M = 5, a = 4.5. Fig. 6.9 presents the respective set of radii rI
± and rI

S± connected

by a dashed vertical line at M = 5. The distribution of these radii can also be

observed in the horizontal axis of Fig. 6.8. Since we are still far away from M = 1

the shape of the “improved” negative energy region is not too much different from

the classical one (compare, for example, with Fig 6.4). In figures 6.10 and 6.11 we

have changed M from 5 to 4. We still have a similar distribution of radii but they are

closer to each other. The shape of the negative energy region is almost unchanged.

Figures 6.8 and 6.10 show an internal negative energy region bounded by rI
S− and

rI
−. Since the posibility of extraction of energy relies on the existence of stationary

states with negative energy outside rI
+, the internal region cannot be considered as

physically relevant.

Figures 6.12 to 6.19 were obtained for the regime m̃ ≈ 1 (the Planck scale). Dras-

tic changes in the shape of negative energy regions are visible. Since the reliability

of our method is questionable in this regime, any conclusions about the mentioned

regions have to be considered with care. However we analyse these figures since they

show interesting features.

In figures 6.12 and 6.13 the quantum extremal black hole with M = Mcr and

rI
− = rI

+ = rI
extr has been reached. The internal and external negative energy regions

touch at rI
extr.

Figures 6.14 and 6.15 show a hypothetical configuration for M < Mcr with two

static limits SI
± and no event horizon. The internal and external negative energy

regions have been merged into just one. The existence of this region is determined

by the static limit radii rI
S−

and rI
S+

. In this case there exists an ergosphere from

where energy can be extracted, but no horizons.

Figures 6.16 to 6.19 show configurations where no extraction of energy is allowed.

The extremal static limit is shown in figure 6.17. For this configuration the negative

energy region is reduced to zero. At the Planck mass with M = 1 (figures 6.10 and

6.19) the zero-energy curve is not even visible.
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6.5 Conclusions

We can summarize the results of this chapter as follows. We have derived the key

formula (6.3) for the energy of a test particle moving in the improved Kerr spacetime.

With this formula we have found the condition (6.9) for the test particle to have a

negative energy. We have shown in addition that this condition is fulfilled precisely

inside the ergosphere.

Since the Penrose process is directly related to the negative energy states of test

particles, we have investigated graphically the evolution of regions of such states in

a space of configurations (r, v), when the mass of the black hole runs from 0 to ∞
and having a/m fixed. From this analysis we concluded that, while it is in principle

possible to extract energy from classical black holes with arbitrarily small masses

and angular momenta, there exists a lowest mass for the extraction in the improved

Kerr spacetime. It is close to the Planck mass and defined by the extremal static

limit. However since the reliability of our method is questionable in the regime

m ≈ 1 this result has to be considered with care.
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Chapter 7

Vacuum Energy-Momentum

Tensor and Energy Conditions

7.1 Introduction

The energy conditions are constraints imposed on the energy-momentum tensor

based upon physically reasonable assumptions about the properties of matter. These

assumptions have a general character, in the sense that they are supposed to be

fulfilled by any “sensible” matter or field distribution. The importance of these

conditions rests upon the fact, that with them, results of great generality can be

derived, like the focusing or the singularity theorems of classical general relativity

[60, 66].

Let us suppose that our quantum black hole has been generated via the classical

Einstein equations, by an “effective” matter fluid that simulates the effect of the

quantum fluctuations of the metric. We assume that this coupled gravity-“matter”

system satisfies the conventional Einstein equations:

Gµν = 8πG0T
Q
µν (7.1)

As a result, the energy-momentum tensor TQ
µν of the effective matter can be derived

from (7.1) by calculating the Einstein tensor Gµν for the improved Kerr space-

time. It is already established that quantum fields can violate the energy conditions

[60]. The main goal of this chapter is to show that this is indeed the case for the

energy-momentum tensor TQ
µν derived from the improved Schwarzschild and Kerr

spacetimes.
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To put the energy conditions in a concrete form we assume that Tµν admits the

decomposition [60, 66]

T µν = ρeµ
0e

ν
0 + p1e

µ
1e

ν
1 + p2e

µ
2e

ν
2 + p3e

µ
3e

ν
3 (7.2)

in which the vectors eα form an orthonormal basis; they satisfy the relations

gαβeα
µeβ

ν = ηµν (7.3)

where ηµν =diag(−1, 1, 1, 1) is the Minkowski metric. Equations (7.2) and (7.3)

imply that the quantities ρ and pi are eigenvalues of T µν and components of a

four-vector pα, and eα are the normalized eigenvectors.

The decomposition (7.2) is one of four possible canonical forms [66]. It is the

form assumed by the examples of quantum effective matter we are going to analyze.

It represents the general case in which the energy momentum tensor has a timelike

eigenvector e0. This eigenvector is unique unless ρ = −pi (i = 1, 2, 3). The eigen-

value ρ represents the energy-density as measured by an observer whose world line

at a point p of the spacetime manifold has unit tangent vector e0, and the eigen-

values pi represent the three principal pressures in the three spacelike directions

ei (i = 1, 2, 3). We shall formulate the energy conditions in terms of the quantitites

ρ and pi.

The organization of this chapter is the following: First we present the standard

energy conditions, how they are related to each other, and their main consequences.

After this, we present the energy-momentum tensor for the improved Schwarzschild

and Kerr spacetimes and we show that they violate all the energy conditions previ-

ously defined. Finally we analyze the consequences of our results.

7.1.1 Weak Energy Condition

To an observer whose world-line at a point p in spacetime has unit tangent vector vα,

the local energy density appears to be Tµνv
µvv. The weak energy condition states

that the energy density of any matter distribution, as measured by any observer in

spacetime, must be non-negative. As a result we must have

Tµνv
µvv ≥ 0 (7.4)

for any future-directed timelike vector vv. Such a vector can be represented as

vα = γ (eα
0 + aeα

1 + beα
2 + ceα

3 ) , γ =
(
1 − a2 − b2 − c2

)− 1
2 , (7.5)
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where a, b, and c are arbitrary functions of the coordinates restricted by a2+b2+c2 <

1. By substituting (7.5) and (7.2) in (7.4), and considering all independent possible

choices of vµ we end up with the following four inequalities [60, 66]:

ρ ≥ 0 , ρ + pi ≥ 0 , i = 1, 2, 3 (7.6)

7.1.2 Null Energy Condition

The null energy condition makes the same statement as the weak form, except that

vα is replaced by an arbitrary, future directed null vector kα. Thus,

Tµνk
µkv ≥ 0 (7.7)

is the statement of the null energy condition. We shall express kα as

kα = eα
0 + a′eα

1 + b′eα
2 + c′eα

3 (7.8)

where a′, b′, and c′ are arbitrary functions of the coordinates restricted by (a′)2 +

(b′)2 + (c′)2 = 1. A similar procedure as the previously carried out for the weak

energy condition leads to the following three inequalities:

ρ + pi ≥ 0 , i = 1, 2, 3 (7.9)

Notice that the weak energy condition implies the null condition.

7.1.3 Dominant Energy Condition

This is a slightly stronger condition than the weak energy condition. It is oriented

to avoid the indiscriminate creation of particles, in the sense that spacetime must

remain empty if it is empty at one time and no matter comes in from infinity.

Conversely, matter present at one time cannot disappear and so must be present at

another time [66]. It also embodies the notion that matter-energy should flow along

timelike or null world lines [60]. It is never observed to be flowing faster than light

(no tachyons).

The dominant energy condition is stated as follows. In addition to the non-

negative character of the local energy density, we also require that the local energy

flow vector is non-spacelike. As a result we have for every timelike vector vα the

following:

Tµνv
µvv ≥ 0 (7.10)
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with Tµνv
µ non-spacelike. In terms of the components of Tµν in (7.2) the dominant

energy condition takes the form

ρ ≥ 0 , ρ ≥ |pi| , i = 1, 2, 3 (7.11)

as one can verify by substituting vµ from (7.5) in Tµνv
µ and requiring it to be non-

negative. By definition, the dominant energy condition implies the weak and the

null energy conditions.

7.1.4 Strong Energy Condition

The strong energy condition has a much more technical motivation than the others.

Namely, it is a basic requirement for the validity of the focusing theorem. This

theorem establishes that gravity tends to focus geodesics, in the sense that initially

diverging characteristic sets of geodesics called congruences1, will be found to diverge

less rapidly in the future. On the contrary if these geodesics are initially converging,

they will converge more rapidly in the future [60].

The strong energy condition states that Tµν should respect the following inequal-

ity

(Tµν − Tgµν) vµvv ≥ 0 (7.12)

where T = Tα
α is the trace of the momentum-energy tensor. Because Tµν − Tgµν =

Rµν/(8πG0) by virtue of the Einstein field equations, the strong energy condition is

really a statement about the Ricci tensor:

Rµνv
µvv ≥ 0 (7.13)

We can better understand the motivation of this condition if we analyse the

evolution with the proper time of the cross section of a congruence about a reference

geodesic. The focusing of geodesics can be measured by the decrease of the cross

section. The equation that governs the evolution of the cross section of timelike

geodesic congruences is called the Raychauduri’s equation and is given by

dθ

dτ
= −1

3
θ2 − σαβσαβ − Rαβuαuβ (7.14)

1A congruence in a given manifold is a family of curves such that through each point p of the

manifold there passes precisely one curve of this family.
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where θ is called the expansion parameter and it is equal to the fractional rate of

change of δV , the congruence’s cross-sectional volume at a point p in the spacetime

manifold:

θ (p) =
1

δV

d

dτ
δV (p) (7.15)

As a result, if θ > 0 at p, the congruence is diverging and if θ < 0 the congruence

is converging. Furthermore, σαβ is the shear tensor and uα is the tangent vector to

the geodesic at p. Since θ2 and σαβσαβ are positive, we have from the Raychauduri’s

equation (7.14)

dθ

dτ
≤ 0 (7.16)

if the strong energy condition holds. The expansion must therefore decrease during

the congruence’s evolution. This is precisely the statement of the focusing theorem:

An initially diverging (θ > 0) congruence will diverge less rapidly in the future,

while an initially converging (θ < 0) congruence will converge more rapidly in the

future. The physical interpretation of the focusing theorem is that gravitation is an

attractive interaction when the strong energy condition holds, and the geodesics get

focused as a result of this attraction [60]. In terms of the components of Tµν in (7.2)

the strong energy condition is given by:

ρ + pi ≥ 0 ,

3∑

α=0

pα ≥ 0 (7.17)

From equations (7.9) and (7.17) we conclude that the strong implies the null energy

condition.

An overview of the relations among the different conditions is shown in figure

7.1 [67].

7.1.5 Violation of the Energy Conditions: Casimir Effect

While the energy conditions typically hold for classsical matter, they can be violated

by quantized matter fields. A well-known example is the Casimir vacuum energy

between two conducting plates separated by a distance d:

ρ = − π2
~

720d4
< 0 (7.18)
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Fig. 7.1.
Relations of implication among the energy conditions.

Since ρ is negative, the Casimir vacuum energy density violates at least the

dominant, the weak and the null conditions. It is therefore no surprise that the

effective matter fluid associated to the quantum fluctuations of the improved space-

times we deal with, also violates all the energy conditions. We dedicate the next

two subsections to show this statement.

7.2 Improved Schwarzschild Spacetime

The Schwarzschild metric improved with a generic running Newton constant G (r)

is the result of replacing G0 by G (r) in (2.12). In that case we have:

ds2 = −
(

1 − 2MG (r)

r

)
dt2 +

dr2

(
1 − 2MG(r)

r

) + r2
(
dθ2 + sin2 θdϕ2

)
(7.19)

Substituting (7.19) in the Einstein field equations (7.1) gives an energy-momentum

tensor T µ
ν of the form

T µ
ν ≡ diag

(
p0, p1, p2, p3

)
= diag

(
−ρ, pr, p⊥, p⊥

)
(7.20)

where the energy density ρ, the radial pressure pr and the tangential pressure p⊥

are given by

−ρ = pr = − MG′

4πG0r2
(7.21)

p⊥ = − MG′′

8πG0r
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Since ρ = (MG′) / (4πG0r
2), it obviously depends on the sign of G′ whether the

energy density is positive or not. Similarly we have for the sums ρ+pi and
∑3

α=0 pα:

ρ + pr = 0 (7.22)

ρ + p⊥ = − MG′′

8πG0r
+

MG′

4πG0r2
=

M

4πG0r

(
G′

r
− G′′

2

)
(7.23)

3∑

α=0

pα = − MG′′

4πG0r
(7.24)

As a result, we need explicit formulas for G, G′ and G′′ in order to verify or falsify

the energy conditions.

7.2.1 The Approximation d (r) = r

The asymptotic approximation d (r) = r provides an important special case to be

tested. The running G (r) and its derivatives are given by

G (r) =
G0r

2

r2 + G0w̄
(7.25)

G′ (r) =
2G0rG0w̄

[r2 + G0w̄]2
(7.26)

G′′ (r) = 2G2
0w̄

{
G2

0w̄
2 − 2G0w̄r2 − 3r4

[r2 + G0w̄]4

}
(7.27)

Substituting G′ (7.26) in (7.21) gives the following for ρ:

ρ =
MG′

4πG0r2
=

MG0w̄

2πr [r2 + G0w̄]2
(7.28)

As a result, ρ is positive for all positive r. Nevertheless we should only believe in

expression (7.28) when lpl ¿ r. In particular the leading term of ρ for r → ∞ is

given by

ρ =
MG0w̄

2πr5

[
1 − 2G0w̄

r2
+ O

(
1

r2

)]
(7.29)

Thus, for r → ∞ , where d (r) → r the energy density remains positive.
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For ρ + p⊥ we substitute G′ and G′′ from (7.26) and (7.27) in (7.23). We get the

following answer:

ρ + p⊥ =
MG0w̄ (6G0w̄r2 + 5r4 + G2

0w̄
2)

4πr [r2 + G0w̄]4
> 0 (7.30)

As a consequence we have ρ+p⊥ > 0. Combining this result and ρ+pr = 0 and ρ > 0

from (7.22) and (7.28) we conclude that for the asymptotic region with d (r) ≈ r,

the weak and the null energy conditions are fulfilled.

In order to test the strong energy condition, we need to calculate, in particular,

the sum
∑3

α=0 pα of all components pα of T µ
ν in (7.20), as follows

3∑

α=0

pα = − MG′′

4πG0r
=

MG0w̄ {3r4 + 2G0w̄r2 − G2
0w̄

2}
2πr [r2 + G0w̄]4

(7.31)

Expression (7.31) shows that for

3r4 + 2G0w̄r2 < G2
0w̄

2 ,

the sum of components
∑3

α=0 pα is negative. However this can happen only for

values of r near to the Planck scale, where the d (r) = r approximation is unreliable.

In contrast we have for r → ∞ that
∑3

α=0 pα > 0. As a result the strong energy

condition is also satisfied for r À lPl.

We will show now that the dominant energy condition is violated for r À lPl.

We need to test whether ρ ≥ p⊥ or not. Substituting the second derivative (7.27)

in p⊥ from (7.21) leads to the following expression:

p⊥ = − MG′′

8πG0r
=

MG0w̄

4πr

{
3r4 + 2G0w̄r2 − G2

0w̄
2

[r2 + G0w̄]4

}
(7.32)

The leading term of (7.32) when r → ∞ is

p⊥ =
MG0w̄

4πr5

[
3 + O

(
1

r

)]
(7.33)

Thus, to O
(

1
r5

)
we have

ρ − p⊥ = −MG0w̄

4πr5
< 0 (7.34)

As a result, for r → ∞ the tranversal pressure p⊥ is greater than the energy density.

This violates the requirement (7.11) of the dominant energy condition. Since this

condition is intended to avoid the anihilation or creation of particles, heuristically,

its violation indicates the possibility of particle creation and anihilation, which is a

typical feature of any relativistic quantum field theory.

129



7.2.2 The Exact d (r)

A numerical check of all the energy conditions can also be accomplished for regions

near to the event horizon r = 2MG (r) and even inside. In this case, we exploit the

exact expression of d (r) given in (3.9) for the Schwarzschild spacetime. Depending

on whether r < 2m or r > 2m we substitute either d1 or d2 in the formula (4.2)

for G (r). The derivatives G′ (r), G′′ (r) and the functions ρ and p⊥ are calculated

numerically.

Figures 7.2 to 7.5 show the radial dependence of ρ, ρ + p⊥,
∑3

α=0 pα and ρ− p⊥,

respectively, for an improved Schwarzschild black hole with m = 5. The vertical

line at r = 2m = 10 is an asymptote for every function plotted. This is because

d′ (r) diverges at the event horizon (remember figure 3.4). In figure 7.2, the function

ρ remains positive for all positive r. Figure 7.3 shows the existence of two regions

inside the event horizon where a violation of the weak, null and strong conditions

occurs since ρ + p⊥ < 0 in these regions. On the contrary, ρ + p⊥ remains positive

outside r = 2m which is consistent with the previous analysis for the asymptotic

region with r → ∞. Figure 7.4 shows an r-dependence of
∑3

α=0 pα similar to that of

the function ρ + p⊥. This indicates the violation of the strong condition inside the

event horizon; it is fulfilled outside. Figure 7.5 shows the r-dependence of ρ − |p⊥|
which is crucial for testing the dominant condition. As verified in subsection 7.2.1

this condition is violated as r → ∞, since ρ− |p⊥| < 0 for r > 2m. Inside the event

horizon the dominant condition is also violated in three separate regions.
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Figures 7.2 to 7.5 show the r-dependence of functions ρ, ρ + p⊥,
∑3

α=0 pα, and ρ − |p⊥|,
respectively, for an m = 5 improved Schwarzschild spacetime. The regions in the r-do-
main where they assume negative values, correspond to regions where some of the ener-
gy conditions are violated. The event horizon at r = 2m defines an asymptote for every
function, since d′ (r)|r=2m = ∞ (see figure 3.4).

Fig. 7.2: The energy density ρ is positive for all r.
Figs. 7.3 and 7.4: The functions ρ + p⊥ and

∑3
α=0 pα are positive outside r = 2m and

negative at some regions inside. As a result in these regions, the strong, the

weak and the null conditions are violated.
Fig. 7.5: The function ρ − |p⊥| is negative for r > 2m and positive in a limited region

inside the event horizon. The dominant energy condition is violated in the
regions with negative ρ − |p⊥|.
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7.3 Improved Kerr Spacetime

In this section we present the energy momentum tensor TKerr-I
µν for the “pseudo-

matter” in the improved Kerr spacetime. It will be expressed as a function of a

generic G (r) and its derivatives G′ (r) and G′′ (r). We show that its eigenvalues

have in general non-zero values, and as a consequence TKerr-I
µν can be diagonalized in

the form (7.2). We shall conclude that the energy conditions are also violated by

TKerr-I
µν .

Employing a combination of the symbolic computational programs Mathematica

and Maple we have derived the following explicit result for TKerr-I
µν :

TKerr-I
µν =

M

4πG0∆A3




p1 0 0 v

0 p2 0 0

0 0 p3 0

v 0 0 p4




(7.35)

In writing down TKerr-I
µν the following set of abbreviations has turned out convenient:

∆ (r) ≡ a2 + r2 − 2MrG (r) , ρ2 ≡ r2 + a2 cos2 θ , A (r, θ) ≡ 2ρ2

B (r, θ) ≡ 8r2
(
a2 + r2

)
− a4 (sin 2θ)2

p1 ≡ α1 (r, θ) G′ + β1 (r, θ) G′′ , p2 ≡ α2 (r, θ) G′ + β2 (r, θ) G′′ (7.36)

v ≡ αν (r, θ) G′ + βν (r, θ) G′′ , p3 ≡ α3G
′ + β3G

′′

p4 ≡ α4 (r, θ) G′ + β4 (r, θ) G′′

β3 (r, θ) = 4∆rρ2 , β2 (r, θ) = 0 , β1 (r, θ) = β3a
2 sin2 θ (7.37)

β4 (r, θ) ≡ β3 csc2 θ , βν (r, θ) ≡ −aβ3

α1 (r, θ) ≡ −
(
a2 + r2

) [
8r2

(
a2 + r2

)
− a4 (sin 2θ)2] − 16ra2MG sin2 θ cos2 θ

α2 ≡ 8r2∆2 , αν ≡ 8ar2
(
r2 + a2

)
− aα3 , α3 ≡ 8∆a2 cos2 θ

α4 ≡ csc2 θα3 − 8a2r2 (7.38)

Given the enormous complexity of the intermediate expressions the simplicity of the

final result for TKerr-I
µν is rather surprising. The rows and columns of the matrix in

eq. (7.35) are ordered according to t − r − θ − ϕ. The matrix is diagonal except
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for the tϕ entry. Of course, a nonzero value of TKerr-I
tϕ was to be expected since it

corresponds to (pseudo) matter rotating about the z-axis.

It is not difficult to diagonalize TKerr-I
µν . The eigenvalues of (7.35), without the

overall coefficient M/ (4πG0∆A3) are given by

l1 ≡ 1

2

[
p1 + p4 +

√
(p2

1 − 2p1p4 + p2
4 + 4v2)

]
(7.39)

l2 ≡ p2 , l3 ≡ p3

l4 ≡ 1

2

[
p1 + p4 −

√
(p2

1 − 2p1p4 + p2
4 + 4v2)

]

Hence the energy momentum tensor in its eigenbasis reads

TKerr-I
µν =

M

4πG0∆A3




l1 0 0 0

0 l2 0 0

0 0 l3 0

0 0 0 l4




(7.40)

As a check we can set a = 0 in which case (7.40) reduces exactly to the corresponding

energy momentum tensor of the improved Schwarzschild black hole:

T Sch-I
µν =

1

4πG0r2




− MG′

1− 2MG(r)
r

0 0 0

0 MG′
(
1 − 2MG(r)

r

)
0 0

0 0 MG′′

2r
0

0 0 0 MG′′

2r

(
1

sin2 θ

)




(7.41)

Since T Sch-I
µν is a special case of TKerr-I

µν , it is clear that the improved Kerr space-

time also must violate the various energy conditions in some portions of spacetime.

Given our explicit results for the diagonal matrix elements l1 · · · , l4 it is in principle

straightforward to determine in which region of spacetime which one of the energy

conditions is violated. We shall not perform this analysis here since for our present

purposes it is enough to know that the conditions are violated somewhere. This ob-

servation implies that the quantum Kerr black hole cannot be thought of as a special

solution of the coupled classical gravity + matter system since the “pseudo-matter”

we encounter here has properties which are very different from ordinary matter.

7.4 Conclusion

In this chapter we have interpreted the RG-improved black hole as a special solution

to the classical gravity + matter system and derived some properties of the effective
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fluid that is due to the quantum fluctuations of the metric. We have demonstrated

in sections 7.2 and 7.3 that this effective fluid does not behave as an usual matter

system that fulfills the energy conditions. The main result of this chapter can be

summarized by saying that no classical gravity plus matter model with “normal”

matter can simulate the quantum fluctuations implicit in the running of G. As a

consequence we have to talk about a “quantum fluid” acting as a source on the right

hand side of the Einstein field equations (7.1). The practical consequence of these

findings is that in our analysis of improved black holes we cannot take advantage of

the many results in the literature which concern classical black holes in the presence

of matter. Almost all of these results rely on the energy conditions. As they are

not satisfied by the “quantum fluid”, the mechanics and thermodynamics of the

improved black holes can be expected to show novel features not showed by the

classical ones. In the next chapter we shall see that this is indeed the case.

134



Chapter 8

Thermodynamics of the

Quantum Black Holes

8.1 Introduction

In this chapter we investigate the impact of the running Newton’s constant on the

thermodynamics of Kerr black holes. We concentrate our study on the following

topics:

• Analysis of dynamical quantities like the Komar mass, the angular momentum

and the surface gravity of the black hole.

• Analysis of the first law of black hole thermodynamics and the definitions of

temperature and entropy related to the first law.

Taking into account these two main topics, the chapter is organized as follows.

In section 8.2 we calculate the surface gravity of the general spherically symmetric

and the improved Kerr black holes, exploiting the property that the event horizon

is generated by a Killing vector field (Killing horizon). In sections 8.3 to 8.5 we

calculate the mass and the angular momentum of the improved Kerr black hole,

taking advantage of the Komar integrals that relate directly to these quantities

when the spacetime is stationary and axially symmetric. We find that our results are

consistent with a gravitational antiscreening due to the quantum gravity fluctuations

described by the quantum effective matter discussed in chapter 7. In section 8.6 we

show that the quantities we have calculated fulfill the Smarr’s formula discussed

in chapter 2. This is a consequence of the stationarity and axial symmetry of the
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improved Kerr spacetime. We dedicate section 8.7 to the study of the first law

of black hole thermodynamics. We show that a modified first law can exist only

when we give up the relationship T = κ/2π which is at the heart of the classical

thermodynamics of black holes. We also calculate O (J2) approximations to the

first law, the temperature, and the entropy of the improved Kerr black hole, and

we investigate the relation of these results to the corresponding quantities of the

improved Schwarzschild spacetime. Finally in section 8.8 we present our conclusions

about the possibility of formulating an “RG improved thermodynamics” of rotating

black holes.

8.2 Surface Gravity

As mentioned in chapter 2, the surface gravity κ is the force required by an observer

at infinity to hold a particle (of unit mass) stationary at the event horizon. We can

define κ also in terms of the Killing vector ξ in (4.31) evaluated at the external event

horizon H+. We have seen in chapter 4 that ξµξµ = 0 at H+. This means that ξ is

orthogonal to itself, but since ξ is tangent to H+, we conclude that ξ is also normal

to the horizon. Thus ξα is proportional to ∂αΦ. But Φ ≡ ξµξµ = 0 on the horizon.

As a result, there must exist a scalar κ such that

∂α

(
−ξβξβ

)∣∣
H+

= 2κξα|H+
(8.1)

This scalar is precisely the surface gravity.

In order to find κ it is necessary to use a coordinate system which is non-singular

at the event horizon so that every quantity is well defined. Therefore we exploit in

subsections 8.2.1 and 8.2.4 the “improved” version of the E-F coordinate systems

presented in chapter 2. These transformations result from replacing G0 by G (r) in

the differentials defined in (2.17), as follows:

dr∗I ≡
[
r2 + a2

∆I (r)

]
dr

dr#
I ≡

[
a

∆I (r)

]
dr (8.2)

where ∆I (r) ≡ r2 + a2 − 2MG (r) r. The ingoing and outgoing patches are defined

as follows:
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• Ingoing E-F coordinates (“Ingoing Patch”)

dv = dt + dr∗I (8.3)

dψ = dϕ + dr#
I (8.4)

• Outgoing E-F coordinates (“Outgoing Patch”)

du = dt − dr∗I (8.5)

dχ = dϕ − dr#
I (8.6)

The two new sets of coordinates xµ ≡ (v, r, θ, ψ) and xµ ≡ (u, r, θ, χ) are defined

exactly as in Eqs. (2.19) and (2.20), respectively. The only difference as compared

to the transformation in the classical case is the form of the functions r∗ (r) and

r# (r). They can be found by integrating (8.2),

r∗I =

∫ [
r2 + a2

∆I (r)

]
dr

r#
I =

∫ [
a

∆I (r)

]
dr (8.7)

but now ∆I (r) and, as a consequence, the relationship between r∗, r# and r, are

functionally dependent on G (r). For a general G (r) the integrals (8.7) cannot be

evaluated in closed form but, fortunately, all that is needed for transforming the

metric are the differentials (8.2). In fact, applying the above transformations to the

improved Kerr metric in B-L coordinates (2.6) gives the following line element (see

appendix C):

ds2 = −
(

1 − 2G (r) Mr

ρ2

)
du2 − 2drdu + 2a sin2 θdχdr +

−4G (r) Mar sin2 θ

ρ2
dχdu +

ΣI sin2 θ

ρ2
dχ2 + ρ2dθ2 (8.8)

for the outgoing patch, and

ds2 = −
(

1 − 2G (r) Mr

ρ2

)
dv2 + 2drdv − 2a sin2 θdψdr +

−4G (r) Mar sin2 θ

ρ2
dψdv +

ΣI sin2 θ

ρ2
dψ2 + ρ2dθ2 (8.9)

for the ingoing patch.

The procedure of the calculation of κ is the following. We find first an expres-

sion for ξ in E-F coordinates, after that we calculate the scalar ξµξµ. We find an

137



expression of κ by identifying the coefficient of the right hand side of (8.1) after we

substitute ξα and ξµξµ. We dedicate subsections (8.2.2) and (8.2.3) to the calculation

of ξα and ξµξµ.

8.2.1 Surface Gravity of Spherically Symmetric Black Holes

As an illustration of how we use formula (8.1) to derive κ we calculate in this

subsection the surface gravity of a spherically symmetric spacetime, and we apply

the result to the improved Schwarzschild black hole.

The metric of a spherically symmetric and static spacetime is represented in

Schwarzschild coordinates by [57, 59]

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)
(8.10)

where xµ = (t, r, θ, ϕ). In this case the E-F coordinates result from transforming t of

the Schwarzschild coordinates into one of the following two possible time coordinates

[41, 57]

u = t − r∗ (8.11)

v = t + r∗ (8.12)

where r∗ is defined by

r∗ (r) ≡
∫

dr

f (r)
(8.13)

In this case the coordinate systems with xµ = (u, r, θ, ϕ) and xµ = (v, r, θ, ϕ) are,

respectively, the ordinary outgoing and ingoing E-F coordinates. The components

gαβ of the spherically symmetric spacetime in E-F coordinates are given by (see

appendix G)

ds2 = −f (r) du2 − 2dudr + r2
(
dθ2 + sin2 θdϕ2

)
(8.14)

for the outgoing patch, and

ds2 = −f (r) dv2 + 2dvdr + r2
(
dθ2 + sin2 θdϕ2

)
(8.15)

for the ingoing patch. Both of them lead to a representation of the spherically

symmetric spacetime which is well behaved when f (rH) = 0 at a horizon.

138



From (8.10) we can see that the coordinate t is cyclic. This means from appendix

F that we have a Killing vector given by

t =
∂

∂t
(8.16)

This is precisely the Killing vector to be used in the formula (8.1) for κ. Representing

t with the ingoing E-F patch gives

t =
∂

∂t
=

dv

dt

∂

∂v
=

∂

∂v
(8.17)

As a result, the components tα are given by

tα =
∂xα

∂t
=

∂xα

∂u
= δα

u = δα
t (8.18)

Lowering the index α gives

tα = gαβtβ = gαβδβ
v = gαv (8.19)

More explicitly, the (v, r, θ, ϕ) components of tα are the following:

tα = gαu = (guu, gru, gθu, gϕu) = (−f (r) , 1, 0, 0) (8.20)

Exploiting the expressions for tα and tα from (8.18) and (8.20) we find the following

result for −∂β (tαtα):

−∂β (tαtα) = ∂βf (r) = f ′ (r) ∂βr (8.21)

Evaluating expression (8.21) at the radius of the event horizon r = rH where f (rH) =

0 gives the following:

−∂β (tαtα)|
rH

= f ′ (rH) ∂βr (8.22)

On the other hand, tα at r = rH reads

tα|rH
= (−f (rH) , 1, 0, 0) = (0, 1, 0, 0) = ∂βr (8.23)

Substitituting (8.22) and (8.23) in (8.1) leads to the final result for κ:

κ =
f ′ (rH)

2
(8.24)

This is the expression of κ for the spherically symmetric spacetime presented in

chapter 2.
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For the improved Schwarzschild spacetime we have f (r) = 1 − 2MG (r) /r. As

a result, from (8.24) we deduce that κ is given by

κ =
M (G − rG′)

r2

∣∣∣∣
rI
Sch+

(8.25)

Expression (8.25) is simplified to

κ =
1

4MG
(
rI
Sch+

) − G′ (rI
Sch+

)

2G
(
rI
Sch+

) (8.26)

Here we have applied the equation of the improved Schwarzschild event horizon

given by rI
Sch+ = 2MG

(
rI
Sch+

)
. From (8.26) we recover the expression for the surface

gravity of the classical Schwarzschild black hole κ = 1/4MG0 that we obtain when

G (r) = G0.

Taking into account the proportionality between the surface gravity and the

temperature of the improved Schwarzschild black hole [30], the formula (8.25) has

been applied to study the impact of the running Newton constant in quantum-

thermodynamical processes like the evaporation of black holes. For a detailed dis-

cussion see reference [30].

8.2.2 Two Representations for the Stationary Observer’s

Killing Vector ξµ

As seen in section 4.3.3 the Killing vector related to the stationary observers is given

by (4.31)

ξµ = tµ + ϕµΩ (8.27)

where Ω is the constant angular frequency of the observer. In this subsection we

describe how to find representations of ξ in the B-L and E-F coordinates (see also

appendix H).

The representation of (8.27) in B-L coordinates (t, r, θ, φ) is the following:

ξµ ≡ δµ
t + δµ

ϕΩ (8.28)

It is found by exploiting the expressions (4.14) for tµ and ϕµ. Lowering the index µ

gives

ξµ = gµt + Ωgµϕ (8.29)
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With the transformation (8.3), (8.4) we can find the form of (8.27) in the ingoing

E-F coordinates. If we represent the spacetime events as xµ = (v, r, θ, ψ) in these

coordinates we find for the components ξµ the following expression:

ξµ =
∂xµ

∂v
+ Ω

∂xµ

∂ψ
= δµ

v + Ωδµ
ψ (8.30)

With a lower index we have

ξµ = gµv + Ωgµψ , µ = v, r, θ, ψ (8.31)

Expressions (8.28) and (8.30) for the Killing vector ξ in B-L and E-F coordinates,

respectively, are equivalent representations of this vector. Nevertheless (8.30) has

the advantage of staying regular at the event horizon.

8.2.3 The Scalar Field ξ2 (x)

We proceed now to calculate the left hand side of (8.1), performing the scalar product

of ξµ and ξµ. In E-F coordinates we multiply (8.30) and (8.31)

ξµξ
µ = gvv + 2Ωgvψ + Ω2gψψ (8.32)

The line element of the Kerr metric in the ingoing E-F coordinates is given by

ds2 = gvvdv2 + 2grvdrdv + gθθdθ2 + gψψdψ2 + 2gψrdψdr

+2gψvdψdv (8.33)

where its non-zero components are given in (8.9). In particular the line element for

stationary observers with r and θ fixed is given by

ds2
∣∣
(r,θ fixed)

= gvvdv2 + gψψdψ2 + 2gψvdψdv (8.34)

A parametrization of the observer’s world line by the temporal coordinate of (8.34)

leads to

(
ds

dv

)2
∣∣∣∣∣
(r,θ fixed)

= gvv + gψψΩdψ2 + 2gψvΩ (8.35)

Comparing the expression (8.32) with (8.35) we conclude that

ξµξ
µ =

(
ds

dv

)2
∣∣∣∣∣
(r,θ fixed)

(8.36)
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As a result, we can read off the scalar ξµξ
µ directly from the metric components in

(8.9) (See Appendix H):

ξµξ
µ =

(
ds

dv

)2
∣∣∣∣∣
(r,θ fixed)

=
ΣI sin2 θ

ρ2
(ω − Ω)2 − ρ2∆I

ΣI

(8.37)

Here the improved dragging frequency ω is given by

ω (r, θ) =
2G (r) Mar

ΣI

, (8.38)

as already obtained in section 4.3.1.

8.2.4 κ for the Improved Kerr Metric

In the previous two subsections we have calculated the components of ξ and the

scalar ξµξµ. We substitute now these results in the formula (8.1) in order to find an

expression of the surface gravity of the improved Kerr black hole, using the ingoing

E-F representation (8.9).

The left hand side of (8.1) can be found by differentiating expression in (8.37).

The derivative of −ξ · ξ can be written at the horizon’s radius rI
+ as follows:

−∂α

(
ξµξµ

)∣∣
rI
+

= ∂α

(
ρ2∆I

ΣI

− ΣI

ρ2
sin2 θ (Ω − ω)2

)∣∣∣∣
rI
+

= − ∂α (Ω − ω)2

(
ΣI

ρ2
sin2 θ

)∣∣∣∣
rI
+

− 2
ΣI

ρ2
sin2 θ (Ω − ω) ∂α (Ω − ω)

∣∣∣∣
rI
+

+
ρ2

ΣI

∂α∆I

∣∣∣∣
rI
+

+ ∆I∂α

(
ρ2

ΣI

)∣∣∣∣
rI
+

(8.39)

As we already discussed in chapter 2, since all available frequencies coalesce to just

one value, we have ω|rI
+

= Ω|rI
+

at the horizon. In addition we have ∆I |rI
+

= 0. As

a result, the expression in (8.39) is simplified to

−∂α

(
ξµξµ

)∣∣
rI
+

=
ρ2

ΣI

∂α∆I

∣∣∣∣
rI
+

(8.40)

Since ∆I |rI
+

= 0 we have the following expression for ΣI |rI
+
:

ΣI |rI
+

=
[(

r2 + a2
)2 − a2∆I (r) sin2 θ

]∣∣∣
rI
+

=
[(

rI
+

)2
+ a2

]2

(8.41)

The derivative ∂α∆I is given by

∂α∆I |rI
+

= 2
[
rI
+ − M G′|rI

+
rI
+ − MG

(
rI
+

)]
∂αr|rI

+
(8.42)
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Finally substituting (8.41) and (8.42) in (8.40) gives

−∂α

(
ξµξµ

)∣∣
rI
+

=
ρ2

ΣI

∂α∆I

∣∣∣∣
rI
+

=
2 ρ2|rI

+

[
rI
+ − M G′|rI

+
rI
+ − MG

(
rI
+

)]

[
(rI

+)
2
+ a2

]2 ∂αr|rI
+

(8.43)

Furthermore, for the right hand side of (8.1) we start finding the explicit form

of ξ|rI
+

from(8.30) and (8.31):

ξα|rI
+

= δµ
v + Ω|H δµ

ψ (8.44)

ξα|rI
+

= gαv|rI
+

+ ΩH gαψ|rI
+

(8.45)

Here ΩH is defined in (4.48) or (4.50). We exploit for our current purposes the

following expression for ΩH in E-F coordinates 1:

ΩH = ω|rI
+

= − gvψ

gψψ

∣∣∣∣
rI
+

(8.46)

By substituting (8.46) in (8.45) and using the E-F representation of gµν in (8.9) we

can find the components ξα|rI
+

(see appendix H):

ξv = gvv|rI
+

+ ΩH gvψ|rI
+

= gvv|rI
+
−

g2
vψ

gψψ

∣∣∣∣
rI
+

= 0

ξr = gvr|rI
+

+ ΩH grψ|rI
+

= 1 − aΩH sin2 θ

ξθ = gvθ|rI
+

+ ΩH gθψ|rI
+

= 0

ξψ = gψv|rI
+

+ ΩH gψψ|rI
+

= gψv|rI
+
− gvψ

gψψ

gψψ

∣∣∣∣
rI
+

= 0

Summarizing we have

ξα|rI
+

=
(
1 − aΩH sin2 θ

)
δr

α =
(
1 − aΩH sin2 θ

)
∂αr|rI

+
(8.47)

Clearly the only nonzero component of (8.47) obtains for α = r. To be more explicit

we substitute ΩH = a/[
(
rI
+

)2
+ a2] to get:

ξr|rI
+

= 1 − aΩH sin2 θ = 1 − a2 sin2 θ

(rI
+)

2
+ a2

=

(
rI
+

)2
+ a2 cos2 θ

(rI
+)

2
+ a2

=
ρ2|rI

+

(rI
+)

2
+ a2

(8.48)

1The derivation of (8.46) in E-F coordinates is completely analogous to that one in the B-L

representation presented in chapter 2. We omit it therefore.

143



This is our final result for the right hand side of (8.1).

Now we are ready to substitute (8.43) and (8.48) in (8.1) in order to find κ:

2 ρ2|rI
+

[
rI
+ − M dG

dr

∣∣
rI
+

rI
+ − MG

(
rI
+

)]

[
(rI

+)
2
+ a2

]2 ∂αr|rI
+

= 2κ
ρ2|rI

+

(rI
+)

2
+ a2

∂αr|rI
+

(8.49)

Solving for κ in (8.49) gives the explicit formula

κ =

[
rI
+ − M G′|rI

+
rI
+ − MG

(
rI
+

)]

[
(rI

+)
2
+ a2

] (8.50)

Exploiting the derivative of ∆I it can also be written as

κ =
∆′

I

(
rI
+

)

2
[
(rI

+)
2
+ a2

] with ∆′
I =

d∆I

dr
(8.51)

Expressions (8.50) and (8.51) are the main results of this subsection.

Two important remarks can be made concerning (8.51), namely:

1. κ has turned out to be independent of θ, therefore it is constant on H+. This is

a nontrivial result, since, contrary to the Schwarzschild black hole, the symme-

try assumptions imply only t and ϕ-independence. The constancy of κ on H+

is the contents of the zeroth theorem of classical black hole thermodynamics,

which here is seen to generalize to the improved case.

2. κ vanishes for extremal black holes, for then rI
+ = rI

− meaning that ∆ has a

double zero:

∆I

(
rI
+ = rI

−
)

= ∆′
I

(
rI
+ = rI

−
)

= 0

As a result, κ = 0 for extremal configurations.

Special Cases

1. For G = G0 = const the above equation leads to the correct result for the

classical Kerr spacetime [60]

κclass =
[r+ − MG0]

(r2
+ + a2)

=
[r+ − MG0]

2MG0r+

(8.52)

where we have applied the equation r2
+ + a2 = 2MG0r+ in the last equality.
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2. For a = 0 we recover κ for the improved Schwarzschild black hole, from (8.50)

we get

κ [r+ = 2MG (r+) , a = 0] =
[2MG (r+) − MG′ (r+) 2MG (r+) − MG (r+)]

4M2G2 (r+)

=
1

4MG (r+)
− G′ (r+)

2G (r+)

which is precisely the expression in (8.26).

8.3 Komar Integrals

The purpose of this and the following three sections is to investigate the effect

of the running Newton’s constant on the mass and the angular momentum of the

Kerr black hole 2. Since the spacetimes we are dealing with are stationary and

axially symmetric, we have already seen in chapter 4 that there exists a Killing

vector associated to each one of these two symmetries. We have called them t

and ϕ, respectively. As a consequence, it is possible to define a mass M and an

angular momentum J taking advantage of the so-called Komar integrals [61, 60].

These integrals define covariant conservation laws associated with every infinitesimal

coordinate transformation [61]. The identification of the conserved quantity with

energy or momentum or a similar quantity depends on the type of tranformation

considered. In our case the transformations are those generated by t and ϕ. As a

result, the Komar formulae for the mass MKomar and JKomar read

MKomar = − 1

8πG0

∮

S

∇αtβdSαβ (8.53)

JKomar =
1

16πG0

∮

S

∇αϕβdSαβ (8.54)

Here S is a two-sphere at spatial infinity. The surface element dSαβ is given by

dSαβ = −2n[α rβ]

√
σd2θ (8.55)

where nα and rα are the timelike and spacelike normals to S. σ is the determinant

of σab, the metric induced from gαβ in the 2-d surface H, and d2θ ≡ dθ1dθ2 with

θa angular coordinates on H (see appendix I). The integrals for MKomar and JKomar

probe the metric under consideration only at spatial infinity. Since the improved

2In this section we omit the superscript in rI
+, but we keep in mind that we deal with the

corrected event horizon.
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Kerr metric equals the classical one far away from the black hole, this implies that

the values of MKomar and JKomar are not changed by the RG improvement. It is well

known [60] that for the classical metric they coincide with the mass and angular

momentum parameters which it contains:

MKomar = M , JKomar = J (8.56)

Thus for S a surface at spatial infinity, 8.56 holds true also in the improved case.

The mass and angular momentum of spacetime as measured at infinity receives

contributions from the pseudo-matter mimicking the quantum effects. Now we break

up MKomar and JKomar into two pieces, one which contains ony the effect of the

pseudo-matter within the (outer) horizon H, and one which is due to the matter

distribution outside H. Including only the first contribution yields quantities MH

and JH which we refer to as the mass and angular momentum of the black hole,

meaning here only the portion of space bounded by H

The relation between the parameters M and J calculated at the spatial infinity

and the quantities MH and JH calculated at the event horizon can be derived if

we consider a spacelike hypersurface Σ extending from the event horizon to spatial

infinity. Its inner boundary is H, a two dimensional cross section of the event horizon,

and its outer boundary is S. Using Gauss’ theorem, we find that M and J can be

decomposed as:

M = MH + 2

∫

Σ

(
Tαβ − 1

2
Tgαβ

)
nαtβ

√
hd3y (8.57)

J = JH −
∫

Σ

(
Tαβ − 1

2
Tgαβ

)
nαϕβ

√
hd3y (8.58)

Here hab is the metric induced in Σ and ya (a = 1, 2, 3) are coordinates intrisic to

the hypersurface (see appendix I). MH and JH are the black-hole mass and angular

momentum, respectively. They are given by surface integrals over H:

MH = − 1

8πG0

∫

H

∇αtβdsαβ (8.59)

JH =
1

16πG0

∫

H

∇αϕβdsαβ (8.60)

with

dsαβ = 2ξ[α Nβ]

√
σd2θ =

(
ξαNβ − ξβNα

)√
σd2θ (8.61)
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being ξα = tα + Ωϕα the light-like Killing vector tangent and normal to H. Nα is

an auxiliary null vector such that Nαξα = −1 and NαNα = 03.

Equations (8.57) and (8.58) are interpreted as follows: The total mass M (an-

gular momentum J) is given by a contribution MH (JH) from the black hole, plus

a contribution from the matter distribution outside. If the black hole is in vacuum,

then M = MH and J = JH . According to the discussion of chapter 7 we expect that

MH 6= M and JH 6= J when the contributions of the “quantum fluid” are taken into

account. In the next two sections we corroborate this fact by explicitly calculating

MH and JH , and we analyse the results obtained.

8.4 Mass of the Improved Kerr Black Hole

In order to calculate the mass of the improved black hole we start by transforming

the Komar formula (8.59) of MH to a more suitable form. Substituting the area

element (8.61) in (8.59) leads to

MH = − 1

8πG0

∫

H

∇αtβdsαβ (8.62)

= − 1

8πG0

∫

H

∇αtβ
(
ξαNβ − ξβNα

)
ds

Changing dummy indices in (8.62) gives the following:

MH = − 1

8πG0

∫

H

ξαNβ

(
∇αtβ −∇βtα

)
ds

At this point we exploit the Killing equation (4.8) applied to tβ:

∇αtβ + ∇βtα = 0 (8.63)

As a result we have

MH = − 1

4πG0

∫

H

ξαNβ

(
∇αtβ

)
ds (8.64)

Since B-L coordinates are non-regular at the event horizon we choose to evaluate

MH by performing the integral in (8.64) using the ingoing E-F coordinates. We start

by calculating the α-sum in ξαNβ

(
∇αtβ

)
by evaluating the two contributing terms

3For more details about how to define hypersurface elements in a generic pseudo-Riemannian

manifold see reference [60].
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separately. In fact,

ξαNβ (∇αtβ) = ξrδ
r
αNβ (∇αtβ) (8.65)

= ξr (N v∇rtv + N r∇rtr)

where we have used eq. (8.47) in the form ξα = ξrδ
r
α. Now we find expressions for

∇rtv and ∇rtr . From equation (F.5) we have

∇αtβ =
1

2

(
∂gβv

∂xα
− ∂gvβ

∂xβ

)
(8.66)

and substituting tv = gvv and tr = gvr from (8.19) leads to

∇rtv = grα∇αtv =
grα

2

(
∂gvv

∂xα
− ∂gαv

∂v

)
(8.67)

=
grα

2

(
∂gvv

∂xα

)

where we have used the time-independence of the metric in the last step. The only

non-vanishing component of grα is grr, hence (8.67) turns out to be:

∇rtv =
grr

2

(
∂gvv

∂r

)
(8.68)

Similarly we find the following expression for ∇rtr:

∇rtr = −grv

2

(
∂gvv

∂r

)
− grϕ

2

(
∂gϕv

∂r

)
(8.69)

Now we are able to substitute (8.68) and (8.69) in (8.65), which gives

ξαNβ (∇αtβ) = ξr

[(
∂gvv

∂r

)(
N v grr

2
− N r grv

2

)
− grϕ

2
N r

(
∂gϕv

∂r

)]
(8.70)

And inserting (8.70) in (8.64) leads to

MH = − 1

8πG0

∫

H

ξr

[(
∂gvv

∂r

)
(N vgrr − N rgrv) − grϕN r

(
∂gϕv

∂r

)]
ds (8.71)

In order to evaluate the integral of (8.71) at r+ we need to find, in the E-F

representation, the components grr|r+
, grv|r+

, grϕ|r+
, N v|r+

, N r|r+
, ξr|r+

, and the

derivatives ∂gvv

∂r

∣∣
r+

and ∂gϕv

∂r

∣∣∣
r+

. By using the expressions in appendix I for each

one of these terms, we can proceed as follows. First, substituting grr|r+
= 0 and

ξrN
r = −1 leads to

MH = − 1

8πG0

∫

H

[(
∂gvv

∂r

)
grv + grϕ

(
∂gϕv

∂r

)]
ds (8.72)
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The components grv|r+
and grϕ|r+

in (8.72) are given in (I.25) and (I.25) as grv|r+
=

(
r2
+ + a2

)
/ ρ2|r+

and , grϕ|r+
= a/ ρ2|r+

respectively. The derivatives ∂gvv

∂r

∣∣
r+

and

∂gϕv

∂r

∣∣∣
r+

are expressed in (I.28) and (I.29) as linear combinations of trigonometrical

functions of θ, which will simplify the integration. With the usual abbreviation

ρ2 = r2 + a2 cos2 θ we have explicitly

∂gvv

∂r

∣∣∣∣
r+

= 2M
∂

∂r

(
G (r) r

ρ2

)∣∣∣∣
r+

=
1

(r2 + a2 cos2 θ)2

(
2Mr2

)
[rG′ (r) − G (r)]

∣∣∣∣
r+

+
cos2 θ

(r2 + a2 cos2 θ)2

(
2Ma2

)
[rG′ (r) + G (r)]

∣∣
r+

(8.73)

∂gϕv

∂r

∣∣∣∣
r+

= −2Ma sin2 θ
∂

∂r

(
G (r) r

ρ2

)∣∣∣∣
r+

= − sin2 θ

(r2 + a2 cos2 θ)2

(
2Mar2

)
[rG′ (r) − G (r)]

∣∣
r+

− sin2 θ cos2 θ

(r2 + a2 cos2 θ)2

(
2Ma3

)
[rG′ (r) + G (r)]

∣∣
r+

(8.74)

Finally the area element ds|r+
needed in (8.72) is also derived in appendix I and

is given in (I.12) as ds|r+
=

(
r2
+ + a2

)
sin θdθdϕ. Substituting everything into (8.72)

leads to

MH = − 1

8πG0

∫ 2π

0

∫ π

0

(
r2
+ + a2

)
sin θdθdϕ × (8.75)

×
[(

2M
∂

∂r

(
G (r) r

ρ2

)∣∣∣∣
r+

) (
r2
+ + a2

ρ2|r+

)
− 2Ma2 sin2 θ

ρ2|r+

∂

∂r

(
G (r) r

ρ2

)∣∣∣∣
r+

]

Integration in ϕ gives a factor of 2π. We can also factorize ∂
∂r

(
G(r)r

ρ2

)∣∣∣
r+

to get

MH = −M
(
r2
+ + a2

)

2G0

∫ π

0

sin θ
∂

∂r

(
G (r) r

ρ2

)∣∣∣∣
r+

dθ (8.76)

where we have used ρ2 = r2 + a2 cos2 θ.

We can go further towards the integration in θ by expanding the derivative in r:

MH = −M
(
r2
+ + a2

)

2G0

∫ π

0

sin θ

ρ4|r+

{
ρ2

∣∣
r+

[G′ (r+) r+ + G (r+)] − 2G (r+) r2
+

}
dθ

(8.77)
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Now substituting ρ2 = r2 + a2 cos2 θ and separating different types of integrals in θ

gives

MH = −r2
+M

(
r2
+ + a2

)

2G0

[G′ (r+) r+ − G (r+)]

∫ π

0

sin θ

(r2
+ + a2 cos2 θ)

2dθ

−Ma2
(
r2
+ + a2

)

2G0

[G′ (r+) r+ + G (r+)]

∫ π

0

sin θ cos2 θ

(r2
+ + a2 cos2 θ)

2dθ

(8.78)

At this point we define

I1 =

∫ π

0

sin θ

(r2
+ + a2 cos2 θ)

2dθ (8.79)

and

I2 =

∫ π

0

sin θ cos2 θ

(r2
+ + a2 cos2 θ)

2dθ (8.80)

so that (8.78) is reduced to

MH = −M
(
r2
+ + a2

)

2G0

{
r2
+ [G′ (r+) r+ − G (r+)] I1 + a2 [G′ (r+) r+ + G (r+)] I2

}

(8.81)

The definite integrals I1 and I2 from (8.79) and (8.80) are analytically solvable,

see appendix I). They are given by (I.34) and (I.37):

I1 =

(
1

ar3
+

){
r+a

r2
+ + a2

+ arctan

[(
a

r+

)]}
(8.82)

I2 =

(
1

a3r+

) {
arctan

[(
a

r+

)]
− r+a

(r2
+ + a2)

}
(8.83)

The substitution of (8.82) and (8.83) in (8.81) and further simplification leads to

the final result. We find that the black-hole mass is given by

MH = M
G (r+)

G0

{
1 −

[(
r2
+ + a2

)
G′ (r+)

aG (r+)

]
arctan

(
a

r+

)}
(8.84)

It is convenient to define the function FM (r) as follows:

FM (r) ≡ G (r)

G0

{
1 −

[
(r2 + a2) G′ (r)

aG (r)

]
arctan

(a

r

)}
(8.85)
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Obviously FM (r+) is the factor multiplying M on the RHS of eq. (8.84). Hence the

black hole mass reads

MH = M FM (r+) (8.86)

We have analysed graphically the r-dependence of FM (r) from a radius r0 < r+

to infinity. Figure 8.1 shows this dependence resulting from the running G (r) with

the d (r) = r approximation. This plot indicates that FM (r) < 1 and therefore

MH < M . MH is the mass of the matter and pseudo-matter contained within the

event horizon, whereas M is the mass measured at spatial infinity. Since M is equal

to MH plus a positive contribution of the pseudo-matter between H and spatial

infinity, we conclude that this latter contribution increases the amount of mass

that an asymptotic observer measures. This is precisely an antiscreening effect.

Furthermore, from (8.84) we know that MH = M if the running is switched off.

As a result, we conclude that the quantum fluctuations described by the effective

matter show an antiscreening behavior: the mass of a gravitating body seems to be

bigger at large distances than at small distances.
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Radial dependence of the factor FM (r), for M = 15, a = 5,
and w̄ = 1 employing the d (r) = r approximation. The func-
tion is plotted from r0 = 5 < r+ ≈ 30 to infinity. The plot
shows that F (r) < 1 in the domain [r0 , ∞), and F (r) → 1

when r → ∞.

Fig. 8.1.
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8.5 Angular Momentum of the improved

Kerr Black Hole

The evaluation of JH in (8.60) is carried out in a similar way as in the case of MH .

We start by transforming (8.60) into

JH =
1

8πG0

∫

H

ξαNβ∇αϕβds (8.87)

which results from changing dummy indices and applying the Killing equation for

ϕβ,

∇αϕβ + ∇βϕα = 0 (8.88)

Inserting (8.47), ξα = ξrδ
r
α, in the integrand of (8.87) leads to

ξαNβ∇αϕβ = ξr (N v∇rϕv + N r∇rϕr) (8.89)

From (F.5) we have for ∇αϕβ the following result

∇αϕβ =
1

2

(
∂gβψ

∂xα
− ∂gαψ

∂xβ

)

Hence the derivatives in (8.89) are given by

∇rϕv = grα∇αϕv =
grr

2

(
∂gvψ

∂r

)
(8.90)

and

∇rϕr = −grv

2

(
∂gvψ

∂r

)
− grψ

2

(
∂gψψ

∂r

)
(8.91)

Here we wrote down only the non-zero components gαβ of the Kerr metric and we

used that they depend on θ and r only. Now inserting (8.90), (8.91) in (8.89) leads

to

ξαNβ∇αϕβ =
ξr

2

[
N vgrr

(
∂gvψ

∂r

)
− N rgrv

(
∂gvψ

∂r

)
− N rgrψ

(
∂gψψ

∂r

)]

(8.92)

After applying grr = 0 and ξrN
r = −1 to (8.92), the integral (8.87) turns out to be

JH =
1

16πG0

∫ β

H

[
grv

(
∂gvψ

∂r

)
+ grψ

(
∂gψψ

∂r

)]
ds (8.93)
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The various factors appearing in the integrand of (8.93) are given by (see appendix

I)

∂gvψ

∂r

∣∣∣∣
r+

= −2Ma sin2 θ
∂

∂r

(
G (r) r

ρ2

)∣∣∣∣
r+

,
∂gψψ

∂r

∣∣∣∣
r+

= sin2 θ
∂

∂r

(
ΣI

ρ2

)∣∣∣∣
r+

grv|r+
=

r2
+ + a2

ρ2|r+

, grψ
∣∣
r+

=
a

ρ2|r+

(8.94)

The area element is again defined by (I.12) as ds|r+
=

(
r2
+ + a2

)
sin θdθdϕ. Substi-

tuting these terms in (8.93) gives

JH =
1

16πG0

∫ 2π

0

∫ π

0

(
r2
+ + a2

)
sin θdθdϕ × (8.95)

×
[
−2Ma sin2 θ

(
r2
+ + a2

ρ2|r+

) (
∂

∂r

(
G (r) r

ρ2

)∣∣∣∣
r+

)
+

+

(
a

ρ2|r+

) (
sin2 θ

∂

∂r

(
ΣI

ρ2

)∣∣∣∣
r+

)]

The procedure of evaluation of (8.95) is carried out along similar lines as that

for MH . We start by performing the partial derivative of ΣI/ρ
2 in the last term:

∂

∂r

(
ΣI

ρ2

)∣∣∣∣
r+

=
∂

∂r

(
(r2 + a2)

2 − a2 sin2 θ∆I

ρ2

)∣∣∣∣∣
r+

(8.96)

Substituting ∆I = r2 + a2 − 2MrG (r) leads to

∂

∂r

(
ΣI

ρ2

)∣∣∣∣
r+

=
∂

∂r

[
r2 + a2 + 2MrG (r) a2

(
sin2 θ

ρ2

)]∣∣∣∣
r+

= 2r+ + 2Ma2 sin2 θ
∂

∂r

[(
rG (r)

ρ2

)]∣∣∣∣
r+

(8.97)

Now, after inserting (8.97) in (8.95), integrating over ϕ and simplifying, we find

JH =
a

(
r2
+ + a2

)

4G0

∫ π

0

sin3 θdθ

ρ2|r+

{
r+ − M ρ2

∣∣
r+

∂

∂r

(
rG (r)

ρ2

)∣∣∣∣
r+

}
(8.98)

At this stage we have to perform the partial derivative in r of rG (r) /ρ2 , using

ρ2 = r2
+ + a2 cos2 θ. We have then

∂

∂r

(
G (r) r

ρ2

)∣∣∣∣
r+

=
r2
+ [G′ (r+) r+ − G (r+)] + a2 cos2 θ [r+G′ (r+) + G (r+)]

(r2
+ + a2 cos2 θ)

2 (8.99)
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Substituting (8.99) in (8.98) gives

JH =

(
ar+

4G0

) (
r2
+ + a2

) ∫ π

0

sin3 θdθ

r2
+ + a2 cos2 θ

(8.100)

−
(

aMr2
+

4G0

) (
r2
+ + a2

)
[G′ (r+) r+ − G (r+)]

∫ π

0

sin3 θdθ

(r2
+ + a2 cos2 θ)

2

−
(

Ma3

4G0

) (
r2
+ + a2

)
[r+G′ (r+) + G (r+)]

∫ π

0

sin3 θ cos2 θdθ

(r2
+ + a2 cos2 θ)

2

Here we are led to define the following integrals analogous to I1 and I2 used above:

I3 =

∫ π

0

sin3 θdθ

r2
+ + a2 cos2 θ

(8.101)

I4 =

∫ π

0

sin3 θdθ

(r2
+ + a2 cos2 θ)

2 (8.102)

I5 =

∫ π

0

sin3 θ cos2 θdθ

(r2
+ + a2 cos2 θ)

2 (8.103)

Thus JH of (8.100) can be written as

JH =

(
ar+

4G0

) (
r2
+ + a2

)
I3 −

(
aMr2

+

4G0

) (
r2
+ + a2

)
[G′ (r+) r+ − G (r+)] I4

−
(

Ma3

4G0

) (
r2
+ + a2

)
[r+G′ (r+) + G (r+)] I5 (8.104)

Simplifying and factorizing G′ (r+) and G (r+) reduces (8.104) to:

JH =

(
r2
+ + a2

)
a

4G0

{r+I3 − Mr+G′ (r+) I4+5 + G (r+) MI4−5} (8.105)

Here we defined I4+5 and I4−5 as the linear combinations

I4+5 =
(
r2
+I4 + a2I5

)
(8.106)

I4−5 =
(
r2
+I4 − a2I5

)
(8.107)

As in the case of I1 and I2, integrals I3 to I5 are also analytically solvable. They

are given in appendix I by equations (I.46) to (I.48):

I3 = − 2

a2
+ 2

[(
r2
+ + a2

)

a3r+

]
arctan

(
a

r+

)
(8.108)
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I4 =

(
a2 − r2

+

a3r3
+

)
arctan

(
a

r+

)
+

[
1

a2r2
+

]
(8.109)

I5 = − 3

a4
+

(
3r2

+ + a2
)

r+a5
arctan

(
a

r+

)
(8.110)

After inserting expressions (8.108) to (8.110) in (8.106) and (8.107), we find:

I4+5 = r2
+I4 + a2I5 = 2

(
a2 + r2

+

) arctan
(

a
r+

)

r+a3
− 2

a2
(8.111)

I4−5 = r2
+I4 − a2I5 = −4r+

a3
arctan

(
a

r+

)
+

4

a2
(8.112)

Now substituting (8.108), (8.111) and (8.112) in (8.105) gives

JH =

(
r2
+ + a2

)
a

2G0

×

×



−r+

a2
+

(
r2
+ + a2

)

a3
arctan

(
a

r+

)
− Mr+G′ (r+)


(

a2 + r2
+

) arctan
(

a
r+

)

r+a3
− 1

a2




+G (r+) M

(
−2r+

a3
arctan

(
a

r+

)
+

2

a2

)}

(8.113)

the intermediate result (8.113) can be further simplified by factorizing arctan
(

a
r+

)

and exploiting r2
+ + a2 − 2MG (r+) r+ = 0. Then we find

JH =

(
r2
+ + a2

)

2G0

{[
r+ −

(
a2 + r2

+

)

a
arctan

(
a

r+

)] [
MG′ (r+)

a

]
+

[
2G (r+) M − r+

a

]}

(8.114)

Two more applications of r2
+ + a2 − 2MG (r+) r+ = 0 turn out to be quite useful.

The replacements

r2
+ + a2

2G0

=
MG (r+) r+

G0

(8.115)

2G (r+) M − r+

a
= a
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transform (8.114) to an expression in which the classical result JH = J is isolated,

and therefore the quantum correction can be easily identified. This brings us to the

expression we were looking for:

JH =

{
J +

[
1 − 2MG (r+)

a
arctan

(
a

r+

)] [
M2G′ (r+) r2

+

a

]}
G (r+)

G0

(8.116)

We consider (8.116) as the final result of our calculation of JH .

Eq. (8.116) can be written as a product JH = JFJ (r+). We define FJ ≡ FJ (r)

as follows:

FJ (r) ≡ G (r)

G0

{
1 +

r2MG′ (r)

a2

[
1 − 2MG (r)

a
arctan

(a

r

)]}
(8.117)

Figure 8.2 shows the r-dependence of FJ (r) for M = 15, a = 5, w̄ = 1, employing

the approximation d (r) = r. The similarity with FM (r) in figure 8.1 is clear:

FJ (r) < 1 for r0 < r < ∞ with r0 < r+. As a result, the conclusion is the same: The

relationship (8.116) displays an antiscreening of the angular momentum of the

black hole similar to the antiscreening of the mass. Since JH < J , we conclude that

the amount of angular momentum contained inside the horizon, JH , is increased

by the contribution of the quantum fluctuations or pseudo-matter between the event

horizon and spatial infinity. This result obtains for any value of M and a.
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Radial dependence of the factor FJ (r) for M = 15,
a = 5, and w̄ = 1 employing the d (r) = r approxi-
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Fig. 8.2.

8.5.1 Low Angular Momentum Expansions for MH and JH

By performing expansions for low angular momentum J we are able to isolate the

contributions to MH and JH independent of J if they exist. Employing a as the
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expansion parameter we have the following series:

arctan

(
a

r+

)
=

a

r+

− a3

3r3
+

+
a5

5r5
+

− a7

7r7
+

+ · · · (8.118)

Substituting eq. (8.118) in expression (8.84) for MH gives

MH =
MG (r+)

G0

{
1 −

[(
r2
+ + a2

)
G′ (r+)

aG (r+)

] (
a

r+

− a3

3r3
+

+
a5

5r5
+

− a7

7r7
+

+ · · ·
)}

Applying 2G (r+) Mr+ = r2
+ +a2 in the term with G′ leads to the desired expansion

of MH in powers of a:

MH =
MG (r+)

G0

{
1 − 2MG′ (r+)

(
1 − a2

3r2
+

+
a4

5r4
+

− a6

7r6
+

+ · · ·
)}

(8.119)

The expansion (8.119) shows a leading contribution to MH independent of J given

by

MH |a=0 =
MG

(
rI
Sch+

)

G0

[
1 − 2MG′ (rI

Sch+

)]
(8.120)

This is exactly the mass of the improved Schwarzschild black hole, as it should be.

In order to find the expansion of JH we substitute (8.118) in (8.116) to have

JH =

{
J +

[
1 − 2MG (r+)

a

(
a

r+

− a3

3r3
+

+
a5

5r5
+

− a7

7r7
+

+ · · ·
)] [

M2G′ (r+) r2
+

a

]}
G (r+)

G0

(8.121)

Expanding the term with G′ leads to

JH =
G (r+)

G0

{
J +

M2G′ (r+) r2
+

a
+

− [2G (r+) Mr+] M2G′ (r+)

(
1

a
− a

3r2
+

+
a3

5r4
+

− a5

7r6
+

+ · · ·
)}

(8.122)

Now exploiting 2G (r+) Mr+ = r2
+ + a2 in the same term and simplifying gives the

final result

JH =
JG (r+)

G0

{
1 + MG′ (r+)

[
−2

3
+

2a2

15r2
+

+ O

(
a4

r4
+

)]}
(8.123)

Eq. (8.123) shows clearly that JH |a=0 = 0 as expected.
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8.6 Smarr’s Formula

In chapter 2 we have already discussed the Smarr’s formula in the context of the

classical Kerr spacetime. We have mentioned that this formula is valid for all sta-

tionary and axially symmetric spacetimes. Now we show that our results (8.84) and

(8.116) for MH and JH , together with the relations

ΩH =
a

(rI
+)

2
+ a2

=
a

2MG (rI
+) rI

+

, A = 4π
[(

rI
+

)2
+ a2)

]

κ =
∆′

2
[
(rI

+)
2
+ a2

] , ∆ =
(
rI
+

)2
+ a2 − 2MG

(
rI
+

)
rI
+

(8.124)

fulfill the Smarr’s formula

MH = 2ΩHJH +
κA

4πG0

(8.125)

This formula valid for the improved Kerr spacetime, has exactly the same structure

as in the classical case.

To start, let us calculate 2ΩHJH from (8.124) and (8.116), as follows

2ΩHJH =
1

G0

{
a2

r+

+ MG′ (r+) r+ − 2M2G (r+) r+G′ (r+)

a
arctan

(
a

r+

)}
(8.126)

From (8.84) we obtain

MHG0 − MG (r+) = −
[
2M2G (r+) r+G′ (r+)

a

]
arctan

(
a

r+

)
(8.127)

where we have used

r2
+ + a2 = 2MG (r+) r+ (8.128)

Substituting (8.127) in (8.126) leads to

2ΩHJH =
1

G0

{
a2

r+

+ MG′ (r+) r+ + MHG0 − MG (r+)

}
(8.129)

On the other hand, using (8.124) we can represent κA/4πG0 as follows

κA
4πG0

=
∆′

2G0

(8.130)

But from (8.124), we have for ∆′

∆′ = 2r+ − 2M [G′ (r+) r+ + G (r+)] (8.131)
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Now we can insert (8.131) in (8.130) to find:

κA
4πG0

=
r+

G0

− M

G0

[G′ (r+) r+ + G (r+)] (8.132)

At this stage we are able to sum up (8.129) and (8.132) in order to find the right

hand side of (8.125):

2ΩHJH +
κA

4πG0

=
1

G0

{
a2

r+

+ MG′ (r+) r+ + MHG0 − MG (r+)

}
+

r+

G0

−M

G0

[G′ (r+) r+ + G (r+)] (8.133)

Simplifying (8.133) leads directly to

2ΩHJH +
κA

4πG0

= MH +
a2 + r2

+ − 2MG (r+) r+

G0r+

= MH (8.134)

where we have used again r2
+ + a2 = 2MG (r+) r+. This completes the proof of

Smarr’s formula in (8.125).

8.7 The Modified First Law of Black Hole

Thermodynamics

As discussed in chapter 2, eq. (2.63), i.e.,

δM − ΩHδJ =
( κ

8πG

)
δA (8.135)

is interpreted as the first law of black hole thermodynamics, appealing to its analogy

with the first law of standard thermodynamics. As a result, we interpret κ
2π

and A
4G

as the temperature T and the entropy S of the black hole, respectively. Thus we

read the relation (8.135) as

δM − ΩHδJ = TδS (8.136)

Eq. (8.136) states that (δM − ΩHδJ) /T is an exact differential, namely the “exterior

derivative” of a state function S ≡ S (M,J) which is interpreted as an entropy.

In this section we address the question of whether there exists a relationship

analogous to (8.136) for the RG-improved Kerr black hole. In earlier sections we

159



found that its surface gravity and angular momentum are given by4

κ (M,J) ≡ rI
+ − M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]

(rI
+)

2
+

(
J
M

)2 (8.137)

ΩH (M,J) ≡
(

J
M

)

(rI
+)

2
+

(
J
M

)2 (8.138)

where rI
+ ≡ rI

+ (M,J) is a function of mass and angular momentum which can

be determined numerically only. Given the results (8.137) and (8.138), the natural

question to be asked is whether the resulting (δM − ΩHδJ) /κ is an exact differential.

Does there exist a state function f ≡ f (M,J) such that

(δM − ΩHδJ) /κ
?
= δf (8.139)

If f exists one could again try to identify T = κ/2π with the temperature and f with

the entropy of the black hole. (As quantum effects typically lead to modifications

of the classical relation S = A/4G0 [30, 31] it is not to be expected that f is simply

proportional to the surface area.)

We dedicate subsection 8.7.4 to the analysis of this possibility. As a conclusion

we shall find that no such f exists for any reasonable G (r). This result entails that,

in the improved case, there can be no first law of the form (8.136) in which the

temperature T is proportional to the surface gravity κ.

It is, however, a logical possibility that the improvement modifies the classical

relation T = κ/2π. Indeed in subsections 8.7.5 and 8.7.6 we shall construct state

functions (“zero-forms”) T (M,J) and S (M,J) which actually do satisfy

δM − ΩH (M,J) δJ = T (M,J) δS (M,J) (8.140)

The function T (M,J), tentatively to be regarded as the black hole’s temperature, is

not proportional to κ if J 6= 0 but equals κ/2π if J = 0. Establishing (8.140) amounts

to finding the “integrating factor” 1/T with which the differential δM−ΩH (M,J) δJ

must be multiplied to obtain an exact one.

Due to the algebraic difficulty of the problem we shall content ourselves with find-

ing a consistent approximation to the integrating factor for low angular momentum

J . We start the discussion in subsection 8.7.1 by presenting a general introduction

4In this section we write explicitly the fraction J/M instead of the parameter a in order to

emphasize the dependence on J and M .
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to differential forms and integrating factors. In subsection 8.7.5 we find approxi-

mate solutions to the partial differential equation for the integrating factor by using

a power series ansatz. In subsection 8.7.6 we analyse the degree of validity of the

solution we have found, and in subsection 8.7.7 we use the approximated integrating

factor in order to derive O (J2) approximations to the first law, the temperature T ,

and the entropy S of the improved Kerr black hole. We also derive large-M expan-

sions of T and S. In this way we establish a connection between the results for the

improved Kerr spacetime achieved in this work and results from the literature, like

the large M expansions for T and S of the improved Schwarzschild black hole [30].

8.7.1 Exact Differentials and Integrating Factors

The states an (improved) black hole can be in are labeled by the two parameter M

and J . We visualize the corresponding state space as (part of) the 2-dimensional

euclidean plane with cartesian coordinates x1 = M , x2 = J . Using the conve-

nient language of differential forms, state functions are zero forms on this space, i.e.

scalars f = f (x) ≡ f (M,J).

Defining the exterior derivative as5

δ = δM
∂

∂M
+ δJ

∂

∂J

we say that a differential form α is closed if δα = 0, and we say it is exact if

α = δβ where β denotes a (p − 1)-form when α is a p-form. The state space being

2-dimensional, the only case of interest is p = 1. A general 1-form has the expansion

α = P (M,J) δM + N (M,J) δJ (8.141)

This 1-form is exact if there exists a zero-form S (M,J) such that α = δS or, in

components,

P (M,J) =
∂S

∂M
, N (M,J) =

∂S

∂J

As a result we can write

δS = P (M,J) δM + N (M,J) δJ =

(
∂S

∂M

)
δM +

(
∂S

∂J

)
δJ

5To conform with the standard notation of thermodynamics we denote the exterior derivative

by δ rather than d.
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We assume that the states (M,J) form a simply connected subset of the euclidean

plane so that δα = 0 is necessary and sufficient for the exactness of α.

It is a well-known result of the calculus of several variables that if S (M,J) and its

derivatives up to second order (including mixed second derivatives) are continuous

then we have:

∂S

∂J∂M
=

∂S

∂M∂J
(8.142)

Hence (8.142) is a necessary condition for the exactness of (8.141). Or using P and

M we write:

∂P

∂J
=

∂N

∂M
(8.143)

The demonstration of sufficiency of (8.143) on a simply connected domain is also

a result from the elementary theory of ordinary differential equations [62]. As a

consequence, the relation (8.143) is the basic equation to show the closedness, and

hence in our case, exactness of a differential form. In the case when (8.143) is not

fulfilled α is a non-exact one-form.

If α is not exact, one can try to find a function µα (M,J) that, after being

multiplied to α, converts it into an exact differential. In those cases we call µα (M,J)

an integrating factor of α and we write

δS = µα (M,J) α = µα (M,J) P (M,J) δM + µα (M,J) N (M,J) δJ (8.144)

Since µαα is exact by definition of µα (M,J), eq. (8.143) is fulfilled with the sub-

stitutions P (M,J) → µα (M,J) P (M,J) , N (M,J) → µα (M,J) N (M,J). As a

result we have:

∂

∂J
(µαP ) =

∂

∂M
(µαN) (8.145)

Eq. (8.145) is in fact a quasi-linear partial differential equation in M and J for

µα (M,J). This can be made more explicit by rewriting it, using the chain rule, as

follows:

P

(
∂µα

∂J

)
− N

(
∂µα

∂M

)
= µα

[(
∂N

∂M

)
−

(
∂P

∂J

)]
(8.146)

The theory of partial differential equations asserts that quasi-linear equations like

(8.146) are solvable in general [63, 64]. How difficult it is in practice to find a so-

lution µα as a function of M and J depends on the specific form of P (M,J) and
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N (M,J), of course.

Let us finally discuss the application we are actually interested in. We investigate

the 1-form

α =

(
1

κ

)
δM −

(
ΩH

κ

)
δJ (8.147)

where the components P (M,J) ≡ 1/κ and N (M,J) ≡ −ΩH/κ are given in terms of

the surface gravity and angular velocity of the improved Kerr black hole presented

in (8.137) and (8.138). At the classical level, we know that α is exact: α = δ (S/2π)

with S = A (M,J) / (4G0). It is now a matter of straightforward (but lengthy!)

differentiation to check whether the integrability condition (8.143) is fulfilled in the

improved case. The result is that this condition is actually not satisfied in general,

i.e. the 1-form (8.147) is not exact. Stated differently, κ is not an integrating fac-

tor for δM − ΩHδJ , and the temperature is not proportional to the surface gravity

therefore.

In the next subsection we shall start the construction of an integrating factor for

this 1-form, a generalization of κ in the classical case. In more physical terms this

means that we are trying to find a function T (M,J) which (at least as far as the

first law is concerned) could be intepreted as the Bekenstein-Hawking temperature

of the quantum corrected black hole.

8.7.2 Integrating Factor: General Setting

In this preparatory subsection we describe a convenient setting for finding the in-

tegrating factor and we test it in the classical case. It is already known that the

classical Kerr spacetime fulfills a variation law of the form

δA
8πG0

=

(
1

κ

)
δM −

(
ΩH

κ

)
δJ (8.148)

with the following functions of M and J :

κ ≡ r+ − MG0

r2
+ +

(
J
M

)2 , ΩH ≡
(

J
M

)

r2
+ +

(
J
M

)2 , A ≡ 4π

[
r2
+ +

(
J

M

)2
]

r+ = MG0 +

√

(MG0)
2 −

(
J

M

)2

(8.149)
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Substituting the functions (8.149) in the variation law leads to:

δA
8πG0

=

[
r2
+ +

(
J
M

)2

r+ − MG0

]
δM −

[
J

M (r+ − MG0)

]
δJ (8.150)

After comparing (8.137) and (8.138) with (8.149) we see that the only explicit mod-

ification due to the r-dependence of G (r) appears in the numerator of κ in (8.137)

given by rI
+ −M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]
; it has an additional term involving G′ (rI

+

)
.

This numerator is reduced to r+ − MG0 in the classical case. Taking advantage of

this fact we propose the following differential form to be integrated in both cases,

the classical one and the improved one:

γ =

[
r2
+ +

(
J

M

)2
]

δM −
(

J

M

)
δJ (8.151)

It changes after the improvement only through the implicit dependence of r+ on M

and J , from r+ to rI
+. In that case we have:

γ =

[
(
rI
+

)2
+

(
J

M

)2
]

δM −
(

J

M

)
δJ (8.152)

Ultimately we would like to know the integrating factor for the 1-form (8.147) with

κ and ΩH from (8.137) and (8.138) inserted. This form differs from γ by a scalar

factor only:

α =
{
rI
+ − M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]}−1

{[
(
rI
+

)2
+

(
J

M

)2
]

δM −
(

J

M

)
δJ

}

= h (M,J) γ (8.153)

where

h (M,J) ≡
{
rI
+ − M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]}−1
(8.154)

Thus, once we have managed to find an integrating factor µγ for the (simpler) 1-

form γ, we can obtain the corresponding factor for the much more complicated

form α simply by multiplication with the overall factor 1/h (M,J). By definition,

µγ is such that µγγ is closed, i.e. δ
(
µγγ

)
= 0 Using α = hγ this implies that

δ
[(

µγ/h
)
α

]
= 0. Hence

µα ≡ µγ/h (8.155)
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is an integrating factor for α if µγ is an integrating factor for γ.

For the bare case, it is not difficult to see that γ of eq. (8.151) is non-exact.

Since we know the explicit form of r+ we can easily check the condition of exactness

(8.143). In this case we have r+ (M,J) = MG0 +
√

(MG0)
2 − (J/M)2 and the

definitions P = r2
+ + (J/M)2, N = −J/M . As a result we get

∂P

∂J

∣∣∣∣
r+

= − 2J

M
√

(MG0)
2 −

(
J
M

)2
,

∂N

∂M

∣∣∣∣
r+

=
J

M2
(8.156)

namely

∂P

∂J

∣∣∣∣
r+

6= ∂N

∂M

∣∣∣∣
r+

(8.157)

From (8.150) we deduce that the approppiate integrating factor µγ for the one-form

γ of (8.151) is

µclass
γ (M,J) =

1

r+ − MG0

(8.158)

This can be checked (see appendix J) by substituting (8.158) in (8.146) together

with P = r2
+ + (J/M)2 , N = −J/M and the derivatives (8.156). From (8.158) we

obtain for the integrating factor of α

µclass
α = h−1

classµ
class
γ = 1 (8.159)

Since h−1
class = r+ − MG0. This is the expected result, of course.

The above procedure might appear rather indirect and cumbersome to deal with

the classical case. In the improved situation it is a technically advantageous setting

for the computation of µα, though.

8.7.3 Integrating Factor: Partial Differential Equation

Now we turn to the improved case and derive the explicit form of the partial differ-

ential equation (8.146) for the integrating factor µγ in the case of the 1-form γ of

(8.152). For γ, the component functions P and N are to be identified as:

P (M,J) =
(
rI
+

)2
+

(
J

M

)2

, N = −
(

J

M

)
(8.160)
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As a result, the equation for µγ (M,J) reads

[
(
rI
+

)2
+

(
J

M

)2
] (

∂µ

∂J

)
+

(
J

M

) (
∂µ

∂M

)
= −µ

{
∂

∂M

(
J

M

)
+

∂

∂J

[
(
rI
+

)2
+

(
J

M

)2
]}

(8.161)

Here and in the following we simply write µ for the factor µγ. Performing the

implicit derivatives in the right hand side of (8.161) gives:
[
(
rI
+

)2
+

(
J

M

)2
] (

∂µ

∂J

)
+

(
J

M

)(
∂µ

∂M

)
= −µ

{
J

M2
+ 2rI

+

∂rI
+

∂J

}
(8.162)

The partial derivative ∂rI
+/∂J can be found by differentiating the event horizon’s

equation,
(
rI
+

)2
+ (J/M)2 − 2MG

(
rI
+

)
rI
+ = 0, with respect to J :

∂

∂J

[
(
rI
+

)2
+

(
J

M

)2

− 2MG
(
rI
+

)
rI
+

]
= 0 (8.163)

Solving for ∂rI
+/∂J from (8.163) gives

∂rI
+

∂J
= − J

M2 {rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]} (8.164)

Substituting (8.164) in (8.162) leads to
[
(
rI
+

)2
+

(
J

M

)2
] (

∂µ

∂J

)
+

(
J

M

) (
∂µ

∂M

)
= µ

J

M2

{
rI
+ + M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]

rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]

}

(8.165)

or, written in a more compact way,

f1 (M,J)

(
∂µ

∂J

)
+ f2 (M,J)

(
∂µ

∂M

)
= −µf3 (M,J) (8.166)

with the definitions:

f1 (M,J) ≡
(
rI
+

)2
+

(
J

M

)2

, f2 (M,J) ≡ J

M

f3 (M,J) ≡ − J

M2

{
rI
+ + M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]

rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]

}
(8.167)

Equation (8.166) is the main result of this subsection, it is the partial differential

equation for the integrating factor µγ of the first law modified via the running

Newtonś constant G (r). It will be analysed in the next two subsections where we

look for explicit solutions for the integrating factor.
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8.7.4 Does the Modified First Law Preserve the Classical

Form?

It is clear that the improvement we are implementing with the running G (r) gives

by itself no guarantee of preserving the classical form δA/ (8πG0) = (1/κ) δM −
(ΩH/κ) δJ ≡ α of the first law. After the improvement, the quantities κ and ΩH

are modified as presented in (8.137) and (8.138). If we assume that these corrected

quantities still fulfill a first law of the classical form, there should exist a scalar

function S, possibly different from A/4G, such that δS
?
= hγ ≡ α or explicitly,

δS
?
=

{
1

rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]

} {[
(
rI
+

)2
+

(
J

M

)2
]

δM −
(

J

M

)
δJ

}

(8.168)

Eq. (8.168), if satisfied, would mean that the form of (8.153) is exact as it stands,

i.e. with a trivial, constant integrating factor µα = 1. Stated differently, eq. (8.168)

proposes µγ = h as an integrating factor of γ =
[(

rI
+

)2
+ (J/M)2

]
δM−

(
J
M

)
δJ . As

a result, the task of checking whether the original form (8.148) is preserved after the

improvement is equivalent to checking whether h ≡ 1/
{
rI
+ − M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]}

fulfills the differential equation (8.165) for the integrating factor µ ≡ µγ. Next we

shall prove that , in general, this is actually not the case.

Substituting the above candidate µ = h into (8.165) gives:

{[
(
rI
+

)2
+

(
J

M

)2
]

∂

∂J
+

(
J

M

)
∂

∂M

} (
1

rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]

)

=
J

M2

{
rI
+ + M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]

{rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]}

}(
1

rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]

)

(8.169)

Now we have to check the equality in (8.169). For the left hand side we have the

following identities6(see appendix J)

∂

∂J

(
1

rI
+ − M [rI

+G′ + G]

)
=

J
[
1 − M

(
2G′ + rI

+G′′)]

M2 [rI
+ − M (rI

+G′ + G)]
3 (8.170)

6To simplify these expressions we omit from now on, the rI
+ argument from G

(
rI
+

)
and its

derivatives when it does not lead to ambiguities. But we keep in mind that G should always be

read as G
(
rI
+

)
.
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∂

∂M

(
1

rI
+ − M [rI

+G′ + G]

)
=

1

[rI
+ − M (rI

+G′ + G)]
2 ×

×



rI

+G′ + G +

[(
J
M

)2
+ MrI

+G
] [

M
(
2G′ + rI

+G′′) − 1
]

M [rI
+ − M (rI

+G′ + G)]



 (8.171)

After substituting (8.170) and (8.171) in the left hand side of (8.169), or similarly

of (8.165), and simplifying we find:
[
(
rI
+

)2
+

(
J

M

)2
] (

∂µ

∂J

)
+

(
J

M

)(
∂µ

∂M

)

=
J

M2 [rI
+ − M (rI

+G′ + G)]
2 ×

×
{[

1 − M
(
2G′ + rI

+G′′)] {(
rI
+

)
− MG

}
rI
+

[rI
+ − M (rI

+G′ + G)]
+ M

(
rI
+G′ + G

)
}

(8.172)

It is clear that (8.172) is not equal to the right hand side of (8.169). Thus we found

that:

J

M2 [rI
+ − M (rI

+G′ + G)]
2 ×

×
{[

1 − M
(
2G′ + rI

+G′′)] {
rI
+ − MG

}
rI
+

[rI
+ − M (rI

+G′ + G)]
+ M

(
rI
+G′ + G

)
}

6= J

M2

{
rI
+ + M

[
rI
+G′ + G

]

{rI
+ − M [rI

+G′ + G]}

}(
1

rI
+ − M [rI

+G′ + G]

)

(8.173)

Nevertheless in the classical case G (r) = G0 , G′ = G′′ = 0 we have {J [r+ + MG0]}
/
{
M2 [r+ − MG0]

2} for both sides. This confirms that µ = 1/ [r+ − MG0] is an

integrating factor of our chosen differential form (8.151) for the classical first law.

We can summarize the above result by saying that if there should exist a general-

ization of the first law at the improved level (which is something we cannot actually

be sure of) then this generalization does not have the simple structure

δSI =

(
1

κ

)
δM −

(
ΩH

κ

)
δJ (8.174)

with the improved κ and ΩH, and with a quantum corrected entropy:

SI =
A
4G

+ quantum corrections (8.175)
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As a result, the temperature of the black hole (assuming this notion still makes

sense in the improved case) cannot be proportional to the surface gravity. This is

in contrast to the Schwarzschild black hole for which in Ref. [30] a first law of the

form δSI = (δM/κ) has been established and the quantum corrections in (8.175)

were computed.

Up to now we tacitly assumed that G = G (r) is an essentially arbitrary func-

tion of r, and correspondingly that the values of G ≡ G
(
rI
+

)
, G′ ≡ G′ (rI

+

)
and

G′′ ≡ G′′ (rI
+

)
are not subject to any special constraints. It is rather improbable

that precisely the function G (r) chosen by nature to define the running of the New-

ton constant happens to satisfy expression (8.173) with an equality sign, unless we

believe in the proportionality of T and κ as a fundamental principle in black hole

thermodynamics.

Nevertheless, if we impose the equality sign to hold in (8.173), we are able to

find, after a straightforward simplification, a condition for integrability that relates

rI
+, G

(
rI
+

)
, G′ (rI

+

)
and G′′ (rI

+

)
as functions of M and J . This condition is given

by (see appendix J)

(
J

M

)2

G′ (rI
+

)
+ G′′ (rI

+

)
rI
+

[(
J

M

)2

− MrI
+G

(
rI
+

)
]

= 0 (8.176)

If this condition is met, α is exact, and there exists an entropy-like quantity S such

that α = δS. Since eq. (8.176) represents a condition for G (r) and its derivatives

evaluated at rI
+, there could exist in fact infinitely many different functions G (r)

that fulfill this condition but behave differently away from r = rI
+. With our present

technology we cannot decide whether or not the condition (8.176) is actually satisfied

or not. So we must consider it as a logical possibility that (8.176) indeed holds true

for the “correct” function G (r).

Let us now try to judge how plausible this scenario is. For this purpose we

suppose that the ordinary differential equation

(
J

M

)2

G′ (r) + G′′ (r) r

[(
J

M

)2

− MrG (r)

]
= 0 (8.177)

governs the behavior of G (r) in the vicinity of rI
+. In appendix J we have found

several solutions for (8.177), where G (r) is represented as a series in powers of 1/r.

We have chosen this representation hoping to find a G (r) which, thanks to the
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“antiscreening”, decreases with r. For instance, the asymptotic behavior of G (k)

for small k given in eq. (1.25) by

G (k) = G0 − wG2
0k

2 + O
(
k4

)
(8.178)

After substituting the cutoff identification k = w̄/r we find

G (r) = G0 −
w̄G2

0

r2
+ O

(
1

r4

)
(8.179)

We would consider the condition (8.177) plausible if its solution G (r) would have

at least qualitatively similar properties. In contrast to this, the solutions we found

are far from recovering the behavior in (8.179). They are classified as follows (see

appendix J)

1. G (r) = Const

2. G (r) =
( J

M )
2

2Mr

3. G (r) =
( J

M )
2

2Mr
+ O

(
1
r2

)

The behavior of cases 2 and 3 is similar for r → ∞, namely, G (r) → 0.

Comparing this set of solutions with (8.179) we can conclude that, at least in the

vicinity of rI
+ these solutions do not behave as expected. Case 1 is simply the

classical case that shows no running. Cases 2 and 3 tend to zero instead of tending

to G0 when r → ∞. As a result, unless the behavior of G (r) changes far away from

rI
+ we consider the non-trivial solutions 2 and 3 as “exotic” possibilities.

As a conclusion of this subsection, it seems more plausible to believe that the

first law in the improved case requires a non-trivial integrating factor for which

T 6∝ κ. This brings us back to the difficult problem of solving the partial differential

equation for µ (M,J), eq. (8.166). In the next section we address this task. Since

the coefficients (8.167) of this differential equation are non-constant and rather com-

plicated functions of M and J , we content ourselves with finding an approximation

to order J2 for the integrating factor.

8.7.5 O
(
J2

)
Approximation to the Modified First Law

As a consequence of the previous analysis we come back to the differential equation

(8.166). It is a quasi-linear, first order, partial differential equation for µ in the two
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variables M and J . The general form of such a differential equation is given by [63]

a1 (M,J, µ)

(
∂µ

∂J

)
+ a2 (M,J, µ)

(
∂µ

∂M

)
= a3 (M,J, µ) (8.180)

where a1 (M,J, µ) , a2 (M,J, µ) and a3 (M,J, µ) are continuously differentiable func-

tions of M and J and they can eventually depend on µ also. It is clear that our

main equation (8.166) with the functions f1, f2 and f3 defined in (8.167) fits into

this general definition. Even though a general theory for solving (8.180) is available

and the existence and uniqueness of solutions is guaranteed [63], the calculational

difficulty of finding particular solutions depends crucially on the specific form of the

functions ai. Having this in mind and knowing that the functions f1 to f3 are far

from simple, we shall now construct an approximate solution to µ for low angu-

lar momentum, where the zeroth order approximation is already known [30], rather

than addressing the task of looking for an exact solution. This approximate solution

will be found using an ansatz in power series.

The various steps can be summarized as follows: The equation to be solved is

given by (8.166),

f1 (M,J)

(
∂µ

∂J

)
+ f2 (M,J)

(
∂µ

∂M

)
= −µf3 (M,J) (8.181)

with the definitions (8.167)

f1 (M,J) ≡
(
rI
+

)2
+

(
J

M

)2

, f2 (M,J) ≡ J

M
, f3 (M,J) ≡ − J

M2

{
rI
+ + M

[
rI
+G′ + G

]

rI
+ − M [rI

+G′ + G]

}

(8.182)

We expand f1, f2, f3 in power series with respect to J . Since these functions are

known, we can, in principle, find explicitly the coefficients in their expansions by

utilizing expressions (8.182). We also expand µ and its derivatives and we substitute

them, along with the expansions of f1 to f3, into (8.181). The only unknowns are

precisely the coefficients of µ. They are found by solving the recurrence relation

that results after the insertion of all the power series.

Following the above mentioned steps, we start by expanding f1, f2, f3 and µ as

follows:

fa (M,J) =
∞∑

l=0

f l
a (M) J l , a = 1 , 2 , 3

µ (M,J) =
∞∑

k=0

µk (M) Jk (8.183)
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The derivatives of µ are given by:

∂µ

∂J
= µ1 (M) + 2µ2 (M) J + 3µ3 (M) J2 + · · · =

∞∑

k=0

(k + 1) µk+1 (M) Jk

∂µ

∂M
=

∞∑

k=0

(
dµk

dM

)
Jk

(8.184)

Substituting (8.183) and (8.184) in our main equation (8.181) leads to:
( ∞∑

l=0

f l
1 (M) J l

) ( ∞∑

k=0

(k + 1) µk+1 (M) Jk

)

+

( ∞∑

l=0

f l
2 (M) J l

) ( ∞∑

k=0

(
dµk

dM

)
Jk

)
= −

( ∞∑

k=0

µk (M) Jk

) ( ∞∑

l=0

f l
3 (M) J l

)

(8.185)

The recurrence relation for µk (M) follows by rewriting eq. (8.185) in the form
∑∞

k=0 Ak (M) Jk = 0 which implies that Ak (M) = 0 must be fulfilled for every k.

Following this idea we write (8.185) in the form

∞∑

m=0

βmJm +
∞∑

m=0

γmJm +
∞∑

m=0

αmJm = 0 (8.186)

where αm, βm and γm are defined via

∞∑

m=0

βmJm ≡
( ∞∑

l=0

f l
1 (M) J l

) ( ∞∑

k=0

(k + 1) µk+1 (M) Jk

)
(8.187)

∞∑

m=0

γmJm ≡
( ∞∑

l=0

f l
2 (M) J l

) ( ∞∑

k=0

(
dµk

dM

)
Jk

)
(8.188)

∞∑

m=0

αmJm ≡
( ∞∑

k=0

µk (M) Jk

) ( ∞∑

l=0

f l
3 (M) J l

)
(8.189)

As a result the recurrence relation can be written as

βm + γm + αm = 0 (8.190)

where βm , γm and αm have to be found from (8.187), (8.188) and (8.189), respec-

tively. This is explained in more detail in appendix J. The results are the following:

βm =
m∑

l=0

(m − l + 1) f l
1µm−l+1 , γm =

m∑

l=0

f l
2µ

′
m−l , αm =

m∑

l=0

f l
3µm−l

(8.191)
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Where µ′
k ≡ d

dM
µk (M). By substituting (8.191) into (8.190) we obtain the final

form of the recurrence relation:

m∑

l=0

{
(m − l + 1) f l

1µm−l+1 + f l
2µ

′
m−l + f l

3µm−l

}
= 0 (8.192)

We emphasize again that the only unknowns in (8.192) are the µ components, since

the f components can in principle be found straightforwardly.

With this algorithm the integrating factor can be found at any desired order in J .

Nevertheless the f l
i component represents an l-th derivative which is not necessarily

easy to carry out if l is large. In this work we calculate only those components which

are needed in order to get an O(J2) approximation to µ (M,J), for more details see

appendix J. The approximation we have found is given by

µ (M,J)|O(J2) = µ0 (M) + µ2 (M) J2 (8.193)

with

µ0 (M) =
1

M
(
G − rI

Sch+
G′

) , µ′
0 (M) =

M
(
rI
Sch+

)2
GG′′

rI
Sch+

−M[rI
sc+

G′+G]
+ rI

Sch+
G′ − G

M2
[
G − rI

Sch+
G′

]2

(8.194)

µ2 =

[
3G + rI

Sch+
G′

]
(µ0)

2 − µ′
0

2
(
rI
Sch+

)2

M
(8.195)

where rI
Sch+

is defined as rI
Sch+

= rI
Sch+

(M) ≡ rI
+ (0,M), and drI

Sch+
/dM is given by:

drI
Sch+

dM
=

2G
(
rI
Sch+

)

[
1 − 2MG′

(
rI
Sch+

)] (8.196)

In the following subsections we analyse the consequences of the approximation

(8.193).

8.7.6 Exactness in the O
(
J2

)
Approximation to µ (M, J)

It can be shown that the O (J2) approximation in (8.193) to the integrating factor

µ (M,J) in our main differential equation (8.145) is enough for satisfying it to order
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O (J), either for the classical and the improved case (see appendix J). Given an

O(Jn) approximation to µ (M,J), we ask to which order in J the equality in (8.145)

holds true, actually. What we find is that an O (Jn) approximation to µ satisfies the

differential equation to order O (Jn−1). This result is reasonable since eq. (8.145)

implies one order of derivation in J . As a result one order in J is decreased every

time we include an approximation to the series of µ (M,J) and it can only influence

the O (Jn−1) terms in this equation. For more details see appendix J.

8.7.7 Temperature and Entropy

So far we have developed a procedure for finding recursively any desired approxi-

mation to the integrating factor µγ by solving equations (8.192). Our final goal is

to find approximations for the modified first law (8.140) and also for the temper-

ature and the entropy of the improved Kerr spacetime. This subsection is divided

into three paragraphs where we present the results for each of the above mentioned

quantities.

In the first paragraph we present the O (J2) approximation for the first law that

results after multiplying the 1-form α to its integrating factor µα = h−1µγ. Since

the first law of thermodynamics gives a definition of temperature, an expression for

that quantity can be read off from equation (8.140). This will be done in the second

paragraph where we present the O (J2) approximation to T (M,J) in the form:

T (M,J)|O(J2) = T0 (M) + T2 (M) J2 (8.197)

Finally, concerning the entropy, its computation requires an integration in the (M,J)

plane. It can be shown that, for the O (J2) approximation

S (M,J)|O(J2) = S0 (M) + S2 (M) J2 , (8.198)

we need just one integration along the M axis in order to find the zeroth order coeffi-

cient S0, since the second order coefficient S2 requires no explicit integration. We do

this in the third paragraph of this subsection where we find a set of two coupled equa-

tions for the O (J2) coefficients of the temperature and the entropy. The solutions we

find for these coefficients are uniquely fixed in terms of the Schwarzschild quantities

T0 and rI
Sch+

and they are consistent with the expression (8.193) for µγ. In appendix

J we verify this consistency, where we compare the results for T (M,J)|O(J2) from

both procedures, namely, applying µγ and solving the above mentioned set of two
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equations. In the appendix we also present in more detail the calculations described

in this subsection.

O (J2) Approximation to the First Law

As already mentioned in subsection 8.7.2, once we have µγ we have immediately an

expression for µα given by

µα = h−1µγ =
{
rI
+ − M

[
rI
+G′ + G

]}
µγ (8.199)

Since µα is by definition the integrating factor of α this means that αµα is an exact

differential, thus we have

δ

(
S

2π

)
= αµα =

µα

κ
(δM − ΩHδJ) (8.200)

where we keep a 2π factor in the normalization of S as in the classical case [65, 60].

The O (J2) approximation to the first law can be presented as follows

δ

(
S

2π

)∣∣∣∣
O(J2)

= P̄
∣∣
O(J2)

δM + N̄
∣∣
O(J2)

δJ

=
(µα

κ

)∣∣∣
O(J2)

δM −
(

ΩHµα

κ

)∣∣∣∣
O(J2)

δJ (8.201)

where P̄ and N̄ are the coefficients of δM and δJ respectively, already corrected by

the integrating factor µγ. They are defined in the following way:

P̄ ≡ µγP =
µα

κ
, N̄ ≡ µγN = −ΩHµα

κ

After expanding P̄ and N̄ to O (J2), applying equations (8.160), (8.193), (8.137)

and (8.138) for P (M,J), µγ, κ and ΩH, we find the following expression for the

O (J2) approximation to the first law (for more details, see appendix J):

δ

(
S

2π

)∣∣∣∣
O(J2)

=

{
µ0

(
rI
Sch+

)2
+

J2

2M

[µ0

M
− µ′

0

]}
δM −

(
Jµ0

M

)
δJ

(8.202)

It can be easily verified that the crossed derivatives of the coefficients in (8.202) are

equal, showing in this way, the exactness of δS to O (J2).
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O (J2) Approximation to the Temperature

From equation (8.200) for the first law we now define the temperature in the usual

way as the coefficient of δS in δM − ΩHδJ = TδS. We obtain

T =
κ

2πµα

(8.203)

Note that if µα 6= 1 this result differs from the familiar relationship T = κ/(2π)

of classical black hole thermodynamics. Substituting µα from (8.199) and κ from

(8.137) in (8.203) leads to

T (M,J) =
1

2πµγ

[
(rI

+)
2
+

(
J
M

)2
] (8.204)

Expanding T (M,J) in powers of J gives the following:

T (M,J) =
1

2πµ0

(
rI
Sch+

)2 +
J2

[
µ′

0 − µ0

M

]

4πM
(
rI
Sch+

)4

(µ0)
2

+ O
(
J4

)
(8.205)

Here we have also applied equations (8.160) and (8.193) for P and µγ respectively.

For the calculational details see appendix J.

O (J2) Approximation to the Entropy

In order to find an O (J2)-approximation to the entropy, we substitute in the first

law (8.140), generic expressions of the approximations to O (J2) of T and S. We

then obtain 2 independent equations after factorizing the coefficients of every order

in the expansion, as follows. The generic expressions for T and S are given by

(8.197) and (8.198):

T (M,J)|O(J2) = T0 (M) + T2 (M) J2 (8.206)

S (M,J)|O(J2) = S0 (M) + S2 (M) J2

Substituting expressions (8.206) in the first law (8.140) leads to

δM − ΩHδJ =
[
T0 (M) + T2 (M) J2

]
δ
[
S0 (M) + S2 (M) J2

]

(8.207)

After expanding the right hand side of (8.207) we have

δM − ΩHδJ = T0δS0 + δS0T2J
2 + δ

(
S2J

2
)
T0 + O

(
J3

)
(8.208)
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where we have ommited the argument M of T0,2 and S0,2. Since T0 and S0 correspond

to the temperature and entropy of the Schwarzschild spacetime with J = 0 and

ΩH = 0, the first law for that case is given by:

δM = T0δS0 (8.209)

Substituting (8.209) in (8.208) gives the following:

−ΩHδJ = δS0T2J
2 + δ

(
S2J

2
)
T0 + O

(
J3

)
(8.210)

Expressing the variations in the right hand side of (8.210) in terms of δM and δJ

leads to:

−ΩHδJ = T2J
2

(
dS0

dM

)
δM + T0

[
J2

(
dS2

dM

)
δM + 2JS2δJ

]
+ O

(
J3

)
(8.211)

After factorizing and equating coefficients in δJ and δM , we find the following two

coupled equations which determine S2 and T2:

T2

(
dS0

dM

)
+ T0

(
dS2

dM

)
= 0 (8.212)

2JT0S2 + ΩH = 0 (8.213)

We can find additional information about T0 and S0 from the first law for the

Schwarzschild spacetime given in (8.209), as follows. Since these quantities depend

exclusively on M , we can write

δM = T0

(
dS0

dM

)
δM (8.214)

Thus we deduce the following identity, usual in thermodynamics:

1

T0 (M)
=

dS0

dM
(8.215)

The integration of (8.215) gives an expression for S0 (M), namely

S0 (M) =

∫ M

M0

dM ′

T0 (M ′)
(8.216)

This is the expression analized in reference [30] which deals with the improved

Schwarzschild black hole. Since the functions T0 (M) and S0 (M) are already known,
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we conclude that expressions (8.212) and (8.213) define a system of two coupled

equations which determine T2 and S2. We solve them as follows. Expanding ΩH in

(8.213) gives

ΩH (M,J) =

(
J
M

)

(rI
+)

2
+

(
J
M

)2 =

(
J

M

)
1

(
rI
Sch+

)2 + O
(
J3

)
(8.217)

Substituting (8.217) up to O (J2) in (8.213) gives the following final result for S2:

S2 (M) = − 1

2T0 (M) M
(
rI
Sch+

)2 (8.218)

On the other hand, substituting (8.215) in (8.212) and solving for T2 gives an explicit

expression for the temperature correction:

T2 (M) = − (T0)
2 dS2

dM
(M) (8.219)

Here S2 (M) on the RHS of 8.219 is explicitly given by (8.218).

It is important to remark that the results (8.218) and (8.219) for the entropy and

temperature corrections are uniquely fixed in terms of the Schwarzschild quantities.

Hence, within this approximation, the factorization of the 1-form δM − ΩHδJ as

TδS is unique. A general 1-form α can be expressed as α = f1δf2 in terms of two

0-forms f1 and f2 in many different ways; given α, the pair (f1, f2) is not unique.

However, if we insist on recovering the Schwarzschild results for J = 0 and work to

order J2 only, the identification of S2 and T2 is unambiguous.

It can be shown that the expression (8.205) for T (M,J)|O(J2) which we have

obtained with our general all-order formalism is consistent with equations (8.218)

and (8.219). We demonstrate this in appendix J.

With expressions (8.216) and (8.218) we can write the O (J2) approximation to

the entropy in the form

S (M,J)|O(J2) = S0 −
J2

2T0M
(
rI
Sch+

)2 = S0 −
πJ2

M2
[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)]

(8.220)

with the following known functions of M:

S0 =

∫ M

M0

dM ′

T0 (M ′)
, µ0 =

1

M
(
G − rI

Sch+
G′

) , T0 =
1

2π
(
rI
Sch+

)2

µ0

Expresions (8.202), (8.205) and (8.220) for the O (J2) approximations to the first

law, the temperature and the entropy are the main results of this subsection.
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Large M Expansions for the d (r) = r Approximation

The approximations (8.205) and (8.220) for the temperature and the entropy re-

spectively, are expressions where the function G (r) is not specified. To be more

explicit, we exploit now the formula (5.36) for G (r) in order to calculate quantum

corrections to T and S in the asymptotic region where d (r) = r. This formula for

G (r) is given by

G (r) =
G0r

2

r2 + G0w̄
(8.221)

In this way we establish a connection between the results for the improved Kerr

spacetime achieved in this work and results from the literature, like the large M

expansions for T and S of the improved Schwarzschild black hole [30].

The procedure for finding these expansions is the following. First we expand G

and its derivatives G′ and G′′ for large M . After this, we find expressions for T and

S in (8.205) and (8.220) as explicit functions of G and its derivatives. Finally we

substitute the expansions of G, G′ and G′′ in T and S.

We expand G(rI
Sch+

), G′(rI
Sch+

) and G′′(rI
Sch+

) in the parameter m̄ ≡ Mcr/M

defined in chapter 5. The function G (r) from (8.221) and its two first derivatives

as functions of mcr are given by

G (r) =
G0r

2

r2 + (mcr)
2 (8.222)

G′ (r) =
2G0r (mcr)

2

[
r2 + (mcr)

2]2 (8.223)

G′′ (r) = 2G0 (mcr)
2

{
(mcr)

4 − 2 (mcr)
2 r2 − 3r4

[
r2 + (mcr)

2]4

}
(8.224)

Evaluating these functions at rI
Sch+

and substituting the m̄-expansion (5.55) of this

radius gives the following 1/M -expansion:

G
(
rI
Sch+

)
= G0

[
1 − m̄2

4
− m̄4

16
+ O

(
m̄8

)]
(8.225)

G′ (rI
Sch+

)
=

(
2G0

m

)[
m̄2

8
+

m̄4

32
+ O

(
m̄6

)]
(8.226)

G′′ (rI
Sch+

)
=

2G0

m2

[
−3m̄2

16
− m̄4

32
+ O

(
m̄6

)]
(8.227)

With these results we proceed to expand in m̄2 the formulas (8.205) and (8.220) for

the temperature and the entropy in the next two paragraphs.
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Expansion of the Temperature The temperature in (8.205) reads

T (M,J)|O(J2) = T0 + T2J
2 (8.228)

with T0 and T2 defined as

T0 =
1

2πµ0

(
rI
Sch+

)2 , T2 =

[
µ′

0 − µ0

M

]

4πM (µ0)
2
(
rI
Sch+

)4 (8.229)

The expressions in (8.229) are functions of µ0 and µ′
0 given in (8.194):

µ0 =
1

M
(
G − rI

Sch+
G′

) (8.230)

µ′
0 =

M
(
rI
Sch+

)2
GG′′

rI
Sch+

−M
[
rI
Sch+

G′+G
] + rI

Sch+
G′ − G

M2
[
G − rI

Sch+
G′

]2 (8.231)

Substituting rI
Sch+

= 2MG
(
rI
Sch+

)
in (8.230) and (8.231) simplifies µ0 and µ′

0 to

the following expressions:

µ0 =
1

MG (1 − 2MG′)
(8.232)

µ′
0 =

4G′′

(1 − 2MG′)3 − 1

M2G (1 − 2MG′)

Substituting (8.232) in (8.229) leads to

T0 =
1

2πµ0

(
rI
Sch+

)2 =
(1 − 2MG′)

8πMG
=

1

8πMG
− G′

4πG
(8.233)

T2 =
[2GG′′M2 + 4MG′ − 4M2G′2 − 1]

32πM5G3 (1 − 2MG′)
(8.234)

Expressions (8.233) and (8.234) present T0 and T2 as functions of M , G, and its

derivatives, evaluated at rI
Sch+

. As a result, we can exploit the expansions for

G
(
rI
Sch+

)
, G′

(
rI
Sch+

)
, G′′

(
rI
Sch+

)
given in (8.225), (8.226) and (8.227), as follows.

For T0 we have

T0 =
1

8πG0M
[
1 − m̄2

4
− m̄4

16
+ O (m̄8)

] −

[
m̄2

8
+ m̄4

32
+ O (m̄6)

]

2πG0M
[
1 − m̄2

4
− m̄4

16
+ O (m̄8)

] (8.235)
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Expanding each term in (8.235) and simplifying gives

T0 =
1

8πG0M

[
1 − m̄2

4
− m̄4

8
+ O

(
m̄6

)]
(8.236)

Similarly for T2 we have

T2 =
2GG′′M2 + 4MG′ − 4M2G′2 − 1

32πM5G3 (1 − 2MG′)
= − 1

32πG3
0M

5

[
1 + m̄2 +

15

16
m̄4 + O

(
m̄6

)]

(8.237)

Thus our final result for the large M expansion for the O (J2) approximation to

T (M,J) is given by

T (M,J)|O(J2) = T0 + T2J
2

=
1

8πG0M

[
1 − m̄2

4
− m̄4

8
+ O

(
m̄6

)]

− J2

32πM5G3
0

[
1 + m̄2 +

15

16
m̄4 + O

(
m̄6

)]

(8.238)

Setting m̄ to zero in this result, i.e. letting M → ∞ takes us back to the classical

Kerr spacetime:

T (M,J)|Kerr
O(J2) =

1

8πG0M
− J2

32πG3
0M

5
(8.239)

This is precisely the O (J2) approximation for TKerr. To verify this statement we

expand TKerr in (8.52):

TKerr ≡
κ

2π
=

r+ − MG0

4πMG0r+

=

√
(G0)

2 M2 − J2

M2

4πMG0

[
G0M +

√
(G0)

2 M2 − J2

M2

]

=
1

4πMG0

[
1

2
− J2

8M4 (G0)
2 + O

(
J4

)]
(8.240)

On the other hand, setting J = 0 in (8.238) reproduces the large M expansion gives

us the large expansion for the improved Schwarzschild spacetime (see Ref. [30]):

T (M) =
1

8πG0M

[
1 − 1

4

(
Mcr

M

)2

− 1

8

(
Mcr

M

)4

+ O
(
M−6

)
]

(8.241)
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Expansion of the Entropy For the O (J2) approximation to the entropy we have

from (8.220), the following:

S (M,J)|O(J2) = S0 −
J2

2T0M
(
rI
Sch+

)2 = S0 −
πJ2

M2
[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)]

(8.242)

with

S0 =

∫ M

M0

dM ′

T0 (M ′)
, µ0 =

1

M
(
G − rI

Sch+
G′

) , T0 =
1

2π
(
rI
Sch+

)2

µ0

(8.243)

Expanding the O (J2) term yields

S2 = − π

M2
[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)] = −
(

π

M2G0

) [
1 +

3

4
m̄2 +

5

8
m̄4 + O

(
m̄6

)]

As a result we have

S (M,J)|O(J2) = S0 −
J2

2T0M
(
rI
Sch+

)2 = S0 −
(

πJ2

M2G0

)[
1 +

3

4
m̄2 +

5

8
m̄4 + O

(
m̄6

)]

(8.244)

For S0 we can apply the result of Ref. [30] for the large M expansion of the entropy

in the improved Schwarzschild spacetime7, given by

S0 =
ASch

class

4G0

+ 2πw̄

[
1

2
ln

(
2

m̄2

)
− 3

2
− 3m̄2

8
− 5

32
m̄4 + O

(
m̄6

)]
+ S (Mcr) (8.245)

with the area of the Schwarzschild black hole given by

ASch
class = 16πM2 (G0)

2 (8.246)

Thus we arrive at the following final answer for S (M,J)|O(J2):

S (M,J)|O(J2) =
ASch

class

4G0

+ 2πw̄

[
1

2
ln

(
2

m̄2

)
− 3

2
− 3m̄2

8
− 5

32
m̄4 + O

(
m̄6

)]
+ S (Mcr)

−
(

πJ2

M2G0

)[
1 +

3

4
m̄2 +

5

8
m̄4 + O

(
m̄6

)]
(8.247)

7In the mentioned reference we have to identify m̄2 with the parameter Ω.
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As a check, we let M → ∞ or, equivalently, ~ → 0. Setting m̄ = 0 gives

S (M,J)|O(J2) =
ASch

class

4G0

+ S (Mcr) −
πJ2

M2G0

(8.248)

This is precisely, up to a constant, the O (J2) approximation for the entropy in the

classical Kerr spacetime:

SKerr =
AKerr

4G0

=
π

G0

[
(r+)2 +

(
J

M

)2
]

= 2πMr+ = 2πM


MG0 +

√

(MG0)
2 −

(
J

M

)2



= 4πM2G0 −
πJ2

M2G0

+ O
(
J4

)
(8.249)

where 4πM2G0 = ASch
class/4G0. The classical expression SKerr coincides with (8.248)

if the undetermined constant of integration S (Mcr) is chosen to vanish.

As a summary of this section we redisplay the large M expansions we have

calculated for the O (J2) approximations for the temperature and the entropy of the

RG-improved Kerr black hole:

T (M,J)|O(J2) =
1

8πG0M

[
1 − m̄2

4
− m̄4

8
+ O

(
m̄6

)]

− J2

32πM5G3
0

[
1 + m̄2 +

15

16
m̄4 + O

(
m̄6

)]
(8.250)

S (M,J)|O(J2) =
ASch

class

4G0

+ 2πw̄

[
1

2
ln

(
2

m̄2

)
− 3

2
− 3m̄2

8
− 5

32
m̄4 + O

(
m̄6

)]

−
(

πJ2

M2G0

) [
1 +

3

4
m̄2 +

5

8
m̄4 + O

(
m̄6

)]
(8.251)

In writing down the result for the entropy we fixed the undetermined constant if

integration such that S = 0 for M = Mcr and J = 0.

We observe that the angular momentum dependent terms in (8.250) and (8.251)

decrease both the black hole’s temperature and entropy as compared to the corre-

sponding Schwarzschild quantities. We also see that the size of the J2-corrections

increases with m̄, i.e. these corrections grow as the mass M of the black hole becomes

smaller during the evaporation process.

As the most important aspect of the modified black hole thermodynamics we

recall that 2πT does not agree with the surface gravity κ here as it does in the

familiar (semi-) classical situation. We demonstrated that a modified first law can

exist only when we give up the relationship T = κ/2π. we also showed that, to order

J2, there is a uniquely determined modification of this relationship which allows for

the existence of a state function S (M,J) with the interpretation of an entropy.
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8.8 Conclusions

The results of this chapter can be summarized as follows. We have found exact

expressions for the surface gravity κ, the mass MH and the angular momentum JH

of the improved Kerr black hole. We have seen that the results for MH and JH

reflect the antiscreening character of the quantum fluctuations of the gravitational

field. Furthermore, we have studied how to construct a first law of improved black

hole dynamics. In that way we have come to the conclusion that the temperature,

considered as the integrating factor of the a priori inexact differential in the first

law, cannot be proportional to the surface gravity as in the usual case. We have also

computed O (J2) approximations to the first law, the entropy and the temperature

of the improved Kerr black hole. These results are consistent with previous results

for the improved Schwarzschild spacetime which they generalize in a nontrivial way.
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Chapter 9

Conclusions and Outlook

In this work we presented a procedure for “RG improving” black hole spacetimes

that is based upon Quantum Einstein Gravity, or “QEG”, as a very promising

candidate for a fundamental theory of quantum gravity. As we explained in the

introduction, several results, obtained during the past 7 years indicate the existence

of a non-Gaussian RG fixed point that would eventually “tame” the infinities in

the ultraviolet limit which ruin the applicability of perturbation theory. We have

considered the impact of QEG on black hole physics as one of the most important

applications any theory of quantum gravity will have.

We have focused our investigation on four basic subjects of black hole physics.

The main results related to these topics can be summarized as follows. Concerning

the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads

to a smooth deformation of the classical critical surfaces. Their number remains

unchanged. In relation to the Penrose process for energy extraction from black

holes, we have found that there exists a (non-trivial) correlation between regions of

negative energy states in the phase space of rotating test particles and configurations

of critical surfaces of the black hole. As for the vacuum energy-momentum tensor

and the energy conditions we have shown that no model with “normal” matter, in

the sense of matter fulfilling the usual energy conditions, can simulate the quantum

fluctuations described by the improved Kerr spacetime that we have derived. Finally,

in the context of black hole thermodynamics, we have performed calculations of the

mass and angular momentum of the improved Kerr black hole, applying the standard

Komar integrals. The results reflect the antiscreening character of the quantum

fluctuations of the gravitational field. Furthermore we calculated approximations to

the entropy and the temperature of the improved Kerr black hole to leading order in
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the angular momentum. More generally we have proven that the temperature can

no longer be proportional to the surface gravity, if an entropy-like state function is

to exist.

We have tried to emphasize the limitations of the improvement procedure and the

physical conditions that would eventually guarantee, if asymptotic safety is realized,

the reliability of our results. Having these limitations in mind we now move on to

formulate various related open questions and problems to be addressed in the future:

• Concerning the critical surfaces, it is important to clarify whether the disap-

pearence of the event horizon and the static limit for small masses is a real

phenomenon in the exact theory, or just an artifact result of our approach.

In this direction, the inclusion of further gravitational couplings or geometric

scales could eventually be helpful.

• In the analysis of the energy extraction from a black hole, it would be interest-

ing to calculate the irreducible mass Mirr, a concept that we have considered

only briefly. Having a formula (even approximated) of Mirr as a function of

MH and JH would give us a better idea of the efficiency of the process of energy

extraction in the improved case.

• In classical general relativity the relation between irreducible mass, area and

entropy of the black hole is very close. For the Kerr spacetime we have, in

natural units, M2
irr = A/16π = S/4π. In chapter 8 we have only calculated

an approximation to O (J2) of the entropy, but its relation to the area A =

4π
[(

rI
+

)2
+ a2

]
or to the irreducible mass Mirr is not known, if any.

• An investigation of the second and third laws of black hole dynamics is an im-

portant topic to be tackled, and an exact form of the first law would be desir-

able. Most probably progress in these directions will require new calculational

schemes which allow for a more efficient extraction of physical information

from QEG, its RG flow in particular.

The above list of issues is by no means complete, of course. The application

of global techniques and the study of singularities is another important problem,

for example. We hope nevertheless that this list will give rise to further interesting

developments in the future.
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Appendix A

Planck Units and Dimensionless

Quantities

In this appendix we define dimensionless variables from the Planckian quantities.

They are needed for many calculations or graphics throughout this work. Here we

use the tilde superscript ˜ for these quantities, even though it is sometimes supressed

in the text, when it doesn’t lead to ambiguities. (In those cases the dimensionless

property of the respective quantities is explicitly mentioned).

With the fundamental constants given by

G0 = 6.67259 × 10−11 m3 kg−1 s−2

c = 2.99792458 × 108 m s−1

~ = 1.05457266 × 10−34
J s

we construct the following physical values which define the Planck scale:

lp =

√
~G0

c3
= 1.61605 × 10−35 m (A.1)

mp =

√
~c

G0

= 2.17671 × 10−8 kg (A.2)

tp =

√
~G0

c5
= 5.39056 × 10−44 s (A.3)

After setting ~ = c = 1 we have for the Planck length, mass, and time, respectively,

lp =
√

G0 , mp =
1√
G0

, tp =
√

G0 (A.4)

With the values in (A.4) we define the following dimensionless quantities:

r̃ =
r

lp
=

r√
G0

, M̃ =
M

mp

=
√

G0M

187



For the case of the angular momentum J we have the dimensions

[J ] =
[M ] [L]2

[t]

which suggests the “Planck angular momentum”

Jp =
mpl

2
p

tp
=

G0

G0

= 1

As a result, the dimensionless J̃ agrees with J̃ = J/Jp = J .

Proceeding similarly for the parameter a of the Kerr metric we write

[a] =

[
J

M

]
=

[L]2

[T ]

ap =
l2p
tp

=
~G0

c3√
~G0

c5

=

√
~G0

c

ã =
a

ap

=
a√
~G0

c

(A.5)

Then finally setting ~ = c = 1 we have for a

ã =
a√
G0

The canonical mass dimensions of the radial coordinate r, the angular momentum

parameter a, the black hole mass M and the associated geometrical mass m = MG0

are

[r] = −1 , [a] = −1 , [M ] = 1 , [m] = −1 (A.6)

As a result, they are related to their dimensionless counterparts r̃, ã, M̃ , and m̃

according to

r = r̃
√

G0 , a = ã
√

G0 , M =
M̃√
G0

, m = MG0 =
√

G0M̃ , m = m̃
√

G0 (A.7)

Of course it follows trivially that M̃ = m̃.

Other important quantities which we need in dimensionless form are the follow-

ing1:

1For an explanation of the various quantitities see the main text.
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1. Logarithmic Aproximation for d (r)

The dimensionful (approximate) distance function

d(r) = r + m ln

(
r√

m2 − a2

)

has the dimensionless analog

d̃(r) ≡ d(r)√
G0

= r̃ + M̃ ln

(
r̃√

M̃2 − ã2

)
(A.8)

2. Running Newton Constant

In (4.2) we have defined G (r) as:

G (r) =
G0d (r)2

d (r)2 + w̄G0

We can rewrite it using (A.8) or any other definition for d̃ (r̃):

G (r) =
G2

0d̃ (r̃)2

G0d̃ (r̃)2 + w̄G0

= G0
d̃ (r̃)2

d̃ (r̃)2 + w̄

Since [G] = −2 we define G̃ = G/G0 and obtain

G̃ (r̃) ≡ G (r)

G0

=
d̃ (r̃)2

d̃ (r̃)2 + w̄
(A.9)

3. Reduced Circumference (Equator)

Discussing circular paths we encounter the expression

RI

(
r,

π

2

)
=

√
r2 + a2 +

2Ma2G (r)

r

=

√

G0r̃2 + G0ã2 +
2M̃ (G0ã2) G̃ (r̃) G0√

G0

√
G0r̃

=
√

G0

√

r̃2 + ã2 +
2M̃ã2G̃ (r̃)

r̃

As [RI ] = −1 we define R̃I (r̃) as follows:

R̃I (r̃) ≡ RI

(
r, π

2

)
√

G0

=

√

r̃2 + ã2 +
2M̃ã2G̃ (r̃)

r̃
(A.10)
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4. Improved Metric Components (Equator)

In the B-L representation of the improved Kerr metric we have the following

expressions at θ = π
2

for gϕt:

gϕt = −2G (r) Ma

r
= −2G0G̃ (r̃) M̃ã

√
G0

r̃
√

G0

√
G0

=

(
−2G̃ (r̃) M̃ã

r̃

)
√

G0

It entails the definition

g̃ϕt ≡
gϕt√
G0

= −2G̃ (r̃) M̃ã

r̃
(A.11)

Likewise gϕϕ = R2
I(r, π/2) = G0R̃

2
I (r̃) motivates us to set

g̃ϕϕ ≡ gϕϕ

G0

= R̃2
I (r̃) (A.12)

For gtt we have

gtt = −
(

1 − 2G (r) M

r

)
= −

(
1 − 2G0G̃ (r̃) M̃

r̃
√

G0

√
G0

)

= −
(

1 − 2G̃ (r̃) M̃

r̃

)

so that we define g̃tt as

g̃tt ≡ gtt = −
(

1 − 2G̃ (r̃) M̃

r̃

)
(A.13)

5. Zero Energy Angular Frequency (Equator)

For the frequency Ω0

(
r, π

2

)
we perform the following substitutions

Ω0

(
r,

π

2

)
≡ 2MG (r) r − r2

2MG (r) ra
=

(
1 − r

2MG (r)

)
1

a

=

(
1 − r̃

2M̃G̃ (r̃)

)
1

ã
√

G0

so that we can define

Ω̃0

(
r̃,

π

2

)
≡

√
G0Ω0

(
r,

π

2

)
=

(
1 − r̃

2M̃G̃ (r̃)

)
1

ã
(A.14)
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6. Dragging Frequency ω

From (2.37) we can write

ω = − gϕt

gϕϕ

= −
√

G0g̃ϕt

G0g̃ϕϕ

so that we come to the following definition of ω̃:

ω̃ ≡ ω
√

G0 = − g̃ϕt

g̃ϕϕ

(A.15)

7. Angular Frequency for Light Rays

In a similar way as for (A.14) and (A.15) we can see that:

Ω̃± ≡ Ω±
√

G0 = ω̃ ±
√

ω̃2 − g̃tt

g̃ϕϕ

(A.16)

8. Tangential Velocities for Light Rays

From (6.10), (A.10) and (A.16) we can write

vlight
± = R (r, θ) Ω± =

√
G0R̃ (r̃, θ)

Ω̃±√
G0

= R̃ (r̃, θ) Ω̃±

Here we define ṽlight
± as follows:

ṽlight
± ≡ vlight

± = R̃ (r̃, θ) Ω̃± (A.17)

In the main text we make frequent use of the above dimensionless expressions.
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Appendix B

Proper Distance Integrals

B.1 d (r) for the Schwarzschild Metric

The invariant distance d (r) in (3.8) splits into the two following cases:





∫ r

0
dr′√
|1− 2m

r′ |
=

∫ r

0
dr′√
2m
r′

−1
for r < 2m

∫ r

0
dr′√
|1− 2m

r′ |
=

∫ 2m

0
dr′√
2m
r′

−1
+

∫ r

2m
r′√

1− 2m
r′

for 2m < r
(B.1)

The above integrals have the following primitives (see [58]):

∫
dr√

1 − 2m
r

=
√

r (r − 2m) + m ln
(
−m + r +

√
r2 − 2mr

)
(B.2)

∫
dr√

2m
r
− 1

= −
[√

2mr − r2 + m arctan

(
m − r√
2mr − r2

)]
(B.3)

It’s a matter of elementary analysis to verify the integrals in expressions (B.2) and

(B.3). We omit therefore the proof (See [58]). We present instead the evaluation of

these primitives for the relevant integration regions.

B.1.1 Definite Integrals for two Cases

Using the primitives in (B.2) and (B.3) we can find the expressions (3.9) used in the

main text by inserting the limits for each case:
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• Region 1: r < 2m

d (r) =

∫ r

0

dr√∣∣1 − 2m
r

∣∣
=

∫ r

0

dr√
2m
r
− 1

(B.4)

= −
[√

2mr − r2 + m arctan

(
m − r√
2mr − r2

)]∣∣∣∣
r

0

= −
[√

2mr − r2 + m arctan

(
m − r√
2mr − r2

)]
+ m arctan (∞)

= −
[√

2mr − r2 + m arctan

(
m − r√
2mr − r2

)]
+

(mπ

2

)

• Region 2: 2m < r

d (r) =

∫ r

0

dr√∣∣1 − 2m
r

∣∣
=

∫ rh

0

dr√
2m
r
− 1

+

∫ r

rh

dr√
1 − 2m

r

By using the primitives we get

d (r) = −
[√

2mr − r2 + m arctan

(
m − r√
2mr − r2

)]∣∣∣∣
rh

0

+
[√

r (r − 2m) + m ln
(
−m + r +

√
r2 − 2mr

)]∣∣∣
r

rh

d (r) = −m [ arctan (−∞) − arctan (∞)] +[√
r (r − 2m) + m ln

(
−m + r +

√
r2 − 2mr

)]
− m ln m

= πm +
√

r (r − 2m) + m ln

(
r − m +

√
r2 − 2mr

m

)
(B.5)

It can be easily checked that arguments and discriminants in (B.4) and (B.5) lead

to well defined functions in the regions where they are to be applied. This is not so

obvious for the next case, the Kerr metric at the equatorial plane.

B.2 d (r) for the Kerr Metric at the

Equatorial Plane.

In section 3.1.2 we saw that for the integration of (3.11) at the equator we get two

different integrals given in (3.12) as

d (r) =





∫ r

0
r′dr′√

r′2+a2−2mr′
if ∆ (r) > 0

∫ r

0
r′dr′√

2mr′−r′2−a2
if ∆ (r) < 0

(B.6)
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Primitives for each case in (B.6) are the following (see [58])

∫
rdr√

r2 + a2 − 2mr
=

√
r2 + a2 − 2mr + m ln

∣∣∣r − m +
√

r2 + a2 − 2mr
∣∣∣

(B.7)∫
rdr√

2mr − r2 − a2
= −

√
2mr − r2 − a2 + m arctan

(
r − m√

2mr − r2 − a2

)

(B.8)

It is worthwhile, for the case of (B.7), to analyse the behavior of the argument in the

logarithm. As seen in figure B.1, it has real values precisely for the regions at which

this argument is to be applied, namely in the regions 1 and 3 as they are defined in

(3.5).

0 2 4 6 8 10

-2

0

2

4

6

8

r
−

m
+
√

r2
+

a
2
−

2m
r

m = 5 , a = 4

r− r+

r

Region 1 Region 2 Region 3

Fig. B.1.
r-dependence of the log-argument in (B.7) for a typical
set of values of m and a. The change of sign from re-
gion 1 to region 3 has to be taken into account when
calculating the absolute value in (B.7). Complex va-
lues are obtained for region 2, precisely where (B.7)
does not apply.



Since the real Log function is only defined for positive arguments, one has to

include an absolute value of this argument in order to guarantee that the primitive

is well defined, even for region 1. It can be shown that (B.7) with the absolute value

included is in fact a primitive:

f (r) =

∫
rdr√

r2 + a2 − 2mr
=

√
r2 + a2 − 2mr + m ln

∣∣∣r − m +
√

r2 + a2 − 2mr
∣∣∣

(B.9)

∣∣∣r − m +
√

r2 + a2 − 2mr
∣∣∣ = with





r − m +
√

r2 + a2 − 2mr For region 3

−r + m −
√

r2 + a2 − 2mr For region 1

Explicit derivatives read:

• Region 1

f(r) =
√

r2 + a2 − 2mr + m ln
(
−r + m −

√
r2 + a2 − 2mr

)

df

dr
=

r − m√
r2 + a2 − 2mr

− m(
r − m +

√
r2 + a2 − 2mr

)
(
−1 − r − m√

r2 + a2 − 2mr

)

=
r√

r2 + a2 − 2mr
Q.E.D

• Region 3

f(r) =
√

r2 + a2 − 2mr + m ln
(
r − m +

√
r2 + a2 − 2mr

)

df

dr
=

r − m√
r2 + a2 − 2mr

+
m(

r − m +
√

r2 + a2 − 2mr
)

(
1 +

r − m√
r2 + a2 − 2mr

)

=
r√

r2 + a2 − 2mr
Q.E.D

A last remark on this solution is that it can only be well defined for a < m. It is

based on the existence of the two radii r± = m ±
√

m2 − a2. They are real valued

provided that m ≥ a. The cases m = a and m < a imply different integrations

that should be considered independently. We don’t perform this analysis since these

cases are beyond the scope of our investigation. The arguments in (B.8) do not

represent a major problem.
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B.2.1 Definite Integrals for the Three Cases

Similarly as in the case for the Schwarzschild metric we evaluate the primi-

tives (B.7) and (B.8) for the regions (3.5) in order to find expressions (3.14), (3.15)

and (3.16).

• Region 1: r < r−

d1 (r) =

∫ r

0

√∣∣∣∣
r2

r2 + a2 − 2mr

∣∣∣∣dr =

∫ r

0

rdr√
r2 + a2 − 2mr

=
√

r2 + a2 − 2mr + m ln

(−r + m −
√

r2 + a2 − 2mr

|a − m|

)
− a

• Region 2: r− < r < r+

d2 (r) =

∫ r

0

√∣∣∣∣
r2

r2 + a2 − 2mr

∣∣∣∣dr

=

∫ r−

0

rdr√
r2 + a2 − 2mr

+

∫ r

r−

rdr√
2mr − r2 − a2

=
[√

r2 + a2 − 2mr + m ln
∣∣∣r − m +

√
r2 + a2 − 2mr

∣∣∣
]∣∣∣

r−

0
+

[
−
√

2mr − r2 − a2 + m arctan

(
r − m√

2mr − r2 − a2

)]∣∣∣∣
r

r−

= m ln

∣∣∣∣
−
√

m2 − a2

a − m

∣∣∣∣ − a −
√

2mr − r2 − a2 (B.10)

+m arctan

(
r − m√

2mr − r2 − a2

)
− [m arctan (−∞)]

=
m

2
ln

∣∣∣∣
m + a

m − a

∣∣∣∣ − a −
√

2mr − r2 − a2

+m arctan

(
r − m√

2mr − r2 − a2

)
+

mπ

2
(B.11)

• Region 3: 0 < r− < r+ < r

d3 (r) =

∫ r

0

√∣∣∣∣
r2

r2 + a2 − 2mr

∣∣∣∣dr

=

∫ r−

0

rdr√
r2 + a2 − 2mr

+

∫ r+

r−

rdr√
−r2 − a2 + 2mr

+

∫ r

r+

rdr√
r2 + a2 − 2mr

=
[√

r2 + a2 − 2mr + m ln
∣∣∣r − m +

√
r2 + a2 − 2mr

∣∣∣
]∣∣∣

r−

0
(B.12)

+

[
−
√

2mr − r2 − a2 + m arctan

(
r − m√

2mr − r2 − a2

)]∣∣∣∣
r+

r−

(B.13)
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+
[√

r2 + a2 − 2mr + m ln
∣∣∣r − m +

√
r2 + a2 − 2mr

∣∣∣
]∣∣∣

r

r+

(B.14)

Interval evaluations given by (B.12), (B.13) and (B.14) lead to the following

expressions:
[√

r2 + a2 − 2mr + m ln
∣∣∣r − m +

√
r2 + a2 − 2mr

∣∣∣
]∣∣∣

r−

0

= m ln
∣∣∣−

√
m2 − a2

∣∣∣ − m ln |a − m| − a

=
m

2
ln

∣∣∣∣
m + a

m − a

∣∣∣∣ − a (B.15)

[
−
√

2mr − r2 − a2 + m arctan

(
r − m√

2mr − r2 − a2

)]∣∣∣∣
r+

r−

(B.16)

= m arctan

( √
m2 − a2

√
2mr − r2 − a2 → 0+

)
− m arctan

( −
√

m2 − a2

√
2mr − r2 − a2 → 0+

)

= m arctan (+∞) − m arctan (−∞) = πm (B.17)

[√
r2 + a2 − 2mr + m ln

∣∣∣r − m +
√

r2 + a2 − 2mr
∣∣∣
]∣∣∣

r

r+

(B.18)

=
√

r2 + a2 − 2mr + m ln
(
r − m +

√
r2 + a2 − 2mr

)
− m ln

(√
m2 − a2

)

Summing (B.15), (B.16) and (B.18) for the third case we get

d3 (r) =
√

r2 + a2 − 2mr + m ln
(
r − m +

√
r2 + a2 − 2mr

)

−m ln
(√

m2 − a2
)

+
m

2
ln

∣∣∣∣
m + a

m − a

∣∣∣∣ − a + mπ

=
√

r2 + a2 − 2mr + m ln
(
r − m +

√
r2 + a2 − 2mr

)
+

πm − a − m ln |m − a| (B.19)

Our final results (B.10), (B.11) and (B.19) yield in each region a well defined ex-

pression of the invariant distance d (r) for the Kerr metric at the equatorial plane.

B.3 The Approximation of d (r, θ) for the

Kerr Metric Outside the Equator

The absolute value in (3.3) can be separately expanded into the two following ex-

pressions to first order in α = cos2 θ :
√

r2 + a2α

r2 − 2mr + a2
≈ r√

r2 + a2 − 2mr
+

a2α

2r
√

r2 + a2 − 2mr
(B.20)
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√
r2 + a2α

2mr − r2 − a2
≈ r√

2mr − r2 − a2
+

a2α

2r
√

2mr − r2 − a2
(B.21)

• Case 1

Integrating (B.20) up to terms of order cos2 θ we have

∫ √
r2 + a2 cos2 θ

r2 − 2mr + a2
dr ≈

∫
rdr√

r2 − 2mr + a2
+

a2 cos2 θ

2

∫
dr

r
√

r2 − 2mr + a2

(B.22)

Here the primitives are the following
∫

rdr√
r2 − 2mr + a2

=
√

r2 − 2mr + a2 + m ln
(∣∣∣r − m +

√
r2 − 2mr + a2

∣∣∣
)

(B.23)

∫
dr

r
√

r2 − 2mr + a2
=

1

a
ln

(∣∣∣∣
r

a2 − mr + a
√

r2 − 2mr + a2

∣∣∣∣
)

(B.24)

Inserting (B.23) and (B.24) in (B.22) we find:

∫ √
r2 + a2α

r2 − 2mr + a2
dr ≈

√
r2 − 2mr + a2 + m ln

(∣∣∣r − m +
√

r2 − 2mr + a2

∣∣∣
)

+
a cos2 θ

2
ln

(∣∣∣∣
r

a2 − mr + a
√

r2 − 2mr + a2

∣∣∣∣
)

(B.25)

• Case 2

Integrating now (B.21) up to terms of order O (cos2 θ) we get

∫ √
r2 + a2 cos2 θ

2mr − r2 − a2
dr ≈

∫
rdr√

2mr − r2 − a2
+

a2 cos2 θ

2

∫
dr

r
√

2mr − r2 − a2

(B.26)

The corresponding primitives are:

∫
rdr√

2mr − r2 − a2
= −

√
2mr − r2 − a2 + m arctan

(
r − m√

2mr − r2 − a2

)

(B.27)

198



∫
dr

r
√

2mr − r2 − a2
=

1

a
arctan

[
mr − a2

a
√

2mr − r2 − a2

]

(B.28)

By substituting in (B.26) we get:

∫ √
r2 + a2 cos2 θ

2mr − r2 − a2
dr ≈ −

√
2mr − r2 − a2 + m arctan

(
r − m√

2mr − r2 − a2

)

+
a cos2 θ

2
arctan

[
mr − a2

a
√

2mr − r2 − a2

]
(B.29)

The approximate results in (B.25) and (B.29) are also to be used in regions 1, 2 and

3 from (3.5). For this case we have to deal with two Logs in (B.23) and (B.24). The

first Log argument is the same as for (B.9), and the second one is plotted in figure

B.2. Again the absolute value in the argument prevents the Log function from being

ill-defined. The proof for the primitive in (B.24) runs along similar lines as that one

for (B.9) and it doesn’t represent any difficulty. The proofs for primitives (B.27)

and (B.28) are also straightforward. We omit them therefore.
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Fig. B.2.
r-dependence of the log-argument in (B.24) for a typical
set of values of m and a. The change of sign from re-
gion 1 to region 3 has to be taken into account when
calculating the absolute value in (B.24). Complex va-
lues are obtained for region 2, precisely where (B.24)
does not apply.
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B.3.1 Definite Integrals for three Cases

We evaluate now the primitives (B.25) and (B.29) for the regions defined in (3.5),

namely:

• Region 1: r0 < r < r−

d1 (r, θ) =

∫ r

r0

√∣∣∣∣
r2 + a2 cos2 θ

r2 − 2mr + a2

∣∣∣∣dr =

∫ r

r0

√
r2 + a2 cos2 θ

r2 − 2mr + a2
dr

≈





√
r2 − 2mr + a2 + m ln

(∣∣r − m +
√

r2 − 2mr + a2
∣∣)

+a2 cos2 θ
2a

ln
(∣∣∣ r

a2−mr+a
√

r2−2mr+a2

∣∣∣
)





∣∣∣∣∣∣

r

r0

Inserting the limits we get

d1 (r, θ) ≈
√

r2 − 2mr + a2 + m ln
(
−r + m −

√
r2 − 2mr + a2

)

+a cos2 θ
2

ln
(

r

a2−mr+a
√

r2−2mr+a2

)
− F1 (r0, θ, a,m)

(B.30)

with

F1 (r0 < r−, θ, a,m) =
√

r2
0 − 2mr0 + a2 + m ln

(∣∣∣∣r0 − m +
√

r2
0 − 2mr0 + a2

∣∣∣∣
)

+
a cos2 θ

2
ln

(∣∣∣∣∣
r0

a2 − mr0 + a
√

r2
0 − 2mr0 + a2

∣∣∣∣∣

)

Since we are in the region 1, we can transform the absolute values as follows:

F1 (r0 < r−, θ, a,m) =
√

r2
0 − 2mr0 + a2 + m ln

(
−r0 + m −

√
r2
0 − 2mr0 + a2

)

+
a cos2 θ

2
ln

(
r0

a2 − mr0 + a
√

r2
0 − 2mr0 + a2

)

(B.31)

• Region 2: r− < r < r+

d2 (r, θ) =

∫ r−

r0

√∣∣∣∣
r2 + a2 cos2 θ

r2 − 2mr + a2

∣∣∣∣dr

=

∫ r−

r0

√
r2 + a2 cos2 θ

r2 + a2 − 2mr
dr +

∫ r

r−

√
r2 + a2 cos2 θ

−r2 − a2 + 2mr
dr
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≈





√
r2 − 2mr + a2 + m ln

(∣∣r − m +
√

r2 − 2mr + a2
∣∣)

+a cos2 θ
2

ln
(∣∣∣ r

a2−mr+a
√

r2−2mr+a2

∣∣∣
)





∣∣∣∣∣∣

r−

r0

+





−
√

2mr − r2 − a2 + m arctan
(

r−m√
2mr−r2−a2

)

+a cos2 θ
2

arctan
[

mr−a2

a
√

2mr−r2−a2

]





∣∣∣∣∣∣

r

r−

Upon inserting the limits we have

d2 (r, θ) ≈ F1 (r−, θ, a,m) − F1 (r0, θ, a,m) (B.32)

+





−
√

2mr − r2 − a2 + m arctan
(

r−m√
2mr−r2−a2

)

+a cos2 θ
2

arctan
[

mr−a2

a
√

2mr−r2−a2

]



 − F2 (r−, θ, a,m)

where F1 (r0, θ, a,m) is given by (B.31) and F1 (r−, θ, a,m) , F2 (r−, θ, a,m) are given

as follows:

F1 (r−, θ, a,m) =





√
r2 − 2mr + a2 + m ln

(∣∣r − m +
√

r2 − 2mr + a2
∣∣)

+a cos2 θ
2

ln
(∣∣∣ r

a2−mr+a
√

r2−2mr+a2

∣∣∣
)





∣∣∣∣∣∣
r−

F1 (r−, θ, a,m) = m ln
(√

m2 − a2
)

+
a cos2 θ

2
ln

(
1√

m2 − a2

)
(B.33)

Here r− = m −
√

m2 − a2 was used in the last line. Similarly we can write for

F2 (r−, θ, a,m):

F2 (r−, θ, a,m) =





−
√

2mr − r2 − a2 + m arctan
(

r−m√
2mr−r2−a2

)

+a cos2 θ
2

arctan
[

mr−a2

a
√

2mr−r2−a2

]





∣∣∣∣∣∣
r−

And finally evaluating at r− = m −
√

m2 − a2 we find:

F2 (r−, θ, a,m) = m arctan (−∞) +
a cos2 θ

2
arctan (−∞)

= −πm

2
− πa cos2 θ

4
(B.34)

• Region 3: r− < r+ < r

d3 (r, θ) =

∫ r

r0

√∣∣∣∣
r2 + a2 cos2 θ

r2 − 2mr + a2

∣∣∣∣dr

=

∫ r−

r0

√
r2 + a2 cos2 θ

r2 + a2 − 2mr
dr +

∫ r+

r−

√
r2 + a2 cos2 θ

−r2 − a2 + 2mr
dr +

∫ r

r+

√
r2 + a2 cos2 θ

r2 + a2 − 2mr
dr
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≈





√
r2 − 2mr + a2 + m ln

(∣∣r − m +
√

r2 − 2mr + a2
∣∣)

+a cos2 θ
2

ln
(∣∣∣ r

a2−mr+a
√

r2−2mr+a2

∣∣∣
)





∣∣∣∣∣∣

r−

r0

+





−
√

2mr − r2 − a2 + m arctan
(

r−m√
2mr−r2−a2

)

+a cos2 θ
2

arctan
[

mr−a2

a
√

2mr−r2−a2

]





∣∣∣∣∣∣

r+

r−

+





√
r2 − 2mr + a2 + m ln

(∣∣r − m +
√

r2 − 2mr + a2
∣∣)

+a cos2 θ
2

ln
(∣∣∣ r

a2−mr+a
√

r2−2mr+a2

∣∣∣
)





∣∣∣∣∣∣

r

r+

Evaluating at the limits yields

d3 (r, θ) ≈ −F1 (r0, θ, a,m) + F1 (r−, θ, a,m) + F2 (r+, θ, a,m) − F2 (r−, θ, a,m)

+





√
r2 − 2mr + a2 + m ln

(∣∣r − m +
√

r2 − 2mr + a2
∣∣)

+a cos2 θ
2

ln
(∣∣∣ r

a2−mr+a
√

r2−2mr+a2

∣∣∣
)



 − F1 (r+, θ, a,m)

Since we are in region 3 we can interpret the absolute values as follows

d3 (r, θ) ≈ −F1 (r0, θ, a,m) + F2 (r+, θ, a,m) − F2 (r−, θ, a,m)

+





√
r2 − 2mr + a2 + m ln

(
r − m +

√
r2 − 2mr + a2

)

+a cos2 θ
2

ln
(

−r

a2−mr+a
√

r2−2mr+a2

)




(B.35)

with F1 (r0, θ, a,m) , F1 (r−, θ, a,m) and F2 (r−, θ, a,m) already given above. Fur-

thermore, F2 (r+, θ, a,m), F1 (r+, θ, a,m) are given by

F2 (r+, θ, a,m) =





−
√

2mr − r2 − a2 + m arctan
(

r−m√
2mr−r2−a2

)

+a cos2 θ
2

arctan
[

mr−a2

a
√

2mr−r2−a2

]





∣∣∣∣∣∣
r+

Or, upon inserting r+ = m +
√

m2 − a2,

F2 (r+, θ, a,m) =
πm

2
+

πa cos2 θ

4

Likewise,

F1 (r+, θ, a,m) =





√
r2 − 2mr + a2 + m ln

(∣∣r − m +
√

r2 − 2mr + a2
∣∣)

+a cos2 θ
2

ln
(∣∣∣ r

a2−mr+a
√

r2−2mr+a2

∣∣∣
)





∣∣∣∣∣∣
r+
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which becomes upon inserting inserting r+:

F1 (r+, θ, a,m) = m ln
(√

m2 − a2
)

+
a cos2 θ

2
ln

(
1√

m2 − a2

)

= F1 (r−, θ, a,m)

Thus we see that F1 has the same form at r+ and r−, respectively.

B.4 Series Expansion for d3 (r, θ)

From equation (3.20) we have an expression for the external d3 (r, θ) approximation

to d (r, θ) in (3.3), for θ ≈ π
2
:

d3 (r, θ) ≈





√
r2 − 2mr + a2 (A)

+m ln
(
r − m +

√
r2 − 2mr + a2

)
(B)

+a cos2 θ
2

ln
(

−r

a2−mr+a
√

r2−2mr+a2

)
(C)

+F2 (r+, θ, a,m) − F2 (r−, θ, a,m) − F1 (r0, θ, a,m)

(B.36)

We expand now (B.36) term by term in powers of 1
r
:

• Term (A)

√
r2 + a2 − 2mr = r

√
1 +

a2

r2
− 2m

r
= r

[
1 − m

r
+

a2 − m2

2r2
+

m (a2 − m2)

2r3
+ O

(
1

r2

)]

(B.37)

• Term (B)

m ln
(
r − m +

√
r2 − 2mr + a2

)
= m ln

[
(r − m)

(
1 +

√
1 +

a2 − m2

(r − m)2

)]

= m ln (r − m) + m ln
[(

1 +
√

1 + x
)]

(B.38)

Here we introduce the quantity x, with the expansion

x =
a2 − m2

(r − m)2 =

(
a2 − m2

r2

)
1

(
1 − m

r

)2 =

(
a2 − m2

r2

)(
1 +

2m

r
+

3m2

r2
+ · · ·

)

By expanding

m ln
[(

1 +
√

1 + x
)]

= m

[
ln 2 +

x

4
− 3x2

32
+ O

(
x3

)
+ · · ·

]
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and substituting into (B.38) we have

m ln
(
r − m +

√
r2 − 2mr + a2

)
=

m ln (r − m) + m

[
ln 2 +

a2 − m2

4 (r − m)2 − 3

32

(a2 − m2)
2

(r − m)4 + · · ·
]

= m ln (r − m) + m

[
ln 2 +

(
a2 − m2

4r2

)(
1 +

2m

r
+

3m2

r2
+ · · ·

)
− 3

32

(a2 − m2)
2

(r − m)4 + · · ·
]

Finally we can write:

m ln
(
r − m +

√
r2 − 2mr + a2

)
= m ln (r − m) + m

[
ln 2 +

(
a2 − m2

4r2

)
+ O

(
1

r3

)]

(B.39)

• Term (C)

a cos2 θ

2
ln

( −r

a2 − mr + a
√

r2 − 2mr + a2

)
=

a cos2 θ

2
ln


 1

−a2

r
+ m − a

√
1 − 2m

r
+ a2

r2




=
a cos2 θ

2

[
ln

(
1

m − a

)
− a

r
−

(am

2r2

)
+ O

(
1

r3

)]
(B.40)

Summing (B.37), (B.39) and (B.40) we get

d3 (r, θ) ≈ r − m + m ln (2 (r − m)) +
a cos2 θ

2
ln

(
1

m − a

)
(B.41)

+F2 (r+, θ, a,m) − F2 (r−, θ, a,m) − F1 (r0, θ, a,m)

+
a2 sin2 θ − m2

2r
+ m

(
a2 sin2 θ − m2

)

4r2
+ O

(
1

r3

)

After neglecting terms with orders higher or equal to 1
r

, we stay with

d3 (r, θ) ≈ r − m + m ln (2 (r − m)) +
a cos2 θ

2
ln

(
1

m − a

)
(B.42)

+F2 (r+, θ, a,m) − F2 (r−, θ, a,m) − F1 (r0, θ, a,m)

This is the expression in eq. (3.25) of the main text.
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B.5 Power Series for the

Meridian Reduced Circumference

The indefinite integral for (3.30) is given by:

∫ √
r2 + a2 cos2 θdθ =

(√
r2 + a2

)
E

(
θ

∣∣∣∣
a2

a2 + r2

)
(B.43)

where E (θ |x) denotes an elliptic integral of the second Kind. Evaluating the elliptic

integral at the limits in (3.30) we get

E (0 |x) = 0 , E (2π |x) = 4E (x) (B.44)

where E (x) denotes a complete elliptic integral. For a ¿ r we can perform the

following expansions:

E (x) =
π

2
− π

8
x − 3π

128
x2 − · · · (B.45)

x =
a2

a2 + r2
=

a2

r2

(
1 +

a2

r2
+

a4

r4
+ · · ·

)

√
r2 + a2 = r

(
1 +

a2

2r2
+ · · ·

)

Substituting (B.43), (B.44) and (B.45) in (3.30) we find

RMe
Kerr-I =

1

2π

∫ 2π

0

√
r2 + a2 cos2 θdθ

=
1

2π

(√
r2 + a2

)
E

(
θ

∣∣∣∣
a2

a2 + r2

)∣∣∣∣
2π

0

=
4

2π

(√
r2 + a2

)
E

(
a2

a2 + r2

)
(B.46)

≈ r

2π

(
1 +

a2

2r2
+ ..

) [
E

(
2π

∣∣∣∣
a2

r2

)
− E

(
0

∣∣∣∣
a2

r2

)]

≈ 4r

2π

(
1 +

a2

2r2
+ · · ·

)[
π

2
− π

8

a2

r2
− 3π

128

a4

r4
− · · ·

]

≈ r

(
1 +

a2

4r2
− a4

8r4
+ · · ·

)
(B.47)

The expression in (B.47) is precisely the expansion in eq. (3.31) of the main text.
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Appendix C

Transformation from

Boyer-Lindquist to

Eddington-Finkelstein Coordinates

In chapters 2 and 8 we have pointed out the necessity of representing the Kerr

spacetime in a system of coordinates that is well behaved at the event horizon in

order to calculate physical quantites like the surface gravity or the temperature.

The Eddington-Finkelstein coordinate systems (E-F) are an appropriate choice. In

this appendix we calculate the representation of the improved Kerr spacetime in the

ingoing E-F coordinates, starting from the Boyer-Lindquist (B-L) representation.

C.1 Some Useful Identities

In this section we demonstrate several identities that are needed later on in sec-

tion C.2. Two equivalent forms for the Improved Kerr metric in Boyer-Lindquist

coordinates are the following:

ds2 = −∆I

ρ2

(
dt − a sin2 θdϕ

)2
+

sin2 θ

ρ2

[(
r2 + a2

)
dϕ − adt

]2
+

ρ2

∆I

dr2 + ρ2dθ2

(C.1)

This is the “squared” form ([57, 877]). The standard form is given by

ds2 = −
(

1 − 2G (r) Mr

ρ2

)
dt2 − 4G (r) Mar sin2 θ

ρ2
dϕdt +

ΣI

ρ2
sin2 θdϕ2(C.2)

+
ρ2

∆I

dr2 + ρ2dθ2
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with the following definitions:

∆I = r2 − 2G (r) Mr + a2

ΣI =
(
r2 + a2

)2 − a2∆I sin2 θ

ρ2 = r2 + a2 cos2 θ

a =
J

M
(C.3)

From the first we can get almost directly the second:

ds2 = −∆I

ρ2

(
dt − a sin2 θdϕ

)2
+

sin2 θ

ρ2

[(
r2 + a2

)
dϕ − adt

]2
+

ρ2

∆I

dr2 + ρ2dθ2

= −∆I

ρ2
dt2 +

2a∆I sin2 θ

ρ2
dϕdt − ∆Ia

2 sin4 θ

ρ2
dϕ2 +

sin2 θ

ρ2

(
r2 + a2

)2
dϕ2 − 2a sin2 θ (r2 + a2)

ρ2
dϕdt +

a2 sin2 θ

ρ2
dt2 +

ρ2

∆I

dr2 + ρ2dθ2

=
(
a2 sin2 θ − ∆I

) dt2

ρ2
+

sin2 θ

ρ2
dϕ2

[(
r2 + a2

)2 − ∆Ia
2 sin2 θ

]

+
2a sin2 θ

ρ2

[
∆I −

(
r2 + a2

)]
dϕdt +

ρ2

∆I

dr2 + ρ2dθ2

As a result we have:

ds2 = −
[
1 − 2G (r) Mr

ρ2

]
dt2 +

ΣI sin2 θ

ρ2
dϕ2 − 4aMrG (r) sin2 θ

ρ2
dϕdt +

ρ2

∆I

dr2 + ρ2dθ2

The positivity of ΣI is also needed. It is straightforward to show that ΣI (r, θ) > 0

for all r > 0 and for all θ 6= 0, π. It is enough to expand ΣI as follows:

ΣI =
(
r2 + a2

)2 − a2∆I sin2 θ

= r4 + a4 cos2 θ + r2a2
(
2 − sin2 θ

)

+2G (r) Mra2 sin2 θ

where every term is clearly greater than zero.

From the last proof we conclude immediately the following:

gϕϕ =
ΣI

ρ2
sin2 θ > 0 ∀ r > 0 , ∀ θ 6= 0, π (C.4)

ω =
2G (r) Mr

ΣI

> 0 ∀ r > 0 , ∀ θ

Some “trivial” useful identities are the following. From ρ2 = r2 + a2 cos2 θ we

deduce

r2 + a2 = ρ2 + a2 sin2 θ = ρ2 + f 2 (C.5)
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where f 2 ≡ a2 sin2 θ. In terms of f the functions ∆I (r) ≡ r2 + a2 − 2G (r) Mr and

ΣI (r) ≡ (r2 + a2)
2 − a2∆I sin2 θ can be expressed as follows:

∆I (r) = ρ2 + f 2 − 2G (r) Mr (C.6)

ΣI =
(
ρ2 + f 2

)2 − ∆If
2 (C.7)

C.2 Improved Eddington-Finkelstein

Transformation

The improved E-F tranformations defined in chapter 8 comprise the ingoing coordi-

nates given by

v = t + r∗I , ψ = ϕ + r#
I (C.8)

and the outgoing coordinates defined as

v = t − r∗I , χ = ϕ − r# (C.9)

where r∗I and r#
I are the following integrals:

r∗I =

∫ (
r2 + a2

∆I

)
dr , r#

I =

∫ (
a

∆I

)
dr

The differential form of these transformations is more advantageous when we wish

to transform the metric components. The differential form of the ingoing transfor-

mation reads

dv = dt + dr∗I = dt +

(
r2 + a2

∆I

)
dr , dψ = dϕ + dr#

I = dϕ +

(
a

∆I

)
dr (C.10)

For the outgoing coordinates we have

dv = dt − dr∗I = dt −
(

r2 + a2

∆I

)
dr , dχ = dϕ − dr#

I = dϕ −
(

a

∆I

)
dr (C.11)

The improved Kerr spacetime in B-L coordinate reads

ds2 = −
(

1 − 2G (r) Mr

ρ2

)
dt2 − 4G (r) Mar sin2 θ

ρ2
dϕdt +

ΣI

ρ2
sin2 θdϕ2 +

ρ2

∆I

dr2 + ρ2dθ2

(C.12)

Substituting the ingoing E-F coordinates (C.10) in (C.12) yields

gttdt2 = −
(

1 − 2G (r) Mr

ρ2

) [
dv2 − 2

(r2 + a2)

∆I

dvdr +
(r2 + a2)

2

∆2
I

dr2

]
(C.13)
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gϕtdϕdt = −2
2G (r) Mar sin2 θ

ρ2

[
dψdv − a

∆I

drdv − (r2 + a2)

∆I

dψdr +
a (r2 + a2)

∆2
I

dr2

]

(C.14)

gϕϕdϕ2 =
ΣI sin2 θ

ρ2

[
dψ2 − 2a

∆I

dψdr +
a2

∆2
I

dr2

]
(C.15)

Factorizing differentials we get:

ds2 = gttdt2 + 2gϕtdϕdt + gϕϕdϕ2 + grrdr2 + gθθdθ2 = (C.16)

gttdv2 + grrdr2 + 2grvdrdv + 2grψdrdψ

+2gϕtdϕdt + 2gϕtdψdv + gϕϕdψ2 + gθθdθ2 =

−
(

1 − 2G (r) Mr

ρ2

)
dv2 +

dr2





−
(
1 − 2G(r)Mr

ρ2

) [
(r2+a2)

2

∆2
I

]
− 22G(r)Mar sin2 θ

ρ2

[
a(r2+a2)

∆2
I

]

+ΣI sin2 θ
ρ2

a2

∆2
I

+ ρ2

∆2
I





+ (C.17)

drdv

[
2
(r2 + a2)

∆I

(
1 − 2G (r) Mr

ρ2

)
+

4G (r) Ma2r sin2 θ

ρ2∆I

]
+ (C.18)

{
4G (r) (r2 + a2) Mar sin2 θ

ρ2∆I

− 2aΣI sin2 θ

∆Iρ2

}
dψdr + (C.19)

−4G (r) Mar sin2 θ

ρ2
dψdv +

ΣI sin2 θ

ρ2
dψ2 +

ρ2

∆I

dr2 + ρ2dθ2

By using the identities (C.5) to (C.7) we can simplify the partial results (C.17) to

(C.19) as follows:

ρ2∆2
Igrrdr2 = dr2

{
− [ρ2 − 2G (r) Mr] (r2 + a2)

2 − 4G (r) Ma2r (r2 + a2) sin2 θ

+a2ΣI sin2 θ + ρ4∆I

}
(C.20)

= dr2





− [∆I − f 2] (ρ2 + f 2)
2 − 2 (ρ2 + f 2 − ∆I) f 2 (ρ2 + f 2)

+f 2
[
(ρ2 + f 2)

2 − ∆If
2
]

+ ρ4∆I





= dr2

{
− [∆I − f 2] (ρ2 + f 2)

2
+ f 2 (ρ2 + f 2)

2 − 2f 2 (ρ2 + f 2)
2

+2∆If
2 (ρ2 + f 2) − ∆If

4 + ρ4∆I

}

= dr2
{[

−∆I + f 2 + f 2 − 2f 2
] (

ρ2 + f 2
)2

+ 2∆If
2
(
ρ2 + f 2

)
− ∆If

4 + ρ4∆I

}

= dr2
{
−∆Iρ

4 − 2∆Iρ
2f 2 − ∆If

4 + 2∆If
2ρ2 + 2∆If

4 − ∆If
4 + ρ4∆I

}

= 0
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As a result, grr = 0 in the ingoing E-F coordinates. For grv we have

2grv∆Iρ
2drdv = 2drdv

[(
r2 + a2

) (
ρ2 − 2G (r) Mr

)
+ 2G (r) Mrf 2

]

= 2drdv
[(

ρ2 + f 2
) (

∆I − f 2
)

+
(
ρ2 + f 2 − ∆I

)
f 2

]

= 2drdvρ2∆I (C.21)

In this case we conclude grv = 1. Finally for grψ we find

2grψρ2∆Idrdψ = −2a sin2 θ
{
ΣI − 2G (r) Mr

(
r2 + a2

)}
dψdr (C.22)

= −2a sin2 θ
{(

ρ2 + f 2
)2 − ∆If

2 +
(
∆I − f 2 − ρ2

) (
ρ2 + f 2

)}
dψdr

= −2a∆Iρ
2 sin2 θdψdr

which implies grψ = −a sin2 θ.

Finally substituting results in (C.20) to (C.22) in the line element (C.16) we find:

ds2 = −
(

1 − 2G (r) Mr

ρ2

)
dv2 + 2drdv − 2a sin2 θdψdr +

−4G (r) Mar sin2 θ

ρ2
dψdv +

ΣI sin2 θ

ρ2
dψ2 + ρ2dθ2 (C.23)

This is our final result. Replacing dr by −dr in (C.23) gives the representation in

the outgoing coordinates.
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Appendix D

RG improved Rotation Frequency

for Stationary Light Paths

In chapter 4 we have employed eq. (4.43) in order to find the condition ∆I = 0 of

the event horizon. The equation is given by

Ω± = ω ± ρ2
√

∆I

ΣI sin θ
(D.1)

We now derive this relation. From (4.36) and (4.25) we have:

Ω± = ω ±
√

ω2 − gtt

gϕϕ

(D.2)

ω2 − gtt

gϕϕ

=

(
1

g2
ϕϕ

) (
g2

ϕt − gϕϕgtt

)

Substituting the components (C.2) in (D.2) we have

ω2 − gtt

gϕϕ

=

(
ρ4

Σ2
I sin4 θ

) (
g2

ϕt − gϕϕgtt

)
=

(
ρ4

Σ2
I sin2 θ

)
X

with X given by

X =

(
1

sin2 θ

) (
g2

ϕt − gϕϕgtt

)

Expanding X we have

X =

(
1

sin2 θ

) (
g2

ϕt − gϕϕgtt

)

=

(
1

ρ4 sin2 θ

) {
[2G (r) Mr]2 a2 sin4 θ +

[
ρ2 − 2G (r) Mr

]
ΣI sin2 θ

}

=

(
1

ρ4

) {
[2G (r) Mr]2 a2 sin2 θ +

[
ρ2 − 2G (r) Mr

]
ΣI

}
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Employing identities (C.6) and (C.7) reduces X to

X =

(
1

ρ4

) {[
ρ2 + a2 sin2 θ − ∆I

]2
a2 sin2 θ (D.3)

+
[
∆I − a2 sin2 θ

] [(
ρ2 + a2 sin2 θ

)2 − a2∆I sin2 θ
]}

(D.4)

Substituting f 2 = a2 sin2 θ gives

X =

(
1

ρ4

) {[
ρ2 + f 2 − ∆I

]2
f 2 +

[
∆I − f 2

] [(
ρ2 + f 2

)2 − ∆If
2
]}

=

(
1

ρ4

) {
f 2

(
ρ2 + f 2

)2 − 2∆If
2
(
ρ2 + f 2

)
+ ∆2

If
2 + ∆I

(
ρ2 + f 2

)2
(D.5)

−f 2
(
ρ2 + f 2

)2 − ∆2
If

2 + ∆If
4
}

=

(
∆I

ρ4

) {(
ρ2 + f 2

)2 − 2f 2
(
ρ2 + f 2

)
+ f 4

}

=

(
∆I

ρ4

) {(
ρ2 + f 2 − f 2

)2
}

= ∆I

We have X = ∆I . As a result (D.2) is simplified to:

Ω± = ω ±
√

ω2 − gtt

gϕϕ

= ω ±
√(

ρ4

Σ2
I sin2 θ

)
X

Substituting X we come to:

Ω± = ω ± ρ2
√

∆I

ΣI sin θ
(D.6)

This is precisely the relation we wanted to proof.
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Appendix E

Condition for Extremal Black

Holes

in the d (r) = r Approximation

As remarked in subsection 5.2.1 the condition Qw̄

b̃
(r̃2) = 0 can be replaced by the

simpler equation given in (5.62):

r̃2
2

2

{
b̃2 + w̄ − m̃r̃2

}
+ w̄b̃2 = 0 (E.1)

This can be shown as follows.

We factorize the polynomial Qw̄

b̃
(r̃2) = r̃4 − 2m̃r̃3 + r̃2

(
b̃2 + w̄

)
+ w̄b̃2 to have

Qw̄

b̃
(r̃2) = r̃2

2

(
r̃2
2 − 2m̃r̃2 + b̃2 + w̄

)
+ w̄b̃2 (E.2)

From (5.57) we have for r̃2

r̃2 =
3m̃

4

[
1 +

√
1 − 8

9m̃2

(
b̃2 + w̄

)]
=

1

4

[
3m̃ +

√
9m̃2 − 8

(
b̃2 + w̄

)]
(E.3)

As a result, r̃2
2 gives

r̃2
2 =

(
1

16

) [
3m̃ +

√
9m̃2 − 8

(
b̃2 + w̄

)]2

=

(
1

8

) [
9m̃2 + 3m̃

√
9m̃2 − 8

(
b̃2 + w̄

)
− 4

(
b̃2 + w̄

)]

(E.4)

Substituting (E.3) and (E.4) in (E.2) we get:
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Qw̄

b̃
(r̃2) =

(
1

16

) [
3m̃ +

√
9m̃2 − 8

(
b̃2 + w̄

)]2

×

×
{(

1

8

) [
9m̃2 + 3m̃

√
9m̃2 − 8

(
b̃2 + w̄

)
− 4

(
b̃2 + w̄

)]

−2m̃

4

[
3m̃ +

√
9m̃2 − 8

(
b̃2 + w̄

)]
+ b̃2 + w̄

}
+ w̄b̃2

=

(
1

16

) [
3m̃ +

√
9m̃2 − 8

(
b̃2 + w̄

)]2 {
−3m̃2

8
− m̃

8

√
9m̃2 − 8

(
b̃2 + w̄

)
+

1

2

(
b̃2 + w̄

)}
+ w̄b̃2

=

(
1

16

) [
3m̃ +

√
9m̃2 − 8

(
b̃2 + w̄

)]2 {
1

2

(
b̃2 + w̄

)
− m̃

8

[
3m̃ +

√
9m̃2 − 8

(
b̃2 + w̄

)]}
+ w̄b̃2

Remembering that

r̃2 =
3m̃

4

[
1 +

√
1 − 8

9m̃2

(
b̃2 + w̄

)]
(E.5)

we come to the result:

Qw̄

b̃
(r̃2) =

r̃2
2

2

{
b̃2 + w̄ − m̃r̃2

}
+ w̄b̃2

This is exactly the representation we wanted to derive.
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Appendix F

Killing Vectors for the Improved

Kerr Spacetime

By definition a Killing vector ξ fulfills the Killing equation:

∇µξν + ∇νξµ = 0 (F.1)

Knowing that in some system of coordinates

∂gµν

∂t
=

∂gµν

∂ϕ
= 0 (F.2)

we can show that the vectors given by

t =
∂

∂t
, ϕ =

∂

∂ϕ
(F.3)

are Killing vectors of the improved Kerr spacetime. In the B-L coordinates the

components of t ≡ tµ∂µ and ϕ ≡ ϕµ∂µ are

tν = δν
t , ϕν = δν

ϕ (F.4)

tµ = gµt , ϕµ = gµϕ

Denoting any of the vectors in (F.4) by a generic vector η associated to the cyclic

coordinate η we can directly check (F.1):

∇νηµ = gµα∇νη
α = gµα

(
∂ηα

∂xν
+ Γα

νση
σ

)
= gµα

[
∂

(
δα

η

)

∂xν
+ Γα

νσδ
σ
η

]

= gµαΓα
νη = Γµνη =

1

2

(
∂gµη

∂xν
+

∂gµν

∂η
− ∂gνη

∂xµ

)
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Therefore we can write

∇νηµ =
1

2

(
∂gµη

∂xν
− ∂gνη

∂xµ

)
(F.5)

where we have used the cyclic character of the coordinates η. Then we see immedi-

ately that

∇νηµ + ∇µην =
1

2

(
∂gµη

∂xν
− ∂gνη

∂xµ
+

∂gµη

∂xν
− ∂gνη

∂xµ

)
= 0

Or in more detail,

∇νtµ + ∇µtν = 0

∇νϕµ + ∇µϕν = 0

This is the result we were looking for.

A similar result we get for any linear combination of t and ϕ

ξ = αt + βϕ

with α and β constant coeficients. By using (F.6) we have that trivially

∇νξµ + ∇µξν = α (∇νtµ + ∇µtν) + β
(
∇νϕµ + ∇µϕν

)
= 0 (F.6)

so that any linear combination of t and ϕ is a Killing vector too.
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Appendix G

Spherically Symmetric Space in

E-F Coordinates

In this appendix we calculate the E-F representations of the static and spherically

symmetric metric by performing the E-F transformations (8.11) and (8.12). The

Schwarzschild representation of this metric is given in eq. (8.10) by

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)
(G.1)

We start with the ingoing coordinates by substituting the transformation (8.12)

in (G.1). This transformation is given by

v = t + r∗ , r∗ =

∫
dr

f (r)

The differential form of this transformation reads:

dv = dt +
dr

f (r)
(G.2)

As a result, we have for the line element ds2

ds2 = −f (r)

(
dv − dr

f (r)

)2

+
dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)

= −f (r) dv2 + 2dvdr − dr2

f (r)
+

dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)
(G.3)

so that finally

ds2 = −f (r) dv2 + 2dvdr + r2
(
dθ2 + sin2 θdϕ2

)
(G.4)
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This is exactly the result we wanted to derive (see eq. 8.15).

The representation with the outgoing coordinates is found after replacing in

(G.4) the differential dr by −dr. As a result we have

ds2 = −f (r) du2 − 2dudr + r2
(
dθ2 + sin2 θdϕ2

)
(G.5)

Eqs. (8.15) and (8.14) are the two representations discussed in subsection 8.2.1.
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Appendix H

Calculation of the Surface Gravity

In this appendix we perform in detail some calculations related to the derivation

of the surface gravity of the improved Kerr black hole. We find expressions for the

Killing vector ξ in B-L and E-F coordinates, we evaluate this vector at the event

horizon and finally we derive an expression of ξµξµ in the ingoing E-F coordinates.

H.1 The Killing vector ξ in B-L

and E-F Coordinates

Here we perform the calculation of the components ξµ in B-L and E-F Coordinates.

These components are a linear combination of tµ and ϕµ:

ξµ = tµ + ϕµΩ (H.1)

Starting with the B-L coordinates we substitute the expressions (4.14) for tµ and

ϕµ in (H.1) and obtain

ξµ ≡ δµ
t + δµ

ϕΩ (H.2)

with ξt = 1, ξr = 0, ξθ = 0, ξϕ = Ω. Lowering the index µ gives

ξµ = gµt + Ωgµϕ (H.3)

The transformation from B-L to E-F coordinates for the improved Kerr spacetime

is given by

dr∗I ≡
(

r2 + a2

∆I

)
dr

dr#
I ≡

(
a

∆I

)
dr (H.4)
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where ∆I ≡ r2 + a2 − 2MG (r) r. The ingoing and outgoing E-F coordinates,

respectively, are defined as follows:

• Ingoing E-F Coordinates (“Ingoing Patch”)

dv = dt + dr∗I (H.5)

dψ = dϕ + dr#
I (H.6)

• Outgoing E-F Coordinates (“Outgoing Patch”)

du = dt − dr∗I (H.7)

dχ = dϕ − dr#
I (H.8)

We choose the ingoing E-F coordinates in order to find the form of (H.1). If we

represent the spacetime events as xµ = (v, r, θ, ψ) in these coordinates 1, the Killing

vectors t and ϕ have the components

tµ ≡ ∂xµ

∂v
=

(
∂v

∂v
,

∂r

∂v
,

∂θ

∂v
,

∂ψ

∂v

)
= (1, 0, 0, 0) (H.9)

ϕµ ≡ ∂xµ

∂ψ
=

(
∂v

∂ψ
,

∂r

∂ψ
,

∂θ

∂ψ
,

∂ψ

∂ψ

)
= (0, 0, 0, 1) (H.10)

Exploiting the Kronecker deltas we have finally for tµ and ϕµ the following result:

tµ = δµ
v , µ = v, r, θ, ψ (H.11)

ϕµ = δµ
ψ , µ = v, r, θ, ψ (H.12)

The frequency Ω has completely equivalent definitions in both coordinate systems.

Since dt = dv and dψ = dϕ we have

Ω ≡ dϕ

dt
=

dψ

dv
(H.13)

Substituting (H.11), (H.12) and (H.13) in (H.1) leads to

ξµ =
∂xµ

∂v
+ Ω

∂xµ

∂ψ
= δµ

v + Ωδµ
ψ (H.14)

With a lower index we have instead

ξµ = gµv + Ωgµψ , µ = v, r, θ, ψ (H.15)

Expressions (H.2), (H.3) and (H.14), (H.15) are the respective expressions presented

in subsection 8.2.2 for ξ in the B-L and E-F coordinates.
1Remember that we have xµ = (t, r, θ, ϕ) for the B-L coordinates.
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H.2 The Killing vector ξ at the Kerr Event Hori-

zon

In this subsection we evaluate at the event horizon, the components (H.15) of ξ

in the ingoing E-F coordinates. We obtain, as a result, the expression (8.47) of

chapter 8.

The component ξv|rI
+

is given by

ξv = gvv|r+
+ ΩH gvψ|r+

= gvv|r+
−

g2
vψ

gψψ

∣∣∣∣
r+

(H.16)

Since at the event horizon all the rotation frequencies coalesce, in particular we have

Ω±|r+
= ω|r+

(H.17)

Substituting eq. (4.36) for Ω± in (H.17) gives
(

ω2 − gtt

gϕϕ

)∣∣∣∣
r+

= 0

Substituting ω = −gϕt/gϕϕ gives the following:
(

g2
tϕ

gϕϕ

− gtt

)∣∣∣∣
r+

= 0 (H.18)

We have the following equivalent metric components in the B-L and the E-F repre-

sentations:

gtt = gvv , gvψ = gtϕ , gϕϕ = gψψ (H.19)

As a result eq. (H.18) is written in E-F coordinates as follows:
(

g2
tϕ

gϕϕ

− gtt

)∣∣∣∣
r+

=

(
g2

vψ

gψψ

− gvv

)∣∣∣∣
r+

= 0

but from (H.16) we see that this is precisely ξv , namely:

ξv = gvv|r+
−

g2
vψ

gψψ

∣∣∣∣
r+

= 0

For the r and θ components we substitute gvr = 1 and grψ = −a sin2 θ

ξr = gvr|r+
+ ΩH grψ|r+

= 1 − aΩH sin2 θ

ξθ = gvθ|r+
+ ΩH gθψ|r+

= 0 + ΩH ∗ 0 = 0

ξψ is trivially equal to zero.
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H.3 Simplification of ξ2

As discussed in chapter 8 the scalar ξµξ
µ can be read off directly from the metric

components in (8.9). In the E-F representation we have:

ξµξ
µ =

(
ds

dv

)2
∣∣∣∣∣
(r,θ fixed)

(H.20)

The metric components in the ingoing E-F representation read

ds2 = −
(

1 − 2G (r) Mr

ρ2

)
dv2 + 2drdv − 2a sin2 θdψdr +

−4G (r) Mar sin2 θ

ρ2
dψdv +

ΣI sin2 θ

ρ2
dψ2 + ρ2dθ2 (H.21)

Parametrizing the line element (H.21) in v at r and θ fixed, gives

ξµξ
µ = −

(
1 − 2G (r) Mr

ρ2

)
− 4G (r) Mar sin2 θ

ρ2
Ω +

ΣI sin2 θ

ρ2
Ω2

= − 1

ρ2

[
ρ2 − 2G (r) Mr

]
+

ΣI sin2 θ

ρ2

[
Ω2 − 4G (r) Mar

ΣI

Ω

]

= − 1

ρ2

[
ρ2 − 2G (r) Mr

]
+

ΣI sin2 θ

ρ2

[
Ω2 − 2ωΩ + ω2

]
− ΣI sin2 θ

ρ2
ω2

= − 1

ΣIρ2

[
ΣI

(
ρ2 − 2G (r) Mr

)
+ Σ2

Iω
2 sin2 θ

]
+

ΣI sin2 θ

ρ2
(Ω − ω)2

= − 1

ΣIρ2

[
ΣI

(
ρ2 − 2G (r) Mr

)
+ (2G (r) Mar)2 sin2 θ

]

+
ΣI sin2 θ

ρ2
(Ω − ω)2

We define the function F (r, θ) to be

F (r, θ) ≡
[
ΣI

(
ρ2 − 2G (r) Mr

)
+ (2G (r) Mar)2 sin2 θ

]
(H.22)

As a result ξµξµ takes the form

ξµξ
µ = −F (r, θ)

ΣIρ2
+

ΣI sin2 θ

ρ2
(Ω − ω)2 (H.23)
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The function F (r, θ) can be simplified employing the identities (C.5) to (C.7)

F (r, θ) =
{
ΣI

[
ρ2 − 2G (r) Mr

]
+ [2G (r) Mar]2 sin2 θ

}

=
{
ΣI

[
ρ2 − 2G (r) Mr

]
+ [2G (r) Mr]2 f 2

}
, (f 2 = a2 sin2 θ)

=
[(

ρ2 + f 2
)2 − f 2∆I

] (
∆I − f 2

)
+

(
ρ2 + f 2 − ∆I

)2
f 2

=
(
ρ2 + f 2

)2 (
∆I − f 2

)
− f 2∆I

(
∆I − f 2

)
+

(
ρ2 + f 2

)2
f 2 − 2

(
ρ2 + f 2

)
∆If

2 + ∆2
If

2

= ρ4∆I + 2f 2ρ2∆I + f 4∆I − 2ρ2∆If
2 − 2f 4∆I − f 2∆2

I + f 4∆I + ∆2
If

2

= ρ4∆I

As a result the scalar ξµξµ in eq. (H.23) is simplified to the final expression:

ξµξ
µ =

ΣI sin2 θ

ρ2
(Ω − ω)2 − ρ2∆I

ΣI

(H.24)

This is precisely eq. (8.37).
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Appendix I

Calculation of MH and JH

I.1 Area of the Event Horizon

In order to calculate the area of a three dimensional hypersurface Σ in spacetime we

need to define the metric intrinsic to Σ, namely the metric obtained by restricting

the line element to displacements confined to the hypersurface. The parametric

equations that define Σ are given by

xα = xα (ya) , a = 1, 2, 3 (I.1)

where ya are coordinates intrinsic to Σ. The vectors ea defined as

eα
a =

dxα

dya
(I.2)

are tangent to curves contained in Σ. Now, for displacements within Σ we have

ds2
Σ = gαβdxαdxβ = gαβ

(
dxα

dya
dya

)(
dxβ

dyb
dyb

)
= habdyadyb (I.3)

where the induced metric hαβ is defined as follows

hab ≡ gαβ

(
dxα

dya

)(
dxβ

dyb

)
= gαβeα

aeβ
b (I.4)

By definition hαβ is the metric that determines distances inside Σ. Therefore, it

relates the intrinsic line element with intrinsic displacements

ds2
Σ = habdyadyb (I.5)

as one can see from (I.3). When Σ is null, the following choice of coordinates takes

advantage of the light-like character of the tangent vectors to Σ:

ya ≡
(
λ, θA

)
, A = 1, 2 (I.6)
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where λ parametrizes the null geodesics in Σ, in such a way that a displacement

from the point p along the geodesic γ is given by

dxβ = kβdλ (I.7)

and kβ is the tangent vector to γ at p. The coordinates θA change transversely to

γ. In that sense we say that θA label the geodesics. The line element (I.5) takes the

following form in terms of the coordinates (I.6)

ds2
Σ = σABdθAdθB (I.8)

where we have used the null character of kα, and σAB is given by

σAB ≡ gαβeα
Aeβ

B (I.9)

eα
A =

(
∂xα

∂θA

)

λ fixed

Here the induced metric is a two-tensor.

The area of the event horizon is defined by [60]

A ≡
∮

H

√
σd2θ (I.10)

where H is a two-dimensional cross section of the event horizon, described by

v =constant, r = rI
+, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π1. The metric induced in H represented

in the ingoing E-F coordinates results from fixing r and v in the line element given

by:

ds2 = −
(

1 − 2G (r) Mr

ρ2

)
dv2 + 2drdv − 2a sin2 θdψdr +

−4G (r) Mar sin2 θ

ρ2
dψdv +

ΣI sin2 θ

ρ2
dψ2 + ρ2dθ2 (I.11)

As a result we have

ds2
H = σabdθadθb

= gθθdθ2 + gψψdψ2

= ρ2dθ2 +
ΣI

ρ2
sin2 θdψ2

The determinant σ is given by σ = ΣI sin2 θ and its root is
√

σ =
√

ΣI sin θ. As a

result we have for (I.10)

A =

∫ 2π

0

∫ π

0

√
ΣI

∣∣∣
rI
+

sin θdθdψ (I.12)

1For a definition of event horizon in topological terms, see [68]
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Since
√

ΣI

∣∣
rI
+

=
(
rI
+

)2
+ a2 is angular independent we can integrate (I.12) and find

A = 4π
[(

rI
+

)2
+ a2

]
(I.13)

This expression preserves the original form of the event horizon’s area of the classical

Kerr black hole. Nevertheless, the radius rI
+ ≡ rI

+ (a,M) depends on the parameters

a and M , and this relationship is modified by the renormalization effects.

I.2 Metric Components in the E-F Representa-

tion

In order to calculate MH and JH from (8.84) and (8.116) we need to know, besides

the components gαβ of the improved Kerr metric in the E-F representation, also the

components gαβ with upper indices, evaluated at the event horizon. In the ingoing

E-F representation we have the following for gαβ :

g11 = gvv = −
(

1 − 2G (r) Mr

ρ2

)
, g12 = grv = 1 , g24 = grψ = −a sin2 θ

g41 = gψv = −2G (r) Mar sin2 θ

ρ2
, g44 = gψψ =

Σ sin2 θ

ρ2
, g33 = gθθ = ρ2

g22 = grr = 0 (I.14)

The rest are zero. Here we have chosen the ordering of coordinates as (x1, x2, x3, x4) =

(t, r, θ, ϕ). The components gαβ are given by the inverse matrix of gαβ, namely:

gαβ =
1

det g




g22g44 − g2
24 − (g12g44 − g24g14) 0 g12g24 − g22g14

− (g12g44 − g24g14) g11g44 − g2
14 0 − (g11g24 − g12g14)

0 0 1
g33

0

g12g24 − g22g14 − (g11g24 − g12g14) 0 g11g22 − g2
12




(I.15)

with det g given by

det g = g11g22g44 − g11g
2
24 − g2

12g44 + 2g12g24g14 − g2
14g22 (I.16)

= gvvgrrgψψ − gvvg
2
rψ − g2

vrgψψ + 2gvrgrψgvψ − g2
vψgrr

Inserting grr = 0 in the E-F representation, we find

det g = −gvvg
2
rψ − g2

vrgψψ + 2gvrgrψgvψ
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From (I.15) we see that the relevant expressions to be calculated are:

grr =
gvvgψψ − g2

vψ

det g
, grv =

grψgvψ − gvrgψψ

det g
, grψ =

gvrgvψ − gvvgrψ

det g
(I.17)

They require the following components evaluated at the event horizon

gvv|r+
= −

(
1 − 2G (r) Mr

ρ2

)∣∣∣∣
r+

= −
(

∆I − a2 sin2 θ

ρ2

)∣∣∣∣
r+

(I.18)

=

(
b2

ρ2

)∣∣∣∣
r+

where

b2 = a2 sin2 θ

and also

gvr|r+
= 1 , gvψ|r+

= −2G (r+) Mar+ sin2 θ

ρ2|r+

, grψ|r+
= −a sin2 θ , grr|r+

= 0

(I.19)

gψψ|r+
=

(
r2
+ + a2

)2
sin2 θ

ρ2|r+

=

(
ρ2|r+

+ b2
)2

sin2 θ

ρ2|r+

(I.20)

Here we have used the identities (C.5) to (C.7).

We need also to find det g|r+
. Inserting (I.18) to (I.20) in (I.16) we have

det g|r+
= 2gvrgrψgvψ − gvvg

2
rψ − g2

vrgψψ (I.21)

=
(
2a sin2 θ

)
(

2G (r+) Mar+ sin2 θ

ρ2|r+

)
−

(
b2a2 sin4 θ

ρ2

)∣∣∣∣
r+

−

(
ρ2|r+

+ b2
)2

sin2 θ

ρ2|r+

(I.22)

Simplifying (I.22) leads to

det g|r+
=

sin2 θ

ρ2|r+

[
4b2G (r+) Mr+ − b4 −

(
ρ2

∣∣
r+

+ b2
)2

]
(I.23)

Taking into account r2
+ + a2 − 2G (r+) Mr+ = 0 and ρ2|r+

+ b2 = r2
+ + a2 implies

det g|r+
=

sin2 θ

ρ2|r+

[
2b2

(
ρ2

∣∣
r+

+ b2
)
− b4 −

(
ρ2

∣∣
r+

+ b2
)2

]

= − sin2 θ ρ2
∣∣
r+

(I.24)
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Now we are ready to find grr , grv and grψ. Substituting in (I.17), expressions (I.18)

to (I.20) and (I.24), leads to

grr|r+
=

gvvgψψ − g2
vψ

det g

∣∣∣∣
r+

=

(
1

−ρ2 sin2 θ
∣∣
r+

)
×

×




(
b2

ρ2

)∣∣∣∣
r+

(
r2
+ + a2

)2
sin2 θ

ρ2|r+

−
(

2G (r+) Mar+ sin2 θ

ρ2|r+

)2



=

(
sin2 θ

−ρ2 sin2 θ
∣∣
r+

) (
b2

ρ4

)∣∣∣∣
r+

×
[(

r2
+ + a2

)2 − (2G (r+) Mr+)2
]

= 0

where we have used again r2
+ + a2 − 2G (r+) Mr+ = 0. Then grr|r+

is identically

zero. For grv|
r+

we proceed as follows: First substituting (I.24) and the components

(I.18) to (I.20) into the expression for grv|
r+

in (I.17) gives rise to

grv|
r+

=
grψgvψ − gvrgψψ

det g

∣∣∣∣
r+

=

=

(
−a sin2 θ

) (
−2G(r+)Mar+ sin2 θ

ρ2|r+

)
−

[
(r2

++a2)
2
sin2 θ

ρ2|r+

]

− sin2 θ ρ2|r+

∣∣∣∣∣∣∣∣
r+

and simplifying yields

grv|
r+

=
2b2G (r+) Mr+ −

(
r2
+ + a2

)2

− ρ4|r+

∣∣∣∣∣
r+

Now we apply ρ2 + b2 = r2 + a2 to obtain

grv|
r+

=
2b2G (r+) Mr+ −

(
ρ2|+ + b2

)2

− ρ4|r+

∣∣∣∣∣
r+

At this point we use 2MG (r+) r+ = ρ2|r+
+ b2, with the result

grv|
r+

=
b2

(
ρ2|+ + b2

)
−

(
ρ2|+ + b2

)2

− ρ4|r+

∣∣∣∣∣
r+

Finally simplifying we get to:

grv|
r+

=

(
ρ2|+ + b2

)

ρ2|r+

∣∣∣∣∣
r+
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The last component is grψ
∣∣
r+

. First substituting components and simplifying

yields

grψ
∣∣
r+

=
gvrgvψ − gvvgrψ

det g

∣∣∣∣
r+

=

(
−2G(r+)Mar+ sin2 θ

ρ2|r+

)
−

(
b2

ρ2

)∣∣∣
r+

(
−a sin2 θ

)

− sin2 θ ρ2|r+

∣∣∣∣∣∣∣∣
r+

=
a b2|r+

− 2G (r+) Mar+

− ρ4|r+

∣∣∣∣∣
r+

Applying 2G (r+) Mar+ = ρ2 + b2|r+
leads to the final result

grψ
∣∣
r+

=
a b2|r+

−
(
ρ2 + b2|r+

)
a

− ρ4|r+

∣∣∣∣∣∣
r+

=
a

ρ2|r+

(I.25)

I.3 Finding the Normal Vector Nα

Nα is a light like four-vector, orthogonal to the event horizon. It is an auxiliary

vector, necessary to be included in order to isolate the part of the metric gµν that

is transverse to ξµ, the generator of H 2. It fulfills the following two conditions:

Nµξ
µ = −1 , NµN

µ = 0

Exploiting equation (8.47) ξα|r+
=

(
1 − aΩH sin2 θ

)
δrα in E-F coordinates, we get

the following for Nµξ
µ = −1

Nµξµ = N r
(
1 − aΩH sin2 θ

)
= −1

This implies

N r =
−1(

1 − aΩH sin2 θ
)

and by construction we have

N rξr|r+
= −1 (I.26)

From equations (8.72) and (8.93), where we have already applied (I.26), we see that

this expression contains all the information about Nµ necessary in order to evaluate

MH and JH from the Komar integrals (8.59) and (8.60). Therefore we do not need

to go further into finding the rest of the components of Nµ.
2For more details about Nµ see Ref. [60]
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I.4 Derivatives of Metric Components at r+

Now we calculate the derivatives in (8.73) and (8.74). For
(

∂gvv

∂r

)∣∣
r+

we can write

(
∂gvv

∂r

)∣∣∣∣
r+

= − ∂

∂r

(
ρ2 − 2G (r) Mr

ρ2

)∣∣∣∣
r+

=

(
2M

ρ4

) {
ρ2 [G′ (r) r + G (r)] − 2r2G (r)

}∣∣∣∣
r+

(I.27)

Here we have used ∂ρ2

∂r
= 2r. Now inserting ρ2 = r2 + a2 cos2 θ leads to

(
∂gvv

∂r

)∣∣∣∣
r+

=

(
2Mr2

ρ4

)
[rG′ (r) − G (r)]

∣∣∣∣
r+

+

(
2Ma2 cos2 θ

ρ4

)
[rG′ (r) + G (r)]

∣∣∣∣
r+

(I.28)

For
(

∂gψv

∂r

)∣∣∣
r+

we have

(
∂gψv

∂r

)∣∣∣∣
r+

= −2Ma
∂

∂r

(
G (r) r sin2 θ

ρ2

)∣∣∣∣
r+

= −
(

2Ma sin2 θ

ρ4

) [
(rG′ (r) + G (r)) ρ2 − 2G (r) r2

]∣∣∣∣
r+

Now substituting ρ2 = r2 + a2 cos2 θ leads to
(

∂gψv

∂r

)∣∣∣∣
r+

= −
(

2Mar2 sin2 θ

ρ4

)
[rG′ (r) − G (r)]

∣∣∣∣
r+

−
(

2Ma3 sin2 θ cos2 θ

ρ4

)
[rG′ (r) + G (r)]

∣∣∣∣
r+

(I.29)

I.5 Definite Integrals for MH

Here we calculate the definite integrals necessary in order to get analytical expres-

sions for MH and JH . All of them have a similar structure. They are carried out by

applying the same kind of substitution. We start with:

I1 =

∫ π

0

sin θdθ

(r2
+ + a2 cos2 θ)

2 (I.30)

Factorizing 1/r4
+ leads to

I1 =

(
1

r4
+

) ∫ π

0

sin θdθ
(
1 + a2 cos2 θ

r2
+

)2 (I.31)
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Substituting u =
(

a
r+

)
cos θ , du = −

(
a

r+

)
sin θdθ in (I.31) leads to

I1 = −
(

1

ar3
+

) ∫ − a
r+

a
r+

du

(1 + u2)2

The primitive for this integral is given by

∫
du

(1 + u2)2 =
1

2

(
u

1 + u2
+ arctan u

)
(I.32)

Substituting back u =
(

a
r+

)
cos θ gives

I1 = −
(

1

2ar3
+

) (
r+a cos θ

r2
+ + a2 cos2 θ

+ arctan

[(
a

r+

)
cos θ

])∣∣∣∣
π

0

(I.33)

Now evaluating at the limits we come to the final result:

I1 =

(
1

ar3
+

){
r+a

r2
+ + a2

+ arctan

[(
a

r+

)]}
(I.34)

I2 is defined as follows

I2 =

∫ π

0

cos2 θ sin θdθ

(r2
+ + a2 cos2 θ)

2 (I.35)

Again factorizing 1/r4
+ and substituting u =

(
a

r+

)
cos θ , du = −

(
a

r+

)
sin θdθ gives

I2 =
1

r4
+

∫ π

0

cos2 θ sin θdθ
(
1 + a2 cos2 θ

r2
+

)2 = − 1

a3r+

∫ −
(

a
r+

)

(
a

r+

)
u2du

(1 + u2)2

The indefinite integral in the new variable is given by

∫
u2du

(1 + u2)2 = − u

2 (1 + u2)
+

(
1

2

)
arctan u (I.36)

Now substituting back u =
(

a
r+

)
cos θ leads to

I2 = − 1

a3r+

{
− r+a cos θ

2 (r2
+ + a2 cos2 θ)

+

(
1

2

)
arctan

[(
a

r+

)
cos θ

]}∣∣∣∣
π

0

and finally, by applying the limits we find as a final result for I2:

I2 =
1

a3r+

{
arctan

[(
a

r+

)]
− r+a

(r2
+ + a2)

}
(I.37)
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I.6 Definite Integrals for JH

The substitution we have used so far for I1 and I2 works also for I3 to I5. Since the

procedure is almost identical for each integration, we perform every step simultane-

ously for the three of them. First we factorize 1/r2
+ or 1/r4

+ respectively

I3 =
1

r2
+

∫ π

0

sin3 θdθ

1 + a2 cos2 θ
r2
+

, I4 =
1

r4
+

∫ π

0

sin3 θdθ
(
1 + a2 cos2 θ

r2
+

)2

I5 =
1

r4
+

∫ π

0

sin3 θ cos2 θdθ
(
1 + a2 cos2 θ

r2
+

)2 (I.38)

Then substituting u =
(

a
r+

)
cos θ , du = −

(
a

r+

)
sin θdθ leads to

I3 =
(r+

a3

)∫ − a
r+

a
r+

u2

1 + u2
du − 1

ar+

∫ − a
r+

a
r+

du

1 + u2
(I.39)

I4 =

(
1

r+a3

) ∫ − a
r+

a
r+

u2

(1 + u2)2du −
(

1

ar3
+

) ∫ − a
r+

a
r+

du

(1 + u2)2

I5 = − 1

a3r+

∫ − a
r+

a
r+

u2du

(1 + u2)2 +
r+

a5

∫ − a
r+

a
r+

u4du

(1 + u2)2

The set of primitives required by (I.39) includes (I.32), (I.36) and also

∫
u2du

1 + u2
= u − arctan u (I.40)

∫
du

1 + u2
= arctan u (I.41)

∫
u4du

(1 + u2)2 = u +
u

2 (1 + u2)
− 3 arctan u

2
(I.42)

Then substituting (I.32), (I.36) and (I.40) to (I.42) in (I.39) gives

I3 =
(r+

a3

)
[u − arctan u]|

− a
r+

a
r+

− 1

ar+

arctan u|
− a

r+
a

r+

(I.43)

I4 =

(
1

r+a3

) [
− u

2 (1 + u2)
+

(
1

2

)
arctan u

]∣∣∣∣
− a

r+

a
r+

(I.44)

−
(

1

ar3
+

) [
1

2

(
u

1 + u2
+ arctan u

)]∣∣∣∣
− a

r+

a
r+
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I5 = − 1

a3r+

[
− u

2 (1 + u2)
+

(
1

2

)
arctan u

]∣∣∣∣
− a

r+

a
r+

(I.45)

+
r+

a5

[
u +

u

2 (1 + u2)
−

(
3

2

)
arctan u

]∣∣∣∣
− a

r+

a
r+

Evaluating at the limits gives for I3

I3 = − 2

a2
+ 2

[(
r2
+ + a2

)

a3r+

]
arctan

(
a

r+

)
(I.46)

For I4 we have

I4 =

(
a2 − r2

+

a3r3
+

)
arctan

(
a

r+

)
+

[
1

a2r2
+

]
(I.47)

And finally for I5 we find

I5 = − 3

a4
+

(
3r2

+ + a2
)

r+a5
arctan

(
a

r+

)
(I.48)
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Appendix J

Auxiliary Calculations related to

the Modified First Law

For the sake of completeness of section 8.7 on the modified first law of the black

hole thermodynamics, we present in this appendix all the intermediate steps for the

various derivations sketched in that section. The appendix has three main goals.

First, the ordinary differential equation governing the running Newton constant

G (r) in the vicinity of rI
+ , used in subsection 8.7.4, is discussed. Second, the O (J2)

approximation to the integrating factor µ for the modified first law in subsection

8.7.5 is derived. And third, the degree of exactness of the mentioned approximation

is discussed.

J.1 Differential Equation for G (r)

In this section we present the derivation of the condition (8.176) for G (r) that comes

from asuming that T = κ/ (2π) is valid in the improved case, i.e. that µα = 1,

meaning that µγ = 1/
[
rI
+ − M

(
G + rI

+G′)] is the correct integrating factor of γ in

(8.152). We also find the solutions of the corresponding differential equation (8.177)

by substituting an ansatz in form of a power series of 1/r. As already mentioned

in subsection 8.7.4, the solutions we find are not satisfactory in the sense that they

don’t fit with the expected behavior of a running Newton constant, at least in the

vicinity of rI
+, the region of validity of that equation.

We start by finding several identities that are basic for the calculations presented

in that section.
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J.1.1 Basic Identities

In this subsection we calculate the partial derivatives of µγ ≡ µ = 1/
[
rI
+−

M
(
G + rI

+G′)] to be inserted in the left hand side of the differential equation

(8.169). We also need expressions for ∂rI
+/∂M , ∂rI

+/∂J and ∂2rI
+/∂J2 as func-

tions of J and M . We find the latter ones by differentiating the equation for the

event horizon.

For ∂rI
+/∂M we have

∂

∂M

[
(
rI
+

)2
+

(
J

M

)2

− 2MrI
+G

]
= 0 (J.1)

As a result, we find almost directly:

∂rI
+

∂M
=

(
J2

M3

)
+ GrI

+

[rI
+ − MrI

+G′ − MG]
(J.2)

Similarily for ∂rI
+/∂J we perform

∂

∂J

[
(
rI
+

)2
+

(
J

M

)2

− 2MGrI
+

]
= 0 (J.3)

After simplifying (J.3) we find:

∂rI
+

∂J
= − J

M2 [rI
+ − M (G + rI

+G′)]
(J.4)

For the second derivative ∂2rI
+/∂J2 we differentiate (J.4) as follows

∂

∂J

{
∂rI

+

∂J

[
rI
+ − M

(
G + rI

+G′)]
}

= − ∂

∂J

[
J

M2

]
(J.5)

The simplification of (J.5) and further factorization of ∂2rI
+/∂J2 lead to:

∂2rI
+

∂J2
=

(
∂rI

+

∂J

)2

[M ([2G′ + G′′]) − 1] − 1
M2

[rI
+ − M (G + rI

+G′)]
(J.6)

Knowing ∂rI
+/∂M and ∂rI

+/∂J we now proceed to find ∂µ/∂M and ∂µ/∂J . For

∂µ/∂M we have

∂

∂M

{
1

[rI
+ − M (G + rI

+G′)]

}
= − 1

[rI
+ − M (G + rI

+G′)]
2 ×

×
{

∂rI
+

∂M

[
1 − M

(
2G′ + rI

+G′′)] −
(
G + rI

+G′)
}

(J.7)
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Substituting ∂rI
+/∂M from (J.2) in (J.7) gives:

∂

∂M

{
1

[rI
+ − M (G + rI

+G′)]

}
=

1

[rI
+ − M (G + rI

+G′)]
2 ×

×





(
J2

M3

)
+ GrI

+

[rI
+ − MrI

+G′ − MG]

[
M

(
2G′ + rI

+G′′) − 1
]
+

(
G + rI

+G′)




Similarily for ∂µ/∂J we have

∂

∂J

{
1

[rI
+ − M (G + rI

+G′)]

}
= −

[
1 − M

(
2G′ + rI

+G′′)]

[rI
+ − M (G + rI

+G′)]
2

∂rI
+

∂J
(J.8)

Inserting ∂rI
+/∂J from (J.4) in (J.8) leads to:

∂

∂J

{
1

[rI
+ − M (G + rI

+G′)]

}
=

J
[
1 − M

(
2G′ + rI

+G′′)]

M2 [rI
+ − M (G + rI

+G′)]
3 (J.9)

Equations (J.8) and (J.9) for ∂µ/∂M and ∂µ/∂J are the final results of this sub-

section. It is easy to check that these expressions reduce to (J.114) and (J.111) for

the classical case when setting G = 1, G′ = G′′ = 0.

J.1.2 Derivation of the Integrability Condition

In section 8.7.4 we stated the possibility of finding a special function G (r) that

converts, when evaluated at the radius rI
+, the expression (8.173) to an equality.

Assuming this equality we can cancel common terms on each side of (8.173) to find

{
1 − M

[
2G′ (rI

+

)
+ rI

+G′′ (rI
+

)]} {
rI
+ − MG

(
rI
+

)}

= rI
+ − M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]
(J.10)

Further simplification leads straightforwardly to

[
2G′ (rI

+

)
+ rI

+G′′ (rI
+

)] [
G

(
rI
+

)
M − rI

+

]
+ rI

+G′ (rI
+

)
= 0 (J.11)

After factorizing coefficients in every derivative we have

[
2G

(
rI
+

)
M − rI

+

]
G′ (rI

+

)
+ rI

+G′′ (rI
+

) [
G

(
rI
+

)
M − rI

+

]
= 0 (J.12)

An additional simplification can be done if we apply the event horizon equation
(
rI
+

)2
+ (J/M)2 − 2G

(
rI
+

)
MrI

+ = 0 in the form

(
J

M

)2

=
[
2G

(
rI
+

)
M − rI

+

]
rI
+ (J.13)
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As a result we have for (J.12) the following condition:

(
J

M

)2 G′ (rI
+

)

rI
+

+ G′′ (rI
+

)
rI
+

[
J2

rI
+M2

− G
(
rI
+

)
M

]
= 0 (J.14)

Aternatively by multiplying with rI
+:

(
J

M

)2

G′ (rI
+

)
+ rI

+G′′ (rI
+

)
[(

J

M

)2

− G
(
rI
+

)
MrI

+

]
= 0 (J.15)

This is precisely the condition we wanted to derive.

The condition (J.15) is valid precisely at r = rI
+ (M,J). We shall assume that in

the vicinity of rI
+ the function G (r) is governed by the following nonlinear differential

equation inspired by (J.15):

(
J

M

)2

G′ (r) + rG′′ (r)

[(
J

M

)2

− G (r) Mr

]
= 0 (J.16)

J.1.3 Solution of the Differential Equation (J.16)

We proceed now to find solutions of (J.16). We summarize the steps as follows. First

we change variables from r to u ≡ 1/r in order to formulate a large r expansion of

G in powers of u. After that, we apply the power series method for finding recur-

rence relations in the coefficients of the expansion. As a result we find the solutions

presented in subsection 8.7.4.

We define

G̃ (u) ≡ G (r = 1/u) (J.17)

as the Newton constant in the new variable u. As a result we find the following

expressions for G̃′ (u) and G′′ (u)

G̃′ (u) = −G′ (r)

u2
, G̃′′ (u) =

G′′ (r) + 2uG′ (r)

u4
(J.18)

Then for G′ (r) and G′′ (r) as functions of G̃′ (u) and G̃′′ (u) we have

G′ (r) = −u2G̃′ (u) , G′′ (r) = u4G̃′′ (u) + 2u3G̃′ (u) (J.19)

After substituting (J.17), (J.18) and (J.19) in (J.15) we find

−u2G̃′ (u)

(
J

M

)2

+ (u)2
[
uG̃′′ (u) + 2G̃′ (u)

] [(
J

M

)2

− G̃ (u) M

u

]
= 0 (J.20)
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Cancelling an u 6= 0 leads to

−uG̃′ (u)

(
J

M

)2

+
[
uG̃′′ (u) + 2G̃′ (u)

] [
u

(
J

M

)2

− G̃ (u) M

]
= 0 (J.21)

Now we factor the coefficients for every order of derivation as follows

G̃′ (u)

[
u

(
J

M

)2

− 2G̃ (u) M

]
+ uG̃′′ (u)

[
u

(
J

M

)2

− MG̃ (u)

]
= 0 (J.22)

From now on we supress the tilde ˜ and we present the new nonlinear differential

equation for G̃′ (u) as:

G′ (u)

[
u

(
J

M

)2

− 2G (u) M

]
+ uG′′ (u)

[
u

(
J

M

)2

− MG (u)

]
= 0

(J.23)

As mentioned at the beginning of this section we will solve (J.23) by substituting a

power series ansatz. The expansions for G (u) and its derivatives are given by

G (u) = G0 + G1u + G2u
2 + · · · =

∞∑

k=0

ukGk (J.24)

G′ (u) = G1 + 2G2u + 3G3u
2 + · · · =

∞∑

k=0

(k + 1) ukGk+1

G′′ (u) = 2G2 + 2 ∗ 3uG3 + 3 ∗ 4u2G4 + · · · =
∞∑

k=0

(k + 1) (k + 2) ukGk+2

Now we substitute the expressions from (J.24) in (J.23) as follows

∞∑

k=0

(k + 1) ukGk+1

[
u

(
J

M

)2

− 2M
∞∑

j=0

ujGj

]

+u
∞∑

k=0

(k + 1) (k + 2) ukGk+2

[
u

(
J

M

)2

− M
∞∑

j=0

ujGj

]
= 0 (J.25)

Every term in (J.25) has to be transformed to a single power series. We treat them

separately:

A ≡
(

J

M

)2 ∞∑

k=0

(k + 1) uk+1Gk+1 (J.26)

B ≡ −2M

[ ∞∑

k=0

(k + 1) ukGk+1

][ ∞∑

j=0

ujGj

]
(J.27)
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C ≡
(

J

M

)2 ∞∑

k=0

(k + 1) (k + 2) uk+2Gk+2 (J.28)

D ≡ −M

[ ∞∑

k=0

(k + 1) (k + 2) uk+1Gk+2

][ ∞∑

j=0

ujGj

]
(J.29)

Terms A and B can be easily transformed as follows

A ≡
(

J

M

)2 ∞∑

k=0

(k + 1) uk+1Gk+1 =

(
J

M

)2 [
uG1 + 2u2G2 + 3u3G3 + · · ·

]

=

(
J

M

)2 ∞∑

k=1

kukGk (J.30)

C ≡
(

J

M

)2 ∞∑

k=0

(k + 1) (k + 2) uk+2Gk+2 =

(
J

M

)2 [
(2 ∗ 1) u2G2 + (2 ∗ 3) u3G3 + · · ·

]

=

(
J

M

)2
[ ∞∑

k=2

k (k − 1) ukGk

]
(J.31)

For terms B and D we factorize coefficients of the same power after expanding the

products. For B we have

B ≡ −2M

[ ∞∑

k=0

(k + 1) ukGk+1

] [ ∞∑

j=0

ujGj

]

= −2M
[
G1 + 2uG2 + 3u2G3 + · · ·

] [
G0 + uG1 + u2G2 + · · ·

]

= −2M
[
G0G1 + 2uG0G2 + 3u2G3G0 + u (G1)

2 + 2u2G2G1 + 3u3G3G1

+u2G1G2 + 2u3 (G2)
2 + 3u4G3G2 + · · ·

]

Factorizing powers of u leads to

B ≡ −2M
{
G0G1 +

[
2G0G2 + (G1)

2]u + [3G3G0 + 2G2G1 + G1G2] u
2

+
[
3G3G1 + 2 (G2)

2 + G3G1 + 4G4G0

]
u3 + · · ·

}

or written in a more compact way

B ≡ −2M
∞∑

k=0

γku
k (J.32)

with γk defined as

γk ≡
k∑

j=0

(k − j + 1) GjGk−j+1 (J.33)
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Similarily for D we write

D ≡ −M

[ ∞∑

k=0

(k + 1) (k + 2) uk+1Gk+2

][ ∞∑

j=0

ujGj

]

= −M
[
(1 ∗ 2) ∗ uI

+G2 + (2 ∗ 3) ∗ u2G3 + (3 ∗ 4) u3G4 + · · ·
]
×

×
[
G0 + uG1 + u2G2 + · · ·

]

= −M
[
(1 ∗ 2) uG2G0 + (1 ∗ 2) u2G2G1 + (1 ∗ 2) u3 (G2)

2

+ (2 ∗ 3) u2G3G0 + (2 ∗ 3) u3G3G1 + (2 ∗ 3) u4G3G2

+ (3 ∗ 4) u3G4G0 + (3 ∗ 4) u4G4G1 + (3 ∗ 4) u5G4G2 + · · ·
]

After factorizing powers of u we find

D = −M
{
(1 ∗ 2) uG2G0 + [(1 ∗ 2) G2G1 + (2 ∗ 3) G3G0] u

2

+
[
(1 ∗ 2) (G2)

2 + (2 ∗ 3) G3G1 + (3 ∗ 4) G4G0

]
u3

+ [(1 ∗ 2) G2G3 + (2 ∗ 3) G3G2 + (3 ∗ 4) G4G1 + (4 ∗ 5) G5G0] u
4 + · · ·

}

(J.34)

Here we can simplify the expression (J.34) by defining the coefficients βk as follows

D = −M
∞∑

k=2

βku
k (J.35)

βk =
k−1∑

j=0

(k − j + 1) (k − j) GjGk−j+1

Having expressions for A, B, C and D in (J.30), (J.32), (J.31) and (J.35) respec-

tively, we substitute them in (J.25) to have

(
J

M

)2 ∞∑

k=1

kukGk − 2M
∞∑

k=0

γku
k +

(
J

M

)2
[ ∞∑

k=2

k (k − 1) ukGk

]
− M

∞∑

k=2

βku
k = 0

(J.36)

We can factorize in (J.36) one summation from k = 2 to ∞, as follows
[(

J

M

)2

G1 − 2Mγ1

]
u − 2Mγ0 +

∞∑

k=2

{(
J

M

)2

k2Gk − Mβk − 2Mγk

}
uk = 0

(J.37)

Equation (J.37) implies the cancellation of every coefficient for each power of u. As

a result we have

2Mγ0 = 0 (J.38)
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(
J

M

)2

G1 − 2Mγ1 = 0 (J.39)

(
J

M

)2

k2Gk − Mβk − 2Mγk = 0 , k = 2, 3 · · · (J.40)

with βk and γk given in (J.35) and (J.33)

βk ≡
k−1∑

j=0

(k − j + 1) (k − j) GjGk−j+1

γk ≡
k∑

j=0

(k − j + 1) GjGk−j+1 (J.41)

After substituting these two last definitions in (J.38) to (J.40) we find the following

infinite set of equations

2MG0G1 = 0 (J.42)

(
J

M

)2

G1 − 2M
[
2G0G2 + (G1)

2] = 0 (J.43)

(
J

M

)2

k2Gk − M

k−1∑

j=0

(k − j + 1) (k − j) GjGk−j+1

−2M
k∑

j=0

(k − j + 1) GjGk−j+1 = 0

k = 2, 3 · · · (J.44)

Eq. (J.44) can be reorganized with just one summation from j = 0 to j = k − 1 as

follows

Gk

[(
J

M

)2

k2 − 2MG1

]
− M

k−1∑

j=0

(k − j + 1) (k − j + 2) GjGk−j+1 = 0 (J.45)

We add the cases for k = 2, 3 as special examples of (J.45) to be used later, as

follows

G2

(
J

M

)2

− 2MG1G2 − 3MG0G3 = 0 (J.46)
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9G3

(
J

M

)2

− 14MG1G3 − 20MG0G4 − 6M (G2)
2 = 0 (J.47)

Equation (J.42) implies three independent possibilities to be analysed, namely that

either G0 = 0 or G1 = 0 or both. The most plausible option is G0 6= 0 and G1 = 0

so that we can still recover the classical case. After analysing equations (J.43) and

(J.45) one can deduce that every coefficient Gk 6= G0 should vanish. This gives, as

a result, a trivial case where no improvement is allowed. We show this as follows.

For G1 = 0 equation (J.43) is transformed to

4MG0G2 = 0 (J.48)

This implies directly that G2 = 0. Inserting G1 = G2 = 0 in (J.46) gives G0G3 = 0

which implies again G3 = 0 . If we proceed iteratively by substituting G1 = G2 =

· · · = Gn = 0 in the k = n equation we find Gn+1 = 0. By induction we conclude

that if G1 = 0 the Gn = 0 for all n > 0. As a result from the previous analysis we

conclude that the case G0 = G1 = 0 is the most trivial one with every coefficient

equal to zero.

Only one case is left to analyse, namely G1 6= 0 and G0 = 0. We proceed in a

similar way as in the previous case, as follows. Substituting G0 = 0 in (J.43) gives

the following condition

G1

[(
J

M

)2

− 2MG1

]
= 0 (J.49)

Avoiding the already known case for G1 = 0 we stay with the alternative solution

to (J.50):

G1 =

(
J
M

)2

2M
(J.50)

This defines a non-trivial expression for G1, the coefficient of u = 1/r in the expan-

sion of G (u) in (J.24).

We must go further in finding the rest of the coefficients for this case, as follows.

Substituting G0 = 0 and G1 = (J/M)2 / (2M) in equation (J.46) gives G2 ∗ 0 = 0

without any restriction to G2. This means that we can choose either G2 = 0 or

G2 6= 0. Assuming the most general case for G2 6= 0 leads to the following expresions
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for G3 and G4

G3 =
3M (G2)

2

(
J
M

)2 , G4 =
52M2 (G2)

3

5
(

J
M

)4 (J.51)

Expressions in (J.51) for G3 and G4 lead us to propose an ansatz for the rest of Gj

given by

Gj = αj

(G2)
j−1

(
J
M

)2(j−2)
(J.52)

where αj is a pure number to be found for each coefficient Gj. Exploiting this ansatz

we perform the following substitutions in (J.45):

G1 =

(
J
M

)2

(2M)
, Gk = αk

(G2)
k−1

(
J
M

)2(k−2)
, Gk−j+1 = αk−j+1

(G2)
k−j

(
J
M

)2(k−j−1)
(J.53)

The result reads:

(G2)
k−1

(
J
M

)2(k−3)

[
(
k2 − 1

)
αk − M

k−1∑

j=0

(k − j + 1) (k − j + 2) αjαk−j+1

]
= 0 (J.54)

Equation (J.54) implies the following recurrence relation for αk:

αk =
M

(k2 − 1)

k−1∑

j=0

(k − j + 1) (k − j + 2) αjαk−j+1 (J.55)

Summarizing the result for the solution to (J.23) with G0 = 0 and Gk 6= 0 for

k = 1, 2, · · · , we write

G (u) = G1u + G2u
2 + · · ·

=

(
J
M

)2

2M
u + G2u

2 +
∞∑

k=3

ukGk =

(
J
M

)2

2M
u + G2u

2 +
∞∑

k=3

αk (G2)
k−1

(
J
M

)2(k−2)
uk

αk =
M

(k2 − 1)

k−1∑

j=0

(k − j + 1) (k − j + 2) αjαk−j+1

The value of G2 remains undefined. Changing from u to r leads to

G (r) =

(
J
M

)2

2Mr
+

G2

r2
+

∞∑

k=3

αk (G2)
k−1

rk
(

J
M

)2(k−2)
(J.56)

We consider expression (J.56) as the final result for this case.

We can now put together the various results from this section as follows. We

have found three possible independent solutions for the differential equation (J.23)

or alternatively (J.16). We list them below:
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1. G0 6= 0 and Gk = 0 , k = 1, 2, · · · . This is the classical case with no running

Newton constant.

2. G (r) =
( J

M )
2

2Mr

3. G (r) =
( J

M )
2

2Mr
+ G2

r2 +
∑∞

k=3
αk(G2)k−1

rk( J
M )

2(k−2)

with αk = M
(k2−1)

∑k−1
j=0 (k − j + 1) (k − j + 2) αjαk−j+1

The behavior of cases 2 and 3 is similar for r → ∞ , namely, G (r) → 0.

J.2 Integrating Factor for the Modified First Law:

O
(
J2

)
Approximation

In this section we calculate the coefficients µ0, µ1 and µ2 of the O(J2) approximation

µO(J2) (M,J) presented in equation (8.193) of chapter 8. For that purpose we need

explicit expressions for several coefficients in different series expansions, namely the

coefficients αm, βm and γm in the recurrence relation (8.186), and the coefficients

f l
i for f1 to f3 in (8.183). They are calculated in subsections J.2.2 and J.2.3. In

subsections J.2.4 and J.2.5 we find the integrating factor for the first law of thermo-

dynamics in the case of the improved Schwarzschild spacetime, and we demonstrate

that µ = 1/ (r+ − M) is the appropriate integrating factor in the case of the classical

Kerr spacetime.

J.2.1 Solving the Recurrence Relation for µO(J2) (M, J)

In order to get an O(J2) approximation to µ we need to calculate only a few f l
i

components. We can recognize these components by expanding (8.192) as follows

(m + 1) f 0
1 µm+1 + f 0

2 µ′
m + f 0

3 µm + · · · + fm
1 µ1 + fm

2 µ′
0 + fm

3 µ0 = 0

(J.57)

From (J.57) we see that the µ-component of highest order in the recurrence relation

is µm+1, which comes from l = 0 in the summation. On the other hand for l = m

we get the fi of highest order, namely fm
i . This means that for a m + 1-th order µ

component we need at most the fi components up to the m-th order.
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In our case, since we calculate up to µ2 we need only the f 0
i and the f 1

i coefficients.

Those coefficients are given by (see subsection J.2.3):

f 0
1 =

[
rI
+ (0,M)

]2
, f 1

1 = 0 , f 0
2 = 0 , f 1

2 =
1

m
, f 0

3 = 0

f 1
3 = − 1

M2

{
rI
+ + M

[
rI
+G′ + G

]

rI
+ − M [rI

+G′ + G]

}∣∣∣∣∣
J=0

(J.58)

Here rI
+ (0,M) is the radius of the outer event horizon of the improved Schwarzschild

metric. From now on we denote it rI
+ (0,M) ≡ rI

Sch+
(M) or simply rI

Sch+
. Then the

coefficients of (J.58) can be written as

f 0
1 =

(
rI
Sch+

)2
, f 1

1 = 0 , f 0
2 = 0 , f 1

2 =
1

m
, f 0

3 = 0 (J.59)

f 1
3 = −

(
1

M2

) rI
Sch+

+ M
[
rI
Sch+

G′
(
rI
Sch+

)
+ G

(
rI
Sch+

)]

rI
Sch+

− M
[
rI
Sch+

G′
(
rI
Sch+

)
+ G

(
rI
Sch+

)]

Setting m = 0 and m = 1 in (8.192) is enough for finding all the components we

need. As a result we have, beginning with m = 0:

f 0
1 µ1 + f 0

2 µ′
0 + f 0

3 µ0 = 0 (J.60)

Substituting the coefficients (J.58) in (J.60) leads directly to:

µ1 = 0 (J.61)

As a result we have found that the first order component of µ vanishes. Next, for

m = 1, we have:

2f 0
1 µ2 + f 0

2 µ′
1 + f 0

3 µ1 + f 1
1 µ1 + f 1

2 µ′
0 + f 1

3 µ0 = 0 (J.62)

Substituting again the coefficients in (J.58) gives:

2
(
rI
+

)2
∣∣∣
J=0

µ2 +

(
1

M

)
µ′

0 −
1

M2

{
rI
+ + M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]

rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]

}∣∣∣∣∣
J=0

µ0 = 0

(J.63)

Or substituting rI
Sch+

:

2
(
rI
Sch+

)2
µ2 +

(
1

M

)
µ′

0 −
(

1

M2

) 


rI
Sch+

+ M
[
rI
Sch+

G′
(
rI
Sch+

)
+ G

(
rI
Sch+

)]

rI
Sch+

− M
[
rI
Sch+

G′
(
rI
Sch+

)
+ G

(
rI
Sch+

)]


µ0 = 0

(J.64)
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Equation (J.63) gives an expression for µ2 as a function of µ0.

The zeroth component µ0 can be easily found, knowing that it is the integrating

factor for a variation law of the form κI
Schδs = δM with J = 0. It is given by (see

subsection J.2.4):

µ0 =
1

M [G (rI
+) − rI

+G′ (rI
+)]|

J=0

=
1

M
[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)] (J.65)

Its first derivative in M reads (see subsection J.2.4):

µ′
0 = −

G
(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)
− MrI

Sch+

drI
Sch+

dM
G′′

(
rI
Sch+

)

M2
[
G

(
rI
sc+

)
− rI

Sch+
G′

(
rI
Sch+

)]2 (J.66)

With drI
Sch+

/dM defined as

drI
Sch+

dM
=

2G
(
rI
Sch+

)

[
1 − 2MG′

(
rI
Sch+

)] (J.67)

In principle we can now substitute (J.65) and (J.66) in (J.64), in order to find µ2

explicitly as a function of rI
sc+

, G
(
rI
Sch+

)
and its derivatives. It is not necessary to

present this complete complicated expression. It will be more illuminating to write

µ2 as

µ2 =
µ0

2
(
rI
Sch+

)2

M2





rI
Sch+

+ M
[
rI
Sch+

G′ + G
]

rI
Sch+

− M
[
rI
Sch+

G′ + G
]



 − µ′

0

2
(
rI
Sch+

)2

M

(J.68)

with µ0 and µ′
0 given in (J.65) and (J.66). Here G and its derivatives are evaluated

at rI
Sch+

. The radius rI
Sch+

≡ rI
+ (0,M) is to be obtained by solving the horizon

condition for J = 0, i.e. rI
Sch+

= 2MG
(
rI
Sch+

)
. Substituting this condition in (J.68)

leads to a further simplification of µ2 as follows:

µ2 =

[
3G + rI

Sch+
G′

]
(µ0)

2 − µ′
0

2
(
rI
Sch+

)2

M
(J.69)

We can now write, as a summary of this subsection, the O(J2)-approximation to

µ (M,J), namely

µ (M,J)|O(J2) = µ0 + µ2J
2 (J.70)

with µ0 and µ2 defined in (J.65) and (J.69), respectively. They correspond, as

expected, to the expressions in (8.194) of chapter 8.
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J.2.2 Derivation of the Coefficients αm, βm and γm

In subsection 8.7.5 we presented the expressions (8.187), (8.188) and (8.189) for the

coefficients αm, βm and γm, respectively. These expressions can be further simplified

if one expands the products of summations in each of them, factorize coefficients

of powers in J , and redefine a unique summation for every expression. Here we

carry out this simplification for one of the coefficients, say βm. The procedure is

completely analogous for the other coeffcients. The expressions (8.187), (8.188) and

(8.189) are given by

∞∑

m=0

βmJm ≡
( ∞∑

l=0

f l
1 (M) J l

) ( ∞∑

k=0

(k + 1) µk+1 (M) Jk

)
(J.71)

∞∑

m=0

γmJm ≡
( ∞∑

l=0

f l
2 (M) J l

) ( ∞∑

k=0

(
dµk

dM

)
Jk

)
(J.72)

∞∑

m=0

αmJm ≡
( ∞∑

k=0

µk (M) Jk

) ( ∞∑

l=0

f l
3 (M) J l

)
(J.73)

Expanding the summations for (J.71) gives1

∞∑

m=0

βmJm ≡
[
f 0

1 + f 1
1 J + f 2

1 J2 + · · ·
] [

µ1 + 2µ2J + 3µ3J
2 + · · ·

]
(J.74)

After multiplying term by term we have

∞∑

m=0

βmJm ≡ µ1f
0
1 + µ1f

1
1 J + µ1f

2
1 J2

+2µ2f
0
1 J + 2µ2f

1
1 J2 + 2µ2f

2
1 J3

+3µ3f
0
1 J2 + 3µ3f

1
1 J3 + 3µ3f

2
1 J4 + · · · (J.75)

Next we factorize coefficients of equal powers of J as follows

∞∑

m=0

βmJm ≡ µ1f
0
1 +

(
µ1f

1
1 + 2µ2f

0
1

)
J

+
(
µ1f

2
1 + 2µ2f

1
1 + 3µ3f

0
1

)
J2

+
(
4µ4f

0
1 + 3µ3f

1
1 + 2µ2f

2
1 + µ1f

3
1

)
J3 + · · · (J.76)

1From now on we omit the argument M of fm
i (M) and µm (M). We continue to denote

derivatives with respect to M by a prime.
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From the expression (J.76) we can construct directly a general definition for the

coefficient βm, since the summation is already explicit for each power of J . As

mentioned before, for γm and αm the procedure is completely analogous. These

definitions are the ones given in (8.191) as follows:

βm ≡
m∑

l=0

(m − l + 1) f l
1µm−l+1 , γm ≡

m∑

l=0

f l
2µ

′
m−l , αm ≡

m∑

l=0

f l
3µm−l (J.77)

It can be easily checked that each of these formulae really reproduce the expansions

where they come from. For example, for the case of βm, we expand the summation

in (J.77) for each m to recover expression (J.76).

J.2.3 Series Expansions for the Functions fi (M, J)

Here we calculate the expansions for the functions fi (J,M) in the partial differential

equation (8.166). These functions are defined in (8.167) as follows

f1 (M,J) ≡
(
rI
+

)2
+ a2 , f2 (M,J) ≡ J

M
,

f3 (M,J) ≡ − J

M2

{
rI
+ + M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]

{rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]}

}
(J.78)

For f2 (M,J) we have simply

f2 (M,J) ≡
∞∑

l=0

f l
2 (M) J l =

J

M
(J.79)

As a result we have

f 1
2 (M) ≡ 1

M
, f l

2 (M) = 0 for l 6= 1 (J.80)

For f1 (M,J) and f3 (M,J) we carry out Taylor series expansions centered in J = 0

as follows

f1 (M,J) =
∞∑

k=0

∂kf1

∂Jk

∣∣∣∣
J=0

Jk

k!
(J.81)

f3 (M,J) =
∞∑

k=0

∂kf3

∂Jk

∣∣∣∣
J=0

Jk

k!

As a result the coefficients f l
1,3 (M) can be expressed as

f l
1 (M) ≡ 1

k!

∂kf1

∂Jk

∣∣∣∣
J=0

, f l
3 (M) ≡ 1

k!

∂kf3

∂Jk

∣∣∣∣
J=0

248



For finding the O (J2) approximation to µ (M,J) given in (J.70) we need only, as

explained in subsection J.2.1, the coefficients f 0
i (M) and f 1

i (M) presented in (J.58).

We calculate them as follows. f1 (M,J) is given by

f1 (M,J) ≡
(
rI
+

)2
+

(
J

M

)2

(J.82)

Thus we have for f 0
1 (M) the following result:

f 0
1 (M) ≡ f1 (M, 0) =

[
rI
+ (M, 0)

]2
=

[
rI
Sch+

(M)
]2

(J.83)

For f 1
1 (M) we have the derivative given by

f 1
1 (M) ≡ ∂f1

∂J

∣∣∣∣
J=0

(J.84)

Substituting in (J.84) the definition (J.82) of f1 leads to

f 1
1 (M) ≡ ∂

∂J

[
(
rI
+

)2
+

(
J

M

)2
]∣∣∣∣∣

J=0

=

[
2rI

+

∂rI
+

∂J
+

2J

M2

]∣∣∣∣
J=0

= 2rI
+

∂rI
+

∂J

∣∣∣∣
J=0

(J.85)

Here we can exploit the expression (J.4) for ∂rI
+/∂J as follows

f 1
1 (M) = 2rI

+

∂rI
+

∂J

∣∣∣∣
J=0

= − 2JrI
+

M2 [rI
+ − M (G + rI

+G′)]
= 0 (J.86)

As a result we see that the component f 1
1 (M) is zero. Going further with f 2

1 we

have to calculate the following expression

f 2
1 (M) ≡ 1

2

∂2f1

∂J2

∣∣∣∣
J=0

(J.87)

Exploiting the first derivative in (J.85) we find

f 2
1 (M) ≡ 1

2

∂

∂J

[
2rI

+

∂rI
+

∂J
+

2J

M2

]∣∣∣∣
J=0

(J.88)

=

{(
∂rI

+

∂J

)2

+ rI
+

(
∂2rI

+

∂J2

)}∣∣∣∣∣
J=0

+
1

M2
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Here we can substitute the derivatives ∂rI
+/∂J and ∂2rI

+/∂J2 in (J.4) and (J.6)

respectively. The result is given by

f 2
1 (M) =

{(
− J

M2 [rI
+ − M (G + rI

+G′)]

)2

+

+ rI
+




(
∂rI

+

∂J

)2

[M ([2G′ + G′′]) − 1] − 1
M2

[rI
+ − M (G + rI

+G′)]








∣∣∣∣∣∣∣
J=0

+
1

M2

= −
{

rI
+

M2 [rI
+ − M (G + rI

+G′)]

}∣∣∣∣
J=0

+
1

M2

= − 1

M




G
(
rI
Sch+

)
+ rI

Sch+
G′

(
rI
Sch+

)

rI
Sch+

− M
[
G

(
rI
Sch+

)
+ rI

Sch+
G′

(
rI
Sch+

)]


 (J.89)

Thus we can present the expansion in powers of J of f1 (M,J) up to order O (J2),

as:

f1 (M,J) =
[
rI
Sch+

(M)
]2 − 1

M




G
(
rI
Sch+

)
+ rI

Sch+
G′

(
rI
Sch+

)

rI
Sch+

− M
[
G

(
rI
Sch+

)
+ rI

Sch+
G′

(
rI
Sch+

)]


 J2 + · · ·

(J.90)

For f3 (M,J) we have

f3 (M,J) ≡ − J

M2

{
rI
+ + M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]

{rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]}

}
(J.91)

Thus f3 (M, 0) = 0. The first derivative is given by

f 1
3 (M) ≡ ∂f3

∂J

∣∣∣∣
J=0

= − 1

M2

{
rI
+ + M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]

{rI
+ − M [rI

+G′ (rI
+) + G (rI

+)]}

}∣∣∣∣∣
J=0

= − 1

M2





rI
Sch+

+ M
[
rI
Sch+

G′
(
rI
Sch+

)
+ G

(
rI
Sch+

)]

rI
Sch+

− M
[
rI
Sch+

G′
(
rI
Sch+

)
+ G

(
rI
Sch+

)]



 (J.92)

As a consequence, up to order O (J), f3 (M,J) is given by

f3 (M,J) = − J

M2





rI
Sch+

+ M
[
rI
Sch+

G′
(
rI
Sch+

)
+ G

(
rI
Sch+

)]

rI
Sch+

− M
[
rI
Sch+

G′
(
rI
Sch+

)
+ G

(
rI
Sch+

)]



 + · · · (J.93)

Expressions (J.80), (J.90) and (J.93) are the final results of this subsection and they

correspond to the expressions presented in (J.59), in section 8.7.5.
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J.2.4 Improved Schwarzschild Spacetime

The zeroth component µ0 of the integrating factor µ in (8.183) can be easily found,

knowing that it is the integrating factor for the 1-form γ in (8.152) when J = 0.

On the other hand we already know that the first law of thermodynamics for the

improved Schwarzschild spacetime is given by [30]

κI
Schδf = δM (J.94)

Here the surface gravity κI
Sch of the improved Schwarzschild spacetime is a special

case of the κ defined in (8.137), namely

κI
Sch ≡ κI

Kerr

∣∣
J=0

=
rI
+ − M

[
rI
+G′ (rI

+

)
+ G

(
rI
+

)]

(rI
+)

2

∣∣∣∣∣
J=0

=
rI
Sch+

− M
[
rI
Sch+

G′
(
rI
Sch+

)
+ G

(
rI
Sch+

)]

(
rI
Sch+

)2 (J.95)

Or using rI
Sch+

= 2MG
(
rI
Sch+

)
, the equation for the event horizon, which comes

from setting J = 0 in
(
rI
+

)2
+ (J/M)2 − 2MG

(
rI
+

)
rI
+ = 0, we can also write

κI
Sch =

M
[
G

(
rI
+

)
− rI

+G′ (rI
+

)]

(rI
+)

2

∣∣∣∣∣
J=0

=
M

[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)]

(
rI
Sch+

)2 (J.96)

Substituting (J.96) in (J.94) leads to

δf





M
[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)]

(
rI
Sch+

)2





= δM (J.97)

At this point we can evaluate the differential form γ given in (8.152) for the case

J = 0 as follows

γ|J=0 =
(
rI
+

)2
δM (J.98)

After comparing (J.97) with (J.98) we conclude that the integrating factor for γ|J=0

is given by

µ0 =
1

M [G (rI
+) − rI

+G′ (rI
+)]|

J=0

=
1

M
[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)] (J.99)
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It converts γ|J=0 to the exact differential δf in (J.94).

We also need an expression for the first derivative µ′
0 ≡ dµ0/dM , in the formula

(J.64) for the second order coefficient µ2. For finding this derivative we proceed as

follows:

dµ0

dM
=

d

dM





1

M
[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)]





= −

[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)]
+ M d

dM

[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)]

M2
[
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)]2

= −
G

(
rI
Sch+

)
− rI

Sch+
G′

(
rI
Sch+

)
− MrI

Sch+

drI
Sch+

dM
G′′

(
rI
Sch+

)

M2
[
G

(
rI
sc+

)
− rI

Sch+
G′

(
rI
Sch+

)]2 (J.100)

Here we can exploit again the equation for the event horizon of the improved

Schwarzschild rI
Sch+

= 2MG
(
rI
Sch+

)
, in order to find drI

Sch+
/dM

drI
Sch+

dM
= 2

{
G

(
rI
Sch+

)
+ M

drI
Sch+

dM
G′ (rI

Sch+

)
}

After solving for drI
Sch+

/dM we find

drI
Sch+

dM
=

2G
(
rI
Sch+

)

[
1 − 2MG′

(
rI
Sch+

)] (J.101)

J.2.5 Classical Kerr Spacetime

We have mentioned in subsection 8.7.2 that the function2

µ =
1

r+ − M
(J.102)

is an integrating factor for the 1-form γ defined in (8.151)

γ = PδM + NδJ

with

P ≡ r2
+ +

(
J

M

)2

, N = − J

M
(J.103)

2For simplicity we set in this section G0 = 1.
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This means that the 1-form µγ, given by

µγ =
r2
+ +

(
J
M

)2

r+ − M
δM − J

M (r+ − M)
δJ (J.104)

is an exact differential. As a result we can write δS = µγ with S ≡ S (J,M) a state

function as defined in (8.7). We show in this subsection that µ defined in (J.102)

actually fulfills the partial differential equation for integrability (8.146) given by

P

(
∂µ

∂J

)
− N

(
∂µ

∂M

)
= µ

[(
∂N

∂M

)
−

(
∂P

∂J

)]
(J.105)

Starting with the right hand side of (J.105), we have

µ

[(
∂N

∂M

)
−

(
∂P

∂J

)]
=

1

r+ − M

[
J

M2
+

2J

M (r+ − M)

]
(J.106)

where we have utilized the derivatives in (8.156) and also the identity

r+ − M =

√

M2 −
(

J

M

)2

(J.107)

After simplifying (J.106) we obtain:

µ

[(
∂N

∂M

)
−

(
∂P

∂J

)]
=

J (r+ + M)

M2 (r+ − M)2 (J.108)

For the left hand side we evaluate first the partial derivatives. For ∂µ/∂J we have

∂µ

∂J
=

∂

∂J

(
1

r+ − M

)
= − 1

(r+ − M)2

∂r+

∂J
(J.109)

The derivative ∂r+/∂J can be calculated from (J.107) to give

∂r+

∂J
= − J

M2

√
M2 −

(
J
M

)2
= − J

M2 (r+ − M)
(J.110)

Substituting (J.110) in (J.109) leads to

∂µ

∂J
=

J

M2 (r+ − M)3 (J.111)

On the other hand for ∂µ/∂M we have:

∂µ

∂M
=

∂

∂M

(
1

r+ − M

)
= − 1

(r+ − M)2

(
∂r+

∂M
− 1

)
(J.112)
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The derivative ∂r+/∂M can also be found from (J.107) as follows

∂r+

∂M
=

M + J2

M3√
M2 −

(
J
M

)2
+ 1 =

M + J2

M3

r+ − M
+ 1 (J.113)

As the result of inserting (J.113) in (J.112) we find

∂µ

∂M
= − M + J2

M3

(r+ − M)3 (J.114)

We can finally evaluate the left hand side, utilizing (J.103), (J.111), and (J.114) as

follows

P

(
∂µ

∂J

)
− N

(
∂µ

∂M

)
=

[
r2
+ +

(
J

M

)2
] (

J

M2 (r+ − M)3

)
−

(
J

M

)
M + J2

M3

(r+ − M)3

After a straightforward simplification we find:

P

(
∂µ

∂J

)
− N

(
∂µ

∂M

)
=

J (r+ + M)

M2 (r+ − M)2 (J.115)

The last result for the left hand side of eq. (J.106) is equal to the previous one for its

right hand side in (J.108). This means that (J.106) is fulfilled by µ given in (J.102)

with the definitions in (J.103), as we wanted to show.

J.3 Exactness in the O
(
J2

)
Approximation to µ (M, J)

In this section we demonstrate that the O (J2) approximation to the integrating

factor µ (M,J) in our main differential equation (8.145) is sufficient for satisfying

this differential equation to order O (J), both for the classical and the improved

case.

Classical Case

We start with the classical case since it is simpler and we already know the correct

integrating factor. For this case we have3 G = 1 , G′ = 0, rI
Sch+

∣∣∣
w̄=0

= 2M . As a

result (J.70), gets simplified to

µClass (M,J)
∣∣
O(J2)

=
1

M

(
1 +

1

2M4
J2

)
(J.116)

3For simplicity we set G0 = 1 in this paragraph.
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which is precisely the approximation to O (J2) of the integrating factor 1/ (r+ − M)

for the variations law fulfilled by the Kerr spacetime. In fact we have

r+ = M +

√

M2 −
(

J

M

)2

(J.117)

and as a result we can write

1

r+ − M
=

1√
M2 − J2

M2

=
1

M

(
1 +

1

2M4
J2 +

3

8

J4

M8
+ · · ·

)
(J.118)

where we have also included the next term in the expansion which is O(J4). Never-

theless we stay only with the approximation to O(J2) in (J.116) in order to determine

the error it introduces. More precisely, we have to check up to which order of J the

difference

∂

∂J

[
µClass

∣∣
O(J2)

P |O(J2)

]
− ∂

∂M

[
µClass

∣∣
O(J2)

N |O(J2)

]
(J.119)

goes to zero.

We start by finding the products µP and µN in (J.119), by applying (J.116) and

also the definitions P ≡ r2
+ +

(
J
M

)2
, N ≡ −J/M for the Kerr spacetime. As a result

we have

µClass
∣∣
O(J2)

P |O(J2) =
1

M

(
1 +

1

2M4
J2

) (
r2
+ +

(
J

M

)2
)∣∣∣∣∣

O(J2)

(J.120)

µClass
∣∣
O(J2)

N |O(J2) = − J

M2

(
1 +

1

2M4
J2

)

Now we evaluate the derivatives as follows. For µN we have:

∂

∂M

(
µClass

∣∣
O(J2)

N |O(J2)

)
= − ∂

∂M

[
J

M2
+

J3

2M6

]
(J.121)

=
2J

M3
+

3J3

M7

For µP we have first to expand r2
+ +

(
J
M

)2
. In order to do this we use the identity

r2
+ +

(
J
M

)2
= 2Mr+, so that we can write:

r2
+ +

(
J

M

)2

= 2Mr+ = 2M


M +

√

M2 −
(

J

M

)2


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Thus the J-expansion for r2
+ +

(
J
M

)2
is given by

r2
+ +

(
J

M

)2

= 4M2 − J2

M2
− J4

4M6
+ · · · (J.122)

Now we can perform the derivative of µClassP , namely

∂

∂J

[
µClass

∣∣
O(J2)

P |O(J2)

]
=

∂

∂J

[
1

M

(
1 +

J2

2M4

)(
4M2 − J2

M2

)]

=
2J

M3
− 2J3

M7
(J.123)

It is now clear from (J.121) and (J.123) that the subtraction in (J.119) cancels to

order O(J) :

∂

∂J

[
µClass

∣∣
O(J2)

P |O(J2)

]
− ∂

∂M

(
µClass

∣∣
O(J2)

N |O(J2)

)
= −5J3

M7
(J.124)

In this way we have shown that for the classical Kerr spacetime an expansion to

O (J2) of µClass suffices to satisfy eq. (J.119) to O (J).

Improved Case

Now we attempt to show that the approximation for µ (M,J) to O (J2) given in

(J.70), with its components presented in (J.65) and (J.68), is enough to satisfy the

exactness condition (8.145) to order O (J). We have to evaluate again the difference

∂

∂J

(
µ|O(J2) P |O(J2)

)
− ∂

∂M

(
µ|O(J2) N |O(J2)

)
(J.125)

but now P , N and µ are given by:

P ≡
(
rI
+

)2
+

(
J

M

)2

, N ≡ − J

M
, µ (M,J)|O(J2) = µ0 + µ2J

2

µ0 =
1

M
(
G − rI

Sch+
G′

) , µ′
0 =

Mr2
+GG′′

rI
Sch+

−M
[
rI
Sch+

G′+G
] + rI

Sch+
G′ − G

M2
[
G − rI

Sch+
G′

]2 (J.126)

µ2 =




1

2
(
rI
Sch+

)2

M2





 rI

Sch+
+ M

[
rI
sc+

G′ + G
]

rI
Sch+

− M
[
rI
Sch+

G′ + G
]


µ0 −




µ′
0

2
(
rI
Sch+

)2

M




Concerning the difficulty of this demonstration we remark that, in addition to the

notorious complexity of expressions in (J.126), we have to face the problem that

G (r) is an arbitrary unspecified function and that the resulting form of rI
+ (M,J) is
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not known analytically. As a result we have to proceed in a more abstract way than

in the previous demonstration for the bare Kerr black hole. We can summarize the

whole procedure as follows.

First, using the chain rule, we expand derivatives in the difference (J.125) so

that we can substitute independently every relevant expansion. We also expand

rI
+ (M,J) in powers of J and we find explicitly some of its coefficients as functions

of M , rI
Sch+

G and its derivatives. We do this by exploiting the equation (4.51) of the

event horizon, namely
(
rI
+

)2
+(J/M)2−2MG

(
rI
+

)
rI
+ = 0. Having an expansion for

rI
+ (M,J) we can also expand P ≡

(
rI
+

)2
+ (J/M)2 and insert it in (J.125) together

with N and µ (M,J)|O(J2). After that, we compare the coefficients of equal powers

of J from the terms ∂ (µP ) /∂J and ∂ (µN) /∂M in eq. (J.125).

We start applying the chain rule to the derivatives in (J.125). For µN we have:

∂

∂M

(
µ|O(J2) N

)
= −

(
J

M

)
∂

∂M
µ|O(J2) +

(
J

M2

)
µ|O(J2) (J.127)

Similarly for µP we find:

∂

∂J

(
µ|O(J2) P |O(J2)

)
=

[
(
rI
+

)2
+

(
J

M

)2
]

∂ µ|O(J2)

∂J
+ µ|O(J2)

∂

∂J

[
(
rI
+

)2
+

(
J

M

)2
]

(J.128)

We substitute the following expressions into (J.127)

µ|O(J2) (M,J) = µ0 (M) + µ2 (M) J2 (J.129)

∂ µ|O(J2)

∂M
= µ′

0 + µ′
2J

2

and we factorize powers of J , as follows:

∂

∂M

(
µ|O(J2) N

)
=

[
µ0

M2
−

(
1

M

)
µ′

0

]
J +

[
µ2

M2
−

(
1

M

)
µ′

2

]
J3

(J.130)

On the other hand we substitute the following expressions into (J.128):

µ|O(J2) (M,J) = µ0 + µ2J
2 (J.131)

∂

∂J
µ|O(J2) = 2µ2J
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The result reads :

∂

∂J

(
µ|O(J2) P

)
=

[
(
rI
+

)2
+

(
J

M

)2
]

2µ2J +
(
µ0 + µ2J

2
) ∂

∂J

[
(
rI
+

)2
+

(
J

M

)2
]

(J.132)

At this stage we cannot go further if we don’t expand rI
+ (M,J) in powers of J .

We make the following ansatz:

rI
+ (M,J) = rI

Sch+
(M, w̄) + Jc1 (M, w̄) + J2c2 (M, w̄) + J3c3 (M, w̄) + · · · (J.133)

Here every ci (M, w̄) depends on G
(
rI
+

)
. The O(J0) term in (J.133) is precisely rI

Sch+
,

the improved Schwarszchild external event horizon. Thus
(
rI
+

)2
can be expanded as

(we omit the arguments M and w̄):

[
rI
+ (M,J)

]2
=

(
rI
Sch+

)2
+ 2JrI

Sch+
c1 + J2

[
2rI

Sch+
c2 + (c1)

2] + J3
(
2c1c2 + 2rI

Sch+
c3

)

+J4
[
2c1c3 + (c2)

2] + · · · (J.134)

As a result, we have the following series for P :

P ≡
(
rI
+

)2
+

(
J

M

)2

=
(
rI
Sch+

)2
+ 2JrI

Sch+
c1 + J2

[
2rI

Sch+
c2 + (c1)

2 +
1

M2

]

+J3
(
2c1c2 + 2rI

Sch+
c3

)
+ J4

[
2c1c3 + (c2)

2] + · · · (J.135)

Or in a more compact form:

P = a0 + a1J + a2J
2 + a3J

3 + a4J
4 + · · · (J.136)

with

a0 =
(
rI
Sch+

)2
, a1 = 2rI

Sch+
c1 , a2 =

[
2rI

Sch+
c2 + (c1)

2 +
1

M2

]
(J.137)

a3 =
(
2c1c2 + 2rI

Sch+
c3

)
, a4 =

[
2c1c3 + (c2)

2] , · · ·

By differentiating (J.135) term by term with respect to J we find

∂P

∂J
= b0 + b1J + b2J

2 + b3J
3 + · · · (J.138)

with the coefficients

b0 = 2rI
Sch+

c1 , b1 = 2

[
2rI

Sch+
c2 + (c1)

2 +
1

M2

]
, b2 = 6

(
c1c2 + rI

Sch+
c3

)

b3 = 4
[
2c1c3 + (c2)

2] (J.139)
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Now we substitute (J.138) and (J.135) in (J.132) to get:

∂

∂J

(
µ|O(J2) P

)
=

(
a0 + a1J + a2J

2 + a3J
3 + a4J

4 + · · ·
)
(2µ2J)

+
(
µ0 + µ2J

2
) (

b0 + b1J + b2J
2 + b3J

3 + · · ·
)

(J.140)

Factorizing powers of J in (J.140) leads to

∂

∂J

(
µ|O(J2) P

)
= d0 + d1J + d2J

2 + · · · (J.141)

with the coefficients

d0 = µ0b0 = 2rI
Sch+

c1µ0 (J.142)

d1 = 2µ2a0 + µ0b1 = 2µ2

(
rI
Sch+

)2
+ 2µ0

[
2rI

Sch+
c2 + (c1)

2 +
1

M2

]

d2 = 2a1µ2 + b0µ2 + b2µ0 = 4µ2r
I
Sch+

c1 + 2rI
Sch+

c1µ2 + 6
(
c1c2 + rI

Sch+
c3

)
µ0

Now we have to find the explicit dependence on J of the coefficients ci in the

series (J.133) for rI
+ (M,J), so that we can substitute them into (J.142). As already

mentioned, these coefficients can be found from the general equation for the event

horizon (4.51) :

(
rI
+

)2
+

J2

M2
− 2MG

(
rI
+

)
rI
+ = 0 (J.143)

Expanding G
(
rI
+

)
in J we have

G
(
rI
+

)
= G0 (M, w̄) + G1 (M, w̄) J + G2 (M, w̄) J2 + · · ·

=
∞∑

k=0

Gk (M, w̄) Jk (J.144)

with

Gk (M, w̄) =
1

k!

∂kG
(
rI
+

)

∂Jk

∣∣∣∣∣
J=0

(J.145)

We can find the first three coefficients in (J.145) as follows:

G0 (M, w̄) = G
(
rI
+

)∣∣
J=0

= G
(
rI
Sch+

)

G1 (M, w̄) =
∂G

(
rI
+

)

∂J

∣∣∣∣∣
J=0

= G′ (rI
Sch+

) ∂rI
+

∂J

∣∣∣∣
J=0

= − JG′ (rI
+

)

M2 [rI
+ − M (G′rI

+ + G)]

∣∣∣∣∣
J=0

= 0

G2 (M, w̄) =
1

2

∂2G
(
rI
+

)

∂J2

∣∣∣∣∣
J=0

=
1

2

{
G′′ (rI

+

) (
∂rI

+

∂J

)2

+ G′ (rI
+

) (
∂2rI

+

∂J2

)}∣∣∣∣∣
J=0

= −
G′

(
rI
Sch+

)

2M2
[
rI
Sch+

− M
(
G′rI

Sch+
+ G

)] (J.146)
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Here we have used the following expressions (see subsection J.1.1 from this ap-

pendix):

∂rI
+

∂J
= − JG′ (rI

+

)

M2 [rI
+ − M (G′rI

+ + G)]
,

∂2G
(
rI
+

)

∂J2
=

(
∂rI

+

∂J

)2 [
M

(
G′′rI

+ + 2G
)
− 1

]
− 1

M2

[rI
+ − M (G′rI

+ + G)]

(J.147)

These expressions are found by performing recursive derivatives on (J.143). Substi-

tuting in (J.143) the expansions (J.133) and (J.144) for rI
+ and G

(
rI
+

)
, respectively,

leads to:

a0 + a1J + a2J
2 + a3J

3 + a4J
4 + · · ·

−2M
[
G0 + G1J + G2J

2 + · · ·
] [

rI
Sch+

+ Jc1 + J2c2 + J3c3 + · · ·
]

= 0

(J.148)

Here and in the following we suppress the (M, w̄)-arguments. Factorizing in (J.148)

the powers of J yields:

a0 − 2MG0r
I
Sch+

+
{
a1 − 2M

[
G1r

I
Sch+

+ c1G0

]}
J

+
{
a2 − 2M

[
G2r

I
Sch+

+ G0c2 + G1c1

]}
J2 + · · · = 0 (J.149)

As a result, the coefficients of every power should be independently equal to zero:

a0 − 2MG0r
I
Sch+

= 0 (J.150)

a1 − 2M
[
G1r

I
Sch+

+ c1G0

]
= 0 (J.151)

a2 − 2M
[
G2r

I
Sch+

+ G0c2 + G1c1

]
= 0 (J.152)

Substituting the expressions for Gi and ai in (J.150) and factorizing gives:

rI
Sch+

[
rI
Sch+

− 2MG
(
rI
Sch+

)]
= 0 (J.153)

The term in parentheses is precisely the condition for the event horizon of the

improved Schwarzschild spacetime. It is fulfilled by rI
sc+

by definition.

Performing similar substitutions in (J.151) leads to

2c1

[
rI
Sch+

− MG
(
rI
Sch+

)]
= 0 (J.154)
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Taking advantage of the event horizon equation rI
Sch+

= 2MG
(
rI
Sch+

)
we have

2c1MG
(
rI
Sch+

)
= 0 (J.155)

This means that c1 must be identically zero. We exploit this when simplifying

(J.152) after substituting the Gi’s and ai’s, namely

[
2rI

Sch+
c2 +

1

M2

]
− 2M


G

(
rI
Sch+

)
c2 −

G′
(
rI
Sch+

)
rI
Sch+

2M2
[
rI
Sch+

− M
(
G′rI

Sch+
+ G

)]


 = 0

Solving for c2 leads to

c2 = − 1

2rI
Sch+

− 2MG
(
rI
Sch+

)


 1

M2
+

G′
(
rI
Sch+

)
rI
Sch+

M
[
rI
Sch+

− M
(
G′rI

Sch+
+ G

)]


 (J.156)

At this point we use again the identity rI
Sch+

= 2MG
(
rI
Sch+

)
in order to simplify

(J.156):

c2 = − 1

2M3
[
G

(
rI
Sch+

)
− G′

(
rI
Sch+

)
rI
Sch+

] (J.157)

After comparing (J.157) with the expression of µ0 in (J.126), we find

c2 = − µ0

2M2
(J.158)

Knowing the components c1 and c2 of rI
+ (M,J) we can come back to the first

two coefficients (J.142) in the expansion (J.141) of the derivative of µP in J . They

are4

d0 = 2rI
Sch+

c1µ0 = 0 (J.159)

d1 = 2µ2

(
rI
Sch+

)2
+ 2µ0

[
2rI

Sch+
c2 + (c1)

2 +
1

M2

]
= 2µ2

(
rI
Sch+

)2
+

2µ0

M2
−

2rI
Sch+

µ2
0

M2

(J.160)

4Of course, further d’s require the knowledge of more c’s. We stop at order O(1) which is our

main goal.
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As a result we have the following expression to O(J) for (J.141)

∂

∂J

(
µ|O(J2) P

)
=

[
2µ2

(
rI
Sch+

)2
+

2µ0

M2
−

2rI
Sch+

µ2
0

M2

]
J + O

(
J2

)
(J.161)

If our calculations are correct, the O(J) component in (J.161) should be equal to

the respective O(J) component in (J.130). In order to show this we have to further

simplify (J.161) by exploiting the expressions (J.126) and (J.153) for µ2 and rI
Sch+

,

respectively

∂

∂J

(
µ|O(J2) P

)∣∣∣∣
O(J)

=
( µ0

M2

)



3 + 2MG′
(
rI
Sch+

)

1 − 2MG′
(
rI
Sch+

)


 −

4G
(
rI
Sch+

)
µ2

0

M
+

2µ0

M2
− µ′

0

M

(J.162)

At this point we can apply to the first term in (J.162) the following identity for µ0:

µ0 =
1

MG
(
rI
Sch+

) [
1 − 2MG′

(
rI
Sch+

)] (J.163)

This identity can be found by substituting rI
Sch+

= 2MG
(
rI
Sch+

)
into the µ0 of

(J.126). The result, after some trivial algebraic steps, is the following:

∂

∂J

(
µ|O(J2) P

)∣∣∣∣
O(J)

=
µ0

M2
− µ′

0

M
(J.164)

This is precisely the O(J) component in (J.130). This completes the proof that with

the O (J2) approximation to µ the exactness condition is satisfied to order O (J).

J.4 Temperature and Entropy

In this section we calculate the O (J2) approximations to the first law and the

associated temperature T (M,J). In order to perform these calculations we exploit

the O (J2) approximation for the integrating factor µγ given in (8.193). We also

check the consistency of the result obtained with the general all order formalism

with what was found using the direct derivation of the J2 coefficients S2 and T2

presented in subsection 8.7.7.
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J.4.1 Expansion of the First Law

In subsection 8.7.7 we have presented the O (J2) approximation to the first law, as

follows:

δS|O(J2) =
(µα

κ

)∣∣∣
O(J2)

δM −
(

ΩHµα

κ

)∣∣∣∣
O(J2)

δJ (J.165)

We have also defined P̄
∣∣
O(J2)

and N̄
∣∣
O(J2)

to be the coefficients of δM and δJ in

(J.165), respectively

P̄ =
µα

κ
, N̄ = −ΩHµα

κ
(J.166)

Substituting κ and ΩH from (8.137) and (8.138), and µα = h−1µγ , in (J.166) leads

to

P̄
∣∣
O(J2)

= µγ

[
(
rI
+

)2
+

(
J

M

)2
]∣∣∣∣∣

O(J2)

(J.167)

N̄
∣∣
O(J2)

= −
(

Jµγ

M

)∣∣∣∣
O(J2)

(J.168)

Calculating N̄
∣∣
O(J2)

is straightforward:

N̄
∣∣
O(J2)

= −
[
J (µ0 + µ2J

2)

M

]∣∣∣∣
O(J2)

= −Jµ0

M
(J.169)

whereas for P̄
∣∣
O(J2)

we apply the expansion (J.135) for P we have found in the

previous section. It is given by

P ≡
(
rI
+

)2
+

(
J

M

)2

=
(
rI
Sch+

)2
+ 2JrI

Sch+
c1 + J2

[
2rI

Sch+
c2 + (c1)

2 +
1

M2

]

+J3
(
2c1c2 + 2rI

Sch+
c3

)
+ J4

[
2c1c3 + (c2)

2] + · · · (J.170)

Substituting c1 = 0 and c2 = −µ0/ (2M2) from (J.155) and (J.157) into (J.170)

gives the following expansion for P :

P ≡
(
rI
+

)2
+

(
J

M

)2

=
(
rI
Sch+

)2
+

(
J2

M2

) [
1 − rI

Sch+
µ0

]
+ O

(
J4

)
(J.171)

Now substituting (J.171) and µγ = (µ0 + µ2J
2) in (J.167) yields

µγ

[
(
rI
+

)2
+

(
J

M

)2
]∣∣∣∣∣

O(J2)

=
(
µ0 + µ2J

2
)
[
(
rI
+

)2
+

(
J

M

)2
]∣∣∣∣∣

O(J2)

(J.172)

= µ0

(
rI
Sch+

)2
+ J2

{
µ2

(
rI
Sch+

)2
+ µ0

(
1 − rI

Sch+
µ0

M2

)}
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Now we insert expression (J.69) for µ2 into (J.172). Thus we find

µγ

[
(
rI
+

)2
+

(
J

M

)2
]∣∣∣∣∣

O(J2)

=

µ0

(
rI
Sch+

)2
+ J2

{[
3G + rI

sc+
G′] (µ0)

2 − µ′
0

2M
+ µ0

(
1 − rI

Sch+
µ0

M2

)}
(J.173)

Exploiting rI
Sch+

= 2MG
(
rI
Sch+

)
leads to

µγ

[
(
rI
+

)2
+

(
J

M

)2
]∣∣∣∣∣

O(J2)

= µ0

(
rI
Sch+

)2
+ J2

{[
2MG′ − 1

2M

]
G (µ0)

2 − µ′
0

2M
+

µ0

M2

}

(J.174)

Applying G (1 − 2MG′) = 1
Mµ0

in the left hand side of (J.174) gives

P̄
∣∣
O(J2)

= µγ

[
(
rI
+

)2
+

(
J

M

)2
]∣∣∣∣∣

O(J2)

= µ0

(
rI
Sch+

)2
+

J2

2M

[µ0

M
− µ′

0

]
(J.175)

Substituting (J.169) and (J.175) for N̄O(J2) and P̄O(J2) respectively, in (J.165) leads

to

δ

(
S

2π

)∣∣∣∣
O(J2)

= P̄
∣∣
O(J2)

δM + N̄
∣∣
O(J2)

δJ

=

{
µ0

(
rI
Sch+

)2
+

J2

2M

[µ0

M
− µ′

0

]}
δM − Jµ0

M
δJ

This is the final result for the O (J2) approximation to the first law presented in

subsection 8.7.7.

J.4.2 Expansion of the Temperature

In subsection 8.7.7 we have found the following expression for T (M,J):

T (M,J) =
1

2πµγ

[
(rI

+)
2
+

(
J
M

)2
] (J.176)

From (J.176) we can calculate an O (J2) approximation to T (M,J) by expanding

the inverse of µγP in a Taylor series about J = 0, as follows. The Taylor series

about J = 0 of a generic function F (J,M) is given by

F (J,M) = F0 (M) + F1 (M) J + F2 (M) J2 + · · ·
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with

Fk (M) =
1

k!

∂kF

∂Jk

∣∣∣∣
J=0

For the inverse of F (J,M) we have

F (J,M)−1 ≡ 1

F (J,M)
= F

(−1)
0 (M) + F

(−1)
1 (M) J + F

(−1)
2 (M) J2 + · · · (J.177)

where the coefficients up to O (J2) are given by

F
(−1)
0 (M) =

1

F (0,M)
=

1

F0

, F
(−1)
1 (M) = − 1

F 2 (0,M)

∂F

∂J

∣∣∣∣
J=0

= − F1

(F0)
2

F
(−1)
2 (M) =

1

2F 2 (0,M)

[
2

F

(
∂F

∂J

)2

− ∂2F

∂J2

]∣∣∣∣∣
J=0

=
1

(F0)
2

[
(F1)

2

F0

− F2

]

(J.178)

As a result we have for the inverse of µγ (J,M) up to O (J2)

1

µγ (J,M)

∣∣∣∣
O(J2)

=
1

µ0

− µ2J
2

(µ0)
2 (J.179)

where µ0 and µ2 are the components of µγ (J,M)
∣∣
O(J2)

. A similar expansion can be

obtained for 1/P . We start with the definition of P (J,M)|O(J2) in (J.175) given by

P (J,M)|O(J2) ≡
(
rI
+

)2
+

(
J

M

)2
∣∣∣∣∣
O(J2)

= P0 + P2J
2

= µ0

(
rI
Sch+

)2
+

J2

2M

[µ0

M
− µ′

0

]
(J.180)

Thus we can identify the following coefficients:

P0 =
(
rI
Sch+

)2
, P1 = 0 , P2 =

(
1

M2

) [
1 − µ0r

I
Sch+

]
(J.181)

We can apply the coefficients in (J.181) in order to find 1/P (J,M) up to O (J2).

Substituting (J.181) in (J.178) leads to

P
(−1)
0 (M) =

1

P0

=
1

(
rI
Sch+

)2 , P
(−1)
1 (M) = − P1

(P0)
2 = 0 (J.182)

P
(−1)
2 (M) =

1

(P0)
2

[
(P1)

2

P0

− P2

]
= − P2

(P0)
2 =

µ0r
I
Sch+

− 1

M2
(
rI
Sch+

)4
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As a result, we have the following expression for 1/P (J,M)|O(J2):

1

P (J,M)

∣∣∣∣
O(J2)

=
1

(
rI
Sch+

)2 +
J2

(
rI
Sch+

µ0 − 1
)

M2
(
rI
Sch+

)4 + · · · (J.183)

Now we can substitute expressions (J.179) and (J.183), for 1/µγ (J,M)
∣∣
O(J2)

and

1/P (J,M)|O(J2), respectively, into the equation (J.176) for the temperature. This

leads to

T (M,J) =
1

2πµγ

[
(rI

+)
2
+

(
J
M

)2
] =

1

2π

[
1

µ0

− µ2J
2

(µ0)
2

]



1
(
rI
Sch+

)2 +
J2

(
rI
Sch+

µ0 − 1
)

M2
(
rI
Sch+

)4




=
1

2πµ0

(
rI
Sch+

)2 +
J2

2π
(
rI
Sch+

)2

µ0




(
rI
Sch+

µ0 − 1
)

M2
(
rI
Sch+

)2 − µ2

µ0


 + O

(
J4

)
(J.184)

Thus we identify the coefficients T0 and T2 in (J.184) to be

T0 =
1

2π
(
rI
Sch+

)2

µ0

(J.185)

T2 =
1

2π
(
rI
Sch+

)2

µ0




(
rI
Sch+

µ0 − 1
)

M2
(
rI
Sch+

)2 − µ2

µ0


 (J.186)

T2 can be further simplified by substituting µ2 in (J.186) as follows:

T2 = − 1

2π
(
rI
Sch+

)2

µ0M




[
3G + rI

Sch+
G′

]
µ0 −

µ′
0

µ0

2
(
rI
Sch+

)2 +

(
1 − rI

Sch+
µ0

)

M
(
rI
Sch+

)2


 (J.187)

=
1

4πM
(
rI
Sch+

)4

(µ0)
2


µ′

0 −
[
3G + rI

Sch+
G′] (µ0)

2 −
2
(
1 − rI

Sch+
µ0

)
µ0

M




Substituting rI
Sch+

= 2MG and simplifying gives

T2 =
1

4πM
(
rI
Sch+

)4

(µ0)
2

[
µ′

0 + (µ0)
2 G (1 − 2MG′) − 2µ0

M

]
(J.188)

We now substitute in (J.188) the identity

G (1 − 2MG′) =
1

Mµ0
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which comes from using rI
Sch+

= 2MG in the expression for µ0 given in (J.126). As

a result we find

T2 =

[
µ′

0 − µ0

M

]

4πM
(
rI
Sch+

)4

(µ0)
2

(J.189)

After substituting expression (J.189) in (J.184) we find the final result for T (M,J):

T (M,J) =
1

2πµ0

(
rI
Sch+

)2 +
J2

[
µ′

0 − µ0

M

]

4πM
(
rI
Sch+

)4

(µ0)
2

+ O
(
J4

)
(J.190)

This is precisely the expression presented in equation (8.205) of the main text.

J.4.3 Direct Calculation of the Coefficients S2 and T2: a

Consistency Check

In subsection 8.7.7 we also found from the simple “J2-method” the leading coeffi-

cients T2 and S2. We check now that they lead to the result (J.189) for T2, which we

obtained using the general all-order method. We verify in this way the consistency

of the two calculations of T2.

The expressions from the simplified J2-method are

S2 = − 1

2T0M
(
rI
Sch+

)2 (J.191)

T2 = − (T0)
2

(
dS2

dM

)
(J.192)

Substituting (J.191) in (J.192) gives the following:

T2 =

[
− (T0)

2

−2

]
d

dM




1

T0M
(
rI
Sch+

)2


 (J.193)

We have already an expression of T0 given in (J.185). It is the temperature of the

Schwarzschild black hole:

T0 =
1

2π
(
rI
Sch+

)2

µ0

(J.194)
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Substituting (J.194) in (J.193) leads to

T2 =
1

4π
(
rI
Sch+

)4

(µ0)
2

[
Mµ′

0 − µ0

M2

]
(J.195)

=

[
µ′

0 − µ0

M

]

4π
(
rI
Sch+

)4

(µ0)
2 M

(J.196)

By comparing (J.196), coming from equations (8.212) and (8.213) for T2 and S2,

with (J.189) calculated using µγ, we conclude that they are indeed equal.
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