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Abstract

This work considers direct and inverse transient eddy current problems.

Transient excitation currents generate electromagnetic �elds, which in turn in-
duce electric currents in proximal conductors. For slowly varying �elds this can be
described by the eddy current equation, an approximation to Maxwell's equations.
It is a linear partial di�erential equation with non-smooth coe�cients and of mixed
parabolic-elliptic type.

The direct problem consists of determining the electric �eld as the distribu-
tional solution of the equation from knowledge of the excitation and the coe�-
cients describing the considered medium. Conversely, the �elds can be measured
by measurement coils. The inverse problem is then to infer information about the
coe�cient describing the conductors from these measurements.

This work presents a variational solution theory and discusses if the equation
is well-posed. Furthermore, the solution's behavior for vanishing conductivity co-
e�cient is studied and a linearization of the equation without conducting object
towards the appearance of a conducting object is given. Two modi�cations are
proposed to regularize the equation, which lead to a fully parabolic, respectively, a
fully elliptic problem. Both are veri�ed by proving the convergence of the solutions.
Finally, considering the inverse problem of locating the conductors surrounded by
a homogeneous medium and using linear sampling and factorization methods, it is
shown that their position and shape are uniquely determined by the measurements.
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Zusammenfassung

Die vorliegende Arbeit behandelt Vorwärts- sowie Rückwärtstheorie transienter
Wirbelstromprobleme.

Transiente Anregungsströme induzieren elektromagnetische Felder, welche soge-
nannte Wirbelströme in leitfähigen Objekten erzeugen. Im Falle von sich langsam
ändernden Feldern kann diese Wechselwirkung durch die Wirbelstromgleichung,
einer Approximation an die Maxwell-Gleichungen, beschrieben werden. Diese ist
eine lineare partielle Di�erentialgleichung mit nicht-glatten Koe�zientenfunktionen
von gemischt parabolisch-elliptischem Typ.

Das Vorwärtsproblem besteht darin, zu gegebener Anregung sowie den umge-
bungsbeschreibenden Koe�zientenfunktionen das elektrische Feld als distributio-
nelle Lösung der Gleichung zu bestimmen. Umgekehrt können die Felder mit Mess-
spulen gemessen werden. Das Ziel des Rückwärtsproblems ist es, aus diesen Mes-
sungen Informationen über leitfähige Objekte, also über die Koe�zientenfunktion,
die diese beschreibt, zu gewinnen.

In dieser Arbeit wird eine variationelle Lösungstheorie vorgestellt und die Wohl-
gestelltheit der Gleichung diskutiert. Darauf aufbauend wird das Verhalten der Lö-
sung für verschwindende Leitfähigkeit studiert und die Linearisierbarkeit der Glei-
chung ohne leitfähiges Objekt in Richtung des Auftauchens eines leitfähigen Objek-
tes gezeigt. Zur Regularisierung der Gleichung werden Modi�kationen vorgeschla-
gen, welche ein voll parabolisches bzw. elliptisches Problem liefern. Diese werden
veri�ziert, indem die Konvergenz der Lösungen gezeigt wird. Zuletzt wird gezeigt,
dass unter der Annahme von sonst homogenen Umgebungsparametern leitfähige
Objekte eindeutig durch die Messungen lokalisiert werden können. Hierzu werden
die Linear Sampling Methode sowie die Faktorisierungsmethode angewendet.
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Chapter 1

Introduction

Eddy currents are electric currents induced within conductors by a temporally
changing (transient) magnetic �eld. The term eddy current comes from the fact,
that the �ow lines are closed as eddies without default paths. Mathematically,
the interaction between the source inducing the magnetic �eld, the coe�cients
representing the considered medium and the resulting electric �eld can be described
by the eddy current equation.

Various applications of direct and inverse eddy current applications are running
across our daily life. To mention a few, we have eddy current brakes or induction
heating. Inverse eddy current problems occur for instance in non-destructive testing
and magnetic induction tomography. The latter is an imaging technique used to
display electromagnetic properties of objects. Moreover, eddy current e�ects are
used in metal detectors. Here, an important application is land mine detection,
where a source current in an inductor coil is used to generate electromagnetic �elds
that, in turn, induce currents in a buried conductor. The resulting change in the
magnetic �eld can then be measured by a receiver coil, so that one may try to
reconstruct information about the buried object.

The subject of this work is the mathemathical analysis of direct and inverse
problems for this equation. Besides questions like existence and uniqueness of
solutions of the direct problem, we are concerned with the solution's dependence
on the conductor. Beyond that, we study the inverse shape detection problem
whether the conductor can be detected from electromagnetic measurements, that
is, from partial knowledge of the solutions.

The transient eddy current equation

Let us start with a formulation of the transient eddy current problem. Transient
excitation currents J(x, t) generate electric and magnetic �elds E(x, t) and H(x, t),
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CHAPTER 1. INTRODUCTION

which can be described by Maxwell's equations

curlH = ε∂tE + σE + J,

curlE = −µ∂tH,

where the operator curl acts on the three spatial coordinates, ∂t denotes the time-
derivative, and (under the assumption of linear and isotropic time-independent
material laws) σ(x), ε(x) and µ(x) are the conductivity, permittivity and perme-
ability of the considered domain, respectively, material.

For slowly varying electromagnetic �elds, the displacement currents ε∂E
∂t

can be
neglected. This leads to

curlH = σE + J,

curlE = −µ∂tH,

and after eliminating H, to the transient eddy current equation

∂t(σE) + curl

(
1

µ
curlE

)
= −∂tJ. (1.1)

The eddy current model is well-established in the engineering literature, see
for instance Albanese and Rubinacci in [AR90] or Dirks in [Dir96]. A rigorous
mathematical justi�cation has been derived by Alonso in [Alo99], Pepperl [Pep05]
and Ammari et al. in [ABN00] in case of time-harmonic excitations. [ABN00,
Section 8] also justi�es the transient model when the excitation is composed of
low-frequency components. While time-harmonic eddy current problems are well
studied, see, for instance the book of Alonso-Rodríguez and Valli [RV10] and the
references therein, we consider transient eddy current problems in this work.

The direct problem

The direct problem consists of determining the solution E of (1.1) from knowledge
of the excitation J and the coe�cients σ and µ describing the considered medium.

In a typical application the domain under consideration consists of both, con-
ducting regions (σ(x) > 0) and non-conducting regions (σ(x) = 0). An interesting
consequence is the fact that equation (1.1) is of parabolic-elliptic type. The physical
interpretation is that the time-scale is di�erent in the conducting and the insulating
region. In the insulating regions, the �eld instantaneously adapts to the excitation
(quasi stationary elliptic behavior), while in the conducting regions, due to eddy
currents induced by the varying electromagnetic �elds, this adaptation takes some
time (parabolic behavior). A particular consequence is that equation (1.1) (to-
gether with meaningful initial values) does not determine its solution E uniquely.
To be precise, the equation only determines curlE and σE. Beside the fact that
the solution is not unique, several applications such as inverse problems, sensitivity

2



considerations, or the regularization of the equation require a variational solution
theory that should be somehow independent from σ, and in particular, indepen-
dent from the conducting domain. It turns out to be mathematically challenging
to derive such a varational solution theory and then to solve the direct problem of
determining the (unique part of the) solution E of (1.1).

In this work, we derive a variational formulation for the eddy current equation
that is uni�ed with respect to σ. To be more precise, we present a variational for-
mulation independent from the conducting domain, that is uniquely solvable, and
whose solution represents all solutions of the equation. We then use our formula-
tion to study the solution's sensitivity on the conductivity for σ → 0. Moreover,
we analyze the change of the solutions of the equation without conducting object
with respect to the problem becoming parabolic in some parts.

In some applications, for instance for computational reasons, one tries to over-
come the non-uniqueness of the solutions of (1.1). One natural possibility is to
regularize the problem by setting the conductivity to a small value in the non-
conducting region. In that way, the eddy current equation is made fully parabolic
and uniquely solvable. Analogously, an elliptic regularization can be established.
The aim of this work is to verify these regularizations. The main tool here is our
uni�ed variational formulation: It covers both, the original and the regularized
equation and thus enables us to prove the convergence of the solutions.

The inverse problem

Conversely, the induced electromagnetic �elds can be measured by sensing coils.
The aim in several practical applications is to obtain information about the electro-
magnetic properties from such measurements. Mathematically, this is the inverse
problem of reconstructing the coe�cients σ and µ in (1.1) from knowledge of the
excitations J and a part of the solutions E of (1.1).

In this work the focus is on locating the conductors surrounded by a non-
conducting medium. More precisely, the aim is to detect the support of the conduc-
tivity coe�cient σ in (1.1) from knowledge of the operator mapping the excitation
currents to measurements of the corresponding electric �elds. We show that the
position and the shape of this support are uniquely determined by the mapping and
to state an explicit criterion to decide whether a given point is inside the sought
domain or not. This criterion might serve as a base for non-iterative numerical
reconstruction strategies.

Overview

We start with a brief introduction of our notation in Chapter 2.

Chapter 3 treats the direct eddy current problem. In case of unbounded do-
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CHAPTER 1. INTRODUCTION

mains, we derive a variational formulation for the equation, that is uni�ed with
respect to the conductivity σ. We then use this formulation to study the case
when the conductivity approaches zero, and linearize the eddy current equation
around a non-conducting domain with respect to the introduction of a conducting
object.

The subject of Chapter 4 is the inverse problem of locating conductors sur-
rounded by a non-conducting medium from electromagnetic measurements. Based
on our solution theory developed in Chapter 3 we show that the conductors are
uniquely determined by these measurements, and give an explicit criterion to decide
whether a given point is inside the conducting domain or not.

The aim of Chapter 5 is to justify two regularizations of the parabolic-elliptic
eddy current equation. Therefore we carry over the results of Chapter 3 to the
case of bounded domains. Then, the eddy current equation is made fully parabolic
by setting the conductivity in the insulating region to a small positive value. We
show that this leads to a well-posed problem whose solutions converge against the
solution of the original parabolic-elliptic eddy current equation. We also consider
an elliptic regularization and show an analogous result there.

Published results

All results of this work have been published or are accepted for publication. All
these publications are joint work with my supervisor Prof. Dr. Bastian von Har-
rach.

The results of the third chapter have been published in the SIAM Journal of
Applied Mathematics under the title "A uni�ed variational formulation for the
parabolic-elliptic eddy current equations" [AH12].

The results of the fourth chapter are accepted for publication in the journal
Inverse Problems under the title "Unique shape detection in transient eddy current
problems" [AH13b].

The results of the �fth chapter are accepted for publication in the Conference
Proceedings of the 4th International Symposium on Inverse Problems, Design and
Optimization (IPDO-2013) under the title "Justi�cation of regularizations for the
parabolic-elliptic eddy current equation" [AH13a]. They are also submitted for
publication in the Journal of Inverse Problems in Science and Engineering. The
decision about the acceptance is still open.
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Chapter 2

Assumptions and notations

Let us start with a short introduction to the assumptions, the frequently used
function spaces, and some notations used throughout this work.

We �x T > 0 and µ ∈ L∞+ (R3), where we denote by L∞+ (R3) the space of
L∞(R3)-functions with positive (essential) in�mum (denoted by inf µ). For the
conductivity coe�cient σ we assume that

σ ∈ L∞(R3)

is (essentially) non-negative and has bounded support.

2.1 Function spaces

Let D(R3), D(]0, T [) and D(R3×]0, T [) denote the spaces of C∞-functions in x, t
and (x, t), which are compactly supported in R3, ]0, T [ and R3×]0, T [, respectively.
We also use the notations D([0, T [) and D(R3 × [0, T [) for the spaces of restric-
tions of functions from D(]−∞, T [) and D(R3×]−∞, T [) to [0, T ] and R3 × [0, T ],
respectively.

D′(R3) denotes the space of distributions, i.e. the space of continuous linear
mappings from D(R3) to R. D′(R3)3 and D′(R3×]0, T [)3 are de�ned analogously.

For a bounded domain or a �nite union of bounded domains O ⊂ R3, the space
D(O) is de�ned as the space of C∞-functions which are compactly supported in
O. In the same way, we also use the spaces D(O), D(O×]0, T [), D(O× [0, T [) and
the associated distributional spaces.

Let L2
ρ(R3) and W (curl) denote the distributional spaces

L2
ρ(R3) := {e ∈ D′(R3) | (1 + |x|2)−

1
2 e ∈ L2(R3)},

W (curl) := {E ∈ L2
ρ(R3)3 | curlE ∈ L2(R3)3}.
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CHAPTER 2. NOTATIONS AND ASSUMPTIONS

L2
ρ(R3)n, n = 1, 3, and W (curl) are Hilbert spaces with norms

‖ · ‖ρ := ‖(1 + |x|2)−
1
2 · ‖L2(R3)n , and ‖ · ‖2

W (curl) := ‖ · ‖2
ρ + ‖ curl · ‖2

L2(R3)3 .

The space W (curl,R3 \O) is de�ned analogously, and the space H(curl,O) accord-
ingly as the space of L2(O)3-functions having their curl in L2(O)3. We introduce
the Beppo-Levi spaces

W 1(R3) := {e ∈ L2
ρ(R3) | ∇e ∈ L2(R3)3},

W 1(R3)3 := {E ∈ L2
ρ(R3)3 | ∇E ∈ L2(R3)3×3}.

In the latter space, ∇E denotes the Jacobian of E. If O is a bounded Lipschitz
domain with connected complement, W 1(R3 \ O) is de�ned analogously. These
spaces are Hilbert spaces with respect to the norms

‖ · ‖W 1(R3) := ‖∇ · ‖L2(R3)3 ,

‖ · ‖W 1(R3)3 := ‖∇ · ‖L2(R3)3×3 ,

‖ · ‖W 1(R3\O) := ‖∇ · ‖L2(R3\O)3 ,

cf., e.g., [DL00c, IX.A, �1, Remark 7] and [DL00d, XI.B, �1, Theorem 1 and Re-
mark 2], where Theorem 1 also holds for bounded Lipschitz domains with connected
complement, cf. [Gri85, Theorem 1.4.4.1]. Note that D(R3) is dense in L2

ρ(R3) and
in W 1(R3), and that D(R3)3 is dense in L2

ρ(R3)3, in W (curl) and in W 1(R3)3.

We also frequently use the space

W 1
♦ := {E ∈ W 1(R3)3 | divE = 0}, ‖ · ‖W 1

♦
:= ‖ curl · ‖L2(R3)3 .

On W 1
♦ we have

‖ · ‖W 1(R3)3 = ‖∇ · ‖L2(R3)3×3 = ‖ · ‖W 1
♦
,

cf., e.g., the proof of [DL00c, IX.A, �1, Theorem 3], so that W 1
♦ equipped with the

norm ‖ · ‖W 1
♦
is a Hilbert space.

For a Banach space X, we denote by C(0, T,X) and L2(0, T,X) the spaces of
vector-valued functions

E : [0, T ]→ X,

which are continuous on [0, T ], respectively, square integrable on [0, T ], cf., e.g.,
[DL00e, XVIII, �1]. Spaces of functions with vector-valued time-derivatives are
introduced in detail in Subsection 3.2.1.
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2.2. NOTATIONS

2.2 Notations

We denote the dual space of a space H by H ′ and the dual pairing on H ′ ×H by
〈·, ·〉H . The inner product on an inner product space H is denoted by ( · , · )H . In
case of real Hilbert spaces, the inner product and the dual pairing on H ′ ×H are
related by the isometry ιH : H → H ′, that identi�es H with its dual:

〈ιHu, · 〉H := (u, · )H for all u ∈ H.

We denote the dual operator of an operator A ∈ L(H1, H2) between real Hilbert
spaces H1, H2 by A′. For h′2 ∈ H ′2, A′ is de�ned by

〈A′h′2, h1〉H1 := 〈h′2, Ah1〉H2 for all h1 ∈ H1.

We rigorously distinguish between the dual and the adjoint operator, the latter
denoted by A∗. They satisfy the identity A∗ = ι−1

H1
A′ιH2 .

In this work, we frequently use the dual pairing between W (curl)′ and W (curl),
hence in this case we write

〈G,E〉 := 〈G,E〉W (curl) for G ∈ W (curl)′, E ∈ W (curl).

We also write R3
T := R3×]0, T [ and L2(R3

T ) instead of L2(R3×]0, T [) and accord-
ingly L2(OT ), and usually omit the arguments x and t and only use them where
we expect them to improve readability.
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Chapter 3

A uni�ed variational formulation for

the parabolic-elliptic eddy current

equation

In this chapter, we derive a uni�ed variational formulation for the eddy current
equation, that is uniformly coercive with respect to the conductivity and we discuss
the solvability of the eddy current equation. We then use this formulation to study
the case when the conductivity approaches zero. On top of that, we linearize the
eddy current equation without conducting object with respect to the equation being
parabolic in some parts.

The Sections 3.2�3.4 are the Sections 2�4 of the paper [AH12] up to minor
changes.

3.1 Introduction

We consider the transient eddy current equation

∂t(σE) + curl

(
1

µ
curlE

)
= −∂tJ, (3.1)

with the three-dimensional time-dependent electric �eld E(x, t) and the source
current J(x, t). The scalar coe�cients σ(x) and µ(x) denote the conductivity and
the permeability of the considered domain.

We consider a domain that consists of conducting regions (σ(x) > 0) as well as
non-conducting regions (σ(x) = 0), so that equation (3.1) is of parabolic-elliptic
type. A particular consequence is that initial values are only meaningful in the
conducting region. The second consequence is that equation (3.1) (together with
meaningful initial values) does not uniquely determine its solution. It only deter-
mines E up to the addition of a gauge �eld, which is a curl-free �eld that vanishes

9



CHAPTER 3. THE PARABOLIC-ELLIPTIC EDDY CURRENT EQUATION

inside the conductor. However, in many applications one is interested only in the
unique parts σE and curlE of the solution.

For �xed, and in the most cases constant, conductivity, the transient eddy cur-
rent equation has been studied many times. Several variational formulations have
been proposed and used for the numerical solution, such as by Bossavit in [Bos99],
Beck et al. in [BHHW00] and in [BDH+99], and by Flemisch et al. in [FMRW04].
For a well-posed variational formulation of the H-based formulation of the tran-
sient eddy current model, that is obtained by eliminating E instead of the magnetic
�eld H, let us refer to Meddahi and Selgas in [MS08]. For the E-based formula-
tion and constant conductivity, rigorous theoretical results on the well-posedness
of variational formulations can be found by Bachinger et al. in [BLS05], Hömberg
and Sokolowski in [HS03], Jiang and Zheng in [JZ12] and Nicaise and Tröltzsch in
[NT14]. Acevedo et al. in [AMR09] and Kolmbauer in [Kol11] allow also spatially
varying conductivity. All these approaches concentrate on solving the eddy current
equation with a �xed conducting region in which the conductivity is assumed to
be bounded from below by some positive constant. The corresponding variational
formulations, along with their underlying solution spaces and coercivity constants,
depend in some form or another on this lower bound or on the support of the
conductivity. Here, the usual approach is the following. To ensure uniqueness, one
imposes a gauge condition, for instance divE = 0 in the whole or the insulating
part of the domain, where the solution is not unique. Then, one concentrates on
showing the well-posedness of a proposed variational formulation and on how to
solve it numerically. One point that is sometimes neglected here is the question,
whether the solution of the variational equation also solves the eddy current equa-
tion. To the knowledge of the author, there is no completely rigorous variational
solution theory for the eddy current equation (3.1) in the literature so far.

We consider the general case of spatially varying σ. Moreover, for our further
analysis, such as the sensitivity considerations (see Section 3.4), the treatment of
the inverse problem (see Chapter 4) and the regularization of the equation (see
Chapter 5), it turns out to be valuable to have a variational formulation for the
equation that is uni�ed with respect to σ in the following sense: It should not
depend on the support of σ and should be uniformly coercive with respect to σ
and hence uniquely solvable. In particular, the coercivity and continuity constants
should not depend on the lower bound of σ.

In this chapter we derive such a uni�ed variational formulation for the eddy
current equation posed on the whole R3. To be more precise, we present a varia-
tional formulation that is uniformly coercive (and hence uniquely solvable) in the
space of divergence-free functions and whose solution agrees with the true solution
up to the addition of a gradient �eld. At this point it should be stressed that,
for spatially varying σ, the standard variational formulation of (3.1) restricted to
divergence-free functions does not determine the solution up to a curl-free �eld. Al-
though the solution of our variational formulation does not solve the eddy current
equation, we can prove the solvability of the equation in this way: The unique so-
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3.2. FORMULATION OF THE EQUATION IN R3

lution of the variational formulation agrees with every solution of the eddy current
equation up to the addition of a gradient �eld. In this sense, the unique solution
of the variational formulation represents all solutions. In Chapter 5, we moreover
extend our solution theory to bounded domains.

We use our variational formulation to study the solution's dependence on the
conductivity. To the authors knowlegde, there are no rigorous results so far. We
�rst study the limit of the solutions of (3.1) for σ → 0 and prove convergence
against their magnetostatic counterparts, which are the solutions of the equation
with σ ≡ 0. Beyond that, we analyze the solution's sensitivity with respect to
the equation changing from elliptic to parabolic type. The main question here is:
How does the solution of the elliptic magnetostatic problem change if the problem
becomes parabolic in a part of the domain? For a scalar analog, the heat equa-
tion, this question has been answered by Harrach in [Geb07]. In our case, we use
an analogous approach and rigorously determine the directional derivative of the
solutions of (3.1) with σ ≡ 0, with respect to σ, that is, we linearize the solu-
tions of the elliptic (magnetostatic) problem with respect to the solutions of the
parabolic-elliptic problem.

The �rst step towards our uni�ed solution theory is the handling of initial
values. We show that solutions of the equation have vector-valued time-derivatives
and that, for every solution E, the term

√
σE is continuous in time. This enables

us to formulate meaningful initial values independent from the conducting domain.
Here, we follow the theory on the heat equation by Harrach in [Geb07], again.

This chapter is organized as follows: In Section 3.2 we characterize well-de�ned
initial conditions, derive the standard variational formulation for equation (3.1),
and prove the uniqueness of the solution up to gauge �elds. Section 3.3 contains our
main theoretical tool: a uniformly coercive variational formulation that determines
the solution up to the addition of a gradient �eld. This also proves solvability of
the eddy current equation. Finally, in Section 3.4 we use our variational formula-
tion to study the behavior of the solutions when the conductivity approaches zero
and linearize (3.1) without conducting domain with respect to the equation being
parabolic in some parts.

3.2 Formulation of the equation in R3

We consider the space L2(0, T,W (curl)) as the space to look for a solution of the
eddy current equation (3.1).

Generally, it is not the case that every E ∈ L2(0, T,W (curl)) has some well-
de�ned initial values. However, in the following we show that at least every solution
of (3.1) has well-de�ned initial values. Then, we derive a standard variational
formulation and discuss, in what sense uniqueness can be expected.

Throughout this chapter, we assume that we are given the time derivative of

11



CHAPTER 3. THE PARABOLIC-ELLIPTIC EDDY CURRENT EQUATION

the excitation currents

Jt ∈ L2(0, T,W (curl)′) with div Jt = 0 and

E0 ∈ L2(R3)3 with div(σE0) = 0.
(3.2)

3.1 Theorem Let E ∈ L2(0, T,W (curl)). The eddy current problem reads

∂t(σ(x)E(x, t)) + curl

(
1

µ(x)
curlE(x, t)

)
= −Jt(x, t) in R3×]0, T [, (3.3)√

σ(x)E(x, 0) =
√
σ(x)E0(x) in R3. (3.4)

The following holds:

a) For every solution E ∈ L2(0, T,W (curl)) of (3.3) we have
√
σE ∈ C(0, T, L2(R3)3).

b) E ∈ L2(0, T,W (curl)) solves (3.3)�(3.4) if and only if E solves

−
∫ T

0

∫
R3

σE · ∂tΦ dx dt+

∫ T

0

∫
R3

1

µ
curlE · curl Φ dx dt

= −
∫ T

0

〈Jt,Φ〉 dt+

∫
R3

σE0 · Φ(0) dx (3.5)

for all Φ ∈ D(R3 × [0, T [)3.

c) Equations (3.3)�(3.4) uniquely determine curlE and
√
σE.

Moreover, if E ∈ L2(0, T,W (curl)) solves (3.3)�(3.4), then every function
F ∈ L2(0, T,W (curl)) with curlF = curlE and

√
σF =

√
σE also solves

(3.3)�(3.4).

Before we prove Theorem 3.1 in the following subsection, let us stress again
the somewhat subtle point that the initial condition (3.4) is only meaningful for
solutions of (3.3). When we speak of a solution E ∈ L2(0, T,W (curl)) of (3.3)�
(3.4), then this is to be understood in the following order: First of all, E ∈
L2(0, T,W (curl)) has to solve (3.3), so that

√
σE ∈ C(0, T, L2(R3)3), and, second,

this continuous function
√
σE has to ful�ll the initial condition (3.4). Note that

this is similar to the interpretation of Neumann boundary values for second-order
elliptic equations.

The multiplication with
√
σ in the initial condition (3.4) can be interpreted as

stating that, wherever it makes sense to speak of initial values, they must agree
with E0. In suppσ, the equation is parabolic and initial values are meaningful and
necessary. Outside of suppσ, where the equation is elliptic, initial conditions are
meaningless and (3.4) does not contain any information.

Let us stress that, in this section, we only require that σ is nonnegative, bounded
and has bounded support.

12



3.2. FORMULATION OF THE EQUATION IN R3

3.2.1 Initial values, a standard variational formulation and

uniqueness

For E ∈ L2(0, T,W (curl)) we have that E(t), curlE(t) ∈ L2(R3)3 for t ∈]0, T [ a.e.
and consequently the products

1

µ
curlE(t), σE(t) ∈ L2(R3)3

are well-de�ned. Moreover, the assumption div(σE0) = 0 is well-de�ned in the
sense of distributions since E0 ∈ L2(R3)3. Since D(R3)3 is dense in W (curl), we
can regard L2(0, T,W (curl)′) as a subspace of D′(R3×]0, T [)3. Hence, also div Jt is
well-de�ned in the sense of distributions.

Now, the transient eddy current equation (3.3) is equivalent to:

−
∫ T

0

∫
R3

σE · ∂tΦ dx dt+

∫ T

0

∫
R3

1

µ
curlE · curl Φ dx dt

= −
∫ T

0

〈Jt,Φ〉 dt for all Φ ∈ D(R3×]0, T [)3. (3.6)

In the rest of this subsection we continue along the lines in [Geb07, Section 2].

We �rst recall the de�nition of the time-derivative in the sense of vector-valued
distributions: For two Banach spaces X, Y and a continuous injection ι : X ↪→ Y ,
E ∈ L2(0, T,X) has a time-derivative in L2(0, T, Y ) in the sense of vector-valued
distributions, if there exists Ė ∈ L2(0, T, Y ) which ful�lls∫ T

0

Ė ϕ dt = −
∫ T

0

ιE ∂tϕ dt for all ϕ ∈ D(]0, T [)

(cf., e.g., [DL00e, XVIII, �1]). For a Gelfand triple V ι
↪→ H ι′

↪→ V ′ of real separable
Hilbert spaces V and H, the space

W(0, T,V ,V ′) :=
{
E ∈ L2(0, T,V) | Ė ∈ L2(0, T,V ′)

}
is de�ned by taking the time-derivative with respect to the injection ι′ι : V ↪→
V ′. The image of the space W(0, T,V ,V ′) under ι is continuously imbedded in
C(0, T,H) and, for E,F ∈ W(0, T,V ,V ′), the following integration by parts for-
mula holds:∫ T

0

[
〈Ė(t), F (t)〉V + 〈Ḟ (t), E(t)〉V

]
dt = (ιE(T ), ιF (T ))H − (ιE(0), ιF (0))H,

cf., e.g., [DL00e, XVIII, �1, Theorems 1 and 2]. As a special case we have

H1(0, T,V) =W(0, T,V ,V)

13



CHAPTER 3. THE PARABOLIC-ELLIPTIC EDDY CURRENT EQUATION

where V = H is identi�ed with its dual and ι is the identity mapping.

In view of (3.3), we introduce the space

Wσ :=
{
E ∈ L2(0, T,W (curl)) | (σE)

. ∈ L2(0, T,W (curl)′)
}
,

where (σE). denotes the time-derivative of σE ∈ L2(R3
T )3 in the sense of vector-

valued distributions with respect to the canonical injection L2(R3)3 ↪→ W (curl)′.
Note that for every E ∈ H1(0, T,W (curl)), σE ∈ L2(R3

T )3 and, in that sense,
E ∈ Wσ with (σE). = σĖ.

3.2 Lemma If E ∈ Wσ, then
√
σE ∈ C(0, T, L2(R3)3). Additionally, for two �elds

E,F ∈ Wσ the following integration by parts formula holds:∫ T

0

[
〈(σE)

.
, F 〉+ 〈(σF )

.
, E〉

]
dt =

∫
R3

σ [E(T ) · F (T )− E(0) · F (0)] dx. (3.7)

Proof In [Geb07, Section 2] this lemma is proven for a scalar analog. We repeat
the proof for the convenience of the reader.

We de�ne the space L2
σ by taking the closure of{√
σE |E ∈ L2(R3)3

}
⊆ L2(R3)3

with respect to the L2(R3)3-norm. L2
σ is a separable Hilbert space equipped with

the standard L2(R3)3-inner product.

Then we de�ne a mapping I by

I : W (curl)→ L2
σ, E 7→

√
σE,

which is continuous and has dense range. We identify the Hilbert space L2
σ with

its dual. Then, after factoring out the null space N of I we obtain, that

ι : W (curl)/N → L2
σ, E +N 7→ IE

de�nes an injective, continuous mapping and hence a Gelfand triple

W (curl)/N
ι
↪→ L2

σ

ι′

↪→ (W (curl)/N)′.

For all G ∈ L2
σ the dual mapping i′ is given by

〈ι′G,F +N〉W (curl)/N =

∫
R3

G ·
√
σF dx for all F ∈ W (curl). (3.8)

Let E ∈ Wσ and G = (σE). ∈ L2(0, T,W (curl)′) be the time-derivative of
σE ∈ L2(R3

T )3 with respect to the canonical injection L2(R3)3 ↪→ W (curl)′. Now
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3.2. FORMULATION OF THE EQUATION IN R3

we show that G is the time derivative of E+N ∈ L2(0, T,W (curl)/N) with respect
to ι′ι. For ϕ ∈ D(]0, T [) and F ∈ N we have∫ T

0

〈G(t), F 〉ϕ(t) dt = −
∫ T

0

∫
R3

σE(t) · F dx ∂tϕ(t) dt = 0

and thus 〈G(t), F 〉 = 0 for t ∈]0, T [ a.e. Hence, G(t) ∈ N⊥ and we can identify
G with an element of L2(0, T, (W (curl)/N)′). Then, for F + N ∈ W (curl)/N it
follows that∫ T

0

〈G(t), F +N〉W (curl)/Nϕ(t) dt =

∫ T

0

〈G(t), F 〉ϕ(t) dt

= −
∫ T

0

∫
R3

σE(t) · F dx ∂tϕ(t) dt

= −
∫ T

0

〈ι′ι(E(t) +N), F +N〉W (curl)/N∂tϕ(t) dt

and, accordingly, G = (E +N). and

E +N ∈ W(0, T,W (curl)/N, (W (curl)/N)′).

Now, it follows that
√
σE = ι(E + N) ∈ C(0, T, L2

σ) ⊆ C(0, T, L2(R3)3) and using
(3.8) we obtain the integration by parts formula (3.7). �

For the next lemma recall that for E ∈ L2(0, T,W (curl)) the equation (3.1) is
to be understood in the sense of distributions, cf. the beginning of this subsection.

3.3 Lemma Every solution E ∈ L2(0, T,W (curl)) of (3.1) is in Wσ and thus has
well-de�ned initial values √

σ(x)E(x, 0) ∈ L2(R3)3.

For t ∈]0, T [ a.e., (σE).(t) ∈ W (curl)′ is given by

〈(σE)
.
(t), F 〉 = −〈Jt(t), F 〉 −

∫
R3

1

µ
curlE(t) · curlF dx for all F ∈ W (curl).

(3.9)

Proof Let E be a solution of (3.1). De�ne G(t) ∈ W (curl)′ by

〈G(t),Ψ〉 := −〈Jt(t),Ψ〉 −
∫
R3

1

µ
curlE(t) · curl Ψ dx for all Ψ ∈ W (curl).

Then G ∈ L2(0, T,W (curl)′), and, due to the fact that E solves (3.6) with Φ = Ψϕ
for all ϕ ∈ D(]0, T [) and all Ψ ∈ D(R3)3, it holds that∫ T

0

〈G(t),Ψ〉ϕ(t) dt = −
∫ T

0

∫
R3

σE ·Ψ dx ∂tϕ dt

= −
∫ T

0

〈σE(t),Ψ〉∂tϕ(t) dt. (3.10)
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CHAPTER 3. THE PARABOLIC-ELLIPTIC EDDY CURRENT EQUATION

Since D(R3)3 is dense in W (curl) and both sides depend continuously on Ψ, we
obtain that equation (3.10) holds for all Ψ ∈ W (curl). Now it follows from the
fact, that W (curl) ⊗ D(]0, T [) is dense in L2(0, T,W (curl)), that G = (σE). with
respect to the canonical injection L2(R3)3 ↪→ W (curl)′. This shows that E ∈ Wσ.

�

Lemma 3.3 shows, that the initial condition (3.4) makes sense for solutions of
equation (3.3), and, in that sense, we can speak of solutions E ∈ L2(0, T,W (curl))
of (3.3)�(3.4). Now, we give an equivalent variational formulation:

3.4 Lemma The following problems are equivalent:

a) Find E ∈ L2(0, T,W (curl)) that solves (3.3) and (3.4).

b) Find E ∈ Wσ that solves (3.4) and∫ T

0

〈(σE)
.
, F 〉 dt+

∫ T

0

∫
R3

1

µ
curlE · curlF dx dt = −

∫ T

0

〈Jt, F 〉 dt (3.11)

for all F ∈ L2(0, T,W (curl)).

c) Find E ∈ L2(0, T,W (curl)) that solves

−
∫ T

0

〈(σF )
.
, E〉 dt+

∫ T

0

∫
R3

1

µ
curlE · curlF dx dt

= −
∫ T

0

〈Jt, F 〉 dt+

∫
R3

σE0 · F (0) dx

for all F ∈ Wσ with
√
σF (T ) = 0.

d) Find E ∈ L2(0, T,W (curl)) that solves

−
∫ T

0

∫
R3

σE · ∂tΦ dx dt+

∫ T

0

∫
R3

1

µ
curlE · curl Φ dx dt

= −
∫ T

0

〈Jt,Φ〉 dt+

∫
R3

σE0 · Φ(0) dx

for all Φ ∈ D(R3 × [0, T [)3.

Proof We start by showing �a) =⇒ b)�. If E ∈ L2(0, T,W (curl)) solves equations
(3.3)�(3.4) it follows from Lemma 3.3 that E ∈ Wσ and (3.11) holds for all F (x, t) =
G(x)ϕ(t) with G ∈ W (curl) and ϕ ∈ D(]0, T [). Since W (curl) ⊗ D(]0, T [) is
dense in L2(0, T,W (curl)), and both sides of (3.11) depend continuously on F ∈
L2(0, T,W (curl)), b) follows.

�b) =⇒ c)� follows from the integration by parts formula (3.7).
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3.3. A UNIFIED VARIATIONAL FORMULATION

�c) =⇒ d)� follows from the fact that for Φ ∈ D(R3× [0, T [)3 the time-derivative
(σΦ). ∈ L2(0, T,W (curl)′) of σΦ ∈ L2(R3

T )3 with respect to the canonical injection
L2(R3)3 ↪→ W (curl)′ is the image of the classical time-derivative σ∂tΦ(t) under this
injection, i.e.

〈(σΦ)
.
(t), E(t)〉 =

∫
R3

σ∂tΦ(t) · E(t) dx for t ∈]0, T [ a.e.

Finally, to show the implication �d) =⇒ a)� we use the equation in d) applied
on Φ ∈ D(R3×]0, T [)3. Then E ∈ L2(0, T,W (curl)) solves (3.4) and Lemma 3.3
yields E ∈ Wσ. Now, the integration by parts formula (3.7) applied on d) with
Φ = Ψϕ, Ψ ∈ D(R3)3, ϕ ∈ D([0, T [) with ϕ(0) = 1, and using Lemma 3.3, implies
that

√
σE0 =

√
σE(0). �

Now, the proof of Theorem 3.1 reads:

Proof of Theorem 3.1

a) This follows from Lemma 3.2 and Lemma 3.3.

b) This is the equivalence of a) and d) in Lemma 3.4.

c) Assume that E ∈ Wσ is a solution of (3.3)�(3.4) with
√
σE(0) = 0 and Jt = 0.

Using Lemma 3.4 b) and the integration by parts formula (3.7) implies

0 =

∫ T

0

〈(σE)
.
, E〉 dt+

∫ T

0

∫
R3

1

µ
curlE · curlE dx dt

≥ 1

2
‖
√
σE(T )‖2

L2(R3)3 +
1

‖µ‖∞
‖ curlE‖2

L2(R3
T )3 .

We obtain curlE = 0 and
√
σE = 0. The second assertion is obvious. �

3.3 A uni�ed variational formulation

In this section we present a new, uniquely solvable and uniformly coercive varia-
tional formulation that determines the solution of the eddy current problem, (3.3)
and (3.4), up to the addition of a gradient �eld. From this we obtain solvabil-
ity of (3.3) and (3.4), and a continuity result that is uniform with respect to the
conductivity σ.

Our general approach is as follows. We write

E = Ẽ +∇u

with a divergence-free �eld Ẽ, and a gradient �eld ∇u. Note that this is very
similar to the classical (A,ϕ)-formulation with Coulomb gauge, cf., e.g., [DL00a,
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I.A, �4, Section 3], where A is a divergence-free magnetic vector potential and ϕ a
scalar function with

E = −∂t(A+∇ϕ).

The crucial point is to consider ∇u = ∇uẼ as a continuous linear function of Ẽ,
cf. Lemma 3.5. This allows us to rewrite the eddy current problem (3.3)�(3.4) as a
variational equation for Ẽ, which is uniformly coercive on the space of divergence-
free functions and thus uniquely determines the �eld Ẽ. Note that Ẽ does not solve
the eddy current equation. Our new variational formulation enables us to study
the asymptotic behavior of Ẽ for σ → 0. From this we can then deduce properties
of the asymptotic behavior of any solution E of the eddy current problem.

For our results we need stronger assumptions on σ. Let R > 0 and let BR

denote the open ball with radius R centered at the origin. For the rest of this
chapter, we assume that

σ ∈ L∞R (R3) := {σ ∈ L∞(R3) | ∃ Ω ⊂ BR : σ|Ω ∈ L∞+ (Ω), Ω = ∪si=1Ωi, s ∈ N,
with bounded Lipschitz domains Ωi, Ωi ∩ Ωj = ∅, i 6= j,

such that R3 \ Ω is connected and Ω = suppσ}. (3.12)

Note that our continuity results do not depend on the lower bound of σ.

The case of σ ≡ 0 is treated separately.

3.5 Lemma There is a continuous linear map

L2
ρ(R3)3 → H(curl 0,R3) := {E ∈ L2(R3)3 | curlE = 0}, E 7→ ∇uE,

with

div(σ(E +∇uE)) = 0 in R3, (3.13)

and which extends (by setting ∇uE(t) := ∇uE(t) for t ∈]0, T [ a.e.) to a continuous
linear map

L2(0, T, L2
ρ(R3)3)→ L2(0, T,H(curl 0,R3)), E 7→ ∇uE,

for which E ∈ H1(0, T, L2
ρ(R3)3) implies

∇uE ∈ H1(0, T,H(curl 0,R3)) and (∇uE)
.

= ∇uĖ.

Proof Let E ∈ L2
ρ(R3)3. Due to Poincare's inequality (cf., e.g., [DL00b, IV,

�7, Prop. 2]), the fact, that σ is positively bounded from below on Ω, and Lax-
Milgram's Theorem (cf., e.g., [RR04, �8, Theorem 8.14]), there exists a unique
uE ∈ H1

�(Ω) that solves∫
Ω

σ∇u · ∇v dx = −
∫

Ω

σE · ∇v dx for all v ∈ H1(Ω). (3.14)
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3.3. A UNIFIED VARIATIONAL FORMULATION

Here, H1
�(Ω) :=

{
v ∈ H1(Ω) |

∫
Ωi
v dx = 0, i = 1, . . . , s

}
. Furthermore, uE de-

pends continuously on E|Ω ∈ L2(Ω)3.

We extend uE to an element of W 1(R3) by solving ∆u = 0 on R3 \ Ω with
u|∂Ω = uE|∂Ω for u ∈ W 1(R3 \ Ω). Again, Lax-Milgram's Theorem provides a
unique solution, which depends continuously on uE|∂Ω and thus on E.

Let uE, again, denote its extension. Then, uE ∈ W 1(R3), and the mapping
E 7→ ∇uE is well-de�ned, linear and continuous with a continuity constant that
depends on the lower and upper bounds of σ. Moreover, (3.13) is ful�lled.

The remaining assertions follow from standard time regularity arguments, cf.,
e.g., the proof of Lemma 3.11a), below. �

For the rest of this paper, let ∇uE denote the image of E under this mapping.
Note that there are di�erent possibilities to construct this map, but

√
σ∇uE is

uniquely determined by the condition (3.13). Moreover, it holds that

‖
√
σ∇uE‖L2(R3)3 ≤ ‖

√
σE‖L2(R3)3 , (3.15)

and, obviously, for all E ∈ W 1(R3)3, we have E +∇uE ∈ W (curl).

The fact that the curl of a solution is unique, but not the solution itself, leads
to the idea to work with spaces where ‖ curl · ‖L2(R3)3 de�nes a norm. Therefore,
we recall the Hilbert space

W 1
♦ := {E ∈ W 1(R3)3 | divE = 0}, ‖ · ‖W 1

♦
:= ‖ curl · ‖L2(R3)3 .

We de�ne the bilinear form a by

a : L2(0, T,W 1(R3)3)×H1(0, T,W 1(R3)3)→ R

a(E,Φ) := −
∫ T

0

∫
R3

σ(E +∇uE) · Φ̇ dx dt+

∫ T

0

∫
R3

1

µ
curlE · curl Φ dx dt,

(3.16)

and, motivated by Lemma 3.4 d), the linear form l : H1(0, T,W 1(R3)3)→ R:

l(Φ) := −
∫ T

0

〈Jt,Φ〉 dt+

∫
R3

σE0 · Φ(0) dx.

Now we can state the main result of this section. Let

H1
T0(0, T,W 1

♦) := {Ψ ∈ H1(0, T,W 1
♦) |Ψ(T ) = 0}.
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3.6 Theorem (Uni�ed variational formulation)

a) If Ẽ ∈ L2(0, T,W 1
♦) solves

a(Ẽ,Φ) = l(Φ) for all Φ ∈ H1
T0(0, T,W 1

♦), (3.17)

then Ẽ +∇uẼ ∈ L2(0, T,W (curl)) solves (3.3)�(3.4).

a|H1
T0(0,T,W 1

♦)2 is uniformly coercive with respect to ‖ · ‖L2(0,T,W 1
♦):

a(Φ,Φ) ≥ 1

‖µ‖∞
‖Φ‖2

L2(0,T,W 1
♦) for all Φ ∈ H1

T0(0, T,W 1
♦).

b) There is a unique solution Ẽ ∈ L2(0, T,W 1
♦) of (3.17). Ẽ depends continu-

ously on Jt and
√
σE0:

‖Ẽ‖L2(0,T,W 1
♦) ≤

√
2 max(‖µ‖∞, 2) max(

√
5‖Jt‖L2(0,T,W (curl)′), ‖

√
σE0‖L2(R3)3).

(3.18)

Ẽ + ∇uẼ solves the eddy current equation (3.3) and (3.4) and any other
solution E ∈ L2(0, T,W (curl)) of (3.3)�(3.4) ful�lls

curlE = curl Ẽ,
√
σE =

√
σ(Ẽ +∇uẼ). (3.19)

curlE and
√
σE depend continuously on Jt and

√
σE0:

‖ curlE‖L2(R3
T )3 ≤

√
2 max(‖µ‖∞, 2) max(

√
5‖Jt‖L2(0,T,W (curl)′), ‖

√
σE0‖L2(R3)3)

‖
√
σE‖L2(R3

T )3 ≤ 4
√

1 +R2‖
√
σ‖∞‖ curlE‖L2(R3

T )3 .

If σ equals zero, we have the following result:

3.7 Theorem For σ ≡ 0, E ∈ L2(0, T,W 1
♦) is a solution of (3.3) if and only if E

solves

a0(E,F ) = l0(F ) for all F ∈ L2(0, T,W 1
♦), (3.20)

where a0 and l0 denote a(·, ·) and l(·) with σ ≡ 0. There exists a unique solution
E ∈ L2(0, T,W 1

♦) and this solution depends continuously on Jt:

‖E‖L2(0,T,W 1
♦) ≤

√
5‖µ‖∞‖Jt‖L2(0,T,W (curl)′).

The proofs can be found in the following subsection.

3.8 Corollary Let (σn)n∈N ⊂ L∞R (R3) be a bounded sequence and Ẽn, n ∈ N, be
the corresponding unique solutions of (3.17). Then the sequences

(Ẽn)n∈N ⊂ L2(0, T,W 1
♦) and (

√
σnẼn)n∈N, (

√
σn∇uẼn)n∈N ⊂ L2(R3

T )3

are bounded. The bounds depend on the bound of (σn)n∈N.

In particular, for any sequence (En)n∈N ⊂ L2(0, T,W (curl)) of corresponding
solutions of (3.3)�(3.4) the sequences

(curlEn)n∈N, (
√
σnEn)n∈N ⊂ L2(R3

T )3

are bounded.
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3.3.1 Solution theory

To show the �rst part of Theorem 3.6a), we use of the following simple decompo-
sition.

3.9 Lemma

a) Every Φ ∈ D(R3)3 can be written as

Φ = Ψ +∇ϕ,

with Ψ ∈ W 1
♦, ϕ ∈ W 1(R3), and ∇ϕ ∈ W 1(R3)3.

b) Every Φ ∈ D(R3 × [0, T [)3 can be written as

Φ = Ψ +∇ϕ,

with Ψ ∈ H1
T0(0, T,W 1

♦), ϕ ∈ H1(0, T,W 1(R3)), ∇ϕ ∈ H1(0, T,W 1(R3)3),
and ∇ϕ(T ) = 0.

Proof Let Φ ∈ D(R3)3. Then Lax-Milgram's Theorem yields a unique solution
ϕ ∈ W 1(R3) of

∆ϕ = div Φ in R3.

By standard regularity results ϕ ∈ C∞(R3). For a centered ball B ⊂ R3 containing
the support of Φ, ϕ solves the exterior Dirichlet problem

∆ϕ = 0 in R3 \B, ϕ|∂B ∈ H3/2(∂B)

so that it follows from, e.g., [Néd01, Theorem 2.5.1] that ∇ϕ ∈ W 1(R3 \ B)3, and
hence ∇ϕ ∈ W 1(R3)3. With Ψ := Φ−∇ϕ ∈ W 1

♦ we obtain assertion a).

Assertion b) follows from standard time regularity arguments, cf., e.g., the proof
of Lemma 3.11a), below. �

We prove the existence result in Theorem 3.6b) using the Lions-Lax-Milgram
Theorem.

3.10 Lemma (Lions-Lax-Milgram Theorem) Let H be a Hilbert space and
V be a normed (not necessarily complete) vector space. Let a : H × V → R be a
bilinear form satisfying the following properties:

a) For every Φ ∈ V , the linear form E 7→ a(E,Φ) is continuous on H.

b) There exists α > 0 such that

inf
‖Φ‖V =1

sup
‖E‖H≤1

|a(E,Φ)| ≥ 1

α
.
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Then for each continuous linear form l ∈ V ′, there exists El ∈ H such that

a(El,Φ) = 〈l,Φ〉 for all Φ ∈ V and ‖El‖H ≤ α‖l‖V ′ .

The proof of Lemma 3.10 can be found, for example, in [Sho97, �3, Theorem 2.1
and Corollary 2.1].

Proof of Theorem 3.6

a) It is obvious, that for gradient �elds ∇ϕ ∈ H1(0, T,W 1(R3)3) with ϕ ∈
H1(0, T,W 1(R3)), a(·,∇ϕ) as well as l(∇ϕ) vanish. (For the latter, recall that
div Jt = 0 and div(σE0) = 0.) Hence, it follows from the decomposition in
Lemma 3.9, and from the linearity of a and l, that (for any Ẽ ∈ L2(0, T,W 1

♦))

a(Ẽ,Φ) = l(Φ)

holds for all Φ ∈ D(R3 × [0, T [)3, if it holds for all Φ ∈ H1
T0(0, T,W 1

♦).
Lemma 3.4 yields the �rst assertion.

For Φ ∈ H1
T0(0, T,W 1

♦), Lemma 3.5 and the integration by parts formula (3.7)
yield that

a(Φ,Φ) =−
∫ T

0

∫
R3

σ(Φ +∇uΦ) · Φ̇ dx dt+

∫ T

0

∫
R3

1

µ
|curl Φ|2 dx dt

≥1

2
‖
√
σ(Φ +∇uΦ)(0)‖2

L2(R3)3 +
1

‖µ‖∞
‖Φ‖2

L2(0,T,W 1
♦) (3.21)

and thus the second assertion.

b) We apply the Lions-Lax-Milgram Theorem. We use the Hilbert space H :=
L2(0, T,W 1

♦) and equip its subspace V := H1
T0(0, T,W 1

♦) with the norm

‖Φ‖2
V := ‖Φ‖2

L2(0,T,W 1
♦) + ‖

√
σ(Φ +∇uΦ)(0)‖2

L2(R3)3 .

Then equation (3.21) implies that

inf
‖Φ‖V =1

sup
‖E‖H≤1

|a(E,Φ)| ≥ inf
‖Φ‖V =1

|a(Φ,Φ)| ≥ 1

max(‖µ‖∞, 2)
.

Given Φ ∈ V we set C := max(‖Φ‖L2(0,T,W 1
♦), ‖Φ̇‖L2(0,T,L2(BR)3)). Then it

follows from (3.15) and µ ∈ L∞+ (R3), that for all E ∈ H

|a(E,Φ)| =
∣∣∣∣∫ T

0

∫
R3

[
−σ(E +∇uE) · Φ̇ +

1

µ
curlE · curl Φ

]
dx dt

∣∣∣∣
≤ C

[
2‖
√
σ‖∞‖

√
σE‖L2(R3

T )3 +
1

inf µ
‖E‖L2(0,T,W 1

♦)

]
≤ C

[
‖σ‖∞2‖E‖L2(0,T,L2(BR)3) +

1

inf µ
‖E‖L2(0,T,W 1

♦)

]
≤ C

[
‖σ‖∞2

√
1 +R2‖E‖L2(0,T,L2

ρ(R3)3) +
1

inf µ
‖E‖L2(0,T,W 1

♦)

]
.
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Similarly to the proof of [DL00d, XI.B, �1, Lemma 1], it holds that

‖F‖ρ ≤ 2‖∇F‖L2(R3)3 = 2‖F‖W 1
♦

for all F ∈ W 1
♦, (3.22)

and thus

|a(E,Φ)| ≤ C

[
4‖σ‖∞

√
1 +R2 +

1

inf µ

]
‖E‖H.

Hence, for �xed Φ ∈ V , a(·,Φ) is continuous on H.
Equation (3.22) also yields

‖F‖2
W (curl) = ‖F‖2

ρ + ‖ curlF‖2
L2(R3)3 ≤ 5‖F‖2

W 1
♦

for all F ∈ W 1
♦, (3.23)

so that we obtain for all Φ ∈ V ,

|l(Φ)| =
∣∣∣∣−∫ T

0

〈Jt,Φ〉 dt+

∫
R3

σE0 · Φ(0) dx

∣∣∣∣
≤ ‖Jt‖L2(0,T,W (curl)′)‖Φ‖L2(0,T,W (curl))

+ ‖
√
σE0‖L2(R3)3‖

√
σ(Φ +∇uΦ)(0)‖L2(R3)3

≤
√

2 max(
√

5‖Jt‖L2(0,T,W (curl)′), ‖
√
σE0‖L2(R3)3)‖Φ‖V .

Hence, l ∈ V ′ and

‖l‖V ′ ≤
√

2 max(
√

5‖Jt‖L2(0,T,W (curl)′), ‖
√
σE0‖L2(R3)3).

Now, Lemma 3.10 yields the existence of an Ẽ ∈ H = L2(0, T,W 1
♦) that

ful�lls (3.17) and depends continuously on l, i.e.

‖Ẽ‖L2(0,T,W 1
♦) ≤

√
2 max(‖µ‖∞, 2) max(

√
5‖Jt‖L2(0,T,W (curl)′), ‖

√
σE0‖L2(R3)3).

Part a) yields that Ẽ + ∇uẼ ∈ L2(0, T,W (curl)) is a solution of the eddy
current problem (3.3)�(3.4).

To show uniqueness, let Ẽ1, Ẽ2 ∈ L2(0, T,W 1
♦) be two solutions of (3.17).

Then, Ẽ1 +∇uẼ1
, Ẽ2 +∇uẼ2

∈ L2(0, T,W (curl)) both solve the eddy current
equation (3.3) and (3.4). Now, Theorem 3.1c) implies

curl Ẽ1 = curl(Ẽ1 +∇uẼ1
) = curl(Ẽ2 +∇uẼ2

) = curl Ẽ2

and it follows, that

0 = ‖ curl(Ẽ1 − Ẽ2)‖L2(R3)3 = ‖Ẽ1 − Ẽ2‖W 1
♦
.

The remaining assertions of b) follow similarly from Theorem 3.1c). �

Proof of Theorem 3.7 Theorem 3.7 follows from µ ∈ L∞+ (R3), (3.23), and
Lax-Milgram's Theorem. �
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3.3.2 On time regularity

We close this section by showing a result on time regularity of the solutions.

3.11 Lemma Let Jt ∈ H1(0, T,W (curl)′) and E0 ∈ W (curl) such that

curl

(
1

µ
curlE0

)
= −Jt(0)

in addition to the general assumptions (3.2). Let Ẽ ∈ L2(0, T,W 1
♦) be the solution

of (3.17). Then, the following holds:

a) Ẽ ∈ H1(0, T,W 1
♦) and F̃ = (Ẽ). is the solution of

a(F̃ ,Φ) = −
∫ T

0

〈(Jt).,Φ〉 dt for all Φ ∈ H1
T0(0, T,W 1

♦). (3.24)

F = F̃ +∇uF̃ ∈ L2(0, T,W (curl)) solves

∂t(σF ) + curl

(
1

µ
curlF

)
= −(Jt)

.
in R3×]0, T [

with zero initial conditions.

b) For any solution E ∈ L2(0, T,W (curl)) of the eddy current problem (3.3)�
(3.4) we have that

E|Ω ∈ H1(0, T, L2(Ω)3), (E|Ω)
.

= F |Ω,
curlE ∈ H1(0, T, L2(R3)3), (curlE)

.
= curlF = curl F̃ .

Proof

a) Theorem 3.6 yields that (3.24) has a unique solution F̃ ∈ L2(0, T,W 1
♦), so it

only remains to show that F̃ = (Ẽ)., which, in turn, follows if

Z(t) =

∫ t

0

F̃ (s) ds+ E0 +∇vE0 ∈ H1(0, T,W 1
♦)

solves (3.17). Here, vE0 ∈ W 1(R3) is the unique solution of

∆vE0 = − divE0 in R3.

Let Φ ∈ H1
T0(0, T,W 1

♦). We de�ne

Ψ(t) =

∫ t

0

Φ(s) ds−
∫ T

0

Φ(s) ds ∈ H1
T0(0, T,W 1

♦).
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Note that the assumption div(σE0) = 0 together with Lemma 3.5 implies
that

σ∇uZ(0) = σ∇u(E0+∇vE0 ) = −σ∇vE0 ,

so that we obtain

a(Z,Φ) =

∫ T

0

∫
R3

(
−σ(Z +∇uZ) · Φ̇ +

1

µ
curlZ · curl Φ

)
dx dt

=

∫ T

0

∫
R3

(
σ(Z +∇uZ)

. · Ψ̇− 1

µ
curl Ż · curl Ψ

)
dx dt

+

∫
R3

(
σ
(
Z(0) +∇uZ(0)

)
· Ψ̇(0)− 1

µ
curlZ(0) · curl Ψ(0)

)
dx

=− a(Ż,Ψ) +

∫
R3

(
σE0 · Φ(0)− 1

µ
curlE0 · curl Ψ(0)

)
dx

=

∫ T

0

〈(Jt).,Ψ〉 dt+

∫
R3

σE0 · Φ(0) dx+ 〈Jt(0),Ψ(0)〉

=−
∫ T

0

〈Jt, Ψ̇〉 dt+

∫
R3

σE0 · Φ(0) dx

= l(Φ).

b) follows immediately from a) and Theorem 3.1c). �

The analogous assertion holds for σ ≡ 0:

3.12 Lemma Let σ ≡ 0 and let Jt ∈ H1(0, T,W (curl)′) in addition to the general
assumptions (3.2) on Jt.

If Ẽ ∈ L2(0, T,W 1
♦) is the solution of (3.20), then Ẽ ∈ H1(0, T,W 1

♦) and

F = (Ẽ). is the solution of

curl

(
1

µ
curlF

)
= −(Jt)

.
in R3×]0, T [.

The proof is analogously to the proof of Lemma 3.11a).

3.4 Sensitivity Analysis

In this section we keep E0 and Jt �xed and analyze the solution(s) behavior if σ
approaches zero. To this end, let (σn)n∈N ⊂ L∞R (R3) be a sequence such that

lim
n→∞

σn = 0 in L∞(R3).

25



CHAPTER 3. THE PARABOLIC-ELLIPTIC EDDY CURRENT EQUATION

Corresponding to (σn)n∈N, let (En)n∈N ⊂ L2(0, T,W (curl)) denote any sequence
of solutions of (3.3)�(3.4) and let (Ẽn)n∈N ⊂ L2(0, T,W 1

♦) denote the sequence of
unique solutions of (3.17). For σ ≡ 0, let E ∈ L2(0, T,W (curl)) denote any solution
of (3.3) and let Ẽ ∈ L2(0, T,W 1

♦) denote the solution of (3.20).

Our �rst result is that the solutions converge:

3.13 Theorem (Convergence) It holds, that

curlEn → curlE,
√
σnEn → 0 in L2(R3

T )3

and (σnEn)
. → 0 in L2(0, T,W (curl)′).

Moreover we show that (under some regularity assumptions) the directional
derivative of E with respect to σ exists and can be characterized in the following
way:

3.14 Theorem (Linearization) Let Jt ∈ H1(0, T,W (curl)′), and E0 ∈ W (curl)
such that

curl

(
1

µ
curlE0

)
= −Jt(0)

in addition to our general assumptions (3.2) on Jt and E
0. Let d ∈ L∞R (R3) and

h > 0. Let Ed ∈ H1(0, T,W (curl)) be a solution of (3.3) with σ ≡ 0 that ful�lls
div(dEd) = 0 and F ∈ L2(0, T,W (curl)) be a solution of

curl

(
1

µ
curlF

)
= −dĖd in R3×]0, T [.

Let Eh ∈ L2(0, T,W (curl)) be a solution of (3.3)�(3.4) with σ = hd. Then

1

h
(curlEh − curlE)→ curlF in L2(R3

T )3 (h→ 0+).

Let us �rst comment on the existence of Ed and F . For instance we can choose
Ed = Ẽ + ∇uẼ, where ∇uẼ is the image of Ẽ under the mapping de�ned in
Lemma 3.5 with σ = d. Then the time regularity of Ed and the existence of F
follow from Lemma 3.12, Lemma 3.5, and Theorem 3.7. Note that Ed, F , and also
Eh are not unique. Theorem 3.14 holds for every choice of Eh, Ed and F .

The two theorems are proved in the following two subsections.

3.15 Remark More general meaningful initial conditions that obey div(σnE
0) = 0

for every n can be obtained, for instance, by replacing the initial condition (3.4) by√
σnEn(0) =

√
σn(E0 +∇uE0) for some �xed E0 ∈ L2(R3)3. Here, ∇uE0 is taken

with respect to σn. The assertions of this section as well as Corollary 3.8 hold for
this particular choice.
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3.4.1 Convergence

Obviously,
√
σnE

0 → 0 in L2(R3)3.

3.16 Lemma It holds, that

Ẽn → Ẽ in L2(0, T,W 1
♦), and

√
σnẼn,

√
σn∇uẼn → 0 in L2(R3

T )3.

Proof First, we show that Ẽn ⇀ Ẽ. To prove this it su�ces to show that
every subsequence of (Ẽn)n∈N has a subsequence that converges weakly against Ẽ.
From Corollary 3.8 we know that (Ẽn)n∈N ⊂ L2(0, T,W 1

♦) is bounded. Using that

suppσn ⊂ BR and Lemma 3.5 we obtain the second part of the assertion,

√
σnẼn,

√
σn∇uẼn → 0 in L2(R3

T )3.

Alaoglu's Theorem, cf., e.g., [RR04, Theorem 6.62], yields that every subse-
quence of (Ẽn)n∈N contains a subsequence (that we still denote by (Ẽn)n∈N for ease
of notation) that converges weakly against some Ẽ ′ ∈ L2(0, T,W 1

♦). We show that

all these weak limits are identical to Ẽ:

Ẽn ⇀ Ẽ ′ in L2(0, T,W 1
♦) implies that curl Ẽn ⇀ curl Ẽ ′ in L2(R3

T )3, so that

for every Φ ∈ H1
T0(0, T,W 1

♦) the left hand side a(Ẽn,Φ) of (3.17) with σ = σn
converges against a0(Ẽ ′,Φ). Clearly, the right hand side of (3.17) with σ = σn
converges against l0(Φ). Hence, Ẽ ′ solves (3.20) and thus uniqueness provides
Ẽ = Ẽ ′, and hence

Ẽn ⇀ Ẽ in L2(0, T,W 1
♦).

Since Ẽn +∇uẼn solves the eddy current problem (3.3)�(3.4) with σ = σn, we
obtain using Lemma 3.4b)

‖µ−
1
2 curl Ẽn‖2

L2(R3
T )3 =−

∫ T

0

〈(σn(Ẽn +∇uẼn))
.
, Ẽn +∇uẼn〉 dt−

∫ T

0

〈Jt, Ẽn〉 dt

≤1

2
‖
√
σnE

0‖2
L2(R3)3 −

∫ T

0

〈Jt, Ẽn〉 dt

=
1

2
‖
√
σnE

0‖2
L2(R3)3 +

∫ T

0

∫
R3

1

µ
curl Ẽ · curl Ẽn dx dt,

and hence

lim sup
n→∞

‖µ−
1
2 curl Ẽn‖L2(R3

T )3 ≤ ‖µ−
1
2 curl Ẽ‖L2(R3

T )3

which, together with Ẽn ⇀ Ẽ, yields Ẽn → Ẽ. �
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Proof of Theorem 3.13 For any solutions En, respectively, E of (3.3)�(3.4)
with σ = σn, respectively, σ ≡ 0, we have that
√
σnEn =

√
σn(Ẽn +∇uẼn), curlEn = curl Ẽn, and curlE = curl Ẽ,

so that Lemma 3.16 provides curlEn → curlE and
√
σnEn → 0.

From the explicit form (3.9) of (σnEn). given in Lemma 3.3, we obtain for all
F ∈ L2(0, T,W (curl))∣∣∣∣∫ T

0

〈(σnEn)
.
, F 〉 dt

∣∣∣∣ ≤ 1

inf µ
‖ curl(E − En)‖L2(R3

T )3‖ curlF‖L2(R3
T )3 ,

and hence (σnEn). → 0. �

3.4.2 Linearization results

To characterize the directional derivative of E with respect to σ, some more
time regularity is needed. To this end, we assume in addition to (3.2), that
Jt ∈ H1(0, T,W (curl)′), and E0 ∈ W (curl) such that

curl

(
1

µ
curlE0

)
= −Jt(0).

3.17 Lemma For every n ∈ N, En − E ∈ L2(0, T,W (curl)) solves

curl

(
1

µ
curl(En − E)

)
= −σnĖn in R3×]0, T [.

Moreover, there is a constant C so that

lim sup
n→∞

‖Ẽn − Ẽ‖L2(0,T,W 1
♦)

‖σn‖∞
≤ C.

Proof From Lemma 3.11 and Lemma 3.12 we know that the time derivatives of
Ẽn, Ẽ, uẼn and En|Ωn exist. Then, it is easily checked, that Ẽn − Ẽ solves

a0(Ẽn − Ẽ,Φ) = −
∫ T

0

∫
R3

σn( ˙̃En +∇u ˙̃En
) · Φ dx dt

for all Φ ∈ H1
T0(0, T,W 1

♦) and thus also for all Φ ∈ L2(0, T,W 1
♦). So the �rst

assertion follows from the identity (Ẽn +∇uẼn)|Ωn = En|Ωn .

From Theorem 3.7 and (3.15) we now obtain a constant C ′ > 0 (depending on
µ and R) so that

‖Ẽn − Ẽ‖L2(0,T,W 1
♦) ≤ C ′‖

√
σn‖∞‖

√
σnĖn‖L2(R3

T )3

≤ 2C ′‖σn‖∞‖(Ẽn)
.‖L2(BR×(0,T ))3

As every (Ẽn). solves (3.24) with σ = σn, Corollary 3.8 yields that ((Ẽn).)n∈N is a
bounded sequence in L2(0, T,W 1

♦) and thus the second assertion follows. �
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3.18 Lemma Let d ∈ L∞R (R3), and Ẽd = Ẽ + ∇uẼ, where ∇uẼ is the image of
Ẽ under the mapping de�ned in Lemma 3.5 with σ = d. Let F̃ ∈ L2(0, T,W 1

♦) be
the solution of

a0(F̃ ,Φ) = −
∫ T

0

∫
R3

d(Ẽd)
. · Φ dx dt for all Φ ∈ L2(0, T,W 1

♦). (3.25)

Furthermore, for h > 0 let Ẽh ∈ L2(0, T,W 1
♦) be the solution of (3.17) corre-

sponding to σ = hd. Then for h→ 0+

1

h
(Ẽh − Ẽ)→ F̃ in L2(0, T,W 1

♦).

Proof Lemma 3.11, Lemma 3.12 and Lemma 3.16 yield that (Ẽh)
. → (Ẽ). in

L2(0, T,W 1
♦). The mapping de�ned in Lemma 3.5 does not change if we take σ = d

instead of σ = hd. Hence, as d is �xed, the continuity of this mapping implies that
∇u ˙̃Eh

→ ∇u ˙̃E
in L2(R3

T )3.

From Lemma 3.17 we obtain that for all Φ ∈ L2(0, T,W 1
♦)

a0

(
1

h
(Ẽh − Ẽ)− F̃ ,Φ

)
= −

∫ T

0

∫
R3

d(Ẽh +∇uẼh − Ẽ −∇uẼ)
. · Φ dx dt

The assertion now follows from setting Φ := 1
h
(Ẽh−Ẽ)−F̃ and using the coercivity

of a0. �

Proof of Theorem 3.14 Let Ed ∈ H1(0, T,W (curl)) be a solution of (3.3)
with σ ≡ 0 that ful�lls div(dEd) = 0 and F ∈ L2(0, T,W (curl)) be a solution of

curl

(
1

µ
curlF

)
= −dĖd in R3×]0, T [.

Let Ẽd and F̃ be as in Lemma 3.18.

Since both, Ed and Ẽd, solve (3.3) with σ ≡ 0, we have curlEd = curl Ẽd.
Hence, for t ∈]0, T [ a.e., using the Poincaré Lemma on BR, cf., e.g., [DL00c, IX.A,
�1, Lemma 4], we obtain a p ∈ H1(BR) with (Ed(t) − Ẽd(t))|BR = ∇p. Now
div(d(Ed − Ẽd)) = 0 implies that∫

R3

d∇p · ∇ϕ dx = 0 for all ϕ ∈ D(R3),

so that
√
d∇p = 0. It follows that d(Ed)

. = d(Ẽd)
. and hence curlF = curl F̃ . Since

also curlEh = curl Ẽh, and curlE = curl Ẽ, the assertion follows from Lemma 3.18.
�
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Chapter 4

Unique shape detection in transient

eddy current problems

The subject of this chapter is the inverse problem of locating conductors surrounded
by a non-conducting medium from electromagnetic measurements, i.e. from knowl-
edge of the operator mapping the excitation currents to measurements of the corre-
sponding electric �elds. We show that the conductors are uniquely determined by
the measurements, and give an explicit criterion to decide whether a given point is
inside the conducting domain or not.

The Sections 4.3�4.6 and 4.8 are the Sections 4�8 of [AH13b] up to minor
changes.

4.1 Introduction

Inferring information about the electromagnetic properties from knowledge of the
excitation currents and the corresponding measured �elds in eddy current applica-
tions corresponds to the inverse problem of reconstructing the coe�cients σ and µ
in

∂t(σE) + curl

(
1

µ
curlE

)
= −∂tJ. (4.1)

from knowledge of the excitations ∂tJ and a part of the solutions E of (4.1).

Various inverse eddy current problems have been studied in the engineering
literature. Reconstruction of electromagnetic properties in time harmonic eddy
current problems is the aim of magnetic induction tomography (MIT) which is
used for medical and industrial imaging (see for example Gri�ths in [Gri01] or
Scharfetter et al. in [SCR03] and the references therein). An overview about non-
destructive evaluation is given by Auld and Moulder in [AM99], see also Krause et
al. in [KPZ03] and Tian et al. in [TSTR05]. Inverse problems in transient eddy
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current problems are considered, for instance, by Fu and Bowler in [FB06] and by
Cheng and Komura in [CK08].

In the mathematical literature, inverse problems for time harmonic eddy cur-
rent problems are treated, for instance, by Ammari et al. in [ACC+14], Alonso
Rodríguez et al. in [ARCnV12], Wei et al. in [WMS12] and Soleimani in [Sol07].
To the knowledge of the author, no mathematical results exist on inverse problems
for transient eddy current problems.

We now concentrate on detecting the position and the shape of conductors sur-
rounded by a non-conducting medium in transient eddy current problems. Mathe-
matically this corresponds to detecting the support of the conductivity coe�cient
σ in (4.1).

For the modelling of the measurements we follow Harrach et al. in [GHK+05]
and in [GHS08]: Transient excitation currents through an idealized measurement
instrument given by a two-dimensional sheet S (representing in�nitely many in-
�nitesimal excitation coils and measurement coils) are used to generate the �elds.
Then, the induced voltages in sensing coils on S are detected. Mathematically, this
is encoded in a measurement operator Λ, that maps I (the negative time-derivative
of the transient excitation current J , i.e. I := −∂tJ) on the electric �eld E that
solves (4.1) restricted to S:

Λ : I 7→ E|S.

A proper de�nition of Λ is given in Section 4.3. The aim of this work is then to
show that the conducting domains are uniquely determined by Λ and to propose a
strategy for shape reconstruction.

A well-established non-iterative method for shape reconstruction is the factor-
ization method invented by Kirsch in [Kir98] in the context of inverse scattering.
Based on a factorization of the measurement operator, an explicit criterion is de-
veloped, which determines whether a given point is inside the domain of interest
or not. The factorization method has been extended and widely used for shape
detection in several inverse problems, see, for instance, Kirsch and Grinberg in
[KG07] and the references therein. For an overview on the application in elec-

trical impedance tomography see Brühl and Hanke in [BH03] and the recent work
of Harrach [Har13]. In [Kir04], Kirsch applies this method to an inverse problem
involving the time harmonic Maxwell system. In the context of land mine detec-
tion, the magnetostatic limit of Maxwell's equations is treated by Harrach et al.
in [GHS08]. Results on the heat equation, a scalar parabolic-elliptic analog of the
eddy current equation, can be found in Frühauf et al. [FGS07]. Another approach
are linear sampling methods originated by Colton and Kirsch in [CK96]. Like the
factorization method, a su�cient (but not necessary) condition on a point to be
inside the domain of interest is produced.

In this chapter we show that both methods can be applied for shape detection
in transient eddy current problems. First, we use the linear sampling method to
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detect a subset of the conducting domain. On top of that, considering diamagnetic
materials, we show that the unknown domain is uniquely determined by the mea-
surement operator Λ. Here, the key is to control Λ from above and from below
with constraining operators which determine a subset and a superset of the sought
domain, as proposed by Harrach in [Har13]. Then, an explicit criterion can be
stated to determine whether a given point is inside or outside the domain. This
criterion also serves as a base for non-iterative numerical reconstruction strategies.
Despite the fact that we do not provide any factorization of Λ, we �nally show that
this criterion is equivalent to the one used in the factorization method. We also
reformulate it in in terms of the Picard criterion. The latter has been used for nu-
merical implementation of shape reconstruction algorithms in electrical impedance
tomography and in three dimensional related problems, cf., e.g., Harrach et al.
in [GHK+05, GHS08] for numerical results. Analogously, we expect our criterion
to serve as a base for non-iterative reconstruction algorithms for transient eddy
current problems.

This chapter is organized as follows: Section 4.2 summarizes our variational
solution theory from Sections 3.2 and 3.3 for the direct problem. The setting for
the inverse problem and the de�nition of the measurement operator is provided in
Section 4.3. In Section 4.4 we show that the linear sampling method can be ap-
plied to detect a subset of the conducting domain. Our main result is presented in
Section 4.5: In case of diamagnetic materials, the conductor is uniquely located by
the measurement operator. Here we also present the explicit criterion for detecting
the conducting domain and show its equivalence to the factorization method. Sec-
tion 4.6 contains the proof of our main result. Finally, in Section 4.7 we rewrite our
criterion in terms of the Picard criterion. A conclusion can be found in Section 4.8.

4.2 The direct problem

This section brie�y summarizes the most important results of Chapter 3 on the
solution theory of the direct problem.

Throughout this chapter we assume for the conductivity σ, that there is some
Ω ⊂ R3 such that

σ|Ω ∈ L∞+ (Ω).

For this Ω we assume that it is the �nite union of smoothly bounded domains Ωi

with Ωi ∩ Ωj = ∅ if i 6= j, that R3 \ Ω is connected and that Ω = suppσ. Let Γ
denote the union of the boundaries of Ωi and ν denote the outer normal unit vector
on Γ. We call Ω the conductor.

The permeability µ ∈ L∞+ (R3) is assumed to be constant outside of Ω, for
simplicity we assume

µ|R3\Ω ≡ 1.

33
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We assume that we are given some right hand side Jt ∈ L2(0, T,W (curl)′),
that obeys div Jt = 0 and initial values

√
σE0 with E0 ∈ L2(R3)3, that ful�ll

div(σE0) = 0.

Then, for E ∈ L2(0, T,W (curl)), the eddy current problem reads

∂t(σ(x)E(x, t)) + curl

(
1

µ(x)
curlE(x, t)

)
= −Jt(x, t) in R3×]0, T [, (4.2)√

σ(x)E(x, 0) =
√
σ(x)E0(x) in R3. (4.3)

Recall the mapping

L2
ρ(R3)3 → H(curl 0,R3) := {E ∈ L2(R3)3 | curlE = 0}, E 7→ ∇uE,

with div(σ(E +∇uE)) = 0 in R3 from Lemma 3.5, the bilinear form

aσ : L2(0, T,W 1(R3)3)×H1(0, T,W 1(R3)3)→ R,

aσ(E,Φ) := −
∫ T

0

∫
R3

σ(E +∇uE) · Φ̇ dx dt+

∫ T

0

∫
R3

1

µ
curlE · curl Φ dx dt

and the Hilbert space

W 1
♦ := {E ∈ W 1(R3)3 | divE = 0}.

Then, the solution theory on the eddy current problem is summarized in the fol-
lowing theorem.

4.1 Theorem (cf. Theorem 3.6)

a) If E ∈ L2(0, T,W 1
♦) solves

aσ(E,Φ) = −
∫ T

0

〈Jt,Φ〉 dt+

∫
R3

σE0 · Φ(0) dx for all Φ ∈ H1
T0(0, T,W 1

♦),

(4.4)

then E +∇uE ∈ L2(0, T,W (curl)) solves (4.2)�(4.3), where

H1
T0(0, T,W 1

♦) := {Ψ ∈ H1(0, T,W 1
♦) |Ψ(T ) = 0}.

b) There is a unique solution E ∈ L2(0, T,W 1
♦) of (4.4). E depends continuously

on Jt and
√
σE0. E +∇uE solves the eddy current problem (4.2)�(4.3) and

any other solution F ∈ L2(0, T,W (curl)) of (4.2)�(4.3) ful�lls

curlF = curlE,
√
σF =

√
σ(E +∇uE).

curlF and
√
σF depend continuously on Jt and

√
σE0.
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We also consider the case σ ≡ 0 and µ ≡ 1, that we call the reference prob-

lem. This case corresponds to the eddy current problem without any conducting
medium. Then, the solution theory on the reference problem reduces to

4.2 Theorem (cf. Theorem 3.7) Let E ∈ L2(0, T,W (curl)).

a) The reference problem reads

curl curlE(x, t) = −Jt(x, t) in R3×]0, T [. (4.5)

b) E solves (4.5) if and only if E solves

a0(E,Φ) :=

∫ T

0

∫
R3

curlE · curl Φ dx dt

=−
∫ T

0

〈Jt,Φ〉 dt for all Φ ∈ L2(0, T,W 1
♦), (4.6)

where a0 : L2(0, T,W (curl))2 → R.

c) There exists a unique solution E ∈ L2(0, T,W 1
♦) of (4.6) and this solution

depends continuously on Jt. Any other solution F ∈ L2(0, T,W (curl)) ful�lls

curlF = curlE

and curlF depends continuously on Jt.

4.3 Electromagnetic measurements

We now turn to the description of our idealized measurement instrument. As
in, e.g., [GHK+05, GHS08], we assume that the electric �eld E is generated by
transient surface currents on a two-dimensional sheet S. In this way we assume
that we can apply every divergence-free tangential function I (that corresponds to
−Jt) supported in S as excitation on the right hand side of (4.2). Our idealized
measurement instrument also measures the tangential component of the electric
�eld on S.

Mathematically, the setting is as follows. We assume that

S ⊂ R3
0 := {(x1, x2, 0)T ∈ R3}

is (as a subset of R2) a bounded Lipschitz domain. Let n be the outer normal unit
vector on S, i.e. n = (0, 0, 1)T . We assume that Ω is placed below S and that
Ω ∩ S = ∅, i.e.

Ω ⊂ {(x1, x2, x3)T ∈ R3 |x3 < 0}.
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We consider the excitation I as an element of the space L2(0, T, TL2
♦(S)). Here,

the space TL2
♦(S) denotes the subspace of the space TL2(S) of elements with

vanishing divergence, where

TL2(S) := {u ∈ L2(S)3 |n · u = 0}

is the space of tangential functions. Using the continuous extension of the identi-
�cation of an element I ∈ TL2(S) with the distribution

Φ 7→
∫
S

I · Φ dS =

∫
S

I · ((n× Φ|S)× n) dS for all Φ ∈ D(R3)3

to W (curl), we consider the spaces TL2(S) and TL2
♦(S) as subspaces of W (curl)′.

Both, TL2(S) and TL2
♦(S) are Hilbert spaces equipped with the usual L2(S)3-

inner product. Hence, every I ∈ L2(0, T, TL2
♦(S)) de�nes an element of the space

L2(0, T,W (curl)′) that satis�es div I = 0. In this sense we can consider the surface
current I ∈ L2(0, T, TL2

♦(S)) as a source term for the eddy current equation (4.2),
respectively, the reference problem (4.5). In the following, we do not distinguish
between I ∈ L2(0, T, TL2

♦(S)) and the corresponding element of L2(0, T,W (curl)′)
and still write the dual pairing as a L2(S)3-product.

To de�ne the measurement operator we �rst remark, that the mapping

W 1(R3)3 → TL2(S), E 7→ γSE := (n× E|S)× n

is linear and continuous. Moreover, let

NS := R (γS∇D(R3)) ⊂ TL2(S).

It can easily be veri�ed, that NS ⊕⊥ TL2
♦(S) = TL2(S) and

TL2(S)/NS
∼= TL2

♦(S)′. (4.7)

Together with the identi�cation of TL2
♦(S) with its dual, we consider the measure-

ments as elements of L2(0, T, TL2
♦(S)). This can be interpreted as measuring the

electric �eld, such that it is adequately gauged to be divergence-free on S. Now,
Theorems 4.1 and 4.2 yield the following linear continuous operators.

4.3 De�nition (Measurement operator) We de�ne the measurement operator

Λ := Λ0 − Λσ : L2(0, T, TL2
♦(S))→ L2(0, T, TL2

♦(S)).

Here, Λ0 and Λσ are the mappings

Λ0,Λσ : L2(0, T, TL2
♦(S))→ L2(0, T, TL2

♦(S)),

I 7→ γSE0, respectively, γSEσ, (4.8)

where E0, Eσ ∈ L2(0, T,W 1
♦) are the unique solutions of

a0(E0, F ) =

∫ T

0

(γSF, I)L2(S)3 dt for all F ∈ L2(0, T,W 1
♦), (4.9)

aσ(Eσ, F ) =

∫ T

0

(γSF, I)L2(S)3 dt for all F ∈ H1
T0(0, T,W 1

♦). (4.10)

36



4.4. LINEAR SAMPLING METHOD

Note that if E0 and Eσ solve (4.9) and (4.10), then they are the unique solu-
tions of (4.6) and (4.4) with right hand side I. This means that Eσ + ∇uEσ ∈
L2(0, T,W (curl)) solves (4.2) with right hand side I and zero initial condition, cf.
Theorem 4.1 b). Especially, the above de�ned operators do not match the tangen-
tial value of the �real� electric �eld but just the tangential value of its divergence-free
part.

Let us stress, that even if (4.2)�(4.3) does not determine the solution uniquely,
in the measurement space, the measurements of di�erent solutions still coincide.
This is up to (4.7) and the fact, that, in a neighborhood of S, all solutions E ∈
L2(0, T,W (curl)) of (4.2)�(4.3) equal up to gradient �elds. Hence, the evaluation
of γSE in L2(0, T, TL2

♦(S)) is also well-de�ned, linear and continuous and de�nes
the same element as γSEσ. Therefore, we understand Λ as a gauged measurement
operator, where γSE0, γSEσ actually represent equivalence classes, cf. (4.7).

Before we start with the inverse problem, we introduce the time-integral oper-
ator

Ξ : L2(0, T, TL2
♦(S))→ TL2

♦(S), h 7→
∫ T

0

h(t) dt.

Its adjoint operator maps a time-independent function I ∈ TL2
♦(S) on its counter-

part in L2(0, T, TL2
♦(S)) that is constant in time, i.e.

(Ξ∗I)(t) = I, t ∈ (0, T ).

To maintain lucidity, we usually omit Ξ∗.

In the following three sections, we use of the space TH−1/2(curlΓ) and its dual
space TH−1/2(divΓ), cf., e.g., [Ces96, Chp. 2], and the surjective trace mappings

H(curl,Ω)→ TH−1/2(curlΓ), E 7→ γΓE := (ν × E|Γ)× ν,
H(curl,Ω)→ TH−1/2(divΓ), E 7→ ν × E|Γ.

4.4 Linear sampling method

In this section we show that a subset of Ω is determined by the measurements.
Therefore, we factorize the measurement operator into

Λ = LN,

where N maps an excitation on S to its e�ect on the conductor, and L measures
then the induced electric �eld on S. In linear sampling or factorization method
context, L is often called the virtual measurement operator. Its range contains
information needed to detect Ω.
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We start with this operator. Let H(curl,Ω)′♦ denote the subspace of H(curl,Ω)′

of elements with vanishing divergence,

H(curl,Ω)′♦ := {g ∈ H(curl,Ω)′ | 〈g,∇ϕ〉H(curl,Ω) = 0 for all ϕ ∈ D(Ω)}.

Then, H(curl,Ω)′♦ is a Hilbert space and the following operator is linear and con-
tinuous:

L : L2(0, T,H(curl,Ω)′♦)→ L2(0, T, TL2
♦(S)), B 7→ γSH,

where H ∈ L2(0, T,W 1
♦) solves

a0(H,F ) =

∫ T

0

〈B,F |Ω〉H(curl,Ω) dt for all F ∈ L2(0, T,W 1
♦). (4.11)

We show the following relation between L and Λ:

4.4 Lemma It holds that R (Λ) ⊂ R (L).

Proof We show that Λ = LN with an appropriate operator N .

The assumption Ω ∩ S = ∅ ensures, that for solutions E ∈ L2(0, T,W (curl)) of

(4.2) the evaluation ν × curlE|+Γ ∈ L2(0, T, TH−
1
2 (divΓ)) is linear and continuous,

where we denote by the +-sign the value from the outside of Ω. Moreover, for
t ∈ (0, T ) a.e. we have, that

F 7→ 〈ν × curlE(t)|+Γ , γΓF 〉TH− 1
2 (curlT )

for all F ∈ H(curl,Ω)

de�nes an element of H(curl,Ω)′♦. Hence, the following operator is linear and
continuous:

N : L2(0, T, TL2
♦(S))→ L2(0, T,H(curl,Ω)′♦), I 7→ h,

with

h : F 7→
∫ T

0

∫
Ω

curlEσ · curlF dx dt−
∫ T

0

〈ν × curlEσ|+Γ , γΓF 〉TH− 1
2 (curlΓ)

dt

for all F ∈ L2(0, T,H(curl,Ω)), and where Eσ solves (4.10) with source I.

To show that Λ = LN , let I ∈ L2(0, T, TL2
♦(S)) and E0 and Eσ denote the

solutions of (4.9) and (4.10) with source I. For t ∈ (0, T ) a.e. a short computation
using (3.11) shows, that for every Φ ∈ D(R3)3

〈(σ(Eσ+∇uEσ))
.
(t),Φ〉

= −
∫

Ω

1

µ
curlEσ(t) · curl Φ dx− 〈ν × curlEσ(t)|+Γ , γΓΦ〉

TH−
1
2 (curlΓ)

.
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The right hand side depends continuously on Φ|Ω ∈ D(Ω)3 ⊂ H(curl,Ω), thus,
due to the denseness, it de�nes an element of H(curl,Ω)′. Using this, (3.11) and
integration by parts (3.7), we obtain for every Φ ∈ D(R3×]0, T [)3, that

a0(E0 − Eσ,Φ) = aσ(Eσ,Φ)− a0(Eσ,Φ)

=

∫ T

0

〈(σ(Eσ +∇uEσ))
.
,Φ〉 dt+

∫ T

0

∫
Ω

1

µ
curlEσ · curl Φ dx dt− a0(Eσ,Φ)

= −
∫ T

0

〈ν × curlEσ|+Γ , γΓϕ〉TH− 1
2 (curlΓ)

dt−
∫ T

0

∫
Ω

curlEσ · curl Φ dx dt

=

∫ T

0

〈NI,Φ|Ω〉H(curl,Ω) dt.

On the other hand, let H ∈ L2(0, T,W 1
♦) be the solution of (4.11) with B = NI.

Again, denseness implies

a0(E0 − Eσ,Φ) = a0(H,Φ) for all Φ ∈ L2(0, T,W 1
♦),

and then uniqueness implies H = E0 − Eσ, cf. Theorem 4.2 c). It follows

ΛI = γS(E0 − Eσ) = γSH = LNI.

�

To characterize the conductor, we introduce for an arbitrary direction d ∈ R3,
|d| = 1, the functions

Gz,d : R3 \ {z} → R3, x 7→ curl
d

|x− z|
,

that have a dipole in z ∈ R3. In R3 \ {z}, every component of Gz,d solves the
homogeneous Laplace equation. Therefore, Gz,d is analytic in R3 \ {z}.

The following theorem shows, that a subset of Ω is determined by Λ.

4.5 Theorem (Linear sampling method) For every direction d ∈ R3, |d| = 1,
and every point z ∈ R3 below S, z /∈ Γ,

γSGz,d ∈ R (ΞΛ) implies z ∈ Ω.

Proof Let γSGz,d ∈ R (ΞΛ) . Lemma 4.4 yields R (Λ) ⊂ R (L), hence there is a
preimage B ∈ L2(0, T,H(curl,Ω)′♦) and some H ∈ L2(0, T,W 1

♦), that solves (4.11)
and that ful�lls

ΞγSH = γSGz,d.
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We consider E :=
∫ T

0
H(t) dt ∈ W 1

♦ and obtain γSE = γSGz,d, i.e.

γS(E −Gz,d) ∈ NS and

curl curlE = 0 in R3 \ Ω, divE = 0 in R3 \ Ω.

Thus E is analytic in R3 \Ω. Moreover, Gz,d is analytic in R3 \ {z}, and it follows
that curl(E − Gz,d) is analytic in R3 \

(
Ω ∪ {z}

)
. Now, following [GHS08], we

obtain by unique continuation of analytic functions, that

curlE = curlGz,d in R3 \ {z}.

The fact, that curlE ∈ L2(R3 \ Ω) but curlGz,d ∈ L2(R3 \ Ω) only if z ∈ Ω, yields
the assertion. �

Further results on unique characterization can be obtained if we assume some
additional feature on the permeability µ. This is done in the following sections.

4.5 Unique shape identi�cation

For the rest of this paper we assume in addition, that the permeability is smaller
on the conductor than on the background:

1− µ|Ω ∈ L∞+ (Ω).

This is the case, for instance, for diamagnetic materials.

We moreover assume that the connected components of Ω are simply connected.
This is only due to technical reasons, we expect our theory also to hold for multiply
connected domains, that ful�ll [DL00c, IX, Part A, �3, (1.45)], for instance, if Ω
has the form of a torus.

Now we formulate our main result. The proof is postponed to Section 4.6.

4.6 Theorem (Unique shape identi�cation) It holds for every direction d ∈
R3, |d| = 1, and every point z ∈ R3 below S, z /∈ Γ, that

z ∈ Ω if and only if

∃C > 0 : (Gz,d, I)2
L2(S)3 ≤ C

∫ T

0

(ΛI, I)L2(S)3 dt for all I ∈ TL2
♦(S) (4.12)

with

Gz,d(x) = curl
d

|x− z|
.
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In particular, Λ uniquely determines Ω. Let us stress, that therefore only time-
independent I are needed. This means, that the applied source currents J on S
(recall that I denotes the time-derivative of J) only depend linearly on time.

To formulate an equivalent formulation of Theorem 4.6, we make the following
observation. Let I ∈ L2(0, T, TL2

♦(S)) and E0 and Eσ be the solutions of (4.9) and
(4.10) with source I. Then, integrating Eσ by parts in time (3.7), and using the
fact, that E0 minimizes the functional

L2(0, T,W 1
♦)→ R, E 7→ 1

2
a0(E,E)−

∫ T

0

(γSE, I)L2(S)3 dt,

leads to∫ T

0

(ΛI, I)L2(S)3 dt ≥
∫ T

0

(γSEσ, I)L2(S)3 dt− a0(Eσ, Eσ)

≥ 1

2
‖
√
σ(Eσ +∇uEσ)(T )‖2

L2(Ω)3 + inf
Ω

[
1

µ
− 1

]
‖ curlEσ‖2

L2(ΩT )3 ≥ 0. (4.13)

An immediate consequence is the following. The linear continuous and (by con-
struction) self adjoint operator

Λ̃ := Ξ(Λ + Λ∗)Ξ∗ : TL2
♦(S)→ TL2

♦(S)

is positive, as for every I ∈ TL2
♦(S) it holds

(Λ̃I, I)L2(S)3 = (Ξ(Λ + Λ∗)Ξ∗I, I)L2(S)3 =

∫ T

0

((Λ + Λ∗)Ξ∗I,Ξ∗I)L2(S)3 dt

= 2

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt ≥ 0.

Hence, the square root Λ̃
1
2 exists.

We use the following result on the relation between the norm of an operator
and the range of its dual. In this form it is called the �14th important property of
Banach spaces� in Bourbaki [Bou87]:

4.7 Lemma Let X, Y be two Banach spaces. Let A ∈ L(X, Y ) and x′ ∈ X ′. Then

x′ ∈ R (A′) if and only if ∃C > 0 : |〈x′, x〉X | ≤ C‖Ax‖Y for all x ∈ X.

An elementary proof can be found, for instance, in [FGS07, Lemma 3.4].

4.8 Corollary (Factorization method) It holds for every direction d ∈ R3,
|d| = 1, and every point z ∈ R3 below S, z /∈ Γ, that

z ∈ Ω if and only if γSGz,d ∈ R
(

Λ̃1/2
)
. (4.14)
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Proof Theorem 4.6 yields that z ∈ Ω if and only if

∃C > 0 : (γSGz,d, I)2
L2(S)3 ≤ C

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt for all I ∈ TL2
♦(S).

(4.15)

For every I ∈ TL2
♦(S), (4.15) equals

(γSGz,d, I)2
L2(S)3 ≤ C

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt =
C

2
(Λ̃I, I)L2(S)3 =

C

2
‖Λ̃1/2I‖2

L2(S)3 .

A reformulation of Lemma 4.7 in the case of Hilbert spaces yields immediately that
this is equivalent to

γSGz,d ∈ R
(

Λ̃1/2
)
.

�

4.6 Constraining operators for Λ

The key of the proof of Theorem 4.6 is to �nd adequate operators that control
the measurement operator from below and from above, cf. [Har13]. To be more
precise, we are looking for operators R1 and R2 mapping into particular Hilbert
spaces, that ful�ll

c‖R1I‖2 ≤
∫ T

0

(ΛI, I)L2(S)3 dt ≤ c′‖R2I‖2

for all I ∈ L2(0, T, TL2
♦(S)) with some positive constants c, c′. These Hilbert spaces

will depend on Ω, so that the operators can be used to determine Ω uniquely.

In this section we introduce the operators R1 and R2 and show how they can be
used to characterize Ω. At the end of this section we give a proof of Theorem 4.6.

4.6.1 Lower bound

For the lower bound, an appropriate candidate for R1 can be found easily. Let
I ∈ L2(0, T, TL2

♦(S)) and E0 and Eσ be the solutions of (4.9) and (4.10) with
source I. Then, (4.13) yields∫ T

0

(ΛI, I)L2(S)3 dt ≥ 1

2
‖
√
σ(Eσ +∇uEσ)(T )‖2

L2(Ω)3 + inf
Ω

[
1

µ
− 1

]
‖ curlEσ‖2

L2(ΩT )3

≥ c
[
‖σ(Eσ +∇uEσ)(T )‖2

L2(Ω)3 + ‖ curlEσ‖2
L2(ΩT )3

]
=: c ‖R1I‖2 (4.16)
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with the constant

c = min

{
1

2‖σ‖∞
, inf

Ω

[
1

µ
− 1

]}
.

To de�ne R1 rigorously, let us �rst introduce the following factor space

X := H(curl,Ω)/N , where N := ker curl = ∇H1(Ω),

cf. [DL00c, IX, Part A, �1, Proposition 2 and Remark 6]. X is a Hilbert space
with respect to the induced norm

‖u+N‖X := inf
m∈N
‖u−m‖H(curl,Ω).

4.9 Lemma An equivalent norm on X is given by

u+N 7→ ‖ curlu‖L2(Ω).

Proof We consider u+N ∈ X. Then we have

‖u+N‖2
X = inf

m∈N
‖u−m‖2

H(curl,Ω) ≥ ‖ curlu‖2
L2(Ω).

Moreover, [DL00c, IX, Part A, �1, Corollary 5 and Remark 6] yields that every u
has a unique orthogonal decomposition

u = ∇p+ curlw

where p ∈ H1(Ω) and w ∈ H1(Ω)3 with ν · curlw|Γ = 0 (w must not be unique,
but curlw is). A short computation shows

‖u+N‖2
X = ‖ curlw‖2

L2(Ω) + ‖ curlu‖2
L2(Ω).

Now, [DL00c, IX, Part A, �1, Remarks 4 and 6] yields that

curl : {a ∈ H1(Ω)3 | div a = 0, ν · a|Γ = 0} → curlH1(Ω)3

is an isomorphism and therefore has a continuous linear inverse. Since curlw is an
element of that space, it follows

‖u+N‖2
X = ‖ curlw‖2

L2(Ω) + ‖ curlu‖2
L2(Ω)

≤ c′′‖ curl curlw‖2
L2(Ω) + ‖ curlu‖2

L2(Ω) = (c′′ + 1)‖ curlu‖2
L2(Ω)

with a constant c′′ independent of u (or its decomposition). �

Let L2(Ω)3
♦ be the space of L2(Ω)3-functions with vanishing divergence. Obvi-

ously, L2(Ω)3
♦ is a Hilbert space.
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4.10 Corollary The following mapping is linear and continuous:

R1 : L2(0, T, TL2
♦(S))→ L2(Ω)3

♦ × L2(0, T,X),

I 7→ (σ(Eσ +∇uEσ)(T )|Ω, Eσ|Ω +N ),

where Eσ solves (4.10) with source I. Its dual mapping is given by

R′1 :
(
L2(Ω)3

♦
)′ × L2(0, T,X ′)→ L2(0, T, TL2

♦(S)), (v, w) 7→ h,

where h obeys for every I ∈ L2(0, T, TL2
♦(S))∫ T

0

(h, I)L2(S)3 dt =

∫ T

0

(R′1(v, w), I)L2(S)3 dt

= 〈v, σ(Eσ +∇uEσ)(T )|Ω〉L2(Ω)3
♦

+

∫ T

0

〈w,Eσ|Ω +N〉X dt,

where Eσ denotes the solution of (4.10) with source I, again.

Now, the inequality (4.16) reads: There is a positive constant c so that

c ‖R1I‖2
L2(Ω)3

♦×L2(0,T,X) ≤
∫ T

0

(ΛI, I)L2(S)3 dt for all I ∈ L2(0, T, TL2
♦(S)).

(4.17)

The following lemma shows, that the range of R′1 determines a superset of Ω:
Whenever a point z is inside Ω, then γSGz,d is contained in the range of the dual
operator of R1.

4.11 Lemma Let z ∈ Ω. For every direction d ∈ R3, |d| = 1, there is a preimage
(v, w) ∈

(
L2(Ω)3

♦
)′ × L2(0, T,X ′) of ΞR′1 with

γSGz,d = ΞR′1(v, w).

Proof For every z ∈ Ω there is an ε > 0 such that for the open ball Bε(z) it
holds Bε(z) ⊂ Ω. Now we choose a smooth cuto� function ϕ ∈ C∞(R3) with ϕ ≡ 1
outside of Bε(z) and ϕ ≡ 0 in B ε

2
(z). We obtain

G̃z,d(x) := curl

(
ϕ(x)d

|x− z|

)
∈ H(curl,R3)

and we have G̃z,d =Gz,d in R3 \ Ω.

Let G̃z,d(t) := G̃z,d. Then, it holds

G̃z,d ∈ L2(0, T,W 1
♦), curl G̃z,d ∈ L2(0, T,H(curl,R3))

and curl curl G̃z,d = 0 in R3 \ Ω.
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We de�ne v ∈
(
L2(Ω)3

♦
)′
and w ∈ L2(0, T,X ′) by

v : H 7→
∫

Ω

H · G̃z,d dx,

w : F +N 7→
∫ T

0

∫
Ω

[
curl curl G̃z,d · F +

(
1

µ
− 1

)
curl G̃z,d · curlF

]
dx dt.

We use the fact, that for all F ∈ L2(0, T,W 1
♦) it holds∫ T

0

∫
R3\Ω

curl G̃z,d · curlF dx dt

=

∫ T

0

∫
Ω

[
curl curl G̃z,d · F − curl G̃z,d · curlF

]
dx dt,

the identity (3.11) and the integration by parts formula (3.7) and obtain, that for
every I ∈ TL2

♦(S) it holds

(ΞR′1(v, w), I)L2(S)3 =

∫ T

0

(R′1(v, w),Ξ∗I)L2(S)3 dt

=

∫
Ω

σ(Eσ +∇uEσ)(T ) · G̃z,d dx

+

∫ T

0

∫
Ω

[
curl curl G̃z,d · Eσ +

(
1

µ
− 1

)
curl G̃z,d · curlEσ

]
dx dt

=

∫ T

0

∫
R3

〈(σ(Eσ +∇uEσ))
.
, G̃z,d〉 dx dt+

∫ T

0

∫
R3

1

µ
curl G̃z,d · curlEσ dx dt

=

∫ T

0

(γSG̃z,d,Ξ
∗I)L2(S)3 dt

= (γSGz,d, I)L2(S)3 ,

where Eσ denotes the solution of (4.10) with source Ξ∗I. �

4.6.2 Upper bound

To de�ne R2, we consider the subspace of elements of TH−1/2(divΓ) with vanishing
divergence,

TH
−1/2
♦ (Γ) := {g ∈ TH−1/2(divΓ) | div g = 0},

where we understand TH−1/2(divΓ) as a subspace of W (curl)′ by

E 7→ 〈g, γΓE〉TH−1/2(curlΓ) for all E ∈ W (curl).
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Clearly, TH
−1/2
♦ (Γ) is a Hilbert space with respect to ‖ · ‖TH−1/2(divΓ). As the

tangential components of elements of W (curl) are in TH−1/2(curlΓ), every E ∈
W (curl) de�nes an element of TH

−1/2
♦ (Γ)

′
by

g 7→ 〈g, γΓE〉TH−1/2(curlΓ) for all g ∈ TH−1/2
♦ (Γ).

Now, Theorems 4.1 and 4.2 yield the following corollary.

4.12 Corollary For i = 0, σ, linear continuous mappings are given by

Ki : L2(0,T, TL2
♦(S))→ L2(0, T, TH

−1/2
♦ (Γ)

′
), I 7→ d,

with d : g 7→
∫ T

0

〈g, γΓEi〉TH−1/2(curlΓ) dt,

and where E0, Eσ ∈ L2(0, T,W 1
♦) are the solutions of (4.9) and (4.10) with source

I.

Their dual operators are given by

K ′i : L2(0, T, TH
−1/2
♦ (Γ))→ L2(0, T, TL2

♦(S)), g 7→ γSHi,

where H0 ∈ L2(0, T,W 1
♦) solves the variational problem

a0(H0,Φ) =

∫ T

0

〈g, γΓΦ〉TH−1/2(curlΓ) dt

for all Φ ∈ L2(0, T,W 1
♦), and Hσ ∈ L2(0, T,W 1

♦) solves

aσ(Hσ,Φ) =

∫ T

0

〈g, γΓΦ〉TH−1/2(curlΓ) dt

for all Φ ∈ H1(0, T,W 1
♦) with Φ(0) = 0.

We need two more operators and their duals:

4.13 Lemma For i = 0, σ, linear continuous mappings are given by

Mi : L2(0, T, TL2
♦(S))→ L2(0, T, TH−1/2(divΓ)), I 7→ ν × curlEi|+Γ ,

where E0, Eσ ∈ L2(0, T,W 1
♦) are the solutions of (4.9) and (4.10) with source I.

Their dual operators obey

M ′
i : L2(0, T, TH−1/2(curlΓ))→ L2(0, T, TL2

♦(S)), f 7→ −γSGi

for some Gi ∈ L2(0, T,W (curl,R3 \ Γ)) that ful�ll

γΓG
+
i − γΓG

−
i = f in Γ× (0, T ),

curl curlGi = 0 in R3 \ Ω× (0, T ).
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Proof Again, the �rst assertion follows from Theorem 4.1, Theorem 4.2, and
the fact, that the evaluation of ν × curlE|+Γ for solutions of (4.9) or (4.10) in
TH−1/2(divΓ) is linear and continuous.

For the second assertion, let γ−1
Γ be a linear continuous right inverse of

γΓ : W (curl,R3 \ Ω)→ TH−1/2(curlΓ).

For f ∈ L2(0, T, TH−1/2(curlΓ)) we denote

U f := γ−1
Γ f ∈ L2(0, T,W (curl,R3 \ Ω)).

Let U0 ∈ L2(0, T,W 1
♦) be the solution of∫ T

0

∫
R3

curlU0 · curlF dx dt = −
∫ T

0

∫
R3\Ω

curlU f · curlF dx dt

for all F ∈ L2(0, T,W 1
♦). Then, for every I ∈ L2(0, T, TL2

♦(S)) we obtain∫ T

0

〈M ′
0f, I〉L2(S)3 dt =

∫ T

0

〈M0I, f〉TH−1/2(curlΓ) dt

=

∫ T

0

〈ν × curlE0|+Γ , γΓU
f〉TH−1/2(curlΓ) dt

=

∫ T

0

∫
R3\Ω

curlE0 · curlU f dx dt−
∫ T

0

〈γSU f +NS, I〉L2(S)3 dt

= −
∫ T

0

∫
R3

curlE0 · curlU0 dx dt−
∫ T

0

〈γSU f +NS, I〉L2(S)3 dt

= −
∫ T

0

(γS(U0 + U f ), I)L2(S)3 dt,

where E0 ∈ L2(0, T,W 1
♦) is the solution of (4.9) with source I. The assertion for

M ′
0 follows now by the choice

G0 :=

{
U0 + U f in R3 \ Ω× (0, T ),

U0 in Ω× (0, T ).

The assertion for M ′
σ follows similarly by replacing U0 with the solution U ∈

L2(0, T,W 1
♦) of∫ T

0

∫
R3

[
σ(U +∇uU) · Ḟ +

1

µ
curlU · curlF

]
dx dt

= −
∫ T

0

∫
R3\Ω

curlF · curlU f dx dt

for all F ∈ H1(0, T,W 1
♦) with F (0) = 0. �
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Now we are prepared to de�ne the operator R2:

R2 : L2(0, T, TL2
♦(S))→ L2(0, T, TH−

1
2 (divΓ))2 × L2(0, T, TH

−1/2
♦ (Γ)

′
)2,

I 7→ (M0I,MσI,K0I,KσI).

Obviously, its dual is given by

R′2 : L2(0, T,TH−
1
2 (curlΓ))2 × L2(0, T, TH

−1/2
♦ (Γ))2 → L2(0, T, TL2

♦(S)),

(e, f, g, h) 7→M ′
0e+M ′

σf +K ′0g +K ′σh.

A reformulation of the measurement operator in terms of M0, Mσ, K0, Kσ yields
the estimation∫ T

0

(ΛI, I)L2(S)3 dt =

∣∣∣∣∫ T

0

[
〈M0I,KσI〉TH− 1

2 (curlΓ)
− 〈MσI,K0I〉TH− 1

2 (curlΓ)

]
dt

∣∣∣∣
≤ 1

2
‖R2I‖2

L2(0,T,TH−
1
2 (divΓ))2×L2(0,T,TH

−1/2
♦ (Γ)

′
)2
. (4.18)

In the following lemma we show likewise to Theorem 4.4, that the dual of R2

determines a subset of Ω.

4.14 Lemma For every direction d ∈ R3, |d| = 1, and every point z ∈ R3 below
S, z /∈ Γ,

γSGz,d ∈ R (ΞR′2) implies z ∈ Ω.

Proof Assume γSGz,d ∈ R (ΞR′2). Then, there are

g0, gσ ∈ L2(0, T, TH−
1
2 (curlΓ)) and f0, fσ ∈ L2(0, T, TH

−1/2
♦ (Γ))

such that

γSGz,d = Ξ(M ′
0g0 +M ′

σgσ +K ′0f0 +K ′σfσ)

= Ξ (γSH0 + γSHσ + γSG0 + γSGσ) .

Here, the functions H0, Hσ ∈ L2(0, T,W 1
♦) are such as in Corollary 4.12 and

G0, Gσ ∈ L2(0, T,W (curl,R3\Γ) are such as in Lemma 4.13. Let Vi =
∫ T

0
Hi(t) dt ∈

W 1
♦ and Pi =

∫ T
0
Gi(t) dt ∈ W (curl,R3 \ Γ) for i = 0, σ and consider

E := (V0 + Vσ + P0 + Pσ)|R3\Ω.

Then, we have E ∈ W (curl,R3 \Ω) and curl curlE = 0 in R3 \Ω, moreover it holds
γSE = γSGz,d and especially γS(E −Gz,d) ∈ NS.

Now we study the function

Z := curl(E −Gz,d).
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As a start, Z is analytic in R3 \
(
Ω ∪ {z}

)
, as curlGz,d is analytic in R3 \ {z} and

curlE is analytic in R3 \ Ω. Further, the third component of Z (denoted by Z3)
vanishes on R3

0. To see this we add a gradient �eld ∇a that ful�lls div(E+∇a) = 0
in a neighborhood of S and we obtain that E + ∇a − Gz,d is analytic in this
neighborhood. Beyond that,

γS(E +∇a−Gz,d) ∈ NS

implies that there is a sequence (ϕn) ∈ D(R3) with

γS∇ϕn → γS(E +∇a−Gz,d) in TL2(S)

and hence, as γSF = n × (F |S × n) = (F1|S, F2|S, 0)T for every F ∈ W (curl), we
have

(∇ϕn)1|S → (E +∇a−Gz,d)1|S, (∇ϕn)2|S → (E +∇a−Gz,d)2|S in L2(S).

Because of ∂2(∇ϕn)1 = ∂1(∇ϕn)2 it follows in a distributional sense, that

∂2(E +∇a−Gz,d)1 − ∂1(E +∇a−Gz,d)2 = 0 on S.

Moreover, as E+∇a and Gz,d are analytic on S, the classical derivatives exist and
are equal to the distributional ones. It follows that

curl(E +∇a−Gz,d)3 = ∂1(E +∇a−Gz,d)2 − ∂2(E +∇a−Gz,d)1 = 0 on S

and hence, that Z3 = curl(E − Gz,d)3 = curl(E +∇a − Gz,d)3 = 0 on S. As Z3 is
analytic in R3

0 and vanishes on S, unique continuation implies that

Z3 = 0 in R3
0.

The next step is to conclude, that Z vanishes in

R3
x3>0 := {(x1, x2, x3)T ∈ R3|x3 > 0}.

By choosing a transformation α : R3 → R3, x 7→ x − 2x3(0, 0, 1)T and analyzing
the function

Z̃(x) :=

{
Z(x) x3 ≥ 0

α(Z(α(x))) x3 < 0
,

one ends up with

Z̃ ∈ L2(R3)3 and div Z̃ = curl Z̃ = 0 in R3.

Hence, there is some U ∈ W 1
♦ with curlU = Z̃. This U also solves

curl curlU = 0 in R3.

It follows U = 0 and thus Z|R3
x3>0

= 0. Again, unique continuation of analytic

functions yields Z = 0 in R3 \
(
Ω ∪ {z}

)
. It follows

curlGz,d = curlE in R3 \
(
Ω ∪ {z}

)
.

If z /∈ R3 \ Ω, then curlGz,d /∈ L2(R3 \ Ω), which contradicts to the fact that
curlE ∈ L2(R3 \ Ω)3. It follows z ∈ Ω. �

49



CHAPTER 4. SHAPE DETECTION IN EDDY CURRENT PROBLEMS

4.6.3 Proof of the main result

Proof of Theorem 4.6 �=⇒�: Assume z ∈ Ω. Lemma 4.11 yields that there
is a preimage (v, w) of γSGz,d under ΞR′1, i.e.

ΞR′1(v, w) = γSGz,d.

We use inequality (4.17) and conclude for all I ∈ TL2
♦(S) that

(γSGz,d, I)L2(S)3 = (ΞR′1(v, w), I)L2(S)3 =

∫ T

0

(R′1(v, w),Ξ∗I)L2(S)3 dt

= 〈(v, w), R1Ξ∗I〉L2(Ω)3
♦×L2(0,T,X)

≤ ‖(v, w)‖(L2(Ω)3
♦)
′
×L2(0,T,X′)

‖R1Ξ∗I‖L2(Ω)3
♦×L2(0,T,X)

≤ C

[∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt

]1/2

with a constant C independent of I. The inequality (4.12), i.e.

∃C > 0 : (γSGz,d, I)2
L2(S)3 ≤ C

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt for all I ∈ TL2
♦(S),

follows immediately.

�⇐=�: Assume (4.12) holds. Then, equation (4.18) yields for all I ∈ TL2
♦(S),

that

(γSGz,d, I)2
L2(S)3 ≤ C

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt

≤ C

2
‖R2Ξ∗I‖2

L2(0,T,TH−
1
2 (divΓ))2×L2(0,T,TH

−1/2
♦ (Γ)

′
)2

with a constant C independent of I. We use Lemma 4.7, again, and conclude

γSGz,d ∈ R (ΞR′2) .

Lemma 4.14 shows that z ∈ Ω. �

4.7 An explicit criterion for shape reconstruction

Finally we show that the criterion (4.14) used in the factorization method can be
rewritten in terms of the Picard criterion.

Let us �rst remark that Λ can be written as the composition of linear continuous
mappings, and one of them is the compact embedding from the space of trace values
of W 1-functions, H1/2(S), into L2(S), cf. the assumptions on S and, e.g., [Gri85,

50



4.7. AN EXPLICIT CRITERION FOR SHAPE RECONSTRUCTION

Theorem 1.4.4.1]. Hence Λ̃ is a positively de�nite self adjoint linear continuous
compact mapping. Then for instance [Wer95, Theorem VI.3.2] yields a unique
eigenvalue decomposition of Λ̃, i.e. a null sequence (αn) ⊂ R≥0 of eigenvalues and
an orthonormal system (Ψn) ⊂ TL2

♦(S) of eigenfunctions that builds a basis of

ker(Λ̃)⊥. Moreover, we have for all I ∈ TL2
♦(S) that

Λ̃1/2I =
∞∑
n=1

α1/2
n (Ψn, I)L2(S)3Ψn.

Finally, we deduce with the Picard criterion, cf., e.g., [EHN00, Theorem 2.8]:

4.15 Corollary For all I ∈ TL2
♦(S) we have

I ∈ R
(

Λ̃1/2
)
⊕R

(
Λ̃1/2

)⊥
⇐⇒

∞∑
n=1

(Ψn, I)2
L2(S)3

αn
<∞.

4.16 Lemma Λ̃1/2 is injective.

Proof Let I ∈ TL2
♦(S) with Λ̃1/2I = 0. Then inequality (4.13) yields

0 = ‖Λ̃1/2I‖2
L2(S)3 = (Λ̃I, I)L2(S)3 = 2

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt

≥ ‖
√
σ(Eσ +∇uEσ)(T )‖2

L2(Ω)3 + 2 inf
Ω

[
1

µ
− 1

]
‖ curlEσ‖2

L2(ΩT )3 ,

where Eσ is the solution of (4.10) with source Ξ∗I and zero initial values. Hence
E := Eσ +∇uEσ ∈ Wσ solves (4.2) and

curlE = 0 in Ω× (0, T ),
√
σE(0) =

√
σE(T ) = 0 in Ω.

This implies ∂t(σE) = 0 and it follows E = 0 in Ω× [0, T ]. This and the fact that
µR3\Ω ≡ 1 yields

curl curlE = Ξ∗I in R3 × (0, T ). (4.19)

We consider the function
A := curlE.

Then A solves the homogeneous Laplace equation in the open set R3 \ S × (0, T )
and is thus an analytic function that vanishes in Ω×(0, T ). Unique continuation of
analytic functions implies A = 0 in R3\S×(0, T ), i.e. curlE = 0 on R3\S×(0, T ).
This together with (4.19) implies that I = 0. �

The precedent Lemma yields that R
(

Λ̃1/2
)⊥

= ∅. Altogether, we conclude:

4.17 Corollary It holds for every direction d ∈ R3, |d| = 1, and every point
z ∈ R3 below S, z /∈ Γ, that

z ∈ Ω ⇐⇒
∞∑
n=1

(Ψn, γSGz,d)
2
L2(S)3

αn
<∞.
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4.8 Concluding remarks

We have extended the ideas of the factorization method to the problem of localizing
conducting objects by electromagnetic measurements in the eddy-current regime.
We have shown that the position and shape of conducting (diamagnetic) objects
are uniquely determined by such measurements. We also showed how a subset of
the object can be characterized using a linear sampling approach.

The criteria derived in this work are constructive and may be implemented as
in the previous works on factorization and sampling methods, cf., e.g., [GHK+05,
GHS08] for numerical results for the time-harmonic Maxwell equations and [FGS07]
for results on the scalar parabolic-elliptic analogue of the eddy current equation.

The linear sampling method in Theorem 4.5 is closely related to the MUSIC-
type imaging (introduced in [Dev00]). This is shown in [AGH07] for electrical
impedance tomography in case of small conductors, where the measurement oper-
ator is expanded in terms of the size of the conductor. In [AKK+08], MUSIC-type
imaging is used for corrosion detection. It might be interesting to apply the results
of the paper to the problem of corrosion detection using eddy currents.

Let us remark, that our theoretical results in Section 4.5 require only excitations,
that are linear in time and only time integral measurements. Moreover, our results
hold for every �nal time T . In practice, this �nal time might play an important
role. For instance in thermal imaging, the imaging functional is quite sensitive to
the �nal time T , as pointed out in [AIKK05].

52



Chapter 5

Justi�cation of regularizations for

the parabolic-elliptic eddy current

equation

In this chapter we consider the parabolic-elliptic eddy current equation in a bounded
domain. We �rst extend our variational solution theory to the bounded setting and
then apply it to show two regularizations for the equation: A parabolic one and
an elliptic one. Both lead to well-posed and thus uniquely solvable problems. The
aim of this chapter is to rigorously justify these regularizations by proving the
convergence of the solutions against the solution of the original equation.

The Sections 5.2�5.6 are the Sections 2-6 of the paper [AH13a] up to minor
changes. Moreover, in Section 5.5, Theorem 5.15 is added.

5.1 Introduction

Let us recall that the parabolic-elliptic eddy current equation

∂t(σE) + curl

(
1

µ
curlE

)
= −∂tJ (5.1)

does not uniquely determine its solutions in the insulating part of the domain, i.e.
where σ = 0. Indeed, only σE and curlE are determined uniquely.

To overcome this non-uniqueness and also for computational reasons (cf., e.g.,
Lang and Teleaga in [LT08] or Bachinger et al. in [BLS05]), it seems natural to
regularize the problem by setting the conductivity to a small value ε > 0 in the
non-conducting region: Setting

σε =

{
σ(x) if σ(x) > 0,

ε if σ(x) = 0,
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CHAPTER 5. REGULARIZATIONS FOR THE EQUATION

the eddy current equation is made fully parabolic

∂t(σεEε) + curl

(
1

µ
curlEε

)
= −∂tJ (5.2)

and uniquely solvable. An aim of this chapter is to rigorously justify this regula-
rization: We show that

σεEε → σE and curlEε → curlE

as ε approaches zero, where E denotes any solution of (5.1) and Eε the solution of
(5.2). Note that for the scalar parabolic-elliptic analogue, the heat equation, this
result was shown by Harrach in [Geb07].

Unfortunately, our solution theory developed in Chapter 3 only holds for con-
ductivity coe�cients with bounded support. This is not the case for σε. In cases of
interest, for instance in computational applications, the equation is considered in
a bounded domain, anyway. Therefore we start this chapter by carrying over the
results of Chapter 3 to bounded domains: We restrict the solutions to a compara-
tively large domain, so that we can assume the �elds to be small at its boundary
far away from the source and the conductors. Hence we consider the solutions of
(5.1) to have vanishing tangential components at the boundary of the domain. Our
solution theory restricted to a bounded domain might be of interest on its own,
since up to the author's knowledge in the literature there cannot be found any
complete solution theory for the bounded setting that holds for spatially varying
conductivity coe�cient, cf. Chapter 3.

In the bounded setting, the conductivity is allowed to be non-zero in the whole
considered domain, also. It is shown in Sections 5.3 and 5.4 that the regularized
equation (5.2) is uniquely solvable. Then, the fact that our variational formulation
is uni�ed with respect to the conductivity enables us to prove the convergence of
the solutions if ε approaches zero.

A second possibility to regularize the parabolic-elliptic eddy current equation is
to add a regularization term εEε as proposed by Nicaise and Tröltzsch in [NT14]:

∂t(σEε) + curl

(
1

µ
curlEε

)
+ εEε = −∂tJ. (5.3)

This equation is coercive on the whole solution space and thus uniquely solvable,
as we show in Theorem 5.15. In contrast to the eddy current equation (5.1) and its
parabolic regularization (5.2), the standard variational formulation of (5.3) yields
unique solvability and continuous dependence on the right hand side and on the
coe�cients, especially on 1/ε. Here, our uni�ed variational solution theory does
not help to analyze the solution's behavior if ε tends to zero. Especially, our
appropriately regularized uni�ed variational formulation is not equivalent to the
equation: Its solution does not yield a solution of (5.3) (cf. Section 5.5), as it is
the case for (5.1) and (5.2).
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5.2. FORMULATION IN A BOUNDED DOMAIN

However, in some applications one might be interested in regularizing the vari-
ational problem on itself. Hence, the second aim is to establish an elliptic regular-
ization of our variational formulation of (5.1) that is indeed motivated by, but not
equivalent to equation (5.3).

This chapter is organized as follows: In Section 5.2 we formulate the eddy
current problem in a bounded domain and carry over the results of Section 3.2 about
the well-de�nedness of (5.1). Section 5.3 then contains our variational formulation
and the solvability of (5.1). In Section 5.4 we justify the parabolic regularization:
We prove the convergence of the solutions when the fully positive conductivity
approaches zero in a part of the domain. We �nish this chapter by presenting a
similar result for an elliptic regularization in Section 5.5. This chapter ends with
a conclusion in Section 5.6.

5.2 Formulation of the eddy current problem in a

bounded domain

Let O ⊂ R3 be a simply connected bounded domain with Lipschitz boundary Σ
and outer normal unit vector ν.

We consider the space L2(0, T,H0(curl)) as a proper space to look for a solution
of the eddy current equation (5.1). Here, the Hilbert space H0(curl) is de�ned as

H0(curl) := {E ∈ H(curl,O) | ν × E|Σ = 0}.

Let us assume that µ ∈ L∞+ (O) and either

σ ∈ L∞+ (O)

or (cf. Chapter 3)

σ ∈ LC := {σ ∈ L∞(O) | ∃ Ω ⊂ O : σ|Ω ∈ L∞+ (Ω), Ω = ∪si=1Ωi, s ∈ N,
with bounded Lipschitz domains Ωi, Ωi ∩ Ωj = ∅, i 6= j,

such that O \ Ω is connected and Ω = suppσ ( O}.

We assume that we are given E0 ∈ L2(O)3 with div(σE0) = 0 and the excitation

Jt ∈ L2(0, T,H(curl,O)′) with div Jt = 0.

Then, for E ∈ L2(0, T,H0(curl)), equation (5.1) posed on O×]0, T [ is well-
de�ned in a distributional sense and equivalent to

−
∫ T

0

∫
O
σE · ∂tΦ dx dt+

∫ T

0

∫
O

1

µ
curlE · curl Φ dx dt

= −
∫ T

0

〈Jt,Φ〉H(curl,O) dt for all Φ ∈ D(O×]0, T [)3. (5.4)
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CHAPTER 5. REGULARIZATIONS FOR THE EQUATION

The assertions of this section are proven in Section 3.2 for unbounded domains.
The proofs are analogously.

We �rst establish, that every solution of (5.1) has well-de�ned initial values.
Therefore we introduce the space

Wσ,O :=
{
E ∈ L2(0, T,H0(curl)) | (σE)

. ∈ L2(0, T,H0(curl)′)
}
,

where (σE). denotes the time-derivative of σE ∈ L2(OT )3 in the sense of vector-
valued distributions with respect to the canonical injection L2(O)3 ↪→ H0(curl)′.

5.1 Lemma (cf. Lemma 3.2) If E ∈ Wσ,O, then
√
σE ∈ C(0, T, L2(O)3). Addi-

tionally, for E,F ∈ Wσ,O the following integration by parts formula holds:∫ T

0

〈(σE)
.
, F 〉H0(curl) dt+

∫ T

0

〈(σF )
.
, E〉H0(curl) dt

=

∫
O
σ (E(T ) · F (T )− E(0) · F (0)) dx. (5.5)

5.2 Lemma (cf. Lemma 3.3) If E ∈ L2(0, T,H0(curl)) solves (5.1), then E ∈ Wσ,O
and thus has well-de�ned initial values

√
σE(0) ∈ L2(O)3.

For t ∈]0, T [ a.e., (σE).(t) ∈ H0(curl)′ is given by

〈(σE)
.
(t), F 〉H0(curl) = −〈Jt(t), F 〉H(curl,O)−

∫
O

1

µ
curlE(t) · curlF dx (5.6)

for all F ∈ H0(curl).

5.3 Corollary The following problem is well-de�ned: Find E ∈ L2(0, T,H0(curl))
that solves

∂t(σ(x)E(x, t)) + curl

(
1

µ(x)
curlE(x, t)

)
= −Jt(x, t) in O×]0, T [, (5.7)√

σ(x)E(x, 0) =
√
σ(x)E0(x) in O. (5.8)

Now, we give an equivalent variational formulation:

5.4 Lemma (cf. Lemma 3.4) The following problems are well-de�ned and equiv-
alent:

a) Find E ∈ L2(0, T,H0(curl)) that solves (5.7)�(5.8).

b) Find E ∈ Wσ,O that solves (5.8) and∫ T

0

〈(σE)
.
, F 〉H0(curl) dt+

∫ T

0

∫
O

1

µ
curlE · curlF dx dt

= −
∫ T

0

〈Jt, F 〉H(curl,O) dt (5.9)

for all F ∈ L2(0, T,H0(curl)).
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c) Find E ∈ L2(0, T,H0(curl)) that solves

−
∫ T

0

∫
O
σE · ∂tΦ dx dt+

∫ T

0

∫
O

1

µ
curlE · curl Φ dx dt

= −
∫ T

0

〈Jt,Φ〉H(curl,O) dt+

∫
O
σE0 · Φ(0) dx

for all Φ ∈ D(O × [0, T [)3.

5.5 Theorem (cf. Theorem 3.1c)) Equations (5.7)�(5.8) uniquely determine
√
σE

and curlE.
Moreover, if E ∈ L2(0, T,H0(curl)) solves (5.7)�(5.8), then every function F ∈
L2(0, T,H0(curl)) with curlF = curlE and

√
σF =

√
σE also solves (5.7)�(5.8).

5.3 A variational solution theory for bounded do-

mains

Unfortunately, the result on the non-uniqueness implies, that none of the variational
formulations in Lemma 5.4 is well-posed. Our approach is as follows. We keep this
non-uniqueness and try to determine the unique part of the solutions - that is the
divergence-free part. Therefore, we write

E = Ẽ +∇u

with a divergence-free �eld Ẽ, and a gradient �eld ∇u. The crucial point is to
consider ∇u = ∇uẼ as a continuous linear function of Ẽ, cf. Lemma 5.6. This
allows us to rewrite the eddy current problem (5.7)�(5.8) as a variational equation
for Ẽ, which is uniformly coercive on the space of divergence-free functions and
thus uniquely determines the �eld Ẽ. Note that Ẽ does not solve the eddy current
equation.

This section is similar to Section 3.3 for the case of unbounded domains.

5.6 Lemma (cf. Lemma 3.5) There is a continuous linear map

L2(O)3 → H0(curl 0) := {E ∈ H0(curl) | curlE = 0},
E 7→ ∇uE,

with

div(σ(E +∇uE)) = 0 in O. (5.10)

Proof Let E ∈ L2(O)3.

We �rst consider the case Ω = O. Due to Poincare's inequality (cf., e.g., [DL00b,
IV, �7, Proposition 2]), the fact, that σ is positively bounded from below on O,
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and Lax-Milgram's Theorem (cf., e.g., [RR04, �8, Theorem 8.14]), there exists a
unique uE ∈ H1

0 (O) that solves∫
O
σ∇u · ∇v dx = −

∫
O
σE · ∇v dx for all v ∈ H1

0 (O),

and uE depends continuously on E ∈ L2(O)3.

Now, let Ω ( O. Again, since σ is positively bounded from below on Ω, we
obtain as above a unique uE ∈ H1

�(Ω) that solves∫
Ω

σ∇u · ∇v dx = −
∫

Ω

σE · ∇v dx for all v ∈ H1(Ω),

where H1
�(Ω) :=

{
v ∈ H1(Ω) |

∫
Ωi
v dx = 0, i = 1, . . . , s

}
, and uE depends con-

tinuously on E|Ω. We extend uE to an element of H1
0 (O) by solving ∆u = 0 on

O \ Ω with u|∂Ω = uE|∂Ω for u ∈ H1(O \ Ω) with u|Σ = 0. Again, Lax-Milgram's
Theorem provides a unique solution, that depends continuously on uE|∂Ω and thus
on E. Let uE, again, denote its extension.

In both cases uE ∈ H1
0 (O), ∇uE ∈ H0(curl 0) and the mapping E 7→ ∇uE is

well-de�ned, linear and continuous with a continuity constant that depends on the
lower and upper bounds of σ. Moreover, (5.10) is ful�lled. �

We refer to Section 3.3 for the mapping's extension to time-dependent functions.

For the rest of this chapter, let ∇uE denote the image of E under this mapping.
Obviously, there are di�erent possibilities to construct this map, but

√
σ∇uE is

uniquely determined by the condition (5.10). Moreover, it holds that

‖
√
σ∇uE‖L2(O)3 ≤ ‖

√
σE‖L2(O)3 . (5.11)

Note that ∇uE depends nonlinearly on σ. Also continuous dependence on σ for
�xed E must not be true. A special case will be discussed in Section 5.4.

Now we use this Lemma to show a variational formulation for (5.7)�(5.8). We
de�ne the bilinear form

a : L2(0, T,H0(curl))×H1(0, T,H0(curl))→ R :

a(E,Φ) := −
∫ T

0

∫
O
σ(E +∇uE) · Φ̇ dx dt+

∫ T

0

∫
O

1

µ
curlE · curl Φ dx dt, (5.12)

and, motivated by Lemma 5.4c), the linear form l : H1(0, T,H0(curl))→ R:

l(Φ) := −
∫ T

0

〈Jt,Φ〉H(curl,O) dt+

∫
O
σE0 · Φ(0) dx.

To get around the non-uniqueness, cf. Theorem 5.5, we consider the Hilbert
space

W0 := {E ∈ H0(curl) | divE = 0}
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equipped with the norm ‖ curl · ‖L2(O)3 , that is equivalent to the graph norm, cf.
[GR86, Lemma 3.4]. Especially, there is a constant CO only depending on O such
that

‖E‖L2(O)3 ≤ CO‖ curlE‖L2(O)3 .

Let H1
T0(0, T,W0) := {Ψ ∈ H1(0, T,W0) |Ψ(T ) = 0}.

5.7 Theorem (cf. Theorem 3.6a)) If Ẽ ∈ L2(0, T,W0) solves

a(Ẽ,Φ) = l(Φ) for all Φ ∈ H1
T0(0, T,W0), (5.13)

then Ẽ +∇uẼ ∈ L2(0, T,H0(curl)) solves (5.7)�(5.8).

Proof Obviously, for �elds ∇ϕ ∈ H1(0, T,H0(curl)) with ϕ ∈ H1(0, T,H1(O)),
a(·,∇ϕ) as well as l(∇ϕ) vanish. (For the latter, recall that div Jt = 0 and
div(σE0) = 0.) Now we use the following simple decomposition (cf. Lemma 3.9):
Every Φ ∈ D(O)3 can be written as

Φ = Ψ +∇ϕ, (5.14)

with Ψ ∈ W0, ϕ ∈ H1
0 (O). From that and the linearity of a and l it follows, that

(for any Ẽ ∈ L2(0, T,W0))

a(Ẽ,Φ) = l(Φ)

holds for all Φ ∈ D(O × [0, T [)3, if it holds for all Φ ∈ H1
T0(0, T,W0). Lemma 5.4

yields the assertion. �

We now show that (5.13) is well-posed. We use the Lions-Lax-Milgram Theo-
rem 3.10.

5.8 Theorem (cf. Theorem 3.6b)) There is a unique solution Ẽ ∈ L2(0, T,W0)
of (5.13). Ẽ depends continuously on Jt and

√
σE0 and with α = max(‖µ‖∞, 2) it

holds, that

‖Ẽ‖L2(0,T,W0) ≤ α
√

2 max
(
(C2
O + 1)1/2‖Jt‖L2(0,T,H(curl,O)′), ‖

√
σE0‖L2(O)3

)
. (5.15)

Ẽ +∇uẼ solves the eddy current problem (5.7)�(5.8) and any other solution E ∈
L2(0, T,H0(curl)) of (5.7)�(5.8) ful�lls

curlE = curl Ẽ,
√
σE =

√
σ(Ẽ +∇uẼ). (5.16)

curlE and
√
σE depend continuously on Jt and

√
σE0:

‖ curlE‖L2(OT )3 ≤ α
√

2 max
(
(C2
O + 1)1/2‖Jt‖L2(0,T,H(curl,O)′), ‖

√
σE0‖L2(O)3

)
,

‖
√
σE‖L2(OT )3 ≤ 2CO‖

√
σ‖∞‖ curlE‖L2(OT )3 .
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Proof To apply the Lions-Lax-Milgram Theorem we use the Hilbert space H :=
L2(0, T,W0) and equip its subspace V := H1

T0(0, T,W0) with the norm

‖Φ‖2
V := ‖Φ‖2

L2(0,T,W0) + ‖
√
σ(Φ +∇uΦ)(0)‖2

L2(O)3 .

Then, it is straightforward to show that for �xed Φ ∈ V the linear form E 7→
a(E,Φ) is continuous on H and that l ∈ V ′ with

‖l‖V ′ ≤
√

2 max
(
(C2
O + 1)1/2‖Jt‖L2(0,T,H(curl,O)′), ‖

√
σE0‖L2(O)3

)
.

Moreover, for Φ ∈ V , Lemma 5.6 and the integration by parts formula (5.5)
yield that

a(Φ,Φ) ≥ 1

2
‖
√
σ(Φ +∇uΦ)(0)‖2

L2(O)3 +
1

‖µ‖∞
‖Φ‖2

L2(0,T,W0), (5.17)

which implies, that

inf
‖Φ‖V =1

sup
‖E‖H≤1

|a(E,Φ)| ≥ 1

α
.

Now, Lemma 3.10 yields the existence of an Ẽ ∈ H that ful�lls (5.13) and
depends continuously on l.

Theorem 5.7 yields that Ẽ +∇uẼ ∈ L2(0, T,H0(curl)) is a solution of the eddy
current equation (5.7) and (5.8).

To show uniqueness, let Ẽ1, Ẽ2 ∈ L2(0, T,W0) be two solutions of (5.13). Then,
Ẽ1 + ∇uẼ1

, Ẽ2 + ∇uẼ2
∈ L2(0, T,H0(curl)) both solve equations (5.7)�(5.8) and

Theorem 5.5 implies Ẽ1 = Ẽ2.

The remaining assertions follow similarly from Theorem 5.5. �

5.9 Corollary Let (σn)n∈N ⊂ LC ∪L∞+ (O) be a bounded sequence and Ẽn, n ∈ N,
be the corresponding unique solutions of (5.13). Then the sequences

(Ẽn)n∈N ⊂ L2(0, T,W0), (
√
σnẼn)n∈N, (

√
σn∇uẼn)n∈N ⊂ L2(OT )3

are bounded. The bounds depend on the bound of (σn)n∈N.

In particular, for any sequence (En)n∈N ⊂ L2(0, T,H0(curl)) of corresponding
solutions of (5.7)�(5.8) the sequences

(curlEn)n∈N, (
√
σnEn)n∈N ⊂ L2(OT )3

are bounded.

5.10 Remark The results from Section 3.4 on the dependence of the solution on
the conductivity, in particular the solution's sensitivity with respect to the eddy
current equation changing from elliptic to parabolic type, can be directly carried
over to the bounded setting.
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5.4 Parabolic regularization

In this section we keep σ ∈ LC , E
0 ∈ L2(O)3 with div(σE0) = 0 and Jt as in

Section 5.2 �xed and analyze the solution(s) behavior corresponding to

σε =

{
σ, x ∈ Ω,

ε, x ∈ O \ Ω,

if the positive real number ε approaches zero. Obviously, we have limε→0 σε = σ in
L∞(O). In that way, the eddy current equation is made fully parabolic:

∂t(σεEε) + curl

(
1

µ
curlEε

)
= −Jt. (5.18)

Our main result is Theorem 5.14, where we show that the relevant parts of
the solutions of (5.18), i.e. curlEε and σεEε, converge against the corresponding
unique parts of the solutions of the eddy current equation

∂t(σE) + curl

(
1

µ
curlE

)
= −Jt

if ε tends to zero. Therefore, we use the variational formulation (5.13) and show
that its (unique) solutions converge (cf. Theorem 5.13).

Let us �rst remark, that, since σε ∈ L∞+ (O), the theory of Sections 5.2 and 5.3
(with appropriate initial conditions) holds. Especially, (5.18) is uniquely solvable,
and the unique solution is given by Ẽε + ∇uẼε,ε, where Ẽε ∈ L2(0, T,W0) is the
unique solution of (5.13) with σ = σε and ∇uẼε,ε is its image under the mapping
from Lemma 5.6 with σ = σε.

We start with the analysis of the mapping from Lemma 5.6,

L2(O)3 → H0(curl 0), E 7→ ∇uE,ε

such that div(σε(E + ∇uE,ε)) = 0, as ε → 0. Here, we indicate the nonlinear
dependence of uE on σε by uE,ε.

5.11 Lemma Let (Fε) ⊂ L2(O)3 with Fε ⇀ F ∈ L2(O)3 as ε → 0. Let (uFε,ε) ⊂
H1

0 (O) denote the corresponding unique elements from Lemma 5.6, that solve∫
O
σε∇uFε,ε · ∇v dx = −

∫
O
σεFε · ∇v dx for all v ∈ H1

0 (O)

and let uF,σ ∈ H1
0 (O) be the corresponding element from Lemma 5.6 (that is unique

by construction). Then

a) ‖√σεFε‖L2(O\Ω)3 → 0,
√
σεFε ⇀

√
σF in L2(O)3 and (

√
σε∇uFε,ε) ⊂ L2(O)3

is bounded,
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b) σε∇uFε,ε ⇀ σ∇uF,σ ∈ L2(O)3

as ε→ 0. Especially, for �xed F ∈ L2(O)3 it holds that
√
σεF →

√
σF in L2(O)3

and
√
σε∇uF,ε →

√
σ∇uF,σ in L2(O)3.

Proof Let ϕ ∈ L2(O)3.

a) Obviously, it holds that ‖√σεFε‖L2(O\Ω)3 =
√
ε‖Fε‖L2(O\Ω)3 → 0,

(
√
σεFε −

√
σF, ϕ)L2(O)3 =

√
ε(Fε, ϕ)L2(O\Ω)3 + (Fε − F,

√
σϕ)L2(Ω)3 → 0,

and since

‖
√
σε∇uFε,ε‖L2(O)3 ≤ ‖

√
σεFε‖L2(O)3

we obtain, that (
√
σε∇uFε,ε) is bounded in L2(O)3.

b) First we show that every subsequence of (
√
σε∇uFε,ε) has a subsequence that

converges weakly against
√
σ∇h for some h ∈ H1

0 (O). In a second step we
show that all these weak limits coincide.

Since (
√
σε∇uFε,ε) ⊂ L2(O)3 is bounded, every subsequence is bounded, and

Alaoglu's Theorem, cf., e.g., [RR04, Theorem 6.62], yields that every sub-
sequence contains subsequence (that we still indicate by ε for the ease of
notation), again, that converges weakly against some a ∈ L2(O)3:

√
σε∇uFε,ε ⇀ a ∈ L2(O)3.

We then also have

√
σε∇uFε,ε|Ω =

√
σ∇uFε,ε|Ω ⇀ a|Ω ∈ L2(Ω)3

and therefore

∇uFε,ε|Ω ⇀
a|Ω√
σ
∈ L2(Ω)3.

The orthogonal decomposition

∇H1(Ω)⊕⊥ H0(div 0,Ω) = L2(Ω)3,

cf. [DL00c, IX, �3, Proposition 1], where

H0(div 0,O) = {E ∈ L2(O)3 | divE = 0, ν · E|Σ = 0},

yields then a|Ω√
σ
∈ ∇H1(Ω) and hence there is some h ∈ H1(Ω) with

a|Ω√
σ

= ∇h.
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Obviously, ∇h is uniquely determined, but h is not. To overcome this, we �x
h by the choice h ∈ H1

�(Ω) as in Lemma 5.6 and extend it to an element of
H1

0 (O) by solving ∆h = 0 on O \ Ω. Then it still holds that

√
σ∇uFε,ε ⇀

√
σ∇h in L2(O)3

and hence

(σε∇uFε,ε − σ∇h, ϕ)L2(O)3 =

(σ∇uFε,ε−σ∇h, ϕ)L2(Ω)3 +
√
ε(
√
ε∇uFε,ε, ϕ)L2(O\Ω)3 → 0,

i.e. σε∇uFε,ε ⇀ σ∇h in L2(O)3.

To conclude, that all these weak limits are identical, we show

σ∇h = σ∇uF,σ.

For every v ∈ H1
0 (O), a) yields

0 =

∫
O
σε∇uFε,ε · ∇v dx+

∫
O
σεFε · ∇v dx

→
∫

Ω

σ∇h · ∇v dx+

∫
Ω

σF · ∇v dx

and therefore also the right hand side vanishes for every v ∈ H1
0 (O). Accord-

ingly, σ∇h = σ∇uF,σ and ∇h|Ω = ∇uF,σ|Ω.
Altogether, the second assertion follows. �

The next step is to show that the sequence of solutions of the variational equa-
tion (5.13) converge.

To obtain meaningful initial values for (5.18), we modify the initial value E0 ∈
L2(O)3 to make its product with σε divergence-free by E

0 +∇uE0,ε. The precedent
Lemma then yields

√
σε(E

0 +∇uE0,ε)→
√
σE0 in L2(O)3 and the right hand side

of (5.13), lε : H1(0, T,H0(curl))→ R, obviously ful�lls

lε(Φ) :=−
∫ T

0

〈Jt,Φ〉H(curl,O) dt+

∫
O
σε(E

0 +∇uE0,ε) · Φ(0) dx

→−
∫ T

0

〈Jt,Φ〉H(curl,O) dt+

∫
O
σE0 · Φ(0) dx = l(Φ) as ε→ 0

for every Φ ∈ H1(0, T,H0(curl)).

Corresponding to σε let Ẽε ∈ L2(0, T,W0) denote the unique solution of

aε(Ẽε,Φ) = lε(Φ) for all Φ ∈ H1
T0(0, T,W0), (5.19)
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that is (5.13) with σ = σε. The bilinear form aε is then given by

aε : L2(0, T,H0(curl))×H1(0, T,H0(curl))→ R :

aε(E,Φ) := −
∫ T

0

∫
O
σε(E +∇uE,ε) · Φ̇ dx dt+

∫ T

0

∫
O

1

µ
curlE · curl Φ dx dt.

The next lemma shows that the solutions converge weakly towards the solution
Ẽ ∈ L2(0, T,W0) of (5.13) (that corresponds to ε = 0).

5.12 Lemma It holds, that

Ẽε ⇀ Ẽ in L2(0, T,W0) and
√
σεẼε ⇀

√
σẼ, σε∇uẼε,ε ⇀ σ∇uẼ,σ in L2(OT )3

as ε→ 0.

Proof The precedent Lemma yields that it su�ces to show that Ẽε ⇀ Ẽ. To
show this, we use the same technique: From Corollary 5.9 we know that (Ẽε) ⊂
L2(0, T,W0) is bounded. Again, Alaoglu's Theorem yields that every subsequence
contains a subsequence (that we still denote by (Ẽε) for ease of notation) that
converges weakly against some Ẽ ′ ∈ L2(0, T,W0). In the following we show that
all these weak limits are identical to Ẽ.

The previous Lemma yields

√
σεẼε ⇀

√
σẼ ′ in L2(OT )3

and

σε∇uε,Ẽε ⇀ σ∇uẼ′,σ ∈ L
2(OT )3.

Moreover, Ẽε ⇀ Ẽ ′ in L2(0, T,W0) implies that curl Ẽε ⇀ curl Ẽ ′ in L2(OT )3, so
that for every Φ ∈ H1

T0(0, T,W0) the left hand side aε(Ẽε,Φ) of (5.13) with σ = σε
converges against a(Ẽ ′,Φ):

aε(Ẽε,Φ) =−
∫ T

0

∫
O
σε(Ẽε +∇uẼε,ε) · Φ̇ dx dt+

∫ T

0

∫
O

1

µ
curl Ẽε · curl Φ dx dt

→ a(Ẽ ′,Φ).

Since lε(Φ)→ l(Φ), Ẽ ′ solves (5.13) and thus uniqueness provides Ẽ = Ẽ ′. �

5.13 Theorem It holds, that Ẽε → Ẽ in L2(0, T,W0),
√
σεẼε →

√
σẼ and√

σε∇uẼε,ε →
√
σ∇uẼ,σ in L2(OT )3 as ε→ 0.

Proof Using the fact, that Ẽε+∇uẼε,ε solves (5.18) with initial values
√
σε(E

0 +
∇uE0,ε), the integration by parts formula (5.5) and Lemma 5.4b) we obtain for
every ε, that
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‖µ−
1
2 curlẼε‖2

L2(OT )3 +
1

2
‖
√
σε(Ẽε +∇uẼε,ε)(T )‖2

L2(O)3

= −
∫ T

0

〈Jt, Ẽε〉H(curl,O) dt−
∫ T

0

〈(σ(Ẽε +∇uẼε,σ))
.
, Ẽε〉H0(curl,O) dt

+
1

2
‖
√
σε(Ẽε +∇uẼε,ε)(T )‖2

L2(O)3

= −
∫ T

0

〈Jt, Ẽε〉H(curl,O) dt+
1

2
‖
√
σε(E

0 +∇uE0,ε)‖2
L2(O)3 . (5.20)

The precedent lemma and the fact, that Ẽ+∇uẼ,σ solves (5.18) with initial values√
σE0, analogously yields

lim
ε→0

[
‖µ−

1
2 curl Ẽε‖2

L2(OT )3 +
1

2
‖
√
σε(Ẽε +∇uẼε,ε)(T )‖2

L2(O)3

]
= lim

ε→0

[
−
∫ T

0

〈Jt, Ẽε〉H(curl,O) dt+
1

2
‖
√
σε(E

0 +∇uE0,ε)‖2
L2(O)3

]
= −

∫ T

0

〈Jt, Ẽ〉H(curl,O) dt+
1

2
‖
√
σE0‖2

L2(O)3

= ‖µ−
1
2 curl Ẽ‖2

L2(OT )3 +
1

2
‖
√
σ(Ẽ +∇uẼ,σ)(T )‖2

L2(O)3 . (5.21)

This yields that (
√
σε(Ẽε + ∇uẼε,ε)(T )) ⊂ L2(O)3 is bounded, hence every sub-

sequence has a subsequence that converges weakly against some H ∈ L2(O)3. It
follows for every A ∈ D(O × (0, T ]) that

(
√
σε(Ẽε +∇uẼε,ε)(T ),

√
σεA(T ))L2(O)3

=

∫ T

0

〈(σ(Ẽε +∇uẼε,ε))
.
, A〉H0(curl,O) dt+

∫ T

0

〈(σεA)
.
, Ẽε +∇uẼε,ε〉H0(curl,O) dt

= −
∫ T

0

〈Jt, Ẽε〉H(curl,O) dt−
∫ T

0

∫
O

1

µ
curl Ẽε · curlA dx dt

+

∫ T

0

∫
O
σε(Ẽε +∇uẼε,ε) · ∂tA dx dt.

As before we obtain

(H,
√
σA(T ))L2(O)3 = lim

ε→0
(
√
σε(Ẽε +∇uẼε,ε)(T ),

√
σεA(T ))L2(O)3

= lim
ε→0

[
−
∫ T

0

〈Jt, Ẽε〉H(curl,O) dt−
∫ T

0

∫
O

1

µ
curl Ẽε · curlA dx dt

+

∫ T

0

∫
O
σε(Ẽε +∇uẼε,ε) · ∂tA dx dt

]
= (
√
σ(Ẽ +∇uẼ,σ)(T ),

√
σA(T ))L2(O)3 ,
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so that the denseness of
√
σD(Ω) ⊂ L2(Ω) implies H|Ω =

√
σ(Ẽ +∇uẼ,σ)(T )|Ω. It

follows for the full sequence, that
√
σε(Ẽε +∇uẼε,ε)(T ) ⇀

√
σ(Ẽ +∇uẼ,σ)(T ) in

L2(Ω)3. Now equation (5.21) yields

lim
ε→0

[
‖µ−

1
2 curl(Ẽε − Ẽ)‖2

L2(OT )3

+
1

2
‖
√
σε(Ẽε +∇uẼε,ε)(T )−

√
σ(Ẽ +∇uẼ,σ)(T )‖2

L2(O)3

]
= lim

ε→0

[
‖µ−

1
2 curl Ẽε‖2

L2(OT )3 + ‖µ−
1
2 curl Ẽ‖2

L2(OT )3

− 2(µ−
1
2 curl Ẽε, µ

− 1
2 curl Ẽ)L2(OT )3 +

1

2
‖
√
σε(Ẽε +∇uẼε,ε)(T )‖2

L2(O)3

+
1

2
‖
√
σ(Ẽ +∇uẼ,σ)(T )‖2

L2(O)3

− (
√
σε(Ẽε +∇uẼε,ε)(T ),

√
σ(Ẽ +∇uẼ,σ)(T ))L2(Ω)3

]
= 0. (5.22)

Hence the �rst and the second assertion follow immediately. For the third assertion
note that equation (5.22) holds for almost every t ∈ (0, T ) and that

‖
√
σε(Ẽε +∇uẼε,ε)(t)−

√
σ(Ẽ +∇uẼ,σ)(t)‖2

L2(O)3

is uniformly bounded with respect to ε and t. Consequently we have

lim
ε→0
‖
√
σε(Ẽε +∇uẼε,ε)−

√
σ(Ẽ +∇uẼ,σ)‖2

L2(OT )3 = 0

so that the third assertion follows from the second assertion. �

Now we can formulate our main result. Corresponding to σε, we denote by Eε ∈
L2(0, T,H0(curl)) the unique solution of (5.18) with initial values

√
σε(E

0+∇uE0,ε).
For ε = 0, let E ∈ L2(0, T,H0(curl)) denote any solution of (5.7)�(5.8).

5.14 Theorem It holds, that curlEε → curlE and
√
σεEε →

√
σE in L2(OT )3

and (σεEε)
. → (σE). in L2(0, T,H0(curl)′) as ε→ 0.

Proof It holds
√
σεEε =

√
σε(Ẽε+∇uẼε,ε), curlEε = curl Ẽε and curlE = curl Ẽ,

so that the precedent Lemma provides the �rst and the second assertion.

From the explicit form (5.6) of (σεEε)
. given in Lemma 5.2, we obtain for all

F ∈ L2(0, T,H0(curl))∣∣∣∣∫ T

0

〈(σεEε). − (σE)
.
, F 〉H0(curl) dt

∣∣∣∣ =

∣∣∣∣∫ T

0

∫
O

1

µ
curl(E − Eε) · curlF dx dt

∣∣∣∣→ 0.

This yields (σεEε)
. → (σE). in L2(0, T,H0(curl)′). �
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5.5 Elliptic regularization

We �nish this chapter by justifying an elliptic regularization. We keep E0 = 0, Jt
and σ ∈ LC ∪ L∞+ (O) �xed and add the regularization term εEε to the left hand
side of equation (5.1). This is a natural way to make the problem fully coercive
and hence leads to a well-posed problem:

5.15 Theorem For Eε ∈ L2(0, T,H0(curl)), the equations

∂t(σEε) + curl

(
1

µ
curlEε

)
+ εEε = −Jt in O × (0, T ), (5.23)

√
σEε(0) = 0 in O

are well-de�ned and equivalent to

−
∫ T

0

∫
O
σEε · Φ̇ dx dt+

∫ T

0

∫
O

[
1

µ
curlEε · curl Φ + εEε · Φ

]
dx dt

= −
∫ T

0

〈Jt,Φ〉H(curl,O) dt for all Φ ∈ H1
T0(0, T,H0(curl)). (5.24)

The variational problem (5.24) is uniquely solvable. The solution depends contin-
uously on ε and Jt:

‖Eε‖L2(0,T,H0(curl)) ≤ max

(
2, ‖µ‖∞,

1

ε

)
‖Jt‖L2(0,T,H(curl,O)′).

Proof Well-de�nedness, equivalence and uniqueness follow as in Section 5.2.
Moreover, the left hand side of equation (5.24) de�nes a bilinear form posed on
L2(0, T,H0(curl)) × H1(0, T,H0(curl)), and the right hand side a linear form on
H1(0, T,H0(curl)). Then, the Lions-Lax-Milgram Theorem 3.10 (applied like in
Theorem 5.8) yields a unique solution Eε ∈ L2(0, T,H0(curl)) that depends con-
tinuously on Jt. �

Unfortunately, we can not provide any assertion about the solutions behaviour if
ε tends to zero. First of all, the precedent theorem does not contain any information
about the boundedness of the regularized solutions. Beyond that, the variational
formulation (5.24) of the regularized equation is not equivalent to our variational
formulation of the eddy current equation (5.13) (appropriately regularized).

Anyway, in some applications, one might be interested in the variational for-
mulation on itself. Therefore, we �nish this chapter by justifying an elliptic regu-
larization of the variational problem (5.13).
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We modify the variational equation (5.13) in the following way. Let the left
hand side aε : L2(0, T,H0(curl))×H1(0, T,H0(curl))→ R be de�ned by

aε(E,Φ) := a(E,Φ) + ε(E,Φ)L2(OT )3

=−
∫ T

0

∫
O
σ(E +∇uE) · Φ̇ dx dt+

∫ T

0

∫
O

1

µ
curlE · curl Φ dx dt

+

∫ T

0

∫
O
εE · Φ dx dt

for some ε > 0. Then, aε is (with respect to the space variable) coercive on the
whole space H0(curl).

We consider the variational problem of �nding Ẽε ∈ L2(0, T,W0) that solves

aε(Ẽε,Φ) = l(Φ) for all Φ ∈ H1
T0(0, T,W0) (5.25)

and study the solutions behavior if ε tends to zero.

In the following we show that the solutions of (5.25) converge against the so-
lution of (5.13), if ε tends to zero. Therefore, let us shortly answer the question
of well-posedness of (5.25). Obviously, the problem of �nding Ẽε ∈ L2(0, T,W0)
that solves (5.25) for all Φ ∈ H1

T0(0, T,W0) still �ts into the framework of the proof
of the �rst part of Theorem 5.8 and hence there is a solution. Moreover, it can
be shown that if Ẽε ∈ L2(0, T,W0) is such a solution, then Ẽε + ∇uẼε ∈ Wσ,O
(cf. Lemma 5.2 and the proof of Lemma 3.3). Therefore, the integration by parts
formula (5.5) holds and a result similar to Lemma 5.4. Using this, one easily sees
that Ẽε is unique.

5.16 Theorem Let Ẽ ∈ L2(0, T,W0) denote the unique solution of (5.13) and
Ẽε ∈ L2(0, T,W0) denote the unique solution of (5.25). Then we have Ẽε → Ẽ in
L2(0, T,W0) as ε→ 0.

Proof First of all the coercivity and continuity constants in Theorem 5.8 are the
same for both, the regularized and the original problem. Therefore, Theorem 5.9
yields that Ẽε is bounded. Moreover, it obviously holds for all F ∈ L2(0, T,W0)
that

0 = l(F )− l(F ) = aε(Ẽε, F )− a(Ẽ, F ) = a(Ẽε − Ẽ, F ) + ε(Ẽε, F )L2(OT )3 .

By use of a similar equivalent formulation as in Lemma 5.4b), we obtain with
α = max(‖µ‖∞, 2) that

‖Ẽε − Ẽ‖2
L2(0,T,W0) ≤ αε(Ẽε, Ẽε − Ẽ)L2(OT )3

≤ αεC2
O‖Ẽε‖L2(0,T,W0)‖Ẽε − Ẽ‖L2(0,T,W0)

and hence

‖Ẽε − Ẽ‖L2(0,T,W0) ≤ αεC2
O‖Ẽε‖L2(0,T,W0).

The assertion follows from the fact, that ‖Ẽε‖L2(0,T,W0) is bounded. �
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In addition, one can show as in Section 5.4 that

σ(Ẽε +∇uẼε)→ σ(Ẽ +∇uẼ) and (σ(Ẽε +∇uẼε))
. → (σ(Ẽ +∇uẼ))

.

as ε→ 0.

Let us stress again that, in contrast to the parabolic regularization, we do
not have any assertion about the solutions of the related (but not equivalent)
regularized eddy current problem (5.23). This is due to the fact that a solution of
(5.25) does not naturally imply a solution of (5.23), as it is the case for the original
problem, cf. Theorem 5.7 and the parabolic regularization in Section 5.4.

5.6 Conclusion

We have considered the transient eddy current equation in a bounded domain
consisting of a conducting and a non-conducting part, which are described by the
conductivity coe�cient. A consequence is, that the equation is of parabolic-elliptic
type and does not determine its solutions uniquely in the non-conducting part.

We have presented a variational solution theory, that is uniquely solvable and
whose solution represents all solutions of the eddy current equation. This solution
theory treats the conductivity merely as a parameter, especially it does not depend
on the conducting region. We have used this theory to show a parabolic and an
elliptic regularization for the equation.

A natural way to regularize the equation is to set the conductivity to a small
positive value ε in the non-conducting part. Then the resulting equation is fully
parabolic and leads to a well-posed problem. We have justi�ed this regularization
by proving the convergence of its solutions against the solution of the original
parabolic-elliptic equation if ε tends to zero.

We have also showed an adequate result for an elliptic regularization.
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