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A New Information Fusion Method for Land-Use Classification Using

High-Resolution Satellite Imagery

– An Application in Landau, Germany

Abstract

Satellite image classification involves designing and developing efficient image classifiers.

With satellite image data and image analysis methods multiplying rapidly, selecting the right

mix of data sources and data analysis approaches has become critical to the generation of

quality land-use maps.

In this study, a new postprocessing information fusion algorithm for the extraction and

representation of land-use information based on high-resolution satellite imagery is presented.

This approach can produce land-use maps with sharp interregional boundaries and

homogeneous regions. The proposed approach is conducted in five steps.

q First, a GIS layer – ATKIS data – was used to generate two coarse homogeneous regions,

i.e. urban and rural areas.

q Second, a thematic (class) map was generated by use of a hybrid spectral classifier

combining Gaussian Maximum Likelihood algorithm (GML) and ISODATA classifier.

q Third, a probabilistic relaxation algorithm was performed on the thematic map, resulting

in a smoothed thematic map.

q Fourth, edge detection and edge thinning techniques were used to generate a contour map

with pixel-width interclass boundaries.

q Fifth, the contour map was superimposed on the thematic map by use of a region-growing

algorithm with the contour map and the smoothed thematic map as two constraints.

For the operation of the proposed method, a software package is developed using

programming language C. This software package comprises the GML algorithm, a

probabilistic relaxation algorithm, TBL edge detector, an edge thresholding algorithm, a fast

parallel thinning algorithm, and a region-growing information fusion algorithm. The county of

Landau of the State Rheinland-Pfalz, Germany was selected as a test site. The high-resolution

IRS-1C imagery was used as the principal input data.
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Zusammenfassung

Eine neue Methode der Informationsverknüpfung zur Klassifizierung der Landnutzung
auf der Grundlage hochauflösender Satellitenbilddaten

Für die Klassifizierung der Landnutzung existiert eine große Auswahl an Satellitenbilddaten.
Die Auflösungschärfe dieser Daten richtet sich dabei nach der spezifischen räumlichen und
spektralen Auflösung der verwendeten Sensoren. Für die eigentliche Klassifizierung ist die
Bildverarbeitungsmethode von großer Wichtigkeit. Die Klassifizierung von Satellitenbild-
daten umfaßt das Entwerfen und Entwickeln von effizienten Bildklassifizierungsverfahren.

Die bislang nur unzureichend gelöste Problematik in den Bildverarbeitungsmethoden ist die
Zuordnung der Mixed Pixel und die Verfeinerung der Kanten (Feldgrenzen). Das Ziel der
Arbeit liegt nun darin, Verfahren (Algorithmen) zu entwickeln, die eine möglichst eindeutige
Zuordnung von Mixed-Pixel zu einer Landnutzungsklasse ermöglichen, die Problematik der
Zuordnung klassenfremder Pixel ( Salz und Pfeffer – Phänomen) in einem homogenen Raum
lösen und zur Verfeinerung der Kanten führen.

Dieses Ziel wurde in 5 Schritten erreicht:

1. Mit einem GIS-Layer aus ATKIS-Daten ist das Untersuchungsgebiet in zwei homogene
Regionen – städtische und ländliche – eingeteilt worden (preprocessing).

2. Eine Landnutzungskarte (Thematic map) wurde durch die Kombination von Gaussian
Maximum Likelihood Algorithmus (GML) und ISODATA Clustering Methode erstellt.

3. Anschließend erfolgte mit der Anwendung eines Wahrscheinlichkeits-Relaxation
Algorithmus (Probabilistic Relaxation) eine Glättung ( = homogene Struktur der
Nutzungsklassen) der Thematic map zur Smoothed thematic map.

4. Die genaue Erfassung der Feldgrenzen erfolgte mittels der PAN-Daten (hohe Auflösung).
Eine entsprechende Methode existiert allerdings in der Satellitenbildauswertung noch
nicht. Das hierfür in der Arbeit entwickelte Verfahren basiert auf der pattern recognition
der Methode der Image Segmentation. Über eigene Programmierschritte – Edge Detection,
Edge Thresholding und Edge Thinning – ist es gelungen, Kanten in der Breite von 1 Pixel
als Feldgrenzen zu erzeugen. Die hohe Zahl der geschlossenen Polygone in der Contour
Map unterstreicht die hohe Brauchbarkeit der so entwickelten Methode.

5. Die Modifikation der Region Growing Algorithmen bot nun die Möglichkeit, die
Thematic map, Smoothed thematic map und Contour map miteinander zu verschneiden.
Bei geschlossenen Polygonen ergab die Zusammenführung von Contour- und Thematic
map eindeutig definierte Landnutzungsklassen während bei offenen Polygonen dieses Ziel
über eine Kombination von Thematic-  und Smoothed thematic map erreicht wurde.

Von den bestehender Methoden konnte lediglich das Verfahren ISODATA unverändert
eingesetzt werden. Die Methodik nach GML für Multispektral-Daten dagegen erfuhr eine
Ergänzung durch das Hinzufügen eigen entwickelter Programme. Diese und die oben
aufgelisteten Programme wurden in der Programmiersprache C selbst geschrieben.
Die Satellitenbildscene (weitgehend wolkenfrei !) bestimmte die Stadt Landau in Rheinland-
Pfalz und ihre Umgebung als Untersuchungsraum. Die vorliegende Arbeit basiert auf den
IRS-1C Daten (PAN 5,8 m; LISS-III 23,5m) des indischen Satelliten.
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Part I Theoretical and Empirical Background

Chapter 1 Introduction

Since the launch of Landsat-1 – the first Earth resource satellite – in 1972, remote

sensing has become an increasingly important tool for the inventory, monitoring, and

management of earth resources. The increasing availability of information products

generated from satellite imagery data has added greatly to our ability to understand the

patterns and dynamics of the earth resource systems at all scales of inquiry.

A particularly important application of remote sensing is the generation of land-

use/land-cover maps from satellite imagery. Compared to more traditional mapping

approaches such as terrestical survey and basic aerial photointerpretation, land-use

mapping using satellite imagery has the advantages of low cost, large area coverage,

repetitivity, and computitivity. Consequently, land-use information products obtained

from satellite imagery such as land-use maps, data and GIS layers have become an

essential tool in many operational programs involving land resource management.

The prospect for the use of satellite imagery data in land-use management and

planning is an extremely promising one. As a result of the recent development of

sensor technology, the quality of satellite imagery available for land-use mapping is

improving rapidly. Particularly noteworthy in this regard is the improved spatial and

spectral resolution of the imagery captured by new satellite sensors. In addition to

existing imaging systems such as Landsat TM and SPOT HRV, a number of new

remote sensing sensors with up to 1-m ground resolution are already in operation.

IKONOS of Space Imaging, launched on 24 September 1999, has already sent back its

first image with a spatial resolution of 1m.

The increasing availability of satellite imagery with significantly improved spectral

and spatial resolution has offered greater potential for more detailed land-use
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mapping. It was predicted that in the near future, more than 50 percent of the current

aerial photo market will be replaced by high-resolution satellite imagery (Fritz 1996).

At the same time, rapid advances in the computer science as well as other information

technology (IT) fields have offered more powerful tools for satellite image processing

and analysis. Image processing software and hardware are becoming more efficient

and less expensive. Access to faster and more capable computer platforms has aided

our ability to store and process larger and more detailed image and attribute data sets.

The use of more advanced statistics and probability theories in image processing in

such neighboring disciplines as computer vision and artificial intelligence has also

generated spill-over effect in satellite imagery classification.

Digital image processing is central to efficient use of satellite imagery in land-use

studies. A key task of satellite image processing is to develop image data analysis

approaches appropriate to a particular resource management application. The

extraction and classification of land-cover types from satellite imagery is probably the

most important objective of digital image analysis in the geoscience.

Conventional image classification techniques are based on the spectral response

patterns of terrain features captured in satellite imagery. While conventional spectral

classifiers are widely used and have achieved a fairly large amount of success, the

resulting classification maps are often very noisy.

The enhanced information content of high-resolution satellite imagery and the long-

term desire of land-use planners to obtain detailed land-use maps highlight the need

for more powerful tools for analyzing multispectral data. As a result, recent years have

seen a multiplicity of approaches to satellite image classification. A main thrust in this

development is that, in addition to making better use of enhanced spectral information

of imagery data, increasing attention is being given to the spatial and semantical

characteristics of terrain features. Recent studies demonstrated that the higher

information content of imagery data combined with the improvements in image

processing power result in significant improvement in classification accuracy.
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The objective of this study is to develop an efficient approach for multispectral image

classification. We proposed a new information fusion algorithm for the extraction and

representation of land-use types from high-resolution satellite imagery. The proposed

approach integrates spectral and spatial image classification techniques. This approach

can produce land-use maps with sharp interregional boundaries and homogeneous

regions.

The county of Landau of the State Rheinland-Pfalz, Germany was selected as a test

site. The study area comprises agricultural, forest, grassland, and urban land-use types.

This study used the high-resolution IRS-1C imagery as the principal input data. The

input image data includes 1/9 PAN scene (5.8-m ground resolution) and the

corresponding LISS-III scene. These scenes correspond to a ground area of 23 × 23

km2.

This study is organized into nine chapters. Details of the proposed method as well as a

review of image classification techniques are presented in the next chapter. Chapter 3

gives a brief description of the study area and the imagery data used in this study. The

preprocessing of IRS-1C imagery data, including image rectification and merging of

PAN and LISS-III imagery, is described in Chapter 4. A hybrid method combining

GML and ISODATA are presented in Chapter 5. In Chapter 6, a probabilistic

relaxation algorithm is described. Edge detection, thresholding and thinning

techniques are presented in Chapter 7. In Chapter 8 the procedure for the fusion of the

contour map and the thematic map is described. Chapter 9 sums up the main findings

of this study.
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Chapter 2 Land-use Classification Using Satellite Imagery

2.1 Remote Sensing and Land-Use Mapping

2.1.1 Recent developments in remote sensing technology

Remote sensing is essentially an earth observation technique. It is the science and art

of obtaining information about an object through the analysis of data acquired by a

device that is not in contact with the object (Lillesand and Kiefer 1994). Since the

launch of Landsat-1 in 1972, remote sensing has become an important tool in many

resource management areas such as land-cover classification, resource inventory,

pollution detection, environmental impact assessment, and environmental modeling.

Generally, a remote sensing system consists of five components. They are the energy

source, the sensor, ground objects, the data-handling system, and the multiple data

users. According to the source of energy used, two types of remote sensing systems –

active and passive – are distinguished. "Active" refers to a sensor that supplies its own

source of energy or illumination. Imaging radar sensors are active sensors, which emit

a burst of microwave radiation and receive the backscattered radiation. Most

commercial satellite sensors are passive solar imaging sensors. In this case, the sun is

the source of electromagnetic radiation (ERDAS Field Guide 1997).

Remote sensing systems operate on the principle of electromagnetic radiation. As

different types of earth surface features have their own distinctive electromagnetic

energy signals, they can be detected, recorded and interpreted on the basis of their

electromagnetic reflections. In remote sensing, it is most common to characterize

electromagnetic waves by their wavelength location within the electromagnetic

spectrum. The wavelength ranges in which the atmosphere is particularly transmissive

of energy are referred to as atmospheric windows. Remote sensing data acquisition is

limited to the atmospheric windows.
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Sensors form the heart of remote sensing systems. They are used to record variations

in the way earth surface features reflect and emit electromagnetic energy. Wavelength

range and spatial resolution are two major indications of a sensor’s technical

capabilities. No single sensor is sensitive to all wavelengths. All real sensors are

designed to be sensitive to a fixed range within the electromagnetic spectrum. Sensors

also have a limit on how small an object on the earth’s surface can be and still be

"seen" by a sensor as being separate from its surroundings. This limit is called the

spatial resolution of a sensor. Spatial resolution is an indication of how well a sensor

can record spatial details.

Satellite imaging systems designed for earth resource observation purposes use

multispectral scanners. The multispectral scanner (MSS) is a sensor that acquires data

from multiple spectral bands simultaneously. Multispectral scanners sense

simultaneously through multiple, narrow wavelength ranges that can be located in the

visible through the thermal spectral region. Multispectral imagery provides more

information than data collected in any single spectral band. When the signals recorded

in the multiple bands are analyzed in conjunction with each other, more information

becomes available.

A multispectral scanner operates on the same principle of selective sensing in multiple

spectral bands. But multispectral scanners have some inherent advantages over their

photographic counterparts (Lillesand and Kiefer 1994).

q Using electronic detectors, multispectral scanners can extend the range of sensing

from 0.3 to approximately 14µm. This range includes the ultraviolet (UV), visible,

near infra red, middle infra red, and thermal spectral regions. MSS systems can

also sense in very narrow spectral bands.

q MSS systems use the same optical system to collect data in all spectral bands

simultaneously. This ensures that data in separate bands are comparable to one

another spatially and radiometrically.

q MSS data are generated electronically and are therefore more amenable to

calibration. The electronic format of the scanner output also permits recording

over a greater range of values in a digital format.
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A main thrust in the recent development of sensor technology has been the increasing

spatial and spectral resolution. In addition to existing imaging systems such as Landsat

TM and SPOT HRV, a number of new remote sensing sensors with significantly

improved geometric resolution are already in operation (Draeger et al 1997). For

example, the French SPOT-4, launched in 1997, has incorporated 5-m spatial

resolution and along-track stereo imaging capability. The German MOMS-02 sensor

system has a designed ground resolution of 4.5m and has adopted the latest three-track

technology combined with a stereo- and multispectral module (Fritz 1996).

The Indian IRS-1C has incorporated an advanced imaging system. This system has a

panchromatic camera that captures data with a spatial resolution of 5.8m and a ground

swath of 70km. In addition to that, the IRS-1C imaging system is equipped with a

linear imaging and self scanning (LISS) sensor that provides multispectral data

collected in visible, near infra red (NIR) and short wave infra red (SWIR) regions.

A number of high-resolution imaging systems with up to 1-m ground resolution are

already in operation (Li 1998). Among these high-resolution satellites are EarlyBird

(3-m resolution). The latest development was the launch of IKONOS of Space

Imaging, Inc. on 24 September 1999. The IKONOS imaging system has already sent

back its first image with a ground resolution of 1m (http://www.erdas.com). In the

pipeline are QuickBird (1-m resolution) of Earth Watch and OrbView-1 (1-, 2-, and 4-

m resolution) of the Orbital Sciences Corporation.

The launch of high-resolution commercial imaging satellites marked the start of a new

era of space imaging for Earth observation. The imagery captured by the new sensors

will maintain the dominant spectral advantages demonstrated by lower resolution

satellite imaging systems. Furthermore, these new sensors can generate imagery that

provide strong geometric and radiometric capabilities such as higher spatial

resolution, photogrammetric stereo capability and revisit rate that have not been

available from existing imaging systems. These advances have opened new horizons

for land-use studies.
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2.1.2 Advantages of land-use mapping using satellite imagery

Using satellite imagery to extract and represent land-use/land-cover information is a

key application of remote sensing technology. Land-use information products

generated from multispectral imagery such as maps, data, and GIS layers, have

become an essential tool in many land resource management areas such as land-use

classification, crop acreage and yield estimation, and land-use planning.

Compared to more traditional mapping approaches such as basic aerial

photointerpretation, land-use mapping using satellite imagery has four advantages.

q First, land-use types can be mapped from digital satellite imagery faster and often

with lower costs.

q Second, fast and inexpensive updating of land-use map products is possible. This

is because satellite images are captured for the same geographic area at a high

revisit rate.

q Third, satellite imagery data are captured in digital forms. They can therefore

easily be integrated with other types of ground object information through such

techniques as GIS.

q Fourth, satellite images cover large geographic areas. The great economies of scale

provided by digital image processing make it relatively inexpensive to map large

expanses of land, making it easier and more cost effective to generate large

amounts of map products.

2.2 Digital Image Processing and Pattern Recognition

Digital image processing is the technique of manipulating and interpreting digital

images with the aid of a computer (Swain and Davis 1978). It starts with one image

and produces such information products as segmented images, data, and maps. Digital

image processing permits rapid and repeatable analysis, allows for statistical treatment

of multivariate data and produces quantitative results. The ultimate goal of digital

image processing is to identify and interpret patterns in an image, i.e. pattern

recognition.
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2.2.1 Pattern recognition systems

Pattern recognition is the science and art of finding meaningful patterns in data

(ERDAS Field Guide 1997). A pattern is simply any well-defined set of

measurements. The pattern recognition process consists of three phases, i.e., 1) image

segmentation, 2) feature extraction, and 3) classification (Figure 2-1).

Image segmentation is the first essential step of low level vision (Marr 1982;

Rosenfeld and Kak 1982). It is a process of partitioning a digital image into disjoint,

connected sets of pixels, one of which corresponds to the background and the

remainder to the objects in the image (Hall 1979; Gonzalez and Wintz 1987). There

are hundreds of segmentation techniques, but no single method can be considered

good for all images (Pal and Pal 1993). Broadly, image segmentation can be

approached from three different philosophical perspectives: region, boundary, and

edge (Castleman 1996).

q In the region approach, one assigns each pixel to a particular object or region.

q In the boundary approach, one attempts only to locate boundaries that exist

between the regions.

q In the edge approach, one seeks to identify edge pixels and then link them together

to form the required boundaries.
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Figure 2-1  The three phases of pattern recognition (Source: after Castleman 1996)
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Following image segmentation is feature extraction. Essentially a feature is a

measurement that serves to discriminate between a number of classes. The purpose of

extracting feature is to provide some of the information needed for a classification

decision rule to operate successfully. Feature extraction is a crucial stage in pattern

recognition because the performance of any classification decision rule will depend on

how well the feature detector can capture the features of the objects to be classified.

The feature extraction process produces a set of features that, taken together, comprise

the n-dimension feature vector. Any particular object in an image corresponds to a

point in feature space (Swain and David 1978).

Image classification is a process of assigning pixels in an image to one of a number of

classes or labels. Classification is based solely on the feature vector. The classification

model of recognition is the best understood and it forms the basis for more complex

forms of pattern recognition (James 1987; Jaehne 1989). Classification implies the use

of a decision rule and it involves establishing mathematical basis of the classification

algorithm for the classification procedure. Its output is merely a decision regarding the

class to which each object belongs.

2.2.2 Pattern recognition techniques

A variety of approaches for image segmentation and classification are proposed in the

literature. Broadly, these approaches can be divided into three major groups (Figure 2-

2; Pal and Pal 1993).

Approaches for image segmentation/classification

Statistical
classifiers

Fuzzy mathematical
approaches

Artificial
intelligence

Figure 2-2  Major approaches for image segmentation/classification
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(1) Statistical pattern recognition

Statistical pattern recognition is the most widely used approach for image

classification/segmentation. Statistical classifiers are based on some quite

sophisticated statistics and probability theories. Parametric and nonparametric

approaches are two classical statistical pattern recognition methods. Representative of

parametric methods is the Bayes Minimal Error Decision Rule. Parzen’s Kernel

method and the K-Nearest-Neighbor technique are the two most outstanding

nonparametric approaches. Tree-based classification was first proposed by Sonquist

and Morgan and is widely used in statistical pattern recognition and Machine Learning

(Gascuel et al 1993).

(2) Fuzzy mathematical approaches

Zadeh introduced in 1965 the concept of fuzzy sets in which imprecise knowledge can

be used to define an event. Fuzzy set theory may be incorporated in handling

uncertainties in various stages of a pattern recognition system such as cluster analysis,

classifier design, image processing and image recognition. This methodological

development has much to do with the realization that many of the basic concepts in

image analysis, e.g. the concept of an edge or a boundary, do not lend themselves well

to precise definition.

(3) Artificial intelligence (AI)

In the field of artificial intelligence, supervised classification methods were developed

from the beginning of the 1970s, with the famous "Arch Concept Learning" problem

proposed by Winston (1975). These methods have the capacity to learn from structural

example descriptions, thus abandoning the value-attribute model used in other

approaches. AI-type models were based on semantic networks and on predicate logic.

Use of neural networks is gaining importance in image segmentation in recent years.

This development has much to do with the work of Hopfield (1982) on associative

memory models. The development of the Multi-Layer-Perceptron (MLP) contributed

greatly to the supervised classification. The MLP associates the notion of hidden cells

with a learning algorithm of the stochastic gradient type, such as the backpropagation

of the error gradient, thus enabling a break-away from the linear framework (Gascuel

et al 1993).
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2.3 Multispectral Satellite Image Classification

2.3.1 Conventional spectral classifiers

Multispectral satellite image classification is an application of pattern recognition in

the geoscience (Figure 2-3). In a satellite image the natural pattern is one ground

resolution element or pixel. The receptor may be an airborne or spaceborne

multispectral scanner. The feature of a natural pattern is a set of n radiance

measurements obtained in the various wavelength bands for each pixel. This set of

measurements is referred to as a measurement vector in the measurement space.

Classifier or the decision maker assigns the measurement vector to one of a set of

classes according to an appropriate decision rule (Swain and David 1978; Lillesand

and Kiefer 1994).

The fundamental basis for multispectral satellite image classification is the

electromagnetic reflectance properties of earth surface features. Because ground

objects have their own characteristic spectral response in different spectral bands of

the electromagnetic spectrum, they can be identified and delineated in a multispectral

image.

The spectral reflectance characteristics of ground objects are described by spectral

reflectance curves. A spectral reflectance curve is a graph of the spectral reflectance of

an object as a function of wavelength. Because spectral responses measured by remote

sensors over various features often permit an assessment of the type and/or condition

of the features, these responses are also referred to as spectral signatures. The

configuration of these spectral reflectance curves gives us insight into the spectral

characteristics of the objects.

The multispectral approach forms the heart of the application of remote sensing in

discrimination of land-cover types and conditions. By analyzing a scene in several

spectral bands, we can improve our ability to distinguish the identity and condition of

terrain features. For example, water and vegetation might reflect nearly equally in

visible wavelengths, yet these features are almost always separable in near-infrared

wavelengths.
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Many approaches have been developed for the classification of multispectral satellite

imagery. These approaches have ranged from pure statistical techniques to pure

knowledge-based methods (Gascuel et al 1993; Pal and Pal 1993). A literature survey

suggests that until quite recently the research on satellite image classification has

focused predominantly on the spectral characteristics of terrain features.

Consequently, spectral classifiers are the most commonly used classification method

up to date.

Conventional multispectral classification methods make use of spectral response

patterns of ground object. In the usual approach, the spectral response vectors of each

class are modeled to have multivariate normal distributions, and the parameters of

such models are estimated from training samples. Such a technique is known as

supervised classification. In an unsupervised classification, these parameters are

estimated from all image pixels by a suitable clustering method. Supervised and

unsupervised multispectral classifications are two main spectral pattern recognition

approaches.

In a supervised spectral classification, the pixel class assignments are based on the

likelihood calculated from the observations of each pixel to belong to each of the pre-

determined classes. The Maximum Likelihood classifier is the most often used

supervised spectral classifier. In this technique, the class of a pixel at a location (i, j) is

decided based solely on the observations at that pixel.

ResultNatural
pattern Sensor

Classifier
(decision maker)

Figure 2-3  A model for pattern recognition in remote sensing (Swain and David 1978)
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2.3.2 The misclassification problem

Conventional spectral classifiers have been widely used for image classification and

have given fairly good results for a wide variety of images. Usually conventional

spectral classifiers perform well over limited areas where spectral signatures do not

vary greatly from those captured in the training data. However, as the size of area to

be classified increases, the classification accuracy typically decreases (Carlotto 1998).

In many real applications, the thematic (class) maps generated by conventional

spectral classifiers are often found to be very "noisy", with a considerable portion of

image pixels being misclassified. This is the so-called misclassification problem in

image classification.

Two major factors are responsible for the misclassification problem (Table 2-1). The

first is the "noise" contained in a satellite image. Image noise results from many

factors. Common sources of image noise include temporal and spatial variations of the

same land-cover types, atmospheric distortions, deterioration of sensors, impure

spectral information contained in some pixels, etc. The presence of noise causes the

spectral response of a particular land-cover class to deviate from its ideal response.

For example, the spectral reflectance characteristics of a pixel at (i, j) can be

significantly affected by neighboring pixels N at (k, l). This is so-called compound

spectral response problem. There are also cases where different land-cover classes

may have very similar spectral reflectance curves. This similarity of spectral features

is often referred to as the confusing pixel problem. The presence of confusing pixels

complicates the discrimination and often leads to misclassifications.

The second major factor responsible for the misclassification of pixels is the

inadequate spatial resolution of imaging sensors. Any real sensor has a finite ground

resolution. This finite spatial resolution causes the geographical area subtended by a

pixel to contain a mixture of land-cover types. This is particularly true of transitional

pixels between land-cover types. As a result of this, the spectral response observed at

a pixel is a mixture of the spectral responses of several individual land-cover types. In

other words, inadequate spatial resolution of remote sensing sensors often affects the

classification of satellite image. This is the so-called mixture-pixel problem.
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The presence of image noise and the inadequate spatial resolution of satellite sensors

complicate the image classification process and often degrade image classification

accuracy. As a result, the thematic maps generated by conventional spectral classifiers

have two major defects. The first is a "salt-and-pepper" noise appearance. That is,

isolated and, in many cases, misclassified pixels of one class are dispersed within the

area of another class. The second defect is a weakly defined inter-class boundaries.

2.4 Recent Developments in Satellite Image Classification Techniques

The major difficulty of image classification is how to partition the noisy image into its

constituent classes. In an attempt to reduce classification error rates and to enhance the

quality of thematic maps, recent years have seen a rapid proliferation of algorithms for

multispectral imagery classification. A survey of the existing literature suggests that

four major thrusts can be identified (Table 2-1):

q Making better use of spectral information,

q Increasing use of spatial information,

q Information fusion and GIS integration, and

q Use of knowledge-based classification techniques.

2.4.1 New spectral classification methods

Spectral information is the most readily available information in a satellite image.

Making more efficient use of spectral information is an obvious way to improve

classification results. Therefore, considerable efforts are being made in developing

new spectral classification methods, in addition to classic spectral classifiers.

Carlotto (1998) proposed a multispectral classifier that is based on an alternative

spectral representation. In his approach, spectral classes are represented by their

spectral shape; the spectral shape is a vector of binary features that describes the

relative values between spectral bands. The classification accuracy of the full-scene

spectral shape classifier was shown to be superior to that of a stratified Maximum

Likelihood classifier.
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Table 2-1  Approaches for improving satellite image classification accuracy

Types of Classification
Errors

Possible Causes Strategy for Error Corrections Often used Techniques

Class-independent Scattering and/or absorption of
atmosphere

• Radiometric correction

Temporal and spatial variations • Use of ancillary data/ground
truth information

• Integration of digital image data
and GIS data layers

Deterioration of sensors • Radiometric correction
Class-dependent

Compound spectral
responses

Spectral reflectance characteristics of
a pixel at (i, j) is affected by
neighboring pixels N at (k, l)

• Extraction and use of
contextual/spatial information

• Contextual relaxation
• Fuzzy set theory
• Neural networks

The mixture-pixel
problem

Insufficient spatial resolution;
Transitional pixels between land-use
types

• Edge detection
• Extraction and use of

contextual/spatial information

• Contextual relaxation
• Fuzzy set theory
• Neural networks

The confusing pixel
problem

Similar spectral reflectance curves of
different classes

• Multitemporal imagery fusion
• Extraction and use of

contextual/spatial information

• Contextual relaxation
• Fuzzy set theory
• Neural networks
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Other developments include attempts of using characteristic spectral relationships as

expert knowledge in an expert system designed for image classifications. For example,

Wharton (1987) developed a prototype expert system to classify multispectral

remotely sensed data on the basis of spectral knowledge. In this approach, a

knowledge base was developed that describes the target categories in terms of

characteristic spectral relationships. Classification decisions are made on the basis of

convergent evidence as derived from applying the spectral rules to a multiple spatial

resolution representation of the image.

2.4.2 Contextual classification techniques

Conventional multispectral classifiers – both supervised and unsupervised – are point

or pixel-specific classifiers in that they make use of the spectral information at each

pixel to predict the class of that pixel independently of the observations at other

pixels. While conventional spectral classifiers are used extensively, they are likely to

lead to misclassifications of pixels in an image. To overcome this problem, a class of

techniques called contextual classification methods has been developed for satellite

image classification. Contextual classification techniques are also referred to as

smoothing methods.

In contrast to conventional methods, contextual techniques make use of the spatial

context of a pixel in its classification. The basic idea is that in any real image, adjacent

pixels are related and correlated and therefore the context of a pixel should also be

considered in the classification process. In a large homogeneous region compared with

the pixel size, if an image pixel (not at edge of the region) represents a particular land-

use class (e.g. wheat), then it is highly likely that its neighboring pixels are also the

same land-use class (in this case, wheat). In a sense, spatial classifiers attempt to

replicate the kind of spatial synthesis done by the human analyst during the visual

interpretation process.

The context of a pixel (or groups of pixels) refers to its spatial relationship with the

surrounding neighboring pixels (Jensen 1986). Spatial information such as pixel

proximity, repetition, directionality, location, image texture, feature size, shape, etc.

can help identify ground objects. Because contextual classification techniques involve
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a more complex decision process, they tend to be much more computationally

intensive than spectral pattern recognition procedures (Lillesand and Kiefer 1994).

The advantages and potentialities of contextual classification approaches have been

pointed out in many works. Use of contextual techniques will usually result in a

reduction of classification error rates (Swain et al 1981; Jhung and Swain 1996). For

instance, Lee et al (1992) and Franklin and Peddle (1989) have shown that adding

spatial and spectral texture information for coniferous and mixed forest types can

significantly improve map classification accuracy. Some of the often used contextual

classifiers are discussed in Chapter 6.

It should be noted that while substantial effort is being made in developing spatial

classification techniques, practical use of spatial and combined spectral/spatial image

classification approaches is still relatively limited compared to spectral pattern

recognition approaches. A main reason for this is that the spatial resolution of most

existing imaging satellites was inadequate. This situation is changing. With the recent

and planned launch of new high-resolution imaging satellites, the outlook for the use

of spatial pattern recognition techniques in land-use classification is an extremely

promising one.

2.4.3 Information fusion and GIS integration techniques

Another basic strategy for improving image classification accuracy is to add new

information to the classification decision process. This is the so-called information

fusion technique in satellite image classification.

Broadly, two types of data are used in information fusion techniques. The first is

image information. Haralick and Shapiro (1985) presented a technique that combines

the edge map and the thematic map. The resulting thematic map has all the contour

pixels set to zero, and the noncontour pixels are identified by their class code, as in the

original thematic map. Integration of multitemporal and multisensoral digital image

data is another approach that is often used in satellite image classification.
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The second type of information that can be used to improve classification results are

so-called ground truth data or ancillary information. Ancillary data is any type of

information used in the classification process that is not directly obtainable from either

spatial or spectral characteristics of the remote sensor itself. The most commonly used

ground truth information includes DTM, soil data, crop statistics, zoning information,

field-check data, statistical data, administrative boundaries, etc.. Integrating imaging

data with ground truth information can help better identify and differentiate ground

objects and, hence, improve image classification results (Tom et al 1978; Strahler

1980; Schowengerdt 1983; Jensen 1986; Mascarilla et al 1993).

The integration of imagery data and ancillary data is usually done by using Geographic

Information System (GIS) technique. One of the most important benefits of a GIS is

the ability to spatially interrelate multiple types of information. GIS is capable of

handling both locational data and attribute data about such features. GIS permits

automated mapping or display of the locations of features; it also provides a relational

database capability for recording and analyzing descriptive characteristics about the

features.

Ground truth data is commonly compiled as computer files that can be merged with

other "layers" of information in a GIS. Remotely sensed data is often used in concert

with GIS techniques in many remote sensing applications including land-use

classification. Use of multi-source data such as remotely sensed data and non-imaging

data gained importance, due to recent advances of GIS technology.

2.4.4 Knowledge-based image classification approaches

The value of knowledge-based techniques for land-use classification in remotely

sensed imagery is widely recognized. Knowledge-based image recognition systems

have two features in common. First, a database of computed image features is

matched with antecedents of production rules (rules are represented as logical

statements of the form "if…, then…"). Second, a control system that supervises rule

activation.
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Knowledge-based techniques have been found to be useful in a number of application

areas such as image classification and the labeling of regions. The system developed

by Nagao and Matsuyama (1980 and 1987) uses a knowledge base representing

contextual and geometric constraints for the task of labeling regions in multispectral

imagery. This method is intended for reliable classification of vegetation regions that

is independent of the time of year and uses the ratio of two distinct spectral bands to

discriminate the vegetation regions from the non-vegetation regions.

Ton et al (1991) demonstrated a knowledge-based segmentation and interpretation

methodology for the interpretation of Landsat images. The image interpretation system

establishes a coarse segmentation of the imagery using spectral features alone during a

stage denoted by category-oriented segmentation, with simple, application-

independent spatial constraints. The identified terrain regions are transferred to a

second stage, denoted by image-oriented segmentation, where a hierarchical

implementation of various image processing operations establishes an accurate

segmentation of the image.

Kusaka and Kawata (1991) evaluated a hierarchical, spatial feature-based approach for

the detection of linear features in Landsat imagery. Goldberg et al (1985) designed an

expert system for the detection of changes in the forests of Newfoundland from

Landsat imagery. Other researchers have evaluated Markov Random Field (MRF)

based approaches for image texture for the task of multispectral image segmentation

(Therrien 1983).

The key to effective use of knowledge-based techniques in satellite image

interpretation is the generation of a knowledge base that is suitable for the particular

application at hand. Identifying suitable structural rules that are universally valid has

been found to be difficult (Swain 1985).
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2.5 The Image Classification Algorithm Proposed in This Study

2.5.1 Software Architecture

Successful application of remote sensing is premised on the integration of multiple,

interrelated data sources and analysis procedures. With imagery data and image

analysis methods multiplying rapidly, selecting the right mix of data sources and data

analysis approaches has become critical to the generation of quality land-use maps.

Satellite image classification involves designing and developing efficient

classification operators. In a satellite image the features of an object can take many

forms – spectral, spatial, radiometric. A robust land-use classification approach should

take into account as many features of a land-cover type as possible.

This study aims to develop an efficient algorithm for the extraction and representation

of land-use information using high-resolution IRS-1C imagery data. We proposed a

new information fusion method that can produce land-use maps with sharp

interregional boundaries and homogeneous regions. The proposed approach works by

combining results from different multispectral channels in a cooperative and

complimentary manner. Figure 2-4 depicts the software architecture of the proposed

image classification approach.

2.5.2 Implementation Procedures

The proposed approach is conducted in five steps.

q First, a GIS layer – ATKIS data – was used to generate two coarse homogeneous

regions, i.e. urban and rural areas.

q Second, a thematic (class) map was generated using a hybrid spectral classifier

combining Gaussian Maximum Likelihood algorithm (GML) and ISODATA

classifier.

q Third, a probabilistic relaxation algorithm was performed on the thematic map,

resulting in a smoothed thematic map.
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q Fourth, edge detection and edge thinning techniques were used to generate a

contour map with pixel-width interclass boundaries.

q Fifth, the contour map was superimposed on the thematic map by use of a region-

growing algorithm with the contour map and the smoothed thematic map as two

constraints.

For the operation of the proposed method, a software package is developed using

programming language C. This software package comprises the GML algorithm, a

probabilistic relaxation algorithm, TBL edge detector, an edge thresholding algorithm,

a fast parallel thinning algorithm, and a region-growing information fusion algorithm.

Basic image processing and classification procedures were performed using ERDAS-

IMAGINE 8.3.

The county of Landau of the State Rheinland-Pfalz, Germany was selected as a test

site. The high-resolution IRS-1C imagery was used as the principal input data. The

imagery data used includes 1/9 PAN scene and corresponding multispectral scene.

These scenes correspond to a ground area of 23 × 23 km2. The imagery data was

captured on 29 July 1997.
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Chapter 3 The Study Area and Data Acquisition

3.1 The Study Area

The county of Landau of the State Rheinland-Pfalz, Germany was selected as a test

site in this study. The geographic location of the study area is shown in Figure 3-1.

Figure 3-1  Location of the study area
(Source: 1:200 000 Topographische Uebersichtskarte, CC 7110, Mannheim)
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The study area of Landau lies between the Palatinate Forest "Haardt" and Rhine

lowlands. This area comprises mainly an agricultural environment with a medium-

sized city Landau, a few small urban areas, and some forest areas. The test site has an

area of 529 km2. The multispectral scene of the study area contains 1271×1255 pixels

and the corresponding panchromatic image 5143×5082 pixels. The Gauss-Krueger

coordinates of the upper left and lower right corners of the study area are as follows:

3.1.1 Morphological Structure

The landscape of the study area is characterised by the following morphological

features.

q In the west is the Haardt with peaks exceeding 600 m. The Haardt constitutes the

boundary of the low mountain ranges of the Palatinate Forest; it is structured by

step faults and numerous steep V-shaped valleys.

 

q In the middle are hills of the Weinstraße with relief blocks of heights between 180

to 300 m. These hills are structured by westward oriented V-shaped valleys of

depths between 20 and 120 m and cut by the rivers Birnbach, Ranschbach and

Queich.

q In the east lies the Palatinatean Rhine-Plain. This part is featured by a terraced

landscape that is formed by ledges of loess and alluvial lands. The Rhine Plain

gradually descends to 95 to 110 m towards the Rhine River.

3.1.2 Climate

The favourable climatic conditions of the Weinstraße owe much to its

geomorphologic positions within the Upper-Rhine valley and, especially, to its

positions on the lee-side of the Haardt.

XUL = 3423027 YUL = 5466126

XLR = 3452496 YLR = 5436302
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Given the dominant wind direction between West and Southwest, the air masses

arriving at the luff-side of the Palatinate Forest are forced to ascend and then descend

on the lee-side. Though the difference in elevation at the mountain edge is only about

400 m, the descending winds at the lee-side lead to a foehn-like heating. This explains

why this region has a somewhat longer duration of sunlight, fewer cloudy days and

fewer rainy days a year, compared to other areas in this climatic zone. The annual

precipitation of the study area amounts to around 600 mm.

The favourable climate of high radiation leads to a particularly early beginning of the

spring season in the study area. The almond trees are already coming into blossom as

early as in March and the growing period in the study area lasts almost one month

longer than in the neighboring Palatinate Forest.

Additional advantages result from the particularly favourable climatic conditions of

the Upper-Rhine valley. Like other valley landscapes, the Upper-Rhine valley warms

up faster than do their neighbouring regions during all seasons. This advantage is

particularly important during the summer when the average temperature reaches 18°C

or higher. During the daytime the study area is additionally overflown by ascending

warm airs which transport heat from the lower Rhine Plain.

Valleys have a modifying effect on climate. During night radiation from early evening

to morning, the study area is constantly covered by cold air masses. Due to its size, the

Queich-valley is characterised by a high effectiveness on cold airs. As a result, the risk

of late frosts in the spring, which can lead to frostbite on vine and special crops, is

very high. A positive effect of these cold air currents is that under high-pressure

weather conditions, they supply the settlements with fresh airs. Such weather

conditions of slow winds can be accompanied by muggy subtropical air masses

coming from the Upper Rhine valley, which can lead to sultriness and heat-stresses.

This is especially true of places where settlements are densely built. This is the time

when the cold air currents as well as the valley breeze, the land and downslope winds

provide the environment with comfortable cooling.
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3.1.3 Soils and land-use

At the edge of the Haardt the soils consist of sandy soil mixed with loess. The loess

layers in this area varies from a very thin coating to several meters. In the marginal

crustal block in the East, limestone is the dominating source rock. But also here, loess

covers the relief and determines the smooth surface forms. In this area the sandy soils

permit the cultivation of field vegetables and special crops on small, intensively

cultivated land parcels. Such a crop pattern is characteristic of this region. Land-use

types range from greenland in the leas, intensive cultivation of wheat, sugar beet,

special crops (such as vegetables, tobacco, and salad), fruits and vine in the more

elevated regions, to forest on the extremely poor soils.

To the west of the region is a predominantly agricultural area which is characterised

by large fields of wheat, beets and potatoes. With the beginning of the low mountain

ranges, land-use changes to viniculture, which stretches right up to the edge of the

Haardt. The viniculture, together with the settlements situated there, forms the typical

picture of the cultural landscape of the Weinstraße.

3.2 IRS-1C Satellite Imagery Data

This study uses the Indian IRS-1C satellite imagery as the principal input data for

land-use classification.

3.2.1 Background

The development of satellite platforms for acquisition of remotely sensed data in India

began with the Bhaskara satellite mission in the late 1970s. Subsequently, India

launched a series of satellite imaging systems including IRS-1A, IRS-1B, IRS-P2, and

IRS-P3. These missions have realized the primary objective of designing, developing

and deploying a three-axis stabilized polar sun-synchronous satellite carrying near

state-of-the-art payloads. These missions have also paved the way to establishing and

routinely operating ground-based systems services (Kasturirangan 1996).



27

On 28 December 1995 the Indian Remote Sensing satellite, IRS-1C, was successfully

launched using a Russian launch vehicle. One month later IRS-1C was declared

operational (http://www.comlinks.com/satcom/srsintro.htm). IRS-1C provides one of

the highest spatial resolution remote sensing data commercially available today.

IRS-1C data is currently being received at three ground stations: Shadnager (India),

Norman, Okla. (USA), and Neustrelitz (Germany). The data received at Neustreilitz

covers Europe and part of western Asia and northern Africa.

3.2.2 IRS-1C satellite imaging systems

Figure 3-2 shows an overview of IRS-1C mission. The payload sensor data is

transmitted to ground stations in X-band (8025-8400 MHz). Telemetry Tracking and

Command (TTC) system works in S-band (2200-2300 MHz). This system is used to

monitor the configuration and health of the satellite, including reconfiguring,

reorientation and repositioning of the satellite as well as determining the position and

velocity of satellite by the spacecraft controllers on the ground (IRS-1C Data Users

Handbook 1995). The important technical parameters of the IRS-1C imaging systems

are listed in Table 3-1.

3.2.3 Payload sensors and IRS-1C imagery data

IRS-1C offers the remote sensing community a unique combination of payloads

consisting of three cameras: Panchromatic camera (PAN), Linear Imaging and Self-

Scanning Sensor (LISS-III), and Wide Field Sensor (WiFS). These Payloads operate

in a push-broom scanning mode using Charge Coupled Devices (CCD) as detectors

(IRS-1C Data Users Handbook 1995). Their characteristics are given in Table 3-2.
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Figure 3-2  Overview of IRS-1C mission (Source: after IRS-1C Data User’s Handbook 1995)

SAC, Ahemadabar
Data Products

Software &
Engineering

Foreign
Data Reception

Station

NRSA, HYDERABAD

Shad Nagar
Data Reception STN

Balanagar Data Processing

ISTRAC, BANGALORE

Mission Control
Telemetry Tacking Command

Other TTC Stations

To Users

ISA,
Bangalore
S/C Design

Mission
Planning &

Mission S/W

Payloads
PAN RES:                   5.8m
Multispectral RES:    23.5m
WIFS RES           :   188.3m

Satellite
Weight: 1250 kg; Power: 813
Data: X Bands;    TTC: S-Band

Orbit: 817 km
3 Axis Stabilized

Sun Sync.



29

Table 3-1  Key technical parameters of the IRS-1C imaging systems

Type Three-axis, body stabilized satellite
Orbit Polar, sun synchronous
Altitude 817 km
Weight 1,250 kg
Equatorial crossing time 10:30 a.m., in descending node
Repetivity 24 days between 81 deg north and 81 deg south

latitudes
Revisit capability of PAN and WiFS 5 days
Semi-major axis 7,195 km
Inclination 98.69 deg
Period 101.35 minutes; 14 orbits/day
Distance between adjacent traces 117.5 km
Source: IRS-1C Data User’s Handbook 1995 p.20 and p.39

Table 3-2  Imaging sensor characteristics on board IRS-1C

Sensor PAN LISS-III WiFS
Spatial
resolution

5.8 m 23.5 m (VIS and NIR)
70.5 m (SWIR)

188 m

Swath-width 70 km 141/148 km 810 km
Spectral
coverage

Panchromati
c

Band 2
Band 3
Band 4
Band 5

520-590 nm
620-680 nm
770-860 nm
1550-1700
nm

green
red
NIR
SWIR

Band
3
Band
4

620-680
nm
770-860
nm

Red
NIR

Radiometric
Resolution,
Quantisation

6 bit 7 bit 7 bit

Source: IRS-1C Data User’s Handbook 1995

PAN camera

The PAN camera enables the acquisition of images at a ground resolution of 5.8 m.

Until quite recently this 5.8-m ground resolution was the highest offered by civilian

remote sensing satellites. The PAN camera operates in the spectral range of 0.5-

0.75 mµ  and provides a ground coverage of 70 km.

In addition, the PAN camera has off-nadir viewing capability. Off-nadir refers to any

point that is not directly beneath the detectors, but off to an angle (ERDAS Field
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Guide 1997). With this off-nadir capability the revisit frequency for the same

geographic area has been increased to five days, instead of twenty-four days as in the

LISS camera system. The off-nadir viewing capability is also very useful for

generating stereo images, from which digital terrain model (DTM) can be derived. A

maximum tilt angle of ± 26 degrees corresponds to an off-nadir coverage of ± 398 km

on the ground (Figure 3-3).

The high-resolution PAN data enables the generation of detailed digital cartographic

databases and DTMs that can help provide engineering solutions to complex problems

associated with micro-level planning and development. The availability of stereo

images from the PAN data has opened up new vistas in urban management. Added to

these are the potentials of the PAN data for updating topographical maps as well as

mapping at the cadastral level (Kasturirangan 1996).

Figure 3-3  PAN off-nadir viewing capability
(Source: IRS-1C Data User’s Handbook 1995)
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LISS-III

The four-band multispetral camera, LISS-III, provides data of terrain features in

visible, NIR, and SWIR regions within the electromagnetic spectrum. LISS-III has a

spatial resolution of 23.5 m each in the visible and NIR bands and 70.5 m in the

SWIR band. The swath in the visible and NIR bands is 141 km while the SWIR has a

swath of 148 km. Each band has its own collecting optics and linear array CCD.

LISS-III data from visible and NIR bands can significantly improve the separability

among various crops and vegetation, enabling the identification of small fields and

better classification accuracy. The SWIR data is very useful for agriculture

applications, such as the study of crop canopy, water status, and estimation of leaf area

index. The LISS-III data can also be used to discriminate crops in the mixed crop

regions.

WiFS

WiFS is a two-band camera. It operates in the visible and NIR region with a spatial

resolution of 188 m and a swath width of 810 km. The sensor observes the same

region once in every five days.

The high repetivity feature of the image data from WiFS is particularly useful in the

monitoring of natural resources, especially in the vegetation and dynamic phenomena

like flood, droughts, forest fires, and so on.

3.2.4 Selected satellite scenes

Data products

According to the extent of pre-processing performed on the raw image data, four

levels of data products are available (Table 3-3).
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Table 3-3  Overview of IRS-1C data products

Level 0 Raw data Uncorrected
Level 1 Browse Product Radiometrically corrected and

Geometrically corrected only for earth rotation
Level 2 Standard Product Both radiometrically and geometrically corrected
Level 3 Special Product Special processing like merging, enhancement, etc.
Source: IRS-1C Data User’s Handbook 1995 p.96

Selected image scenes

For this study a LISS-III quadrant scene and a 1/9 PAN subscene are selected. These

images were acquired on 29 July 1997. The path and row number and product code

are given in Table 3-4. and Table 3-5.

The selected image data are both radiometrically and geometrically corrected,

standard path oriented products (Level 2). Path oriented products refer to the scenes

that are geometrically corrected to the orientation as seen by the spacecraft, parallel to

the ground track. Geometric corrections correct distortions resulted from Earth

rotation, Earth ellipsoid, satellite attitude, as well as internal distortions (Euromap,

1998).

Table 3-4  The path, row number and product code of selected IRS-1C satellite data

LISS-III Path 24 Row 33 Quadrant 11 QUSCB02AZ
PAN Path 24 Row 34 Subscene A3 STSCB02AZ

Table 3-5  Explanatory notes on IRS-1C data product code

Product Type ST
QU

Standard Scene
LISS-3 Quadrant

Map Projection S Space Oblique Mercator
Resampling C Cubic Convolution
Earth Ellipsoid B International 1909
Enhancement 0 No Enhancement
Level of Correction 2 System Corrected

Media and Format AZ Fast Format BSQ on disk
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3.3 Reference Data

3.3.1 Digital orthophotos

Orthophotos are orthographic photographs that do not contain the scale, tilt, or relief

distortions characterizing normal aerial photographs. Orthophotos are generated from

overlapping conventional aerial photos in a process called differential rectification.

This process results in elimination of photo scale variation and image displacement

resulting from relief and tilt (Lillisand and Kiefer 1994).

Digital orthophotos are othophotos in digital raster format. In this study digital

orthophotos were used not only for the selection of training samples but also for

verifying the rectification accuracy of the IRS-1C imagery. Details of the selected four

digital orthophotographs are presented in Table 3-6.

Table 3-6  The selected digital orthophotographs
Area Number Original Scale After-scan Scale Date

Ingenheim 3432 5444 1:13 000 1:5000 1997.08.10
Eschbach 3428 5448 1:13 000 1:5000 1997.08.10
Landau 6814 SW 1:34 000 1:10 000 1992.07.30
Rheinaue/Hördt 6816 NW 1:34 000 1:10 000 1992.07.30

3.3.2 ATKIS (Amtliches Topographisches Kartographisches Informations-

system)

ATKIS are a type of GIS data. They are in digital vector format and correspond to the

topographic maps at a scale of 1:25000. Objects in ATKIS are classified into six main

categories and 80 sub-categories. The six main categories are residential, traffic,

vegetation, relief, water, and region.

ATKIS data is useful for selecting training samples and evaluating the classification

accuracy. As ancillary data, the ATKIS data can also help improve the quality of

automated land-use classification based on satellite imagery data.
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3.3.3 Topographic maps - TK25

Six TK25 maps are used in this study (see Table 3-7).

Table 3-7  TK25 maps used in this study
Map series number Area
TK 6713 Annweiler am Trifels
TK 6714 Edenkoben
TK 6715 Zeiskam
TK 6813 Bad Bergzabern
TK 6814 Landau in der Pfalz
TK 6815 Herxheim bei Landau

3.3.4 Field data

Field data are collected for two purposes, i.e., rectification of imagery data and

training sample selection. Differential Global Positioning System (GPS) was used for

rectification of the imagery data. Fieldwork was carried out to measure the geographic

coordinates of ground control points and select training samples.
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Part II Multispectral Image Classification Methods

Chapter 4 Preprocessing of IRS-1C Imagery

The purpose of image preprocessing is to correct distorted or degraded image data.

Sensor noises and atmospheric effects are two sources of radiometric distortion.

Sensor errors and atmospheric effects can be corrected before classification by

radiometric correction function. Radiometric correction addresses errors in the

measured brightness value of the pixels (Richards 1994). Sensor errors are usually

already calibrated at the satellite ground stations.

All electromagnetic radiation, before reaching sensors, passes through some distance,

or path length of the atmosphere. Due to atmospheric scattering and absorption, the

atmosphere can have a profound effect on the intensity and spectral composition of

radiation available to any sensing system. This impact of atmosphere on the remotely

sensed data is called atmosphere effects. The atmosphere effects vary with the

differences in path length and also vary with the magnitude of energy signal being

sensed, the atmospheric conditions present, and the wavelengths involved.

The atmospheric effects are not considered "error", since they are part of the signal

received by the sensing device (Bernstein 1983). However, for scene matching and

change detection analysis, elimination of, or compensation for, atmospheric effects via

some form of calibration is particularly important (ERDAS Field Guide 1997).

4.1 Rectification

Rectification is the process of transforming image data so as to create an image

oriented to map coordinates in a specific map projection (McCloy 1995). Raw

remotely sensed data usually contains geometric errors so significant that they will not
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be a good fit to map data. The sources of these errors range from variations in the

altitude, attitude, and velocity of the sensor platform, to factors such as panoramic

distortion, earth curvature, earth rotation, relief displacement, and nonlinearities in the

sweep of a sensor’s IFOV (Lillesand and Kiefer 1994).

Geometric errors take two forms: systematic and nonsystematic (Jensen 1986).

Systematic errors can be corrected by applying formulas derived by modeling the

nature and magnitude of the sources of the distortions mathematically. Usually,

systematic errors are removed at the satellite ground stations.

Using an nth order polynomial, rectification procedure corrects nonsystematic errors

and georeference image data. An nth order polynomial is a mathematical relationship

established between the coordinates of pixels in an image and their corresponding

coordinates on the ground. This relationship can be used to correct the image

geometry irrespective of the analyst’s knowledge of the source and type of distortions

(Richards 1994).

Georeferencing is the process of assigning map coordinates to the image data. It is an

important process because these map coordinates are essential to locating training

samples in the image and overlaying the imagery data with other types of data, such as

GIS layers, for the study area,

Rectification is usually done in three steps, i.e. locating ground control points (GCPs),

computing a transformation matrix, and resampling the output image (ERDAS Field

Guide 1997).

As the IRS-1C PAN data has a higher resolution compared to that of multispectral

data, panchromatic image was first rectified using Differential Global Positioning

System (DGPS). Using the rectified panchromatic image as a reference image,

multispectral images were then rectified using the "image-to-image" registration

method. The IRS-1C images were georeferenced to the following map projection and

coordinate system (Table 4-1).



37

Table 4-1  The map projection and coordinate system used for IRS-1C images

Map projection Coordinate
system

Spheroid Datum Longitude of
central meridian

Transvere Mercator Gauss-Krueger Bessel Potsdam 90 E

4.1.1 Global Positioning System (GPS)

GPS is a worldwide, satellite-based positioning and radio navigation system. GPS is

very accurate in time, velocity, and in all three dimensions of positions. The achieved

positioning accuracy with GPS ranges from 100 meters to millimeters. GPS was

developed by the U.S. Department of Defense (Pro XL System 1994;

http://www.lowe. co.uk/gps1.html).

The constellation of GPS consists of 24 satellites (Figure 4-1). The GPS satellites

orbit the Earth twice a day at a height of 20,000 km above the earth, and transmit their

precise position and elevation.

Every GPS satellite transmits almanac and ephemeris data. Almanac data is the

general information on the location and the health of each satellite in the constellation.

A receiver with a current almanac in its memory knows where in the sky to look for

satellites, given its last known position and the time of the day. Ephemeris data is the

precise satellite positioning information that is used by the GPS receiver to compute

its position. Each satellite transmits its own ephemeris data.

GPS receivers on the ground acquire the satellite signals and are able to determine a

measurement called pseudorange. The pseudorange is a combination of the distance

between the receiver and the satellite and the error in the receiver’s clock. At least four

satellites are required to compute the receiver’s position in three dimensions and the

magnitude of the receiver’s clock error.

There are two distinct signal types emitted from the satellites: Coarse Acquisition

(CA) and Precise Positioning System (PPS). CA coded signals can give 15 m Root

Mean Square (RMS) accuracy. However, the U.S. Department of Defense introduced
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a random error into the system, known as Selective Availability (S/A). The satellites

will randomly give out an error signal, thus degrading the accuracy to 100 m; the

usual accuracy is 50 m. S/A error is the greatest source of pseudorange error.

DGPS is used to correct the random signal errors caused by Selective Availability to

achieve positions with accuracy up to the sub-meter level. DGPS employs two

receivers. One is the reference receiver; the other is the rover receiver. The reference

receiver, also called base receiver or base station, is located at a known position. The

reference receiver is used to determine the errors in the pseudoranges in relation to the

satellites. The rover receiver, also called roving receiver, collects data at unknown

locations within the vicinity.

Base receiver collects data at the same time a rover receiver does. The difference

between the position measured by the base receiver and its actual position is first

calculated. Because GPS satellites are in high orbits, the pseudorange errors in the

reference receiver and rover receiver are virtually identical if the radius between them

is within 50 km. The pseudorange error measured by the base receiver can then be

applied to rover receiver to remove pseudorange errors of the rover receive by using

differential correction procedure. Differential correction can be performed using either

real-time or postprocessing correction.

Figure 4-1  The constellation of GPS
(Source: http://wwwhost.cc.utexas.edu/ftp/pub/grg/gcraft/notes/gps/gps.html)
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4.1.2 Rectification of IRS-1C panchromatic image using DGPS

The rectification process begins with locating a sufficiently large number of ground

control points both on the image and on the ground. Then a transformation was

developed to estimate ground coordinates for every pixel from the image pixel

coordinates (McCloy 1995). Figure 4-2 describes the five steps for the rectification of

panchromatic image using DGPS.

(1) Locate ground control points in the panchromatic image with the GCP

Editor.

Ground control points (GCPs) are specific pixels in an image for which the output

map coordinates are known. As ground control points, they must satisfy the following

conditions: 1) clearly identifiable and accurately located both on the image and on the

ground; 2) reachable with GPS on the ground; 3) evenly distributed across the study

area; and 4) sufficient number of points.

As point features are difficult to be located accurately in the image, it is more

appropriate to use as GCPs the objects that are easily to be identified in an image. An

example of such ground objects is intersections of linear features. In an image-to-

image registration approach, intersections of highways or main roads are often used as

GCPs.

In cases where GPS is employed, it is less practical to use highway intersections as

GCPs though. This is because obtaining an accurate measurement of GCPs usually

requires about three minutes but it might be difficult to stay at the highway

intersections for three minutes because of heavy traffic. Therefore, objects such as

intersections of field roads and edge elements of large buildings were selected as

GCPs for rectifying panchromatic image in this study.

The minimum number of GCPs is usually determined using the following formula.

Minimum number of GCPs = 2/))2)(1(( ++ nn
Where n is the order of polynomial.
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Figure 4-2  Workflow for the rectification of panchromatic image using DGPS
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This means that at least six GCPs are required for a second-order polynomial function.

In practice, more GCPs than the minimum required are used to achieve better

rectification results. In this study twenty-eight GCPs were selected in the

panchromatic image.

(2) Measure the geographic coordinates of the GCPs in the field using DGPS.

This study employed the GPS Pathfinder Pro XL System. Asset Surveyor software

runs on the field data collector TDC1. The base/reference receiver was placed at

Klaeranlage in Landau. The geographic coordinates of the reference receiver are

E’’’0 30.43108  and N’’’0 43.311249  at an altitude of 131.586m. The geographic

coordinates of the twenty-eight GCPs already identified in step (1) were captured by

the rover receiver. Differential corrections were then performed using the

postprocessing method. The PFINDER software was employed for this operations.

(3) Convert geographic coordinates to Gauss-Krueger coordinates using

Coordinate Calculate.

The geographic coordinates need to be converted to Gauss-Krueger coordinates. This

is necessary because Gauss-Krueger coordinates are the destination coordinate system.

For the conversion operation two parameters – spheroid and datum – corresponding

the geographic coordinate system are specified as WGS84 and WGS84.

(4) Calculate the transformation matrix using GCP Editor and the

Transformation Editor until the RMS error is acceptably low.

Polynomial equations are used to convert the source file coordinates to rectified map

coordinates. Polynomial equations are normally expressed as an nth-order bivariate

polynomial:

n
n

ji
j

nnn yayxayxayxaxaaX 11
22

3
1

210 +−
−− +++++++= LL

n
n

ji
j

nnn ybyxbyxbyxbxbbY 11
22

3
1

210 +−
−− +++++++= LL

where:
X, Y: coordinates of rectified image;
x, y: coordinates of source image;

110 ,, +naaa K  and 110 ,, +nbbb K : coefficients;
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n: the order of the polynomial;
i, j: exponent.

A transformation matrix consists of coefficients that are used in polynomial equations

for converting the coordinates. The least square regression method is used to calculate

the transformation matrix from the GCPs (ERDAS Field Guide 1997). The least

square method uses all of the equations to derive estimates of the unknowns that are a

best fit to all of the equations. The criterion used to decide on best fit is to minimize

the sums of squares of the residuals at all of the GCPs.

The order of the polynomial is simply the highest exponent used in the polynomial

equations. It describes the degree of complexity of the polynomial. A first-order

polynomial is simply a linear transformation. It can be used to project raw image to a

planar map projection or convert a planar map projection to another planar map

projection (ERDAS Field Guide 1997). A second-order transformation is more

complex than a first-order transformation. A second-order polynomial function can

describe many of the geometric errors. In this study the first-order polynomial was

found to be adequate for the transformation.

Accurate measurement of ground control points is essential to efficient rectification.

Inaccurate measurement of some GCPs is possible. To control the accuracy of GCPs

an error measurement called Root Mean Square (RMS) error needs to be computed.

Before calculating the RMS error, the reference coordinates of the GCPs must be

transformed back to the source coordinate system using the inverse of the

transformation matrix. The RMS error is the distance between the input (source)

location of a GCP and the re-transformed location for the same GCP (Figure 4-3).

RMS error is calculated using the following distance equation:

22 )()( irir yyxxerrorRMS −+−=

where:

ii yx , : the input source coordinates;

rr yx , : the retransformed coordinates
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RMS error is first calculated for each GCP. Then the total RMS error is obtained by

adding up the RMS error of all GCPs. The RMS error will be checked. If the total

RMS error is not acceptable, then those GCPs with high RMS errors must be deleted.

This process repeats until the RMS error is acceptable.

In this study, three GCPs with high RMS error were deleted. Consequently, twenty-

five GCPs were used for computing the transformation matrix. Table 4-2 lists the

twenty-five GCPs coordinates of source and GPS measurements. Table 4-3 presents

the results of the RMS error calculation. It should be noted that RMS errors are

reported in pixels. The total RMS error is 1.14 pixels, which corresponds to about

6.6m on the ground. This result suggests that the use of DGPS has improved the

accuracy of image rectification to a significant extent. The final calculated coefficients

of the polynomial equation are given in Table 4-4.

Source GCP

Y residual

X residual

RMS error

Retranformed
GCP

Y

X

Figure 4-3  Residuals and RMS error per point
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Table 4-2  The source and Gauss-Krueger coordinates of the 25 selected GCPs in
panchromatic image

Number GCP number X Source Y Source X Destination Y Destination
1 GCP#1 1844 4536 3436926 5462478
2 GCP#2 538 3662 3429556 5459814
3 GCP#3 150 2197 3425884 5453200
4 GCP#4 3161 4745 3443572 5461873
5 GCP#6 4469 4736 3449912 5460231
6 GCP#7 1483 3450 3433868 5457649
7 GCP#8 2851 2867 3439798 5453145
8 GCP#11 4803 2635 3448989 5449619
9 GCP#12 4103 2493 3445419 5449793
10 GCP#13 2931 1257 3438237 5445229
11 GCP#14 2267 2906 3437009 5454048
12 GCP#15 1088 1746 3429884 5449862
13 GCP#17 2730 2312 3438533 5450598
14 GCP#18 1925 709 3432696 5443805
15 GCP#19 2061 1471 3434272 5447336
16 GCP#20 4516 779 3445356 5440963
17 GCP#21 4353 1777 3445765 5446010
18 GCP#22 1418 584 3430085 5443817
19 GCP#23 3517 723 3440438 5441920
20 GCP#24 1826 205 3431613 5441481
21 GCP#25 2397 3766 3438682 5458063
22 GCP#26 4896 3371 3450338 5453076
23 GCP#27 4035 3963 3446867 5457007
24 GCP#28 1200 1225 3429808 5447199
25 GCP#29 1789 1936 3433514 5449921

Table 4-3  The RMS error of the GCPs in the panchromatic image

X-RMS Error (pixel) Y-RMS Error (pixel) Total RMS Error (pixel)
0.97694 0.58867 1.14059

Table 4-4  Transformation coefficients of GPS method
X’ Y’

Const. -694595.582392 -1313606.791787
X 0.235613 0.059752
Y 0.033220 0.059752
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(5) Resample the image data.

The pixels in the source image are in a different position, orientation, and are of a

different size to the pixels to be derived for the rectified image (Figure 4-4). This

problem can be solved using the resampling method. Resampling is the process of

calculating the data file values for the pixels in the rectified image by use of data file

values in the source image data (McCloy 1995).

The rectified coordinates ( ), 00 yx of each pixel are transformed back to the source

coordinate system. The retransformed coordinates ( ), rr yx are usually fractional image

coordinates. The data file values of the retransformed coordinates are derived by using

the resampling method. The calculation of a pixel’s retransformed coordinates

( ), rr yx is based on its neighborhood relationships. There are three resampling

methods: nearest neighbor, bilinear interpolation, and cubic convolution.

Figure 4-4  Relationship between the original image pixels and rectified pixels
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Nearest neighbor

In this approach, the data file value of the nearest pixel to the retransformed pixel in

the source image is adopted as the data file value for the output rectified pixel.

Contrary to the bilinear interpolation and cubic convolution methods, the nearest

neighbor approach does not change the data file value. The nearest neighbor method is

suitable for use before classification. It is the easiest and fastest of the three methods.

One of the disadvantages of this method is that a “stair stepped” effect may be

produced.

Bilinear interpolation

The data file value of the rectified pixel is computed from the four closest pixels in

the source image by use of three linear interpolations (Richards 1994). This method is

considered more spatially accurate than the nearest neighbor. But it has the effect of a

low frequency convolution. Edges are smoothed, and some extremes of the data file

values are lost.

Cubic Convolution

The data file value of the rectified pixel is derived from a set of 16 pixels in the source

image by use of cubic function. This method is quite similar to bilinear interpolation.

The image resulted from the cubic convolution method is generally smooth in

appearance. It is the most computationally intensive method.

The nearest neighbor method was applied in this study to ensure that no change in

data file value occurs. This is important for the subsequent classification operations. A

good match between the rectified panchromatic image and digital orthophotos is

illustrated in Figure 4-5.
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Figure 4-5  A subset of overlay of rectified panchromatic image and digital
orthophotos
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4.1.3 Rectification of multispcetral images using "image-to-image" registration

method

Using the rectified panchromatic image as a reference image, multispectral images

were rectified using the "image-to-image" registration method. Compared to the

panchromatic image, the rectification of multispectral images is a relatively simple

process.

The registration of the multispectral images is conducted in three steps.

(1) Locate GCPs both in the panchromatic image and the multispectral images using

the GCP Editor. In this study, twenty-six GCPs were interactively selected.

(2) Calculate the transformation matrix using GCP Editor and the Transformation

Editor until the RMS error is acceptably low. The first-order polynomial was

adequate for the transformation. Two GCPs with higher RMS errors were deleted.

Twenty-four GCPs were used to compute the transformation matrix. Table 4-5

lists twenty-four GCPs coordinates of panchromatic and multispectral image.

Table 4-6 presents the results of the RMS error calculation. The total RMS error is

0.333 pixels, or about 7.8m on the ground. This accuracy level is quite

satisfactory. The final calculated coefficients of the polynomial equation are given

in Table 4-7.

(3) Resample the image data. As in the panchromatic image rectification, the nearest

neighbor resampling method was used for rectifying the multispectral images, so

that no change in data file value occurs.

A good match between the rectified multispectral image and digital orthophotos is

illustrated in Figure 4-6.
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Table 4-5  The selected GCPs coordinates of panchromatic and multispectral images
Number GCP number X Source Y Source X Destination Y Destination

1 GCP #1 369 929 3437548 5462424
2 GCP #2 440 763 3438233 5457980
3 GCP #3 13 486 3426216 5453809
4 GCP #4 609 966 3443579 5461872
5 GCP #5 45 48 3424371 5442994
6 GCP #6 856 963 3449570 5460331
7 GCP #7 244 695 3433079 5457507
8 GCP #8 590 603 3440915 5453202
9 GCP #9 270 557 3432879 5453989
10 GCP #10 88 750 3429641 5459776
11 GCP #11 944 500 3448905 5448553
12 GCP #12 811 650 3446564 5453014
13 GCP #13 601 271 3439187 5445061
14 GCP #14 420 575 3436621 5453538
15 GCP #15 153 263 3428275 5447582
16 GCP #17 795 524 3445420 5450029
17 GCP #19 377 294 3433907 5446972
18 GCP #20 880 171 3445365 5440965
19 GCP #21 717 284 3442085 5444685
20 GCP #22 524 64 3436072 5440509
21 GCP #23 685 130 3440372 5441128
22 GCP #24 690 808 3444587 5457568
23 GCP #25 788 30 3442273 5438078
24 GCP #26 957 689 3450335 5453069

Table 4-6  The RMS error of GCPs for the multispectral images

X-RMS Error (pixel) Y-RMS Error (pixel) Total RMS Error (pixel)
0.3652 0.2419 0.438

Table 4-7  Transformation coefficients of "image-to-image" method
X’ Y’

Const. -278183.984545 -218553.949671
X 0.072140 -0.002306
Y 0.041906 0.036929
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Figure 4-6  A subset of overlay of rectified multispectral image and digital orthophotos
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4.2 Merge of Panchromatic Image and Multispectral Images

Merging information from different imaging sensors is a widely used image

processing technique. The purpose of image fusion is to make the best use of the

complementary information acquired in different imagery data sets about the same

terrain features. A popular image merging approach is the fusion of panchromatic and

multispectral images. The basic idea underlying this approach is that the features of

ground objects can be better described by combining panchromatic and multispectral

data because the panchromatic data usually has higher spatial resolution while

multispectral data higher spectral resolution. IRS-1C satellite system offers both types

of imagery data.

Merging PAN and multispectral data involves two distinct steps. First, the low-

resolution multispectral images are geometrically registered to the high-resolution

panchromatic image. As described in Section 4.1, both multispectral and

panchromatic images are rectified to the Gauss-Krueger coordinate system. Second,

the information contents – spatial and spectral – are merged to generate a single data

set that contains the best of the two input data sets.

Several image merging methods have been proposed in the literature. Examples

include IHS (Intensity-Hue-Saturation), PCS (Principal Component Substitution),

HPF (High-Pass Filter), RVS (Regression Variable Substitution), and SVR (Synthetic

Variable Ratio). In this study, the IHS and PCS methods were used to merge the PAN

and multispectral data.

The principle underlying the IHS and PCS methods is similar (Figure 4-7).

Multispectral images are first forward transformed into a replace-space. One of the

components of the transformed images is then replaced with the high-resolution

panchromatic image in the replace-space. Finally, the replaced images are transformed

back into the original space.
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4.2.1 Intensity-Hue-Saturation (IHS) method

IHS is one of the most often used methods for merging multisensor imagery data. The

IHS method has been used in merging Landsat MSS and Return Beam Vidicon (RBV)

data (Haydn et al 1982), Landsat TM and SPOT PAN data (Welch and Ehlers 1987),

and SPOT multispectral and PAN data (Thormodsgrad and Feuquay 1987).

The IHS transformation process is illustrated in Figure 4-8. It is assumed that the

intensity component is spectrally equivalent to the PAN image, and that all the

spectral information is contained in H and S components.

The implementation of IHS involves four steps.

(1) The multispectral bands 4, 3 and 2 were first displayed in RGB (Red-Green-Blue)

system and were then transformed into IHS space as intensity, hue and saturation

image.

(1) (2) (3)

Figure 4-7  The principle of transform-replace-retransform method
(Source: Shettigara 1992)

(1) Transform from the original space x1, x2, x3 to the replace space y1, y2, y3

(2) Replacement of the component y1 by the high resolution panchromatic data xp

(3) Retransform to the original data space xm1, xm2, xm3
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(2) A two standard deviation linear contrast stretch was applied to the higher spatial

resolution panchromatic image so that it has approximately the same variance and

average as the intensity component image.

(3) The stretched, higher spatial resolution panchromatic image replaced the intensity

component image.

(4) Finally, the replaced images in IHS space were transformed back into the original

space.

4.2.2 Principal Component Substitution (PCS) method

The procedure for the merging of the multispectral and PAN data using the PCS

method is similar to that of the IHS method. The justification used for replacing the

first principal component image with the stretched PAN image is that the PAN image

is approximately equal to the first principal component image. This assumption is

made because the first principal component image will have the information that is

common to all the bands used as input to PCA, while spectral information unique to

Multispectral
channels

Panchromatic
channel

R G B

Contrast
stretchI H S

P H S

R G B

Figure 4-8  The IHS transformation process
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any of the bands is mapped to the other components. The multispectral data spectrally

overlaps the PAN data so that its spectral information will be represented in the first

principal component image.

The implementation of PCS was conducted in four steps.

(1) The forward transform of LISS-III bands 2, 3, and 4 into principal components

was made.

(2) A two standard deviation linear contrast stretch was performed on the higher

spatial resolution panchromatic image so that it has approximately the same

variance and average as the first principal component.

(3) The first principal component image was substituted by the stretched PAN image.

(4) Finally, the reverse transform is performed.

4.3 Implementation and Results

Figures 4-9 and 4-10 present two subsets of the results of IHS and PCS merging

operations. A visual comparison of the resulted merge images shows that the IHS

method produced better color environment and more spatial details. However, the IHS

technique is limited to three bands.

A major problem resulted from the image transformation operation is the distortion of

spectral characteristics of the high spectral resolution data. Chavez et al (1991)

analyzed the distortion of spectral characteristics of merged images from statistical,

visual, and graphical point of view. In his study three methods – IHS, PCS, and HPF –

were applied for the merging of Landsat TM and SPOT panchromatic data. It was

found that the three methods have all caused distortions. The HPF method had the

least distortion while the IHS method the greatest. Wald et al (1997) proposed a

formal approach and some criteria for quantitative assessment of the synthetic images.

The merged data are not suitable for further digital classifications because the spectral

separability of the merged data is different from the original data. Therefore, merged

images are used mainly for visual interpretation.  
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Figure 4-9  A subset of the IHS merge of PAN and multispectral imagery Figure 4-10  A subset of the PCS merge of PAN and multispectral imagery
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Chapter 5 Multispectral Classification of IRS-1C Imagery Data

5.1 Supervised Classification

Supervised and unsupervised multispectral classifications are two main spectral

pattern recognition approaches. Supervised classification requires a prior knowledge

about the image data, such as which types of land-use exist in the study area and

spatial locations of reliable samples for each land-use type. The procedure of

supervised classification will be more controlled by the user than unsupervised

classification. Supervised classification starts with training, which results in various

signatures, and followed by class assignment using a decision rule (ERDAS Field

Guide 1997).

Training is the process of defining the criteria by which patterns are recognized (Hord

1982). The computer must be trained to recognize patterns in the data. Training

samples for each land-use type are first selected by use of ground truth data, aerial

photos, and maps. Signatures for each class are then generated from the training

samples. Signatures are statistical criteria for corresponding classes. Finally the pixels

in the image are sorted into classes based on the signatures, by use of a classification

decision rule. The decision rule is a mathematical algorithm that performs the actual

sorting of pixels into distinct classes.

The often-used decision rules in supervised classification are Parallelepiped,

Minimum Distance, Mahalanobis Distance, and Maximum Likelihood/ Bayesian.

These decision rules are discussed in the following sections (ERDAS Field Guide

1997).

5.1.1 Parallelepiped decision rule

There are upper and lower limits for every signature in every band. Figure 5-1 is a

two-dimensional example of a parallelepiped classification. The large rectangles are
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called parallelepipeds. If pixels are found to lie in such a parallelepiped, then they are

assigned to that signature’s class.

The limits for every signature can be either the minimum and maximum data file

values of each band in the signature, the mean of each band, plus and minus a number

of standard deviations, or any limits that the user specifies, based on the user’s

knowledge of the data and signatures.

The parallelepiped classifier is a very simple, and fast supervised classifier. It is often

useful for a first-class, broad classification. The parallelepiped classifier has two main

drawbacks though. One is that there can be considerable gaps between parallelepipeds

and, as a result, pixels in these gap regions will not be classified. Secondly, pixels may

be classified which are actually quite far, spectrally, from the mean of the signatures

due to “corners” in parallelepipeds.

Figure 5-1  Parallelepiped classification using plus or minus two standard
deviations as limits (Source: ERDAS Field Guide 1997 p. 244)
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5.1.2 Minimum Distance

The minimum distance decision rule calculates the spectral distance between the

measurement vector for the pixel to be classified and the mean vector for each

signature (Figure 5-2). Generally, spectral distance is based upon the squared

Euclidean distance.

Formula

Classification is performed on the basis of

ix ω∈ if 22 ),(),( ji mxdmxd < for all ij ≠

where:
x : the measurement vector for the pixel to be classified;

iω : iω  = 1, 2, … M, the spectral classes for an image, M is the total

number of classes;

im : i = 1, 2, …M, are the mean vectors for each class;
2),( imxd : squared Euclidean distance,

)()(),( 2
i

t
ii mxmxmxd −−= ,

where t is the transposition function (matrix algebra).

The pixel at positionx  belongs to class iω , if 2),( imxd  is the closest (lowest).

There are no unclassified pixels in the minimum distance classification as every pixel

is spectrally close to one sample mean. Minimum distance is a fast decision rule. A

Figure 5-2  Minimum spectral distance
(Source: ERDAS Field Guide 1997 p.248)



59

disadvantage of this technique is that pixels which should be unclassified, because

they are not spectrally close to the mean of any sample, will become classified. This

problem can be alleviated by thresholding out the pixels that are farthest from the

means of their classes.

Another limitation of this method is that it does not consider class variability. For

example, an urban class may be improperly classified, because an urban area consists

of pixels with high variance, which may tend to be far from the mean of the signature.

Inversely, a class with less variance, like water, may tend to be overclassified, since

the pixels that belong to the class are usually spectrally closer to their mean.

5.1.3 Mahalanobis Distance

The Mahalanobis distance algorithm assumes the histograms of the bands have

normal distributions. Mahalanobis distance is similar to minimum distance, except

that the covariance matrix is used in the discriminant function. Variance and

covariance are figured in so that clusters that are highly varied will lead to similarly

varied classes.

Formula

Classification is performed on the basis of

ix ω∈ if 22 ),(),( ji mxdmxd < for all ij ≠

where:
x : the measurement vector for the pixel to be classified;

iω : iω  = 1, 2, … M, the spectral classes for an image, M is the total

number of classes;

im : i = 1, 2, …M, are the mean vectors for each class;
2),( imxd : Mahalanobis distance;

)()(),( 12
ii

t
ii mxmxmxd −∑−= − ,

where:
t : the transposition function;

1−∑i : inverse of the covariance matrix of the data in class ω i.

The pixel at positionx  belongs to class iω , if 2),( imxd  is the closest.
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Unlike minimum distance or parallelepiped, the Mahalanobis distance classifier takes

into account the variability of classes. It may be more useful than minimum distance

in cases where statistical criteria must be taken into account, but the weighting factors

that are available with the Maximum Likelihood/Bayesian option are not needed.

There are several disadvantages of the Mahalanobis distance classifier. First, it tends

to overclassify signatures with relatively large values in the covariance matrix. If there

is a large dispersion of the pixels in a cluster or training sample, then the covariance

matrix of that signature will contain large values. Second, it is slower to compute than

minimum distance and parallelepiped classifier. Third, Mahalanobis distance is

parametric, meaning that it relies heavily on a normal distribution of the data in each

band. If this is not the case, better results can be achieved with minimum distance or

parallelepiped decision rule.

5.1.4 Maximum Likelihood/Bayesian classification

The maximum likelihood algorithm is the most common decision rule for supervised

classification. This decision rule is based on the probability that a pixel belongs to a

particular class. It assumes that these probabilities are equal for all classes, and that

the input bands have normal distributions (Figure 5-3).

If the user has a prior knowledge that the probabilities are not equal for all classes, the

user can specify weight factors for particular classes. This variation of the maximum

likelihood decision rule is known as Bayesian decision rule (Hord 1982).

Figure 5-3  Maximum likelihood decision rule
(Source: ERDAS IMAGINE V8.3 Professional Training Reference Manual 1997 p.29)
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Formula

The maximum likelihood classification is performed according to the following

decision rule:

ix ω∈ if )|()|( xpxp ji ωω > for all ij ≠ (5.1)

where

x : the position vector, a column vector of brightness values for the pixel;

iω : the spectral classes for an image, 
iω  = 1, 2, … M, where M is the total

number of classes;
)|( xp iω : the conditional probabilities, which gives the likelihood that the

correct class is 
iω for a pixel at position x.

The pixel at x belongs to class 
iω , if )|( xp iω  is the largest.

To obtain )|( xp iω  in (5.1), a probability distribution )|( ixp ω  can be estimated from

training data for each ground cover type. The desired )|( xp iω  in (5.1) and the

available )|( ixp ω  are related by Bayes’ theorem (Freund and Walpole 1987):

)(/)()|()|( xppxpxp iii ωωω = (5.2)

where:

)( ip ω : the probability that class ω i occurs in the image;

)(xp : the probability of finding a pixel from any class at location x.

It is of interest to note that

∑
=

=
M

i
ii pxpxp

1

)()|()( ωω

The )( ip ω  are called a priori or prior probabilities, since they are the probabilities

with which class membership of a pixel could be guessed before classification. By

comparison, the )|( xp iω  are posterior probabilities. Using (5.2) it can be seen that the

decision (classification) rule of (5.1) is modified as:
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ix ω∈ if )()|()()|( jjii pxppxp ωωωω > for all ij ≠ (5.3)

where )(xp  has been removed as a common factor.

The maximum likelihood decision rule assumes that the probability distributions for

the classes are of the form of multivariate normal models, therefore,

)}()(
2
1

exp{)2()|( 12/12/
ii

t
ii

N
i mxmxxp −∑−−∑= −−−πω (5.4)

where im  and i∑  are the mean vector and covariance matrix of the data in class iω .

Resulting from applying natural logarithm to (5.4) and mathematical simplifications,

the discriminant function for the maximum likelihood/Bayesian classifier is:

)()(
2
1

|)ln(|
2
1

)(ln)( 1
ii

t
iiii mxmxpxg −∑−−∑−= −ω

where:

iω : a particular class;

x : the measurement vector of the candidate pixel;

im : the mean vector of the data in class iω ;

)( ip ω : the probability that class ω i occurs in the image (equal for all classes,

or is entered from a priori knowledge);

i∑ : the covariance matrix of the data in class iω ;

|| i∑ : determinant of ∑ ;
1−∑i : inverse of ∑ ;

ln: natural logarithm function;
t: transposition function.

The pixel is assigned to the class iω , for which )(xgi  is the largest.

The maximum likelihood /Bayesian algorithm is the most accurate classifier in the

ERDAS IMAGINE system, because it takes most variables into account (ERDAS

Field Guide 1997). It should be noted, though, that the maximum likelihood algorithm

assumes the histograms of the bands of data to take normal distributions. If this is not

the case, the parallelepiped or minimum distance decision rule may generate better

results.
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5.2 Unsupervised Classification - ISODATA Clustering

 Unsupervised classification, also called clustering, is more computer-automated than

supervised classification. Only some parameters are required to specify from the user

to begin this process. Then the computer uses these parameters to uncover statistical

patterns that are inherent in the data.

 

 It should be noted that the statistical patterns identified are just clusters of pixels with

similar spectral characteristics. They do not necessarily correspond to any meaningful

characteristics of ground objects. Consequently, after unsupervised classification the

user must attach the actual meaning to the resulting classes (Jensen 1986).

 

 Sequential, statistic, ISODATA (Self-Organizing Data Analysis Technique), and RGB

(Red-Green-Blue) decision rules are often used in unsupervised classification. Details

of the ISODATA clustering algorithm are given below (ERDAS Field Guide 1997).

The ISODATA method uses minimum spectral distance to assign a cluster for each

candidate pixel. This algorithm is iterative in that it repeatedly performs an entire

classification and recalculates statistics. Three parameters must be specified for

ISODATA clustering:

q N – the maximum number of clusters to be considered. Since each cluster is the

basis for a class, this number becomes the maximum number of classes to be

formed;

q T – a convergence threshold, which is the maximum percentage of the pixels

whose class values are allowed to be unchanged between iterations; and

q M – the maximum number of iterations to be performed.

ISODATA process (Figure 5-4) begins by determining N arbitrary cluster means. The

spectral distance between the candidate pixel and each cluster means is calculated.

The pixel is assigned to the cluster whose mean is the closest.

After each iteration, the means for each cluster are recalculated, based on the actual

spectral locations of the pixels in the clusters, causing them to shift in feature space.
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Then these new means are used for defining clusters in the next iteration. The entire

process is repeated-each candidate pixel is compared to the new cluster means, and

assigned to the closest cluster mean. The process will terminate until either the

convergence threshold T or the maximum number of iterations M is reached.

The ISODATA method has three major advantages. First, Clustering is not

geographically biased to the top or bottom pixels of the data file, because it is

iterative. Second, this algorithm is highly successful at finding the spectral clusters

that inherent in the data. It does not matter where the initial arbitrary cluster means are

located, as long as enough iterations are allowed. Third, The resulting thematic raster

layer from ISODATA clustering method is similar to using minimum distance

classifier. This thematic layer can be used for analyzing and manipulating the

signatures before actual classification is performed.

Time consuming is a major disadvantage of this algorithm. Obviously, this is a result

of the iterations needed. Another deficit of the ISODATA clustering method is that it

does not account for pixel spatial homogeneity.

(1) (2) (3)

(1) Five arbitrary cluster means in two-dimensional spectral space
(2) ISODATA first pass
(3) ISODATA second pass

Figure 5-4  ISODATA clustering procedure

(Source: ERDAS Field Guide 1997 pp. 227-228)



65

5.3 Implementation and Results

Because Band 5 of LISS-III has a spatial resolution of 70.5 m, it is inadequate for the

objective of this study. Therefore, Band 5 was not used for the land-use classification.

5.3.1 Design of land-use classification system

A classification process begins with defining a classification system. A land-use

classification system categorizes all land-use types into classes in the system. A

classification system should be mutually exclusive and totally exhaustive. A system is

mutually exclusive if any point on the map/ground falls into one and only one land-

use category. A system is totally exhaustive if every place on the ground has a label.

A hierarchical structure for the land-use classification system of the study area was

developed. The hierarchical system is used to increase the flexibility of classification

procedure. This hierarchical system contains three levels of detail of the land-use

types: six classes in the first level, ten classes in the second level and seventeen

classes in the third level (Table 5-1).

It should be noted that all subclasses within the agriculture class such as wheat, barley,

sugar beet, corn, oat do not correspond to the unique land-use type of the fields, they

represent only the dominant land-use types. It was difficult to differentiate pasture

from grassland in a satellite imagery captured in July. Therefore the class "grassland"

contains land-use type "pasture".
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Table 5-1  The land-use classification system used in this study

Level 1 Level 2 Level 3

Urban or built-up Residential Low density
Medium density
High density

Industrial Industrial area
Green space Green space

Agriculture Cropland Barley
Corn
Oat
Sugar beet
Vine
Wheat

Grassland Grassland Grassland
Forest land Evergreen Conifer

Deciduous Deciduous
Mixed forest Mixed forest

Water Water Water
Transport Highway Highway

5.3.2 Segmentation of urban and agricultural areas using ATKIS data

The purpose of segmenting urban and agricultural areas in the PAN and multispectral

images is to generate two coarse homogeneous regions, i.e. urban and agricultural

land-use types. This operation is useful because after the segmentation of operation,

further land-use classification of the urban and agricultural areas can be conducted

separately. This in turn can help reduce classification errors that might have resulted

from similar spectral response patterns of some urban and agricultural land-use types

– the confusing pixel problem.

The extraction of urban area is conducted in three steps (Figure 5-5). First, a vector

urban file was extracted from ATKIS data. Second, the vector urban file was

transformed into raster urban file. Third, urban areas were masked out from the whole

image using raster urban file as mask file.

The extraction of vector urban file from ATKIS was implemented using Arc/Info

software. The extraction process is conducted in three steps. First, select all data
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records under the category “residential” that begins with the number “2” (urban areas)

in the ATKIS data; add new item called urban and assigning the selected records the

value “2”. Second, select all polygons with item urban != “2” and delete these

polygons; save the remaining polygons (i.e. urban areas) to a new urban file. Third,

dissolve the polygon boundaries in file urban areas.

The transformation of vector file into raster file and the masking of urban areas are

performed in ERDAS Imagine. After masking operation, two new image files were

generates, i.e., urban file and agriculture file. The urban file comprises only the “urban

and built-up area” classes. All other classes appear in the agriculture file.

Figures 5-6-1 and 5-6-2 compare the maximum likelihood classification before and

after the segmentation of urban and agricultural areas. The confusing pixel problem in

harvest fields and urban areas was eliminated. In addition, the mixed pixels between

two land-use classes were greatly reduced.

ATKIS
data

Vector
urban file

Raster
urban file

Masking of
urban areas

Arc/Info ERDAS Imagine

Figure 5-5  The procedure for extracting urban areas using GIS
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Figure 5-6-1  Maximum likelihood classification before segmentation
of urban and agricultural areas

Figure 5-6-2  Maximum likelihood classification after segmentation of
urban and agricultural areas
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5.3.3 Classification of agriculture areas

The parallelepiped, minimum distance, Mahalanobis distance, and maximum

likelihood/Bayesian algorithms and ISODATA methods were performed on the three

bands of LISS-III imagery data of the agriculture file.

It was found that the hybrid method combining ISODATA method and the maximum

likelihood/Bayesian algorithm produced the best results. The classification procedure

is described in Figure 5-7.

Training Sample
Selection

ISODATA
Clustering

Signature Generation

Signature Evaluation

Maximum Likelihood/Bayesian
Classification

Thematic map

Figure 5-7  The procedure for classification of agriculture areas
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5.3.3.1    ISODATA clustering

For the implementation of ISODATA algorithm, the parameters were given as

follows:

Number of classes = 50;

Maximum iterations = 30;

Convergence threshold = 0.98.

A thematic raster layer and a signature file were created from the ISODATA

clustering. The 50 classes in the thematic raster layer were then assigned the actual

class names by comparing the original image data with the individual classes of the

thematic raster layer. In addition to the land-use classes displayed in the land-use

classification system, two more classes were classified: cloud and shadows.

It was found that conifer, deciduous, barley, cloud, and shadows can clearly be

identified using the ISODATA clustering method. A heavy spectral mixture occurred

between vine and grassland. There are also mixtures between conifer, water rim, and

shadows; deciduous and grassland; between deciduous and ripe crop such as sugar

beets and corn; and between vine and sugar beet, grassland and sugar beet.

5.3.3.2 Training sample selection

A total number of 400 samples were selected. Fieldwork for the selection of training

samples was done in 1998; one year after the satellite data was acquired. For land-use

types that change little over a short period of time, such as forest and vineyard,

training samples were selected by use of various maps and data as reference basis.

These maps and data include the TK 25, digital orthophotos, original PAN and LISS-

III data, merged PAN and LISS-III data, as well as ATKIS data.

For crop types, the method described above is less appropriate. This is because, first,

the type of crops on a field may change from year to year and, second, the fieldwork

was not conducted at the same time the imagery data was acquired. To overcome this
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problem an agricultural database of the town Suedliche Weinstrasse was used. This

database records the actual crop types of fields in the study area for 1997. 102 training

samples were selected from the agricultural database. Of there training samples 25

fields of crops, which either have small area, or do not have homogeneity in satellite

imagery, or the types of the fields do not belong to any class of the classification

system, were not used.

5.3.3.3    Signature generation and evaluation

For the maximum likelihood classification signatures were generated from both the

ISODATA clustering procedure and the training samples. Because of the inherent

spectral differences in land-use classes, level-3 classes in the land-use classification

system were further differentiated. For example, eight subclasses under the vine class

were distinguished according to their different spectral signatures.

Thirteen signatures including conifer, deciduous, mix-forest, barley, wheat, cloud and

shadows from the ISODATA clustering procedure were first incorporated in the

maximum likelihood signature file. Signatures for all other land-use types were

generated from the training samples.

Following signature generation, signatures from the training samples were evaluated

mainly by comparing ISODATA clustering results. Signatures of each land-use class

that corresponds to the same ISODATA class, were merged while noise signatures

were deleted.

Figure 5-8 displays an example of merge five similar signatures of the land-use class

vine in the feature space.
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(1) (2)

(3)

(1) Band 2 and Band3; (2) Band 2 and Band 4; (3) Band 3 and Band 4

Figure 5-8  The ellipses for the five signatures of vine in the feature space
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Signature generation and evaluation is an iterative process. As a result, a signature file

containing 36 signatures was constructed. Table 5-2 presents the number, the name

and the source of the signatures and their corresponding numbers of pixels. The

separability of the 36 signatures based on the transformed divergence is illustrated in

Table 5-3. The contingency matrix for the signatures captured from the training

samples was calculated in Table 5-4.

Table 5-2  The number, name, source, and the number of pixels of the signatures

Class number Class name Number of pixels Source
1 barley1 11387 ISODATA
2 barley2 22717 ISODATA
3 cloud1 8031 ISODATA
4 cloud2 41108 ISODATA
5 conifer 45255 ISODATA
6 corn 98 TS
7 deciduous1 29396 ISODATA
8 deciduous2 33192 ISODATA
9 deciduous3 34313 ISODATA

10 deciduous4 29917 ISODATA
11 grassland1 801 TS
12 grassland2 782 TS
13 grassland3 496 TS
14 grassland4 511 TS
15 grassland5 85 TS
16 grassland6 382 TS
17 highway1 11 TS
18 highway2 16 TS
19 mixed forest 25223 ISODATA
20 oat 92 TS
21 shadows1 10986 ISODATA
22 shadows2 340 ISODATA
23 sugar beet 439 TS
24 vine1 897 TS
25 vine2 505 TS
26 vine3 120 TS
27 vine4 208 TS
28 vine5 14 TS
29 vine6 206 TS
30 vine7 112 TS
31 vine8 35 TS
32 water1 32 TS
33 water2 26 TS
34 wheat1 29482 ISODATA
35 wheat2 102 TS
36 wheat3 9 TS

TS: training samples
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Table 5-3  Separability of the 36 signatures
Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 0 1880 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1993 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

2 1880 0 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1993 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

3 2000 2000 0 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

4 2000 2000 2000 0 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

5 2000 2000 2000 2000 0 2000 1995 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1788 2000 1999 1991 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

6 2000 2000 2000 2000 2000 0 2000 1997 1807 1420 1986 1983 2000 2000 2000 1995 2000 2000 2000 2000 2000 2000 2000 1997 1976 2000 2000 2000 1991 2000 2000 2000 2000 2000 2000 2000

7 2000 2000 2000 2000 1995 2000 0 1534 1990 2000 2000 2000 2000 2000 2000 2000 2000 2000 1586 2000 2000 2000 2000 1996 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

8 2000 2000 2000 2000 2000 1997 1534 0 1546 1997 2000 2000 2000 2000 2000 2000 2000 2000 1995 2000 2000 2000 2000 1969 1996 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

9 2000 2000 2000 2000 2000 1807 1990 1546 0 1590 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1996 1997 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

10 2000 2000 2000 2000 2000 1420 2000 1997 1590 0 1993 1994 1996 2000 2000 1999 2000 2000 2000 2000 2000 2000 2000 1998 1994 2000 2000 2000 1998 1999 2000 2000 2000 2000 2000 2000

11 2000 2000 2000 2000 2000 1986 2000 2000 2000 1993 0 1162 997 2000 1975 1760 2000 2000 2000 2000 2000 2000 1994 1979 1818 1991 1195 2000 1368 1362 2000 2000 2000 2000 2000 2000

12 2000 2000 2000 2000 2000 1983 2000 2000 2000 1994 1162 0 1964 2000 1958 1268 2000 2000 2000 2000 2000 2000 2000 1967 1500 1746 1377 2000 307 1979 2000 2000 2000 2000 2000 2000

13 2000 2000 2000 2000 2000 2000 2000 2000 2000 1996 997 1964 0 2000 1972 1994 2000 2000 2000 2000 2000 2000 1911 2000 1996 2000 1802 2000 1962 233 2000 2000 2000 2000 2000 2000

14 1993 1993 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 0 1998 2000 2000 2000 2000 1996 2000 2000 2000 1991 1981 1996 2000 2000 1999 2000 1868 2000 2000 2000 1957 2000

15 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1975 1958 1972 1998 0 1995 2000 2000 2000 2000 2000 2000 1967 2000 1991 1962 1520 1386 1926 1808 2000 2000 2000 2000 2000 2000

16 2000 2000 2000 2000 2000 1995 2000 2000 2000 1999 1760 1268 1994 2000 1995 0 2000 2000 2000 1992 2000 2000 2000 1427 310 1901 1946 2000 1093 1998 1993 2000 2000 2000 2000 2000

17 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 0 1620 2000 1986 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1955 1989 2000

18 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1620 0 2000 1851 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1998 1997 2000

19 2000 2000 2000 2000 1788 2000 1586 1995 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 0 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

20 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1996 2000 1992 1986 1851 2000 0 2000 2000 2000 1834 1977 2000 2000 2000 2000 2000 2000 2000 2000 1998 1994 2000

21 2000 2000 2000 2000 1999 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 0 1593 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1999 2000 2000 2000

22 2000 2000 2000 2000 1991 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1593 0 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

23 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1994 2000 1911 2000 1967 2000 2000 2000 2000 2000 2000 2000 0 2000 2000 2000 2000 2000 2000 1953 2000 2000 2000 2000 2000 2000

24 2000 2000 2000 2000 2000 1997 1996 1969 1996 1998 1979 1967 2000 1991 2000 1427 2000 2000 2000 1834 2000 2000 2000 0 898 1999 2000 2000 1953 2000 1997 2000 2000 2000 2000 2000

25 2000 2000 2000 2000 2000 1976 2000 1996 1997 1994 1818 1500 1996 1981 1991 310 2000 2000 2000 1977 2000 2000 2000 898 0 1930 1971 2000 1376 1999 1988 2000 2000 2000 2000 2000

26 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1991 1746 2000 1996 1962 1901 2000 2000 2000 2000 2000 2000 2000 1999 1930 0 1904 2000 1414 2000 1996 2000 2000 2000 2000 2000

27 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1195 1377 1802 2000 1520 1946 2000 2000 2000 2000 2000 2000 2000 2000 1971 1904 0 1997 1365 1738 2000 2000 2000 2000 2000 2000

28 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1386 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1997 0 2000 1999 2000 2000 2000 2000 2000 2000

29 2000 2000 2000 2000 2000 1991 2000 2000 2000 1998 1368 307 1962 1999 1926 1093 2000 2000 2000 2000 2000 2000 2000 1953 1376 1414 1365 2000 0 1973 2000 2000 2000 2000 2000 2000

30 2000 2000 2000 2000 2000 2000 2000 2000 2000 1999 1362 1979 233 2000 1808 1998 2000 2000 2000 2000 2000 2000 1953 2000 1999 2000 1738 1999 1973 0 2000 2000 2000 2000 2000 2000

31 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1868 2000 1993 2000 2000 2000 2000 2000 2000 2000 1997 1988 1996 2000 2000 2000 2000 0 2000 2000 2000 2000 2000

32 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 0 2000 2000 2000 2000

33 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1999 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 0 2000 2000 2000

34 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1955 1998 2000 1998 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 0 1633 2000

35 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1957 2000 2000 1989 1997 2000 1994 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1633 0 1998

36 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1998 0
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Table 5-4  The contingency matrix of the 24 signatures

Class 6 11 12 13 14 15 16 17 18 20 23 24 25 26 27 28 29 30 31 32 33 35 36
6 90.82 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 64.43 6.98 10.04 0 0 0 0 0 0 0 0 0 0 4.29 0 4.33 2.68 0 0 0 0 0
12 0 12.06 62.18 0.2 0 0 7.07 0 0 0 0 0 3.56 0 2.86 0 30.77 0 0 0 0 0 0
13 0 9.33 0 58.4 0 0 0 0 0 0 0 0 0 0 0 0 0 30.36 0 0 0 0 0
14 0 0 0 0 85.77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 77.65 0 0 0 0 0 0 0 0 5 14.29 0 0 0 0 0 0 0
16 0 1.49 6.85 0 0 0 63.87 0 0 0 0 4.43 34.98 0 0 0 8.17 0 0 0 0 0 0
17 0 0 0 0 0 0 0 100 6.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 87.5 1.09 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 6.25 95.65 0 1.44 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0.61 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 4.45 0 0 3.26 0 82.5 11.86 0 0 0 0 0 0 0 0 0 0
25 0 1 0.63 0 0 0 16.75 0 0 0 0 10.85 45.85 0 0 0 0.48 0 0 0 0 0 0
26 0 0 1.65 0 0.4 0 0 0 0 0 0 0 0 94.17 0 0 6.25 0 0 0 0 0 0
27 0 8.46 4.95 1.64 0.2 4.71 0 0 0 0 0 0.22 0 0.83 82.86 0 6.25 4.46 0 0 0 0 0
28 0 0 0 0 0 16.47 0 0 0 0 0 0 0 0 0 85.71 0 0 0 0 0 0 0
29 0 1.12 16.75 0 0 0 7.85 0 0 0 0 0.22 3.56 5 2.14 0 43.75 0 0 0 0 0 0
30 0 1.62 0 29.1 0 1.18 0 0 0 0 0 0 0 0 2.86 0 0 62.5 0 0 0 0 0
31 0 0 0 0 13.63 0 0 0 0 0 0 0 0.2 0 0 0 0 0 100 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 94.12 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
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5.3.3.4    Maximum likelihood classification results

The maximum likelihood/Bayesian classification was performed. A subset of the

classified thematic map is given in Figure 5-9. A total number of fourteen land-use

classes were extracted. Forest, wheat, barley, sugar beet, water, cloud and shadows

have been well classified. Corn and oat have only small area and they were also

relatively well identified.

Mixture occurred between sugar beet and grassland. In the middle of Figure 5-9, for,

example grassland was misclassified as sugar beet. Vineyard and grassland are heavy

mixed because during this season, they have similar spectral reflections. Figure 5-10

shows grassland of the military training site. It was partly correctly classified as

grassland but part of it was misclassified as vine. Figure 5-11 is a picture of vineyard.

Figure 5-9  Maximum likelihood and ISODATA classification result
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Figure 5-10  Grassland

Figure 5-11  Vineyard
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5.3.4 Classification of urban areas

ISODATA clustering method was found to be suitable for the classification of the

urban land-use types. The parameters for the implementation of ISODATA algorithm

were given as follows: Number of classes = 30; Maximum iterations = 30;

Convergence threshold = 0.98.

A thematic raster layer was created. The 30 classes in the thematic raster layer were

then assigned the actual class names by comparing the original image data with the

individual classes of the thematic raster layer. A subset of the ISODATA clustering

operation is given in Figure 5-12. Five classes were extracted; they are residential of

low density, medium density, and high density, industrial area, and green space.

Figure 5-12  ISODATA classification results of the urban area
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Part III Improved Satellite Image Classification Techniques

Chapter 6 Contextual Classification of IRS-1C Imagery

6.1 Contextual Classification Techniques

In any real image, the response and class of two spatially neighboring pixels are highly

related. There are two reasons for this spatial correlation. First, imaging sensors

acquire a significant portion of energy from adjacent pixels. In other words, the

spectral reflectance characteristics of a pixel is significantly affected by its

neighboring pixels. This effect is characterized as compound spectral response.

The second reason for the spatial correlation between image pixels is that, due to

finite resolution of satellite sensors, land-cover types often occur over a region that is

large compared with the size of a pixel. Consequently, in a large homogeneous region

compared with the pixel size, if an image pixel (not at edge of the region) represents a

particular land-use class, it is highly likely that its neighboring pixels are also the

same land-use class. For example, if i and j are two neighboring pixels and if pixel i,

belongs to class Tk, then there is a high probability that pixel j also belongs to class

Tk,. Thus, the decision for a pixel is to be made based not only on the observation at

pixel i, but also on all pixels j where j is a neighbor of pixel i.

To take into account the spatial correlation between pixels in an image, a class of

classification methods called contextual techniques are developed. Contextual

techniques use both spectral and spatial information to improve the classification

accuracy. Contextual classifiers take into account contextual information when

seeking to determine the most appropriate class for a pixel. They attempt to produce a

thematic map that is consistent both spectrally and spatially.
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6.2 Main Contextual Classifiers

The approaches adopted by the researchers during the past few years to incorporate

context in the classification of remotely sensed data can be grouped as follows

(Rosenfeld et al 1976; Pal and Pal 1993; Kartikeyan et al 1994; Deng and Iyengar

1996):

q Methods based on the classification of homogeneous objects,

q Techniques based on probabilistic relaxation,

q Methods derived using compound decision theory and sequential compound

decision theory, and

q Methods derived based on a stochastic model for the distribution of classes in the

scene.

Using filters before classification is the simplest method to exploit and enhance the

spatial context of image data. For example, a median filter will reduce salt and pepper

noise that would lead to inconsistent class labels. Simple averaging filters (possibly

with edge preserving thresholds) can be used to impose a degree of homogeneity

among the brightness values of adjacent pixels thereby increasing the chance that

neighboring pixels may be given the same label (Richards 1994).

Generating a separate channel of data is another preprocessing contextual method. In

an attempt to improve the accuracy of classification of image data containing urban

segments, Gong and Howarth (1990) set up a "structural information" channel to bias

a classification according to the density of high spatial frequency data.

Kettig and Landgrebe (1976) proposed a spatial preprocessing technique called ECHO

(Extraction and Classification of Homogeneous Objects). In this approach, regions of

similar spectral properties are "growing" before classification. These regions are then

classified by comparing with class spectral signatures. The CASCADE algorithm of

Merickel et al (1984) and the agglomerative clustering technique of Amadsun and

King (1988) are other examples of such an approach.
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Following ECHO method, Supervised Extraction and Classification of Homogeneous

Objects (SECHO), one of the early and best known contextual classifiers, was

presented by Landgrebe (1980). It can be seen as a "per filed" classifier. It first divides

the scene into homogeneous image segments and then classifies these segments using

an extended version of the Gaussian maximum-likelihood (GML) algorithm. This

technique is known to be efficient for classifying data sets that contain homogeneous

objects that are large compared to the spatial resolution provided by the sensor.

Another type of contextual classification approach is postprocessing contextual

classification techniques. Logical filters can be applied to a thematic map generated

using a simple classifier (Duda and Hart 1973). Majority filter is another useful

method (Townsand 1986; Schowengerdt 1983). Some contextual methods make use

of neural networks (Bischof et al 1992). In this approach, the degree of smoothing

depends on the confidence of classification of the individual pixels. The network is

trained over the same data as for the classification.

Toussaint (1978) introduced an approach under the theme of sequential compound

decision theory, which attempts to decide the label for one pixel based on the

observation at all other pixels in the image. Some of the approximations and methods

suggested by Toussaint (1978) can be found in Swain et al (1981), Tilton et al. (1982),

Haslett (1985), Haralick and Joo (1986), Kaleyeh and Landgrebe (1987) and Khazenie

and Grawford (1990).

Another powerful smoothing method is the Nagao filter (Nagao and Matsuyama

1979). The Nagao filter is an edge-preserving smoothing filter. This filter makes use

of eight cliques surrounding each pixel and is generally applied on gray-level images.

Solaiman et al (1998) proposed a modification of the Nagao filter that is applicable in

smoothing thematic maps.

Zhang et al (1990) empirically evaluated the reliability of stochastic relaxation

algorithm for region classification in Landsat imagery where a Markov-Gibbs

distribution was used to establish constraints on region adjacency. A similar approach

was used in Jhung and Swain (1996).
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More complex contextual classification algorithms involve some quite sophisticated

statistical and probabilistic theories. A good example of more complex contextual

methods is the probabilistic label relaxation technique. Previous work on probabilistic

relaxation shall be discussed in the following section.

6.3 Probabilistic Relaxation Methods

The possibility of using probabilistic relaxation for contextual classification of

remotely sensed data was first discussed by Peleg (1980), Eklundh et al (1980),

Faugeras and Berthod (1981), and Richards et al (1981a).

Relaxation is an iterative technique. This technique allows the spatial properties of a

region to be carried into the classification process in a logically consistent way and,

therefore, it is robust to image noise. The probabilities of neighboring pixels are used

iteratively to update the probabilities for a given pixel based on a relation between the

pixel labels specified by compatibility coefficients which describe the context of the

neighbor. Context is incorporated in pairwise manner. This approach is

computationally intensive. Contextual techniques based on relaxation methods

iteratively adjust some initial estimates of class membership probabilities by reference

to spatial context.

The process of probabilistic relaxation does not use measurement information except

in the initialization stage when the measurement information is used to obtain the

initial class membership probabilities for each pixel. The probabilistic technique is

more complicate. If a map is examined in N × N windows, a label at the center of the

window will be modified by the surrounding N × N pixels.

DiZenzo et al (1987) proposed an efficient implementation of the probabilistic

relaxation method suited to the needs of actual remote sensing applications. This

method is based on the key concepts of probability, compatibility coefficient,

neighborhood function, and updating rule. Probabilities for each pixel describe the

chance that the pixel belongs to each of the possible land-use classes. In the initial
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stage, a set of probabilities could be computed from point or pixel-specific classifiers

based on spectral data alone. A compatibility coefficient describes how compatible it

is to have pixel m classified as ω i and neighboring pixel n classified as ω j. A

neighborhood function allows the neighborhood pixels to influence the possible

classification of the center pixel. The neighborhood function depends on the label

probabilities of the neighboring pixels, and can be derived from compatibility

coefficients and neighborhood weights. Neighborhood weights means that some

neighbors may be more influential than others.

Details of the probabilistic relaxation scheme proposed by DiZenzo et al (1987) are

given below (Richards 1994; DiZenzo et al 1987).

6.3.1 Probability calculation

Let i =1, 2, …, N be the N pixels to be classified;
l = Kωωω ,...,, 21 be the K classes, the classes are assumed to be mutually

exclusive and exhaustive;
)](),...,(),([ 21 kiii PPP ωωω the vector denotes the probabilities of pixel i belongs

to classes kωωω ,...,, 21 ;

where: 1)(0 ≤≤ liP ω

∑
=

=
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l
liP

1

1)(ω

In the initial stage, a set of probabilities can be computed from pixel-specific spectral

classifiers such as Gaussian Maximum Likelihood (GML) classification.

6.3.2 Compatibility coefficients

The classes are assumed to be mutually exclusive and exhaustive. For each pair of

neighboring pixels i and j and each pair of classes lω and kω , there is a compatibility

measure ),( lkijr ωω . These compatibility coefficients indicate the degree to which

classifying pixel i as (to) kω and its neighboring pixel j as (to) lω are compatible. The
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compatibility coefficient ijr ranges from –1, strong imcompatibility, through 0, neutral

compatibility, to +1, strong compatibility (James 1987).

The ijr can be chosen empirically. One possibility is to use estimates of the mutual

information of the pair events lk ji ωω ∈∈ , as ),( lkijr ωω . Empirically, it can be

estimated from the GML classification as:

∑ ∑
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=
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l
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NN

N
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1 1

),(),(
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lg),(

ωωωω
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where:
),( lkijN ωω :  the frequency of occurrence of class kω and lω as neighbors at

pixel i and j;
lg: the base-10 logarithm.

),( lkijr ωω  is defined as –1, in cases where the frequency of occurrence of class kω and

lω  is zero.

In order to obtain reliable estimates of ijr , it is important that the GML classification

is reasonably accurate. If this requirement is not met, the compatibility coefficients

ijr will not reflect the actual characteristics of the image. In that case they can not be

expected to promote true improvements of classification accuracy (DiZenzo et al

1987).

6.3.3 Neighborhood function

A neighborhood is defined surrounding center pixel i. This can be of any size and, in

principle, should be large enough to ensure that all the pixels considered to have any

spatial correlation with pixel i are included. Usually 3 × 3 window is used. For high-

resolution imagery simple neighborhoods (Figure 6-1) are often adopted.
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A neighborhood function is a function of the label probabilities of the neighboring

pixels, compatibility coefficients, and neighborhood weights. It is defined as:

∑ ∑
= =

=
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j

K

l
l

t
jlkijijk

t
i prdq

1 1

)()( )(),()( ωωωω

where:

bN : the number of neighbors considered for pixel i;

ijd : the weight factor of neighbors, indicating that some neigh may

be more influential than others;
K: the total number of classes;

),( lkijr ωω : compatibility coefficient between neighboring pixel i and j;

pj(Tl): the probability of pixel j belongs to class Tl;

t: number of iteration.

6.3.4 Updating rule

A neighborhood function allows the neighborhoods to influence the possible

classification of the center pixel by multiplying the label probabilities by the

neighborhood function. These new values are divided by their sum so that the new set

of label probabilities sums to one.

Neighborhood j

Pixel i

Figure 6-1  Definition of a simple neighborhood of pixel i
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where:

Pi
(t)(Tk): the probability of pixel i belongs to class Tk of the t-th iteration;

qi
(t)(Tk): neighborhood function of pixel i belongs to class Tk of the t-th iteration;

K: the total number of classes.

Such modification is an iterative process. Theoretically, it will stop until no changes

in the label probabilities for all pixels. This can, however, lead up to several hundreds

of iterations, which is very costly. In practice, it is observed that the classification

results will be improved in the first few iterations (Richards et al 1981b).

6.4 Implementation and Results

6.4.1 Implementation procedure

The probabilistic relaxation was performed on the agricultural thematic map. The

implementation of this algorithm was conducted in three steps (Figure 6-2).

First, probability calculation using Gaussian Maximum Likelihood algorithm. The

purpose of calculating the probabilities of each pixel belonging to 36 signatures is to

initiate the probabilistic relaxation process. A computer program for the GML

algorithm was written using C. The means and covariances of the 36 signatures were

used as input for the GML classification of the three bands of the agriculture file.

Second, calculating compatibility coefficients ),( lkijr ωω  of 36 signatures from GML

classified thematic map by using formula (6-1). The compatibility coefficients were

then projected to the range (-1,1).

The third step is the implementation of the probabilistic relaxation process. This

process is iterative. Details of this algorithm are illustrated in Figure 6-3.
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Probability calculation
using GML

Compatibility coefficients
calculation

from GML thematic map

Probabilistic
relaxation

Figure 6-2  Three steps for the implementation of probabilistic relaxation
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Do K=1,M
Check for each class

Do L=1,M
Check for each class

qs[k]+=d[i][j]*rl[k][l]*pl

n+=pk*(1+qs[k])

qk=pk*(1+qs[k])/n

sum+=(qk-pk)2

Do i=0,2
Do j=0,2

Check 8-neighbor

Yes

No

Initialize pk,pl,n

Do the iterations

1.Sweep the image

imcla(r,c)=0

sum=0

Start
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Yes

No

prob=maxp
imcla[r][c]=classk

End

imcla(r,c)=0

Do K=1,M
Check for each class

determine maxp, classk

rv=sqrt(sum)/(row*col)

2.Sweep the image

imcla(r,c)=0

Do K=1,M
Check for each class

pk=qk

Yes

3.Sweep the image

No

to Do the
iterations

Figure 6-3  Probabilistic relaxation algorithm
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6.4.2 Results

Experiment results show that after initial probabilistic relaxation, cloud, shadows, and

highway tended to be overclassified. To overcome this problem, a modification of

compatibility coefficients was conducted. Compatibility coefficients between cloud,

shadows, and highway and each of the 36 signatures were set to zero. This means if

the class of a pixel belongs to any of the classes of cloud, shadows or highway, the

class probabilities of that pixel would not be influenced by the neighboring pixels in

the relaxation process.

The best result was achieved after ten iterations. In cases where a pixel possesses a

high class probability, there is no change in class reassignment after the relaxation.

Otherwise, if a pixel has low class probabilities, its class probabilities are strongly

affected by its neighboring pixels. The class of neighboring pixels may replace the

class of the central pixel. The probabilistic relaxation process is computationally

intensive. For the implementation of the probabilistic relaxation algorithm for a

5000×5000 pixel image each iteration takes about one hour.

A subset of the class map after probabilistic relaxation is given in Figure 6-4. A

comparison of the smoothed thematic map (Figure 6-4) and the original thematic map

(Figure 6-5) suggests that the probabilistic relaxation operation has resulted in a

significant reduction of the "salt-and-pepper" noise appearance in the original

thematic map. Furthermore, the number of mixed pixels has reduced. Consequently,

regions in the image have become more homogeneous, while line elements are

maintained.

It should be noted that the number of pixels of the land-use class "corn" was reduced

to zero. Two factors explain this result. First, there are only very few fields of corn in

the study area. This leads to a negative compatibility coefficient between corn and

other signatures. Second, GML classification results contain many isolated pixels;

these isolated pixels disappeared after the relaxation process.
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Figure 6-4  A subset of the smoothed thematic map generated by use
of the probabilistic relaxation algorithm after 10 iterations

Figure  6-5  A subset of the original thematic map
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Chapter 7 Edge Extraction from IRS-1C PAN Imagery Data

7.1 Edge Extraction and Image Classification

Digital image classification results in a thematic (or class) map in which each pixel is

assigned a class label. A main defect of the resultant thematic map is that the inter-

class boundaries are often blurred, i.e. weakly defined interregion boundaries

(Solaiman et al 1998).

The lack of sharp inter-class boundaries in the classified image is a result of the

inadequate ground resolution of the multispectral imagery data. In an IRS-1C

multispectral image, a pixel footprint is of the order of 23 m for LISS-III. Boundary

pixels often contain a variety of small-scale land-use types, leading to impure spectral

information. This also makes the classification of boundary pixels extremely difficult

and often results in classification errors.

A good strategy to produce sharp inter-class boundaries and reduce classification

errors in boundary regions is to extract edge elements from the IRS-1C PAN image

and then fuse the detected edge map and the thematic map. This idea makes good

sense because the panchromatic imagery data has a much higher spatial resolution of

5.8 m compared to the 23-m ground resolution of the multispectral image. Making

fuller use of the high-resolution feature of the PAN imagery data can help generate

sharp interregion boundaries and reduce mixed pixels appeared in the transitional

areas of land-use types.

The generation of a boundary map is usually conducted in three steps. First, edge

elements are extracted from the PAN image. Second, the extracted thick edges are

then thinned. Third, in cases where broken edges may affect further image

classification operation, edge-linking algorithms are implemented.

An edge image normally shows each object outlined edge points, but these seldom

form the closed, connected boundaries that are required for image segmentation. Thus,
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another step is required before extraction of object is complete. Edge point linking is

the process of associating nearby edge points so as to create a closed, connected

boundary. This process fills the gaps left by noise and shading effects (Castleman

1996).

As the edge detector and edge-thinning algorithm used in this study have produced a

pixel-width contour map with reasonably good connectedness, edge-linking operation

has not been implemented in this study. The following three sections describes the

techniques and procedures used for extracting connected and sharp region boundaries

from the high-resolution panchromatic imagery data.

7.2 Edge Detection Operators

7.2.1 Edge detection

The first step in edge map generation is edge extraction. Edges are a basic image

feature. An edge is considered as the border between two homogeneous image regions

that have different illumination intensities (Pitas 1993). Edge detection is a useful

approach to establishing the boundaries of the objects in an image. Edge detection

results in an edge image.

Edges carry useful information about object boundaries that can be used for image

analysis, object identification and image filtering applications. Detecting edge within

an image may be sufficient in itself to classify the entire image or it may have to be

used in combination with other features as part of a classification rule (James 1987;

Pal and Pal 1993; Deng and Iyengar 1996).

An image in which gray level reflects how strongly each corresponding pixel meets

the requirements of an edge pixel is called an edge image or edge map. This can also

be displayed as a binary edge image showing only the location of the edge points. An

image that encodes the direction of the edge, is a directional edge image.
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Edge detectors are used to find edge segments. Edges are extracted on the basis of

local variations of illumination. If a pixel falls on the boundary of an object in an

image, then its neighborhood will be a zone of gray-level transition. The slope and

direction of that transition are two principle characteristics. These are the magnitude

and direction of the gradient vector respectively.

Edge detection operators examine each pixel neighborhood and quantify the slope,

and often the direction as well, of the gray-level transition. There are several ways to

do this, most of which are based on convolution with a set of directional derivative

masks.

Several edge detectors have been proposed in the literature (Ballard and Brown 1982;

Gonzalez and Wintz 1987; James 1987; Jain 1989; Richards 1994; ERDAS Field

Guide 1997). Usually, edge detectors use first- or second-order derivatives.

7.2.2 Edge detection using first-order derivatives

The image gradient ),( yxf∇ :

T
yx

T ffyfxfyxf ][]//[),( ∆∂∂∂∂=∇ (7.1)

provides useful information about local intensity variations.

Its magnitude ),( yxe :

),(),(),( 22 yxfyxfyxe yx += (7.2)

can be used as an edge detector.

Local edge direction can be described by the direction angle:

)/arctan(),( xy ffyx =φ (7.3)

The direction of the gradient is usually of interest only in contouring applications or in

determining aspect in digital terrain models (Richards 1994).
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Gradient estimates can be obtained by using gradient operators of the form:

XWf T
x 1

ˆ = (7.4)

XWf T
y 2

ˆ = (7.5)

where:
X: the vector containing image pixels in a local image neighborhood;

21, WW : weight vectors that are described by gradient masks.

Such masks are shown in Figure 7-1 for the Prewitt and Sobel edge detectors

respectively. Relations (7.4 - 7.5) are essentially two-dimensional linear convolutions

with the 33×  kernels shown in Figure 7-1.

The Sobel edge detector provides good performance and is relatively insensitive to

noise. Better noise characteristics can be achieved by using large neighborhoods at the

expense of computational effort. However, large neighborhoods tend to produce thick

edges.

-1 0 1 1 1 1

-1 0 1 0 0 0

-1 0 1 -1 -1 -1

-1 0 1 1 2 1

-2 0 2 0 0 0

-1 0 1 -1 -2 -1

(a)

(b)

Figure 7-1  (a) Prewitt edge detector masks;  (b) Sobel edge detector masks
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7.2.3 Edge detection using second-order derivatives

Laplacian operator is defined in terms of the second-order partial derivatives of

),( yxf  with respect to x, y respectively:

2

2

2

2
2 ),(

y

f

x

f
yxf

∂
∂+

∂
∂=∇ (7.6)

The first-order derivatives have local maximum or minimum at image edges due to

large local intensity changes. Therefore, the second-order derivatives have zero-

crossings (e.g. transitions from positive to negative values and vice versa) at edge

locations. Thus, an approach to edge detection is to estimate the Laplacian operator

output and to find zero-crossing positions. An estimator of the Laplacian operator is

given by:

[ ]),1(),1()1,()1,(
4

1
),(),(2 yxfyxfyxfyxfyxfyxf −+++−++−≅∇ (7.7)

Differentiation is a high pass operation. Thus, second-order differentiation tends to

enhance image noise. The Laplacian operator creates false edges, especially in areas

where the image variance is small, because small intensity perturbations (noise) tend

to produce false zero-crossings only.

7.2.4 Texture boundary locator (TBL)

The TBL method was proposed by Bhanu et al (1997). Texture gradients are obtained

by use of a texture boundary locator (TBL) algorithm. The TBL algorithm is described

below.

For most regions in natural scenes, it has been observed that on either side of the

boundary between two adjacent regions there occurs gradual transition from the mean

of the image intensities of one of the regions to that of its neighbor. The TBL
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algorithm calculates the texture gradient of an image, which is the local rate of change

of a texture attribute of the image.

The textural attribute is derived from the mean µ  and standard deviation σ of each

NN ×  window of the image, where N is obtained as a function of the image features

to be detected. The sole requirement imposed on the gradient image is that it should

have a large magnitude wherever major discontinuities occur.

In order to compute a texture gradient image, a )12()12( +×+ KK  window is

centered at each pixel, where K is a function of the size of the region of interest and/or

the range of the scene objects from the sensor. The window geometry for an arbitrary

image plane location P is showed in Figure 7-2.

The pixels at the centers of the four sides and the corners of the )12()12( +×+ KK

window are labeled sequentially beginning at the top left corner as shown in the

figure.

Figure 7-2 Window geometry for the texture boundary locator (TBL) algorithm
(Source: Bhanu et al 1997)
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The texture gradient at a pixel is obtained as:

2/12
4

2
1

30
})(){(max ++≤≤

−+− iiii
i

σσµµ (7.8)

where:

iµ  and iσ  are the mean and the standard deviation of the image’s intensities for

an NN × window.

In the literature, it was reported that the edge images produced by the edge operators

discussed above appear visually similar (Bhanu et al 1997). The Roberts operator,

being two by two, responds best on sharp transitions in low-noise images. The other

operators, being three by three, handle more gradual transitions and noisier images

better. Normally, for the two-mask edge detectors, the larger magnitude is taken as the

output value. This makes them somewhat sensitive to the orientation of the edge. The

Sobel and Prewitt three-by-three edge operators can be generalized to eight

orientations.

7.3 Edge Thresholding

Edge detectors produce a greyscale output image ),( lke . This image carries

information about the edge magnitude. If the edge detector output is large, a local

edge is present. Otherwise, this pixel location corresponds to background. Therefore, a

threshold operation is required after edge detection:




≥= Tlkeif
otherwise

lkE
),(1

0
),( (7.9)

The output of the thresholding is a binary image. Thresholding (7.9) is global because

T is chosen based on global information and (7.9) is applied to the entire image.

The selection of thresholds is crucial to the output of edge detection procedure. This is

because the edge detector output usually has regions possessing different statistical
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properties. If the threshold is chosen too low, spurious region boundaries (thick edges)

will appear alongside true ones in the resultant region boundary image. On the other

hand, a high threshold value will cause pixels to be missing (e.g. thin or broken edges)

from the region boundaries. The most simple threshold selection algorithm is the

histogram method. Other schemes for fixing the threshold generally depend on some

special property of the class of images being processed. Adaptive thresholding often is

taken as a solution to this (Chow and Kaneko 1972; Nakagawa and Rosenfeld 1979;

Yanowitz and Bruckstein 1989). But adaptive thresholding can not eliminate the

problem of threshold selection (Pal and Pal 1993). A good strategy to produce

meaningful segments would be to fuse region segmentation results and edge outputs

(Yokoya and Levine 1989; Al-Hujazi and Sood 1990).

The histogram method was used in this study. In this method, the threshold is not

absolute threshold for image intensities, but is upper percentage threshold for the

cumulative distribution function of the accumulated texture gradient image’s

histogram. The threshold T can be chosen by inspecting the edge detector output

histogram, so that only a small percentage of the pixels ),( lke  above it.

The cumulative distribution function of an image’s histogram is evaluated by deriving

the image’s histogram, normalising the histogram by the total number of pixels of the

image and then integrating the normalised histogram bin counts from the lowest

intensity value of the image. Three thresholds at the upper 15, 25, and 35% are found

to be sufficient to define the true region boundaries. The use of a greater number of

thresholds did not improve the quality of the detected boundaries significantly (Bhanu

et al 1997).

7.4 Thinning of Binary Edge Images

The edge detection and thresholding operation produces a binary image that has 1s at

edge locations. This binary image is called edge map or edge image. An edge image

usually has thick edges and, therefore, must be thinned to produce sharp edges.
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Thinning or skeletonization of binary images is generally considered as the process of

iterative removal of contour pixels that are neither essential for preserving the

connectivity or topology of the image, nor representative of any significant features of

the figure (Govindan and Shivaprasad 1987). Edge-thinning operations enable large

reductions in memory storage and data processing. Edge thinning has found many

applications in areas like fingerprint classification, recognition of hand-written and

printed characters, computer aided design, automated cartography, and facsimile

transmission (Bhattacharya and Lu 1997).

The technique of thinning is used in many pattern recognition systems as a

preprocessing step to represent the abstract nature of an object and investigate its

geometric and topological properties. Various sequential, parallel, hybrid and other

thinning algorithms are proposed in the literature.

Blum (1964) first defined a simple thinning procedure and called it the medial axis

transformation (MAT). He also used the term skeleton as a synonym for medial axis.

Persoon and Fu (1977) proposed a skeletonization method using Fourier descriptors.

Naccache and Shinghal (1984) compared 14 existing algorithms and suggested a new

algorithm. A comprehensive review of existing thinning algorithms can be found in

Lam et al (1992).

A sequential thinning algorithm performs the pixel-removal work pixel by pixel in the

image plane, and the removal decision depends on the result obtained so far in the

current iteration as well as those of the previous iterations. A parallel thinning

algorithm, on the other hand, processes all the pixels of the image simultaneously, and

the removal decision depends only on the result of the previous iterations (Wu and

Tsai 1992).

Ideally, a thinning algorithm should produce a connected skeleton with a structure of

unit thickness. There are however several problems in the thinning process (Shinji

1983). Examples include:

q The phenomenon of shrinking medical lines,

q The subtle changes on the border of a pattern may yield noisy branches or affect

the positions of medial lines.
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q Two distinct branching points may result from thinning crossing lines, and the

neighborhood of a branching point may result in Y-shape distortion.

A good thinning algorithm should have the following characteristics (Wu and Tsai

1992):

(1) It should preserve the connectivity of the object shape;

(2) It should not produce excessive erosion;

(3) It should be noise insensitive; and

(4) It should produce a good representation of the original shape.

The fast parallel algorithm proposed by Chen and Hsu (1988) is a modified version of

the Zhang-Suen algorithm (1984). The Chen-Hsu algorithm preserves the original

merits such as the contour noise immunity and good effect in thinning crossing lines;

and overcomes the original demerits such as the serious shrinking and line

connectivity problems from the standpoint of 8-neighbor connectivity. As a table is

established for the thinning criteria in this method, only one pass is needed by table

mapping to decide whether a pixel is deleted or not. The problem of efficiency is

reduced to the number of iterations instead of the algorithm complexity.

A binary image is defined by a matrix IT where each pixel IT(i, j) is either 1 or 0. The

pattern consists of those pixels that have value 1. A 33×  window is used in the Chen-

Hsu algorithm (Figure 7-3). The new value of pixel P(i, j) at the n-th iteration depends

on its own value as well as those of its eight neighboring pixels at the (n-1)-th

iteration, so that all image elements can be processed simultaneously.

P7

(i-1, j-1)

P0

(i-1, j)

P1

(i-1, j+1)

P6

(i, j-1)

P

(i, j)

P2

(i, j+1)

P5

(i+1, j-1)

P4

(i+1, j)

P3

(i+1, j+1)

Figure 7-3  The 33×  neighborhood of the pixel P(i, j)
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The thinning process is divided into two sub-cycles. Cycle 1 will be executed at odd

iterations while cycle 2 will be executed at even iterations.

The test conditions for cycle 1 are shown in Figure 7-4.

The flow of cycle 1 is described as follows:

q If condition A is satisfied, )(PSEQ  will be checked, otherwise, pixel remains

unchanged;

q If condition B is satisfied, then condition C will be checked. If condition D is

satisfied, then condition E or F will be checked. If both condition B and D fail,

then pixel P remains unchanged;

q If condition C is satisfied, then pixel P will be deleted. Otherwise it remains

unchanged;

q If either condition E or F is satisfied, then pixel P is deleted. Otherwise, it remains

unchanged.

Figure 7-4  The flow of cycle 1 of the Chen-Hsu algorithm
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Where:
)(PS : the sum of the non-zero neighbors of pixel P;

)(PSEQ : the sum of the 0-1 pattern in the ordered set }7,...,1,0{ PPP .
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The test conditions of cycle 2 are shown in Figure 7-5. The execution steps of cycle 2

is exactly the same as that for cycle 1.

7.5 Implementation and Results

7.5.1 Generation of edge map

The generation of edge map was conducted in two steps.

The first step is the implementation of edge detection algorithms. Sobel, Prewitt and

TBL edge detectors were tested. It was found that the TBL edge detector provides

pretty good results and is relatively robust to noise. Therefore, the TBL edge detector

was used for the extraction of edge elements form the IRS-1C PAN image.

The second step is edge thresholding. The edges generated by the TBL algorithm were

thresholded by using histogram thresholding method. Testing results suggest that the

selection of the threshold is very crucial, because low intensity variation may

DB

7)(2 ≤≤ PS

1)( =PSEQ 2)( =PSEQ

0432

16*0

=++

=

PPP

AND

PP

0210

16*4

=++

=

PPP

AND

PP

A

C

06*4*0

06*2*0

=

=

PPP

AND

PPP

OR

FE

Figure 7-5  The flow of cycle 2 of the Chen-Hsu algorithm
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correspond to edges of interest in some part of the image, while high intensity

variation appears in other part.

The programs for the TBL algorithm and the histogram thresholding algorithm were

written using C. These two algorithms were conducted together. The following

combinations of parameters K = 1, 2, 3; N = 3, 5, 7; T = 15, 25, and 35% were tested.

Figures 7-6-1, 7-6-2 and 7-6-3 present a series of edge maps of various K, N, and T

combinations.

As can be seen in Figures 7-6-1, 7-6-2 and 7-6-3, thick edges and not connected edge

segments are two main problems with this edge detector. Thus these edges must be

thinned to produce unit width edges; this is done in the following section.

Figure 7-6-1  Result of TBL algorithm: K = 1, N = 3, T = 10%
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Figure 7-6-2  Result of TBL algorithm: K = 1, N = 3, T = 15%

Figure 7-6-3  Result of TBL algorithm: K = 1, N = 3, T = 20%
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7.5.2 Generation of pixel-width contour map

The fast parallel thinning algorithm proposed by Chen and Hsu (1988) was performed

on the thick edge maps. The operation of this algorithm resulted in a pixel-width

contour map. Figures 7-7-1, 7-7-2 and 7-7-3 present the thinned edge maps that

correspond to the thick edge maps displayed in Figures 7-6-1, 7-6-2 and 7-6-3. As can

be seen in Figure 7-7-1, 7-7-2 and 7-7-3, the Chen-Hsu algorithm performed pretty

well as it preserved the 8-neighbor connectivity and generated many closed contours.

Figure 7-7-1  Result of Chen-Hsu algorithm: K = 1, N = 3, T = 10%
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Figure 7-7-2  Result of Chen-Hsu algorithm: K = 1, N = 3, T = 15%

Figure 7-7-3  Result of Chen-Hsu algorithm: K = 1, N = 3, T = 20%
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Testing results show that the fast parallel thinning algorithm yielded the best result of

contour map with the combination of K = 1, N = 3 and T = 15%.

As seen in Figures 7-7-1, 7-7-2 and 7-7-3, there are a lot of speckle noises. These

noises have been reduced significantly by using Lee-Sigma filter (Figure 7-8). Lee-

Sigma filter uses the average of all pixel values within the moving window that fall

within the designated range of standard deviations.

Figure 7-8  Contour map after using Lee-Sigma filter
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Figure 7-9 shows an example of an asphalt road. An example of a field pathway is

presented in Figure 7-10. Both of these roads could be good detected, though the field

pathway is narrow.

Figure 7-9  Asphalt road
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Figure 7-10  Field pathway
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Chapter 8 Fusion of Thematic Map and Edge Map Using Region-

Growing Algorithm

8.1 The Basic Concept

In real remote sensing applications, the thematic map obtained from conventional

statistical classifiers such as the Gaussian Maximum Likelihood classification is often

very noisy and has weakly defined boundaries between different classes on the image.

To overcome these defects, many approaches have been developed. Information

fusion is one of the often used methods.

For image segmentation, the importance of data integration from different algorithmic

processes has been stressed by several authors (Pavlidis and Liow 1990; Gambotto

1993). Due to noise and other factors, neither region segmentation nor edge detection

provides perfect information. Therefore, a good strategy to produce meaningful

segments is to fuse region segmentation results and edge outputs (Yokoya and Levine

1989; Al-Hujazi and Sood 1990; Pal and Pal 1993).

Haralick and Shapiro (1985) present a method that combines the thematic map with

the edge map. The resulting thematic map has all the contour pixels set to zero, and

the noncontour pixels are identified by their class code, as in the original thematic

map. Other examples of integrating region growing and edge detection include

Pavlidis and Liow (1990) and Gambotto (1993).

A key feature of the image data used in this study is that the IRS-1C panchromatic

imagery data has a spatial resolution of 5.8 m, which is much higher than the 23 m

resolution of the IRS-C multispectral imagery data. As shown in Figure 7-8, the

extraction of edge elements from the IRS-1C PAN image produced very satisfactory

results. Due to the high-resolution feature of the IRS-1C PAN data, the edge

extraction operation has not only detected very fine edges, but has also succeeded in

closing most of the edges. After checking with the rectified panchromatic image it was
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found that the obtained edge map corresponds quite well to the ground truth (Figure 8-

1).

This chapter presents a method for integrating the land-use classification map and the

edge map. The purpose of this information fusion operation is to construct

homogeneous regions over the noisy thematic map. This operation makes good sense

because adding detailed and reliable edge information to the noise land-use

classification map can generate sharp interregion boundaries and reduce mixed pixels

between interregion boundaries.

The fusion of the land-use classification map and the edge map is achieved by using a

region-growing technique. The image data used in this fusion operation include the

thematic map obtained from the Gaussian Maximum Likelihood algorithm, the

Figure 8-1  A subset of an overlay of the contour map with the rectified PAN image
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smoothed thematic map obtained from the probabilistic relaxation algorithm and the

contour map resulted from edge extraction procedure (Figure 8-2).

8.2 Region-growing Algorithms

A region in an image is a group of connected pixels with similar properties. Regions

are important for the interpretation of an image because they may correspond to

objects in a scene. There are two approaches to partitioning an image into regions:

region-based segmentation and boundary estimation using edge detection.

Region growing is an important image segmentation approach. In the region-growing

approach, all pixels that correspond to an object are grouped together and are marked

to indicate that they belong to one region. Pixels are assigned to regions using some

criterion that distinguishes them from the rest of the image. Region-growing

techniques are useful for segmenting complex scenes using complex object

definitions.

Two very important principles in segmentation are homogeneity and proximity (Jain

et al 1995). Two pixels may be assigned to the same region if they have similar

Thematic
map

Probabilistic relaxation
output map

Contour
map

Region Growing

Figure 8-2  Information fusion procedure: the region-growing approach is applied over
the thematic map and constrained by the contour map and the smoothed map

Improved Land-use Classification Map
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intensity characteristics or if they are close to one another. For example, a specific

measure of value similarity between two pixels is the difference between the gray

values, and a specific measure of spatial proximity is Euclidean distance. The variance

of gray values in a region and the compactness of a region can also be used as

measures of value similarity and spatial proximity of pixels within a region,

respectively.

Region growing process is iterated by alternately recomputing the object membership

properties for the enlarged regions and then dissolving weak boundaries. Region-

growing algorithms are computationally more expensive than the simpler techniques,

but region growing is able to utilize several image properties directly and

simultaneously in determining the final boundary location. The region-growing

approach shows the greatest promise in the segmentation of natural scenes, where

strong a prior knowledge is not available.

Many region-growing techniques are proposed in the literature. For example, Haralick

and Shapiro (1992) describe three often used region-growing schemes: single-linkage

region growing, hybrid-linkage region growing, centroid-linkage region growing.

Pitas (1993) described an efficient region-growing algorithm. This approach starts

from some pixels (seeds) representing distinct image regions and grows them, until

they cover the entire image. The pixel seeds are usually chosen by the user in a

supervised mode. At least one seed, Si, i = 1,…, N, per image region Ri is chosen. Two

rules are needed for implementing region growing, i.e., a rule describing a growth

mechanism and a rule checking the homogeneity of the regions after each growth step.

The growth mechanism is simple: at each stage (k) and for each region )(k
iR , i = 1,…,

N, it will be checked if there are unclassified pixels in the 8-neighborhood of each

pixel of the region border. Before assigning such a pixel x to a region )(k
iR , it will be

checked if the region homogeneity:

P( )(k
iR  ∪ {x}) = TRUE

is still valid.
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8.3 Implementation and Results

8.3.1 A modified region-growing algorithm

In this study, a modified region-growing algorithm that was described by Pitas (1993)

was developed. The modified algorithm is conducted in three steps.

First, automatic searching of seed pixels. When the whole image is scanned, a seed

pixel is the first non-contour pixel that follows directly a contour pixel.

Second, performing region growing, resulting in connected homogeneous regions.

Region growing algorithm starts with a seed pixel, and performs region growing in a

4-neighborhood for edge elements and an 8-neighborhood for non-edge elements.

Two conditions are used in checking the homogeneity of the regions: 1) a contour on

the edge map is reached and 2) a class change on the smoothed thematic map

occurred. In other words, the algorithm makes "seed" regions grow until reaching a

closed contour on the edge map or a class change on the smoothed thematic map.

Third, assigning the winning class to all pixels of each connected homogeneous

region. The majority class of the connected region is first calculated. This class is

defined as the winning class, and then is assigned to all pixels in the homogeneous

region.

These three steps are repeated until all pixels in the image have a class label. The

output of this operation is a map of homogeneous region and sharp inter-class

boundaries. An image fusion program was written using C. Details of the region

growing algorithm used in this study is shown in Figure 8-3.

8.3.2 Image fusion

Three knowledge sources were used in this fusion operation: 1) the original thematic

map (Figure 8-4-1), 2) the smoothed thematic map (Figure 8-4-2), and 3) the contour

map (Figure 8-4-3).



116

The improved thematic map is shown in Figure 8-4-4. As can be seen from the

resulting image, important contours that have not been detected during the edge-

detecting process are obtained from the relaxation thematic map in a coarse manner.

The fusion of the thematic map and the contour map provides a series of closed

contours more or less corresponding to individual fields and containing a unique class.

The benefit of this postprocessing approach is evident when it separates into two

distinct fields what previously could be interpreted as a single greater field.

Sweep the edge map

(i,j)
A contour pixel

No

Yes

(i,j+1)
A noncontour pixel

No

Yes

Initialize the border map with the seed pixel

Subroutine region growing

Continue

Start

End

Figure 8-3-1 Fusion algorithm for the thematic map, contour map, and relaxed map
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Generate a new border pixel
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Figure 8-3-2 Subroutine region growing
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Figure 8-4-1  A subset of the original thematic map

Figure 8-4-2  A subset of the smoothed map
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Figure 8-4-3  A subset of the contour map

Figure 8-4-4  Improved thematic map by fusion of the thematic map, contour map
and smoothed map
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Chapter 9 Summary

In this study, we presented a new approach for the extraction and representation of

land-use information based on high-resolution IRS-1C imagery data. A key feature of

the proposed method is the combined use of spectral and contextual classification

techniques.

The integration scheme involves a hybrid spectral classification algorithm combining

Gaussian Maximum Likelihood classification and ISODATA clustering, probabilistic

relaxation, extraction of pixel-width edge elements to obtain robust region boundaries,

and postprocessing information fusion by use of region-growing techniques. These

techniques are integrated in a way such that they work in a cooperative and

complimentary manner.

Achieving more detailed and reliable land-use information by making fuller use of the

enhanced spatial information content of the 5.8-m ground resolution IRS-1C PAN

imagery is a major focus of this study. To achieve this objective, this study has

incorporated a great deal of recent methodological development in such fields as

computer vision, pattern recognition, image understanding, GIS, as well as satellite

image processing.

The main techniques used and the results obtained in this study are summarized as

follows.

1) In the preprocessing stage, GPS techniques were used to rectify IRS-1C PAN

image. The total RMS error is 1.14 pixels, which corresponds to about 6.6m on

the ground. This result suggests that the use of DGPS has significantly improved

the accuracy of image rectification. The rectified PAN image was then used as a

reference image for the rectification of multispectral IRS-1C images, which was

done by use of the "image-to-image" registration method.

2) IHS and PCS methods were employed for merging the IRS-1C PAN and

multispectral images. The resultant merge images show that the IHS method

produced better color environment and more spatial details.
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3) A GIS layer – ATKIS data – was used to separate urban and rural areas. This

knowledge-based image segmentation resulted in two coarse homogeneous

regions, which provide two separate data sets for the subsequent land-use

classification operations. The separation of urban and agricultural areas proved to

be useful for fixing the confusing pixel problem, that is, reducing potential

misclassifications of urban and agricultural land-use types.

4) For the classification of land-use types in the study area, a three-level, hierarchical

land-use classification system was designed. For the rural areas, a total number of

400 training samples were selected. A signature file containing 36 signatures was

constructed.

5) Parallelepiped, Minimum Distance, Mahalanobis Distance, and Maximum

Likelihood/Bayesian algorithms and ISODATA methods were performed on the

three bands of LISS-III imagery data of the agriculture file. It was found that for

the agricultural file, the hybrid method combining ISODATA clustering and the

Maximum Likelihood/Bayesian algorithm produced the best results. Fourteen

classes were extracted for the rural areas. The ISODATA clustering method was

found to be suitable for the classification of urban land-use types. Five classes

were extracted for the urban areas.

6) A probabilistic relaxation algorithm is performed on the thematic map obtained

from Gassuian Maximum Likelihood classification operation. This algorithm

reclassifies image pixels according to their spatial relationship to neighboring

pixels. Results show that the probabilistic relaxation operation has resulted in a

significant reduction of the "salt-and-pepper" noise appearance in the original

thematic map. Furthermore, the number of mixed pixels has reduced.

Consequently, regions in the image have become more homogeneous while line

elements are maintained.

7) Image segmentation techniques that involve edge detection, edge thresholding and

edge thinning were applied to the 5.8-m ground resolution IRS-1C PAN imagery

to extract edge elements. Various edge operators including TBL, Sobel, Prewitt

edge detectors were tested. Results show that the TBL edge detector provides
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good results and is relatively robust to noise. The TBL detector and the Chen-Hsu

thinning algorithm have not only produced very fine edges, but have also

succeeded in closing most of the edges. After checking with the rectified

panchromatic image it was found that the obtained edge map corresponds pretty

well to the ground truth.

8) The strategy of extracting edge elements from high-resolution PAN image has

proved extremely useful. It was found that the resulting edges lend robustness to

the classification system against the mixture-pixel problem by capturing detailed

spatial information that is not available from multispectral bands.

9) A modified region-growing algorithm was used for postprocessing information

fusion. The purpose of this fusion operation was to construct homogeneous

regions over the noisy thematic map. Three knowledge sources were used in this

operation: (1) the original thematic map obtained from Gaussian Maximum

Likelihood algorithm, (2) the smoothed thematic map generated from the

probabilistic contextual relaxation algorithm, and (3) the contour map obtained

from TBL edge detector and Chen-Hsu edge thinning algorithm.

10) The postprocessing image fusion strategy has proved to be particularly effective

for generating sharp interclass boundaries and reducing mixed pixels between

interregional boundaries. Important contours that had not been detected in the

edge-detecting process were compensated from the smoothed thematic map in a

coarse manner. The fusion of the thematic map and the contour map provides a

series of closed contours quite closely corresponding to individual fields and

containing a unique class. The benefit of this fusion method is particularly evident

when it separates into two distinct fields what previously could be interpreted as a

single greater field.

For the operation of the proposed method, a software package is developed using

programming language C. This software package comprises the GML algorithm, a

probabilistic relaxation algorithm, TBL edge detector, an edge thresholding algorithm,

a fast parallel thinning algorithm, and a region-growing information fusion algorithm.
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