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Fabian Schmitz

Computer Simulation Methods to study Interfacial Tensions:
From the Ising Model to Colloidal Crystals

In condensed matter systems, the interfacial tension plays a central role for a
multitude of phenomena. It is the driving force for nucleation processes, determines
the shape and structure of crystalline structures and is important for industrial
applications. Despite its importance, the interfacial tension is hard to determine
in experiments and also in computer simulations. While for liquid-vapor interfacial
tensions there exist sophisticated simulation methods to compute the interfacial
tension, current methods for solid-liquid interfaces produce unsatisfactory results.

As a first approach to this topic, the influence of the interfacial tension on nuclei is
studied within the three-dimensional Ising model. This model is well suited because
despite its simplicity, one can learn much about nucleation of crystalline nuclei. Below
the so-called roughening temperature, nuclei in the Ising model are not spherical
anymore but become cubic because of the anisotropy of the interfacial tension. This
is similar to crystalline nuclei, which are in general not spherical but more like a
convex polyhedron with flat facets on the surface. In this context, the problem of
distinguishing between the two bulk phases in the vicinity of the diffuse droplet
surface is addressed. A new definition is found which correctly determines the volume
of a droplet in a given configuration if compared to the volume predicted by simple
macroscopic assumptions.

To compute the interfacial tension of solid-liquid interfaces, a new Monte Carlo
method called “ensemble switch method” is presented which allows to compute the
interfacial tension of liquid-vapor interfaces as well as solid-liquid interfaces with
great accuracy. In the past, the dependence of the interfacial tension on the finite
size and shape of the simulation box has often been neglected although there is
a nontrivial dependence on the box dimensions. As a consequence, one needs to
systematically increase the box size and extrapolate to infinite volume in order to
accurately predict the interfacial tension. Therefore, a thorough finite-size scaling
analysis is established in this thesis. Logarithmic corrections to the finite-size scaling
are motivated and identified, which are of leading order and therefore must not be
neglected. The astounding feature of these logarithmic corrections is that they do
not depend at all on the model under consideration. Using the ensemble switch
method, the validity of a finite-size scaling ansatz containing the aforementioned
logarithmic corrections is carefully tested and confirmed. Combining the finite-size
scaling theory with the ensemble switch method, the interfacial tension of several
model systems, ranging from the Ising model to colloidal systems, is computed with
great accuracy.



Fabian Schmitz

Computersimulationsmethoden zur Untersuchung von Grenzflächen-
spannungen: Vom Isingmodell bis hin zu kolloidalen Kristallen

Die Oberflächenspannung ist von zentraler Bedeutung für viele Phänomene im Bereich
der Festkörperphysik, beispielsweise bei Keimbildungsprozessen, bei der Struktur
von Kristallen und in vielen verschiedenen industriellen Anwendungen. Trotz ihrer
Bedeutung ist die Oberflächenspannung in Experimenten und Computersimulationen
schwer zu bestimmen. Während für Grenzflächenspannungen zwischen Flüssigkeiten
und Gasen etablierte Simulationsmethoden existieren, sind die Ergebnisse im Falle
von Grenzflächen zwischen Kristallen und Flüssigkeiten nicht zufriedenstellend.

Einen ersten Zugang zu diesem Thema bietet die Untersuchung des Einflusses der
Oberflächenspannung auf Nuklei im dreidimensionalen Isingmodell, welches konzep-
tionell einfach ist und dennoch die Beobachtung von Nukleationsprozessen erlaubt.
Unterhalb der sogenannten Aufrauungstemperatur ist ein Nukleus im Isingmodell
nicht sphärisch sondern würfelförmig mit flachen Facetten und abgerundeten Ecken
und Kanten. Dies ist zurückzuführen auf die Anisotropie der Oberflächenspannung.
Dasselbe Phänomen tritt auch bei kristallinen Nuklei auf, sodass deren Form im
Allgemeinen eher einem konvexen Polyeder entspricht als einer Kugel. In diesem
Zusammenhang wird auch die Frage diskutiert, wie man die flüssige und gasförmige
Phase nahe der typischerweise sehr diffusen Grenzfläche unterscheiden kann. Die
Antwort bietet ein neues Kriterium, mit dem das Volumen des Nukleus in einer
gegebenen Konfiguration korrekt bestimmt werden kann.

Um die Oberflächenspannung für Grenzflächen zwischen Kristallen und Flüssigkeiten
bzw. Flüssigkeiten und Gasen mit hoher Genauigkeit zu bestimmen, wird eine neue
Simulationsmethode namens “ensemble switch method” benutzt. In der Vergangenheit
wurde die Abhängigkeit der Oberflächenspannung von der endlichen Größe und Form
der Simulationsbox oft vernachlässigt, obwohl eine nichttriviale Abhängigkeit besteht.
Daher muss man die Boxgröße systematisch variieren, um durch Extrapolation auf
eine unendlich große Box die Grenzflächenspannung zu bestimmen. In dieser Arbeit
wird aus diesem Grund eine gründliche Analyse der Finite-Size-Effekte durchgeführt.
Die in führender Ordnung auftretenden universellen logarithmischen Korrekturen,
die erstaunlicherweise nicht vom untersuchten Modell abhängen, werden motiviert
und mit verschiedenen Effekten in Verbindung gebracht, unter anderem dem bisher
nicht dokumentierten “domain breathing”-Effekt. Die Richtigkeit der Finite-Size-
Analyse wird mithilfe der ensemble switch method sorgfältig überprüft und bestätigt.
Die Kombination der Finite-Size-Analyse und der ensemble switch method erlaubt
es, die Oberflächenspannung für verschiedene Modelle, vom Isingmodell bis hin zu
kolloidalen Systemen, mit hoher Präzision zu bestimmen.
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Chapter 1

Introduction

Physics is a challenging endeavor, aiming at understanding the fundamental principles
of the whole universe and the interaction between the elementary constituents of
matter and energy. This is a bold and ambitious challenge, but especially in the
last century, there were quite a few breakthroughs changing our understanding of
the universe. For me, there is one branch of physics which is especially attractive
because it is much closer to our everyday life than any other field of physics. This
branch is condensed matter physics, which focuses on understanding the interplay
of condensed phases of matter, ranging from weather phenomena over industrial
processes, magnetic systems, superconducting phases and Bose-Einstein condensates
to everyday things like ice tea and refrigerators.

Condensed matter physics is a vast field with many handshakes to other fields
in chemistry, materials science, nanotechnology, atomic physics and biophysics.
Therefore it is no surprise that a large fraction of physicists are active researchers
in this field. Nevertheless, condensed matter physics is a complicated subject to
deal with. This is due to the fact that the physical systems typically contain a
large number of particles, e.g. electrons in metals or colloidal particles in solution or
particles to study hydrodynamic behavior of liquids in certain geometries etc.

In order to study phase transitions and similar phenomena, colloidal systems are
especially attractive. Contrary to atomistic systems, colloids are mesoscopic particles
with sizes ranging from several nanometers to micrometers. They are also fascinating
systems in their own right, being important for cosmetics, food industry, colloidal
ink or enamels. Furthermore, they form an interlink between microscopic and
macroscopic systems, since they behave in many aspects like atoms or molecules.
The main advantages of studying colloidal systems rather than atomic systems are
as follows:
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• The colloid-colloid interaction can be tuned by changing the colloids’ material,
surface structure or charge and by changing the suspension in which the colloids
are suspended. Hence, a wide range of pair potentials can be modeled.

• Being a factor 103 to 104 times larger than atoms, colloids are much easier to
track, e.g. via optical methods like confocal microscopy.

• The timescales in colloidal systems are also much slower compared to atoms.
Hence, processes like crystallization and melting can be observed in real-time.

This makes colloidal systems perfect model systems to study phase transitions and
similar phenomena.

One major topic in condensed matter physics is nucleation. Nucleation phenomena
are ubiquitous in nature, industry and our personal life. To describe them, a theory
nowadays known as classical nucleation theory (CNT) came up in the 1930s [Volmer
and Weber, 1926; Volmer, 1929; Becker and Döring, 1935; Zeldovich, 1943]. This
theory projects macroscopic properties to mesoscopic length scales to describe the
nucleation process for general liquid-vapor transitions. The theory has now been
examined very closely for a long time and still remains valid today, despite being
applied to crystalline nuclei and to microscopical nuclei which violate the simplifying
assumptions of the CNT [Kashchiev, 2000].

The examinations in this work are based on computer simulations. The use of
computer simulations in the field of statistical physics began in the 1950s, when
the Monte Carlo method was introduced [Metropolis et al., 1953]. It allowed to
calculate averages of physical observables in many-body systems by creating a series
of Boltzmann weighted configurations. This simple technique has led to powerful
algorithms and much insight during the past 60 years. Over the years, computer
simulations have become an accepted approach to problems where experiments cannot
be executed and exact theories are missing or incomplete. Computer simulations
are also used to complement experiments or theories by offering a third perspective.
One major advantage of computer simulations is that pair interactions can be set as
desired and effects like polydispersity or impurities can be turned on and off and
therefore be analyzed individually. Also, all the particle trajectories are known, so
precise measurements of properties like pair correlation functions or local density
fluctuations are possible. Another major advantage is that the physical system
represented within the computer does not need to be physical at all. For example,
there exist algorithms to slowly shift from one physical state into another via a path
of unphysical states. Of course, one has to be very careful to ensure that the output
of such a simulation is sensible.

The challenge of computer simulations is twofold. On the one hand, one needs to



15

think of new, more efficient algorithms to solve the problems at hand. On the other
hand, new hardware offers new possibilities, and hence a computer physicist is always
keen to gain access to supercomputers with a large number of CPUs. Since the
speed of a single CPU (or core) is limited, the industry has started to use parallel
architectures where a large number of cores work together to solve a given problem,
using parallelization standards like MPI or OpenMP.

This thesis centers on the interfacial tension of an interface between two bulk phases,
studying liquid-vapor coexistence and solid-liquid coexistence. The interfacial tension
is a quantity of tremendous importance as it governs fundamental processes like
formation of ice crystals in the atmosphere or crystallization in industrial applications
and technical processes. Hence it has a wide interest in the scientific community
and allows to test the classical nucleation theory (CNT) for crystalline nuclei [Block
et al., 2014]. Since the computation of the interfacial tension is a difficult task, the
use of supercomputers is absolutely necessary.

The ambition of this work is to compute the interfacial tension of several physical
systems via computer simulations. The interfacial tensions of solid-liquid interfaces
are of special interest, as they are particularly hard to compute. To this end, a new
Monte Carlo algorithm is invented and applied to various systems. Over the course
of this thesis, it was found that the resulting interfacial tension is not independent of
the size of the physical system in the computer, even if it is continued in all spatial
directions by using periodic boundary conditions. Therefore, a rigorous finite-size
scaling analysis is done in order to identify the relevant effects when varying the
size of the simulation box. The resulting finite-size scaling ansatz, which takes
these effects into account, enables us to greatly improve the predictions of interfacial
tensions.

The outline of this thesis is as follows. Chapter 2 contains a short introduction to
Monte Carlo simulations and also covers some more advanced topics like pseudoran-
dom number generators and sophisticated algorithms like thermodynamic integration.
Also, the model systems considered in this work are introduced as well as classical
nucleation theory. After this, chapter 3 addresses the problems of classical nucleation
theory in environments with crystalline phases. Since the interfacial tension is not
isotropic (unlike in fluid systems), the shape of crystalline nuclei is not spherical but
rather faceted. Therefore, chapter 3 investigates whether classical nucleation theory
is applicable in such systems. The simplest system where the interfacial tension is
anisotropic is the Ising model in three dimensions, where droplets are only spherical
at high temperatures (below the model’s critical point) but become more and more
cubic at lower temperatures. In this context, we discuss a method to separate a
nucleus from its surroundings unambiguously.

After this investigation, chapter 4 introduces a new method to calculate interfacial
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tensions. This “ensemble switch method” is based on the idea of thermodynamic
integration and allows to compute the interfacial tension between two bulk phases for
arbitrary model systems. Chapter 5 then presents a theory of finite-size scaling for the
interfacial tension. Although the derivation uses the language of the Ising model, the
resulting finite-size scaling ansatz is of general validity because the underlying effects
are independent of details of the model. The second part of the chapter contains
thorough tests of the finite-size scaling ansatz for the two- and three-dimensional
Ising model using the ensemble switch method.

The ensuing chapter 6 pursues the aim of computing the interfacial tension for
solid-liquid interfaces. The first step in this chapter is to consider conceptually
simpler liquid-vapor interfaces and show that the ensemble switch method and the
finite-size scaling ansatz are not restricted to discrete model systems like the Ising
model. The second step is to compute the interfacial tension directly for two common
models, namely hard spheres and the Asakura-Oosawa model. The thesis ends with
some concluding remarks.
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Chapter 2

Theoretical Background

Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in
1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933.
Perhaps it will be wise to approach the subject cautiously.

David L. Goodstein [Goodstein, 1985]

This chapter introduces the concepts and necessary tools used in the later chapters. It
begins with a short introduction to Monte Carlo simulations. The next two sections
cover the relevant models for this thesis, namely the Ising model (or lattice gas
model) and several continuous models like Lennard-Jones particles, hard spheres
and the Asakura-Oosawa model. Sections 2.4 and 2.5 sum up the necessary facts
about classical nucleation theory (CNT) and capillary wave theory. While the former
provides the basis for chapter 3, the latter plays a role in the whole thesis, as it
is a central concept in the study of interfaces. After this, some technical details
about Monte Carlo simulations will be covered, for example pseudorandom numbers,
optimization schemes and algorithms to measure quantities like the pressure or the
chemical potential. The final section presents some of the methods to compute free
energies. The methods discussed there are the basis for the ensemble switch method
in chapter 4, which will then be used in the later chapters to compute interfacial
tensions for the various models introduced in this chapter.
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2.1 Basic Concepts

2.1.1 On Monte Carlo Simulations

If a small physical system with a given volume V and particle number N is coupled
to a large system, referred to as the heat bath, the temperature of the small system
is determined by the heat bath. It follows that the probability of the small system
to be in a state i with energy Ei is given by a Boltzmann distribution

P (Ei) =
exp(−βEi)

Z
, (2.1)

where Z(N, V, T ) is the partition function of the canonical ensemble

Z(N, V, T ) =
∑
i

exp(−βEi) . (2.2)

Here and in the following, β = 1/(kBT ) denotes the inverse temperature and kB is
the Boltzmann constant. The free energy of the system is then given by

βF (N, V, T ) = − ln[Z(N, V, T )] . (2.3)

Knowing the thermodynamic potential of a system implies knowledge over all equi-
librium properties of the system, e.g.

E(N, V, T ) =
∂βF (N, V, T )

∂β

∣∣∣∣
N,V

S(N, V, T ) = − ∂F (N, V, T )

∂T

∣∣∣∣
N,V

µ(N, V, T ) =
∂F (N, V, T )

∂N

∣∣∣∣
V,T

P (N, V, T ) = − ∂F (N, V, T )

∂V

∣∣∣∣
N,T

CV (N, V, T ) =
∂E(N, V, T )

∂T
=
∂2F (N, V, T )

∂T 2

∣∣∣∣
N,V

Therefore, knowledge about the partition function of a given system is desirable.
However, it is impossible to analytically derive or compute it apart from some simple
systems like the ideal gas or the one- and two-dimensional Ising model.

The aim of statistical mechanics is to predict mean values of physical observables of
a given physical system. The expectation value of an observable A is defined by

〈A〉 =

∫
A(Γ)p(Γ)dΓ , (2.4)



2.1. BASIC CONCEPTS 19

where the points in phase space are denoted with Γ. The integral ranges over the
whole phase space and is weighted with a probability distribution p. On the other
hand, there is the time average

A = lim
T→∞

1

T

∫ T

0

A(Γ(t))dt , (2.5)

where the mean value is taken along the trajectory of the system through phase
space. The equality of these two averages is absolutely non-trivial. If 〈A〉 = A
holds, then the system is called ergodic. There are some examples of ergodic and
non-ergodic systems but in general it is still impossible to tell if a given system is
ergodic. Therefore, one typically assumes that the system under consideration is
ergodic until the opposite is proven. Ergodicity is an important concept for Monte
Carlo simulations because it predicts observables by approximating Eq. (2.4) while
Molecular Dynamics uses a different approach based on approximating Eq. (2.5).

Monte Carlo simulations are a means to solve a problem by using random numbers.
One traditional example is the calculation of π. One draws a circle with diameter 1
within a square of side length 1. By drawing N random points within the square and
counting the number Nhit of points within the circle, one can approximate π using
the fact that Nhit/N ≈ Acircle/Asquare = π/4. Provided the points are on average
evenly distributed on the square, then one can get a good estimate for π for large N .

Monte Carlo simulations can also be used in statistical physics by translating the
concept of phase space into a Markov chain. Every state the physical system can
be in is represented by a knot x in a network and every transition from one state
to another has a certain transition probability W (xi → xj). These transition
probabilities depend on the current knot but not on the history of previously visited
knots. A Markov chain is a path in this network of knots

x0
W (x0→x1)−−−−−−→ x1

W (x1→x2)−−−−−−→ x2
W (x2→x3)−−−−−−→ x3 → . . . . (2.6)

Consider one knot xi in this network. There is a flow of probability from and to this
knot, so that the probability P (xi, t) of being at the knot xi at time t changes as

P (xi, t+ 1)− P (xi, t) =
∑
xj 6=xi

P (xj, t)W (xj → xi)−
∑
xj 6=xi

P (xi, t)W (xi → xj) .

(2.7)
This equation is called master equation, as it governs the overall probability distribu-
tion across the network of knots. The Theorem of Markov states that

If a Markov chain is ergodic, which means that one can go from any knot
to any other knot in a finite number of steps, then the Markov chain has
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a unique stationary probability distribution

P (x) = lim
t→∞

P (x, t) (2.8)

for all knots x. This stationary probability distribution is approached
for t→∞, regardless which initial state xstart is chosen.

The proof can be found in [Feller, 1968]. If one initializes the system in a state xstart,
then the probability is concentrated on this point at t = 0. As time proceeds, the
probability will spread across the network. The Theorem of Markov ensures that the
probability distribution of the system will ”forget“ the initial state and approach an
equilibrium distribution. For the stationary distribution, Eq. (2.7) becomes∑

xj 6=xi

P (xj)W (xj → xi) =
∑
xj 6=xi

P (xi)W (xi → xj) . (2.9)

This equation is fulfilled if the following stricter equation is fulfilled

P (xj)W (xj → xi) = P (xi)W (xi → xj) . (2.10)

This requirement is called detailed balance. It states that the probability to be at
one knot xi and move to a neighboring knot xj is equal to the probability to be in
the neighboring knot xj and go back to the original knot xi.

The concept of Markov chains translates to problems of statistical physics easily.
The network of knots {x} represents the phase space {Γ} of a given physical system
if the equilibrium probability P (x) represents thermal equilibrium, namely

P (x) =
1

Z
exp [−βE(x)] (2.11)

where β = 1/(kBT ) is the inverse temperature and E(x) is the energy of the state (or
configuration), given by the system’s Hamiltonian H(x). The transition probability
W (xi → xj) can be split into two parts

W (xi → xj) = Wchoose(xi → xj)Waccept(xi → xj) (2.12)

The first part Wchoose is the probability to choose a state xj for the transition and
the second part Waccept is the probability to make the move. Usually one takes
Wchoose(xi → xj) = Wchoose(xj → xi). Then from the detailed balance (2.10), one
can conclude

Waccept(xi → xj)

Waccept(xj → xi)
=
P (xj)

P (xi)
= exp (−β[E(xj)− E(xi)]) . (2.13)
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Note that ifW (xi → xj) is zero, thenW (xj → xi) is also zero, so there is no division
by zero taking place here. This equation tells how the transition probabilities between
points in phase space have to be chosen to yield the thermal equilibrium distribution
of states. To fulfill Eq. (2.13), many choices are possible, but the most common one
is the Metropolis criterion [Metropolis et al., 1953]

Waccept(xi → xj) = min [1, exp (β[E(xj)− E(xi)])] (2.14)

where a Monte Carlo move is accepted with the probability exp (β[E(xj)− E(xi)]),
but always if the total energy is lowered.

Monte Carlo simulations offer a simple way to calculate mean values of physical
observables via Eq. (2.4). One simply has to follow a Markov chain through phase
space and measure A along the way. Then

〈A〉 ≈
N∑
i=1

A(xi) . (2.15)

To proceed from one configuration to the next, Monte Carlo moves are made. A
Monte Carlo move consists of the following steps

1. Create from the current configuration xi a new configuration x′.

2. Calculate the energy difference ∆E = E(x′)−E(xi) between the new and the
old configuration.

3. Draw a random number r ∈ [0, 1].

4. If r < e−β∆E, accept the new configuration xi+1 = x′, otherwise restore the
old configuration and set xi+1 = xi.

The second step is an attempt to move from one point in phase space to another
point in phase space. If the jump is too large, the move will be declined. Therefore,
one has to think of moves which change the configuration significantly and, at the
same time, have a high acceptance ratio. For example, in an Ising model, one can
attempt to flip one spin, or a whole cluster of spins at the same time. In continuous
models, one can try to add or remove a particle, or translate a particle over a small
distance. Note also that the system can remain in one configuration for several steps
if all moves are declined. This is due to the probabilistic nature of the Markov chain
reflecting the thermal fluctuations in the physical system.

When using Monte Carlo techniques, some aspects have to be kept in mind.
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• After initializing the system, one has to wait until the initial configuration
is forgotten and equilibrium is reached. Then one can start to measure A to
get the equilibrium value. If one immediately starts to measure A, there is a
systematic error in the resulting value.

• The way in which the transition moves are chosen greatly influences the
performance of the simulation. If the Monte Carlo moves have little acceptance
probabilities or the changes of the configuration by a move is very small, it
can take a very long time to reach equilibrium and get meaningful results.
Therefore, a lot of research focuses on thinking of new and better Monte Carlo
moves, especially in polymer physics.

• It must be ensured that the detailed balance is fulfilled. It should be emphasized
that in this context, Wchoose(xi → xj) = Wchoose(xj → xi) is sometimes
forgotten.

2.1.2 The Interfacial Tension

If two phases are in contact with each other, for example a crystal and some
surrounding liquid, the system creates an interface between the two phases, which
costs free energy. This is the reason why heterogeneous structures are unstable in
computer simulations, as the system can usually lower its free energy by eliminating
the interfaces and becoming homogeneous1.

In general, the interfacial tension γ is defined as the amount of free energy ∆F
needed to create an interface, divided by the area A of the interface

γ = lim
V→∞

∆F

A
. (2.16)

While with growing volume V , the free energy and the interfacial area diverge,
the interfacial tension γ is finite and well-defined in the thermodynamic limit. In
computer simulations, one can use advanced Monte Carlo techniques to compute ∆F
directly, but only with limited success [cf. section 4.2]. As explained in chapter 1, the
interfacial tension is of great importance in condensed matter physics. Hence, the
whole thesis focuses on this quantity, which is known exactly only for some specific
model systems like the Ising model in two dimensions.

1There are exceptions to this rule: In the one-dimensional Ising model, the system is heterogeneous
for T > 0. Instead of aligning all spins, it creates domains in which spins are parallel. This is due
to the fact that the free energy cost to create domain walls is outweighed by the entropy gained by
having the freedom to place the domain walls anywhere in the system. This is an important effect
discussed in chapter 5, as it is not restricted to the Ising model.
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2.2 Discrete Model Systems

If one wishes to study nucleation phenomena with computer simulations, there are two
major challenges. First, due to limited resources, one can typically only access a small
number of decades in time, which corresponds to barriers much smaller than what
is needed to monitor relevant nucleation barriers which are about 30 kBT . Second,
it is in general difficult and still an unsolved problem to decide whether an atom
belongs to a droplet or to the environment, for the interfaces are in general diffuse
and fluctuating. For these reasons, it is a very advantageous to study nucleation
in a simplistic model, which contains nucleation phenomena but can be simulated
easily. The Ising model does not only provide a link to the past studies of nucleation
phenomena [Binder and Stauffer, 1972; Binder and Müller-Krumbhaar, 1974; Binder
and Stauffer, 1976; Binder, 1987], where the computing power has much more limited
than today, but also to quite recent studies [Pan and Chandler, 2004; Winter et al.,
2009b; Ryu and Cai, 2010; Prestipino et al., 2013], showing that the Ising model is a
valuable and established model. Later, in this thesis, a link between worlds will be
established by using the Ising model, the simplicity of which allows to study a huge
variety of system sizes with acceptable computational effort, to understand much
more complicated systems, namely colloidal model systems like hard spheres and the
Asakura-Oosawa model, which are introduced in section 2.3.

In this section, the Ising model and the similar lattice gas model will be introduced.
Also, the finite-size phases will be shown, since they play an important role when
defining droplet volumes in chapter 3.

2.2.1 The Ising (lattice gas) Model

The Ising model one of the central models in statistical physics. On a d-dimensional
simple cubic lattice, where each lattice site is occupied by a spin σi (which can take
the values ±1) and has q = 2d next neighbors, q being the coordination number of
the lattice, the Hamiltonian H is given by

H = −J
∑
〈i,j〉

σiσj −H
∑
i

σi , (2.17)

H being a global magnetic field and J being the coupling constant between next
neighbors 〈i, j〉. Note that we set J = 1 in the whole thesis, as it is the natural
energy scale in this model.

For homogeneous nucleation, one usually considers the three-dimensional Ising
model on a simple cubic lattice with linear dimension L and volume V = L3,
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using periodic boundary conditions in all three directions. At high temperatures,
the interaction between the spins is much weaker than the thermal fluctuations,
so that the magnetization per volume m =

∑
i σi/V is zero on average. At low

temperatures, the interaction enables the system to become ordered, thereby gaining
a net magnetization msp(T ). The phase transition of second order occurs at the
critical temperature kBTc/J = 4.5115 [Ferrenberg and Landau, 1991; Baillie et al.,
1992].

The Ising model is closely related to the lattice gas model [Lee and Yang, 1952],
where physical quantities can be mapped from one model to the other, as will be
explained below. For the lattice gas model, consider a simple cubic lattice, where
each lattice site i can either be occupied (ci = 1) or empty (ci = 0). The particles
interact via an interaction constant J if they are next to each other on the lattice.
Within the grandcanonical ensemble (µ, V, T ), i.e. at constant chemical potential µ,
volume V (number of lattice sites) and temperature T , the Hamiltonian is given by

HLG = −J
∑
〈i,j〉

cicj − µ
∑
i

ci . (2.18)

This lattice gas Hamiltonian can be mapped onto the Ising Hamiltonian (2.17) via
the transformation

σi = 2ci − 1 ⇔ ci =
1 + σi

2
. (2.19)

The important properties between the two models translate as follows

J =
JAA

4
, % =

1 +m

2
, H =

µ− µcoex
2

, (2.20)

with µcoex = qJAA/2, q being the coordination number of the lattice, which is 2d in
d dimensions. The interpretation is that an Ising system in a magnetic field H is
equivalent to a lattice gas model at the corresponding chemical potential. Further
information can be found in [Binder and Kalos, 1980; Lee and Yang, 1952]. In this
thesis, the two models will be used side by side, depending on the point of view.
The magnetization m of the Ising model corresponds to the density of spins pointing
upwards via % = (1 +m)/2.

The two-dimensional Ising model on a square lattice is exactly soluble [Onsager,
1944] for vanishing magnetic field H. Setting J to unity, the critical temperature Tc
is the solution of the equation sinh(2β)2 = 1, which is

Tc =
2

arcsinh(1)
=

2

ln(1 +
√

2)
≈ 2.26919 (2.21)

The interfacial tension (for the definition, see section 2.1.2) is given by

γ =

{
2β + ln(tanh(β)) T < Tc
0 T ≥ Tc

. (2.22)
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This is important for chapter 5, where numerical calculations of γ can be compared
to the exact result. In three dimensions, the interfacial tension γ and the critical
temperature Tc are only known numerically.

2.2.2 Finite-Size Phases in the Lattice Gas Model

In computer simulations, the systems under consideration are always finite. Using
periodic boundary conditions in order to extract the system’s bulk properties, one
can observe different geometries [Schrader et al., 2009a,b] of the system, depending
on the density % of occupied lattice sites, respectively. Figure 2.1 shows that there
are seven different geometries in a homogeneous system with periodic boundary
conditions in all three directions. In the following, a phase with low density will be
referred to as vaporous while a system with high density will be called liquid. Of
course, due to the spin exchange symmetry, it could as well be the other way around.
The different geometries only appears in a finite box. In the thermodynamic limit,
the chemical potential dependency on density is much simpler, for it is completely
flat in the two-phase region.

If the density is very low, there are only small fluctuating liquid clusters in a vaporous
surrounding. Unlike in the thermodynamic limit, where the chemical potential is zero
in the two-phase region %v,coex < % < %l,coex, the vaporous state in a finite geometry
is also stable also at slightly higher densities than %v,coex. At some point however,
the system performs the droplet evaporation-condensation transition [Binder, 2003;
MacDowell et al., 2004; Schrader et al., 2009a], at which the liquid phase coagulates
to form a compact (spherical) shape. At this point, the system is decomposed into
a liquid region and a vaporous region, separated by an interface with an interface
tension γvl.

Increasing the density even more leads to a second transition, where the droplet
becomes so large that it connects to itself via the periodic boundary condition and
thereby assumes a cylindrical shape. This behavior is motivated by the increased
volume-to-interface ratio of the cylindrical shape compared to a spherical shape.
The next transition occurs when the liquid phase connects to itself via two periodic
boundaries. Such a geometry is called a slab [Schrader et al., 2009a; Block et al.,
2010; Tröster et al., 2012]. Since the interface area does not change with varying
density, the chemical potential is flat in this geometry. Because of the spin exchange
symmetry, the different geometries occur now with exchanged roles of positive and
negative spins, namely a cylindrical vaporous bubble, a compact (spherical) bubble
and a liquid with small fluctuating vaporous clusters.

It should be emphasized that the exact shape of the minority phase depends on the
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Figure 2.1: The chemical potential β∆µ against the density % for a three-dimensional
Ising system at a temperature below the critical temperature. The transitions
between two geometries is accompanied by a phase transition and therefore a jump
in the chemical potential. This jump is blurred because in a finite system, the
partition function is always analytical and hence cannot have a jump. In larger
systems, the jumps become steeper. The data shown here is from a system with
L = 20, kBT/J = 3.0. For L→∞, the structure in the two-phase region vanishes
and the chemical potential is zero for %v,coex < % < %l,coex.

model and the temperature. In general, the minority phase tries to minimize its free
energy by minimizing the interface, which naturally leads to spherical or cylindrical
shapes. However, in the Ising model and any other model where the interface tension
γ depends on the orientation (especially crystals), the shape will deviate from the
spherical form. This will be discussed in section 3.2.

2.2.3 Connection to the Random-Cluster Model

There exist quite a few advanced simulation methods to efficiently sample the Ising
model. One of these is the Swendsen-Wang algorithm [Swendsen and Wang, 1987],
where instead of single spin flips, a whole cluster of spins is flipped in one step. It
has been shown that this is an accurate sampling which is dramatically faster than
single spin flip algorithms, especially in the vicinity of the critical point. However, it
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plays an important role in chapter 3 for a different reason.

An ordinary Monte Carlo move in an Ising system is to choose one spin randomly
and attempt to flip it using the Metropolis criterion Eq. (2.14). The Swendsen-
Wang algorithm attempts to flip whole clusters instead of single spins. A cluster is
determined by creating bonds between all spins of equal orientation. Those spins,
which are connected to each other, belong to the same cluster. This procedure
divides the system in a number of clusters (each cluster consisting of at least one
spin), where each spin belongs to exactly one cluster. Then one of these clusters is
chosen and an attempt is made to flip all spins belonging to this cluster, again using
the Metropolis criterion Eq. (2.14). At high temperatures this procedure is much
faster, i.e. the auto-correlation function vanishes much more quickly, if compared to
ordinary single spin flips.

When creating bonds, a bond between two spins with the same orientation must be
set only with a temperature-dependent probability

p = 1− exp(2β) , (2.23)

where β = 1/(kBT ) is the inverse temperature and the interaction constant J is
set to 1. The following calculation motivates this Swendsen-Wang probability p. A
mathematically rigorous derivation is found in chapter 4 of [Fortuin and Kasteleyn,
1972].

The partition function of the Ising model with vanishing magnetic field H is given by

Z =
∑
σ

exp

β∑
〈ij〉

σiσj

 , (2.24)

where
∑

σ sums over all configurations of spins and
∑
〈ij〉 sums over all next neighbors.

The partition function can be rewritten as

Z =
∑
σ

exp

β∑
〈ij〉

σiσj


=
∑
σ

∏
〈ij〉

exp (βσiσj)

=
∑
σ

∏
〈ij〉

eβ
(
δσi,σj + e−2βδσi,−σj

)
.
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Now we add a zero and rearrange the terms

Z =
∑
σ

∏
〈ij〉

eβ
(
δσi,σj + e−2βδσi,−σj + e−2βδσi,σj − e−2βδσi,σj

)
=
∑
σ

∏
〈ij〉

eβ
(
(1− e−2β)δσi,σj + e−2β)

)
.

Introducing the probability p = 1− e−2β, one obtains

Z =
∑
σ

∏
〈ij〉

eβ
(
pδσi,σj + (1− p)

)
. (2.25)

Now using the relation a+ b =
∑1

k=0(aδk,0 + bδk,1), the final result is

Z =
∑
σ

∏
〈ij〉

∑
nij

eβ
(
pδσi,σjδnij ,1 + (1− p)δnij ,0

)
. (2.26)

The nij establish the connection to the random cluster model. The bond between
the next neighbors 〈i, j〉 is active with a probability p = 1− e−2β, but only if σi = σj .
So there can only be bonds between spins with equal sign.

In a simulation, one can sample this partition function by initializing inactive bonds
between all neighbors. Then one activates the bond between each pair of spins with
σi = σj with the probability p. In the end, one has subdivided the configuration
into a number of clusters. At high temperatures, flipping these clusters instead of
single spins generate uncorrelated configurations with much less computational effort.
However, this is not relevant for this work. Instead, the physical relevance of these
clusters will be discussed in chapter 3.

2.3 Continuous Model Systems

2.3.1 The Lennard-Jones Model

The Lennard-Jones potential U(r) for two atoms with distance r was proposed
by John Lennard-Jones [Jones, 1924] for the description of vaporous Argon. The
potential consists of short-ranged repulsive term ∝ r−n, describing Pauli repulsion
forces, and an attractive term ∝ r−m with m = 6, representing the London dispersion
forces. Although the repulsive part of real atoms is better described by other functions
of r, the great benefit of the following representation is its computational efficiency,
when the repulsive term is just the square of the attractive term

U(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(2.27)
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Here, σ is the natural length scale of the potential and can be interpreted as the
diameter of the particles. The constant ε sets the depth of the potential minimum
of the potential. The critical temperature of a full Lennard-Jones potential is
kBT/ε = 1.326(2) [Caillol, 1998]. The phase diagram is shown in Fig. 2.2.

Figure 2.2: Phase diagram for the Lennard-Jones potential (2.27). The horizontal
axis shows the reduced density N/V and the vertical axis the reduced temperature
T ∗ = kBT/ε. The dashed line corresponds to the liquid-vapor coexistence and the
solid lines to solid-liquid and solid-vapor coexistence. The triple line, where all three
phases coexist at one temperature, is at T ∗ ≈ 0.8. This picture is taken from [Bizjak
et al., 2009].

From a computational physicist’s point of view, this interaction is long-ranged.
Therefore the Lennard-Jones potential is often truncated at a distance rcut and
shifted so that the potential approaches zero smoothly:

U(r) =

{
4ε
[(

σ
r

)12 −
(
σ
r

)6
+ Y

]
, r ≤ rcut

0 , r > rcut
(2.28)

with Y = (27 − 1)2−14. The cutoff radius is chosen to be rcut = 2 · 21/6 in this work.
The truncation decreases the computational effort while maintaining the overall
behavior of the particles. Both potentials are plotted in Fig. 2.6.

Although for the truncated potential, the phase diagram looks similar, the choice of
rcut (and also whether the potential is shifted or not) effectively defines a different
model [Smit, 1992], e.g. the critical temperature is lower, because the interaction range
is decreased. For our choice rcut = 2 · 21/6, the critical temperature is kBT/ε = 0.999
[Virnau, 2003].
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2.3.2 A short Introduction to Crystallography

A solid phase is characterized by the arrangement of its constituents. One can
distinguish three kinds of solids:

• Crystals: The constituents are arranged with a periodic order. A crystal can
have two-, three-, four- or sixfold symmetry.

• Incommensurable structures and quasi-crystals: These structures consist of
two or more sub-lattices whose lattice constants are incommensurable. A quasi-
crystal has a long-range order and can have five-, eight-, ten- or twelvefold
symmetry.

• Amorphous structures: There is no order in these structures. The disorder
can be positional (colloidal glasses, metallic glasses) or topological (amorphous
semiconductors).

The lattice structure of a crystal is described by a Bravais lattice, which is a discrete
set of all points of the form

Rj,m,n = ja1 +ma2 + na3 (2.29)

where j,m, n are integers and the ai are three fixed linearly independent vectors
called the primitive vectors of the lattice. They are not unique, so one can describe
the same lattice by several sets of {ai}. Instead of a set of primitive vectors, one can
also characterize the lattice by a unit cell. A unit cell is a volume which, if translated
by all Rj,m,n, completely fills the entire space without overlaps or empty spaces. One
can always find a so-called primitive unit cell which contains only one point of the
Bravais lattice. A unit cell can contain one or several constituents.

A crystal structure is fully characterized by the structure of the unit cell and the
lattice structure. There are 14 Bravais lattices in total. In this work, the simple cubic
(sc), the body-centered cubic (bcc), the face-centered cubic (fcc) and the hexagonal
close-packed (hcp) are of importance. The unit cell of the sc lattice is a cube with
one particle in each corner. If one takes the sc lattice and adds one atom in the
center of the unit cell, one obtains the bcc lattice. The fcc structure is obtained from
the sc lattice by adding one atom in the center of each of the six sides of the cube.

An important quantity of crystal structures is the coordination number q, which
is the number of next neighbors of an atom. Due to the periodicity of the lattice,
this number is the same for all particles in a lattice. The fcc lattice plays a special
role because it has the highest coordination number possible, corresponding to a
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close-packing of equal spheres2. The hcp structure differs from the fcc structure only
by the way in which the close-packed lattice planes are stacked. Whereas hcp has an
ABAB structure, the fcc structure corresponds to a stacking in an ABCABC fashion.
The volume packing fraction η = π

6
Nσ3

V
, σ being the diameter of the spheres, of both

close-packed structures is

ηmax =

√
2π

6
≈ 0.740480 (2.30)

which is the highest packing fraction one can achieve with equal spheres.

crystal q ηmax

sc 6 π/6 ≈ 0.5236

bcc 8
√

3π/8 ≈ 0.6802

fcc 12
√

2π/6 ≈ 0.7405

hcp 12
√

2π/6 ≈ 0.7405

Table 2.1: Coordination number q and maximal volume packing fraction ηmax of
various crystal structures. The fcc and hcp structures have the highest volume
packing fraction one can produce with equal spheres.

The reciprocal lattice is a very important way to study lattice structures. It is defined
to be the set of points satisfying

eiK·Rj,m,n = 1 (2.31)

for all Bravais lattice points Rj,m,n. The set of vectors {Kh,k,l} having this property
characterize a Bravais lattice in reciprocal space, and the reciprocal primitive vectors
can be calculated from the ones of the original lattice by

b1 = 2π
a2 × a3

a1 · (a2 × a3)
b2 = 2π

a3 × a1

a1 · (a2 × a3)
b3 = 2π

a1 × a2

a1 · (a2 × a3)
. (2.32)

The reciprocal lattice points are then given by

Kh,k,l = hb1 + kb2 + lb3 (2.33)

The reciprocal lattice of the reciprocal lattice is again the original lattice. The
Brillouin zone is a possible unit cell of the reciprocal lattice. It contains all unique
vectors in reciprocal space, since

ei(q+Kh,k,l)·Rn = eiq·Rj,m,n . (2.34)
2Therefore it is also referred to as cubic close-packed.
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This reflects the periodicity of the crystal. One can use the reciprocal lattice to
characterize the lattice planes of the original lattice because the normal vector to
a lattice plane is always a reciprocal lattice vector. The vector Kh,k,l is a normal
to the plane that intercepts the points a1/h,a2/k,a3/l or a multiple thereof. The
integers h, k and l are called Miller indices and the set of planes with normal Kh,k,l

is then denoted by (hkl). To denote a direction rather than a set of planes, the
notation [jmn] is commomly used, which stands for the vector ja1 + ma2 + na3.
Note that it is a special case that in cubic lattices, [hkl] is a normal to the planes
described by (hkl).

In computer simulations, if a crystal is said to be in (111) orientation, this means that
the (111) planes are parallel to the xy plane of the simulation box, which usually has
the shape of a rectangular cuboid. As the interfacial tension between a crystalline
structure and a fluid depends on which side of the crystal is exposed to the liquid,
the interfacial tension has to be calculated for each orientation separately.

2.3.3 The Hard Sphere Model

Hard spheres (or hard disks in two dimensions) are a very fundamental model system.
While the interaction between hard spheres is trivial, this model shows a rich variety
of interesting phenomena. Because the model is independent of temperature, its
properties are determined purely by entropy. Often, hard spheres can serve as a first
approximation to other models with short ranged interactions. The hard spheres are
spheres with a diameter σ and the pair potential

UHS(r) =

{
∞ r ∈ [0, σ]
0 r ∈ (σ,∞)

. (2.35)

There is no interaction between hard spheres except for the fact that they cannot
overlap, for this would require an infinite amount of energy. The phase diagram of
hard spheres is one-dimensional, as shown in Fig. 2.3. The only parameter is the
packing fraction

η =
π

6

Nσ3

V
, (2.36)

where N is the particle number and V the volume.

There are two important points in the phase diagram, namely at ηl = 0.494 and
ηc = 0.545. At packing fractions below ηl, the hard spheres form an unordered phase,
which is referred to as liquid or fluid phase. When crossing ηl, the system consists
into two separate phases, namely a fluid phase at ηl and a crystal phase at ηc. The
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Figure 2.3: Phase diagram of hard spheres. For η < 0.494, the hard sphere is in the
disordered liquid (or fluid) phase. For η > 0.545, the hard spheres form a crystalline
phase. The packing fraction η =

√
2π/6 ≈ 0.74 is the maximum packing fraction, for

then the hard spheres are close-packed. For 0.494 < η < 0.545, the system separates
into two coexisting phases. In polydisperse colloidal suspensions, the boundaries
between liquid and crystal are shifted, and also a glassy state can occur. On the
bottom, confocal micrographs of analogous phases in a colloidal suspensions with 5%
polydispersity are shown. This picture is taken from [Hunter and Weeks, 2012].

volume of each phase is given by a simple lever rule

Vl =
ηc − η
ηc − ηl

V Vc =
η − ηl
ηc − ηl

V . (2.37)

At ηc, the whole volume is in the crystalline phase. If η is further increased, the
crystal will become denser until at ηmax =

√
2π/6 ≈ 0.74, the hard spheres become

close-packed.

In experiment, hard spheres do not occur. Instead, one can use colloidal suspensions
with interaction potentials similar to hard spheres. However, due to the fabrication
process, the spheres do not have a fixed diameter σ but are typically polydisperse
and non-uniform. Polydispersity introduces new phenomena and is therefore not
considered in this work. Hard spheres can have various crystal shapes, for example
fcc, hcp or bcc. The bcc lattice is unstable because its free energy is higher than
for a liquid of the same density [Colot and Baus, 1985]. The free energy difference
between fcc and hcp is very small, but it was found to be positive [Mau and Huse,
1999; Pronk and Frenkel, 1999], so fcc is preferred slightly, because it has the highest
entropy.
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2.3.4 The Asakura-Oosawa Model

The Asakura-Oosawa model (or AO model) offers a simple description of a binary
mixture of colloids and polymers [Oosawa and Asakura, 1954; Asakura and Oosawa,
1958]. Despite its simplicity, it catches the basic properties of binary mixtures [Vrij,
1976]. The colloids are represented by hard spheres with diameter σ whereas the
polymers are represented by ideal gas particles whose diameter σp is twice radius
of gyration of the polymers. Thereby the conformational degrees of freedom of the
polymers are neglected; they are assumed to be in a globular state. Hence the
polymers do not interact with each other, i.e. they can penetrate each other without
energy cost, but they interact with the colloids via a hard sphere interaction.

The AO model is a purely entropic model. It is characterized by the diameter ratio
q = σp

σ
, which is usually between 0 and 1, and the particle concentrations. The

polymers give rise to an effective interaction between the colloids. This interaction is
a depletion interaction [Ilett et al., 1995] and can be understood as follows, see also
Fig. 2.4. A polymer can approach a colloid to a minimum distance (σ+ σp)/2, so the
colloids have a so-called depletion zone with the shape of a spherical shell around
them, which is inaccessible by polymers. Now if two colloids approach each other,
their depletion zones overlap, so that the total depletion volume of all colloids is
reduced. The increase of volume accessible by polymers corresponds to an increase
of entropy. Therefore, the polymers give rise to an attractive interaction between
the colloids, which is of entropic origin.

If the diameter ratio q = σp
σ

is small enough, the polymers’ degrees of freedom
can be integrated out and contribute via an effective potential between the colloids
[Asakura and Oosawa, 1958; Dijkstra et al., 1999]. Therefore the AO model is fully
equivalent to a model containing no polymers but only colloids, where the hard
sphere interaction is replaced by the following effective potential [for a plot, see
Fig. 2.6]

UeffAO(r) =


∞ r ∈ [0, σ)

−ηrp
(1+q)3

q3

(
1− 3r

2(1+q)σ
+ r3

2(1+q)3σ3

)
r ∈ [σ, σ(1 + q)]

0 r ∈ (σ(1 + q),∞)

, (2.38)

where ηrp = πσ3
pzp/6 is the polymer reservoir packing fraction, which serves as a

temperature-like parameter3 in this model, and zp being the polymer fugacity. The
diameter ratio q changes the interaction range. For the effective potential to be exact,

3If ηrp is increased, the difference between the densities of the fluid and crystalline phase decreases.
This resembles the Ising model or the Lennard-Jones model, where the same happens if the
temperature is increased. At the critical temperature, the difference becomes zero.
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Figure 2.4: Visualization of the origin of the depletion force in the AO model. There
are large colloids (yellow) and small polymers (black). The colloid-colloid and the
colloid-polymer interaction is hard-sphere-like, while the polymers can move through
each other without energetic cost (like ideal gas particles). The depletion zones, i.e.
the volumes where the polymers’ center of mass cannot be due to the colloid-polymer
interaction, are shown in red. If two colloids approach each other, their depletion
zones overlap (darker red), increasing the total volume accessible to polymers. Hence,
moving colloids together increases the entropy of the system, which results in an
effective attractive force between colloids.

q must fulfill

q < q∗ =
2√
3
− 1 ≈ 0.1547 (2.39)

for only then the effective AO model is an exact single particle species representation
of the original AO model4. The reason is that the polymers can then only interact
with two colloids at a time. This can be seen by simple geometric arguments, for if
a polymer is trapped between close-packed colloids, q∗ corresponds to the minimal
diameter where the polymer can touch all three colloids.

The effective AO model becomes a hard sphere model for q → 0. For q > 0, the
coexistence region broadens [Lekkerkerker et al., 1992], as can be seen in Fig. 2.5. In
this work, we focus on ηrp = 0.1 and q = 0.15, where the coexistence packing fractions
are ηc = 0.6357 and ηl = 0.4955 [Statt, 2015]5.

There exists an extension of this effective AO model which remedies the fact that
the potential is not differentiable and divergent. It is called soft effective AO model

4For q > q∗, there exist approximate effective potentials [Dijkstra et al., 2006].
5Note that this reference is work in progress.
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Figure 2.5: Phase diagram for the AO model at q = 0.15. The x-axis shows the
packing fraction ηc = πNσ3/(6V ) and the y-axis the polymer reservoir packing
fraction ηrp. The simulations in this work are entirely done at ηrp = 0.1. Note that for
ηrp → 0, the hard sphere case is recovered.

and is defined by

UsoftEffAO(r) =



100 kBT r ∈ [0, σcore)

4

[(
bσ
r−eσ

)12
+
(

bσ
r−eσ

)6 −
(

b
1+q−e

)12

−
(

b
1+q−e

)6
]

r ∈ [σcore, σ)

−ηrp
(1+q)3

q3

(
1− 3r

2(1+q)σ
+ r3

2(1+q)3σ3

)
r ∈ [σ, σ(1 + q))

0 r ∈ (σ(1 + q),∞)

,

(2.40)
where b and e control the shape of the potential6, respectively. This potential is a
continuous fit to the effective Asakura-Oosawa model [Dijkstra et al., 1999]. It has
been shown that the phase diagram of this model is similar to the original effective
AO model [Statt, 2015].

6Within this thesis, the parameters are b = 0.01, e = 0.988571 in order to fulfill the (arbitrarily
chosen) constraint U(r = σ) = 1, while σcore is fixed by the constraint that the potential should be
continuous, i.e. U(σcore) = 100 kBT . The value is σcore = 0.9960187400451774.
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Figure 2.6: Plots of various pair potentials, as indicated. The dashed line shows
the hard sphere potential, which is infinite for r < σ and zero else. The effective
AO model is similar, except for a short-ranged attractive part between r = σ and
r = (1 + q)σ. For q → 0 and ηrp → 0, the effective AO model is equal to the hard
sphere model. The figure also shows the Lennard-Jones potential (2.27) as well as
the truncated and shifted variant. A potential of the soft effective AO model is not
shown, as it is equal to the effective AO model’s potential apart from the fact that
the sharp edge at r/σ = 1 is smooth (the larger the parameter b the smoother the
edge).

2.4 Classical Nucleation Theory

The classical nucleation theory goes back to Volmer, Zeldovich, Becker and Döring
[Volmer and Weber, 1926; Becker and Döring, 1935; Zeldovich, 1943]. One considers
a one-component fluid, in which a new domain (nucleus) consisting of a minority
phase is formed via thermal fluctuations out of a majority phase. This process is
called homogeneous nucleation. The formation of such a nucleus is a rare event, due
to the high free energy associated to it. The nucleation rate j, being the number
of newly formed nuclei per unit volume and unit time, is therefore given by an
Arrhenius law

j = ω exp

(
−∆F ∗

kBT

)
. (2.41)

Here, ∆F ∗ is the free energy barrier needed to form a critical nucleus, while ω is a
kinetic prefactor. To explain CNT, we will consider the case of a supersaturated
vapor (majority phase), in which a liquid droplet (minority phase) forms. One can
make a simple ansatz for the formation free energy of a macroscopic droplet in a
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Figure 2.7: The free energy barrier results from two competing contributions to the
free energy. The surface term is positive because the surface of the droplet costs free
energy. The volume term, however, is negative and favors the growth of a nucleus.
These two contributions balance each other at the critical radius R∗, where the height
of the free energy barrier is ∆F (R∗) = ∆F ∗.

vaporous surrounding, taking into account a surface and a volume contribution [see
also Fig. 2.7]:

∆Fhom = 4πγvlR
2 − 4π

3
∆µ(%l − %v)R3 . (2.42)

Note that the shape of the droplet is assumed to be spherical with a radius R. Because
the droplet can exchange particles with its surrounding, it is natural to choose the
chemical potential µ and the temperature T as variables for the thermodynamical
potential. The difference in thermodynamic potentials of liquid and vapor at is
expanded at the coexistence curve, ∆µ = µ− µcoex, the droplet having the density
%l and the surrounding %v. In this simple ansatz, according to the capillarity
approximation, the interfacial tension γvl is taken to be independent of the droplet size.
So instead of γvl(R) one inserts the interfacial tension γvl(R =∞) of a macroscopically
large, flat interface. To find the critical free energy and the corresponding droplet
size, one simply differentiates the expression (2.42) by R, which yields

R∗ =
2γvl

∆µ(%l − %g)
(2.43)

This is the critical droplet radius corresponding to the free energy barrier ∆F ∗hom =
∆Fhom(R∗). The height ∆F ∗hom of the free energy barrier can be written with respect
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to the surface or volume terms as

∆F ∗hom =
4π

3
γvl(R

∗)2 =
γvl
3
A∗ (2.44a)

∆F ∗hom =
4π

3
∆µ(%l − %g)(R∗)3 =

1

2
∆µ(%l − %v)V ∗ (2.44b)

or with respect to the properties of the two phases

∆F ∗hom =
16π

3

γ3
vl

(∆µ(%l − %g))2
. (2.44c)

The question, to which extend this macroscopic theory is applicable to small droplets
with several hundred particles and free energy barriers below 100 kBT , has been in
the focus of research for a long time. This will be covered in chapter 3. Note that
the interfacial tension enters in Eq. (2.44c) with a power of three! Therefore, precise
knowledge of the interfacial tension is absolutely necessary. In the Ising language,
the expression ∆µ(%l − %g) translates into

∆µ(%l − %v) = 2H

(
1 +m′′

2
− 1 +m′

2

)
= H(m′′ −m′) ≈ 2mcoexH (2.45)

where the approximation close to the coexistence curve

m′′ −m′ = 2mcoex +O(H3) (2.46)

has been used.

The generalization to crystalline nuclei surrounded by a metastable liquid can also be
treated by the same ansatz if the corresponding interfacial tension is used. However,
the assumption of a spherical nucleus is only a first approximation. As will be shown,
even in simple systems with anisotropy effects like the Ising model, the shape of the
nucleus is quite non-trivial: At low temperatures the surface of the nucleus is facetted
and more like a cube than like a sphere, changing the volume-to-surface ratio. The
situation is similar but also more complicated for crystalline nuclei, where the facets
belong to a certain crystalline orientation. Nevertheless, classical nucleation theory
has been used to describe crystal nucleation with some success (for a mini-review,
see [Block et al., 2014]).

Classical nucleation theory can also be extended to two-dimensional systems. As-
suming droplets with a circular shape, instead of (2.42) one has

∆Fhom,2d = 2πγvlR− π∆µ(%l − %v)R2 . (2.47)
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The same procedure as above leads then to

R∗ =
γvl

∆µ(%l − %v)
, (2.48)

∆F ∗hom,2d = π
γ2
vl

∆µ(%l − %g)
= γvl(2πR

∗) = ∆µ(%l − %g)(πR∗2) . (2.49)

Apart from the homogeneous nucleation discussed above, there is also heterogeneous
nucleation [Turnbull, 1950a,b]. Here, a droplet is not created out of the bulk but on
a wall. Since the wall effectively reduces the surface of the droplet, the free energy
barrier ∆F ∗het is much smaller than ∆F ∗hom. In fact, many nucleation phenomena in
nature are rather attributed to heterogeneous nucleation, e.g. nucleation of water
droplets on dust particles in the atmosphere. The shape of a droplet on a wall is
that of a sphere cap, which minimizes the surface and maximizes the volume. The
sphere cap has a certain contact angle θ, which is the angle between the wall and
the tangent at the point where the surface touches the wall.

To discuss heterogeneous nucleation, we need Young’s equation [Young, 1805]

γwv − γwl = γlv cos θ (2.50)

with the before-mentioned contact angle θ and the interfacial tensions between vapor
(v), liquid (l) and wall (w). This equation is a result of a balance of forces acting on
the droplet. If this equation was not fulfilled, there would be a net force and the
droplet would move along the wall. Using Young’s equation, it can be shown that
both the volume and the surface term are reduced in the same way by a function
f(θ) so that the free energy is given by

∆Fhet = f(θ)

[
4πγvlR

2 − 4π

3
∆µ(%l − %v)R3

]
. (2.51)

Compared to Eq. (2.42), the only difference is the function f(θ) given by

f(θ) =
1

4
(1− cos θ)2(2 + cos θ) (2.52)

and only depending on the contact angle θ. Consequently, the free energy barrier is
reduced by this factor

∆F ∗het = f(θ)∆F ∗hom , (2.53)

e.g. for a contact angle of 90◦, the barrier is half as high. Of course, for crystalline
nuclei, the assumption that the nuclei have the shape of a sphere cap is arguable
[Block et al., 2014].
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2.5 Capillary Wave Theory

Capillary waves are oscillations of an interface due to thermal fluctuations [Buff
et al., 1965; Weeks, 1977], see also [Privman, 1992; Binder et al., 1995]. Consider a
flat horizontal one-dimensional interface in two-dimensional space. Thermodynamic
fluctuations roughen the interface and create long-wavelength modulations as well as
short-wavelength fluctuations. The latter cause overhangs, bubbles and other non-
trivial effects. Therefore, one usually coarse-grains the system to a point where these
short-wavelength effects disappear. Then the interface can be described by a function
h(x), giving the height of the interface at each point relative to the equilibrium
position (reference plane). The deviation from the equilibrium position implies a
gain of entropy, but at the same time, there is also a cost of energy proportional to
the bending of the interface. The total energy of an interface is therefore given by

∆E =

∫
dx γ(θ)

√
1 +

(
dh(x)

dx

)2

, (2.54)

where γ is the interfacial tension of the interface and θ = arctan(dh/dx) is the angle
relative to the reference plane. If |dh(x)/dx| � 1 for all x, i.e. the interface is
relatively flat, one can expand the integrand up to second order

γ(θ) ≈ γ(0) + γ′(0)
dh(x)

dx
+
γ′′(0)

2

(
dh(x)

dx

)2

+O

((
dh(x)

dx

)3
)

√
1 +

(
dh(x)

dx

)2

≈ 1 +
1

2

(
dh(x)

dx

)2

+O

((
dh(x)

dx

)3
)

γ(θ)

√
1 +

(
dh(x)

dx

)2

= γ(0) + γ′(0)
dh(x)

dx
+

+
1

2
(γ(0) + γ′′(0))

(
dh(x)

dx

)2

+O

((
dh(x)

dx

)3
)

leading to the capillary wave Hamiltonian

H =
κ

2

∫
dx
(
dh(x)

dx

)2

, (2.55)

where
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κ = γ(0) + γ′′(0) (2.56)

is the interfacial stiffness. The linear term in dh/dx yields boundary terms and can
be omitted, as well as constant terms. Because the interfacial stiffness κ decreases
with growing temperature, the interface becomes more and more diffuse.

Higher dimensions can be treated analogously [Privman, 1992], because the different
directions decouple when using the above approximations. In three dimensions the
result is

H =
κ

2

∫
dx
∫

dy

[(
∂h(x, y)

∂x

)2

+

(
∂h(x, y)

∂y

)2
]
. (2.57)

The above discussion is only valid in the regime of rough interfaces, i.e. above
the roughening transition and below the critical point. For the Ising model in two
dimensions, TR = 0, but in three dimensions, kBTR/J ≈ 2.454 [Bürkner and Stauffer,
1983; Mon et al., 1989, 1990; Hasenbusch and Pinn, 1994; Hasenbusch et al., 1996;
Hasenbusch and Pinn, 1997]. A discussion of the behavior of the interfacial properties
around TR can be found in [Binder et al., 1995].

Above the roughening transition, the Hamiltonian can be written as

Hcw =
κ

2

Ld−1

(2π)d−1

∫
dd−1q q2|hq|2 (2.58)

where hq is the Fourier transform of the function h(x), respectively, which has been
restricted to a box of volume Ld with periodic boundary conditions. The equipartition
theorem yields

kBTκ

2

Ld−1

(2π)d−1
q2|hq|2 =

1

2
kBT . (2.59)

This relation can be used to determine κ in computer simulations [cf. section 4.2].
One can also derive the mean interfacial width w(L) of an interface in a periodic
box of linear dimension L as follows

w2(L) = 〈h2(x)〉 − 〈h(x)〉2 =
Ld−1

(2π)d−1

∫
dd−1q q2〈|hq|2〉 ∝

1

κ

∫
dd−1q q2

∝ 1

κ

∫
dq qd−4 .

(2.60)



2.6. MORE ABOUT MONTE CARLO SIMULATIONS 43

From this, it follows

w2(L) ∝ κ−1

∫ 0

2π/L

dq q−2 ∝ κ−1L (d = 2) , (2.61a)

w2(L) ∝ κ−1

∫ 2π/ξ

2π/L

dq q−1 ∝ κ−1 ln

(
L

ξ

)
(d = 3) , (2.61b)

w2(L) ∝ κ−1

∫ 0

2π/L

dq qd−4 ∝ κ−1L3−d (d > 3) . (2.61c)

In two dimensions the fluctuations are strong, so that the interfacial fluctuations are
of the order of

√
L, while in 4 and higher dimensions, the fluctuations are of the order

of 1. The three-dimensional case is special: The interfacial fluctuations are of the
order

√
lnL. Note that a cutoff length ξ for the short wavelength spectrum needs to

be introduced for the result to be finite. This cutoff is of unknown physical relevance.
Usually, one takes the correlation length ξ as the cutoff, because the capillary wave
picture does not apply at short length scales, where the interface cannot be described
by a function h(x, y) but is a rather fuzzy object with bubbles and droplets [Parry
and Boulter, 1994; Mecke and Dietrich, 1999; Milchev and Binder, 2002; Vink et al.,
2005].

From a convolution approximation it can be shown [Binder et al., 2001], that the
mean interfacial width can also be written as

〈w2〉 = w2
0 +

1

4βκ
ln(L/ξ) (2.62)

Unfortunately, ξ cannot be distinguished from the intrinsic width w2
0.

2.6 More about Monte Carlo Simulations

2.6.1 Boundary Conditions

The everlasting problem of computer simulations is that the resources are limited.
Therefore one has to focus on small system sizes. If one considers a simulation box
with free boundaries, the particles feel the box boundaries so that layering and other
phenomena occur. So to study the bulk properties of a given model, one would
have to use a huge box and focus on the center of this box, where the influence
of the boundaries is minimal. On the other hand, periodic boundaries provide a
straightforward solution to mimic an infinite system by a finite box. If a particle
leaves the simulation box, it enters the same box on the opposite side. One can
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think of the box being copied in all spatial dimensions infinitely many times, thereby
emulating an infinitely large system.

Periodic boundary conditions are very adequate for bulk simulations or systems with
planar surfaces. Unfortunately, there are also some disadvantages. There are artifacts
from long-range forces like electromagnetic forces. Crystals exhibit a strain field
if the box dimensions are not compatible with the lattice spacings. Also capillary
waves and correlation lengths cannot become greater than the linear dimensions of
the box. Therefore, finite-size scaling is necessary to analyze these effects.

In order to implement periodic boundary conditions, one needs to take care of two
aspects. First, if a particle leaves the box, it needs to enter it at the corresponding
point on the other side of the box. Furthermore, the distance between two particles
must be calculated using the minimum image convention, meaning that the distance
from a given particle to another particle is defined as the distance to the closest
image of the particle.

There are also other useful types of boundary conditions in the context of discrete
models like the Ising model, namely antiperiodic boundary conditions and fixed-spin
boundary conditions. For antiperiodic boundary conditions in an Ising model, the
exchange constant J is reversed for the interactions across the boundary. If two spins
of opposite orientation are on either side of the boundary, they will “see” each other
as being parallel. This antiperiodic boundary condition favors slab configurations
with one interface, so one can study an interface without having to constrain the
density (or magnetization, respectively). A different possibility is to just fix the spins
next to the boundary to + on one side and − on the other7. This is applied in a
more general way in [Svrakic et al., 1988], where the interface is also clamped and
tilted. Alternatively one can introduce strong surface fields in the layers next to the
boundaries. For strong fields, this is obviously equivalent to the fixed-spin boundary
condition.

2.6.2 Pseudorandom Number Generators

Any Monte Carlo simulation heavily depends on the quality of the random numbers.
Because many random numbers are needed, one usually uses pseudorandom number
generators, which take as input a seed s and create a sequence {ri}i of pseudorandom
numbers via a deterministic algorithm. One example of such an algorithm is the
linear congruential random generator:

ri+1 = (ari + b) mod M (2.63)
7Such Dirichlet boundary conditions lead to rather large finite-size effects and are therefore not used
in this thesis.
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with r0 = s. This algorithm creates pseudorandom integer numbers in the interval
[0,M− 1], where M is usually 232 or 264. The values

a = 1103515245 , b = 12345

are used in ISO/IEC 9899:1999, also known as the C99 standard. It can be shown
that the quality of the pseudorandom numbers depend on the choices of a, b and M .
The period length is at most M , but it can be much shorter if a and b are poorly
chosen. The highest period lengths can be achieved if

• b and M are relatively prime (their greatest common divisor is 1).

• a− 1 is divisible by all prime factors of M .

• a− 1 is a multiple of 4 if M is a multiple of 4.

These requirements are called Hull-Dobell Theorem [Severance, 2001]. However,
throughout this work, a more sophisticated algorithm is used, which is called
Mersenne8 Twister algorithm. This algorithm is fast, has a very long period of
219937 − 1 iterations and is proven to generate equidistributed 32-bit pseudorandom
numbers. It also passes the so-called diehard tests, a series of statistical tests to
measure the quality of pseudorandom numbers. One disadvantage is that if the seed
of two instances is close to each other, it can take a long time until the pseudoran-
dom number sequences diverge from each other. Nevertheless, it is among the best
pseudorandom number generators currently known.

2.6.3 Optimization Techniques

There exist a number of practices to enhance the performance of Monte Carlo
simulations. One important aspect is the reduction of computing time for the
calculation of the energy of the whole system. Since one has to take all pairs of
particles into account, the computing time is of order N2. This can be reduced
to the order N if one decomposes the simulation box into cells of diameter dcell.
Then, one needs to keep book of which particle resides in which cell. Of course, if
particles move around, they leave one cell and move to another, so the information
has to be kept up-to-date. If one wants to calculate the energy of one particle,
the cells provide knowledge about which particles are in the vicinity so that only
these particles can have a non-zero interaction with the current particle. If the cell
diameter dcell is chosen so that it is at least as large as the maximum interaction range,

8The name originates from the period length which is chosen to be a Mersenne prime.
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e.g. the particle diameter σ for hard spheres or rcut for the truncated and shifted
Lennard-Jones fluid [cf. section 2.3.1], then one has to check only the particle’s cell
and the 26 cells surrounding it. This improves performance significantly, as one saves
a lot of calculations of distances and potentials. Therefore, it is a standard technique
in modern Monte Carlo simulations.

The optimal cell size dcell is slightly larger than the maximum interaction range.
However, if studying crystalline structures, the simulation box must fit to the
crystalline structure in order to avoid any stress or strain to the crystal. Therefore,
the cell system cannot be optimal and the performance benefit is slightly reduced.
However, using cells is still advantageous also in this case, especially for larger box
sizes.

2.6.4 The Chemical Potential in Computer Simulations

The Widom particle insertion method [Widom, 1963, 1982; Frenkel and Smit, 2001;
Landau and Binder, 2009] is a straight-forward method to measure the chemical
potential in a simulation box. If the Hamiltonian of a system can be written in the
form H({pk}, {rk}) = T ({pk}) + U({rk}) in a cubic box with volume V = L3 with
N identical particles, one can integrate the kinetic part to obtain

Z(N, V, T ) =
V N

Λ3NN !

∫
d3Ns exp(−βU(s1, . . . , sN , L)) , (2.64)

where Λ = h/
√

2πmkBT is the thermal de Broglie wavelength and si = ri/L are the
normalized coordinates of the particles in the box. The factor N ! takes into account
the fact that the particles are indistinguishable. The free energy can then be written
as

F (N, V, T ) = −kBT lnZcan(N, V, T ) = Fid(N, V, T ) + Fex(N, V, T ) (2.65)

with

Fid(N, V, T ) = −kBT ln

(
V N

λ3NN !

)
(2.66)

Fex(N, V, T ) = −kBT ln

(∫
d3Ns exp(−βU(s1, . . . , sN , L))

)
(2.67)

Now since the chemical potential µ is the first derivative of the free energy by the
number of particles, one can write (for large N)

µ =
∂F

∂N

∣∣∣∣
V,T

= −kBT ln

(
Zcan(N + 1, V, T )

Zcan(N, V, T )

)
= µid + µex (2.68)
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with

µid = −kBT ln

(
V/λ3

N + 1

)
(2.69)

µex = −kBT ln

(∫
d3N+3s exp(−βU(s1, . . . , sN+1, L))∫
d3Ns exp(−βU(s1, . . . , sN , L))

)
(2.70)

The first term µid corresponds to the ideal gas term, while the excess term µex contains
the interaction of the particles. The quotient in the expression of the excess chemical
potential is an ensemble average of ∆U = U(s1, . . . , sN+1, L)−U(s1, . . . , sN , L) over
the coordinates of the (N + 1)th particle. Therefore µex can be measured simply by
inserting an (N + 1)th “testparticle” and measure the energy difference:

µex = −kBT ln

∫
d3s〈exp(−β∆U)〉N ≈ −kBT ln

(
1

M

M∑
i=1

exp(−β(∆U)i)

)
(2.71)

The last expression shows how approach can easily be applied to Monte Carlo
simulations by randomly inserting a particle, calculate the energy difference and
removing it again.

Although this method works well for gas and liquid phases, it fails at high densities,
i.e. in glass and crystalline phases, since the particle insertion always creates overlaps,
leading to extremely high predictions for the chemical potential. There are some
proposed methods to circumvent this problem [Boulougouris et al., 1999]. Another
idea is to create a low density volume within the simulation box and measure the
chemical potential there [Powles et al., 1994]. Because the chemical potential is
constant throughout the whole simulation box in thermal equilibrium, the chemical
potential in the low density volume equals the chemical potential in the whole system.

In chapter 3, a lattice version of the Widom particle insertion method [Murch and
Thorn, 1978; Winter et al., 2009a] is used to measure the chemical potential ∆µL(T, %)
in the framework of the lattice gas model. It works as follows. Consider a lattice
with V lattice sites and N particles. The partition function is

Zcan(N, V, T ) =
1

N !

∑
N -particle states j

exp(−βEj(N, V )) , (2.72)

where the summation includes all states with N particles and Ej(N, V ) is the energy
of the jth state. Similarly to the continuous case, one can write

βµ = β
∂F

∂N

∣∣∣∣
V,T

= − ln

(
Zcan(N + 1, V, T )

Zcan(N, V, T )

)
(2.73)

= − ln

(
1

N + 1

∑
(N + 1)-particle states k exp(−βEk(N + 1, V ))∑

N -particle states j exp(−βEj(N, V ))

)
. (2.74)
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Now define ∆Ej = Ej(N + 1, V )− Ej(N, V ) as the change of energy upon adding a
particle to an N -particle configuration j. Then one can rewrite the summation over
all (N + 1)-particle configurations as a sum over all N -particle configurations, where
each N -particle configuration can produce V −N (N + 1)-particle configurations,
since the added particle can only occupy one of the V −N empty lattice sites. Hence

βµ = − ln

(
V −N
N + 1

∑
N -particle states k exp(−βEk(N, V )) exp(−β∆Ek)∑

N -particle states j exp(−βEj(N, V ))

)
(2.75)

= − ln

(
V −N
N + 1

〈exp(−β∆Ek)〉N -particle states k

)
. (2.76)

Like in the continuous case, one can distinguish between ideal and excess part:

βµ = βµid + βµex (2.77)

βµid = − ln

(
V −N
N + 1

)
(2.78)

βµex = − ln
(
〈exp(−β∆Ek)〉N -particle states k

)
. (2.79)

Similarly, one can calculate the chemical potential by removing a particle. Then the
result is

βµid = ln

(
N

V −N + 1

)
(2.80)

βµex = ln
(
〈exp(−β∆Ek)〉N -particle states k

)
. (2.81)

In this work, the chemical potential will always be the average of both values, because
they can easily be computed in one run.

2.6.5 The Pressure in Computer Simulations

In statistical mechanics, the pressure is defined as the partial derivative of the free
energy:

P = −
(
∂F (N, V, T )

∂V

)∣∣∣∣
N,T

(2.82)

If the potential U({r}) = U({Lsk}) is differentiable, one can get an expression
which is very handy for computation of the pressure in a simulation. Combining the
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thermodynamic relation Eq. (2.82) with Eq. (2.64), the calculation is as follows

P = − ∂F (N, V, T )

∂V

∣∣∣∣
N,T

= kBT
∂ lnZ(N, V, T )

∂V

∣∣∣∣
N,T

= kBT

(
∂ ln(V N)

∂V
+
∂ ln

∫
d3Ns exp(−βU(s1, . . . , sN+1, L))

∂V

)
.

The derivative can be computed explicitly as follows

=
NkBT

V
+ kBT

∫
d3Ns

∑N
j=1(−β ∂U({Lsk})

∂V
) exp(−βU({Lsk}))∫

d3Ns exp(−βU({Lsk}))

=
NkBT

V
+

∫
d3Ns

∑N
j=1(−∂U({rk})

∂ri

∂ri

∂V
) exp(−βU({Lsk}))∫

d3Ns exp(−βU({Lsk}))

=
NkBT

V
+

∫
d3Ns

∑N
j=1(−∂U({rk})

∂ri

ri

3V
) exp(−βU({Lsk}))∫

d3Ns exp(−βU({Lsk}))

=
NkBT

V
+

1

3V

N∑
j=1

〈
−∂U({rk})

∂ri
· ri
〉
.

For the case of a pairwise potential, which depends only on the distance of the
particles, this reduces to

P =
NkBT

V
+

1

3V

N∑
i=1

N∑
j=i+1

〈
f ij · rij

〉
(2.83)

with rij = ri − rj and f ij = − ∂U(r)
∂r

∣∣∣
rij
. The first term is the ideal gas term, while

the second term takes into account the interaction of the particles.

The expression (2.83) can only be applied if the pair potential U(r) is differentiable.
This excludes hard spheres or any potential with a hard core. There exist other
methods to deal with this, for example [Deb et al., 2012a].

2.7 Free Energy Computation using Monte Carlo

Often, the free energy is considered as a function of a reaction coordinate. For
example, for the Ising model, the free energy as a function of the magnetization
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(or density of spins pointing upwards) allows to gain much insight about interfacial
tensions or nucleation processes. In general, free energy landscapes are rather complex
and contain minima separated by large barriers, so that the system is often trapped
in one minimum and one cannot sample properly without spending huge amounts
of time. A straightforward example is the Ising model, where the two minima at
±mcoex are separated by a large free energy barrier. If the system is small enough,
the system can traverse through the barrier, but for larger systems, the system is
trapped in one minimum and will never explore the other minimum in reasonable
time periods.

The first idea to overcome this problem is multicanonical sampling. Later, other
techniques have been invented. We will focus on multicanonical sampling and
successive umbrella sampling here.

2.7.1 Multicanonical Sampling

Multicanonical sampling [Berg and Neuhaus, 1992] is a simple method to allow a
system to explore the full range of the reaction coordinate. The idea is to introduce
an effective Hamiltonian, which is the sum of the model’s Hamiltonian and a weight
function. The weight function is chosen so that the minima and maxima of the true
free energy landscapes are compensated so that the resulting effective free energy
landscape is flat. If the weight function is the free energy landscape itself, the system
can explore the whole reaction coordinate range and will return a flat histogram. If
the weight function differs slightly from the true free energy landscape, the true free
energy landscape can be extracted by combining the original weight function and
the output histogram. However, if the weight function differs significantly from the
true free energy landscape, the free energy barriers are not compensated and one
does not gain anything from the simulation.

The advantage of this technique is that it obeys detailed balance [cf. Eq. (2.10)]. An
important disadvantage is obvious: One needs some educated guess for the “weight
function”. Nowadays, there are other algorithms which create the weighting function
on-the-fly during the simulation9 or using the idea of thermodynamic integration,
e.g. successive umbrella sampling (for references, see section 2.7.3).

Nevertheless, multicanonical sampling provides a good check whether a free energy
landscape represents the true free energy of a system. Any free energy algorithm
only works well if the reaction coordinate explores the whole range. If there are
entropic barriers, so that the simulation stays on one side for a long time, there
is little information in the histogram, because the whole sampling depends on the

9The most popular algorithm of this kind is Wang-Landau sampling [Wang and Landau, 2001a,b].
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sampling of the barrier. The criteria for the quality of the histogram are

• The histogram is flat.

• The reaction coordinate behaves like a random walk over the whole reaction
coordinate range. There are no entropic barriers.

2.7.2 Thermodynamic Integration

Thermodynamic integration is a method to compute the free energy by integrating
one of its derivatives, like energy E = ∂(βF )/∂β|N,V or pressure E = ∂F/∂V |N,T .
The integration starts at a reference state 0, characterized by a Hamiltonian H0, and
ends at a state 1 with Hamiltonian H1. To connect these states by a path, one can
define the mixed states via

H(κ) = H0 +κ(H1−H0) (2.84)

The free energy difference between the two states can then be written as

F1 − F0 =

∫ 1

0

∂F

∂κ
dκ = −kBT

∫ 1

0

∂ ln(Z(κ))

∂κ
dκ (2.85)

where Z(κ) is the partition function which depends on the reaction coordinate κ.

F1 − F0 = −kBT
∫ 1

0

dκ
1

Z(κ)

1

Λ3NN !

∫
d3Nr exp(−βU(κ))

∂(−βH(κ))

∂κ
(2.86)

=

∫ 1

0

dκ
〈
∂H(κ)

∂κ

〉
(2.87)

=

∫ 1

0

dκ 〈H1−H0〉 (2.88)

To compute the free energy, one has to divide the interval [0, 1] into M + 1 values κi,
sample the quantity 〈H1−H0〉 at each κi and then integrate numerically.

2.7.3 Successive Umbrella Sampling

The successive umbrella sampling [Virnau and Müller, 2004; Virnau et al., 2004],
see also [Virnau, 2003], is similar to thermodynamic integration but takes a slightly
different approach. Instead of sampling 〈U1 − U0〉, it makes the ansatz

β(F1 − F0) =

∫ 1

0

∂ ln(Z(κ))

∂κ
dκ (2.89)
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and then estimates this derivative directly by discretizing the integration path [0, 1]
into M + 1 values κi, so that one has M windows, where each window contains two
neighboring values κi, κi+1. Then for each window, one conducts a simulation where
the system can jump back and forth between κi and κi+1 and counts the number of
occurrences P in state i and i+ 1. Because of
∂ ln(Z(κ))

∂κ

∣∣∣∣
κi

≈ ln(Z(κi+1))− ln(Z(κi))

κi+1 − κi
=

ln(P (i+ 1)/P (i))

1
= ln

(
P (i+ 1)

P (i)

)
(2.90)

one can express the integrand by the number of occurrences.

After setting up the simulation in a window {κi, κi+1}, the successive umbrella move
makes an attempt to change κ and counts the number of occurrences as follows:

1. Draw a random number p1. In case κ = κi, if p1 < 0.5, κ′ = κi−1. If p1 ≥ 0.5,
κ′ = κi+1. In case κ = κi+1, if p1 < 0.5, κ′ = κi. If p1 ≥ 0.5, κ′ = κi+2.

2. If κ′ is not within the window {κi, κi+1}, reject the move by setting κnext = κ.
Otherwise, calculate the energy difference ∆E = E(κ′)− E(κ) of the current
configuration for κ and κ′. Draw a random number p2. If p2 < exp(−β∆E),
accept the move by setting κnext = κ′, else reject the move by setting κnext = κ.

3. The new value of κ is κnext. Count the current state to P (i) or P (i + 1),
depending on whether the new κ is κi or κi+1.

This Monte Carlo move is done with a certain frequency during the simulation. It
is important to count in the last step whether κ has changed or not, especially if a
move to leave the window is rejected. This can be understood as follows. If there
was no window restriction, κ could leave the window and return later. Upon entering
the window again, this would have to be counted. Hence one must not simply count
if κ jumps within the window but also if an attempt is made to leave the window.
Only then, (2.90) is correctly estimated.

An advantage of successive umbrella sampling is that it fulfills detailed balance
(unlike Wang-Landau sampling [Wang and Landau, 2001a,b]) and can be applied
even for very steep free energy landscapes. It is very robust and a valuable tool for
the work in this thesis.

2.8 How to behave on Supercomputers

Usually, advanced Monte Carlo methods require tremendous computing power, which
can only be delivered by current generation supercomputers. Often, a large number
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of cores (or CPUs) is combined via MPI to tackle a problem. This number can
range from about 100 cores to up to 100 000 cores or even more. It is clear that
supercomputers capable of delivering large numbers of cores with lots of memory and
fast communication between the cores are complex machines and therefore expensive
and hard to maintain.

For the simulations of this thesis, a massive use of the Mainz supercomputer Mogon
was necessary10. Needless to say, such massive use of a machine creates some friction
both for the team running the machine and for other users. Future users might
benefit from the following remarks.

My work on supercomputers led to the impression that the administrators of super-
computers usually have a librarian’s mentality:

• Every book must be at its proper place in the bookshelf.

• The users must not read books or even remove them from the library.

• If a book is missing or damaged, it is always the users’ fault.

The user, of course, has quite the opposite opinion. He believes that every book is
just for him to read, so he just keeps the books he likes in his office for as long as
possible. If he returns a book with some damage, he is entirely sure that the book
was in this condition when he borrowed it.

For supercomputing, similar things apply. The ideal user from the viewpoint of
the administrator does not use the supercomputer at all. If otherwise, no output is
created and no communication between cores or nodes is needed, and the program
is of course well-written and contains no bugs. The ideal supercomputer from
the viewpoint of a typical user is infinitely large with incredible performance and
communication speed, so that there is no limit to I/O and the jobs do not have to
wait more than a second to start computing. Of course, his program is free of bugs,
so any crash is due to bad configuration of the supercomputer. Furthermore, other
users than oneself should be banned.

There is no easy way to reconcile opposing standpoints, but as a user I suggest to
adapt to a supercomputer’s features and try to be a good citizen, e.g. by following
some Golden Rules:

1. Read the supercomputer’s manual, even if it is boring and cumbersome.

10This project was by far the largest effort on this machine, taking about 40 million core hours on
Interlagos Opteron 6272 processors in 2013. In 2014, the intensive use has been continued.
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2. Test your code on your local machine before any production run.

3. Produce as little output as possible into as few files as possible.

4. Minimize the disk space needed on the supercomputer by downloading finished
calculations.

5. Try to minimize communication between different ranks. Use non-blocking
receives (MPI_Irecv) to create time windows in which an expected message
can be received. This will avoid one rank waiting for other ranks.

6. Login nodes are for logging in, not for running your programs.

7. In the dictionary, “to deliberate” comes before “to submit”.
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Chapter 3

Anisotropy of the Surface Tension
and its Effects on Nucleation in the
Ising Model

This chapter considers the classical nucleation theory within the Ising model, ques-
tioning the simplifying assumption of spherical droplets. After a short introduction,
section 3.2 will deal with the temperature dependence of shapes of macroscopical
droplets in the Ising/lattice gas model. Afterwards, several ways to define droplet
volumes are discussed and tested. It will be shown that a microscopical definition of
physically sensible droplets is possible. The final section will summarize the results
and give an outlook to further applications. Note that parts of the results of this
chapter appeared in [Schmitz et al., 2013].

3.1 Introduction

Classical nucleation theory (CNT), which was introduced in section 2.4, has been
tested and refined over several decades [Feder et al., 1966; Reiss et al., 1968; Langer,
1969; Abraham, 1974; Binder and Stauffer, 1976; Binder, 1987; Oxtoby and Evans,
1988; Dillmann and Meier, 1989; Reiss et al., 1990; Oxtoby, 1992; Laaksonen et al.,
1995; ten Wolde and Frenkel, 1998; Kashchiev, 2000; Pan and Chandler, 2004; Winter
et al., 2009a]. However, the question of accuracy has not been satisfactorily answered,
especially for free energy barriers . 100kBT . On the experimental side [Vilsanen
et al., 1993; Fladerer and Strey, 2006; Iland et al., 2007], there are still discussions
on the validity of the CNT or on possible improvements. Since critical droplets
occur very seldom, often only the combined effects of nucleation and growth can
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be observed. Also, the results often suffer from heterogeneous nucleation processes
because impurities of the samples (dust, ions, etc.) serve as surfaces for heterogeneous
nucleation. Another problem is that the nucleation rate varies exponentially with the
supersaturation, there is only a narrow window of sensible parameters to test CNT.

Computer simulations are a well-suited approach to this kind of challenge [Abraham,
1974; Binder and Müller-Krumbhaar, 1974; Binder and Stauffer, 1976; Binder, 1987;
ten Wolde and Frenkel, 1998; Schrader et al., 2009a; Block et al., 2010; Ryu and
Cai, 2010; Tröster et al., 2012]. However, there are also two major problems. Since
computing time and algorithm efficiency is always limited, only the simulation of
small nucleation barriers is possible, whereas larger ones are desired for comparison
with experiments. The other problem is the question how to distinguish between a
nucleus and the environment on an atomistic scale, because the interfaces are broad
and fluctuating [Binder and Stauffer, 1972; Rowlinson and Widom, 1982].

This chapter will mainly deal with the second problem, showing that the definition
of physical clusters leads to consistent predictions of the droplet volume no matter
how diffuse the interface is.

3.2 The Shape of Droplets in the Ising Model

In this section, the properties of macroscopical droplets will be studied without using
any droplet definition. Here, and in the following sections, the magnetization of the
system is kept constant and the interaction constant J is set to unity throughout.
Otherwise, the inhomogeneous state of a droplet surrounded by vapor would quickly
decay into a homogeneous state. The Monte Carlo move to flip spins therefore
randomly chooses two spins with opposing orientation and attempts to flip them
simultaneously. The droplets in the box consist of between 104 and 105 lattice sites.
These volumes correspond to very high nucleation barriers far beyond observation in
simulation and experiment. But the study of such large droplets is useful to clarify
some general conceptual questions.

To reveal the typical shape of droplets, it is useful to consider these macroscopical
droplets first. Therefore, we proceed as follows: The droplets are equilibrated within
a cubic box of length L with periodic boundary conditions in all directions. From
each equilibrated configuration, the center of mass of the droplet is computed and a
two-dimensional density histogram %(u, v) is produced, where u, v can be (x, y), (x, z)
or (y, z) and the histogram’s origin is the droplet’s center of mass. This is due to
the symmetric shape the droplet will have in order to minimize its free energy. This
procedure will give an average density distribution in the plane cutting through the
droplet’s center of mass.
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(a) kBT/J = 0.5 (b) kBT/J = 1.5 (c) kBT/J = 2.0

(d) kBT/J = 2.4 (e) kBT/J = 2.5 (f) kBT/J = 3.0

(g) kBT/J = 3.5 (h) kBT/J = 4.0 (i) kBT/J = 4.3

Figure 3.1: Average droplet shape at various temperatures. A cubic system with
L = 100 is equilibrated at a fixed density. In regular intervals, the density relative
to the droplet’s center of mass is measured in each direction. The color coding is
as follows: red areas have density % = 1 while purple areas have density % = 0.
One can see the cubic shape for low temperatures and the spherical shape at high
temperatures. At the same time, the interface width increases with temperature. As
expected, with increasing temperature, the difference %l − %g decreases.
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The results are shown in Fig. 3.1 at a fixed density % = 0.33 for all temperatures1. At
the lowest temperature, the interface is clearly faceted, but the corners are already
rounded. With increasing temperature, the six facets of the cube become smaller
and smaller. Just below the so-called roughening temperature kBTR/J ≈ 2.454,
which will be discussed later in this section, the facets can hardly be seen in this
picture due to finite-size effects at the points where the facets and the round surface
merge. Above the roughening temperature, the surface is curved everywhere, but
the droplet’s contour still appears non-circular if looked at closely. Upon further
increase of temperature, the droplets eventually become perfectly round. Along with
this transition of shape goes an increase of the interfacial width, especially in the
vicinity of the critical point.

These effects can be understood as follows. The shape of the droplet is determined
by the interfacial tension γ(θ, ϕ) and can be determined in principle from the Wulff
construction [Wulff, 1901]. However, this requires precise knowledge of γ(θ, ϕ), which
is in general hard to compute [Bittner et al., 2009].

As was pointed out in section 2.2.2, the geometry in a box with periodic boundary
condition depends strongly on the density. Here, the focus is on the case with
a droplet in a vaporous surrounding. The shape of the droplet is given by the
interfacial stiffness κ [cf. section 2.5], which is connected to the interfacial tension γ
by [Hasenbusch and Pinn, 1993]

κ = γ +
d2γ

dθ2

∣∣∣∣
θ=0

(3.1)

where θ is the angle between the interface and a reference axis (e.g. the z-axis). The
interfacial tension for a flat wall is defined by [cf. section 2.1.2]

γ = lim
L→∞

∆F

L2
(3.2)

where L2 is the area of the interface and ∆F is the free energy needed to form
the interface. As has been shown [Hasenbusch and Pinn, 1993], in the lattice gas
model the interfacial tension and the interfacial stiffness are equal only for high
temperatures, i.e. for temperatures above kBT/J = 3.8. This explains why the
spherical shape is only seen above this temperature while the shape deviates from a
sphere more and more if the temperature is lowered.

1At low temperatures, the stable state at this density would be a cylindrical droplet connected to
itself by the periodic boundary conditions. However, for the system sizes used here, a compact
droplet is perfectly metastable for the time of the measurements. This choice of density was made
in the interest of an economical use of computer resources.
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Apart from the critical temperature kBTc/J ≈ 4.5115, there is a second important
temperature in this context called the roughening temperature TR. At kBT/J = 0,
the droplet is perfectly cubic. As one increases the temperature, first the corners,
then the edges and eventually the facets of the droplet begin to disappear. A
transition takes place at kBTR/J ≈ 2.454 [Bürkner and Stauffer, 1983; Mon et al.,
1989, 1990; Hasenbusch and Pinn, 1994; Hasenbusch et al., 1996; Hasenbusch and
Pinn, 1997]. At this temperature, the curvature of the surface is non-zero everywhere.
However, this does not mean that the droplet has a spherical shape, in which case
the curvature would be constant. Above the roughening transition, the shape of
the droplet becomes rounder and rounder, since γ → κ for T → Tc. At the critical
temperature, the droplets would be perfectly round. However, at the same time, the
interface width diverges, which can be understood by the concept of capillary waves.
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(a) kBT/J = 3.0, % = 0.11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60

d
e
n
s
it
y
 ρ

Radius R

L=60
L=80

L=100
L=130
L=160
ρ=0.5

(b) kBT/J = 4.0, % = 0.19
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(c) kBT/J = 4.3, % = 0.27
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(d) interfacial width vs. droplet radius

Figure 3.2: Density profiles of droplets at various temperatures in cubic boxes of
volume L3. The interface broadening is clearly visible. The shape of the interface
does not depend on the droplet size, if the droplet is large enough. However, there is
a logarithmic dependency, shown in (d).
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The CWT result (2.62), that the interfacial width diverges logarihmically, is expected
to carry over to macroscopical droplets, since for large droplets, the interface is
locally flat and most of the capillary wave spectrum is not affected by the curvature.
Therefore, the result for the broadening of a planar interface of linear dimension L
[cf. section 2.5] can be taken as a first approximation for the case of macroscopical
droplets, replacing L by the droplet radius R:

〈w2〉 = w2
0 +

kBT

4κ
ln

R

λmin
. (3.3)

Here, w0 is the intrinsic width of the interface while λmin is the short wavelength
cutoff of the capillary wave spectrum. From Eq. (3.3), it is clear that the interfacial
width diverges, as κ → 0 for T → Tc. So while the droplet becomes rounder with
increasing temperature, its interface becomes more diffuse at the same time.

This approach can be tested for temperatures above the roughening transition, where
it makes sense to measure a radial density profile. The results are shown in Fig. 3.2,
where the density of the system is again fixed at % = 0.33. The volumes of the
droplets considered here range from 15.000 to 500.000 spins, corresponding to huge
nucleation barriers far beyond observation in computer simulations. The density
profiles show that the interfacial width grows with temperature and droplet radius.
From these density profiles, the droplet radius is estimated to be the radius where
the density is 0.5, while the surface width w is measured by fitting

%(r) =
%l + %g

2
− %l − %g

2
arctan(r/w) (3.4)

to the profile. Instead, a linear fit around the radius with %(R) = 0.5, where the
profile is linear, is made. Since arctan(x/w) = x/w+O((x/w)3), this is also valid to
estimate w. The results are shown in Fig. 3.2(d), asserting the qualitative agreement
with (3.3). Using the interfacial tension of Hasenbusch and Pinn [Hasenbusch and
Pinn, 1993], the slope of (3.3) is expected to be 1

4κ
≈ 2.5 for kBT/J = 4.0 and

1
4κ
≈ 8.0 for kBT/J = 4.3. From the data, the slopes are 1

4κ
≈ 2.1 for kBT/J = 4.0

and 1
4κ
≈ 5.8 for kBT/J = 4.3, which is distinctly lower but of the same order of

magnitude.

3.3 Microscopical Cluster Definitions

The effect of interface broadening is what makes a microscopical definition of droplets
difficult, since it is a priori not clear whether a lattice site in the interface belongs to
the droplet or to the surroundings. In this section, several definitions are tested for
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their validity in the thermodynamic limit. Also, macroscopical definitions will be
presented for comparison.

The appeal of a microscopical definition is evident. Such a definition allows to analyze
a given configuration and immediately distinguish the two phases from each other.
Then one could try to carry over such a definition to subcritical droplets and gain a
better understanding of nucleation events. Here, two definitions will be compared,
namely geometrical droplets, which have been used in the literature frequently for
the study of nucleation, and physical droplets, which are also known under the name
Swendsen-Wang droplets.

The fact that droplets at low temperatures have cubic shape with planar facetted
interfaces (cf. Fig. 3.1) also holds for microscopical droplets [Wonczak et al., 2000].
For the study of a vapor-liquid transition, where the droplets are spherical and have
rough, curved interfaces, one needs to work at high temperatures, namely distinctly
above the roughening transition and well below the critical point (cf. section 3.2).
Round droplets occur only for temperatures above kBT/J = 3.8, where the difference
between interfacial tension and interfacial stiffness becomes negligible [Privman,
1988; Hasenbusch and Pinn, 1993]. As will be shown in this section, the geometrical
droplet definition is appropriate only at low temperatures and leads to systematically
wrong results when applied to droplets at high temperature. However, many studies
of nucleation have been carried out at about T/Tc = 0.6, which is only slightly above
TR. Consequently, the surface term in the free energy barrier (2.42) is enhanced by
the rather cubic shape. On the other hand, it is known that the interfacial tension
depends on the interfacial curvature and that γvl(R) < γvl, i.e. the interfacial tension
for small spheres is smaller than for a planar interface. This means that the surface
term is decreased, and it is hard to answer whether the two effects cancel each other
or if one of the two is dominant. In the literature, nucleation barriers where reported
to be too high, too low or in agreement with classical nucleation theory. Therefore,
this section aims at showing that only physical droplets lead to conclusive statements
about properties of droplets for all temperatures, while geometrical droplets fail
above the roughening temperature.

3.3.1 The Lever Rule Method

The lever rule method [Winter et al., 2009a; Schrader et al., 2009b; Block et al.,
2010; Tröster et al., 2012] is a means to predict the droplet volume via simple
thermodynamic considerations and without any assumptions about the droplet’s
shape. Therefore it is well-suited to test the accuracy of microscopical droplet
definitions. Note that the lever rule method does not only apply in the lattice gas
model but also in Lennard-Jones fluids and other models.
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Consider a finite box of volume V = L3 at fixed temperature. Then there exists an
effective thermodynamic potential

fL(T, %) =
F (N, V, T )− F (N = V %l, V, T )

V
. (3.5)

This is the free energy per lattice site relative to the free energy of the system at
density %l. See section 2.2.1 for the terminology and the translation between the
Ising model and the lattice gas model. One can then also define a chemical potential
as the derivative of the free energy by the particle number

µ̃(N, V, T ) =
∂F (N, V, T )

∂N

∣∣∣∣
V,T

(3.6)

∆µL(T, %) = µ̃(N, V, T )− µcoex , (3.7)

where µcoex is the coexistence chemical potential. As one can see in Fig. 3.3, the
isotherms ∆µL(T, %) exhibit a loop with respect to %. This has already been discussed
in section 2.2.2. The important point is that for a range of values of ∆µ, there
are three states sharing the same chemical potential, i.e. can exist in equilibrium
next to each other. The two homogeneous states at low density %g > %g,0 and high
density %l > %l,0, and a third state in the two-phase coexistence of a droplet and a
supersaturated vapor. The fact that the state share the same chemical potential, the
liquid phase forming the droplet must have the same physical properties as the pure
liquid while the same holds for the vapor. Provided L is large enough, the system
can be decomposed into independent subsystems, where the volume Vl contains the
droplet while the volume Vg contains the vapor. Then

V = Vl + Vg , (3.8)
N = %V = %lVl + %v(V − Vl) +Nexc , (3.9)

V fL(T, %) = VlfL(T, %l) + (V − Vl)fL(T, %g) + ∆F , (3.10)

where Nexc takes into account particles belonging to the interface rather than to one
of the two sub-volumes. ∆F is the surface free energy, which can be computed via
(3.10) if the droplet volume Vl and the free energy isotherm fL(T, %) is known. In
this decomposition, it is assumed that the interaction between particles belonging to
the liquid and particles in the vapor is restricted to the interface and can thereby be
accounted for in the surface free energy term ∆F . This is a reasonable assumption
for short-ranged interactions.

It should be mentioned that the computation of the free energy of a system is a
complicated matter, especially for large systems. The reason is that the free energy
(like entropy for example) cannot be expressed as an average of an observable over
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Figure 3.3: Illustration of the lever rule method in a comparatively small system
(L = 20) at kBT/J = 3.0. At the top, there is the chemical potential β∆µL(T, %),
at the bottom the free energy βfL(T, %). One can choose any density % between
the droplet evaporation-condensation transition and the transition from the droplet
phase to the cylinder phase (see also Fig. 2.1). For each of these densities %, one
can find two other densities %′ and %′′ with equal chemical potential. They are the
corresponding vaporous and liquid densities %g and %l, respectively.

phase space (“mechanical quantities”), but the free energy is a quantity depending
on the phase space volume accessible to the system (“thermal quantities”). Many
advanced simulation methods allow to compute the free energy efficiently, like succes-
sive umbrella sampling [Virnau and Müller, 2004; Virnau et al., 2004], multicanonical
sampling [Berg and Neuhaus, 1992] or Wang-Landau sampling [Wang and Landau,
2001b,a; Shell et al., 2002; Landau et al., 2004]. See also [Landau and Binder, 2009;
Binder and Heermann, 2010] for general information on these sampling methods.
In this study, a different approach is chosen. Instead of computing the chemical
potential as a derivative of the free energy via (3.6), the chemical potential ∆µ(T, %)
is computed directly using a lattice version of the Widom particle insertion method
(see section 2.6.4 for details). This allows to work with box sizes that are orders of
magnitude larger.

To determine the droplet volume, one can use (3.9). This leads to the lever rule
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prediction of the droplet volume

VLR = V
%− %g
%l − %g

. (3.11)

Here, the excess number of particles is assumed to vanish: Nexc = 0. This is the
notion of equimolar dividing surface between the two phases [Rowlinson and Widom,
1982], which states that it is possible to separate the two phases by an infinitely
thin interface2. Since surface effects become negligible for large droplets, (3.11) is
correct for L→∞. Therefore by reading off %, %l and %g in Fig. 3.3, one immediately
extracts the droplet volume. Note that unlike classical nucleation theory, there is no
assumption about the shape of the droplet3 in (3.11).

Figure 3.4 shows the curves ∆µL(T, %) which have to be measured very carefully
in order to apply (3.11) accurately. Because of the spin inversion symmetry, it is
sufficient to measure fL(T, %) only for % < 0.5. Furthermore, only the pure phase
region and the droplet region need to be sampled, as shown in Fig. 3.4.

The lever rule method has some disadvantages. It is not possible to apply this method
to arbitrarily small droplets, because the simulation boxes must not be so small that
the inhomogeneous state of a droplet with supersaturated vapor around it becomes
unstable [Binder and Kalos, 1980]. On the other hand, very large droplets also
become increasingly difficult to analyze, because the computational effort of sampling
fL(T, %) grows with L3. Therefore, a different approach needs to be found, whose
correctness can be tested in the thermodynamic limit via the lever rule method.

3.3.2 Microscopically defined Clusters

The question is how to define the cluster size of a droplet when the number of
particles it consists of become less than some thousand. This is the regime where
clusters are not round anymore. A microscopical cluster definition, by which a
particle (or a lattice site) can determine if it belongs to the droplet or not only by
looking at its local environment, would be very convenient.

The simplest microscopical droplet definition is the geometrical droplet definition.
The idea is that neighboring occupied lattice sites belong to the same droplet [Binder

2In [Tröster et al., 2012], this assumption is not made. Instead of the equimolar dividing surface,
they define the surface of tension, which allows for a non-vanishing excess particle number. This is
important for small droplets in particular.

3If one assumes a sphere, i.e. Vl = 4πR3/3, then the surface free energy in Eq. (3.10) takes the form
∆F = 4πγvl(R)R2.
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Figure 3.4: Chemical potential ∆µL(T, %) at kBT/J = 3.0 and several cubic boxes
(L = 10, 20, 30, 40, 50, 60, 70, 80, 100, 130, 160, 200, from top to bottom). Only the
droplet area and the evaporation-condensation transition is shown here [cf. Fig. 2.1].
Due to the symmetry of the Ising model, which implies ∆µ(%) = −∆µ(1 − %), it
suffices to sample the densities below 0.5. Again, the homogeneous phases have very
little dependence on the system size L, whereas the heterogeneous parts strongly
depend on L. Note that the evaporation-condensation transition is very smooth in
small boxes and becomes sharper for larger box sizes.

and Müller-Krumbhaar, 1974]. The droplet volume is then obtained by counting
all occupied lattice sites belonging to the cluster, `geom. Assuming that the density
within a macroscopical droplet equals the density %l of a bulk liquid phase, the
volume of the droplet can be calculated as

Vgeom =
`geom
%l

. (3.12)

It has been shown [Coniglio and Klein, 1980; Swendsen and Wang, 1987; De Meo et al.,
1990] that this definition does not contain much physical significance: There exists a
percolation transition line in the phase diagram (Fig. 3.5), where a geometrical cluster
of infinite size appears [Müller-Krumbhaar, 1974; Binder, 1980]. This percolation
transition does not have any significance from a thermodynamic point of view
[Coniglio, 1975; Coniglio et al., 1977; Binder, 1980; Hayward et al., 1987]. As a
consequence, the droplet shown in Fig. 3.1(i) cannot be detected by the geometrical
definition, because the density of the environment is so high that the whole system
percolates and Vgeom ≈ V .
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Fortuin and Kasteleyn [Kasteleyn and Fortuin, 1969; Fortuin and Kasteleyn, 1972]
worked on mapping a q-state Potts model to a correlated bond-percolation problem.
They found out that the Ising model (q = 2) corresponds to a correlated percolation
problem with the probability

p(T ) = 1− exp

(
2J

kBT

)
(3.13)

of “active” bonds between parallel spins. Therefore, neighboring occupied lattice
sites only belong to the same cluster if they are connected by an active bond [cf.
section 2.2.3]. It has been shown [Coniglio and Klein, 1980; Swendsen and Wang,
1987; De Meo et al., 1990], that the percolation transition of these physical clusters
coincides with the critical point of the Ising model or lattice gas model. If for a given
configuration, the cluster contains `phys occupied lattice sites, then the volume of the
droplet is given by

Vphys =
`phys
ml

=
`phys

2%l − 1
. (3.14)

It is obvious that the geometrical definition is recovered in the limit T → 0, when
all bonds become active. Hence it is to be expected that the geometrical cluster
definition works at low temperatures, while at high temperatures, one geometrical
cluster consists of one or several physical clusters. In this study, the geometrical
droplet definition is only used to show the systematical errors that arise for medium
and high temperatures.

The physical clusters have been used in the literature in the context of critical
phenomena, where they are also referred to as Swendsen-Wang clusters [Swendsen
and Wang, 1987; Wolff, 1989], their significance in the context of nucleation has
been ignored almost completely [Acharyya and Stauffer, 1998; Shneidman et al.,
1999b; Ramos et al., 1999; Shneidman et al., 1999a; Vehkamaki and Ford, 1999;
Wonczak et al., 2000; Pan and Chandler, 2004; Ryu and Cai, 2010]. It should be
noted though that the definition of physical clusters is of stochastic nature, since
the bonds between neighboring spins of equal orientation are activated only with a
certain probability. So given a fixed configuration, the geometrical cluster definition
always yields the same clusters while the physical clusters will fluctuate. In the
following static analysis, this is not important because the predicted volume is taken
as the average over many configurations. If one wishes to apply physical clusters to
dynamic simulations, one might want to analyze one configuration several times to
get a mean cluster distribution.
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Figure 3.5: Phase diagram of the Ising/lattice gas model. There is a transition
line [Binder, 1980] where the system has a transition from not being percolated
to having a large cluster percolating the whole system. If there is no interaction
(corresponding to high temperature), the system percolates at a density %perc = 31%.
The interaction decreases this percolation threshold, so the transition line approaches
%perc from lower densities. Geometrical clusters diverge at this transition line and
cannot detect the physically relevant droplets which diverge at Tc and not at the
percolation transition line.

Both the geometrical and the physical droplet definition can be implemented by
an efficient algorithm called Hoshen-Kopelman4 algorithm [Hoshen and Kopelman,
1976]. It follows a brief summary of the concept. The aim is to go though the lattice
only once, labeling all lattice sites one after another. If the lattice site does not
contain a particle, its label is set to zero. If a neighbor of the current lattice site has
a label already, then one stores the information that both labels belong to the same
cluster in an array. By convention, the label with the lowest label is the proper label
of the cluster. So in the end one has a number of clusters, each cluster having one or
more labels, one of them (by convention the smallest label) being the proper label.
The structure of the labels corresponds to a tree graph where the proper label is the
root and all other labels point directly or indirectly towards the root.

To compute the volume of physical or geometrical droplets via (3.12) or (3.14),
respectively, one has to know the relation %l(T,∆µ). This, however, is an easy
task, compared to measuring the whole curve ∆µL(T, %) needed for the lever rule

4There also exists a more efficient “enhanced” Hoshen-Kopelman algorithm [Hoshen et al., 1997].
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Figure 3.6: Dependence of the density of the homogeneous phases on the chemical
potential in a cubic box of linear dimension L = 60 at temperatures kBT/J = 3
and 4. The symbol belong to grand-canonical ensemble simulations while the curves
correspond to measuring ∆µL(T, %) in the canonical ensemble via the Widom particle
insertion method (see chapter 2.6.4).

method (3.11). Fig. 3.6 shows the results of measuring %l and %g in a grand-canonical
ensemble with various ∆µ, as well as in a canonical ensemble using the Widom
particle insertion method. The finite-size effects, which differ for the two ensembles
considered [Landau and Binder, 2009; Binder and Heermann, 2010], are not seen at
all in the pure phases.

3.3.3 Finite-Size Scaling

In order to test the physical droplet definition, simulations in the canonical ensemble
in a cubic box of linear dimension L are carried out. The density is fixed at various
values % in the droplet range [see Fig. 2.1]. A small droplet is put in the box to serve
as a starting point for a nucleus to form. The system is then carefully equilibrated
so that the initial size and shape of the droplet do not influence the outcome. The
simulation of a lattice gas in the canonical ensemble (or equivalently, the Ising model
with conserved magnetization) is the spin exchange algorithm [Landau and Binder,
2009; Binder and Heermann, 2010]. However, the standard nearest-neighbor exchange
method causes a hydrodynamic slowing-down because any local excess density can
only relax diffusively. Therefore, in this context a single-spin-flip algorithm is used, in
which the total number of occupied lattice sites is restricted to an interval [N − 1, N ].
Any spinflip that would leave this interval is automatically rejected. The difference
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between this almost-conserved density and a strictly canonical simulation is of order
L−3 and therefore negligible.

Because the prediction of the lever rule method is true in the thermodynamic limit,
it is useful to normalize the predictions of the physical droplet definition (3.14) to
the lever rule prediction (3.11). Fig. 3.7 shows that the ratio Vphys/VLR converges to
unity for L→∞ for all temperatures and densities. The physical droplet definition
turns out to work at all temperatures, especially below the roughening temperature
as well as close to the critical point.

Also shown in Fig. 3.7 is the prediction using geometrical droplets. At low tem-
peratures, this definition is very similar to the physical droplet definition, for the
bond probability (3.13) is close to unity. Therefore, it is to be expected that the
geometrical droplets also extrapolate to the correct volume predicted by the lever rule
method. However, at higher temperatures the deviations become noticeable. The
predicted volumes lie systematically above and yield completely unreasonable results
at kBT/J = 4.3, where the volume is overestimated even asymptotically by up to
80%, while the actual volumes the error is up to 400%. This is a consequence of the
percolation transition of the geometrical droplets [Müller-Krumbhaar, 1974], which is
why the predicted volume approaches the box volume instead of the droplet’s volume.
This emphasizes that geometrical droplets should not be used for temperatures
around kBT/J = 2.6 or higher.

The data needed to apply the lever rule method can also serve to give a volume
prediction based on classical nucleation theory. At given temperature T and chemical
potential ∆µL(T, %), the critical droplet has the volume

VCNT =
4π

3
R∗3 =

4π

3

(
2γvl

∆µ(%l − %g)

)3

, (3.15)

where (2.43) has been used. Using the interfacial tension γvl by Hasenbusch &
Pinn [Hasenbusch and Pinn, 1993, 1994], there are no free parameters at all. The
data is also shown in Fig. 3.7. In contrast to the microscopical predictions, the
dependence on 1/L is very weak, so the data converges horizontally against the limit
of infinite box size. Apart from that, the ratio VCNT/VLR converges to unity only for
temperatures kBT/J ≥ 4.0, whereas CNT underestimates the volume systematically
for lower temperatures. This behavior can be attributed to the fact that CNT is
based on spherical droplets. However, it can clearly be seen in Fig. 3.1 that the
droplets below kBT/J = 4.0 and especially below kBT/J = 2.5 are nonspherical.
Therefore, CNT underestimates the surface area of a droplet at low temperature.
This observation is consistent with the findings of Hasenbusch & Pinn [Hasenbusch
and Pinn, 1993] that the anisotropy of the interfacial tension becomes important for
temperatures below kBT/J = 3.8.
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Figure 3.7: Finite-size scaling of the ratio Vphys/VLR [red data] against 1/L for various
densities and temperatures. The ratios Vgeom/VLR [green data] and VCNT/VLR [blue
data] are also included. The volumes are computed using (3.11), (3.12) and (3.14),
while for the classical nucleation theory, a spherical droplet with radius R∗ (see (2.43))
and volume 4πR∗3/3 is assumed. The densities are chosen to be in the range where
the droplet is not aware of the finiteness of the box, as explained in section 2.2.2.
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At first sight, the finding that VCNT/VLR is independent of R∗ seems to disagree with
the results in [Winter et al., 2009a; Schrader et al., 2009a; Winter et al., 2009b; Block
et al., 2010; Das and Binder, 2011; Tröster et al., 2012], where the interfacial tension
γvl(R) is shown to have a curvature-dependency. In these references, evidence is
provided that

γvl(R) =
γvl

1 + 2
(
l
R

)2 , (3.16)

where γvl = γvl(R = ∞) is the interfacial tension of a flat wall and l is a length
proportional to the correlation length in the bulk [Das and Binder, 2011]. Tolman
[Tolman, 1949] introduced the idea of a curvature-dependent interfacial tension for
small droplets

γvl(R) =
γvl

1 + 2 δ
R

, (3.17)

but it has been shown [Fisher and Wortis, 1984] that such a correction does not
appear for R → ∞, i.e. δ = 0, because of the spin reversal symmetry of the Ising
model. A straightforward calculation using (2.42) and (3.16) shows that

R∗∆µ(%l − %g)
2γvl

=
1 + 4

(
l
R

)2(
1 + 2

(
l
R

)2
)2

≈ 1− 4

(
l

R

)4

+O

((
l

R

)6
)
.

(3.18)

Clearly, these corrections are negligible for l� R∗. Since the correlation length is
less than one lattice spacing for temperatures below kBT/J = 4.0, this correction
cannot explain the discrepancy shown in Fig. 3.7. Instead it must be fully due to
the anisotropy of the interfacial tension, resulting in a non-spherical shape of the
droplet.

The droplet shape is spherical only at high temperatures, while at zero temperature,
the shape is cubic. For intermediate temperatures, the shape is in principle given by
the Wulff construction [Wulff, 1901]. To get an expression for the free energy barrier,
which does not explicitly depend on the droplet shape but only on the droplet’s
volume, one can use general expressions for the droplet’s volume V = Ṽ R3 and
surface A = ÃR2, given the droplet’s linear dimension5 is R. The extreme cases of
a spherical (Ṽ = 4π/3; Ã = 4π) and a cubic (Ṽ = 8; Ã = 24) droplet shape are
also included in this approach. Note however, that other corrections like a radius

5Due to symmetry, one can exclude shapes which need more than one parameter. For example, a
droplet will always be rather cubic or spherical than elongated in one direction like a cuboid or an
ellipsoid.
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dependent interfacial tension γ(R) are neglected, as they are negligible for large
droplets [Tröster et al., 2012]. The free energy barrier ∆Fhom = γvlA−∆µ(%l− %g)V
can then be written as

∆Fhom = γvlÃṼ
−2/3V 2/3 −∆µ(%l − %g)V . (3.19)

Minimizing the free energy barrier with respect to V yields the critical volume

V ∗ =

(
2

3

γvl
∆µ(%l − %g)

ÃṼ −2/3

)3

(3.20)

and the free energy barrier height

∆F ∗hom =
1

3
γvlÃṼ

−2/3(V ∗)2/3 =
1

2
∆µ(%l − %g)V ∗ (3.21)

This equation states that the free energy barrier is proportional to the droplet’s
volume and furthermore depends on the densities and the chemical potential. In the
simulation, where the overall density % and the temperature T are fixed, the chemical
potential ∆µ(T, %) and the densities are determined and of course independent of
the droplet’s shape. Therefore one can conclude for the limit T → 0

V ∗

V ∗CNT

∣∣∣∣
T=0

=
∆F ∗

∆F ∗CNT

∣∣∣∣
T=0

=
Ã3

cubeṼ
−2
cube

Ã3
sphereṼ

−2
sphere

=
6

π
, (3.22)
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where the first expression in (3.21) was used6. Since the droplet’s volume can be
expressed by the lever rule method regardless of temperature and droplet shape, it
is to be expected that VLR/VCNT → 1 for T → Tc and VLR/VCNT → 6/π for T → 0.
Fig. 3.8 indeed confirms this expectation.

3.3.4 Excess Effects

Having a closer look at the finite-size scaling of physical droplets in Fig. 3.9, which
shows the same data as in Fig. 3.7, there a a asymptotic correction of order 1/L.
From this one can conclude that the assumption Nexc = 0 [cf. section 3.3.1] does not
hold for physical droplets. Assuming that the excess particle number is proportional
to the surface area of the droplet, with %exc being the excess density corresponding
to the interface,

Nexc = %excA = C%excV
2/3
l , (3.23)

where C = ÃṼ −2/3 depends on the droplet’s shape, e.g. C = (36π)1/3 for a sphere
and C = 6 for a cube, then one can insert (3.11) as a first-order approximation to
obtain

Nexc = C%excL
2 (%− %g)2/3

(%l − %g)2/3
. (3.24)

Instead of (3.11), the expected volume of the droplet is

VLR, exc = V
%− %g
%l − %g

− C%excL2 (%− %g)2/3

(%l − %g)5/3

= VLR

[
1− C%exc

L
(%l − %g)−2/3(%− %g)−1/3

]
.

(3.25)

There is indeed a 1/L correction of the volume predicted by the lever rule method,
yielding smaller estimates for the volume in a finite box of volume V = L3. To test this,
Fig. 3.10 shows the data contained in Fig. 3.9 plotted against (%l−%g)−2/3(%−%g)−1/3.
The data collapses onto universal curves for each temperature.

3.4 Conclusion

In this chapter, the properties of macroscopical droplets in the Ising (lattice gas)
model were considered. To this end, the droplets’ transition from cubic to spherical

6Note that γvl is also equal, since CNT just takes the value for flat walls, while the interface of a
cubic droplet consists of flat walls by definition.
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Figure 3.9: Finite-size scaling of the ratio Vphys/VLR against 1/L for various densities
and temperatures. The volumes are computed using (3.11) and (3.14). The densities
are chosen to be in the range where the droplet is not aware of the finiteness of the
box, as explained in section 2.2.2. The extrapolation is not perfect due to the fact
both Vphys and VLR suffer from statistical errors in the estimation of %l and ∆µ.
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−1/3 in order to test
(3.25). All data from Fig. 3.9 is also used here, each density % is shown with a
separate color. Linear fits to the data are included.

shapes were discussed (Fig. 3.1). It was shown that droplets below the roughening
transition have facets, while droplets at high temperatures are perfectly spherical.
However, although the facets disappear at the roughening temperature TR, the
droplets are round but not spherical at intermediate temperatures, giving rise to
an enhanced nucleation barrier (Fig. 3.8). The enhancement of the free energy
barrier due to the anisotropy of the droplet shape was discussed in detail. It was
shown that the correction due to the non-spherical shape vanishes near the critical
point but rises gradually with decreasing temperature and growing steeply below
the roughening temperature to reach 6/π for T → 0. The enhancement at the
temperature kBT/J = 0.6, commonly used in the literature, is about 10% and should
therefore not be ignored.

While the droplet shape changes from cube to sphere with increasing temperature, the
interfacial width increases, making the distinction between lattice sites belonging to
the droplet or the environment a delicate matter. An increase of the interfacial width
with the size of the droplet was also discovered (Fig. 3.2(d)), which is compatible
with the prediction for planar interfaces.

The problem of properly defining droplets in the Ising model was also discussed
thoroughly. There has been much work about nucleation in the Ising (lattice gas)
model, but it was often inconclusive due to the use of geometrical clusters. In this
chapter, evidence was presented that this cluster definition fails at commonly studied
temperatures and should therefore be avoided (Fig. 3.7). At low temperatures, the
geometrical and physical clusters coincide, but the temperature range below the
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roughening temperature is not attractive for the study of nucleation phenomena
because of the anisotropy effects (Fig. 3.1). At intermediate temperatures just above
the roughening transition, the overestimation ranges from 1 to 3%, even in the
thermodynamic limit. In the temperature range where droplets are found to be
spherical, i.e. above kBT/J = 3.8, the geometrical clusters overestimate the size of
droplets dramatically because of the percolation transition (Fig. 3.5). In contrast,
the physical droplet definition leads to consistent results with the lever rule method
if applied to macroscopic droplets in a homogeneous surrounding, although there is
an unexpected surface excess in the particle number (Fig. 3.10).

All these considerations can also be carried out in d = 2 dimensions, where both the
lever rule method and the physical droplet definition can be carried over literally.
Note that the roughening temperature in two dimensions is kBTR/J = 0, which
means that the transition from a circular shape to a square occurs without any
singularity. However, the overestimation of the geometrical droplet definition will be
similar to the three-dimensional case.

An extension of the physical droplet definition to off-lattice systems is very desirable,
but it is unknown to date how to extend (3.13) to continuous models.



Chapter 4

The Ensemble Switch Method

In this chapter, the ensemble switch method, which has been used in the past
[Deb et al., 2011, 2012a,b] to compute wall tensions between colloidal systems and
various walls , is extended to be able to compute interfacial tensions. After a short
introduction about the difficulties of computing interfacial tensions for solid-liquid
interfaces [sections 4.1 and 4.2], the ensemble switch method is presented in section 4.3.
The ensuing sections are devoted to discussions of the results and their interpretation
for liquid-vapor interfaces [section 4.4] and solid-liquid interfaces [section 4.5].

4.1 Introduction

The interfacial tension plays a central role in condensed matter and materials
science. Not only does it determine the shape of nuclei as shown in section 3.2
and is a central ingredient to classical nucleation theory [cf. section 2.4], but also
in many other areas where interfaces occur: nucleation of liquid droplets in an
oversaturated vapor [e.g. in the atmosphere [Kashchiev, 2000; Balibar and Villain,
2006]], formation of nematic or smectic droplets in fluids which can form liquid crystal
phases, nucleation of ferroelectric or ferromagnetic domains, mesophases of strongly
segregated block copolymers [Hamley, 1998], hadron condensation from the quark-
gluon plasma [Meyer-Ortmanns, 1996], nanosystems [Dietrich et al., 2013], wetting
phenomena [Domb and Lebowitz, 1988; Bonn and Ross, 2001; de Gennes et al.,
2003], stable heterogeneous structures, and many other applications in biological
systems. These phenomena are fascinating problems of statistical mechanics and
have important applications (in nanoscopic devices, materials science of thin films
and surfactant layers (e.g. [Narayanan, 2008]), extracting oil and gas from porous
rocks [Gelb et al., 1999], etc.).

77
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Since it is difficult to measure interfacial tensions in experiment, computer simulations
are the means of choice to determine them. Over the years, a variety of methods
came into existence, each having some advantages and drawbacks. Mean-field-type
approaches are widely used [Cahn and Hilliard, 1958; Evans, 1979; Oxtoby, 1992;
Bier et al., 2005] but build upon arguable assumptions: A necessary input is the
free-energy density of homogeneous states in the two-phase coexistence region [Binder
et al., 2012]. Such a concept is only valid for long-range forces and not well-defined
in the short-range case [Lebowitz and Penrose, 1966; Penrose and Lebowitz, 1971;
Langer, 1974; Binder, 1984, 1987; Puri and Wadhavan, 2009]. Furthermore the
existence of a well-defined “intrinsic interfacial profile” is doubted1. Mean-field-type
theories are able to simulate bulk phase behavior, they face severe problems when
studying interfaces: Interfaces have fluctuations on all length scales, and the short
wavelength spectrum interferes with bulk fluctuations in a non-trivial way. The
long-wavelength part of the spectrum, however, can be accounted for by the concept
of capillary waves [cf. section 2.5], but a cutoff wavelength has to be introduced, the
physical significance of which is not clear.

In the case of a liquid-vapor coexistence, some methods are able to produce satisfac-
tory results with reasonable computational effort, but for crystal-liquid coexistence,
there are merely rough estimates which do not agree within their respective error
bars. The reason might be that the finite-size scaling of the methods has not been
discussed thoroughly enough [see chapter 5].

4.2 An Overview of existing Methods to compute
the Interfacial Tension

There exists a number of methods to compute the interfacial tension. In the case of
vapor-liquid interfacial tensions, many of these methods yield reliable results. For
the crystal-fluid interface of hard spheres, however, the methods are not applicable
or disagree with each other. This subsection provides an overview over some of
the methods, making no claim to be complete. Table 4.1 shows results for hard
sphere interfaces from various methods. It is striking to see that they contradict each
other by several standard deviations. To give a better impression of the challenge,
Fig. 4.1 shows the results from Table 4.1 versus time. It is obvious that computing
the interfacial tension for hard spheres is a major open problem.

1See for example the article of B. Widom in [Domb and Green, 1972] and also [Jasnow, 1984; Binder
et al., 2011] for further remarks.
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source method βσ2γ100 βσ2γ110 βσ2γ111

[Davidchack and Laird, 2000] MD-C 0.62(1) 0.64(1) 0.58(1)
[Mu et al., 2005] MC-CWT 0.64(2) 0.62(2) 0.61(2)

[Davidchack and Laird, 2005] MD-C 0.592(7) 0.571(6) 0.557(7)
[Davidchack et al., 2006] MD-C 0.574(17) 0.557(7) 0.546(16)

[Davidchack, 2010] MD-C 0.5820(19) 0.5590(20) 0.5416(31)
[Härtel et al., 2012] DFT 0.687(1) 0.665(1) 0.636(1)
[Härtel et al., 2012] MC-CWT 0.639(11) 0.616(11) 0.600(11)

[Fernandez et al., 2012] MC-T 0.636(11)

Table 4.1: Collection of interfacial tensions computed by various methods. β =
1/(kBT ) is the inverse temperature and σ the hard sphere diameter. MD-C stands
for molecular dynamics using the cleaving method (see below), MC-CWT stands for
Monte Carlo simulations with an analysis of the capillary wave spectrum (see below).
DFT is the abbreviation for density functional theory and MC-T stands for “tethered”
Monte Carlo, which is a recent approach. This is of course not a comprehensive list
of results for hard spheres.

4.2.1 The Probability Distribution Method

The probability distribution method [Binder, 1982] is one of the most commonly
used techniques to compute the interfacial tension of liquid-vapor interfaces. We first
describe it for the Ising model, where the relevant distribution is the distribution of
the magnetization m. Recall that there is a one-to-one correspondence between the
Ising model and the lattice gas model, where the magnetization corresponds to the
density of particles [cf. section 2.2.1]. The method makes use of the fact that one can
measure the probability PL of homogeneous states m = ±mcoex and heterogeneous
states m = 0 with two planar interfaces via Monte Carlo simulations (e.g. using
multicanonical sampling, see section 2.7.1). Here, we consider a d-dimensional system
with linear dimension L of the (hyper-)cubic simulation box and periodic boundary
conditions in all directions. The treatment sketched below refers to Ising models (or
other systems in the Ising universality class with a symmetry between the coexisting
phases).

The method makes use of the fact that the free energy can be written in terms of
the probability distribution lnPL(m) = −βF (m) and that the states at m = 0 and
m = ±mcoex differ only by the presence and absence of two interfaces [see Fig. 4.2],
so that

ln

(
PL(mcoex)

PL(0)

)
= βF (0)− βF (mcoex) = 2Ld−1βγL , (4.1)

where γL is the interfacial tension and 2Ld−1 is the interfacial area in a box with a
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Figure 4.1: Graphical overview of some selected results since the year 2000 for
computer simulations to determine the interfacial tension of hard sphere crystal-fluid
interfaces, for three different orientations of the fcc crystal.

slab geometry. The interfacial tension in the thermodynamic limit can be obtained
via

βγ = lim
L→∞

1

2Ld−1
ln

(
PL(mcoex)

PL(0)

)
(4.2)

Note that PL(mcoex) depends on the box geometry, for in the vicinity of the maxima,
PL(m) can be expressed by a Gaussian

PL(m) =
1√

2πσ2
%

exp

(
−1

2

(m− 〈m〉)2

σ2
%

)
σ2 =

kBTχcoex

Ld
, (4.3)

where 〈m〉 = ±mcoex. Therefore, PL(mcoex) ∝ Ld/2.

Although this method to estimate the interfacial tension works extremely well in the
Ising model and has also been applied to Lennard-Jones fluid-vapor coexistence with
success (see e.g. [Hunter III and Reinhardt, 1995; Potoff and Panagiotopoulos, 2000]),
it cannot straightforwardly be used to calculate solid-liquid interfacial tensions.

Alternatively to (4.2), one can obtain the interfacial tension via another limiting
process, namely [Binder, 1982]

βγ = lim
L→∞

1

2Ld−1
ln

(
1

PL(0)

)
. (4.4)

Here, the dependence of PL(mcoex) can be avoided altogether.
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Figure 4.2: Probability distribution of an Ising model for d = 3 with L = 20 = Lz and
various temperatures as indicated. At low temperatures, the heterogeneous states
(% = 0.5) are strongly suppressed. One can also see kinks, where the chemical potential
has a discontinuity in the limit L → ∞. In a finite system, the discontinuities
are smeared out, hence the kinks are slightly rounded (for more information cf.
section 2.2.2). The probability ratio between the minimum at % = 0.5 and the
maxima can be used to measure the interfacial tension.

4.2.2 Pressure Anisotropy

If one can compute the pressure of a system, e.g. using the virial expression (2.83)
or other methods, the interfacial tension can be derived from the anisotropy of the
pressure tensor across an interface [Tolman, 1948; Walton et al., 1983; Frenkel and
Smit, 2001].

In a homogeneous fluid at equilibrium, the pressure components in all directions
must be equal. If one considers an inhomogeneous system which contains interfaces,
then the pressure pz normal to the interfaces must be constant for the system to be
stable. The tangential components px, py, however, which are equal to pz in the bulk,
change near the interfaces. It can be shown [Tolman, 1948; Walton et al., 1983],
that the interfacial tension can be computed by integrating the pressure difference
between the normal pressure pz and the tangential pressure pt = (px + py)/2 through
the system

βγ =
β

2

∫ Lz/2

−Lz/2

dz [pz(z)− pt(z)] . (4.5)

The factor 1/2 arises from the fact that one usually has two interfaces in a box with
periodic boundary conditions. Unfortunately, the definition of px(z), py(z), pz(z) is
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ambiguous, and different definitions lead to slightly but significantly different results
[Walton et al., 1983]. Fortunately, the above expression (4.5) for γ does not suffer
from this, since it actually reduces to

βγ =
βLz

2
(Pz − Pt) (4.6)

so that one only needs the components of the total pressure P .

To calculate px(z), py(z), pz(z), one divides the system into b slabs perpendicular to
the interfaces. Assuming a pair potential U(r) which only depends on the distance r
between the particles, the pressure components in each slab k can be calculated by

pα(k) = kBT 〈%(k)〉 − 1

V (k)

〈∑
(ij)∈k

U ′(rij)
α2
ij

rij

〉
(4.7)

with α = x, y, z and k = 1, . . . , b. The sum runs over all pairs (ij) of particles
belonging to the slab k, i.e. if the line connecting the two particles is partially
or completely within the slab. To get the correct pressure, one has to divide the
contribution to the pressure by the number of slabs, the line intersects, e.g. if both
particles are in the same slab, the slab gets the full contribution, while if there is a
slab between the particles’ slab, then each slab gets one third of the contribution.
This follows the Kirkwood-Buff convention [Nijmeijer et al., 1988], but there are also
other sensible conventions2.

The disadvantage of this method is that it cannot be applied straightforwardly to
discontinuous potentials like hard spheres or the AO model. The technique also
becomes difficult to apply for vapor-liquid interfaces near criticality because then
the signal to noise ratio is very unfavorable.

4.2.3 Thermodynamic Integration with cleaving Potentials

Based on the cleaving method of Broughton and Gilmer [Broughton and Gilmer,
1986], Davidchack computes the interfacial tension of hard sphere coexisting phases
using molecular dynamics simulations [Davidchack and Laird, 2003]. The idea is
to use cleaving potentials to perform a reversible integration from a system with
two separated boxes to a system with one box and two coexisting phases with an
interface. Instead of “real” hard spheres, they use a potential

u(r) = ε
(σ
r

)n
(4.8)

2For a comparison of two conventions, see e.g. [Walton et al., 1983].
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where σ is the hard sphere diameter and ε defines the energy scale. Obviously, for
n→∞ this potential approaches the hard-sphere limit. The procedure to compute
γ consists of four steps:

1. Start with a crystal with some orientation in a box with periodic boundary
conditions in all directions. Set up an external cleaving potential and move it
gradually into the box. After this step, the periodic boundary condition in one
direction is replaced by the cleaving potential, for the particles cannot traverse
the cleaving potential.

2. Equilibrate a fluid in a box. Then use the same cleaving potential as for the
crystal and move it into the box.

3. Combine the two boxes and replace the boundary conditions of the separate
boxes by periodic boundary conditions for the combined box. The two phases
are then still separated by the cleaving potentials, so there is no interface yet.

4. Gradually move the cleaving potentials out of the two boxes, thereby allowing
contact between the phases.

The interfacial tension γ is the sum of free energy differences of these 4 steps divided
by the total area of interfaces.

To apply this method to hard-sphere-like systems [Davidchack and Laird, 2005], one
has to replace the cleaving potentials by cleaving walls, which consist of particles
arranged in the crystal structure corresponding to the crystal in the system. Instead
of increasing the intensity of the potential, the walls are set up a certain distance zi
outside the box and then slowly moved into the box to zf .

There are some challenges in this approach. First, one works at finite n and has to
extrapolate to the hard-sphere case. Furthermore, the cleaving potentials have to
be chosen very carefully. They induce crystalline layers to the liquid in step 2 and
prohibit contact of the two phases during step 3. Step 2 is a great source of hysteresis.
In order to reduce it, the box containing the fluid is first stretched to decrease the
density below coexistence density, before step 2 is executed. After step 2, the box is
compressed again. These additional steps help to decrease hysteresis. Alternatively
to this stretching and compressing, one can introduce a well potential to decrease
the density only near the cleaving walls [Davidchack, 2010].

Another problem in this approach is that the translational freedom of the interface
is suppressed. If the interface moves “too far” away from the initial position, the
whole run is thrown away, which usually happens for 10 to 60% of the simulation
runs. Apart from the wasted simulation time, there is some undesirable arbitrariness
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in what “too far away” means. Also, there is no finite-size scaling done. Instead,
a rather large system (15000 to 30000 particles) is considered and it is claimed
that this is sufficiently large to compute the value of the interfacial tension in the
thermodynamic limit.

4.2.4 Capillary Wave Spectrum

An introduction to capillary wave theory (CWT) can be found in section 2.5. Here,
we briefly discuss how the interfacial tension γ can be obtained from the capillary
wave spectrum.

In capillary wave theory, the interface is represented by a function h(x) = z(x, y)−
〈z(x, y)〉, describing the distance of the local interface to the equilibrium position. It
is more convenient to work with the Fourier transform of h(x), which is given by

hq =
∑
q

h(x)eiq·x (4.9)

where q = (qx, qy)
> is the two-dimensional wave vector. In the long-wavelength limit,

CWT can relate the interfacial stiffness κ to the height fluctuation spectrum

〈h2
q〉 =

kBT

L2q2κ
. (4.10)

Therefore one can compute the interfacial stiffness from simulations [Weeks, 1977] by
conducting a numerical Fourier transform of the height profile h(x) and use (4.10).
This was used in molecular dynamics simulations by [Hoyt et al., 2001; Rozas and
Horbach, 2011] to determine the interfacial tension of nickel. Alternatively, one can
measure the interfacial width and use [cf. (2.62)]

〈w2〉 = w2
0 +

1

4βκ
ln(L/λmin) (4.11)

This is however only possible if the interfacial stiffness is isotropic in the directions
parallel to the surface. This method has been used in [Rozas and Horbach, 2011]
and also in [Zykova-Timan et al., 2010] for the study of the effective AO model.

4.3 Description of the Ensemble Switch Method

To study interfaces, it is useful to consider a cuboid simulation box of length Lz and
cross-section area A = LxLy, in which two coexisting phases are set up. The lengths
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Lx, Ly and Lz are always given in units of a natural length (usually the particle
diameter σ).

The interfacial tension γ between two coexisting phases, e.g. crystal and liquid or
liquid and vapor, is defined as the amount of free energy ∆F per area A needed for
the creation of such an interface:

γ =
∆F

A
. (4.12)

The computation of the free energy is a complicated task, especially if crystalline
structures are involved. The reason is that the free energy cannot be expressed as an
average of an observable over phase space, but the free energy is a quantity depending
on the phase space volume accessible to the system. Therefore, a sophisticated Monte
Carlo technique is required. The idea of the ensemble switch method is to calculate
the free energy difference between a reference state 0 and a final state 1 by connecting
these states by a continuous path parametrized by a parameter κ. This technique
has been successfully applied to compute wall tensions [Deb et al., 2012a,b].

In order to compute the interfacial tension, one proceeds as follows. State 0 (κ = 0)
with Hamiltonian H0 consists of two separate boxes with cross-section area A = LxLy
and length Lz/2, each having periodic boundary conditions in all directions [cf.
Fig. 4.3(a)]. Each box contains one of the coexisting phases. This geometry does
not have any interfaces, for the phases are only connected to themselves and do not
interact with each other. The thermodynamic integration connects these two boxes
and combines them into one [Fig. 4.3(b)]. The final state (κ = 1) with Hamiltonian
H1 consists of one box with cross-section area A = LxLy and length Lz, in which
the two phases are in coexistence and have thereby formed two interfaces (because
of the periodic boundary conditions one always has an even number of interfaces).
The free energy difference ∆F = F (κ = 1)− F (κ = 0) between the initial state and
the final state is given by

∆F = (Fbulk,1 + Fbulk,2 + 2γLxLy)− (Fbulk,1 + Fbulk,2) = 2γLxLy , (4.13)

where γ is the interfacial tension to be measured. The bulk contributions cancel each
other in this difference if one carefully sets up the phases with coexistence properties.
Hence

γ(Lx, Ly, Lz) =
∆F (Lx, Ly, Lz)

2LxLy
. (4.14)

Note that the interfacial tension γ(Lx, Ly, Lz) depends on the box dimensions. This
will become important in the next chapters.
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(a) κ = 0 (b) κ = 1

Figure 4.3: Schematic diagram of the initial state (a) and the final state (b). The
initial state consists of two separate boxes, each filled with a homogeneous phase
(in this case crystal and fluid). There are no interfaces present. In the final state,
the two boxes have been connected, so that the phases are in direct coexistence
and form two interfaces. The connection is achieved by continuously changing the
periodic boundary conditions at the boundaries of the two boxes. The free energy
difference between the initial and final state is equal to 2γLxLy, where LxLy is the
cross-section area of one interface.

The initial and final states have exactly the same degrees of freedom and differ only
by the applied boundary conditions. For the intermediate states, it is useful to
introduce a mixed Hamiltonian

H(κ) = κH1 +(1− κ)H0 , 0 ≤ κ ≤ 1 . (4.15)

Of course, such a mixed state cannot occur in experimental setups, which is why
we refer to them as “unphysical” states, but within the framework of Monte Carlo
simulations, this is a perfectly valid Hamiltonian giving rise to the free energy

βF (κ) = − ln (Tr{exp[−βH(κ)]}) (4.16)

where β = 1/(kBT ) is the inverse temperature. A special role in this Monte Carlo
method is played by the boundaries of the two boxes which create the periodic
boundary conditions in z-direction. From the viewpoint of the two separate boxes,
there are two periodic boundary conditions, connecting the left side of each box
with the right side. The two boxes are hence completely separated from each other.
From the perspective of the large box, the left boundary is connected with the right
boundary via periodic boundary conditions while in the center of the large box, there
is boundary anymore. The two states κ = 0, 1 and their respective Hamiltonians
H0,H1 hence differ only by their periodic boundary conditions. For the intermediate
states, the energy of a particle is computed by weighting the contributions of the
two viewpoints with κ and 1− κ, respectively, according to Eq. (4.15).
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In order to sample the integration path efficiently, it is necessary to divide the
interval [0, 1] into a discrete set {κk} of M values. Then one can use successive
umbrella sampling [cf. section 2.7.3] by creating a set of overlapping windows3
{[κ0, κ1], [κ1, κ2], . . . , [κM−1, κM ]}. Within each window, apart from particle move-
ments, one has to implement an additional move, which attempts to change κk ↔ κk+1.
Such a move is accepted with the standard Metropolis criterion. If the internal ener-
gies E0, E1 and E(κ) are kept up-to-date during the simulation, the computational
cost of this move is completely negligible, as one only has to compute Eq. (4.15) for
the new κk and apply the Metropolis criterion.

The free energy difference within that window is given by β∆Fk = ln[P (κk)/P (κk+1)]
where P (κk) is the probability that κ = κk and P (κk+1) is the probability that
κ = κk+1. The total free energy difference between the initial and final states is then
given by ∆F =

∑M−1
k=0 ∆Fk. The ensemble switch method is very easy to parallelize.

Since each window can be treated separately, one can use M cores to sample the
whole integration path at the same time4.

Another means to improve the results is to choose the set {κk} so that the step
within a window is smaller where necessary and larger elsewhere. Since most of the
interesting physics takes place near κ = 0 and κ = 1, one can obtain better results
by choosing

κk = sin2

(
πk

2M

)
(4.17a)

κk =

{
(2k/M)a

2
k < M/2

1− [2(1−k/M)]a

2
k ≥M/2

, (4.17b)

or something with a similar shape. The parameter a changes the shape of (4.17b)
from a linear shape (a = 1) to the extreme case of a step function (a → ∞). We
found a = 6 to be useful for the crystal-liquid case. As we will switch between
κ and k/M where appropriate, please note that in this work, the parametrization
Eq. (4.17a) will be used for the liquid-vapor case discussed in section 4.4, chapter 5
and section 6.1, while Eq. (4.17b) will be used for the solid-liquid case in sections 4.5
and 6.2. One important aspect is that the pair potential between the particles should
be bounded. If the pair potential diverges, the transition from κ = 0 to κ > 0 is
rejected if there is only one overlap created by mixing the boundary conditions. As
this is virtually always the case, there is no way to smoothly combine the two boxes.

3Each window contains only two values of κ here. It is also possible to use larger windows, but the
statistical error depends on the statistics of the least probable state of the window, so that the
results are not guaranteed to be better if using larger windows.

4Initially, one can perform a run on one core over the whole range of κ and write out the equilibrated
configurations, which are then used to sample all windows at once.
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If the potential is bounded at some high value, so that the bulk properties only have
a negligible difference compared to the original model, the results do not depend
on this boundary. The question whether this has any effect on the results will be
postponed to later in this chapter, namely section 4.5.
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Figure 4.4: Some choices for the mapping k → κk. Instead of a linear mapping,
one can make smaller windows where more accuracy is needed. The curve labeled
sine shows Eq. (4.17a) while the curve labeled power shows Eq. (4.17b) with a = 6.
Both functions have smaller steps near 0 and 1, while the step size is larger near
x = k/M = 0.5.

The particle movements can be local canonical moves, where an attempt is made to
move a particle to a position within some small volume around it, or nonlocal moves,
where the new particle position can be everywhere in the box. Although the latter
moves typically have a much lower acceptance probability, the autocorrelation of
successive configurations is much smaller, as one virtually traverses the phase space
with seven-league boots. However, in systems with high density, the acceptance
probability of nonlocal moves goes to zero and one has to use local moves. This
applies to solid-liquid coexistence in particular.

Furthermore, the particles must be able to move anywhere in the whole simulation
box. Then, one still has a physically well-defined state at κ = 0, corresponding
to a “Gibbs ensemble like” ensemble [Frenkel and Smit, 2001], although the boxes
containing homogeneous phases may exchange particles. On the contrary, if one
prohibits any particle exchange between the two boxes, which will obviously fix the
interfaces created during the thermodynamic integration to the volume where the
two boxes are connected, then the results will be systematically wrong because the
interfaces created are unphysical, as their capillary waves and other fluctuations are
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suppressed. Furthermore, the chemical potential can have a gradient, which does
not occur if one allows an exchange of particles between the two boxes. To test this,
one can measure the chemical potential using the method discussed in section 2.6.4.

4.4 Liquid-Vapor Interfaces

In this section, we will discuss the results of the ensemble switch method using a
variant of the well-known Lennard-Jones fluid [cf. section 2.3.1]. We modify the
potential so that it does not exceed ε0 = 100 kBT . This modification hardly changes
the bulk properties of the particles, as the probability for two particles to approach
each other is proportional to e−100. The potential is therefore given by

U(r) =


ε0 , r < rcore

4ε
[(

σ
r

)12 −
(
σ
r

)6
+ Y

]
, rcore ≤ r < rcut

0 , r > rcut

(4.18)

The radius rcore is determined by U(rcore) = ε0, making the potential continuous.
The explicit formula for this radius is given by

rcore =

1 +

√
kBTε0 +

[
1− 2σ6

r6
cut

]2
−1/6

21/6σ . (4.19)

The critical temperature of this model is kBTc/ε = 0.999, [Virnau, 2003]. Below this
temperature, a phase separation into a denser phase called liquid and a less dense
phase called gas takes place. In the following, we fix the temperature at kBT/ε = 0.78
and set ε to unity. Furthermore, the particle diameter σ is set to unity and the box
dimensions L,Lz are given in units of σ. At the chosen temperature, the coexistence
densities for the liquid and vaporous phase are %l = 0.706 and %g = 0.027.

Figure 4.5 shows a typical result for ∆F (κ) = F (κ)− F (κ = 0) as a function of the
index k, divided by the number of successive umbrella windows M = 1024. Following
the integration path from k/M = 0, the free energy difference increases until a
maximum is reached at about k/M = 0.7. Then the free energy decreases again to
reach the final value. The curve starts with vanishing slope from the initial state
and ends the same way at κ = 1. This is due to the choice of the set {κi} according
to Eq. (4.17a), which increases the number of windows near both ends of the curve.

At first glance, one could ask why the curves are non-monotonic, for according to
the interpretation of thermodynamic integration, the two interfaces are continuously
formed while κ goes from 0 to 1. This maximum can be understood if one considers
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Figure 4.5: Free energy ∆F (κ) versus κ for the Lennard-Jones model introduced
above. The box dimensions are L = 9 and Lz = 27.

filling both boxes at κ = 0 with the same phase, e.g. a liquid. Then, during the
thermodynamic integration there are no interfaces introduced and the free energy
difference between the initial and final state should be zero. Figure 4.6(a) shows
what happens if one brings equal phases together. As expected, the free energy
difference between the two states of interest is zero, but for the intermediate states,
the free energy rises to about 75 kBT .

To understand this, it is interesting to look at density profiles at the boundary regions,
i.e. the vicinity of the boundaries where the two boxes are joint. Figure 4.6(b) shows
the density profile for various states during the thermodynamic integration, averaged
over a number of configurations. At k = 0, the boxes are completely disjoint and
therefore the density profile is completely flat. As soon as they are brought into
contact, the particles begin to avoid the volume between the two boxes. This effect
is strongest exactly at k/M = 1/2. At the same time, the density profile shows a
layering behavior.

These two effects originate from the fact that particles in the boundary region face
an interpolation of two independent configurations. On the one hand, they interact
with particles on the other side of their respective box, via the periodic boundary
condition, and on the other hand they interact with the particles at the border
of the other box. If one particle aligns according to one boundary condition, its
position is most likely energetically unfavorable with respect to the other boundary
condition. Therefore, to minimize their energy, particles tend to avoid this volume
altogether and instead form layers next to it. According to Eq. (4.15), this behavior
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Figure 4.6: (a) Free energy ∆F (κ) versus κ for a liquid-liquid coexistence and a gas-
gas coexistence (L = 9, Lz = 27). In both cases, ∆F = 0 as expected. Note that the
gas-gas curve is magnified by 100. The maxima are at 0.017 kBT for the gas-gas case
and 75 kBT for the liquid-liquid case. The curves are perfectly symmetrical around
k/M = 1/2. (b) Density profiles for the liquid-liquid coexistence (L = 9, Lz = 27) at
various k, as indicated (L = 9, Lz = 27). For 0 < k/M < 1, there are depletion zones
around the boundary region where the two boxes are connected. This depletion is
most pronounced exactly at k/M = 1/2 and vanishes for κ→ 0 or κ→ 1, where the
density is homogeneous in the whole system.

is expected to be maximal at κ = 0.5, where both kinds of interactions have equally
strong weight. Therefore, the magnitude of the depletion zone is highest at this
point. After the maximum, these effects diminish symmetrically, so that the density
profile looks the same at κ and 1− κ. At κ = 1, the thermodynamic integration is
complete and any effect of this depletion is gone. This shows that the integration
path between two physical states via “unphysical” states is meaningful. Figure 4.7
illustrates with snapshots how the systems look like at various k/M . One can clearly
see the depletion zone in the snapshot near κ = 0.5.

Now we return to the case where one box contains a liquid and the other vapor.
Fig. 4.8 shows the corresponding density profiles. Note that only the right half of the
whole simulation box is shown, containing one of the two boundaries5 in the center.
At k/M = 0, the density in both boxes is completely flat. As the thermodynamic
integration proceeds to k/M = 0.375, the two phases begin to interact. While the
density of the liquid decreases at the boundary similarly to the liquid-liquid case,

5Recall that from the viewpoint of the small boxes (κ = 0), there are periodic boundary conditions
at the boundaries so that the two boxes do not interact. For κ > 0, particles can interact across
the boundaries with the particles in the other box.
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Figure 4.7: Snapshots of the liquid-liquid coexistence at k/M = 1/1024 (left),
k/M = 507/1024 (center) and k/M = 1023/1024 (right). While particles can
penetrate each other near the boundary at k/M = 0 (because there is no interaction
across the boundaries at κ = 0), they are repelled by a frustration effect for 0 < κ < 1,
which is strongest at κ = 0.5. For k/M → 1, the system becomes homogeneous
again.

the density of the vapor increases in the vicinity of the boundary. As soon as the
density becomes continuous, the interface is fully formed, which takes place at about
k/M = 0.8.

The fact that the depletion effect is explicitly seen on the liquid side in the liquid-vapor
case gives further confidence that the formation of depletion zones is an additional
effect during the thermodynamic integration, which does not influence the total free
energy F (κ = 1)− F (κ = 0). To further analyze the behavior of the system during
the thermodynamic integration, Fig. 4.9 documents the behavior of the pressure and
the chemical potential along the integration path. Since these quantities are typically
inaccessible in systems involving crystalline structures, it is illuminating to study the
effects of the mixing of boundary conditions during the thermodynamic integration
on these quantities for the liquid-vapor case. For the chemical potential, the Widom
particle insertion method is applied [cf. section 2.6.4], while the pressure is evaluated
using a virial expression [cf. section 2.6.5]. Note that for Pz and µ, the absolute
values at κ = 0 and κ = 1 agree, while the value for Px differs significantly. This is
due to the fact that the pressure parallel to the interfaces is sensitive to the presence
or absence of interfaces. Hence, the difference in Px shows that indeed, interfaces
are added. This difference can be used to compute the interfacial tension [for more
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Figure 4.8: Density profiles in z-direction for a LJ fluid-vapor coexistence at various
k/M , as indicated. While at k/M = 0 the two boxes are separated and the densities
are constant, this changes as the mixing commences.

information, please refer to section 4.2].

The most striking feature about Fig. 4.9 is that the values of the chemical potential
µ and the pressure Pz are not constant along the path from κ = 0 to κ = 1. With
the knowledge from the previous discussions about the depletion zones, this is not
surprising. However, one should be concerned about whether this indicates that the
method is not well-defined.

A good criterion to check the validity of the simulations is the constancy of the
chemical potential in the box at a given κ. If the chemical potential is not constant,
particles cannot move freely through the whole system. Therefore we proceed to
measure these physical quantities with spatial resolution, in order to see whether they
are constant throughout the whole system, especially in the vicinity of the interface.
To this end, the system is subdivided into NB bins. In each bin, the energy U(z),
the density %(z), the pressure P (z) and the chemical potential µ are measured.

When applying the virial method for the measurement with spatial resolution, one
needs to pay special attention if the particles are in different bins. As stated in
[Frenkel and Smit, 2001], we count the pressure contribution of two particles into all
bins containing the line connecting the two particles. Please refer to the pressure
anisotropy method in section 4.2 for more information about the ambiguity of
assigning the virial pressure expression between particles to bins.

Also, because it is expected that the interface moves along the z-direction, at least if
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Figure 4.9: Plot of the chemical potential µ and the pressure components Px and
Pz versus the reaction coordinate κ. The chemical potential was measured using
the Widom method (see section 2.6.4), while the pressure was calculated using the
virial expression (see section 2.6.5). These observables are not constant along the
integration path. It is important to note that they have the same values for κ = 0
and κ = 1. Px is an exception because it is influenced by the presence or absence of
interfaces. The data shown is from a LJ vapor-fluid coexistence in a rather large box
with L = 13.5 and Lz = 40.4.

κ is close to 1, the spatial distributions are measured with respect to the center of
mass of the system. This is convenient, for in most types of coexistence, the center
of mass is typically in the center of the more dense phase, which can then serve as a
good reference point.

Figure 4.10 shows how the chemical potential changes during the thermodynamic
integration. Note that the chemical potential β∆µ = βµ− βµcoex is plotted, where
βµcoex = −3.929. At all values of k/M shown, the chemical potential is constant. In
fact, one cannot tell from the figure whether the liquid is on the left or on the right6.
The whole chemical potential rises about 0.2 as k/M increases and then goes back
to its equilibrium value.

Having discussed this, one could expect that the Free energy differences ∆F (κ)
seen in Fig. 4.5 are actually superpositions of two effects. On the one hand, there
are two interfaces formed, which is why the free energy difference is nonzero, and
on the other hand, depletion zones are reversibly created and annihilated during
the thermodynamic integration. To check this, we assume that the presence of the

6Actually it is in the center, between -6.75 to +6.75.
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Figure 4.10: Spatial distributions of the chemical potential for a liquid-vapor coexis-
tence of Lennard-Jones particles at temperature kBT/ε = 0.78. The box dimensions
are L = 9 and Lz = 27. While the chemical potential changes along the integration
path, it is spatially constant at all times. The fluctuations are of statistical nature.

interfaces is proportional to the reaction coordinate κ, so that this contribution to
the free energy can be approximated as

β∆Finterfaces = 2γL2κ , (4.20)

where the factor 2 comes from the fact that the box contains two interfaces with area
L2 each. If one subtracts this contribution from the free energy differences ∆F (κ),
one obtains a curve as in Fig. 4.11.

The shape of the resulting curve labeled K1 resembles the curve from the liquid-liquid
case (also shown). The height of the maximum is about one half and the position of
the maximum is roughly at 0.55. The shape is not as perfectly symmetric around
κ = 0.5 as in the liquid-liquid case, but it shows that this consideration captures the
main idea: The free energies ∆F (κ) obtained from the ensemble switch method are
a superposition of two effects, namely the formation of interfaces and additionally
the formation and annihilation of the depletion zones. This is the reason why the
free energies ∆F (κ) are not monotonic.

There is another important issue when applying our method. As mentioned in
section 4.3, one can use local or nonlocal canonical moves to translate particles
within the box. In the following, the difficulties with local moves will be discussed.
As can be shown easily, the mobility of the interfaces, which is proportional to the
interfacial area L−2, is of the order 102 higher [cf. Fig. 6.3] than with local moves [if
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Figure 4.11: Free energy ∆F (κ) versus κ for a liquid-vapor coexistence. If one
subtracts a term as in Eq. (4.20) from the original curve K2, the remaining curve K1
is very similar to the liquid-liquid case K3, where the only contribution to the free
energy originates from the depletion zone.

interpreting time as Monte Carlo time, where one time step is complete if one Monte
Carlo step has been attempted per particle (on average)]. Therefore, the algorithm
takes a lot more time to sample the relevant configurations, so that the free energies
∆F (κ) take more time to equilibrate. Figure 4.12 shows this for one specific case for
a rather large box.

The convergence is very fast as long as the interfaces cannot move, i.e. for k/M ≤ 0.75,
or κ ≤ 0.85. At some point, however, the interfaces, which are always created in the
boundary region where the two boxes are connected, begin to explore the whole box
volume, so that their mobility determines the speed of convergence. Therefore, this
last part of ∆F (κ) has to be sampled with more care. These problems do not occur
if nonlocal moves can be used, as Fig. 4.12 shows.

If one is restricted to local moves, e.g. when crystalline structures are involved, one
is tempted to pin the interface to one position, but this can have undesirable side
effects. Therefore, we do not constrain the system but let it fluctuate freely. Although
this can lead to more computing time, we do not have to deal with uncontrolled
effects caused by interfering with the system. See section 6.3 for some techniques to
constrain or even encourage translational degrees of freedom.
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Figure 4.12: Dependence of the free energy ∆F (κ) on the type of particle movement
and equilibration time for a system with L = 18 and Lz = 27. In case of nonlocal
moves, the curve immediately equilibrates, while the local moves make the curve
converge from above to the final result. This convergence is slow only in the last
part of the integration, especially for k/M > 0.75.

4.5 Solid-Liquid Interfaces

In this section, a typical example of a solid-liquid interface is discussed, as it behaves
slightly differently compared to the liquid-vapor case discussed in the previous section.
As an example we use the well-known hard sphere model, where particles interact
via the pair potential

U(r) =

{
ε0 , r ≤ σ
0 , r > σ

, (4.21)

where ε0 is the potential strength and σ is the particle diameter. In our case
ε0 = 100 kBT , whereas the original hard sphere model uses ε0 =∞. As discussed
previously, this modification is necessary but does not change the initial and final
states of the thermodynamic integration significantly. In this section, we will test
this. The coexistence densities for the solid and fluid phase are ηs = 0.545 and
ηf = 0.494 [Hunter and Weeks, 2012], where η = πNσ3/(6V ) is the particle packing
fraction. In our simulations, σ = 0.902875 while the lattice spacing is set to unity.

Note that the lengths are always given in units of the hard sphere diameter σ. To
set up a crystal properly in a box with constant volume, one has to carefully adjust
the box size to the crystalline structure. For example, for a fcc structure with
(100) orientation, Lx, Ly and Lz have to be multiples of 2

√
2. Therefore, the given
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numerical values are not the actual box sizes but only rounded values. In this section,
we use a medium sized box with Lx = Ly = 6

√
2 ≈ 8.5 and Lz = 24

√
2 ≈ 33.9. In

the following, we focus on fcc crystals with (100) orientation. For other orientations,
Lx = Ly is not always possible.

Figure 4.13 shows a typical result for ∆F (κ) as a function of the index k, divided
by the number of successive umbrella windows M = 1024. Similarly to the curve
shown in Fig. 4.5, the curve is not monotonic. Instead, it rises steeply, then has
a plateau and finally drops again to reach the final value. Note that the {κk} are
chosen according to Eq. (4.17b).
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Figure 4.13: Free energy ∆F (κ) versus κ for the solid-fluid coexistence of the hard
spheres model introduced above. The box dimensions are Lx = 8.5 = Ly and
Lz = 33.9. The shape differs significantly from that in Fig. 4.5. Note that the choice
of ε0 does not change the curves significantly. With a proper ε0-dependent rescaling
of the x-axis, one could make all curves collapse onto each other.

In Fig. 4.13, the integration has been carried out for various ε0, ranging from 50 to
10000. Obviously, the result does not depend on the chosen value ε0, as long as it is
not too small. This corresponds to the explanation given in section 4.3, that ε0 ∗ κ1

has to be small enough to produce a reasonable acceptance rate, for otherwise the
simulation will be stuck on the left side of the window [κ0, κ1]. Hence, the product
ε0 ∗ κ1 determines how fast the switching takes place. Larger values of ε0 cause the
∆F (κ) to be steeper, but the plateau values are the same. With proper rescaling of
the x-axis, all curves with different ε0 would collapse on top of each other. Hence,
the choice of ε0 only affects the intermediate states but not the physical states at
κ = 0 and κ = 1, provided ε0 � 1.
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The fact that the curves are non-monotonic are not surprising after having seen this
in the conceptually simpler case in the previous section. However, it is intriguing to
examine this closer to see if the reasons are also similar. We proceed analogously
by filling both boxes with the same phase so that no interface is formed during the
integration. The results are shown in Fig. 4.14 for a solid-solid and a fluid-fluid case.
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Figure 4.14: Free energy ∆F (κ) versus κ for the case where both boxes are filled
with the same phase, so that ∆F = 0 as expected. The box dimensions in both cases
are Lx = 8.5, Ly = 8.5 and Lz = 33.9. The curves are perfectly inversion symmetrical
around k/M = 1/2, except for some fluctuations in the solid-solid case at k/M = 0.2,
which is discussed in the main text.

We discuss the fluid-fluid case first. The free energy difference is zero, as expected,
and the derivative shown in Fig. 4.14(b) is perfectly inversion symmetrical. For the
intermediate states, the free energy is of the order of 100 kBT . The density profiles
[Fig. 4.15(a)] show that the effect is the same as discussed in the previous section,
i.e. the fluid avoids the boundary region where the two boxes are joint by creating
depletion zones. This effect is maximal at κ = 0.5 and vanishes for κ = 0 and κ = 1.

The situation is different for the solid-solid case. Note that in the crystalline case, the
free energy ∆F (κ) does not go back to zero but there is a non-vanishing ∆F ≈ 3 kBT .
Figure 4.14(b) shows where this effect comes from. The derivative is perfectly
inversion symmetrical, just like in the fluid-fluid case, but at k/M ≈ 0.2, there are
some fluctuations. The origin of these fluctuations can be seen in Fig. 4.16. At κ close
to zero, the two crystals do not interact with each other, so the particles can overlap
at the box boundaries without penalty. Also, they can translate independently
of each other in the x- and y-directions and thereby create a mismatch. Since
there is no interaction between the boxes at κ = 0, this mismatch is not relevant
to the system. However, as the integration proceeds, such a mismatch becomes
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Figure 4.15: (a) Average packing fraction profiles for the fluid-fluid coexistence
(Lx = Ly = 8.5, Lz = 33.9) at various values k of the successive umbrella window
index, as indicated. For 0 < k/M < 1, there are depletion zones in the boundary
regions. The amplitude of this depletion zone is strongest exactly at k/M = 1/2
and vanishes for κ→ 0 or κ→ 1, where the packing fraction is spatially constant
at ηf = 0.494 throughout the whole system. (b) Average packing fraction profiles
for the crystal-crystal coexistence [fcc (100)] in a box of the same size. At k/M = 0
the two crystals can move freely within the box, which is why the crystalline layers
are smeared out and less high than at k/M = 0.5. The height is equal for all layers.
At k/M = 0.5 however, the peaks are higher because the crystal cannot move in
z-direction anymore. Furthermore, the two layers surrounding the boundary (at
z = 0) are more localized, due to the mixing of the periodic boundary conditions.

energetically unfavorable, while at the same time, the interaction is not strong
enough to align the two crystals. This is true as soon as the plateau region in
Fig. 4.14(a) is reached. There is no depletion zone this time [Fig. 4.15(b)], because
the crystalline structure ensures that the configuration of particles on the other side
of the same box, interacting with periodic boundary conditions, and in the other box
are compatible. However, the crystals are not in equilibrium, as fluctuations within
the crystalline matrix and the movement of the combined crystal in the z-direction
is still constrained, e.g. one can see in density profiles that the particles in the
boundary region where the boxes are joint, are more localized. These effects vanish
near the end of the integration when the free energy ∆F (κ) drops towards zero again.
Since the fluctuations at k/M = 0.2 in ∂∆F/∂k are the reason for the non-vanishing
∆F , the ensemble switch method might not be able to compute interfacial tensions
between solids and solids. Since we are interested in solid-liquid coexistence, where
only one of the two phases is ordered, this is not an issue.
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(a) (b) (c)

Figure 4.16: Snapshots of the boundary region where the boxes are combined. In
(a), at k/M = 37/1024, the mixing is very low, hence the particles in the boundary
region can overlap without great penalty. In (b), at k/M = 186/1024, the mixing is
high enough to prevent overlaps. Due to the low interaction, a misfit in the crystal
can occur at the boundary, which influences the result of the integrations. In (c),
k/M = 900/1024, the misfit has vanished and the two crystals have merged.

Figure 4.17 shows the same packing fraction plots, but for the solid-fluid case. Note
that the fluid does not form a depletion zone. Instead, it forms layers compatible
with the crystalline structure, as the integration proceeds. At the same time, the
crystalline translational freedom is constrained so that the peaks become sharper.
This is especially true for the crystalline layers close to the boundaries, which are
even more localized. This is the same phenomenon seen for the solid-solid case in
Fig. 4.15(b).

In the following, we attempt to interpret the shape of the free energies ∆F (κ) of the
solid-fluid case [Fig. 4.13] similarly to the liquid-vapor case discussed in the previous
section. Note however, that the situation is more delicate here, so that we can only
give a preliminary interpretation. While some details in this interpretation are not
fully clear, the application of the method in the solid-liquid case is nevertheless
possible and leads to dependable results.

Having discussed the solid-solid and the fluid-fluid cases separately, one could expect
that the data seen in Fig. 4.13 are superpositions of two effects. On the one hand,
there are two interfaces formed, which is why the total free energy difference is
nonzero, and on the other hand, there are reversible effects which occur and vanish
during the integration, like the depletion zones or the constrained crystal movement.

Considering Fig. 4.17, where density profiles at various values of k/M are shown,
one can see that the crystal shows the same behavior as in the solid-solid case,
being more localized in the bulk and especially in the vicinity of the boundaries.
On the other hand, the fluid does not form a depletion zone but rather adjusts
to the crystal by creating layers next to it which are compatible with the lattice
structure. This indicates that the situation is more subtle, as the behavior of the fluid
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Figure 4.17: Packing fraction profiles for the solid-fluid case. The boundary is
situated at z = 0. At k/M = 0, the crystalline layers appear as broad peaks because
the crystal can move freely in z-direction, thereby smearing out the peaks. Halfway
through the integration, the crystal layers are more localized, especially near the
boundary. The fluid does not create a depletion zone but forms layers next to the
crystal.

differs depending on whether a crystal is present or not. To illustrate the situation,
Fig. 4.18 shows the solid-fluid case along with the solid-solid and the fluid-fluid
case. Additionally, there is one curve (labeled K4) where we have subtracted the
solid-solid curve from the solid-fluid curve. This is motivated by the fact that the
crystal shows the same behavior as in the solid-solid case while the fluid does not.
Hence, it looks like the decrease of the free energy at about k/M = 0.7 is entirely
due to the relaxation of the crystal structure. The corresponding curve K4 seems
to support this, as the curve is almost flat after the increase at about k/M = 0.25.
However, one has to be careful because the solid-fluid case contains only half as
much of the crystal phase and hence one should only subtract half of the solid-solid
case to correctly account for the relaxation of the crystal. Furthermore, it totally
neglects the behavior of the fluid during the integration, e.g. the translational degree
of freedom in z-direction of the fluid is constrained by the presence of the crystal.
Therefore, this interpretation is not entirely convincing.

Figure 4.18 also shows the curve K5, where the interpretation of the liquid-vapor
case is adopted literally, namely subtracting half of the solid-solid and half of the
fluid-fluid curve. The resulting curve indicates a two-step process. However, this
procedure is not convincing either, as the fluid forms a depletion zone in the fluid-fluid
case and creates a layering structure in the solid-fluid case. Hence, the contribution
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Figure 4.18: Free energy ∆F (κ) versus κ for the solid-fluid, solid-solid and fluid-fluid
case in a box with Lx = Ly = 8.5 and Lz = 33.9. The curve K1 shows data
from Fig. 4.13 while K2 and K3 are taken from Fig. 4.14(a).The curve K4 is the
difference between solid-fluid and solid-solid, while K5 is the difference between
solid-fluid and half of the solid-solid and fluid-fluid curves. The decomposition is not
as straightforward as in the liquid-vapor case because the fluid behaves differently in
the fluid-fluid and solid-fluid case.

of the fluid to the solid-fluid case is not given by K3 and cannot be computed
straightforwardly in an independent simulation, which is possible in the liquid-vapor
case. Nevertheless, it is plausible that the qualitative behavior is similar to the
liquid-vapor case, namely the curves are superpositions of the creation of interfaces
on the one hand and additional reversible effects like the localization and relaxation
of the crystal. In summary, one can understand the shape of the free energy ∆F (κ)
in the case of hard spheres on a phenomenological level. The ensemble switch method
is capable of accurately computing interfacial tensions γ(Lx, Ly, Lz).

4.6 Conclusion

In this chapter, a new Monte Carlo method called ensemble switch method is presented
which is capable of computing the interfacial tension for interfaces between liquid
and vaporous phases as well as crystalline and liquid phases. The unified treatment
of both types of interfaces is an attractive feature of the method. Furthermore, the
resulting free energies ∆F (κ) from the state where the two phases are separated (no
interfaces) to the state where the two phases are in coexistence (two interfaces) have
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been analyzed and interpreted as being a superposition of the process of creating
the interfaces and additional effects which have no contribution on the total free
energy difference but only on the free energy difference of the intermediate states.
The ensemble switch method is a powerful tool and will be used extensively in the
following chapters to accurately compute interfacial tensions.



Chapter 5

Finite-Size Scaling of the Interfacial
Tension for the Ising Model

As presented in chapter 4, there exist quite a few methods to compute the interfacial
tensions. However, the discrepancy of the results these methods yield might hint
at a more fundamental problem. In this chapter, we show that the interfacial
tension γ(Lx, Ly, Lz) of a flat interface obtained from simulations depends on the box
dimensions Lx, Ly and Lz in a universal fashion. The knowledge of this dependence
can be used to gain consistent and precise estimates of the interfacial tension by
conducting a proper finite-size scaling.

Section 5.1 motivates and discusses the finite-size scaling ansatz, which takes into
account entropic degrees of freedom of the interface(s) like translational entropy
and capillary waves. Also, a new mechanism called domain breathing is found. The
scaling ansatz is then approved thoroughly in section 5.2 for the two- and three-
dimensional Ising model using the ensemble switch method established chapter 4.
The chapter closes with a short summary.

Note that parts of the results of this chapter appeared in [Schmitz et al., 2014a,b].

5.1 Finite-Size Scaling for Ising Systems

5.1.1 Motivation

To understand complex phenomena, it is wise to start at a simple model and use
it to detect and understand the fundamental effects. The two-dimensional Ising

105
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(lattice gas) model on a square lattice is attractive for studies concerning interfacial
phenomena, because the interfacial tension γ∞ in the thermodynamic limit can be
calculated explicitly [Onsager, 1944], namely

βγ∞ = 2β − ln

(
1 + exp(−2β)

1− exp(−2β)

)
. (5.1)

Recall that we have set the interaction constant J and the lattice constant a of the
Ising model to unity throughout this thesis. Also the results from the ensemble switch
method can be compared to the probability distribution method proposed in [Binder,
1982], by which the interfacial tension can be extracted via the probability distribution
PL(%), which can be sampled accurately if the free energy barrier separating the two
homogeneous states is small enough so that the simulation can explore both maxima
equally often, i.e. if the system size L is small or the temperature is high. In general
it is preferable to use advanced simulation methods like Wang-Landau sampling or
multicanonical sampling to obtain PL(%).

Figure 5.1 shows why it is important to do a finite-size scaling. Here, the interfacial
tensions on a square lattice of linear dimension L with L2 spins has been calculated
using the new ensemble switch method and the existing probability distribution
method. According to Eq. (5.1), βγ∞ = 0.2281 at the chosen temperature kBT/J =
2.0, but for the chosen L, the computed values are not even close to this value.
Apparently, they converge to this value for L→∞, but if one measured only at one
finite box size, the systematic error would be impossible to estimate. For most models,
an equation like Eq. (5.1) is not available, and hence one cannot straightforwardly
estimate the deviation of γ for a finite simulation box.

The first question one has to ask is what the leading order correction to the interfacial
tension γ is, because it dominates the finite-size scaling behavior. Of course, in an
infinite system, the interfacial free energy Fint is infinite because it is proportional
to the area of the interface. The interfacial tension, however, is the interfacial free
energy per unit area and remains finite and well-defined in the thermodynamic limit.
Therefore one can write

γ∞ = lim
V→∞

Fint

A
, (5.2)

where A is the total area of all interfaces in the system. Note that all length scales
are given in units of some universal length, for example the lattice spacing a for the
Ising model or the particle diameter σ in off-lattice models, so that the area A and
lengths also dimensionless. Since in a computer simulation, one always works with
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Figure 5.1: The interfacial tension γ against 1/L for the d = 2 Ising model on a
square lattice of linear dimension L at kBT/J = 2.0. On the one hand, the plot
shows results from the ensemble switch method, and on the other hand two sets of
data using the probability distribution method [cf. section 4.2] are also shown, which
agree with each other within statistical errors (the data labeled with Berg et. al.
is from [Berg et al., 1993a]). The finite values of γ differ for both methods [this is
discussed in section 5.2.2], but they both converge to the literature value βγ∞ given
by Eq. (5.1) for L→∞.

finite boxes, one has to understand how this limiting process behaves in order to
extrapolate properly. In other words, one is interested in the leading order terms
r({Li}) of the ansatz

Fint({Li}) = A(γ∞ + r({Li})) (5.3)
or

γ∞ = γ({Li})− r({Li}) . (5.4)
From this consideration, it is clear that

lim
V→∞

r({Li}) = 0 . (5.5)

The leading order correction to the interfacial tension is not a L−1 correction but
a logarithmic correction. This can be shown by simple means. Consider a one-
dimensional Ising model with length L at temperature T with magnetization m = −1
and periodic boundary conditions. The energetic cost to create a configuration with
a domain of length l of spins of opposite sign is 4J , since there is no contribution
from the inner spins of this domain. There are L positions for the left domain wall,
so the probability of the configuration with a domain of length l < L is

PL(l) = cL exp(−4βJ) , (5.6)
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where c is a normalization constant. Note that this probability does not depend on
the domain length in this one-dimensional case. The probability to create a uniform
magnetization across the system can be written as

PL(0) = 1−
L−1∑
l=1

PL(l) , (5.7)

ignoring configurations with more than one domain, i.e. for small T . This yields

PL(0) = 1− cL(L− 1) exp(−4βJ) . (5.8)

The interfacial tension can then be calculated as the free energy difference between
the uniform magnetization and a slab-geometry case, where the domain of up and
down spins has the same size. This difference is equal to two times the interfacial
tension due to the two domain walls, and so one obtains

2βγL = ln

(
PL(0)

PL(L/2)

)
= ln

(
1− cL(L− 1) exp(−4βJ)

cL exp(−4βJ)

)
= 4βJ − ln(cL) + ln (1− cL(L− 1) exp(−4βJ)) ,

resulting in

βγL = 2β − 1

2
ln(cL) +

1

2
ln [1− cL(L− 1) exp(−4β)] . (5.9)

The leading order correction is a logarithmic one, which arises from the fact that the
domain has some translational freedom due to the periodic boundary conditions.

The extension to two-dimensional systems is non-trivial. Consider a two-dimensional
box with dimension L,Lz with antiperiodic boundary conditions in z-direction and
periodic boundary conditions in x-direction. In such a situation, the system will
form a slab configuration with one interface in the middle of the box, separating two
domains of opposite magnetization. If Lz > L, the one-dimensional interface1 will
be perpendicular to the z-direction. On average, each of the domains occupies the
volume LLz/2 and their densities are is %l and %g.

In the grand-canonical ensemble, the interface can move freely within the box. This
translational degree of freedom in the z-coordinate of the interface gives rise to an
entropy contribution

∆S = kB ln(Lz/lz) , (5.10)
1Although, in a two-dimensional box, the interface is just a one-dimensional object, the terms
interface and area are applied here.
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where lz is an unknown constant, denoting a natural length of the system for
measuring the properties of the interface. It will be discussed in detail later [see
section 5.2.4].

For the case L = 1, the system becomes one-dimensional. In the limit T → 0,
any fluctuation in the bulk is strongly suppressed, so the magnetization in the two
domains is m+ = 1 and m− = −1. The entropy of the interface is strictly zero and
the interfacial energy in this trivial case is the energy of the interface 2J divided by
the length of the interface, which is 1. However, the generalization of this behavior to
L > 1 is nontrivial. One cannot simply use the equations above for the translational
entropy, assuming that the interfacial tension without this correction is simply γ∞
(the interfacial tension in the thermodynamic limit). In d = 2, the interfacial energy
depends on L, for the periodic boundary conditions in x-direction only allow capillary
wave excitations with wavelengths λn = 2L

n
, corresponding to wave numbers kn = nλ1.

This finite-size effect on the capillary wave spectrum is well-known.

These considerations clearly indicate that the finite-size scaling of the interfacial
tension is highly non-trivial. There are many effects, depending on the ensemble,
the boundary conditions and the box geometry, which have to be taken into account
to accurately extrapolate the interfacial tension γ from simulations in finite boxes.

5.1.2 Theory of Finite-Size Scaling for the Ising Model

In order to understand the differences between the interfacial tension of a finite
interface and of an interface in the thermodynamic limit, it is a good idea to start
with a simplistic model. Here, the simplest model is a two-dimensional Ising system,
where the interface is only a one-dimensional object. One great advantage of this
system is that the interfacial tension βγ∞ can be calculated exactly via Eq. (5.1) for
any temperature. For simplicity, it is wise to study a situation with only one interface.
In a box with periodic boundary conditions in all directions [Fig. 5.2], this is not
possible because a slab configuration naturally has two interfaces. However, with
antiperiodic boundary conditions in one direction [Fig. 5.2], the system is able to form
only one interface perpendicular to this direction. Considering only one interface is a
good idea, since the interaction between interfaces can be excluded for the moment.
While the slab configuration is unstable (or at least metastable) in the case of
periodic boundary conditions unless the magnetization (or density) is conserved, the
antiperiodic boundary conditions stabilize inhomogeneous configurations. Therefore
we were able to study interfaces in a canonical ensemble with fixed density as well as
a grandcanonical situation, where the density is not constrained.

In general, the free energy of a d-dimensional system with volume V and any amount
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Figure 5.2: Sketch of box geometries considered here. All sides of the boxes have
length L except for Lz, which can differ In the directions other than Lz, periodic
boundary conditions are used. On the left and in the center, antiperiodic boundary
conditions (APBC) are applied in z-direction, so that an interface forms. While on
the left, the density is not constrained (grandcanonical), in the middle, the density
is kept constant at % = 0.5, so that the interface is always in the center of the box.
On the right, periodic boundary conditions (PBC) are used in all directions, so that
two interfaces occur. In order to stabilize these interfaces, the density is always fixed
at % = 0.5 in this case.

of interfaces of total ((d− 1)-dimensional) area A, can be written as

F = V fbulk + Fint({Li}) (5.11a)
F − V fbulk = Fint({Li}) =: Aγ({Li}) , (5.11b)

where Fbulk = V fbulk is the bulk free energy, and an effective interfacial free energy
γ({Li}), which in general depends on all box lengths Li, i = 1, . . . , d, has been intro-
duced. In a computer simulation in a finite box, one can only measure βFint({Li}).
To obtain βγ∞, one has to extrapolate to V →∞. Therefore, the interfacial tension
γ({Li}) of the finite geometry can be written as

βγ({Li}) =
βFint({Li})

A
= βγ∞ +

β∆Fint({Li})
A

(5.12)

where ∆Fint consists of several contributions depending on the geometry of the box.
In the thermodynamic limit, only βγ∞ must remain, so that ∆Fint/A→ 0. In the
following, various contributions will be discussed and later compared to computer
simulations. For sake of simplicity, we restrict ourselves to the rectangular boxes,
where all lengths except for the length Lz perpendicular to the interface(s) are equal.
Then βγ({Li}) = βγ(L,Lz).
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Translational Freedom of the Interface

Consider first an Ising system in a two-dimensional box of dimension L,Lz with
periodic boundary conditions in L-direction and antiperiodic boundary conditions
in Lz-direction. In such a geometry, the system creates two domains of opposite
magnetization with an interface in between. If the density is not constrained, the
interface may wander around in Lz direction. This corresponds to an entropy gain

∆S = kB ln(Lz/lz) , (5.13)

where lz is an unknown constant. The entropy gain changes the interfacial free energy
F = U − TS, so that

β∆Fint = − ln(Lz/lz) . (5.14)

As one can see, the enhancement of entropy causes a decrease of the free energy
cost to form an interface. This means that for long boxes, i.e. Lz � L, the system
becomes unstable. Hence it can form a new pair of interfaces in order to gain more
entropy. So this contribution of translational entropy is the reason for the transition
to a multi-domain situation for extremely elongated boxes.

Since in a d-dimensional box, one has (d− 1)-dimensional interfaces which can move
along the direction perpendicular to the interface, Eq. (5.14) is valid for all d.

Figure 5.3: Snapshots of two-dimensional systems to visualize the translational
freedom of an interface. The snapshots are from a simulation with L = 60, Lz =
120, kBT/J = 2.0 with APBC in z-direction and PBC in x-direction.

Constrained Translational Freedom – Domain Breathing

Consider a d-dimensional box with volume Ld−1Lz using antiperiodic boundary
conditions in z-direction and periodic boundary conditions in all other directions.
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Within the canonical ensemble, if the density % (or magnetization m) is fixed within
the slab regime (cf. Fig. 2.1), the system will again consist of two domains with an
interface of area Ld−1 between them. However, since the density is conserved, the
interface cannot wander around in the box but it can fluctuate around its equilibrium
position. If we assume that the liquid is on the left-hand side and the gas on the
right-hand side of the box, the average densities in these domains are %1 = %l and
%2 = %g, respectively, and the volumes are determined by

%Ld−1Lz = %lL
d−1Lz,l + %vL

d−1Lz,g (5.15)

so that in equilibrium the length of the domains is given by

Lz = Lz,l + Lz,g Lz,l =
%− %g
%l − %g

Lz Lz,g =
%l − %
%l − %g

Lz . (5.16)

Note that all lengths are given in units of the lattice spacing a of the lattice gas
model. At finite temperatures, the densities and volumes of these domains are
fluctuating. These fluctuations are uncorrelated with each other, but are correlated
with a fluctuation h of the position of the interface. This degree of freedom contributes
to the interfacial energy and is of a translational entropy character. The constraint
about the density yields

%Ld−1Lz = %1L
d−1(Lz,l − h) + %2L

d−1(Lz,g + h) . (5.17)

Hence

h =
%1Lz,l + %2Lz,g − %Lz

%1 − %2

. (5.18)

The directions parallel to the interface cancel each other so that h seems to depend
only on Lz. However, there is a hidden L-dependence through the bulk fluctuations.
To take these fluctuations into account, write %1 = %l + δ%1 and %2 = %g + δ%2, so
that

h ≈ Lz,lδ%1 + Lz,gδ%2

%l − %g
, (5.19)

where (5.15) was used. Furthermore, δ%i are assumed to be small compared to %l
and %g and are therefore neglected in the denominator.

From general statistical thermodynamics, it is known that the fluctuations in the
bulk are Gaussian distributed with mean %l or %g and variance σ2

%

PLx,Lz(δ%) =
1√

2πσ2
%

exp

(
−1

2

(δ%)2

σ2
%

)
, σ2

% =
kBTχcoex

Ld−1Lz
, (5.20)
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Figure 5.4: Various snapshots of two-dimensional systems to visualize the domain
breathing. If the density is conserved, the interface cannot move freely within the
interface but stays in the center of the box. Spontaneous fluctuations within the
two bulk phases have an effect on the position of the interface. The snapshots are
from a simulation with L = 60, Lz = 120, kBT/J = 2.0 with APBC in z-direction
and PBC in x-direction. The density is fixed at % = 0.5. The figure shows the bulk
fluctuations. A considerable shift of the interface is not seen here because Lz is too
small compared to Lx and hence 〈h〉 is of the order of one lattice spacing.

where χcoex is the susceptibility at the coexistence curve. The expression for σ%
follows from the standard fluctuation relation βχcoex = V 〈(δ%)2〉. Applying this to
(5.19) results in

〈h2〉 =
1

(%l − %g)2

(
L2
z,l〈δ%2

1〉+ L2
z,g〈δ%2

2〉+ 2Lz,lLz,g〈δ%1δ%2〉
)

(5.21)

=
1

(%l − %g)2

(
L2
z,l

kBTχcoex

Ld−1Lz,l
+ L2

z,g

kBTχcoex

Ld−1Lz,g

)
(5.22)

=
kBTχcoex

(%l − %g)2

Lz
Ld−1

(5.23)

Apart from (5.16), it was used that the δ%i are uncorrelated and that the first
moments vanish. From this, one can conclude the length scale (in units of the lattice
spacing a) of the fluctuations of the interface between the two domains

√
〈h2〉 =

√
kBTχcoexLz
Ld−1(%l − %g)2

. (5.24)
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The bulk fluctuations of the two domains therefore give rise to an entropy contribution
(similar to (5.13))

∆S = kB ln
(√
〈h2〉

)
=
kB
2

ln(Lz)−
kB(d− 1)

2
ln(L) +

kB
2

ln (const) (5.25)

and additional correction terms for the surface free energy

β∆Fint = −1

2
ln(Lz) +

d− 1

2
ln(L)− 1

2
ln(const) , (5.26)

where the constant depends on temperature. Comparing this result to the uncon-
strained case (5.14), the prefactor to the ln(Lz) term is smaller. The contribution
parallel to the Lz-direction is negative while all others are positive. The interpretation
is that the translational entropy becomes smaller if the interface becomes larger and
therefore more inert.

Capillary Waves

The periodic boundary conditions in x-direction impose a constraint to the interface
structure. The capillary wave spectrum is constrained to capillary wave excitations
with wavelengths compatible with the box geometry. In a finite two-dimensional
box, the spectrum of wavelengths is discrete with values λn = 2L

n
with n = 1, 2, 3, . . ..

Compared to an unconstrained interface, the entropy is decreased, resulting in
another logarithmic correction to the finite-size scaling, as will be shown in the
following. For simplicity, a geometry with only one interface is considered. This can
be achieved by fixed-spin-boundary conditions (see also [Svrakic et al., 1988], where
a generalization to tilted interfaces is considered), where the spins near box walls
are fixed to being positive on the left half of the box and negative on the right half.
The interface is therefore clamped at the walls, thereby suppressing translational
freedom. However, capillary wave excitations can still occur.

At low temperature, the one-dimensional interface in a two-dimensional box can
be seen as a random walk problem, because it corresponds to the solid-on-solid
model (SOS model), where all bulk fluctuations in the two coexisting phases (islands,
clusters, etc.) are eliminated and overhangs are also neglected, so that the interface
can be described in terms of a directed random walk. The interface of a configuration
is created by a walker in x-direction (the x-coordinate plays the role of time in the
random walk language), making steps in the ±z-direction with some small probability
p. Overhangs are neglected in this picture, so interfaces at high temperatures are
not modeled correctly. In a finite box, such an interface has to adhere z(L) = z(0).
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If a random walk has on average n = pL/a steps, where p is the average number of
steps per unit length, the probability of a random walk to return to the origin at the
nth step is2

rn =
1√
2πn

(5.27)

The entropy of the constrained interface is therefore decreased by ∆S = −kB ln(1/rn) =
−kB/2 ln(2πpL/lx), leading to an enhanced free energy

β∆Fint =
1

2
ln(2πpL/l) =

1

2
ln(L) + const , (5.28)

where the constant depends on temperature, but not on L. This calculation holds for
two-dimensional systems at low temperatures only. However, it shows that simple
considerations already yield logarithmic corrections to the interfacial tension.

Actually, this problem of a clamped interface, where none of the aforementioned
translational degrees of freedom occur, in two dimensions can be solved explicitly
by transfer matrix methods. At low temperatures, the results are equivalent to the
above SOS model result, as one expects. One can show that the partition function
of the system is [Svrakic et al., 1988]

ZL = exp(−βγLL)

(
βκL
2πL

)1/2

, (5.29)

with

γL = γ∞ + a/L (5.30)
κL = κ∞ + b/L (5.31)

where γ∞ and κ∞ are the interfacial free energy and stiffness of the Ising interface
for L→∞. The free energy of the system then is

βFL = − lnZL = γLL+
1

2
lnL− 1

2
ln
κL
2π

(5.32)

Hence,

β∆Fint =
1

2
ln(L) + const , (5.33)

agreeing with (5.28). Capillary waves in two dimensions give rise to a universal
enhancement of the interfacial tension. The interpretation of this effect is that
finite-size constrains the capillary waves, so the entropy due to the capillary waves is

2This result can be found in a paper about drunken Englishmen [Fisher, 1984].
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reduced. Due to the fixed-spin boundary condition, for large Lz the Lz-dependence
of γL is completely negligible.

To deal with d-dimensional system instead of of two-dimensional systems, we refer
to [Brézin and Zinn-Justin, 1985], where both a cubic system with volume Ld and
periodic boundary conditions in all directions and a quasi-one-dimensional system
L × L × Lz with Lz → ∞ are considered. They state that the typical distance
ξ‖ between domain walls is ξ‖ ∝ L(3−d)/2 exp(γ∞L

d−1) and attribute the prefactor
to capillary waves. Since the interfacial width due to capillary waves scales as
w ∝ L(3−d)/2, but w ∝

√
lnL in d = 3, the interpretation can be made that w sets

the scale for interfacial translations. Thus, one could speculate that the entropy due
to capillary waves, ln(Lxcw) with xcw = (3− d)/2 could turn into ln(

√
lnL) for d = 3.

As we are only interested in the leading-order corrections to the interfacial tension,
such a small correction is probably beyond the precision of current computing power.
For more information on this matter, please refer to section A.1 in the appendix.

Hence, the capillary wave contribution of an interface at arbitrary dimension d is
given by

β∆Fint =
3− d

2
ln(L) . (5.34)

Summary

First, we summarize the possible contributions of an interface to the interfacial free
energy.

full translational freedom: β∆Fint = − ln(Lz) + const (5.35)

constrained translational freedom: β∆Fint = −1

2
lnLz +

d− 1

2
lnL+ const (5.36)

capillary wave fluctuations: β∆Fint =
3− d

2
ln(L) + const (5.37)

These results need to be confirmed by computer simulations, but the underlying
effects can in most cases only be seen together. We start with an Ising system and
use various boundary conditions to verify the conjectures. The simplest variant is a
box with antiperiodic boundary conditions (APBC) in the direction perpendicular
to the interface and periodic boundary conditions parallel to the interface in a
grandcanonical ensemble (gc). The interface has full translational freedom and
therefore

β∆Fint = − lnLz +
3− d

2
lnL+ const (5.38)
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Using (5.12), one obtains

APBC(gc), d = 2: βγ(L,Lz) = βγ∞ −
lnLz
L

+
1

2

lnL

L
+

const

L
(5.39)

APBC(gc), d = 3: βγ(L,Lz) = βγ∞ −
lnLz
L2

+
const

L2
. (5.40)

Note that all normalization constants only contribute to const, e.g. via ln(L/l) =
ln(L/a) + ln(a/l), where a is the Ising lattice spacing, set to unity. In off-lattice
systems, one can take any length scale, since it only modifies the constant.

Another situation is a similar box as above but in a canonical ensemble, where the
magnetization is kept at m = 0. The interface then gives rise to

β∆Fint = −1

2
ln(Lz) +

d− 1

2
ln(L) +

3− d
2

ln(L) + const (5.41)

and hence

APBC(c), d = 2: βγ(L,Lz) = βγ∞ −
1

2

ln(Lz)

L
+

ln(L)

L
+

const

L
(5.42)

APBC(c), d = 3: βγ(L,Lz) = βγ∞ −
1

2

ln(Lz)

L2
+

ln(L)

L
+

const

L2
. (5.43)

The constrained translational freedom modifies the scaling behavior both parallel
and perpendicular to the interface.

The third case to examine is a box with periodic boundary conditions in all directions,
for this is the usual case if the interfacial tension is computed. In this case, one has
to deal with two interfaces, which interact with each other. For the inhomogeneous
state to be stable, the magnetization (or density, respectively) has to be kept
constant. With two interfaces, the total area A of the system is 2Ld−1, and the
capillary wave fluctuations for both interfaces has to be taken into account separately.
One might assume that each interface has full translational entropy through the
periodic boundary conditions, but the constant density prevents them from moving
independently of each other. Instead, the whole system has full translational freedom,
while the average distance between the two interfaces is fixed. Additionally, the
position of the second interface relative to the other interface can fluctuate according
to the domain breathing effect. In summary, the free energy of the system is

β∆Fint = − ln(Lz)−
1

2
ln(Lz) +

d− 1

2
ln(L) + 2 · 3− d

2
ln(L) + const (5.44)

so the interfacial tension behaves like

PBC(c), d = 2: βγ(L,Lz) = βγ∞ −
3

4

ln(Lz)

L
+

3

4

ln(L)

L
+

const

L
(5.45)

PBC(c), d = 3: βγ(L,Lz) = βγ∞ −
3

4

ln(Lz)

L2
+

1

2

ln(L)

L2
+

const

L2
. (5.46)
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We do not discuss the constant arising in all these equations, because it consists
of many (known and unknown) contributions, e.g. the length scales l, lz and the
temperature dependent constant appearing in the discussion of the domain breathing
effect. The constant will be treated as a free parameter when data is described by
these equations.

All the previous equations can be described by a single equation3 with universal
constants x⊥, x‖:

βγ(L,Lz) = βγ∞ − x⊥
lnLz
Ld−1

+ x‖
lnL

Ld−1
+

C

Ld−1
. (5.47)

Recall that all lengths in this equation are dimensionless, as we use universal lengths
(lattice spacing for the Ising model or particle diameter σ for off-lattice models) to
normalize the box dimensions L and Lz.

This is one of the central results of this whole thesis. It implies that the leading-order
terms in the finite-size scaling are of order ln(L)/Ld−1 and ln(Lz)/L

d−1 while the next
term is of order 1/Ld−1. The prefactors x⊥ and x‖ depend only on the dimensionality,
the boundary conditions and the ensemble, but not on the pair interaction or whether
one studies liquid-vapor or solid-liquid interfaces. Note that during the derivation,
these details have not been of any importance so that Eq. (5.47) is not necessarily
restricted to the Ising model.

d BC ensemble x⊥ x‖
2 antiperiodic grandcanonical 1 1/2
3 antiperiodic grandcanonical 1 0
2 antiperiodic canonical 1/2 1
3 antiperiodic canonical 1/2 1
2 periodic canonical 3/4 3/4
3 periodic canonical 3/4 1/2

Table 5.1: Values of the universal constants in 2 and 3 dimensions. The universal
constants only depend on the boundary conditions (periodic or antiperiodic) and
the ensemble (canonical or grandcanonical). Note that x⊥ is independent of the
dimensionality of the interface while x‖ depends on d because of capillary wave effects
and constrained translational freedom.

3The generalization to Lx 6= Ly in three dimensions is straightforward and can be found in section 6.2.
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5.2 Simulation Results for the Ising Model

The Ising model is very attractive to test the finite-size scaling relation Eq. (5.47)
derived above because of the variety of available boundary conditions. While the three
effects, namely translational entropy, capillary waves and the domain breathing effect,
cannot be considered independently of each other, one can test various combinations
of boundary conditions and ensembles to verify that Eq. (5.47) correctly takes them
into account. In off-lattice systems, which will be studied in chapter 6, one is
restricted to periodic boundary conditions in a canonical ensemble, so it is important
to consider the Ising model first in order to understand the interplay of the three
effects.

The implementation of the ensemble switch method is straight-forward for the Ising
model. Apart from the lattice, one needs to implement a function which can calculate
the energy of a lattice point for both types of boundary conditions. There are
only two Monte Carlo moves. On the one hand, there are spin flips, which change
the system’s configuration. Because the magnetization (or in the lattice gas view
the density) has to be kept constant, we use spin exchange moves, where we pick
two spins of opposite orientation randomly and attempt to flip both at once. This
move conserves the magnetization and, at the same time, changes the configuration
significantly, because of the nonlocal character of this move. One could also restrict
the pairs of spins to be neighbors, but this implementation suffers from hydrodynamic
slowing-down [Landau and Binder, 2009; Binder and Heermann, 2010]. If the density
is not conserved, the standard single spin flip moves are used. On the other hand,
one needs to implement the κ-move where one attempts to change the current κ = κi
of the system to κ′ = κi±1. This move is computationally very cheap, as the program
keeps track of the total energy E0 and E1 and only needs to calculate the energy
difference ∆E = E ′ − E, where

E = κE1 + (1− κ)E0 and E = κ′E1 + (1− κ′)E0 .

Note that we choose a mapping k → κk of theM = 1024 successive umbrella windows
as given in Eq. (4.17a). This increases the number of windows near κ = 0 and 1 so
that the computing time is used to simulate the important parts of the path with
increased accuracy.

5.2.1 The two-dimensional Ising Model

In order to test the universal scaling relation given by Eq. (5.47), consider the
two-dimensional Ising model first, where the exact result βγ∞ is known [Eq. (5.1)].
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If one fixes L and only varies the length Lz of the box in the direction perpendicular
to the interfaces, the scaling relation reduces to

βγ(L,Lz) = const−x⊥
lnLz
Ld−1

. (5.48)

Hence, if plotting the data at constant L against lnLz/L
d−1, the resulting curves

should be straight lines with slope −x⊥. Indeed, if plotting the data this way
[Fig. 5.5], the data follows straight lines in all considered combinations of boundary
conditions and canonical or grandcanonical ensembles. Note that the slope does
not depend on temperature and system size although a broad temperature range
(kBT/J = 1.2, 1.6, 2.0) and several box widths (L = 10, 20, 30, 40) are considered
with Lz ranging from L up to Lz = 200. In all cases, the slopes are compatible
with the values of x⊥ given in Table 5.1. This shows that the above ansatz reflects
the actual behavior of the interfaces regarding translational entropy and domain
breathing.

Unfortunately, one cannot extract the interfacial tension from these plots because
it is hidden among other constants in the y-intercept. To estimate γ∞, one has to
vary L also. Therefore, the next step is to keep Lz fixed and vary L to see whether
Eq. (5.47) can also correctly explain the data in this case. Indeed, Fig. 5.6 shows
that the data are well-represented by the scaling ansatz. Note that this fit contains
only one unknown constant, namely the constant C appearing in Eq. (5.47), because
for the two-dimensional Ising model, the interfacial tension γ∞ is known beforehand.

As the ansatz is supported very well by the data, one can use the knowledge about
the logarithmic corrections to subtract them from the data and extract the interfacial
tension γ∞ from a fit as follows:

βγ̃(L,Lz) = βγ(L,Lz) +
x⊥ lnLz − x‖ lnL

Ld−1
= βγ∞ +

C

Ld−1
. (5.49)

The constant C for this ”reduced“ interfacial tension γ̃(L,Lz) is the same as before.
After subtraction of the logarithmic corrections, there are two fit parameters left,
namely the interfacial tension γ∞ and the constant C, so that the desired quantity γ∞
is obtained from these fits at constant Lz. The corresponding fits are shown in Fig. 5.6.
As one can see, the exact values βγ(kBT/J = 1.2) = 1.284, βγ(kBT/J = 1.6) =
0.660 and βγ(kBT/J = 2.0) = 0.228 are perfectly reproduced by this procedure.
Furthermore, the constant C, which must depend on the ensemble, the boundary
conditions and the temperature, is roughly the same for different choices of Lz at
otherwise equal circumstances. In the thermodynamic limit, the C should no longer
depend on Lz, so at the chosen values of Lz there is still some higher order correction.
It is remarkable that the three combinations of boundary conditions and ensembles
(canonical or grandcanonical) give very accurate estimates for the interfacial tension
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Figure 5.5: Finite-size scaling at constant L. In each plot, data for three temperatures
and four L are shown. The top four lines belong to kBT/J = 1.2, the middle four
lines to kBT/J = 1.6 and the bottom four lines to kBT/J = 2.0. In each set of lines,
from top to bottom L = 10, 20, 30, 40. The lines are fits to the data with constant
slope, so that only the y-intercept is a free parameter. The slope is taken to be
x⊥ = 1 for APBC(gc), x⊥ = 1/2 for APBC(c) and x⊥ = 3/4 for PBC(c).
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Figure 5.6: Finite-size scaling of the interfacial tension βγ(L,Lz) and the reduced
interfacial tension βγ̃(L,Lz) at constant Lz for Lz = 60, 120 and various temperatures
and ensembles, as indicated. (a), (c) and (e) show the original data and a fit of the
form Eq. (5.47), while in (b), (d) and (f), the same data is shown after the logarithmic
corrections have been subtracted. This reduced interfacial tension γ̃(L,Lz) has only
a 1/L-dependence on L at fixed Lz.
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γ∞, which are consistent with each other. This shows that the above ansatz is correct
and that the ensemble switch method is a valuable tool for this analysis.

5.2.2 Comparison to the Probability Distribution Method

Before heading to the three-dimensional Ising model, it is a good idea to take a step
back and compare the results from the ensemble switch method to results of other
methods. In the original paper about the probability distribution method [Binder,
1982], finite-size scaling is discussed as follows.
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Figure 5.7: Probability distributions of a two-dimensional Ising model at kBT/J = 2.0.
At fixed interfacial length L, the probability of heterogeneous states (% = 0.5)
increases. If the box length Lz is fixed and L is increased, the probability decreases.
Both effects seen here are of entropical nature.

The probability distribution PL(m) for an Ising model in a d-dimensional cubic box
has two peaks at ±mcoex, corresponding to the two homogeneous (pure) phases,
which we call vapor (−mcoex) and liquid (+mcoex). These peaks are well described
by Gaussians

PL(m) =
1√

2πσ2
m

exp

(
−1

2

(m− 〈m〉)2

σ2
%

)
(5.50)

with variance
σ2
m =

kBTχ

Ld
(5.51)

where 〈m〉 = ±mcoex and χ denotes the order-parameter susceptibility (in the Ising
model χ = (∂m/∂H)T ). The probability of a homogeneous state with magnetization
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zero is hence given by

PL,hom(m = 0) ∝ Ld/2√
2πkBTχ

exp

(
−Ld m

2
coex

2kBTχ

)
(5.52)

i.e. the probability decreases exponentially with the volume, exp(Ld). On the other
hand, the probability of heterogeneous states, consisting of two domains separated by
two interfaces (heterogeneous states with flat walls need to have an even number of
interfaces, because of the periodic boundary conditions), decreases only exponentially
with the area of the interfaces, namely

PL(m = 0) ∝ exp
(
−2Ld−1βγL

)
(5.53)

where γL is the interfacial tension in the finite box. The preexponential factor is
complicated because it is expected to contain a power law dependence on L, which
is influenced by a number of effects, which are hard to distinguish, such as

• the invariance of the configuration under translation of the interface in one
direction (translational entropy),

• deviation of an interface from the planar shape,

• capillary wave fluctuations and the restriction to wavelengths compatible with
the boundary conditions.

Therefore, the preexponential factor is simply taken as a power law with an unknown
exponent p and a constant N :

PL(m = 0) = NLp exp
(
−2Ld−1βγ∞

)
(5.54)

Following this ansatz, one can derive two different expressions for the interfacial
tension, provided one knows the probability distribution PL(m), which can be
obtained from Monte Carlo simulations (e.g. using multicanonical sampling, see
section 2.7.1)

βγ∞ = lim
L→∞

1

2Ld−1
ln

(
PL(mcoex)

PL(0)

)
(5.55a)

βγ∞ = lim
L→∞

1

2Ld−1
ln (PL(0)) . (5.55b)

Using

PL(±mcoex) =
Ld/2√

2πkBTχ
(5.56)
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and equation (5.54), one can calculate

PL(mcoex)

PL(0)
=

Ld/2−p

N
√

2πkBTχ
exp

(
+2Ld−1βγ∞

)
(5.57)

2Ld−1βγL = ln

(
PL(mcoex)

PL(0)

)
= (d/2− p) ln(L)− ln(N

√
2πkBTχ) + 2Ld−1βγ∞

(5.58)

βγL = βγ∞ − (p− d/2)
ln(L)

2Ld−1
− ln(N

√
2πkBTχ)

2Ld−1
(5.59)

and obtain the finite-size scaling

βγL = βγ∞ −
2p− d

4

lnL

Ld−1
− A

2Ld−1
(5.60)

with a prefactor x = 2p−d
4

for the logarithmic correction. The unknown parameter p
has later been found to be p = d − 1 [Brézin and Zinn-Justin, 1985; Gelfand and
Fisher, 1990; Morris, 1992; Wiese, 1992], leading to a finite-size behavior

βγL = βγ − d− 2

4

lnL

Ld−1
− A

2Ld−1
(5.61)

for a cubic box of volume Ld.

The scaling ansatz Eq. (5.47) proposed in this work simplifies in the special case of a
cubic geometry to

βγ(L) = βγ∞ − (x⊥ − x‖)
ln(L)

Ld−1
+

const

Ld−1
(5.62)

according with (5.61) since x⊥ − x‖ = (−1 − 1
2

+ d−1
2

+ 23−d
2

)/2 = d−2
4
, which

is exactly the prefactor in Eq. (5.61). So although the derivation of the scaling
behavior is completely different, the leading order behavior agrees. Furthermore,
Berg, Hansmann and Neuhaus reported [Berg et al., 1993a,b] that in d = 2, the
logarithmic dependence vanished, which also agrees with our result x‖ = x⊥ in d = 2.

Non-cubic geometries have only rarely been considered in the literature. Therefore,
we performed simulations using both variants of the probability distribution method
Eq. (5.55) and test whether the scaling behavior is equal for all methods. Note that
the probability distribution method can only be applied if using periodic boundary
conditions in all directions. Therefore, if the results agree, then the ensemble switch
method provides a valuable complementary tool to study other boundary conditions
where the probability distribution method is not applicable. The results are shown
in Fig. 5.8 for fixed L and Fig. 5.9 for fixed Lz.
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Figure 5.8: Finite-size scaling for d = 2 at fixed L = 10, 20, 30 for box geometries
with PBC in all directions. Both plots show data from the ensemble switch method,
for reference. On the left, the data using (5.55a) is shown, having the same slope -3/4
as the results from the ensemble switch method. On the right, data using (5.55b) is
included, having a different slope -1, correctly predicted by (5.68).

The constants x⊥ and x‖ from table 5.1 for the case of periodic boundary conditions
in a canonical ensemble are compatible with the probability distribution method
using (5.55a), for both plots. This means that the probability distribution method
yields the same finite-size scaling behavior, as expected. It should be noted, however,
that the exact values differ, as was already noted in Fig. 5.1. This is due to the
non-logarithmic term in Eq. (5.47). The interfacial tension γ∞ from both methods
agrees nonetheless.

The scaling behavior for the method (5.55b) is different however, which can be
understood as follows. According to Eq. (5.56), PL(mcoex) ∝

√
LzLd−1 depends on

the box geometry, which implies

βFrel = ln

(
PL(mcoex)

PL(0)

)
= ln

(
const(LzL

d−1)1/2

PL(0)

)
(5.63)

=
1

2
lnLz +

d− 1

2
lnL+ ln

(
1

PL(0)

)
+ ln const (5.64)

=
1

2
lnLz +

d− 1

2
lnL+ βFabs + ln const (5.65)

The interfacial free energies between the two probability methods differ by the
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Figure 5.9: Finite-size scaling for d = 2 at fixed Lz = 60, 120 for box geometries
with PBC in all directions. Data from the ensemble switch method is included for
reference. The curves are from one-parameter fits where the only free parameter is
the constant in the term C/L. Note that the absolute probability method converges
from below while the other methods converge from above.

dependence of PL(mcoex), so the prefactors x⊥ and x‖ change according to

β∆Fint,abs = β∆Fint, rel −
(

1

2
lnLz +

d− 1

2
lnL

)
(5.66)

= −2 ln(Lz) + (3− d) ln(L) + const . (5.67)

Therefore, the following behavior is to be expected

βγ(L,Lz) = βγ∞ −
ln(Lz)

L
+

1

2

ln(L)

L
+

const

L
. (5.68)

Figures 5.8 and 5.9 confirm the above considerations.

5.2.3 The three-dimensional Ising Model

After having fully covered the two-dimensional Ising model, where the scaling ansatz
Eq. (5.47) has been fully confirmed, the next step is to also test it in three dimensions.
Here, the exact value of the interfacial tension is unknown, i.e. an equation like
Eq. (5.1) does not exist. There are, however, enough data in the literature for
comparison.
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In the three-dimensional case, it is also possible to study various combinations of
boundary conditions (periodic or antiperiodic) and ensembles (canonical or grand-
canonical). Since the simulations in three dimensions require more computing time,
we restrict our discussion to one temperature, namely kBT/J = 3, which is well above
the roughening temperature kBTR/J ≈ 2.454 [Bürkner and Stauffer, 1983; Mon et al.,
1989, 1990; Hasenbusch and Pinn, 1994; Hasenbusch et al., 1996; Hasenbusch and
Pinn, 1997] and still far below the critical temperature kBTc/J = 4.5115 [Ferrenberg
and Landau, 1991; Baillie et al., 1992]. As in the two-dimensional case, we consider
the dependence on the box length Lz and the length L in the other two directions
separately. The results are shown in Fig. 5.10.
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Figure 5.10: Finite-size scaling of the interfacial tension βγ(L,Lz) and the reduced
interfacial tension βγ̃(L,Lz) for the three-dimensional Ising model at kBT/J = 3.
(a) Scaling behavior at constant L. The four top sets of points are APBC(c), the
middle lines are PBC(c), the bottom lines are APBC(gc) For each case, the four sets
of points are for L = 6, 8, 10, 14, from right to left. The lines are fits with fixed slope
x⊥. (b) Scaling behavior at constant Lz, as indicated, plotted against the length L.
For the fits, the known value βγ∞ = 0.434 [Hasenbusch and Pinn, 1994] is used so
that the only fit parameter is the constant in the term C/L2.

The quality of the results are as gratifying as in the two-dimensional case. Therefore,
we proceed analogously and subtract the logarithmic corrections in order to estimate
the interfacial tension γ∞. For reasons explained later, we slightly modify the ansatz
given by Eq. (5.49) and use

βγ̃(L,Lz) = βγ(L,Lz) +
x⊥ lnLz − x‖ lnL

Ld−1
= βγ∞ +

C1

L
+
C2

L2
(5.69)

instead. Note that apart from the term containing C2, we have added a phenomeno-
logical term C1/L which is not predicted by the above considerations. The term
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C2/L
2 is taken into account in Eq. (5.47) because it must occur if the arguments of

the logarithmic terms are to be dimensionless. Recall from section 5.1.2 that the
arguments of the terms ln(Lz) and ln(L) must be dimensionless, which is why we
introduced an arbitrary4 length a and used it as a length scale for L and Lz. Then,
e.g. the translational entropy term becomes ln(Lz/lz) = ln(Lz/a) − ln(lz/a), and
assuming that the length lz is independent of the box geometry, the resulting term
ln(lz) contributes to the constant C2. The same applies for the length l introduced in
section 5.1.2. The term C1/L is added because in the existing literature, it is common
to assume a simple fit of the form A + B/L and thereby neglect the logarithmic
corrections and the mandatory term C2/L

2. We should therefore investigate the role
of such a term in our analysis.

If we take the term C1/L into account for the fits, as shown in Fig. 5.11(a), the
constant C1 is about 100 times smaller than C2, indicating that such a term, if it
exists, is very small. At the same time, the data seems to collapse, which was not
the case in d = 2. It might be a coincidence. The estimated γ∞ from the fits are
in perfect agreement to the literature value βγ∞ = 0.434 [Hasenbusch and Pinn,
1994]. If we ignore a term of the form C1/L completely [as shown in Fig. 5.11(b)],
the quality of the fits is not affected and no systematic error can be detected.
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Figure 5.11: Finite-size scaling of the reduced interfacial tension defined in Eq. (5.69)
with fit parameters γ∞, C1 and C2 for the three-dimensional Ising model at kBT/J = 3.
(a) Various combinations of boundary conditions and ensembles are shown for
Lz = 20, 40, 80 in each case, as indicated. In (b), the same data is shown but the fits
do not include C1.

The existence of a term of the form C1/L is not supported by the data. Furthermore,
4For the Ising model, the lattice spacing is an obvious choice.
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from a physical point of view, such a correction is inexplicable: Consider a similar
geometry as before, but in the direction parallel to the interfaces, we now use
free boundary conditions (which then act as a wall) instead of periodic boundary
conditions. In such a situation, one can measure the line tension γline [Schimmele
et al., 2007] as a contribution to the free energy ∆F = γA+ γlineS where S is the
length of the contact line between the two phases and a wall. This has been done
successfully [Winter et al., 2009a,b]. On the other hand, if a term C1/L existed, this
would imply that there is also some kind of line tension in systems where no walls
are present. If this was the case, the simulations in [Winter et al., 2009a,b] could
not have yielded sensible results. Therefore, it is important to stress that a term
C1/L does not exist, for it is not detected in our simulations. This is important
because while it is obvious from the results for the three-dimensional Ising model,
the situation is not so simple if considering more complicated models where the
computational cost to do a similarly thorough finite-size scaling is much higher. This
will be discussed in chapter 6.

5.2.4 Further Remarks

Generalization to O(n) Models with n > 1

The Ising model is the special case n = 1 of the so-called O(n) models. The
characteristic features of these models are an order parameter field with n components
and an interaction energy function which depends on the local dynamic variables
and is O(n) invariant. Other examples of O(n) models are the XY model (n = 2)
and the Heisenberg model (n = 3).

If one applies antiperiodic boundary conditions in z-direction, the n-dimensional
spins can gradually turn from pointing upwards to downwards across the whole
system. This minimizes the energy cost to form an interface. In an Ising-like system,
there are only two possibilities for the spins (up or down), hence the interface is
always localized. This can also be seen from the Hamiltonian

H = −J
∑
〈i,j〉

Si · Sj = −J
∑
〈i,j〉

cos(θij) ≈ −J
∑
〈i,j〉

(
1−

θ2
ij

2

)
(5.70)

where the sum ranges over all next neighbors. In this case |Si| = 1 for all i. The
approximation is only valid for small angles between the spins, which is valid for
an elongated system. In the case of a one-dimensional system with antiperiodic
boundary conditions, the spin orientation changes by an angle of π over the whole
linear dimension Lz. Hence each pair of spins along this direction will try to minimize
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its energetic cost, so that the angles are on average θij = π/Lz. Hence the energetic
cost of the interface is given by

Einterface ≈
J

2

∑
〈i,j〉

π2

L2
z

=
Jπ2

2Lz
(5.71)

Here, we have restricted ourselves to a one-dimensional system. The generalization
to higher dimensions is straightforward, as the spins in the planes perpendicular to
Lz will be parallel to each other.

While in the ground state of an Ising chain, the cost of a kink (domain boundary) is
2J and hence finite, for the XY and Heisenberg chains, the domain boundary energy
hence vanishes (for Lz →∞). Analogously, in higher dimension an interfacial tension
does not exist! However, the cost of forming domain walls in isotropic systems then
is described by a higher order term (the so-called “helicity modulus” [Fisher et al.,
1973]).

Generalization beyond the Ising model

In the discussion of finite-size effects so far, one always has an additional term of the
form to the const /L(d−1) which is weaker than the ln(L)/Ld−1 terms. At the same
time, this term is very complicated, since its prefactor consists of several unknown
factors.

The constant lz can be interpreted as follows. In a quasi-one-dimensional geometry,
the translational entropy of the interfaces leads to a multidomain structure instead
of a state with two bulk phases separated by two interfaces. The typical distance ξL
between domain walls is given by (see equation (6.11) in [Brézin and Zinn-Justin,
1985])

ξL = A(T )L(3−d)/2 exp(Ld−1βγ∞) (5.72)

where A(T ) is a temperature-dependent constant and γ∞ is the interfacial tension
in the thermodynamic limit. This equation coincides with an exact transfer matrix
result5 in d = 2, where

ξL ∝ L1/2 exp(Lβγ∞) (5.73)

Thus, defining
ξL = exp(Ld−1βγL,eff) (5.74)

one obtains
βγL,eff = βγ∞ +

3− d
2

ln(L)

Ld−1
+

const

Ld−1
. (5.75)

5See the works of M. N. Barber in chapter 2 of [Domb and Lebowitz, 1983].
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Note that this corresponds to (5.34). In a multidomain situation the translational
entropy has been taken into account by considering multiple domains in the long strip.
The arrangement of all interfaces together has a translational entropy proportional
to lnLz, but per interface this term vanishes with the number of interfaces.

Considering the case of a single interface, stabilized by antiperiodic boundary condi-
tions, the scaling behavior is (compare to (5.41))

βγL = βγ∞ +
3− d

2

lnL

Ld−1
− lnLz
Ld−1

+
const

Ld−1
(5.76)

If one recalls now how the interfacial width due to capillary waves scales as w2
L ∝

L3−d/(βγ), so that

lnwL =
3− d

2
lnL+ const (5.77)

then one can write
βγL = βγ∞ −

ln(L/wL)

Ld−1
+

const

Ld−1
. (5.78)

This equation suggests that the natural length scale for all distances in z-direction is
simply the interfacial width wL. This can already be seen from (5.72)

ξL/wL ∝ exp(Ld−1βγ∞) (5.79)

that wL sets the length scale for ξL. If ξL approaches wL, the interfaces start to
interact with each other. The quantity Lz/wL counts the number of possibilities
where the interface is located within the box. This interpretation suggests that
the generalization to off-lattice systems is possible without any problems, since the
natural length scale is provided by the interfaces themselves.

Generalization of Finite-Size Effects to Spherical Interfaces

In section 5.1.2, the translational entropy of the interface in the box and the domain
breathing effect was discussed for planar interfaces. One can also consider the case
of a droplet with a compact shape in a box. For simplicity, the Ising language will
be used for this discussion.

If one fixes the magnetization m of a cubic box with volume Ld with periodic
boundary conditions in all directions in the droplet regime (see section 2.2.2), the
phase with positive magnetization ml will gather into a droplet while the phase
with negative magnetization mv will surround it. In equilibrium, the droplet will on
average have a radius Req and the magnetization meq,l = mcoex while the surrounding
will have the magnetization meq,v = −mcoex.
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Since the position of the droplet is not fixed, the translational degrees of freedom of
the droplet in all directions give rise to a translational entropy

∆S = lnLd (5.80)

and therefore a free energy difference

β∆Fint = −d lnL . (5.81)

Capillary waves also occur on curved interfaces. For a planar surface, recall (5.34),
where ∆F = 3−d

2
lnL = 3−d

2(d−1)
ln(Ld−1) so that for a droplet with surface area A, one

can speculate

∆Fint =
3− d

2(d− 1)
lnA . (5.82)

To discuss the domain breathing effect, first consider the equilibrium, where, assuming
the droplet is spherical with radius Req, volume Vdrop(Req) and surface Sdrop(Req),
one can write (

Ld − Vdrop(Req)
)
meq,v + Vdrop(Req)meq,l = m . (5.83)

Now if due to bulk fluctuations, the magnetizations ml and mv differ from their
equilibrium values, the droplet radius changes by R = Req + ∆R, so that[

Ld − Vdrop(Req)− Sdrop(Req)∆R
]
mv + [Vdrop(Req) + Sdrop(Req)∆R]ml = m .

(5.84)
Subtracting the equations from each other yields

0 = L3 (mv −meq,v) + Vdrop(Req) [−mv +meq,v +ml −meq,l]

+ Sdrop(Req)∆R (ml −mv) (5.85)

or

Sdrop(Req)∆R (ml −mv) = −L3 (mv −meq,v)

− Vdrop(Req) ([ml −meq,l]− [mv −meq,v]) (5.86)

On the right side, the expressions ml −mv and [ml −meq,l]− [mv −meq,v] are of the
same order. Assuming that the droplet’s volume is much smaller than the box volume
(R3

eq � L3), which is usually the case, the term with Vdrop(Req) can be neglected
against the term with Ld. Therefore

∆R ≈ − Ld

Sdrop(Req)

mv −meq,v

ml −mv

≈ − Ld

Sdrop(Req)

δmv

2mcoex
(5.87)
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with δmv = mv − meq,v and ml − mv ≈ 2mcoex. As this equation shows, the
fluctuations in the surrounding vapor cause a fluctuation of the droplet radius. The
negative sign means that the magnetization in the vapor has to decrease for the
droplet radius to become larger. This equation corresponds to (5.18), where a similar
equation was derived for the case of a flat interface. In two and three dimensions,
the equation turns into

d = 2: ∆R ≈ − L2

2πReq

δmv

2mcoex
(5.88)

d = 3: ∆R ≈ − L3

4πR2
eq

δmv

2mcoex
(5.89)

The following procedure is analogous to the case of flat interfaces in section 5.1.2:
One can approximate the probability distribution PL(δm) by a Gaussian distribution
with variance 〈

(δm)2
〉

=
kBTχ

Ld
, (5.90)

where χ is the susceptibility of the system in its current state, and obtain

〈
(∆R)2

〉
=

kBTχ

(2mcoexSdrop(Req))
2L

d . (5.91)

The interface of the droplet can therefore fluctuate by a distance of order
√
〈(∆R)2〉,

which corresponds to an entropy gain (lR is an unknown constant to make the
logarithm dimensionless)

∆S = kB ln
(√
〈(∆R)2/lR〉

)
(5.92)

and a free energy difference

β∆Fint = −d
2

lnL+ ln(Sdrop(Req)) + const . (5.93)

Together with the contributions from translational entropy (5.81) and capillary
waves (5.82), the effective interfacial tension is given by

βγL =
βFint

A
= βγ∞ −

d

2

lnL

A
+

lnA

A
− d lnL

A
+

3− d
2(d− 1)

lnA

A
+

const

A
(5.94)

= βγ∞ −
3d

2

lnL

A
+

1 + d

2(d− 1)

lnA

A
+

const

A
(5.95)
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This equation yields for two and three dimensions the following finite-size scaling

d = 2: βγ∞ − 3
lnL

A
+

3

2

lnA

A
+

const

A
(5.96)

d = 3: βγ∞ −
9

2

lnL

A
+

lnA

A
+

const

A
(5.97)

so the size effects are much more pronounced than for slab configurations.

These corrections have not been taken into account in the studies of curvature
corrections to the interfacial tensions of droplets and bubbles done by [Block et al.,
2010; Tröster and Binder, 2012; Tröster et al., 2012], since they were unknown at
the time of these studies. A re-analysis of the data obtained in these studies in the
light of the above results is in progress (A. Tröster, private communication).

5.3 Conclusion

In this chapter, we have established a theory to predict the finite-size scaling behavior
of the interfacial tension for any model and phase coexistence. The theory was
motivated and tested by using the two- and three-dimensional Ising model. Here, the
results for two dimensions are interesting because one can compare the results with
results from exact calculations. In the three-dimensional Ising model, we found that
Eq. (5.47), which is the central result of this chapter, still holds, and that although in
the literature, a finite-size scaling using a term C/L was used, there was no evidence
found for such a term.

The underlying phenomena of the scaling ansatz given by Eq. (5.47) are independent
of the model, as they arise from entropic degrees of freedom. Hence, we can use the
values for the universal constants x⊥ and x‖ in Table 5.1 to improve predictions of
the interfacial tension in the thermodynamic limit. Note that while in this thesis,
the ensemble method is used to compute interfacial tensions, the finite-size scaling
results are of general validity and can also be used when using alternative methods
[cf. section 4.2]. The next step is to apply this ansatz to off-lattice models, especially
those where we can examine crystal-liquid coexistence.
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Chapter 6

Finite-Size Scaling of the Interfacial
Tension beyond the Ising Model

In this chapter, the ensemble switch introduced in chapter 4 will be used to compute
interfacial tensions for off-lattice models. The main goal is to apply and validate
also in this case the finite-size scaling ansatz Eq. (5.47), and the secondary goal is to
get accurate predictions for the interfacial tension γ∞ in the thermodynamic limit
for certain models. For off-lattice models, there is no analog to the antiperiodic
boundary conditions which were very useful in validating Eq. (5.47). Therefore we
will focus on the PBC(c) case, i.e. canonical ensembles with periodic boundary
conditions in all directions and two interfaces in the system.

To this end, the Lennard-Jones model [cf. section 2.3.1] is considered first, as
an example model for liquid-vapor transitions. Since liquid-vapor interfaces are
conceptually simpler than solid-liquid interfaces, this model is a good candidate to
test the theory of chapter 5 and extend the scope to off-lattice models. This is the
topic in section 6.1. After this, section 6.2 applies the same analysis to solid-fluid
interfaces in hard sphere systems [cf. section 2.3.3] and the soft effective AO model
[cf. section 2.3.4]. The finite-size scaling ansatz presented in chapter 5 depends
only on general entropic degrees of freedom of the interface(s). Therefore, one
expects that it is valid for any kind of interface between coexisting phases. Finally,
in section 6.3, various extensions of the ensemble switch method are discussed to
improve performance.

Note that parts of the results of this chapter appeared in [Schmitz et al., 2014b]. A
further publication on the results for hard spheres and the soft effective AO model
will be prepared.
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6.1 Liquid-Vapor Interfaces

6.1.1 Introduction

The truncated and shifted Lennard-Jones fluid introduced in section 2.3.1 is considered
here as a generic off-lattice system. This system has a dense phase denoted as liquid
and a less dense phase denoted as vapor. The interfacial tension for the liquid-vapor
interfaces can be computed using the probability distribution method [see section 4.2],
which makes this method an excellent candidate to test the scaling ansatz given
by Eq. (5.47). We work at the temperature kBT/ε = 0.78 which is well below the
critical point (which is at kBT/ε = 0.999, see section 2.3.1). At this temperature, the
interfacial tension has been calculated previously for the same model [Block et al.,
2010]. Note that we choose ε and σ as the natural energy and length scales for our
system, so that ε = 1 and σ = 1.

As was mentioned in section 4.4, one can either use local or nonlocal moves for
the particle movements through the system. For the Ising case, we only considered
nonlocal moves, but for the off-lattice systems, we will use both local moves, where
a Monte Carlo move consists of moving a particle to a position in the vicinity of
its current position, and nonlocal moves, where the new position can be anywhere
in the simulation box. We expect the latter to make the algorithm converge much
faster, but essentially, the results should agree after sufficient equilibration.

6.1.2 Finite-Size Scaling for a Lennard-Jones Fluid

To test the finite-size scaling ansatz Eq. (5.47) for the Lennard-Jones fluid, we proceed
as in the previous chapter by checking the dependence on L and Lz independently.
Note that contrary to the Ising model, we can only consider periodic boundary
conditions in a canonical ensemble, where the predominant Monte Carlo move is the
movement of one particle within the box. This can be either a local move, where
the new position of a particle is in the vicinity of the current position, or nonlocal
moves, where the new position can be anywhere in the simulation box.

Figure 6.1 shows the free energy ∆F (κ) as a function of the successive umbrella
window index k, where we have used the spacing given by Eq. (4.17a). While
Fig. 6.1(a) shows that the interfacial free energy ∆F depends on the cross-section
area of the interface, Fig. 6.1(b) shows the subtle finite-size effects. If there were no
finite-size effects, the curves should not depend on Lz at all and lie on top of each
other. For a discussion of the shape, please refer to section 4.4.

Consider the dependence on Lz first. Figure 6.2 shows that the data is well represented
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Figure 6.1: Free energy ∆F (κ) versus κ for the Lennard-Jones fluid introduced in
section 4.3. (a) The box length Lz is kept constant as indicated, while the cross-
sectional area L2 is increased linearly. (b) The area L2 is fixed and Lz is varied, as
indicated. Note that in (b), the curves are not perfectly equal. This hints at some
non-trivial finite-size scaling behavior, which will be discussed in the next chapters.

by straight line fits whose slope is fixed at −x⊥ = −3/4, which is the expected
value for periodic boundary conditions in a canonical ensemble, as given in Table 5.1.
This is true for all three different cross-section areas L2, giving confidence that the
ensemble switch method can also be applied to off-lattice systems. Note that these
fits do not give an estimate on γ∞ but can only serve to test the scaling ansatz.

Examining Figure 6.2 more closely, one observes that there are preliminary data
points included which do not follow the expected dependence but instead seem to
approach the fitted straight line from above (they are omitted from the fit). The
fact that the convergence is quite slow is a consequence of using local moves. In the
previous chapter, the main Monte Carlo move chooses two spins of opposite sign and
makes an attempt to flip them simultaneously. As the spins can be anywhere in the
simulation box, the system can equilibrate quickly and the interface can explore the
whole box by moving in ±z-direction rather fast.

For the Lennard-Jones system, the local moves slow down the movement of the
interface significantly. This can also be seen in Fig. 6.3, where the mean squared
displacement of the interfaces are shown as a function of “time” τ , where time refers
to Monte Carlo steps per particle. Note that the lower set of curves in Fig. 6.3(a)
belongs to local moves while the upper set belongs to nonlocal moves. The mobility
of the interfaces is about a factor 100 larger if using nonlocal moves, which is a
striking result. The diffusion of the interfaces behaves like 〈(z(τ)− z(0))2〉 = 2Dt,
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Figure 6.2: Finite-size scaling of the interfacial tension βγ(L,Lz) at constant L for
the Lennard-Jones fluid. The lines are fits to the data with fixed slope −x⊥ = −3/4,
according to Table 5.1. Local Monte Carlo moves have been used to obtain these
data. The figure also shows additional data points which are not taken into account
by the fit as they are not fully equilibrated (see discussion in the main text).

since it is a random Brownian motion in one dimension. The diffusion constant D
can be extracted from the curves in Fig. 6.3(a) by fitting straight lines. In Fig. 6.3(b)
these diffusion constants are plotted against the inverse cross-section area L−2 of
the system. As is expected, the diffusion constant decreases for larger interfaces,
which are more inert than smaller ones. Comparing local and nonlocal moves, the
diffusion constant is about a factor 100 larger for nonlocal moves. Hence, it is clear
that nonlocal moves1 are the more favorable choice.

During the simulations, we noticed that it is not so much the fact that the interface
has to visit every position in the simulation box. Instead, there are two major types
of configurations. On the one hand, there are configurations, where the interfaces
are at the positions of the boundaries2, which is true for small κ. On the other
hand, near the end of the integration, when the system is almost in the state of
one combined box with two interfaces, the interfaces can be anywhere in the box

1From a conceptual standpoint, the Monte Carlo moves in the Ising model, which conserve magnetiza-
tion by flipping spins of opposite orientation, are equivalent to nonlocal moves in the Lennard-Jones
fluid. Using the lattice gas viewpoint instead of the Ising viewpoint, the flipping of the two spins
means a displacement of a liquid particle from one place to another, which is exactly the definition
of nonlocal moves in off-lattice models.

2Of course the interfaces are created near the boundaries, where the two separate boxes are combined
by shifting the periodic boundary conditions. For more information, please refer to section 4.3.
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Figure 6.3: (a) Mean squared displacement of the interface versus Monte Carlo steps
per particle for a Lennard-Jones mixture. The top set of curves shows data with
nonlocal moves in a box with Lz = 27 and L = 9, 11, 13, 16, 18, 22, 27 (from top to
bottom). The bottom set of curves shows data with local moves for the same box
dimensions. (b) Diffusion constant D versus inverse area L−2 of the interface. With
nonlocal moves, the mobility of the interface is about a factor 100 higher than with
local moves. The mobility of an interface between a hard sphere crystal and fluid is
similar to the liquid-vapor case.

and do not necessarily stay in the vicinity of the boundaries. While the reaction
coordinate κ goes from 0 to 1, the former type of configurations is predominant first
but becomes less dominant while the latter type occurs more often. Of course, at
κ = 0 and κ = 1, the box boundaries have no effect on the system whatsoever but
act as normal periodic boundary conditions.

On the other hand, the interfaces can be anywhere else in the box so that the system
has two interfaces and additionally, the system includes the superposition of periodic
boundary conditions at the boundaries. The latter configurations typically occur
near the end of the integration, where the system is almost in the state of one
combined box and the boundaries have a rather small effect on the system. During
the integration, the former type of configurations is predominant first, but as the
integration proceeds, becomes less dominant while the latter type occurs more and
more often. In Fig. 4.8, one can see how the interface is created near the boundaries.
Once it is fully present, it can move away from the boundary and explore the whole
simulation box.

The transition between the two can only be accurately sampled if the system can
switch often enough between the two types, where “often” is meant in comparison to
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the total simulation time. Since the nonlocal moves promote the movement of the
interface and allow to traverse phase space more quickly, the transition is sampled
with much less effort. However, we shall continue to use both to compare the quality
of the results. It is expected that the results using local and nonlocal moves agree
once the simulations run long enough.

Ignoring what we know about the scaling ansatz Eq. (5.47) for the moment, the bare
results from the ensemble switch method are shown in Fig. 6.4.
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Figure 6.4: Finite-size scaling of the interfacial tension βγ(L,Lz) at constant Lz
for the Lennard-Jones fluid using either local or nonlocal moves, as indicated, and
choosing two values of Lz for each kind of move. Note that the logarithmic corrections
Eq. (5.47) are ignored here. Instead a fit of the form (6.1) is used.

Note that one cannot rate the quality of the data using local or nonlocal moves by
looking at this plot. The figure includes fits of the form

βγ(L,Lz) = βγ∞ +
C1

L
+
C2

L2
(6.1)

including a term C1/L. This is the same ansatz used in section 5.2.3 where similar
results for the three-dimensional Ising model are discussed. As stated there, a
term C1/L should not occur but was used for finite-size scaling in the literature
nevertheless [Block et al., 2010]. Applying this ansatz to the data in Fig. 6.4, the two
sets of data agree in their estimates of βγ∞. Furthermore, the data based on local
moves do not appear to be irregular, although the predictions on βγ∞ for the two
types of moves differ significantly. Also, the constants C1 and C2 differ depending on
which kind of moves are used. The fact that the convergence using nonlocal moves
is much better [cf. Fig. 4.12] indicates that the quality of the data using nonlocal
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moves is much more reliable. Note that one would not be able to rate the quality of
the data using local moves without the nonlocal data. The term C1/L, which should
not occur at all, is more dominant in the case of local moves, which implies that it
rather reflects the insufficient equilibration of the simulations.

So far, we did not make use of the logarithmic corrections predicted in chapter 5.
The picture becomes much clearer if we now make use of Eq. (5.47) by subtracting
the logarithmic corrections, as done in Eq. (5.69), so that the reduced interfacial
tension is given by

βγ̃(L,Lz) = βγ(L,Lz) +
x⊥ lnLz − x‖ lnL

L2
= βγ∞ +

C1

L
+
C2

L2
(6.2)

where we still allow the unphysical contribution C1/L. Fig. 6.5 shows the results.

It is striking that after the subtraction of the logarithmic contributions, the coefficient
C1 is much smaller for both kinds of moves. This indicates that in previous analyses,
the logarithmic corrections might have been interpreted as corrections of order L−1.
In the nonlocal case, the coefficient C1 is almost negligibly small and can be omitted
from the fit. Then the data are perfectly represented by the scaling ansatz Eq. (5.47)
with C2 being the constant C in Eq. (5.47). Also the data at different Lz nicely
collapse. The data based on local moves are also compatible with the assumption
that C1 = 0. If C1/L is allowed, the prediction of βγ∞ is systematically smaller,
which is due to the combined problem of insufficient equilibration and a flawed ansatz
for the fit.
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Figure 6.5: Finite-size scaling of the reduced interfacial tension βγ̃(L,Lz). The same
data as in Fig. 6.4 is used, but the logarithmic corrections are subtracted. The fit
parameters in (a) are γ∞, C1 and C2, while in (b), C1 is set to zero.
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In summary, using nonlocal moves greatly increases the sampling performance of
the method in the context of liquid-vapor interfaces. The data suggest that the
interfacial tension at the chosen temperature is βγ∞ = 0.3745± 0.0005. This result
is consistent with an earlier result for the same model [Block et al., 2010].

As the method is now tested and yields reliable information on the interfacial tension,
another production run with another Lz could further improve the prediction if
necessary. We feel that these data indicate that a valid and versatile approach to
study interfacial tensions between coexisting phases in simple and complex fluids
and fluid mixtures has been developed, and expect that this approach will be taken
up by other research groups in the future. A very interesting question at this point
is, however, whether crystal-liquid interfaces can also be covered by Eq. (5.47). This
is the main topic of section 6.2.

6.2 Solid-Liquid Interfaces

We now focus on the solid-liquid transition. In the case of hard spheres, we will
instead use the term fluid since in this model, there is only a fluid phase and no
further phase separation into liquid and vaporous phase. As discussed in section 4.2,
solid-liquid interfaces are conceptually much more delicate, which is why predictions
of the interfacial tensions spread so much [cf. Fig 4.1]. The main goal here is to
test whether the finite-size scaling ansatz, which has been established for off-lattice
liquid-vapor interfaces, is also valid in the solid-liquid case. An affirmative answer
would greatly improve any simulation algorithm, since the finite-size scaling is then
much clearer.

Note that the crystal structure makes nonlocal moves inappropriate, as the acceptance
probability of removing a particle from the crystal and inserting it somewhere else in
the crystal (or in the dense fluid surrounding the crystal) is extremely small. Even if
such moves were possible, they would create defects and destroy the crystal structure.
Hence we use local moves, which rather mimic typical fluctuations in the crystal,
where a particle fluctuates around its equilibrium position, and analyze whether we
have a similar effect from the small mobility. A very important complication is that
there is not just an unique solid-fluid interface, but one must take the dependence of
the interface orientation relative to the crystal lattices axes into account. Here, we
focus on the (100), (110) and (111) orientations.

Since the crystalline structure determines the box dimensions, it is in general no
longer possible3 to choose Lx = Ly = L. If we instead fix the ratio Ly/Lx in three

3For an fcc crystal with (100) orientation, Lx = Ly is compatible with the crystalline structure, but
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dimensions, Eq. (5.47) translates into

βγ(Lx, Ly, Lz) = βγ∞ − x⊥
lnLz
LxLy

+ x‖
lnLx
LxLy

+
C

LxLy
(6.3)

with the same x⊥ and x‖ but a different constant C. The reason behind this is that in
three dimensions, the only contribution to the term with x‖ is the domain breathing
effect [see section 5.1.2], where all the (d − 1)-directions parallel to the interface
contribute equally to a term ln(Ld−1). Hence we can write in three dimensions

ln
(
Ld−1

)
→ ln (LxLy) = ln

(
L2
x

)
+ ln

(
Ly
Lx

)
= ln

(
Ld−1
x

)
+ const

(6.4)

where the second term merely changes the constant C. Hence one can define a
reduced interfacial tension as

βγ̃(Lx, Ly, Lz) = βγ(Lx, Ly, Lz) +
x⊥ lnLz − x‖ lnLx

LxLy

= βγ∞ +
C

LxLy
.

(6.5)

We shall now consider hard spheres first and the soft effective AO model afterwards.

6.2.1 Finite-Size Scaling for Hard Spheres

For the study of hard spheres, we use the coexistence packing fractions ηs = 0.545
and ηf = 0.494 [Hunter and Weeks, 2012] and the particle diameter σ = 0.902875,
as stated in section 4.5. Figure 6.6 shows typical free energies ∆F (κ) for the free
energy F (κ) along the integration path for the hard sphere case. For a discussion of
the shape, please refer to section 4.5.

Proceeding as before, consider the dependence on the linear dimension Lz first. The
data is more noisy than for the previous models, especially for the (111) direction.
This is due to the limited amount of computing power and the increased demand
for computing time necessary for each point. Additionally, as only local moves
are possible, the sampling of the translational degrees of freedom of the interfaces
requires much more computing time than in the liquid-vapor case. Nevertheless,
the data in Fig. 6.7 indicates that the finite-size scaling ansatz Eq. (5.47) [or the

this is an exception.
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at constant box length Lz, as indicated. Note that the lengths are not given in units
of σ = 0.902875 but in units of the lattice spacing, which is set to 1.

modified version Eq. (6.3), respectively] still holds for solid-liquid interfaces, where
the slope is expected to be −x⊥ = −3/4 according to Table 5.1. This result had to
be expected, since the final system (an elongated simulation box with a crystal slab
separated by two interfaces oriented along the z-axis) is translationally invariant in
z-direction due to periodic boundary conditions, and so (in full equilibrium) picks
up an entropy contribution due to translation of the slab. The nontrivial question,
of course, is whether this translational degree of freedom is actually picked up by
the simulation algorithm (or rather stays “quenched” due to the limited investment
of computing time).

The next step is to use Eq. (6.5) to determine the interfacial tension for various
crystalline orientations. The results using the ensemble switch method are shown
in Fig. 6.8. The data is compatible with a fit as predicted by Eq. (6.5), suggesting
that indeed, the finite-size scaling analysis developed in chapter 5 is also valid for
solid-liquid interfaces. The figure includes two data series for each orientation, each
with a different Lz. After the subtraction of the logarithmic terms, the reduced
interfacial tension should no longer depend on Lz, apart from higher order terms.
Therefore, the discrepancy between the two sets can serve as an error estimation for
the method. The resulting values are

fcc (111): βγ∞ = 0.518 , (6.6a)
fcc (110): βγ∞ = 0.562 . (6.6b)
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Figure 6.7: Finite-size scaling of the interfacial tension βγ(Lx, Ly, Lz) at constant
Lx and Ly. The particle diameter is σ = 0.902875 and the cross-section areas are
Lx = 6.00σ, Ly = 5.20σ for the (111) orientation, Lx = 4.00σ, Ly = 4.24σ for the
(110) orientation and Lx = 5.66σ, Ly = 5.66σ for the (100) orientation. The lines are
fits with a fixed slope of −x⊥ = −3/4.

The fact that the (111) orientation has the lowest interfacial tension is in accordance
with previous results, see Table 4.1. It is an interesting task to also compute the
interfacial tension for the (100) orientation, but this must be left to future work. In
the first place, these results show that the ensemble switch method combined with the
finite-size scaling analysis presented in this thesis is a valuable tool to calculate the
interfacial tension of solid-liquid interfaces. The results also indicate that finite-size
effects have a considerable influence on the results and should not be neglected.

6.2.2 Finite-Size Scaling for the Soft Effective AO Model

As the soft effective AO model, which was introduced in section 2.3.4, is of interest
for current work within our group, it was one task to produce results about the
interfacial tension of the solid-fluid interface and especially the anisotropy. Therefore,
three crystalline orientations are discussed here, namely (100), (110) and (111).
Similarly to hard spheres, the (111) is expected to have the lowest interfacial tension.
This can also be seen in Fig. 4.1.

Due to limited time and resources, the data in Fig. 6.9 does not contain data for
two different Lz for all orientations. For future work, it is recommendable to always
use at least two different values of Lz to have a consistency check and estimate the



148 CHAPTER 6. INTERFACIAL TENSION BEYOND THE ISING MODEL

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

in
te

rf
a

c
ia

l 
te

n
s
io

n
 β

γ~
(L

x
, 

L
y
, 

L
z
)

inverse interfacial area 1/(Lx Ly)

fcc111: Lz=29.39, βγ∞=0.5229, C2=-1.27
fcc111: Lz=39.19, βγ∞=0.5124, C2=-1.39
fcc110: Lz=24.00, βγ∞=0.5665, C2=-0.95
fcc110: Lz=30.00, βγ∞=0.5582, C2=-0.84

Figure 6.8: Finite-size scaling of the reduced interfacial tension βγ̃(Lx, Ly, Lz) for a
hard-sphere solid-fluid coexistence at constant box length Lz. Various crystalline
orientations are shown, as indicated. Note that the lengths are not given in units of
σ = 0.902875 but in units of the lattice spacing, which is set to 1. Fits of the form
as in Eq. (6.5) are included along with the resulting values of the fit parameters.
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Figure 6.9: Finite-size scaling of the reduced interfacial tension βγ̃(Lx, Ly, Lz) for the
soft effective AO model at constant box length Lz. Various crystalline orientations
are shown, as indicated. Fits of the form as in Eq. (6.5) are included along with the
resulting values of the fit parameters.
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error. However, the data below is convincing enough to allow first conclusions. It
is interesting to see that the two data series for fcc (100) at different Lz agree in
their prediction quite nicely, hinting at a dependable result, at least for the (100)
orientation. The obtained interfacial tensions are

fcc (111): βγ∞ = 1.013 , (6.7a)
fcc (110): βγ∞ = 1.044 , (6.7b)
fcc (100): βγ∞ = 1.039 , (6.7c)

the (111) orientation is the energetically most favorable orientation, while the
interfacial tension of the other two orientations are almost equal.

Since the density gap for the coexisting fluid and solid phases for this model is much
wider than for the hard sphere case [cf. Fig. 2.5], and previous data [Zykova-Timan
et al., 2010] for the effective AO model had indicated an interfacial stiffness twice as
large than for hard spheres, one might speculate that the anisotropy of the interfacial
tension is considerably more pronounced than for hard spheres. Indeed, Fig. 6.9
confirms that the interfacial tensions of the soft effective AO model are about twice
as large as for hard spheres, but the relative differences due to anisotropy have not
increased! This indicates that anisotropy effects on the shape of critical nuclei in this
model should be very small, unlike the case of the Ising model at low temperatures
[cf. chapter 3].

6.3 Further Remarks on Translational Entropy

The convergence of the free energy ∆F (κ) is slowest in the range where the interfaces
can explore the whole simulation box and are no longer fixed to the boundaries [see
Fig. 4.12]. It would be desirable to somehow get rid of this effect. In fact, many
methods make an attempt to prohibit any movement of the interfaces along the
z-direction, for example the method of Davidchack [cf. section 4.2 and the references
given there], where runs are thrown away if the interface has moved “too far”. Of
course, there is some undesirable arbitrariness in such a procedure. The problem is
that all constraints on the interfaces must be gone in the final state. Therefore, all
the simulations presented in this thesis take the effects of translational entropy into
account.

During the work on off-lattice systems, some new ideas arose on how to possibly
enhance the simulation performance. Although the value of these new ideas has not
yet been established, they nevertheless are listed here as an inspiration for future
work.
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6.3.1 Collective canonical Moves

A simple approach would be to enhance the translational freedom and help the
interface to explore the full box faster. This is especially desired if nonlocal canonical
moves are not an option. A straightforward strategy to achieve this is to implement
collective canonical moves. Such a move consists of choosing a random vector and
translate all particles at the same time by this vector. Note that in an ordinary
system with periodic boundary conditions, the energy difference ∆E is zero, because
the distances between the particles are unaltered. However, for the intermediate
states in the ensemble switch method, namely those with 0 < κ < 1, the boundary
regions, i.e. the volume around the box boundaries of two boxes are glued together,
introduce an inhomogeneity into the box so that the collective canonical moves
become non-trivial moves, moving the interface through the box much faster than
with local canonical moves. Because these moves are attempted and accepted with the
standard Metropolis criterion and the random translation vector is chosen randomly,
then detailed balance is fulfilled and the move is a valid Monte Carlo move.

While this move is quite expensive, as all particles have to be moved and the total
energy has to be recalculated, it is sufficient to use it only with a low frequency.
Collective canonical moves have not been used to produce any results in this thesis,
but the results of preliminary tests look promising.

6.3.2 Introducing a Center-of-Mass Potential

Another idea is to fix the center of mass of the system, which is always situated in
the center of the denser of the two phases using some weak potential of the form

Vcom(Rz) =
A

V
(Rz −Rz,0)2 (6.8)

where A is the amplitude, V is the volume and Rz,0 is the reference position. This
potential acts on the z-component only and provides a restoring force towards the
reference position. Since the interfacial mobility is proportional to the inverse of
the area [see also section 6.1.2], the volume V in the denominator ensures that the
potential vanishes in the thermodynamic limit, where the mobility of the interface
vanishes also.

Unfortunately, when applying this ansatz, the potential changes the scaling behavior
in a non-trivial way. Since no systematic dependence on A was found, this idea was
abandoned.
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6.3.3 Freezing

A straightforward method to suppress movement in z-direction is to fix (or “freeze”)
some layers of particles in the system, e.g. a few crystal layers in the center of the
crystalline region. The term freezing means that these particles are never taken into
account for canonical moves. Instead they remain at their respective initial positions.
Naively, one would assume that this is an elegant way to solve the problem.

However, the use of this approach is doubtable. The frozen planes act like additional
interfaces in the system, and although their contribution to excess free energies
presumably is very small, it still could be comparable to other finite-size corrections.

6.3.4 Using Walls

One can think of geometries where one uses walls and thereby create a situation
where the interface is in the center of the box on average, similarly to antiperiodic
boundary conditions or fixed-spin boundary conditions. Although this reduces the
number of interfaces from two to one, adding walls introduces additional parameters
to the system which themselves are not known very well. While the wall excess free
energies can be obtained by independent simulations for both phases [Deb et al.,
2012a], it is not obvious that in the end, the accuracy would be better than reached
in Figs. 6.8 and 6.9.

6.4 Conclusion

In this chapter, the finite-size scaling ansatz was verified to be applicable to liquid-
vapor and solid-liquid interfaces. As an example system for the liquid-vapor case, a
truncated and shifted Lennard-Jones fluid was used, while for the solid-liquid case,
hard spheres are considered, for they are of special interest as a reference system
to test new methods. The ensemble switch method successfully confirms that the
scaling ansatz still works for off-lattice models. Unfortunately, the results for the
hard spheres and the soft effective AO model have only preliminary character. More
definite results will require additional large scale simulations, and such an effort must
be left to future work.
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Chapter 7

Summary & Outlook

The main goal of this thesis was the study of the interfacial tension. This involved
two parts. First, a preliminary examination of anisotropy effects was undertaken.
Within the Ising model, it was found that macroscopic droplets below the roughening
temperature have facets and assume a more and more cubic shape if the temperature
is lowered. Above the roughening temperature, the facets disappear and the shape
becomes rather spherical, but a closer examination shows that the shape is still
anisotropic up to about 85% of the critical temperature. Since classical nucleation
theory (CNT) always assumes perfectly spherical droplets, the deviation of the shape
in the simulation leads to an underestimation of the nucleation barrier by CNT.
Another result of this examination is that it is possible to distinguish at each lattice
site between the droplet and its surroundings by taking into account the definition
of physical clusters. It was shown that the presented definition correctly predicts the
volume of droplets in the thermodynamic limit. However, in finite systems, there
is still a deviation left due to surface excess particles. In contrast to the physical
clusters, the geometrical cluster definition tremendously overestimates the droplet
volume at high temperatures. Therefore, the use of the physical cluster definition is
more sensible and highly recommended in the future.

The second part of this thesis focused on the accurate prediction of the interfacial
tension, especially for solid-liquid interfaces, where current methods face difficulties
and disagree with each other within their respective error bars. The investigation
of this thesis to approach this problem consists of two components. First, a new
simulation scheme called ensemble switch method is introduced which can be used to
estimate the interfacial tension of liquid-vapor interfaces and solid-liquid interfaces.
The second ingredient is a systematic finite-size scaling, for only then one can
accurately predict the interfacial tension via extrapolation to the thermodynamic
limit. In this context, a universal finite-size scaling ansatz has been proposed,
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which is motivated by taking into account the entropic degrees of freedom of the
interface(s) in the system. From the effects we have discussed, including a new
mechanism called domain breathing, two logarithmic corrections arise, featuring
universal prefactors which only depend on the chosen boundary conditions, ensemble
and the dimensionality d of the box.

These two ingredients have been combined to predict the interfacial tension for
solid-liquid interfaces. Prior to that, the ensemble switch method and the finite-size
scaling ansatz are thoroughly tested

1. for the two-dimensional Ising model, where the interfacial tension is known
exactly,

2. for the three-dimensional Ising model, in order to test the ansatz in three
dimensions,

3. for the three-dimensional Lennard-Jones model to validate the method and the
ansatz in case of an off-lattice liquid-vapor interface and finally

4. for hard spheres as a prototype of a system with solid-liquid interfaces.

As has been demonstrated for the example of hard spheres [Table 4.1 and Fig. 4.1],
previous methods to compute interfacial tensions may lead to results that systemati-
cally (far outside the error bars) disagree with each other, and the sources of these
errors are not understood. Even for the much simpler case of the Ising model, a
comprehensive analysis of systematic errors due to finite-size effects (simulations
always deal with finite systems!) does not exist in the literature. Therefore, it was
an inevitable and useful task for this thesis to try to fill this gap, and it can be
said that for the Ising model, the situation is now fully understood, and also for
interfaces between liquid and vaporous phases, a practically useful well-validated
methodology has been developed. Also for the more difficult problem of solid-liquid
interfaces, promising first steps for hard spheres and the soft effective AO model
have been taken. The corresponding sections contain preliminary results, but it is
clear that more work on the problem of solid-liquid interfaces is desirable, although
a substantial investment of additional computer resources will be needed. Thus,
this task must be left for future work. The machinery consisting of the ensemble
switch method and the finite-size scaling ansatz is now well tested and ready to be
applied to arbitrary interfaces between bulk phases. Of course, there is some room for
conceptual improvement, and possible extensions have been discussed. Currently, the
Monte Carlo program is highly parallelized, so it is very flexible for any architecture
on supercomputers, making it a valuable and performant tool to predict interfacial
tensions.
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One immediate application of the results for the soft effective AO model is the shape
of crystalline colloidal nuclei [Statt, 2015], which is completely determined by the
anisotropy of the interfacial tension. Of course, compared to the Ising model droplets
in this thesis, crystalline nuclei are more complicated and their shape is the result of
the interplay of the interfacial tensions in different directions. The scope of this thesis
allows to expect an anisotropy between the minimal and the maximal interfacial
tension of up to 5%, where the (111) orientation is much more favorable compared
to the (110) and (100) directions.
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Appendix A

Supplementary Information

A.1 The CapillaryWave Contribution to Finite-Size
Scaling of the Interfacial Tension

In section 5.1.2, when discussing capillary waves and their influence on the finite-
size scaling behavior, the contribution from capillary waves was motivated in two
dimensions. An alternative treatment of the problem, which is not limited to
two dimensions, starts with the capillary wave Hamiltonian. The capillary wave
Hamiltonian of a two-dimensional interface in three-dimensional space is (see also
section 2.5)

H =

∫ L

0

dx
∫ L

0

dy
κ

2
|∇h(x, y)|2 . (A.1)

The Hamiltonian for a one-dimensional interface in two-dimensional space is

Hcw =
κ

2

∫ L

0

dx
∣∣∣∣dh(x)

dx

∣∣∣∣2 . (A.2)

In both cases, κ is the interfacial stiffness and the function h(x) or h(x, y) parametrizes
the interface. In this picture, there cannot be any overhangs. However, this can
always be fulfilled after proper coarse-graining. By introducing the Fourier transform
hq of h(x, y) or h(x), respectively, one obtains the capillary wave Hamiltonian

Hcw =
κ

2

(
L

2π

)d−1 ∫
dd−1q q2h∗qhq (A.3)

Since this Hamiltonian is harmonic, its partition function can be computed exactly.
Note that hq and h∗q are independent variables corresponding to independent modes.
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The partition function lnZcw and hence the free energy βFcw = − lnZcw in the
thermodynamic limit can be written in terms of path integrals

Zcw =

∫
Dhq

∫
Dh∗q exp

(
βκ

2

(
L

2π

)d−1 ∫
dd−1q q2h∗qhq

)
(A.4)

We consider the two-dimensional case first. Being interested in the effects on a finite
interface in a box of size L× Lz with periodic boundary conditions parallel to the
interface, it is convenient to introduce a lattice structure (with lattice spacing a)
which provides a cutoff at large wavelengths. Write L = Na with lattice spacing
a and an even number N . Of course, for the Ising model, such a lattice structure
is provided by the model itself. In a finite box with a finite lattice spacing, the
spectrum of possible wavenumbers q is discrete. The Hamiltonian (A.3) is replaced
by

Hcw =
κ

2

∑
ν

q2
νh
∗
νhν (A.5)

with wavenumbers qν = 2πν
N
, ν = 1, 2, . . . , N . The mode q0 = 0 is excluded, because

it reflects translation of the interface as a whole. The partition function (A.4) then
becomes

ZN =
N∏
ν=1

∫ ∞
−∞

dhν
∫ ∞
−∞

dh∗ν exp

(
−βκ

2
q2
νh
∗
νhν

)
. (A.6)

To solve the integral, write hν = X + iY and h∗ν = X − iY and use∫ ∞
−∞

dhν
∫ ∞
−∞

dh∗ν exp (−αh∗νhν) =

∫ ∞
−∞

dX
∫ ∞
−∞

dY exp
(
−α(X2 + Y 2))

)
=
π

α
(A.7)

so that

ZN =
N∏
ν=1

2π

βκq2
ν

=

(
1

2πβκ

)N N∏
ν=1

N2

ν2
(A.8)

and the free energy is

βFN = − lnZN = N ln(2πβκ) + 2
N∑
ν=1

ln
( ν
N

)
(A.9)

The capillary wave contribution to the interfacial tension can then be written in the
limit of an infinitely fine lattice as

β∆γcw = lim
N→∞

βFN
N

= ln(2πβκ)− 2 (A.10)
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having used

lim
N→∞

1

N

N∑
ν=1

ln
( ν
N

)
=

∫ 1

0

ln(s)ds = [s ln s− s]10 = −1 . (A.11)

The finite-size behavior of the interfacial tension is determined by the way in which
the limit N →∞ of this sum is approached. Therefore consider

S2(N) =
1

N

N∑
ν=1

ln
( ν
N

)
(A.12)

The dependence of S2(N) of the discretization N is expected to be of the form [see
also Eqs. (5.28) and (5.33)]

S2(N) = A+B
lnN

N
+
C

N
(A.13)

with A = −1 as shown in (A.11). To test this, it is easier to consider the first
derivative

N2dS2

dN
= B − C −B ln(N) (A.14)

and plot the result against ln(N). Fig. A.1 shows that the derivative becomes linear
for large N with slope −1/2, yielding B = 1/2 and C = 0.919489. The fact that the
logarithmic correction has a prefactor B = 1/2 agrees with Eqs. (5.28) and (5.33).

Now, the case d = 3 will be discussed briefly, as the calculation is similar to d = 2.
The capillary wave Hamiltonian after Fourier transformation is

Hcw =
κ

2

∑
νx

∑
νy

νx+νy 6=0

q2
νx,νy |hνx,νy |

2 (A.15)

where qνx,νy = (qνx , qνy)> with qνx = 2πνx
N
, νx = 0, 1, 2, . . . , N and qνy = 2πνy

N
, νy =

0, 1, 2, . . . , N . Note that the wave vector q0,0 = (0, 0)> has to be excluded. The
partition function is

ZN =
N∏

νx=1

N∏
νy=1

νx+νy 6=0

∫ ∞
−∞

dhνx,νy

∫ ∞
−∞

dh∗νx,νy exp

(
−βκ

2
q2
νx,νyh

∗
νhν

)
. (A.16)

The computation of the integrals can be calculated as in d = 2, resulting in

ZN =
N∏

νx=1

N∏
νy=1

νx+νy 6=0

2π

βκq2
νx,νy

=
N∏

νx=1

N∏
νy=1

νx+νy 6=0

2πN2

4π2βκ
(
ν2
x + ν2

y

) =

(
1

2πβκ

)N2 N∏
νx=1

N∏
νy=1

νx+νy 6=0

N2

ν2
x + ν2

y

(A.17)
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Figure A.1: Plot of N2dS2(N)/dN in (A.12) against ln(N). The linear fit uses data
between lnN ≥ 10. For lnN ≥ 14, one can see noise arising from rounding errors.
To increase precision, the summands were sorted from small to large and double
precision was used. The derivative at one point is done numerically by taking the
average of the slopes between the point and both neighboring points.

and the free energy

βFN = − lnZN = N2 ln (2πβκ) +
N∑

νx=1

N∑
νy=1

νx+νy 6=0

ln

(
ν2
x + ν2

y

N2

)
. (A.18)

The limit N →∞ can be calculated explicitly

lim
N→∞

1

N2

N∑
νx=1

N∑
νy=1

νx+νy 6=0

ln

(
ν2
x

N2
+
ν2
y

N2

)
=

∫ 1

0

du
∫ 1

0

dv ln
(
u2 + v2

)
=
π

2
+ ln(2)− 3

Hence
βγcw = lim

N→∞

βFN
N2

= ln(2πβκ) +
π

2
+ ln(2)− 3 (A.19)

To study the finite-size behavior, consider

S3(N) =
1

N2

N∑
νx=0

N∑
νy=0

νx+νy 6=0

ln

(
ν2
x

N2
+
ν2
y

N2

)
. (A.20)
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Note that the mode q = (0, 0) has to be excluded in this sum. Motivated by the
considerations preceding Eq. (5.34), one expects the asymptotic dependence of N to
be of the form

S3(N) = A+B
ln(ln(N))

N2
+

C

N2
(A.21)

where A = π
2

+ ln(2) − 3 and the 1/N2 comes from the division by Ld−1. The
results are shown in Fig. A.2. Contrary to the expectation, the dominant term
is a C/N -contribution. The appearance of such a term indicates that the above
treatment is flawed. A possible reason is the dominant role of short wavelengths in
S3(N). In capillary wave theory in three dimensions, a short wavelength cutoff has
to be introduced [cf. Eq. (2.61b)], but the cutoff length is arbitrary. Therefore,
in the above calculation, one has to exclude large wave vectors. Indeed, we found
that the exponent α in the term C/Nα varies from 1 to about 1.8 as we restrict the
integration to wave vectors q with |q| < qmax with different values of qmax.

In face of such a contribution, we cannot expect to unambiguously identify a subtle
ln(ln(N))-term. If it exists, it is beyond the current level of accuracy, and we are
safe to assume that the considerations given in section 5.1.2 are valid.
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Figure A.2: Plot of S3(N) − A from (A.20) against N , where A = π
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Apart from numerical results, the finite-size residual has been calculated analytically
using Mathematica 7 to check whether the numerical results suffer from numerical
inaccuracies. The data are well represented by a fit of the form C/N .
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