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Abstract
Markov state modeling has been proven to be a powerful tool for understanding the long-term

dynamics of molecular systems in thermal equilibrium. However, many striking properties

of soft matter systems are inherently out of thermal equilibrium. Here we present a novel

prescription extending the concept of Markov state modeling to systems that are driven

into a nonequilibrium steady state. In more detail, we derive a systematic and dynamically

consistent coarse graining approach for nonequilibrium Markov state models which dynamics

break detailed balance. The coarse graining involves the identification and clustering of

probability cycles, as well as renormalization of microscopic transition rates preserving the

entropy production of the original Markov model. We apply our coarse graining procedure

to a polymer under shear flow. Moreover, we show how to apply nonequilibrium Markov

state modeling to periodically driven systems, which, in addition, allows us to predict the

system’s dynamics for different oscillation periods and protocols. Furthermore, we show how

to construct nonequilibrium Markov state models for systems driven out of equilibrium due

to general time-dependent driving protocols. We demonstrate the latter by an illustrative

example: The Calix[4]arene-catenane dimer, a large organic complex, manipulated by a time-

dependent force. Finally, we investigate the unfolding dynamics of two peptides biased by

constant mechanical forces.
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Zusammenfassung
Die Methodik der Markow-Zustandsmodellierung (engl. Markov state modeling) hat sich in

den letzten Jahren als überaus hilfreiche Analysemethode zur Berechnung und Beschreibung

der Langzeit-Dynamik von molekularen Systemen im thermischen Gleichgewicht bewährt.

Viele verblüffende Phänomene der weichen Materie treten jedoch nur im Nichtgleichgewicht

auf und bedürfen daher einer anderen Beschreibung. In dieser Arbeit werden Markow-Modelle

zur Beschreibung eines stationären Nichtgleichgewichtszustandes aufgestellt, die die mikro-

skopische Eigenschaft des detaillierten Gleichgewichts nicht erhalten. Weiterhin wird eine

neue Methode zur systematischen Vergröberung dieser Nichtgleichgewichts-Markow-Modelle

eingeführt. Diese neue Vergröberungsmethode beinhaltet die Identifizierung und Gruppie-

rung von Wahrscheinlichkeitszyklen, die als Konsequenz des Nichtgleichgewichtszustandes

im ursprünglichen Markow-Modell auftreten, sowie die mathematische Umgewichtung der

mikroskopischen Übergangsraten. Der dafür hergeleitete Umgewichtungsalgorithmus erhält

dabei die Entropieproduktion des zugrunde liegenden Markow-Modells. Diese Vergröberungs-

strategie wird anhand eines Beispiels, ein Polymer im Scherfluss, verdeutlicht. Anschließend

wird gezeigt, wie Nichtgleichgewichts-Markow-Modelle für Systeme konstruiert werden kön-

nen, die sich in einem stationären Nichtgleichgewichtszustand aufgrund eines oszillierenden

äußeren Feldes befinden. Die dafür eingeführte Methode erlaubt zusätzlich eine Vorhersage

der Dynamik des jeweiligen Systems für verschiedene Oszillationsperioden und -protokolle.

Zusätzlich wird diese Methodik dahin gehend erweitert, dass auch Systeme, die durch explizit

zeitabhängige Kräfte ins Nichtgleichgewicht getrieben werden, modelliert werden können.

Zur Veranschaulichung wird das Calix[4]arene-Catenane Dimer, ein größerer organischer

Komplex, betrachtet, welcher mithilfe einer zeitabhängigen Kraft auseinander gezogen wird.

Zum Schluss wird die Entfaltungsdynamik zweier Peptide, die durch eine konstante externe

Kraft entfaltet werden, untersucht.
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Introduction

Since the dawn of computational physics in the late 1940s, computers have greatly extended

the range of solvable problems. In particular, many-body systems – lying at the heart of

statistical physics – can be efficiently treated through numerical integration. Although the

development of computational physics was originally driven by military application, its first

milestone, the Monte Carlo simulation technique soon triggered its application to general

fields in physics and chemistry. Of particular importance is the Metropolis-Hastings algo-

rithm [88], which is up to now the most prominent and influential Monte Carlo simulation

technique. Besides its convenient implementation, its effectiveness stems from the fact that

it randomly samples from the (known) Boltzmann distribution which connects ensemble

probabilities with the Hamiltonian of the system. The advantage of randomly sampling the

ensemble probability distribution is also the drawback of Monte Carlo simulations because,

strictly speaking, one cannot infer dynamical information from a sequence of randomly

sampled configurations?.

With the help of Monte Carlo simulations, classical and later quantum statistical mechanics

became an intriguing research field, allowing the comparison of analytically solvable systems

or analytical approximations with numerical solutions. One highlight, illustrating the impact

of Monte Carlo simulations, is the understanding and prediction of phase diagrams [18, 80].

In the late 1950s, the first molecular dynamics (MD) simulations were conducted [109, 3], in

which Newton’s equations of motion are integrated for N particle systems. Although from a

theoretical perspective the computation seems straightforward, many different numerical ap-

proximation schemes have been proposed (and sometimes reinvented), of which the Velocity

Verlet algorithm [130] is the most popular example. In addition to approximating Newton’s

equations of motion, one has to introduce additional constraints to accurately account for

thermodynamic state variables such as temperature or pressure [50].

Even if computationally more demanding and more complex to implement, MD simulations

offer full insight into the dynamics of a system which allows, for example, the computation of

microscopic rates.

?Although for certain sampling restrictions (local Monte Carlo moves), a physical dynamics can be approxi-
mated.
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Introduction

With both tools at hand and the so far steadily increasing computer power, the field of com-

putational statistical physics grew very quickly and started to inspire related research fields.

Nowadays, the interdisciplinary field of soft matter research embraces examples from physical,

chemical, material and biological sciences with its focus on a variety of systems such as liquids,

gels, foams, polymers, colloidal systems, granular materials and biomolecular systems. In

particular, the investigation of biomolecular systems, e.g., proteins, membranes and DNA, is

an increasingly active field of research, where much remains to be discovered.

During the last two decades, however, MD simulations became the method of choice for nu-

merically investigating soft matter systems. Amongst others, this trend has been stimulated by

the availability of highly optimized, easy to handle and freely accessible molecular dynamics

software packages such as Gromacs [1] or LAMMPS [105] as well as the need to obtain dynam-

ical quantities, e.g., reaction rates, diffusion coefficients, etc.. In particular, understanding the

function of molecular systems, e.g., the role of a specific protein, or designing them to fulfill a

specific task, makes the computation of their dynamics inevitable.

From a computational point of view, the difficulty of simulating soft matter systems arises

as they are composed of unique structures ranging from a few thousands up to millions of

atoms (particles) and even more electrons if a quantum mechanical treatment is necessary.

Moreover, dynamically important time scales, e.g., the folding time of proteins [96, 77], range

from nanoseconds up to seconds, while the time step of an all-atom classical MD simulation

is bound to 2 fs, due to the very fast molecular vibrations of hydrogen.

An overview of different time and length scales, which are numerically accessible for typical

soft matter systems, are illustrated in Figure 1. When electronic degrees of freedom are of

interest sub nanometer length scales and femtosecond time scales are of importance. In all

atomistic simulations electronic degrees of freedom, however, are neglected, allowing system

sizes in the nanometer regime and typically nanonsecond to microsecond time scales. In

colloidal systems a colloid is represented by a single particle with diameter ranging from tens

of nanometers to a few micrometers, and effective interactions. Colloidal systems in computer

simulations typically cover micrometers up to a few millimeters and time scales up to seconds.

Finally, the simulation of macroscopic time and length scales is accomplished by employing a

continuum mechanical description.

Unfortunately, many intriguing physical properties of soft matter systems arise from collective

interactions covering many orders of magnitude in both length and time scales. A prominent

example is the folding of a protein, which can take seconds, even though the protein is

only a few nanometers in size. To overcome this problem, structure-based coarse graining

techniques [92, 133, 143] focus on reducing the number of degrees of freedom to a fewer

number of relevant ones by grouping small molecules (usually solvent molecules) or chemical

groups or residues into effective particles. With less degrees of freedom, either the duration of

the simulation or the effective system size can be increased. However, an intrinsic problem of

structure-based coarse graining is, besides identifying the relevant degrees of freedom, that

2



the internal dynamics of the coarse-grained system is nonuniformly accelerated compared to

the original dynamics. Loosely phrased, this acceleration stems from the fact that the effective

(coarse-grained) potential energy landscape is much smoother than the original landscape,

which reduces the amount of time the system spends in the vicinity of local energy minima.

Figure 1 – Overview of time and length scales encountered for different modeling resolu-
tions. The depicted systems illustrate the different levels of modeling resolutions in computer
simulations. From bottom to top: The electron density of benzene (quantum mechanical
modeling), an atomistic structure of a protein domain (classical all-atom molecular dynamics),
colloidal particles forming a crystal nucleus (Brownian dynamics), and a electrophysiological
heart model (continuum-mechanical modeling). The gray arrows represent two different
strategies how to systematically coarse grain the occurring length and time scales. While the
structure-based coarse graining approach is mainly developed to bridge length scales, Markov
state modeling is employed to predict slow time scales.

Up to today, it is an open question how to systematically minimize this effect or how to

generally relate dynamically quantities, e.g., diffusion coefficients, obtained from coarse-

grained simulations to their correct values. One should note that a rigorous approach to

dynamically consistent coarse graining exists for some time known as projection operator

technique [53, 153]. Here, the information of the reduced variables enter in form of a memory

kernel, which has to be obtained by solving a nontrivial integro-differential equation.

Quite a different route is pursued in Markov state modeling [107, 97, 21], a dynamically

consistent coarse graining approach developed to bridge the long time scales involved in

many biomolecular systems, e.g., the folding of proteins from an initially disordered coil to

the native state. Markov state models (MSMs) are constructed for a discretized phase space

3



Introduction

representation which discrete volumes (micro states) are further coarse grained (clustered)

into a few mesoscopic states that are kinetically distinct, i.e., they correspond to basins (phase

space regions) that are separated by free energy barriers with a time scale separation between

fast intra-basin transitions and slow inter-basin transitions. In the case of a complete time scale

separation this can be exploited to endow the mesoscopic states with a Markovian dynamics

for the slow transitions while assuming quasiequilibrium for the fast transitions. Notable

examples illustrating the predictive power of Markov state modeling involve the folding of

small proteins [97, 141, 20, 84] or the accurate estimation of ligand-binding kinetics [104].

From a computational perspective, the key advantage of Markov state modeling is that MSMs

can be constructed from many short trajectories, inferring transition rates of processes that

are much longer than individual trajectories. Thus Markov state modeling is a coarse graining

technique mainly designed to estimate the slow modes of the system as opposed to structure-

based coarse graining which is typically employed to explore larger system sizes.

Figure 2 – Overview of different types of nonequilibrium processes. In nonequilibrium
steady states a system is driven out of equilibrium through a time-independent driving mech-
anism, while for time-dependent driving the mechanism explicitly depends on time. Lastly, in
nonequilibrium relaxation processes a system has been prepared in a nonequilibrium state
and tries to relax back toward thermal equilibrium. Each of these types of nonequilibrium pro-
cesses is represented by an exemplary system. (a) F-ATPase enzyme synthesizing ATP driven by
a time-independent proton current. (b) Cold shock protein pulled by a time-dependent proto-
colλ(t ). (c) Nonaffine rearrangements after shear deformation of a melt (left) and a glassy state
(right). While the melt relaxes quickly back toward thermal equilibrium, the particle motion
for the glassy state slows down enormously and becomes strongly cooperative, illustrated by
large localized rearrangements (left) and small spatially correlated rearrangements (right),
respectively.?.

?The subfigure has been taken from http://www.polyphys.mat.ethz.ch/research/topics/glass-transition.html.
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So far, the vast majority of computer simulations of soft matter systems are performed at

thermal equilibrium. In reality, however, many systems, especially biomolecular systems

in their native environment, do not function at thermal equilibrium but are driven out of

equilibrium. Generally, out of equilibrium or nonequilibrium processes are classified by three

categories, an example of each is illustrated in Figure 2.

The first category includes systems which are driven into a nonequilibrium steady state (NESS),

that is, their governing dynamics do not depend on time. The driving mechanisms responsible

for maintaining a NESS consume some form of energy, e.g., mechanical or chemical energy,

which has to be constantly supplied from outside the system. Possible driving mechanisms

are, for instance, nonconservative forces, hydrodynamic flows, temperature differences or

chemical reactions [26, 125]. Figure 2(a) illustrates an intriguing example taken from biol-

ogy; the F-ATPase enzyme synthesizing ATP (adenosine triphosphate) from ADP (adenosine

diphosphate) and inorganic phosphate. The reaction is catalyzed through a constant proton

flux which causes the F1 subunit (light pink and cyan colored parts) to rotate.

The second category comprises systems brought out of thermal equilibrium by time-dependent

protocols, which can be given, for instance, by explicitly time-dependent mechanical forces.

The example presented in Figure 2(b) shows a protein that is pulled by an external time-

dependent mechanical force, which is typically realized in single-molecule force spectroscopy [113,

93].

Finally, the last category represents nonequilibrium relaxation processes, i.e., the system

has been prepared in a nonequilibrium state and tries to relax back toward equilibrium. In

particular, nonequilibrium relaxation processes play an important role in understanding the

structural relaxation in glasses, which is also referred to as aging process [35, 16]. In Figure 2(c),

the structural relaxation of a shear deformed melt (left panel) and a glass (right panel) are

visualized illustrating different relaxation behaviors.

Although a general theory covering all these different nonequilibrium phenomena is currently

out of reach, recently the field of stochastic thermodynamics has emerged providing a com-

prehensive theoretical framework in particular for driven systems (first and second category)

that are still in contact with a heat reservoir that itself remains in equilibrium [124, 125]. The

aim of this thesis is to exploit this framework to extend Markov state modeling to systems

driven out of thermal equilibrium.

This thesis is structured as follows: The first chapter gives a comprehensive theoretical and

practical introduction to equilibrium Markov state modeling as well as a brief summary of the

– for this thesis important – results of stochastic thermodynamics for discrete systems. In the

second chapter, we develop a general numerical routine how to construct Markov state models

for nonequilibrium steady states, which we illustrate by an intuitive example: a particle in a

two-dimensional double well potential, driven by a nonconservative force. In the third chapter

this newly developed routine is applied to a more complex system: a tethered polymer in shear

flow. Chapter four extends the developed routine to systems driven into a nonequilibrium
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Introduction

steady state by time-dependent but periodic protocols, for which we give two examples. In

chapter five, we construct Markov state models for general time-dependent driving protocols,

allowing us to mimic force-probe experiments with experimentally accessible pulling veloc-

ities. Lastly, chapter six demonstrates how Markov state models can reveal the influence of

constant external mechanical forces on the unfolding pathways of small peptides.
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1 Background

We start this chapter by briefly introducing the mathematical concepts of Markov state model-

ing. For a more thorough discussion we refer the reader to refs. [107, 21]. In the second part,

we then discuss how to practically construct equilibrium Markov state models and illustrate

all taken steps by an intuitive example: an one-dimensional particle in a double-well potential.

In the last part, we introduce an experimentally probed Markov model for a system driven into

a nonequilibrium steady state and draw the connection to stochastic thermodynamics.

1.1 Mathematical background

Consider the phase space Ω containing all dynamical variables required to describe the

instantaneous state of the system. The phase spaceΩ can be either continuous, e.g.,Ω =̂ Rd

or discrete, e.g., Ω ⊂ N. Every point in Ω at time t is described by a d−dimensional vector

r(p,q, t) ∈ Rd with q denoting positions and p momenta of all particles that constitute the

system. To distinguish a dynamical process inΩ, given by a sequence of states or trajectory,

from an instantaneous state, we refer to trajectories as x(r(t)) ≡ x(t). A trajectory x(t) is a

particular realization of a stochastic process for which we assume that its underlying equations

of motion are modeled by one of the following dynamics.

1.1.1 Thermostated Hamiltonian dynamics

The thermostated Hamiltonian dynamics is based on Newton’s (or rather Hamilton’s) equa-

tions of motion. As the general goal of most MD simulations is to describe an open but

conservative molecular systems embedded in a heat bath with fixed temperature?, one has

to introduce additional dependencies referred to as thermostats. The effective equations of

?Additionally, one can impose a constant pressure by employing barostats, e.g., the Berendsen [15] or Parrinello-
Rahman [102] barostat.
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Chapter 1. Background

motion follows as

∂qk

∂t
= 1

mk
pk and

∂pk

∂t
=−∇kU (q)−γ(q,p) pk +Fext

k , (1.1)

where qk is the position of the kth particle, pk its momentum and mk its mass. Molecular

interactions are governed by the gradient of the potential energy, which solely depends on the

particle positions q. Coupling the system with to a heat bath is typically realized by employing

additional functions, here represented by γ(q,p) pk , which mimic the effect of a thermostat

on the system. These thermostating functions are normally chosen such that the solution

of eq. (1.1) conserves either kinetic or total energy. Commonly employed thermostats for

molecular dynamics simulations are, amongst others, the Nosé-Hoover thermostat [98, 61],

the Andersen thermostat [9] or velocity-rescaling [25]. The term Fext
k represents, for example,

external fields or nonconservative forces (forces that cannot be represented by the gradient of

the potential energy).

1.1.2 Langevin dynamics

As a second type of dynamics, we consider Langevin dynamics, originally developed by Paul

Langevin for the stochastic treatment of open molecular systems.

The Langevin equations

∂qk

∂t
= 1

mk
pk and

∂pk

∂t
=−∇kU (q)−γfric pk +ηk (t ) (1.2)

can be derived from eq. (1.1) for a constant friction coefficient, i.e., γ(q,p) ≡ γfric and random

force Fext
k (t ) ≡ηk (t ) with zero mean 〈ηk (t )〉 = 0 and correlations 〈ηαk (t )ηβl (t ′)〉 =√

2kB Tγfric δ(t−
t ′) δkl δ

αβ. The upper indices indicate spatial components. Here kB denotes Boltzmann’s con-

stant and T the temperature of the surrounding heat bath. Often, one solves the Langevin equa-

tions only for the molecular system of interest and treats interactions with solvent molecules

implicitly by the random force.

Furthermore, as in the case of thermostated Hamiltonian dynamics, additional nonconserva-

tive forces or external fields can be added to eq. (1.2).

In the limit of vanishing inertia (ṗk ≈ 0), eq. (1.2) takes a simpler form known as overdamped

Langevin equation given by

∂qk

∂t
=−∇kU (q)/γfric + fk (q)+ηk (t ). (1.3)

The correlation of the random force 〈ηαk (t) ηβl (t ′)〉 =p
2D δ(t − t ′) δkl δ

αβ can be expressed

more conveniently by making use of the Einstein relation (D = kB T /γfric), which connects the

diffusion coefficient D with thermal energy and the friction coefficient. Moreover, in eq. (1.3)

we explicitly include an additional function f(q) accounting for nonconservative forces or
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1.1. Mathematical background

hydrodynamic flow fields.

1.1.3 Detailed requirements

Whatever type of dynamics is chosen to model molecular systems, their associated trajectories

x(t ) are required to satisfy to following properties:

1. x(t ) is a Markov process. The time evolution of x(t ′), i.e., dx(t )
dt

∣∣
t=t ′ (time continuous) or

(x(t ′+τ)−x(t ′))/τ (discrete), is solely determined by the position r(t ′) in phase space at

time t ′ and does not depend on the position at previous times. Thus we can describe

the time evolution between states by transition probability densities

p(r(t ),r′(t +τ)) =P[x(t +τ) ∈ r′+dr′ | x(t ) = r] ∀r,r′ ∈Ω,τ ∈R0+ (1.4)

expressing the conditional probability that the system evolves from state r at time t to

an infinitesimal region dr′ around r′ at time t +τ.

2. x(t ) is time homogeneous, i.e., the transition probability densities do not depend on the

absolute time but only on the time interval τ, i.e.,

p(r(t ),r′(t +τ)) = p(r(t ′),r′(t ′+τ)) ≡ p(r,r′;τ) ∀t , t ′ ∈R0+. (1.5)

Obtaining transition probabilities between two finite regions G0 and G1 inΩ is achieved

by integrating the transition probability densities over both regions

p(G0,G1;τ) =
∫

G0

dr
∫

G1

dr′ p(r,r′;τ). (1.6)

3. x(t) is ergodic, i.e., the phase space Ω cannot be separated in dynamically disjunct

subspaces. The probability to reach any point r′ in Ω from any initial point r within

finite time is nonzero, i.e.,

p(r,r′;τ) > 0 ∀r,r′ ∈Ω,τ ∈R+. (1.7)

4. For t → ∞, every state r is infinitely often visited with µ(r) denoting its unique sta-

tionary density (invariant measure) requiring that
∫
Ωdr µ(r) = 1. Defining a function

f :Ω→Rd , its running average is equivalent to its average on Ω weighted with µ(r), that

is,

lim
T→∞

1

T

∫ T

0
dt f (x(t )) =

∫
Ω

dr f (r)µ(r). (1.8)
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1.1.4 Propagator approach

Instead of describing a single trajectory x(t) in Ω, we now give an ensemble description.

Assume multiple copies of a system are prepared in a given initial state in Ω and do not

interact with each other. At time t , each trajectory is a realization of the same dynamics,

while they collectively give an ensemble of visited states for every point in time. Knowing the

ensemble allows the definition of a weighted time-dependent probability density function

ρ : r(t ) ∈Ω→ ρ(r, t ) ∈R0+ with 1 =
∫
Ω

dr ρ(r, t ). (1.9)

To evolve ρ(r, t ) in time we define the propagator T (τ) as follows:

ρ(r, t +τ) =T (τ) ◦ ρ(r, t ) =
∫
Ω

dr′ p(r′,r, t )ρ(r′, t ) (1.10)

with p(r,r′, t ) being the transition probability densities. For the purpose of readability eq. (1.10)

is abbreviated as

ρ(t +τ) =T (τ)ρ(t ). (1.11)

When applying the propagator for infinitely long τ (lag time) the probability density converges

to the stationary density µ(r), i.e.,

lim
τ→∞T (τ)ρ(t ) =µ. (1.12)

It is important to note that T (τ) fulfills the Chapman-Kolmogorov equation

ρ(t +kτ) =T (kτ)ρ(t ) = [
T (τ)

]k
ρ(t ), k ∈N, (1.13)

stating that it is equivalent to evolve the system in time once with lag time kτ or to evolve it

ktimes successively with lag time τ.

Before discussing a second approach, it is, however, instructive to first draw the connection to

equilibrium statistical mechanics.

1.1.5 Equilibrium statistical mechanics

A Markov process x(t ) associated with a dynamics in thermal equilibrium is reversible, i.e., the

transition probability densities [eq. (1.7)] fulfill the detailed balance condition

µ(r)p(r,r′;τ) =µ(r′)p(r′,r;τ), (1.14)

which expresses that the fraction of the system transported from r to r′ in time τ is the same as

the fraction transported from r′ to r. In other words, there is no net probability flux between

both states, or on average the systems traverses from r to r′ the same number of times as from

10



1.1. Mathematical background

r′ to r. Detailed balance hence implies that it is not possible to transport any physical quantity,

e.g., charge, particles, etc.. This critical restriction, however, allows to connect the stationary

density µ(r) with the Hamiltonian of the system (Boltzmann distribution), given by

µ(r) = e−βH(q,p)

Z
with Z =

∫
Ω

dq dp e−βH(q,p). (1.15)

The factor β= 1/kB T ensures energy normalization, while the partition function Z ensures

the normalization of probability.

1.1.6 Fokker-Planck and infinitesimal generator

As discussed in sections 1.1.2, one possibility of describing the dynamics of the system is by

applying the stochastic Langevin formalism. For simplicity we consider here the overdamped

Langevin equation [see eq. (1.3)], although the treatment of the full Langevin dynamics or

thermostated Hamiltonian dynamics can be formulated analogously.

Instead of solving the dynamics for every particle individually, we can formulate the associated

Fokker-Planck equation which describes the time evolution of the phase space density ρ(t ),

that is,

∂ρ(t )

∂t
=W ρ(t ) with W ≡

[
D ∆+

(
−∇U (q)/γfric + f

)
·∇

]†

, (1.16)

where W is referred to as Fokker-Planck generator. Here ∇ and ∆ act on all particle positions

q. Similarly, the vector f(q,p) represents external forces acting on all particles.

The formal solution of the Fokker-Planck equation is easily obtained if the operator W does

not explicitly depend on time, then,

ρ(t ) = eW tρ0, (1.17)

where ρ0 = ρ(t = 0) expresses the initial density. For t →∞, this density converges to the

stationary distribution µ(r). Moreover, if the external force f is conservative, i.e., can be

expressed by the negative gradient of a scalar potential energy function, the stationary solution

of eq. (1.17) is the Boltzmann distribution [cf. eq. (1.15)].

Alternatively to the Fokker-Planck generator, one can define the infinitesimal generator by

taking the continuous limit of the discrete propagator T , i.e.,

W ≡ lim
τ→0

1

τ

(
T (τ)−1

)
, (1.18)

where 1 denotes the identity operator. Both, the Fokker-Planck and infinitesimal generator,

are considered to be equivalent, i.e., both determine the time evolution of the phase space

density ρ(t ), cf. eq. (1.17), and therefore the stationary density µ.
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Comparing the action of the propagator T (τ) [see eq. (1.11)] with eq. (1.17), we identify

T (τ) = eW τ (1.19)

showing that the propagator T (τ) is the time-discrete counterpart of the time-continuous

Fokker-Planck (infinitesimal) generator W . Because of their relation both operators share or

exhibit closely related properties, which we examine in the next section.

Finally, we want to emphasize again that for systems in thermal equilibrium the following

statement is equivalent:

detailed balance holds ←→ the stationary density µ is the Boltzmann distribution

1.1.7 Properties of T and W

Due to the relation in eq. (1.19), both operators share the same set of eigenfunctions φi and

thus

T (τ)φi (r) =Λiφi (r) and W φi (r) =λiφi (r) (1.20)

with their eigenvalues λi andΛi being related throughΛi (τ) = eλiτ. This relation stems from

the fact that both operators share the same positive semi-group [cf. Chapmann-Kolmogorov

eq. (1.13)], i.e.,

T (τ1)T (τ2) =T (τ1 +τ2). (1.21)

For both operators, eigenvalues and eigenvectors can be complex-valued with their real part

bounded by

Re(Λi ) ∈ (0,1] and Re(λi ) ∈ (−∞,0] Λi ,λi ∈C. (1.22)

From a mathematical point of view the real part of the eigenvalue spectrum of the time-

discrete propagator T (τ) is bounded by Re(Λi ) ∈ [−1,1] [see ref. [123]]. From a physical

perspective, however, Re(Λi ) cannot be negative as otherwise the continuous generator W

is not guaranteed to exist [89]. In any case, the absolute operator spectra can be sorted

in descending order, i.e., |λ0| > |λ1| ≥ |λ2| ≥ ... ≥ |λn |, where complex-valued eigenvalues

always occur in complex conjugated pairs. The eigenfunction φ0(r) associated with the largest

eigenvalue (also known as Perron root), that is, λ0 = 1 andΛ0 = 0, respectively, is real-valued

and corresponds to the stationary distribution µ(r).

Mathematically, we consider both operators to act on the Hilbert space of square integrable

functions

L2 =
{

f : Ω→C : || f ||22 =
∫
Ω

dr | f (r)|2 <∞
}

(1.23)
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1.1. Mathematical background

equipped with the standard scalar product

〈 f | g 〉 =
∫
Ω

dr f ∗(r)g (r), (1.24)

where ∗ denotes complex conjugation. At this stage, it is helpful to define a set of functions

ψi (r) that are related to the eigenfunctions φi (r) via

ψi (r) ≡φi (r) ·µ(r)−1. (1.25)

In fact, theψi (r)’s are eigenfunctions of the forward transfer operator [123], which definition is

analogous to T (eq. (1.11)) but w.r.t. the stationary measure µ(r) – it acts on the µ(r)-weighted

probability space. Employing the definition of φi (r), we agree on the following normalizations:

〈φi |ψi 〉 = 1 and
∫
Ω

dr φ0(r) = 1. (1.26)

Operator spectrum for reversible Markov processes

If the Markov process x(t ) is reversible, i.e., the detailed balance condition eq. (1.14) is fulfilled,

the operators T and W are self-adjoint and hence all their eigenfunctions are orthogonal

〈φi | ψ j 〉 = δi j and eigenvalues are real-valued. Moreover, their eigenvalues λi have the

physical meaning of time scales, i.e., ti =−λi
?, which becomes clear when expanding eq. (1.17)

(the expansion of eq. (1.11) is analogous);

ρ(r, t ) = eW tρ0(r) =∑
k

〈φk |ρ0〉 eλk tφk (r). (1.27)

For t →∞, all modes except the mode corresponding to λ0 = 0 have decayed to zero. The

closer λi is to zero, the slower the associated mode decays. Thus we conclude that slow

processes belong to eigenvalues close to zero – or close to one forΛi . Exploiting the eigenvalue

spectrum, the dynamics can be separated into m slow decaying modes and the remaining fast

decaying modes. If the spectrum offers a large gap between λm and λm+1, i.e., λm Àλm+1 the

first m modes are associated with metastable regions in phase space. The key idea is that it

takes the system a significant longer time to traverse between states of different metastable

regions than between states of the same metastable region. According to eq. (1.27), we can

split the generator W , such that

ρ(r,τ) = eWslowτ+Wfastτρ0(r) =
m∑

k=0
〈φk |ρ0〉 eλkτφk (r)+eWfastτρ0(r). (1.28)

Identifying and preserving these slow modes is the general goal of equilibrium Markov state

modeling.

?For eigenvaluesΛi , the i th implied time scale is given by ti =−τ/log(Λi ))
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1.1.8 Discretization

Consider a crisp discretization of phase space Ω into n sets. These n sets fully partition Ω,

labeled by S = {S0, ...,Sn} with ∪n
i=0Si = Ω, and do not overlap, i.e., Si ∩ S j = ; ∀i 6= j . We

further define the membership functions

νi (r) =
1, r ∈ Si

0, r ∉ Si

. (1.29)

which assign every point r inΩ uniquely to one of the Si ’s.

Having established a phase space discretization, the stationary probability distribution πi of

set i is computed by integrating the stationary probability density, i.e.,

πi =
∫
Ω

dr νi (r)µ(r) , while µi (r) =
µi (r)/πi , r ∈ Si

0, r ∉ Si

(1.30)

denotes the local stationary distribution restricted to set i . The important point here is that

both πi and µi (r) are local properties not requiring information about the full phase spaceΩ.

To describe the transition probabilities between sets i and j , the propagator is projected onto

the membership functions yielding discretized transition probabilities

Ti j (τ) = 〈ν j | (T (τ)◦νi )〉
〈νi | νi 〉

. (1.31)

Every Ti j can be interpreted as the conditional probability that the systems jumps from state

Si to state S j within time τ, that is,

Ti j (τ) =P[x(t +τ) ∈ S j | x(t ) ∈ Si ]. (1.32)

The entity of all transition probabilities forms the transition probability matrix T (τ) ∈Rn×n
0+

(shortened from now on as transition matrix), which is row-stochastic, i.e.,
∑

j Ti j = 1. The

discrete analog of eq. (1.13) is therefore given by the matrix vector product

pT(t +kτ) = pT(t )T k (τ) k ∈N. (1.33)

All spectral properties of T hold for its discrete counterpart T too. For example, the stationary

solution π is the left eigenvector of T belonging toΛ0 = 1, i.e.,

πT =πTT (τ). (1.34)

The discretization of the continuous generator W is analogous to eq. (1.31) with W ∈ Rn×n

denoting the row-stochastic transition rate matrix. All off-diagonal elements are positive,

i.e., wi j ≥ 0 for i 6= j and represent transition rates from sets Si to S j , whereas the negative

diagonal elements wi i =−∑
j 6=i wi j ensure probability conservation. The time evolution of
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probabilities employing the transition rate matrix, given by

∂pT(t )

∂t
= pT(t )W with 0 =πTW , (1.35)

is known as the master equation. Hence the relation eq. (1.19) that connects both continuous

operators holds true for their discrete counterparts T (τ) = exp(W τ) too.

Note that some authors, see for instance refs. [31, 23], define the transition matrix as column

stochastic. Then, the Ti j ’s represent transition probabilities from states (from now on referred

to as states) S j to Si with normalization
∑

i Ti j = 1. The advantage of the column-stochastic

representation is that eq. (1.33) is expressed by a matrix “column vector” product which is

the standard implementation in most numerical libraries. Adopting this notation, eq. (1.33)

becomes p(t +kτ) = T k (τ)p(t ) with π being a right (instead of left) eigenvector of T . To avoid

confusion transition probabilities/rates are from now on labeled as T i
j /W i

j for transitions

i → j .

Our task is now to approximate the transition matrix T from molecular dynamics simulations.

1.2 Constructing Markov state models in practice

Before discussing the technical details of how to best construct Markov state models (MSMs)

from finite trajectories, we comment on the Markov assumption of the approximated discrete

dynamics. In fact, although the true continuous dynamics is Markovian by construction, the

approximated dynamics [see eq. (1.33)] is not Markovian on all time scales. The reason for

this lies in the fact that information is lost when discretizing phase space. The amount of

missing information can be associated with the production of entropy, which manifests itself

by causing memory effects in the approximated dynamics. This non-Markovianity occurs

even more strongly when, instead of approximating the full phase space, only a reduced phase

space representation is discretized.

Indeed, Markov models typically project out all momenta and solvent coordinates, and more-

over employ only a subset of distance coordinates, e.g., distances or angles between heavy

atoms or alpha carbon atoms. Losing Markovianity and hence the occurrence of memory

effects is a known issue when coarse graining degrees of freedom, which can be, for instance,

tackled by introducing memory kernels as described in the Mori-Zwanzig formalism [59].

However, in Markov state modeling one assumes a clear separation between rapidly decay-

ing time scales that corresponds to a strongly localized dynamics, e.g., bond vibrations, and

slow decaying time scales that are associated with global motion, e.g., large conformational

changes. The quickly decaying modes are assumed to be spatially localized within the dis-

cretized states Si with associated time scales much faster than the lag time τ of the Markov

state model. Markovianity is recovered when considering only the slow decaying time scales,

whose associated collective motion covers many discrete states. Therefore, we understand
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Markov models as models which approximate the long-time dynamics. How to test whether a

given transition matrix T (τ) is a good approximation of the long-term dynamics we discuss at

the end of this section.

1.2.1 Phase space discretization

For constructing MSMs from molecular dynamics simulations, one assumes that the phase

space has been sufficiently explored by either a few long trajectories or many short trajectories.

Moreover, we assume that a “reasonable” phase space projection exists, which is referred

to as configuration space Γ, i.e., Γ ⊂Ω. Depending on the dimensionality, Γ can be either

discretized by equidistantly positioned bins or, which is commonly done for more than two

dimensions, by automated clustering algorithms, e.g., k-means, k-centers, etc. [2].

Here we only give a brief summary of the k-means algorithm as we exclusively employ it

throughout this thesis. The input of the k-means algorithm is given by the set of trajectories

in Γ and an integer k indicating the number of cells that discretize the configuration space.

Typically, k is of the order 102 −103 which is why the discretization is often referred to as

fine-graining. k-means randomly places k points or centroids Rk in Γ and computes the

residual

res(k) =
N∑

i=0
min

k

∣∣∣∣ri −Rk
∣∣∣∣

2 (1.36)

given by the Euclidean distance between all positions and their closest centroid. Next, new Rk

are determined by computing the mean of all positions that were assigned to the kth centroid.

All centroid positions are iteratively optimized until the residual has been converged. Knowing

all centroid coordinates Rk , the configuration space is fully discretized by assigning every point

in Γ to the closest centroid Rk . Note that this type of distance-dependent space discretizations

is also referred to as Voronoi tessellation. Adopting the nomenclature introduced in the

previous section, every Rk uniquely defines a (micro) state Sk .

1.2.2 Approximating T from molecular dynamics simulations

To approximate the transition matrix T from MD simulations, one maps all trajectories – here

we assume only one trajectory – containing N frames onto the set of states, i.e.,

[r(0),r(∆t ),r(2∆t ), ...,r((N −1)∆t )] 7−→ [s(0), s(∆t ), s(2∆t ), ..., s((N −1)∆t )], (1.37)

where ∆t is the time interval for which a frame was stored and s(t ) the corresponding discrete

state at time t . Thus all dynamical information are effectively stored in a simple sequence.

Figure 1.1 illustrates the mapping of a continuous trajectory onto a discrete sequence of states.
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Figure 1.1 – Phase space discretization. The space-continuous trajectory is approximated by
a Markov jump process.

To extract dynamical information from the sequence of states, we count all observed transi-

tions c i
j (τ) for lag time τ= l∆t with l ∈N+, that is,

c i
j (τ) = c i

j (l∆t ) =
N−l∑
k=1

νi (r(k∆t )) ν j (r((k + l )∆t )). (1.38)

If the count matrix C is associated with an infinitely long trajectory, the transition probabilities

are given by the trivial estimator

T̂ i
j =

c i
j∑

i c i
j

, (1.39)

expressing the fraction of times the transition i → j is observed relative to all transitions

starting in i . Unfortunately, if the number of observed counts are finite, one cannot uniquely

determine the underlying transition matrix T (τ). However, we can ask for the probability

to observe the count matrix C given the true transition matrix T (τ). Mathematically, this

conditional probability reads

p(C | T ) =∏
i , j

(
T i

j

)c i
j
, (1.40)

for which one assumes that the c i
j ’s are statistically uncorrelated. Employing Bayes’ theorem,

eq. (1.40) can be reversed, i.e.,

p(T | C ) ∝ p(T )p(C | T ), (1.41)

where p(T |C ) is the posterior probability and p(T ) the prior probability of transition matrices

after and before knowing C , respectively. When no prior information are known, the prior dis-

tribution is assumed to be flat, i.e., p(T ) ∝ 1. Our task is to find the most probable transition

matrix given the count matrix C , i.e., T̂ = argmax p(T | C ). In statistical science this problem

is referred to as finding the maximum of the likelihood function p(T | C ). Indeed, one can
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Chapter 1. Background

show [see ref. [107]] that the estimator defined for infinite counts [eq. (1.39)] maximizes the

likelihood function when no further restrictions are given. However, the ergodicity condition

[cf. eq. (1.7)] requires that if T i
j > 0, then T j

i > 0 for all i 6= j . This condition becomes even

more restrictive when the dynamics is reversible as T̂ is required to obey the detailed balance

condition, i.e., T i
j πi = T i

j π j . Unfortunately, due to the lack of an analytical solution incorpo-

rating these restrictions, a numerical solution is required. Generally, two types of approaches

are employed. The first is to find T̂ by maximizing the logarithmic likelihood function

T̂ = argmax log
(
p(T | C )

)
= argmax

(∑
i j

c i
j log

(
T i

j

))
, (1.42)

which is commonly accomplished by employing a fixed-point iteration scheme [107] or La-

grange multipliers [136, 135].

The second approach, known as Bayesian inference, does not search for the maximum of

the likelihood function but rather samples the distribution p(T | C ) [134]. The sampling

typically follows a Monte-Carlo sampling technique, where new transitions probabilities T i
j

are proposed and accepted or rejected according to a specific weight function. Thus, instead of

returning a single transition matrix, the Bayesian approach returns an ensemble of transitions

matrices. The advantage of the Bayesian approach lies in the fact that it allows a more accurate

estimation of error intervals. For example, the stationary distribution given by the eigenvector

φ0, can be computed for the full ensemble of transition matrices, returning an ensemble of

stationary distributions. An estimation of the stationary distribution is then determined by

the mean of the ensemble, while the standard error is determined using its variance. However,

having an ensemble of transition matrices allows the computation of general confidence

intervals [134].

1.2.3 Testing for Markovianity

Lag time analysis

A popular approach to test the quality of an estimated transition matrix T (τ), originally

introduced in ref. [132], is referred to as lag time analysis.

Any constructed MSM (for a given lag time τ0) is supposed to be a good approximation of the

dynamics for lag times τ≥ τ0, implying that the eigenvaluesΛi (kτ0) are well approximated

by [Λi (τ0)]k . However, instead of eigenvalues, one often refers to implied time scales [see

section 1.1.7] as the implied time scales ti are supposed to be approximately constant over the

range of τ= kτ0,

ti (kτ0) =− τ0

log(Λi (τ0))
≈ ti for k = 1,2, . . . . (1.43)

The lag time analysis suggests to test for the convergence of the slowest implied time scale. The

smallest possible lag time τ0 at which the slowest implied time scale is approximately constant
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1.2. Constructing Markov state models in practice

then serves as the lag time for which the final MSM is constructed. Although often empirically

observed [30], one should note that a constant implied time scale does not strictly guarantee

Markovianity of the slow dynamics. The reverse, however, holds true, i.e., Markovianity implies

that the implied time scales do not depend on the lag time [131].

Chapman-Kolmogorov test

To test for Markovianity the Chapman-Kolmogorov test checks whether the approximation[
T (τ)

]k ≈ T (kτ) (1.44)

holds within statistical uncertainty. For large transition matrices it can be a cumbersome task

to compare all elements individually, which moreover can have large uncertainties. Therefore,

for the comparison one typically chooses a set of states that is in a sense essential for the

dynamics, e.g., a metastable set. The comparison then should be done for as many values of k

as allowed by the data set. Here we briefly review an algorithm described in ref. [21].

We start by defining a set of states, say A, for which we want to check eq. (1.44). Its corre-

sponding stationary distribution (following the estimated transition matrix T (τ0)) is given by

ωA
i =


πi∑

j∈A π j
i ∈ A

0 i 6= A
. (1.45)

Next, we define a trajectory-based time-dependent probability

pMD(A, A;kτ) = ∑
i∈A

ωA
i

(∑
j∈A c i

j (kτ)∑
j c i

j (kτ)

)
(1.46)

indicating the occupation of set A when starting with distributionωA . Here the c i
j (kτ)’s are

the transition counts for lag time kτ.

Similar, the probability to be at set A at time kτ, following the Markov model, is given by

pMSM(A, A;kτ) = ∑
i∈A

[(
ωA)T T k (τ)

]
i
. (1.47)

According to eq. (1.44), the Chapman-Kolmogorov property is fulfilled if both probabilities

match, i.e., pMD(A, A;kτ) ≈ pMSM(A, A;kτ), within the statistical error accounted for by

εMD(A, A;kτ) =
√√√√k

pMD(A, A;kτ)− [pMD(A, A;kτ)]2∑
i∈A

∑
j c i

j (kτ)
. (1.48)
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Chapter 1. Background

1.2.4 From transition probabilities to transition rates

So far we discussed how to best approximate the transition matrix T from sampled trajectories.

However, analogous to eq. (1.19), the rate matrix W is the time-continuous counterpart of the

transition matrix T . Theoretically, if the relation

T (τ) = exp(W τ) (1.49)

holds true, then W can be determined by

W = M log
(
DT

)
M−1

τ
. (1.50)

Here we exploit the fact that both matrices share the same set of eigenvectors M allowing their

diagonalization through the same linear transformation DT = M−1 T M and DW = M−1 W M .

In practice, however, the estimated transition matrix T̂ does not necessarily fulfill eq. (1.49),

that is, no physical rate matrix exists with W i
j ≥ 0 ∀i 6= j , which is known as the embedding

problem [64, 89]. Unfortunately, up to today no conditions for T̂ have been found that ensure

the existence of a rate matrix, though ref. [64] provides a list of conditions for which a rate

matrix cannot exist.

When a given transition matrix T̂ is not embeddable, it is still useful to determine an auxiliary

rate matrix approximating the time-continuous dynamics. One approach described in ref. [64]

is to formally invert eq. (1.49) and approximate the matrix logarithm by its series expansion,

leading to

Ŵ = 1

τ
log

(
T̂

)= 1

τ
log

(
1+ T̂ −1

)≈ 1

τ

(
(T̂ −1)− (T̂ −1)2

2
+ (T̂ −1)3

3
− ...

)
. (1.51)

The expansion can be computed recursively, while we stop either if the auxiliary matrix has any

negative nondiagonal entries or the change in the next order approximation is small enough.

Note that the linear approximation always returns a physical rate matrix as it coincides with

the linear approximation of eq. (1.49) for small τ.

Alternatively, one can estimate Ŵ directly [87] by finding the maximum of the likelihood

function, i.e.,

Ŵ = argmax log
(
p(W | C )

)
= argmax

∑
i j

c i
j log

(
exp

(
W τ

)i
j

)
. (1.52)

Here exp(W τ)i
j evaluates the matrix exponential and returns its i → j element. Besides the

restrictions of a rate matrix, i.e., W i
j > 0 ∀i 6= j and

∑
i W i

j = 0, the maximum likelihood ap-

proach allows, analogously to its time-discrete counterpart eq. (1.39), to incorporate additional

conditions such as detailed balance (W i
j πi =W j

i π j ).

While the computation of eq. (1.52) quickly becomes more expensive than eq. (1.39), its
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1.2. Constructing Markov state models in practice

benefit is that many “unphysical” entries of Ŵ become zero, yielding a more sparse and thus

more realistic rate matrix. Unphysical, here, refers to transitions between states which are

microscopically impossible and only occur due to the lag time τ. Suppose, for instance, the

transitions S0 ↔ S1 ↔ S2 are probed for short τ, i.e., {T 0
1 ,T 1

0 ,T 1
2 ,T 2

1 } > 0 and T 0
2 = T 2

0 = 0. When

estimating the transition matrix for longer τ, the same dynamics can exhibit an additional

transition S0 ↔ S2, i.e., {T 0
2 ,T 2

0 } > 0. The maximum likelihood approach for the rate matrix

suppresses transition rates corresponding to this type of unphysical transitions [87]. Lastly,

knowing the rate matrix allows to determine transition times by computing mean first passage

times.

1.2.5 Computing transition times

Traditionally, reaction rates (inverse transition times) are computed by making use of the

seminal result of Arrhenius [10] which was later refined by Eyring and Polanyi [47, 48], and

Kramer [76]. The escape rate for leaving a free energy minimum or alternatively the transition

rate from free energy basin A to free energy basin B is given (in the large friction limit) by

kA→B = ωA ω0

2πγfric
exp

(−β ∆F0
)
, (1.53)

where ωA is the angular frequency inside minimum A, ω0 the angular frequency at the transi-

tion state separating A and B , and∆F0 the height of the free energy barrier [56]. The advantage

of eq. (1.53) is that, if the full free energy (potential energy) surface is known, ωA and ωB can

be estimated by the curvature of the free energy at A and at the transition point. However, in

practice it is a challenging task to accurately determine ωA and ω0, and therefore often fixed

values are assumed. The second difficulty arises because of already a small error in ∆F0 can

lead to large uncertainties in kA→B , due to its exponential dependence. Furthermore, when

investigating systems out of thermal equilibrium, eq. (1.53) looses its validity.

In Markov state modeling, on the other hand, all dynamical information are stored in the form

of a transition or rate matrix. To visualize the system’s dynamics we introduce the concept of an

edge-weighted directed graph G (V ,E ,W ), where vertices V are identified with states, edges E

with transitions between states and edge weights W with transition rates. In accordance with

the ergodicity condition, the graph G is connected, that is, every vertex can be reached from

every other vertex after a finite number of transitions.

To compute the average transition time between two states, i.e., the average time it takes to

reach state S f when starting in state Si , we employ the well-developed concept of mean first

passage times (MFPTs) given as

E[Ti→ f ] =
1+∑

j Ti→ j E
[
T j→ f

]
i 6= f

0 i = f
. (1.54)
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Chapter 1. Background

This equation can be rewritten [139] in a linear system of equations∑
j 6= f

W i
j E

[
T j→ f

]=−1 for i 6= f (1.55)

when using transition rates. This linear system of equations is then solved for the vector{
E
[
T j→ f

] ∣∣∣ j 6= f
}

containing the requested mean first passage time E[Ti→ f ]. To compute,

more generally, the MFPT between two disjunct sets of states, say, A and B with A ∩B =;,

eq. (1.54) is extended to

E[TA→B ] = ∑
a∈A

πa E[Ta→B ]∑
k∈A πk

, (1.56)

where MFPTs E[Ta→B ] are weighted by their relative steady-state probabilities πa/
∑

k∈A πk .

An illustration of an exemplary graph G (V ,E ,W ) is shown in Figure 1.2. The MFPT from the

subset A (red shaded area) to the target set B (blue shaded area) corresponds to the average

time it takes a process originated in A to first hit the target set B .

Figure 1.2 – Transition network. Illustration of a graph G (V ,E ,W ) with vertices V indicated by
filled circles and directed edges by double-headed arrows. Different edge weights (transition
rates) are not accounted for. Nonoverlapping subgraphs are highlighted by red (A) and blue
(B) shaded areas. Average transition times, e.g., between set A and B can be determined by
computing mean first passage times, see eq. (1.56).

1.3 Coarse graining of equilibrium MSMs

For the construction of MSMs the configuration space is usually fine grained by many hun-

dreds or even thousands of centroids (micro states), especially if no prior information about

the free energy landscape is available. The resulting fine-grained transition matrix does,

in principle, hold all information which are required to describe the long-term dynamics.

However, it is a cumbersome task to interpret a dynamics that includes hundreds or even

thousands of states. In the previous section, we showed how to compute transition times

between a given initial and target set of states. The question remains how to determine these

sets when not known beforehand. Our task is thus to coarse grain an estimated transition

matrix into an effective one with as few states as possible, while still being able to describe the

original long-term dynamics. In this section, we deal with equilibrium MSMs (obeying detailed

balance), whereas the coarse graining of nonequilibrium MSMs is discussed in chapter 2.
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1.4. Paradigm of rate estimation: one-dimensional particle in a double well potential

The first step of coarse graining a MSM is to partition all N states of the transition network –

represented by the graph G (V ,E ,T )? – into k clusters with k ¿ N . Many different algorithms

have been proposed detecting “closely related” vertices and grouping them into clusters,

sometimes referred to as communities. These “closely related” vertices are often thought

to share many edges or edge weights, although different conditions exist [49]. Besides the

detailed working principle, graph partitioning algorithms can be categorized into two classes:

algorithms which use the number of clusters k as input and algorithms which determine the

number of clusters dynamically.

Here we discuss the Robust Perron-Cluster Cluster Analysis (PCCA+) [114] a spectral clus-

tering algorithm which falls into the first category, i.e., the number of clusters k needs to be

known beforehand.

Suppose the eigenvalue spectrum of the transitions matrix T (τ) offers a gap between its kth

and (k +1)th eigenvalue, i.e., 1 = Λ0 > Λ1 > ... > Λk À Λk+1 > ... > ΛN−1 ≈ 0, then T can be

expanded into k slow and (N −k) fast decaying modes, analogous to eq. (1.28). The PCCA+

algorithms exploits the sign structure of the first k (right) eigenvectors to partition the graph

G (V ,E ,T ) into k +1 clusters or metastable sets by solving a linear system of equations. To

this end, every vertex is associated with every coarse-grained set by an individual probability

(fuzzy partitioning). The advantage of fuzzy partitioning is that some vertices cannot be

unambiguously assigned to a specific coarse-grained set (as in crisp partitioning), in the sense

that the average time it takes to leave the coarse-grained or metastable set is much longer than

the average time of staying within.

If the distribution of all k sets is known, the coarse-grained transition rate matrix W cg ∈Rk×k

representing the dynamics between these metastable sets, is obtained by computing inverse

mean first passage times,

(Wcg)I
J = E

[
TI→J

]−1. (1.57)

1.4 Paradigm of rate estimation: one-dimensional particle in a dou-

ble well potential

After setting the stage for constructing and analyzing equilibrium Markov state models, we

give an illustrative example: an one-dimensional Brownian particle in a double well poten-

tial. To describe the particle dynamics, we employ the overdamped Langevin equation [see

section 1.1.2] reading

ẋ =−∇U (x)

γfric
+η(t ) with U (x) = ε

(1

2
x4 −4x2

)
. (1.58)

?Here G (V ,E ,T ) refers to a graph with edge weights given by the transition probabilities.
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Chapter 1. Background

An exemplary trajectory, which illustrates stochastic transitions between both potential energy

minima, is depicted in Figure 1.3(a).

Figure 1.3 – Double well potential. (a) Exemplary time series illustrating stochastic transitions
between both potential wells. The shaded time series depicts the full trajectory, while the
solid line indicates its moving average (τ= 2). Employed simulation parameters are D = 1 and
ε= 0.5γfric. (b) Internal time scales are shown for multiple lag times τ. (c) Eigenvalue spectrum
of the transition matrix T (τ= 100 ∆t ). (d) Chapman-Kolmogorov test with initial probability
distribution located in the left and right potential energy minimum. (e) True potential energy
landscape (red) and MSM approximation (blue). (f) True probability distribution (red) and
MSM approximation (blue). (g) Approximated first left and right eigenvector. (e-g) Gray areas
illustrate the discretized position space, while x values of the blue points indicate centroid
positions.

To sample the potential energy landscape, multiple trajectories are recorded accumulating a

total of T = 200 (Brownian time units). The position space is discretized by 20 equally placed

centroids, which are illustrated by blue points (centroid positions) and gray intervals (discrete

states) in Figure 1.3(e). Imposing the detailed balance condition, the transition matrix T (τ) is

estimated for different lag times τ by employing the maximum likelihood estimator. The lag

time analysis, see Figure 1.3(b), suggests that for lag times τ≥ 100 ∆t = 0.1 the slowest implied

time scale becomes lag time independent. As the second slowest implied time scale is already
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1.4. Paradigm of rate estimation: one-dimensional particle in a double well potential

more than three orders of magnitude faster, we expect the eigenvalue spectrum to show a gap

between Λ1 and Λ2. Indeed, as shown in Figure 1.3(c), the second largest eigenvalue Λ1 is

almost one, whileΛ2 ≈ 0.4.

In order to test for Markovianity of the slow dynamics we perform the Chapman-Kolmogorov

test as introduced in section 1.2.3. We test for two different probability distributions ωA

located in either the left or right minimum. As shown in Figure 1.3(d), the time evolutions of

bothωA’s that follow the MSM are in very good agreement with the probability distributions

determined from the original data set.

In Figure 1.3(e) and (f), we show the analytical as well as reconstructed potential energy

landscape and equilibrium probability distribution, respectively. To compare both probability

distributions we normalize the curves within the shown interval, i.e., x ∈ [−3,3], whereas the

reconstructed potential energy follows from U (i )
pot = − logπi . For both quantities the MSM

solution in very good agreement with the true curve. Solely, the height of the approximated

probability distribution exhibits small deviations from the analytical curve, which becomes

negligible for the potential energy landscape.

Figure 1.4 – Coarse-grained MSM. (a) Potential energy landscape as shown in Figure 1.3(e).
Blue and green colored intervals indicate metastable sets, while gray intervals indicate tran-
sition states. (b) Transition network according to the full and coarse-grained Markov state
model with edge weights representing transition rates. The states constituting the metastable
sets shown in (a) are lumped together forming the coarse-grained states as shown (b). Coarse-
grained transition rates are computed by inverse mean first passage times.

The large time scale separation as indicated by the lag time analysis [Figure 1.3b] suggests to

coarse grain the graph G (V ,E ,T ) into two metastable sets with the slowest implied time scale

corresponding to the transition between both metastable sets. Figure 1.3(g) depicts the left

and right eigenvector φ1/ψ1 with ψ1 =φ1 π, clearly illustrating that the sign structure of ψ1

can be exploited to separate both potential minima, while the inflection point ψ1 ≈ 0 points to

the top of the barrier of the double well potential. Applying the PCCA+ algorithm for k = 1, two

metastable sets are identified, as shown in Figure 1.4(a), for which we identify transition states

as states that cannot be assigned with a probability larger than 80% to one of the metastable

sets.
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Finally, to coarse grain the dynamics we compute inverse mean first passage times, see

eq. (1.57), between states belonging to set A and B . In Figure 1.4(b), we illustrate the graph

indicating the full and coarse-grained dynamics.

1.5 Stochastic thermodynamics of discrete systems

While we discussed the concept of Markov state modeling limited to systems in thermal equi-

librium in the previous section, we consider here systems that are driven in a nonequilibrium

steady state (NESS). For a NESS, in contrast to thermal equilibrium, the dynamics (or more

precisely the associated phase space propagator or generator) breaks detailed balance. In

this regard, we understand thermal equilibrium as “just” a special form of a steady state and

a NESS as its logical extension. Before discussing the consequences for a system being in a

NESS, we give an illustrative example pointing out the differences to thermal equilibrium.

The molecular motor protein kinesin is one of the best studied biochemical systems, respon-

sible for cellular functions such as mitoses and meiosis as well as the transport of cellular

cargo [62, 120]. The kinesin complex comprises multiple subunits which are schematically

shown in Figure 1.5(a). The “feet” (motor domain) are the active binding sites of the protein

and constitute the two heads of the protein which are linked via short, flexible molecular

linkers to the body or stalk. The body is connected to the tail component which is responsible

for attaching molecular cargo. Each head component contains two separate binding sites: one

binding site for attaching the head to a microtubule, which is an intracellular filament also

known as “cellular highway”, and one binding site for binding andenosine triphosphate (ATP).

When ATP is hydrolyzed to adenosine diphosphate (ADP) and inorganic phosphate (P), chem-

ical energy is released which triggers a conformational change of the microtubule-binding

domain, propelling the head forward along the microtubule (mechanical transition). From a

physical point of view, the chemical reaction ATP → ADP+P releases chemical energy which is

converted into mechanical work as the kinesin protein moves along the microtubule.

To keep the hydrolysis rate constant and thus the kinesin protein walking, the chemical

potential of ATP has to be kept constant, which requires the coupling to an ATP reservoir.

Because the synthesis of ATP costs energy, we understand that to maintain the kinesin motor

in a steady state, the motor protein or rather its environment must be constantly supplied with

(chemical) energy. This energy influx is identified as the driving mechanism that separates

thermal equilibrium (no energy influx) from a NESS.

In the study of Liepelt et al. [83], the authors propose a minimal experimentally probed

Markov model elucidating the chemo-mechanical mechanism of the kinesin motor protein.

The model, shown in Figure 1.5b, includes six different states that are characterized by both

kinesin heads (active sites). Each head can be occupied by an ATP, ADP or no molecule,

yielding six different combinations which are referred to as states of the model. For example,

in state 1 an ADP molecule is bound to the blue head while the red head is unoccupied. If two

26



1.5. Stochastic thermodynamics of discrete systems

states are connected, indicated by arrows in Figure 1.5(b), transitions between both states are

possible, implying nonzero transition rates W i
j . For every connected pair of states forward and

backward transition rates are either experimentally measured or deduced, e.g., {W 0
1 ,W 1

0 } > 0.

While the solid black arrows indicate chemical transitions, i.e., molecules are released, newly

bound or chemically transformed, the dashed arrow 2 ↔ 5 indicates the mechanical transition,

that is, the kinesin molecule makes a forward or backward step, respectively.

Figure 1.5 – Kinesin network. (a) Sketch of structure and function of the kinesin molecule.
The kinesin molecule converts chemical energy in the form of ATP (andenosine triphosphate)
into mechanical work, causing the kinesin molecule to “walk” along cellular microtubules.
(b) Transition network of kinesin dynamics. While states (labeled by numbers) indicate
different occupations of binding sites, black arrows indicate the flow direction of probability
currents within the transition network. Moreover, the dashed arrow shows the mechanical
transition (i.e., the kinesin molecule makes a step forward), and gray arrows illustrate the
probability current cycles found in the network. The figure is adopted from ref. [6].

As stated above, in contrast to the example given in the previous section, the dynamics of

the kinesin network breaks detailed balance as the system constantly dissipates energy. The

deviation from detailed balance

W i
j πi −W j

i π j =Φi
j −Φ

j
i ≡ J i

j (1.59)

defines probability currents J i
j which are the difference between their respective forward and

backward probability fluxes Φi
j . The probability currents indicate the net transport of proba-

bility from states i → j . Thus, if the probability current J i
j is positive, a trajectory jumps more

often from state i → j than from state j → i . It is important to note that physical quantities
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such as charge, particles, etc., can only be transported between states if the respective proba-

bility current is nonzero. More generally stated, in thermal equilibrium the thermodynamic

average of every current variable X vanishes, i.e., 〈X 〉 = 0, because the associated probability

distribution is symmetric, i.e., P(−X ) =P(X ).

Having defined probability currents, the element-wise master equation can be rewritten,

revealing a useful property known as Kirchhoff’s current law

0 = ∂tπi =
∑

j
W j

i π j =W i
i πi +

∑
j 6=i

W j
i π j

W i
i =−

∑
j 6=i W i

j= ∑
j 6=i

[
W j

i π j −W i
j πi

]
= − ∑

j 6=i
J i

j (1.60)

that states that the same amount of probability that flows into a state also flows out.

Following the direction of the positive probability currents, as shown in Figure 1.5(b) (indi-

cated by arrow heads), reveals another interesting property of a NESS. Because probability

is a conserved quantity, that is, no probability sinks or sources exist, probability must be

transported in cycles. We define these probability current cycles as an ordered set of states

(vertices), at the end of which the starting state is reached again and no other vertex occurs

twice. Cycles that differ only in their cyclic permutation of states are considered identical. For

instance, {1,2,3,1} = {2,3,1,2} = {3,1,2,3} all denote the same cycle but {3,2,1,3} is a different

cycle.

The kinesin network exhibits two different cycles: the forward cycle C1 = {1,2,5,6,1}, because

after completion the kinesin protein has made a step forward, and the dissipative cycle C2 =
{1,2,3,4,5,6,1}, in which the kinesin does not move, although chemical energy is dissipated.

So far we have loosely argued that a NESS is maintained by constantly supplying the sys-

tem with some form of energy. Following the ideas of irreversible thermodynamics [26], we

introduce the concept of generalized thermodynamic forces which are often referred to as

affinities. These generalized forces express the mechanisms responsible for driving a system

out of equilibrium, while physical currents are the system’s response. Since the same concept

holds for macroscopic systems, we illustrate this idea by a macroscopic example.

Figure 1.6 – Schematic illustration of a hot and cold heat reservoir connected by a heat
conducting wire. The system constantly transports heat from the hot to the cold reservoir.

Suppose a hot and cold heat reservoir are connected by a heat conducting wire, as schemat-

ically depicted in Figure 1.6. In the steady state the wire exhibits a constant temperature
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gradient that generates a constant heat current JQ flowing from the hot to the cold reservoir.

The affinity responsible for the heat current is given by the inverse temperature gradient

f = T −1
c −T −1

h . Generally, currents can be expressed as nonlinear functions of their respective

affinity. However, when affinities are small, i.e., the NESS is within the linear response regime,

currents are proportional to their respective affinities with their proportionality factors known

as transport coefficients [26].

As the second law of thermodynamics states that the amount of entropy can never decrease,

the average entropy production rate in a NESS is identified [26] as

Ṡ =∑
k

fk Jk ≥ 0. (1.61)

Here fk denotes the kth affinity (generalized force) and Jk its corresponding current. For a

system in thermal equilibrium all affinities and currents vanish (detailed balance holds) and

thus the total entropy of the system stays constant.

The generalization of these concepts to microscopic systems is given by the framework of

stochastic thermodynamics [125]. The crucial difference to macroscopic systems is that for

microscopic length scales fluctuations become critical, which are accounted for by the concept

of fluctuation theorems [67, 34, 43] that are valid even far beyond the linear response regime.

Typically, the framework of stochastic thermodynamics is applied to describe systems, e.g.,

colloidal systems, biochemical systems, etc., that are immersed in a heat bath referred to

as environment or medium. The environment is implicitly described by Gaussian noise

as introduced in the framework of Langevin dynamics [see section 1.1.2]. Although the

theoretical concepts of stochastic thermodynamics are derived for space-continuous systems,

they equally apply to space-discrete systems described by the master equation, and therefore

extend the early ideas of Schnakenberg [121] and Hill [60].

Similar to the description of macroscopic thermodynamic systems, the first law of thermody-

namics can be applied to microscopic transitions, i.e.,

(∆U )i
j ≡U ( j )−U (i ) = w i

j −q i
j , (1.62)

where U (i ) is the potential energy of state i , w i
j the performed work and q i

j the dissipated

heat for the transition i → j . Next, one assumes that the work per transition is given by

w i
j = f d i

j , (1.63)

where f denotes the generalized force [or macroscopic affinity, see eq. (1.61)] and d i
j the

generalized distance for the transition i → j , which is consequently anti symmetric, i.e.,

d i
j = −d j

i [129, 125]. The generalized distances correspond to transported (or produced)

quantities on the microscopic level. For example, for a sheared fluid the generalized force

corresponds to the stress, while the generalized distance d i
j expresses the amount of strain

“produced” for the transition i → j .
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Chapter 1. Background

When starting from the opposite direction, that is, all microscopic rates and probabilities are

known, microscopic affinities are defined as

Ai
j ≡ kB log

(
Φi

j

Φ
j
i

)
= kB

[
log

(
W i

j πi

)
− log

(
W j

i π j

)]
, (1.64)

which have the physical meaning of the total entropy produced for the transition i → j , i.e.,

Ai
j ≡ (∆Stot)i

j . Employing the entropy balance equation [126, 45], the total produced entropy

per transition is split into two terms:

(∆Stot)
i
j = (∆Smed)i

j + (∆Ssys)i
j , (1.65)

where (∆Smed)i
j ≡ σi

j expresses the entropy produced in the medium (environment) and

(∆Ssys)i
j the entropy produced in the system.

Connecting microscopic affinities [eq. (1.64)] with the entropy balance equation [eq. (1.65)]

Ai
j = kB

[
log

(
W i

j πi

)
− log

(
W j

i π j

)]
=σi

j + (∆Ssys)i
j , (1.66)

and plugging in the definition of the system’s entropy

(∆Ssys)i
j = Ssys( j )−Ssys(i ) =−kB log(π j )+kB log(π j ) = kB log

(
πi

π j

)
, (1.67)

we identify the entropy produced in the medium per transition as

σi
j = kB log

(
W i

j

W j
i

)
. (1.68)

We can further conclude that for thermal equilibrium (Ai
j ≡ 0) the medium has the function of

an “entropy accountant”. If, for example, the transition i → j produces entropy in the system,

the same amount is depleted from the medium and vice versa. Moreover, from eq. (1.64)

and eq. (1.68) it can be seen that microscopic affinities as well as medium entropies are anti

symmetric, e.g., Ai
j =−A j

i and σi
j =−σ j

i , and interestingly do not depend on the system’s time

scales.

Unfortunately, up to today a comprehensive theory that fully connects microscopic and macro-

scopic affinities is still missing. However, the concept of local detailed balance establishes a

connection between macroscopic affinities and microscopic rates.
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1.5. Stochastic thermodynamics of discrete systems

1.5.1 From macroscopic affinities to microscopic rates

In thermal equilibrium, one can exploit detailed balance and the Boltzmann distribution to

gain an expression that connects the ratio of microscopic forward and backward rates, i.e.,

W i
j

W j
i

=
π

eq
j

π
eq
i

= exp
(
−β (∆U )i

j

)
(thermal equilibrium). (1.69)

For a NESS, this expression can be extended to

W i
j

W j
i

=
π

eq
j

π
eq
i

exp
(
β f d i

j

)
(NESS), (1.70)

which is known as the local detailed balance condition [see for instance refs. [74, 125, 44]].

Here πeq
i represents the thermal equilibrium probability of state i [see eq. (1.69)], that is, the

probability to occupy state i if all microscopic affinities would vanish. Moreover, from the

local detailed balance condition, the first law of thermodynamics [see eq. (1.62)] and eq. (1.63)

we identify the dissipated heat with the entropy produced in the environment at temperature

T ,

σi
j = kB log

(
W i

j

W j
i

)
=β f d i

j −β (∆U )i
j =β q i

j . (1.71)

1.5.2 Entropy production rate for discrete systems

To connect the microscopic affinities with the macroscopic entropy production rate, cf.

eq. (1.61), we sum the microscopic affinities over all transitions weighted with their respective

probability current, i.e.,

〈Ṡtot〉 = 〈A〉 = 1

2

∑
i j

J i
j Ai

j =
1

2
kB

∑
i j

J i
j log

(
πi

π j

)
︸ ︷︷ ︸

〈Ṡsys〉

+〈σ〉. (1.72)

Together with eq. (1.65) the first term one the right hand side of eq. (1.72) is identified as the

entropy production rate of the system and the second term as the medium entropy production

rate. One should note that, in agreement with the second law of thermodynamics, only 〈Ṡtot〉
is larger than zero.

A second but intriguing approach to derive the entropy production rate of the medium is to

start with the definition of the Gibbs entropy that describes the entropy of the system [126]

SGibbs(t ) = 〈Ssys(t )〉 =−kB
∑

i
pi (t ) log

(
pi (t )

)
. (1.73)
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Chapter 1. Background

Its time derivative reads

dSGibbs(t )

dt
=−kB

∑
i

(
∂t pi

)
log

(
pi

)+kB
∑

i

∂t pi

pi

eq. (1.35)= −kB
∑

i

[ ∑
j 6=i

(
W j

i p j −W i
j pi

)]
log

(
pi

)+kB
∑

i

∂t pi

pi

= kB
∑
i j

W i
j pi log

(
pi

p j

)
+kB

∑
i

∂t pi

pi

pi (t )=πi= kB
∑
i j

W i
j πi log

(
πi

π j

)
= 1

2
kB

∑
i j

J i
j log

(
πi

π j

)
= 〈Ṡsys〉. (1.74)

When rewriting the entropy balance equation [eq. (1.65)] for the mean entropy production

rates and employing the expressions for 〈Ṡsys〉 and 〈Ṡtot〉, we identify the mean entropy pro-

duction rate of the medium as

〈σ〉 = 〈Ṡtot〉−〈Ṡsys〉 = 〈A〉− 1

2
kB

∑
i j

J i
j log

(
πi

π j

)
= 1

2
kB

∑
i j

J i
j log

(
W i

j

W j
i

)
. (1.75)

If the system is in a NESS, 〈Ṡsys〉 contributes to the total entropy production rate only in form

of a boundary term which vanishes for t →∞ and therefore 〈Ṡtot〉 = 〈A〉 = 〈σ〉.
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2 Coarse graining of nonequilibrium
Markov state models

Having established the connection with stochastic thermodynamics, the goal of this chapter

is to derive a dynamically consistent coarse graining strategy allowing the construction and

analysis of nonequilibrium Markov state models (NE-MSMs) from molecular dynamics simu-

lations. To this end, we illustrate all steps by an easy but intuitive example: a particle trapped

in a double-well potential, driven by a nonconservative force.

2.1 Cycle representation

2.1.1 Current- and state-like observables

Generally, we distinguish two types of observables: First, state-like observables, i.e., observ-

ables evaluated for the states (vertices) of the system and second, current-like observables, i.e.,

observables evaluated along the transitions (edges) that connect the states of the system. As

both types of observables can have large fluctuations, we define their averages according to

〈O〉 =∑
i
πi Oi (state-like) and 〈O〉 =∑

i j
Φi

j Oi
j =

1

2

∑
i j

J i
j Oi

j (current-like), (2.1)

where state-like averages represent regular ensemble averages, whereas current-like averages

express the average change of the observable per unit time. Note that if detailed balance holds

all current-like averages become zero. In the previous section, we introduced the concept of

cycles as an ordered set of states. We further distinguish between trivial cycles, i.e., cycles that

contain two different states, e.g., C = {1,2,1}, and nontrivial cycles containing more than two

different states.

For convenience, we define the indicator

χi
α =

1 if vertex i is in cycle α

0 otherwise
(2.2)
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Chapter 2. Coarse graining of nonequilibrium Markov state models

and the passage function

χi
j ,α =

1 if directed edge i → j is in cycle α

0 otherwise,
(2.3)

depending on whether a vertex i or directed edge i → j is part of a cycle α.

To extend the definition of state- and current-like observables for cycles, we define

(i) State-like cycle observables that are summed over the states forming a cycle, i.e.,

Oα =∑
i

Oiχ
i
α. (2.4)

(ii) Current-like cycle observables that are summed along the edges corresponding to each

cycle, i.e.,

Oα =∑
i j

Oi
jχ

i
j ,α. (2.5)

To distinguish cycle observables from “regular” observables all cycle indices are denoted by

Greek letters.

2.1.2 Cycle affinities

An important example for a current-like cycle observable is the cycle affinity

Aα =∑
i j

Ai
jχ

i
j , (2.6)

which represents the total entropy produced when traversing the full cycle α. Cycle affinities

have two crucial properties:

(i) The cycle affinity of trivial cycles is always zero since affinities are anti-symmetric,

Ai
j =−A j

i , and thus A{i , j ,i } = Ai
j + A j

i = Ai
j − Ai

j = 0.

(ii) All cycle affinities are independent of the steady-state probability distribution and thus

can be solely expressed in terms of σi
j ’s.

To prove (ii),

A{i , j ,...,n,i } = Ai
j +·· ·+ An

i = log

(
W i

j πi . . .W n
i πn

W j
i π j . . .W i

nπi

)
= log

(
W i

j . . .W n
i

W j
i . . .W i

n

)
=σi

j +·· ·+σn
i . (2.7)

Since the πi ’s are state functions, going along a cycle they cancel pairwise. A remarkable

property of a NESS is therefore that the average entropy production can be calculated either
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2.2. Cycle-flux decomposition

by using the Ai
j ’s or σi

j ’s.

2.1.3 Cycle averages

At this stage we have introduced cycles as an indispensable concept for transport properties. In

particular, the transportation of probability is of utmost importance if one wants to understand

the dynamics of a NESS. Due to the close connection between cycles and the transportation of

probability, it is reasonable to ask if the averages of current-like observables can be computed

by employing cycle observables. To verify this, we introduce the cycle-flux decomposition,

a graph theoretical tool [73, 7] that expresses the probability flux matrixΦ through a linear

combination of cycles, i.e.,

Φi
j =

∑
α
ϕαχ

i
j ,α, (2.8)

where the sum is over all cycles α that can be found in graph G (V ,E ,Φ). The nonzero coeffi-

cient ϕα is referred to as cycle weight and indicates the probability flux flowing through cycle

α. Mathematically, the cycle-flux decomposition is proven to always exist for every connected

directed graph [73] that satisfies Kirchoff’s current law, see eq. (1.60). A numerical algorithm

efficiently computing the cycle-flux decomposition is given in the next section.

Using the definition of current-like cycle observables given in eq. (2.5) and inserting the cycle

decomposition [eq. (2.8)], current-like averages

〈O〉 =∑
i j
Φi

j Oi
j =

∑
α

∑
i j

Oi
jχ

i
j ,α =∑

α
ϕαOα (2.9)

can be expressed as current-like cycle averages. This expression is well defined even if the

values of the cycle weights ϕα are not unique.

Of particular importance is that the total entropy production rate, see eq. (1.72), can be

expressed as the cycle average of affinities

〈A〉 =∑
α
ϕαAα =∑

i j
Φi

j Ai
j = 〈Ṡtot〉. (2.10)

Finally, we define the mean entropy production rate of a single cycle sα ≡ ϕαAα, such that

〈Ṡtot〉 =∑
α sα.

2.2 Cycle-flux decomposition

In the literature several types of algorithms have been proposed to accomplish the decom-

position given in eq. (2.8). One example is the “method of derived chain” introduced in [68],

which is stochastic in nature and has the advantage that the cycle weights ϕα are unique and
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Chapter 2. Coarse graining of nonequilibrium Markov state models

that they correspond to the mean number of passages through the corresponding cycle α.

However, negative cycle affinities (Aα < 0) may occur, which greatly complicates the coarse

graining of NE-MSMs (as will become clear shortly). Moreover, the number of cycles used in

the decomposition can be orders of magnitude larger than for the other approaches discussed

below. Another important type of cycle decomposition, first mentioned by Schnakenberg [121],

considers fundamental cycles that span a basis of the cycle space. Although the number of

contributing cycles is as small as for the described algorithm below, the fundamental cycles

are not unique and can have negative cycle entropies.

Here we employ a variant of the “cycle-flux” decomposition, which is described and proven by

Kalpazidou [73]. In contrast to the aforementioned algorithms, the cycle-flux decomposition

only returns cycles exhibiting nonnegative cycle affinities (Aα ≥ 0). Moreover, the cycle-flux

decomposition is a deterministic algorithm that has a polynominal complexity in the number

of vertices |V |, making it computationally affordable even for large graphs.

However, the decomposition (and thus the cycle weights ϕα) is not unique but rather depends

on the initial cycle sequencing. Therefore, already a minor variation in the sequencing can lead

to different cycle weights. In particular, some cycle weights become zero, while others become

nonzero. In ref. [7] this arbitrariness is illustrated by applying the cycle-flux decomposition to

the totally asymmetric simple exclusion process model.

2.2.1 Algorithm

To decompose the edge fluxesΦi
j into cycles we start by splitting the flux matrix into two parts,

i.e.,

Φ=Φdb + J̃ , (2.11)

whereΦdb is a symmetric (detailed balance) matrix and J̃ a nonnegative (current) matrix. The

current elements J̃ i
j are related to the microscopical currents, as introduced in eq. (1.59), by

J̃ i
j =

J i
j for J i

j ≥ 0

0 for J i
j < 0.

(2.12)

The nonnegative current matrix is obtained as J̃ =Φ−ΦT with all negative elements set to

zero, while the symmetric matrix follows fromΦdb =Φ− J̃ .

At this point, we identify all trivial cycles, i.e., cycles with only two different states (i → j → i ),

by the nonzero elements ofΦdb. As cycle weights we then assign their corresponding entries

ϕi→ j→i ≡Φi db
j =Φ j db

i .

To decompose the current matrix J̃ , we introduce an algorithm that can be split into two parts.

First, we identify nontrivial cycles – cycles with more than two different states – and secondly
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2.2. Cycle-flux decomposition

we determine their cycle weights. Theoretically, the number of possible cycles Ncycles in a

graph grows exponentially with the number of vertices. For instance, the number of possible

cycles in an undirected graph is bounded by B ≤ Ncycles ≤ 2B , where B ≡ |E |− |V |+1 is known

as the Betti number [142]. For large |V |, B has the leading order of |V |2, causing Ncycles to be

bounded from above by 2|V |2 .

However, if both algorithmic steps – searching for a nontrivial cycle and determine its cycle

weight – are combined by running them alternately, the decomposition becomes computa-

tionally affordable even for a large number of states.

To detect a nontrivial cycle, we propose the following steps:

(1) Find the position of the largest element of J̃ , i.e., argmax
(

J̃ i
j

)
.

(2) Identify the shortest path (smallest number of transitions) from state j leading back to

state i by only following the nonzero transitions of J̃ . This step can be efficiently realized

by applying a breadth-first search [95].

(3) Return the nontrivial cycle, i.e., Cα =
{

i → j → found path
}

.

The breadth-first search algorithm is a standard tool for exploring tree or graph data structures.

When starting from an initial vertex it stores the directly neighboring vertices, i.e., vertices that

are connected by a directed edge pointing toward them. From these neighboring vertices then

all next neighboring vertices are explored and so forth. If a vertex has been already explored,

it is ignored in the next step. The breadth-first search algorithm stops when all vertices are

explored, returning a so-called tree structure, that is, all |V | vertices are connected by |V |−1

edges. Considering the cycle detection in step (2) the algorithm stops when the vertex i is

explored for the first time.

To determine the corresponding cycle weight ϕα, we take all flux values along cycle α and

determine their smallest value, which becomes the cycle weight ϕα, i.e.,

ϕα ≡ min
{

J̃ i
jχ

i
j ,α

}
. (2.13)

Summing up both steps, the final cycle-flux algorithm reads

(1) Determine all trivial cycles and their cycle weights

(2) Find a nontrivial cycle in J̃

(3) Compute its cycle weight ϕα

(4) Update all J̃ i
j by subtracting ϕα along α, J̃ i

j = J̃ i
j −ϕαχi

j ,α and continue with the second

step

(5) The algorithm stops when the residuum
∣∣∣∣ J̃ max

∣∣∣∣ has become smaller than a threshold.
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Chapter 2. Coarse graining of nonequilibrium Markov state models

2.2.2 Number of cycles

General considerations [73] show that the maximum number of needed cycles is bounded

by Ncycles = |E |− |V |+1 with |E | being the number of nonzero elements ofΦ and |V | its rank.

For the number of nontrivial cycles we follow the reasoning of ref. [7]. First, one considers all

trivial cycles appearing in a reversible graph, which number is identical to |E |/2. This becomes

clear as each trivial cycle includes always the forward and backward edge connecting two

states. Next, one looks at the maximum number of contributing nontrivial cycles. As described

below, the algorithm first subtracts all trivial cycles, leaving an irreversible graph G (V ,E , J̃)

with |E |/2 edges.

At this stage, one considers the worst case where each nontrivial cycle that has a nonzero

cycle weight removes the current along one edge only. Because in each iteration the updated

currents J̃ i
j always fulfill Kirchhoff’s current law, each vertex must be connected by at least

two edges. The probability current going into a state has to flow out. After the algorithm

has assigned |E |/2−|V | nonzero weights, the remaining nonzero currents include |V | states

with |V | edges. Again, following Kirchhoff’s current law, each vertex must be connected by at

least two edges and therefore all |V | states have to be connected by one cycle, that in the last

iteration removes the remaining current. Hence, the number of contributing nontrivial cycles

is given by |E |/2−|V |+1. Adding the |E |/2 identified trivial cycles gives an upper bound for

the number of contributing cycles which is equal to the first Betti number B = |E |− |V |+1.

2.2.3 Nonzero cycle affinities

To show that all by the proposed algorithm determined cycles indeed exhibit nonnegative

cycle affinities, we consider only the nontrivial cycles, because cycle affinities of trivial cycles

are zero, cf. section 2.1.2.

Since all edge affinities Ai
j of the original “current” graph G (V ,E , J̃) are positive and directed

edges cannot be reversed throughout the iterations of the cycle-flux algorithm, all determined

cycles follow the original edge directions. Therefore, all Aα are strictly positive for all nontrivial

cycles that are found and zero for all trivial cycles. Note that this implies sα > 0 (cycle entropy

production rate) for the nontrivial and sα = 0 for the trivial cycles, respectively.

2.2.4 Example

Finally, we give an intuitive example illustrating the cycle-flux decomposition as described in

section 2.2.1.

In Figure 2.1(a), a simple, reversible and connected graph G (V ,E ,Φ) is shown with vertices

V = {A,B ,C ,D}. The arrows represent the edges, while numbers denote probability fluxes

flowing in and out of each state. For example, the probability fluxΦA
B = 4 and the reverse flux

ΦB
A = 1. It is easy to check that Kirchhoff’s current law is valid, e.g., the flux into state A equals
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2.3. Driven particle in a double well potential

the flux flowing out,Φin
A = 5+1+1 = 7 = 1+4+2 =Φout

A .

Figure 2.1 – Example illustrating the cycle-flux decomposition. The numbers next to the
arrows are the numerical values for the probability fluxes Φi

j (a) and currents J̃ i
j (b) along

edges: (a) Initial graph G (V ,E ,Φ) indicating probability fluxes, (b) current graph G (V ,E , J̃)
before (left panel) and after (right panel) the first iteration of the cycle-flux decomposition.

According to the Betti number, the maximal number of cycles needed for the cycle-flux

decomposition is seven (B = 10−4+1 = 7). In the first step of the decomposition all trivial

cycles (the detailed balance part of the graph) are subtracted. All determined trivial cycles and

their weights ϕα are listed in Table 2.1. The only possible nontrivial cycles that can exhibit

nonzero cycle weights are {A,B ,D, A} and {A,C ,D, A}, which are successively subtracted, cf.

Figure 2.1(b).

Overall, seven cycles are required to complete the decomposition but only the two nontrivial

cycles contribute to the mean entropy production rate, which is, according to eq. (2.10), given

by 〈Ṡtot〉 = 1 · log 15+3 · log 50 ≈ 6.62.

Table 2.1 – Cycles and cycle weights for the graph shown in Figure 2.1

Figure 2.1 cycles weights ϕα cycle affinity Aα

(a) {A,B , A} 1 0
{A,C , A} 1 0
{A,D, A} 1 0
{B ,D,B} 2 0
{C ,D,C } 2 0

(b) {A,B ,D, A} 3 log 50
{A,C ,D, A} 1 log 15

2.3 Driven particle in a double well potential

Before we continue our task to coarse grain a nonequilibrium Markov state model, we intro-

duce a two-dimensional model system: a particle trapped in a double well potential, driven

out of equilibrium by a nonconservative force. Although the coarse graining algorithm that

we will derive in this chapter is applicable to many-body systems, working in two dimensions

allows to directly visualize the configuration space as well as the cycles within.

The system’s dynamics is described by the overdamped Langevin equation [see section 1.1.2]
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Chapter 2. Coarse graining of nonequilibrium Markov state models

with the equation of motion for the position x = (x, y)T reading

ẋ =− ∇U

γfric
+ fnc +η(t ), (2.14)

where η(t ) is a random force with correlations 〈ηx (t )ηy (t ′)〉 =p
2D δ(t − t ′) δx y and

U (x, y) = ε
(

x4

4
+ 1

2

(
y2 −x2 +x2 y2

))
(2.15)

is the potential energy. As nonconservative force we choose fnc(x) = ξ (−y, x)T, where ξ denotes

the driving strength. For the parameter values, we select ε/γfric = 20, ξ= 8 and D = 1.

Figure 2.2 – Driven particle in a double well potential. (a) Contour lines of the symmetric
two-dimensional potential energy as defined in eq. (2.15) and exemplary trajectory in the pres-
ence of the nonconservative force. Red arrows indicate the direction of the nonconservative
force. The system is still invariant under inversion with the loci of highest probability being
shifted from the minima of the potential. (b) Voronoi partition of the configuration space
(cells are indicated by black lines) following k = 100 centroids determined by the k-means
algorithms. Centroid positions are highlighted by red points. (c) Cumulated sum of cycle
entropy production rates. Red lines indicate the number of cycles needed to recover 95% and
99% of the total entropy production rate, respectively.

Figure 2.2(a) shows the contour lines of the potential energy and an exemplary trajectory.

Due to fnc, the particle trajectory does not obey the symmetry of the conservative potential

anymore.
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2.4. Cycle space and communities

To construct a NE-MSM from trajectories following the dynamics given by eq. (2.14), the

configuration space is discretized by k = 100 centroids employing the k-means algorithm.

The associated Voronoi decomposition is shown in Figure 2.2(b), where states (cells) are

indicated by black lines and centroid position Rk by red dots. Following a lag time analysis, we

estimate the transition matrix T (τ= 0.07) by making use of the maximum likelihood solution,

as introduced in eq. (1.39). The transition matrix is converted to the final rate matrix W as

proposed in section 1.2.4.

At this point, we determine all trivial and nontrivial cycles by employing the cycle-flux decom-

position [eq. (2.8)]. The graph G (V ,E ,Φ) that illustrates the probability flux network consists of

|V | = 100 vertices and |E | = 3744 edges. According to the Betti number B = 3645, we expect to

find 1872 trivial and at most 1773 nontrivial cycles. In fact, the flux-cycle algorithm determines

1752 nontrivial cycles before it terminates.

We expect the number of nontrivial cycles to be even larger for NE-MSMs constructed from a

configuration space that is discretized by many hundreds or even thousands of states. This

is in stark contrast to the semiempirical NE-MSM for the kinesin protein that we introduced

earlier. It is therefore undesirable to examine each cycle individually. In ref. [108] the authors

conclude, after investigating artificial Markov models, which are not constructed from a

physical dynamics, that “important” cycles can be recognized by their entropy production

rate. Here, however, this conclusion fails as we do not find any dominant cycles that are

responsible for a large fraction of the mean entropy production rate. To show this, we define

the normalized cumulative sum

s̃n ≡
∑
α≤n sα∑
α sα

(2.16)

of the first n nontrivial cycles for sorted cycle entropies s0 ≥ s1 ≥ . . . . In Figure 2.2(c), s̃n is

shown for the determined nontrivial cycles. The cumulative sum of the first 100 cycles does

not even recover 30% of 〈Ṡtot〉. To reduce the number of nontrivial cycles, we consider only

the 780 nontrivial cycles contributing to 95% of 〈Ṡtot〉.

2.4 Cycle space and communities

In the following our approach to coarse grain NE-MSMs is based on the idea that many

cycles are similar in their length, traversed states (region in configuration space), and cycle

affinities. Otherwise stated, the nontrivial cycles detected by the cycle-flux decomposition

are not randomly positioned in configuration space but rather exhibit an ordered structure.

We will propose how to quantify a “similarity” between cycles and how to group these cycles

together, forming cycle communities.
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Chapter 2. Coarse graining of nonequilibrium Markov state models

To this end, we define cycle centers or rather their i th component as

c(i )
α ≡

(
1

|α|
∑
k

R(i )
k χk

α

)
, (2.17)

where |α| =∑
k χ

k
α denotes the length (number of states) of cycle α and R(i )

k the i th component

of the kth centroid. Furthermore, we define cycle diameters as

d (i )
α ≡ max

k,l

{
χk
αχ

l
α

∣∣∣R(i )
k −R(i )

l

∣∣∣}. (2.18)

The cycle diameters indicate the largest distances spanned by the cycle vertices, as illustrated

in Figure 2.3(a).

Figure 2.3 – Cycle clustering. (a) Schematic illustration of a nontrivial cycle, where gray circles
denote vertices and arrows directed edges. Cycle diameters d (0),d (1) are obtained by projection
of vertex (centroid) coordinates. The black point denotes the cycle center c = (c(0),c(1)). (b) The
fuzzy partition coefficient (FPC) is shown for multiple cycle communities. The best result is
obtained for three communities.

In general, if the configuration space Γ ∈ Rn , then cα,dα ∈ Rn . However, depending on the

dimensionality of Γ it is not necessarily optimal to include all dimensions. To reduce the num-

ber of effective dimensions, we perform a principal component analysis (PCA) [70], which is

an orthogonal linear transformation returning the eigenvectors (principal components) and

eigenvalues of the covariance matrix Σ of the centroid positions. The entries of the covariance

matrix

Σi j = cov
(
R(i ),R( j )

)
(2.19)

are defined as the covariance between the i th and j th component of all centroid positions.

The principal components and their corresponding eigenvalues are computed by solving the

generalized eigenvalue problem, i.e.,

ΣM =ΣMD , (2.20)
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2.4. Cycle space and communities

where M denotes the orthogonal eigenvector matrix and D the diagonal eigenvalue matrix.

The principal component M (1) corresponding to the largest eigenvalue coincides with the

direction in configuration space exhibiting the largest variance.

Instead of using the original centroid positions to compute cycle centers and diameters, we

transform the centroid positions employing the PCA, i.e.,

R̃k = MRk . (2.21)

We expect these transformed centroids to be better suited for describing the cycle centers and

diameters as the largest distances in configuration space that can be spanned by a single cycle

are more likely to be aligned to the largest principal components.

Together with cycle centers and diameters, cycle affinities, see eq. (2.7), form the cycle space.

For the above example, the cycle space is spanned by five dimensions: cα ∈R2, dα ∈R2 and

Aα ∈ R. Several two dimensional projections of the cycle space are shown in Figure 2.4, in

which every point represents a single cycle. These points are clearly not random. In particular,

when considering the projection (c(1),d (1)) three well separated point clouds emerge, implying

that many different cycles (blue and green) have a small diameter d (1)
α but different cycle

centers c(1)
α , while the third group of cycles (red) is characterized by large cycle diameters

d (1)
α . Similar structures are recovered when considering the projections (c(1), cycle affinity),

(c(1),d (2)) and (c(2),c(1)). Solely the projections (c(2),d (2)) and (c(2), cycle affinities) exhibit only

two distinguishable point clouds.

We can turn these insights into a more quantitative statement by partitioning the cycle space

into k communities. To this end we employ an implementation of the fuzzy c-means algo-

rithm, which is analogous to the k-means algorithm [cf. section 1.2.1] but assigns to each

cycle a probability for belonging to a specific community. First, we normalize all cycle space

observables (cycle diameters, cycle centers, and cycle affinities) by their variance to make

them comparable. More precisely, we normalize all cycle center and diameter dimensions by

the variance of their largest (first) dimension, respectively. For example: c̃(1) = c(1)/var
(
c(1)

)
and c̃(2) = c(2)/var

(
c(1)

)
. The advantage is that the relative variance (weight) between the same

type of observable is preserved.

These normalized cycle space observables are then used as an input for the fuzzy c-means

clustering algorithm returning membership degrees ui j which express the probability that

observation i belongs to community j . To obtain an indicator of how good the clustering

results are we compute the fuzzy partition coefficient (FPC) that is defined as the Frobenius

norm of the membership matrix

FPC = 1

n

k∑
i=1

n∑
j=1

u2
i j . (2.22)

Here k is the number of chosen communities and n the number of observations (cycles in our
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case). Note that other definitions of the FPC exist [146]. In any case, the closer the FPC gets

to one the better the cycle space can be partitioned into the chosen number of clusters. The

advantage of fuzzy partitioning is that some cycles might not belong to any cycle community

while others match well in multiple ones.

Figure 2.4 – Scatter plot for several cycle space projections. Scattered points indicate cycles,
while colors (red, blue and green) indicate cycle communities. Gray points indicate cycles that
are not assigned to any cycle community.

For the cycle space shown in Figure 2.4 we find k = 3 to express the highest FPC, see Fig-

ure 2.3(b), which is therefore the best fitting number of cycle communities. The cycle commu-

nities detected by the c-means algorithm are highlighted in Figure 2.4 in green, blue (local

cycles) and red (global cycles), while gray colored points belong to cycles that are not assigned

to any cycle community.

Figure 2.5 depicts the cycle communities projected back onto the (x, y) space. The blue and

green colored communities are in agreement with the loci of highest probability, while the red

community includes cycles connecting these two loci. This result agrees well with the intuitive

picture of entropy production due to the interplay between conservative and nonconservative

forces for the particle trapped in a basin, with rare transitions between both basins.

Furthermore, when linking the cycle communities identified in cycle space with their real

space projection, we distinguish two different types of cycles: local cycles constituting either

the blue or green cycle community and global cycles constituting the red community. Local

cycles are characterized by small cycle diameters and affinities, and similar cycle centers indi-

cating that their corresponding centroids share similar components
(
R̃(1), R̃(2)

)
and therefore
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belong to a compact region in configuration space. Global cycles, on the other hand, have

large cycle diameters and affinities, and connect regions in configuration space that exhibit

local cycles.

Figure 2.5 – Cycle communities in configuration space. Nontrivial cycles are plotted in the
x − y plane and colored according to their associated cycle community.

2.5 Community representative and coarse graining

Having grouped cycles into cycle communities, our next goal is to determine a coarse-grained

rate matrix W cg containing as few states as possible but still capturing the dominant (cyclic)

dynamics. Unfortunately, it is not possible to compute something like an average cycle because

the cycle space does not have any physical metric. For example, we cannot relate the averaged

position of, say, the red cycle community in cycle space to a cycle in real space (centroids

coordinates).

To overcome this problem, we determine one cycle out of each cycle community, which we

will refer to as the community representative, and discard all other cycles. Thus, the coarse-

grained transition matrix includes states with known centroid coordinates Rk . The final coarse

graining step is then to rescale the remaining transition rates.

In the previous section, we discussed how to identify the dissipated heat and total entropy

production per transition. Because both quantities solely depend on centroid positions

and are time independent, a thermodynamically consistent model ought to preserve them.

Additionally, we require that the coarse-grained model preserves the entropy production rate

of each cycle community

Sl ≡
∑
α∈Cl

sα with Cl =
{

Cα

∣∣∣ Cα ∈ l th community
}

. (2.23)
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When all cycles are uniquely assigned to cycle communities, the total entropy production rate

is recovered as the sum over all communities, i.e., 〈Ṡtot〉 =∑
l Sl . Persevering the community

entropy production rates implies the preservation of the major dynamical properties as well

as macroscopic transport. Recently, it has been shown [13, 52] that the fluctuations of current

variables (transported quantities), given by (δX )2 ≡ 〈(X − 〈X 〉)2〉/〈X 〉2, are bounded from

above by the average heat dissipation of the process, i.e.,

〈q̇〉t = 〈Ṡtot〉
T

t ≥ 2

(δX )2 , (2.24)

where t is the duration of the process. In other words, preserving the total entropy production

rate, preserves the upper bound for fluctuations of transported quantities.

2.5.1 Rescaling algorithm

Assume for the moment that appropriate (communities) representatives are known. An

algorithm for rescaling the transition rates W i
j and fluxes Φi

j have to fulfill the following

physical constraints:

(i) The community entropy production rates Sl are preserved.

(ii) The dissipated heat q i
j produced for nonzero transitions is preserved.

(iii) The total entropy Ai
j produced for nonzero transitions is preserved.

(iv) The cycle affinities Aα of the representatives are preserved.

From eq. (2.7) its easy to check that if (iii) holds, then (iv) holds too. In what follows, all rescaled

quantities are labeled by hats, e.g., W i
j → Ŵ i

j . Moreover, the subscript l of cycle quantities

denotes the cycle representative of the l th community, e.g., sl is the cycle entropy production

rate.

As each cycle community is represented by one cycle only, condition (i) requires that Sl

becomes the representative’s entropy production rate, and together with condition (iv) we

find the rescaled cycle weight

Sl = ŝl = ϕ̂l Al ⇒ ϕ̂l =
Sl

Al
> 0. (2.25)

The crucial coarse graining step consists of removing all other nontrivial cycles by setting their

weights ϕ̂α to zero. All states that are not part of a community representative are thus removed

with the remaining states V̂ constituting the coarse-grained NE-MSM, see Figure 2.6.

All remaining cycles in the coarse-grained model are either community representatives or

trivial. We now show that the weights of the remaining trivial cycles are always positive and
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the coarse-grained model still constitutes a valid cycle-flux decomposition

Φ̂i
j =

∑
α
ϕ̂αχ

i
j ,α (2.26)

for the rescaled fluxes Φ̂i
j . By virtue of eq. (2.26) and condition (iii), the new cycle weights ϕ̂α

can then be computed from

exp
(

Ai
j

)= Φi
j

Φ
j
i

!=
Φ̂i

j

Φ̂
j
i

=
∑
α ϕ̂αχ

i
j ,α∑

α ϕ̂αχ
j
i ,α

, (2.27)

which can be rearranged to

0 =∑
α
ϕ̂α

[
χ

j
i ,α exp

(
Ai

j /kB
)−χi

j ,α

]
. (2.28)

We now pick one edge i → j for which the edge affinity Ai
j > 0 is positive. We then split the

sum over all cycles into a sum over trivial and nontrivial cycles,

0 = ϕ̂β
[

exp
(

Ai
j /kB

)−1
]
+ ∑
α6=β

ϕ̂α

[
χ

j
i ,α exp

(
Ai

j /kB
)−χi

j ,α

]
(2.29)

= ϕ̂β
[

exp
(

Ai
j /kB

)−1
]
−∑

l
ϕ̂lχ

i
j ,l (2.30)

⇒ ϕ̂β =
∑

l ϕ̂lχ
i
j ,l

exp
(

Ai
j /kB

)−1
. (2.31)

For every edge there is exactly one trivial cycle, here denoted β, for which χi
j ,β = χ

j
i ,β = 1.

Because the chosen edge affinity Ai
j is positive, all nontrivial cycles are oriented to follow

the net probability flow, which implies χ j
i ,α = 0. The remaining sum over all nontrivial cycles

sharing the edge i → j reduces to the weight of the community representative since we have

set the weight of all other nontrivial cycles to zero. We have thus determined the remaining

weights ϕβ > 0 of the trivial cycles, which clearly are positive.

Knowing the coarse-grained fluxes Φ̂, the final step is to determine the coarse-grained tran-

sition rates. To fulfill condition (ii), we show – exploiting condition (iii) and inserting the

definition of edge affinities [see eq. (1.64)] – that it is sufficient to preserve the ratio of nonzero

steady-state probabilities, as

exp
(
σi

j /kB
)= W i

j

W j
i

= π j

πi
exp

(
Ai

j /kB
)= π̂ j

π̂i
exp

(
Ai

j /kB
)= Ŵ i

j

Ŵ j
i

. (2.32)

Therefore, we determine the rescaled steady-state probabilities π̂i by scaling out the proba-

bilities of the removed states through πi /π j = π̂i /π̂ j with normalization
∑

i∈V̂ π̂i = 1. Finally,
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obtaining the new transition rates Ŵ i
j = Φ̂i

j /π̂i completes the rescaling algorithm.

2.5.2 Community representatives

Since we know now how to coarse grain a given set of community representatives, we address

the question of how to select “appropriate” representatives. Any set of representatives is

thought to be appropriate if the graph spanned by their coarse-grained transition matrix

is connected and the mean first passage times (MFPTs) between states that belong to local

communities are preserved. Preserving MFPTs ensures that the important time scales of

the dynamics are preserved too, assuming that these time scales are associated with slow

transitions between metastable sets. Instead of identifying metastable sets by means of local

communities, however, one can employ a kinetic clustering scheme using hitting times [116],

which is in analogy to the often used PCCA+ algorithm [see section 1.3] but also valid for

transition matrices breaking detailed balance. For the example shown in Figure 2.4 and 2.5,

we identify all states comprised by the blue community as B and by the green community as

G . An appropriate set of representatives is required to preserve MFPTG→B and MFPTB→G .

Figure 2.6 – Illustration of the cycle representatives for each community of the two dimen-
sional model system. Centroids belonging to community representative are colored according
to their respective community, as shown in Figure 2.4, while black edged states highlight inter-
sections of representatives. Gray points indicate centroids not belonging to any representative,
which are thus absent in the coarse-grained model.

Next, we introduce a deterministic and a stochastic algorithm for proposing community

representatives.
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Deterministic

For the deterministic algorithm we define a new graph, the cycle graph G (VC ,EC ,Θ), where

vertices VC represent cycles and edges EC links between cycles, while edge weightsΘαβ specify

the connectivity strength between the αth and βth cycle.

Cycles are thought to be connected if they share a physical state, i.e., at least one vertex on the

original graph G (V ,E ,W ). To quantify their connectivity strength, we define

Θαβ ≡
2
∑

i πiχ
i
αχ

i
β∑

i πiχ
i
α+

∑
i πiχ

i
β

, (2.33)

which is symmetric as emphasized by the subscripts. The connectivity strength 0 ≤Θαβ ≤ 1

depends on the cumulated probability of the shared states. Other proposals for linking cycles

can be found in refs. [7, 33].

The basic idea of the deterministic algorithm is to make use of the concept of the modularity

function Q which measures the link density inside communities as compared to other com-

munities by assigning it a value between −1 and 1 [94]. The modularity function is defined as

Q ≡ 1

2m

∑
αβ

(
Θαβ−

kαkβ
2m

)
×

1 if α and β belong to same community

0 otherwise
(2.34)

with kβ ≡
∑
αΘαβ and m ≡ 1

2

∑
βkβ.

To make progress, we rewrite the modularity function as the sum over all community modu-

larities

Q =∑
l

Ql =
∑

l

1

2m

( ∑
αβ∈Cl

Θ(l )
αβ

−
k(l )
α k(l )

β

2m

)
, (2.35)

where l denotes the l th community. Our task is to find the cycle γ for each cycle community l

that maximizes Ql −Ql \γ, with Ql\γ being the modularity of the l th community without cycle

γ. In other words, we want to identify the cycle γ for each community that has the biggest

impact on the community modularity. In particular, Ql \γ increases if cycle γ matches poorly

and decreases when it provides many links to other cycles inside its community. If a cycle γ is

removed from its community, the difference in its modularity function is given by

Ql −Ql\γ = 1
2m

( ∑
αβ∈Cl \γ

[
Θαβ−

kαkβ
2m

]
+ ∑
β∈Cl

[
Θγβ−

kγkβ
2m

]

+ ∑
α∈Cl

[
Θαγ−

kαkγ
2m

]
+

k2
γ

m
−2Θγγ−

∑
αβ∈Cl \γ

[
Θαβ−

kαkβ
2m

])
. (2.36)
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WithΘαβ =Θβα the difference can be simplified to

Ql −Ql\γ =
1

m

( ∑
α∈Cl

Θαγ+
kγ

[
kγ−∑

α∈Cl
kα

]
2m

−Θγγ
)

. (2.37)

Finally, the set of representatives is determined by maximizing eq. (2.37), i.e.,

argmax
γ

(
Ql −Ql \γ

)
(2.38)

for each community l .

At this point, we want to emphasize that the set of representatives is not necessary connected

nor does it need to preserve the slow timescales of the dynamics. If this is the case the next

best set of representatives should be examined. Thus the deterministic algorithm should

rather be seen as a first guess for an appropriate set of representatives.

Stochastic

Because the deterministic algorithm is not guaranteed to return an appropriate set of rep-

resentatives, we formulate a stochastic approach which can be easily combined with the

deterministic algorithm. The stochastic approach selects randomly candidates for all commu-

nities and checks for connectivity and MFPTs. The algorithm is outlined as follows:

(1) Pick one representative per cycle community by drawing a random number.

(2) Check if the set of representatives span an ergodic (connected) transition network. If yes,

rescale all transition rates, as described in section 2.5.1, else go back to step (1).

(3) Compute MFPTscg of the coarse-grained model and compare to MFPTsfull of the full model.

If ∣∣∣∣∣MFPTscg −MFPTsfull

MFPTsfull

∣∣∣∣∣≤ threshold, (2.39)

return the coarse-grained NE-MSM, else go back to step (1).

Step (2) can be efficiently computed by employing the breadth-first search algorithm. If the

number of edges of the tree structure returned by the breadth-first search algorithm is less

than |V |−1, with |V | being the number of coarse-grained states, the transition network is not

connected.

Instead of selecting community representatives from the full list of community members, it

can be more efficient to combine the stochastic approach with the deterministic algorithm.

Therefore, first a list of community representatives, according to the deterministic approach,

is determined, e.g., containing 50 nontrivial cycles per community. Then, the stochastic
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approach is employed proposing community representatives from this predetermined list

only.
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3 Polymer in shear flow

So far, we have established a coarse graining procedure for rate matrices breaking detailed

balance. From the intuitive example presented in the previous chapter, we understand that

probability cycles appear through the interplay between the driving force and the potential

energy landscape of the system. However, the discussed example system is somewhat trivial as

its potential energy landscape offers well separated energy basins. For more complex systems,

the corresponding higher-dimensional potential energy landscape exhibits typically many

local minima, which might complicate the identification of cycle communities.

To test our coarse graining procedure, we construct and coarse grain NE-MSMs for a more

complex physical model: a tethered polymer under shear.

The rheology of dilute flexible polymers has been studied extensively due to their fundamental

and practical relevance [81]. Examples include biomolecules such as the von Willebrand factor

in blood plasma and DNA in steady shear flow [127]. The shear drag can overcome the entropic

forces favoring coiled or globular configurations and stretch the polymers, which might be a

continuous or even discontinuous transition [37]. Motion of DNA tethered to a planar surface

has been described as cyclic in experiments [40] and computer simulations [39, 152].

3.1 Polymer model

We study a single model polymer with N = 50 beads moving in shear flow close to a substrate.

The specific model parameters are inspired by ref. [4]. We employ overdamped Langevin

dynamics, cf. section 1.1.2, with

q̇k =−∇kU +uk (qk )+ηk (t ) (3.1)

for the bead positions qk = (xk , yk , zk )T , where u(q) represents the shear flow. Interac-

tions with solvent particles are modeled by a random force with correlations 〈ηαk (t )ηβl (t ′)〉 =p
2 δkl δ

αβ δ(t − t ′), where upper indices label spatial components. The potential energy

U = Unb +Ub +Uwall is split into the nonbonded short-ranged Lennard-Jones pair poten-
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tials Unb = εLJ
∑

k<l

[
r−12

k,l − 2r−6
k,l

]
, bonded interactions Ub = κ

2

∑N−1
k=1

(
rk+1,k − 1

)2
that con-

nect the nearest neighboring beads, and repulsive short-ranged interactions of the wall

Uwall = εwall
∑N

k=1 z−12
k . Here rk,l is the distance between the kth and l th bead, εLJ = 2.3 deter-

mines the strength of the nonbonded potential, κ= 100 is the effective spring constant, zk the

z-component of the kth bead and εwall = 2 the strength of the wall repulsion. The polymer

is grafted onto the planar surface (the x-y plane with z = 0) by fixing the position of the first

bead to q1 = (0,0,0.5). All quantities have been nondimensionalized by rescaling lengths

with the bead diameter σbead and time scales with the characteristic monomer diffusion time

σ2
bead/(4D). Numerical values for the strain rate γ̇ thus correspond to the Weissenberg number.

The polymer is driven into a nonequilibrium steady state through simple shear flow. While

some scaling relations depend on hydrodynamic interactions [4, 148], the qualitative behavior

of the cyclic motion does not and in the following we neglect hydrodynamic interactions. As

flow profile we choose

uk (qk ) = γ̇(z − zc )ex , (3.2)

where γ̇ is the strain rate and zc is the z component of the center of mass of the polymer.

We found that this shift of the flow stabilizes the globular and stretched configurations as

it increases the effective barrier for folding/unfolding and thus leads to a better separation

between globular and extended states. Qualitatively, the same effect would be expected

when including hydrodynamic interactions with the wall. Our conclusions do not depend

on this detail. Although simplified, this model reproduces the cyclic dynamics found in

experiments [40]. A schematic illustration of the simulation setup and the cyclic motion of the

polymer is shown in Figure 3.1(a).

Figure 3.1 – Polymer in shear flow. (a) Illustration of polymer dynamics in shear flow. Due
to the shear flow ux (z), the polymer features cyclic folding and unfolding events. (b) Mean
end-to-end distance 〈Ree〉 as a function of strain rate γ̇. For γ̇ = 1.6 (green circle) the inset
shows an exemplary time series. Also shown are two snapshots for the globule (bottom) and
extended polymer (top).

The solvent flow drives the polymer away from thermal equilibrium, which is reflected by the
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nonvanishing entropy production rate [125]

〈Ṡtot〉 =
N∑

k=1

〈
uk (qk ) ·∇kU

〉= γ̇〈σxz〉 (3.3)

with off-diagonal stress σxz of the polymer.

A reasonable order parameter describing the folding and unfolding of the polymer is the

relative end-to-end distance

Ree ≡ 1

N

∣∣x0 −xN
∣∣, (3.4)

where Ree = 1 corresponds to a straight line of touching beads. We perform computer simu-

lations for multiple values of γ̇, see Fig. 3.1(b). We find different behaviors of 〈Ree〉 that we

categorize into three regimes. For γ̇. 1 the polymer remains collapsed, while for γ̇& 2.2 it

is dominantly found in elongated conformations. For intermediate strain rates the polymer

exhibits transitions between globular and elongated conformations, which was also found

in similar simulations for free polymers [4] and grafted polymers [82, 39] under shear. The

exemplary time series for γ̇= 1.6 in the inset of Fig. 3.1(b) shows a clear separation of both

states with random lifetimes and fast transitions.

3.2 Nonequilibrium Markov state model of the polymer dynamics

Our goal is to construct and coarse grain a dynamically consistent NE-MSM following the

procedure introduced in the previous chapter. To capture as many folding and unfolding

events as possible we choose in the following the strain rate γ̇= 1.6.

We start by discretizing the configuration space, which is given by the full set of coordinates of

all beads (xk , yk , zk ) yielding a total of 3N = 150 dimensions, employing the k-means clustering

algorithm. The configuration space is discretized by k = 500 centroids with centroid positions

Rk . From the count matrix, we estimate the transition matrix T (τ = 1) according to a lag

time analysis (not shown), and convert it to a rate matrix W [see eq. (1.51)]. Knowing the rate

matrix, we determine the stationary distribution π and probability fluxes, e.g.,Φi
j =W i

j πi .

Next, we apply the cycle decomposition [cf. section 2.2.1] returning 5192 nontrivial cycles and

their cycle weights, together recovering 95% of the total entropy production rate.

To make progress, we apply a PCA to reduce the centroid’s dimensionality. Already the first

principal component M (1) recovers 94% of the variance of the input data, i.e.,

λ(1)
PCA∑

i λ
(i )
PCA

≤ 0.94, (3.5)

where λ(1)
PCA is the eigenvalue corresponding to the first principal component.
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Similar to the previous chapter, we project the centroid coordinates onto the principal compo-

nents

R̃k = MRk , (3.6)

where we consider only the two largest components, effectively reducing the 150-dimensional

centroid positions Rk to two-dimensional positions R̃k . Figure 3.2(a) depicts the projected cen-

troids, while their colors indicate the end-to-end distance [eq. (3.4)], illustrating the similarity

between M (1) and the end-to-end distance.

Figure 3.2 – Configuration space (γ̇= 1.6) and fuzzy partition coefficient. (a) Scatter plot
of the normalized projections of all centroids onto the two largest principal components
(M (1), M (2)). Colors indicate the end-to-end distance Ree. (b) The fuzzy partition coefficient
(FPC) computed for multiple cycle communities. The best result is obtained for three commu-
nities followed by a slightly lower value for five communities.

Centroids with small (negative) values for M (1) correspond to globular configurations (they

contribute little to the observed variance of positions), while large (positive) values correspond

to stretched configurations. The second component indicates the variance within these states.

Both globular and stretched configurations show larger fluctuations, whereas the intermediate

states with M (1) ∼ 0 exhibit less fluctuations. Hence, the PCA reproduces the expected, typical

picture of two basins with intermediate transition states.

Employing the definition of the cycle center, diameter and affinity, see eqs. (2.17),(2.18) and

(2.7), every nontrivial cycle is described by the tuple (c(1)
α ,d (1)

α , Aα) spanning the cycle space.

We discard the remaining dimensions of the cycle center and diameter (c(2),d (2)), because

their absolute values are negligible in comparison with (c(1),d (1)).

3.2.1 Cycle space

The cycle space is illustrated in Figure 3.3, clearly showing that cycles are not distributed

randomly. In more detail, many cycles have a small diameter d (1)
α but many different cycle

centers c(1). Following the nomenclature of the previous chapter, see section 2.4, these cycles

are identified as local cycles. The group of cycles exhibiting larger diameters are accordingly
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3.2. Nonequilibrium Markov state model of the polymer dynamics

identified as global cycles. In principal, the same classification holds when taking the cycle

affinities into account, i.e., cycles exhibiting large cycle affinities are identified as global cycles,

while cycles with low cycle affinities are identified as local cycles.

The next step is to group cycles together forming cycle communities for which we normalize all

cycle space dimensions by their variance and employ the c-means algorithm [cf. section 2.4].

Figure 3.2(b) depicts the fuzzy partition coefficient (FPC) for a different number of communi-

ties. The largest FPC is found for k = 3 cycle communities followed by a slightly lower value for

k = 5.

To illustrate the difference in the detected cycle communities, Figure 3.3(a) and (b) displays

the cycle space for three and five detected communities, respectively. For k = 3 the c-means

algorithm detects two cycle communities (blue and green) including local cycles and one

cycle community (red) including global cycles. Moreover, the cycles of the blue community

contain centroids associated with globule (coiled) conformations, while the green community

is associated with stretched configurations. The cycles of the red community are connecting

both regions in configuration space and thus are responsible for the folding and unfolding

transitions.

Figure 3.3 – Cycle space (γ̇= 1.6). (a) Scatter plot of cycle center vs. the cycle diameter, and
cycle affinity vs. cycle center for k = 3 cycle communities. Colors represent cycle communities,
while gray points indicate no community. (b) The same plots as for (a) but for five cycle
communities. Black points indicate the cycle representatives.

A similar picture is obtained when grouping all cycles into five cycle communities. Here

the blue, green and red colored communities are basically the same as determined for k = 3

cycle communities. The additional purple and cyan communities include global and local

cycles, respectively. From Figure 3.2(a) we understand that the cyan colored local cycles with

c(1) ≈ 0 are located at intermediate end-to-end distances (M (1) ≈ 0) and therefore contain

half-stretched configurations. Furthermore, the purple colored global cycles exhibit smaller

cycle diameters than the red community but larger cycle centers, suggesting that purple cycles

connect half-stretched and fully extended configurations.

Although the minimal number of cycle communities accounting for the collective folding and

unfolding dynamics of the polymer is three, we choose k = 5 communities in the following,
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Chapter 3. Polymer in shear flow

which allows to capture the dynamics of the polymer in more detail.

3.2.2 Community representatives and coarse graining

In the next step for constructing a coarse-grained NE-MSM, we need to find suitable commu-

nity representatives, delete all remaining cycles and rescale all nonzero transition rates. Here

we employ the stochastic algorithm, see section 2.5.2, returning a coarse-grained NE-MSM

including five nontrivial cycles. The stochastic algorithm ensures that the rate matrix W cg

preserves the slow time scales of the system by mapping MFPTS. In particular, all MFPTs

between sets of configurations that are part of local communities are preserved. The positions

of the determined community representatives in cycle space are highlighted by black dots in

Figure 3.3(b).

Figure 3.4 – Transition network in configuration space using the normalized projections onto
the two largest principal components before (a) and after removing all triangle and bridge
states (b). Symbols represent centroids, while lines indicate cycles with arrows [(b) only]
pointing in the direction of the net flux. Colors match the community colors as shown in
Figure 3.3.

At this stage the coarse-grained NE-MSM still contains many states since a single cycle can

traverse hundreds of states. The community representatives that form the coarse-grained NE-

MSM are depicted in Figure 3.4(a). The important point is, however, that the coarse-grained

model has lost much of its original complexity as it now contains only a few cycles. We can

thus further reduce the number of states. To this end, we identify two dominant motifs, which

we refer to as bridge and triangle states. Both motifs include states that have exactly two

neighbors.

3.2.3 Coarse graining of triangle and bridge states

Bridge states

To coarse grain bridge states [state 1 in Figure 3.5(a)] we form a new connection between the

two neighboring states [state 0 and 2 in Figure 3.5(a)]. Similar to the rescaling of community

representatives, the rescaling algorithm for bridge states, more precisely the new transition
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3.2. Nonequilibrium Markov state model of the polymer dynamics

rates Ŵ 0
2 and Ŵ 2

0 , have to fulfill the following conditions:

(i) The new-formed edge affinity balances the lost edge affinities, i.e., Â0
2 = A0

1 + A1
2.

(ii) No probability current is lost, i.e., Ĵ 0
2 = J 0

1 = J 1
2 .

(iii) The produced medium entropy of the new-formed transition balances the lost medium

entropy production, i.e., log
(
Ŵ 0

2 /Ŵ 2
0

)= log
(
W 0

1 /W 1
0

)+ log
(
W 1

2 /W 2
1

)
.

(iv) Edge affinities and medium entropy production of the remaining part of the network is

preserved. i.e., Âi
j = Ai

j and log
(
Ŵ i

j /Ŵ j
i

)= log
(
W i

j /W j
i

) ∀i , j 6= {
0,1,2

}
.

Figure 3.5 – Illustration of the bridge and triangle state coarse-graining approach.
(a) Bridge state: After deletion of state 1 the other states are directly connected (dotted arrow).
(b) Triangle state: After deletion of state 1 the existing connections 0 ↔ 2 are modified. The
arrows point in the direction of the probability currents.

Making use of condition (ii) and (i), i.e.,

Ĵ 0
2 = J 0

1 = Φ̂0
2 − Φ̂0

2 =Φ0
1 −Φ0

1 and log
(

Â0
2/kB

)= Φ̂0
2

Φ̂2
0

= Φ0
1Φ

1
2

Φ1
0Φ

2
1

,

the new probability fluxes follow as

Φ̂2
0 =

Φ0
1 −Φ1

0(
Φ0

1Φ
1
2

Φ1
0Φ

2
1

)
−1

and Φ̂0
2 =

Φ0
1 −Φ1

0(
Φ1

0Φ
2
1

Φ0
1Φ

1
2

)
−1

. (3.7)

Inserting condition (i) in condition (iii)

Ŵ 0
2

Ŵ 2
0

= Φ̂0
2

Φ̂2
0

π̂0

π̂2

!= W 0
1 W 1

2

W 1
0 W 2

1

= Φ0
1Φ

1
2

π0π1

π2π1

Φ1
0Φ

2
1

= Φ̂0
2

Φ̂2
0

π0

π2
, (3.8)

we find that condition (iii) is fulfilled if the ratio between the two probabilities π̂0/π̂2 =π0/π2

is preserved. Rescaling π0 and π2, however, requires the rescaling of all other probabilities πi

as otherwise condition (iv) is violated. With the same reasoning as shown for the rescaling

algorithm introduced in section 2.5.1, all other probabilities are rescaled by π̂i = π̂ j
πi
π j

with∑
i π̂i = 1.
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One should note that condition (iv) is also the main difference between our approach and the

one discussed in ref. [8]. While in our adaptation the probability distribution of the complete

network is changed, Altaner et al. change it only locally (π0 and π2) and hence absorb π1 into

π0 and π2. The disadvantage of the latter is that condition (iv) is not preserved and, when

using the coarse-graining approach iteratively, accumulation of probability in single states

might occur, which leads to unphysical results.

Triangle states

For the coarse graining of triangle states [state 1 in Figure. 3.5(b)] we consider all cycles that

contain the motif 0 → 1 → 2. We modify these cycles by replacing the edges 0 → 1 → 2 with a

new edge 0 → 2. To be thermodynamically consistent the modified cycles have to fulfill the

following conditions:

(i) All nontrivial cycles and their entropy production rates, i.e., sα =ϕαAα are preserved.

(ii) All edge affinities Ai
j not involving state 1, in particular A0

2, are preserved.

(iii) The medium entropy produced for all transitions not involving state 1, i.e.,

σi
j = kB log

(
W i

j /W i
j

)
, are preserved.

These conditions are very similar to the conditions formulated for the rescaling algorithm for

the community representatives [cf. section 2.5.1] and thus it is not surprising that the same

rescaling algorithm can be applied to remove triangle states. Note, however, that through

restriction (i) it is not necessarily possible to coarse grain all found triangle structures. Assume,

for instance, that the modified cycle coincides with an already existing cycle, then the rescaling

is not unique anymore and entropy production is destroyed as only one out of two cycles

survives.

Given a system with many bridge and triangle states, as illustrated in Figure 3.4(a), the general

approach for removing all possible bridge and triangle states is to first remove iteratively all

bridge states, then remove iteratively all possible triangle states and finally remove iteratively

all new-formed bridge states. Figure 3.4(b) shows the final coarse-grained transition network

projected onto the two largest principal components after removing all possible bridge and

triangle states.

3.2.4 Final coarse-grained NE-MSM

The final coarse-grained NE-MSM for strain rate γ̇= 1.6 is shown in Figure 3.6. After removing

the bridge and triangle states the transition network contains 15 states (centroids). The collec-

tive rates for folding and unfolding of this coarse-grained model agree with those obtained

from the full Markov model by construction. Moreover, the remaining five cycles now allow

detailed insights into the relevant pathways in nonequilibrium. The three local cycles are
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3.2. Nonequilibrium Markov state model of the polymer dynamics

composed of three states, the minimal number for a nontrivial, entropy-producing cycle.

The blue and green cycle connect stable globular and stretched configurations, respectively.

The cyan cycle represents a metastable intermediate of half-stretched configurations that do

not unfold correctly but quickly fold back to the intermediate. The global purple cycle also

contains half-stretched configurations (structurally similar to the cyan colored cycle) but here

the unfolding reaches the final stretched states before returning to their half-stretched origin.

Finally, the red cycle represents the full transition from globule to stretched configurations

and back.

Figure 3.6 – Final NE-MSM for γ̇= 1.6. Transition network of the polymer dynamics with 15
centroids (filled circles) and five cycles. The colored states green, blue, and cyan correspond
to the colors of the local cycle communities shown in Figure 3.3(b). States with a black border
are structurally very similar and constitute the transition ensemble. The arrows point in the
direction of probability currents (net flux), while the arrow widths represent the magnitude of
currents. On average, the polymer dynamics follows the direction of the arrows. Arrow colors
red and purple correspond to the global cycles.

The five states (3,4,5,12,13) describing intermediate, half-stretched configurations are very

close in configuration space, see Figure 3.4(b). They constitute the analog of the transition

ensemble through which the folding/unfolding has to proceed. In nonequilibrium, however,

the folding and unfolding processes follow different paths through this narrow region of

configuration space. The globule to half-stretched transition proceeds along 2 → 4 (with

state 4 belonging to the cyan cycle), whereas the reverse half-stretched to globule transition

proceeds along 13 → 14 → 2, with states 13 and 14 belonging to the purple cycle. The cycle

topology thus reveals the dynamical trapping of the polymer in an intermediate, which cannot

be captured by structural information alone. Employing order parameters like distances in

configuration space or lifetimes to identify mesostates will clearly miss this important feature
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of cyclic nonequilibrium dynamics.

Another question that we can address is dissipation, the role of which for biomolecular

processes has been investigated recently, e.g., for self-replication [41] and in the activation of

signaling proteins [147]. The rate of dissipated heat q̇l = Sl /T created in each cycle community

is proportional to their respective entropy production rate. Our analysis reveals that both

the green and blue cycles are equally responsible for about 30% of the total dissipated heat,

while the cyan, purple and red communities produce 5%, 15% and 50%, respectively. The

latter is caused by the large conformational changes (folding and unfolding process) of the

polymer. The blue and red cycles, on the other hand, do not exhibit large conformational

changes, therefore, the conformational changes must be on very short time scales, which is

confirmed by the large probability currents shown in Figure 3.6.
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4 Building Markov state models for
periodically driven nonequilibrium
systems
By now, we discussed how to construct nonequilibrium Markov state models for systems

driven into a NESS via time-independent driving mechanisms. Another possibility to reach a

NESS is, however, to drive a system periodically in time. Time periodic driving offers a variety

of applications, for example molecular systems can be probed and even steered by exposing

them to oscillating electromagnetic fields [11, 24, 42] or by applying periodically external

mechanical forces [22, 91].

In this chapter, we discuss two methods of how to construct NE-MSMs for periodically driven

systems. We then apply both methods to two example systems and study their response to

different oscillation periods.

4.1 Periodic Driving

We start by assuming that the system of interest is driven out of equilibrium due to a time-

dependent oscillating protocol λ with period T , i.e., λ(t) =λ(t +T ). For now we restrict the

protocol to act on the dynamics via an explicitly time-dependent potential, i.e., U (λ(t +T )) =
U (λ(t )). As a paradigmatic description for the time evolution of the system, we consider over-

damped Langevin dynamics or rather its associated Fokker-Planck equation [cf. section 1.1.6],

i.e.,

∂ρ(t )

∂t
=W ρ(t ) with W =

[
D ∆+

(
−∇U

(
λ(t )

)
/γfric

)
·∇

]†

, (4.1)

although the same argumentation holds for thermostated Hamiltonian as well as general

Langevin dynamics. Due to the periodicity of λ, the adjoint Fokker-Planck generator and

its space discretized rate matrix become periodic in time too, i.e., W (t) = W (t +T ). The

corresponding master equation reads

∂pT(t )

∂t
= pT(t ) W (t ), (4.2)
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Chapter 4. Building Markov state models for periodically driven nonequilibrium systems

while its solution is given by

pT(t ) = pT(0) K (t ). (4.3)

Here K (t ) ∈RN×N is the fundamental matrix propagator solving

∂

∂t
K (t ) = K (t ) W (t ) (4.4)

with K (0) = 1. For fixed protocol λ, the rate matrix does not depend on time and thus the

solution of eq. (4.2) is given by pT(t ) = pT(0) exp
(
W t

)
.

Solving eq. (4.4) for general time-dependent protocols λ(t) requires a numerical solution,

returning for every point in time another matrix K (t ).

4.1.1 Floquet theory

If the protocol is periodic in time [λ(t +T ) = λ(t)], however, we can make use of Floquet’s

theorem stating that the solution of eq. (4.4) can be split into a periodic and nonperiodic

part [78], which reads

K (t ) =Q(t ) exp
(
W̃ t

)
with Q(t +T ) =Q(t ). (4.5)

Together with eq. (4.3), the time-dependent probability distribution follows as

pT(t ) = pT(0) Q(t ) exp
(
W̃ t

)
. (4.6)

Here the time-independent matrix W̃ is of particular importance as it describes the long-term

evolution of the system and is at the center of our subsequent investigation. Because of the

probability conserving characteristics of the rate matrix W (t), the matrix W̃ also conserves

probabilities and hence has the form of an effective time-independent rate matrix. In the

following we introduce two different approaches how to approximate W̃ .

4.1.2 Approximating the rate matrix W̃

Direct approach

The first approach, which we refer to as direct approach, was first introduced by Wang et

al. [144]. Here we follow the standard Markov state modeling procedure as introduced in

section 1.2. Therefore, we use trajectories from MD simulations [λ(t ) is incorporated in the

dynamics] to sample the configuration space, discretize it, for example by employing k-means

clustering, and estimate all relevant transition probabilities and microscopic rates. The only

restriction is that the chosen lag time must be in multiples of the period, i.e., τ = nT with
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n ∈N. To show this, consider eq. (4.5) for t = nT ,

K (nT ) = Q(0)︸︷︷︸
=K (0)=1

exp(W̃ nT ) = K n(T ). (4.7)

Thus, the probability distribution for multiples of T is given as

pT(nT ) = pT(0) K n(T ). (4.8)

The estimated matrix propagator K (T ) can be identified as time-discrete transition matrix

[to avoid confusion we keep K instead of T ], i.e., K i
j ≥ 0 and

∑
j K i

j = 1. Employing eq. (1.51),

K (T ) is converted [see eq. 1.51] to the desired time-independent rate matrix W̃dir, where the

subscript denotes the direct approach.

Indirect approach

For the second approach, which we refer to as indirect approach, consider eq. (4.2) where

the rate matrix depends on time via the protocol λ(t), i.e., W (t) = W
(
λ(t)

)
. When freezing

the protocol at time t = tk , that is, λ(tk ) ≡λk , the solution of eq. (4.2) reaches its steady state

distribution for t →∞, i.e.,

πT(λk ) W (λk ) = 0. (4.9)

Moreover, each W (λk ) fulfills the detailed balance condition
[
W i

j (λk )πi (λk ) =W j
i (λk )π j (λk )

]
as for every fixed value λk the dynamics is governed by a potential U (λk ) that does not depend

on time anymore. In other words, the rate matrix for every single point in time is governed by

equilibrium dynamics obeying detailed balance. Principally, for every λk the configuration

space of the system can be sampled by employing MD simulations and the microscopic rate

matrices W (λk ) can be estimated. In practice, however, when λ(t ) is a continuous function it

has to be approximated by a finite number of λk ’s.

Once a set of matrices
{

W (λk ) | k ∈N}
is obtained, W̃ indir can be computed by solving eq. (4.4)

for K (t = T ) through direct numerical integration and subsequent conversion of K (T ).

4.1.3 Remarks

Does W̃ fulfill detailed balance ?

In general, W̃ does not fulfill detailed balance, although the generator of the dynamics is

approximated by matrices fulfilling it. Instead, W̃ reaches a NESS causing time-independent

probability currents to flow through the system. In the limit of an infinitely slow protocol

λ(t ), detailed balance is recovered as the dynamics is in quasiequilibrium. Then, however, W̃

becomes zero and the change in dynamics is solely governed by Q(t ).
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Direct versus indirect approach

The advantage of the direct approach is its lower computational cost in comparison with the

indirect approach. The protocol λ(t ) is incorporated in the MD simulations and the NE-MSM

can be directly constructed from trajectories. The standard MSM machinery, however, can

only be partially applied since detailed balance, the keystone of equilibrium Markov State

Modeling, does not hold. Another disadvantage is that, since the shortest lag time for building

a NE-MSM is the period T , the dynamics on timescales shorter than T cannot be reliably

predicted.

The indirect approach, on the other hand, is computationally more expensive as for every

λk an individual MSM must be constructed and thus the number of required trajectories

grows proportional with the number of needed λk ’s. The single MSM, though, obeys detailed

balance and can therefore be constructed by employing well-developed algorithms. However,

the largest advantage is that, once λ(t) is sufficiently fine discretized and all corresponding

MSMs are obtained, new protocols can be constructed that contain the same λk ’s, i.e., the

ordering or individual duration, or both can be changed.

Of particular importance could be to change the period T in order to investigate its influence

on the dynamics. Within the indirect approach this is easily accomplished as only eq. (4.4)

needs to be solved for a new protocol. Note that the indirect approach does not require new

MD simulations. For the direct approach, on the contrary, every new protocol requires the

computation of new MD trajectories and the construction of new MSMs.

Nonconservative drift term

In eq. (4.1) the protocol λ(t ) enters directly into the potential energy term. It is straightforward

to extend both described approaches to include protocols not acting on the potential energy

but on a general drift term. The corresponding Fokker-Planck operator reads

W =
[

D ∆+
(
−∇U /γfric + f

(
λ(t )

)) ·∇]†

. (4.10)

The direct approach does not need any modification and can be applied as it stands. The only

consequence for the indirect approach is that the rate matrices W (λk ) do not necessarily fulfill

detailed balance, which has to be regarded for their construction.

4.2 Three-state system

We start by giving an intuitive and simple example demonstrating the direct and indirect

approach.
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4.2. Three-state system

Let λ(t ) be a two-step protocol given by

λ(t ) =
0, 0 ≤ t ≤ T /2

1, T /2 ≤ t ≤ T
and λ(t +T ) =λ(t ). (4.11)

The associated rate matrix W (t ) is given as

W (t ) =W (0) [
1−λ(t )

]+W (1) λ(t ) (4.12)

with

W (0) =

−1.8 0.3 0.4

0.6 −0.33 0.02

1.2 0.03 −0.42

 and W (1) =

−0.78 2.6 0.34667

0.26 −2.86 0.01733

0.52 0.26 −0.364

 (4.13)

fulfilling detailed balance and stationary distributions

π(0) =
(
0.1667 0.3332 0.5

)T
and π(1) =

(
0.38461 0.03846 0.57692

)T
. (4.14)

To illustrate the direct approach we compute the transition matrices K (0) and K (1) with lag time

τ= 0.01 from W (0) and W (1), respectively, generate a sufficiently long Markov chain according

to the protocol in eq. (4.11) with T = 0.4, and construct W̃ dir estimating the transition matrix

and converting it to the desired rate matrix.

In order to estimate the quality of W̃ dir, the time evolution of the probability distribution is

computed by numerically integrating the protocol with initial distribution p(0) = (0 0 1)T . The

results are shown in Figure 4.1(a), which clearly shows that the probability distribution pdir(t )

(red curves) follows the averaged oscillating distribution of the full solution. In Figure 4.1(b),

the same time evolution is shown but for the indirect approach. Again, the constructed

solutions (red curves) follow well the long-term behavior of the oscillating distributions,

although their numerical values do not follow the averaged oscillating curves but rather their

local extrema. To quantitatively compare the dynamics of the direct/indirect approach, we

compute time scales of the respective rate matrices

τdir = {1.060,0.447} and τind = {1.031,0.434}, (4.15)

which are in very good agreement.

Employing the indirect approach, the dynamics of the system for different protocol periods

can be examined. Aside from timescales, the current J flowing through the system and the

mean entropy production rate 〈Ṡ〉 are of special interest. Following the discussion of the

previous chapters, probability current can only flow in cycles. In a three-state system only

one entropy producing cycle exists which we identify as C = {0,1,2,0}. While its cycle weight

denotes the magnitude of the net flux flowing through the system, the cycle itself dictates the
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dynamics of the system, i.e., what state follows a given state most often in time.

Figure 4.1(c) shows the magnitude of the current J flowing through cycle 0 → 1 → 2 → 0 and

mean entropy production rate for different periods T . Interestingly, neither J nor 〈Ṡ〉 are

monotonic in T but rather show a distinct maximum at almost the same Tres, which is known

as stochastic resonance [51]. The meaning of Tres is that here the system shows the largest

magnitude of cyclic motion which coincides with a maximum in entropy production.

Figure 4.1 – Direct and indirect approach for the three-state system. (a+b) Time evolution of
all three state probabilities (left panel regular scaling and right panel semi-logarithmic scaling)
is shown in blue, green and black, respectively. Probabilities following the direct/indirect
approach are colored in red. The initial probability distribution is set to p(0) = (0 0 1)T. (c) The
current flowing through the cycle 0 → 1 → 2 → 0 and the mean entropy production rate for
different protocol periods T .

4.3 Alanine dipeptide in water

As a second example we examine alanine dipeptide in aqueous solution. Alanine dipeptide is a

small peptide that serves as a paradigm for computational studies for free energy calculations

and rate estimation of proteins [46, 29, 38, 140, 145].
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4.3.1 Computational details

To study alanine dipeptide in water we employ the molecular dynamics software Gromacs

5.1.2 [1]. The alanine dipeptide molecule is modeled with the CHARMM22/CMAP [86] force

field, dissolved in 362 TIP3P [71] water molecules and positioned in a cubic box (2.25 nm

box length) with periodic boundary conditions. Long-range electrostatics are treated using

particle mesh Ewald summation [36] with cubic interpolation and Fourier grid spacing of

0.16 nm. The cutoff for all short-ranged interactions is set to 1.0 nm. All hydrogen involving

covalent bonds are constraint by the LINCS algorithm [58]. For the time step is set to 2 fs. All

simulations are conducted in the NPT ensemble, for which the temperature is set to 300 K

using the velocity-rescaling [25] thermostat with τT = 1 ps. For isotropic pressure coupling we

employ the Parrinello-Rahman [102] barostat with τp = 2 ps.

4.3.2 Free energy landscape and driving protocol

One reason that makes alanine dipeptide a popular model systems is that its molecular

conformations are well characterized by its two dihedral angles φ and ψ, as illustrated in

Figure 4.2(a).

To drive the system out of equilibrium, a periodic protocol is employed that has the physical

meaning of an oscillating electric field caused, for example, by a laser beam. We assume

the electric field to follow a cosine function in time with amplitude A, period T and its

direction set parallel to the x-axis. We choose the electric field to point purely in positive x-

direction because the (φ,ψ) configuration space would otherwise be degenerated with respect

to positive/negative field directions, making it impossible to compare both approaches within

the (φ,ψ) space representation. The external electric field reads

E(t ) = E0

(
cos

(2πt

T

)
+1,0,0

)T ≡λ(t ) ex , (4.16)

with amplitude E0 set to 0.5 V/nm, which is similar to the study of Wang et al. [145] in which

it is set to 1 V/nm. To be able to apply the indirect approach, we discretize the continuous

protocol λ(t ) by 20 steps. Both continuous and discrete protocols are shown in Figure 4.2(b).

Because of the symmetry of the cosine function, however, the number of equilibrium MSMs

that must be constructed is reduced by a factor two. For the direct approach we conduct

computer simulations directly incorporating the oscillating electric field with period T = 5 ps.

Before comparing both approaches, we discuss the influence of a static electric field on the free

energy landscape. In Figure 4.2(c), we show the free energy landscapes [(φ,ψ) representation]

for three different field strengths. Without an applied electric field we identify three different

free energy basins known as the extended conformation of the backbone
[
C 7eq = {(φ,ψ) | −

180◦ ≤ φ ≤ 0◦ and 130◦ ≤ φ ≤ 180◦, −180◦ ≤ ψ ≤ −100◦ and 75◦ ≤ ψ ≤ 180◦}
]
, left-handed[

αL = {(φ,ψ) | − 180◦ ≤ φ ≤ 0◦ and 130◦ ≤ φ ≤ 180◦, −100◦ ≤ ψ ≤ 75◦}
]

and right-handed[
αR = {(φ,ψ) | 0◦ ≤φ≤ 130◦, −180◦ ≤ψ≤ 180◦}

]
α-helical conformers. Note that other studies
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split the C 7eq [144] or αR [46] regions, or both further [29]. The classification employed here is

the coarsest one still identifying the dominant conformations.

Figure 4.2 – Alanine dipeptide. (a) Exemplary atomistic structure of alanine dipeptide. (b)

Continuous and discretized protocol λ(t ) = 1
2

[
cos

(
2πt
T

)
+1)

]
. (c) Ramachandran plot of free

energies. From left to right: A constant electric field in positive x direction is applied with
magnitude 1V/nm, 0.5V/nm and 0V/nm. The colors in all three plots follow the same scale.

Already when applying static electric fields a significant shift in the depth of the free energy

basins can be observed. For E = 0 V/nm the C 7eq and αL conformations are equally dominant

while theαR conformations are comparatively rare. However, for E = 1 V/nm theαR structures

become more dominant while the C 7eq and αL structures become less frequent.

4.3.3 Construction of NE-MSMs

To understand the effect of the oscillating electric field, see eq. (4.16), we construct MSMs

according to the direct and indirect approach. To minimize statistical errors due to insuffi-

cient sampling, we conduct for the direct approach 1000 simulations with different starting

configurations and total length of 10 ns. For the indirect approach we create 500 equilibrium

trajectories for a total of 10 field strengths. To ensure that the system sufficiently equilibrated,

we neglect the first 2 ns of each trajectory. In order to construct the MSM, we refer to the

configuration space given by both dihedral angles (ψ,φ), as the dihedral angles have proven
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4.3. Alanine dipeptide in water

to be good order parameters. However, instead of directly discretizing both dihedral angles,

we employ the cos/sin projection for both angles, returning a four-dimensional space, i.e.,

(
φ

ψ

)
7−→


cos(φ)

sin(φ)

cos(ψ)

sin(ψ)

 . (4.17)

The benefit of doubling the dimensionality is that, in contrast to the dihedral space, the cos/sin

space offers a meaningful distance metric which allows the application of distance-based

clustering algorithms.

To further improve the configuration space representation, we employ the time-lagged inde-

pendent components analysis (TICA) [103].

Time-lagged independent component analysis

Similar to the principal component analysis [cf. section 2.4], TICA is an orthogonal linear

transformation additionally using temporal information. We define the time lagged covariance

matrices Σ(τ) for which the general eigenvalue problem is solved, i.e.,

Σ(τ)M =Σ(0)MD (4.18)

with Σi j (τ) ≡ cov
(
xi (t), x j (t +τ)

)
. Here xi (t) denotes the i th component of configuration

space, M the eigenvector matrix and D the diagonal eigenvalue matrix. Basically, TICA rotates

the reference coordinate system so that its new axes (TICA components) point in the direction

in which the slowest conformational changes occur. The projection is then obtained by only

regarding the dominant TICA components which correspond to the largest eigenvalues.

For alanine dipeptide the TICA input is given by the MD trajectories projected onto the four-

dimensional dihedral space [cf. eq. (4.17)]. Although the two largest largest components

recover already 96% of the kinetic variance, i.e.,

λ(0) +λ(1)∑
k λ

(k)
> 0.96,

we keep all four components as it allows the inverse transformation from TICA space back to

the original two-dimensional dihedral space.

To make progress, the transformed configuration space is clustered (using the k-means algo-

rithm) into 250 centroids [see section 1.2.1]. Centroid coordinates are labeled as R(i )
k indicating

the i th component in TICA space of the kth centroid, with k = 1. . .250 and i = 1. . .4.

Once all trajectories are mapped onto the centroids, we follow the direct/indirect approach to

estimate the transition rate matrix W̃ dir/W̃ ind. For the direct approach, the transition matrix
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K dir is first estimated for multiples of the lag time nT employing an estimator [136] that follows

Bayesian inference [cf. section 1.2.2] and then converted to the final rate matrix W̃ dir.

To construct the equilibrium MSMs (for a single field strength) needed for the indirect ap-

proach, we use the maximum likelihood estimator that directly estimates W (λi ) [cf. sec-

tion 1.2.4]. Once all W (λi ) are estimated, eq. (4.4) is solved for K ind(t = T ) and converted to

W̃ ind.

To compare both approaches, the time evolution of the probability distribution is moni-

tored for an exemplary cumulated probability: PαR (t ) =∑
i pi (t ) for (φ,ψ) ∈αR . As shown in

Figure 4.3(a), both approaches agree well with only a minor discrepancy of less than 1%.

Figure 4.3 – Time-dependent and steady-state probabilities. (a) Comparison of the time
evolution of the cumulated probability PαR following the direct and indirect approach for
T = 5 ps. (b-d) Cumulated steady-state probabilities are shown for all three metastable sets
C 7eq, αL and αR , respectively, and different driving periods. Vertical lines correspond to
equilibrium distributions for E = 1 V/nm (solid) and E = 0 V/nm (dashed).

Motivated by the good agreement of both approaches, we employ the indirect approach to

predict the conformational dynamics for different driving periods. We start by investigating the

influence of the period T on static properties, e.g., how the stationary probability distribution is

influenced, which is interesting if one wants to suppress or enhance specific conformations. In

Figure 4.3(b-d), the cumulated stationary probability distributions are shown for all metastable

sets (C 7eq, αL , αR ) and different driving periods T . The solid/dashed lines illustrate the

equilibrium distributions without electric field (E = 0 V/nm) and the strongest (E = 1 V/nm)

statically applied electric field, cf. Figure 4.2(c). The cumulated probabilities are defined by
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summing over the corresponding steady-state probabilities, i.e., PC 7eq =
∑

i πi for (φ,ψ) ∈C 7eq

and PαR /αL =
∑

i πi for (φ, psi ) ∈αR /αL . All three distributions saturate against a fixed value

for longer periods. More precisely, PαL and PαR increases while PC 7eq decreases for long T .

The absolute change, however, is moderate with only 10-15%. Interestingly, the behavior

of the stationary distributions in comparison with the equilibrium distributions does not

follow a general trend, e.g., PαL is located between both static distributions with PαL

(
E =

0V/nm
) < PαL < PαL

(
E = 1V/nm

)
. For PC 7eq the opposite trend is observed, i.e., PC 7eq

(
E =

0V/nm
)> PC 7eq > PC 7eq

(
E = 1V/nm

)
, and finally for PαR none is true as both constant values

are exceeded. In particular, the latter is of importance as it demonstrates the concept of

stochastic pumping [122, 12] in which an oscillating protocol is used to increase the occupation

of specific states above their equilibrium values.

4.3.4 Cycle space

To gain deeper insight into the nonequilibrium dynamics, the cycle-flux decomposition [see

eq. 2.8] is applied, returning all entropy producing cycles. These cycles are then represented by

their cycle centers c(i )
α , diameters d (i )

α and affinities Aα [see section 2.4], together forming the

cycle space. In contrast to the previous chapters, cycle centers and diameters are computed

along the two most dominant TICA components.

Figure 4.4 – Cycle space projections. Different cycle space projections are shown for T = 5 ps.
Colors indicate detected cycle communities.

In Figure 4.4, we show six exemplary projections of these five cycle space coordinates, illus-

trating that the distribution of cycles exhibits an internal structure (unassigned cycles are not

shown) . Our next task is to group cycles together forming cycle communities for which we
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employ c-means clustering, see section 2.4. For the shown example we find k = 5 communities

to fit the data best (highlighted by different colors).

To understand their significance concerning the change in molecular configurations, we

project all cycles back onto the molecular dihedral space (φ,ψ) and highlight all states that

are part of the same cycle community by the same color [see Figure 4.5]. Apparently, cycles

and thus states belonging to the red and blue community coincide with the metastable set

C 7eq and αL , respectively. The purple and green community, on the other hand, connect each

two metastable sets, with green cycles linking C 7eq and αL configurations and purple cycles

linking αL and αR configurations.

Figure 4.5 – Cycle projection in dihedral space. Centroids (shown in gray) of discretized TICA
space are projected back onto the original dihedral space (φ,ψ). Colored circles illustrate cen-
troids that belong to a specific cycle community, as shown in Figure 4.4. Centroids exhibiting
two different colors (edge and face color) are part of two cycle communities. The left panel
highlights all centroids belonging to local cycle communities, while the right panel highlights
centroids belonging to global communities.

4.3.5 Community representatives

At this stage we understand that cycle communities occur through the interplay between the

underlying potential energy landscape and the oscillating protocol that drives the system

out of equilibrium. The next task is to coarse grain the NE-MSMs for which we employ the

coarse graining strategy as introduced in section 2.5. To this end, all cycles forming a specific

community are lumped together into a single cycle, the community representative, and all

remaining cycles are deleted. The coarse graining is completed when all nonvanishing transi-

tion rates are dynamically consistently rescaled [see the rescaling algorithm in section 2.5.1]

while preserving the MFPTs between all three metastable regions (C 7eq,αL ,αR ).

The employed coarse graining approach makes it possible to further investigate how the

dynamics is altered when changing the driving period T . Therefore, we exploit the indirect
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approach and construct NE-MSMs for three different periods: T = 5 ps, 50 ps and 100 ps.

In Figure 4.6(a), the final coarse-grained rate matrices are visualized where colored cycles

are representatives of their respective community. For T = 5 ps the coarse-grained model

quantitatively confirms the cycle distribution shown in Figure 4.5. Interestingly, when the

period is changed, the communities and therefore their representatives change too. For

example, for T = 50 ps the former (T = 5 ps) local blue and red community vanish and two

new communities, now labeled in red and blue, appear. The blue community is of importance

as it encloses all three metastable setsαR →αL →C 7eq →αR . Moreover, for T = 100 ps no new

communities emerge. However, the former ( T = 5 ps) purple and red community disappear,

leaving two effective cyclic modes. The green cycle represents a clockwise rotation of the ψ

angle, whereas the blue cycle connects all three metastable sets in clockwise direction. Both

cycles are illustrated in Figure 4.6(b).

Figure 4.6 – Cycle representatives. (a) Final coarse-grained NE-MSM for different periods
of the applied electric field. Colors indicate the community representatives. (b) Illustration
of both remaining cycles for the driving period T = 100 ps. Dashed circles highlight the
conformational changes.

Finally, we want to give an outlook about the predictive power of the indirect approach,

by constructing new protocols with the same set of equilibrium MSMs that we used for

discretizing the cosine protocol (see Figure 4.2b). In Figure 4.7, we show from left to right: an

absolute value cosine protocol λ(t ) = ∣∣cos(2πt/T )
∣∣, a sawtooth protocol and a Gaussian pulse
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protocol. For the last two protocols it could be interesting, besides varying the period, to vary

the time between two signals.

Figure 4.7 – Periodic protocols. All shown continuous protocols are discretized by the same
set of equilibrium rate matrices, which is also used to discretize the protocol shown in Fig-
ure 4.2(b).
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5 Markov State Modeling for Force
Probe Simulations

Despite the fact that Markov state modeling has been proven to successfully bridge time

scales from nanoseconds up to milliseconds, it still relies heavily on the molecular dynamics

simulations conducted to sample the configuration space and the dynamics within. For

example, if certain critical configurations are not sampled, e.g., the natively folded structure of

a protein, the MSM does not contain any information about these configurations.

Even with the permanent increase in computational power, it is already a challenging task

to explore and sufficiently sample the configuration space of medium-sized systems, e.g.,

proteins with more than 100 amino acids. To overcome this restriction, one can employ

steered molecular dynamics simulations [55, 85, 65, 54] which accelerate the dynamics by

applying biasing potentials along one or multiple reaction coordinates.

Steered MD simulations are inspired, amongst others, from the field of force probe spec-

troscopy where much insight into molecular conformations has been gained through atomic

force microscopy [112, 27] and optical tweezer experiments [75, 28].

In these type of experiments, probing, for example, folding pathways of proteins can be

realized through applying an external force to individual amino acids, which is commonly

implemented by one of two different protocols: pulling or constant force (force clamp). In

pulling experiments, both ends of a molecule (e.g., proteins, DNA) are separated with con-

stant velocity or constant loading rate while recording the force-extension curve. Hence, the

system is driven out of thermal equilibrium but the free energy might be recovered from the

fluctuations [63, 32]. On the other hand, a constant force can be achieved through a feedback

loop which, in principle, generates an equilibrium ensemble of configurations at that force.

While this chapter focuses on steering molecular systems by constant-velocity protocols,

constant-force simulations will be covered in the next chapter.

In steered MD simulations the constant-velocity protocol is most frequently realized by con-
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necting two ends of a molecule with an additional harmonic potential

Ubias =β
κ

2

(
Ree(t )− [

vpull t +R0
ee

]︸ ︷︷ ︸
Rpull(t )

)2 =β κ

2

(
Ree(t )−Rpull(t )

)2
, (5.1)

which resting position moves linearly in time with pulling velocity vpull. The biasing strength

κ denotes the stiffness of the potential, Ree(t ) the distance along the bias is applied and R0
ee =

Ree(0) this distance at t = 0. We further define Rpull(t) ≡ vpull t +R0
ee as the absolute resting

position. Although the biasing potential accelerates the dynamics, for moderate system sizes

the accessible pulling velocities in computer simulations are of the order vpull ∼ 1 m/s, which

is more than 106 times faster than pulling velocities typically realized in experiments. This

large discrepancy makes it difficult to compare simulations and experiments, in particular as,

for example, the unfolding pathways of proteins can depend on the pulling velocity [150, 111].

In this chapter, we introduce the concept of Markov state modeling to steered molecular

dynamics simulations, bridging the gap between numerically and experimentally reachable

pulling velocities. We illustrate our methodology for the Calix[4]arene-catenane dimer, a large

organic complex.

5.1 Constant-velocity pulling

Incorporating an explicitly time-dependent biasing potential [see eq. (5.1)] causes the rate

matrix to be time-dependent. Due to this time dependency, the master equation

∂pT(t )

∂t
= pT(t ) W (t ) (5.2)

does not have a stationary solution. However, similar to the indirect approach of the previous

chapter, the biasing potential can be discretized Ubias(λ(t )) by discretizing the pulling proto-

col λ(t ) ≡ Rpull(t ), which allows the construction of equilibrium MSMs for given λ(t = ti ) =λi .

Here the protocol λ has the physical meaning of a pulling distance.

When the protocol λ is frozen in time, the biasing potential Ubias(t = ti ) together with the

regular potential energy U form an effective time-independent potential. Therefore, for a fixed

point in time the rate matrix W (λi ) can be estimated by employing the standard equilibrium

Markov state modeling machinery [cf. section 1.2]. Knowing the rate matrices W (λi ) allows

the master equation to be solved until final time tF . Most importantly, the pulling velocity

vpull only enters in the last step. Thus, changing vpull only requires eq. (5.2) to be solved again.

Before applying this procedure to a model system, we introduce the transition-based reweight-

ing method.
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5.2 The transition-based reweighting method

The transition-based reweighting method (TRAM) is an approach to connect multiple equilib-

rium ensembles, moving beyond well-established approaches such as the weighted histogram

analysis method [79]. Its main advantage is that rare events in one ensemble can become

less rare in another ensemble. TRAM exploits information about the probability distribu-

tion sampled in these “less rare” ensembles to improve estimations of rare events. Here we

only give a brief summary of the method and refer for a detailed description to the original

publications [90, 149].

We consider a system effectively described by an one-dimensional order parameter r (the

generalization to multi-dimensional order parameters is straightforward). Defining the di-

mensionless potential of mean force as βU (r ), the probability distribution is given by the

Boltzmann factor

µ(r ) = e−β U (r )

Z
, (5.3)

with Z denoting the partition function. If a biasing potential is applied along the order

parameter, the potential of mean force becomes U k (r ) =βU (r )+B k (r ) with index k denoting

the kth thermodynamic ensemble, and B k (r ) any differentiable function.

Here we define the biasing potential as

B k (r ) = β κ

2

(
r −Rk

pull

)2
, (5.4)

where r denotes the end-to-end distance Ree and Rk
pull the absolute pulling distance along the

direction of Ree. Both distances are illustrated for our model system in Figure 5.1(a).

The probability distribution of the kth ensemble is accordingly expressed as

µk (r ) = p(r )
e−B k (r )

Z k
, (5.5)

where Z k = Z
(
Rk

pull

)
is the partition function of the kth biased ensemble.

For every ensemble one can then construct equilibrium MSMs (obeying detail balance), for

which the configuration space is discretized and all observed transitions are counted, e.g., ck
i j .

For the purpose of readability, we switch temporarily the index notation, i.e., indices denoting

transitions are now given by subscripts, e.g., Ti j = T i
j .

When ignoring the information provided by the other ensembles, the transition probabilities

T k
i j can be estimated by employing the maximum likelihood estimator

Lk =∏
i , j

(
T k

i j

)ck
i j

, (5.6)

79



Chapter 5. Markov State Modeling for Force Probe Simulations

as introduced in section 1.2.2.

To infer information from multiple ensembles, a local equilibrium condition for the stationary

probability of states (volume cells) Si is defined as

µk
i (r ) =

µ
k (r ) Z k

Z k
i

r ∈ Si

0 else
, (5.7)

with

Z k
i = Z k

∫
Si

µk (r ) dr (5.8)

being the local partition function belonging to states Si . Eq. (5.7) holds for the milder and thus

advantageous assumption that the underlying MD simulations do not need to be sampled

from a global equilibrium distribution covering all Si ’s.

Connecting eq. (5.5) with eq. (5.6) and exploiting the local equilibrium condition [eq. (5.7)],

the TRAM maximum likelihood function follows as

LTRAM =∏
k

(∏
i , j

(
T k

i j

)ck
i j

)(∏
i

∏
r∈Sk

i

µ(r )
e−B k (r )

Z k
i

)
, (5.9)

where Sk
i denotes the set of all samples drawn from the kth ensemble and assigned to state

Si . Eq. (5.9) can be further simplified and efficiently numerically maximized. Here we use an

implementation provided in the PyEMMA software package [117].

5.3 Model system

As a model system we choose the calix[4]arene-catenane dimer that is composed of two cuplike

structures formed by four benzene molecules which are connected via alkyl groups in a ringlike

fashion [19]. A snapshot visualizing the atomistic structure is depicted in Figure 5.1(a), where

two groups of atoms are highlighted in red and blue which define the reference and pulling

group, respectively. In more detail, both groups include four carbon atoms of the methoxy

groups at the narrow rim of one of the calix[4]arene molecules. The distance connecting the

center of mass of each group is referred to as end-to-end distance Ree, which we adopt as

an order parameter. The spring illustrated in Figure 5.1(a) represents the biasing potential

defined in eq. (5.1). The pulling distance Rpull denotes the absolute distance between the

reference group and the spring or rather its resting position. Note that for Rpull = Ree the

biasing potential is zero and thus no biasing force is applied.

An exemplary trajectory illustrating the pulling protocol for vpull = 1 m/s is shown in Fig-

ure 5.1(b). At the beginning, the end-to-end distance follows linearly the pulling protocol,

although exhibiting a much smaller slope. At t ≈ 2.5 ns, the end-to-end distance jumps to

80



5.3. Model system

a larger value, indicating that the cuplike structures of the calix[4]arene dimer are largely

separated. After this sharp transition, Ree grows again linearly with the pulling protocol. The

calix[4]arene dimer is referred to as being in the closed state when both cuplike structures are

close together, and being in the opened state if they are largely separated. The abrupt jump in

Ree marks the transition between both states.

Figure 5.1 – Calix[4]arene-catenane dimer. (a) Atomic structure of calix[4]arene. The ref-
erence and pulling group are highlighted by a red and blue cup, respectively. During the
simulation, the pulling group is separated from the reference group by a moving harmonic po-
tential. (b) End-to-end distance and pulling protocol for vpull = 1 m/s. Additionally, sketches
illustrating the opened and closed conformations of the calix[4]arene dimer are shown.

Schlesier et al. [119, 118] found the sharp transition of the end-to-end distance to be consistent

with the rupture and formation of hydrogen bonds between urea groups and between urea

and ether oxygen groups, respectively. Moreover, the authors conducted many independent

simulations showing that the jumping time (when the molecule switches from the closed state

to the opened state) is indeed a stochastic event.

5.3.1 Modeling details

MD simulations

All molecular dynamics simulations are performed employing the Gromacs 5.1.2 [1] software

package. The calix[4]arene dimer is positioned in a 5.7 nm×5.7 nm×5.7 nm box with periodic

boundary conditions and filled with 827 mesitylene molecules. Molecular interactions are

described by the OPLS [72] force field. All simulations are conducted in the NPT ensemble, for

which the temperature is set to 300 K employing the velocity-rescaling thermostate [25]. To

maintain a constant pressure of one bar, the Parrinello-Rahman [102] barostat with τp = 2 ps

and compressibility of 8.26×10−5 bar−1 is used. Long-range electrostatics are treated using
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particle mesh Ewald summation method [36], while for van der Waals interactions a dispersion

correction [5] is applied. The cutoff for all short-ranged interactions is set to 1.4 nm. All

hydrogen involving covalent bonds are constraint by the LINCS algorithm [58], allowing a time

step of 2 fs.

Overall, we perform multiple pulling simulations including three different pulling velocities

vpull = {0.01 m/s,0.1 m/s,1 m/s}. For the construction of MSMs, we approximate Rpull 41

values (differing by 0.05 nm) placed between 2.0 nm ≤ Rpull ≤ 4.0 nm. Between 40-100 MD

simulations with an individual length of 20 ns are conducted for fixed (time-independent)

biasing potential Ubias
(
Rk

pull

)
[see eq. (5.1)]. Throughout all simulations, the stiffness of the

biasing potential is set to κ= 500 kJ/(mol·nm2).

All MD simulations have been conducted by Ken Schäfer.

Markov state modeling

We start by discretizing the one-dimensional order parameter Ree into 60 centroids (states)

with respective positions R i
ee equally placed between 1.35 nm and 2.2 nm. Next, the trajectories

for all 41 biasing potentials Ubias
(
Rk

pull

)
are mapped onto the set of discrete states and the

number of observed transitions is counted for each thermodynamic ensemble.

Employing TRAM [cf. section 5.2] with lag time τTRAM = 1 ns, a set of estimated transition

matrices T k is returned and converted, following eq. (1.51), to rate matrices W k .

5.3.2 Biased free energy landscapes and mean first passage times

Before reconstructing the pulling protocol, we examine the static and dynamical properties of

the time-independent rate matrices W k .

In Figure 5.2(a), selected free energies along the end-to-end distance are depicted for different

values of Rpull. The free energy landscapes follow from the stationary distributions πk via

F k
i =−kB T log

(
πk

i

)
and are rescaled by setting their respective value for Ree = 1.48 nm to zero.

For Rpull = 2.8 nm the global minimum coincides with the closed state [Ree < 1.5 nm], while

the remaining part of the free energy is rather flat [Ree > 1.7 nm]. For Rpull = 3.1 nm, on the

other hand, the global minimum is shifted toward the opened state [Ree > 1.8 nm] with the

closed state still exhibiting a distinct local minimum. Intermediate values of Rpull illustrate the

transition between both cases. In particular, for Rpull between 2.95 nm and 3.0 nm the opened

and closed state belong to equally deep minima, which are separated by the lowest free energy

barrier [at Ree ≈ 1.7 nm] found for all biasing potentials.

Knowing the rate matrices W k allows us to compute mean first passage times connecting

the closed and opened state. In more detail, all states with centroid positions Ree < 1.5 nm

constitute the closed state, whereas states with Ree > 1.8 nm constitute the opened state.
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Figure 5.2 – Free energy landscapes and mean first passage times. (a) The free energy land-
scape along the end-to-end distance Ree is shown for different positions Rpull (in nm) of the
biasing potential. (b) Mean first passage times between opened (Ree > 1.8 nm) and closed
(Ree < 1.5 nm) configurations for different positions Rpull.

The MFPTs between both sets of states are shown in Figure 5.2(b) for different positions

Rpull. When plotting in a semilogarithmic scale, the MFPTs follow a line and therefore are

in agreement with Kramer’s rate theory [see section 1.2.5], for which the free energy barrier

that separates both states dictates the transition time scale. Moreover, both MFPTs cross at

Rpull = 2.975 nm, which is in excellent agreement with the particular free energy landscape

exhibiting equally deep free energy minima.

One should note that both MFPTs cover time scales from tenth of nanoseconds up to tenth

or even hundreds of milliseconds, which is a remarkable result of the TRAM estimator, espe-

cially when taking into account that every MSM is constructed from a total of 2 µs or less of

accumulated trajectories.

5.3.3 Reconstructing the pulling protocol

Next, we reconstruct the pulling protocol λ(t) by approximating the time-dependent rate

matrix W (t ) with the set of time-independent rate matrices W (λk ), yielding an approximated

solution pMSM(t ) of the master equation, i.e.,

pT
MSM(tF ) = pT

0 +
N∑

k=0

∫ tk+1

tk

dt pT(t ) W (λk ). (5.10)

The pulling velocity vpull is then determined by

vpull = λ̇= λN+1 −λ0

tF
, (5.11)

where λk represents the kth pulling distance Rk
pull. As we cannot compare pMSM(t) with

the true solution, we compare the average jumping time obtained from pulling simulations

[cf. Figure 5.1(b)] with the jumping time following the reconstructed pulling protocol. In
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addition, the jumping time serves as a dynamical quantity which is in principle experimentally

accessible [66]. To make progress, we compute the time-dependent mean end-to-end distance

via

〈RMSM
ee (t )〉 =∑

i
R i

ee p i
MSM(t ) and 〈RMD

ee (t )〉 =∑
j

R j
ee(t ) (5.12)

for the Markov state modeling approach and for the pulling MD simulations, respectively.

Here 〈RMSM
ee (t )〉 is determined by computing the ensemble average, where R i

ee denotes the i th

centroid position [see section 5.3.1] and p i
MSM(t ) its associated probability at time t . For the

pulling simulations, 〈RMD
ee (t )〉 is determined by averaging over all conducted MD simulations.

Both time-dependent mean end-to-end distances are shown for vpull = 0.01 m/s in Fig-

ure 5.3(a). Although 〈RMD
ee (t )〉 exhibits small irregularities (we averaged over 22 MD trajecto-

ries), its general behavior agrees well with 〈RMSM
ee (t )〉, i.e., both show a continuous transition

between the closed and opened state. To quantify the jumping time τ∗, both curves are fitted

by

f (t ) = a0

2

(
tanh

(
a1 [t −τ∗]

)
+1

)
+b0 t +b1. (5.13)

The inverse jumping time 1/τ∗ then yields the unfolding rate.

Figure 5.3 – Mean end-to-end distance and unfolding rates. (a) The time-dependent mean
end-to-end distance is shown for vpull = 0.01 m/s, computed from 22 MD simulations (upper
panel) and computed from the NE-MSM (lower panel). The red curves follow a nonlinear fit
[see eq. (5.13)]. (b) Unfolding rate for different pulling velocities. A detailed description how
the unfolding rates are obtained is given in the main text. Upper panels show the detailed un-
folding rates for slow (left panel) and fast (right panel) pulling velocities. Solid lines represent
fits for vpull > 10−3 m/s (purple) and vpull < 10−6 m/s (green), while the black dotted line has
slope one.
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5.3. Model system

In Figure 5.3(b), we compare the unfolding rates for different pulling velocities vpull for both

approaches. The unfolding rates for vpull = {0.01,0.1} m/s following the discretized pulling pro-

tocol are in perfect agreement with the unfolding rates obtained from steered MD simulations.

Note that the fitting error is smaller than the marker. Unfortunately, we can only compare

unfolding rates for 0.01 m/s≤ vpull ≤ 0.1 m/s as slower pulling velocities become inaccessible

for brute-force MD simulations. Faster pulling velocities, i.e.,vpull > 0.1 m/s, on the other

side, become inaccessible for the Markov state modeling approach, which limitations we will

discuss at the end of this chapter.

Employing the discretized protocol, we determine the unfolding rates for pulling velocities as

low as vpull = 10−8 m/s. Albeit all unfolding rates plotted in log-log scale appear to follow a

straight line, a closer look suggests that for slower pulling the curve exhibits a different slope

(exponent) than for faster pulling. To quantify this difference, we fit the unfolding rates by

g (x) = g0 xa for vpull < 10−6 m/s and vpull > 10−3 m/s, respectively, which is illustrated in the

insets in Figure 5.3(b). The fitted exponents are

aslow = 0.999 and afast = 0.945, (5.14)

stating that for slow pulling the unfolding rates match the pulling velocities.

5.3.4 Limitations

Theoretically, the protocol λ(t) can be approximated for all pulling velocities. In practice,

however, for certain pulling velocities the discretization is not fine enough or the Markov

assumption is violated.

The upper limit for the pulling velocity is determined by two factors. First, for large values

of Rpull the sampled configuration space does not cover the full centroids space, for example

W (Rpull = 2.7 nm) ∈ R60×60 but W (Rpull = 3.6 nm) ∈ R52×52. For the latter, transition rates

linking centroids with lower values of Ree, i.e., Ree < 1.47 nm are missing. However, for

moderate and slow pulling velocities the error is negligible. When pulling too fast, on the other

hand, probability is trapped at small end-to-end distances. Second, one should note that the

set of rate matrices W k is estimated for a certain lag time. If the pulling velocity and thus the

final time tF (for which the master equation is solved) is shorter than the lag time, the Markov

assumption is not guaranteed to hold anymore.

The lower limit, on the contrary, is dictated by the slowest time scale of the set of rate matrices.

When the pulling velocity is lower than the slowest time scale, the reconstructed dynamics is

quasistatic and thus perfectly following the pulling protocol. However, for the true dynamics

this does not need to be the case. To determine the lower limit for a given discretization of

Rpull and set of recorded trajectories, we compute the intersection between both (slow and

fast pulling) fits [see insets in Figure 5.3(b)], for which we find v∗
pull ≈ 4×10−6.

To conclude, our approach is able to determine the unfolding rate for pulling velocities many
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orders of magnitude lower than accessible by brute-force MD simulations, which allows a

comparison with experiments.
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6 Unfolding dynamics of small peptides
biased by constant mechanical forces

In this chapter, we focus on the second type of force probe simulation: constant-force simula-

tions [100, 128, 17]. Instead of applying a time-dependent biasing potential, in constant-force

simulations the dynamics is accelerated through a time independent constant biasing force.

Its advantage is that all molecular interactions can be described by an effective Hamiltonian.

Therefore, constant-force simulations follow equilibrium statistical mechanics, allowing the

construction of equilibrium MSMs.

The biasing potential separating two ends of a molecule is expressed as

Ubias =−β f Ree, (6.1)

where Ree denotes the end-to-end distance connecting between both ends. The factor f

represents the strength of the biasing potential and will indicate different constant-force

ensembles.

Here we illustrate the application of equilibrium Markov state modeling to constant-force

simulations for two specific peptides.

6.1 Molecular dynamics simulation

For all MD simulations we employ the Gromacs 5.1.2 software package [1]. All simulations

are conducted in the NPT ensemble with temperature set to 300 K, for which the velocity-

rescaling [25] thermostat with τT = 1 ps is employed. For isotropic pressure coupling, we use

the Parrinello-Rahman [102] barostat with τp = 2 ps and compressibility of 4.5×10−5 bar−1.

Long-range electrostatics are treated employing particle mesh Ewald summation [36] with

cubic interpolation and Fourier grid spacing of 0.16 nm. All short-ranged interactions are

cutoff at 1.0 nm and all hydrogen-involving covalent bonds are restrained by the LINCS

algorithm [58]. The time step is set to 2 fs.
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Chapter 6. Unfolding dynamics of small peptides biased by constant mechanical forces

6.2 Example I: Deca-alanine

As a first example we choose the well studied peptide deca-alanine, which is an alpha-helical

forming model systems [57, 69]. To study how the folding/unfolding dynamics changes, a

constant-force is imposed between the center of mass of the N-terminus and the center of

mass of the C-terminus of the peptide, the distance between which defines the end-to-end

distance of the peptide.

We create 48 independent simulations from multiple starting configurations for four different

force magnitudes f = {0,5,10,15} kJ/mol·nm, see eq. (6.1), accumulating a total of 2−2.5µs per

force. The molecular interactions of deca-alanine are described by the CHARMM22/CMAP [86]

force field, while we employ TIP3P [71] water to model solvent interactions. The peptide is

positioned in a cubic box with 7.2 nm box length and periodic boundary conditions, solvated

by ' 12000 water molecules. To ensure that every trajectory is properly equilibrated we discard

its first 2 ns.

To construct a reasonable set of order parameters, we employ the TICA algorithm [see sec-

tion 4.3.3]. As original configuration space representation serving as input for TICA, we choose

all Cα pair distances which are separated by at least two residues and, additionally, all hy-

drogen bond distances between donor (nitrogen) and acceptor (oxygen) atoms that stabilize

alpha-helical structures. More precisely, we use the distance between C=O of the i th residue

and N–H of the (i +4)th residue. For this 34-dimensional configuration space, we keep the

first four TICA components exhibiting a cumulative kinetic variance > 92%. Together with the

end-to-end distance, the 5-dimensional reduced configuration space is discretized employing

the k-means clustering algorithm with 300 clusters.

After mapping the trajectories of all constant-force ensembles onto the reduced configuration

space and counting all observed transitions, we use TRAM [see section 5.2] for a lag time of

4 ns returning a fine-grained MSM for every ensemble containing 300 micro-states (clusters).

Figure 6.1 – Exemplary times
series of deca-alanine. All
three panels show the same
time series projected onto the
first TICA component (upper
panel), the second TICA com-
ponent (center panel) and end-
to-end distance (lower panel).
Detailed time series are illus-
trated by shaded lines, whereas
thick lines represent moving av-
erages.
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6.2. Example I: Deca-alanine

In Figure 6.1, an exemplary time series of the first two TICA components and the end-to-end

distance for deca-alanine is shown. First, note that more than two states are involved which

can be clearly seen in the time series of the first TICA component (upper panel) illustrated

by jumps between plateaus (metastable states) with different amplitudes. The time series

of the second TICA component offers less plateaus with more fluctuations (see the shaded

time series), while for the time series of the end-to-end distance (lower panel) plateaus are

insufficiently resolved. Additionally, fluctuations of the end-to-end distance are much stronger

as for the TICA components shown. The comparison of all three time series illustrates that for

deca-alanine both TICA components are better suited as order parameters than the end-to-

end distance of the peptide.

6.2.1 Configuration space

To gain insight into stable configurations of deca-alanine, we make use of the PCCA+ algorithm,

as introduced in section 1.3. In more detail, we employ the PCCA+ algorithm for the transition

matrix belonging to the unbiased ensemble and keep the assignment of metastable sets

throughout the other ensembles. The transition matrix shows a spectral gap between its 6th

and 7th largest eigenvalue (not shown) implying a time scales separation. To exploit this time

scale separation, we choose k = 6 as input parameter for PCCA+ algorithm.

In Figure 6.2, two projections of the discretized configuration space are shown along the

first two TICA components as well as along the first TICA component and the end-to-end

distance. While different colors indicate different metastable sets, gray centroids belong to

transition states. One issue arises here: Although the PCCA+ suggests 6 metastable sets, we

manually separate stretched configurations (light blue colored set) from unfolded/weakly

coiled configurations (brown set) as the former can be clearly identified by their end-to-end

distance. PCCA+ does not detect stretched configurations automatically because they are

temporally not well separated from the remaining unfolded configurations (brown set). These

remaining unfolded configurations are weakly coiled along the centered residues, while outer

residues can fluctuate freely. Large fluctuations of the outer residues can lead to hairpin-like

structures which are stabilized by hydrogen bonds of the outer residues (yellow set). Hairpin-

like structures are misfolded configurations acting as traps which slow down the folding

process. Other misfolded configurations are detected by the red, purple, blue and cyan colored

sets. All of these misfolded configurations have in common that at some residue the helical

structure is disturbed, e.g., coiled in the wrong direction and stabilized by hydrogen bonds

different from the ones guaranteeing the correct alpha-helical structure. Lastly, the green

metastable set represents correctly folded configurations.

6.2.2 Free energy landscape and unfolding/folding rates

To gain quantitative insight and to compare different constant-force ensembles, we compute

the free energy landscape along the end-to-end distance, which is obtained by computing
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Chapter 6. Unfolding dynamics of small peptides biased by constant mechanical forces

the stationary solution of the MSMs, i.e., Fi =−kB T logπi . Figure 6.3(a) (upper panel) shows

the free energy of every micro state with ( f = 10 kJ/mol·nm) and without constant-force bias

( f = 0 kJ/mol·nm). The global minimum for both ensembles is found at fmin ≈ 1.6 nm, which

corresponds to the alpha-helical structure.

Figure 6.2 – Configuration space of deca-alanine. Configuration space projected onto the
first and second TICA component (left panel) and onto the first TICA component and the
end-to-end distance (right panel). Circles correspond to centroids discretizing configuration
space (fine graining). Colored circles represent configurations belonging to metastable sets
with different colors corresponding to different metastable sets. An exemplary snapshot for
every metastable configuration is shown and related to its position in configuration space.
Gray circles represent transition states which are not assigned to any metastable set.

Although the position of the minimum is identical for both ensembles, their free energy

landscapes differ drastically. While for f = 0 kJ/mol·nm the free energy for shorter end-

to-end distances is lower than for elongated configurations, the opposite applies for f =
10 kJ/mol·nm where the free energy of elongated configurations is almost as low as for

folded ones. Furthermore, the maximal free energy difference is up to 25% higher for the

unbiased ensemble. To have a better comparison, we integrate out all dimensions except

the end-to-end distance. The results for all ensembles are shown in Figure 6.3(b) (lower

panel) for which the probability distributions are binned with a bin size of 0.15 nm. For

f = {0,5,10} kJ/mol·nm the global minimum is located at the same position as in Figure. 6.3(a).

However, for f = 15 kJ/mol·nm the global minimum is shifted (' 2.5 nm) toward the elongated

configurations.

Knowing the probability distribution for all ensembles, we determine the cumulated probabil-

ity of populating misfolded states [cyan, yellow, blue and purple colored states in Figure 6.2].

As show in Figure 6.4(a), all probabilities decrease drastically with increasing biasing force
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6.2. Example I: Deca-alanine

f . The sum over all misfolded probabilities (inset) equals approximately 17% without bias

and vanishes (less than 1%) for f = 15 kJ/mol·nm. Individually, cyan colored configurations

exhibit the largest population probability for f = 0 kJ/mol·nm (approx. 8%), followed by

yellow and purple colored configurations, with red and blue colored states being less impor-

tant. For f = {5,10} kJ/mol·nm the order is partially disturbed and lost (or not significant) for

f = 15 kJ/mol·nm.

Figure 6.3 – Free energy landscape of deca-alanine. (a) Scatter plot of free energy against
end-to-end distance of every individual centroid for f = 0 kJ/mol·nm (upper panel) and
f = 10 kJ/mol·nm (lower panel). (b) The free energy landscape integrated along the end-to-
end distance (bin size = 0.15 nm) is shown for the unbiased dynamics (upper panel) and for
all ensembles (lower panel) f = {0,5,10,15} kJ/mol·nm.

Figure 6.4 – Folding/unfolding rates and misfolded states of deca-alanine. (a) Occupation
probability of misfolded configurations for biased/unbiased ensembles. Colors match the
metastable sets shown in Figure 6.2. The inset shows the total percentage to occupy a mis-
folded state. (b) Inverse mean-first passage times between stretched (light blue) and correctly
folded (green) states for all constant-force ensembles.

Finally, folding/unfolding rates of deca-alanine are determined by computing inverse mean-

first passage times (MFPTs) between correctly folded (green) and stretched (light blue) config-
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Chapter 6. Unfolding dynamics of small peptides biased by constant mechanical forces

urations. Figure 6.4(b) shows both rates for all ensembles ranging from 7×10−4−4×10−2 ns−1

(unfolding) and from 2×10−2 −3×10−3 ns−1 (folding).

6.3 Example II: Beta-alanine

For the second example we choose the beta-peptide β-HALA8, which is an octamer containing

eight alanine residues. The biasing force is applied along the vector connecting the Cβ atoms

of the first and last residue, which we refer to as the end-to-end distance of the peptide. The

peptide is described by the GROMOS 53A6 force field [99]. Periodic boundary conditions

are imposed on the cubic simulation box (7 nm box length) which is filled with '12000

water molecules. We use the SPC water model [14] and the GROMOS 53A6 force field in

order to make our results comparable to previous studies [137]. We create 48 trajectories

from different starting configurations accumulating 2–2.5 µs of the constant-force ensembles

f = {0,2,5,10} kJ/mol·nm.

As an initial representation of the configuration space we select all Cβ distances excluding

the two closest neighbors, as well as all hydrogen bond forming donor-acceptor distances

that stabilize the beta-helical structure. More precisely, the distance between C=O of the i th

residue and N–H of the (i −2)th residue. This 21-dimensional space is reduced by TICA to

three effective dimensions (cumulative kinetic variance > 95%). Including the end-to-end

distance, a reduced four-dimensional configuration space representation is then discretized

into 300 micro-states employing the k-means clustering algorithm. To obtain the MSMs for

different field strengths, we apply the TRAM estimator for a lag time of 0.6 ns.

6.3.1 Configuration space

To visualize the reduced configuration space of beta-alanine, we show in Figure 6.5(a) sub-

spaces spanned by the first two TICA components and the first TICA component with the

end-to-end distance. Circles represent centroid positions with different colors distinguishing

different metastable sets. Metastable sets are again identified by applying the PCCA+ algo-

rithm to the unbiased transition matrix. Overall, seven different metastable sets are found

distinguishing correctly folded beta-helical structures (green), stretched configurations (light

blue), misfolded structures (cyan and red) and folding intermediates. Structures characterized

as folding intermediates are exclusively coiled along the centered residue (purple), coiled at

the N-terminus (blue) and unfolded but weakly stabilized by one or two hydrogen bounds

(brown), which also stabilize the correctly folded beta-helix. Similar to the configuration of

deca-alanine, stretched configurations are separated from unfolded configurations according

to their end-to-end distance.
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6.3. Example II: Beta-alanine

Figure 6.5 – Configuration space of beta-alanine. (a) Configuration space projection of the
first and second TICA component (upper panel), as well as the first TICA component and
end-to-end distance (lower panel) for f = 0 kJ/mol·nm. Colored circles indicate centroids
belonging to different metastable sets. Gray circles illustrate transition states that do not
belong to any metastable set. (b) Reactive transition network of unfolding pathways for the
unbiased dynamics. Each snapshot represents its metastable set [cf. (a)] while arrows indicate
the direction of net transitions and their thickness the transition frequency. (c) The same
reactive transition network as in (b) but for f = {5,10,15} kJ/mol ·nm.

6.3.2 Free energy landscape and unfolding pathways

In Figure 6.6(a), we show the free energy of every individual centroid plotted against the

end-to-end distance for the unbiased ensemble. Compared with the previous example [see

Figure 6.3(a)], the free energy landscape shows a rather broad minimal region between Ree =
1−1.5 nm coinciding with six out of seven metastable sets [cf. Figure 6.5(a)]. However, when

selecting the first TICA component, the free energy landscape exhibits three distinguishable

minima as shown in Figure 6.6(b) (upper panel) for which we have integrated out the remaining

configuration space components. The first minimum for t (1) ≤−2.5 belongs to correctly folded

structures. The second minimum at t (1) '−1.5 we identify as folding intermediates (purple

and blue colored structures) and finally the global minimum at t (1) ' 0.5 corresponds to

(brown) unfolded structures. Note that colors match the colored sets illustrated in Figure 6.5(a).

The free energy projection along the first TICA component, thus, reveals that the beta-helical

structure is thermodynamically unstable, which is hidden when only taking the end-to-end

distance into account.
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The lower panel of Figure 6.5(b) shows the same analysis but for all ensembles. Interest-

ingly, for f = {0,2,5} kJ/mol·nm all free energy landscapes are almost identical but for f =
10 kJ/mol·nm a noticeable change occurs. The free energy landscape between the first two

minima becomes rather flat, while a new minimum appears at t (1) ' −0.7 and the global

minimum is shifted to t (1) ' 0.7.

Figure 6.6 – Free energies and unfolding/folding rates of beta-alanine. (a) Scatter plot of
free energies against the end-to-end distance for f = 0 kJ/mol·nm. (b) Free energy landscape
projected and integrated along the first TICA component for f = 0 kJ/mol·nm (upper panel)
and for all ensembles f = {0,2,5,10} kJ/mol·nm (lower panel). All free energy landscapes are
adjusted with respect to the minimum for f = 0 kJ/mol·nm. An exemplary snapshot is shown
representing structures that correspond to the circled point of the free energy landscape for
f = 10 kJ/mol·nm. (c) Inverse MFPTs between correctly folded (green) and stretched (light
blue) configurations for all ensembles.

To obtain quantitative unfolding/folding rates, inverse MFPTs are computed connecting folded

and stretched configurations. Both rates are displayed for all constant-force ensembles in

Figure 6.5(c), ranging from 2.7×10−2 −5×10−3/ns (unfolding) and from 2×10−2 −2×10−1/ns

(folding).

Next, we quantify the importance of folding intermediates by determining unfolding pathways

of the peptide. To this end, we employ discrete transition path theory [106] identifying

and weighting pathways starting from folded and ending with stretched configurations. In

Figure 6.5(b), we show the transition network for the unbiased ensemble, where metastable

sets are represented by an exemplary snapshot and enumerated by colored labels with colors

matching the colors used in Figure 6.5(a). The arrows point in the direction of the reactive

flux with their width indicating the relative importance of its transition (the thicker the more

important). For example, the transition from state 1 to 4 illustrates that between 10% and

25% of all transition pathways – connecting folded and stretched configurations – run along
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6.4. Discussion

this transition. The main contribution is given by pathways containing folding intermediates,

while structures coiled at the N-terminus (dark blue) are less important.

Interestingly, pathways including misfolded configurations do not contribute (< 5%) to the

unfolding pathways indicating that these states act as kinetic traps. A similar picture is

obtained when applying the same analysis to the constant-force ensembles shown in Fig-

ure 6.5(c), although slight differences appear. For f = {5,10} kJ/mol·nm, for instance, the

transition from 1 → 2 vanishes. However, a new transition from 4 → 1 appears or rather

becomes more dominant. Moreover, the most dominant pathway changes from 1 → 3 → 5

for f = {0,2} kJ/mol·nm to 1 → 4 → 3 → 5 for f = {5,10} kJ/mol·nm. Numerical values for all

shown transitions are presented in Table 6.1.

Table 6.1 – Weights of transition pathways for the unfolding process of beta-alanine for all
constant-force ensembles. Transition labels match labels shown in Figure 6.5(b) and (c).

# transition f = 0 f = 2 f = 5 f = 10

1 → 2 8% 10% - -
1 → 3 45% 42% 46% 32%
1 → 4 31% 34% 42% 54%
2 → 3 8% 10% 7% 11%
3 → 5 74% 72% 74% 68%
4 → 2 - - 8% 10%
4 → 3 20% 22% 23% 26%
4 → 5 10% 11% 10% 18%

6.4 Discussion

6.4.1 Choice of order parameter

For both examples we showed that the end-to-end distance is not a well-suited order parame-

ter since many metastable sets cannot be distinguished solely by the end-to-end distance [cf.

right panel of Figure 6.2 and lower panel of Figure 6.5(a)] requiring an orthogonal order param-

eter. In the study of Hazel et al. [57], the authors come to a similar conclusion. In particular,

they investigate the folding dynamics for deca-alanine in vacuum and water, where a second

order parameter describing the alpha-helical content is employed yielding better insight

into the folding/unfolding pathways. Here we employed TICA as a semi-automated routine

creating a minimal set of orthogonal order parameters being able to accurately describe the

configuration space. Besides alpha-helical/beta-helical structure, the chosen TICA space is

able to resolves misfolded configurations, see upper panels of Figure 6.2 and Figure 6.5(a).
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6.4.2 Free energy landscapes and metastable configurations

To estimate the transition times between two different types of states, e.g. stretched and folded

configurations, a commonly used method is to determine the potential of mean force (PMF)

by umbrella sampling methods [115, 101]. Therefore, many umbrella potentials are placed

along one or multiple order parameters. Using more than one order parameter becomes

quickly very expensive, making it very difficult to accurately determine a PMF when a “good”

order parameter is not known beforehand or does simply not exist. However, the more complex

(larger) a peptide/protein is, the higher the order parameter space becomes if essential energy

barriers should not be missed. Furthermore, we want to emphasize that umbrella sampling

along only the end-to-end distance is prone to errors as it is easy to miss certain metastable

sets. For example, in Figure 6.2 the hairpin (yellow) and wrongly coiled (cyan) structures

share a common end-to-end distance. The barrier between both states is, however, very large

because the hairpin structure has to be extended first.

To compare the unbiased PMF of deca-alanine with previous studies, we compute the PMF

along the end-to-end distance [see Figure 6.3(b)]. While its global minimum is found at

1.46 nm in ref. [57] and at around 1.4 nm in ref. [69], we find it at 1.6 nm which agrees well

when regarding the different definitions of the end-to-end distance. The general form of the

PMF is in very good agreement with ref. [69], but differs from ref. [57] due to the different

force field used. More precisely, the authors employed the CHARMM36 force field which

destabilizes the alpha-helical structure.

The PMF along the first TICA component of beta-alanine [cf. Figure 6.6(b)] reveals three stable

regions corresponding to folded structures, an intermediate and weakly folded structures with

the latter being the most dominant region. When only considering the end-to-end distance

[see Figure 6.6(a)], the integrated PMF decreases monotonically (data not shown) in agreement

to the results obtained by Uribe et al. [137]. Moreover, in their study the authors employed

force-probe MD simulations separating the N- and C-terminus with constant velocity. By

means of force-extension curves and hydrogen bond analyses, the authors conclude that the

unfolding pathway includes two intermediates before obtaining a fully stretched peptide. We

identify these intermediates with the purple and brown colored sets shown in Figure 6.5(a).

These findings are further supported by the reactive flux analysis as illustrated in Figure 6.5(b)

and (c). Imposing a constant force shifts the weight of transitions pathways. Specifically, the

transition 1 → 4 becomes more frequent while the transition 1 → 3 becomes less frequent with

increasing bias. In other words, when pulling stronger it is more likely to pass purple colored

states than without pulling.

The additional minimum in the PMF for f = 10 kJ/mol·nm [lower panel Figure 6.6(b)], however,

suggests that the free energy landscape is drastically modified by the biasing force. To elucidate

the mechanism causing the additional minimum, we visualize an exemplary configuration for

t (1) '−0.7 exhibiting a low free energy. The snapshot shown in Figure 6.6(b) illustrates that

the outer residues are stretched while the inner residues are stabilized by hydrogen bonds.
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Outlook

In this thesis we have extended the concepts of Markov state modeling to systems that are

driven into a nonequilibrium steady state. Albeit most soft matter systems are, up to today,

simulated in thermal equilibrium, many real-life applications require nonequilibrium con-

ditions. Of particular importance are biomolecular systems which physiological functions

depend typically on their native environment, especially on the chemical potential of chemical

reactants. Therefore, an accurate description of systems involving chemical reactions requires

a molecular chemiostat. The chemoistat keeps the chemical potential constant for molecules

that are consumed or produced during a chemical reaction, and thus drives the system into a

nonequilibrium steady state.

From the computational point of view, to include chemical reactions in MD simulations

requires either a quantum mechanical treatment or the use of reactive force fields [138]. While

a quantum mechanical treatment becomes very quickly numerically inaccessible for large

systems, reactive force fields have not been well developed yet, in particular for biomolecular

applications. However, a first step in the direction of incorporating chemical reactions in large

scale soft matter simulations, even if somehow artificial, can be found in the work of Zeravic et

al. [151]. There, the authors show that the self-replication of colloidal clusters is significantly

accelerated when supplying the system with colloidal dimers acting as catalysts. Moreover, the

authors identify an effective reaction (replication) network containing multiple production

cycles, which are analogous to the probability current cycles identified in nonequilibrium

Markov state models.

Other applications of nonequilibrium Markov state modeling involve systems including hy-

drodynamics flow fields, e.g., shear flow. One could, for instance, think of flow fields that can

accelerate the self-assembly of microscopic structures. In this context, it has been shown that,

depending on the imposed strain rate, shear flow can enhance or suppress the crystallization

of hard spheres [110].

Furthermore, the construction of NE-MSMs for periodically driven systems can be of value

not only for understanding how a molecular dynamics is influenced by externally applied

oscillating fields but for steering molecular systems via systematically designing periodic

protocols. For example one could use an oscillating electromagnetic field to increase or

decrease the population of specific molecular conformations.
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Outlook

Finally, combining Markov state modeling with externally biased systems (time-dependent or

time-independent) appears to be a promising strategy for linking experiments and simula-

tions, in particular of biomolecular systems, even with the computational resources currently

available.

In any case, all these different types of applications have in common that they cover time

scales spanning many orders of magnitude. Therefore, we are convinced that nonequilibrium

Markov state modeling will be a valuable tool not just to bridge the large spectrum of time

scales present in many driven soft matter systems but also to offer meaningful insight into

their nonequilibrium dynamics.
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