
Efficient Algorithms for NLO
QCD Event Generators

Dissertation
zur Erlangung des Grades

“Doktor der Naturwissenschaften”
am Fachbereich Physik

der Johannes Gutenberg-Universität
in Mainz

Christopher Schwan
geb. in Bad Kreuznach

Mainz, 2014

Erster Gutachter :
Zweiter Gutachter :
Datum der mündlichen Prüfung: 02.12.2014
Dissertation an der Universität Mainz (D77)

Abstract
In this thesis we present techniques that can be used to speed up the calculation of
perturbative matrix elements for observables with many legs (n = 3, 4, 5, 6, 7, . . .).
We investigate several ways to achieve this, including the use of Monte Carlo
methods, the leading-color approximation, numerically less precise but faster
operations, and SSE-vectorization. An important idea is the use of “random
polarizations” for which we derive subtraction terms for the real corrections in
next-to-leading order calculations. We present the effectiveness of all these methods
in the context of electron-positron scattering to n jets, n ranging from two to seven.

Zusammenfassung
In dieser Arbeit stellen wir Techniken vor, die die Berechnung von perturba-
tiven Matrixelementen für Observablen mit vielen Beinchen (n = 3, 4, 5, 6, 7, . . .)
beschleunigt. Wir untersuchen einige Wege dies zu erreichen, unter anderem die Ver-
wendung von Monte Carlo Methoden, Farbnähererung, numerisch weniger genaue
aber schnellere Operationen und SSE-Vektorisierung. Eine wichtige Idee ist die
Verwendung von “Random Polarizations” für welche wir Subtraktionsterme für die
reelle Korrektur in nächst-führender Ordnung-Rechnungen herleiten. Wir stellen
die Effektivität aller Methoden im Kontext der Elektron-Positron Streuung nach n
Jets, n von zwei bis sieben laufend, dar.

i

Acknowledgments
For giving me the opportunity to continue my work I started with my diploma
thesis I thank my supervisor, . It has been four interesting years I
do not want to miss!

I also want to thank my colleagues, especially and ,
with whom I had many vital discussions, not only about physics. Thank you
for this great time! Furthermore I would like to thank my former colleagues

and that were always encouraging and inter-
ested in problems I had to solve.

I owe a big “Thank you” to my parents and friends that were always patient
with me when I was preoccupied, still solving a problem that haunted my mind.
Thank you for grounding me!

Finally I would like to thank the DPG for funding my work, the conferences
and schools I attended.

ii

Contents

1 Efficient Perturbative QCD Calculations 1
1.1 Introduction . 1

1.1.1 Leading-Order Perturbative QCD 2
1.1.2 Color Decomposition and Recursion Relations 3

1.2 Leading and Subleading Color Contributions 7
1.2.1 Application to n-Jet Cross Sections 8

1.3 Random Polarizations . 14
1.3.1 Definition and Properties . 15
1.3.2 Speed-up of Random Polarizations 17

1.4 Real Color-Ordered Feynman Rules 18
1.4.1 Three- and Four-Gluon-Vertices 19
1.4.2 Quark-Gluon-Vertices . 19
1.4.3 Speed-up of RCO Feynman Rules 20
1.4.4 Summation over Random Polarizations 23

1.5 Radiative Correction: Real Subtraction 24
1.5.1 Calculating Radiative Corrections 24
1.5.2 The Origin of Soft- and Collinear Divergences 26
1.5.3 The Subtraction Method . 29
1.5.4 The Subtraction Terms . 31
1.5.5 The Catani-Seymour Subtraction 38
1.5.6 Summary of the Subtraction Terms 39
1.5.7 Check of the Local Behavior 41
1.5.8 Application to n-Jet Cross Sections 42

2 Monte Carlo Integration 49
2.1 Introduction . 49

2.1.1 Plain Monte Carlo Integration 50
2.1.2 Convergence Behavior . 50
2.1.3 The “Curse of Dimensionality” 51

2.2 Variance Reduction Techniques . 51

iii

2.2.1 Importance Sampling . 52
2.2.2 Control Variates . 53

2.3 The VEGAS Integration Algorithm 53
2.3.1 Automatic PDF construction in VEGAS 54
2.3.2 The Rebinning Algorithm 55
2.3.3 Results and Chi-Square Test 58
2.3.4 Concluding Discussion . 58

2.4 Implementation and Related Details 59
2.4.1 Parallelization of VEGAS 60

3 Conclusion and Outlook 65

A Appendix 67
A.1 Proofs . 67

A.1.1 Proof of the Collinear Phase Space Jacobian 67
A.1.2 Proof for the Soft Case for Quarks 68
A.1.3 Proof of the Soft Function 69
A.1.4 The Soft Function for Helicity Eigenstates 70
A.1.5 The Splitting Functions for the Collinear Limit 70
A.1.6 Catani Seymour Momenta in the Soft and Collinear Limits . 70
A.1.7 The Soft Reparametrization 71
A.1.8 Proof of the Spin-Correlation Tensor Transversality 72
A.1.9 Proof of the Integrability of the Additional Term 72
A.1.10 Extremal PDF for Importance Sampling 73

A.2 Identities . 74
A.2.1 Spinor Identities . 74
A.2.2 Polarization Vector Parametrization and Identities 75

A.3 Majorana- and Weyl-Representations 76
A.3.1 Spinors in Weyl Representation 76
A.3.2 Spinors in Majorana Representation 77
A.3.3 Randomly Polarized Spinors 78

A.4 Feynman Rules . 78
A.4.1 QCD Feynman Rules . 79
A.4.2 Color-stripped QCD Feynman Rules 80

A.5 Phase Space Generation . 81
A.5.1 Introduction . 81
A.5.2 Soft- and Collinear-Momentum Generation 82

A.6 Technical Details . 85
A.6.1 Instruction Counting with perf 85

iv

A.6.2 Efficiently Memorizing Subcurrents 86

v

vi

Chapter 1

Efficient Perturbative QCD
Calculations

1.1 Introduction

In this thesis we present several techniques and methods that we investigated in
order to perform a perturbative QCD calculation as efficient as possible. Efficiency
is our main aim here, motivated by the fact that perturbative calculations require
considerably more computational power when the number of external particles n
of an observables O is high (n = 4, 5, . . .). Efficiency makes the difference between
a calculation being doable in principle and practically computable in a reasonable
span of time.

Before we go into detail, however, let us first have a look how this work relates
to the field of high energy physics. High energy physics is, roughly speaking, the
study of the interaction of elementary particles, that are the fundamental building
blocks of matter.

Experimentally, the interactions are studied at particle colliders, e.g. the Large
Electron-Positron Collider (LEP) which was superseded by the Large Hadron
Collider (LHC), both at CERN. They produce, accelerate and collide a specific
kind of particles, e.g. electrons/positrons or protons, as in the case of LEP or
LHC, respectively. Detectors are placed at the interaction points of the collisions
and record the products. By comparing their data with predictions coming from
theory one can compare how well a theory matches the physical reality. The
theory that contains all elementary particles we have detected1 and describes their
interaction is the so-called Standard Model (of particle physics). Although it
describes the interactions quite well, we already know that the SM leaves open
important questions, an important question is for example the matter-antimatter

1Assuming the found Higgs is the SM-Higgs particle and neglecting neutrino oscillations which
can be incorporated into the SM

1

2 Efficient Perturbative QCD Calculations

asymmetry (see e.g. Ref [1] for an overview). If experiments would detect new yet
unknown particles this would be a sign for physics beyond the standard model and
would also, depending on the nature of the particle, suggest the form of new physics.
To produce new particles with masses that are higher than the ones that have been
detected and known so far, colliders need to operate at ever higher energies. This
in turn has the consequence that many known particles are produced, many more
than new ones which are the “needle in the haystack”. To measure properties of new
particles a good description of the “haystack” is needed, i.e. a proper description of
the established theory. The dominant interaction in the SM is given by Quantum
Chromodynamics (QCD) with which this thesis is mainly concerned.

In particular, this thesis will rely on perturbative QCD (pQCD), which makes
use of the fact that the running coupling αs of QCD is small at high energies
(αs(Q = 91.18GeV) = 0.118[2]) and therefore allows a perturbative approach, i.e.
an expansion in powers of αs that is truncated at a certain point. The lowest-order
or leading-order (LO) or tree-level or Born approximation will be discussed in
Sec. 1.1.1, the next-to-leading order (NLO) corrections in Sec. 1.5 where we mainly
discuss the radiative corrections and present newly derived subtraction terms.
Chap. 2 will deal with Monte Carlo integration which will be used to perform
the phase-space integrations and is an important ingredient in any perturbative
calculation.

1.1.1 Leading-Order Perturbative QCD

Let us first review how a leading order (LO) calculation for an observable O for n
outgoing particles is performed in pQCD:

〈O〉 ≈ 〈O〉LO =
∫
n

dφn J (0)
n

∣∣∣A(0)
n

∣∣∣2O. (1.1)

In plain English this means that the expectation value 〈O〉LO of the observable
O in leading-order approximation is obtained by integrating it together with its
“weight”, i.e. the square of the Born-level matrix element A(0), over the n-particle
phase-space φn (see App. A.5). In fact, the integration is not performed over the
whole phase space but a subset that is selected by the so-called jet-function J (0)

n

which is either zero or one. The function is zero if any momentum is too “soft”, i.e.
its energy too small, or too “collinear” to any other momentum, i.e. if the angle
between any two momenta is too small. This renders the expectation value finite
and corresponds to what is done when the expectation value 〈O〉 is measured in an
experiment: If particles are too soft they will not be detected because a detector has
a finite energy resolution; if two or more particles are collinear the detector will not
be able to distinguish between them and “sees” them as a single particle. In QCD

Introduction 3

we have the additional complication that the elementary particles of the theory,
the quarks and gluons, are not the ones that are measured. After being produced,
the elementary particles confine in colorless bound-states, the hadrons. The final
states measured in an actual experiment are the hadrons or their decay products.
These come in bunches that are called jets. The jet functions additionally takes
care of how partons are related to the measured jets — at LO only one parton
gives rise to a single jet.

1.1.2 Color Decomposition and Recursion Relations

QCD is a theory that is in some aspects similar to Quantum Electrodynamics
(QED), but a distinguishing feature is that in addition to electrical charge, the
quarks (that correspond to the electrons in QED) carry a second charge, called
“color”. This charge can be of three different kinds: red, green, and blue; the
antiquarks carry anticharges anti-red, anti-green, and anti-blue. The name color
was chosen from the fact that a composite particle made from quarks with charges
red, green, and blue is charge-neutral, in analogy to additive color mixing which
adds these three colors to a neutral one, white.

Color is a complicating feature in calculations of QCD amplitudes that one can
simplify by applying color decomposition (CD). In a few words, CD factorizes the
QCD amplitude A into a sum of partial or primitive amplitudes Ai that possess
prefactors taking into account the existence of color:

A =
∑
i

CiAi. (1.2)

The important feature is that the amplitudes Ai no longer depend on color, are
calculable in a simple, efficient[3] and process independent way. Furthermore, the
amplitudes Ai are gauge invariant.

A detailed explanation on algorithms making use of CD for LO calculations can
also be found in the author’s diploma thesis[4] which is why we keep the discussion
short. We highlight some properties that are important in the remaining sections
and discuss the example of Berends-Giele recursion relations[5] in more detail but
otherwise refer to literature[6, 7] where a more exhaustive discussion can be found.

The explicit form of Eq. (1.2) depends on the process and the order of the
perturbation theory. Because the decomposition in Eq. (1.2) is not unique there are
many different choices for QCD at leading order[8–12] and next-to leading[12–14]
calculations.

Let us shortly discuss the example of gluon-scattering gg → (n−2)gg to highlight
why this decomposition makes the calculation of amplitudes easier. For this class of

4 Efficient Perturbative QCD Calculations

processes it can be shown that, at leading-order, the color factors Ci are simply traces
of n color matrices with adjoint representation indices a1, a2, . . . an ∈ {1, 2, . . . , 8}
that are permuted by σi,

Ci = tr
 n∏
j=1

T aσi(j)

 , (1.3)

and the primitive amplitudes are single function depending only on external
momenta p1, p2, . . . , pn of the gluons:

Ai = A
(
pσi(1), pσi(2), . . . , pσi(n)

)
. (1.4)

For this example the sum in Eq. (1.2) runs over the non-cyclical permutations σi
that permute the indices of particle j: σi(j) ∈ {1, 2, . . . , n}. For a four gluon-process
the sum in Eq. (1.2) is relatively short:

A = tr [T a1T a2T a3T a4]A (p1, p2, p3, p4) +
tr [T a1T a2T a2T a3]A (p1, p2, p4, p3) +
tr [T a1T a3T a2T a4]A (p1, p3, p2, p4) +
tr [T a1T a3T a4T a2]A (p1, p3, p4, p2) +
tr [T a1T a4T a2T a3]A (p1, p4, p2, p3) +
tr [T a1T a4T a3T a2]A (p1, p4, p3, p2) .

(1.5)

Note that the sum runs over all permutations with particle 1 fixed; thereby the
non-cyclicity condition is implemented. By fixing the position of one particle one
can easily deduce that in general the sum contains (n− 1)! terms. Note also that
the primitive amplitude A is always the same function, only its arguments are
permuted.

The amplitude can be computed using the so-called Berends-Giele recursion
relation, which constructs the off-shell currents

Jµ(p2, . . . , pn) = −igµν
P 2

2,n

[
n−1∑
i=2

V νρσ
3 (−P2,n, P2,i, Pi,n)Jρ(p2, . . . , pi−1)Jσ(pi, . . . , pn)

+
n−1∑
i=2

n−2∑
j=i+1

V νρσδ
4 Jρ(p2, . . . , pi−1)Jσ(pi, . . . , pj−1)Jδ(pj, . . . , pn)

 (1.6)

where Pij = ∑j
k=i pk is the sum of momenta and V3, V4 the color ordered three-

and four-gluon vertices (see App. A.4.2). The recursion stops when the off-shell
currents have only one argument in which case they are the polarization vectors:

Jµ(pi) = εµ(pi). (1.7)

Introduction 5

The primitive amplitude is then calculated with

A(p1, p2, . . . , pn) = εµ(p1)
[
iP 2

2,n

]
Jµ(p2, . . . , pn). (1.8)

The factor in the square-brackets is the inverse of the propagator and should be
understood as a prescription to remove it in J because it is −p2

1 and therefore
on-shell:

n∑
i=1

pi = 0 ⇔ p1 = −P2,n ⇒ p2
1 = 0 = P 2

2,n. (1.9)

If one adds pairs of quarks, the structure of Eq. (1.2) remains, but the color
factors and recursion relation change. Because the color-degree of freedom of
(anti-)quarks are described with fundamental representation i, j indices the color
factors can now also contain so-called open strings, i.e.(

T a · · ·T b
)
ij
, (1.10)

a product of generators with indices ij from the quark-antiquark pair. For each
quark-antiquark-pair there has to be a pair of indices ij. The color factor then is a
product of open strings and traces of adjoint representation matrices. To unify the
treatment of the color algebra one can use the Fierz-identity

T aijT
a
kl = TR

(
δilδjk −

1
NC

δijδkl

)
(1.11)

to rewrite every adjoint representation index into two fundamental representation
indices. This is the color-flow decomposition[15] (CFD) of QCD amplitudes.

To describe quarks, the recursion relations have to be modified to describe them,
as well as the so-called U(1)-gluons that couple two antiquark-quark-pairs without
exchanging color. The need for this can be seen when calculating the color-part a
Feynman diagram where two antiquark-quark pairs couple via gluon exchange:

i

j

l

k

∝ T aijδ
abT bkl. (1.12)

The generators T aij and T bkl come from the antiquark-quark-gluon vertices, the δab
from the gluon propagator in between that preserves the gluon type. The result
is the Fierz-identity in Eq. (1.12), in which we interpret the Kronecker-deltas as
“color-flows”. The first term is a color-flow with a gluon that carries an arbitrary
pair color charge and anticharge, the second term corrects the first one which also
allows for colorless gluons (red-antired, blue-antiblue, green-antigreen). The two

6 Efficient Perturbative QCD Calculations

color-flows of the Feynman diagram are:

δilδjk −
1
NC

δijδkl =
i

j

l

k

− 1
NC

i

j

l

k

(1.13)

Because the second gluon carries no color-charges, it is commonly referred to as
U(1)-gluon.

We conclude by listing the advantages of the color decomposition from a point
of view where multi-leg computations are important:

1. The color-factors are independent of the momenta and therefore constant
over the whole phase-space (p1, . . . , pn). When squaring the amplitude we
obtain a color matrix M ,

|A|2 =
∑
i

∑
j

A∗iC
∗
i CjAj = ~A†M ~A (1.14)

with components Mij = C∗i Cj that we compute for each scattering process
once and for all. Computing the squared amplitude then reduces into a
problem of linear algebra for which many optimized routines already exist,
e.g. BLAS[16]. The generation of the color matrices is described e.g. in
Ref. [4, 17].

2. The primitive amplitudes A can be computed in a diagrammatic way, i.e. by
summing up all contributing diagrams, but it is more efficient to make use of
the recursion relations which are very simple for the primitive amplitudes.
Furthermore the recursion relations can be easily optimized in a way that
caches subexpressions appearing more than once are computed only once
and then subsequently looked up. For a single primitive amplitude one then
obtains a scaling behavior of order n4 (see Sec. 1.4.3) or even n3[18, 19] in
the number of external particles. This makes the method very efficient for
multi-leg computations where n = 4, 5, 6, 7, 8 or even higher.

3. Furthermore, the primitive amplitudes have a much simpler pole-structure.
For example, the gluon primitive amplitudes are only singular in the kinemat-
ical variables of neighboring momenta, e.g. A(p1, p2, p3, p4) is only singular
when the kinematical variables s12 = 2p1 · p2, s23, s34, and s41 go to zero.
This behavior is exploited in certain phase-space generators (see App. A.5)
that, in general, need to know where to largest contributions of the matrix
elements are. We will also need to be aware of this behavior when derive the
factorization formulæ for the radiative corrections in Sec. 1.5.

Leading and Subleading Color Contributions 7

4. Finally one can exploit Eq.(1.2) to derive another approximation, the so-called
leading-color (LC) approximation which is motivated by the observation that
the diagonal entries of the color matrix are the largest ones. The off-diagonal
entries are suppressed by at least a factor 1/N2

C and thus contribute to an
observable only of the size of order 10%, see Sec. 1.2.1.2. These entries are
commonly referred to as sub-leading color (SLC) contributions and can be
treated as a correction to the LC approximation. See Sec. 1.2 for further
discussion on this topic.

1.2 Leading and Subleading Color Contributions
In Sec. 1.1.2 we briefly introduced about the color decomposition of QCD, and in
this section we describe how we can exploit this in calculations.

The so-called leading color (LC) approximation makes use of the fact that the
diagonal entries of the color matrix M defined in Eq. (1.14) contain the largest
entries, the off-diagonal ones being smaller by at least a factor 1/N2

C, where NC = 3.
The diagonal entries are also equal. We can therefore approximate the color matrix
M by a diagonal matrix,

M ≈ C · 1 (1.15)

where C is a color factor on the diagonal of M that depends on the process, e.g.
C = Nn−1

C for the process e+e− → q̄q + (n − 2)g and C = Nn+2
C for the process

gg → ng. The remaining parts of the color matrix M ′ = M − C · 1 are the
subleading-color (SLC) parts and can be treated as a correction to the LC case.

The LC approximation enables us to get rid of the factorial growth of amplitudes
because we can now write:

~A†M ~A ≈ ~A†C · 1 ~A = C
∣∣∣ ~A∣∣∣2 (1.16)

where ~A is the vector of partial amplitudes with components Ai that depend on
permuted momenta,

Ai = A
(
pσi(1), pσi(2), . . . , pσi(n)

)
. (1.17)

Because phase space integration treats every momentum likewise, it is symmet-
ric under the relabeling of any two momenta. This allows us to eliminate the
permutation σ of the momenta in

A∗i (pσi(1), pσi(2), . . . , pσi(n))Ai(pσi(1), pσi(2), . . . , pσi(n))
→ A∗(p1, p2, . . . , pn)A(p1, p2, . . . , pn), (1.18)

8 Efficient Perturbative QCD Calculations

so that under the phase space integral we have the identity

∣∣∣ ~A∣∣∣2 →
(∑

i

1
)
|A(p1, p2, . . . , pn)|2 . (1.19)

In the example above we just need to compute a single amplitude. The factor ∑i 1
is (n − 1)! in the case if every particle is a gluon, and (n − 2)! for the processes
e+e− → q̄q(n− 2)g. At hadron colliders one has, in addition to incoming gluons,
to consider processes with incoming quarks from the parton distribution functions.
These channels then have a different color factor C and must be treated separately.

1.2.1 Application to n-Jet Cross Sections

In this section we compute the total cross sections σ at LO for the process e+e− →
γ∗ → n Jets at Q =

√
s = 90GeV, which is around the Z-pole massMZ = 91.1GeV.

We chose this value because many errors of an implementation can be easily
detected by checking if the result differs by a factor of 90, 902, The cross
section is computed using Eq. (1.1) with matrix elements computed by our own
implementation using the recursive techniques discussed in Sec. 1.1.2. For n
outgoing jets at lowest order of the electromagnetic coupling and leading color we
have to multiply the matrix elements with the following constant:

1
4(4πα)2(2παs)n−2

(∑
q

Q2
q

)
(~c)2 1

(n− 2)!N
n−1
C (n− 2)! (1.20)

in which the individual parts are

• the spin-averaging factor 1
4 ,

• the electromagnetic coupling, g =
√

4πα,

• the strong coupling, gs =
√

2παs, which was divided by 1√
2 because of the

gluon-field normalization,

• the sum of the squares of charges of the light quark flavors, ∑qQ
2
q, i.e. two

up-type quarks, up and charm with Q = 2
3 and three down-type quarks, down,

strange and bottom with Q = −1
3 yielding ∑qQ

2
q = 11

9 ,

• the constant (~c)2 which converts the cross section from natural units in
which ~ = c = 1 into a cross section measured in pb,

• a symmetry factor 1
(n−2)! because at LC we have n − 2 gluons that can be

interchanged, and finally

Leading and Subleading Color Contributions 9

• the (leading-)color factor Nn−1
C (n−2)! in which C = Nn−1

C and∑i 1 = (n−2)!.

The observable for the total cross section is O = 1
2Q2 . The spin-summation is

performed as described in Sec. 1.3 and the recursion relations use the optimization
of Sec. 1.4.

The jet algorithm J (0)
n we will use in this thesis is the Durham algorithm[20].

This algorithm needs a parameter ycut the determines the “jet-size”. Using this
parameter, a generated phase space point {pi = (Ei, ~pi)}ni=1 is accepted, i.e. J (0)

n = 1,
if for all i 6= j ∈ {1, 2, . . . , n} the resolution variables

yij =
2 min

(
E2
i , E

2
j

)
(1− cos θij)

Q2 cos θij = ~pi · ~pj
|~pi| |~pj|

Q =
n∑
i=1

pi (1.21)

are larger than the chosen ycut. If Eq. (1.21) is not fulfilled, the event is cutted, i.e.
J (0)
n = 0 in this case.
One can easily see that Eq. (1.21) sets a bound on the invariants sij = 2pi · pj

of the accepted phase space points because

sij = 2pi · pj = 2EiEj(1− cos θij) ≥ Q2yij > Q2ycut (1.22)

and therefore keeps the propagators 1/sij in the matrix elements of the phase-space
integral in Eq. (1.1) finite.

We will choose different values for ycut, the lowest ycut = 0.0006, which is on
the lower end of common jet-resolutions, see e.g. Ref. [21]. This makes the phase
space integration difficult because it enlarges the range of accepted invariants and
thus increases the variance of the integrand in the MC integration (see Chap. 2).
The phase space integration with higher ycut are thus easier and we make sure our
methods are tested in rather strict conditions.

We use the following couplings, evaluated at Q = mZ ≈ 90.0GeV:

αs = 0.118 α = 1
127.9 (1.23)

and the following constant:

(~c)2 = 0.389 379 292× 109 GeVpb. (1.24)

The results for different parameters ycut at LO and LC can be found in Tab. 1.1
and were also published in Ref. [22].

1.2.1.1 How Much Numerical Precision is Needed?

Our implementation was designed to be able to make use of arbitrary numerical
types so we can also answer the question if we really need double-precision operations.

10 Efficient Perturbative QCD Calculations

ycut N ELC [pb] SLC [pb]

2 Jets 0.001 106 4.515× 101 1.769× 10−2

2 Jets 0.002 106 4.515× 101 1.769× 10−2

2 Jets 0.0006 106 4.515× 101 1.769× 10−2

3 Jets 0.002 106 3.137× 101 3.071× 10−2

3 Jets 0.001 106 4.043× 101 1.298× 10−2

3 Jets 0.0006 107 4.786× 101 1.582× 10−2

4 Jets 0.002 108 9.210 1.708× 10−3

4 Jets 0.001 108 1.632× 101 3.210× 10−3

4 Jets 0.0006 108 2.374× 101 4.998× 10−3

5 Jets 0.0006 108 7.404 4.020× 10−3

6 Jets 0.0006 108 1.608 4.084× 10−3

7 Jets 0.0006 108 2.565× 10−1 2.703× 10−3

Table 1.1: Results for the jet cross section e+e− → γ∗ → q̄q(n− 2)g with different
jet resolution parameters ycut. The numerically integrated result is denoted with
ELC, the MC error by SLC. The results were obtained using 5 VEGAS iterations
with N integrand evaluations each.

ycut N ESLC [pb] SSLC [pb] ESLC
ELC

[%]

2 Jets 0 0 0
3 Jets 0 0 0

4 Jets 0.002 108 −1.538× 10−1 7.851× 10−5 1.67
4 Jets 0.001 108 −2.758× 10−1 1.381× 10−4 1.69
4 Jets 0.0006 108 −4.051× 10−1 2.024× 10−4 1.71

5 Jets 0.0006 108 −3.264× 10−1 2.340× 10−4 4.41
6 Jets 0.0006 108 −1.168× 10−1 1.761× 10−4 7.26
7 Jets 0.0006 108 −2.423× 10−2 6.201× 10−5 9.45

Table 1.2: Results for the jet cross section e+e− → γ∗ → q̄q(n− 2)g with different
jet resolution parameters ycut. The numerically integrated result is denoted with
ESLC, the MC error by SSLC. To compare the size of the contribution the last
column lists the size of the subleading color contribution relative to the leading
color approximation. The results were obtained using 5 VEGAS iterations with N
integrand evaluations each.

Leading and Subleading Color Contributions 11

In Sec. 1.4.3 we show that single-precision operations can offer a significant speedup
for matrix elements. Here we will discuss if the reduced precision is enough for LO
calculations and if its use yields a speedup in a full calculation.

To obtain meaningful results, we had to take special care during phase space
generation because the QCD antenna algorithm (see App. A.5) quickly runs into
phase space regions where the sum of two lightlike momenta ka and kb is very
small and therefore lightlike with single-precision arithmetic, i.e. (ka + kb)2 = 0
whereas with double-precision arithmetic it behaves correctly. These phase-space
points contain very soft and/or collinear momenta and would be rejected by the jet
algorithm afterwards, but depending on the implementation of the jet algorithm
it may still happen that they pass the test, e.g. because the generated momenta
do not fulfill momentum conservation (because they were generated with too little
numerical precision, as described above) or contain infinities. In that case the
matrix elements also return infinities and “destroy” the integration which also
yields infinity. To overcome this problem in our implementation these points can
be detected by checking the phase space weight for zero. If this is the case, it must
be rejected. Although this works for LO, it does no longer work the real correction
at NLO which must allow for soft momenta. See Sec. 1.5.8 for more discussion
on this. Additionally, as suggested in Ref. [19], we used Kahan summation[23] in
the MC integrator to preserve as much precision as possible when the number of
integrand evaluations is large.

The results can be found in Tab. 1.3. Compared to the results obtained
with double precision, we see that they agree within the error bound, but differ
numerically which is mainly due to the fact that the random numbers are generated
differently.2

The speedup is listed in Tab. 1.4 where we note two things: There is a speedup,
but it drops for many particles. This is explained as follows: A speedup through
less precision was gained by performing the numerical computations with so-called
SIMD3 instructions that perform a single instruction on multiple values. An example
is the vector sum p′µ = pµ + kµ for which we can use the ADDPS4 instruction that

2Single-precision numbers x ∈ [0, 1) can represent 224 different values, whereas double-precision
numbers can represent 253 different values. Random numbers are usually 32 bit integers, which is
why single precision random numbers are generated with one integer, double-precision numbers
with two of them.

3SIMD stands for single instruction multiple data. These are special instructions executed
by the CPU that perform the same instruction multiple times on the values of a special register
that holds more than one value. In our case we use the SSE (Streaming SIMD Extension) from
Intel that operates on 128 bit-wide registers. These can hold four single-precision numbers or two
double-precision numbers.

4This is an example of a SSE instruction, see3

12 Efficient Perturbative QCD Calculations

performs the operation 
p′0
p′1
p′2
p′3

 =


p0

p1

p2

p3

+


k0

k1

k2

k3

 (1.25)

as fast as a summation of a single component. It is therefore four times faster com-
pared to case where we compute the vector sum component-wise. The disadvantage
of this approach is that the components must fit into SSE 128 bit register, i.e. the
components must be single-precision (32 bit). A vector sum with double-precision
is realized using two of those registers, i.e. a vector sum in single-precision is
twice as fast. There are a number of operations that perform many operations at
once, including vector addition, subtraction, division and multiplication with a
scalar and even scalar products. This is why amplitudes can be computed faster
in single- and double-precision (see also Sec. 1.4.3), but phase-space generation
cannot be optimized this way, because it uses mainly scalar operations (sine, cosine,
square-root, calculations with random numbers) that cannot be vectorized in the
way described above. What happens when we perform phase-space integrations for
a high number of particles is that many phase-space points are cut and thus a lot
of phase-space points are generated before a matrix element is computed. This is of
course dependent on the actual phase-space generator, but also a general behavior
of phase space generators since the average energy for a single particle drops with
n (assuming a constant center-of-mass energy Q) and is therefore likely soft for
high n. The momenta ~pi also become more collinear because n momenta have to
“fit” into a the same space R3.

1.2.1.2 Subleading Color Correction

To justify the use of the leading-color approximation we have to calculate the
contribution of the subleading-color correction. These can be found in Tab. 1.2.
Note that the results were obtained by computing the subleading-color contributions
of the process e+e− → q̄q(n− 2)g; for a true full-color result we would also need to
add the processes with more than one quark-pair, i.e. two for the case of four and
five jets, and two and three quark-pairs for the case of six and seven jets.

The two and three jet result does not receive a SLC correction because these
cases are trivial, i.e. LC agrees with FC. The remaining SLC correction are smaller
as 10 % which is decreased even further by the previously mentioned processes
with more quark-pairs, since their matrix elements are positive.

Leading and Subleading Color Contributions 13

Double Precision Single Precision
E [pb] S [pb] E [pb] S [pb]

2 Jets, N = 107

4.512× 101 1.277× 10−2 4.514× 101 1.273× 10−2

4.513× 101 1.248× 10−2 4.514× 101 1.245× 10−2

4.513× 101 1.243× 10−2 4.512× 101 1.240× 10−2

4.512× 101 1.243× 10−2 4.512× 101 1.239× 10−2

4.514× 101 1.243× 10−2 4.512× 101 1.239× 10−2

3 Jets, N = 107

4.784× 101 1.186× 10−1 4.796× 101 1.195× 10−1

4.780× 101 4.434× 10−2 4.784× 101 4.419× 10−2

4.789× 101 3.183× 10−2 4.787× 101 3.178× 10−2

4.784× 101 2.791× 10−2 4.786× 101 2.788× 10−2

4.784× 101 2.649× 10−2 4.785× 101 2.648× 10−2

4 Jets, N = 107

2.374× 101 1.907× 10−1 2.381× 101 2.113× 10−1

2.382× 101 4.777× 10−2 2.368× 101 4.945× 10−2

2.372× 101 3.098× 10−2 2.376× 101 3.154× 10−2

2.380× 101 2.792× 10−2 2.378× 101 2.808× 10−2

2.375× 101 2.691× 10−2 2.371× 101 2.696× 10−2

5 Jets, N = 107

7.478 2.511× 10−1 7.604 4.097× 10−1

7.275 7.362× 10−2 7.274 1.195× 10−1

7.461 4.026× 10−2 7.369 4.287× 10−2

7.361 2.475× 10−2 7.381 2.512× 10−2

7.386 2.133× 10−2 7.378 2.085× 10−2

6 Jets, N = 108

1.628 8.009× 10−2 1.667 6.629× 10−2

1.603 2.669× 10−2 1.593 1.593× 10−2

1.604 1.044× 10−2 1.614 1.232× 10−2

1.608 6.233× 10−3 1.608 1.192× 10−2

1.608 4.236× 10−3 1.604 7.279× 10−3

7 Jets, N = 108

2.369× 10−1 1.333× 10−2 2.616× 10−1 2.524× 10−2

2.376× 10−1 6.406× 10−3 2.425× 10−1 1.193× 10−2

2.597× 10−1 8.046× 10−3 2.500× 10−1 8.890× 10−3

2.562× 10−1 6.865× 10−3 2.441× 10−1 7.383× 10−3

2.533× 10−1 5.637× 10−3 2.954× 10−1 3.034× 10−2

Table 1.3: Five VEGAS iterations each with N calls, computed with single- and
double-precision code. The expectation values E and their errors S for the jet cross
section σ were computed as described in Sec. 1.2.1 with ycut = 0.0006.

14 Efficient Perturbative QCD Calculations

Double Precision Single Precision Quotient
td [s] ts [s] td/ts

2 Jets 98 56 1.75
3 Jets 193 123 1.57
4 Jets 348 246 1.41
5 Jets 601 457 1.32
6 Jets 10 252 7822 1.31
7 Jets 18 452 15 471 1.19

Table 1.4: Performance comparison of our single- and double-precision implemen-
tations for the jet cross section.

1.3 Random Polarizations
We now switch to another topic and introduce the so-called random polarizations[24].
We talked about polarizations so far only in the context of recursion relations where
they appeared as the trivial case in the off-shell currents with one external leg,
see Eq. (1.7). Apart from the momentum the polarizations also depend on the
helicity of the massless boson, or spin-three component in the case of fermions.
Although one can measure this property, many detectors will not measure this
freedom so that in the theoretical calculation one has to sum over them. For n in-
and outgoing particles this is a sum over 2n summands,∑

λ1=±

∑
λ2=±

· · ·
∑
λn=±

, (1.26)

and therefore clearly a bottle-neck in multi-leg calculations.
The idea of random polarizations is to replace the sum over spin-/helicity states

by an integral over a continuous helicity angle φ,∑
λ=±

εµλ (ενλ)
∗ = 1

2π

∫ 2π

0
dφ εµ(φ) (εν(φ))∗ , (1.27)

with appropriately defined polarizations εµ(φ). The additional integrals are then
merged with the phase-space integration and performed together in a single Monte
Carlo integration. Thereby we avoid the time-consuming summation over all
2n spin-configurations. Because MC integration converges independently of the
number of integration dimensions (see Sec. 2.1.2) we speed up our calculation.
However, since we modify the function that we integrate, we also increase the error
of the MC integration. How speedup on the one side and the increased error on
the other side yield in an effective performance gain x is discussed in Sec. 1.3.2,
but first we define these new polarizations.

Random Polarizations 15

1.3.1 Definition and Properties

The polarizations satisfying Eq. (1.27) are defined as a linear combination of the
two helicity-eigenstates:

εµ(φ) = e+iφεµ+ + e−iφεµ−. (1.28)

It is easily checked that Eq. (1.27) holds true:

εµ(φ) (εν(φ))∗ =
∑
λ=±

εµλ (ενλ)
∗ + 2Re

(
e+iφεµ+ε

ν
−

)
; (1.29)

performing the integral yields the first term on the right-hand side, the second one
vanishes as expected. Note that we made use of the freedom to choose the relative
phase as

εµ− = (εµ+)∗ . (1.30)

Together with the definition (1.28) of the random polarization we can rewrite it as

εµ(φ) = 2Re
{
e+iφεµ+

}
, (1.31)

in other words the polarization is real under complex-conjugation. In Sec. 1.4 we
will show how this speeds up many leg computations even further.

Spinors for massless particles are treated in the same way,

|φ〉 = e+iφ|+〉+ e−iφ|−〉, (1.32)

so the completeness relation reads
∑
λ=±
|λ〉〈λ| = 1

2π

∫ 2π

0
dφ |φ〉〈φ|. (1.33)

To derive real spinors we proceed analogously to the case of vectors, but we need a
relation like (1.30). In Weyl-representation this identity does not hold true:

|p+〉Weyl 6=
(
|p−〉Weyl

)∗
. (1.34)

However, in Majorana-representation (see also App. A.3) we find

|p+〉Majorana = ∓
(
|p−〉Majorana

)∗
. (1.35)

The additional sign may occur depending on the choice of parametrization and the
momentum. This does not pose a problem since we can always introduce a phase
factor i canceling the sign. This is important because otherwise we would obtain a
purely imaginary spinor:

|φ〉 = 2iIm
{
e+iφ|+〉

}
. (1.36)

16 Efficient Perturbative QCD Calculations

Note that for massive particles it is not possible to derive real spinors because
the Dirac equation for our metric (+,−,−,−),

(γµpµ −m)u (~p) = 0, (1.37)

is inconsistent with this requirement. If we require u (~p) = u∗ (~p) the Dirac equation
implies γµ = γ∗µ, i.e. a real representation of the Dirac gamma matrices is required.
In App. A.3 we find that the Majorana representation is purely imaginary, so we
can factor out an imaginary unit i that leads to a representation of gamma matrices
γµ = iγ′µ with metric (−,+,+,+):

{γµ, γν} = 2gµν ⇔
{
γ′µ, γ

′
ν

}
= −2gµν . (1.38)

With this metric the Dirac equation reads(
γ′µp

µ + im
)
u (~p) = 0, (1.39)

i.e. it is not possible to find find a way in which we can treat massive spinors
real-valued and gain a computational advantage as we did for massless spinors.

1.3.1.1 Random Polarization Vectors

Let us examine Eq. (1.31) further. We parametrize the helicity eigenstate vectors
(see also App. A.2.2) by

εµ+(p, q) = 〈q−|γ
µ|p−〉√

2〈q−|p+〉
, (1.40)

with |p−〉 and |p+〉 being the negative- and positive-helicity (Weyl-)spinors for a
lightlike momentum p. The reference momentum q may be chosen arbitrarily; a
convenient choice is q = (p0,−p1,−p2,−p3) ensuring the denominator in Eq. (1.40)
always being far enough away from zero. We will use this choice throughout this
thesis. Interpreting γ0 as a parity transformation we see that

ε0
+ ∝ 〈q−|γ0|p−〉 = 〈q−|q−〉 = 0 (1.41)

so the transversality condition p · ε(p) = 0 of the polarization vector becomes

~p · ~ε(~p) = 0. (1.42)

The set of vectors ~ε orthogonal to ~p are unique up to a rotation because the length
of ~ε is e.g. determined by the polarization sum. Therefore the choice of φ makes the
solution of Eq. (1.42) unique. This formula also shows that random polarizations
include the idea presented by Giele, Stavenga, and Winter[19]. Instead of choosing
a random helicity angle φ in the Monte Carlo integration the authors chose a
random vector ~ε perpendicular to the momentum ~p which realizes Eq. (1.42).

Random Polarizations 17

1.3.2 Speed-up of Random Polarizations

In this section we investigate if rewriting the calculations to random polarizations
actually give a gain in computational performance. First we summarize the
advantages and disadvantages of both methods to devise a way to compare them.

Random polarizations offer faster calculations of a single amplitude because
the spin-sum is circumvented, but they introduce new integration dimensions and
therefore increase the MC error. A spin-summed amplitude with helicity eigenstates
suffers from the exponential growth of the summations, but one can memorize the
subcurrents and look them up in subsequent calculations that need them again.
Therefore the scaling is, although still exponential, in practice much better than
2n.

To account for the increased error in random polarizations, we define the
speedup x by

x = f
(
σHS

σRP

)2
(1.43)

where f = tHS
tRP

is the quotient of the duration tRP for a single amplitude computed
with random polarizations and tHS the duration for the spin-summed amplitude
and σ the standard deviations for each method computed with the same size of
statistics N . This formula is derived by assuming

σHS√
N

= σRP√
M

, (1.44)

i.e. we assume that both methods eventually yield the same error when integrated
with sample sizes N and M , respectively. The effective sample size M = fN/x

accounts for the RP being faster by f so that from the fN we only need a fraction,
x, to match the error.

For the process e+e− → γ∗ → q̄q+(n−2)g at leading order and leading color we
find the results in Tab. 1.5. For the simplest case, e+e− → q̄q, we see that random
polarizations add a significantly higher error (relative to the helicity eigenstates)
but the absolute error of the result is still acceptably low. This difference in the
error can be explained by the fact that random polarizations make the integrand
non-factorizable, whereas for helicity eigenstates the matrix element is factorizable:

∑
λ1=±

∑
λ2=±

∑
λ3=±

∑
λ4=±

|A|2 ∝
(
1 + cos2 θ

)
. (1.45)

As we will explain in Sec. 2.3.4, VEGAS able to find the optimal grid for a
factorizable and there yields a much smaller error compared to the non-factorizable
case.

18 Efficient Perturbative QCD Calculations

σHS
σRP

f x

e+e− → q̄q 0.009 2.98 0.00
e+e− → q̄qg 0.460 5.30 1.12
e+e− → q̄qgg 0.496 11.10 2.73
e+e− → q̄qggg 0.472 17.86 3.98
e+e− → q̄qgggg 1.007 32.36 32.78

Table 1.5: Comparison of random polarizations vs. helicity eigenstates. Note
that the standard deviations σ depend not only on the matrix elements, but also
on the phase-space generator (the QCD antenna generator, see App. A.5) and
on the probability distribution functions (see Sec. 2.3) generated by VEGAS’ last
iteration (in total five) with N = 107 for helicity summation and N = 108 for
random polarizations. Note also that the speedup f scales exponentially — every
number is about twice the size of its previous number — although not as 2n, the
number of spin-configurations. This is because we can memorize subcurrents that
have the same helicity configurations.

For the more involved process we can see that the error is still larger but only
by a only a factor of about two, so if the amplitudes can be computed four times
faster random polarizations pay off — this is already the case for three jets.

Note that the values for f are very sensitive to the way one implements
the amplitude computation and, more importantly, the way the subcurrents are
reused. In App. A.6.2 we present an algorithm how to efficiently store and lookup
subcurrents.

1.4 Real Color-Ordered Feynman Rules

In the last section we have shown that massless particles may be described by
real-valued polarizations. We now discuss how to treat the Feynman rules so a
complete perturbative calculation can be performed with real quantities; as we will
show in Sec. 1.4.3, numerical computations benefit from this.

In QED this is easily possible; the photon-fermion vertex and both the photon
and fermion propagator have imaginary units which we can factor out from the
amplitude. As we will show in Sec. 1.4.2 the imaginary numbers in the gamma
matrices γµ can be avoided as well.

Real Color-Ordered Feynman Rules 19

1.4.1 Three- and Four-Gluon-Vertices

In addition to the QED Feynman rules, QCD has additional three- and four-gluon
vertices. Since there is a relative imaginary unit between those two, factoring them
out is no longer possible on the level of Feynman diagrams.

Opposed to the Feynman rules, the color-stripped three- and four-gluon vertices
and the color-stripped propagator both have an imaginary unit in front. Factoring
out these and using the real polarizations defined before is sufficient to perform
a computation avoiding complex numbers. This was already done before in [19]
where Berends-Giele recursion relation are used to compute the amplitudes.

In the following we assume that this phase is factored out; because the phase
is canceled when we square the matrix element, we ignore them in the following
completely. If we want to work on the level of amplitudes instead of squared
amplitudes, e.g. to compare against another implementation, one has to multiply
our amplitudes with the factor (

i2
)n−1

= (−1)n−1 (1.46)

if n is the number of external particles. This is justified by the following derivation:
One external particle is simply the polarization vector and does not need an
additional phase. Adding one more particle means connecting it with a propagator
and a vertex, yielding i2. For each additional particle we have to multiply with i2,
and thus we arrive with Eq. (1.46).

1.4.2 Quark-Gluon-Vertices

To include fermions, let us first consider how a single fermion line in tree-level
structures look like:

〈φ|γµ|ϕ〉 〈φ|γµ
pαγα
p2 γν |ϕ〉 . . . 〈φ|γµ1

n∏
i=2

(
pαii γαi
p2
i

γµi

)
|ϕ〉 (1.47)

These expressions correspond to the case where one gluon, two gluons, . . . , and
n gluons couple to a fermion line. Note that there are n − 1 propagators and n
vertices. Together with the γ0 from 〈φ| = |φ〉†γ0 we always have an even number
of gamma matrices in a fermion-line. Note that in order for the spinors to be real,
the spinors need to be in the Majorana representation, as are the gamma matrices.
In this representation the matrices are purely imaginary, see App. A.3. This means
that a closed fermion line always has an even number of imaginary units i and
therefore is real. This ensures that gluon currents coupling to fermion-lines preserve
their real-valuedness.

20 Efficient Perturbative QCD Calculations

How are the imaginary units in the gamma matrices treated? For that, first
define the “real gamma matrices” γ′µ,

γµ = iγ′µ, (1.48)

which are the basis-vectors of the Clifford-Algebra Cl3,1 in which the number of
positive-squaring vectors (γ2

0 = 1) is exchanged with the number of negative-
squaring vectors (e.g. γ2

1 = −1):

γ′µγ
′
ν + γ′νγ

′
µ = −2gµν . (1.49)

Using these matrices we can discuss the (anti-)fermion-currents that appear in
Berends-Giele type recursion relations. A fermion off-shell current computes the
numerical result of expressions of the following type:(

(p+ q)αγα
(p+ q)2

)
Fµ(q)γµ|φ〉 = −

(
(p+ q)αγ′α

(p+ q)2

)
Fµ(q)γ′µ|φ〉 (1.50)

with F µ(q) the gluon-current coupling to this quark line. Note that every additional
gluon adds another pair of gamma matrices so that we can always factor out i2 = −1
and work with the real-valued γ′µ instead. Anti-fermion currents can be treated
as fermion currents (apart from the differing propagator). If both currents couple
together, one makes use of the following identity to convert the anti-fermion current
into a bra-like object:(

F 1
µ1 · · ·F

2n
µ2nγ

µ1 · · · γµ2n|φ〉
)T
iγ′0 = 〈φ|γµ2n · · · γµ1γ0F 1

µ1 · · ·F
2n
µ2n (1.51)

with real-valued functions F i
µi
.

1.4.3 Speed-up of RCO Feynman Rules

The speedup obtained by performing the entire computation with double variables
instead of std::complex<double> variables can be seen in Fig. 1.1. The program
used to obtain these numbers is written using C++-templates where the numerical
type T is first left unspecified and then two programs are obtained for which T =
double and T = std::complex<double>. This way we make sure both types are
treated exactly alike (apart from optimizations the compiler makes).

The asymptotic speed up of 14.01 is quite high and has different reasons. When
both programs are compiled again with the additional compiler optimization flag
CXXFLAGS="-ffast-math" the difference shrinks about a factor of

14.01
5.52 ≈ 2.54 (1.52)

Real Color-Ordered Feynman Rules 21

100

101

102

103

104

105

106

107

10 100

C
om

pu
ta
tio

n
T
im

e
[µ
s]

Number of gluons n

CXXFLAGS="-O3 -march=native"

complex double
real double w/ SIMD
speedup
14.01

100

101

102

103

104

105

106

10 100

C
om

pu
ta
tio

n
T
im

e
[µ
s]

Number of gluons n

CXXFLAGS="-O3 -march=native -ffast-math"

complex double
real double w/ SIMD
speedup
5.52

Figure 1.1: Speedup of real color-ordered Feynman rules. Both plots show the
evaluation time for a single leading-color and leading order gluon amplitude (gg →
(n− 2)g). The times t were fitted to a polynomial[15] t = an4 + b with constants
a and b. The n4 behavior is only asymptotically true which is why deviations for
small n are visible. The speed-up is the quotient between the data sets and fitted by
a constant. The “spikes” around t ≈ 30, 70, 90 appear at different locations when
the measurement is performed again or completely disappear; see also second plot.
Here the same measurement is shown with the additional compiler optimization
-ffast-math.

22 Efficient Perturbative QCD Calculations

100

101

102

103

104

105

106

107

108

109

10 100

N
um

be
r
of

In
st
ru
ct
io
ns

Number of gluons n

CXXFLAGS="-O3 -march=native -ffast-math"

complex double
real double w/ SIMD
quotient
6.26

Figure 1.2: Speedup of real color-ordered Feynman rules in terms of CPU-
instructions I. The data sets are fitted with a polynomial I = an4 + b with
constants a and b. The quotient of both data sets is fitted with a constant.

which can be explained by looking into the assemblies generated by the compiler.
There one finds that complex multiplications are not performed directly but by
the function __muldc35 which takes care of the many special cases when any
component of any complex number takes on a special value, such as infinity or “not
a number” as required by IEEE 754[25]. Using the compiler switch -ffast-math
instructs GCC not to adhere to this standard and is thereby able to optimize away
the function call by a simple implementation of complex multiplication which is
responsible for the speedup of 2.54.

The remaining factor can be understood by looking at Fig. 1.2 where the
number of instructions for both the real- and the complex-valued implementation
shown. Working with complex numbers results in 6.26 times more instructions
which explains the remaining factor 5.52 in the second plot of Fig. 1.1.

Throughout this section all floating-point operations where performed with SSE
SIMD instructions, but we found that this resulted only in a moderate speedup
of 32%. This is most likely due to the use of double-precision numbers that are
64-bit wide and therefore only two of them fit into a single 128-bit SSE register.

5__ marks the function as one of GCC’s libgcc_s.so library, mul means multiplication, dc
means double precision for complex numbers and 3 marks this function as an operation involving
three (complex-)numbers.

Real Color-Ordered Feynman Rules 23

The x86_64 architecture that was used to run the programs on also already uses
SSE registers and (scalar) SSE operations for floating point computations. If
performed with single precision numbers the speedup is 130%, because now many
operations can be done with in a single instruction, e.g. vector addition, subtraction,
multiplication etc.:

Precision Gluons Time Instructions6

[ms] 106

w/ SIMD double 100 72 213
single 100 39 114

w/o SIMD double 100 95 355
single 100 90 356

For double-precision a similar speedup could be achieved by using the AVX 256-bit
registers and instructions that can can handle four doubles at once. These are,
however, only available in the most recent processors.

1.4.4 Summation over Random Polarizations

In the sections before we described how to replace the helicity summation by an
integration, i.e. the replacement

∑
λ1=±

· · ·
∑
λn=±

−→ 1
(2π)n

∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφn. (1.53)

Sometimes, however, it is necessary to sum over certain particles to obtain the
exact polarization sum. This is still possible with random polarizations by choosing
a random angle η, e.g. η = 0, and then use the fact that

1
2

∑
φ∈{0,π}

(εµ(φ+ η))∗ εν(φ+ η) =
∑
λ=±

εµλ
∗ενλ (1.54)

which is derived from Eq. (1.29) where the spin-dependent part cancels between
both terms because ei0 = −eiπ. From this follows that we can rewrite all integrals
in Eq. (1.53) again as sums:

1
(2π)n

∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφn = 1

2n
∑

φ1∈{0,π}
· · ·

∑
φn∈{0,π}

(1.55)

which is, compared to the sums in Eq. (1.53), a basis transformation. However, in
this summation we retain the property that the vectors are real-valued and thus
can be computed faster than with complex quantities.

6The number of instructions was counted using the perf-framework, see App. A.6.1.

24 Efficient Perturbative QCD Calculations

1.5 Radiative Correction: Real Subtraction
A full NLO calculation consists of basically two corrections in addition to the LO
approximation:

〈O〉NLO = 〈O〉LO + 〈O〉NLO
Virtual + 〈O〉NLO

Real (1.56)

The first part is known from (1.1), the second part is the virtual correction

〈O〉NLO
Virtual =

∫
n

dφnJ (0)
n 2Re

(
A(0)
n

∗A(1)
n

)
O (1.57)

which is the interference term between a born amplitude and the one-loop amplitude
A(1). The superscript denotes the number of loops in the amplitude. The inter-
ference term can be derived by writing down the series expansion in the coupling
parameter g � 1 (that was suppressed in the formulas above):

|An|2 =
∣∣∣∣∣gn

∞∑
k=0

gkA(k)
∣∣∣∣∣
2

= g2n
{∣∣∣A(0)

n

∣∣∣2 + g 2Re
(
A(0)
n

∗A(1)
n

)
+ . . .

}
. (1.58)

The calculation of one-loop amplitudes is more complicated than Born am-
plitudes; there is an additional loop integral that has to be performed and the
number of Feynman diagrams that contribute is higher because the topologies
are more involved. Loop calculations also require to perform a renormalization
procedure, which means redefining quantities such as coupling constants, masses,
and field strengths. Ultimately this is needed to relate the constants appearing in
the Lagrangians L with the constants that can be measured in experiments. This
can be done by adding additional terms to the Lagrangian, the counter-terms, that
render the loop integrations (UV-)finite, i.e. they cancel the divergences that arise
from integrations where the loop momentum k is large.

1.5.1 Calculating Radiative Corrections

It turns out that the virtual correction, even after properly renormalizing all
quantities such as fields, masses and coupling constant(s), is still (IR-)divergent.
The divergence is canceled in infrared safe observables by adding the real or radiative
correction

〈O〉NLO
Real =

∫
n+1

dφn+1J
(1)
n

∣∣∣A(0)
n+1

∣∣∣2O. (1.59)

The real correction looks very similar to the LO contribution for n + 1 instead
of n final states. The difference here is that the jet function J (1)

n selects phase-
space points that have exactly one soft- and/or collinear (pair of) momenta. The
phase-space integral over the additional particle is divergent in a way that the
remaining divergences of the virtual correction are canceled. It can be shown that

Radiative Correction: Real Subtraction 25

this cancellation works order for order in perturbation theory for QED[26] and
QCD[27, 28].

To work with divergent quantities it is important that these are treated in
a mathematically rigorous way; this is usually done by employing dimensional
regularization in which the number of space-time dimensions are set to D = 4− 2ε,
i.e. away from D = 4. This way the divergences appear as inverse powers of
ε, in an NLO calculation 1

ε
and 1

ε2
. There are other regularization prescriptions

but dimensional regularization is an common choice because it preserves many
symmetries such as gauge in variance.

Dimensional regularization, however, requires us to perform all possibly diver-
gent calculations in D dimensions with D, in general, not being an integer. This
prevents us to implement the calculations directly in numerical programs which are
desirable because of their efficiency when performing the phase-space integration.
A conservative way to work around this problem is to perform the calculations
analytically in D dimensions, check that the divergences cancel between the virtual
and real correction and then finally transform the result into numerical code working
in D = 4. The downside of this approach is that the resulting codes may become
very large for a high number of final states and that for every new process the
codes have to be newly generated. A more desirable way would be a method that
allows for a “numerical regularization”, i.e. the numerical computation of the finite
parts in D = 4 and the extraction of the divergences in D dimensions, preferably
in a process-independent way.

There are at least three ways to achieve this:

1. Rewriting the integrals in such a way that loop-integral and the integral over
the additional particle are performed together, or

2. slicing the phase-space, i.e. treating the parts of phase-space separately that
gives rise to the divergences, or

3. using the subtraction method that subtracts out the parts that cause the
divergence and adds it back in the loop integral where the divergences cancel.

This work will concentrate on the subtraction method which in turn has found at
least three different realizations in literature; the CS-subtraction[29] named after
their authors Catani and Seymour, the FKS-subtraction[30, 31] from Frixione,
Kunszt and Signer and the Antenna-Subtraction[32]. These methods make use of
a universal behavior of the amplitudes when one particle gets soft and/or collinear
to another.

The remaining parts of this section is organized as follows: We will first discuss
why and where divergences arise in phase-space integrals of the real correction

26 Efficient Perturbative QCD Calculations

(Sec. 1.5.2), introduce the idea of the subtraction method in Sec. 1.5.3, and then
derive our own subtraction terms in Sec. 1.5.4. These terms are formulated
independently of the polarizations — our aim is to use them for the random
polarizations that we introduced in Sec. 1.3. This is motivated by the fact that at
LO random polarizations offer a speedup (see Sec. 1.3.2) which we would like to
have for the radiative corrections as well. We will test this in Sec. 1.5.8 where we
apply our subtraction terms to the calculation of n-Jet cross sections.

Additionally, we show that for helicity eigenstates the new terms are basically
the same as the ones known from the CS-subtraction method (Sec. 1.5.5) and show
which parts are need in addition for the random polarized spinors/vectors. In
Sec. 1.5.7 we will check the local behavior of the new terms.

Please also note that the following section assume we are working with partial
amplitudes.

1.5.2 The Origin of Soft- and Collinear Divergences

Let us first illustrate which kind of divergences appear in the real correction and
how they arise. Obviously, the squared amplitude |An+1|2 is always finite as long
as all invariants sij = 2pi · pj that appear inversely in propagators are different
from zero. The divergences arise when we perform the phase-space integration
where the phase space has points close to these regions sij = 0. The phase-space
integration has the form

n∏
i=1

∫ d3~pi
E (~pi)

δ(4)

 m∑
j=1

qj −
n∑
i=1

pi

 |An (~q1, . . . , ~qm; ~p1, . . . , ~pn)|2 (1.60)

with qj the incoming momenta that are constraint7 by the experiment, and pi the
outgoing momenta that are kinematically constrained by the on-shell condition
p2
i = m2

i and momentum conservation enforced by the delta-distribution. For
decays of particles we have m = 1 but at colliders m = 2. We will call a set of n
momenta

{p1, p2, . . . , pn} (1.61)

fulfilling these conditions a phase-space point. All phase-space points comprise the
phase space. In this section we will identify the regions of phase-space that give
rise to divergences.

7The incoming momenta are determined when the colliding particle are elementary one, e.g.
electrons and positrons at LEP; when the particle is a composite ones such like the protons
that are collided at the LHC, the elementary particles that make up the protons are not fully
determined.

Radiative Correction: Real Subtraction 27

A(0)
n+1 =

2
1

n+ 1

.....

.....

i

j

+ . . .

Figure 1.3: Topology of diagrams that are possibly divergent if particles i and j
are collinear. The divergent part is the propagator drawn with a dashed line. The
singular part can be extracted from the three-valent vertex and the legs of particles
i and j. The blob contains the same set of diagrams as a matrix element with
n particles where particles i and j are replaced with a particle i + j. The soft
divergences of a particle with soft momentum j can be obtained by summing over
j 6= i since j produces divergences with every external particle it couples.

Let us now set n→ n+ 1 and look at the structure of the Feynman diagrams,
focussing on pairs of two external particles i and j. We divide the diagrams in two
classes; the first class contains particles i and j that are directly connected by a
three-valent vertex and a corresponding propagator (see Fig. 1.3), the second class
simply contains the remaining diagrams and are denoted by the dots in Fig 1.3.
Note that in general both set of diagrams are not separately gauge invariant. We
will write the contribution of these two classes as

∑
i 6=j

Aij
(pi + pj)2 −m2

ij

+B (1.62)

where the propagator of the first class is made explicit and factored off the rest,
Aij, and the contribution of the second class is simply written as B. If we square
the whole amplitude and perform the phase space integration over one particle, say
particle j, this looks like

∫ dD−1~pj
E (~pj)

δ(D) (Kj − pj)
∣∣∣∣∣∣
∑
i 6=j

Aij
(pi + pj)2 −m2

ij

+B

∣∣∣∣∣∣
2

(1.63)

where we have chosen to dimensionally regularize the phase space integral by
setting the integration dimension from 3 to D − 1 = 3 − 2ε and abbreviated

28 Efficient Perturbative QCD Calculations

Kj = ∑
i qi −

∑
i 6=j pi. Performing the square gives

∫ dD−1~pj
E (~pj)

δ(D) (Kj − pj)
∑
i 6=j

∑
k 6=j

A∗ijAkj[
(pi + pj)2 −m2

ij

] [
(pk + pj)2 −m2

kj

]
+
∑
i 6=j

2Re
(
A∗ijB

)
(pi + pj)2 −m2

ij

+ |B|2
 . (1.64)

Note that Aij and B depend on all momenta. The measure is rewritten using
D-dimensional spherical coordinates[33]

dD−1~pj = pD−2dλ sinD−4 θ d cos θ dΦ (1.65)

with the energy λ = E (~pj) ∈ [0,∞), cos θ ∈ [−1,+1] and Φ being the remaining
coordinates that we are not interested in. The delta distribution gives an additional
restriction on the upper bound of λ which we will neglect because the divergences
arise from regions near λ = 0. The propagator’s denominator is rewritten to

m2
i +m2

j + 2pi · pj −m2
ij (1.66)

which simplifies, if all masses are zero, to

2pi · pj = 2λ|~pi|(1− cos θij). (1.67)

Inserting everything back into the original expression we arrive with

∫
dλλD−3 d cos θ dΦ

∑
i 6=j

∑
k 6=j

A∗ijAkj

4λ2 [|~pi|(1− cos θij)] [|~pk|(1− cos θik)]

+
∑
i 6=j

2Re
(
A∗ijB

)
2λ|~pi|(1− cos θij)

+ |B|2
 (1.68)

from which we can identify the phase space regions that lead to divergences. The
last term is trivially finite because it does not lead to singular behavior — B is
finite by definition. The integral∫

dλλD−4 = λD−3

D − 3 = λ1−2ε

1− 2ε (1.69)

of the second term is finite at the lower bound λ = 0, but the first term∫
dλλD−5 = λD−4

D − 4 = −λ
−2ε

2ε (1.70)

is logarithmically divergent in D = 4. These divergences are called soft divergences
because they occur for small energies λ.

Radiative Correction: Real Subtraction 29

The second type of divergence arises from the integration over the region where
cos θ ≈ 1 in the diagrams where i = k, i.e. when the particles i and j are collinear.
To investigate on this we first rewrite pi and pj with the Sudakov parametrization,

pµi = zpµ + kµ − k2

z

nµ

2p · n (1.71a)

pµj = (1− z)pµ − kµ − k2

1− z
nµ

2p · n , (1.71b)

with
p · n 6= 0, k · n = k · p = 0, p2 = n2 = 0, k2 6= 0. (1.72)

The momentum p points in the collinear direction, k2 is a measure for a-collinearity
since

(pi + pj)µ = pµ − k2

z(1− z)
nµ

2p · n
k2→0−−−→ pµ (1.73)

and the propagator
1

(pi + pj)2 = −z(1− z)
k2 (1.74)

diverges for k2 → 0. The vector n is an auxiliary one since we need three directions.
We can then show (see App. A.1.1) that

d3~pj
2Ej

= k

1− zdzdkdφ+O
(
k2
)

(1.75)

which makes clear that every integrand that falls off faster than 1
k
causes the integral

to diverge. By calculating the splitting kernels[34], i.e. the Feynman diagrams for
the decay (ij)→ i+ j, it can be shown that A ∼ k so that again the mixing term
is constant and a logarithmic divergence is produced by

∫
dk kz

2(1− z)2

k4 |A|2 ∼
∫ dk

k
. (1.76)

1.5.3 The Subtraction Method

Let us write down the NLO correction in Eq. (1.56) once again:

〈O〉NLO
Real+Virtual =

∫
n+1

dφn+1J
(1)
n

∣∣∣A(0)
n+1

∣∣∣2On+1+∫
n

dφnJ (0)
n 2Re

(
A(0)
n

∗A(1)
n

)
On.

(1.77)

As argued above, the loop-integral in the virtual correction produces soft- and
collinear divergences that are canceled by the real correction. Unfortunately, the

30 Efficient Perturbative QCD Calculations

cancellation happens after performing the two different integrals, which makes it
impossible to evaluate the integrals numerically.

The idea of the subtraction method is to construct an auxiliary term that
is subtracted from the real correction such that it renders the integration finite.
In terms of Eq. (1.68) these subtraction terms approximate the divergent parts
proportional to |A|2. To correct for the subtracted part, it has to be added back in
the virtual correction and thereby rendering this part finite as well.

To construct the auxiliary term(s) one has to know where in phase space the
divergences arise. As we have explained in Sec. 1.5.2 these are the collinear and
soft configurations. Looking at Eq. (1.68) again we already see that the divergent
parts of

∣∣∣A(0)
n+1

∣∣∣2 factorizes into a finite matrix element
∣∣∣A(0)

n

∣∣∣2 with one particle less
times a divergent quantity that is simple enough to work with. This is enough to
construct the auxiliary term which in the case of Catani-Seymour subtraction is
written as

J (0)
n

∑
k 6=i,j
Dij,kOn (1.78)

where the Catani-Seymour Dipoles Dij,k contain the n-particle squared matrix ele-
ments. This auxiliary term is approximates the divergent parts of J (1)

n

∣∣∣A(0)
n+1

∣∣∣2On+1

in the critical phase-space regions so that

∫
n+1

dφn+1

J (1)
n

∣∣∣A(0)
n+1

∣∣∣2On+1 − J (0)
n

∑
k 6=i,j
Dij,kOn

 (1.79)

is finite if the observable On+1 is infrared-safe, i.e. if On+1 → On when two momenta
become collinear and/or one momentum soft. The jet-functions in this regions
also have to fulfill this property: J (1)

n → J (0)
n . Furthermore, the dipoles are simple

enough so they can be (once and for all) integrated over the additional one-particle
phase-space, which regularizes the soft- and collinear divergences of the virtual
part:

∫
n

dφnJ (0)
n

2Re
(
A(0)
n

∗A(1)
n

)
+
∫

1

∑
k 6=i,j
Dij,k


ε=0

On = finite. (1.80)

The integration of the dipoles yield the soft- and collinear divergence in the form
of 1

ε
and 1

ε2
poles in dimensional regularization with D = 4− 2ε dimensions. The

poles cancel inside the square bracket so the integrand is finite and integration also
yields a finite result.

Our task in the following will be to extend the CS-subtraction method for the
random polarizations introduced in Sec. 1.3.

Radiative Correction: Real Subtraction 31

1.5.4 The Subtraction Terms

Parts of the following were already published in Ref. [35]. In this thesis we
additionally apply it to the Catani-Seymour dipole subtraction and use it to
compute radiative corrections of jet production at LEP.

We have to keep in mind that our motivation for deriving new subtraction terms
is to apply them to random polarizations. To do so, we will derive the limiting
behavior of QCD amplitudes for soft gluons and collinear particles without making
use of the helicity-sum identity that does not hold true for random polarizations.

1.5.4.1 The Soft Limit

We will first discuss the case of soft divergences. In Sec. 1.5.2 we showed that soft
gluons with momenta pj = λq, λ→ 0 cause the phase-space integral to diverge. In
particular, the part of the matrix element that is proportional to λ−2 is divergent
enough; this is the part we need to subtract. In the following we will therefore derive
the limiting behavior of an amplitude with a fixed gluon j being soft: limpj→0A(0)

n+1.
The diagrams that we have to consider are the ones that couple the soft gluon

j to another gluon i or an (anti-)quark i so the diagrams contain a propagator of
the type

1
(pi + pj)2 −m2

i

= 1
2pi · pj

= λ−1

2q · pi
. (1.81)

In the remaining diagrams the soft gluon couples either via a four-gluon vertex or
deeper inside the diagram so the corresponding propagator contains more momenta,
e.g. three

1
(pi + pj + pl)2 = 1

2λq · (pi + pl) + 2pi · pl
−→ 1

2pi · pl
(1.82)

which are constant in the soft limit λ→ 0. We can therefore split the amplitude in
the following way:

A(0)
n+1 =

n+1∑
i 6=j
A′ξ

Eξ
ij

2pi · pj
+A′′ (1.83)

where the sum represents all diagrams with a divergent propagator and A′′ diagrams
with propagators that are constant in the soft limit. Note that the A′ξ still depends
on pj but only via propagators of the type shown in Eq. (1.82) and three-gluon
vertices so that limλ→0A′ξ = const.

In the case where particle i is a gluon the divergent diagrams with fixed i are

A′µ
−igµν

2pi · pj
V νρσ

3 ε∗ρ(pi)ε∗σ(pj) (1.84)

32 Efficient Perturbative QCD Calculations

with V3 the three-gluon vertex as given in Eq. (A.75d). The other case in which
the soft gluon couples to a quark with mass mi (which cancels in the propagator) is

ūα(pi)V ν
αβε
∗
ν(pj)

i
[
(pi + pj)µγµβγ +miδβγ

]
2pi · pj

A′γ. (1.85)

In the first case the nominator evaluates (coupling constants suppressed) to

A′µifabc
(
(−2pi + pj) · ε∗(pj)ε∗µ(pi) + (pi − pj)µε∗(pj) · ε∗(pi)

+(2pj + pi) · ε∗(pi)ε∗µ(pj)
)

λ→0−−→ TiA′ · ε∗(pi)2pi · ε∗(pj). (1.86)

Terms proportional to pj vanish in the soft limit and are constant with the divergent
propagator. The term proportional to pi vanishes as well, because the expression
A′µ contains the same diagrams as an n-particle amplitude (with polarization vector
of gluon i removed). The corresponding momenta, however, are {pi}n+1

i 6=j which are
conserved in the soft limit:

n+1∑
i 6=j

pi = −pj
pj→0−−−→ 0. (1.87)

Therefore the expression A′ · pi vanishes because it is the statement of gauge
invariance. Note that we have defined Ti = −ifabc. The derivation here is
completely general with respect to the polarization vectors, the only property we
used is the transversality condition p · ε(p) = 0 which holds true both for helicity
eigenstates and random polarizations.

In the case of i being a quark we have with Ti = −T aij

ūα(pi)iγναβT aijε∗ν(pj)i
(
(pi + pj)µγµβγ +miδβγ

)
A′γ

pj→0−−−→ ūα(pi)γναβε∗ν(pj)
∑
λ=±

uλβ(pi)ūγβ(pi)
TiA′γ

=
∑
λ=±

(
ūα(pi)γναβε∗ν(pj)uλβ(pi)

)
Ti

(
ūλγ(pi)A′γ

)
. (1.88)

At this point we have to distinguish between quarks in helicity eigenstates with
λi = ± and random polarized quarks with φi ∈ [0, 2π). For both cases, however,
we obtain (see App. A.1.2):

2pi · ε∗ν(pj)Tiūα(pi)A′α. (1.89)

For the derivation of the case of an antiquark one proceeds analogously.

Radiative Correction: Real Subtraction 33

Eqs. (1.88) and (1.86) can be summarized in a single formula, because in the
soft limit

A′ · ε∗(pi)
pj→0−−−→ A(0)

n

ūλγ(pi)A′γ
pj→0−−−→ A(0)

n .
(1.90)

This is true because, as argued above already, in the soft limit the momenta {pi}n+1
i 6=j

sum to zero and A′ contain the same diagrams as A(0)
n . Plugging our results back

into Eq. (1.83) gives

lim
pj→0
A(0)
n+1 ∼ ε∗µ(pj)JµA(0)

n , Jµ =
n∑
i=1

Ti
pµi

pi · pj
(1.91)

with the eikonal current Jµ that factorizes the soft momentum from the amplitude.
Here we assume that the particle indices have been renamed so the particle j is
excluded.

Squaring the matrix element gives the soft limit that diverges as λ−2:

lim
pj→0

∣∣∣A(0)
n+1

∣∣∣2 ∼ n∑
i=1

n∑
k=1
A(0)
n

∗Ti ·TkA(0)
n Sijk(εj) (1.92)

where we defined the soft function

Sijk(εj) = (ε(pj) · J)(ε∗(pj) · J) =
n∑
i=1

n∑
k=1

Ti ·Tk
pi · ε(pj)
pi · pj

pk · ε∗(pj)
pk · pj

. (1.93)

Using color conservation we re-arrange this expression (proof given in App. A.1.3)
and write

lim
pj→0

∣∣∣A(0)
n+1

∣∣∣2 ∼ − n∑
i=1

n∑
k 6=i
A(0)
n

∗Ti ·TkA(0)
n Sij,k(εj) (1.94)

with the new soft function

Sij,k(εj) =
(pi · ε∗j)(pi · εj)

(pi · pj)2 −
2Re

(
(pi · ε∗j)(pk · εj)

)
(pi · pj)(pi · pj + pj · pk)

. (1.95)

which has sums similar to the Catani-Seymour dipoles.

1.5.4.2 The Collinear Limit

Collinear divergences arise in phase-space regions where two momenta are collinear,
i.e. when the angle between them is small. In analogy to Eq. (1.83) we can write
the amplitude with collinear momenta i and j as

A(0)
n+1 = A′ξ

Eξ
ij

2pi · pj
+A′′. (1.96)

34 Efficient Perturbative QCD Calculations

Note that in contrast to Eq. (1.83) there is no sum because collinearity involves
two particles, being soft only one. The first term denotes the Feynman diagrams
that are the divergent ones and the remaining, denoted by A′′, are constant in the
collinear limit.

To arrive with a factorized formula we rewrite the propagator’s tensor/spinor
structure with

gµν =
pµijq

ν
ij + qµijp

ν
ij

pij · qij
−
∑
λ=±

εµλ(pij)ενλ∗(pij) (1.97)

if ξ is Lorentz index or

(pi + pj)µγµ
pi‖pj−−−→ /pij =

∑
λ=±

uλ(pij)ūλ(pij) (1.98)

if ξ is a spinor index so that we obtain, similar to the soft case, the n-particle
amplitude A(0)

n and the splitting functions Split(ij)→i+j which is the Feynman
diagram for the process (ij)→ i+ j. This gives

lim
pi‖pj
A(0)
n+1(. . . , pi, hi, . . . , pj, hj, . . .) ∼

∑
λ=±

Split(ij)→i+j(pij, λ, pi, hi, pj, hj)×

×T(ij)→i+jA(0)
n (. . . , pij, λ, . . .) (1.99)

with splitting functions

Splitqij→qigj = 1
(pi + pj)2 −m2

ij

ūi/εjuij, (1.100a)

Splitgij→gigj = 2
2pi · pj

(
εi · εj pi · ε∗ij + εj · ε∗ij pj · εi − εi · ε∗ij pi · εj

)
, (1.100b)

Splitgij→qiq̄j = 1
2pi · pj

ūi/εijvj, (1.100c)

where the indices denote the corresponding momenta and helicity pairs, i.e. i =̂
(pi, hi), j =̂ (pj, hj), and ij =̂ (pij, λ). The proof is given in App. A.1.5.

Squaring the collinear limit we obtain

lim
pi‖pj

∣∣∣A(0)
n+1(. . . , pi, hi, . . . , pj, hj, . . .)

∣∣∣2 =
[
A(0)
n (. . . , pij, λ, . . .)

]∗
ξ

T2
(ij)→i+j[

P(ij)→i+j(λ, λ′)
]
ξξ′

[
A(0)
n (. . . , pij, λ′, . . .)

]
ξ′

(1.101)

with the squares of the splitting functions[
P(ij)→i+j(λ, λ′)

]
αβ

=
∑
λ,λ′

uλα(pij) Split∗(ij)→i+jSplit(ij)→i+j ū
λ′

β (pij), (1.102a)
[
P(ij)→i+j(λ, λ′)

]
µν

=
∑
λ,λ′

ελµ
∗(pij) Split∗(ij)→i+jSplit(ij)→i+j ε

λ′

ν (pij). (1.102b)

Note that the squaring canceled the color correlation which remain in the soft case.
Instead we obtain a spin correlation because the amplitudes still depend on λ, λ′,
the spin of the intermediate particle (ij).

Radiative Correction: Real Subtraction 35

1.5.4.3 Choice of Momenta

Before we proceed it is convenient to rewrite the soft limit such that it more
resembles the collinear case. In particular, to achieve that we have to unify the
dependence of the amplitudes on the momenta which is different in both cases.
Whereas in the soft limit the amplitudes

A(p1, p2, . . . , pj−1, pj+1, . . . , pn) (1.103)

are functions of all momenta except the soft one, pj, in the collinear limit the
amplitudes

A(p1, p2, . . . , pi−1, pij, pi+1, . . . , pj−1, pj+1, . . . , pn) (1.104)

depend on a new momentum pij that replaces the collinear momenta pi and pj . We
have not yet defined pij and only require that in the collinear limit (for massless
particles) it is pij = pi + pj which is also lightlike,

(pi + pj)2 = 2pi · pj = |~pi||~pj|(1− cos θ) = 0, (1.105)

because the collinear limit is defined by θ = 0.
We can unify this by using the momenta defined in Ref. [29],

p̃ij = pi + pj −
y

1− ypk (1.106a)

p̃k = 1
1− ypk (1.106b)

yij,k = pi · pj
pi · pj + pi · pk + pj · pk

, (1.106c)

so that pi, pj, pk are replaced by the p̃ij, p̃k. One can the show (see App. A.1.6)
that in the soft case

p̃k → pk (1.107a)
p̃ij → pi (1.107b)

and in the collinear case

p̃k → pk (1.108a)
p̃ij → pi + pj. (1.108b)

Invariants involving momenta pi, pj, pk can be rewritten using the identities listed
in Eq.. (1.121).

Note that pi + pj + pk = p̃k + p̃ij and p̃2
ij = p̃2

k = 0, i.e. even away from the soft-
and collinear limit the momenta of the n-particle amplitudes are conserved and
lightlike — this is important, because it allows us to smoothly approach the limits,
i.e. in the neighborhood of these points in phase space.

36 Efficient Perturbative QCD Calculations

1.5.4.4 Spin-Correlation for the Soft Function

Replacing the “untilded” momenta in the collinear case is straightforward, in the
soft case however we still have the momentum pi — if we write the soft case in
analogy to Eq. (1.102) we obtain

[Sij,k]αβ = uα(pi, hi)Si→ijūβ(pi, hi) (1.109a)
[Sij,k]µν = ε∗µ(pi, hi)Si→ijεν(pi, hi) (1.109b)

where instead of pi we would like to have p̃ij. This is done by introducing a soft
spin-correlation Sλλ′ , i.e. matrices that satisfy∑

λ=±

∑
λ′=±

uλ(pij)Sλλ′ūλ′(pij)
pij→pi−−−−→ uhi(pi)ūhi(pi), (1.110a)

∑
λ=±

∑
λ′=±

ε∗λ′(pij)Sλλ′ελ(pij)
pij→pi−−−−→ ε∗hi(pi)εhi(pi). (1.110b)

These matrices are given by

Sλλ′ = 1
2pi · qij

1
2pij · qij

ūλ(pij)/qijuhi(pi)ūhi(pi)/qijuλ′(pij), (1.111a)

Sλλ′ = ελ(pij) · ε∗(pi)ε(pi) · ε∗(pij). (1.111b)

For a proof see App. A.1.7.

1.5.4.5 Eliminating Double-Counting of Soft-Collinear Divergences

So far we discussed the soft and the collinear case separately. To construct
subtraction terms we have to take into account that these limiting cases can and do
overlap since there are phase space points with a soft momentum that is collinear
to another momentum at the same time. The limiting cases therefore double-count
these which has to be corrected for. This will done in the following by evaluating
the collinear limit of the soft term and soft limit of the collinear terms. We will
see that we can simply drop the first term in Sij,k(εj) and therefore avoid double
counting.

The collinear limit of the soft term is

lim
pi‖pj

Sij,k(εj) ∼
(pi · ε∗j)(pi · εj)

(pi · pj)2 (1.112)

because the second is not singular enough. The soft limits of the collinear functions
are

lim
pj→0

[
Pqij→qigj (λ, λ′)

]
αβ
∼

(pi · ε∗j)(pi · εj)
(pi · pj)2 uα(pi)ūβ(pi) (1.113a)

lim
pj→0

[
Pgij→gigj (λ, λ′)

]
µν
∼

(pi · ε∗j)(pi · εj)
(pi · pj)2 ε∗µ(pi)εν(pi) (1.113b)

Radiative Correction: Real Subtraction 37

and the collinear function for the remaining splitting is not singular enough. We
see that the limits agree. To avoid double-counting we construct a soft function S
that differs from Sij,k(εj) by simply leaving out the first term:

S (εj) = −
2Re

(
(pi · ε∗j)(pk · εj)

)
(pi · pj)(pi · pj + pj · pk)

(1.114)

1.5.4.6 The R-Operator: Randomly Polarized Dipoles

Using the previously derived subtraction terms with random polarizations is suffi-
cient to obtain a finite integral for real corrections, but the value will differ from
the one computed with helicity eigenstates and CS dipoles. The reason for this
is that the subtraction terms may, in general, differ by a finite amount that can
be shifted between the real- and virtual correction. One possibility is to re-derive
also the integrated subtraction terms, but this poses additional restrictions on the
terms that are difficult to meet.

Instead, we will construct our new terms in such a way that new integrated
terms are not needed and the real corrections with either type of polarizations
yield the same result. This we can achieve by making use of Eq. (1.29): The first
term is the helicity sum for which we already have the Catani-Seymour subtraction
terms and the remaining terms depending on the helicity angles are new and have
to accounted for. Since these terms integrate to zero, we can modify Eq. (1.79) by
replacing the CS-dipole Dij,k with Dij,k +D′ij,k(θi, θj) so that it reads

∫
dΘ

∫
n+1

dφn+1

J (1)
n

∣∣∣A(0)
n+1

∣∣∣2On+1 − J (0)
n

∑
k 6=i,j

(
Dij,k +D′ij,k

)
On

 (1.115)

with the integration over the helicity angles∫
dΘ ≡ 1

(2π)n+3

∫ 2π

0
dθ1 · · ·

∫ 2π

0
dθn+3 (1.116)

made explicit. The subtraction term Dij,k cancels the divergent parts that do not
depend on helicity angles θ and D′ij,k(θi, θj) subtracts the parts that depend on the
helicity-angles.

The new dipoles can be derived from our subtraction terms if we apply the
R-operator, which simply extracts the helicity-angle dependent parts:

R [f(θi, θj)] = f(θi, θj)−
1
4

∑
θi∈{0,π}

∑
θj∈{0,π}

f(θi, θj). (1.117)

The last term of the R-operator is according to Sec. 1.4.4 just the sum over the
helicities λi and λj, so we are left with terms that depend on θi and/or θj.

38 Efficient Perturbative QCD Calculations

1.5.5 The Catani-Seymour Subtraction

The Catani-Seymour subtraction terms, or rather their leading-color form, are
reproduced if one sums the terms S, and P over helicity eigenstates:∑

λi=±

∑
λj=±

(P + S) . (1.118)

For this we introduce new variables[29] P (not to be confused with the splitting
function P), z, and y (we drop the indices i, j, k which are made explicit in Ref. [29]):

P 2 = sij + sjk + sik (1.119a)

y = sij
sij + sjk + sik

(1.119b)

z = sik
sjk + sik

. (1.119c)

which depend on the invariants

sij = 2pi · pj (1.120a)
sik = 2pi · pk (1.120b)
sjk = 2pj · pk. (1.120c)

To rewrite the expression it is convenient to have the following identities,

sij = yP 2 (1.121a)
sik = zP 2(1− y) (1.121b)
sjk = P 2(1− y)(1− z). (1.121c)

For the soft function S that is independent of the splitting type we arrive with the
following expression (see App. A.1.4):

∑
λi=±

∑
λj=±

S = 1
P 2

(
4
y

z(1− y)
1− z(1− y) −

4
1− z(1− y)(pk − pi) ·Qj

−4
y
pi ·Qj

)
, (1.122)

where we also abbreviated
Q = qµ

p · q
(1.123)

so that p ·Q = 1. The contribution P for the quark-gluon splitting is
∑
λi=±

∑
λj=±

P(ij)→i+j = 1
P 2

(
2(1 + z)

y
pi ·Qj + 2

y
− 2

1− ypk ·Qj

)
(1.124)

Radiative Correction: Real Subtraction 39

so that

∑
λi=±

∑
λj=±

(
P(ij)→i+j + S

)
= 1
P 2

(
2(1 + z)

y
pi ·Qj + 2

y
− 2

1− ypk ·Qj

+4
y

z(1− y)
1− z(1− y) −

4
1− z(1− y)(pk − pi) ·Qj −

4
y
pi ·Qj

)
(1.125)

which is very similar to the Catani-Seymour dipole

D = 1
P 2

(
4
y

1
1− z(1− y) −

2
y
− 2z

y

)
. (1.126)

The difference is

∑
λi=±

∑
λj=±

(
P(ij)→i+j + S

)
−D = 1

P 2

(
2z + 2(z − 1)pi ·Qj

y

−2pk ·Qj

1− y −
4(pk − pi) ·Qj

1− z(1− y)

)
, (1.127)

where the first term is integrable (see App. A.1.9), the second term is finite as
sij → 0 and the last term introduces a soft divergence, because in the soft limit
λ→ 0 for pj = λk, Qj ∼ 1

λ
and y ∼ 1

λ
. This term must be subtracted because it

would introduce an artificial divergence. It stems from S and therefore will also be
present in the gluon-gluon split, so we define the corrected S for Catani-Seymour
subtraction terms as

S −→ S ′ = S + 4(pk − pi) ·Qj

1− z(1− y) (1.128)

so all terms have the correct behavior in the collinear and soft limit, if combined
with the Catani-Seymour subtraction terms.

A check that the subtraction terms give the desired, integrable behavior is given
in Sec. 1.5.7.

1.5.6 Summary of the Subtraction Terms

Here we summarize the subtraction terms Dij,k and D′ij,k(θi, θj). The Catani-
Seymour subtraction terms are

Dij,k = A∗λ ({p̃i}ni=1) δλλ
′

P 2

(
4
y

1
1− z(1− y) −

2
y
− 2z

y

)
Aλ′ ({p̃i}ni=1) (1.129a)

Dij,k = A∗λ ({p̃i}ni=1) 1
P 2

(
−gµν 4

y

(
1

1− z(1− y) − 1
)

+ 4
y2P 2

(
z2pµi p

ν
i

−2z(1− z)pµi pνj + (1− z)2pµj p
ν
j

))
Aλ′ ({p̃i}ni=1) (1.129b)

40 Efficient Perturbative QCD Calculations

where the first term is applied if i is a(n) (anti-)quark and the second one if i is a
gluon. The second term must be converted to a scalar as described in Sec. 1.5.6.1.

The additional subtraction terms for the helicity dependent parts are

D′ij,k(θi, θj) = A∗λ ({p̃i}ni=1)R
(
P(ij)→i+j + S ′

)
Aλ′ ({p̃i}ni=1) (1.130)

with the R-operator as defined in Sec. 1.5.4.6, S ′ in Eq. (1.128) and P(ij)→i+j in
Eq. (1.102). The final formula then is Eq. (1.115) with the sum ∑

k 6=i,j running
over the tuples (i, j, k) and (k, j, i) with

j ∈ {1, . . . , n} (1.131a)
i = j − 1 (mod n+ 1) (1.131b)
k = j + 1 (mod n+ 1) (1.131c)

so e.g. for e+e− → q2g3q̄1 the tuples are (2, 3, 1) and (1, 3, 2).
The amplitude Aλ ({p̃i}ni=1) are n-particle amplitudes with the tilded momenta

described in Sec. 1.5.4.3 where particle (ij) is polarized with helicity λ.

1.5.6.1 Spin-Correlation Matrix

The spin-correlation tensor Sµν fulfills the property

Sµν p̃
µ
ij p̃

ν
ij = 0 (1.132)

which is immediately clear for the case Sµν = gµν and can be shown for Sµν = vµvν

with vµ = zip
µ
i − zjp

µ
j ; see App. A.1.8. We can therefore use the following formula

which is more convenient to calculate the subtraction terms:

A∗µS
µνAν =

∑
λ=±

∑
λ′=±

(Aαεαλ(p̃ij))∗ εµλ(p̃ij)Sµνενλ′∗(p̃ij)
(
εβλ′(p̃ij)Aβ

)
=
∑
λ=±

∑
λ′=±
A∗λSλλ′Aλ′ .

(1.133)

In the first step we twice used the identity

− gµν =
∑
λ=±

εµλ
∗(p̃ij)ενλ(p̃ij)−

p̃µijq
ν + qµp̃νij
p̃ij · q

(1.134)

and made use of the fact that the contribution of the fraction vanishes because
either A · p̃ij = 0 (gauge invariance) or p̃µijSµν p̃νij = 0, Eq. (1.132). In the second
line we abbreviated Aλ = Aµε

µ
λ(p̃ij) which is now an ordinary-n particle amplitude

with particle ij having the momentum p̃ij and helicity λ, and

Sλλ′ = εµλ(p̃ij)Sµνενλ′∗(p̃ij) (1.135)

which we will call spin-correlation matrix.

Radiative Correction: Real Subtraction 41

10−04

10−02

10+00

10+02

10+04

10+06

10+08

10+10

10+12

10+14

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0

Sq
ua

re
d
A
m
pl
itu

de

Scale x ∝ λ

p4 ≈ λq, λ→ 0 for e+e− → q̄2q3 + g4

J
(1)
n |An+1|2

J
(1)
n |An+1|2 − J(0)

n

∑
Dij,k

1.21× 10−2/x2

4.43× 10−3 · x

Figure 1.4: Soft behavior of the unsubtracted and subtracted matrix elements for
the two jet corrections for a randomly generated phase space point (see App. A.5.2.1)
when a single momentum pj = λq is rescaled with λ.

1.5.7 Check of the Local Behavior

To check the local behavior we compare the unsubtracted against the subtracted
matrix elements and check if they scale correctly in the soft and collinear limits.

1.5.7.1 Check of the Soft Behavior

The soft limit is generated with a phase space generator as described in App. A.5.2.1.
It generates a set of momenta that fulfill momentum conservation and contains one
soft momentum pj = λq where the index j can be freely chosen. We are mainly
interested in soft gluons, but it is also possible to check soft (anti-)quarks. It is
possible that the generator produces more than one soft particle, but in that case
the phase space momentum is vetoed by the jet algorithm (it corresponds to a
higher-order correction).

Fig. 1.4 shows the possible situations during the calculation of the production for
two jets in e+e− collisions at 90GeV for randomly chosen phase space points where
λ is scaled from a small value (soft case) to a high value. The two-jet correction is
a good example to begin with, because it exclusively tests the quark-gluon splitting.
To test also the gluon-gluon splitting one needs at least one more gluon; an example
is shown in Fig. 1.5 which shows some selected situations in the calculation for
seven-jet production.

In general, one can observe the expected (see Sec. 1.5.4.1) behavior for the
unsubtracted matrix elements that follow 1/λ2. The subtraction terms correct this

42 Efficient Perturbative QCD Calculations

behavior by correctly subtracting this part, leaving the remaining terms that follow
a 1/λ behavior that is integrable. Depending on the randomly generated phase
space point a different but constant number of dipoles are active in the soft limit.
Far away from this limit the approximation of λx, x ∈ {1, 2} no longer holds true
and the matrix elements deviate from it.

1.5.7.2 Check of the Collinear Behavior

The collinear limit is generated as described in App. A.5.2.2. This generates two
momenta pi and pj with indices i, j that can again be freely chosen. On the x-axis
we determine the collinearity k = √2pi · pj , so that the collinear limit is on the left
side of small k.

Fig. 1.6 shows the possible situations that can happen during a two-jet cal-
culation. Not shown is the situation when the quark becomes collinear to the
antiquark which does not exhibit a collinear divergence. If other particles become
collinear we see the 1/k2-behavior that is canceled by the subtraction terms to
an integrable 1/k-behavior. Note that the subtracted matrix elements suffer from
numerical inaccuracies in the extreme collinear region. However this is due to the
generation of the collinear momenta which involves numerical root finding and
therefore is not present in an actual calculation. See also Sec. 1.2.1.1 for more
discussion on numerical problems.

In both the collinear and the soft plots one can see that the n+1-matrix element
stop at a certain point. This is where the n+ 1 momenta no longer pass through
the jet algorithm as a valid n-jet event and are therefore most likely a n+ 1 event.
The recombined (tilded) momenta in Eq. (1.106) however pass the n-jet tests and
approximate the n+ 1-matrix element.

1.5.7.3 Numerical Precision

Fig. 1.4, 1.5, 1.6, 1.7 were obtained with extended precision (long double) codes
so we could look at the behavior for a large region without numerical problems.
The plots are similar for double-precision, although the numerical problems in the
collinear regions start about one magnitude earlier.

1.5.8 Application to n-Jet Cross Sections

The ultimate test of our newly derived subtraction terms for random polarizations
is the check whether the integrated results agree with those obtained by helicity
eigenstates and Catani-Seymour subtraction terms. A comparison of both methods
can be found in Tab. 1.6 which lists the results for the real correction to jet

Radiative Correction: Real Subtraction 43

10−10

10−08

10−06

10−04

10−02

10+00

10+02

10+04

10+06

10+08

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0

Sq
ua

re
d
A
m
pl
itu

de

Scale x ∝ λ

p4 ≈ λq, λ→ 0 for e+e− → q̄2q3 + g4g5g6g7g8g9

J (1)
n |An+1|2

J (1)
n |An+1|2 − J (0)

n

∑
Dij,k

8.54× 10−9/x2

2.57× 10−8 · x

10−12

10−10

10−08

10−06

10−04

10−02

10+00

10+02

10+04

10+06

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0

Sq
ua

re
d
A
m
pl
itu

de

Scale x ∝ λ

p5 ≈ λq, λ→ 0 for e+e− → q̄2q3 + g4g5g6g7g8g9

J
(1)
n |An+1|2

J
(1)
n |An+1|2 − J(0)

n

∑
Dij,k

2.30× 10−12/x2

1.52× 10−11 · x

10−08

10−06

10−04

10−02

10+00

10+02

10+04

10+06

10+08

10+10

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0

Sq
ua

re
d
A
m
pl
itu

de

Scale x ∝ λ

p6 ≈ λq, λ→ 0 for e+e− → q̄2q3 + g4g5g6g7g8g9

J
(1)
n |An+1|2

J
(1)
n |An+1|2 − J(0)

n

∑
Dij,k

1.69× 10−8/x2

1.15× 10−7 · x

Figure 1.5: Soft behavior of the unsubtracted and subtracted matrix elements for
the seven jet correction for a randomly generated phase space point (see App. A.5.2.1)
when a single momentum pj = λq is rescaled with λ.

44 Efficient Perturbative QCD Calculations

10−05

10+00

10+05

10+10

10+15

10+20

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0 10+1 10+2

Sq
ua

re
d
A
m
pl
itu

de

Scale k

k2 = (p2 + p4)2 → 0 for e+e− → q̄2q3 + g4

J
(1)
n |An+1|2

J
(1)
n |An+1|2 − J(0)

n

∑
Dij,k

3.33× 101/k2

4.70× 10−2/k

10−05

10+00

10+05

10+10

10+15

10+20

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0 10+1 10+2

Sq
ua

re
d
A
m
pl
itu

de

Scale k

k2 = (p3 + p4)2 → 0 for e+e− → q̄2q3 + g4

J
(1)
n |An+1|2

J
(1)
n |An+1|2 − J(0)

n

∑
Dij,k

3.00× 101/k2

1.75× 10−2/k

Figure 1.6: Collinear behavior of the unsubtracted and subtracted matrix elements.

Radiative Correction: Real Subtraction 45

10−14
10−12
10−10
10−08
10−06
10−04
10−02
10+00
10+02
10+04
10+06
10+08

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0 10+1 10+2

Sq
ua

re
d
A
m
pl
itu

de

Scale k

k2 = (p2 + p9)2 → 0 for e+e− → q̄2q3 + g4g5g6g7g8g9

J
(1)
n |An+1|2

J
(1)
n |An+1|2 − J(0)

n

∑
Dij,k

1.13× 10−9/k2

1.30× 10−10/k

10−14
10−12
10−10
10−08
10−06
10−04
10−02
10+00
10+02
10+04
10+06
10+08

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0 10+1 10+2

Sq
ua

re
d
A
m
pl
itu

de

Scale k

k2 = (p5 + p6)2 → 0 for e+e− → q̄2q3 + g4g5g6g7g8g9

J (1)
n |An+1|2

J (1)
n |An+1|2 − J (0)

n

∑
Dij,k

7.97× 10−10/k2

6.26× 10−9/k

10−15

10−10

10−05

10+00

10+05

10+10

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0 10+1 10+2

Sq
ua

re
d
A
m
pl
itu

de

Scale k

k2 = (p7 + p8)2 → 0 for e+e− → q̄2q3 + g4g5g6g7g8g9

J
(1)
n |An+1|2

J
(1)
n |An+1|2 − J(0)

n

∑
Dij,k

1.68× 10−9/k2

3.19× 10−11/k

Figure 1.7: Collinear behavior of the unsubtracted and subtracted matrix elements.

46 Efficient Perturbative QCD Calculations

Random Polarizations

N E χ2/dof tCPU

[pb] [%] [s]

e+e− → q̄q 106 −48.489± 0.041 0.08 0.81 1078
e+e− → q̄qg 107 −34.256± 0.074 0.22 1.13 14 960
e+e− → q̄qgg 108 −13.802± 0.047 0.34 1.75 195 753
e+e− → q̄qggg 109 −3.610± 0.018 0.50 1.42 3 061 408

Helicity Eigenstates

N E χ2/dof tCPU

[pb] [%] [s]

e+e− → q̄q 106 −48.476± 0.022 0.04 1.09 185
e+e− → q̄qg 107 −34.215± 0.029 0.09 0.51 9043
e+e− → q̄qgg 108 −13.826± 0.021 0.15 1.13 431 949
e+e− → q̄qggg 108 −3.637± 0.014 0.40 0.98 2 347 488

Table 1.6: Results for radiative corrections of the total cross section σ(e+e− →
γ∗ → q̄q + (n − 2)g summed over all light quark-flavors q = u, d, c, s, b at

√
s =

90GeV. The results where obtained using 10 VEGAS iterations, each with N calls
and weighing the results as described in Sec. 2.3.3.

production in e+e− collisions at
√
s = 90GeV. Both methods yield results that

agree well within the error-bound, the last result agrees in within three error
bounds.

1.5.8.1 Efficiency of the Randomly Polarized Dipoles

We can now compare both methods again as we did in Sec. 1.3.2. The results are
given in Tab. 1.7.

The results for the additional errors introduced by the random polarizations
are similar to the LO case (see Tab. 1.5) for a low multiplicity, i.e. two or three
times higher than with helicity eigenstates. For n = 5 the error is four times higher.
Unfortunately our implementation is not as efficient as would be needed so the
results for x are lower than one meaning that the traditional method with helicity
summation is faster. This, however, does not necessarily mean that one should
disfavor random polarizations for real corrections, because there is still room to
improve the implementation. The main advantage of the Catani-Seymour dipole
terms is that they can be expressed in invariants which are evaluated very fast,

Radiative Correction: Real Subtraction 47

σHS
σRP

f = tHS
tRP

x = f
(
σHS
σRP

)2

e+e− → q̄q 0.537 0.17 0.05
e+e− → q̄qg 0.392 0.60 0.09
e+e− → q̄qgg 0.447 2.21 0.44
e+e− → q̄qggg 0.246 7.67 0.03

Table 1.7: Comparison of random polarizations vs. helicity eigenstates in the real
correction. These results were computed with the numbers in Tab. 1.6.

see Eq. (1.129). The additional dipoles for the helicity dependent terms must be
evaluated using the R-operator which we implemented naïvely as its definition
in Eq. (1.117) suggest. Future work can improve this by deriving expressions
of Eq. (1.130) where the R-operator is performed explicitly and thus avoids the
subtraction of the helicity summed result.

48 Efficient Perturbative QCD Calculations

Chapter 2

Monte Carlo Integration

Monte Carlo (MC) integration is the name for a class of algorithms that
numerically approximate definite integrals. The name refers to its characterizing
feature, i.e. its use of (pseudo-)random numbers to perform the integration. It is a
popular choice because, in contrast to other methods, the error of the approximation
converges independently of the integration dimension — an important criterion
since we will need to perform high-dimensional (phase space-)integrals. In addition
MC integration allows to make use of knowledge about the integrand, even if it is
only approximate, to further improve the approximation.

This chapter is organized as follows: In Sec. 2.1 we will give a short introduction
into the simplest form of MC integration, commonly called “plain” or “naïve”
MC. In Sec. 2.2 we explain some advanced techniques; the VEGAS[36, 37] MC
algorithm that makes use of these will be presented in Sec. 2.3. The discussion of
VEGAS is supplemented with a close examination of its adaptive strategy. We
include this for two reasons: The algorithm as found in common implementations
differs (slightly) from the one defined in the original implementation and the other
reason is an educational one; to build upon or even to improve it one needs to
understand it first. This chapter ends with Sec. 2.4 which presents the author’s
own implementation of the aforementioned algorithms and discusses some technical
problems, e.g. parallelization in Sec. 2.4.1 for computer clusters.

2.1 Introduction
Let us define the general problem. We need an approximation of the d-dimensional
integral I of the integrand f defined over the domain U = [0, 1]d,

I =
∫

[0,1]d

ddx f (~x) . (2.1)

The domain of the integrand f is restricted to the unit hypercube [0, 1]d for
convenience. We assume that domains different from U can be remapped by a

49

50 Monte Carlo Integration

change of variables. We also require that f is finite everywhere and that I is finite
as well.

2.1.1 Plain Monte Carlo Integration

By artificially rewriting the integral I we see that we can interpret it as an
expectation value E of the function f

I =
∫
Rd

ddx p (~x) f (~x) = E [f] (2.2)

with a d-dimensional uniform probability distribution

p (~x) =

∀ ~x ∈ [0, 1]d : 1
∀ ~x /∈ [0, 1]d : 0

. (2.3)

Using N numbers
{
~xi ∈ [0, 1]d

}N
i=1

uniformly distributed (i.e. according to p) the
expectation value can then be approximated by the sample average EN ,

EN = 1
N

N∑
i=1

f (~xi) −→ E [f] = I, (2.4)

where the convergence is guaranteed by the law of large numbers.

2.1.2 Convergence Behavior

If, additionally, the function f is square-integrable, i.e.
∫
U ddxf 2 (~x) <∞, then the

variance
V =

∫
[0,1]d

ddx (f (~x)− I)2 =
∫

[0,1]d

ddx f 2 (~x)− I2 (2.5)

exists and the central limit theorem applies and implies that the sample average
converges in distribution to a normal one

EN
d−→ N

(
I,
V

N

)
, (2.6)

with variance
S2 = V

N
(2.7)

that serves as an error and describes how well the approximation EN ≈ I is. In
practice the variance V is approximated (in the same sense as I is approximated
with EN) with the sample variance

VN = 1
N − 1

N∑
i=1

(f (~xi)− EN)2 (2.8)

Variance Reduction Techniques 51

because the value of V is as inaccessible as that of the integral I. The factor N/N−1

that was applied to S2 (the denominator with N − 1 instead of N) is called Bessel’s
correction and accounts for the reduced number of freedoms since EN is computed
with the set {fi = f (~xi)}Ni=1 as well. In practice this correction factor is neglected
because N is usually very high.

2.1.3 The “Curse of Dimensionality”

As can be seen from Eq. (2.7) the convergence of the error S of the approximation
follows 1/

√
N, i.e. is not affected by the dimension d of the integrand. For d = 1

this is worse than e.g. the simplest quadrature rules, but in higher dimensions
it outperforms these classical algorithms that scale exponentially in d. This is
usually referred to as the “curse of dimensionality” which means that these methods
fail to provide a reasonable answer for high-dimensional integrals. A qualitative
explanation why MC converges faster is that by evaluating the function at random
points in the limit of high sample size N is sampled equally well for any N ; the
classical algorithms mentioned above all use a grid decomposing the unit hypercube
U along its d dimensions each with r intervals into a total of dr cells. To achieve a
regular sampling the integrand has to be evaluated in each cell and therefore the
exponential scaling arises.

A hybrid approach are the so-called quasi-random numbers[38] that generate
numbers in a way that the unit hypercube is sampled more regularly than they
would with a pseudo-random number generator.

However, converging independently of the integration dimension does not imply
that the MC error is independent of the dimension of the function. In fact, as
can be seen from Eq. (2.6) the dimension of the function indirectly enters via the
variance V that is induced by f . In practice one observes e.g. that the jet cross
sections require more statistics if the number of particle is higher (see Sec. 1). To
compensate high variances we introduce some variance reduction techniques in the
next section.

2.2 Variance Reduction Techniques
The error of a MC integration algorithm was derived as

S = σ√
N

. (2.9)

When we are interested in decreasing this error, there are several ways: If we have
enough computational power we can simply increase the sample size N ; for example

52 Monte Carlo Integration

by increasing the number of integrand evaluations N by four we can cut the error
by 50%. Another way is to modify the function in a way that the value of the
integral I is preserved but the standard deviation σ is decreased: This can e.g. be
achieved with importance sampling (Sec. 2.2.1), control variates (Sec. 2.2.2) and
antithetic variates[38, 39]. Finally there are hybrid approaches which subdivide
the function into subfunctions and treat those according to their contribution to
the total variance. This subdivision can be e.g. a spatial one, which is then called
stratified sampling, or based on the peak-structure e.g. with multi-channel MC[40].

2.2.1 Importance Sampling

Importance sampling is based on the idea that one reduces the variance by distribut-
ing more integrand evaluations into “important” regions, i.e. where the function
has a high value. Ideally, we thereby smooth out the function so that the resulting
one fluctuates less and giving a smaller variance.

For this purpose let p (~x) be a probability distribution function that is properly
normalized ∫

[0,1]d

ddx p (~x) = 1, (2.10)

and positive everywhere on the hypercube. Then we can rewrite Eq. (2.1) to

I =
∫

[0,1]d

ddx p (~x) f (~x)
p (~x) (2.11)

and perform the substitution ddx p (~x) = ddy.
If the PDF is separable, i.e. if p (~x) = ∏n

i=1 pi(xi), then the problem effectively
reduces to d one-dimensional ones and the new variables

yi =
xi∫

0

dx′i pi(x′i) (2.12)

are the cumulative probability functions (CDF) that fulfill yi(0) = 0 and yi(1) = 1
and therefore map the hypercube to itself. This enables us to rewrite Eq. (2.11) to

I =
∫

[0,1]d

ddy f (~x~y)
p (~x~y)

(2.13)

with ~x~y being understood as the inverse of Eq. (2.12), called inverse CDF or quantile
function. Then Eq. (2.13) is approximated with

I ≈ 1
N

N∑
i=1

f (~x~y)
p (~x~y)

(2.14)

The VEGAS Integration Algorithm 53

where now ~y is a vector of d random variables yi ∈ [0, 1] each uniformly distributed.
This vector is mapped to ~x by the inverse CDF which makes clear that in practice we
have an additional and stricter requirement to p (~x) used for importance sampling:
Its inverse CDF must be “easily” converted into code, e.g. where the PDF is
piecewise-constant.

One question still remains: What is the optimal choice of the PDF p (~x)?
Obviously, we want to minimize the variance

V =
∫

ddx p (~x)
(
f (~x)
p (~x) − I

)2

(2.15)

under the constraint that p be a positive, normalized function. This gives (for
proof see App. A.1.10):

p (~x) = |f (~x)|∫
ddx′ |f (~x ′)| . (2.16)

If we insert this back into the expression for the variation we have

V =
(∫

ddx |f (~x)|
)2
−
(∫

ddx f (~x)
)2

(2.17)

which vanishes if f has the same sign everywhere on the hypercube.

2.2.2 Control Variates

Another method to reduce the variance are control variates. Here we subtract a
function g that is similar to the function f that we want to integrate:

I =
∫

[0,1]d

ddx (f (~x)− g (~x)) + I ′ (2.18)

and add it back via the integral

I ′ =
∫

[0,1]d

ddx g (~x) (2.19)

which, by construction of g, can be performed analytically. Obviously, the best
choice which would set the variance to zero is g = f . However, this result is useless
in practice because it shifts the problem of finding I to I ′.

2.3 The VEGAS Integration Algorithm
The VEGAS[36, 37] integration algorithm combines importance sampling with an
adaptive strategy: Instead of calling the integrand-function N times, this number

54 Monte Carlo Integration

is subdivided into m smaller ones,

N1, N2, . . . , Nm with
m∑
i=1

Nm = N . (2.20)

The number m is the number of iterations VEGAS performs and typically the Ni

are chosen equal. In each iteration i importance sampling is used with Ni integrand
evaluations and a PDF pi (~x) constructed from the previous iteration i − 1. For
the first iteration the PDF used is

p1 (~x) = 1, (2.21)

due to lack on information about the integrand, i.e. the first iteration is a plain
MC integration.

2.3.1 Automatic PDF construction in VEGAS

How are the pi constructed for subsequent iterations? The only information the
algorithm can make use of are the function values fj = f (~xj) at randomly chosen
points ~xj . VEGAS uses these evaluations not only to give an approximation of the
integral, but also to construct the pi’s. To simplify matters, it uses a separable
PDF

pi (~x) =
d∏

k=1
pi,k (xk) (2.22)

where the pi,k are piecewise-constant functions for iteration i and dimension k.
Note that this changes the optimal PDFs to

pi(xi) = f(xi)∫
dx′i f(x′i)

f
2(xi) =

∫  d∏
k 6=i

dx′k

 f 2
(
~x ′|x′i=xi

)
∏d
j 6=i pj

(
x′j
) (2.23)

instead of Eq. (2.16), see App. A.1.10.
The piecewise-constant functions are constructed with M constant pieces with

boundaries (from now on we will drop the indices i and k)

0 = x0 < x1 < . . . < xM = 1. (2.24)

We will call the set of all boundaries grid and two neighboring boundaries [xj−1, xj]
the bin j. With this the PDFs are defined as

p (x) = 1
M∆xj

(2.25)

with bin-size
∆xj = xj − xj−1 (2.26)

The VEGAS Integration Algorithm 55

where j is determined by the bin x falls into: ∃ j : x ∈ [xj−1, xj]. This choice is a
bin-uniform one, meaning that the probability for a random-number x falling into
bin j depends only on the number of bins:

xj∫
xj−1

dx p (x) = 1
M

. (2.27)

An important advantage of this piecewise-constant PDF is that we can write down
both the CDF

y =
x∫

0

dx′ p (x′) = j − 1
M

+ x− xj−1

M∆xj
, (2.28)

and its inverse
x = xj−1 +

(
y − j − 1

M

)
M∆xj (2.29)

in a closed form which is used to transform the uniformly generated numbers
y ∈ [0, 1] into ones that are distributed according to Eq. (2.25). The index j is
chosen to be j = dyMe.

2.3.2 The Rebinning Algorithm

It remains to discuss how the grid {xj}Mj=0 is computed. Initially it is set to

xj+1 = xj + 1
M

with x0 = 0 (2.30)

giving an equally-spaced grid (∆xj = 1
M
) that correctly reproduces Eq. (2.21).

After each iteration (and for every dimension) the rebinning procedure

{xj}Mj=0 −→
{
x′j′
}M
j′=0

(2.31)

updates the grid with the aid of the binned importance values cj that tell us “how
important” the integrand in bin j was; we will give a detailed definition later on.
The new grid will be constructed such that its new bins will contain approximately
the average importance value

c̄ = 1
M

M∑
i=1

cj. (2.32)

Starting with j = j′ = 1 and c′ = 0 this is done by

1. summing the importance values cj of the old bins j, . . . , j + k to make their
sum as close as possible the average c̄, i.e. we determine the smallest k for
which

c′ = c′ +
j+k∑
i=j

ci > c̄, (2.33)

56 Monte Carlo Integration

2. setting the new boundary

x′j′ = xj+k −∆xj+k
c′ − c̄
cj+k

, (2.34)

3. updating j′ = j′ + 1, j = j + k, c′ = c′ − c̄ and

4. repeating this for all bins.

To understand the algorithm above we have to look at the two possible situations:

• If in step 1 it turns out that k = 0 then the importance value cj in bin j is
larger than the average c̄ so we have to shrink the bin. This is done in step 2
where the boundary is updated. If we assume the integrand contributes to
the importance value cj in a constant way over the whole bin size,

x ∈ [xj−1, xj] : d
dxcj(x) = 0, (2.35)

then c̄
cj

is the fraction of the bin size that belongs to the new bin j′; since c′
contains the whole bin already we have to subtract the remaining part of the
bin size, i.e the fraction 1− c̄

cj
= cj−c̄

cj
.

• If k > 0 then we have to enlarge the bin. We do this by simply adding the
next bin, as long as the importance values of the of bins are smaller in sum as
the average. The last bin that we add makes the new importance value larger
than the average so that we have to shrink it which was discussed before.

Note that the assumption shown in Eq. (2.35) is, in general, wrong but shifts the
grid in the correct direction (“correct” as far as the algorithm can judge from
data available in this iteration and as far as the separability of the integrand
is true). Since we will perform more iterations the hope is that the grid will
eventually converge to the optimal one. An alternative choice that the CUBA[41]
implementation of VEGAS offers is to replace in Eq. (2.34)

cj+k with cj+k + cj+k−1

2 (2.36)

which averages the importance of bin j + k with its left-neighbor bin j + k − 1.
We now discuss the importance values cj . They are computed using the binned

integral values,
bj =

∑
i

(fi∆xj)2 (2.37)

where fi is the function value f (~xi) with ~xi the vector whose k-th component xk
falls into the bin j, i.e. xk ∈ [xj−1, xj]. Note that this choice of bj was found in all

The VEGAS Integration Algorithm 57

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Im
po

rt
an

ce
va
lu
e
c j

Normalized function value rj

cj = rj
α = 1.0
α = 1.5
α = 2.0
α = 3.0

Figure 2.1: The result of damping the importance function with Eq. (2.39) against
a non-damped one

VEGAS implementations[37, 41–43] the authors looked into and is in contrast to
what is described in the original VEGAS publication[36] where it was suggested
that bj = ∑

i |fi|∆xj. The normalized bin values

rj = bj

[
M∑
i=1

bj

]−1

(2.38)

are then used to calculate the binned importance values

cj =
(
rj − 1
ln rj

)α
. (2.39)

A simpler choice would be to set cj = rj, the choice above gives smaller r more
importance and thereby reduces the difference between smaller and larger r. This
dampens the grid adaption-process which can be understood by looking at the
extreme case α = 0. Here the importance is equal for every bin irrespective of
its value (cj = 1) and therefore every bin contains the average importance (2.32)
which prevents that the boundaries are recomputed (c′ = c̄ in the algorithm above).
For further discussion of the importance function see also Fig. 2.1.

58 Monte Carlo Integration

2.3.3 Results and Chi-Square Test

For each iteration i VEGAS returns a tuple of approximation Ei and an error Si of
the integral I. These are combined into a weighted average

Ē = 1
m

m∑
i=1

wiEi (2.40)

and a weighted error
S̄2 =

m∑
i=1

w2
i S

2
i (2.41)

with normalized weights[36]

wi =
[
m∑
i=1

1
S2
i

]−1 1
S2
i

. (2.42)

Alternatively, one can include the estimations of the integral in into the weights

w′i =
[
m∑
i=1

E2
i

S2
i

]−1
E2
i

S2
i

(2.43)

which are less prone to underestimations of the integral. This can happen in the
earliest iterations when the integrand has peaks so sharp they are missed[36].

To verify if the individual results Ei agree with each other one performs a
Chi-square test in which

χ2
dof = 1

m

m∑
i=1

(Ei − I)2

σ2
i

≈ 1
m− 1

m∑
i=1

(
Ei − Ē

)2

S2
i

(2.44)

is the chi-square per degrees of freedom that should be around one.

2.3.4 Concluding Discussion

VEGAS’ most severe limitation is its use of a separable grid function, i.e. its
assumption that the integrand factorizes. If this is true, then VEGAS indeed
constructs the optimal PDF. This assumption need not be true for the algorithm to
work, however, it does affect the variance; in practice one notices that the variance
can be greatly reduced if the integrand can be rewritten so it approximately
factorizes in its maxima. If the integrand does not factorize, VEGAS can have the
opposite effect where the grid destabilizes and the algorithm produces meaningless
results that do not converge over the iterations.

Here we described a variant of VEGAS which does not use stratified sampling;
this was found[37] to be ineffective for integrands with dimensions higher than
d = 4.

Implementation and Related Details 59

2.4 Implementation and Related Details
Existing[37, 41–43] implementations e.g. of VEGAS have some shortcomings, among
others they

• fix the value of α and the bin number M ,

• are not available in a parallel form,

• do not easily allow to specify the sample size Ni for each iteration,

• do not easily allow the access to the individual iteration results, e.g. to throw
away the first iterations,

• make it impossible to specify custom random number generators, e.g. to use
quasi-random numbers.

This motivated us to implement the algorithms ourselves which are freely available
online[44] now. The library is written in C++11 which was chosen because it brings
a new random number library (#include <random>) with many (pseudo-) random
number generators such as the Mersenne-Twister[45] which is a good1 choice for
Monte Carlo integrations. An example how to use the integrator is shown in the
following listing in line 28:

1 # include <hep/mc.hpp > // everything is in here , no library needs to be linked
2
3 # include <cstddef >
4 # include <iostream >
5 # include <vector >
6
7 // the function that will be integrated
8 double square (hep :: mc_point <double > const & x)
9 {

10 return x.point [0] * x.point [0];
11 }
12
13 int main ()
14 {
15 // this is what the approximation should give
16 double reference_result = 1.0 / 3.0;
17
18 // print reference result
19 std :: cout << " computing integral of x^2 from 0 to 1\n";
20 std :: cout << " reference result is " << reference_result << "\n\n";
21

1The Mersenne Twister (MT) is good in the sense that is has 1) a period of P = 219937− 1 and
2) passes the k-distribution test[45] with k ≤ 623 for 32-bit random numbers. The k-distribution
test is considered a strong test for uniformity, i.e. in particular one tests if the distribution of P

consecutively generated random numbers mapped to a k-dimensional hypercube is uniform.

60 Monte Carlo Integration

22 // print results for each iteration
23 hep :: vegas_callback <double >(hep :: vegas_verbose_callback <double >);
24
25 // perform 5 iterations with 1000 calls each for a one - dimensional
26 // function with double precisions ; parameters 4,5,6 are optional
27 // (comments show the default values)
28 auto results = hep :: vegas <double >(
29 1,
30 std :: vector <std :: size_t >(5, 1000) ,
31 square /*,
32 128, // number of bins per dimension
33 1.5, // alpha value for rebinning
34 std :: mt19937 () // mersenne - twister random number generator */
35);
36
37 // combine results from all iterations except the first in a single
38 // cumulative result
39 auto result = hep :: cumulative_result0 (results .begin () + 1, results .end ());
40 double chi_square_dof = hep :: chi_square_dof0 (results .begin () + 1, results .end

());
41
42 std :: cout << " cumulative result (without first iteration):\n";
43 std :: cout << "N=" << result .calls << " I=" << result .value << " +- ";
44 std :: cout << result .error << " chi ^2/ dof=" << chi_square_dof << "\n";
45
46 return 0;
47 }

2.4.1 Parallelization of VEGAS

In Sec. 2.2 we mentioned that it is possible to decrease the variance by simply
increasing the number of integrand evaluation N . However, this also implies that
the time needed to perform the evaluations increases with the same factor. This
problem can be overcome by using (much) more computational power, i.e. more
computers with more processors. To make use of them, however, one has to think
of a way how to divide the problem into smaller sub-problems and how to distribute
each of them onto different processors. This problem is called parallelization.
The difficulty is that the sub-problems are usually not independent and therefore
processors need to communicate with each other. Because the computations
depend on the outcome of the communication the computation has to be halted
and therefore effectively slows down. This can render certain algorithms completely
unfeasible for parallelization. We will show that the VEGAS algorithm does not
belong to this class and can be formulated in a way that gives a speedup near the
number of parallel running processors.

In this section we will discuss a parallelization strategy that differs from
the one proposed by Kreckel[46] and in is similar to the method called “macro-
parallelization (sync)” in this publication: For each of the p processors denoted by
indices 0, 1, . . . , p− 1 we

Implementation and Related Details 61

1. either

(a) seed the random number generator differently, or we

(b) seed it with the same number and discard random numbers such that
we use different random numbers from the same generator,

2. start a single VEGAS iteration with N
p
integrand evaluations,

3. and send the cumulative variables (sum of the integrand, sum of the squares,
grids) to each processor and calculate a single grid that will be used to
perform the next iteration (step 2).

By seeding the random number generators differently we make sure that the random
numbers are different (independent and identically distributed), otherwise we would
obtain p times the same result. The processors work independently from each
other and only at the end of each VEGAS iteration the grid refinement data is
exchanged. This data is not too large (in the worst case 8 · 128 · (17 + 9) ≈ 27 kB
for a LEP 7-Jet LO cross section2) and is exchanged using the the Message Passing
Interface[47], in particular Open MPI[48], with a single MPI_Allreduce call.

In this approach there are two circumstances that lead to a “waste” of CPU
time:

1. Each processor finishes its computation at a different time: This can and
does happen because each phase space point is checked if it passes the jet-
algorithm; if this is not the case, then the matrix element is not computed
and the contribution to the phase-space integral is zero. These points are of
course significantly faster than the ones for which the matrix element has
to be computed. How many are actually computed depends on the random
numbers and of course will be different for each processor. However, because
each processor will, by construction of the algorithm above, use the same
grid at each iteration, this difference should remain small if the sample size
N
p
of each processor is high enough, and does not grow if more iterations

are performed. Another reason that we experienced on the MOGON-cluster
is that for large number of processes (> 128) the processes are started at
different times.

The time difference to the slowest process is “wasted” because every processor
then waits for the MPI_Allreduce to finish, which

2A double-precision (each double 8Byte large) grid with 128 bins for each dimension which is
16 for the phase-space and an additional 9 dimensions for the random polarization angles.

62 Monte Carlo Integration

2. must exchange the grid adjustment data from every processor to every other
processor. This is a rather costly operation, especially if many processors are
involved, but can be implemented to scale logarithmically, see e.g. Ref. [49].

In practice this parallelization strategy works up to a certain number of pro-
cessors p, as Fig. 2.2 suggests. Ideally the CPU-time should stay constant, but as
p = 128 it doubles. Although the error is quite large (the band indicates the 1-σ
deviation), this suggests that the processors spend too much waiting for the other
processors to finish or respond to their message. When we increase the problem
size by a magnitude, we see that now the percentage of “wasted” CPU-time is
lowered which is almost constant.

Implementation and Related Details 63

1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200

1 2 4 8 16 32 64 128

C
PU

tim
e
t
[s]

of Processors p

N = 107, 10 iterations
N = 108, 10 iterations (div. by 10)

0.5
1
2
4
8
16
32
64
128
256

1 2 4 8 16 32 64 128

Sp
ee
du

p
p
·t

0 /
t p

of Processors p

N = 107, 10 iterations
N = 108, 10 iterations (div. by 10)
Perfect Speedup

Figure 2.2: CPU-time spent for a total of 10 iterations distributed among p
processors using a sample size of N = 107 and N = 108 per iteration. The bands
are the 1-σ interval. The integral is a 5 jet LEP LC LO cross section. For N = 107

and p > 32 the CPU time strongly depends on the number of processors which is
because the sample size N was too small; the real-time computation was less than
2min for p = 64. Increasing N by a factor of 10 shows that the dependence gets
smaller, as expected. The computations were performed on the MOGON cluster
that has a node size of 64 processors.

64 Monte Carlo Integration

Chapter 3

Conclusion and Outlook

In this thesis we have reported several techniques to speed up perturbative
QCD calculations. The first idea we discussed was the leading-color approximation
for which we showed that the error it introduces is less than 10 % for jet cross
sections in e+e− scatterings at LO. The leading color approximation enables us to
compute a squared amplitude that scales as n4 which allows for the computation
of observables with high multiplicities. The limiting factor is the phase-space
integration.

An important idea are the random polarizations that enable us to integrate over
newly defined helicity-angles instead of summing over the 2n helicity configuration.
As shown in Sec. 1.3.2 this allows us to gain an effective speedup x that ranges from
one for a process with a low multiplicity to 32 for the LC LO 6-jet cross section. A
second advantage that we showed in Sec. 1.4 is that random polarizations allow
us to use real-valued operations instead complex ones, that additionally give a
speedup of up to a factor of 14 (see Fig. 1.1). We did not include this number in
the previous and following results since we showed in Sec. 1.4.4 that one can also
perform spin-summation with the real-valued Feynman rules.

Another factor that can speed up our calculations is the use of single-precision
numbers, although the advantage decreases with the number of particles, as ex-
plained in Sec. 1.2.1.1.

Finally we presented subtraction terms in Sec. 1.5.4 for the use in real corrections
with random polarizations. We found that random polarizations increased the
error similar to the LO case for lower multiplicities, although for a higher number
they increase the error by a factor of four. Because our implementation of the
new subtraction terms is not as efficient as possible, this method did not yield a
speedup. In Sec. 1.5.8.1 we argued how to improve this.

Since Monte Carlo integration is an important ingredient in every perturbative
calculation we described the popular VEGAS algorithm and presented an imple-
mentation that parallelizes the integration on a computer cluster. We showed that,

65

66 Conclusion and Outlook

given a reasonably large problem, the speedup gets very close to the optimal one.

Appendix A

Appendix

A.1 Proofs
This section gathers all proofs that were to long to be included in the main text.

A.1.1 Proof of the Collinear Phase Space Jacobian

Proof of Eq. (1.75). We use the Sudakov parametrization and choose

~p = |~p|ê3 (A.1a)
k0 = 0 (A.1b)
~k = |~k| (cosφ ê1 + sinφ ê2) (A.1c)

~n = ~p× ~k
|~p||~k|

= − sinφ ê1 + cosφ ê2 (A.1d)

so that (~p,~k, ~n) form a orthogonal coordinate system where we have chosen the
collinear axis to lie along ê3. In the following we abbreviate k =

∣∣∣~k∣∣∣. It follows that
~n = 1

k

∂~k

∂φ
(A.2a)

∂~n

∂φ
=
~k

k
(A.2b)

n0 = 1 (A.2c)
p · n = p0n0 − ~p · ~n = |~p | (A.2d)
nµ

p · n
= 1
|~p |

(1, ~n)T . (A.2e)

The energy of the particle j is

Ej = (1− z)p0 + k2

1− z
n0

2p · n = (1− z)|~p |+ k2

1− z
1

2|~p | . (A.3)

67

68 Appendix

To compute the Jacobian we first compute the partial derivatives
∂~pj
∂z

= − |~p | ê3 + 1
2 |~p | (1− z)2 (− sinφ ê1 + cosφ ê2) (A.4a)

∂~pj
∂φ

= k

(
−
(

sinφ+ 1
1− z

cosφ
2 |~p |

)
ê1 +

(
cosφ− 1

1− z
sinφ
2 |~p |

)
ê2

)
(A.4b)

∂~pj
∂k

= −
(

2k
1− z

sinφ
2 |~p | + cosφ

)
ê1 +

(
2k

1− z
cosφ
2 |~p | − sinφ

)
ê2 (A.4c)

so that

det
(
∂~pj
∂z

,
∂~pj
∂φ

,
∂~pj
∂k

)
= ∂ (~pj)3

∂z

(
∂ (~pj)1
∂φ

∂ (~pj)2
∂k

−
∂ (~pj)2
∂φ

∂ (~pj)1
∂k

)

= − |~p | k
(

1− 2k
(1− z)2

1
4 |~p |2

)
.

(A.5)

Together we have

1
2Ej

∣∣∣∣∣det
(
∂~pj
∂z

,
∂~pj
∂φ

,
∂~pj
∂k

)∣∣∣∣∣ = k

1− z
|~p | − k2

(1−z)2
1

2|~p |

|~p |+ k2

(1−z)2
1

2|~p |
= k

1− z +O
(
k2
)
. (A.6)

�

A.1.2 Proof for the Soft Case for Quarks

Proof of Eq. (1.88). Let us first consider the case where the polarization ū(pi) is a
helicity-/spin eigenstate, i.e. u(pi) = uλi(pi) with λ = ±. Then Eq. (1.88) reads∑

λ=±

[
ūλiα (pi)γναβuλβ(pi)

]
ε∗ν(pj)Ti

(
ūλγ(pi)A′γ

)
. (A.7)

The content of the square-brackets is 2pνi δλλi so Eq. (1.88) has been proven.
In the case of random polarizations, ū(pi) = ū(pi, φ) we use the definition to

write in terms of helicity-/spin-eigenstates:∑
λ=±

([
e−iφū+

α (pi) + e+iφūα(pi)
]
γναβu

λ
β(pi)

)
ε∗ν(pj)Ti

(
ūλγ(pi)A′γ

)
. (A.8)

We use the same identity as in the first case which selects one term in the inner
brace and becomes∑

λ=±

([
e−λφū+

α (pi)
]
γναβu

λ
β(pi)

)
ε∗ν(pj)Ti

(
ūλγ(pi)A′γ

)
=
∑
λ=±

(
e−λφ2pνi

)
ε∗ν(pj)Ti

(
ūλγ(pi)A′γ

)

= 2pi · ε∗(pj)Ti

∑
λ=±

e−λφūλγ(pi)
A′γ.

(A.9)

Since the term in the square brackets is the same random polarization ū(pi, φ)
Eq. (1.88) hold true. �

Proofs 69

A.1.3 Proof of the Soft Function

Proof of Eq. (1.95). We start with the expression of the original soft function given
in Eq. (1.93) that is obtained by simply squaring the eikonal current:

n∑
i=1

n∑
k=1

Ti ·Tk
pi · εj
pi · pj

pk · ε∗j
pk · pj

(A.10)

We also make use of color conservation
n∑
i=1

n∑
k=1

Ti ·Tk = 0 ⇔ T2
i = −

n∑
i=1

n∑
k 6=i

Ti ·Tk (A.11)

to rewrite the sum into
n∑
i=1

T2
i

(pi · εj)(pi · ε∗j)
(pi · pj)2 +

n∑
k 6=i

Ti ·Tk
pi · εj
pi · pj

pk · ε∗j
pk · pj


= −

n∑
i=1

n∑
k 6=i

Ti ·Tk

(
(pi · εj)(pi · ε∗j)

(pi · pj)2 − pi · εj
pi · pj

pk · ε∗j
pk · pj

)
.

(A.12)

We now split the sum ∑
k 6=i into two sums ∑k<i +

∑
k>i and make use of the

following identity that disentangles the poles

1
(pi · pj)(pk · pj)

= 1
(pi · pj)(pi · pj + pk · pj)

+ 1
(pk · pj)(pk · pj + pi · pj)

, (A.13)

leading to

n∑
i=1

n∑
i<k

Ti ·Tk

(pi · εj)(pk · ε∗j)
(pi · pj)(pi · pj + pk · pj)

+
(pi · εj)(pk · ε∗j)

(pk · pj)(pk · pj + pi · pj)
+

n∑
k=1

n∑
k>i

Tk ·Ti

(pk · εj)(pi · ε∗j)
(pk · pj)(pk · pj + pi · pj)

+
(pk · εj)(pi · ε∗j)

(pi · pj)(pi · pj + pk · pj)
(A.14)

where the labels k and i where interchanged in the second line. Because the
summations in both lines are equal (both over all pair with k > i) we can interchange
the second terms from both lines are rename the indices in the second line again
and finally write it as one sum:

n∑
i=1

n∑
i 6=k

Ti ·Tk

(pi · εj)(pk · ε∗j) + (pk · εj)(pi · ε∗j)
(pi · pj)(pi · pj + pk · pj)

. (A.15)

Inserted back into Eq. (A.12) we finally obtain Eq. (1.95)

−
n∑
i=1

n∑
k 6=i

Ti ·Tk

(
(pi · εj)(pi · ε∗j)

(pi · pj)2 −
(pi · εj)(pk · ε∗j) + (pk · εj)(pi · ε∗j)

(pi · pj)(pi · pj + pk · pj)

)
. (A.16)

�

70 Appendix

A.1.4 The Soft Function for Helicity Eigenstates

Here we will give the calculation for the soft function S summed over the helicity
eigenstates of the soft particle j. In this case the soft function is

S = −
∑
λj=±

(pi · ε∗j)(pk · εj) + (pi · εj)(pk · ε∗j)
(pi · pj)(pi · pj + pj · pk)

. (A.17)

Performing the polarization sum and going over to invariants we obtain

S = 4sik
sij(sij + sjk)

− 4
sij + sjk

pk ·Qj −
4sjk

sij(sij + sjk)
pi ·Qj (A.18)

Using the Catani-Seymour variables y, z, and P we obtain

S = 1
P 2

(
4
y

z(1− y)
1− z(1− y) −

4
1− z(1− y)(pk − pi) ·Qj −

4
y
pi ·Qj

)
(A.19)

A.1.5 The Splitting Functions for the Collinear Limit

Eq. (1.100a) and Eq. (1.100c) are simply the three-particle Feynman diagrams
with external momenta pij, pi, pj and Feynman rules from App. A.4.2. Eq. (1.100b)
uses the three-gluon-vertex with p1 = −pij = −(pi + pj), p2 = pj, and p3 = pi and
setting particles i and j incoming (therefore also the minus-sign for the momenta),
particle ij outgoing. This gives the following expression for the diagram A:

A = ε∗ij · εj(pij + pj) · εi + εj · εi(−pj + pi) · ε∗ij + εi · ε∗ij(−pi − pij) · εj
= ε∗ij · εj2pj · εi + εj · εi2pi · ε∗ij + εi · ε∗ij(−2pi) · εj,

(A.20)

where we used pij = pi + pj and the transversality property of the polarization
vectors: ε(p) · p = 0.

A.1.6 Catani Seymour Momenta in the Soft and Collinear
Limits

The case of two collinear particles i and j and/or a soft particle j can be summarized
with the limit of the invariant sij → 0. In this limit the factors containing y behave
as

1
1− y = sij + sik + sjk

sik + sjk
= 1 + sij

sik + sjk

sij→0−−−→ 1, (A.21)

y

1− y = sij
sij + sik + sjk

sij + sik + sjk
sik + sjk

= sij
sik + sjk

sij→0−−−→ 0. (A.22)

Proofs 71

Proof of Eq. (1.107a) and Eq. (1.108a). From Eq. (A.21) immediately follows that

p̃k = 1
1− ypk

sij→0−−−→ pk. (A.23)
�

Proof of Eq (1.107b) and Eq. (1.108b). Using Eq. (A.22) we can show that

p̃ij = pi + pj + y

1− ypk
sij→0−−−→ pi + pj

pj→0−−−→ pi. (A.24)
�

A.1.7 The Soft Reparametrization

Proof of Eq. (1.111a). Let us first assume that hi = λi = ±, i.e. the spinor is a
helicity eigenstate. In that case it is obvious that Eq. (1.111a) is proportional to

Sλλ′ ∝ δλλiδλiλ′ . (A.25)

The non-vanishing part is
1

2pi · qij
1

2pij · qij
1
2

(
tr
(
/pi/qij/pij/qij

)
+ λ tr

(
γ5/pi/qij/pij/qij

))
= 1 (A.26)

because the second trace is zero since εµν...qµijqνij = 0 and the first trace 8(pi ·qij)(pij ·
qij) cancels the denominators. Therefore Eq. (A.25) is exact and we have shown
that Eq. (1.110) holds true.

We now discuss the remaining case where hi = φi, i.e. the spinor is randomly
polarized. In that case we expand them in helicity eigenstates,

uφiūφi =
∑
λi=±

uλiūλi + e2iφiu+ū− + e−2iφiu−ū+

= /pi +
∑
λi=±

e2iλiφiuλi(pi)ū−λi(pi).
(A.27)

The first term is the part that was already calculated, i.e. S++ = S−− = 1 and does
not contribute to S+− or S−+, the second part only contributes for S+− and S−+:

S+− = 1
2pi · qij

1
2pij · qij

ū+(pij)/qiju+(pi)ū−(pi)/qiju−(pij) (A.28)

The first part is just the case discussed above, with λi = + covered by λ = λ′ = +
and λi = − covered by λ = λ′ = −. The remaining cases λ 6= λ′ are summarized by

Sλλ′ = e2λiφi 1
2pi · qij

1
2pij · qij

tr
(
/qij

λ√
2
Pλ/pi/ε

λ′

i /qij
λ′√

2
Pλ′/pij/ε

λ
ij

)
. (A.29)

where we used Eq. (A.49). The trace evaluates to

4(pi · qij)(pij · qij)
(
−ελ′(pi) · ελ(pij)

)
+ (pij · qij)λ tr

(
γ5/pi/ε

λ′

i /qij/ε
λ
ij

)
. (A.30)

72 Appendix

The first term contains the expression ελ′(pi) · ελ(pij) which is Eq. (A.57) in the
soft limit. The second trace is proportional to

εµνρσp
µ
i ε

ν
i q
ρεσij (A.31)

and finite in the soft limit.
�

Proof of Eq. (1.111b). If particle i is a helicity eigenstate, then we have in the soft
limit

Sλλ′ = ελ(pij) · ε∗λi(pi)ελi(pi) · ε
∗
λ′(pij)

pij→pi−−−−→ δλλiδλiλ′ (A.32)

where we made use of Eq. (A.57). If particle i is randomly polarized with angle φi
we can decompose it into helicity eigenstates:

Sλλ′ = ελ(pij) ·
(
eiφiε+(pi) + e−iφiε−(pi)

)∗ (
eiφiε+(pi) + e−iφiε−(pi)

)
· ε∗λ′(pij)

pij→pi−−−−→ e(−λ+λ′)iφi (A.33)

which is 1 in case λ = λ′ and gives the helicity dependent terms if λ 6= λ′. �

A.1.8 Proof of the Spin-Correlation Tensor Transversality

Proof of Eq. (1.132). If Sµν = gµν then Eq. (1.132) reads p̃2
ij = 0 and is shown

because p̃ij is lightlike. If Sµν = vµvν with vµ = zip
µ
i − zjp

µ
j then we can, using the

identities in Eq. (1.121), also show that

2p̃ij · v = 2zp̃ij · pi − 2(1− z)p̃ij · pj
= z(1− z)yP 2 − (1− z)(1− (1− z))yP 2 = 0.

(A.34)

Because the spin-correlation tensor is, in general, a linear combination of those two
vectors the property still holds. �

A.1.9 Proof of the Integrability of the Additional Term

Proof that 2z+2(z−1)pi·Qj
y

k→0−−→ O
(

1
k

)
. We start with Eq. (1.71), the Sudakov para-

metrization, to show that

pi ·Qj = z̃p · qj + k · qj
(1− z̃)p · qj − k · qj

+O(k2)

= z̃

1− z̃

(
1 + 1

z̃(1− z̃)
k · qj
p · qj

)
+O(k2)

(A.35)

Proofs 73

with z̃ the parameter from the Sudakov parametrization and z the variable that
we use in the context of Catani-Seymour dipoles, see Eq. (1.119). Both are related
in the collinear limit according to

z = 2z̃p · pk + 2k · pk +O(k2)
2p · pk +O(k2) = z̃ + k · pk

p · pk
+O(k2), (A.36)

Finally we can show that

2z + 2(z − 1)pi ·Qj

y
=

2z + 2(z − 1) z̃
1−z̃ +O (k)

y

=
2z + 2(z − 1) z

1−z +O (k)
y

= O(k)
y

k→0−−→ O
(1
k

)
(A.37)

�

A.1.10 Extremal PDF for Importance Sampling

Proof of Eq. (2.16). To derive the optimal PDF p (~x) for importance sampling we
write down the functional

J [p] = λ
[
−1 +

∫
ddx′ p (~x ′)

]
+
∫

ddx′ p (~x ′)
(
f (~x ′)
p (~x ′) − I

)2

(A.38)

that uses a Lagrange multiplier taking care of the constraint that p be normalized.
Applying the Euler-Lagrange equation ∂

∂p
J [p] = 0 (there is no dependence on a

derivative of p) yields

λ+
(
f (~x)
p (~x) − I

)2

+ 2p (~x)
(
f (~x)
p (~x) − I

)(
− f (~x)
p2 (~x)

)
= 0 ⇔

λ+ I2 −
(
f (~x)
p (~x)

)2

= 0 ⇒ p (~x) = |f (~x)|√
I2 + λ

. (A.39)

because p has to be positive in order to be a PDF. Inserting this back into the
normalizing constraint

∫
ddx′p (~x ′) = 1 yields

λ =
(∫

ddx′ |f (~x ′)|
)2
− I2 (A.40)

and gives with Eq. (A.39) the final result for an extremal variance:

p (~x) = |f (~x)|∫
ddx′ |f (~x ′)| . (A.41)

�

74 Appendix

Proof of Eq. (2.23). If the PDF is separable, the optimal PDF instead is derived
as follows:

J =
d∑
j=1

λj

[
−1 +

∫
dx′j pj

(
x′j
)]

+
∫ (

d∏
k=1

dx′k
)

f 2 (~x ′)∏d
j=1 pj

(
x′j
) (A.42)

∂
∂pi
J [p1, p2, . . . , pd] = 0

λi −
1

p2
i (xi)

∫  d∏
k 6=i

dx′k

 f 2
(
~x ′|x′i=xi

)
∏d
j 6=i pj

(
x′j
) = 0 ⇒

pi(xi) = 1√
λ

∫  d∏
k 6=i

dx′k

 f 2
(
~x ′|x′i=xi

)
∏d
j 6=i pj

(
x′j
)


1
2

(A.43)

so that

pi(xi) = f(xi)∫
dx′i f(x′i)

f
2(xi) =

∫  d∏
k 6=i

dx′k

 f 2
(
~x ′|x′i=xi

)
∏d
j 6=i pj

(
x′j
) (A.44)

�

A.2 Identities

A.2.1 Spinor Identities

The Chisholm-identity[50] reads

ūλ(q)γµuλ′(p)γµ = 2uλ′(p)ūλ(q) + 2u−λ(q)ū−λ′(p), (A.45)

which is in the case of p = q similar to the following identity

ūλγ
µuλ′ = 2pµδλλ′ . (A.46)

The “line-reversal trick”[50] is the identity

ūλ(p)Γuλ′(q) = λλ′ū−λ′(q)ΓRu−λ(p) (A.47)

where Γ is an arbitrary string of gamma matrices and ΓR the string where the
order of the matrices are reversed.

Furthermore we have the identity

ūλ(p)uλ(p) = Pλ/p (A.48)

with projection operator Pλ = 1
2(1 + λγ5). When calculating matrix elements with

random polarizations expressions with mixed helicity states arise, for which we
have the identity

ūλ(p)uλ′(p) = λ√
2
Pλ/p/ε

λ′(p, q) (A.49)

if λ 6= λ′.

Identities 75

Proof. We first note that a slashed polarization vector can be rewritten using the
parametrization (A.53) and the Chisholm-identity (A.45) to

/ε+ = γµ〈q−|γµ|p−〉√
2〈q−|p+〉

=
√

2 |p−〉〈q−|+ |q+〉〈p+|
〈q−|p+〉 , (A.50a)

/ε− = γµ〈q+|γµ|p+〉√
2〈p+|q−〉

=
√

2 |p+〉〈q+|+ |q−〉〈p−|
〈p+|q−〉 . (A.50b)

Using the right-hand side of Eq. (A.49) for the special case λ = +, λ′ = − we
obtain

1√
2
P+/p/ε−(p, q) = 1√

2
|p+〉〈p+|

√
2 |p+〉〈q+|+ |q−〉〈p−|

〈p+|q−〉 = |p+〉〈p−|. (A.51)

In the case λ = −, λ′ = + we have
−1√

2
P−/p/ε+(p, q) = −〈p−|q+〉

〈q−|p+〉 |p−〉〈p+| (A.52)

where we additionally need the line reversal trick (A.47) to cancel the sign. �

A.2.2 Polarization Vector Parametrization and Identities

We parametrize the polarization vector as

εµ+(p, q) = 〈q−|γ
µ|p−〉√

2〈q−|p+〉
and εµ−(p, q) = 〈q+|γ

µ|p+〉√
2〈p+|q−〉

(A.53)

with reference momentum q 6= p. They satisfy the polarization sum identity∑
λ=±

εµλ
∗ενλ = −gµν + pµqν + qµpν

p · q
(A.54)

and are transverse both to momentum as well as to their reference momentum,

p · ελ(p, q) = 0 q · ελ(p, q) = 0. (A.55)

Furthermore, in this parametrization with Eq. (A.47) one can show that

[εµ−(p, q)]∗ = 〈p+|γ
µ|q+〉√

2〈q−|p+〉
= 〈q−|γ

µ|p−〉√
2〈q−|p+〉

= εµ(p, q) (A.56)

as required in Sec. 1.3.1. A useful identity is

ελ(p, q) · ελ′(p, q) = (δλλ′ − 1). (A.57)

Proof. We prove the case λ = +, λ′ = −:

ε+(p, q) · ε−(p, q) = 〈q−|γµ〈q+|γ
µ|p+〉|p−〉

2〈q−|p+〉〈p+|q−〉 = 〈q−|p+〉〈q+|p−〉
〈q−|p+〉〈p+|q−〉 = −1. (A.58)

If λ = λ′ = − we obtain a similar calculation that gives zero because of 〈q+|q−〉 =
〈p−|p+〉 = 0. The remaining case λ = λ′ = + follows because of Eq. (A.56). �

76 Appendix

A.3 Majorana- and Weyl-Representations

We start from a Weyl-representation of the gamma matrices that can be written in
a compact form as

γµ =
 0 σµ

σµ 0

 γ5 =
1 0

0 −1

 . (A.59)

with σµ = (−1, ~σ) and σµ = (−1,−~σ) where ~σ denotes the vector of Pauli matrices:

σ1 =
0 1

1 0

 σ2 =
0 −i
i 0

 σ3 =
1 0

0 −1

 . (A.60)

A similarity transformation U maps the gamma matrices γµW into Majorana-gamma
matrices γµM. For this we use the matrix U = Ŭ from Eq. (6.18) in [51]:

U = 1
2

1 + σ2 −i+ iσ2

i− iσ2 1 + σ2

 . (A.61)

This matrix is self-inverse: U−1 = U . Applying the transformation γµM = UγµWU
−1

we obtain our gamma matrices as

γ0 =
 0 −σ2

−σ2 0

 γ1 =
iσ1 0

0 iσ1


γ2 =

 0 σ2

−σ2 0

 γ3 =
iσ3 0

0 iσ3

 ,
(A.62)

and

γ5 =
σ2 0

0 −σ2

 . (A.63)

A.3.1 Spinors in Weyl Representation

In the massless case Weyl representations are a convenient choice because chirality
coincides with helicity. Therefore the helicity eigenstates have to satisfy γ5u

± =
±u±. Together with the form of the chirality operator γ5 in Eq. (A.59) this requires
that the spinors must decompose into an “upper” and “lower” spinor:

u+(~p) =
|p+〉

0

 u−(~p) =
 0
|p−〉

 . (A.64)

Majorana- and Weyl-Representations 77

Up to a factor two-component spinors |p±〉 are easily determined using the Dirac
equation:

σµpµ|p+〉 = 0 ⇔ |p+〉 ∝
−p⊥∗

p+

 (A.65a)

σµpµ|p−〉 = 0 ⇔ |p−〉 ∝

p+

p⊥

 (A.65b)

with
p+ = p0 + p3 p⊥ = p1 + ip2 p⊥∗ = p1 − ip2. (A.66)

The proportionality factor is determined using Eq. (A.46) for µ = 0, ūλγ0u
λ′ =

2p0δ
λλ′ , which gives

|p+〉 = 1
√
p+

−p⊥∗
p+

 |p−〉 = 1
√
p+

p+

p⊥

 . (A.67)

If p+ is negative, the solutions above are not uniquely determined and one has to
decide for a specific phase.

A.3.2 Spinors in Majorana Representation

Using the similarity transformation matrix U from Eq. (A.61) and applying it to
the Weyl spinors we obtain the same spinors in Majorana representation:

U

|p+〉
0

 = 1
2√p+


−ip+ − p⊥∗
p+ − ip⊥∗
−p+ − ip⊥∗
ip+ − p⊥∗

 U

 0
|p−〉

 = 1
2√p+


−ip+ + p⊥
−p+ − ip⊥
p+ − ip⊥
ip+ + p⊥

 (A.68)

To correct for their behavior under complex conjugation (see Eq. (1.34) in Sec. 1.3.1)
we multiply with an additional phase-factor −i, take the absolute of p+ in the
denominator and define the result to be our final Majorana spinors:

u± = 1
2

1√
|p+|


(p2 − p+)± ip1

−p1 ± i (p2 − p+)
−p1 ± i (p2 + p+)

(p2 + p+)± ip1

 . (A.69)

Note that for p+ < 0 Eq. (A.69) assumes a different phase convention, because by
taking the absolute we effectively dropped a factor

√
−1 = ±i. However, this is

not a problem because the case p+ < 0 characterizes a momentum of an incoming

78 Appendix

particle: Because of p2 = 0, we have |p0| ≥ |p3| and therefore an outgoing particle
has p0 > 0 implying p+ ≥ 0. An incoming particle has p0 < 0 and therefore
p+ < 0. Since every particle is always either incoming or outgoing and does not
change in the phase space integration the spinors do not switch between the phase
conventions. If necessary one can adjust the phase by simply multiplying the final
amplitude with the correct phases.

Another case one has to consider is p+ = 0 which e.g. happens if the 3-axis is
chosen to be the beam axis. In this case, the denominator gets singular which is a
problem in numerical programs. However, we can consider this case using a parity
transformation, i.e. use

u± (~p) = η γ0u∓ (−~p) (A.70)

with a phase factor η so that for the special case p+ = 0 we arrive with

u± = sign(p0)
√
|p0|
2


−1
∓i
±i

1

 . (A.71)

A.3.3 Randomly Polarized Spinors

We have constructed the Majorana spinors such that (u±)∗ = u∓ which enables us
to define our randomly polarized spinors as:

u (p, φ) = 2Re
{

e+iφu+(p)
}

= 1√
|p+|


(p2 − p+) cosφ− p1 sinφ
−p1 cosφ− (p2 − p+) sinφ
−p1 cosφ− (p2 + p+) sinφ
(p2 + p+) cosφ− p1 sinφ

 (A.72)

A.4 Feynman Rules
This section lists the Feynman rules used in this thesis for QCD derived from
iL. All momenta and particles are supposed to be outgoing; incoming momenta
therefore get an additional minus sign and fermions are converted to antifermions
and vice-versa (crossing-symmetry).

The rules contain the Gell-Mann matrices T a that are the generators of SU(3)
and satisfy the commutation relations[

T a, T b
]

= ifabcT c (A.73)

with adjoint representation indices a, b, c ∈ {1, 2, . . . , 8} and the fully antisymmetric
symbols fabc for SU(3).

Feynman Rules 79

A.4.1 QCD Feynman Rules

The Feynman rules are derived from

L =− 1
2∂

µAaν
(
∂µA

a,ν − ∂νAaµ
)
− 1

2ξ
(
∂µAaµ

)
(∂νAaν) (A.74a)

+ ψ̄i,βδij
(
iγµαβ∂µ −miδαβ

)
ψj,β (A.74b)

− g2

4
(
f eabAaµA

b
ν

) (
f eabAc,µAd,ν

)
(A.74c)

− gfabcAaµAbν∂µAc,ν (A.74d)
+ gψ̄i,αγ

µ
αβA

a
µT

a
ijψj,β. (A.74e)

The Lagrangian and the rules derived from it agree with Peskin and Schroeder[52],
Böhm, Denner, and Joos[53] and agrees with Collins[33] if one replaces g → −g.
The parameter ξ in the gauge-fixing term is set to ξ = 1, the Feynman gauge which
is justified because in observables the dependence on ξ cancels.

a, µ b, ν = −i
[
gµν + (1− ξ)p

µpν

p2

]
δab

p2 + iε
(A.75a)

j, β i, α =
i
(
/p+m

)
αβ
δij

p2 −m2 + iε
(A.75b)

p1, a, µp2, b, ν

p3, c, ρ p4, d, σ

=

−ig2
[
f baef cde (gνρgµσ − gνσgµρ)

+f bcefade (gµνgρσ − gνσgµρ)
+f bdeface (gµνgρσ − gνρgµσ)

] (A.75c)

p1, a, µ

p2, b, ν p3, c, ρ

=
−gfabc [gµν(p1 − p2)ρ

+gνρ(p2 − p3)µ

+gρµ(p3 − p1)ν]
(A.75d)

80 Appendix

p1, a, µ

p2, i, α p3, j, β

= igγµαβT
a
ij (A.75e)

A.4.2 Color-stripped QCD Feynman Rules

With the exception of the four-gluon vertex the color-stripped Feynman rules are
very similar to the full Feynman rules:

µ ν = −i
[
gµν + (1− ξ)p

µpν

p2

]
1

p2 + iε
(A.76a)

β α =
i
(
/p+m

)
αβ

p2 −m2 + iε
(A.76b)

p1, µp2, ν

p3, ρ p4, σ

= ig2 [2gµνgρσ − gµρgνσ − gµσgνρ] (A.76c)

p1, µ

p2, ν p3, ρ

=
−ig [gµν(p1 − p2)ρ

+gνρ(p2 − p3)µ

+gρµ(p3 − p1)ν]
(A.76d)

p1, µ

p2, α p3, β

= igγµαβ (A.76e)

Phase Space Generation 81

A.5 Phase Space Generation

Given m random numbers collected in a vector ~x ∈ [0, 1]m, a phase space generator
(PSG) is a function mapping

~x 7−→ {~pi}ni=1 , p2
i = m2

i , (A.77)

i.e. it maps numbers from the m-dimensional unit-hypercube onto on-shell momenta
~pi (with massesmi often set to zero) that additionally fulfill momentum conservation

∑
i

pi =
∑
j

qj (A.78)

where qj are the incoming momenta that are fixed by the experiment and frame
the momenta are measured.

A.5.1 Introduction

From the view of a MC integrator a phase space generator converts the random
numbers ~x into momenta pi that are used as the input for the matrix elements
A(p1, p2, . . . , pn). The phase space integral that the PSG thereby performs is

n∏
i=1

∫ d3~pi
E (~pi)

δ(4)

 m∑
j=1

qj −
n∑
i=1

pi

 . (A.79)

Counting the number of free variables we obtain the relation m ≥ 3n− 4, i.e. one
needs at least 3n− 4 random variables for phase space generation.

In this thesis we will employ several PSG, which all have their advantageous
and shortcomings. This also allowed us to cross-check results. We will use

• RAMBO[54], which is very easy to implement and supports the generation
of massive momenta. We need this for the generation of collinear momenta,
as described in Sec. A.5.2. RAMBO needs 4n random variables;

• the QCD antenna generator, as described in Refs. [38, 55] for the most QCD
phase space integrations. This generator is designed such that the invariants
si(i+1) = 2pi · pi+1 lie on the integration axis which leads to an approximate
factorization of the matrix element (times its phase space weight). This is
the reason why it works very well with the VEGAS algorithm (see Sec. 2.3).
Furthermore it will be used to generate soft momenta (see Sec. A.5.2).

82 Appendix

A.5.2 Soft- and Collinear-Momentum Generation

To ascertain if the subtraction terms are correct one can check their local behavior.
To do this, however, one needs functions that generate soft and collinear momenta,
i.e. produce the phase space points in regions where the subtraction terms must
subtract the singular behavior.

A.5.2.1 Soft Momentum Generation

An event with a soft momentum can be generated with the QCD antenna generator
(see App. A.5.1) where the first two random numbers x and y of the last three are
set equal and then sent to zero. As Fig. A.1 illustrates, this gives a linear relation
between the energy λ of the soft momentum

p = (λ, ~p) , |~p | = λ (A.80)

and the scale (the random number) x:

λ = a · x. (A.81)

The number a depends on the remaining random numbers, i.e. changes for each
phase space point, which is not problematic since we are only interested in generating
events with soft momenta over a linear scale.

A.5.2.2 Collinear Momentum Generation

An event with a pair of collinear momenta pi and pj with

(pi + pj)2 = − k2
⊥

z(1− z) = k2 (A.82)

can be generated by

1. generating momenta with one momentum less than needed, but one massive
particle with mass m. We did this by using the RAMBO algorithm for
massive momenta.

2. The massive particle with momentum k = (
√
m2 + ~k2, ~k) is then subsequently

decayed into two massless momenta p′i and p′j that, in the rest frame of k, are
simply back-to-back. Both momenta are then boosted with transformation L
into the frame of k, i.e. if L−1k = (m, 0, 0, 0) then Lp′i = pi and Lp′j = pj.

The result can be seen in Fig. A.2 which shows that, by the construction above,
k = a · x = x is equal to the collinear scale. The deviations from linearity of the
left regions are caused by the finite precision of the calculations — if performed
with single precision arithmetic these deviations show up earlier.

Phase Space Generation 83

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10+0

10+1

10+2

10−910−810−710−610−510−410−310−210−110+0

En
er
gy

λ
of

So
ft

M
om

en
tu
m

2 −→ 2 Momenta + p = (λ, ~p)

generated tuples (x, λ)
λ(x) = ax, a = 87.81

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0

2 −→ 3 Momenta + p = (λ, ~p)

generated tuples (x, λ)
λ(x) = ax, a = 83.80

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10+0

10+1

10+2

10−910−810−710−610−510−410−310−210−110+0

En
er
gy

λ
of

So
ft

M
om

en
tu
m

2 −→ 4 Momenta + p = (λ, ~p)

generated tuples (x, λ)
λ(x) = ax, a = 38.92

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0

2 −→ 5 Momenta + p = (λ, ~p)

generated tuples (x, λ)
λ(x) = ax, a = 40.04

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10+0

10+1

10+2

10−910−810−710−610−510−410−310−210−110+0

En
er
gy

λ
of

So
ft

M
om

en
tu
m

2 −→ 6 Momenta + p = (λ, ~p)

generated tuples (x, λ)
λ(x) = ax, a = 36.51

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0

2 −→ 7 Momenta + p = (λ, ~p)

generated tuples (x, λ)
λ(x) = ax, a = 23.92

Figure A.1: Soft momentum generation. These plots show the generation of three
to eight outgoing momenta of which one, labeled p, is soft. The plots show that there
is an approximately linear behavior between the softness scale x (which corresponds
to the last two random numbers that are fed into phase space generator) and the
actual energy λ.

84 Appendix

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10+0

10−910−810−710−610−510−410−310−210−110+0C
ol
lin

ea
rit

y
k

=
√ (p

i
+
p j

)2
of

pa
ir

(i,
j) 2 −→ 1 Momenta + pi, pj

generated tuples (x, k)
k(x) = ax, a = 1.0000

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10+0

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0

2 −→ 2 Momenta + pi, pj

generated tuples (x, k)
k(x) = ax, a = 1.0000

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10+0

10−910−810−710−610−510−410−310−210−110+0C
ol
lin

ea
rit

y
k

=
√ (p

i
+
p j

)2
of

pa
ir

(i,
j) 2 −→ 3 Momenta + pi, pj

generated tuples (x, k)
k(x) = ax, a = 1.0000

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10+0

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0

2 −→ 4 Momenta + pi, pj

generated tuples (x, k)
k(x) = ax, a = 1.0000

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10+0

10−910−810−710−610−510−410−310−210−110+0C
ol
lin

ea
rit

y
k

=
√ (p

i
+
p j

)2
of

pa
ir

(i,
j) 2 −→ 5 Momenta + pi, pj

generated tuples (x, k)
k(x) = ax, a = 1.0000

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10+0

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10+0

2 −→ 6 Momenta + pi, pj

generated tuples (x, k)
k(x) = ax, a = 1.0000

Figure A.2: Collinear momentum generation. These plots show the generation of
three to eight outgoing momenta of which the last pair of particles, labeled pi and
pj, are collinear. The plots show the scale x is identical to k. The deviations in
the left regions are due to numerical problems, see text.

Technical Details 85

A.6 Technical Details

A.6.1 Instruction Counting with perf

The program perf[56] allows one to measure a variety events of entire programs,
such as executed number of instructions, instructions per cycle, number of branches,
branch-misses, page-faults, etc. Its advantage over different profiling programs, e.g.
valgrind[57, 58], is that perf uses event counters which are directly implemented
on modern CPUs and thus do not interfere with execution, e.g. slow down the
execution as is the case with valgrind. However, this also means that the executed
code is only sampled, i.e. the results are approximate. The perf event framework
was introduced with Linux 2.6.31 in 2009 and is available in all kernels since.

Unfortunately there is almost no documentation on the internet on how to
measure the instruction count for a critical section of a program instead of the
whole program. This section will show how to accomplish this.

First, one has to define the perf_event_open function, which is actually a
system call:

1 # include <cstdlib >
2 # include <cstdio >
3 # include <cstring >
4 # include <unistd .h>
5 # include <sys/ioctl.h>
6 # include <linux/ perf_event .h>
7 # include <asm/ unistd .h>
8
9 long perf_event_open (

10 perf_event_attr * hw_event ,
11 pid_t pid ,
12 int cpu ,
13 int group_fd ,
14 unsigned long flags
15) {
16 int ret = syscall (__NR_perf_event_open , hw_event , pid , cpu , group_fd , flags);
17 return ret;
18 }

Next, we have to the select the events we are interested in. In this example we
count hardware instructions (line 7):

1 perf_event_attr attr;
2
3 // select what we want to count
4 std :: memset (&attr , 0, sizeof (perf_event_attr));
5 attr.size = sizeof (perf_event_attr);
6 attr.type = PERF_TYPE_HARDWARE ;
7 attr. config = PERF_COUNT_HW_INSTRUCTIONS ;
8 attr. disabled = 1;
9 attr. exclude_kernel = 1; // do not count the instruction the kernel executes

10 attr. exclude_hv = 1;
11

86 Appendix

12 // open a file descriptor
13 int fd = perf_event_open (&attr , 0, -1, -1, 0);
14
15 if (fd == -1)
16 {
17 // handle error
18 }

In Sec. 1.4.3 we also counted the number of floating point instructions, in particular
the SSE floating point double precision µops. This was done by replacing lines 6
and 7 with

1 attr.type = PERF_TYPE_RAW ;
2 attr. config = 0x8010;

The config variable can be set to different values, which are documented in
Ref. [59]. Note that these variables are highly processor dependent and this value
was found for an Intel i7 “Nehalem” (Chapter 19.5). The value is composed by
the “Umask Value” (in this case 0x80) and then the “Event Number” (in this case
0x10).

We can finally enable the counter in the critical section (line 5) and read it into
the variable count (line 10):

1 // reset and enable the counter
2 ioctl(fd , PERF_EVENT_IOC_RESET , 0);
3 ioctl(fd , PERF_EVENT_IOC_ENABLE , 0);
4
5 // perform computation that should be measured
6
7 // disable and read out the counter
8 ioctl(fd , PERF_EVENT_IOC_DISABLE , 0);
9 long long count;

10 read(fd , &count , sizeof (long long));
11 // count now has the (approximated) result
12
13 // close the file descriptor
14 close(fd);

A.6.2 Efficiently Memorizing Subcurrents

Let us shortly illustrate the problem that we solve here: To compute an amplitude A
we use Eq. (1.8) which instructs us to compute a polarization vector (see App. A.2.2
for explicit parametrization) and an on-shell current that is defined recursively, e.g.
as defined in Eq. (1.6) for an all gluon process. We can compute these currents
easily by simply implementing them using recursive functions in C++ but this way
we compute many subcurrents over and over again, e.g. the polarization vectors.
Instead, we can, before actually computing the value of the sub-current, find
out if we already computed it and then, if this is the case, look it up instead of
recomputing it, or compute it for the first time and store it in a cache for later use.

Technical Details 87

The advantage is that one can use the computer functions one implemented before
in the “naïve” approach and add code for memorization.

In our implementation the computation of the currents were already quite fast
so we could see an impact of the speed of the memorization. We subsequently found
a technique that allows for a fast lookup and storage of results that we describe in
the following.

We divide the problem into two parts: Key generation and storage/lookup. If
we assume we can generate a “key”, i.e. an integer, for every sub-current, then
we can use e.g. C++11’s std::unordered_map to store and lookup a sub-current
using its corresponding key. The container std::unordered_map is a hash table
that offers storage and lookup in constant time on average. Like many hash table
implementations it has a adjustable parameter max_load_factor that can greatly
effect the actual lookup/storage times. In our case we found that 0.5 is a good
choice. Once the first amplitude is computed, the hash table has its final form and
since the next phase-space point has the same subcurrents we can simply overwrite
the old values.

The other part, the key generation, makes use of the fact that a single par-
tial amplitude A has a fixed permutation of the momenta, e.g. if we compute
A(p1, p2, p3, p4) for an all-gluon process we will need the following currents,

Jµ(p2), Jµ(p3), Jµ(p4), Jµ(p2, p3), Jµ(p3, p4), Jµ(p2, p3, p4), (A.83)

where the relative ordering of the arguments is preserved. We then compute a
“global key” g,

(x0, x1, . . . , xn−1) 7−→ g =
n−1∑
i=0

xi · 24i (A.84)

once for every amplitude where the xi are the indices of the momenta (in our
example above, x0 = 1, x1 = 2, x2 = 3, x3 = 4). The keys of the subcurrents
are then computed by the same map, but with a restricted tuple of length l < n

starting at k by

(xk, xk+1, . . . , xk+l) 7−→ g −
k−1∑
i=0

xi · 24i −
n−1∑

i=k+l+1
xi · 24i

=
((
g mod 24(k+l+1)

)
div 24·(k−1)

)
· 24k (A.85)

with div denoting integer division, and mod the remainder of the integer division.
This can be computed with only two bit-shift operations, two integer multiplications
and one subtraction and one summation and uses no time-consuming loop.

This operation assumes that xi ∈ {0, 24 − 1}, i.e. we have sixteen particle at
maximum.

88 Appendix

Bibliography

[1] Laurent Canetti, Marco Drewes, and Mikhail Shaposhnikov. “Matter and
Antimatter in the Universe”. In: New Journal of Physics 14 (2012), p. 095012.
doi: 10.1088/1367-2630/14/9/095012. arXiv: 1204.4186 [hep-ph].

[2] J. Beringer et al. “Review of Particle Physics”. In: Physical Review D 86 (1
2012), p. 010001. doi: 10.1103/PhysRevD.86.010001.

[3] Michael Dinsdale, Marko Ternick, and Stefan Weinzierl. “A comparison of
efficient methods for the computation of Born gluon amplitudes”. In: Journal
of High Energy Physics 2006.03 (2006), p. 056. arXiv: hep-ph/0602204.

[4] Christopher Schwan. “Numerical computation of matrix elements at leading
order for QCD with photons”. Diploma thesis. Institut für Physik (THEP),
Universität Mainz, 2011. url: http://wwwthep.physik.uni-mainz.de/
Publications/theses/dip-schwan.pdf (visited on 05/19/2014).

[5] F. A. Berends and W. T. Giele. “Recursive calculations for processes with n
gluons”. In: Nuclear Physics B 306.4 (1988), pp. 759–808. issn: 0550-3213.
doi: 10.1016/0550-3213(88)90442-7.

[6] Ronald Kleiss and Hans Kuijf. “Multigluon cross sections and 5-jet production
at hadron colliders”. In: Nuclear Physics B 312.3 (1989), pp. 616–644. issn:
0550-3213. doi: 10.1016/0550-3213(89)90574-9.

[7] Stefan Weinzierl. “Automated computation of spin- and colour-correlated
Born matrix elements”. In: The European Physical Journal C 45 (3 2006),
pp. 745–757. issn: 1434-6044. doi: 10.1140/epjc/s2005-02467-6. arXiv:
hep-ph/0510157.

[8] F. A. Berends and W. Giele. “The six-gluon process as an example of Weyl-van
der Waerden spinor calculus”. In: Nuclear Physics B 294.0 (1987), pp. 700–
732. issn: 0550-3213. doi: 10.1016/0550-3213(87)90604-3.

[9] Michelangelo Mangano, Stephen Parke, and Zhan Xu. “Duality and multi-
gluon scattering”. In: Nuclear Physics B 298.4 (1988), pp. 653–672. issn:
0550-3213. doi: 10.1016/0550-3213(88)90001-6.

89

http://dx.doi.org/10.1088/1367-2630/14/9/095012
http://arxiv.org/abs/1204.4186
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://arxiv.org/abs/hep-ph/0602204
http://wwwthep.physik.uni-mainz.de/Publications/theses/dip-schwan.pdf
http://wwwthep.physik.uni-mainz.de/Publications/theses/dip-schwan.pdf
http://dx.doi.org/10.1016/0550-3213(88)90442-7
http://dx.doi.org/10.1016/0550-3213(89)90574-9
http://dx.doi.org/10.1140/epjc/s2005-02467-6
http://arxiv.org/abs/hep-ph/0510157
http://dx.doi.org/10.1016/0550-3213(87)90604-3
http://dx.doi.org/10.1016/0550-3213(88)90001-6

90 BIBLIOGRAPHY

[10] Michaelangelo Mangano and Stephen J. Parke. “Quark-gluon amplitudes in
the dual expansion”. In: Nuclear Physics B 299.4 (1988), pp. 673–692. issn:
0550-3213. doi: 10.1016/0550-3213(88)90368-9.

[11] Michelangelo Mangano. “The color structure of gluon emission”. In: Nuclear
Physics B 309.3 (1988), pp. 461–475. issn: 0550-3213. doi: 10.1016/0550-
3213(88)90453-1.

[12] Vittorio Del Duca, Lance J. Dixon, and Fabio Maltoni. “New color decom-
positions for gauge amplitudes at tree and loop level”. In: Nuclear Physics
B 571 (2000), pp. 51–70. doi: 10.1016/S0550-3213(99)00809-3. arXiv:
hep-ph/9910563.

[13] Zvi Bern and David A. Kosower. “Color decomposition of one-loop amplitudes
in gauge theories”. In: Nuclear Physics B 362.1–2 (1991), pp. 389–448. issn:
0550-3213. doi: 10.1016/0550-3213(91)90567-H.

[14] Christian Reuschle and Stefan Weinzierl. “Decomposition of one-loop QCD
amplitudes into primitive amplitudes based on shuffle relations”. In: Physical
Review D 88.10 (2013), p. 105020. doi: 10.1103/PhysRevD.88.105020.
arXiv: 1310.0413 [hep-ph].

[15] F. Maltoni et al. “Color-flow decomposition of QCD amplitudes”. In: Physical
Review D 67.1 (Jan. 2003), p. 014026. doi: 10.1103/PhysRevD.67.014026.
arXiv: hep-ph/0209271.

[16] BLAS (Basic Linear Algebra Subprograms). url: http://www.netlib.org/
blas/ (visited on 09/01/2014).

[17] Daniel Goetz. “Efficient automated computation of tree-level amplitudes
in QCD and QED”. Diploma thesis. Institut für Physik (THEP), Uni-
versität Mainz, 2011. url: http://wwwthep.physik.uni- mainz.de/
Publications/theses/dip-dagoetz.pdf (visited on 05/19/2014).

[18] Claude Duhr, Stefan Höche, and Fabio Maltoni. “Color-dressed recursive
relations for multi-parton amplitudes”. In: Journal of High Energy Physics
2006.08 (2006), p. 062. doi: 10.1088/1126-6708/2006/08/062. arXiv:
hep-ph/0607057.

[19] Walter Giele, Gerben Stavenga, and Jan-Christopher Winter. “Thread-
scalable evaluation of multi-jet observables”. In: Eur. Phys. J. C 71 (2011).
doi: 10.1140/epjc/s10052-011-1703-5. arXiv: 1002.3446 [hep-ph].

[20] S. Catani et al. “New clustering algorithm for multijet cross sections in
e+eâĹŠ annihilation”. In: Physics Letters B 269.3–4 (1991), pp. 432–438.
issn: 0370-2693. doi: 10.1016/0370-2693(91)90196-W.

http://dx.doi.org/10.1016/0550-3213(88)90368-9
http://dx.doi.org/10.1016/0550-3213(88)90453-1
http://dx.doi.org/10.1016/0550-3213(88)90453-1
http://dx.doi.org/10.1016/S0550-3213(99)00809-3
http://arxiv.org/abs/hep-ph/9910563
http://dx.doi.org/10.1016/0550-3213(91)90567-H
http://dx.doi.org/10.1103/PhysRevD.88.105020
http://arxiv.org/abs/1310.0413
http://dx.doi.org/10.1103/PhysRevD.67.014026
http://arxiv.org/abs/hep-ph/0209271
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://wwwthep.physik.uni-mainz.de/Publications/theses/dip-dagoetz.pdf
http://wwwthep.physik.uni-mainz.de/Publications/theses/dip-dagoetz.pdf
http://dx.doi.org/10.1088/1126-6708/2006/08/062
http://arxiv.org/abs/hep-ph/0607057
http://dx.doi.org/10.1140/epjc/s10052-011-1703-5
http://arxiv.org/abs/1002.3446
http://dx.doi.org/10.1016/0370-2693(91)90196-W

BIBLIOGRAPHY 91

[21] G. Dissertori. “QCD studies with e+e− annihilation data at 189 GeV”. In:
CERN-OPEN-99-291, ALEPH-99-023 (1999).

[22] Sebastian Becker et al. “NLO results for five, six and seven jets in electron-
positron annihilation”. In: Physical Review Letters 108 (2012), p. 032005.
doi: 10.1103/PhysRevLett.108.032005. arXiv: 1111.1733 [hep-ph].

[23] William Kahan. “Pracniques: Further Remarks on Reducing Truncation
Errors”. In: Commun. ACM 8.1 (1965), pp. 40–. issn: 0001-0782. doi: 10.
1145/363707.363723.

[24] Petros Draggiotis, Ronald H. P. Kleiss, and Costas G. Papadopoulos. “On the
computation of multigluon amplitudes”. In: Physics Letters B 439.1-2 (1998),
pp. 157–164. issn: 0370-2693. doi: 10.1016/S0370- 2693(98)01015- 6.
arXiv: hep-ph/9807207.

[25] David Goldberg. “What Every Computer Scientist Should Know About
Floating-point Arithmetic”. In: ACM Comput. Surv. 23.1 (1991), pp. 5–48.
issn: 0360-0300. doi: 10.1145/103162.103163.

[26] F. Bloch and A. Nordsieck. “Note on the Radiation Field of the Electron”.
In: Physical Review 52 (2 1937), pp. 54–59. doi: 10.1103/PhysRev.52.54.

[27] Toichiro Kinoshita. “Mass Singularitites of Feynman Amplitudes”. In: Journal
of Mathematical Physics 3 (4 1962), pp. 650–677. doi: 10.1063/1.1724268.

[28] T. D. Lee and M. Nauenberg. “Degenerate Systems and Mass Singularities”.
In: Phys. Rev. 133 (6B 1964), B1549–B1562. doi: 10.1103/PhysRev.133.
B1549.

[29] S. Catani and M. H. Seymour. “A general algorithm for calculating jet cross
sections in NLO QCD”. In: Nuclear Physics B 485 (1997), pp. 291–419. doi:
10.1016/S0550-3213(96)00589-5. arXiv: hep-ph/9605323.

[30] S. Frixione, Z. Kunszt, and A. Signer. “Three-jet cross sections to next-to-
leading order”. In: Nuclear Physics B 467.3 (1996), pp. 399–442. issn: 0550-
3213. doi: 10.1016/0550-3213(96)00110-1. arXiv: hep-ph/9512328.

[31] Stefano Frixione. “A general approach to jet cross sections in QCD”. In:
Nuclear Physics B 507.1–2 (1997), pp. 295–314. issn: 0550-3213. doi: 10.
1016/S0550-3213(97)00574-9. arXiv: hep-ph/9706545.

[32] David A. Kosower. “Antenna factorization of gauge-theory amplitudes”. In:
Physical Review D 57 (9 1998), pp. 5410–5416. doi: 10.1103/PhysRevD.57.
5410. arXiv: hep-ph/9710213.

http://dx.doi.org/10.1103/PhysRevLett.108.032005
http://arxiv.org/abs/1111.1733
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1016/S0370-2693(98)01015-6
http://arxiv.org/abs/hep-ph/9807207
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1103/PhysRev.52.54
http://dx.doi.org/10.1063/1.1724268
http://dx.doi.org/10.1103/PhysRev.133.B1549
http://dx.doi.org/10.1103/PhysRev.133.B1549
http://dx.doi.org/10.1016/S0550-3213(96)00589-5
http://arxiv.org/abs/hep-ph/9605323
http://dx.doi.org/10.1016/0550-3213(96)00110-1
http://arxiv.org/abs/hep-ph/9512328
http://dx.doi.org/10.1016/S0550-3213(97)00574-9
http://dx.doi.org/10.1016/S0550-3213(97)00574-9
http://arxiv.org/abs/hep-ph/9706545
http://dx.doi.org/10.1103/PhysRevD.57.5410
http://dx.doi.org/10.1103/PhysRevD.57.5410
http://arxiv.org/abs/hep-ph/9710213

92 BIBLIOGRAPHY

[33] John Collins. Foundations of Perturbative QCD. Cambridge Monographs on
Particle Physics, Nuclear Physics and Cosmology 32. Cambridge University
Press, 2013. isbn: 978-1-107-64525-7.

[34] Guido Altarelli and G. Parisi. “Asymptotic Freedom in Parton Language”. In:
Nuclear Physics B 126 (1977), p. 298. doi: 10.1016/0550-3213(77)90384-
4.

[35] Daniel Goetz, Christopher Schwan, and Stefan Weinzierl. “Random polar-
isations of the dipoles”. In: Physical Review D 85 (2012), p. 116011. doi:
10.1103/PhysRevD.85.116011. arXiv: 1205.4109 [hep-ph].

[36] G. Peter Lepage. “A new algorithm for adaptive multidimensional integration”.
In: Journal of Computational Physics 27.2 (1978), pp. 192–203. issn: 0021-
9991. doi: 10.1016/0021-9991(78)90004-9.

[37] G. Peter Lepage. VEGAS. An Adaptive Multidimensional Integration Program.
CLNS-80/447. 1980. url: http://www.physics.buffalo.edu/phy411-
506/topic6/VEGAS.pdf (visited on 03/07/2014).

[38] Stefan Weinzierl. Introduction to Monte Carlo methods. 2000. arXiv: hep-
ph/0006269.

[39] F. James. “Monte Carlo Theory and Practice”. In: Reports on Progress in
Physics 43 (1980), pp. 1145–1189. doi: 10.1088/0034-4885/43/9/002.

[40] Ronald Kleiss and Roberto Pittau. “Weight optimization in multichannel
Monte Carlo”. In: Computer Physics Communications 83 (1994), pp. 141–146.
doi: 10.1016/0010-4655(94)90043-4. arXiv: hep-ph/9405257.

[41] Thomas Hahn. “CUBA: A Library for multidimensional numerical integra-
tion”. In: Computer Physics Communications 168 (2005), pp. 78–95. doi:
10.1016/j.cpc.2005.01.010. arXiv: hep-ph/0404043.

[42] William H. Press et al. Numerical Recipes. The Art of Scientific Computing.
Cambridge University Press. isbn: 978-0521880688. url: http://www.nr.
com (visited on 05/27/2014).

[43] GNU Scientific Library. url: http://www.gnu.org/software/gsl/.

[44] Christopher Schwan. A C++11 Template Library for Monte Carlo Integration.
url: https://github.com/cschwan/hep-mc.

[45] Makoto Matsumoto and Takuji Nishimura. “Mersenne Twister: A 623-dimen-
sionally Equidistributed Uniform Pseudo-random Number Generator”. In:
ACM Trans. Model. Comput. Simul. 8.1 (1998), pp. 3–30. issn: 1049-3301.
doi: 10.1145/272991.272995.

http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1103/PhysRevD.85.116011
http://arxiv.org/abs/1205.4109
http://dx.doi.org/10.1016/0021-9991(78)90004-9
http://www.physics.buffalo.edu/phy411-506/topic6/VEGAS.pdf
http://www.physics.buffalo.edu/phy411-506/topic6/VEGAS.pdf
http://arxiv.org/abs/hep-ph/0006269
http://arxiv.org/abs/hep-ph/0006269
http://dx.doi.org/10.1088/0034-4885/43/9/002
http://dx.doi.org/10.1016/0010-4655(94)90043-4
http://arxiv.org/abs/hep-ph/9405257
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://arxiv.org/abs/hep-ph/0404043
http://www.nr.com
http://www.nr.com
http://www.gnu.org/software/gsl/
https://github.com/cschwan/hep-mc
http://dx.doi.org/10.1145/272991.272995

BIBLIOGRAPHY 93

[46] Richard Kreckel. “Parallelization of adaptive MC integrators”. In: Computer
Physics Communications 106.3 (1997), pp. 258–266. issn: 0010-4655. doi:
10.1016/S0010-4655(97)00099-4. arXiv: physics/9710028.

[47] Message Passing Interface Forum. url: http://www.mpi- forum.org/
(visited on 07/03/2014).

[48] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation”. In: Proceedings, 11th European PVM/MPI
Users’ Group Meeting. Budapest, Hungary, 2004, pp. 97–104.

[49] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. “Optimization of
Collective Communication Operations in MPICH”. In: International Journal
of High Performance Computing Applications 19.1 (2005), pp. 49–66. doi:
10.1177/1094342005051521.

[50] R. Kleiss and W. J. Stirling. “Spinor techniques for calculating pp̄→ W±/Z0+
JETS”. In: Nuclear Physics B 262.2 (1985), pp. 235–262. issn: 0550-3213.
doi: 10.1016/0550-3213(85)90285-8.

[51] Palesh B. Pal. Dirac, Majorana and Weyl fermions. arXiv: 1006 . 1718
[hep-ph].

[52] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum
Field Theory. Westview Press, 1995. isbn: 0-201-50397-2.

[53] Manfred Böhm, Ansgar Denner, and Hans Joos. Gauge Theories of the Strong
and Electroweak Interaction. B. G. Teubner, 2001. isbn: 3-519-23045-3.

[54] R. Kleiss, W. J. Stirling, and S. D. Ellis. “A new Monte Carlo treatment
of multiparticle phase space at high energies”. In: Computer Physics Com-
munications 40 (1986), pp. 359–373. issn: 0010-4655. doi: 10.1016/0010-
4655(86)90119-0.

[55] Stefan Weinzierl and David A. Kosower. “QCD corrections to four jet pro-
duction and three jet structure in e+e− annihilation”. In: Physical Review
D 60 (1999), p. 054028. doi: 10.1103/PhysRevD.60.054028. arXiv: hep-
ph/9901277.

[56] perf: Linux profiling with performance counters. url: https://perf.wiki.
kernel.org/index.php/Main_Page (visited on 08/06/2014).

[57] Valgrind: A GPL’d system for debugging and profiling Linux programs. url:
http://valgrind.org/ (visited on 08/06/2014).

[58] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation”. In: SIGPLAN Not. 42.6 (2007),
pp. 89–100. issn: 0362-1340. doi: 10.1145/1273442.1250746.

http://dx.doi.org/10.1016/S0010-4655(97)00099-4
http://arxiv.org/abs/physics/9710028
http://www.mpi-forum.org/
http://dx.doi.org/10.1177/1094342005051521
http://dx.doi.org/10.1016/0550-3213(85)90285-8
http://arxiv.org/abs/1006.1718
http://arxiv.org/abs/1006.1718
http://dx.doi.org/10.1016/0010-4655(86)90119-0
http://dx.doi.org/10.1016/0010-4655(86)90119-0
http://dx.doi.org/10.1103/PhysRevD.60.054028
http://arxiv.org/abs/hep-ph/9901277
http://arxiv.org/abs/hep-ph/9901277
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://valgrind.org/
http://dx.doi.org/10.1145/1273442.1250746

94 BIBLIOGRAPHY

[59] Intel©64 and IA-32 Architectures Software Developer’s Manual. Volume 3B:
System Programming Guide, Part 2. Chap. 19. url: http://www.intel.
com / content / www / us / en / processors / architectures - software -
developer-manuals.html (visited on 08/06/2014).

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

	Efficient Perturbative QCD Calculations
	Introduction
	Leading-Order Perturbative QCD
	Color Decomposition and Recursion Relations

	Leading and Subleading Color Contributions
	Application to n-Jet Cross Sections

	Random Polarizations
	Definition and Properties
	Speed-up of Random Polarizations

	Real Color-Ordered Feynman Rules
	Three- and Four-Gluon-Vertices
	Quark-Gluon-Vertices
	Speed-up of RCO Feynman Rules
	Summation over Random Polarizations

	Radiative Correction: Real Subtraction
	Calculating Radiative Corrections
	The Origin of Soft- and Collinear Divergences
	The Subtraction Method
	The Subtraction Terms
	The Catani-Seymour Subtraction
	Summary of the Subtraction Terms
	Check of the Local Behavior
	Application to n-Jet Cross Sections

	Monte Carlo Integration
	Introduction
	Plain Monte Carlo Integration
	Convergence Behavior
	The "Curse of Dimensionality"

	Variance Reduction Techniques
	Importance Sampling
	Control Variates

	The VEGAS Integration Algorithm
	Automatic PDF construction in VEGAS
	The Rebinning Algorithm
	Results and Chi-Square Test
	Concluding Discussion

	Implementation and Related Details
	Parallelization of VEGAS

	Conclusion and Outlook
	Appendix
	Proofs
	Proof of the Collinear Phase Space Jacobian
	Proof for the Soft Case for Quarks
	Proof of the Soft Function
	The Soft Function for Helicity Eigenstates
	The Splitting Functions for the Collinear Limit
	Catani Seymour Momenta in the Soft and Collinear Limits
	The Soft Reparametrization
	Proof of the Spin-Correlation Tensor Transversality
	Proof of the Integrability of the Additional Term
	Extremal PDF for Importance Sampling

	Identities
	Spinor Identities
	Polarization Vector Parametrization and Identities

	Majorana- and Weyl-Representations
	Spinors in Weyl Representation
	Spinors in Majorana Representation
	Randomly Polarized Spinors

	Feynman Rules
	QCD Feynman Rules
	Color-stripped QCD Feynman Rules

	Phase Space Generation
	Introduction
	Soft- and Collinear-Momentum Generation

	Technical Details
	Instruction Counting with perf
	Efficiently Memorizing Subcurrents

