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Abstract

We apply mean field continuum theories to model the assembly of particles in the co-solvent
method – to which we refer as size-controlled assembly – with the objective to explain
nanoparticle size dependencies on solvent mixing speeds.
Our investigation starts at considering a Cahn-Hilliard equation with a Flory-Huggins-de

Gennes free energy functional restricted to homopolymers. Upon modeling solvent mixing by
a time dependent interaction parameter, structure formation during spinodal decomposition
is analyzed. The qualitative agreement of our simulated data to both recently published
Molecular Dynamics simulations and experiments indicates that size-controlled assembly can,
on principle, be described by relaxation dynamics within a mean field approximation, and
suggests a response of molecular organization to solvent mixing in the very early stages
of phase separation to eventually determine final particle sizes. In contrast to Molecular
Dynamics simulations, the Cahn-Hilliard model is able to simulate realistic mixing times
and enables a perturbation approximation. The perturbation approximation does not only
give an analytical interpretation to the underlying physical mechanism of size-control as a
competition between molecular repulsion and interfacial tension of diffuse interfaces, but
also yields a general theoretical scaling behavior R ∝ s−1/6 (R is a mean particle radius
and s a solvent mixing speed) that is reflected in experiments and Molecular Dynamics
simulations. After introducing the notion of effective two-component models, we combine
the computational efficiency of models based on time dependent interaction parameters with
a more realistic description of solvent mixing by relative chemical potentials of solvents. This
novel description is then shown to agree with incompressible three-component dynamics in
dilute solutions that correspond to experimental conditions.
Size-controlled assembly of amphiphilic diblock-copolymers is studied by inserting time

dependent interaction parameters into an External Potential Dynamics model with a free
energy functional from the Self Consistent Field Theory. A satisfactory analysis of particle
size distributions requires the development of a new numerical integration scheme to deal
with stiffness instabilities at high compressive moduli, which accelerates simulations by a
factor of up to 100. Subsequent simulations indicate that neither the fundamental qualitative
characteristics of particle size dependencies on mixing speeds nor the physical mechanism
behind the size-control are significantly affected by copolymer architecture. Experimentally
observed transitions of particle morphologies are also reproduced qualitatively. To conclude,
an effective two-component model with a revised description of solvent mixing for copolymers
is proposed. Based on the findings in the present work, we consider it a suitable starting
point for quantitative studies of size-controlled copolymer assembly.





Zusammenfassung

In dieser Arbeit wird die Cosolvent-Methode zur Nanopartikelherstellung unter Verwendung
von mean field-Theorien modelliert. Ziel ist es, eine Erklärung für die Partikelgrößenabhän-
gigkeit von Lösungsmittel-Mischgeschwindigkeiten zu finden.
Um Aggregatbildung während einer spinodalen Entmischung zu untersuchen, wird eine

Cahn-Hilliard-Gleichung mit einem Flory-Huggins-de Gennes freien Energiefunktional für
Homopolymere verwendet. Die Lösungsmittelmischung wird dabei durch einen zeitlich wach-
senden Flory-Huggins-Wechselwirkungsparameter modelliert. Die qualitative Übereinstim-
mung simulierter Aggregatgrößen mit veröffentlichten Molekulardynamik-Simulationen und
experimentellen Daten deutet darauf hin, dass die Cosolvent-Methode als Relaxationsprozess
aufgefasst werden kann und dass die finale Partikelgröße durch den Einfluss der Lösungs-
mittelmischung auf die Aggregation einzelner Polymerketten schon zu Beginn der Phasen-
trennung festgelegt wird. Im Gegensatz zur Molekulardynamik ermöglicht die Cahn-Hilliard-
Gleichung die Simulation realistischer Mischzeiten. Sie erlaubt zusätzlich eine analytisch lös-
bare Näherung im Rahmen einer Störungstheorie. Diese Näherung zeigt nicht nur, dass die
Abhängigkeit der Partikelgröße R von Mischgeschwindigkeiten s durch eine Synergie von
zeitlich wachsender Repulsion chemischer Komponenten und der Spannung diffuser Oberflä-
chen verursacht wird, sondern sie liefert auch ein Skalengesetz R ∝ s−1/6, das sowohl in den
Ergebnissen der Molekulardynamik-Simulationen auftritt als auch in experimentellen Daten
widergespiegelt wird. Um die Recheneffizienz von zeitabhängigen Wechselwirkungsparame-
tern mit realistischeren Implementierungen für Lösungsmittelmischung zu kombinieren, wird
ein neues effektives Zweikomponentenmodell konstruiert, bei dem die Lösungsmittelvertei-
lungen über chemische Potentiale bestimmt werden. Dieses neue Modell ist konsistent mit
konventioneller Dreikomponentendynamik in verdünnten, inkompressiblen Polymerlösungen,
welche in der Cosolvent-Methode verwendet werden.
Die Assemblierung von amphiphilen Diblock-Copolymeren wird mit einem freien Energie-

funktional aus der Selbstkonsistenten Feldtheorie in Kombination mit External Potential Dy-
namics untersucht. Eine zufriedenstellende Auswertung erfordert die Entwicklung eines neuen
numerischen Integrators, um Steifigkeitsinstabilitäten bei hohen Kompressionsmoduli zu un-
terdrücken. Dieser Integrator erlaubt bis zu 100 mal kürzere Rechenzeiten. Darauffolgende
Simulationen zeigen, dass sich Charakteristika von Partikelgrößenabhängigkeiten direkt von
Homo- auf Copolymerlösungen übertragen, was impliziert, dass die Charakteristika nicht si-
gnifikant von der Polymerarchitektur beeinflusst werden. Experimentell beobachtete Einflüs-
se von Mischgeschwindigkeiten auf Partikelmorphologien werden ebenfalls reproduziert. Zum
Schluss wird ein effektives Zweikomponentenmodell für Copolymerlösungen vorgeschlagen,
das ausgehend von den Ergebnissen der vorliegenden Arbeit als Startpunkt für zukünftige,
potentiell quantitative Simulationsmethoden in Frage kommen könnte.
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Chapter 1
Introduction

Size-controlled assembly of nanoparticles is a branch of nanotechnology. According to the US
National Nanotechnology Initiative (NNI) "nanotechnology is the understanding and control
of matter at dimensions of roughly 1 and 100 nanometers (nm) [...]" [1] and in this general
context nanoparticles are simply molecule aggregates with spatial extensions on scales of 1
to 100 nm. Size-controlled assembly refers to a technique to manufacture nanoparticles of a
specific size.
Nanoparticles have attracted growing interest during the last decades because the preced-

ing technological advancement that allowed to visualize and manipulate nanoscale structures
revealed their great potential in different applications. Depending on the chemical composi-
tion of a nanoparticle these applications include mesoscopic models for atomic systems [2, 3],
optoelectronic devices [4], nanoreactors, or models for biological cells [5, 6]. Their probably
most prominent application, however, is found in the field of drug delivery where they serve
as transport vehicles for medication, called drug delivery systems [7, 8, 9]. The purpose of
such transport vehicles is to overcome, for instance, deficiencies in the traditional treatment
of diseases like cancer. One major deficiency is the lack of control over the in vivo biodistri-
bution of commonly applied toxic low molecular weight substances and their large volume of
distribution. To ensure an adequate concentration at localized tumors, an effective treatment
thus requires administrating excessive amounts of medication, which may provoke severe side
effects as those toxic substances inexorably corrode healthy tissue. In particular cells with
high cell division rates, such as hair roots and stomach lining, are affected. Besides shielding
highly susceptible substances from rapid depletion, nanoparticulate transport vehicles allow
for a selective cancer treatment, e.g. by passive targeting of tumors based on the Enhanced
Permeability and Retention (EPR) effect [10]. The term ’EPR effect’ subsumes two distinc-
tive traits that distinguish diseased from healthy tissue: an enhanced cell spacing of vascular
endothelial cells due to faster growth and an enhanced retention time of irrupted substances
caused by an impeded lymphatic drainage. The enhanced permeability of the endothelium
can be exploited to achieve a targeted substance accumulation in tumors by encapsulating
low molecular weight medication into nanoparticles as sketched in figure 1.1. The accumu-
lation is further intensified by the reduced lymphatic drainage, and capsules may be loaded
with iron molecules during fabrication to enable a release of medication by excitation via
magnetic fields.
Since nanocapsules need to be large enough to prevent penetration into healthy tissue while

still being small enough to guarantee accumulation in a tumor, passive targeting via the EPR
effect is an illustrative example for the significance of nanoparticle size. The endothelial cell
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Figure 1.1: Schematic of passive tumor targeting based on the EPR effect. Solid black dots represent
molecules of a toxic low molecular weight substance and circular discs symbolize vesicular nanoparti-
cles. The schematic shows a small section of a blood vessel surrounded by healthy tissue on the left
and a tumor on the right. Cells are represented by rectangles and the white ones highlight vascular
endothelial cells. The sketch is conceptually divided into two parts, which are separated by an imag-
inary horizontal line along the center of the blood vessel. The lower part paints the distribution of
low molecular weight substances in traditional cancer therapy and the upper one the distribution of
nanocapsules: medication encapsulated by nanoparticles specifically accumulates in the tumor due to
larger cell spacing compared to healthy tissue, while most of its non-encapsulated counterpart pene-
trates into the latter, which reduces the efficacy of a therapy and causes side effects. The principle
schematic was taken from Bleul [11] and adapted.

spacing in infested blood vessels may range from 200 nm to 1.2 µm depending on the tumor
[12] and the vascular endothelium in healthy tissue is permeable to substances of less than
approximately 10 nm in diameter [13]. So if only cell spacing in blood vessels had to be
considered, particles with any arbitrary diameter inside a window of approximately 20 to 200
nm should selectively accumulate in tumors only. What eventually makes the definite size
of drug delivery systems inside that window a particularly critical property is its intricate
impact on their removal from the bloodstream by filtration organs or the immune system.
This removal is problematic because an effective therapy necessarily requires large amounts
of nanocapsules to reach an infested section of a blood vessel after intravenous injection
and therefore, a sufficiently high retention time in the cardiovascular system is mandatory.
A general statement about the role of filtration organs is very difficult because it depends
on the chemical properties of a nanoparticle and the biological species under consideration,
but the human liver, for example, tends to extract particles smaller than approximately 107
nm in diameter as this value is typical for the spacing of fenestrae [14]. In rats, zinc oxide
nanoparticles of 70 nm in diameter are found to be removed more slowly by excretion kinetics
than 20 nm particles [15], and silver particles with diameters of approximately 40, 160, and
240 nm are observed to be rapidly removed from the blood and to accumulate with size
specific preference in the liver or the spleen [16]. The reason why nanoparticle size may also
trigger unwanted opsonization and an accompanied removal by the immune system [17] is
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because the size is a critical determinant of the protein corona in blood [18]. As such, it
indirectly affects the biological identity of a nanoparticle.
The biological identity depends, of course, on the chemical composition of the nanoparticle

surface as well. Since a favored adsorption of opsonins is observed for charged particles or
particles with rough and strongly hydrophobic surfaces, (biocompatible) hydrophilic groups
such as polyethyleneglycol (PEG) – otherwise known as polyethyleneoxide (PEO) – may be
grafted onto the molecular constituents of the particles to complicate opsonization [19]. The
constituents of hitherto developed commercial drug delivery systems are mainly amphiphilic
lipids, some of them PEO-protected, or hydrophobic therapeutic molecules that are directly
linked to PEO [11, 20]. Because of an enhanced stability, increased modification possibilities,
and easier synthesis, (amphiphilic) diblock-copolymers render promising candidates with ex-
tended tunability to replace these constituents in order to form multifunctional drug delivery
systems [8, 11, 21, 22, 23]. Increasing the tunability of nanocapsules naturally extends their
scope of application as very specific surface qualities are necessary, for instance, to enable
nanoparticles a harmless passage of the blood-brain barrier in order to potentially treat brain
tumors or Alzheimer’s disease [24, 25, 26].
The above-mentioned complex and sensitive size-dependence of their biological fate de-

mands multifunctional drug delivery systems to be manufactured by a method that allows
for a precise and reliable customization of their size. Manufacturing methods for polymeric
nanoparticle populations are the polymerization of monomers [27, 28, 29, 30], emulsification
in combination with solvent stripping [31, 32, 33], and nanoprecipitation [6, 30, 34], also
known as the co-solvent method. The first two methods suffer from certain disadvantages as
polymerization cannot guarantee purity of fabricated particles and emulsification might result
in large polydispersities [34], so the latter proves most convenient. Although it was recently
reported by Nikoubashman et al. [35] that the co-solvent method also allows to fabricate
stable nanoparticles built from homopolymers, we describe the method by only referring to
the more commonly utilized diblock-copolymers for the sake of convenience in the following.
The setup for homopolymers is completely analogous. To produce vesicular nanocapsules like
the ones that are sketched in figure 1.1 with the co-solvent method, a co-solvent is mixed into
a homogeneous solution of an amphiphilic diblock-copolymer and a good solvent for both
blocks. The addition of co-solvent – commonly a selective solvent which is unfavorable for
one block – eventually induces particle growth by triggering precipitation of the polymer.
The solvent mixing continues during particle growth and in case the co-solvent method is im-
plemented as a batch process where the selective solvent is injected drop by drop into a petri
dish that contains the polymer solution [36, 37], the mean size of manufactured nanoparticles
can be decreased by increasing the injection rate [36] (the solution is gently stirred during the
injection). Another implementation of the co-solvent method is sketched in figure 1.2. Here,
solvent mixing is performed by continuous flow micro fluidic mixing devices, the so called
micromixers. In this continuous implementation mean particle sizes are reported to decrease
with an increasing flow rate v or the Reynolds number [22, 23, 35]. They also depend on the
temperature T and the mean polymer concentration c in the initial solution.

To our knowledge, the most comprehensive experimental study about particle size depen-
dencies on macroscopic parameters of the co-solvent method was done by Thiermann et al.
[22, 23] who also showed that symmetric flow conditions, i.e. equal flow rates v of both initial
solution and selective solvent in figure 1.2, enable a size-control with high fidelity. The corre-
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Figure 1.2: The continuous implementation of the co-solvent method and a snapshot of fabricated
nanoparticles. (a) shows a sketch of the experimental setup [22]. Here, a solution of an amphiphilic
diblock-copolymer and a good solvent for both blocks (the initial solution) is mixed with a selective
solvent inside a continuous flow micromixer. Since the selective solvent is unfavorable for one block (in
this case the grey one), solvent mixing induces particle formation. The initial solution often contains
a premixed amount of selective solvent that is not yet sufficient to trigger polymer precipitation. (b)
is a Transmission Electron Microscopy (TEM) image of fabricated PEO160 − PB60 − COOH vesicles
that are loaded with iron particles (indicated by white arrows). The TEM image corresponds to figure
4.19 from Thiermann [22].

sponding compilation of experimentally determined particle sizes in figure 1.3 confirms that
the co-solvent method is suited to tweak diameters within the aforementioned preferential
window for drug delivery systems of approximately 20 to 200 nm in diameter. Particle radii
as functions of flow rates show a scaling behavior RDLS ∝ vα, where the mean value of α over
all measurements reads α≈ −0.158 with a standard deviation σα = 0.058. Increasing either
the polymer concentration c (figure 1.3 (c)) or the temperature T (figure 1.3 (d)) mainly shifts
the scaling law upwards. The utilized polymers are amphiphilic diblock-copolymers made of
polybutadiene (PB, hydrophobic) and polyethyleneoxide (PEO, hydrophilic), the good sol-
vent is tetrahydrofuran (THF), and the selective one is water. The micromixer approach
has several advantages over the batch process as it generally achieves higher reproducibility
of nanoparticle sizes, larger throughput, and narrower size distributions without additional
steps like membrane extrusion [23]. These advantages render it a promising approach for
potential commercial production and are the main reason why all the experimental data in
figure 1.3 except for figure 1.3 (e) stem from micromixer implementations. The flow rate
dependence of particle sizes is a particularly appealing characteristic of the continuous im-
plementation, because flow rates are easily and accurately adjustable with High Performance
Liquid Chromatography pumps. Unlike controlling particle sizes by temperature variations,
controlling them by flow rates does not require waiting for a thermal equilibrium of a tem-
perature bath, either, and unlike variations of c, flow rate variations do not demand the
preparation of multiple different initial solutions.
Since varying injection rates and flow rates generate different particle sizes but do not

affect any macroscopic state variable of a fabricated particle suspension at t → ∞ (the
maximum amount of selective solvent is identical for any injection rate or flow rate), the
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Figure 1.3: Compilation of experimental data for the co-solvent method from Thiermann et al.
[22, 23] and Mueller [36]. (a) shows the flow rate dependence of mean particle radii RDLS in different
micromixers (CPMM, SIMM, and SFIMM are type designations) for symmetric flow conditions [23].
A and B label different end groups X attached to the utilized amphiphilic diblock-copolymer PB130−
PEO66−X as listed beneath the dashed line inside the diagram, and the equations directly below the
diagram belong to the grey trend lines. (b) depicts exactly the same for slightly different end groups
[22]. (c) and (d) illustrate the impact of mean polymer concentration and temperature variations for
the polymer PB160−PEO60−COOH in the CPMM [22]. (e) shows RDLS in dependence on the water
injection rate rI from a batch implementation [36], and (f) summarizes all remaining measurements
for symmetric flow conditions found in [22] to complete the compilation. ’Dual’, ’QD’ (quantum dots),
and ’FeNP’ (iron nanoparticles) denote different loadings of the produced nanoparticles. RDLS was
measured by Dynamic Light Scattering and error bars (typically about 5 nm or below) are omitted
for the sake of clarity.
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size-control is clearly a non-equilibrium phenomenon. Typical mixing times of solvents in
micromixers lie between milliseconds and seconds. The difficulty to experimentally access
non-equilibrium processes on a nanometer scale during such short time spans suggests that
computer simulations are suitable tools to develop a thorough understanding of the co-solvent
method. However, although the co-solvent method has been applied in experiments for years,
there are hardly any simulation attempts or modeling approaches. To our knowledge, there
are no detailed theoretical or experimental studies about physical mechanisms that cause one
of its most appealing aspects, namely the control over particle sizes by variations of flow rates,
either. Thus, the fundamental ’working principle’ of the co-solvent method is still unclear.
Concrete questions that arise from this ambiguity are, for instance:

• What causes the approximate scaling behavior RDLS ∝ vα in figure 1.3? Is this behavior
only specific to the chemical components used by references [22, 23, 36] or is it more
general? How can it be broken?

• Taking into account that the polydispersity of nanoparticle populations is also impor-
tant for their applications, is it theoretically possible to control the polydispersity with
the co-solvent method independently of their mean size?

• Assuming one wants to develop simulation tools that enable accurate predictions about
particle sizes in the future, which theoretical descriptions can be used as starting points?
Which physical mechanisms need to be included? And how could a computationally
efficient implementation of these mechanisms look like?

In the present work we model the co-solvent method with the objective to explain character-
istics of the experimental results in figure 1.3 and thereby to answer, inter alia, the questions
listed above.

In order to clarify the classification of the present work into the general literature on assem-
bly of nanoparticles, it is expedient to establish a clear terminological demarcation between
spontaneous self-assembly and controlled assembly. Spontaneous self-assembly refers to par-
ticle formation in the absence of external fields at fixed thermodynamic variables of state,
i.e. if there is no further extrinsic interference after specification of the initial state. The for-
mation of differently large particles in one single bad solvent at distinct fixed concentrations
c or temperatures T , for instance, would count as spontaneous self-assembly. Inspired by
the particle size dependence on injection rates in the batch implementation of the co-solvent
method (cp. figure 1.3 (e)), we are going to call a particle growth process during solvent
mixing size-controlled assembly (of nanoparticles). From a theoretical perspective we define
solvent mixing as a controlled temporal change of the state variables ’particle numbers’ in
an arbitrary fixed volume at temperature T . It will eventually turn out that, loosely speak-
ing, size-controlled assembly may be understood as a synonym for the co-solvent method
regardless of a batch or continuous implementation, but in a more strict context we use the
term ’co-solvent method’ to denote the experimental realization with all its facets while ’size-
controlled assembly’ implies a simplified abstraction of the latter. This abstraction concerns
the translation of complicated real mixing processes into temporally changing state variables
of partial volumes inside a mixer geometry as well as the neglection of hydrodynamic ef-
fects like flow shearing in micro channels. In the present work controlled assembly is just an
abbreviation for size-controlled assembly.







PART I
FUNDAMENTALS

Preliminary Remark

Chapters 2 and 3 recapitulate the established theories that form the basis of the present
work. We are going to model the co-solvent method by coupling solvent mixing into a theory
that is commonly used to describe spontaneous self-assembly. As a preparation, chapter 2
therefore outlines eligible mathematical descriptions for spontaneous self-assembly in lipid or
polymer solutions and gives an overview over the current state of the related literature. The
literature overview points out respective length and time scales that have been accessed in
various simulations, since these accessible scales are going to be crucial when we eventually
choose a specific theory as a framework to describe the co-solvent method in the present work.
Expressions for solvent mixing are derived in chapter 3 by presenting analytical descriptions
for mixing processes in micromixers. The corresponding discussion focuses on the effect of
flow rates v on solvent mixing, which turns out to be very similar to the effect of injection
rates rI in the batch implementation. This analogy between v and rI is essential to explain
the experimental data in figure 1.3.
Chapter 4 conceptually connects particle growth to flow rates on a basic qualitative level

in consideration of chapters 2 and 3. This connection eventually motivates describing the
continuous implementation of the co-solvent method by size-controlled assembly and leads to
a more general formulation of the rather specific task to explain the flow rate dependencies
from figure 1.3. The more general formulation is used to classify the current work with respect
to the available theoretical literature about size-controlled assembly in order to complement
the overview over the experimental literature we gave in chapter 1. To our current knowledge,
the available theoretical literature about size-control with the co-solvent method is limited
to the two recent publications by Nikoubashman et al. [35] and Spaeth et al. [38]. Based
on references [35] and [38], the objectives of the present work are then stated more precisely
from a theoretical perspective.
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Chapter 2
Descriptions of self-assembly on different

length and time scales

Since the (spontaneous) self-assembly of molecules is driven by intermolecular interactions,
it is a many-body problem. On nano- to micrometer scales, many-body problems can be
described by particle models or continuum theories [39]. In contrast to particle models where
polymer chains are explicitly represented by a combination of several individual particles,
continuum theories only describe coarse grained density fields that do not capture molecular
details like chain conformations. This reduced complexity makes continuum models typically
less accurate than particle models but also computationally less expensive. Thus, accuracy
is sacrificed in order to speed up simulations or to access time scales that go beyond the
scope of particle models. In section 2.1 we briefly discuss particle models by introducing
Classical Molecular Dynamics, Brownian Dynamics, and Dissipative Particle Dynamics. Sec-
tion 2.2 deals with the continuum theories. At this point it is mentioned in advance that
our modeling approaches will be based on continuum theories. For this reason, we are going
to discuss them in much more detail than the particle models. Particle models are mainly
introduced for two reasons: to sketch the connection of continuum field theories (that also
correspond to phenomenological thermodynamic approaches) to microscopic dynamics and
because Nikoubashman et al. [35] apply Classical Molecular Dynamics while Spaeth et al.
[38] use Dissipative Particle Dynamics.

2.1 Particle models

2.1.1 Molecular Dynamics

Molecular Dynamics constitutes the most accurate particle model. It can directly be derived
from the Schrödinger equation in the limit of classical nuclear motion within a micro canonical
ensemble [40]. The corresponding set of equations coincides with Newton’s equations of
motion,

MI
d2

dt2
~RI(t) = −∇~RI

V (~R1(t), ~R2(t), ~R3(t), ...). (2.1)

MI is the mass of a nucleus I, ~RI its position, ∇~RI
the gradient with respect to ~RI , and

V an interaction potential. The choice of the interaction potential specifies subcategories
of Molecular Dynamics. Ehrenfest Molecular Dynamics [40], Born-Oppenheimer Molecular
Dynamics [41], and Car-Parinello Molecular Dynamics [42] represent so called ab initio meth-
ods, meaning they require only natural constants as input parameters. Here, the electronic

11
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wave function is contained in V and has to be calculated from a separate equation. Ab
initio methods are way too expensive to study length and time scales that are relevant to
spontaneous self-assembly. We do not know of any publication that studies self-assembly of
polymers or lipids with an ab initio method.

To avoid the calculation of electronic wave functions and to reduce computational costs
significantly, V may be expanded in terms of many-body contributions according to

V (~R1, ~R2, ~R3, ...) ≈
∑
I

v1(~RI) +
∑
I<J

v2(~RI , ~RJ) +
∑

I<J<K

v3(~RI , ~RJ , ~RK) + ... . (2.2)

The contributions vi usually incorporate several empiric parameters and consequently, the
combination of equations 2.1 and 2.2 is no ab initio method in general. As it involves no
quantum mechanics either, this set of equations is called Classical Molecular Dynamics. It
can be generalized to canonical or isothermal-isobaric ensembles by introducing thermostats
[43] or barostats [44]. In case no external fields are applied, one has v1 ≡ 0, and very often
only v2 is different from zero. Finding a suitable function vi and the determination of its em-
pirical parameters are highly non-trivial tasks and depend on the chemical components under
consideration [45]. Particles in a Classical Molecular Dynamics simulation do not necessarily
need to be nuclei of single atoms but may also constitute coarse grained particles, i.e. groups
of several atoms, which requires an adaptation of force fields. A systematic procedure for
such an adaptation is Essential Dynamics Coarse Graining [46]. Lennard-Jones potentials are
frequently used to describe non-bonded van der Waals attractions between different particles
while spring potentials often represent covalent bonds, which connect monomers of a polymer
chain.

(Coarse grained) Classical Molecular Dynamics has been used in a variety of publications
to study spontaneous self-assembly of lipid bilayers, micelles, and vesicles [47, 48, 49, 50, 51,
52, 53], to investigate bilayer or vesicle fusion [54, 55], and to analyze basic properties or the
structure of bilayers [56, 57, 58, 59]. Typical simulated time spans in all these studies lie
below 50 microseconds in simulations boxes with edge lengths of less than 100 nanometers.

2.1.2 Dissipative Particle, Langevin, and Brownian Dynamics

If the level of coarse graining becomes so high that microscopic interactions need to be
described by empirical dissipative and random forces in order to capture essential dynamical
features, one arrives at Dissipative Particle Dynamics or Langevin Dynamics. Both share a
general form of the Hamiltonian equations,

d

dt
~ri = ~pi

mi
and d

dt
~pi = ~Fi + ~FDi + ~FRi , (2.3)

where ~Fi is a conservative force acting on particle i, ~FDi a dissipative force, and ~FRi a random
force. The only difference between Dissipative Particle Dynamics and Langevin Dynamics
are the expressions for ~FDi and ~FRi [60]: in Langevin Dynamics they obey the relations

~FDi = −γ d
dt
~ri = −γ ~pi

mi
,
〈
~FRi

〉
= 0,

〈
FRiµ(t)FRjν(t′)

〉
= 2γkBTδijδµνδ(t− t′), (2.4)
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where γ is a friction coefficient and FRiµ the µ-th component of ~FRi , while in Dissipative
Particle Dynamics they are defined by

~FDi =
∑
j 6=i

~FDij with ~FDij = −γωD(|~rij |)(~eij · ~vij)~eij

~FRi =
∑
j 6=i

~FRij with ~FRij = σωR(|~rij |)Θij~eij , (2.5)

where ~rij = ~ri − ~rj , ~eij = ~rij/|~rij |, and ~vij = ~vi − ~vj . Θij is a random variable with zero mean
and 〈

Θij(t)Θkl(t′)
〉

= (δijδjl + δilδjk)δ(t− t′).

ωD and ωR are weighting functions with ωD = (ωR)2 to fulfill the fluctuation dissipation
theorem. Usually it is

ωD(r) =

1− r/rc r ≤ rc
0 r > rc

(2.6)

with a model dependent cutoff radius rc. The random force conserves momentum in Dis-
sipative Particle Dynamics, but not in Langevin Dynamics. As a consequence, Langevin
Dynamics does not correctly capture hydrodynamic effects. This is why Dissipative Particle
Dynamics is usually used as an explicit solvent model, and Langevin Dynamics as an implicit
one – the lost or gained momentum of particles is said to be transferred to a solvent that is
not modeled explicitly. Brownian Dynamics is sometimes considered to be the over-damped
version of Langevin Dynamics where the inertial term d~pi/dt in equation 2.3 is neglected, while
some authors use it as a synonym for Langevin Dynamics. As both Dissipative Particle Dy-
namics and Langevin Dynamics can be derived from classical Molecular Dynamics, there is a
systematic way to determine conservative force fields from microscopic interaction potentials
[61].
Originally, Dissipative Particle Dynamics was introduced with a conservative force ~Fi =∑
j 6=i aijω

D(| ~rij |)~eij to study hydrodynamics [62]. But with suitable adaptions of ~Fi it suc-
ceeds at simulating spontaneous self-assembly of vesicles or membranes [63, 64, 65, 66, 67],
phase separation on membranes [68], nanoparticle targeting to a vascular surface [69], or at
analyzing equilibrium structures of amphiphilic membranes [70] and their fusion with vesi-
cles [71]. Dissipative Particle Dynamics enables an extension of length and time scales to
several 100 nanometers and several 100 microseconds. Studies of spontaneous self-assembly
with Langevin Dynamics are performed with similar maximum (simulated) length and time
scales [72, 73, 74]. In all references cited above, individual particles are collections of multiple
monomers but still represent beads of a polymer chain, i.e. chain conformations are resolved
on a coarse grained level.

2.2 Continuum field theories

2.2.1 Dynamical master equation and kinetic coupling

Kawasaki and Sekimoto [75] first derived the master equation describing the temporal evo-
lution of an α-monomer density field ρα, which does not resolve degrees of freedom related
to molecular details like chain conformation of polymers, from Brownian Dynamics by appli-
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cation of a local equilibrium approximation (assuming equilibrium statistics of chain confor-
mations at fixed density fields) to the generalized Smoluchowksi equation [76]. The master
equation is valid in canonical ensembles and reads

∂ρα
∂t

(~r, t) = −
A∑
γ=1

∫
Mαγ [{ρ(·, t)}](~r, ~r ′)δF [{ρ(·, t)}]

δργ(~r ′) d~r ′ + ηα(~r, t) ∀α ∈ A (2.7)

with a kinetic coefficient matrix M(~r, ~r ′) and a free energy F , which are both functionals
of the set {ρ(·, t)} = {ρα(·, t)}α∈A at fixed time t. Spatial integration is performed over the
system volume, A is the number of monomer species, δF [{ρ(·,t)}]

δργ
the variational derivative of

F evaluated at {ρ(·, t)}, and ηα a random noise satisfying the fluctuation dissipation theorem

〈ηα(~r, t)〉 = 0 and
〈
ηα(~r, t)ηγ(~r ′, t′)

〉
= 2kBTMαγ [{ρ(·, t)}](~r, ~r ′)δ(t− t′). (2.8)

The free energy functional F is connected to the partition function Z (an equilibrium quan-
tity!) through

Z =
[ A∏
α=1

∫
Dρα

]
e−βF [ρ1,ρ2,...,ρA], (2.9)

where β = 1/kBT is the Boltzmann factor and
∫
Dρα the path integral with respect to ρα.

If polymer blends containing nj identical chains of type j = 1, ..., J are considered, and a
polymer type is defined by a specific sequence of Nj monomers with potentially A different
species, the kinetic coefficient Mαγ can be expressed as

Mαγ [{ρ}](~r, ~r ′) =
〈

J∑
j,j′=1

nj∑
ij=1

nj′∑
pj′=1

Nj∑
sj=1

Nj′∑
qj′=1

∂ρ̂α

∂ ~R
(j)
ijsj

(~r) · C(αγ)
(j,ij ,sj),(j′,pj′ ,qj′ )

∂ρ̂γ

∂ ~R
(j′)
pj′qj′

(~r ′)
〉
{ρ}

.

ρ̂α(~r) =
∑J
j=1

∑nj
ij=1

∑Nj
sj=1 δ

(j)
αsjδ(~r − ~R

(j)
ij ,sj

) is the microscopic density of α-monomers, ~R(j)
is

the position of the s-th monomer in chain i from type j, and

δ(j)
αs =

1 if an α-monomer is placed at position s in type j polymers
0 else

specifies the polymer architecture. C(αγ)
(j,ij ,sj)(j′,pj′ ,qj′ )

∈ R3×3 is a matrix block from the micro-
scopic translational mobility matrix [75, 76] in the Smoluchowksi equation. It connects the
velocity of an α-monomer at position ~R

(j)
ijsj

to a force acting on a γ-monomer at ~R(j′)
pj′qj′ [76].

〈 · 〉{ρ} denotes the statistical ensemble average under the constraint of fixed density fields,

〈h〉{ρ} = 1∫
p(Γ)δ[{ρ} − κ{ρ̂(Γ)}]dΓ

∫
h(Γ)δ[{ρ} − κ{ρ̂(Γ)}]p(Γ)dΓ,

where h is a scalar function, Γ a vector in the phase space containing all monomer coordinates
~R

(j)
is , p its probability (Boltzmann distribution), and κ an appropriate smoothing operator

that can be neglected in the argument of 〈 · 〉{ρ} while keeping ρα in {ρ} = {ρα}α∈A smooth.
Such an operator could, for instance, just replace delta functions δ(~r − ~R

(j)
is ) in ρ̂ by ~R

(j)
is -

centered normal distributions δε(~r − ~R
(j)
is ) = 1

ε
√

2π exp
[
−(~r−~R(j)

is )2/2ε2
]
with a sufficiently low
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ε. Insertion of microscopic densities into the mobility coefficient yields

Mαγ [{ρ}](~r, ~r ′)

=
〈∑
j∈Jα

∑
j′∈Jγ

nj∑
ij=1

nj′∑
pj′=1

Nj∑
sj=1

Nj′∑
qj′=1

δ(j)
αsj

∂δ(~r − ~R
(j)
ijsj

)

∂ ~R
(j)
ijsj

· C(αγ)
(j,ij ,sj),(j′,pj′ ,qj′ )

δ(j′)
γqj′

∂δ(~r ′ − ~R
(j′)
pj′qj′ )

∂ ~R
(j′)
pj′qj′

〉
{ρ}

,

where Jα is the set of polymer types that contain monomers of species α. The explicit and
closed representation of equation 2.7 varies with specification of C(αγ), F , and the construc-
tion rule for ρα from microscopic densities.

A particular choice of C(αγ)
(j,ij ,sj),(j′,pj′ ,qj′ )

∈ R3×3 determines the kinetic coupling model. If
different coordinate directions are decoupled, it can be written as

C
(αγ)
(j,ij ,sj),(j′,pj′ ,qj′ )

= Λ(αγ)
(j,ij ,sj),(j′,pj′ ,qj′ )

1, (2.10)

where 1 is the R3×3 unity matrix and Λ(αγ)
(j,ij ,sj),(j′,pj′ ,qj′ )

∈ R specifies coupling possibilities of
monomers.

If kinetic coupling of beads is completely ignored, it is Λ(αγ)
(j,ij ,sj),(j′,pj′ ,qj′ )

= βDαδjj′δijpj′ δsjqj′
with the diffusion coefficient of separated α-monomers Dα. This leads to

Mαγ [{ρ(·, t)}](~r, ~r ′) = −βDαδαγ∇~r · ρα(~r, t)∇~rδ(~r − ~r ′), (2.11)

which is referred to as a local coupling model. In this case equation 2.7 reduces to

∂ρα
∂t

(~r, t) = βDα∇~r ·
[
ρα(~r, t)∇~r

δF [{ρ(·, t)}]
δρα(~r)

]
+ ηα(~r, t). (2.12)

The reason why entries Mαγ of the mobility matrix can be expressed as differential operators
is that they contain integrals over derivatives of delta functions in the form of microscopic
densities and because

∫
∇δ(~r− ~r0)µ(~r)d~r = −∇µ(~r0) and

∫
∇δ(~r− ~r0) · ~v(~r) d~r = −∇ · ~v(~r0)

for arbitrary differentiable functions µ and ~v. There are also different ways to derive equation
2.12 directly from Brownian Dynamics or the corresponding Fokker-Planck equation without
a circuitous route via the master equation [77]. In this case the local equilibrium assumption
is coupled to two-body density distribution functions [78]. The noise term ηα depends on the
construction rule of ρα from microscopic densities [77]: if ρα is constructed by statistically
averaging microscopic densities, the noise term vanishes and ηα ≡ 0; if ρα is a coarse grained
density obtained by temporal convolution with a smoothing kernel instead of averaging, ηα
satisfies

ηα(~r, t) = ∇~r ·
[√

βDαρα(~r, t)
√
τ0
τ
~ξα(~r, t)

]
with

〈ξαn(~r, t)〉 = 0 and
〈
ξαn(~r, t)ξγm(~r ′, t′)

〉
= 2kBTδαγδnmδ(~r − ~r ′)δ(t− t′), (2.13)

where ξαn is the n-th component of the random variable ~ξα, τ the coarse grained time scale,
and τ0 the time scale of microscopic dynamics. The functional form of the noise term in equa-
tion 2.13 is consistent with equation 2.8 [79]. Equation 2.12 can also be obtained phenomeno-
logically by expressing fluxes in a continuity equation through Jα = ραvα = ραβDα∇µα with
thermodynamic driving forces ∇µα = ∇ δF

δρα
and the mobility βDα [80]. In literature, local
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coupling models have been applied to study spontaneous self-assembly [81, 82, 83] and to
investigate microphase separation in copolymer melts [80, 84, 85].

Coupling all beads within single polymer chains by setting Λ(αγ)
(j,ij ,sj),(j′,pj′ ,qj′ )

= βDjδjj′δijpj′
leads to the non-local mobility coefficient

Mαγ [{ρ(·, t)}](~r, ~r ′)

= −
∑

j∈Jα∩Jγ
βDj∇~r ·

nj∑
ij=1

〈 Nj∑
sj=1

δ(j)
αsjδ(~r − ~R

(j)
ijsj

)

 Nj∑
qj=1

δ(j)
γqjδ(~r

′ − ~R
(j)
ijqj

)

〉
{ρ}

∇~r ′

= −
∑

j∈Jα∩Jγ
βDj∇~r ·

nj∑
ij=1

〈
ρ̂

(c,j)
αij

(~r)ρ̂(c,j)
γij

(~r ′)
〉
{ρ}
∇~r ′ =: −

∑
j∈Jα∩Jγ

βDj∇~r · P (j)
αγ (~r, ~r ′)∇~r ′ .

(2.14)
ρ̂

(c,j)
αi =

∑Nj
s=1 δ

(j)
αs δ(~r− ~R

(j)
is ) is the density of α-monomers in a single polymer chain i of type

j, Dj the center of mass diffusion coefficient of type j chains, and P (j)
αγ (~r, ~r ′) the sum over

corresponding two-body correlators. Note that in the local coupling model Λ is proportional
to a monomer diffusion coefficient that is independent of the chain length N , and in the non-
local coupling model Λ is proportional to the diffusion coefficient of complete chains [86]. If
all chains of type j possess equal statistics, it is

P (j)
αγ (~r, ~r ′) =

nj∑
ij=1

〈
ρ̂

(c,j)
αij

(~r)ρ̂(c,j)
γij

(~r ′)
〉
{ρ}

= nj
〈
ρ̂

(c,j)
α1 (~r)ρ̂(c,j)

γ1 (~r ′)
〉
{ρ}

. (2.15)

Since the argument of 〈 · 〉{ρ} contains only monomer positions in a single polymer chain ij = 1
and since the statistics of single polymer chains become less affected by prescribed density
constraints with increasing particle number in a system under consideration, the correlators
for decoupled polymer chains in the macroscopic limit can be approximated by

P (j)
αγ (~r, ~r ′) = nj

〈
ρ

(c,j)
α1 (~r)ρ(c,j)

γ1 (~r ′)
〉
c
, (2.16)

where 〈 · 〉c is the statistical average for a single chain in equilibrium. In a copolymer melt
with only one polymer type of arbitrary architecture the sum over j in equation 2.14 collapses
and equation 2.7 becomes

∂ρα
∂t

(~r, t) = βD
A∑
γ=1
∇~r ·

∫
Pαγ(~r, ~r ′)∇~r ′

δF [{ρ(·, t)}]
δργ(~r ′) d~r ′ + ηα(~r, t). (2.17)

The diffusion coefficient of respective chains is D = D0/N with a bead diffusion coefficient D0
and the chain length N . Upon calculation of Mαγ , the noise term ηα is specified by equation
2.8. An alternative deviation of equation 2.17 from microscopic dynamics can be found in the
appendix of reference [86]. In case an AB-diblock-copolymer solution is considered, where
j = 1 denotes the polymer and j = 2, ..., J with J = A − 1 solvents consisting of Nj = 1
monomer from species Sj , it is

δ
(1)
As =

1, 1 ≤ s ≤ s′

0, s′ < s < N1
, δ(1)

Bs =

0, 1 ≤ s ≤ s′

1, s′ < s < N1
, and δ(1)

Sjs
= 0∀ s ∈ [1, N1] (2.18)
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as well as

δ
(i)
Sj1 =

1 i = j

0 i 6= j
and δ(j)

A1 = δ
(j)
B1 = 0 for i, j > 1 (2.19)

in equation 2.14. The associated set of dynamical equations reads

∂ρα
∂t

(~r, t) = β
∑

γ∈{A,B}
D1∇~r ·

∫
P (1)
αγ (~r, ~r ′)∇~r ′

δF [{ρ(·, t)}]
δργ(~r ′) d~r ′ + ηα(~r, t) for α ∈ {A,B}

∂ρSj
∂t

(~r, t) = βDj∇~r ·
∫
P

(j)
SjSj

(~r, ~r ′)∇~r ′
δF [{ρ(·, t)}]
δρSj (~r ′)

d~r ′ + ηSj (~r, t) for j = 2, 3, ..., J. (2.20)

Because pair correlators Pαγ are zero for (α, γ) = (A,Sj), (B,Sj), (Si, Sj) and corresponding
permutations with i 6= j, equations 2.20 may be written in accordance to 2.17 as

∂ρα
∂t

(~r, t) = β
∑
γ∈C

Dj(γ)∇~r ·
∫
P (j(γ))
αγ (~r, ~r ′)∇~r ′

δF [{ρ(·, t)}]
δργ(~r ′) d~r ′ + ηα(~r, t) ∀α ∈ C, (2.21)

where

C = {A,B, S2, ..., SJ} and j(γ) =

1, γ ∈ {A,B}
j, γ = Sj

. (2.22)

Dj(γ) is the diffusion coefficient of the sole polymer type that contains the γ-monomers. Non-
local coupling models are applied to analyze structure formation in copolymer melts [86, 87],
and to study spontaneous self-assembly [88, 89]. Simulated time spans in these studies range
to ≈ 0.75 seconds in simulation boxes with side lengths of several hundred nanometers.
Continuum descriptions therefore allow to simulate much larger times scales than particle
models, where simulated time spans are typically shorter than several 100 microseconds as
discussed in section 2.1.

2.2.2 Self Consistent Field Theory (SCF)

Performing calculations with dynamic field theories requires the specification of a free energy
functional F in the master equation 2.7. F can be obtained by rewriting partition functions
in conformity with equation 2.9. Such path integral representations typically constitute in-
termediate results of equilibrium field theories. The most prominent representatives of these
theories are the Density Functional Theory and the Self Consistent Field Theory. Both are
based on introducing a set of external potentials {ω}, but differ in the way the potentials
are handled. In Density Functional Theory they are considered to depend on densities and
a bijective functional {ρ}[{ω}] is inverted with certain approximations in order to express
free energies or partition functions in terms of densities only. Equilibrium properties are
subsequently calculated by minimization with respect to {ρ}. In Self Consistent Field The-
ory {ω} is regarded as a set of independent variables that is eventually determined by an
extremization procedure, which allows to investigate equilibrium states without the necessity
to perform a functional inversion. The two approaches are interrelated [90] and the current
subsection restricts to the Self Consistent Field Theory because it is applied at some point
in the present work. The recapitulation follows the review articles [91] and [92].
In doing so, a canonical ensemble with nj identical polymer molecules of type j ∈ {1, ..., J}
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is considered, each consisting of Nj monomers with potentially different species α ∈ {1, ...,A},
just like in subsection 2.2.1. This time the polymers are continuous Gaussian chains, and the i-
th chain of type j is parameterized by a function ~R

(j)
i (s) with s ∈ [0, Nj ]. The consideration of

a continuum limit proves convenient in the current section but discrete chains would reproduce
analogous results. The microscopic density of α-monomers in a system with continuous chains
is defined as

ρ̂α(~r) =
J∑
j=1

nj∑
ij=1

∫ Nj

0
δ(~r − ~R

(j)
ij

(s))γα,j(s) ds, (2.23)

where γα,j(s) specifies the architecture of a polymer chain similar to δ(j)
αs : γα,j(s) is 1 if a

monomer of species α is placed at position s in a chain of type j or zero otherwise. The
corresponding partition function reads

Z =
J∏
j=1

 1
nj !V nj

nj∏
ij=1

∫
D ~R(j)

ij
Pj [~R(j)

ij
;Nj ]

 e−βU [{ρ̂}]. (2.24)

U is a functional that contains monomer interactions and depends on the set of microscopic
densities {ρ̂} = {ρ̂1, ρ̂2, ..., ρ̂A}. Pj [~R; s′] is proportional to the probability density that a
segment of length s′ in a single Gaussian polymer chain of type j takes the conformation ~R.
It is defined by

Pj [~R; s′] = Nj(s′)e
−
∑A

α=1
3

2b2α

∫ s′
0

∣∣∣ d~Rds (s)
∣∣∣2γα,j(s) ds (2.25)

with the normalization constant

Nj := Nj(s′) = V

∫ D ~R e−∑Aα=1
3

2b2α

∫ s′
0

∣∣∣ d~Rds (s)
∣∣∣2γα,j(s) ds−1

(2.26)

and the Kuhn length bα associated to a particular monomer species. Path integrals operate
on anything to their right, including e−βU [{ρ̂}] in equation 2.24. This exponential expression
often contains mathematically complicated coupling terms among polymer chains that make a
direct evaluation of Z impossible. To develop a convenient description, individual chains can
be decoupled by introducing potential fields ωα in order to substitute microscopic densities
ρ̂α by ~R

(j)
i -independent field variables ρα via the relation

f [{ρ̂}] =
A∏
α=1

∫
Dρα δ[ρα − ρ̂α]f [{ρ}] =

A∏
α=1

∫
Dρα

∫
i∞
Dωα e

∫
ωα(~r)(ρα(~r)−ρ̂α(~r)) d~rf [{ρ}]

with {ρ} = {ρ1, ρ2, ..., ρA} and f [{ρ̂}] = exp(−βU [{ρ̂}]). The integral subscript i∞ indicates
that every ωα is integrated along the imaginary axis. Employing the above relation in equation
2.24 immediately leads to

Z =
[ A∏
α=1

∫
Dρα

∫
i∞
Dωα

]
J∏
j=1

 1
nj !V nj

nj∏
ij=1

∫
D ~R(j)

ij
Pj [~R(j)

ij
;Nj ]

 e−βU [{ρ}]

×
A∏
α=1

e
∫
ωα(~r)(ρα(~r)−ρ̂α(~r)) d~r
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=
[ A∏
α=1

∫
Dρα

∫
i∞
Dωα

]
e−βU [{ρ}]+

∑A
α=1

∫
ωα(~r)ρα(~r) d~r

×
J∏
j=1

 1
nj !V nj

nj∏
ij=1

∫
D ~R(j)

ij
Pj [~R(j)

ij
;Nj ]

 e−∑Aα=1

∫
ωα(~r)ρ̂α(~r) d~r.

After inserting the microscopic densities ρ̂α from equation 2.23, Z becomes

Z =
[ A∏
α=1

∫
Dρα

∫
i∞
Dωα

]
e−βU [{ρ}]+

∑A
α=1

∫
ωα(~r)ρα(~r) d~r

×
J∏
j=1

 1
nj !V nj

nj∏
ij=1

∫
D ~R(j)

ij
Pj [~R(j)

ij
;Nj ]e

−
∑A

α=1

∫ Nj
0 γα,j(s)ωα(~R(j)

ij
(s)) ds

 ,
and introducing the partition function of a single chain in external fields {ω} = {ω1, ω2, ..., ωA}
given by

Qj [{ω}] =
∫
D ~RPj [~R;Nj ]e−

∑A
α=1

∫ Nj
0 ωα(~R(s))γα,j(s) ds, (2.27)

it simplifies to

Z =
[ A∏
α=1

∫
Dρα

∫
i∞
Dωα

]
e−βF [{ρ},{ω}] (2.28)

with

βF [{ρ}, {ω}] = βU [{ρ}]−
A∑
α=1

∫
ωα(~r)ρα(~r) d~r −

J∑
j=1

ln
(

1
nj !

Q
nj
j [{ω}]
V nj

)

≈ βU [{ρ}]−
A∑
α=1

∫
ωα(~r)ρα(~r) d~r −

J∑
j=1

nj

[
ln
(
Qj [{ω}]
njV

)
+ 1

]
, (2.29)

where chain statistics are solely contained in Qj . The second line of equation 2.29 is ob-
tained by application of Stirling’s formula. ’+1’ in the last term is often neglected as it only
contributes a term which is constant in a canonical ensemble.

The central approximation in the Self Consistent Field Theory is a saddle point approx-
imation of the exponent in equation 2.28, i.e. F , to find the configuration ({ρ}, {ω}) that
contributes most to Z. Minimizing by means of δF

δωα(~r) = 0 ∀α ∈ {1, ...,A} establishes a
relation between ρα and {ω}, namely

ρα(~r)[{ω}] = 〈ρ̂α(~r)〉 [{ω}] = −
J∑
j=1

nj
δ ln(Qj [{ω}])

δωα(~r) = −
J∑
j=1

nj
Qj [{ω}]

δQj [{ω}]
δωα(~r) , (2.30)

where 〈 · 〉 denotes the canonical ensemble average of non-interacting chains subject to external
fields {ω}. Maximization of F with respect to {ρ} leads to

ωα(~r)[{ρ}] = δβU [{ρ}]
δρα(~r) . (2.31)

Equations 2.30 and 2.31 form a closed set of equations for {ω} and {ρ} that can be solved
self-consistently to calculate density profiles in equilibrium. This procedure has been applied
to simulate spontaneously self-assembled nanoparticles [93]. Corresponding calculations of
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equilibrium structures were also done with Density Functional Theory [94].

A connection to dynamic field theories can be drawn by only performing the minimization
with respect to {ω} and approximating equation 2.28 by

Z ≈
A∏
α=1

∫
Dραe−βF [{ρ},{ω}[{ρ}]]. (2.32)

Equation 2.32 corresponds to equation 2.9. Conclusively, it allows to use the composition of
equation 2.29 with the inversion of 2.30, {ω}[{ρ}], as the free energy on the right hand side
in the dynamical equation 2.7. Since the saddle point approximation neglects fluctuations in
the potential fields, it is a mean field description. Explicitly calculating {ω}[{ρ}] by inverting
equation 2.30 would correspond to a Density Functional approach.

When self-assembly is described by External Potential Dynamics, a formalism that will
be introduced in subsection 2.2.4, it proves advantageous to express densities in terms of
potential fields rather than the other way around, i.e. to use F [{ρ}[{ω}], {ω}] instead of
F [{ρ}, {ω}[{ρ}]], because this leads to an explicit ω-representation of the corresponding dy-
namical equation (cp. equation 2.73 in advance). To calculate ρα[{ω}] the exact procedure
from the Self Consistent Field Theory can be applied. That procedure uses the end-segment
distribution functions

gj(~r, s) =
∫
D ~RPj [~R; s]e−

∑A
α=1

∫ s
0 ωα(~R(s′))γα,j(s′) ds′δ(~r − ~R(s)) (2.33)

of Gaussian chains. It can be shown that gj obeys the inhomogeneous diffusion equation[
∂

∂s
+
A∑
α=1

γα,j(s)
(
−b

2
α

6 ∆ + ωα(~r)
)]

gj(~r, s) = 0 with gj(~r, 0) = 1 (2.34)

[95], and is thus accessible in simulations without too much computational effort. The par-
tition function Qj from equation 2.27 can be written as

Qj =
∫
gj(~r,Nj)d~r. (2.35)

Its variation is

d

dε

∣∣∣∣
ε=0

Qj [..., ωϑ + εη, ...] =
∫
D ~RPj [~R;Nj ]

d

dε

∣∣∣∣
ε=0

e−
∑A

α=1

∫ Nj
0 [ωα(~R(s))+δαϑ εη(~R(s))]γα,j(s) ds

= −
∫ Nj

0

[∫
D ~RPj [~R,Nj ]e−

∑A
α=1

∫ Nj
0 ωα(~R(s))γα,j(s) ds

]
γϑ,j(s′)η(~R(s′)) ds′

= −
∫ {∫ Nj

0

[∫
D ~RPj [~R;Nj ]e−

∑A
α=1

∫ Nj
0 ωα(~R(s))γα,j(s) ds

]
γϑ,j(s′)δ(~r − ~R(s′)) ds′

}
η(~r) d~r

and thus, the functional derivative reads

δQj
δωϑ(~r) = −

∫ Nj

0
γϑ,j(s′)

[∫
D ~RPj [~R;Nj ]e−

∑A
α=1

∫ Nj
0 ωα(~R(s))γα,j(s) ds

]
δ(~r − ~R(s′)) ds′.

(2.36)
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Factorizing
Pj [~R;Nj ]e−

∑A
α=1

∫ Nj
0 ωα(~R(s))γα,j(s) ds

= Nje
−
∑A

α=1
3

2b2α

∫ Nj
0

∣∣∣ d~Rds (s)
∣∣∣2γα,j(s) ds

e−
∑A

α=1

∫ Nj
0 ωα(~R(s))γα,j(s) ds

into

Nj− e
−
∑A

α=1
3

2b2α

∫ s′
0

∣∣∣ d~Rds (s)
∣∣∣2γα,j(s) ds

e−
∑A

α=1

∫ s′
0 ωα(~R(s))γα,j(s) ds

×Nj+ e
−
∑A

α=1
3

2b2α

∫ Nj
s′

∣∣∣ d~Rds (s)
∣∣∣2γα,j(s) ds

e−
∑A

α=1

∫ Nj
s′ ωα(~R(s))γα,j(s) ds (2.37)

with the definitions

Nj− = V

(∫
D ~R− e

−
∑A

α=1
3

2b2α

∫ s′
0 | dRds (s)|2γα,j(s)ds

)−1

and

Nj+ =
(∫
D ~R+ e

−
∑A

α=1
3

2b2α

∫ Nj
s′ | dRds (s)|2γα,j(s)ds

)−1

,

where
∫
D ~R−/+ denotes the path integral over the restrictions ~R(s)|s≤/>s′ , allows to rewrite

the functional derivative after substitution s 7→ Nj − s of the integration variable in the
second line of equation 2.37 and in Nj+ as

δQj
δωϑ(~r) = −

∫ Nj

0
γϑ,j(s′)

[ ∫
D ~RPj [~R; s′]e−

∑A
α=1

∫ s′
0 ωα(~R(s))γα,j(s) dsδ(~r − ~R(s′))

×Nj+ e
−
∑A

α=1
3

2b2α

∫ Nj−s′
0

∣∣∣ d~Rds (Nj−s)
∣∣∣2γα,j(Nj−s) ds

e−
∑A

α=1

∫ Nj−s′
0 ωα(~R(Nj−s))γα,j(Nj−s) ds

]
ds′

= −
∫ Nj

0
γϑ,j(s′)

[ ∫
D ~R−

{
Pj [~R; s′]e−

∑A
α=1

∫ s′
0 ωα(~R(s))γα,j(s) dsδ(~r − ~R(s′))

}

×
∫
D ~R+

{
Nj+ e

−
∑A

α=1
3

2b2α

∫ Nj−s′
0

∣∣∣ d~Rds (Nj−s)
∣∣∣2γα,j(Nj−s) ds

× e−
∑A

α=1

∫ Nj−s′
0 ωα(~R(Nj−s))γα,j(Nj−s) ds

}]
ds′ (2.38)

Replacing D ~R− by D ~R inNj− and in equation 2.38 does not change its value on the right hand
side because the integrands in both equation 2.38 and Nj− only depend on ~R|s≤s′ . Inserting
the functions ~R(+)(s) = ~R(Nj − s) and γ(+)

α,j (s) = γα,j(Nj − s), D ~R+ can be substituted by
D ~R(+)

− δ(~r − ~R(+)(Nj − s′)) in both Nj+ and equation 2.38, where D ~R(+)
− denotes the path

integral over restrictions ~R(+)(s)|s≤Nj−s′ and the delta function accounts for the fact that
~R(s′) = ~R(+)(Nj − s′) is excluded from D ~R+. Further substituting D ~R(+)

− δ(~r − ~R(+)(Nj −
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s′)) 7→ D ~R(+)δ(~r − ~R(+)(Nj − s′)) and rewriting

Nj+ = V

V ∫ D ~R(+)δ(~r − ~R(+)(Nj − s′))e
−
∑A

α=1
3

2b2α

∫ Nj−s′
0

∣∣∣ dR(+)
ds

(s)
∣∣∣2γ(+)

α,j (s)ds
−1

= V

[∫ d~r

] ∫
D ~R(+)δ(~r − ~R(+)(Nj − s′))e

−
∑A

α=1
3

2b2α

∫ Nj−s′
0

∣∣∣ dR(+)
ds

(s)
∣∣∣2γ(+)

α,j (s)ds
−1

= V

∫ D ~R(+)
[∫

δ(~r − ~R(+)(Nj − s′))d~r
]
e
−
∑A

α=1
3

2b2α

∫ Nj−s′
0

∣∣∣ dR(+)
ds

(s)
∣∣∣2γ(+)

α,j (s)ds
−1

= V

∫ D ~R(+)e
−
∑A

α=1
3

2b2α

∫ Nj−s′
0

∣∣∣ dR(+)
ds

(s)
∣∣∣2γ(+)

α,j (s)ds
−1

finally yields

δQj
δωϑ(~r) = −

∫ Nj

0
γϑ,j(s′)

[ ∫
D ~R

{
Pj [~R; s′]e−

∑A
α=1

∫ s′
0 ωα(~R(s))γα,j(s) dsδ(~r − ~R(s′))

}

×
∫
D ~R(+)

{
Pj [~R(+);Nj − s′]e−

∑A
α=1

∫ Nj−s′
0 ωα(~R(+)(s))γ(+)

α,j (s) dsδ(~r − ~R(+)(Nj − s′))
}]

ds′

= −
∫ Nj

0
γϑ,j(s′)

[
gj(~r, s′)× g′j(~r,Nj − s′)

]
ds′. (2.39)

g′j(~r, s) also fulfills the diffusion equation 2.34 (after substituting γα,j(s) by γ(+)
α,j (s)) because

it is defined analogously to gj in equation 2.33. Insertion of equation 2.39 into equation 2.30
enables the calculation of densities {ρ} for prescribed potential fields {ω} via g and g′, which
are specified by equation 2.34.

2.2.3 Random Phase Approximation

The Random Phase Approximation (RPA) is often used in tandem with the Self Consis-
tent Field Theory to study fluctuations around an equilibrium or metastable reference state
[96, 97, 98]. In the present section the RPA is performed to bridge the gap between the Self
Consistent Field Theory and so-called Flory-Huggins-de Gennes free energy functionals that
are utilized in parts of the current work. A replacement of the SCF free energy (equation
2.29) by a Flory-Huggins-de Gennes expression restricts the validity of the free energy to
states close to the reference state. However, it allows a speed up of simulations because
the end-segment distribution functions gj and g′j do not have to be calculated. Inserting a
Flory-Huggins-de Gennes approximation to the free energy into dynamic field theories even
allows to perform analytically solvable perturbation treatments of the dynamical equations.
Such a perturbation treatment will play a central role in interpreting figure 1.3 later on. The
RPA also establishes a connection between the structure factor accessible from light scatter-
ing experiments and Flory-Huggins interaction parameters that appear in Flory-Huggins-de
Gennes free energy functionals [99].
There are different starting points to derive a RPA for a particular system [100]. Here, a
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second order Taylor expansion of the free energy functional from equation 2.29 is presented.
To this end both the potential fields and the densities are expanded according to

ωα = ω(0)
α + δωα and ρα = ρ(0)

α + δρα ∀ α, (2.40)

where ω(0)
α and ρ

(0)
α are solutions to equations 2.30 and 2.31, i.e. saddle points of the Self

Consistent Field Theory, and δωα and δρα small fluctuations. The second order Taylor
expansion of F is then given by

βF [{ρ}, {ω}] = βF [{ρ(0)}, {ω(0)}]

+1
2

A∑
α,γ=1

∫ ∫ [
(βU)(2)

αγ (~r, ~r ′)δρα(~r)δργ(~r ′) +Kαγ(~r, ~r ′)δωα(~r)δωγ(~r ′)
]
d~r ′d~r (2.41)

with the short hand notations

(βU)(2)
αγ (~r, ~r ′) = δ2(βU{ρ(0)})

δρα(~r)δργ(~r ′) (2.42)

and

Kαγ(~r, ~r ′) =
J∑
j=1

nj
δ2 ln(Qj [{ω(0)}])
δωα(~r)δωγ(~r ′) . (2.43)

By utilizing equation 2.30 density variations can be expressed in terms of potential field
variations according to

δρα(~r) = −
A∑
γ=1

∫
Kαγ(~r, ~r ′)δωγ(~r ′) d~r ′. (2.44)

Due to the Hohenberg-Kohn theorem [101] there exists a functional inverse to Kαγ , in the
following denoted by K−1

αγ , which obeys the relation

A∑
γ=1

∫
K−1
αγ (~r, ~r ′′)Kγβ(~r ′′, ~r ′) d~r ′′ = δαβδ(~r − ~r ′). (2.45)

This relation allows to write

δωα(~r) = −
A∑
β=1

∫
K−1
αβ (~r, ~r ′)δρβ(~r ′) d~r ′. (2.46)

Insertion of δωα into equation 2.41 and eliminating ω(0)-dependencies by means of equation
2.31 yields

βF [{ρ}] = βF [{ρ(0)}]

+1
2

A∑
α,γ=1

∫ ∫ [
(βU)(2)

αγ (~r, ~r ′) +K−1
αγ (~r, ~r ′)

]
δρα(~r)δργ(~r ′) d~r ′d~r, (2.47)

which is the general form of the RPA expansion. (βU)(2)
αγ and K−1

αγ are specified by the
physical system under consideration.



24 2.2. Continuum field theories

To arrive at a Flory-Huggins-de Gennes free energy functional we restrict to homopolymer
blends in a system of volume V with

x(0)
α = xα = 1

V

∫
xα(~r) d~r for x = ρ, ω (2.48)

and assume isotropy of the thereby defined homogeneous reference state, i.e.

Kαγ(~r, ~r ′) = Kαγ(~r − ~r ′) = Kαγ(−~r + ~r ′). (2.49)

This analogously holds for K−1
αγ , too, and is reasonable because Kαγ(~r, ~r ′) is proportional

to cumulant pair correlations 〈ρ̂α(~r)〉 〈ρ̂γ(~r ′)〉 − 〈ρ̂α(~r)ρ̂γ(~r ′)〉. As only homopolymers are
considered, each chain of type j can be assigned to one single monomer species α, which
renders the separation of indices j and α to be redundant. It follows from equation 2.27 that
Qj [{ω}] = Qj [ωj ], where ωj is the potential field acting on the monomers that form type j
chains. As a result, it is

Kαγ(~r − ~r ′) = δαγKαα(~r − ~r ′) = δαγnα
δ2 ln(Qα[ωα[{ρ}]])
δωα(~r)δωα(~r ′) . (2.50)

Insertion of the first equality from equation 2.50 into equation 2.45 yields the relation∫
K−1
αα(~r − ~r ′′)Kαα(~r ′ − ~r ′′)d~r ′′ = δ(~r − ~r ′). (2.51)

By substituting ~y = ~r ′′ − ~r, introducing the short hand notation ~b = ~r − ~r ′, and invoking
equation 2.49 this relation appears as a convolution,

δ(~b) = (K−1
αα ∗Kαα)(~b) =

∫
K−1
αα(~y)Kαα(~b− ~y) d~y, (2.52)

and due to the convolution theorem the Fourier transforms are algebraically connected via

K̂−1
αα(~k) = 1

K̂αα(~k)
. (2.53)

For homogeneous reference states K̂αα is given by

K̂αα(~k) = ραNαĝD(R2
g,α
~k2), (2.54)

where Rg,α is the radius of gyration of α-homopolymers, Nα the number of monomers per
chain, and ĝD the Debye Function ĝD(x) = 2

x2 [e−x + x − 1], which is often approximated
by ĝD(x) ≈ 1

1+x/2 with an error of less than 15 % that decreases with diminishing x (cp.
equation 2.83 in reference [102]). The derivation of equation 2.54 is analogous to the calcula-
tions leading to equation 3.136 in reference [103]. If so-called Flory-Huggins type interaction
potentials

βU [{ρ}] =
∫ A∑

i=1

A∑
j=i+1

ζijρi(~r)ρj(~r) d~r (2.55)
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are applied, it is

(βU)(2)
αγ (~r, ~r ′) = δ2(βU [{ρ}])

δρα(~r)δργ(~r ′) = δ(~r − ~r ′)ζαγ with ζαγ =

ζαγ α < γ

ζγα γ < α
(2.56)

and after inserting equation 2.56, equation 2.47 becomes

βF [{ρ}] = βF [{ρ}] + 1
2

A∑
α,γ=1

∫
ζαγδρα(~r)δργ(~r) d~r

+1
2

A∑
α=1

∫ [∫
K−1
αα(~r − ~r ′)δρα(~r ′) d~r ′

]
ρα(~r) d~r. (2.57)

Assuming periodic boundary conditions and introducing the Fourier coefficients ρ̂α via

δρα(~r) =
∑
~k 6=0

ρ̂α(~k)ei~k·~r with ρ̂α(~k) = 1
V

∫
δρα(~r)e−i~k·~r d~r (2.58)

(in the remainder of this chapter ρ̂α denotes the Fourier coefficient of density fluctuations
and not the microscopic density!) the second line of equation 2.57 can be cast into the form

1
2

A∑
α=1

∫ [∫
K−1
αα(~r − ~r ′)δρα(~r ′) d~r ′

]
ρα(~r) d~r

= 1
2

A∑
α=1

∑
~k 6=0

∑
~k ′ 6=0

ρ̂α(~k)
K̂αα(~k)

ρ̂α(~k ′)
∫
ei(
~k+~k ′)·~r d~r = 1

2

A∑
α=1

∑
~k 6=0

V

Nαρα

(
1 +

R2
g,α
~k2

2

)
ρ̂α(~k)ρ̂α(−~k)

= V

2

A∑
α=1

∑
~k 6=0

[
1

Nαρα
ρ̂α(~k)ρ̂α(−~k) +

R2
g,α

2Nαρα
~k2ρ̂α(~k)ρ̂α(−~k)

]
.

Translating back into coordinate space, e.g. by formally substituting V = V
∑
~k ′ 6=0 δ~k,−~k ′ =∑

~k ′ 6=0
∫
ei(
~k+~k ′)·~r d~r, results in

βF [{ρ}] = βF [{ρ}]+
∫ 1

2

A∑
α,γ=1

ζαγδρα(~r)δργ(~r) + 1
2

A∑
α=1

(δρα(~r))2

Nαρα
+
A∑
α=1

R2
g,α

4Nαρα
|∇ρα(~r)|2

 d~r

= βF [{ρ}] +
∫ 1

2

A∑
α,γ=1

(
δαγ
Nαρα

+ ζαγ

)
δρα(~r)δργ(~r) +

A∑
α=1

R2
g,α

4Nαρα
|∇ρα(~r)|2

 d~r. (2.59)

The term in the round brackets, δαγ
Nαρα

+ ζαγ , can be identified with the second derivative of
the Flory-Huggins free energy density fFH , which was originally derived in a lattice model
[104]. Expressed in terms of monomer densities {ρ}, βfFH reads

βfFH =
A∑
i=1

 ρi
Ni

ln (νρi) +
A∑

j=i+1
χijρiνρj

 with ∂2(βfFH)
∂ρα∂ργ

({ρ}) = δαγ
Nαρα

+ νχαγ , (2.60)

where ν is a constant that describes an elementary monomer volume and χ the well known
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Flory-Huggins interaction parameter. Identifying νχαγ = ζαγ , it can be seen that the double-
sum over α, γ in the squared brackets in the last line of equation 2.59 corresponds to the
second order term in a Taylor expansion of βfFH around a homogeneous reference state.
For homopolymers in the homogeneous state it is ln(Qα/V ) = ln(e−Nαωα) = −Nαωα, which
implies that the zeroth order contribution βF [{ρ}] can be written as

βF [{ρ}] = V
A∑
α=1

A∑
γ=α+1

ζαγραργ − V
A∑
α=1

ραωα +
A∑
α=1

nαNαωα +
A∑
α=1

nα ln(nα)

(cp. equation 2.29). Since ρα = Nαnα/V , the second and the third term cancel and it is

βF [{ρ}] = V
A∑
α=1

A∑
γ=α+1

χαγρανργ + V
A∑
α=1

ρα
Nα

ln
(

V

νNα
νρα

)

=
∫ A∑

α=1

 ρα
Nα

ln (νρα) +
A∑

γ=α+1
χαγρανργ

 d~r + V
A∑
α=1

ρα
Nα

ln
(

V

νNα

)

=
∫
βfFH({ρ}) d~r + V

A∑
α=1

ρα
Nα

ln
(

V

νNα

)
. (2.61)

Hence, because the first derivative of βfFH in the homogeneous reference state is zero, the
first two addends in the last line of equation 2.59 constitute the second order Taylor expansion
of βfFH with an additional term a({ρ}) = V

∑A
α=1

ρα
Nα

ln
(

V
νNα

)
. Replacing the Taylor series

by the complete function βfFH leads to

βF [{ρ}] =
∫ [

βfFH({ρ(~r)}) +
A∑
α=1

λα |∇ρα(~r)|2
]
d~r + a({ρ}) with λα =

R2
g,α

4Nαρα
, (2.62)

which shows that the free energy functional from the Self Consistent Field Theory can be
replaced by Flory-Huggins-de Gennes free energy functional if only small density fluctuations
are considered. Since dynamic field theories only contain ∇ δF

δρα
, they are unaffected by a({ρ}).

Dynamical equations with Flory-Huggins-de Gennes free energy functionals are often referred
to as phase field models.

2.2.4 External Potential Dynamics (EPD)

The explicit calculation of pair correlators P demands excessive computation times when
a non-local kinetic coupling model like equation 2.21 is solved numerically. Fortunately,
the computational cost can be reduced dramatically by transforming temporal evolutions of
density fields {ρ} into temporal evolutions of potential fields {ω}. The resulting dynamical
equations are referred to as External Potential Dynamics [86]. The prerequisites for Exter-
nal Potential Dynamics are two well known results from Density Functional Theory: the
invertibility of the assignment {ρ}[{ω}] and the identity

δρα(~r)
δωγ(~r ′) = −P (j(γ))

αγ (~r, ~r ′), (2.63)
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where ωγ is a (dimensionless) potential field and P (j(γ))
αγ (~r, ~r ′) the pair correlators defined in

equation 2.16. Because the relation between densities and potentials from the Self Consistent
Field Theory,

ρα(~r)[{ω}] = −
J∑
j=1

nj
Qj [{ω}]

δQj [{ω}]
δωα(~r)

with Qj from equation 2.27, is identical to the one obtained from the Density Functional
Theory for non-interacting polymer chains in external fields {ω} [103], both prerequisites
hold for the Self Consistent Field Theory as well. The first one is an implication of the
Hohenberg-Kohn theorem [101], and the second one can be verified by rewriting

Qj [{ω}] =
∫
D ~RPj [~R;Nj ]e−

∑A
α=1

∫ Nj
0 ωα(~R(s))γα,j(s) ds

=
∫
D ~RPj [~R;Nj ]e−

∑A
α=1

∫
ωα(~r)ρ̂(c,j)

α (~r) d~r (2.64)

with the monomer density of a continuous chain ρ̂(c,j)
α (~r) =

∫Nj
0 δ(~r− ~R(s))γα,j(s) ds. Insertion

of Qj into equation 2.30 yields

δρα(~r)
δωγ(~r ′) =

∑
j∈Jα∩Jγ

nj
[〈
ρ̂(c,j)
α (~r)

〉
c

〈
ρ̂(c,j)
γ (~r ′)

〉
c
−
〈
ρ̂(c,j)
α (~r)ρ̂(c,j)

γ (~r ′)
〉
c

]
, (2.65)

and since the first term in the squared brackets grows with 1/V 2, while the second one grows
with 1/V , at large volumes V it is

δρα(~r)
δωγ(~r ′) = −

∑
j∈Jα∩Jγ

nj
〈
ρ̂(c,j)
α (~r)ρ̂(c,j)

γ (~r ′)
〉
c
. (2.66)

In case a diblock-copolymer solution or a copolymer melt is considered, the sum over j
vanishes and

δρα(~r)
δωγ(~r ′) = −nj(γ)

〈
ρ̂(c,j(γ))
α (~r)ρ̂(c,j(γ))

γ (~r ′)
〉
c

= −P (j(γ))
αγ (~r, ~r ′), (2.67)

where j(γ) again denotes the type of the chemical component that contains γ-monomers.

As the invertibility of {ρ}[{ω}] implies the existence of a set {ω} that can uniquely generate
any arbitrary {ρ}, it is possible to transfer the time dependence of densities ρα(·, t) to poten-
tials {ω(·, t)} by setting ρα(~r, t) = ρα(~r)[{ω(·, t)}]. The first step at determining appropriate
conditional equations for {ω(·, t)} is differentiating ρα and applying equation 2.63 to get

∂ρα(~r)[{ω(·, t)}]
∂t

=
A∑
γ=1

∫
δρα(~r)
δωγ(~r ′)

∂ωγ
∂t

(~r ′, t) d~r ′

= −
A∑
γ=1

∫
P (j(γ))
αγ (~r, ~r ′)∂ωγ

∂t
(~r ′, t) d~r ′. (2.68)
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Therefore, setting ρi(~r, t) = ρi(~r)[{ω(·, t)}] in equation 2.21 with ηα = 0 implies

∑
γ

βDj(γ)∇~r ·
∫
P (j(γ))
αγ (~r, ~r ′)∇~r ′

δF [{ρ[{ω(·, t)}]}]
δργ(~r ′) d~r ′

= −
∑
γ

∫
P (j(γ))
αγ (~r, ~r ′)∂ωγ

∂t
(~r ′, t) d~r ′. (2.69)

Assuming ∇~rP
(j(γ))
αγ (~r, ~r ′) = −∇~r ′P

(j(γ))
αγ (~r, ~r ′) (the physical interpretation is discussed by

Maurits et al. [86]) and utilizing the Gaussian integral theorem allows to rewrite

∇~r ·
∫
P (j(γ))
αγ (~r, ~r ′)∇~r ′

δF [{ρ}]
δργ(~r ′) d~r

′ =
∫
P (j(γ))
αγ (~r, ~r ′)∇2

~r ′
δF [{ρ}]
δργ(~r ′) d~r

′, (2.70)

which is used to rearrange equation 2.69 to

∑
γ

∫
P (j(γ))
αγ (~r, ~r ′)

[
∂ωγ
∂t

(~r ′, t) + βDj(γ)∇2
~r ′
δF [{ρ[{ω(·, t)}]}]

δργ(~r ′)

]
d~r ′ = 0. (2.71)

The left hand side in the equation above is linear in the square bracket term and can be
written in matrix-vector notation according to

∑
γ

∫
P j(γ)
αγ (~r, ~r ′)fγ(~r ′) d~r ′ =

(
P(~r)~f

)
α

(2.72)

with the vector ~f = (f1, f2, f3, ...)T and the operator matrix P with entries Pαγ(~r) =∫
d~r ′Pαγ(~r, ~r ′). As P connects {ρ} and {ω} via equation 2.68 upon time integration, it

has to be bijective due to the Hohenberg-Kohn theorem, and because the kernel of bijective
linear mappings contains only 0, it follows from equation 2.71 that

∂ωγ
∂t

(~r, t) = −Dj(γ)∇2
~r

δβF [{ρ[{ω(·, t)}]}]
δργ(~r) ∀ γ = 1, ...,A, (2.73)

which constitutes the deterministic External Potential Dynamics equations. Equation 2.73
describes (approximately) the same dynamics as equation 2.21, but can be solved compu-
tationally much more efficiently because it does not contain the integral over ~r ′. For given
{ω}, densities may be calculated from equations 2.30, 2.34, and 2.39. The consideration of
thermal noise introduces an additive random term ηγ to the right hand side of equation 2.73
obeying

〈ηγ(~r, t)〉 = 0 and
〈
ηα(~r, t)ηγ(~r ′, t′)

〉
= −2Dj(γ)∇2

~rP
−1
αγ (~r, ~r ′)δ(t− t′), (2.74)

where P−1
αγ is the inverse to P j(γ)

αγ [86]. But due to the lack of possibilities to calculate a noise
satisfying these conditions, simpler implementations are usually used [86].



Chapter 3
Mixing mechanisms in interdigital micromix-

ers

A micromixer is a microfluidic device. Microfluidic devices process fluids in geometries with
at least one spatial dimension lying on the micrometer scale and their application ranges
from biomedical diagnostics and drug development to replacing conventional batch syntheses
in the chemical industry. These applications commonly involve reactions between miscible
substances with very low diffusivity. As a ’clean’ reaction requires the reacting species to be
mixed on a molecular scale, the reaction rate or the purity of reaction products is severely
limited by the inherently slow interdiffusion of reactants or, in other words, their large mixing
time. The purpose of micromixers is to decrease mixing times as much as possible – either
to increase throughput or quality in an industrial application or to construct lab-on-a-chip
systems for point of care diagnostics, which demand practically direct evaluation or immediate
further processing of reaction products.
In the following, ’mixing’ is understood as a combination of diffusion and stirring [105].

Because only diffusion is able to establish a homogeneous concentration distribution of dif-
ferent species on a molecular scale, it is the final step of (good) mixing. Generally speaking,
stirring is a convective process which increases the interface to volume ratio of spatial domains
containing an excess of any chemical component in order to accelerate diffusion. In contrast
to diffusion, stirring can be directly influenced by the particular design of a micromixer and
the process parameters it is operated with. From the most general point of view micromixer
designs can be classified into two families depending on how the stirring is done: active and
passive. While active micromixers rely on external excitation, for example ultrasonic, passive
ones do not need an external source of energy. Since micromixers are usually integrated
into microfluidic networks and operated continuously, passive micromixers take the energy
required for stirring from the fluid flow. An overview over various mixing principles can be
found in the review articles [105], [106], [107], and [108]. All mixers that were used to gen-
erate the experimental data in figure 1.3 are passive micromixers. Passive micromixing may
be implemented by different stirring mechanisms. The Caterpillar Micromixer (CPMM), for
example, relies on ’split and recombine’ as a stirring mechanism [109], while the Slit Inter-
digital Micromixer (SIMM) and the Super Focus Interdigital Micromixer (SFIMM) apply
’hydrodynamic focusing’ [110].
Despite different stirring mechanisms passive micromixers typically share one specific trait:

they respond to increasing flow rates with decreasing mixing times [111]. As it turns out later,
the relation between flow rates and mixing times is crucial to the interpretation of figure

29
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1.3, and the following two sections will reveal that this relation is caused by the stirring
mechanisms. Because it would go beyond the scope of the present work to cover all passive
micromixers in detail, the SFIMM is discussed as an example for hydrodynamic focusing in
section 3.1 and the CPMM as an example for the split and recombine mechanism in section
3.2. In the process analytical theories are used, which also provide a mathematical expression
to couple the mixing process to the models for particle formation.

3.1 Hydrodynamic focusing

Figure 3.1 shows a schematic drawing of the SFIMM. The SFIMM unites two different features
to provide fast mixing of liquids: multilamination and hydrodynamic focusing. Multilamina-
tion is the alignment of liquids into a lamella pattern. The term ’interdigital’ originates from
such lamella patterns and they can be viewed as the first step in creating the desirable large
interface to volume ratios. Hydrodynamic focusing constitutes the second step and denotes
the decrease in lamella width towards the focusing point. According to the continuity equa-
tion a fluid accelerates while traveling through a constricting channel. As a result, lamellae
are stretched in flow direction, which increases their surface to volume ratio and in turn accel-
erates diffusion. In other words, hydrodynamic focusing reduces the diffusion length inside a
moving frame of reference (cp. r(t1) and r(t2) in figure 3.1) in the direction indicated by the
x-axis. The primal purpose of hydrodynamic focusing was to offset the lower bound of lamella
widths which arises from manufacturing limitations for the inlet channels. To quantitatively
understand why hydrodynamic focusing introduces the flow rate dependence of mixing times
that is so essential for the co-solvent method, we apply an analytical theory developed by
Drese [112]. It is based on solving a one dimensional diffusion equation after applying an
appropriate coordinate transformation. Because the resulting formulae are going to play a
major role later on, we present a detailed derivation. In the present work there will be addi-
tional physical background in the derivation of the coordinate transformation, which did not
appear explicitly in the original publication [112]: it is shown that the approach corresponds
to solving a convection diffusion equation if the diffusion in the x-direction dominates the
diffusion in the other two spatial directions.
We start with specifying the flow regime by estimating the Reynolds number. The largest

Reynolds numbers are naturally encountered in the mixing section, where

Re = U d

ν
≈

v
w h h

ν
= v

wν
.

In the second step the definition of a flow rate, v = AU , is applied. U is a typical flow velocity
and A = w h the area of the channel cross section. Employing the kinematic viscosity of water
at room temperature, ν = 10−6 m2

s , and w = 0.14 mm from the technical data sheet of the
SFIMM yields

Re ≈ 114min
ml · v,

with v being the flow rate in ml/min. In figure 1.3, most flow rates are less than 4.8 ml/min,
rendering Re to be smaller than 550. This is way below 2300, which is typically given as the
threshold value for the transition into turbulent flow inside a pipe [113]. Therefore, the flow
at Re < 550 in the SFIMM is assumed to be laminar from now on. In that case, the solid
lines along lamella interfaces in figure 3.1 sketch stream lines. In the focusing section stream
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Figure 3.1: Sketch of a horizontal cross section through the Super Focus Interdigital Micromixer
(SFIMM). The mixer geometry is planar in the vertical direction with height h. The cross section is
composed of a straight channel with width w, called mixing section, and a circular segment shaped
focusing section. The radius of the circular segment is the focusing radius R, its center σ is the
focusing point, and its central angle is the opening angle α. Two liquids to be mixed, labeled by 1 and
2, are aligned in a lamella pattern that is composed of L lamellae in total and repeats periodically
over the range of the opening angle, which is indicated by two arrows in tangential direction to the
leftmost dashed line. The entrance of the mixer is located on the left hand side and conclusively, the
flow direction points from left to right. The mixing of liquid 1 and 2 is performed by a combination
of diffusion perpendicular to lamella interfaces and hydrodynamic focusing. Hydrodynamic focusing
represents the stirring mechanism and accelerates diffusion in a frame of reference traveling from r(t1)
to r(t2) (t1 < t2) by reducing diffusion lengths. In the current sketch most of the mixing is performed
in the front of the mixing section between σ and the vertical bar indicating the mixing channel width.

lines approach the focusing point σ in an approximately radial direction and in the mixing
section they are parallel to the channel walls. The analytical model describing the mixing
process is built upon a Lagrangian perspective of a small fluid element that moves along a
stream line with a velocity U . It is displayed at two different times t1 < t2 as a black dot with
position r(t1) or r(t2), respectively. The y-axis of the attached Cartesian coordinate system
is tangential to the corresponding stream line. Assuming incompressible flow and completely
miscible non-interacting liquids, the temporal concentration evolution in a co-moving frame
of reference can be described by the convection diffusion equation

∂c

∂t
= D∆c− ~u · ∇c, (3.1)

where c(x, y, t) is the concentration of either liquid 1 or liquid 2, D the corresponding diffu-
sion coefficient, and ~u(x, y, t) the relative flow field with respect to the fluid element under
consideration. x and y are the coordinates inside the moving frame of reference. Due to the
planar geometry of the mixer hydrodynamic focusing is mainly restricted to the xy-plane and
thus, the spatial domain of equation 3.1 is considered to be two dimensional.

The next step is to complete the set of equations, i.e. to find an expression for ~u. From
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Figure 3.2: Sketch to determine lateral flow velocities ux in the SFIMM. During a time interval
dt = t− t0 the co-moving frame of reference, whose origin is illustrated by the black dots, travels an
infinitesimal distance r(t)− r(t0). A fluid element sitting at the edge of a lamella (represented by the
black rectangles) is simultaneously displaced by w (f(t)− f(t0)) in the x-direction. The lamella width
at time t is given by 2w f(t), where w is the mixing channel width and f a dimensionless function.
Because of axis symmetry with respect to x = 0 only the upper part of a liquid 1 lamella is shown.
The ’x = 0’ line is represented by the horizontal line that intersects σ.

now on, the definition ~u := (ux, vy)T is applied with ux being the x- and uy the y-component.
In the mixing section, both ux and uy equal zero. In the focusing section, ux represents
the hydrodynamic focusing as it shifts fluid elements closer towards the origin of the moving
frame of reference and uy is a secondary flow induced by the incompressibility condition. As
shown in figure 3.2, an expression for ux in the focusing section is obtained by considering the
displacement of a fluid element (black rectangle) if the co-moving frame of reference travels an
infinitesimal distance. For the sake of convenience, we track the displacement of an element
at the edge of the liquid 1 lamella because it is easily coupled to geometric quantities like the
opening angle α and the total number of lamellae L. It is obvious that

w f(t) = r(t) tan
(
α

2L

)
(3.2)

and hence, the relative velocity in x-direction of a fluid element on the edge of a lamella at
y = 0 is

ux(w f(t), 0, t) := lim
t0→t

(
w
f(t)− f(t0)

t− t0

)
= d

dt
(w f(t)) = tan

(
α

2L

)
d

dt
r(t). (3.3)

To determine ux at an arbitrary position x = δ w f(t) with fixed δ ∈ [−1, 1], one multiplies
equation 3.2 by δ to get

ux(δ w f(t), 0, t) := d

dt
(δ w f(t)) = δ

d

dt
(w f(t)) = δ tan

(
α

2L

)
d

dt
r(t), (3.4)

which motivates writing

ux(x, 0, t) = x

w f(t) ux(w f(t), 0, t) = x

r(t)
d

dt
r(t) = x

d

dt
ln (r(t)) . (3.5)
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If the lamella interface is assumed to be a straight line as in figure 3.2, the difference
w (f(t)− f(t0)) only depends on the displacement of the origin and not on a specific (fixed)
y-coordinate inside the moving frame of reference. This allows setting

ux(x, y, t) = ux(x, 0, t) = x
d

dt
ln (r(t)) . (3.6)

As the flow is incompressible, uy can be obtained from the stream function ψ, which satisfies

ux = −∂ψ
∂y

and uy = ∂ψ

∂x
. (3.7)

From equation 3.6 it immediately follows that ψ = −x y d
dt ln(r(t)) and

uy(x, y, t) = −y d

dt
ln(r(t)). (3.8)

If the expressions for ux and uy are put into the convection diffusion equation 3.1, it reads

∂c

∂t
= D

(
∂2c

∂x2 + ∂2c

∂y2

)
−
(
d

dt
ln(r(t))

) (
x
∂c

∂x
− y ∂c

∂y

)
. (3.9)

If only concentration evolutions on a cross section at y = 0 are considered, the last term
in equation 3.9 vanishes. To arrive at a one dimensional problem like in reference [112], the
term ∂2c

∂y2 also needs to be neglected. One could argue that due to the characteristic lamella
structure local curvatures of c should be more pronounced in x- than in y-direction, unless
the liquids are almost completely mixed. Mathematically speaking, that means

∣∣∣ ∂2c
∂x2

∣∣∣ �∣∣∣ ∂2c
∂y2

∣∣∣.1 So it should be a suitable approximation to describe the combination of diffusion and
hydrodynamic focusing by the idealized one dimensional convection diffusion problem

∂c

∂t
= D

∂2c

∂x2 − u(x, t) ∂c
∂x

with u(x, t) = x
d

dt
ln(r(t)). (3.10)

Because r(t) and f(t) differ only by a time-independent factor (cp. equation 3.2), u(x, t) can
also be expressed as

u(x, t) = x
d

dt
ln(f(t)). (3.11)

In the following we apply a suitable coordinate transformation that wipes out the convection
term in equation 3.10 and leaves an analytically solvable diffusion equation [112]. The general
form of the transformation rule reads

φ : R2 → R2, (x, t) 7→ (φ1(x, t), φ2(t)) =: φ(x, t)

and a function c̃(ζ, β) is introduced such that c(x, t) = c̃(φ1(x, t), φ2(t)) ∀ (x, t). Here, the
short hand notation c(x, 0, t) = c(x, t) is applied. Insertion of c̃ into 3.10 and application of
the chain rule provides

∂φ2
∂t

(t) ∂c̃
∂β

(φ(x, t)) = D

(
∂φ1
∂x

(x, t)
)2 ∂2c̃

∂2ζ
(φ(x, t)) + ∂c̃

∂ζ
(φ(x, t))R(x, t) (3.12)

1We present an a posteriori estimation of the inequality at the end of section 3.1.



34 3.1. Hydrodynamic focusing

with
R(x, t) = D

∂2φ1
∂x2 (x, t)− u(x, t)∂φ1

∂x
(x, t)− ∂φ1

∂t
(x, t) (3.13)

The central idea behind the transformation is to map a triangular shaped lamella like in
figure 3.2 onto a rectangle with horizontal boundaries at x = ±1

2 . Setting φ1(x, t) := xT (t)
and demanding ±1

2 = φ1(±w f(t), t) = ±w f(t)T (t) leads to T (t) = 1
2w f(t) and

φ1(x, t) = x

2w f(t) (3.14)

as well as

R(x, t) = − u(x, t)
2w f(t) −

x

2w
∂

∂t

1
f(t) = − u(x, t)

2w f(t) + x

2w f(t)
∂

∂t
ln(f(t)).

Hence, equation 3.11 implies R(x, t) = 0 and equation 3.12 can be simplified to

∂φ2
∂t

(t) ∂c̃
∂β

(φ(x, t)) = D

(2w f(t))2
∂2c̃

∂2ζ
(φ(x, t)). (3.15)

If φ2 is chosen to satisfy
∂φ2
∂t

(t) = Dπ2

(2w f(t))2 (3.16)

and if it is taken into account that equation 3.12 holds for any (x, t) as well as transformations
being bijective, one finally arrives at an ordinary one dimensional diffusion equation

∂c̃

∂β
(ζ, β) = 1

π2
∂2c̃

∂ζ2 (ζ, β) ∀ (ζ, β). (3.17)

From now on, c or c̃ denote the concentration of liquid 2. The lamella structure in the SFIMM
suggests periodic boundary conditions and oscillating rectangles

c̃(ζ, 0) =

c
(2) for 2wf(0) ζ = φ−1

1 (ζ, 0) = x in liquid 2 lamella
c(1) elsewhere

as an initial condition. This implies

c̃(ζ, β) = c(1) + c(2)

2 +
∞∑
n=0

(−1)n c
(1) − c(2)

(2n+ 1)π cos [(2n+ 1)πζ] e−(2n+1)2 β (3.18)

[114]. Since the derivation is also valid for ux ≡ 0, the solution is applicable both in the
focusing and the mixing section. Equation 3.18 is particularly suited to conveniently define
the mixing quality ε by

ε(β) = 1−
√

1
2

∫ 1

−1
|c̃(ζ, β)− c̄|2 dζ, (3.19)

because its representation is independent of the actual mixer geometry. c̄ is the temporally
conserved mean concentration given by

c̄ = 1
2

∫ 1

−1
c̃(ζ, β) dζ = 1

2

∫ 1

−1
c̃(ζ, 0) dζ = c(1) + c(2)

2 . (3.20)
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The mixing time tmix is then given by

tmix = φ−1
2 (βmix) with βmix defined by ε(βmix) = 0.99 (3.21)

[112]. The calculation of c(x, t) and tmix requires the explicit representations of φ1(x, t) and
φ2(t) in the variables x and t (the implicit ones are given by equations 3.14 and 3.16).
First, the focusing section is considered. To gain the explicit time dependence of φ1, an

expression for f(t) has to be found, which is coupled to r(t) via equation 3.2. For a given
flow rate v, r(t) can be calculated by integrating the reciprocal velocity of the co-moving
frame of reference 1/U. If the origin of the radial coordinate r, which describes the position
of the moving frame of reference in the fixed polar coordinate system of the focusing section,
is placed at σ, the definition of a flow rate leads to U(r) = −v/A(r) with A(r) = α r h being
the channel cross section. Integrating

t =
∫ r(t)

r(0)

1
U(r′) dr

′ = −
∫ r(t)

r(0)

αh r′

v
dr′ = −αh2 v

(
r(t)2 − r(0)2

)
and setting r(0) = R yields

r(t) =
√
R2 − 2v

αh
t = R

√
1− 2v

αhR2 t = R
√

1− q t (3.22)

with the geometry factor q := 2v
αhR2 . Equation 3.2 then implies that

2w f(t) = 2 tan
(
α

2L

)
R
√

1− qt = p
√

1− qt. (3.23)

p = 2w f(0) = 2 tan
(
α
2L
)
R is the lamella width at the entrance of the mixer, and combining

equation 3.23 with equation 3.14 gives

φ1(x, t) = x

p
√

1− q t . (3.24)

Alternatively inserting equation 3.23 into equation 3.16 yields

∂φ2
∂t

= Dπ2

p2(1− qt) ⇒ φ2(t)− φ2(0) = Dπ2

p2

∫ t

0

1
1− qt′ dt

′,

which results in
φ2(t) = −γ ln

(√
1− qt

)
(3.25)

when setting φ2(0) = 0 and γ := 2Dπ2

qp2 .
The co-moving frame of reference leaves the focusing section at time tA defined by r(tA) =

w/2. Speaking in terms of figure 3.1, it is the time when the fluid element passes the dashed
curve encircling σ. Using equation 3.22, it immediately follows hat

tA = 1
q

(
1−

(
w

2R

)2
)
. (3.26)

tA is called the residence time in the focusing section. The lamella width in the co-moving
frame of reference is assumed to stagnate at the constant value 2wf(tA) as soon as the fluid
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element enters the mixing section. 2wf(tA) can be determined by the basic trigonometric
relation

2wf(t0)
r(t0) = 2wf(t)

r(t) .

that can be directly read from figure 3.2. After setting t0 = 0, t = tA, 2wf(0) = p, r(0) = R,
and r(tA) = w/2 the relation becomes

2wf(tA) = wp

2R. (3.27)

Insertion of equation 3.27 into equation 3.14 yields φ1 in the mixing section according to

φ1(x, t) = 2R
wp

x for t > tA (3.28)

and integrating equation 3.16 leads to

φ2(t) =
∫ tA

0

Dπ2

(2wf(t′))2 dt
′ +

∫ t

tA

Dπ2

(2wf(t′))2 dt
′ = φ2(tA) +Dπ2 4R2

w2p2 (t− tA).

Employing
√

1− qtA = w
2R in φ2(tA) = −γ ln(

√
1− qtA) results in

φ2(t) = γ ln
(2R
w

)
+ 4D

(
πR

wp

)2
(t− tA) for t > tA. (3.29)

Equations 3.24, 3.25, 3.28, and 3.29 define all necessary transformations to express concen-
trations in terms of (x, t) by substituting φ1(x, t) for ζ and φ2(t) for β in equation 3.18.
Calculating the temporal evolution of concentrations within a fluid element that passes the
mixer requires to specify its ’trajectory’ x(t). Due to the specific form of the coordinate
transformation these trajectories are isolines of φ1. Using xl as the lamella position at t = 0
leads to φ1(xl, 0) = xl/p and thus the concentration in a fluid element c(x(t), t) is obtained
by simply inserting ζ = xl/p into equation 3.18 instead of ζ = φ1(x, t). The concentrations c,
the variable transformations φi, and the included parameters are summarized in table 3.1.

Figure 3.3 shows concentration profiles for two different flow rates and illustrates the op-
erating principle of hydrodynamic focusing. It can be seen in (b) that mixing accelerates
considerably once a co-moving frame of reference enters the mixing section. If the focusing
section was completely ignored and identical initial concentrations c(i) as in figure 3.3 were
directly applied to lamella widths w/L as they appeared in the mixing section, it would take
only milliseconds to achieve complete mixing [115]. Thus, an upper bound for mixing times
in the SFIMM can roughly be expressed by ’tA + a few milliseconds’. Since tA is reciprocal
to the flow rate, the upper bound for mixing times adapts accordingly. At low flow rates
like v = 0.1 ml/min in (a) fluids are completely mixed long before tA. In that case the mix-
ing process takes barely advantage of hydrodynamic focusing at all, concentration profiles
closely resemble solutions to common heat equations, and mixing will be comparatively slow.
With increasing flow rates hydrodynamic focusing becomes more and more significant up to
the point where mixing times are choked by their upper bound as tA falls below the time it
takes diffusion to achieve complete mixing within the focusing section, which typically creates
sharp edges close to tA that are reminiscent of cutoffs as seen in the lower panel of (b). The
fact that mixing times are limited by residence times in the focusing section unambiguously
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Figure 3.3: Analytical solution to the convection diffusion equation 3.10 for two different flow rates
v = 0.1 ml/min (a) and v = 1.0 ml/min (b). The respective upper panel depicts c(x, t) for (x, t) ∈
[−2p, 2p] × [0, 1.2tA]. c(x, t) denotes the concentration profile in a cross section along the x-axis
of a Lagrangian frame of reference (cp. figure 3.1), p is the lamella width at the entrance of the
SFIMM, and tA the residence time in the focusing section. The lower panel shows c(0, t), which is
the concentration evolution in a fluid element that travels along the center of the middle lamella.
It obviously takes much longer to achieve complete mixing (homogeneous concentration distribution
with c(x, t) = 0.5) if a low flow rate is applied. Geometry parameters and formulas used to generate
the diagrams are listed in table 3.1 and the initial condition is set to c(1) = 0, c(2) = 1. c(1) 6= 0 would
account for a premixed amount of liquid 2 in a liquid 1 lamella.

explains why hydrodynamic focusing naturally induces a strong flow rate dependence of the
mixing process, which is the main result of the present section. The additional, more subtle
acceleration of diffusion processes that finish mixing within the focusing section for interme-
diate flow rates between v = 0.1 ml/min and v = 1.0 ml/min is qualitatively similar and
quantitatively described in the equations listed in table 3.1.
The one-dimensional description is, of course, idealized. Flow shearing in micro channels

may introduce vertical concentration gradients that lead to Taylor dispersion [116] and hence,
the assumption ∂2c

∂z2 = 0 or even
∣∣∣ ∂2c
∂x2

∣∣∣� ∣∣∣ ∂2c
∂z2

∣∣∣ might not be strictly valid. Verification would
probably require a comparison to numerical solutions of the full Navier-Stokes equations,
which was not done in any previous publication and would go beyond the scope of the present
work. Quickly assessing the ratio between

∣∣∣ ∂2c
∂x2

∣∣∣ and ∣∣∣ ∂2c
∂y2

∣∣∣ is possible though. To this end
equation 3.22 is inverted to investigate the focusing section. Insertion of the resulting t(r)
translates the concentration evolution in a Lagrangian frame of reference into a stationary
concentration profile c(s)(x, r) := c(x, t(r)) seen from the fixed polar coordinate system of
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Parameter Symbol Value
Diffusion coefficient D 10−9 m2

s

Focusing radius R 8 mm
Opening angle α 1.8 rad
Channel height h 2 mm

Initial lamella width p 0.348 mm
Channel width in mixing section w 0.14 mm

Total number of lamellae L 40
Residence time in focusing section tA

αhR2

2v

(
1−

(
w
2R
)2)

concentration profile
c(x, t) = c(1)+c(2)

2 +
∑∞
n=0(−1)n c(1)−c(2)

(2n+1)π cos [(2n+ 1)πφ1(x, t)] e−(2n+1)2 φ2(t)

concentration evolution c(x(t), t) in a fluid element
c(x(t), t) = c(x, t)|φ1(x,t)≡x1/p with starting position xl ∈ [−p, p]

Transformation φ1(x, t) φ2(t)
t ≤ tA x

p

√
1− 2v

αhR2 t
−Dπ2αhR2

p2v ln
(√

1− 2v
αhR2 t

)
t > tA

2R
wpx φ2(tA) + 4D

(
πR
wp

)2
(t− tA)

Table 3.1: Compilation of parameter designations and dimensions taken from the technical data
sheet of the SFIMM. For the sake of completion, the concentration evolution and the coordinate
transformations expressed in terms of these parameters are also listed.

Figure 3.4: Ratio z =
∣∣ ∂2c
∂x2

∣∣/(∣∣ ∂2c
∂x2

∣∣+∣∣ ∂2c
∂r2

∣∣) in the focusing section for two different flow rates. x is
the lateral direction in a co-moving frame of reference like in figure 3.3 and r is the radial distance
of its origin from the focusing point. In the largest part of the focusing section ∂2c

∂x2 dominates ∂2c
∂r2 ,

i.e. z ≈ 1. In the vicinity of r(tA) this relationship turns around because due to the focusing initially
distant lamealla appear to be aligned almost parallel to the x-axis.
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the focusing section. c(s)(x, r) looks practically identical to the diagrams in the upper panel
of figure 3.3 except that the t-axis is replaced by r. Upon reintroducing the y-variable in
c the relation c(x, δy, t) = c(s)(x, r(t) + δy) suggests estimating ∂2c

∂y2 by ∂2c
∂r2 . In fact,

∣∣∣ ∂2c
∂r2

∣∣∣
should actually be larger than the absolute value of ∂2c

∂y2 that would be present if diffusion in
y-direction was considered, because the stationary auxiliary field c(s) lacks the accompanied
smoothing of the concentration profile in that direction. Figure 3.4 shows the ratio z =∣∣∣ ∂2c
∂x2

∣∣∣/(∣∣∣ ∂2c
∂x2

∣∣∣+∣∣∣ ∂2c
∂r2

∣∣∣) for the concentration profiles from figure 3.3. It is z ≈ 1 throughout a vast

majority of the focusing section, which supports the assumption
∣∣∣ ∂2c
∂x2

∣∣∣ � ∣∣∣ ∂2c
∂y2

∣∣∣ a posteriori.
Since analytic solutions to two dimensional heat equations exist [117], solving equation 3.10
with an additional ∂2c

∂y2 -term should also be possible by applying a similar transformation as
in the one-dimensional case. This is, however, not the focus of the present thesis and might
be a topic of future work.

3.2 Split and recombine

In this section the split and recombine mechanism is discussed by presenting an analytical
theory developed by Schoenfeld et al. [118]. The working principle of the split and recombine
mechanism is illustrated in figure 3.5 together with the CPMM geometry. Even though its
implementation is fundamentally different from hydrodynamic focusing, both share a common
purpose, namely the reduction of diffusion lengths by deformation of lamellae. The basic
structure of the analytical theory from reference [118] resembles the one from section 3.1. It
also assumes low Reynolds numbers, neglects flow shearing, and describes an idealized one-
dimensional mixing process from a Lagrangian perspective in a moving frame of reference
attached to a stream line. In the present case stream lines can roughly be visualized, for
instance, by tracing parallel shifts to edges of the outermost red lamella in figure 3.5 (b)
in pressure drop direction. The co-moving frame of reference and its associated stream line
inside the lower part of a repeat unit are also sketched in figure 3.5 (c).
To describe the split and recombine mechanism mathematically, each repeat unit is treated

individually by decomposing the time domain into subsets

Tn =
[
(n− 1)tR, n tR

]
with n = 1, 2, 3, ..., nmax, (3.30)

where nmax is the total number of repeat units in the CPMM and tR the residence time per
repeat unit – i.e. the time it takes the frame of reference to travel through a single unit.
Then a diffusion equation

∂c

∂t
(x, t) = D

L2(t)
∂2c

∂x2 (x, t) (3.31)

is solved on every Tn with appropriate initial conditions. x is the direction perpendicular
to lamella interfaces, L(t) the channel width inside an upper or lower part of a repeat unit
(parts are treated independently from each other), and c the concentration of optionally
one of two completely miscible liquids. In the current notation x denotes a rescaled spatial
variable similar to ζ or φ1 from section 3.1. It is defined by x = x′/L(t), where x′ represents
the position in meters, and the channel walls are located at x = ±1/2. To clarify notation we
are going to call the solution of equation 3.31 in the n-th repeat unit cn. Due to a symmetric
mixer geometry the concentration evolution inside the upper and lower part of a repeat unit
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Figure 3.5: The split and recombine mechanism in the Caterpillar Micromixer (CPMM). The mixer
geometry is a succession of identical repeat units labeled by 1, 2, 3, ... as shown in (a). (b) depicts
the first two repeat units and the dashed lines indicate their (imaginary) parting planes, while the
colors represent two completely immiscible liquids to demonstrate the underlying flow pattern. The
black arrow points in pressure drop direction. As the two lamellae from the entrance progress though
unit 1 they are split, deformed and eventually recombined to four lamellae with bisected widths at
the entrance of unit 2. Since that procedure repeats in every unit, lamella widths have decreased
by a factor 2−n at the end of unit n. This successive reduction of diffusion lengths is referred to as
the split and recombine mechanism. Each repeat unit is subdivided into two separate parts, which
are going to be called ’upper’ and ’lower’ part. If pallid lamellae are thought away, (c) schematically
sketches the lower part of repeat unit n = 1. Black and white rectangles in (b) and (c) label same
sites and serve as an orientation guide. The full geometry of a repeat unit is recovered if a copy of the
wireframe in (c) – the wireframe refers to the black edge lines and excludes the red and blue colors
– is rotated by 180◦ around the y-axis at the entrance and is then shifted upwards by the associated
channel height H1 to match the pallid lamellae. The pallid lamellae belong to the upper part of
the repeat unit and the horizontal white line at the exit (slightly above the rightmost arrow head)
represents the plane where the lamellae are separated in the successional unit. The juxtaposition of
the saturated and pallid lamellae below that line corresponds to the initial lamella configuration in
the lower part of unit n+ 1 = 2. The coordinates (x, y, z) belong to the Lagrangian frame of reference
applied in the analytical theory by Schoenfeld et al. [118]. Its origin (open circle) follows a stream
line within a repeat unit (black arrow connecting open circles). Once the frame of reference reaches
the end of a repeat unit its origin is accordingly reset to the middle of the channel in the successive
unit, which is indicated by a shift between the open circle and the arrow head of the stream line. The
co-moving frame of reference enters unit n at time t = (n− 1) tR and leaves it at t = n tR, where tR
is its residence time in a repeat unit. Pictures (a) and (b) are taken from Schoenfeld et al. [109] with
slight adaptations.

is identical, meaning cn can refer to either part. Setting x = 0 in the middle of a channel
(cp. the open circle in figure 3.5 (c)) makes the concentration profiles point-symmetric. In
this case cn can be written as a Fourier series of the form

cn(x, t) = a0 +
∞∑
i=0

ai,n(t) sin (kix) with ki = (2i+ 1)π. (3.32)

The Fourier series lacks wave numbers that are even integer multiples of π to ensure Neumann
boundary conditions at the channel walls x = ±1/2. In the process, the concentration profile
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inside a channel is considered to be the restriction cn|x∈[−1/2,1/2] of the 2-periodic function
cn(·, t) defined on R. The imitation of Neumann conditions with periodic functions only
works for specific initial conditions c1(x, 0), e.g. the periodic continuation of

c1(x, 0) =

c
(1) for x ∈ [0, 1]
c(2) for x ∈ [−1, 0]

(3.33)

as the nature of solutions to a diffusion equation ensures the presence of a maximum and a
minimum at x = ±1/2, i. e.

∂c1
∂x

(±1/2, t) = 0 (3.34)

for all t ∈ T1. The pattern that is generated by recombining the concentration profiles from
the upper and lower part of repeat unit n at t = n tR is set to the initial condition of equation
3.31 on Tn+1. In the following the short hand notation t0,n = (n− 1) tR is used for the initial
time in unit n. As indicated in figure 3.5 (c) cn+1(x, t0,n+1) in the (n + 1)-th repeat unit is
constructed by juxtaposing two concentration profiles from the end of the n-th unit. If c′

was the concentration expressed in dependence of the position in meters, x′, we could simply
write

c′n+1
(
x′, t0,n+1

)
=

c
′
n(L(tR)/2, n tR) x′ = 0
c′n
(
x′ + L(tR)/2, n tR

)
Θ(−x′) + c′n

(
x′ − L(tR)/2, n tR

)
Θ(x′) x′ 6= 0

since the channel covers x′ ∈ [−L(0)/2, L(0)/2] = [−L(tR), L(tR)] at all t0,n+1. In the CPMM
it is L(0) = 2L(tR) and L(n tR) = L(tR) as well as L(t0,n) = L(0) because all repeat units
possess identical geometries.

Θ(x) =

1 for x ≥ 0
0 for x < 0

is the Heaviside step function. An expression for the initial condition at t0,n+1 in terms of the
dimensionless coordinates x and the corresponding concentrations c is achieved by writing

x′ ± L(tR)
2 = L(tR)

(
x′

L(tR) ±
1
2

)
= L(tR)

(
L(0)
L(tR)x±

1
2

)
= L(tR)

(
2x± 1

2

)
, (3.35)

which states that a rescaled position x in the coordinate frame of the (n + 1)-th unit at
time t0,n+1 corresponds to a rescaled position 2x± 1/2 in the coordinate system of unit n at
t = n tR. Hence, since c′n(L(t)x) = cn(x) the initial condition becomes

cn+1(x, t0,n+1) =

cn(1/2, n tR) x = 0
cn (2x+ 1/2, n tR) Θ(−x) + cn (2x− 1/2, n tR) Θ(x) x 6= 0

. (3.36)

Checking equation 3.36 at x = ±1/2 verifies that cn+1(±1/2, t0,n+1) = cn(±1/2, n tR), meaning
that the concentrations at the channel walls in the n-the repeat unit are mapped to the
channel walls in the (n+ 1)-th one. Thus, it follows by induction from equation 3.34 that

∂cn
∂x

(±1/2, t) = 0 ∀n. (3.37)
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It should be noted that cn+1 from equation 3.36 is not necessarily 2-periodic on R due to the
shift of ±1/2. It is, however, possible to construct a 2-periodic function by restricting cn+1 to
[−1, 1] and then periodically extending this restriction to R. As a consequence, expressing cn
by equation 3.32 remains valid for all n.

Now that we have discussed boundary and initial conditions of equation 3.31 on each Tn,
we turn our attention to the solutions. Combining equations 3.32 and 3.31 leads to

∞∑
i=0

(
∂ai,n
∂t

(t) + k2
i

D

L2(t)ai,n(t)
)

sin(kit) = 0 (3.38)

and because the sine functions are linearly independent it is

∂ai,n
∂t

(t) = −k2
i

D

L2(t)ai,n(t) ∀ i and n, (3.39)

which is solved by

ai,n(t) = ai,n(t0,n) e
−k2

iD
∫ t
t0,n

1
L2(t′)

dt′

. (3.40)

ai,n(t0,n) in equation 3.40 are the Fourier coefficients of the respective initial condition. Ap-
plying the standard formula

ai,n(t0,n) =
∫ 1

−1
cn(x, t0,n) sin (kix) dx, (3.41)

for 2-periodic functions to equations 3.33 and 3.36 eventually yields a recursive definition for
ai,n(t0,n) with

ai,1(t0,1) = 2(c(1) − c(2))
ki

. (3.42)

and
ai,n+1(t0,n+1) =

∞∑
j=0

(−1)j+1 ki
k2
i/4− k2

j

aj,n(n tR). (3.43)

Equation 3.33 also implies

a0 = c(1) + c(2)

2 . (3.44)

To arrive at the final solution of the diffusion problem, the integral
∫

(1/L2(t′)) dt′ in equation
3.40 needs to be evaluated, so in the first place an explicit expression for L(t) has to be
constructed. To this end, both parts of a repeat unit are divided into two sections with
straight edges as shown in figure 3.6 for the lower part. Using trigonometric relations, the
channel width L(t) in section 1 can be expressed in dependence of l(t) according to

L(t) = L1 −
L̃1 − L̃2

l1
l(t). (3.45)

In repeat unit n l(t) is approximated by

l(t) = v

A1
(t− t0,n), (3.46)

where A1 = L1H1 is the channel cross section at the entrance of a repeat unit and v the
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Figure 3.6: Dimensions of the lower part of a repeat unit n in the CPMM (upper parts are analogous).
A part is divided into two sections that are separated by the plane p2 in the 3D sketch. The sites
numbered by 1, 2, 3, and 4 are depicted individually in the table below that sketch. Open circles,
rectangles, and triangles label connected corners which lie on p2. Coordinates of unlabeled corners
are shown directly at the corner, while coordinates of labeled corners can be found on the vertical
dashed line at the associated symbol. l(t) and s(t) are auxiliary functions used to calculate the integral∫ 1
L(t′)2 dt

′ in equation 3.40. The small list on the top right summarizes times when the co-moving
frame of reference passes a plane pi.

flow rate. In this case, v is the flow rate inside a single part of a repeat unit, i.e. one half
of the flow rate applied to the mixer. The cross section area is assumed to be constant
throughout section 1 of a repeat unit because it is equal at plane p1 and plane p2 with only
slight variations in between. Hence,

L(t) = L1 −
v
(
L̃1 − L̃2

)
A1 l1

(t− t0,n) =: L1 − α(t− t0,n) (3.47)

and ∫ t

t0,n

1
L2(t′)dt

′ = 1
αL1 − α2(t− tn,0) −

1
αL1

. (3.48)

This result holds for t ∈ [t0,n, t0,n + t1], where t1 := l1A1/v follows from l(t − t0,n = t1) = l1
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and denotes the time that passes while the co-moving frame of reference travels from p1 to
p2 in figure 3.6. In an analogous fashion the channel width in section 2 is calculated by

L(t) = L(t1)− L̃

l2
s(t) = L2 −

L̃v

A2 l2
(t− t0,n − t1) =: L2 − β(t− t0,n − t1), (3.49)

where s(t) is expressed through

s(t) = v

A2
(t− t0,n − t1) (3.50)

with A2 = L2H2 since the cross section areas at p2 and p3 are identical, too. Inside section
2 the integral in the exponent of equation 3.40 reads∫ t

t0,n

1
L(t′)2dt

′ =
∫ t0,n+t1

t0,n

1
L(t′)2dt

′ +
∫ t

t0,n+t1

1
L(t′)2dt

′

= 1
αL1 − α2t1

− 1
αL1

+ 1
βL(t1)− β2(t− t1 − t0,n) −

1
βL1(t1)

= 1
αL1 − α2t1

− 1
αL1

+ 1
βL2 − β2(t− t1 − t0,n) −

1
βL2

(3.51)

with t ∈ [t0,n + t1, n tR] and the residence time tR in a repeat unit is obtained from

s(n tR) = l2 ⇔ tR = l2A2
v

+ t1 = l2A2 + l1A1
v

. (3.52)

The co-moving frame of reference leaves the mixer at tmax = t0,nmax + tR = nmaxtR and
enters a tube with a constant cross section L(0)2 = L2

1. In case t > tmax it is∫ t

t0,nmax

1
L(t′)2dt

′ =
∫ tmax

t0,nmax

1
L(t′)2dt

′ +
∫ t

tmax

1
L(t′)2dt

′

= 1
αL1 − α2t1

− 1
αL1

+ 1
βL2 − β2(tR − t1) −

1
βL2

+ t− tmax
L2

1/2
. (3.53)

L2
1/2 in the denominator of the last summand instead of L2

1 accounts for the fact that fluid
from one part of a repeat unit eventually takes only half the cross section of the complete
tube. Inserting the integrals from equations 3.48, 3.51 and 3.53 together with the initial
conditions from equations 3.42 and 3.43 into the Fourier coefficients from equation 3.40 allows
to calculate concentration profiles c(x, t) in the CPMM via equation 3.32, where c(x, t) =
cn(x, t) if t ∈ Tn. The corresponding formulas are summarized in table 3.2 for the sake of
clarity.

The mixing quality ε and the mixing time tmix are defined analogously to equations 3.19
and 3.21 by

ε(t) = 1−

√√√√∫ 1/2

−1/2

∣∣∣∣∣c(x, t)− c(1) + c(2)

2

∣∣∣∣∣
2

dx and ε(tmix) = 0.99. (3.54)

The selected scaling of the spatial coordinate renders the one-dimensional trajectories of
fluid parcels from the Lagrangian perspective to be x-isolines as long as considerations are
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concentration evolution in a cross section along x
c(x, t) = cn(x, t) = c(1)+c(2)

2 +
∑∞
i=0 ai,n(t) sin(kix) for t ∈ Tn =

[
(n− 1)tR, n tR

]
with ki = (2i+ 1)π and ai,n(t) = ai,n(t0,n) · e

−k2
iD
∫ t
t0,n

1
L2(t′)

dt′

recursive definition of coefficients
ai,n+1(t0,n+1) =

∑∞
j=0(−1)j+1 ki

k2
i/4−k2

j

aj,n(n tR) starting from ai,1(t0,1) = 2 c(1)−c(2)

ki

integral in exponent
I(t− t0,n) :=

∫ t
t0,n

1
L2(t′) dt

′

I(t− t0,n) =



1
αL1 − α2(t− tn,0) −

1
αL1

0 ≤ t− t0,n ≤ t1

I(t1) + 1
βL2 − β2(t− t1 − t0,n) −

1
βL2

t1 < t− t0,n ≤ tR

I(tR) + t− tmax
L2

1/2
t > tmax

constants
α = L̃1−L̃2

A1l1
v β = L̃

A2l2
v t1 = l1A1

v tR = t1 + l2A2
v tmax = nmaxtR tn,0 = (n− 1)tR

concentration evolution c(x(t), t) in a fluid element
c(x(t), t) = c(xn, t) for t ∈ Tn with xn+1 = xn/2 + (−1)n/4

and starting position x1 ∈ [−1/2, 1/2]

Table 3.2: Summary of formulas to calculate concentration profiles in the CPMM. The geometry
parameters are displayed in figure 3.6.

restricted to one arbitrary repeat unit. As a result, the calculation of concentration evolutions
within a fluid element that travels though the mixer along a trajectory x(t) only requires
tracking its x-displacement each time it enters a new repeat unit. As stated in the context of
equation 3.35, the position xn that is mapped onto xn+1 is given by xn = 2xn+1 ± 1/2, where
xn denotes the position in the n-th repeat unit. This is equivalent to a recursive expression

xn+1 = 1
2xn ±

1
4 (3.55)

for the position of a fluid element. A shift in positive x-direction corresponding to + in the
above equation is realized if the fluid element passes a lower part of a repeat unit. Likewise,
the position is shifted to the left by − if the fluid element passes the upper part.

Figure 3.7 shows solutions to equation 3.31. Like hydrodynamic focusing, the split and
recombine mechanism causes mixing times to decrease with increasing flow rates, because
higher flow rates drive fluid elements more quickly into regions where lamellae are thin and
diffusion is fast. A striking difference between the CPMM and the SFIMM is the tremendous
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Figure 3.7: Substance concentrations c in the CPMM at two different flow rates v = 0.1 ml/min
(dashed grey lines) and v = 1.0 ml/min (solid black lines). c is analytically calculated by the formulas
in table 3.2 with an initial condition c(1) = 0, c(2) = 1. (a) shows c(x, n tR) for n =2, 3, 4, and
5 to demonstrate how the split and recombine mechanism affects concentration profiles. Note that
tR ∝ 1/v and the displayed concentration profiles belong to either the lower or upper part of the
corresponding repeat unit. The open circles represent the positions xn of a fluid element that is initially
located at x1 = 1/4 and travels alternately though upper and lower parts of consecutive repeat units.
These positions are calculated by the recursive formula xn = xn−1/2 + (−1)n/4, which is constructed in
accordance with equation 3.55. The open rectangles indicate the positions xn = xn−1/2 + 1/4 the same
fluid element would have if it traveled through lower parts only. (b) depicts temporal concentration
evolutions c(x(t), t) = cn(xn, t) inside a fluid element. The positions xn correspond to the open circles
from (a). Throughout the present work only the alternating passage of upper and lower parts is
considered because the values of cn at the circles are much more representative for the whole cross
section than at the rectangular position, which is pushed against the channel wall.
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discrepancy of mixing times. The mixing times in the SFIMM for v = 0.1 ml/min and
v = 1.0 ml/min from figure 3.3 extent to magnitudes of 10 seconds while the mixing times in
the CPMM are below 0.1 seconds. This is attributed to much smaller channel cross sections
in the CPMM, which results in larger flow velocities at specific flow rates. Another difference
is the influence of the flow rate on the qualitative ’shape’ of the concentration evolution in
the lower panels of figures 3.3 and 3.7. In the SFIMM, the flow rate changes the shape from
concave to convex while the CPMM profiles are almost solely compressed along the t-axis as
flow rates increase.





Chapter 4
Specification of a theoretical framework

for controlled assembly

At spatial resolutions that enable to visualize particles with diameters on the nanometer
scale, mixer geometries easily exceed length scales accessible with any simulation technique
presented in chapter 2. Since a direct simulation of complete mixer geometries is therefore not
possible, modeling the co-solvent method poses a non-trivial spatial multiscale problem. In
the present work we approach that problem by describing the particle growth process from
a Lagrangian perspective of the fluid elements introduced in chapter 3. According to the
experimental setup in figure 1.2, thermodynamic systems of interest, i.e. simulation boxes,
are then fluid elements that are initially placed inside a good solvent lamella and filled with
additional polymer. For simplicity the amount of polymer inside a fluid element is assumed
to be conserved, while the good and selective solvent content may change. This assumption
is inspired by the low diffusion coefficient of polymers compared to solvent molecules. Taking
into account experimentally determined particle radii of about 50 nm, simulation boxes should
have minimum edge lengths somewhere between 100 nm and 1 µm to eventually contain a
sufficiently large number of particles for a representative study of size distributions. The
initial lamella width is about p = 0.35 mm in the SFIMM and a = 0.15 mm in the CPMM, so
simulation boxes with 1 µm edges, for instance, constitute very tiny subsets of a lamella with
roughly 1 µm/p = 1/350 to 1 µm/a = 1/150 times smaller spatial extensions in diffusion direction
x. By the time lamella widths become comparable to 1 µm, the mixing process is close
to completion for any experimentally applied flow rate and concentration profiles c(x, t) are
almost constant: in the mixing section of the SFIMM or at t ≈ 5tR in the CPMM (cp. figures
3.3 and 3.7), the above factors would increase to ≈ 1 µmL/w = 1/3.5 and ≈ 1 µm/2−5a = 1/4.7.
This suggests that one can approximate the integral solvent concentration

∫
c(~r,t) dV/

∫
dV in

such simulation boxes by its value at the center, i.e. by c(x(t), t) from tables 3.1 and 3.2.
By convention, we consider liquid 1 to represent good solvent while liquid 2 represents the
selective or poor one. c(x(t), t) determines the total number of selective solvent molecules in
a simulation box. How we exactly implement c(x(t), t) into the models for particle growth is
addressed in later sections where the respective model equations are presented.
In principle, micromixers introduce two flow rate dependent factors: solvent mixing and

flow shearing in micro channels. A graphical summary how these factors may potentially
affect particle growth inside a small fluid element is depicted in figure 4.1. Subdividing the
growth process into two stages, the initial assembly of molecules into aggregates as sketched
in figure 4.1 (b) and the further growth of aggregates by collision-induced coagulation (in the
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following called collision-coagulation) as illustrated by (c) to (f), leaves four mechanisms that
may connect or couple particle sizes to flow rates:

(i) the response of molecular assembly to solvent mixing,

(ii) the response of collision-coagulation and stabilization to solvent mixing,

(iii) the response of molecular assembly to shear flow, and

(iv) the response of collision-coagulation and stabilization to shear flow.

Figure 4.1: Sketch of particle growth inside a fluid element. (a) and (b) illustrate the assembly of
molecules into a micelle on a microscopic length scale. The increasing number of selective solvent
molecules (grey dots) from (a) to (b) indicates solvent mixing. Solvent mixing is likely to affect
molecular assembly as the latter is driven by interactions between monomers and solvent molecules.
The two arrows attached to the vertical line in (b) illustrate flow shearing in micro channels, which
might potentially distort or even rupture the micelle into smaller aggregates. The size or shape of the
micelle could also be affected by a flow shear induced alignment or stretching of single polymer chains
during molecular assembly. The pictures in (a) and (b) are magnifications of the dashed rectangle
in (c). (c) shows several particles on a mesoscopic spatial scale, and from there on solvent mixing is
illustrated by a change of background colors (the darker the grey the higher the fraction of selective
solvent). The twisted arrows symbolize Brownian motion in combination with a potentially flow
induced displacement of aggregates, which might cause them to collide as shown in (d). Subsequent
(shear induced) breakup or coalescence (dashed black and white circle in (d) and (e)) may change mean
sizes of particle populations until a stabilization mechanism interrupts particle growth. Accumulating
surface charges that prevent collision by a Coulomb force ~F as shown in (f), for example, constitute
such a mechanism. As the development of sufficiently large electron clouds depends on the pH of the
solution, solvent mixing might also affect stabilization in the late stage of particle growth.
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Finding out whether experimental results are caused by a combination of the four previously
introduced coupling mechanisms or whether there is even a dominating one is fundamental to
the explanation of figure 1.3, and thus it is a main objective of the present work. The identi-
fication of significantly contributing coupling mechanisms can also be viewed as a necessary
preliminary consideration for a potential development of quantitatively accurate simulation
tools to describe the co-solvent method in the future. Because a direct numerical simulation
of the complete mixer geometry with accurate hydrodynamics is not possible, simplifica-
tions are mandatory, and a typical simplification procedure is a separation of significant and
insignificant contributions in order to neglect the latter in a mathematical description.

The experimental data from Mueller [36] (cp. figure 1.3 (e)) indicate that the co-solvent
method in batch yields similar data point progressions as its continuous implementation and
directly draws attention to coupling mechanisms (i) and (ii). The insignificance of shear
induced polymer stretching is also supported by values of the Weissenberg number, which is
defined by

Wi = γ̇τ (4.1)

and compares viscous to elastic forces. γ̇ is a shear rate of a fluid flow and τ the relaxation time
of polymer chains. To roughly estimate the range of Weissenberg numbers in micromixers
we consider a pipe flow for the sake of simplicity. Given a flow rate v, the shear rate at the
inner wall of a pipe with radius r reads

γ̇ = 4v
πr3 . (4.2)

The smallest channel dimensions in the CPMM or SFIMM happen to be at plane p2 in figure
3.6, where the channel cross section is a square with edge lengths b = 0.2125 mm. Assuming
r = b/2 yields γ̇ = 17104 v̂ sec−1 with v̂ being the flow rate in units of ml/min. The longest
relaxation time of a Gaussian polymer chain with N monomers and Kuhn length k reads

τ = 1
3π2

Nk2

DG
(4.3)

with the center of mass diffusion coefficient DG [102]. Substituting the Kuhn length by the
radius of gyration Rg through the relation Nk2 = 6R2

g for Gaussian chains [103], τ can be
cast into the form

τ = 2
π2

R2
g

DG
. (4.4)

Roughly assuming N = 190 (cp. figure 1.3), Rg = 10 nm, and DG = 10−9/N m2sec−1

gives τ = 3.853 × 10−6 sec, and insertion of the experimentally applied flow rates v̂ ∈
[0.1 ml/min, 5 ml/min] then yields Wi ∈ [0.007, 0.329]. Shear flow tends to distort poly-
mer chains for Wi & 1.3 [119], which is significantly larger than the Weissenberg numbers in
micromixers. As a consequence, the task of ’explaining the experimentally observed flow rate
dependence of particle sizes in figure 1.3’ can be generalized to ’explaining particle growth
at different solvent mixing speeds (inside a small fluid element)’, which is synonymous with
size-controlled assembly according to the definition at the end of chapter 1.

To our current knowledge, the response of particle sizes to solvent mixing speeds in the
absence of flow shearing has been simulated only by Spaeth et al. [38] and Nikoubashman
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et al. [35], as mentioned in the preliminary remark of part I. The authors of reference [38]
apply Dissipative Particle Dynamics and the authors of reference [35] use (coarse grained)
Molecular Dynamics. In both studies the spatial extension of simulation boxes is comparable
to fluid elements and solvent mixing is implemented by a single solvent with a temporally
increasing repulsive force between solvent molecules and monomers.1 Considering all classical
models, Molecular Dynamics is the closest to the Schrödinger equation and thus, it provides
the most accurate description of a particle growth process. This accuracy, however, comes
at the expense of excessive computation times, which enforce the restriction of simulations
to mixing times on the microsecond scale and below. Even on high performance clusters
and even if a simplified model for solvent mixing like temporally changing interactions is
applied, accessible time scales are up to 10−6 to 10−4 times lower than mixing times in figure
3.3 or 3.7 [35]. The inaccessibility of realistic mixing times also transfers to the Dissipative
Particle Dynamics simulations [38].2 Therefore, particle models do not manage to readily
describe controlled assembly at experimental conditions. Both references [35] and [38] still
show particle size dependencies on mixing speeds that exhibit a similar scaling behavior as the
data in figure 1.3. However, neither of them explains the origin of this behavior or discusses
its validity range. The authors do not directly relate theoretically defined mixing speeds to
experimentally applied Reynolds numbers or flow rates, either, and they do not account for
mixer geometries.
As opposed to the microscopic perspective in references [35] and [38], the present work

approaches controlled assembly from ’large’ scales by applying the most coarse grained models
discussed in chapter 2: mean field theories and phase field models that allow to study length
scales of micrometers on time scales of seconds. There are two motives for the decision to
use such coarse grained continuum models. First, we intend to provide mean field continuum
descriptions as conceptually complementary content to the particle models and discuss their
potential advantages or disadvantages regarding size-controlled assembly in general. Second,
since the description of experimental conditions fails with the computational complexity of
particle models, a logical consequence is investigating if computationally efficient mean field
theories fail with physical accuracy. If they succeed in describing experimental observations,
mean field theories should provide a suitable framework to study controlled assembly at
experimental conditions. Considering the complexity of the problem as a whole, expecting a
perfect numerical match of simulation results and the experimental data in figure 1.3 at the
current state of research is elusive (this fact is also supported by Spaeth et al. [38]). For that
reason we restrict investigations to principal relations and focus on explaining their general
characteristics. Such relations include the scaling behavior of particle size dependencies as
seen in figure 1.3, their qualitative response to parameter variations like temperature and
mean polymer content in solution, and typical length scales of particle sizes that are created
by specific flow rates. We consider a model suited to capture the co-solvent method if it
manages to reproduce these fundamental properties and in this context, the present work
aims to elaborate whether mean field continuum theories constitute appropriate descriptions
for the co-solvent method.
To investigate principal relations in a conceivably general manner and to guarantee a com-

1A detailed recapitulation of the Molecular Dynamics model is given during the discussion in subsection 5.3.3.
2The largest mixing time in the Molecular Dynamics simulations is 40 µs, and in the Dissipative Particle
Dynamics simulations it is 200 µs.
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putationally efficient implementation, it is expedient to utilize a model that contains only
few physical parameters and possesses an uncomplicated mathematical structure. Hence, we
start with describing solvent mixing by time dependent interactions in a phase field model.
The qualitative agreement of that rather simplified modeling approach to experimental ob-
servations eventually implies that mean field continuum theories could indeed be suitable
foundations to develop even quantitatively accurate descriptions of the co-solvent method.
Therefore, parts of this work also deal with the development of more realistic implementations
of solvent mixing into continuum models than just time dependent interaction parameters.
However, we only investigate and explain principal relations by studying ’theoretical model
polymers’ with these more realistic models as well. A direct numerical comparison to ex-
perimental data for a real polymer solution would go beyond the scope of the present work.
Although we only had to insert corresponding parameters into our models, obtaining them
would have been too time-consuming. The necessary parameters of the PB-PEO-THF-H2O
system from figure 1.3 were, unfortunately, not measured during the original experiments.





PART II
CONTROLLED ASSEMBLY OF HOMOPOLYMERS:

CAHN-HILLIARD TYPE MODELS

Preliminary Remark

In part II we study the earliest stage of particle growth during solvent mixing, i.e. coupling
mechanism (i) in chapter 4, by phase field models with Flory-Huggins-de Gennes free energy
functionals. To keep the underlying equations of our first approach as simple as possible we
decided to restrict to homopolymer solutions.
With respect to controlled assembly of amphiphilic diblock-copolymers, the simplification

to homopolymers is inspired by the notion that phase separation in amphiphilic systems is ini-
tially driven by the unfavorable interaction between the solvent and the solvent-phobic block,
which results in typical ’Cahn-Hilliard type’ composition profiles in simulations with more
complex models (without solvent mixing) [88]. Block incompatibility and solvent-philicity of
the other block are usually more relevant in later stages characterized by morphology forma-
tion or particle stabilization. Thus, replacing a copolymer by a homopolymer corresponding
to its solvent-phobic block should still reflect typical length scales in density profiles and their
principal relations if only the very early stages of particle formation are considered. The re-
cently discovered possibility to produce electrostatically stabilized homopolymer particles
with the co-solvent method [35] also offers a direct application to the models presented in
this part. As already stated in chapter 4, Nikoubashman et al. [35] also performed Molecular
Dynamics simulations, which provides a benchmark for the phase field model.
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Chapter 5
Model I: Time dependent polymer-solvent

interactions in a two-component canonical

ensemble

As the main effect of solvent mixing is a change of ’mean solvent quality’ from ’good’ to ’poor’,
we first incorporate solvent mixing by only taking into account the change in solvent quality.
In the current chapter the three-component system from the experiments is modeled by a
two-component system containing a polymer and only one solvent, which changes its quality
over time. More specifically, at any given time we describe the momentary solvent mixture by
one single effective solvent with an associated interaction parameter χ at a polymer-solvent
contact. The addition of poor solvent into the solvent mixture is modeled by a temporal
increase of χ, which is similar to the approach in reference [35]. Technically speaking, solvent
mixing is described by a continuous quench and the mixing speed corresponds to a quench
rate. We should note that the fundamental effect of different quench rates on characteristic
structure sizes was already investigated in connection with continuous cooling of an alloy in
the 60’s [120]. Since the χ-parameter plays the analogous role to temperature, we already
know that higher quench rates generate smaller correlation lengths in density profiles. In the
following the main focus lies in the question whether this simple model is able to describe
experimental observations.
Because the controlled assembly of stabilized homopolymer particles was achieved only

recently, corresponding experimental data is accordingly scarce. So we are going to compare
simulation results for homopolymers to the experimental results for copolymers from figure
1.3. Although this comparison might appear to be odd at first glance, it is still reasonable
because it eventually turns out that the size of simulated homopolymer aggregates in the
earliest stage of phase separation shows the same general behavior as the final copolymer
particles from experiments in practically every single aspect. This similarity includes strong
implications about the physical mechanism underlying size-controlled assembly of both homo-
and copolymers and is thus a fundamental part of the present work.

5.1 Model equations

The present chapter describes relaxation dynamics in a two-component canonical ensemble
containing a homopolymer and a solvent at temperature T and volume V . The total free
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energy is expressed by a Flory-Huggins-de Gennes free energy functional

F [ρP , ρS ] =
∫
V

(
f̂ (ρP (~r), ρS(~r)) + ΛP

2 |∇ρP (~r)|2 + ΛS
2 |∇ρS(~r)|2

)
d~r, (5.1)

which is physically accurate in the weak segregation regime, where amplitudes of composition
fluctuations are low and their gradients weak (cp. subsection 2.2.3). ρP and ρS denote
number concentration profiles of polymer and solvent molecules, and ΛP and ΛS are the
respective gradient energy parameters. f̂ (ρP , ρS) is the Flory-Huggins free energy density of
a homogeneous system and is given by

f̂(ρP , ρS) = kBT [ρS ln(φS) + ρP ln(φP ) + χρSφP ] (5.2)

[104]. In the framework of the Flory-Huggins theory of polymer solutions so called seg-
ments, molecules or (coarse grained) particles with an elementary volume ν, constitute the
monomeric units in a system. The parameter χ is the Flory-Huggins interaction parameter
that quantifies the interaction between solvent and polymer segments: large values indicate
repulsion and small values attraction. φP and φS are the segment number fractions. If one
solvent molecule corresponds to one segment, a homogeneous system of arbitrary volume
dV � ν – for example an infinitesimally small subsystem at a particular position ~r within V
– contains nS = ρSdV solvent segments and it is νS = ν with νS being the molecular volume
of the solvent. Each polymer molecule of molecular volume νP is then a chain of N = νP/ν

segments, and the total number of segments in dV is n = nS + NnP , where nP = ρPdV is
the number of polymer chains. Conclusively, the number fractions of solvent and polymer
segments are defined by φS = nS/n and φP = NnP/n. Introducing the total volumes VS = νnS
and VP = νPnP of the components with VS + VP = dV yields

φS = νnS
νnS + νPnP

= VS
dV

= νρS and φP = νPnP
νnS + νPnP

= VP
dV

= νPρP = NνρP , (5.3)

which shows that the segment number fractions equal the volume fractions of the molecules.
Equations 5.3 also include a relation between φi and ρi to express the homogeneous free
energy density from equation 5.2 in terms of concentrations only as

f̂(ρP , ρS) = kBT [ρS ln(νρS) + ρP ln(νNρP ) + χρSνNρP ] . (5.4)

In case no external fields are present, relaxation dynamics are governed by a set of generalized
diffusion equations. If a local kinetic coupling model is applied, these equations read

∂ρi
∂t

(~r, t) = ∇ ·
(
Di

kBT

[
ρi(~r, t)∇

δF [{ρj(·, t)}j ]
δρi(~r)

+ ηi(~r, t)
])

with i = P, S. (5.5)

DP and DS are the diffusion coefficients of the polymer chains and the solvent molecules1,
and ηi is the realization of a stochastic random noise in accordance with equation 2.13 (the
prefactor has to be adapted because Di/kBT = βDα/Nα is factored out). Ignoring chain con-
nectivity by application of a local coupling model affects relaxation rates quantitatively, but

1Note that ρP is the density of polymer chains, while ρα in equation 2.12 was the density of monomers.
Therefore, it is DP = Dα/N, since ρP = ρα/N.
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does not change the qualitative nature of dynamics [121] we aim to describe in the current
section.

It is convenient to replace concentrations ρi by volume fractions φi when an incompressibil-
ity constraint is introduced to account for the typically high compressive moduli of polymer
solutions. The constraint reads φP + φS = 1 ⇔ φS = 1 − φP and eventually reduces two
differential equations to only one. Multiplying the equation

∂ρP
∂t

= ∇ ·
(
DP

kBT

[
ρP∇

δF
δρP

+ ηi

])
(5.6)

by Nν, setting DP = D0/N, and applying equations 5.3 leads to

∂φP
∂t

= ∇ ·
(
D0
kBT

[
ρP∇

δ(νF)
δρP

+ νηP

])

= ∇ ·
(
D0
kBT

[
ρP
νN

νN
∇δ(νF)

δρP
+ νηP

])
= ∇ ·

(
D0
kBT

[
φP ∇

δ(νF)
δφP

+ νηP

])
. (5.7)

The dynamical equation for φS is obtained analogously by substituting N → 1 and D0 → DS .
To express νF in terms of φP and φS , equation 5.2 is multiplied by ν, which leads to

νf̂(ρP , ρS) = kBT [νρS ln(φS) + νρP ln(φP ) + χνρSφP ] , (5.8)

and employing the identities from equations 5.3 again leaves

νf̂(ρP , ρP ) = kBT

[
φS ln(φS) + φP

N
ln(φP ) + χφSφP

]
=: f(φP , φS), (5.9)

where f(φP , φS) is the homogeneous free energy per segment. Using equation 5.1 immediately
yields

νF [ρP , ρS ] =
∫
V
νf̂(ρP , ρS) + νΛP

2 |∇ρP |2 + νΛS
2 |∇ρS |2 d~r

=
∫
V
f(φP , φS) + νΛP

2(Nν)2 |∇φP |
2 + νΛS

2(ν)2 |∇φS |
2 d~r

=:
∫
V
f(φP , φS) + λP

2 |∇φP |
2 + λS

2 |∇φS |
2 d~r = F [φP , φS ], (5.10)

and insertion of F into equation 5.7 gives

∂φi
∂t

= −∇ · Ji for i = P, S with

JP = − D0
kBT

[
φP∇

δF

δφP
+ νηP

]
and JS = − DS

kBT

[
φS∇

δF

δφS
+ νηS

]
. (5.11)

Ji is the local flux of component i. If λP and λS are assumed to be independent of ρi(~r),
which is consistent with equation 2.62 for conserved ρi, the chemical potentials are given by

µi := δF

δφi
= ∂f

∂φi
− λi∆φi. (5.12)

Incompressible dynamics are obtained by modifying fluxes with a constraining force Z to
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fulfill the constraint
JP + JS = 0 (5.13)

[122]. The modified fluxes read

JP = − D0
kBT

(φP [∇µP + Z] + νηP ) and JS = − DS

kBT
(φS [∇µS + Z] + νηS) , (5.14)

so equation 5.13 implies

Z = −D0φP∇µP +DSφS∇µS
D0φP +DSφS

− D0νηP +DSνηS
D0φP +DSφS

. (5.15)

Insertion of equation 5.15 into the modified flux JP , employing that flux in the dynamical
equation 5.11 for i = P , assuming D0 = DS , and setting φS = 1− φP results in

∂φP
∂t

= D0
kBT

∇ · [φp(1− φp)∇ (µP − µS) +R]

= D0
kBT

∇ ·
[
M(φP )∇

(
∂f

∂φP
(φP , 1− φP )− ∂f

∂φS
(φP , 1− φP )− λ∆φP

)
+R

]
(5.16)

with λ := λP +λS , M(φP ) := φP (1−φP ) and the random term R = (1−φP )νηP −φP νηS . If
ηP = ηS ≡ 0 one obtains the well known Cahn-Hilliard equation [123, 124]. It is the simplest
mathematical model that is able to describe the dynamics of isothermal and incompressible
phase separation. φS is determined by the algebraic relation φS(~r, t) = 1 − φP (~r, t) for any
~r and t. If the length and time scales are given in units of l0 =

√
λ/kBT and t0 = l20/D0,

respectively, and

µr := 1
kBT

(
∂f

∂φP
(φP , 1− φP )− ∂f

∂φS
(φP , 1− φP )

)

= ln(φP )
N

− ln(1− φP ) + χ(1− 2φP ) + 1
N
− 1 (5.17)

is defined, the Cahn-Hilliard equation can be cast into the dimensionless form

∂φP
∂t

= ∇ · [M(φP )∇ (µr −∆φP )] . (5.18)

The gradient energy parameter for polymer-solvent systems takes values with magnitude
kBTR

2
g, where Rg is the radius of gyration of the polymer ( cp. reference [125] or equation

2.62). Approximating λ by kBTR2
g leads to l0 = Rg and t0 = R2

g/D0.

A spontaneous decomposition into polymer- and solvent-rich phases during relaxation oc-
curs, if χ is larger than the spinodal interaction χ(Spin) defined by the condition

∂µr
∂φP

(
φP = fP , χ = χ(Spin)

)
= 0⇔ χ(Spin) = 1

2

( 1
NfP

+ 1
1− fP

)
, (5.19)

where fP is the conserved mean polymer volume fraction

fP = 1
V

∫
V
φP (~r, t) d~r. (5.20)
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As already mentioned, solvent mixing is modeled by time dependent χ-parameters, i.e. by
substituting χ 7→ χ(t), which corresponds to replacing one solvent by another one at each
time. In the present chapter a linear interpolation of χ in the selective solvent volume fraction

χ(t) = χGS + χSS − χGS
1− fP

ϕSS(t) (5.21)

is used. χGS and χSS denote the interaction parameters between the polymer and the good
or selective solvent, respectively. ϕSS represents the mean volume fraction of the selective
solvent in the system. ϕSS = 0 corresponds to good solvent, meaning χ = χGS . If the
complete solvent consists of selective solvent, that is if ϕSS = 1 − fP , it is χ = χSS . In the
following the functions ϕSS are called mixing profiles.

Equation 5.18 with the relative chemical potential from equation 5.17 and an interaction
parameter given by equation 5.21 constitutes model I. The dynamical equation is solved for
periodic boundary conditions.

5.2 Numerical integration schemes

If we talk about solving equation 5.18 numerically, we also have to talk about stiffness of
differential equations. Stiffness was first discussed by Curtiss and Hirschfelder [126] in con-
nection with numerical studies about substance conversions during simultaneous chemical
reactions with very dissimilar reaction rates. They described it as the necessity to choose
extremely small step sizes in order to ensure stability of their explicit numerical integra-
tion schemes although the actual solution appeared to exhibit only slow temporal variations.
Stiffness is obviously a bad trait since iterating through slow dynamics with extremely small
time steps leads to infeasible computation times. It quickly turned out that there is a vari-
ety of physical equations showing such a behavior and these equations are called stiff. One
example for stiff equations is the diffusion or heat equation [127]. As far as the present work
is concerned, stiffness is important because equation 5.18 is a generalized diffusion equation
and thus, also stiff. We should note though that it is even ’stiffer’ than the ordinary heat
equation because it contains a squared Laplacian. There is still no mathematically rigorous
definition of stiffness, but it commonly – not always [128] – refers to large stiffness ratios

S = max |λi|
min |λi|

, (5.22)

where λi are the eigenvalues of the Jacobian obtained by linearization of the equations under
consideration [128, 129]. Large S typically indicate that the solution contains both rapidly
and slowly varying contributions and in the example above, such contributions are reflected in
the dissimilar reaction rates. Stiffness can be approached by application of A-stable integra-
tion schemes. As defined by Dahlquist [130], "a k-step method is called A-stable, if [numerical
approximations x(n) to x(tn = nh)] tend to zero, as n→∞, when the method is applied with
fixed positive [step size] h to any differential equation of the form, dx/dt = qx ,[the Dahlquist
test equation,] where q is a complex constant with negative real part". It can be shown that
stability properties of A-stable methods transfer from the Dahlquist test equation to any
ordinary differential equation. The authors of reference [126] already observed that there are
implicit methods that do not suffer from the severe step size restrictions imposed on explicit
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methods, and eventually Dahlquist [130] showed that A-stable methods have to be implicit.
There are also other test functions and approaches to stiffness, for example the ones by Gear
[131], but with respect to the present discussion the concept of A-stability is sufficient.

In the following the specific equation

∂φ

∂t
(~r, t) = ∆α/2φ(~r, t) with α ∈ 2 · N (5.23)

is used to exemplarily clarify why the application of explicit integrators to stiff equations is
problematic and why A-stable or implicit methods are desirable. Its Fourier representation
is a system of Dahlquist test equations

∂φ̂

∂t
(~k, t) = −kαφ̂(~k, t) (5.24)

with k = |~k| and known exact solutions φ̂(~k, t) ∝ e−k
αt, called modes. If equation 5.24 was

discretized in the ~k-space, the discrete values of −kα would correspond to the eigenvalues λi
in equation 5.22. As the maximum occurring value of kα is likely to increase dramatically
with the spatial resolution of a simulation, high resolution simulations of diffusion problems
often have a large stiffness ratio S and are thus prime examples for stiff equations. In the
heat equation it is α = 2 and in equation 5.18 there is even a term with α = 4. Application
of the explicit Euler method φ̂(n+1) = φ̂(n) + h f(φ̂(n)) with f(φ̂) = −kαφ̂ yields

φ̂(n+1) = (1− kαh) φ̂(n), (5.25)

where we omit ~k-arguments for the sake of a convenient notation and denote the numerical
approximation to φ̂(tn) by φ̂(n). Now, one can either calculate the error amplification

ε(n+1)

ε(n) = (1− kαh) (5.26)

by employing error-perturbed solutions φ̂(j) = φ̂
(j)
exact + ε(j) for j = n, n + 1 in equation 5.25

or insert φ̂(n), φ̂(n−1), ..., φ̂(0) recursively to arrive at

φ̂(n+1) = (1− kαh)n+1φ̂(0). (5.27)

Because there exists a step size h such that |1− kαh| > 1, the explicit Euler method is not
A-stable. Equivalently, such a value of h would lead to an error growth

∣∣ε(n+1)/ε(n)
∣∣ > 1. The

stability criterion for the explicit Euler method reads

|1− kαh| < 1⇔ 0 < h <
2
kα
, (5.28)

which is a severe restriction, especially for high resolutions (i.e. large values of k), large α,
or in other words: large stiffness ratios. Stiffness is attributed to the fact that the numerical
integration scheme is only stable if each single mode is stably integrated. Thus, the largest
value of k dictates the upper bound of the step size h. However, since φ̂ ∝ e−k

αt, the
corresponding mode decays very quickly and does not contribute significantly to the solution
after a very short time period. That means the actual dynamics is mainly dominated by
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modes decaying on much larger time scales. Therefore, the essential problem with the explicit
method is the necessity to apply extremely small step sizes to stabilize rapidly varying modes
while the time scale of the dynamics is largely determined by the slowly varying ones. The
probably most prominent example of an A-stable integrator is the implicit Euler method
φ̂(n+1) = φ̂(n) + h f(φ̂(n+1)). Employing f(φ̂) = −kαφ̂ leads to

φ̂(n+1) = φ̂(n)

1 + kαh
= φ̂(0)

(1 + kαh)n+1 with ε(n+1)

ε(n) = 1
1 + kαh

. (5.29)

The error amplification is smaller than 1 for any positive h, which cancels out the severe step
size restriction of the explicit scheme and allows to take step sizes fitting the time scale that is
generated by the superposition of all modes. Loosely speaking, implicit methods do not suffer
from the severe step size restrictions of explicit schemes since they tend to have ’increased
denominators’ in error amplifications

∣∣ε(n+1)/ε(n)
∣∣. Since A-stable integration schemes are

stable for any h, they constitute the numerically most robust approach to stiffness.
Unfortunately, not all equations allow an easy treatment like equation 5.24. Implicit inte-

grators often involve iterative methods to (numerically) invert equations in every time step,
which may consume a significant amount of computation time. It might even be difficult
to cast a system of equations into an appropriate form to use these iterative solvers.2 This
motivates the introduction of semi-implicit methods, which are also called implicit-explicit
methods or in short, IMEX schemes. These integration schemes aim to extend stability re-
gions at a possibly low additional computational cost with respect to explicit methods. A
common strategy is approximating only the ’stiffest’ terms by an implicit method to increase
denominators in error amplifications similar to the example above, while an explicit scheme
is applied to the remaining terms. If partial differential equations are spatially discretized,
these stiffest terms very often arise from the highest order spatial derivatives. Semi-implicit
methods are generally not stable for any h. However, from a practical point of view it is
very often sufficient to extend the stability region to computationally feasible step sizes as
extremely large h introduce significant truncation errors anyway. In that context, one also
refers to stiffness when step sizes are not determined by accuracy but by stability. A general
discussion about semi-implicit methods is difficult because they are usually tailored to specific
sets of equations. Applications can be found for example in references [81], [132], and [133]
or chapter 7. The work from Zhu et al. [132] is now of particular interest because it describes
a scheme for equation 5.18, which is a first order time accurate pseudo spectral method.
The leading stiffness term in equation 5.18 is −M(φP )∆2φP . In case the mobility M

depends on φP this contribution is non-linear in φP and treating it directly implicitly is not
ideal from a computational point of view as it results in a non-linear implicit equation for
φ

(n+1)
P , which had to be solved with an iterative method at each time step. To improve

stability without utilization of iterative methods, one can modify equation 5.18 by zero-
padding its right hand side according to

∂φP
∂t

= ∇ · [M(φP )∇ (µr −∆φP )] + α∆2φP − α∆2φP (5.30)

[132], where α ∈ R. The semi-implicit integrator is eventually built by treating −α∆2φP

2We are going to encounter such a problem in part III of this work in the form of a system containing
integro-differential equations.
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implicitly while explicit approximations are applied to the remaining terms. Choosing an
appropriate value for α is key to an optimal increase of the stability region. To specify α,
equation 5.30 is rearranged to

∂φP
∂t

= ∇ · [M(φP )∇µr]−∇∆φP · ∇M(φP )− α∆2φP − (M(φP )− α)∆2φP . (5.31)

The last term on the right hand side, (M(φP ) − α)∆2φP , contains the leading non-linear
stiffness contribution that is going to be treated explicitly. If α was variable and set to
M(φP ), this term would vanish and only −α∆2φP was left. Among all choices of α, setting
α = M(φP ) would lead to the numerically most stable semi-implicit scheme since it would
correspond to a completely implicit treatment of the leading stiffness contribution. But one
also had to apply iterative methods to eventually invert with respect to φ

(n+1)
P . As α is

constant, the last term does not vanish. However, stiffness can be suppressed as much as
possible if this term is kept possibly close to zero by setting

α = argmin
α̃∈R

[
sup

φP∈[0,1]
|M(φP )− α̃|

]
= 1

8 .

A semi-implicit scheme with this choice of α enables to take roughly two orders of magnitude
larger step sizes compared to an explicit Euler method without additional computational
costs due to numerical inversion [132].

To derive the semi-implicit update rule for φP , we define µ := µr −∆φP and G1
G2
G3

 =

 M(φP )∂µ/∂r1

M(φP )∂µ/∂r2

M(φP )∂µ/∂r3


for the sake of brevity. Equation 5.30 then becomes

∂φP
∂t

=
d∑
j=1

∂Gj
∂rj

+ α∆2φP − α∆2φP , (5.32)

where d is the spatial dimension and ~r = (r1, ..., rd)T . When pseudo spectral methods are
applied to solve equations with periodic boundary conditions on a rectangular domain [0, L1)
×...× [0, Ld), every unknown scalar function f is approximated by a trigonometric interpo-
lation polynomial

p[f ](~r, t) =
∑
~k∈K

f̂(~k, t)ei~k·~r (5.33)

with the short hand notations ~k = (k1, ..., kd)T and

K =
{2π
L1

(
−n1

2 + 1
)
, ...,

2π
L1

n1
2

}
× ...×

{2π
Ld

(
−nd2 + 1

)
, ...,

2π
Ld

nd
2

}
, (5.34)

where n1, ..., nd ∈ N are even numbers. If the spatial domain is discretized with m = n1 ×
...× nd grid points, the coefficients f̂(~k, t) ∈ C are uniquely determined by the conditions

p[f ](~ri, t) = f(~ri, t) ∈ R ∀ i = 0, ...,m− 1. (5.35)
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It immediately follows from equation 5.35 that the field (f̂(~k, t))~k∈K is the discrete Fourier
transform of (f(~ri, t))i=0,...,m−1. Unknown scalar functions in equation 5.32 are φP and Gj .
Inserting the respective interpolation polynomials with f ∈ {φP , Gj}, applying the orthogo-
nality of complex exponential functions, and integrating in time leads to

φ̂P (~k, tn+1)− φ̂P (~k, tn) =
∫ tn+1

tn

d∑
j=1

ikjĜj(~k, t)dt

+α
∫ tn+1

tn
k4φ̂P (~k, t)dt− α

∫ tn+1

tn
k4φ̂P (~k, t)dt. (5.36)

As stated before, Zhu et al. [132] approximate the first two terms on the right hand side
explicitly and the last one implicitly with first order time accurate Euler methods. This
corresponds to the application of Euler forward and backward quadrature rules to the integrals
in equation 5.36. Thus,

φ̂P (~k, tn+1)− φ̂P (~k, tn) = h
d∑
j=1

ikjĜj(~k, tn) + τ1

+αhk4φ̂P (~k, tn)− αhk4φ̂P (~k, tn+1) + α(τ2 − τ3). (5.37)

h = tn+1− tn is the step size and τ1, τ2, and τ3 ∈ O(h2) are the truncation errors of the first,
second, and third integral, respectively. The application of different quadrature rules to the
last two integrals in equation 5.36 introduces an additional, α-proportional error α(τ2 − τ3).
Therefore, α should never be greater than 1 even if large α-values yield good stability. The
corresponding numerical scheme reads

φ̂
(n+1)
P (~k)− φ̂(n)

P (~k) = h
d∑
j=1

ikjĜ
(n)
j (~k) + αhk4φ̂

(n)
P (~k)− αhk4φ̂

(n+1)
P (~k)

⇔ φ̂
(n+1)
P (~k) = φ̂

(n)
P (~k) + h

(1 + αhk4)

d∑
j=1

ikjĜ
(n)
j (~k), (5.38)

where φ̂(n)
P (~k) is the numerical approximation to φ̂P (~k, tn) etc. As the discrete Fourier trans-

forms of two identical fields are equal, Ĝ(n)
j is calculated via

Ĝ
(n)
j (~k) = F~k

[(
M
(
φ

(n)
P (~rs)

) ∂µ(n)

∂rj
(~rs)

)
s

]
= F~k

[(
M
(
φ

(n)
P (~rs)

)
F−1
s

[(
ikjµ̂

(n)(~k)
)
~k

])
s

]
,

where F~k denotes the discrete Fourier transform evaluated at wave number ~k ∈ K and F−1
s

the inverse discrete Fourier transform evaluated at position ~rs with s = 0, ...,m− 1. Indexed
brackets (...)~k and (...)s are respective short hand notations for the fields (...)~k∈K in the wave
number space and (...)i=0,...,m−1 in the coordinate space. All discrete Fourier transforms are
calculated by the FFTW library [134].

In a similar manner we construct a second order time accurate scheme to check the influence
of temporal truncation errors on simulation results later on. To this end, the first two integrals
in equation 5.36 are approximated by a two-step Adams-Bashforth scheme with the general
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form ∫ tn+1

tn
f(φP (t), t) dt = h

2
(
3f(φ(n)

P , tn)− f(φ(n−1)
P , tn−1)

)
+O(h3) (5.39)

and the last one by an Adams-Moulton method or trapezoidal rule∫ tn+1

tn
f(φP (t), t) dt = h

2
(
f(φ(n+1)

P , tn+1) + f(φ(n)
P , tn)

)
+O(h3) (5.40)

[135]. Inserting and rearranging eventually yields

φ̂
(n+1)
P (~k) = 1

1 + αh2k
4

×

(1 + αhk4)φ̂(n)
P (~k) + h

2

 d∑
j=1

ikj
{

3Ĝ(n)
j (~k)− Ĝ(n−1)

j (~k)
}
− αk4φ̂

(n−1)
P (~k)

 . (5.41)

Equations 5.38 (first order time accurate) and 5.41 (second order time accurate) constitute
the numerical update rules for Fourier coefficients, and the spatial volume fraction profiles
are obtained by application of an inverse discrete Fourier transformation, i.e.

φ
(n+1)
P (~rs) = F−1

s

[(
φ̂

(n+1)
P (~k)

)
~k∈K

]
∀ s = 0, ...,m− 1. (5.42)

If not stated otherwise, simulations in the present chapter are performed with the first order
time accurate scheme due to its better stability properties.
The Cahn-Hilliard equation is a well-known standard problem in mathematics and there are

also unconditionally stable algorithms, e.g. the one proposed by Vollmayr-Lee and Rutenberg
[136]. The unconditional stability is especially useful when late-stage coarsening is studied,
because it provides the possibility to accelerate simulations by increasing step sizes h when
dynamics become slow without considering stability constraints. In the present case, however,
unconditionally stable schemes are dispensable because we restrict to the early stages of phase
separation, where dynamics are fast and the semi-implicit scheme should be rather limited by
accuracy than stability. In addition, the semi-implicit scheme is as computationally efficient
as possible since it possesses the same complexity as an explicit scheme.

5.3 Rate-size relations for linear mixing profiles

If linearly time dependent mixing profiles

ϕSS(t) =

ϕ0 + s t for t ≤ tmax
ϕmax for t > tmax

(5.43)

with tmax := (ϕmax−ϕ0)/s and constants s, ϕ0, ϕmax are employed, equation 5.21 becomes

χ(t) =


(
χGS + χSS − χGS

1− fP
ϕ0

)
+ χSS − χGS

1− fP
s t

χGS + χSS − χGS
1− fP

ϕmax

 =:

χ0 + sχt for t ≤ tmax
χ(max) for t > tmax

, (5.44)
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which reduces the set of associated parameters to describe solvent mixing from s, χGS , χSS ,
ϕ0, and ϕmax to only sχ, χ0, and χ(max). Therefore, linear mixing profiles are particularly
appealing to perform primary investigations with model I in small parameter spaces.

If initial solutions of PBx − PEOy, tetrahydrofuran (good solvent), and premixed water
(selective solvent) from the experiments in figure 1.3 are not fed into a micromixer but if water
is added in titration experiments instead, it can be observed that a solution tarnishes almost
instantaneously as soon as its water content is increased. Such a rapid phase separation
is characteristic for spinodal decomposition. Thus, the state of the initial solution should
already be close to the unstable area in the corresponding phase diagram and the spinodal
line should be crossed during solvent mixing inside a mixer, which suggests setting χ(max) >

χ(Spin). Additionally, typical mixing times are milliseconds. Therefore, we assume that the
system crosses the spinodal line before a significant particle growth in the metastable regime
though a comparatively slow nucleation and growth process with energy barriers takes place.
As a consequence, investigations are restricted to the spinodal area, i.e. we set χ0 = χ(Spin)

with the spinodal interaction χ(Spin) defined by equation 5.19. This means that solvent
mixing is described by time dependent quenches with a constant rate sχ and a maximum
depth χ(max).

Relations between typical structure sizes in simulated density profiles and the quench rate
sχ are going to be called rate-size relations

5.3.1 Simulation setup

All simulation results that will be presented in the current section are averages over 5 inde-
pendent simulation runs with different uniformly distributed random initial conditions

φ
(0)
P (~rs) ∈ [fP − 0.001, fP + 0.001] ∀ s = 0, ...,m− 1.

The initial conditions are created by the random number generator from Matsumoto and
Nishimura [137]. Thermal fluctuations are disabled, i.e. ηi ≡ 0, because phase separation in
the spinodal area is a thermodynamically driven process without energy barriers.
The physical parameters contained by the model equations 5.17, 5.18, and 5.44 with χ0 =

χ(Spin) from equation 5.19 are

• the mean polymer volume fraction fP ,

• the number of segments per polymer chain N ,

• the quench rate sχ, and

• the maximum quench depth χ(max).

Additional numerical parameters are

• the number of grid points of the spatial lattice m,

• their distance, i.e. the lattice constant, ∆l, and

• the temporal step size h.
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Simulations in the current section are performed on a spatial lattice of m = 400 × 400 grid
points in 2D and m = 64× 64× 64 in 3D. The lattice constant ∆l has to ensure that the size
of the smallest structures observed in simulations is not limited by the size of lattice cells. For
constant interaction one could eliminate corresponding limitations on ∆l by rescaling the spa-
tial coordinate with the quench depth ∆χ as originally done by Kotnis and Muthukumar[138],
but this creates numerical artifacts which cause a seemingly entropically driven freezing or
pinning of structures close to the spinodal line. Although these artifacts can be removed by a
more sophisticated scaling [139], we decided not to use it, because ∆χ increases with time and
rescaling ∆l in every time step would violate the constraint of constant volume in a canonical
ensemble when the number of grid points is fixed as it is customary in simulations. Otherwise,
the implementation would require unnecessarily complicated adaptive memory allocations.
The concomitant temporal decrease of the lattice constant would also affect stiffness and most
probably provoke numerical instabilities. Besides provoking instabilities, rescaling with the
constant maximum quench depth ∆χ(max) = χ(max) − χ0 is disadvantageous as well because
it would lead to quite small ∆l, which had to be compensated by undesirably high m to
achieve sufficient spatial extensions of simulation boxes at low sχ when systems remain close
to the spinodal line for a long time and structures become large. In 3D we use ∆l = 1 and
in 2D we afford higher resolutions with ∆l = 0.25. It should be noted though that a pinning
effect in polymer solutions was indeed observed in experiments [140]. However, this effect
is not entropically driven but coupled to the viscoelasticity of polymers. There are models
for phase separation that account for this physical pinning effect [141], but model I does not
because pinning was not observed in the experiments we aim to describe. In every simulation
an initial time step of h = 0.005 is used. h is automatically reduced by our corresponding C
program if an argument of a logarithm in the chemical potential impends to be negative due
to numerical truncation errors.
Subsection 5.3.2 considers a model problem with fixed physical parameters

fP = 0.1, N = 14, and χ(max) = 2 (5.45)

while sχ is varied to generate an exemplary rate-size relation. How that relation responds
to parameter variations is subsequently discussed in subsection 5.3.3. The discussion of the
exemplary model problem can be considered as general because subsection 5.3.4 eventually
provides strong evidence that the characteristics of rate-size relations are independent of the
particular parameter choice.

5.3.2 Evaluation method and simulation results

a) Qualitative discussion of composition profiles and evaluation method

In all simulation runs with physical parameters from equation 5.45 and different sχ, phase
separation takes place in a similar manner as in the case of an instantaneous quench. In
the first stage, the spinodal decomposition, initially perturbed homogeneous concentration
distributions evolve into bicontinuous patterns, which coarsen quickly while amplitudes of
composition fluctuations remain relatively low. This early stage coarsening is illustrated by
figure 5.2 (a) and (c) or (b) and (d). The patterns eventually concentrate rapidly until two
different phases with a well defined sharp interface emerge. Their appearance labels the end
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Figure 5.1: Temporal evolution of the Minkowski functional C for sχ = 5×10−5 (a) and sχ = 5×10−3

(b) with a threshold value φ(th)
P = 0.3. The inset shows a magnification of the part inside the dashed

rectangle. There is a distinct global maximum at the open circle, which labels the transition time ttr.
It is placed at ttr = 6678 for sχ = 5× 10−5 and ttr = 425 for sχ = 5× 10−3.

of spinodal decomposition and they are shown in 5.2 (e) or (f). In the second stage of phase
separation follows a very slow coarsening of the hitherto formed sharp composition profile,
where large structures of high polymer concentration grow at the expense of smaller ones.
Due to its phenomenological nature this second stage is called Ostwald Ripening. In the
Cahn-Hilliard theory structure growth during Ostwald Ripening obeys the Lifshitz-Slyozov
law [132, 142, 143].
The crossover time between spinodal decomposition and Ostwald Ripening can be deter-

mined with a procedure proposed by Sofonea and Mecke [144], which is based on Minkowski
functionals [145]. Minkowski functionals are a complete set of translation invariant measures
for convex rings. Each functional assigns one real number to any composition profile de-
pending on its morphology, and since the morphology of composition patterns changes with
time, the associated Minkowski functionals also do. One of these measures, from here on
denoted by C, is the total boundary contour length (in 2D) or surface area (in 3D) of the
union over all subsets in the spatial domain where the polymer volume fraction φP exceeds
a predefined threshold φ

(th)
P . The rapid concentration of structures at the end of spinodal

decomposition leads to a very steep temporal increase of C and the slow Ostwald Ripening
to a flat decrease. This creates two characteristic regimes in the time series of C, which is
shown in figure 5.1. We calculated Minkowski functionals with the algorithm proposed by
Mantz et al. [146]. Each curve has a clear global maximum that separates fast and slow
dynamics. The associated time is called transition time ttr and it represents the time when
spinodal decomposition is considered to be finished. It can already be seen from figure 5.1
that spinodal decomposition is much faster for the larger value of sχ.

How time dependent quench rates affect composition profiles is shown in figure 5.2. The
upper panel (parts (a), (c), (e)) and the lower panel (parts (b), (d), (f)) show temporal
evolutions of the same initial polymer volume fraction profile for sχ = 5 × 10−5 and sχ =
5 × 10−3, respectively. At t=10 the composition profiles look very similar ((a) and (b)).
At t=200, however, they deviate significantly from each other ((c) and (d)) and at the end
of spinodal decomposition smaller polymer aggregates have formed for the larger quench
rate ((e) and (f)). The pictorial explanation of the mechanism that causes the deviation
of aggregate sizes at transition time is a competition between repulsive interactions and
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Figure 5.2: Color coded snapshots of polymer volume fractions φP (composition profiles), simulated
with model I in 2D for two different quench rates sχ = 5×10−5 (upper panel) and sχ = 5×10−3 (lower
panel). ttr is the transition time from figure 5.1 and indicates the end of spinodal decomposition.

interfacial tension. Speaking in terms of equation 5.18, early stage coarsening proceeds as
long as interfacial tension, represented by ∆φP , dominates the repulsion of the components
covered by µr. Meanwhile, volume fraction profiles are smoothened similar to solutions
of a conventional diffusion equation and |∆φP | tends to decrease. At the very beginning
χ(t)−χ(Spin) is negligibly small for both quench rates and the initial dynamics is determined
by the ∆φP -term, leading to the formation of almost exactly the same composition pattern at
t = 10. During the temporal evolution from t = 10 to t = 200 at sχ = 5×10−5 ((a) to (c)) the
smoothing continues. Once the interaction term in µr constitutes the leading contribution to
the polymer flux, dynamics are dictated by repulsion and the bicontinuous pattern rapidly
concentrates, while typical structure sizes tend to stagnate. This happens between t = 10 and
t = 200 at sχ = 5×10−3 in (b) and (d). Since the pattern from (d) further appears to imprint
onto (f), the aggregate size at the end of spinodal decomposition seems to be determined
by the typical structure size that is present once repulsive interactions start to outweigh
interfacial tension while fluctuation amplitudes are still weak. The larger sχ, the sooner the
termination of early stage coarsening by repulsive interactions happens. As structures at
earlier times are less coarse, increasing sχ leads to smaller characteristic aggregate sizes at
transition time. In subsection 5.3.4 this explanation is verified in a quantitative manner.
All parameter sets applied in the present work possess a relatively low mean polymer

content fP to ensure the development of a ’droplet pattern’ like in figure 5.2 (e) and (f).
We do not encounter any bicontinuous network – both in 2D and in 3D. For the sake of
convenience we are going to call the structures of high polymer content at transition time
droplets. This terminology is introduced to distinguish the polymer aggregates at transition
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time obtained by model I from polymer particles. Throughout this work the term ’particle’
refers to stabilized polymer aggregates in thermodynamic equilibrium or a metastable state.
Droplets are neither equilibrium nor metastable structures as Cahn-Hilliard dynamics always
develop towards macroscopic phase separation (only one single polymer aggregate is left
in equilibrium) because the free energy does not include any stabilization mechanisms. In
that sense, droplets represent the first structures with a well defined interface obtained by
the simplest model for the dynamics of phase separation. As figure 5.2 indicates that their
size is likely to decrease with increasing quench rates, i.e. mixing speeds, they constitute
interesting objects because they possess a fundamental commonality with particles from the
experiments. Therefore, the remainder of the current section deals with rate-size relations
between the quench rate sχ and the associated characteristic droplet size.

Denoting the total number of droplets at transition time nD, the volume equivalent radius
of droplet i with i = 1, 2, 3, ..., nD is given by

Ri =



√
Ai
π

in 2D

3

√
3Vi
4π in 3D

, (5.46)

where Ai or Vi denotes its occupied area or volume. One measure for the characteristic
droplet size is simply the mean value

R = 1
nD

nD∑
i=1

Ri, (5.47)

and the standard deviation

∆R =

√√√√ 1
nD

nD∑
i=1

(Ri −R)2 (5.48)

serves as a measure of polydispersity. To determine both nD and Ai or Vi, composition fields
at transition time are first converted into binary images. Each pixel or voxel where φP > φ

(th)
P

is assigned a value of 1 and all others are set to 0. Then a standard 4- or 6-connected
component recursive algorithm is applied to label the (binary) droplets [147]. The algorithm
assigns value i to pixels or voxels belonging to droplet i, which allows identification and
isolation of particular droplets and also provides the value of nD. Ai or Vi are subsequently
calculated for every isolated droplet with the Minkowski functional algorithm from Mantz et
al. [146]. As far as the Minkowski functionals are concerned, we only use C and the total
area (in 2D) or the total volume (in 3D) as described above. In two spatial dimensions, the
remaining Minkowski functional besides C and the area is the Euler characteristic, which is
a measure of connectivity and yields an equivalent estimate for the transition time as C[144].
In three dimensions the Euler characteristic and the mean breadth, which is related to mean
curvature, constitute the remaining two Minkowski functionals besides C and the volume
[148]. In the present case, one could determine nD from the Euler characteristic but for
the vesicles that appear in part III this procedure would fail. Since we always get a droplet
pattern we are not interested in connectivity either, and thus the Euler characteristic does
not play any role in the present work. The mean breadth in 3D is redundant, too, as we
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already have another procedure to calculate Ri.
Characteristic structure sizes are also quantified by the maximum and the first moment of

the normalized radially averaged structure factor S. If the spatial domain is discretized with
m grid points, it is defined by

S(k, t) = Sc(k, t)
m
(〈
φ2
P

〉
− 〈φP 〉2

) . (5.49)

Sc(k, t) is obtained by averaging the absolute value of the Fourier transform of composition
correlations,

S(~k, t) =

∣∣∣∣∣∣
∑
~r,~r ′

e−i
~k·~r ′

[
φP (~r + ~r ′, t)φP (~r, t)− 〈φP 〉2

]∣∣∣∣∣∣ , (5.50)

over the disc
{
~k ∈ K : |~k| ∈ [k, k + 2π/L]

}
, where the discretized Fourier space K is defined

by equation 5.34. Simulations were only performed in quadratic or cubic simulation boxes
with side lengths L1 = ... = Ld = L. The summation is carried out over all grid points ~r and
distances ~r ′ in the coordinate space, and 〈x〉 denotes the mean value of the quantity x over
the grid. The first moment of S is

k1(t) =
∑
k k S(k, t)∑
k S(k, t) (5.51)

and we estimate mean droplet radii by

l1 = γ
2π

k1(ttr)
and lmax = γ

2π
argmax

k
(S(k, ttr))

(5.52)

with γ = 1/4, meaning characteristic droplet radii are considered to be quartered wave lengths.

b) Simulated rate-size relations

Figure 5.3 shows simulation results for R, l1, lmax and the transition time ttr in dependence
on the quench rate sχ. All rate-size relations share a common characteristic attribution inde-
pendent of the spatial dimension, and every single diagram can be divided into two regimes:
an asymptotic regime, where the data points approach simulation results for an instanta-
neous quench to χ(max) (dashed horizontal lines), and a non-asymptotic regime where the
dependence on sχ follows a scaling law, which appears as a straight line in double logarithmic
representation. Here, the asymptotic regime is defined to be the range of sχ for which the
cutoff of χ(t) in equation 5.44 affects simulation results. This is clearly the case if ttr > tmax,
meaning the asymptotic regime begins at the value of sχ where the dash-dotted line and the
data points in figure 5.3 (d) and (h) intersect. That data points eventually converge to the
results for constant χ(t) = χ(max) does not come as a surprise since it immediately follows
from equation 5.44 and the definition of tmax that

lim
s→∞

χ(t) = χ(max). (5.53)

The exponents of the regression lines to R, l1, and lmax in the non-asymptotic regime scatter
around an average -0.161 with a standard deviation 0.006.
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Figure 5.3: Rate-size relations from model I for linear mixing profiles in double logarithmic represen-
tation. The data points represent simulated droplet sizes (R, l1, lmax) and transition times (ttr) in 2D
(a to d) and 3D (e to h). The dashed horizontal lines indicate simulation results for an instantaneous
quench with χ(t) ≡ χ(max) and the grey lines are regression lines to the non-asymptotic regime that
correspond to the trend line equations y = β xα. Except for (a) and (e), error bars represent the
statistical standard deviation of all 5 simulation runs with different initial conditions. Error bars in
(a) and (e) indicate the polydispersity ∆R from equation 5.48; the statistical variance of R resembles
the variance of the other quantities. The physical input parameters of the simulations are summarized
in equation 5.45.
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Before the origin of that scaling behavior is analyzed in a quantitative manner, figure 5.3
is compared to the Molecular Dynamics simulations from Nikoubashman et al. [35]. The
comparison eventually suggests an interpretation how droplets relate to stable homopolymer
particles.

5.3.3 Related Molecular Dynamics simulations and parameter variations

In reference [35] controlled assembly of the homopolymer polystyrene in a mixture of tetrahy-
drofuran and water is studied both with experiments and with Molecular Dynamics simu-
lations. Like in the present work, they consider the impact of experimentally adjustable
parameters like mixing times on nanoparticle size, which provides the possibility to compare
the early stage spinodal decomposition model to a much more complex particle model that
accurately covers every stage of particle growth.
In the Molecular Dynamics simulations solvent mixing is described by linearly time de-

pendent repulsive forces between monomers and solvent molecules of diameter σ. More
specifically, monomer-solvent interactions are expressed by the potential

UMS(rij) = γUWCA(rij) + (1− γ)UMM (rij), (5.54)

where γ increases linearly in time. UMM is a standard attractive Lennard Jones potential

UMM = 4kBT

( σ

rij

)12

−
(
σ

rij

)6
 (5.55)

that also acts between nonbonded monomers and UWCA the purely repulsive Weeks-Chandler-
Andersen potential [149], which is a truncation of kBT +UMM at rij = 21/6σ. rij denotes the
distance between two monomeric units labeled by i and j. The solvent is treated explicitly
as a liquid of Lennard Jones particles and covalent bonds between monomers are modeled
by a finitely extensible nonlinear elastic potential [150, 151]. The temperature is maintained
by a Nosé-Hoover thermostat. A main result of the experimental part in reference [35] is the
unexpected stabilization of nanocolloidal aggregates despite the lack of a hydrophilic block
or charged end groups attached to the hydrophobic homopolymer. Although the utilized
homopolymer is electroneutral, the colloids are stabilized by repulsive electrostatic forces most
likely originating from ζ-potentials due to the adhesion of hydroxide ions to their hydrophobic
surface. This charge stabilization is modeled by placing a virtual charged particle into the
center of each polymer aggregate. The electrostatic interaction between aggregate I and J
with distance rIJ is described by a Yukawa potential

UY ukawa(rIJ) = λB

(
Z∗I e

κaI

1 + κaI

)(
Z∗Je

κaJ

1 + κaJ

)
e−κrIJ

rIJ
. (5.56)

λB = e2/4πε0εrkBT is a constant called the Bjerrum length, κ the inverse Debye screening
length, aI the radius of aggregate I, and Z∗I its size dependent net charge, which is calculated
analytically [3] via

Z∗IλB
aI

= (1 + κaI)
eζ

kBT
, (5.57)

where ζ is the value of the ζ-potential and e the elementary charge.
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Figure 5.4: Results of Molecular Dynamics simulations from Nikoubashman et al. [35] in double
logarithmic representation (the layout was adapted). Both diagrams show nanoparticle radii a in
dependence on an inverse mixing time t−1

mix. (a) depicts an array of curves generated by different
mean polymer concentrations φ with a fixed ζ-potential at ζ = −75 mV. The grey lines are regression
lines to data points associated with mixing times greater than a threshold time τthr ≈ 5τl, where τl
is the mean contact time of polymer coils defined in reference [35]. The trend line equations belong
from top to bottom to triangles, circles and squares, respectively. In (b) the ζ-potential from equation
5.57 is varied while the mean polymer concentration is fixed at φ = 8.2 mg/ml. Triangles in (a) and (b)
label the same data.

Figure 5.4 shows results of the Molecular Dynamics simulations. A peculiarity is the
striking similarity of the general data point progression in comparison to figure 5.3. An
agreement of absolute values for aggregate sizes cannot be expected due to different input
parameters, but the exponents of the regression lines in figure 5.4 (a) come very close. As
triangles in figure 5.4 (a) and (b) label the same data, it is evident that regression lines in
(b) possess comparable exponents although they are not displayed. In the phase field model
tmax from equation 5.44 corresponds to a mixing time. Since s or sχ are proportional to t−1

max

we can roughly set s, sχ ∝ t−1
mix, which allows considering the horizontal axes in figures 5.3

and 5.4 as equivalent. Consequently, the characteristic attribution of rate-size relations from
model I is in accordance with much more complex Molecular Dynamics simulations.
To continue the comparison with figure 5.4, the response of rate-size relations to parameter

variations is investigated. As a reminder, the physical parameters besides sχ are the mean
polymer volume fraction fP , the number of segments per polymer molecule N , and the
maximum interaction parameter χ(max).
Rate-size relations with different χ(max) were simulated, but the results are not explicitly

shown. We already argued in the short discussion about figure 5.3 that the asymptote corre-
sponds to droplet sizes obtained for χ(t) ≡ χ(max). It is also well known from studies of the
Cahn-Hilliard equation with constant interaction parameters that increasing quench depths
decrease characteristic structure sizes. So it is clear that an increase of χ(max) shifts the
asymptote downwards and in the process, the non-asymptotic regime extends towards larger
values of sχ. A very similar response is also produced by increasing the absolute value of the
ζ-potential in the Molecular Dynamics simulations as it is shown in figure 5.4 (b). Thus, one
can identify a control parameter in the phase field model that provokes comparable changes
of aggregate sizes to the ζ-potential. This correspondence, however, does not indicate any
physical relation between χ(max) and ζ. χ(max) describes an interaction between solvent and
polymer segments. Decreasing values of χ(max) increase the characteristic size of droplets



76 5.3. Rate-size relations for linear mixing profiles

in the limit of infinitely fast solvent mixing by affecting early stage coarsening in a simi-
lar manner as discussed in subsection 5.3.2, A). In contrast, the ζ-potential determines an
interaction between already formed colloids and affects particle sizes by introducing an elec-
trostatic stabilization mechanism that prevents them from coagulating in considerably later
stages of particle growth (cp. figure 4.1, (f)). As the Yukawa potential grows with increasing
colloid radii not only due to the explicit aI - and aJ -dependencies but also due to the implicit
a-dependencies in Z∗I and Z∗J , colloids become stable particles once they exceed a critical size
where the electrostatic repulsion of accumulated electrons on their surface compensates van
der Waals attractions described by the Lennard Jones potentials. Equation 5.57 states that
the net charge |Z∗I | increases with the absolute value of the ζ-potential for a fixed colloid ra-
dius. A reduction of |ζ| therefore increases the particle size necessary to prevent coagulation
of aggregates and lifts the lower bound for mean nanoparticle sizes, which is approached in
the respective asymptotic regime. Summarized, both the maximum quench depth and the
ζ-potential prescribe a lower bound of particle sizes that is reached at infinitely fast solvent
mixing. That circumstance is reflected in their similar effect on quench rate dependencies,
but the physical mechanism how that limitation is generated is fundamentally different. The
difference implies that the definition of the asymptotic regime from subsection 5.3.2, B) and
the definition in reference [35] are not equivalent. Therefore, we are going to use the term
’non-asymptotic regime’ in a more loose context if we refer to sections where particle or
droplet sizes show the scaling behavior with exponents ≈ 0.15− 0.17. The direct analogue to
χ(max) in the Molecular Dynamics simulation is most probably the cutoff or maximum value
of γ in equation 5.54, which was unfortunately not varied in reference [35]. So drawing that
comparison could potentially be touched on in future work.

Nevertheless, the correspondence of χ(max) and ζ is still interesting since it implies that
ζ mainly affects the placement of the asymptote. Likewise, it can be seen in figure 5.4 (b)
that in the asymptotic regime, a seems to be very sensitive to changes in ζ, while in the
non-asymptotic regime, it is not. Since ζ determines the interaction between polymer ag-
gregates or colloids, this sensitivity should be an indicator for the significance of late stage
collision-coagulation processes during particle growth. Keeping in mind that the free energy
functional in model I is physically accurate in the weak segregation regime and that typical
droplet sizes are likely to be determined during that regime (cp. the discussion to figure 5.2),
the first aggregates of well defined shape that appear in the Molecular Dynamics simulations
should be comparable to droplets. The ζ-sensitivity of a in the asymptotic regime indicates
that these droplet-comparable aggregates grow to particles by colliding and coagulating.
Collision-coagulation is not described by model I since it is a mean field description. As a re-
sult, droplets and particles are different. The low ζ-sensitivity in the non-asymptotic regime,
however, indicates that collision-coagulation is insignificant and that droplet-comparable ag-
gregates seem to be large enough for an almost direct charge stabilization once they have
concentrated from the coarse composition pattern that is determined by solvent mixing in
the very early stages. In that case, droplets can be identified with particles, which is also
consistent with their practically identical scaling behavior.
Although the physical interpretation of measuring droplet sizes was not mentioned in sub-

section 5.3.2 to keep the description of the evaluation method as clear and concise as pos-
sible, there is one: namely the assumption that structure growth stops at transition time,
which constitutes an imitation of any stabilization mechanism that prevents or suppresses
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Ostwald Ripening and collision-coagulation growth of droplets. One candidate for such a
mechanism is the steric stabilization that can occur if amphiphilic copolymers are used in-
stead of homopolymers [88]. According to the above discussion, electrostatic stabilization
through repulsion of aggregates is another one as long as considerations are restricted to the
non-asymptotic regime. In this context it is emphasized that model I does not contain any
physical stabilization mechanism to prevent Ostwald Ripening and is also not able to describe
Brownian motion of droplets and the accompanying collision-induced coagulation in the late
stages of particle growth – ’stabilizing’ by termination at transition time is a purely artificial
auxiliary construct! The transition to the asymptotic regime in the Molecular Dynamics
model should happen once droplet-comparable aggregates become smaller than the critical
size that is needed to prevent significant collision-coagulation growth. Hence, particle sizes
might be underestimated by droplet sizes in the asymptotic regime when collision-coagulation
processes are significant. In the case of very high ζ-potentials, which could appear in solu-
tions of very high pH, the maximum value of γ could dictate the placement of the asymptote
instead of ζ because collision-coagulation processes become less and less significant as smaller
particles can be stabilized. In his case, the asymptotes of model I and the Molecular Dynam-
ics simulations should agree. So in solutions of high pH, droplets are likely to correspond to
particles in the asymptotic regime as well.

How rate-size relations respond to variations of fP and N is displayed in figure 5.5, where
the open circles always denote the reference parameter set from figure 5.3. The impact of
fP -variations can be understood as a consistency check. If droplets can be identified with
particles in the non-asymptotic regime, rate-size relations should exhibit the same response
as the data in figure 5.4 (a). The response of rate-size relations is shown in figure 5.5 (a), (b),
and (c). To imitate the experimental conditions and the setup of the Molecular Dynamics
simulations, χSS and χGS are kept constant as listed in the corresponding table below the
diagrams because in contrast to χ(max) or ∆χ(max), χSS and χGS constitute material data
which should remain unchanged when the mean volume fraction of a specific polymer is
modified. The remaining quantities in the table are calculated from fP , N , χGS , and χSS
according to the definitions of χ0 and χ(max) in equation 5.44 with χ0 = χ(Spin) and ϕmax =
(1+ϕ0)/2. The threshold volume fraction for conversion into binary images is set to φ(th)

P =
0.3. In double logarithmic representation diminishing volume fractions are associated with a
downward shift of rate-size relations in the non-asymptotic regime, which is in agreement with
the results from the Molecular Dynamics simulations in figure 5.4 (a). lmax though appears
to be a rather bad measure for the current comparison. Its shift is very weak because it
only takes into account the highest peak in the structure factor without properly weighting
other contributions or even secondary maxima, which typically indicate moderate changes in
mean droplet sizes. The response in the asymptotic regime depends on the applied measure.
For R, the uppermost data points correspond to the largest mean volume fraction and the
lowermost belong to the lowest fP for any sχ as seen in figure 5.5 (a). Data curves of l1
and lmax shown in (b) and (c) intersect and their arrangement in the asymptotic regime is
upside down, i.e. decreasing mean volume fractions leads to larger droplets. If the threshold
value is set in relation to fP , for example if φ(th)

P = 3fP is used, it would be φ(th)
P = 0.15

for fP = 0.05. Data points for this choice are shown in (d). This time, the placement of
asymptotes agrees with l1 and lmax, which reveals a crucial threshold dependence of R that
might either distort results and their interpretation or lead to a debate of principles how
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Figure 5.5: Response of 2D-data from figure 5.3 to fP - and N -variations. fP is the mean polymer
volume fraction in solution and N the polymer chain length. (a), (b), and (c) show rate-size relations
for different fP with a threshold φ(th)

P = 0.3. The complete parameter set for a specific value of fP
is summarized in the upper table and the open circles represent the reference data from figure 5.3.
The dashed grey lines in (b) and (c) correspond to the result for fP = 0.05 and χ(t) ≡ χ(Spin) +
1.0873 = 2.3279, while the dash-dotted black ones indicate the results for fP = 0.15 and χ(t) ≡
χ(Spin) + 1.0873 = 1.9136. In (d) the impact of φ(th)

P on the relative placement of asymptotes for R
is demonstrated by exemplarily setting φ(th)

P = 0.15 for fP = 0.05. (e), (f), and (g) display rate-size
relations for varying N . Error bars are similar to figure 5.3 and omitted for the sake of clarity.
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Figure 5.6: Droplet sizes in dependence on the mean polymer volume fraction fP , simulated with
model I. (a), (b), and (c) show R, l1, and lmax, respectively. Like in figure 5.5, chain lengths and
interactions are fixed at N = 14, χGS = −1.5026, and χSS = 2.8454. The curve arrays are generated
by different fixed mixing speeds s (cp. equation 5.44) as given by the legend in (d). Grey lines are
regression lines and the trend line equations are shown in the corresponding inset. (d) also depicts
the mean value and the standard deviation of exponents, calculated from all regression lines for one
specific measure of droplet size. The threshold for binary conversion is set to φ(th)

P = 0.3.

to chose φ(th)
P . Therefore, we suggest that R is a problematic measure as far as comparing

different parameter sets is concerned, although it is the most accurate measure of mean
particle size once – or better, if – an appropriate φ(th)

P is found. The curves of l1 and lmax for
φ

(th)
P = 0.15 at fP = 0.05 are not shown but they do not exhibit such a threshold dependence.

Due to the shortcomings of both lmax and R, we propose l1 to be the most suitable measure
for the investigation of parameter variations with model I. The crossing of data curves at the
transition to the asymptotic regime and their upside down arrangement with respect to the
non-asymptotic regime is caused by the decrease of χ(max) for decreasing fP in our parameter
choices. The horizontal lines in figure 5.5 represent the asymptotes calculated by simulations
with a constant quench depth ∆χ(max) = 1.0873 (which corresponds to the maximum quench
depth of the reference set) for fP = 0.005 and fP = 0.15, respectively, and it can be seen
that the particle size in the asymptotic regime also decreases with diminishing fP if ∆χ(max)

is kept constant. So qualitatively, the response of droplet sizes to fP -variations agrees with
molecular dynamics simulations.
Nikoubashman et al. [35] report the particle radius a to scale like a ∝ Φn in both simula-

tions and experiments, where Φ is the mean polymer concentration in solution and n ≈ 0.3.
Furthermore, the proportionality as well as n appear to be independent of the mixing speed.
Droplet sizes in dependence on fP at several mixing speeds s within the non-asymptotic
regime are shown in figure 5.6. All measures for droplet size grow with fP , but the growth law
severely depends on the measure. If we apply scaling laws x ∝ fnxP with x ∈ {R, l1, lmax} as re-
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gression lines, the exponents scatter around averages of 0.7244 (nR), 0.3287 (nl1), and 0.0877
(nlmax) as listed in figure 5.6 (d) with the respective standard deviation. nl1 = 0.3287±0.0159
is close to n ≈ 0.3, so it agrees with the Molecular Dynamics simulations. The much larger
values for nR are most likely caused by the φ(th)

P -dependence of R and are even expected
because the closer φ(th)

P gets to fP , the larger droplets become at fixed remaining parameters.
One reason why nlmax takes a rather low value of 0.0877 on average is probably the size of
the simulation box, which seems to result in (discrete) Fourier space resolutions that are
not fine enough to capture changes in droplet sizes by a shift of the structure factor’s maxi-
mum alone. Most curves of the array in figure 5.6 (c) contain four or more data points that
take exactly the same value lmax. However, there are two exceptions, namely the diamonds
with an exponent 0.1392 and the squares with an exponent 0.1478, so lmax seems to scale
differently from l1 even if the resolution was high enough. This already indicates that the
scaling of droplet sizes with fP also depends on the applied measure regardless of ’numerical
discretization issues’. In subsection 5.3.4 we are going to show that lmax is indeed expected
to follow a scaling law lmax ∝ fmP with m ≈ 0.14.

Figure 5.5 (e), (f), and (g) show variations of the polymer chain length N . The data point
progressions look very similar for moderate to large sχ but deviate for small quench rates.
The deviation from the characteristic scaling behavior is most likely caused by stronger
Ostwald Ripening contributions because the entropic term in the free energy scales with
1/N and because the transition between spinodal decomposition and Ostwald ripening is
not cleanly separated: some aggregates may have already developed a sharp interface and
grow by Ostwald ripening, while in other regions of space, the dynamics is still dominated
by spinodal decomposition. The increasing nonlinear contributions from Ostwald ripening
generate a third regime at low sχ and very short polymers, where the scaling behavior breaks.

In summary, we found that fP -variations vertically shift the non-asymptotic regime of rate-
size relations regardless of the applied measure for droplet size. This shift is in qualitative
agreement with Molecular Dynamics simulations. In addition, l1 is quantitatively consistent
with the relation ’size ∝ (mean polymer content)n’, where n ≈ 0.3. Together with the very
similar scaling behavior in dependence of mixing speeds, this consistency provides strong
evidence that in the non-asymptotic regime droplets can be identified with stable homopoly-
mer particles. As a consequence, the characteristic attributions of rate-size relations in that
regime seem to be independent of the applied dynamical model for phase separation. In
the asymptotic regime droplets and particles may be different but as far as size-controlled
assembly in experiments is concerned, the asymptotic regime is rather uninteresting any-
way because it does not allow for the desired size-control by variations of mixing times. In
other words, if experimental data resemble figure 1.3, they most likely show a section from a
non-asymptotic regime.

5.3.4 Perturbation theory and scaling laws

Rate-size relations are not only similar to results from Molecular Dynamics simulations, but
they also show a close qualitative resemblance to analytical results for defect sizes during
continuous cooling of an alloy, which were derived within a perturbation approximation to a
Cahn-Hilliard equation a long time ago [120]. This resemblance relates to the characteristic
scaling behavior of the defect sizes as functions on quench rates (the analytical theory predicts
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an exponent of −1/6), and can be attributed to a formal analogy of continuous temperature
changes to time dependent interaction parameters. In the present subsection we explicitly
transfer the perturbation approximation to model I in order to extract an analytical expla-
nation for the scaling behavior in the non-asymptotic regime. In the process, it is also shown
that the perturbation theory predicts simulation results from figure 5.3, i.e. droplet sizes,
quantitatively. Since droplets may be identified with stable homopolymer particles in Molec-
ular Dynamics simulations, the results from following considerations should count for these
particles as well.

The starting point is to linearize the dynamical equation of model I, equation 5.18, around
a homogeneous ground state. To this end the polymer volume fraction is split into the sum
φP (~r, t) = fP + uP (~r, t), and if the perturbation uP fulfills |uP (~r, t)| � 1, the chemical
potential µr may be Taylor expanded to

µr(φP , t) = µr(fP , t) + ∂µr
∂φP

(fP , t) · uP . (5.58)

Insertion of the Taylor expansion and φP (~r, t) = fP + uP (~r, t) into equation 5.18, neglecting
O(u2

P ) terms3, and a subsequent Fourier transformation in space lead to a system of linear
ordinary differential equations

∂ûP
∂t

(~k, t) = a(k, t)ûP (~k, t) (5.59)

with
a(k, t) = −M(fP )k2

[
k2 + ∂µr

∂φP
(fP , t)

]
(5.60)

and the usual notation k = |~k| for the Euclidean norm of the wave vectors. ûP are the Fourier
coefficients of uP . The solution to equation 5.59 are the modes

ûP (~k, t) = ûP (~k, 0) · e
∫ t

0 a(k,t′)dt′ (5.61)

with the exponent ∫ t

0
a(k, t′)dt′ = −M(fP )k2

[∫ t

0

∂µr
∂φP

(fP , t′)dt′ + k2t

]
,

or in full representation

ûP (~k, t) = ûP (~k, 0)e−M(fP )k4te
−M(fp)k2

∫ t
0
∂µr
∂φP

(fp,t′)dt′ . (5.62)

The two exponential functions reflect one respective flux in the pictorial interpretation from
subsection 5.3.2, A). The first exponential function represents the interfacial tension driven
coarsening (cp. figure 5.2 (a) and (c)), which rapidly damps modes of large wave numbers
k and removes high curvatures from composition profiles in the process. The second one
accounts for the repulsion of the components. Inserting the derivative of µr from equation
5.17,

∂µr
∂φP

(fP , t) = 1
NfP

+ 1
1− fP

− 2χ(t) = 2
[
χ(Spin) − χ(t)

]
, (5.63)

3Including uP∇uP and uP∇∆uP , i.e. gradients and curvatures are assumed to be weak, too.
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the second exponential function can be cast into the form

e2M(fP )k2
∫ t

0 (χ(t′)−χ(Spin))dt′ .

In contrast to the first exponential function, the exponent of the second one is strictly positive
inside the spinodal area and grows with k. The synergy of both e-functions favors the growth
of modes that belong to wave numbers in a specific time dependent band width, which is
enclosed by the roots of

∫ t
0 a(k, t′)dt′ = 0 in k-direction.

To estimate droplet sizes we utilize the Euclidean norm of wave vectors that are associated
to modes with maximum amplification at a specific time t, for instance at transition time
t = ttr. Thus, in demand is kp such that(

∂

∂k

∫ t

0
a(k, t′)dt′

)∣∣∣∣
k=kp(t)

= 0,

which is equivalent to

kp(t) =
√
− 1

2t

∫ t

0

∂µr
∂φP

(fP , t′)dt′. (5.64)

From now on the short hand notation

∆χ(t) := − 1
2t

∫ t

0

∂µr
∂φP

(fP , t′)dt′ =
1
t

∫ t

0

[
χ(t′)− χ(Spin)

]
dt′ (5.65)

is applied. At the moment this is just a notational simplification, but in subsection 5.3.6 its
interpretation as an effective constant quench depth is discussed. Employing the restriction
to t ≤ tmax of the linear mixing profile from equation 5.44 into ∆χ gives

∆χ(t) = 1
t

∫ t

0

[(
χ0 + sχt

′)− χ(Spin)
]
dt′,

and recalling that χ0 = χ(Spin), the integral collapses to

∆χ(t) = 1
t

∫ t

0
sχt
′dt′ = sχt

2 .

For t > tmax it is

∆χ(t) = 1
t

∫ tmax

0
sχt
′dt′+ 1

t

∫ t

tmax

[
χ(max) − χ(Spin)

]
dt′ = sχt

2
max

2t +(χ(max)−χ(Spin)) t− tmax
t

= (χ(max) − χ(Spin)) tmax2t + (χ(max) − χ(Spin)) t− tmax
t

=
(

1− tmax
2t

)
(χ(max) − χ(Spin)),

and combining the two cases leads to

kp(t) =
√

∆χ(t) with ∆χ(t) =


sχt

2 , t ≤ tmax(
1− tmax

2t

)(
χ(max) − χ(Spin)

)
, t > tmax

. (5.66)

Within the perturbation theory droplet radii may be estimated analogously to equation 5.52
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by
lp(ttr) = γ

2π
kp(ttr)

= π

2
√

∆χ(ttr)
. (5.67)

A comparison between lp(ttr) and the simulation results from figure 5.3 is shown in figure
5.7. It can be seen that the simulation results and prediction from the perturbation theory
are relatively close. As it is evident from figure 5.7 (b) and (d), the relative deviation
lies below 20 % except for R in 3 dimensions at large ∆χ(ttr). Since lp(ttr) is calculated
from the wave length of the mode with the largest amplification at ttr, it should yield the
best approximation to lmax. The deviation of lp(ttr) and lmax is indeed below 10 % for
the most part and consequently, mean droplet radii can be described by the perturbation
theory within a good accuracy. The agreement of simulation results with predictions from a
theory that is only valid close to the homogeneous initial state implies that droplet sizes are
mainly determined in the weak segregation regime. Therefore, the illustrative phrase that
composition patterns towards the end of early stage coarsening like in figure 5.2 (d) imprint
onto composition profiles at transition time like in (f) can be understood literally. Since
contributions of repulsion between components and interfacial tension have already been

Figure 5.7: Comparison between simulation results and the prediction from the perturbation theory
for model I. The data points in (a) and (c) are taken from figure 5.3 and the grey line represents
the prediction from the perturbation theory at transition time, lp(ttr) from equation 5.67. On the
horizontal axis is ∆χ(ttr) from equation 5.66, which renders lP (ttr) a straight line with slope −1/2 in
double logarithmic representation. ∆χ(ttr) is calculated with the simulation results for ttr from figure
5.3 (d) and (h). The asymptote becomes an accumulation point at limsχ→∞∆χ(ttr) = χ(max)−χ(Spin),
which follows from equation 5.66 and the fact that ttr possesses a lower bound while tmax tends towards
zero as sχ → ∞ (cp. figure 5.3 (d) and (h)). (b) and (d) show the relative deviations of simulation
results from lp(ttr).
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identified in the linearized solution given by equation 5.62 as separate exponential functions
with opposite signs of the exponents, the agreement also verifies the pictorial interpretation
of competing fluxes from subsection 5.3.2, A) in a quantitative manner. If the solution to
the linearized equation in the Fourier space is considered, increasing sχ simply enhances the
wave number kp(ttr) of the mode with largest amplification at ttr, which results in smaller
droplets.

To derive the theoretical value for the exponent in the non-asymptotic regime of rate-size
relations, an amplification time of composition fluctuations is calculated. Rearrangement of
equation 5.61 leads to

ln
(
ûP (~k, t)
ûP (~k, 0)

)
=
∫ t

0
a(k, t′)dt′ (5.68)

and defining the amplification A(k, t) = ûP (~k,t)/ûP (~k,0) yields

ln(A(k, t)) = −M(fP )k2
(
k2t+

∫ t

0

∂µr
∂φP

(fP , t′) dt′
)

= −M(fP )k2
(
k2 − 2∆χ(t)

)
t. (5.69)

Since we are interested in the growth time of the most unstable mode with wave number
kp(t) =

√
∆χ(t) we set k = kp(t) and get

ln(A(kp(t), t)) = −M(fP )∆χ(t)
(
∆χ(t)− 2∆χ(t)

)
t = M(fP )

(
∆χ(t)

)2
t. (5.70)

Upon insertion of ∆χ from equation 5.66 this expression becomes

ln(A(kp(t), t)) =


M(fP )

4 s2
χt

3, t ≤ tmax

M(fP )∆χ2
max

(
1− tmax

2t

)2
t, t > tmax

(5.71)

with ∆χmax = (χ(max) − χ(Spin)), which is equivalent to the implicit relation

t =


3

√
4 ln(A(kp(t), t))

M(fP ) s−
2/3

χ , t ≤ tmax

tmax + z(t)
2 + 1

2

√
z(t) (2tmax + z(t)), t > tmax

(5.72)

for the amplification time t, where the short hand notation

z(t) = ln(A(kp(t), t))
M(fP )∆χ2

max

(5.73)

is applied. Eliminating the explicit t-dependencies in equation 5.66 by inserting equation



85

5.72 results in

lp(t) =



γ23/2π 6

√
M(fP )

4 ln(A(kp(t), t))
s−

1/6
χ , t ≤ tmax

γ2π√
∆χmax

(
1− tmax

2

[
tmax+z(t)

2 + 1
2
√
z(t) (2tmax + z(t))

]−1
) , t > tmax

. (5.74)

As the exponents of the regression lines to ttr in figure 5.3 (d) and (h) are −0.643 in 2D
and −0.661 in 3D, which is very close to −2/3 from equation 5.72, the transition time in
the non-asymptotic regime exhibits the scaling behavior of an amplification time. Setting
t = ttr in equation 5.74 immediately provides the theoretical exponent −1/6 for droplet sizes
lp(ttr) in the non-asymptotic regime. The exponents from simulations are listed in table
5.1 and it shows that the deviations from −1/6 are below 10 %. Both the functional
dependency lp ∝ sαχ and the exponent α = −1/6 are independent of the input parameters, so
they constitute universal characteristics of model I with linear mixing profiles. The deviations
between the perturbation theory and simulation results are caused by non-linear contributions
as |ûP (~r, t)| � 1 is not strictly valid for any t.

Equation 5.74 also suggests an interpretation why droplet sizes decrease with diminishing
mean polymer volume fractions fP . Taking the natural logarithm of both sides leads to

ln (lp(ttr)) = ln

 γ23/2π

6
√

4 ln (A(kp(ttr), ttr))

+ 1
6 ln (fP (1− fP ))− 1

6 ln (sχ) (5.75)

and shows that changing fP from 0.1 to 0.15 or 0.05 results in an upward or downward shift
in double logarithmic representation, which is in agreement with simulations (upper part of
figure 5.5 and figure 5.4 (a)). If we further rewrite equation 5.75 to

lp(ttr) ∝ (fP (1− fP ))1/6, (5.76)

insert the fP -values 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2 like in figure 5.6, and approximate
the resulting lp(ttr) by a regression line, we obtain lp(ttr) ∝ fmP with m ≈ 0.1462, which
is consistent with the scaling of the squares and diamonds in figure 5.6 (c). This indicates
that the decrease of droplet sizes with decreasing fP is not caused by a depletion of polymer
but by a slowdown of dynamics in the very early stages of spinodal decomposition, which

dimension exponent α relative deviation
R l1 lmax R l1 lmax

2D -0.170 -0.168 -0.156 -0.020 -0.008 0.064
3D -0.161 -0.157 -0.153 0.034 0.058 0.082

Table 5.1: Exponents α from the trend line equations y ∝ sαχ in figure 5.3 with y ∈ {R, l1, lmax} and
their relative deviation from −1/6. The deviation is calculated by the formula α+1/6

1/6
. Exponents from

Molecular Dynamics simulations can be found in figure 5.4 (a) and read -0.170 and -0.167.
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Figure 5.8: Simulation results for lmax from model I compared to semi-analytical approximations
lp(ta). The simulation results for lmax are taken from the upper panel of figure 5.5: data points
in (a) correspond fP = 0.1, data points in (b) to fP = 0.05, and data points in (c) to fP = 0.15.
lp(ta ≤ tmax) denotes the first line in equation 5.74 and lp(ta > tmax) the second one, where ta is
defined by ln(A(kp(ta), ta)) = 10. The two branches of lp intersect at the transition from the non-
asymptotic to the asymptotic regime. The respective ta, which are shown in the right panel together
with the transition times ttr, are calculated from lp(ta) via equation 5.70 with ∆χ(ta) = (γ2π/lp(ta))2.

eventually produces smaller droplets. As a consequence, the depletion of polymer should be
mainly responsible for the decreasing number of droplets and their decreasing final polymer
content with diminishing fP that we observed in our simulations.

The predictive power of the perturbation theory is unfortunately limited by the fact that
the amplification A(kp(ttr), ttr) is an analytically rather inaccessible quantity as it could for
example depend on the random initial condition, which determines ûP (kp, 0). It should also
exhibit a certain dependence on φ(th)

P and on the quench rate. sχ affects the polymer content in
droplets, i.e. ûP (kp(ttr), ttr), as is evident from the color bars in figure 5.2 (e) and (f). Despite
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the lack of an analytical expression for A it is noted that we found good approximations to
lmax by setting the logarithm of the amplification factor in equation 5.74 to ln(A) = 10. The
results are shown in figure 5.8 for different parameter sets. Especially because the slope 1/A

of ln(A) is very low at A = e10, minor variations of A due to changes of φ(th)
P or sχ could

have negligible impact on lp. The lacking explicit expression for A(kp(t), t) prevents inverting
ln(A(kp(ta), ta)) = 10 with respect to ta, so it is not known a priori if ta ≤ tmax or ta > tmax.
For this reason, both cases in equation 5.74 are plotted (the quench rate dependence in the
second line is contained in tmax = (χ(max)−χ(Spin))/sχ). The transition from the non-asymptotic
to the asymptotic regime can then be determined graphically by their intersection. Since the
data points can be approximated by the left branch of lp(ta ≤ tmax) and the right one
of lp(ta > tmax), semi-analytic descriptions by assuming constant A should be possible.
Here, lp denotes the inverse wave length with maximum amplification at a specific time, but
expressions for the inverse first moment should be deducible in an analogous manner.
In the present work, however, the possibility for semi-analytical approaches constitutes only

a side note. The main result of the current subsection is the good quantitative agreement of
the perturbation theoretical prediction lp to simulation results for droplet radii from model
I. The perturbation approximation explains the characteristic scaling behavior of rate-size
relations by a competition between molecular repulsion and interfacial tension in the very
early stages of phase separation and therefore, it provides an interpretation to the ’working
principle’ of mechanism (i) from chapter 4. It also follows that both the scaling behavior
’size ∝ (quench rate)α’ and the exponent α = −1/6 are independent of the input parameters
and thus, universal to linear mixing profiles in model I.

5.3.5 Comparison to experiments

In the preceding two subsections we discussed basic properties of model I from a purely
theoretical point of view. In this subsection the principal characteristics of rate-size relations
are compared to the experimentally observed trends from figure 1.3 in order to investigate in
how far our previous considerations are relevant to experiments.

a) Qualitative comparison: scaling behavior and parameter variations

Considering the batch implementation of the co-solvent method it appears reasonable to
interpret s from equation 5.44 as the constant water injection rate rI , which enables a direct
comparison of the experimental exponent −0.131 in figure 1.3 (e) with the theoretical value
−1/6 from equation 5.74. Taking into account the dramatic simplifications in our model, the
exponents are surprisingly close. To compare rate-size relations with experimental data for
micromixers, s or sχ need to be translated into flow rates v. As a first estimation, s and
v could be linked by linear interpolations of arbitrary mixing profiles between t = 0 and
the mixing time t = tmix if t = 0 labels the time when a fluid parcel enters a mixer. Such
interpolations correspond to equation 5.44 where tmax represents the mixing time. Since
mixing times in continuous flow micromixers are approximately proportional to the inverse
Reynolds number Re [111], and thus proportional to 1/v, s ∝ 1/tmax can be expressed as s ∝ v
leading to lp ∝ s−1/6 ∝ v−1/6. The average of all exponents α in the trend line equations
beneath the diagrams in figure 1.3 reads ᾱ = −0.158 with a standard deviation σα = 0.058.
Therefore, the scaling behavior from the spinodal decomposition model is also reflected in
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the experimental data from micromixers.
Figure 1.3 (c) indicates that an increase of the mean polymer concentration mainly shifts

the data points to larger values, which also agrees with the response of rate-size relations
to fP -variations in the non-asymptotic regime (cp. figure 5.5). Model I is further able to
reproduce the impact of temperature changes depicted in figure 1.3 (d) because the Flory-
Huggins interaction parameters χGS and χSS depend on T . The temperature dependence
of a χ-parameter is frequently cast into the form χ = χ(0) + α/T with constants χ(0) and α
[152, 153, 154, 155, 156]. Assuming

χGS = χ
(0)
GS + αGS

T
and χSS = χ

(0)
SS + αSS

T
, (5.77)

sχ defined by equation 5.44 becomes

sχ =
[(
χ

(0)
SS + αSS

T

)
−
(
χ

(0)
GS + αGS

T

)]
s

1− fP

=
[(
χ

(0)
SS − χ

(0)
GS

)
+ (αSS − αGS)

T

]
s

1− fP
. (5.78)

Considering a logarithmic representation of the horizontal axis and formally writing the
particle size R as a function of the quench rate R(ln(sχ)), insertion of equation 5.78 leads to

R(ln(sχ)) = R

(
ln
( 1

1− fP

[(
χ

(0)
SS − χ

(0)
GS

)
+ (αSS − αGS)

T

])
+ ln(s)

)
=: R̃(ln(s)). (5.79)

R̃(ln(s)) denotes the particle size as a function of the logarithmic mixing speed s ∝ v and
mimics RDLS(ln(v)) in figure 1.3. Equation 5.79 immediately shows that the temperature
affects the horizontal axis shift of R̃. If αSS − αGS > 0, a decrease of T shifts the graph of
R̃ to the left. Provided double logarithmic scaling, R(ln(sχ)) is a straight line in the non-
asymptotic regime and a horizontal left shift of R̃ also appears as vertical downward shift if one
only considers a compact set on the ln(s)-axis that does not contain any part of the asymptotic
regime. This vertical shift coincides with the response of the experimental data from figure
1.3 (d). For (αSS − αGS) < 0 one observes the contrary behavior. Unfortunately, neither
the values of αGS and αSS nor the temperature dependence of the interaction parameters
were measured during the experiments, which renders the relating discussion a little bit
vague. But we still consider it noteworthy that the model is principally able to reproduce
temperature dependencies appearing in the experimental data. The same response of particle
sizes on temperature variations follows from the perturbation theory if sχ from equation 5.78
is inserted into equation 5.75.

b) Quantitative comparison: length and time scales

The above elaboration of qualitative similarities between simulated rate-size relations and
the experimental results is followed by the investigation of how they compare quantitatively,
i.e. we investigate if model I produces aggregate radii in the range of ≈ 10 to 100 nm at flow
rates v ∈ [0.1 ml/min, 5 ml/min] as it is the case in figure 1.3. This indirectly checks whether
time scales of spinodal decomposition are likely to match realistic mixing times or whether
spinodal decomposition is too fast to be affected by solvent mixing on realistic time scales.
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To this end mixing times in the SFIMM and CPMM are explicitly calculated for different
flow rates via the respective equations 3.21 or 3.54. The results are shown in figure 5.9. In
section 3.2 v referred to the flow rate inside an upper or lower part of a repeat unit in the
CPMM, vsection3.2. In the following v refers to the total flow rate in the CPMM, which is
v = 2 vsection3.2. If the cutoff time tmax in equation 5.43 is set to tmax = tmix/t0, where tmix is
the mixing time in seconds and t0 = R2

g/D0 the time scale, sχ becomes

sχ = χ(max) − χ0
tmax

= (χ(max) − χ0) t0
tmix

, (5.80)

and inserting the trend line equations from figure 5.9 yields

sχ ≈
(
χ(max) − χ0

) R2
g

D0
·

1/6 (v min/ml)0.852 sec−1 in the SFIMM
50 (v min/ml)0.932 sec−1 in the CPMM

. (5.81)

After specifying the segment diffusion coefficient D0 and the polymer’s radius of gyration
Rg, the quench rate can be mapped onto a flow rate. The amphiphilic diblock-copolymer
PB130 − PEO66 possesses a molar mass of approximately MP = 10 kg/mol [23]. Because
model I can only describe homopolymers, we replace the copolymer by a homopolymer of
its hydrophobic polybutadiene block without changing MP . The molar mass of butadiene is
known to be MB = 54 g/mol, resulting in a chain length of N = MP/MB = 10/(54·10−3) ≈ 185
segments, which is rounded to N = 190. Using MP to estimate Rg with a relation valid for
polybutadiene in tetrahydrofuran [157],

Rg = 0.0448 ·
(
MP

mol
g

)0.53±0.01
nm with MP in g

mol , (5.82)

Figure 5.9: Flow rate dependence of the mixing time tmix in the SFIMM (a) and the CPMM (b).
The data points in (a) are determined by solving equation 3.21 numerically. The equation in the
diagram belongs to the grey trend line and inserting the flow rate v in ml/min yields tmix in seconds.
(b) shows the same for the CPMM except that mixing times are calculated from equation 3.54. In
accordance to measurements from figure 1.3 (a) and (b) the initial solution is considered to be an
approximate 50/50 % mixture of good and selective solvent, i.e. it is ϕ(1)

SS = 0.5 and ϕ(2)
SS = 1, where

ϕ
(i)
SS corresponds to the initial condition c(i) in chapter 3. Concentrations c can be translated into

volume fractions ϕSS by multiplication with the molecular volume of selective solvent ν. Multiplying
the corresponding equations in table 3.1 and 3.2 with ν is formally equivalent to substituting the
symbol c by ϕSS . This substitution can be employed in the definitions of the mixing quality ε in
equations 3.21 and 3.54 as well.
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leads to Rg ≈ 5 nm. The density of PB130 was measured during the experiments as ρPB =
960 kg/m3, and the molar volume of monomeric butadiene units is roughly estimated by νB =
MP/(ρPBN) = 10/(960·190) m3/mol ≈ 5.48 · 10−5 m3/mol. The molar mass and the density of
tetrahydrofuran and water are MTHF = 72.11 g/mol, MW = 18.02 g/mol, ρTHF = 889 kg/m3,
and ρW = 1000 kg/m3, which leads to an estimated mean molar volume of the solvent

νL = MTHF +MW

ρTHF + ρW
≈ 4.76 · 10−5 m3

mol . (5.83)

Because νB and νL are close, we can regard solvent molecules as segments. Consequently, the
segment diffusion coefficient D0 is assumed to have the magnitude of the solvent interdiffusion
coefficient, 10−9 m2/sec. Inserting

R2
g

D0
= (5 · 10−9 m)2

10−9 m2/sec
= 2.5 · 10−8 sec (5.84)

into equation 5.81 yields

sχ ≈
(
χ(max) − χ0

)
2.5 · 10−8 ·

1/6 (v min/ml)0.852 in the SFIMM
50 (v min/ml)0.932 in the CPMM

. (5.85)

A typical mean polymer concentration in the experiments from reference [23] is

c = 4 g polymer
liter solvent .

If mP denotes the total mass of the polymer in solution, VP its total volume, and VL the
total volume of the solvents, application of

c = mP

VL
= ρP

VP
VL
⇔ VP = c

ρP
VL (5.86)

leads to
fP = VP

VP + VL
=

c
ρP
VL

c
ρP
VL + VL

=
c
ρP

1 + c
ρP

. (5.87)

With c = 4 g polymer/liter solvent and ρP = ρPB = 960 kg/m3, it is fP ≈ 0.004.
Simulation results for fP = 0.004, N = 190 and χ(max) = 16.160 are shown in figure 5.10

in comparison to experimental data form figure 1.3 (a). As no asymptotic regime is present
in 1.3 (a), we choose a rather large ∆χ(max) to ensure that there also appears no asymptotic
regime for the simulations inside the interval v ∈ [0.1 ml/min, 5 ml/min]. The simulated data
points for l1 in figure 5.10 (b) are very close to the experimental results. R underestimates
particle sizes but their simulated length scales still match the experimental ones. One should
also keep in mind that R exhibits a critical dependence on the threshold φ(th)

P as discussed
in context with the fP -variations in subsection 5.3.3. If a smaller φ(th)

P was chosen, R would
be on par with l1. Nevertheless, model I is able to reproduce appropriate scales of particle
sizes for given flow rates in the CPMM. In the SFIMM the same quench rates translate into
much larger flow rates exceeding the experimentally applied range. An extrapolation of l1 to
low flow rates yields particle sizes of about 150 to 200 nm and consequently overestimates
the experimental data in figure 1.3 (a) by a factor of approximately 4, which is not as
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Figure 5.10: Simulation results from model I with linear mixing profiles in direct comparison to
experimental data. (a) refers to the SFIMM and (b) to the CPMM. The open symbols represent
simulated droplet sizes and the solid ones label experimental data from figure 1.3 (a), where A and B
denote the end groups of the polymer. Simulations are performed for quench rates sχ ∈

[
10−6, 0.1

]
,

which have been translated to flow rates by means of equation 5.85. The remaining physical parameters
are set to fP = 0.004, N = 190, χ(max) = 16.160, and the numerical parameters read m = 256× 256,
∆l = 0.25, h = 0.01. The threshold for binary conversion is φ(th)

P = 0.01.

good as the agreement in the CPMM but length scales still match – especially taking into
account that RDLS in figure 1.3 (d) and (f), for example, also exceeds 100 nm. At this point
it is emphasized that one should not be too picky about a perfect match of experimental
data and simulation results since experimental copolymer data are compared to simulation
results for homopolymers, material data are only roughly estimated, and mixing profiles are
approximated by linear interpolations.

In the present subsection we have seen that the characteristic scaling behavior of rate-size
relations from model I is clearly reflected in experimental trends and that the qualitative
response to fP - and T -variations also agrees with experiments. In addition, length scales of
droplets match length scales of particles for experimentally applied flow rates, i.e. realistic
mixing times. Taken together, these similarities provide strong evidence that the response
of molecular assembly to solvent mixing, i.e. coupling mechanism (i) in chapter 4, is the
dominant physical mechanism behind the co-solvent method, which is not only the main
conclusion of the present subsection but the central result of the complete chapter. This
result implies that mean field theories should be suitable frameworks to describe the co-solvent
method and that statements from model I may be qualitatively transferable to experiments.
The correspondence of data point progressions for homopolymers and copolymers further
indicates that this mechanism might work independent of the actual polymer architecture.
This is consistent with the idea that spinodal decomposition is mainly driven by unfavorable
interactions between the solvent and the solvent-phobic block.

5.3.6 Effective and constant interaction parameters

All equations in subsection 5.3.4 up to 5.65 are also valid for constant interaction parameters,
i.e. if χ(t) ≡ χc. In this case, equation 5.65 becomes

∆χc := − 1
2t

∫ t

0

∂µr
∂φP

(fP , t) dt = χc − χ(Spin). (5.88)
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In the same manner as before the mean droplet sizes can be estimated by lp = γ2π/
√

∆χc.
The analogy of lp to equation 5.67 provides ∆χ the interpretation of an effective quench

depth in the sense that a time dependent interaction parameter produces the same mean
droplet size as a constant quench depth ∆χc = ∆χ(ttr). A general discussion about the Cahn-
Hilliard equation for constant interaction parameter including the perturbation treatment can
be found, for example, in references [124], [158], or [159]. The present subsection restricts to
a brief comparison between ∆χ, ∆χc, and resulting droplet sizes. The data points in figure
5.11 (a) and (c) represent simulation results for constant interaction parameters χc and the
corresponding prediction from the perturbation theory, lp = γ2π/

√
∆χc, is illustrated by a

straight line. Figure 5.11 looks very similar to figure 5.7, which graphically demonstrates
∆χ’s interpretation of an effective quench depth. The relative deviation of simulation results
from lp is practically the same in both figures and implies that the perturbation theory in
the time dependent case is as accurate as in the case of constant interaction parameters.

From a process technological point of view the correspondence of ∆χ and ∆χc might be
interesting because it provides two different methods to produce droplets of a specific size:
either by a time dependent quench with an associated effective quench depth ∆χ(ttr) or by
an instantaneous quench to ∆χc = ∆χ(ttr). The process of choice would be the one yielding
lower polydispersities. Judging from figure 5.12, the relative polydispersity is almost the same
in 2D. In 3D, it is about an eventually rather insignificant amount of 5 to 10 % lower for

Figure 5.11: Simulated droplet sizes in comparison to the prediction from the perturbation theory
for the Cahn-Hilliard equation with constant interaction parameters χc. Data points in (a) are droplet
sizes for instantaneous quenches with depths ∆χc and the grey line represents the prediction from the
perturbation theory, lp = γ2π/

√
∆χc. (b) depicts relative deviations of simulation results from lp. (a)

and (b) refer to 2D simulations, (c) and (d) show the same in 3D. Numerical parameters, fP , and N
are identical to figure 5.3.
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Figure 5.12: Relative polydispersities ∆R/R for constant and linearly time dependent interaction
parameters in two (a) and three (b) spatial dimensions. ∆R is defined by equation 5.48. Circles
represent ∆R/R for linearly time dependent interaction parameters (cp. error bars in figure 5.7) and
triangles refer to constant interaction parameters (cp. error bars in figure 5.11). ∆χ on the horizontal
axis denotes the effective quench depth ∆χ(ttr) from equation 5.66 for the circles and ∆χc from
equation 5.88 for the triangles.

the instantaneous quench. Thus, not only the mean size of droplets transfers from constant
to time dependent quenches but also the variance of size distributions, which is essentially
the main statement of the current subsection. This close analogy between constant and
linearly time dependent interaction parameters indicates that a time dependence of χ alone
introduces no degree of freedom that could be used to specifically control polydispersity
without affecting the mean size. The standard deviation of R is approximately fixed at
∆R = xR with a constant x ≈ 0.15− 0.25 according to figure 5.12.

5.3.7 Impact of numerical truncation errors

Because droplet sizes are determined close to the homogeneous state where concentration
fluctuations are very small, it is justified to question the application of a first order time
accurate scheme with step size h = 0.005 or even h = 0.01 like in figure 5.10. To test the
expected numerical error, two simulation runs are performed for identical initial conditions in
a 2D box with 400× 400 grid points, a lattice constant ∆l = 0.75, and a step size h = 0.005.
Both share the physical parameters fP = 0.1, N = 14, χ0 = χ(Spin), and χ(max) = 2,
but in one simulation run the first order scheme from equation 5.38 with truncation errors
O(h) = O(0.005) is used, while the second order scheme from equation 5.41 with O(h2) =
O(2.5 · 10−5) is applied for the other one. The resulting relative deviation of transition times
and droplet sizes is shown in figure 5.13. The maximum deviation in ttr is about 4 % and the
deviation in particle sizes is below 0.4 %, which negligible in comparison the experimental
errors. Consequently, the application of first order time accurate schemes is not expected to
introduce any significant distortion of simulation results.

5.4 Rate-size relations for the SFIMM- and CPMM-profiles

Equation 5.21, χ(t) = χGS + (χSS−χGS)/(1−fP )ϕSS(t), takes the role of a coupling interface
between droplet formation on the nanometer scale and solvent mixing which is determined by
mixer geometries on millimeter scales or above. Within the multiscale approach from chapter
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Figure 5.13: Relative deviations that are caused by temporal truncation errors of applied numerical
integration schemes. (a) shows deviations of particle sizes and (b) illustrates deviations of ttr. xi
refers to quantity x calculated by the i-th order time accurate integration scheme (cp. equations 5.38
and 5.41).

4, ϕSS(t) may represent the mean selective solvent volume fraction inside a fluid element.
In the present section we insert the theoretical descriptions of solvent mixing from chapter 3
into equation 5.21 and compare resulting rate-size relations to the experimental data for the
SFIMM and the CPMM.
Formulas to calculate the number concentration of solvents c(x(t), t) in fluid elements are

listed in tables 3.1 and 3.2 for the SFIMM and the CPMM, respectively. The concentrations
are converted to volume fractions ϕSS by multiplication with the molecular volume ν of the
selective solvent. As already addressed in figure 5.9, multiplying c(x, t) in table 3.1 and 3.2
with ν is formally equivalent to a substitution of the symbol c by ϕSS . As a quick reminder,
x is the coordinate perpendicular to stream lines in a Lagrangian frame of reference and will
be referred to as lamella position in the following. In chapter 3, t denoted the real time in
seconds that passed since a fluid element had entered the mixer. To prevent confusion we
are going to denote this time t′ because in the present chapter the symbol t is already taken
by the dimensionless system time in the dynamical equation 5.18. c(x(t′), t′) is expressed in
terms of that dimensionless time by setting t′ = t0 (t+ ts), where t0 is the time scale as usual.
ts introduces an appropriate shift of origins: as in case of linear mixing profiles we identify
t = 0 with the time when the system crosses the spinodal line, i.e. χ(t = 0) = χ(Spin) with
χ(Spin) from equation 5.19. Via equation 5.21 each χ(Spin) can be assigned a spinodal solvent
composition ϕSS(t = 0) := ϕSpin. As a result, ts which is implicitly given by

ϕSpin = ν c(x(t0ts), t0ts) (5.89)

is the dimensionless time elapsed until the selective solvent volume fraction inside a fluid
element is large enough to trigger spinodal decomposition. ts will be called spinodal time
shift. In our simulations ts is calculated numerically with a bisection method from equation
5.89. In summary, the mixing profiles in the present section are given by

ϕSS(t) = ν c
(
x(t′(t)), t′(t)

)
with t′(t) = t0 (t+ ts) (5.90)

and the number concentrations c(x(t′), t′) from tables 3.1 and 3.2.
Since mixer geometries are fixed as listed in table 3.1 (SFIMM) and shown in figure 3.6
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Figure 5.14: Mixing profiles in the SFIMM (a) and CPMM (b) at a fixed flow rate v. To keep the
notation concise, the vertical axis is labeled by ϕSS(t′), which is defined by ϕSS(t′) := ϕSS(t(t′)) =
νc(x(t′), t′) in accordance with equation 5.90. ϕSS(t′) represents the selective solvent volume fraction
inside a fluid element and the curve arrays inside the diagrams are generated by different initial
lamella positions x1 as shown in the respective legend. In the SFIMM x1 = 0 corresponds to a fluid
element that travels along the center of a polymer containing good solvent lamella. Its mixing profile
is illustrated by the black line in (a), which is identical to the one from figure 3.3 (b). Setting x1 = p/8

and x1 = p/4 puts the fluid element further towards a selective solvent lamella and ’flattens’ the
ascending part of a mixing profile. p denotes the initial lamella width at the entrance of the SFIMM
where the edge of the good solvent lamella is located at x1 = ±p/2. Due to symmetry the profiles for
x1 = −p/8,−p/4 coincide with the ones from x1 = p/8, p/4, so it is sufficient to consider only positive
values of x1 during simulations. In the CPMM x1 = 1/4 (black line in (b)) is associated with a fluid
element traveling in the center of a good solvent lamella with a trajectory as indicated by the open
circle in figure 3.7 (a). The black line coincides with the black line in figure 3.7 (b). x1 = 1/8 is closer
to the selective solvent lamella, which is located at negative x-values, and x1 = 3/8 is associated with
a position further towards the channel wall. A shift x1 = 1/4 7→ x1 = 1/8 of the initial lamella position
towards the selective solvent lamella flattens the ascent of the mixing profile as in the SFIMM. The
reason why the profile of x1 = 3/8 is also flattened in comparison to x1 = 1/4 is because the channel
wall in the first repeat unit is replaced by a selective solvent lamella in the second one. ϕ(1)

SS represents
the premixed selective solvent volume fraction within a fluid element, ϕmax its maximum amount,
and ϕSpin the spinodal composition. The open circles indicate the spinodal time shift ts and also
correspond to the origin of the system time, i.e. they label t = 0 for each mixing profile. In both
mixers, mixing profiles are completely characterized by v, x1, ϕ(1)

SS , and ϕmax.

(CPMM), associated mixing profiles introduce the flow rate v, the initial lamella position x1,
the premixed selective solvent volume fraction inside a fluid element ϕ(1)

SS = ν c(1), and the
premixed selective solvent volume fraction in a solvent lamella ϕ(2)

SS = ν c(2) as adjustable
parameters. It is convenient to substitute ϕ(2)

SS by ϕmax via

ϕmax = ϕ
(1)
SS + ϕ

(2)
SS

2 . (5.91)

ϕmax denotes the maximum selective solvent volume fraction inside a fluid element and in
contrast to ϕ

(2)
SS , it can be directly read from a mixing profile as it is the value that is

approximated at t→∞. The dependence of ϕmax on ϕ(1)
SS and ϕ(2)

SS follows from the formulas
in tables 3.1 and 3.2. The lower panel of figure 3.3 and figure 3.7 (b) display examples for
the mixing profiles c = ϕSS/ν at one single initial lamella position. In a mixer there should
be a multitude of fluid elements that travel simultaneously at different lamella positions, so
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a description of the particle size distribution at the output of a mixer involves averaging over
different x1 for fixed remaining parameters. Figure 5.14 exemplarily illustrates the impact of
varying initial lamella positions x1 and graphically summarizes the independent parameters
introduced by the mixing profiles. In the previous section the time scale t0 could be absorbed
into the quench rate due to the linearity of ϕSS in t. Such a simplification is not possible in
the present case, so t0 is another parameter that needs to be specified before each simulation
run. Although the spinodal time shift ts is also introduced as a new variable, it depends on
the remaining quantities according to equation 5.89 and contributes no additional degree of
freedom. The flow rate v takes the role of a quench rate because it affects mixing times as
discussed in the context of figures 3.3 and 3.7. Hence, in the remainder of section 5.4 the
term rate-size relation refers to the dependence of droplet sizes on flow rates.

When examining rate-size relations, it is convenient to express the Flory-Huggins interac-
tion parameters χGS and χSS in equation 5.21 through ’distinctive quantities’ that can be
directly related to mixing profiles or rate-size relations. In the present case these distinc-
tive quantities are the spinodal composition ϕSpin and the maximum interaction parameter
χ(max). Inserting t = 0 into equation 5.21 yields

χ(Spin) = χ(0) = χGS + χSS − χGS
1− fP

ϕSpin, (5.92)

and ϕmax can be used to define

χ(max) = χGS + χSS − χGS
1− fP

ϕmax. (5.93)

Rearranging equations 5.92 and 5.93 leads to

χSS = χGS +
(
χ(Spin) − χGS

) 1− fP
ϕSpin

(5.94)

and
χGS = ϕSpinχ

(max) − ϕmaxχ(Spin)

ϕSpin − ϕmax
. (5.95)

A translation of χGS and χSS into ϕSpin and χ(max) is reasonable because the interaction
parameters between the polymer and the solvents were not measured by references [22], [23],
or [36], but as the polymer solution is reported to tarnish rapidly at a water volume fraction
of approximately 0.5 in titration experiments [22], we know that ϕSpin ≈ 0.5. χ(max) may
be estimated by the placement of an experimentally measured asymptote via the relation
lp(s → ∞) = 0.5π/

√
χ(max)−χ(Spin). So unknown material data is translated into data that

can be directly related to measurements – assuming a linear interpolation of χ-parameters
in compositions ϕSS like in equation 5.21 and provided that the asymptotic regimes in the
phase field model and Molecular Dynamics are identical, e.g. at high pH.

5.4.1 Simulation setup

The set of numerical parameters from subsection 5.3.1 remains unchanged. We restrict to
two spatial dimensions because figure 5.3 indicates that dimensionality is unimportant, and
use m = 400 × 400 grid points with a lattice constant ∆l = 0.5. Since temporal truncation
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errors appeared to be negligible in subsection 5.3.7, the initial time step is increased to
h = 0.025 in order to compensate for large mixing times signaled by figure 5.14 (a). Again, all
data points represent averages over 5 independent simulation runs with different uniformly
distributed random initial conditions φ(0)

P (~rs) ∈ [fP − 0.001, fP + 0.001] ∀ s = 0, ...,m − 1.
Like in subsection 5.3.5, the horizontal axes of all diagrams where the CPMM is considered
show the total flow rate v = 2 vsection3.2.

If SFIMM- or CPMM-mixing profiles are applied, the physical input parameters of model
I become

• the mean polymer volume fraction fP ,

• the number of segments per polymer molecule N ,

• the maximum quench depth χ(max),

• the time scale t0,

• the premixed selective solvent volume fraction ϕ(1)
SS ,

• the maximum selective solvent volume fraction ϕmax,

• the flow rate v,

• the initial lamella position x1, and

• the spinodal composition ϕSpin.

In the present section the first three parameters are fixed at

fP = 0.1, N = 14, and χ(max) = 2,

except for subsection 5.4.2 B). The time scale is set to t0 = 10−6 seconds, which corresponds
to a polymer with a radius of gyration Rg = 10 nm and a segment diffusion coefficient
D0 = 10−9 m2/sec. Rg and D0 should represent the scales of values belonging to the polymer
utilized in the experiments (cp. subsection 5.3.5). To account for a 50/50 % mixture of
tetrahydrofuran and water before polymer addition like in figure 1.3 (a) and (b), we set
ϕ

(1)
SS = (1−fP )/2 = 0.450. Since the selective solvent lamella contains only selective solvent

when fluid elements enter a mixer, it is ϕ(2)
SS = 1 or equivalently ϕmax = (1+ϕ(1)

SS)/2 = 0.725.
Flow rates, initial lamella positions, and spinodal compositions are variable.

5.4.2 Simulation results and comparison to experiments

a) Length scales and qualitative progression of rate-size relations

Initially, the spinodal composition is set to ϕSpin = 0.5, which is slightly larger than ϕ(1)
SS =

0.45, to imitate the experimental observation that the initial solution tarnished in titration
experiments if only a slight amount of water was added. Figure 5.15 depicts corresponding
rate-size relations. It provides two major statements.
First, droplet sizes still match experimentally observed lengths scales of particle radii for

realistic time scales of mixing at v ∈ [0.1 ml/min, 5 ml/min]. In the SFIMM droplet sizes
decrease from about 10Rg to 4Rg. In the CPMM they are generally smaller and fall from
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approximately 4Rg to 2Rg, but in both cases their scales match RDLS in figure 1.3 if Rg ≈
5 − 10 nm. Second, the scaling law in the non-asymptotic regime is evidently a universal
characteristic only if linear mixing profiles are applied, since simulation results for the SFIMM
in (c) clearly possess a hitherto undefined progression. That being said, it is particularly
remarkable that rate-size relations for the CPMM in (d) are in exceptionally good agreement
with the experimental results as they do exhibit an approximate scaling behavior with an
exponent of −0.16 just like in the case of linear mixing profiles. On the one hand the
susceptibility of rate-size relations to the functional form of ϕSS(t) is welcome because it
equips model I with a degree of freedom to eventually capture potential deviations from
the scaling behavior R ∝ v−α that might arise under certain experimental conditions. On
the other hand the observation is unwelcome since the mixing profiles from chapter 3 are
constructed to represent the experimental conditions in figure 1.3, and thus the SFIMM
profile should also reproduce progressions like the CPMM profile in order to agree with
experiments. The trend line for R in figure 5.15 (c) is not supposed to be the best fit to the
data but to give an impression of its mean trend if a scaling law is used as an approximation.
The resulting exponent reads −0.133, which is still very close to the experimental values.

Figure 5.15: Simulated droplet sizes from model I with SFIMM- and CPMM-mixing profiles in
comparison to experimental results. In (a) and (b) l1 is plotted against the flow rate v for different
x1 to demonstrate the effect of varying initial lamella positions. Results for R and lmax look similar
and are omitted for the sake of clarity. The data points in (c) and (d) represent the mean over the
x1-vales from (a) and (b). The error bars indicate the averaged polydispersity ∆R from equation 5.48.
The statistical standard deviation over different simulation runs is not shown because it is practically
as small as in figure 5.3. For comparison, the solid black symbols in (c) and (d) show the respective
experimental data from figure 1.3 (a), divided by an assumed radius of gyration of Rg = 10 nm. Solid
grey lines are regression lines to R and the corresponding trend line equations are shown below the
dashed horizontal lines.
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Thus, the mixing profile of the SFIMM might generate wrong data progressions but it is still
able to reproduce the ’mean general trend’.
To rationalize the discrepancies between rate-size relations in the SFIMM and the CPMM

the duration of spinodal decomposition is correlated to mixing profiles by considering ϕSS(ttr)
as shown in figure 5.16. Because a variation of x1 does not dramatically change the course
of graphs in figure 5.15 (a) or (b), the consideration is restricted to the middle of a polymer
lamella, i.e. to x1 = 0 in the SFIMM and x1 = 1/4 in the CPMM. Figure 5.16 (a) demonstrates
that ϕSS(ttr) responds completely different to an increase of flow rates in both mixers. In
the CPMM it covers the whole range [ϕSpin, ϕmax] for v ∈ [0.1 ml/min, 5 ml/min] whereas
it remains very close to ϕSpin in the SFIMM. This already explains why the mean droplet
radii in the SFIMM are larger compared to the CPMM. Lower ϕSS(ttr) translate into smaller
χ(ttr), which in turn leads to larger droplets, since χ(t) remains closer to χ(Spin) for a longer
time span. The resemblance of ϕSS(ttr) in the CPMM and the linear case, which is shown in
figure 5.16 (b), might be the reason why both mixing profiles share a common scaling law for
droplet sizes and why a substitution of the CPMM-profile by a linear interpolation does not
change the principle behavior of rate-size relations (cp. figure 5.10 (b) and 5.15 (d)). That
solvent compositions in the SFIMM remain close to ϕSpin indicates that particle sizes only
depend on local conditions of the mixing profile close to the spinodal line, i.e. close to the
open circles shown in figure 5.15 (a).
This motivates analyzing how a shift of ϕSpin changes rate-size relations and if it is possible

to recover a scaling law in the SFIMM by such shifts. l1 at different ϕSpin is illustrated in
figure 5.17. Increasing ϕSpin reveals the asymptotic regime for the SFIMM at flow rates
close to v = 5.0 ml/min as depicted by figure 5.17 (a) and the steep descent to the left of
that regime is caused by the fluid element crossing the focusing point. Variations of ϕSpin
apparently do not lead to scaling laws and in fact, increasing the spinodal composition results
in significant deviations of the mean trend with exponent −0.133 from figure 5.15 (a), which
is represented by the grey trend line. Accelerating mixing in the SFIMM relative to phase
separation by increasing t0 or decreasing fP so that ϕSS(ttr) in figure 5.16 covers the whole
range [ϕSpin, ϕmax] would not reproduce a scaling law either (according simulation results

Figure 5.16: Compilation of ϕSS(ttr) for all mixing profiles. (a) shows ϕSS(ttr) at x1 = 0 in the
SFIMM (circles) and x1 = 1/4 in the CPMM (squares). The transition times ttr are taken from the
simulations which were used to generate figure 5.15. (b) depicts the same for linear mixing profiles.
The corresponding transition times are taken from figure 5.3 in 2D, and s is the slope of the selective
solvent volume fraction from equation 5.43. The dashed horizontal lines label ϕmax and the dotted
lines ϕSpin.
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are not shown).
If the scaling law cannot be obtained by parameter variations, there remain the following

reasons why the SFIMM mixing profile does not produce the experimentally observed scaling
behavior:

• the underlying mechanism that controls droplet sizes might be different from section
5.3 (checked in subsection 5.4.3),

• ϕSS can principally reproduce the scaling behavior but the implementation of solvent
mixing by time dependent interaction parameters distorts rate-size relations (checked
in section 6.4),

• ϕSS can principally reproduce the scaling behavior but the restriction to homopolymers
distorts rate-size relations (checked in section 8.2), or

• ϕSS per se contains an assumption about solvent mixing that distorts the progression
of rate-size relations regardless of the implementation of solvent mixing and polymer
architecture.

As indicated by the brackets in the above list, we are going to check the first three possibilities
in the present work. It eventually will turn out that in all cases rate-size relations in the
SFIMM look very similar to the ones in the current section. So to reproduce experimental
trends, the SFIMM profile itself needs to be revised quite probably. This revision could
include the consideration of Taylor dispersion or secondary flows in z-direction that are
induced by the hydrodynamic focusing in combination with flow sharing or lamella tilting.
To some degree, these ’secondary’ effects appear in the CPMM as well, but in the SFIMM
their contribution to real solvent mixing might be larger, since the ’primary’ diffusion across
lamella interfaces in x-direction is considerably slower than in the CPMM (cp. the t′-axes in
figure 5.14). In any case we refrain from an appropriate revision of SFIMM-profiles, because
the present work focuses on more general aspects of controlled assembly. The revision is a
highly specific topic as only the description of one single mixer would benefit from it.

Figure 5.17: Response of rate-size relations to variations of ϕSpin with SFIMM- (a) and CPMM-
mixing profiles (b). Data points are averaged over the same initial lamella positions as in figure
5.15. Due to the similarity of simulation results for R, l1 and lmax, again only l1 is depicted as a
representative. The triangles in this figure label the same data as the squares in figure 5.15 (c) and
(d), and the grey lines are regression lines.
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b) Parameter variations in the CPMM

Since the qualitative progression of rate-size relations for the CPMM profile agrees with
the experimentally observed scaling behavior, it is further tested whether the responses to
variations in temperature and mean polymer volume fraction are also consistent.
The interaction parameters χGS = χ

(0)
GS + αGS/T and χSS = χ

(0)
SS + αSS/T are contained in

ϕSpin and χ(max). So as long as no asymptotic regime appears for v ∈ [0.1 ml/min, 10 ml/min],
a temperature variation corresponds to a change of the spinodal composition according to
equation 5.92. If ϕSpin increases or decreases with increasing T depends on αGS and αSS
just like in the case of linear mixing profiles, and a direct comparison to experimental results
is again not possible because neither α was measured. The experimentally observed vertical
shift of rate-size relations for varying temperature (i.e. varying ϕSpin) and an accompanied
change of the exponent from figure 1.3 (d) is, however, reflected in figure 5.17 (b). How
rate-size relations for the CPMM profile respond to changes in the mean polymer volume
fraction fP is displayed in figure 5.18 (a). Droplet sizes decrease with diminishing fP , and in
accordance to figure 1.3 (c), the exponent decreases as well.
In the present subsection we showed that model I reproduces the experimental observations

from figure 1.3 qualitatively if we employ the CPMM-mixing profile by Schoenfeld et al.
[118]. This agreement indicates that the concept of fluid elements should be a promising
and computationally very efficient multiscale approach to describe size-controlled assembly
in consideration of mixer geometries. Consequently, ϕSS may indeed be used as a coupling
interface to incorporate different micromixer types, i.e. micromixer geometries, into model
I. We believe this conclusion can be drawn despite the disagreement in the SFIMM since
the discrepancies are most likely caused by the SFIMM profile itself and not simplifications

Figure 5.18: Simulation results from model I with the CPMM mixing profile at x1 = 1/4 and different
mean polymer volume fractions fP . (a) shows the response of rate-size relations to fP -variations. Grey
lines are regression lines and the corresponding trend line equations are shown beneath the dashed
horizontal line. The change in exponents that did not occur for linear mixing profiles originates
from different ϕ(1)

SS = (1−fP )/2 and ϕSpin, because the section of a mixing profile that affects spinodal
decomposition varies with their values. While changing fP , we kept χGS and χGS constant just like
in the upper panel of figure 5.5, and used the same values as there. For given χGS and χSS , ϕSpin
and χ(max) can be calculated from equations 5.92 and 5.93. For fP = 0.05 it is ϕSpin = 0.599, for
fP = 0.1 it is ϕSpin = 0.5, and for fP = 0.2 it is ϕSpin = 0.424. Hitherto not mentioned physical input
parameters are still N = 14, t0 = 10−6 sec, and ϕmax = (ϕ(1)

SS
+1)/2. (b) depicts transition times and

indicates that larger droplets are generated for faster phase separation dynamics. This is consistent
with equation 5.75 stating that larger droplets are generated by a larger mobility.
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specific to model I.

5.4.3 Perturbation theory

To examine whether the interpretation of the underlying mechanism from section 5.3 still
holds true for the SFIMM profiles, a perturbation theory is applied. The starting point is
again equation 5.65, which reads

∆χ(ttr) = 1
ttr

∫ ttr

0

[
χ(τ)− χ(Spin)

]
dτ = 1

ttr

∫ ttr

0

[
χGS + χSS − χGS

1− fP
ϕSS(τ)

]
dτ − χ(Spin)

=
(
χGS − χ(Spin)

)
+ χSS − χGS

1− fP
1
ttr

∫ ttr

0
ϕSS(τ) dτ. (5.96)

ϕSS is easily integrated analytically, but to obtain the value of the integral we wrote a Mathe-
matica script to perform the summation in the Fourier series in table 3.1. Like for linear mix-
ing profiles the droplet size from the perturbation theory is estimated by lp(ttr) = γ2π/

√
∆χ(ttr)

with γ = 1/4. Figure 5.19 demonstrates that simulation results can be approximated by the
perturbation theory, i.e. the droplet size is still determined during the early stages of phase
separation and the interpretation from linear profiles transfers to nonlinear profiles. This also
implies that it is possible to define effective constant interaction parameters in micro mixers
and that the flow rate introduces no degree of freedom to control polydispersities just like

Figure 5.19: Simulation results for the SFIMM from figure 5.17 in comparison to the result from the
perturbation theory lp(ttr) = γ2π/

√
∆χ(ttr). As an example the data for two spinodal compositions is

shown. (a) refers to ϕSpin = 0.5 and (b) to ϕSpin = 0.7. ∆χ(ttr) is defined by equation 5.96. (c) and
(d) depict the respective relative polydispersities ∆R/R with ∆R defined by equation 5.48. Grey lines
are regression lines to R and as for linear profiles, the slope of the regression lines is close to −1/2.
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the slope of linear mixing profiles. Similar to figure 5.12 the polydispersity is ∆R ≈ x · R
with x = 0.15− 0.25.

5.5 Chapter summary and main conclusions

In the present chapter the Cahn-Hilliard equation is applied to describe spinodal decom-
position in an incompressible two-component canonical ensemble with a Flory-Huggins-de
Gennes free energy functional for homopolymer solutions. Solvent mixing is modeled by a
time dependent Flory-Huggins interaction parameter χ(t), which is assumed to depend lin-
early on the selective solvent volume fraction as given in equation 5.21. This description is
called model I, and it is only able to capture coupling mechanism (i) from chapter 4 (see page
50) with a simplified implementation of solvent mixing.4 The very first structures of well
defined shape that emerge during spinodal decomposition are introduced as droplets and the
dependence of droplet size on either the quench rate sχ or the flow rate v is referred to as a
rate-size relation.

In subsection 5.3.3 rate-size relations for linear mixing profiles are compared to results from
Molecular Dynamics simulations [35], where solvent mixing is implemented similarly to model
I by linearly time dependent solvent-monomer interaction potentials. In contrast to phase
field models, Molecular Dynamics accurately describes the complete particle growth process
but the qualitative comparison shows a good agreement, which eventually implies the iden-
tification of droplets with stable homopolymer nanoparticles. The identification of droplets
as particles is further supported by the Molecular Dynamics model itself since the insensitiv-
ity of particle sizes to the ζ-potential in the non-asymptotic regime hints at an insignificant
collision-coagulation growth. This means that model I is on par with much more complex
particle models as far as rate-size relations are concerned. As a consequence, both models
can be viewed as alternative descriptions with respective advantages. An advantage of the
Molecular Dynamics model is, of course, its accuracy whereas two advantages of model I are
its accessible mathematical structure and its computational efficiency. The accessible math-
ematical structure enables an analytically solvable perturbation theory and the perturbation
approximation to droplet sizes in subsection 5.3.4 shows a good agreement with simulation re-
sults. Therefore, the analytical theory gains central importance because it directly shows that
the origination of the scaling behavior in rate-size relations is a synergy of interfacial tension
with the time dependent repulsion of chemical components in the weak segregation regime.
It also predicts a theoretical exponent −1/6, which is independent of physical parameters and
is also reflected in the results from the Molecular Dynamics simulations.
After discussing its properties from a theoretical perspective, we collected evidence that

mechanism (i) – or more precisely, model I – is capable of reproducing experimental obser-
vations. An important criterion at investigating whether a certain physical mechanism may
contribute to a phenomenon observed in experiments is the relation of inherent scales of
the mechanism to experimentally relevant scales. In this case, the experimentally observed
phenomenon is the particle size dependence in figure 1.3, relevant length scales are given by
measured particle sizes, and relevant time scales are set by mixing times or flow rates. If
time scales of spinodal decomposition, for instance, were much lower than mixing times in
4Mean field theories lack Brownian motion of droplets and the concomitant collision-induced coagulation in
the late stages of particle growth.
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the micromixers, mechanism (i) would most likely not be contributing to controlled assembly,
since molecular organization would be too fast to be significantly affected by solvent mixing.
A similar conclusion could be drawn if length scales of droplet sizes did not match particle
sizes. Such a direct comparison to experimentally relevant scales is only possible because
the computational efficiency of model I allows to simulate realistic mixing times, which go
beyond the scope of Molecular Dynamics simulations. Subsections 5.3.5 (cp. figure 5.10)
and 5.4.2 (cp. figure 5.15) indicate a match of scales. They confirm that length scales of
simulated droplet sizes for realistic flow rates agree with experimental particle sizes. The
sχ-dependence of the transition time in figure 5.3 or its v-dependence in figure 5.18 further
state that the time scale of spinodal decomposition is actually dictated by the mixing time.
Despite the apparently simple description of solvent mixing, characteristic scaling laws very
similar to the one predicted by model I are also present in the experimental data from figure
1.3 (the mean value of all measurements is α≈ −0.158), and model I additionally reproduces
experimentally observed responses to variations in temperature and mean polymer volume
fraction qualitatively.
Taken together, the fact that droplets can be identified with stable particles and the strik-

ing qualitative similarity of rate-size relations to experimental data provide strong evidence
that coupling mechanism (i) does not only contribute to size-controlled assembly but is the
dominating determinant of particle sizes. This is the most important conclusion of the present
chapter. As a consequence, the perturbation theory provides an analytical explanation to
the fundamental working principle of the co-solvent method. The accordance of simulated
homopolymer data and experimentally measured copolymer data further suggests that, in
principle, the co-solvent method might work independently from polymer architecture. Sub-
section 5.3.6 implies that mechanism (i) does not allow to control the polydispersity of size
distributions without changing the mean size of droplets.
Section 5.4 shows that the typical scaling behavior can be broken by applying particular

non-linear mixing profiles: while the CPMM-profile reproduces the scaling laws really well,
the SFIMM-profile does not. Since the deviation from the experimentally observed scaling
law in the SFIMM was discussed to be caused most likely by the functional form of ϕSS and
not by simplifications specific to model I, the agreement to experimental observations for
the CPMM-profile indicates that embedding particle growth into fluid elements should be a
promising multiscale approach to describe controlled assembly under experimental conditions
in different mixers. The possibility to algebraically couple analytically calculated volume
fraction evolutions inside fluid elements into χ(t) completely avoids any computational and
numerical difficulties associated with the different length scales of particle sizes and mixer
geometries.
Scaling laws l ∝ α−1/6 were also found in a recent publication by Schaefer et al. [160], who

considered the structuring of polymer solutions in the spinodal area upon solvent evaporation.
Here, l is a typical structure size and α a constant evaporation rate. The authors added α
as a source term in a Cahn-Hilliard-Cook equation. Within a typical ’Flory-Huggins’-phase
diagram with axes fP and χ, they advance into the spinodal area in the fP -direction, while
we move in the χ-direction. The fact that both processes yield the same scaling behavior
could imply that it could just depend on the distance to the spinodal line independent of the
direction in the fP -χ-plane. Thus, taking into account a loss of polymer in fluid elements
by a source term and giving up the assumption of conserved polymer content might leave
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the scaling behavior unaffected. Testing this presumption could be subject to future work.
Exponents close to −1/6 also indicate that particle sizes are determined most probably during
liquid-liquid demixing where crystallization and solidification effects can be neglected. Recent
experiments on semi-crystalline copolymers have shown that the effect of solvent exchange
(in this case, solvent evaporation) on the dynamics is very different if demixing interferes with
solidification [161]. For example, the characteristic length scales of the resulting structures no
longer depend on the solvent evaporation rate, and the experiments can be described within
a model based on homogeneous nucleation theory.





Chapter 6
Model II: Time dependent chemical poten-

tials in an effective two-component semi-

grand canonical ensemble

The time dependent interaction parameters from chapter 5 correspond to a complete replace-
ment of one single solvent at each time step. Such an implementation of solvent mixing
was designed as a simple and in terms of computation efficiently implementable thought ex-
periment to study principle relations on realistic time scales of mixing with the objective
to develop a basic understanding of size-controlled assembly. However, the ~r-independent
global change of χ in model I does not describe solvent quality distributions correctly. In
real mixtures the concentration of good or selective solvent at position ~r depends on local
polymer concentrations because polymer repels selective solvent and may attract the good
one. The resulting independent motion of both solvents leads to unequal solvent mixture
compositions at different ~r, meaning that the solvent quality for the polymer varies in space.
Since the solvent quality determines droplet sizes, its spatial variation is very likely to affect
rate-size relations.
In this chapter the description of solvent mixing is refined. The standard way to describe

an independent motion of the two solvents would be based on three-component systems where
the temporal evolution was described by three dynamical equations as given by equation 2.12,
for example, where α is replaced by indices for the polymer, the good solvent, and the poor or
selective solvent. The straightforward and probably most accurate implementation of solvent
mixing into such a three-component model would be the computationally unfeasible direct
numerical simulation of the complete mixer geometry. All other implementations involve
more or less simplifications regarding, for instance, solvent fluxes over boundaries of a fluid
element. The effect of such simplifications on rate-size relations cannot be foreseen, since we
learned in section 5.4 that their characteristic attribution is sensitive to the implementation
of solvent mixing. So in case of an easily conceivable oversimplification, the agreement to
experimentally observed trends, e.g. the scaling behavior, might be even worse than in model
I. Consequently, the construction of a system with three evolution equations and a suitable
but simplified implementation of solvent mixing is of course possible and reasonable in general,
but from the knowledge gained in chapter 5, constructing such a description appears as a
’step aside’ rather than a ’step forward’ in the line of argumentation in the present work –
meaning we could build another model with three dynamical equations, but it would neither
guarantee a more accurate reproduction of experimental observations compared to model I
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nor directly provide deeper insight into the results from chapter 5.
For that reason, we decided to expand on model I rather than to construct a completely

different model with three dynamical equations. Our approach involves the development
of a theoretical framework which eventually enables to combine the multiscale approach
from model I with a more realistic description of solvent mixing. We are going to call this
framework effective two-component systems and it is motivated by the link of model I to a
three-component system. In the end, this link will also provide an interpretation why model
I is able to describe experimental observations despite the very simplified implementation of
solvent mixing.

6.1 The notion of effective two-component systems

a) Motivation: the connection of model I to a three-component system

We establish a connection between model I and a three-component system to get an idea what
assumption about solvent mixing hides behind the time dependent interaction parameters
from equation 5.21. To reduce a three-component system to model I, we start from a canonical
ensemble with a Flory-Huggins-de Gennes free energy functional

F0[φP , φSS , φGS ] =
∫
V

(
f0(φP (~r), φSS(~r), φGS(~r)) + λ

2 |∇φP (~r)|2
)
d~r. (6.1)

The notation is analogous to chapter 5. φP , φSS , and φGS are volume fractions of the
polymer, the selective solvent, and the good solvent, respectively, and λ is a gradient energy
parameter. Equation 6.1 neglects all energy contributions containing ∇φSS and ∇φGS . This
means that diffuse interfaces between good and selective solvent do not have an interfacial
tension. In addition, the free energy does not distinguish between an interface separating
polymer from good solvent or an interface separating polymer from selective solvent, either.
The calculations presented in this subsection reveal that only the interfacial contribution
λ/2 |∇φP |2 enables the reduction of the three-component system to the two-component system
from model I. This is not surprising because in chapter 5 we changed only the homogeneous
part of the free energy by introducing a time dependence in the interaction parameter χ,
which renders interfaces to be independent of solvent compositions. Assuming the interaction
parameter between good and selective solvent to be zero, the homogeneous Flory-Huggins
free energy per segment f0 is given by

f0(φP , φSS , φGS)
kBT

= φP
N

ln(φP )+φSS ln(φSS)+φGS ln(φGS)+χSSφPφSS+χGSφPφGS , (6.2)

where N is again the number of segments per polymer molecule, and χGS or χSS the Flory-
Huggins interaction parameter between the polymer and the good or selective solvent.
At first, a variable transformation

(φP , φSS , φGS) 7→ (φP , φS , α) with

φS [φSS , φGS ] = φSS + φGS and α[φSS , φGS ] = φSS
φSS + φGS

(6.3)

is applied, where φS is the total solvent volume fraction and α the solvent composition. Since
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it follows from the transformation equations that φSS [φS , α] = αφS and φGS [φS , α] = (1 −
α)φS , the homogeneous free energy per segment in the transformed variable space becomes

f(φP , φS , α)
kBT

= φP
N

ln(φP ) + αφS ln(αφS) + (1− α)φS ln((1− α)φS)

+ [αχSS + (1− α)χGS ]φPφS (6.4)

with f0(φP , φSS , φGS) = f(φP , φS [φSS , φGS ], α[φSS , φGS ]). The corresponding free energy
functional

F [φP , φS , α] =
∫
V

(
f(φP (~r), φS(~r), α(~r)) + λ

2 |∇φP (~r)|2
)
d~r (6.5)

accordingly fulfills

F [φP , φS [φSS , φGS ], α[φSS , φGS ]] = F0[φP , φSS , φGS ]. (6.6)

In a three-component canonical ensemble with neglected thermal fluctuations, the local
polymer volume fraction obeys a continuity equation

∂φP
∂t

= ∇ ·
(
D0
kBT

φP∇
δF0[φP , φSS , φGS ]

δφP

)
(6.7)

just like in section 5.1, where D0 = DP/N is the segment diffusion coefficient. Since it directly
follows from equation 6.6 that

δF0[φP , φSS , φGS ]
δφP

= δF [φP , φS [φSS , φGS ], α[φSS , φGS ]]
δφP

, (6.8)

the continuity equation in the new variables reads

∂φP
∂t

= ∇ ·
(
D0
kBT

φP∇
δF [φP , φS , α]

δφP

)
. (6.9)

As a reminder: for any set Φ, δF [Φ]
δφi

denotes δF
δφi

evaluated at Φ. To arrive at model I, it
has to be assumed that the solvent composition α is independent of the position ~r. This
makes F a function in α, i.e. F [φP , φS , α] = F [φP , φS ](α). In this case δF

δφS
becomes the sole

phenomenological thermodynamic driving force besides δF
δφP

, which motivates writing the
temporal evolution of φS in accordance with the Onsager Reciprocal relations for a canonical
two-component system as

∂φS
∂t

= ∇ ·
(
DS

kBT
φS∇

δF [φP , φS , α]
δφS

)
. (6.10)

Because application of the chain rule for functional derivatives to

F [φP , φS , α] = F0[φP , φSS [φS , α], φGS [φS , α]] = F0[φP , αφS , (1− α)φS ] (6.11)

(which is equivalent to equation 6.6) yields

∂φSS
∂t

(~r) + ∂φGS
∂t

(~r) = ∂φS
∂t

(~r) = ∇ ·
(
DS

kBT
φS(~r)∇δF [φP , φS , α]

δφS(~r)

)
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= ∇ ·
(
DS

kBT
φS(~r)∇

∫ [
δF0

δφSS(~r ′)

∣∣∣∣
α

δφSS(~r ′)
δφS(~r) + δF0

δφGS(~r ′)

∣∣∣∣
α

δφGS(~r ′)
δφS(~r)

]
d~r ′
)

= ∇ ·
(
DS

kBT
αφS(~r)∇ δF0

δφSS(~r)

∣∣∣∣
α

)
+∇ ·

(
DS

kBT
(1− α)φS(~r)∇ δF0

δφGS(~r)

∣∣∣∣
α

)

= ∇ ·
(
DS

kBT
φSS(~r)∇ δF0

δφSS(~r)

∣∣∣∣
α

)
+∇ ·

(
DS

kBT
φGS(~r)∇ δF0

δφGS(~r)

∣∣∣∣
α

)
, (6.12)

equation 6.10 corresponds to the sum of dynamical equations

∂φi
∂t

= ∇ ·
(
Di

kBT
φi∇

δF0
δφi

∣∣∣∣
α

)
for i ∈ {SS,GS} (6.13)

with DGS = DSS = DS . Here, the short hand notation

δF0
δφi

∣∣∣∣
α

:= δF0[φP , αφS , (1− α)φS ]
δφi

(6.14)

is introduced to emphasize that variational derivatives δF0
δφi

are always evaluated at constant,
i.e. ~r-independent, solvent compositions α. Thus, equation 6.10 is consistent with the dynam-
ical equations for the solvent volume fractions in a three-component canonical ensemble under
the constraints φSS(~r) = αφS(~r) and φGS(~r) = (1 − α)φS(~r). Identically to the derivation
of equation 5.16, an incompressibility constraint can be imposed by modifying the fluxes in
equations 6.9 and 6.10 with a constraining force Z. Upon applying the relations φP +φS = 1
and D0 = DS , this leaves one evolution equation, namely

∂φP
∂t

= ∇ ·
(
D0
kBT

φP (1− φP )∇
[
δF

δφP
− δF

δφS

])
. (6.15)

The functional derivatives of equation 6.5 with f from equation 6.4 read

1
kBT

δF

δφP
= 1
N

ln(φP ) + 1
N

+ [αχSS + (1− α)χGS ]φS − λ∆φP (6.16)

and
1

kBT

δF

δφS
= ln(φS) + [αχSS + (1− α)χGS ]φP

+ {α ln(α) + α+ (1− α) ln(1− α) + (1− α)} . (6.17)

Since the term in curly braces is independent of ~r it follows that

1
kBT

∇
[
δF

δφP
− δF

δφS

]
= ∇

[ 1
N

ln(φP )− ln(1− φP ) + χ(1− 2φP )− λ∆φP
]

(6.18)

with the definition
χ = αχSS + (1− α)χGS . (6.19)

The right hand side of equation 6.18 is identical to ∇ [µr − λ∆φP ] with µr from equation 5.17.
Therefore, the dimensionless version of equation 6.15 is identical to equation 5.18. Setting
the position independent solvent composition to

α = ϕSS
1− fP

(6.20)
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leads to equation 5.21,
χ = χGS + χSS − χGS

1− fP
ϕSS , (6.21)

and thus, we obtain model I.
Since equation 6.15 is consistent with equations 6.7 and 6.13, model I describes canoni-

cal three-component dynamics under the constraint of a homogeneous solvent composition
φSS(~r)/(φSS(~r)+φGS(~r)) = α = ϕSS/(1−fP ) throughout an entire system or fluid element. The
complete solvent mixing process is incorporated into the temporal increase of the solvent
composition α. Hence, solvent mixing specifies an ’internal degree of freedom’ of the solvent
mixture. Such an implementation of solvent mixing makes model I a special case of what we
are going to call an incompressible effective two-component system in the following.

b) The definition of effective two-component systems

The nomenclature accounts for the fact that dynamical equations only describe the temporal
evolution of the polymer (φP ) and the total solvent (φS). Deriving an additional evolu-
tion equation for a ~r-dependent solvent composition variable from the dynamical equations
∂φi
∂t = ∇ ·

[
βDi∇ δF0

δφi

]
for i = P, SS,GS would just cast the three-component system in a

different representation. The fundamental characteristic of our notion of an effective two-
component system is the substitution of this additional evolution equation by an algebraic
relation for the composition variable, e.g. by equation 6.20 in case of model I. Solvent mix-
ing is then implemented as a constraining condition by a time dependence in this relation.
What distinguishes different effective two-component systems is the choice of the composition
variable.
Based on the steps we applied to reduce a three-component system to model I in paragraph

A), one may formulate the following generalized construction procedure for effective two-
component systems:

• Choose a free energy functional F0[φP , φSS , φGS ] (cp. equations 6.1 and 6.2).

• Transform variables (φP , φSS , φGS) 7→ (φP , φS , α), where φS = φSS + φGS is the total
volume fraction of the solvent mixture and α characterizes the solvent composition (cp.
equation 6.3).

• Express F0[φP , φSS , φGS ] in terms of the new variables, such that the resulting free en-
ergy becomes a function of solvent composition, i.e. F0[φP , φSS , φGS ] 7→ F [φP , φS ](α).

• Apply dynamical equations

∂φP
∂t

= ∇ ·
(
D0
kBT

φP∇
δF [φP , φS ](α)

δφP

)
and

∂φS
∂t

= ∇ ·
(
DS

kBT
φS∇

δF [φP , φS ](α)
δφS

)
to describe phase separation (cp. equations 6.9 and 6.10).

• Implement solvent mixing by prescribing a time dependence of α (cp. equation 6.20
with ϕSS = ϕSS(t)).
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The implementation by a time dependent composition constraint assumes solvent mixing
to be fast in comparison to the phase separation. It will be discussed later that such an
assumption should be reasonable, for instance, in incompressible dilute polymer solutions,
which correspond to the experimental conditions from figure 1.3. The assumption is also
supported by the fact that model I reproduces experimental observations. So ideally, α(t)
should reflect realistic solvent compositions that attune rapidly during fast solvent mixing
at fixed density profiles φP and φS (in incompressible systems φS is fixed when φP is fixed
because φS(~r, t) = 1 − φS(~r, t)). As selective solvent tends to avoid regions of high polymer
concentrations while good solvent should accumulate in these regions, a position independent
solvent composition like in model I is a rather unphysical choice. In the next section we
perform the procedure listed above with a chemical potential as a composition variable to
develop an effective two-component system from a semi-grand canonical ensemble in order
to refine the description of solvent mixing. We are going to call the result ’model II’.

6.2 Derivation of model II

As before, the starting point is the free energy functional

F0[φP , φSS , φGS ] =
∫
V

(
f0(φP (~r), φSS(~r), φGS(~r)) + λ

2 |∇φP (~r)|2
)
d~r (6.22)

with f0 from equation 6.2,

f0(φP , φSS , φGS)
kBT

= φP
N

ln(φP )+φSS ln(φSS)+φGS ln(φGS)+χSSφPφSS+χGSφPφGS . (6.23)

It would be unproblematic to introduce an interaction term χSφSSφGS for the two solvents
or interfacial energy contributions that contain ∇φSS and ∇φGS , but here we neglect them
like in section 6.1 to keep the analogy to model I.
This time the variable transformation is performed in two separate steps. The first step is

the transformation (φP , φSS , φGS) 7→ (φP , φSS , φS) with φS [φSS , φGS ] = φSS + φGS yielding

F̃ [φP , φSS , φS ] =
∫
V
kBT

[φP
N

ln(φP ) + φSS ln(φSS) + (φS − φSS) ln(φS − φSS)

+χSSφPφSS + χGSφP (φS − φSS)
]

+ λ

2 |∇φP |
2 d~r (6.24)

with F̃ [φP , φSS , φS [φSS , φGS ]] = F0[φP , φSS , φGS ]. Then the dimensionless relative chemical
potential of the two solvents is calculated as

µs := 1
kBT

δF̃

δφSS
= ln

(
φSS

φS − φSS

)
+ ∆χφP with ∆χ := χSS − χGS , (6.25)

which enables to express φSS by

φSS [φP , φS , µs] = 1
e∆χφP−µs + 1φS =: φSS(µs). (6.26)

Substituting φSS by µs via a Legendre transformation constitutes the second step of the
variable transformation and the transition into a semi-grand canonical ensemble. Elementary
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calculations lead to

F [φP , µs, φS ] = F̃ [φP , φSS(µs), φS ]− kBT
∫
V
µs φSS(µs)d~r

=
∫
V

(
f(φP , µs, φS) + λ

2 |∇φP |
2
)
d~r (6.27)

with

f(φP , µs, φS)
kBT

= φP
N

ln(φP ) + φS ln(φS) + χSSφPφS −
(
ln
(
1 + e∆χφP−µs

)
+ µs

)
φS . (6.28)

Here, µs plays the role of the composition variable α. If the relaxation of good and selective
solvent density profiles is very fast compared to the phase separation, it is plausible to assume
that the selective and the good solvent equilibrate instantaneously at fixed volume fraction
profiles φP (~r, t) and φS(~r, t). In the equilibrated state µs is homogeneous throughout the
system, i.e. independent of ~r. F is then a function of the composition variable µs and can
be written as F [φP , φS ](µs).

Since F needs to be minimal in equilibrium, the gradients of δF
δφP

and δF
δφS

can be identified
as the phenomenological thermodynamic forces driving the phase separation at spatially con-
stant µs. Calculating the functional derivative of F [φP , µs, φS ] = F̃ [φP , φSS [φP , φS , µs], φS ]−
kBT

∫
µsφSS [φP , φS , µs] d~r with respect to φP and remembering that µs = 1

kBT
δF̃
δφSS

leads to

δF [φP , φS , µs]
δφP

= δF̃ [φP , φSS [φP , φS , µs], φS ]
δφP

. (6.29)

Taking into account that F̃ [φP , φSS , φS ] = F0[φP , φSS , φGS [φS , φSS ]] further gives

δF̃ [φP , φSS , φS ]
δφP

= δF0[φP , φSS , φGS [φS , φSS ]]
δφP

(6.30)

and hence,

δF [φP , φS , µs]
δφP

= δF0[φP , φSS [φP , φS , µs], φGS [φS , φSS [φP , φS , µs]]]
δφP

=: δF0
δφP

∣∣∣∣
µs

. (6.31)

This allows to write down the dynamical equation

∂φP
∂t

= ∇ ·
(
D0
kBT

φP∇
δF0
δφP

∣∣∣∣
µs

)
= ∇ ·

(
D0
kBT

φP∇
δF [φP , φS ](µs)

δφP

)
(6.32)

just like equation 6.9, provided fP =
∫
φP d~r/V is conserved. δF0

δφP

∣∣∣
µs

denotes the functional
derivative of F0 evaluated at solvent compositions that are set by µs. Therefore, the polymer
moves in a solvent with a constrained composition. This composition corresponds to the
equilibrium composition that attunes at fixed φP (~r, t) and φS(~r, t). Although the integral
volume fractions fSS =

∫
φSSd~r/V and fGS =

∫
φGSd~r/V are not necessarily conserved globally

in a semi-grand canonical ensemble, fS = fSS + fGS still remains constant. This motivates
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to introduce the phenomenological continuity equation

∂φS
∂t

= ∇ ·
(
DS

kBT
φS∇

δF [φP , φS ](µs)
δφS

)
, (6.33)

where DS is interpreted as the diffusion coefficient of the solvent mixture. The absence of a
cross-coupling term with the thermodynamic driving force∇ δF

δφS
in the dynamical equation for

φP inspires omitting ∇ δF
δφP

from the dynamical equation for φS as well to obtain a symmetric
mobility matrix in consistency with the Onsager Reciprocal Relations in a two-component
canonical ensemble. It should be noted though that equation 6.33 is a phenomenological
equation that is not consistent with canonical dynamics at fixed µs, i.e. a calculation like in
equation 6.12 is not possible because the prefactor in front of φS in equation 6.26 depends
on φP (~r). As a consequence, equation 6.33 conserves φS locally but equation 6.26 does
not imply the local conservation of φSS . That φSS and likewise φGS = φS − φSS are not
locally conserved does not obligatorily contradict the local conservation of φS . The disparate
conservation behavior of φS and φSS rather reflects the separation of time scales assumed
by effective two-component systems: if good and selective solvent interdiffuse much faster
than φS varies in time, good and selective solvent molecules should be able to cross the whole
system volume while total solvent only transitions to neighboring lattice cells. Incompressible
dilute polymer solutions constitute a physical situation where this separation of time scales is
imaginable, because the minority component, the polymer, sets the speed of phase separation
and slows down the exchange of the complete solvent mixture (φS = 1− φP ) between lattice
cells while good and selective solvent can diffuse unhindered within the solvent mixture. The
current set of dynamical equations conclusively contains the assumption of separated time
scales not only in the implementation of solvent mixing (time dependent µs) but also in the
dynamics at time-independent µs.

Transforming equations 6.32 and 6.33 into an equation for incompressible dynamics is
completely analogous to subsection 5.1 and leads to

∂φP
∂t

= ∇ · (D0φP (1− φP )∇µ) (6.34)

with D0 = DS and the short hand notation

µ := 1
kBT

(
δF

δφP
− δF

δφS

)
. (6.35)

In dilute solutions, setting D0 = DS does not contradict the assumption of fast solvent
relaxation compared to the phase separation. This issue is discussed in section 6.5. Using
equations 6.27 and 6.28 to calculate

1
kBT

δF

δφP
= ln(φP )

N
+ 1
N

+ χSSφS −∆χ φS
1 + e−∆χφP+µs −

λ

kBT
∆φP (6.36)

and
1

kBT

δF

δφS
= ln(φS) + 1 + χSSφP − ln

(
1 + e∆χφP−µs

)
− µs (6.37)

gives
µ = ln(φP )

N
+ 1
N
− ln(1− φP )− 1 + χSS(1− 2φP )
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+ ln(1 + e∆χφP−µs) + µs −∆χ 1− φP
1 + e−∆χφP+µs −

λ

kBT
∆φP . (6.38)

To implement solvent mixing we insert φS = 1− φP into equation 6.26 and set

ϕSS(t) = φSS [φP = 0] = 1
1 + e−µs

⇔ µs = − ln
( 1
ϕSS(t) − 1

)
. (6.39)

This condition states that the volume fraction ϕSS is set at positions or in lattice cells
where no polymer is present, which makes sense because the mixing profiles in chapter 3
were derived in the absence of polymer. Equations 6.34, 6.38 and 6.39 constitute model II.
Expressing lengths in units of l0 =

√
λ/kBT and times in units of t0 = l20/D0 allows substituting

D0 7→ 1 in equation 6.34 and λ 7→ kBT in equation 6.38 without loss of generality. Lengths
and times are given in units of l0 and t0 throughout the remainder of this chapter. Equation
6.34 can be solved numerically using the schemes given by equations 5.38 and 5.41.

Casting equation 6.28 into the form

f

kBT
= φP

N
ln(φP ) + φS ln(φS) + χ(φP , t)φPφS (6.40)

with a composition and time dependent interaction parameter

χ(φP , t) = χSS −
ln
(
1 + e∆χφP−µs(t)

)
+ µs(t)

φP
(6.41)

shows that the only formal difference between model II and model I is the functional form
of the interaction parameter in the free energy. In contrast to model I, model II describes
spatially varying solvent qualities because χ depends on φP (~r). In analogy to model I we use
the terminology

µ = µr −
λ

kBT
∆φP . (6.42)

In model II, µr contains additional terms resulting from the variational derivatives of χ(φP , t)
with respect to φP (cp. equation 6.38). We again assume mixing times to be low enough so
that the system crosses the spinodal line before significant particle growth in the metastable
area occurs. In the present case the spinodal line is defined by

0 = ∂µr
∂φP

(φP = fP ) = 1
NfP

+ 1
1− fP

− 2χSS + ∆χ
1 + e−∆χfP+µs

(
2− (1− fP )∆χ

1 + e∆χfP−µs

)
. (6.43)

At this point it is emphasized that model II is a novel phenomenological model introduced
to describe spatially varying solvent qualities. In sections 6.3 and 6.4 we utilize model II
to exemplarily investigate potential effects of spatially varying solvent quality distributions
on rate-size relations in principle and how they compare to model I, without talking about
the physical accuracy or validity of assumptions made to arrive at model II. We note in
advance that the characteristic attribution of rate-size relations from model II is very similar
to model I. The crucial difference between model I and model II as well as the validity of the
assumptions is addressed in section 6.5. Section 6.5 shows that an approach using chemical
potentials µs quantitatively agrees with conventional three-component dynamics in dilute
polymer solutions, while model I disagrees.
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6.3 Rate-size relations for linear mixing profiles

We start the comparison of rate-size relations from model I and model II by employing linear
mixing profiles

ϕSS(t) =

ϕ0 + s t′(t) for t′(t) ≤ t′max
ϕmax for t′(t) > t′max

(6.44)

in equation 6.39, where t′max = (ϕmax−ϕ0)/s. The relation between t′ and the system time
t from equation 6.34 reads t′(t) = t + ts like in section 5.4, except that t0 is substituted
by 1 since it can be absorbed into the slope s. The spinodal time shift ts is defined by
ϕSS(t = 0) = ϕSpin, where ϕSpin is the spinodal solvent composition. It is determined from
equation 6.43 upon setting µs = − ln(1/ϕSpin − 1). Linear mixing profiles in model II require
a distinction between t and t′, because they translate into nonlinear quenches according to

χ(φP , t) = χSS −
ln
(
1 + e∆χφP−µs(t)

)
+ µs(t)

φP
(6.45)

with µs(t) = − ln(1/ϕSS(t) − 1). Strictly speaking, there is no constant quench rate, but in
the following the term ’quench rate’ is being used in a more loose context and refers to the
slope of the mixing profile s.

6.3.1 Simulation setup

Unlike in model I it is not possible to absorb the interaction parameters into an analogue to
sχ (cp. equation 5.44), so the adjustable physical parameters are

• the mean polymer volume fraction fP ,

• the segments per polymer molecule N ,

• the interaction parameters of the good and selective solvent χSS and χGS ,

• the quench rate s,

• the premixed selective solvent fraction ϕ0, and

• the maximum selective solvent fraction ϕmax.

The number of segments per polymer molecule is again set to N = 14. If not stated
otherwise, model cases with interaction parameters χSS = 2 and χGS = 0 are considered.
χSS = 2 is the value of the maximum interaction parameter from section 5.3 and setting
χGS = 0 implies a purely combinatoric good solvent, i.e. good solvent only contributes an
entropic term to the free energy functional. The maximum selective solvent volume fraction
in the absence of polymer is set to ϕmax = (1+ϕ0)/2. fP , s and ϕ0 are varied.
The numerical parameters are identical to model I. All simulations in this section are

performed on a two dimensional lattice with m = 400 × 400 grid points, a lattice constant
∆l = 0.25, an initial time step size h = 0.005, and a threshold value φ(th)

P = 0.3 for the
conversion into binary images to determine the Minkowski functionals. Like in chapter 5 all
data points represent averages over 5 independent simulation runs with different uniformly
distributed random initial conditions φ(0)

P (~rs) ∈ [fP − 0.001, fP + 0.001] ∀ s = 0, ...,m− 1.
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6.3.2 Simulation results

Qualitatively, the temporal evolution of polymer volume fraction profiles is practically iden-
tical to model I. A spinodal decomposition characterized by fast phase separation (cp. figure
5.2) is followed by a considerably slower coarsening of polymer droplets. This leads to time
series of Minkowski functionals similar to figure 5.1 and allows an analogous definition of
the transition time ttr and droplets. Figure 6.1 shows snapshots of the composition fields
φP , φSS and φGS at ttr for an exemplary simulation run. Comparing figure 6.1 (b) and (c)
demonstrates that the model does indeed describe position dependent solvent compositions.
The good solvent mainly accumulates at interfaces between the selective solvent and the poly-
mer, which manifests as coronae of high good solvent volume fractions around blue to yellow
spots in snapshot (c). Such a distribution is expected because due to incompressibility the
non-interacting good solvent (χGS = 0) is pushed out of domains where either the selective
solvent or the polymer concentrate owing to their repulsion. Droplet radii are determined
in the same manner as described in subsection 5.3.2, and in the current section the term
rate-size relation refers to the relation between droplet sizes and s from equation 6.44.

Figure 6.2 shows rate-size relations for two different mean polymer volume fractions, fP =
0.038 and fP = 0.100. Constant interaction parameters χSS and χGS require an adaptation
of the premixed selective solvent volume fraction ϕ0 to ensure that the system is not located
above the spinodal line at t = 0. According to equation 6.43 with µs = − ln (1/ϕSpin − 1),
increasing fP from 0.038 to 0.100 reduces the spinodal solvent composition from ϕSpin = 0.5
to ϕSpin = 0.318. At fP = 0.038 we set ϕ0 = (1−fP )/2 = 0.482 in accordance to figure 1.3
(a) and (b), which is close to ϕSpin = 0.5. For fP = 0.100 the premixed selective solvent
volume fraction is simplistically set to ϕ0 = ϕSpin = 0.318. Despite a completely different
implementation of solvent mixing the data point progressions look very similar to the results
from model I in figure 5.3. One can identify an asymptotic regime and a non-asymptotic
regime, where droplet radii are described by scaling laws x ∝ sα with x ∈ {R, l1, lmax}
and typical exponents α ≈ −1/6. As before, the transition from the non-asymptotic to the
asymptotic regime happens once ttr exceeds tmax = t′max − ts. The response of rate-size
relations to fP -variations also reminds of the results in figure 5.5, as a diminishing mean
polymer content leads to a downward shift in the non-asymptotic regime and a crossing of

Figure 6.1: Color coded 2D volume fraction profiles φP (a), φSS (b) and φGS (c) at transition
time, simulated by model II with a linear mixing profile. The quench rate is set to s = 10−5,
the mean polymer volume fraction to fP = 0.038 and the premixed selective solvent fraction to
ϕ0 = (1−fP )/2 = 0.482.



118 6.3. Rate-size relations for linear mixing profiles

the data sets for l1 and lmax close to the beginning of the asymptotic regime. For the high
polymer volume fraction of fP = 0.100 it is

ϕmax − ϕSpin = 1 + ϕ0
2 − ϕSpin = 1 + 0.318

2 − 0.318 = 0.341. (6.46)

If we set fP = 0.038 it is

ϕmax − ϕSpin = 1 + ϕ0
2 − ϕSpin = 1 + 0.482

2 − 0.5 = 0.241. (6.47)

This means the maximum quench depth for fP = 0.038 (corresponding to the circles in figure
6.2) is lower than the maximum quench depth for fP = 0.100 (represented by squares), which
explains why the asymptote of the squares lies below the one associated with the circles in
figure 6.2 (b) and (c).

Figure 6.2: Rate-size relations and transition times, simulated by model II with linear mixing profiles
in two spatial dimensions. Circles correspond to simulation results at fP = 0.038 and ϕ0 = 0.482,
while squares refer to fP = 0.100 with ϕ0 = 0.318. The remaining parameters are specified in
subsection 6.3.1. Grey lines are regression lines to data points in the non-asymptotic regime. The
trend line equations are shown above the dashed horizontal lines and are labeled by the corresponding
symbol. Like in figure 5.3 error bars in (a) illustrate the polydispersity ∆R from equation 5.48. In (b)
- (d) they indicate standard deviations over five simulation runs with different uniformly distributed
random initial conditions.
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6.3.3 Perturbation theory and parameter variations

To verify that droplet sizes are still determined during the early stages of phase separation,
a perturbation theory similar to subsection 5.3.4 is applied. General equations that can be
directly transferred from subsection 5.3.4 to model II are the following three: equation 5.64,
which reads

k2
p(t) = ∆χ(t) = − 1

2t

∫ t

0

∂µr
∂φp

(fP , t′) dt′ (6.48)

and gives the wave number kp of the mode with the largest amplitude at a specific time t,
equation 5.67,

lp(t) = π

2
√

∆χ(t)
= π

2

(
− 1

2t

∫ t

0

∂µr
∂φp

(fP , t′) dt′
)−1/2

, (6.49)

which estimates the corresponding aggregate radius, and equation 5.70, which implicitly
defines an amplification time via

t = ln(A(kp(t), t))
M(fP )∆χ2(t)

= ln(A(kp(t), t))
M(fP )

(
− 1

2t

∫ t

0

∂µr
∂φp

(fP , t′) dt′
)−2

, (6.50)

where M(fP ) = fP (1 − fP ) is the mobility and A(kp(t), t) the amplification of the mode
with wave number kp(t) at time t. For model II, ∂µr

∂φP
(fP , t) is obtained by inserting µs from

equation 6.39 into the right hand side of equation 6.43.
Figure 6.3 shows lp(ttr) and lp(ta) in comparison to the simulation results from figure 6.2.

lp(ta) is calculated by solving equation 6.50 for ta with ln(A(kp(ta), ta)) = 10 and inserting
the result into equation 6.49. As equation 6.50 is rather nested and complicated to solve by
hand, we determine the amplification time ta numerically with a Mathematica script for any
given parameter set and dispense with writing down an explicit expression. The calculation
of lp(t) for both t = ttr and t = ta is performed by the script as well. The values for ttr are
the simulation results from figure 6.2 (d). In contrast to subsection 5.3.4, lp(ttr) completely
fails to approximate the simulation results for droplet sizes at low quench rates, but lp(ta)
still comes very close.
Comparing the respective left and right panels in figure 6.3 (a) and (b) indicates that neg-

ative deviations ttr− ta lead to positive deviations lp(ttr)− lmax and vice versa. Additionally,
the deviation of lmax and lp(ta) from lp(ttr) seems to be much more pronounced than the
deviation of ttr from ta, which is especially highlighted by the sudden kink of squares in
the left panel of figure 6.3 (b) at s ≈ 10−4, whereas the incipient deviation of ttr from ta
at that quench rate in the right panel looks comparatively smooth. This suggests a very
sensitive dependence of lp(ttr) on ttr in model II, which could be the reason why lp(ttr) fails
to predict the simulation results as small discrepancies between the transition time and an
amplification time translate into large differences of droplet sizes. Such discrepancies could
for example arise because the transition time may lie in time periods where dynamics are
affected by non-linearity and mean droplet sizes change only slowly – cp. figure 5.1 (b) where
it lies on a plateau. This means simulated droplet sizes are very insensitive to ttr, while
droplet sizes predicted by the perturbation theory are not (because it only describes linear
contributions). Thus, combining simulation results for ttr with the perturbation theory may
distort its predictions, which renders lp(ta) more suited to perform a perturbation analysis
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Figure 6.3: Comparison of simulation results lmax to predictions from the perturbation theory lp for
model II. The circles in the left panel of (a) represent the simulation results for lmax from figure 6.2 at
fP = 0.038. The solid line illustrates lp(ta) and the rectangles correspond to lp(ttr). The right panel
shows the transition time ttr (squares) and the amplification time ta (solid line). (b) depicts the same
for fP = 0.100.

in general. Because lp(ta) succeeds to reproduce simulation results, droplet sizes in model II
are determined during the early stages of phase separation as well.
This knowledge provides an interpretation why resulting rate-size relations resemble the

ones observed in model I. There is one special case where the spatially homogeneous solvent
composition assumed by model I is also present in model II, namely at t = 0 in the initial
homogeneous state. As droplet sizes are determined close to this homogeneous state, model
I might still be sufficiently accurate to capture characteristic features of rate-size relations
despite not being exact. The mechanism that controls droplet sizes in model II is a competi-
tion between interfacial tension and repulsion of chemical components, too, but this time it
is not the increasing interaction of one single solvent that eventually terminates early stage
coarsening but the increasing amount of selective solvent. In other words, if we consider a
repulsive free energy contribution of the form χφSSφP , φSS increases instead of χ.
The fact that the application of ta defined by ln(A(kp(ta), ta)) = 10 yields very good

approximations for both model I (cp. figure 5.8) and model II with respective different
physical parameter sets could motivate generally setting ln(A) = 10. This would enable
to analyze controlled assembly of homopolymers semi-analytically, where the term ’semi’
accounts for the fact that ln(A) is chosen heuristically from experience with simulations.
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Figure 6.4: Response of rate-size relations to parameter variations in model II, calculated by the
perturbation theory with t = ta. The reference set of parameters is fP = 0.1, ϕ0 = 0.318, and
remaining parameters as specified in subsection 6.3.1. In diagrams (a), (b) and (c) only the parameter
in the respective legend is changed and the open circles always label the reference set. (a) illustrates
how variations of χSS affect rate-size relations, (b) illustrates the impact of changes in χGS , and
in (c) the premixed selective solvent volume fraction ϕ0 is varied. (d) compares the perturbation
theory predictions for the parameter sets in figure 6.2. The triangles correspond to fP = 0.038 with
ϕ0 = 0.482 and the open circles represent the set with fP = 0.1 and ϕ0 = 0.318. The equations below
the diagrams belong to the grey regression lines in the non-asymptotic regime defined by ta ≤ tmax.

However, since an extensive validation of ln(A)-values for different parameters is not the
focus of the present work, we leave this observation as a remark to be potentially addressed
it in the future.
Due to its agreement with preceding simulations lp(ta) is utilized to investigate the impact

of parameter variations as illustrated in figure 6.4. The current approach is not analytical
though because ta is determined numerically by a Mathematica script. Applying the pertur-
bation theory is still advantageous as calculating lp(ta) takes a few seconds maximum while
obtaining droplet sizes by simulations typically takes five to ten days. It can be seen in figure
6.4 (a) that a decrease in χSS increases droplet sizes, which is plausible because lower χSS
lead to later terminations of early stage coarsening. This also agrees with figure 6.4 (b),
where shrinking χGS enhance particle sizes. Assuming a temperature dependence

χSS = χ
(0)
SS + α

T
with α > 0 (6.51)



122 6.4. Rate-size relations for the SFIMM- and CPMM-profiles

figure 6.4 (a), for example, states that temperature variations lead to a vertical shift of droplet
sizes in the non-asymptotic regime with slight changes of exponents, which is in accordance
with the experimental observations in figure 1.3 (d). Similar statements hold for figure 6.4
(b). In model I with linear mixing profiles a change in ϕ0 would only shift the asymptote
since it solely affected the maximum quench depth. In model II with linear mixing profiles,
droplet sizes decrease with increasing premixed selective solvent volume fractions ϕ0 even
in the non-asymptotic regime as shown in figure 6.4 (c). Because linear mixing profiles
do not translate into linear quenches like in model I and because section 5.4 showed that
shapes of rate-size relations can be changed by non-linear quenches, such a response of the
non-asymptotic regime is reasonable. Figure 6.4 (d) looks very similar to figure 6.2 (c) and
shows that the perturbation theory also predicts the impact of mean polymer volume fraction
variations seen in the simulation results, although this shift appears to be very weak in lmax
or lp(ta) for reasons already mentioned in the discussion about figure 5.5. It also follows
from figure 6.4 that parameter variations retain the functional dependencies lp ∝ sα in the
non-asymptotic regime, but they affect exponents α, which range from −0.162 to −0.230.
As the exponents in the experiments (cp. figure 1.3) also deviate from −1/6 predicted by
model I, we have identified the position dependent solvent composition in combination with
different parameter choices as ’higher order’ contributions that might be responsible for the
experimentally observed deviations of the exponents from −1/6 and are not captured by model
I.
The main statement of the current section is that spatial variations of solvent quality do

not seem to change the characteristic attribution of rate-size relations or the interpretation
to mechanism (i) dramatically, but only introduce a slight change of exponents, which is
consistent with experimental observations.

6.4 Rate-size relations for the SFIMM- and CPMM-profiles

Application of the SFIMM and CPMM mixing profiles to model I in section 5.4 showed that
CPMM-profiles reproduce scaling laws R ∝ vα with α ≈ −1/6 while the SFIMM-profiles do
not. In the present section it is briefly investigated how these mixing profiles connect to
model II. The physical parameters are

• the mean polymer fraction fP ,

• the segments per polymer molecule N ,

• the interaction parameters of the good and selective solvent χGS and χSS ,

• the time scale t0,

• the premixed selective solvent volume fraction ϕ(1)
SS ,

• the maximum selective solvent volume fraction ϕmax

• the flow rate v, and

• the initial lamella position x1.
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Figure 6.5: Droplet sizes simulated by model II with SFIMM- (a) and CPMM-mixing profiles (b) in
direct comparison to experimental data. All three measures for droplet radii are shown in dependence
on the flow rate v, and the results are averaged over the same initial lamella positions as in figure
5.15. Error bars correspond to R and indicate the polydispersity ∆R from equation 5.48. The grey
lines are trend lines to data points of R and the corresponding equation is shown in the diagram. The
solid symbols represent the experimental data from figure 1.3 (a), just like in figure 5.15. Standard
deviations from averaging over different initial conditions are similar to figure 6.2 and not shown for
the sake of clarity.

This list is identical to subsection 5.4.1 except that χGS and χSS are not substituted by
ϕSpin and χ(max). The physical parameters are set to fP = 0.0388, N = 14, χSS = 2,
χGS = 0, t0 = 10−6 seconds, ϕ(1)

SS = (1−fP )/2 = 0.482, and ϕmax = (1+ϕ(1)
SS)/2 = 0.741. The

spinodal composition is calculated to ϕSpin = 0.5, and numerical parameters are taken from
to subsection 5.4.1. Simulation results are given by figure 6.5.
Like in the case of linear mixing profiles the qualitative progression does not differ from the

results obtained with model I (cp. figure 5.15). In the CPMM there appears an asymptotic
regime at v > 1.6 ml/min, but data points in the non-asymptotic regime still exhibit a scaling
behavior. Although the exponent −0.119 is a little bit lower it is still in the experimental
range given by figure 1.3. The characteristic progression of rate-size relations in figure 6.5 (a)
closely resembles figure 5.15 (c), so two different implementations of solvent mixing (model
I and model II) produce almost identical progressions. Therefore, the implementation of
solvent mixing is unlikely to cause the deviation of simulation results for SFIMM-profiles
from the experimentally observed scaling behavior (cp. second item in the list at the end of
subsection 5.4.2 A).

6.5 Comparison of an effective two- and a three-component system

The dynamics of model II are only meaningful in situations where they are consistent with the
standard approach for phase separation dynamics in three-component systems. In case of a
local coupling model, this standard approach is given by equation 2.12 with α = P, SS,GS. In
the present section we compare an effective two-component system to such conventional three-
component dynamics. However, the effective two-component system under consideration is
not directly model II but a canonical version of it. This means we substitute the relation
for the chemical potential µs, i.e. equation 6.39, by another equation that keeps ϕSS =
1/V

∫
φSS(~r, t) d~r fixed at any time t. The reason why we consider a canonical version of

model II is because we want to exclusively examine the critical assumptions concerning phase
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separation dynamics and these critical assumptions relate to equations 6.26 and 6.33 in model
II, but not the time dependence of µs in equation 6.39. If we took solvent mixing into
account, we would corrupt the comparability of the two models since we also had to find
an implementation of solvent mixing into the conventional three-component dynamics. And
since solvent mixing had to be implemented differently from model II, we would not be able
to distinguish if discrepancies are generated by the implementation of solvent mixing or the
critical assumptions about dynamics.

6.5.1 Equations for the canonical dynamics

A canonical three-component system comprises one dynamical equation like 5.7 for each
composition field. Neglecting thermal fluctuations, the equations read

∂φP
∂t

= −∇ · JP = ∇ ·
(
D0
kBT

φP

[
∇ δF0
δφP

+ Z

])
, (6.52)

∂φSS
∂t

= −∇ · JSS = ∇ ·
(
DS

kBT
φSS

[
∇ δF0
δφSS

+ Z

])
, (6.53)

and
∂φGS
∂t

= −∇ · JGS = ∇ ·
(
DS

kBT
φGS

[
∇ δF0
δφGS

+ Z

])
. (6.54)

As a free energy functional we use F0 defined by equations 6.22 and 6.23, which was the
starting point for the deviation of model II. The constraining force Z is added to ensure
incompressibility

∑
i∈C Ji = 0, where C := {P, SS,GS} is the set of component indices and

Ji = − Di

kBT
φi

[
∇δF0
δφi

+ Z

]
(6.55)

the volume flux density of component i. It immediately follows from the incompressibility
constraint that the differential equation for φGS , for example, can be substituted by the
algebraic equation φGS = 1− φP − φSS and that the constraining force is given by

Z = −
D0φP∇ δF0

δφP
+DSφSS∇ δF0

δφSS
+DSφGS∇ δF0

δφGS

D0φP +DSφSS +DSφGS
. (6.56)

Assuming D0 = DS and inserting Z into JP and JSS leads to

JP = − D0
kBT

[
φP (1− φP )∇

(
δF0
δφP

− δF0
δφGS

)
− φPφSS∇

(
δF0
δφSS

− δF0
δφGS

)]
(6.57)

and

JSS = − D0
kBT

[
φSS(1− φSS)∇

(
δF0
δφSS

− δF0
δφGS

)
− φPφSS∇

(
δF0
δφP

− δF0
δφGS

)]
. (6.58)

The normalized relative chemical potentials are

1
kBT

(
δF0
δφP

− δF0
δφGS

)
= ln(φP )

N
− ln(1− φP − φSS) + 1

N
− 1

+(χSS − χGS)φSS + χGS(1− 2φP )− λ

kBT
∆φP (6.59)
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and

1
kBT

(
δF0
δφSS

− δF0
δφGS

)
= ln(φSS)− ln(1− φP − φSS) + (χSS − χGS)φP . (6.60)

Inserting the fluxes from equations 6.57 and 6.58 with the relative chemical potentials from
equations 6.59 and 6.60 into the dynamical equations ∂φi

∂t = −∇ · Ji with i ∈ {P, SS} yields
the conventional model equations to describe phase separation in an incompressible three-
component system. Random perturbations of a homogeneous state with (φP (~r, 0), φSS(~r, 0)) =
(fP , ϕSS) are used as initial conditions and we apply periodic boundary conditions. To solve
the two differential equations numerically, the schemes from equations 5.38 and 5.41 can be
applied with

Ĝ
(n)
j (~k) = F~k

[(
−J (n)

j (~rs)
)
s

]
,

where Jj is the j-th component of JP or JSS in the dynamical equation of φP and φSS ,
respectively. Gradients in a flux are calculated by discrete Fourier transformations and the
first order time accurate scheme is used in the following. In the scheme for the evolution
equation of φP we choose the damping coefficient α = 1/8 as usual and for φSS we set α = 0
because it contains no ∆2-term. The spinodal line is determined from the Hessian H of the
homogeneous free energy contribution

f0
kBT

= φP
N

ln(φP ) + (1− φP − φGS) ln(1− φP − φGS)

+φGS ln(φGS) + χSSφP (1− φP − φGS) + χGSφPφGS (6.61)

with respect to φP and φGS . It is

H =
( 1
NφP

+ 1
φSS
− 2χSS 1

φSS
− (χSS − χGS)

1
φSS
− (χSS − χGS) 1

1−φP−φSS + 1
φSS

)
. (6.62)

The system is stable if f0 is convex, which is equivalent to the principal minors of H being
positive. The first principal minor of H reads

h1(φP , φSS) = 1
NφP

+ 1
φSS
− 2χSS , (6.63)

the second one is

h2(φP , φSS) =
( 1
NφP

+ 1
φSS
− 2χSS

)( 1
1− φp − φSS

+ 1
φSS

)

−
( 1
φSS
− (χSS − χGS)

)2
, (6.64)

and the spinodal solvent composition ϕSpin of the conventional three-component model is
defined by

min {h1(fP , ϕSpin), h2(fP , ϕSpin)} = 0. (6.65)

As already mentioned, the effective two component system we consider in the present
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section is a canonical version of model II, where equation 6.39 is substituted by

ϕSS ≡ fSS = 1
V

∫
V
φSS(~r, t) d~r = 1

V

∫
V

1− φP (~r)
e∆χφP (~r)−µs + 1

d~r (6.66)

to keep fSS constant. If equation 6.39 was not substituted, the two models would not be
comparable, because in the three-component system fSS is fixed while it varies in model
II with equation 6.39. The ~r-independent relative chemical potential µs for a given ϕSS is
determined by a bisection method after spatial discretization of the integral in equation 6.66
with a rectangle method.
The adjustable physical parameters in both models are fP , N , χSS , χGS and fSS = ϕSS .

In the following, lengths and times are given in units of l0 =
√
λ/kBT and t0 = l20/D0 again,

which allows to substitute D0 7→ 1 in equations 6.57 and 6.58 as well as λ 7→ kBT in equation
6.59 without loss of generality.

6.5.2 Comparison of particle sizes

For conventional three-component dynamics the temporal evolution of polymer volume frac-
tion profiles is qualitatively identical to model II, which allows an analogous evaluation pro-
cedure. The left panel in figure 6.6 shows droplet sizes at transition time. Large symbols
are simulated with conventional three-component dynamics and the small ones with the
canonical version of model II. Data points in figure 6.6 (a) represent simulation results for a
parameter set with a low polymer volume fraction of fP = 0.038 and a corresponding spin-
odal solvent composition ϕSpin = 0.462. The value of ϕSpin is identical in both canonical
models and simulations have been performed for the mean selective solvent volume fractions
ϕSS = 0.525, 0.550, 0.600, 0.650, and 0.700. The relative deviation between the simulation
results is shown in the right panel and it is evidently smaller than 3%. Consequently, the
models agree very well and the assumption of fast solvent relaxation that is made by model
II is valid. Although solvent and polymer segment diffusion coefficients are assumed to be
equal, i.e. DS = D0, the interdiffusion between the good and selective solvent can still be
fast in comparison to the polymer phase separation because fluxes in equations 6.52 - 6.54
are proportional to volume fractions (the prefactors in front of the squared brackets read
Di/kBTφi). So as long as φP � φSS , φGS holds, the fluxes of the solvents are much larger than
the fluxes of the polymer and the total solvent. This is possible because the incompressibility
constraint only enforces the diffusion of the total solvent to be on time scales of polymer
phase separation. The variation of good and selective solvent profiles within a slowly varying
φS = φGS + φSS can still be fast. In the early stages when particle sizes are determined,
the approximate values of prefactors read D0fP , DSfSS or DSfGS . Since fP = 0.038, while
fSS , fGS ≥ 0.3, the prefactors are one order of magnitude larger for the solvents than for the
polymer. Figure 6.6 (b) shows the same as (a) for a higher mean polymer volume fraction of
fP = 0.100 with a corresponding spinodal solvent composition ϕSpin = 0.248 at ϕSS = 0.30,
0.35, 0.40, 0.45, 0.50. For ϕSS ≥ 0.35 the deviations are less than 6% and the models also
agree. At ϕSS = 0.30, however, there is a significant deviation of up to 40%. As the distance
ϕSS−ϕSpin = 0.3−0.248 = 0.052 is comparable to its counterpart for the low volume fraction
in (a), 0.525 − 0.462 = 0.063, the deviation should not be caused by that distance. It most
likely originates from the fact that the selective solvent volume fraction is 0.3 while polymer
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Figure 6.6: Comparison of droplet sizes in a conventional three- and an effective two-component
system at fixed mean selective solvent volume fractions ϕSS . x(3) with x ∈ {R, lmax, l1} denotes
simulation results from the conventional three-component system and x(2) the results from the effective
two-component system. The left panel in (a) displays a direct comparison of simulation results for
fP = 0.038 at different ϕSS and the right panel shows the corresponding relative deviations, where
the dashed line represents the zero-axis. (b) shows the same for fP = 0.100. Simulation results are
averaged over five simulation runs with different random initial conditions with an amplitude of 0.001.
The remaining parameters are N = 14, χSS = 2 and χBS = 0.

volume fraction is 0.1. Therefore, their fluxes in the very early stages of phase separation
become comparable and the assumption of instantaneous solvent relaxation for fixed polymer
volume fraction profiles distorts the results.
As a consequence, the results from the present section confirm that an effective two-

component model is a reasonable approximation for incompressible and dilute polymer solu-
tions. As the polymer volume fractions in the experiments are very low (cp. fP = 0.004 in
subsection 5.3.5), effective two-component systems should be suited to describe the co-solvent
method at experimental conditions.
Note that the exclusive agreement in dilute solutions expresses the conceptual difference

between the assumption behind immediate solvent relaxation in effective two-component
systems and an adiabatic approximation like the Born Oppenheimer approximation. The
Born Oppenheimer approximation exploits the fact that the relaxation time of every single
electron is very low compared to time scales of nuclear motion. In the context of the present
work, an analogous adiabatic approximation would assume DGS , DSS � D0 = NDP , where
D0, DGS , and DSS are the diffusion coefficients of polymer, good, and selective solvent
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segments, respectively. Such an approximation implied single solvent segments to diffuse
much faster than monomers of a polymer chain and would also be valid in dense polymer
solutions. But since both solvent and polymer segments possess a comparable molecular
volume, it is approximately D0 = DGS = DSS in a local coupling model. The central
assumption behind model II reads ∂φGS

∂t , ∂φSS∂t �
∂φP
∂t . If D0 = DGS = DSS , that assumption

is only valid in dilute solutions with φGS , φSS � φP , because fluxes are proportional to D0φP ,
D0φGS , and D0φSS .

Model I has to be excluded from figure 6.6, because if the constant selective solvent volume
fractions ϕSS used in figure 6.6 are inserted into equation 5.21, the corresponding system
in model I is located outside the spinodal area for the most part. As a result, model I
disagrees with the other two models and χGS , χSS in equation 5.21 cannot be viewed as the
experimentally measurable interaction parameters of the components. Due to the qualitative
similarity of rate-size relations from model I and II, it might be possible to view them as
fit parameters and construct an approximate mapping to physical χ-parameters, but such a
mapping should be redundant when model II is already available.

6.6 Chapter summary and main conclusions

Section 6.1 shows that model I is equivalent to three-component dynamics with the con-
straint of spatially homogeneous solvent compositions φSS(~r,t)/φS(~r,t) = ϕSS(t)/(1−fP ). In gen-
eral, this constraint is, of course, unphysical because the percentage of good and selective
solvent in a real solvent mixture at a specific position depends on the local polymer vol-
ume fraction φP (~r, t). The homogeneous state at t = 0 satisfies the constraint because
(φSS(~r, 0), φS(~r, 0)) = (ϕSS(0), 1 − fP ) (except for an initial perturbation with a very small
amplitude), but the longer phase separation progresses the more inaccurate the constrained
dynamics of model I become. The reason why rate-size relations from model I still re-
flect qualitative characteristics of experimental data is most likely that particle sizes are
determined while composition fluctuations are low, i.e. close to homogeneous states with
φSS(~r, t) ≈ ϕSS(t), where the constraint is not strictly valid but apparently not yet inaccu-
rate enough to cause a complete misrepresentation of experimentally observed trends. As a
result, the possibility to capture experimental trends by φP -independent solvent conditions
may be viewed as another indication that the response of early stage coarsening to solvent
mixing constitutes the dominating determinant in the co-solvent method. The strength of
model I is the illustrative interpretation to the working principle of size-controlled assembly
but not a realistic description of solvent mixing.
In section 6.2 we refine the description of solvent mixing by developing a phenomenological

effective two-component model, called model II, that accounts for φP (~r)-dependent solvent
compositions. The φP (~r)-dependence is implemented by algebraically specifying a relative
chemical potential µs of solvents in equilibrium with fixed polymer volume fraction profiles.
In sections 6.3 and 6.4 we apply model II to estimate the general effect of spatially varying
solvent conditions on rate-size relations. The characteristic attribution of rate-size relations
from model II is found to be qualitatively identical to model I, a perturbation analysis in
subsection 6.3.3 verifies that droplet sizes are still determined during the very early stages of
phase separation, and the response to variations in temperature or the mean polymer volume
fraction is also very similar. The main difference between rate-size relations from model



129

I and model II is of quantitative nature: while the perturbation theory for model I with
linear mixing profiles always predicts scaling laws R ∝ s−1/6 in the non-asymptotic regime,
the effective exponents predicted by the perturbation theory for model II depend on the
choice of physical parameters. Consequently, spatially varying solvent conditions introduce
degrees of freedom that describe a deviation of exponents from −1/6, which also appears in
experiments (cp. figure 1.3). In section 6.5 the canonical version of model II is shown to
agree with conventional incompressible three-component dynamics in dilute polymer solutions
(cp. figure 6.6). This agreement constitutes the most crucial improvement of model II in
comparison to model I.
The advantage of model II over conventional three-component models is the mathematical

structure of its coupling interface for solvent mixing. While conventional three-component
dynamics would require the specification of potentially complicated source terms or Neumann
conditions at the boundaries of a fluid element, model II simply replaces the algebraic coupling
interface from model I (equation 5.21) by another one (cp. equation 6.41) without introducing
any significant additional computational cost. That means, the only differential equation in
model II is nothing but a Cahn-Hilliard equation with periodic boundary conditions and the
solvent mixing process – including its dependence on micromixer geometries and flow rates
– is still completely incorporated into an algebraic relation for the interaction term in the
free energy. Hence, compared to conventional three-component dynamics, our approach leads
to a much easier handling of solvent mixing from a mathematical point of view as principal
results (e.g. the application of a perturbation theory) and numerical integrators can be
directly transferred from model I. On top of that, the already existing unconditionally stable
numerical integration schemes for the Cahn-Hilliard equation like the one from Vollmayr-
Lee and Rutenberg [136] should be applicable as well. The numerical implementation of
model II should be generally even more robust than the implementation of conventional
three-component dynamics in dilute solutions. In conventional three-component dynamics
the width of time steps in explicit or semi-implicit integration schemes is limited by the
stability conditions for the differential equations describing the fast solvent motion, whereas
in model II time steps can be chosen on scales of the slow polymer motion because the fast
solvent motion only appears as an algebraic relation. For these reasons, model II constitutes
probably one of the computationally most efficient multiscale implementations to describe
size-controlled assembly with a φP (~r)-dependent solvent quality.
As concepts from equilibrium thermodynamics are applied to derive model II, the concomi-

tant refinement of solvent mixing should be exclusive to continuum theories, which demon-
strates another advantage of continuum models over particle models when it comes to the
description of size-controlled assembly.
In essence, model II combines the advantages of model I with spatially varying solvent

conditions that agree with conventional three-component dynamics. However, the agreement
only holds in incompressible dilute polymer solutions. Since incompressible dilute solutions
correspond to experimental conditions of the co-solvent method and since the implementation
of solvent mixing for CPMM-profiles reproduces experimentally observed trends as well (cp.
figure 6.5 b), effective two-component models like model II1 might be a promising foundation
for potential quantitative descriptions of size-controlled assembly on realistic time scales of
1Probably with additional |∇φGS |2-, |∇φSS |2-, or χSφSSφGS-terms in the free energy F0 from equation 6.22.
χ-parameters may also depend on temperature and volume fractions as proposed by Wolf [153].
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solvent mixing. This finding is the final conclusion of chapter 6. Therefore, a logical next step
would be checking whether model II provides a sufficient accuracy by inserting experimen-
tally measured parameters and directly compare simulated droplet sizes to experimentally
determined particle sizes. But because a direct comparison would require experimental data
for homopolymers and corresponding input parameters which are both, unfortunately, not
available, we leave the quantitative comparison for potential future work. We also note that
the consistency of model II with conventional three-component dynamics was tested for only
two sets of physical input parameters, so a more detailed comparison could be subject to
future work as well.







PART III
CONTROLLED ASSEMBLY OF COPOLYMERS: SCF-EPD

MODELS

Preliminary Remark

We have not mentioned it up to this point, but there is yet another important attribute of
drug delivery systems: their morphology. Like the particle size, the morphology is affected by
solvent mixing [22, 23]. However, while experimentally observed trends for particle sizes in
diblock-copolymer solutions (cp. figure 1.3) are found to be reproduced by the homopolymer
models from part II, complex morphologies cannot be captured by these models. To include
the effect of solvent mixing on particle morphologies into our investigations, we have to couple
solvent mixing into a more elaborate field theory and drop the restriction to homopolymers.
To this end, in part III the dynamics of phase separation is described by combining the

Self Consistent Field Theory (SCF) for a diblock-copolymer solution with External Potential
Dynamics (EPD). This combination will be refered to as the SCF-EPD equations in the
following. It has been successfully applied to study spontaneous self-assembly of copolymers
[88, 89] and is not only able to capture various particle morphologies but also introduces a
steric stabilization of nanoparticles [88]. Therefore, we do not need to employ an artificial
stabilization method like in model I and II but can simulate stable particles instead of just
droplets. In addition, the SCF-EPD model eliminates some technical assumptions from part
II, namely local kinetic coupling and the utilization of a Flory-Huggins-de Gennes free energy
functional. The validity of the SCF model is not restricted to low fluctuation amplitudes. To
describe solvent mixing we apply time dependent interaction parameters in the first place since
they are easy to implement and because we learned in part II that the qualitative behavior of
simulation results is similar to the results obtained from time dependent chemical potentials.
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Chapter 7
A numerical scheme to handle the stiffness

of the SCF-EPD equations

Although inserting time dependent interaction parameters into the SCF-EPD equations is
easy, finding a numerical implementation that enables a satisfactory evaluation turned out to
be rather non-trivial. In the present chapter we are going to study occurring numerical prob-
lems and develop an appropriate implementation before the simulation results are presented
in chapter 8.

7.1 The SCF-EPD equations for a diblock-copolymer solution

This section briefly recapitulates the SCF-EPD equations from He and Schmid [88]. In
the process, a canonical ensemble of volume V containing a solvent S and an AB-diblock-
copolymer P at temperature T is considered. Each polymer molecule is a Gaussian chain
composed of N monomers spread over the two different blocks labeled by A and B with
identical Kuhn lengths b. nA and nB represent the total number of A- and B-monomers in the
system, whileNA andNB denote their number per polymer chain. nS and nP = (nA+nB)/N are
the total number of solvent and polymer molecules, respectively. In the following, fS and fP
are the mean number fractions of solvent molecules and polymer monomers, i.e. fS = nS/n

and fP = NnP/n with n = nS + NnP . If solvent molecules and monomers are attributed
identical elementary volumes ν like in section 5.1, fS and fP can also be interpreted as
volume fractions of molecules because

fS = nS
n

= ν

ν

nS
n

= VS
V

and fP = NnP
n

= ν

ν

NnP
n

= VP
V
. (7.1)

Defining the set of component indices C := {A,B, S}, φi with i ∈ C is introduced as a
normalized number density,

φi(~r) = ρi(~r)
ρ0

where ρ0 = n

V
= 1
ν
. (7.2)

In case the interaction potential between monomers is given by

βU [φA, φB, φS ] = ρ0

∫
V

[
χABφA(~r)φB(~r) + χASφA(~r)φS(~r) + χBSφB(~r)φS(~r)
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+κH
2
(
φA(~r) + φB(~r) + φS(~r)− 1

)2
]
d~r, (7.3)

the SCF free energy functional F can be expressed as

1
n
βF = −fS ln

(
QS
V fS

)
− fP
N

ln
(
QPN

V fP

)
+ 1
V

∫
V

[
− ωAφA − ωBφB − ωSφS

+χABφAφB + χASφAφS + χBSφBφS + κH
2 (φA + φB + φS − 1)2

]
d~r. (7.4)

βF corresponds to βF from equation 2.29 except for an additive constant. χij are the Flory-
Huggins interaction parameters between monomers of type i and j, κH is the compressive
modulus [91], QS =

∫
V e
−ωS(~r) d~r the partition function of a solvent molecule in an external

potential ωS , and QP =
∫
V g(~r, 1)d~r the partition function of a single Gaussian polymer chain

exposed to ωA and ωB. The end-segment distribution function g(~r, s) is obtained by solving
the diffusion equation

∂g

∂s
(~r, s) = ∆g(~r, s)−Nω(~r)g(~r, s) with g(~r, 0) = 1 and ω =

ωA, 0 < s < cA

ωB, cA < s < 1
, (7.5)

where s ∈ [0, 1] is the contour variable along a polymer backbone normalized by N , while
the spatial coordinate ~r is given in units of the polymer’s radius of gyration Rg = b

√
N/6.

cA = NA/N represents the fraction of A-monomers in a polymer chain, and analogously one
can define cB = NB/N = 1− cA as the fraction of B-monomers. In combination with g′(~r, s),
which also satisfies equation 7.5 with

ω =

ωB, 0 < s < cB

ωA, cB < s < 1
, (7.6)

the densities for specified {ωA, ωB, ωS} are calculated by

φA(~r)[ωA] = V fP
QP

∫ cA

0
g(~r, s)g′(~r, 1− s) ds, (7.7)

φB(~r)[ωB] = V fP
QP

∫ 1

cA

g(~r, s)g′(~r, 1− s) ds, (7.8)

and
φS(~r)[ωS ] = V fS

QS
e−ωS(~r) (7.9)

in accordance to subsection 2.2.2. The dynamical equations for the potential fields read

∂ωi
∂t

(~r, t) = −Di∆
( 1
ρ0

δβF [φA[ωA(·, t)], φB[ωB(·, t)], φS [ωS(·, t)]]
δφi(~r)

+ ηi(~r, t)
)

with i ∈ C

and Di =

DP = D0/N, i = A,B

DS = D0, i = S
(7.10)

(cp. equation 2.73), where D0 is a segment diffusion coefficient. As already mentioned at the
end of subsection 2.2.4, the random noise ηi that fulfills the fluctuation dissipation theorem
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is usually substituted by a simpler expression in External Potential Dynamics. In reference
[88] it is

〈ηi(~r, t)〉 = 0〈
ηi(~r, t)ηj(~r′, t′)

〉
= εδijδ(t− t′)δ(~r − ~r′), (7.11)

which should be only applied in non-equilibrium situations when the exact expression of a
noise term is not essential. ε is an amplitude in m3sec. Keeping in mind that

QP = QP [ωA[φA], ωB[φB]] , QS = QS [ωS [φS ]] , (7.12)

φi = − 1
ρ0

nP
QP

δQP
δωi

for i = A,B, φS = − 1
ρ0

nS
QS

δQS
δωS

, (7.13)

and applying the variational chain rule, the functional derivatives of F [φA, φB, φS ] at fixed
fP , fS , and n become

1
ρ0

δβF [φA, φB, φS ]
δφA

= χABφB + χASφS + κH (φA + φB + φS − 1)− ωA, (7.14)

1
ρ0

δβF [φA, φB, φS ]
δφB

= χABφA + χBSφS + κH(φA + φB + φS − 1)− ωB, (7.15)

1
ρ0

δβF [φA, φB, φS ]
φS

= χASφA + χBSφB + κH(φA + φB + φS − 1)− ωS . (7.16)

Inserting φi[ωi] from equations 7.7, 7.8, and 7.9 into the variational derivatives from equations
7.14, 7.15, and 7.16 closes equation 7.10. Together with equation 7.5, the equations in the
last sentence constitute the SCF-EPD equations.

Initial conditions are chosen to be randomly perturbed homogeneous potentials ωi for i ∈ C,
and equation 7.10 is solved numerically by algorithms based on the following sequence. First,
g and g′ are determined from the diffusion equation 7.5 for given ω, and then the densities φi
are calculated by means of equation 7.7 – 7.9. The specification of φ finally allows to update
the potentials via equation 7.10. This procedure is repeated at every time step. Independent
physical parameters in the model are fP , NA, NB, χAB, χAS , χBS , κH , and D0. The spinodal
line is calculated with the Flory-Huggins approximation FFH(fP , fS) of F , which is obtained
by insertion of the homogeneous state into equation 7.4. After insertion of fA = cAfP ,
fB = cBfP , and fS = 1− fP the spinodal line is given by

0 = ∂2FFH
∂f2

P

= 1
2NcBfP

+ 1
2cB(1− fP ) + χABcA − χAS

cA
cB
− χBS . (7.17)

We implement solvent mixing into the SCF-EPD equations by inserting time dependent
interaction parameters

χiS = χiGS + χiSS − χiGS
1− fP

ϕSS(t), (7.18)

where ϕSS denotes the mixing profiles from part II and i = A,B. χiGS or χiSS refers to the
interaction between i-monomers and the good or selective solvent, respectively.
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7.2 Numerical instabilities in the conventional scheme

Since equations from He and Schmid [88] are applied, it is also natural to adopt their numerical
integrators in the first instance. But when simulations with these integrators are performed,
it becomes quickly evident that there is a wide range of physical parameters where the width
of applicable time steps is dictated by numerical stability rather than desired accuracy. For
the sake of terminological convenience we are going to refer to the integrators from reference
[88] as the conventional scheme, because they are also used in further studies, e.g. reference
[89], and because we do not know of any preceding attempts to address its stability issues.
The conventional scheme is described in subsection 7.2.1 and subsection 7.2.2 characterizes

the associated numerical instabilities. The characterization is done exemplarily with two
simulation runs and includes discussing which physical parameters produce instabilities, why
we want to choose such parameters in the context of the present work, and what distinctive
properties the instabilities possess. These considerations motivate the development of a new
scheme in subsection 7.3.1 that allows three orders of magnitude larger step sizes

7.2.1 The conventional scheme

The conventional scheme comprises three integrators. One to solve equation 7.5 for g and g′,
one to approximate the integrals in equations 7.7 – 7.9, and one to determine the potential
fields ωi via equation 7.10 for all i ∈ C.
Equation 7.5 is solved with a pseudo spectral method proposed by Tzeremes et al. [162].

Like in section 5.2 periodic boundary conditions in a d-dimensional spatial domain [0, L1)×
... × [0, Ld) are directly implemented by approximating unknown functions f with trigono-
metric interpolation polynomials

p[f ](~r, s) =
∑
~k∈K

f̂(~k, s)ei~k·~r. (7.19)

The short hand notations ~k = (k1, ..., kd)T and

K =
{2π
L1

(
−n1

2 + 1
)
, ...,

2π
L1

n1
2

}
× ...×

{2π
Ld

(
−nd2 + 1

)
, ...,

2π
Ld

nd
2

}
(7.20)

are hereby repeated for the sake of reading comfort. n1, ..., nd ∈ N are even numbers and the
spatial domain is again discretized intom = n1×...×nd grid points, so the field (f̂(~k, s))~k∈K is
the discrete Fourier transform of (f(~ri, s))i=0,...,m−1. If both fields are arranged in respective
m-dimensional vectors f(s) = (f(~r0, s), ..., f(~rm−1, s))T and f̂(s), for instance in lexicographic
order, the linearity of the discrete Fourier transformation implies that there exists a matrixW
such that f̂(s) = Wf(s). In the present case the unknown functions are g and ωg. Employing
the corresponding interpolation polynomials with f = g and f = ωg in equation 7.5 yields

∂

∂s
ĝ(~k, s) = −|~k|2ĝ(~k, s)−Nω̂g(~k, s) (7.21)

or equivalently in matrix-vector notation

∂

∂s
ĝ(s) = −Kĝ(s)−NWωg(s) = −Kĝ(s)−NWΩg(s). (7.22)
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K is a diagonal matrix with the values of |~k|2 as nonzero entries and Ω = diag(ω(~r0), ..., ω(~rm−1)).
The matrix-vector notation can be cast into the form

∂

∂s
ĝ(s) = −Kĝ(s)−NWΩW−1Wg(s) =

[
−K −W (NΩ)W−1

]
ĝ(s), (7.23)

and if the s-axis is discretized into intervals of length ds, the exact solution ĝ(s+ds) for given
ĝ(s) reads

ĝ(s+ ds) = e[−K−W (NΩ)W−1]ds ĝ(s). (7.24)

Rewriting the matrix exponential to

e[−K−W (NΩ)W−1]ds = e−W (NΩ)W−1ds/2−Kds−W (NΩ)W−1ds/2 (7.25)

and a twofold application of the Baker-Hausdorff identity leads to the approximation

e−W (NΩ)W−1ds/2−Kds−W (NΩ)W−1ds/2 = e−W (NΩ)W−1ds/2e−Kdse−W (NΩ)W−1ds/2 (7.26)

with a truncation error O(ds3) in the exponent [162]. Because the Fourier matrix W is
invertible it can be extracted from the exponents to arrive at

ĝ(s+ ds) = We−NΩds/2W−1e−KdsWe−NΩds/2W−1 ĝ(s)

⇔ g(s+ ds) = e−NΩds/2W−1e−KdsWe−NΩds/2 g(s). (7.27)

Expressing the m-dimensional vectors by their corresponding fields, re-substituting W mul-
tiplications by the discrete Fourier transformation F and remembering that K and Ω are
diagonal yields an update rule for g at every ~ri and s, which is

g(~ri, s+ ds) = e−Nω(~ri)ds/2F−1
~ri

[(
e−|

~k|2dsF~k
[(
e−Nω(~ri)ds/2g(~ri, s)

)
i=0,...,m−1

])
~k∈K

]
. (7.28)

F−1
~ri

denotes the inverse discrete Fourier transform evaluated at position ~ri in the coordinate
space and F~k is the discrete Fourier transform evaluated at position ~k in the wave number
space. This scheme is also used to update g′ with the corresponding adaptation of ω (cp.
equation 7.6).

Integrals in equations 7.7 – 7.9 are calculated by a standard Euler method. The discretized
monomer densities read

φj(~r) = V fP
QP

∑
i∈Sj

g(~r, i ds)g′(~r, 1− i ds)ds for j = A,B (7.29)

with

SA = {i : 0 < i ds < cA} ⊂ N, SB = {i : cA < i ds < 1} ⊂ N, ds = 1/N. (7.30)

The discretized partition functions are

QP =
∑
i

g(~ri, 1)∆ld and QS =
∑
i

e−ωS(~ri)∆ld, (7.31)
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where the sum over i covers all lattice points of the spatial grid. Therefore, it is

φj(~r) = fPm∑
i g(~ri)

∑
i∈Sj

g(~r, i ds)g′(~r, 1− i ds)ds for j = A,B (7.32)

and
φS(~r) = fSm∑

i e
−ωS(~ri)

e−ωS(~r) (7.33)

at all grid point positions ~r.
Equation 7.10 is solved with a pseudo spectral method similar to the evolution equations

from model I and II. If the variational derivatives of the free energy are cast into the form

1
ρ0

δβF [φA, φB, φS ]
δφi

= F̃i − ωi for i ∈ C (7.34)

the evolution equations for the potential fields become

∂ωi
∂t

= −Di∆
(
F̃i + ηi

)
+Di∆ωi, (7.35)

and insertion of trigonometric interpolation polynomials for ωi and F̃i+ηi immediately yields

∂ω̂i
∂t

(~k, t) = Di|~k|2F~k
[(
F̃i(~rj , t) + ηi(~rj , t)

)
j=0,...,m−1

]
−Di|~k|2ω̂i(~k, t). (7.36)

Integrating in time and approximating the integral of the last term on the right hand side
by an implicit Euler formula and the integral of the first with an explicit one yields the first
order time accurate update scheme

ω̂
(n+1)
i (~k) = ω̂

(n)
i (~k)

1 + hDi|~k|2
+ hDi|~k|2

1 + hDi|~k|2
F~k
[(
F̃

(n)
i (~rj) + η

(n)
i (~rj)

)
j=0,...,m−1

]
(7.37)

with
ω

(n+1)
i (~rj) = F−1

~rj

[(
ω̂

(n+1)
i (~k)

)
~k∈K

]
, (7.38)

where h is the with of a time step and x(n) the numerical approximation to x(·, tn) for
x ∈

{
ω, ω̂, F̃i, ηi

}
. Equations 7.28, 7.32, 7.33, and 7.38 constitute the conventional scheme.

If the time integral of the first term on the right hand side in equation 7.36 is approximated
with an Adams-Bashforth method and the integral over the second summand by an Adams-
Moulton method (cp. equations 5.39 and 5.40), the corresponding second order time accurate
integrator in Fourier space reads

ω̂
(n+1)
i (~k) = 2−Di|~k|2h

2 +Di|~k|2h
ω̂

(n)
i (~k)

+ Di|~k|2h
2 +Di|~k|2h

F~k
[(

3(F̃ (n)
i (~rj) + η

(n)
i (~rj))− (F̃ (n−1)

i (~rj) + η
(n−1)
i (~rj))

)
j=0,...,m−1

]
. (7.39)

This update rule is not part of the conventional scheme. But as a second order time accurate
pseudo spectral method it possesses the lowest truncation errors of all integrators in the
present chapter and will be used as a reference when we discuss numerical approximation
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errors in subsection 7.3.3.

7.2.2 Characterization of numerical instabilities

The conventional scheme has been used for extensive parameter studies by He and Schmid
[88, 89]. Their choices of physical parameters prove sufficient to simulate a variety of particle
morphologies and both pathways of vesicle formation, but restrict to rather low solvent-
phobic interactions χBS and low compressive moduli κH . In this context, ’low’ refers to χ-
parameters close to their spinodal values and κH not being much larger than 1. As polymer
solutions typically possess extremely high compressive moduli, it would be preferable to
perform simulations with a κH -value that is large enough to keep the sum φA(~r, t)+φB(~r, t)+
φS(~r, t) very close to 1 at any (~r, t). In the simulations from reference [88], for example,
this is clearly not the case as already normalized densities of the solvent-phobic block alone
peak at values of approximately 1.3. Additionally, an implementation of solvent mixing
requires at least the interaction of the solvent-phobic block to increase. Due to the analogous
implementation of solvent mixing to model I we already know that the size of particles in
the limit of infinitely fast solvent mixing corresponds to the size of particles at a constant
interaction parameter χBS(t) = χ

(max)
BS . So to allow a satisfactory evaluation of rate-size

relations, χ(max)
BS should be large enough for the non-asymptotic regime to extend over several

decades of quench rates.
Applying sufficiently large compressive moduli or solvent-phobic interactions, however,

creates complications with the conventional scheme. Given an arbitrary parameter set from
He and Schmid [88, 89] as a reference, the sole increase of either χBS or κH produces a
different respective numerical artifact with distinctive features. In the present subsection
these features are exemplarily characterized using the set of physical parameters in table 7.1
as the reference. For this parameter set, the conventional scheme is numerically stable on
a two-dimensional spatial grid of size m = 256 × 256 with a lattice constant ∆l = 0.25, a
polymer chain discretization step ds = 1/N, and a time step h = 0.005. In the following,
instabilities are provoked by variation of κH and χBS at constant step and lattice sizes. Since
a qualitative analysis will be sufficient to identify the source of instabilities and to enable
their compensation, we consider a mathematically rigorous stability analysis to go beyond
the scope of the present work.
The numerical artifact that appears if the compressive modulus in the reference set is

increased to κH = 5, for instance, is illustrated in figure 7.1. Figure 7.1 shows only density
profiles φB, but φA, φS , and ωi for i ∈ C look practically identical: the numerical artifact
develops rapidly within 10 time steps and is characterized by the global appearance of a
’chessboard pattern’ as depicted in the magnification at n = 10. It amplifies quickly and
the simulation run aborts at n = 14 because density values exceed double precision limits.
The unphysical alternation of densities and potential fields from grid point to grid point (a
grid point corresponds to a pixel in the rightmost snapshot of 7.1) implies the artifact to

Parameter fP NA NB χAB χAS χBS κH DP DS

Value 0.1 2 15 1.05 0.0375 1.2 1.176 1/N 1

Table 7.1: Reference set of physical parameters for the SCF-EPD model taken from [88].
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Figure 7.1: Color coded density profile φ(n)
B at two different time steps n = 1 and n = 10, simulated

with the conventional scheme for the SCF-EPD equations to illustrate κ-instabilities. The compressive
modulus is κH = 5 and the remaining physical parameters were taken from table 7.1. The snapshot
on the right hand side is a magnification of a section with size 50× 50 at n = 10.

be caused by the modes with the largest wave numbers. Since κH is only present in the
evolution equation for the potential fields as a prefactor of a Laplacian and since modes
with the largest wave numbers are typically the most rapidly varying ones in diffusion type
problems, the chessboard pattern is clearly a manifestation of a stiffness instability originating
from the update scheme for the potential fields given by equation 7.37. Because the instability
was triggered by an increase of κH , we term it κ-instability. The same stiffness instabilities
also appear if the resolution is increased by decreasing the lattice constant ∆l. Conveniently
avoiding κ-instabilities by restriction to low κH -values was reasonable in references [88] and
[89], but if controlled assembly is considered, such a workaround can become problematic
due to a second instability that appears when low compressive moduli are combined with
moderate interaction parameters.

The characterization of this second instability type also starts from the parameter set in
table 7.1. The corresponding value of the spinodal solvent-phobic interaction reads χ(Spin)

BS =
1.081 according to equation 7.17. Thus, χBS = 1.2 in table 7.1 is quite close to the spinodal
line, rendering the particular quench depth χBS − χ(Spin)

BS = 0.119 to be rather low. Ideally,
a maximum quench depth of 1 as employed in model I would be desirable because it already
proved to produce sufficiently large extensions of the non-asymptotic regime. But if only
the solvent-phobic interaction in table 7.1 is increased to χBS = 1.4, numerical instabilities
appear in a simulation run. Consequently, the conventional scheme allows only a maximum
quench depth of roughly 1.3−1.08 = 0.22, which is four to five times smaller than the desired
value 1. The development of the second instability fundamentally differs from κ-instabilities
and is shown in figure 7.2. In contrast to the artifact associated with κ-instabilities, this
one appears much later, when polymer aggregates with well defined interfaces have already
formed. It is also not characterized by a the appearance of a global chessboard pattern but
a local one restricted to the white-framed regions in figure 7.2. Figure 7.2 does not only
illustrate the numerical artifact but it also provides necessary information to track its origin.
First, the artifact is very pronounced at n = 61935 for φ(n)

S in (b), while it is not visible for
φ

(n)
B at the same time step. If we looked into the density profile for φ(n)

A (not shown) there
is also no visible artifact. The fact that the numerical artifact first appears in the density
profile of the solvent indicates that it is not generated by the iteration along a polymer chain
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Figure 7.2: Color coded density profiles simulated with the conventional scheme for the SCF-EPD
equations to illustrate φ-instabilities. Physical parameters are given in table 7.1 except that χBS = 1.4.
(a) shows the density profile of the solvent-phobic block φ(n)

B at different time steps n. At n = 61940
there is a weak local chessboard-patterned numerical artifact between two regions of high polymer
density, which is magnified in the inset. One time step later (not shown) it is amplified to φB-values
of over 4000 and two time steps later it exceeds double precision limits. The numerical artifact is not
visible at earlier time steps. (b) shows the solvent density profile φ(n)

S at n = 61920 on the left and
n = 61935 on the right. The white framed regions are magnified in between and it is evident that a
numerical artifact appears in regions of high solvent densities.

in equation 7.28, but has to be caused by the numerical scheme for the evolution equation
of the potential fields as well – most probably by the update scheme for ωS because due to
the larger diffusion coefficient, DS = NDP , the evolution equation for ωS requires the lowest
step widths to be stable and thus sets the stability constraint for the whole system. Second,
the numerical artifact is characterized by alternating colors in each pixel, which is a clear
indication for stiffness instabilities as discussed in the context of κ-instabilities. Third, the
artifact appears exactly in the region with the highest solvent density, which is seen by a
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comparison of the magnified parts in figure 7.2 (b). Due to the correlation to high densities
we are going to refer to it as a φ-instability. Compendiously, a φ-instability is a stiffness
instability that is coupled to locally high densities and caused by the update scheme from
equation 7.37. The connection of this instability to large local densities of a component is
also supported by its behavior observed in several other simulation runs. If the system size
is decreased sufficiently enough, it vanishes and simulations are stable. In this case, it does
not matter if the number of grid points or the lattice constant is reduced (as long as the
reduction of ∆l does not lead to another stiffness instability). Keeping the overall volume
fraction of components constant results in a diminishing amount of molecules in the system
when its size is decreased, and decreasing the total amount of molecules results in lower peak
values of φi, which do not trigger the instability. Vice versa, an increase of the system size
favors φ-instabilities. For example, by decreasing the lattice constant to ∆l = 1/3, which is
the original value in references [88] and [89], the φ-instability already appears at χBS = 1.3.

The current subsection demonstrates that the conventional scheme is not well suited to
deal with large compressive moduli due to κ-instabilities or large interaction parameters due
to φ-instabilities. We should emphasize though that the time step was fixed at h = 0.005.
It was not discussed how much it has to be decreased to perform stable simulations and
how long they take. Such a discussion is provided in subsection 7.3.2 where the new scheme
developed in the next section is directly compared to the conventional one.

7.3 A semi-implicit integrator for the potential field equations

7.3.1 Update rule and implementation

Because both κ- and φ-instabilities are caused by the update rule for the potential fields, the
aim of the present subsection is to find a numerically robust alternative for equation 7.37.
The dynamical equations 7.10 can be written as

ωi(tn+1)− ωi(tn) = −Di

∫ tn+1

tn

∑
j∈Ci

[(χij + κH) ∆φj ] + κH∆φi −∆ωi + ∆ηi

 dt, (7.40)

where Ci := C \ {i} for i = A,B, S. As mentioned in section 5.2, a procedure to deal with
stiffness in diffusion-type equations is to apply a numerical scheme where Laplacian-terms are
approximated by implicit quadrature rules. In the simple example from equation 5.23 both
the explicit and the implicit method can be algebraically inverted to obtain an expression
for φ̂(n+1). As a result, the implicit scheme extends the stability region without significant
additional computational cost when the integrator is implemented into a computer program.
This is also true for the solvers of model I and II as well as the conventional scheme, where
only ∆ωi is treated implicitly.
To gain a stabilization against κ- and φ-instabilities, implicit quadrature rules for terms

involving a χ-parameter or κH on the right hand side of equation 7.40 are necessary. A
direct implicit quadrature without further modification of equation 7.40 is of course possible,
e.g. by an Euler Backward or a Crank-Nicholson method, but would introduce φA(tn+1) and
φB(tn+1). As φA and φB are integrals of g and g′, which are in turn solutions to a diffusion
equation with an inhomogeneity Ngω (cp. equation 7.5), the resulting equations for the nu-
merical approximations to g(~rj , s, tn+1), g′(~rj , s, tn+1), φi(~rj , tn+1) and ωi(~rj , tn+1) could not
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be solved independently from one another. Since an algebraic inversion of a large nonlinear
system of discretized integro-differential equations is not possible in general, one had to per-
form a numerical inversion with an iterative solver like Newton’s method at any time step.
Iterative methods add another layer of complexity to the problem, because implicit treat-
ments might improve stability and allow faster simulations by virtue of larger step sizes on
the one hand, but on the other hand their costly implementation also increases computation
times per step. As a new numerical scheme would be useless if the additional computational
cost outweighs the speedup of simulations gained by increasing step sizes within a desired
accuracy for truncation errors, we do not only need to extend the stability region of the
integrator for the potential fields but we also need find one with a possibly efficient imple-
mentation. Since the computational cost of iterative methods decreases with diminishing
dimension of the system of equations they are applied to and since we cannot exclude the
possibility to use such a method from the outset (it will actually turn out that we need one),
a good starting point to find an efficient scheme should be trying to handle the stiffness of the
potential field equations without touching the other integrators in the conventional scheme.
By doing so, an iterative scheme is used to find only the 3m unknowns ω(n+1)

i (~rj) for all i ∈ C
and j = 0, ...,m−1 instead of the (6+2N)m unknowns g(n+1)(~rj , s), g′(n+1)(~rj , s), φ(n+1)

i (~rj)
and ω

(n+1)
i (~rj) for all i ∈ C, j = 0, ...,m − 1 and discretized positions s along the polymer

chain with N monomers of distance ds = 1/N. This strategy involves a slight modification of
equation 7.40 to prepare it for a semi-implicit integrator.

To this end, explicit ω-dependencies are extracted from all ∆φi. ∆φS can be expressed
exactly in terms of ωS by means of equation 7.9. This leads to

∆φS(~r) =
3∑
i=1

∂2

∂r2
i

[
V fS
QS

e−ωS(~r)
]

= V fS
QS

e−ωS(~r)
[ 3∑
i=1

(
∂ωS
∂ri

(~r)
)2
−

3∑
i=1

∂2ωS
∂r2

i

(~r)
]

= φS(~r) [∇ωS(~r)]2 − φS(~r)∆ωS(~r), (7.41)

which shows that κH∆φS , for instance, contributes a term κHφS∆ωS to the right hand side of
equation 7.40. The mathematical structure of this term matches the phenomenological char-
acterization of the numerical artifacts associated with φ- and κ-instabilities. If the Laplacian
is discretized, it becomes

κHφS(~r)∆ωS(~r) 7→ κHφS(~rj)
∆l2 δωS(~rj), (7.42)

where δωS(~rj) is a short hand notation for the sum over nearest neighbors in the discrete
Laplacian operator. As both κH and φS(~rj) are prefactors of δωS , their enhancement di-
rectly shrinks stability regions in the same manner as a decrease of ∆l does. Because κH is
independent from the position ~rj it induces global instabilities, while φS(~rj) provokes local
instabilities only at positions where the solvent density is high. The same argumentation also
holds for the first term on the right hand side of equation 7.41, κHφS(∇ωS)2. The similarity
between the mathematical structure of its explicit ω-dependence and the exemplary charac-
terization of numerical artifacts from subsection 7.3.3 leads to the conclusion that ∆φS is a
leading stiffness contribution, which is responsible for κ- and φ-instabilities.

To extract analogous explicit ω-dependencies from ∆φA and ∆φB, the Feynman-Kac for-
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mula is applied. It states that the solution g of the inhomogeneous diffusion equation

∂g

∂s
(~r, s) = ∆g(~r, s)−Nω(~r)g(~r, s) (7.43)

can be recursively defined by

g[ω](~r, s) = e−dsNω(~r)
∫
RgΦ(Rg

(
~r − ~r ′

)
)g[ω](~r ′, s− ds)d~r ′, (7.44)

where Φ(~r) is the normalized bond transition probability for a Gaussian chain [103]. In the
following considerations neither the functional form of Φ nor the integral play a role and thus,
the short hand notation

I(~r, s) :=
∫
RgΦ(Rg

(
~r − ~r ′

)
)g[ω](~r ′, s− ds)d~r ′ ⇒ g[ω](~r, s) = e−dsNω(~r)I(~r, s) (7.45)

is used. Because
∆φi(~r) = V fP

QP
∆
∫
g(~r, s)g′(~r, 1− s)ds

= V fP
QP

∫
g′(~r, 1− s)∆g(~r, s) + 2∇g(~r, s) · ∇g′(~r, 1− s) + g(~r, s)∆g′(~r, 1− s) ds (7.46)

with proper integration limits for i = A,B like in equations 7.7 and 7.8, the first two deriva-
tives of g and g′ need to be calculated. They read

∂g

∂ri
(~r) = −e−dsNω(~r)I(~r, s)dsN ∂ω

∂ri
(~r) + e−dsNω(~r) ∂I

∂ri
(~r, s)

=: g(~r, s)
[
−dsN ∂ω

∂ri
(~r) +R

(1)
i (~r, s)

]
(7.47)

and
∂2g

∂r2
i

(~r, s) = e−dsNω(~r)I(~r, s)
[(
dsN

∂ω

∂ri
(~r)
)2
− dsN ∂2ω

∂r2
i

(~r)
]

−e−dsNω(~r)
[
2dsN ∂ω

∂ri
(~r) ∂I

∂ri
(~r, s)− ∂2I

∂r2
i

(~r, s)
]

=: g(~r, s)
[(
dsN

∂ω

∂ri
(~r)
)2
− dsN ∂2ω

∂r2
i

(~r)
]

+R
(2)
i (~r, s). (7.48)

The functions R(1)
i and R(2)

i for i = 1, 2, 3 are defined to include all the partial derivatives of
I with respect to ri. The above equations are also valid if g is substituted by g′ = e−dsNωI ′,
and the derivatives of the corresponding integral I ′ are then contained in R

(1)′
i and R

(2)′
i .

Summation of equation 7.48 over coordinate indices i leads to

∆g(~r, s) =
3∑
i=1

∂2g

∂r2
i

(~r, s) = g(~r, s)
[
(dsN∇ω(~r))2 − dsN∆ω(~r)

]
+R(2) (7.49)

with R(2) :=
∑3
i=1R

(2)
i . Defining R(1) = (R(1)

1 , R
(1)
2 , R

(1)
3 )T and analogously introducing R(1)′
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and R(2)′, insertion of ∆g, ∆g′, ∇g, and ∇g′ into equation 7.46 yields

∆φA(~r) = V fP
QP

{∫ cA

0

[
(dsN∇ωA(~r))2 − dsN∆ωA(~r)

]
g(~r, s)g′(~r, 1− s) +R(2)g′(~r, 1− s) ds

+
∫ cA

0
2g(~r, s)g′(~r, 1− s)

[
−dsN∇ωA +R(1)(~r, s)

]
·
[
−dsN∇ωA +R(1)′(~r, s)

]
ds

+
∫ cA

0
g(~r, s)g′(~r, 1− s)

[
(dsN∇ωA(~r))2 − dsN∆ωA(~r)

]
+ g(~r, s)R(2)′(~r, s) ds

}
. (7.50)

If all terms containing any R(1), R(2) or corresponding primed expressions are summarized
in one single remainder RA and s-independent terms are pulled out of the integrals, the
Laplacian of φA can be cast into the form

∆φA = φA
[
4 (dsN∇ωA)2 − 2dsN∆ωA

]
+RA. (7.51)

With analogous calculations ∆φB can be expressed as

∆φB = φB
[
4 (dsN∇ωB)2 − 2dsN∆ωB

]
+RB. (7.52)

Equations 7.51 and 7.52 reveal explicit ω-dependencies that affect the dynamical equations
in the same manner as κHφS∆ωS or κHφS(∇ωS)2 from equation 7.41. Therefore, we have
extracted additional stiffness terms that cause κ- and φ-instabilities.

The knowledge of explicit ω-dependencies is now used to construct a semi-implicit integra-
tor for the potential field equations without implicit treatments of φA and φB. In the process,
the right hand side of equation 7.40 is abbreviated by −Di

∫ tn+1
tn ∆µi dt and as we always set

ds = 1/N, dsN = 1 is assumed in the following for the sake of notational convenience. To
prepare the dynamical equations for a semi-implicit integrator we zero pad the right hand
side of equation 7.40 according to

ωA(tn+1)− ωA(tn) = −DP

∫ tn+1

tn
[∆µA + ∆ωA + c̃ABφBXB + c̃ASφSXS + κ̃HφAXA] dt

+DP

∫ tn+1

tn
[∆ωA + c̃ABφBXB + c̃ASφSXS + κ̃HφAXA] dt (7.53)

ωB(tn+1)− ωB(tn) = −DP

∫ tn+1

tn
[∆µB + ∆ωB + c̃ABφAXA + c̃BSφSXS + κ̃HφBXB] dt

+DP

∫ tn+1

tn
[∆ωB + c̃ABφAXA + c̃BSφSXS + κ̃HφBXB] dt (7.54)

ωS(tn+1)− ωS(tn) = −DS

∫ tn+1

tn
[∆µS + ∆ωS + c̃ASφAXA + c̃BSφBXB + κ̃HφSXS ] dt

+DS

∫ tn+1

tn
[∆ωS + c̃ASφAXA + c̃BSφBXB + κ̃HφSXS ] dt, (7.55)

where the short hand notations

Xi = 2∆ωi − βi4(∇ωi)2 for i = A,B, (7.56)

XS = ∆ωS − βS(∇ωS)2, (7.57)
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and c̃ij := ακκH + αijχij are applied. We call αij , βi, ακ ∈ [0, 1] damping-constants, which
can later be used to adjust the ’degree’ of the implicit treatment and to regulate truncation
errors. κ̃H is defined by κ̃H = ακκH .

The numerical scheme is obtained by approximating the integrals in equations 7.53 – 7.55
by quadrature rules. As the first integral on the respective right hand side contains the chem-
ical potential subtracted by the leading stiffness terms it is treated explicitly with an Euler
Forward formula. In the following, its explicit approximation at time step n is abbreviated
as E(n)

i with i = A,B, S. To approximate the second integral, we apply quadrature rules for
the products φiXi that do not involve φ(n+1)

i . Given two scalar functions f and g it is∫ tn+1

tn
f(t)g(t)dt = f(tn+1)g(tn+1)h+O(h2)

=
[
f(tn) + ∂f

∂t
(tn)h+O(h2)

]
g(tn+1)h+O(h2)

= f(tn)g(tn+1)h+ ∂f

∂t
(tn)g(tn+1)h2 +O(h2)g(tn+1)h+O(h2)

= f(tn)g(tn+1)h+O(h2), (7.58)

so ∫ tn+1

tn
φi∆ωi dt ≈ φ(n)∆ω(n+1)

i h (7.59)

and ∫ tn+1

tn
φi (∇ωi)2 dt ≈ φ(n)

i ∇ω
(n)
i · ∇ω(n+1)

i h (7.60)

are first order time accurate. As usual, the superscript (n) denotes the numerical approxima-
tion to a function evaluated at tn. The reason why the first gradient of the scalar product
in equation 7.60 is treated explicitly is because we want the resulting equations to be linear
in ω(n+1)

i . This enables the application of different solvers for linear systems, which typically
are more efficiently to implement than non-linear solvers. Insertion of the above quadrature
rules into equations 7.53 – 7.55 leads to the new semi-implicit update rule in its most general
form: [

1− hDP

(
(1 + 2κ̃Hφ(n)

A )∆− 4βAκ̃Hφ(n)
A ∇ω

(n)
A · ∇

)]
ω

(n+1)
A

−
[
hDP c̃AB2φ(n)

B

(
∆− 2βB∇ω(n)

B · ∇
)]
ω

(n+1)
B

−
[
hDP c̃ASφ

(n)
S (∆− βS∇ω(n)

S · ∇)
]
ω

(n+1)
S = ω

(n)
A − hDPE

(n)
A , (7.61)

−
[
hDP c̃AB2φ(n)

A

(
∆− 2βA∇ω(n)

A · ∇
)]
ω

(n+1)
A

+
[
1− hDP

(
(1 + 2κ̃Hφ(n)

B )∆− 4βBκ̃Hφ(n)
B ∇ω

(n)
B · ∇

)]
ω

(n+1)
B

−
[
hDP c̃BSφ

(n)
S

(
∆− βS∇ω(n)

S · ∇
)]
ω

(n+1)
S = ω

(n)
B − hDPE

(n)
B , (7.62)

−
[
hDS c̃AS2φ(n)

A

(
∆− 2βA∇ω(n)

A · ∇
)]
ω

(n+1)
A

−
[
hDS c̃BS2φ(n)

B

(
∆− 2βB∇ω(n)

B · ∇
)]
ω

(n+1)
B
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+
[
1− hDS

(
(1 + κ̃Hφ

(n)
S )∆− βS κ̃Hφ(n)

S ∇ω
(n)
S · ∇

)]
ω

(n+1)
S = ω

(n)
S − hDSE

(n)
S . (7.63)

In Fourier space, products of numerical approximations x(n)(~r)y(n+1)(~r) can be calculated
via a convolution matrix. However, this matrix is dense while the products in the coordinate
space can be expressed by diagonal and thus sparse matrices. Therefore, calculations are
performed in the coordinate space and spatial derivatives are approximated by second order
central finite difference schemes with periodic boundary conditions instead of using a pseudo
spectral method. If equations 7.61, 7.62, and 7.63 are discretized on a grid with m grid points
at positions ~ri, i = 0, ...,m−1, they constitute a 3m-dimensional linear system for the vector

ω(n+1) :=(
ω

(n+1)
A (~r0), ..., ω(n+1)

A (~rm−1), ω(n+1)
B (~r0), ..., ω(n+1)

B (~rm−1), ω(n+1)
S (~r0), ..., ω(n+1)

S (~rm−1)
)T

.

Due to the complex structure of this system we did not write down its inversion by hand but
inverted it numerically.

The remainder of this subsection deals with the implementation of the update rule. At
every time step the set of equations is numerically solved with a generalized minimal residual
(GMRES) method [163], which is known to be efficient and robust. It is a Krylow subspace
iteration for linear systems with semi positive definite matrices and it is also especially con-
venient to implement because it does not explicitly require the matrix A of a linear system
Ax = b, but only matrix vector products, whose entries are formally given by the left hand
sides of equations 7.61 – 7.63. The entries ω(n+1,0)

i (~rj) of the starting vector for the Krylow
iteration at time step n+ 1 are set to

ω
(n+1,0)
i (~rj) = ω

(n)
i (~rj) + ω

(n)
i (~rj)− ω(n−1)

i (~rj)
h

h = 2ω(n)
i (~rj)− ω(n−1)

i (~rj) (7.64)

for all i = A,B, S and j = 0, ...,m− 1. With this choice, the iteration turns out to converge
a little bit faster than for ω(n+1,0)

i (~rj) = ω
(n)
i (~rj), but approximations by higher order Taylor

polynomials with backwards discretized temporal derivatives do not show any improvement.
Residuals decrease monotonically and if there were no round-off errors, the GMRES method
would yield the exact solution after 3m iterations. However, performing all 3m iterations in
each time step is computationally not feasible. In our particular implementation a Krylow
iteration is considered to have converged once the residual falls below 10−10 or the maximum
number of 50 iterative steps is reached. In case the residual is not below 10−8 after 50 steps,
we decrease the width of subsequent time steps by multiplication with 1/1.5. This adaptive
time stepping is introduced because the distance between the starting vector ω(n+1,0) and the
solution ω(n+1), i.e. the number of iterative steps in the Krylow space required to arrive at
a specific threshold for the residual, increases with the width of the time step h. As both an
increase in Krylow iterations and a decrease of step sizes enhance simulation times we decided
to prefer a decrease of h at fixed maximum iterative steps over an increase of iterative steps at
fixed h due to the additional reduction of truncation errors for diminishing h. The number of
Krylow iterations per time step at fixed h is also influenced by the variation of the ’demixing
speed’ during the phase separation. This variation is, for example, illustrated in figure 7.2
(a). It is evident that the maximum value of φB changes from 0.0884 to 0.1623 within the first
three pictures, which corresponds to a span of 40000 time steps and an increase in maximum
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densities of 0.1623− 0.0884 = 0.0739. From time step 50000 to 60000, the maximum density
increases by an approximately 23 times larger amount of 1.8939 − 0.1623 = 1.7316 within
10000 time steps. When densities change more rapidly, the potential fields also do. If time
steps were fixed the number of iterative steps in the GMRES method would grow significantly
between 50000 and 60000. So the adaptive time stepping usually reduces the width of time
steps when dynamics become fast at the end of spinodal decomposition. The performance
increase gained from ILU(0) preconditioning was also tested but it was found that the time
spent with the construction of precondition matrices typically outweighs the accompanied
(slight) performance gain by far.
Similar to section 5.2, the semi-implicit integrator introduces truncation errors that scale

with damping-constants. The added zeroes in equations 7.53 – 7.55 are still exact, e.g.
c̃ij
∫
φiXi dt− c̃ij

∫
φiXi dt = 0 for all i, j ∈ C. But after using different quadrature formulas

for subtrahend and minuend, they differ by a O(h2)-term, and then it is

0 = c̃ij

∫ tn+1

tn
φiXi dt− c̃ij

∫ tn+1

tn
φiXi dt

= c̃ij
(
φ

(n)
i X

(n)
i h+O(h2)− φ(n)

i X
(n+1)
i h−O(h2)

)
(7.65)

with the short hand notations

X
(n+1)
i := 2∆ω(n+1)

i − βi4∇ω(n)
i · ∇ω(n+1)

i for i = A,B (7.66)

and
X

(n+1)
S := ∆ω(n+1)

S − βS∇ω(n)
S · ∇ω(n+1)

S . (7.67)

Both truncation errors in equation 7.65 are of order h2 but they do not necessarily cancel, so

0 = c̃ij
(
φ

(n)
i X

(n)
i − φ(n)

i X
(n+1)
i

)
h+ c̃ijO(h2). (7.68)

To reduce contributions from c̃ijO(h2)-terms, it is best to keep the constants αij , βi and ακ
as low as possible. Equations 7.53 – 7.55 are the most general formulation of the semi-implicit
scheme. But because we aim to simulate systems with much higher compressive moduli than
interaction parameters only κH -terms are treated implicitly, i.e. we set αij = βi = 0 and
ακ = 0.5. If ακ is increased in steps of 0.1, ακ = 0.5 is the lowest value yielding a good
stability in test simulations with typical physical parameters we are going to apply. The next
subsection compares computation times of the particular implementation described above
and the conventional scheme.
We should note though that we used an implementation that worked well for all simulations

we have tested. This does not necessarily mean that the implementation is optimized. So
there might exist different values for αij , βi, and maximum Krylow iterations as well as
starting vectors, preconditioning techniques or even completely different methods to solve
the linear system of equations that could lead to larger simulation speedups.

7.3.2 Computation times

Replacing the update rule for the potential fields in the conventional scheme (equation 7.37)
by equations 7.61 – 7.63 extends stability regions for moderate χ-parameters at moderate
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compressive moduli and for high κH , meaning the semi-implicit integrator is more robust
against both φ- and κ-instabilities. In the following the resulting speedup of simulations is
demonstrated by means of representative examples. All simulations are performed on a two
dimensional grid of size 256 × 256 with a lattice constant ∆l = 1/3 and ds = 1/N. These
numerical parameters are taken from reference [88] except that the number of grid points is
increased from m = 220 × 220 to m = 256 × 256. Applied physical parameters are slight
modifications of table 7.1.

At first, the compressive modulus and the solvent-phobic interaction in table 7.1 are re-
placed by moderate values κH = 5 and χBS = 2 to investigate the stabilization against
φ-instabilities. If simulations are performed with the conventional scheme, a step size of
h = 0.002 will not produce a κ-instability but there eventually appears a φ-instability. This
instability is not eliminated even if time steps are decreased by a factor of 20 to h = 0.0001.
The actual value of h where the φ-instability disappears with the conventional scheme is
unknown. Because it takes excessive simulation time to arrive at φ-instabilities (cp. figure
7.2) with h < 0.0001, h = 0.0001 is used as an upper bound in the following considerations.
The semi-implicit integrator generates no instability at h = 0.002, and at that particular h
its GMRES implementation described in subsection 7.3.1 takes practically the same compu-
tation time per step as the conventional one. Thus, it allows a minimum speedup of a factor
20. In fact, the semi-implicit integrator develops neither a κ- nor a φ-instability even for
step sizes as large as h = 0.1. Compared to the conventional scheme, this does not neces-
sarily translate into 1000 times faster computation times though because the GMRES loses
efficiency with increasing step sizes. The two reasons for this non-ideal speedup behavior are
the already mentioned increasing amount of required Krylow iteration steps with increas-
ing h and the adaptive time stepping, which might decrease h during the simulation run.
Hence, to compare computation times a complete test simulation up to a dimensionless time
tend = 683 is performed with both schemes. The semi-implicit scheme starts with a step
width h = 0.1 that is reduced to h = 0.1/1.5 at t = 51 by the adaptive time stepping. It takes
2978 seconds ≈ 50 minutes to arrive at tend with 4 threads on an Intel Core i5 2500K at a
clock rate of 4.6 GHz. Since the conventional scheme takes the same computation time for
every step and keeps h fixed, the total time required for a complete simulation run can be
obtained by a rule of three. The same CPU as above spends tts = 19 seconds at nts = 200
time steps leading to an extrapolated simulation time of

tend
h

tts
nts

= 683
0.0001

19
200 sec = 648850 sec ≈ 7.5 days, (7.69)

if the conventional scheme is assumed to be stable at h = 0.0001. Therefore, the semi-implicit
scheme finishes the same simulation at least

648850
2978 = 217

times faster. As already mentioned in subsection 7.3.1, its implementation is not optimized
and slightly better speedups can be achieved. If the maximum number of Krylow iterations is
increased to 100, the time step would not decrease during a simulation and the computation
time until tend = 683 was 2627 seconds ≈ 44 minutes with a resulting acceleration of factor
648850/2627 = 247.
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Figure 7.3: Times series of Ψ(t) from equation 7.70 for two compressive moduli κH = 5 and κH = 100
at χBS = 2.0 (a) and χBS = 2.5 (b). Remaining physical and numerical parameters are described in
the first paragraph of subsection 7.3.2. At (κH , χBS) = (5, 2.5) the damping-constants were for once
set to ακ = αij = 1 and βi = −1 with i, j ∈ C to stabilize the simulation.

The semi-implicit scheme is not unconditionally stable. If χBS is just large enough, φ-
instabilities return at any κH . At which χBS they return, depends on the damping-constants
αij , βi, and ακ. If the step size is set to h = 0.002, the conventional scheme becomes un-
stable once χBS exceeds 1.6 when χBS is increased by 0.2 in successive simulation runs
with parameters from table 7.1 and κH = 5. The semi-implicit integrator with the imple-
mentation from subsection 7.3.1 is stable at χBS = 2, but there appear numerical artifacts
similar to a φ-instability at χBS = 3, for example. If the damping-constants are changed
to ακ = αAB = αAS = αBS = 1 and βA = βB = βS = −1 the semi-implicit integrator
remains stable even if χBS = 3. Consequently, it is possible to stabilize the scheme against
φ-instabilities over an even wider range of solvent-phobic interactions. Nevertheless, we just
restrain to mentioning that possibility. Avoiding φ-instabilities with an appropriate choice of
damping-constants is not further investigated because this topic is rather technical in nature
as moderate κH in combination with moderate χBS correspond to the unrealistic case of
highly compressible polymer solutions where maximum normalized densities peak at values
significantly larger than 1. This means that different choices of the damping-constants would
allow us to simulate rather unphysical situations.
As polymer solutions are hardly compressible, the stabilization at large compressive moduli

against the associated κ-instabilities is physically more relevant. The relating investigation of
simulation speedups requires to prepend the specification of a typical value κH should have
to enforce φA(~r, t) + φB(~r, t) + φS(~r, t) ≈ 1. To this end the quantity

Ψ(t) := max
j∈{0,...,m−1}

(∑
i∈C

φi(~rj , t)
)

(7.70)

is defined, which should be 1 at any time in the limit of an incompressible system. Figure
7.3 shows the time series of Ψ for two different compressive moduli κH = 5 and κH = 100,
once for χBS = 2.0 and once for χBS = 2.5. It is evident that it peaks considerably above
1 for κH = 5, namely at 1.337 and 3.921, which constitutes relative deviations from 1 of
about 34 % and 292 %. If the compressive modulus is set to κH = 100, the maximum value
of Ψ(t) is 1.018 with a relative deviation below 2 % at χBS = 2.0 and 1.041 with a relative
deviation of 4.1 % at χBS = 2.5, demonstrating that Ψ being close to 1 requires compressive
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Figure 7.4: Color coded solvent-phobic density profiles φB of stable micelles for different compressive
moduli. In (a) it is κH = 1.176, in (b) κH = 5 and in (c) κH = 100. Simulations were performed with
the semi-implicit scheme on a 128× 128 grid with a lattice constant ∆l = 1/3 and a temporal step size
h = 0.002. The solvent-phobic interaction is set to χBS = 1.6 and the remaining physical parameters
are listed table 7.1. Every snapshot is taken at time step n = 200000.

moduli with magnitudes of 100 at solvent-phobic interactions between χBS = 2 and 2.5.
Figure 7.4 shows that different compressive moduli potentially change the size distribution of
polymer particles and heavily affect their polymer content, which indicates the importance
of large κH for obtaining realistic results. Increasing κH decreases the maximum value of φB
and in turn increases the number of micelles. The suppression of high densities by large κH
automatically prevents φ-instabilities, i.e. φ-instabilities are a trait of strongly compressible
dynamics at moderate or low κH and are no issue if κH is sufficiently large with respect to
the χ-parameters.
To compare performances for high compressive moduli, we set κH = 100 and χBS = 2.0

in table 7.1, which is also the κH -value used for the simulations in chapter 8 together with
a χ(max)

BS close to 2. Calculating to tend = 163 with an initial step size h = 0.1 takes the
semi-implicit scheme 6745 sec = 112.4 min. The conventional scheme requires a time step of
h = 0.0001 to be stable against κ-instabilities, and the extrapolated run time is

163
0.0001

19
200 sec = 154850 sec ≈ 1.8 days, (7.71)

meaning the semi-implicit scheme is

154850
6745 ≈ 23

times faster. The main reason why the speed up drops an order of magnitude from the
previous 217 to a still significant factor of 23 is the adaptive time stepping, which results in
step sizes of h = 0.005853 at approximately t = 50 and above with the specific parameters
at hand. Additionally, high κH require typically more Krylow iteration steps.
In the hitherto discussed examples the computation times with the conventional scheme

are below seven days and thus, feasible. So up to this point significant speedups of factors
20-250 are nice to have as performing costly 3D calculations, for example, could benefit
from the acceleration, and as they enable extensive parameter studies without access to a
high performance cluster because simulations can be done sequentially within a reasonable
time. However, the relatively short simulation times of seven days and below are owed
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to the choice of χBS : using χBS = 1.6 or 2.0, phase separation dynamics are fast and
simulated dimensionless time spans tend are rather short. When low quench rates, i.e. low
interaction parameters and slow dynamics, are combined with large compressive moduli, the
semi-implicit scheme becomes mandatory. To illustrate that matter, we specifically consider
computation times of a system used for evaluation in chapter 8. With κH = 100, one needs
to simulate dimensionless times tend of up to 40000 for low quench rates in the range of 10−6

to obtain stable polymer particles. Applying an initial time step h = 0.05, which eventually
reduces to about h = 0.0148, such a simulation takes about 10 days = 864000 sec on the
parallel cluster Mogon. Due to a slightly higher resolution of ∆l = 0.25, κ-instabilities in
the conventional scheme do not vanish until step sizes fall below h = 0.000075. As the
CPUs in the cluster are operated at a lower clock rate than the one we used in our previous
comparisons, the conventional scheme takes ≈ 30 seconds for 200 time steps. Therefore,
simulating to tend = 40000 would take at least

40000
0.000075

30
200 sec ≈ 8× 107 sec = 926 days = 2.54 years. (7.72)

The corresponding speedup factor is approximately

9.7× 107

864000 = 92.6.

To make matters worse, tend = 40000 is just a typical time span to observe stable polymer
particles. Checking if certain polymer particles are truly stable demands to simulate until
tend = 120000, which would correspond to a computation time of above 7.5 years with
the conventional scheme. With the semi-implicit scheme we performed these simulations in
about 3 to 5 weeks depending on tend. Since run times of 2.5 or 7.5 years are unbearable,
the construction of the new scheme was essential because it basically ’unlocks’ the possibility
to perform SCF-EPD simulations of approximately incompressible dynamics at low quench
rates.

As already mentioned in the beginning of subsection 7.2.2, switching to compressible dy-
namics by choosing low κH is no option in the present work since it provokes φ-instabilities
at large quench rates for desired maximum quench depths. Even at κH = 100 sufficiently
large χBS provoke φ-instabilities. An incompressibility constraint would eliminate them for
good, but we preferred the compressible case to give the semi-implicit scheme a more general
scope as investigating the response of polymer solutions to pressure variations may also be of
interest [90]. If incompressibility is incorporated by a position dependent κH(~r) that takes the
role of a Lagrange parameter similar to the work of Uneyama [81], the semi-implicit scheme
should still be practical because potentially high local κH(~r) should provoke instabilities just
like constant κH .

The present subsection demonstrates by exemplary simulations that the semi-implicit
scheme allows up to 1000 times larger step sizes than the conventional one, which translates
into significant speedups of a factor 20-250 with the implementation described in subsection
7.3.1. For high κH speedup factors close to the lower value of 20 typically appear at moder-
ate to large χBS when phase separation is fast and tend is rather low anyways, while factors
up to 100 are achieved at slower dynamics where tend is large and simulations require long
computation times.



155

7.3.3 Relevance of approximation errors

Up to this point we discussed speedups of simulations by enlarging the width of time steps
without considering the concomitant increase of truncation errors. Estimating these errors
and their effect on particle size distributions is subject to the current subsection. In doing so
it is also checked whether the substitution of the conventional integrator by the semi-implicit
one introduces any additional relevant approximation errors. Possible sources of such errors

Figure 7.5: Color coded density profiles of the solvent-phobic block φB , simulated with different
update rules for the potential fields. ’Adams’ in (a) denotes the second order update rule from
equation 7.39, ’Conventional’ in (b) the one from equation 7.37, and ’Semi-implicit’ in (c) and (d)
refers to equations 7.61 – 7.63. Every snapshot is taken at the same time and depicts stable micelles
for identical initial conditions. Except for the step size h, which is given above each diagram, physical
and numerical parameters correspond to figure 7.4 with κH = 1.176. Discrepancies from (a) that are
visible to the eye are marked by white circles and the diagrams at the bottom show differences of
density profiles as indicated by their labeling. The diagram on the top right presents the difference of
(d) and (a) after conversion to binary images with a threshold value φ(th)

B = 0.3.
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are the formulas for product quadrature (equations 7.59 and 7.60), the discretization of
derivatives by a second order accurate central finite difference instead of using a spectral
method, or the termination of Krylow iterations at non-vanishing values of the residual.
The reference constitute simulations with the method from equation 7.39. It is a second
order time accurate pseudo spectral method and possesses the smallest temporal and spatial
truncation errors of all schemes presented in this chapter. Once again simulations with a
slight modification of the physical parameter set in table 7.1 are considered as a representative
example. This time the solvent-phobic interaction is changed to χBS = 1.6, where the polymer
assembles into stable micelles.
Figure 7.5 shows simulated solvent-phobic density profiles φB of these micelles. (a) depicts

the reference simulation at h = 0.002, while (b) and (c) show the results of the conventional
and the semi-implicit scheme at the same step size. A superficial comparison between (a) and
(b) reveals a visual discrepancy in the density profiles, namely a missing micelle whose location
is framed by a white circle in (b), implying size distributions are potentially influenced by
temporal truncation errors, but only slightly. (c) lacks that discrepancy. So despite the
semi-implicit integrator being first order time accurate, too, its density profile matches the
reference. This indicates that the error constant of the semi-implicit scheme is likely to be
smaller than the error constant of the conventional one. It further proves that the termination
of Krylow iterations and the discretization scheme of derivatives introduce no significant
errors, which is also confirmed by the similarity of the difference profiles (b)-(a) and (c)-(a)
outside the white framed region. The relatively large deviations in these profiles, ranging
from −0.351 up to 0.233 in (c)-(a), mainly appear at the edge of solvent-phobic micelle cores,
and most of the time an orange or red region is accompanied by an opposite approximately
equally large green or blue region, so micelles are just shifted in a certain direction without
changing their size. Increasing step widths to h = 0.1 provokes visual discrepancies for the
semi-implicit scheme as well. The corresponding density profile is shown in figure 7.5 (d)
and the white circle frames an additional micelle not present in (a). The difference between
the density profiles in (d) and (a) is shown in the diagram labeled by (d)-(a) and resembles
(b)-(a). To check in how far the truncation errors affect particle sizes in simulations, (a) and

parameter set 2
Physical parameter fP NA NB χAB χAS χBS κH DP DS

Value 0.1 2 15 1.05 0.0375 1.6 5 1/N 1
Numerical parameter grid size ∆l h (Adams) h (GMRES) ds

Value 128× 128 1/3 0.0002 0.0002/0.01 1/N

parameter set 3
Physical parameter fP NA NB χAB χAS χBS κH DP DS

Value 0.1 2 15 1.05 0.0375 1.2 1.176 1/N 1
Numerical parameter grid size ∆l h (Adams) h (GMRES) ds

Value 128× 128 1/3 0.002 0.002 1/N

Table 7.2: Two additional parameter sets that were used to compare differences between the numerical
integrators for the potential fields. Parameter set 1 is the set used for simulations in figure 7.5.
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(d) are converted into binary images with a threshold value of φ(th)
B = 0.3 and subtracted.

The result is seen on the second diagram in the first line. The absolute majority of the pixels
have zero-value, expect for the white framed region. As there appears only one new droplet
at h = 0.1, it does also not alter the mean particle size significantly.
Although their density profiles are not shown, such comparisons were also performed for

the parameters sets listed in table 7.2 for the sake of completeness. They look very similar
to figure 7.5 and consequently, the current subsection indicates that the implementation
of the semi-implicit scheme with the GMERS method does not introduce any errors that
outweigh the usual truncation errors and that the latter do not significantly distort particle
size distributions. There are minor differences, but we consider them to be small enough not
to justify an increase of computation times by choosing h = 0.002 over h = 0.1.

7.4 Chapter summary and main conclusions

In the present chapter we developed a semi-implicit numerical integration scheme to approach
the stiffness of the SCF-EPD equations at large compressive moduli κH and/or high χ-
parameters. The semi-implicit scheme is obtained from the ’conventional’ one used in previous
studies about spontaneous self-assembly [88, 89], if the update rule for the potential fields
{ω} is replaced by equations 7.61, 7.62, and 7.63.

As we avoid introducing implicit expressions for the end-segment distribution functions g
and g′, the growth of computational complexity with increasing numbers of monomers per
polymer chain N is identical to the explicit conventional scheme. This is an appealing char-
acteristic of our semi-implicit integrator because the iteration along a polymer backbone to
calculate g(~r, s) and g′(~r, s) for all s ∈ [0, N ] and ~r typically consumes the most part of com-
putation times per time step. Compared to the conventional scheme, larger stability regions
allow using up to 1000 times larger step sizes h and our particular implementation with a
GMRES method performs simulations up to 100 or even 200 times faster as discussed in sub-
section 7.3.2. Subsection 7.3.3 indicates that temporal truncation errors do not significantly
affect simulation results even if the width of time steps is as large as h = 0.1.
Since the GMRES implementation tends to throttle simulation speedups (the number of

Krylow steps increases with h), future work could address the implementation of our new
scheme or slight variations of it. Because real polymer solutions typically possess high com-
pressive moduli and because κH affects particle size distributions (cp. figure 7.4), the sta-
bilization against κ-instabilities is particularly important – especially since high κH also
suppress φ-instabilities. In this regard, one approach could be zero-padding the right hand
side of equation 7.40 only by the terms −Di

∫
∆ωi + ciκHφi∆ωidt+Di

∫
∆ωi + ciκHφi∆ωidt

with damping-constants ci. After application of the quadrature rule from equation 7.59 to
the last integral and an Euler forward to the remaining terms, one would obtain a linear
system of equations for every ω(n+1)

i with a tridiagonal matrix that could be solved directly
(i.e. without a Krylow iteration) by the tridiagonal matrix algorithm, also known as Thomas
algorithm, for periodic boundary conditions.
The semi-implicit scheme is of course not only applicable for time-dependent interaction

parameters, but also for constant interaction parameters. As a consequence, it allows to
extend the studies about spontaneous self-assembly of He and Schmid [89] to larger parameter
spaces. If an incompressibility constraint is introduced by position dependent compressive
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moduli κH(~r) in a similar manner as in Uneyama’s Density Functional Theory approach [81]
or described in the review article [91], the evolution equations for {ω} should not change
except for the substitution κH 7→ κH(~r). This means that descriptions of incompressible
dynamics should benefit from the semi-implicit integrator as well.



Chapter 8
Time dependent interaction parameters in

the SCF-EPD equations

Thiermann et al. [22, 23] report a depletion of vesicles and an enrichment of micelles with
increasing flow rates in their experiments, as it is illustrated by the Transmission Electron
Microscopy (TEM) images in figure 8.1. The morphology of drug delivery systems is another
one of their key properties because it affects loading possibilities during fabrication with the
co-solvent method. Vesicles allow both hydrophilic and hydrophobic loading, which makes
them appealing candidates for multifunctional drug delivery systems: hydrophilic substances
can be enclosed in their solvent containing core, while the hydrophobic part of the bilayer
shell can be loaded with hydrophobic substances [11]. These loading possibilities are im-
portant because some therapeutic substances are hydrophilic while others are hydrophobic.
An example for a hydrophilic substance is the toxic anti-cancer drug camptothecin [164].
Hydrophilic materials are, for instance, the anti-cancer drug doxorubicin [165] or the dye
pholoxine B, which can be used to trace particles at in vitro cell binding studies or studies
about (hydrophilic) loading efficiencies [166]. Although vesicles are more versatile when it
comes to loading possibilities, micelles have the advantage that due to the smaller size com-

Figure 8.1: TEM images of cross-linked nanoparticles made of PB-PEO diblock-copolymers. (a)
and (b) directly contrast particle sizes and morphologies for two different flow rates v at symmetric
flow conditions in the Caterpillar Micromixer with identical remaining experimental parameters. (a)
refers to v = 0.4 ml/min and (b) to v = 1.8 ml/min. The pictures are taken from Thiermann [22]
and correspond to his samples Cd10 (in b) and Cd11 (in a). (c) shows figure 6.24 from Mueller [36].
It cannot be directly compared to (a) or (b) because it refers to a measurement for asymmetric flow
conditions but it implies that also cylindrical micelles may appear in addition to the spherical ones.
The samples Cd10 and Cd11 were prepared identically to the ones that were used for the diamonds
in figure 1.3 (f).

159
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pared to vesicles they may also enable ways of cellular uptake that bypass the drug efflux
mechanism of cancer cells in order to treat multiresistant cancer [11, 167].
The SCF-EPD model is able to describe a variety of particle morphologies [89]. Depending

on the physical input parameters amphiphilic diblock-copolymers spontaneously self-assemble
not only to vesicles or spherical micelles, but also to rod-like, ring-like or toroidal structures.
An extensive parameter study about the general impact of different continuous quench pro-
cesses onto particle shapes could be interesting, but the present chapter aims to selectively
continue part II. Therefore, we focus on the questions if time dependent interaction parame-
ters in the SCF-EPD equations reproduce the experimentally observed effects of flow rates on
particle morphologies and how the formation of morphologies in copolymer solutions affects
rate-size relations in comparison to model I.

8.1 Rate-size relations for linear mixing profiles

We start with inserting linear mixing profiles into equation 7.18. Like in model I linear mixing
profiles

ϕSS(t) =

ϕ0 + st for t ≤ tmax
ϕmax for t > tmax

(8.1)

allow to reduce solvent mixing parameters to χ(0)
i , χ(max)

i and sχ,i for i = A,B by writing

χiS(t) =


(
χiGS + χiSS − χiGS

1− fP
ϕ0

)
+ χiSS − χiGS

1− fP
s t

χiGS + χiSS − χiGS
1− fP

ϕmax

 =:

χ
(0)
i + sχ,it for t ≤ tmax
χ

(max)
iS for t > tmax

with tmax = (χ(max)
i −χ(0)

i )/sχ,i. Note that in contrast to model I there currently may be two
time dependent interaction parameters, namely the solvent-philic one χAS and the solvent-
phobic one χBS . In the following, the term ’rate-size relation’ refers to the particle size
dependence on the quench rate sχ,B when χAS is fixed. When χAS depends on time and sχ,A
differs from sχ,B, it refers to the particle size dependence on s.

8.1.1 Simulation setup

The physical parameters in the SCF-EPD model with time dependent interactions are

• the mean polymer volume fraction fP ,

• the number of A-monomers per polymer chain NA,

• the number of B-monomers per polymer chain NB,

• the interaction parameter between A- and B-type monomers χAB,

• the segment diffusion coefficient D0,

• the compressive modulus κH ,

• the initial value of the solvent-philic interaction χ(0)
AS ,
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• the maximum value of the solvent-philic interaction χ(max)
AS ,

• the initial value of the solvent-phobic interaction χ(0)
BS ,

• the maximum value of the solvent-phobic interaction χ(max)
BS , and

• the quench rates sχ,A and sχ,B.

The numerical parameters are

• the number of grid points on the spatial lattice m = n1 × ...× nd,

• the lattice constant ∆l,

• the initial width of a time step h, and

• the discretization level of a polymer chain ds.

In the present section we consider a volume fraction fP = 0.1 of a model polymer with
a solvent-philic block length NA = 3 and an incompatible solvent-phobic block containing
NB = 14 monomers. The incompatibility is described by an interaction parameter χAB =
1.05, and to mimic approximately incompressible dynamics the compressive modulus is set
to κH = 100 (cp. figure 7.3). The diffusion coefficient D0 in equation 7.10 is substituted by
1 without loss of generality as lengths are given in units of the polymer’s radius of gyration
l0 = Rg and times in units of t0 = R2

g/D0.
In subsection 8.1.2 the solvent-philic interaction is kept constant, i.e. χAS ≡ χ

(0)
AS =

χ
(max)
AS = −0.15, and the solvent-phobic one is varied from its spinodal value χ(0)

BS = χ
(Spin)
BS =

1.249 to χ(max)
BS = 2.25, which corresponds to a maximum quench depth of approximately 1

like in chapter 5. This parameter choice extends the polymer from part II by a solvent-philic
block of 3 monomers and constitutes a slight modification of a set from He and Schmid [88].
The solvent-phobic interaction in the original set from reference [88] with χBS = 1.2, NA = 2,
NB = 15, and κH = 1.176 is quite close to the corresponding spinodal line and generates
vesicles, so we considered this set a good starting point to investigate a potential depletion of
vesicles and the enrichment of micelles with increasing flow rates during controlled assembly.
The large compressive modulus κH = 100, however, tends to impede vesicle formation by
suppressing solvent diffusion into droplet centers, so block lengths are adapted to NA = 3 and
NB = 14 in order increase the solvent-philicity of the A-block and to favor the formation of
vesicles at quench depths comparable to He and Schmid [88]. In subsection 8.1.3 the solvent-
philic interaction χAS is varied simultaneously to χBS from χ

(0)
AS = 0.5 to χ(max)

AS = −0.15
as solvent mixing might also change solvent-philic interactions. Like in part II, the random
noise is turned off, i.e. ηi = 0.

The number of spatial grid points is set to m = 256×256 with a lattice constant ∆l = 0.25.
In the present chapter we restrict to 2D simulations since we focus on a discussion about
characteristics of rate-size relations that we found to be independent of the spatial dimension
in part II (cp. figure 5.3). The initial time step reads h = 0.05 and the segment length in a
polymer chain is ds = 1/N.
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8.1.2 Time dependent solvent-phobic interaction only

A) Morphological transition and evaluation method

In the early stages of phase separation density profiles φB of the solvent-phobic block resemble
φP from model I, which can already be seen by a comparison of the first three pictures in
figure 7.2 (a) to figure 5.2. Qualitatively, the response of φB to changing quench rates looks
also practically identical to φP in figure 5.2. So for the sake of convenience we renounce
showing snapshots of φB in the early stages. The time series of the Minkowski perimeter C
are very similar as well and time series for the SCF-EPD model are shown in figure 8.2. There
are again two regimes where the variation of C is fast or slow, respectively, and they are again
separated by a distinct maximum, which enables an analogous definition of a transition time
ttr. In Cahn-Hilliard models the equilibrium state is always a macroscopic phase separation,
and C(t) decreases until there is only one single homopolymer particle left. At the plateau of
constant C that appears at large t in figure 8.2, however, there exist multiple stable particles
due to a steric stabilization that prevents Ostwald ripening [88].
The density profiles corresponding to these particles, φB at tend, are shown in figure 8.3

(b), (d), and (f). Strictly speaking, figure 8.3 depicts only the density solvent-phobic B-
monomers. But since the solvent-philic A-monomers accumulate approximately at green to
yellow φB-values, these colors roughly illustrate the A-blocks. Like in figure 5.2 structure sizes
decrease with increasing quench rates, but this time the structures are no droplets but stable
particles. The left and the center column in figure 8.3 show an enrichment of micelles and a
depletion of vesicles for an increasing quench rate, much like figure 8.1 (a) and (b) – except
that the simulated density profiles show cylindrical micelles which are not present in figure
8.1 (b). But since figure 8.1 (c) shows that cylindrical micelles can also appear along with
spherical ones, we consider our simulations to be in qualitative agreement with experiments.
Further taking into account the rightmost column in figure 8.3, our simulations indicate that
the experimentally observed enrichment of micelles is likely to be only the beginning of a
complete morphological transition from vesicles to micelles. This implies that, theoretically,
the co-solvent method should allow to fabricate particle populations of controllable uniform

Figure 8.2: Temporal evolution of the Minkowski perimeter C during two SCF-EPD simulations. In
(a) the quench rate is set to sχ,B = 4.4 × 10−6 and in (b) it is sχ,B = 4.4 × 10−3, while χAS is kept
constant. ttr denotes the transition time, which is marked by a circle, and the rectangle represents
the simulated time span tend. C is calculated from solvent-phobic density profiles φB analogously to
section 5.3.2 with a threshold value φ(th)

B = 0.3. The inset shows a magnification of the section inside
the dashed rectangle.
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Figure 8.3: Solvent-phobic density profiles φB for three different quench rates sχ,B . All profiles are
calculated with the semi-implicit SCF-EPD scheme and identical initial conditions. (a) and (b) depict
φB for sχ,B = 4.4× 10−6 at transition time t = ttr and at t = tend, respectively. Likewise, (c) and (d)
display the density profiles for the quench rate sχ,B = 4.4×10−5, and (e) and (f) for sχ,B = 4.4×10−3.

morphology. Like particle sizes the morphology can be controlled by mixing speeds: slow
mixing exclusively produces large vesicles while very fast mixing produces only small micelles.

Figure 8.3 (a), (c), and (e) depict particles at transition time. Although their size does
slightly change between ttr and tend, which is also indicated by the drop of C behind its
maximum in figure 8.2, we evaluate particle sizes at transition time to keep the analogy to
model I and because the convention to sample a maximum of C is more precisely definable
than a time ’when C becomes almost constant’ (a plateau might still exhibit a very slight
descent at tend if C is described by double precision numbers). Geometric particle sizes are
determined from solvent-phobic density profiles after binary conversion with a threshold value
φ

(th)
B = 0.3. Identically to subsection 5.3.2, particles are labeled by a standard recursively

defined image labeling algorithm with i = 1, ..., p, and for every single particle the total
perimeter Ui and the total area Ai are determined in 2D. In 3D the perimeter and the area
are replaced by the surface area Si and the volume Vi, respectively. The sphere equivalent
radius Rs,i of particle i is defined by

Rs,i =

√
Ai
π

in 2D and Rs,i = 3

√
3V
4π in 3D. (8.2)

In addition we introduce the vesicle equivalent radius Ri,v, which is the outer radius of a
spherical shell with equal surface area and volume as a particle. In two spatial dimensions
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the inner radius ri and the outer radius Ri are given by

Ai = π(R2
i − r2

i )⇔ r2
i = R2

i −
Ai
π

and Ui = 2π(Ri + ri)⇔ Ri = Ui
2π − ri. (8.3)

Insertion of ri into Ri yields
Rv,i := Ri = Ai

Ui
+ Ui

4π . (8.4)

The vesicle equivalent radius of a spherical micelle is its radius R because

Rv,i = Ai
Ui

+ Ui
4π = πR2

2πR + 2πR
4π = R

2 + R

2 = R. (8.5)

In three spatial dimensions it is

Vi = 4
3π(R3

i − r3
i ) and Si = 4π(R2

i + r2
i )⇔ ri =

√
Si
4π −R

2
i (8.6)

and insertion of ri into Vi leads to the polynomial

−2
(4

3π
)2
R6
i + 4

3πSiR
4
i + 8

3πViR
3
i −

1
3S

2
iR

2
i + S3

i

36π − V
2
i = 0, (8.7)

which may be solved for Ri numerically with a bisection method to obtain Rv,i. Inserting
Vi = 4π/3R3

i and Si = 4πR2
i verifies that in case a spherical micelle is processed, the above

polynomial is solved by its radius. Rs and Rv denote the mean values of the sphere and
vesicle equivalent radii, i.e.

Rv = 1
p

p∑
i=1

Rv,i and Rs = 1
p

p∑
i=1

Rs,i, (8.8)

while l1 and lmax are defined analogously to equation 5.52. We note that we only performed
2D simulations but included the 3D case into the description of the evaluation method for
the sake of completeness.

B) Rate-size relations and transition times

Rate-size relations and transition times are shown in figure 8.4. Data point progressions in
(a), (b), and (d) are very similar to figure 5.3: there is an asymptotic regime and a non-
asymptotic regime, where data points can be approximated by scaling laws. As in part II,
the beginning of the asymptotic regime is labeled by the intersection of ttr and tmax in figure
8.4 (d). The exponents −0.198 and −0.160 of the regression lines for Rs and Rv in figure 8.4
(a) agree well with −1/6 from the Cahn-Hilliard theory. The exponent of l1 in 8.4 (b) takes
the comparatively high value −0.09 but is still relatively close, while lmax in (c) looks entirely
different.
Of all four measures for particle sizes, Rv and Rs should be the most reliable ones as they

are the ’real’ geometric particle radii. The resemblance of their characteristic attribution to
simulation results from section 5.3 implies that the formation of particle morphologies and the
steric stabilization do not significantly affect the fundamental behavior of rate-size relations.
Since the early stage development of φB-profiles is also very similar to φP for homopolymers
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Figure 8.4: Rate-size relations and transition times, simulated with the SCF-EPD model in 2D for
linearly time-dependent χBS at fixed χAS . (a) shows the mean sphere and vesicle equivalent radii Rs
and Rv, (b) depicts l1, and (c) lmax (cp. equation 5.52). Data points in (d) represent the transition
time ttr and the dash-dotted line is tmax. All data are averaged over five simulation runs with different
random initial conditions. Error bars in (a) represent a polydispersity ∆Rs or ∆Rv defined analogously
to equation 5.48. In (b), (c), and (d) error bars indicate the statistical standard deviation over the five
simulation runs. Vertical grey lines in (a) label characteristic transition quench rates that separate
three morphological regimes. In each regime there appear particle morphologies as illustrated by the
symbols above the dotted line. Black dots symbolize micelles, open circles vesicles, and the dumbbell
shape cylindrical micelles. Each column in figure 8.3 shows exemplary snapshots for one respective
morphological regime. Trend line equations y = β xα to data points in the non-asymptotic regime are
displayed in the corresponding diagrams, and the physical parameters applied in the simulations are
specified in subsection 8.1.1.

from figure 5.2 as stated in paragraph A), particle sizes in copolymer systems are likely de-
termined during the very early stages of phase separation as well – mainly by the dynamics
of solvent-phobic block. The combined content of the last two sentences leads to the conclu-
sion that the fundamental interpretation to the working principle of size-controlled assembly
from model I is directly transferable to amphiphilic copolymer solutions. Thus, model I and
the SCF-EPD model combine to form a consistent overall picture of size-controlled assembly.
While the SCF-EPD model describes the formation of structured nanoparticles in amphiphilic
copolymer solutions in a physically more accurate manner, model I provides an analytical
explanation for the characteristic and fundamental scaling behavior R ∝ sα.

The deviating or even abnormal behavior of l1 or lmax with respect to Rs and Rv is most
likely caused by ’non-unimodal’ φB-profiles. In the Cahn-Hilliard model, the arrangement
of polymer droplets at transition time looks nearly equidistant as depicted, for example, in
figure 5.2 (e) and (d). Equidistant patterns can be described by merely one single complex
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Figure 8.5: Normalized radially averaged structure factors S(k, ttr) of φB in the SCF-EPD model
(S is defined analogously to equation 5.49). (a) shows the structure factors at sχ,B = 4.4× 10−6 for
initial conditions that are generated by different random seeds from 1 to 5. (b) depicts the same for
sχ,B = 4.4 × 10−3. The solid lines (seed=1) correspond to diagrams (a) and (e) in figure 8.3. The
arrow in (a) indicates secondary peaks originating from vesicle structures.

exponential function leading to a distinct peak of the radially averaged structure factor as a
function in wave numbers k. In the SCF-EPD model spatial distributions of polymer particles
are far more irregular. There are regions that contain many particles and there are regions
that contain none, as for example seen in figure 8.3 (e). Such a distribution possesses multiple
significant Fourier coefficients that may interfere with the identification of maxima or first
moments of S as inverse particle sizes.
To demonstrate that interference, structure factors at sχ,B = 4.4 × 10−6 and sχ,B =

4.4 × 10−3 are depicted in figure 8.5 for different random initial conditions. Figure 8.5 (a)
shows structure factors for the low quench rate sχ,B = 4.4 × 10−6. The solid line labeled
’seed = 1’ corresponds to the composition profile in figure 8.3 (a). The main wave number
contributions between k = 0 and k ≈ 0.5 characterize a typical distance between the particles
and the small secondary peaks at larger k (indicated by the white arrow) can be attributed
to the vesicle structure [88]. Therefore, primary peaks can be used to estimate particle sizes.
However, at a higher quench rate such as sχ,B = 4.4 × 10−3 in figure 8.5 (b) the structure
factor is either bimodal (seed = 1,4,5), trimodal (seed=2), or it extends at an approximate
constant level plus minus some variations up to k = 2 (seed=3). Thus, the solvent-phobic
density profiles are highly modulated. The impossibility to extract a meaningful particle size
from the latter (almost constant S-values) is clear. The problem about bimodal structure
factors can be rationalized by looking at the solid line in figure 8.5 (b), which corresponds
to the φB-profile shown in figure 8.3 (e). If one compares figure 8.3 (e) and (a), the typical
extension of micelle clusters, as they can be seen at the top right or at the center in figure 8.3
(e), is similar to the extension of a vesicle in (a). Comparing the structure factors (solid lines)
in figure 8.5 shows that the primary peak is at almost equal positions. Thus, the main peak in
figure 8.5 (b) does not correspond to typical micelle distances but distances between micelle
clusters. The wave numbers corresponding to particle sizes are most probably the k-values
at the secondary peak. Consequently, lmax completely fails to predict particle sizes. The
bimodal structure, of course, also shifts l1 and thus, particle size measures from the structure
factor are not reliable in the SCF-EPD model and one should use the geometric ones. The
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vesicle equivalent radius possesses a more negative exponent than the sphere equivalent radius
because it grows as droplets transform into vesicles while the sphere equivalent radius does
not.

8.1.3 Time dependent solvent-phobic and solvent-philic interactions

Simultaneously decreasing χAS from 0.5 to -0.15 to mimic an increasing solvent quality for
the solvent-philic block may induce a slight increase of exponents and particle sizes in the
non-asymptotic regime as demonstrated by a comparison between the trend line equations
in figure 8.4 (a) and figure 8.6 (a) or (b). This is because in the very early stages of spinodal
decomposition, a larger χAS should accelerate the termination of early stage coarsening.
Consequently, in contrast to part II, the SCF-EDP model contains degrees of freedom that
can regulate exponents of rate-size relations even for linearly time dependent interaction
parameters without an implementation of solvent mixing via chemical potentials. The shift
of particle sizes is, however, relatively weak, which is consistent with the idea that spinodal
decomposition (of the model polymer with a short solvent-philic block of NA = 3 monomers)
is mainly driven by the unfavorable interaction of the solvent-phobic block as mentioned in
the introduction of part II.

Figure 8.6: Rate-size relations for linearly time-dependent χBS and χAS from the SCF-EPD model.
(a), (b), (c), and (d) show Rv, Rs, l1, and lmax, respectively. Data points are simulation results, grey
lines regression lines in the non-asymptotic regime, and black lines the simulation results from figure
8.4 for constant χAS .
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8.2 Rate-size relations for the SFIMM- and CPMM-profiles

Rate-size relations for SFIMM- and CPMM-profiles with constant χAS are displayed in figure
8.7. The physical and numerical parameters are identical to subsection 8.1.1 except for an
increased initial time step of h = 0.1. The corresponding spinodal composition is ϕ(Spin)

SS =
0.5, and the additional parameters introduced by the two mixing profiles (cp. figure 5.14)
are set to ϕ(1)

SS = 0.45, ϕmax = 0.725, and t0 = 10−6 seconds. xl is fixed to the center of a
polymer lamella, i.e. xl = 0 in the SFIMM and xl = 1/4 in the CPMM.
Simulation results for the CPMM in figure 8.7 (c) again agree with both linear mixing

profiles and experimental results as they exhibit a scaling behavior with exponents close to

Figure 8.7: Morphological transition in the SFIMM (a) and rate-size relations for both the SFIMM-
(b) and the CPMM-mixing profile (c). (a) shows color coded densities φB(~r, ttr) in the SFIMM.
Flow rates below v = 2.2 ml/min produce coils, and completely spherical vesicles are obtained at
approximately v = 4.8 ml/min. Increasing v beyond 4.8 ml/min generates a transition from vesicles
to micelles similar to figure 8.3. The vertical lines in (b) are placed at v = 0.1, 2.2, and 4.0 ml/min to
draw a connection to (a). The equation between the first two lines is associated with the trend line
(grey) to Rv in the straight section at v > 4.0 ml/min. Error bars in (c) represent the polydispersity
∆Rv, and trend line equations are given in the legend. For the sake of clarity only the trend line to
Rv is shown.
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−1/6 and reproduce particle sizes between 20 and 40 nm if Rg ≈ 10 nm. The morphological
transition for increasing flow rates resembles figure 8.3. Vesicles are found at v = 0.2 ml/min,
and at v > 0.8 ml/min only micelles are present. This indicates that the complete morpho-
logical transition is possible within the experimentally applied range of flow rates from 0.1
ml/min to 5 ml/min.

In the SFIMM a comparable morphological transition occurs at much higher values of
v > 4.8 ml/min. At v ≤ 4.8 ml/min vesicles are deformed with decreasing flow rates and
eventually become coils as illustrated by 8.7 (a). The switch from deformed vesicles to coils
happens between 2.2 and 2.4 ml/min, and conclusively, at v < 2.4 ml/min the measures
to estimate particle sizes produce undefined results, which makes an evaluation of rate-size
relations in the SFIMM very problematic. The sole purpose of figure 8.7 (b) is to demonstrate
that the extension to copolymers does not bring rate-size relations from the SFIMM to an
agreement with experimental data point progressions. At v > 4 ml/min they show a scaling
behavior but with a much too low exponent of −1.784.

In summary, rate-size relations for the CPMM-profile in section 8.2 show an agreement
with experimental results once more, while the results for the SFIMM still disagree as stated
in subsection 5.4.2. Therefore, the distortion of rate-size relations in part II was not caused
by the restriction to homopolymers.

8.3 Interpretation as an effective two-component system

Like model I, the SCF-EPD model with time dependent interaction parameters can also
be interpreted as an effective two-component system with a position independent solvent
composition. The proof is subject of the current section. In the process we start from equation
2.29 for a three-component ensemble containing nP diblock-copolymers, nS1 particles of a
solvent 1, and nS2 particles of a solvent 2. Using an interaction potential and nomenclature
of variables analogous to section 7.1 with n = NnP + nS1 + nS2, the free energy is given by

1
n
βF0[φA, φB, φS1, φS2] = −fS1 ln

(
QS1
V fS1

)
− fS2 ln

(
QS2
V fS2

)
− fP
N

ln
(
QPN

V fP

)

+ 1
V

∫
V

[
χABφAφB + χAS1φAφS1 + χAS2φAφS2 + χBS1φBφS1 + χBS2φBφS2

+κH
2 (φA + φB + φS1 + φS2 − 1)2 − ωAφA − ωBφB − ωS1φS1 − ωS2φS2

]
d~r (8.9)

where the potential field ωi depends on the density φi only. The relations φA[ωA] and φB[ωB]
are identical to equations 7.7 and 7.8, and

φSi[ωSi] = V fSi
QSi

e−ωSi with QSi[ωSi] =
∫
V
e−ωSid~r for i = 1, 2. (8.10)

Replacing φS1 and φS2 in the free energy by the density of total solvent φS and the solvent
compositions α through the relations φS = φS1 + φS2 and φS2 = αφS with a ~r-independent
α yields

1
n
βF [φA, φB, φS ](α) = −(1− α)fS ln

(
QS1

V (1− α)fS

)
− αfS ln

(
QS2
V αfS

)
− fP
N

ln
(
QPN

V fp

)
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+ 1
V

∫
V

[
χABφAφB + χASφAφS + χBSφBφS

+κH
2 (φA + φB + φS − 1)2 − ωAφA − ωBφB − ((1− α)ωS1 + αωS2)φS

]
d~r (8.11)

with the short hand notations

χAS := χAS1 + α(χAS2 − χAS1) and χBS := χBS1 + α(χBS2 − χBS1). (8.12)

The connection between the potential fields ωS1 and ωS2 can be established by

(1− α)φS(~r) = φS1(~r) = V (1− α)fS
QS1

e−ωS1(~r) ⇔ φS(~r) = V fS
QS1

e−ωS1(~r) (8.13)

and
αφS(~r) = φS2(~r) = V αfS

QS2
e−ωS2(~r) ⇔ φS(~r) = V fS

QS2
e−ωS2(~r). (8.14)

Equalizing the respective expression for φS from equations 8.13 and 8.14 leads to

eωS1(~r)

QS1
= eωS2(~r)

QS2
⇔ ωS2(~r) = ωS1(~r) + ln

(
QS1
QS2

)
∀~r. (8.15)

As the ln-term is independent of ~r, it contains the reference states of the potential fields.
Because the reference states are arbitrary, one can set QS := QS1 = QS2 without loss of
generality and define ωS := ωS1 = ωS2. Insertion of ωS into equation 8.11 and calculating
the variational derivatives at fixed segment numbers (implying fixed α) leads to the chemical
potentials

1
ρ0

δβF

δφA
= χABφB + χASφS + κH(φA + φB + φS − 1)− ωA, (8.16)

1
ρ0

δβF

δφB
= χABφA + χBSφS + κH(φA + φB + φS − 1)− ωB, (8.17)

1
ρ0

δβF

δφS
= χASφA + χBSφB + κH(φA + φB + φS − 1)− ωS . (8.18)

Because it also follows from equation 8.14 that φS(~r) = V fS
QS

e−ωS(~r), the relation of poten-
tial fields to densities is completely analogous to a system containing only one solvent with
time dependent interaction parameters. So far we have shown that under the constraint
of ~r-independent solvent compositions α, the SCF relations φi[ωi] for i = A,B, S1, S2 and
the variational derivatives of the free energy for a conventional three-component canonical
ensemble collapse to expressions for a two-component canonical ensemble (i = A,B, S) with
interaction parameters given by equation 8.12.

Now we consider the dynamical equations. Rewriting the dynamical equations 2.20 in
terms of normalized densities φi = ρi/ρ0 yields

∂φi
∂t

(~r) = D0
N

∑
γ∈{A,B}

∇~r ·
∫
V

( 1
ρ0
P

(1)
iγ (~r, ~r ′)

)
∇~r ′

( 1
ρ0

δβF0[φA, φB, φS1, φS2]
δφi(~r ′)

)
d~r ′ (8.19)

for i ∈ {A,B}. Since

F0[φA, φB, φS1[φS , α], φS2[φS , α]] = F [φA, φB, φS , α], (8.20)
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one can directly substitute

δF0[φA, φB, φS1, φS2]
δφi

7→ δF [φA, φB, φS , α]
δφi

(8.21)

for i ∈ {A,B} if variables are changed from (φA, φB, φS1, φS2) to (φA, φB, φS , α). Conse-
quently, the chemical potentials from equations 8.16 and 8.17 can be simply inserted into
equation 8.19. Considering large system volumes and remembering equation 2.67, the dy-
namical equation 2.20 for the two solvents can be cast into the form

∂φSj
∂t

(~r) = D0∇~r ·
[
φSj(~r)∇~r

(
1
ρ0

δβF0[φA, φB, φS1, φS2]
δφSj(~r)

)]
(8.22)

with j = 1, 2 if we assume both solvents to share a common diffusion coefficient D0. Adding
the temporal derivatives of φS1 and φS2 and introducing the constraint of spatially constant
solvent composition (φS1(~r), φS2(~r)) = ((1− α)φS(~r), αφS(~r)) gives

∂φS
∂t

(~r) = D0∇~r ·
[
φS∇~r

1
ρ0

(
(1− α) δβF0

δφS1(~r)

∣∣∣∣
α

+ α
δβF0
δφS2(~r)

∣∣∣∣
α

)]
. (8.23)

with
δβF0
δφSj

∣∣∣∣∣
α

:= δβF0[φA, φB, (1− α)φS , αφS ]
δφSj

. (8.24)

Applying the chain rule to equation 8.20 yields

δF

δφS
= (1− α) δF0

δφS1

∣∣∣∣
α

+ α
δF0
δφS2

∣∣∣∣
α

(8.25)

and insertion of the derivative into equation 8.23 leads to

∂φS
∂t

(~r) = D0∇~r ·
[
φS∇~r

1
ρ0

δβF

δφS(~r)

]
. (8.26)

As a result, equations 8.19 and 8.26 are consistent with conventional canonical three-component
dynamics under the constraint of ~r-independent solvent compositions α. The time depen-
dence of α in equation 8.12 specifies the solvent mixing.

8.4 Chapter summary and main conclusions

In this chapter we inserted time dependent interaction parameters into the SCF-EPD model
from He and Schmid [88] to describe size-controlled assembly of amphiphilic diblock-copoly-
mers. In contrast to model I and II, rate-size relations do not refer to droplets but stable
particles since amphiphilic diblock-copolymers introduce a steric stabilization that prevents
Ostwald Ripening [88]. The SCF-EPD model with time dependent interaction parameters
reproduces the experimentally observed depletion of vesicles and the enrichment of micelles
for increasing mixing speeds [22, 23]. Our simulations further indicate that this enrichment
is only the beginning of a complete vesicle-to-micelle transition, which implies that the co-
solvent method theoretically offers the possibility to produce nanoparticle populations with
a controllable uniform morphology.
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The qualitative match of simulated rate-size relations for homopolymer droplets and ex-
perimental data for copolymer particles in part II has already raised the following two ex-
pectations. First, one expects the size-control in experiments to be mainly caused by the
interaction between solvent molecules and the monomers of the hydrophobic block during
the early stages of phase separation and second, the fundamental characteristics of particle
size dependencies on flow rates should be unaffected by the specific particle morphology –
at least as far as the distinction between vesicles and micelles to homopolymer droplets is
concerned. The SCF-EPD simulations directly confirm both expectations from a theoretical
perspective since density profiles φB of the solvent-phobic block look similar to figure 5.2 in
the very early stages of phase separation and since the characteristics of rate-size relations
for structured particles from the present chapter (cp. figure 8.4 (a)) closely resemble the ones
from model I (cp. figure 5.3). The similarity to figure 5.2 implies that the interpretation to
the working principle of size-controlled assembly from model I is qualitatively transferable
to amphiphilic copolymer-solutions, which in turn means that the interaction between the
solvent and the solvent-phobic block determines the size of unstructured predecessors of poly-
mer particles (that are similar to droplets) by competing with interfacial tension of diffuse
interfaces in the very early stages of phase separation. The SCF-EPD simulations further
show that once the polymer content inside such a droplet is sufficiently large, it internally
arranges – depending on its size – to either a vesicular or a micellar particle due to block-
incompatibility without significantly changing the characteristic scaling behavior of rate-size
relations. The explicit confirmation that the fundamental working principle of the co-solvent
method transfers from homopolymer solutions to copolymer solutions and its consistency
with the experimentally observed effect of mixing speeds on particle morphologies are the
central results of the present chapter.
It should be noted though that in our simulations we observed only pathway II of vesicle

formation, where vesicles are formed by solvent diffusion into the center of droplets. This
happens for every single droplet separately and therefore, it preserves droplet sizes to some
degree. It may be a topic for future work to adapt input parameters of the SCF-EPD model
in order to study mechanism I, where vesicles form via coagulation of multiple droplets and
subsequent bilayer folding.1 The two mechanisms are discussed, for instance, by Uneyama
[81] and He and Schmid [89]. If mechanism I would produce fundamentally different charac-
teristics of rate-size relations, one could draw the conclusion that mechanism II occurred in
the experiments from figure 1.3. However, we believe that mechanism I is likely to produce
a similar scaling behavior, too: if there is a characteristic number n of droplets that merge
to each single bilayer and the size R of droplets scales with the mixing speed s as R ∝ sα,
an approximate characteristic size of the vesicle that originates after folding of the bilayer
could very well be proportional to n sα. Pathway I of vesicle formation can only be observed
in 3D, because line tension driven bilayer folding requires a spatial dimension perpendicular
to the bilayer plane [89]. One could think that the coils in figure 8.7 (a) are 2D-analogues to
the bilayers, which cannot fold because of the missing third dimension and the lack of line
tension. In this case, the pictures for v = 0.1 ml/min and v = 2.2 ml/min in figure 8.7 (a)

1Since the SCF-EPD model is still a mean field description, it does not capture Brownian motion of droplets
and the concomitant collision-induced coagulation. But if the density of stationary droplets is sufficiently
high, several droplets may coagulate due to their short distances among each other and merge to a bilayer in
the process.
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would show an unfinished pathway I. However, this is not the case. For both flow rates, there
are vesicles that form via pathway II. But they eventually deform and break up into the coils
seen in the pictures.





Chapter 9
Semi-grand canonical effective two-compo-

nent SCF dynamics

The apparent drawback from time dependent chemical potentials (model II) to time depen-
dent interaction parameters in part III is owed to the fact that model II has chronologically
been developed after the SCF-EPD model. Originally, the SCF-EPD model was the direct
follow-up to model I before we established the concept of effective two-component systems. In
the present chapter we derive semi-grand canonical effective two-component SCF dynamics
similarly to model II for the sake of completeness. The effective two-component SCF dynam-
ics model was not implemented and we performed no simulations with it. It is still presented
for two reasons. First, it shows that the concept of effective two-component systems can
also be applied to a more elaborate description of particle formation than just a phase field
model and second, it might be a promising starting point for potential future work according
to the conclusions from chapter 6. In that context, the present chapter can be understood
as a detailed part of the outlook to part III. The derivation considers a copolymer and two
solvents, but the transfer to homopolymers is trivial. Such a transfer could be used to get
rid of the Flory-Huggins-de Gennes approximation for the free energy functional in model II.
The construction of the effective two-component SCF dynamics model is analogous to the

derivation of model II in section 6.2 and starts from the free energy F0 given by equation 8.9.
Upon substituting φS1 by φS1[φS , φS2] = φS − φS2 the free energy becomes

1
n
βF̃ [φA, φB, φS , φS2] = E[φA, φB, φS , φS2] + 1

V

∫ [
χABφA(~r)φB(~r) + χAS1φA(~r)φS(~r)

+χBS1φB(~r)φS(~r)+∆χASφA(~r)φS2(~r)+∆χBSφB(~r)φS2(~r)+κH
2 (φA(~r)+φB(~r)+φS(~r)−1)2

]
d~r

− 1
V

∫ [
ωA(~r)φA(~r) + ωB(~r)φB(~r) + ωS1(~r)φS(~r) + (ωS2(~r)− ωS1(~r))φS2(~r)

]
d~r (9.1)

with F0[φA, φB, φS1, φS2] = F̃ [φA, φB, φS [φS1, φS2], φS2],

E[φA, φB, φS , φS2] = −(fS − fS2) ln
(

QS1[ωS1]
V (fS − fS2)

)
− fS2 ln

(
QS2[ωS2]
V fS2

)

−fP
N

ln
(
NQP [ωA, ωB]

V fP

)
, (9.2)

∆χAS = χAS2 − χAS1, ∆χBS = χBS2 − χBS1, and fi = 1
V

∫
φi d~r. The original formulation,

equation 8.9, makes use of the short hand notation ωi = ωi[φi] with i = A,B, S1, S2. Ex-
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pressing φS1 as a function of φS and φS2 coherently renders ωS1 a functional of the latter
two, i.e. in equations 9.1 and 9.2 it is

ωS1 = ωS1[φS1[φS , φS2]]. (9.3)

The composition variable is the relative chemical potential of solvents µs that is calculated
from the variation of βF̃/n with respect to φS2 at fixed fS and fP . Dropping all functional
dependencies except for φS2 for the sake of notational simplicity, the variation of E reads

d

dε

∣∣∣∣
ε=0

E[φS2 + εη] = −
2∑
i=1

[
ln
(
QSi[φS2]
V fSi[φS2]

)
d

dε

∣∣∣∣
ε=0

fSi[φS2 + εη]

+fSi[φS2] d
dε

∣∣∣∣
ε=0

ln
(
QSi[φS2 + εη]
V fSi[φS2 + εη]

) ]
, (9.4)

which becomes

d

dε

∣∣∣∣
ε=0

E[φS2 + εη] = 1
V

∫
ln
(
QS1fS2V

QS2fS1V

)
η(~r) d~r + 1

V

∫
φS(~r) d

dε

∣∣∣∣
ε=0

ωS1(~r)[φS2 + εη] d~r

+ 1
V

∫
φS2(~r) d

dε

∣∣∣∣
ε=0

(
ωS2(~r)[φS2 + εη]− ωS1(~r)[φS2 + εη]

)
d~r (9.5)

upon inserting

fS1[φS2] = 1
V

∫
φS(~r)− φS2(~r) d~r and fS2[φS2] = 1

V

∫
φS2(~r) d~r.

The variation of the interaction terms is given by

d

dε

∣∣∣∣
ε=0

( 1
n
βF̃ [φS2 + εη]− E[φS2 + εη]

)
= 1
V

∫ [
∆χASφA(~r) + ∆χBSφB(~r)

−
(
ωS2(~r)[φS2]− ωS1(~r)[φS2]

)]
η(~r) d~r − 1

V

∫
φS(~r) d

dε

∣∣∣∣
ε=0

ωS1(~r)[φS2 + εη] d~r

− 1
V

∫
φS2(~r) d

dε

∣∣∣∣
ε=0

(
ωS2(~r)[φS2 + εη]− ωS1(~r)[φS2 + εη]

)
d~r. (9.6)

Adding equations 9.5 and 9.6 directly leads to

1
n

d

dε

∣∣∣∣
ε=0

βF̃ [φS2 + εη] = 1
V

∫
ln
(
QS1fS2V

QS2fS1V

)
η(~r) d~r

+ 1
V

∫ [
∆χASφA(~r) + ∆χBSφB(~r)− (ωS2(~r)[φS2]− ωS1(~r)[φS2])

]
η(~r) d~r, (9.7)

implying

µs = 1
n

δβF̃

δφS2
= 1
V

[
ln
(
QS1fS2V

QS2fS1V

)
+ ∆χASφA + ∆χBSφB − (ωS2(~r)− ωS1(~r))

]
. (9.8)

Rearranging equation 9.8 by means of equation 8.10 to

µs = 1
V

[
ln
(
QS1fS2V e

−ωS2

QS2fS1V e−ωS1

)
+ ∆χASφA + ∆χBSφB

]
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= 1
V

[
ln
(
φS2
φS1

)
+ ∆χASφA + ∆χBSφB

]
(9.9)

immediately yields

φS2[φA, φB, φS , µs] = 1
1 + e−V µs+∆χASφA(~r)+∆χBSφB(~r)φS(~r) =: φS2(~r, µs), (9.10)

which is the direct analogue to equation 6.26 from model II. The Legendre transform F of F̃
with respect to φS2 reads

1
n
βF [φA, φB, φS , µs] := 1

n
βF̃ [φA, φB, φS , φS2(µs)]−

∫
µsφS2(µs) d~r

= E[φA, φB, φS , φS2(µs)] + 1
V

∫ [
χABφAφB + χAS1φAφS + χBS1φBφS

+κH
2 (φA + φB + φS − 1)2 − ωAφA − ωBφB − ωS1φS

]
d~r

+ 1
V

∫ [
∆χASφAφS2(µs) + ∆χBSφBφS2(µs)− (ωS2 − ωS1)φS2(µs)

]
d~r

−
∫
µsφS2(µs) d~r. (9.11)

As the second to last line in equation 9.11 is identical to

1
V

∫ (
V µs − ln

(
QS1fS2V

QS2fS1V

))
φS2(µs) d~r =

∫
µsφS2(µs) d~r − fS2 ln

(
QS1fS2V

QS2fS1V

)
(9.12)

(cp. equation 9.8), the semi-grand canonical thermodynamic potential can be expressed as

1
n
βF [φA, φB, φS ](µs) = −fS ln

(
QS1[ωS1]

fS1[φS , φS2(µs)[φA, φB]]V

)
− fP
N

ln
(
NQP [ωA, ωB]

fPV

)

+ 1
V
βU [φA, φB, φS ]− 1

V

∫
ωAφA + ωBφB + ωS1φS d~r (9.13)

with

βU [φA, φB, φS ] =
∫
χABφAφB +χAS1φAφS +χBS1φBφS + κH

2 (φA+φB +φS−1)2 d~r (9.14)

if µs is assumed to be ~r-independent. µs may be determined analogously to model II by
equation 9.10 with φA = φB = 0. Due to the replacement of φS2 by µs (i.e. insertion of
equation 9.10) it is

ωS1 = ωS1[φS1[φS , φS2(µs)[φA, φB, φS ]]]. (9.15)

Taking into account that nesting, the variation of the semi-grand potential F with respect to
φα at fixed fS and fP becomes

1
n

d

dε

∣∣∣∣
ε=0

βF [φα + εη](µs)

= −fS
( 1
QS1

∫
δQS1
δωS1(~r)

d

dε

∣∣∣∣
ε=0

ωS1(~r)[φα + εη] d~r − 1
fS1

d

dε

∣∣∣∣
ε=0

fS1[φα + εη]
)
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+ 1
V

∫ (
δβU

δφα(~r) − ωα(~r)
)
η(~r) d~r − 1

V

∫
φS(~r) d

dε

∣∣∣∣
ε=0

ωS1(~r)[φα + εη] d~r

= − 1
V

∫ [
− fS
fS1

φS1(~r) + φS(~r)
]
d

dε

∣∣∣∣
ε=0

ωS1(~r)[φα + εη] d~r + fS
fS1

d

dε

∣∣∣∣
ε=0

fS1[φα + εη]

+ 1
V

∫ (
δβU

δφα(~r) − ωα(~r)
)
η(~r) d~r (9.16)

for α = A,B, S. At α = S the notation ωα = ωS1 is applied for conciseness of equation 9.16.
According to equation 9.15 the variation of ωS1 can be expressed by the chain rule

d

dε

∣∣∣∣
ε=0

ωS1(~r)[φi + εη] =
∫ ∫

δωS1(~r)
δφS1(~r ′)

δφS1(~r ′)
δφi(~r ′′)

d~r ′η(~r ′′) d~r ′′, (9.17)

where the first functional derivative, δωS1(~r)
δφS1(~r ′) [φS1], is evaluated at

φS1 = φS1[φS , φS2(µs)[φA, φB, φS ]].

The second one, δφS1(~r ′)
δφi(~r ′′) , is known as it can be directly calculated from φS1 = φS − φS2(µs)

with φS2(µs) from equation 9.10. To obtain δωS1(~r)
δφS1(~r ′) [φS1], the inversion rule of variational

calculus,

δ(~r0 − ~r) =
∫
δφS1(~r ′)
δωS1(~r0)

δωS1(~r)
δφS1(~r ′) d~r

′, (9.18)

is applied. Remembering equations 2.67 and 7.2 with nS1/ρ0 = fS1V , the inversion rule can
be cast into the form

δ(~r0 − ~r) = −fS1V

∫ 〈
ρ̂

(c,S1)
S1 (~r0)ρ̂(c,S1)

S1 (~r ′)
〉
c

δωS1(~r)
δφS1(~r ′) d~r

′, (9.19)

where 〈...〉c is the single ’chain’ average for a solvent molecule in an external field ωS1, i.e.

fS1V
〈
ρ̂

(c,S1)
S1 (~r0)ρ̂(c,S1)

S1 (~r ′)
〉
c

= fS1V

QS1

∫
δ(~r0 − ~R)δ(~r ′ − ~R)e−ωS1(~R) d~R

= fS1V

QS1

∫
δ(~r0 − ~r ′)δ(~r ′ − ~R)e−ωS1(~R) d~R

= δ(~r0 − ~r ′)φS1(~r ′). (9.20)

Consequently, equation 9.19 is equivalent to

δ(~r0 − ~r) = −φS1(~r0) δωS1(~r)
δφS1(~r0) ⇔

δωS1(~r)
δφS1(~r0) = −δ(~r0 − ~r)

φS1(~r0) . (9.21)

Inserting equation 9.17 with δωS1
δφS1

from equation 9.21 into equation 9.16 finally yields

1
ρ0

d

dε

∣∣∣∣
ε=0

βF [φα + εη](µs) =
∫ [ ∫ ( φS(~r ′)

φS1(~r ′) −
fS
fS1

)
δφS1(~r ′)
δφi(~r)

d~r ′ +
∫

fS
fS1

δφS1(~r ′)
δφi(~r)

d~r ′

+ δβU

δφi(~r)
− ωα

]
η(~r) d~r, (9.22)
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so it is
1
ρ0

δβF

δφα(~r) =
∫

φS(~r ′)
φS1(~r ′)

δφS1(~r ′)
δφα(~r) d~r ′ + δβU

δφα(~r) − ωα (9.23)

with
φS1(~r) =

(
1− 1

1 + e−V µs+∆χASφA(~r)+∆χBSφB(~r)

)
φS(~r) (9.24)

and βU from equation 9.14. Except for the integral term, equation 9.23 is formally identical
to equations 7.14 – 7.16. Since φS1(~r) depends only on the densities φA, φB, and φS at
the same position ~r, the variational derivative δφS1(~r ′)

δφα(~r) is proportional to δ(~r − ~r ′) and the
integral in equation 9.23 collapses. So as far as the implementation of solvent mixing into the
free energy derivatives is concerned, the effective two-component SCF-model does not intro-
duce any significant additional computational cost compared to time-dependent interaction
parameters.

φA[ωA] and φB[ωB] are still given by equations 7.7 and 7.8, respectively, because none of
the preceding variable transformations affect ωA, ωB, or QP . The relation between φS and
the potential fields reads

φS(~r) =
(
1 + eV µs−∆χASφA(~r)[ωA]−∆χBSφB(~r)[ωB ]

)
φS1(~r)

=
(
1 + eV µs−∆χASφA(~r)[ωA]−∆χBSφB(~r)[ωB ]

) fS1V

QS1[ωS1]e
−ωS1(~r). (9.25)

Since

fS1 = 1
V

∫
φS1(~r) d~r = 1

V

∫ (
1 + eV µs−∆χASφA(~r)[ωA]−∆χBSφB(~r)[ωB ]

)
φS(~r) d~r, (9.26)

equation 9.25 is implicit in φS as its right hand side contains a φS-dependence. Instead of
directly inverting equation 9.25 to calculate the explicit ω-dependence of φS , it is more conve-
nient to determine the ~r-independent constant fS1V/QS1[ωS1] by the normalization constraint

1− fP = 1
V

∫
φS(~r) d~r = fS1V

QS1[ωS1]
1
V

∫ (
1 + eV µs−∆χASφA(~r)[ωA]−∆χBSφB(~r)[ωB ]

)
e−ωS1(~r) d~r

⇔ fS1V

QS1[ωS1] = V (1− fP )∫ (
1 + eV µs−∆χASφA(~r)[ωA]−∆χBSφB(~r)[ωB ]) e−ωS1(~r) d~r

(9.27)

at any time step, leading to

φS(~r) = (1− fP )V

(
1 + eV µs−∆χASφA(~r)[ωA]−∆χBSφB(~r)[ωB ]

)
e−ωS1(~r)∫ (

1 + eV µs−∆χASφA(~r ′)[ωA]−∆χBSφB(~r ′)[ωB ]) e−ωS1(~r ′) d~r ′
, (9.28)

which replaces equation 7.9.

The variational derivatives of φS at fixed fP in the limit of large system volumes V can be
calculated to

δφS(~r)
δωA(~r ′) = −∆χAS φS2(~r, µs)

δφA(~r)
δωA(~r ′) =: ∆χASφS2(~r, µs)pAA(~r, ~r ′), (9.29)

δφS(~r)
δωB(~r ′) = −∆χBS φS2(~r, µs)

δφB(~r)
δωB(~r ′) =: ∆χBSφS2(~r, µs)pBB(~r, ~r ′), (9.30)
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and
δφS(~r)
δωS1(~r ′) = −φS(~r)δ(~r − ~r ′) =: −pSS(~r, ~r ′), (9.31)

where p = P/ρ0 with the pair correlators P from equation 2.63. The non-vanishing right hand
sides in equations 9.29 and 9.30 hint at a kinetic coupling between monomers and solvent
molecules. Unlike the (non-local) kinetic coupling between different monomers of a polymer
chain, the coupling between φS and ωA, ωB is not directly caused by covalent bonds but by
the constraint of instantaneous solvent-equilibration, i.e. ~r-independent µs.

Neglecting thermal fluctuations, the corresponding effective two-component1 dynamical
equations for large system volumes V may be written as (cp. equation 2.20)

∂φα
∂t

(~r, t) = D0
N

∑
γ∈{A,B}

∇~r ·
∫
pαγ(~r, ~r ′)∇~r ′

( 1
ρ0

δβF [{φi(·, t)}](µs)
δφα(~r ′)

)
d~r ′ (9.32)

for α = A, B and

∂φS
∂t

(~r, t) = D0∇~r ·
∫
pSS(~r, ~r ′)∇~r ′

( 1
ρ0

δβF [{φi(·, t)}](µs)
δφS(~r ′)

)
d~r ′

−D0
N
∇~r ·

∑
γ=A,B

∆χγS φS2(~r, µs, t)
∫
pγγ(~r, ~r ′)∇~r ′

(
1
ρ0

δβF [{φi(·, t)}](µs)
δφγ(~r ′)

)
d~r ′ (9.33)

with the short hand notation {φi} = {φi}i=A,B,S . Since

1
n
βF [φA, φB, φS , µs] = 1

n
βF̃ [φA, φB, φS , φS2[φA, φB, φS , µs]]−

∫
µsφS2[φA, φB, φS , µs] d~r

and F̃ [φA, φB, φS , φS2] = F0[φA, φB, φS1[φS , φS2], φS2], analogous considerations like the ones
that led to equation 6.31 result in

δβF [φA, φB, φS , µs]
δφi

= δβF0[φA, φB, φS1[φS , φS2[φA, φB, φS , µs]], φS2[φA, φB, φS , µs]]
δφi

=: δβF0
δφi

∣∣∣∣
µs

(9.34)

for i = A, B. This means that equation 9.32 describes the motion of A- and B-monomers in
a canonical three-component ensemble under the constraint of solvent compositions set by
µs just like equation 6.32 from model II. The evolution of the solvent density φS is again
described by a phenomenological equation. The second line in equation 9.33 accounts for the
kinetic coupling between solvent molecules and monomers that is caused by the constraint of
homogeneous µs.

According to equations 9.10 and 9.24, the constraint ’attaches’ a certain amount of good
and selective solvent molecules to monomers. Since the contribution of that attachment to
solvent-exchange between lattice cells is driven by the motion of polymer chains, we use the
diffusion coefficient D0/N in the second line of equation 9.33. In case N is large (in figure 1.3 it
is N ≈ 190), the right hand side in the first line of equation 9.33 contributes much more to ∂φS

∂t

than the second line (pγγ = Pγγ/ρ0 = PγγV/n does not grow withN since n = NnP+nS1+nS2),

1We count the AB-diblock-copolymer as one component.
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meaning that the evolution of φS can be approximated by the first line only. Equations 9.32
and the first line of equation 9.33 formally correspond to the dynamical equations from He
and Schmid [88] for a two-component diblock-copolymer solution. As a consequence, one
can also apply the EPD formalism to solve the dynamics. The corresponding evolution
equations for the potential fields are identical to equation 7.10, except that the variational
derivatives of the free energy are given by equation 9.23 (ωS corresponds to ωS1). The model
is completed by the relations between the densities and the potential fields: φA and φB can
still be calculated by equations 7.7 and 7.8, while the connection between ωS1 ≡ ωS and
φS is given by equation 9.28. Comparing the effective two-component SCF-EPD model to
conventional three-component dynamics similar to section 6.5 could be addressed in future
work. The advantage of the effective two-component SCF dynamics over the conventional
three component dynamics is again the implementation of solvent mixing. If we used source
terms or Neumann boundary conditions, the application of the EPD formalism, for instance,
would not work.
Note that in contrast to model II, where we applied local kinetic coupling, the diffusion

coefficient for the polymers in equation 9.32 reads D0/N. So at large N , solvent diffuses much
faster than polymer chains and thus, the assumption of fast solvent relaxation compared
to polymer phase separation receives a similar character like an adiabatic approximation.
Therefore, it might be possible that in contrast to model II the validity of the current model
in the limit of large N is not restricted to dilute polymer solutions.





Chapter 10
Conclusion and Outlook

The present work deals with modeling the co-solvent method or representatively, size-controll-
ed assembly, which denotes particle formation from a homogeneous solution during solvent
mixing. Our primary focus is on developing a fundamental understanding of the nanoparticle
size dependence on mixing speeds or more specifically, on flow rates in interdigital micromix-
ers (cp. figure 1.3). Since a direct numerical simulation of complete mixer geometries with
nanometer resolutions is not possible, testing any eligible model against experiments also
poses a spatial multiscale problem. We approach this problem by viewing particle forma-
tion from a Lagrangian perspective of fluid elements that follow stream lines and in doing
so, constructing a suitable description for solvent mixing in such nanoscale fluid elements is
automatically another focal point. Roughly formulated, we address the fundamental under-
standing of particle size dependencies in chapters 5 and 8 by applying deliberately simplified
implementations of solvent mixing, while more realistic implementations are subject to chap-
ters 6 and 9. As far as the classification into the available theoretical literature is concerend,
this thesis complements the publications from Nikoubashman et al. [35] and Spaeth et al. [38],
which are, to our knowledge, the only prior modeling approaches to investigate size-control
with the co-solvent method.
In part II we model size-controlled assembly of homopolymer nanoparticles by spinodal

decomposition, where phase separation dynamics are described by a Cahn-Hilliard equation
with a Flory-Huggins-de Gennes free energy functional. In chapter 5 solvent mixing is im-
plemented simply by temporally increasing Flory-Huggins interaction parameters and the
combination of the Cahn-Hilliard equation with time dependent interaction parameters is
called model I.
Other than in the present work the theoretical investigation of size-controlled homopolymer

assembly is addressed in the recent publication by Nikoubashman et al. [35]. They implement
solvent mixing into Molecular Dynamics similarly to model I by time dependent repulsive
forces between one single solvent and polymer beads. A comparison between results from
the Molecular Dynamics simulations and from model I indicates that the phase field model
is on par with much more complex particle models as far as non-asymptotic regimes of rate-
size relations are concerned. In general, Molecular Dynamics describes particle growth of
course more accurately than any mean field continuum theory but model I provides exclusive
advantages with respect to size-controlled assembly. One such advantage of model I is its
mathematical structure. It enables a perturbation theory that takes a central role as it leads to
a theoretical scaling law R ∝ s−1/6 (R is a typical polymer aggregate size and s characterizes
the solvent mixing speed that may be simplistically considered to represent flow rates in
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interdigital micromixers), which is in very good agreement with simulation results from both
model I (cp. figure 5.3) and the Molecular dynamics model (cp. figure 5.4). This agreement
implies that the perturbation theory provides an analytical explanation of the homopolymer
particle size dependence on mixing speeds: the scaling law originates from a competition
between the time dependent repulsion of chemical components and interfacial tension of
diffuse interfaces during the very early stages of phase separation when single polymer chains
aggregate. The analytical explanation to trends in recently published Molecular Dynamics
data constitutes a novelty of the present work. In contrast to simulations, the perturbation
theory directly shows that the scaling behavior is independent from the input parameters and
constitutes an universal characteristic as long as quench processes are linearly time dependent.
To break the scaling law, specific non-linear mixing profiles such as the SFIMM-profile have
to be applied.

A very similar scaling is also reflected in the experimental data for diblock-copolymers from
figure 1.3 (the exponents in figure 1.3 scatter around an average of −0.158 with a standard
deviation 0.058) and in the results from Dissipative Particle Dynamics simulations by Spaeth
et al. [38], who simulated size-controlled assembly of polymer-protected nanoparticles in a
ternary mixture of a solvent-phobic solute, an amphiphilic block-copolymer, and one solvent
with time dependent interactions. This resemblance shows that a scaling behavior R ∝ sα

seems to occur regardless of the polymer architecture.1 The minor importance of polymer
architecture is further supported by the fact that the response of rate-size relations from
model I to variations in temperature and mean polymer volume fraction qualitatively agrees
with experimental observations for copolymers in figure 1.3 as well. The results from the
Molecular Dynamics simulations reproduce such qualitative tendencies from the experimental
data, too. These qualitative similarities motivate the hypothesis that the principle physical
mechanism behind the size-control is identical in both homo- and copolymer solutions, which
may be attributed to the fact that phase separation in the early stages is mainly driven
by the solvent-phobic blocks.2 For this reason, model I provides a fundamental qualitative
explanation to much more general applications than just homopolymers.
At the level of a more quantitative comparison with experiments, a second advantage of

model I, its computational efficiency, comes into play. While Molecular Dynamics does not
allow simulations up to realistic mixing times due to its computational complexity, model
I does and hence, it enables the direct comparison of its simulation results to experimental
data (cp. figures 5.10 and 5.15). The resulting match of length and time scales eventually
complements the qualitative similarities from the previous paragraph and completes the evi-
dence leading to one of the most important conclusions of the present work, namely that the
response of molecular assembly to solvent mixing, i.e. coupling mechanism (i) from page 50,
is probably the dominating determinant for particle sizes in the co-solvent method. This in
turn implicates that the analytical perturbation theory for model I provides a fundamental
(qualitative) explanation to the experimental observations in figure 1.3.
The dominance of mechanism (i) implies that mean field continuum descriptions should

1Deviations of exponents α from −1/6 are not captured by model I but we have found in chapters 6 and 8
that, within model II or the SCF-EPD model, the values of Flory-Huggins interaction parameters between
solvents and polymer beads may cause these deviations without violating the explanation to particle size
dependencies.

2One major result of the SCF-EPD simulations in chapter 8 is the explicit confirmation of this hypothesis
from a theoretical point of view.
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be promising frameworks to simulate size-controlled assembly at experimental conditions,
since they represent the computationally most efficient descriptions of molecular organization
(but do not capture Brownian motion of droplets or particles and the concomitant collision-
induced coagulation in the late stages or particle growth). Although model I provides a clear
interpretation to size-controlled assembly and reproduces experimental trends surprisingly
well,3 the description of solvent mixing by time dependent quench processes is oversimplified
since it cannot account for an independent motion of good and poor solvent. To approach that
matter we refine the description of solvent mixing in chapter 6. In the process, we introduce
the phenomenological concept of effective two-component systems and propose model II,
which assumes an instantaneous equilibration of solvent compositions. In contrast to model
I, model II does not only show a qualitative agreement with experimental results, but its
canonical version is also quantitatively consistent with a conventional three-component model
in incompressible dilute polymer solutions. Since incompressible dilute polymer solutions
correspond to experimental conditions, model II could possibly be indeed a promising starting
point to develop computationally efficient, quantitatively accurate descriptions of co-solvent
method for homopolymers. This possibility is the final conclusion of chapter 6, as due to a
lack of material data we have to leave a detailed check to future work.
The reason to choose model II (or more generally, effective two-component models) over

conventional three-component dynamics is the ’coupling interface’ to solvent mixing. While
a conventional three-component model required source terms or Neumann conditions at the
boundaries of a fluid element, solvent mixing (including mixer geometries and flow rates) in
model II is implemented as an algebraic relation for the interaction term in a free energy. Since
effective two-component systems differ from spontaneous self-assembly only in that relation,
the mathematical framework – e.g. numerical integrators, a perturbation theory, and even the
EPD formalism if copolymers are considered like in chapter 9 – can be directly transferred.
The description of solvent mixing by source terms or Neumann boundary conditions, in
contrast, would break the direct mathematical analogy to spontaneous self-assembly. As the
derivation of model II relies on concepts from phenomenological equilibrium thermodynamics
(the analytical calculation of solvent compositions from a constant relative chemical potential
µs), such a computationally efficient refinement of solvent mixing should be exclusive to
continuum theories and therefore, it constitutes another advantage over particle models.
The algebraic relation in the free energy represents a spatial multiscale approach, which
completely avoids any numerical and computational difficulties associated with the different
length scales of particle sizes and mixer geometries. The consideration of mixer geometries
and the implementation of more realistic solvent quality distributions than just globally
increasing repulsions is another novelty of the present work with respect to references [35]
and [38]. The multiscale approach works really well for the CPMM (cp. figures 5.15 and 6.5).
The deviations from experimentally observed trends in the SFIMM have been discussed to
be caused most likely by the SFIMM-profile itself and not our coupling interfaces for solvent
mixing (cp. the end of subsection 5.4.2, A).
In part III we consider controlled assembly of copolymers based on the SCF-EPD equations

from He and Schmid [88] and the primary outcome of chapter 7 is the new numerical integra-
tion scheme. In chapter 8 we apply time dependent interaction parameters like in model I and
besides the direct confirmation that the characteristics of rate-size relations and their expla-
3The reason for that qualitative reproduction is discussed in the beginning of section 6.6.
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nation transfer from homopolymer solutions (model I) to copolymer solutions (SCF-EPD), a
main result is the vesicle-to-micelle transition that also agrees with experiments. The main
point of chapter 9 is the effective two-component SCF model with a monomer concentration
dependent solvent quality distribution analogously to model II.

Since the current chapter is only meant to recapitulate the intentions of the work at hand
and to put its most general results into an overall context, we refer to the chapter summaries
(sections 5.5 [model I], 6.6 [model II], 7.4 [integration scheme for SFC-EPD], and 8.4 [results
from SCF-EPD]) for more detailed discussions. Based on the previous recapitulation, the
questions from the end of chapter 1 may be answered as follows:

• What causes the approximate scaling behavior RDLS ∝ vα in figure 1.3? Is this behav-
ior only specific to the chemical components used by references [22, 23, 36] or is it more
general? How can it be broken?
The scaling behavior originates from a competition between repulsion of chemical com-
ponents and interfacial tension of diffuse interfaces during the very early stages of phase
separation when single polymer chains aggregate. It may be approximately described by
a Cahn-Hilliard equation with continuous time dependent quenches and appears to be
a generic feature that is not specific to the chemical components. It can be broken,
however, by particular non-linear time dependencies of a quench process.

• Taking into account that the polydispersity of nanoparticle populations is also impor-
tant for their applications, is it theoretically possible to control the polydispersity with
the co-solvent method independently of their mean size?
The fact that any continuous quench is analogous to an effective constant interaction
parameter implicates that the independent adjustment of polydispersities should not be
possible.

• Assuming one wants to develop simulation tools that enable accurate predictions about
particle sizes in the future, which theoretical descriptions can be used as starting points?
Which physical mechanisms need to be included? And how could a computationally
efficient implementation of these mechanisms look like?
Our investigations indicate that the co-solvent method can be modeled if only spinodal
decomposition and solvent mixing are taken into account. As a consequence, mean field
continuum descriptions should constitute suitable starting points. This is a fortunate
coincidence because detailed particle models, which capture collision-coagulation, do not
allow simulations at realistic mixing times. The concept of effective two-component
systems provides a computationally very efficient coupling interface of particle formation
to solvent mixing, and we constructed effective two-component models that agree with
conventional three-component dynamics in incompressible dilute polymer solutions.

As the present work focuses on the development of models and the explanation of general
experimental observations, we extracted qualitative features from exemplary polymers with
arbitrary interaction parameters. Future work could aim at investigating in how far model II
or the model from chapter 9, for instance, are able to reproduce experimental results quan-
titatively. That the computational efficiency of our models suffices to simulate experimental
conditions is indicated by subsection 5.3.5 B. So as a next step, rate-size relations could be
compared to experimental data for a specific polymer with measured χ-parameters. One
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may even account for temperature or density dependencies as proposed by Wolf [153]. A
qualitative aspect that was not addressed at all are the two potential pathways of vesicle
formation [89]. Since pathway I appears in three dimensions only and since we restricted
to 2D simulations with the SFC-EPD model for the sake of simplicity, we only observed
pathway II. Because the actual vesicle formation mechanism may affect hydrophilic loading
of vesicles, it could be interesting to see if pathway I produces the typical progressions of
rate-size relations from the present work as well or if they are exclusive to pathway II. In
case the latter is true, the attribution of rate-size relations might give information about the
vesicle formation mechanism that occurred in the experiments used to generate figure 1.3. As
an effect of solvent mixing speed on the pathways is observed by Han et al. [168], it should
also be interesting to study how the pathway depends on flow rates.
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