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Abstract

A system in a metastable state needs to overcome a certain free energy bar-
rier to form a droplet of the stable phase. Standard treatments assume spherical
droplets, but this is not appropriate in the presence of an anisotropy, such as for
crystals. The anisotropy of the system has a strong effect on their surface free en-
ergies at low temperatures, while this effect is less important above the roughen-
ing transition temperature TR. A simple model that features such an anisotropy
is the Ising model. We perform large scale simulations of the Ising model to over-
come finite-size effects and statistical inaccuracies. The scale of the simulations
that are needed to produce meaningful results led us to the development of a
versatile and scalable simulation code which can be used across different par-
allel computation devices such as graphics processing units (GPUs). Platform
independence is achieved through abstract interfaces that hide platform specific
implementation details. We prepare a system geometry that allows for the in-
vestigation of a flat interface with a tunable angle to the crystal plane, which
touches an external wall. The contact angle Θ can be adjusted via a surface field
H. A differential equation describing the behavior of the surface free energy in
the presence of anisotropy for our system is discussed. Combined with thermo-
dynamic integration methods, this equation is used to integrate the anisotropic
surface tension over a large range of temperatures from well below TR up to
the vicinity of the bulk critical temperature TC and is compared with prior pre-
dictions. Comparison with previous measurements in different geometries and
with different methods shows good agreement and accuracy, which is achieved
especially through the ability to simulate much larger systems than was possi-
ble in previous studies. The temperature dependence of the surface stiffness κ
above TR is extracted by measuring the curvature of the surface free energy near
Θ = 90◦. This measurement is comparable to the simulation data obtained in the
literature and is in fact in better agreement with theoretical predictions regard-
ing the scaling behavior of κ. We develop a low temperature model to explain the
small angle behavior of the system far below TR, where the angle stays virtually
zero up to a critical field HC, which only has a small system size dependency.
When this critical field is overcome, the angle increases rapidly. HC is linked to
the Step Free Energy, which allows us to to analyze the critical behavior of this
quantity. The effect of the hard wall has to be incorporated into the investigation.
By comparing free energies at different system sizes, we are able to extract the
free energy contribution of the contact line as a function of Θ. The temperature
dependence is investigated by repeating this analysis at different temperatures.
In the last chapter, a parametric simulation of 2D flow phenomena is accelerated
using GPUs which can be used to simulate dynamics e.g. in the atmosphere.
In particular we implement a parallel Evolution Galerkin operator and obtain a
significant speedup in comparison to a serial implementation.



Zusammenfassung

Ein System in einem metastabilen Zustand muss eine bestimmte Barriere in der
freien Energie überwinden um einen Tropfen der stabilen Phase zu formen.
Herkömmliche Untersuchungen nehmen hierbei kugelförmige Tropfen an. In
anisotropen Systemen (wie z.B. Kristallen) ist diese Annahme aber nicht ange-
bracht. Bei tiefen Temperaturen wirkt sich die Anisotropie des Systems stark
auf die freie Energie ihrer Oberfläche aus. Diese Wirkung wird oberhalb der
Aufrauungstemperatur TR schwächer. Das Ising-Modell ist ein einfaches Mo-
dell, welches eine solche Anisotropie aufweist. Wir führen großangelegte Sim-
ulationen durch, um die Effekte, die mit einer endlichen Simulationsbox ein-
hergehen, sowie statistische Ungenauigkeiten möglichst klein zu halten. Das
Ausmaß der Simulationen die benötigt werden um sinnvolle Ergebnisse zu pro-
duzieren, erfordert die Entwicklung eines skalierbaren Simulationsprogramms
für das Ising-Modell, welcher auf verschiedenen parallelen Architekturen (z.B.
Grafikkarten) verwendet werden kann. Plattformunabhängigkeit wird durch ab-
strakte Schnittstellen erreicht, welche plattformspezifische Implementierungs-
details verstecken. Wir benutzen eine Systemgeometrie die es erlaubt eine Ober-
fläche mit einem variablen Winkel zur Kristallebene zu untersuchen. Die Ober-
fläche ist in Kontakt mit einer harten Wand, wobei der Kontaktwinkel Θ durch
ein Oberflächenfeld eingestellt werden kann. Wir leiten eine Differenzialglei-
chung ab, welche das Verhalten der freien Energie der Oberfläche in einem
anisotropen System beschreibt. Kombiniert mit thermodynamischer Integration
kann die Gleichung benutzt werden, um die anisotrope Oberflächenspannung
über einen großen Winkelbereich zu integrieren. Vergleiche mit früheren Mes-
sungen in anderen Geometrien und anderen Methoden zeigen hohe Überein-
stimung und Genauigkeit, welche vor allem durch die im Vergleich zu früheren
Messungen wesentlich größeren Simulationsdomänen erreicht wird. Die Temper-
aturabhängigkeit der Oberflächensteifheit κ wird oberhalb von TR durch die
Krümmung der freien Energie der Oberfläche für kleine Winkel gemessen. Diese
Messung lässt sich mit Simulationsergebnissen in der Literatur vergleichen und
hat bessere Übereinstimmung mit theoretischen Voraussagen über das Skalen-
verhalten von κ. Darüber hinaus entwickeln wir ein Tieftemperatur-Modell für
das Verhalten um Θ = 90◦ weit unterhalb von TR. Der Winkel bleibt bis zu einem
kritischen Feld HC quasi null; oberhalb des kritischen Feldes steigt der Winkel
rapide an. HC wird mit der freien Energie einer Stufe in Verbindung gebracht,
was es ermöglicht, das kritische Verhalten dieser Größe zu analysieren. Die harte
Wand muss in die Analyse einbezogen werden. Durch den Vergleich freier En-
ergien bei geschickt gewählten Systemgrößen ist es möglich, den Beitrag der
Kontaktlinie zur freien Energie in Abhängigkeit von Θ zu messen. Diese Anal-
yse wird bei verschiedenen Temperaturen durchgeführt. Im letzten Kapitel wird
eine 2D Fluiddynamik Simulation für Grafikkarten parallelisiert, welche u. a.
benutzt werden kann um die Dynamik der Atmosphäre zu simulieren. Wir im-
plementieren einen parallelen Evolution Galerkin Operator und erreichen eine
signifikante Beschleunigung gegenüber einer seriellen Implementierung.
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Introduction

Despite being a rather old and long standing problem in physics, the nucle-
ation process has always raised interesting questions. Many of them are still to be
answered. Nucleation describes the phenomenon that a metastable state starts to
decay by a thermally activated process. The decay starts when a nanoscopically
small domain of the stable phase is formed by a rare spontaneous fluctuation.
Due to the (unfavorable) cost in surface free energy of the domain a rather high
free energy barrier needs to be overcome. This is why these fluctuations are rare.
Clarifying how this barrier arises and identifying the physical quantities that
must enter a calculation of this barrier is one of the central tasks of nucleation
theory.

Different forms of homogeneous as well as heterogeneous nucleation are top-
ics of interest especially in atmospheric sciences. They play an important role
in aerosol generation in clouds and haze or in air pollution such as smog and
smoke plumes and in cloud formations. Unfortunately, understanding of nucle-
ation processes is still poor in certain areas up to today.

In order to tackle the problem of nucleation free energy barriers systematically,

Figure 0.1: Simulating nucle-
ation phenomena in the Ising
model. Due to enough ther-
mal fluctuations, a spheri-
cal droplet can form on an
evenly spaced lattice.
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it is useful to first start out with a very simple model and later improve on it step
by step. Such a simple model is the lattice gas (or Ising) model, where particles
may occupy the sites of a regular lattice. It is energetically favourable if two
neighboring sites are occupied. Nucleation occurs at low enough temperatures,
if the chemical potential µ of the particles exceeds the value µcoex of vapor-liquid
bulk coexistence. A droplet on the discrete and evenly spaced lattice of the Ising
model is shown in figure 0.1.

Unfortunately, the Ising model did not get as much attention as it deserves
in this area in recent years. A lot of theoretical understanding of the nucleation
process and surface properties in general can be obtained by investigating this
simple model. The Ising model belongs to the same universality class as the
vapor-liquid transition in off-lattice fluids and as many binary systems in nature.
Therefore, it has direct application to a range of natural phenomena.

In this thesis we do not look at the droplets that are formed in the nucleation
process itself. We artificially stabilize a flat interface in a system in the two phase
region to extract the properties of the interface that are important in the nucle-
ation process. Under certain circumstances, such an interface — given the spacial
discretization of the simulation model — undergoes a roughening transition at
a roughening temperature TR.

Rough interfaces are able to overcome the underlying lattice structure due to
thermal fluctuations and can be aligned in any angle with the same free energy
cost. Such an interface at an angle of nearly 45◦ to the lattice plane is shown
in figure 0.2. Close to the critical temperature TC, this rough interface has an
isotropic surface tension γ(Θ, T). At low temperatures the interface has to follow
the lattice planes to minimize free energy, so when approaching the roughening
temperature TR, the surface tension becomes increasingly anisotropic. Visible
cusps are building up in the droplet shape.

Such a surface tension anisotropy is also present e.g. in ice crystals in the at-
mosphere. In the Ising model, the roughening temperature is at roughly half the
bulk critical temperature. There is a large temperature window between them,
which allows for a convenient investigation of the roughening transition inde-
pendently from bulk critical phenomena in the Ising system.

The surface anisotropy of crystals can have a significant effect on the resulting
nucleation rates which play a major role in the earth’s atmosphere. Most of the
participating molecules such as water form crystals in their solid state which are
at temperatures way below their surface roughening temperature TR. Most nu-
cleation processes in nature are not homogeneous but involve nucleation agents.
An example for such an agent is sulfuric acid in the atmosphere. These agents
have a dramatic effect on the dynamics of the nucleation process itself. Also
smoke or micrometer-sized dust particles can act as nucleation agents under

10
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Figure 0.2: A rough interface
between a dense and a di-
lute phase in a cubic simu-
lation domain. The angle be-
tween the interface and a lat-
tice plane can be adjusted us-
ing external fields.

certain conditions. Then nucleation involves the formation of (liquid or solid)
droplets whose surfaces meet the substrate under an angle which is called the
contact angle. As a first step to understand this process, we study a flat interface
in contact with a hard wall at different contact angles.

The simulations that need to be performed require a large amount of computa-
tional resources. We have seen a steady decline in performance growth for serial
microprocessor performance in recent years. To keep up with the growing de-
mand for computational resources, there is a trend towards parallel computing
architectures. We have developed a platform independent parallel implementa-
tion of the Ising model in two and three dimensions. Graphics Processing Units
(GPUs) are cost effective parallel computation devices which can be used for
general purpose computation tasks. This is why we used GPUs to produce simu-
lation results at large system sizes that provide enough statistics for quantitative
analysis of the roughening transition in the Ising model.

In chapter 1, the reader is introduced briefly to the theoretical background that
is needed to tackle the questions answered in this thesis. The Ising model is de-
fined, and its properties are discussed. Important concepts for the description of
anisotropic interfaces and for heterogeneous nucleation processes are explained.

Chapter 2 introduces the methods used and gives a short introduction into the
basics of Monte Carlo simulations. The means to stabilize an interface and create
the configurations needed to study the interfacial properties are elaborated on.
We use a custom kind of system boundary topology which is a generalized form
of Antiperiodic Boundary Conditions (APBC) or more specifically: Antiperiodic

11
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Boundary Conditions on a three dimensional Klein bottle. This topology reflects
the symmetry of the system. We quickly realize that the computational effort to
extract the needed properties is massive and cannot easily be tackled by conven-
tional computer hardware.

This is the reason for chapter 3 where the means for acceleration of the compu-
tationally heavy parts are developed and presented which are needed to create
an efficient GPU implementation of the 2D and the 3D Ising model.

In chapter 4, the implementation is used to simulate our model system and to
extract new physical quantities, such as the contact angle in the model system
as well as a contact angle dependent surface and line tension.

Chapter 5 is of a different nature. Here, a Finite Volume Evolution Galerkin
scheme has been implemented on a GPU, for parametric simulation of 2D flow
phenomena, which can be used to simulate dynamics e.g. in the atmosphere and
in many other contexts.

12



Chapter 1

The Ising Model and
Nucleation Phenomena

1.1 Ising Model
The Ising model is defined as an evenly spaced lattice of spins where each

of the spins is in one of two possible states. In the simplest version, each spin
can only interact with its nearest neighbors in each spacial dimension. The bulk
interaction model can be defined through the Ising-Hamiltonian

HIsing = −J ∑
{i,j}

σiσj − H ∑
i

σi (1.1)

where J is the bulk coupling constant (J > 0 for a ferromagnet, J < 0 for
an anti-ferromagnet) between two neighboring spins in the lattice, σi ∈ {−1, 1}
denotes the state a spin at lattice position i can be in, and {i, j} means that the
sum goes over all neighboring spins i, j. The second term describes a coupling to
an external magnetic field H. We employ a simple cubic lattice, so in one spacial
dimension there are two nearest neighbors, in two spacial dimensions there are
four and in three spacial dimensions there are six nearest neighbors for each
spin in the bulk.

The system has an analytical solution for a one dimensional lattice with ex-
ternal fields and a two dimensional lattice without external fields. However, the
three-dimensional model (which will be used in this investigation) is only solv-
able numerically. For our simulations, we use the three dimensional Ising model.
We will later incorporate external fields acting on the boundaries of the system
and extend this Hamiltonian to account for a finite-size geometry. Specifically,
we shall consider the case that external fields act only on particular surfaces of
the system.

At high enough temperatures, there is no long range order in the system, in-
dependent of the system dimensionality. The 2D and 3D Ising-Model have a
second-order phase transition at a critical temperature TC, from a disordered to

13



1 The Ising Model and Nucleation Phenomena

one of two possible ordered phases. At the critical temperature, the spin cor-
relation length diverges due to the formation of large clusters of two distinct
phases (a majority up and a minority down spin phase). Above TC, there is no
distinction between those two phases. Without additional constraints, the system
eventually demixes into one of the phases with equal probability, because there
is a symmetry with respect to spin up/down exchange. For the 2D Ising-Model
the critical temperature TC can be calculated analytically as

TC,2D = 2/ ln(1 +
√

2) ≈ 2.269

as derived by Onsager [1].
In the 3D Ising-Model, the first numerical value is given by Fisher [2] as early

as 1967, which is an estimate obtained by high-temperature series expansions.
The value obtained by the Monte Carlo study of Heuer [3] is

TC,3D,MC ≈ 4.5115(1).

Linked to the ferromagnetic phase transition at TC are several critical expo-
nents. These exponents are universal to many physical systems and characterize
the singular behavior of physical quantities near the phase transition. This is
called the universality hypothesis which states that these exponents do not de-
pend on the microscopic details of the system. Newer, more accurate results on
the critical temperature and critical exponents are found in [4, 5].

For this thesis, we focus on the three-dimensional case and since we need
two coexisting phases to investigate an interface between them, we simulate wel
below TC, so long range fluctuations do only induce negligibly small finite-size
effects.

In the following, we will sometimes call the two phases of the Ising model
below the critical temperature L for liquid and V for vapor. This is in line with
the well known interpretation of the Ising model as a lattice gas. The Ising Model
can be used to study the interfacial behavior of gases and liquids, since the Ising
model can be interpreted as a lattice gas of sites which can either be occupied or
not. At each lattice site, an up spin (σi = +1) is interpreted as a hole, whereas a
down spin (σi = −1) is interpreted as a gas molecule. The external field H is then
proportional to the chemical potential of the particles. An interesting feature of
this model is the symmetry under exchange of a gas particle and a hole on a
lattice site. This is described in detail in [6].

In statistical mechanics, all discrete models (such as the Ising model) are neces-
sarily anisotropic. This is handy, because in nature, many nucleating substances

14



1.2 Homogeneous Nucleation

are crystals and thus feature an anisotropy due to their lattice structure. As
outlined in [6], the simplest microscopic model of crystal is a Kossel crystal
[7]: Here, a crystal is a structure packed together out of rigid lattice cells. This
proves to be a good model to obtain a qualitative picture, but in reality, it ignores
many important effects of realistic crystals, such as lattice vibrations, an elec-
tronic structure and dislocations in the lattice. A typical two-phase equilibrium
state has a dense phase which can at low enough temperatures be identified with
the crystal phase and a dilute phase which consists of empty sites with a small
concentration of gas particles. In the dilute phase, gas particles exist mainly
as monomers or as very small clusters. In the microscopic picture, the crystal
surface is the contour which separates the two phases. For sufficiently low tem-
peratures, vacancies in the bulk of both the crystal as well as the dilute phase
do not play a significant role. Before we further elaborate on the implications of
anisotropic and the microscopic details of the surface, we introduce some basic
concepts of the nucleation process under the assumption of an isotropic system.

1.2 Homogeneous Nucleation
Nucleation of a droplet of a phase L in a background of a supersaturated

phase V is suppressed by a barrier in free energy ∆F that has to be overcome
for a droplet to form (figure 1.1). If this barrier can be overcome by thermal
fluctuations, spontaneous nucleation events can happen with a probability of

J ∼ e
−∆F
kBT (1.2)

Assuming a spherical droplet of radius R and a clear-cut interface with zero
thickness, this barrier ∆F is constituted of a volume and a surface contribution.
The total excess free energy of the droplet according to Classical Nucleation Theory
is

Fex = γ · 4πR2 − ∆p · 4
3

πR3, (1.3)

where the first term is the surface contribution due to the surface tension γ
and the second term is the volume contribution due to the pressure difference
∆p inside the droplet. The volume free energy of the growing nucleus decreases
the overall free energy, so a nucleation barrier results from a balance between
the surface- and the volume free energy.

The surface tension always has to be positive, because otherwise the system
would try to maximize the phase surface, effectively dissolving the phase L
occupying the volume V in the surrounding phase V.

15



1 The Ising Model and Nucleation Phenomena
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Figure 1.1: A spherical droplet according to classical nucleation theory has a surface
and a volume contribution to the free energy, resulting in a nucleation barrier ∆F which
needs to be overcome for a droplet to form.

Since surfaces are subject to fluctuations in terms of capillary waves as well
as (dependent on the choice of ensemble) fluctuations of the position of the
interface, they have an entropy which makes the free energy contribution due
to the interface (Fs = Us − TSs) dependent on the temperature of the system.
Here we disregard any problems in microscopically locating such an interface in
a spin configuration of the Ising model [8].

1.3 Surface Anisotropy
So far (equation 1.3, figure 1.1) we have assumed a spherical droplet and a

constant surface tension over the whole surface of the droplet. If the surface ten-
sion is not constant, we need to go a step further. Assuming that one bulk phase
L occupies a region V ∈ Rd in a surrounding bulk phase V, the corresponding
surface contribution Fs(V) to the free energy F is equal to the integral

16



1.3 Surface Anisotropy

Fs(V) =

ˆ
∂V

γ(Θ, Φ)dA (1.4)

over the boundary ∂V of V, with the angles Θ and Φ being a parametriza-
tion of the orientation of the surface. Treating this surface integral analytically
requires a profound knowledge of the nature of the coexisting bulk phases.

The nucleated droplet will take on the shape that will minimize the total free
energy of the surface at a given volume. If this phase L is completely surrounded
by phase V and both phases are fluid, they have an isotropic surface tension and
the phase L will form a droplet of spherical shape.

However, if one of the phases is crystalline, the surface tension between the
two phases can become anisotropic. The condition for this to happen is ex-
plained later in this section. This leads to the creation of flat faces and facets
in the droplet shape. The general form of the droplet shape in a system with
surface tension anisotropy can be derived with the Wulff-Construction [9]. This
construction is a polar plot of the surface tension versus the orientation of the
interface. A more recent overview of equilibrium crystal shapes can be found
in [10]. For discrete simulation models as well as crystals, the surface tension γ
is not expected to be isotropic and may vary with its angle to the lattice plane.
In our investigations in chapter 4, we create a situation where there is only one
tunable angle to a lattice plane, which coincides with the contact angle Θ of a
flat interface to the wall surface.

For nucleation of ice crystals in the atmosphere, the problem of dealing with
an anisotropic surface free energy (equation 1.4) clearly arises. However an atom-
istic description of the interaction between water molecules is a formidable prob-
lem and it is doubtful where one could make progress with the theory of ice
nucleation without having dealt with simpler models earlier. This is one of the
motivations to consider anisotropy effects for nucleation in the Ising model.

Because the simple Ising system offers an anisotropic surface tension γ(Θ), it
is a very welcome tool to analyze the nature of the surface tension in anisotropic
systems and its implications in general.

If overhangs in the surface shape can be neglected, the interface can be treated
analytically in the Solid On Solid (SOS) model, which defines the surface as a
height h(x, y) over a two dimensional plane (x, y). For the Ising model, the SOS
description can be derived by assuming the height z to be an integer value hij
on a lattice (i, j). In many cases, the essential properties of the crystal surface
are well described by this simplification, not only qualitatively but also quan-
titatively. With the simplification of using the Hamiltonian of the SOS model,
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1 The Ising Model and Nucleation Phenomena

Figure 1.2: A 16× 16× 16 surface slice of a system of size 120× 120× 120 at different
temperatures T = 2.0 (upper left), T = 2.5 (upper right), T = 3.0 (lower left) and
T = 3.5 (lower right). Up spins are depicted as solid blocks while down spins are
empty space, in analogy with a lattice gas model. The upper half of the cube therefore
depicts a dilute phase (V), while the lower half depicts a dense phase (L). Because of
the exchange symmetry there are as many holes in the lower half of the box (which
cannot be seen in this visualization) as there are solid boxes in the upper part. The
surface exhibits increasing roughness with higher T. Even at low temperatures there are
already overhangs and islands in the surface, raising questions about the accuracy of
the SOS approximation.
18



1.3 Surface Anisotropy

Figure 1.3: The surface of a tilted interface in the rough phase (T = 2.6). Due to enough
thermal fluctuations, the shape of the surface is not governed by the underlying lattice
structure. Below the roughening transition, the surface takes on a completely different
structure (see figure 1.4). The picture is taken from a simulation of a system of size
184× 504× 504.

the surface in the Ising model can be treated analytically as has been done in
[11]. This simplification can break down if the existence of overhangs and is-
lands above the surface have an impact on the results. The existence of these
structures cannot be denied and they have to be expected especially at higher
temperatures (figure 1.2).

Interfaces are called rough when they are able to overcome the lattice struc-
ture they are defined on due to entropy and can be aligned in any angle with
respect to the lattice planes (figure 1.3). At low temperatures they are not able to
overcome the lattice structure and they have to follow the lattice planes due to
energy constraints. The interface which separates the two ordered domains (liq-
uid and gas) can undergo a roughening phase transition at a finite temperature
TR from a rigid to a rough interface. Close to the critical temperature TC, this
rough interface has an isotropic surface tension γ(Θ, T), while when approach-
ing the roughening temperature TR, the surface tension becomes increasingly
anisotropic, until visible cusps are building up in the droplet shape. In the two-
dimensional Ising model, the roughening temperature TR is at

TR,2D = 0,
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1 The Ising Model and Nucleation Phenomena

which means for finite temperatures it is always in the rough phase. Only at
T = 0, cusps in the droplet shape can form.

In this context, we consider an interface with an average position which coin-
cides with a lattice plane (e.g. normal to the z-axis). For the three-dimensional
Ising model, the roughening temperature TR was not well known [12], but esti-
mated to be around TR,3D ≈ 2.5 for a long time. Later work [13, 14] was able to
predict concrete values for TR. In [14] the roughening temperature is located at

TR ≈ 2.45374.

Analysis of exactly solvable models [6] as well as renormalization group cal-
culations [15] indicate that a roughening transition usually is an infinite order
transition [16] with a very weak singularity in the free energy. Figure 1.4 shows a
tilted surface well below TR. The structure of the interface is fundamentally dif-
ferent from a system above TR, featuring several kinks with plateaus inbetween.
A term closely related to the roughening transition is the Step Free Energy, which
can be used as an order parameter of the transition. Consider a flat interface
between two phases. At T = 0 and Θ = 0, the interface is perfectly flat. A flat in-
terface with a single step over a distance Lx represents an interface with a small
tilt of

Θ = arctan
(

1
Lx

)
.

At low temperatures, a single kink looks like shown in figure 1.5. Such an in-
terface can be treated in the SOS model, or with more accuracy in the full Ising
model. Non-zero temperatures induce small thermal excitations at the interface
just as in the bulk of the phases. While the bulk excitations grow to macroscopic
size (which is controlled by the bulk correlation length) at the bulk critical tem-
perature TC, the interface thermal excitations exhibit critical behavior already
at the temperature TR. For T < TR the probability to create a step of length L
orthogonal to a flat interface decreases proportional to

exp
(
−L fs(T)

kBT

)
(1.5)

where fs(T) is the free energy attributed to the step in the interface per unit
length [17]. According to SOS models [16, 18] combined with a hyperscaling
relation [6], the Step Free Energy takes on a nonexponential scaling behavior of
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1.3 Surface Anisotropy

Figure 1.4: The surface of a tilted interface well below the roughening temperature
(T = 1.5) has a fundamentally different structure of plateaus and kinks, where each
kink can be attributed to a Step Free Energy. This example shows the surface of a system
of size 184× 504× 504 at a wall field of H = 0.8, which results in a contact angle of
nearly 45◦.

Figure 1.5: The same system as in figure 1.4, but with a smaller wall field H = 0.645.
With decreasing wall field, the distance between successive kinks becomes larger, until
there is only one kink left. For a single kink to form, the Step Free Energy needs to be
overcome. At even lower fields, the kink-plateau structure disappears completely and
the interface becomes completely flat.
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1 The Ising Model and Nucleation Phenomena

Figure 1.6: Below the roughening temperature TR, a Step Free Energy appears, with a
non-exponential temperature scaling behavior.

T
fs(T)

∼ exp

 π

2c
√

TR−T
TR

 , T < TR (1.6)

which disappears at the roughening temperature TR. After this Step Free Energy
is overcome, the new and growing layer can be interpreted itself as a two phase
lattice gas where one phase represents the growing layer of spins and the other
phase represents the still unoccupied sites of the layer [19].

The transition itself can be characterized by the vanishing of the Step Free
Energy, much like the bulk transition is characterized by the vanishing of the
interfacial tension γ. Equation 1.5 indicates that at the interface, as soon as fs
vanishes, resistance against the formation of large clusters vanishes too, and
a growth at all supersaturations of the unoccupied sites is happening. As it
turns out, a new layer of spins can start to build up before the first layer is
completed and close to the Roughening Transition, the growth usually occurs on
more than one layer at the same time [6]. Fluctuations have an entropy which
leads to a temperature dependence (F = U − TS). In a finite system, long range
fluctuations get suppressed when the correlation length reaches the system size.
The spectrum of fluctuations is cut off at the system size. This leads to a size
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1.3 Surface Anisotropy

Figure 1.7: Droplet shapes in the 3D Ising model: Contours of constant density ρ(x, y) =
ρi. At temperatures well above the roughening temperature (T = 4.3), droplets in the
Ising model have a spherical shape (left). Well below the roughening temperature how-
ever (T = 1.0), they exhibit large anisotropy, thus forming a more and more boxlike
shape (right). The images were taken from Schmitz et. al. [8].

Figure 1.8: Surface tension
anisotropies lead to all kinds
of droplet shapes in nature,
such as this ice crystal. The
crystal shape has a large im-
pact on the dynamics of a nu-
cleation process. The image
was taken from the outstand-
ing collection in [20].

dependence of the free energy in finite systems. This size dependency needs to
be quantified by simulating different system sizes and analyzing the change in
free energy between them. The form of a droplet in the Ising model at various
temperatures has been studied by [8] (figure 1.7). Below TR, the Step Free Energy
leads to an anisotropy of the surface tension. This in turn leads to droplet shapes
which are not spherical but can exhibit cusps and facets as observed in the shape
of ice crystals (figure 1.8). Of course, for such crystal shapes also the anisotropy
of the speed of crystal growth plays a major role. Unlike figure 1.7, figure 1.8
does not depict a crystal shape as it would result from the Wulff construction.
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1 The Ising Model and Nucleation Phenomena

The interface has a certain resistance against small entropic variations of the
surface angle Θ which is a fluctuating degree of freedom that leads to a contri-
bution to the total free energy. This property of the interface is characterized by
the surface stiffness. It is quantified by the stiffness coefficient κ.

If the surface is not flat and aligned to an axis plane, we need to write out
the total interfacial energy as an integral of the surface tension over the whole
surface area accounting for the changing surface tension at each surface point.
In an a simple cubic lattice like in the Ising model, it makes sense to express
the surface tension in dependence on the angles (Θ, Φ) to the lattice planes. For
simplicity (and as given by our special geometry), we assume only a dependence
on one angle Θ.

Eint = Lz ·
ˆ

γ(Θ)dl

We use a simple cubic lattice, which makes the definition of a tilt angle in
relation to one lattice plane obvious. As explained in [21], if we assume the
interface to be defined by a height profile h(x) along the x axis, we can further
write

Eint = Lz ·
ˆ

dx

√
1 +

(
dh
dx

)2

γ(Θ)

with √
1 +

(
dh
dx

)2

≈ 1 +
1
2

(
dh
dx

)2

and (note that Θ−Θ0 = dh/dx)

γ(Θ) ≈ γ(Θ0) + γ′(Θ0)

(
dh
dx

)
+

1
2

γ′′(Θ0)

(
dh
dx

)2

The linear terms in
(

dh
dx

)
yield only boundary terms to the integral, so we

arrive at

Eint/Lz = γ(Θ0)

ˆ
dx +

γ(Θ0) + γ′′(Θ0)

2
·
ˆ

dx
(

dh
dx

)2

(1.7)

This makes the definition of the stiffness coefficient κ as

κ = γ(Θ0) + γ′′(Θ0)

obvious.
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1.3 Surface Anisotropy

The importance of this coefficient becomes clear in the context of the capillary
wave model (see [22], or [23] for an analysis in Nickel). There the dynamics of the
surface is also formulated in the height variable h(x) by defining the capillary
wave Hamiltonian, in this case

Hcw =
1
2

ˆ
dxκ

(
dh
dx

)2

See [24] for a renormalization group flow using block spin observables which
can be directly measured with the Monte Carlo method. The surface stiffness has
an interesting behavior when approaching the roughening temperature from
above (see figure 1.9), where it gradually approaches a value of π

2 at TR, and
jumps to infinity directly below. Approaching TR it features a scaling behavior
[25] of

βκ(T) =
π

2

(
1− c ·

√
T − TR

TC

)
, T > TR (1.8)

where c is a non-universal constant. This behavior will be analyzed quantita-
tively in detail in section 4.6. It has been one of the aims of this thesis to show
that the computational methods developed are suitable to characterize the prop-
erties of interfaces in anisotropic systems accurately, both below and above the
roughening transition temperature.
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1 The Ising Model and Nucleation Phenomena

Figure 1.9: The surface stiffness coefficient of a 3D Ising lattice. When approaching
the roughening temperature TR from above, the surface stiffness rises up to π

2 at TR,
according to a non-exponential scaling law. Below TR, it instantly jumps to infinity. When
approaching the bulk critical temperature TC, it has the same universal scaling behavior
with the exponent µ = (d − 1)ν as the surface tension γ, since the γ′′ contribution
vanishes eventually.
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1.4 Heterogeneous Nucleation

Figure 1.10: Heterogeneous nucleation can exist in different forms. A situation like the
leftmost is the most general situation, with a curved droplet attached to a curved surface.
This occurs in nature such as in nucleation on nucleation agents like SO4 in clouds.
The middle configuration has been investigated by [27] and the rightmost is a mostly
synthetic situation that occurs in our system due to the choice of boundary conditions,
with a flat interface in contact with a hard wall. The contact angle between the surface
and the substrate is related to the surface tensions of the different phase boundaries by
Young’s equation.

1.4 Heterogeneous Nucleation
If heterogeneous nucleation is considered, the surface tension and thus the

free energy that dictates the nucleation rate is influenced by a range of new
phenomena that need to be considered separately. Figure 1.10 shows different
kinds of nucleation phenomena occurring in nature of in artificially constructed
systems. We consider again the droplet of the bulk phase L in a background V.
Assuming an isotropic interfacial tension γLV , Young’s equation [26]

γLV cos Θ = γLW − γVW (1.9)

gives the contact angle as a function of the respective surface tensions between
the phases and the planar wall γLW and γVW (see figure 1.11).

In contact with the wall, the droplet shape changes. To derive the final form of
the droplet on a wall, the influence of the wall and the anisotropy of the surface
tension have to be taken into account at the same time. A modified version of the
Wulff construction to derive the equlilibrium shape of small droplets in contact
with a foreign substrate is developed in [28]. For an illustration of the derivation
see figure 1.12. For a treatment with gravity taken into account see [29].

1.4.1 Wetting
Young’s equation (equation 1.9) defines the contact angle Θ of a droplet with

respect to the wall to which it is attached.

27



1 The Ising Model and Nucleation Phenomena

Figure 1.11: A two-phase in-
terface with an angle Θ in
contact with a wall. The
angle Θ is determined via
Young’s equation via the sur-
face tensions γLV , γLW and
γVW .

crystal particle liquid droplet

0 0

Figure 1.12: The Wulff construction is a powerful tool to construct the droplet shape even
for a nucleus with surface anisotropy (left side). The Wulff construction is a polar plot
of the surface tension γVL(ϕ) in dependence of the orientation angle ϕ with respect to
a lattice plane. A horizontal line is drawn that is shifted by the difference in surface
tensions between the wall and the liquid and the wall and the vapor above the line of
symmetry. The part of the droplet that is above the horizontal line is the droplet shape
in contact with the wall. This procedure also works with an isotropic surface tension
like the liquid droplet on the right, restoring the prediction of Young’s equation 1.9.

It may occur that the nucleus spreads out to cover the wall by a thin film of
phase L: This phenomenon is called wetting. In nature, it is brought forward
from the difference in interactions between both phases and the wall and can
have a tremendous effect on nucleation rates.

Because the cosine function has an upper bound of 1 (at Θ = 0) and a lower
bound of -1 (at Θ = 180◦), Young’s equation gives a criterion to distinguish
between 3 different regimes (see figure 1.13). We illustrate the different regimes
along the lines of the explanation in [28].

The first one is called complete wetting and occurs for γLV ≤ γLW − γVW . In this
case, eq. 1.9 can not be fulfilled, so the system tries to maximize the contact area
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1.4 Heterogeneous Nucleation

Figure 1.13: The case of a wall attached flat interface. From left to right, a complete wetting
situation, two different partial wetting configurations and a configuration in the complete
drying regime.

to the wall, leading to a complete film of L along the wall. This corresponds to a
contact angle of Θ = 0. In the Wulff construction (figure 1.12), this corresponds to
the case that the crystal shape is completely below the horizontal line. If equation
1.9 can be fulfilled, which means

− γLV < γLW − γVW < γLV , (1.10)

the system realizes the respective contact angle Θ in the isotropic case, and the
crystal shape is predicted according to figure 1.12. The resulting shape above
the horizontal line is the crystal shape that is realized by the droplet in the
partial wetting regime. The contact angle Θ of the interface with the wall will be
estimated as part of this work later, in section 4.4. An anisotropic generalization
of Young’s equation [11] will be used to derive the surface tension for different
contact angles.

The last case is realized when−γLV ≥ γLW−γVW and is called complete drying.
Then Young’s equation also can not be fulfilled and the free energy is minimized
when the droplet is not in contact with the wall at all. This corresponds to a con-
tact angle of Θ = 180◦. In the Wulff construction the crystal shape is completely
above the horizontal line. In this regime it is the vapor (V) rather than the liquid
(L) phase that is preferred by the wall i.e. the liquid avoids direct contact with
the wall and between the wall and the liquid is an intruding vapor film.

The boundary between the wetting and the non-wetting regime is marked
by a phase transition. If the boundary field is kept constant and one varies the
temperature, one has either a wetting or a drying transition. The low temper-
ature phase always exhibits partial wetting, while the high temperature phase
exhibits either complete wetting or complete drying, depending on the direction of
the surface field. [11] gives a description of the wetting transition in terms of
the contact angle as the order parameter of the transition. This transition can be
a first order transition [30, 31] ([32] for a treatment in Argon films). But as [30]
revealed: In a mixture of two fluid phases close enough to their critical point,
the contact angles will become zero against a surface of any third phase, which
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1 The Ising Model and Nucleation Phenomena

Figure 1.14: A two phase interface attached to a wall always forms a one dimensional
three-phase boundary. The left figure shows a wall attached droplet, while the right
figure shows a flat interface such as in our system.

is not involved in the critical point. One critical phase, always perfectly wets the
extraneous phase. This phenomenon is called critical wetting. In our case, critical
wetting occurs, so the transition from a wetting to a non-wetting state is of second
order [33, 34, 35]. Recent work on the behavior of the critical wetting transition
for short range forces has been done by Bryk et. al. [36]. When the surface field
is varied, then one can have both a wetting and a drying transition in the same
system, in dependence of the surface field.

1.4.2 Line Tension
For droplets in the nanometer regime an accurate thermodynamic description

requires to account for not only the bulk and surface free energies but also for
the special properties of the phases in the vicinity of three-phase contact. For
a heterogeneous nucleation process on a wall, such as a wall-attached droplet,
such a three phase boundary exists. This boundary is one dimensional in three
dimensions and a point in two dimensional systems. In one dimension, a three
phase contact cannot exist. It is assumed that this three phase boundary has an
additional contribution to the free energy [37, 38, 39, 40]. In three dimensions,
the line tension τ is this free energy per line length.

τ = Fline/L. (1.11)

This three phase interface has been investigated with Monte Carlo simulations
in the Ising model with wall attached droplets in [27, 41] (figure 1.14 left) and
for a flat surface by [42] (figure 1.14 right). This thesis will extend on the work
of both [41] and [42]. It is not clear to which extent the line tension is dependent
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on the curvature of the line, so in principle, the case of a liquid droplet in con-
tact with a solid substrate and a planar liquid gas interface in contact with the
substrate need to be treated separately. [37] indicates that curvature effects can
be neglected when the droplet radius is larger than the thickness of the contact
region, with the exception of small contact angles. In our case, a line tension
contribution would be proportional to the linear dimension Lz, along which the
interface is attached to the wall. If the surface is packed between two hard walls
in one dimension, there are two lines that contribute to the free energy.

Of course, for the prediction of nucleation barriers due to wall-attached droplets
the line tension in general has to be included, if droplets are in the nanometer
size range.
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Troposphere
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Figure 1.15: The layers of the earths atmosphere, from the boundary layer up to the
thermosphere. Nucleation phenomena play an important role in several different places.

1.5 Nucleation in the Atmosphere
The nucleation process is important at different levels in the atmosphere, rang-

ing from the planetary boundary layer (which is due to being the lowest part of
the atmosphere, in the lower end of the troposphere, directly influenced by its
contact with the planetary surface). The results of nucleation and growth of wa-
ter droplets (or ice crystals) in the atmosphere are familiar to everybody (such
as clouds, haze, et cetera). The nucleation phenomena are usually heterogeneous
with nucleating agents such as aerosols, smoke particles, etc. An important dis-
tinction of nuclei within the atmosphere is between aerosol particles, which are
mainly present in the troposphere and describe particles in the size range from a
few to several hundred nanometers and cloud particles (hydrometeors) with can
be up to several hundred micrometers in size. Aerosols have tremendous effects
such as an influence on the earth’s radiation budget directly by scattering so-
lar radiation [43] or to induce cloud formation [44]. A large contribution to the
particles in the atmosphere is due to nucleation from the surrounding gas phase
[45, 46], but very few trace compounds out of the many different compounds
that are found in the atmosphere are actually able to nucleate new particles. The
key precursor compound is usually sulphuric acid (SO4) from which binary nu-
cleation is possible [47, 48, 49, 50], as well as ternary nucleation in combination
with ammonia [51, 52] or organic acids [53] which can increase the nucleation
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rate from sulphuric acid. It has been shown that, given the conditions in the mid-
dle and upper troposphere, the neutral nucleation of H2SO4 and H2O is slower
than ion-induced nucleation of H2SO4 and H2O [50]. In coastal regions, other
agents, namely oxidized ionide compounds are also important for nucleation.
After nucleation the growth process is influenced by other organic acids with
low vapor pressure. The nucleation processes in the atmosphere are very com-
plex and numeric or even analytic treatment is not really possible. It is important
to note that the chemical complexity of the atmosphere leads to the nucleation
of droplets that are not only consisting of pure water, but of a solution of a
variety of chemical components. The larger cloud particles have much differ-
ent effects on the earths atmosphere and need to be treated differently from the
smaller aerosol particles. The formation of cloud drops usually takes place in
updrafts, which leads to a steady rise in relative humidity (RH) due to adia-
batic expansion. At temperatures below 0◦C, cloud drops as well as the smaller
aerosol particles can nucleate ice particles. The relative humidity is linked to the
supersaturation (Si) of the nucleating atmosphere via the equation

RH
100

= Si = aw exp
(

2γl
kBTnr

)
(1.12)

where aw is the water activity of the droplet, r is the droplet radius and γi is
the surface tension of the droplet and n is the number density of molecules in the
liquid. Particle nucleation in a specific nucleation mode always occurs until the
vapor uptake of the nucleated particles deplete the background supersaturation.

Generally, homogeneous nucleation of ice in the atmosphere can occur di-
rectly from the vapor. Vapor to ice nucleation however has a large energy bar-
rier because of the large surface energy γice, vapor. That is why ice nucleation
usually takes place inside of liquid droplets which have been nucleated homo-
geneously beforehand, and the main attention lies on homogeneous freezing of
liquid droplets during ascension in the atmosphere. A summary of different ice
nucleation modes at different temperatures (e.g. heights in the atmosphere) is
given in figure 1.16. Usually, water droplets do not freeze directly when cooled
below 0◦C. Freezing has to be triggered by aerosol particles down to a temper-
ature of about −38◦C. At this temperature, freezing can occur without external
influence [55]. A thorough review of laboratory experiments on ice nucleation
on atmospheric aerosols can be found in [54]. Even though it has been indi-
cated that the effect of variations in the density and surface tension models
have been found not to cause significant changes in the nucleation rates [47],
the effects of the anisotropy of the surface tension, which is expected from the
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1 The Ising Model and Nucleation Phenomena

Figure 1.16: At different temperatures, different modes of nucleation are possible for
ice crystals from water droplets and directly from the surrounding vapor, as well as
heterogeneously from aerosol particles. The image was taken from [54].

crystalline structure of frozen water need to be investigated. Mason et. al. [56]
find indication that the crystallographic structure of surfaces have an influence
on ice nucleation probability. Simulations of the atmospheric processes are on
vastly varying size and time scales as well as particle concentrations are usually
relying on parametrizations and immense simplifications. Parametric simula-
tions such as the Evolution Galerkin scheme that is discussed in the context of
a GPU implementation in chapter 5 rely in turn on microscopic properties such
as nucleation rates that can only be retrieved by microscopic treatments of the
nucleation process itself.

Since we tackle the nucleation process from a microscopic point of view, other
fundamental insights can be gained into the microscopic nature of the nucleation
process, that can be supplied to a parametric simulation in turn. Classical nucle-
ation theory is not applicable to the most of the nucleation processes, since the
nucleus that is on the onset of forming a droplet does not form a body spherical
body with a clear cut surface but is a result of spontaneous fluctuations of just a
few molecules. An important aspect of the nucleation process that is discussed
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in this thesis is the anisotropic nature of the surface tension in systems where
translational and rotational invariance is broken. Water nuclei in the atmosphere
form crystals, where special effects such an anisotropic crystal surface has to be
taken into account when calculating properties such as the nucleation rate.

Since in experimental observations, the microscopic details of the nucleation
process are not easily accessible, experiments mostly rely on the measurement of
macroscopic quantities such as nucleation rates. In computer simulations how-
ever, we are able to observe a system at the microscopic level, extracting prop-
erties that can be used as input for theoretical models to predict experimentally
observable macroscopic quantities and behavior. The methodology for these mi-
croscopic simulations is outlined in the following.
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Chapter 2

Methodology

The dominating method for studies in the Ising model is the Monte Carlo
method. A Markow process of first order is used to sample configuration space.
Configurations are created successively by altering a configuration by an ac-
cepted Monte Carlo move. The Monte Carlo move we employ is a flip, where a
single spin σi is replaced by −σi.

2.1 Importance Sampling
The Monte Carlo time t denotes the amount of Monte Carlo steps that have

been taken along a Markov chain in configuration space. The transition proba-
bility of a configuration to go from a configuration xi to another configuration
xj is denoted as

Wij = aijwij, (2.1)

where aij denotes the selection probability of a move and wij the acceptance
probability. In the case of a checkerboard update, the selection is not stochastic
anymore, but predefined. After an update of the white lattice sites follows an
update of the black lattice sites with 100% probability.

To ensure convergence to a stable distribution, the total flux into state xj needs
to become zero for all i

∂P(xi, t)
∂t

= ∑
j(j 6=i)

P(xj, t)Wji − ∑
j(j 6=i)

P(xi, t)Wij = 0 (2.2)

This is called global balance criterion. Since this criterion is hard to implement,
one usually enforces an even stronger criterion called detailed balance, which is
defined as follows:

P(xi)Wij
!
= P(xj)Wji (2.3)

The transition probability is chosen so that it fulfills detailed balance. One choice
that fulfills this is due to Metropolis [57]
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Wij =

{
e−β∆E for ∆E > 0
1 else

(2.4)

A move that leads to a lower configurational energy thus always gets accepted,
a move that leads to a higher energy is accepted by a certain probability, which
gets higher for higher temperatures. Since the evaluation of the Metropolis cri-
terion is stochastic, for each evaluation, a random number has to be drawn (for
technical implications see section 3.3.6).

2.2 Boundary Conditions
The finiteness of the system is addressed with specified boundary conditions.

The behavior of the Ising System in two-phase coexistence investigated in this
thesis is heavily dependent on the nature of the boundary conditions imposed on
the system. In this section we discuss the various boundary conditions imposed
on the simulation systems used in this thesis.

2.2.1 Hard Walls and Wall Fields
We consider a system of Lx lattice planes in x-direction. At the planes x = 0

and x = Lx − 1, we define a wall potential. The interaction potential at the
boundary is replaced by a wall potential. We study the Ising model in a three
dimensional simulation box with the exchange energy J in the bulk, and the
energy |H| due to the magnetic field in the surface planes. The total Hamiltonian
will then be:

HIsing = −J ∑
{i,j}

σiσj − H ∑
l=0,1

(−1)l ∑
{k}l

σk, (2.5)

where {k}l denotes all the spins in the layer next to the wall l, where l can be
either 0 for the upper wall, or 1 for the lower wall. The field H is positive for the
upper boundary layer and negative for the lower boundary layer. For simplicity,
we are using J = 1. Since the Ising-Model has only short-ranged interaction and
the field will only act on the first and last layer of spins, we are ignoring the
effects of long-range nature van der Waals’ forces which are known to differ
in many respects from the short-range case of surface fields we are about to
investigate [58].
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* (-1)

* (-1)
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Figure 2.1: Periodic Boundary Conditions (a) can stabilize a slab geometry with two flat
interfaces. This is only possible if the number of up/down spins is preserved. In a grand
canonical configuration, the system will demix into one of the two phases. A canonical
Ising simulation scheme is presented in chapter 3, though it is not used in this thesis.
With antiperiodic boundary conditions (b), a single flat interface can be stabilized even
in the grandcanonical ensemble. This is beneficial for our problem, since a grandcanonical
simulation of the Ising system is a lot easier to parallelize and to run on a GPU. With a
nonzero wall field, the mirror symmetry by reflecting the x-axis is broken, so we have
to introduce another kind of boundary condition (c) in the y-direction to reflect the new
symmetry properties of the system.
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2.2.2 Periodic Boundary Conditions (PBC)
A common choice for boundary conditions are Periodic Boundary Conditions

(PBC) which means that the opposite ends in each dimension of the simulation
domain are connected, and interaction energy is transmitted over the boundaries
of the system. The borders in each dimension are connected to each other (figure
2.1 top). This has the topology of a (d + 1) dimensional torus where d is the
dimensionality of the simulation box. In the lattice gas interpretation, a particle
that leaves the box on one side will enter the box again on the other side, and
a particle on the edge of the system will feel the interaction of a particle on the
other side of the box. By choosing the boundary conditions to be periodic, we
can eliminate the effect of the presence of hard walls, but we will not eliminate
the effect of the finiteness of the system altogether. The results we will get in this
system will be influenced by finite-size effects. We choose the periodic boundary
conditions to be transmitted at the walls in y-direction, orthogonal to the hard
walls.

With periodic boundary conditions, an interface can only be stabilized un-
der a canonical constraint, leading to a slab geometry (see figure 2.1 top). In the
grandcanonical ensemble, statistical fluctuation eventually will take the system to
a one-phase state where the interfaces have disappeared.

2.2.3 Antiperiodic Boundary Conditions (APBC)
To stabilize a flat surface in our simulation domain, we introduce the concept

of Antiperiodic Boundary Conditions (APBC). This can only be defined in systems
featuring a symmetry between the coexisting phases like the Ising model, and
means that instead of transmitting the interactions from one end to the other
end of the system, the exact opposite configuration is transmitted. When the
neighboring spin on one end of the system is up (σLy−1 = 1 ), for spin σ0 on the
other side of the system, the image of σLy−1 that gets summed up in the nearest
neighbor sum of σ0 is actually −1. A similar surface-stabilizing effect could be
achieved with hard walls with opposite interaction energy on either side of the
simulation domain.

In the next section we introduce a slightly modified kind of boundary condi-
tions, which addresses a problem that became apparent only gradually in our
simulations (see figure 2.2).

2.2.4 Generalized Antiperiodic Boundary Conditions (GAPBC)
As can be understood from figure 2.2, we have to be careful with the antiperi-

odic boundary conditions. If the system exhibits a single interface, it is transla-
tionally invariant in y-direction in the sense that translation of the interface in
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H=0

APBC

GAPBC

Figure 2.2: The profiles of the average magnetization in the uppermost layer 〈mo〉(y)
as a profile along the y-axis reveal a problem that needs to be addressed. At H = 0
(black line) the profile is perfectly antisymmetric (mo

− = −mo
+), so antiperiodic boundary

conditions (section 2.2.3) work, since the magnetizations in the bulks are nearly constant
even near the system border (which is an important property for later measurements).
When H 6= 0 however, the symmetry is broken, which leads to border artifacts for
antiperiodic boundary conditions (red dotted line). The GAPBC boundary conditions
introduced in section 2.2.4 solve this problem.

y-direction does not cost any free energy. For H = 0, APBC reflect the symmetry
of the system

m(+)(x, 0) = m(+)(Lx − x, 0), (2.6)

m(−)(x, 0) = m(−)(Lx − x, 0).

For H 6= 0, this symmetry is broken. The asymmetry of the magnetization pro-
file near the borders in y-direction (figure 2.2, red dotted line) leads to an extra
contribution to the free energy of the system and thus a systematic error in our
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calculations. If Ly � Lx/ tan Θ, the boundary conditions do not disturb the in-
terface and the effect illustrated in figure 2.2 may be negligible. For small enough
system sizes Ly or for large enough angles Θ, they are not. With antisymmetric
surface fields, the magnetization profile in x-direction has a different symmetry
property

m(+)(x, H) = −m(−)(Lx − x, H) (2.7)

Here the upper subscripts (+), (−) distinguish the two phases with positive
or negative total magnetization that may coexist with each other at zero bulk
field. Changing the sign of the magnetization (both in the bulk and locally) to-
gether with the spin of the surface field leaves the profile invariant only together
with the reflection at the midplane Lx/2. The generalized antiperiodic boundary
condition must respect this antisymmetry property of the profiles, i.e.

S(x, y, z) = −S(Lx − x, y±Ly, z) (2.8)

This is written here in a continuum interpretation of coordinates, but can be
generalized immediately to a discrete lattice, then the coordinates in x-direction
are labeled as 0, 2, ..., Lx − 2, Lx − 1 and hence

S(0, y, z) = −S(Lx − 1, y±Ly, z)
S(1, y, z) = −S(Lx − 2, y±Ly, z) (2.9)
S(2, y, z) = −S(Lx − 3, y±Ly, z)

...

Thus the proper description of the boundary condition is an antiperiodic
boundary condition with a Moebius strip topology in one dimension. Since the
other two dimensions have a torus topology, the whole construction is a three
dimensional generalization of a Klein bottle. A finite-size scaling analysis has
been carried out for an Ising system with this topology in [59]. GAPBC perfectly
reflect the geometry of the model system, thus removing the border artifacts al-
together (figure 2.2, blue line). Also, there is no need to fix the interface in the
center.

The GPU implementation of the GAPBC was less convenient. Unfortunately
the spin layout chosen in the GPU implementation was developed before the
spacial symmetry problem became apparent and therefore was not optimal for
this purpose (section 3.3.7). Nevertheless, we managed to effectively hide the
computational overhead.
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2.3 Simulations on GPUs

2.3 Simulations on GPUs
For the investigations we are aiming to carry out we need very large simu-

lation domains. The geometry with the flat interface is only useful if the two
phases are large enough to be considered bulk phases and finite-size effects are
controllable. A typical system can be seen in figure 2.3. To do this efficiently, we
have to accept a few restrictions to our simulation method. Since we want to ben-
efit from the additional computational power of GPUs, we need to update spins
in parallel. We are not allowed to update spins in parallel which are interacting
with each other. A pattern that works well is the checkerboard update (figure
2.4). The actual implementation and the technical complications that come with
it are detailed in the next chapter. The second restriction is that we can only per-
form single spin flips efficiently, thus it is not possible to keep the total number
of spins constant during the simulation. This is why we chose to simulate the
system in the grandcanonical ensemble, which means we keep the temperature T
constant, but we neither impose a constraint on the total number of up/down-
spins, nor on the total energy of the system. How a simulation with constant
particle number can be implemented is suggested in section 3.6, it is not used
for any practical simulations in this thesis though.

Using (generalized) antiperiodic boundary conditions, an interface can be sta-
bilized even in the grandcanonical ensemble. The system is initialized at Monte
Carlo time t = 0 with the left side of spins all pointing downwards and the right
half of the spins all pointing upwards (see upper left configuration of figure 2.5).
Due to the choice of ensemble, the interface is performing a random walk. This
has been verified by measurement as shown in figure 2.6. After initialization
the system is expected to equilibrate after a few Monte Carlo steps into a stable
physical configuration with an interface in the middle.

Each surface has a spectrum of capillary fluctuations. Initially the surface is
perfectly flat, and the amplitudes of all capillary waves are zero. Equilibration is
complete after they have fully developed, and long wavelength capillary waves
take longest to equilibrate (which can be compared to critical slowing down).
In thermal equilibrium, the mean square amplitudes of the capillary waves are
given by the equipartition theorem. We gather statistics from the system after
the system has been equilibrated. Since the interface performs a random walk,
it will eventually hit one of the system borders in y-direction. To prevent side
effects by the influence of the system borders and to avoid complications in the
measurement of the coexistence magnetizations 〈mo

−〉 and 〈mo
+〉 (see figure 2.2),

we reset the configuration after 100.000 steps to the initial configuration at time
t = 0, equilibrate again and gather statistics again.

In typical simulation runs, we used an equilibration period of 10.000 full lattice
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Figure 2.3: A full configuration of size 184× 504× 504 at T = 2.0. This shows the scale
of the simulations performed in this thesis.

Step 1Before Step 2 After

Figure 2.4: The checkerboard spin update procedure. Spins are selected and updated
in two steps. In the first step, only spins from the white sites of a checkerboard are
updated, while in the second step, the remaining spins are updated. After the two steps,
each of the spins in the lattice has been updated once.

updates and collected statistics until we performed a reset to the initial state
after 100.000 full updates. We have ensured that the systems are equilibrated
after 10.000 steps and that they did hit one of the borders after the production
period.
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Figure 2.5: The density profile in the x− y plane at different Monte Carlo times t. In this
specific case, notice the drift of the surface in the middle of the system to the right side.
This is not a systematic drift, but the surface performs a random walk. Nevertheless, it
is expected to eventually hit one of the borders of the system.

During the last three years we have employed a variety of GPUs from different
generations and vendors i.e. NVidia Geforce GTX 480, NVidia Geforce GTX 580,
NVidia Geforce GTX 690, NVidia Geforce TITAN, NVidia Tesla K20X and a AMD
Radeon HD 6970 (OpenCL). The details of the implementation on the GPUs are
discussed in the next chapter.
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Figure 2.6: The average of the magnetizations in the uppermost (mo) and the lowermost
(mu) layer can be easily extracted from a GPU simulation. This data has been extracted
from a 105 full lattice update run of a 88× 504× 504 system. The data has been averaged
over about 20 runs. The result is proportional to the mean square displacement of the
interface which is expected to perform a random walk. The end to end mean square
displacement of a random walk is expected to be a linear function of the amount of
steps. A linear dependence can be verified in our data (red line).
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Chapter 3

GPU Implementation
of the Ising Model

3.1 Introduction
The Monte Carlo method and computational methods in general have had a

significant impact on traditional sciences throughout the last decades. Physical
and engineering obstacles in microprocessor design have resulted in an ever
decreasing growth of non-parallel microprocessor performance in the struggle
to keep up with the ever growing demand of computing power. This is why we
have seen a general trend towards multi-core and massively parallel computing
architectures.

Graphics Cards are dedicated devices which were initially designed to accel-
erate the common tasks in 3D graphics in hardware. Initially they were designed
to accelerate high end graphics workstations such as SGI’s Onyx Reality Engine
machine, which introduced the OpenGL standard in 1992. They evolved into the
consumer market, ultimately with mass products such as 3Dfx’s Voodoo graph-
ics accelerators for personal computers and SGI’s RCP chip powering the Nin-
tendo 64 around 1996, which eventually caused a revolution in terms of graphics
quality in video games. The tasks performed in computer graphics tend to be of
a parallel nature, such as transform each point in a given geometry according to the
procedure vs() or perform the same operation ps() on each pixel covered by a triangle, so
the hardware implementing those operations had to be of a massively parallel
nature, offering many parallel cores which could do the same operation on a
number of data sets in parallel. At first, the hardware implementing the opera-
tions vs() and ps() were offering a tunable, but fixed functionality, which lead to a
certain uniformity in the looks of computer graphics and computer games. After
GPUs grew more mature, the industry demanded more flexibility, thus leading
to the idea of programmable Graphics Processing Units (GPUs). The operations
vs() and ps() where called vertex and fragment shaders, following the concept
of the programmable shaders in Pixar’s RenderMan [60] package, and could be
freely programmed, first in a machine language that was native to a specific
GPU and later in higher level languages such as GLSL or Cg. Recent computer
architectures are following the role-model example of GPUs, and future hard-
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ware architectures are expected to implement a similarly parallel approach to
computing. With new, more flexible programming interfaces GPUs can be uti-
lized already today to perform general purpose computing in fields much dif-
ferent from computer graphics. Competing standards and solutions for solving
portability issues and high level abstractions exist. GPUs are high-performance
many-core processors that can be used to accelerate a wide range of applications.
Significant speedup factors in comparison to conventional CPU implementations
have been reported in a large variety of fields: Molecular Dynamics simulations
as in [61, 62, 63, 64, 65], lattice Boltzmann simulations [66, 67], time series anal-
ysis focused on financial markets [68], radiative transfer models [69], modeling
Tsunami waves [70], neural networks [71], protein sequence alignment [72] and
many more.

This part of the thesis is loosely based on three publications, namely [73, 74]
and my original implementation of the 2D Ising model which was implemented
as part of my diploma thesis [75] and published in [76]. This in turn was mo-
tivated by the pioneering work of Preis et al. [68]. The parts of this chapter are
at times almost identical to these publications with the exception of this intro-
duction, additional details in the descriptions where they are helpful and the
description of a canonical simulation. This chapter does not only provide a doc-
umentation of my implementation but is also a general review of work done in
the field of Ising simulations on GPUs, so not all the methods presented have
been implemented by me.

3.2 GPGPU History and CUDA
Usability of GPU computing APIs (Application Programming Interfaces) and

portability of GPU programs have seen a steady improvement. Early programm-
able GPUs were programmed in an assembly style language which was specific
to one single device architecture. Graphics Specific APIs addressed this issue by
developing high level languages such as Cg (Nvidia), GLSL (Khronos Group)
and HLSL (Microsoft). A survey of GPGPU on these earlier platforms can be
found in [77]. There also exists pioneering work on the Ising model from this
time [78].

With the introduction of the Compute Unified Device Architecture (CUDA) in
2007, Nvidia addressed the fact that GPUs were now used not only for graphics
applications but for more general purposes in a wide range of fields [79]. Up
to date, most simulation codes are written specifically for Nvidia devices, espe-
cially the CUDA API, which makes them, even though they are written in a C
style language, very dependent on this specific architecture. There are several
competing standards to achieve portability, and high level frameworks and li-
braries [80, 81] as well as attempts to automate CPU-GPU communication [82]
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Figure 3.1: Hierarchical
parallel execution of kernels
on an Nvidia GPU. Ker-
nels are executed by paral-
lel threads, which are orga-
nized in blocks, where the
whole block has access to a
small shared memory space
which can be used to ac-
celerate block local compu-
tations. The blocks are ar-
ranged in a grid. Each thread
in the whole grid can access
a slower kind of memory,
the global memory. There is
also a memory that is local
to each thread, and can not
be shared between threads
at all. Synchronization be-
tween threads is possible on
the block level, but not on a
global level.

and to achieve source code level portability between CPU and GPU as in [83]
as well as a framework for porting shared memory GPU applications to multi-
ple GPUs [84]. The purpose of this chapter is to show that a simulation can be
designed in a way that it maintains portability across many platforms without
sacrificing high performance and efficiency. The main APIs presented and used
in this chapter are CUDA and OpenCL (Open Compute Library). A comprehen-
sive quantitative performance comparison was done in [85].

CUDA is a very mature standard for General Purpose GPU computing. It is
vendor specific to Nvidia and thus only works on Nvidia cards, without third
party tools. GPU Ocelot exists as a framework to overcome this limitation and
offers a way to execute and debug CUDA kernels on arbitrary hardware [86].
OpenCL however, is an industry wide standard, a unified interface for parallel
computing, be it on GPUs, on multi-core CPUs or other future parallel platforms.
The most important supporters of this standard are Intel, Advanced Micro De-
vices, Nvidia, and ARM Holdings. Both APIs allow programmers to write parts
of their programs as small procedures that can be executed in parallel (so called
kernels) on the underlying parallel acceleration hardware. These programs can
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be specified in a C like language. CUDA gradually starts to support more and
more C++ features, like templates and inheritance.

There are some major differences between the APIs. The most important one
is that CUDA code needs to be compiled to byte code before the program is
started, while OpenCL allows on-the-fly compilation from source. This is the
only difference that cannot be fully hidden in the presented abstraction. CUDA
consists of two different APIs (Driver API and Runtime API) which serve dif-
ferent purposes. The Runtime API is meant to allow easy access to the CUDA
functionality and allows easy integration of CUDA into existing programs. The
Driver API is the underlying API that is used by the Runtime API, but can also
be accessed directly. In our implementation, we use the Driver API for CUDA,
since it behaves more like OpenCL and we can find a unified way to hand over
data to kernels and execute them.

A program that can be run in parallel on an Nvidia GPU in CUDA is called a
kernel. Kernels are defined as functions in a language that resembles the C pro-
gramming language. A kernel can be executed in multiple equally-shaped thread
blocks, so that the total number of threads is equal to the number of threads per
block times the number of blocks. Blocks are organized into a one-dimensional,
two-dimensional, or three-dimensional grid of thread blocks as illustrated by
figure 3.1. The number of thread blocks in a grid is usually dictated by the size
of the data being processed or the number of processors in the system, which it
can greatly exceed. This is described in detail in [87]. There are different kinds of
memories with varying access speeds and policies that can be used to store data
during the execution of a kernel (figure 3.1). The slowest memory is the global
memory, which is shared between all threads. The fast shared memory is very
limited in size and is shared between threads in each block. Last, there is the
fast local per-thread memory which is used to store values within one thread
and cannot be shared between threads. Using this memory hierarchy effectively
is the main challenge in writing GPU optimized parallel code. OpenCL uses
slightly different nomenclature, although the basic concepts are the same.

3.3 The Ising Model on the GPU
Recall that the interaction of the spins in the Ising model is given by the Hamil-

tonian

H = −J ∑
〈i,j〉

SiSj − H ∑ Si (3.1)

where the exchange constant J = 1 in the following and H denotes an external
magnetic field. The lattice is updated according to the Metropolis criterion (see
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section 2.1). As we have explained in the same wording in [73], the probability
W(ti) for a Monte Carlo step from Monte Carlo time ti to Monte Carlo time
ti+1 to be accepted depends on the energy difference ∆H = H (ti+1)−H (ti)
between those states and is given by exp(−β∆H ).

If no external field H is present, only discrete values for ∆H are possible
(two non-trivial values in the two dimensional case and three values in the three
dimensional case). So if H = 0 the exponential factor can be pre-calculated
on the CPU for each temperature and transferred to the GPU when the kernels
are invoked as described in [76]. In this current implementation we go a step
further and assume H 6= 0. This means we can make efficient use of the GPU in
calculating the exponential factors for arbitrary fields H.

3.3.1 Checkerboard Update
In this section, where parts have been published word for word in [74] and

other parts in [73], we will develop a very simple yet already efficient update
scheme for the 2D Ising model on the GPU to illustrate the general idea. Parallel
updates (i.e., parallel spin flips) can only be done for non-interacting subsystems.
The fact that each spin only interacts with its four nearest neighbors makes a
checkerboard update feasible.

To make efficient use of the GPU device structure, a parallelizable spin-update
scheme has to be utilized. The ratio between memory latency and processing
time on graphics cards is very large [39]. Thus, GPU cores can perform hun-
dreds of instructions in the time of a single access to global memory. By highly
parallel processing, memory access latencies can be hidden effectively, and large
acceleration factors can be achieved. Parallel spin updates of the Ising model
can only be done for non-interacting domains. The approach that each spin only
interacts with its four nearest neighbors makes a checkerboard update feasible
[22]. The lattice update is divided into two update steps A and B. In step A, only
the spins residing on a black site are updated since they are not interacting with
each other. In step B, the spins on white lattice sites are updated. It is essen-
tial that update step B is started after all updates of step A are finished. Please
note, that other methods for the spin updating process are also available, e.g.
diverse cluster algorithms [44,45], which perform particularly well close to the
critical point. However, the systematic scheme of the checkerboard algorithm is
most suitable for the GPU architecture realizing non-interacting domains where
the Monte Carlo moves are performed in parallel. In the checkerboard paral-
lelization scheme, one half of the spins does not interact with the other half
of the spins in one timestep and can be updated in parallel. Early work ([68])
provided a feasibility study on how to implement the Ising model on Nvidia’s
CUDA platform, while later studies focused on maximizing the efficiency of the
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dH=-8 dH=-4 dH=0 dH=4 dH=8

Figure 3.2: At each time step a spin is flipped from up to down or from down to up in
dependence on the local interaction energy difference before and after the flip. There are
5 possible energy differences in the two dimensional case. Negative energy differences
and energy differences of value 0 are always accepted, so only two exponential factors
need to be calculated. This can be done in advance to save computation time. The image
was taken from [74].

implementation [88, 89, 76] and spreading the simulation across many GPUs
[90, 76, 91]. Recently, even cluster algorithms have been implemented ([92, 93]),
even though speedups are somewhat less impressive. The lattice is updated ac-
cording to the Metropolis criterion [57] for each step. For each step, the energy
difference ∆H = Ha −Hb between two subsequent states a and b is calculated.
The probability for the step to be accepted is given by Wa→b = exp(−∆H /kBT)
if ∆H > 0 and Wa→b = 1 if ∆H ≤ 0. Since only discrete values for this factor
are possible they should be pre-calculated on the CPU for each temperature and
copied to the GPU when the kernels are invoked.
Detailed balance is only fulfilled if spins are selected randomly from the spin lat-
tice and if the updates are done in succession, not in parallel. Since on the GPU,
parallel updates are needed for an efficient implementation, detailed balance has
to be sacrificed and a checkerboard update is used instead which can only fulfill
the weaker condition of global balance.

3.3.2 Simple Scheme in 2D
In this section we present a very simple example implementation that has

been published in the same wording in [74]. The lattice update is divided into
two update steps (a) and (b). In step (a), only spins residing on a black site of
a checkerboard structure are updated since they are not interacting with each
other. In step (b), the spins on the white lattice sites are updated. For clarity,
we use a data structure ddata, which holds all the pointers to data stored on
the GPU, and a data structure hdata which holds all pointers to data in the host
memory. We will now provide a simple implementation of the Ising model in
plain CUDA (as it has been published in the mini-review [74]). Here, we store
an array of integer variables in the global memory, which represents the two
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dimensional spin lattice of linear size NLINEAR—the total size of the array thus
has to be NQUAD = NLINEAR · NLINEAR.

cudaMalloc((void**) &ddata->spins,sizeof(int)*N_QUAD);

hdata->metaSpins = new int[N_QUAD];

For each parallel thread we will need a random number generator (see section
3.3.6) which needs a seed that has to be stored in global memory too. So we
make sure there is memory allocated for these seeds:

cudaMalloc((void**) &ddata->randomNumbers,sizeof(int)* NUM_THREADS);

hdata->randomNumbers = new unsigned int[NUM_THREADS]

A grid layout has to be designed in a way that allows parallel threads to update
different lattice sites with a tunable block size (see Fig. 3.3). In this simple layout
with a total of (NLINEAR/2) · (NLINEAR/2) threads, each thread processes a field
of 2× 2 spins, where only two of the spins are processed in each update step
(the black sites in update step (a), the white sites in update step (b)). The threads
are grouped into blocks of size BLOCK_DIM. The positions of the spins to be
updated can be constructed from the block and thread indices as follows:

int tx = (threadIdx.x + blockIdx.x * BLOCK_DIM) * 2;

int ty = (threadIdx.y + (blockIdx.y % FIELD_DIM) * BLOCK_DIM) * 2;

These indices address the upper left spin for each thread. The spin field can be
accessed, e.g., via the macro

#define _F(_x, _y) ((_x) + N_LINEAR * (_y))

For each update, the energy difference for a spin to be flipped from −1 to 1 or
from 1 to −1 has to be calculated according to Fig. 3.2. For the upper left spin,
the energy difference is

dH = 2 * spins[_F(tx,ty)] * (

spins[_F(tx+1, ty)] + spins[_F(tx-1, ty)] +

spins[_F(tx, ty+1)] + spins[_F(tx,ty-1]

);
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Figure 3.3: Checkerboard layout for parallel thread updates. The image was taken from
[74].

Here, one needs to take care of the boundary conditions: If a memory access
leaves the boundaries of the memory layout, it has to be wrapped so that it
accesses the memory entry on the opposite site of the system to realize periodic
boundary conditions. Using the energy difference dH, the probability for a spin
to be flipped can be calculated using an exponential function. With a previously
drawn random number ran between 0 and RAND_MAX, the spin flip is simple
to implement:

if (ran < exp(-dH / t) * RAND_MAX)

spins[_F(tx,ty)] = -spins[_F(tx,ty)];

This code segment updates the spin lattice using a write to global memory.
Exponential factors should be calculated in advance, since there are only two
relevant energy differences (dH = 4 and dH = 8). All other energy differences
lead to spin flips anyway.

This implementation is not as efficient as possible, but it served for the expla-
nation of the algorithm. An optimization of this update scheme will be discussed
in section 3.3.7.

3.3.3 External Fields
External fields can be incorporated into the simulation by providing the exter-

nal field either in an analytical form that can be evaluated directly on the GPU,
or in terms of an array in global memory that assigns each lattice site a value of
the external field. Problems arise when using more sophisticated schemes as in
[76, 94], especially when the efficiency of the simulation relies on pre-calculated
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exponential factors in some form, because the external field modifies the value
of the exponential factor that is used to evaluate the Metropolis criterion.

3.3.4 Extraction of Magnetization
After each Monte Carlo step, we have to extract the magnetization of the spin

lattice. The magnetization is given by

m = ∑
i

si. (3.2)

The idea for fast summation is to use a binary tree reduction for each block.
Each thread calculates the sum of all its spins (2× 2), and writes it into an array
in shared memory. After each thread has written into shared memory, a binary
tree reduction1 can take place:

1 /* Save partial results back to shared memory in new structure */

2 __shared__ int r[BLOCK_DIM * BLOCK_DIM];

3 int id = threadIdx.x + BLOCK_DIM * threadIdx.y;

4 r[id] = dH;

5 __syncthreads();

6 /* Reduction on GPU */

7 for(unsigned int dx=1; dx < BLOCK_DIM * BLOCK_DIM; dx *= 2) {

8 if (id % (2 * dx) == 0)

9 r[id] += r[id + dx];

10 __syncthreads();

11 }

12 if(threadIdx.x == 0)

13 out[blockIdx.x + FIELD_DIM * blockIdx.y] = r[0];

After each reduction step, threads are synchronized to prevent race conditions.
Next, each block writes out the sum of spins for its spins into global memory
(out). The sum over all entries in the out array can be done on the CPU after the
kernel execution ends, since it is not performance critical. This section has been
published in [74].

3.3.5 Cluster Updates
For the investigation of the critical behavior of non-disordered models, cluster

algorithms [95, 96] will perform much better than any optimized implemen-
tation of a local spin-flip algorithm already for medium system sizes. In this

1See also the reduction examples provided in the NVIDIA CUDA SDK.
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thesis, cluster updates have neither been used to gather data, nor have they been
implemented on the GPU as part of the thesis. They are mentioned for com-
pleteness, since the parallelization of more sophisticated update schemes is an
evolving field where there is a lot of room for future work. Wolff [95] proposed
a Monte Carlo algorithm in which only a single cluster is flipped at a time. The
spin-update process can be outlined as follows:

• Loop:

1. Choose a random seed spin Si and flip it.

2. For all neighbors j: If (Sj) is parallel with Si, add Sj to the cluster with
probability p = 1− e−2β.

3. After all nearest neighbors j have been checked, look at each of the
nearest neighbors k of site j. If Sk is parallel with Sj and is not a
member of the cluster, add Sk to the cluster with probability p =
1− e−2β. Flip Sj.

4. For all added spins Sk, repeat (3) until no more parallel spin pairs are
found.

A sub-lattice decomposition cannot be used for parallelization in the case of
a cluster algorithm. [97] proposed an parallelization of Wolff updates using
OpenMP first. The idea is to use parallel computation for the newly added spins
in step (3). The newly added spins form wave-fronts and are thus referred to as
wave-front spins. Each thread is a assigned a wave-front spin in the grid. [92]
has recently developed a GPU implementation of this scheme.

The situation that different spins try to incorporate the same spin to the cluster
simultaneously needs to be avoided. This leads to the problem of global thread
synchronization, which is intrinsicly absent in CUDA. This can be addressed
by different techniques, one of them is presented in [92]. The actual number
of threads was chosen to be a maximum of 1024. With proper use of shared
memories, the technique is very effective for fast computation. Access to global
memory is time consuming, so access to global memory also here has to be
reduced. A linear congurential random number generator as in [68] is used for
flipping spins according to the transition probability p = 1− e−2β.

The performance achieved by the GPU implementations is up to 7.9 times as
fast as a CPU, which is already higher than the performance increase reported
in [97] and an impressive result.

A multi-cluster spin flip algorithm was proposed by Swendsen and Wang [96].
This algorithm was recently ported to the GPU for the q-State Potts model by
[89] and also by [93]. The Ising model as a special case (q=2) of the Potts model
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performs well on the GPU, achieving speedups of about 12.4 compared to a
current CPU core.

The spin-update of the Swendsen and Wang cluster algorithm for on a CPU
can be formulated as follows [96]:

• Loop until all spins Si are checked:

1. Choose a spin Si.

2. For each of the nearest neighbors Sj: If Sj = Si, generate bond between
site i and j with probability p = 1− e−2β.

• Apply the Hoshen-Kopelman algorithm [98] to identify all clusters.

• For all clusters:

1. Flip the spins Si in the cluster with probability 1/2.

Since the bond generation and the spin flips are done independently on each
site, these steps are well suited for parallel execution on GPU. The cluster la-
beling however is done on each site piece by piece sequentially and cannot be
computed in parallel on GPU. This section has been published word for word in
[74].

3.3.6 Random Number Generation
For every update thread, one or more random numbers are needed to evalu-

ate the Metropolis Criterion for different exponential factors. This is the reason
why an efficient method to create random numbers is needed. [99] gives a good
overview of pseudo-random number generation in Monte Carlo simulations and
[100] is dedicated to the solutions of this important problem on the GPU.

A simple example of a pseudo-random number generator is the Linear Con-
gruential Random Number Generator (LCG) [101]. In a simple straight-forward
implementation [68], a single random number generator provides the random
numbers for every spin update thread j. A sequence of random numbers for the
j-th thread xi,j (where i ∈N) is generated by the recurrence relation

xi+1,j = (a · xi,j + c)mod m (3.3)

where a, c and m are integer coefficients. An appropriate choice of these coeffi-
cients is responsible for the quality of the produced random numbers. We use
a = 1664525 and c = 1013904223 as suggested, e.g., in [102]. Since by construc-
tion, results on a 32-bit architecture are truncated to the endmost 32 bits, the
modulo operation m is set to 232. By normalizing (yi,j = abs(xi,j/231)) the LCG
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can be used to generate random numbers yi,j in the interval [0; 1]. For the GPU,
an array of random numbers that provides a single random number seed for
every spin update thread can be generated by the iteration

x0,j+1 = (16807 · x0,j) mod m (3.4)

with x0,0 = 1.
When using a LCG, which has a rather short period p = 232 of the generators,

unfortunately, most of the different sequences will have an overlap and, so al-
ready a few complete sweeps of a lattice will significantly exceed the period of
the generator, and even more dramatically exceeding the value

√
p considered to

be safe when using LCGs. In [68] it was sufficient to determine the critical point
of the two dimensional and three dimensional Ising model with high accuracy.

If more sophisticated pseudo-random number generation is needed, alterna-
tives are available. [89] compares different implementations of simple pseudo-
random number generators (LCG and Fibonacci) for spin model implementa-
tions. The HybridTaus generator presented in [103] uses the output of a LCG
and combines it with the output of a Tausworthe generator [104]. The CUDA
SDK provides an implementation of the Mersenne Twister generator. The sam-
ple program runs a set of 4096 Mersenne Twister generators in parallel that run
in a thread layout of 32 blocks which consist of 128 threads. If the thread lay-
out is adjusted it should be possible to use it as a drop-in replacement for our
presented LCG. It has a period of about 2607. A pseudo-random number gener-
ator on a GPU called MTGP is presented in [99], which is a variant of Mersenne
Twister. The period of this method is 211213. Finally, there is CURAND, which is
also available in the CUDA SDK with a period of 2192.

This section has been published word for word in [74].

3.3.7 Optimizing Memory Lookup
In my diploma thesis [75] and in [76], we proposed a memory encoding

scheme for the 2D Ising model to account for the long latencies for memory
access on a GPU by avoiding memory accesses and substituting them by com-
putations which are very cheap on the GPU. We will describe it here before
continuing to an improved scheme in section 3.3.8. The encoding was measured
to perform nearly 200 times faster on a single Tesla C1060 GPU when combined
with a reasonable update scheme, compared to a single CPU core of the Nehalem
architecture that runs a straight-forward non-parallel implementation (see sec-
tion 3.5). From this result, one can draw the conclusion that architecture specific
optimization is very important—on the GPU as well as on the CPU—especially
if performance comparisons are drawn between those architectures. The spin
field in a memory layout is memory optimal and reduces memory lookups. The
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spin field on the graphics card is encoded in blocks of 4 × 4 spins (hereafter
referred to as “meta-spins”) which can be stored as the digits of one unsigned
short integer (2 byte) and can be accessed by a single memory lookup.

Single spin values can be extracted from a meta-spin using the conversion

s[x,y] = ((metaspin & (1 << (y * 4 + x)) != 0) * 2 - 1)

which returns a value of either −1 or 1. This way, each spin uses exactly one bit
of memory. The spin field is stored in global memory which is very expensive
to access. The allocated global memory is smaller by a factor of 16, compared
to an integer spin representation: To process the spin field on the GPU, the
spin field is subdivided into quadratic sub-fields which can be processed by
threads grouped into one block. Each thread of this block processes a meta-
spin of 4× 4 spins. At the beginning of a kernel it retrieves 5 meta-spins from
the global memory—namely its own and its four neighboring meta-spins (see
Fig. 3.4 left). This information is used to extract the information of the 4 × 4
spins the thread will update as well as the neighboring spins into a 6× 6 integer
array in shared memory which allows fast computation of the spin flips. At the
end of the kernel execution the 4 × 4 meta-spins are updated with one single
global memory write. Although the update scheme sounds hardly efficient, it
dramatically reduces global memory access compared to the implementation
presented before which results in very fast computation times on GPU hardware.

In [76], a maximum lattice size of 100.000× 100.000 spins can be processed on
an individual GPU with 4 GB of global memory, using the given memory in an
optimal way. This approach encodes 1 bit per spin. Furthermore, it utilizes fast
shared memory for local computations. The whole lattice can be updated on a
Tesla C1060 in roughly three seconds.

[89] uses another approach to reduce time spent on memory lookups based on
a double checkerboard decomposition. A second, coarse checkerboard overlays
the update checkerboard, organizing the spin lattice in line with the hierarchic
memory layout of the GPU. On a fine level, the checkerboard is decomposed
into blocks of T × T spins. This size has to be chosen so that all T × T spins can
be stored in shared memory for faster access. These T × T spin-blocks are then
arranged in a coarse checkerboard pattern to fill the whole lattice. Each of the
spin-blocks is processed by one GPU thread-block with (T/2)× (T/2) threads,
which use shared memory for their common memory accesses within the block.
The lattice update is again updated in two steps. First all the white sites of the
checkerboard are updated, and afterwards all the black sites are updated. Each
of the update steps is again divided into two sub-steps. In the first sub step all
the white sites of the coarse spin-block pattern are processed, and in a second
sub-step all the black sites of the spin-block-pattern are processed. For each of
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Figure 3.4: Procedure how each thread processes a 4x4 meta-spin. First, the meta-spin
and its neighbors are looked up in global memory. After that, the actual spins are ex-
tracted into shared memory and an update pattern is created by evaluating the Metropo-
lis criterion for each of the spins. After that, the new spins are obtained using the update
pattern and written back to global memory. The figure was taken from [76].

the sub-steps, all threads have to extract the needed spins into shared memory,
and computations can be done faster using only shared memory accesses. If
more than one update of a spin block is done before memory is written back to
global memory, special care has to be taken. For low temperatures the correlation
length is typically smaller than the blocks of T × T spins. Close to the critical
temperature however, method induced problems may arise as the correlation
length exceeds the block size. This section has been published word for word in
[74].

We did not use this memory layout in the present work, because this encoding
is not reflecting the native memory access size of 128 bits of the NVidia achitec-
ture, nor is it extendable to 3D. In section 3.3.8, we present a layout that works in
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Figure 3.5: Organizing the spin lattice in 128 bit spin blocks makes memory lookup very
efficient and the update logic fast. The figure was taken from [73].

2D and 3D, stores 128 spins into 128 bits and has been used for the computations
in this thesis.

3.3.8 Revised Memory Layout and Update Scheme
This section has been published word for word in [73]. Global memory reads

on a CUDA device are done in units of 128 bits. For our lookups to perform
fastest, it is advisable to organize the simulation data in blocks of this minimum
read size.

CUDA and OpenCL both provide intrinsic data types that come in sizes of
128bits, such as float4, int4 or uint4. We will use uint4 in our implementation,
since each binary digit of the 4 32 bit integers can represent the state of a single
spin (up or down).

For the purpose of explanation, we use the following definition in C++:

1 struct uint4

2 {

3 uint32& operator[](uint32 i) { return e[i]; };

4 union

5 {

6 struct { uint32 x, y, z, w; };

7 uint32 e[4];

8 };

9 };

It is important to find a memory layout for the simulation lattice, that makes
efficient use of the memory structure of the underlying device. We present two
memory layouts that organize the spin lattice into blocks of 128 spins, one for
the two-dimensional and one for the three-dimensional case.

For the two dimensional model the blocks are organized in 8× 16 spins, while
in three dimensions they are organized in 4× 4× 8 spins (see fig. 3.5 for a single
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Figure 3.6: Organizing the spin lattice in 128 bit spin blocks makes memory lookup very
efficient and the update logic fast. The figure was taken from [73].

block and 3.6 for the lattice layout). This is the size of one uint4 which is defined
in CUDA as well as in OpenCL. For the host we can define it as follows: We
define a size lb = 8 for 2D and lb = 4 for 3D, so the blocks are of sizes lb × 2lb
for 2D and lb × lb × 2lb for 3D, and a size lt so that the total spin field is of size
ltlb× ltlb for 2D, and ltlb× ltlb× ltlb for 3D. This way the spin field contains lt× lt

2
blocks for 2D, and lt × lt × lt

2 blocks for 3D. Each of this blocks is processed by a
separate thread on the GPU.

A spin Sijk at position (i, j, k) in the linear array for the spin field SF can then
be looked up from memory by splitting up its index to:

(i, j, k) = (it · lb + ib, jt · lb + jb, kt · lb + ib) (3.5)

then first retrieving its spin block

SB(it, jt, kt) = SF[it + jt · tt + kt · (lt)2] (3.6)

and from that, the actual spin:

S(i, j, k) = SB(it, jt, kt)[i + j · lb + k · lb · lb] (3.7)

For 2D, k ≡ 0.
Since this lookup has to be implemented using the native data type uint4, the

actual lookup looks different because the 128 bits of data are spread over 4 32

bit unsigned integers. Also, single bits cannot be looked up directly but have to
be extracted out of the 32 bit unsigned integers in memory. In the end, the bits
need to be mapped to the spins they represent according to

[0, 1]→ [−1, 1] (3.8)
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Figure 3.7: Extracting and processing a row of spins at a time. The figure was taken from
[76].

So in reality, a memory lookup looks like

S(i, j, k) = SBuint4[x div 32]&(1<<(x mod 32) · 2− 1 (3.9)

with

x = i + j · lb + k · lb · lb (3.10)

where mod denotes a modulo operation, div an integer division, & a bitwise
and operation and << a bitwise left shift operation.

A spin block is most efficiently processed by extracting and processing one
horizontal line of spins from a spinblock at a time. This works the same way in
2D and in 3D, with the difference that there are 4 neighboring spins to be looked
up in 2D, and 6 neighboring spins in 3D.

A full line can be extracted from a spin block (block) (see figure 3.7) into
a target buffer (targetBuffer) of ints (for fast computation) using the following
routine:

1 extractLine(block, y, z, int* targetBuffer)

2 {

3 int startPos = iBlock(0,y,z);

4 int offset = startPos % 32;

5 unsigned int spinBlock = block[startPos / 32];

6 for (int i = 0; i < lb; ++i)

7 targetBuffer[i] = ((spinBlock &

8 ( 1 << (offset + i)))

9 >> (offset + i))*2 - 1;

10 }

The extracted spins are used to evaluate the interaction energy difference in
the Metropolis step, evaluate the Metropolis criterion and update the spins in the
line accordingly. After the line is processed completely, the next line is processed
by looking up and extracting the new required spins from memory, and keeping
those in memory which can still be used from the previous line.
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3.3.9 Multi-Spin Coding
This section has been published word for word in [74]. Multi-spin coding

refers to all techniques that store and process multiple spins in one unit of com-
puter memory. In CPU implementations, update schemes have been developed
that allow to process more than one spin with a single operation [105, 106, 94].
In [76], we provide an approach with a scheme which encodes 32 spins into one
32-bit integer in a linear fashion. It was used as a CPU reference implementation
since it performs very fast on the reference CPU. The 32-bit type is chosen since
register operations of current hardware perform fastest on this data type. It de-
pends on a large pool of 32-bit Boltzmann patterns, which are recalculated spin
flip patterns that encode evaluations of the spin flip condition

r < exp(−∆H /kBT)

for every single spin bit—the variate r is an independent and identically-distrib-
uted random number in [0, 1). Since for H = 0, there are only two possi-
ble energy differences ∆H with ∆H > 0, two Boolean arrays can encode
the information of an evaluation of the flip condition. For reasonable results,
Ito [94] suggested to use a pool of 222 to 224 Boltzmann patterns. If we call
the arrays exp4 and exp8, the encoding is chosen to store 0 (zero) into exp4

if exp(8J/kBT) < r < exp(4J/kBT) and 1 (one) if not, and a 1 into exp8 if
r < exp(8J/kBT) and a 0 if not. [94] presents a way to encode the evaluations of
these expressions in those pools of patterns in advance for each digit in a 32-bit
pattern.

These schemes can perform extremely fast, however, they are very restricted
since it is much harder to incorporate external forces. A GPU implementation
was developed as well in the scope of [76], but because of the dependence on
excessive random global memory lookups for precomputed random numbers, it
proved not as fast as more straight forward implementation with GPU generated
random numbers.

3.3.10 Multi-GPU Implementations
For a multi-GPU implementation, we can go a step further and split up the

spin lattice into subdomains. These subdomains can be stored in the memory of
different GPUs in different or the same machines and processed on those GPUs.
This has been done as part of my diploma thesis [75] and published in [76] and
has been proven to be very efficient.

For the simulation to remain physically correct, in each step we have to trans-
fer the spins at the borders of the domain between neighboring GPUs (figure
3.8). In this current implementation, we go a step further and simulate one more
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Figure 3.8: (a) shows how periodic boundary conditions can be implemented by simu-
lating 1 excess row of spin blocks on both sides for each dimension. A memory exchange
transfer is needed between the red and blue regions to propagate physical information
across the border. This scheme can be used to spread the simulation lattice over more
than one GPU for each dimension (b). Spin data has to be transferred between the do-
mains as indicated by the red and blue arrows. The memory transfer is necessary after
nb time steps, where nb is the linear dimension of the spin block, to make sure physical
information is properly propagated over the domain borders. (Information spreads by
one spin block per time-unit). The figure was taken from [76].

block at the border of each domain. This can even be used in the single GPU case,
so periodic boundary conditions are simulated automatically without keeping
track of them explicitly.

As shown in [76], higher performance can be achieved and larger system sizes
are possible by putting multiple quadratic lattices next to each other in a super-
lattice and let each lattice be handled by an array of multiple GPUs. When updat-
ing a single spin, it needs the information about its 4 neighbors. On the border
of each lattice, at least one of the neighboring sites lies in the memory of an-
other GPU. For this reason the spins at the borders of each lattice have to be
transferred from one GPU to the GPU handling the adjacent lattice. This can be
solved by introducing four neighbor arrays holding the spins of the lattices’ own
borders and four arrays for storing the spins of adjacent neighbors [76].

In [90], different, more sophisticated approaches for using multiple Graphics
Processing Units in the simulation of spin systems are presented. The actual
implementation benchmarks the 3D Heisenberg spin glass model, but it should
be straight-forward to apply it to the Ising model. It is shown that it is possible
to hide almost completely the communication overhead by using the CPU as
a communication co-processor of the GPU. Large scale simulations on clusters
of GPUs can be efficiently carried out by following the same approach also for
other applications where a clear cut exists between bulk and boundary data.
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3.4 Validation
The GPU implementations are usually compared to simple [68] or more so-

phisticated [76, 107] implementations on both CPU and GPU. As a measurement
for the performance of an implementation, it makes sense to use the number of
single spin flips per second, which also allows to compare results for differ-
ent lattice sizes. The purpose of the CPU implementation usually is to have a
fast and fair non-parallel reference implementation, not to benchmark the CPU.
Therefore, most of the time, only one core of the CPU is used (without Hyper-
Threading Technology).

The Binder cumulant U4 is an extremely reliable test for the correctness of a
Monte Carlo simulation for static simulations. It is defined as

U4(T) = 1− 〈M(T)4〉
3〈M(T)2〉2

where M(T) is the magnetization per spin of a configuration for a simulation
carried out at temperature T. It is used in [68] to prove the correctness of the
parallel checkerboard update pattern, and in [92] to show the correctness of the
parallel cluster updates using the Wolf algorithm.

Special care must be taken for all parallel spin update schemes when using
them for dynamic studies as e.g. in [108, 109], because various investigations
have shown that the different parallel update schemes lead to qualitatively dif-
ferent (to varying degrees) dynamics in Monte Carlo time. [89] uses the time
correlation function to investigate the dynamic behavior of different versions of
shared memory implementations. This section until this point has been pub-
lished word for word in [74].

As mentioned before, the time correlation function of the checkerboard up-
date, which selects the black and white sites alternatingly in a ABABAB pat-
tern, shows that the time correlations decrease much more rapidly in a pure
checkerboard update and thus lead to completely different dynamics. One thing
we tried was to replace the ABABAB deterministic selection probability of the
checkerboard sites with choosing black and white update steps randomly.

This leads to dynamics which are similar to a fully random selection, although
the dynamics is unfortunately still distinct, and has even larger time correlations
than a fully random selection.

3.5 Performance
We define the speedup of a GPU implementation in the same wording as in

[110] as the ratio
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Figure 3.9: The time autocorrelation function g(t) in a 2D Ising model of size 496× 496.
The pattern in which spins are selected for update have a significant effect on the spin
correlations between different times. An interesting observation is that a deterministic
ABAB checkerboard update leads to the fastest disappearance of correlations in the
system.

s =
tCPU

tGPU
(3.11)

between the time tCPU that is spent on computation in a non-accelerated imple-
mentation and the time tGPU that is spent on computations in a GPU accelerated
implementation.

Since not all of the program code can be accelerated using a GPU, a fraction
of the program code will always be executed on the CPU. Hence, we split the
time tGPU into two parts

tGPU = tGPU, accel + tunaccel, (3.12)

where tGPU, accel is the execution time for the part of the program that is actually
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executed in parallel on a GPU and tunaccel is for the rest of the code that stays in
the CPU and is not executed in parallel.

For the CPU time, we can do the same split

tCPU = tCPU, accel + tunaccel, (3.13)

which yields the following formula for the speedup of the GPU accelerated pro-
gram

s =
tCPU, accel + tunaccel

tGPU, accel + tunaccel
. (3.14)

Here tCPU, accel refers to the execution time on CPU of that part of the program
which we have also implemented in parallel in GPU accelerated version.

From (3.14), the maximum possible speedup corresponding to the case tGPU,accel =
0 is

smax =
tCPU, accel

tunaccel
+ 1. (3.15)

We benchmark the simulation package on an Intel Core i7 Nehalem machine
with 2.67 GHz and a second to last generation consumer graphics card by Nvidia
(Geforce 580) as well as on a comparable consumer graphics card by AMD
(Radeon HD6970). As a measurement of the performance of an implementation,
we use the number of single spin flips per second, which also allows to compare
results for different lattice sizes. The temperature is set to 0.99 · TC. Figure 3.10

and 3.11 show the quantitative results of the benchmarks for two and three di-
mensions. In figure 3.10, the different implementations of the two-dimensional
system are benchmarked for different system sizes. The performance is roughly
comparable with the speedups achieved previously in [76]. fig. 3.11 shows the
same for the three-dimensional case. As we would expect, CUDA performance
for the two dimensional Ising model is comparable to the results obtained in
[76]. This shows that the framework could be generalized to different architec-
tures and also to three dimensions without sacrificing efficiency.

3.6 Canonical Simulation
For a lot of problem-sets, it is more convenient to work in the canonical ensem-

ble. The canonical ensemble can i.e. be used to stabilize a droplet [8, 111] phase,
and investigate the line tension / surface tension of the droplet and compare it
quantitatively to the results available and obtained for the flat surfaces.

A canonical simulation poses more problems for a parallel simulation, espe-
cially since the simulation needs to fulfill ergodicity.
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Figure 3.10: Single spin flips per nanosecond for a two dimensional system. Perfor-
mance of OpenCL and CUDA on the Nvidia card are more or less comparable, while
AMD clearly lacks behind. Also the largest system size fails to start for an unknown
reason. This might be a due to an architectural limitation on AMD cards. Intels OpenCL
implementation scales very well and impressively with the amount of cores on the i7
Nehalem processor. The figure was taken from [76].

The general idea of a canonical simulation is to replace the spin flip move with
a spin exchange move. This means that for each spin that is flipped up, there has
to be another spin flipped down in the lattice and vice versa.

3.6.1 Fisher-Yates Shuffle
The selection of spins needs to be done randomly, but in a way that we can

make sure that no spin and one of its neighbors ever gets updated at the same
time. One solution to this problem is to subdivide the spin lattice into blocks, and
pair them up prior to execution of the update kernel. The problem of assigning
each block exactly one partner in a way that each partner exactly gets chosen
once is solved by the Fisher-Yates shuffle [112]:

1 for (int32 i = 0; i < BLOCKS; ++i)

2 {

3 shuffle[i] = i;

4 }
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Figure 3.11: Single spin flips per nanosecond for a three dimensional system. The Nvidia
card fares again nearly equally well on CUDA and OpenCL. AMDs performance is not
much behind in this case, making the use of an AMD card a true alternative. The figure
was taken from [76].

5

6 for (int32 i = BLOCKS - 1; i > 0; --i)

7 {

8 int j = rand(i+1);

9 int temp = shuffle[i];

10 shuffle[i] = shuffle[j];

11 shuffle[j] = temp;

12 }

We found that using a LCRNG does affect the quality of the simulation (in
fact it introduced a systematic error in our case), so a better random number
generator is strongly advised here. Also special care has to be taken because it
is easy to introduce a modulo bias when selecting random number in a range
of [0; (i + 1)]. Generating a random number in a variable range guarantees that
some of these ranges will not evenly divide the natural range of the random
number generator. The remainders will not be evenly distributed but distributed
in favor of smaller numbers.
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3.6.2 Ergodicity
A problem that has to be taken care of here is to make sure that spin exchange

is happening between all subsystems of the lattice. Even the checkerboard al-
gorithm used for parallelization of the Ising model Monte Carlo update does
strictly not fulfill ergodicity, since when exchanging spins, spins are only ex-
changed between black and black (white and white) sites of the lattice.

This can be solved in theory by mixing regular truly random exchange moves
in between the parallel lattice updates once every N steps and choose N so that
it does not affect GPU performance.

3.7 Hardware Abstraction
We aimed for a versatile and truly platform independent implementation of

the Ising model that performs efficient in two as well as in three dimensions.
This section has been published word for word in [73].

Platform independence is achieved by abstracting away API specific imple-
mentation details and reusing the update kernel for different APIs. Performance
is comparable between OpenCL and CUDA on the same hardware (Nvidia),
however there are major differences between implementations of different ven-
dors.

Performance could in theory be improved by making explicit use of the vector
hardware that underlies the AMD architecture. This would however sacrifice
portability and would need another round of optimization.

This section highlights the interfaces used to abstract from the different hard-
ware platforms used.

Device (IDevice)
The device implements the basic functionality of setting up the parallel com-

puting device in CUDA or OpenCL. The most important functionality the IDe-
vice interface needs to provide is LoadSource(). In OpenCL, it reads a OpenCL
program source file, compiles it, parses it for kernels and exposes the kernels by
their names as Device Programs (see below).

In CUDA, runtime compilation is not supported, so we are limited to reading
precompiled compiled device modules (using cuModuleLoad).

Device Program (IDeviceProgram)
Programs that are executed on the device come in very different flavors. In

early APIs for programming graphics processing devices, it was only possible to
program them in a machine language or very specific custom code. Today, most
of the GPGPU/massively parallel programming environments provide a way to
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3 GPU Implementation of the Ising Model

specify them in a C-like language. This allows for writing a preprocessor (or
using the C preprocessor) to wrap the implementation specific differences into
macros that hide away the platform dependent differences.

A major difference between CUDA and OpenCL is that CUDA code cannot be
compiled at runtime, but has to be compiled to byte code before the program is
executed. Each program can be passed input parameters, that are then mapped
to function arguments of the kernel. These can be either POD types or pointers
into device memory. The functions SetInputParameter and SetInputContainer
are used for this purpose. The basic interface for the device program can be
expressed very simply:

SetInputParameter, this is called before the kernel is run, and can be used to
pass small data (e.g. the temperature T of the system) to the kernel.

SetInputContainer, this is also called before kernel execution and is used to give
the kernel access to large areas of memory (e.g. the spin field in our Ising
simulation). This large area of memory is managed by a Data Container.
(see section 3.7).

Run, after all Parameters and Containers are passed to the kernel, it is executed
with a single call to Run.

This interface can be is implemented by a CCUDADeviceProgram and an CCLDe-
viceProgram which internally deal with the API specific differences. For CUDA,
we use the Device API, so we are free to load different kernels at runtime. The
kernels have to be compiled to bytecode as opposed to OpenCL, where the kernels
are compiled directly from source.

Data Container (IDataContainer)
CUDA as well as OpenCL provide similar ways to allocate storage space on

the device memory and transfer data between memory spaces in the host mem-
ory. The data container is an abstraction of storage space on the device, with a
mapped memory on the host device that can be used in a number of different
Data Access Modes. The data container is created with a given size and dimen-
sionality as a parameter. Upon construction, the Data Container allocates the
needed memory space on the host, as well as on the device.

We define several access modes for allocated memory on the GPU:

DA_READONLY, which is for memory that can only be written to from the
host and only read by the device
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DA_WRITEONLY, which is for memory that can only be written to by the
device and is not accessible for reads from the device. It is used for pure
output data from the kernel execution.

DA_READWRITE, this is two way memory that can be written and read di-
rectly from the device during kernel execution.

There are two important functions which the IDataContainer interface has to
provide.

HostLock(), this locks memory on the host and returns a pointer to the mem-
ory. This means when this function is called, the container will make sure
that if the memory has been locked on the device since the last call to
HostLock(), it will copy over the latest data from the device down to the
host.

DeviceLock(), if a kernel is called with a Data Container as input, a call to De-
viceLock() will be done. If the last call was to HostLock(), or no call at all,
the memory will be copied to the device, so it is accessible from the kernel.
If DeviceLock( has been called before, no copying is done. If HostLock() is
called after DeviceLock() the memory will be copied back to the host.

This behavior guarantees that whatever owner (host or device) locked the mem-
ory last, will obtain the latest version of the data in the container.

3.7.1 Kernel Definition
The behavior of each Device Program is declared in a kernel definition. As

stated before, they can be declared in a C-style language. We are using the built-
in preprocessor of each implementation of the C-like language to translate the
kernel definition into the native language (CUDA/OpenCL). To hide away plat-
form dependent differences, each kernel definition file has to include “unified-
kernelint.h” because here, all the necessary preprocessor macros are defined.

Header
A function is defined by the following platform independent sequence which

uses the macros DEFINE_KERNEL and END_DEFINE_KERNEL:
DEFINE_KERNEL(name) argument list END_DEFINE_KERNEL {body}

This sequence translates into one of the following, dependent on the API in
use:

CUDA extern C __global__ void name(argument list) { body }

OpenCL __kernel void name(argument list) { body }
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Access to Execution Coordinates from Within the Kernel
The local and global coordinates of a kernel that is executed in a grid of threads

are accessible via the macros
GROUP_ID_X, GROUP_ID_Y, GROUP_ID_Z

For the global coordinates and
LOCAL_ID_X, LOCAL_ID_Y, LOCAL_ID_Z

for the local coordinates.
On CUDA, this maps to blockIdx.[x,y,z] and threadIdx.[x,y,z], while on OpenCL

it maps to get_group_id(0-2) and get_local_id(0-2).
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Chapter 4

Interfaces in the 3D
Ising Model

4.1 Introduction
While the previous chapter has demonstrated that an efficient parallel GPU

implementation can outperform a non-parallel CPU version by orders of magni-
tude, this chapter sets on to prove that these numbers have significance beyond
synthetic benchmarks. We will use it to improve on previous investigations in
the 3D Ising model, especially those by Winter et. al. [41] and Kim et. al. [42].

It turns out that the additional resources we have through the implementation
detailed in chapter 3 combined with some new methodical ideas described in
chapter 2, enabled us to come up with a range of new results in understanding
the interfacial properties of a two-phase Ising system with an interface.

We take a close look at the mechanisms that induce the roughening transition
(section 1.3) which occurs at a finite temperature TR in the 3D Ising model. This
transition is believed to be induced by an appearance of a Step Free Energy at low
temperatures, where the thermal fluctuations are large enough to overcome the
underlying structure of the lattice and interfaces align along a lattice plane. The
scaling behavior of the Step Free Energy which has previously been investigated
in SOS models is reproduced in our system in section 4.7. The results are able to
reproduce the theoretical predictions of Fisher et. al. [25] concerning the surface
stiffness to great accuracy in section 4.6 which has not been done to this extend
in numerical simulations. A line tension contribution is investigated in section
4.9 and a contact angle dependence of the line tension could be verified.

To understand the free energies related to the different surfaces that are present
in the system under investigation, we have a closer look at the geometry, and in-
troduce some necessary variables.

4.2 Interfacial Free Energies
In figure 4.1, the geometry of the system is specified. This special geome-

try allows us to investigate a surface between a majority-up phase (+) and a
majority-down (−) phase which is inclined by an angle Θ with respect to a crys-
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magnetic eld:

Figure 4.1: The simulation geometry. Over the boundaries of the y-dimension, (gener-
alized) anti-periodic boundary conditions are transmitted. The boundary conditions in
y-direction stabilize a flat interface between the two phases. In x-direction, the simula-
tion domain is bounded by hard walls, which can be adjusted to a external wall field
of magnitude |H|, so the uppermost and lowermost layers of spins feel the influence of
the wall field. When an external H-field is applied to the Ising-spins next to the wall,
the interface is tilted with an angle Θ with respect to the wall surface. If the wall field is
adjusted so the upper field has a value of +H, while the lowermost has a value of −H,
the symmetry does not favor any of the two phases and the interface gets tilted without
a systematic drift in any direction.

tal axis. In z-direction, there are periodic boundary conditions, so the system is
translationally invariant in this direction. Our intention is to stabilize a single
surface, which is achieved with (generalized) antiperiodic boundary conditions
(see sections 2.2.3 and 2.2.4).

In the y-z plane, we have applied a magnetic field of magnitude |H|. One wall
has a magnetic field of +H, while the other one has a magnetic field of −H,
so no drift is introduced. This symmetry needs to be reflected by the boundary
conditions in y-direction. The antisymmetric wall field tilts the surface by an
angle (90◦−Θ). This breaks the translational symmetry in x-direction, so that we
have to generalize the periodic boundary conditions in y-direction (see section
2.2.4).

The magnitude of this field |H| has to be chosen such that one stays in the
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4.2 Interfacial Free Energies

partial wetting regime (section 1.4.1) of the Ising model. If one would choose
|H| so large that one would be in the regime of complete wetting (section 1.4.1),
the interface would be parallel to the walls (for Lx → ∞) i.e. (Θ = 0).

We use γ(Θ) for the interface tension of a planar interface between coexisting
phases in dependence of the contact angle Θ. Note that the interface is only tilted
with respect to the y-z plane. The most general case where these contact lines
are tilted relative to the x-axis by another angle φ, is not studied for simplicity
([113] however studies the interface tension anisotropy in the 111 interface in the
3D ising model).

This interface tension γ(Θ) between the (+) and the (−) phases depends on
the angle Θ relative to lattice direction (angle with interface normal is 90◦ −
Θ) wall tensions γ(±)(±|H|), where the upper index refers to the sign of the
spontaneous magnetization. A suspected line tension contribution is denoted by
τ(|H|, Θ).

This leads to a total interfacial free energy contribution which takes into ac-
count all interfaces in the system

Fint = L̃Lzγ(Θ)

+ Lz

(
Ly + L̃ cos Θ

2

)
γ(+)(+|H|)

+ Lz

(
Ly − L̃ cos Θ

2

)
γ(−)(+|H|) (4.1)

+ Lz

(
Ly − L̃ cos Θ

2

)
γ(+)(−|H|)

+ Lz

(
Ly + L̃ cos Θ

2

)
γ(−)(−|H|)

When we change the signs of the magnetization and of the fields, the Ising
system stays invariant. This leads to the following symmetries:

γ(+)(+|H|) = γ(−)(−|H|)
γ(−)(+|H|) = γ(+)(−|H|) (4.2)

These symmetries allow simplification of equation 4.1 which leads to
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Fint = L̃Lzγ(Θ)

+ Lz
(

Ly + L̃ cos Θ
)

γ(+)(+|H|) (4.3)

+ Lz
(

Ly − L̃ cos Θ
)

γ(+)(−|H|)

using L̃ = Lx/ sin Θ. Here, the constraint that the total magnetization is zero has
been used by the symmetry already.

Fint = LxLzγ(Θ)/ sin Θ

+ Lz(Ly + Lx/ tan Θ)γ(+)(+|H|) (4.4)

+ Lz(Ly − Lx/ tan Θ)γ(+)(−|H|)

The free energy needs to be determined first. When determined, it can be
used to extract the different contributions and dependencies from it to gain more
knowledge about the nature of the interface.

4.3 Free Energy Integration
There are plenty of different methods to extract free energies from a physi-

cal system. We will use a method that is called Thermodynamic Integration. The
idea is to start at a point in phase space for which the free energy has a known
value, and integrate over a certain path in phase space to the point we are inter-
ested in. In our case, this path starts with a Θ = 90◦ configuration from a zero
temperature state. Then it moves along the temperature axis towards a specific
temperature to obtain the values of the surface tension and the line tension for
an interface aligned along the grid. From there, the integration is done along the
path where the temperature is kept constant, and the wall field H is increased in
even steps to obtain the free energy of a configuration with a certain angle that
matches the H field. The path in configuration space is depicted in figure 4.2.

4.3.1 With Respect to Temperature
In this section we show how thermodynamic integration with respect to tem-

perature can be used to extract the free energy of the system

F(T) = U(T)− TS (4.5)

therefore
βF(β) = βU(β)− S/kB
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4.3 Free Energy Integration

Figure 4.2: The integration
path in the T-H plane for the
thermodynamic integration.
First, an integration along
the temperature axis is per-
formed, after that comes the
integration along the external
field H.

with β = 1/kBT.
Differentiation leads to

∂(βF)
∂β

= U(β)

which is an observable quantity in our system. Integrating again over β leads
to the following expression for a free energy difference at two temperatures β1
and β2.

β2F(β2)− β1F(β1) =

ˆ β1

β2

U(β′)dβ′

The last expression leads us to the observation that to get an explicit value for
F(β), we do not only need the full temperature dependence of U(β), but also a
known value for the free energy F(β) at a known temperature β2.

A known value for F(β) is

F(β→ ∞)→ U(β→ ∞).

In this case, the free energy is the same as the Internal Energy of the system.
Since U(β) differs at large β from U(β→ ∞) by terms of order exp(−6βJ) in the
bulk and exp(−4βJ) at a planar interface, it suffices to choose β2 finite but large
enough so that these terms (exp(−6βJ), exp(−4βJ)) are neglibibly small. We
now consider the difference in free energy between two systems which both have
linear dimensions Lx × Ly × Lz. One system has periodic boundary conditions
in y and z directions, and hard walls in y-z plane and a free energy Fp. The other
system has antiperiodic boundary conditions in y-direction and a free energy Fa.
We now consider the difference

Fp − Fa = ∆F = LzLxγvl + 2Lzτ.
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4 Interfaces in the 3D Ising Model

We can also exploit the fact that the interfacial free energy (and the line ten-
sion) are strictly zero in the regime of the disordered phase. The bulk free ener-
gies of the phases with positive and negative magnetization in the bulk are the
same, and therefore contributions from the bulk free energies cancel when one
considers the difference Fp − Fa. For H = 0 the wall free energies of the two sys-
tems cancel out as well. So only contributions due to the surface tension γvl and
the line tension τ remain. If we chose a system with β2 < βc above the critical
temperature, the free energies of the two systems (periodic and partly antiperi-
odic) are the same, so the internal energy difference reduces to a difference in
free energies at the end temperature β1.

ˆ β1

β2

[
Up(β′)−Ua(β′)

]
dβ′ = β1(Fp(β1)− Fa(β1))− β2(Fp(β2)− Fa(β2))

= β1(Fp(β1)− Fa(β1))

Of course, β2 must be chosen much smaller than βc, so finize size effects of
order exp(−Ly/ξ) where ξ is the bulk correlation length are negligibly small.

Let us consider two different systems with sizes

L(1)
x × Ly × Lz

and
L(2)

x × Ly × Lz

Using the free energy difference ∆F we can extract the absolute value of the
surface tension, if we vary Lx and keep Lz and Ly constant:

∆F(2) − ∆F(1) = Lzγvl

(
L(2)

x − L(1)
x

)
,

which makes it possible to extract the surface tension γvl

γvl =
1
Lz
· ∆F(2) − ∆F(1)

L(2)
x − L(1)

x

(4.6)

The surface tension γvl is shown in figure 4.3 for different temperatures.
We can also extract the line tension τ, by varying Lz and keeping Ly and Lx

constant
∆F(2) − ∆F(1) =

(
L(2)

z − L(1)
z

)
(Lxγvl + 2τ)

if we know γvl:
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τ =
1
2

(
∆F(2) − ∆F(1)

L(2)
z − L(1)

z

− Lxγvl

)
(4.7)

This integration has been carried out by Kim et. al. [42], the results have been
verified and are used as a starting point to calculate the free energy contributions
of the interfaces when the translational symmetry in x-direction is broken by an
external wall field as elaborated on in the next section. The results for τ are
shown in figure 4.3.

4.3.2 With Respect to the Wall Field
The free energy of a system with generalized antiperiodic boundary condi-

tions in y-direction and a wall field H 6= 0 and the free energy of the same
system with H = 0 are compared. (Recall that for H = 0 APBC and GAPBC are
equivalent.) A suitable variation in system sizes in all three dimensions leads
to expressions that allow to extract the difference in surface tensions γ(H 6=
0) − γ(H = 0) (section 4.5) and in the line tensions τ(H 6= 0) − τ(H = 0)
(section 4.9).

Fs(H) = Fs(H = 0)− HMs (4.8)

Here, Ms is the magnetization in the layer on which the surface field H acts.
Then in analogy with the well-known relations for the bulk we have Ms =
−(∂F(H)/∂H)T. In the case of wall fields H 6= 0, the difference in Surface Free
Energy to the system with no wall field can be estimated using thermodynamic
integration

∆Fs(H) = Fs(H)− Fs(0) =
ˆ H

0
dH′〈∂Fs(H′)

∂H′
〉 = −

ˆ H

0
dH′〈Ms(H′)〉, (4.9)

where Ms(H) denotes the surface magnetization of both surfaces added to-
gether. Following from the symmetry of the system, the total average surface
magnetization should be two times the magnetization of one surface. It follows
the simple definition

Ms = # ↑ −# ↓
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Figure 4.3: The surface tension γ0(T) (a) for different temperatures from the equation
4.6 as calculated by Hasenbusch et. al. [114]. This data has been verified in our simula-
tion and used as a basis for the integration of the angle dependent tension in section 4.5
and the stiffness calculation in section 4.6. The line tension τ(T) (b) for different tem-
peratures from the equation 4.7 as calculated by Kim et. al. [42]. The line tension data is
used in section 4.9 to construct the contact angle dependent line tension τ(Θ, T).
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4.4 Contact Angle
If an external H-field is applied to the Ising spins next to the wall, the contact

angle between the surface and the walls is expected to change from 90◦, so the
interface is no longer aligned with the lattice orientation.

The H-field dependence of this contact angle has been investigated by Winter
et. al. [27] using Young’s Equation [26] in its standard form which ignores any
dependence of γvl(T) on the orientation of the interface relative to the lattice
axes

γvl(T) cos(Θ) = f (+)
s (T, H)− f (−)s (T,−H), (4.10)

where f (+)
s (T, H) and f (−)s (T,−H) are the surface free energies attributed to the

part of both phases which are in contact with the upper and the lower wall. We
first provide a derivation of Young’s Equation from our geometry.

4.4.1 Derivation of Young’s Equation
Young’s equation should be a result of minimizing the free energy of the sys-

tem with respect to the contact angle Θ. The angle Θ is now given by the condi-
tion that ∂Fint/∂Θ = 0 or in other words, that Fint(Θ) must be at a minimum.

To this end, we use the following approximation:

γ(Θ) = γ independent of Θ,

and therefore
∂γ

∂Θ
= 0 for all angles Θ.

It is not clear that this approximation is justified, and in fact we will see later that
it is wrong in our case. It becomes correct only close to the critical point of the
bulk, where the correlation length of the magnetization fluctuations becomes
much larger than the lattice spacing and all corrections to the critical scaling
behavior due to lattice anisotropy become negligible. However, we want to study
the region well below the critical temperature. For the purpose of this section,
we assume the approximation to be true, so the minimization of the free energy
F(Θ) (equation 4.4) yields

∂Fint

∂Θ
= 0 = −LxLzγ cos Θ

sin2 Θ
(4.11)

−LxLzγ(+)(+|H|) 1
sin2 Θ

+LxLzγ(+)(−|H|) 1
sin2 Θ

which leads to
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⇒ γ cos Θ =
[
γ(+)(−|H|)− γ(+)(+|H|)

]
(4.12)

which is the familiar form of the Young’s equation [26]. We are not able to
measure the quantity [

γ(+)(−|H|)− γ(+)(+|H|)
]

in equation 4.12 directly in our present geometry. So, to use Young’s equation
for an estimate of the contact angle in our system, we use a different system
geometry. Winter et. al. [41] describe a system with periodic boundary condi-
tions which allows easy extraction of the mean magnetizations of the uppermost
(〈m(−)

o 〉) and lowermost (〈m(−)
u 〉) layers of spins. These are needed for calcula-

tion of the free energies in equation 4.10. We follow along the same line, but
with much larger systems. We use our grand canonical GPU implementation to
simulate a system with periodic boundary conditions (figure 4.4) and with the
size

88× 504× 504

which allows for investigation of a large range of angles and two larger sizes

184× 504× 504 as well as 504× 504× 504

for closer investigation of the behavior at small angles, since for small angles Θ
finite-size effects are more pronounced. Simulations are done at different tem-
peratures ranging from well below the roughening transition temperature TR
(T = 1.5) up to temperatures near the bulk critical temperature TC (T = 4.2).
The magnetization difference mo−mu is averaged over a large number of Monte
Carlo steps (100.000). A measurement for a system of size 88× 504× 504 can be
seen in figure 4.5. Thermodynamic Integration (section 4.3) yields the data in figure
4.6. This is put in equation 4.12 to extract the surface angle Θ. The results of this
procedure are shown in figure 4.7.
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4.4 Contact Angle

Figure 4.4: A grandcanonical simulation of a system (88× 504× 504) with periodic bound-
ary conditions (PBC) does not form an interface. The wall field of H = 0.8 6= 0 creates a
visible thin film of up spins in the lower layer of spins (red circle). The magnetization of
the upper layer of spins 〈m(−)

o 〉 is then subtracted from the magnetization of the lower
layer 〈m(−)

u 〉 to extract the contact angle using Young’s equation.
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Figure 4.5: The magnetization difference 〈m(−)
o 〉 − 〈m(−)

u 〉 of the uppermost and the
lowermost layer. Thus when integrated over, this difference can be used to extract the
free energy difference seen in figure 4.6
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Figure 4.6: Subtracting the integral of the magnetization of the upper layer from the
integral of the magnetization of the lower layer leads to the total free energy of the
upper layer and the lower layer combined. This free energy is the free energy attributed
to the interfaces of the spins at contact with the wall.
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Figure 4.7: Using equation 4.10, the contact angle can be extracted from the total surface
free energy of the system, under the assumption of an isotropic surface tension. The
measured data is in full agreement with Winter et. al. [27] for the temperatures that are
available for comparison. Simulations are extended to various temperatures down to a
temperature of T = 1.5
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Figure 4.8: The geometry and definitions of a two domain state system with antiperiodic
boundary conditions in y-direction and a tilted interface between them. The lengths of
the spin domains in y-dimension in the uppermost and lowermost layer are denoted by
xo
− and xu

− for the spin-down majority phase, and xo
+ and xu

+ in the spin-up majority
phase.

4.4.2 Without Young’s Equation
As we came to realize, the original form of the Young’s equation does not hold

in our case, because the assumption

γ′(Θ) = 0

is not justified. We need a modification for it to hold under these circumstances.
We will now detail a different method to estimate the contact angle by only using
geometric arguments and no further assumptions on the model. The system is
expected to form a two phase configuration like detailed in figure 4.8.

For this system, a domain state magnetization can be extracted from the up-
permost (m(d.s.)

o ) and the lowermost (m(d.s.)
u ) layer (the layers next to the walls),

which is defined as

m(d.s.)
o = (xo

−/Ly) ·mo
− + (xo

t /Ly)mo
+ (4.13)

m(d.s.)
u = (xu

−/Ly) ·mu
− + (xu

t /Ly)mu
+. (4.14)

It needs to be verified, under which boundary conditions the assumptions
mo
− = const and mu

− = const are justified. The implications of the boundary
conditions used on the surface magnetizations is described in sections 2.2.3 and
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2.2.4. In short, antiperiodic boundary conditions can be used if caution is ap-
plied, the best boundary conditions to be used are our generalized antiperiodic
boundary conditions, since they perfectly reflect the symmetry of the system.

Using equation 4.13 and the fact that mo
+ = −mu

− (see section 2.2.4) we can
write

m(d.s.)
o = (xo

−/Ly)mo
− + (xo

+/Ly)mo
+ = (xo

−/Ly)mo
− − (xo

+/Ly)mu
−

and using xo
+ = Ly − x0

−

= (xo
−/Ly)mo

− −
Ly − xo

−
Ly

mu
−

= −mu
− +

xo
−

Ly
(mo
− + mu

−).

→ xo
− = Ly

(m(d.s.)
0 + mu

−)

(mo
− + mu

+)
. (4.15)

The same argument reveals for the lower side:

xu
− = Ly ·

(m(d.s.)
u + mo

−)

(mu
− + mo

−)
(4.16)

To obtain the contact angle now, the relation xo
− − xu

− = D · tan(Θ) can be used:

Θ = arctan
(

xo
− − xu

−
D

)
(4.17)

Note that we do not imply in this analysis that the interface between the coex-
isting phases can be microscopically described as a plane, and we do not imply
that along the walls the local magnetizations are constant (mo

−, mo
+, mu

−, mu
+) up

to the contact line. Our analysis defines the interface as a dividing plane between
bulk phases, and defines the contact line as the intersection of this plane with the
wall. Thus our methods do not imply anything about the structure of the contact
line, of course.

Our simulations show that the contact angle calculated via this construction
are systematically larger than the predictions of Young’s equation, a result that
can be seen for one temperature in figure 4.9. A complete assembly of results
above the roughening transition temperature is shown in figure 4.10.
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4 Interfaces in the 3D Ising Model

Figure 4.9: The contact an-
gle for T = 3.0 at a sys-
tem size of 84 × 504 × 504,
calculated by the geometric
construction in equation 4.17

(in black) is systematically
larger than the angle calcu-
lated by means of Young’s
equation (in red). This is a
first hint that Young’s equa-
tion does clearly not hold un-
der these circumstances. We
will see that this difference
is very valuable to obtain the
angle dependence of the sur-
face tension γ(Θ) as will be
shown in section 4.5.
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Figure 4.10: The contact angle calculated by equation 4.17 for dhifferent temperatures
ranging from T = 2.5 up to T = 3.8. As revealed by figure 4.9, the curves are systemati-
cally larger than prediced by Young’s equation (equation 4.10).
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4.5 Surface Tension Anisotropy

4.5 Surface Tension Anisotropy
At high enough temperatures, thermal fluctuations can overcome the underly-

ing lattice structure as seen in figure 1.3, but at low temperatures the anisotropy
of the lattice leads to an anisotropy of the surface tension. We will now discuss
the effect of an angle dependent surface tension γ(Θ).

As discussed above in section 4.4.1, the contact angle that will be realized
in equilibrium is calculated by minimizing the surface free energy Fint(Θ) with
respect to Θ: (

∂Fint

∂Θ

)
H,T

= 0

This time we do not assume that γ′(Θ) = 0, so when deriving equation 4.4 a
new γ′(Θ)-term gets introduced.

0 =
1

sin2 Θ
· LxLz

[(
γ′(Θ) sin Θ− γ(Θ) cos Θ

)
+

(
γ(+)(−|H|)− γ(+)(+|H|)

)]
Therefore, we arrive at a modified Young’s Equation which includes a term that
is dependent on the derivative of the surface tension

γ(Θ) cos Θ− γ′(Θ) sin Θ = − d
dΘ

(γ(Θ) sin Θ) = γ(+)(−|H|)− γ(+)(+|H|)
(4.18)

Note that the term on the right is exactly the term that was extracted from
simulations in an effort to get the contact angle using the Young’s Equation
(section 4.4). We now use the abbreviation

∆γ = γ(+)(−|H|)− γ(+)(+|H|).

In case of an angle dependent line tension (see section 1.4.2 for more informa-
tion) there can be an additional term involving (∂τ/∂Θ)H, which can be of the
same order as the term with γ′, but in the limit Lx → ∞ it will eventually disap-
pear. First we solve equation 4.18 for the derivative γ′(H)

sin Θγ′(Θ) + ∆γ = −γ(Θ) cos Θ

sin Θγ′(Θ) = −γ(Θ) cos Θ− ∆γ
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4 Interfaces in the 3D Ising Model

to arrive at a first order differential equation

⇒ γ′(Θ) = −γ(Θ)
cos Θ
sin Θ

− ∆γ

sin Θ
(4.19)

which can be integrated e.g. using standard Euler-Cauchy integration

γ(H + ∆H) = γ(H) + γ′(H, γ(H))∆H

Since the integration errors are a problem except for extremely small ∆H, we
decided to use a slightly more accurate predictor-corrector method as described
here: First the predictor γ̃(H + ∆H) is calculcated,

γ̃(H + ∆H) = γ(H) + γ′(H, γ(H))∆H

which is then in turn used to derive a more accurate formula for γ(H + ∆H):

γ(H + ∆H) = γ(H) +
1
2

∆H
(
γ′(H, γ(H)) + γ′(H + ∆H, γ̃(H + ∆H)

)
Equation 4.18 is integrated to obtain the surface tension γ(Θ) given a start

value for γ(90◦) which is obtained from the accurate results given in [114]. The
original data was depicted before, in figure 4.3.

Figure 4.12 shows the integrated surface tension γ(Θ) over a range of an-
gles. At high temperatures, the anisotropy is very small and eventually becomes
negligible, for temperatures approaching and below the roughening transition
(section 1.3), the anisotropy becomes more and more important and is expected
to have an effect on nucleation rates in the Ising model and therefore of crys-
tals in a simple cubic lattice in general. Also it should be noted that the effects
of surface tension anisotropy can in some geometries be of the same order as
line tension effects (section 1.4.2). Unlike line tension effects however, the effect
of surface tension anisotropy will not disappear in the limit Lx → ∞. To bet-
ter quantify the anisotropy, it is calculated for an angle of 45◦ (table 4.11) and
plotted explicitly by showing the ratio of surface tensions γ(Θ)/γ(90◦) starting
from an interface aligned with the crystal plane (90◦) up to an angle of 45◦ for
different temperatures (figure 4.13).

Bittner et. al [113] have measured the surface tension anisotropy between the
100, 110 and 111 interface of the simple cubic Ising model. The 110 interface
corresponds to a contact angle of 45◦ in our picture. Therefore, a direct compar-
ison with their results is possible. Figure 4.14 compares our results to the results
of [113] by direct comparison of the anisotropy γ(45◦)/γ(90◦), showing good
agreement between both approaches. We have seen that, similar to ice crystals,
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4.5 Surface Tension Anisotropy

Temperature T Anisotropy γ(45◦)/γ(90◦)
2.5 1.050

2.6 1.042

2.75 1.032

3.0 1.021

3.2 1.014

3.5 1.008

3.8 1.004

Figure 4.11: Anisotropy val-
ues for different tempera-
tures. This data is visualized
and compared to literature in
figures 4.14 and 4.15.

the Ising model features a surface tension anisotropy and we were able to quan-
tify it over a large temperature range between the roughening temperature TC
and the bulk critical temperature TC with higher accuracy than previous inves-
tigations (figure 4.15).
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Figure 4.12: γ(Θ) for different temperatures in the range between T = 2.5 and T = 3.8.
This data is obtained via numeric integration according to equation 4.19. The data in
figure 4.3 was used for γ(90◦). As can be seen, the variation in the absolute value of γ
is rather small, especially above the roughening temperature TR. When approaching TR,
the variation increases significantly.
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Figure 4.13: Surface anisotropy γ(Θ)/γ(90◦) for different systems approaching the
roughening transition. The data in figure 4.3 was used for γ(90◦). Lower temperatures
feature a significant anisotropy in surface tension which is worth investigating in detail,
since it is expected to have an importance in the prediction of nucleation rates and
crystal shapes.
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Figure 4.14: Surface anisotropy γ(45◦)/γ(90◦) for different temperatures. The data can
be compared to [113] and is found to be in good agreement. We are able to predict the
value of the anisotropic surface tension for a variety of angles down to the roughening
transition temperature TR. The line only serves as a guide to the eye.
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Figure 4.15: Surface anisotropy γ(45◦)/γ(90◦) for different temperatures. We also com-
pared our results to the data of Mon et. al. [17]. The publication indicates a significant
error in their simulation data, so our results can provide much more accuracy even be-
low TR. This makes qualitative investigation of the roughening transition feasible and
interesting. The quantities that can be analyzed here are the surface stiffness and the
Step Free Energy as the order parameter of the roughening transition. At lower tempera-
tures (T < 2.0) we do not have any data for contact angles of 45◦, since the angle is not
reached with our simulation range of H ∈ [0, 0.8]. The line only serves as a guide to the
eye.
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4.6 Surface Stiffness
As elaborated in section 1.3, the surface stiffness is an important property

of interfaces, which is characterized by the stiffness coefficient κ. The surface
stiffness only has a meaning in the rough phase, because below the roughening
transition, the expansion of γ(Θ) has a leading first order term and the stiffness
is infinity. For these reasons the analysis has to be restricted to the rough phase
where

T > TR.

When the contact angle is Θ = 90◦, the interface on average coincides with a
lattice plane. For small angles we expect

γ(Θ) = γ(
π

2
)

[
1 + c

(π

2
−Θ

)2
]

Note that the interfacial stiffness is defined by

κ = γ
(π

2

)
+ γ′′

(
Θ =

π

2

)
= γ

(π

2

)
[1 + 2c]

So the constant c simply is related to the difference between interfacial stiffness
and interfacial tension

κ/γ(
π

2
)− 1 = 2c

On the other hand, we can use this expansion in the differential equation for
γ(Θ), considering the limit Lx → ∞ and using the abbreviation

∆γ = γ(+)(−|H|)− γ(+)(+|H|)
namely

γ(Θ) cos Θ− γ′(Θ) sin Θ = ∆γ

γ′(Θ) =
d

dΘ
γ(Θ) = −2cγ(

π

2
)(

π

2
−Θ)

and hence[
1 + c

(π

2
−Θ

)2
]

cos Θ + 2c(
π

2
)−Θ) sin Θ = ∆γ/γ(

π

2
)

since the data of [17] indicates that γ(Θ) − γ(π
2 ) is small for all Θ, we may

expand this equation around the contact angle in the isotropic case (Θ0).

cos Θ0 = ∆γ/γ(
π

2
)
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Figure 4.16: The constant c in equation 4.20 can be retrieved from the difference of
angles Θ−Θ0, which have already been measured. It helps evaluating in which range
of angles a linear dependence is justified. This data is for a temperature of T = 3.0. The
red bar indicates the average value over the interval [90, 85], which can be used as an
estimate for c. The data is very noisy and not optimal for the retrieval of a value for c.

to find [cos Θ = cos Θ0 − sin Θ0(Θ−Θ0), sin Θ ≈ sin Θ0] to leading order.

cos Θ0 = (Θ−Θ0) sin Θ0 + c(
π

2
−Θ0)

2 cos Θ0 + 2c(
π

2
−Θ0) sin Θ0 = ∆γ/γ(

π

2
)

and hence to leading linear order in c we obtain

Θ−Θ0 = c
[

π − 2Θ0 +
(π

2
−Θ0

)2
/ tan Θ0

]
. (4.20)

Equation 4.20 we can use to retrieve a value for c (as has been done for T = 3.0
in figure 4.16 and for three different tempeatures in figure 4.17). As it turns out
at this temperature, a linear dependence of Θ on the angle difference Θ − Θ0
is only seen in a small region of angles [90◦, 85◦]. For lower temperatures, this
region needs to be even more narrow, for higher temperatures, the region of
linear dependence stretches out longer. The values for c obtained from averaging
over this range can be found in table 4.18. Of course, it is expected to hold only
for small contact angles Θ for which the expansion is still accurate enough.
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Figure 4.17: The constant c in equation 4.20 for three different temperatures. The range
of linear dependence gets more narrow with lower temperatures.

Figure 4.18: The constant
c for different temperatures.
Unfortunately the method
does not produce very sat-
isfying results, especially in
the vicinity of the roughen-
ing transition.

Temperature T c κ/γ(90◦)
2.75 0.1404 1.2809

3.0 0.0997 1.1994

3.2 0.0759 1.1518

3.5 0.0471 1.0943

3.8 0.0210 1.0421

4.0 0.0161 1.0322
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4.6.1 A Different Approach
The previous method is interesting as a verification and in fact the values ob-

tained are of the expected magnitude, but they lack the accuracy required for
a rigorous analysis. We therefore continue the investigation by using a slightly
different method to estimate the stiffness coefficient κ. Here, we extract the sur-
face stiffness in the rough phase by a fit of the difference γ(Θ) − γ(90◦) to a
parabola. Since

γ(Θ) ≈ γ(90◦) + 1/2γ′′(90◦)
(

dh
dx

)2

(4.21)

and (
dh
dx

)
= cos(Θ),

if we measure the difference

∆γ(Θ) = γ(Θ)− γ(90◦), (4.22)

we can extract the quadratic contribution

∆γ(Θ) =
1
2

γ′′(Θ) · (cos(Θ))2

and therefore the second derivative γ′′(Θ) directly by fitting a parabola in cos Θ
(see figure 4.19). With a known value for γ(90◦), the surface stiffness κ can be
constructed

→ κ/γ(90◦) =
γ(90◦) + γ′′(90◦)

γ(90◦)
.

This procedure can be applied to the data for all temperatures, leading to the
data in table 4.1. The fitting range of angles we have used is

[90, 85]

because here, we can see no significant deviation from the parabola shape (equa-
tion 4.21) and the fit is well justified (see figure 4.19). This data can be used to
compare our results to the investigation carried out by Hasenbusch et. al. [24].
The comparison is shown in figure 4.20.

4.7 Low Temperatures
The behavior of the interface below TR is harder to analyze since several dif-

ferent mechanisms are at work here and it is not clear which effects play a role
in the qualitative behavior. We have to take a close look at the configurations and
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Figure 4.19: Surface tension in the vicinity of Θ = 90◦ for different temperatures near
the roughening transition at TR. The curve is fitted to equation 4.6.1 to extract the surface
stiffness. The fit needs to be restricted to a small angle around 90◦, since the expansion
in terms of surface stiffness is only accurate up to leading order.

Temperature T Tension γ(90◦)[114] γ′′(90◦) Stiffness κ/γ(90◦)
2.5 1.6803 1.7237 2.0258

2.6 1.6130 1.1414 1.7077

2.75 1.5031 0.6418 1.4270

3.0 1.2996 0.2915 1.2242

3.2 1.1289 0.1490 1.1320

3.5 0.8560 0.0562 1.0656

3.8 0.5755 0.0127 1.0221

4.0 0.3962 0.00475244 1.0121

4.2 0.2452 0.00943 0.9615

Table 4.1: Second derivative of the surface tension γ′′ for different temperatures. γ′′ is
extracted with a fit to equation 4.6.1 as shown in figure 4.19. γ′′ is needed to construct
the surface stiffness κ = γ + γ′′.
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Figure 4.20: Surface Stiffness κ(90◦)/γ(90◦) from our analysis in a system of size 88×
504 × 504 compared to the results obtained by [24]. Our data reflects the theoretical
prediction (see figure 1.6), which predicts a vanishing of the surface stiffness at high
temperatures and a divergence of the stiffness at temperatures below TR very well. The
line only serves as a guide to the eye.

the small angle behavior of the surface tension and of the contact angle itself at
small magnetic fields. At small angles below the roughening temperature, cre-
ating a step in the interface costs a specific Step Free Energy fs(T). The smallest
angle that an interface below TR can take on in the case of a lattice of spacing 1

is arctan( 1
Lx
). Thus the minimum angle that can be formed has a strong depen-

dency on the linear dimension Lx. Indeed, in simulations below the roughening
transition (figure 4.21) we see that, for fields below a certain strength HC, the
angle stays practically zero. This effect appears gradually below TR and gets

103



4 Interfaces in the 3D Ising Model

0 0.1 0.2 0.3 0.4 0.5
H

60

70

80

90

Θ
(H

) [
 ]o

Figure 4.21: Below the roughening transition, the difference between Θ and Θ0 which
has been determined via Young’s equation is much less subtle than above the transition.
The simulation data is for T = 2.0 at a system size of 184× 504× 504. The black curve
shows the angle calculated from the difference in wall free energies using Young’s Equa-
tion, while the red line shows the angle Θ calculated from the geometric construction.
Below the roughening transition, the system has to reach a critical field HC before it can
form a tilted interface. This critical field is linked to a Step Free Energy as explained by
the model developed in section 4.7.1.

very strong at low temperatures. Contrary to intuition however, this critical field
HC is independent of the system size Lx. We develop a low temperature model
which can explain this behavior. It connects the magnetic field with the inclina-
tion angle at a microscopic level and even though it does not capture all visible
effects in the simulation data, it can explain the behavior at the critical field HC
and delivers a method to extract the Step Free Energy fs(T) from simulation data.

If the system is at an angle below arctan( 1
Lx
), only 0 and 1 step configurations

are expected to have a significant contribution to the ensemble average, all other
configurations are heavily suppressed. The one step configurations can be seen
as a single free particle in a one dimensional domain of length Lx.

4.7.1 A Model for Inclination Angles at Low Temperatures
The generalized APBC require

m(+)(i, H) = −m(−)(Lx − i,−H)

We now assume a three state model in which we only investigate the three
lowest energy states (interfaces with 0 and 1 steps along the x-axis). Relative to

104



4.7 Low Temperatures

Figure 4.22: The three contributions to the low temperature model of a tilted interface
with a single kink illustrated in one picture.

the flat interface perpendicular to the y-axis, we have the following energy costs
for inclined interfaces (illustrated in figure 4.22)

∆E+1 = fs(T)Lz − kBT ln Lx −
[
m(+)(Lx, H)−m(−)(Lx, H)

]
HLz, (4.23)

where the first term is the energy gain due to the step along the z-axis, the second
term is the step translation entropy along the x-axis, and the last term is the gain
due to the boundary field energy, which is roughly ≈ 2 at low temperatures. For
a step in the other direction (against the field), we have an energy difference of

∆E−1 = fs(T)Lz − kBT ln Lx +
[
m(+)(Lx, H)−m(−)(Lx, H)

]
HLz, (4.24)

with the same contributions, only that the last term has a contribution in the
opposite direction.

In the three-state approximation, the weights of the three states are

W0 = 1

W+1 = Lx exp
(
− fs(T)Lz

kBT

)
exp

(
2HLz

kBT

)
(4.25)

W−1 = Lx exp
(
− fs(T)Lz

kBT

)
exp

(
−2HLz

kBT

)
The weights add up to the partition function Z

Z = W0 + W+1 + W−1

= 1 + exp(−∆E+/kBT) + exp(−∆E−/kBT) (4.26)

= 1 + 2Lx exp
(
− fs(T)Lz

kBT

)
cosh

(
2HLz

kBT

)
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which extends to higher order terms if we take more states into consideration.
For convenience in the course of this calculation, we define

Φ =
π

2
−Θ,

where Θ is the contact angle as before. By averaging over the value of the re-
spective angle in the discrete angle states that are possible

Φi = tan(i/Lx) ≈ i/Lx (4.27)

and recalling the definition of the average

〈Φ〉 = 1
Z ∑

i
ΦiWi (4.28)

we arrive at the average inclination angle

〈Φ〉 =
1
Lx

(W+1 −W−1) /Z

=
2
Z

exp
(
− fs(T)Lz

kBT

)
sinh

(
2HLz

kBT

)
(4.29)

We have to be careful to linearize this expression with respect to 2HLz
kBT , since

for large linear z-dimensions, the assumption 2HLz
kBT � 1 breaks down already for

very small H.
For large enough 2HLz

kBT , it is clear that the state +1 must dominate while for
H = 0 the 0 state must dominate. It is worthwhile to have a look at where
the transition happens. To this end, assume that 2HLz

kBT � 1, so sinh
(

2HLz
kBT

)
=

1
2 exp

(
2HLz
kBT

)
, hence

〈Φ〉 ≈
exp

(
− fs(T)−2H

kBT Lz

)
1 + Lx exp

(
− fs(T)−2H

kBT Lz

) (4.30)

If

exp
(
− fs(T)− 2H

kBT
Lz

)
� 1/Lx, (4.31)

then Z ≈ Lx exp
(
− fs(T)−2H

kBT Lz

)
and thus

〈Φ〉 ≈ 1
Lx
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Figure 4.23: For larger inclination angles and larger external fields, the model needs to
incorporate multiple step configurations as well.

taking equation 4.31 as a criterion for the crossover between the two states, yields
a critical field HC, where a crossover between a majority 0 and a majority +1 state
happens.

HC =
1
2

fs(T)−
kBT

2Lz ln Lx
(4.32)

and thus

HC →
1
2

fs(T) (4.33)

for large enough systems. In our case (Lx = 184, Lz = 504), the second contri-
bution takes on a numerical value of

kBT
2Lz ln Lx

≈ 0.0003804

which can safely be neglected from our calculations, and we can set HC = 1
2 fs(T)

within our numerical accuracy.
This simple model breaks down as soon as there is a significant contribution

of the +1, because then, states with more than one kink will be occupied, and
we have to take those states into account that have more than one kink along the
surface (figure 4.23). The energy of these states is

∆E+2 = 2 fs(T)Lz − 2kBT ln(Lx/2)− 4HLz

∆E−2 = 2 fs(T)Lz − 2kBT ln(Lx/2) + 4HLz (4.34)
∆E+3 = 3 fs(T)Lz − 3kBT ln(Lx/2)− 6HLz

∆E−3 = 3 fs(T)Lz − 3kBT ln(Lx/2) + 6HLz

...
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To generalize the approach above, we deduce the general formula for the
weight of a state with n kinks

W+n =

(
Lx

n

)n
exp

(
−n
[

fs(T)− 2H
kBT

]
Lz

)
(4.35)

W−n =

(
Lx

n

)n
exp

(
−n
[

fs(T) + 2H
kBT

]
Lz

)
for n ∈ [1, 2, 3...].
Using equation 4.27 for the angle in a state with n steps and the definition of

the average, we can calculate the average angle at a given field

〈Φ〉 =
∑Lx

i=1 i/Lx [W+n −W−n]

1 + ∑Lx
i=1 [W+n + W−n]

(4.36)

The result for this calculation is shown in figure 4.24. The average angle stays
zero until it reaches the critical field HC, at which it jumps to a large value. The
value is 60◦ in our analysis even though this angle does not have any meaning
because the simplifications fail at this large angle. The step is very sharp so
that even at smaller system sizes, it can already be treated as a step. From this
step on, all other higher angle states are instantly available and are no longer
suppressed which provides an explanation why the crossover field HC does not
have a large Lx dependency. It is important to note that even though the angles
of the individual states are heavily system size dependent the total average is
not, because as soon as the first angle state starts to fill, pretty much all angle
states are available to be filled.

Our data for T = 2.0 shows that in simulations, the step is not as sharp as
predicted by the low temperature model (see figure 4.25). At angles below the
critical field the angle already indicates a very small population of non-zero an-
gle states. At angles above the critical field, the rise in magnitude is not as rapid
as predicted. When approaching even lower temperatures the shape of Θ(H)
starts to resemble the theory curves (see figure 4.26). Despite the discrepancies
to the low temperature model, it prooves useful to extract an estimate of the
Step Free Energy. The theory curve for a specific critical field is compared to the
simulation data so that the step of both curves match. Repeating this procedure
for various temperatures approaching TR from below allows the investigation of
the scaling behavior of the Step Free Energy in the next section. The error in this
procedure is estimated to be about the width of the theoretical step.
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Figure 4.24: An illustration of the angle expectation value 〈Φ〉 for fs = 0.5 and T = 2.0.
Taking the occupation of higher order states into account, the saturation angle is much
higher, but the behavior in the onset of population in the non-zero angle states does not
change. The transition is very sharp and is accurate only in the very low temperature
regime.
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Figure 4.25: The contact angle data at T = 2.0 for different system sizes Lx in comparison
with the theory curve for T=2.0 and a Step Free Energy of fs = 0.52. The behavior up
to the critical field HC indicates agreement with our theory in the limit of an infinite
system. The large field behavior however is not captured (figure 4.24), which is believed
to be governed by more complex interactions such as effective kink-kink repulsions
which modify the large field behavior. Nevertheless, the crossover position can be used
to estimate the Step Free Energy and compare it to literature [17].
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Figure 4.26: At low temperatures, the contact angle curve resembles more and more
to that of the low temperature model since the step at HC gets sharper with lower
temperatures.
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4.8 Scaling Behavior
The procedure to estimate the Step Free Energy in section 4.7.1 is repeated for

several temperatures between T = 1.5 and T = 2.4 (figure 4.27). The temperature
dependence allows for a comparison with the theoretically predicted [25, 115]
non-universal scaling behavior of the Step Free Energy fs(T) below TR

T
fs(T)

∼ exp

 π

2c
√

TR−T
TR

 , T < TR (4.37)

where c is a constant which we determine via a least-squares fit from the curve
in figure 4.27 as

c = 1.94± 0.17.

References [17, 25] estimated c to be

c = 1.57± 0.07

for the (100) plane of a simple cubic lattice. On the other hand, the analysis of
the surfaces stiffness κ in [25] suggests a non-universal scaling behavior of

βκ(T) =
π

2

(
1− c ·

√
T − TR

TC

)
, T > TR (4.38)

close but above the roughening temperature. At the roughening transition
temperature TR, βκ takes on the value π

2 and jumps to ∞ right below it. Near to
TR, the second derivative γ′′(T) is harder to estimate according to the procedure
explained in section 4.6.1, because of increasing fluctuations. The outcome of
the parabola fit becomes very sensitive to the choice of the fitting range for the
parabola (see figure 4.28). For a small amount of data points, the data becomes
very noisy. For a larger amount of data points, higher order effects are expected
to overtake the critical behavior. As a tradeoff, we choose 10 data points for the
analysis of the critical behavior. The prediction (equation 4.38) is compared to
the result of the fitting procedure with 10 data points in figure 4.29. Even though
a large amount of statistics was needed to produce meaningful measurements,
the computational effort could be handled by our parallel GPU implementation.
Our simulation results are (considering the statistical error that can be estimated
from figure 4.28) in agreement with the theoretical prediction and show better
agreement in the proximity of TR than the results by [114].
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Figure 4.27: The Step Free Energy in dependence of the temperature T below the roughen-
ing transition TR shows good agreement with the theoretically predicted non-universal
scaling behavior. The error bars approximate the width of the step at HC. The data points
at T = 1.5 and T = 1.8 are excluded from the least squares fit.
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Figure 4.28: The second derivative γ′′(T) in dependence on the number of data points
included in the fit (section 4.6.1). For the thermodynamic integration, the distance be-
tween two data points is ∆H = 0.005. The connecting lines between the data points only
serve as a guide to the eye.
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Figure 4.29: The simulation data in a system of size 184× 504× 504 in comparison with

the exact theoretical prediction βκ(T) = π
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√
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)
. For the blue line, c is chosen

according to the analysis of [17, 25], while the red line shows the same scaling law with
c choosen according to the outcome of our own analysis of the critical scaling of the Step
Free Energy.
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4.9 Line Tension Contribution
The line tension contribution has so far not been treated and needs to be

added as an additive factor that increases with the size of the system in the Lz
dimension. Backtracking and looking again at equation 4.1, we had the following
equation to sum up the total interfacial free energy of the system:

Fint = 2Lzτ(H, Θ) + L̃Lzγ(Θ) + Lz
Ly + L̃ cos Θ

2
γ(+)(+|H|)

+Lz

(
Ly − L̃ cos Θ

2

)
γ(−) + Lz

(
Ly − L̃ cos Θ

2

)
γ(+)(−|H|)

+Lz

(
Ly + L̃ cos Θ

2

)
γ(−)(−|H|)

using the symmetries 4.2 plus the additional symmetry property

τ(+|H|, Θ) = τ(−|H|, Θ)

as well as L̃ = Lx/ sin Θ:

Fint = 2Lzτ(H, Θ) + LxLzγ(Θ)/ sin Θ + Lz(Ly + Lx/ tan Θ)γ(+)(+|H|)

+Lz(Ly − Lx/ tan Θ)γ(+)(−|H|)
To find the contact angle, Fint has to be minimized at fixed H with respect to

Θ. As discussed above in section 4.4.1, we once again minimize the surface free
energy Fint(Θ) (equation 4.4) with respect to Θ:(

∂Fint

∂Θ

)
H,T

= 0

This time we also assume that the partial derivation ∂τ
∂Θ H 6= 0, so we introduce

further terms to the expression 4.18

0 = 2Lz

(
∂τ

∂Θ

)
H

(4.39)

+
1

sin2 Θ
· LxLz

[(
γ′(Θ) sin Θ− γ(Θ) cos Θ

)
+

+
(

γ(+)(−|H|)− γ(+)(+|H|)
)]

Therefore we arrive at yet another modified Young’s Equation which includes a
term that comes from the line tension τ
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4.9 Line Tension Contribution

γ(Θ) cos Θ− γ′(Θ) sin Θ− 2 sin2 Θ
(

∂τ

∂Θ

)
H

1
Lx

(4.40)

= γ(+)(−|H|)− γ(+)(+|H|)

In the limit Lx → ∞, the line tension correction becomes negligible, and the
previous form is obtained:

γ(Θ) cos Θ− γ′(Θ) sin Θ = − d
dΘ

(γ(Θ) sin Θ) = γ(+)(−|H|)− γ(+)(+|H|)
(4.41)

The term involving (∂τ/∂Θ)H must not be neglected for finite Lx.
We solve equation 4.41 for the derivative γ′(H) the same way as before, only

with the additional (∂τ/∂Θ)H term

sin Θγ′(Θ) + ∆γ =
2 sin2 Θ

Lx
τ′(Θ)− γ(Θ) cos Θ

sin Θγ′(Θ) =
2 sin2 Θ

Lx
τ′(Θ)− γ(Θ) cos Θ− ∆γ

⇒ γ′(Θ) =
2
Lx

sin Θτ′(Θ)− γ(Θ)
cos Θ
sin Θ

− ∆γ

sin Θ
which is the same differential equation as before, just with an additional τ′

term, which disappears in the limit Lx → ∞, where the first term can be ne-
glected for large enough systems. Since γ′(Θ) can be very small, when the in-
terface tension is almost orientation-independent, the term involving (∂τ/∂Θ)H
must not be neglected for finite Lx. This contribution can be determined by mea-
suring the surface free energy above Fs, int for different system sizes and building
free energy differences between them. By keeping the products LxLz and LyLz
constant, we can make sure that the above surface contributions to Fs, int can-
cel out, and only the line contribution is left. This lead to technical difficulties,
because the GPU simulation is only suited for certain system sizes. By sacri-
ficing some speed over flexibility, we managed to bring down the system size
steps down to 8 in x and y dimension and 16 in z dimension. The first system
simulated is the following

Lx = 24, Ly = 144, Lz = 64

when varying Lx, this leads to four other system sizes that can be used while
keeping the products LxLz and LyLz constant:
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Lx Ly Lz LxLz LyLz
16 96 96 1536 9216

24 144 64 1536 9216

32 192 48 1536 9216

48 288 32 1536 9216

96 576 16 1536 9216

This allows us to simulate the following small systems and calculating the free
energy difference by thermodynamic integration. The simulation method needs
to be adjusted. The variation in the free energy is really small, and the only
contribution left can be attributed to a line tension in the system. When looking
at the variation between two of these system sizes (L1

y and L2
y), the difference in

free energy needs to be of the form

∆F∆Ly
s, int

∆Ly
=

∆F
L1

y
s, int − ∆F

L2
y

s, int

L1
y − L2

y

where the ∆ denotes a difference from H = 0:

∆Fs, int(H) = Fs, int(H)− Fs, int(H = 0)

A line tension contribution to this equation has to be of the form

∆F∆Ly
s, int = 2 · ∆Ly (τ(H)− τ(0)) (4.42)

because there are two lines of length Lz contributing to the free energy. This
means a linear fit to the data should reveal the line tension as the slope of the
linear regression fit.

A linear fit to a function
f (x) = a + b · x

will reveal b = 2∆τ which is the difference in line tension from a flat interface,
so the anisotropy of the line tension can be evaluated.

Fitting data at T = 3.0 with H = 0.15, H = 0.30 and H = 0.45 is shown
in figure 4.30. For large enough linear dimension Lz the free energy difference
shows indeed a linear dependence. For small sizes in Lz

96× 576× 16 and 48× 288× 32
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4.9 Line Tension Contribution

the data suffers from finite-size effects, so the data for small sizes is not included
in the analysis. The simulation data of the three system sizes

16× 96× 96 24× 144× 64 32× 192× 48

is used for a linear fit. This allows extraction of the slope b and in turn of the
line tension difference ∆τ. The line tension difference is added to the values for
τ that have been estimated by Kim et al. [42]. The resulting angle dependent line
tension τ(Θ) is depicted in figure 4.31. For better visualization of the tempera-
ture dependence, the same quantity is plotted for four different constant contact
angles in figure 4.32. We observe an increase of the negative line tension con-
tribution for angles smaller than 90◦ for temperatures above T = 2.75 while for
even lower temperatures, the absolute value of the line tension increases even
further until an angle of about 70◦ before decreasing again as for larger temper-
atures.
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Figure 4.30: The free energy differences ∆Fs,int(Lz) are expected to have only a linear
dependence on the linear dimension Lz, if all system sizes are varied so that the products
LxLz and LyLz are kept constant. All graphs are shown for a system of temperature
T = 3.0. The uppermost graph shows the dependence for H = 0.15, the middle one for
H = 0.35 and the lowermost for H = 0.45.
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Figure 4.31: Anisotropic line tension for different temperatures ranging from T = 2.5
up to T = 4.0. The most important observation is that the line tension decreases for
interface orientations that are not parallel to the lattice plane.
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Figure 4.32: Line Tension temperature dependence for different angles Θ = 75◦, Θ =

60◦ and Θ = 45◦. The maximal anisotropy τ(Θ)
τ(90◦) is around T = 3.5. This is also the

temperature of the lowest absolute line tension τ(90◦). The lines between the data points
only serve as a guide to the eye.
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Chapter 5

A Finite Volume
Evolution Galerkin
Method on the GPU

5.1 Introduction
Monte Carlo simulations in physical systems such as the Ising model are not

the only applications that can benefit greatly from GPU acceleration. The Ising
model serves as a very good test case since it is very simple to implement. At the
same time it allows to gather interesting physical insights as shown in previous
chapters. Another field in which we successfully used GPU acceleration during
my PhD thesis is a novel multidimensional Discontinuous Galerkin flux opera-
tor to simulate physical flows. In [116], new large time step Finite Volume Evo-
lution Galerkin (FVEG) methods for geophysical flows where proposed. They
combine the simplicity of Finite Volume methods with the theory of bicharacteris-
tics yielding a genuinely multidimensional finite volume scheme. The Evolution
Galerkin operator which is used in order to evaluate fluxes over the cell in-
terfaces can be interpreted as a multidimensional approximate numerical flux
function [117, 118]. The simulations we carried out confirm high efficiency and
good multidimensional resolution of the scheme. In [116], the FVEG scheme has
been considered only on regular rectangular meshes. The approach used in our
work uses the scheme of [117] for adaptive irregular meshes in order to allow
more efficient simulations of various localized flow structures.

My work involved only the parallelization of the actual evolution operator and
porting it to the GPU using NVidia’s CUDA framework. It has been published
in [110]. This chapter details the content of this publication. The wording of the
present chapter is in large parts almost identical to this publication with the
exception of this introduction and more detailed descriptions.

Using the GPU allowed the computer simulations to run much faster. We
benchmarked the GPU accelerated code on regular and adaptive grids and com-
pared the results with CPU simulations revealing good agreement in accuracy.

For spatial approximation we use second order polynomials with h-adaptive
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mesh refinement method and the explicit third order Runge-Kutta method for
time integration. For the GPU accelerated parts of the code we have obtained
a significant speedup of a factor up to 30 in comparison to a single CPU core,
with a potential for further improvement of the performance of the code. Still
unfinished is the implementation of an implicit time integration method on the
GPU.

The chapter is organized as follows: First, the concepts needed to describe a
geophysical flow are introduced, the methods for solving the governing partial
differential equations are elaborated on. The multidimensional evolution oper-
ator used for flux integration along cell interfaces is described in Section 5.8.
In our numerical experiments discussed in Section 5.11, we benchmark the new
GPU accelerated code on regular and adaptive grids, using quadratic polynomi-
als for spatial approximation and an explicit third order Runge-Kutta scheme for
time integration. In Section 5.12 we will discuss implementation of the evolution
operator on the GPU. A recently released paper by Yelash et. al. [119] compares
different time integration schemes. In particular, semi-implicit schemes are used
in order to overcome the strong stability condition for time steps given by the
Courant-Friedrichs-Lewy (CFL) number CFL = u∆t

∆x .

5.2 Notations in Fluid Dynamics
To describe a fluid, a few essential symbols and names for the properties of

the fluid need to be introduced to facilitate the use of these properties later.
Ω ∈ R2 domain occupied by the fluid
u = (u, v)T velocity vector
ρ density
p pressure
θ potential temperature
g gravitational constant
cp isobaric specific heat capacity
cv isochoric specific heat capacity
γ = cp/cv adiabatic constant
R = cp − cv gas constant
∂t =

∂
∂t partial derivative with respect to the time t

5.3 Partial Differential Equation
The system of equations we will be dealing with is a time dependent partial

differential equation in two spacial dimensions x and y of the form

∂tw + A(w)∇w + B(w) = 0 (5.1)
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where w is a solution vector of dimensionality m, and A, B are m×m matrices.
The equation system 5.1 is called is quasi-linear if B(w) depends only lin-

early on w and A(w) is a function of the solution vector w. Likewise, 5.1 is
called hyperbolic, if A has m real eigenvalues λ1, ..., λm with a corresponding set
of m linearly independent eigenvectors K(1), ..., K(m). A hyperbolic system with
B(w) = 0 is called a hyperbolic conservation law.

5.4 Conservation Laws in Inviscid Fluids
Mass is neither created nor destroyed, which leads to the conservation of mass:

d
dt

ˆ
σ(t)

ρ(x, t)dx = 0 (5.2)

Using the material derivative

d
dt

F(x, t) :=
∂F
∂t

(x, t) + u(x, t) · ∇F(x, t), (5.3)

which is essentially the time derivative along the trajectory of a particle in the
fluid, we arrive at the strong formulation of the continuity equation

∂tρ +∇ · (ρu) = 0 (5.4)

In incompressible flows there is an extra condition which enforces incompress-
ibility

∇v = 0 (5.5)

The second conservation law is momentum conservation, which guarantees that
the rate of change of total momentum of a part of a fluid formed by the same
particles at any time instant is equal to the forces acting on this part, this leads
to the second law

∂t(ρu) +∇ · (ρu⊗ u + p Id) = −ρgk (5.6)

where Id is the identity matrix in R2 and k the unit vector in the vertical direc-
tion.

And last, there is energy conservation, so energy in each part of a fluid is neither
destroyed nor created, which leads to the last law governing inviscid fluids

∂t(ρθ) +∇ · (ρθu) = 0 (5.7)

For inviscid fluids there is no friction and hence a term involving viscosity
does not enter.
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5.5 Weak and Strong Solutions
If the original problem was to find a differentiable function u defined on the

open set W such that

P(x, ∂)u(x) = 0 for all x ∈W

(a so-called strong solution), then an integrable function u would be said to be a
weak solution if ˆ

W
u(x)Q(x, ∂)ϕ(x)dx = 0

for every smooth function ϕ with compact support in W.

5.6 Euler Equations
The above conservation laws combined as a set are called the Euler equations.

The Euler equations form a set of hyperbolic conservation laws which are non-
linear. They can be used to describe the dynamics of a compressible gas or liquid.
Since they neglect the effects of both viscous stress as well as heat flux, they are
only accurate in the high temperature limit.

∂tρ +∇ · (ρu) = 0
∂t(ρu) +∇ · (ρu⊗ u + p Id) = − ρgk (5.8)
∂t(ρθ) +∇ · (ρθu) = 0 ,

This formulation is in primitive variables since they are expressed in terms of
the density ρ, pressure p and the velocity v. The potential temperature θ can be
obtained from the equation of adiabatic process in an ideal gas:

θ = T(p)
(

p0

p

)R/cp

.

where T is the temperature of air at pressure p.
The logarithm of the potential temperature is proportional to the entropy of

the system. The potential temperature can be thought of as the temperature of
a volume of fluid which has been brought up adiabatically to a height with a
given pressure po.
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The system of differential equations has more unknowns than conditions, so
we need an additional equation for closure of the set of equations. In order to
close the system we determine pressure from the equation of state

p = p0

(
Rρθ

p0

)γ

,

where p0 = 105 Pa is the reference pressure.
In order to avoid numerical instabilities due to the multi-scale behavior of (5.8),

numerical simulations are typically realized for perturbations from an equilib-
rium state.

In many geophysical applications, flows can be considered as a perturba-
tion of some reference equilibrium state. For example, atmospheric flows are
typically represented as a perturbation over the background hydrostatic state
(ρ̄, ū(= 0), p̄, θ̄) [120, 121],

∂ p̄
∂y

= −ρ̄g.

Here we assume θ̄ = 300K and ρ̄ = p0
Rθ̄

π̄
cv
R , p̄ ≡ p(ρ̄, θ̄) = p0(

Rρ̄θ̄
p0

)γ with the
Exner pressure π̄(x, y) := 1− gy/(cpθ̄).

The perturbations in our case can be expressed as

ρ′ = ρ− ρ̄, θ′ = θ − θ̄, p′ = p− p̄.

leading to these modified Euler equations for the perturbations

∂tρ
′ +∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u + p′ Id) = − ρ′gk (5.9)

∂t(ρθ′) +∇ · (ρθu) = 0.

We rewrite (5.9) in the form of hyperbolic balance law for the vector variable
q = (ρ, ρu, ρv, ρθ)T

∂q
∂t

+∇ · F(q) = S(q), (5.10)

where

F(q) =

 ρu
ρu⊗ u + p′ Id

ρθu

 , S(q) =

 0
−ρ′gk

0


is the nonlinear flux function and the source term, respectively. We should note
that in our numerical experiments we will also use a stabilization through the
artificial viscosity [121, 122], which results in the following source term

127



5 A Finite Volume Evolution Galerkin Method on the GPU

S(q) =

 0
−ρ′gk +∇ · (µρ∇u)
∇ · (µρ∇θ′)

 , µ > 0 is an artificial viscosity parameter.

Eq. (5.10) will be approximated in space by the discontinuous Galerkin method
and in time by the explicit Runge-Kutta scheme. How this is done is the subject
of the next sections.

5.7 Numerical Solutions of Hyperbolic Equations
There are many different approaches to hyperbolic equations numerically, and

all of them involve some kind of discretization of space and time. The simplest
method is the Finite Differences method, where space is discretized into a grid,
and the exact solution is computed at each of the grid nodes.

Numerical inaccuracy is introduced mainly for the spacial derivatives, since
they are represented as difference quotients

∂F(x)
∂x

→ ∆F(x)
∆x

(5.11)

between neighboring grid nodes. This difference quotient is supposed to de-
scribe the exact solution with as much accuracy as possible. Problems arise when
the exact solution of the equations is expected to have a steep slope or even a
discontinuity.

A different approach are Finite Elements methods, where there is no spacial
discretization, but instead the problem is solved as a linear combination qh(x)
in a solution space spanned by a set of basis functions.

qh(x, t) =
N

∑
i

qi(t)ψi(x) (5.12)

Since the single basis functions are not time dependent, and only the coeffi-
cients qi(t) have a time dependence, the spacial derivatives can be precomputed
and are known at any time. This method is still not very suited to cope with dis-
continuities, since representing such a solution requires a large set of solution
space basis functions. Yet another solution strategy, which is able to represent
discontinuities way better than both of the previous approaches is the Finite Vol-
ume method.

This method is — similar to the Finite Differences method — based on a dis-
cretization of space into cells.
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In contrast to Finite Differences however, the goal is not to find exact solution
at specific points in space, but to average the solution over a specific volume
cell. Time evolution is represented via flux functions between adjacent volume
cells, which can guarantee exact fulfillment of a conservation law. The calcula-
tion of the flux is the exact solution of the Riemann Problem [123, 124], since
it consists of a conservation law and a piecewise constant initial value problem
having a single discontinuity. This is why Finite Volume fluid dynamics solver
are essentially Riemann solvers.

The method used in this chapter is the Discontinuous Galerkin (DG) method,
which borrows from both the Finite Elements as well as from the Finite Volume
method. This allows the DG method to achieve a good description of smooth
solutions as well as discontinuous solutions such as shock waves.

The problem is still solved in a smooth Finite Elements space, but only for
each volume cell thus allowing discontinuities between volume cells. Time evo-
lution is still represented via flux functions between the interfaces of the vol-
umes, where the discontinuities are.

An important aspect, very much so in the light of this thesis, is good efficieny
of the Discontinuous Galerkin method in terms of parallel computation [125, 126].
Communication between parallel threads is basically limited to the flux between
grid cells, and in contrast to more sophisticated Finite Volume methods, the flux
is only calculated from directly adjacent volume cells.

5.8 Discontinuous Galerkin Method
We follow [121, 127, 128] and derive the strong formulation of (5.10). Let us

divide the computational domain Ω into a finite number of mesh cells Ωe with
a boundary ∂Ωe.

In our numerical experiments we work with triangular mesh elements Ωe and
use the nodal basis functions {ψj, j = 1, . . . , N}, N is a number of degrees of
freedom. Now, multiplying (5.10) with a nodal basis ψi(x), integrating over Ωe
we start with

ˆ
Ωe

(
∂q(x, t)

∂t
+∇ · F(q(x, t))− S(q(x, t))

)
ψ(x)dx = 0. (5.13)

The divergence needs to be in front of the test function ψ(x), so we apply
integration by parts

ˆ
Ωe

(
∂q(x, t)

∂t
+ F(q(x, t)) · ∇ − S(q(x, t))

)
ψ(x)dx = −

ˆ
∂Ωe

F(q(x, t))ψ(x)dS

(5.14)
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where dS is a surface element. This equation holds for any of the ne elements
Ωe of the domain Ω, so we have ne independent equations. We need boundary
conditions to solve them. So when working with a numerical solution which is a
linear combination of the basis functions as in equation 5.12, we need to replace
the flux F on the right side with a modified flux F∗.

ˆ
Ωe

(
∂qh(x, t)

∂t
+ F(qh(x, t)) · ∇ − S(qh(x, t))

)
ψ(x)dx = −

ˆ
∂Ωe

F∗ψ(x)dS

(5.15)
Now, applying integration by parts again and introducing the special basis ψi,

we obtain the strong formulation [129]

ˆ
Ωe

(
∂qh
∂t

+∇ · Fh − Sh

)
ψi(x)dx = (5.16)
ˆ

∂Ωe

(Fh − F∗h))ψi(x)dS, i = 1, . . . , N.

with ψi(x) the basis functions of the numerical solution qh = qh(x, t). Here, Fh
and F∗h are the numerical solutions of F and the modified flux F∗, and Sh is the
numerical solution of S.

With a specific basis ψi, i = 1, ..., N, the time evolution of the coefficients qi of
the numerical solution qh can be expressed as

∂qi

∂t
= −

ˆ
Ωe

ψi(x) (∇ · Fh − Sh)dx +
ˆ

∂Ωe

ψi(x) (Fh − F∗h)dS (5.17)

As in [130] Lagrange polynomials are used for the basis functions ψj with the
Fekete points for the interpolation and the Gauss points for the integrations.
In most simulations using the discontinuous Galerkin method for atmospheric
flows one-dimensional numerical flux functions, such as the Rusanov flux

F∗N =
1
2

[
F(qL

N) + F(qR
N)− λn̂(qR

N − qL
N)
]

(5.18)

have been used in [121, 128, 130] and references therein. In [131], a numerical
study of the performance of different numerical fluxes for the discontinuous
Galerkin method has been presented.

The novelty of our work relies on the application of a multidimensional evo-
lution operator (section 5.9) in order to compute F∗, and make use of parallel
computation on the GPU to effectively hide the additional computational effort.

130



5.9 Multidimensional EG Operator

5.9 Multidimensional EG Operator
What follows is a description of the approximate evolution operator that is

based on the theory of bicharacteristics for multidimensional hyperbolic conser-
vation laws. My work did not include the derivation of this operator. A detailed
derivation will be presented in a forthcoming paper [119]. We follow the deriva-
tion presented in [110]. The starting point is equation (5.9), which we will rewrite
in a quasi-linear form using the primitive variables w = (ρ′, u, v, p′)

∂tw + A1(w) ∂xw + A2(w) ∂yw = s(w) (5.19)

with

A1 =


u ρ 0 0
0 u 0 1

ρ

0 0 u 0
0 γp 0 u

 , A2 =


v 0 ρ 0
0 v 0 0
0 0 v 1

ρ

0 0 γp v

 , s = −


∂yρ̄ v

0
ρ′

ρ g
∂y p̄ v

 . (5.20)

To obtain the quasi-linear form of equation 5.9, we omit the advection term
ρu⊗ u in the second equation. In this case, the quasi-linear form is expressed
using the pressure p, but the temperature can be used as well. Using the above
thermodynamic relationship for ρ̄, p̄ we obtain

∂yρ̄ = − p0 cv g
(Rθ̄)2cp

(
1− gȳ

cp θ̄

) cv
R −1

, ∂y p̄ = −g p0

R θ̄

(
1− gȳ

cp θ̄

) cv
R

.

We cannot diagonalize A1 and A2 at the same time, so the closest we can get
is to diagonalize the matrix pencil

P := A1nx + A2ny.

where ‖(nx, ny)‖ = 1, so (nx, ny) describes a circle in the x− y plane with radius
1, such as the parametrization

nx = cos(φ), ny = − sin(φ), φ ∈ [0, 2π).

Since the equation is hyperbolic the matrix pencil has real eigenvalues and a
full set of linearly independent eigenvectors.

To linearize (5.19) we freeze the Jacobian matrices A1, A2 at a suitable interme-
diate state ρ̃′, ũ, ṽ, p̃′.

The eigenvalues of P are

λ1 = ũ nx + ṽ ny − a,
λ2 = λ3 = ũ nx + ṽ ny,
λ4 = ũ nx + ṽ ny + a,
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Figure 5.1: Bicharacteristic cone used for the EG evolution operator. The figure is the
same as in [110].

where a :=
√

γ
p̃
ρ̃ =

√
γRθ

(
ρRθ
p0

) R
cv is a sonic speed.

Now we multiply (5.19) by a matrix R−1, where the matrix R consists of the
right eigenvectors of P, so we can rewrite (5.19) using the so-called characteristic
variables v = R−1w

∂tv + B1∂xv + B2∂yv = r ,

where r := R−1s(w). Equivalently, we have

∂tv + diag(B1)∂xv + diag(B2)∂yv = S + r (5.21)

with
S(x, θ) := −

[
(B1 − diag(B1))∂xv + (B2 − diag(B2))∂yv

]
.

Integrating each equation of (5.21) along the corresponding bicharacteristic

dxj

dt
:= [B1,jj, B2,jj]

T, j = 1, . . . , 4,
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we obtain after some lengthy manipulations [119] the following exact integral
representation

ρ′(P) =
ρ̃

2πa

ˆ 2π

0

[
− cos(θ) u(Q1(θ))− sin(θ) v(Q1(θ)) +

1
ρ̃ a

p′(Q1(θ))

]
dθ

+ ρ′(Q2)−
p′(Q2)

a2

− ρ̃

2πa

ˆ 2π

0

ˆ tn+∆t

tn

β(t, θ) dt dθ

− ρ̃

2πa

ˆ 2π

0

ˆ tn+∆t

tn

− sin(θ)g
ρ′

ρ
(x1(t, θ)) +

v(x1(t, θ))

ρ̃ a
∂y p̄ dt dθ

+

ˆ tn+∆t

tn

v(x2(t))
(
−∂yρ̄ +

∂y p̄
a2

)
dt (5.22)

u(P) =
1

2π

ˆ 2π

0

[
− p′(Q1(θ))

ρ̃a
cos(θ) + u(Q1(θ)) cos2(θ) + v(Q1(θ)) sin(θ) cos(θ)

]
dθ

+
1
2

u(Q2)

+
1

2π

ˆ 2π

0

ˆ tn+∆t

tn

cos(θ) β(t, θ) dt dθ

+
1

2π

ˆ 2π

0

ˆ tn+∆t

tn

− sin(θ) cos(θ)g
ρ′

ρ
(x1(t, θ)) + cos(θ)

v(x1(t, θ))

ρ̃ a
∂y p̄ dt dθ

− 1
2ρ̃

ˆ tn+∆t

tn

∂x p′(x1(t)) dt , (5.23)

v(P) =
1

2π

ˆ 2π

0

[
− p′(Q1)

ρ̃a
sin(θ) + u(Q1) cos(θ) sin(θ) + v(Q1) sin2(θ)

]
dθ

+
1
2

v(Q2)

+
1

2π

ˆ 2π

0

ˆ tn+∆t

tn

sin(θ) β(t, θ) dt dθ

+
1

2π

ˆ 2π

0

ˆ tn+∆t

tn

− sin2(θ)g
ρ′

ρ
(x1(t, θ)) + sin(θ)

v(x1(t, θ))

ρ̃ a
∂y p̄ dt dθ

− 1
2ρ̃

ˆ tn+∆tn

tn

∂y p′(x2(t)) dt− 1
2

g
ˆ tn+∆t

tn

ρ′

ρ
(x2(t)) dt , (5.24)

p′(P) =
1

2π

ˆ 2π

0

[
p′(Q1(θ))− ρ̃au(Q1(θ)) cos(θ)− ρ̃av(Q1(θ)) sin(θ)

]
dθ
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− ρ̃a
1

2π

ˆ 2π

0

ˆ tn+∆t

tn

β(t, θ) dt dθ

− 1
2π

ˆ 2π

0

ˆ tn+∆t

tn

− sin(θ)ρ̃a g
ρ′

ρ
(x1(t, θ)) + v(x1(t, θ))∂y p̄ dt dθ. (5.25)

Here β(t, θ) = a [∂xu sin2(θ)− (∂yu + ∂xv) sin(θ) cos(θ) + ∂yv cos2(θ)] and P =
(x, y, t + ∆t), Q1(θ) = (x− (ũ− a cos(θ))∆t, y− (ṽ− a sin(θ))∆t, tn), Q2 = (x−
ũ∆t, y− ṽ∆t, tn) are respectively the pick and footpoints of the bicharacteristics
that generate the mantle of the bicharacteristic cone, see figure 5.9.

To obtain a time explicit approximate evolution operator the above exact in-
tegral representation needs to be approximated. First, time integrals along the
mantle of the bicharacteristic cone are approximated using the rectangle rule.
Integrals along the base perimeter, that obtain β(tn, θ) terms, are replaced by
means of the integration by parts, cf. Lemma 2.1 [132]. Further we approx-
imate ρ′

ρ with ρ′

ρ̃ and substitute the condition for hydrostatic balance ∂y p̄ =

−ρ̄g. This yields ∂yρ̄ = −π−1 cv
cp Rθ̄

ρ̄g = − ρ̄g
ā2 used in the approximation for

ρ′(P). For more details on the derivation of the approximate evolution oper-
ator see [119]. This procedure yields finally the desired cell interface values
q∗ ≡ (ρ′(P), u(P), v(P), p′(P)) = EG qh in (5.16). We should point out that all
integrals along the base perimeter (sonic circle), i.e. integrals with respect to θ,
are evaluated exactly. We make a transformation of the actual triangle to the ref-
erence triangle, where the corresponding integrals along the arcs of sonic circle
were precomputed with the help of computer algebra package Mathematica.

5.10 Mesh Adaptivity
Most geophysical flows have a multi-scale character with very localized struc-

tural phenomena such as interfaces, turbolences and shock waves. To approxi-
mate these local structures efficiently, an adaptive mesh resolution can be used
in computer simulations. In our numerical experiments were performed using
h-adaptive mesh refinement method, where the spatial resolution is adapted by
refining or coarsening the mesh cells. We work with the function library AM-
ATOS of Behrens et al. [133], where h-adaptive mesh refinement is based on the
space filling curve approach. Analogously as in [121], in the numerical experi-
ments presented below we use a slightly modified, simple refinement criterion

max
x∈Ωe

[
sgn(θ′c)θ

′(x, t)
]
≥ σ|θ′c| (5.26)

for the deviation of the potential temperature from the background state θ′ =
θ − θ̄; σ � 1 is a test dependent parameter (for the numerical experiments in
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this work we use σ = 0.1), and θ′c is the maximal initial amplitude for the per-
turbation of the potential temperature (discussed below).

If condition (5.26) holds on some element Ωe, the element will be recursively
refined up to a specified finest mesh resolution. In the rest of the computational
domain the mesh is adaptively coarsened, see also [121] for further details. We
have used the software package of Müller, Giraldo et al. [121, 128] where the
discontinuous Galerkin method (5.16) is implemented. We have generalized the
package by including the GPU implementation of the EG operator.

5.11 Numerical Experiments
To verify the accuracy and computational performance of the GPU acceler-

ated code, we carry out two test case simulations. The wording on this section
is almost identical to [110]. For our tests we have chosen free convection of a
smooth warm air bubble as introduced by Giraldo and Restelli [134] as well as
free convection of a large warm bubble with a small cold bubble placed on top
of the warm one as introduced by Robert [135].

In the first experiment shown in figure 5.2, the warm bubble is placed at xc =
500m, yc = 350m with the initial temperature perturbation:

θ′ =

{
0 for r > rc
(θ′c/2) [1 + cos (πr/rc)] for r ≤ rc

where θ′c = 0.5oC is the maximal initial amplitude, the bubble radius rc = 250m,
and r the distance to the center of the bubble (xc, yc).

In the Robert experiment, two bubbles are placed at (xc, yc) = (500m, 300m)
and (xc, yc) = (560m, 640m), for the warm and the cold bubbles, respectively
(figure 5.3). The maximal initial temperature amplitudes are θ′c = 0.5oC and
θ′c = −0.15oC, respectively. The profiles of the initial perturbation for the excess
potential temperature are given by a Gaussian distribution

θ′ =

{
θ′c for r ≤ rc

θ′c exp
[
− (r− rc)

2 /502
]

for r > rc

with a flat core of radius rc = 150 for the warm bubble and rc = 0 for the cold
bubble.

In both experiments, due to the differences in the air density of the bubbles
and the isothermal environment, the initially resting bubbles develop a vertical
motion. In the Giraldo–Restelli test shown in figure 5.2 for both the GPU and
CPU simulations, the warm bubble rises and deforms symmetrically due to the
shear friction with the surrounding air at the warm/cold air interface, adapting
a mushroom-like shape gradually. The results for the GPU simulations in the
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Figure 5.2: Excess potential temperature θ′ for the rising thermal bubble experiment
as introduced by Giraldo and Restelli [134], on an adaptive resolution grid with the
coarse/fine grid resolution levels n = 1 − 12, respectively. The left-hand side: CPU
simulations, on the right-hand side: accelerated GPU implementation. The real-world
domain is 1km×1km (only a half of the squared computational domain is shown in the
x-direction); the shortest edge of the adaptive mesh elements corresponds to ≈ 11m.
The simulation times are as indicated. Contour levels correspond to θ′ = 0.025, 0.075,
0.125, 0.175, 0.225, 0.275, 0.325, 0.375, and 0.425oC. The figure was already published in
[110].

136



5.11 Numerical Experiments

Figure 5.3: Excess potential temperature θ′ for a large warm air bubble with a small
cold bubble on top, as introduced by Robert [135], obtained by the accelerated GPU
simulations on an adaptive resolution grid with the coarse/fine grid resolution levels
n = 2 − 11, respectively. The real-world domain is 1km×1km; the shortest edge the
adaptive grid element corresponds to ≈ 15.6m. The simulation times are as indicated.
Contour levels correspond to θ′ = −0.05, 0.05, 0.15, 0.25, 0.35, and 0.45oC. The figure
was already published in [110].
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Robert experiment are shown in figure 5.3. The shape of the rising warm bub-
ble is affected in addition by the small cold bubble, which slides downwards
along the right-hand side of the interface, destroying the symmetry of the warm
bubble.

By comparing the GPU and CPU results, one can recognize no difference be-
tween the solutions obtained by CPU and GPU program codes (shown in fig-
ure 5.2). This is an important issue since our simulations were performed in
single precision on the GPU and in double precision on the CPU. When solving
differential equations, slight deviations in initial data or higher inaccuracy of
intermediate solution can develop to a different final solution in long time sim-
ulations. In order to quantify expected deviations between the GPU and CPU
solutions we calculate the L2 norm

L2(q) = N−1

[
N

∑
j=1

(
qi,CPU − qi,GPU

)2

]1/2

(5.27)

where N is number of degrees of freedom. Of course, the grids in both sim-
ulations (performed on GPU and CPU) must have the same structure for this
comparison, that cannot be expected in the simulations using adaptive grids.
For this reason we have additionally performed simulations on a regular grid
with the resolution level n = 10, which yields 4096 mesh cells (triangles). This
corresponds approximately to the number of mesh elements in simulations on
the adaptively refined grid with fine resolution level n = 12. In figure 5.4 one
can see that discrepancies are indeed present in both the experiments, Giraldo–
Restelli and Robert, however, they are of the order of magnitude of rounding
errors in the single precision arithmetics and they remain bounded during the
simulations. The largest error has been found for the energy variable, ρθ, which
is due to the fact that the potential temperature, θ, is by 2-3 orders of magnitude
larger than the other variables in our tests.

5.12 GPU Implementation
As published in [110] we port the most time consuming part of our Compu-

tational Fluid Dynamics code, the EG operator, to the GPU while the rest of the
code is still being executed on the CPU. The wording on this section is almost
identical to the publication. By doing so, we are able to speed up the multidi-
mensional evolution operator by a factor of 30 (GTX580 vs single core Nehalem
i7 2.67Ghz), resulting in a roughly sixfold speedup of the overall code.

To evaluate the runtime spent in different parts of the program, we used the
Giraldo–Restelli test case with 16384 mesh cells. The total procedure for calcula-
tion of EG operator takes up to about 85% of the computation time of the whole
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Figure 5.4: The L2 norm calculated from (eq. 5.27) for the solutions obtained by GPU
and CPU codes on regular mesh with n = 10 in a) Giraldo–Restelli and b) Robert
experiments. The figure was already published in [110].
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program in this special case. To date, all of the GPU related work has been done
to speed up this procedure, which is structured into a few subprocedures taking
the following CPU times in the above described test case.

In the following we list the different parts of the compute_EG procedure
and the associated computation time fraction of the complete procedure. The
first part of the compute_EG procedure calculates the change of basis (compute
quadrature points (0.11%) and compute the basis transformation (3.90%). The
second part finds the intersection with the actual wave fronts with each ele-
ments edges. The subtasks here are computing the linearized state (1.10%) and
compute the wavefront arcs (4.80%). The last part calculates the approximate
fields as in eq. (5.22-5.25 (ρ′(P), u(P), v(P), p′(P)) which takes by far the largest
chunk of computation time (90.01%).

The first step was to port all the code related to the computation of this op-
erator from FORTRAN to C which consisted of several thousand lines of code.
Since the data of the main program are stored in the main computer memory, for
the calculation of the EG operator on the GPU, the input and output fields have
to be transferred to/from the GPU before/after execution. Furthermore, the host
program calculates all the fields and quantities in double precision. Therefore,
before being transferred to the GPU, the data must be converted into a single
precision floating point representation.

We noticed that the data transfer time as well as the conversion time are very
low compared to the calculations that are running on the GPU. The last part that
takes up over 90% of the execution time was ported to GPU first, to process all
the mesh cells in parallel as a heavy weight kernel that needs 63 registers and
1000 bytes of stack memory. This limits GPU occupancy to 33%, but this version
of the kernel still performs so fast that the rest of the subprocedures become the
new bottleneck of the program. In future work we plan to optimize the kernel
to increase the GPU occupancy and, hence, the overall performance of the code.

The next step was to bring the computation of the linearized state, arcs, and ba-
sis transformation to the GPU. The computation of basis transformation proved
to be the most problematic and least efficient on the GPU, but it was necessary
to process it on the GPU since copying the data back and forth between CPU
and GPU memory in the middle of the computation is unacceptable.

From equation 3.14, the maximum possible speedup corresponding to the case
tGPU,accel = 0 is

smax =
tCPU, accel

tunaccel
+ 1. (5.28)

In our case the maximum speedup to be expected, if the whole procedure
compute EG is brought to GPU is smax = 6.7 for grid size 12. This clearly justifies
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the effort of a GPU implementation of the procedure in our case.
To benchmark our implementation, we use a NVidia Geforce GTX 580 with a

Intel Core i7 Nehalem processor at 2.67 GHz. The measured execution times are
reported in Table 1 and compared in figure 5.5 for the CPU and GPU implemen-
tations with the grid size level up to n = 12, which corresponds to up to 16384

finite volume elements on our computation domain.

Grid size level, n 8 9 10 11 12

Number of finite elements 1024 2048 4096 8192 16384

tCPU, accel/sec 0.077 0.152 0.307 0.650 1.650

tGPU, accel/sec 0.0045 0.0065 0.0126 0.0026 0.0569

sEG = tCPU,accel/tGPU, accel 17.11 23.38 24.36 25.00 29.70

stot 5.0 5.4 5.5 5.5 6.6

Table 5.1: Execution times in the Giraldo–Restelli experiment for regular grid of different
grid sizes. The net speedup of the GPU implemented parts of the code, sEG, is by a
factor up to 30 faster if compared to the CPU execution times. However, due to the non-
parallelized parts of the program still running on the CPU, the performance speedup of
the whole program, stot, is much lower (equation 3.14).

Since the kernels are very complex and large, it is hard to predict execution
times for finer resolved grids. In our simulations we were restricted to n = 12
due to the CFL condition, which relates the sizes of finite elements to the time
step used in the explicit time integration scheme for our problems. However,
one can see in figure 5.5 that we achieved the most efficient speedup for compute
EG using our current implementation for n = 12. The raw acceleration factor for
the GPU implemented compute EG procedure is nearly 30 for grid size 12, which
means we are nearly reaching the theoretically maximum possible speedup of
about 6.7 for this grid size.

Because of the massive speedups gained in the parts of the program executed
on the GPU, the execution time of the whole program is largely determined by
the parts of the program that remain on the CPU. This means in practice that
the differences in speedup for the different grid sizes are barely noticeable in
reality and we can expect a relatively stable speedup factor of about 5.0-6.6 for
the overall simulation in a real-world example.

141



5 A Finite Volume Evolution Galerkin Method on the GPU

8
9

10

11

12

1024 2048 4096 8192 16384
grid elements

0.01

0.1

1

e
x
e

c
u

ti
o

n
 t

im
e

, 
[s

e
c
]

CPU
GPU

a)

8

9

10
11

12

1024 2048 4096 8192 16384
grid elements

15

20

25

30

sp
ee

d
u
p

b)

Figure 5.5: a) Execution times in the Giraldo–Restelli experiment for regular grids of
different resolutions. b) Numerical speedup of the GPU implemented code for different
number of mesh cells in the computation domain. The numbers annotating the symbols
are for the grid resolution level, n, (cf. Table 1). The figure was already published in
[110].
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Conclusion

Our analysis in chapter 4 has brought up a whole range of results concerning
the finite temperature roughening transition in the 3D Ising model. This was
made possible by only measuring average magnetizations of the lattice planes
next to the hard walls. Using a robust method which does not rely on the as-
sumptions of Young’s equation, we were able to extract accurate contact angles
Θ(H) for all surface fields H in the range where partial wetting occurs.

A differential equation describing the behavior of the surface free energy in
the presence of anisotropy was derived for our system. Combining the results of
this measurement with thermodynamic integration methods, this equation could
be used to integrate the anisotropic surface tension over a large range of angles.
Obtaining surface free energies by integration over the surface magnetizations
requires many separate simulations thus resulting in a large computational ef-
fort. As we used a parallel GPU (Graphics Processing Unit) implementation of
the Ising model, the computational cost was manageable and the results show
very good accuracy. The angle dependence of the surface tension has been calcu-
lated over a large temperature range from well below the roughening transition
temperature TR up to the vicinity of the bulk critical temperature TC and is com-
pared with prior predictions of [17] and [113]. Comparing this method with pre-
vious measurements in different geometries and with different methods shows
good agreement while providing better accuracy, which was achieved especially
through the ability to simulate much larger systems.

The temperature dependence of the surface stiffness κ above the roughening
temperature TR was measured by extraction from the curvature of the surface
free energy near Θ = 90◦. This measurement is comparable to the simulation
data obtained by [24] and is in fact in better agreement with theoretical predic-
tions regarding the scaling behavior of the surface stiffness κ, which has been
analyzed in detail by [25]. We have developed a low temperature model to ex-
plain the small angle behavior of the system below TR, where the angle stays
virtually zero until a critical field HC, which only has a small system size de-
pendency. When this critical field is overcome, the angle increases rapidly. The
critical field HC has been linked to the Step Free Energy. This made it possible
to extract the Step Free Energy from the angle data to analyze the critical be-
havior of this quantity, which is believed to be of Kosterlitz-Thouless type, thus
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featuring a non-polynomial vanishing near TR. Lastly, by combining different
system sizes and comparing their free energy, a method was developed to ex-
tract the line tension, also in dependence of the contact angle. The temperature
dependence has been investigated by performing this analysis at different tem-
peratures. Our method works well over the whole temperature range as well as
for different system sizes.

To gather enough statistics in large scale simulations, we needed a lot of com-
putational resources. This need was met in chapter 3 by implementing a versatile
and platform independent parallel simulation code of the Ising model, which
performs well in two and in three dimensions. Platform independence could be
achieved by abstract interfaces that hide the API (Application Programming In-
terface) specific details for each platform. The Ising update kernel can be used
unchanged for different APIs. GPUs are currently the most cost effective parallel
computation devices, so they have been the main target of the implementation.
Fair performance comparison is hard between different architectures and espe-
cially comparison with non-parallel CPU implementations have to be taken with
a grain of salt. The performance is comparable between OpenCL (Open Compute
Library) and CUDA (Compute Unified Device Architecture) on Nvidia graphics
cards, but we see major differences between vendors.

The conclusions on the performance assessment also hold for the paralleliza-
tion of the Evolution Galerkin operator in chapter 5. Using Nvidia’s CUDA
framework, we have obtained a significant speedup for the operator of a fac-
tor up to 30 in comparision to a single CPU core. The advantage of this speedup
in a real-world simulation may vary, but it can be said that the cost to compute
the actual operator can be almost completely hidden by GPU acceleration.
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Time Step Finite Volume Evolution Galerkin Methods. J. Sc. Comp., 48(1-
3):227–240, JUL 2011.

[117] M. Lukáčová-Medvid’ová, G. Warnecke, and Y. Zahaykah. On the bound-
ary conditions for EG methods applied to the two-dimensional wave equa-
tion system. Zeitschrift für angewandte Mathematik und Mechanik, 84(4):237–
251, 2004.
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