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Ehsan Noruzifar

Thermischer Casimir-Effekt an fluiden Grenzflächen:

Fluktuationsinduzierte Kräfte zwischen anisotropen Kolloidteilchen

Wir untersuchen für zwei ellipsodalen Teilchen an der Grenzfläche zweier fluider Phasen

die effektive Wechselwirkung, welche durch thermische Fluktuationen der Grenzfläche

übertragen wird. Innerhalb eines Vergröberungsbildes werden die Eigenschaften von flu-

iden Grenzflächen sehr gut durch einen effektiven Kapillarwellen-Hamiltonian beschrieben,

welcher sowohl die Konfiguration der Gleichgewichtsgrenzfläche als auch die thermischen

Fluktuationen (Kapillarwellen) um diese Gleichgewichtsposition beschreibt. Wie vom

Goldstone-Theorem vorausgesagt, sind die Kapillarwellen langreichweitig korrelliert. Die

Grenzfläche bricht die kontinuierliche Translationssymmetrie des Systems und muss im

Grenzfall verschwindender externer Felder - wie z.B. der Gravitation - begleitet werden

von leicht anregbaren langwelligen (Goldstone)-Moden - dies sind die Kapillarwellen. Auf

der Grenzfläche führt die Einschränkung der langreichweitigen Kapillarwellen durch die

Anwesenheit der Kolloidteilchen zu fluktuationsinduzierten Kräften. Diese sind äquivalent

zu Wechselwirkungen vom Casimir-Typ und sind anisotrop in der Ebene der Grenzfläche.

Da die Position und die Orientierung der Kolloide in Bezug auf die Oberflächensenkrechte

ebenfalls fluktuieren können, ist dieses System ein Beispiel für den Casimireffekt mit fluk-

tuierenden Randbedingungen. In dem hier gewählten Zugang wird die Casimirwechsel-

wirkung umformuliert in eine Wechselwirkung zwischen fluktuierenden Multipolmomenten

einer elektrostatischen Ladungsdichte, welche auf den von den Dreiphasen-Kontaktlinien

eingeschlossenen Flächen als Hilfsfeld eingeführt wird. Diese Fluktuationen sind aufgrund

der möglichen Positions- und Orientierungsfluktuationen der Kolloide an Fluktuationen

der Kontaktlinienposition gekoppelt. Wir erhalten explizite Ausdrücke für das Verhal-

ten der Casimir-Wechselwirkung bei großen Entfernungen für beliebige Achsenverhältnisse

der Ellipsoide. Werden Kolloidfluktuationen unterdrückt, dann sind die Casimirwechsel-

wirkungen bei großen Entfernungen isotrop, attraktiv und langreichweitig (doppelt loga-

rithmisch im Abstand zwischen den beiden Kolloiden). Werden dagegen Kolloidfluktua-

tionen zugelassen, ändert sich die Casimirwechselwirkung bei großen Entfernungen in ein

Potenzgesetz im inversen Abstand und wird anisotrop. Die führende Potenz ist 4, wenn

nur vertikale Fluktuationen des Kolloidschwerpunktes erlaubt werden und wird 8, wenn

auch Fluktuationen in der Orientierung der Symmetrieachsen der Kolloide berücksichtigt

werden [1,2].
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Thermal Casimir Effect at Fluid Interfaces:

Fluctuation–Induced Forces between Anisotropic Colloids

We study the effective interaction between two ellipsoidal particles at the in-

terface of two fluid phases which are mediated by thermal fluctuations of the in-

terface. Within a coarse–grained picture, the properties of fluid interfaces are very

well described by an effective capillary wave Hamiltonian which governs both the

equilibrium interface configuration and the thermal fluctuations (capillary waves)

around this equilibrium (or mean-field) position. As postulated by the Goldstone

theorem the capillary waves are long-range correlated. The interface breaks the con-

tinuous translational symmetry of the system, and in the limit of vanishing external

fields – like gravity – it has to be accompanied by easily excitable long wavelength

(Goldstone) modes – precisely the capillary waves. In this system the restriction of

the long–ranged interface fluctuations by particles gives rise to fluctuation–induced

forces which are equivalent to interactions of Casimir type and which are anisotropic

in the interface plane. Since the position and the orientation of the colloids with

respect to the interface normal may also fluctuate, this system is an example for the

Casimir effect with fluctuating boundary conditions. In the approach taken here,

the Casimir interaction is rewritten as the interaction between fluctuating multipole

moments of an auxiliary charge density–like field defined on the area enclosed by

the contact lines. These fluctuations are coupled to fluctuations of multipole mo-

ments of the contact line position (due to the possible position and orientational

fluctuations of the colloids). We obtain explicit expressions for the behavior of the

Casimir interaction at large distances for arbitrary ellipsoid aspect ratios. If colloid

fluctuations are suppressed, the Casimir interaction at large distances is isotropic,

attractive and long ranged (double–logarithmic in the distance). If, however, colloid

fluctuations are included, the Casimir interaction at large distances changes to a

power law in the inverse distance and becomes anisotropic. The leading power is 4

if only vertical fluctuations of the colloid center are allowed, and it becomes 8 if also

orientational fluctuations are included [1, 2].
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Chapter 1

Introduction

Colloids (colloid stems from a Greek word “κoλλα” which means glue) are solid par-

ticles, droplets or bubles that are dispersed in one or more dispersing phases. They

can have different shapes such as spheres, cubes, plates, rods, ellipsoids, etc. The

size of these objects lies between 1 nm and 1000 µm. Due to this characteristic size,

a colloid has a large interfacial area, giving rise to various interfacial phenomena [3].

Colloids can be classified into five groups, namely simple colloids, network colloids,

multiple colloids, macromolecular colloids and association colloids [4].

Simple colloids, also known as colloidal dispersions, are a heterogenous system com-

posed of two distinguishable phases, a continuous phase and a discontinuous phase

which are called dispersion medium and dispersed phase, respectively.

In our every day life, we have a lot of contact with this type of colloids. Milk (fat

droplets in a liquid phase), fog (droplets dispersed in a gas), smoke (solid particles

dispersed in a gas) are some familiar examples of simple colloids.

There are many instances of colloidal structures in biological system, e.g. blood

(corpuscles dispersion in serum) and bone (calcium phosphate dispersion in colla-

gen).

For network colloids, the distinction between two phases is not as easy as for col-

loidal dispersions as the networks consist of interpenetrating continuous channels,

17
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like in the case of porous solids where the gas and solid networks interpenetrate such

that they can not be simply distinguished.

Multiple Colloids are a kind of solution with three or more coexisting phases in which

two or more of them are finely divided from others. As an example we mention an

oil bearing porous rock, since the oil and water coexist in solid pores.

Macromolecules in a solution can be viewed as tiny colloids of size 1 nm (or even

larger). These particles are known as macromolecular colloids. Jellies (macro-

molecules dispersed in liquid) are an example of this kind of colloids.

Association colloids or self-assembled structures form when molecules of surface ac-

tive agents (surfactant) are associated together to form small aggregates in water,

known as micelles.

Colloids can be subdivided into two categories with respect to their surface speci-

fications. Colloids attarcted by the dispersion medium molecules are called lyophilic

which means “solvent loving” and colloids with the exactly opposite characteristics

are named lyophobic which means “solvent hating”. In the case that the dispersion

medium is water one use the terms ”hydrophilic“ and ”hydrophobic“, meaning ”water

loving“ and ”water hating“, respectively.

In this thesis we are dealing with colloidal dispersions which are quite popular

in science and technology due to their simple nature and wide applications [5].

In simple colloids stabilty of the dispersion is a very important topic, as for instance

particles which are less dense than the dispersion medium have the tendency to

rise to the surface of the dispersion. On the contrary if particles are more dense

than the dispersion medium they will sediment at the bottom of the dispersion.

These two effects are attributed to gravity. If the size of dispersed colloids becomes

smaller than 1µm , the gravitational force on the colloids become small compared

to random thermal forces and they perform a random Brownian motion, resulting

in collisions between colloids that increases the likelihood of aggregation. In order

to avoid this phenomenon and formation of bigger clusters of particles , colloidal
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dispersions have to be stabilized; e.g. by employing electrostatic interactions in the

charge stabilization method or attaching polymers on the surface of the colloids in

the steric stabilization method [6].

Since this thesis is mainly concentrated on the colloidal particles that are trapped

at a fluid interface , i.e. the interface between two fluid phases, in the following

section (Sec. 1.1) we shortly introduce the definition of these interfaces as well as

the situation of colloidal particles located on them.

Having introduced colloids at interfaces, in Sec. 1.2 we investigate the interaction

between micro- and nanocolloidal particles in brief.
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Figure 1.1: Schematic plot of the density profile of a liquid–gas interface area. The

distance is measured with respect to the axis perpendicular to the equilibrium in-

terface mean position.

1.1 Colloids at fluid interfaces

An interface is the boundary region between two dissimilar phases, such as liquid–

gas, liquid–solid, solid–gas. However, an interface may also form between two liquids

and solids if the two phases are immiscible, (e.g. oil–water interface). Obviously, one

can not speak of gas–gas interfaces as it is not possible to keep two gases unmixed

without a third, intervening non–gaseous phase [8].

A fluid interface (i.e. liquid–gas or liquid–liquid) is usually associated with the

Gibbs concept of ”a surface with zero thickness“ between two fluid phases. How-

ever, as it is illustrated in the schematic liquid–gas interface density profile curve in

Fig. (1.1), the density of the liquid phase does not fall sharply to the density of the

gaseous phase upon changing from the bulk liquid to the bulk gas phase, but con-
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tinuously decreases in the vicinity of interface. This implies that one can attribute

an effective interface width to the interface separating two fluid phases.

It is also possible to observe a finite interfacial thickness in terms of orientations

of molecules. In the case of air–water interface the water molecules are oriented

such that their negative tips direct towards the gas phase. This orientational order

gradually randomizes as the distance from the interface increases [8].

The free energy associated with a fluid interface can be interpreted on the molec-

ular scale. Since a molecule in a bulk fluid is surrounded by more molecules than a

molecule at a fluid interface, it has a lower potential energy and consequently energy

is required for moving a molecule from bulk to the interface. Therefore to increase

the interface area, energy has to be transfered to the molecules in the bulk to bring

them to the interface. This energy dE is proportional to the change of the interface

area dA

dE = γdA , (1.1)

where γ is a positive coefficient known as the ”surface tension“ or ”surface free

energy“.

Solid particles with homogeneous composition and chemical properties on their

surface can be trapped at a fluid interface [9]. This phenomenon was found in the

beginning of the last century by Ramsden and Pickering [10–12].

There is a class of synthetic particles known as Janus particles, comprised of two

different surface regions carrying distinctive chemical and wetting properties. These

particles are both surface active and amphiphilic (compounds with both hydrophilic

and hydrophobic characteristics) at the same time, similar to surfactant molecules

(compounds with hydrophobic tails and hydrophilic heads, soluble in both water

and organic solutions; lowering the surface tension of a fluid) [13, 14]. Because of

the specific features of such particles, if such a Janus particle is trapped at a fluid

interface, the three phase contact line is pinned to the particle surface at the position

where the two different surface regions meet.
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Figure 1.2: Three phase system; a colloidal particle trapped at a fluid interface.

One of the most important quantities for a colloid at a fluid interface is the three

phase contact angle θ which is the angle between the tangents to the colloid surface

and the fluid interface at the point where the colloid surface and the interface are

in contact. Denoting the surface tensions between the colloidal particle and fluid

phase I by γI, and between the colloidal particle and fluid phase II by γII, as well as

the surface tension of the fluid interface by γ, the contact angle θ can be determined

by the Young’s equation [15]

cos θ =
γII − γI

γ
. (1.2)

For spherical colloids, this relation follows after equilibrating the forces on particle

at the interface (see Fig. 1.2). For anisotropic particles, Young’s equation can not

be fulfilled for every point at the three–phase contact line if one assumes a flat

interfaces. Thus, the interface must neccessarily be deformed (see Subsec. 1.2.3).
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1.2 Interaction between colloidal particles

Interactions between colloids in a solution may result in novel structures or new

phases. In this thesis we are interested in a particular type of interactions between

colloids at fluid interfaces , therefore we will discuss some general aspects of colloidal

interaction at fluid interfaces in the present section.

In Subsec. 1.2.1, the well–known van der Waals interaction is investigated for col-

loidal particles. The origin of van der Waals forces is shortly derived for the case of

a Hydrogen molecule. Then the van der Waals potential is discussed for colloids in

the bulk and at interfaces.

In Subsec. 1.2.2 we explain the electrostatic interaction between colloidal particles

in bulk and at a fluid interface.

Subsec. 1.2.3 is focused on static interface–mediated interactions for colloidal parti-

cles that are trapped at the interface of two fluid phases (capillary interaction).

In Subsec. 1.2.4 we introduce fluctuation–induced forces for colloidal particles. The

relevant fluctuations in our system of interest are thermally excited height fluctua-

tions of the interface (capillary waves).

Finally in Subsec. 1.2.5 we investigate different possibilities of strengthening fluctuation–

induced interactions in order to discriminate it from other contributions in the ef-

fective interaction of colloidal particles.

1.2.1 Van der Waals interactions

Van der Waals forces are the consequence of quantum mechanical interactions be-

tween ”instantaneous“ electric dipoles of molecules and atoms. To be more clear, for

non–polar atoms, the quantum mechanical average of its dipole moment is zero, but

the quatum mechanical average of dipole interaction with another atom is not zero.

This may be interpreted as the effect of ”instantaneous“ dipoles [16].

This type of force was discovered by Fritz London by considering the Coulomb
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Figure 1.3: Illustrative sketch of two atoms separated by distance R, circles with

”plus label” and “minus label“ represent nuclei and electrons, respectively.

interactions between the electrons and nuclei of two identical neutral atoms in second

order perturbation theory [17, 18]. In order to give a quantitative picture of what

London did to derive this force, we consider two hydrogen atoms separated by a

distance R shown by the vector R = eRR, where eR is the unit vector along the

line connecting the atoms, and their electrons are positioned at r1 and r2 from their

nuclei. The Hamiltonian of this system reads

Ĥ = Ĥ0 + V̂ , (1.3)

where V̂ contains the Coloumb interactions across the two atoms and Ĥ0 is the

unperturbed Hamiltonian (R → ∞)

Ĥ0 = Ĥ1 + Ĥ2 , (1.4)

with the eigenstates |0n〉 = |n1〉|n2〉 corresponding to eigenenergies E0n = En1
+En2

.

The interaction potential V in terms of all Coulomb energies between the electrons

and atoms of the Hydrogen atom is given by

V̂ =
e2

R
+

e2

|R + r2 − r1|
− e2

|R + r1|
− e2

|R + r2|
. (1.5)

After Taylor expanding of the above potential in terms of 1/R, we obtain

V̂ = − e2

R3
(3(r1.uR)(r2.uR) − r1.r2) +O(R−5) (1.6)
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where the first term of the expansion that we have included in the above expansion

corresponds to the dipole-dipole interaction, and higher order terms give interactions

which are associated with dipole-quadrupole, quadrupole-quadrupole, ... interac-

tions. We treat this Hamiltonian as a perturbation potential and use the quantum

perturbation theory up to second order for non-degenerate states

En = E0n + 〈0n|V̂ |0n〉 +
∑

j 6=n

|〈0n|V̂ |0j〉|2
E0n − E0j

+ ... . (1.7)

The first order terms contain the expectation values of the type

〈n1|x̂i,1|n1〉〈n2|x̂i,2|n2〉 = 0 , (1.8)

which vanish, since each atom has a vanishing electric dipole in its ground state.

Therefore

En(R) = En1
+ En2

− e2

a0

An

(R/a0)6
, (1.9)

where the Bohr radius a0 has been introduced to define the dimensionless amplitude

An =
e2

a5
0

∑

(j1,j2)6=(n1,n2)

|〈n1|〈n2|(x̂1x̂2 + ŷ1ŷ2 − 2ẑ1ẑ2)|j1〉|j2〉|2
Ej1 + Ej2 −En1

− En2

. (1.10)

If |0n〉 is the ground state, then En − En0 > 0, thus the van der Waals force is

attractive.

When two atoms are separated by a considerable distance, it takes time before the

electric field of one atom ”reaches“ the second one. Therefore the interaction force

decays faster than for the case in which the atoms are close. This effect which is

related to the finite speed of light is known as the retardation effect. Including the

retardation effect to the calculation of the van der Waals interaction results in an

interaction potential which decays ∝ −1/r7 [19]. This effect was found by Casimir

and Polder. If two molecules are in the vaccum the retardation effect becomes

inportant when the molecules are more than 5 nm apart from each other. On the

other hand if the atoms or molecules are in a medium where the light speed is slower,

retardation effects play a role at smaller separations [16].
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To calculate van der Waals forces between two rigid bodies, one can sum over the

van der Waals interaction between all pairs of atoms in the bodies. This calculation is

based on two simplifying assumptions: that the van der Waals interaction is pairwise

additive and they are non-retarded. Such a summation amounts to a double volume

integral [20]

UvdW = −A12

π2

∫

V1

∫

V2

dV1 dV2

|r1 − r2|6
, (1.11)

where |r1 − r2| is the distance between two volume elements dV1 of body 1 and

dV2 of body 2, and A12 is the Hamaker constant [21] which has the dimension of

the energy and determines the effective strength of the van der Waals potential

between two bodies. The Hamaker constant for most condensed phases is in the

range (0.4−4)×10−19J, and it depends on the material constituting the bodies [22].

In the discussion above, van der Waals forces were obtained by neglecting the

retardation effects and multi-body intermolecular forces, Lifshitz developed an al-

ternative quantum electrodynamical approach to calculate this type of interaction

between two macroscopic bodies. In the Lifshitz theory [23–26] the particles are

considered as continuum dielectric objects in a dielectric medium. In this theory

instead of the polarizability of atoms, the frequency dependent dielectric permittiv-

ities of the bulk media are employed. However, in the resulting interaction force the

dependence on distance is the same as what one obtains in the pairwise summation

method, but it should be noted that in this case the Hamaker constant is given as

a function of frequency-dependent dielectric functions.

If the intervening medium in which the objects are placed is dielectrically anisotropic,

the van der Waals interaction will also depend upon the mutual orientation of the

objects [27].

The form of the van der Waals interaction between the colloidal particles at a

fluid interface is more intricate compared to such interactions in the bulk [28]. In a

method proposed by Wiliams and Berg the effective Hamaker constant is estimated

by using the fractional volume of the particle in the liquid . For the case of a
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liquid–vapor interface the following equation was proposed [29]

Aint = Avac + f 2(3 − 2f)(Aliquid −Avac) . (1.12)

Here, f is a linear fractional immersion, Avac and Aliquid are the Hamaker constants

of the particles in vacuum and in the liquid. This expression implies that the van

der Waals interaction at liquid–vapor interface should be stronger than in the bulk

liquid. However, in this approach the interface thickness, and the large variations in

the density around it are ignored, thus it is inaccurate for nanoparticle systems [28].

More considerations about the van der Waals interactions between nanoparticles

can be found in the review by Bresme and Oettel [28].
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1.2.2 Electrostatic interactions

Electrostatic interactions are usually stronger in charged colloidal systems, and con-

sequently play an important role for their stability and phase behavior.

In polar dispersions with charged colloidal particles and mobile ions, the elec-

trostatic field of the fixed ions at the colloids surfaces interact with the mobile ions.

The charges on a colloid surface are partly neutralized by a layer of counterions

absorbed from the solution. Hereby, the charge density on the colloid surface is

usually several µC/cm2 which corresponds to the range 0.1 − 1 e/nm2, where e is

the electron’s charge [30].

The layer which is tightly bound to the charged colloid surface is known as Stern

layer [31]. Away from the Stern layer, solution ions form a a diffuse concentration

profile.

To find the ions concentration profile, we need to obtain the electrostatic poten-

tial φ(r) which is connected to the ion number density n(r) through the Boltzmann

equation

n(r) = n0

[
exp

(−zeφ(r)

kBT

)
+ exp

(
+zeφ(r)

kBT

)]
, (1.13)

where n0 is the ionic concentration in the bulk solution, ze is the charge of the ions,

kB is the Boltzmann constant, and T is the temperature. The first and second terms

in r.h.s. of Eq. (1.13) represent the number density of positive and negative ions,

respectively.

On the other hand, using the Poisson equation, the electrostatic potential φ can be

found via

ρ(r) = −ǫ∇2φ(r) . (1.14)

where ǫ is the permitivity of the solution. The net charge density ρ(r) is given by

ρ(r) = ze n(r) . (1.15)

After identifying Eq. (1.13) and Eq. (1.15), Eq. (1.14) is rewritten as

∇2φ(r) =
2zen0

ǫ
sinh

(
zeφ(r)

kBT

)
. (1.16)
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The above equation known as Poisson–Boltzmann equation has to be solved self–

consistently by using the appropriate boundary conditions for a given system.

In the Debye–Hückel approximation [32], φ(r) ≪ 1, we have sinh(zeφ(r)/kBT ) ≈
(zeφ(r)/kBT ); thus Eq. (1.16) reduces to the Debye–Hückel equation for the elec-

trostatic potential φ

∇2φ− κ2φ = 0 , (1.17)

with the solution in spherical symmetry around the (point) charge q

φ(r) = q
exp(−κr)

4πǫr
, (1.18)

where κ−1 is the Debye screening length

κ =

(
2e2n0z

2

ǫkBT

)1/2

, (1.19)

which gives the radius of the effective screening cloud around a charged colloid. If the

distance from the charged colloid is much greater than the Debye screening length,

the direct electrostatic interaction quickly falls to zero [6]. In this approximation

the interaction potential between charged colloids is simply given by U = qφ(r) =

q2 exp(−κr)/(4πǫr), where q is the total charge on each of the colloids and r is their

distance.

The electrostatic interaction between charged colloidal particles trapped at a fluid

interface is altered significantly compared to such interactions in the bulk [28]. For

colloids that are trapped at the air–water interface, the surface charge density of the

colloid part which is in the water remains high compared to the case that charged

colloids are in the bulk. For the part of the colloid which is in the air, for equilibrium

reasons, the surface charges are reneutralized by distributing them on the water side

of the colloid.

Stillinger and Hurd in a simple model considered charged colloids at a water interface

as point charges and investigated the ions distribution in water phase by the Debye–

Hückel approximation. This model results in a dipole–dipole interaction besides
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the screened Coulomb potential. The screened Coulombic and dipole contributions

to the interaction energy of two point charges q = Ze = σcA, where A is the

colloid surface area exposed to water and σc the surface charge density, by using the

linearized Poisson–Boltzmann equation are given by [33]

Udipole ∝ 2

(
Ze

ǫκ

)2
1

d3
∝ 1

ǫ

σ2
cκ

−2

d3
(kd > 10)

UCoulomb ∝ 2

(
Z2e2

ǫd

)
ǫ2

ǫ2 − 1
exp(−κd) (kd < 10) (1.20)

where ǫ is the ratio of dielectric constants of water and the nonpolar medium, and

d is the intercolloidal distance.

This approximation is expected to be accurate when the intercolloidal distances are

long, since the potential is smaller than kBT and consequently the linearization be-

comes a good approximation [28].

However, the dependence on the electrolyte concentration through the Debye screen-

ing length κ−1 is subject to strong charge renormalization of the charge densities on

colloid–water surfaces [34].

If the surface charge density of the water side of a charged colloidal particle is high the

Debye–Hückel approximation is not valid any more and nonlinear screening effects

have to be considered through the Poisson–Boltzmann equation (See Eq. (1.16)).

Although Eq. (1.16) neglects the correlations between ions in water, it should give

precise results for microcolloids and water with only monovalent ions [30]. For

spherical colloids of radius R it has been shown [34] that the squared dependence

on the charge density and the screening length of the strength of Udipole is changed

to a logarithmic one upon including the nonlinearities in the Poisson–Boltzmann

equation

Udipole ∼ g
ǫnpǫ0
β2e2

R4

d3
ln2

(
σcκ

−1βe

ǫwǫ0

)
, (1.21)

where ǫnp and ǫw are the dielectric constant of the nonploar phase and water phase

respectively, ǫ0 is the dielectric constant of the vacuum and β = 1/(kBT ) is the
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inverse temperature. Moreover, g = 0(1) is a geometry factor depending on the

contact angle which determines the position of the colloid interface. It should be

noted that g is independent of σc and weakly depends on κ−1. If κ−1 is smaller

than the colloid size, the renormalized form of the dipole interaction in Eq. (1.21)

is expected to be valid for colloids of arbitrary shape.

For oil–water interfaces, if the oil has a low–dielectric constant like decalin with

ǫ ≈ 2, it is still an open question wether charges stay on the oil side of the colloid after

equilibration or not [30]. If the oil has a higher permittivity (ǫ ≈ 5), charges can be

stable on the colloids surface with a lower charge density [35]. Charge renormaliza-

tion effects on the water side of the colloids reduce the electrostatic interaction to a

great extent, and therefore even a low charge density on the oil side may nevertheless

change the effective intercolloidal interactions considerably.
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1.2.3 Capillary forces

The presence of an interface gives rise to interactions mediated by deformations of

that interface, thus these are absent in bulk solutions of colloids. As it is discussed

in the previous subsection, if the interface deformations are caused by thermal fluc-

tuations, one can speak of fluctuation–induced interactions between the colloidal

particles which are trapped at the interface. If these deformations are static, one

speaks of capillary interactions [36]. For spherical colloids at free interfaces, the for-

mation of self–organized structures is mainly governed by the “direct” interactions

(such as van der Waals or electrostatic forces, present also in the bulk) whereas for

particles of nonspherical shape capillary interactions appear to be dominant [28].

Static interface deformations arise if the colloids experience forces in the direc-

tion parallel to the interface normal (e.g. if they are pushed into the lower phase)

and/or stress distributions act on the interface [30]. For microcolloids of sizes less

than 10 µm, the omnipresent gravitational force on the colloids can be neglected.

However, meniscus deformations also arise in conjunction with direct interactions

(like electrostatic forces) which lead to forces and stresses on colloids and interface,

respectively. If the system “colloids + interface” is mechanically isolated (usually

this applies for colloid experiments in a Langmuir trough or on large droplets), then

the force on the colloids directed vertical to the interface is balanced by the total

force on the interface (obtained by integrating the stress distribution over the inter-

face area) [37–39]. The ensuing capillary interactions decay with a power–law in the

intercolloidal distance d, e.g., in the case of charged colloidal spheres at air–water

or oil–water interfaces they are attractive, ∝ d−3, but for large d they are usually

weaker than the direct electrostatic repulsion which is also ∝ d−3 [40–42]. – On the

other hand, in the absence of forces on the colloids and stresses on the interface,

static interface deformations can also be induced by an anisotropic colloid shape;

more precisely if the colloid is not symmetric with respect to rotations around any

axis through the colloid which is parallel to the normal on the undisturbed interface.
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Young’s equation requires that at the three–phase contact line the angle between

the local interface normal and the local normal on the colloid surface is given by the

contact angle θ. Thus for an anisotropic colloid this condition cannot be met if the

interface remains flat; the contact line will not be located in the plane of the undis-

turbed interface. The associated interface deformations around one such colloid can

be calculated in terms of a two–dimensional multipolar expansion [1,43]. For asymp-

totically large distances from the colloid, the leading nonvanishing multipole is in

general the quadrupole, since monopole and dipole are absent through the condi-

tions of force and torque balance. The interaction energy between two quadrupoles

depends on the colloid orientation in the interface plane and decays according to

a power law, ∝ d−4. For the ellipsoids, experimental results on the effective pair

potential for intermediate distances d [46] indicate a strong orientation dependence

not captured by the aformentioned leading quadrupole interaction. Ellipsometric

measurements of the interface deformation around one particle are consistent with

a quadrupolar pattern [48] which, however, appears to be deformed considerably for

stretched ellipsoids.
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1.2.4 Fluctuation–induced forces or Casimir interaction

Existence of long-ranged fluctuations in a colloidal dispersion may cause a new type

of intercolloidal interaction if the fluctuations are restricted by the presence of the

colloidal particles. This type of interactions are named after Casimir, the scientist

who discovered them for the case of two parallel conductive walls in the zero–point

fluctuations of vacuum [49]. As these interactions are induced by fluctuations in a

medium, they are also called fluctuation–induced interactions.

Originally Casimir forces were associated with the zero–point fluctuations of the vac-

uum. However, they can exist in all media with long–ranged fluctuations restricted

by the presence of some boundaries [50]. It should be noted that the resulting

sign and behavior of the Casimir interaction is determined by the shape of bound-

aries and the way that they restrict the fluctuations. However, in all instances of

the Casimir effect the resulting Casimir force is long-ranged, i.e. power–like in the

inverse distance between the boundaries.

Returning to the system of our interest, we deal with thermal fluctuations of the

interface, with the fluctuations being restricted by colloidal particles. These inter-

face fluctuations, which are deviations of the interface from its equilibrium mean

position are termed capillary waves. Due to the gravity these capillary waves are

damped only on a sub–mm length scale. More precisely, colloids that are trapped on

a fluid interface can be regarded as objects which restrict the possible fluctuations of

the capillary waves via the boundary conditions imposed on the three–phase contact

line and therefore give rise to Casimir–like interaction.

General aspects of the Casimir interaction associated with thermal Gaussian fluctua-

tions (which capillary waves belong to) are discussed in Ref. [51]. It should be noted

that the amplitude of the corresponding Casimir energy is fixed by kBT , therefore

these forces become more dominating for nanocolloidal particles than microcolloids.

In a system of two spherical colloids trapped at a fluid interface, the fluctuation–

induced interaction is determined by two contributions [52, 53]:
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1. The effects of interface fluctuations with the three phase contact line held to

be fixed at its equilibrium position, corresponding to the ”standard Casimir

problem”.

2. The effects of the three–phase contact line fluctuations, as in general the col-

loids also may fluctuate freely within the interface. This contribution can be

varied by the specific constraints imposed on the colloidal particles.

For the instance of spherical colloids of radius R and contact angle, (θ = 90o) at

large colloidal separations (d ≫ R), the resulting interaction potential is double

logarithmic in distance for fixed colloids (e.g. by laser tweezers), and it is a weak

power law for freely fluctuating colloids [52, 53],

UCas ∼






kBT ln ln
(

d
R

)
(fixed colloid)

−kBT
(

R
d

)8
(free colloid).

(1.22)

This potential is independent on the constraints on the colloids as they are close

and it is divergent when the surface–to–surface distance h = d− 2R goes to zero

UCas = −kBT
π2

24

√
R

h
(h→ 0). (1.23)

Consequently the thermal Casimir interaction has a comparatively small prefactor

(kBT ) but it is diverging for h → 0, similar to the van der Waals interaction for

which the prefactor A12 ∼ kBT and it is also diverging, albeit ∝ 1/h (for spherical

particles). This means that when the effective Hamaker constant of an interface is

small and thus van der Waals forces are weaker than the fluctuation–induced forces,

the colloid coagulation will be triggered by the thermal Casimir interaction.

Fluctuation–induced forces for anisotropic colloids leads to anisotropies in the

resulting Casimir interaction. This will be the main focus of this thesis. It will be

shown that for fixed particles at the interafce the leading term of the fluctuation

interaction is again ∝ ln ln d and of isotropic nature and it is stronger than the
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anisotropic subleading terms.

The anisotropy in the thermal Casimir potential starts to play its role as soon as one

includes the fluctuations of colloidal particles themselves. As an example the Casimir

potential between two freely–fluctuating thin rods of length L is given by [54]

UCas = −kBT

128

(
L

d

)4

cos2(φ1 + φ2) , (1.24)

where φi is the orientation of rod i = 1, 2 in the interface plane.

In this thesis we will investigate the thermal fluctuation–induced interactions

between ellipsoidal colloids trapped at the interface of two fluid phases. The specific

geometry of the colloidal particles gives us this opportunity to study the effect of

the anisotropy of the ellipsoidal colloid on the resulting Casimir force with special

attention to the fact that the “obstacles” may also fluctuate.
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1.2.5 Fluctuation–induced interactions versus other types

of interactions

As it is mentioed before, in this thesis we will investigate the thermal Casimir in-

teraction between nano-scale uncharged colloidal particles which are trapped at a

fluid interface. Since the colloids are not charged there is not any sort of electro-

static interaction between them. The dominating interactions between such colloidal

particles at a fluid interface are van der Waals, capillary and fluctuation–induced

interactions. To discriminate fluctuation–induced forces from other aforementioned

interactions, some methods should be employed to strengthen the contribution of

fluctuation–induced interactions such that other interactions become comparatively

unimportant.

To reduce the effect of capillary interaction, one can use nano–colloidal particles,

as the capillary interaction between them is negligible compared to the fluctuation–

induced forces but we note that synthesizing nano–particles is not very easy with

the current experimental equipment and techniques. An alternative option to extin-

guish the capillary interaction is to use spherical particles [28, 30].

In order to reduce the strength of the van der Waals interaction , one can choose

one of the following scenarios [52]:

• Lowering the Hamaker constant by means of index matching.

• Using thin disks, since the fluctuation–induced forces between them due to

their specific geometry is much greater than the van der Waals interaction .

• Coating colloids with light polymers decreases the distance between the poly-

mer shell of colloids. This surface-to-surface distance is relevant for calculating

the Casimir interaction. However, only the distance between the cores is rele-

vant for the van der Waals force. Therefore the resulting Casimir interaction

can be rendered larger than the van der Waals interaction.





Chapter 2

Casimir Interaction:

experimental proofs and

theoretical methods

When a fluctuating medium with long-ranged, power-law correlations is confined

between a set of boundaries, forces with likewise long-ranged character are induced

between the boundaries. This type of interaction was theoretically discovered by

the Dutch theoretical physicist Hendrik Casimir in 1948 for the case of two parallel,

conductive and uncharged plates in vacuum which he attributed to zero point fluctu-

ations of the electromagnetic field [49]. This phenomenon which has been coined the

Casimir effect thereafter can be attractive or repulsive depending on the fluctuations

and the physical properties of the boundaries.

The discovery of the Casimir effect is historically connected to research performed

on intermolecular and inter-particle interactions [55]. In 1873 the Dutch physicist

van der Waals postulated an intermolecular force resulting in the semi–empirical

equation of state for a non-ideal gas named after him [56]. At that time the physical

nature of the intermolecular interactions had not yet been completely realized.

In 1930 the German-American physicist Fritz London explained this force using

39
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quantum mechanics on the basis of second–order perturbation theory. [17]. In Lon-

don’s calculations the perturbation potential is the Coulomb interaction between

the electrons and nuclei of one molecule with the electrons and nuclei of another

molecule at a distance R. Using the multipole expansion of the perturbation po-

tential for calculating the energy shift to second order gives rise to an interaction

potential which is always attractive between like molecules and proportional to R−6.

Later on the Dutch experimental physicists Theo Overbeek and Evert Verwey at

Philips Research Laboratories observed that there was a discrepancy between their

inter-colloidal interaction measurements and the predictions of London’s theory .

Therefore they asked their colleague Hendrik Casimir to investigate this problem.

Hence Casimir together with Dirk Polder discovered that the interaction potential

at large distances due to the finite speed of light – known as the retardation effect

– is governed by R−7 [19]. Shortly afterwards, Bohr proposed to Casimir that

the intermolecular interaction could be due to the zero-point vacuum energy [57].

Following Bohr’s suggestion, Casimir calculated the interaction between two parallel

conductive, uncharged plates and predicted that there would be an attractive force

between the plates.

In 1956 Lifshitz extended Casimir’s work to dielectric materials by considering

the electrodynamic mode boundary problem [24]. This work was in association with

the experimental project of Boris Derjaguin and Irina Abrikosova on short-range

attractive interactions between dielectric materials. Lifshitz’s work is based on two

premises [55]:

(a) The polarizability of an atom or a molecule is altered in the presence of other

atoms and molecules. This effect has to be taken into account for bulk mate-

rials.

(b) The van der Waals forces are not pairwise additive [58] because the interaction

between a pair would be changed by the presence of third atom.

However Casimir phenomena are not only restricted to the quantum world, there is
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also a classical equivalent of the Casimir force observable between objects immersed

in a fluid in the vicinity of its critical point which was predicted by Fisher and de

Gennes 30 years later [59]. In this classical instance, the fluctuations of the order

parameter field near the critical point are long-ranged, and thus they give rise to

a Casimir-like, fluctuation induced force. This effect has recently been observed in

an experiment probing the force on colloidal particles immersed in a near-critical

binary mixture in the vicinity of a wall [60].

Another classical variant of the Casimir interaction is found between particles

(colloids) that are trapped at membranes [54, 61] or at the interface of two fluid

phases [50]. In this two dimensional latter instance, thermally excited height fluctu-

ations of the interface which have a long-ranged nature are disturbed by the presence

of colloids and consequently there would result a long-range force between the col-

loidal particles.

In this chapter we are going to review some methods of evaluating and measuring

the Casimir interaction. This chapter is structured as follows:

In Sec. 2.1 we briefly review the most prominent experiments which give evidence

for the presence of the Casimir interaction in various fluctuating systems.

Besides these experimental studies many theoretical studies have also been con-

ducted to calculate the Casimir forces. Thus, in Sec. 2.2, we review these theoretical

methods which have been used to evaluate the Casimir energy.
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2.1 Casimir effect: experimental attestation

The first attempt to measure the quantum Casimir effect between parallel conductive

plates was made by Sparnaay at Philips laboratories in 1958 [62]. Although the

result of this measurement was not in conflict with Casimir’s prediction, it could

not be treated as a conclusive result because of a large uncertainty of 100% in their

measurements.

Maintaining two conductive plates parallel with respect to each other is very

difficult and leads to inaccuracies in the measurements, therefore successive exper-

imental verifications have been focused on the Casimir effect between a conductive

sphere and a conductive plate in which the closest distance between the sphere and

the plate is utilized instead of the distance between parallel plates [63, 64].

In 1997 Lamoureaux measured the Casimir force between a conductive sphere

and a conductive plate by means of an electromechanical system based on a torsion

pendulum [63]. The statistical precision of that measurement was ±5% [63, 64].

The inaccuracies in the measurements might be a consequence of large experimental

systematic error due to the fact that the electrostatic force between surfaces was 5

times the Casimir force.

Mohideen and Roy in 1998 made precision measurements of the Casimir force

between a metalized sphere and a flat plate using an atomic force microscope [64–67].

Their experimental result is in agreement with the theoretical calculations including

the finite conductivity, roughness, and finite temperature corrections [64].

In 2002 the occurrence of a lateral Casimir force was demonstrated by Chen and

Mohideen [68, 69], in a system consisting of a sinusoidally corrugated gold coated

plate and large sphere, using an atomic force microscope. The measured force shows

the periodicity corresponding to the corrugations. Their result was also in good

agreement with theoretical calculations.

In addition to the experiments done to verify the quantum Casimir effect, there

have also been attempts to measure the critical Casimir forces [?, 70–73]. However
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most of the research in this field was focused on measuring the critical Casimir force

indirectly. For instance, reversible flocculation of silica colloids observed in a water–

2,6-lutidine mixture close to its critical point [74] was considered to be an evidence

for critical Casimir forces. But such reversible flocculation was also observed far

away from the critical point, therefore it does not provide clear evidence for the

existence of these forces [75, 76].

Recently a group in Stuttgart succeeded to directly measure the critical Casimir

interaction between a single colloidal sphere and a planar surface immersed in a

binary liquid mixture near its critical point [60]. In their experiment, by choosing

different combinations of colloidal particles with the wall, they investigated repulsive

and attractive Casimir forces which depended strongly on the adsorption properties

of the confining surfaces.

This group also measured the critical Casimir forces for the case of spherical colloids

immersed in a binary liquid mixture using a chemically patterned substrate. Near

the critical point of the binary liquid mixture, they observed critical Casimir forces

with components normal and parallel to the surface. As a consequence one may

utilize the critical Casimir interaction to form highly ordered monolayers [73].
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2.2 Theoretical methods

Casimir forces occur in fluctuating media restricted by the presence of some bound-

aries. As mentioned above, this type of interaction was calculated for the first time

by the Dutch physicist Hendrik Casimir [49]. Later it was found that such phenom-

ena can in principle exist in different systems as long as long-ranged fluctuations are

present in them. Additionally, due to the strong desire of contemporary technology

to make devices smaller, the importance of Casimir forces that are significant at

short ranges has become more apparent.

To evaluate such forces, various methods based on the field theoretical means

have been developed so far. Although different types of fluctuations require their

particular field theories, the general approach to evaluate the Casimir interaction

in all methods does not vary significantly. As the main purpose of this thesis is to

calculate the Casimir energy in a soft condensed matter system, it is worthwhile to

survey the theoretical methods which are broadly used for evaluating it. We will

review the most important methods of calculating the Casimir energy to provide a

deeper insight for the following chapter in which we are going to find the Casimir

force for the case of two ellipsoidal colloids trapped at the interface of two fluid

phases. The thermal height fluctuations of this interface are treated by a classical

scalar field, and the whole system is investigated by statistical field theory tech-

niques. Hence in order not to wander off the main route, in this section all the

methods are recapitulated using scalar fields.

On the other hand most of these methods have been originally derived for quan-

tum field theory, more specifically the quantized radiation field. Since this section

only covers a selective review of other researchers works, we will use the Minkowski

metric in most cases. However, one should keep in mind that the connection between

the statistical and quantum mechanical field theories is easily given by a Wick rota-

tion. This is equivalent to solving a problem in Minkowski space and by replacing

real Minkowski time with imaginary time the problem would be transformed into
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the real Euclidean space. As a consequence, imaginary time is equivalent to another

space dimension and the action of the Minkowski space field theory corresponds to

the Hamiltonian of the statistical field theory.

This section is structured as follows:

In Subsec. 2.2.1 for historical reasons we investigate the“mode summation method”,

the first approach of calculating the Casimir energy. In this method the Casimir en-

ergy is worked out as the difference between the zero–point energy with and without

constraints. The term “mode summation” is given to this method since for calculat-

ing the zero point energy, one simply sums over all field modes. Since this simple

method is not always practical for more complicated systems and geometries, we

also recapitulate other methods that are used to find the Casimir energy.

In Subsec. 2.2.2 we discuss a widely used field theoretical method known as

“Green’s function method” , a common approach to work out the Casimir energy.

This method employs the energy-momentum tensor to evaluate the Casimir inter-

action. Then in Subsec. 2.2.3 we discuss a variant of this approach in which the

constraints in the system are entered into the calculations as δ-function potentials.

In Subsec. 2.2.4 a more recent method of calculating the Casimir interaction

based on functional integral formalism is investigated. In this subsection the Casimir

energy is understood with regard to the interaction between quantum fluctuations

of charge and current in metals or dielectrics. This concept is implemented in the

functional integral formalism, and the Casimir energy is found in terms of scattering

matrices. In Subsec. 2.2.5, we use the functional integral formalism to calculate the

Casimir force in a classical soft condensed matter system. This subsection introduces

the necessary tools needed in the next chapter for calculating the Casimir interaction

in our considered system.

The methods of Subsecs. 2.2.1-2.2.4 are discussed using the example of free

(Gaussian) field theories. In Subsec. 2.2.5 we briefly comment on the important

case of the Casimir effect in an interacting field theory which corresponds to the
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critical Casimir effect.

Using the example of two spherical colloids that are immersed in a binary liquid

mixture near its critical point, we discuss a mean–field approach to this problem.
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2.2.1 Mode summation method

The Casimir interaction occurs when a set of boundaries are placed in zero–point

vacuum fluctuations, therefore the Casimir energy can be defined as the difference

in the zero–point energy of vacuum represented by E0[0] and the zero–point energy

in the presence of boundaries denoted by E0[∂S] [77]

Ecas = E0[∂S] − E0[0] . (2.1)

To calculate the Casimir energy based on Eq. (2.1), a scalar field which is constrained

by two parallel “conductive” 2–dimensional plates (imposing a zero–field [Dirichlet]

boundary condition on the field) separated by a distance a is considered. The ground

state energy of this system is found by introducing a large finite quantization volume

bounded by a surface Σ.

Because of the geometry, the quantization volume in this problem is chosen to

be a big rectangular box of size L × L × a, therefore all possible vibrations in the

box are confined by

0 ≤ x ≤ L, 0 ≤ y ≤ L, 0 ≤ z ≤ a . (2.2)

Having assumed the periodic boundary conditions for the purpose of field quanti-

zation, the zero–point energy associated with a constrained and an unconstrained

system can be estimated by summing over all eigenenergies of the field’s normal

modes. The wave numbers of the quantized field reads

kx =
π

L
nx, ky =

π

L
ny, kz =

π

a
nz , (2.3)

where nx, ny, nz are positive integers;

k =
√
k2

x + k2
y + k2

z =
√
r2 + k2

z . (2.4)
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The zero–point energy of the system constrained by two parallel plates ∂S is

E0[Σ, ∂S] =
1

2

∑

k

~ωk[Σ, 0]

L→∞
= ~c

L2

π2

∫ ∞

0

∫ ∞

0

dkx dky

[
1

2

√
k2

x + k2
y +

∞∑

n=1

√
n2π2

a2
+ k2

x + k2
y

]

(2.5)

where ωk is the eigenmode frequency.

After introducing polar coordinates in the kx − ky–plane, the above equation can be

rewritten as

E0[Σ, ∂S] = ~c
L2

π2

π

2

∞∑

n=0(1)

∫ ∞

0

r dr

√
n2π2

a2
+ r2 , (2.6)

where (0)1 means that the leading term with n = 0 must be multiplied by 1
2
. In a

similar fashion, the zero–point energy for a system without any external constraints

is

E0[Σ, 0] =
1

2

∑

k

~ωk[Σ, 0]

L→∞
= ~c a

L2

2π2

∫ ∞

−∞

dkxdkydkz

√
k2

x + k2
y + k2

z , (2.7)

thus, according to Eq. (2.1) the Casimir energy is given by

Ecas =
1

2

∑

k

~(ωk[Σ, ∂S] − ωk[Σ, 0])

= ~c
L2

π2

π

2




∞∑

n=(0)1

∫ ∞

0

r dr

√
r2 +

n2π2

a2
−
∫ ∞

0

∫ ∞

0

r dr
(a
π
dkz

)√
r2 + k2

z


 .

(2.8)

Eq. (2.8) is infinite and has to be regularized. Therefore we need a regularization

scheme close to the physics of the problem.

In our system the “conductivity” of the plates decreases at high frequencies. This

means that the “conductive” plates behave like a pair of transparent plates if they

are exposed to waves with a very short wavelength. Consequently the defined cutoff
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function of the system should mathematically impose that high frequency modes

do not play any role in the resulting regularized Casimir interaction. Based on this

physical argument one can define a high frequency cutoff f(k/kc)

f(k/kc) =





1 k ≪ kc

0 k ≫ kc

, (2.9)

where the cutoff wave number kc is determined by the properties of the material.

This cutoff function also smoothens our chosen Dirichlet boundary conditions (mim-

icking “perfect conductor“ boundary conditions) such that the field can penetrate

into the plates as it does in real materials.

Introducing u = a2r2/π2, the regularized Casimir energy reads

Ereg
cas [Σ, ∂S, f ] =

~

2

∑

k

f(k/kc) (ωk[Σ, ∂S] − ωk[Σ, 0])

= L2
~c

π2

4a3




∞∑

(0)1

∫ ∞

0

du
√
n2 + u f

(
π
√
n2 + u

akc

)

−
∫ ∞

0

∫ ∞

0

du dn
√
n2 + uf

(
π
√
n2 + u

akc

)]
.(2.10)

Defining w = u+ n2 and

F (n) =

∫ ∞

n2

dww1/2 f

(
πw

akc

)
, (2.11)

where

F ′(n) = −2n2f

(
πn2

akm

)

F ′(0) = 0

F
′′′

(0) = −4. (2.12)

Using the above definition in Eq. (2.10) we have

Ereg
cas = L2

~c
π2

4a3

∞∑

(0)1

F (n)−
∫ ∞

0

F (n)dn = − 1

12
F ′(0) +

1

24 × 30
F

′′′

(0) + ... , (2.13)
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where to obtain the right hand side of Eq. (2.13) the Euler–Maclaurin formula [78]

has been used. Thus we find the Casimir energy per unit area

Ecas

L2
= −~c

π2

720

1

a3
, (2.14)

and the force per unit area is

Fcas

L2
= −~c

π2

240

1

a4
, (2.15)

Eq. (2.14) states that there is an attractive force between two conductive plates that

is independent of the material of the two plates. Due to the inverse power law of

the Casimir force, it becomes larger when the plates are close to each other.

This method, which was employed in Casimir’s original work [49] for a rectangu-

lar box, also applies for the case of conductive spherical shells in vacuum [79,80]. In

both rectangular and spherical boundary conditions, it turns out that the resulting

Casimir interaction is cutoff–independent.

However this simple method encounters serious difficulties if the geometry of

the constraints becomes more complicated. The cumbersomeness of the boundary

conditions also makes it almost impossible to find an analytical expression for the

eigenmode energies ωk. For this reason it is obvious that one needs to acquire more

efficient methods for non-trivial geometries. In the following subsection we introduce

a more efficient method of calculating the Casimir effect which is based on Green’s

function methods.
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2.2.2 Green’s function method

In the previous subsection it was mentioned that finding the zero-point energy sum

for complicated geometries is not a mathematically simple task. In this section we

review a method that partly circumvents the possible difficulties due to the specific

geometry of the objects that are immersed in a fluctuating medium.

To calculate the vacuum energy needed for evaluating the Casimir force, this

method utilizes the energy-momentum tensor T µν of the field attributed to fluctua-

tions. The physical properties of vacuum can be deduced by using the components

of this tensor, for instance, T 00 is the energy density of vacuum, T 0ν and T µ0 are

associated with energy flow and the momentum density, respectively. Therefore to

calculate the sum of the zero-point energy of the modes, one can simply use the 00

component of the energy-momentum tensor

1

2

∑

n

ℏωn =

∫
dx 〈T 00(x)〉 . (2.16)

As was mentioned in the previous subsection, in vacuum, the sum in Eq. (2.16) is

divergent. Nonetheless this can not cause any trouble in our later calculations since

by applying appropriate boundary conditions the divergence will be removed [81].

We use this formalism to calculate the Casimir interaction between two parallel

d–dimensional plates separated by a distance a and immersed in a massless scalar

field φ which is produced by a source K with the equation of motion

−�φ = K , (2.17)

where � = ∂2

∂t2
−∇2 is the d’Alembert operator. We also note that the natural units

c = ~ = 1 are used to simplify the calculations.

It is supposed that the field φ fulfills the Dirichlet boundary conditions on the plates

φ(0) = φ(a) = 0 . (2.18)

On the other hand the canonical energy-momentum tensor for a massless scalar field
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is

T µν = ∂µφ∂νφ− 1

2
gµν∂λφ∂λφ , (2.19)

where gµν is the Minkowski metric.

The “00” component of the energy-momentum tensor which is needed for our calcu-

lations reads

T00 =
1

2

3∑

λ=0

∂λφ ∂λφ . (2.20)

To find ∂λφ ∂λφ we can use the Green’s function of this scalar field which is the

expectation value of the time ordered product of the fields

G(x, t; x′, t′) = i〈Tφ(x, t)φ(x′, t′)〉 . (2.21)

This Green’s function can be found from the equation of motion of the field φ in

Eq. (2.17) (
−∇2 +

∂2

∂t2

)
G(x, t; x′, t′) = δ(x − x′)δ(t− t′) . (2.22)

The reduced Green’s function g(z, z′; k, ω) based on the Fourier transforms is defined

as

G(x, t; x′, t′) =

∫
ddk

(2π)d
eik.(x‖−x‖

′)

∫
dω

2π
e−iω(t−t′)g(z, z′; k, ω) , (2.23)

where x‖, x
′
‖ are coordinates in the plane of the plates and z is chosen to be the

coordinate perpendicular to the plates. The reduced Green’s function satisfies the

differential equation
(
− ∂2

∂z2
− λ2

)
g(z, z′) = δ(z − z′) , (2.24)

where λ2 = ω2 − k2 and g(z, z′) ≡ g(z, z′; k, ω).

Applying the Dirichlet boundary conditions (2.18) on Eq. (2.24) gives rise to

g(0, z′) = g(a, z′) = 0 , (2.25)

thus the solution of Eq. (2.24) is

g(z, z′) =





A sinλz (0 < z < z′ < a) ,

B sinλ(z − a) (a > z > z′ > 0) ,
. (2.26)



2.2. Theoretical methods 53

According to Eq. (2.24) g(z, z′) is continuous at z = z′ and its derivative has a unit

step discontinuity at z = z′

A sinλz′ − B sin λ(z′ − a) = 0 ,

Aλ cosλz′ −Bλ cosλ(z′ − a) = 1 , (2.27)

using the relations in (2.27), one can obtain A and B

A = −1

λ

sinλ(z′ − a)

sinλa
, B = −1

λ

sinλz′

sinλa
, (2.28)

and finally the reduced Green’s function reads

g(z, z′) = − 1

λ sinλa
sinλz< sin λ(z> − a) (2.29)

where z>(z<) is the greater (lesser) of z and z′.

As discussed above the vacuum expectation value of T00 is obtained from Eqs. (2.20),

(2.21) and (2.29)

〈T00〉 = −i lim
x → x

′

t → t′

∂λ∂λ′G(x, t; x′, t′)

= − 1

2iλ sin λa
[(ω2 + k2) sinλz sin λ(z − a) + λ2 cos λz cosλ(z − a)]

= − 1

2iλ sin λa
[ω2 cos λa− k2 cosλ(2z − a)] , (2.30)

Integrating the above equation over z gives the energy per d-dimensional area be-

tween the plates. Integration of the second term produces a constant independent

of a, therefore it does not have any effect in the Casimir interaction. Thus from the

first term we have ∫ a

0

dz 〈T00〉 = −ω
2a

2iλ
cotλa . (2.31)

Now we must integrate over the transverse momentum and frequency to obtain the

energy density. This integration can be done by using a complex frequency rotation

ω → iζ, λ→ i
√
k2 + ζ2 ≡ iρ , (2.32)
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using these rotations we have

Ecas = −a
2

∫
ddk

(2π)d

∫
dζ

2π

ζ2

ρ
coth ρa , (2.33)

putting back a correct dimensional factor ~c, multiplying the result of the above

equation into ~c to change back from the normal units, finally we find the Casimir

energy density between the plates

Ecas = − ~c

2d+2πd/2+1

1

ad+1
Γ

(
1 +

d

2

)
ζ(d+ 2) , (2.34)

where Γ(m) is the Gamma function and ζ(m) is the Riemann zeta function. Eq. (2.34)

states that the Casimir interaction between two parallel d–dimensional plates is at-

tractive and long–ranged.

Setting d = 2 into Eq. (2.34), the original Casimir result for a pair of two dimen-

sional plates in Eq. (2.14) is recovered.

This result can also be used for a classical thermal field. This is possible after a

Wick rotation

Ecl
cas = − kBT

2d+2πd/2+1

1

ad+1
Γ

(
1 +

d

2

)
ζ(d+ 2) . (2.35)

The dimensions of Eq. (2.35) is Kg/(md−1s2) which differs by a factor of 1/m from

the dimensions of the quantum Casimir energy density in Eq. (2.34). This is be-

cause of the dimensional difference between the quantum mechanical energy factor

~c and the classical energy factor kBT originating from the extra time dimension

in the quantum field theory. Thus Ecl
cas corresponds to the energy density between

(d+ 1)-dimensional plates in a (d+ 2)-dimensional fluctuating medium.

Using Eq. (2.35) for two parallel lines that are immersed in a two dimensional clas-

sical field and separated by the distance a, one obtains

Ecl
cas = −π kBT

24 a
, (2.36)

recalling that ζ(2) = π2/6.

In Subsec. 2.2.5, using a completely different approach, we recapitulate this result by
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considering classical fields from the beginning of the calculations. The energy density

in Eq. (2.36) will be recovered in the next subsection for a quantum mechanical field

but with a new perspective on the boundaries in the system.
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2.2.3 δ-potential approach

In the last subsection we reviewed a field theoretical method of calculating the

Casimir effect based on the Green’s function of the system’s field. In this subsection

we will go over a similar method which implements the Dirichlet boundary conditions

differently through an interaction Lagrange density involving Dirac delta functions

which represent the boundaries in the fluctuating medium [82]. Furthermore, it

makes use of the spatial components of T µν instead of the temporal components

used in the previous subsection. This approach was used for the first time by Bordag

and coworkers [83, 84].

To demonstrate more clearly how this approach is employed to calculate the

Casimir interaction, we consider two parallel lines (1 + 1 dimensions) in a massless

scalar field φ and derive the Casimir interaction between them [85]. The boundaries

in the system are implemented as an interaction of the field φ with two δ-potentials

located at z = 0 and z = a. This can be described in terms of an interaction

Lagrange density

Lint = −λ
a
δ(z)φ2(z) − λ′

2a
δ(z − a)φ2(z) (2.37)

where coupling constants λ and λ′ are dimensionless. If the coupling constants tend

to infinity (λ → ∞), these potentials enforce Dirichlet boundary conditions at the

location of the two lines

λ, λ′ → ∞ : φ(0), φ(a) → 0. (2.38)

The Casimir interaction is evaluated by using the Green’s function G which is the

expectation value of the time ordered product of the fields, see Eq. (2.21), this

Green’s function satisfies

[
�2 +

λ

a
δ(z) +

λ′

a
δ(z − a)

]
G(z, t; z′, t′) = δ(z − z′)δ(t− t′) , (2.39)

where �2 ≡ − ∂2

∂z2 + ∂2

∂t2
is the d’Alembert operator in (1 + 1)-dimensions.

Similar to Eq. (2.23), the time Fourier transform g(z, z′;ω) of the Green’s function
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G is given by

G(z, t; z′, t′) =

∫
dω

2π
exp(−iω(t− t′)) g(z, z′;ω) , (2.40)

where the frequency contour of integration in Eq. (2.40) must pass below the singu-

larities in ω on the negative real axis, and above those on the positive real axis [86,87].

The reduced Green’s function of G satisfies

[
− ∂2

∂z2
+ ω2 +

λ

a
δ(z) +

λ′

a
δ(z − a)

]
g(z, z′) = δ(z − z′) . (2.41)

Having found the solution to Eq. (2.41), we can find the Casimir force (instead of

the energy) on one of the δ-function points by calculating the discontinuity of the

energy–momentum tensor

〈T µν〉 =

(
∂µ∂ν ′ − 1

2
gµν∂λ∂′

λ

)
1

i
G(z, z′)|z=z′ , (2.42)

To use g(z, z′) we define the reduced energy–momentum tensor

〈T µν〉 =

∫
dω

2π
tµν . (2.43)

The energy–momentum tensor to the left of the point z = a is

tzz|z=a− = −ω
2
{1 + 2

[(
2iωa

λ
+ 1

)(
2iωa

λ′
+ 1

)
e2iωa − 1

]−1

} (2.44)

and the reduced energy–momentum tensor to the right of the point z = a is

tzz|z=a+ = −ω
2

(2.45)

therefore the Casimir force on the point z = a due to the quantum fluctuations in

the massless scalar field reads

Fcas = 〈Tzz〉|z=a−−〈Tzz〉|z=a+ = − 1

4πa2

∫ ∞

0

dyy
1

(y/λ+ 1)(y/λ′ + 1)ey − 1
. (2.46)

In the limit of λ, λ′ → ∞, the well-known result for two parallel lines [88, 89] is

reproduced

lim
λ=λ′→∞

Fcas = − π~c

24a2
. (2.47)
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We mention that the above result has been multiplied by ~c to recover the dimensions

of the Casimir force.

This result is in agreement with the result obtained for two parallel lines using

Eq. (2.36) in the previous subsection.
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2.2.4 Path integral formalism: scattering matrix method

Up to this point in the section, we have investigated mode summation and Green’s

function methods. Although the mode summation method gives an idea how the

evaluation of Casimir phenomenon was produced historically, it can not serve as an

appropriate approach for more complicated geometries. Therefore we introduced

the Green’s function method that provides a field theoretical tool for calculating the

Casimir interaction. However, obtaining an explicit solution for the Green’s function

in other geometries may also be difficult.

If the number of objects in a fluctuating medium increases or their shapes be-

come more complex, employing more efficient methods is inevitable. On the other

hand, the Casimir interaction is not analytically calculable for non-trivial shapes and

consequently it has to be evaluated numerically in such cases. Thus the fast conver-

gence of the method in terms of some expansion parameters is another determining

issue.

In this subsection we review one of the most recent methods of calculating the

Casimir interaction in a system composed of compact objects. This method provides

the necessary tools for finding the Casimir force between a number of objects with

a reliable convergence speed.

In this approach the Casimir force is treated as an interaction between fluctua-

tions of source distributions defined on the surfaces of the compact objects. These

source distributions are expanded in terms of multipoles and finally the resulting

Casimir interaction can be obtained by a functional integral over the effective action

of these multipoles [90, 91]. All the information about the shape of the objects and

their boundary conditions in the system are introduced into the effective action via

the scattering matrices of the objects. This concept is inspired by Schwinger’s earlier

work [92] that the Casimir interaction in a system consisting of metal and dielec-

tric objects can be realized with regard to the electromagnetic interactions between

fluctuations of charge and current in these objects.
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To calculate the fluctuation-induced forces utilizing this concept, the partition

function is written as a logarithm of a functional integral over all field fluctuations

constrained by a set of boundary conditions.

According to Ref. [90], we consider a scalar quantum field , φ(x, t) which is

constrained by boundary conditions denoted by C on a set of fixed surfaces Σα, for

α = 1, 2, ..., N,. The surfaces are supposed to be closed and compact. The partition

function of this system reads in path integral language

Z[C] =

∫
[Dφ]C e

(i/~)S[φ] , (2.48)

where the subscript C is representing the constraints imposed by the boundary con-

ditions. The action for a free complex field is given by

S[φ] =

∫ T

0

dt

∫
dx

(
1

c2
|∂tφ|2 − |∇φ|2

)
. (2.49)

The Casimir energy of the system is obtained by subtracting the ground state energy

when the objects are infinitely separated

E [C] = − lim
Λ→∞

~c

λ
ln(Z[C]/Z∞) , (2.50)

where Λ = icT and by taking the limit Λ → ∞ the ground state energy is projected

out in the trace in Eq. (2.48).

For Dirichlet boundary conditions, the corresponding constraint can be entered into

the integral by introducing the sources ̺α

∫
[Dφ(x)]C =

∫
[Dφ(x)]

N∏

α=1

∫
[D̺α(x)] exp

[
i
T

~

∫

Σα

dx(̺∗α(x)φ(x) + c.c.) .

]

(2.51)

In Eq. (2.50) the integrals over the field φ(x, t) can be written as an infinite product

of integrals over the Fourier components, and the logarithm of Z turns into a sum.

In the limit of T → ∞, it is possible to replace the sum with an integral over

k = 2πn/(cT ) and find the partition function in Fourier space at fixed k

ZC(k) ≡
N∏

α=1

∫
[D̺α(x)]

∫
[Dφ(x)] exp

(
i
T

~
S̃[φ, ̺]

)
, (2.52)
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where the new action S̃ includes both the fields and sources and is given by

S̃[φ, ̺] =

∫
dx (k2|φ(x)|2 − |∇φ(x)|2) +

∑

α

∫

Σα

(̺∗α(x)φ(x) + c.c.) . (2.53)

To solve Eq. (2.52), the field φ(x) is separated into a classical and a fluctuation part

φ(x) = φcl(x) + δφ(x) , (2.54)

where δφ(x) is the fluctuation part and φcl(x) is the solution to δS̃[φ, ̺]/δφ(x) = 0,

which describes a complex scalar field coupled to a set of sources on the surfaces.

φcl should satisfy the Helmholtz equation which for r → ∞ is given by

Φ(k,x) ∼ eik.x +
eikr

r
f(k,k′) , (2.55)

where f(k,k′) is the scattering amplitude

f(k,k′) =
4π

ik

∑

l′m′ lm

il−l′Tl′m′ lm(k)Yl′m′ (k̂
′

)Y ∗
lm(k̂) , (2.56)

where Tl
′
m

′
lm(k) ≡ 〈l′m′ |T(k)|lm〉 and Ylm are spherical harmonics. T is the transi-

tion matrix and its relation to the scattering matrix S is given byT(k) =
1

2
(S(k) − 1) . (2.57)

We recall that S connects the initial and final multipole states. It is possible to write

the classical field in terms of the expansion of the free outgoing Helmholtz Green’s

function which is given by

G0(x,x′, k) ≡ eik|x−x′|

4π|x − x′|
= ik

∑

lm

jl(kr<)h
(1)
l (kr>) Ylm(x)Y ∗

lm(x′) . (2.58)

Here jl and hl are the spherical Bessel and Hankel functions, respectively.

After performing the integral over φ in Eq. (2.52) one obtains

ZC(k) =

N∏

α=1

∫
[D̺α(x)] exp

[
i

2

T

~

∑

α,β

∫

Σα

∫

Σβ

dx dx′̺∗α(x)G0(x,x′, k)̺β(x′)

]
,

(2.59)
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where G0 is the Green’s function introduced in Eq. (2.58).

To evaluate the above integral, first we calculate the integral in the exponential

function argument in Eq. (2.59)

ZC(k) =

N∏

α=1

∫
[DQα DQ∗

α] exp[
iT

2~




Q1

Q2

...




T


(T1)−1 U12 · · ·U21 (T2)−1 · · ·
...

...







Q1

Q2

...


] ,

(2.60)

where Uαβ is the translation matrix which translates the multipole indices of the

same quantity from the coordinate system fixed to object α to the one fixed to

object β, and Qi is the multipole matrix consisting of multipole moments Qλ, lm of

the source ̺λ

Qλ, lm ≡
∫

Σλ

dxλ jl(krλ)Y ∗
lm(x̂λ)̺λ(x̂λ) . (2.61)

Performing the last integral over the sources in Eq. (2.60) gives the Casimir inter-

action in the system.

For the case of two objects this interaction is

E2[C] =
~c

π

∫ ∞

0

dκ ln det(1 − T2U21T1U12) , (2.62)

where Tα is the transition matrix and Uαβ is the translation matrix for the two

objects.

For three objects the Casimir interaction takes the form

E3[C] =
~c

π

∫ ∞

0

dκ

{
ln det(1 − T2U21T1U12) + ln det(1 − T3U31T1U13)

+ ln det[1 − (1 − T3U31T1U13)−1

×(T3U32 + T3U31T1U12)(1 − T2U21T−1U12)−1

× (T2U23 + T2U21T1U13)]

}
, (2.63)

The first two terms in Eq. (2.63), similar to Eq. (2.62), produce the mutual scattering

between objects 1 and 2 and objects 1 and 3, therefore they can be interpreted as the
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separate two-body Casimir energies of two pairs of objects. The cumbersomeness of

the third term is due to the fact that the Casimir forces are not pairwise additive.

In other words, the interaction of objects 2 and 3 involves not only direct scattering

between these two objects but also contains multiple scatterings off object 1.

This procedure can also be applied for more particles with a similar interpretation

for the resulting Casimir effect. As mentioned in the beginning of this subsection,

one of the advantages of this method is its optimal quick convergence.

In the following subsections we are going to discuss the Casimir phenomena

for some classical systems. In the next subsection we represent the path integral

formalism for a classical soft matter system. We will apply this approach for a pair

of parallel lines and at the end we compare its result with what we obtained in the

previous subsections by quantum fields.
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2.2.5 Path integral formalism: application to a classical sys-

tem

In the previous subsection we used the path integral formalism to derive the Casimir

energy for a quantum scalar field. The partition function of the system was written

in terms of the effective action of the sources distributed on the surface of the

objects which were immersed in a fluctuating field. The specific characteristics of

this approach is to enter the objects details through their scattering matrix.

In this subsection we intend to use the path integral formalism to find the Casimir

interaction for colloidal particles immersed in a fluctuating medium. Although the

method that we introduce in this subsection is similar to the approach of the previous

subsection, the scattering matrix is not employed directly in the calculations. Here

the partition function of the system is defined as the functional integral over the

Boltzmann factor of the Hamiltonian describing a given fluctuating system [93]. This

approach constitutes the basis of our calculations in the next chapter in which we will

calculate the Casimir interaction between ellipsoidal colloids trapped at the interface

of two fluid phases. In order to investigate this method more closely, we consider a

general example of two manifolds immersed in a fluctuating medium, characterized

by coordinates rα(xα). Here, xα is a Dα dimensional internal coordinate for the αth

manifold, and rα gives the position of the manifold in the d-dimensional fluid. The

manifolds are separated by distance H and furthermore the fluid fluctuations are

represented by a scalar field u which is governed by a Gaussian Hamiltonian

H0 [u] =
βγ

2

∫
ddr u(r)(−∆ + λ−2

c )u(r) . (2.64)

The Casimir interaction between the manifolds are calculated by integrating over

all possible fluid fluctuations, thus the partition function of this system reads

Z = Z−1
0

∫
Du(rα(xα))|r∈Ω exp(−βH0)|u(∂l)=0 . (2.65)

The trick to treat the Dirichlet boundary condition in Eq. (2.65), is to use a

Dirac-delta function by defining auxiliary fields ψα(xα) on the manifolds (see also
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Eq. (2.48))

δ(u(rα)) =

∫
Dψα(xα) exp

[
i

∫
dxα ψα(xα) uα(rα(xα))

]
, (2.66)

inserting Eq. (2.66) into Eq. (2.65), we obtain

Z = Z−1
0

∫
Du

2∏

α=1

Dψα(xα) exp

[
i

∫
dxα ψα(xα) uα(rα(xα))

]
e−βH0 , (2.67)

where Z0 is the partition function for the undisturbed fluid and is multiplied into

the partition function for regularization purposes. We put Eq. (2.64) into Eq. (2.67),

thus

Z = Z−1
0

∫ 2∏

α=1

Dψα(xα)

∫
Du exp

[
−1

2

∫
ddr u(−∆ + λ−2

c )u+ i

∫
dxαψαu

]
,

(2.68)

where ∆ ≡ ∇2. The Gaussian integral over the field u in the above equation can be

performed easily by recalling the general result of a Gaussian integral over a bilinear

form

∫
Dx exp(−1

2
xAx + bx) = (2π)2(detA)−1/2 exp(

1

2
bA−1b) , (2.69)

thus

Z =

∫ 2∏

α=1

Dψα(xα) exp

[
−

2∑

α,β=1

∫
dxαdxβ ψα(xα)Gd(rα − rβ)ψβ(xβ)

]
, (2.70)

where Gd(rα − rβ) is the Green’s function of the operator ∆′ = ∆ − λ−2
c .

Introducing H1[Ψ] as

H1[Ψ] = ΨMΨT = −
2∑

α,β=1

∫
dxα dxβ ψα(xα)Gd(rα(xα) − rβ(xβ))ψβ(xβ) , (2.71)

using H1[Ψ] in Eq. (2.70), the partition function may be rewritten as

Z =

∫ 2∏

α=1

Dψα(xα) exp(−H1[ψα(xα)]) . (2.72)
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Computing the above integral gives

Z =
√

det(M[rα(xα)]) . (2.73)

At this point we can use the partition function in Eq. (2.73) and calculate the

Casimir force between two manifolds that are separated by a distance H . In order

to determine the Casimir force between the manifolds one needs to find the free

energy of the system. The Casimir energy due to the insertion of the manifolds is

given by the free energy of the constrained system (up to a constant)

F = −kBT lnZ =
kBT

2
ln det(M[rα(xα)]) , (2.74)

using ln det(M) = Tr ln(M), we can rewrite this as

F = −kBT

2
Tr ln(M[rα(xα)]) . (2.75)

Similar to Eq. (2.62) or (2.63), this is a rather general result for the Casimir energy.

We will illustrate the actual computation of the Casimir energy again for the

case of the manifolds being two D-dimensional parallel walls. This will also explain

the technique used later on in the next chapter.

Supposing that r1 = (x, 0), r′1 = (y, 0) are two points located on manifold 1 and

r2 = (x, H), r′2 = (y, H) are the points on manifold 2, then the matrix M in

Eq. (2.75) reads

M(x,y) =


 Gd(x − y, 0) Gd(x − y, H)

Gd(x − y, H) Gd(x − y, 0)


 , (2.76)

Since the matrix M only depends on the difference (x−y) we can diagonalize it by

transforming to Fourier space with the Fourier-transformed Green’s functions

G̃d(p,q; 0) =

∫
dDx dDy exp(ip.x + iq.y)Gd(x − y, 0)

G̃d(p,q;H) =

∫
dDx dDy exp(ip.x + iq.y)Gd(x − y, H) . (2.77)
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Changing the variables in Eq. (2.77) with x − y = r, dDx = dDr, we have

G̃d(p,q; 0) =

∫
dDr exp[ip.r]Gd(r, 0)

∫
dDy exp[i(p + q).y] (2.78)

which leads to

G̃d(p,q; 0) = G̃d(p; 0) (2π)D δD(p + q) . (2.79)

Inserting the above Fourier-transformed Green’s function into Eq. (2.76) we obtain

M̃(p,q) =


 G̃d(p) G̃d(p, H)

G̃d(p, H) G̃d(p)


 (2π)D δd(p + q) , (2.80)

or equivalently

M̃(p,q) = G̃d(p)︸ ︷︷ ︸
B



 1 G̃d(p,H)

G̃d(p)

G̃d(p,H)

G̃d(p)
1 



︸ ︷︷ ︸
A

(2π)D δd(p + q) , (2.81)

thus the logarithm of M̃ separates into two parts

ln[M̃ ] = ln[A] + ln[B] . (2.82)

ln[A] can be calculated by using the Taylor expansion of a logarithm

ln[A] =
∞∑

n=0

(−1)n

n+ 1
(A − 1)n+1 , (2.83)

where

A − 1 =
G̃d(p, H)

G̃d(p)



 0 11 0



 . (2.84)

Eq. (2.83) is evaluated by noting

A′n =


 0 11 0




n

=





A′ if n is odd

I if n is even
, (2.85)

here I is the unit matrix. Thus we have

ln[A] =




−
∞∑

n=1

1

2n

(
G̃d(p, H)

G̃d(p)

)2n ∞∑

n=1

1

2n+ 1

(
G̃d(p, H)

G̃d(p)

)2n+1

∞∑

n=1

1

2n+ 1

(
G̃d(p, H)

G̃d(p)

)2n+1

−
∞∑

n=1

1

2n

(
G̃d(p, H)

G̃d(p)

)2n




(2.86)
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According to Eq. (2.75), to calculate the free energy, one has to determine the trace

of lnM , which can be found by using Eqs. (2.82) and (2.86).

Tr(ln M̃) = 2Tr(ln[G̃d(p)]) + Tr



−
∞∑

n=1

1

n

(
G̃d(p, H)

G̃d(p)

)2n


 , (2.87)

using again the Taylor series of a logarithm, see Eq. (2.83), Eq. (2.87) can be con-

tracted into

Tr(ln[M̃ ]) = Tr


2 ln[G̃d(p)] + ln


1 −

(
G̃d(p, H)

G̃d(p)

)2



 (2.88)

Using Eq. (2.88) and Tr =
∑

m amm =
∫
dm, where dm = (S/(2π)D)dDp and S is a

D-dimensional area, we may rewrite the partition function in Eq. (2.75) as

− lnZ
S

=

∫
dDp

(2π)D
ln[G̃d(p)] +

1

2

∫
dDp

(2π)D
ln



1 −
(
G̃d(p, H)

G̃d(p)

)2


 . (2.89)

Therefore, the Helmholtz free energy reads as

F = −kBT lnZ

= kBT S

∫
dDp

(2π)D


ln[G̃d(p)] +

1

2
ln


1 −

(
G̃d(p, H)

G̃d(p)

)2



 . (2.90)

Taking the derivative of F gives the Casimir force between two D-dimensional man-

ifolds immersed in a d-dimensional fluid.

Let us look at a specific example. We consider two parallel lines (D = 1) trapped

at a fluctuating interface between two fluid phases (d = 2), in this case the free energy

in Eq. (2.90) takes the form

F = kBT l

∫
dp

2π


ln[G̃2(p)] +

1

2
ln


1 −

(
G̃2(p, H)

G̃2(p)

)2



 , (2.91)

where l is the length of the lines.

In Eq. (2.91), G̃2 is the Fourier transformed-Green’s function of the Hamiltonian

given in Eq. (2.64), thus G2(x− y) must satisfy

(−∆ + λ−2
c )G2(x− y) = δ2(x− y) , (2.92)
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wherefore the Fourier transform of G2 is

G̃2(p) =
1

(p2 + λ−2
c )

. (2.93)

We find G̃2(p, H) by using the definition of the Fourier transforms in Eq. (2.77)

G̃2(p, H) =

∫
dx exp(−ipx)

∫
d2p′

(2π)2

exp(ip′x+ ip′zH)

(p′2 + p′z
2 + λ−2

c )

=

∫
dp′z
2π

exp(ip′zH)

p2 + p′z
2 + λ−2

c

, (2.94)

or

G̃2(p, H) =

∫
dp′z
2π

exp(ip′zH)

(p′z + i
√
p2 + λ−2

c )(p′z − i
√
p2 + λ−2

c )
, (2.95)

taking advantage of Cauchy’s residue theorem we obtain

G̃2(p, H) =
exp(−H

√
p2 + λ−2

c )

2
√
p2 + λ−2

c

. (2.96)

Putting Eqs. (2.93) and (2.96) into Eq. (2.91), the free energy of the system of two

lines at the interface reads

F = kBT l

∫
dp

2π

(
− ln(2

√
p2 + λ−2

c ) +
1

2
ln(1 − exp(−2H

√
p2 + λ−2

c ))

)
. (2.97)

We perform the latter integral over p in the limit λc → ∞, thus

F =
kBT l

4π

∫ ∞

0

dp ln(1 − exp(−2pH))

= −kBT lπ

24H
, (2.98)

taking the derivative of the above equation gives the Casimir force density between

two parallel lines
F

l
= −∂F

∂H
= −πkBT

24H2
. (2.99)

As it is observed the Casimir force in this classical system is in accordance with the

previous results for quantum systems, see Eqs. (2.34) and (2.47). This illustrates the

equivalance of the classical Casimir interaction with the standard quantum Casimir

effect.
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As mentioned in the beginning, in the next chapter we use this approach to

evaluate the Casimir interaction between two ellipsoidal colloids trapped at the

interface of two fluid phases. There we investigate the Casimir interaction by paying

special attention to the anisotropy of the colloidal particles and the interesting fact

that the colloids (boundaries) are also fluctuating.
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2.2.6 Critical Casimir interactions

In this concluding subsection we are going to investigate the critical Casimir forces

that are associated with classical soft matter systems. Such interactions occur be-

tween the colloidal particles immersed in, e.g., a binary liquid mixture which is near

its critical point. The fluctuations in these systems are provided by the fluctuations

of the order parameter of a binary liquid mixture, and the geometrical restriction is

imposed by the presence of some colloidal particles in the liquid mixture. This type

of Casimir force causes the dissolved colloidal particles to flocculate.

In this section, based on Ref. [75], we review a mean-field method of calculating

this kind of Casimir interaction between spherical colloids immersed in a binary

liquid mixture.

The behavior of a binary liquid mixture near its critical point is governed by

fluctuations of the order parameter Φ on a large length scale such that the resulting

properties are independent of microscopic details. The continuum description of

such a system can be found by a coarse-graining procedure in terms of the Ginzburg-

Landau Hamiltonian [94] of an order parameter Φ in volume V

H[Φ] =

∫

V

ddr

(
1

2
[∇Φ(r)]2 +

τ

2
Φ2(r) +

u

24
Φ4(r) − hΦ(r)

)

+

∫

S

dS
( c

2
Φ2(rs) − h1Φ(rs)

)
, (2.100)

the second integral runs over the surface S = ∂V which bounds the critical liquid.

In Eq. (2.100), τ = (T − Tc)/Tc is the reduced temperature, h is the external bulk

field, c is related to the strength of the coupling of critical degrees of freedom near

the surface, u is the coupling constant, h1 is the surface analogue of the bulk field,

and in the considered liquid system Φ is a scalar field.

As it is observed in Eq. (2.100), the theoretical basis of the Critical Casimir inter-

action is rather different from the previous approaches as it has to be dealt with by

using the interacting φ4 field theory.
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The partition function of the system reads

Z =

∫
DΦ exp (−H[Φ(r)]) (2.101)

and the corresponding free energy is given by

F = −kBT lnZ . (2.102)

The Euler-Lagrange equation of the order parameter Φ is obtained by minimizing

the free energy functional with respect to Φ(r). This minimization corresponds to

the mean-field realization of the system

δH[Φ(r)]

δΦ(r)

∣∣∣∣
Φ=〈Φ〉

= 0 , (2.103)

where 〈Φ〉 is the mean-value of the fluctuating order parameter Φ. Minimization of

Eq. (2.103) results in

−∆m + τm +m3 −H = 0 , (2.104)

where the coupling constant u has been observed in the new order parameter m and

in the new bulk magnetic field H

m =

√
u

6
〈Φ〉, H =

√
u

6
h. (2.105)

The order parameter profile, m(r), can be found at the critical point analytically

in terms of elliptic functions [95] and in the off criticality, it is worked out in terms of

a short distance expansion [75]. Calculating the full profile is only possible numeri-

cally by discretization of the order parameter profile in the two sphere geometry [75].

Having found the order parameter profile, the necessary tools to calculate the critical

Casimir interaction are at hand. The usual way of determining the Casimir inter-

action from free energy Eq. (2.102) and then calculating the derivative with respect

to the inter-particle distance is not useful here, as one has to deal numerically with

differences between large numbers that bring about large errors [75]. Consequently,

one may calculate the force directly from the stress tensor Tµν

δH =

∫

V

ddr
∂bµ
∂xν

Tµν(r) (2.106)
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where b is a non-conformal coordinate transformation, µ and ν index the spatial

coordinates, and δH is the energy shift.

In order to go beyond the mean-field approach, one may calculate universal

scaling functions for microscopic Hamiltonians belonging to the same universality

class as φ4-field theory. In practice this is achieved via Monte-Carlo simulations

of Ising model systems with appropriate obstacles inserted [96, 97]. We do not go

deeper into these matters since the treatment of the Casimir effect in interacting

systems is outside the scope of this thesis.





Chapter 3

Casimir Interaction between

Ellipsoidal Colloids at a Fluid

Interface

In this chapter we calculate the Casimir effect in a particular soft condensed matter

system composed of two ellipsoidal particles that are trapped at the interface of two

fluid phases. Since the interface height fluctuations are restricted by the presence

of the particles there will be a fluctuation–induced force (or equivalently Casimir

force) between the ellipsoids. This interaction is calculated here by employing the

path integral method. This chapter is organized as follows. In Sec. 3.1 the physical

system and the Hamiltonians that are used to describe our colloidal system are

explained. Then we explain the method used to calculate the fluctuation–induced

interaction between the particles for different boundary conditions. In Sec. 3.2 the

Casimir interaction is derived as an expansion of the free energy for large distances

between the particles that are fixed at the interface. In Sec. 3.3 along with the

interface fluctuations, we allow particle fluctuation across the interface. In practical

terms, this is the case when the colloids are not trapped by external forces like laser

tweezers. In this section, the resulting Casimir interaction is found again as a series

75
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for large interparticle distances. Finally we compare the Casimir force between fixed

and fluctuating boundaries.

3.1 Model

The investigated system consists of two nano- or microscopic, uncharged spheroidal

colloids with principal axes a, b, b (a > b), which are trapped at the interface of

two fluid phases I and II. The effective interaction between the colloids is mediated

by thermal height fluctuations of the (sharp) interface. Without fluctuations, the

equilibrium interface is flat and is set to be at z = 0. Deviations from this pla-

nar reference meniscus are considered to be small, without overhangs and bubbles,

therefore the Monge representation (x, y, z = u(x, y)) = (x, z = u(x)) is employed

to describe the interface position. To have closer look on the physics of the thermal

height fluctuations of the interface u, in the following subsection we recapitulate

some properties of the capillary wave model of a fluid interface at finite temper-

atures [98]. These will be useful for discussing the properties of the Casimir-like

forces in this chapter.

3.1.1 Capillary wave model of a free interface

We consider a free interface between two fluid phases and we set the flat equilibrium

interface to be at z = 0, the xy-plane. This interface is deformed by thermally

excited height fluctuations of the interface. To calculate the energy costs of the in-

terface deformations we need to determine the free energy of the deformed interface,

thus

F = γ

∫
dA (3.1)

where dA is the element of the interface, and γ is the surface tension for the flat

equilibrium interface. An interface which is perturbed from its equilibrium position

without overhanges and bubbles can be described by a field u(x, y) of the coordinates
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(x, y). The interface element dA is given by the vector product of the vectors tangent

to the interface ax and ay , therefore

dA = |ax × ay| dr (3.2)

where ax = (1, 0, ∂u
∂x

), ay = (0, 1, ∂u
∂y

),

dA = dr

√

1 +

(
∂u

∂x

)2

+

(
∂u

∂y

)2

∼= dr

(
1 +

(∇u)2

2

)
. (3.3)

The second line of Eq.(3.3) is obtained after a small gradient expansion for a weakly

undulated interface, ∂u
∂x

≪ 1 and ∂u
∂y

≪ 1. The first line of Eq. (3.3) constitutes

the drumhead model which is well-known in the renormalization group analysis

of interface problems, but is also used for the description of elastic surfaces (c.f.

Ref. [99]).

After inserting Eq.(3.3) in Eq.(3.1) the free energy reads:

F = γ

∫
dr +

γ

2

∫
dr(∇u)2 . (3.4)

The capillary wave model basically assumes that excitations from the flat interface

are thermally weighted by the capillary wave Hamiltonian

Hcw[u] = F − γ

∫
dr =

γ

2

∫
dr (∇u)2 , (3.5)

which is the Taylor–expanded free energy difference between the total interface free

energy and the free energy of the flat interface. .

Partition function

The partition function of the capillary wave model is the Boltzmann factor of the

capillary wave Hamiltonian exp(−Hcw/kBT ) which is summed over all possible in-

terface configurations

Z ∼
∫

Du exp(−βHcw[u]) , (3.6)
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where u ≡ u(r) is the interface position field. The integrals in Eq.(3.6) are per-

formable in a more straightforward manner within Fourier space, thus as the first

step the capillary wave Hamiltonian in Eq.(3.5) is treated in Fourier space by intro-

ducing the following Fourier representation for a system of size L× L

u(r) =
1

L2

∑

k

ũ(k) exp(−ik.r) ,

ũ(k) =

∫
dr u(r) exp(ik.r) , (3.7)

thus

Hcw =
γ

2L2

∑

k

k2 |ũ(k)|2 . (3.8)

Therefore the partition function of the capillary wave Hamiltonian in Fourier space

is a simple Gaussian integral

Z ∼
∫

Dũ(k) exp

[
− βγ

2L2

∑

k

k2|ũ(k)|2
]
. (3.9)

Average interface width

Using the partition function eq.(3.9) we can calculate the average interface width

〈|ũ(k)|2〉 = Z−1

∫
Dũ |ũ(k)|2 exp

[
− βγ

2L2

∑

k

k2|ũ(k)|2
]
, (3.10)

separating the k-mode from other modes the average width may be rewritten as

〈|ũ(k)|2〉 =

∫
dũ(k) |ũ(k)|2 exp

[
− βγ

2L2 k2 |ũ(k)|2
] ∫ ∏

k
′ 6=k

dũ(k
′

) exp


− βγ

2L2

∑

k
′ 6=k

k
′2 |ũ(k

′

)|2



∫
dũ(k) exp

[
− βγ

2L2 k2 |ũ(k)|2
] ∫ ∏

k
′ 6=k

dũ(k
′

) exp


− βγ

2L2

∑

k
′ 6=k

k
′2|ũ(k

′

)|2



,

which reduces to

〈|ũ(k)|2〉 =

∫
dũ(k) |ũ(k)|2 exp

[
− βγ

2L2 k2 |ũ(k)|2
]

∫
dũ(k) exp

[
− βγ

2L2 k2 |ũ(k)|2
] . (3.11)
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Taking advantage of one dimensional Gaussian integrals we obtain the average in-

terface width in Fourier space

〈|ũ(k)|2〉 =
L2

βγk2
. (3.12)

In order to interpret the average width physically, we should transform eq.(3.12) back

to real space. Using the Fourier transform of the field u introduced in Eq. (3.7), the

Fourier transform of the average width reads

〈u(r)2〉 =
1

L4

∑

k,k′

〈ũ(k)ũ(k
′

)〉 e−ik.re+ik
′
.r , (3.13)

noting that 〈u(k)u(−k′)〉 = δkk′〈|ũ(k)|2〉, the above equation simplifies to

〈u(r)2〉 =
1

L4

∑

k

〈|ũ(k)|2〉

=
1

L2βγ

∑

k

1

k2
. (3.14)

In large systems the sum over all Fourier modes can be replaced by an integral

1

L2

∑

k

=
1

(2π)2

∫
dk .

Using this, the average interface width becomes

〈u(r)2〉 =
1

4π2βγ

∫ kmax

kmin

dk

k2
. (3.15)

The upper and lower integration bounds in eq.(3.15) can be determined by the

physical characteristic lengths in the system. The lower bound kmin = 2π/L is

determined by the system size and the upper bound kmax = 2π/σ is determined by

the molecular length scale. After changing the integration bounds, the integral in

eq.(3.15) can be calculated easily. Lastly the average interface width in real space is

〈u(r)2〉 =
1

2πβγ
ln

(
L

σ

)
. (3.16)

Eq.(3.16) shows that the interface width is divergent as it increases logarithmically

with the system size. Nevertheless, in practice this is not an important issue because

the logarithmic divergence is quite weak.
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Corrected capillary wave Hamiltonian

In the earth’s gravitational field, we suppose that the undisturbed interface is located

at u(r) = 0 which can be taken as the reference point of the potential. After elevation

of the interface, the potential of phase I increases to
∫ u

0

du ρI g u(r) =
1

2
ρI g u(r)2

per unit horizontal area, on the other hand the potential energy of the phase II

decreases to −1
2
ρIIgu(r)2 per unit horizontal area. Consequently the potential energy

correction to the capillary Hamiltonian is

1

2

∫
dr(ρI − ρII)gu

2(r) =
γ

2

∫
dr
u2

λ2
c

. (3.17)

Adding the above result to the capillary wave Hamiltonian, we obtain

H′
cw =

γ

2

∫
dr

[
(∇u)2 +

u2

λ2
c

]
. (3.18)

As demonstrated above, the Hamiltonian Hcw in its original form (Eq. (3.5)) is

plagued with both a short-wavelength and a long-wavelength divergence which, how-

ever, we treated by physical cutoffs. As discussed before, the short-wavelength cut-

off is set by the molecular length-scale σ of the fluid at which the capillary wave

model ceases to remain valid. The long wavelength divergence is reminiscent of the

fact that the capillary waves are Goldstone modes. Of course, in real systems, in-

stead of the system size L, the gravitational field provides a natural damping for

capillary waves which is given by the second term in Eq. (3.18). Usually, in simple

liquids, λc is in the range of millimeters and, therefore, is by far the longest length

scale in the system. In fact, here it plays the role of a long wavelength cutoff of the

capillary wave Hamiltonian Hcw, and we will discuss our results in the limit λc ≫ R

and λc ≫ d.

Eq. (3.18) in Fourier space reads

H′
cw =

γ

2L2

∑

k

(k2 + λ−2
c )u2(k) . (3.19)
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Corrected average interface width

At this point we can calculate the average interface width using the corrected cap-

illary Hamiltonian

〈|ũ(k)|2〉 = Z−1

∫
Dũ(k) |ũ(k)|2 exp

[
− βγ

2L2

∑

k

(k2 + λ−2
c ) |ũ(k)|2

]
. (3.20)

Similar to the derivation of Eq. (3.12) we obtain

〈|ũ(k)|2〉 =
L2

βγ(k2 + λ−2
c )

, (3.21)

and the average interface width in real space is

〈u(r)2〉 =
1

4π2βγ

∫ 2π/σ

0

dk

k2 + λ−2
c

. (3.22)

Analogously to Eq. (3.16) we have

〈u(r)2〉 =
1

4πβγ
ln

(
(2π

σ
)2 + λ−2

c

λ−2
c

)
, (3.23)

since σ ≪ λc, Eq. (3.23) reduces to

〈u(r)2〉 ∼ 1

2πβγ
ln

(
λc

σ

)
. (3.24)

Comparing the interface width in Eqs. (3.16) and (3.24), we see that the precise

way of incorporating the long-wavelength cut-off is unimportant for the effects on

the colloidal length scale, see the discussion in Ref. [100] . Nonetheless, in both

approaches (kmin = 2π/L and 2π/λc) the width of the interface related to the

capillary wave is logarithmically divergent, 〈u(0)2〉 ∼ lnλc[L]/σ.

Capillary wave Hamiltonian correlation length

The height–height correlation function of the capillary HamiltonianG0(r) = 〈u(r)u(0)〉
in Fourier space is

G0(r) =
1

L4

∑

k,k′

〈ũ(k)ũ(−k
′

)〉 e−ik.r . (3.25)



82

after suming over k
′

and using 〈ũ(k)ũ(−k′)〉 = δkk′〈|ũ(k)|2〉 we find

G0(r) =
1

L2

∑

k

〈|ũ(k)|2〉 e−ik.r

=
1

4π2

∫
dk

βγ(k2 + λ−2
c )

e−ik.r , (3.26)

which leads to

G0(r) =
1

4π2βγ

∫
dk dθ

k e−ikr cos θ

k2 + λ−2
c

. (3.27)

The integral over θ may be straightforwardly evaluated by noting that

∫ 2π

0

dθ e−ikr cos θ = 2πJ0(kr) ,

therefore

G0(r) =
1

2πβγ

∫
dk

k J0(kr)

k2 + λ−2
c

. (3.28)

The integral in Eq. (3.28) can be calculated by using Hankel-Nicholson type integrals

[78] ∫ ∞

0

tν+1 Jν(at) dt

(t2 + z2)µ+1
=

aµzν−µ

2µ Γ(µ+ 1)
Kν−µ(az) . (3.29)

In order to evaluate Eq. (3.28), one has to use the above integral with ν = µ = 0,

that gives

G0(r) =
1

2πβγ
K0

(
r

λc

)
. (3.30)

For small x and 0 < x ≤ 1, we have K0(x) ≈ − ln(γex
2

), where γe is the Euler-

Mascheroni constant exponentiated. Thus for r ≪ λc

G0(r) ∼ − 1

2πβγ
ln

(
γer

λc

)
. (3.31)

The correlation function in Eq. (3.31) corresponds to the Green’s function of the

capillary wave Hamiltonian. To show this, we apply the capillary wave operator

βγ(−∆ + λ−2
c ) in Eq. (3.18) to Eq. (3.26) and obtain

βγ(−∆ + λ−2
c )G0(r) = βγ

−∆ + λ−2
c

4π2

∫
dk

βγ(k2 + λ−2
c )

e−ik.r

= δ(r) . (3.32)
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It is also possible to recover the capillary wave model by analyzing the corre-

lation between density fluctuations at the interface. An extensive analysis of such

correlations was done by Wertheim in terms of the two dimensional Fourier trans-

form of the direct and total correlation functions of the liquid–vapor interface of a

simple fluid [101]

1

L2

∑
eik.r〈δρ(r, z)δρ(0, z′)〉 ∼ ρ′(z)ρ′(z′)

k2 + λ2
c

. (3.33)

where ρ(z) is the equilibrium intrinsic density profile across the interface and δρ(r, z)

are density fluctuations around this profile. To show the equivalence of the height–

height correlation function in Eq. (3.26) and the correlation function obtained by

considering the density fluctuations, we follow a work done by Stecki [102]. we

suppose that the thermally excited displacement of the interface position u(r) is

connected to the density fluctuations δρ(r, z) by

δρ(r, z) = ρ(z − u(r)) − ρ(z) . (3.34)

Moreover, we assumed that the Gibbs interface is placed at z = 0. Since the dis-

placement of the interface is considered to be small, we can use the leading term of

the density fluctuation expansion

δρ(r, z) = −u(r) ∂zρ(z) + ... . (3.35)

Therefore the total correlation function H(r1, r2) = 〈δρ(r1)δρ(r2)〉 leads to

H(r1, r2) = 〈u(r1)u(r2)〉 ρ′(z1) ρ′(z2) . (3.36)

Identifying Eq. (3.36) and Eq. (3.33) gives

1

L2

∑
eik.(r1−r2)〈u(r1)u(r2)〉 ∼ 1

k2 + λ2
c

, (3.37)

which is in accrod with Eq. (3.26) obtained by the capillary wave model.
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3.1.2 Total Hamiltonian of ellipsoidal colloids at a fluid in-

terface

Having familiarized ourselves with the physical properties of a free interface and

introduced the capillary wave model, we return to the main system, i.e. ellipsoidal

colloids trapped at the interface between two fluid phases.

As mentioned before the equilibrium position of the planar interface is set to be at

z = 0. On the other hand the equilibrium position of the colloids is assumed to be

symmetrical with respect to z → −z, such that at the contact line the contact angle

is π/2. The elliptic cross-section of the ellipsoids with the equilibrium interface is

denoted by Si,ref which is an ellipse with major and minor axes a, b, respectively.

Si,ref may also be expressed in confocal elliptic coordinates by the elliptic radius

ξ0, see App. A for the coordinate definitions. The equilibrium interface at z = 0

without the two elliptic holes Si,ref cut out by the colloids is termed the reference

meniscus Smen,ref = R2 \ ∪iSi,ref .

We note that the ellipsoidal colloids are of Janus type, thus the contact line is

always pinned to their surface. The total Hamiltonian of the system which is used

for calculating the free energy costs of thermal fluctuations around the flat interface

is determined by the change in interfacial energy of the interface I/II between the

fluid phases. In the spirit of the capillary wave model, we perform a small gradient

expansion

Htot = γ∆Amen = γ

∫

Smen

d2x
√

1 + (∇u)2 − γ

∫

Smen,ref

d2x

≈ γ

2

∫

Smen,ref

d2x (∇u)2 + γ∆Aproj . (3.38)

Here γ∆Amen expresses the energy needed for creating the additional meniscus area

associated with the interface height fluctuations. In Eq. (3.38), Smen is the meniscus

area projected onto the plane z = 0 (where the reference interface is located) and

Smen,ref is the meniscus in the reference configuration mentioned above. In the second

line we have applied the small gradient expansion which is valid for slopes |∇u| ≪ 1
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Figure 3.1: Top view of the system

and which provides the long wavelength description of the interface fluctuations we

are interested in. The small gradient expansion entails that

∆Aproj =

∫

Smen\Smen,ref

d2x
√

1 + (∇u)2 ≈
∫

Smen\Smen,ref

d2x (3.39)

is approximately the change in projected meniscus area with respect to the reference

configuration. We rewrite this change in projected meniscus area in terms of the

interface position fi = u(∂Si,ref) at the reference contact line ellipses ∂Si,ref . fi

corresponds (in a second order approximation) to the contact line of the colloid i

with fluctuating center position hi and fluctuating orientation. The contact line

which is a function of the elliptic angle η only (see App. A for the definition of

elliptic coordinates) is expanded as

fi = u(∂Si,ref) =
∑

m=0

(Pim cos(mηi) +Qim sin(mηi)) (3.40)

and we refer to the coefficients Pim and Qim as boundary multipole moments be-

low. The desired expression of ∆Aproj in terms of boundary multipole moments

proceeds as discussed in Ref. [100] and allows us to identify it as a sum over boundary

Hamiltonians Hi,b for each colloid i (see also App. C):

γ∆Aproj ≡
∑

i

Hb,i[fi]

=
∑

i

πγ

2

(
tanh ξ0 P

2
i1 + coth ξ0Q

2
i1

)
. (3.41)

We note that the boundary Hamiltonians Hb,i can be viewed as the energy cost due

to fluctuations of the contact line (which in turn are caused by colloid height and tilt
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Figure 3.2: Side view of the system

fluctuations). Putting Eqs. (3.38) and (3.41) together, the total change in interfacial

energy is the sum

Htot = Hcw + Hb,1 + Hb,2 =
γ

2

∫

Smen,ref

d2x (∇u)2 + Hb,1 + Hb,2 (3.42)

where Hcw is the capillary wave Hamiltonian introduced in Eq. (3.5) and describes

the energy differences associated with the additional interfacial area over the refer-

ence configuration.

3.1.3 Helmholz free energy

In order to calculate the interaction force between the colloids, one has to determine

the Helmholz free energy of the system. However, via the integration domain of Hcw,

the total Hamiltonian of the system, Eq. (3.42), implicitly depends on the geometric

configuration. This leads to a free energy F(d, θ1, θ2) which depends on the distance

d between the colloid centers and the orientation angles θ1 and θ2 of their major

axes with respect to the distance vector joining the colloid centers (see Fig. 3.1).

The free energy is related to the partition function Z(d, θ1, θ2) of the system by

F(d, θ1, θ2) = −kBT lnZ(d, θ1, θ2) (3.43)

The partition function is obtained by a functional integral over all possible interface

configurations u and boundary configurations fi; the relation between interface and

boundary configurations is included by δ-function constraints,

Z = Z−1
0

∫
Du exp

{
−Hcw[u]

kBT

} 2∏

i=1

∫
Dfi

∏

xi∈∂Si,ref

δ[u(xi)−fi(xi)] exp

{
−Hb,i[fi]

kBT

}
.

(3.44)
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Here Z0 is a normalization factor such that Z(d → ∞) = 1 and ensures a proper

regularization of the functional integral. Via the δ-functions the interface field u is

coupled to the contact line height fi and therefore, the boundary Hamiltonians Hi,b

have a crucial influence on the resulting effective interaction between the colloids.

The kind of possible contact line fluctuations fi is solely determined by the colloid

fluctuations since the contact line is pinned. These fluctuations are vertical fluctu-

ations of the colloids on the axis normal to the equilibrium interface (height) and

orientational fluctuations around that axis (tilts). In order to incorporate various

boundary counditions into the solutions, we categorize them into three cases:

(A) colloids are fixed in the reference configuration, thus there are no integrations

over the boundary terms.

(B) colloid heights fluctuate freely without tilting, thus the boundary monopoles

must be included in the integration measure so that Dfi = dPi0.

(C) unconstrained height and tilt fluctuations. Up to second order in the tilts this

corresponds to the inclusion of boundary dipoles in the integration measure,

thus Dfi = dPi0 dPi1 dQi1.

Case (A) corresponds to the “standard”Casimir effect in 2d with Dirichlet boundary

conditions fi = u(∂Si,ref) = 0. We call this the interface fluctuation part and it will

be treated in Sec. 3.2. The inclusion of the colloid height and tilt fluctuations in (B)

and (C) is given in Sec. 3.3.

We summarize the model setup for our problem at hand in view of the general

discussion of the Casimir effect in chapter 2. The interface fluctuations are treated

with a two dimensional Gaussian scalar field theory, and the colloid appear as elliptic

obstacles which are either fixed (case (A), Dirichlet boundary conditions) or fluctuate

(case (B) and (C)). We recall that the Dirichlet boundary conditions in the case (A)

has been also investigated in the previous chapter by applying different methods for

the case of two lines immersed in a scalar field. This result (See Subsec. 2.2.5) will
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be used in this chapter for calculating the Casimir interaction at close distances via

the Derjaguin approximation.

On the other hand in cases (B) and (C) the colloids fluctuations are also included

on top of the interface fluctuations. In these two cases the effect of the fluctuating

boundaries are introduced by means of a boundary Hamiltonian. This approach is

similar to the method introduced in Subsec. (2.2.3) since the interaction δ-potentials

can also be viewed as a very specific form of a boundary Hamiltonian defined to treat

the fluctuating boundaries.
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3.2 Interface fluctuation part

The partition function Zin for fixed contact lines fi = 0 is given by

Zin = Z−1
0

∫
Du

2∏

i=1

∏

xi∈∂Si,ref

δ(u(xi)) exp

{
−Hcw[u]

kBT

}
. (3.45)

The disappearance of the interface fluctuations at the colloids boundaries (Dirichlet

boundary condition) is included by the Dirac delta function. In this section, ana-

lytical expressions for the fluctuation induced force in the intermediate asymptotic

regime a≪ d≪ λc are calculated.

The course of the derivation is analogous to the derivation of the Casimir effect

in the method presented in Sec. 2.2.5. Here it is performed for the case of two

ellipsoidal obstacles.

We express the δ-functions in Eq. (3.45) by their integral representation via

auxiliary fields ψi(xi) defined on the reference contact lines ∂Si,ref . This enables us

to integrate out the field u leading to

Zin = Z ′
0
−1
∫ 2∏

i=1

Dψi exp

{
−kBT

2γ

2∑

i,j=1

∫

∂Si,ref

dℓi

∫

∂Sj,ref

dℓj ψi(xi)G(|xi − xj |)ψj(xj)

}
,

(3.46)

where dℓi is the infinitesimal line segment on the circles ∂Si,ref . After this integra-

tion, the normalization factor is changed, Z0 → Z ′
0, such that Zin(d→ ∞) = 1 still

holds. In Eq. (3.46) we introduced the Greens function of the operator (−∆ + λ−2
c )

which is given by G(x) = K0(|x|/λc)/(2π) where K0 is the modified Bessel function

of the second kind (See Eq. (3.30)). In the range d/λc ≪ 1 and r0/λc ≪ 1, we

can use the asymptotic form of the K0 for small arguments, such that 2πG(|x|) ≈
− ln(γe|x|/ 2λc). Here, γe ≈ 1.781972 is the Euler-Mascheroni constant exponenti-

ated. We introduce auxiliary multipole moments as the Fourier-transforms of the
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auxiliary fields ψi (see appendix B) on the reference contact line ∂Si,ref ,

ψ̂c
im =

∫ 2π

0

dηi h(ηi) cos(mηi)ψi(xi(ηi)) ,

ψ̂s
im =

∫ 2π

0

dηi h(ηi) sin(mηi)ψi(xi(ηi)) , (3.47)

where ηi is the elliptic angle pertaining to a coordinate system centered around

each colloid i, respectively, such that the x–axis in this colloid–specific coordinate

system joins the two foci of Si,ref . Furthermore, h(ηi) is the scale factor in elliptic

coordinates (see App. A). The lengthy calculation leading to the multipole (Fourier)

decomposition for the Greens function G(|xi − xj |) (for general orientations θ1 and

θ2 of the ellipsoids) is given in App. D. The final results are collected in Eq. (D.1.9)

and Eqs. (D.2.40)–(D.2.42). Using this, the double integral in the exponent of

Eq. (3.46) can be written as a double sum over the auxiliary multipole moments

(Fourier components), consisting of a self-energy part Gself when xi and xj reside on

one ellipse and Gint when the points xi and xj reside on different ellipses, respectively.

The functional integral over the auxiliary fields becomes a product of integrals over

their multipole moments, Dψi = dψ̂i0

∏∞
j=1 dψ̂

c
ijdψ̂

s
ij , and the resulting partition

function then reads

Zin = Z ′
0
−1

∫ 2∏

i=1

Dψi exp




−kBT

2γ


 Ψ̂1

Ψ̂2




T
 Ĝself Ĝint

Ĝint Ĝself




 Ψ̂1

Ψ̂2








,

(3.48)

where the vectors Ψ̂i = (Ψ̂c
i , Ψ̂

s
i ) with Ψ̂c

i = (ψ̂c
i0, ψ̂

c
i1, . . . ) and Ψ̂s

i = (ψ̂s
i1, ψ̂

s
i2, . . . )

contain the auxiliary multipole moments of colloid i. The coupling matrix Ĝ which

contains the Fourier modes of the Greens function G(xi − xj) has a block struc-

ture. The self energy submatrix Ĝself which describes the coupling between auxil-

iary moments of the same colloid are diagonal, and its form can be determined from

definition (3.47) and Eq. (D.1.9).

2π (Ψ̂i)
TĜselfΨ̂i = − ln

γea
′eξ0

8λc
(ψ̂c

i0)2+2
∑

n=1

e−nξ0

n

[
cosh(nξ0) (ψ̂c

in)2 + sinh(nξ0) (ψ̂s
in)2
]
,

(3.49)
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where a′2 = a2−b2. The off–diagonal blocks Ĝint characterise the interaction between

the multipole moments residing on different colloids. It is convenient to split the

matrix into a block structure describing the interaction of cosine and sine multipoles:

2π (Ψ̂1)
T Ĝint Ψ̂2 =



 Ψ̂c
1

Ψ̂s
1




T

 Ĝcc
int Ĝsc

int

Ĝsc
int Ĝss

int







 Ψ̂c
2

Ψ̂s
2



 (3.50)

The matrix elements of the such defined submatrices follow from Eqs. (D.2.40)–

(D.2.42), and are explicitly given by:

(
Ĝcc

int

)
0 0

= − ln

(
γed

2λc

)
(3.51)

(
Ĝcc

int

)
mn

=
∑

l=0

(
a′

4d

)m+n+2l

Ac
mnl(θ1, θ2) cosh(mξ0) cosh(nξ0) (3.52)

(
Ĝss

int

)
mn

= −
∑

l=0

(
a′

4d

)m+n+2l

Ac
mnl(θ1, θ2) sinh(mξ0) sinh(nξ0) (3.53)

(
Ĝsc

int

)
mn

=
∑

l=0

(
a′

4d

)m+n+2l

As
mnl(θ1, θ2) sinh(mξ0) cosh(nξ0) (3.54)

From Eq. (3.48) we find that the fluctuation part of the free energy reads

Fin = −kBT lnZin = −kBT

2
ln(det Ĝ) + const. , (3.55)

where const. = −kBT lnZ0
′. The factors A

c[s]
mnl(θ1, θ2), given in Eqs. (D.2.41) and

(D.2.42), contain the dependence on the orientation angles θ1 and θ2 of the ellipsoids

(see Fig. 3.1). As can be seen from above, the interaction coefficients
(
Ĝ

c[s]c[s]
int

)
mn

between multipoles of order m and n take the form of a series in 1/d, starting at

1/dm+n. (For spherical colloids, this multipole interaction coefficient only contains

the order 1/dm+n [53].) In principle, the matrix Ĝ is infinite dimensional and det(Ĝ)

is divergent and its regularisation is provided by the normalization factor Z ′
0. The

explicit series for the elements of Ĝint allows for a systematic expansion of the

logarithm in Eq. (3.55) in powers of 1/d,

Fin(d) = kBT
∑

n

f in
2n

(
1

d

)2n

, (3.56)
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where the coefficients f in
2n depend on the logarithms − ln(γed/ 2λc)) and − ln(γea

′eξ0)/ 8λc),

as well as the angles θ1 and θ2. The number of auxiliary multipoles included in the

calculation of the asymptotic form of Ffluc in Eq. (3.56) is determined by the desired

order in 1/d. Inclusion of multipoles up to order n leads to an asymptotics correct up

to 1/d2n. In the limit λc/d→ ∞ the free energy expansion coefficients in Eq. (3.56)

up to fourth order are

f in
0 =

1

2
ln

(
ln

(
4d

a+ b

))
+ const.

f in
2 = − 1

2 ln
(

4d
a + b

)
[

(a+ b)2

16
+

3

32
(a2 − b2)(cos(2θ1) + cos(2θ2))

]

f in
4 = − 1

211





1

ln
(

4d
a+ b

)
[

16(a− b)(a + b)3(cos(2θ1) + cos(2θ2))

+11(a2 − b2)2(cos(4θ1) + cos(4θ2)) +44(a2 − b2)2 cos(2θ1 + 2θ2) + 6(a+ b)4

]

+ [8(a2 − b2)2 cos(2θ1 + 2θ2) + 8(a+ b)4]

}
− 1

2

(
f in

2

)2

(3.57)

The double–logarithmic divergence in d in the leading coefficient f in
0 is a reflection

of the fact that the interface itself becomes ill–defined for λc → ∞ due to the

capillary waves, see subsection 3.1.1. For the Casimir force itself, however, we find

a finite value for all d in the limit λc → ∞. Anisotropies in the Casimir interaction

appear here first in the subleading term f in
2 . Their angular dependence stems from

the monopole–dipole interaction of the auxiliary field, and the attraction is maximal

if both ellipses are aligned tip–to–tip.

3.2.1 Derjaguin Approximation

In the opposite limit of small surface–to–surface distance h = d− dcl ≪ dcl, (where

dcl is the distance of the closest approach between ellipses) the fluctuation force

can be calculated by using the Derjaguin (or proximity) approximation [103]. It
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consists in replacing the local force density on the contact lines by the result for

the fluctuation force per length f2d(h̃) between two parallel lines with a separation

distance h̃ and integrating over the two opposite contact lines to obtain the total

effective force between the colloids (see Fig. (3.3))

Fin =

∫
dy f2d(y) . (3.58)

The Casimir force density between two parallel surfaces was calculated in Ref. [93]

in a general approach for arbitrary dimensions (See also chapter 2). Applied to

two dimensions we obtain the force line density f2d(h̃) = −kBT π/(24h̃2), see also

Eq. (2.99)for the Casimir energy. Curvature expansion of the two opposing curves

in Fig. (3.3) around the point of minimal separation, we find the relation between y

and the curvature of the neighboring ellipses at the point where h is minimized

y2 = R2
i − (Ri − xi)

2

= 2Rixi − x2
i ≈ 2Rixi . (3.59)

From Eq. (3.59) one can determine h(y)

h(y) = h + x1 + x2

≈ h +
y2

2
(

1

R1
+

1

R2
) , (3.60)

then the integral in Eq. (3.58) is calculated as

Fin ≈ −πkBT

24

∫ +∞

−∞

dy
1

(
h+ y2

2
( 1

R1
+ 1

R2
)
)2 = −kBT

π2

48h
3

2

√
2

1
R1

+ 1
R2

+ O(h−1/2) .

(3.61)

Here, R1 and R2 are the curvature radii of the two ellipses at the end points of the

distance vector of the closest approach. It is seen that the fluctuation force diverges

as h−3/2 upon contact of the ellipsoids (h→ 0).
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Figure 3.3: Top view of two opposing contact lines

3.2.2 Intermediate distances: Numerical calculation

For intermediate distances d − dcl ≃ a the fluctuation induced force has to be

calculated numerically. This can be done in principle by including a number of mul-

tipoles in the numeric evaluation of the determinant in Eq. (3.55), see Ref. [90].

In order to avoid the algebraic evaluation of the multipole coefficients of Ĝ, it

is possible to apply a method which was introduced in Ref. [104]. The start-

ing point is Eq. (3.46) for the partition function Zin. Introducing a mesh with

N points ηij, j = 1 . . . N , on the reference contact line ∂Si,ref converts the dou-

ble integral in the exponent to a double sum. Thus the functional integrals over

the auxiliary fields ψi(ηi) are replaced by ordinary Gaussian integrals over the

ψi(xi(ηij)), Dψi ≃
∏N

j=0 dψi(xi(ηij)). In the exponent, the ψi(xi(ηij)) are cou-

pled by a matrix G with elements Gjj′

ii′ = G(|xi(ηij) − xi′(ηi′j′)|). Performing the

Gaussian integrals and disregarding divergent and d-independent terms immedi-

ately leads to Fin = (kBT/2) ln det(G−1
∞ G(d)) for the fluctuation free energy. Here,

G∞ ≡ limd→∞ G(d). It contains the self energy contributions and is needed for the

regularization of the free energy. Deriving with respect to d, the Casimir force can
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be written as

Fin(d) = −kBT

2
tr
[
G(d)−1∂dG(d)

]
. (3.62)

The advantage of the direct calculation of the force is that Eq. (3.62) does not contain

any divergent parts which would require regularization, thus easing the numerical

treatment considerably. The determinant is computed by using a standard LU

decomposition [105]. We find good convergence of the numerical routine. The

convergence can be sped up by distributing more points in the regions where the

ellipses face each other. We note that computing the force by the multipole series

seems to be more efficient [90]; this can partially be compensated by the point

distribution on the ellipses. In Fig. 3.4 (ellipse aspect ratio 2) and 3.5 (aspect ratio

6) we compare the analytical results of Eqs. (3.56) and the Derjaguin approximation

(Eq. (3.61) with the numerical results. As it is shown the analytical expressions

show very good agreement with the numerical data points for both long- and short

range behavior and almost cover the whole distance regime. At large distances

d, the leading term of the free energy expansion in Eqs. (3.56) mainly determines

the behavior of the Casimir interaction because of its long-ranged nature, hence

the orientation dependence of the subleading terms can be neglected. In order to

demonstrate the anisotropy of the Casimir interaction, we show results for a fixed,

intermediate distance d between ellipsoid centers and varying orientation θ2 of the

second ellipsoid, see Fig. 3.6 (aspect ratio 2, d/b = 4.1) and 3.7 (aspect ratio 6,

d/b = 12.1). The orientation of the first ellipse was fixed to three values, θ1 = 0,

θ1 = π/4 and θ1 = π/2. As can be seen, the fluctuation–induced interaction is

maximally attractive for θ1 = θ2 = 0 (tip–to–tip configuration). When θ2 deviates

from zero then the resulting force increase. This behavior holds for both aspect

ratios 2 and 6.
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Effect of in–plane anisotropy

The attractiveness of the fluctuation force for all distances and orientations was ana-

lyzed. This is already suggested by the close–distance regime (where Ffluc ∝ −1/h
3/2
0

is always attractive) and the long–distance regime (where Ffluc is dominated by

the likewise attractive, in–plane isotropic term −∂f in
0 /∂d = −1/[2d ln(d/r0)], see

Eq. (3.57)). In order to exemplify the effect of in–plane anisotropy on the fluc-

tuation force, the results for the force with the asymptotically leading, isotropic

term subtracted (Fsub = Ffluc + kBT ∂f
in
0 /∂d) are shown in Figs. 3.8– 3.10 for el-

lipsoids with aspect ratio a/b = 6 and for the three configurations (a) tip–to–tip

(θ1 = θ2 = 0o, Fig. 3.8), (b) side–to–tip (θ1 = 90o, θ2 = 0o, Fig. 3.9) and (c) side–

by–side (θ1 = θ2 = 90o, Fig. 3.10). In all configurations for large d, the approach to

the asymptotic result given by −∂(f in
2 /d

2)/∂d is fairly slow. For the configurations

(a) and (b) the subtracted force Fsub remains attractive for all distances and there

is a smooth crossover from the long–distance to the close–distance regime while for

the side–by–side configuration (c) there is a sign change from the attractive close–

distance regime (open circles) to the repulsive long–distance regime (full circles), in

accordance with Eq. (3.57).
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Figure 3.4: Comparison of the numerical results for the interface fluctuation Casimir

force (symbols) with the analytical expressions in the asymptotic ranges of large

colloid separations d ≫ a, b (full line) and small surface-to-surface distance h =

d− dcl ≪ b (dashed line), for ellipse aspect ratio 2.
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Figure 3.5: Comparison of the numerical results for the interface fluctuation Casimir

force (symbols) with the analytical expressions in the asymptotic ranges of large

colloid separations d ≫ a, b (full line) and small surface-to-surface distance h =

d− dcl ≪ b (dashed line), for ellipse aspect ratio 6.
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Figure 3.6: Numerical Casimir interaction between two fixed ellipsoids trapped at

the interface as a function of their orientation, for d = 4.1 and ellipse aspect ratio 2.
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Figure 3.7: Numerical Casimir interaction between two fixed ellipsoids trapped at

the interface as a function of their orientation, for d = 12.1 and ellipse aspect ratio 6.
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Figure 3.8: Results for the fluctuation force with the leading asymptotic term sub-

tracted, Fsub = Ffluc + kBT ∂f0/∂d, for ellipsoids with aspect ratio a/b = 6 and for

the three configurations tip–to–tip (θ1 = θ2 = 0o). Numerical results are shown by

circles, the next–to–leading asymptotic term involving the coefficient f2 (Eq. (3.57))

is represented by a full line, and the Derjaguin approximation is given by a dashed

line, respectively. The capillary length was chosen as λc = 106 b. Note that the sign

of f2 is positive for the filled points (repulsive) whereas it is negative for the empty

points (attractive).
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Figure 3.9: Results for the fluctuation force with the leading asymptotic term sub-

tracted, Fsub = Ffluc + kBT ∂f0/∂d, for ellipsoids with aspect ratio a/b = 6 and for

the configurations side–to–tip (θ1 = 90o, θ2 = 0o). Numerical results are shown by

circles, the next–to–leading asymptotic term involving the coefficient f2 (Eq. (3.57))

is represented by a full line, and the Derjaguin approximation is given by a dashed

line, respectively. The capillary length was chosen as λc = 106 b. Note that the sign

of f2 is positive for the filled points (repulsive) whereas it is negative for the empty

points (attractive).
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Figure 3.10: Results for the fluctuation force with the leading asymptotic term

subtracted, Fsub = Ffluc + kBT ∂f0/∂d, for ellipsoids with aspect ratio a/b = 6 and

for the configurations side–by–side (θ1 = θ2 = 90o). Numerical results are shown by

circles, the next–to–leading asymptotic term involving the coefficient f2 (Eq. (3.57))

is represented by a full line, and the Derjaguin approximation is given by a dashed

line, respectively. The capillary length was chosen as λc = 106 b. Note that the sign

of f2 is positive for the filled points (repulsive) whereas it is negative for the empty

points (attractive).
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3.3 Inclusion of colloid fluctuations

In general, the inclusion of colloid height and tilt fluctuations into the partition

function (Eq. (3.44)) can be realized by an approach used in Refs. [52, 53]. In this

approach, the partition function is split into a product of a colloid fluctuation part

and the interface fluctuation part. The latter contains only the contribution of the

fluctuating interface, with Dirichlet boundary conditions on the colloid surface (see

previous section). In the colloid fluctuation part, the fluctuations of colloid heights

and tilts are weighted by a Boltzmann factor which contains the energy of the mean

field solution (Euler–Lagrange equation) to the capillary problem with the boundary

conditions set by the fluctuating contact line. This decomposition is possible due

to the fact that capillary wave Hamiltonian is Gaussian in the field u. In princi-

ple, it is possible to use this method also for the special case of ellipsoidal colloids

considered here. However, finding the mean field solution in such a geometry for

arbitrary contact lines is rather cumbersome. To bypass this difficulty, we employed

a trick adapted from Ref. [54] in which effective forces between rods on fluctuating

membranes and films have been investigated. We extend the fluctuating interface

height field u(x, y) which enters the functional integral for Z to the interior of the

ellipses Si,ref . Thus the measure of the functional integral for Z is extended by

Du(x)|x∈Si,ref
and the integration domain in the capillary wave Hamiltonian is en-

larged to encompass the whole R2. On the colloid surfaces, the interface height field

is given by the three phase contact line, u(∂Si,ref) ≡ fi. We extend u continuously

to the interior of the circles Si,ref . Such a continuation is not unique. However, the

partition function remains unchanged (up to a constant factor), if the energy cost of

such a continuation is zero (as it is physically required since the interface is pinned

to the ellipsoid surface). This has to be insured by appropriate counterterms [52,53].
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We choose the continuation:

u(Si,ref) ≡ fi,ext(ξi, ηi) =
∑

m

(
Pim

cos(hmξi)

cosh(mξ0)
cos(mηi) +Qim

sinh(mξi)

sinh(mξ0)
sin(mηi)

)
,

(3.63)

where ξi and ηi are the elliptic coordinates with respect to ellipse Si,ref . The spe-

cific choice above is convenient for the further calculations since ∇2fi,ext = 0 in

Si,ref\∂Si,ref . Extending the integration domain of the capillary wave Hamiltonian

in Eq. (3.42), Ω = R2 \ ∪iSi,ref → R2 generates an additional energy contribution

−Hi,corr which has to be subtracted from the extended capillary wave Hamiltonian

Hcw[Ω ≡ R2]. Therefore, the total Hamiltonian reads:

Htot = Hcw +

2∑

i=1

[Hi,b + Hi,corr] . (3.64)

The correction Hamiltonian is calculated in App. C, and we recall the boundary

Hamiltonian:

−Hi,corr =
γπ

2

∑

m

m
(
P 2

im tanh(mξ0) +Q2
im coth(mξ0)

)
. (3.65)

Hi,b =
γπ

2
(P 2

i1 tanh(ξ0) +Q2
i1 coth(ξ0)) .

In Eq. (3.65) we have already omitted the contributions from the gravitational term

in Hcw which are of order (a/λ)2 ≪ 1.

As in the previous section the partition function is written as a functional integral

over all possible configurations of the interface position u and the boundary lines,

expressed by fi,

Z = Z−1
0

∫
Du

2∏

i=1

∫
Dfi

∏

xi∈Si,ref

δ[u(xi) − fi,ext(xi)] exp

{
−Htot[fi, u]

kBT

}
, (3.66)

where the product over the δ-functions enforces the pinning of the interface at the

positions of the colloids. In contrast to Eq. (3.44), this product extends over all

x ∈ Si,ref instead of ∂Si,ref , only. The δ-functions can again be expressed by auxiliary

fields ψi, now defined on the two–dimensional elliptical domains Si,ref as opposed to
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the auxiliary fields of Sec. 3.2 which are defined on the one–dimensional ellipses

∂Si,ref :

Z =

∫
Du
∫ 2∏

i=1

Dψi

∫
Dfi exp

{
−Htot[fi, u]

kBT
+ i

∫

Si,ref

d2xψi(x)[u(x) − fi,ext(x)]

}
.

(3.67)

Similar to the evaluation of the fluctuation part, Sec. 3.2, we introduce multipole

moments Ψim of the auxiliary fields by inserting unity into Z, Eq. (3.67):1 =

∫ 2∏

i=1

∏

m

dΨc
imdΨs

im δ

(
Ψc

im −
∫

Si,ref

d2x (cosh(mξ)/ cosh(mξ0)) cos(mη)ψi(x)

)

× δ

(
Ψs

im −
∫

Si,ref

d2x (sinh(mξ)/ sinh(mξ0)) sin(mη)ψi(x)

)
.

(3.68)

In contrast to the evaluation of the fluctuation term in Sec. 3.2, there will be con-

straints on the lowest multipoles which contribute to Z. To see this we note that

the Hamiltonian Htot does not depend on the boundary monopole moments Pi0 and

the dipole moments Pi1 (through a cancellation between Hi,b and Hi,corr), and the

only dependence of Z on these moments is through the constraint function fi,ext.

Recalling the definition of the integration measure Dfi for the two boundary condi-

tions (B) and (C) and performing the integration over Pi0 (B) and Pi0 and Pi1 (C),

we immediately find

Z ∼





∫ 2∏

i=1

∏

m

dΨs
im dΨc

im . . . δ(Ψ
c
i0) . . . case (B)

∫ 2∏

i=1

∏

m

dΨs
im dΨc

im . . . δ(Ψ
c
i0) δ(Ψ

c
i1) δ(Ψ

s
i1) . . . cases (C)

(3.69)

Having noticed these constraints on the auxiliary fields, we proceed by integrating

over the field u in Eq. (3.67):

Z =

∫ 2∏

i=1

Dψi

∫
Dfi exp

{
−kBT

2γ

2∑

i,j=1

∫

Si,ref

d2xi

∫

Sj,ref

d2xj ψi(xi)G(|xi − xj |)ψj(xj)

− 1

kBT
(Hi,b + Hi,corr) − i

2∑

i=1

∫

Si,ref

d2xψi(x)fi,ext(x)

}
, (3.70)
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where – as in Eq. (3.46) – G is the Greens function of the capillary wave Hamiltonian.

A somewhat longer calculation shows that Z can be split into into an interaction part

(coupling the auxiliary multipole moments Ψ
c[s]
im , Pim and Qim for different colloid

labels i), a self–energy part (depending on Ψ
c[s]
im , Pim and Qim for each value of i

separately) and a remainder (the sum of boundary and correction Hamiltonian):

Z =

∫ 2∏

i=1

∏

m

dΨc
imdΨs

im

∫
Dfi exp

{
−kBT

2γ

(
Hint[Ψ

c[s]
1m ,Ψ

c[s]
2m ] + Hi,self [Ψ

c[s]
im ]
)}

×

exp

(
1

kBT
(Hi,b + Hi,corr) − i

∑

m

(Ψc
imPim + Ψs

imQim)

)
(3.71)

The interaction part

Hint = 2

∫

S1,ref

d2x1

∫

S2,ref

d2x2ψ1(x1)Gint(|x1 − x2|)ψ2(x2) (3.72)

turns out to be a bilinear form in the auxiliary multipole moments; this is shown

using the already used multipole expansion of the Greens function G(|x1 − x2|) ≃
− ln(γe|x1 −x2|/2λc) (valid for d≫ a) which is presented in App. D in more detail.

This bilinear form reads

2π Hint =



 Ψ̂c
1

Ψ̂s
1




T

 Ĝcc
int Ĝsc

int

Ĝsc
int Ĝss

int







 Ψ̂c
2

Ψ̂s
2



 , (3.73)

where the submatrices Ĝcc
int, Ĝsc

int and Ĝss
int have already been encountered in the

calculation of the fluctuation part and are given by Eqs. (3.51)–(3.54). The self–

energy part (different from the corresponding one in the calculation of the fluctuation

part) is evaluated in App. E, with the result

Hi,self = − ln (γe(a+ b)/8λc)

2π
Ψc

i0
2

+
1

π

∑

m>0

1

m

(
Ψc

im
2

1 + tanh(mξ0)
+

Ψs
im

2

1 + coth(mξ0)

)
(3.74)

Combining Eqs. (3.71), (3.72), and (3.74), the partition function can be written as

Z =

∫ 2∏

i=1

∏

m

DΨimDfi exp




−kBT

2γ


 Ψ̂1

Ψ̂2




†
 Ĥself Ĥint

Ĥint Ĥself




 Ψ̂1

Ψ̂2








,

(3.75)
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where the vectors Ψi = (Ψc
i0, Pi0,Ψ

c
i1, Pi1,Ψ

s
i1, Qi1, . . . ) – in contrast to Ψ̂i in Sec. 3.2

– contain all involved auxiliary and boundary multipole moments. The elements

of the matrix H describe the coupling of these multipole moments, where the self-

energy block couples multipoles defined on the same ellipses Si,ref . Thus the diagonal

part of the self energy matrix Ĥself can be read off Eq. (3.65) and Eq. (3.74) while the

off–diagonal part is determined by the term −i
∑

m

(Ψc
imPim +Ψs

imQim) in Eq. (3.71).

The elements of the interaction matrix Ĥint are determined by the interaction energy

Hint in Eqs. (3.72) and (3.73) and couple the auxiliary multipole moments of different

colloids. All matrix elements representing couplings of other multipoles are zero.

Similar as in Eq. (3.48), the exponent in Eq. (3.75) is a bilinear form, however,

here combined for all types, boundary multipole moments Pim, Qim and auxiliary

multipoles Ψc
im, Ψs

im. The computation of the partition function amounts to the

calculation of det Ĥ. Again this is found as a series expansion in a/d, and we may

define a similar expansion for the free energy Fin+coll = −(kBT ) ln det Ĥ/2 as before

in Eq. (3.56):

Fin+coll(d) = kBT
∑

n

f in+coll
2n

(
1

d

)2n

. (3.76)

The leading coefficients in case (B) (inclusion of fluctuations in the ellipsoids’ vertical

positions) are given by:

f in+coll
0 = f in+coll

2 = 0 , (3.77)

f in+coll
4 = − 1

28

[
(a2 − b2)2 cos(2θ1 + 2θ2) + (a+ b)4

]
.

In case (C) (inclusion of fluctuations in the ellipsoids’ vertical positions and tilt

angles with respect to the interface) the leading coefficients are:

f in+coll
2n = 0 (n = 0 . . . 3) , (3.78)

f in+coll
8 = − 9

216

[
(a2 − b2)4 cos(4θ1 + 4θ2) + (a + b)8

]
.

In contrast to the calculation before, the different leading power laws for the different

cases (B) and (C) can be understood easily. We note that the interaction between the
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auxiliary multipoles Ψ
(c,s)
1m and Ψ

(c,s)
2n in Hint, Eq. (3.72), scales like (a′/4d)m+n. After

calculating the determinant, the leading order of the total fluctuation induced force

between the two colloids is determined by the first non–vanishing auxiliary multipole

moment Ψ
(c,s)
im′ and (as follows from det Ĥ) gives rise to a term in the free energy

∝ 1/d4m′
(for m′ > 0) or ∝ ln ln d (for m′ = 0). As explained in the beginning of

this subsection, the different boundary conditions lead to certain constraints on the

auxiliary multipoles: According to Eq. (3.69), the leading term in F (d) arises from

a monopole-monopole interaction of the auxiliary field in case (A), from a dipole-

dipole interaction in case (B), and from a quadrupole-quadrupole interaction in case

(C). The constraints of vanishing auxiliary monopole and dipole moments (as in (C))

result from the independence of Htot of the boundary monopole and dipole moments

and this is only captured correctly by the inclusion of the correction Hamiltonian

Hcorr. The Casimir attraction is maximal if the major axes of both ellipses are

oriented parallel, regardless of the orientation of the distance vector joining their

centers. This is a peculiarity in two dimensions, as can be seen also by the general

multipole expansion of the interaction between two arbitrary charge distributions in

two–dimensional electrostatics.

3.3.1 Limiting cases

In the limit a = b (colloids with circular contact line such as disks and spheres)

our results for the cases (A)–(C) reduce to the results reported in Refs. [52, 53]. In

the limit b→ 0 (colloidal rods or needles with vanishing thickness) we can compare

our result for case (C) (fluctuating colloid heights and tilts) to Ref. [54]. There it

has been found that the effective free energy asymptotically varies ∝ d−4 with a

coefficient given by Eq. (3.77), i.e. by the result of case (B) (colloid height fluctu-

ations only). The derivation in Ref. [54] suggests that the perturbative treatment

employed in our approach should be amended by corrections in the integration mea-

sure over the tilts. In our cases, this measure is simply given by dPi1dQi1, the



110

product of the measures for the cosine and sine dipole moments of the contact line.

In order to check the validity of this approximation for the measure, we recalculated

the partition function of Ref. [54] by performing the integrations over the auxil-

iary dipole moments and their conjugate variables, which results in a final integral

over the tilts (with the general measure) weighted by an exponential function in

the tilts. If γa2/(kBT ) ≫ 1, the denominator of the measure in this integral can

be expanded in terms of the tilt angles since the exponential function decays much

faster than the measure and thus determines the convergence of the integral. In

this way, one sees that the higher–order terms in the dipole tilt measure do not

provide another leading behaviour in 1/d in the partition function compared to the

leading quadrupole–quadrupole interaction which arises in our perturbative picture.

A breakdown of our perturbative treatment can be expected if the length of the

rod a approaches the molecular length scale. This coincides with a simultaneous

breakdown of the simple capillary wave picture underlying our analysis.
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3.3.2 Comparison between interface mediated interactions:

fluctuation–induced versus capillary interactions

As discussed above, for ellipsoidal colloids that are trapped at the interface of two

fluid phases, thermally excited height fluctuations of the interface cause a variant

of the Casimir interaction which has been derived in this chapter. However, a fluid

interface due to its static deformations formed by the presence of anisotropic parti-

cles may cause capillary interaction between the particles (see Subsec. 1.2.3). This

capillary interaction is dominating for micro–ellipsoidal colloids, only for nano-sized

colloids fluctuation–induced forces may become large.

In this subsection we are going to compare the behavior of these two interface me-

diated interactions.

It is possible to interpret the capillary potential as a two-dimensional electrostatic

interaction between two charged colloids. The Young’s equation guarantees that

the surface charge density of colloids remains constant. The asymptotic form of

the capillary interaction between ellipsoidal particles (with major axes a, b, b and

a > b) that are trapped at a fluid interface is governed by the quadrupole–quadrupole

interaction [30]

Ucap ∼ −γ∆u2
max

4

(a
d

)4

cos(2φ1 + 2φ2) , (3.79)

where ∆umax is the maximum meniscus height difference along the contact line, and

φi is the polar angle orientation of colloid i in the interface plane.

In general, ∆umax depends on the major axes of the ellipsoid and the contact

angle. For an order-of-magnitude estimate, one may assume ∆umax . b, and thus

for micrometer-sized ellipsoids at the air-water interface, the energy scale of the

quadrupolar interaction is 106kBT . Eq. (3.79) shows that the capillary interaction

can be attractive or repulsive with respect to the orientation of ellipsoids within

the fluid interface. For instance, the interaction between two ellipsoidal colloids

approaching each other side-by-side (φ1 = φ2 = π/2) or tip-to-tip (φ1 = φ2 = 0) is

attractive and equal. Another feature of the capillary potential is that it does not
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diverge when ellipsoidal colloids are in contact.

As it is observed in the results of this chapter, the behavior of the fluctuation–

induced interaction between ellipsoidal colloids at a fluid interface is determined by

the fluctuations of the particles.

If the ellipsoidal particles fluctuate vertically, the resulting fluctuation–induced

interaction can be interpreted as an interaction between fluctuating dipoles of the

auxiliary field (see Eq. (3.77)). This interaction has the anisotropy signature of

(static) quadrupole–quadrupole interaction (such as in Eq. (3.79)), save for a con-

stant that makes Eq. (3.77) always attractive.

If the ellipsoidal particles are allowed to tilt in addition to their vertical fluctu-

ations, the resulting fluctuation–induced interaction can be understood with regard

to an interaction between fluctuating quadrupoles with the anisotropy signature of

(static) octupole–octupole interaction (see Eq. (3.78)). Similar to Eq. (3.77), the

Casimir energy in Eq. (3.78) is also attractive through an additional constant.

In the limit of short-distance separations (i.e. h → 0, where h is the surface-to-

surface distance), the fluctuation–induced forces diverge (see Eq. 3.61). Although

at this limit, fluctuations should always ”win“ compared to the static capillary in-

teractions, this is not observabale for microcolloid ellipsoids (compare γ(∆uumax
)2 ≈

106kBT with kBT
(

a
h

)1/2
, implying that h < 10−12a for the fluctuation potential be-

ing stronger than the capillary potential). Thus ∆umax has to be brought to the

nanoscale such that γ(∆uumax
)2 ≈ 1kBT . Then the Casimir-potential will clearly be

dominating for small distances.



Chapter 4

Closing remarks

The aim of this thesis was to investigate interface mediated interactions between

uncharged nano–colloidal particles that are trapped at the interface of two fluid

phases. The restrictions that these two colloids trapped at a fluid interface impose

on the thermally excited interfacial fluctuations (capillary waves) by their sheer

presence lead to a thermal Casimir interaction.

In chapter 1, we introduced the definition of colloids, different types and some

typical characteristics of these particles. In Sec. 1.1, we had a closer look at the phys-

ical properties of fluid interfaces and particles that are trapped at such interfaces.

To provide a wider understanding of inter-colloidal interactions, in Sec. 1.2 we re-

viewed the most common and important interactions which are relevant for particles

at interfaces. Having introduced van der Waals and electrostatic interactions that

exist both in bulk and at interfaces, we reviewed capillary and fluctuation–induced

interactions which are classified as interface mediated interactions. At the end we

explained the possibilities of discriminating fluctuation–induced forces from other

types of interactions.

As this thesis is mainly focused on the theoretical study of the fluctuation–

induced forces, chapter 2 is devoted to a brief review of the most prominant methods

of calculating the Casimir interaction. Starting, for historical reasons, from the
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mode summation method, we continued by introducing two main approaches: use

of Green’s function; and also path integral methods, which are then used in chapter

3 to calculate the Casimir interaction between ellipsoidal particles trapped at the

interface of two fluid phases.

In chapter 3 we obtained an explicit account for the effect of colloidal anisotropy

on the form of the Casimir interaction by studying ellipsoidal (spheroidal) colloids

with arbitrary aspect ratio. For the case of fixed colloids and fixed contact lines,

the problem is equivalent to the “standard” Casimir problem for a scalar Gaussian

field in two dimensions with Dirichlet boundary conditions on the colloid surface. In

an expansion in 1/d (the inverse center–to–center distance between the colloids) the

leading term in the Casimir interaction energy is found to be attractive, isotropic in

the interface plane and slowly varying ∝ ln ln d (see Eq. (3.57)). Anisotropies appear

in higher orders of 1/d and become important when the closest surface–to–surface

distance between the colloids becomes small (see Figs. 3.4-3.7).

If fluctuations in the colloids’ vertical positions are permitted, the asymptotic be-

havior of the Casimir interaction energy changes to a behavior ∝ d−4 (see Eq. (3.77)).

In this case, anisotropies are present in the leading term but the interaction remains

attractive for all orientations. If furthermore fluctuations of the colloids’ orienta-

tion with respect to the interface normal are allowed, the asymptotics changes to

a behaviour ∝ d−8 (see Eq. (3.78)). Interestingly, this change of leading order in

the asymptotics of the Casimir energy depending on the type of permitted colloid

fluctuations holds for arbitrary aspect ratios. This leads to the speculation that this

might be a general feature holding for arbitrary colloid shape.

In our approach the Casimir interaction can be understood as the interaction

between fluctuating multipole moments of an auxiliary charge density–like field de-

fined on the area enclosed by the contact lines. These fluctuations are coupled to

fluctuations of multipole moments of the contact line position which are a due to the

possibly fluctuating colloid height and tilts. Therefore, the system can be viewed as
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an example of the Casimir effect with fluctuating boundary conditions. Such fluctu-

ating boundary conditions appear to be difficult to be realizable in three–dimensional

systems such as the standard system of charged metallic objects subjected to vacuum

fluctuations of the electromagnetic field.

Experimentally, the detection of the Casimir interaction at a fluid interface ap-

pears to be possible if competing interactions, especially van–der–Waals and static

capillary interactions, are sufficiently weakened. Van–der–Waals interactions are

also strongly attractive at small distances, but can be modified by an appropriate

core–shell structure of the colloids or by using flat, disk–like particles. Capillary in-

teractions are very strong for ellipsoidal colloids of micrometer size and with contact

angle different from π/2 since the equilibrium contact line in this case is already

undulated and gives rise to static deformations of the surrounding interface. These

capillary interactions can be minimized by either using truly nanoscopic ellipsoids or

synthesizing Janus particles with a contact line which is flat on a nm level. Despite

the great advances in particle synthesis over the last years, this appears to be still a

big challenge.





Appendix A

Confocal Elliptic Coordinate

System

Confocal elliptic coordinates (ξ, η) are planar orthogonal coordinates formed by con-

focal ellipses or hyperbolae. The foci are located on the x-axis of the Cartesian

coordinates, separated by a′. The relation to Cartesian coordinates is defined by

x =
a′

2
cosh(ξ) cos(η) ,

y =
a′

2
sinh(ξ) sin(η) , (A.0.1)

and the scale factors are found as

hξ = hη =

√
a′2

8
(cosh(2ξ) − cos(2η)) .

ξ and η are called elliptic radius and elliptic angle, respectively. In this coordinate

system, ξ = ξ0 represents the equation of an ellipse with axes a, b (a > b). The

elliptic radius and the distance a′ between the foci are given in terms of the ellipse

principal axes by

ξ0 =
1

2
ln

(
a + b

a− b

)
,

a′ = (a2 − b2)
1

2 . (A.0.2)
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Therefore, for a circle we have ξ0 → ∞ and for a line, ξ0 → 0. Moreover, complex

variables in elliptic coordinates are denoted by

z = a
′

cosh(ξ + iη)



Appendix B

Fourier expansion in elliptic

coordinates

To introduce the Fourier expansion of an arbitrary function, first we look at a general

case of expanding a function in terms of a set of orthonormal eigenfunctions of a

Hermitian operator.

If L is a Hermitian operator with a set of eigenfunctions {fi(x)}, then

Lfi(x) = λiW (x) fi(x) , (B.0.1)

where W (x) is a real weight function which is positive in a ≤ x ≤ b and the same

for all eigenvalues λi. To show that the eigenfunctions of the Hermitian operator L
are orthogonal, we write

∫ b

a

dx f ∗
j (x)Lfi(x) = λi

∫ b

a

dxW (x)f ∗
j (x)fi(x) , (B.0.2)

and ∫ b

a

dx f ∗
i (x)Lfj(x) = λj

∫ b

a

dxW (x)f ∗
i (x)fj(x) . (B.0.3)

We write the complex conjugate of equation(B.0.3),

∫ b

a

dx f ∗
j (x)Lfi(x) = λj

∫ b

a

dxW (x)f ∗
j (x)fi(x) . (B.0.4)
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Substracting Eqs (B.0.2) and (B.0.4), we find

(λi − λj)

∫ b

a

dxW (x)f ∗
j (x)fi(x) = 0 . (B.0.5)

Eq. (B.0.5) gives the orthogonality relation between the eigenfunctions of the Her-

mitian operator L
∫ b

a

dxW (x)f ∗
j (x)fi(x) = 0 (i 6= j) (B.0.6)

Introducing normalized eigenfunctions f̂i, the orthogonality relation is

∫ b

a

dxW (x)f̂ ∗
j (x)f̂i(x) = δij . (B.0.7)

Eq. (B.0.7) indicates that the eigenfunctions {fi(x)} form an orthogonal basis of a

space in which an arbitrary function g(x) that is well-defined in a ≤ x ≤ b can be

expanded in terms of {fi(x)}

g(x) =
∑

i

ci f̂i(x) , (B.0.8)

where the coefficients ci are determined by

ci =

∫ b

a

dyW (y)g(y)f̂i

∗
(y) . (B.0.9)

Inserting Eq. (B.0.9) into Eq. (B.0.8), we have

g(x) =
∑

i

f̂i(x)

∫ b

a

dyW (y)f̂ ∗
i (y) g(y) , (B.0.10)

which gives rise to the closure property of eigenfunctions {fi(x)}

W (y)
∑

i

f̂i(x)f̂ ∗
i (y) = δ(x− y) . (B.0.11)

For the specific choice of the Hermitian operator L = ∂2

∂η2 in which η is the elliptic

angle (see appendix A), the eigenfunctions are

f̂m(η) =
1

2π
e−imη . (B.0.12)
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In this example the weight function is the scale factor in elliptic coordinates W (η) =

hη. The expansion of the function ψ(η) in terms of {f̂m} is

ψ(η) =
1

2π

∑

m

ψ̂me
−imη . (B.0.13)

Eq. (B.0.13) is the Fourier expansion of ψ(η). The coefficient ψ̂m which is the Fourier

transform of the function ψ(η) is denoted by

ψ̂m =
1

2π

∫ 2π

0

dη hηe
imηψ(η) . (B.0.14)



Appendix C

The Boundary and Correction

Hamiltonians

C.1 Boundary Hamiltonian

The boundary Hamiltonain for the case of a pinned contact line (Janus ellipsoids)

is governed by the difference in the projected meniscus area, ∆Aproj (Eq. (3.39).

The meniscus in the reference configuration is an ellipse with elliptic radius ξ0 and

principal axes a, b. If the ellipsoid is tilted in the xz-plane by a small angle αi, this

area is given by

∆Axz
proj = A(1 − cosαi) ≈ A

α2
i

2
(C.1.1)

where A = πab is the ellipse area. The product of the principal axes in elliptic

coordinates is given by

ab =
a

′2

2
sinh(2ξ0) ,

thus the projected area in elliptic coordinate is denoted by

∆Axz
proj ≈

π

16
α2

i a
′2

sinh(2ξ0) . (C.1.2)

The contact line position u|∂Si,ref
is determined by using a coordinate system rotation

from the xz-plane to the x
′
z
′
-plane, where the x

′
– and the z

′
–axis coincide with the
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major and minor axis of the tilted ellipsoid The contact line is located at z
′

= 0 in

the new coordinate system



 x
′

z
′



 =



 cosαi − sinαi

sinαi cosαi







 x

z



 ,

therefore

z
′

= x sinαi + z cosαi

≈ z − αix . (C.1.3)

Eq. (C.1.3) gives the contact line profile u

u|∂Si,ref
= z|z′=0 ≈ αix . (C.1.4)

After transforming Eq. (C.1.4) to elliptic coordinates (see appendix (A)) we have

u|∂Si,ref
≈ αi(a

′

/2) cosh(ξ0) cos(ηi) . (C.1.5)

Thus, in the multipole expansion of the tilted contact line (Eq. (3.40)), only a dipole

term appears with the dipole moment given by:

Pi1 = αi
a

′

2
cosh(ξ0) . (C.1.6)

Inserting Eq. (C.1.6) into Eq. (C.1.2) we obtain

∆Axz
proj =

π

2
P 2

i1 tanh(ξ0) . (C.1.7)

Applying the same arguments for tilts in the yz-plane, we can express the boundary

Hamiltonian in the small–tilt approximation by

Hi,b = γ∆Aproj

=
γπ

2
(P 2

i1 tanh(ξ0) +Q2
i1 coth(ξ0)) . (C.1.8)
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C.2 Correction Hamiltonian

The correction Hamiltonian, which is introduced in Eq. (3.64), is determined by

minus the surface energy of the meniscus piece u|Si,ref
≡ f (Eq. (3.63)) extended

into the ellipses enclosed by the reference contact lines:

−Hi,corr =
γ

2

∫

Si,ref

d2x

[
(∇u)2 +

u2

λ2
c

]

λc→∞
=

γ

2

∫
d2x(∇f)2 . (C.2.9)

Thus,

−Hi,corr =
γ

2

∫ ξ0

0

∫ 2π

0

dξidηi

(
(∂ξi

f)2 + (∂ηi
f)2
)
. (C.2.10)

First we perform the integration over the elliptic angle ηi.

The partial derivatives of f with respect to the elliptic coordinates componenets

gives

∂ξi
f =

∑

m

m

[
Pim

sinh(mξ)

cosh(mξ0)
cos(mηi) +Qim

cosh(mξ)

sinh(mξ0)
sin(mηi)

]
, (C.2.11)

and

∂ηi
f =

∑

m

m

[
−Pim

cosh(mξ)

cosh(mξ0)
sin(mηi) +Qim

sinh(mξ)

sinh(mξ0)
cos(mηi)

]
, (C.2.12)

the η-integration for the first term in Eq. (C.2.10) is evaluated by using the Eq. (C.2.11)
∫ 2π

0

dηi(∂ξi
f)2 =

∫ 2π

0

dηi

∑

m,m
′

mm
′

( AmAm′ cos(mηi) cos(m
′

ηi)

+ BmBm′ sin(mηi) sin(m
′

ηi)

+ AmBm′ cos(mηi) sin(m
′

ηi)

+ Am′Bm cos(m
′

ηi) sin(mηi) ) ,

(C.2.13)

where Am = Pim
sinh(mξi)
cosh(mξ0)

and Bm = Qim
cosh(mξi)
sinh(mξ0)

.

Integrals in Eq. (C.2.13) can be easily calculated with the result
∫ 2π

0

dηi (∂ξi
f)2 = π

∑

m

m2

(
P 2

im

sinh(mξi)
2

cosh(mξi)2
+Q2

im

cosh(mξi)
2

sinh(mξi)2

)
. (C.2.14)
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Similarly for the second term in Eq. (C.2.10) we have

∫ 2π

0

dηi (∂ηi
f)2 = π

∑

m

m2

(
P 2

im

cosh(mξi)
2

cosh(mξi)2
+Q2

im

sinh(mξi)
2

sinh(mξi)2

)
. (C.2.15)

Adding Eqs. (C.2.14) and (C.2.15) we obtain

F (ξi) =

∫ 2π

0

dηi(∇f)2 = π
∑

m

m2 cosh(2mξi)

(
P 2

im

cosh(mξ0)2
+

Q2
im

sinh(mξ0)2

)
.

(C.2.16)

Then the correction Hamiltonian can be obtained after performing the last integra-

tion over ξi

−Hi,corr =
γ

2

∫ ξ0

0

dξi F (ξi)

=
γπ

2

∑

m

m
(
P 2

im tanh(mξ0) +Q2
im coth(mξ0)

)
. (C.2.17)



Appendix D

Expansion of Green’s function in

elliptic coordinates

In this appendix we derive the multipole expansion of the Green’s function G(|x|) ≈
−(1/2π) ln(γe|x|/2λc) between two charged elliptic regions (charges are generated

by auxilliary fields ψi). This Green’s function gives the correlation between two

points residing either on the same ellipse or different ellipses.

D.1 Self energy part

In the case that x1 and x2 are located on the same ellipse of the same size, the

Green’s function expansion is calculated simillar to Ref. [106]. Since the Green’s

function is for a two dimensional system, the expansion can be found by using the

Green’s function definition in the complex space, therefore we should find the real

part of the complex Green’s function expansion

G(|r1 − r2|) = − 1

2π
ln

(
γe|r1 − r2|

2λc

)

= − 1

2π
Re[ln

(
γe(z1 − z2)

2λc

)
] , (D.1.1)
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where zi = (a
′
/2) cosh(wi) and wi = ξ0 + iηi.

As it is seen in Eq. (D.1.1) for finding the Green’s function expansion, we have to

calculte the expansion of ln(z1 − z2)

ln(z1 − z2) = ln

(
a

′

4

)
+ ln(ew1 + e−w1 − ew2 − e−w2) , (D.1.2)

the argument of the logarithm in Eq. (D.1.2) may be rewritten as

e
w1
2
−

w2
2 [e

w1
2

+
w2
2 − e−

w1
2
−

w2
2 ] + e−(

w1
2
−

w2
2

)[e−
w1
2
−

w2
2 − e

w1
2

+
w2
2 ]

= [e
w1
2

+
w2
2 − e−(

w1
2

+
w2
2

)][e
w1
2
−

w2
2 − e−(

w1
2
−

w2
2

)]

= 4 sinh(
w1 + w2

2
) sinh(

w1 − w2

2
) ,

then Eq. (D.1.2) reads

ln(z1 − z2) = ln(a
′

) + ln(sinh
w1 + w2

2
) + ln(sinh

w1 − w2

2
)

= ln(a
′

) + ln

(
1 − e−(w1+w2)

2e−
w1+w2

2

)
+ ln

(
1 − e−(w1−w2)

2e−
w1−w2

2

)
. (D.1.3)

Therefore

ln(z1 − z2) = ln(
a

′

4
) + w1 + ln(1 − e−(w1+w2)) + ln(1 − e−(w1−w2)) . (D.1.4)

We note that in Eq. (D.1.4) ξ1 > ξ2, since the domain of logarithms must be positive.

Using the Taylor expansion of logarithm

ln(1 − x) = −
∞∑

n=1

xn

n
, (D.1.5)

we obtain

ln(z1 − z2) = ln(
a

′

4
) + w1 −

∞∑

n=1

2

n
e−nw1 cosh(nw2) . (D.1.6)

One can find the real part of Eq. (D.1.6) by noting

e−nw = e−nξ0(cosnη − i sinnη) ,

cosh(n(ξ0 + iη)) = cosh nξ0 cos nη + i sinnξ0 sinnη . (D.1.7)
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In the latter we used cosh(u+ v) = cosh u cosh v + sinh u sinh v. Therefore the real

part of expression under the sum in Eq. (D.1.6) reads

Re[e−nw1 cosh(n(ξ0 + iη2))] = e−nξ0 [cosh(nξ0) cos(nη1) cos(nη2)

+ sinh(nξ0) sin(nη1) sin(nη2)] . (D.1.8)

Inserting Eqs. (D.1.6) and (D.1.8) into Eq. (D.1.1) we have

2πG(|x1 − x2|) = − ln

(
γea

′
eξ0

8λc

)

+2

∞∑

n=1

e−nξ0

n
[cosh(nξ0) cos(nη1) cos(nη2)

+ sinh(nξ0) sin(nη1) sin(nη2)] . (D.1.9)

D.2 Interaction part

The case that the two points are located on different ellipses, i.e. x1 = r1 and x2 =

d + r2, which furthermore possess an arbitrary orientation in the plane (expressed

by the angles θ1 and θ2, see Fig. 3.1) is more difficult. We start with a general Taylor

expansion of the Green’s function:

− 1

2π
ln

(
γe|d + r2 − r1|

2λc

)
= − 1

2π
ln

(
γed

2λc

)
− 1

2π

∑

j1,j2=0

j1+j2≥1

(−r1.∇)j1

j1!

(r2.∇)j2

j2!
ln r

∣∣∣∣∣∣∣
r=d

.

(D.2.10)

On the other hand, we can perform this expansion using complex variables z =

x + iy. In order to calculate the Green’s function by using complex space, the

Taylor expansion in complex space has to be employed. The Taylor expansion in

complex space is associated with the Taylor expansion in two dimensions. The
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Taylor expansion in two dimensions in given by

f(r + a) = f(x + ax, y + ay)

=
∞∑

j=0

1

j!
(ax

∂

∂x
+ ay

∂

∂y
) f(r)

=

∞∑

j=0

(a.∇)j

j!
f(r) . (D.2.11)

For r = Re[z+z
′
] and a = Im[z+z

′
], we find the Taylor expansion in complex space

f(z + z
′

) = f(Re[z + z
′

], Im[z + z
′

])

=

∞∑

j=0

1

j!
(Re[z

′

]
∂

∂Re[z]
+ Im[z

′

]
∂

∂Im[z]
)j f(Re[z], Im[z])

=
∞∑

j=0

1

j!
(z

′

∂z)j f(z) , (D.2.12)

where

∂z =
∂

∂(x + iy)

=
∂

∂x

∂x

∂(x + iy)
+

∂

∂y

∂y

∂(x + iy)

=
∂

∂Rez
− i

∂

∂Imz
.

Using Eq. (D.2.12) for a logarithmic function gives

ln(z − z
′

) =
∞∑

j=0

1

j!
(−z′

∂z)j ln z . (D.2.13)

The real part of Eq. (D.2.13) is the expansion of the real logarithm, of course

ln |r− r
′| = Re

∞∑

j=0

−1

j

(z
′
z∗)j

|z|2j
. (D.2.14)

By comparing Eq. (D.2.14) and the Taylor expansion of ln |r − r
′| in real space as

in Eq. (D.2.10), we find

(−r
′
.∇)j

j!
ln r = −1

j
Re[

(z
′
z∗)j

|z|2j
]

= − 1

2j

(z
′
z∗)j + (z

′∗
z)j

|z|2j
. (D.2.15)
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Introducing complex derivative operators ζ− = ∂z , ζ+ = ∂z∗ , we have

ξ− ln r = ∂z ln |z|

=
1

2
∂z ln(zz∗) =

1

2z
, (D.2.16)

similarly

ξ+ ln r =
1

2z∗
. (D.2.17)

Thus

ξ+ξ− ln r = ξ−ξ+ ln r = 0 , (D.2.18)

and

ζj
± ln r = ζj

± ln |z| =
1

2
(−1)j−1(j − 1)!





zj/|z|2j

z∗j/|z|2j
. (D.2.19)

Identifying Eq. (D.2.15) and (D.2.19) we obtain

(r
′
.∇)j

j!
ln r =

1

j!

(
(z

′∗)jζj
+ + z

′jζj
−

)
ln r . (D.2.20)

By inserting Eq. (D.2.20) into Eq. (D.2.10), we find the Green’s function expansion

in terms of complex variables zi

G|x2 − x1| = − 1

2π
ln

(
γed

2λc

)
+

1

2π

∑

j1, j2 = 0

j1 + j2 ≥ 1

(−1)j2

j1 + j2


 j1 + j2

j1


 1

dj1+j2
Re[zj1

1 z
j2
2 ] .

(D.2.21)

This general expansion can be used in any coordinate system. In the special case

of elliptic coordinates, z = (a
′
/2)e−iθ cosh(ξ + iη), where θ is the in-plane rotation

angle of the ellipse major axis with respect to a fixed x–axis. (For the configuration

of arbitrarily oriented ellipses, the x–axis is given by the line joining their centers,

see Fig. 3.1). In order to express Eq. (D.2.21) in elliptic coordinates, one needs zj

zj =

(
a

′
e−iθ

4

)j

(e−(ξ+iη) + e(ξ+iη)) , (D.2.22)
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applying the binomial expansion, (x+x−1)n =

n∑

k=0

(
n

k

)
x2k−n, we rewrite Eq. (D.2.22)

zj =

(
a

′
e−iθ

4

)j j∑

k=0

(
j

k

)
e(2k−j)(ξ+iη) , (D.2.23)

thus

zj1
1 z

j2
2 =

(
a

′

4

)j1+j2

e−i(j1θ1+j2θ2)

j1∑

k1=0

j2∑

k2=0

(
j1
k1

)(
j2
k2

)
e(2k1−j1)ξ1+(2k2−j2)ξ2

×ei((2k1−j1)η1+(2k2−j2)η2) . (D.2.24)

Using the above expansion, Eq. (D.2.21) becomes:

G(|x1 − x2|) = − 1

2π
ln

(
γed

2λc

)

+
1

2π

∑

j1,j2=0

j1+j2≥1

j1∑

k1=0

j2∑

k2=0

(−1)j2

j1 + j2

(
j1 + j2
j1

)(
j1
k1

)(
j2
k2

)(
a

′

4d

)j1+j2

× exp(ξ1(2k1 − j1) + ξ2(2k2 − j2))

× cos(j1θ1 + j2θ2 + η1(j1 − 2k1) + η2(j2 − 2k2)) , (D.2.25)

where the trigonometric function in Eq. (D.2.25) is expanded as

cos(j1θ1 + j2θ2 + η1(j1 − 2k1) + η2(j2 − 2k2)) =

cos(j1θ1 + j2θ2) cos(η1(j1 − 2k1) + η2(j2 − 2k2))

− sin(j1θ1 + j2θ2) sin(η1(j1 − 2k1) + η2(j2 − 2k2)) =

cos(j1θ1 + j2θ2) [cos(η1(j1 − 2k1)) cos(η2(j2 − 2k2))

− sin(η1(j1 − 2k1)) sin(η2(j2 − 2k2))]

− sin(j1θ1 + j2θ2) [sin(η1(j1 − 2k1)) cos(η2(j2 − 2k2))

+ cos(η1(j1 − 2k1)) sin(η2(j2 − 2k2))] . (D.2.26)

The aim is to rewrite the fourfold sum in Eq. (D.2.25) over j1, j2, k1, k2 as an

expansion into multipole coefficients cos(mη1) cos(nη2) and sin(mη1) sin(nη2) with

m,n ≥ 0. To that end, we define m = |j1 − 2k1| and n = |j2 − 2k2|. The possibility
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that ji − 2ki may be positive as well as negative makes it necessary to consider the

following cases: (i) “m = 0, n = 0”, (ii)“m = 0, n 6= 0” or “m 6= 0, n = 0” and (iii)

“m 6= 0, n 6= 0”.

Case (i) m=0, n=0

Two auxiliary variables l1, l2 are introduced through ji = 2li, ki = li (i = 1, 2). The

such constrained sum in Eq. (D.2.25) reduces to

∑

l1,l2=0

l1+l2≥0

1

2(l1 + l2)

(
2(l1 + l2)

2l1

)(
2l1
l1

)(
2l2
l2

)(
a

′

4d

)2(l1+l2)

cos(2l1θ1 + 2l2θ2) .

Relabelling l = l1 + l2 and l′ = l1, the above sum is rewritten as

∑

l=1

l∑

l′=0

1

2l

(
2l

2l′

)(
2l′

l′

)(
2(l − l′)

l − l′

)(
a

′

4d

)2l

cos(2l′θ1 + 2(l − l′)θ2) . (D.2.27)

Case (ii) m=0, n > 0

Here, l1 is introduced as above through j1 = 2l1 and k1 = l1. We distinguish the

two cases j2 − 2k2 > 0 and j2 − 2k2 < 0 via the choice of l2 through j2 = n+ 2l2 and

k2 = l2 vs. k2 = n + l2.

For the case j2 = n + 2l2 and k2 = l2, the sum (D.2.25) reads

∑

l1,l2=0

(−1)n

n+ 2(l1 + l2)

(
n+ 2(l1 + l2)

2l1

)(
2l1
l1

)(
n+ 2l2
l2

)(
a

′

4d

)n+2(l1+l2)

×e−nξ2 [cos Θ cos(nη2) − sin Θ sin(nη2)] , (D.2.28)

here Θ = 2l1θ1 + (n + 2l2)θ2. For j2 = n + 2l2 and k2 = n + l2, the sum (D.2.25)

may be rewritten as

∑

l1,l2=0

(−1)n

n+ 2(l1 + l2)

(
n+ 2(l1 + l2)

2l1

)(
2l1
l1

)(
n+ 2l2
l2

)(
a

′

4d

)n+2(l1+l2)

×enξ2 [cos Θ cos(nη2) + sin Θ sin(nη2)] . (D.2.29)
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Adding up these two cases in the constrained sum (D.2.25) we have

∑

l1,l2=0

(−1)n

n+ 2(l1 + l2)

(
n + 2(l1 + l2)

2l1

)(
2l1
l1

)(
n+ 2l2
l2

)(
a

′

4d

)n+2(l1+l2)

×2 [cos Θ cosh(nξ2) cos(nη2) + sin Θ sinh(nξ2) sin(nη2)] ,

(D.2.30)

performing a relabelling analogous to the one leading to expression(D.2.27) (l =

l1 + l2, l′ = l1) we obtain

2
∑

l=0

l∑

l′=0

(−1)n Γ(n+ 2l)

l′2(l − l′)! (n+ l − l′)!

(
a

′

4d

)n+2l

× [cos(2l′θ1 + (n+ 2(l − l′))θ2) cosh(nξ2) cos(nη2)

+ sin(2l′θ1 + (n + 2(l − l′))θ2) sinh(nξ2) sin(nη2)] .

(D.2.31)

Similarly we obtain for “m > 0, n = 0 ”:

2
∑

l=0

l∑

l′=0

Γ(m+ 2l)

l′!(l − l′)!2 (m+ l′)!

(
a

′

4d

)m+2l

× [cos((m+ 2l′)θ1 + 2(l − l′)θ2) cosh(mξ1) cos(mη1)

+ sin((m + 2l′)θ1 + 2(l − l′)θ2) sinh(mξ1) sin(mη1)] .

(D.2.32)

Case (iii) m>0, n>0

Similarly to the previous cases, j1 and j2 are introduced through j1 = m + 2l1 and

j2 = n + 2l2. The four cases of possible sign combinations of ji − 2ki (i = 1, 2) are

taken into account by the relation sets “k1 = l1 , k2 = l2”, “ k1 = l1 , k2 = n + l2”,

“k1 = m + l1 , k2 = l2”,“k1 = m+ l1, k2 = n + l2”.

For k1 = l1 , k2 = l2, the sum (D.2.25) can be rewriten as

Sl1l2
mn (d) e−(mξ1+nξ2){cos Θ [cos(mη1) cos(nη2) − sin(mη1) sin(nη2)]

− sin Θ [sin(mη1) cos(nη2) + cos(mη1) sin(nη2)]} , (D.2.33)
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where Θ = (m+ 2l1)θ1 + (n+ 2l2)θ2 and

Sl1l2
mn (d) =

(−1)n

m+ n+ 2(l1 + l2)

(
m + n+ 2(l1 + l2)

m+ 2l1

)(
m+ 2l1

l1

)(
n + 2l2
l2

)(
a

′

4d

)m+n+2(l1+l2)

.

for k1 = l1 , k2 = n+ l2 we obtain

Sl1l2
mn (d) e−mξ1+nξ2{cos Θ [cos(mη1) cos(nη2) + sin(mη1) sin(nη2)]

− sin Θ [sin(mη1) cos(nη2) − cos(mη1) sin(nη2)]} , (D.2.34)

and for k1 = m + l1 , k2 = l2 we have

Sl1l2
mn (d) emξ1−nξ2{cos Θ [cos(mη1) cos(nη2) + sin(mη1) sin(nη2)]

− sin Θ [− sin(mη1) cos(nη2) + cos(mη1) sin(nη2)]} , (D.2.35)

lastly, for the case k1 = m+ l1, k2 = n + l2 the sum (D.2.25) takes the form

Sl1l2
mn (d) emξ1+nξ2{cos Θ [cos(mη1) cos(nη2) − sin(mη1) sin(nη2)]

+ sin Θ [sin(mη1) cos(nη2) + cos(mη1) sin(nη2)]} . (D.2.36)

Adding up these four cases in the constrained sum (D.2.25)

2Sl1l2
mn (d)

× cos Θ{cos(mη1) cos(nη2) [cosh(mξ1 + nξ2) + cosh(mξ1 − nξ2)]

− sin(mη1) sin(nη2) [cosh(mξ1 + nξ2) − cosh(mξ1 − nξ2]}

+ sin Θ{sin(mη1) cos(nη2) [sinh(mξ1 + nξ2) + sinh(mξ1 − nξ2)]

+ cos(mη1) sin(nη2) [sinh(mξ1 + nξ2) − sinh(mξ1 − nξ2)]} ,

(D.2.37)

taking advantage of the addition and subtraction relations between hyperbolic func-
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tions in Eq. (D.2.37)

sinh x1 + sinh x2 = 2 sinh(
x1 + x2

2
) cosh(

x1 − x2

2
) ,

sinh x1 − sinh x2 = 2 cosh(
x1 + x2

2
) sinh(

x1 − x2

2
) ,

cosh x1 + cosh x2 = 2 cosh(
x1 + x2

2
) cosh(

x1 − x2

2
) ,

cosh x1 − cosh x2 = 2 sinh(
x1 + x2

2
) sinh(

x1 − x2

2
) ,

(D.2.38)

and then relabelling as before (l = l1 + l2, l′ = l1) we find:

4
∑

l=0

l∑

l′=0

(−1)n Γ(m+ n+ 2l)

(m + l′)!l′! (n+ l − l′)! (l − l′)!

(
a

′

4d

)m+n+2l

{cos Θ [cosh(mξ1) cos(mη1) cosh(nξ2) cos(nη2)

− sinh(mξ1) sin(mη1) sinh(nξ2) sin(nη2)]

sin Θ [sinh(mξ1) sin(mη1) cosh(nξ2) cos(nη2)

+ cosh(mξ1) cos(mη1) sinh(nξ2) sin(nη2)]} , (D.2.39)

where Θ = (m + 2l′)θ1 + (n+ 2(l − l′))θ2.

Eqs.(D.2.27), (D.2.31), (D.2.32) and (D.2.39) may be combined into a single expres-

sion such that the 2D Green’s function in elliptic coordinates reads:

G(|x1 − x2|) = − 1

2π
ln

(
γed

2λc

)
+

1

2π

∑

m,n,l=0

(
a

′

4d

)m+n+2l

× {Ac
mnl [cos(mη1) cosh(mξ1) cos(nη2) cosh(nξ2)

− sin(mη1) sinh(mξ1) sin(nη2) sinh(nξ2)]

+ As
mnl [sin(mη1) sinh(mξ1) cos(nη2) cosh(nξ2)

+ cos(mη1) cosh(mξ1) sin(nη2) sinh(nξ2)]} . (D.2.40)

In Eq. (D.2.40), the coefficients A
(c

s)
mnl are given by

A
(c

s)
mnl = A

(c

s)
mnl(θ1, θ2) = 2Hn+Hm

l∑

l′=0

Cmn
ll′

(
cos(Θ)

sin(Θ)

)
, (D.2.41)
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where Hj is the discrete step function; Hj = 1 − δj0, and

Cmn
ll′ = (−1)n Γ(m+ n + 2l)

(m + l′)!l′! (n+ l − l′)! (l − l′)!
, (D.2.42)

with C00
00 = 0.



Appendix E

Self–energy in the case of

fluctuating colloids

For fluctuating colloids, the self–energy part of the multipole–multipole interac-

tion of the auxiliary fields Ψi was introduced in Eq. (3.71). Here we calculate

it explicitly with a method similarly to the one employed in Ref. [54]. As the

starting point, we obtain from Eqs. (3.70) and (3.71) the following expession for

Zi,self = exp
(
−kBT

2γ
Hi,self

)
:

Zi,self =

∫ 2∏

i=1

Dψi δ

(
Ψc

im −
∫

Si

d2x (cos(mξ)/ cosh(mξ0)) cos(mη)ψ(x)

)

× δ

(
Ψs

im −
∫

Si

d2x (sinh(mξ)/ sinh(mξ0)) sin(mη)ψ(x)

)

× exp

(
i
∑

m

(Ψc
imPim + Ψs

imQim)

)

× exp

(
−kBT

2γ

∫

Si

d2x

∫

Si

d2x′ ψi(x)G(|x− x′|)ψi(x)

− i

∫

Si,ref

d2xψi(x) fi,ext(x)

)
.

(E.0.1)

The δ–functions in Zi,self may be eliminated by introducing conjugate multipole

137
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moments Ψ̃c
im and Ψ̃s

im to the multipoles Ψ
(c

s)
im of the auxiliary fields:

δ

(
Ψ

(c

s)
im −

∫

Si,ref

d2x

(
cosh(mξi) cos(mηi)/ cosh(mξ0)

sinh(mξi) sin(mηi)/ sinh(mξ0)

)
ψi(xi)

)
=

∫
dΨ̃

(c

s)
im exp

(
iΨ̃

(c

s)
im

[
Ψ

(c

s)
im −

∫

Si,ref

d2x

(
cosh(mξi) cos(mηi)/ cosh(mξ0)

sinh(mξi) sin(mηi)/ sinh(mξ0)

)
ψi(xi)

])
.

(E.0.2)

Inserting Eq. (E.0.2) into Zi,self we obtain:

Zi,self =

∫ ∏

m

dΨ̃im

∫
Dψi exp

(
−kBT

2γ

∫

Si,ref

d2x

∫

Si,ref

d2x
′

ψi(xi)G(|x− x
′ |)ψi(xi)

−i

∫

Si,ref

d2x ψi(xi)

[
∑

m

cosh(mξi)

cosh(mξ0)
(Pim + ψ̃c

im) cos(mηi)

+
sinh(mξi)

sinh(mξ0)
(Qim + ψ̃s

im) sin(mηi)

]

+i
∑

m=0

[
(Pim + Ψ̃c

im)Ψc
im + (Qim + Ψ̃s

im)Ψs
im

])
, (E.0.3)

where dΨ̃im = dΨ̃s
imdΨ̃c

im. The functional integral
∫
Dψi in Eq. (E.0.3) can be

replaced by a functional integral over a constrained height field h(x):

Zi,self =

∫ ∏

m

dΨ̃im exp

(
i

∞∑

m=0

[
(Pim + Ψ̃c

im)Ψc
im + (Qim + Ψ̃s

im)Ψs
im

])

×
∫

Dh
∏

xi∈Si,ref

δ(h(xi) − f̃i) exp

(
− γ

2kBT

∫
d2x

[
(∇h)2 +

h2

λ2
c

])
,

(E.0.4)

where f̃i =
∑

m

[
cosh(mξi)
cosh(mξ0)

(Pim + Ψ̃c
im) cos(mηi) +

sinh(mξi)
sinh(mξ0)

(Qim + Ψ̃s
im) sin(mηi)

]
.

In the region Si,ref , i.e. the ellipse enclosed by the reference contact line, the height

field h is pinned to f̃i. Therefore the contribution of the functional integral
∫
Dh

in this region is simply given by the surface energy of f̃i which was determined in
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Eq. (C.2.17) and Zi,self becomes:

Zi,self
λc→∞≈

∫ ∏

m

dΨ̃im exp

(
− γπ

2kBT

∑

m

m
[
(Pim + Ψ̃c

im)2 tanh(mξ0)

+ (Qim + Ψ̃s
im)2 coth(mξ0)

]

+ i
∑

m

[
(Pim + Ψ̃c

im)Ψc
im + (Qim + Ψ̃s

im)Ψs
im

])

×
∫

Dh
∏

xi∈∂Si,ref

δ(h(xi) − f̃i) exp

(
− γ

2kBT

∫R2\Si,ref

d2x

[
(∇h)2 +

h2

λ2
c

])
,

(E.0.5)

where the remaining δ-functions describe the pinning of h(x) to the boundaries

∂Si,ref of the integration domain. The auxiliary field can be separated into two parts,

h = h0+h1, where (−∇2+λ−2
c )h0 = 0 with the boundary conditions h0(xi)|∂Si,ref

≡ f̃i

and h1(xi)|∂Si,ref
= 0. Applying Gauss’ theorem to the integral in the exponent of

Eq. (E.0.5) leads to

Zi,self =

∫ ∏

m

dΨ̃im exp

(
− γπ

2kBT

∑

m

m
[
(Pim + Ψ̃c

im)2 tanh(mξ0)+

(Qim + Ψ̃s
im)2 coth(mξ0)

]

+i
∑

m

[
(Pim + Ψ̃c

im)Ψc
im + (Qim + Ψ̃s

im)Ψs
im

])

× exp

(
− γ

2kBT

∮
dx h0(x)∇h0(x)

)

×
∫

Dh1

∏

xi∈Si,ref

δ(h1(xi)) exp

(
−kBT

2γ

∫R2\Si,ref

d2x

[
(∇h1)

2 +
h2

1

λ2
c

])
.

(E.0.6)

The functional integral over h1 yield to a constant value independent of any multipole

moment, which can be neglected.

The general solution to the Helmholtz differential equation for h0 in R2 \ Si,ref is

needed for computing the line integral in Eq. (E.0.6). Rewriting the Helmholz
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equation, (−∆ + λ−2
c )h0 = 0, in elliptic coordinates would read

∂2h0

∂ξ2
+
∂2h0

∂η2
− a

′2

8λ2
c

(cosh(2ξ) − cos(2η))h0 = 0 . (E.0.7)

Eq. (E.0.7) can be solved by separation of variables method via introducing h0 =

R(ξ)Φ(η)

1

R

d2R

dξ2
+

1

Φ

d2Φ

dη2
− a

′2

8λ2
c

(cosh(2ξ) − cos(2η)) = 0. (E.0.8)

Definig the separation constant as, Eq. (E.0.8) separates into angular and radial

part

d2R

dξ2
− (as − 2q cosh 2ξ)R = 0 (E.0.9)

d2Φ

dη2
+ (as − 2q cos 2η)Φ = 0 , (E.0.10)

where q = −a′2
/(16λ2

c). Eq. (E.0.9) and Eq. (E.0.10) represent the modified Mathieu

(radial part) and the Mathieu (angular part) differential equations, respectively. The

solution of Eq. (E.0.10), Φm(η), is the superposition of cosine–elliptic (cem) and sine–

elliptic (sem) functions, and the solution of Eq. (E.0.9), Rm(ξ), is the superposition

of odd and even evanescent radial Mathieu functions Kom and Kem that play a

similar role as the modified Bessel functions in polar coordinates [107]

Φm(η) = Amcem(η; q) +Bmsem(η; q) (E.0.11)

Rm(ξ) = A
′

mKem(ξ; q) +B
′

mKom(ξ; q) (E.0.12)

However, since in our physical system we should investigate results in λc → ∞, the

solutions to the Mathieu differential equation reduces to standard sine and cosine

functions. To determine the solutions of the modified Mathieu differential equation

in this limit, one has to find the asymptotic form of the factor 2q cosh 2ξ in Eq. (E.0.9)

2q cosh 2ξ =
a

′2
e2ξ

16
(

1

λ2
c

+
e−4ξ

λ2
c

)

λc→∞≈
(
a

′
e2ξ

4λc

)2

. (E.0.13)
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Introducing effective elliptic radius re = a
′
eξ

4
, we rewrite the modified Mathieu dif-

ferential equation Eq. (E.0.9) in terms of re

d2R

dξ2
=

d

dξ

(
dR

dξ

)
=
dre

dξ

d

dre

(
dre

dξ

dR

dre

)

= r2
e

d2R

dr2
e

+ re
dR

dre
, (E.0.14)

where the second line is achieved by using dre = re dξ. Inserting Eq. (E.0.14) into

Eq. (E.0.9) we obtain

r2
e

d2R

dr2
e

+ re
dR

dre
+ (λ−2

c r2
e − as)R = 0 (E.0.15)

Eq. (E.0.15) is the modified Bessel differential equation, thus for as = m2 the solu-

tions to the radial part would reduce to the modified Bessel functions of the second

kind Km. The final solution is given by

h0(xi) =
∑

m

Km(a
′
eξi/4λc)

Km(a′eξ0/4λc)
(Am cos(mηi) +Bm sin(mηi)) . (E.0.16)

The coefficients in Eq. (E.0.16) are readily determined by comparing to the boundary

conditions: Am = Pim + Ψ̃c
im, Bm = Qim + Ψ̃s

im and B0 = 0. Using the asymptotic

form of Km in the limit λ→ ∞, Eq. (E.0.16) can be rewriten as

h0(xi) =
ln(γea

′
eξi/8λc)

ln(γea
′eξ0/8λc)

A0 +
∑

m>0

e−m(ξi−ξ0)(Am cos(mηi) +Bm sin(mηi)) (E.0.17)

Reminding the line integral in Eq. (E.0.6)

∮
dx.h0(x)∇h0(x) = −

∫ 2π

0

dη uξ.(uξ ∂ξh0.uη ∂ηh0)

= −
∫ 2π

0

dη h0∂ξh0 (E.0.18)

The above integral can be performed by using Eq. (E.0.17)

∮
dx.h0(x)∇h0(x) =

∫ 2π

0

dη

[
−1

ln(γea
′eξ0/8λc)

A2
0 +

∑

m>0

m(A2
m cos(mη)2 +B2

m sin(mη)2)

]

(E.0.19)
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Then the line integral evaluates to 2πg(m)(A2
m + B2

m) with g(m) = m/2 (m > 0)

and g(0) = −1/ ln(γea
′
eξ0/8λc). Using this, Zi,self reads:

Zi,self =

∫ ∏

m

dΨ̃im exp

(
− γπ

2kBT

∑

m

m
[
(Pim + Ψ̃c

im)2 tanh(mξ0)

+ (Qim + Ψ̃s
im)2 coth(mξ0)

]

+ i
∑

m

[
(Pim + Ψ̃c

im)Ψc
im + (Qim + Ψ̃s

im)Ψs
im

])

× exp

(
− γπ

kBT

∑

m=0

g(m)
[
(Pim + Ψ̃c

im)2 + (Qim + Ψ̃s
im)2

])
.

(E.0.20)

The last integration over the conjugate multipole moments can be performed after

shifting variables, Ψ̃c
im → Pim + Ψ̃c

im and Ψ̃s
im → Qim + Ψ̃c

im. After this integration,

the final result for Hi,self = (−2γ)/(kBT ) lnZi,self is given by:

Hi,self = − ln(γea
′
eξ0/8λc)

2π
Ψc

i0
2

+
1

π

∑

m>0

1

m

(
Ψc

im
2

1 + tanh(mξ0)
+

Ψs
im

2

1 + coth(mξ0)

)
. (E.0.21)
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