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This thesis is on loop-induced processes in theories with warped extra dimensions where
the fermions and gauge bosons are allowed to propagate in the bulk, while the Higgs
sector is localized on or near the infra-red brane. These so-called Randall-Sundrum (RS)
models have the potential to simultaneously explain the hierarchy problem and address
the question of what causes the large hierarchies in the fermion sector of the Standard
Model (SM). The Kaluza-Klein (KK) excitations of the bulk fields can significantly affect
the loop-level processes considered in this thesis and, hence, could indirectly indicate
the existence of warped extra dimensions.
The analytical part of this thesis deals with the detailed calculation of three loop-induced
processes in the RS models in question: the Higgs production process via gluon fusion,
the Higgs decay into two photons, and the flavor-changing neutral current b → sγ.
A comprehensive, five-dimensional (5D) analysis will show that the amplitudes of the
Higgs processes can be expressed in terms of integrals over 5D propagators with the
Higgs-boson profile along the extra dimension, which can be used for arbitrary models
with a compact extra dimension. To this end, both the boson and fermion propagators
in a warped 5D background, valid to all orders in the expansion in v2/M2

KK, are derived.
It will be shown that the seemingly contradictory results for the gluon fusion amplitude
in the literature can be traced back to two distinguishable, not smoothly-connected
incarnations of the RS model.
The investigation of the b → sγ transition is performed in the KK decomposed theory.
It will be argued that summing up the entire KK tower leads to a finite result, which
can be well approximated by a closed, analytical expression.
In the phenomenological part of this thesis, the analytic results of all relevant Higgs
couplings in the RS models in question are compared with current and in particular
future sensitivities of the Large Hadron Collider (LHC) and the planned International
Linear Collider. The latest LHC Higgs data is then used to exclude significant portions of
the parameter space of each RS scenario. The analysis will demonstrate that especially
the loop-induced Higgs couplings are sensitive to KK particles of the custodial RS model
with masses in the multi tera-electronvolt range.
Finally, the effect of the RS model on three flavor observables associated with the b→ sγ
transition are examined. In particular, we study the branching ratio of the inclusive
decay B̄ → Xsγ, the time-dependent CP asymmetry SK∗γ in the decay B̄ → K̄∗γ, and
the photon polarization parameter in the decay B̄ → K̄1γ. It will be shown that the
latter two processes are especially sensitive to the RS corrections considered in this work,
which could be probed at future precision experiments.



Zusammenfassung

Gegenstand dieser Arbeit ist die Behandlung Schleifen-induzierter Prozesse in Theorien
mit gekrümmten Extradimensionen. Diese sogenannten Randall-Sundrum (RS)-Mo-
delle sind besonders attraktive Erweiterungen des Standardmodells (SM), da sie sowohl
für das Hierarchieproblem im Eichsektor als auch für die Hierarchien im Flavorsektor
Erklärungen liefern können. Die Arbeit fokussiert sich auf RS-Modelle mit Fermionen
und Bosonen im Bulk und einem Higgs-Sektor auf bzw. nahe der Infrarot-Brane. Die
Kaluza-Klein (KK)-Anregungen der Bulkfelder können signifikant zu den in dieser Ar-
beit behandelten Schleifen-induzierten Prozessen beitragen und daher indirekt auf die
Existenz von gekrümmten Extradimensionen schließen lassen.
Der analytische Teil dieser Arbeit befasst sich mit der detaillierten Berechnung von
drei Schleifen-induzierten Prozessen in o.g. RS-Modellen: dem Higgs-Produktionsprozess
über Gluonfusion, dem Higgszerfall in zwei Photonen und dem Flavor ändernden neu-
tralen Strom b→ sγ. Eine ausführliche, fünfdimensionale (5D) Analyse wird zeigen, dass
die Amplituden der Higgsprozesse als Integrale über 5D Propagatoren mit dem Higgs-
profil entlang der kompakten Extradimension ausgedrückt werden können. Zu diesem
Zweck werden die 5D Boson- und Fermionpropagatoren in einem gekrümmten 5D Hinter-
grund hergeleitet, wobei der Fermionpropagator erstmals mit der exakten Abhängigkeit
von den Yukawa-Matrizen und der vollen drei-Generationen-Flavorstruktur berechnet
wird. Ein wichtiges Ergebnis dieser Arbeit ist, dass die sich widersprechenden Resultate
in der Literatur durch zwei sich unterscheidende, nicht stetig ineinander überführbare
Versionen des RS-Modells erklärt werden können.
Der b→ sγ Übergang enthält zwei unendliche KK-Summen und wird deshalb gesondert
behandelt. Es wird argumentiert, dass die Summation über alle KK-Moden zu einem
endlichen Ergebnis führt, für das ein approximativer Ausdruck hergeleitet wird.
Im phänomenologischen Teil der Arbeit werden die Voraussagen für alle wichtigen Higgs-
kopplungen sowohl mit den gegenwärtigen als auch den zukünftigen Sensitivitäten des
Large Hadron Collider (LHC) und dem geplanten International Linear Collider ver-
glichen. Die neuesten Higgs-Daten des LHC werden dazu verwendet um signifikante
Regionen des Parameterraums jedes RS-Szenarios auszuschließen. Die Analyse wird
zeigen, dass die Higgskopplungen sensitiv auf KK-Teilchen sind, deren Massen bis in
den multi-Teraelektronenvolt-Bereich reichen.
Abschließend werden die Auswirkungen des RS-Modells auf drei auf b→ sγ basierenden
Flavor-Observablen untersucht. Speziell wird auf das Verzweigungsverhältnis des inklu-
siven Zerfalls B̄ → Xsγ, die zeitabhängige CP-Asymmetrie SK∗γ im Zerfall B̄ → K̄∗γ
und auf die Polarisation des Photons im Zerfall B̄ → K̄1γ eingegangen. Es wird gezeigt,
dass die letzteren beiden Prozesse sensitiv auf die in der Arbeit gefundenen RS Korrek-
turen sind, was durch zukünftige, sehr genaue Messungen einen Hinweis auf die Existenz
von gekrümmten Extradimensionen geben könnte.
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Preface

In the field of particle physics, almost all phenomena can be explained by the Standard
Model (SM) of Elementary Particle Physics. During the past decades it has passed
numerous precision tests up to energies in the tera-electronvolt (TeV) range and after
the discovery of the last missing particle, the Higgs boson, at the Large Hadron Collider
(LHC) in summer 2012, its predicted particle content has been verified. Nevertheless,
there are still some unanswered questions and unexplained phenomena that the SM does
not address. For this reason, it cannot be regarded as the ultimate theory of nature and
must be replaced by a more fundamental theory at some high energy scale. The SM
would then emerge as a low-energy limit of this ultra-violet (UV) completion. The situ-
ation is analogous to the familiar case of classical mechanics, which must be modified to
incorporate Einstein’s theory of relativity in order to explain e.g. the precession of the
perihelion of Mercury to high precision.

Among numerous possible extensions of the SM, models with warped extra dimen-
sions provide a promising alternative to more popular models of new physics, such as
supersymmetry. These so-called Randall-Sundrum (RS) models can address the gauge
hierarchy problem and, moreover, give an explanation for the hierarchical structure in
the SM quark masses and mixing angles. A clear indication for models with warped
extra dimensions would be the direct detection via production of several very massive
copies of the known SM particles with equidistant mass differences, the so-called Kaluza-
Klein (KK) modes. However, as of today, the LHC has not detected any KK excitations
yet and electroweak precision measurements indicate that they could be out of reach
of the LHC. One is therefore urged to consider the indirect detection of new particles
via verification of deviations from the SM predictions for certain observables, such as
decay rates, branching ratios, charge-parity (CP) asymmetries, etc. The main focus of
the thesis at hand is on whether one could probe models with warped extra dimensions
via precise measurements of observables in the Higgs and the flavor sector, which are
loop-suppressed in the SM and therefore allow for significant effects from the infinitely
many KK excitations.

This thesis is structured as follows: In the first chapter, both the success and the
shortcomings of the SM, the currently most accurate theory in particle physics, are re-
called. Some of the most popular extensions of the SM are introduced, where special
attention is given to their possible explanations for the hierarchy problem and the flavor
structure of the SM.

Chapter 2 then introduces the versions of the RS model which this thesis focuses on.
It will be distinguished between the minimal RS model, based on the SM gauge group,
and the custodial RS model, based on an enlarged bulk symmetry, as well as models
with a brane-localized and (narrow) bulk-Higgs sector. It will be explained in detail how
RS models can generate the hierarchies in the quark sector before examining their com-
patibility with available electroweak precision data. We will show that the minimal RS
model is disfavored, while the RS model with custodial protection remains consistent.

ix



x Preface

In order to investigate loop-level processes in an elegant way, both the warped five-
dimensional (5D) boson and fermion propagators in the mixed momentum-position rep-
resentation, which implicitly sum over the entire tower of KK excitations, will be calcu-
lated in Chapter 3. Closed expressions for the gauge-boson propagator in the minimal
and custodial RS model will be derived, which are valid to all orders in the expansion in
v2/M2

KK. For the first time, we will calculate the 5D fermion propagator with the exact
dependence on the Yukawa matrices and the full three-generation flavor structure, which
will be an important tool for future loop-level calculations in theories with a warped ex-
tra dimension.

Chapters 4 and 5 form the core of this thesis. The first part of Chapter 4 deals
with the detailed calculation of loop-induced processes in the Higgs sector, namely the
Higgs production process via gluon fusion and the Higgs decay into two photons, in both
the minimal and the custodial RS model. A detailed 5D analysis will show that both
amplitudes can be expressed in terms of integrals over the 5D propagator including the
contributions of the SM quarks and the full dependence on the Higgs-boson mass. These
expressions can be used for arbitrary models with a compact extra dimension as long
as one succeeds in deriving the respective 5D propagators. Using the explicit results for
the 5D propagators, we will show that in the case of the fermion contribution to the
loop-induced Higgs processes, the seemingly contradictory results in the literature can
be traced back to the fact that a scalar sector localized on the IR brane cannot be con-
sidered as a limit of a more and more localized bulk field. The second part of Chapter 4
discusses the flavor-changing neutral current b → sγ, which, as opposed to the Higgs
processes, involves two infinite towers of KK modes, and thus demands for a different
treatment. We will investigate the gauge-invariance of the gauge-boson contributions
in the effective four-dimensional (4D) decomposed theory and argue that summing up
the entire tower of KK modes leads to a finite result, which can be approximated by a
simple analytic expression valid at leading order in the expansion in v2/M2

KK.
Phenomenological implications of the results derived in the Chapter 4 will be dis-

cussed in Chapter 5. In order to compare the predictions with experimental data, the
results for all flavor-diagonal Higgs couplings in the RS models in question are summa-
rized and compared with future sensitivities of the LHC and the planned International
Linear Collider (ILC). Moreover, the cross sections for Higgs production via Higgs-
strahlung and vector-boson fusion, as well as the decay rates of the Higgs boson into
pairs of electroweak gauge bosons, are calculated. Subsequently, the RS predictions on
the signal rates of the most important Higgs processes pp → h → bb̄, τ+τ−, WW ∗,
ZZ∗, γγ will be checked for compatibility with the latest LHC Higgs data. We will
deduce bounds on the relevant parameters of the RS models from all processes. Finally,
we will investigate the RS corrections to three flavor observables associated with the
b → sγ transition, namely the branching ratio of the inclusive decay B̄ → Xsγ, the
time-dependent CP asymmetry SK∗γ in the decay B̄ → K̄∗γ, and the photon polar-
ization parameter λγ in the decay B̄ → K̄1γ. The latter two in particular turn out to
receive significant corrections and could in fact allow for a discovery of warped extra
dimensions to be made at future precision experiments.

The main results of this thesis will be summarized in a final section giving our outlook
and conclusions.



Chapter 1

The Standard Model, Known
Shortcomings, and Possible
Extensions

This chapter is meant to explain the quite vague statements at the beginning of the
preface in more detail.1 A short review of the SM will be given in Section 1.1, before we
discuss its shortcomings and the need for physics beyond the SM (BSM) in Section 1.2.
A special focus will be put on two hierarchy problems. Possible extensions of the SM are
then presented in Section 1.3, which deals with models based on the ordinary Minkowski
space-time, and Section 1.4, which focuses on models with extra dimensions.

1.1 The Standard Model of Elementary Particle Physics

The SM has been established as the most accurate theory in particle physics to date. It
combines three of the four fundamental forces of nature and can, in principle, be valid
up to the Planck scale MPl =

√
~c/G ≈ 1.2209 × 1019 GeV, where gravity becomes

strong and cannot be disregarded any more.2 The rise of the SM dates back to the
development of the Glashow-Weinberg-Salam theory [6–8] in the 1960s, which combined
the weak and electromagnetic force. The strong interactions including the discovery of
asymptotic freedom were then supplemented in the 1970s [9–12]. Further remarkable
events in the history of the SM were, amongst others, the detection of several predicted
particles like the Z boson [13], the third-generation quarks [14–16] and, last but not
least, the Higgs boson [17, 18]. It would go beyond the scope of this thesis to list all
of the achieved milestones, but it should be stressed that the SM has been tested at
the quantum level and succeeded in explaining a wide variety of experimental results.
Therefore, it is worthwhile to briefly recapitulate the structure of the SM.3

1It is assumed that the reader is familiar with the concepts of quantum field (and gauge) theories as
well as renormalization-group (RG) evolution. Recommendable introductions to these subjects can be
found in e.g. [1–3] and [4, 5], respectively.

2Here, c is the speed of light in a vacuum, ~ is the reduced Planck constant, and G is the gravitational
constant. From now on, natural units c = ~ = 1 will be used in this thesis.

3More detailed reviews of the SM can be found e.g. in [1, 19].

1



2 Chapter 1. The Standard Model, Known Shortcomings, and Possible Extensions

fermions, spin-1/2 bosons, spin-1 boson, spin-0

colorless
νe νµ ντ
e µ τ

γ
Z
W±

h

colorful
u c t
d s b

g

Table 1.1: Particle content of the SM. Shown are the mass eigenstates after the
electroweak symmetry is broken. The fermion masses increase from left to right.

There is a strong experimental evidence that the SM gauge group is

GSM = SU(3)c × SU(2)L × U(1)Y , (1.1)

and the associated gauge bosons are the gluons (the mediators of the strong SU(3)c
interactions) and W 1,2,3 and B bosons (the mediators of the electroweak SU(2)L×U(1)Y
interactions). The above gauge symmetry together with the requirements of Poincaré
invariance, unitarity, causality, stability, and renormalizibility (proven by ’t Hooft and
Veltman [20]) completely determines the SM Lagrangian, which can be summarized as

LSM = Lferm + LG,W,B + LHiggs + LYukawa + LGF + LFP . (1.2)

As the individual terms essentially have the same structure as the Lagrangian focused
on in Section 2.2, where we will consider the SM in an enlarged space-time with an
additional spatial dimension, it will be refrained from going into too much detail here.
Nevertheless, we shall briefly discuss what will subsequently be important.

The particle content of the SM is shown in Table 1.1, which distinguishes between
fermions (spin-1/2 particles) and bosons (Higgs boson, spin-0; gauge bosons, spin-1).4

The fermions can be split into two classes, the colorful quarks and the colorless leptons,
meaning that the former (latter) couple to the strong-interaction sector of the SM.
Moreover, the fermions are grouped into three generations which share the same quantum
numbers, but differ in their masses. Table 1.1 has to be regarded as qualitative in the
sense that it does not distinguish between the left-handed and right-handed components
of the 4D Dirac fermions, which can be obtained with the help of the projection operators
PL,R = (1 ∓ γ5)/2. In fact, the SM is a chiral theory, i.e. the particles of different
handedness, or chirality, transform differently under the SM gauge group GSM. While
the left-handed fermions fL ≡ PLf transform as a doublet under SU(2)L ,

QL =

(
uL
dL

)
, LL =

(
νeL
eL

)
, (1.3)

the right-handed ones fR ≡ PRf are SU(2)L singlets

uR , dR , eR . (1.4)

The right-handed neutrino transforms as a singlet under the entire SM gauge group and
is hence not included in the Lagrangian. This discussion makes it easy to understand

4The particles depicted here are the mass eigenstates, see below.



1.1. The Standard Model of Elementary Particle Physics 3

the structure of the term Lferm. It contains the kinetic terms for all fermion fields,

Lferm =
∑

Ψ

Ψ̄ i /DΨ , Ψ ∈
{
QL, uR, dR, LL, eR

}
, (1.5)

where /D ≡ γµDµ. The covariant derivative Dµ (of a fermion field in the fundamental
representation) is given by5

Dµ = ∂µ − igsGaµ
ta

2
− igW i

µ

σi

2
− ig′BµY , (1.6)

where gs, g, and g′ are the coupling constants of the SU(3)c, SU(2)L, and U(1)Y sub-
groups, respectively, and the associated generators are given by the Gell-Mann matrices
ta (a = 1, 2, . . . , 8), the Pauli matrices σi (i = 1, 2, 3), and Y . Note that the fields
Ψ ≡ Ψj (j = 1, 2, 3) are 3-vectors in generation space. The fact that there is more than
one generation in the SM allows for different bases of quark eigenstates.6 The kinetic
terms in Lferm are usually written in a basis, where the covariant derivative is diagonal.
This basis is called interaction basis and is not the basis which determines the propaga-
tion of the fields, i.e. the mass basis, see below.

Similarly, the term LG,W,B represents the kinetic terms of the gauge bosons Gaµ, W i
µ,

and Bµ,

LG,W,B = −1

4
Gaµν Ga,µν −

1

4
W i
µνW

i,µν − 1

4
Bµν B

µν , (1.7)

where the field strength tensors of the gauge fields written in the interaction basis read

Gaµν = ∂µGaν − ∂νGaµ + gsf
abc Gbµ Gcν , a, b, c = 1, 2, . . . , 8 ,

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν , i, j, k = 1, 2, 3 ,

Bµν = ∂µBν − ∂νBµ .
(1.8)

The tensors fabc and εijk are the structure constants of the two non-abelian subgroups.
The gauge-fixing and the Faddeev-Popov ghost Lagrangians, LGF and LFP, are crucial
for a proper implementation of the gauge sector and will not be relevant for the further
discussion in this section.

So far, no mass terms for the fermions and gauge bosons have been included. Indeed,
they are forbidden by the gauge principle. For this reason, one introduces a scalar
SU(2)L doublet Φ, the famous Higgs field, whose most general Lagrangian is given by

LHiggs = (DµΦ)† (DµΦ)− V (Φ) , (1.9)

where the potential can be written as

V (Φ) = −µ2Φ†Φ + λ
(

Φ†Φ
)2

. (1.10)

Assuming the dimensionful parameter to be positive (µ2 > 0), the scalar field acquires
a non-trivial vacuum expectation value (vev) 〈Φ〉 = v > 0, which in turn breaks the
electroweak symmetry via the symmetry breaking pattern SU(2)L × U(1)Y → U(1)em.

5If not stated otherwise, the sum over double indices is implicit.
6Assuming that neutrinos are massless, there is no such distinction in the lepton sector. However, as

verified by the neutrino oscillation experiments, see e.g. [21], there are at least two massive neutrinos,
so that a similar discussion also holds for the leptons. We will, however, focus on the quark sector, since
the class of models this thesis is based on can explain the mixing in the quark sector, see Chapter 2.
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This electroweak symmetry breaking (EWSB) gives masses to the matter and gauge
fields. To see this, we expand the Higgs doublet around this minimum via

Φ(x) =
1√
2

(
−i
√

2ϕ+(x)
v + h(x) + iϕ3(x)

)
, (1.11)

where the scalars ϕ± and ϕ3 represent the three Goldstone bosons associated with the
symmetry breaking in question. They can be identified with the longitudinal degrees of
freedom of the massiveW± and Z bosons. The scalar h denotes the physical Higgs boson,
which is necessary to unitarize WW scattering.7 It is now not difficult to comprehend
that the kinetic term of the Higgs |DµΦ|2 gives rise to masses to the gauge bosons.
The physical Higgs boson h also acquires a mass after EWSB. The radiative corrections
to this mass are the origin of the gauge hierarchy problem, which will be discussed
extensively in the next subsection. The fermion masses are generated by means of the
Yukawa interactions

LYukawa = −Q̄LΦY ddR − Q̄LΦ̃Y uuR − L̄LΦY eeR + h.c. , (1.12)

where Φ̃ ≡ iσ2 Φ† and the quantities Y f (f = u, d, e) represent the non-diagonal, com-
plex 3× 3 Yukawa matrices in the interactions basis. In order to end up in the physical
basis of propagating mass eigenstates shown in Table 1.1, we diagonalize these terms by
bi-unitary transformations

v√
2
Y u = Uu diag(mu,mc,mt)W

†
u , (1.13)

and analogously for the down-type quarks and the charged leptons. The mass eigenstates
can then be obtained after the rotations fmass

L ≡ U †f fL and fmass
R ≡W †

f fR. Since the
matrices U and W are unitary, all interactions in the lepton sector and all neutral-
current interactions in the quarks sector, i.e. the couplings to the neutral gauge bosons
g, γ, Z , are not affected by this rotation. The quark couplings to the W bosons, however,
become

LWq̄q′ =
g√
2
ūL γ

µW+
µ V CKM dL + h.c. , (1.14)

where the matrix
V CKM ≡ U †uUd (1.15)

is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [23, 24]. We see that, while flavor
mixing is not possible in neutral currents (at tree level), it is possible in the charged
electroweak interactions.

The structure of the SM Lagrangian, in particular the gauge-boson couplings to fermions
and the mixing in the flavor sector have been verified convincingly. Any deviation from
the SM would have been seen by the precise measurements performed at the Large
Electron Positron Collider (LEP) at CERN. The experimental results for the electroweak
precision (pseudo) observables [25] are summarized in Figure 1.1,8 which shows the
deviations of the measurements from the SM predictions in standard deviations, the
so-called pull. We see that all observables are compatible with the SM. Only the decay
rate of the process Z → bb̄ normalized to the full hadronic decay rate, R0

b = Γbb̄Z /Γ
had
Z ,

7In fact, the physical Higgs particle h is not required for the generation of the gauge boson masses,
which could also be implemented by means of a general non-linear sigma model, as explained in e.g. [22].

8It is assumed that the reader is familiar with the list of electroweak precision (pseudo) observables
shown in Figure 1.1. A detailed explanation for each observable is provided e.g. in [26].
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Figure 1.1: List of electroweak precision observables published by the GFitter group
after the discovery of the Higgs boson [27]. A definition of all observables can be found
in [26]. Shown are the deviations of the measurements from the SM predictions in
standard deviations.

and the forward-backward asymmetry of the same decay, Abb̄FB, deviate by more than
two 2σ from the SM prediction. Both of them are sensitive to vertex corrections. Since
the remaining observables agree within 2σ with the SM, the electroweak gauge-boson
propagators should only get corrections, defined (in the W -boson case) via

−i
p2 − g2 Π(p2)/2

(
ηµν −

pµpν
p2

)
, (1.16)

that do not spoil the SM prediction too much. Peskin and Takeuchi developed a way to
parametrize possible deviations from the gauge-boson propagators by the three oblique
parameters [28, 29]

S =
4s2
wc

2
w

α

[
Π′ZZ(0) +

s2
w − c2

w

swcw
Π′Zγ(0)−Π′γγ(0)

]
,

T =
1

αc2
wm

2
Z

[
ΠWW (0)− c2

w ΠZZ(0)− 2cwsw ΠZγ(0)− s2
w Πγγ(0)

]
,

U =
4s2
w

α

[
Π′WW (0)− c2

w Π′ZZ(0)− 2swcw Π′Zγ(0)− s2
wΠ′γγ(0)

]
,

(1.17)
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where sw ≡ sin θw = g′/
√
g2 + g′2 and cw ≡ cos θw = g/

√
g2 + g′2 are the sine and

cosine of the Weinberg angle θw, respectively, and α ≡ e2/4π denotes the fine-structure
constant. The parameters are defined in such a way that they describe the shifts relative
to the SM values, hence S = T = U = 0 in the SM by construction. The best fit to
the experimental input values after the discovery of the Higgs leads to [27] (assuming
U = 0)9

Sexp = 0.05± 0.09 ,
Texp = 0.08± 0.07 ,

ρ =

(
1.00 0.91
0.91 1.00

)
, (1.18)

in which ρ denotes the correlation matrix. We see that the past and current measure-
ments verify the SM convincingly. Consequentially and importantly for the rest of this
chapter, the electroweak precision measurements put severe constraints on UV comple-
tions of the SM. The question now arises why one expects the LHC to find particles
that do not belong to the particle content of the SM. This is the subject of the next
subsection.

1.2 Problems of the Standard Model and the Need for
New Physics

There are several indications that the SM cannot be valid to arbitrary high energy scales.
Discussing all of them would go beyond the scope of this thesis, but some chosen problems
should be mentioned to motivate the search for BSM physics. On the one hand, there
is experimental evidence based on some unexplained observations, which makes the SM
fall short of being a complete theory of fundamental interactions. Especially phenomena
in cosmology require new physics (NP): The SM neither incorporates the full theory
of gravitation as described by Einstein’s general relativity (GR), nor does it give an
explanation for the accelerating expansion of the universe (as possibly described by dark
energy, see [30] for a review), nor does it provide any viable dark matter (DM) candidate
[31] that is compatible with all current cosmological observations. Furthermore, the CP
violating phases in the CKM matrix do not provide enough CP violation for a baryon
asymmetry which in turn is crucial for baryogenesis.10 Finally, in order to correctly
describe the neutrino oscillations [21], which are a consequence of finite masses of at
least two neutrino flavors, one may need to introduce an additional neutrino which is
not incorporated in the SM. These observations alone justify the point of view that the
SM cannot be a theory that is valid up to arbitrary high scales. On the other hand, it
is also desirable from the theoretical standpoint to have physics beyond the SM. The
stability bound of the Higgs potential, for example, indicates that the vacuum could
only be metastable [33], and the unification of the strong and electroweak interactions
is only almost accomplished in the SM. Furthermore, there are even more fundamental
questions, such as: Why are there three fermion generations? What drives the mass
term in the Higgs potential negative?

Due to all these open questions, the SM cannot be considered as a consistent theory
up to arbitrary high energies, although its feature of being renormalizable would indicate
that. It rather has to be seen as an effective field theory (EFT) valid up to a certain

9We assume U = 0, since Randall-Sundrum models do not contribute to the U parameter, as we will
see in Chapter 2. For U ≡ 0, the experimental values for the S and T parameters are slightly larger [27].

10Although the SM is principally able to fulfill the necessary Sakharov criteria [32] (C violation,
CP violation, baryon-number non-conservation, and interactions out of thermal equilibrium), the CP
violation on the SM is orders of magnitude too small to account for the observed baryon asymmetry.
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energy scale ΛUV, where it is replaced by a UV completion, i.e. a more fundamental
theory. As a consequence of this, the SM Lagrangian can be written as part of an
effective Lagrangian

Leff = c0 Λ4
UV + cΦ2 Λ2

UVΦ†Φ− λ(Φ†Φ)2 +L(4)
gauge +L(4)

matter +
L(5)

ΛUV
+
L(6)

Λ2
UV

+ . . . , (1.19)

where c0, cΦ2 , and λ are dimensionless constants, L(4)
gauge includes the gauge interactions

as well as the gauge-fixing and Faddeev-Popov ghost Lagrangian, while L(4)
matter com-

prises the fermion kinetic terms as well as the Yukawa interactions. The superscripts
of the operators denote their mass dimensions and the ellipses stand for operators of
dimension 7 or higher.11 These operators are suppressed for low-energy processes by
(E/ΛUV)n, where E is the typical energy scale of the process, and are therefore called
irrelevant operators of the EFT. Dimension-four operators are marginal, while the ones
with dimension three or lower are referred to as relevant. Indeed, the (cosmological)
constant and the Higgs mass term are relevant in the sense that they are sensitive to
the UV cutoff scale of the theory, and the latter gives rise to the gauge hierarchy prob-
lem. We will encounter another hierarchy problem when dwelling on the flavor sector
of the SM. Both the gauge and the flavor (hierarchy) problem shall be discussed in the
following, since the theory that this thesis is based on can tackle both of them, as we
will see in Subsection 1.4.4 and particularly in Chapter 2.

The Gauge Hierarchy Problem

The gauge hierarchy problem is often stated as the problem of the huge radiative correc-
tions to the bare Higgs mass, where the integration over the loop-momentum is bounded
from above by a hard-momentum cutoff Λ:

⇒ δm2
h =

3λ2
f

8π2

[
−Λ2 + 6m2

f log

(
Λ

mf

)
− 2m2

f

]
.

h h

f

Sometimes, it is then argued that this quadratic dependence on Λ is only an artifact of
using the hard-momentum regularization, while in dimensional regularization the loop
integral would only be logarithmically sensitive to the loop-momentum cutoff. However,
this argument is due to a lack of the understanding of the (Wilsonian) renormalization
group (RG), which shall be explained in the following.12 Let us consider the general
action built of local interactions Oi in d dimensions [36]

S =

∫
ddx

∑

i

giOi =

∫
ddx

∑

i

ci
Λδi−d

Oi , (1.20)

where ci = Λδi−d gi with the characteristic scale of the system Λ is the dimensionless
O(1) coupling, called Wilson coefficient, and δi is the mass dimension of the operator

11Operators of mass dimension 1 and 3 are not gauge-invariant and thus do not appear in (1.19). The
only gauge-invariant dimension-five operator is given by 1/ΛUV (LL Φ)T λ (LL Φ), which gives (after
EWSB) a Majorana mass term for the left-handed neutrinos mν ∼ v2/ΛUV. This term could arise from
a UV completion of the SM via the see-saw mechanism, for a review see [34].

12This discussion is based on Ian Low’s lecture at the TASI summer school 2013 [35].
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Oi. Using dimensional analysis, we can now estimate the contribution from a given
operator Oi in a scattering process at the energy scale E as (E/Λ)δi−d. In the case of
the Higgs boson, where OΦ2 = Φ†Φ and gφ2 = −µ2, this means that if the cutoff scale
is Λ = MPlanck ∼ 1019 GeV and the energy E ∼ 100 GeV, the natural size of the Higgs
mass term will then be

µ2 ∼ cΦ2 × (1019 GeV)2

(100 GeV)2
× (100 GeV)2 , (1.21)

where we have assumed a typical scale of the low-energy theory of 100 GeV (i.e. the
electroweak scale) on the right-hand side. That is, to arrive at a light mass for the Higgs
boson, the value for the dimensionless coupling at the cutoff scale has to be extremely
tiny, cΦ2 ∼ (10−17)2. This is the hierarchy or fine-tuning problem of the Higgs mass and
is regarded as unnatural. In this context, it is worthwhile to recapitulate the concept
of naturalness. The strongest naturalness criterion is Dirac’s naturalness condition that
all dimensionless coefficients are of order one and the dimensionful parameters are of
the same order of magnitude [37, 38]. A weaker criterion is given by ’t Hooft saying
that small parameters are natural if setting a small parameter to zero enhances the
symmetry of the theory [39]. Technical naturalness is yet a weaker requirement. It does
not require all parameters to be of the same order, it only implies that none of the
parameters receive radiative corrections that significantly exceed its magnitude. We see
that the coefficient of the Higgs mass operator is not even technically natural and calls
for an explanation around the TeV scale.13 At this point, it should be mentioned that
we would arrive at the same conclusion if we considered the aforementioned one-loop
corrections to the bare Higgs mass. In the case of dimensional regularization, the bare
Higgs mass is quadratically dependent on the mass mf of the heavy fermions running
in the loop. These particles are assumed to have masses of order of the cutoff scale Λ,
so the fine-tuning problem also appears in this regularization procedure (although the
dependence on the loop-momentum cutoff is logarithmically divergent).

So far this has just been dimensional analysis. A more precise prediction on how the
couplings depend on (“run” with) the energy is given by the RG equation

d

d log p
cΦ2(p2) =

[
− 2 + γΦ2(gi)

]
cΦ2(p2), (1.22)

which includes all loop-induced effects to the couplings. The anomalous dimensions
γΦ2(gi) may depend on all couplings, which run and in turn depend on log p. In the
vicinity of a fixed point (βgi = dgi/d log p = 0), however, the couplings {gi} become
constant {g?i } and the solution for the RG equation is given by

cΦ2(p2) = cΦ2(Λ2)

(
Λ

p

)2−γΦ2 (g?i )

. (1.23)

Provided that γΦ2(g?i ) � 1, the parameters cΦ2 at different energy scales are related
to each other quadratically. The hierarchy problem can now be formulated in terms of
criticality. Figure 1.2 shows the phase diagram of EWSB [41]. In order to arrive at a

13Even more severe is the problem of the cosmological constant, which is indirectly measured at
(10−12 GeV)4/Λ4 [40]. Thus, either the UV completion sets in at the meV scale or a fine-tuning of
hundreds of orders of magnitude is necessary if one assumes Λ = MPl. Since the cosmological constant
is not directly relevant for the physics of the SM, this problem will, however, be ignored and we will
focus on solving the fine-tuning problem of the Higgs sector in the following.



1.2. Problems of the Standard Model and the Need for New Physics 9
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Figure 1.2: Phase diagram of electroweak symmetry breaking [35, 41].

Higgs vev around the electroweak scale (cΦ2(v2) ≈ O(1)), we have to sit extremely close
to the critical line, where cΦ2(Λ2) = 0. There are three possible explanations for that:

1. The critical line is a locus of enhanced symmetry, which essentially forces us to
sit on top of the critical line. There are only two known possibilities of such
symmetries. The first one is a bosonic symmetry, namely a (spontaenously) broken
global symmetry. Just like the pion, the Higgs could be a composite Pseudo
Nambu-Goldstone boson (PNGB) of a strongly-coupled sector.14 The second one is
a fermionic symmetry, i.e. supersymmetry. We will come back to both possibilities
in the subsequent section.

2. The anomalous dimension is not γΦ2(g?i ) � 1, but γΦ2(g?i ) ∼ O(1). This leads
to a very slow running of the mass parameter and implies that there should be
an approximate conformal invariance [43, 44]. In this scenario, since the running
is slow, we do not need to sit close to the critical line to obtain a Higgs mass of
126 GeV.

3. The third possibility is to accept fine-tuning, which is not completely absent in
EFTs. An example can be found in the effective description of the nucleon-nucleon
scattering below the pion threshold, which is basically described by contact inter-
action terms between the nucleons [45]. The cutoff of this effective theory should
be around the pion mass mπ ≈ 140 MeV or in some cases around the QCD scale
ΛUV ≈ 1 GeV. It turns out, however, that the inverse s-channel scattering length
of protons and neutrons is measured to be 1/as ≈ 10 MeV, implying a fine-tuning
of at least 1%. In this case, the UV completion is known, but as of today, there is
no explanation for this hierarchy of scales, except for the theory being fine-tuned.

Although the third possibility cannot be disregarded completely, there are good reasons
to believe that naturalness wants to tell us that something is around the corner, i.e. that
some NP sets in around the TeV scale. Indeed, there are two examples in particle
physics, where naturalness could have been used to successfully predict the existence of
new particles:

14The Higgs could also be the fifth component of a 5D gauge field. However, by the AdS/CFT
correspondence [42] this scenario is the dual description of a composite PNGB Higgs, see e.g. [22].
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The first one deals with the self-energy of the electron, which is proportional to the
inverse radius of the electron radius, re < 10−18 m,15 and should give the electron a
mass of around me ∼ e/re ∼ 100 GeV. This is much larger than the measured electron
mass of 0.511 MeV. The resolution is to introduce the positron, i.e. a new particle with
the same mass but opposite electric charge [48]. The creation of an e+e− pair out of
the vacuum at the distance scale of the Bohr radius re cancels the infinite self-energy of
the electron. The cancellation of every electron in the universe is guaranteed by a new
symmetry called chiral symmetry. In this case, naturalness could have predicted both
new degrees of freedom and a new symmetry principle to cancel the linear divergence
in the electron mass, ending up with an only log-divergent mass δme ∼ me log Λ/me ,
which is controlled by the symmetry breaking parameter me (note that for me → 0 the
chiral symmetry is restored). Hence, the critical line is a locus of enhanced symmetry
and a large cutoff is possible without much fine-tuning.

The second example is the discovery of the already-mentioned spin-0 (pseudo) scalar
mesons, the pions, in low-energy QCD. Their masses of mπ ≈ 140 MeV are only natural
if new degrees of freedom exist at or below the scale Λnew ∼ 4πmπ ∼ 1 GeV. As it
turned out, the ρ mesons have masses of around mρ ≈ 750 MeV and the QCD scale is
ΛQCD ≈ 1 GeV, where the chiral symmetry in the light quark sector gets spontaneously
broken. As a result, the pions are PNGBs of this broken symmetry and are thus much
lighter than mρ and ΛQCD. This will be dwelled on in Section 1.3.2, where we will discuss
the possibility of the Higgs being a PNGB of a spontaneously broken global symmetry.

The scalar nature of the Higgs boson in the SM causes a completely analogous problem.
Interactions of the Higgs with the massive gauge bosons, top quarks, and itself create a
self-energy that is quadratically sensitive to the UV cutoff scale. In order to explain the
naturalness of the light Higgs mass, new particles or new symmetries are required at the
TeV scale, which is one of the reasons why the LHC was built. It should be emphasized
that this is an important difference to other problems of the SM, which could be cured
by NP setting in much above the TeV scale.16

The Flavor (Hierarchy) Problem

The downside of New Physics at the TeV scale is that it would immediately cause some
trouble with flavor observables. As we have seen in Section 1.1, the fermion couplings
to the neutral gauge bosons are flavor diagonal at tree level, so that flavor-changing
neutral currents (FCNCs) are loop-suppressed in the SM. As a matter of fact, they are
additionally suppressed due to the Glashow-Iliopoulos-Maiani (GIM) mechanism [49],
which essentially states that in the case of equal quark masses the unitarity of the CKM
matrix enforces FCNCs to vanish, even at loop-level.17 Higher-dimensional operators,
such as the last terms in (1.19), can, however, lead to tree-level FCNCs and thus to large
modifications of the SM predictions for rare meson decays or neutral meson mixing, for
example. Since no deviations have been detected so far, the current measurements

15The upper bound on the size of the electron can be deduced by the measurements of its anomalous
magnetic moment [46, 47].

16There is also another hint on new physics at the TeV scale, the so-called WIMP miracle. In a
nutshell, it states that a weakly-interacting massive particle (WIMP) with a mass of around the TeV
scale could be responsible for the correct abundance of dark matter in the universe today.

17This can be traced back to the fact that all SM interactions are invariant under a full U(3)5 flavor
symmetry, which is only broken by the Yukawa couplings.
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set lower limits on the NP physics scale ΛUV. The strongest bounds18 come from the
K0-K̄0-mixing resulting in a lower bound of

ΛUV & 104 − 105 TeV . (1.24)

Thus, although a model could have a good solution for the gauge hierarchy problem, the
bounds from FCNCs immediately pushes the scale at which it is realized to much higher
energy scales. Consequentially, a viable model addressing the hierarchy problem must at
least explain why the Wilson coefficients shown in (1.20) are sufficiently small not to be
in conflict with the data. Ideally, the same mechanism should explain why the Yukawa
couplings have a hierarchical structure, which is put in by hand in the SM. Although
the Yukawa matrices cannot be measured, since many parameters are not physical, they
give rise to the large hierarchies in the quark masses and the CKM matrix. Concretely,
the mass ratios read [50]

mu : mc : mt ≈ 1 : 500 : 100000 , md : ms : mb ≈ 1 : 20 : 1000 , (1.25)

and the CKM mixing matrix (1.26) can be written in the Wolfenstein parametrization
as

V CKM =




1− λ2

2 λ Aλ3(ρ̄− iη̄)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ̄− iη̄) −Aλ2 1


 , (1.26)

where the parameters are given by

λ =
|Vus|√

|Vud|2 + |Vus|2
, A =

1

λ

∣∣∣∣
Vcb
Vus

∣∣∣∣ , ρ̄− iη̄ = −V
∗
udVub
V ∗cdVcb

. (1.27)

While A, ρ̄, and η̄ are O(1) numbers, the parameter λ ≈ 0.23 is small. The Wolfen-
stein parametrization explicitly shows the diagonal-dominant, hierarchical structure of
the CKM matrix, which is not explained within the SM. While this is - just like the
gauge hierarchy problem - no problem from the phenomenological point of view, it is
unsatisfactory to have no explanation for these hierarchies in the fermion sector.

In the rest of this chapter, I want to present some of the current theories that address
at least one of the two hierarchy problems in question. While explaining each of these
BSM scenarios in detail would go beyond the scope of this thesis, it is worthwhile to
give a short overview on the idea and the set-up of the most popular theories. We will
also point out their compatibility with the electroweak precision tests, in particular the
S and T parameters, and show some typical signals at the LHC.

1.3 New Physics Models beyond Extra Dimensions

We begin our discussion of some of the currently most popular NP models based on the
ordinary Minkowski space-time with the unambiguous extension of the Poincaré group
before we will then turn to the possibility of the Higgs to be a composite state. While
these models mainly address the gauge hierarchy problem, we will also discuss a model
whose main objective is to explain the hierarchies in the flavor sector.

18We will concentrate on the quark sector from now on, although flavor violation is even more phe-
nomenologically constrained in the lepton sector [50].
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1.3.1 Supersymmetry

The most popular way to reduce the large corrections to the Higgs mass is given by su-
persymmetry (SUSY).19 Its origin can be traced back to the famous theorem of Coleman
and Mandula, which basically states that under certain assumptions - such as analyticity
and non-triviality of the S-matrix as well as the presence of a mass gap - the most gen-
eral symmetry of the S-matrix in a local quantum fields theory is a direct product of the
Poincaré group and an internal symmetry group [53].20 However, this theorem included
a loophole, which was pointed out by Haag, Lopuszanski, and Sohnius [55]: Coleman
and Mandula implicitly assumed that the symmetry generators had to be bosonic, which
was sufficient for the immediate purposes but missed the possibility of supersymmetry,
the only possible extension of the Poincaré group.

In a nutshell, supersymmetry assigns each bosonic degree of freedom a fermionic
one and vice versa. In the lowest SUSY, there is only a minimal number of fermions
and bosons in a multiplet, the so-called supermultiplet. In particular, in the minimal
version of the supersymmetric extension of the SM, the minimal supersymmetric SM
(MSSM) [56], there is exactly one SUSY partner for each SM degree of freedom, which
has been shown in Table 1.1: The fermionic partners of the SM gauge bosons are Ma-
jorana fermions and are called gauginos, whereas the partners of the chiral SM Weyl
fermions fL,R are complex scalars called sfermions f̃L,R, e.g. stops t̃R and t̃L, or staus τ̃R
and τ̃L. Note that the subscripts R and L do not denote the chirality of the scalars, but
rather refer to the chirality of the corresponding SM Weyl fermions. In contrast to the
gauge bosons and fermions, the Higgs sector has to be enlarged already in the MSSM.
This is for two reasons: Firstly, a second Higgs doublet is necessary for a gauge-invariant
Yukawa term for the up-type quarks and secondly, it is crucial to cancel anomalies from
the Higgsinos. Consequentially, the MSSM includes two Higgs doublets (with opposite
hypercharges) having four degrees of freedom each, where three of them are eaten by the
gauge bosons and represent their longitudinal degrees of freedom. This in turn means
that there are five physical degrees of freedom left over. Two of them are charged (H±),
one is a pseudoscalar (A), and two of them are scalars (h, H), where the lighter one
can be identified with the 126 GeV resonance detected at the LHC. The superpartners
of the scalar Higgses are called Higgsinos.

The supersymmetric origin of the theory ensures that the quantum corrections to
the Higgs boson mass vanish (if SUSY is exactly realized). To see this, we consider the
contribution of the top quark with mass mt and Yukawa coupling yt, whose contribution
to the Higgs mass reads

→ ∆m2
h|top =

3λ2
t

8π2

[
−Λ2 + 6m2

t log

(
Λ

mt

)
− 2m2

t

]
.

h h

t

On the other hand, the contribution of its scalar superpartners, the stops, is found to
be

19Thorough discussions of the theory of supersymmetry can be found e.g. in [51, 52].
20This paper played an important role at that time, since it could rule out a class of ideas in which

the spin and flavor group were unified in SU(6) [54].
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h h

t̃

+
h h

t̃

→ ∆m2
h|stops =

3λt̃
8π2

[
−Λ2 + 2M2

t̃
log

(
Λ

Mt̃

)]
−

3λ2
t̃
v2

8π2

[
−1 + 2 log

(
Λ

Mt̃

)]
. (1.28)

The condition that the coupling constants are related, λ2
t = −λt̃, is required by SUSY.

Thus, after adding up the two contributions, all quadratical divergences vanish and only
the logarithmical divergencies remain. If SUSY is exactly realized, then also the particle
masses are the same, M2

t̃
= m2

t and there are no divergencies in the limit v → 0. In
fact, since SUSY is a symmetry of the quantum theory, all masses are not renormalized
at any order in perturbation theory [57]. Another nice feature of the MSSM is that
the running of the gauge couplings will lead to a gauge-coupling unification at scale
ΛGUT ≈ 1016 GeV. This can be a strong hint of a grand unified theory (GUT), where
the three gauge interactions at low energies emerge from a single gauge group at ΛGUT.
Furthermore, the MSSM provides a viable candidate for dark matter. Since SUSY does
not forbid terms giving rise to baryon- and lepton-number violating tree-level processes,
such as proton decay, one has to introduce the so-called R-parity [58]. Essentially, this
symmetry forbids Feynman vertices which include only one superpartner. As a nice
outcome of this rather ad-hoc imposed discrete symmetry is that the lightest supersym-
metric particle (LSP) is stable and thus represents a perfect DM candidate.21 Despite
these appealing features, the MSSM has several issues:

SUSY has to be broken in nature, since otherwise the sparticles, which have the same
masses as their SM partners, would have already been detected experimentally. It turns
out that it is not possible to incorporate SUSY breaking with only the MSSM content
due to the supertrace theorem [62]. More generally, this theorem rules out the possi-
bility of constructing simple models in which supersymmetry breaking is communicated
to ordinary supermultiplets by tree-level renormalizable couplings. For this reason one
needs a hidden sector, in which SUSY gets broken by the vev 〈F〉 of the SUSY breaking
field F at a scale Λ, and some kind of messenger sector, which communicates the SUSY
breaking to the MSSM. In the spirit of effective field theory, one includes all gauge
and Lorentz invariant SUSY breaking terms, which are essentially bilinear and trilin-
ear terms, built out of the sparticle fields, with dimensionful couplings. These (mass)
couplings are usually given by

m���SUSY ∼
〈F〉
Λ

, (1.29)

and should be in the TeV range in order to avoid another gauge hierarchy problem.
While the MSSM without the SUSY breaking terms has as many parameters as the SM,
the soft SUSY-breaking terms introduce 105 masses, phases, and mixing angles in the
MSSM Lagrangian that cannot be rotated away by redefining the phases and flavor basis
for the quark and lepton supermultiplets and consequentially have no counterpart in the
ordinary SM. Thus, in principle, supersymmetry breaking (as opposed to supersymmetry
itself) appears to introduce a tremendous arbitrariness in the Lagrangian. Assuming the
new parameters to be generic O(1) numbers to circumvent fine-tuning, these terms lead
to too large contributions to FCNCs and one has to assume the SUSY breaking terms
to be flavor diagonal. However, there is no reason, except for the phenomenological one,

21There are, however, less restrictive solutions, e.g. imposing lepton-baryon number conservation as a
global symmetry [59] or minimal flavor violation [60, 61].
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Ñ1

Figure 1.3: Typical decay chain in supersymmetric theories shown in [81]. The
squarks (sleptons) are denoted by q̃ (l̃) while Ñ1,2 denote the neutralinos, i.e. the mass

eigenstates of mixing of the neutral gauginos and Higgsinos. The neutralino Ñ1 is the
stable LSP and gives rise to missing energy in the detectors.

why this strong constraint should be imposed. Especially in models where the SUSY
breaking is mediated by gravity, so-called gravity-mediated SUSY breaking or mSUGRA
models [63–68], the requirement of flavor diagonality has only a phenomenological, but
no theoretical foundation. Gauge-mediated SUSY-breaking models, on the other hand,
could explain this, since the SUSY-breaking is mediated by the flavor-diagonal gauge
interactions [69–75], see [76] for a nice review. It should be mentioned that despite
the above disadvantages of the SUSY-breaking terms, they imply another interesting
feature: If the SUSY breaking scale is large enough, RG running can turn the Higgs mass
parameter negative, triggering EWSB. This is known as radiative symmetry breaking
[77].

Another problem is the so-called µ problem of supersymmetric theories. The only
term in the MSSM superpotential that has a positive mass dimension is the µ-term.
The determination of the minimum of the Higgs potential and demanding for a non-
zero vev that triggers EWSB imply constraints on the µ-parameter to be in the order
of the SUSY-breaking scale. However, there is no reason the µ-parameter should be
assumed to be in that range right from the beginning. If there is no further explanation,
it should rather be at the order of the UV cutoff of the MSSM, just like the SM Higgs
mass parameter. This would cause another hierarchy problem and SUSY would not have
brought noticeable improvement. However, since the mass parameters in SUSY theories
do not renormalize, the situation is much better than in the SM. The mass parameter
would be technically natural according to the discussion below (1.21). Nevertheless, it
is an open question of what sets the scale for the µ parameter of the MSSM.

Finally, the first run of LHC has not detected any light SUSY partners yet, although
the light Higgs mass would require that. Typical SUSY searches look for jets (and
leptons) plus missing energy, where the missing energy stems from the LSP, which stands
at the end of a chain of subsequent decays of supersymmetric particles. Figure 1.3 shows
an example for such a decay chain. Assuming the SUSY partners to be approximately
degenerate, the current measurements push the lower bound on squark and slepton
masses to the several hundred GeV (depending on the specific scenario) [78, 79], i.e. right
below the TeV scale, where NP should appear in order not to reintroduce a hierarchy
problem. Therefore, today’s point of view about SUSY is such that Higgsinos, stops,
and the gluino should not be too far above the weak scale, while the rest of the SUSY
spectrum, including the squarks of the first two generations, can be heavier and beyond
the current LHC reach, see e.g. [80]. It will be interesting to observe whether (natural)
SUSY will survive the second run of LHC.
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1.3.2 Composite Higgs Models

In this section, we want to understand how the Higgs can emerge as a (composite) Pseudo
Nambu-Goldstone boson of a strongly-coupled sector. For this purpose, it is crucial to
understand the concept of technicolor theories, which will therefore be introduced first.
In the context of composite models, it is also possible that the SM fermions are partially
composite. This will be touched on in this subsection as well.

Technicolor Theories

Technicolor (TC) theories make use of the fact that, at the scale ΛQCD, where the QCD
confinement sets in, the quark condensate 〈qq̄〉 = 〈qLq̄R〉+ 〈qRq̄L〉 gains a non-zero vev
which in turn breaks the electroweak symmetry, even if no SM Higgs scalar was realized
in nature. The electroweak symmetry is broken in the right pattern, since the quark
condensate has the same charges as the SM Higgs doublet. The starting point is the
Lagrangian (1.5), which shows that the kinetic terms for the fermions are invariant under
a global SU(2)L×SU(2)R×U(1)B transformation.22 This chiral (and baryon-number)
symmetry is broken down to SU(2)V × U(1)B by the quark condensate, giving rise to
three massless Goldstone bosons, according to the Nambu-Goldstone theorem. These
Goldstone bosons can be identified with the well-known pions. Only the SU(2)L×U(1)Y
subgroup of the full global symmetry is gauged giving rise to the electroweak symmetry.
As the QCD vacuum breaks the electroweak symmetry, the pions are eaten to give
masses to the electroweak gauge bosons [22]. To see this, one can derive the effects
of the conserved weak currents on the gauge-boson propagators. One finds that for a
pion decay constant fπ, SU(2)L coupling constant g, and the Weinberg angle θw, the
electroweak gauge bosons would gain masses of [82]

mW =
gfπ
2
≈ 28 MeV , mZ =

gfπ
2 cos θw

≈ 32 MeV , (1.30)

which are, however, far below the experimentally measured values. Nevertheless, it led
Weinberg [83] and Susskind [84] to propose the first TC models. Being upscaled versions
of QCD, they were based on two flavors of so-called techniquarks, transforming in the
fundamental representation of the TC gauge group GTC = SU(NTC). The left-handed
(right-handed) components have to transform as a doublet (singlet) under the SU(2)L
gauge group in order to form a techniquark condensate that breaks the electroweak
symmetry. The β-function of the new gauge group GTC behaves just like its QCD
analog, with the only difference that the coupling becomes strong at the scale

ΛTC =

√
3

NTC

fTC
π

fπ
ΛQCD ∼ 4πfTC

π , (1.31)

where fTC
π is the equivalent of the pion constant, and is required to have a value fTC

π ≈ v
in order to give the experimentally measured gauge-boson masses. The advantage of TC
theories, or in general of theories where EWSB is achieved by a strong sector, is that
the hierarchy between the electroweak and the Planck scale is explained by dimensional
transmutation: The scale (1.31) is generated dynamically as the scale at which the TC
coupling gets strong.

22We will concentrate on the simplified case of one generation (i.e. two flavors) here. Moreover, we
will not consider the axial U(1) that is broken by quantum effects, even in the chiral limit.
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Figure 1.4: Visualization of the generation of mass terms in ETC theories. Both TC
and SM quarks couple to the ETC gauge boson GETC which is integrated out at the
scale ΛETC. The TC quarks then condense at the scale ΛTC and give rise to the mass
term for the SM quarks.

However, QCD-like TC models lead to predictions that are in conflict with experimen-
tal data, e.g. too large corrections to the electroweak S parameter. Naive dimensional
analysis (NDA) [85] suggests that contribution from the technifermions gives rise to
S ∼ NTCND/π, where ND denotes the number of technidoublets. This means, even
for minimal TC theories (with NTC, ND small), the contribution is S ∼ 1 which is far
above the experimental measured value (1.17). Another shortcoming of TC theories
is that the EWSB is only communicated to the boson, but not to the fermion sector.
For the generation of the latter’s masses, it is necessary to enlarge the gauge group to
GETC ⊃ GTC. Both the SM and TC fermions must transform under the same represen-
tation so that the ETC gauge bosons GETC can couple to both of them [86, 87]. These
models are referred to as extended technicolor (ETC) theories. After integrating out
the heavy degrees of freedom at some scale ΛETC > ΛTC, the coupling between the SM
quarks (q) and techniquarks (Q) is given by

Lint = g2
ETC

(Q̄Q) (q̄q)

Λ2
ETC

, (1.32)

where gETC is the GETC gauge coupling. Once the TC fermions condense at a lower scale
ΛTC, a mass term is generated for the SM fermions

g2
ETC

Λ2
ETC

〈Q̄Q〉 q̄q → mq ∼ ΛTC

(
ΛTC

ΛETC

)2

. (1.33)

This is depicted in Figure 1.4. In principle, the hierarchies between the three generations
can be generated by a cascade of breakings of the extended symmetry at different scales
Λ1 > Λ2 > Λ3. Note that ΛETC is set by the requirement that ΛTC has to be of the
order of the EW scale and if one uses the quark masses as an input (and assuming
gETC ∼ O(1)), ΛETC should not be too large, since otherwise the heavy quark mass
could not be generated. However, the same exchange of ETC gauge fields leading to
the four-fermion interaction (1.32) also generates operators (q̄q)2/Λ2

ETC giving rise to
various FCNC processes. As explained in Section 1.2, the bounds from KK̄ mixing
and rare meson decays, for example, require at least ΛETC & 104 TeV. Thus, there is
a tension between avoiding too fast FCNCs and generating large enough quark masses,
especially the mass of the top quark.

This problem can be solved by theories which do not behave like QCD, i.e. where
asymptotic freedom does not arise until a scale much greater than ΛTC [88–93]. The idea
is that the β-function of the ETC gauge group becomes approximately conformal above
ΛTC. As already used in (1.23) the corresponding radiative corrections would give rise
to a power-law enhancement factor (ΛETC/ΛTC)γ , where γ is the anomalous dimension.
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Yang-Mills theories with this behavior are called walking, as the couplings runs slowly
for a large range of scales. Due to these radiative corrections, the corresponding walking
technicolor theories allow for fermion masses

mq ∼ ΛTC

(
ΛTC

ΛETC

)2−γ
, (1.34)

which ameliorates the FCNC problem, since now the scale ΛETC can be increased. How-
ever, the anomalous dimension is bounded from above by γ < 1,23 so that one still
requires some amount of fine-tuning to explain the top quark mass. However a more
severe problem with (extended) TC theories is that they are higgsless theories, i.e. their
spectrum does not contain a sharp scalar resonance such as the one discovered at the
LHC. In walking TC theories, there is a candidate that could be narrow and even lighter
than those from TC, but they are still heavier than the boson found at the LHC [94].24

It is therefore reasonable to look for other versions of composite models which include
a light scalar particle in the spectrum.

Composite Higgs

After this short introduction to models with a composite sector, we now turn to the
models combining the idea of a light scalar particle and composite models. In the
eighties, Georgi and Kaplan pointed out that the Higgs boson can be naturally lighter
than other composite resonances if it emerges as a Pseudo Nambu-Goldstone boson
of an enlarged global symmetry of the strong sector [98, 99]. We can understand the
idea with the help of the minimal composite Higgs model [100, 101]. In this model,
the SM fermions and gauge bosons are assumed external fields to a strong sector with
composites resonances and are considered as elementary. The composite sector has a
global symmetry SO(5)×U(1)X , which is dynamically broken down to SO(4)×U(1)X
at an energy scale f . The subgroup SO(4) ∼ SU(2)R×SU(2)L includes the electroweak
gauge group of the SM so that the hypercharge is given by QY = T 3

R + QX . The four
Goldstone bosons that emerge from the breaking SO(5)→ SO(4) can be identified with
the four degrees of freedom of the Higgs doublet transforming as a fundamental of SO(4)
or, equivalently, as a complex doublet of SU(2)L. Since the Goldstone modes transform
under gauge transformations as ϕi(x)→ ϕi(x)+α(x), where α is the gauge parameter, a
Higgs potential cannot be not generated at tree-level. Loops of SM fermions and gauge
bosons, on the other hand, generate a Higgs potential which breaks the electroweak
gauge group SU(2)L × U(1)Y ⊂ SO(4).25 In this context, the electroweak scale v is
dynamically generated and can be smaller than the scale f , which distinguishes them
from TC theories, where no such separation of scales exists, and which sets the scale of
the heavy resonances of the strong sector.

An important imprint of PNGB models and the generated Higgs potential is that the
Higgs couplings are modified compared to the SM. In the above scenario, one finds [22]

gV V h = gSM
V V h

√
1− ξ , gV V hh = gSM

V V hh (1− 2ξ) , (1.35)

23This bound can be derived by an analysis of the Schwinger-Dyson equation, see e.g. [43].
24In walking TC theories, there is a PNGB connected to the breaking of the conformal symmetry, the

so-called dilaton [95], which has the same quantum numbers as the SM Higgs boson, but has significantly
different self-coupling [96, 97].

25In order to arrive at a non-zero Higgs vev, one needs a massive fermion in the loop. In this sense,
the heavy top quark was a blessing for composite Higgs models. See [100] for a detailed discussion.
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where ξ = v2/f2 . Note that for f → ∞ we recover the SM Higgs couplings, since
the effects of the heavy resonances decouple. More interesting is the case of ξ being
large enough to give considerable deviations from the SM predictions. It must, however,
be small enough such that the model can pass the electroweak precision tests. After
including tree-level as well as loop-level corrections to the S and T parameters, one
finds ξ = v2/f2 . 0.1 [22], which is a natural separation of scales. There are stronger
constraints from CP-violating and FCNC processes if the EWSB is communicated to
fermions via the same mechanism as in ETC. Assuming ΛUV & f � v, one would have
to pay the price of fine-tuning the parameter ξ to be very small. This in turn would
reintroduce the fine-tuning problem again. This will be addressed in the next paragraph.

Although the gap between v and f can be explained, the former still suffers from ra-
diative corrections. This is the motivation for the so-called collective symmetry breaking,
which is realized in a class of models called little Higgs [102]. In these models the global
symmetry is larger than necessary to accommodate the four Goldstone bosons that can
be identified with the scalar degrees of freedom of the Higgs. Since the electroweak
gauge group is enlarged as well, there are additional gauge bosons which become heavy
by eating the additional Goldstone bosons. If now either the SM gauge bosons or the
additional bosons couple to the Higgs there is a leftover global symmetry, which ensures
that the Higgs remains massless. If both couple to the Higgs, the latter acquires a mass,
which is only logarithmically divergent, see [103] for further details.

Partial Compositeness

We will now come back to the issue of the too large contributions to CP-violating and
FCNC processes. Milder experimental constraints than in ETC-type models can be
achieved by some different mechanism that can transmit EWSB to the SM fermions.
Instead of the coupling (1.32), one assumes a linear coupling between a composite oper-
ator and the SM fermions (again transmitted by ETC gauge bosons that are integrated
out at scale ΛETC), e.g.

a
q̄ QQ̄Q

Λ2
ETC

, (1.36)

where the composite state QQ̄Q must have the same quantum numbers under the SM
gauge group as the quark to which it couples. Assuming a walking behavior of the
technibaryon condensate 〈QQ̄Q〉 ∼ B leads to the Lagrangian

L 3 ∆Lq̄LBR + ∆Lq̄RB
c
L −mBB̄B −mBcB̄

cBc , (1.37)

where the mass mixing parameters are given by

∆L ≡ aL ΛETC

(
ΛTC

ΛETC

)3−γL
, ∆R ≡ aR ΛETC

(
ΛTC

ΛETC

)3−γR
. (1.38)

Upon diagonalization of the mass terms, by the rotation

(
qL
BL

)
=

(
cosϕL − sinϕL
sinϕL cosϕL

)(
ψL
χL

)
, tanϕL =

∆L

mB
, (1.39)

and similarly for the right-handed fermions, the massless Weyl fermions ψL,R can be
identified with the massless SM fermions before EWSB and Dirac fermions of mass
m2
χ = m2

B + ∆2
L. Note that the SM quarks are now admixtures of elementary and
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composite fermions, where the elementary (composite) component is proportional to
cosϕA (sinϕA),

ψA = cosϕA qA + sinϕABA , A = L,R . (1.40)

This is the reason why these models are referred to as models with partial compositeness.
After EWSB, the massless fermions ψL,R get their masses through mixing with the TC
condensate Φ via the Yukawa terms

Φ

BLBcR
B̄LλΦBc

R + h.c. , (1.41)

whose size is controlled by the mixing angles (and thus by the anomalous dimensions of
the composite technibaryon),

sinϕLsinϕR

Φ

BLBcR

Φ

qLqR Yψ = sinϕL λ sinϕR . (1.42)

Each Yukawa coupling can thus be generated by the fundamental O(1) parameter λ and
the choice of the anomalous dimensions γL,R of the composite operators B,Bc are such
that the angles and consequently the (effective) Yukawa coupling is small enough. Thus,
in contrast to ordinary WTC models, one can assume ΛETC ∼ MPl without having a
problem of generating the large top-quark mass.

Interestingly, the concept of partial compositeness also leads to a suppression of
FCNCs, which could be induced by the couplings

L 3 g
(
B̄iγµρ

µBi + B̄c
i γµρ

µBc
i

)
, (1.43)

where ρµ are bosonic technicolor resonances. Rewriting this with the help of (1.39) leads
to

L 3 (gL)ijψ̄
i
Lγµρ

µψiL + (gR)ijψ̄
i
Rγµρ

µψiR , (1.44)

where

gL = g




sin2 ϕuL
sin2 ϕcL

sin2 ϕtL


 , gR = g




sin2 ϕuR
sin2 ϕcR

sin2 ϕtR


 .

(1.45)
As these couplings are non-universal, they give rise to FCNCs when going into a basis,
in which the Yukawa matrices are diagonal. However, the degree of flavor violation is
given by the mixing angles, which are small for the light fermions, so that FCNCs are
always suppressed in models with partial compositeness. We will examine this further
in Section 2.2.3, since Randall-Sundrum models with bulk fermions also display this
characteristic.

1.3.3 Froggatt-Nielsen Models

With the goal to explain the hierarchies in the fermion sector, Froggatt and Nielsen [104]
proposed a model without Yukawa terms. The idea is such that the left- and right-handed
components of the SM quark fields have different charges under an abelian symmetry
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group U(1)F , the flavor symmetry group. The Yukawa terms are then generated by

(
φ

ΛFl

)n
Q̄L Φ qR , (1.46)

where the scalar field Φ is called a flavon and is assumed to be charged under the flavor
group. In contrast, the Higgs field Φ is assumed to be neutral. Note that the term (1.46)
can be generated like a Majorana mass term by integrating out a heavy fermion at scale
ΛFl. Once the flavon takes on a vev

〈φ〉
ΛFl
∼ λ , (1.47)

the Yukawa terms get the structure

Yij = gij λ
ai−bj , (1.48)

where ai > 0 and bj < 0 are the flavor charges of the left- and right-handed quarks,
respectively, and gij are O(1) factors.26 With the proper choice of the charges ai and
bj , one obtains the correct pattern of the Yukawa matrices which leads to the correct
mass spectrum via (2.106) and from that the hierarchical structure of CKM matrix, see
[105] for more details. The rotation matrices U q and W q will be explicitly shown in
Section 2.2.3.

Note that the Froggatt-Nielsen mechanism serves for a whole class of models, with
a different source for the small parameter λ. For example, the models with partial
composite fermions, which have been introduced in the previous section, lead to the
Yukawas (1.42), where the smallness is due to the small anomalous dimensions in (1.38).
Another example is given by models with warped extra dimensions, see Section 1.4.4.
In this case, we find for the light quarks

Yij = gij ε
ci−cj , (1.49)

where ci,j are O(1) bulk mass parameters localizing the 5D quark profiles along the extra
dimensions, gij are the fundamental Yukawa couplings, and ε ≈ ΛIR/ΛUV is roughly the
ratio of the TeV and the Planck scale.

A problem of Froggatt-Nielsen models based of abelian symmetries is that the rel-
atively low flavor scale ΛFl cannot avoid large contributions to FCNCs, which spoils
the good agreement with experimental data. A way out is given by non-abelian fla-
vor symmetries, i.e. symmetries based on (a discrete subgroup of) the flavor symme-
try U(3)Q × U(3)u × U(3)d, but they are also problematic with a low flavor scale, see
e.g. [105]. A way out is to impose a flavor structure of the NP sector, that respects
the flavor symmetry of the SM (i.e. it is flavor blind), without further motivation. This
is called minimal flavor violation (MFV) and was first mentioned in [106]. In practice,
that means that any new flavor structure can be constructed only by insertions of SM
Yukawa matrices, so that after rotating the corresponding fields into the mass eigenbasis
no flavor-changing couplings are generated. The concept of MFV is very popular and it
used in many NP models which do address the flavor problem inherently (e.g. SUSY).

26Note that in (1.48) and the following equivalent formulas, no summation over double indices is
implied.
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1.4 Models with Extra Dimensions

An interesting alternative to models explaining the gauge hierarchy problem by sym-
metries is given by models with extra dimensions. As these models form the main part
of this thesis, the following discussion will be somewhat more detailed than that of the
previous sections. Starting with a short description of the first appearance of extra
dimensions in theoretical physics, we will continue with the general set-up of extra-
dimensional theories and focus on some issues these theories cannot get rid of. Finally,
three specific models are presented where in the subsequent chapter particular attention
will be paid to the models with warped extra dimensions. This section is based on
several recommendable reviews of extra dimensions [107–111].

1.4.1 First Appearance: Nordström, Kaluza, Klein

The very first idea of extra dimensions came up in 1914, when Nordström observed that
extending the Maxwell theory to five dimensions, written in terms of a 5-vector AM ,
contained the 4-vector Aµ, which could be identified with the electromagnetic vector
potential, plus a 4D scalar obeying the field equations for his own proposed scalar theory
of gravity [112]. However, two years later Einstein formulated his GR, which turned out
to be the correct description of gravity and Nordström’s idea became obsolete. With the
aim to combine Einstein’s GR and Maxwell’s theory of electromagnetism, Kaluza and
Klein introduced a model that extended Einstein’s GR to 4+1 dimensions [113, 114]. The
additional fifth dimension was assumed to be tiny and compact, which could explain why
it had not been discovered. This so-called Kaluza-Klein (KK) theory achieved to unify
electromagnetism and gravity, the only two forces known at that time. Although the
KK theory turned out not to be the correct description of nature, it is worth presenting
the original model, since we will encounter some important features of models with extra
dimensions.

The starting point is the 5D Einstein-Hilbert action in flat space,

S5 =

∫
d5x

{
−1

2
M3

5

√
GR5[G]

}
, (1.50)

where M5 is the five-dimensional Planck scale, R5 denotes the Ricci scalar, and G is the
determinant of the 5D metric parametrized as

GMN =

(
ḡµν Āµ

ĀµT ḡ55

)
. (1.51)

Here and in the following the Latin (Greek) indices M,N = 0, 1, 2, 3, 5 (µ, ν = 0, 1, 2, 3)
correspond to the 5D (4D) space-time coordinates. The field ḡµν is a symmetric tensor
and represents the 4D metric. The field Āµ denotes the part of the 5D metric, where one
index points into the fifth dimension, while the remaining one points into four dimen-
sions. For an observer who is ignorant to the extra dimension this fields is a 4-vector,
i.e. it transforms under Lorentz transformations accordingly. Analogous considerations
can be done for the field ḡ55 which is a scalar from the 4D point of view. Since its vev
measures the size of the extra dimension, this field is called radion. Using the above
metric it is straightforward to evaluate the 5D action (1.50), but it is more convenient
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to parametrize the metric as

GMN =

(
ϕ−

1
3 (gµν − ϕAµAν) −ϕ 2

3 Aµ

−ϕ 2
3 AµT −ϕ 2

3

)
, (1.52)

which will become more obvious below. An important difference in models with one or
more extra dimensions is the fact that fields are not only dependent on the coordinate
of the Minkowski space-time (x ≡ xµ), but also on the position in the extra dimension,
labeled by x5 for the time being.27 In other words, the 4D field Aµ(x) for instance is
replaced by

Aµ(x)→ Aµ(x, x5) =
∞∑

n

A(n)
µ (x)χAn (x5) , (1.53)

where we have already used that, from the 4D point of view, the compactness of the extra

dimension gives rise to an infinite tower of massive KK modes A
(n)
µ , whose localization

in the extra dimension depends on the wave-functions or profiles χAn . The masses of
the KK modes increase with larger n. This is in analogy to the infinitely many energy
states of a quantum-mechanical particle in a finite volume, where the energy levels of
the particle are inverse proportional to the size of the box. What happens here is that
the momentum in the compactified extra dimension is quantized, where the discretized
momenta correspond to the masses of the KK modes. Under the assumption that the
length of the extra dimension is of the Planck length lPl ≡ M−1

Pl , the masses scale like

mn ∼ n/lPl and clearly decouple from the theory, whereas the massless zero modes A
(0)
µ

remain. Inserting the zero modes of the metric (1.52) into (1.50) and dropping the
superscripts we arrive at the Einstein-Hilbert action

S0
5 = −1

2
(2πR)M3

5

∫
d4x
√
g

[
R4[g] +

1

4
ϕFµν F

µν − 1

6

(∂µϕ)(∂µϕ)

ϕ2

]
. (1.54)

It is now easy to identify the ingredients of the resulting action. The field Fµν =
∂µAν − ∂νAµ is the well-known electromagnetic field strength tensor of a U(1) gauge
field. After defining M2

Pl ≡ 2πRM3
5 the action for the 4D metric gµν describes GR,

i.e. the action of the graviton. What is left is the scalar field ϕ which can be redefined
via ϕ = exp

[√
6 r(x)/MPl

]
in order to arrive at a canonically normalized kinetic term.

Its coupling to the kinetic term of the gauge bosons indicates that the radion has the
same coupling as a dilaton field. Once its acquires a vev 〈r〉, we can identify

e
√

6
〈r〉
MPl ↔ 1

e2
, (1.55)

where e on the right-hand side denotes the electric charge. Thus, this theory describes
the unification of 4D general relativity and 4D electromagnetism, starting from 5D grav-
ity. Although seeming to be very promising, this theory turned out not to be the correct
description of nature. This is not least because of the discovery of the remaining funda-
mental forces and the establishment of the SM. Nevertheless, this example highlighted
that extra-dimensional models are suitable candidates for a UV completion of the SM,
since they have the potential to unify the fundamental forces.28 However, the models
that are focused on in the following will not have goal of unification, but their major
objective is the explanation of the hierarchy problems of the SM and to have the SM as

27We will concentrate on only one additional extra dimension in the following.
28In fact, non-abelian fields can arise from space-times of higher dimensionality, when appropriately

compactified [111].
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a low-energy limit. Before we focus on them, it is worthwhile pointing out some generic
features of extra-dimensional models.

1.4.2 Generic Features of Extra-Dimensional Models

As explained at the beginning of this chapter, the SM has to be regarded as an EFT
and is also valid up to a certain energy scale ΛUV, where it has to be replaced by a more
fundamental theory, e.g. by a theory based on extra dimensions. On the other hand also
the latter theories have to be considered as EFT’s due to an intrinsic cutoff. This can
be understood with the help of a dimensional analysis of a generic theory in D (flat)
dimensions

Sd =

∫
ddx

{
− 1

4g2
d

FMNF
MN + iΨ̄ /DΨ + |DMΦ|2 + ydΦΨ̄Ψ + . . .

}
, (1.56)

where DM = ∂M − iAM implies that the mass dimension of the gauge field is [AM ] = 1
so that [FMN ] = 2 and [g2

d] = 4− d. So, for d > 4 the coupling constant has a negative
mass dimension and provides an intrinsic scale for the theory. An analogous discussion
holds for the Yukawa coupling yd having a mass dimension of [yd] = (4− d)/2. This has
an important consequence: Using NDA one can estimate the 1-loop correction to the
Yukawa coupling [111]

δyd =
1

ld

2y3
d

d− 4
Λd−5 , d > 4 (1.57)

where a hard-momentum cutoff Λ has been used as a regulator29 and ld is the d-
dimensional loop factor

1

ld
≡ Ωd

2(2π)d
=

1

(4π)d/2Γ(d/2)
=

{
1

16π2 for d = 4
1

24π3 for d = 5
, (1.58)

with the d-dimensional solid angle Ωd. The power-law dependence on the UV cutoff
indicates that certain observables are, strictly speaking, incalculable. One could argue
that one could absorb the divergences in physical quantities as always done in the SM.
The difference is that in extra-dimensional models (like in all non-renormalizable the-
ories) the effects of the higher-dimensional operators after renormalization scale like
(E/ΛUV)n, where E is the typical energy of a process and ΛUV is the UV cutoff scale
of the theory. As already mentioned above, the importance of these operators is negli-
gible for processes at low energies and only a finite number of operators is relevant. For
energies around the cutoff, however, details of the UV completion become important,
which manifests itself in two aspects. The first one is that higher-dimensional operators
can contribute equally at tree level, while the second one states that loop-level effects
contribute equally and become as big as the corresponding tree-level contributions of a
given process, see [111] for further discussion.

The important lesson of this discussion is that one should be aware of the fact that
higher-dimensional theories have an intrinsic cutoff ΛUV and that observables can be
very sensitive to the physics at and above ΛUV. If this is the case they are incalculable
within the extra-dimensional model and it is necessary to include the corresponding

29If one uses a Pauli-Villar regulator, the result would differ by an O(1) factor. For example, for d = 5
one finds a Pauli-Villar cutoff ΛPV which is related to the hard-momentum cutoff by 2Λ = πΛPV [111].
Thus, there is some uncertainty where the new physics is to be expected.
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Figure 1.5: Visualization of an orbifold [115].

higher-dimensional operators, whose coefficients have to be determined by experiment.
Also keep in mind that in order to obtain a reliable result only the KK modes below the
cutoff are allowed to contribute, in particular in loop-induced processes. This will be-
come important in Section 4.1, where we will explicitly study a process that is (naively)
sensitive to the UV physics.

The previous discussion also highlights a possible application to particle physics con-
cerning the hierarchy problem. If the extra dimensions would predict particles at the
TeV scale, this would be a good reason why a cutoff could exist near that scale. If one
discovered an extra-dimensional structure at the TeV scale experimentally, one would
be forced to accept the existence of a cutoff not far above. In this case, the large hi-
erarchy problem of the SM would become less urgent to be solved: The priority would
rather be to understand the little hierarchy between the electroweak scale and the cutoff
associated with the extra-dimensional physics. Hence, generic extra-dimensional models
can be considered as motivated by the hierarchy problem, provided the compactification
scale is near the TeV scale. Note that the situation is similar to the SUSY solution to
the hierarchy problem, with the superpartners having masses of around a TeV.

Set-Up for Theories with One Compact Extra Dimension

We will specialize on the set-up of models based on one compact extra dimension, which
will be useful for the understanding of the subsequent sections. Intuitively, the extra
dimension would be chosen to be a conventional circle. However, it is more convenient
to consider a so-called S1/Z2 orbifold, illustrated in Figure 1.5. This is a circle of radius
r, where the points (parametrized by φ ∈ [−π, π]) that are related by the Z2 symmetry

(xµ, φ)↔ (xµ,−φ) (1.59)

are identified. The magnitude of the radius r can vary and will be specified later. The
5D action is required to be invariant under these Z2 transformations Z. The fields
themselves need not to be identified at φ and −φ, but can differ by the eigenvalues of
Z,

Φ(x,−φ) = ZΦ(x, φ) = ±Φ(x, φ) , (1.60)

due to Z2 = id. The functions belonging to the eigenvalue +1 (−1) are called even
(odd) functions under the Z2 parity. Note that the Z2-odd functions must vanish on the
orbifold fixed points φ = 0,±π. This important feature of orbifolds is crucial to obtain
a low-energy spectrum of the fermions that is compatible with the SM, see below. The
fixed points are often used to provide support for 3-branes, i.e. submanifolds with three
spatial and one time dimension, on which 4D fields can be defined. The region between
the boundaries is called bulk. To summarize, an S1/Z2 orbifold is effectively an interval
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parametrized by φ ∈ [0, π], possibly bounded by branes, which together with the Z2

eigenvalues of the fields contain the whole information. For the bulk 5D metric we
choose an ansatz that respects 4D Lorentz symmetry,

ds2 = GMN dx
M dxN = e−2σ(φ) ηµν dx

µ dxν − r2dφ2 , (1.61)

where throughout this thesis the Minkowski metric will be used in the convention ηµν =
diag(1,−1,−1,−1). The function σ(φ) gives information about how the geometry of
the space varies in the fifth dimension. One can always define φ in such a way that
σ(0) = 0, which we will assume from now on. The specific models introduced below will
be distinguished according to the specific form of the function σ(φ). If σ(φ) = const, we
say the space is flat, otherwise the space is called warped.

The general proceeding in 5D theories is the following: Starting from a 5D action like
(1.56), where the fifth dimension x5 = rφ ∈ [−rπ, rπ] is now compactified, one derives
the equations of motion (EOMs), which are differential equations the bulk fields need
to obey, and the associated boundary conditions (BCs) by making use of the variational
principle, i.e. requiring that δS5 = 0. The variation of the action can then be written in
the generic form

δS5 =

∫
d5x δΦ (DΦ) +

∫
d4x δΦ (BΦ)

∣∣
0,π
, (1.62)

where Φ stands for any bulk field and D and B are differential operators. The idea now
is to require both terms to vanish separately. The first term then leads to the equations
of motion DΦ = 0. The second one determines the boundary conditions δΦ|0,π = 0 or
BΦ|0,π = 0, which the solutions to the EOMs have to satisfy. Note that the boundary
terms originating from the orthogonal directions x are zero, since the fields Φ are assumed
to vanish for xµ → ±∞. Provided with the EOMs and BCs for the 5D fields we then
make use of the KK decompositions of the form

Φ(x, φ) =
ecΦσ(φ)

√
r

∞∑

n

Φ(n)(x)χΦ
n (φ) , (1.63)

where the factor 1/
√
r has been pulled out to arrive at the proper mass dimension for

the KK modes Φ(n). The factor ecΦσ(φ) (with a properly chosen constant cΦ) cancels
terms stemming from the 5D metric and thus ensures that the profiles χΦ

n (φ) can be
interpreted as the localization of the KK modes along the extra dimension with respect
to a flat metric. The profiles themselves obey the orthonormalization condition

∫ π

0
dφ edΦχΦ

n (φ)χΦ
m(φ) = δnm , (1.64)

where dΦ again depends on the specific field. Inserting the KK decomposition into the
EOMs and BCs for the 5D fields can give rise to the corresponding conditions on the
profiles, which will be derived for general σ(φ). Details about the derivations and explicit
calculations can be found e.g. in the reviews [110, 111]. In the following sections, we
will only work with the results, but we need to comment on some important features of
extra dimensions:

• The orbifold construction (or, in general, the boundary conditions) can be used to
remove unwanted degrees of freedom from the low-energy limit which is required
for the SM to be compatible with the current measurements. Since the differential
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operator D is (essentially) a derivative on the field,30 assigning fields with Z2-odd
parity obeying Dirichlet (D) BCs

Φ
∣∣
φ=0,π

= 0 (1.65)

leads to a solution to the EOMs with Φ(0) = const ≡ 0 (once the KK decomposition
has been inserted). This means that there is no massless zero mode in the theory.
In contrast, fields obeying Neumann (N) BCs

∂φΦ
∣∣
φ=0,π

= 0 (1.66)

provide a zero mode Φ(0) ≡ c, where the constant c is determined by the normal-
ization condition (1.64). Note that fields with at least one Dirichlet BCs lack a
zero mode, as well.

• In general, couplings do not only depend on the coupling constant, but moreover
on the so-called overlap integrals

∫ π

0
dφ e−bσ(φ)χΦ1

n (φ)χΦ2
m (φ)χΦ3

k (φ) , (1.67)

which give information about the strength of the interaction of the involved par-
ticles. Again, the constant b depends on the three involved particle species, see
e.g. (1.76). Overlap integrals always appear in interactions of three or more KK-
decomposed 5D fields and are important quantities for the following chapters.

• The treatment of fermions in extra dimensions requires further comments. For
their description we first need a generalization of the gamma matrices. Since the
Lorentz generators in five dimensions can be written as

Mab ≡ i

2

[
γa, γb

]
, a, b ∈ {0, 1, 2, 3, 5} (1.68)

as long as the 5D gamma matrices fulfill the Clifford algebra

{
γa, γb

}
= 2ηab , (1.69)

we need to find the fifth gamma matrix obeying (1.69). A possible choice turns
out to be

γa = {γµ,−iγ5} , µ ∈ {0, 1, 2, 3} (1.70)

where the matrices γµ are the Dirac matrices and γ5 = iγ0γ1γ2γ3. Recall that
in four dimensions we can decompose the Dirac spinor in left- and right-handed
Weyl spinors and furnish each of them with different quantum numbers like in
the SM. In theories with an odd number of dimensions, however, the Dirac spinor
representation is not reducible and an analogous decomposition is not possible.
This can be understood by the fact that the matrix γ5 that is used for the cre-
ation of left- and right-handed spinors via the projectors PL,R ≡ (1 ∓ γ5)/2, is
essentially the product of all 4D gamma matrices. Trying to build a correspond-
ing matrix for chiralities in five dimensions we see that the product iγ0γ1γ2γ3γ5

is the identity matrix and thus cannot be used to construct projection operators.
Consequently, fermions in five or in any other odd number of extra dimensions

30We will encounter various examples for this in the subsequent chapter.
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are Dirac fermions. In order to arrive at the low-energy spectrum that contains
the chiral SM fermions, we therefore need the orbifold construction (including the
BCs) introduced above. Furthermore, in order to write down a Lorentz invariant
action in a warped background, we define a tangent space in terms of the vielbein
and the spin connection. The kinetic term for fermions can then be written as

Lferm
kin = r

∫ π

−π
dφ

{
EMa

[
i

2
Q̄ γa

(
∂M −

←−
∂ M

)
Q+

ωbcM
8

Q̄
{
γa, σbc

}
Q

]

−m sgn(φ) Q̄Q

}
,

(1.71)

where EMa denotes the 5D vielbein,

GMN = EMa E
N
b ηab , (1.72)

which becomes EMa = diag(eσ, eσ, eσ, eσ, 1/r) in our background. The spin con-
nection ωbcM turns out to give no contribution to the action, see e.g. [111]. Note
that the sign in front of the mass term is due to Z2 parity assignments.

We now turn back to the importance of the orbifold construction. It can be
shown that the variation of the 5D action (1.71) with respect to Ψ gives rise to
two possibilities for the boundary conditions31

(N) ≡ ΨR

∣∣
0,π

= 0 → 1

r
∂φΨL

∣∣
0,π

=
(
2σ′ −mΨ

)
ΨL

∣∣
0,π
,

(D) ≡ ΨL

∣∣
0,π

= 0 → 1

r
∂φΨR

∣∣
0,π

=
(
2σ′ +mΨ

)
ΨR

∣∣
0,π
.

(1.73)

This explicitly shows that compactification on an orbifold necessarily allows for
BCs that distinguish the two chiralities, which will enable us to embed the SM
structure. Both the Z2-even and Z2-odd functions can satisfy (N,N), (N,D),
(D,N), or (D,D) BCs. This fact can be used to construct the low-energy spec-
trum of the SM. As an example, consider the SU(2)L doublet fields Q(x, φ), which
contain both chiralities QL(x, φ) and QR(x, φ). As the SM only contains left-
handed doublets, it is appropriate to assign the left-handed components with a
positive Z2 parity and (N,N) BCs. According to (1.73), the right-handed compo-
nents must then obey (D,D) BCs and thus cannot possess a zero mode. While at
the zero-mode level the additional degrees of freedom have been removed, at the
massive KK levels the number of degrees of freedom is doubled. Thus, instead of
one, each fermion has two KK modes per KK level.

• A similar statement can be made for the gauge bosons. Amongst others, they are
the two interesting possibilities

(N) ≡ ∂φAµ
∣∣
0,π

= 0 , A5

∣∣
0,π

= 0 . (1.74)

(D) ≡ Aµ
∣∣
0,π

= 0 , ∂φ
[
e2σA5

] ∣∣
0,π

= 0 . (1.75)

We observe that, similar to the fermion case, the boundary conditions for Aµ and
A5 are correlated and we can again have arbitrary assignments for the BCs.

For (N,N) BCs, χA0 (φ) = 1 is always a solution for m0 = 0. In this case, ones
finds χ5

0(φ) = 0 so that no longitudinal polarization for the zero mode is provided
and it remains massless. The fact that the zero mode is flat is closely related

31The “Neumann” BCs on the right-hand side are actually of mixed type, unless σ′ and mΨ are zero.
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to gauge invariance, and the necessary universality of the gauge interactions. If
it was not flat, the non-trivial localizations of fermions or scalars would allow us
to adjust their gauge couplings in an arbitrary way. As it happens, the overlap
integrals arising from the gauge vertices have the form

∫ π

0
dφχA0 (φ)χΨ

n (φ)χΨ
m(φ) . (1.76)

For a flat gauge-boson profile, this always reduce to the fermion orthonormality
condition (1.64) (with dΨ = 0), so that the corresponding 4D gauge interactions
are indeed universal. In contrast, the gauge invariance is broken at the massive
KK level. For these modes, the fifth component acts as a Goldstone boson which is
eaten to give the KK modes their masses. Thus, the physical massive KK spectrum
consists only of massive spin-1 fields (with three physical polarizations each), and
there are no massive physical scalars. Such massive gauge fields can and do have
non-trivial profiles, so that their interactions with fermions or scalars can depend
on the details of those fields.

For the (D,D) BCs, there is no massless spin-1 gauge boson, but there is a
scalar with profile χ5

0(φ) ∼ e2σ(φ). In the so-called gauge-Higgs unification models
[116, 117], this spin-0 particle can be identified with the Higgs boson. Notice again
that the profile of such a 4D scalar zero mode is fixed and no adjustable parameters
to control its localization.

We are now furnished with everything that is needed to write down explicit extra-
dimensional models. In the following, we will concentrate on the cases of flat and warped
extra dimensions. Assuming symmetries that are compatible with the SM symmetries,
we will specify the field content and look into the possible couplings of the KK particles
to the zero modes, representing the SM fields, and to each other. The models will also
be checked for consistency with current data, e.g. electroweak precision constraints or
direct collider bounds.

1.4.3 Flat Extra Dimensions

The simplest extra-dimensional theories are given by models with flat extra dimensions,
for which σ(φ) ≡ 0 and the EOMs and BCs become very simple. In the following, we
will first study a model that contains more than one extra dimension, the so-called ADD
model. For this model, the previous discussion about theories with one additional extra
dimension does not hold. The latter will become useful for Universal Extra Dimensions
models, which can also have more than one dimension, but we will focus on the special
case of one dimension here.

Arkani-Hamed, Dimopoulos, Dvali (ADD)

In 1998, Arkani-Hamed, Dimopoulos, and Dvali (ADD) invented a model with the goal
to give an explanation to the hierarchy problem [118]. The idea was that gravitational
forces had never been tested below 0.1 mm . One possibility for deviations from the 1/r
behavior of Newton’s potential could be due to additional compact spatial dimensions if
gravity is allowed to propagate in the extra dimensions and feels the extra volume. These
considerations support the following set-up: The space-time includes n additional extra
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dimensions, all of them of size ∼ R for simplicity, compactified on an n-dimensional
manifold with volume ∼ Rn. While gravity is allowed to propagate in the bulk, all
SM fields are assumed to reside on a 3-brane. Consequentially, only the graviton is
accompanied by an finite tower of KK particles, which can be looked for in collider
experiments. One may ask how this set-up can solve the hierarchy problem. As we deal
with a theory of gravity in d = 4 + n dimensions, Gauss’ law leads to the gravitational
potential for distances r � R

V (r) ∼ − 1

Mn+2
d

1

rn+1
, (r � R) , (1.77)

where Md the fundamental Planck scale in d dimensions. For distances much larger
than the size of the extra dimensions, r � R, the structure of the additional dimensions
cannot be resolved and one observes the usual 1/r behavior

V (r) ∼ − 1

Mn+2
d Rn

1

r
, (r � R) . (1.78)

An observer in four dimensions, who is ignorant to the existence of extra dimensions,
would identify Newton’s potential in four dimensions, so the effective 4D Planck scale
can be written in terms of the fundamental quantities as

M2
Pl ≡Mn+2

d Rn . (1.79)

Hence, the reason for the huge effective 4D Planck mass and consequently the weak-
ness of the gravitational interaction is due to the propagation of gravity into the extra
dimensions and is attributed to the number of extra dimensions. The fundamental d-
dimensional Planck scale, which sets the cutoff for the theory due to the relevance of
gravity, is assumed to be

Md ∼MEW (1.80)

or slightly larger, say in the TeV energy range. Therefore, quantum corrections to the
Higgs mass have a cutoff at that scale and the hierarchy problem would vanish. The
question now arises as to how many extra dimensions are required to obey (1.80). Let
us focus on three cases (assuming Md = 1 TeV):

• d = 5: In this case the radius of the extra dimension has to be R ∼ 1013 m, which
would result in modifications of gravity at the scale of the solar system. Clearly,
such a scenario can be ruled out.

• d = 6: For two extra dimensions the radius has to be R ∼ 10−4 m, which can
be accessed by gravitational experiments. Nowadays, gravitational precision mea-
surements can probe these scales and one finds R ≤ 44µm [119]. This scenario
seems to be ruled out, either. However, one can relax the above value for the
fundamental energy scale and assume e.g. Md & 7 TeV, which would result in a
radius that is below the current experimental bound. Although this relative high
cutoff scale would introduce another hierarchy, the situation would still be much
better than in the SM. There are, however, strong bounds from astrophysics that
exclude this scenario as well.

• d ≥ 7: For three and more dimensions, the size of the extra dimensions cannot
be examined by gravitational tests, but rather by e.g. collider or astrophysical
experiments.
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Before we present the current bounds from these experiments, we dwell on some short-
comings of theories with large extra dimensions. The first one is the question of why
the extra dimensions are so much larger than their natural size M−1

d ,

R

(Md)−1
=

[
MPl

Md

] 2
n

. (1.81)

which seems to be just a reintroduction of the hierarchy problem. Nevertheless, the
situation is slightly better, because there is no problem of the radiative instability of
the large separation between two fundamental scales any more, similar to the µ problem
in supersymmetric theories. Note that taking the limit n → ∞ could circumvent this
problem, since in this set-up the fundamental Planck scale just needs to be infinitesimally
larger than MEW to arrive at the large effective Planck scale (1.79).

Another issue of a relatively low energy cutoff is that higher-dimensional operators
giving rise to FCNCs are not sufficiently suppressed. In other words, the flavor problem
is not addressed in these models. Like in SUSY, one can to introduce additional gauge
symmetries (e.g. baryon- or lepton-number conservation). Another possibility is to allow
the fermion fields to propagate in the bulk and to adjust their localization appropriately.
This is the so-called fat brane or split fermion scenario, in which the couplings between
the different fermion fields may be suppressed due to a small overlap of the profiles
induced on the brane [120]. The same mechanism can explain the flavor problem in RS
models, as we will see in the subsequent section.

Let us finally consider the current experimental bounds on large extra dimensions.
The mass of the kth KK mode of the graviton is mk ∼ k/R, where the mass differences
are given by the inverse radius

∆m ∼ 1

R
∼Md

(
Md

MPl

) 2
n

∼ 1012− 32
n eV . (1.82)

For n = 4 (n = 6) the mass spacing is ∼ 0.01 MeV (∼ 0.01 GeV), which gives rise
to the interesting feature of an almost continuum spectrum of graviton states given
that the number of extra dimensions is not too large. Hence, one can expect to find
signals of plenty of KK modes at colliders. Since gravity couples to all particles, the KK
gravitons can decay into all SM fields with universal strength ∼M−1

Pl and, consequently,
any single graviton is negligible. Only summing up the complete tower leads to an
observable effect. Due to the weakness of the coupling between SM particles and KK
gravitons, the KK lifetime is large and the would-be stable KK gravitons can escape the
detectors if produced at an accelerator. The final state is thus characterized by missing
energy. As in generic dark matter searches, a characteristic signal at the LHC is then a
mono-jet plus missing energy32

q G(n)

q g

pp→ j + /E .

The current LHC measurements require [122]

M6 > 4.37 TeV , (1.83)

32More details on collider signatures of large extra dimensions can be found in [121].
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which disfavors a natural solution for the hierarchy problem. The most stringent bounds,
however, come from astrophysics, in particular supernova collapses. In these collapses,
the gravitational energy is carried away by neutrinos. Clearly, the KK gravitons can
also carry away energy leading to a faster cooling. As the measured flux of neutrinos is
in agreement with the theoretical predictions, bounds on the fundamental Planck scale
can be derived [123]

M6 ≥ 50 TeV , M7 ≥ 4 TeV , M8 ≥ 1 TeV . (1.84)

We see that these results exclude the possibility of the ADD model to address the
hierarchy model for the scenario n = 2 (without much fine-tuning). On the other hand,
scenarios with a larger number of dimensions are still possible.

Universal Extra Dimensions (UED)

One quickly realized that the most straightforward way to build a theory in more than
four dimensions is to put all SM fields into a flat space-time with N additional dimen-
sions. These classes of models are called Universal Extra Dimension (UED) models
[124] and have some remarkable features. Although these models can have several extra
dimensions, we focus on the minimal version of UED models with one additional spatial
dimension. In this case, since the radius is r ≈ (1 TeV)−1 in order to be compatible with
the electroweak precision data [125], the fundamental cutoff has to be M5 ∼ 1015 GeV.
As a consequence, the hierarchy problem is not addressed in UED models with one ad-
ditional spatial dimension.

Due to the fact that σ(φ) = 0, it turns out that the EOMs reduce to

[
1

r2
∂2
φ + (m2

n −m2
5)

]
χn(φ) = 0 , (1.85)

where the 5D mass m5 can only be non-zero for scalar bosons and fermions, whereas
gauge invariance requires m5 = 0 for gauge bosons. Applying Neumann BCs for the
fields whose zero modes represent the SM fields, while all remaining ones, such as the
right-handed fermion SU(2)L doublets and the fifth component of the 5D gauge fields,
obey Dirichlet BCs, we find the solutions

χn(φ) =
√

2 cos(m̃nr φ) , (1.86)

with the mass eigenvalues m̃n =
√
n2/r2 −m2

5 . The solutions obeying Dirichlet BCs are
sines. Sines and cosines are very special in the sense that they lead to certain selection
rules. In fact, it can be shown that this selection rule can be generalized to

n1 ± n2 ± · · · ± nN = 0 (1.87)

for an interaction of N particles. These selection rules have the important consequence
that at tree-level KK states can only be pair produced as indicated by the left diagram
in Figure 1.6. However, at one-loop the selection rule allows the production of a single
KK particle with e.g. n = 2, shown in the right diagram in Figure 1.6. The fact that
single KK modes cannot be produced at tree level can be traced back to the invariance
of the 5D theory under the transformations [111]

Φn → (−1)n Φn , (1.88)
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Figure 1.6: (Not) Allowed processes in UED models shown on the left (right). Note
that at tree-level KK states can only be pair produced, whereas the production of one
KK particle is possible at one-loop order.

where Φ stands for any bulk field. This symmetry, called KK parity, is a space-time
symmetry and follows from the invariance under a reflection about the middle of the
interval π:

Φ(x, φ)→ (±)Φ(x, π − φ) , (1.89)

where the sign depends on the specific type of field.33 It is an exact symmetry and
the resulting selection rule is responsible for the loop-suppression of single KK-mode
production (for an even KK number). Note that the KK parity also ensures that the
lightest KK particle cannot decay into SM particles and is therefore stable. Even though
the KK masses of all particle species are degenerate at tree-level, the physical spectrum
is non-degenerate once radiative corrections to the masses are taken into account. The
lightest KK particle (LKP) turns out to be the KK photon, while the KK gluon is
the heaviest, similar to the spectrum in the MSSM [126]. As pointed out in [127], a
600 GeV KK photon could explain the relic abundance of dark matter in the universe
and is therefore an ideal DM candidate.34 For these masses, the electroweak precision
measurements [125, 130] and the FCNCs bounds [131, 132] are satisfied as well. One
may ask what the current bounds from collider searches are. Due to the split particle
spectrum, the KK modes can undergo a cascade of decays, similar to SUSY, where the
sparticles are replaced by the KK modes of the respective SM particles, see [133] for
a detailed overview of the possible decay chains. Note that the similarity between the
MSSM and mUED is not accidental, since SUSY can be thought of as a theory with
additional (non-commutating) dimensions. One could discriminate the two models if
one detected the second photon KK mode γ(2) via the decay into two hard leptons or
via a study of the charge asymmetry in the lepton-jet invariant mass distributions from
a particular cascade, see [134] for further details. The current limit from direct searches
is [135]

r−1 > 1.41 TeV , (1.90)

which stems from the search after three soft leptons, jets, and missing energy. We wrap
up this discussion of universal extra dimensions with the current limit from indirect
Higgs searches, see Section 5.1, which gives r−1 > 500 GeV [136].

33Moreover, there is a γ5 matrix in the case of a fermion field, see [111].
34It is reported in [127] that the Wilkinson Microwave Anisotropy Probe (WMAP) observations [128,

129] impose an upper bound on the KK photon mass of 1.6 TeV.
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1.4.4 Warped Extra Dimensions

We now turn to the case of warped extra dimensions which offer an elegant way to
address the hierarchies of the SM by means of a non-trivial geometry in a slice of the
five-dimensional AdS5 space. As before, the extra dimension is assumed to be an S1/Z2

orbifold, with the parametrization φ ∈ [−π, π]. Two branes are localized on the orbifold
fixed-points φ = 0, referred to as the Planck or UV brane and |φ| = π, referred to as the
TeV or IR brane. The meaning of this names will become clear later on. The size r and
curvature k of the extra dimension are assumed to be of Planck size, k ∼ 1/r ∼MPl. In
the above parametrization, the function σ(φ) is σ(φ) = kr|φ|, so that the metric reads

ds2 = GMN dx
M dxN = e−2kr|φ|ηµν dxµ dxν − r2dφ2 , (1.91)

which is not invariant under the transformations (1.89). Consequentially, there is no
LKP and this in turn means that there are no viable DM candidates in theories with
one warped extra dimension (if no further discrete symmetry is imposed).

The metric (1.91) can be derived with the help of Einstein’s equations [115]. In the
original RS set-up, only gravity is allowed to propagate in the bulk and the general
action in a slice of AdS5 can be written as

S = Sbulk + SUV + SIR , (1.92)

with

Sbulk =

∫
d4x

∫ π

π
dφ
√
G
{
− Λ− 2M3r

}
,

SUV =

∫
d4x
√−gUV

{
LUV − VUV

}
,

SIR =

∫
d4x
√−gIR

{
LIR − VIR

}
,

(1.93)

where Λ is the 5D cosmological constant and M is the fundamental scale of the theory.
The Lagrangians LUV,IR define the 4D theories on the AdS boundaries, e.g. LIR = LSM

and LUV = 0 if the SM is confined on the IR brane. The vacuum energies VUV,IR on
the branes, so-called brane tensions, are needed to allow for a non-trivial metric, as we
will see below. The induced 4D metrics are given by the 5D metric evaluated at the
boundaries

gµνUV(x) = Gµν(x, φ = 0) , gµνIR (x) = Gµν(x, φ = π) . (1.94)

In order to solve the Einstein’s equations that follow from the above set-up, one inserts
the metric (1.91) and finds [115]

k =

√
−Λ

24M3
, VUV = −VIR = 24M3k . (1.95)

Note that there is no reason for this coincidence except for the stabilization for the
set-up and the requirement for a flat brane metric. The situation is similar to the
cosmological constant problem in the SM. The compactification radius is not set by this
relation but once it takes on its value, the set-up remains stable. The radius itself is the
55-component of the metric tensor and can be fixed via a Goldberger-Wise mechanism
[137], in which interaction with a bulk scalar induce a potential for this field, see [138]
for details. The above set-up can now be used to solve the hierarchy problem.
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Solution to the Hierarchy Problems

Warped extra dimensions turned out to be an excellent possibility to solve the hierarchy
problems of the SM. Having the complete SM including the Higgs confined on the IR
brane, one could not only explain, why the Higgs mass receives small contributions, but
also why it is so small compared to the Planck scale. To understand this, let us have a
look at the Higgs Lagrangian that is fixed on the IR brane

SHiggs =

∫
d4x r

∫ π

−π
dφLHiggs , LHiggs = δ(|φ|−π)

√
G

r

{
Gµν(DµΦ)†DνΦ− V (Φ)

}
,

(1.96)
where the 5D Higgs potential can be parametrized as

V (Φ) =
λ5

2

(
Φ†Φ− v2

5

2

)2

. (1.97)

The subscripts indicate that the parameters are the fundamental input parameters of
the 5D theory. While λ5 is dimensionless and is thus assumed to be of O(1), the 5D
vev v5 is assumed to be of the order of the Planck scale MPl like all dimensionful
parameters in the theory. Inserting the 5D metric (1.61) and redefining the Higgs field
via Φ(x)→ ekrπΦ(x) in order to arrive at a canonically normalized kinetic term, we find
that the action can be written as

SHiggs =

∫
d4x
√−gIR

{
gµνIR (DµΦ)†DνΦ− λ5

2

(
Φ†Φ− e−2krπ v

2
5

2

)2
}
, (1.98)

where gIR is the induced metric on the IR brane, defined in (1.94). Something remarkable
has been happened here: The warp factor e−krπ has been moved in front of the 5D vev
v5 and reduces the effective vev in the 4D theory to

v = e−krπv5 . (1.99)

This so-called warping of the vev holds for any dimensionful parameter in the theory
(note that the dimensionless parameter λ5 remains unaffected) and is depicted in Fig-
ure 1.7. In particular the 5D Higgs mass is reduced to mh = e−krπmh,5. Starting
with Higgs mass of around mh,5 . k . MPl, one would arrive at a natural value for
mh ∼ O(MEW) with a modest tuning

L ≡ krπ ≈ 37 , (1.100)

where the parameter L is referred to as the volume of the RS space. The fact that the 5D
Higgs mass is somewhat below the curvature and the Planck scale is due to the fact that
these two scales define the masses of the KK excitations and the UV cutoff of the theory
as will be explained below. We now see the effect of the non-trivial geometry (1.91)
we have started with. Although all dimensionful parameters of the 5D theory are of
O(MPl), the warp factor gives rise to a mass of the IR-localized Higgs of the O(MEW).
The warping also ensures that the quantum corrections to the Higgs mass are under
control: As has been explained in detail in Section 1.4.2 RS models are effective field
theories defined with an intrinsic cutoff that is chosen to be ΛUV ∼MPl. At this energy
scale, the theories have to be replaced by a more fundamental theory that provides a
description of quantum gravity. Like all energies scale, this cutoff now depends on the
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Figure 1.7: Illustration of the Randall-Sundrum set-up. While all other fields are
allowed to propagate in the bulk, the Higgs is assumed to be localized on the IR brane.
The e↵ect of the warp factor on dimensionful parameters is indicated by the gray lines.

depends on the position in the extra dimension [139–143]

⇤UV(�) ⇠ e��(�)MPl . (1.101)

In loop calculations this position-dependent scale sets the cuto↵ for the 4D (euclidean)
loop momentum p2

E ⌘ �p2 on which the cuto↵ should be imposed [144]. Thus, confining
the SM on the IR brane just gives contributions to the Higgs mass that are quadratically
dependent on the warped Planck scale at � = ⇡

⇤TeV ⌘ e�kr⇡ MPl = ✏MPl = O(several TeV) . (1.102)

Consequentially, there are no huge radiative corrections to the Higgs mass. As we will see
below, it turned out to be convenient to allow all SM fields but the Higgs to propagate
in the bulk. One may wonder how the fact of having bulk fields in the theory a↵ects
the previous discussion. In this case, the position-dependent cuto↵ is associated with
every vertex of a Feynman diagram. This can be thought of as modeling the e↵ect
of a form factor, which accounts for the impact of quantum gravity on energy scales
above the e↵ective Planck scale at that point. In general, the coordinates �i of the
vertices are integrated over the entire bulk (0  �i  ⇡), and therefore the cuto↵ values
vary between the TeV scale and the fundamental Planck scale.35. In one-loop diagrams
containing the Higgs boson, such as the Higgs self-energy diagram discussed in Section
1.3.1, the situation simplifies considerably, since in that case [144]

�1 �2
pE pE  min {⇤UV(�1),⇤UV(�2)} = ⇤TeV . (1.103)

Hence, the above conclusion also holds true in the case of bulk fermions and gauge
bosons. Note that the Higgs mass dependence on ⇤TeV, which is at least one order
above MEW, leads to the already mentioned little hierarchy problem which turns out
to be more severe than in other possible extensions of the SM model. With the help of
NDA one can estimate the one-loop correction to the Higgs mass [145]

�m2
h ⇠

⇤2
UV(⇡)

16⇡2

⇤2
UV(⇡)

M2
KK

, (1.104)

which shows that the mass is sensitive to the cuto↵ to the fourth power. Thus, some
fine-tuning is necessary in minimal RS models. The situation is, however, still better
than in the SM, since at least the large hierarchy problem is solved.

35This e↵ect makes gauge-coupling unification possible in warped extra-dimension models [139–143].

Figure 1.7: Illustration of the Randall-Sundrum set-up. While all other fields are
allowed to propagate in the bulk, the Higgs is assumed to be localized on the IR brane.
The effect of the warp factor on dimensionful parameters is indicated by the gray lines.

position in the extra dimension [139–143]

ΛUV(φ) ∼ e−σ(φ)MPl . (1.101)

In loop calculations this position-dependent scale sets the cutoff for the 4D (euclidean)
loop momentum p2

E ≡ −p2 on which the cutoff should be imposed [144]. Thus, confining
the SM on the IR brane just gives contributions to the Higgs mass that are quadratically
dependent on the warped Planck scale at φ = π

ΛTeV ≡ e−krπMPl = εMPl = O(several TeV) . (1.102)

Consequentially, there are no huge radiative corrections to the Higgs mass. As we
will see below, it turned out to be convenient to allow all SM fields but the Higgs to
propagate in the bulk. One may wonder how the fact of having bulk fields in the theory
affects the previous discussion. In this case, the position-dependent cutoff is associated
with every vertex of a Feynman diagram. This can be thought of as modeling the
effect of a form factor, which accounts for the impact of quantum gravity on energy
scales above the effective Planck scale at that point. In general, the coordinates φi of
the vertices are integrated over the entire bulk (0 ≤ φi ≤ π), and therefore the cutoff
values vary between the TeV scale and the fundamental Planck scale.35. In one-loop
diagrams containing the Higgs boson, such as the Higgs self-energy diagram discussed
in Section 1.3.1, the situation simplifies considerably, since in that case [144]

φ1 φ2
pE pE ≤ min {ΛUV(φ1),ΛUV(φ2)} = ΛTeV . (1.103)

Hence, the above conclusion also holds true in the case of bulk fermions and gauge
bosons. Note that the Higgs mass dependence on ΛTeV, which is at least one order
above MEW, leads to the already mentioned little hierarchy problem which turns out
to be more severe than in other possible extensions of the SM model. With the help of
NDA one can estimate the one-loop correction to the Higgs mass [145]

δm2
h ∼

Λ2
UV(π)

16π2

Λ2
UV(π)

M2
KK

, (1.104)

35This effect makes gauge-coupling unification possible in warped extra-dimension models [139–143].
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which shows that the mass is sensitive to the cutoff to the fourth power. Thus, some
fine-tuning is necessary in minimal RS models. The situation is, however, still better
than in the SM, since at least the large hierarchy problem is solved.

As already mentioned above, in their original paper [115] Randall and Sundrum proposed
to confine all SM field on the IR brane. One quickly realized that this leads to serious
problems, since the fundamental cutoff scale is not large enough to suppress higher-
dimensional operators (induced, for example, via an exchange of KK gravitons) that
could lead to dangerous FCNCs or proton decay. In order to solve this, one puts all
fields except for this Higgs into the bulk. Performing the steps explained in the previous
section, one then finds that due to the warping the solutions for the profiles of the KK
modes are Bessel instead of trigonometric functions and that the zero-mode profiles are
given by (see e.g. [110])

Scalars: χΦ
0 (φ) ∼ e(1±

√
4+c2)kr|φ| ,

Fermions: χL,R0 (φ) ∼ e( 1
2
±cL,R)kr|φ| , (1.105)

Gauge Bosons: χA0 (φ) ∼ 1 ,

where ci = Mi5/k denote the normalized bulk masses for the scalars and fermions,
respectively. While the profiles of the KK excitations are peaked towards the IR brane
and cannot be changed, the bulk mass parameters ci can be used to localize the zero mode
anywhere in the bulk. Note that for the zero mode of the gauge bosons such a freedom
is not possible, since gauge-invariance forbids a 5D bulk mass term. In the case of the
fermions, which is important for the rest of this discussion here, the (left-handed) zero
mode can either be localized near the UV (cL < −1/2) or the IR brane (cL > −1/2).36

This has two appealing effects: The first one is the explanation of the SM fermion masses
and mixings. It is obvious that the mass of a particle is directly related to the coupling
to the Higgs field or, equivalently, the overlap with the IR brane. This fact together
with the observation that the fermion zero modes can be localized anywhere in the bulk
can explain why the light quarks and leptons have small, whereas the top quark has
large masses. Adjusting the localization parameters in such a way that the light (heavy)
particles are localized towards the UV (IR) brane naturally explains the huge differences
in the SM fermion masses. The structure of the mixing angles can be explained in a
similar way. Although one is still forced to adjust certain input parameters, it is a great
achievement of the RS model to allow for O(1) input parameters which, together with
the non-trivial geometry, lead to the hierarchical structure of the SM. The situation is
visualized in Figure 1.8. The second benefit of having 5D fermion and gauge boson fields
is the suppression of the above-mentioned higher-dimensional operators. Note that the
suppression by the (position-dependent) cutoff depends on where the zero modes of the
fermions and gauge bosons are localized. The more the involved particles are localized
near the UV brane the stronger is the higher-dimensional operator suppressed. This
means that the operators involving the light quarks are suppressed by the their small
masses. This is the so-called RS-GIM mechanism. Both the generation of the hierarchies
in the fermion sector of the SM and the RS-GIM mechanism will be explained in more
detail and more quantitatively in Section 2.2.3.

36The right-handed spinor is UV (IR)-localized for cR > 1/2 (cR < 1/2).
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Figure 1.7: Visualization of the mechanism that generates the hierarchical structure
in the quark sector of the SM. Light quarks are UV-localized and have therefore a
small overlap with the IR brane, where the Higgs fields resides. In contrast, the three-
generation quarks are IR-localized and thus have larger masses due to their large overlap
with the Higgs doublet. {fig:HPmass}

where c = M5/k denote the normalized bulk masses for the scalars and fermions, re-
spectively. While the profiles of the KK excitations are peaked towards the IR brane
and cannot be changed, the bulk-mass parameters can be used to localize the zero mode
anywhere in the bulk. Note that for the zero mode of the gauge bosons such a freedom
is not possible since gauge-invariance forbids a 5D bulk mass term. In the case of the
fermions, which is important for the rest of this discussion here, the (left-handed) zero
mode can either be localized near the UV (cL < �1/2) or the IR brane (cL > �1/2).35

This has two appealing e↵ects: The first one is the explanation of the SM fermion masses
and mixings. It is obvious that the mass of a particle is directly related to the coupling
to the Higgs field or, equivalently, the overlap with the IR brane. This fact together with
the observation that the fermion zero modes can be localized anywhere in the bulk can
explain why the light quarks and leptons have small, whereas the top quark has large
masses. Adjusting the localization parameters in such a way that the light particles
are localized towards the UV brane, while the heavier ones are localized near the IR
brane, naturally explains the huge di↵erences in the SM fermion masses. The structure
of the mixing angles can be explained in a similar way. Although one is still forced to
adjust certain input parameters, it is a big advantage of the RS model to allow for O(1)
input parameters which, together with the non-trivial geometry, lead to the hierarchical
structure of the SM. The situation is visualized in Figure 1.7. The second benefit of
having 5D fermion and gauge boson fields is the suppression of the above-mentioned
higher-dimensional operators. Note that the suppression by the (position-dependent)
cuto↵ depends on where the zero modes of the fermions and gauge bosons are localized.
The more the involved particles are localized near the UV brane the stronger is the
higher-dimensional operator suppressed. This means that the operators involving the
light quarks are suppressed by the their small masses. This is the so-called RS-GIM
mechanism. Both the generation of the hierarchies in the fermion sector of the SM and
the RS-GIM mechanism will be explained in more detail and more quantitatively in
Section 2.2.3.

We want to close this section with the remark of which scenario (symmetry or
strongly-coupled) theories with warped extra dimensions belong to. The AdS/CFT
correspondence [42] states that RS models are dual to strongly-coupled theories in four
dimensions. think about what will be crucial!

35The right-handed spinor is UV (IR)-localized for cR > 1/2 (cR < 1/2).

Figure 1.8: Visualization of the mechanism that generates the hierarchical structure
in the quark sector of the SM. Light quarks are UV-localized and hence have a small
overlap with the Higgs field localized on the IR brane. In contrast, the three-generation
quarks have larger masses due to their larger overlap with the IR-localized Higgs dou-
blet.

Connection to Strongly-Coupled Theories

We want to close this section with the remark of which scenario (symmetry or strongly-
coupled) theories with warped extra dimensions belong to. As a matter of fact, the
AdS/CFT correspondence conjectured by Maldacena in 1997 [42] states that (weakly-
coupled) RS models are dual to strongly-coupled conformal field theories (CFTs) in four
dimensions. Thorough discussions of the correspondence and possible applications can
be found in [22, 110, 146]. Here we shall be briefly explain the dual theory of an RS
model with bulk fermions and gauge bosons and an IR-localized Higgs sector. The idea
is that each position in the anti-de Sitter space AdS5 corresponds to an energy scale
in the dual 4D theory. For every 5D bulk field Φ living in AdS5 there is an associated
operator O in the dual theory

Φ(x, x5) ⇐⇒ CFT operator O , (1.106)

where the boundary value of the bulk field

Φ(x, x5)
∣∣∣
AdS boundary

≡ φ0(x) (1.107)

acts as a non-dynamical source field for the CFT operator O if the full AdS5 space
(−∞ ≤ x5 ≤ ∞) is considered. Once one defines a theory in a slice of AdS5 (0 ≤
x5 ≤ πr), the source field can become dynamical and is part of the 4D Lagrangian. As
opposed to the operator O, which represents composite states in the 4D dual theory,
it is regarded as elementary up to energies of ΛUV, which is the scale where in the 4D
theory the conformal symmetry is explicitly broken. In the 5D theory gravity this scale
corresponds to the energy where gravity gets strong at the UV brane.37 In this picture,
the holographic interpretation of a UV-localized field is that it is purely elementary,
while a field which is completely localized on the IR brane, such as the Higgs boson, is
purely composite. The hierarchy problem is then solved in the same way as explained
in Section 1.3.2. Bulk fields, on the other hand, are partially elementary, partially
composite. The degree of compositeness is determined by the mixing term φ0O, which
in turn is dependent on the scaling dimension of the operator. To be more precise, let
us consider the holographic interpretation of a 5D bulk fermion. As shown in [147], the

37This is actually the reason for the name of the UV and IR branes, respectively.
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dual Lagrangian for (left-handed) fermions at scale M ∼ ΛUV = O(MPl) is given by

L = Lel + ωM1−|c− 1
2
| (ψ̄0

LOR + h.c.
)

+ LCFT , (1.108)

where c is the bulk mass parameter localizing the zero mode in the extra dimension,
see (1.105), ω is a dimensionless constant, and M = O(MPl) is the fundamental energy
scale of the theory. The scaling dimension of operator OR is dimOR = 4 − 3/2 − 1 +
|c− 1/2| = 3/2 + |c− 1/2| . At the compositeness scale ΛIR, where the conformal theory
is spontaneously broken, the operator OR(x) represents a composite bound state in a
strongly-coupled theory. Using the notation of Section 1.3.2, the Lagrangian ΛIR can be
written as

L = Lel + ωM

(
ΛIR

M

)|c− 1
2
| (
ψ̄0
LOR + h.c.

)
+ LCFT . (1.109)

Comparing this with (1.38), we can identify |c − 1/2| = 3 − γ so that the anomalous
dimension of the CFT sector is directly related to the localization parameter in the 5D
bulk theory. Thus, the degree of compositeness of fermions is given by the localization
parameter c. For c < −1/2, the mixing is irrelevant and there is almost no mixing
between the elementary and the composite state. The massless KK mode is then pre-
dominantly given by the elementary source field [148]. For −1/2 < c < 1/2, the mixing
becomes relevant, which results in a partially composite fermion. For c > 1/2, it turns
out that the Lagrangian (1.108) does not hold any more [147]. We do not go into detail
here, but note that in this case a second elementary field emerges, which couples to the
source field via a (Planck) mass term so that both decouple from the theory. The CFT
spectrum, on the other hand, contains an ultralight composite state that can be identi-
fied with the zero mode. Thus, for c > 1/2, the zero mode is almost fully composite.

We finally comment on the holographic description of a bulk gauge field. The dual
Lagrangian for the gauge bosons reads (see e.g. [110])

L = −1

4
F aµν(x)Fµν,a(x) + ωAaµ(x)Oµ,a(x) + LCFT . (1.110)

Since the source fields Aaµ(x) represent gauge fields, they couple to conserved currents
Oµ,a(x) of the CFT. From this we can deduce that a bulk gauge group implies a global
symmetry of the dual theory, where only a subgroup is gauged, namely that whose gauge
fields obey Neumann boundary conditions on the UV brane. Note, however, that the
global symmetry is still present in the CFT sector.38

In summary, an RS model with bulk fermions and gauge bosons and a Higgs sector
localized on the IR brane is dual to a strongly-coupled 4D theory, where the Higgs boson
is fully composite and the duals of the bulk fields (which obey Neumann BCs on the
UV brane) are partially elementary and composite. The degree of compositeness of the
fermions depends on the bulk mass parameters. The dual of the bulk symmetry is a
global symmetry in the strong sector, where only the part of the full gauge group is
gauged whose gauge fields obey Neumann UV BCs. The dual theory will become a
useful tool to explain certain results in the subsequent chapter.

38The idea of imposing a global symmetry in the CFT sector by choosing the proper bulk symmetry
was the motivation for the SU(2)L×SU(2)R bulk gauge group in the RS model with custodial protection,
see Section 2.3.



Chapter 2

Models with Warped Extra
Dimensions

In this chapter, the two versions of the Randall-Sundrum model the main part of this
thesis is based on will be presented. The general RS set-up has already been explained
in Section 1.4.4. We have seen that while the Higgs has to be confined on the IR brane
in order to cure the fine-tuning problem in the Higgs sector, the matter and gauge fields
are desired to propagate in the bulk in order to give an explanation for the fermion
hierarchies. The two versions of the RS model differ in the respective gauge group
imposed in the bulk. The first one is the so-called minimal RS model, whose underlying
gauge group is the well-known SM gauge group GSM = SU(3)c × SU(2)L × U(1)Y .
As we will see, this set-up leads to generically too large contributions to some of the
electroweak precision observables. A viable way to reduce these large contributions is
to enlarge the bulk gauge group to Gcust = SU(3)c × SU(2)L × SU(2)R ×U(1)X ×PLR.
This so-called custodial RS model is able to provide KK particles that could be in reach
of direct detection at the LHC and is phenomenologically more viable.

In the following, we will first take into consideration the possibility of having a bulk
instead of a brane Higgs in Section 2.1. We will then turn to the minimal version of
the RS model in Section 2.2, where we will concentrate on the gauge-boson and fermion
sector and the derivation of the corresponding KK profiles and masses. Moreover, it
will be shown explicitly how the parameters of the SM quark sector can be generated
by O(1) input parameters and how the RS-GIM mechanism works. Finally, we will
check the model for compatibility with electroweak precision tests. Section 2.3 is then
dedicated to the custodial model. The proceeding is analogous to the minimal model,
where it will be focused on the differences and the compatibility with the electroweak
precision measurements.

This chapter is based on [145, 149], but also includes contents of my publications
[150, 151] as well as [105, 152].

2.1 Brane-Localized and Bulk-Higgs Scenarios

As in the original version of the Randall-Sundrum model, the extra dimension of the
minimal as well as the custodial model is taken to be an S1/Z2 orbifold, labeled by the
coordinate φ ∈ [−π, π] and bounded by the UV (φ = 0) and the IR brane (φ = π). The
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RS metric is given by (1.91),

ds2 = e−2σ(φ) ηµν dx
µdxν − r2dφ2 =

ε2

t2

(
ηµν dx

µdxν − 1

M2
KK

dt2
)
. (2.1)

Here, we have introduced the new coordinate

t = ε eσ(φ) , ε = e−σ(π) , (2.2)

where σ(φ) = kr|φ| and MKK = kε sets the mass scale for the low-lying KK excitations
of the SM particles, as we will see in Section 2.2.1.1 This notation avoids disturbing
exponential factors so that calculations and expressions become more clearly structured
and more compact, respectively.

The primary focus of this thesis is put on models where the scalar sector is localized
on (or very near) the IR brane at t = 1. Not only do these models give a solution to the
hierarchy problem but they also define important benchmark scenarios that should be
investigated first. Furthermore, we will see in Chapter 4 that only in these cases closed,
analytic expressions, e.g. for the production and decay amplitudes of the Higgs boson,
can be derived. Nevertheless, several results in the main part of this thesis will also be
valid for more involved (but perhaps more natural) models in which the Higgs boson is
a 5D field propagating in the extended bulk of the extra dimension. According to the
discussion below equation (1.101), the hierarchy problem would still be solved in these
models if the Higgs field was localized sufficiently near the IR brane. A comprehensive
study of the generic set-up of these models and their potential to address the hierarchy
problems of the SM is beyond the scope of this work and can be found in [100, 117, 153–
156]. It will, however, be useful to derive certain quantities in these bulk-Higgs models,
like the W -boson zero-mode profile or the associated 5D propagator. Therefore, the
following two sections do not only contain the presentations of the minimal and the
custodial RS model with a brane-localized Higgs sector that follow the discussions of
[145, 149], respectively, but there will also be two subsections dedicated to what changes
in models with a bulk Higgs. Thereby, it will only be focused on quantities that will be
crucial for the main part of this thesis.

In this context, it is useful to make a few comments concerning the definition of a
brane-localized Higgs sector, which is general enough to allow for a non-zero width of
the Higgs profile, as long as it cannot be resolved by the modes of the theory and hence
does not affect any observables. Recall that RS models are effective field theories with
an inherent, position-dependent UV cutoff (1.101). As argued in the discussion below
(1.103), the scale ΛTeV also provides the effective UV cutoff in loop graphs involving
Higgs bosons. The condition that the fermionic modes in the effective theory cannot
resolve the width of the Higgs boson can be stated as

η � v|Yq|
ΛTeV

(brane-localized Higgs) , (2.3)

where |Yq| sets the scale for the dimensionless 5D Yukawa couplings of the model, see
below. Only when this condition is satisfied, the Higgs field can be regarded as being
localized on the IR brane in the sense that any possible extension into the bulk does not
give rise to observable effects. This scenario is referred to as the brane-Higgs scenario.
Relation (2.3) should be considered as a condition on the regulator η at fixed, physical

1The dimensionless variable t ∈ [ε, 1] is related to the conformal coordinate z frequently used in the
literature by the simple rescaling z = t/MKK ≡ R′ t.
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UV cutoff ΛTeV. For a brane-localized Higgs field one should take the limit η → 0
wherever possible, but the above condition states that keeping η finite but smaller than
the bound on the right-hand side would not change the physics.

A Higgs profile with a width η > v|Yq|/ΛTeV must be regarded as a bulk field. The
features of the Higgs profile can then be resolved by the fermionic high-momentum states
in the effective theory, and indeed we will find in Section 4.1 that high-mass KK fermions
make sizable contributions. In the general case, amplitudes in a bulk-Higgs scenario of
the RS model depend in a complicated way on the shapes of the Higgs and the involved
fermion or gauge-boson profiles along the extra dimension. However, we will find that
for a narrow Higgs profile, defined by the relation

v|Yq|
ΛTeV

� η � v|Yq|
MKK

(narrow bulk Higgs), (2.4)

sometimes a model-independent expression can be derived. This scenario will be referred
to as the narrow bulk-Higgs scenario in the following. An important outcome of this
work is that it is not always possible to obtain the results in the brane-localized scenario
by just taking the limit of the results in the narrow bulk Higgs scenario. Thus, these two
variants should be really considered as two different versions of the RS model, where we
will not discuss the question which kind of RS model is theoretically most appealing. The
overwhelming majority of the RS literature has been based on models in which the scalar
sector is localized on the IR brane due to the above-mentioned advantages. These models
should therefore be included as a benchmark in any phenomenological study. Yet, having
the Higgs as the only brane-localized field is somewhat peculiar, and after realizing that
successful models of electroweak symmetry breaking can be constructed with a scalar
sector in the bulk one may consider this to be a more appealing scenario. The fact
that important one-loop amplitudes such as gg → h and b → sγ (see Chapter 4) are
convergent by naive power counting in bulk-Higgs models adds to their attractiveness.
However, a bulk-Higgs model featuring a very narrow Higgs profile (η � 1) requires
some fine-tuning. The most natural assumption would be that η = O(1).

The discussion above has been made to clarify the nomenclature of the different RS
scenarios differing in the localization of the scalar sector. In this thesis, we will predom-
inately work with models with a Higgs sector which will be fixed on the IR brane via
a (regularized) δ-function. When deriving certain quantities, we will also comment on
the corresponding results in the bulk-Higgs model. The narrow bulk-Higgs scenario will
become important only from Chapter 4 on, although the equality on the right-handed
side of (2.4) will already be used in this and the subsequent chapter.

2.2 The Minimal Randall-Sundrum Model

The minimal version of the RS model is just the SM (except for the Higgs) put into the
bulk. The complete action of this theory can be split into two parts,

Sminimal = Sgauge + Smatter , (2.5)

where the gauge sector includes the kinetic terms of the gauge fields, the gauge-fixing
as well as the ghost and Higgs Lagrangian. The matter sector consists of the kinetic
terms for the fermion fields and the Yukawa interactions. In this section, we will make
use of the discussion in Section 1.4.2: Starting from the 5D action, we will derive the
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EOMs for the 5D fields, which after inserting the KK decompositions will give us the
differential equations for the profiles. Then, with the help of the BCs, the solutions for
the profiles and the physical masses of all KK modes will be determined. A special focus
will be put on the zero-mode profiles and mass eigenvalues, for which simple, analytical
formulas can be derived. It will then be explained in detail how the hierarchies of the SM
can be generated and how the RS-GIM mechanism can prevent flavor-changing neutral
currents from getting large corrections. Finally, the minimal RS model is checked for
compatibility with electroweak precision measurements.

2.2.1 The Gauge Sector

We begin with the gauge sector of the minimal RS model based on the SM gauge group
GSM (1.1), where all gauge fields are allowed to propagate in the bulk. We will see that
many of the formulas derived in the following can be immediately recognized as the 5D
generalizations of the corresponding SM counterparts.

The 5D Action

As already mentioned above, the 5D action of the gauge sector is a sum of four contri-
butions,

Sgauge =

∫
d4x

∫ π

−π
dφ
√
|G| (LG,W,B + LHiggs + LGF + LFP) , (2.6)

where
√
|G| = re4σ(φ) is the square root of the determinant of the metric (2.1). The

kinetic Lagrangian LG,W,B is given by

LG,W,B = GKMGLN
(
−1

4
GaKLGaMN −

1

4
W i
KLW

i
MN −

1

4
BKLBMN

)
, (2.7)

where the indices at the corresponding fields strength tensors, which are defined anal-
ogously to the SM case (1.8) with µ, ν → M,N , run over the generators of the color
group SU(3)c (a = 1, . . . , 8) and of SU(2)L (i = 1, 2, 3). The requirement to arrive at
the SM as a low-energy theory demands the vector components of the 5D gauge fields to
be Z2-even functions with Neumann BCs on both branes. According to the discussion
in Subsection 1.4.2 the scalar components must be odd and vanish at both branes. As
in the SM, the electroweak symmetry is broken by the coupling to the Higgs sector that
is confined on the IR brane. The corresponding Lagrangian (1.98) can be written using
the more convenient parametrization

LHiggs =
δ(|φ| − π)

r

[
(DµΦ)† (DµΦ) + µ2Φ†Φ− λ

(
Φ†Φ

)2
]
, (2.8)

where the rescaling of the fields and the dimensionful parameters according to (1.99) has
already been performed. We will use the following parametrization of the Higgs doublet

Φ(x) =
1√
2

(
−i
√

2ϕ+(x)
v + h(x) + iϕ3(x)

)
, (2.9)

where ϕ± ≡ ϕ1∓ϕ2 and ϕ3 are the unphysical scalar degrees of freedom, that are eaten
by the W and Z boson to give them their masses, and h denotes the physical Higgs
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field. Throughout this thesis, v denotes the vev in the RS model, which differs from the
SM value vSM ≈ 246 GeV by a small amount [157]. The exact relation between v and
vSM will be shown at the beginning of Section 5.1. In order to diagonalize the 5D mass
terms coming from (2.8) after EWSB, the electroweak gauge fields can be redefined in
the conventional way,

W±M =
1√
2

(
W 1
M ∓ iW 2

M

)
, MW =

vg5

2
,

ZM =
1√

g2
5 + g′ 25

(
g5W

3
M − g′5BM

)
, MZ =

v
√
g2

5 + g′ 25

2
,

AM =
1√

g2
5 + g′ 25

(
g′5W

3
M + g5BM

)
, MA = 0 ,

(2.10)

where g5 and g′5 are the dimensionful ([g5] = [g′5] = −1/2) 5D gauge couplings of the
SU(2)L and U(1)Y subgroups, respectively. In this basis the covariant derivative reads

DM = ∂M − i
g5√

2

(
T+W+

M + T−W−M
)
− g5

cos θw

(
T 3 − sin θw

)
ZM − ie5QAµ , (2.11)

where T±,3 and Q are the group generators. The Weinberg angle θw and the 5D elec-
tromagnetic gauge coupling e5 are defined by

cos θw =
g5√

g2
5 + g′ 25

, sin θw =
g′5√

g2
5 + g′ 25

, e5 = g5 sin θw , (2.12)

and are again just generalizations of the SM expressions to five dimensions. Note,
however, the different mass dimensions of the gauge fields and coupling constants. At
this point, some comments are in order. In contrast to the common practice in the
literature, e.g. in [145], we do not define a dimensional coupling via g ≡ g5/

√
2πr, and

analogously for g′, which is then identified with the SM gauge coupling gSM. The reason
is that the coupling to the light fermions, which determines the strength of the weak
coupling constants always comes with non-flat profile of the massive gauge bosons derived
in (2.31). The only exceptions are the electromagnetic and the strong gauge coupling
whose corresponding gauge-boson zero modes have a flat profile, so that [158, 159]

e ≡ e5√
2πr

and gs ≡
gs,5√
2πr

(2.13)

can be identified with the 4D gauge couplings of the SM.
The kinetic term in the Higgs Lagrangian (2.8) includes the square of the covariant

derivative acting the Higgs doublet,

DµΦ =
1√
2

(
−i
√

2(∂µϕ
+ +MWW

+
µ )

∂µh+ i(∂µϕ
3 +MZZµ)

)
+ terms bi-linear in fields, (2.14)

and thus mixes the gauge fields W±µ and Zµ with the scalar degrees of freedom ϕ± and
ϕ3. The mixing terms can be removed by appropriate gauge-fixing terms which are



44 Chapter 2. Models with Warped Extra Dimensions

chosen to be

LGF =− 1

2ξ

(
∂µAµ − ξ

[
MKK t∂t

1

t
A5

])2

− 1

2ξ

(
∂µZµ −

ξ

2

[
δ(t− 1)kMZϕ

3 + 2MKK t∂t
1

t
Z5

])2

− 1

ξ

(
∂µW+

µ −
ξ

2

[
δ(t− 1)kMWϕ

+ + 2MKK t∂t
1

t
W+

5

])

×
(
∂µW−µ − ξ

[
δ(t− 1)kMWϕ

− + 2MKK t∂t
1

t
W−5

])
,

(2.15)

where we have used the t-notation and redefined the scalar component of the gauge fields

A5(x, t) =
ε

rt
Aφ(x, φ) , (2.16)

and analogously for W±5 and Z5, in order to adjust the mass dimensions. More generally,
there could be a different parameter for each term, but we can set all to the same value
without loss of generality. The square of the δ-function appearing in (2.15) causes no
problems, because these terms cancel out after inserting the KK decomposition of the
fields, as we will see later. The Faddeev-Popov Lagrangian LFP will not be needed for the
discussion in this chapter. We will touch on its structure after the KK decomposition,
since we need the corresponding Feynman rules in Section 4.2.

As we want to derive the masses and profiles of the physical KK excitations, we will
concentrate on the bilinear terms in the following. It is, however, straightforward to
incorporate couplings involving three or four gauge bosons. The kinetic terms of the
gauge bosons and the Higgs as well as the gauge-fixing terms lead to the bilinear part
of the action

Sgauge,2 3
∫
d4x

2πr

L

∫ 1

ε

dt

t{
−1

4
FµνF

µν − 1

2ξ
(∂µAµ)2 +

1

2
(∂µA5∂

µA5 +M2
KK∂tAµ∂tA

µ)

−1

4
ZµνZ

µν − 1

2ξ
(∂µZµ)2 +

1

2
(∂µZ5∂

µZ5 +M2
KK∂tZµ∂tZ

µ)

−1

2
W+
µνW

−µν − 1

ξ
(∂µW+

µ )(∂νW−ν ) + (∂µW
+
5 ∂

µW−5 +M2
KK∂tW

+
µ ∂tW

−µ)

+
k

2
δ(t− 1)

(
1

2
∂µh∂

µh− λv2h2 + ∂µϕ
+∂µϕ− +

1

2
∂µϕ

3∂µϕ3 (2.17)

+
M2
Z

2
ZµZ

µ +M2
WW

+
µ W

−µ
)

−ξ
2

(
MKK t∂t

1

t
A5

)2

− ξ

8

(
δ(t− 1) kMZϕ

3 + 2MKK t∂t
1

t
Z5

)2

−ξ
4

(
δ(t− 1) kMWϕ

+ +MKK t∂t
1

t
W+

5

)(
δ(t− 1) kMWϕ

− +MKK t∂t
1

t
W−5

)}
.
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The Kaluza-Klein Decomposition

In order to solve the EOMs that follow from the action (2.17), we now decompose the
5D fields into 4D mass eigenstates and choose the following decomposition

Aµ(x, t) =
1√
r

∑

n

χAn (t)A(n)
µ (x) , A5(x, t) =

MKK√
r

∑

n

aAn ∂tχ
A
n (t)ϕ

(n)
A (x) ,

Zµ(x, t) =
1√
r

∑

n

χZn (t)Z(n)
µ (x) , Z5(x, t) =

MKK√
r

∑

n

aZn ∂tχ
Z
n (t)ϕ

(n)
Z (x) ,

W±µ (x, t) =
1√
r

∑

n

χWn (t)W±(n)
µ (x) , W±5 (x, t) =

MKK√
r

∑

n

aWn ∂tχ
W
n (t)ϕ

±(n)
W (x) ,

(2.18)

where we have used that the profiles χ5
n(t) (B = A,Z,W±) can be chosen to be χ5

n(t) =

aBn ∂tχ
B
n (t) with some coefficients aBn that have to be determined [111]. The fields B

(n)
µ

are the KK modes of the gauge boson B with masses mB
n , while the scalar particles

ϕ
(n)
a (a = W±, Z) are the KK modes of the mixture of the fifth component of the gauge

field a5 and the Goldstone bosons arising from the Higgs sector ϕ±,3.2 It is therefore
reasonable to expand the latter Goldstone bosons in the same basis of mass eigenstates

ϕ±(x) =
∑

n

bWn ϕ
(n)
W (x) , ϕ3(x) =

∑

n

bZn ϕ
(n)
Z (x) . (2.19)

Following the discussion below (1.62), we can derive the EOM for the profiles, which in
t-notation read

− t ∂t
1

t
∂t χ

B
n (t) = x2

n χ
B
n (t)− δ(t− 1)

L

2πr

M2
B

M2
KK

χBn (t) , (2.20)

and find that the profiles obey the orthonormality condition

2π

L

∫
dt

t
χBn (t)χBm(t) = δnm . (2.21)

The difference in the case at hand is the appearance of the δ-function in (2.8) and (2.15).
Note that it is only relevant for the massive gauge bosons W± and Z. In order to be in
accordance with the boundary conditions of these fields, which guarantee the vanishing
of the boundary terms when integrating by parts, we move the δ-function infinitesimally
into the bulk and use the 1− superscript indicating δ(t− 1−) ≡ limη→0 δ(t− 1 + η). The
δ-function therefore represents a “fake brane” which modifies the BC at t = 1− obtained
by integrating the EOM (2.20) over a small interval around the IR brane (in φ-notation)
or from an infinitesimally displaced point in the bulk to the brane (in t-notation)

∂tχ
W,Z
n (ε) = 0 , ∂tχ

W,Z
n (1−) = −

Lm̃2
W,Z

M2
KK

χW,Zn (1) . (2.22)

Here, we have expressed the 5D masses MW,Z in terms of the mass parameters

m̃W ≡
g5√
2πr

v

2
and m̃Z ≡

√
g2

5 + g′25
2πr

v

2
, (2.23)

2The scalars ϕ
(n)
A are just the KK modes of the fifth component A5.
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which are the leading contributions to the gauge-boson masses in an expansion in pow-
ers of v2/M2

KK, see (2.30). The photon and the gluon profiles obey Neumann boundary
conditions at both branes resulting in a massless zero mode. After inserting the KK
decomposition (2.18) into (2.17) and applying the EOM and the orthonormality condi-
tion, we arrive at the following effective 4D theory, where the fifth dimension has been
integrated out,

Sgauge,2 =
∑

n

∫
d4x

{
−1

4
F (n)
µν F

µν(n) − 1

2ξ

(
∂µA(n)

µ

)2
+

(mA
n )2

2
A(n)
µ Aµ(n)

−1

4
Z(n)
µν Z

µν(n) − 1

2ξ

(
∂µZ(n)

µ

)2
+

(mZ
n )2

2
Z(n)
µ Zµ(n)

−1

2
W+(n)
µν W−µν(n) − 1

ξ
∂µW+(n)

µ ∂νW−(n)
ν +

(mA
n )2

2
W+(n)
µ W−µ(n)

+
1

2
∂µϕ

(n)
A ∂µϕ

(n)
A −

ξ(mA
n )2

2
ϕ

(n)
A ϕ

(n)
A +

1

2
∂µϕ

(n)
Z ∂µϕ

(n)
Z −

ξ(mZ
n )2

2
ϕ

(n)
Z ϕ

(n)
Z

+ ∂µϕ
+(n)
W ∂µϕ

−(n)
W − ξ(mW

n )2 ϕ
+(n)
W ϕ

−(n)
W

}
+

∫
d4x

(
1

2
∂µh ∂

µh− λv2h2

)

+
∑

n

∫
d4xL(n)

FP . (2.24)

In order to obtain the above structure, we have made the crucial condition that the
coefficients in (2.19) must be given by (a = W,Z)

aan = − 1

ma
n

, ban =
m̃a

ma
n

√
2π χan(1) . (2.25)

Choosing different coefficients would not lead to the diagonal action (2.24). The latter

describes the action of an infinite tower of physical gauge-boson KK modes B
(n)
µ (B =

W±, Z,A) with masses mB
n and of the corresponding unphysical Goldstone bosons with

masses
√
ξmB

n . The zero modes can be identified with the SM gauge bosons. In this
approach all mixing effects are implicitly included and the physical zero modes already
involves contributions from the KK excitations. This mixing gives rise to different
couplings of the gauge-boson zero modes to fermions which we will see below.

Note that in the action (2.24) the Lagrangian for each KK mode has the same form as

the SM action. As a consequence, the Faddeev-Popov ghost Lagrangians L(n)
FP resemble

the SM one, with the only generalization that a ghost field is required for every KK mode.
Correspondingly, the gauge-boson couplings to their ghosts can be easily deduced from
the corresponding SM Feynman rule.

Bulk Profiles and Masses

We now want to obtain the solutions for the bulk profiles χan. Solving the EOMs (2.20)
subject to the BCs (2.22), one finds (a = W,Z)

χan(φ) = Nn

√
L

π
t c+
n (t) , (2.26)



2.2. The Minimal Randall-Sundrum Model 47

where only the UV BC has been used to determine the unspecified coefficient in the
general solution, so that

c+
n (t) = Y0(xanε) J1(xant)− J0(xanε)Y1(xant) ,

c−n (t) =
1

xant

d

dt

[
t c+
n (t)

]
= Y0(xanε) J0(xant)− J0(xanε)Y0(xant) .

(2.27)

The dimensional parameters xan = ma
n/MKK are the ratios of the gauge-boson masses

normalized to the KK scale. The normalization contentNn is fixed by the orthonormality
relation (2.21), and reads

N−2
n =

[
c+
n (1)

]2
+
[
c−n (1−)

]2 − 2

xn
c+
n (1) c−n (1−)− ε2

[
c+
n (ε)

]2
. (2.28)

The IR BC

xanc
−
n (1−) = − Lm̃

2
a

M2
KK

c+
n (1) , a = W,Z , (2.29)

can be used for the determination of the mass eigenvalues xan. The masses of the KK
modes (n ≥ 1) have to be calculated numerically. Since they are determined by the zeroes
of Bessel functions they have an approximately equidistant spacing of ∆ma ≈ nπMKK.
The masses of the zero modes, on the other hand, can be derived analytically. Expanding
(2.29) in powers of v2/M2

KK, we find3 (a = W,Z)

m2
a = m̃2

a

[
1− m̃2

a

2M2
KK

(
L− 1 +

1

2L

)
+O

(
v4

M4
KK

)]
. (2.30)

This equation relates the gauge-boson masses to the SM relation ma = gavSM/2. Direct
measurements will determine the mass on the left-hand side of (2.30) and one can
therefore absorb the universal RS corrections into ma. This corresponds to a rescaling
of the Higgs vev as discussed in [145]. However, we will use a different determination
of the vev shift in Section 5.1. Nevertheless, it is noteworthy that equation (2.30) has
to be used in all calculations involving the masses m̃W,Z in order to obtain results that
depend on the physical masses mW,Z .

Finally, we can derive analytical expressions for the zero-mode profiles (a = Z,W )

√
2π χa0(t) = 1− m2

a

2M2
KK

[
t2
(
L− 1

2
+ ln t

)
− 1

2
+

1

2L

]
+O

(
v4

M4
KK

)
, (2.31)

which receive corrections of O(v2/M2
KK) to the flat profile which is the consequence of

the mixing with the KK modes. Inserting this result into (2.19) and (2.25) shows that

the fields ϕ± coincide with ϕ
±(0)
W to leading order and that mixing effects arise at order

v2/M2
KK or higher. The masses and profiles for the photon and the gluon can be easily

adopted from (2.30) and (2.31) with m̃a = 0, which follows from Neumann boundary
conditions at the IR brane, see (2.22). Thus, the zero modes are massless (mA,G = 0)
and have a flat profile

χA,G0 =
1√
2π

, (2.32)

which, according to the discussion in Section 1.4.2, is crucial for maintaining gauge
invariance at zero-mode level.

3Terms of O(ε) will be neglected in the following.
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Modifications for a Bulk Higgs

Up to now, we have treated the Higgs as a brane-localized field. As has been pointed
out at the beginning of this chapter, it is also possible and somewhat more natural to
allow the Higgs doublet to propagate into the bulk.4

Using the orbifold coordinate φ, the general action for the Higgs sector, that is given
by (2.8) in the case of a brane-localized Higgs sector, now becomes

Sh =

∫
d4x r

∫ π

−π
dφ e−4σ

[
gMNDMΦ†DNΦ−µ2 |Φ|2−VUV(Φ) δ(|φ|)−VIR(Φ) δ(|φ|−π)

]
,

(2.33)
where µ provides a bulk mass for the scalar field, which can be tachyonic (see below).
The potentials localized on the UV and IR branes determine the boundary conditions
of the scalar fields and induce electroweak symmetry breaking. They are chosen to be

VUV(Φ) = MUV |Φ|2 , VIR(Φ) = −MIR |Φ|2 + λIR |Φ|4 , (2.34)

with mass dimensions [MUV] = [MIR] = 1 and [λIR] = −2. The dimensionful parameters
in the 5D action naturally scale with appropriate powers of MPl, and it will be useful to
introduce dimensionless O(1) parameters by the rescalings

mUV ≡
MUV

2k
, mIR ≡

MIR

2k
, λ ≡ λIR k

4r
. (2.35)

Switching to t-notation, we express the scalar doublet Φ(x, φ) in the form

Φ(x, t) =
t

ε
√
r

(
−iϕ+(x, t)

1√
2

[v(t) + h(x, t) + iϕ3(x, t)]

)
, (2.36)

where in contrast to (2.9) the Higgs vev profile v(t), the physical Higgs scalar h(x, t),
and the Goldstone bosons ϕ+(x, t), ϕ3(x, t) are now functions depending on the extra
dimension. Being 5D fields, these four scalar degrees of freedom can also be decomposed
into KK modes. As a matter of fact, these KK modes mix with the KK modes of the fifth
components of the gauge fields. After rotating into the mass basis, there are physical KK
excitations of the neutral Higgs boson hn(x) [161]. Moreover, there are three towers of
additional scalars φZn (x), φ±n (x), which do not possess zero modes. The charged scalars
will be important for the discussion in Section 4.2. For the following analysis it is not
necessary to consider the Goldstone fields ϕ+(x, t), ϕ3(x, t) any further (unitary gauge).
Integrating by parts, the Lagrangian corresponding to the action Sh =

∫
d4xLh(x) in

(2.33) can be rewritten in the form

Lh =
2π

L

∫ 1

ε

dt

t

{
1

2
∂µh(x, t) ∂µh(x, t)

+
M2

KK

2

[
v(t) + 2h(x, t)

t

(
t2∂2

t + t∂t − β2
) v(t)

t
+
h(x, t)

t

(
t2∂2

t + t∂t − β2
) h(x, t)

t

]}

− πM2
KK

L

{[
v(t) + 2h(x, t)

t2
∂t [t v(t)] +

h(x, t)

t2
∂t [t h(x, t)]

]1−

t=ε+
(2.37)

+
mUV

ε2
[
v(ε) + h(x, ε)

]2 −mIR

[
v(1) + h(x, 1)

]2
+

λ

M2
KK

[
v(1) + h(x, 1)

]4
}
,

4 This discussion follows the expositions given in [156, 160] and is part of our publication [150].
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where β =
√

4 + µ2/k2. Requiring that the terms linear or quadratic in h(x, t) cancel
out on the UV and IR branes yields the BCs5

∂t [t v(t)]t=ε+ = mUV v(ε) , ∂t [t v(t)]t=1− = mIR v(1)− 2λ

M2
KK

v3(1) , (2.38)

∂t [t h(x, t)]t=ε+ = mUV h(x, ε) , ∂t [t h(x, t)]t=1− = mIR h(x, 1)− 6λ

M2
KK

v2(1)h(x, 1) .

The differential equation for v(t) can be obtained by varying the action with respect to
v(t), and we find

(
t2∂2

t + t∂t − β2
) v(t)

t
= 0 , with β2 = 4 +

µ2

k2
, (2.39)

which ensures that the tadpole terms in the Lagrangian (2.37) cancel out. We then
obtain

Lh(x) =
2π

L

∫ 1

ε

dt

t

[
1

2
∂µh(x, t) ∂µh(x, t) +

M2
KK

2

h(x, t)

t

(
t2∂2

t + t∂t − β2
) h(x, t)

t

]

− π

L
λ
[
− v4(1) + 4v(1)h3(x, 1) + h4(x, 1)

]
. (2.40)

The general solution to the differential equation (2.39) subject to the boundary condi-
tions (2.38) is

v(t) = Nv

(
t1+β − rv t1−β

)
, with rv = ε2β

2 + β −mUV

2− β −mUV
, (2.41)

and

N2
v =

M2
KK

2λ

(mIR − 2− β)− rv (mIR − 2 + β)

(1− rv)3 . (2.42)

Before proceeding, let us first discuss which values the parameter β can take. Motivated
by the observation that the energy-momentum flux in a pure anti-de Sitter space without
an IR brane (which corresponds to taking the limit r → ∞) vanishes at the boundary
only if the 5D scalar field obeys the Breitenlohner-Friedman bound µ2 > −4k2 [162],
one usually assumes that β must be a real positive number, even though not necessarily
larger than 2. Unless β is very close to zero, it follows that the coefficient rv ∝ ε2β in
(2.41) is extremely small and can be set to zero for all practical purposes. The only
exception would be the region where t ∼ ε is very near the UV brane, which, however,
is irrelevant for the analysis in this thesis. It follows that

v(t) = v(1) t1+β , with v(1) = MKK

√
mIR − 2− β

2λ
. (2.43)

The requirement that the Higgs vev be a real number imposes an upper bound on the
parameter β, since λ > 0 is required by vacuum stability. We thus obtain the allowed
range

0 < β < mIR − 2 . (2.44)

Note that the parameter v(1) is a function of the 5D input parameters of the theory. It is
more convenient to relate it to the physical value vSM of the Higgs vev in the SM. After

5As above, these conditions can also be derived by integrating the field equations over infinitesimal
intervals about the branes.
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electroweak symmetry breaking, the mass terms for the W and Z bosons are generated
by the 5D Lagrangian

Sm =

∫
d4x

2π

L

∫ 1

ε

dt

t

v2(t)

4

[
g2

5 W
+
µ (x, t)W−µ(x, t) +

g2
5 + g′ 25

2
Zµ(x, t)Zµ(x, t)

]
.

(2.45)
Making use of the KK decompositions (2.18), we can identify

v2
4 =

2π

L

∫ 1

ε

dt

t
v2(t)(χW0 (t)

√
2π)2 , (2.46)

where the parameter v4 coincides with the parameter v used elsewhere in this thesis. At
lowest order in an expansion in powers of v2/M2

KK, it coincides with the SM parameter
vSM as defined, e.g. via the value of the Fermi constant, see Section 5. For the determi-
nation of the O(v2/M2

KK) corrections to the relation vSM = v4, one needs to solve the
differential equations for the profiles of the gauge-boson zero modes in the presence of
the Higgs vev, which will be done in the following. The EOM reads

(−t∂t
1

t
∂t + v̂2 t2+2β)χW0 (t) = x2

0 χ
W
0 (t) , v̂2 =

g2
5

4r

v(1)2

M2
KK

, (2.47)

and the profiles need to obey Neumann BCs at both branes. Unfortunately, a closed,
analytical solution to this equation cannot be derived, but it is possible to find a per-
turbative solution using the ansatz

χW0 (t) =

∞∑

n=0

(v̂2)n fn(t) , x2
0 =

∞∑

n=1

(v̂2)n cn . (2.48)

The sum in the ansatz for x2
0 starts with n = 1, since in the case of no electroweak

symmetry breaking the profile is flat χW0 (t) = f0(t) ≡ 1/
√

2π with eigenvalue x2
0 ≡ 0.

Inserting (2.48) into (2.47) and collecting the different orders of v̂2 we obtain differential
equations for the functions fn(t)

−t∂t
1

t
∂t f0(t) = 0 ,

−t∂t
1

t
∂t f1(t) = −t2+2βf0(t) + c1f0(t) ,

−t∂t
1

t
∂t f2(t) = −t2+2βf1(t) + c1f1(t) + c2f0(t) ,

(2.49)

etc. Using the BCs and the normalization condition (2.21), we obtain

f0(t) =
1√
2π

, (2.50)

f1(t) =
1√
2π

1

4(1 + β)

[
− 1

2L2
+

(1 + β)(3 + β)

2L(2 + β)2
+ t2

(
−1 +

t2(1+β)

2 + β
+

1− 2 ln t

2L

)]
,

and

c1 =
1

2L(1 + β)
,

c2 = − 1

4L

[
1

(2 + β)(3 + 2β)
− (3 + β)

4L(1 + β)(2 + β)2
+

1

4L2(1 + β)2

]
.

(2.51)
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We can now relate v2(1) to the four-dimensional vev v2
4 via (2.46) and obtain for the

Higgs vev profile at next-to-leading order

v(t) = v4

√
L

π
(1 + β) t1+β

[
1− v̂2d1

]
, (2.52)

with

d1 =
1

4(2 + β)

[
−2(1 + β)

3 + 2β
L+

3 + 2β

2 + β
− 1

2L

2 + β

1 + β

]
. (2.53)

Moreover, the W -mass m2
W = x2

0M
2
KK is found to be

m2
W = m̃2

W

{
1− m̃2

W

2M2
KK

[
2L(1 + β)2

(2 + β)(3 + 2β)
− (1 + β)(3 + β)

(2 + β)2
+

1

2L

]
+O

(
v4

M4
KK

)}
,

(2.54)
where m̃W ≡ v4g5/(2

√
2πr). Provided with the above results, it is straightforward to

derive the W -boson profile in the background of a bulk-Higgs profile

χW0 (t) =
1√
2π

{
1 +

m2
W

2M2
KK

[
Lt4+2β

2 + β
+

(1 + β)(3 + β)

2(2 + β)2
− 1

2L
− t2

(
L− 1

2
+ ln t

)]}
,

(2.55)
which is the exact result at O(v2/M2

KK). Note that for β = O(1) the constant terms
in (2.54) and (2.55) are reduced with respect to the results (2.30) and (2.31) in the
brane-localized scenario, which can be recovered by pushing the Higgs towards the IR
brane, i.e. in the limit β →∞.

We proceed to study the eigenvalue problem for the physical Higgs boson and its KK
excitations. Being a 5D field, the 5D Higgs field can be decomposed via

h(x, t) =
∞∑

n=0

hn(x)χhn(t) , (2.56)

where the zero mode h(x) ≡ h0(x) corresponds to the SM Higgs boson and the profiles
obey the usual orthonormality condition (2.21). In order to obtain canonical mass terms
from the Lagrangian (2.40), we must impose the EOM

(
t2∂2

t + t∂t + t2x2
n − β2

) χn(t)

t
= 0 , (2.57)

where as usual xn = mn/MKK denote the masses of the KK Higgs bosons in units of
MKK. The general solution to this equation is a linear combination of Bessel functions,

χhn(t) = Nn t
[
Jβ(xnt)− rnYβ(xnt)

]
, (2.58)

where the BC on the UV brane in (2.38) once again implies that rn ∝ ε2β is extremely
small and can be set to zero for all practical purposes in this thesis. We then obtain

χhn(t) =

√
L

π

t Jβ(xnt)√
J2
β(xn)− Jβ+1(xn) Jβ−1(xn)

. (2.59)
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For the determination of the physical masses of the KK Higgs bosons, we need the
boundary condition on the IR brane

xnJβ+1(xn)

Jβ(xn)
= 2(mIR − 2− β) ≡ 2δ . (2.60)

From this equation it follows that even the zero mode (the SM Higgs boson) has a mass
that is naturally of O(MKK), which empirically cannot be less than a few TeV. This is
the little hierarchy problem, which is not addressed in RS scenarios. In order to obtain
a realistic Higgs mass mh �MKK, one has to assume that

δ = mIR − 2− β � 1 . (2.61)

Once this is done, it is straightforward to obtain a formula for the zero-mode mass in a
power series in δ. We find

x2
0 =

m2
h

M2
KK

= 4(1 + β) δ

[
1− δ

2 + β
+

2δ2

(2 + β)2 (3 + β)
+ . . .

]
. (2.62)

Assuming MKK = 2 TeV, for example, implies that (1 + β) δ ≈ 10−3, which corresponds
to a fine-tuning of 1 in 1000. For the zero-mode profile, it is now easy to obtain an
expansion in powers of x2

0. The leading terms are given by

χh0(t) =

√
L

π
(1 + β) t1+β

[
1− x2

0

4

(
t2

1 + β
− 1

2 + β

)
+ . . .

]
. (2.63)

Note that the next-to-leading term is a small correction of O(m2
h/M

2
KK) and is even

more suppressed by the localization parameter β > 0. In the limit β →∞, the profiles
of the vev and the Higgs-boson zero mode coincide.

2.2.2 The Matter Sector

We now turn to the matter sector of the action (2.5), where the focus is put on the quark
sector. The generalization to the lepton sector is straightforward, but is somewhat more
involved: While the RS set-up can address the tiny neutrino masses, without a see-saw
mechanism, by means of wave function overlaps [163–165], the localization along the
extra dimension does not readily yield the correct mixing angles [166]. Thus, the lepton
sector requires some model building. We will come back to the implementation of the
lepton sector in Section 4.2, where the loop-induced Higgs decay h→ γγ is analyzed.

The 5D Action

Like the SM, the minimal RS model contains quark fields that are charged under the
SU(3)c gauge group and are doublets and singlets under SU(2)L. The difference to the
SM, as pointed out in Section 1.4.2, is that the 5D bulk fermions are now Dirac particles
and we need to impose certain BCs to project out the ”wrong-chirality” components of
the zero modes. The SU(2)L doublets are denoted as Q = (U,D), whose left-handed
component (UL, DL) is a Z2-even function on the orbifold and fulfills (NN) BCs, while
the right-handed component is a Z2-odd function and obeys, according to (1.73), the
opposite, i.e. (DD), BCs. This choice accounts for massless left-handed fermions that
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can be identified with the SU(2)L doublet of the SM. Analogously, the SU(2)L singlet
will be denoted by q = u, d, where in this case the Z2-even right-handed component has
to obey (NN) BC in order to arrive at a spectrum that is compatible with the SM. All
fields are three-vectors in generation space and we can write down Yukawa interactions
that couple to quark fields to the Higgs and give the zero modes their SM masses.

Like in the SM, the action of the matter sector in the minimal RS model consist of
two parts,

Smatter = Sferm
kin + SYukawa =

∫
d4x

∫ π

−π
dφ
√
G
(
Lferm

kin + LYukawa

)
, (2.64)

where kinetic action6 Sferm
kin follows from (1.71) with Ψ = Q, q and after evaluating the

5D gamma matrices (1.70) and the vielbein (1.72) reads

Sferm
kin =

∑

Q,q

∫
d4x r

∫ π

−π
dφ

{
e−3σ

(
Q̄ i/∂ Q+ q̄ i/∂ q

)
− e−4σ sgn(φ)

(
Q̄MQQ+ q̄M q q

)
(2.65)

− e−2σ

r

[
Q̄L ∂φ(e−2σQR)− Q̄R ∂φ(e−2σQL) + q̄L ∂φ(e−2σqR)− q̄R ∂φ(e−2σqL)

]
}
.

The quantities MQ,q are 3× 3 matrices in generation space and the signum in front of
the mass terms are due to parity assignments. One can always choose a basis where
these matrices are real and diagonal [145], which we will assume from now on. In this
basis, the Yukawa interactions read

SYukawa =

∫
d4x

∫ π

−π
dφ
√
GLYukawa (2.66)

= −
∫
d4x

∫ π

−π
dφ δ(|φ| − π) e−4σ

[
εab Q̄aL Φ†b Y

5D,C
u uR + εab Q̄aR Φ†b Y

5D,S
u uL

+ Q̄L ΦY 5D,C
d dR + Q̄R ΦY 5D,S

d dL + h.c.
]

3 −
∫
d4x r

∫ π

−π
dφ e−3σ v δ(|φ| − π)√

2r

∑

Q,q

[
Q̄L Y

5D,C
q qR + Q̄R Y

5D,S
q qL + h.c.

]
,

where ε = iσ2 and Y 5D
q are the fundamental 5D Yukawa matrices. Due to their mass

dimension [Y 5D
q ] = −1, it is convenient to define [163, 167]

Y q ≡
k

2
Y 5D
q , |(Y q)ij | ≤ y? = O(1) . (2.67)

Contrary to the SM, the dimensionless matrices Y q are assumed to have anarchical
structure, meaning they are non-hierarchical matrices with complex elements bounded
from above by y?. In order not to clash with the Yukawa perturbativity bound, the
typical choice is y? = 3. In the phenomenological analysis in Chapter 5, we will however
also choose different O(1) values. The perturbativity bound is discussed in Appendix B.

In (2.66) it has been distinguished between the two Yukawa matrices Y 5D,C
q and Y 5D,S

q

for the Z2-even and Z2-odd fields, respectively, where the superscripts refer to the profiles

6We only focus on the free kinetic action here. The interactions with the gauge fields can be included
by the replacement ∂M → DM , where DM is the covariant derivative (2.11).
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in the KK decomposition of the fermion fields, see below. While this differentiation is
possible for a brane-localized Higgs sector, it is forbidden by 5D Lorentz invariance for a
bulk Higgs. Thus, the choice Y 5D,C

q = Y 5D,S
q could be motivated by considering a brane-

localized Higgs as a limit of a bulk Higgs. We will encounter an example in Section 4.1,
however, where it is not always possible to obtain the results in a brane-Higgs scenario
as a limit of a bulk Higgs. Therefore, it would be somewhat more natural to impose two
different Yukawa matrices for RS models with a brane-localized Higgs sector. On the
other hand, we will see that the leading contributions only depend on Y 5D,C

q , while the

matrices Y 5D,S
q have minor effects. In the following, it will therefore be assumed that

Y 5D,C
q = Y 5D,S

q = Y 5D
q . We will come back to the possibility of two different Yukawa

matrices when necessary. For the generation of hierarchies that will be focused on in
the next subsection, the distinction between the two matrices is irrelevant, since they
are both structureless and have O(1) elements.

The Kaluza-Klein Decomposition and the Equations of Motion

In the next step, we decompose the 5D quark fields Q = (U,D) and q = u, d. Compared
to the gauge-boson case, the decomposition is a little bit more involved due to the flavor
degrees of freedom and to the mixing in the Yukawa sector. In fact, the latter leads
to diagrams, where a zero mode of the SU(2)L doublet couples to a KK mode of the
SU(2)L singlets. This shows that the resulting left- and right-handed mass eigenstates

q
(n)
L,R should be part of the KK decomposition of both the 5D doublet and singlet. So,

in anticipation of what is happening, we choose the following KK decomposition for the
up-type quarks

UL(x, t) =
1√
r

t2

ε2

∑

n

CQ
n (t) aUn u

(n)
L (x) , UR(x, t) =

1√
r

t2

ε2

∑

n

SQn (t) aUn u
(n)
R (x) ,

uL(x, t) =
1√
r

t2

ε2

∑

n

Sun(t) aun u
(n)
L (x) , uR(x, t) =

1√
r

t2

ε2

∑

n

Cu
n(t) aun u

(n)
R (x) ,

(2.68)

and likewise for the down-type quark sector. The superscript n labels the different
mass eigenstates in the effective 4D theory such that 1, 2, 3 refer to the SM quarks,
while n = 4, . . . , 9 label the six quark modes of the first level (due to the doubling of
the degrees of freedom at each KK level), and so on. The Z2-even and Z2-odd quark
profiles CQ,u

n (t) and SQ,un (t) are 3 × 3 matrices in generation space and correspond to

the solutions with (NN) and (DD) BCs, respectively. The 3-component a-vectors a
(U,u)
n

describe the flavor mixings of the 5D interaction states into 4D mass eigenstates which
are generated by the Yukawa interaction on the IR brane. Therefore, while SU(2)L
gauge symmetry implies that the SU(2)L doublet quark fields have the same profile
functions CU

n = CD
n ≡ CQ

n and SUn = SDn ≡ SQn , the vectors aU,Dn do not coincide,
since the two components are treated different in the Yukawa interactions. Moreover,
the profile functions can be chosen to be diagonal and real, whereas the a-vectors are
complex in general. In the limit v → 0, corresponding to a situation where the Yukawa
interactions are switched off, the a-vectors become unit vectors and no flavor mixing
occurs.

Although not relevant for the rest of this section, it will be convenient to introduce a
compact notation, where the left-and right-handed components of the up- and down-type
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states are collected into six-component vectors

UA(x, t) ≡
√

2πr

Lε

ε2

t2

(
UA(x, t)
uA(x, t)

)
, DA(x, t) ≡

√
2πr

Lε

ε2

t2

(
DA(x, t)
dA(x, t)

)
, (2.69)

with A = L,R. They are collectively referred to as QL,R. The main advantage of
this notation is that the factors appearing in integrals are absorbed. The newly-defined
vectors QL,R have mass dimension 3/2 and can be written as a KK decomposition

QA(x, t) =
∑

n

Q(n)
A (t) q

(n)
A (x) ; A = L,R , (2.70)

where the functions Q(n)
L,R denote the wave functions of the left- and right-handed com-

ponents of the nth KK mass eigenstates. From the KK decompositions (2.68) we deduce
that the profiles are given by

Q(n)
L (t) ≡

√
2π

Lε

(
CQ
n (t) aQn
Sqn(t) aqn

)
, Q(n)

R (t) ≡
√

2π

Lε

(
SQn (t) aQn
Cq
n(t) aqn

)
. (2.71)

Note that the upper (lower) three components denote the contributions from the 5D
doublet (singlet) with corresponding chirality. Using this notation will lead to very
compact expressions for overlap integrals, see subsequent subsection, and for the 5D
fermion propagator derived in Chapter 3.

We now proceed with the derivation of the EOMs for the profiles functions. Inserting
the decomposition (2.68) into the 5D action (2.64) and matching onto the canonical 4D
fermion action yields

S4D =
∑

q=u,d

∑

n

∫
d4x

[
q̄(n)(x) i/∂ q(n) −mn q̄

(n)(x) q(n)(x)
]
. (2.72)

While the kinetic term gives rise the orthonormalization relation

∫ 1

ε
dtQ(n)†

L,R (t)Q(n)
L,R(t) (2.73)

=
2π

Lε

∫ 1

ε
dt
{
aQ,q†m CQ,q

m (t)CQ,q
n (t) aQ,qn + aq,Q†m Sq,Qm (t)Sq,Qn (t) aq,Qn

}
= δnm ,

the mass term leads to the EOMs [145, 149, 163]

(
− t∂t − cQ

)
SQn (t) aQn = −xn tCQ

n (t) aQn +
v δ(t− 1)√

2MKK

Y qC
q
n(t) aqn ,

(
t∂t + cq

)
Sqn(t) aqn = −xn tCq

n(t) aqn +
v δ(t− 1)√

2MKK

Y †qC
Q
n (t) aQn ,

(
t∂t − cQ

)
CQ
n (t) aQn = −xn tSQn (t) aQn +

v δ(t− 1)√
2MKK

Y q S
q
n(t) aqn ,

(
− t∂t + cq

)
Cq
n(t) aqn = −xn tSqn(t) aqn +

v δ(t− 1)√
2MKK

Y †q S
Q
n (t) aQn ,

(2.74)



56 Chapter 2. Models with Warped Extra Dimensions

Higgs

odd fermion

η

11− ηε

1/η

IR braneUV brane

Figure 2.1: Visualization of the regularized Higgs profile. The region t ∈ [ε, 1− η] is
called the bulk part, whereas the interval t ∈ [1− η, 1] is referred to as the sliver part.
The gray curve schematically shows the behavior of the Z2-odd fermion profiles in both
regions, which are supposed to match at t = 1− η.

with the normalized KK masses xn and the bulk mass parameters cQ,q ≡ ±MQ,q/k.7

In [145], the terms involving the δ-functions on the right-hand side of the last two lines
in (2.74) have been omitted, since the Z2-odd profiles vanish at the IR brane. As we
will see below, neglecting these terms is not correct. Off the IR brane, i.e. t 6= 1, the
Yukawa terms do not contribute and the EOMs reduce to the differential equations
for the free fermions with the corresponding solutions. One way to find a solution to
(2.74) is therefore to take the homogenous solutions in the bulk and consider the Yukawa
couplings as perturbations [159, 163, 167–171]. In this way, we obtains the solutions order
by order in v2/M2

KK. However, we will derive the solution with an exact dependence
on the Yukawa matrices which enter through the BCs [145, 149, 167, 172, 173]. Both
approaches are equivalent [174], although the latter is more straightforward and will be
adopted here.

At this point, we have to come back to the Higgs profile described by a δ-function in
the case of a brane-localized Higgs field. In contrast to the boson case, we cannot just
move the δ-function infinitesimally into the bulk in order to obtain the correponding BCs
at 1−. The derived boundary conditions would be in conflict with the EOMs (2.74). For
the fermion case, it is therefore important to regularize the δ-function properly. In [149],
the authors used an arbitrary regularized profile δη(t − 1) with infinitesimal support
[1 − η, 1] and they showed that in the limit η → 0 the results do not depend on the
specific choice of the regularization. Thus, it is justified to use the simple rectangular
regularization

δη(t− 1) =
1

η
θ(t− 1 + η) , with η � 1 , (2.75)

which effectively divides the extra dimension into a bulk (t < 1 − η) and a small sliver
part (t > 1− η), as illustrated in Figure 2.1. In these regions of the fifth dimension, the
EOMs (2.74) possess independent bulk and sliver solutions.

Continuity requires these two solutions to be equal at t = 1 − η and after sending
η → 0, this gives a (modified) boundary condition for the bulk profiles at 1−. If η is
small enough, i.e. η � v|Y |/MKK (this is the reason for the inequality on the right-hand
side of (2.4)), the Yukawa term in (2.74) dominates the remaining mass terms so that

7The choice of the sign is such that it is now possible to interpret both left- and right-handed fermions
as e.g. UV-localized for cL,R < −1/2, and correspondingly for cL,R > −1/2. Recall that in (1.105) we
have had to distinguish between the two chiralities due to the definition of the bulk mass parameter
without the sign.
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in the sliver only the following terms in the EOM are relevant8

−∂tSQn (t) aQn =
v√

2MKK η
Y qC

q
n(t) aqn , ∂tS

q
n(t) aqn =

v√
2MKK η

Y †qC
Q
n (t) aQn ,

−∂tCq
n(t) aqn =

v√
2MKK η

Y †q S
Q
n (t) aQn , ∂tC

Q
n (t) aQn =

v√
2MKK η

Y q S
q
n(t) aqn .

(2.76)

The two equations on the left- and right-hand side can be decoupled at the price of
obtaining the second-order differential equations

[
∂2
t −

(
Xq

η

)2
]
SQn (t) = 0 ,

[
∂2
t −

(
X̄q

η

)2
]
Sqn(t) = 0 , (2.77)

where we have introduced the abbreviations

Xq ≡
v√

2MKK

√
Y qY

†
q , X̄q ≡

v√
2MKK

√
Y †qY q , (2.78)

for the positive, hermitian 3× 3 matrices that are give entirely by the dimensionless 5D
Yukawa matrices. The general solutions to these differential equations are hyperbolic
functions. With the help of the boundary conditions SQ,qn (1−η)

∣∣
bulk

= SQ,qn (1−η)
∣∣
sliver

and SQ,qn (1) = 0, which follows from the Dirichlet BC for the S-profiles, one obtains the
solutions

SQn (t) =

sinh

(
Xq

η
(1− t)

)

sinh (Xq)
SQn (1−) , Sqn(t) =

sinh

(
X̄q

η
(1− t)

)

sinh
(
X̄q

) Sqn(1−) ,

CQ
n (t) =

cosh

(
Xq

η
(1− t)

)

cosh (Xq)
CQ
n (1−) , Cq

n(t) =

cosh

(
X̄q

η
(1− t)

)

cosh
(
X̄q

) Cq
n(1−) .

(2.79)

Here, we have used that the solutions for the C-profiles follow from (2.76). Inserting
above solutions into the first line of (2.76) and integrating over the small sliver t ∈
[1−η, 1], one finally ends up with a relation between the bulk solutions at the boundary
between bulk and sliver (t = 1−)

SQn (1−) aQn =
v√

2MKK

Ỹ qC
q
n(1−) aqn ,

−Sqn(1−) aqn =
v√

2MKK

Ỹ
†
qC

Q
n (1−) aQn .

(2.80)

Note that these are conditions for the profiles at t = 1−, not t = 1, where the S-profiles
vanish. The quantities

Ỹ q ≡
tanhXq

Xq
Y q (2.81)

are modified Yukawa matrices that differ from the original Yukawas Y q by corrections
of the order O(v2/M2

KK). It is straightforward to derive the eigenvalue equation and
expressions for the a-vectors from (2.80). Since the diagonal matrices CQ,q

n and SQ,qn

are non-singular (otherwise the corresponding SM quark would have no kinetic term),

8This discussion follows [149].
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they can be inverted and it follows

SQn (1−) aQn = − v2

2M2
KK

Ỹ qC
q
n(1−)

[
Sqn(1−)

]−1
Ỹ
†
qC

Q
n (1−) aQn ,

Sqn(1−) aqn = − v2

2M2
KK

Ỹ
†
qC

Q
n (1−)

[
SQn (1−)

]−1
Ỹ qC

q
n(1−) aqn .

(2.82)

These relations form a system of 2Ng linear equations for the components of the vectors

aQ,qn . The mass eigenvalues can be determined by the zeroes of the determinant

det

(
1− v2

2M2
KK

[
SQn (1−)

]−1
Ỹ qC

q
n(1−)

[
−Sqn(1−)

]−1
Ỹ
†
qC

Q
n (1−)

)
= 0 , (2.83)

and, with their help, one obtains the eigenvectors aQ,qn from (2.82).
Before we proceed with the determination of the bulk profiles, it will be convenient

for the later analysis to rewrite the EOMs (2.74) and the (modified) BCs (2.80) in the
compact notation introduced at the beginning of this subsection. Using (2.71), one finds

∂tQ(n)
L (t) = −xqnQ(n)

R (t) +Mq(t)Q(n)
L (t) ,

−∂tQ(n)
R (t) = −xqnQ(n)

L (t) +Mq(t)Q(n)
R (t) ,

(2.84)

where

Mq(t) =
1

t

(
cQ 0
0 −cq

)
+

v√
2MKK

δη(t− 1)

(
0 Y q

Y †q 0

)
(2.85)

is the generalized 6 × 6 mass matrix with the regularized δ-function. The boundary
conditions can be written as

(
0 1

)
Q(n)
L (ti) = 0 ,

(
1 0

)
Q(n)
R (ti) = 0 , for ti ∈ {ε, 1} . (2.86)

One can also drop the Yukawa-dependent term in (2.85) and use the modified BCs at
t = 1− (2.80)

(
vỸ
†
~q√

2MKK

1

)
Q(n)
L (1−) = 0 ,

(
1 − vỸ ~q√

2MKK

)
Q(n)
R (1−) = 0 , (2.87)

instead. Note that the entries of the vectors on the left-hand side of the obey BCs are
3× 3 matrices in generation space.

Bulk Profiles

We now derive solutions for the profile functions in the bulk. Dropping the flavor indices
of cQi,qi , one finds the profile functions [163, 168]

C(Q,q)
n (t) = Nn(cQ,q)

√
Lεt

π
f+
n (t, cQ,q) ,

S(Q,q)
n (t) = ±Nn(cQ,q)

√
Lεt

π
f−n (t, cQ,q) ,

(2.88)
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where the functions f±n are combinations of Bessel functions

f±n (t, c) = J− 1
2
−c(xnε) J∓ 1

2
+c(xnt)± J 1

2
+c(xnε) J± 1

2
−c(xnt) . (2.89)

Note that, since we have expressed the solution solely by first-order Bessel functions Jα,
equation (2.89) is only valid for non-integer c ± 1/2, while for integer values a limiting
procedure is necessary. The orthonormality relation (2.73) implies the normalization
condition

2

∫ 1

ε
dt t [f±n (t, c)]2 =

1

N 2
n(c)

± f+
n (1, c) f−n (1−, c)

xn
, (2.90)

which can be used to derive the normalization constant

N−2
n (c) = [f+

n (1, c)]2 + [f−n (1, c)]2 − 2c

xn
f+
n (1, c)f−n (1, c)− ε2[f+

n (ε, c)]2 . (2.91)

As in the boson case, we can derive approximate formulas for the profiles of the SM
particles, whose masses mq

n are much smaller than the KK scale MKK. Expanding the
given profiles (2.88) in the limit xn � 1, we obtain

C(Q,q)
n (φ) ≈

√
Lε

π
F (cQ,q) t

cQ,q ,

S(Q,q)
n (φ) ≈ ±sgn(φ)

√
Lε

π
xn F (cQ,q)

t1+cQ,q − ε1+2cQ,q t−cQ,q

1 + 2cQ,q
,

(2.92)

which is referred to as the zero-mode approximation (ZMA). Accordingly, the function

F (c) ≡ sgn[cos(πc)]

√
1 + 2c

1− ε1+2c
, (2.93)

which determines the overlap of the C-profiles with the IR brane, is called zero-mode
profile. Note that the S-profiles are proportional to the inverse of the zero-mode profile
when approaching the IR brane from the left, i.e. at 1−. We finish the discussion of the
quark profiles with an investigation of the zero-mode profile for different ranges of the
bulk mass parameters

F (c) ≈
{
−
√
−1− 2c ε−c−1/2 , −3/2 < c < −1/2 ,√
1 + 2c , −1/2 < c < 1/2 .

(2.94)

The crucial point of (2.93) is that small O(1) differences in the bulk mass parameters
cQi,qi could explain large differences in couplings to the Higgs and gauge bosons. This
will be the main subject of Subsection 2.2.3.

Modifications in the Yukawa Sector for a Bulk Higgs

Before this will be turned to, we consider what changes in the Yukawa sector in the
presence of a bulk-Higgs field. Instead of (2.66), we have in a model with a bulk-Higgs
field

−Lbulk
Yuk (x) =

∑

q=u,d

∫ 1

ε
dt
v(t) + h(x, t)√

2
Q̄L(x, t)

1√
r

(
0 Y 5D

q,bulk

Y 5D†
q,bulk 0

)
QR(x, t)+h.c. ,

(2.95)
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where we have used the compact notation for the fermion fields (2.69). The KK decom-
position of the 5D Higgs field h(x, t) can be found in (2.56), where only the zero-mode
h0(x) will be relevant for the following discussion. Note that the 5D Yukawa matrices
Y 5D
q,bulk now have mass dimension −1/2 which leads to a potentially large upper per-

turbativity bound y?, see Appendix B. The question we want to address here is how to
match the two expression onto each other so that in the limit β →∞ we can obtain the
brane-Higgs case from a bulk Higgs. For this, we must rewrite the functions v(t) from
(2.52) and χ0(t) from (2.63) in terms of functions with unit area, which can be mapped
onto the normalized distributions δηv (t− 1) and δηh(t− 1). We obtain

v(t) = v4

√
L

π

√
1 + β

2 + β
δ1/β
v (t− 1) ,

χ0(t) =

√
L

π

√
1 + β

2 + β

[
1 +

β x2
0

4(1 + β)(2 + β)(4 + β)
+ . . .

]
δ

1/β
h (t− 1) ,

(2.96)

with
δ1/β
v (t− 1) = (2 + β) t1+β ,

δ
1/β
h (t− 1) = (2 + β) t1+β

[
1− x2

0

4(1 + β)

(
t2 − 2 + β

4 + β

)
+ . . .

]
.

(2.97)

Here, 1/β plays the role of the regulator η that was used in the brane-localized Higgs
case. Using the quark bilinear terms as a reference, the corresponding matching relations
between the two Yukawa matrices read

Y q ≡
k

2
Y 5D
q =

√
k (1 + β)

2 + β
Y 5D
q,bulk . (2.98)

The quantities on the left-hand side of the equation are the dimensionless Yukawa ma-
trices introduced in (2.67), whose elements are assumed to be random numbers bounded
in magnitude by y?. If one used the hqq̄ couplings instead, the above relation would
receive corrections of O(x2

0).
We are now in a position to study the limit β � 1 (η → 0), in which the profile

functions in (2.97) become strongly localized near the IR brane. The Yukawa matrices
of the bulk-Higgs model must be identified with Y q ↔

√
k/β Y 5D

q,bulk ≈ (k/
√
µ)Y 5D

q,bulk.
It would be inappropriate to conclude that the Yukawa matrices Y q vanish in the limit
β → ∞ from this relation. Rather, one should consider the dimensionless Yukawa cou-
plings as fixed quantities which are related to the observed masses and mixing angles of
the SM quarks by means of relations derived in [145]. It then follows that the dimen-
sionful Yukawa matrices Y 5D

q,bulk must scale with
√
β/k ≈ √µ/k (see also the discussion

in [175]). Finally, since t is pushed near 1, one can conclude from (2.97) that

δ
1/β
h (t− 1)

δ
1/β
v (t− 1)

= 1 +O
(

m2
h

β2M2
KK

)
, (2.99)

and the two profiles become identical.
The discussion shall be finished with the statement that taking the limit of very large

β is not particularly natural, since β =
√

4 + µ2/k2 is naturally of O(1). For large β,
we have the double hierarchy

1

r
� k � µ ≈ MIR

2
, or

10

r
∼ k ∼ µ

β
. (2.100)
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Large β can be achieved by taking k significantly smaller than the Planck scale (and 1/r
yet smaller by an order of magnitude), or by assuming that µ and MIR are significantly
larger than MPl. The first possibility, however, appears more plausible.

2.2.3 Fermion Hierarchies and the RS-GIM Mechanism

As already outlined in Section 1.4.4, RS models with gauge and fermion fields allowed
to propagate in the bulk have the intriguing feature to give an explanation for the
hierarchies in the flavor sector of the SM as well as for the smallness of FCNCs. We
will dwell on that in this subsection, where the explanations will be more quantitively.
In particular, we will derive the formulas that will become crucial for the generation of
parameter sets used in the numerical analysis later on.

Generating Hierarchies in the Fermion Sector

We first start with the question of how many parameters the minimal RS models possess.
It turns out that due to the possibility to incorporate gauge invariant bulk mass terms
for fermions, getting along with the hermitian matrices MQ,u,d, we have to deal with
27 new parameters in the flavor sector [176]. To be more precise, there are 27 moduli
and ten phases, which have to be compared with the nine moduli (six quark masses and
three angles of the CKM matrix) and one CP-violating phase in the SM. Fortunately,
these parameters are not completely arbitrary, which would question the predictivity of
the RS model, but they have to obey certain relations in order to generate the proper
SM masses and Wolfenstein parameters. These relations will now be derived.

The starting point of the generation of the quark zero-mode masses and quark mixings
is the similarity between the RS setup of generating hierarchies by different fermion
localizations in a slice of AdS5 and the Froggatt-Nielsen mechanism, explained in Section
1.3.3. To this end, we evaluate the ZMA profiles (2.92) at 1−, where they couple to the
Higgs sector,

C(Q,q)
n (π)→

√
Lε

π
F (cQ,q) , S(Q,q)

n (π−)→ ±
√
Lε

π

xn
F (cQ,q)

. (2.101)

With their help, the BCs can be written to LO in v2/M2
KK in the form

√
2mn

v
âQn = Y eff

q âqn ,

√
2mn

v
âqn = (Y eff

q )† âQn , (2.102)

where the effective Yukawa matrices Y eff
q and the rescaled vectors âQ,qn are defined via

Y eff
q ≡ F (cQ) Ỹ q F (cq) and âQ,qn ≡

√
2 aQ,qn . (2.103)

Moreover, we get the important equalities

(
m2
n 1− v2

2
Y eff
q (Y eff

q )†
)
âQn = 0 ,

(
m2
n 1− v2

2
(Y eff

q )† Y eff
q

)
âqn = 0 , (2.104)



62 Chapter 2. Models with Warped Extra Dimensions

so that the mass eigenvalues can be obtained from the simple equation

det

(
m2
n 1− v2

2
Y eff
q (Y eff

q )†
)

= 0 . (2.105)

The hermitian matrices Y eff
q (Y eff

q )† and (Y eff
q )†Y eff

q (q = u, d) can be diagonalized by
the two unitary matrices U q and W q, whose columns are formed by the eigenvectors

âQ,qn (n = 1, 2, 3). We can see from (2.104) that the corresponding eigenvalues are m2
n,

which also appear in the diagonalized matrix of the singular-value decomposition

Y eff
q = U q λqW

†
q , (2.106)

where

λu =

√
2

v
mu ≡

√
2

v
diag(mu,mc,mt) , λd =

√
2

v
md ≡

√
2

v
diag(md,ms,mb) ,

(2.107)
are diagonal, positive real matrices. The entries mqi denote the zeroth-order values of the
masses of the SM quarks. In Section 4, we will calculate the next-to-leading corrections
to these masses. Taking the determinant yields

mumcmt =
v3

2
√

2
|det(Y u)|

∏

i=1,2,3

|F (cQi)F (cui)| ,

mdmsmb =
v3

2
√

2
|det(Y d)|

∏

i=1,2,3

|F (cQi)F (cdi)| .
(2.108)

Assuming a hierarchy of the zero-mode profiles

|F (cA1)| < |F (cA2)| < |F (cA3)| , (2.109)

which is natural in the RS framework due to the small differences in the parameters
cQi,qi , one can now apply the findings of Section 1.3.3 and identify

(
Y 5D
q

)
ij
↔ (gq)ij , F (cQ4−i)↔ λaj , F (cq4−j )↔ λ−b

q
j , (2.110)

where q = u, d. Thus, the hierarchies of fermion masses and mixings in a warped
background result from the Froggatt-Nielsen mechanism without further assumptions.
It follows that the SM quark masses can be expressed by

mu =
v√
2

|det(Y u)|
|(Mu)11|

|F (cQ1)F (cu1)| , md =
v√
2

|det(Y d)|
|(Md)11|

|F (cQ1)F (cd1)| ,

mc =
v√
2

|(Mu)11|
|(Yu)33|

|F (cQ2)F (cu2)| , ms =
v√
2

|(Md)11|
|(Yd)33|

|F (cQ2)F (cd2)| ,

mt =
v√
2
|(Yu)33| |F (cQ3)F (cu3)| , mb =

v√
2
|(Yd)33| |F (cQ3)F (cd3)| ,

(2.111)

where (Mq)ij denotes the minor of Y q, i.e. the determinant of the square matrix formed
by removing the ith row and the jth column from Y q. The diagonalization matrices U q
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and W q, see (2.106), are given to leading order in hierarchies

(U q)ij = (uq)ij





F (cQi)

F (cQj )
, i ≤ j ,

F (cQj )

F (cQi)
, i > j ,

uq =




1
(Mq)21

(Mq)11

(Yq)13

(Yq)33

−(Mq)
∗
21

(Mq)∗11

1
(Yq)23

(Yq)33

(Mq)
∗
31

(Mq)∗11

−(Yq)
∗
23

(Yq)∗33

1



,

(2.112)
and

(W q)ij = (wq)ij e
iφj





F (cqi)

F (cqj )
, i ≤ j ,

F (cqj )

F (cqi)
, i > j ,

wq =




1
(Mq)

∗
12

(Mq)∗11

(Yq)
∗
31

(Yq)∗33

−(Mq)12

(Mq)11
1

(Yq)
∗
32

(Yq)∗33

(Mq)13

(Mq)11
−(Yq)32

(Yq)33
1



.

(2.113)
The diagonal elements (Uq)ii have chosen to be real which is always possible due to the
invariance of the singular-value decomposition (2.106) under field redefinitions. This
leads to complex-valued elements (Wq)ij , whose phase factors eiφj are

eiφj = sgn
[
F (cQj )F (cqj )

]
e−iθj , θ =




arg(det(Y q))− arg((Mq)11)
arg((Mq)11)− arg((Yq)33)

arg((Yq)33)


 . (2.114)

The CKM matrix in the RS model is given by the SM expression V CKM = U †uUd and
can therefore be directly calculated with the help of (2.112). The Wolfenstein parameters
given in (1.27) can then be easily derived at leading order and we obtain

λ =
|F (cQ1)|
|F (cQ2)|

∣∣∣∣
(Md)21

(Md)11
− (Mu)21

(Mu)11

∣∣∣∣ , A =
|F (cQ2)|3

|F (cQ1)|2 |F (cQ3)|

∣∣∣∣∣∣∣∣∣

(Yd)23

(Yd)33
− (Yu)23

(Yu)33[
(Md)21

(Md)11
− (Mu)21

(Mu)11

]2

∣∣∣∣∣∣∣∣∣
,

ρ̄− iη̄ =
(Yd)33 (Mu)31 − (Yd)23 (Mu)21 + (Yd)13 (Mu)11

(Yd)33 (Mu)11

[
(Yd)23

(Yd)33
− (Yu)23

(Yu)33

] [
(Md)21

(Md)11
− (Mu)21

(Mu)11

] . (2.115)

Note that the CKM matrix does not depend on the diagonalization matrix W q and
therefore on the right-handed zero-mode profiles F (cqi), as we see explicitly in above
relations. It is also explicitly visible that at leading order the Wolfenstein parameters
ρ̄ and η̄ do not involve any zero-mode profiles [104]. The RS setup thus predicts that
these parameters are of O(1), while the precise values remain unexplained. The latter
relations will be used as the only constraint on the anarchic 3×3 Yukawa matrices when
generating parameter sets for the RS model. Details of the generation of parameters
sets can be found in e.g. Appendix A of [105].9 The hierarchies of the remaining eight
parameters (six quark masses, two Wolfenstein parameters λ and A), are determined by

9The input parameters, i.e. the values for SM quark masses and Wolfenstein parameters are also
given there.
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the nine zero-mode profiles F (cQi,qi). When deriving the parameter sets, we will reverse
this and use the eight SM parameters as an input to fix eight of the nine zero-mode
profiles. The remaining zero-mode profile is a free parameter and will be randomly
chosen just as the Yukawa matrices. While in [145] the free parameter was chosen
to be F (cQ2), we will use F (cu3), since this is the only zero-mode profile that has no
exponential dependence on the bulk mass parameter cu3 according to (2.93). Thus, a flat
distribution of F (cu3) means a flat distribution for cu3 . The remaining eight zero-mode
profiles are then dependent on the Yukawas, the SM input parameters, and the free
zero-mode profile F (u3). Eventually, one finds for the profile functions of the SU(2)L
doublets [105]

|F (cQ1)| =
√

2mt

v

(
|(Yu)33|
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(Yd)23

(Yd)33
− (Yu)23
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(Md)21

(Md)11
− (Mu)21

(Mu)11

∣∣∣∣
)−1 λ3A

|F (cu3)| ,

|F (cQ2)| =
√

2mt

v

(
|(Yu)33|
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(Yd)23

(Yd)33
− (Yu)23

(Yu)33

∣∣∣∣
)−1 λ2A

|F (cu3)| ,

|F (cQ3)| =
√

2mt

v

1

|(Yu)33|
1

|F (cu3)| ,

(2.116)

while the profiles of the up-type and down-type singlets read

|F (cu1)| = mu

mt

|(Yu)33||(Mu)11|
detY u
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|F (cu3)|
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,

|F (cu2)| = mu

mt
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(Yd)23

(Yd)33
− (Yu)23

(Yu)33
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|F (cu3)|
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(2.117)

and

|F (cd1)| = md

mt
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(2.118)

respectively. The hierarchies can now be deduced directly from above expressions. It is
not difficult to find

|F (cQ1)|
|F (cQ2)| ∼ λ ,

|F (cQ2)|
|F (cQ3)| ∼ λ

2 ,
|F (cQ1)|
|F (cQ3)| ∼ λ

3 , (2.119)

for the left-handed profiles and

|F (cu1)|
|F (cu3)| ∼

mu

mt

1

λ3
,

|F (cu2)|
|F (cu3)| ∼
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mt

1

λ2
,

|F (cd1)|
|F (cu3)| ∼

md

mt

1

λ3
,

|F (cd2)|
|F (cu3)| ∼
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mt

1

λ2
,

|F (cd3)|
|F (cu3)| ∼

mb

mt
,

(2.120)

for the right-handed ones. These expressions make the hierarchical structure of the
rotation matrices (2.112) and (2.113) clearly visible.
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At this step, it is worth highlighting what has been achieved. With the help of
the O(1) input parameters of the RS model, it is possible to explain the hierarchies in
the fermion sector, as shown in (2.111) and (2.115). The anarchic approach to flavor
moreover narrows down many of the new parameters entering the RS setup, making the
model more predictive, see (2.116) – (2.118). The relations (2.119) and (2.120) explicitly
show how the relative localizations of the different quarks. Note that they are given in
terms of observable quantities.

Notice that, due to the fact the above relations only fix ratios of profile functions,
there is some freedom in rescaling the profile functions and Yukawa matrices without
changing the SM masses and mixing parameters. From (2.111) and (2.115) it is obvious
that reparametrizing the profile functions of the doublet and the singlet quarks fields
and keeping the Yukawas unchanged

F (cqi)→ ηF (cQi) , F (cqi)→
1

η
F (cqi) , (2.121)

or rescaling both the profiles and the Yukawas (but still keeping them of O(1))

F (cqi)→ ηF (cQi) , F (cqi)→
1

η
F (cqi) , Y q →

1

ηηq
Y g (2.122)

does not change the physical input parameters. Of course, the transformations (2.121)
and (2.122) can be combined in arbitrary ways. For UV localized quarks, which have
bulk mass parameters ci < 1/2 and exponentially suppressed profile functions as shown
in (2.94), these reparameterizations are equivalent to the shifts cQi,qi → cQi,qi ∓L−1 ln η
and cQi,qi → cQi,qi + L−1 ln η(q), respectively. This kind of freedom is referred to as
reparametrization invariance and is a convenient tool to investigate what specific re-
gions in parameter space predict for observables without generating a whole new set of
parameters. Note, however, that the Yukawas cannot be too small due to the large top
mass and too large due to the perturbativity bound.

Boson Couplings to Fermions and the RS-GIM Mechanism

According to the discussion above, the small masses of the light SM quarks can be
explained by the small overlap between the quark profiles and the Higgs fields that
is confined on or very close to the IR brane. In Subsection 1.4.4, we have argued
qualitatively that the same mechanism is responsible for the smallness of FCNCs and is
referred to as the RS-GIM mechanism [176–178], in reference to the GIM mechanism,
which explains why loop-level FCNCs in the SM are further suppressed [49]. In this
subsection, I want to give a somewhat more quantitative explanation for the occurrence
of this mechanism. We will briefly discuss the structure of Wilson coefficients belonging
to the four-fermion operators that lead to tree-level FCNCs. A detailed discussion
of the effective Hamiltonians and their corresponding phenomenology can be found in
the literature [176, 177, 179–183]. Only some important results which can explain the
suppression of the FCNCs will be presented here.

Crucial ingredients for the following discussion are the boson couplings to fermions.
The corresponding Feynman rules can be easily deduced from the 5D Lagrangian. As
shown in [184], the interactions have a similar shape as in the SM, but the gauge-boson
couplings to the left-handed fermions, which are proportional to Vnmk, in general differ
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from the couplings to the right-handed fermions, denoted by Ṽnmk.
10 One finds that

these overlap integrals read

V A,G
nmk =

√
2π

∫ 1

ε
dt χA,Gm (t)Q(n)†

L (t)Q(k)
L (t) , Ṽ A,G

nmk =
√

2π

∫ 1

ε
dt χA,Gm (t)Q(n)†

R (t)Q(k)
R (t) ,

(2.123)
for the photon and the gluon,

V W−
nmk =

√
2π

∫ 1

ε
dt χWm (t)D(n)†

L (t)P+ U (k)
L (t) ,

Ṽ W−
nmk =

√
2π

∫ 1

ε
dt χWm (t)D(n)†

R (t)P+ U (k)
R (t) ,

V W+

nmk =
√

2π

∫ 1
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dt χWm (t)U (n)†

L (t)P+D(k)
L (t) ,

Ṽ W+

nmk =
√

2π

∫ 1

ε
dt χWm (t)U (n)†

R (t)P+D(k)
R (t) ,

(2.124)

for the W boson,

V Z
nmk =

√
2π

∫ 1

ε
dt χZm(t)Q(n)†

L (t)
[
gqL P+ + gqRP−

]
Q(k)
L (t) ,

Ṽ Z
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√
2π

∫ 1

ε
dt χZm(t)Q(n)†

R (t)
[
gqL P+ + gqRP−

]
Q(k)
R (t) ,

(2.125)

for the Z boson, and

gumn =
1√
2

∫ 1

ε
dt δη(t− 1) Q†(m)

L (t)

(
0 Y q

Y †q 0

)
Q(n)
R (t) ,

g̃umn =
1√
2

∫ 1

ε
dt δη(t− 1) Q†(m)

R (t)

(
0 Y q

Y †q 0

)
Q(n)
L (t) ,

(2.126)

for the Higgs boson. Here, we have used the compact vector notation (2.71) for the
fermion profiles and, P+ ≡ diag(1, 0) and P− ≡ diag(0, 1) are 6 × 6 matrices in the
six-dimensional vector space that project out the SU(2)L doublet and singlet fields,
respectively. As the photon and gluon couple to both doublets and singlets equally,
there is no such matrix between the profiles. The W boson only couples to doublets
which gives rise to the appearance of P+. The Z boson couples differently, where we
abbreviated gqL = T q3 − Qq sin θw and gqR = −Qq sin θw. Concerning the Higgs coupling
to fermions we have used the regularized δ-function in order to account for the fact that
the Z2-odd couplings vanish at the IR brane.

In the following, we consider processes that are induced by an exchange of KK
photons. Relation (2.123) makes clear that the quark coupling to a massive KK gauge
boson is non-diagonal. Only for the photon and gluon zero modes, whose profiles are flat,
the overlap integral reduces to δnk. Thus, FCNCs as shown in Figure 2.2 are possible
even at tree-level. These FCNCs, however, suffer from an additional suppression by a
factor that is comparable with a loop suppression, as we will see below. The diagram
in question can be calculated using the standard techniques, where one however has to

10The Feynman rules are collected in Appendix C.
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s̄

A(1)

Figure 2.2: Tree-level diagram leading to an FCNC. Due to the non-flat profile of the
KK photons, there can be flavor changes at both vertices.

include the entire tower of KK particles and encounters the expression (for p2 �M2
KK)

∞∑

n=1

χAn (t)χAn (t′)
m2
n − p2

=
1

4πM2
KK

[
Lt2< − t2

(
1

2
− ln t

)
− t′2

(
1

2
− ln t′

)
+

1

2L

]
+ . . . ,

(2.127)
which is equivalent to the 5D propagator function whose derivation will be focused on
in Chapter 3. For p2 = 0, which is a good approximation for FCNCs at low energies, it
is also possible to derive the term in the square bracket via a recursive procedure [145].
Multiplying the result for the infinite sum with the quark profiles and integrating over
the extra dimension then yields integrals of the form (A,B = L,R)

cijkl ∼
α

M2
KK

∫ 1

ε
dt

∫ 1

ε
dt′Q(i)†

A (t)Q(j)
A (t)Q(k)†

B (t′)Q(l)†
B (t′)

×
[
Lt2< − t2

(
1

2
− ln t

)
− t′2

(
1

2
− ln t′

)
+

1

2L

]
.

(2.128)

The orthonormalization condition (2.73) shows that the constant term in (2.128) can-
not contribute to a flavor change. Moreover, the terms only depending on t and t′,
respectively, can only lead to a flavor change at one vertex, since (2.73) ensures that
the coupling at the corresponding second vertex is flavor-diagonal. These processes are
called ∆F = 1 transitions. Two flavor changes, i.e. ∆F = 2 transitions shown in Fig-
ure 2.2, can only be mediated by the term proportional to t2< ≡ min[t2, t′2] in (2.128).

The overlap integral (2.128) demonstrates how the RS-GIM mechanism works. Since
there are only non-negative powers of t and t′ appearing in the propagator function, it
is peaked towards to IR brane, which represents the IR localization of the KK bosons.
According to (2.92), the profile functions for the fermions depend on the position in
the extra dimension via tcQi+cqi . This factor only becomes large for the top quarks.
For all other fermions, especially for the UV-localized light fermions, at least one of the
parameters is cQi,qi . −1/2, so that the overlap between the fermion profiles and the
KK gauge bosons becomes small. This is visualized in Figure 2.3. Indeed, one can show
that the ∆F = 1 processes are described by quantities like11 [145]

(∆Q,q)ij =

∫ 1

ε
dt t2Q(i)†

L,R(t)Q(j)
L,R(t) , (∆′Q,q)ij =

∫ 1

ε
dt t2

(
1

2
− ln t

)
Q(i)†
L,R(t)Q(j)

L,R(t) ,

(2.129)

11Other quantities contributing to ∆F = 1 transitions will be encountered later.
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UV brane IR brane

✏ t 1

UV brane IR brane

✏ t 1

Figure 2.11: Qualitative illustration of the RS-GIM mechanism. The dashed lines
represent a t2 term from the 5D gauge boson propagator. The solid lines show the
profile of a UV and an IR localized fermion zero mode in the left panel and of to
IR localized zero modes in the right panel. The blue shaded area can be interpreted
as an indicator of the size of the FCNC coupling resulting from the overlap integral
including the three functions.

Moreover does the 5D description allow for a particularly illustrative explanation of
the RS-GIM mechanism in geometric terms. In order to understand this let us analyze
all possible contributions arising from tree level diagrams as shown in Figure 2.10. It
describes a process in which external zero mode fermions couple to the tower of all KK
modes of a gauge boson, which in the e↵ective theory is given by the first term in the
expansion of the 5D propagator for small momenta (2.82). The couplings will therefore
be rescaled by an integral over the fifth dimension including the t-dependent terms
of the zero modes (2.149) and the expressions (2.86) or (2.103). As an example, the
Wilson coe�cient of a four quark operator with four SU(2)L singlet external quarks

He↵ 3
3X

i,j,k,l=1

cijkl

�
q̄c
i�µqc

j

��
q̄c
k�µqc

l

�
, (2.172)

with i, j, k, l flavor indices, gets contributions from KK photon exchange proportional
to the following overlap integral

cijkl ⇠
↵

M2
KK

Z 1

✏
dt

Z 1

✏
dt0 tcqi+cqj t0cqk

+cql


Lt2< � t2(

1

2
� ln t)� t02(

1

2
� ln t0) +

1

2L

�
,

(2.173)

in which only the leading C-profiles are included and the 5D coordinates are assigned
to the two vertices as shown in Figure 2.10. The integral

Z 1

✏
dt tcqi+cqj ⇥ constant (2.174)

will not lead to FCNCs, because in the case of the photon, the operator in (2.172)
with only SU(2)L doublets gives rise to a similar integral with S-profiles which in the
sum completes the orthonormality relation of the fermion profiles (2.125).
FCNCs can therefore only arise if the gauge boson couplings distinguish between

Figure 2.3: Visualization of the RS-GIM mechanism according to [105]. The dashed
lines represent a t2 term from the 5D gauge-boson propagator. The solid lines show the
profile of a UV and an IR localized fermion zero mode (two IR localized zero modes)
in the left (right) panel. The blue shaded area can be interpreted as an indicator of
the size of the FCNC coupling resulting from the overlap integral including the three
functions.

which scale like (at leading order in hierarchies) [145]

(∆
(′)
Q,q)ij ∼ F (cQi,qi)F (cQj ,qj ) . (2.130)

We see that the flavor-changing terms are proportional to the zero-mode profile func-
tions of the external fermions which makes the RS-GIM mechanism explicit. Since the
masses are proportional to the zero-mode functions as well, one finds an approximate
suppression by [105]

1

M2
KK

×m2
f ≈

1

16π2
×

m2
f

m2
W

. (2.131)

The suppression is thus of the same size as the loop-level suppression of the SM if
MKK ≈ 4πmW . Remarkably, this is what one hopes to expect from a model, whose goal
is to solve the hierarchy problem. Note, however, that for the third-generation quarks
the FCNCs are less suppressed and thus significant effects can arise in B physics and top
decays. Indeed, as we will see in the next subsection, the RS contributions to the Zbb̄
vertex are too large, which can be cured by, for example, an enlarged bulk symmetry.

It shall be stressed that the RS-GIM mechanism is very successful in suppressing
FCNCs in the flavor sector and almost all observables can be brought into agreement
with a KK scale of a few TeV, which in turn leads to KK modes that are in reach
of the LHC. Nevertheless, there are two exceptions, namely the observable εK in the
kaon sector [145, 149, 180, 181, 185] and the neutron electric dipole moment [176, 177],
which for generic choices of parameters push the mass of the lightest KK gluon into the
O(10−20 TeV) range.12 In order to reduce this strong bound stemming from εK , one has
to use either horizontal symmetries [186, 187], flavor alignment [188], an extended strong
sector [189], or one could take the Higgs a little bit off the IR brane [190]. The problem of
too large electric dipole moments has been addressed using the idea of spontaneous CP
violation in the context of warped extra dimensions [191]. In the following, we will not
further focus on these issues. It will be assumed that the techniques and results derived
in the main part of this thesis can be extended to these models in a straightforward way.

12Moreover, it should be mentioned that the RS-GIM mechanism is not sufficient to suppress proton
decay. Nevertheless, the effective suppression scale is several orders higher than the TeV scale so that
this issue is not as pressing as the flavor problems above. One way to suppress proton decay even more
is to impose discrete symmetries [167, 169].
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2.2.4 Compatibility with Electroweak Precision Tests

In this last subsection, we will check the minimal RS model for compatibility with
the electroweak precision measurements. We will see that it generically gives too large
contributions to some of the precision observables. This results in a lower bound for
the mass of the lightest KK gluon which cannot be tested by direct measurements at
the LHC. Lowering this bound is the main motivation for the RS model with custodial
protection which will be focused on in Section 2.3.

Oblique Parameters

We start with the leading order corrections to the S and T parameter in the minimal RS
model. One-loop corrections have been estimated in [192–194] and are part of current
work. The tree-level RS contributions originate from the mixing of the electroweak
gauge bosons with their KK excitations and one finds [145, 195, 196]

S =
2πv2

M2
KK

(
1− 1

L

)
, T =

πv2

2c2
wM

2
KK

(
L− 1

2L

)
, U = 0 . (2.132)

The result is illustrated in the left plot of Figure 2.4, which shows the regions of 68%
(yellow), 95% (gray) and 99% (blue) probability in the S − T plane.13 The black cross
denotes the best fit value (1.18), while the star represents the SM prediction. The orange
(red) band rising in the direction of large T parameter shows (2.132) for a KK scale of
3− 10 (1− 3) TeV. Furthermore, the dependence on the volume of the extra dimension
L ∈ [5, 33.5] is plotted with increasing L in the direction of the arrow.

We can observe that in the minimal RS model the S parameter does not receive large
corrections,14 whereas the T parameter suffers from a large correction, giving rise to a
lower bound MKK > 4.8 TeV at 95% CL. This KK scale corresponds to a mass of the
lightest KK gluon and photon resonance of

Mg(1) > 12.0 TeV (95% CL) . (2.133)

The large corrections to the T parameter can be explained with the help of the dual
theory of the RS model: Recall that the gauge symmetry in the bulk, which is the SM
gauge symmetry in the present case, coincides with a global symmetry of the strongly-
coupled sector. Unlike general TC theories, which only receive small corrections T ∼
1/(4π), the dual theory of the minimal RS model does not contain a global SU(2)L ×
SU(2)R symmetry which protects the ρ parameter ρ = m2

W /(m
2
Zc

2
w) = 1 + αT and

therefore the T parameter. The global SU(2)L×SU(2)R symmetry is the reason for the
enlarged bulk gauge group of the custodial RS model which is able to mitigate the large
corrections to the T parameter. However, there are two alternative options to obtain
a consistent description of the experimental data, while allowing for masses of the first
KK gauge-boson modes of the order of 5 TeV . The first possibility is to allow the Higgs
to propagate in the bulk. This can be understood if one recalls that the corrections
to the gauge-boson masses and profiles (2.54) and (2.55) are mitigated in bulk-Higgs
models. The corrections to the S and T parameters (2.132) are determined by the latter
quantities, which implies that they are reduced as well. The second possibility is to

13This plot has been taken from [105], whose analysis used more recent data than e.g. [145].
14This can be regarded as an appealing side-effect of bulk fermions [197], see also [105] for further

explanations.
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Figure 2.4: Left plot: Regions of 68%, 95% and 99% probability in the S − T plane
in the case of the minimal RS model. Shaded red (orange) are the accessible regions
for MKK ∈ [1 − 3] TeV (MKK ∈ [3 − 10] TeV), growing vertically towards large values
of T . The black arrow points in the direction of growing volume L ∈ [5, 33.5]. Right
plot: Regions of 68%, 95% and 99% probability in the gbL − gbR plane. The cross and
the star denote the best fit value and the experimental value, respectively. The red
colored regions indicate the predicted values for a large set of parameter points. Both
plots were obtained from the analysis performed in [105].

make the volume L of the extra dimension smaller. This effect is also shown in Figure
2.4, where the value for L is varied between L = 5 and L = 36 along the black arrows.
Note that for these models the hierarchy problem is only solved up to an intermediate
scale ΛUV = eL TeV < MPl. The UV completion must already set in at this scale.
Inspired by little Higgs models, these models are called little RS (LRS) models. They
however suffer from large corrections to the observable εK , which are even worse than
in the minimal RS model [198]. Note that in [145] two more alternatives - a heavy
Higgs boson [29, 199–203] and large brane-localized kinetic terms [195, 204, 205] - have
been considered. However, since also the second option had to rely on a relatively large
Higgs mass, both of them are excluded (at least disfavored in the second case) after the
discovery of the 126 GeV Higgs boson at the LHC.

Corrections to Z → bb̄

Another process that should be investigated further is the Z decay into to b quarks. As
mentioned earlier, the only electroweak precision observables that have deviations larger
than 2σ are associated with this process. In the context of warped extra dimensions,
Z → bb̄ is particularly interesting since the left-handed bottom quark is part of the
SU(2)L doublet QL = (UL, DL) and hence shares the same bulk mass parameter cQ3

with the left-handed top quark. Due to the large top mass, the doublet field QL has a
large overlap with the Higgs, which in turn results in a large mixing of the left-handed
bottom quark with its KK excitations. Consequentially, we can expect significant effects
in observables associated with Z → bb̄.

The Z-boson coupling to quarks can be derived using the 5D Lagrangian (2.64). It
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can be written in the form [145]

L4D 3
g5√

2πr cw

[
1 +

m2
Z

4M2
KK

(
1− 1

L

)]
Z0
µ

∑

ij

[
(gqL)ij q̄L,i γ

µ qL,j + (gqR)ij q̄R,i γ
µ qR,j

]
,

(2.134)
where i, j = 1, 2, 3 denote the flavor indices. The matrices (gqL)ij ≡ V Z

i0j and (gqR)ij ≡ Ṽ Z
i0j

can be obtained by evaluating the corresponding integrals (2.125) (with χZ0 given in
(2.31)). Their exact shape can be found in [145]. For this discussion, it is sufficient to
consider the couplings to the bottom quark, which in the ZMA approximation read

gbL ≡ (gdL)33 →
(
−1

2
+
s2
w

3

)[
1− m2

Z

2M2
KK

F 2(cbL)

3 + 2cbL
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(2.135)

+
m2
b

2M2
KK
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(2.136)

+
m2
b

2M2
KK
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1
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− 1 +

F 2(cbL)
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∑
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|(Yd)i3|2
|(Yd)33|2

1

1− 2cQi

1

F 2(cbL)


 .

Here, we have used the weak isospin and charge for down-type quarks, T d3 = −1
2 and

Qd = −1
3 , and introduced the notation cbL ≡ cQ3 and cbR ≡ cd3 . The terms in the

second lines in (2.135) and (2.136) are suppressed by mb/mZ so that the leading terms
are those in the first lines. Note that the latter are determined by the zero-mode profiles
F (cbL) and F (cbR).

Provided with that we can compare the RS prediction with experimental data. The
latest analysis of the Zb̄b coupling has been done in [105], where three observables were
considered: the ratio of the width of the Z-boson decay into two bottom quarks and
the total hadronic width R0

b , the bottom quark left-right asymmetry parameter Ab, and

the forward-backward asymmetry for bottom quarks A0,b
FB. While the SM predicts the

values [206, 207]

R0
b = 0.21474 , Ab = 0.935 , A0,b

FB = 0.1031 , (2.137)

the corresponding experimental results read [25]

R0
b = 0.21629± 0.00066 ,

Ab = 0.923± 0.020

A0,b
FB = 0.992± 0.0016 ,

ρ =




1.00 −0.08 −0.10
−0.08 1.00 0.06
−0.10 0.06 1.00


 , (2.138)

where ρ is the correlation matrix. Comparing the experimental values (2.138) with the
SM prediction (2.137) immediately reproduces the deviations shown in the right plot
of Figure 2.4. It shows that in order to improve the consistency with the experiment,
the new-physics corrections to the left-handed coupling should be preferably large and
positive, while the corrections to the right-handed couplings should be small or slightly
negative.

From the leading contributions in the first lines of (2.135) and (2.136) it is obvious
that the RS correction to gdL is large and positive, while the correction to gdR small and
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negative, thus pointing into the opposite direction. The correction to gdR is due to the
fact that the L-enhanced term is multiplied by F 2(cbR) instead of F 2(cbL), resulting in
an suppression of F 2(cbR)/F 2(cbL) ≈ O(few)%, since the left-handed doublet is more IR
localized than the singlet to account for the large top quark (2.111). These corrections
are not visible in Figure 2.4, where all parameter points lie entirely in the red band. Most
of them therefore fail to agree with the experiment at 3σ. 10% of the scatter points lie
within the experimental error ellipse, which translates into a pretty strong lower bound
on the KK scale. This bound can be lowered by the custodial RS model, see (2.190) and
the corresponding discussion. Another possibility to mitigate the large RS contribution
to gbL is to reduce the value of the profile function F (cbL) as visible in (2.135). Using
the reparametrization invariance (2.121), for η < 1, we can reshuffle between F (cbL)
and F (cbR). For η = 1/2 (1/3), about 35 (45%) of the parameter points lie within the
experimental ellipse. This means that scenarios with strongly IR-localized right-handed
bottom quarks suffer from less dangerous corrections and thus tend to comply more with
the experimental data.

2.3 The Custodial Randall-Sundrum Model

This section focuses on the custodial RS model, whose motivation was to mitigate the
just explained large corrections to the T parameter and the Zbb̄ coupling and thus
allows for the lightest KK particles to be in reach for the direct detection at the LHC
[101, 192, 193, 208]. This is achieved by an enlarged gauge group in the bulk of the
extra dimension. We will focus on the model with the bulk gauge-symmetry

SU(3)c × SU(2)L × SU(2)R × U(1)X × PLR , (2.139)

where the two SU(2) groups are broken down to the vectorial SU(2)V on the IR brane.
This implements the custodial symmetry and is responsible for the protection of the
T parameter [209, 210]. The additional discrete PLR symmetry refers to the exchange
of the two SU(2) groups and is important to prevent the left-handed Zbb̄ coupling
from receiving too large corrections [211] as we will see below. On the UV brane, the
symmetry breaking SU(2)R × U(1)X → U(1)Y generates the SM gauge group, which is
achieved by an interplay between UV and IR boundary conditions.

In the following, first the set-up of the custodial RS model will be presented and it will
be explained how the above-mentioned symmetry breaking is achieved. We will proceed
in analogy to the minimal model presented in the previous section. Many technical
details of the model considered here can be found in [149, 185]. We will use the notation
and conventions of the former reference. It will only be dwelled on the features needed
for the main part of this thesis. Subsection 2.3.3 will then give an explanation of how
the electroweak precision observables are protected.

2.3.1 The Gauge Sector

We will pursue in the same way as in the minimal model. Starting with the 5D action
of the gauge sector, it will be explained how the Higgs sector breaks down the bulk
gauge symmetry to the custodial SU(2)V on the IR brane. The symmetry breaking on
the UV brane will only be touched, since the exact mechanism will not be relevant for
further discussion. We then perform the KK decomposition, where the KK modes are
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the bosonic mass eigenstates, i.e. the mixing among the various weak eigenstates as well
as the mixing between the fifth components and the scalar Goldstone boson of the Higgs
fields are implicitly taken into account. With the help of the EOMs and BCs for the
gauge-boson fields, the profiles and masses of the physical zero modes will be derived.
We will confirm that all formulas also include the results in the minimal model in certain
limits.

The 5D Action

Since the color sector of the bulk gauge group (2.139) is the same as in the minimal
model, we will only consider the electroweak subgroup and explore what changes here.
Instead of (2.6), we now deal with the following 5D electroweak gauge action

Sgauge =

∫
d4x

2πr

L

∫ 1

ε

dt

t
(LL,R,X + LHiggs + LGF + LFP) , (2.140)

where the gauge-kinetic terms are given by

LL,R,X =

√
G

r
GKMGLN

(
−1

4
LiKLL

i
MN −

1

4
RiKLR

i
MN −

1

4
XKLXMN

)
. (2.141)

The 4-components of the gauge fields LiM , R
i
M , XM (i = 1, 2, 3) are chosen to be even

under the Z2 parity, while the fifth components are chosen to be odd, in order to arrive at
a low-energy spectrum that is compatible with observation. The gauge-fixing Lagrangian
will be presented after inserting the KK decomposition. As it is not relevant for the
following discussion, the Faddeev-Popov ghost Lagrangian will not be shown explicitly.

The Higgs Lagrangian

LHiggs =
Lδ(t− 1)

2πr

(
1

2
Tr|DµΦ|2 − V (Φ)

)
(2.142)

is localized on the IR brane, where the Higgs doublet, responsible for breaking SU(2)L×
SU(2)R to the diagonal SU(2)V on the IR brane, transforms as (2,2)0. In component
notation, it is given by

Φ(x) =
1√
2

(
v + h(x)− iϕ3(x) −i

√
2ϕ+(x)

−i
√

2ϕ−(x) v + h(x) + iϕ3(x)

)
, (2.143)

where ϕi are real scalar fields, ϕ± = (ϕ1 ∓ iϕ2)/
√

2, and v denotes the Higgs vev
in the custodial RS model which differs from the value in the SM and minimal RS
model. SU(2)L transformations act from the left on the bi-doublet, while the SU(2)R
transformations act from the right. In order to show how the symmetry breaking is
accomplished, we use the covariant derivative

DµΦ = ∂µΦ− igL,5LaµT aLΦ + igR,5 ΦRaµT
a
R . (2.144)

Here, gL,5 and gR,5 are the 5D gauge couplings associated with SU(2)L,R, and T aL,R =
σa/2 are the corresponding generators. For the evaluation of the kinetic term for the
scalar bi-doublet, it is convenient to rotate the gauge bosons Laµ and Raµ into a new basis
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of fields Ãaµ and V a
µ , such that

(
ÃaM
V a
M

)
=

(
cosϑ − sinϑ

sinϑ cosϑ

)(
LaM
RaM

)
≡ Rϑ

(
LaM
RaM

)
, (2.145)

where
cosϑ =

gL,5√
g2
L,5 + g2

R,5

, sinϑ =
gR,5√

g2
L,5 + g2

R,5

. (2.146)

In Subsection 2.3.3, we will see that the PLR symmetry enforces that gL,5 = gR,5, and
hence cosϑ = sinϑ = 1/

√
2. For the time being, however, the value of ϑ will be kept as

a free parameter. The Higgs vev 〈Φ〉 = (v/
√

2) 1 then generates a mass term

M2
Ã

=
v2(g2

L,5 + g2
R,5)

4
(2.147)

for the fields Ãaµ, while the fields V a
µ remain massless. We can also read off the boson

coupling to the Higgs boson, once we replace v2 by (v+h)2. Observe that only the fields
Ãaµ couple to the Higgs. This will become important for the derivation of the propagator
in the subsequent chapter. Appropriate BCs break the extended electroweak gauge group
down to the SM gauge group on the UV boundary SU(2)R ×U(1)X → U(1)Y , which is
accomplished by introducing new fields

(
Z ′M
BM

)
=

1√
g2
R,5 + g2

X,5

(
gR,5 −gX,5
gX,5 gR,5

)(
R3
M

XM

)
, (2.148)

and giving Dirichlet BCs Z ′µ and R1,2
µ on the UV brane. Thus, Bµ is the only field that

survives on the UV brane and can be identified with the U(1)Y gauge field. The SM-like
neutral electroweak gauge bosons are defined in the standard way through

(
ZM

AM

)
=

1√
g2
L,5 + g2

Y,5

(
gL,5 −gY,5
gY,5 gL,5

)(
L3
M

BY
M

)
, gY,5 =

gX,5 gR,5√
g2
R,5 + g2

X,5

, (2.149)

and the definition of the weak-mixing angle

sin θw =
gY,5√

g2
L,5 + g2

Y,5

, cos θw =
gL,5√

g2
L,5 + g2

Y,5

, (2.150)

agrees with the definition in the SM (with gL,5 → g, gY,5 → g′). Note that from the BCs
for the fields on the right-hand side of (2.149) it follows that Aµ and Zµ obey Neumann
boundary conditions, while the corresponding fifth component fulfills Dirichlets BCs on
the UV brane. The fields L±M ≡ L1

M ∓ iL2
M , ZM , AM and R±M , Z ′M define the so-called

UV basis with individual BCs on the UV brane, where the vector components of the
former three (latter two) obey Neumann (Dirichlet) BCs and thus do (do not) possess
a zero mode. Analogously, we can define the so-called IR basis, which is given by the
fields A±M , A3

M , and V ±M with (modified15) Neumann BCs for their vector components
on the IR boundary. Among the remaining two fields of the IR basis, V 3

M and XM , there
should be the 5D photon field AM in order to allow for a massless zero mode for the

15Due to the mass term (2.147), the fields Ãµ must obey ∂tÃµ(x, 1−) = −Lm̃2
W /(cos2

ϑM
2
KK)Ãµ(x, 1),

with m̃W introduced in (2.159), see [149] for details.
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photon. We therefore rotate the remaining two fields to the photon field AM and a state
ZHM via

(
ZHM
AM

)
=

1

g2
LRX,5


 gL,5 gR,5 −gX,5

√
g2
L,5 + g2

R,5

gX,5
√
g2
L,5 + g2

R,5 gL,5 gR,5



(
V 3
M

XM

)
, (2.151)

where
g2
LRX,5 =

√
g2
L,5 g

2
R,5 + g2

L,5 g
2
X,5 + g2

R,5 g
2
X,5 . (2.152)

From now on, we use the notation Z̃M ≡ A3
M , since this field it is the linear combination

of ZM and Z ′M that is orthogonal to ZHM ,

(
Z̃M

ZHM

)
=

(
cosϑZ − sinϑZ

sinϑZ cosϑZ

)(
ZM

Z ′M

)
≡ RϑZ

(
ZM

Z ′M

)
, (2.153)

where we have defined

sinϑZ =
g2
R,5√

(g2
L,5 + g2

R,5)(g2
R,5 + g2

X,5)
, cosϑZ =

g2
LRX,5√

(g2
L,5 + g2

R,5)(g2
R,5 + g2

X,5)
.

(2.154)
The relations (2.145) and (2.153) represent the important connection between the UV
basis fields (right) and the IR basis fields (left). The explicit shape of all BCs is not
important for the main part of this thesis and can be found in [149]. It should be stressed
that there appears only one mass parameter M2

Ã
in the IR BCs as opposed to (2.22).

This feature will give rise to the protection of the electroweak T parameter. After having
defined these two bases with individual BC, the question arises in which basis we define
the 5D action. The latter still contains mixing terms between gauge fields and scalars,
that can be removed by an appropriate gauge-fixing Lagrangian whose concrete form
will be shown below (2.160). As the Higgs sector is localized on the IR brane, it is
appropriate to work in the IR basis for that purpose.

The Kaluza-Klein Decomposition

The next step is to perform the KK decomposition of the 5D gauge fields. Defining the
vectors

~ZM ≡
(
Z̃M

ZHM

)
= RϑZ

(
ZM

Z ′M

)
, ~W±M ≡

(
Ã±M
V ±M

)
= Rϑ

(
L±M
R±M

)
(2.155)



76 Chapter 2. Models with Warped Extra Dimensions

we are able to write the KK decomposition in a form analogous to (2.18), such that

Aµ(x, t) =
1√
r

∞∑

n=0

χAn (t)A(n)
µ (x) , A5(x, t) = − 1√

r

∞∑

n=0

MKK

mA
n

∂tχ
A
n (t)ϕ

(n)
A (x) ,

~Zµ(x, t) =
RϑZ√
r

∞∑

n=0

~χZn (t)Z(n)
µ (x) , ~Z5(x, t) = −RϑZ√

r

∞∑

n=0

MKK

mZ
n

∂t~χ
Z
n (t)ϕ

(n)
Z (x) ,

~W±µ (x, t) =
Rϑ√
r

∞∑

n=0

~χWn (t)W±(n)
µ (x) , ~W±5 (x, t) = −Rϑ√

r

∞∑

n=0

MKK

mW
n

∂t~χ
W
n (t)ϕ

±(n)
W (x) ,

(2.156)

where it has already been used that the coefficient of the fifth component is given by
an = −1/mn. The profiles ~χ an(t) are even functions on the orbifold and are defined via

χAn (t) ≡ χA(+)
n (t) and

~χ an(t) ≡ χan(t) ~A a
n ≡

(
χ
a(+)
n (t) 0

0 χ
a(−)
n (t)

)
~Aan , a = Z,W , (2.157)

where the superscripts (+) and (−) label the type of BC we impose on the profiles at
the UV brane, i.e., they indicate untwisted and twisted even functions on the orbifold.
Untwisted even functions correspond to ordinary profiles with Neumann boundary con-
ditions on the UV brane, allowing for light zero modes. Twisted even functions obey
Dirichlet boundary conditions on the UV brane and are thus not smooth at this orb-
ifold fixed point. The two-component vectors ~Aan, with a = Z,W , represent the mixings
between the different gauge fields and their KK excitations. These vectors are normal-
ized according to ( ~A a

n)T ~A a
n = 1. Similar to the fermion decomposition in the minimal

model (2.73), the profiles χ
a(±)
n (t) do not obey exact orthonormality conditions, but the

complete vectors (2.157) are orthonormal on each other,

2π

L

∫ 1

ε

dt

t
~χ an(t)T ~χ am(t) = δnm , a = Z,W . (2.158)

The photon obeys the standard orthonormality condition (2.21). Analogously to (2.19),

we also expand the 4D Goldstone bosons in the basis of mass eigenstates ϕ
(n)
Z and ϕ

±(n)
W

~ϕ±(x) =
∑

n

m̃W

mW
n

√
2πP+Rϑ ~χ

W
n (1)ϕ

±(n)
W (x) ; m̃W =

gL,5√
2πr

v

2
,

~ϕ 3(x) =
∑

n

m̃Z

mZ
n

√
2πP+RϑZ ~χ

Z
n (1)ϕ

(n)
Z (x) ; m̃Z =

√
g2
L,5 + g2

Y,5√
2πr

v

2
,

(2.159)

where P+ = diag(1, 0) is a projector on the upper component, and from now on we use
the abbreviations cϑa ≡ cosϑa and sϑa ≡ sinϑa, with ϑW ≡ ϑ. As in the minimal RS
model, the parameters m̃W,Z are the leading contributions to the gauge-boson masses in
an expansion in powers of v2/M2

KK, see (2.169). Using the notation introduced above,
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the gauge-fixing Lagrangian takes the form (compare with (2.15))

LGF =− 1

2ξ

(
∂µAµ − ξ

[
MKK t∂t

1

t
A5

])2

− 1

2ξ

(
∂µ ~Zµ −

ξ

2

[
δ(t− 1)kMÃ ~ϕ

3 + 2MKK t∂t
1

t
~Z5

])2

− 1

ξ

(
∂µ ~W+

µ −
ξ

2

[
δ(t− 1)kMÃ ~ϕ

+ + 2MKK t∂t
1

t
~W+

5

])T

×
(
∂µ ~W−µ − ξ

[
δ(t− 1)kMÃ ~ϕ

− + 2MKK t∂t
1

t
~W−5

])
.

(2.160)

We can now insert the KK decompositions (2.156) and the expansions (2.159) into the
action to obtain the EOM [149, 158, 159]

− t ∂t
1

t
∂t ~χ

a
n(t) = x2

n ~χ
a
n(t) , a = Z,W , (2.161)

which generalizes (2.20) ignoring the δ-function that will be included in the BCs. The
profiles ~χ an(t) are defined in such a way that the upper (lower) component obeys Neu-
mann (Dirichlet) boundary conditions on the UV brane,

[P+∂t + P−] ~χ an(t)
∣∣
t=ε

= 0 , (2.162)

with P− = diag(0, 1), while the upper (lower) components of the rotated profiles
Rϑa~χ

a
n(t) obey mixed (Neumann) BCs on the IR brane,

Rϑa∂t~χ
a
n(t)

∣∣
t=1− = − Lm̃2

W

c2
ϑM

2
KK

P+Rϑa ~χ
a
n(1) . (2.163)

Note that for the photon the right-hand side of (2.163) is zero. The IR BCs are used to
determine the mass eigenvalues which are the zeroes of

det

[
∂tχ

a
n(1−) +

Lm̃2
W

c2
ϑM

2
KK

Dϑa χ
a
n(1)

]
= 0 , (2.164)

where we have defined the matrix

Dϑa =

(
c2
a −saca

−saca s2
a

)
. (2.165)

Once the masses ma
n are known, the eigenvectors ~A a

n are determined by (2.163). The
equations (2.161) – (2.164) are the generalizations of (2.20), (2.22), and (2.29) in the
minimal model, which can be recovered for ϑ → 0 (the upper component of ~χ an(t) can
be identified with the profile χan(t) of the minimal model).

Bulk Profiles and Masses

We can now solve the EOM (2.161), where the untwisted (twisted) profiles χ
(+)
n (t)

(χ
(−)
n (t)) need to obey Neumann (Dirichlet) BCs at the UV brane. One then finds the
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solutions [149]

χ(+)
n (φ) = N (+)

n

√
L

π
t c(+)+
n (t) , χ(−)

n (φ) = N (−)
n

√
L

π
t c(−)+
n (t) , (2.166)

with

c(+)+
n (t) = Y0(xnε) J1(xnt)− J0(xnε)Y1(xnt) ,

c(−)+
n (t) = Y1(xnε) J1(xnt)− J1(xnε)Y1(xnt) ,

c(+)−
n (t) =

1

xnt

d

dt

[
t c(+)+
n (t)

]
= Y0(xnε) J0(xnt)− J0(xnε)Y0(xnt) ,

c(−)−
n (t) =

1

xnt

d

dt

[
t c(−)+
n (t)

]
= Y1(xnε) J0(xnt)− J1(xnε)Y0(xnt) .

(2.167)

The superscripts a have been dropped for a better readability. The mass eigenvalues
are determined by the IR BCs as explained above. It is obvious that the profiles fulfill

the UV BCs, since c
(−)+
n (ε) = c

(+)−
n (ε) = 0, which can be explicitly seen in (2.167). The

normalization constants N
(±)
n can be obtained by the orthonormality condition (2.158)

and read

N (±)
n

−2
=
[
c(±)+
n (1)

]2
+
[
c(±)−
n (1−)

]2
− 2

xn

(
c(±)+
n (1)c(±)−

n (1−)− εc(±)+
n (ε)c(±)−

n (ε+)
)

− ε2
([
c(±)+
n (ε)

]2
+
[
c(±)−
n (ε+)

]2
)
. (2.168)

With respect to the corresponding formula in the minimal model (2.28), they contain
additional terms due to the different UV BCs. Note that, depending on the type of the
UV BCs, some of the terms in (2.168) vanish identically.

We finish the discussion of the boson sector with the calculation of the zero-mode
masses and profiles. Expanding (2.164) in powers of v2/M2

KK, we arrive at

m2
W = m̃2

W

[
1− m̃2

W

2M2
KK

(
L

c2
ϑ

− 1 +
1

2L

)
+O

(
v4

M4
KK

)]

m2
Z = m̃2

Z

[
1− m̃2

W

2M2
KK

(
L

c2
ϑ

− 1 +
1

2L

)
+

m̃2
Z

2M2
KK

(
1− 1

2L

)
+O

(
v4

M4
KK

)]
,

(2.169)

which includes additional terms compared to (2.30). Note that the leading corrections
to both masses are proportional to m̃2

W /M
2
KK, with m̃W defined in (2.159). This is a

consequence of the enlarged bulk gauge symmetry and protects the T parameter. Finally,
one can derive the zero-mode profiles that are found to be [149]

√
2π ~χW0 (t) =


1− m2

W

2M2
KK

[
t2
(
L− 1

2 + ln t
)
− 1

2 + 1
2L

]

Lsϑ
2cϑ

m2
W

M2
KK

t2


+O

(
v4

M4
KK

)
,

√
2π ~χZ0 (t) =


1− m2

Z

2M2
KK

[
t2
(
L− 1

2 + ln t
)
− 1

2 + 1
2L

]

LsϑZ cϑZ
2c2ϑ

m2
W

M2
KK

t2


+O

(
v4

M4
KK

)
.

(2.170)

We see that the twisted components are proportional to t2 and suppressed by the ratio
v2/M2

KK, while the untwisted components are the same as in the minimal model at this
order, see (2.31).
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Generalization to a Bulk Higgs

The generalization of the gauge action to a bulk-Higgs sector is equivalent to the case
in the minimal model,

Sh =

∫
d4x r

∫ π

−π
dφ e−4σ(φ)

{
1

2
Tr
[
DMΦ†DMΦ

]
− µ2 Tr Φ†Φ

− VUV(Φ) δ(|φ|)− VIR(Φ) δ(|φ| − π)

}
,

(2.171)

where the potentials on the UV and IR branes read

VUV(Φ) = MUV Tr Φ†Φ , VIR(Φ) = −MIR Tr Φ†Φ + λIRTr (Φ†Φ)2 . (2.172)

Inserting the Higgs bi-doublet

Φ(x, t) =
1√
2

(
v(t) + h(x, t)− iϕ3(x, t) −i

√
2ϕ+(x, t)

−i
√

2ϕ−(x, t) v(t) + h(x, t) + iϕ3(x, t)

)
, (2.173)

and defining

mUV ≡
MUV

k
, mIR ≡

MIR

k
, λ ≡ λIR k

2r
, (2.174)

which differ from (2.35) by a factor of 2, we then find that Lh(x) is given by (2.37) and
the following discussion and derivations still hold for the custodial model. In particular,
the vev profile at leading order is given by the leading-order term in (2.52), while the
Higgs profile can be found in (2.63).

2.3.2 The Matter Sector

Let us now clarify the fermion sector in the model under consideration. Since the bulk
gauge group is larger than in the minimal model, we will encounter bi-doublets, triplets,
and singlets under the two SU(2) gauge groups. This will result in a much richer quark
structure. We will, however, see that by using appropriate defined vectors the formulas
of the minimal model can also be used in the custodial RS model.

The 5D Action

Before writing down the 5D fermion action, we have to specify the fermion represen-
tations in the custodial model. They are chosen such that they can be embedded into
complete SO(5) multiplets used in the context of models with gauge-Higgs unification
[101, 193, 212]. As a consequence of the discrete PLR symmetry the left-handed bottom
quark has to be embedded in a SU(2)L×SU(2)R bi-doublet with isospin quantum num-
bers T 3

L = −T 3
R = −1/2. This fixes the quantum numbers of the other fields uniquely. In

particular, the right-handed down-type quarks have to be embedded in an SU(2)R triplet
in order to obtain an U(1)X -invariant Yukawa coupling. One arrives at the following
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multiplet structure for the quark fields with even Z2 parity:

QL =


 u

(+)
L 2

3
λ

(−)
L 5

3

d
(+)
L − 1

3
u
′ (−)
L 2

3




2
3

, ucR =
(
u
c (+)
R 2

3

)
2
3

,

TR = T1R ⊕ T2R =




Λ
′ (−)
R 5

3

U
′ (−)
R 2

3

D
′ (−)
R − 1

3




2
3

⊕
(
D

(+)
R − 1

3
U

(−)
R 2

3
Λ

(−)
R 5

3

)
2
3

.

(2.175)

QL is a bi-doublet under SU(2)L × SU(2)R, while TR transforms as (3,1)⊕ (1,3). The
fields with odd Z2 parity have the opposite chirality. Their profiles are related to those
of the Z2-even fields by the field equations. The inner and outer subscripts on the
various fields denote their U(1)EM and U(1)X charges, respectively, which are connected
through the relations Y = −T 3

R +QX and Q = T 3
L + Y .

While the IR BCs are understood to be of Neumann type in all cases, the superscripts
on the fields specify the type of BCs that they obey on the UV boundary. Fields with
superscript (+) obey the usual mixed BCs allowing for a light zero mode, meaning that
the Dirichlet condition is imposed on the profile functions of the corresponding Z2-odd
fields. These zero modes correspond to the SM quarks. Fields with superscripts (−)
correspond to heavy, exotic fermions with no counterparts in the SM. For these states,
the Dirichlet boundary condition is imposed on the Z2-even fields in order to avoid the
presence of a zero mode. The remaining UV boundary conditions are of mixed type and
follow from the field equations. Note that the same SU(2)L × SU(2)R representations
have been chosen for all three quark generations, which is necessary if one wants to
consistently incorporate quark mixing in the fully anarchic approach to flavor in warped
extra dimensions. Altogether, there are fifteen different quark states in the up sector
and nine in the down sector. The boundary conditions give rise to three light modes in
each sector, which are identified with the SM quarks. These are accompanied by KK
towers consisting of groups of fifteen and nine modes of similar masses in the up and
down sectors, respectively. In addition, there is a KK tower of exotic fermion states with
electric charge 5/3, which exhibits nine excitations in each KK level.

In order to simplify the notation as much as possible, it is convenient to introduce
the vectors

~U =

(
u
u′

)
, ~u =



uc

U ′

U


 , ~D = d , ~d =

(
D
D′

)
, ~Λ = λ , ~λ =

(
Λ′

Λ

)
, (2.176)

which collect the fields with same electric charges (2/3, −1/3, and 5/3). Upper-case
(lower-case) symbols denote fields whose left-handed (right-handed) components are Z2

even. Using this notation we can write down the bilinear part of the fermionic 5D action
in an analogous way to the minimal model,

Sferm,2 =
∑

Q,q

∫
d4xr

∫ π

−π
dφ

{
e−3σ

(
~̄Qi/∂ ~Q+ ~̄q i/∂~q

)
− e−4σ sgn(φ)

(
~̄QM ~Q

~Q+ ~̄qM~q ~q
)

− e−2σ

r

[
~̄QL ∂φ(e−2σ ~QR)− ~̄QR ∂φ(e−2σ ~QL) + ~̄qL ∂φ(e−2σ~qR)− ~̄qR ∂φ(e−2σ~qL)

]
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− e−3σ v δ
η(|φ| − π)√

2r

[
~̄QL Y

5D,C
~q ~qR + ~̄QR Y

5D,S
~q ~qL + h.c.

]}
, (2.177)

where now (Q, q) = (U, u), (D, d), (Λ, λ). The structure of the matrices of the 5D bulk
mass parameters c ~Q ≡M ~Q/k and c~q ≡ −M~q/k are according to (2.176),

c~U = diag
(
cQ, cQ

)
, c ~D = cQ , c~Λ = cQ ,

c~u = diag
(
cuc , cτ1 , cτ2

)
, c~d = diag

(
cτ2 , cτ1

)
, c~λ = diag

(
cτ1 , cτ2

)
,

(2.178)

where each entry is a 3× 3 diagonal matrix in generation space. Note that the fields ~U ,
~D, and ~Λ are governed by the same bulk mass matrix cQ, while ~u, ~d, and ~λ are associated
with three different mass matrices cuc , cτ2 , and cτ1 . The first two of them, cuc ≡ cu
and cτ2 ≡ cd, can be identified with the mass matrices appearing in the minimal RS
model. The three new parameters contained in the matrix cτ1 can be related to the other
ones by extending the PLR symmetry to the part of the quark sector that mixes with
the left-handed down-type zero modes, by requiring that the action be invariant under
the exchange of the fields D′ and D [149]. This extended version of the PLR symmetry
implies cτ1 = cτ2 , and hence the number of independent bulk mass parameters is reduced
to the same number as in the minimal RS model. As can be seen above, we will work in
a basis, where the bulk mass matrices are diagonal so that all flavor mixing is encoded
in the 6× 9 and 3× 6 Yukawa matrices

Y ~u =

(
Y u

1√
2
Y d

1√
2
Y d

Y u − 1√
2
Y d − 1√

2
Y d

)
, Y ~d

= Y ~λ
=
(
Y d Y d

)
. (2.179)

Note that the 3 × 3 block matrices Y q appearing in these expressions are the same
as in the minimal RS model. Consequently, even though the extended RS model with
custodial symmetry has a much richer structure than the minimal model, it features the
same number of parameters in the fermion sector once the extended PLR symmetry is
imposed.

The Kaluza-Klein Decomposition

Provided with the above definitions, we write the KK decomposition for the up-type
quarks as

~UL(x, t) =
1√
r

t2

ε2

∑

n

CQ
n (t)~aUn u

(n)
L (x) , ~UR(x, t) =

1√
r

t2

ε2

∑

n

SQn (t)~aUn u
(n)
R (x) ,

~uL(x, t) =
1√
r

t2

ε2

∑

n

Sun(t)~aun u
(n)
L (x) , ~uR(x, t) =

1√
r

t2

ε2

∑

n

Cu
n(t)~aun u

(n)
R (x) .

(2.180)

Here, the superscript n labels the different mass eigenstates such that 1, 2, 3 refer to the
SM quarks, while n = 4, . . . , 18 label the fifteen quark modes of the first level and so
on. As mentioned above, the down- and λ-type quark sectors can be decomposed in an
analogous way, with the difference that they only possess nine modes in each KK level.
The functions CA

n (t) and SAn (t) denote the profiles in the custodial model and are given
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by

CU
n ≡ diag

(
CQ(+)
n ,CQ(−)

n

)
, Cu

n ≡ diag
(
Cuc(+)
n ,CT1(−)

n ,CT2(−)
n

)
,

CD
n ≡ CQ(+)

n , Cd
n ≡ diag

(
CT2(+)
n ,CT1(−)

n

)
,

CΛ
n ≡ CQ(−)

n , Cλ
n ≡ diag

(
CT1(−)
n ,CT2(−)

n

)
,

(2.181)

where the analogous expressions hold for the Z2-odd profiles SAn with C → S. The 3×3

matrices C
A(±)
n (t) (S

A(±)
n (t)) with A = Q, u, T1, T2 correspond to even (odd) profiles on

the orbifold, and the superscript (±) indicates the type of BC on the UV brane. The
flavor structure is encoded in the three-component vectors

~aUn ≡
(
aun
au
′
n

)
, ~aun ≡



au

c

n

aU
′

n

aUn


 , ~aDn ≡ adn , ~adn ≡

(
aDn
aD
′

n

)
, ~aΛ

n ≡ aλn , ~aλn ≡
(
aΛ′
n

aΛ
n

)
.

(2.182)
By virtue of the vector notation (2.176), we have reached complete analogy to the
decomposition of bulk quark fields in the minimal model. The further analysis can thus
be extracted from Section 2.2.2. Explicitly, the equations (2.73) – (2.83) still hold once
we make the replacements

aAn → ~aAn , Y q → Y ~q , (2.183)

and the profiles CA
n (t) and SAn (t) with A = U,D,Λ, u, d, λ have the structure given in

(2.181). The vectors defined in (2.71) can also be used for the custodial model, once we
make latter replacements.

Bulk Profiles

We can therefore directly move on to the solution for the bulk profiles. The explicit form

for the Z2-even profiles (C
A(+)
n (t))i and (S

A(+)
n (t))i associated with bulk mass parameters

MAi was obtained in [163, 167]. The Z2-odd functions (C
A(−)
n (t))i and (S

A(−)
n (t))i can

be derived in a similar fashion by requiring a Dirichlet condition for the even mode,

(C
A(−)
n (ε))i = 0, to account for the additional twist of the non-SM-like fermions at the

UV boundary. Dropping the label A and the index i, one finds the bulk profiles [149]

C(±)
n (t) = N (±)

n (c)

√
Lεt

π
f (±)+
n (t, c) ,

S(±)
n (t) = ±N (±)

n (c)

√
Lεt

π
f (±)−
n (t, c) .

(2.184)

The overall “ + ” entering the Z2-odd profiles holds if c = cQ ≡ +MQ/k refers to the
bi-doublet, while the “-” sign applies in the case of c = cA ≡ −MA/k (A = uc, T1, T2).

The functions f
(±)±
n (t, c) are given by

f (+)±
n (t, c) = J− 1

2
−c(xnε) J∓ 1

2
+c(xnt)± J 1

2
+c(xnε) J± 1

2
−c(xnt) ,

f (−)±
n (t, c) = J+ 1

2
−c(xnε) J∓ 1

2
+c(xnt)∓ J− 1

2
+c(xnε) J± 1

2
−c(xnt) .

(2.185)
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The normalization constant can be derived analogously to (2.90)

[
N (a)
n (c)

]−2
= [f (a)+

n (1, c)]2 + [f (a)−
n (1−, c)]2 (2.186)

− 2c

xn
f (a)+
n (1, c) f (a)−

n (1−, c)− ε2
(

[f (a)+
n (ε, c)]2 + [f (a)+

n (ε+, c)]2
)
,

which extends the result (2.91) to the case of Z2-odd profiles with non-zero value at
the UV boundary. Finally, one can expand the profiles for xn � 1 and finds the ZMA
profiles

C(+)
n (t) ≈

√
Lε

π
F (c) tc , S(+)

n (t) ≈ ±sgn(φ)

√
Lε

π
xnF (c)

t1+c − ε1+2c t−c

1 + 2c
,

C(−)
n (t) ≈ −

√
Lε

π
xnF (−c) t

1−c − ε1−2c tc

1− 2c
, S(−)

n (t) ≈ ±sgn(φ)

√
Lε

π
F (−c) t−c ,

(2.187)

with the zero-mode profile defined in (2.93). Note that C
(+)
n (t) and S

(−)
n (t) are of order

one, while C
(−)
n (t) and S

(+)
n (t) are suppressed by v/MKK.

2.3.3 Compatibility with Electroweak Precision Tests

In this last section on the custodial RS model, we will see that this model is able to
mitigate the large RS contributions to the T parameter and to the Zbb vertex. In the
following final formulas for the electroweak precision observables, the custodial symmetry
will have already been applied. Intermediate steps and the connection to the parameter
and couplings of the theory can be found in [149].

Oblique Parameters

The effects of the custodial model on the S, T , and U parameter have been investigated
in [149, 196, 209] and they found

S =
2πv2

M2
KK

(
1− 1

L

)
, T = − πv2

4c2
wM

2
KK

1

L
, U = 0 . (2.188)

Comparing with the corresponding formulas in the minimal model (2.132), the S pa-
rameter remains unaffected, while the L-enhanced term in the T parameter has been
cancelled by the extra terms in (2.169) and (2.170) reflecting the underlying custodial
symmetry. The only minor corrections to the T parameter can be understood with the
help of the dual theory of the custodial RS model as already outlined at the end of Sec-
tion 1.4.4 [105]: The symmetry breaking of the gauge group SU(2)L×SU(2)R×U(1)X →
SU(2)L → U(1)Y on the IR brane gives rise the fields L±µ , L3

µ, and Bµ, which correspond
to the elementary fields in the dual 4D theory. Thus, the dual gauge sector contains
the elementary gauge bosons of the SM gauge group, just as the minimal model, but its
composite sector moreover has the (custodial) global symmetry SU(2)L × SU(2)R that
is responsible for the protection of the T parameter. The resulting reduction of the RS
corrections is depicted in the left plot of Figure 2.5. Requiring the corrections to satisfy
the experimental bounds from S and T leads to the lower bound on the KK scale of
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Figure 2.5: Regions of 68%, 95% and 99% probability in the S−T (left) and gbL− gbR
(right) plane in the case of the custodial RS model obtained from the analysis performed
in [105]. The meaning of the colors, crosses, and stars is the same as in Figure 2.4.

MKK > 1.9 TeV at 95% CL, which is now driven by the S parameter. This KK scale
corresponds to a mass of the lightest KK gluon and photon resonance of

Mg(1) > 4.7 TeV (95% CL) . (2.189)

These KK modes could be detected at a high-luminosity LHC with 3000 fb−1 which is
sensitive to KK masses of 6.7 TeV [213]. This encourages us to predominantly work on
RS models with custodial protection of the enlarged SU(2)L × SU(2)R gauge group.

Corrections to Zbb̄

The discrete PLR symmetry has, moreover, the potential to mitigate the large corrections
to the Zbb̄ vertex. As shown in [149], the result for the Z-boson couplings to bottom
quarks in the custodial model, described by the effective Lagrangian (2.134) (with g5 →
gL,5), reads

gbL =

(
−1

2
+
s2
w

3

)[
1 +

m2
Z

2M2
KK

F 2(cbL)

3 + 2cbL

5 + 2cbL
2(3 + 2cbL)

]
+

m2
b

2M2
KK

1

1− 2cbR

(
F 2(cbR)

3 + 2cbR
− 1

)
,

gbR =
s2
w

3

[
1− m2

Z

2M2
KK

F 2(cbR)

3 + 2cbR

(
3c2
w

s2
w

L− 5 + 2cbR
2(3 + 2cbR)

)]
(2.190)

+
m2
b

2M2
KK


 1

1− 2cbL

(
1

F 2(cbL)
− 1 +

F 2(cbL)

3 + 2cbL

)
+
∑

i=1,2

|(Yd)i3|2
|(Yd)33|2

1

1− 2cQi

1

F 2(cbL)


 ,

where the PLR symmetry has already been applied. The resulting contributions are
visualized in the right plot of Figure 2.5. Comparing gbL in the custodial model with the
corresponding expression in the minimal model (2.135), one notices that the L-enhanced
term has been removed. Consequentially, most of the parameter points in Figure 2.5
are in the experimental error band as far as gbL is concerned. The L-enhanced term in
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the right-handed coupling gbR on the other hand, is enlarged by a factor of 3c2
w/s

2
w ≈ 10,

resulting in parameter points that fall outside the experimental ellipse. Note, however,
that still 99% of the parameters are in agreement with the experiment so that there is
no new unwanted discrepancy. Interestingly, the corrections to gbL seems to improve the
situation compared to the SM.

The analysis above has demonstrated that the RS model with an enlarged bulk gauge
symmetry is able to ameliorate the situation concerning electroweak precision observ-
ables that receive to large contributions in the minimal RS model. Equipped with the
set-up and most important features of both RS models, we will now turn to the main
part of this thesis.





Chapter 3

Warped 5D Propagators

This chapter is dedicated to the calculation of warped 5D propagators which will be a
crucial tool for the analysis in Chapter 4. We will work in the mixed momentum-position
representation of the 5D propagators [139, 147, 214–216], in which the extra-dimensional
coordinate is kept in position space. This is very convenient from a technical point of
view, but it is also physically well motivated, as the position along the extra dimension
defines the natural scale of the model, see (1.101). Using 5D propagators offers several
advantages. Since they implicitly sum over the infinite tower of KK modes, symbolically
written as

D(t, t′; p) ∼
∑

n

χn(t)χn(t′)
p2 −m2

n

, (3.1)

its derivation replaces the (numerical) determination of a significant number of KK
masses and profiles and is thus less time-consuming especially concerning the fermion
sector. It also avoids the necessity to take the limit to infinity which can cause problems,
e.g. in Higgs processes generated by fermion loops, see Section 4.1. Moreover, we will
in the latter chapter that the calculation of Higgs production via gluon fusion using 5D
propagators reveals some interesting new features concerning distinguishable scenarios
of the RS model. Furthermore, 5D propagators encode the full 5D theory that can
give rise to terms that would not be taken into account when summing up the first few
modes. We will encounter an example for that. Finally, we will see that using the 5D
propagators it is possible to obtain closed, analytical expressions for amplitudes and
hence for Wilson coefficients that include the effect of the complete tower and are exact
in an expansion in v2/M2

KK.
In the following, it will be focused on the calculation of warped 5D boson and fermion

propagators. It will be explained in detail how one can derive the differential equations
and obtain the solution for given boundary conditions. Moreover, the low- as well as
high-energy behavior of the propagators in question will be presented. These expressions
are needed for the analysis in Chapter 4. Section 3.1 deals with the boson propagators,
where we will distinguish between the scalar and gauge-boson case. Emphasis will be put
on the latter, for which we first derive the solutions for the 5D propagator for arbitrary
boundary conditions, before we will then derive the important W -boson propagators
for the RS models presented in the previous chapter. It will be distinguished between
the minimal and the custodial model, as well as between the bulk and a brane-localized
Higgs scenario, where the formulas in the custodial model have been derived for the
first time. In Section 3.2, we will then derive the 5D fermion propagators for a brane
and a bulk Higgs, where the solution in bulk-Higgs models will be exact only to first

87



88 Chapter 3. Warped 5D Propagators

order in the expansion in v2/M2
KK. Using the regularized profile of the Higgs boson,

which represents scenarios where the Higgs is localized on or very near the IR brane,
we will derive results that keep the exact dependence on the Yukawa matrices and the
full three-generation flavor structure. Finally, we will present the low- and high-energy
limits of the 5D fermion propagator at the end of this section.

3.1 Boson Propagators

This section covers the derivation of the massive scalar and vector boson propagators.
We will particularly focus on the gauge-boson case, where the derivations for a brane-
localized Higgs field can be found in our publication [151]. The calculation of the 5D
propagators in the bulk-Higgs scenario, on the other hand, is unpublished work.

3.1.1 Scalar Boson Propagator

We begin with the simplest case of a real and massive scalar field in the minimal RS
model. In t-notation the 5D action reads

SΦ =
1

2

∫
d4x

2πr

Lε

∫ 1

ε
dt
(ε
t

)3
Φ(x, t)

(
−∂µ∂µ +M2

KK t
3∂t

1

t3
∂t −

ε2m2
Φ

t2

)
Φ(x, t) . (3.2)

Using ∂µ → −ipµ and rescaling Φ → Φ/
√
r, which leads to the appropriate mass di-

mension of the propagator [DΦ] = −2 when interpreted as an infinite sum (3.1), this
translates into the following differential equation for the 5D scalar boson propagator

(
t3∂t

1

t3
∂t + p̂2 − c2

t2

)
DΦ(t, t′; p)

t2
= −Lt

′

2π

(
t′

ε

)2 1

M2
KK

δ(t− t′) . (3.3)

Here we have defined the dimensionless mass parameter c ≡ εmΦ/MKK and the normal-
ized momentum p̂2 = p2/M2

KK. The general solution to the Bessel differential equation
(3.3) can be written as a linear combination of the Bessel functions Jα(p̂t) and Yα(p̂t)
with α =

√
4 + c2. Upon taking into account the continuity condition at t = t′ as well

as the jump condition

∂tDΦ(t, t′;−p2)
∣∣t′+0

t′−0
= − Lt′3

2πM2
KKε

2
, (3.4)

which can be obtained by integrating the differential equation (3.3) over an infinitesimal
interval t ∈ [t′−0, t′+0], we find (see the gauge-boson case for a more detailed derivation)

DΦ(t, t′; p) = − Lt2t′2

4M2
KKε

2

[C>1 Jα(p̂t>) + C>2 Yα(p̂t>)] [C<1 Jα(p̂t<) + C<2 Yα(p̂t<)]

C>1 C
<
2 − C<1 C>2

, (3.5)

with t> = max(t, t′), t< = min(t, t′), where the coefficients C>,<1,2 are subject to the BCs.
Note that if we had rescaled our scalar field by the factor Φ → t/εΦ, we would obtain
the same propagator solution (3.5), but multiplied with the factor ε2/tt′. We will see in
the subsequent section that the gauge-boson propagators have the same structure.
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3.1.2 Gauge-Boson Propagator

We now turn to the case of a 5D gauge boson. For the later analysis, it will be important
to derive the 5D W -boson propagators in various RS models which will be done in the
following. First, however, it will be explained how one obtains the partial differential
equations for a general gauge boson out of the Lagrangian. Moreover, the general
proceeding to obtain the solution for the propagator for arbitrary BCs will be presented.

General Solutions

The general 5D action for a gauge boson can be written as [139]

S =

∫
d4x

∫ π

−π
dφ
√
G (LA + LGF + LMass) =

1

2

∫
d4x

2πr

L

∫ 1

ε

dt

t
AMK

MN
ξ AN , (3.6)

where

KMN
ξ =

( (
∂2 −M2

KKt∂
1
t ∂t
)
ηµν −

(
1− 1

ξ

)
∂µ∂ν + ε2

t2
M2
A η

µν 0

0 − ∂2 + ξM2
KKt∂

1
t ∂t − ε2

t2
M2
A

)

(3.7)
is the inverse of the Feynman propagator in general Rξ gauge. In order to study the
most general case, we have included a gauge-boson mass term MA, which could be
generated by a bulk Higgs field with profile (2.63). Thus, MA would be dependent on
the extra-dimension parameter t. For the time being, it is assumed to be a constant.
Analogously to the scalar boson case, we now rescale the field via AM → AM/

√
r in

order to interpret the 5D propagator as an infinite tower of 4D propagators, see (3.14).
From (3.7) we can now derive the EOMs

[(
t∂t

1

t
∂t + p̂2 − c2

A

t2

)
ηµν −

(
1− 1

ξ

)
p̂µp̂ν

]
Dνρ(t, t

′; p) =
−Lt′

2πM2
KK

δµρ δ(t− t′) , (3.8)

[
t∂t

1

t
∂t +

p̂2

ξ
− c2

A/ξ − 1

t2

]
ξ Dξ

55(t, t′; p) =
Lt′

2πM2
KK

δ(t− t′) , (3.9)

where cA ≡ εMA/MKK. For the vector component we make the ansatz [139]

Dξ
νρ(t, t

′; p) = Aξ(t, t
′;−p2)

pνpρ
p2

+B(t, t′;−p2)

(
ηνρ −

pνpρ
p2

)
, (3.10)

which after inserting into (3.8) yields the two independent equations

(
t∂t

1

t
∂t +

p̂2

ξ
− c2

A

t2

)
Aξ(t, t

′;−p2) =

(
t∂t

1

t
∂t + p̂2 − c2

A

t2

)
B(t, t′;−p2) , (3.11)

(
t∂t

1

t
∂t + p̂2 − c2

A

t2

)
B(t, t′;−p2) = − Lt′

2πM2
KK

δ(t− t′) . (3.12)

From the first equation we can deduce that Aξ(t, t
′;−p2) = B(t, t′;−p2/ξ) and from

(3.9) that

Dξ
55(t, t′; p) = −1

ξ
Aξ(t, t

′;−p2) = −1

ξ
B(t, t′;−p2/ξ) with cA →

√
c2
A/ξ − 1 . (3.13)
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Solving the differential equation (3.12) for B(t, t′;−p2) is therefore sufficient to compute
both propagators and will be the starting point for the following derivations. Note that
due to the rescaling of the 5D gauge field AM , we can identify the propagator function
B(t, t′;−p2) to be

B(t, t′;−p2) ≡
∞∑

n=0

χn(t)χn(t′)
m2
n − p2

. (3.14)

Like the EOM (3.3) for the scalar propagator, equation (3.12) can be rewritten as a
Bessel differential equation. The general solution of (3.12) is a linear combination of the

Bessel functions Jα and Yα, where α ≡
√

1 + c2
A. The appearance of the δ-function on

the right-hand side of (3.12) makes it necessary to split the solution into two parts,

B<(t, t′;−p2) = p̂t
[
C>1 (t′) Jα(p̂t) + C>2 (t′)Yα(p̂t)

]
, for t > t′ ,

B>(t, t′;−p2) = p̂t
[
C<1 (t′) Jα(p̂t) + C<2 (t′)Yα(p̂t)

]
, for t < t′ .

(3.15)

Two of the four unknown coefficients can be obtained by using the general UV and IR
boundary conditions

(
∂t −

bε
ε

)
B(t, t′;−p2)|t=ε+ = 0 ,

(
∂t − b1

)
B(t, t′;−p2)|t=1− = 0 , (3.16)

where bε and b1 can be generated by the vevs of some UV- or IR-localized scalars that
couple to the 5D vector boson at the boundaries. Note the analogy to the BCs for the
gauge-boson profiles stemming from the coupling to the Higgs doublet at the IR brane,
see e.g. (2.22). The remaining two coefficients are determined by requiring continuity of
the propagator function at t = t′

B(t, t′;−p2)
∣∣t′+0

t′−0
= 0 , (3.17)

and by the jump condition

∂tB(t, t′;−p2)
∣∣t′+0

t′−0
= − Lt′

2πM2
KK

. (3.18)

The general solution can then be written as

B(t, t′;−p2) =
Ltt′

4M2
KK

[C>1 Jα(p̂t>) + C>2 Yα(p̂t>)] [C<1 Jα(p̂t<) + C<2 Yα(p̂t<)]

C>1 C
<
2 − C<1 C>2

. (3.19)

Note the close similarity to the solution of the scalar propagator (3.5). The coefficients
depend on the BCs (3.16) and read

C>1 = −p̂ Y−1+α(p̂) + (−b1 − 1 + α)Yα(p̂) ,

C>2 = p̂ Y−1+α(p̂)− (−b1 − 1 + α)Yα(p̂) ,

C<1 = −p̂ε Y−1+α(p̂ε) + (−bε − 1 + α)Yα(p̂ε) ,

C<2 = p̂ε Y−1+α(p̂ε)− (−bε − 1 + α)Yα(p̂ε) .

(3.20)

For certain choices of the BCs it turns out to be appropriate to define linear combinations
of Bessel functions in order to compactify (3.19), see e.g. (3.26).

Especially tree-level processes require the knowledge of the low-energy behavior of the
5D propagator function (p̂E � 1) in the general set-up described above. In accordance
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with [105], we find the solution

B(t, t′; 0) =
L

4πM2
KK

(tt′)1−α

α

[
c1t

2α
< + c2(tt′)2α + c3(t2α + t′2α) + c4

]
, (3.21)

where

c1 = 1 ,

c2 =
−(b1 − b−)(bε − b−)

(b1 − b+)(bε − b−)− (b1 − b−)(bε − b+) ε2α
≈ −(b1 − b−)

b1 − b+
,

c3 =
(b1 − b−)(bε − b+)ε2α

(b1 − b+)(bε − b−)− (b1 − b−)(bε − b+) ε2α
≈ (b1 − b−)(bε − b+)

(b1 − b+)(bε − b−)
ε2α ,

c4 =
−(b1 − b+)(bε − b+)ε2α

(b1 − b+)(bε − b−)− (b1 − b−)(bε − b+) ε2α
≈ b1 − b+
b1 − b−

ε2α ,

(3.22)

and we have used the abbreviations b± = 1 ± α, for a compact writeup. As explained
in [105], the correct way to understand the various terms in (3.21) is to relate them to
universal or non-universal diagrams in the dual 4D theory. Universal (non-universal)
diagrams give rise to flavor-diagonal (flavor-changing) couplings, when rotated into the
mass basis. Consequently, we can attribute the terms which lead to flavor-diagonal,
∆F = 1, or ∆F = 2 transitions to the certain diagrams in the dual theory. For instance,
the fact that c1 = 1, irrespective of the certain choice of BCs, can be understood with the
help of the dual theory. Since the diagrams with an exchange of composites contribute
in all combinations of BCs, this term is universal, whereas the remaining terms, which
lead to flavor-changing transitions, vary for the specific choice, see [105] for a detailed
discussion. Note also that the expansions (3.21) do not hold in the gauge-boson case
(α = 1) with Neumann BCs on the UV brane (bε = 0). In these cases, a limiting
procedure necessary.

For completeness, we touch on the special case bε = b1 = 1 ± α, for which we
cannot use the expressions given above. This fine-tuning can be enforced by introducing
supersymmetry within the AdS space [110]. For the upper branch (+), we obtain

B(t, t′;−p2) = −L(1 + α)

π

(tt′)1+α

p2
(3.23)

+
L

4πM2
KK

(tt′)1−α

α

[
t2α< − 2

(1 + α)2

2 + α
(tt′)2α + α(t2 + t′2)(tt′)2α

]
,

which is exact up to O(p2)-suppressed terms. Notice that this special case contains a
zero mode with a non-flat profile χA0 (t) =

√
L(1 + α)/π t1+α . The lower branch (−)

also admits a pole with additional powers of ε and some inverse powers of tt′.

5D W -Boson Propagators

We will now turn to the explicit W -boson propagators needed for the later analysis in
Section 4.2. It will be distinguished between the minimal RS model and the RS model
with custodial protection as well as a brane-localized and a bulk-Higgs sector. We will
see that in the latter case and for arbitrary momenta no closed form can be derived and
we are only able to find a solution expanded in powers of O(v2/M2

KK). We will check
our bulk-Higgs solutions by sending the Higgs profile to the IR brane and identifying
the results with the brane-localized Higgs solutions.
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Brane-Localized Higgs Sector, Minimal Model

The calculation of the propagator function BW in the RS model with a brane-localized
Higgs field has been performed, for instance, in [139, 152, 217] and is the solution to the
differential equation (3.12) with B → BW and cA ≡ 0 subject to the BCs (3.16) with

bε = 0 and b1 = −Lm̃
2
W

M2
KK

. (3.24)

Note the close similarity with the corresponding EOMs and BCs for the gauge-boson
profiles χWn (t) given in relations (2.20) and (2.22). We can thus directly read off the
solution from (3.19) with α = 1. In the region of time-like momenta (p2 ≥ 0), the
general solution can be written in the form

BW (t, t′;−p2) =
Ltt′

4M2
KK

[p̂D10(t>, 1)− b1D11(t>, 1)]D10(t<, ε)

p̂D00(1, ε)− b1D10(1, ε)
, (3.25)

where
Dij(t, t

′) = Ji(p̂t)Yj(p̂t
′)− Yi(p̂t) Jj(p̂t′) . (3.26)

For space-like momenta, we find instead (with p2
E = −p2 > 0 and p̂2

E = p2
E/M

2
KK)

BW (t, t′; p2
E) =

Ltt′

2πM2
KK

[p̂ED10(t>, 1) + b1D11(t>, 1)]D10(t<, ε)

p̂ED00(1, ε)− b1D10(1, ε)
, (3.27)

with
Dij(t, t

′) = Ii(p̂Et)Kj(p̂Et
′)− (−1)i+jKi(p̂Et) Ij(p̂Et

′) . (3.28)

For the later analysis, it is convenient to expand the propagator function in powers of
1/M2

KK while keeping p2 and m̃2
W fixed and of order v2. This yields

BW (t, t′;−p2) =
1

2π

−1

(p2 − m̃2
W ) [1 + Π(t, t′; p2)] + Σ(p2) + i0

, (3.29)

where

Σ(p2) =
m̃4
W

2M2
KK

(
L− p2

m̃2
W

+
1

2L

p4

m̃4
W

)
,

Π(t, t′; p2) =
m̃2
W

2M2
KK

{
Lt2> +

p2

m̃2
W

[
Lt2< − t2

(
1

2
− ln t

)
− t′2

(
1

2
− ln t′

)]}
,

(3.30)

which are valid up to terms of order v4/M4
KK. The zero of the denominator of the

propagator in (3.29) defines the physical mass mW of the ground state, and the residue
of the pole determines the corresponding product of profile functions χW0 (t)χW0 (t′).
Clearly, one must encounter a single pole when replacing m̃2

W by the physical mass m2
W

(2.30). Indeed, it is possible to show that

2πBW (t, t′;−p2) =
c1(t, t′)
m2
W − p2

+
c2(t, t′)
2M2

KK

+O
(

v2

M4
KK

)
, (3.31)

where the first term in the bracket represents the pole contribution from the SM W
boson, while the second term denotes the tower contribution from the KK excitations.
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The t-dependent functions appearing in (3.31) are given by

c1(t, t′) = 1 +
m2
W

2M2
KK

[
1− 1

L
− t2

(
L− 1

2
+ ln t

)
− t′2

(
L− 1

2
+ ln t′

)]
,

c2(t, t′) = Lt2< +
1

2L
+ t2

(
ln t− 1

2

)
+ t′2

(
ln t′ − 1

2

)
.

(3.32)

Before we move on to the custodial RS model, it is a fortunate side-effect that we can
use (3.29) for an alternative approach to derive explicit expressions for the W -boson
mass and profile to any order in v2/M2

KK. With the help of (3.30), we find

m2
W = m̃2

W − Σ(m2
W ) = m̃2

W

[
1− m̃2

W

2M2
KK

(
L− 1 +

1

2L

)
+O

(
v4

M4
KK

)]
, (3.33)

which agrees with (2.30). The wave-function renormalization, i.e. the residue of the pole
in (3.31), generally reads

Z2(t, t′) ≡ 1−Π(t, t′;m2
W )− ∂Σ(p2)

∂p2

∣∣∣
p2=m2

W

= c1(t, t′) + . . . = 2πχW0 (t)χW0 (t′) ,

(3.34)
from which we can extract the first non-trivial correction to the W -boson profile

χW0 (t) =
1√
2π

{
1 +

m2
W

4M2
KK

[
1− 1

L
+ t2 (1− 2L− 2 ln t)

]
+O

(
v4

M4
KK

)}
, (3.35)

in accordance with (2.31).
Finally, we explore the asymptotic behavior of the propagator function for small and

large momenta. The result for p2 = 0, which will be a key ingredient in Section 5.1,
when we derive the vev shift in the RS models under consideration, reads

2πBW (t, t′, 0) =
1

m̃2
W

+
L

2M2
KK

(
1− t2>

)

=
1

m2
W

[
1 +

m2
W

2M2
KK

(
−Lt2> + 1− 1

2L

)
+O

(
v4

M4
KK

)]
,

(3.36)

where the physical mass has been substituted in the second line. Note that the result
in the first line is exact to all orders in the expansion of v2/M2

KK. The expression in the
second line coincides with formula (33) in [145]. In this reference, the result has been
obtained by iterative procedure. For large momenta (pE �MKK), we find

BW (t, t′,−p2)→ L

2π
[
ln 2k

pE
− γE

] 1

p2
E

, pEt< �MKK , pEt> �MKK ,

BW (1, 1,−p2)→ L

2πpEMKK
, pE �MKK, (3.37)

BW (t, t′,−p2)→ e−p̂E(t>−t<) L
√
t>t<

4πpEMKK
, pEt< > MKK , pEt> > MKK .

The first limit is valid for pE � MKK, but where the momentum is well below the
position-dependent cutoff (1.101). This limit thus does not hold on the IR brane (t> =
t< = 1), whose result in shown in the second line. Here the 1/p2

E behavior changes to a
1/pE behavior. The last line shows the behavior for the general case 1 6= t> 6= t<.
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Brane-Localized Higgs Sector, Custodial Model

The exact expression for the 5D gauge-boson propagator in the RS model with custodial
symmetry has been derived for the first time in our publication [151]. The differential
equation for the propagator function BUV can be derived analogously to the one in the
minimal model. It can also be extracted from the EOM for the profiles (2.161) and is
the same as in the minimal model (3.12) (with cA ≡ 0). The BCs, on the other hand,
are modified to [149]

(P+ ∂t + P−)BUV
W (t, t′;−p2)

∣∣
t=ε

= 0 ,

(∂t − b1Dϑ)BUV
W (t, t′;−p2)

∣∣
t=1− = 0 ; b1 = − Lm̃2

W

c2
ϑM

2
KK

.
(3.38)

The first equation follows from the BCs for the UV fields L±M and R±M . We have defined
P− = diag(0, 1). The second equation is a direct consequence of (2.163). Proceeding as
above, we find that, in the region of time-like momenta (p2 > 0), the general solution
for the propagator function reads

BUV
W (t, t′;−p2) =

Ltt′

4M2
KK

1

[p̂D00(1, ε)− b1D10(1, ε)]D01(1, ε)− b1 4s2ϑ
π2p̂2ε

×
{[[

p̂D10(t>, 1)− b1D11(t>, 1)
]
D01(1, ε)− 2b1s

2
ϑ

πp̂
D11(t>, ε)

]
D10(t<, ε)P+

+

[[
p̂D00(1, ε)− b1D10(1, ε)

]
D10(t>, 1) +

2b1s
2
ϑ

πp̂
D10(t>, ε)

]
D11(t<, ε)P−

− b1
2sϑcϑ
πp̂

[
D10(t, ε)D11(t′, ε)P 12 +D11(t, ε)D10(t′, ε)P 21

]}
, (3.39)

with the functions D±ij(t, t
′) defined in (3.26), and we have introduced the 2×2 matrices

P 12 and P 21, which have an entry 1 at the corresponding position indicated by the
subscripts and entries 0 otherwise. Note that up to irrelevant O(ε2) terms we can
replace p̂εDn1(t, ε) = − 2

π Jn(p̂t) for n = 0, 1. This gives rise to a simpler expression, in
which the spurious 1/ε term in the denominator is removed. In the limit sϑ → 0, we can
identify the coefficient of P+ with the result (3.25) obtained in the minimal RS model.
Expanding BUV

W in powers of 1/M2
KK, we obtain the result

2πBUV
W (t, t′;−p2) =




c1(t,t′)
m2
W−p2 + c2(t,t′)

2M2
KK

Lm2
W tanϑ

2M2
KK(m2

W−p2)
t′2

Lm2
W tanϑ

2M2
KK(m2

W−p2)
t2

Lt2<
2M2

KK


+O

(
v2

M4
KK

)
, (3.40)

where the functions c1(t, t′) and c2(t, t′) coincide with the expressions in the minimal RS
model (3.32). The result for the special case p2 = 0 can easily be read off from (3.40),
where the (11) component becomes (3.36), and reduces to equation (54) in [149]. The
general results above valid for arbitrary momentum are, however, new. The results for
large momenta (at leading order) can be read off from (3.37) multiplied with the 2× 2
identity matrix. The off-diagonal elements are further suppressed by v2/M2

KK.
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Bulk-Higgs Sector, Minimal Model

After having solved the 5D W -boson propagators for RS models with a brane-localized
Higgs sector, we will now derive the 5D propagators for RS models with a generic bulk-
Higgs field. Like the W -boson profile (see (2.47) and the discussion below), a closed
expression for arbitrary momenta cannot be obtained. For the special case p2 = 0, on
the other hand, it is possible to arrive at an expression that is exact to all orders in
the expansion of v2/M2

KK. We will also derive an expression for p2 . O(v2), which is
exact up to corrections suppressed by M4

KK. The asymptotic behavior for large momenta
p�MKK agrees with that of the brane-localized Higgs scenario up to O(v2/M2

KK) cor-
rections, see below.

Starting with the minimal model, we again make use of the partial differential equa-
tion (3.12), where the mass parameter comes from the Higgs mechanism with the t-
dependent vev (2.52) and reads1

c2
A(t) ≡ 2πm̃2

W

M2
KK

t2v2(t)

v2
=
Lm̃2

W

M2
KK

(1 + β) t4+2β , (3.41)

with Neumann BCs on both branes and the usual continuity and jump conditions. Note
that due to the t-dependence of cA, we cannot read off the solution from (3.19). For the
case of vanishing momentum p2 = 0, we find the exact result

BW (t, t′; 0) =
−Lα tt′

4M2
KK sin (πα)

D1(t>, 1)D1(t<, ε)

D2(1, ε)
, (3.42)

where α ≡ 1/(2 + β) and we have defined the functions

D1(t, t′) = Ĩα(t) Ĩ1−α(t′)− Ĩ−α(t) Ĩα−1(t′) ,

D2(t, t′) = Ĩα−1(t) Ĩ1−α(t′)− Ĩ−α+1(t) Ĩα−1(t′) ,
(3.43)

and

Ĩα(t) ≡ Iα
(

2Lm̃2
W

M2
KK

1 + β

2 + β
t

1
2+β

)
. (3.44)

In order to find a general solution for p2 = O(v2) � M2
KK, we treat the term on the

right-hand side of the differential operator as a perturbation and make the ansatz

BW (t, t′,−p2) =
1

ε̃
B−1(t, t′,−p2) +B0(t, t′,−p2) + ε̃ B1(t, t′,−p2) +O(ε̂2) , (3.45)

where ε̃ is a small parameter and counts the orders of v2/M2
KK. Analogously to Subsec-

tion 2.2.1, we plug the ansatz into the partial differential equation (3.12) and collect all
pieces that belong to the different orders of ε̃. The resulting differential equations read

t ∂t
1

t
∂tB−1(t, t′;−p2) = 0 (3.46)

t ∂t
1

t
∂tB0(t, t′;−p2) +

(
p̂2 − c2

A(t)

t2

)
B−1(t, t′;−p2) = − Lt

2πM2
KK

δ(t− t′) , (3.47)

t ∂t
1

t
∂tB1(t, t′;−p2) +

(
p̂2 − c2

A(t)

t2

)
B0(t, t′;−p2) = 0 , (3.48)

1Here, we use v4 ≡ v and m̃W = vg5/(2
√

2πr).
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which shows that the jump condition is only relevant for B0, while the derivative of B−1

and B1 is continuous at t = t′. Note that for p2 �M2
KK, the vev profile can be neglected

and the solution is identical to (3.25) with b1 ≡ 0. Thus, the asymptotic behavior for
large momenta does not depend on the brane-localized or bulk-Higgs scenario and is
given by (3.37).

Equation (3.46) together with the boundary and continuity conditions can be used
to determine

B−1(t, t′;−p2) = C(t′) , (3.49)

where C(t′) is a constant with respect to the dependence on t. From the condition that
the propagator is symmetric in t, t′, it follows that B−1 = c. Note that the constant c
cannot be fixed, since the jump condition does not give an additional constraint. For its
determination we have to use (3.47) together with the boundary and jump conditions.
Similarly, one coefficient of B0 cannot be fixed completely and we need to make use of
(3.47). This is actually the reason why we have taken into account B1 in the ansatz
(3.45). Eventually, one finds the solution (3.29), where the functions are now given by

Σβ(p2) =
m̃4
W

2M2
KK

(
L

2(1 + β)2

(2 + β)(3 + 2β)
− p2

m̃2
W

(1 + β)(3 + β)

(2 + β)2
+

1

2L

p4

m̃4
W

)
,

Πβ(t, t′; p2) =
m̃2
W

2M2
KK

{
−L(t4+2β + t′ 4+2β)

2 + β

+Lt2> +
p2

m̃2
W

[
Lt2< − t2

(
1

2
− ln t

)
− t′2

(
1

2
− ln t′

)]}
.

(3.50)

From (3.33) and (3.50) we can deduce the correction to the mass

m̃2
W

m2
W

= 1 +
m2
W

2M2
KK

[
2L(1 + β)2

(2 + β)(3 + 2β)
− (1 + β)(3 + β)

(2 + β)2
+

1

2L

]
+O

(
v4

M4
KK

)
, (3.51)

which coincides with the result (2.54). Replacing the leading-order mass m̃2
W by the

physical one m2
W then yields the exact result for the propagator function in the bulk-

Higgs model to order v2/M2
KK that can be written as (3.31), where now

cβ1 (t, t′) ≡ 1 +
m2
W

2M2
KK

[
L(t4+2β + t′4+2β)

2 + β
+

(1 + β)(3 + β)

(2 + β)2
− 1

L

−t2
(
L− 1

2
+ ln t

)
− t′2

(
L− 1

2
+ ln t′

)]
,

(3.52)

while c2(t, t′) remains the same (3.32). We can use cβ1 (t, t′) ≡ χW0 (t)χW0 (t′) to reproduce
the correction to the physical W -boson profile χW0 (t), which agrees with the result (2.50).

Finally, we want to present the expansion of the propagator function for p2 = 0,

2πB(t, t′; 0) =
1

m̃2
W

+
L

2M2
KK

[
2(1 + β)2

(2 + β)(3 + 2β)
+
t4+2β + t′4+2β

2 + β
− t2>

]
+O

(
v2

M4
KK

)
,

(3.53)

which can be obtained either by expanding (3.42) for large M2
KK or from (3.31) with

(3.52) in the limit p2 → 0. Note that in the limit β → ∞ all results above reduce the
corresponding results in the brane-localized Higgs case derived in the previous subsection
so that there is a smooth transition between between the two scenarios.
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Bulk-Higgs Sector, Custodial Model

The last propagator to be derived in this section is the 5D W -boson propagator in the
custodial RS model. According to Section 2.3.1, it is appropriate to work in the IR basis,
which has the advantage to have a decoupled partial differential equation. It reads

(
t ∂t

1

t
∂t + p̂2 − 2πm̃2

W

c2
ϑM

2
KK

v2(t)

v2
P+

)
BIR
W (t, t′,−p2) = − Lt

2πM2
KK

δ(t− t′) , (3.54)

with boundary conditions

[P+ ∂t + P−]RT
ϑ B

IR
W (t, t′,−p2)

∣∣∣
t=ε

= 0 , ∂tB
IR
W (t, t′,−p2)

∣∣∣
t=1

= 0 , (3.55)

where the first one follows from (2.162) after rotating the IR basis fields into the UV
basis via Rϑ defined in (2.145), while the second one is a direct consequence of (2.163).
Performing the same steps as above, we finally end up with the exact solution for the
special case p2 = 0

BIR
W (t, t′, 0) =

L

4M2
KK

{−πα tt′
sin(πα)

D1(t<, ε)D1(t>, 1)

D2(1, ε)
P+

+

[
t2< − ε2 −

2sϑ

cϑv̂ ε
−2+ 1

α

D1(ε, 1)

D2(ε, 1)

]
P−

+
2sϑ ε

1− 1
α

cϑv̂D2(1, ε)

[
tD1(t, 1)P 12 + t′D1(t′, 1)P 21

]}
, (3.56)

where the functions D1,2 have been defined in (3.43) and we have used the abbreviation
v̂ ≡ m̃W

MKK

√
2(1− α)/α. Notice that the (11) component can be identified to the result

of the minimal RS model (3.42). We can now rotate into the UV basis and expand the
propagator for large KK scales,

2πBUV
W (t, t′; 0) =

1

m̃2
W

P+ +
L

2M2
KK

[(
2(1 + β)2

c2
ϑ(2 + β)(3 + 2β)

+
t4+2β + t′4+2β

2 + β
− t2>

)
P+

+
sϑ
cϑ

(
t′2
(

1− t′2+2β

2 + β

)
P 12 + t2

(
1− t2+2β

2 + β

)
P 21

)
+ t2<P−

]
, (3.57)

which is exact at order O(v2/M2
KK). For β → ∞ we obtain the same result as for a

brane-localized Higgs sector [151]. Moreover, we can identify the (11)-component for
ϑ→ 0 with the result of the minimal RS model (3.53).
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3.2 Fermion Propagators

This section deals with the calculation of the 5D fermion propagators in RS models
with a brane-localized Higgs sector. Previous analyses of the 5D fermion propagator in
warped extra dimensions have been presented in [147, 215, 216]. These results will be
generalized by keeping the exact dependence on v2/M2

KK and the full three-generation
flavor-structure for the first time (see also [152]), and by paying special attention to
the effects of the regularized profile of the Higgs boson. The exact 5D fermion prop-
agator will be crucial for the calculation of the loop-induced Higgs production process
extensively discussed in Section 4.1. This section includes Section 4 and Appendix A of
our publication [150], where some results for the fermion propagator, in particular the

propagator functions ∆~q
LL and ∆~q

RL with t′ in the sliver (see below), have already been
published. Moreover, it also contains unpublished work, such as the derivation of the
propagator functions for arbitrary chiralities and values of t and t′ as well as the final
results for the full 5D fermion propagator for both finite η and the case η → 0. Finally,
the asymptotic behavior for very small and very large momenta will be examined at the
end of this section.

In order to be as general as possible, we focus on the RS model with custodial pro-
tection and use the compact notation introduced in (2.69), where profile functions and
a-vectors are given by the higher-dimensional objects as defined in (2.181) and (2.182).
The corresponding expressions in the minimal version of the RS model can be obtained
by simple replacements and will be presented explicitly if necessary. The starting point
for the derivation of the 5D propagator is the quark Lagrangian (2.64), which can now
be rewritten as

Sferm,2 =
∑

Q=U ,D,Λ

∫
d4x

∫ 1

ε
dt Q̄(x, t)

{
i/∂ −MKKγ5∂t −MKKM~q(t)

}
Q(x, t) . (3.58)

The 5D fields Q(x, t) are defined in (2.70) and the generalized mass matrix reads

M~q(t) =
1

t

(
c ~Q 0

0 −c~q

)
+

v√
2MKK

δηv (t− 1)

(
0 Y ~q

Y †~q 0

)
, (3.59)

with generalized Yukawa matrices Y ~q defined in (2.179) and an arbitrary vev profile
δηv (t− 1). It is now straightforward to read off the Dirac operator from (3.58)

D = /p−MKK γ5 ∂t −MKKM~q(t) ,

and we can immediately turn to the determination of the 5D fermion propagator in the
mixed momentum-position representation. From now on we will use the regularized box
profile (2.75) for δηv (t− 1).
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3.2.1 Differential Equations and Boundary Conditions

The grand 15× 15 (for up-type quarks) and 9× 9 (for down- and λ-type quarks) prop-
agators in the mixed momentum-position representation are given by

iS~q(t, t′; p) =

∫
d4x eip·x 〈0|T (QL(x, t) +QR(x, t))(Q̄L(x, t) + Q̄R(x, t)) |0〉

=
[
∆~q
LL(t, t′;−p2) /p+ ∆~q

RL(t, t′;−p2)
]
PR + (L↔ R) ,

(3.60)

with the projectors PL,R = 1
2(1±γ5) and the symbol T denoting the time ordering. The

objects ∆~q
AB are referred to as propagator functions in the following.2 Using the KK

decomposition (2.70) it is straightforward to show that

∆~q
LL(t, t′;−p2) =

∑

n

1

p2 −m2
qn

Q(n)
L (t)Q(n)†

L (t′) ,

∆~q
RL(t, t′;−p2) =

∑

n

mqn

p2 −m2
qn

Q(n)
R (t)Q(n)†

L (t′) ,
(3.61)

and similarly for the remaining two propagator functions. With the help of the defini-

tions of the vectors Q
(n)
L,R (2.71) and their ingredients (2.181) and (2.182), we explicitly

see how to interpret the various components of the propagator functions. As an example
we consider the (15)-component of ∆~u

RL, which is a 5×5 matrix in representation space.
The subscripts denote the handedness of the outgoing and incoming fields, respectively,
while the components give information about the charges under the gauge group. In
the case in question, the outgoing field is the right-handed field of the bi-doublet whose
left-handed component is Z2-even, i.e. uR. The incoming field, on the other hand, is the
left-handed field of the triplet whose right-handed component is Z2-odd, i.e. UL. The
other components can be interpreted analogously.

With the help of the completeness relation for the bulk profiles

∑

n

Q(n)
A (t)Q(n)†

A (t′) = δ(t− t′); A = L,R , (3.62)

which holds on the interval t ∈ [ε, 1] once we regularize the Higgs profile, it is easy to
show that

DS~q(t, t′; p) =
∑

n

[
Q(n)
L (t)Q(n)†

L (t′)
1 + γ5

2
+Q(n)

R (t)Q(n)†
R (t′)

1− γ5

2

]
= δ(t− t′) 1 .

(3.63)
This implies the first-order differential equations

p2 ∆~q
LL(t, t′;−p2)−MKKD+ ∆~q

RL(t, t′;−p2) = δ(t− t′) ,
p2 ∆~q

RR(t, t′;−p2)−MKKD−∆~q
LR(t, t′;−p2) = δ(t− t′) ,

(3.64)

and

∆~q
RL(t, t′;−p2)−MKKD−∆~q

LL(t, t′;−p2) = 0 ,

∆~q
LR(t, t′;−p2)−MKKD+ ∆~q

RR(t, t′;−p2) = 0 ,
(3.65)

2Note that it is principally not necessary to use the superscript ~q instead of q. However, we will
use the latter to specify the more special case of the minimal RS model q = u, d , while the notation ~q
represents ~q = ~u, ~d, ~λ, i.e. the custodial RS model.
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where we have used the shorthand notation D± ≡ ±∂t +M~q (t) . These equations can
be decoupled at the price of turning first-order into second-order differential equations:

(
p̂2 −D−D+

)
∆~q
RL(t, t′;−p2) =

1

MKK
D−δ(t− t′) ,

(
p̂2 −D+D−

)
∆~q
LR(t, t′;−p2) =

1

MKK
D+δ(t− t′) ,

(3.66)

and

(
p̂2 −D+D−

)
∆~q
LL(t, t′;−p2) =

1

M2
KK

δ(t− t′) ,
(
p̂2 −D−D+

)
∆~q
RR(t, t′;−p2) =

1

M2
KK

δ(t− t′) ,
(3.67)

with the normalized momentum squared p̂2 ≡ p2/M2
KK. Integrating (3.64) and (3.65)

over an infinitesimal interval t ∈ [t′−0, t′+0] at fixed t′, one obtains the jump conditions

∆~q
RL(t′ + 0, t′;−p2)−∆~q

RL(t′ − 0, t′;−p2) = − 1

MKK
,

∆~q
LR(t′ + 0, t′;−p2)−∆~q

LR(t′ − 0, t′;−p2) =
1

MKK
,

∆~q
LL(t′ + 0, t′;−p2)−∆~q

LL(t′ − 0, t′;−p2) = 0 ,

∆~q
RR(t′ + 0, t′;−p2)−∆~q

RR(t′ − 0, t′;−p2) = 0 .

(3.68)

While the last two equations show the continuity of the propagator functions ∆~q
LL and

∆~q
RR (the actual jump occurs in their derivatives), the first two state the discontinuity

of ∆~q
RL and ∆~q

LR.
What is left are the boundary conditions which on the IR brane take the simple form

diag(0 1) ∆~q
LA(1, t′;−p2) = 0 = diag(1 0) ∆~q

RA(1, t′;−p2) , A = L,R , (3.69)

where the entries 0 and 1 are zero and unit matrices of ranks according to the structures
(2.71) and (2.181). The UV boundary conditions, on the other hand, differ for the
various quark types (A = L,R):

diag(0, 1, 1, 0, 0) ∆~u
LA(ε, t′;−p2) = 0 = diag(1, 0, 0, 1, 1) ∆~u

RA(ε, t′;−p2) ,

diag(0, 1, 0) ∆
~d
LA(ε, t′;−p2) = 0 = diag(1, 0, 1) ∆

~d
RA(ε, t′;−p2) ,

diag(1, 0, 0) ∆
~λ
LA(ε, t′;−p2) = 0 = diag(0, 1, 1) ∆

~λ
RA(ε, t′;−p2) .

(3.70)

Both UV and IR BCs follow from the respective conditions for the fields embedded in
the 15- and 9-component vectors of (2.71). In the minimal model the BCs are given by
(3.69) for t = ε, 1 .

3.2.2 Derivation of the Propagator Functions

We are now able to derive the full propagator for arbitrary t and t′, where we will focus
on the determination of the propagator functions ∆~q

LL and ∆~q
RL. It will be explained

that the two propagator functions with reversed chiralities, ∆~q
RR and ∆~q

LR can be easily
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deduced from the former ones. While deriving the solutions for the propagator functions,
one has to distinguish between the cases of whether t is in the bulk or in the sliver and,
moreover, whether t < t′ or t > t′. Having the general solution for ∆~q

LL at hand, we can

easily deduce ∆~q
RL from the first equation in (3.65). Imposing the boundary as well as

the jump conditions, we will have a solution with four independent parameter functions
for both the bulk and sliver case. The determination of the unambiguous solution for
these coefficient functions will be explained in the next subsection.

Bulk Solution (t < 1− η)

In the case of t being in the bulk, t < 1− η, the Yukawa matrices do not contribute to
the mass matrix and we deal with

M2(t)± dM(t)

dt
=

1

t2

(
c ~Q (c ~Q ∓ 1) 0

0 c~q (c~q ± 1)

)
, t < 1− η ,

with c ~Q and c~q having patterns as shown in (2.178). With the help of the ansatz
√
tf(p̂Et) for each entry in the propagator function ∆~q

LL, where p̂2
E = −p2/M2

KK denotes
the square of the Euclidean momentum normalized to the KK scale, the differential
equations become Bessel equations with independent solutions Iα(p̂Et) and I−α(p̂Et) for

non-integer α.3 The general solution for ∆~q
LL is

∆~q,bulk
LL (t, t′;−p2) =

√
t

(
Ic~Q−

1
2
(p̂Et) 0

0 Ic~q+ 1
2
(p̂Et)

)(
C1(t′) C2(t′)
C3(t′) C4(t′)

)

+
√
t

(
I−c~Q+ 1

2
(p̂Et) 0

0 I−c~q− 1
2
(p̂Et)

)(
C5(t′) C6(t′)
C7(t′) C8(t′)

)
,

(3.71)

where the zero matrices and the integration functions Ci(t
′) are matrices of correspond-

ing rank. It is an easy exercise to derive the solution for ∆~q
RL from equation (3.65) and

we obtain

∆~q,bulk
RL (t, t′;−p2) = −pE

√
t

[(
Ic~Q+ 1

2
(p̂Et) 0

0 Ic~q− 1
2
(p̂Et)

)(
C1(t′) C2(t′)
C3(t′) C4(t′)

)
(3.72)

+

(
I−c~Q−

1
2
(p̂Et) 0

0 I−c~q+ 1
2
(p̂Et)

)(
C5(t′) C6(t′)
C7(t′) C8(t′)

)]
.

The general solutions (3.71) and (3.72) hold for arbitrary choices of t, t′ ∈ [ε, 1− η),
where the coefficients differ for the solutions for t < t′ and t > t′. Focusing on the
solutions for t < t′, we evaluate them at t = ε and make use of the UV BCs (3.70),
which lead to relations between the various coefficient functions. Upon rescaling the
coefficient functions C<

i (t′)→Ki(t
′), one ends up with

∆~q <, bulk
LL (t, t′;−p2) =

√
t

(
D

~Q
1 (p̂E , t) 0

0 D~q
2(p̂E , t)

)(
K1(t′) K2(t′)
K3(t′) K4(t′)

)
, (3.73)

∆~q <, bulk
RL (t, t′;−p2) = −pE

√
t

(
D

~Q
2 (p̂E , t) 0

0 D~q
1(p̂E , t)

)(
K1(t′) K2(t′)
K3(t′) K4(t′)

)
,

3For integer α we get the solutions by a limiting procedure.
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where the functions D
~A
1 (p̂Et) and D

~A
2 (p̂Et) depend on the specific choice of ~A =

~U, ~D, ~Λ, ~u, ~d,~λ. They read

D
~U
1,2(p̂E , t) ≡ diag

(
DQ

1,2(p̂E , t), D
Q
3,4(p̂E , t)

)
,

D~u
1,2(p̂E , t) ≡ diag

(
Duc

1,2(p̂E , t), D
τ1
3,4(p̂E , t), D

τ2
3,4(p̂E , t)

)
,

D
~D
1,2(p̂E , t) ≡ DQ

1,2(p̂E , t) ,

D
~d
1,2(p̂E , t) ≡ diag

(
Dτ2

1,2(p̂E , t), D
τ1
3,4(p̂E , t)

)
, (3.74)

D
~Λ
1,2(p̂E , t) ≡ DQ

3,4(p̂E , t) ,

D
~λ
1,2(p̂E , t) ≡ diag

(
Dτ1

3,4(p̂E , t), D
τ2
3,4(p̂E , t)

)
.

The functions DA
i (p̂E , t) are defined via

DA
i (p̂E , t) ≡ DA

i (p̂E , t, ε) , (3.75)

where the latter are linear combinations of Bessel functions defined by

DA
1,2(p̂E , t, t

′) ≡ I−cA− 1
2
(p̂Et

′) IcA∓ 1
2
(p̂Et)− IcA+ 1

2
(p̂Et

′) I−cA± 1
2
(p̂Et) ,

DA
3,4(p̂E , t, t

′) ≡ I−cA+ 1
2
(p̂Et

′) IcA∓ 1
2
(p̂Et)− IcA− 1

2
(p̂Et

′) I−cA± 1
2
(p̂Et) ,

with A = Q, uc, τ1, τ2. Note that these are 3×3 matrices in generation space. Due to the
antisymmetry in the arguments, it is DA

2,3(p̂E , t, t) = 0 and in particular DA
2,3(p̂E , ε) = 0,

which has been required by the UV BCs.
Equipped with the solutions ∆~q,<

LL and ∆~q,<
RL , it is possible to determine ∆~q,>

LL and

∆~q,>
RL with the help of the jump conditions. After some algebra we eventually obtain

∆~q >, bulk
LL (t, t′;−p2) =

√
t

(
D

~Q
1 (p̂E , t) 0

0 D~q
2(p̂E , t)

)(
K1(t′) K2(t′)
K3(t′) K4(t′)

)

+

√
tt′

pEMKK1η

(
−L ~Q

3 (p̂E , t, t
′) 0

0 L~q2(p̂E , t, t
′)

)
,

∆~q >,bulk
RL (t, t′;−p2) = −pE

√
t

(
D

~Q
2 (p̂E , t) 0

0 D~q
1(p̂E , t)

)(
K1(t′) K2(t′)
K3(t′) K4(t′)

)

+

√
tt′

MKK1η

(
L
~Q
4 (p̂E , t, t

′) 0

0 −L~q1(p̂E , t, t
′)

)
.

(3.76)

In order to avoid clutter, we have used the rescaled quantities

L
~A
i (p̂E , t, t

′) ≡ πp̂E1η

2 cos
(
πc ~A

) D ~A
i (p̂E , t, t

′) , i = 1, 2, 3, 4 , (3.77)

where it will turn out to be convenient to include a factor of 1η ≡ 1− η in the definition

of L
~A
i . Having found the solutions for the propagator functions in the bulk, we are now

able to turn to the sliver region.
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Sliver Solution (t > 1− η)

In the sliver region, t > 1 − η, we start again with the determination of the general
solution for t 6= t′. Using the regularized profile of the Higgs (2.75), we can approximate

M2
q(t) +

dMq(t)

dt
=

v2

2M2
KK η

2

[(
Y ~q Y

†
~q 0

0 Y †~q Y ~q

)
+O

(
ηMKK

v|Yq|

)]
, t > 1− η .

(3.78)
Note that we need to require the relation η � v|Yq|/MKK for the corrections to be small.
This is the reason for the right inequality in (2.4). The differential equations (3.67) now
take the simple form (A = L,R)

[
∂2
t −

(
p̂2
E +

%2

η2

(
Y ~q Y

†
~q 0

0 Y †~q Y ~q

))]
∆q
AA(t, t′; p2) = 0 , % ≡ v√

2MKK

. (3.79)

As in the case of the bulk solution, we first focus on the propagator function ∆~q, sliver
LL .

Using the definitions

S~q =
√
X2

~q + η2p̂2
E , S̄~q =

√
X̄

2
~q + η2p̂2

E , (3.80)

with X~q, X̄~q defined in (2.78), the general solution in the sliver region reads

∆~q, sl.
LL (t, t′;−p2) =

(
C(t) 0

0 C̄(t)

)(
Ĉ1(t′) Ĉ2(t′)
Ĉ3(t′) Ĉ4(t′)

)
+

(
S(t) 0

0 S̄(t)

)(
Ĉ5(t′) Ĉ6(t′)
Ĉ7(t′) Ĉ8(t′)

)
,

(3.81)

where we have appropriately defined

S(t) ≡
[
S~q θ̄

η(t− 1)
]
, C(t) ≡

[
S~q θ̄

η(t− 1)
]
, (3.82)

and analogously S̄(t) and C̄(t) with S~q replaced by S̄~q . The dependence on the coordi-
nate t enters via the integral

θ̄η(t− 1) ≡
∫ 1

t
dt′ δηv (t′ − 1) =

1− t
η

. (3.83)

From the differential equation (3.65) we immediately obtain

∆~q, sliver
RL (t, t′;−p2) =

MKK

η

[(
S~q S(t) %Y ~q C̄(t)
%Y †~q C(t) S̄~q S̄(t)

)(
Ĉ1(t′) Ĉ2(t′)
Ĉ3(t′) Ĉ4(t′)

)

+

(
S~q C(t) %Y ~q S̄(t)

%Y †~q S(t) S̄~q C̄(t)

)(
Ĉ5(t′) Ĉ6(t′)
Ĉ7(t′) Ĉ8(t′)

)]
.

(3.84)
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Again, we need to distinguish between t > t′ and t < t′. The IR boundary conditions
can be used for the former case and we get

∆~q >, sliver
LL (t, t′;−p2) =

(
C(t) 0

0 S̄(t)

)(
Ĉ
>
1 (t′) Ĉ

>
2 (t′)

Ĉ
>
7 (t′) Ĉ

>
8 (t′)

)
,

∆~q >, sliver
RL (t, t′;−p2) =

MKK

η

(
S~q S(t) %Y ~q S̄(t)

%Y †~q C(t) S̄~q C̄(t)

)(
Ĉ
>
1 (t′) Ĉ

>
2 (t′)

Ĉ
>
7 (t′) Ĉ

>
8 (t′)

)
.

(3.85)

The solutions for t < t′ can be obtained by taking the employing the jump conditions
and read

∆~q<, sliver
LL (t, t′;−p2) =

(
C(t) 0

0 S̄(t)

)(
Ĉ
>
1 (t′) Ĉ

>
2 (t′)

Ĉ
>
7 (t′) Ĉ

>
8 (t′)

)
+

η

M2
KK



S(1−t′+t)

S~q
0

0 S̄(1−t′+t)
S̄~q


 ,

∆~q<, sliver
RL (t, t′;−p2) =

MKK

η

(
S~q S(t) %Y ~q S̄(t)

%Y †~q C(t) S̄~q C̄(t)

)(
Ĉ
>
1 (t′) Ĉ

>
2 (t′)

Ĉ
>
7 (t′) Ĉ

>
8 (t′)

)

+
1

MKK


 C(1− t

′ + t) %Y ~q
S̄(1−t′+t)

S̄~q

%Y †~q
S(1−t′+t)

S~q
C̄(1− t′ + t)


 . (3.86)

So far we have achieved to derive the general solution in the bulk (t < 1− η) and in the
silver (t > 1−η) that are both compatible with the boundary as well as the jump condi-
tions. The latter have been used to eliminate 24 of the in total 32 coefficient functions.
Thus, there are still eight coefficient matrices unspecified. Their determination will be
part of the subsequent subsection.

3.2.3 Determination of the Coefficient Functions and Final Results

The remaining eight coefficient functions are determined by requiring that the solutions
are continuous at t = 1− η. This matching procedure has to be performed in two steps
differing in the position of t′. If t′ is in the bulk, the requirement of the functions ∆~q >

LL

and ∆~q >
RL being continuous yields the bulk part of the coefficient functions. Analogously,

∆~q <
LL and ∆~q <

RL have to be continuous in the case of t′ > 1 − η, which determines the
corresponding sliver part. At the end of the calculation it will be checked that all
coefficient functions are continuous at t′ = 1− η.

Case of t′ Being in the Bulk

For the case t′ < 1− η, we have to match

∆q>,bulk
AL (t = (1− η)−, t′;−p2) = ∆q>, sliver

AL (t = (1− η)+, t
′;−p2) A = L,R . (3.87)
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The equation with A = L yields the relations

−
√
tt′

pEMKK1η
L
~Q
3 (p̂E , 1η, t

′) +
√

1ηD
~Q
1 (p̂E , 1η)K

bulk
1 (t′) = coshS~q Ĉ

>,bulk
1 (t′) ,

√
1ηD

~Q
1 (p̂E , 1η)K

bulk
2 (t′) = coshS~q Ĉ

>,bulk
2 (t′) ,

√
1ηD

~q
2(p̂E , 1η)K

bulk
3 (t′) = sinh S̄~q Ĉ

>,bulk
7 (t′) ,

√
tt′

pEMKK1η
L~q2(p̂E , 1η, t

′) +
√

1ηD
~q
2(p̂E , 1η)K

bulk
4 (t′) = sinh S̄~q Ĉ

>,bulk
8 (t′) ,

(3.88)

where the superscript of the coefficients Ki and Ĉ
>
i indicates that t′ is in the bulk and

should not be confused with the superscript of the propagator functions that denote
the position of the variable t. Above equations can be used to eliminate the coefficients
C>,bulk
i (t′). Note that on the left-hand sides of these equations we could take the limit

η → 0 without difficulty, but we will keep the Higgs width η throughout all our calcu-
lations. Only when we concentrate on the brane-Higgs case, we will take the limit in

question. The remaining four coefficients K̂
bulk
i (t′) can be derived by the equation in

(3.87) with A = R, where we encounter the ratios

R ~A(p̂E) ≡ D
~A
1 (p̂E , 1η)

D
~A
2 (p̂E , 1η)

. (3.89)

In order to express the answers in a compact form, we moreover introduce the definitions

Nη,1
~q (p2

E) ≡ 1 +Zη,1
~q (p2

E) + ηp̂E

[
1 +R−1

~Q
(p̂E) (Y †~q)

−1R~q(p̂E)Y †~q

] tanhS~q
S~q

R ~Q(p̂E) ,

Nη,2
~q (p2

E) ≡ 1 +Zη,2
~q (p2

E) + ηp̂E
tanhS~q
S~q

[
R ~Q(p̂E) + Y ~qR~q(p̂E)Y −1

~q

]
, (3.90)

where

Zη,1
~q (p2

E) ≡ %2
S2
~q

X2
~q

Ỹ ~qR~q(p̂E) Ỹ
†
~qR ~Q(p̂E) ,

Zη,2
~q (p2

E) ≡ %2Ỹ ~qR~q(p̂E) Ỹ
†
~q

S2
~q

X2
~q

R ~Q(p̂E) , Ỹ ~q ≡
tanhS~q
S~q

Y ~q .

(3.91)

After some lengthy algebra, we obtain

Kbulk
1 (t′) =

√
t′/1η

pEMKKD
~Q
1 (p̂E , 1η)

{
L
~Q
3 (p̂E , 1η, t

′)

−
[
R ~Q + ηp̂E

cothS~q
S~q

Zη,1
~q

]
1

Nη,1
~q

D
~Q
1 (p̂E , t

′)

D
~Q
1 (p̂E , 1η)

}
,

Kbulk
2 (t′) =

√
t′/1η

pEMKKD
~Q
2 (p̂E , 1η)

1

Nη,2
~q

%Ỹ ~q
D~q

2(p̂E , t
′)

D~q
2(p̂E , 1η)

,

Kbulk
3 (t′) =

√
t′/1η

pEMKKD
~q
2(p̂E , 1η)

%Ỹ
†
~qR ~Q

1

Nη,1
~q

D
~Q
1 (p̂E , t

′)

D
~Q
1 (p̂E , 1η)

, (3.92)
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Kbulk
4 (t′) =

−
√
t′/1η

pEMKKD
~q
2(p̂E , 1η)

{
L~q2(p̂E , 1η, t

′)

+%Ỹ
†
~q

S2
~q

X2
~q

[
R ~Q + ηp̂E

cothS~q
S~q

]
1

Nη,2
~q

%Ỹ ~q
D~q

2(p̂E , t
′)

D~q
2(p̂E , 1η)

}
,

where we have dropped the arguments of R ~Q, Zη,i
~q , and Nη,i

~q . The coefficients C>
i can

now be obtained easily with the help of (3.87).

Case of t′ Being in the Sliver

For the case t′ > 1 − η, the matching conditions at point t = 1 − η read in analogy to
(3.87)

∆~q<, bulk
AL (t = (1− η)−, t′;−p2) = ∆~q<, sliver

AL (t = (1− η)+, t
′;−p2) , A = L,R ,

(3.93)

where the equation for A = L leads to the conditions

√
1ηD

~Q
1 (p̂E , 1η)K

sliver
1 (t′) = coshS~q Ĉ

>,sliver
1 (t′)− η

M2
KK

S(t′ + η)

S~q
,

√
1ηD

~Q
1 (p̂E , 1η)K

sliver
2 (t′) = coshS~q Ĉ

>,sliver
2 (t′) ,

√
1ηD

~q
2(p̂E , 1η)K

sliver
3 (t′) = sinh S̄~q Ĉ

>,sliver
7 (t′) ,

√
1ηD

~q
2(p̂E , 1η)K

sliver
4 (t′) = sinh S̄~q Ĉ

>,sliver
8 (t′)− η

M2
KK

S̄(t′ + η)

S̄~q
.

(3.94)

Analogously to the previous case, we find the sliver coefficients Ksliver
i (t′) to be

Ksliver
1 (t′) = − 1

pEMKK

1
√

1ηD
~Q
1 (p̂E , 1η)

[
R ~Q + ηp̂E

cothS~q
S~q

Zη,1
~q

]
1

Nη,1
~q (p2

E)

C(t′)
coshS~q

,

Ksliver
2 (t′) =

1

pEMKK

1
√

1ηD
~Q
2 (p̂E , 1η)

1

Nη,2
~q

S(t′)
sinhS~q

%Ỹ ~q ,

Ksliver
3 (t′) =

1

pEMKK

1
√

1ηD
~q
2(p̂E , 1η)

%Ỹ
†
~qR ~Q(p̂E)

1

Nη,1
~q

C(t′)
coshS~q

, (3.95)

Ksliver
4 (t′) = − 1

pEMKK

%2

√
1ηD

~q
2(p̂E , 1η)

Ỹ
†
~q

S2
~q

X2
~q

[
R ~Q + ηp̂E

cothS~q
S~q

]
1

Nη,2
~q

S(t′)
sinhS~q

Ỹ ~q .

It is straightforward to derive the coefficients C>,sliver
i with the help of the relations

(3.88). Comparing with (3.92) and recalling that L
~A
2,3(p̂E , 1η, 1η) = 0, we easily see that

the coefficients Ki(t
′) are continuous at point t′ = 1−η, which clearly holds for C>,sliver

i

either.
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Results for Finite Width η

We are now ready to present the full solution for the propagator functions. Inserting

the coefficient functions Ki and Ĉ
>
i into the solutions (3.73), (3.76), (3.85), and (3.86),

we obtain the final results for ∆~q
LL and ∆~q

RL for finite η listed in Appendix A. We

find that the corresponding results for ∆~q
RR and ∆~q

LR can be obtained by applying the
replacements

D
~A
1,2(p̂E , t)→D

~A
2,1(p̂E , t) , S(t)→ C(t) , S(t+ η)→ S(t+ η) ,

L
~A
2,3(p̂E , 1η, t)→ −L ~A

3,2(p̂E , 1η, t) , C(t)→ S(t) , C(t+ η)→ C(t+ η) ,

L
~A
1,4(p̂E , 1η, t)→ −L ~A

4,1(p̂E , 1η, t) , Y ~q → −Y ~q . (3.96)

Moreover, one encounters a global minus sign when going from ∆~q
RL to ∆~q

LR . The above

replacements imply that the quantities Zη,i
~q and Nη,i

~q transform via

Zη,i
~q → R ~Q

1

Zη,i
~q

1

R ~Q

,
1

Nη,1
~q

→ R ~QZ
η,1
~q

1

Nη,1
~q

1

R ~Q

,
1

Nη,2
~q

→ R ~Q

1

Nη,2
~q

Zη,2
~q

1

R ~Q

.

(3.97)

3.2.4 The Special Case of the Brane-Localized Higgs Scenario

In this last subsection, we will specialize on the case where t and t′ are chosen to be within
the bulk region and η is sent to zero. This case is identified with the brane-localized
Higgs scenario. After showing the results, we will present an alternative derivation,
which is crucial for the generalization to two different Yukawa matrices. Finally, we will
dwell on the asymptotic behavior for small and large momenta.

Final Results

We start with the general propagator solutions ∆~q
LL,RL(t, t′;−p2), that can be found in

Appendix A, for the case of t, t′ ∈ [ε, 1− η]. Sending the regulator η to zero implies the
relations S~q →X~q, N

η,i
~q → 1 +Z~q and Zη,i

~q → Z~q, where

Z~q(p
2
E) ≡ v2

2M2
KK

Ỹ ~qR~q(p̂E) Ỹ
†
~qR ~Q(p̂E) . (3.98)

Here, Ỹ ~q is the generalized Yukawa matrix defined in (2.81) and

R ~A(p̂E) ≡ D
~A
1 (p̂E , 1)

D
~A
2 (p̂E , 1)

, (3.99)

i.e. (3.89) with η → 0. Note that in the minimal model we just have

RA(p̂E) = R
(+)
A (p̂E) ≡ D

A
1 (p̂E , 1)

DA
2 (p̂E , 1)

, (3.100)
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while in the custodial model, we also encounter the ratios

R
(−)
A (p̂E) ≡ D

A
3 (p̂E , 1)

DA
4 (p̂E , 1)

=
IcA− 1

2
(εp̂E) I−cA+ 1

2
(p̂E)− I−cA+ 1

2
(εp̂E) IcA− 1

2
(p̂E)

IcA− 1
2
(εp̂E) I−cA− 1

2
(p̂E)− I−cA+ 1

2
(εp̂E) IcA+ 1

2
(p̂E)

=
1

R
(+)
A (p̂E)

∣∣∣∣
cA→−cA

.

(3.101)

Analogous structures can be found in the ratios DA
1,2(p̂E , t)/D

A
1,2(p̂E , 1). Provided with

the above definitions, we find the quite compact solutions

∆~q
LL

∣∣∣
11

=
−
√
tt′

pEMKK

[
D

~Q
1 (p̂E , t)

D
~Q
1 (p̂E , 1)

R ~Q

1

1 +Z~q

D
~Q
1 (p̂E , t

′)

D
~Q
1 (p̂E , 1)

− D
~Q
1 (p̂E , t<)

D
~Q
1 (p̂E , 1)

L
~Q
3 (p̂E , 1, t>)

]
,

∆~q
LL

∣∣∣
12

=

√
tt′

pEMKK

D
~Q
1 (p̂E , t)

D
~Q
1 (p̂E , 1)

R ~Q

1

1 +Z~q
%Ỹ ~q

D~q
2(p̂E , t

′)

D~q
2(p̂E , 1)

,

∆~q
LL

∣∣∣
21

=

√
tt′

pEMKK

D~q
2(p̂E , t)

D~q
2(p̂E , 1)

%Ỹ
†
~qR ~Q

1

1 +Z~q

D
~Q
1 (p̂E , t

′)

D
~Q
1 (p̂E , 1)

, (3.102)

∆~q
LL

∣∣∣
22

=
−
√
tt′

pEMKK

[
D~q

2(p̂E , t)

D~q
2(p̂E , 1)

%Ỹ
†
~qR ~Q

1

1 +Z~q
%Ỹ ~q

D~q
2(p̂E , t

′)

D~q
2(p̂E , 1)

+
D~q

2(p̂E , t<)

D~q
2(p̂E , 1)

L~q2(p̂E , 1, t>)

]
,

∆~q
RL

∣∣∣
11

=
−
√
tt′

MKK





D
~Q
2 (p̂E ,t)

D
~Q
2 (p̂E ,1)

Z~q
1+Z~q

D
~Q
1 (p̂E ,t

′)

D
~Q
1 (p̂E ,1)

+
D
~Q
2 (p̂E ,t)

D
~Q
2 (p̂E ,1)

L
~Q
4 (p̂E , 1, t

′) , t < t′ ,

D
~Q
2 (p̂E ,t)

D
~Q
2 (p̂E ,1)

Z~q
1+Z~q

D
~Q
1 (p̂E ,t

′)

D
~Q
1 (p̂E ,1)

+
D
~Q
1 (p̂E ,t

′)

D
~Q
1 (p̂E ,1)

R ~QL
~Q
2 (p̂E , 1, t) , t > t′ ,

∆~q
RL

∣∣∣
12

= −
√
tt′

MKK

D
~Q
2 (p̂E , t)

D
~Q
2 (p̂E , 1)

1

1 +Z~q
%Ỹ ~q

D~q
2(p̂E , t

′)

D~q
2(p̂E , 1)

,

∆~q
RL

∣∣∣
21

= −
√
tt′

MKK

D~q
1(p̂E , t)

D~q
1(p̂E , 1)

1

%Ỹ ~q

Z~q

1 +Z~q

D
~Q
1 (p̂E , t

′)

D
~Q
1 (p̂E , 1)

, (3.103)

∆~q
RL

∣∣∣
22

=

√
tt′

MKK





D~q
1(p̂E ,t)

D~q
1(p̂E ,1)

1
Ỹ ~q

Z~q
1+Z~q

Ỹ ~q
D~q

2(p̂Et
′)

D~q
2(p̂E ,1)

+
D~q

1(p̂E ,t)

D~q
1(p̂E ,1)

R~q L
~q
2(p̂E , 1, t

′) , t < t′ ,

D~q
1(p̂E ,t)

D~q
1(p̂E ,1)

1
Ỹ ~q

Z~q
1+Z~q

Ỹ ~q
D~q

2(p̂E ,t
′)

D~q
2(p̂E ,1)

+
D~q

2(p̂E ,t
′)

D~q
2(p̂E ,1)

L~q4(p̂E , 1, t) , t > t′ ,

where some arguments, like (t, t′;−p2) of the propagators on the left-hand side, have
been neglected to allow for a compact writeup. We can check the jump conditions and
can verify that the diagonal components of ∆~q

RL are discontinuous at t = t′ by the
amount given in (3.68), while all other components are continuous. Moreover, due to
the antisymmetry of DA

2 when exchanging both arguments, one can directly see that the
UV boundary conditions in (3.70) are fulfilled. A short calculation also shows that the

IR BCs (3.106) (see below) are satisfied as well. Due to the definition of ∆~q
LL in (3.61),

its hermitian conjugate after interchanging t with t′ must agree with ∆~q
LL again. This

can be easily checked by using the relation Z†~q = R ~QZ~qR
−1
~Q

.
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As already mentioned in Section 3.2.3, the solutions ∆~q
RR and ∆~q

LR can be obtained
from (3.102) – (3.103) by the relations and substitutions given in (3.96). Still, for the

upcoming analysis it is convenient to express ∆~q
RR,LR by the same structures, that are

also used in (3.102) – (3.103). In consequence of the transformation rules presented in
(3.97), the Z~q structure can be formally replaced by Z~q → R ~QZ

−1
~q R−1

~Q
and used to

obtain the remaining propagator solutions. They are given by

∆~q
RR

∣∣∣
11

=
−
√
tt′

pEMKK

[
D

~Q
2 (p̂E , t)

D
~Q
2 (p̂E , 1)

Z~q

1 +Z~q

1

R ~Q

D
~Q
2 (p̂E , t

′)

D
~Q
2 (p̂E , 1)

+
D

~Q
2 (p̂E , t<)

D
~Q
2 (p̂E , 1)

L
~Q
2 (p̂E , 1, t>)

]
,

∆~q
RR

∣∣∣
12

=
−
√
tt′

pEMKK

D
~Q
2 (p̂E , t)

D
~Q
2 (p̂E , 1)

Z~q

1 +Z~q

1

R ~Q

1

%Ỹ
†
~q

D~q
1(p̂E , t

′)

D~q
1(p̂E , 1)

,

∆~q
RR

∣∣∣
21

=
−
√
tt′

pEMKK

D~q
1(p̂E , t)

D~q
1(p̂E , 1)

1

%Ỹ ~q

Z~q

1 +Z~q

1

R ~Q

D
~Q
2 (p̂E , t

′)

D
~Q
2 (p̂E , 1)

, (3.104)

∆~q
RR

∣∣∣
22

=
−
√
tt′

pEMKK

[
D~q

1(p̂E , t)

D~q
1(p̂E , 1)

1

%Ỹ ~q

Z~q

1 +Z~q

1

R ~Q

1

%Ỹ
†
~q

D~q
1(p̂E , t

′)

D~q
1(p̂E , 1)

− D
~q
1(p̂E , t<)

D~q
1(p̂E , 1)

L~q3(p̂E , 1, t>)

]
,

∆~q
LR

∣∣∣
11

=

√
tt′

MKK





D
~Q
1 (p̂E ,t)

D
~Q
1 (p̂E ,1)

R ~Q
1

1+Z~q
1
R~Q

D
~Q
2 (p̂E ,t

′)

D
~Q
2 (p̂E ,1)

− D
~Q
1 (p̂E ,t)

D
~Q
1 (p̂E ,1)

L
~Q
1 (p̂E , 1, t

′) , t < t′ ,

D
~Q
1 (p̂E ,t)

D
~Q
1 (p̂E ,1)

R ~Q
1

1+Z~q
1
R~Q

D
~Q
2 (p̂E ,t

′)

D
~Q
2 (p̂E ,1)

− D
~Q
2 (p̂E ,t

′)

D
~Q
2 (p̂E ,1)

1
R~Q
L
~Q
3 (p̂E , 1, t) , t > t′ ,

∆~q
LR

∣∣∣
12

=
−
√
tt′

MKK

D
~Q
1 (p̂E , t)

D
~Q
1 (p̂E , 1)

R ~Q

Z~q

1 +Z~q

1

R ~Q

1

%Ỹ
†
~q

D~q
1(p̂E , t

′)

D~q
1(p̂E , 1)

,

∆~q
LR

∣∣∣
21

=
−
√
tt′

MKK

D~q
2(p̂E , t)

D~q
2(p̂E , 1)

%Ỹ
†
~qR ~Q

1

1 +Z~q

1

R ~Q

D
~Q
2 (p̂E , t

′)

D
~Q
2 (p̂E , 1)

, (3.105)

∆~q
LR

∣∣∣
22

=
−
√
tt′

MKK





D~q
2(p̂E ,t)

D~q
2(p̂E ,1)

Ỹ
†
~qR ~Q

1
1+Z~q

1
R~Q

1

Ỹ
†
~q

D~q
1(p̂E ,t

′)

D~q
1(p̂E ,1)

− D~q
2(p̂E ,t)

D~q
1(p̂E ,1)

L~q3(p̂E , 1, t
′) , t < t′ ,

D~q
2(p̂E ,t)

D~q
2(p̂E ,1)

Ỹ
†
~qR ~Q

1
1+Z~q

1
R~Q

1

Ỹ
†
~q

D~q
1(p̂E ,t

′)

D~q
1(p̂E ,1)

− D~q
1(p̂E ,t

′)

D~q
1(p̂E ,1)

L~q1(p̂E , 1, t) , t > t′ .

Alternative Derivation and Generalization to Different Yukawa Matrices

We can also derive the results above via an alternative method, where modified boundary
conditions are imposed on the 5D propagator functions. The propagator functions ∆q

AB

are now computed by solving the coupled system of equations (3.64) and (3.65) without
including the Yukawa term in the generalized mass matrixMq(t). Instead, one modifies
the boundary conditions on the IR brane according to (2.87), such that

(
vỸ
†
~q√

2MKK

1

)
∆~q
LL(1−, t′;−p2) =

(
1 − vỸ ~q√

2MKK

)
∆~q
RL(1−, t′;−p2) = 0 (3.106)
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instead of condition (3.69). The modified Yukawa matrices are defined in (2.81). The
boundary conditions on the UV brane (3.70) and the jump conditions (3.68) remain
unchanged. It is a straightforward exercise to derive the propagator functions from
these equations and one recovers (3.102) – (3.105).

The alternative derivation will be crucial for the propagator in the brane-localized RS
model with two different Yukawa matrices in the Yukawa interactions. To understand
this, we consider the equations of motion (3.64) and (3.65) for the propagator functions,
which must be generalized to

p2∆q
LL(t, t′;−p2)−MKK

(
∂

∂t
+Mq(t)

)
∆q
RL(t, t′;−p2) = δ(t− t′) ,

∆q
RL(t, t′;−p2)−MKK

(
− ∂

∂t
+M†q(t)

)
∆q
LL(t, t′;−p2) = 0 ,

(3.107)

where

Mq(t) =
1

t

(
cQ 0
0 −cq

)
+

v√
2MKK

δηv (t− 1)

(
0 Y C

q

Y S †
q 0

)
(3.108)

replaces the generalized mass matrix in (3.59). The coupled set of first-order differential
equations in (3.107) can be combined to yield the second-order equation

[
∂2

∂t2
−Mq(t)M†q(t)−

dM†q(t)
dt

+
(
Mq(t)−M†q(t)

) ∂
∂t
− p̂2

E

]
∆q
LL =

δ(t− t′)
M2

KK

.

(3.109)
In the bulk region t < 1 − η, where the profile δηv (t − 1) of the Higgs vev vanishes and
the mass matrix is hermitian, this equation reduces to the original equation with (3.67).
However, its structure becomes much more complicated for t > 1−η and it has not been
possible to derive a general solution in that region.

In the case of infinitesimal η (at fixed p2), however, it is consistent to only keep the
terms in (3.107) that are enhanced by 1/η for 1 − η < t < 1. Taking t′ < 1 − η in the
bulk region, squaring the resulting differential operators, and adopting the Higgs profile
given in (2.75), we thus need to solve

[
∂2

∂t2
− v2

2M2
KKη

2

(
Y C
q Y

S†
q 0

0 Y S †
q Y

C
q

)]
∆q
RL(t, t′;−p2) = 0 + . . . ,

[
∂2

∂t2
− v2

2M2
KKη

2

(
Y S
q Y

C†
q 0

0 Y C †
q Y S

q

)]
∆q
LL(t, t′;−p2) = 0 + . . . ,

(3.110)

where the dots denote subleading terms. The solutions to these equations involve hy-
perbolic trigonometric functions, whose arguments contain the matrices

Xq =
v√

2MKK

√
Y C
q Y

S †
q , X̄q =

v√
2MKK

√
Y S †
q Y

C
q , (3.111)

and their hermitian conjugates. It is then not difficult to show that, in the limit η → 0,
the boundary conditions given in (3.106) still hold, provided we use Xq as defined here
instead of the original definition in (2.78), and Ỹ q now defined by

Ỹ q =
tanhXq

Xq
Y C
q (3.112)
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instead of (2.81). Solving the bulk differential equations for the propagator functions
with these boundary conditions, we recover the previous solutions with the substitutions
just described. Note that the quantity Zq(p

2
E) now becomes

Zq(p
2
E) =

v2

2M2
KK

tanhXq

Xq
Y C
q Rq(p̂E)Y C†

q

tanhX†q
X†q

RQ(p̂E) . (3.113)

The results above will be needed in a subsection of Section 4.1, when we discuss the
fermionic contributions to the gluon-fusion amplitude in the brane-localized Higgs sce-
nario with two different Yukawa matrices.

Asymptotic Behavior for Small and Large Momenta

Finally, we derive the asymptotic behavior of the propagator functions, where we will
focus on the minimal model here. The results in the custodial model are listed in
Appendix A. Considering the minimal model, the corresponding propagator solutions
can be obtained from (3.102) and (3.104) by the replacements ~Q→ Q, ~q → q, implying
that one only keeps the (11)-component (3× 3 matrix) in the higher-dimensional space.
Since we are interested in the low momentum regime p → 0, we only keep the leading
terms. It turns out to be convenient to define the functions

Ft(cA) ≡ 1− t1+2cA

1 + 2cA
, F̃t(cA) ≡ t1+2cA − ε1+2cA

1− ε1+2cA
, F̂t(cA) ≡ t1+2cA − ε1+2cA

1 + 2cA
, (3.114)

which fulfill the relations F 2(cA)F̂t(cA) = F̃t(cA), Fε(cA) = F−2(cA) and F1(cA) =
F̃ε(cA) = F̂ε(cA) = 0, where F (cA) denotes the zero-mode profile function (2.93). Using
the definitions in (3.114) we find (up to higher orders in p̂E)

RA(p̂E) ≈ F 2(cA)

p̂E
+

p̂E
1− 2cA

[
1− F 2(cA) +

F 4(cA)

3 + 2cA

]
,

DA
1 (p̂E , t)

DA
1 (p̂E)

≈ t− 1
2

+cA ,
DA

2 (p̂E , t)

DA
2 (p̂E)

≈ F̃t(cA) t−
1
2
−cA ,

LA2,3(p̂E , p̂E , t) ≈ ±p̂EFt(±cA) t−
1
2
∓cA , LA1,4(p̂E , p̂E , t) ≈ ±t−

1
2
∓cA .

(3.115)

Equipped with that we expand the propagator solutions (3.102) – (3.105) for small mo-
menta by using (3.115) and we obtain

∆q
LL(t, t′; 0) = −



tcQ
(

1
v2

2
Ỹ qF 2(cq)Ỹ

†
q

+
Ft> (−cQ)

M2
KK

)
t′cQ −tcQ 1

%Ỹ
†
q

F̂t′ (cq)
M2

KK

1
t′cq

− 1
tcq

F̂t(cq)

M2
KK

1
%Ỹ q

t′cQ 1
tcq

F̂t< (cq)

M2
KK

1
t′cq


 ,

∆q
RR(t, t′; 0) = −




1
t
cQ

F̂t< (cQ)

M2
KK

1
t
′cQ − 1

t
cQ

F̂t(cQ)

M2
KK

1

%Ỹ
†
q

t′cq

−tcq 1
%Ỹ q

F̂t′ (cQ)

M2
KK

1
t
′cQ tcq

(
1

v2

2
Ỹ
†
qF

2(cQ)Ỹ q

+
Ft> (−cq)
M2

KK

)
t′cq


 ,

∆q
RL(t, t′; 0) = −




Θ(t−t′)
MKK

(
t′
t

)cQ
0

1
MKK

tcq 1
%Ỹ q

t′cQ −Θ(t′−t)
MKK

(
t
t′
)cq


 = ∆q†

LR(t′, t; 0) , (3.116)
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where Ỹ q is defined in (3.98). Here, Θ(t − t′) denotes the Heaviside (step) function
defined in this case by

Θ(t− t′) =

{
1 , t > t′

0 , t ≤ t′ . (3.117)

For the limits of the propagators for large momenta4 we can approximate the quantities
R ~A(p̂E) ≈ 1 and Z~q(p

2
E) ≈ tanh2X~q (at leading order in p̂E) as well as

D
~A
1,4(p̂E , t)

D
~A
1,4(p̂E)

≈ ep̂E(t−1)

√
t

(
1 + e2p̂E(ε−t)

)
,

D
~A
2,3(p̂E , t)

D
~A
2,3(p̂E)

≈ ep̂E(t−1)

√
t

(
1− e2p̂E(ε−t)

)
,

L1,2(p̂E , p̂E , t) ≈ −L4,3(p̂E , p̂E , t) ≈
ep̂E(1−t)

2
√
t

(
1± e2p̂E(t−1)

)
, (3.118)

for ~A = ~Q, ~q. Note that the round brackets in (3.118) are only relevant for the special
cases of t = ε and t = 1, respectively. Applying those relations on the propagator
solutions in (3.102), we find (pE �MKK)

∆~q
LL

∣∣∣
11

=





−1
2pEMKK

,
−1

pEMKK
N ~Q ,

−1
pEMKK

1
1+tanh2X~q

,
∆~q
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∣∣
22

=





−1
2pEMKK

t = t′ 6= {ε, 1} ,
−1

pEMKK
N~q , t = t′ = ε ,

−1
pEMKK

1
1+tanh2 X̄~q

, t = t′ = 1 ,

∆~q
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∣∣∣
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=
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pEMKK

1
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21

= 1
pEMKK

%Ỹ
†
~q

1
1+tanh2X~q

, t = t′ = 1 ,
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1
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∣∣∣
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1
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1
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(3.119)

where we have used the notion t′± = t′ ± 0, since the diagonal components of ∆~q
RL are

discontinuous at t = t′. The relations (3.119) are valid for both the minimal and the

custodial model. Concerning the diagonal components of ∆~q
LL, we have needed to make

a case distinction in the custodial model and introduced the quantity

N ~Q =





diag(1, 0) , ~Q = ~U ,

1 , ~Q = ~D ,

1 , ~Q = ~Λ ,

N~q =





diag(0, 1, 1) , ~q = ~u ,

diag(0, 1) , ~q = ~d ,

diag(1, 1) , ~q = ~λ ,

(3.120)

while in the minimal model we simply replace ~Q, ~q → Q, q in the formulas above, where
NQ = 1 and N q = 0.

4Note that ∆~q
LL and ∆~q

RR are multiplied within the propagator by an additional momentum power,

thus we are actually dealing with the expression /p∆
~q
LL,RR .



Chapter 4

Loop Calculations in Warped
Extra Dimensions

In this chapter, which together with Chapter 5 forms the core of this thesis, we will
see how the results of the previous chapter can help us to find hints on warped extra
dimensions. As will be touched on at the beginning of Chapter 5, the most straight-
forward way to look for evidence for models with warped extra dimensions is via direct
detection of KK modes. Finding several KK gluons with equidistant masses would be
a clear indication for RS models. However, none of the predicted KK excitations have
been observed yet, and, as we have seen in Sections 2.2.4 and 2.3.3, the electroweak
precision tests indicate that these particles could be too massive for direct detection at
the LHC. Thus, indirect searches become more and more attractive. Of special interest
are processes that can only be generated at loop level in the SM so that new-physics
contributions could give rise to measurable deviations from the SM predictions. Es-
pecially the infinite tower of KK modes of extra-dimensional theories are supposed to
have a significant effect. In this chapter, we will study some of the most important
loop-induced processes, where two of them are associated with the Higgs sector and one
with the flavor sector.

This chapter is divided into three sections: In Section 4.1 we will analyze the Higgs
production process via gluon fusion before we will then turn to the Higgs decay into two
photons in Section 4.2. Section 4.3 then focuses on the flavor-changing neutral current
b→ sγ, which is affected by two instead of one infinite KK sum, so that its calculation
becomes more intricate than the Higgs processes. Another loop-level calculation - the
one-loop correction to the Yukawa interactions - is phenomenologically less important
and will therefore be discussed in Appendix B.

4.1 Higgs Production via Gluon Fusion

We begin the discussion of loop-induced processes by investigating the Higgs production
process via gluon fusion. The corresponding Feynman diagram is shown in Figure 4.1.
Before the analysis of gluon fusion in warped dimensions will be presented, it is worth
showing a short summary of previous works on this process first. This section complies
with our publication [150].
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p

k1

k2

t

t1

t2

Figure 1: Effective hgg couplings induced by the exchange of 5D quark states. The
positions of the vertices along the extra dimension are denoted by t1,2 and t.

which are diagonal 3 × 3 matrices in generation space. These can be expressed in terms of
combinations of Bessel functions, whose rank depends on the bulk mass parameters cQ =
MQ/k and cu,d = −Mu,d/k of the 5D fermion fields [4, 5]. Without loss of generality, we
work in a basis where the ci matrices are diagonal. The SU(2)L gauge symmetry in the bulk
implies that the SU(2)-doublet quark fields have common cQ parameters. The 3-component

vectors a
(A)
n , on the other hand, describe the flavor mixings of the 5D interaction eigenstates

into the 4D mass eigenstates, which are generated by the Yukawa interactions on the IR brane.
Because of electroweak symmetry breaking, these vectors are different for A = U, D, u, d. For
simplicity, from now on we use the generic notation Q for U, D and q for u, d. The 3 × 3
matrices Yq contain the dimensionless Yukawa couplings of the 5D theory, which are obtained
from the dimensionful Yukawa couplings Y 5D

q in the original 5D Lagrangian by the rescaling
Y 5D

q = 2Yq/k [4, 5] (see also the discussion of Yukawa interactions in Appendix B). Contrary
to the SM, these matrices are assumed to have an anarchical structure, meaning that they
are non-hierarchical matrices with O(1) complex elements. The hierarchies of the Yukawa
matrices of the SM quarks in the effective 4D theory are explained in terms of a geometrical
realization of the Froggatt-Nielsen mechanism in RS models [9–11, 49].

The one-loop graph giving rise to the gluon fusion amplitude is shown in Figure 1, where at
each vertex an integral over the fifth coordinate t = ekr(|φ|−π) is implied, which varies between
ε = e−krπ ≈ 10−15 on the UV brane and t = 1 on the IR brane. We summarize the results of
the calculation in terms of two coefficients C1 and C5 defined by the decomposition

A(gg → h) = C1
αs

12πv
〈 0 |Ga

µν Gµν,a|gg〉 − C5
αs

8πv
〈 0 |Ga

µν G̃µν,a|gg〉 , (9)

where G̃µν,a = −1
2
εµναβ Ga

αβ (with ε0123 = −1) denotes the dual field-strength tensor. Note
that, contrary to [23], the Wilson coefficients C1 and C5 also include the contributions of the
SM quarks. Throughout this paper, v denotes the value of the Higgs vev in the RS model,
which differs from the SM value vSM ≈ 246 GeV by a small amount [18] (see Section 8).

In order to perform the calculation of the gluon fusion amplitude at one-loop order con-
sistently, it is necessary to introduce two different kinds of regulators. For a brane-localized
scalar sector, the fermion profile functions are discontinuous on the IR brane, and hence their
overlap integrals with a δ-function type Higgs profile are ill defined. Before computing these
integrals, it is important to regularize the Higgs profile by giving it a small but finite width

8

Figure 4.1: Gluon-fusion Higgs production process induced by the exchange of 5D
quark states. The positions of the vertices along the extra dimension are denoted by
t1,2 and t. The external momenta k1, k2 are assumed to be incoming.

4.1.1 Preliminaries

In the context of warped extra dimensions, Higgs physics has been studied by several
authors [144, 149, 157, 218–224]. The effect on the gg → h amplitude caused by the
heavy b′ state, the SU(2)R partner of the top quark predicted in RS models with custo-
dial symmetry, was investigated in [218]. Models in which the Higgs scalar is a pseudo
Nambu-Goldstone boson, such as warped gauge-Higgs unification scenarios, were stud-
ied in [219, 223]. In these models, the result for the gg → h amplitude only depends
on the fundamental parameter v/f , but it is insensitive to the details about the spec-
trum of the KK quarks. The authors of [157, 220] studied the effect of KK resonances
on the loop-induced hgg and hγγ couplings by working out the corrections to the top-
and bottom-quark Yukawa couplings induced by their mixing with KK states. In these
papers, no significant contributions from the heavy KK quark states propagating in
the loop were observed, as the Yukawa interactions coupling the Higgs to two Z2-odd
fermions were implicitly assumed to be zero.1 The possibly large effect on the Higgs-
boson couplings induced by the shift of the Higgs vev relative to its SM value, which can
arise in RS models with custodial symmetry, was emphasized in [157]. The first complete
calculation of the hgg and hγγ couplings, in which both types of Yukawa interactions
in (2.126) were included, was performed in [149]. In this paper, both the production of
Higgs bosons in the gluon fusion process as well as the main decay channels were studied
in the custodial RS model. It was observed that the dominant corrections to the hgg and
hγγ couplings arise from the towers of KK quark states propagating in the loop. These
effects were found to be independent of the masses of the corresponding SM quarks to a
very good approximation. The production rate was found to be suppressed in most re-
gions of parameter space, while the branching fraction for the diphoton channel h→ γγ
tends to be enhanced with respect to the SM. At about the same time, an independent
analysis of the Higgs couplings to gluons and photons appeared [222], which came to the
opposite conclusions. In 2012 Carena et. al. [144] showed that the discrepancy between
the two sets of results can be traced back to a subtlety in the calculation of the loop-
induced Higgs couplings to gluons and photons. As has been explained in Section 2.2.2,
for the computation of the relevant overlap integrals of fermion wave functions with the
brane-localized Higgs field, it is necessary to regularize the Higgs profile in an inter-
mediate step and give it an infinitesimal width η [175]. When the calculation of the

1The fact that there are two towers of KK quark states for every massive SM quark, which is deeply
connected to the finiteness of the 5D loop amplitude [144], was overlooked in [221]. In order to obtain a
finite sum for the infinite KK tower, the authors made the approximation mqn = λqnv/

√
2 with λqn ≈ 1

for the masses of the KK quarks, see eqs. (8) and (10) of their paper, which is incorrect.
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gluon fusion amplitude is performed in a naive way, the limits of sending the regulator
to zero (η → 0) and including an infinite number of KK modes (N → ∞) in the sum
over virtual states do not commute. This ambiguity disappears once the loop calcu-
lation is performed in the presence of a consistent UV regulator, such as dimensional
regularization with d < 4 space-time dimensions. This can been seen in their formula

A(gg → h) ∼ lim
N→∞, η→0

∑

q=u,d

3+6N∑

n=4

vgqnn
mqn

(
µ

mqn

)4−d
, (4.1)

where mqn are the masses of the KK quarks and gqnn denote their effective 4D Yukawa
couplings as defined in (2.126). For d = 4, the amplitude above is naively logarithmically
divergent and only systematic cancellations within each level of KK quark modes render
it finite. The gluon fusion amplitude then receives an unsuppressed “resonance contri-
bution” from high-mass KK states (mn ∼MKK/η), which can resolve the wave function
of the Higgs boson (see also [225]). This effect is absent for a brane-localized scalar
sector, since it cannot be resolved by these ultra-massive modes. In the presence of the
dimensional regulator d < 4 the order of limits becomes irrelevant, and one obtains a
unique answer for the sum. In the limit d → 4 taken at the end of the calculation this
result coincides with the result found in [149]. The same conclusion can be reached by
using a hard UV momentum cutoff on the 4D loop integral. The physical significance
of the results found in [222] was not fully elucidated in [144], but the discussion in that
paper suggests that they might refer to a certain limit of a model featuring a Higgs
boson living in the bulk of the extra dimension.

In this section, we will calculate the gg → h amplitude with the help of the 5D
fermion propagator derived in the previous chapter. This avoids the very notion of KK
states and the infinite sum over KK states is performed implicitly. The only relevant
limit to be considered is that of sending the regulator η of the Higgs profile to zero. In
the context of dimensional regularization, it will turn out that this limit can be taken
either before or after performing the loop integration. In both cases, we will confirm the
results obtained in [144, 149]. If the width of the Higgs profile is kept finite according to
(2.4), we will recover the findings of [222]. They correspond to the narrow bulk-Higgs
scenario. The 5D analysis highlights the relevance of different mass scales. In brane-
Higgs models, these are the Higgs vev v, the KK mass scale MKK, and the physical UV
cutoff ΛTeV of the RS model near the IR brane. Models in which the Higgs boson is
treated as a narrow bulk state additionally contain the scale v/η � MKK (the inverse
width of the Higgs profile). We will see that it makes an important difference whether
this scale lies above or below the cutoff. The relevant loop integrand approaches a first
plateau for Euclidean loop momenta pE � MKK and a second one for pE � v/η (see
Figure 4.2). While in brane-Higgs models the second plateau is absent, in bulk-Higgs
scenarios the gg → h amplitude receives an unsuppressed contribution from the high
scale v/η, and is thus sensitive to physics on distances shorter than 1/MKK.

This section is structured as follows: We will first derive an exact representation
of the dimensionally-regularized gluon fusion amplitude in terms of an integral over
the mixed-chirality components of the 5D quark propagator in the mixed momentum-
position representation, including the contributions of the SM quarks and the full de-
pendence on the Higgs-boson mass. This expression holds for arbitrary Higgs profiles.
In Subsection 4.1.3, these results will be used to evaluate the gg → h amplitude and
we will explicitly show that taking the limit η → 0 commutes with the integration over
the 4D loop momentum. We will prove a conjecture made in [144] for the analytic form
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of the contribution of the infinite tower of heavy KK quark states. Moreover, an alter-
native derivation of the same result based on the derivation of the propagator via the
modified boundary conditions (3.106) will be presented. In this approach, the notion
of an infinitesimal regulator η does not appear, and many of the subtleties related to
the η → 0 limit will be avoided from the beginning. This alternative approach will also
be used when we consider a generalization of the model in which two different Yukawa
matrices enter in the 5D Yukawa interactions. Then, we will discuss the changes that
occur in the case of a narrow bulk-Higgs field. Subsection 4.1.4 will address the ques-
tion of the numerical importance of power-suppressed operators. It will be found that
under the assumption that the UV completion of these models is strongly coupled, the
corresponding power corrections are likely to be much smaller than the RS loop effects
calculated in Subsection 4.1.3. While most of the discussion refers to the minimal RS
model with the SM gauge group in the bulk, the results are generalized to the custodial
RS model in Subsection 4.1.5.

4.1.2 5D Analysis of the Gluon Fusion Amplitude

The goal of this section is to repeat the calculation of the gluon fusion amplitude using
5D quark propagators derived in Section 3.2. The associated one-loop graph is shown
in Figure 4.1, where at each vertex an integral over the fifth coordinate is implied. The
results of the calculation will be summarized in terms of two coefficients C1g and C5g

defined by the decomposition

A(gg → h) = C1g
αs

12πv
〈 0 |Gaµν Gµν,a|gg〉 − C5g

αs
8πv
〈 0 |Gaµν G̃µν,a|gg〉 , (4.2)

where G̃µν,a = −1
2ε
µναβ Gaαβ (with ε0123 = −1) denotes the dual field-strength tensor.

Note that the Wilson coefficients C1g and C5g also include the contributions of the SM
quarks as opposed to [144].

In order to perform the calculation of the gluon fusion amplitude at one-loop order
consistently, it is necessary to introduce two different kinds of regulators. As already
stressed several times, it is crucial to regularize the Higgs profile by giving it a small
but finite width η � 1. In the following, we will therefore use the notation δηh(t − 1)
for the regularized Higgs profile given by (2.75). Many of the following results will be
independent of the shape of the Higgs profile and would remain valid for the case of a
general bulk-Higgs field whose profile is given in (2.52). Only at the end of the analysis
it will be specialized to the case of a very narrow Higgs profile, with η satisfying one of
the conditions (2.3) or (2.4). At that point, the solutions for the propagator functions
derived in the previous chapter become important. Secondly, as has been emphasized
above, it is important to introduce a consistent UV regulator in the calculation, even
though the final answer for the gluon fusion amplitude is UV finite. This should not be
surprising, since even in the 4D case the introduction of a UV regulator is required in
order to obtain a gauge-invariant result. To see this, we can consider the loop diagram for
a single KK mode, which naively is linearly divergent. Using invariance under p→ −p,
only a superficial logarithmic divergence remains. In dimensional regularization, one
encounters the integral

∫
ddp

(2π)d

[
4− d
d

p2

(p2 −∆)3 +
∆

(p2 −∆)3

]
ε(k1) · ε(k2) , (4.3)
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for d 6= 4, where ∆ = m2
qn − xym2

h arises after combining denominator using Feynman
parameters. This integral vanishes for d 6= 4, but if the calculation was performed
naively in four dimensions, then only the second term would be present. Note that
this would correspond to a gauge-dependent operator AaµA

µ,a. Thus, a UV regulator is
unavoidable in the calculation. In the 5D model, as has been explained above, it has
the additional effect of regularizing the infinite sum over KK modes.

With the regulators in place, we can write the gluon fusion amplitude in the form

A(gg → h) = ig2
s δ

ab
∑

q=u,d

∫
ddp

(2π)d

∫ 1

ε
dt1

∫ 1

ε
dt2

∫ 1

ε
dt δηh(t− 1) εν(k1) εµ(k2) (4.4)

× Tr

[
1√
2

(
0 Y q

Y †q 0

)
Sq(t, t2; p− k2) γµ Sq(t2, t1; p) γν Sq(t1, t; p+ k1)

]
,

where ki denote the incoming momenta of the external gluons, a and b their color indices,
and ε(ki) their polarization vectors. It would now be straightforward to insert the
decomposition of the 5D propagator given in (3.60) with the solutions for the propagator
functions ∆AB and try to simplify the result. However, as we explicitly see in the
results of Appendix A, the latter are complicated functions of the 4-momentum p and
the coordinates t, t′ and in order to simplify the calculation, it is convenient to use
their representations as sums over KK modes (3.61) in intermediate steps. With the
dimensional regulator in place, the 4D loop integral as well as the infinite sums over KK
modes converge, and therefore the KK representations provide exact representations of
the 5D propagator functions. The advantage of using the representation (3.61) is that
we can now perform integrals over the coordinates t1 and t2 of the two external gluons
using the orthonormality relations (2.70). The latter relations reduce the three infinite
sums appearing in the propagator functions ∆AB to a single one, for instance

∫ 1

ε
dt1

∫ 1

ε
dt2 ∆q

RR(t, t2;−(p− k2)2) ∆q
RL(t2, t1;−p2) ∆q

LL(t1, t;−(p+ k1)2)

= 2

∫ 1

0
dx

∫ 1−x

0
dy∆q

RL(t, t;−(p2 + xym2
h)) ,

(4.5)

where Feynman parameters have been introduced to combine the three denominators.
Moreover, it has been used that an on-shell Higgs boson is produced, i.e. (k1 + k2) =
k2 = m2

h, where mh is the Higgs mass. Eventually, we find that the amplitude (4.4) can
be reduced to integrals of the regularized Higgs profile with traces of the mixed-chirality
components of the 5D propagator evaluated at t = t′, which are defined by

T+(−p2) ≡
∑

q=u,d

−v√
2

∫ 1

ε
dtδηh(t− 1)Tr

[(
0 Y q

Y †q 0

)
∆q
RL(t, t;−p2) + ∆q

LR(t, t;−p2)

2

]
,

T−(−p2) ≡
∑

q=u,d

−v√
2

∫ 1

ε
dtδηh(t− 1)Tr

[(
0 Y q

Y †q 0

)
∆q
RL(t, t;−p2)−∆q

LR(t, t;−p2)

2i

]
.

(4.6)
Matching the resulting expression for the amplitude A with the two-gluon matrix ele-
ments in (4.2), we obtain

C1g = 3

∫ 1

0
dx

∫ 1−x

0
dy
(
1− 4xy

)
I+(xym2

h) , C5g = 2

∫ 1

0
dx

∫ 1−x

0
dy I−(xym2

h) .

(4.7)
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The quantities

I±(m2) ≡ eε̂γEµ2ε̂

Γ(2− ε̂)

∫ ∞

0
dp2

E p
2(1−ε̂)
E

(
∂

∂p2
E

)2

T±
(
p2
E −m2 − i0

)

= − eε̂γEµ2ε̂

Γ(1− ε̂)

∫ ∞

0
dpE p

−2ε̂
E

∂

∂pE
T±
(
p2
E −m2 − i0

) (4.8)

are the dimensionally regularized loop-momentum integrals (after performing a Wick
rotation p2

E ≡ −p2) over the functions T±(p2
E) ≡ T±(−p2) in (4.6), shifted by an amount

m2. We work in the MS scheme with d = 4 − 2ε̂ space-time dimensions. In the second
step we have integrated by parts, which is justified as long as the quantity pE ∂T±/∂pE
vanishes at pE = 0 and at pE = ∞. The analysis in the following section will confirm
that these conditions are satisfied.

The integral (4.8) can also be expressed using the more intuitive hard UV momentum
cutoff regularization. This can be easily implemented once we have the answers in the
form given above. Setting ε̂ = 0 and restricting the loop momentum to the range
0 ≤ pE ≤ Λ, we obtain

I±(m2) = T±(−m2 − i0)− T±(Λ2 −m2) + Λ2 ∂

∂Λ2
T±(Λ2 −m2) , (4.9)

where Λ should be identified with the physical UV cutoff ΛTeV of the RS model.
The relations (4.7) are one of the main results of this section. They provide exact

expressions for the Wilson coefficients C1g and C5g in terms of a 5D loop integral. The
trick of using the KK representation in intermediate steps is legitimate and not different
from similar techniques commonly used in 4D loop calculations. In contrast to previous
works [144, 149, 157, 218–224] we have not taken the limit mh → 0, which provides
a good approximation if the mass of the particle in the loop satisfies the inequality
m2
qn � m2

h/4. This approximation is reasonable for the KK excitations, but for the
light SM quarks (and to some extent even for the top quark) the Higgs mass must be
kept in order to obtain a reliable result. The strategy adopted in the above references
was to first evaluate the gluon fusion amplitude in the limit mh → 0, then to subtract
the contributions of the zero modes by hand, and finally to add back the contributions of
the top and bottom quarks using the proper loop functions calculated with the physical
value of the Higgs mass. Since in a 5D framework there is no distinction between zero
modes and KK excitations, the Higgs mass must be kept finite in order to include the
SM contributions in the correct way.

Note that the results (4.6) and (4.7) are valid for an arbitrary Higgs profile along the
extra dimension. As long as one succeeds in deriving the mixed-chirality components
of the 5D propagator in a generic bulk-Higgs model, one can use (4.7) to compute
the corresponding effective ggh couplings. The limit of a brane-localized scalar sector
corresponds to taking the limit η → 0 in (4.6). Here we explicitly see the reason for the
calculation of the 5D quark propagator performed in the previous chapter. For the case
of a brane Higgs, we have to take the limit η → 0, meaning that we could already use the
propagator solution shown in Section 3.2.4 and remove the UV regulator. However, we
keep the exact dependence on η, since it will be used to point out an important feature
of RS models. Before we dwell on this, observe that for a generic bulk Higgs scenario
it is I±(m2) = T±(−m2), since the 5D quark propagator vanishes for pE → ∞. In this
case, we only need to use the propagator at small momentum.
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4.1.3 Analysis of the Loop Amplitude

We now calculate the loop integrals I±(m2) for the cases of a brane-localized Higgs boson
and a narrow bulk-Higgs field, as defined in (2.3) and (2.4). The calculation is performed
in dimensional regularization, but we will first motivate the results in the context of the
more intuitive scheme in which a hard UV cutoff is used. We begin by calculating and
collecting some general properties of the functions T±(p2

E) defined in (4.6).

Calculation of the Functions T±(p2
E)

Equipped with the solutions for the propagator functions derived in the previous chapter,
we can easily derive explicit expressions for the quantities T±(p2

E). Using the results of
Appendix A, we find that (4.6) can be evaluated to

T+(p2
E) =

∑

q=u,d

∫ 1

ε
dt δηh(t− 1) Tr

{
X2

q

Sq sinh 2Sq
(4.10)

×
[

sinh2 Sq + C2(t)Zη,1
q (p2

E)
1

Nη,1
q (p2

E)
− S2(t)

Nη,2
q (p2

E)− 1

Nη,2
q (p2

E)
+ h.c.

]}
,

and analogously for T−(p2
E). The matrix-valued quantities above have been defined in

(2.78), (3.80), (3.82), (3.90), and (3.91), respectively. It is now straightforward to per-
form the integration over the loop momentum. Since (4.8) is essentially a (regularized)
integral over the derivative of the functions T±(p2

E), we first study the properties of these
functions for small and large momenta.

Properties of the Functions T±(p2
E)

In the region of small momenta (|pE | � MKK), the functions T±(p2
E) vary rapidly and

in a way that is strongly dependent on the values of the bulk mass parameters cQi,qi .
This is expected, because in this momentum range their behavior is dominated by the
contributions of the SM quarks. Remarkably, at the special value pE = 0 the results are
given by the very simple expressions

T+(0) =
∑

q=u,d

Tr
[
Xq cothXq

]
≡ t0 , T−(0) = 0 , (4.11)

which only depend on the 5D Yukawa couplings via the quantityXq defined in (2.78). In
the neighborhood of this point the behavior is complicated and cannot be described by
a simple formula. For larger values of the Euclidean momentum, such that pE �MKK,
the function T+(p2

E) converges toward a universal limiting value

T+(p2
E) =

∑

q=u,d

Tr

{
Xq tanh 2Xq +

1

2p̂E

[
cQXq tanh 2Xq

cosh 2Xq
+
cq X̄q tanh 2X̄q

cosh 2X̄q

]
+ . . .

}

≡ t1 +
t2
p̂E

+ . . . , (MKK � pE � v|Yq|/η) (4.12)

while T−(p2
E) = O(p̂−2

E ) falls off more rapidly. To derive this result, we have taken the
limit ηp̂E → 0 and used the asymptotic expansion in (3.115). A dependence on the bulk
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Figure 2: Momentum dependence of the propagator function T+(p2
E) for the case of

one fermion generation and parameters corresponding to the top quark. The three
curves refer to different values of the regulator η, as indicated. The vertical dashed
line indicates the value of the UV cutoff of the RS model (for ΛTeV = 10 MKK).

≡ t1 +
t2
p̂E

+ . . . , (MKK # pE # v|Yq|/η) (40)

while T−(p2
E) = O(p̂−2

E ) falls off more rapidly. To derive this result, we have taken the limit
ηp̂E → 0 and used the asymptotic expansion in (36). A dependence on the bulk mass param-
eters enters only at subleading order. Interestingly, there exists a third region of extremely
large Euclidean momentum, pE $ v|Yq|/η, for which the behavior changes once again, and
the function T+(p2

E) tends to zero according to

T+(p2
E) =

1

ηp̂E

∑

q=u,d

Tr X2
q + O(p̂−2

E ) ≡ t3
ηp̂E

+ . . . , (pE $ v|Yq|/η) (41)

while still T−(p2
E) = O(p̂−2

E ). Note that in this region the loop momentum pE exceeds the
value of the intrinsic UV cutoff of a consistent RS model with a brane-localized Higgs sector,
because condition (3) implies ΛTeV # v|Yq|/η. It can therefore only contribute if we consider
a bulk-Higgs field as defined in (4).

It follows from this discussion that the functions T±(p2
E) have all the properties required

for the integration by parts in (17). The exact momentum dependence of these functions is
rather complicated, and we refrain from giving explicit expressions for the general case. We
will instead discuss the simpler case of a single fermion generation, which exhibits all the

16

Figure 4.2: Momentum dependence of the propagator function T+(p2
E) for the case

of one fermion generation and parameters corresponding to the top quark. The three
curves refer to different values of the regulator η, as indicated. The vertical dashed line
indicates the value of the UV cutoff of the RS model (for ΛTeV = 10MKK).

mass parameters enters only at subleading order. Interestingly, there is a third region
of extremely large Euclidean momentum, pE � v|Yq|/η, for which the behavior changes
once again, and the function T+(p2

E) tends to zero according to

T+(p2
E) =

1

ηp̂E

∑

q=u,d

TrX2
q +O(p̂−2

E ) ≡ t3
ηp̂E

+ . . . , (pE � v|Yq|/η) (4.13)

while still T−(p2
E) = O(p̂−2

E ). Note that in this region the loop momentum pE exceeds
the value of the intrinsic UV cutoff of a consistent RS model with a brane-localized Higgs
sector, because condition (2.3) implies ΛTeV � v|Yq|/η. It can therefore only contribute
if a bulk-Higgs field as defined in (2.4) is considered.

It is consequential of this discussion that the functions T±(p2
E) have all the properties

required for the integration by parts in (4.8). The exact momentum dependence of
these functions is rather complicated as can be seen in Appendix A. Hence, we will
instead discuss the simpler case of a single fermion generation, which exhibits all the
relevant features mentioned above. In this case, the integral (4.10) reduces to the analytic
expression

T 1 gen
+ (p2

E) =
∑

q=u,d

X2
q

Sq

k1(p̂E)Sq sinh 2Sq + k2(p̂E) ηp̂E

(
cosh 2Sq − sinh 2Sq

2Sq

)

k1(p̂E)Sq (cosh 2Sq − 1) + k2(p̂E) ηp̂E sinh 2Sq + 2Sq
, (4.14)

where Sq has been defined in (3.80), and we have used

k1(p̂E) = 1 +Rq(p̂E)RQ(p̂E) = 1 +
Zq(p

2
E)

tanh2 Sq
, k2(p̂E) = Rq(p̂E) +RQ(p̂E) . (4.15)

The function T 1 gen
− (p2

E) = 0 vanishes trivially. It is a simple exercise to derive the
various limiting behaviors shown in (4.11) – (4.13) from (4.14), simplified to the one-
generation case. Figure 4.2 shows the behavior of the result (4.14) for the parameter
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choices cQ = −0.45, cq = 0.395, and |Yq| = 2.3, which correspond to the physical mass
mq = 172.6 GeV of the top quark. The KK scale is set to MKK = 2 TeV, such that
Xq ≈ 0.2. The three curves correspond to different values of the regulator η. The
three regions of Euclidean momenta mentioned above (pE/MKK ∼ 1, pE/MKK � 1,
and pE/MKK � Xq/η) are clearly visible from the plot. The dark and light blue curves
correspond to models for which ΛTeV/MKK � Xq/η, and hence condition (2.3) defining
a brane-localized Higgs field holds. The gray curve corresponds to the case of a narrow
bulk Higgs, as defined in (2.4).

Analysis of the Loop Integrals I±(m2)

After we have clarified the properties of the function T±(m2), the final goal is now to
calculate the loop integrals I±(m2) defined in (4.8) in the dimensional regularization
scheme. For simplicity, however, we first consider the integral I+(0) at the special point
m2 = 0 and work with a hard momentum cutoff Λ = ΛTeV. For the case of a brane-
localized Higgs sector, defined according to condition (2.3), we obtain from (4.9)

I+(0)
∣∣
brane Higgs

= t0 − t1 −
3t2
2

MKK

ΛTeV
+ . . . , (4.16)

with t0 and t1,2 as defined in (4.11) and (4.12), respectively. The last term is a small
threshold correction, which is present in a hard-cutoff scheme but will not be visible in
the dimensional regularization scheme discussed below. Such power-suppressed terms
can be included via higher-dimensional operators in the effective Lagrangian of the RS
model. It will be commented more on the structure of power corrections and the role of
higher-dimensional operators below.

The difference (t0 − t1) coincides with the expression for the quantity Σ
(CGHNP)
q

(summed over q = u, d) derived in [144] for the case of a brane-localized Higgs sector.
It corresponds to the numerical result first derived in [149], where the authors summed
up the first few KK modes. The same result would be obtained if one took the limit
η → 0 before performing the integral over the loop momentum. For the opposite case
of a narrow bulk-Higgs field, defined according to condition (2.4), the UV cutoff is such
that the quantity T+(Λ2) in (4.9) must be evaluated using (4.13), so that we obtain

I+(0)
∣∣
narrow bulk Higgs

= t0 −
3t3
2

MKK

ηΛTeV
+ . . . (4.17)

instead of (4.16). The two answers differ by an amount t1 given by the first term on
the right-hand side in (4.12). The term t0 coincides with the expression for the quantity

Σ
(ATZ)
q (summed over q = u, d) derived in [144], which corresponds to the result first

obtained in [222]. In the latter reference, the authors summed up all modes (via a
completeness relation) before the limit η → 0 was taken. It should be emphasized that
the threshold corrections are enhanced by a factor 1/η in this case. This provides an
example of the general behavior for the case of a narrow bulk-Higgs field.

Let us now reproduce the above results in the less intuitive, but more consistent (from
a mathematical point of view) dimensional regularization scheme. In this case the limit
of a brane-localized Higgs sector can be taken without encountering any ambiguities.
In order to demonstrate this, we will perform the integrals over pE in (4.8) and then
take the limit η → 0, and show that this yields the same answer as first setting η → 0
and then integrating over the loop momentum. However, the explicit result in (4.14)
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and its generalization to three generations are so complicated that the dimensionally
regularized integral cannot be evaluated in closed form. It is therefore more convenient
to use a toy model, which captures all important features of the exact result. For this
purpose, we study the function

Tmodel
+ (p2

E) =
t0 − t1 − t2

1 + p̂2
E

+
t2√

1 + p̂2
E

+
t3√

(t3/t1)2 + (ηp̂E)2
, (4.18)

which exhibits the same asymptotic behavior in the three regions as the exact result.
Evaluating the integrals in (4.8) for this function, we obtain

Imodel
+ (0) = (t0−t1−t2)

(
µ

MKK

)2ε̂

+t2

(
µ

2MKK

)2ε̂

+t1

(
t1
2t3

)2ε̂( µη

MKK

)2ε̂

+O(ε̂2) , (4.19)

where t1/(2t3) = 1 +O(v2/M2
KK). At this point some comments must be made. While

the first two contributions are associated with the scale MKK, i.e. with low-lying KK
modes, the third contribution is associated with the super-heavy scale MKK/η, which for
a brane-localized Higgs sector is larger than the physical UV cutoff of the RS model. Note
that in the limit η → 0 this contribution tends to zero, leaving Imodel

+ (0) = (t0 − t1) as
the final result for the integral after the UV regulator ε̂ has been removed, in accordance
with (4.16). The same result is obtained if the limit η → 0 is taken in (4.18) before the
integral is evaluated. The last term in (4.18) then reduces to a constant, which does
not contribute to (4.8). In the dimensional regularization scheme, the case of a narrow
bulk Higgs, for which the loop momenta, corresponding to the very massive KK modes,
can resolve the shape of the Higgs profile and give the very resonance contribution, is
obtained by removing the UV regulator ε̂ at small but finite value of η. In this case, one
finds Imodel

+ (0) = t0, in accordance with (4.17). The disadvantage of the dimensional
regularization is that there are now power corrections that hint on higher-dimensional
operators spoiling the predictive power of the RS model.

Power Corrections and Higher-Dimensional Operators

Before we summarize the most important results of this section, it is necessary to com-
ment on the size of generic power corrections, which can be described in terms of higher-
dimensional operators added to the Lagrangian of the RS model (with unknown coef-
ficients). In general, higher-dimensional operators can be constructed by inserting one
or more (covariant) derivatives acting on the fields.2 These operators are suppressed by
the fundamental, physical UV cutoff of RS models, which is of order the Planck scale.
The leading operators involving a fermion bilinear contain a single derivative, possibly
accompanied by a factor sgn(φ). It is therefore reasonable to study the object

1

MPl
EMa iDMγ

a =
1

MPl

(
eσ(φ) i/∂ − 1

r
γ5 ∂φ

)
+ terms containing gauge fields, (4.20)

where γa = {γµ, iγ5} are the 5D Dirac matrices and EMa denotes the vielbein, already
used in (1.70) and (1.72), respectively. From now on, we focus on the derivative terms
only. Changing variables from φ to t, and using the definition of the warped UV cutoff

2Note that the 5D Lagrangian does not contain any small mass parameters, which could be used to
construct non-derivative operators of higher dimension.
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in (1.101), we obtain

1

MPl
EMa iDMγ

a =
1

ΛUV(t)
(i/∂ − γ5MKK ∂t) + . . . . (4.21)

Operators containing more than one derivative contain similar structures. For example,
the 5D d’Alembertian can be written as

1

M2
Pl

�5 =
e2σ(φ)

M2
Pl

(
�4 −

e−2σ(φ)

r2
∂2
φ

)
=

1

Λ2
UV(t)

(
�4 −M2

KK

1

t
∂t t ∂t

)
. (4.22)

Several comments are in order. First, we note that higher-derivative operators in the
effective Lagrangian are indeed suppressed by the position-dependent UV cutoff ΛUV(t),
as stated in Section 2.1. If we consider power corrections to couplings involving the
Higgs boson (no matter whether the Higgs field is localized on or near the IR brane),
the corresponding cutoff scale is ΛTeV. The 4D derivatives contained in (4.21) and (4.22)
will produce powers of external momenta or masses of the various fermion modes, where
the corresponding terms scale like (MKK/ΛTeV)n. For models in which the Higgs field
is a generic bulk scalar (with width η ∼ 1) or a brane-localized field, derivatives ∂t
acting on the fields near t = 1 produce O(1) factors. This is due to the fact that the
wave functions are naturally expressed in terms of the t variable, typically involving
Bessel functions of argument xnt with xn = mn/MKK, or powers of t in the case of the
SM fermions. (Recall that for a brane-localized Higgs field, these derivatives must be
evaluated at t = 1−, i.e. by approaching the IR brane from the left.) Hence, the ∂t terms
in the derivative operators shown above also give rise to (MKK/ΛTeV)n corrections. The
situation changes if we consider a limit of a bulk-Higgs model in which the width η of
the Higgs profile becomes parametrically suppressed. Then the Higgs profile itself, as
well as the profiles of particles coupling to the Higgs field, change rapidly over a small
interval of width η near the IR brane, see Figure 2.1. In such a scenario, a derivative ∂t
acting on the Higgs field or any field coupling to the Higgs boson gives rise to a factor
1/η, and hence the corresponding power corrections scale like (MKK/ηΛTeV)n. This is
the reason for the appearance of the Higgs width η in (4.17).

Intermediate Summary

At this point, it is convenient to repeat and highlight some important results just derived.
We have seen that the results obtained under the two assumptions (2.3) and (2.4) are
rather different, both qualitatively and quantitatively. While the low-lying KK modes
give the dominate contribution to the gluon-fusion Higgs production process in the
former case, a significant contribution stemming from very massive KK modes can be
observed in the latter case. Indeed, one should consider the two scenarios as two different,
distinguishable realizations of RS models. This fact has also been realized in [226]. This
situation resembles that encountered when one compares the original RS model, in which
only gravity was allowed to propagate in the extra dimension while all SM fields were
confined to the IR brane [115], with the more popular models in which all matter and
gauge fields live in the bulk [168]. As already stressed in Subsection 1.4.4, the original
model only addressed the hierarchy problem, while the latter models are qualitatively
different, since they also provide successful theories of flavor.
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Model bulk Higgs narrow bulk Higgs transition region brane Higgs

Higgs width η = O(1)
v|Yq|
ΛTeV

� η � v|Yq|
MKK

η ∼ v|Yq|
ΛTeV

η � v|Yq|
ΛTeV

Power cors.
(
MKK

ΛTeV

)n (
MKK

ηΛTeV

)n (
MKK

v|Yq|
)n (

MKK

ΛTeV

)n

MKK

ΛTeV

MKK

v|Yq|�
MKK

ηΛTeV
� MKK

v|Yq|

Higgs profile resolved by resolved by partially resolved by not resolved
all modes high-mom. modes high-mom. modes

A(gg → h) enhanced enhanced not calculable suppressed

Result model-dep. model-indep. unreliable model-indep.

Table 4.1: Comparison of the main features of various versions of the RS model
(see text for further explanation). The label “model-independent result” means that
the corrections to the SM prediction for the Higgs production cross section can be
calculated (to excellent approximation) without any reference to the Higgs and fermion
bulk profiles.

While the width of the Higgs profile is a physical parameter, which in principle
can be adjusted to take any desired value, the transition from the narrow bulk-Higgs
scenario (2.4) to the brane-Higgs scenario (2.3) cannot be described in a controlled
analytical way. This fact can be understood by investigating the structures of the
corresponding effective theories in more detail. Table 4.1 summarizes the main features
of the various models as defined by the size of the width parameter η. The second row in
the table shows the scaling of power corrections, as represented by higher-dimensional
operators in the effective Lagrangian of the RS model. Both in a generic bulk-Higgs
model (with η = O(1)) and in models where the scalar sector is localized on the IR
brane, effects of higher-dimensional operators in Higgs physics are suppressed by powers
of the ratio MKK/ΛTeV, since, as explained earlier, the warped Planck scale ΛTeV is
the natural UV cutoff of these theories. The situation changes if one considers bulk-
Higgs models, in which the width parameter η is parametrically suppressed. Then the
effective theory knows about an extra small parameter, and derivatives ∂t acting on the
bulk scalar field can produce powers of 1/η. As we have just seen, this gives rise to a
class of enhanced power corrections scaling like (MKK/ηΛTeV)n. In the transition region
between the narrow bulk-Higgs and brane-localized Higgs scenarios, these enhanced
power corrections become of O(1) or larger, and hence the effective field-theory approach
breaks down. In other words, because of the uncontrolled behavior of power-suppressed
terms in the transition region, one lacks the analytical control over the theory, which
would be required to see how the results interpolate from the bulk-Higgs case to the
brane-Higgs scenario as one reduces the value of η. In [222], the authors computed the
hgg amplitude in the context of a bulk-Higgs model and took the limit η → 0 at the end
of their calculation, stating that the answer corresponds to the case of a brane-localized
Higgs. As just argued, such an approach gives the correct result in the model (2.4), and
it should be referred to as the result of the narrow bulk-Higgs scenario.

Note that the above remarks describe an idealized case, in which the electroweak
scale v|Yq| and the KK mass scale MKK are of comparable magnitude. In practice, due
to the lack of KK modes below the TeV scale, there appears to be a little hierarchy
between these scales, such that v|Yq|/MKK . 0.3 or less. Then the power corrections
in the transition region are even larger than O(1), and also in the narrow bulk-Higgs
case the lower bound on MKK/ηΛTeV cannot be much smaller than 1. In view of this
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fact, one must consider the results derived for the narrow bulk-Higgs case with some
caution. A more reliable calculation should stay in a regime where η = O(1). This has
the disadvantage that the results will depend on the shapes of the Higgs and fermion
profiles in a complicated way. If it turns out that this dependence is weak, however, then
the results obtained here for the narrow bulk-Higgs scenario might serve as reasonable
approximations.

Final Expressions for the Loop Integrals

We are now all set to present the final expressions for the loop integrals. According to
the discussion above, it is possible to take the limit η → 0 at the level of the functions
T±(p2

E), before the loop integral is performed. Using (4.10) and sending η → 0, we find

T+(p2
E) =

∑

q=u,d

Tr

{
2Xq

sinh 2Xq

[
sinh2Xq +

1

2

(
Zq(p

2
E)

1 +Zq(p2
E)

+
Z†q(p

2
E)

1 +Z†q(p
2
E)

)]}
,

T−(p2
E) =

∑

q=u,d

Tr

{
2Xq

sinh 2Xq

[
1

2i

(
Zq(p

2
E)

1 +Zq(p2
E)
−

Z†q(p
2
E)

1 +Z†q(p
2
E)

)]}
,

(4.23)

where the quantity Zq(p
2
E) has been defined in (3.98) with the usual Yukawa matrices

in the minimal model and the ratio given in (3.99). Any reference to the matrices X̄q

in the final expressions has been removed by using the identities Y q f(X̄q) = f(Xq)Y q

and f(X̄q)Y
†
q = Y †q f(Xq), which hold for an arbitrary function f(Xq) that has a

non-singular expansion in powers of X2
q .

The derivation of the final expressions for the loop integrals in (4.8) is now straight-
forward. The quantities T±(−m2− i0) computed using (4.23) replace the quantity t0 in
(4.16), (4.17), and (4.19), while t1 has already been given in (4.12). Removing the UV
regulator after the integral over the loop momentum has been performed, we obtain

I+(m2) =
∑

q=u,d

{
Tr g(Xq) +

1

2
Tr

[
2Xq

sinh 2Xq

(
Zq(−m2)

1 +Zq(−m2)
+

Z†q(−m2)

1 +Z†q(−m2)

)]}
,

I−(m2) =
∑

q=u,d

1

2i
Tr

[
2Xq

sinh 2Xq

(
Zq(−m2)

1 +Zq(−m2)
−

Z†q(−m2)

1 +Z†q(−m2)

)]
,

(4.24)
where m2 ≡ m2 + i0, and the function

g(Xq)
∣∣
brane Higgs

= Xq tanhXq −Xq tanh 2Xq = −Xq tanhXq

cosh 2Xq
= −X2

q + . . . (4.25)

obeys a non-singular series expansions in powers of X2
q = v2

2M2
KK
Y qY

†
q. Note that due

to the presence of strong-interaction phases arising from the analytic continuation from
a Euclidean momentum p2

E to −m2− i0, the functions I±(m2) cannot simply be written
in terms of the real and imaginary parts of a traces over matrices. One may ask what
changes in the narrow bulk-Higgs scenario. In this case, the subtraction term t1 is absent
according to the discussion between (4.16) and (4.17). The expressions in (4.24) remain
valid also in this case, provided we use

g(Xq)
∣∣
narrow bulk Higgs

= Xq tanhXq = X2
q + . . . . (4.26)
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The above equations are the main result of this section. Up to some small corrections
to be determined below, the first term on the right-hand side of the equation for I+(m2)
corresponds to the contribution of the infinite tower of KK quarks to the ggh amplitude.
The remaining terms describe the contributions of the SM quarks. For the case of
a brane-localized Higgs sector, the function g(Xq) coincides with an expression first
obtained in [144] by means of a conjecture. Here, we have achieved to derive this form.
For the case of a narrow bulk-Higgs field, the expansion of g(Xq) to O(X2

q) reproduces
the result derived in [222]. This demonstrates that the “brane-Higgs limit” considered
in that paper really corresponds to the case of a narrow bulk scalar, as defined in (2.4).

Note that in the case of a brane-localized scalar sector the dependence on t inside
the square brackets in (4.10) disappears, due to the identity C2(t) − S2(t) = 1. This
motivates an alternative derivation of the result (4.24), where we derive the functions
T±(p2

E) defined in (4.6) in the brane-localized Higgs case via

T+(p2
E)
∣∣
brane Higgs

=
∑

q=u,d

−v√
2

Tr

[(
0 Y q

Y †q 0

)
∆q
RL(1−, 1−; p2

E) + ∆q
LR(1−, 1−; p2

E)

2

]
,

(4.27)
and similarly for T−(p2

E). The derivation of the corresponding propagator functions
∆q
AB has been shown in Section 3.2.4. Inserting these results into (4.27) reproduces

the expressions given in (4.24). This method provides an independent derivation of the
result for the brane-localized Higgs case, in which the notion of a regulator η never
appears. The important point here is that by using this procedure one finds the result
(4.24) without any UV regulation of the momentum integral (4.8). The regulator is only
necessary to obtain a gauge-invariant result according to the discussion at the beginning
of this section.

Analysis of the Zero-Mode Contributions

We will now analyze the terms involving the matrices Zq in (4.24), which include the
contributions of the SM quarks, in more detail using results derived in Section 2.2. We
first note the eigenvalue equation determining the KK masses (2.83) can be written as

det
[
1 +Zq(−m2

n)
]

= 0 . (4.28)

The asymptotic expansion for RA in (3.115) introduces the fermion profiles F (cA) next
to the modified Yukawa matrices. We can then reexpress the answer in terms of the
effective Yukawa matrices defined in (2.103). Including also the subleading terms in the
expansion (3.115), we obtain

Zq(p
2
E) = F−1(cQ)U q

[
m2

q,0

p2
E

+
(
δQ +mq,0 δqm

−1
q,0

)
+ . . .

]
U †q F (cQ) , (4.29)

where

δQ = xqW
†
q

[
1

1− 2cq

(
1

F 2(cq)
− 1 +

F 2(cq)

3 + 2cq

)]
W q xq ,

δq = xqU
†
q

[
1

1− 2cQ

(
1

F 2(cQ)
− 1 +

F 2(cQ)

3 + 2cQ

)]
U q xq

(4.30)

with xq = mq,0/MKK and U q, W q defined in (2.106), are hermitian matrices giving
rise to some small corrections of order v2/M2

KK. Except for the two entries proportional
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to m2
u3

= m2
t they carry an additional strong chiral suppression [145]. Introducing

the abbreviation εq = δQ + mq,0 δqm
−1
q,0, and working to first order in v2/M2

KK, the
eigenvalue equation (4.28) can be rewritten in the form

det
[
m2
n −m2

q,0 (1− εq) + . . .
]

= 0 , (4.31)

whereas

Zq(p
2
E)

1 +Zq(p2
E)

= F−1(cQ)U q

[
εq +

(1− εq)m2
q,0 (1− εq)

p2
E +m2

q,0 (1− εq)
+ . . .

]
U †q F (cQ) . (4.32)

Only the diagonal elements of the matrices εq contribute when (4.31) and traces of (4.32)
are evaluated to first order in v2/M2

KK. It is then not difficult to show that the masses
of the SM quarks are given by

m2
qi = m2

qi,0 (1− εqi + . . . ) , with εqi ≡ (εq)ii = (δQ)ii + (δq)ii , (4.33)

where the dots represent terms of order v4/M4
KK and higher. Moreover, using (4.32) and

sinh 2x/2x = 1 + 2x2/3 +O(x4), it is straightforward to derive

∑

q=u,d

Tr

[
2Xq

sinh 2Xq

Zq(p
2
E)

1 +Zq(p2
E)

]
=
∑

i

[
κqi

m2
qi

m2
qi + p2

E

+ εqi

]
+ . . . , (4.34)

where

κqi = 1− εqi −
2

3

[
U †q F (cQ)X2

q F
−1(cQ)U q

]
ii
. (4.35)

Note that while the parameters κqi are in general complex, the quantities εqi are real.
Although the sum in (4.34) extends over all six SM quarks, in practice the contributions
of the light quarks can safely be neglected. For the third-generation quarks, we find that

κt = 1− εt −
v2

3M2
KK

(
Y uY

†
uY u

)
33

(Y u)33

, (4.36)

up to chirally-suppressed terms, and a corresponding formula holds for κb. This expres-
sion coincides with the result derived in [144].

It is now a simple exercise to evaluate the Wilson coefficients C1g and C5g using (4.7)
and we obtain

C1g =
∑

q=u,d

Tr
[
g(Xq) + εq

]
+
∑

i

Re(κqi)Aq(τi) + . . .

≈ Tr g(Xu) + Tr g(Xd) +

[
1− v2

3M2
KK

Re

(
Y uY

†
uY u

)
33

(Y u)33

]
Aq(τt) +Aq(τb) ,

C5g =
∑

i

Im(κqi)Bq(τi) + · · · ≈ − v2

3M2
KK

Im

[(
Y uY

†
uY u

)
33

(Y u)33

]
Bq(τt) ,

(4.37)

where τi = 4m2
qi/m

2
h − i0, and the parameter integrals evaluate to [227, 228]

Aq(τ) =
3τ

2

[
1 + (1− τ) arctan2 1√

τ − 1

]
, Bq(τ) = τ arctan2 1√

τ − 1
. (4.38)
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For the light SM quarks, these functions must be analytically continued to τ < 1.
They both approach 1 for τ → ∞. The final results presented in (4.37) are exact up
to small corrections of order v4/M4

KK, represented by the dots, which are numerically
insignificant. The leading effects, which involve traces over functions of Yukawa matrices
and thus increase with the number of fermion generations, are exact to all orders in
v2/M2

KK. The infinite sum over KK quark states contributes the trace term in the
expression for C1g, while the second term contains the sum over the contributions of the
SM (third-generation) quarks, whose Yukawa interactions are modified with respect to
the SM by factors κqi .

In the final, approximate expressions it has been used that all εqi parameters other
than εt can be neglected to a very good approximation. For the term proportional to εt
we can neglect the small deviation of the function Aq(τt) ≈ 1.03 from 1. Also, for the
small b-quark contribution, the small deviation of κb from 1 is negligible. Note that, in
this approximation, which is accurate to better than 1% for MKK & 2 TeV, the Wilson
coefficients C1g and C5g become independent of the bulk mass parameters cQi,qi . They
are entirely given in terms of the 5D Yukawa matrices of the RS model. In the SM, we
have CSM

1g = Aq(τt) +Aq(τb) and CSM
5g = 0.

Brane-Localized Higgs Sector with Different Yukawa Matrices

Before closing this section, we return to the generalization of the RS model with a brane-
localized Higgs sector in which one allows for different Yukawa matrices Y C

q and Y S†
q in

the Yukawa interactions, see (2.126) and (3.108). We will refer to this model as type-II
brane-Higgs scenario. Recall that this generalization is only allowed if the Higgs boson
is localized on the IR brane due to 5D Poincaré invariance. At the level of the gluon
fusion amplitude (4.4), the above modification is implemented by the substitution

1√
2

(
0 Y q

Y †q 0

)
→ 1√

2

(
0 Y C

q

Y S †
q 0

)
PR +

1√
2

(
0 Y S

q

Y C †
q 0

)
PL , (4.39)

and we have to use the propagator solution derived in Section 3.2.4. Since the new
matrices (3.111) are now non-hermitian, the master formulae (4.24) must be generalized
to read

I+(m2) =
∑

q=u,d

{
Re Tr g(Y C

q ,Y
S
q )

+
1

2
Tr

[
2Xq

sinh 2Xq

Zq(−m2)

1 +Zq(−m2)
+

2X†q
sinh 2X†q

Z†q(−m2)

1 +Z†q(−m2)

]}
,

I−(m2) =
∑

q=u,d

{
Im Tr g(Y C

q ,Y
S
q ) (4.40)

+
1

2i
Tr

[
2Xq

sinh 2Xq

Zq(−m2)

1 +Zq(−m2)
−

2X†q
sinh 2X†q

Z†q(−m2)

1 +Z†q(−m2)
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,

where

g(Y C
q ,Y

S
q )
∣∣type−II

brane Higgs
= − 2Xq

sinh 2Xq

v2

2M2
KK
Ỹ qỸ

†
q

1 + v2

2M2
KK
Ỹ qỸ

†
q

= − v2

2M2
KK

Y C
q Y

C†
q + . . . . (4.41)
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Finally, in the formulae for κt in (4.36) one must replace the combination

(
Y uY

†
uY u

)
33(

Y u

)
33

→
(
Y C
uY

S†
u Y

C
u

)
33(

Y C
u

)
33

. (4.42)

Note that because Xq is no longer a positive hermitian matrix, traces of Xn
q can now

have arbitrary phases. However, at leading order in the expansion in v2/M2
KK the trace

of the function g(Y C
q ,Y

S
q ) is a negative real number. Indeed, at this order there is no

difference between the result (4.41) and the original result in (4.25) valid for the brane-
Higgs scenario with Y C

q = Y S
q .

An interesting special case is that where Y S
q = 0, meaning that the Yukawa couplings

involving a product of two Z2-odd fields, given by the second term in the last line of
(2.66), is put to zero. This choice was frequently adopted in the literature. It corresponds
to taking the limit Xq → 0 in the results above, in which case Ỹ q → Y C

q , and the
quantities κqi in (4.35) reduce to κqi = 1 − εqi . It follows that in this particular model
one obtains

C1g =
∑

q=u,d

Tr
[
g(Y C

q , 0) + εq
]

+
∑

i

(1− εqi)Aq(τi) + . . .

≈ CSM
1g + [1−Aq(τt)] εt + εb −

v2

2M2
KK

Tr
[
Y C
uY

C†
u + Y C

d Y
C†
d

]
,

(4.43)

whereas C5g = 0. The first term in the first line is the result of the summation over
the KK tower of quark states, while the second term gives the contributions of the SM
quarks, whose Yukawa couplings are modified with respect to their values in the SM by
factors (1−εqi). It suffices for all practical purposes to keep only the terms shown in the
second line. Apart from the last term, they agree with a corresponding result presented
in [157]. The first two corrections to the SM result are numerically very small, because
1 − Aq(τt) ≈ −0.03 and the quantity εb is chirally suppressed. The third correction,
which arises from the infinite sum over KK states, gives the most dominant contribution
by far. This effect was not found in [222], because in this paper the brane-Higgs case was
derived by taking a limit of a bulk-Higgs result. If one formally introduces two different
Yukawa matrices in the narrow bulk-Higgs scenario, one indeed finds that g(Xq) defined
in (4.26) vanishes in the limit where Y S

q → 0. However, in the context of a bulk Higgs

model taking Y S
q different from Y C

q violates 5D Lorentz invariance, and moreover (as
explained several times) the brane-Higgs case cannot be derived by taking a limit of the
bulk-Higgs results.

In practice, the corrections to the gluon fusion amplitude found in the type-II brane-
Higgs scenario are numerically very similar to those obtained in the original brane-Higgs
model. The main difference is a slightly larger spread of the distribution of points
obtained when one scans the parameter space of the model. In the phenomenological
analysis in Chapter 5, we will thus restrict ourselves to study the case where Y C

q = Y S
q .

4.1.4 Impact of Higher-Dimensional |Φ|2(Ga
µν)

2 Operators

Recall that RS models must be considered as effective field theories, valid below a
(position-dependent) UV cutoff given by the warped Planck scale. The UV completion
of these models may be strongly coupled, for instance due to effects of quantum gravity.
As explained in Subsection 1.4.2, short-distance contributions from physics above the
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cutoff scale give rise to higher-dimensional operators, such as those studied briefly in
Subsection 4.1.3. Two particularly interesting higher-dimensional operators relevant for
Higgs production are Φ†ΦGaMNGMN,a and Φ†ΦGaMN G̃MN,a, which mediate effective hgg
couplings at tree level. This subsection will address the question of how important the
contributions of these operators are in the low-energy effective theory. We will focus on
the first operator for concreteness.

In the RS model with the scalar sector localized on the IR brane, the relevant effective
action is

Seff =

∫
d4x r

∫ π

−π
dφ ceff δ(|φ| − π)

Φ†Φ
Λ2

TeV

g2
s,5

4
Gaµν Gµν,a + . . . , (4.44)

where terms involving Gaµ5 will be ignored. Here, gs,5 is the five-dimensional strong
coupling, which is related to the coupling gs of the SM by (2.13). The natural UV cutoff
governing the suppression of the brane-localized higher-dimensional operator is ΛTeV.
NDA suggests that the dimensionless coupling ceff could be as large as O(1) if the UV
completion above the cutoff of the RS model is strongly coupled. In the absence of a
complete model, it is impossible to say how ceff might depend on other parameters, such
as the Yukawa couplings or the number of fermion generations. Even in a strongly-
coupled theory, it is possible that ceff could be significantly smaller than 1,3 for instance
because the effective degrees of freedom coupling the Higgs boson to two gluons can
only be pair-produced, or because they have suppressed couplings to the operators Φ†Φ
or Gaµν Gµν,a. Following common practice, it shall be assumed that taking ceff = O(1)
provides a conservative upper bound for the effect of the brane-localized operators on
the gluon fusion amplitude.

Using the KK decomposition of the gluon field,

Gaµν(x, φ) =
1√
r

∑

n

G(n) a
µν (x)χGn (φ) =

1√
2πr

Gaµν(x) + KK modes , (4.45)

where the zero mode (the SM gluon Gaµν ≡ G
(0) a
µν ) has a flat profile along the extra

dimension, and writing the scalar doublet in the standard form (2.9), we find that the
relevant terms in the action (4.44) give rise to the effective Lagrangian

Leff =
ceff

Λ2
TeV

Oeff , (4.46)

where

Oeff = Φ†Φ
g2
s

4
Gaµν G

µν,a 3 g
2
sv

2

8

(
1 +

h(x)

v

)2

Gaµν G
µν,a . (4.47)

We now repeat this analysis for an RS model in which the Higgs field lives in the bulk
of the extra dimension. In this case the higher-dimensional operator can be localized
on both the IR and UV branes, or it can live in the bulk. We thus consider the general
action

Seff =

∫
d4x r

∫ π

−π
dφ
[
c1 + c2 δ(|φ| − π) + c3 δ(φ)

] Φ†Φ
M2

Pl

g2
s,5

4
Gaµν Gµν,a + . . . , (4.48)

where the coupling c1 is dimensionless, while c2,3 ∼ 1/MPl. Since all fields live in the
bulk, the natural cutoff suppressing the operator is set by the Planck scale. Also, the

3An example is provided by the π0 → γγ decay amplitude, which is loop suppressed in the SM despite
the fact that QCD is strongly coupled in the low-energy regime.
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scalar field now takes the form shown in relation (2.36). Using the KK decomposition
of the Higgs field given in (2.56), we find that

Seff =

∫
d4x

g2
s

4
Gaµν(x)Gµν,a(x)

2π

L

∫ 1

ε

dt

t

v2(t)

2Λ2
UV(t)

(
1 + h(x)

χ0(t)

v(t)

)2

×
{
c1 +

k

2

[
c2 δ(t− 1) + ε c3 δ(t− ε)

]}
+ . . . ,

(4.49)

where ΛUV(t) = MPl ε/t is the warped Planck scale as introduced in (1.101), and v(t)
and χh0(t) are the profiles of the Higgs vev and the physical SM Higgs boson along the
extra dimension derived in Subsection 2.2.1. We can now use the leading-order result for
the profile of the Higgs vev given in (2.52), as well as the fact that according to (2.63)
we have χ0(t)/v(t) = 1/v (with v ≈ 246 GeV) up to corrections of order v2/M2

KK, which
will be neglected here. It is then straightforward to perform the integration over t in
the above result. Matching the answer onto the effective Lagrangian given in (4.46), we
obtain

ceff =
1 + β

2 + β
c1 + (1 + β) kc2

β�1−→ c1 + |µ|c2 . (4.50)

Recall that the parameter β ∼ 1/η appearing in the solutions for the vev and the Higgs
profile is related to the width of the profile of the scalar field. NDA suggests that c1 and
kc2 can be as large as O(1) if the UV completion of the RS model is strongly coupled.
The contribution of the operator localized on the UV brane is of O(ε4+2β) c3, which
results from a factor 1/M2

Pl times v2(ε) ∼ ε2+2β reflecting the smallness of the Higgs vev
profile on the UV brane, and is therefore entirely negligible. Note that in the limit of
a very narrow bulk-Higgs field, corresponding to β � 1 (or η � 1), the largest mass
scale in the model is the Higgs mass parameter |µ| ≈ βk = O(MPl) in (2.33) and (2.39),
and hence it is more appropriate to assume that c2 ∼ 1/|µ| ∼ 1/MPl. Once again, this
leads to ceff = O(1). The structure of the result (4.50) is completely analogous to the
corresponding expression in (4.46) valid for a brane-localized Higgs boson. In both cases
the results for ceff , and hence the magnitude of the contributions of higher-dimensional
operators, are expected to be of the same order.

One may ask what is the effect of the effective Lagrangian (4.46) to the Wilson
coefficient C1g. Matching (4.46) onto the effective amplitude according to (4.2) yields
the contribution

∆C1g =
3ceff

4

(
4πv

ΛTeV

)2

≈ ceff

(
2.7 TeV

ΛTeV

)2

. (4.51)

In order for this contribution to be much smaller than the SM value C1 = 1, we need
to assume that either the cutoff scale is much larger than about 3 TeV or that |ceff | � 1
for some reason. With ΛTeV ∼ 10MKK ∼ 20 – 50 TeV, the first criterion is satisfied
in realistic RS models even if ceff = O(1). The expected contribution to the Wilson
coefficient C1g is then in the percent range, which is negligible in view of the current
experimental uncertainty in the measurements of the Higgs-boson couplings. The more
interesting question is under which assumptions the contribution (4.51) is much smaller
than the loop corrections to the SM result C1g = 1, which are approximately given by

|C1g − 1| ≈ v2

2M2
KK

∑

q=u,d

Tr
(
Y qY

†
q

)
≈ v2

2M2
KK

2N2
g |Yq|2 , (4.52)
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where Ng = 3 is the number of fermion generations, and |Yq| is the typical size of an
element of the anarchic 5D Yukawa matrices, defined by

|Yq|2 ≡ 〈|(Y q)ij |2〉 =
y2
?

2
. (4.53)

The equality on the right-hand side comes from the fact that we work with anarchic
5D Yukawa matrices and assume that the entries (Y q)ij are random complex numbers,
which with equal probability can take any value in the complex plane inside a circle of
radius y?, see also (2.67). It follows that the power-suppressed contribution (4.51) can
be neglected as long as

ceff

(
MKK

ΛTeV

)2

�
N2
g y

2
?

24π2
, (4.54)

which for ΛTeV ≈ 10MKK can be rewritten as ceff � 3.8 y2
?. In the custodial RS model

studied in the next section, the expression on the right-hand side of this relation is
multiplied by 4, yielding the weaker condition ceff � 15.2 y2

?. In the phenomenological
analysis in Chapter 5 we will consider values of y? between 3 and 0.5. In order to neglect
the power-suppressed contributions for y? = 0.5 in the minimal RS model, one would
need to rely on the assumption that |ceff | � 1.

Relation (4.54) makes it clear that, in comparing the contributions from higher-
dimensional operators with the contribution from virtual KK states, we are comparing
a power-suppressed effect with a loop effect. Since we treat the dimensionless Yukawa
couplings as O(1) random complex parameters, it would follow that in the formal limit
ΛTeV → ∞ the higher-dimensional operator contribution tends to zero, while the loop
contribution remains as the dominant effect.4 However, since by construction the RS
model is free of large hierarchies, the ratio MKK/ΛTeV cannot be made arbitrarily small.
We therefore do not expect a strong hierarchy between the contribution from virtual
KK states and those from higher-dimensional operators. In practice, which of the effect
dominates is more of a numerical question than a parametric one. In Chapter 5, the
contribution ∆C1 in (4.51) is included by treating ceff as a random number with mag-
nitude less than 1.

For the loop calculation (4.37) to be trustable, we should impose an upper bound
on the size of y? by requiring that the Yukawa interactions remain perturbative up to
the cutoff of the RS model under consideration (see e.g. [160, 180]). Following common
practice, it will be assumed that y? < ymax = 3. A detailed discussion of different esti-
mates of the perturbativity bound and also of an exact calculation (using 5D fermion
propagators) of ymax is presented in Appendix B.

4.1.5 Extension to the RS Model with Custodial Symmetry

In this last subsection, we will now generalize the analysis presented in the previous
sections to the extended RS model with custodial symmetry. With the help of the
compact notation introduced in (2.71) and already used in Section 3.2, where the 5D
fermion propagators have been derived, this is a very straightforward exercise. We just
have to make the replacements

Xq →X~q , Rq → R~q , Zq → Z~q , (4.55)

4Since for too large values of the cutoff the Yukawa sector becomes strongly coupled (see below), the
result in such an academic limit could at best be taken as a rough estimate of the KK loop contributions.
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where the latter matrices can be found in (2.78), (3.98), and (3.99). Hence, the central
results (4.24) remain valid if we extend the sum over flavors appropriately, i.e.

I+(m2) =
∑

q=u,d,λ

{
Tr g(X~q) +

1

2
Tr

[
2X~q

sinh 2X~q

(
Z~q(−m2)

1 +Z~q(−m2)
+

Z†~q(−m2)

1 +Z†~q(−m2)

)]}
,

(4.56)
and similarly for I−(m2). The relevant squared Yukawa matrices entering the quantities
X~q in (4.56) are given by the 6× 6 matrix

Y ~uY
†
~u =

(
Y uY

†
u+Y dY

†
d Y uY

†
u−Y dY

†
d

Y uY
†
u−Y dY

†
d Y uY

†
u+Y dY

†
d

)
= V

(
2Y dY

†
d 0

0 2Y uY
†
u

)
V † ,

with V = V † =
1√
2

(
−1 1
1 1

)
,

(4.57)

and the 3× 3 matrices Y ~d
Y †~d = Y ~λ

Y †~λ = 2Y dY
†
d. It follows that

∑

q=u,d,λ

Tr g(X~q) = Tr g
(√

2Xu

)
+ 3 Tr g

(√
2Xd

)
, (4.58)

where the final answer is now expressed in terms of traces over the same 3× 3 matrices
Xq as in the minimal RS model.

The next task is to reduce also the second term in (4.56) to traces over 3×3 matrices.
From the definition (3.98), it is straightforward to derive that

Z~u(p2
E) =

v2

2M2
KK

V

(
Ỹ d

[
R

(−)
τ1 +R

(−)
τ2

]
Ỹ
†
d 0

0 2Ỹ uR
(+)
uc Ỹ

†
u

)
V †
(
R

(+)
Q 0

0 R
(−)
Q

)
,

Z ~d,~λ
(p2
E) =

v2

2M2
KK

Ỹ d

[
R(±)
τ2 +R(−)

τ1

]
Ỹ
†
dR

(±)
Q ,

(4.59)

where again we have omitted the argument p̂E of the R
(±)
A matrices on the right-hand

side of the equations. In the custodial model, the modified Yukawa matrices appearing
in (4.59) are defined as

Ỹ q

∣∣∣
cust
≡ tanh(

√
2Xq)√

2Xq

Y q , (4.60)

with an extra factor of
√

2 inserted compared with the minimal model.5 In (4.7), we need
to evaluate the result (4.56) for values |p2

E | �M2
KK. Using the expansion in (3.115), we

obtain (again with xq = mq,0/MKK)

V †Z~u V = F−1(cQ)Uu

{[
m2

u,0

p2
E

+
(
ΦU +mu,0 Φum

−1
u,0

)
+ . . .

](
0 0
−1 1

)

+ V CKM xdW
†
d

1

2F 2(cτ2)

[
1

F 2(−cτ1)
+

1

F 2(−cτ2)

]
W d xd V

†
CKM

(
1 −1
1 −1

)

+ x2
uU

†
u

2

F 2(cQ)F 2(−cQ)
Uu

(
0 0
1 0

)
+ . . .

}
U †u F (cQ) ,

(4.61)

5Note that Ỹ q|cust 6= Ỹ ~q ≡
[
tanh(X~q)/(X~q)

]
Y ~q.
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and

Z ~d
(p2
E) = F−1(cQ)Ud

[
m2

d,0

p2
E

+
(
ΦD +md,0 Φdm

−1
d,0

)
+ . . .

]
U †d F (cQ) , (4.62)

after a straightforward calculation, where V CKM = U †uUd is the CKM mixing matrix
and the dependence on p̂2

E has been dropped for a compact writeup. The terms shown
explicitly above are of leading and subleading order in v2/M2

KK. To this order, the
quantity Z~λ(p2

E) vanishes. The quantities ΦA are generalizations of the matrices δA
given in (4.30). In ZMA approximation, they read [149]

ΦU = xuW
†
u

[
1

1− 2cu

(
1

F 2(cu)
− 1 +

F 2(cu)

3 + 2cu

)]
W u xu

+ V CKM xdW
†
d

1

2F 2(cτ2)

[
1

F 2(−cτ1)
+

1

F 2(−cτ2)

]
W d xd V

†
CKM ,

Φu = xuU
†
u

[
1

1− 2cQ

(
1

F 2(cQ)

[
1 +

1− 2cQ
F 2(−cQ)

]
− 1 +

F 2(cQ)

3 + 2cQ

)]
Uu xu ,

ΦD = xdW
†
d

[
1

1− 2cτ2

(
1

F 2(cτ2)

[
1 +

1− 2cτ2
F 2(−cτ1)

]
− 1 +

F 2(cτ2)

3 + 2cτ2

)]
W d xd ,

Φd = xdU
†
d

[
1

1− 2cQ

(
1

F 2(cQ)
− 1 +

F 2(cQ)

3 + 2cQ

)]
Ud xd .

(4.63)

After a lengthy calculation, we find that in analogy with (4.34)

∑

q=u,d,λ

Tr

[
2X~q

sinh 2X~q

Z~q(p
2
E)

1 +Z~q(p
2
E)

]
=
∑

i

[
κqi

m2
qi

m2
qi + p2

E

+ εqi

]
+ . . . , (4.64)

where

κqi = 1− εqi −
2

3

[
U †q F (cQ) 2X2

q F
−1(cQ)U q

]
ii

(4.65)

now contains an extra factor of 2 in the last term compared with the result (4.35) for
the minimal model, while

εqi = (ΦQ)ii + (Φq)ii . (4.66)

We are now all set for presenting the final expressions for the Wilson coefficients C1g

and C5g in the RS model with custodial symmetry. To an excellent approximation, we
obtain (instead of (4.37))

C1g ≈
[

1− 2v2

3M2
KK

Re

(
Y uY

†
uY u

)
33

(Y u)33

]
Aq(τt)+Aq(τb) +Trg

(√
2Xu

)
+ 3Trg

(√
2Xd

)
,

C5g ≈ −
2v2

3M2
KK

Im

[(
Y uY

†
uY u

)
33

(Y u)33

]
Bq(τt) , (4.67)

which once again is independent of the bulk mass parameters cQi,qi . This approxima-
tion is accurate to better than 2% for MKK & 2 TeV. Whereas the small corrections
parameterized by κqi and εqi have only a minor impact, the main difference between the
minimal and the custodial RS models consists in the different multiplicity factors in the
trace terms in (4.37) and (4.67). Since the functions g(Xq) start with a quadratic term,
we must compare X2

u +X2
d in the minimal model with the combination 2X2

u + 6X2
d in
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the custodial model. Since it is assumed that the 5D Yukawa matrices in the up- and
down-type quark sectors are random matrices of similar magnitude, it follows that the
effect of the KK modes in the custodial model is approximately four times as large as
in the minimal model.6

4.2 Higgs Decay into Two Photons

After the gluon-fusion process has been discussed extensively, we will now address the
loop-induced Higgs decay into two photons. This decay is also affected by the KK quark
tower, but moreover receives contributions from KK boson loops, as shown in Figure
4.3. This section is based on our publication [151].

4.2.1 Preliminaries

In the context of warped extra dimensions, the Higgs decay h→ γγ was investigated in
the same works that focused on Higgs production via gluon fusion [149, 157, 220–222].
While these papers mainly focused on the contribution stemming from the fermionic
KK states, a detailed analysis of the bosonic loop contributions to the h → γγ ampli-
tude, which in unitary gauge stem from the W bosons and their KK excitations, will
be provided in this section. The advantages of the approach here are that it is possible
to derive an exact result, which includes the full dependence on the Higgs-boson mass
and holds to all orders in v2/M2

KK, similar to the corresponding formula for the gluon
fusion amplitude (4.7). It is straightforward to extend the final results to the case where
the Higgs boson lives in the bulk of the extra dimension. We will also carefully study
the effects of the fifth components of the gauge fields, whose profiles are discontinuous
on the IR brane, similar to the Z2-odd fermion profiles, which indeed require a careful
treatment as has been discussed several times.

The rest of this section is subdivided into two subsections: In Subsection 4.2.2 the
general structure of the h → γγ amplitude will be discussed and the results for the
fermionic contributions from charged quarks and leptons propagating in the loop sum-
marized. We will then focus on the bosonic loop contributions, calculate them in the
KK-decomposed theory and show that the result for the contributions of each individual
KK mode is gauge invariant. In the next step we will resum the KK towers and derive
an exact formula for the h → γγ amplitude in terms of an overlap integral over the
Higgs-boson profile and the transverse part of the 5D gauge-boson propagator, includ-
ing the exact dependence on the Higgs-boson mass, which has not been obtained before.
The further proceeding will be analogous to that in the previous section: By expanding
the results in powers of v2/M2

KK, we will be able to identify the contributions from the
W bosons (with modified couplings to the Higgs boson) and their KK towers, confirm-
ing the results of [157]. Finally, in Subsection 4.2.3 we will generalize the findings to
the custodial RS model that are consistent with those of [149] when expanded to order
v2/M2

KK.

6Based on a naive counting of degrees of freedom, this factor was estimated as 11/4 (instead of 4)
in [224].
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4.2.2 5D Analysis of the h→ γγ Amplitude

The goal is to calculate the h → γγ decay amplitude entirely in terms of the 5D prop-
agators for both gauge bosons and fermions. While the contributions from quarks and
charged leptons can be easily deduced from the corresponding results for the gg → h am-
plitude derived in Section 4.1, a detailed consideration of the gauge-boson contribution
has not been performed in 5D language yet. The approach we take here is the following:
First, we will calculate the bosonic contributions to the h → γγ amplitude in the KK-
decomposed effective theory and show that at each KK level the sum of all diagrams is
gauge-invariant. The only contributing diagrams in unitary gauge are those with vector
bosons propagating in the loop. This observation can be used to rewrite the amplitude
as an expression involving the 5D gauge-boson propagator derived in Section 3.1.2. We
will see that in the limit of a very narrow Higgs profile the amplitude approaches an un-
ambiguous value, which is insensitive to the details of the Higgs localization mechanism.
At the end of this subsection, we employ the exact results to derive expressions for the
contributions of the zero modes (the standard W bosons) and their infinite towers of
KK excitations to the h→ γγ amplitude.

We begin with the calculation in the minimal RS model. The results in the custodial
model can be easily deduced from those derived here, which we will see in the next sub-
section. The one-loop Feynman diagrams contributing to the h → γγ decay amplitude
are shown in Figure 4.3 for a general Rξ gauge. Below, we will demonstrate that the
full amplitude is gauge invariant. In the unitary gauge only the diagrams (a) – (c) con-
tribute. Analogously to (4.2), the h → γγ amplitude, including the contributions from
SM particles, is parametrized by means of two Wilson coefficients C1γ and C5γ defined
via

A(h→ γγ) = C1γ
α

6πv
〈γγ|FµνFµν |0〉 − C5γ

α

4πv
〈γγ|FµνF̃µν |0〉 , (4.68)

where F̃µν = −1
2ε
µναβFαβ with ε0123 = −1. As opposed to (4.2), each Wilson coefficient

now consists of three terms,
Ci = CWi + Cqi + C li , (4.69)

where in a general gauge CWi includes the bosonic contributions from gauge bosons,
scalar bosons, and ghosts. The calculation of these bosonic contributions is the main
subject of this subsection. The fermionic loop contributions due to virtual quarks and
leptons shown in diagram (a) can be readily deduced from (4.37) and will be summarized
in (4.73).

We will also discuss the (narrow) bulk-Higgs scenario. As already mentioned at the
end of Section (2.2.1), this scenario gives rise to a tower of physical scalar particles

φ
±(n)
W , which in some sense are the KK excitations of the charged components of the

Higgs doublet. They are defined in terms of a gauge-invariant superposition of W±5 and
ϕ±. The effect of these heavy scalar particles on the h→ γγ amplitude is [161]

Cφ1γ =
1

8

∞∑

n=1

vg
(n,n)
hφφ(
mφ
n

)2 Aφ(τφn ) , Cφ5γ = 0 , (4.70)

where τφn = 4(mφ
n)2/m2

h, and the function

Aφ(τ) = 3τ
[
τ arctan2 1√

τ − 1
− 1
]

(4.71)
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(a)

t

t1

t2

k1

k2

(b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 4.3: One-loop Feynman diagrams for the process h → γγ. Diagram (a)
contains the fermion loops, while diagrams (b) – (k) show the contributions from the
gauge sector in a general Rξ gauge. Solid lines represent fermion mass eigenstates,

wavy lines vector-boson mass eigenstates W
±(n)
µ , dashed lines scalar mass eigenstates

ϕ
±(n)
W , and dotted lines ghost mass eigenstates c

±(n)
W . The ghost masses and profiles are

the same as for the W bosons and their KK excitations [161].

approaches 1 for τ → ∞. In the limit of a very narrow Higgs profile, the couplings

g
(n,n)
hφφ scale like 1/η, while the masses of the heavy scalar particles scale like MKK/η. It

follows that Cφ1γ = O(η), and hence this contribution decouples in the limit η → 0, as
expected. Consequentially, the corresponding Feynman diagrams are not considered in
the following analysis.

Fermionic Contributions to the Wilson Coefficients

The one-loop contributions to the h → γγ amplitude stemming from the quarks and
leptons can be derived in a straightforward way from analogous results for the quark
contributions to the gg → h amplitude. We only need to include appropriate factor of
color and electric charges. According to the discussion in 4.1.3 the exact result can be
written in the form

Cq1γ = 3Nc

∑

f=u,d

Q2
q

∫ 1

0
dx

∫ 1−x

0
dy (1− 4xy)

[
T q+(−xym2

h)− T q+(Λ2
TeV)

]
,

Cq5γ = 2Nc

∑

f=u,d

Q2
q

∫ 1

0
dx

∫ 1−x

0
dy
[
T q−(−xym2

h)− T q−(Λ2
TeV)

]
,

(4.72)

where Qu = 2/3 and Qd = −1/3 are the electric charges of the quarks, and Nc = 3
is the number of colors. The functions T q±(−p2) are given in (4.23). An analogous
expression with Nc replaced by 1 and Qq replaced by Qe = −1 holds for the charged-
lepton contribution. Neglecting some terms of order v4/M4

KK and chirally-suppressed
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O(v2/M2
KK) terms then leads to the explicit expressions (compare with (4.37))

Cq1γ ≈
[
1− v2

3M2
KK

Re
(Y uY

†
uY u)33

(Y u)33

]
NcQ

2
uAq(τt) +NcQ

2
dAq(τb)

+
∑

q=u,d

NcQ
2
q Re Tr g(Xq) ,

Cq5γ ≈ −
v2

3M2
KK

Im

[
(Y uY

†
uY u)33

(Y u)33

]
NcQ

2
uBq(τt) +

∑

q=u,d

NcQ
2
q Im Tr g(Xq) ,

(4.73)

and
C l1γ + iC l5γ ≈ Q2

e Tr g(Xe) , (4.74)

where the contributions from the SM fermions and the KK excitations can now readily be
identified. The loop functions Aq(τi) and Bq(τi) (with τi = 4m2

i /m
2
h) and the matrices

Xf can be found in (4.38) and (2.78), respectively. Note that with the hermitian
matricesXf the traces over matrix-valued functions g(Xf ) are real, so that C l5γ = 0 and
the only contribution to the coefficient Cq5γ arises from the top-quark contribution given
by the first term on the right-hand side of (4.73). The function g(Xf ) itself depends on
the details of the localization of the scalar sector on or near the IR brane and is shown
in (4.25) for the brane-localized and in (4.26) for the narrow bulk-Higgs scenario. The
function in the type-II brane-Higgs model is defined in (4.41). As already mentioned in
the gluon-fusion case, the matrices Xf are no longer hermitian, but to leading order it
is still a hermitian matrix. The type-II brane-Higgs scenario is thus rather similar to
the original brane-Higgs model with identical Yukawa matrices Y C

f = Y S
f = Y f and it

is therefore convenient to restrict ourselves to a study of the two cases shown in (4.25)
and (4.26).

Gauge Invariance of the Amplitude

Having clarified the fermion contribution to the h→ γγ amplitude, we now turn to the
bosonic contribution. In the SM, Ref. [229] has thoroughly discussed the ξ independence
of the h → γγ amplitude in dimensional regularization and has shown that the calcu-
lation can be performed consistently in the unitary gauge ξ → ∞. In the case of the
RS model, it is useful to first work in the KK-decomposed theory, where 4D Feynman
propagators have the same structure as in the SM. The Feynman rules required to eval-
uate the one-loop diagrams shown in Figure 4.3 are summarized in Appendix C.7 From
these rules, it follows that:

• All vertices involving one or two external photons but no Higgs boson are diagonal
in KK number after one integrates over the extra-dimensional coordinate of the
vertex with measure

∫ π
−π dφ = (2π/L)

∫ 1
ε dt/t. The Feynman rules for these ver-

tices have the same form as in the SM after one identifies the 4D electromagnetic
coupling as e = e5/

√
2πr, see (2.13). For the mass-dependent vertex connecting a

photon to W
±(n)
µ ϕ

∓(n)
W , one must replace mW → mW

n .

7The Feynman rules can be easily deduced from the relevant terms in the 5D action (2.6). Details of
the derivation of Feynman rules in the RS model can be found in [184, 230–233].
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• As a result, all one-loop diagrams contributing to the h → γγ amplitude involve
a single KK particle in the loop. Hence, only KK-diagonal Higgs couplings are
required in the calculation.

• All KK-diagonal Higgs couplings have the same structure as in the SM but come
with an overall prefactor

v

2

g2
5

2πr
2π
[
χWn (1)

]2
=

2m̃2
W

v
2π
[
χWn (1)

]2
, (4.75)

which replaces the corresponding factor gmW = 2m2
W /vSM in the SM. In addition,

for each scalar boson ϕ
±(n)
W a factor 1/mW

n appears, which replaces 1/mW in the
corresponding SM Feynman rule for vertices involving the Goldstone bosons ϕ±.

From these observations it follows that, diagram by diagram and in a general Rξ gauge,
the bosonic loop contributions obtained in the RS model resemble those of the SM up
to trivial substitutions, such that

AWRS(h→ γγ) =
m̃2
W

v

∞∑

n=0

2π
[
χWn (1)

]2
[
vSM

m2
W

AWSM(h→ γγ)

]

mW→mWn
. (4.76)

For vertices involving a photon and a pair of vector bosons, fermions or ghosts, the
statement that the interactions are diagonal in KK number (first bullet) is a direct
consequence of the flatness of the photon profile and the orthogonality of the relevant

vector-boson and fermion profiles. For interactions involving the scalar bosons ϕ
±(n)
W ,

however, which according to (2.18) and (2.19) receive contributions from W±5 and ϕ±,
the vertices become diagonal only after one adds up these two contributions. Consider,
for instance, the vertex (h) needed for diagram (j) in Figure 4.3.8 After integrating over
the coordinate of this vertex, we obtain the Feynman rule

2ie2ηµν

[
M2

KK

mW
m mW

n

2π

L

∫ 1

ε

dt

t

[
∂tχ

W
m (t)

] [
∂tχ

W
n (t)

]
+

m̃2
W

mW
m mW

n

2π χWm (1)χWn (1)

]
, (4.77)

where the first contribution originates from the W5W5AµA
µ term contained in the Yang-

Mills action for the W -boson fields using the KK decomposition (2.18), while the second
contribution arises from the ϕ+ϕ−AµAµ term contained in the kinetic term for the Higgs
doublet using the KK decomposition (2.19). We now integrate by parts in the first term
use the equations of motion for the gauge-boson profiles (2.20) (for t < 1) taking into
account the boundary conditions (2.22). In this way, we obtain the Feynman rule

2ie2ηµν

[
mW
n

mW
m

2π

L

∫ 1

ε

dt

t
χWm (t)χWn (t)

]
= 2ie2ηµν δmn , (4.78)

where the boundary term cancels the contribution arising from the ϕ+ϕ−AµAµ term.
In the last step the orthonormality relation (2.21) for the gauge-boson profiles has been
used.

Let us now explore the consequences of the general result (4.76). Obviously, this
relation implies that for each single KK mode the h→ γγ amplitude in the RS model is
gauge invariant provided the amplitude is gauge invariant in the SM. Since, as will be
demonstrated, the sum over KK modes is convergent, it follows that gauge invariance

8The remaining vertices can be derived analogously, see [232, 233] for details.



140 Chapter 4. Loop Calculations in Warped Extra Dimensions

is maintained also in the 5D theory. We recall that to show gauge invariance in the SM
one divides the W -boson propagator in Rξ gauge into two parts,

i

p2 −m2
W

[
(1− ξ) pµpν
p2 − ξm2

W

− ηµν
]

=
i

p2 −m2
W

(
pµpν

m2
W

− ηµν
)
− i

p2 − ξm2
W

pµpν

m2
W

, (4.79)

where the first part coincides with the propagator in unitary gauge and the second part
has the same structure as the scalar-boson and ghost propagators. It has been shown
in [229] that, after adding up all diagrams, many intricate cancellations occur, and at
the end only the diagrams (b) and (c) in Figure 4.3 with the W -boson propagators in
unitary gauge, as well as the fermion loop contributions shown in diagram (a), remain.

5D Analysis of the Bosonic Loop Contributions to h→ γγ

We now repeat the calculation of the bosonic loop contributions to the h→ γγ amplitude
using a 5D approach. Based on the findings of the previous section we adopt unitary
gauge and consider only the contributions of diagrams (b) and (c) in Figure 4.3. We

employ the 5D gauge-boson propagator Dξ
W,µν(t, t′; p) derived in Section 3.1.2. Like in

the gluon-fusion case, we introduce a dimensional regulator d = 4 − 2ε̂ on the loop
integral in intermediate steps in order to preserve gauge-invariance. This regulator can
be removed at the end of the calculation. We also regularize the Higgs profile by replacing
the δ-function profile of the brane-localized Higgs field by a smooth function δη(t − 1)
of width η � 1. As we have seen, such a regularization is important in the calculation
of the fermionic loop contributions to the gg → h and h→ γγ amplitudes. However, we
will find that in the calculation of the bosonic loop contributions the limit η → 0 can be
taken without encountering any ambiguities.

Diagrams (b) and (c) give rise to the amplitude

iA(h→ γγ) = −2m̃2
W

v
2πe2 ε∗µ(k1) ε∗ν(k2) ηαβ

∫
ddp

(2π)d

∫ 1

ε
dt δη(t− 1)

2π

L

∫ 1

ε

dt1
t1

×
[

2π

L

∫ 1

ε

dt2
t2

2V γµλρνδDξ→∞
W,αγ (t, t1, p+ k1)Dξ→∞

W,λρ (t1, t2, p)D
ξ→∞
W,δβ (t2, t, p− k2)

+
(

2ηγδηµν − ηδνηγµ − ηνγηµδ
)
Dξ→∞
W,αγ (t, t1, p+ k1)Dξ→∞

W,βδ (t1, t, p− k2)

]
,

(4.80)

where V γµλρνδ = V γµλ(p+ k1,−k1,−p)V ρνδ(p,−k2,−p+ k2) arises from the product of
two triple gauge-boson vertices, with V µνρ(k, p, q) = ηµν(k−p)ρ+ηνρ(p−q)µ+ηρµ(q−k)ν .
The goal is to rewrite this result as a Feynman parameter integral over a single 5D gauge-
boson propagator, which should be possible, since in the KK-decomposed theory only a
single KK mode propagates in the loops. In order to simplify the answer, we decompose
the 5D propagator as (3.10) and use the KK decomposition (3.14) in an intermediate
step. The use of the KK representation is justified because all expressions are finite
and the KK sum converges. At the end of the calculation we will obtain an expression
without any reference to KK modes.

Again, we can perform the integration over t1 and t2 using the orthonormality relation
for the gauge-boson profiles (2.21). Working out the Dirac algebra and making use
of Passarino-Veltman reductions, the answer reduces to a simple Feynman parameter
integral [232]. After the contributions from the various diagrams have been combined,
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the dimensional regulator ε̂ can be set to 0. We find (with m2
h ≡ m2

h + i0)

CW1γ = −3πm̃2
W

∫ 1

ε
dt δη(t−1)

∞∑

n=0

[
χWn (t)

]2
[

1

(mW
n )2 + 6

∫ 1

0
dx

∫ 1−x

0
dy

1− 2xy

(mW
n )2 − xym2

h

]

(4.81)
and CW5γ = 0. It is now a simple exercise to recast the answer in terms of the 5D

propagator function BW (t, t′;−p2) defined in (3.14). We obtain

CW1γ = −3πm̃2
W

[
TW (0) + 6

∫ 1

0
dx

∫ 1−x

0
dy (1− 2xy)TW (−xym2

h)

]
, (4.82)

where TW (−p2) denotes the overlap integral of the Higgs profile with the transverse part
of the 5D W -boson propagator evaluated at t = t′,

TW (−p2) =

∫ 1

ε
dt δη(t− 1)BW (t, t;−p2 − i0) = BW (1, 1;−p2 − i0) +O(η) . (4.83)

At this step we need the propagator function BW (t, t;−p2) in the brane-localized Higgs
scenario, which has been derived in Section 3.1.2. As we have seen in the latter section,
the W -boson propagator function can be obtained from the propagator in the RS model
with a bulk Higgs in the limit η → 0 (β → ∞). Thus, the integral above exhibits a
smooth behavior in the limit of small η, so that the last identity holds and the regulator
on the Higgs profile can be taken to zero without encountering any ambiguities.

Relation (4.82) is one of the main results of this section. It shows the exact result for
the Wilson coefficient C1γ in dependence of overlap integrals of the Higgs profile and the
5D gauge-boson propagator. It can be shown that this relation also holds for an arbitrary
bulk-Higgs profile χh(t), if one uses the corresponding 5D gauge-boson propagator in
the bulk-Higgs model [161]. Then the regularized δ-function in (4.83) must be replaced
by

δη(t− 1)→ 2π

Lt

v(t)

v
χh0(t) = 2(1 + β) t1+2β + . . . , (4.84)

with the profiles given in (2.52) and (2.63). Note, however, that in this case it is
necessary to also include the contribution (4.70) due to the physical scalar excitations
of the bulk Higgs field. In the region where β � 1, the function on the right-hand
side indeed approaches a regularized δ-distribution, with a characteristic width given by
η = 1/(3 + 2β).

Note that relation (4.81) results after integrating a Feynman loop integrand of the
type 1/[p2

E + (mW
n )2−xym2

h]3 over d4pE (after the Wick rotation), analogously to (4.8).
In order for this integral to exist, we again have to require that both TW (p2

E) and
pE ∂pETW (p2

E) vanish for very large Euclidean momenta. We will show that this is indeed
the case below. The vanishing behavior of TW (p2

E) is also the reason why in (4.82) there
is no boundary term TW (Λ2

TeV) as in (4.72). Recall that this plateau stemming from the
non-zero value of the fermion propagator at t = t′ = 1− in the limit p̂E → ∞ was the
reason for the different results in the brane-localized and the narrow bulk-Higgs scenario.

We now evaluate the result (4.83) and insert the propagator in the time-like region
(3.25), evaluated at t = t′ = 1, into (4.83). We obtain (with p̂ ≡ p/MKK + i0)

TW (−p2) =
1

2πm̃2
W

[
1 +

p̂M2
KK

Lm̃2
W

J0(p̂)Y0(p̂ε)− Y0(p̂) J0(p̂ε)

J1(p̂)Y0(p̂ε)− Y1(p̂) J0(p̂ε)

]−1

≡ 1

2πm̃2
W

T̂W (−p2) ,

(4.85)
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which is exact to all orders in v2/M2
KK.9 It follows from this expression that T̂W (0) = 1.

We have thus succeeded in deriving a closed analytic expression for the Wilson coefficient
CW1γ in (4.82), valid for the minimal RS model with a Higgs sector localized on the IR
brane. The quantity m̃W , which is the leading-order contribution to the mass of the
physical W boson, has been kept in the prefactor above, since it will cancel against a
corresponding factor in the definition of the Wilson coefficient (4.82). Indeed, the final
result for this coefficient takes the form

CW1γ = −3

2

[
1 + 6

∫ 1

0
dx

∫ 1−x

0
dy (1− 2xy) T̂W (−xym2

h)

]
. (4.86)

Before we proceed, we will briefly study the behavior of the propagator function in the
region of large space-like momenta. For large Euclidean momenta pE � MKK, this
function approaches an inverse power-law behavior given by

TW (p2
E) =

L

2πMKK

1

pE
+O(p−2

E ) , (4.87)

which can be easily read off from (3.37). It follows that both TW (p2
E) and pE ∂pETW (p2

E)
vanish for large Euclidean momenta p2

E = −p2 →∞, and hence the conditions required
for the validity of relation (4.82) are indeed satisfied. This holds for both the brane-
localized and the (narrow-) bulk Higgs scenario.

Analysis of the Zero-Mode and KK Contributions

The exact expression for the overlap integral TW (−p2) in (4.85) contains the contribution
of the zero mode – the standardW boson with its modified coupling to the Higgs field – as
well as the infinite tower of KK excitations. It is instructive to isolate the contribution
from the zero mode and the KK tower explicitly. To this end, we expand the exact
formula in powers of v2/M2

KK, using that we need this function for values p2 = O(m2
h)

much smaller than the KK scale M2
KK. We find

T̂W (−p2) =
m2
W

m2
W − p2 − i0

[
1− m2

W

2M2
KK

(
L

c2
ϑ

− 1 +
1

2L

)]
+

m2
W

2M2
KK

(
L

c2
ϑ

− 1 +
1

2L

)
,

(4.88)
where cϑ = 1 in the minimal RS model and we have neglected terms of O(v4/M4

KK). We
will show below that the same result holds in the custodial RS model, where however
the parameter cϑ = 1/

√
2 takes a different value. In the above result the parameter m̃W

has been replaced by the physical W -boson mass mW using relation (2.30).
Based on the formulas above, we can perform the integration over the Feynman

parameters in (4.82) and find the Wilson coefficient

CW1γ = −21

4

[
κWAW (τW ) + νW

]
+O

(
v4

M4
KK

)
, CW5γ = 0 , (4.89)

where τW = 4m2
W /m

2
h, and the W -boson loop function

AW (τ) =
1

7

[
2 + 3τ + 3τ(2− τ) arctan2 1√

τ − 1

]
(4.90)

9We can simplify the result using that J0(p̂ε) = 1+O(ε2) and Y0(p̂ε) = (2/π)(γE+ln(p̂/2)−L)+O(ε2).
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approaches 1 for τ →∞ [228]. Analogously to (4.37), we can interpret the two terms in
(4.89): The first contribution to C1γ arises from the standard W boson, whose coupling
to the Higgs boson is modified, compared with the SM, by a factor κW times vSM/v.
The last factor is accounted for by using the Higgs vev in the RS model in the definition
of the effective operators in (4.68). The term νW in (4.89) is due to the KK excitations.
Explicitly, we obtain

κW = 1− m2
W

2M2
KK

(
L

c2
ϑ

− 1 +
1

2L

)
, νW =

m2
W

2M2
KK

(
L

c2
ϑ

− 1 +
1

2L

)
. (4.91)

Note that at this order νW = (1 − κW ), such that the RS corrections to C1γ in (4.89)
would cancel in the limit τW → ∞. This simple relation is, however, not preserved
in higher orders. The result for C1γ agrees with a corresponding expression derived in
[157]. Notice also that the value of κW is consistent with relation (4.75), which gives

κW =
m̃2
W

m2
W

2π[χW0 (1)]2.

We close this subsection by returning briefly to the case of a (narrow) bulk-Higgs
model, in which the scalar sector is localized not on but near the IR brane. As a concrete
model, we adopt the scenario discussed at the end of Subsection 2.2.1. As discussed
earlier, relation (4.83) still holds in this model provided one makes the replacement
(4.84) and calculated the gauge-boson propagator in the background of a bulk-Higgs
field. The latter propagator has been derived in the previous chapter and the result can
be found in (3.31) with (3.52). We then find

κbulk
W = 1− m2

W

2M2
KK

[
2L(1 + β)2

(2 + β)(3 + 2β)
− (1 + β)(3 + β)

(2 + β)2
+

1

2L

]
= κW +

3Lm2
W

2M2
KK

η + . . . ,

νbulk
W =

m2
W

2M2
KK

[
L(1 + β)

(2 + β)
− (1 + β)(3 + β)

(2 + β)2
+

1

2L

]
= νW −

Lm2
W

M2
KK

η + . . . ,

(4.92)

instead of (4.91). In the last step we have identified η = 1/(3 + 2β) and taken the
limit η � 1. This demonstrates that the result for the bosonic loop contributions to
the h→ γγ amplitude interpolates smoothly from the narrow bulk-Higgs scenario into a
scenario with a brane-localized scalar sector. Note also that the largest effect is obtained
for the brane-localized Higgs scenario, since the corrections for a bulk Higgs (ν > 0) point
in the direction of the SM prediction κSM

W = 1 and νSM
W = 0. This can be traced back to

the smaller overlap integrals of the Higgs-boson profile with the profiles of the W -boson
zero mode and its KK excitations.

4.2.3 Extension to the RS Model with Custodial Symmetry

The above results will now be generalized to the RS model with custodial protection.
First the fermionic loop contributions to the h→ γγ amplitude are presented, where it
is distinguished between the quark and the lepton contribution. Since the lepton sector
has not been discussed in Section 2.3, it will be shortly introduced here as well. Then,
the focus will be put on the W -boson loop contribution, where we will confirm the results
(4.89) and (4.91), where cϑ is now an additional parameter.
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Quark Contributions to the Wilson Coefficients

The loop contributions from the quarks to the h → γγ amplitude in the custodial RS
model are generalizations of relations (4.73) and read

Cq1γ ≈
[
1− 2v2

3M2
KK

Re
(Y uY

†
uY u)33

(Y u)33

]
NcQ

2
uAq(τt) +NcQ

2
dAq(τb)

+NcQ
2
u Re Tr g(

√
2Xu) +Nc

(
Q2
u +Q2

d +Q2
λ

)
Re Tr g(

√
2Xd) ,

Cq5γ ≈ −
2v2

3M2
KK

Im

[
(Y uY

†
uY u)33

(Y u)33

]
NcQ

2
uBq(τt)

+NcQ
2
u Im Tr g(

√
2Xu) +Nc

(
Q2
u +Q2

d +Q2
λ

)
Im Tr g(

√
2Xd) ,

(4.93)

where the explicit forms of the function g(Xf ) are given in (4.25), (4.26), and (4.41).
Recall that the Taylor expansion of these functions starts with X2

f , and thus the factors

of
√

2 arising in the quark contributions in the custodial model approximately double
the contribution arising in the minimal model. Combined with the large electric charge
of the λ-type quarks, one finds that due to the higher multiplicity of KK quark states
the contribution in the custodial RS model is much larger than in the minimal model
[150, 224], by approximately a factor 68/5.

Charged-Lepton Contributions to the Wilson Coefficients

The result for the loop contributions to the h→ γγ amplitude involving charged leptons
depends on the way in which the lepton fields are embedded into the extended gauge
symmetry of the custodial RS model. A first possibility is a model in which the lepton
multiplets are chosen in analogy to the quark multiplets in (2.175). This choice was
adopted in [185]. In component notation, the corresponding fields are

ξ1L =

(
ν

(+)
L 0 ψ

(−)
L 1

e
(+)
L −1 ν

′ (−)
L 0

)

0

, ξ2R =
(
ν
c (+)
R 0

)
0
,

ξ3R = T3R ⊕ T4R =




Ψ
′ (−)
R 1

N
′ (−)
R 0

E
′ (−)
R −1




0

⊕
(
E

(+)
R −1 N

(−)
R 0 Ψ

(−)
R 1

)
0
.

(4.94)

There are fifteen different lepton states in the neutrino sector and nine in the charged-
lepton sector. The boundary conditions give rise to three light modes in each sector,
which are identified with the SM neutrinos and charged leptons. These are accompa-
nied by KK towers consisting of groups of fifteen and nine modes in the two sectors,
respectively. In addition, there is a KK tower of exotic lepton states with electric charge
Qψ = +1, which exhibits nine excitations in each KK level. This is the analog to the
exotic λ-type quarks in the quark sector. The gauge-invariant Yukawa interactions for
these fields are constructed in complete analogy with the quark Yukawa interactions
[149, 185]. They can be expressed in terms of two dimensionless 3× 3 Yukawa matrices
Y ν and Y e, having an anarchic structure as always. When dressed with the fermion
profiles on the IR brane, these matrices give masses to the SM leptons. The resulting
contributions to the Wilson coefficients have the same structure as in (4.93), except that
there are no zero-mode contributions (they are proportional to m2

l /m
2
h and thus can be
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neglected) and that we must replace Y u → Y ν , Y d → Y e, Nc → 1, and Qu → Qν = 0,
Qd → Qe = −1, Qλ → Qψ = +1. We thus obtain

C l1γ + iC l5γ ≈
(
Q2
e +Q2

ψ

)
Tr g(

√
2Xe) . (4.95)

It follows that the leptonic contribution in the custodial RS model is approximately 4
times larger than in the minimal model.

A second possibility is a model with a more minimal embedding of the leptons into
the extended gauge group. Note that there are no such constraints from Zττ̄ as in
the case of the quarks from Zbb̄. Thus, it is not necessary to embed the left-handed
neutrino and the left-handed charged lepton in the same SU(2)L × SU(2)R bidoublet.
The simplest assignment is to put the left-handed neutrino and electron into an SU(2)L
doublet (as in the SM) and the right-handed electron along with a new, exotic neutral
particle NR into an SU(2)R doublet. The lepton fields with even Z2 parity are then
chosen as

LL =

(
ν

(+)
L 0

e
(+)
L −1

)

− 1
2

, LcR =

(
e
c(+)
R −1

N
(−)
R 0

)

− 1
2

, (4.96)

and they transform as (2,1) and (1,2), respectively. The choice of the boundary condi-
tions is such that the zero modes correspond to the light leptons of the SM, without a
right-handed neutrino. The gauge-invariant Yukawa interaction that can be built using
these fields is

LY =
v√
2

∫ π

−π
dφ δ(|φ| − π) e−3σ(φ) 2

k

(
Ye
)
ij

(
L̄iLΦ εLc jR + L̄iRΦ εLc jL

)
+ h.c. , (4.97)

where ε = iσ2. Upon electroweak symmetry breaking this generates a mass term for
the zero modes of the charged leptons. The SM neutrinos remain massless at this order.
Their masses can be explained by means of higher-dimensional operators [234–236]. The
only additional lepton field is the right-handed neutrino, which is charged under SU(2)R
but electrically neutral, so that it does not affect the h → γγ decay amplitude. The
lepton contribution is therefore the same as in the minimal version of the RS model,
namely C l1γ + iC l5γ ≈ Q2

e Tr g(Xe) as in (4.74).

Bosonic Contribution to the Wilson Coefficients

Finally, we turn to the bosonic contribution to the h→ γγ amplitude in the custodial RS
model. For this, we first deduce the Feynman rules from the ones in the minimal model
compiled in Appendix C. Using (2.158), we can convince ourselves that theW±M couplings
to the photon are not changed at all. This statement is independent of the basis, since the
rotation matrixRϑ in the KK decomposition (2.156) drops out in the orthonormalization
condition. In contrast, as mentioned in the discussion below (2.147) the Higgs only
couples to the IR basis fields Ã±µ with a strength proportional to (g2

L,5 + g2
R,5). This

can be taken into account with the help of the projection operator P+ rotated into the
IR basis and accompanied by a factor 1/c2

ϑ. It follows that, compared with the SM, all
KK-diagonal Higgs couplings in the custodial RS model come with a prefactor

2m̃2
W

c2
ϑ v

2π ~χWn (1)T RT
ϑ P+Rϑ ~χ

W
n (1) ≡ 2m̃2

W

c2
ϑ v

2π ~χWn (1)T Dϑ ~χ
W
n (1) , (4.98)
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which replaces the corresponding factor (4.75) in the minimal model. The matrix Dϑ

has been introduced in (2.165). In analogy with expression (4.76) valid in minimal RS
model, we then find that the h→ γγ amplitude in the custodial RS model can be written
as

AWcust.RS(h→ γγ) =
m̃2
W

c2
ϑ v

∞∑

n=0

2π ~χWn (1)TDϑ ~χ
W
n (1)

[
vSM

m2
W

AWSM(h→ γγ)

]

mW→mWn
.

(4.99)
It follows that expression (4.82) for the Wilson coefficient CW1γ remains valid, provided

we replace the quantity TW (−p2) defined in (4.83) with

TW (−p2) = Tr

[
Dϑ

c2
ϑ

BUV
W (1, 1;−p2 − i0)

]
. (4.100)

With the help of the solution for the propagator function BUV
W shown in (3.39), it is

now straightforward to calculate the quantity TW (−p2) in (4.100), which we need for
the calculation of the Wilson coefficient CW1γ in (4.82). Expanding this answer in powers

of v2/M2
KK and for p2 = O(m2

h), i.e. using (3.40), we recover expression (4.88). With
respect to the minimal RS model, the only modification concerns the coefficient of the
leading L-enhanced correction terms, which is enhanced by 1/c2

ϑ. This affects both the
contributions from the W boson and the KK tower. In the custodial RS model with
PLR symmetry, this enhancement factor is equal to 2. With c2

ϑ = 1/2 the expressions in
(4.91) are compatible with corresponding results obtained in [149]. In this reference the
Wilson coefficient CW1γ belonged to the operator vhFµνF

µν instead of the one in (4.68),

and hence κ
Ref. [19]
W = κW /κ

2
v.

4.3 The Flavor-Changing Neutral Current b→ sγ

This section focuses on the flavor-changing neutral current b → sγ. This transition is
the underlying quark-level process of the B decays discussed in the phenomenological
Chapter 5. As in the previous sections, it is assumed that the reader is familiar with the
SM calculation of b→ sγ and, moreover, with the associated RG evolution [4, 237–240].
This section includes unpublished work and is a continuation of my diploma thesis [184].
Detailed calculations of the required Feynman rules and the amplitudes (in terms of
infinite KK sums) can be found there. Here, it will be focused on deriving compact
formulas for the corresponding Wilson coefficients. As opposed to the results derived
in the previous two sections, they will, however, only be valid at leading order in the
expansion in v2/M2

KK.

4.3.1 Preliminaries

Like the loop-induced processes in the Higgs sector analyzed in the previous sections,
the b → sγ transition only occurs at loop-level in the SM, illustrated in Figure 4.4,
and is one of the most interesting processes in flavor physics. This is for two reasons:
Besides being suppressed by a loop factor, this FCNC is moreover suppressed by the
GIM mechanism [49], which results in a high sensitivity of the process to high-scale
physics. On the other hand, it is dominated by perturbative QCD effects which replace
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b s
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W W

γ

Figure 4.4: The two leading-order diagrams contributing to the b→ sγ in the SM (in
unitary gauge). In a general Rξ gauge, there are four further diagrams, where at least
one W -boson line is replaced by the scalar propagator of the Goldstone boson.

the power-like GIM suppression by a logarithmic one [241]. The mild suppression of
the QCD corrected amplitude reduces the sensitivity to new physics, but enhances the
branching ratio for e.g. B̄ → Xsγ with respect to the purely electroweak prediction by
a factor of around three and is therefore experimentally accessible.10 The logarithmic
GIM cancellation originates from operator mixing and the non-conservation of the tensor
current which is generated at the electroweak scale by loop diagrams involving W -boson
and top-quark exchange. The associated large logarithms L = log(mW /mb) have to
be resummed at each order in αs, using techniques of the RG improved perturbation
theory, see e.g. [238–240].

A convenient framework to achieve the resummation is to describe the process b→ sγ
via an effective Lagrangian with five active quarks, photons, and gluons, whereas the
electroweak gauge bosons and the top quark are integrated out. Including terms of
dimension up to six in the local operator product expansion the effective Lagrangian at
a scale µ . mW reads [239, 242, 243]

Leff = LQCD×QED +
4GF√

2
V ∗tsVtb

6,7γ,8g∑

k=1

Ck(µ)Qk(µ) . (4.101)

Here, the first term is the conventional QCD and QED Lagrangian for the light SM
particles. The second term includes the Fermi constant GF , the elements of the CKM
matrix Vij and the Wilson coefficients Ck(µ) of the corresponding operators Qk built
out of the light fields. Due to operator mixing effects all operators can contribute to the
b→ sγ transition. They can be written as

Q1,2 = (s̄Γic)(c̄Γ′ib) , Q7γ =
emb

16π2
s̄σµν F

µνPRb ,

Q3−6 = s̄Γib
∑

q

q̄Γ′q , Q8g =
gsmb

16π2
s̄σµν Gµνa taPRb ,

(4.102)

where the quantities Γi and Γ′i, which enter both the current-current operators Q1,2

and the QCD penguin operators Q3−6, stand for various products of Dirac and color
matrices [242, 243]. In the definition of the dipole operators Q7γ and Q8g, the fields
qL,R ≡ PL,Rq denote the chiral quarks, Fµν and Gµνa are the electromagnetic and gluonic
field strength tensors, and ta are the color generators. The most important operators
for the b→ sγ transition are given by the dipole operators Q7γ and Q8g, whose Wilson
coefficients evaluated at scale µb contribute to the observables that will be studied in
Chapter 5. Due to the already mentioned QCD effects, the initial conditions Ck(µW ) of

10In fact, the branching ratio Br(B̄ → Xsγ) is a well-measured observable, see Section 5.2.
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the remaining Wilson coefficients at the matching scale µW = O(mW ) (where the heavy
SM particles are integrated out) also give a non-negligible contribution to C7γ(µb) and
hence have to be determined as well.

In order to determine the impact of the RS model on b→ sγ we also make use of an
EFT approach and use the effective Lagrangian (µ . µKK ≡ O(MKK))

Leff =
4GF√

2
V ∗tsVtb

[
C7γ(µ)Q7γ(µ) + C̃7γ(µ) Q̃7γ(µ) + C8g(µ)Q8g(µ) + C̃8g(µ) Q̃8g(µ)

]

+ non-dipole operators , (4.103)

where the prefactors have been extracted according to (4.101). We will touch on the
non-dipole operators which can contribute to the dipole operators through operator
mixing in Subsection 4.3.4. The Wilson coefficients C̃7γ,8g belong to the chirality-flipped
operators Q̃7γ,8g, defined by

Q̃7γ =
emb

16π2
s̄σµν F

µνPLb , Q̃8g =
gsmb

16π2
s̄σµν Gµνa taPLb , (4.104)

which are suppressed by ms/mb in the SM and therefore negligble. We will see that they
receive large contributions in the RS model. In (4.103), all KK modes are integrated
out, whereas all SM particles including the top quark as well as the electroweak gauge
bosons are still active degrees of freedom.

The main goal of this section is the derivation of compact, analytic expressions for
the Wilson coefficients

CKK
7γ,8g ≡ C7γ,8g(µKK) and C̃KK

7γ,8g ≡ C̃7γ,8g(µKK) , (4.105)

which after the RG evolution down to the hadron scale µb, represent the RS corrections
to the SM predictions. There are several differences with respect to the previous two
sections: Higgs processes take place at scales of O(mh), whereas B meson decays which
are based on the b → sγ amplitude occur at much smaller scales µb = O(mb) �
mh,MKK. Thus, while in the Higgs processes mixing effects are small, they have to be
taken into account in the present case. Furthermore, again due to the RG running, we
need to distinguish between the contributions stemming from the KK modes and those
from the zero modes. Recall that in the final results (4.7) and (4.82) both contributions
have been included implicitly. Finally, we will see that there are two (instead of one)
infinite KK towers contributing to this process. It has not been achieved yet to obtain
closed formulas like (4.7) and (4.82) for the corresponding Wilson coefficients which
are integrals of the 5D propagators with the Higgs profile over the fifth dimension and
exact to all orders in v2/M2

KK. However, we will find that at leading order in the latter
expansion the final results can be well approximated in terms of simple expressions that
have already been encountered in the tree-level processes discussed in [145, 149, 183].

The influence of the RS model with a brane-localized Higgs sector on loop-induced
FCNCs like b→ sγ was firstly estimated and discussed in various works [169, 176, 177,
244], claiming the amplitudes to be logarithmically divergent at one-loop level and thus
UV sensitive at all orders. Putting a special focus on the counting of superficial degrees
of freedom, the authors of [216] showed that all diagrams describing the leptonic decay
µ→ eγ are finite at one-loop order, including the diagrams with a brane-localized Higgs
field, that are superficially logarithmically divergent. Likewise, the process b → sγ
was investigated in the 5D formalism in [245]. In the latter references, the authors
used free 5D propagators in mixed position/momentum space and treated the Yukawa
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interactions as perturbations. We will take a different approach: We will perform a
complete calculation in the 4D KK formalism and provide a careful discussion concerning
convergence behavior and the relative magnitudes of the various types of diagrams. The
results will then be compared to those of [245]. The calculation of this process using the
5D propagators derived in Chapter 3, which in principle is possible but in reality causes
some subtleties, is left for future work. Also, only the effects of the minimal RS model
will be focused on here.

This section is structured as follows: In Subsection 4.3.2, we will recapitulate the
calculation of all diagrams contributing to the b → sγ amplitude in the minimal RS
model. A thorough analysis of the results will be provided in Section 4.3.3, which
forms the main part of this section. Using the equations of motion for the fermion
profiles, one can derive analytic formulas for the Wilson coefficients, which are valid at
leading order in the expansion in v2/M2

KK. Being calculable with small numerical effort,
these formulas facilitate to study the RS effects on observables related to the dipole
operators. In Subsection 4.3.4, the RG evolution of the Wilson coefficients down to the
hadronic scale µb will be presented. Finally, we will comment on the structure of the RS
corrections to the Wilson coefficients at µb. The phenomenological consequences will be
discussed in Section 5.2 of the next chapter.

4.3.2 Calculation of the b→ sγ Amplitude

We begin with a repetition of the calculation of the b → sγ amplitude in the minimal
RS model [184, 230]. Due to the variety of flavor-changing couplings in the RS model,
there are many more one-loop diagrams contributing at leading order than in the SM.
They are shown in Figure 4.5, where the diagonal coupling of the photon zero mode
γ ≡ A(0) has already been taken into account. Note that in a general Rξ gauge, each
gauge-boson diagram has an additional diagram where the gauge boson is replaced by
the corresponding Goldstone boson. In the case of the W -boson emitting the photon,
i.e. diagram (f), there are three more diagrams. Then, there are in total thirteen
diagrams contributing to the amplitude. They are explicitly shown in Appendix D. Due
to the gauge-invariance of the diagrams, however, it will be sufficient to consider only
the six diagrams of Figure 4.5 (in unitary gauge).

Analogously to the Higgs processes, we parametrize the b→ sγ amplitude by means
of the two Wilson coefficients defined via (at scale µ = µKK)

A(b→ sγ) =
4GF√

2
V ∗tsVtb

{
CKK

7γ 〈sγ|Q7γ |b〉+ C̃KK
7γ 〈sγ|Q̃7γ |b〉

}
. (4.106)

The Wilson coefficients contributing to b → sg, i.e. CKK
8g and C̃KK

8g , can be easily ex-
tracted from the corresponding ones contributing to b→ sγ once the factors are adjusted
properly. The Feynman diagrams are essentially given by the ones shown in Figure 4.5,
where the outgoing photon has to be replaced by a gluon g ≡ G(0). The only difference
is the three-gluon diagram having a different topology compared to the WWγ-vertex
diagram (f) in Figure 4.5. We will treat this diagram separately.

For the time being, we focus on the RS corrections CKK
7γ and C̃KK

7γ , i.e. the contri-
butions from diagrams with at least one KK mode in the loop. The zero-mode contri-
butions, i.e. diagrams with quark and gauge-boson zero modes or the Higgs-boson, are
included later. The goal is to calculate these Wilson coefficients, which, as mentioned
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Figure 4.5: Feynman diagrams contributing to b → sγ in the minimal RS model at
leading order and in unitary gauge. In general Rξ gauge, there are additional diagrams,

where the respective gauge boson B
(m)
µ = A

(m)
µ ,G(m)

µ ,W
± (m)
µ , Z

(m)
µ is replaced by the

associated scalar degree of freedom ϕ
(m)
B , see Appendix D.

above, consist of five parts

CKK
i = CWi + CGi + Cγi + CZi + Chi , i = 7γ, 8g . (4.107)

An analogous formulas holds for C̃KK
i . Note that CW8γ (CG8g) includes both diagrams

(a) and (f) (the three-gluon vertex in the case of CG8g). Similarly to Section 4.2, the
calculation of the b→ sγ amplitude is performed in the KK-decomposed theory and the
gauge invariance of the amplitude is shown. As an example, we consider the W -boson
exchange diagram (a). The remaining diagrams can be studied analogously.

Feynman Rules and Gauge Invariance

As opposed to the diagrams contributing to the gg → h and h → γγ amplitudes,
the diagrams depicted in Figure 4.5 involve gauge-boson couplings to fermions. The
derivation of the corresponding Feynman rules can be found in [184, 230] and a summary
of all Feynman rules crucial for the following analysis is listed in Appendix C. They all
have the same general form illustrated at the example of the W+-exchange:

d(k) ū(n)

W
+(m)
α

p k
q

= i
g5√

2

1√
2πr

γα
(
V W+

nmk PL + Ṽ W+

nmk PR

)
.

The superscript at the gauge boson denotes the incoming charge, while the bar above the
quark field stands for an outgoing up-type quark. The overlap integrals Vnmk and Ṽnmk
are integrals of the fermion and boson profiles over the extra dimension and determine
the strength of the respective boson coupling to left-handed (right-handed) quarks. Their
explicit form can be found in (2.123) – (2.125). The factors in front of the parenthesis are
similar to those of the SM if one identifies with the SM gauge coupling gSM ≡ g5/

√
2πr,

where g5 is the five-dimensional SU(2)L gauge coupling in the RS model. As before, we
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rewrite the 5D coupling constant as

g5√
2πr

=
2m̃W

v
, (4.108)

where v denotes the vev in the RS model and m̃W is related to the physical W -boson
mass via (2.30).

Working in Feynman-’t Hooft gauge (ξ = 1), we also have to derive the fermion

couplings to the Goldstone bosons ϕ
±(n)
W . Similar to the Feynman rule explicitly derived

in (4.77), according to (2.18) and (2.19) the coupling gets contributions from the fermion
coupling to the fifth component of the gauge field W±5 and of the charged degree of
freedom of the Higgs doublet ϕ±.11 It turns out that summing up these two contributions
leads to a very simple relation between the couplings to the Goldstone bosons and to

the corresponding gauge bosons. As an example we consider the coupling to ϕ
+(m)
W

characterized by V
ϕ+
W

nmk and Ṽ
ϕ+
W

nmk:

d(k) ū(n)

ϕ
+(m)
W

p k
q

=
g5√
4πr

(
V
ϕ+
W

nmkPL + Ṽ
ϕ+
W

nmkPR

)
.

The explicit formulas for the overlap integrals, which contain both contributions, can
be found in [184, 230]. Since the contribution from W±5 contains a derivative of the
gauge-boson profile, see (2.18), one can use the same techniques as in (4.77) and show
that these two overlap integrals can be expressed as [184, 230]

V
ϕ+
W

nmk =
mu
n

mW
m

V W+

nmk −
md
k

mW
m

Ṽ W+

nmk , Ṽ
ϕ+
W

nmk =
mu
n

mW
m

Ṽ W+

nmk −
md
k

mW
m

V W+

nmk . (4.109)

The analogous expressions for the fermion couplings to the Goldstone bosons ϕ
−(m)
W ,

ϕ
(m)
Z , ϕ

(m)
A , and ϕ

(m)
G are listed in Appendix C. It is now easy to sum up the two

contributions of the vector and the scalar exchange in order to derive at a gauge-invariant
result. In [184, 230] it has been verified by an explicit calculation in Rξ that the gluon
exchange is ξ-independent. Since all Feynman rules have the identical structure, one can
deduce that this is also true for the massive gauge bosons. Note that in the case at hand
the results for the W and Z boson exchanges include the diagrams of [245] with a scalar
4D (Goldstone) boson from the Higgs doublet and KK fermions, which are supposed to
give the most significant contributions to the Wilson coefficients. We will return to this
issue later.

Calculation and Result of the Amplitude in the KK-Decomposed Theory

According to the discussion in Section 4.1, a UV regulator has been needed for two rea-
sons: firstly, for ensuring gauge-invariance of the amplitude and, secondly, for regulating
the momentum integral as well as the infinite sum over KK states. For the calculation
of the Wilson coefficients C7γ and C̃7γ gauge-invariance is not an issue, since we do
not encounter structures such as (4.3), and the (finite) result of each single diagram is

11This also holds for the Z boson, whereas there is no Higgs doublet contribution to the scalars ϕ
(m)
A,G .

The latter are just the KK modes of the fifth component of the 5D gluon (photon) field, see (2.18).
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unambiguous. We have also argued that in the brane-localized Higgs scenario, we could
have used the 5D fermion propagator with modified BCs and remove the regulator right
from the beginning. In 4D language, this means that we can calculate the Feynman
rules with a regularized Higgs profile, take the limit η → 0, and then sum up the entire
tower. No regulator is necessary because the sum over the KK modes is finite as we will
see below. Thus, the evaluation of the diagrams can be performed analogously to the
SM calculation [237], when using the corresponding Feynman rules [184, 230, 231]. A
summary of the results for all amplitudes is given in Appendix D. Taking into account
all valid values of n and m, one finds for the W -boson exchange (including the scalars

ϕ
(n)
W ) in the full (RS) theory [184, 230]

iAb→sγW = i
−2Qu
v2

∑

n,m

(m̃W

mW
m

)2[mu
n

mb
IA(xuWnm )V W−

2mn Ṽ
W+

nm3 + IB(xuWnm )V W−
2mnV

W+

nm3

]
〈Q7γ〉

+ i
−2Qu
v2

∑

n,m

(m̃W

mW
m

)2[mu
n

mb
IA(xuWnm )Ṽ W−

2mnV
W+

nm3 + IB(xuWnm )Ṽ W−
2mn Ṽ

W+

nm3

]
〈Q̃7γ〉,

(4.110)

where the functions IA and IB stem from the integration over Feynman parameters [246].
They are defined as

IA(x) = − −4 + 3x+ x3 − 6x log(x)

2(x− 1)3
∈ [−2,−1/2] ,

IB(x) =
8− 38x+ 39x2 − 14x3 + 5x4 − 18x2 log(x)

12(x− 1)4
∈ [5/12, 2/3] , (4.111)

and depend on the ratio of the squared masses of the internal fermions and bosons
xuWnm ≡ (mu

n/m
W
m )2 in this particular case. Note that they are bounded on the interval

x ∈ [0,∞), which is indicated by the intervals on the right-hand side. The left (right)
value represents the value for IA,B(x) for x → 0 (x → ∞). The matrix element 〈Q7γ〉
represents

〈Q7γ〉 ≡ 〈sγ|Q7γ |b〉 =
emb

8π2
ūs iσ

µνqνε
∗
µ PR ub , (4.112)

where us,b are the Dirac spinors of the external quarks. Writing the amplitude in this
way allows for an easy matching onto the effective Lagrangian (4.106). The analogous
expression with PR → PL holds for 〈Q̃7γ〉.

4.3.3 Analysis of the Radiative Wilson Coefficients

The result (4.111) shows that the diagrams do not only lead to contributions to CKK
7γ ,

but also to the chirality flipped Wilson coefficient C̃KK
7γ . This can be traced back to

the fact that the W -boson coupling to the right-handed quarks Ṽnmk is non-zero in the
RS model. Furthermore, each Wilson coefficient receives contributions from two terms.
The second term contributes a factor mb to the operator and is suppressed by a factor
of O(1/M2

KK). It will be referred to as the dimension-six contribution C6
7γ . The first

term, however, is proportional to mq
n/mb, i.e. the ratio of the mass of the n-th KK quark

and the b-quark mass, and thus seems to be only suppressed by a factor of O(1/MKK).
Analogously, this dimension-five contribution is denoted by C5

7γ . NDA now tells us
that this would result in the logarithmic divergent behavior of the sum as claimed in
[216]. The observation of a possibly enhanced dimension-5 contribution in NP models
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is not new, see e.g. [247]. If they indeed occurred, the six-dimensional operators could
be neglected and we would only deal with the operators

Q5D
7γ =

e

16π2
s̄ σµνF

µνPR b and Q5D
8g =

gs
16π2

s̄ σµνG
µν
a taPR b , (4.113)

where the b-quark mass has been dropped. Analogous definitions hold for Q̃5D
7γ and Q̃5D

8g .
As there are no further five-dimensional operators in the theory, this would mean that
only the operators Q7γ and Q8g can mix, which in turn would result in a very easy
RG-evolution down to the scale µb. However, we will argue that there are non-trivial
cancellations among the KK modes like in the Higgs production [144, 150], so that the
contributions above are not enhanced after all and the sum is convergent. Another
surprising observation is the fact that no brane effects occur at first sight, since the
overlap integrals V B

nmk are usual integrals of the fermion and gauge profiles. This is the
first hint that the contributions are finite as for the argumentation in [216]. However,
we will find these brane-localized terms again when investigating the dimension-5 term
more carefully. We will thus tackle the following three problems:

• Do the double sums in (4.110) converge, therefore leading to a well-defined result?

• Are there really dimension-5 contributions or is there a hidden suppression by
1/MKK?

• Which of the various diagrams contribute most to the Wilson coefficients?

The approach is the following: In order to confirm the finiteness, we perform a numerical
calculation of the double sum (4.110) ranging from n = 1 to 3+6·5 = 33 and m = 0 to 5,
i.e. we sum up the first five KK levels.12 We then fit a function of the type f(x) = a+b/xc.
Figure 4.6 shows the behavior of convergence of five randomly selected parameter points
for the real parts of CG,57γ and CW,57γ . The plots for the imaginary parts as well as for
the remaining coefficients look similar. The fact that all other points show the same
feature confirms that the assumed function f(x) has been a convenient choice.13 For
each parameter set it is found that c ≈ O(1). Consequentially, the sum converges to a
limit value a and we verify the convergence of all Wilson coefficients. It is an interesting
observation that the first few modes almost give the entire contribution, while the heavier
KK modes decouple quickly. Having shown the finiteness of all diagrams numerically,
we will now study the Wilson coefficients analytically with the help of the EOMs and
BCs for the fermion profiles as well as the boson propagator functions at p = 0. We will
see that expressing the infinite sums (4.110) in terms of simple quantities is a very good
approximation. After having done this, the third bullet above can be easily addressed.

We will first focus on the gluon exchange. The photon exchange is implicitly included
in this discussion, since gluons and photons have the same profiles and KK masses and
thus the two results just differ by a factor. The W - and Z-boson diagrams, which
additionally include a gauge-boson zero-mode, will be investigated afterwards. The
Higgs diagram turns out to be completely negligible and is therefore not included in this
discussion. Moreover, it will be focused on the contributions to C7γ in the following. As
we will explain explicitly, almost all results for the contributions to C8g as well as the

12The case n = 1, 2, 3 and m = 0 is, however, not included here. This case contributes to the Wilson
coefficient at scale mW , where the top quark, the electroweak gauge bosons, and the Higgs are integrated
out.

13For the sake of clarity we refrain from showing all parameter points in Figure 4.6.
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Figure 4.6: The real parts of the dimension-five contributions to the Wilson co-
efficients CG7γ and CW7γ as a function of the number of modes for five arbitrarily
chosen parameter points. The plots for all other coefficients, the imaginary parts,
and the dimension-six contributions look similar. In each case the fit function reads
f(x) = a + b/xc, with c ≈ O(1) for each parameter set. These plots substantiate the
finiteness of all Wilson coefficients contributing to b→ sγ.

chirality-flipped Wilson coefficients can then be deduced easily from the contributions
to C7γ . An exception is given by the three-gluon vertex, which will be investigated
further in its own subsection. It is supposed to give the main contribution to C8g and
C̃8g [245]. Then the analytical results for the various contributions to all aforementioned
Wilson coefficients will be presented and we will discuss their orders of magnitude and
the associated importance for observables.

Contributions from Gluon Exchange

In the case of the gluon contribution CG7γ , all possible combinations of n,m contribute
and one finds [184, 230]

CG7γ =
∑

n,m

′
(
m̃W

mGm

)2(QdCFαss2
w

κ2
vαλt

){
md
n

mb
V G2mnṼ

G
nm3 IA

(
xdGnm

)
+ V G2mnV

G
nm3 IB

(
xdGnm

)}
,

(4.114)
where

∑′
n,m =

∑∞
n=1,m=1, λt = VtbV

∗
ts, x

dG
nm = (md

n/m
G
m)2, and the overlap integrals

V Gnmk and Ṽ Gnmk are given in (2.123). The vev shift κv must be taken into account,
since in the matching procedure the Fermi constant (GF /

√
2 = 1/(2v2

SM) at tree-level)
has been extracted out, see (4.106).14 The corrections to C̃7γ are obtained from the

expressions given above by simply interchanging the overlap integrals V G
nmk with Ṽ G

nmk.
Owing to the fact that the functions IA and IB appearing in (4.114) link the two

sums over the fermion and boson towers, the latter cannot be treated independently.
However, as already noticed in (4.111), both loop functions are bounded on the interval
x ∈ [0,∞). It seems to be appropriate to replace the x-dependent functions IA(x) and
IB(x) by some constant, e.g. their means IA(x)→ cA = −5/4 and IB(x)→ cB = 13/24.
It will turn out that a more suitable choice is to take the values x� 1 for the W and Z
boson and x ≈ 1 for the gluon and the photon. The reason is that in the former case the
RS contribution is dominated by the loop with a zero-mode boson and KK fermions (and
hence x = (mq

n)2/m2
W,Z � 1), whereas in the latter case the dominant contribution stems

from the lowest lying KK fermions and KK bosons (and hence x = (mq
n/mGm)2 ≈ 1).

14When working at leading in v2/M2
KK, we can however neglect this correction.
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Using this approximation the calculation becomes very easy. Neglecting all prefactors
we can rewrite the dimension-6 contribution CG,67γ

CG,67γ ∼
∑

n,m

′
(

1

mGm

)2

V G2mnV
G
nm3

= 2π

∫ 1

ε
dt

∫ 1

ε
dt′
∑

m

′χGm(t)χGm(t′)
(
mGm

)2 D(2)†
L (t)

∑

n

D(n)
L (t)D(n)†

L (t′)D(3)
L (t′)

=
1

2M2
KK

∫ 1

ε
dt

∫ 1

ε
dt′
[
Lt2< − t2

(
1

2
− ln t

)
− t′2

(
1

2
− ln t′

)
+

1

2L

]

× δ(t− t′)D(2)†
L (t)D(3)

L (t′)

=
1

2M2
KK

∫ 1

ε
dt

[
Lt2 − 2t2

(
1

2
− ln t

)]
D(2)†
L (t)D(3)

L (t) ,

(4.115)

where the definitions of the overlap integrals V Gnmk have been used in the second step.
In the third step, we have inserted the result for the infinite sum over the gluon profiles
divided by the KK masses squared (2.127). Moreover, the completeness relation for the
fermion profiles (3.62) has been employed. In the last step, the 1/2L term in the square
bracket gives no contribution due to the orthonormality condition (2.73). Upon taking
into account the prefactor, the complete expression for CG,67γ finally reads

CG,67γ ≈ cB
(
QdCFαss

2
w

2αλt

)
m2
W

M2
KK

{
L(∆D)23 − 2(∆′D)23

}
, (4.116)

where cB = O(1) is a constant and we have neglected terms of order O(v4/M4
KK).15

The matrices ∆
(′)
D have already been encountered in tree-level ∆F = 1 transitions, see

e.g. [189], and are explicitly given in (2.129). With the help of these easy recasts, we find
that the completeness relation is responsible for a well-defined, finite result. Physically,
this means that the contributions coming from the Z2-even and Z2-odd fermions within
a given KK level approximately cancel each other, similar to the gluon fusion process,
as discussed in [144].

Recall that the dimension-6 contribution has been expected to be finite right from the
beginning. One may ask if one can derive an analogous formula for the more intricate
dimension-5 contribution. Its calculation requires a closer examination. Again, we
concentrate on the overlap integral and consider

CG,57γ ∼ 2π

∫ 1

ε
dt

∫ 1

ε
dt′
∑

m

′ χGm(t)χGm(t′)

(mGm)2
D(2)†
L (t)

∑

n

md
nD(n)

L (t)D(n)†
R (t′)D(3)

R (t′)

=
1

2M2
KK

∫ 1

ε
dt

∫ 1

ε
dt′
[
−Lt2> + t2

(
L− 1

2
+ ln t

)
+ t′2

(
L− 1

2
+ ln t′

)
+

1

2L

]

×D(2)†
L (t)

∑

n

md
nD(n)

L (t)D(n)
R (t′)D(3)

R (t′) , (4.117)

where we have used t2< = −t2> + t2 + t′2. The completeness relation cannot be applied
due to the appearance of md

n in the sum. Nevertheless, the last three terms in the square
bracket can be evaluated easily using the orthonormality condition (3.62). While the t-

15This is the reason why the vev shift has been dropped.
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and t′-independent contribution to (4.117) vanishes and the t′-dependent contribution
is suppressed by ms/mb, the t-dependent correction evaluates to

1

2M2
KK

∑

n

md
n

1∫

ε

dt t2
(
L− 1

2
+ ln t

)
D(2)†
L (t)D(n)

L (t)

1∫

ε

dt′D(n)†
R (t′)D(3)

R (t′) (4.118)

=
1

2M2
KK

∑

n

md
n

[
L (∆D)2n −

(
∆′D

)
2n

]
δn3 =

mb

2M2
KK

[
L (∆D)23 −

(
∆′D

)
23

]
.

The contribution depending on t2> is somewhat more involved. In order to get rid of the
mass xdn, we make use of the EOMs (2.84) (twice) including the BCs (2.87) and get

∫ 1

ε
dt

∫ 1

ε
dt′ t2>D(2)†

L (t)
∑

n

xdnD(n)
L (t)D(n)†

R (t′)D(3)
R (t′)

= xd2

∫ 1

ε
dt t2D(2)†

R (t)D(3)
R (t) +D(2)†

L (1−)
∑

n

D(n)
R (1−)

∫ 1

ε
dt′D(n)†

R (t′)D(3)
R (t′)

= xd2

∫ 1

ε
dt t2D(2)†

R (t)D(3)
R (t) +D(2)†

L (1−)D(3)
R (1−) ≈ 0 , (4.119)

where the completeness and the orthonormality relations have been used again. In the
last step, we have neglected ms/mb-suppressed terms and made use of the fact that
the boundary term on the right-hand side vanishes [149]. Hence, we end up with the
following result

CG,57γ ≈ cA

(
QdCFαss

2
w

2αλt

)
m2
W

M2
KK

{
L(∆D)23 − (∆′D)23

}
, (4.120)

up to v4/M4
KK and ms/mb suppressed terms.16 It shall be stressed that, with the help

of the above recasts, we have shown that also CG,57γ is suppressed by two orders of the
KK scale and the second question at the beginning of this section is answered. Thus, we
only deal with dimension-6 contributions which will get important for the RG running
discussed in the subsequent section. Note also that at leading order in small parameters
the ∆′ matrices [189] can be neglected, hence CG,57γ and CG,67γ only differ in the constants

cA and cB. Consequently, we expect a constant ratio of CG,57γ /C
G,6
7γ ≈ cA/cB ≈ −2, which

has been verified numerically [184, 230].
Comparing the limit values with the analytic results (4.116) and (4.120) with the

above derived analytical expressions gives an idea of whether the original assumption
of replacing the functions IA,B by constants has been justified. For this, we define the
ratios

RGRe ≡
Re
[
CG,a7γ

]

Re
[
CG,n7γ

] , RGIm ≡
Im
[
CG,a7γ

]

Im
[
CG,n7γ

] , (4.121)

where CG,n7γ denotes the numerically determined limit value and CG,n7γ represents the
analytical formulas derived above. The constants are chosen to be cA = −1 and cB =
13/24, i.e. the value of IA,B evaluated at xnm = 1. This reflects the fact the dominant
contribution stems from the diagram with the first KK excitation of both the fermions
and the bosons. Figure 4.7 shows a stunning agreement between the analytical and
numerical approach of this problem. The plots show the distributions for RG,5Re (left

16In the following, we will refer to these corrections as “subdominant terms”.
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Figure 4.7: Distributions of the ratios RG,5Re (left) and RG,6Re (right) for 1000 parameter
points. The constants are chosen to be cA = −1 and cB = 13/24. The plots for the
imaginary parts look similar. See text for details.

plot) and RG,6Re (right plot) for 1000 parameter points. We see that the majority of
the numerical limit values can be well described by the analytical formulas (4.116) and
(4.120) with properly chosen constants cA and cB. Consequently, we have been able to
show that the RS gluon contribution to the Wilson coefficient C7γ is suppressed by two
orders of MKK and finite. The final results for CG7γ and CA7γ read

CG7γ ≈
QdCF αss

2
W

2αλt

m2
W

M2
KK

{
(cA + cB)L (∆D)23 − (cA − 2cB)

(
∆′D

)
23

}

≈ π

10

αs
λt

Lv2

M2
KK

(∆D)23 , (4.122)

CA7γ ≈
Q3
d s

2
W

λt

m2
W

M2
KK

{
(cA + cB)L (∆D)23 − (cA − 2cB)

(
∆′D

)
23

}

≈ π

200

α

λt

Lv2

M2
KK

(∆D)23 , (4.123)

where in the last lines subdominant terms have been neglected and we have evaluated
all constants except for |λt| ≈ 0.04. Observe that numerically, CG7γ is a factor of around

20αs/α ≈ 200 bigger than CA7 , so the latter can be safely neglected due to the much
smaller gauge coupling. Furthermore, note that the corrections to CG7γ and CA7γ are
both L-enhanced and proportional to the same flavor-breaking term (∆D)23, which also
appears in the ∆B = 1 Hamiltonian giving rise to b → s transitions [189]. The results
for the chirality-flipped Wilson coefficients C̃G7 and C̃A7 are obtained from (4.122) and
(4.123), respectively, by the interchange D ↔ d. This implies that to leading order in
the volume L the effects are proportional to (∆d)23. Recall that the matrices ∆D,d

scale with the product of two zero-mode profiles, see (2.130). Since |F (cQ3)| � |F (cd3)|
due to the large top-quark mass, the contribution to C̃G,A7γ is more than one order of
magnitude smaller.

Contributions from W and Z Bosons

We now turn to the analysis of the W - and Z-boson contributions which additionally
include the exchange of a gauge-boson zero mode. In the case of the W boson, the
contribution moreover includes the two diagrams (a) and (f) in Figure 4.5. Note that
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the latter fact does not affect the following considerations, since both contributions are
identical despite the functions Ii, which are set to a constant in both cases. As stated
above, the numerical approach of summing up the first five modes demonstrates that
both contributions are finite and dominated by the lowest-lying KK modes. We thus
proceed analogously to the gluon case, where we will encounter subtleties which have
not appeared before.

In the following, we only focus on the interesting dimension-5 contributions to the
Wilson coefficients. The dimension-6 contributions can be derived analogously to (4.115),
where we use the solution for the propagator function (3.36). The results will be given
(4.132) and (4.134). Performing the same steps as above, we find for the dimension-5
contribution in the Z-boson case

CZ,57γ ∼
∑

n,m

( m̃Z

mZ
m

)2md
n

mb
V Z

2mnṼ
Z
nm3 (4.124)

≈ 1

xd3

∑

n

∫ 1

ε
dt

∫ 1

ε
dt′
(

1 +
Lm2

Z

2M2
KK

[
1− t2>

])
D(2)†
L (t)

[
gdLP+ + gdRP−

]
D(n)
L (t)

× xdnD(n)
R (t′)

[
gdLP+ + gdRP−

]
D(3)
R (t′)

≈ − 1

xd3

(
gdL − gdR

)2
IZ++ − gdL

(
gdL − gdR

)
(δD)23 − (gdL)2 Lm

2
Z

2M2
KK

(∆D)23 ,

where we have defined

IZ++ ≡
∑

n

∫ 1

ε
dtD(2)†

L (t)P+D(n)
L (t)D(n)†

L (1−)P+D(3)
R (1−) , (4.125)

and neglected subleading terms.17 Note that we cannot apply the completeness relation
in (4.125), due to the appearance of the projection operators. For the general case of
three generations, it is not possible to obtain a closed, analytic expression. Therefore, we
calculate it for the special case of one generation, whose bulk mass parameters vanish,
i.e. cQ = cu = cd = 0, and then conjecture that this result can be generalized to the
more general case of three dimensions and non-vanishing bulk mass parameters.18 For
this special case, the EOMs for the profile functions become very easy and are solved
in terms of simple trigonometrical functions, which can be evaluated in the limit ε→ 0.
The KK masses xn = mqn/MKK are the solutions to the eigenvalue equation [144]

tan2xn = tanh2Xq , Xq =
v√

2MKK

Yq , (4.126)

where without loss of generality it is assumed that Yq is real and positive. This equation
can be solved to give

xn =





n− 1

2
π + x1 , n = 1, 3, 5, . . . ,

n

2
π − x1 , n = 2, 4, 6, . . . ,

(4.127)

17Besides omitting terms suppressed by v4/M4
KK and ms/mb, we have also neglected terms propor-

tional to (εD,d)23. The matrices εD,d are given by the left integral in (2.129), where the projection
operators P∓ are inserted between the fermion profiles. In other words, they are defined as the matrices
∆D,d, where the C-profiles are omitted [145].

18This idea was used in [144] to conjecture formula (4.25) for the KK contribution to the gluon-fusion
amplitude.
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where x1 = arctan(tanhXq) denotes the mass of the SM quark in units of the KK scale.
The corresponding even and odd profile functions are

√
2π

Lε
C(Q)
n (t) a(Q)

n = cos(xnt) ,

√
2π

Lε
C(q)
n (t) a(q)

n = ± cos(xnt) ,
√

2π

Lε
S(Q)
n (t) a(Q)

n = sin(xnt) ,

√
2π

Lε
S(q)
n (t) a(q)

n = ∓ sin(xnt) ,

(4.128)

where the upper (lower) signs hold for odd (even) values of n. It is now an easy exercise
to evaluate (4.125) for this special case,

IZ,1gen
++ =

∑

n

∫ 1

0
dt cos(xd1 t) cos(xdn t) cos(xdn) sin(xd1)

= cos(xd1) sin(xd1)

{∫ 1

0
dt cos2(xd1 t) + 2

∑

n

(−1)n
∫ 1

0
dt cos2(xd1 t) cos(nπt)

}

= cos(xd1) cos2(xd1) sin(xd1)

= cos(xd1)
1

1 + tanh2Xd

sin(xd1) , (4.129)

where relation (4.126) has been used in the last step. It is reasonable to conjecture
that IZ++ in the more general case of three dimensions and non-vanishing bulk mass
parameters reads

IZ++ =

√
2π

Lε

v

MKK
a

(D)†
2 C

(Q)
2 (1−)

1

1 + tanh2Xd

Ỹ dC
(d)
3 (1−) a

(d)
3

=

√
2π

Lε

v

MKK
a

(D)†
2 C

(Q)
2 (1−)

(
1− v2

2M2
KK

Y dY
†
d + . . .

)
Ỹ dC

(d)
3 (1−) a

(d)
3

= −xd3 (δD)23 −
3

2

v

MKK
(∆g̃dh)23 + . . . ,

(4.130)

up to terms suppressed by ms/mb. In the last step, we have employed the ZMA approx-
imation and defined [149]

∆g̃dh =

√
2v2

6M2
KK

U †d F (cQ)Y d Y
†
d Y d F (cd)W d , (4.131)

with the zero-mode profiles and the diagonalization matrices defined in (2.93) and
(2.106), respectively. This chirally unsuppressed contribution, which arises from the
Z2-odd Yukawa couplings,19 is the dominant source of flavor violation in the Higgs sec-
tor [149]. It can be assigned to the diagram with KK fermions and the longitudinal
degrees of freedom, i.e. the Goldstone bosons of the Higgs doublet (2.9), running in the
loop, see Figure 1(a) in [245]. Consequentially, this term is missing in the gluon and
photon case (note that the corresponding prefactor in (4.124) vanishes for gdL = gdR = 1).

Although this procedure turned out to be successful in the case of the Higgs produc-
tion process via gluon fusion [144], it is not obvious why the quantity (4.125) is supposed
to be independent of the bulk mass parameters. In fact, the 5D fermion propagator has
a complicated structure which depends non-trivially on the bulk masses. One can show
numerically that (4.130) still holds in the case of one generation and cQ = cq 6= 0. In

19Note that for Y †d ≡ Y
S,†
d → 0 this term vanishes.
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the case of cQ 6= cq, the conjecture (4.130) is not correct any more. However, we will
see that (4.130) is still a very good approximation for (4.125). A derivation of a formula
including the dependence of cQi,qi is left for future work.

We are now all set to write down the final, approximate results for the Wilson coef-
ficients

CZ,57γ ≈
−cAQd
λt

{
(gdL)2 Lm

2
Z

2M2
KK

(∆D)23 + gR(gdL − gdR)(δD)23 − (gdL − gdR)2 3v

2mb
(∆g̃dh)23

}
,

CZ,67γ ≈
−cB Qd
λt

{
(gdL)2 Lm

2
Z

2M2
KK

(∆D)23 +
(

(gdL)2 − (gdR)2
)

(δD)23

}
. (4.132)

The results for the W -boson contribution can be directly read off from (4.132), keeping
in mind that in this case gL ≡ 1, gR ≡ 0. Defining

∆g̃udh =

√
2v2

6M2
KK

U †d F (cQ)Y u Y
†
u Y d F (cd)W d , (4.133)

which accounts for the fact that the term 1/(1 + tanh2Xu) replaces the corresponding
term in (4.130), we find

CW,57γ ≈ −
1

2λt

(
cA
Qu
2

+ cC

){
Lm2

Z

2M2
KK

(∆D)23 −
3v

2mb
(∆g̃udh )23

}
,

CW,67γ ≈ −
1

2λt

(
cB
Qu
2

+ cD

){
Lm2

Z

2M2
KK

(∆D)23 + (δD)23

}
.

(4.134)

Both contributions from the W -boson exchange diagram (cA, cB) and the three-boson
vertex diagram (cC , cD) have been taken into account. Neglecting the chirally-suppressed
terms (∆D)23 and (δD)23 we arrive at

CZ7γ ≈ cA
3Qd
2λt

(T d3 )2 v

mb
(∆g̃dh)23 ≈ 1

16λt

v

mb
(∆g̃dh)23 , (4.135)

CW7γ ≈
3

4λt
(cA

Qu
2

+ cC)
v

mb
(∆g̃udh )23 ≈ −

5

16λt

v

mb
(∆g̃udh )23 , (4.136)

where we have assumed cA = −1/2 and cC = −1/4, i.e. the functions evaluated for values
for M2

KK � m2
W,Z . The (approximate) results for the chirally-flipped Wilson coefficients

C̃Z7γ and C̃W7γ are given by the above results with ∆g̃dh → (∆g̃dh)† and ∆g̃udh → (∆g̃udh )†.
The results (4.122), (4.123), (4.135), and (4.136) are the main results of this section.

They provide approximate expressions for the infinite double sum in terms of simple
quantities. Except for ∆g̃udh all of them have already been encountered in tree-level
FCNCs. In order to validate the above results, we compare these analytical expressions
with the numerical limit values. Figure 4.8 shows a pretty good agreement, so it is
justified to use the results in question for the following analyses. The enhancement in
(4.134) and (4.132) by a factor of v/mb compared to the corrections due to KK gluon
and photon exchange will render the W -boson contribution the most important one.20

20The Z-boson contribution is suppressed by the small factor
(
gdL − gdR

)2
= 1/4.
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Figure 4.8: Distribution of the ratios RW,5Re and RZ,5Re , which are defined according to
(4.121) with cA = −0.5. The plots for the imaginary part as well as for the dimension-
six contributions look similar.

Contribution from the Three-Gluon Vertex

So far, we have only investigated contributions to the Wilson coefficients C7γ and its
chirality-flipped counterpart and stated that the ones for C8g and C̃8g can be simply
obtained by exchanging the prefactors. However, the three-boson vertex differs in both
cases. While it is the emission of the photon by the W boson in the former case (diagram
(f) in Figure 4.5), it is the three-gluon vertex (see Figure D.6 in the appendix) in the
latter. Let us check if the three-boson vertex indeed gives the main contribution to C8g

and C̃8g, as claimed in [245].
The result for the three gluon contribution differs from the one stemming from the

gluon exchange just by the functions Ii. While IA (IB) are strictly positive (negative),
the situation changes in the present case. The functions IE and IF range from

IE(x) =
1 + 9x− 13x2 + 3x3 + 8x log(x)

2(−1 + x)3
∈ [−1/2, 3/2] ,

IF (x) =
4 + 40x− 99x2 + 68x3 − 13x4 − 6x(−6 + 5x) log(x)

12(−1 + x)4
∈ [−13/12, 1/3] .

(4.137)

Due to the fact that the sign changes for a certain mass ratio, it is not as nicely motivated
as in the previous cases to replace the functions by a constant. However, doing the same
analysis, we find that the constants can be chosen cE = 5/6 and cF = −5/8. Again,
these values agree with the function values at 1, representing the main contribution
originating from both fermion and boson KK modes (xGmn ≈ 1). Being able to replace
the function by a constant means, on the other hand, that the two contributions from
the gluon exchange and the three-gluon vertex are comparably big. However, the gluon
contribution to both C8g and C̃8g is still negligible compared to the one stemming from
the W -boson exchange, which we will see in the following subsection. This observation
stands in contradiction with the findings of [245] .
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Final Results and Relative Magnitudes of the Diagrams

It is now possible to write down the final results for the Wilson coefficients at leading
order in small parameters. They read

CKK
7γ ≈

1

λt

[
− 5

16

v

mb
(∆g̃udh )23 +

1

16

v

mb
(∆g̃dh)23 +

παs
10

Lv2

M2
KK

(∆D)23

]
,

C̃KK
7γ ≈

1

λt

[
− 5

16

v

mb
(∆g̃ud †h )23 +

1

16

v

mb
(∆g̃d †h )23 +

παs
10

Lv2

M2
KK

(∆d)23

]
,

(4.138)

and

CKK
8g ≈

1

λt

[
3

16

v

mb
(∆g̃udh )23 +

3

16

v

mb
(∆g̃dh)23 +

παs
11

Lv2

M2
KK

(∆D)23

]
,

C̃KK
8g ≈

1

λt

[
3

16

v

mb
(∆g̃ud †h )23 +

3

16

v

mb
(∆g̃d †h )23 +

παs
11

Lv2

M2
KK

(∆d)23

]
,

(4.139)

where the W -boson (Z-boson, gluon) contributions are given by the first (second, third)
terms. These relations also hold for the b→ dγ transition, provided that the indices are
adjusted properly (2→ 1).

Addressing the question about the relative magnitudes of the various contributions
is now any easy task. For this, we evaluate the three contributions in the final results
(4.138) and (4.139) numerically. It turns out that the relative magnitudes are generically

CW7γ : CZ7γ : CG7γ ∼ 1 : O(10−1) : O(10−2) ,

C̃W7γ : C̃Z7γ : C̃G7γ ∼ 1 : O(10−1) : O(10−3) ,

CW8g : CZ8g : CG8g ∼ 1 : O(1) : O(10−2) ,

C̃W8g : C̃Z8g : C̃G8g ∼ 1 : O(1) : O(10−3) .

(4.140)

We see that in all cases the W -boson diagrams give the largest contributions. In the
case of C7γ and C̃7γ , they dominate over the Z-boson contributions due to the larger

prefactor and due to the fact that (∆g̃ud †h )23 turns out to a factor of approximately twice

as large as (∆g̃d †h )23. The gluon contribution only has a minor effect, since (∆D,d)23 are
chirally suppressed which cannot be compensated by the enhancement from the larger
gauge coupling. The significance of the Z-boson contribution increases in the case of
C8g and C̃8g, since in that case the three-(W -)boson vertex diagram is not contributing.
The three-gluon vertex diagram rather increases the gluon contribution by a factor of
roughly 5. Although the W -boson contribution is decreased and the gluon contribution
increased, we see that the latter is still subdominant, which is due to the smallness of
(∆D,d)23.

To conclude, we have succeeded in answering all questions at the beginning of this
subsection. For the further analysis, we will use the results (4.138) and (4.139). Before
we can turn to the phenomenological implications in Section 5, we will first discuss the
RG evolution of the Wilson coefficients.
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Figure 4.9: The diagram on the left (in the middle) shows how current-current op-
erators (the dipole operator O8g) can contribute to O7γ , whereas the diagram on the
right shows how O7γ mixes into itself.

4.3.4 Renormalization Group Evolution and Final Results

Equipped with final expressions for the Wilson coefficients at MKK, we will now inves-
tigate the QCD effects for which the operator mixing of all contributing dimension-6
operators, in particular the four-fermion operators that can be contribute through the
diagram shown on the left-hand side in Figure 4.9, have to be considered. What con-
cerns the neutral current-current operators, this has been done in [247]. Upon taking into
account also the charged current-current operators, the complete effective Lagrangian
reads

Leff = −4GF√
2


 ∑

u=u,c,t

∑

i=1,2

λuC
(u)
i Q

(u)
i − λt

∑

i=3,..,6,7γ,8g

CiQi

+
∑

i=1,2

∑

A=L,R





∑

q=u,c,t,d,s,b

C
(q),LA
i Q

(q)
i (L,A) + Ĉ

(d),LA
i Q̂

(d)
i (L,A)





+
{
C → C̃,Q→ Q̃, L↔ R

}]
, (4.141)

where all Wilson coefficients are evaluated at MKK. The charged current-current opera-

tors Q
(u)
i are defined as in the SM, where the corresponding operators with right-left or

left-right chirality do not mix into the other operators and thus do not have to be taken
into account here. The definitions of all neutral current-current operators can be found
in [247] and we have adopted the nomenclature of this reference. One finds that their
effect is negligible in the RS model, so it is not necessary to show them explicitly.

We will now go through the basic steps of how to find the phenomenologically rele-
vant Wilson coefficients at the meson scale µb. In order to derive the evolution matrix
U(µb,MKK), one has to determine the ADM γ̂ of the operator basis which has been
already done in [247]. Using these anomalous dimensions, the evolution matrices of the
form U(µ1, µ2) can be derived via the relation

U(µ1, µ2) = V̂



[
αs(µ2)

αs(µ1)

]~γ(0)

2β0



D

V̂ −1 , (4.142)

with β0 = (33 − 2f)/3, where f denotes the number of flavors integrated out. The
matrix V̂ diagonalizes γ̂(0)T , while ~γ(0) represents the vector containing the eigenvalues
of γ̂(0)T . We integrate out the top quark at µt = 172.6 GeV separately, so that the
evolution matrix U(µW ,MKK) splits into two parts:

U(µW ,MKK) = U (f=5)(µW , µt) U
(f=6)(µt,MKK) . (4.143)
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MKK 1 TeV 2 TeV 5 TeV 10 TeV

a7 0.505 0.480 0.450 0.430
a8 0.120 0.123 0.126 0.128
b8 0.550 0.526 0.497 0.478

Table 4.2: The coefficients for the Wilson coefficients (4.149) and (4.150) depending
on different KK scales.

Note that not only β0, but also the ADM depends on f . Arrived at µW , we add the

zero-mode contributions C
(0)
i (µW ) stemming from the diagrams with zero-mode of the

fermions and the massive gauge bosons, which can be split into of two parts:

~C(0)(µW ) = ~CSM(µW ) + ~CRS(0)(µW ) . (4.144)

The vector ~C ≡ {Ci}i comprises all Wilson coefficients of (4.141). The coefficients

C
RS(0)
i (µW ) include the contributions from the Z-boson zero mode as well as the RS

corrections due the non-unitarity of the CKM matrix and the differences in the masses
m̃2
W and m2

W . While the SM value is added at the end of the calculation, i.e. at the
scale µb, we have to let the additional RS contributions

~CRS(µW ) = U (µW ,MKK) ~CKK(MKK) + ~CRS(0)(µW ) (4.145)

run down to the hadron scale µb via the matrix U(µb, µW ). This matrix is obtained in
same way as U(µW , µt). We finally obtain the formula for the RS contributions at µb:

~CRS(µb) = U (µb, µW ) ~CRS(µW )

= U (µb,MKK) ~CKK(MKK) + U (µb, µW ) ~CRS(0)(µW ) .
(4.146)

After adding the SM contribution the final Wilson coefficients read

~Cfin(µb) = ~CSM(µb) + ~CRS(µb) , (4.147)

where ~C(SM)(µb) includes the NNLO SM results for C7γ and C8g [248–250]

CSM
7γ (µb) = −0.353 , CSM

8g (µb) = −0.150 . (4.148)

The RS contributions at LO are given by

CRS
7γ (µb) = a7C

RS
7γ (MKK) + a8C

RS
8g (MKK)

+ 0.630C
RS(0)
7γ (µW ) + 0.100C

RS(0)
8g (µW )− 0.196

∑

u=u,c

C
(u)
2 (µW ) , (4.149)

CRS
8g (µb) = b8C

RS
8g (MKK) + 0.067C

RS(0)
8g (µW )− 0.090

∑

u=u,c

C
(u)
2 (µW ) . (4.150)

Depending on the KK scale MKK we get different values for the coefficients ai and bi
shown in Table 4.2, where we have chosen µb = 2.5 GeV and µt = 172.6 GeV. These
formulas also hold for C̃RS

7γ as QCD is blind to the fermion chirality.21 We see that,
just as in the SM, the Wilson coefficients of the dipole operators are suppressed by QCD

21The corresponding SM values for C̃7γ and C̃8g are set to zero due to the already mentioned ms/mb-
suppression.
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Figure 4.10: Distribution of the absolutes values of the RS contributions to the Wilson
coefficients C7γ (upper left), C̃7γ (upper right), C8g (lower left), and C̃8g (lower right),
evaluated at the scale µb = 2.5 GeV. Note the different scaling of the diagrams on the
left and right-hand side.

effects. Furthermore, contributions can arise from the charged current-current operators

C
(u,c)
2 (µW ) ≈ 2παv2

s2
wM

2
KK

, (4.151)

which originate from the universal corrections to the W -boson profile and are roughly
in the same order of magnitude as the radiative Wilson coefficients. However, they are
multiplied by −0.196, so they do not give significant effects.

The equations (4.149) and (4.150) together with (4.138) and (4.139) provide the
final results for the RS contributions to the Wilson coefficients C7γ , C̃7γ , C8g, and C̃8g,
including the effects of the RG evolution down to the hadron scale µb. The general
pattern of these corrections is illustrated in Figure 4.10, which shows a distribution of
their absolute values for 5000 parameter points. Comparing the corrections to C7γ and
C̃7γ , shown in the first row, we observe that the chirality-flipped operator receives about
one order of magnitude larger contributions. This can be understood by having a closer
look at the dominating quantities (4.131) and (4.133), respectively. Recall that C7γ

(C̃7γ) depends on F (cbR) (F (cbL)), where cbL ≡ cQ3 and cbR ≡ cq3 . Consequentially, the
dominance of C̃7γ can be traced back to the fact that |F (cbL)| � |F (cbR)|, which is due
to the large mass difference between the top and bottom quark. The same effect can
be observed in the second row, where the corrections to C8g and C̃8g are depicted. The
fact that the corrections are of the same order of magnitude stands in contraction to
the findings of [245] claiming that the corrections to C8g and C̃8g are about one order
of magnitude larger due to the three-gluon vertex diagram. Nevertheless, the effects are
still significant, especially for the chirality-flipped Wilson coefficients. Since the phases
are not fixed, there can be large imaginary parts leading to CP-violating effects. The
resulting phenomenological consequences will be examined in the subsequent chapter.





Chapter 5

Phenomenological Implications

A clear indication for models with warped extra dimensions would be the direct detection
of KK modes. Unfortunately, none of these predicted particles have been observed yet,
and the electroweak precision measurements indicate that their masses could be too
large for direct detection at the LHC, as discussed in Sections 2.2.4 and 2.3.3. Indeed,
the current limit on the mass of the lightest KK gluon g(1) via searches for resonances in
the invariant mass spectrum of tt̄ production by the ATLAS Collaboration is reported
to be (see Figure 5.1) [251]

Mg(1) > 2.0 TeV at 95% confidence level (CL) . (5.1)

Thus, indirect searches for warped extra dimensions become a more and more attrac-
tive alternative. One possibility is given by precision measurements of the Higgs-boson
couplings to SM particles, which are accessible via studies of both the Higgs produc-
tion cross section and its decay rates. Another viable framework to look for deviations
from the SM predictions is given by the investigation of flavor processes which are loop-
suppressed in the SM and hence allow for NP to be reflected in significant effects. In this
chapter, we will make use of the findings of Chapter 4 and examine their phenomeno-
logical implications on both Higgs and flavor processes. While Section 5.1 is based on
our publications [150, 151, 252], Section 5.2 includes unpublished work.

5.1 Higgs Physics in Warped Extra Dimensions

In this section, we study the phenomenological implication of the findings of Section 4.1
and 4.2. In the context of Higgs physics, new-physics deviations from the SM can be
searched for by the signal rates

RX ≡
(σ · BR)(pp→ h→ X)NP

(σ · BR)(pp→ h→ X)SM
=
σ(pp→ h)NP

σ(pp→ h)SM

Γ(h→ X)NP

Γ(h→ X)SM

ΓSM
h

ΓNP
h

, (5.2)

for the production of the Higgs boson in pp collisions and its subsequent inclusive
decay into an arbitrary final state X. This section includes a detailed discussion of
the signal rates RX for the Higgs production and the most relevant decays into X =
bb̄, τ+τ−, WW ∗, ZZ∗, and γγ at the LHC in different incarnations of the RS model.
From (5.2) we can read off that new physics can show up in three different ways. Firstly,
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Figure 5.1: Exclusion plot for the mass of the first KK gluon obtained from an analysis
of the invariant mass spectrum of tt̄ production by the ATLAS Collaboration [251].

it can lead to deviations in the Higgs production cross section σ(pp → h), which can
be decomposed into the Higgs production via gluon fusion, vector-boson fusion, Higgs-
strahlung, and the Higgs production associated with an emission of a tt̄ pair, where
relative contributions read (for mh = 125 GeV) [253]

σ(pp→ h) = 0.872σggh + 0.070σV V h + 0.033σWh + 0.020σZh + 0.005σtt̄h . (5.3)

Secondly, we can investigate the new-physics contributions to the Higgs decay rates
Γ(h → X), and, thirdly, to the total Higgs width Γh. Via the latter quantity the
rates are sensitive to non-standard or invisible Higgs decays. The following analysis
will take into account all three possibilities. While the gluon-fusion process has already
been discussed in Section 4.1, we will analyze the effects of the exchange of virtual
KK resonances in the Higgs-strahlung and vector boson-fusion production processes.
Moreover, we will take a closer look at the Higgs decays into pairs of W and Z bosons,
including their subsequent decays into leptons. This allows for a thorough discussion of
the implications of the latest LHC results on the RS parameter space.

In the context of various RS models, the couplings of all tree- and loop-induced
Higgs couplings to fermions and gauge bosons, as well as the Higgs self-couplings will be
summarized and discussed. It has been reported in [254] that the LHC at

√
s = 14 TeV

and with an integrated luminosity of 300 fb−1 has the potential to probe deviations of
Higgs couplings to fermions in the range of ∼ 30% and to gauge bosons in the range
of ∼ 16%, both at 95% confidence level (CL), in a model-independent way. At future
lepton colliders like the International Linear Collider (ILC) [255–258] the sensitivity to
deviations can be improved by almost one order of magnitude (assuming

√
s = 1 TeV and

an integrated luminosity of 1000 fb−1). In order to explore to which extent it is possible
to obtain evidence for models with warped extra dimensions by indirect measurements, it
will be illustrated which regions of parameter space could be probed at these facilities.
This analysis will be performed for both the minimal and the custodial RS model,
taking into account the distinction between the brane-localized and the narrow bulk-
Higgs scenario. Although the findings of the Sections 3.1.2 and 4.2.2 could be used to
extent parts of the following analysis to the more general case of a bulk Higgs sector,
this is beyond the scope of this thesis and is part of future work [259].
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(b) Higgs-strahlung (c) Vector-boson fusion(a) h→WW ∗, ZZ∗ decays

Figure 5.2: Tree-level Feynman diagrams for the off-shell Higgs decays to pairs of
W and Z bosons, and Higgs production in the Higgs-strahlung and vector-boson fusion
processes.

This section is structured as follows: In Section 5.1.1 we will calculate the cross
sections for the Higgs production processes via Higgs-strahlung and vector-boson fusion
as well as the decay rates for the Higgs decay into pairs of electroweak gauge bosons.
Section 5.1.2 will then summarize the main Higgs couplings to fermions and gauge bosons
in the RS model, including the loop-induced couplings to two gluons and photons. All
expressions will be exact at first order in the expansion in v2/M2

KK. A numerical study
of these couplings will be performed in Section 5.1.3, where a discussion of the CP-
odd couplings and of the anti-correlation between the hgg and hγγ couplings will be
included as well. It will moreover be commented on the possibility to detect deviations
from the SM values of the Higgs couplings at the LHC operating at

√
s = 14 TeV and

with an integrated luminosity of 300 fb−1, and an ILC operating at
√
s = 1 TeV with an

integrated luminosity of 1000 fb−1. In Section 5.1.4 the RS predictions for pp→ h→ bb̄,
τ+τ−, WW ∗, ZZ∗, γγ will then be compared with the current data from the LHC,
which can be used to deduce bounds on the relevant parameters of the RS models. An
overview of the bounds coming from all five decay channels will be given at the end of
this section.

5.1.1 Higgs Production and Decay via W,Z Bosons

We begin with the detailed discussion of the structure of new physics effects in the
couplings of the Higgs boson to pair of electroweak gauge bosons. These couplings are
probed in the off-shell Higgs decays h → WW ∗ and h → ZZ∗ with subsequent decays
into four fermions, as well as in the production of the Higgs boson in vector-boson fusion
or in the Higgs-strahlung process, see Figure 5.2. All these three tree-level processes have
in common that they involve the exchange of virtual vector bosons, which implies that in
addition to the SM W and Z bosons we must consider the effect of the infinite towers of
KK resonances. It is often assumed in the literature that the main effect of new physics
on these processes arises from a rescaling of the on-shell hV V couplings. It will be shown
that there are also several other effects that need to be accounted for, namely a possible
rescaling of the Higgs vev, a modification of the couplings of the W and Z bosons to light
fermions, and the exchange of new heavy particles in the off-shell propagators. In RS
models all of these effects are indeed present, and accounting for them correctly will be
important for a general definition of the signal strength in terms of the Higgs couplings
to fermions and vector bosons in Section 5.1.4. To good approximation, however, we
will find that the main effects can be accounted for by a multiplicative rescaling of the
SM decay rates and production cross sections.
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Higgs Decay into Vector Bosons

We will now study the decay of the Higgs boson to a pair of electroweak gauge bosons,
taking h→WW ∗ as a concrete example. Since mh < 2mW , this decay is only allowed if
at least one of the W bosons is produced off-shell. We thus need to consider the process
h→ W−W+∗ → W−fif̄ ′j , where the off-shell boson decays into a pair of light fermions

fi and f̄ ′j with generation indices i, j. In the SM, the corresponding differential decay
rate is given by [260]

dΓ

ds
=

1

16π2m3
h

Γ(W+→fif̄
′
j)

mW

m2
W

v2

λ
1
2 (m2

h,m
2
W , s)(

m2
W − s

)2
[(
m2
h −m2

W

)2
+ 2s(5m2

W −m2
h) + s2

]
,

(5.4)
where s is the invariant mass squared of the fermion pair, and λ(x, y, z) = (x−y− z)2−
4yz. The result has been expressed in terms of the on-shell decay rate for the process
W+→fif̄

′
j ,

Γ(W+ → fif̄
′
j) = Nf

c mW
g2

24π
|gij,L|2 , (5.5)

where g denotes the SU(2)L gauge coupling, the color factor Nf
c = 1 for leptons and 3

for quarks, and gij,L = δij/
√

2 for leptons and V CKM
ij /

√
2 for quarks. Performing the

remaining integration over s in the interval 0 ≤ s ≤ (mh−mW )2 and neglecting fermion-
mass effects, one obtains

Γ(h→W−W+∗ →W−fif̄ ′j) =
m3
h

32πv2

Γ(W+→fif̄
′
j)

πmW
g

(
m2
W

m2
h

)
, (5.6)

where the first factor is one half of the (would-be) on-shell h→WW width in the limit
mh � mW , the second factor accounts for the suppression due to the fact that one of the
W bosons in the decay h→WW ∗ is produced off-shell, and the phase-space function is
given by

g(x) =
6x(1− 8x+ 20x2)√

4x− 1
arccos

(
3x− 1

2x3/2

)
−3x(1−6x+4x2) lnx−(1−x)(2−13x+47x2) .

(5.7)
The off-shell decay considered here arises if x > 1/4. It is common practice to define
the off-shell h→WW ∗ decay rate as

Γ(h→WW ∗) ≡ 2
∑

fi,f ′j

Γ(h→W+fif̄
′
j) , (5.8)

where the sum includes all fermion pairs with total mass lighter than mW . The factor 2
accounts for the charge-conjugated decays h → W−f̄if ′j . In the SM the expression for
Γ(h → WW ∗) has the same form as in (5.6), but with the partial decay rate Γ(W+→
fif̄
′
j) replaced by twice the total decay width ΓW of the W boson.
Analogous formulas hold for the decays based on h → ZZ∗, where we must replace

W → Z everywhere and use the corresponding expression

Γ(Z → ff̄) = Nf
c mZ

g2

24πc2
w

(
g2
f,L + g2

f,R

)
, (5.9)
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for the partial decay rates of the Z boson in the SM, where gf,L = T f3 − s2
wQf and

gf,R = −s2
wQf are the left-handed and right-handed couplings of the various fermion

species, and sw = sin θw and cw = cos θw are the sine and cosine of the weak mixing
angle, see below. In this case the total off-shell decay rate is defined as

Γ(h→ ZZ∗) ≡
∑

f

Γ(h→ Zff̄) , (5.10)

where the sum includes all fermions lighter than mZ/2. It follows from this definition
that for the golden channel

Γ(h→ ZZ∗ → l+l−l+l−) = Γ(h→ ZZ∗)
[
Br(Z → l+l−)

]2
. (5.11)

After the description of the Higgs decay into two gauge bosons in the SM, we now
discuss in detail how the above results must be modified in the context of the minimal
RS model. For the purposes of this discussion it is convenient to define the weak mixing
angle s2

w via the structure of the neutral current, which can be studied experimentally
via the Z-pole polarization asymmetries observed at LEP. Alternative definitions are
related to this one through the electroweak precision variables S, T and U ; see e.g.
[161] for a detailed discussion. In the context of RS models one has s2

w = g′25 /(g
2
5 + g′25 )

in terms of the 5D gauge couplings, see also (2.12). If this ratio is extracted from
experiment there are no new physics corrections to the branching ratios Br(W → fif̄

′
j)

and Br(Z → ff̄). Modifications arise for the Higgs couplings to vector bosons, the
electroweak gauge couplings entering the partial decay rates (5.5) and (5.9), and due
to the contributions of heavy KK resonances, which change the momentum-dependent
gauge boson propagator. For concreteness the decay h → W−W+∗ will be considered
to study the impact of these corrections in the context of the minimal RS model. In the
Feynman diagram in Figure 5.2(a) the off-shell gauge-boson propagator now contains
the SM gauge boson and its infinite tower of KK excitations. The Feynman rule for the
W+(0)W−(n)h vertex is (with n = 0 for the zero mode and n > 0 for the KK excitations,
see (C.1), diagram b))

minimal RS:
2im̃2

W

v
ηµν 2π χW0 (1)χWn (1) ,

custodial RS:
2im̃2

W

vc2
ϑ

ηµν 2π ~χW0 (1)T Dϑ ~χ
W
n (1) ,

(5.12)

where the leading order W -boson masses m̃2
W and profiles χW0 (t), ~χW0 (t) are given in

(2.30), (2.169) and (2.31), (2.170). The matrix Dϑ with the angle ϑ defined in (2.146)
can be found in (2.165). As mentioned several times, the vev v in the RS model differs
from the Higgs vev vSM. It is determined by the shift to the Fermi constant derived
in the RS model by considering (at tree level) the effect of the exchange of the infinite
tower of KK modes of the W boson on the rate for muon decay.1 Employing the results
for the 5D boson propagator functions at vanishing momenta, given in (3.36) and (3.40),

1If one uses instead the shift on the value of theW -boson mass, one finds some additional contributions
not enhanced by a factor of L, which are numerically insignificant [145].
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one obtains

GF√
2

=
1

2v2
SM

min
=

1

8

g2
5

2πr
BW (ε, ε, 0) =

1

2v2

[
1 +

Lm2
W

2M2
KK

+ . . .

]
,

cust
=

1

8

g2
L,5

2πr

(
1 0

)
BUV
W (ε, ε, 0)

(
1
0

)
=

1

2v2

[
1 +

Lm2
W

2c2
ϑM

2
KK

+ . . .

]
,

(5.13)

where the first (second) line holds for the minimal (custodial) RS model. Here and in
the following, the ellipsis stands for terms of order v4/M4

KK. We can combine the above
results via

κv ≡
v

vSM
= 1 +

Lm2
W

4c2
ϑM

2
KK

+ . . . , (5.14)

where c2
ϑ = 1 in the minimal RS model, while it can take non-trivial values and may

therefore be enhanced in the RS model with custodial symmetry. In particular, the
correction is twice as large if the PLR symmetry is at work.

Combining the Feynman rule (5.12) with the vev shift, one finds correction factors
for the Higgs coupling to two W -boson zero modes of

cW
∣∣
min

=
vSM

v

m̃2
W

m2
W

2π χW0 (1)χW0 (1) = 1− m2
W

2M2
KK

(
3L

2
− 1 +

1

2L

)
+ . . . ,

cW
∣∣
cust

=
vSM

v

m̃2
W

m2
W c

2
ϑ

2π ~χW0 (1)T Dϑ ~χ
W
0 (1) = 1− m2

W

2M2
KK

(
3L− 1 +

1

2L

)
+ . . . .

(5.15)

These correction factors are just cW ≡ κW /κv, where κW and the vev shift κv are given
in (4.91) and (5.14) respectively. Notice that in the custodial model the dominant term
in the round bracket on the right-hand side involves a factor of 2.

The Feynman rule for the W
+(n)
µ ū

(i)
A d

(j)
A vertex, where A = L,R is a chirality label

and i, j labels the flavors of the SM quarks, has already been needed in the previous
chapter, when we discussed the b → sγ transition. While the corresponding Feynman
rule in the minimal model is given in (C.2), it reads in the custodial model

i
gL,5√

2

1√
2πr

∫ 1

ε
dt
√

2π U (i)
A (t)

(
Ω1

gR,5
gL,5

Ω2

)
~χWn (t) γµD(j)

A (t)PA , (5.16)

with the chirality projector PR,L = 1
2(1± γ5) and the matrices

Ω1 =




1 0 0
0 0 0
0 0 0
0 0 1
0 0 0



, Ω2 =




0 0 0
1 0 0
0 0 0
0 0 0
0 1 0



. (5.17)

Note that for the W boson the leading contribution to the CKM matrix is given by the
(11)-component of Ω1. Corrections coming from the non-universality of the KK gauge
bosons as well as from the admixture of the U ′ and D′ are chirally suppressed and can
be neglected for the components that couple light fermions [149]. This feature extends
to the case of the KK excitations of the W boson. Effectively this means that only the
universal contribution of the W profiles, which are given by ~χWn (ε), need to be kept. It
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turns out that it is an excellent approximation for the light SM quarks to use

minimal RS: i
g5√

2

1√
2πr

√
2π χWn (ε)V CKM

ij γµPL ,

custodial RS: i
gL,5√

2

1√
2πr

√
2π
(
1 0

)
~χWn (ε)V CKM

ij γµPL .

(5.18)

Corrections to this result, including the couplings to right-handed fermions, are strongly
chirality suppressed. Note, in particular, that for the zero mode one encounters correc-
tion factors

c
1/2
ΓW

∣∣
min
≡ g5√

2πrg

√
2π χW0 (ε) = c

1/2
ΓW

,

c
1/2
ΓW

∣∣
cust
≡ gL,5√

2πrg

√
2π
(
1 0

)
~χW0 (ε) = c

1/2
ΓW

,
(5.19)

relative to the SM, which will affect all decay amplitudes of the W boson into light
fermions. We see that this correction factor is the same for both the minimal and the
custodial RS model and reads

c
1/2
ΓW

= 1− m2
W

2M2
KK

1

4L
+ . . . . (5.20)

It follows that, relative to the SM, we must make the following replacements in the
SM decay amplitude for h→W+W−∗ →W+ūidj :

1

m2
W − s

min→ vSM

v

m̃2
W

m2
W

√
2π χW0 (1)

g5√
2πrg

2π BW (1, ε;−s) ,

cust→ vSM

v

m̃2
W

m2
W c

2
ϑ

√
2π χW0 (1)T

gL,5√
2πrg

2πBUV
W (1, ε;−s)

(
1
0

)
,

(5.21)

with the 5D gauge-boson propagators BW (t, t′;−p2) and BUV
W (t, t′;−p2). Using the

expansions for p2 . m2
W (3.31) and (3.40), we can now rewrite the right-hand side of

(5.21) in the form

1

m2
W − s

→ c
1/2
ΓW

cW

[
1

m2
W − s

− 1

4M2
KK

(
1− 1

L
+ . . .

)]
. (5.22)

This result has an intuitive form. The factor c
1/2
ΓW

rescales the W -boson decay ampli-
tudes of the SM in a uniform way, the factor cW rescales the Higgs-boson coupling to a
W+W− pair, and the last term in brackets is the contribution of heavy KK resonances.
Substituting (5.22) into (5.4) and performing the integration over s, we obtain the final
result

Γ(h→WW ∗) =
m3
h

16πv2
SM

cΓWΓSM
W

πmW
c2
W

[
g

(
m2
W

m2
h

)
− m2

h

2M2
KK

(
1− 1

L

)
h

(
m2
W

m2
h

)
+ . . .

]
,

(5.23)
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where the new function is given by

h(x) = −(1− 4x+ 12x2)
√

4x− 1 arccos

(
3x− 1

2x3/2

)

− 1

2
(1− 6x+ 36x2) lnx+

1

6
(1− x)(11− 61x+ 38x2) .

(5.24)

The analysis of new physics effects on the h→ ZZ∗ decay rate proceeds analogously.
Instead of cW in (5.15) one then finds the correction factors

cZ
∣∣
min

=
vSM

v

m̃2
Z

m2
Z

2π χZ0 (1)χZ0 (1) = 1− m2
Z

2M2
KK

(
L− 1 +

1

2L

)
− Lm2

W

4M2
KK

+ . . . ,

cZ
∣∣
cust

=
vSM

v

m̃2
W

m2
Zc

2
ϑ

2π ~χZ0 (1)TDϑZ ~χ
Z
0 (1) = 1− m2

W

2M2
KK

(
3L+ 1− 1

2L

)
+ . . . (5.25)

for the hZZ coupling. The fact that the L-enhanced terms in the effective couplings
cW in (5.15) and cZ in (5.25) in the minimal model are different is problematic from a
phenomenological point of view, as this amounts to a breaking of custodial symmetry in
the effective couplings of the Higgs to electroweak gauge bosons. Indeed, the difference
(cW − cZ) is related to the T parameter, which receives dangerously large corrections
in the minimal RS model as we have seen in Section 2.2.4. Recall that taming these
effects has been the main motivation for the construction of RS models with a custodial
symmetry in the bulk as discussed in Section 2.3. The custodial protection ensures that
the leading, L-enhanced term is the same for both hWW and hZZ couplings [149], see
(5.15) and (5.25), whereas the subleading terms are different.

Moreover, the Zff̄ couplings entering (5.9) get replaced by

g

cw
gf,A(s2w)

min→ g5√
2πr cw

√
2π χZ0 (ε) gf,A(s2

w) ,

cust→ gL,5√
2πr cw

√
2π
(
1 0

)
~χZ0 (ε) gf,A(s2

w) .
(5.26)

Here, we have used the Feynman rule for the couplings of the Z boson and its KK

excitations to quarks, the Z
(n)
µ q̄

(i)
A q

(i)
A vertex (with A = L,R), shown in (C.2) for the

minimal model, while in the custodial model it reads

i√
2

gL,5√
2πrcw

∫ 1

ε
dt
√

2πQ†(i)A (t)
(
QqZ

gZ′,5
gZ,5

QqZ′
)
~χZn (t) γµQ(i)

A (t)PA . (5.27)

The couplings are given by

g′2Z
g2
Z

=
cos2 θw tan4 ϑ

tan2 ϑ− tan2 θw
, QqZ = T q3L − s2

wQq, QZ′ = −T q3R −
tan2 θw
tan2 ϑ

Y q, (5.28)

where T q3L,R denotes the eigenvalue under the third generator of SU(2)L,R , Y q is the
hyper- and Qq the electromagnetic charge of the quark. Analogously to the W -boson
vertex we only need to keep the universal contributions so that (5.26) is justified. If the
weak mixing angle now is defined via the structure of the couplings gf,A(s2

w), then the
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only difference with regard to the SM is a factor

c
1/2
ΓZ

∣∣
min
≡ g5√

2πrg

√
2π χZ0 (ε) = c

1/2
ΓZ

,

c
1/2
ΓZ

∣∣
cust
≡ gL,5√

2πrg

√
2π
(
1 0

)
~χZ0 (ε) = c

1/2
ΓZ

,
(5.29)

with

c
1/2
ΓZ

= c
1/2
ΓW

[
1 +

m2
Z −m2

W

4M2
KK

(
1− 1

L

)
+ . . .

]
. (5.30)

Thus, also the correction factor for the Zff̄ coupling remains unchanged in the custodial
RS model.

It then follows that we must make the replacements (5.21), where now W → Z.
The propagator functions BZ(t, t′;−p2) and BUV

Z (t, t′;−p2) can be easily obtained from
(3.31) and (3.40), making the replacements W → Z and ϑ → ϑZ as well as c1(t, t′) →
cZ1 (t, t′) = 2π χZ0 (t)χZ0 (t′), where χZ0 (t) denotes the zero mode profile of the Z boson
(2.31). Hence, the final result for the decay width Γ(h → ZZ) is given by (5.23) with
W → Z and multiplied with a factor 1/2.

Higgs-Strahlung

We now move on to study the cross section for the Higgs-strahlung process, in which
the Higgs boson is produced in pp collisions in association with a W or Z boson, see
Figure 5.2(b). Since the Feynman diagram for Higgs-strahlung is identical to that for the
Higgs-boson decay into a pair of electroweak gauge bosons, it follows that the amplitude
at the quark level receives exactly the same corrections as the Higgs decay amplitude
discussed in the previous section. If the invariant mass squared of the hV pair in the
final state is denoted by s, one immediately obtains from (5.22) (for V = W,Z)

dσ(pp→ hV )

ds
= cΓV c

2
V

[
1 +

s−m2
V

2M2
KK

(
1− 1

L

)
+ . . .

]
dσ(pp→ hV )SM

ds
. (5.31)

Because the s dependence of the SM cross section is sensitive to the shapes of the parton
distribution functions, it is not possible to derive a simple analytic formula for the
corrections to the total Higgs-strahlung cross sections. However, the leading correction
terms enhanced by L are universal and independent of s. When only these terms are
kept, one obtains

σ(pp→ hV ) ≈ c2
V σ(pp→ hV )SM . (5.32)

This approximation has been frequently used in the literature. In RS models it is
accurate up to small corrections not enhanced by L.

Higgs Production in Vector-Boson Fusion

We finally consider the vector-boson fusion process shown in Figure 5.2(c). It involves
two gauge-boson propagators, whose momenta we denote by p1,2. In analogy with the
discussion in the previous sections, we find that in order to account for new physics
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effects one must replace

1

(m2
V − p2

1) (m2
V − p2

2)

min→ vSM

v

m̃2
V

m2
V

(
g5√
2πrg

)2

(2π)2BV (ε, 1;−p2
1)BV (1, ε;−p2

2)

cust→ vSM

v

m̃2
W

m2
V c

2
ϑ

(
gL,5√
2πrg

)2

(2π)2
(
1 0

)
BUV
V (ε, 1;−p2

1)DϑV B
UV
V (1, ε;−p2

2)

(
1
0

)

=
cΓV cV

(m2
V − p2

1) (m2
V − p2

2)

[
1− 2m2

V − p2
1 − p2

2

4M2
KK

(
1− 1

L

)
+ . . .

]
(5.33)

in the expression for the scattering amplitude. Once again the integrations over the
virtual momenta flowing through the propagators cannot be performed in closed form,
because they involve convolutions with parton distribution functions. However, the
leading correction terms enhanced by L are universal. When only these terms are kept,
one obtains

σ(pp→ hqq̄′) ≈ c2
V σ(pp→ hqq̄′)SM , (5.34)

which is an approximation often adopted in the literature.

5.1.2 Higgs Couplings in RS Models

In this section, we summarize the RS contributions to the various Higgs couplings. In
order to parameterize them, we use an effective Lagrangian defined at the electroweak
scale µ ≈ v. For simplicity, the effects of RG running from the new physics scale
µ ≈ MKK down to the electroweak scale is neglected, as their numerical impact is
of minor importance. The phenomenologically most relevant Higgs couplings can be
described using the following Lagrangian in the broken electroweak phase:

Leff = cW
2m2

W

vSM
hW+

µ W
−µ + cZ

m2
Z

vSM
hZµZ

µ −
∑

f=t,b,τ

mf

vSM
hf̄ (cf + cf5 iγ5) f

− c3h
m2
h

2vSM
h3 − c4h

m2
h

8v2
SM

h4 + cg
αs

12πvSM
hGaµνG

a,µν − cg5
αs

8πvSM
hGaµνG̃

a,µν

+ cγ
α

6πvSM
hFµνF

µν − cγ5
α

4πvSM
hFµνF̃

µν + . . . .

(5.35)
It should be emphasized that this is not a complete list of operators. For instance,
we have not included the operators hZµf̄γ

µf and hZµf̄γ
µγ5f contributing to the h →

ZZ∗ → Zf̄f decay rate, since as shown in Section 5.1.1 their contribution is subdom-
inant. Furthermore, we will not consider the Higgs decay h → Zγ here. Both the
CP-even couplings ci and the CP-odd coefficients ci5 are real. In the SM cW = cZ =
cf = c3h = c4h = 1 and cf5 = cg = cg5 = cγ = cγ5 = 0.

Tree-Level Higgs Couplings to Fermions and Electroweak Gauge Bosons

In the SM, the Higgs boson couples to fermions and electroweak gauge bosons at tree
level, with coupling strengths proportional to the masses of these particles. The non-
universality of these couplings is the most distinguished feature of the Higgs mechanism.
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In RS models, modifications of the couplings arise from two effects: genuine corrections
to the hV V (with V = W,Z) and hf̄f vertices, and an overall rescaling of all couplings
due to the shift of the Higgs vev, which appears because the SM vev vSM is used in the
effective Lagrangian (5.35). Note that the ci differ from the couplings κi previously used
in this thesis, in (4.36) and (4.91) for example, via

ci =
κi
κv
, i = t, t5, b, b5, τ, τ5,W,Z . (5.36)

The loop-induced Higgs couplings will be somewhat more involved, since we have to
distinguish between the zero-mode and the KK tower corrections. In the following,
explicit expressions for the various ci parameters to (at least) first order in v2/M2

KK will
be presented. Wherever possible, the differences between the minimal and the custodial
RS model (from now on we will assume the PLR to be at work) will be parameterized
by means of a parameter ξ, which equals 1 in the minimal model and 2 in the custodial
model.2

The Higgs couplings to W and Z bosons in RS models have been derived in (5.15)
and (5.25) and read (at order v2/M2

KK)

cW
∣∣
min

= 1− m2
W

2M2
KK

(
3L

2
− 1 +

1

2L

)
, cW

∣∣
cust

= 1− m2
W

2M2
KK

(
3L− 1 +

1

2L

)
,

cZ
∣∣
min

= 1− m2
Z

2M2
KK

(
L− 1 +

1

2L

)
− Lm2

W

4M2
KK

, cZ
∣∣
cust

= 1− m2
W

2M2
KK

(
3L+ 1− 1

2L

)
.

(5.37)

With L ≈ 33 – 34, the L-enhanced contributions are by far dominant numerically. Future
precise measurements of cW and cZ would thus provide a direct tool to determine the
ratio MKK/

√
L in the RS model.

The couplings of the Higgs boson to the third-generation fermions have been studied
in detail in Section 4.1, where it was found that flavor-changing couplings are strongly
suppressed. For the CP-even and CP-odd flavor-diagonal couplings, it follows from
(4.36) that (with f = t, b, τ on the left-hand side and f = u, d, e on the right-hand side)

cf = 1− εf −
ξLm2

W

4M2
KK

− ξv2

3M2
KK

Re

(
Y fY

†
fY f

)
33

(Y f )33

+ . . . ,

cf5 = − ξv2

3M2
KK

Im

(
Y fY

†
fY f

)
33

(Y f )33

+ . . . ,

(5.38)

where the real-valued quantities εf are given by3

εf =

{ (
δF
)

33
+
(
δf
)

33
; minimal RS model,

(
ΦF

)
33

+
(
Φf

)
33

; custodial RS model.
(5.39)

The matrices δF,f and ΦF,f can be found in (4.30) and (4.63), respectively. Recall that
for all practical purposes, one can retain εu = (δU )33+(δu)33, with (δQ,q) given in (4.30),
but εd ≈ (δD)33, (εe)33 ≈ 0, and similarly for the custodial RS model. Numerically, the

2Note that in the formulas for the boson couplings ξ can be identified with ξ = 1/c2ϑ = 2, while this
is not true for the Higgs couplings to fermions, which is why we introduce a new variable here.

3In this section we use the subscripts f = u, d, e instead of t, b, τ in order to be able to summarize
the couplings cf as shown in (5.38).
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εf parameters turn out to play a numerically subleading role compared with the “three-
Yukawa terms” in cf .

In contrast to the Higgs couplings to the massive vector bosons, the couplings to the
fermions do not only depend on the KK scale but also in a complicated manner on the
dimensionless 5D Yukawa matrices Y f . However, it is possible to simplify the Yukawa-
dependent terms using that for a large set of random complex matrices on average

〈(
Y fY

†
fY f

)
33(

Y f

)
33

〉
= (2Ng − 1)

y2
?

2
, (5.40)

where Ng = 3 is the number of fermion generations. It follows that the Higgs couplings
to fermions are rather insensitive to the individual entries of the Yukawa matrices, but
they do scale with y2

?. Hence, we encounter a similar situation as in the gauge-boson
case, where the relevant parameter is now given by MKK/y?. One should add at this
point that in practice relation (5.40) is subject to some flavor-dependent corrections,
which arise when the scan over random Yukawa matrices is performed subject to the
constraint that one obtains acceptable values for the quark and lepton masses and for
the CKM matrix in the quark sector. When this is done, one finds numerically that the
expectation value (5.40) is slightly enhanced for the top quark and somewhat reduced
for the bottom quark.4

In the type-II brane-Higgs scenarios, the Yukawa-dependent terms in (5.40) change
according to (4.42), while the remaining terms are unaffected at leading order in the
expansion in v2/M2

KK. For the special case Y S
f = 0, which was sometimes adopted in

the literature, this term vanishes and gives no contribution to the Higgs couplings to
fermions. There is then no contribution to the CP-odd couplings cf5.

Higgs Self-Couplings

One of the predictions of the SM is that the trilinear and quartic Higgs couplings can
be expressed in terms of the Higgs-boson mass and the vev of the Higgs field, such that
c3h = c4h = 1 in (5.35). In RS models these coefficients receive calculable corrections,
which happen to be described by the same formula for the minimal and the custodial
RS models. As long as the Higgs sector is localized on or near the IR brane, one obtains

c3h =
vSM

v
= 1− ξLm2

W

4M2
KK

+ . . . , c4h =
v2

SM

v2
= 1− ξLm2

W

2M2
KK

+ . . . . (5.41)

For a KK mass scale of MKK = 1.5 TeV, one finds a 2.4% (4.8%) reduction of the trilinear
coupling and a 4.8% (9.6%) reduction of the quartic coupling in the minimal (custodial)
RS model. Moving the Higgs field into the bulk would attenuate these deviations and
move the couplings closer to their SM values [259]. Such small deviations will not be
measurable by the LHC, and even for a future linear collider like the ILC this is probably
out of reach. Therefore, it is refrained from presenting a detailed numerical analysis of
the Higgs self-couplings in the subsequent section.

4For y? = 1, one finds numerically that the expectation value (5.40) is equal to 2.5 (as expected) for
anarchic matrices, while it is 2.7 in the up-quark sector and 2.2 in the down-quark sector. The neutrino
masses or the PMNS matrix are not considered in this analysis, since this would require the specification
of the neutrino sector, which is both model dependent and of little relevance to Higgs physics.
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Loop-Induced Higgs Couplings to Two Gluons

The loop-induced couplings to gluons and photons have been extensively discussed in
Sections 4.1 and 4.2. We begin with a discussion of the loop-induced Higgs couplings to
gluons, which are relevant for the calculation of the gluon-fusion cross section σ(gg → h),
which is the main Higgs production channel at high-energy hadron colliders such as
the LHC. In the limit where we neglect O(v2/M2

KK) corrections which in addition are
strongly chirality suppressed, the expressions for the induced Higgs couplings to two
gluons read (see (4.37))5

cg + icg5 =

{
Tr g(Xu) + Tr g(Xd) + εu + εd ; minimal RS model,

Tr g(
√

2Xu) + 3 Tr g(
√

2Xd) + εu + εd ; custodial RS model,
(5.42)

where the quantities Xf are defined in (2.78). The functions g(Xf ) differ for the brane-
localized and narrow bulk-Higgs scenario and are given in (4.25) and (4.26), respectively.

Recall that g(Xf ) = ∓ v2

2M2
KK
Y fY

†
f + . . . so that the effect from the KK tower is

approximately equal but of opposite sign in the two scenarios. For a large ensemble of
random matrices, one obtains on average

〈
TrY fY

†
f

〉
= N2

g

y2
?

2
. (5.43)

Due to the additional factors
√

2 and 3 in the second case in (5.42), the quark KK
tower contribution in the custodial RS model is roughly four times larger than in the
minimal RS model. Note also that with the hermitian matrices Xf the traces over the
matrix-valued functions g(Xf ) are real, so that

cg5 = 0 , (5.44)

irrespective of the Higgs localization or the type of RS model (minimal or custodial).
For the type-II brane-Higgs model, the function g(Xf ) is given by the function (4.41)

starting with the term − v2

2M2
KK
Y C
f Y

C†
f + . . . , and hence to leading order there is no

difference with the result shown above. In this model, the CP-odd coupling cg5 receives
contributions starting at O(v4/M4

KK), which are however too small to be of any phe-
nomenological significance. In the subsequent sections it will be therefore restricted to
a study of the two cases shown in (4.25) and (4.26).

When the top-quark is integrated out from the effective Lagrangian (5.35), additional
contributions to the effective hgg couplings are induced at one-loop order. They can be
accounted for by using the effective couplings

ceff
g =

cg +Aq(τt) ct
Aq(τt)

, ceff
g5 =

cg5 +Bq(τt) ct5
Aq(τt)

, (5.45)

where we have normalized such that ceff
g = 1 in the SM. The explicit expressions for the

top-quark loop functions Aq(τt) ≈ 1.03 and Bq(τt) ≈ 1.05 (with τt = 4m2
t /m

2
h) are given

in (4.38). Both approach 1 for τ → ∞, and it is an excellent approximation to use the
asymptotic values for the small new-physics corrections to the Wilson coefficients. It
then follows that the terms proportional to εu, which in ceff

g combine to εu
[
1−Aq(τt)

]
,

can be safely neglected. Note also that to a very good approximation ceff
g5 ≈ ct5.

5Since we work at leading order in v2/M2
KK the effect of κv does not need to be considered here.
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Loop-Induced Higgs Couplings to Two Photons

We finally turn our attention to the couplings of the Higgs boson to two photons, which
play a crucial role for the h → γγ decay channel, in which the Higgs boson has been
discovered in 2012. Neglecting as before O(v2/M2

KK) corrections which in addition are
strongly chirality suppressed, the expressions for the induced Higgs couplings to two
photons in the minimal RS model have been derived in Section 4.2 and read (see (4.73)
and (4.89))

cγ+icγ5 = NcQ
2
u

[
Tr g(Xu)+εu

]
+NcQ

2
d

[
Tr g(Xd)+εd

]
+Q2

e Tr g(Xe)−
21

4
νW , (5.46)

while in the custodial model one obtains (see (4.93) and (4.89))

cγ + icγ5 = NcQ
2
u Tr g(

√
2Xu) +Nc

(
Q2
u +Q2

d +Q2
λ

)
Tr g(

√
2Xd) +Q2

e Tr g(Xe)

+NcQ
2
u εu +NcQ

2
d εd −

21

4
νW . (5.47)

Recall that they receive KK contributions from the quark and lepton loops as well as
from loops of W bosons and scalar Goldstone fields. Here Qu,d,e denote the electric
charges of the SM fermions, and Qλ = 5

3 is the charge of a new exotic, heavy fermion
species encountered in the custodial RS model. The infinite tower of the KK excitations
of the W bosons (including the Goldstone fields) contributes (see (4.91))

νW =
m2
W

2M2
KK

(
ξL− 1 +

1

2L

)
+ . . . . (5.48)

Like in the case of the gluon-fusion channel gg → h, effective coefficients can be obtained
after the heavy particles t, W , and Z of the SM are integrated out. They are related to
the above coefficients by

ceff
γ =

cγ +NcQ
2
uAq(τt) ct − 21

4 AW (τW ) cW

NcQ2
uAq(τt)− 21

4 AW (τW )
, ceff

γ5 =
cγ5 +NcQ

2
uBq(τt) ct5

NcQ2
uAq(τt)− 21

4 AW (τW )
,

(5.49)
where again we have chosen the normalization such that ceff

γ in the SM. The W -boson
loop function AW (with τW = 4m2

W /m
2
h) can be found in (4.90). From the fact that the

coefficient cγ5 in (5.46) and (5.47) vanishes, it follows that to a very good approximation

ceff
γ5 ≈ −0.28 ct5 . (5.50)

5.1.3 Numerical Analysis of the Higgs Couplings

We now study the structure of new physics effects to both tree-level and loop-induced
Higgs couplings to fermions and gauge bosons in the context of the RS model with
custodial symmetry, for which the bounds derived from electroweak precision tests allow
for KK masses in the few TeV range. Recall that the tree-level analysis of the S and T
parameters yields Mg(1) > 4.7 TeV (at 95% CL) for the mass of the lightest KK gluon
and photon resonances, see (2.189). Somewhat lighter masses are possible for the KK
fermion resonances. We will see that these bounds still allow for sizable effects in the
Higgs sector. On the other hand, the corresponding bound Mg(1) > 12.0 TeV (at 95%
CL) obtained in the minimal model, see (2.133), is so high that the resulting corrections
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Figure 2: Predictions for the Higgs couplings to top quarks as a function of the KK
gluon mass Mg(1) in the custodial RS model. The green, red, and blue scatter points
correspond to model points obtained using y! = 0.5, 1.5, and 3, respectively. The
overlaid lines in the left plot show fits to the various distributions as explained in the
text. The gray band in the right plot shows the experimental bound on |ct5| derived
from the electron EDM (at 90% CL).

y! 0.5 1.5 3 y! 0.5 1.5 3

at 3.4 9.0 26.3 bt 0.96 1.24 1.33

ab 2.3 5.9 16.7 bb 0.96 0.89 0.89

aτ 2.1 5.2 15.4 bτ 0.96 0.89 0.89

Table 1: Fit coefficients af and bf for the Higgs couplings to the third-generation fermions for
different values of y!. [Change normalization of af terms to KK gluon mass!]

be replaced according to (35) and have a vanishing expectation value. While the remaining
terms in (32) still give rise to small negative corrections, the corresponding scatter plots would
show points scattered more or less around the central value ci = 1, and which can become
larger than 1 for not too small values for y! due to the indefinite sign of the three-Yukawa
terms. Although they are not as pronounced as in the conventional brane-Higgs scenarios,
significant effects on the Higgs coupling to the top quark are still possible. For example, with
y! = 3 a modification of ct by 20% is possible for KK excitations as heavy as 7.5 TeV.

The CP-odd couplings of the Higgs to two fermions cf5 in the RS model are given by the
second expression in (32). For random complex Yukawa matrices with entries Yf bounded by
|(Yf)ij | < y!, we expect to obtain an approximately Gaussian distribution with zero mean and
a standard deviation [Additional factor 2 in formula?]

σcf5
=

v2y2
!

3M2
KK

≈ 0.005 bf y2
!

(
5 TeV

Mg(1)

)2

, (49)

15

Figure 5.3: Predictions for the Higgs coupling to top quarks as a function of the KK
gluon mass Mg(1) in the custodial RS model. The green, red, and blue scatter points
correspond to model points obtained using y? = 0.5, 1.5, and 3, respectively. The
overlaid lines in the left plot show fits to the various distributions as explained in the
text. The gray band in the right plot shows the experimental bound on |ct5| derived
from the electron EDM (at 90% CL).

to the Higgs couplings are generally below the sensitivity level of present and planned
collider experiments. In the following analysis we take mh = 125.6 GeV for the Higgs
mass, as well as the pole mass mt = 172.6 GeV. The RS volume is chosen to be L = 33.5.

Tree-Level Higgs Couplings

In the custodial RS model, the corrections to the tree-level Higgs couplings to W and Z
bosons in (5.37) are identical up to very small corrections not enhanced by L. Numeri-
cally, we obtain

cW ≈ cZ ≈ 1− 0.078

(
5 TeV

M2
g(1)

)2

. (5.51)

Realistically, with KK masses not in conflict with electroweak precision tests, we might
thus expect corrections of a few up to a maximum of 10%. The corrections to the Higgs
self-couplings in (5.41) are even smaller; the coefficients in front of the correction term
are 0.026 for c3h and 0.052 for c4h.

Next we study the corrections to the CP-even and CP-odd Higgs couplings cf and cf5

to the third generation fermions, as obtained from (5.38). For the analysis, three sets
of 5000 random and anarchic 5D Yukawa matrices are generated, whose entries satisfy
|(Y q)ij | ≤ y? with y? = 0.5, 1.5, and 3, and which correctly reproduce the Wolfenstein
parameters ρ̄ and η̄ of the unitarity triangle, see Subsection 2.2.3. Furthermore, the
bulk mass parameters are chosen to be in the range cQi,qi ≤ 1 and, together with the
generated Yukawa matrices, to reproduce the correct values for the SM quark masses
evaluated at the scale µ = 1 TeV.6 The left plot of Figure 5.3 shows the Higgs coupling
to top quarks as a function of the lightest KK gluon state Mg(1) ≈ 2.45MKK and for
different values of y?. In accordance with (5.38) we observe that ct is reduced compared
to the SM value 1 for almost all parameter points, where the depletion increases with

6 The parameter cQ3 is restricted to be cQ3 < 0.5, since otherwise the ZMA approximation (4.63) is
not valid.
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y? 0.5 1.5 3 y? 0.5 1.5 3

at 3.4 9.0 26.3 bt 0.96 1.24 1.33

ab 2.3 5.9 16.7 bb 0.96 0.89 0.89

aτ 2.1 5.2 15.4 bτ 0.96 0.89 0.89

Table 5.1: Fit coefficients af and bf for the Higgs couplings to the third-generation
fermions for different values of y?.

larger values for the Yukawa scale y?. The corresponding plots for cb and cτ look very
similar, with the magnitude of the corrections somewhat reduced. The main differences
are due to the chiral contributions coming from the overlap integrals in (5.38) and due
to the constrained structure of the Yukawa matrices as explained in the text below
(5.40). The solid lines in the left plot show simple polynomial fits of the form cf =
1− 0.015 af (5 TeV/Mg(1))2 to the scatter points, with coefficients af = af (y?) given in
Table 5.1. At this point, a comment must be added to the case of the type-II brane Higgs
model. While the effects of the quantities εq and of the Higgs vev shift still give rise to
small negative corrections, the corresponding scatter plots would show points scattered
more or less around the central value ci = 1, and which can become larger than 1 for not
too small values for y? due to the indefinite sign of the three-Yukawa terms. Although
they are not as pronounced as in the conventional brane-Higgs scenarios, significant
effects on the Higgs coupling to the top quark are still possible. For example, with
y? = 3 a modification of ct by 20% is possible for KK excitations as heavy as 7.5 TeV.

The CP-odd couplings of the Higgs to two fermions cf5 are given by the second
expression in (5.38). For random complex Yukawa matrices Y f bounded by 〈|(Y f )ij |〉 ≤
y?, we expect to obtain an approximately Gaussian distribution with zero mean and a
standard deviation

σcf5
≈ 0.005 bf y

2
?

(
5 TeV

Mg(1)

)2

, (5.52)

with bf = 1. Due to the constraint that we must obtain realistic values of the quark
masses and CKM mixing angles the actual results differ slightly from this result and we
obtain the value shown in Table 5.1. It has been argued in [261] that present experi-
mental bounds on electric dipole moments (EDMs) of the electron, neutron, and mer-
cury impose non-trivial bounds on the CP-odd Higgs couplings to the third-generation
fermions. The strongest constraint exists for the magnitude on ct5 and comes from the
EDM of the electron, which is sensitive to the htt̄ couplings via two-loop Barr-Zee dia-
grams. Using the present 90% CL upper limit de < 8.7 · 10−29e cm [262] and assuming
that the Higgs coupling to electrons is not changed with respect to its SM value, one
obtains |ct5| ≤ 0.01 [261]. In the RS models considered in this thesis this assumption is
valid to high accuracy, since corrections to the he+e− coupling are strongly chirality sup-
pressed. This resulting bound is shown by the gray band in the right plot in Figure 5.3.
Interestingly, we find that for y? & 1.5 there are many points in the RS parameter space
for which |ct5| takes values of the same order of magnitude as the experimental bound.
Hence, in the context of RS models it is conceivable that first hints of a non-zero electron
EDM might be seen in the next round of experiments.
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Figure 5.4: Predictions for the CP-even effective Higgs coupling to two photons as
a function of the KK gluon mass Mg(1) in the custodial RS model, for the scenarios
with a brane-localized scalar sector (left) and a narrow bulk-Higgs field (right). The
meaning of the colors and lines is the same as in Figure 5.3.

Loop-Induced Higgs Couplings

We move on to study the RS corrections to the loop-induced hgg and hγγ couplings.
They are of special interest, since they are very sensitive probes of virtual KK excitations.
We concentrate on the CP-even couplings ceff

g and ceff
γ , since current measurements are

not sensitive enough to probe the CP-odd couplings.7 Using the analytic expressions
for ceff

g and ceff
γ given in (5.45) and (5.49), it is straightforward to derive approximate

expressions for these coefficients which help to understand the interplay of the various
contributions. To this end, we expand the fermion KK tower contributions in (5.42),
(5.46), and (5.47) to first order in v2/M2

KK and employ (5.40) and (5.43). We also
approximate the top-quark loop function Aq(τt) by its asymptotic value 1 and neglect
subleading terms not enhanced by L in the bosonic contributions. This yields

ceff
g ≈ 1 +

v2

2M2
KK

[(
∓ 36− 10

3

)
y2
? −

Lm2
W

v2

]
≈ 1 +

v2

2M2
KK

[
(∓ 36.0− 3.3) y2

? − 3.6
]
,

ceff
γ ≈ 1 +

v2

2M2
KK

[
1

|CSM
1γ |

(
±213

2
+

40

9

)
y2
? −

21(AW (τW )− 1)

4|CSM
1γ |

2Lm2
W

v2
− Lm2

W

v2

]

≈ 1 +
v2

2M2
KK

[
(±21.7 + 0.9) y2

? − 5.1
]
. (5.53)

Here the upper sign holds for the brane-Higgs case, while the lower one corresponds
to the narrow bulk-Higgs scenario. We have kept the dependence on the one-loop SM
amplitude CSM

1γ = 4
3 − 21

4 AW (τW ) ≈ −4.9 explicit. In each square bracket, the first
term is due to the effects of KK fermion resonances, while the second term accounts
for the vev shift and the contribution of bosonic KK states (for ceff

γ ). The fermionic
contributions enter the two coefficients with opposite signs and are larger in magnitude
in the case of ceff

g . Figure 5.4 shows the predictions for the coefficient ceff
γ as a function

7There exist proposals for how to probe ceff
γ5 in h → γγ decays in which both photons undergo

nuclear conversion, by measuring certain kinematic distributions of the electron-positron pairs [263].
Unfortunately, however, the level of sensitivity one can achieve does not allow one to probe the small
effects (5.50) predicted in RS models, where the CP-odd htt̄ coupling is the only source of the effect.
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Figure 4: Correlation between the Higgs couplings ct and cb (left) and the e�ective Higgs
couplings ce↵

� and ce↵
g (right) in the custodial RS model (right). All points obey the

constraint Mg(1) > 4.7 TeV imposed by a tree-level analysis of the S and T parameters
at 95% CL. In the right plot, the orange (red) cross represents the experimental values
(with 1� errors) obtained by ATLAS (CMS). [Eliminate yellow triangles!]

there are no regions of parameter space where both couplings are smaller or larger than 1.
Thus, a precise measurement of such values could rule out all RS scenarios considered in this
work. The orange and red crosses in the right plot indicate the 1� fit values ce↵,exp

g = 1.08+0.15
�0.13,

ce↵,exp
� = 1.19+0.15

�0.12 [42] and ce↵,exp
g = 0.83+0.11

�0.10, ce↵,exp
� = 0.97+0.17

�0.20 [43] reported by the ATLAS
and CMS Collaborations. Those fit values have a slight tendency to values larger (smaller) than
1 for both couplings in case of ATLAS (CMS), but they are compatible with our predictions
within the error bars. Note that we have to be cautious when comparing our theoretical
predictions with the fit values in question, because they have been obtained by varying ce↵

g

and ce↵
� so as to obtain the best fit values to the experimental data assuming that the tree-level

Higgs couplings at their SM values. It would be much preferrable - and the clearest way to
test any new physics model - to compare the theoretical predictions with future results from
model-independent analyses of the Higgs couplings, which as of today have not been performed
by ATLAS and CMS due to the limited statistics of the data.

Future sensitivities on Higgs couplings of LHC and ILC

In the last part of this section, we wish to illustrate the potential for constraining the relevant
parameters of the RS models by future, model-independent analyses of Higgs couplings. It has
been reported in [27] that the LHC with an integrated luminosity of 300 fb�1 has the potential
to probe deviations of Higgs couplings to fermions in the range of 14%– 46% and to gauge
bosons in the range of 14%– 30%, both at 95% CL. At future lepton colliders like the ILC
[28–31] the sensitivity to deviations can be improved by almost one order of magnitude. In the
following analysis we focus on the LHC operating at

p
s = 14 TeV with 300 fb�1 of integrated

luminosity and the ILC operating at
p

s = 1 TeV with integrated luminosity of 1000 fb�1.

18

Figure 5.6:
fig:cg
Correlation between the Higgs couplings ct and cb (left) and the e↵ective

Higgs couplings ce↵
� and ce↵

g (right) in the custodial RS model. All points obey the
constraint Mg(1) > 4.7 TeV imposed by a tree-level analysis of the S and T parameters
at 95% CL. In the right plot, the orange (red) cross represents the experimental values
(with 1� errors) margin obtained by ATLAS (CMS).

any new physics model - to compare the theoretical predictions with future results from
model-independent analyses of the Higgs couplings, which as of today have not been
performed by ATLAS and CMS due to the limited statistics of the data.

Future Sensitivities on Higgs Couplings of LHC and ILC

In the last part of this section, we will illustrate the potential for the constraining relevant
parameters of the RS models by a future, model-independent couplings analysis. It has
been reported in [253] that the LHC at 14TeV and with an integrated luminosity of
300 fb�1 has the potential to probe deviations of Higgs couplings to fermions in the
range of 14%� 46% and to gauge bosons in the range of 14%� 30%, both at 95% CL.
At future lepton colliders like the ILC [254–257] the sensitivity to deviations can be
improved by almost one order of magnitude. In the following analysis, we focus on the
LHC operating at 14TeV with 300 fb�1 and on the ILC at 1TeV with 1000 fb�1.

The final goal is to derive exclusion bounds for the first KK gluon mass Mg(1) for
each of the couplings in the custodial model. To obtain these bounds the couplings ci

as in Figure 5.3, fit a Gaussian distribution to the model points for each pair of y? and
Mg(1) and determine the mean values c̄i with the standard deviations �ci determined.
The experimental couplings are assumed to be SM-like cexp

i = 1 with the 1� errors given
in Table 5.2. We then consider the ratio c̄i/cexp

i = c̄i, and calculate the corresponding
standard deviation by combining the theoretical and experimental errors in quadrature.
Finally, it is tested at which confidence level ci is compatible with 1. The results are
compiled in Figure 5.7 for two representative values of y?. The colored regions are
the 95% CL excluded regions for the mass of the lightest KK gluon resonance. To
obtain exclusion bounds for arbitrary values of y?, one can make use of the fact that the
exclusion limits depend linearly on y? to good approximation. We see that the strongest
bounds emerge from the loop-induced Higgs couplings, for which we distinguish between
the brane-Higgs (b.) and narrow bulk-Higgs (n.b.) scenarios. The results imply for the
LHC analysis that Mg(1) > 21 TeV ⇥ (y?/3) TeV (Mg(1) > 13 TeV ⇥ (y?/3) TeV) in the
brane (narrow bulk) Higgs scenario. For the ILC one expects to rule out KK gluons of
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Figure 5.5: Correlation between the Higgs couplings ct and cb (left) and the effective
Higgs couplings ceff

γ and ceff
g (right) in the custodial RS model. All points obey the

constraint Mg(1) > 4.7 TeV imposed by the tree-level analysis of the S and T parameters
at 95% CL. In the right plot, the orange (red) cross represents the experimental values
(with 1σ errors) obtained by ATLAS (CMS).

of Mg(1) and for different values of y?. We clearly see that large deviations from the
SM prediction are possible, where the results exhibit a large sensitivity to the precise
nature of the localization of the scalar sector on or near the IR brane. On average, the
distribution of scatter points follows the approximate formulas shown in (5.53). The
corresponding information on how ceff

g depends on Mg(1) and y? can be deduced from
the correlation between the two loop-induced couplings, to which we turn now.

Correlations between Higgs Couplings

We have explained earlier that, to good approximation, the average results for the various
Higgs couplings in RS models can be expressed in terms of only two parameters MKK

and y? with some relatively narrow distribution of model points about these average
predictions. As a result, in these models there are strong correlations between various
Higgs couplings. This important fact is illustrated in Figure 5.5, where we display the
predictions in the cb – ct and ceff

g – ceff
γ planes. In the right plot, scatter points below

ceff
g = 1 (lower right plane) correspond to the brane-Higgs scenario, while points above

ceff
g = 1 (upper left plane) refer to the narrow bulk-Higgs scenario. All points included

in these plots obey the constraint Mg(1) > 4.7 TeV implied by electroweak precision
tests, see (2.189) derived in Subsection 2.3.3. In the case of the couplings ct and cb
we observe a clear correlation in the sense that both couplings are smaller than 1 by
approximately equal amounts. On the other hand, we see a clear anti-correlation between
ceff
γ and ceff

g , which is due to the fermion KK contributions as explained above. This
implies that there are no regions of parameter space where both couplings are smaller
or larger than 1. Thus, a precise measurement of such values could rule out all RS
scenarios considered in this thesis. The orange and red crosses denote the 1σ fit values
ceff,exp
g = 1.08+0.15

−0.13, ceff,exp
γ = 1.19+0.15

−0.12 [264] and ceff,exp
g = 0.83+0.11

−0.10, ceff,exp
γ = 0.97+0.17

−0.20

[265] reported by the ATLAS and CMS Collaborations. Those fit values have a slight
tendency to values larger (smaller) than 1 for both couplings in case of ATLAS (CMS),
but they are compatible with the predictions within the error bars. Note that we have to
be cautious when comparing the theoretical predictions with the fit values in question,
because they have been obtained by varying ceff

g and ceff
γ so as to obtain the best fit values
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ci W Z t b

LHC 14 TeV, 300 fb−1 (−0.069, 0) (−0.077, 0) (−0.154, 0.147) (−0.231, 0.041)
ILC 1 TeV, 1000 fb−1 (−0.004, 0) (−0.006, 0) (−0.044, 0.035) (−0.003, 0.011)

ci τ g γ

LHC 14 TeV, 300 fb−1 (−0.093, 0.132) (−0.078, 0.10) (−0.096, 0.059)
ILC 1 TeV, 1000 fb−1 (−0.013, 0.017) (−0.014, 0.014) (−0.032, 0.035)

Table 5.2: Experimental sensitivities on the Higgs couplings expressed as 1σ confi-
dence intervals calculated in [254].

to the experimental data assuming that the tree-level Higgs couplings at their SM values.
It would be much preferable - and the clearest way to test any new physics model - to
compare the theoretical predictions with future results from model-independent analyses
of the Higgs couplings, which as of today have not been performed by ATLAS and CMS
due to the limited statistics of the data.

Future Sensitivities on Higgs Couplings of LHC and ILC

In the last part of this subsection, we illustrate the potential for constraining relevant
parameters of the RS models by a future, model-independent couplings analysis. It has
been reported in [254] that the LHC operating at 14 TeV and with an integrated lumi-
nosity of 300 fb−1 has the potential to probe deviations of Higgs couplings to fermions
in the range of 14%− 46% and to gauge bosons in the range of 14%− 30%, both at 95%
CL. At future lepton colliders like the ILC [255–258] the sensitivity to deviations can be
improved by almost one order of magnitude. In the following analysis, we focus on the
LHC at 14 TeV with 300 fb−1 and on the ILC at 1 TeV with 1000 fb−1.

The goal is to derive exclusion bounds for the first KK gluon mass Mg(1) for each
of the Higgs couplings in the custodial model. To obtain these bounds, we plot the
couplings ci as in Figure 5.3, fit a Gaussian distribution to the model points for each
pair of y? and Mg(1) , and determine the mean values c̄i with the standard deviations
σci . The experimental couplings are assumed to be SM-like cexp

i = 1 with the 1σ errors
given in Table 5.2. We then consider the ratio c̄i/c

exp
i = c̄i, and calculate the corre-

sponding standard deviation by combining the theoretical and experimental errors in
quadrature. Finally, we test at which confidence level c̄i is compatible with 1. The re-
sults are compiled in Figure 5.6 for two representative values of y?. The colored regions
are the 95% CL excluded regions for the mass of the lightest KK gluon resonance. To
obtain exclusion bounds for arbitrary values of y?, one can make use of the fact that the
exclusion limits depend linearly on y? to good approximation. We see that the strongest
bounds emerge from the loop-induced Higgs couplings, for which we distinguish between
the brane-Higgs (b.) and narrow bulk-Higgs (n.b.) scenarios. The results imply for the
LHC analysis that Mg(1) > 21 TeV × (y?/3) (Mg(1) > 13 TeV × (y?/3)) in the brane
(narrow bulk) Higgs scenario. For the ILC one expects to rule out KK gluons of even
Mg(1) > 43 TeV × (y?/3) in both scenarios.8 Note also that, independent of the real-
ization of the Yukawa sector (and hence the parameter y?), the analysis of the Higgs
couplings to W bosons at the ILC is expected to be sensitive to KK gluon masses of up
to Mg(1) ≈ 15 TeV.

8The different limits in the case of the LHC are due to the asymmetric error margins for cg, see
Table 5.2.
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Figure 5: [Adjust labels! Change scale in left plot (25/50 TeV)!] Summary of the
exclusion limits (at 95% CL) on the mass of the first KK gluon resonance in the custodial
RS model, which could be derived from SM-like measurements of Higgs couplings at the
high-luminosity LHC (left) and the ILC (right), for two representative values of y!. For
the loop-induced couplings ceff

g and ceff
γ we distinguish between the brane (green) and the

narrow bulk-Higgs (blue) scenarios. The dashed lines show the lower bounds on Mg(1)

obtained from electroweak precision measurements.

The correction to the total Higgs width relative to the SM total width ΓSM
h = 4.14 MeV [44]

(for mh = 125.5 GeV) can be accounted for by the parameter

ch =
ΓRS

h

ΓSM
h

= 0.57 |cb|2 + 0.22 |cW |2 + 0.09
(
|ceff

g |2 + |ceff
g5 |2
)

+ 0.12 , (52)

where the corrections to the decays h → τ+τ−, cc̄, ZZ∗, . . . have a numerically insignificant ef-
fect and therefore can be neglected (their combined branching ratio is 12% in the SM). In (51)
we have taken into account the probabilities to produce a Higgs via gluon fusion (fGF ≈ 0.9)
or vector-boson fusion (fVBF ≈ 0.1) for inclusive decays at the LHC. Concerning the latter
production process, we have implemented the findings of Section 2.3, showing that the signifi-
cant corrections are given by c2

W in both cases for W - and Z-boson fusion in both the minimal
(for points in the parameter space that fulfill the constraints from the electroweak precision
tests) [isn’t it better to include cZ , without the constraint in round brackets? this is

what we have done in the numerical analysis] and the custodial RS model. Other Higgs
production channels, such as the associated Higgs production with a tt̄ pair or a vector boson,
can be neglected to good approximation. The only exception in our work is the signal rate
for X = bb̄. In this case, Higgs-strahlung is an experimentally more feasible Higgs production
channel than gluon fusion, since the latter suffers from an overwhelming QCD background [45].
We have shown in Section 2.2 that the dominant correction to the Higgs-strahlung production

20

Figure 5.6: Summary of the exclusion limits (at 95% CL) on the mass of the first
KK gluon resonance in the custodial RS model, which could be derived from SM-like
measurements of the Higgs couplings at the high-luminosity LHC (left) and the ILC
(right), for two representative values of y?. For the loop-induced couplings ceff

g and ceff
γ

we distinguish between the brane (green) and the narrow bulk-Higgs (blue) scenarios.
The dashed lines show the lower bounds on Mg(1) obtained from electroweak precision
measurements.

5.1.4 Analysis of the Signal Rates: h→ bb̄, τ+τ−, WW ∗, ZZ∗, γγ

Finally, we will investigate the Higgs decays into two b quarks, τ leptons, W or Z bosons,
and photons. In order to directly compare the predictions with experimental measure-
ments we study the signal rates RX defined in (5.2), which can be expressed in terms of
the modified couplings ci derived in Section 5.1.2 via (X = τ+τ−,WW ∗, ZZ∗, γγ)

RX ≡
(σ · BR)(pp→ h→ X)RS

(σ · BR)(pp→ h→ X)SM
=

[(
|ceff
g |2 + |ceff

g5 |2
)
fGF + c2

W fVBF

][
|cX |2 + |cX5|2

]

ch
.

(5.54)
The correction to the total Higgs width relative to the SM total width ΓSM

h = 4.14 MeV
[266] (for mh = 125.5 GeV) can be accounted for by the parameter

ch =
ΓRS
h

ΓSM
h

= 0.57 |cb|2 + 0.22 |cW |2 + 0.09
(
|ceff
g |2 + |ceff

g5 |2
)

+ 0.12 , (5.55)

where the corrections to the decays h→ τ+τ−, cc̄, ZZ∗, . . . have a numerically insignif-
icant effect and therefore can be neglected (their combined branching ratio is 12% in
the SM). In (5.54) we have taken into account the probabilities to produce a Higgs via
gluon fusion (fGF ≈ 0.9) or vector-boson fusion (fVBF ≈ 0.1) for inclusive decays at
the LHC. Concerning the latter production process, we have implemented the findings
of Section 5.1.1, showing that the significant corrections are given by c2

W in both cases
for W - and Z-boson fusion in both the minimal (for points in the parameter space that
fulfill the constraints from the electroweak precision tests) and the custodial RS model.
Other Higgs production channels, such as the associated Higgs production with a tt̄ pair
or a vector boson, can be neglected to good approximation. The only exception in this
work is the signal rate for X = bb̄. In this case, Higgs-strahlung is an experimentally
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Figure 5.7: Predictions for the ratio Rγγ as a function of the lightest KK gluon mass
Mg(1) and for different values of the parameter y? in the minimal RS model, for the
cases of a brane-localized Higgs boson (left) and a narrow bulk-Higgs field (right). The
dashed curves show the approximation (5.56) for y? = 3.

more feasible Higgs production channel than gluon fusion, since the latter suffers from
an overwhelming QCD background [267]. As we have seen in Section 5.1.1, the domi-
nant correction to the Higgs-strahlung production process is also given by c2

W in both
RS models. So, for the signal rate Rbb we just have to set fGF = 0 and fVBF = 1 in
(5.54). Some further comment has to be given on the Higgs decays into a pair of W
or Z bosons. According to the discussion of Subsection 5.1.1, we have to use the result
Γ(h→ V V ∗)/Γ(h→ V V ∗)SM derived in (5.23) (instead of c2

V ) for the Higgs decays into
V V ∗ (V = W,Z) with a subsequent decay of the off-shell vector boson into fermions.

Analysis of the Signal Rate Rγγ

We start the discussion with the decay into two photons. Although the main focus is
again put on the custodial RS model, it is worth presenting some of the results in the
minimal model as well, in order to compare the effects in both models. Figure 5.7 shows
the predictions for Rγγ as a function of the lightest KK gluon state Mg(1) and for three
different values for y? obtained in the minimal RS model with a brane-localized Higgs
sector (left plot) and a narrow bulk-Higgs state (right plot). The blue band represents
the 1σ error band corresponding to the latest experimental values for Rγγ given in
Table 5.3, where the naively averaged value has been used. Model points falling outside
these bands are excluded at 68% CL. It is interesting to observe that for relatively large
values for y? the data already disfavor KK gluon masses in the low TeV range. The
tensions between the theoretical predictions and the experimental data are stronger for
the brane-Higgs model due to the mild tendency of an enhanced cross section seen in
the data, which is in conflict with the suppression of the predicted cross section in this
case. It shall be emphasized, however, that using the individual values for Rγγ reported
by ATLAS and CMS one would obtain different conclusions.

The shape of the various bands of scatter points shown in the plots can be understood
as follows. For not too small Yukawa couplings, the largest RS corrections are those
arising from fermionic loop contributions. In the brane-localized Higgs (narrow bulk-
Higgs) scenario, they suppress (enhance) the gluon-fusion cross section and enhance
(suppress) the decay rate into photons. Since the dominant SM contribution to h→ γγ
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RX bb ττ WW ZZ γγ

ATLAS [264] 0.2+0.7
−0.6 1.4+0.5

−0.4 1.00+0.32
−0.29 1.44+0.40

−0.35 1.57+0.33
−0.28

CMS [265] 1.0+0.5
−0.5 [268] 0.78+0.27

−0.27 [269] 0.68+0.20
−0.20 0.92+0.28

−0.28 0.77+0.27
−0.27

average 0.7+0.4
−0.4 0.92+0.24

−0.22 0.77+0.17
−0.16 1.09+0.23

−0.22 1.09+0.21
−0.19

Table 5.3: Experimental values for the signal rates measured by the ATLAS and
CMS Collaborations including the 1σ errors, where the assumed Higgs masses are mh =
125.5 GeV in [264], mh = 125.7 GeV in [265] and mh = 125 GeV in [268, 269].

involves W -boson loops and acts in the opposite direction as the fermionic contributions,
the RS corrections to the Higgs production cross section dominate over those to the decay
rate. Hence, we find a suppression (an enhancement) of Rγγ in the brane-Higgs (narrow
bulk-Higgs) scenario. To see this more explicitly, we expand the various expressions
in (5.54) in powers of v2/M2

KK, exploiting the anarchy of the 5D Yukawa matrices and
making the same approximations as for ceff

g and ceff
γ in (5.53). One then obtains

Rγγ ≈ 1 +
v2

2M2
KK

[(
fGF −

4

3|CSM
1γ |

)(
∓18− 10

3

)
y2
?

−
(
fVBF +

21
[
AW (τW )− 1

]

4|CSM
1γ |

)
2m2

W

v2

(
L− 1 +

1

2L

)
(5.56)

− Lm2
W

v2
+ 0.57

10

3
y2
? + 0.22

2m2
W

v2

(
L− 1 +

1

2L

)
− 0.09

(
∓18− 10

3

)
y2
?

]
,

where the first two lines contain the corrections to the production and decay rates, with
corrections to the h → γγ rate being accompanied by a factor of 1/|CSM

1γ |. The third
line shows the corrections to the Higgs vev and total width, as parameterized by ch in
(5.55). The upper sign holds for the brane-localized Higgs scenario, while the lower sign
corresponds to the narrow bulk-Higgs case. We explicitly see from the first term on
the right-hand side of (5.56) that the fermionic contributions to the gg → h production
process dominate over those to the h → γγ decay rate and come with opposite sign.
Evaluating all terms in (5.56) yields

Rγγ ≈ 1− v2

2M2
KK

[
(±9.7− 0.1) y2

? + 4.1
]
. (5.57)

For the case where y? = 3 this result is shown by the dashed lines in the figure. Note that
due to the contribution of the production process via vector-boson fusion the observable
Rγγ is bounded from below in the brane-Higgs case. This explains the behavior for very
small KK scales seen in the left plot in Figure 5.7. For y? = 3, the gg → h production
cross section vanishes for Mg(1) ≈ 3.5 TeV, because the new-physics contribution cancels
the SM amplitude. However, due to the vector-boson fusion production process a non-
zero value of Rγγ remains.

Even at the present level of precision, the existing measurements of the observable
Rγγ already provide some interesting constraints on the parameter space of the RS mod-
els under consideration. Figure 5.8 shows the regions in the Mg(1) – y? parameter space
that are excluded by the current data at various confidence levels. For instance, for the
particular choice y? = 3 one finds Mg(1) > 8.5 TeV at 95% CL for the brane-Higgs model
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Figure 5.8: Excluded regions of parameter space derived from the analysis of Rγγ
in the minimal RS model, for the brane-localized Higgs scenario (left) and the narrow
bulk-Higgs model (right). The vertical dashed line denotes the lower bound on Mg(1)

obtained from a tree-level analysis of electroweak precision observables.

and Mg(1) > 6.4 TeV at 68% CL for the narrow bulk-Higgs model. Weaker constraints
are obtained for smaller values for y?. These bounds can be compared with the bound
from electroweak precision measurements, indicated by the vertical dashed line in the
figure. We see that, at present, this bound is still stronger than the constraints derived
from Rγγ .

Softening the constraints from electroweak precision observables by means of a sym-
metry has been the main motivation for custodial RS model whose effects on the quantity
Rγγ are studied in Figure 5.9. In analogy with (5.56), it is possible to derive an ap-
proximate formula. For the model with the minimal lepton sector shown in (4.96), one
finds

Rγγ ≈ 1 +
v2

2M2
KK

[
∓
(

72fGF −
213

|CSM
1γ |

)
y2
? −

20

3

(
fGF −

4

3|CSM
1γ |

)
y2
? (5.58)

−
(
fVBF +

21
[
AW (τW )− 1

]

4|CSM
1γ |

)
2m2

W

v2

(
2L− 1 +

1

2L

)
− 2Lm2

W

v2

+ 0.57
20

3
y2
? + 0.22

2m2
W

v2

(
2L− 1 +

1

2L

)
− 0.09

(
∓72− 20

3

)
y2
?

]
.

If instead the extended lepton sector shown in (4.94) is employed, then the coefficient
213 inside the parenthesis in the first term must be replaced by 240. Note that the
individual corrections due to fermion loops are huge, however significant cancellations
take place when one adds the corrections to the gg → h and h→ γγ rates. Altogether,
one obtains for the model with the minimal lepton sector

Rγγ ≈ 1− v2

2M2
KK

[
(±15.0− 0.2) y2

? + 8.3
]
. (5.59)

In the model with the extended lepton sector the coefficient ±15.0 in the first term must
be replaced by ±9.5. Observe that in linearized form the corrections are only moderately
larger than in the minimal model, see (5.57). Once again, for y? = 3 this result is shown
by the dashed lines in the figure, where we show results for the custodial model with



190 Chapter 5. Phenomenological Implications

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

Mg(1) [TeV]Mg(1) [TeV]

R
γ
γ

R
γ
γ

y! = 0.5y! = 0.5

y! = 1.5y! = 1.5

y! = 3y! = 3

minimal RS model
brane Higgs

minimal RS model
narrow-bulk Higgs

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

Mg(1) [TeV]Mg(1) [TeV]

R
γ
γ

R
γ
γ

y! = 0.5y! = 0.5

y! = 1.5y! = 1.5

y! = 3y! = 3

custodial RS model
brane Higgs

custodial RS model
narrow-bulk Higgs

95!CL

99!CL

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

95!CL

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Mg(1) [TeV]Mg(1) [TeV]

y "y "

analysis of Rττ

custodial RS model
brane Higgs

analysis of Rττ

custodial RS model
narrow-bulk Higgs

1

Figure 5.9: Predictions for the ratio Rγγ as a function of the KK gluon mass Mg(1)

in the custodial RS model with minimal lepton sector (4.96), for the cases of a brane-
localized Higgs boson (left) and a narrow bulk-Higgs field (right). See text for details.

the minimal lepton sector. If instead the model with an extended lepton sector is
considered, the distribution of scatter points looks very similar. For the brane-localized
Higgs scenario, Figure 5.9 shows a similar behavior as in the minimal model, but the new-
physics effects are slightly larger. For y? = 1.5 and 3, the gg → h production cross section
vanishes near Mg(1) ≈ 3.5 TeV and 7 TeV, respectively, and the vector-boson fusion
process remains as the only production mechanism. This explains the minimum values
for Rγγ at these points. For even smaller masses the ratio Rγγ increases and can even
exceed 1. In the narrow bulk-Higgs case, on the other hand, the linearized approximation
(5.58) breaks down for large values y?, as is evident from the discrepancy between the
dashed curve and the blue band of scatter points. A reasonable approximation, shown
by the solid line, is obtained by linearizing the expressions for the various ci parameters
but not further expanding expression (5.54). It turns out that the negative corrections
to the h → γγ decay rate are so significant in this model that they compensate the
large positive corrections to the gluon-fusion rate in the region of large Mg(1) . For
smaller KK masses, these negative corrections become dominant and drive the ratio
Rγγ toward values significantly less than 1. Eventually, for Mg(1) ≈ 3 TeV (for y? = 1.5)
and 5.5 TeV (for y? = 3), the di-photon decay rate even vanishes. It is obvious that in
regions of parameter space where such dramatic cancellations occur the RS predictions
are highly model dependent. Given the preliminary pattern of Higgs couplings seen
in experiment, which within errors agree with the SM predictions, it appears unlikely
(but not impossible) that there could be O(1) corrections to the gg → h and h → γγ
production and decay rates, which cancel each other in the result for the observable
Rγγ .

Figure 5.10 shows the excluded regions of RS parameter space derived from the
analysis of the observable Rγγ in the custodial RS model. In the scenario with a brane-
localized Higgs sector, one can exclude the ranges 6.0 TeV < Mg(1) < 13.4 TeV and
Mg(1) < 3.5 TeV for y? = 3, while in the narrow bulk-Higgs model the exclusion range
reads 5.1 TeV < Mg(1) < 8.4 TeV, both at 95% CL. Note that there is a small region
in the upper left corner (at small Mg(1) and large y?) of the left plot, which is allowed
by both Rγγ and the S parameter constraint (2.189). On the other hand, these plots
allow one to impose bounds on y? if one wants to have the first KK gluon resonance to
be in reach for direct production at the LHC. For instance, in the minimal RS model
with a hypothetical KK gluon mass Mg(1) = 5 TeV, the results imply an upper bound of
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Figure 5.10: Excluded regions of parameter space derived from the analysis of Rγγ
in the custodial RS model with minimal lepton sector (4.96), for the brane-localized
Higgs scenario (left) and the narrow bulk-Higgs model (right). The vertical dashed
line denotes the bound obtained from a tree-level analysis of electroweak precision
observables.

y? < 1.5 at 95% CL in the brane-Higgs model, and y? < 2.4 at 68% CL in the narrow
bulk-Higgs scenario. In the custodial RS model, those bounds are tightened to y? < 0.9
for a brane Higgs and y? < 1.7 for a narrow bulk Higgs, both at 95% CL.

Analysis of the Signal Rates RZZ and RWW

The next analysis focuses on the Higgs decay into a pair of electroweak gauge bosons.
The previous analysis has shown that in the minimal (custodial) RS model the bounds
derived from Higgs physics are weaker (stronger) than those from electroweak precision
tests. It turns out that this is not only true for Rγγ , but also for all other signal rates
(except for Rbb). In the following analyses, we will therefore restrict ourselves on the RS
model with custodial protection.

The upper row of Figure 5.11 shows the results for the ratio RZZ in the custodial
RS model for the scenarios with a brane-localized Higgs boson (left plot) and a narrow
bulk-Higgs field (right plot), in dependence of Mg(1) . The scatter points also represent
the results for the observable RWW , since at the level of the L-enhanced terms the Higgs
decays into a pair of W and Z bosons are expressed by the same modification factor
c2
W ≈ c2

Z , see (5.23) and (5.37).9 The effects are stronger than in the case of Rγγ ,
since in the present case there is no compensation between the production via gluon
fusion and the decay into two electroweak gauge bosons. Recall that the loop-induced
decay into photons is highly affected by the infinite tower of KK fermions, whose effect
works in the opposite direction with respect to the modifications to the gluon fusion,
whereas the tree-level Higgs couplings to massive vector bosons only receive moderate
corrections. Correspondingly, we obtain larger exclusion regions than derived via Rγγ .
This is shown in the lower two rows of Figure 5.11. In the brane-Higgs scenario, we
obtain the exclusion range 4.6 TeV < Mg(1) < 19.9 TeV (from the analysis of RZZ) and
5.0 TeV < Mg(1) < 13.0 TeV (from RWW ) for y? = 3, while in the narrow bulk-Higgs

9We only show the experimental error band of the observable RZZ and refrain from including the
corresponding error band of RWW for the sake of clarity.
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Figure 5.11: Predictions for the ratio RZZ (and RWW ) (upper row) and excluded
regions of parameter space in the custodial RS model derived from the analysis of RZZ
(middle row) and RWW (lower row), for the cases of a brane-localized Higgs boson (left)
and a narrow bulk-Higgs field (right). The meaning of the colors and lines is the same
as in Figures 5.7 and 5.8. See text for details.

model we find the lower bounds Mg(1) > 9.1 TeV (from RZZ) and Mg(1) > 14.9 TeV (from
RWW ), both at 95% CL. Note that the allowed region in the upper left corner (at small
Mg(1) and large y?) of the first plot in the middle row is one in which the new-physics
contribution to the gluon fusion amplitude is larger than the SM contribution by about
a factor 2 and interferes destructively, which appears somewhat unnatural. Moreover, it
has been argued that most models in which the gluon fusion amplitude has the opposite
sign than in the SM have problems with fine-tuning and vacuum stability [270].
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Figure 7: Predictions for the signal rates RZZ and Rγγ in the minimal (left) and
custodial (right) RS model for the cases of a brane-localized Higgs boson and a narrow
bulk-Higgs field. All scatter points fulfill the T parameter constraints. The yellow
triangles in the right plot correspond to points with Mg(1) = 15 TeV, while the black
circles denote the SM prediction. The cross shows the experimental 1σ-errors for the
signal rates measured.

the predictions for RZZ and Rγγ in the minimal and custodial RS model as well as for the
brane-localized and narrow bulk-Higgs scenarios. The black dot denotes the SM prediction
where RSM

ZZ,γγ = 1. Scatter points below this black dot belong to the brane-localized Higgs
scenario while the points above the SM value belong to the narrow bulk-Higgs scenario. The
only exception is for y" = 0.5 (green points) in the custodial RS model where both signal
rates RZZ and Rγγ are suppressed also in the narrow bulk-Higgs scenario, due to effects of the
vev shift and the Higgs width. Note that all scatter points fulfill the T parameter bounds.
The dependence on the KK scale in the custodial RS model is shown by the yellow triangles
representing points with Mg(1) = 15 TeV in the right plot of Figure 7 for each of the scenarios.
The pair of triangles with increasing distance from the SM value belong to y" = 0.5, 1.5,
and 3. The cross shows the experimental values given in Table 3, while the green ellipses
present the 68%, 95%, and 99% confidence regions of the combined measurements. In the
minimal RS model (left plot) we see that there is a strong linear correlation between RZZ and
Rγγ , which is due to the fact that both signal rates are dominated by the Higgs production
process of gluon fusion. It is also noteworthy that the parameter space is strongly constrained
by the requirement to pass the electroweak precision tests. In the custodial RS model the
corrections to the signal rates can be much larger, due to the enlarged fermion content of the
model and due to the reduced T parameter bounds on MKK. We can also see a correlation
between both signal rates but it is not as marked as in the minimal RS model. This is due
to the fact that the KK excitations for the Higgs decay process h → γγ are enhanced by the
factor ∼ 71/8 ≈ 8.9 compared to the minimal RS model while the ones for the gluon-fusion
process gg → h are only enhanced by the factor 4. As explained in Section 4 both couplings
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Figure 5.12: Predictions for the signal rates RZZ and Rγγ in the minimal (left)
and custodial (right) RS model for the cases of a brane-localized Higgs boson and
a narrow bulk-Higgs field. All scatter points fulfill the constraints from electroweak
precision tests. The black dashed lines denote the SM predictions. The cross shows the
experimental 1σ-errors for the signal rates measured.

Comparing the bounds shown in Figure 5.11 with those derived from the analysis
of the observable Rγγ , we observe that the small region in the upper left corner of the
left plot in Figure 5.10 can be excluded by the current measurement of the observable
RZZ . Furthermore, the strongest bounds on the parameter space of the narrow bulk-
Higgs scenario are those coming from the analysis of RWW . The constraints implied by
Higgs physics are also much stronger than those derived from the analysis of electroweak
precision observables indicated by the dashed line in the lower row of Figure 5.11. Again,
the bounds on Mg(1) can be attenuated for regions in parameter space where y? is very
small. For example, if one would like to have a KK gluon mass of Mg(1) = 5 TeV, the
bounds on the parameter y? are y? < 0.4 (RZZ) and y? < 0.9 (RWW ) in the brane-Higgs
model, and y? < 1.5 (RZZ) and y? < 1.1 (RWW ) in the narrow bulk-Higgs scenario
(both at 95% CL).

Correlation between RZZ and Rγγ

We now continue the discussion in Subsection 5.1.3 between the two loop-induced Higgs
couplings to photons and gluons, but now at the level of the corresponding signal rates.
Figure 5.12 shows the predictions in the RZZ –Rγγ plane in the minimal (left plot) and
custodial RS model (right plot) for the brane-localized and narrow bulk-Higgs scenarios.
The SM predicts the values RSM

ZZ,γγ = 1 denoted by the black dashed lines. Scatter
points below the horizontal dashed line belong to the brane-localized Higgs scenario,
while the points above the line belong to the narrow bulk-Higgs scenario.10 All scatter
points fulfill the bounds imposed by the measurements of the oblique parameters S and
T . The cross shows the experimental values given in Table 5.3, while the green ellipses
present the 68%, 95%, and 99% confidence regions of the combined measurements. In
the case of the minimal RS model, we observe a strong linear correlation between RZZ
and Rγγ . This can be traced back to the fact that both signal rates are dominated by

10We only show the points for y? = 1.5 and 3 here. For the choice y? = 0.5, both RZZ and Rγγ are
reduced in both scenarios, see Figures 5.9 and 5.11.
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Figure 5.13: Predictions for Rττ as a function of the KK gluon mass Mg(1) (up-
per row) and the derived excluded regions of the parameter space (lower row) in the
custodial RS model, for the cases of a brane-localized Higgs boson (left) and a narrow
bulk-Higgs field (right).

the Higgs production process of gluon fusion, while the decay only receives moderate
corrections. It is also noteworthy that the parameter space is strongly constrained by
the requirement to pass the electroweak precision measurements. In the custodial RS
model the corrections to the signal rates can be much larger, due to the enlarged fermion
content of the model and due to the reduced bound on MKK from electroweak precision
tests. We can also see a correlation between both signal rates, but it is not as marked
as in the minimal RS model. This is due to the fact that the KK excitations for the
Higgs decay process h → γγ are enhanced by the factor ∼ 71/8 ≈ 8.9 compared to the
minimal RS model, while the ones for the gluon-fusion process gg → h are only enhanced
by the factor 4. As explained in Section 5.1.3 both couplings are working in opposite
directions, from which it follows that the shape of the scatter points in the right plot is
characterized by a larger slope. Notice that in both RS models, current experimental
data slightly favor the narrow bulk-Higgs over the brane-localized Higgs scenario.

Analysis of the Signal Rates Rττ and Rbb

Finally, we touch on the predictions for Rττ and Rbb in the custodial RS model. The
observable Rττ is shown as a function of Mg(1) in the upper row of Figure 5.13. As
in the previous cases, the shape of the curves for KK gluon masses larger than 5 TeV
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Figure 6:

Correlation between RZZ and Rγγ

We continue the discussion in Section 4 between the two loop-induced Higgs couplings to
photons and gluons, but now at the level of the corresponding signal rates. Figure 7 shows
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Figure 5.14: Predictions for Rbb as a function of the KK gluon mass Mg(1) in the
custodial RS model, for the cases of a brane-localized Higgs boson (left) and a narrow
bulk-Higgs field (right).

are due to the Higgs-boson production process, which is dominated by the gluon-fusion
production channel. Particularly for small KK scales, these effects are quite large and
have the potential to compensate and even exceed the SM contribution, so that only
the vector-boson fusion production channel contributes. This can be clearly seen in the
brane-localized Higgs case, where the observable Rττ is bounded from below due to finite
fraction of the vector-boson fusion in the production process. For very small KK scales
(Mg(1) . 3 TeV), on the other hand, it can even drop to zero. This can be traced back
to the vanishing hττ couplings, see Figure 5.3 and the discussion that follows.

The lower row of Figure 5.13 shows the regions in the Mg(1) – y? parameter space
that are excluded by the current LHC data. We see that in both versions of the custo-
dial RS model portions of the model parameter space can be excluded. Assuming the
conventional choice y? = 3, for example, one finds Mg(1) ≥ 15.1 TeV for the brane-Higgs
and Mg(1) ≥ 8.9 TeV or Mg(1) ≤ 4.0 TeV for the narrow bulk-Higgs model, both at 95%
CL. Weaker constraints are obtained for smaller values for y?. For instance, a mass of
Mg(1) = 5 TeV leads to an upper bound of y? < 0.9 (y? < 1.6) in the brane-Higgs (narrow
bulk-Higgs) scenario. For larger values the bounds from h → τ+τ− are stronger than
those from electroweak precision observables, indicated in the lower row of Figure 5.13
by the vertical line. However, they cannot compete with the bounds coming from the
latest measurements of RZZ and RWW , respectively.

Compared to the remaining ratios, the observable Rbb only suffers from moderate
effects in the RS model, since it only includes the minor affected production process via
Higgs-strahlung. This is shown in Figure 5.14. Although there is no need to distinguish
between the brane-localized and narrow bulk-Higgs scenario in the Higgs production
cross section and the decay width, the plots differ due to the effect of h → gg in the
modified Higgs width. This modification leads to suppression which is larger in the
narrow bulk-Higgs scenario, which can be understood with the help of Figure 5.16, dis-
cussed below. Note that it is refrained from showing the exclusion plots derived from the
analysis of Rbb, since the current experimental accuracy is worse than for the remaining
channels, as can be seen in Table 5.3.
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Figure 5.15: Summary of the bounds on the mass of the lightest KK gluon (left) and
the parameter y? (right) obtained from the exclusion plots in the custodial RS model for
the brane-localized (green) and narrow bulk-Higgs scenario (blue). The shaded regions
are excluded at 95% CL for each corresponding decay channel. We have assumed y? = 3
(Mg(1) = 5 TeV) in the left (right) plot. The dashed line shows the bound obtained
from a tree-level analysis of electroweak precision observables.

Summary of Exclusion Bounds for Mg(1) and y?

In the last part of this section, we summarize the current LHC bounds on the relevant
parameter space of the custodial RS model obtained from all relevant Higgs decays at
95% CL. The derived exclusion limits on the mass of the lightest KK gluon are shown in
the left plot of Figure 5.15. The green (blue) bars stand for the brane-localized (narrow
bulk-Higgs) scenario. The most stringent bounds emerge from the decays into ZZ∗

and WW ∗. The former yields tighter constraints in the brane-localized Higgs scenario
and the latter in the narrow bulk-Higgs scenario. This is due to the fact that the mild
tendency of the enhanced (suppressed) signal rate seen in the data is in conflict with the
suppression (enhancement) predicted in the case of pp→ h→ ZZ∗ (pp→ h→WW ∗).

Taking the most stringent bounds from Figure 5.15, we see that the bounds on the
mass of the first KK excitation of the gluon from Higgs physics read

Mg(1)

∣∣custodial RS

brane Higgs
≥ 19.9 TeV and Mg(1)

∣∣custodial RS

narrow bulk Higgs
≥ 14.9 TeV . (5.60)

It shall be stressed that, since the bounds in (5.60) are much stronger than those stem-
ming from electroweak precision measurements, there is not much gained by custodial
protection. While it can protect tree-level effects in RS models, it suffers from generically
too large contributions to loop-induced processes. This observation has also been made
in loop-induced flavor processes like b→ sγ [245], see subsequent section. However, we
will see that the effects found there are less pronounced.

A possible way out, aside from gauge-Higgs unification models [100, 117], where the
Higgs is the fifth component of a 5D gauge field, is to lower the maximum allowed value
of the 5D Yukawa elements y?. The right plot of Figure 5.15 summarizes the upper
bounds on y?, where a KK gluon mass of Mg(1) = 5 TeV has been assumed. More-
over, the analysis has been restricted to values for y? below the perturbativity bound
y? ≤ ymax ≡ 3. Again, the most stringent bounds come from the processes h → ZZ∗

and h→WW ∗ and can be combined to give the constraints

y?
∣∣custodial RS

brane Higgs
< 0.4 and y?

∣∣custodial RS

narrow bulk Higgs
< 1.1 . (5.61)
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Figure 5.16: Predictions for ch = ΓRS
h /ΓSM

h as a function of Mg(1) in the custodial RS
model, for the cases of a brane-localized (left) and a narrow bulk-Higgs field (right).

We see that in particular in the brane-Higgs scenario small values are preferred. How-
ever, too small Yukawa couplings would give rise to enhanced corrections to εK [180]
and hence they would reinforce the RS flavor problem.

The above analysis has shown that Higgs physics provides sensitive probes of the vir-
tual KK excitations in the context of various RS models. In particular the Higgs decays
into two massive gauge bosons, which are dominated by the Higgs-boson production rate
in gluon-fusion, could be used to either explain possible deviations in the corresponding
cross sections or to derive strong bounds on the RS parameter space. These bounds
are complementary to and sometimes stronger than those from electroweak precision
observables and rare flavor-changing processes. In the custodial RS model, the indirect
effect of KK states on the Higgs processes are strongly enhanced compared with the
minimal model, and hence the current experimental Higgs-physics results provide the
strongest constraints in this case. The strongest bounds emerge from h → ZZ∗ in the
brane-localized Higgs, and h → WW ∗ in the narrow bulk-Higgs scenario. Even under
the pessimistic assumption that the direct detection of KK excitations is out of reach at
the LHC, one may still see sizable modifications of the pp→ h→ τ+τ−,WW ∗, ZZ∗, γγ
cross sections. For example, even for Mg(1) = 10 TeV or 15 TeV, significant deviations
from the SM predicted value Rττ,WW,ZZ = 1 are still possible. For Rγγ the effects are
less strong, since a reduction (enhancement) in the Higgs production cross section is
partially compensated by an enhancement (reduction) in the h→ γγ decay rate.

It is noteworthy that, while the signal rate Rbb only implies very weak bounds for the
RS parameter space, the Higgs coupling to bottom quarks cb is important, since it is one
of the significant corrections to the Higgs width (5.55), that enters all of the signal rates.
Figure 5.16 shows the total Higgs width normalized to the SM value ch = ΓRS

h /ΓSM
h , de-

fined in (5.55), in the custodial RS model, including the corrections from the Higgs
decays h→ bb̄, WW ∗, gg. We see that in the brane-Higgs scenario the Higgs width can
be reduced by ∼ 30% (15%) for a KK gluon mass Mg(1) ≈ 5 TeV (10 TeV) and maximal
Yukawa value y? = 3. The dominant correction comes from the decay into two bottom
quarks, which leads to an enhancement of all branching ratios. This differs from the
case of the narrow bulk-Higgs scenario, where a large contribution comes from the Higgs
decaying into two gluons, which enhances the Higgs width and counteracts the suppres-
sion through cb. This effect dominates for y? & 1.5 leading to a Higgs width larger than
in the SM and consequentially reducing all branching ratios.
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5.2 B̄ → Xsγ Decays in Warped Extra Dimensions

In the last section of the main part of this thesis, we will investigate the phenomenological
implications of the RS contributions derived in Section 4.3 on the following physical
observables most directly related to the parton-level transition b → sγ: the branching
ratio (BR) Br(B̄ → Xsγ), the time-dependent CP asymmetry SK∗γ in the decay B̄ →
K̄∗γ, and the photon polarization parameter λγ , measured via the angular distribution
in the B̄ → K̄1(K̄ → ππ)γ decay. Recall that especially the chirality-flipped Wilson
coefficients can receive large corrections and are expected to give rise to significant
deviations from the SM prediction.11 So the latter observables are particularly viable to
look for RS effects. While CP asymmetries were discussed in previous works [176, 177,
245], this section will moreover add a discussion of the photon polarization parameter
λγ , which have gained importance after it has been clarified how it is experimentally
accessible. Note also that the Wilson coefficients related to the b→ sγ transition affect
observables associated with the semi-leptonic decay B̄ → Xsµµ̄ [272, 273], which will,
however, not be discussed here. A discussion of this process in the RS model can be
found in [245].

5.2.1 The Branching Ratio B̄ → Xsγ

We begin with the branching ratio of the inclusive decay B̄ → Xsγ. The current
experimental value reads [274, 275]

Br(B̄ → Xsγ) = (3.43± 0.22)× 10−4 ,

while the SM prediction at NNLO is [250, 276]

Br(B̄ → Xsγ) = (3.15± 0.23)× 10−4.

Since these two values agree very nicely at the moment, the measured branching ratio
will be used as a constraint on the parameter sets of the RS model. For this, we simply
require the RS corrections to fulfill the constraint

∆Br(B̄ → Xsγ) = Br(B̄ → Xsγ)exp − Br(B̄ → Xsγ)SM = (0.28± 0.64) · 10−4 , (5.62)

which represents the 2σ ranges when combining experimental and theoretical uncertain-
ties in quadrature. The effect of the RS model can be estimated with the help of the
formula of [245]

Br(B̄ → Xsγ) = Br(B̄ → Xsγ)SM + 0.00247
[
|CRS

7γ |2 + |C̃RS
7γ |2 − 0.706 Re(CRS

7γ )
]
,

(5.63)
where the RS corrections are evaluated at µb and all known SM non-perturbative contri-
butions are taken into account. The RS corrections are included only at LO neglecting
uncertainties which is accurate enough to estimate the possible RS effects. Note that a
positive RS correction to Br(B̄ → Xsγ)SM is favorable to get a theoretical value which is
closer to the data. With the help of (4.147), (4.148), and (4.149) we derive the branching
ratio in the minimal RS model, which is depicted in Figure 5.17 as a function of the

11See [271] for a review of possible measurements of C̃7γ .
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Figure 5.17: Branching ratio of the decay B̄ → Xsγ depending on the mass of the
first KK gluon Mg(1) in the minimal RS model. The light blue line denotes a fit function
of the parameter points, while the green (red) band shows the experimental value (SM
prediction). The vertical dashed line denotes the T parameter bound.

mass of the lightest KK gluon resonance.12 The green (red) band shows the current
experimental value (SM prediction) including the corresponding error margin, while the
blue points represent possible RS scenarios. The light blue line denotes a fit function
of the parameter points. As in the previous section, 5000 parameter sets are generated,
where the Yukawa matrices and bulk mass parameters correctly reproduce the SM quark
masses and Wolfenstein parameters. In order to obtain the maximally possible RS ef-
fects, the upper bound |(Y q)ij | ≤ y? = 3 has been imposed. We see that for large values
of the first KK gluon mass the parameter points are centered around the SM value due
to the decoupling of the RS effects, whereas a large enhancement is observed for small
KK scales. This has been expected due to the contribution of the chirality-flipped oper-
ators. Note, however, that the majority of parameter points lies within the experimental
error band and obeys the BR constraint (5.62), in particular those points which obey
the T parameter constraint Mg(1) > 12 TeV indicated by the vertical dashed line.

5.2.2 The Time-Dependent CP Asymmetry in B̄ → K̄∗γ

Due to the fact that the RS model induces large CP violating phases, it is of great
interest to study CP asymmetries in B decays based on the b → sγ transition. One
possible observable is the direct CP asymmetry in the inclusive decay B̄ → Xsγ [275],
which in principle is highly sensitive to NP contributions [277]. In practice, however,
the perturbative SM prediction is spoilt by large non-perturbative long-distance effects
leaving not much room for new physics [278]. Therefore, a theoretically more clean
observable will be considered, namely the time-dependent CP asymmetry in the exclusive
decay B̄ → K̄∗γ. As opposed to the corresponding branching ratio, this CP asymmetry
does not depend on the theoretical uncertainty of the B̄ → K̄∗ form factors [279–281].
It is defined by

Γ(B̄0 → K̄∗0γ)− Γ(B0 → K∗0γ)

Γ(B̄0 → K̄∗0γ) + Γ(B0 → K∗0γ)
= SK∗γ sin(∆Md t)− CK∗γ cos(∆Md t) , (5.64)

12Note that we mix the NLO SM values with the LO RS corrections which is actually somewhat
inconsistent. However, for our goal, i.e. the estimation of the possible effects of the RS model, it is
justified to use the above relation.
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Figure 5.18: The time-dependent CP asymmetry SK∗γ as a function of the KK gluon
mass Mg(1) (left) and the branching ratio Br(B̄ → Xsγ) (right). The experimental 1σ
error margins are given by the green bands and black vertical lines (in the right plot),
while the SM predictions are represented by the yellow bars. In the left plot, the blue
(gray) points obey (do not obey) the BR constraint and the vertical line represents the
bound from electroweak precision tests. In the right plot, all points fulfill both the BR
constraint and the T parameter bound. See text for details.

where SK∗γ at leading order is given by [280, 282]

SK∗γ '
2

|C7γ |2 + |C̃7γ |2
Im
[
e−iφd C7γ C̃7γ

]
. (5.65)

The Wilson coefficients are given in (4.147) and contain both SM and RS contributions.
The angle φd is the phase of B0 − B̄0 mixing and has been measured in B → J/ψKS

decays to be sinφd = 0.67± 0.02 [275] . Due to the occurrence of the Wilson coefficient
C̃7γ in the numerator, the SM prediction for SK∗γ is ms/mb-suppressed and reads

SSM
K∗γ = (−2.3± 1.6)% . (5.66)

The current experimental value [275, 283, 284]

Sexp
K∗γ = (−16± 22)% (5.67)

has the potential to reveal possible NP effects, but still suffers from large uncertainties,
so that more precise measurements would be desirable. Figure 5.18 shows the RS con-
tributions to SK∗γ depending on KK gluon mass Mg(1) (left plot) and the branching

ratio Br(B̄ → Xsγ) (right plot). The green bands denote the experimental 1σ error
margin for SK∗γ and the yellow bars include the corresponding SM predictions. In the
left plot, the blue (gray) parameter points fulfill the BR constraint (5.62) and the dashed
gray line represents the T parameter bound. In the right plot, all points are compatible
with both the BR constraint and the bounds stemming from electroweak precision tests.
The black dashed lines represent the 1σ error margin of the current measurement of
Br(B̄ → Xsγ). Note that due to the uncertainty in the SM prediction, all points on
the left and on the right-hand side of the dashed lines are still compatible with the BR
constraint. We observe that large deviations from the SM prediction for SK∗γ are still
possible for very heavy KK gluon excitations. 33% of the parameter points can lead to
deviations by |∆SK∗γ | = |SK∗γ − SSM

K∗γ | > 5%. It is reported in [285] that the expected
sensitivity on SK∗γ at the SuperB-factories is about 2%, so a precise measurement of
this observable could give us a first indication of the RS model in the future.
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Figure 5.19: The photon polarization parameter λγ as a function of Mg(1) (left) and
Br(B̄ → Xsγ) (right). The meaning of the colors, lines, bars, and dots is the same as
in Figure 5.18. The gray band represents the future sensitivity at LHCb. See text for
details.

5.2.3 The Photon Polarization Parameter λγ

Finally, we discuss the polarization of the emitted photon. This observable allows us
to disentangle the relative contributions to b → sγ from the operators Q7γ and Q̃7γ .
A detailed consideration of how to measure the photon polarization can be found in
[286–288]. Here, the proposal of [287] will be considered, which suggests to study the
angular distribution of the decay products in the B̄ → K̄1(→ K̄ππ)γ decay and extract
the polarization parameter

λγ =
|A(B̄ → K̄1γR)|2 − |A(B̄ → K̄1γL)|2
|A(B̄ → K̄1γR)|2 + |A(B̄ → K̄1γL)|2 =

|C̃7γ |2 − |C7γ |2
|C̃7γ |2 + |C7γ |2

(5.68)

via a measurement of the observable of the so-called up-down asymmetry.13 The indices
L and R in the matrix elements denote the polarization of the external photon. The
SM prediction for this quantity is λSM

γ ≈ −1, where small deviations are caused by the
ms/mb-suppression and hadronization effects. As stressed several times, it is possible in
the RS model to have a very large coefficient C̃7γ . One expects to observe this fact in the
polarization parameter resulting in values far above λγ = −1. We can indeed find such
scenarios, illustrated in Figure 5.19, where λγ is shown as a function of Mg(1) (left plot)

and Br(B̄ → Xsγ) (right plot). The yellow bars show the SM predictions, which are
approached by the parameter points for large choices of the KK scale. Note that even for
these, it is possible to get significant effects from the RS model. Precision measurements
of this quantity could therefore give rise to a clear indication for new physics. On the
other hand, the future sensitivities are reported to be ∼ 20% (with integrated luminosity
of 75 ab−1) at the B-factories and ∼ 10% at LHCb (with integrated luminosity of only
2 fb−1) [271, 288], represented by the gray bands in Figure 5.19. Since only 3% of the
parameter points can give rise to contributions larger than 10%, the future experiments
are probably not sensitive enough to verify the deviations induced by the minimal RS
model.

13It is also possible and even more feasible (since it increases the experimental sensitivity on λγ) to
measure λγ via a method which takes into account information on the Dalitz distribution, see [288] for
details.
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Summary

The above analysis has shown that also B decays mediated by the loop-induced parton-
level transition b→ sγ can provide sensitive probes of virtual effects of KK excitations.
The time-dependent CP asymmetry SK∗γ and the polarization parameter λγ generically
receive large corrections, even under the assumption that the bounds from the branching
ratio of B̄ → Xsγ and the electroweak precision measurements are fulfilled. In the former
case, the corrections are in the ballpark of the expected future experimental sensitivities.
Hence, in the context of the minimal RS model it is possible that a deviation of the SM
prediction for SK∗γ might be seen in the future experiments. One may ask what order
of magnitude one can expect for the effects in the RS model with custodial protection.
According to analysis performed in [245] the contributions to the Wilson coefficients are
supposed to be larger than in the minimal model due to the much richer fermion content
which was introduced to reconcile the model with the Zbb̄ constraint. This can lead to
modifications of the CP asymmetry SK∗γ and also of the polarization parameter λγ ,
which are more pronounced than in the minimal model. Moreover, the relatively low
S and T parameter bound of Mg(1) > 4.7 TeV in the custodial model allows for many
more parameter points in the left plots of Figures 5.18 and 5.19 to be considered. Note,
however, that the BR constraint is likely to exclude more parameter points due to the
larger corrections to the Wilson coefficients. In any case, it will be interesting to observe
what the future measurements will tell us about the radiative Wilson coefficients and in
particular C̃7γ .
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The first run of the LHC was both a success and a disappointment. On the one hand, it
verified the existence of the Higgs boson, the last missing piece of the SM, which made
the question of what stabilizes the Higgs mass around the electroweak scale more press-
ing than ever. On the other hand, it did not reveal any evidence for new physics which
could answer that question. This in turn has kept alive plenty of new-physics models,
few of which have been introduced in Chapter 1. One possibility with promising char-
acteristics is given by Randall-Sundrum models. Not only can these models explain the
hierarchy problem, but they, moreover, provide the currently best explanation for the
hierarchies in the flavor sector of the SM. However, the predicted particles are probably
too heavy for direct detection at the LHC, as explained extensively in Chapter 2. For
this reason, the intention of this thesis has been to point out possibilities how to look for
the heavy KK partners of the SM particles indirectly, in particular via measurements
of observables which are loop-suppressed and hence very sensitive to additional virtual
degrees of freedom in the loop. Chapters 4 and 5, which have formed the core of this
thesis, have focused on the Higgs production channel via gluon fusion, the Higgs decay
into two photons, and the flavor-changing neutral current b→ sγ in various incarnations
of the RS model, in which the Higgs sector is localized on or near the IR brane.

In the case of the loop-induced Higgs processes, it has been achieved to derive exact
expressions for the gg → h and h → γγ amplitudes in terms of integrals of the 5D
fermion and boson propagators with the Higgs-boson profile along the extra dimension
has been derived. Both expressions can be used to calculate the effective CP-even and
CP-odd ggh and hγγ couplings, as long as one succeeds in deriving an explicit expression
for the respective 5D propagator. The advantage of this approach is that one avoids
the notion of KK modes from the beginning, since the infinite sum over KK modes is
performed implicitly. In Chapter 3, we have derived both the warped-space 5D fermion
propagator with the full three-generation flavor structure and the gauge-boson propa-
gators in the minimal and custodial model, which are valid to all orders in v2/M2

KK. In
contrast to the procedure commonly used in the literature, all calculations have been
performed by keeping the exact dependence on the Higgs-boson mass. At the end of the
calculation the contributions of the SM particles and the fermion and boson KK towers
to the effective ggh and hγγ couplings have been identified.

The 5D analysis of the ggh amplitude has pointed the relevance of different mass
scales. While in models with a brane-localized Higgs sector the gluon fusion amplitude
receives the dominant new-physics contributions from states with masses of order several
times MKK, in a narrow bulk-Higgs scenario there is another equally important contri-
bution arising from (fermionic) states with masses of order v/η, which can resolve the
“bulky nature” of the Higgs boson. The various versions of RS models according to the
parametric relation of the characteristic width η of the Higgs-boson profile with respect
to the two ratios v|Yq|/MKK and v|Yq|/ΛTeV, where ΛTeV is the value of the inherent
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UV cutoff near the IR brane, have been classified in Table 4.1.
An important outcome of this thesis is that there is no controllable interpolation

between bulk-Higgs and brane-Higgs models. In RS models in which the scalar sector is
localized on the IR brane, we have found that the gluon fusion cross section is reduced
compared with its SM value, whereas in models in which the Higgs-boson is described
in terms of a narrow bulk field localized near the IR brane, the cross section is generally
enhanced. The results have confirmed the contradictory calculations of [149] and [222].
It has been demonstrated that when trying to interpolate between the bulk-Higgs and
brane-Higgs scenarios, i.e. taking the limit η → 0 in a bulk-Higgs model, one enters a
transition region with η ∼ v|Yq|/ΛTeV, in which the contributions from certain higher-
dimensional operators involving additional derivatives of the Z2-odd fermion profiles
become unsuppressed, so that the effective field-theory approach breaks down. Such an
operator is not present for the bosonic degrees of freedom, so that one obtains no res-
onance contribution from bosons and the W -boson contribution to the hγγ amplitude
in unambiguous. Furthermore, we have addressed the question of the numerical impact
of power-suppressed |Φ|2(Gaµν)2 operators, which contribute to the gg → h amplitude at
tree level. It has been shown that, irrespective of whether the Higgs sector is localized
on the IR brane or lives in the bulk, one expects power corrections of similar size. We
have argued that the resulting power corrections are likely to be numerically smaller
than the RS loop effects. The analogous argumentation holds for |Φ|2(Fµν)2 operators
contributing to the hγγ amplitude.

While most of the calculations have been performed in the minimal RS model, we
have also generalized the findings to the RS model with custodial symmetry. Analytical
expressions for the effective ggh and hγγ couplings in terms of the same input parame-
ters that appear in the minimal model have been derived. Due to the higher multiplicity
of particles running in the loop, the contribution from the infinite KK tower of virtual
quark states to the ggh (hγγ) amplitude has turned out to be four (68/5) times larger
than in the minimal model. The boson contribution is only twice as large.

In the phenomenological section, we have first studied the tree-level processes of Higgs
decays into two electroweak gauge bosons as well as the Higgs production processes via
Higgs-strahlung and vector-boson fusion. The analysis has included the effects from the
virtual KK gauge bosons, which have been found to be subleading with respect to the
L-enhanced contributions stemming from the modified hV V couplings.

The analysis of all tree- and loop-induced Higgs couplings has shown that the cor-
rections of the custodial RS model to the hff̄ coupling scale like ∼ y2

?v
2/M2

KK and can
be affected by O(10%) for small KK scales (Mg(1) . 5 TeV) and not too small values
for the maximal Yukawa value y? & 1. It has further been pointed out that the CP-odd
coupling of the top quark ct5 receives corrections that are already in the ballpark of
the measurements of the electric dipole moment of the electron. The largest RS correc-
tions appear in the loop-induced Higgs couplings to gluons and photons due to the high
multiplicity of virtual KK particles running in the loop. Even for a KK gluon mass of
Mg(1) = 10 TeV, modifications of the Higgs couplings to gluons and photons in the cus-
todial model can reach up to 53 % and 32 %, respectively. In order to show the potential
of future measurements in the Higgs sector for the search after warped extra dimensions
all relevant couplings have been compared with the sensitivities that can be reached by
the LHC operating at

√
s = 14 TeV (with integrated luminosity 300 fb−1) and the ILC

operating at
√
s = 1 TeV (with 1000 fb−1). We have derived strong exclusion bounds at

95% CL in the custodial RS model, which are summarized in Figure 5.6. Particularly the
ILC has turned out to be very sensitive to KK gluons, being able to rule out KK gluon
masses of Mg(1) ≥ 43 TeV × (y?/3) TeV deduced from an analysis of the loop-induced
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Higgs couplings to gluons. The analysis of the Higgs couplings to W bosons at the ILC
has been used to expect a sensitivity on KK gluon masses of Mg(1) ≈ 15.0 TeV, which is
independent of the realization of the Yukawa sector and hence the parameter y?.

We have finally compared the predictions of the measured signal rates for the pro-
cesses pp → h → bb̄, τ+τ−, WW ∗, ZZ∗, γγ with the latest experimental data from
the LHC. The strongest exclusion bounds originate from the Higgs decay into a pair
of electroweak gauge bosons. In the custodial RS model KK gluon masses lighter than
19.9 TeV×(y?/3) in the brane-Higgs and 14.9 TeV×(y?/3) in the narrow bulk-Higgs sce-
nario are excluded at 95% CL, which has been illustrated in the left plots of Figure 5.15.
These bounds derived from Higgs physics are already much stronger than those obtained
from electroweak precision tests. A possible way to lower these bounds is to reduce the
values for the maximal Yukawa matrix entry y?. Assuming a KK gluon with mass of
Mg(1) = 5 TeV in the custodial RS model would require values of y? ≤ 0.4 in the brane-
localized and y? ≤ 1.1 in the narrow bulk-Higgs scenario, shown in the right plot in
Figure 5.15. As too small values for y? would create a tension with other observables,
such as the parameter εK in the kaon system, this analysis has shown that the direct
detection of KK particles of the custodial RS model is disfavored by the current LHC
data.

This thesis has also provided an analysis of the FCNC b→ sγ in the minimal Randall-
Sundrum model. We have argued that the relevant contributions to the b → sγ ampli-
tude from the bosonic degree of freedom add up to a gauge-invariant result and that
the summation of the first five modes leads to a finite result. We have achieved to
derive approximate analytic formulas for the radiative Wilson coefficients. Importantly,
it has been observed that the completeness relation for the fermion profiles is responsi-
ble for the elimination of one infinite sum, from which one can deduce that systematic
cancellations within every KK mode leads to the finite result. It has been shown that
in particular the chirality-flipped Wilson coefficients receive large corrections from the
minimal RS model.

In the phenomenological analysis, we have investigated the impact of the potentially
large corrections to the chirality-flipped Wilson coefficients. While the well-measured
branching ratio of the decay B̄ → Xsγ has been used as an additional constraint besides
the T parameter bound, we have focused on observables which are more sensitive on
C̃7γ , namely the time-dependent CP asymmetry SK∗γ in the decay B̄ → K̄∗γ and the
polarization parameter λγ in the decay B̄ → K̄1γ. We have pointed out the fact the
latter observable can receive up to 10%−20% corrections, but suffers from a limited sen-
sitivity of future experiments. On the other hand, the time-dependent CP asymmetry
can receive corrections of larger than 5% (even for parameter points that obey both the
BR constraint and the T parameter bound), which the future experiments are expected
to be sensitive to. The effect of the custodial RS model is expected to be even more
pronounced, but has not been addressed in the analysis of b→ sγ and is left for future
work.

It will be exciting to compare the predictions derived in this thesis with future, more
precise experimental results. Even if no KK particles are to be discovered at the LHC,
we might hope that the measurements of the Higgs couplings and the time-dependent
CP asymmetry in B̄ → K̄∗γ either at the LHC or at a future linear collider could provide
a hint of the possible existence of warped extra dimensions.





Appendix A

Compendium of Results for the
Propagator Functions

Here the results for the propagator functions ∆~q
LL and ∆~q

RL for small, but finite Higgs

width η are shown. The corresponding results for the ∆~q
RR and ∆~q

LR can be obtained
with the help of the replacements shown at the end of Section 3.2.3. The limit η → 0
has been discussed in Section 3.2.4. Keeping the η dependency, the propagator solutions
depend on the region where t and t′ take their values. We use a subscript b (s) for t, t′

when the fifth coordinate lives in the bulk (sliver) region. The final results read
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%Ỹ
†
~q
S2
~q

X2
~q

S(t)
S(1η)

(
ηp̃E

cothS~q
S~q

+R ~Q

)
1

Nη2
~q
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Ỹ ~q

[
C(t)
C(1η)

(
1 + ηp̂E

tanhS~q
S~q

R ~Q

)
1

Nη2
~q

S(t′)
S(1η) −

{ C(t)S(t′+η)
S(1η) , ts > t′s

C(t+η)S(t′)
S(1η) , ts < t′s

]
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The propagator functions have been written down in such a way that one can immedi-
ately notice their continuity at point 1− η for both t and t′. Using

L
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(A.2)

the continuity becomes obvious in almost all cases. For the (11)- and (22)-elements of

the propagator function ∆~q
RL, one moreover needs the relations (3.90).



Appendix B

The Yukawa Perturbativity
Bound

In this appendix, we will discuss the Yukawa perturbativity bound. As pointed out in
Section 2.2.2, the Yukawa matrix elements Y ij are expected to be anarchic, complex
O(1) numbers, i.e. they are assumed not to be too small and too large, respectively.
In fact, we must impose an upper bound on the size of the 5D Yukawa couplings,
since they otherwise do not remain perturbative up to the cutoff of the RS models under
consideration. Here we will first recall the NDA estimates for the Yukawa perturbativity
bound in RS models with a brane-localized and a bulk-Higgs sector. These estimates will
be somewhat more refined than those done in the literature, e.g. in [160, 180], taking into
account the dependence on the number of generations Ng. After that, the perturbativity
bound will be calculated explicitly using the exact 5D fermion propagators derived in
Section 3.2. We will find that the explicit calculation leads to stronger bounds than the
conventional NDA estimates. The first part of this appendix is based on Appendix D of
our publication [150], while the second part is unpublished work.

B.1 NDA Estimates

We begin with the NDA estimates, which build the basis for what is the upper bound
for the Yukawa matrix elements |(Y q)ij | ≤ y? is usually adopted in the literature. As we
will see, they will depend on whether the scalar sector is a bulk or an IR-localized field.
We will also derive the value of β, for which the NDA estimate for the bulk scenario has
to be replaced by the corresponding one for the brane-Higgs scenario.

Brane-Localized Higgs Scenario

In an RS model with a brane-localized Higgs sector, we have to take into account the
fact that the scalar field is localized on a brane (fixed by the δ-function). This in turn
implies that the momentum is not conserved in certain directions due to the breaking of
translational invariance and hence some of the dp5 integrals coming from the

∫
d5p . . .

representation of the propagators cannot be eliminated and remain part of the loop
integration. Neglecting external momenta as well as the scalar and fermion masses, one
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finds the following the NDA estimate for the one-loop correction to the Yukawa coupling
[111, 150], 1

Φ(x) ∼ cg
(
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l25
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(B.1)
where l4 = 16π2 and l5 = 24π3 are the 4D and 5D loop factors defined in (1.58) and MPl

is the physical UV cutoff ΛUV of the RS model. The coefficient cg = 2Ng − 1 accounts
for the multiplicity of fermion generations and is determined by the relation (5.40). The
corresponding typical size of an element of the anarchic 5D Yukawa matrices is given
by |Y 5D

q | = 2|Yq|/k, where |Yq| is related to the maximal value y? via (4.53). Requiring
that the above one-loop correction is smaller than the tree-level Yukawa coupling yields
the condition
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where we have used that ΛTeV = MPlε and MKK = kε. A similar estimate can be
obtained in the KK picture, where the quadratic behavior on the cutoff arises from a
double sum over NKK levels of states with masses below the cutoff ΛTeV [180]. We then
find
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2

)3 1
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!
< 1 , (B.3)

where it has been used that the masses of the KK modes are determined by the zeroes
of some Bessel functions, see (2.29). This in turn means that the states in the N th KK
level have masses approximately given by NπMKK (valid for large N), and therefore
NKK ≈ ΛTeV/(πMKK). Note that the two estimates (B.2) and (B.3) are equivalent up
to a harmless O(1) factor. Employing (4.53) and solving for y?, we find the condition
y? < ymax, with the upper bounds ymax = (6π2/

√
cg)MKK/ΛTeV derived from (B.2) and

ymax = (6π2/
√
cg)MKK/ΛTeV derived from (B.3). Assuming ΛTeV ≈ 10MKK, which

reflects the proper balance between several KK modes below the UV cutoff without
reintroducing a large hierarchy, one finds that ymax ≈ 2.6 in the first case and ymax ≈
3.5 in the second. These estimates are somewhat more refined than those presented
elsewhere in the literature (since the dependence on the number of generations Ng is
included), but they are compatible with the conventional choice ymax = 3 adopted in
most phenomenological analyses of RS models.

Bulk-Higgs Scenario

For a bulk scalar we do not need to account for brane-localized vertices and the one-loop
corrections to the Yukawa interaction can be estimated as

Φ(x, x5) ∼ cg
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(B.4)

1Note that the factor of
√

2 in the denominator has been included, as this factor appears in the
Feynman rule (2.126).
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It follows in this case that
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where we have used relation (2.98) for the dimensionless Yukawa matrix. This translates

into y? < ymax with ymax =
√

96π3/cg
√

1+β
2+β

√
MKK/ΛTeV. Note that in the bulk-Higgs

case the suppression in the ratio MKK/ΛTeV is parametrically weaker than in the case
of a brane-localized Higgs field. In practice, with ΛTeV ∼ 10MKK, this effect is not too
important, however. Even for a very broad bulk Higgs with β → 0, we obtain ymax ≈ 3.9,
which is of the same order as the bound in the brane-Higgs case. In a narrow bulk-Higgs
scenario, for which η = 1/β � 1 is a small parameter (see Table 4.1), one can simplify
ymax =

√
96π3/cg

√
ηMKK/ΛTeV ≈ 7.7

√
η. This formula can only be trusted as long as

η & MKK/ΛTeV ≈ 0.1. For smaller η, the relevant bound is that found in the brane-
Higgs case, ymax ≈ 2.6. From a practical point of view, there is no significant difference
between the two bounds.

B.2 Calculation Using the Exact 5D Fermion Propagator

Let us now derive the Yukawa perturbativity bound at one-loop order by a calculation
via the exact 5D fermion propagator in the minimal RS model. The calculation for
the custodial model can be performed analogously. We consider the diagram shown
in (B.1), where the incoming momentum are denoted by k, while k1 and k2 are the
outgoing momenta for the two quarks, i.e. kµ = k1µ + k2µ. The Lagrangian of the
Yukawa interactions can be generally written as
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where the integral I(k1, k2, t, t
′) represents the one-loop correction and we distinguish

between the Yukawa matrices for the Z2-even and Z2-odd fermion profiles. Considering
the amplitude for an outgoing left-handed and an incoming right-handed quark, we find
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where Q(n)
L,R are the fermion profiles in the vector representation (2.71), Sq is the fermion

propagator derived in Section 3.2 and Mq denotes the 6 × 6 Yukawa matrix shown in
the first line of (B.6) (with an additional factor of % = v/(
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2MKK)). Matching the

amplitude on the effective Lagrangian (B.6), we obtain

I(k1, k2, t, t
′) =

i

2

∫
ddp

(2π)d
/p(/p+ /k)

[
T qRL(p, p+ k, t, t′) + T qLR(p, p+ k, t, t′)

]

(p+ k1)2 −m2
h

, (B.8)
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where

T qAB(p, q, t, t′) ≡ 1

%2
δηh(t′ − 1)

∫ 1

ε
dt′′ δηh(t′′ − 1)∆q

RA(t, t′′;−p2)M†q ∆q
BL(t′′, t′;−q2)Mq

(B.9)

is the interesting quantity to be calculated. We now distinguish between the brane-
localized and the bulk-Higgs scenario.

In the former case, the solutions for the propagator functions are shown in Sec-
tion 3.2.4. Evaluating them at t = t′ = 1−, we find

T qRL(p, q, 1−, 1−) =
1

pE qEM2
KK

(
−%2W q(p, q) Ỹ qY

S†
q %W q(p, q)Y

C
q

−% 1
Ỹ q
W q(p, q) Ỹ qY

S†
q

1
Ỹ q
W q(p, q)Y

C
q

)
,

T qLR(p, q, 1−, 1−) =
1

M2
KK

(
%2 V q(p, q) Ỹ qY

S†
q %V q(p, q)Zq Y

C
q

% 1
Ỹ q
V q(p, q) Ỹ qY

S†
q

1
Ỹ q
V q(p, q)Zq Y

C
q

)
,

(B.10)

with the defined quantities

W q(p, q) ≡
Zq(p

2
E)

1 +Zq(p2
E)

1

RQ(pE)

(
1

%2

Xq

tanhXq
− Y S

q Ỹ
†
q

)
RQ(qE)

1

1 +Zq(q2
E)

,

V q(p, q) ≡
1

1 +Zq(p2
E)

(
Ỹ qY

C†
q +

1

%
Zq(p

2
E)Y S

q

1

%Ỹ q

)
1

1 +Zq(q2
E)

.

(B.11)

The integral (B.8) could in principle be evaluated in order to obtain the correction to
the Yukawa coupling. However, it turns out to be more appropriate to first expand the
terms in O(v2/M2

KK). Working at leading order in v2/M2
KK, we can send %→ 0 for the

propagator solutions, in which case they drastically simplify to

∆q
LL(1−, 1−;−p2) = −RQ(p̂E)

pEMKK

(
1 0
0 0

)
, ∆q

RR(1−, 1−;−p2) = −Rq(p̂E)

pEMKK

(
0 0
0 1

)
,

(B.12)

while ∆q
RL(1−, 1−;−p2) = 0 = ∆q

LR(1−, 1−;−p2) completely vanish. Consequentially,
it is T LR(p, q, 1−, 1−) ≈ 0 in this limit and

T qRL(p, q, 1−, 1−) ≈ 1

pE qEM2
KK

(
0 0

0 Rq(p̂E)Y C†
q RQ(q̂E)Y C

q

)
. (B.13)

Note that pE qE is not meant to be a euclidean scalar product, but as the product√
−p2

√
−q2. Inserting (B.13) into (B.8) gives

I(k1, k2, t, t
′) =

1

2M2
KK

1

l4

∫ ∞

0
dp2

E p
d−2
E

Rq(p̂E)Y C†
q RQ((p̂+ k̂)E)Y C

q

(pE + k1E)2 +m2
h

(
0 0
0 1

)
. (B.14)

Notice the appearance of the loop factor l4 = (4π)2. Note further that the correction is
exact up to higher orders in v3/M3

KK. At this step, another simplification is necessary,
since the integrand is quite complicated and the momentum integral cannot be performed
easily. Being interested in large momenta k1E,2E � pE . ΛTeV, we can approximate the
integrand using the expansion Rq,Q ≈ 1. In this limit, the corrections to the Yukawa
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sector are given by (sending d→ 4)

I1 ≈
1

2M2
KK l4

∫ ΛTeV

0
dp2

E

(
0 0

0 Y C†
q Y

C
q

)
=

1

2l4

(
ΛTeV

MKK

)2(
0 0

0 Y C†
q Y

C
q

)
, (B.15)

and we recover the quadratic sensitivity on the UV cutoff already shown up in the NDA
estimate. Thus, the Yukawa coupling is indeed quadratically divergent in the RS model.
Employing (5.40), we find that the leading correction only affects Y C

q by

(
Y C
q

)
ij
→
(
Y C
q

)
ij

[
1 +

1

2 l4

(
ΛTeV

MKK

)2

(2Ng − 1)|Yq|2
]
, (B.16)

and with the help of (4.53) this translates into maximal value when the Yukawa sector
gets strongly coupled

y? < ymax < 2

√
l4

2Ng − 1

MKK

ΛTeV
≈ 1.1 . (B.17)

As before, it has been used in the second step that practically ΛTeV ≈ 10MKK. We
see that this bound is very tight and much stronger than the NDA estimate. However,
the actual value for y? has to be determined by measurement of observables that are
sensitive on the value of y?, like the loop-induced Higgs processes analyzed in the previous
sections. In fact, as shown in Section 5.1, the current LHC data prefer small values for y?
to be compatible with KK boson mass that are in reach of direct detection at the LHC.
Nevertheless, the value for ymax derived above should be kept in mind when discussing
possible ranges of allowed Yukawa matrix elements. Note also that y? is the upper bound
imposed for the elements of the Yukawa matrices. A typical element is |Yq| ∼ y?/

√
2

according to (4.53) and hence even smaller.
In the bulk-Higgs scenario, the exact solution for the 5D fermion propagator has not

been derived yet and it is therefore necessary to work at leading order in the expansion
of v2/M2

KK right from the beginning. However, one does not even need the propagator
solutions at v2/M2

KK, since the corrections to (B.6) at that order come from the Yukawa
matricesMq, see (B.7). Thus, one can make use of the solutions for the free 5D fermion
propagator, which can be deduced from the results in Section 3.2.4 in the limit Y q → 0.
Provided with these solutions and the Higgs profile (2.63) one could in principle calculate
the function TAB (B.9). The result is exact in v2/M2

KK. However, for a generic bulk-
Higgs profile it is not possible to get a compact, analytical result after the integration
over the extra dimension. For the case of a very localized Higgs profile (β � 1), on the
other hand, some simplifications can be made allowing us to show that the brane result
is recovered in the limit β →∞. As the Higgs profile is IR-localized and the localization
increases for larger β, only values for t, t′, and t′′ that are O(1) have to be considered. If
one furthermore takes into account that the propagator functions fall off exponentially
for values t, t′, t′′ 6= 1 and high momenta (see (3.118)), the functions T can be written
as

TRL(p, q, t, t′) =
χh0(t′)

rpEqEM2
KK

(
0 0

0 Y C,5D†
q Y C,5D

q

)∫ 1

ε
dt′′ χh0(t′′) . (B.18)

Upon evaluating the integral over t′′ and redefining the Yukawas via (2.98), we finally
get

TRL(p, q, t, t′) =
δ

1/β
h (t′ − 1)

pEqEM2
KK

(
0 0

0 Y C†
q Y C

q

)
, (B.19)
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where δ
1/β
h (t − 1) = (2 + β) t1+β has been used, see (2.97). This is equivalent to the

corresponding formula in the brane-localized Higgs case (B.13) and consequently, con-
cerning the Yukawa perturbativity bound, there exists no difference between the two
cases.



Appendix C

Feynman Rules in the 4D
Effective Theory

Couplings within the Boson Sector

(a)

h

ϕ±(n)

W
∓(m)
ν

pϕ

ph

(b)

h

W
±(n)
µ

W
∓(m)
ν

(c)

A
(0)
µ

W
∓(m)
νh

ϕ±(n)

(d)

h

ϕ+(n)

ϕ−(m)

(e)

A
(0)
µ

A
(0)
νW

+(n)
λ

W
−(m)
ρ

(f)

A
(0)
µ

ϕ
+(n)
W

ϕ
−(m)
W

p+

p−

(g)

A
(0)
µ

ϕ
±(m)
W

W
∓(n)
ν

(h)

A
(0)
µ

A
(0)
νϕ

+(n)
W

ϕ
−(m)
W

(i)

A
(0)
µ

c
(n)
±

c
(m)
∓

pµ

(j)

h

c
(n)
∓

c
(m)
±

(k)

pγ
p+

p−

A
(0)
µ

W
+(n)
ρ

W
−(m)
σ

Here the Feynman rules needed for the calculation of the one-loop gauge-boson, scalar,
and ghost contributions to the h→ γγ decay amplitude in the KK-decomposed version
of the minimal RS model are listed. We work in a general Rξ gauge and use mass
eigenstates of all SM particles and their KK excitations. The Feynman rules for the
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vertices shown above are:

(a):
m̃2
W

vmW
n

2π χWm (1)χWn (1) (pϕ − ph)ν , (b):
2im̃2

W

v
2π χWm (1)χWn (1) ηµν ,

(c): ± e m̃2
W

vmW
n

2π χWm (1)χWn (1) ηµν , (d):
−im2

h

v

2π m̃2
W

mW
mm

W
n

χWm (1)χWn (1) ,

(e): − ie2
(
2ηλρ ηµν − ηλµ ηρν − ηλν ηρµ

)
δmn , (f): ie (p+ − p−)µ δmn ,

(g): ± emW
m ηµν δmn , (h): 2ie2 ηµν δmn ,

(i): ± ie pµ δmn , (j): − ξ im̃
2
W

v
2π χWm (1)χWn (1) ,

(k): ie δmn Vρµσ(p+, pγ , p−) ,
(C.1)

where v is the Higgs vev in the RS model, the parameter m̃W has been defined in (2.30),
and the structure Vρµσ of the three-boson vertex has been given in the text after (4.80).

Fermion Coupling to Bosons

The Feynman rules for the fermion coupling to vector bosons have been derived in
[184, 230] and can be summarized as

iM = igBγ
α
(
V B
nmkPL + Ṽ B

nmkPR

)
, (C.2)

where α denotes the boson polarization and the gB’s are the respective couplings, i.e.
g/
√

2 for the W− and W+, gst
a for the gluon, eQf for the photon, and g/ cos θw for

the Z boson exchange. The subscripts denote the outgoing (n) and the incoming (k)
fermion modes, whereas the boson mode is represented by m. The specific form of the
overlap integrals can be found in (2.123) – (2.125).

The couplings to the scalar bosons are given by

iM = gB

(
V ϕB
nmkPL + Ṽ ϕB

nmkPR

)
. (C.3)

While gB is just the same as above, the coupling to the Higgs is chosen to be gH = i,
with Vnk = gnk given in (2.126). The overlap integrals V ϕB

nmk and Ṽ ϕB
nmk can be written

as (B = γ, G, Z)

V ϕB
nmk =

md
n

mB
m

V B
nmk −

md
k

mB
m

Ṽ B
nmk , Ṽ ϕB

nmk =
md
n

mB
m

Ṽ B
nmk −

md
k

mB
m

V B
nmk

and

V
ϕ+
W

nmk =
mu
n

mW
m

V W+

nmk −
md
k

mW
m

Ṽ W+

nmk , Ṽ
ϕ+
W

nmk =
mu
n

mW
m

Ṽ W+

nmk −
md
k

mW
m

V W+

nmk ,

V
ϕ−W
nmk =

md
n

mW
m

V W−
nmk −

mu
k

mW
m

Ṽ W−
nmk , Ṽ

ϕ−W
nmk =

md
n

mW
m

Ṽ W−
nmk −

mu
k

mW
m

V W−
nmk .



Appendix D

Results for the b→ sγ and
b→ sg Amplitudes

In this appendix, the results for the amplitudes of the diagrams shown in Figure 4.5 and
the corresponding ones for b → sg are shown. The radiative Wilson coefficients can be
read off with the help of (4.106). Only the sums of scalar and vector-boson contributions
are presented for reasons of gauge invariance. The underlying Feynman rules can be
found in Appendix C. The functions from the integrals over Feynman parameters are
given by

I3(x) =
3− 4x+ x2 + 2 log(x)

2(x− 1)3
,

I4(x) =
2 + 3x− 6x2 + x3 + 6x log(x)

12(x− 1)4
,

IA(x) = − −4 + 3x+ x3 − 6x log(x)

2(x− 1)3
,

IB(x) =
8− 38x+ 39x2 − 14x3 + 5x4 − 18x2 log(x)

12(x− 1)4
,

IC(x) =
1− 12x+ 15x2 − 4x3 − 6x log(x)

4(x− 1)3
,

ID(x) =
4− 49x+ 78x2 − 43x3 + 10x4 − 18x log(x)

24(x− 1)4
,

IE(x) =
1 + 9x− 13x2 + 3x3 + 8x log(x)

2(−1 + x)3
,

IF (x) =
4 + 40x− 99x2 + 68x3 − 13x4 − 6x(−6 + 5x) log(x)

12(−1 + x)4
.
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Results for the b→ sγ Amplitude

b s
B(m)

q(n) q(n)

γ(0)

b s
ϕ

(m)
B

q(n) q(n)

γ(0)

Figure D.1: Gauge-boson exchange. It is q = u and xqBnm = (mu
n)2/(mW

m )2 for B = W
and q = d and xqBnm = (md

n)2/(mB
m)2 for the neutral bosons.

iAB = i
−2

v2
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n,m
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mB
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)2[mq
n

mb
IA(xqBnm)V B

2mnṼ
B
nm3 + IB(xqBnm)V B

2mnV
B
nm3

]
〈Q7γ〉

The values for κB read: κW = Qu/2, κZ = Qd/c
2
w, κA = Q3

ds
2
w, and κG = QdCFαss

2
w/α.

b s
h

d(n) d(n)

γ(0)

Figure D.2: Higgs exchange, xdhn = (md
n)2/(mh)2 .

iAh = i
−2
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h
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]
〈Q7γ〉
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Figure D.1: Gauge Boson exchange. It is q = u and xqB
nm = (mu

n)2/(mW
m )2 for B = W

and q = d and xqB
nm = (md

n)2/(mB
m)2 for the neutral bosons.
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Figure D.2: Higgs exchange, xdh
n = (md
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Figure D.3: W -boson emits photon, xWu
mn = (mW

m )2/(mu
n)2 .{Wbosonex}
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Figure D.3: W boson emits photon, xWu
mn = (mW

m )2/(mu
n)2 .

iAWW = i
−2

v2

∑

n,m

(m̃W

mW
m

)2[mu
n

mb
IC(xWu

mn )V W−
2mn Ṽ
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Results for the b→ sg Amplitude
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Figure D.4: Gauge-boson exchange. It is q = u and xqBnm = (mu
n)2/(mW

m )2 for B = W
and q = d and xqBnm = (md

n)2/(mB
m)2 for the neutral bosons.
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The values for κ′B read: κ′W = κW , κ′Z = κZ , κ′A = κA, and κ′G = −Qdαss2
w/2αNc.
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Figure D.5: Higgs exchange, xdhn = (md
n)2/(mh)2 .

iAh = i
−2

v2

∞∑

n=1

(m̃W

mh

)2
(
− s2

w

8πα

)[md
n

mb
I3(xdhn )Ṽ h
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Figure D.4: Gauge-boson exchange. It is q = u and xqB
nm = (mu

n)2/(mW
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and q = d and xqB
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m)2 for the neutral bosons.
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The values for 0B read: 0W = W , 0Z = Z , 0A = A, and 0G = �Qd↵ss
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Figure D.5: Higgs exchange, xdh
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Figure D.6: Gluon 3-vertex, xGd
mn = (mG

m)2/(md
n)2 . {threegluon}
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Figure D.6: Three-gluon vertex, xGdmn = (mGm)2/(md
n)2 .
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