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Abstract

One of the most important challenges in chemistry and material science is the connection

between the contents of a compound and its chemical and physical properties. In solids,

these are greatly in�uenced by the crystal structure.

The prediction of hitherto unknown crystal structures with regard to external conditions

like pressure and temperature is therefore one of the most important goals to achieve in

theoretical chemistry. The stable structure of a compound is the global minimum of the

potential energy surface, which is the high dimensional representation of the enthalpy

of the investigated system with respect to its structural parameters. The fact that the

complexity of the problem grows exponentially with the system size is the reason why

it can only be solved via heuristic strategies.

Improvements to the arti�cial bee colony method, where the local exploration of the

potential energy surface is done by a high number of independent walkers, are developed

and implemented. This results in an improved communication scheme between these

walkers. This directs the search towards the most promising areas of the potential

energy surface.

The minima hopping method uses short molecular dynamics simulations at elevated

temperatures to direct the structure search from one local minimum of the potential

energy surface to the next. A modi�cation, where the local information around each

minimum is extracted and used in an optimization of the search direction, is developed

and implemented. Our method uses this local information to increase the probability of

�nding new, lower local minima. This leads to an enhanced performance in the global

optimization algorithm.

Hydrogen is a highly relevant system, due to the possibility of �nding a metallic phase

and even superconductor with a high critical temperature. An application of a structure

prediction method on SiH12 �nds stable crystal structures in this material. Additionally,

it becomes metallic at relatively low pressures.





Zusammenfassung

Eine der wichtigsten Herausforderungen in der Chemie und der Materialwissenschaft

ist die Verknüpfung der Zusammensetzung einer Verbindung mit ihren chemischen und

physikalischen Eigenschaften. In Festkörpern sind diese erheblich durch die Kristallstruk-

tur des Systems beein�usst.

Die Vorhersage von bisher unbekannten Kristallstrukturen in Bezug auf äuÿere Bedin-

gungen wie Druck und Temperatur ist daher eines der wichtigsten Ziele in der theo-

retischen Chemie. Die stabile Struktur einer Verbindung ist das globale Minimum ihrer

Potential�äche, welche die hochdimensionale Darstellung der Enthalpie des untersuchten

Systems hinsichtlich seiner Strukturparameter ist. Die Tatsache, dass die Komplexität

des Problems exponentiell mit der Systemgröÿe ansteigt ist der Grund, warum es nur

durch heuristische Strategien gelöst werden kann.

Verbesserungen der Arti�cial Bee Colony Methode, bei der die lokale Erkundung der

Potential�äche durch eine hohe Anzahl von unabhängigen Walkern durchgeführt wird,

wurden entwickelt und implementiert. Daraus resultiert ein verbessertes Kommunika-

tionsschema zwischen diesen Walkern. Dadurch wird die Suche auf die vielversprechend-

sten Bereiche der Potential�äche konzentriert wird.

Die Minima Hopping Methode verwendet kurze Molekulardynamik Simulationen bei

erhöhten Temperaturen, um die Strukturaufklärung von einem lokalen Minimum der

Potential�äche zum nächsten zu leiten. Eine Modi�kation, bei der die lokalen Informa-

tionen um jedes Minimum extrahiert und in einer Optimierung der Suchrichtung verwen-

det werden, ist entwickelt und implementiert worden. Unsere Verbesserung verwendet

diese lokalen Informationen, um die Wahrscheinlichkeit zu erhöhen neue, energetisch

niedrigere, lokale Minima zu �nden. Dies führt zu einer verbesserten Performance des

globalen Optimierungsalgorithmus.

Wassersto� ist ein hoch relevantes System, da die Möglichkeit besteht, dass unter hohem

Druck eine metallische Phase und Supraleitung mit einer hohen Sprungtemperatur ge-

funden werden kann. Eine Anwendung eines Strukturvorhersage-Algorithmus auf SiH12

�ndet stabile Kristallstrukturen in diesem Material. Zusätzlich �nden wir eine Met-

allisierung bei verhältnismäÿig niedrigen Drücken.
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1 Introduction

The structure of a solid, as de�ned by the order of the atoms in the crystal structure,

hugely in�uences its chemical and physical properties. Systems composed from the same

types of atoms may exhibit vastly di�erent characteristics, depending on their structure.

This polymorphism is for example found in carbon, where many diverse allotropes are

known. Diamond, graphite, fullerene and graphene all are only composed from elemental

carbon, and still di�er greatly in many respects.

In chemistry and material science, where the prediction of properties of unknown ma-

terials is one of the most fundamental goals, the stable crystal structures is therefore

one of the most important features one can aim to predict. This structure is the ener-

getical minimum of the system depending on external conditions like temperature and

pressure. These conditions have therefore to be considered in the simulations, which

poses additional challenges.

With the discovery of X-rays by Wilhelm Conrad Röntgen in 1895 and the development

of X-ray di�raction by Max von Laue and William Lawrence Bragg it became possible

to probe the three-dimensional structure of crystalline solids. This method allows us

to extract valuable information about systems relatively easily. The structure determi-

nation via X-ray di�raction is a routinely applied technique and provides good results.

Yet the theoretical prediction of the crystal structure of a system based on the chemical

composition alone is still very challenging. This fact was already addressed and called a

scandal by John Maddox in 1988 [59].

"One of the continuing scandals in the physical sciences is that it remains in

general impossible to predict the structure of even the simplest crystalline

solids from a knowledge of their chemical composition."
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1 Introduction

This di�culty arises from the exponential nature of the problem. The number of possi-

ble solutions increases vastly with the increased number of parameters, which makes a

direct solution only feasible for the smallest of systems. To overcome this issue, global

optimization is employed. General examples of problems where global optimization is

used are the travelling salesman problem, protein folding, the here mentioned structure

prediction, just to name a few.

Many di�erent approaches to these global optimization problems have been proposed

over the years. Even though huge advances have been achieved in this area, these

methods are still computationally expensive, and hence there is still room for improve-

ment [97, 101].

The di�culty of global optimization arises from the fact that generally many local min-

ima are present. The discovery of these minima via local minimization is comparatively

simple. Unfortunately there is no straightforward way of determining if a local minimum

is also the global one. Additionally, there is no information available where this global

minimum is located in the search space. To predict the stable structure of a solid the

whole potential energy space has to be explored to make sure the global minimum has

been found. Local minima of the potential energy surface represent metastable struc-

tures, while the global minimum is the stable ground state of the investigated system.

This energy surface is a function of the potential energy of the system with respect to

structural parameters like atomic positions and the unit cell parameters. Consequently

it is high dimensional and generally very complex. An example of such a surface is

illustrated in Figure 1.1, here one can see that the surface is usually very uneven and

many (local) minima are present.

The main motivation for this work are predictions for experimentally inaccessible struc-

tures, in particular under high pressure. Diamond anvil cells, as depicted in Figure 1.2,

allow us to reach pressures up to 400 GPa and thus fundamentally change the properties

of most materials. However, many questions cannot be answered solely by such experi-

ments. For example the application of X-ray di�raction, which is the standard method

for crystal structure determination, is highly non-trivial for hydrogen-rich compounds,

due to the small di�raction coe�cient of the light hydrogen atoms. Simulations allow

us to investigate materials at pressures which are experimentally not accessible and help

2



1.1 Hydrogen Under Pressure

Figure 1.1: Schematic sketch of a potential energy surface [1]

solve the questions where experiments are not su�cient. Theoretical predictions can

also provide excellent prospects for new experiments, which makes this work reside in

the intersection between theoretical solid state chemistry and experimental high pressure

physics.

1.1 Hydrogen Under Pressure

We are interested in hydrogen and hydrogen-rich systems. Hydrogen has been predicted

by Wigner and Huntington in 1935 [99] to become an atomic solid that is addition-

ally a metallic conductor under very high pressure. The existence of metallic hydrogen

has implications for astrophysics, because gas giants, like Jupiter and Saturn, are mainly

made up from light elements like hydrogen and helium, yet possess some of the strongest

planetary magnetic �elds in the solar system. Proving the existence of a metallic hydro-

gen core may provide a convincing explanation for this extraordinarily high magnetic

�eld [6, 79, 80]. A sketch of the planetary model of Jupiter is shown in Figure 1.3. Addi-

tionally the possibility exists that metallic hydrogen is a high-Tc superconductor [8, 78]

3



1 Introduction

Figure 1.2: Cross section of a diamond anvil cell. These Cells are used to reach very high

pressures in experiments. The sample is compressed between two opposing diamonds [2].
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1.1 Hydrogen Under Pressure

Figure 1.3: Model of the interior of Jupiter. A core of heavy elements is surrounded by a

layer of metallic hydrogen. Further outwards liquid hydrogen is found. [3]

and may posses a metallic liquid ground state [14]. This makes the theoretical exam-

ination of the phase diagram of hydrogen under high pressures an important �eld of

research.

The di�culty of reaching these high pressures make it hard to verify predictions and the

previously mentioned problems of performing X-ray di�raction on hydrogen complicates

the determination of the structure of experimentally attained high pressure phases. In

2011, Eremets and Troyan reported the discovery of metallic hydrogen at room temper-

ature and a pressure of 300 GPa [30].

It is still not possible to reach the needed pressures of above 400 GPa in experiments

to dissociate hydrogen, therefore other ways of attaining metallic states have been pro-
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1 Introduction

posed. In hydrogen rich compounds like silane a metallic state at a comparatively low

pressure has previously been found [29]. This e�ect can be explained via "chemical

pre-compression". The presence of the silicon atoms in the system vastly decreases the

distance between the hydrogen atoms. To reach the same distance between two atoms

in elemental hydrogen a way higher pressure is required. We are investigating hydrogen

rich compounds with lower silicon contents in order to try to �nd similar e�ects.

This work is structured as follows: After an introduction to the applied computational

methods in chapter 2 an overview over the current state of crystal structure prediction

is given in chapter 3. In chapter 4 and 5 developed improvements to two di�erent global

optimization methods are presented. Finally, in chapter 6 the electronic structure of

SiH12 is calculated under pressure to determine its metallization pressure.

6



2 Computational Methods

An important basis to carry out the global optimizations (GO) are methods of calculating

or approximating the potential energy surface (PES). The accuracy at which this is

done determines the e�ciency and reliability of the performed GO. In this chapter

some classical potentials to approximate the PES are presented. Additionally, density

functional theory (DFT), one of the most used electronic structure methods to calculate

the PES from �rst principles, is introduced [53]. An introduction to molecular dynamics

is given at the end of this chapter due to the fact that it is frequently used to propagate

the investigated system from one local minimum to the next [33].

2.1 Force Fields and Classical Potentials

Classical potentials are an easy and fast way to calculate the total energy of a system.

These potentials are a mathematical description of the forces acting between the particles

in the system, and provide a relatively simple functional form from which the potential

energy of the system can be calculated. Potentials have to be generated for each special

problem or system one wants to investigate. Di�erent types of atoms interact via di�erent

forces with each other. Additionally, some potentials are optimized to represent a certain

aspect as accurate as possible. One such aspect is the geometry and potentials which

are designed to optimally represent the geometry should be preferred for GO.

7



2 Computational Methods

2.1.1 Lennard-Jones Cluster

Systems of particles interacting via a Lennard-Jones (LJ) type potential, which is one of

the easiest and most basic interaction potentials, are called Lennard-Jones cluster. Due

to the fact that its particles are solely interacting via a classical potential the total energy

and derivatives are easily available. Therefore, extensive databases of energy values and

geometries of the global minimum are available for a wide range of cluster sizes.

Figure 2.1: Lennard-Jones Potential,

ε = σ = 1 Figure 2.2: Lennard-Jones-cluster

55 particles

The Lennard-Jones interaction potential between two particles is of the form

Vij(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
. (2.1)

Here, rij denotes the distance between the two particles, denoted with i and j. ε and σ are

parameters that can be freely chosen and de�ne the energy ε of a pair of particles in the

equilibrium distance 21/6σ. However, in order to get results comparable with literature,

values of ε = 1 and σ = 1 are selected. LJ cluster are well studied systems and the global

minimum is known for clusters up to a few hundred particles, and are therefore a perfect

system to test novel search algorithms. We performed global optimizations for di�erent

cluster sizes in order to evaluate the performance of the improved search algorithm. A

8



2.1 Force Fields and Classical Potentials

plot of the potential can be seen in Figure 2.1, and an example of a LJ cluster is shown

in Figure 2.2.

2.1.2 Morse Cluster

Morse cluster are very similar to LJ cluster because the energy of the system is also

given via a purely distance based potential. It has the form

E(rij) = ε eφ(1−rij/r0)(eφ(1−rij/r0) − 2). (2.2)

The value ε represents the depth of the equilibrium well and r0 is the distance at which

it can be found. Both parameters have been chosen as 1 in this work. The steepness and

the width of the potential around the minimum can be in�uenced via the parameter φ.

A plot of the Morse potential is shown in Figure 2.3 for the case φ = 6. This case equates

to a potential very similar to the LJ one.

Figure 2.3: Morse Potential ε = r0 = 1, φ = 6

2.1.3 Water Cluster

Clusters of water molecules are more di�cult to simulate, compared to the previously

presented systems, due to the facts that these consist of two di�erent types of atoms

and that an inner structure is present in the molecule.

9



2 Computational Methods

2.1.3.1 The TIP4P/2005 Water Model

The TIP4P/2005 water model uses a pairwise additive intermolecular potential

Einter =
∑
i

∑
j>i

(
4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
∑
m∈i

∑
n∈j

qmqn
rmn

)
(2.3)

to simulate the interaction between each pair of water molecules [4, 40]. The two inter-

acting molecules are identi�ed as i and j. It consists of a LJ like potential between the

oxygen atoms, with rij being the distance between these. The values for the parameters

ε and σ are chosen to approximate the behaviour of water in an optimal way and are

given in Table 2.1. The interaction between the partial charge sites in molecule i and

j is modelled using the Coulomb interaction between the charge sites. The distance

between these sites is given as rmn. The indexes m and n iterate over all charge sites

on molecule i and j respectively. Three charge sites are present in each molecule, two of

these are located at the positions of the hydrogen atoms and are of the magnitude qM
2
.

Instead of the two lone electron pairs only one complementing negative charge of the

magnitude −qM is de�ned at position rm, which is located on the line connecting the

oxygen to the center of mass of the hydrogen atoms. This position can be calculated as

rm = γrO + (1− γ)(rH1 + rH2)/2. (2.4)

It depends on the position of the atoms rO, rH1 and rH2 in the molecule, and a parame-

ter γ, which is also given in Table 2.1.

Up to this point, the model describes the interaction of rigid water molecules. To add

the intramolecular �exibility, a potential

Eintra =
∑
i

[Vθ(θi) + VOH(ri1) + VOH(ri2)] (2.5)

is added. The bond angle θi is described via a harmonic potential

Vθ(θi) =
1

2
kθ(θi − θeq)2, (2.6)

10



2.1 Force Fields and Classical Potentials

depending on the equilibrium bond angle θeq and a parameter kθ. A quartic expansion

of a Morse potential is chosen for the simulation of the O-H bond stretch

VOH(r) = Dr

[
α2
r(r − req)2 − α3

r(r − req)3 +
7

12
α4
r(r − req)4

]
. (2.7)

It depends on the equilibrium distance req and two parameters Dr and α. The full Morse

potential is not used in this model due to the fact that it would allow for dissociation to

happen. The energy and structure for the global minimum for water clusters simulated

using this potential are known and listed in the Cambridge Cluster Database [96].

Table 2.1: Parameter for the TIP4P/2005 water model[40]

Parameter Value

ε 0.1852 kcal mol−1

σ 3.1589 Å
qM 1.1128 |e|
γ 0.73612
Dr 116.09 kcal mol−1

αr 2.287 Å−1

req 0.9419 Å
kθ 87.58 kcal mol−1 rad−2

θeq 107.4 ◦

2.1.3.2 The TIP5P Water Model

In TIP5P water, the two negative charges that are present in the water molecule are

considered as individual points. These charges are located at the position of the lone

electron pairs. The potential of this rigid water model is thus given as [60]

E =
e2

4πε0

∑
m∈i

∑
n∈j

qmqn
rmn

+ 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
. (2.8)

The used values for the parameters are given in Table 2.2. For the TIP5P water cluster,

a local minimum with an energy only slightly higher than the global minimum can be

found. These structures are shown in Figure 2.4.

11



2 Computational Methods

Figure 2.4: The two identi�ed minima for the six rigid water molecules interacting via the

TIP5P potential. The structure shown on the left has an energy of E ≈ −195.8kJmol−1,

whereas the structure on the right is the global minimum known from the Cambridge

Cluster Database [96]. Its energy is at E ≈ −197.9kJmol−1. [98]

Table 2.2: Parameter for the TIP5P water model[60]

Parameter Value

ε 0.66944 kJ mol−1

σ 3.12 Å
qM 0.241 |e|

2.2 Density Functional Theory

An alternative approach is to calculate the potential using quantum chemical methods,

for example density functional theory (DFT). Here the energy and the forces are calcu-

lated from �rst principles. This generally leads to more accurate results, but requests

signi�cantly larger computational work.

The starting point for DFT, like for most quantum chemical calculations, is the station-

ary Schrödinger equation [85] for a system of M nuclei and N electrons

ĤΨi(x1,x2, · · ·xN ,R1,R2, · · ·RM) = EiΨi(x1,x2, · · ·xN ,R1,R2, · · ·RM). (2.9)

12



2.2 Density Functional Theory

Here Ψi is the exact wavefunction of the i-th state of the system, Ψ0 is the wavefunction

of the ground state, which is supposed to be non degenerate. Ei is the systems total

energy in this state. Ψi depends on the coordinates of the nuclei RA, as well as the

spatial and spin coordinates (xi ≡ (ri, si)) of the electrons. It contains all information

about the system. The Hamiltonian in atomic units

Ĥ = −1

2

N∑
i=1

∇2
i︸ ︷︷ ︸

T̂e

−1

2

M∑
A=1

1

mA

∇2
A︸ ︷︷ ︸

T̂k

−
N∑
i=1

M∑
A=1

ZA
riA︸ ︷︷ ︸

V̂ke

+
N∑
i=1

N∑
j<i

1

rij︸ ︷︷ ︸
V̂ee

+
M∑
A=1

M∑
B<A

ZAZB
rAB︸ ︷︷ ︸

V̂kk

(2.10)

is the operator corresponding to the total energy of the system. The indices A and B

denote the M nuclei of the system, i and j identify the N electrons. The Hamiltonian

depends on the mass of each nucleus mA and its electric charge ZA, and consists of

kinetic energy contributions T̂ as well as potential energy contributions V̂.

Due to the fact that electrons are at least 2000 times lighter than the nuclei, and move

therefore much faster, one can treat the dynamics of these two separately. Fixed positions

for the nuclei can be assumed and an electronic Hamiltonian is de�ned as

Ĥel = T̂e + V̂ee + V̂ke. (2.11)

This so-called Born-Oppenheimer approximation [15] leads to a parametric dependence

of the energy on the positions of the nuclei: Eel(r;R). The position of the nuclei is

thus no longer a variable in the calculation, and for each given con�guration exactly one

energy value can be computed.

To solve the Schrödinger equation, one employs the variational principle. It states that

the expectation value of the Hamiltonian for a given trial wave function is always greater

or equal to the expectation value for the true ground state wave function. It thus serves

as an upper bond for the exact energy. A trial wave function Ψtrial is chosen and the

functional E[Ψ] is minimized using the variational principle〈
Ψtrial

∣∣∣ Ĥ ∣∣∣Ψtrial

〉
= Etrial ≥ E0 =

〈
Ψ0

∣∣∣ Ĥ ∣∣∣Ψ0

〉
(2.12)

to get the best possible approximation to the real wave function.

13



2 Computational Methods

The Electron Density

The central property of density functional theory (DFT) is the local electron density ρ(r),

which is the integral of the many-body wave function over all spin coordinates and all

but one spatial coordinate of all electrons

ρ(r) = N

∫
· · ·
∫
|Ψ(x1,x2, · · ·xN)|2 dx2 · · · dxN . (2.13)

This density denotes the probability of �nding any electron with arbitrary spin in the

volume element dr3. The electron density has to vanish at in�nity (ρ(r→∞) = 0) and

the integral over the density yields the total number of electrons (
∫
ρ(r)dr = N) in the

system.

2.2.0.3 First Hohenberg-Kohn Theorem

In 1964 Hohenberg and Kohn [45] stated two fundamental theorems, which are the

foundations on which density functional theory resides. The �rst theorem addresses the

external potential Vext, in which the observed electrons move.

The external potential Vext(r) is (to within a constant) a unique functional

of ρ(r); since, in turn Vext(r) �xes Ĥ we see that the whole many-particle

ground state is a unique functional of ρ(r).

This states that there cannot be di�erent potentials Vext that lead to the same ground

state electron density ρ0, hence every ground state electron density belongs to exactly

one external potential. From this information exactly one Hamiltonian can be set up.

This leads to the ground state wave function of the system.

ρ0 → {N,ZA, RA} → Ĥ→ Ψ0 ⇒ E0 (and all other properties). (2.14)

The functional for the energy E0[ρ0] has the following form:

E0 [ρ0] = T [ρ0] + Eee [ρ0] + ENe [ρ0] . (2.15)

Only the potential energy due to nuclei-electron attraction ENe [ρ0] =
∫
ρ0(r)VNedr

is system-dependent, while the kinetic energy T [ρ0] and the potential energy due to
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2.2 Density Functional Theory

electron-electron repulsion Eee[ρ0] do not depend on the system and can therefore be

collected in the system-independent Hohenberg-Kohn functional FHK [ρ0]. This gives

E0 [ρ0] =

∫
ρ0(r)VNedr+ FHK [ρ0] (2.16)

with the unknown Hohenberg-Kohn functional

FHK [ρ] = T [ρ] + Eee [ρ] =
〈

Ψ
∣∣∣ T̂ + V̂ee

∣∣∣Ψ〉 , (2.17)

which is the core of density functional theory. The functional FHK [ρ] contains the kinetic

energy T [ρ] and the electron-electron interaction Eee[ρ]. At least one part of Eee [ρ], the

classical Coulomb interaction J [ρ] is well known

Eee [ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2 + Encl [ρ] = J [ρ] + Encl [ρ] . (2.18)

The non classical electron interaction Encl [ρ], consisting of the self interaction correction

as well as the exchange-correlation, is unknown. Unfortunately functionals for these

properties are not known, and therefore approximations are needed.

Finding explicit expressions for Encl [ρ] and T [ρ] is one of the main challenges in density

functional theory.

2.2.0.4 Second Hohenberg-Kohn Theorem

The second Hohenberg-Kohn theorem states

The functional FHK [ρ] gives the lowest energy if the input is the real ground

state electron density.

This resembles the variation principle (see section 2.2) From equation (2.15) an energy is

obtained for every trial electron density ρ̃. This ρ̃ has to ful�ll some boundary conditions

(ρ̃(r) ≥ 0,
∫
ρ̃(r)dr = N) and is attributed to some external potential Ṽext. The obtained

energy is an upper boundary for the real ground state energy E0
1.

E0 ≤ E[ρ̃] = T [ρ̃] + ENe[ρ̃] + Eee[ρ̃]. (2.19)

1This variational ansatz is only valid if the exact FHK is used. Since this functional is unknown,

density functional theory can yield energies lower than E0.
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Only with the real ground state electron density ρ0 the real ground state energy E0 can

be obtained [51].

2.2.1 The Kohn-Sham Approach

In 1965, Kohn and Sham presented a way to put the Hohenberg-Kohn theorems to

work and suggested approaches to �nd explicit forms for the functionals T [ρ(r)] and

Encl [ρ(r)] [54]. They approximated the true kinetic energy using the kinetic energy

of a reference system of non-interacting electrons which move in an external e�ective

potential.

2.2.1.1 The Non-Interacting Reference System

Kohn and Sham considered, like in Hartree-Fock theory [93], a Slater determinant ΦSD

(see equation (2.21)) consisting of N spin-orbitals instead of the real wave function. The

spin-orbitals χi in ΦSD are chosen in a way that E is minimal.

This is the exact wave function of a system of non-interacting fermions and therefore

one may build a non-interacting reference system and a Hamiltonian which contains an

e�ective, local potential VS(r)

ĤS = −1

2

N∑
i

∇2
i +

N∑
i

VS(ri). (2.20)

This Hamiltonian contains electron-electron interactions only in a mean-�eld fashion,

and has a Slater determinant as ground state wave function

ΦS =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) · · · ϕN(x1)
ϕ1(x2) ϕ2(x2) · · · ϕN(x2)

...
...

. . .
...

ϕ1(xN) ϕ2(xN) · · · ϕN(xN)

∣∣∣∣∣∣∣∣∣ . (2.21)

The one-electron equations

f̂
KS
ϕi = εiϕi (2.22)
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2.2 Density Functional Theory

may now be solved with the one-electron Kohn-Sham operator

f̂
KS

= −1

2
∇2 + VS(r). (2.23)

The e�ective potential VS(r) has to be introduced into this operator to establish a

connection between the non-interacting reference system and the real system. It has to

be chosen in a way that the ground-state density of the non-interacting system equals

to the ground state electron density of the real system

ρS(r) =

N(Occ)∑
i

∑
s

|ϕi(r, s)|2 = ρ0(r). (2.24)

The kinetic energy of this system is given by

TS = −1

2

N∑
i

〈
ϕi
∣∣∇2

∣∣ϕi〉 . (2.25)

This energy TS is smaller than the true kinetic energy, and therefore one has to �nd an

appropriate term for the small remainder. With this new term the functional FHK [ρ]

(see equation (2.17)) is written as

FHK [ρ] = TS[ρ] + J [ρ] + EXC [ρ], (2.26)

with the exchange-correlation energy functional EXC [ρ]. This functional is the part of

FHK [ρ] which still remains unknown. It is obtained as the di�erence between the kinetic

energy of the real system and the kinetic energy of the non-interacting reference system

plus the di�erence between the electron-electron interaction and the classical Coulomb

interaction

EXC [ρ(r)] ≡ (T [ρ]− TS[ρ]) + (Eee[ρ]− J [ρ]) = TC [ρ] + Encl[ρ]. (2.27)

The exchange-correlation energy functional EXC [ρ] contains all parts of the energy func-

tional which are unknown, and all many-body e�ects.

To determine the orbitals of the non-interacting reference system and to get a Slater

determinant which yields the electron density of the real system, one obtains from the

variational principle(
−1

2
∇2 +

[∫
ρ(r2)

r12
dr2 + VXC(r1)−

M∑
A

ZA
r1A

])
ϕi =

(
−1

2
∇2 + Ve�(r1)

)
ϕi = εiϕi.
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(2.28)

Comparison of this equation with equation (2.23), shows that Ve� equals VS

VS(r) ≡ Ve�(r) =

∫
ρ(r2)

r12
dr2 + VXC(r1)−

M∑
A

ZA
r1A

. (2.29)

If one has the exact exchange-correlation potential to insert into equation (2.29) one

could solve the one-electron equations to get the orbitals and the ground state electron

density and energy etc. Unfortunately VXC is de�ned via the unknown functional EXC
as

VXC ≡
δEXC
δρ

(2.30)

and is therefore unknown too. Approximations for EXC will be given in the next subsec-

tion.

2.2.2 Approximations for the Exchange-Correlation Functional

Since all the remaining, unknown parts of the functional are collected in EXC [ρ], and no

explicit expression for this functional is known, one needs to develop certain approxima-

tions to solve the Kohn-Sham equations.

2.2.2.1 Local (Spin) Density Approximation

In the local density approximation (LDA) one takes the exchange and correlation energy

of a hypothetical uniform electron gas. Therefore EXC [ρ] is written in the following form

ELDA
XC [ρ] =

∫
ρ(r)εLDAXC (ρ(r))dr. (2.31)

The quantity εXC(ρ(r)), which is the exchange and correlation energy of a particle in a

homogeneous electron gas of the density ρ, is weighted with the probability of �nding
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2.2 Density Functional Theory

an electron at this location. The exchange and correlation parts of εXC(ρ(r)) are viewed

separately

εXC(ρ(r)) = εX(ρ(r)) + εC(ρ(r)). (2.32)

For the exchange the so-called Slater exchange, which was derived by Bloch and Dirac

in the late 1920's [13, 26, 87], is assumed

εX = −3

4

(
3ρ(r)

π

) 1
3

. (2.33)

Unfortunately there are no closed-form expressions for the correlation part εC(ρ(r)) but

good numerical expressions can be derived by Monte-Carlo simulations for the electron

gas [18].

2.2.2.2 Generalized Gradient Approximation

The generalized gradient approximation (GGA) is a logical next step beyond the LDA.

Instead of taking just the value of the electron density at one position, the gradient of

the density ∇ρ(r) is also considered. The exchange-correlation function EXC is written

as

EGGA
XC [ρ] =

∫
ρ(r)εGGAXC (ρ(r)∇ρ(r))dr. (2.34)

For cases with slowly varying electron density this generally improves the quality of the

calculations. Problems may arise for systems with faster varying density, but modern

functionals can take care of these problems [73].

2.2.3 Solving the Kohn-Sham Equations

The general procedure for solving the Kohn-Sham equations is the self consistent �eld

(SCF) method. It is an iterative process which is necessary due to the fact that the result

of this calculations (the electron density) is needed to generate the e�ective potential

which is needed as an input in the Kohn-Sham equations. Some kind of basis set is
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2 Computational Methods

used to construct the orbitals as a superposition of atomic orbitals. The electron density

is calculated from this. The resulting e�ective potential is afterwards used to solve

the one particle Kohn-Sham equations. In the last step, a new density is calculated

from the results and the Kohn-Sham equations are solved again with this new potential.

This procedure has to be repeated until convergence in the density or total energy is

achieved.

2.3 Molecular Dynamics

Molecular Dynamics (MD) is one of the most powerful methods for molecular simulations.

It is used to evaluate expectation values for macroscopic thermodynamic properties of

the system at �nite temperature. The movement of the atoms in a given system is

calculated iterativeley by solving Newton's equations of motion. The forces acting on

the atoms can be calculated using the already presented methods of either classical

potentials or ab-initio methods like DFT.

A number of global optimization methods rely on MD for the propagation of the system

from one local minimum to the next. Here, one is not interested in the calculation of

macroscopic properties of the system, instead only changes in the geometry on short

time scales are relevant. Due to its nature, MD is an e�cient tool for the discovery of

new trial structures. Its inherent advantages are the preference of low lying structures

and the favoured crossing of low lying energy barriers. A short introduction to MD is

given here.

In MD, one tries to solve the classical equations of motion for the particles in the

investigated system. For a simple atomic system of N particles with the coordinates

R = (R1, R2, . . . , RN) these equations are:

FI = MIR̈I . (2.35)

The force FI is given as the derivative of the potential energy U(R)

FI = − ∂

∂RI

U. (2.36)
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The forces which a�ect the particles in the system have therefore to be calculated. In

classical MD, this calculation is done using force �elds, which describe the interactions

between the atoms, whereas in ab-initio MD the forces are generated from electronic

structure calculations. The momenta of the simple atomic system, which we consider

here are de�ned as P = (P1, P2, . . . , PN) and can be used to write the kinetic energy

as

Ekin =
1

2

N∑
I=1

MIṘ
2
I =

N∑
I=1

P 2
I

2MI

. (2.37)

In the Hamilton formalism, the equations of motion are a system of coupled di�erential

equations

R̈I =
ṖI
MI

and ṖI = FI . (2.38)

This system can be transformed into a di�erence equation. To do this, RI is expanded

in a Taylor expansion as

RI(t+ ∆t) = RI(t) + ṘI(t)∆t+
FI(t)

2MI

(∆t)2 +
∂3RI(t)

3!∂t3
(∆t)3 +O((∆t)4), (2.39)

and

RI(t−∆t) = RI(t)− ṘI(t)∆t+
FI(t)

2MI

(∆t)2 − ∂3RI(t)

3!∂t3
(∆t)3 +O((∆t)4). (2.40)

The di�erence between these two equations is

RI(t+ ∆t)−RI(t−∆t) = 2ṘI(t)∆t+O((∆t)3), (2.41)

which leads us to

ṘI(t) =
RI(t+ ∆t)−RI(t−∆t)

2∆t
+O((∆t)3). (2.42)

This equation is the so-called Verlet [94] algorithm. A more often used approach is the

velocity Verlet algorithm [92] in which RI and ṘI can be evaluated in the same iteration.

At �rst the positions RI at t+ ∆t are evaluated

RI(t+ ∆t) = RI(t) + Ṙ(t)∆t+
FI(t)

2MI

(∆t)2. (2.43)
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In the next step the new forces FI are calculated from the interaction potential as

FI(t+ ∆t) = FI [RI(t+ ∆t)] . (2.44)

To calculate the velocities R̈ we insert t→ t+ ∆t into (2.40) to get

R̈I(t) = R̈I(t+ ∆t)− R̈I(t+ ∆t)∆t+
FI(t+ ∆t)

2MI

(∆t)2, (2.45)

which is equivalent to

RI(t+ ∆t) = RI(t) +
FI(t) + FI(t+ ∆t)

2MI

∆t. (2.46)

This algorithm is now used to move the atoms for a certain time step ∆t. A large number

of repetitions of this procedure generates a progression of positions and velocities in the

system. This is normally referred to as a trajectory. The size of the time-step in the MD

calculation can not be arbitrarily large. It generally has to be rather small, for example

the order of

∆tmax ≤
1

20

1

fmax

≈ 10−15s, (2.47)

where fmax refers to the highest vibrational frequency in the system.

The velocity Verlet algorithm is the de facto standard for MD simulations. The calcula-

tion of exact trajectories is generally impossible, but one is generally interested in system

properties which are obtained from statistical mean values, where the exact movements

of the particles are not relevant. In GO algorithms there is no interest in these prop-

erties at all, instead one is only interested in the propagation of the particles to push

the system towards a new, previously unknown structure. Therefore MD in GO is often

initialized with rather high initial velocities and stopped as soon as a new structure is

found, long before the system has reached the equilibrium.
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3 Structure Prediction

In this chapter we address the question how the prediction of stable structures can be

performed. This is an important task in chemistry, as the properties of the investigated

material depend on the stable structure, which is given by the global minimum of the

PES.

Structure prediction can be performed on a local or global level. Local techniques

minimize the energy of the system in order to discover the nearest local minimum on the

PES. Global methods, on the other hand, attempt to �nd the globally lowest minimum.

This global minimum thus represents the stable structure of a material at the chosen

external conditions. In this chapter local optimizations are introduced in the beginning,

and global minimization methods are presented thereafter.

Many of the presented global methods rely on a local minimization techniques in parts

of the algorithm. The GO only has to direct the system into the attraction region of

a minimum, as the exact minimum can then be discovered via a local optimization.

Furthermore, the PES can be transformed using local minimizations. By assigning the

energy of the nearest minimum to every point on the PES, areas of attraction around

each local minimum become areas of equal energy. This greatly reduces the complexity

of the given problem.

The PES of relevant systems is typically very high dimensional, with an exponentially

increasing number of local minima for increasing system sizes. This fact makes it rather

di�cult to �nd the global minimum, and unfortunately there is generally no guarantee

that it has been found. Minima of lower energy may be available and separated by high

energy barriers.
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3.1 Local Minimizations

The most popular local optimization methods, namely steepest descent (SD), conjugate

gradient (CG) and the quasi-Newton methods introduced by Broyden, Fletcher, Gold-

farb and Shanno (BFGS and L-BFGS) [16, 32, 39, 69, 86] will be presented here.

3.1.1 The Steepest Descent Method

The goal of SD is to �nd the minimum of a quadratic test function

φ(x) =
1

2
Ax2 − bx, (3.1)

where A is a symmetric positive de�nite matrix. The goal of the minimization is to �nd

an extremum (minimum) x∗ of the function φ. Extrema of a function can be found as

points where the gradient of the function is zero

0 = ∇φ(x∗) = Ax∗ − b. (3.2)

In the steepest descent method one follows the negative gradient of the function −∇φ(x)

towards the minimum. This direction yields the vector of the direction in which the

function decreases the most, and is generally followed until the function value decreases

no longer. While moving down a valley towards the local minimum this method tends

to perform many small steps. Each step is performed into a direction orthogonal to

the previous one. The search thus moves in a rather ine�cient zigzag fashion, until it

reaches the minimum.

3.1.2 The Conjugate Gradient Method

A set of vectors {p0,p1, . . . ,pn−1} is called conjugate with respect to a matrix A ∈ Rn×n

if

pTi Apj = 0 for all i 6= j. (3.3)
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This set of vectors spans the complete space of Rn. This allows us to minimize φ(x)

in at most n steps by minimizing along all n directions of the individual vectors [44].

Additionally, we are able to express the di�erence vector between a guess x0 for the

exact solution x∗ as a linear combination of these vectors:

x∗ − x0 = σ0p0 + σ1p1 + . . .+ σn−1pn−1 (3.4)

The parameters σk correspond to the step length αk needed to minimize a quadratic

function φ along the axis xk + αkpk. Hence it follows for the search step

x∗ = x0 + α0p0 + α1p1 + . . .+ αn−1pn−1. (3.5)

This method, which only works for the here assumed quadratic example, �rst �nds the

minimum along the �rst dimension of the solution space, than along the next, and so on

until the minimum is found. The set of conjugate vectors is not known at the beginning

and has to be generated. In the conjugate gradient method each direction is generated

from the gradient −rk = ∇φ and the previous search direction as

pk = −rk + βkpk−1. (3.6)

Here, βk is generated from the condition (3.3) as

βk =
rkApk−1
pTk−1Apk−1

=
rTk rk

rTk−1rk−1
. (3.7)

Instead of solely choosing the gradient as the minimization direction, CG incorporates

the previous gradients to optimize the search direction.

3.1.3 Quasi-Newton Methods

In the quasi-Newton minimization, instead of just using the previous gradient directions,

an approximation of the Hessian matrix is generated and updated during the course

of the minimization. This information can be used for a fast and reliable discovery of

the local minimum. The approximate inverse Bi of the Hessian matrix H is therefore

updated in every step of the algorithm, and converges to the true inverse

lim
i→∞

Bi = H−1. (3.8)
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The search step, starting from the current point xi, is then given as

∆x = x− xi = −H−1 · ∇f(xi), (3.9)

where ∇f(xi) is the gradient of the to be minimized function f(xi). Using the di�erence

between the coordinates xi+1 − xi and the di�erence between the gradients ∇f(xi+1)−
∇f(xi), the inverse Hessian matrix Bi is then updated using the following formula[75]

Bi+1 = Bi +
(xi+1 − xi)⊗ (xi+1 − xi)

(xi+1 − xi) · (∇f(xi+1)−∇f(xi))

− [Bi · (∇f(xi+1)−∇f(xi))]⊗ [Bi · (∇f(xi+1)−∇f(xi))]

(∇f(xi+1)−∇f(xi)) ·Bi · (∇f(xi+1)−∇f(xi))

+ [(∇f(xi+1)−∇f(xi)) ·Bi · (∇f(xi+1)−∇f(xi))]u⊗ u, (3.10)

where u is de�ned as

u =
(∇xi+1 − xi)

(xi+1 − xi) · (f(xi+1)−∇f(xi))

− Bi · (∇f(xi+1)−∇f(xi))

(∇f(xi+1)−∇f(xi)) ·Bi · (∇f(xi+1)−∇f(xi))
. (3.11)

In the low memory version of BFGS, called L-BFGS, only the vectors (xi+1 − xi) and
(∇f(xi+1)−∇f(xi)) from the last number of steps are saved. L-BFGS uses these vectors

instead of the complete Hessian matrix in the minimization. The Hessian matrix has

not to be saved in this approach, which reduces the needed memory. This also decreases

the utility of L-BFGS for our approach, because only a low rank version of the Hessian

matrix is generated from the last few steps and it is not readily available at the end of

the minimization. To get the approximation of the Hessian matrix from L-BFGS it has

to be generated from (xi+1 − xi) and (∇f(xi+1)−∇f(xi)).

3.2 Methods for Global Optimization

Now we turn towards the question of how to perform a GO. A naive approach is to

sample every point of a very �ne-grained grid on the PES. This is not feasible for most
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systems due to the exponential scaling of the complexity of the PES. More sophisticated

approaches that only sample a limited number of structures have to be used.

The simplest approach is a search algorithm, where random structures are generated

as starting points and optimized. This leads to a greatly reduced number of needed

energy calculations compared to the completely random sampling. If one starts enough

local optimizations at a su�cient number of random points, there is a reasonable high

probability to even �nd the global minimum of the system. This is, of course, still a

rather ine�cient way to search the global minimum, because a high number of tries is

still needed.

3.2.1 Basin Hopping

In basin hopping [27, 95, 97, 101] a transformed PES is explored using MC moves. This

transformation is done using local optimizations, and the energy of the closest local

minimum is assigned to each point on the PES. The acceptance of each suggested MC

move is thus not dependant on the energy at the suggested destination, but instead on

the energy of the nearest local minimum to this point. The complexity of the PES is

reduced greatly by this approach.

3.2.2 Tabu Search

In tabu search [90], the system is moved out of the local minimum along the direction

with the lowest ascent in energy, followed by a local optimization to identify the next

minimum. If the system ends up in a structure which has already been visited a tabu is

applied to the generation of the search direction to prevent it from following the exact

same direction again.
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3.2.3 Activation Relaxation Technique

A similar approach is the activation relaxation technique (ART) [61, 67], where a local

search is performed in a way that the system is moved out of the current minimum

across the nearest saddle point on the PES. From this point the con�guration then is

relaxed to the next minimum.

3.2.4 Metadynamics

In metadynamics, the goal of moving the system out of one minimum of the PES into

the next is achieved via the addition of Gaussian potentials to the PES to slowly �ll

the current minimum [55, 63, 72]. These potentials push the system out of the current

minimum towards the next one. In order to apply these potentials the dimensionality

of the problem has to be reduced. Generally only the size and form of the unit cell are

chosen as collective variables. The minimum energy structure of the atoms within the

chosen cell can then be found using MD.

3.2.5 Simulated Annealing

Another popular example for search methods is simulated annealing (SA) [11, 24, 50, 64,

65, 71, 83, 101]. In this method a MC or MD simulation is performed. This method

tries to emulate the process of physical annealing by starting with a high kinetic energy,

so that the system is able to cross most barriers. The temperature is slowly decreased

during the simulation, thus decreasing the probability of jumps between minima. With

this set-up the simulation explores vast areas of the PES in the beginning and then

slowly directs the system towards a minimum where it ends up once the temperature

is low enough. Unfortunately there is no way to guarantee that this approach ends up

in the global minimum, as local minima with a large attraction area are very likely to

be found. Another problem in this approach is the speed with which the temperature

is modi�ed. The progression of this parameter is directly responsible for the success of

the SA.
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3.2.6 Temperature Accelerated MD

In temperature accelerated MD [88], a MD simulation of the system is carried out at

an increased temperature to increase the probability of escaping the current minimum

of the PES. The system is however constrained to the current minimum and only the

escape probability for the di�erent possible transition pathways are determined. They

are then scaled back to the low temperature and the one with the highest probability is

carried out.

3.2.7 Evolutionary Algorithm

The so-called genetic or evolutionary algorithms (EA) [17, 22, 23, 35, 38, 46, 58, 66,

68, 70] employ a rather di�erent approach. In contrary to all previously presented

methods EA does not explore the PES by moving the system from one minimum to

another. Instead an approach inspired by evolution in populations of animals or humans

is employed.

The method starts with a population of randomly generated structures. Each of these

structures is optimized to the closest local minimum and they are then ranked according

to a �tness criterion, which is generally the total energy at the minimum.

A new generation of trial structures is then generated via modi�cations and combinations

of the trial structures with the best �tness. This process is repeated again and again.

This leads to an accumulation of the best structures in the population until the global

minimum is found.

The possibilities of generating these new structures "children" from the chosen "parents"

are either based on mutation or child generation.

• Mutation: New structures are generated by modifying the lowest energy structures.

For example the position of a few or all atoms in the cell can be altered, atom types

can be exchanged between two positions or the complete cell can be deformed by

stretching, compressing or shearing.
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• Child generation: So called child structures can be generated by combining a

number of structures from the previous generation. Generally one would take a

slice from each of two parent structures and combine these to one new structure.

The new set of structures is then again optimized to �nd the best structures. The

ground state structure is found with high probability after a number of repetitions of

this procedure.
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In this chapter the arti�cial bee colony (ABC) method is presented. This global optimiza-

tion method is based on swarm intelligence and employs the intelligent communication

of multiple random walkers which each individually explore the PES in an e�cient way.

An extension to this method is developed and tested with a number of model systems.

4.1 Introduction to ABC

ABC is inspired by the foraging behaviour of bees [48, 82, 98]. This method employs

a number of walkers that are used to systematically explore the PES of the system. In

the original ABC approach, three di�erent types of walkers are de�ned

• Employees are located at the di�erent known local minima of the PES and explore

random search steps from their position, but only accept the new location if it is

of lower energy compared to the old one.

• Onlookers explore the local surroundings of the employee walkers to help with the

exploration of this area, namely accelerating the local optimization.

• Scouts move, completely unconditionally, to randomly chosen positions on the PES

to �nd new local minima to explore.

This approach thus uses swarm intelligence to couple local with global searches and

hereby prevents the system from getting trapped in these local minima. The energy of

the system can be evaluated simultaneously at the di�erent points where the walkers

31
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reside, and an intelligent communication scheme between these walkers is used to guide

the search.

4.2 Extensions of ABC

To evaluate the �tness of every discovered minimum on the PES, a �tness function f(x)

is needed. We de�ne it as follows

f(E(x)) =

{
1− E(x), E(x) < 0

(1 + E(x))−1, E(x) ≥ 0,
. (4.1)

Here x is a vector that consists of all structural parameters, like atomic positions, of the

investigated system. The maxima of this function represent minima of the energy of the

PES additionally it is non-negative and strictly monotonically decreasing with respect

to the energy.

A set of walkers {Ai}NA
i=1 are now employed to perform the optimization. Each walker is

assigned to a structural con�guration xi with the �tness fi

Ai = (xi, fi), (4.2)

xi = (R
(i)
1 ,R

(i)
2 , . . . ,R

(i)
NP

), (4.3)

Ei = E(xi), (4.4)

fi = f(Ei), (4.5)

where R(i)
j is the position of atom j in con�guration xi. Contrary to the initial ABC

method, no rigorous division into scouts, employees and onlookers is present among the

walkers in this approach. Instead, all walkers are of the same type, but two possible

search modes are available for every walker. Depending on the demands of the search

each one can either perform a free or a local move. The free move is similar to the scout

type and places the walker at a completely random point on the PES. The local move,

on the other hand, chooses a point in the vicinity of the walker and accepts the move to

this new point only if the �tness of the walker is improved through this move.

The ABC algorithm is initialized with all walkers doing one single step in the free search

mode, in order to distribute them as randomly as possible on the PES. Afterwards,
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each walker switches to the local search mode and remains in this state until no further

improvement of the �tness can be found for some amount of local search attempts. The

walker, which basically is stuck in a funnel on the PES, switches back to the global

search mode, so it can escape this local minimum and start anew at a di�erent point

on the PES. Speci�cally, every time a local search step fails to improve the �tness for a

number of times NL, the displacement factor rs is reduced. This factor is a parameter

for the maximum length of the vector which is used to move the current walker, and if it

falls below a certain value, the free move is performed the next time this speci�c walker

does a search step.

This approach resembles a completely random search attempt with added local opti-

mizations. The advantage of ABC over the random approach is caused by the fact that

information about the structure of the PES is exchanged between the walkers. It is

shared in order to e�ciently direct the focus onto promising areas. To accomplish this

goal, this method is divided into two di�erent phases, called employee and onlooker

phase. During the so-called employee phase each walker either performs one local or free

move depending on the current state it is in. Successful walkers are allowed to perform

an additional move in the second part of the method, called onlooker phase. Walkers are

considered successful if they are in promising areas of the PES. The move probability in

the onlooker phase is determined as

pi =
fi∑NA

j=1 fi
(4.6)

for each individual walker. This procedure leads to an increased sampling rate in areas

with a higher �tness, which greatly facilitates the discovery of minima. An overview

over the method is shown in Figure 4.1.

33



4 The Arti�cial Bee Colony Method
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Figure 4.1: Overview of the ABC algorithm [98].

4.3 Results

This algorithm has been applied to di�erent systems of molecular clusters. These sys-

tems, namely Morse clusters, Lennard-Jones clusters, and TIP5P water clusters were

introduced in Section 2.1. The di�erent settings for the parameters with respect to the

number of particles NP are shown in Table 4.1. The numbers of walkers in the swarm

and onlooker state are given by NA and NO respectively. The number of allowed local

search steps before a reduction of rs is performed is given as NL. The number of re-

ductions of rs before a free move is enforced is given as ND. All clusters are initialized

with the particles in a rather restricted box, de�ned by the length B0, but are allowed

to expand freely during the simulation.

Due to the high stochastic component in this method all results shown here are the

average number of needed energy calculations (single point calculations, SPC) over a
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4.3 Results

Table 4.1: Settings for the ABC algorithmn with respect to the number of particles NP in

the investigated system.

Agents NA 2 ·NP Displacement Factor rs 0.01

Onlooker Steps NO 20 ·NP Initialization Box B0 0.02 · 3
√
NP

Limit NL 5 ·NP Divisions ND 7

high number of simulations.
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Figure 4.2: Number of needed calculations with respect to cluster size for the LJ clusters

and the Morse clusters with Φ = 6 [98].

Results for Morse cluster up to 25 particles and LJ cluster up to 57 particles are shown

in Figure 4.2. For the cases with NP ≤ 25, results are averaged over 1000 distinct

calculations, for the larger systems 200 distinct runs have been performed. The results

shown indicate a roughly exponential scaling of calculation time with respect to the

system size, although huge �uctuations are present in the calculations for higher cluster

sizes. Compared to clusters of similar size, the LJ cluster with 38 particles, which is
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4 The Arti�cial Bee Colony Method

generally considered a relatively complicated system, shows no increased calculation time

in the ABC method. The PES of this system shows a the steep double funnel geometry,

which poses a di�cult challenge for most GO methods.

Similar results have been found for water clusters, where again 1000 independent runs

have been performed for the smaller systems (2, 3, 4, 5 or 7 molecules) and between 31

and 242 for the rest. These results are shown in Figure 4.3. With the exception of the

six molecule cluster an almost perfect exponential scaling of the method with respect to

the system size can be found.
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Figure 4.3: Number of needed calculations with respect to cluster size for the TIP5P water

clusters [98].

The six molecule cluster is known to be hard to optimize if the TIP5P potential is used.

This is due to the fact that two minima of relatively similar energy are present. The

ABC algorithm generally �nds the higher energy minimum after a time expected if one

interpolates the results for the other cluster sizes. The minimum, which is lower in

energy, however is rather di�cult to �nd for the ABC method. Both structures are
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shown in Figure 2.4 in subsection 2.1.3.

The described issue nicely illustrates the previously mentioned complexity of the GO

problem. One of these two water clusters can be found relatively easy and might seem

to be the global minimum. Only a method that is capable of escaping the attraction

basin of this minimum and explore di�erent parts of the PES is able to �nd the lower

energy structure. Thus this process requires signi�cantly longer simulation times.

4.4 Conclusion

The presented modi�cation of the ABC method has been successfully applied to three

di�erent model systems. The algorithm was able to �nd the global minimum in all

cases and scales exponentially with system size. ABC manages the structure discovery

without the usage of gradients. The information provided by the gradients is expected

to be useful to further improve the algorithm.
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5 Extension of the Minima Hopping

Method

In this chapter, an approach to �nd the global minimum of Lennard-Jones clusters using

an improved Minima Hopping (MH) is presented.

MH is a powerful method to systematically sample the PES of a system and �nd the

global minimum e�ciently. In MH, the discovery of new structures is driven by short

MD simulations at an elevated temperature [7, 36] This method has already been applied

successfully on various systems like Lennard-Jones and silicon clusters [37, 41, 100].

The main idea behind the enhancements to this method, that we are going to present in

this chapter, is the usage of information about the local surroundings at each minimum.

This data is to be used in the determination of the search direction. The idea is to

extract this local information, speci�cally the direction of the lowest ascent, from the

Hessian matrix of the system. The chance of �nding new, lower energy structures is

higher if we cross lower barriers. We use this to improve the MH, so that the ground

state structure can be found faster. This approach can be used instead of the random

approach to achieve a fast and accurate determination of the global minimum in the MH

method.

5.1 The Bell-Evans-Polanyi-Principle

The basis of the MH method is the Bell-Evans-Polanyi-principle [12, 31], which states

that, in a chemical reaction, the reaction enthalpy is inversely proportional to the activa-
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5 Extension of the Minima Hopping Method

Figure 5.1: Sketch of the general idea behind the Bell-Evans-Polanyi-principle. The barrier

(given by the point where two curves intersect) between the blue and the red curve is

lower compared to the barrier between the blue and the green curve. This arises due to

the lower energy of the minimum described by the red curve.
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tion energy, i.e. the height of the energy barrier between the reactants and the products

on the PES. A sketch of this principle is shown in Figure 5.1.

Even though we are not considering actual chemical reactions, and are not interested in

the transition state, this statement is of great relevance. It implies that the chance of

�nding structures with a lower total energy is higher, if the simulation preferably directs

the system towards crossing these lower energy barriers.

Global optimization approaches in which the Bell-Evans-Polanyi-principle is used, are

methods like tabu search [90], metadynamics, and minima hopping. These methods

generally use MD, Monte-Carlo (MC) or other methods to direct the system from one

minimum to the next in order to sample the PES systematically. The expectation is that

an exhaustive search will lead to the discovery of the global minimum of the system.

5.2 Introduction to Minima Hopping

The central part of the MH method is the MD escape. This escape step consists of a

short MD run at elevated temperature, which is employed to leave the current minimum

and �nd a new one, preferably a previously unknown one with a lower total energy. An

acceptance algorithm which evaluates the new found minimum is employed afterwards.

MD achieves the goal of pushing the system to new minima, according to the Bell-

Evans-Polany-principle, over the separating energy barriers, while preferably crossing

comparatively lower ones.

The desired outcome of this procedure is the discovery of a new minimum that has not

been visited before. Consequently, two undesired outcomes are possible: The search may

end up in the minimum from which it started, or in one that has already been found in

a previous search step.

In order to perform this MD escape, it has to be initialized by assigning a set of velocities

and directions to the particles in the system. In MH, these vectors are drawn from

a Gaussian distribution and scaled to a given energy Ekin. It generally might seem

advantageous to choose a rather high value for Ekin to increase the chances of leaving
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the current minimum, as barriers with an energy lower than Ekin are preferably crossed

during the MD simulation. This however would enable the MD simulation to cross most

barriers, and not only the low lying ones. This is disadvantageous for our approach since

we want to preferably cross lower barriers. Hence a balanced value for Ekin has to be

found if we want to reach the goal of directing the search towards promising regions of

the PES.

During the MD run the energy of the system is continuously checked so that we can

determine if the system has crossed a barrier into a new region on the PES. As soon as

the system has passed a predetermined number of these barriers the MD run is stopped.

Afterwards the geometry of the system is relaxed to determine the total energy of the

new-found local minimum. Any local minimization scheme like Conjugate Gradient

(CG) or quasi-Newton methods (see section 3.1) can be used here. Repeated visits of

previously found minima can still happen with this approach, and therefore a history

of all found structures has to be kept in MH. As mentioned earlier, every new found

minimum is compared against this list to determine if it is already known. It is su�cient

to keep track of the energies of all found structures as this is the feature which is used

for the distinction of the di�erent minima.

The kinetic energy for the next MD simulation is adjusted depending on the outcome

of the previous search step. If a previously known minimum is revisited, the kinetic

energy is increased by multiplying Ekin with a parameter β2 > 1 to give the system the

chance to explore more distant areas of the energy surface which are separated by rather

high barriers. Similarly, the energy is increased if the search ends in the minimum from

which it has started (Ekin = Ekin · β1, β1 > 1). Consequently, if a new minimum

is found the kinetic energy is decreased (Ekin = Ekin · β3, β3 < 1), which leads to a

better sampling of the area close to this minimum. This also helps to create a balance

between a thorough exploration of areas around metastable structures and an exhaustive

sampling of the complete potential energy surface.

If a new minimum is found, there is still the possibility that its energy is too high, and it

is therefore undesired. Consequently, each new minimum is accepted or rejected based

upon a simple energy threshold. If the energy of the new found minimum is lower than

the energy of the start structure, or its increase is less than a prede�ned threshold Edi�,
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Figure 5.2: Flowchart of the MH algorithm.
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it is accepted. This threshold is constantly adjusted during the simulation. Speci�cally,

it is reduced after every accepted move (Edi� = Edi� ·α2, α2 < 1) and increased every

time a minimum is rejected (Edi� = Edi� ·α1, α1 > 1). This procedure, an overview of

which is depicted in Figure 5.2, prevents the system from moving towards structures

with a higher energy and directs it towards regions of lower energy, but also prevents

it from being stuck if a wide funnel area around a rather deep minimum exists on the

PES.

After a su�cient number of rejected escape tries, almost every move will be accepted and

the system can leave the current minimum. Additionally, an acceptance rate of about

50% of all proposed minima is achieved by this method. The values for α1 = 1
α2

= 1.05

and β1 = β2 = 1
β 3

= 1.02 were taken from Ref. [36].

5.3 Local Optimization

In this work we want to exploit additional information about the system to improve the

search. Speci�cally, we want to use the information about the local surroundings of each

minimum, given by an approximation to the Hessian matrix. If a quasi-Newton method

is chosen for the local minimization within the MH, this matrix, which contains all par-

tial second derivatives at the minimum, is generated without additional computational

e�ort.

Therefore, we implemented the BFGS [75] and L-BFGS [56, 69] algorithm into the

MH method and compared them to the CG minimization, which was used in the initial

approach [36], and will serve as a reference. Calculations have been done for LJ clusters

in the size range from 60 to 74 particles.

For each cluster size a set of 200 di�erent starting structures has been generated by

randomly placing LJ-particles into appropriately sized simulation boxes. This set of

con�gurations is used throughout this work as a starting point for all simulations and

all shown results are the average over these 200 independent runs.
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Figure 5.3: Comparison of the used minimization methods in the MH algorithm. Averaged

number of performed SPC over 200 runs, started from 200 randomly generated structures.

The search direction in the escape part is generated from a Gaussian distribution in all

cases.
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We started with an evaluation of the performance of the di�erent minimizers, results of

which are presented in Figure 5.3. The BFGS algorithm needs the highest number of

single point energy and force calculations (SPC), followed by the CG minimization. The

L-BFGS method uses a signi�cantly lower number of SPCs compared to the other two

methods and gives by far the best performance.

Table 5.1: Detailed results for the use of di�erent minimization methods in MH. Shown for

the GO of the 67 particles LJ-cluster.

Minimization Total Number Visited Barrier Acceptance
Method of used SPC Structures Height Ekin Criterion Edi�

CG 1827025 1975 0.609 0.612
L-BFGS 712283 1795 0.617 0.620
BFGS 2846505 1426 0.521 0.526

Detailed results for the calculations for the cluster with 67 particles are given in Table 5.1.

Here again the big improvement attained by L-BFGS can be seen. It needs only about

40% of the number of SPCs needed by the approach with CG. The BFGS method, which

needs the highest number of SPC �nds the global minimum after the lowest total number

of visited structures. This indicates that this method needs even more SPCs per visited

structure compared to the other approaches.

A detailed evaluation of the results shows that the highest di�erence in calculation time

is caused by the BFGS minimization, which needs signi�cantly more SPCs to �nd the

local minimum than the other two local optimizations. Especially the line search within

the BFGS is responsible for a huge number of calculations. An improvement of this part

might be able to bring the performance close to the other methods, and probably even

surpass it.

BFGS additionally provides the lowest values for the characteristic parameters of the

global search part of the algorithm (Ekin and Edi�). Values obtained here are are mostly

independent of the used minimization method, since these parameters are only relevant

in the escape step, and the chosen local minimization method should have no in�uence

on this part of the algorithm. The goal is to reduce the resulting mean values for
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these parameters, because this indicates that the algorithm was able to cross low energy

barriers and �nd mainly structures with lower energy.

The average value for the kinetic energy Ekin corresponds to the height of the crossed bar-

riers. The acceptance criterion, on the other hand, Edi� is the allowed maximal increase

in total energy up to which a new proposed structure is accepted. Both parameters are

dynamically adjusted during the run so that about half of all moves result in a new,

accepted minimum.

5.4 Optimization of the Search Direction

The search direction, which is the vector that is used to initialize the MD escape in the

escape part of the MH, is essential for the performance of the method. If it is possible

to initialize every search step so that it will end up in a minimum with lower energy,

the search will �nd the global minimum reliably after a low number of steps, at least for

cases where the PES is not overly complicated.

The starting point for the search direction is a random draw from a Gaussian distribution.

This completely unbiased approach is a reasonable starting point and generally works,

as illustrated by the results in the previous section.

5.4.1 Softening

A �rst improvement to the search direction is softening. During softening the randomly

generated escape direction is moved towards low curvature directions using an iterative

method [84].

To achieve this, a point p is chosen at a distance d along the randomly drawn search

vector. The gradient of the system is calculated at p and a new search direction is

generated by moving p along a vector perpendicular to the initial search vector. Using

this approach, the gradient is used to change the search vector towards an escape along
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Figure 5.4: In�uence of softening on MH for the di�erent minimizations. 20 softening steps

have been applied in all cases. The number of needed SPC is signi�cantly reduced upon

the application of softening.

a direction where the ascent of the potential energy is lower, thus improving the search.

One can repeat this procedure several times, each time starting from the current local

minimum and the slightly improved direction, until the starting direction for the MD

search is optimized. It is important not to overdo softening since this would lead to a

case where the same starting direction is chosen for every escape attempt starting from

the same minimum. This process adjusts the randomly chosen direction with respect to

the local surroundings and is motivated by the idea to start the search in a direction

where the barrier between the current and the next minimum is lower.

To evaluate the in�uence of di�erent numbers of repetitions of the softening approach a

comparison between 0, 10, 20 and 30 softening steps is shown for the BFGS minimization

in Figure 5.5. The results show that this approach greatly improves the performance
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Figure 5.5: In�uence of di�erent number of repetitions of the softening approach on the

performance of MH. All calculations done with the BFGS minimization.

49



5 Extension of the Minima Hopping Method

of the MH in the beginning but there is almost no di�erence between 20 and 30 repeti-

tions.

Additionally, calculations with 20 softening steps have been performed for all three

used minimization methods. The performance of these di�erent approaches is shown

in Figure 5.4. Softening is very advantageous in all cases and the general improvement

achieved is in the same relative order independent of the used minimization method.

Detailed results for the 67 particle cluster are shown in Table 5.2. Notable here is the fact

that the number of visited structures, as well as the average values for the barrier height

and acceptance, depend almost exclusively on the application of softening. Softening

greatly in�uences the escape part of the algorithm. The increased e�ciency of the search

is signi�cant in all observed parameters. Especially the fact that the average height of

the crossed barriers Ekin is decreased by about 50 % shows that softening results in the

desired outcome of preferably crossing lower barriers. The acceptance criterion Edi� is

also decreased by about half, this indicates that way less unfavourable moves, where the

total energy is increased, have to be accepted, and more of the proposed moves �nd a

new minimum.

Table 5.2: Detailed results for the application of softening on the di�erent minimization

methods in MH. Shown for the GO of the 67 particle LJ-cluster.

Minimization Softening Total Number Visited Barrier Acceptance
Method Steps of used SPC Structures Height Ekin Criterion Edi�

CG 0 1827025 1975 0.609 0.612
CG 20 633477 856 0.289 0.291
L-BFGS 0 712283 1795 0.617 0.620
L-BFGS 20 279394 866 0.299 0.300
BFGS 0 2846505 1426 0.521 0.526
BFGS 10 1593681 884 0.346 0.349
BFGS 20 1212920 710 0.316 0.320
BFGS 30 1011112 615 0.312 0.315

Minimahopping with the L-BFGS local minimization and the application of softening

shows a greatly improved performance compared to the initial approach. The number

of needed SPCs is reduced to about 15% of the initial value.
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Regardless of the great increase of performance provided by softening, we decided to

perform the analysis of new approaches without this improvement. This has the ad-

vantage that it allows us to examine the in�uence of new approaches in greater detail.

Upon the application of softening two competing methods, where only small di�erences

in the choice of the search direction are present, might show the same result. Softening

basically tends to smooth out small di�erences between applied modi�cations, because

di�erent proposed search directions can be changed so they end up pointing into the

same valley on the PES. Calculations with softening generally give better results, so it

can still be applied after the other approaches have been tried and evaluated, to improve

the best performing methods even further.

5.4.2 Hessian Matrix

Instead of modifying the randomly generated search vector via softening we want to

choose this vector as optimal as possible. Our idea is to use information extracted from

the Hessian matrix for the improvement of the starting direction in the escape step. The

Hessian matrix H = (Hij)
n
i,j=1 of a function f(x) is the matrix of all partial second

derivatives, thus each element of this matrix is given as

Hij =
∂2f

∂xi∂xj
. (5.1)

The eigenvectors of this matrix represent the vibrational modes of the investigated sys-

tem. This basically implies that, at a local minimum, the eigenvector corresponding to

the lowest of the eigenvalues denotes the softest mode of the Hessian matrix and there-

fore points the system into the direction of the softest ascent out of this minimum. This

mode thus represents a favourable direction for the start of the search step, according to

the Bell-Evans-Polany-principle. The usage of the Hessian in the MH algorithm should

therefore be useful for exploring the PES as e�ciently as possible, and enhancing the

performance of the global search. In addition to that we can add a white noise term

afterwards to preserve a random component in the search.

Unfortunately, the computation of the complete Hessian matrix requires a high number

of second derivatives, the calculation of which is expensive. By choosing a quasi-Newton
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scheme (namely the BFGS or L-BFGS method, see chapter 3.1) for the local geometry

optimization step an approximate Hessian is generated during the minimization, at no

additional cost. The quasi-Newton requires only �rst derivatives to be calculated. The

resulting matrix can be employed for the proposed changes to MH.

A local minimization and thus the approximation to the Hessian matrix is generated in

any case. In order to improve the performance of the MH method di�erent possibilities

on how the provided information from the Hessian matrix can be applied to determine

the starting search direction are available.

5.4.3 Lowest Mode of the Hessian Matrix

At �rst we tested the straightforward approach, where the escape direction is chosen as

only the softest mode of the Hessian. This approach was implemented in conjunction

with the generation of the Hessian via the BFGS and the L-BFGS method. Speci�c

results are shown in Figure 5.6 and Figure 5.7 respectively. Additionally the in�uence

of softening on these approaches is shown.

In the case of the L-BFGS minimization the use of the lowest Hessian direction needs

signi�cantly more SPC steps than in the case where this direction is chosen randomly.

In this approach a number of calculations for larger clusters without softening failed to

�nish all 200 runs within the given time. The additional use of softening mitigates this

problem partially but it still o�ers no improvement over the original approach. Here

the improvement provided via softening is huge, this is due the fact that whenever the

Hessian mode is really unfavourable, and the system tries this same approach again and

again, softening is really helpful by providing improvement that prevents this problem.

In the BFGS case this approach, with only one mode of the Hessian, still gives compara-

tively poor results, but the relative increase in needed SPC is signi�cantly smaller than

in the L-BFGS case. This can be attributed to the fact that the BFGS Hessian is a

better approximation to the true Hessian matrix, and therefore the resulting choice of

the search direction leads to a higher chance of �nding a new minimum.
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Figure 5.6: Comparison of the di�erent choices for the starting direction in the MD step.

Lowest mode of the L-BFGS Hessian matrix compared to a purely random direction. Initial

approach with the CG minimization shown as comparison.

Table 5.3: Detailed results for usage of the lowest mode of the Hessian matrix in MH.

Shown for the GO of the 67 particle LJ-cluster

Minimization Search Softening Number of Visited
Method Direction Steps used SPC Structures Ekin Edi�

L-BFGS Lowest mode 0 No comparable results
L-BFGS Gaussian 0 712283 1795 0.617 0.620
L-BFGS Lowest mode 20 659686 2161 0.201 0.203
L-BFGS Gaussian 20 279394 866 0.299 0.300
BFGS Lowest mode 0 5767591 2965 0.462 0.468
BFGS Gaussian 0 2846505 1426 0.521 0.526
BFGS Lowest mode 20 1528103 902 0.291 0.295
BFGS Gaussian 20 1212920 710 0.316 0.320
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Figure 5.7: Comparison of the di�erent choices for the starting direction in the MD step.

Lowest mode of the BFGS Hessian matrix compared to a purely random direction. Initial

approach with the CG minimization shown as comparison.
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5.4 Optimization of the Search Direction

Detailed results for the 67 particle LJ-cluster are shown in Table 5.3. The application

of the lowest mode of the Hessian matrix manages to achieve lower values for Ekin and

Edi� compared to the simulations for the same approach with a random direction. The

application of softening has however an even greater e�ect on the values for Ekin and

Edi�. Although the random and the lowest-mode approach show a huge di�erence in the

number of needed SPC, Ekin and Edi� are very similar if the same number of softening

steps is applied.

The problem posed by a static choice of the search direction is clearly present in both

cases. In case of an unsuccessful search attempt, the system will try the same escape

direction time and time again, merely increasing the kinetic energy Ekin of the MD and

the acceptance threshold Edi� until these parameters have been increased enough to

accept any proposed escape. This defeats the purpose of MH and is similar to an (overly

complicated) low mode search. By checking the mean values for the energy parameters

at the end of the simulation these problems can be detected.

Furthermore the lowest mode alone is not a good choice as the search vector it may only

represent just a small rotation of a group which has no in�uence on the overall structure

of the system. In such a case this approach does not help to �nd the optimal direction

for the escape, because it does not help to bring the system to a signi�cant di�erent

state. A mixture of low lying modes will probably be a better approach in this case.

This approach provides no improvements compared to the initial approach, but shows

that the BFGS Hessian is a better approximation than the one generated by L-BFGS.

5.4.4 Linear Combination of Multiple Low Lying Modes of the

Hessian Matrix

The next step is to generate the direction for the MD escape by a linear combination

of a number of low lying modes extracted from the Hessian matrix. Since this requires

an accurate Hessian, we only implemented this approach in conjunction with the BFGS

minimization.
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Figure 5.8: Performance of the method with the usage of the lowest mode vs a linear

combination of the lowest 10 and 20 modes of the Hessian matrix. The BFGS minimization

is used and no softening is applied.
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5.4 Optimization of the Search Direction

Calculations with linear combinations of di�erent number of lowest modes have been

done. The resulting initial guess v is generated as

v =
N∑
n=1

vn

N
. (5.2)

Here vn denotes the vector generated from the n-th lowest mode. Results are shown in

Figure 5.8. By choosing the sum of the lowest 10 or 20 modes, performance similar to

the case where the direction was chosen at random can be attained.

Again, detailed results for the 67 particle LJ-cluster are shown in Table 5.4. All pa-

rameters converge towards the value of the Gaussian approach, this indicates that the

utilization of an increasing number of Hessian modes mitigates the previously stated

problem of approaches without a random component. We refer to the fact that these

try to cross the same barrier again and again, until Ekin and Edi� are high enough to

allow any transition. The randomness in the original approach is a rather good method

to prevent repeated visiting of structures in the vicinity of one found structure and push

the system into new regions on the PES.

This approach uses the fact each one of these low lying modes represents an excitation in

a di�erent part of the system, and these individual components combined result in a good

initial guess for the search direction. Still, the initial, purely random, approach leads to

a very similar performance. The logical step forward therefore lies in a combination of

the two approaches, executed such that each method compensates the shortcomings of

the other.

Table 5.4: LJ-cluster, 67 particle, no softening

Search Total Number Visited Barrier Acceptance
Direction of used SPC Structures Height Ekin Criterion Edi�

1 mode 5767591 2965 0.462 0.468
10 modes 3772464 1897 0.507 0.512
20 modes 3171139 1592 0.514 0.519
Gaussian 2846505 1426 0.521 0.526
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5 Extension of the Minima Hopping Method

5.4.5 Search Direction as a Mixture of Hessian Matrix

Information and a Random Factor

As the next step we wanted to add a certain degree of randomness to the search direction

to counteract the previous mentioned problems. The idea of this approach is to again

take the linear combination of the N lowest Hessian modes, but this time a weighting

factor wn is drawn for every mode vn. The factor wn is generated as a random number

in the range from -1 to 1. This approach uses the Hessian information but no longer has

the issue of repeatedly trying the same escape until it is accepted. Every new escape

attempt from the same minimum will generate a new set of weighting factors and thus

a new escape direction.

v =
N∑
n

wn
N
·vn. (5.3)

Results are shown in shown in Figure 5.9 and Table 5.5.

If the here generated initial direction is additionally mixed with the Gaussian direction

from the initial approach a slightly improved performance can be attained compared to

the completely random approach. The gain is very small and might be countermanded

by the additional work that is needed for extracting the Hessian modes. These results

are shown in Figure 5.9 and Table 5.5.

The approaches where the search direction is not mixed with a vector generated from a

Gaussian distribution show again lower values in the characteristic parameters Ekin and

Edi�. This proves that these methods on average cross lower barriers and have to accept

less unfavourable moves.

5.4.6 Search Direction as a Mixture of Hessian Information and

a Variable Factor

We now consider a combination of all formerly described approaches with the objective

to obtain an even more e�cient way of computing the global minimum. Here, the �rst
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Figure 5.9: Performance of the method with the usage of the 10 lowest modes compared

to a randomly weighted linear combination of the same 10 modes and an approach where

this is additionally combined with the Gaussian direction from the initial approach. The

BFGS minimization is used and no softening is applied.

Table 5.5: LJ-cluster, 67 particle, no softening

Search Total Number Visited Barrier Acceptance
Direction of used SPC Structures Height Ekin Criterion Edi�

Gaussian 2846505 1426 0.521 0.526
10 modes 3772464 1897 0.507 0.512
10 modes, random weight 3847023 1940 0.501 0.503
10 modes + Gaussian 2990028 1496 0.521 0.524
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escape attempt out of each and every minimum is done by using only the direction

from the Hessian matrix, similar to the method presented in subsection 5.4.4. For

each subsequent escape attempt, starting from the same minimum, the initial guess is

composed from the randomly generated escape vector vrandom and the Hessian direction

vHessian as follows:

v = αvrandom + (1− α)vHessian. (5.4)

The vector vHessian is either chosen as only the one lowest mode or a linear combination of

the N lowest modes, and vrandom is drawn from a Gaussian distribution. The parameter

α is de�ned as follows

α =

{
0 if a = 0

min (1, b · ca) else
. (5.5)

Here, a denotes how many previous escape attempts have been started from this min-

imum, b and c are parameters that determine how fast α is increased. The value of α

is zero for the �rst search attempt out of every minimum, so that only v = vHessian is

chosen as the search direction in this case. If this search is not successful, α is increased

exponentially to raise the amount of vrandom that is introduced into the escape vector.

At some point α will reach one, and consequently only the random search direction is

applied for each further escape attempt from this minimum.

Table 5.6: LJ-cluster, 67 particle, no softening

Search Total Number Visited Barrier Acceptance
Direction of used SPC Structures Height Ekin Criterion Edi�

Gaussian 2846505 1426 0.521 0.526
b = 0.01, c = 1.4 4639592 2386 0.453 0.456
b = 0.1, c = 1.3 3676727 1865 0.483 0.486
b = 0.1, c = 1.3, 5 modes 3655347 1840 0.495 0.498

In Figure 5.10 and Table 5.6 the results for di�erent values for b and c are shown. It

can be seen that the best results are obtained if the calculation adds the random part

as early as possible, and, as with previous results, if a higher number of Hessian modes

is used.

60



5.4 Optimization of the Search Direction

60 62 64 66 68 70 72 74
LJ-Cluster Size

0

1000000

2000000

3000000

4000000

5000000

6000000

Si
ng

le
 P

oi
nt

 C
al

cu
la

tio
ns

Gaussian
b = 0.01, c=1.4
b = 0.1, c=1.3
b = 0.1, c=1.3, 5 modes

Figure 5.10: Performance of the method where an increasing portion of the Gaussian vector

is included into the search direction after each unsuccessful move. The BFGS minimization

is used and no softening is applied.
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Figure 5.11: Comparison of the best performing methods with the addition of softening.

This approach o�ers a comparable e�ciency to the approach with only the Gaussian

vector as the search direction. The barrier height Ekin and acceptance criterion Edi� are

again lower whenever the Hessian information is used. This is proof that our proposed

goal of crossing lower lying barriers is achieved. Noteworthy is the fact that the best

performing method visits a signi�cantly higher number of trial structures before �nding

the global minimum. Possible explanations for this behaviour are discussed later (see

section 5.5).

5.4.7 Best Performing Methods including Softening

A selection of the best performing methods has been chosen and calculations with the

addition of 20 softening steps have been performed for these approaches. A comparison

of the results for these calculations is presented in Figure 5.11. As shown previously, the
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Table 5.7: LJ-cluster, 67 particle, 20 softening steps

Minimization Total Number Visited Barrier Acceptance
Method of used SPC Structures Height Ekin Criterion Edi�

Gaussian 1212920 710 0.316 0.320
10 modes 1204411 711 0.312 0.317
Mixed approach
b = 0.1, c = 1.3 1372927 805 0.307 0.309
Mixed approach
b = 0.1, c = 1.3, 5 Modes 1305609 765 0.309 0.312
Mixed approach
Gaussian + 10 modes 1196007 702 0.318 0.320

softening greatly decreases the number of needed SPCs for all implemented methods.

The needed SPCs, the barrier height Ekin and the acceptance criterion Edi� for the 67

particles LJ-cluster are shown in and Table 5.7. For these values the same trends as in

previous calculations without softening can be found.

5.5 Conclusions

Figure 5.12: 60 particles LJ-cluster.

63
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Figure 5.13: 67 particles LJ-cluster.

The here presented results indicate that the usage of the local surroundings of each min-

imum has the potential to improve the calculations. Although the starting approach is

already very good the inclusion of the information provided by the Hessian matrix is in-

deed able to increase the performance of the MH algorithm. This improvement is rather

small and can be easily negated by few detrimental factors. An overview of the results

is given in Figure 5.15 and Table 5.8. As examples, the discovered minimal energy struc-

tures for the LJ-cluster with 60, 67 and 74 particles are shown in Figures 5.12 - 5.14.

Table 5.8: LJ-cluster, 67 particle

Minimization Total Number Visited
Method of used SPC Structures Ekin Edi�

BFGS, Gaussian, no softening 2846505 1426 0.521 0.526
BFGS, Mixed approach, no softening
b = 0.1, c = 1.3 , 5 Modes 3655347 1840 0.495 0.498
BFGS, Gaussian, 20 softening 1212920 710 0.316 0.320
BFGS, Mixed approach, 20 softening
b = 0.1, c = 1.3, 5 Modes 1305609 765 0.309 0.312
L-BFGS, Gaussian, 20 softening 279394 866 0.299 0.300

We were able to apply the information extracted from the local surroundings of each

minimum in order to preferably cross lower barriers during the simulation. This is proven

by the decrease of the values for the average barrier height Ekin and mean acceptance

64
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Figure 5.14: 74 particles LJ-cluster.

criterion Edi� whenever the Hessian information is used in a calculation.

It is noteworthy that the sampling e�ciency is rather indi�erent to the choice of the

search vector, as long as at least a small stochastic element is present, or a linear combi-

nation of modes from the Hessian matrix is chosen. Even though the total performance

might be similar, the di�erent implemented approaches however provide valuable insight

how the simulations work in general. As stated before, the shown results are an average

over 200 simulations with di�erent random seeds, therefore the performance might be

negatively in�uenced by cases where the usage of the Hessian matrix causes problems.

For example the generated Hessian approximation might be not su�ciently accurate. If

in only a few of these 200 simulations the Hessian mode points into a disadvantageous

directions, the increased computational work needed for these particular runs may al-

ready completely negate the improvements achieved in the other runs. Another problem

are cases where the system alternates between a number of low lying modes. If a num-

ber of minima with similar energy exist close to each other, the Hessian matrix based

approaches will cause the system to jump between these minima, because the lowest

ascent out of the minimum points always into the direction of these other minima with

similar energy. This ful�ls our requirement of crossing only low lying barriers, but does

not provide any progress towards �nding the global minimum. A random approach has

a way higher chance of leaving this area of the PES and thus discover new minima. It is
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Figure 5.15: Overview over the best performing approaches within th MH scheme.
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noticeable that the best performing method visits a huge number of minima before the

global minimum is found, this indicates that this problem happens here.

Another de�ning factor for the performance of the method is the local optimization.

The biggest increase of the overall performance of the MH algorithm was attained by

implementing the L-BFGS minimization into the method. The performance of this

method signi�cantly increases the speed of the local minimization part of the method,

and the runs performed with it are signi�cantly faster than the ones with the BFGS

and the CG minimization. Calculations with the L-BFGS optimization combined with

softening deliver the best performance of all analysed methods.
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6 Metallization in SiH12

6.1 Introduction

Hydrogen, even though it is the simplest element in the periodic table, is of high inter-

est in many �elds of research. Already in 1935 it has been predicted by Wigner and

Huntington [99] to become a metallic conductor under high pressure. They assumed

that it would transform from its molecular form to an atomic solid upon the application

of the said pressure. The existence of metallic hydrogen has implications in many �elds

of research. It is very possible that it is a high-Tc superconductor. Additionally, it is

relevant in astrophysics to explain the huge magnetic �elds present at gas giants like

Jupiter and Saturn. These planets are made up from light elements like hydrogen and

helium and possess some of the strongest planetary magnetic �elds in the solar system.

The existence of a metallic hydrogen core may provide a convincing explanation for this

phenomenon [6].

6.1.1 Metallization in Hydrogen

The phase diagram of hydrogen and the question of its metallization is a much discussed

topic. The melting line of hydrogen shows a negative slope [81], which suggests the pos-

sibility of the existence of liquid metallic hydrogen at low �nite temperatures [25, 28, 30].

Additionally, it might even be possible to attain a metallic phase in molecular hydrogen

if the bandgap closes due to the application of very high pressure [10, 76]. Unfortunately

the structures of hydrogen under higher pressure (> 150 GPa) are still unknown [42, 57],
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6 Metallization in SiH12

and therefore the question if it might become metallic is still open [21, 43, 62]. The prob-

lem of the determination of the structure stems from the fact that X-ray di�raction on

the light hydrogen atoms is not possible. Hence, a huge number of possible structures

have been predicted for hydrogen. Most of these are very similar in energy, making it

di�cult to determine which one represents the global minimum. A metallic state has

been found in most of these systems [5, 10, 19, 20, 47, 49, 52, 76, 89].

6.1.2 Hydrogen Rich Compounds

Another promising attempt to achieve metallization in hydrogen is the introduction

of di�erent elements into the system. Hydrides of group 14 elements are one of the

most studied systems in this regard. Silane (SiH4) is already known to show metallic

behaviour under pressure [29]. Similar results have been found if more hydrogen is added

to the system. In 2009 Strobel et al. reported the discovery of the high pressure system

SiH4(H2)2 [9, 91]. In their experiments the sample shows darkening, which is a sign of a

metal-insulator transition, already at around 35 GPa . Simulations �nd metallization in

this system at much higher pressure, namely at around 164 GPa [77]. Inspired by these

results we are interested in the properties of a system with a even further increased

hydrogen content. Therefore, we are examining the electronic structure of SiH12 to

discover its structure and metallization pressure.

6.2 Results and Discussion

6.2.1 High Pressure Structure of SiH12

The evolutionary algorithm as implemented in the USPEX package [70] was used to de-

termine the minimum energy structure of SiH12 at di�erent pressures. Simulations have

been performed at 25 GPa, 50 GPa, 100 GPa 200 GPa, and 300 GPa, with four formula

units of SiH12 per unit cell. The local minimization and energy calculations needed to

evaluate the structures in the evolutionary algorithm have been conducted using the
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Figure 6.1: Enthalpy di�erence to phase II in SiH12 in the pressure range from 0 to 300 GPa.

Quantum ESPRESSO code [34] with the PBE exchange-correlation functional [73]. A

kinetic energy cut-o� of 612 eV has been chosen for the calculations. The discovered

lowest energy structures were expanded to higher and lower pressures by a stepwise

change in the applied pressure in the simulation. A local structure optimization has

been performed after every step.

We �nd four di�erent minimum energy structures for SiH12 in the pressure range from

0 to 300 GPa. The �rst modi�cation is stable up to a pressure of 28 GPa, where it

transforms to phase II. This modi�cation is the lowest energy structure in the pressure

range from 28 to 95 GPa. At even higher pressures the system changes into a third

modi�cation which is the stable one until the system changes to a phase IV above

260 GPa. The enthalpy di�erences between the di�erent phases of SiH12 are shown in

Figure 6.1. It is shown relative to the enthalpy of phase II. We present now one example

structure for each of the found modi�cations to discuss the di�erences.
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Figure 6.2: Phase I of SiH12 at 25 GPa. This phase is found to be stable from 0 to 28

GPa.

6.2.2 Phase I

In the lowest pressure range we �nd elemental hydrogen surrounding individual SiH4

molecules. This is not surprising since this is the molecular con�guration one would

expect at ambient pressure. The structure found at 25 GPa is shown in Figure 6.2.

6.2.3 Phase II

With slightly increased pressure the structure shifts to a phase where an interconnection

between the silane starts to form. This silane layer is separated from hydrogen. The

silicon containing layer is composed of exactly four formula units of SiH4, and the re-
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Figure 6.3: Phase II of SiH12 at 50 GPa. This phase is found to be stable from 28 to 95

GPa.

maining hydrogen exists in two layers where an ordered arrangement of H2 molecules is

present. The substructure of the silicon atoms is not perfectly symmetric, a top view of

six unit cells can be seen in Figure 6.4.

6.2.4 Phase III

The modi�cation found to be stable between 95 and 260 GPa is very similar to phase II

and shown in Figure 6.5. It is of slightly higher symmetry. We �nd it to occupy space

group 14 (P21/c). Each silicon is coordinated by eight hydrogen atoms, which in turn

are coordinating two silicon atoms each. Again the silane layer contains four formula

units of SiH4, whereas the rest of the hydrogen forms a hydrogen layer. The silicon

sub-lattice is shown in Figure 6.6, it shows a perfectly square symmetry.
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Figure 6.4: Top view of the silicon sub lattice of phase II.

6.2.5 Phase IV

The modi�cation of SiH12 we �nd at the highest pressures now shows a highly symmetric

structure where every silicon atom is 16-fold coordinated by hydrogen. It occupies space

group 11 (P21/m).
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Figure 6.5: Phase III of SiH12 at 150 GPa. This phase is found to be stable from 95 to

260 GPa.

Figure 6.6: Top view of the silicon sub lattice of phase III.
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Figure 6.7: Phase IV of SiH12 at 300 GPa. This phase is found to be stable above 260

GPa
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6.2.6 Electronic Structure of SiH12
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Figure 6.8: Bandgap of the di�erent found modi�cations of SiH12 with respect to the

pressure. The vertical lines indicate the pressures where a transformation from one phase

to the next is found. Phase I, which is stable below 28 GPa shows the largest bandgap at

low pressures. In the range between 28 and 95 GPa , phase I and II behave similar.

We calculated the band structure and density of states for the found structures. These

calculations have been performed using the same exchange-correlation functional and en-

ergy cut-o�. The bandgaps with respect to the applied pressure are shown in Figure 6.8.

Phase I and II show a metallization at around 95 - 110 GPa. Phase III and IV are found

to have no band gap in the observed pressure range. It is important to note that phase

III is the stable structure at pressures over 95 GPa, the pressure where the bandgap in

phase II closes, this indicates that the SiH12 system might show metallization with the

transformation to phase III. Phase I, which is stable below 28 GPa shows the largest

77



6 Metallization in SiH12

bandgap at low pressures, this is expected, since it shows a structure composed from

SiH4 and H2 molecules.

Unfortunately, the fundamental band gap is generally underestimated at a local and

semi local level of theory in DFT [74]. Since these calculations have only be performed

using the PBE functional we have to keep in mind that the real metallization pressure

is probably higher. The bandgap generally is underestimated by ∼50%. In calculations

using hybrid DFT [89] the calculated bandgap is increased, and therefore also a higher

metallization pressure is found. The di�erence in the metallization pressure, between

these levels of theory, in SiH4(H2)2 has been reported as 20 GPa. It is reasonable to

assume that an increase in a similar order can be found for SiH12.

6.2.7 Density of States

The density of states of the di�erent SiH12 phases have been calculated. In Figure 6.9 and

Figure 6.10 the DOS of phase I and II is shown at the point where the system transforms

between these phases. The same is true for the transition between phase II and III, here

the DOS at the transition point is shown in Figure 6.11 and Figure 6.12. The DOS of

phase II at this point is the one at the point where the bandgap in the system closes due

to the increased pressure. Both structures shows a deep minimum in the DOS at the

Fermi level, indicating that the system might still be metallic at this point, especially if

we consider the underestimation of the bandgap in DFT calculations. The DOS at the

transition between phase III and IV is shown in Figure 6.13 and Figure 6.14. Here the

system is clearly already metallic in both cases.
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Figure 6.9: Density of states of

phase I at 30 GPa.
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Figure 6.10: Density of states of

phase II at 30 GPa.
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Figure 6.11: Density of states of

phase II at 100 GPa.
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Figure 6.12: Density of states of

phase III at 100 GPa.
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Figure 6.13: Density of states of

phase III at 260 GPa.
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Figure 6.14: Density of states of

phase IV at 260 GPa.
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6.3 Conclusions

A metallization in SiH12 has been found at pressures around 100 GPa. This value is

very low, even considering the underestimation of bandgap and metallization pressure

by the here applied DFT method. Regardless of the higher hydrogen content these values

are lower than the previously reported metallization pressure in SiH4(H2)2, and provide

evidence that compounds with rather high hydrogen contents pose promising systems

for further analysis.
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