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Abstract

Spitzweck’s representation theorem states that the triangulated category
of mixed Tate motives, DMT(k), over a perfect field k is equivalent to the
bounded homotopy category of finite N (k)-cell modules, KCMf

N (k), where
N (k) is the cycle algebra over k. The category DMT(k) is a full triangu-
lated subcategory of the category of mixed Artin-Tate motives, DMAT(k).
For a number field k, we construct a category of cell modules that is equiv-
alent to DMAT(k) and restricts to the equivalence given by Spitzweck’s
representation theorem. Furthermore, DMT(k) and DMAT(k) carry non-
degenerate t-structures whose hearts are the Tannakian categories MT(k)
respectively MAT(k). We compute the Tannaka group of MAT(k) as the
semi-direct product of the absolute Galois group of k and the Tannaka
group of MT(k̄).
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1

Introduction

The concept of motives was introduced by Grothendieck. The idea behind
an abelian categoryM(k) of motives over a field k (opposed to the non-
abelian categories Vark and Smk of varieties respectively smooth schemes
over k) is to provide a "universal" cohomology theory for algebraic varieties
X over k that should contain the data of all reasonable cohomology the-
ories of a variety (such as singular, Betti or de Rham cohomology). This
means that for any algebraic variety X over k there should be an object
m(X) ∈M(k), the motive of X, such that any cohomology theory H? fac-
tors through the functor m, i.e. for any cohomology theory there should
be a functor ρ? fromM(k) to abelian groups, called the realization, with
H?(X) = ρ?(m(X)).

There are several approaches to construct such an abelian categoryM(k)
of motives, e.g. the category of Nori motives (see [HMS17]). However, we
follow Voevodsky’s construction of the triangulated category of geometric
motives DMgm(k) over a perfect field k in [Voe00]. Here, DMgm(k) is not
abelian and should be thought of as the derived category of a (conjectural)
abelian category of mixed motives. Again, there are different approaches to
construct this motivic triangulated category, such as by Hanamura, Huber
or Levine (see [Lev05] for an overview) that turn out to be equivalent to
Voevodsky’s construction. Even though Voevodsky’s category DMgm(k)
is not abelian, it still carries more structures than the category Smk of
smooth schemes over k, such as providing long exact sequences, certain
isomorphisms (e.g. X × A1 −→ X), the existence of pull-back maps and
products.

Voevodsky constructs the category DMgm(k) in several steps. Starting
with the category Smk of smooth schemes over k, one substitutes the mor-
phisms X → Y of schemes over k by finite k-correspondences. These are
free abelian groups of algebraic cycles, i.e. integral closed subschemes of
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X×k Y . This yields the additive category Cor(k). Passing to the bounded
homotopy category Kb(Cor(k)) gives a triangulated category and there-
fore provides long exact sequences. Localising this triangulated category
by inverting X×A1 → X and the Mayer-Vietoris sequence and taking the
pseudo-abelian hull yields the triangulated category of effective geometric
motives DMeff

gm(k).

Sending a scheme X to the same object concentrated in degree 0 and a
morphism f : X → Y to its graph f∗ := Γf ⊂ X×kY defines an embedding
Smk → DMeff

gm(k). We denote the image of X under this embedding by
[X] and call it the motive of X.

Inside DMeff
gm(k) we consider the complex [Spec k] i∞∗−→ [P1

k]. We call this
complex the Tate motive and denote it by Zk(1). The Tate motive Zk(1)
and its tensor powers Zk(q) := Zk(1)⊗q, where the tensor product is given
by the fibre product of schemes, are of particular interest (see below).

Formally inverting the Tate motive Zk(1) in DMeff
gm(k), we get the triangu-

lated tensor category DMgm(k) of geometric motives over k.

An important application of the category DMgm(k) is the motivic cohomol-
ogy of a scheme X ∈ Smk. Voevodsky defines it using the tensor powers
Zk(q) := Zk(1)⊗q, q ∈ Z, of the Tate motive as

Hp(X,Z(q)) := HomDMgm(k)([X],Zk(q)[p])

and with coefficients in an arbitrary ring A as

Hp(X,A(q)) := HomDMgm(k)([X],Zk(q)[p])⊗Z A.

In [Voe02], Voevodsky shows that the motivic cohomology groups are iso-
morphic to the higher Chow groups which in turn are related to algebraic
K-theory. In the case of Q-coefficients Levine proves in [Lev94] that there
is an isomorphism between the higher Chow groups and the (graded pieces
of the gamma filtration on) algebraic K-groups. More precisely:

Hp(X,Q(q)) ' CHq(X, 2q − p;Q) ' K2q−p(X)(q)
Q .

Furthermore, for X = Spec k there is an isomorphism of motivic cohomol-
ogy and Milnor K-theory

Hp(Spec k,A(p)) ' KM
p (k)

that has been used by Voevodsky in [Voe03] to prove the Milnor conjecture.
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Another example of a motivic proof of an a priori "non-motivic" claim is
Brown’s proof of a conjecture by Hoffmann in [Hof97] stating that every
multiple zeta value

ζ(n1, . . . , nr) :=
∑

0<k1<...<kr

1
nk1

1 . . . nkrr

is a Q-linear combination of multiple zeta values ζ(n1, . . . , ns), where
ni ∈ {2, 3} ([Bro12]). His proof uses the category of mixed Tate motives,
DMT(k), which is defined as the full triangulated subcategory generated
by the tensor powers of the Tate motive

Qk(1) := ([Spec k] i∞∗−→ [P1
k])

inside DMgm(k)Q, the Q-linearisation of DMgm(k). Putting Qk(0) :=
[Spec k], the morphisms between its generators are given by the motivic
cohomology of Spec k and hence by the rational K-groups of k:

HomDMT(k)(Qk(0),Qk(q)[p]) ∼= K2q−p(k)(q)
Q ,

where Qk(q) := Qk(1)⊗q and q, p ∈ Z. This makes the category DMT(k)
more accessible for concrete computations than DMgm(k). If k is a number
field, these K-groups are well-known. In this case, DMT(k) carries a non-
degenerate t-structure that yields the Tannakian category MT(k) of mixed
Tate motives as its heart, as shown by Levine in [Lev10]. This means,
DMT(k) behaves like a classical derived category, e.g.

ExtpMT(k)(Qk(0),Qk(q)) ' HomDMT(k)(Qk(0),Qk(q)[p]).

This impression is confirmed by Spitzweck’s representation theorem. It
states the equivalence of DMT(k) with the derived category DfN (k) of
Adams graded dg modules of finite rank over the so-called cycle alge-
bra. The cycle algebra N (k) = ⊕r,n≥0N (k)n(r) is an Adams-graded cdga
consisting of algebraic cycles on An

k ×k (P1
k)r, where r denotes the Adams

degree and n the cohomological degree. If k is a number field, the triangu-
lated category DfN (k) carries also a non-degenerate t-structure whose heart
is the Tannakian category Hf

N (k) and Spitzweck’s representation theorem
ensures an equivalence of Hf

N (k) and the category of mixed Tate motives
MT(k).

Theorem (Spitzweck’s representation theorem, [Lev05, Theorem 5.23])
Let k be a perfect field. Then there is an equivalence of triangulated tensor
categories

Φk : DfN (k) → DMT(k).
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If k is a number field, the functor Φk induces an equivalence of Tannakian
categories

Φk : Hf
N (k) → MT(k).

Under this equivalence the Tate motives Qk(q), q ∈ Z, correspond to
the free rank 1 N (k)-modules with generator bq having Adams degree
−q, cohomological degree 0 and dbq = 0. This motivates to denote these
modules by QN (k)(q).

Spitzweck’s representation theorem allows us to describe Tate motives in
terms of N (k)-modules as the following example shows.

Example (Kummer motives)
Let k be a number field. By the known K-theory of k, we have

Ext1
MT(k)(Qk(0),Qk(1)) ' K1(k)(1)

Q ' k∗ ⊗Z Q .

On the other hand,

Ext1
HfN (k)

(Qk(0),Qk(1)) ' HomDfN (k)
(QN (k)(0),QN (k)(1)[1]),

where the extension corresponding to a map f : QN (k)(0)→ QN (k)(1)[1] is
given as the module Cone(f)[−1] := QN (k)(0) ⊕ QN (k)(1) with differential
(−dN (k), f + dN (k)).

This means that any extension Ea of Qk(0) by Qk(1) in MT(k)
given by a ∈ k∗ can be expressed as the rank 2 module Cone(fa), where
fa : QN (k)(0)→ QN (k)(1)[1] is the map corresponding to a. Since

HomDfN (k)
(QN (k)(0),QN (k)(1)[1]) ' H1(N (k)(1)),

a ∈ k∗ can be lifted to an element ã ∈ N (k)1(1) with differential dã = 0
and fa is given by the multiplication with ã. Then the module correspond-
ing to Ea is the free N (k)-module with generators b0 and b1, where the
Adams degree of bi is −i, the cohomological degree of bi is 0 and db1 = 0,
db0 = ã · b1.

The proof of Spitzweck’s representation theorem does not use the category
DfN (k) itself but rather the equivalent homotopy categoryKCMf

N (k) of finite
N (k)-cell modules. The latter category is the full triangulated subcategory
of the homotopy category of finite N (k)-modules generated by the mod-
ules QN (k)(q), q ∈ Z. Therefore, finite cell modules are free and finitely
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generated as bi-graded N (k)-modules and admit a filtration on the set of
generators that is compatible with the differential (cf. the module corre-
sponding to Ea in the example above). The equivalenceKCMf

N (k) → D
f
N (k)

was shown by Kriz and May in [KM95]. Being free modules, cell modules
enable an easier construction of a functor KCMf

N (k) → DMgm(k)Q that
induces the equivalence DfN (k) → DMT(k) in Spitzweck’s representation
theorem.

All these constructions have been generalised to the case of arbitrary sep-
arated smooth base schemes S over k that satisfy the Beilinson-Soulé van-
ishing conjectures, i.e.

Hp(S,Q(q)) = 0 for p < 0, q 6= 0.

The construction of a triangulated category of motives over S was done
by Ivorra in [Ivo07] and Cisinski and Déglise in [CD09]. The category of
cell modules over k has been extended to arbitrary schemes S by Levine
in [Lev10]. In loc. cit., Levine also expanded Spitzweck’s representation
theorem to general base schemes S.

Beside the category of Tate motives, there is another well-understood
subcategory of DMgm(k)Q, the triangulated category of Artin motives
DMA(k). It is the full triangulated subcategory of DMgm(k)Q generated
by the motives of smooth zero dimensional schemes X over Spec k. It
is equivalent to the bounded derived category of finite dimensional Q-
representations of the absolute Galois group Gal(k̄|k) of k.

Considering the full triangulated subcategory of DMgm(k)Q that is gen-
erated by the full subcategories DMT(k) and DMA(k) yields the trian-
gulated category of mixed Artin-Tate motives, DMAT(k). This category
has been studied by Wildeshaus in [Wil08]. He proves the existence of
a non-degenerate t-structure on DMAT(k) whose heart is the Tannakian
category of Artin-Tate motives, MAT(k), in the same fashion, as done by
Levine for Tate motives.

The aim of this thesis is to compute the Tannaka group G(MAT(k)) of
MAT(k) and obtain a better understanding of the category DMAT(k) in
terms of cell modules, i.e. to construct a category of cell modules that
is equivalent to DMAT(k) extending Spitzweck’s representation theorem
from Tate motives to Artin-Tate motives.
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Structure of the thesis

We start by recalling some important definitions and results about cate-
gories in chapter 1. These are used throughout all chapters of the thesis.
We do not give any proofs of the results in this chapter, with the excep-
tion of the sketch of the proof that the homotopy category of an abelian
category is triangulated since we use the same arguments later on.

The aim of chapter 2 is to define the triangulated categories of geomet-
ric motives DMgm(S), motives DM(S) and Tate motives DMT(S) over a
smooth scheme S over a perfect field k.

In the first section of the chapter we recall the definition of the group of al-
gebraic cycles over a scheme. These allow us to define the category of finite
S-correspondences Cor(S). In the second section we construct the cate-
gory of geometric motives DMgm(S) out of Cor(S) following Voevodsky’s
approach.

The category of geometric motives can be identified with a full triangulated
subcategory of a different category of motives DM(S). The latter category
is defined using Nisnevich sheaves on SmS, as we illustrate in the third
section. Furthermore, we state some basic properties of DM(S), most
important the existence of a base change and a restriction functor with
respect to the underlying base scheme. These are used to define Artin-
Tate motives in chapter 4. The embedding DMgm(S) → DM(S) is the
subject of section 2.4.

We conclude the second chapter by defining the triangulated category
of Tate motives DMT(S) as a full triangulated subcategory of the Q-
linearisation of DMgm(S) that is generated by the tensor powers of the
Tate motive. Furthermore, we define a t-structure on DMT(S) in case S
satisfies the Beilinson-Soulé vanishing conjectures. The t-structure yields
the Tannakian category MT(k) of mixed Tate motives as its heart.

In the third chapter we state and proof Spitzweck’s representation theorem.
To that end we define the cycle algebra N (S) associated to a smooth
scheme S over k. This is done by defining a complex of Nisnevich sheaves
N on Smk and evaluating it for the base scheme S. The elements of N (S)
are algebraic cycles and the external product of cycles induces a product
on N (S) making it an Adams graded cdga.

Section 3.2 gives the definition of the category CMf
A of finite cell mod-

ules over an Adams graded cdga A. Moreover, we summarise the basic
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properties of its homotopy category KCMf
A, such as the existence of t-

structure yielding a Tannakian category as its heart if A is cohomologi-
cally connected. Furthermore, we state the equivalence of KCMf

A with the
derived category of Adams graded dg A-modules DfA that is used to prove
Spitzweck’s representation theorem. As a triangulated category, KCMf

A

is generated by the free rank 1 modules which we call the Tate objects in
KCMf

A.

In the following section we apply the results of section 3.2 to the cycle
algebra N (S). We notice that N (S) is cohomologically connected if and
only if S satisfies the Beilinson-Soulé vanishing conjectures and that the
morphisms between the Tate objects in KCMf

N (S) are given as the same
K-groups of the base scheme S as the morphism between the Tate objects
in DMT(S).

We finish the chapter by stating and proving Spitzweck’s representation
theorem for smooth schemes S over a perfect field utilizing the results we
collected in the first three chapters of the thesis.

Chapter 4 deals with the triangulated category of Artin-Tate motives
DMAT(k) over a number field k and the construction of an equivalent
category of cell modules. The first section recalls the definition of the
triangulated category of Artin-Tate motives following [Wil08] and [Sch11].

We give Wildeshaus’ theorem stating the existence of a non-degenerate t-
structure on DMAT(k) yielding a Tannakian category MAT(k) as its heart.
We conclude this section by computing the Tannaka group of MAT(k) in
Theorem 4.24 as the semi-direct product of the absolute Galois group of k
and the Tannaka group of the category of mixed Tate motives MT(k̄) over
an algebraic closure k̄ of k.

Theorem
Let k be a number field and let k̄ denote its algebraic closure. Then there
exists a split exact sequence

1→ G(MT(k̄))→ G(MAT(k)) � Gal(k̄|k)→ 1.

This is done using the triangulated category of Artin-Tate motives over k
that are trivialisable over L, DMAT(L|k), where L is an algebraic extension
of k, and using the fact that G(MA(L|k)) = Gal(L|k).

The aim of section 4.2 is to construct a triangulated category D(k) of
cell modules that is equivalent to DMAT(k). This category should also
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carry a non-degenerate t-structure whose heart is a Tannakian category
A(k). The equivalence D(k) → DMAT(k) should be compatible with
the t-structures yielding an equivalence of Tannakian categories A(k) →
MAT(k). We achieve this by defining a triangulated category D(L|k) of
N (L)-cell modules with Gal(L|k)-action for a fixed algebraic extension L
of k. We show that DfN (k) is a full triangulated subcategory of D(L|k)
or more generally that D(K|k) for K an intermediate Galois extension
k ⊂ K ⊂ L is a full triangulated subcategory of D(L|k). We define
D(k) as the union of the categories D(L|k) for L → k̄. We construct an
equivalence D(L|k)→ DMAT(L|k) for every finite Galois extension L of k.
These functors induce the desired equivalence D(k)→ DMAT(k). Again,
the equivalence is compatible with the t-structure yielding an equivalence
of Tannakian categories A(k) → MAT(k). Furthermore, DfN (k) can be
identified with a full triangulated subcategory ofD(k) and the restriction of
D(k)→ DMAT(k) to that subcategory yields the statement of Spitzweck’s
representation theorem.

Theorem (see Theorem 4.41)
Let k be a number field. There is a natural exact tensor functor

Φ: D(k)→ DMgm(k)Q

that induces an equivalence of triangulated tensor categories

Φ: D(k)→ DMAT(k).

Furthermore, the functor Φ is compatible with the weight filtrations in D(k)
and DMAT(k) and yields an equivalence of Tannakian categories

Φ: A(k)→ MAT(k).

Restricted to the full subcategory DfN (k) of D(k), the functor Φ agrees with
the functor

Φk : DfN (k) → DMgm(k)Q
in Spitzweck’s representation theorem.
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1 Categories

The first chapter of this thesis recalls the definitions of some important
types of categories and some basic facts about these categories. These
results are used throughout the whole thesis.

We mainly follow [Lev06].

Let A be an additive category. Recall that a subcategory C of A is called
full if HomC(A,B) = HomA(A,B) for all A,B ∈ C. C is called strictly full
if it is full and closed under isomorphisms, i.e. if A is in C and there is an
isomorphism A→ B in A, then B is in C. Furthermore, a full subcategory
C is called thick (or épaisse) if it is closed under taking direct summands,
i.e. if A is in C and B is a direct summand of A in A, then B is in C.

An important type of categories are triangulated categories. These were
introduced by Verdier in [Ver96]. To be able to define those we need the
notion of a translation functor and a triangle in an additive category A.

Definition 1.1
Let A be an additive category.

1. A translation on A is an automorphism T : A → A. If X is an object
of A, we usually write X[1] for T (X). Similarly, if f is a morphism
in A, we write f [1] for T (f).

2. A triangle (X, Y, Z, a, b, c) in an additive category A with a transla-
tion is a sequence of maps in A of the form

X
a→ Y

b→ Z
c→ X[1].
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A morphism of triangles in A

(f, g, h) : (X, Y, Z, a, b, c)→ (X ′, Y ′, Z ′, a′, b′, c′)

is a commutative diagram

X a //

f

��

Y b //

g

��

Z c //

h
��

X[1]
f [1]
��

X ′ a′ // Y ′ b′ // Z ′ c′ // X ′[1]

in A.

Definition 1.2
A triangulated category is an additive category D with a translation and
a collection T of triangles in D, called distinguished (or exact) triangles,
satisfying:

(TR1) T is closed under isomorphisms of triangles.

Any triangle of the form A
id→ A→ 0→ A[1] is distinguished.

For any morphism f : A → B in D there exists a distinguished
triangle A f→ B → C → A[1] in D.

(TR2) A triangle A f−→ B
g−→ C

h−→ A[1] is distinguished if and only if
the rotated triangle B g−→ C

h−→ A[1] −f [1]−→ B[1] is distinguished.

(TR3) Given two distinguished triangles A
f→ B → C → A[1] and

A′
f ′→ B′ → C ′ → A′[1] and two maps α : A → A′ and

β : B → B′ such that f ′ ◦ α = β ◦ f , there exists a map γ : C → C ′

in D giving a morphism of triangles, i.e. a commutative diagram

A
f //

α

��

B //

β

��

C //

γ

��

A[1]
α[1]
��

A′
f ′ // B′ // C ′ // A′[1].

(TR4) Given three distinguished triangles A
f→ B → C ′ → A[1],

B
g→ C → A′ → B[1] and A

g◦f→ C → B′ → A[1],
there exist maps α : B′ → A′ and β : C ′ → B′ in D such that
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C ′
β→ B′

α→ A′ → C ′[1] is a distinguished triangle and the following
diagram commutes:

A
f //

id
��

B //

g

��

C ′ //

β

��

A[1]
id[1]
��

A
g◦f //

f

��

C //

id
��

B′ //

α

��

A[1]
f [1]
��

B
g // C // A′ // B[1].

Triangles in a triangulated category D give rise to long exact sequences
of abelian groups when applying the functor HomD(X,−) for some ob-
ject X ∈ D to them (or the contra-variant functor HomD(−, X)). As a
consequence of this, a morphism of distinguished triangles (f, g, h) in a
triangulated category is an isomorphism if two of the three correspond-
ing morphisms f , g and h are isomorphisms (this follows by the Yoneda
lemma and the five lemma for abelian groups). Therefore, any two ob-
jects C, C ′ completing a morphism f : A → B to distinguished triangles
A

f→ B → C → A[1] and A f→ B → C ′ → A[1] are isomorphic, hence C is
unique up to (non-unique) isomorphism and we call it the mapping cone
of f . We denote it by Cone(f).

If a triangulated category D is furthermore a tensor category, we call D a
triangulated tensor category if the tensor product is compatible with the
translation functor and the triangulated structure in the following sense.

Definition 1.3
Let D be an additive tensor category with a translation T : D → D and a
collection of distinguished triangles such that D is a triangulated category.
D is called a triangulated tensor category if

1. T ◦ (−⊗−) = T (−)⊗− and T 2(−)⊗− = −⊗ T 2(−);

2. the natural isomorphisms τX,Y : X⊗TY → TX⊗Y that are given as
X ⊗ TY ' TY ⊗ X = T (Y ⊗ X) ' T (X ⊗ Y ) = TX ⊗ Y satisfy:
T (τX,Y )τX,TY : X ⊗ T 2Y → T 2(X ⊗ Y ) = X ⊗ T 2Y is the identity;

3. for each distinguished triangle A→ B → C → A[1] and every object
X ∈ D the induced sequence A⊗X → B⊗X → C⊗X → A[1]⊗X =
(A⊗X)[1] is a distinguished triangle.
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An additive functor F : D → C between two triangulated categories D and
C is called triangulated (or exact) if it commutes with the translations on
both categories and transforms distinguished triangles into distinguished
triangles.

Similarly, two triangulated categories D, C are equivalent as triangulated
categories if there exists a triangulated functor F : D → C that is an equiv-
alence of categories. Note that every quasi-inverse G : C → D of a trian-
gulated functor F is automatically triangulated since every (left or right)
adjoint of a triangulated functor is triangulated by [Nee01, Lemma 5.3.6].

A common example of a triangulated category is the homotopy category
of an additive category which is defined as follows.

Let A be an additive category. Let C(A) be the category of complexes
of A, i.e. the objects of C(A) are sequences

. . . −→ An−1 dn−1
A−→ An

dnA−→ An+1 −→ . . .

in A such that dn+1
A ◦ dnA = 0 for all n. A morphism of complexes f : A→

B is a family of maps fn : An → Bn such that dnB ◦ fn = fn+1 ◦ dnA.
Two maps of complexes f, g : A → B are called homotopic if there exist
maps hn : An → Bn−1 in A such that fn − gn = dn−1

B ◦ hn + hn+1 ◦ dnA.
Homotopy defines an equivalence relation on the set of morphisms between
two complexes.

Definition 1.4
The homotopy category K(A) of A is defined as the category consisting of
the same objects as C(A) and morphisms

HomK(A)(A,B) := HomC(A)(A,B)/{homotopy}.

On K(A) we have the translation functor [1] : A → A[1], where
A[1]i := Ai+1 and diA[1] = −di+1

A . We call a triangle in K(A) distinguished if
it is isomorphic to the image of a cone sequenceA→ B → Cone(f)→ A[1],
where Cone(f) := A[1]⊕B with differential d := (−dA, f + dB).

Proposition 1.5
K(A) is a triangulated category, where the distinguished triangles are those
triangles that are isomorphic to the image of a cone sequence.

There is a more general notion of the homotopy category of a differential
graded category C. These are additive categories, where HomC(A,B) is a
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complex itself, i.e. it is given as a direct sum ⊕m Homm
C (A,B) and carries

a differential dm : Homm
C (A,B)→ Homm+1

C (A,B) satisfying dm+1◦dm = 0.
The homotopy category K(C) is then defined as having the same objects
as C and morphisms defined by

HomK(C)(A,B) := H0(HomC(A,B)).

The category C(A) of complexes of an additive category A can be made
into a differential graded category by putting

Homm
C(A)(A,B) := HomC(A)(A,B[m])

and defining the differential of a map f : A→ B[m] of degree m as

(df)n := dnB ◦ fn + (−1)m+1dnA ◦ fn+1.

Then it is easy to see that df = 0 is equivalent to the fact that f commutes
with the differentials dA and dB on A and B respectively and two maps
of degree 0, i.e. in Hom0

C(A)(A,B), are homotopic if they differ by the
differential of a map h of degree −1 (i.e. a homotopy in the sense as
above). Hence,

HomC(A)(A,B)/{homotopy} = H0(HomC(A)(A,B))

and both definitions of a homotopy category agree for a category of com-
plexes C(A) of an additive category A.

Caution: The homotopy category of a differential graded category is not
necessarily triangulated since in general cones and shifts do not need to
exist in an arbitrary differential graded category. However, the examples
we consider admit reasonable cones and shifts and hence, a triangulated
structure can be defined on the homotopy category. We discuss this later
on when they occur.

We give a sketch of the proof of Proposition 1.5 given in [Sos12]. From
this it can be seen that the homotopy category of the differential graded
categories we consider throughout this thesis are also triangulated.

The axiom (TR1) is straightforward.

Axiom (TR2) follows from the fact that for any morphism f : A → B
there exists a morphism φ : A[1] → C := Cone(B → Cone(f))
such that φ is an isomorphism in K(A) giving an isomorphism of
triangles (id, id, φ) : (B,Cone(f), A[1]) → (B,Cone(f), C). The maps
φk : Ck → A[1]k are given as (−fk+1, idk+1

A , 0). See [Sos12, Lemma 2.6]
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for the proof that φ is an isomorphism in K(A) with (homotopy) inverse
ψ = (0, idA[1], 0).

For (TR3): If A f→ B → C → A[1] and A′ f ′→ B′ → C ′ → A′[1] are two
distinguished triangles and there are two maps α : A→ A′ and β : B → B′

such that f ′ ◦α = β ◦ f in K(A), one needs to construct a map γ : C → C ′

giving a morphism of distinguished triangles. The map γ : C → C ′ can be
defined as γk = (αk+1, sk+1 + βk), where sk : Ak → B′k−1 are maps such
that βk ◦ fk − f ′k ◦ αk = sk+1 ◦ dkA + dk−1

B ◦ sk in A. Again, we skip the
proof that the map γ has indeed the desired properties.

Lastly, we are given three distinguished triangles A f→ B → C ′ → A[1],
B

g→ C → A′ → B[1] and A
g◦f→ C → B′ → A[1]. We have to

construct a distinguished triangle Cone(f) → Cone(g ◦ f) → Cone(g)
satisfying the properties stated in (TR4).
We define β : Cone(f) → Cone(g ◦ f) and α : Cone(g ◦ f) → Cone(g)
by βk = (idAk+1 , gk) and αk = (fk+1, idCk). This gives indeed the
desired commutative diagram of distinguished triangles in K(A).
See [Sos12, Theorem 2.7] for details.

Throughout this thesis we encounter various examples of triangulated cat-
egories. Many of them arise as subcategories of triangulated categories
that inherit the triangulated structure, those are called triangulated sub-
categories.

Definition 1.6
Let C, D be two triangulated categories and C ⊂ D. C is called triangulated
subcategory of D if the inclusion functor is triangulated.

If C is a full subcategory of a triangulated category D, then C is a triangu-
lated subcategory of D if C is closed under shifts and under distinguished
triangles, i.e. if A → B → C is a distinguished triangle in D such that A
and B are in C, then C is isomorphic to an object in C.

Most of the triangulated subcategories that we consider are generated by
a set of generating objects.

Definition 1.7
Let D be a triangulated category. Let A be an object of D. We denote by
〈A〉 the smallest full (thick) triangulated subcategory of D that contains A
and call it the full (thick) triangulated subcategory of D generated by A.
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This definition can easily be extended to triangulated categories generated
by a set of generators {Ai : i ∈ I} in the obvious way.

Remark 1.8
The category 〈A〉 can be constructed as follows.
Denote by 〈A〉1 the strictly full subcategory of D of objects isomorphic to
(direct summands of) finite direct sums

r⊕
i=1

A[ni], r ∈ N, ni ∈ Z .

For n > 1 let 〈A〉n denote the full subcategory of D consisting of objects
isomorphic to (direct summands of) objects X fitting into a distinguished
triangle

B → X → C → B[1],
where B is an object of 〈A〉1 and C an object of 〈A〉n−1. Now define

〈A〉 :=
⋃
n

〈A〉n.

Ultimately, we are interested in certain abelian categories that are subcat-
egories of triangulated categories. An important tool to construct these
are t-structures on triangulated categories.

Definition 1.9
Let D be a triangulated category. Let D≤0 and D≥0 be full subcategories of
D satisfying

1. D≤0[1] ⊂ D≤0, D≥0[−1] ⊂ D≥0;

2. HomD(X≤0, X>0) = 0 for all X≤0 ∈ D≤0, X>0 ∈ D>0 := D≥0[−1];

3. for every X ∈ D there is a distinguished triangle

X≤0 → X → X>0,

where X≤0 ∈ D≤0, X>0 ∈ D>0.

Then (D≤0,D≥0) is called a t-structure on D with heart D0 := D≤0 ∩D≥0.
The t-structure is called non-degenerate if A ∈ ⋂n≤0D≤n and B ∈

⋂
n≥0D≥n

imply A ∼= B ∼= 0, where D≤n := D≤0[n] and D≥n := D≥0[−n].

Note that the objects X≤0 and X>0 are (up to isomorphisms) uniquely
determined by X.
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The heart of a t-structure on a triangulated category D is always an abelian
category that is closed under extension in D, as shown by Beilinson, Bern-
stein and Deligne in [BBD82].

Recall that an additive category is called pre-abelian if every morphism
has both a kernel and a cokernel. The coimage of a morphism is defined as
the cokernel of its kernel, while the image of a morphism is the kernel of
its cokernel. The universal properties of the kernel and cokernel induce a
unique morphism between them. A pre-abelian category is called abelian if
for every morphism f the induced unique morphism f̄ : coim(f) → im(f)
is an isomorphism.

Beside the category R-Mod of modules over a commutative ring R, one
of the most prominent examples of an abelian category is the category
of representations of an algebraic group G over Q in finite dimensional
Q-vector spaces. We denote this category by RepQ(G).

RepQ(G) is a rigid tensor category, meaning for every object X in RepQ(G)
there exists an object Y and morphisms ηX : 1 → X ⊗ Y and
εX : Y ⊗X → 1 in RepQ(G) such that the compositions

X
ηX⊗idX−−−−→ (X ⊗ Y )⊗X '−−→ X ⊗ (Y ⊗X) idX⊗εX−−−−→ X

Y
idY ⊗ηX−−−−→ Y ⊗ (X ⊗ Y ) '−−→ (Y ⊗X)⊗ Y εX⊗idY−−−−→ Y

are the identities. Hereby, 1 denotes the unit object for the tensor struc-
ture.

Furthermore, RepQ(G) admits a forgetful functor ω0 to the finite dimen-
sional Q-vector spaces. The functor ω0 is in fact a faithful exact tensor
functor.

Categories that satisfy these properties are called Tannakian categories.

Definition 1.10
A neutral Tannakian category over Q is a rigid abelian Q-linear tensor
category A that admits a fibre functor ω, i.e. a faithful exact tensor functor
ω : A → Q-Vec, where Q-Vec denotes the category of finite dimensional
Q-vector spaces.

The Tannaka group G(A, ω) of a neutral Tannakian category A over Q
with fibre functor ω is the algebraic group Aut(ω)⊗r over Q. Here, Aut(ω)⊗
denotes the group of natural automorphisms of ω that are compatible with
the tensor structures on A and Q-Vec.
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In the following we just write Tannakian category for a neutral Tannakian
category over Q.

The main theorem of Tannakian categories by Deligne states that every
Tannakian category is (up to equivalence) of the form RepQ(G) for some
algebraic group G.

Theorem 1.11 ([Del90, Theorem 1.12])
Let A be a Tannakian category with fibre functor ω. Let G := Aut⊗(ω).
Then there is an equivalence A → RepQ(G) transforming ω to ω0.

A Tannakian category A is required to be Q-linear, i.e. HomA(A,B) is
a Q-vector space for all A, B ∈ A. Triangulated categories are additive
but in general not Q-linear. However, there is a way to produce a Q-linear
triangulated category, called the Q-linearisation.

An object A in an additive category A is called compact if
HomA(A,⊕iBi) ' ⊕i HomA(A,Bi) for all families {Bi}i of objects whose
sum exist. We call an object A ∈ A a torsion object if there exists an
integer n > 0 such that n · idA = 0. If D is a triangulated category that
is generated by compact objects, we denote by Dtor the localising subcat-
egory of compact torsion objects and define the Q-linearisation DQ of D
as the Verdier localisation D/Dtor. The localisation functor D → DQ is a
triangulated functor.

If every object in D is compact, the Q-linearisation of D is given in the
following way by [Kel13, Corollary A.2.12]. The objects in DQ are the
same as in D and

HomDQ(M,N) = HomD(M,N)⊗Q .

One last important categorical tool we need is the pseudo-abelian hull of
an additive category.

An additive category is called pseudo-abelian (or Karoubian) if every idem-
potent endomorphism has a kernel (or equivalently a cokernel). In other
words, for every idempotent endomorphism α : A → A in A there exist
objects A0 and A1 in A and an isomorphism φ : A → A0 ⊕ A1 such that
φ ◦ α ◦ φ−1 = 0A0 ⊕ idA1 . (A0 is then given as the kernel of α.)

As the name suggests, every abelian category is pseudo-abelian, in fact
every pre-abelian category is pseudo-abelian as follows immediately from
the definition.
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Another example of a pseudo-abelian category (that is not necessarily pre-
abelian) is the so-called pseudo-abelian hull (also called Karoubi envelope
or idempotent completion) of an additive category A.

Definition 1.12
Let A be an additive category. Then the pseudo-abelian hull of A con-
sists of the objects (A,α), where A ∈ A and α : A → A is an idempotent
endomorphism on A in A, and morphisms

β ◦ f ◦ α : (A,α)→ (B, β),

where f ∈ HomA(A,B). The composition of two morphisms (γ ◦g ◦β) and
(β ◦ f ◦ α) is given by

(γ ◦ g ◦ β) ◦ (β ◦ f ◦ α) = γ ◦ (g ◦ β ◦ f) ◦ α.

For a pair (A,α), the identity map on A gives an isomorphism

(A, id) ' (A, id−α)⊕ (A,α)

which can be used to show that the pseudo-abelian hull is indeed a pseudo-
abelian category by the discussion above.

Sending an object A of an additive category A to the pair (A, id) defines
a functor from A into its pseudo-abelian hull.

It can easily be seen from the definition that if A and B are two equiva-
lent additive categories, then their respective pseudo-abelian hulls are also
equivalent.

If A is a triangulated category, then Balmer and Schlichting have shown in
[BS01] that the pseudo-abelian hull of A is again a triangulated category
in a natural way.
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2 Tate motives

The goal of this chapter is to define the Tannakian category of mixed Tate
motives MT(S) over a smooth scheme S over a perfect field k. This is
done in several steps.

First, we describe the construction of the category of geometric motives
DMgm(S) over a scheme S and the sheaf theoretic construction of the cat-
egory of motives DM(S) using the knowledge about triangulated tensor
categories we acquired in chapter 1. Both constructions have been intro-
duced by Voevodsky in [Voe00] for S = Spec k, where k is a perfect field,
and are linked by an embedding DMgm(S)→ DM(S). This has been gen-
eralised to a regular noetherian base scheme S by Ivorra in [Ivo07] and
Cisinski and Déglise in [CD09]. The reasoning behind defining a category
of motives is to capture the fundamental properties and structures of a
cohomology theory on smooth schemes over S. Like any reasonable co-
homology theory, the category of motives should contain pull-back maps,
products and long exact sequences. The pull-back maps are induced by the
pull-back of algebraic cycles and correspondences. Long exact sequences
can be produced by considering triangulated categories and the product
comes from the tensor structure on the triangulated category.

While concrete computations in the category of motives DMgm(S) (re-
spectively DM(S)) for a scheme S are still quite difficult, there exists a full
triangulated subcategory DMT(S), called triangulated category of Tate
motives, that is much more accessible. In this subcategory the morphisms
are (after tensoring with Q) given by the rational K-theory of the under-
lying scheme (which for example in the case of S = Spec k, k a number
field, is well-known). The knowledge of these morphisms makes it possi-
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ble to define a t-structure on DMT(S) which yields the desired Tannakian
category MT(S) as its heart for schemes S that satisfy the Beilinson-Soulé
vanishing conjectures.

In the first section we define the group of algebraic cycles on a scheme and
sum up some useful properties such as the existence of pull-back and push-
forward maps along morphisms of schemes. These cycles act as morphisms
between schemes in the category of correspondences. Section 2.2 describes
how to form the category of geometric motives DMgm(S) with the desired
properties mentioned above out of the category of correspondences over S.
DMgm(S) can be embedded into a bigger category of motives DM(S) that
is constructed in section 2.3 using the derived category of Nisnevich sheaves
with transfer on the category of smooth schemes. The embedding itself is
the subject of section 2.4 and allows to consider DMgm(S) as a full sub-
category of DM(S). The advantage of this is that it is easier to compute
morphism in DM(S) than in DMgm(S). Section 2.5 gives the definition of
the triangulated category of Tate motives DMT(S). It is the full trian-
gulated subcategory of DMgm(S) that is generated by the tensor powers
of the Tate motive [S] i∞∗−−→ [P1

S]. In case S satisfies the Beilinson-Soulé
vanishing conjectures, we see that DMT(S) behaves similar to a classical
derived category of an abelian category, namely its full Tannakian subcat-
egory MT(S) that arises as the heart of a t-structure.

Throughout this chapter let S be a smooth separated scheme of finite type
over a perfect field k. We denote the category of smooth separated schemes
of finite type over S by SmS.

2.1 Cycles and Correspondences

This section contains the definition of the group of algebraic cycles on a
scheme. These algebraic cycles are used to define the category of corre-
spondences over a scheme which allows us to construct the category of
geometric motives in the following section. Furthermore, the correspon-
dences give essential examples of Nisnevich sheaves with transfer which
are studied in section 2.3. In a similar fashion, correspondences are used
in section 3.1 to define the cycle algebra N (S) over a scheme S.

We follow the notation of [Lev06], where he describes the case S = Spec k,
k a field. The generalisation to any base scheme S ∈ Smk holds true by
[Dég07].
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For X ∈ SmS, we define zr(X) as the free abelian group on the closed
integral subschemes W ⊂ X of dimension r. We write z∗(X) = ⊕rzr(X)
and call it the group of algebraic cycles on X. For a cycle Z = ∑

niZi ∈
z∗(X) the support of Z is given as

supp(Z) :=
⋃
i

Zi.

Conversely, if W ⊂ X is a closed irreducible subscheme with irreducible
components W1, . . . , Wr, we define the cycle associated to W by

|W | :=
r∑
i=1

(lOX,Wi (OW,Wi
)) ·Wi,

where lOX,Wi is the length as an OX,Wi
-module. For example, if W is

reduced, then |W | = ∑r
i=1Wi.

We define the group c0(X/S) of finite relative cycles on X over S as the
subgroup of z∗(X) of cycles Z such that supp(Z) is finite equidimensional
over S. Recall that a morphism X → S is called equidimensional if f is
of finite type, the relative dimension of f is constant and every irreducible
component of X dominates an irreducible component of S. By [Dég07,
Lemma 1.2], Z being a finite relative cycle on X over S is equivalent to
supp(Z) being finite over S and surjective over an irreducible component
of S.

Note that if S = S1
⊔
S2, c0(X/S) = c0(X/S1)⊕ c0(X/S2). Therefore, we

may assume S is irreducible.

For X, Y in SmS, we define the group of finite S-correspondences
cS(X, Y ) ⊂ z∗(X ×S Y ) as the free abelian group on the integral closed
subschemes W ⊂ X ×S Y with W → X finite and surjective over an
irreducible component of X, i.e. cS(X, Y ) := c0(X ×S Y/X).

The groups cS(X, Y ) act as morphism groups between two schemes X
and Y in the category of finite S-correspondences. To be able to define a
composition of two correspondences, we need the push-forward and pull-
back of algebraic cycles.

Let f : X → Y a morphism in SmS. Let W ⊂ X be a closed integral
subscheme which is finite equidimensional over S. Then the push-forward
of |W | along f is defined as

f∗(|W |) := d · |f(W )| ,
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where d is the degree of the extension of function fields induced by f . By
[Dég07, Lemma 1.9], d is a finite number and f(W ) is a closed integral
subscheme of Y that is finite and surjective over an irreducible component
of S. Therefore, f∗(|W |) ∈ c0(Y/S) and by linearity, this defines a group
homomorphism

f∗ : c0(X/S)→ c0(Y/S).

This is functorial, i.e. (g ◦ f)∗ = g∗ ◦ f∗ for two morphisms f : X → Y ,
g : Y → Z in SmS, by [Dég07, 1.11].

There is also a pull-back of cycles that is defined as follows. Let S,
T ∈ Smk. Suppose, we are given a cartesian square

Y
f //

��

X

��
T

g // S

such that X → S is smooth. Let Z ∈ c0(X/S). By [Dég07, section 1.12],
f−1(supp(Z)) is a closed integral subscheme of Y that is finite over T and
surjective over an irreducible component of T . If W is an irreducible com-
ponent of f−1(supp(Z)), we define the multiplicity m(Z,W ; f) by Serre’s
formula (see [Ser65]):

m(Z,W ; f) :=
∑
i≥0

(−1)ilOX,Z (TorOX,Zi (OZ ,OY,W )).

The fact that X → S is smooth implies that the sum is finite. Now, the
pull-back of Z is defined as

f ∗(Z) :=
∑
W

m(Z,W ; f) ·W ∈ c0(Y/T ),

where the sum is taken over all irreducible components of f−1(supp(Z)).
By [Ser65, V.C.7, Exercise 1], the pull-back is functorial with respect to
composition of cartesian squares.

Remark that if the morphism g : T → S is flat and if W is any closed inte-
gral subscheme of X that is finite over S and surjective over an irreducible
component of S,

f ∗(|W |) = |W ×S T |

by [Dég07, Lemma 1.7].
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The pull-back and push-forward of finite relative cycles allow us to define
a composition of correspondences.

Let X, Y , Z in SmS. For W ∈ cS(X, Y ), W ′ ∈ cS(Y, Z) we define the
composition of W and W ′ as

W ◦W ′ := pXZ∗ (p∗XY (W ) · p∗Y Z(W ′)) ∈ cS(X,Z),

where · is the intersection product on X ×S Y ×S Z and pXY , pXZ , pY Z
are the evident projections from X ×S Y ×S Z. The composition W ◦W ′

is a well-defined element of cS(X,Z) by [Dég07, Lemma 1.15].

Remark 2.1
Limiting ourselves to the subgroup cS(X, Y ) ⊂ z∗(X×S Y ) ensures that the
pull-back maps used in the definition of the composition of correspondences
are well-defined. For arbitrary algebraic cycles, there is in general only a
well-defined push-forward along projective morphisms f . Furthermore, the
pull-back is only partially defined.

Sending a morphism f : X → Y in SmS to its graph Γf ⊂ X ×S Y defines
a map

HomSmS
(X, Y )→ cS(X, Y )

by [Dég07, Example 1.17] that is obviously injective. Sometimes we denote
the graph Γf of f by f∗.

By [Dég07, Lemma 1.18], the composition in SmS agrees with the compo-
sition of correspondences under this map. Furthermore, the composition
of correspondences is associative and for any X ∈ SmS the graph of the
identity morphism X → X is the neutral element of this composition.
Therefore, the following definition yields indeed a category.

Definition 2.2
We denote the category of S-correspondences by Cor(S). The objects are
the same as in SmS and morphisms are given as

HomCor(S)(X, Y ) := cS(X, Y )

with the composition law above.

The category Cor(S) is additive and the direct sum of two smooth S-
schemes is given as its disjoint union.
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As we have seen, sending a morphism f : X → Y in SmS to its graph
Γf ⊂ X ×S Y , defines an embedding SmS → Cor(S) that is the identity
on objects. We denote the object in Cor(S) corresponding to a smooth
S-scheme X by [X].

The fibre product of schemes induces a tensor product on Cor(S).

Lemma 2.3 ([Dég07, Proposition 1.23])
Cor(S) is a tensor category with tensor product

[X]⊗ [Y ] := [X ×S Y ]

for X, Y ∈ SmS and the tensor product of finite correspondences
W ∈ cS(X, Y ) and W ′ ∈ cS(X ′, Y ′) is given by

W ⊗W ′ := p∗XY (W ) · p∗X′Y ′(W ′) ∈ cS(X ×S X ′, Y ×S Y ′),

where pXY and pX′,Y ′ denote the canonical projections from
X ×S Y ×S X ′ ×S Y ′ to X ×S Y and X ′ ×S Y ′ respectively.

The embedding SmS → Cor(S) is a tensor functor with the tensor product
on SmS given by the fibre product over S.

Proof. W ⊗ W ′ is a well-defined element of cS(X ×S X ′, Y ×S Y ′) by
[Dég07, Lemma 1.20]. See [Dég07, Proposition 1.23] for further details.

Let f : T → S be a morphism in Smk. The pull-back and push-forward
maps of cycles allow us to define a base change and restriction functor
between the categories of correspondences.

Let α : X → Y be a correspondence in Cor(S) between two smooth
S-schemes X and Y . The morphism f : T → S induces a morphism
g : X ×T Y → X ×S Y . We define the pull-back of α along f by
αT := g∗(α) ∈ cS(XT , YT ), where XT := X ×S T , YT := Y ×S T and
we identify XT ×T YT with (X ×S Y )T . By [Dég07, Lemma 1.28], we have
βT ◦ αT = (β ◦ α)T for α ∈ cS(X, Y ) and β ∈ cS(Y, Z), allowing us the
following definition.

Definition 2.4
Let f : T → S be a morphism in Smk. We define the base change functor
f ∗ by

f ∗ : Cor(S)→ Cor(T )
X/S 7→ XT/T

α 7→ αT .
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Lemma 2.5 ([Dég07, Lemma 1.30])
1. The functor f ∗ : Cor(S)→ Cor(T ) is a tensor functor.

2. If f ∗ also denotes the classical base change functor of schemes
SmT → SmS, base change is compatible with the embeddings
SmS → Cor(S) and SmT → Cor(T ), i.e. the following diagram
commutes:

SmS
//

f∗

��

Cor(S)
f∗

��
SmT

// Cor(T ).

3. If g : T ′ → T is another morphism in Smk, we have a canonical
isomorphism of functors (f ◦ g)∗ ' g∗ ◦ f ∗.

Proof. See [Dég07, Lemma 1.30].

Now let f : T → S be a smooth morphism in Smk. It induces a restriction
functor SmT → SmS by forgetting the base scheme: X/T 7→ X/S. Again,
this can be extended to a restriction functor Cor(T )→ Cor(S).

Let X, Y be smooth T -schemes. The base change of X ×S Y along the
diagonal T → T ×S T gives a commutative diagram

X ×T Y
δXY //

��

X ×S Y

��
T // T ×S T.

The morphism δXY allows us to associate to any α ∈ cT (X ×T Y ) a corre-
spondence δXY ∗(α) ∈ cS(X, Y ). By Lemma [Dég07, Lemma 1.31], we have
δXZ∗(β ◦ α) = (δY Z∗(β)) ◦ (δXY ∗(α)) for α ∈ cT (X, Y ), β ∈ cT (Y, Z).

Definition 2.6
Let f : T → S be a smooth morphism in Smk. We define the restriction
functor as

f# : Cor(T )→ Cor(S)

(X → T ) 7→ (X → T
f→ S)

α 7→ δXY ∗(α).



28 CHAPTER 2. TATE MOTIVES

By [Dég07, Lemma 1.31], δXY ∗(|Γg|) = |Γg| for all T -morphisms
g : X → Y . Therefore, f# restricts to the classical forgetting the base func-
tor on SmT . Furthermore, for smooth morphisms f : T ′ → T , g : T → S,
we have (g ◦ f)# = g# ◦ f#.

The functors f ∗ and f# are adjoint functors in case f is smooth and of
finite type.

Lemma 2.7 ([Dég07, Proposition 1.34])
Let f : T → S be a smooth morphism of finite type in Smk. Then:

1. The functor f# is left adjoint to the functor f ∗.

2. For every X ∈ SmS and Y ∈ SmT the obvious morphism obtained by
adjunction

f#(f ∗X ×T Y )→ X ×S f#Y

is an isomorphism.

Proof. See [Dég07, Proposition 1.34].

2.2 Geometric motives

In the first section of this chapter we defined the additive category of
S-correspondences Cor(S) with objects given as smooth schemes over S
and morphisms given by finite S-correspondences. In this section we con-
struct the triangulated category of geometric motives DMgm(S) over S.

We follow the notation of [Lev06], where this construction is done in detail
for the case of S = Spec k, the spectrum of a field. This construction was
originally done by Voevodsky in [Voe00] and was generalised to the case
of an arbitrary smooth base scheme S by Ivorra in [Ivo07, section 1.3] and
Cisinski and Déglise in [CD09, section 11.1.b].

Since Cor(S) is an additive category, we can form the bounded homotopy
category Kb(Cor(S)) of Cor(S). This is a triangulated category, where the
distinguished triangles are the triangles that are isomorphic to a cone se-
quence. The tensor product ⊗ on Cor(S) makes Kb(Cor(S)) a triangulated
tensor category and we denote the tensor product on Kb(Cor(S)) also by
⊗.
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While we obtain a triangulated tensor category, our desired category of
geometric motives should carry even more "nice" properties, such as being
A1-homotopy invariant and having long exact sequences like the Mayer-
Vietoris sequence for open covers. Therefore, we define the category
D̂Meff

gm(S) as the localization of Kb(Cor(S)) with respect to these prop-
erties.

Definition 2.8
The category D̂Meff

gm(S) is the localization of the triangulated tensor cate-
gory Kb(Cor(S)) with respect to the thick triangulated subcategory generated
by complexes of the following form:

1. [X ×S A1
S] p∗−→ [X] for X ∈ SmS;

2. Cone
(

[U ∩ V ] (jU∗,−jV ∗)−−−−−−→ [U ⊕ V ]
)

iU∗+iV ∗−−−−−→ [X], where we write
X ∈ SmS as a union of Zariski open subschemes U , V and
jU : U ∩ V → U , jV : U ∩ V → V , iU : U → X, iV : V → X are
the obvious inclusions.

Since the morphisms inverted in the definition of D̂Meff
gm(S) are closed under

⊗, D̂Meff
gm(S) inherits the tensor structure from Kb(Cor(S)) making it a

triangulated tensor category.

Definition 2.9
We define the category of effective geometric motives DMeff

gm(S) over S as
the pseudo-abelian hull of D̂Meff

gm(S).

DMeff
gm(S) is a triangulated tensor category by [BS01, Theorem 1.5].

The embedding SmS → Cor(S) extends canonically to a functor
meff
S : SmS → DMeff

gm(S).

At the end of this chapter we study a subcategory of motives generated
by the so-called Tate motives. In order to obtain a Tannakian category of
Tate motives, we need a rigid tensor category. However, in DMeff

gm(S) the
Tate motives are not rigid. Therefore, we construct the category DMgm(S)
out of DMeff

gm(S) by formally inverting these objects.
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Definition 2.10
We define ZS(1) := Cone([S] i∞∗−−→ [P1

S])[−2] and call it the Tate motive.
We put ZS(n) := ZS(1)⊗n for n ≥ 0.

Now we define the triangulated category DMgm(S) of geometric motives
over S by inverting the functor − ⊗ ZS(1) on DMeff

gm(S), i.e. one has
objects M(n) for M ∈ DMeff

gm(S) and n ∈ Z and

HomDMgm(S)(X(n), Y (m))
:= lim−→

N

HomDMeff
gm(S)(X ⊗ ZS(n+N), Y ⊗ ZS(m+N)).

DMgm(S) is a triangulated tensor category by [Ivo07, section 1.3]. We
denote the unit [S] of the tensor structure ⊗ on DMgm(S) by ZS(0).
Furthermore, there are canonical isomorphisms ZS(n)⊗ZS(m) ' ZS(n+m)
for all n, m ∈ Z.

Sending X to X(0) defines a functor ιS : DMeff
gm(S) → DMgm(S) and we

denote the composition ιS ◦meff
S by mS : SmS → DMgm(S).

Remark 2.11
For S = Spec k, k a field, the functor ιk : DMeff

gm(k) → DMgm(k) is a full
embedding by [Voe00, Chapter V, Theorem 3.4.1]. The analogous result
for arbitrary schemes S ∈ Smk is not known.

We define the motivic cohomology groups of a smooth scheme S over a
field k with coefficients in Z respectively Q as:

Hm(S,Z(n)) := HomDMgm(k)(mk(S),Zk(n)[m]),
Hm(S,Q(n)) := HomDMgm(k)(mk(S),Zk(n)[m])⊗Q .

If f : T → S is a morphism in Smk, the functor f ∗ : Cor(S) → Cor(T )
that was defined in Definition 2.4 induces a tensor functor
f ∗ : DMgm(S)→ DMgm(T ) by [CD09, Remark 11.18].

Furthermore, if f : T → S is smooth, the functor f# : Cor(T ) → Cor(S)
(see Definition 2.6) induces a functor f# : DMgm(T ) → DMgm(S) (again
by [CD09, Remark 11.18]).

Example 2.12
Let f : S → T be a morphism in Smk. Let X be a smooth scheme over
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T . As we have seen, the pull-back of [X] ∈ DMgm(T ) via f is given by the
base change [X ×T S].

Therefore, the pull-back of ZT (1)[2] = Cone([T ]→ [P1
T ]) is

f ∗ZT (1)[2] = Cone([T ×T S]→ [P1
T ×T S]) = Cone([S]→ [P1

S]) = ZS(1)[2].

Since f ∗ is a monoidal functor, we have f ∗ ZT (q)[p] = ZS(q)[p] for all q,
p ∈ Z.

Example 2.13
Let k be a number field and L be a quadratic Galois extension with Galois
group G = {id, σ}. Thus, we have a finite, étale (hence smooth) morphism
φ : SpecL → Spec k in Smk. Therefore, φ# ZL(0) = φ#[SpecL] is given
by [SpecL φ−→ Spec k].

We want to compute φ∗φ# ZL(0) in DMgm(L):

φ∗φ# ZL(0) = φ∗[SpecL φ−→ Spec k] = [SpecL×k SpecL]
' [Spec(L⊗k L)] ' [SpecLq SpecL] = [SpecL]⊕ [SpecL],

where the isomorphism L⊗k L ∼= L× L is given by x⊗ y 7→ (xy, xσ(y)).

Similarly, for a finite Galois extension L|k of degree n with Galois group
G, we have

φ∗φ# QL(0) '
⊕
σ∈G

[SpecL].

2.3 Sheaves with transfer

This section covers the second construction by Voevodsky of a triangulated
category of motives over a scheme S using Nisnevich sheaves with transfer.
We follow [Lev10, Chapter 3] with additions from [Dég07].

Again, let S be a smooth separated scheme of finite type over a field k.

A Nisnevich cover of X ∈ SmS is a family of étale morphisms pi : Yi → X
such that for any x ∈ X there exists yi ∈ Yi for some i with pi(yi) = xi such
that the induced map between the residue fields K(x) → K(yi) is an iso-
morphism. The Nisnevich covers define a Grothendieck pre-topology and
we call the Grothendieck topology generated by it the Nisnevich topology.
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We define the abelian category of presheaves with transfer over S, PST(S),
as the category of additive presheaves of abelian groups on Cor(S), i.e.
additive contravariant functors from Cor(S) to the category of abelian
groups.

A Nisnevich sheaf with transfers over S is a presheaf with transfers P such
that the restriction of P to a presheaf on SmS via the embedding SmS →
Cor(S) is a sheaf for the Nisnevich topology. We denote by Shtr

Nis(S) the
full subcategory of PST(S) of Nisnevich sheaves with transfer.

By C(Shtr
Nis(S)) we denote the category of (unbounded) complexes over

Shtr
Nis(S), and by D(Shtr

Nis(S)) the derived category that is equivalent to
the homotopy category of Shtr

Nis(S) by [Lev10, section 3.1].

For Z ∈ SmS we have the representable presheaf ZtrS (Z) : X 7→ cs(X,Z)
and pull-back maps are given by composition of correspondences. Ztr

S (Z)
is a Nisnevich sheaf by Lemma [Dég07, Lemma 2.4].

The operation Ztr
S (X) ⊗trS Ztr

S (Y ) := Ztr
S (X ×S Y ) extends to a tensor op-

eration ⊗trS making Shtr
Nis(S) a tensor category since the sheaves Ztr

S (X),
X ∈ SmS, are generators for the Grothendieck abelian category Shtr

Nis(S)
(see [Dég07, Proposition 2.8 and Lemma 2.11] for details). The identity
object for the tensor structure is given by Ztr

S (S).

Thus, ⊗trS defines a left-derived tensor product

⊗LS : D(Shtr
Nis(S))×D(Shtr

Nis(S))→ D(Shtr
Nis(S))

which makes D(Shtr
Nis(S)) a triangulated tensor category.

We define the category of effective motives on S, DMeff(S), as the localisa-
tion of the triangulated category D(Shtr

Nis(S)) with respect to the localising
category generated by the complexes Ztr

S (X × A1) → Ztr
S (X), X ∈ SmS.

We denote by meff
S (X) the image of Ztr

S (X) in DMeff(S).

DMeff(S) is again a triangulated tensor category with tensor product ⊗S
induced from ⊗LS via the localization map by [CD07, Example 3.15]. Fur-
thermore, meff

S (X)⊗S meff
S (Y ) = meff

S (X ×S Y ).

We define the presheaf with transfer

Ttr
S := coker(Ztr

S (S) i∞∗−−→ Ztr
S (P1

S))

and denote by ZS(1) the image of Ztr
S (1) := Ttr

S [−2] in DMeff(S). Further-
more, we denote by ZS(n) the image of Ztr

S (n) := (Ttr
S [−2])⊗trS n, n ≥ 0, in

DMeff(S).
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Again, we want to invert the motive ZS(1) on DMeff(S) to define the
triangulated category of motives DM(S). This is done via the category of
symmetric Ttr

S spectra.

Before we are able to do so, we need to endow DMeff(S) with a model cate-
gory structure. A model category structure on a category consists of three
classes of morphisms – fibrations, cofibrations and weak equivalences –
satisfying certain axioms. See [BG76, Definition 4.1] for the precise defini-
tion.

C(Shtr
Nis(S)) has a model category structure C(Shtr

Nis(S))Nis that is given by
[CD07, Example 1.6, Theorem 1.7]. More explicitly, Levine describes the
model structure in [Lev10] as follows:

The cofibrations are generated by maps of the form σX [n] : Ztr
S (X)[n] →

DX [n], where X ∈ SmS, n ∈ Z, DX is the cone of the identity map
Ztr

S (X) → Ztr
S (X) and σX [n] is the canonical map Ztr

S (X) → DX . This
means, that the class of cofibrations is the smallest class of morphisms
in C(Shtr

Nis(S)) that contains the maps σX [n] for all X and is closed un-
der pushouts, transfinite compositions and retracts. The weak equiva-
lences are the quasi-isomorphisms for the Nisnevich topology and the fi-
brations are the morphisms having the right lifting property with respect
to acyclic cofibrations, i.e. maps that are cofibrations and weak equiva-
lences. We denote this model category structure by C(Shtr

Nis(S))Nis. Ap-
plying the Bousfield localisation to C(Shtr

Nis(S))Nis with respect to the com-
plexes {Ztr

S (X×kA1
k)→ Ztr

S (X), X ∈ SmS} gives the model category struc-
ture C(Shtr

Nis(S))A1 on C(Shtr
Nis(S)). By [CD07, Proposition 3.5, Example

3.15], the homotopy category of C(Shtr
Nis(S))A1 is equivalent to DMeff(S),

where the model category structure on DMeff(S) is induced by the one on
C(Shtr

Nis(S))Nis.

Let SptSTtr(S) be the category of Ttr
S spectra in C(Shtr

Nis(S))A1 . Its ob-
jects are sequences E := (E0, E1, . . .), where En ∈ C(Shtr

Nis(S))A1 , with En
endowed with an action of the symmetric group SN and bonding maps
εn : En ⊗trS Ttr

S → En+1. Furthermore, we require that for all n ≥ 0 and
m ≥ 1 the iterated bonding map

En ⊗trS (Ttr
S )⊗m εn⊗id−→ En+1 ⊗trS (Ttr

S )⊗m−1 −→ . . . −→ En+m

is Sn × Sm equivariant, where we use the canonical inclusion Sn × Sm ⊂
Sn+m. Morphisms are given by sequences of maps f = {fn} in C(Shtr

Nis(S))
that commute with the bonding maps and such that fn is Sn-equivariant
for all n. Note that this makes SptSTtr(S) a dg category.
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Now, we define a model category structure on SptSTtr(S) following the con-
struction of Hovey in [Hov01]. For A ∈ C(Shtr

Nis(S)) and i ≥ 0, we have
the object A{−i}S in SptSTtr(S) with A{−i}Si+n := Si+n ×Sn A⊗trS (Ttr

S )⊗n
and A{−i}Sn = 0 for n < i. Sending A to A{−i}S defines a func-
tor (−){−i}S : C(Shtr

Nis(S)) → SptSTtr(S). The projective model struc-
ture on SptSTtr(S) consists of weak equivalences and fibrations f = {fn}
such that fn is a weak equivalence respectively a fibration for all n. The
class of cofibrations is the smallest class of morphisms containing the
maps f{−i}S with f a cofibration in C(Shtr

Nis(S))Nis that is closed un-
der pushouts, transfinite compositions and retracts. We denote this model
category by SptSTtr(S)proj.

A Ttr
S -Ω spectrum is a Ttr

S spectrum E = (E0, E1, . . .) such that En is a
fibrant object in C(Shtr

Nis)A1 , i.e. the unique map from En to the zero object
is a fibration, and such that the map

En → HomC(Shtr
Nis(S))(Ttr

S , En+1)

adjoint to εn is a weak equivalence in C(Shtr
Nis(S))A1 . We call a map f : A→

B in SptSTtr(S) a stable weak equivalence if the induced map

f ∗ : HomSptS
Ttr (S)proj(B,E)→ HomSptS

Ttr (S)proj(A,E)

is an isomorphism for all Ttr
S -Ω spectra E. Then, the stable model category

SptSTtr(S)s is the Bousfield localisation of the model category SptSTtr(S)proj
with respect to stable weak equivalences.

Definition 2.14
The triangulated category DM(S) of motives over S is the homotopy cate-
gory of SptSTtr(S)s.

DM(S) is indeed a triangulated category by [CD09, section 5.3.d]. Fur-
thermore, sending A ∈ C(Shtr

Nis(S)) to the sequence (A,A ⊗trS Ttr
S , A ⊗trS

(Ttr
S )⊗2, . . .) defines a functor∑∞

T
: C(Shtr

Nis(S))→ SptSTtr(S),

where the action of Sn is given by permutation on (Ttr
S )⊗n and trivial

action on A. This induces a triangulated functor between the homotopy
categories ∑∞

T
: DMeff(S)→ DM(S).

by [CD09, section 5.3].
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We denote the image of ZS(n), n ≥ 0, under ∑∞T also by ZS(n).

The tensor structure on C(Shtr
Nis(S)) extends to a tensor structure ⊗ on

DM(S) via

(E ⊗trS F )n := ⊕
p+q=n,α : {1,...,p}t{1,...,q}∼→{1,...,n}Ep ⊗

tr
S Fq,

where α runs over all bijections of sets. This makes DM(S) a triangu-
lated tensor category and ∑∞T : DMeff(S)→ DM(S) a triangulated tensor
functor. We do not give the details here (an explicit description can be
found in [Lev10, section 3.3] and [CD09, section 5.3]), but summarise the
important facts in the following lemma:

Lemma 2.15
The functor −⊗ Ttr

S : DM(S)→ DM(S) is an equivalence.

The object ZS(−1) := ZS(0){−1} is a tensor inverse to ZS(1) in DM(S).

Proof. The first statement is Proposition 3.3.1 in [Lev10]. For the second
statement, see [CD09, section 5.3.23].

For n ≥ 0, we define ZS(−n) := ZS(−1)⊗n.

Let f : T → S be a morphism in Smk. The base change functor
f ∗ : Cor(S) → Cor(T ) that we defined in Definition 2.4 yields a base
change functor f ∗ : Shtr

Nis(S) → Shtr
Nis(T ) by [Dég07, section 2.5.2]. In

particular, f ∗ Ztr
S (Z) = ZtrT (Z×ST ) and therefore, f ∗ ZS(1) = ZT (1). Since

f ∗ : Cor(S)→ Cor(T ) is a tensor functor, so is f ∗ : Shtr
Nis(S)→ Shtr

Nis(T ).

This functor has a right adjoint f∗ : Shtr
Nis(T )→ Shtr

Nis(S) defined by

f∗(F)(X) := F(X ×S T ),

where F ∈ Shtr
Nis(T ) and X ∈ SmS (see [Dég07, section 2.5.1] for details).

If f : T → S is a smooth morphism of finite type, f ∗ also admits a left
adjoint that is induced by the restriction functor f# : Cor(T )→ Cor(S) de-
fined in Definition 2.6. We denote the left adjoint of f ∗ also by
f# : Shtr

Nis(T ) → Shtr
Nis(S). If f : T → S is furthermore finite and étale,

the functors f∗ and f# agree by [Dég07, section 2.5.3]. In particular, in
this case f∗ and f ∗ are left and right adjoint to each other.

By [CD09], the functors f∗, f ∗ and f# (if defined) yield well-defined adjoint
derived functors on D(Shtr

Nis(−)) and hence on DM(−).
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For an arbitrary separated morphism f : T → S of finite type, there also
exist the exceptional functors f ! and f! on DM(−). We do not give a
definition of these (see [CD09, section 2.2] for details) since f! and f∗ agree
if f is proper and f ∗ and f ! agree if f is étale.

We summarise the important properties of these functors in the following
lemma.

Lemma 2.16
Let f : T → S be a morphism in Smk.

1. The functor f∗ : DM(T )→ DM(S) is a right adjoint to f ∗ : DM(S)→
DM(T ).

2. If f : T → S is smooth and of finite type, f ∗ also admits a left adjoint
f# : DM(T )→ DM(S).

3. If f : T → S is finite and étale, then f∗ = f#, i.e. f ∗ and f∗ are left
and right adjoint to each other.

4. If f : T → S is finite and étale and g : T ′ → S is another finite
and étale morphism, then there is a natural base-change isomorphism
f ∗g∗ ' g′∗f

′∗, where S ′ := T ×S T ′ and f ′ : S ′ → T ′ and g′ : S ′ → T
are induced by f and g via base-change.

Proof. The first three statements follow by the previous discussion. The
last claim follows by the more general base change isomorphism f ∗g! '
g′!f
′∗ using the exceptional functors f ! and f ! and the fact that f! = f∗ for

f proper and f ! = f ∗ for f étale. For more details see [CD09, section 2.2].
Furthermore, see [CD09, A.5] for an overview of the relations between the
functors f∗, f ∗, f! and f !.

An important consequence of the adjointness of the functors f∗ and f ∗ is
the following statement.

Theorem 2.17 ([CD09, Example 11.2.3])
Let k be a field. Let S ∈ Smk and let X ∈ SmS. Then there is a natural
isomorphism

HomDM(S)(mS(X),ZS(n)[m]) ' HomDM(k)(mk(X),Zk(n)[m]).
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Proof. Let f : S → Spec k.

HomDM(S)(mS(X),ZS(n)[m]) ' HomDM(S)(mS(X), f ∗ Zk(n)[m])
' HomDM(k)(f#mS(X),Zk(n)[m])
' HomDM(k)(mk(X),Zk(n)[m]).

2.4 The embedding theorem

Sending Y ∈ SmS to the representable presheaf with transfers Ztr
S (Y ) gives

an exact tensor functor

ieff
S : DMeff

gm(S)→ DMeff(S).

Therefore, ieff
S links both triangulated categories of motives that we have

defined in the previous two sections.

Since the functor −⊗S ZS(1) is invertible on DM(S) and ieff
S
∼= ZS(1), ieff

S

extends to an exact tensor functor

is : DMgm(S)→ DM(S)

giving us a commutative diagram of exact tensor functors:

DMeff
gm(S)

ieff
S //

ιS

��

DMeff(S)

��
DMgm(S)

iS
// DM(S).

Theorem 2.18 ([Lev10, Theorem 3.5.3], [CD09, Theorem 11.1.13])
The functors

ieff
S : DMeff

gm(S)→ DMeff(S)
and

is : DMgm(S)→ DM(S)
are fully faithful embeddings.

Proof. See [CD09, Theorem 11.1.13]. It identifies DMgm(S) with the full
subcategory of compact objects of DM(S).
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Hence, we can identify the categories DMeff
gm(S) and DMgm(S) with full

subcategories of DMeff(S) and DM(S) respectively.

2.5 Tate Motives

In this section we define the triangulated category of Tate motives over a
scheme S. It is the full triangulated subcategory generated by the motives
ZS(n) for all n ∈ Z in the Q-linearisation of the category DMgm(S) (or
DM(S) respectively).

The vanishing of certain morphism groups ensures the existence of a non-
degenerate t-structure with heart MT(S). MT(S) is in fact a Tannakian
category and its Tannaka group is given as the semidirect product of Gm

with a unipotent group scheme.

This section follows [Lev10] and [Lev06].

As in the previous sections let S be a separated, smooth scheme of finite
type over a field k. For simplicity we also assume S to be irreducible. The
general case of a reducible base scheme S can be obtained by writing S as
a direct sum of its irreducible components.

2.5.1 Definition

Before defining the triangulated category of Tate motives, recall that
DMgm(S) consists of the compact objects of DM(S) by [CD09, Theo-
rem 11.1.13]. Therefore, the Q-linearisation DMgm(S)Q of DMgm(S) is
given by the same objects as DMgm(S) and morphisms

HomDMgm(S)Q(X, Y ) := HomDMgm(S)(X, Y )⊗Q.

This follows by [Kel13, Corollary A.2.12]. We denote the image of the Tate
motives ZS(n) in DMgm(S)Q by QS(n). In particular, we have

HomDMgm(S)Q(QS(0),QS(n)[m]) ' HomDMgm(S)(ZS(0),ZS(n)[m])⊗Q

for all n, m ∈ Z.

By [CD09, Theorem 11.1.13], the category DM(S) is compactly gener-
ated. Hence, we can also define the Q-linearisation DM(S)Q of DM(S) as
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the Verdier localisation DM(S)/DM(S)tor, where DM(S)tor is the subcat-
egory of compact torsion objects. Again, we denote the image of ZS(n) in
DM(S)Q by QS(n).
Note that for arbitrary objects X, Y ∈ DM(S), HomDM(S)Q(X, Y ) and
HomDM(S)(X, Y )⊗Q are not isomorphic in general. However, this is true
ifX is compact by [Kel13, Corollary A.2.13]. In particular, for the compact
objects ZS(0), ZS(n) we have:

HomDMgm(S)Q(QS(0),QS(n)[m]) ' HomDMgm(S)(ZS(0),ZS(n)[m])⊗Q .

Definition 2.19
The triangulated category of geometric mixed Tate motives DMTgm(S) over
S is the strictly full triangulated subcategory of DMgm(S)Q that is generated
by the Tate objects QS(n), n ∈ Z.

The triangulated category of mixed Tate motives DMT(S) over S is the
strictly full triangulated subcategory of DM(S)Q that is generated by the
Tate objects QS(n), n ∈ Z.

In Theorem 2.18 we have seen that the embedding iS : DMgm(S)→ DM(S)
is fully faithful. Since iS(ZS(n)) ' ZS(n) for all n ∈ Z, we have proven
the following proposition.

Proposition 2.20 ([Lev10, Proposition 3.6.2])
The Q-linearisation of iS : DMgm(S) → DM(S) restricted to DMTgm(S)
defines an equivalence

iS : DMTgm(S)→ DMT(S)

of triangulated tensor categories.

Therefore, we identify the category DMTgm(S) with the subcategory
DMT(S) of DM(S)Q and just write DMT(S) in the following.

Lemma 2.21 ([Lev10, Lemma 3.6.5])
DMT(S) is a rigid tensor triangulated category.

Proof. By [Lev98, Part I, IV. Theorem 1.2.5] it is enough to check that
the generators QS(n), n ∈ Z, of the triangulated category DMT(S) admit
a dual. We put QS(n)∨ := QS(−n). Then we have the canonical isomor-
phisms QS(0) ' QS(n)⊗QS(n)∨ showing that QS(n)∨ is indeed the dual
of QS(n).
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The advantage of the Q-linearisation is that the groups of morphisms be-
tween the generators of Q(n) and Q(m), n, m ∈ Z, are now given as the
rational K-groups of the base scheme S. Therefore, the Tate motives can
be used to compute the motivic cohomology of S in terms of K-groups
or higher Chow groups. Furthermore, the Q-linearisation gives us a Q-
linear category and therefore enables a Tannakian subcategory (since Tan-
nakian categories are required to be Q-linear). However, note that it is
still possible to define a triangulated subcategory generated by the Tate
motives Z(n), n ∈ Z, of DMgm(S) or DM(S) (without passing to the Q-
linearisation).

Theorem 2.22 ([CD09, Coroallary 14.2.14])
For any regular scheme S and p, q ∈ Z we have a canonical isomorphism

HomDMT(S)(QS(0),QS(q)[p]) ∼= K2q−p(S)(q)
Q ,

where K2q−p(S)(q) denotes the q-th Adams eigenspace of the K-group
K2q−p tensored with Q.

This theorem enables the computation of the morphismsQS(0)→ QS(q)[p]
for any smooth connected scheme S and any q ≤ 0.

Corollary 2.23
Let S be an irreducible smooth separated scheme of finite type over k. Then:

HomDMT(S)(QS(0),QS(q)[p]) '


0 if q < 0
0 if q = 0, p 6= 0
Q if q = 0, p = 0.

The case S = Spec k, where k is a number field, is of particular interest for
us. In this case we can even compute the morphisms QS(0) → QS(q)[p]
for all p, q ∈ Z.

Example 2.24
Let k be a number field. By the well-known K-theory for number fields (see
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e.g. [Wei05]) we have

HomDMT(k)(Qk(0),Qk(q)[p]) '



0 if q < 0
0 if q = 0, p 6= 0
Q if q = 0, p = 0
0 if q > 0, p ≤ 0
0 if q > 0 even , p = 1
k× ⊗Z Q if q = p = 1
Qr1+r2 if q > 1, q ≡ 1 mod 4, p = 1
Qr2 if q > 0, q ≡ 3 mod 4, p = 1
0 if q > 0, p > 1,

where r1 and r2 are the numbers of real and pairs of complex embeddings
of k, respectively.

Note that by Lemma 2.15 tensoring with QS(1) or more generally QS(n)
defines an auto-equivalence on DMT(S). Therefore, it is enough to know
the morphisms QS(0)→ QS(q)[p] for any p, q ∈ Z.

We have seen in Example 2.12 that for a morphism φ : S → T the functor
φ∗ : DM(T ) → DM(S) preserves Tate-motives, while the functor φ∗ does
not. This is the origin of Artin-Tate motives that we define as the push-
forwards of Tate motives under finite morphisms in the next chapter.

2.5.2 t-structure

The category DMT(S) carries a canonical weight filtration. For any n ∈ Z
we define the category W≤n DMT(S) to be the full triangulated subcate-
gory of DMT(S) generated by the objects QS(−m), m ≤ n. Dually, we
denote by W>n DMT(S) the full triangulated subcategory generated by
the objects QS(−m), m > n. These subcategories are used to define a
t-structure on DMT(S). However, this is not yet the t-structure we are
ultimately interested in.

Lemma 2.25 ([Lev10, Theorem 3.6.6])
(W≤n DMT(S),W>n DMT(S)) defines a t-structure on DMT(S) for every
n ∈ Z.
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Proof. This follows by [Lev93, Lemma 1.2]. The requirements for the
lemma are fulfilled by Corollary 2.23.

We denote the corresponding truncation functors by

W≤n : DMT(S)→ W≤n DMT(S)

and
W>n : DMT(S)→ W>n DMT(S).

For a ≤ b we denote by W[a,b] DMT(S) the full triangulated subcategory
generated by QS(−m), a ≤ m ≤ b. We write grWa for the functor W[a,a]
and grWa DMT(S) for the subcategory W[a,a] DMT(S).

Since HomDMT(S)(Q(−n),Q(−n)[m]) ' 0 for m 6= 0 and n ∈ Z and
HomDMT(S)(Q(−n),Q(−n)) ' Q the category grWn DMT(S) is equivalent
to the bounded derived category of Q-vector spaces Db(Q-VecQ). Thus, it
makes sense to consider the Q-vector spaces Hm(grWn M), m,n ∈ Z, for M
in DMT(S).

Definition 2.26
We define DMT(S)≤0 to be the full subcategory of DMT(S) with objects
M such that Hm(grWn M) = 0 for all m > 0 and n ∈ Z. Dually we define
DMT(S)≥0 as the full subcategory of DMT(S) with objects M such that
Hm(grWn M) = 0 for all m < 0 and n ∈ Z. Let MT(S) := DMT(S)≤0 ∩
DMT(S)≥0.

Remark 2.27
Let DMT(S)≤0

n be the full subcategory of DMT(S) generated by the ob-
jects QS(−n)[m], where m ≤ 0. Then one obtains DMT(S)≤0 as the
full subcategory of DMT(S) generated by the objects M ∈ DMT(S) with
grWn M ∈ DMT(S)≤0

n . Dually one defines the full subcategories DMT(S)≥0
n

and DMT(S)≥0.
This notation is used to define the t-structure for Artin-Tate motives in
section 4.1.

Recall that the motivic cohomology with Q-coefficients of a smooth scheme
S over k is defined as

Hp(S,Q(q)) := HomDMgm(k)(mk(S),Zk(q)[p])⊗Q .
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Using the fully faithful embedding iS : DMgm(S) → DM(S) and Theo-
rem 2.17 we can rewrite this in the following way:

Hq(S,Q(p)) := HomDMgm(k)(mk(S),Zk(q)[p])⊗Q
' HomDMgm(S)(mS(S),ZS(q)[p])⊗Q
' HomDMgm(S)Q(QS(0),QS(q)[p])
' HomDMT(S)(QS(0),QS(q)[p]).

Thus, we have proven:

Lemma 2.28 ([Lev10, Lemma 3.6.4])
For S ∈ Smk there is a natural isomorphism

Hq(S,Q(p)) ' HomDMT(S)(QS(0),QS(q)[p]).

We say that S satisfies the Beilinson-Soulé vanishing conjectures if
Hp(S,Q(q)) = 0 for p ≤ 0 and q 6= 0. In particular, for k a number field,
S = Spec k satisfies the Beilinson-Soulé vanishing conjectures (see Exam-
ple 2.24). Further examples of schemes that satisfy the Beilinson-Soulé
vanishing conjectures include P1

k \ X, where k is a number field and X a
finite set of k-points of P1 (see [Lev10, Corollary 6.6.2]), or the spectrum
of the ring of integers of a number field (see [Sch11, Lemma 3.2]).

Theorem 2.29 ([Lev10, Theorem 3.6.9])
Suppose that S satisfies the Beilinson-Soulé vanishing conjectures. Then:

1. (DMT(S)≤0,DMT(S)≥0) is a non-degenerate t-structure on DMT(S)
with heart MT(S) containing the Tate motives QS(n), n ∈ Z.

2. MT(S) is equal to the smallest abelian subcategory of MT(S) which
contains the Tate motives QS(n), n ∈ Z, and is closed under exten-
sions in MT(S).

3. The tensor operation in DMT(S) makes MT(S) a rigid Q-linear
abelian tensor category.

4. The functor grW∗ = ⊕n grWn : MT(S) → Q-VecQ is a fibre functor
making MT(S) a Tannakian category which we call the category of
mixed Tate motives over S.

5. Each object M in MT(S) has a canonical weight filtration by subob-
jects

0 ⊂ . . . ⊂ Wn−1M ⊂ WnM ⊂ . . . ⊂M.



44 CHAPTER 2. TATE MOTIVES

This filtration is functorial and exact in M . It is uniquely char-
acterized by the properties of being finite (i.e. WnM = 0 for n
small and WnM = M for n large), and of admitting subquotients
grWn M = WnM/Wn−1M ∈ grWn MT(S), n ∈ Z.

6. The natural maps

ExtpMT(k)(M,N)→ Homp
DMT(k)(M,N)

are isomorphisms, for all p, and all M , N ∈ MT(k). Both sides are
zero for p ≥ 2.

Proof. This follows by [Lev93, Theorem 1.4 and Proposition 2.1], the nec-
essary ingredients being:

The category DMT(S) is generated by the Tate objects QS(n), n ∈ Z, with
canonical isomorphisms QS(n) ⊗ QS(m) → QS(n + m) for all n, m ∈ Z
and satisfying:

HomDMT(S)(QS(0),QS(q)[p]) '


0 if q < 0
0 if q = 0, p 6= 0
Q if q = 0, p = 0
0 if q 6= 0, p ≤ 0,

where the first three isomorphisms follow by Corollary 2.23 and the last
one is given by the Beilinson-Soulé vanishing for S.

2.5.3 Tannaka formalism

Let S be a separated, smooth scheme of finite type over a field k. Further-
more, we assume that S satisfies the Beilinson-Soulé vanishing conjectures
and therefore, the Tannakian category MT(S) exists.

We denote the Tannaka group of MT(S) with respect to the fibre functor
grW∗ by G(MT(S)). We have the following lemma describing the structure
of G(MT(S)).

Lemma 2.30 ([Lev06, Lemma 13.3])
There is a split exact sequence

1→ U → G(MT(S)) � Gm → 1,

where U is a unipotent group scheme.
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Proof. Gm is the Tannaka group of the category GrVecQ of gradedQ-vector
spaces and t acts via multiplication by tm on the vector space in degree m.
⊕nVn → ⊕nVn⊗QQS(−n) defines a rigid tensor functor GrVecQ → MT(S)
and hence a map of the Tannaka groups p : G(MT(S))→ Gm.

Considering grW∗ A = ⊕n grWn A for A ∈ MT(S) as a graded vector space
defines a rigid tensor functor grW∗ : MT(S)→ GrVecQ that clearly gives a
right inverse s : Gm → G(MT(S)) to p.

This gives us the split exact sequence

1→ U → G(MT(S)) � Gm → 1.

So it only remains to check that U = ker(p) is unipotent.

Let φ : grW∗ → grW∗ be an automorphism that restricts to the identity
grWn → grWn for each n, i.e. φ ∈ U = ker(p). For any A ∈ MT(S) we have
the weight filtration

0 = WM−1A ⊂ WMA ⊂ . . . ⊂ WNA ⊂ WN+1A = A

for some M,N ∈ Z.

Since grW∗ is exact and φ is natural, φ must preserve the weight filtration
of grW∗ A that is given by W≤n(grW∗ A) = ⊕m≤n grWm A. Thus, the (a, b)
component φa,b : grWa → grWb is zero for b > a. Since φ ∈ U = ker(p), φa,b
is the identity for a = b and φ is unipotent.

If S = Spec k, where k is a number field, then the unipotent algebraic
group U is determined by its Lie algebra LieU which is called the motivic
Lie algebra over k. The splitting of the exact sequence in Lemma 2.30
makes LieU a graded Lie algebra, concentrated in negative degrees. By
[DG05, Proposition 2.3], LieU is a free Lie algebra. See [DG05] for more
details on the Lie algebra.
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3 Cell modules

The aim of this chapter is to formulate and prove Spitzweck’s represen-
tation theorem. It states that the triangulated category of mixed Tate
motives DMT(S) is equivalent to the derived category of Adams-graded
dg modules DfN (S) of finite rank over the so-called cycle algebra N (S) over
S. However, the proof uses the equivalent homotopy category of finite
N (S)-cell modules instead of the category DfN (S).

We start by giving the definition of the cycle algebra in section 3.1. In sec-
tion 3.2, we define the homotopy category of finite cell-modules, KCMf

A,
over a cdga A. Furthermore, we study the structure of the triangulated
category KCMf

A and notice in section 3.3 that, for A = N (S), it re-
sembles the triangulated category of Tate motives DMT(S) in some key
properties, e.g. the existence of a t-structure whose heart is a Tannakian
category. Lastly, we give the proof of Spitzweck’s representation theorem
(Theorem 3.31) in section 3.4 utilizing the knowledge about DMT(S) and
KCMf

N (S) we acquired in section 2.5 and sections 3.2 and 3.3 respectively.

3.1 Cycle algebra

We give the definition of the cycle algebra N (S) of a smooth, separated
scheme S of finite type over a field k. This is done by constructing a
complex of Nisnevich sheaves N on Smk using the algebraic cycles we
defined in section 2.1. This complex can be endowed with a product making
it an Adams graded cdga object in the category of complexes of Nisnevich
sheaves. Then the cycle algebra over S is defined as the evaluation of N at
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S. Since N (S) is a cdga, we can consider the homotopy category of finite
cell modules over N (S) that we define in the next subsection. It turns
out to be equivalent to the triangulated category of Tate motives DMT(S)
by Spitzweck’s representation theorem that we discuss in section 3.4. The
idea to use algebraic cycles to define a category of Tate motives goes back
to Bloch (see e.g. [Blo89]). However, we will follow [Lev10, section 4]. His
approach uses cubical complexes instead of Bloch’s simplicial complexes.

3.1.1 Definition

We denote by (�1, δ�1) the pair (A1
k, {0, 1}). We define (�n, δ�n) as

the n-fold product of (�1, δ�1), i.e. �n = An
k and δ�n is the divisor∑n

i=1(xi = 0)+∑n
i=1(xi = 1), where x1, . . . , xn are the standard coordinates

on An
k . A face of �n is a face of the normal crossing divisor δ�n, i.e. it

is a subscheme that is defined by equations of the form xij = εj, where
εj ∈ {0, 1}.

For ε ∈ {0, 1} and j ∈ {1, . . . , n} we let ιj,ε : �n−1 → �n be the closed
embedding defined by inserting ε in the jth coordinate. We let πj : �n →
�n−1 be the projection which omits the jth factor.

Now we are able to define a cubical version of the Suslin-complex CSus
∗

from [Voe00].

Definition 3.1
Let X be in Smk and let F be a presheaf of abelian groups on Smk.

We refer to the subgroup ∑n
j=1 π

∗
j (F(X ×k �n−1)) of F(X ×k �n) as the

degenerate elements, written Degn. Let Ccb
n (F) be the presheaf defined by

Ccb
n (F)(X) := F(X ×k �n)/Degn

and let Ccb
∗ (F) the complex with differential

dn :=
n∑
j=1

(−1)j−1F(ιj,1)−
n∑
j=1

(−1)j−1F(ιj,0).

If F is a Nisnevich sheaf, then Ccb
∗ (F) is a complex of Nisnevich sheaves.

We extend the construction to complexes of sheaves by taking the total
complex of the evident double complex.
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Definition 3.2
For a presheaf F on Smk and a scheme X ∈ Smk let

CAlt
n (F)(X) ⊂ Ccb

n (F)(X)Q = F(X ×k �n)Q/Degn

be the Q-subspace consisting of alternating elements of F(X ×k �n)Q with
respect to the action of the symmetric group Sn, i.e. the elements satisfying
(id×σ)∗(x) = sgn(σ) · x for all σ ∈ Sn. Here, Sn acts on �n = An

k by
permuting the coordinates.

The subspaces CAlt
n (F)(X), n ≥ 1, form in fact a subcomplex of presheaves

CAlt
∗ (F) ⊂ Ccb

∗ (F)Q for any presheaf (or complex of presheaves) F on Smk.

Furthermore, CAlt
∗ (F) is quasi-isomorphic to the classical Suslin complex

CSus
∗ (F) as the following lemma in [Lev10] shows.

Lemma 3.3 ([Lev10, Lemma 4.1.3])
Let F be a complex of presheaves (with transfer) on Smk.

There is a natural isomorphism CSus
∗ (F) ' Ccb

∗ (F) in the derived category
of presheaves (with transfer) on Smk.

Furthermore, the inclusion CAlt
n (F)(X) ⊂ Ccb

n (F)(X)Q is a quasi-isomorphism
for all X ∈ Smk.

We denote by Ztr
k (P1 /∞) the sheaf defined by the exactness of the split

exact sequence

0→ Ztr
k (Spec k) i∞∗−→ Ztr

k (P1
k)→ Ztr

k (P1 /∞)→ 0.

Therefore, by definition Ztr
k (P1 /∞) agrees with Ztr

k (1)[2] that we defined
in section 2.3.

Similarly, let Ztr
k ((P1 /∞)r) be the sheaf defined by the exactness of the

split exact sequence

⊕rj=1 Ztr
k ((P1

k)r−1)
∑

j
ij,∞∗
−→ Ztr

k ((P1
k)r)→ Ztr

k ((P1 /∞)r)→ 0,

where ij,∞∗ : (P1
k)r−1 → (P1

k)r inserts ∞ at the jth coordinate. Again,
Ztr

k ((P1 /∞)r) agrees by definition with Ztr
k (r)[2r] := Ztr

k (1)[2]⊗r.

The symmetric group Sq acts on Ztr
k ((P1/∞)q) by permuting the coordi-

nates in (P1)q. Now we can apply the alternating cubical complex CAlt
∗

to the sheaf Ztr
k ((P1)q) and consider the subcomplex of symmetric section

with respect to this action of Sq.
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Definition 3.4
We define N (q) ⊂ CAlt

∗ (Ztr((P1/∞)q)) as the subcomplex of sheaves con-
sisting of symmetric sections with respect to the action of Sq induced by
permuting the coordinates of (P1

k)q. This defines N (q) as an object of
C(Shtr

Nis(k)Q). By abuse of notation we write N (0) for the constant presheaf
Q.

We set N := ⊕q≥0N (q) and for S ∈ Smk we let NS(q) denote the restric-
tion of N (q) to Cor(S). Similarly, we define NS := Q⊕⊕q≥1NS(q).

Lemma 3.5 ([Lev10, Lemma 4.2.1])
The inclusion N (q) ⊂ CAlt

∗ (Ztr((P1/∞)q)) is a quasi-isomorphism of com-
plexes of presheaves on Smk.

Therefore, the complex N (q) is quasi-isomorphic to the Suslin-complex
CSus
∗ (Ztr

k ((P1 /∞)q)) for all q ∈ Z. Furthermore:

Lemma 3.6 ([Lev10, Lemma 4.3.3])
In DMeff(S)Q there is a canonical isomorphism QS(q) → NS(q) for all
q ∈ N giving a commutative diagram of isomorphisms

QS(q)⊗QS(p)

��

' // QS(q + p)

��
NS(q)⊗NS(p) ' // NS(q + p).

3.1.2 Algebra structure

In the previous subsection we defined N = Q⊕⊕q≥1N (q) as an object in
C(Shtr

Nis(k)Q). Our goal is to define a product on N to endow it with the
structure of a cdga object in C(Shtr

Nis(k)Q) such that the evaluation N (S)
for S ∈ Smk yields a cdga.

Recall that a commutative differential graded algebra (short: cdga) (A, d)
over Q consists of a unital, graded-commutative Q-algebra A := ⊕n∈ZAn
together with a differential d = ⊕ndn, dn : An → An+1, such that dn+1◦dn =
0 and d satisfies the Leibniz rule:

dn+m(a · b) = dna · b+ (−1)na · dmb,

where a ∈ An, b ∈ Am.
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A is called connected if An = 0 for all n < 0 and A0 = Q ·1. A is called
cohomologically connected if Hn(A) = 0 for all n < 0 and H0(A) = Q ·1.

Furthermore, an Adams graded cdga is a cdga A together with a
direct sum decomposition into subcomplexes A = ⊕r≥0A(r) such that
A(r) · A(s) ⊂ A(r · s) and A(0) = Q ·1. An Adams graded cdga is said to
be (cohomologically) connected if the underlying cdga is (cohomologically)
connected.

For a ∈ An(r), we call n the cohomological degree of a, deg a := n, and r
the Adams degree of a, |a| := r.

Let X and Y ∈ Smk. The external product of correspondences (see [Voe10,
section 2])

� : ck(X, k)× ck(Y, k)→ ck(X ×k Y, k)
yields an associative external product

� : Ccb
n (Ztr((P1/∞)q))(X)⊗ Ccb

m(Ztr((P1/∞)p))(Y )
→ Ccb

m+n(Ztr((P1/∞)q+p))(X ×k Y ).

If we take X = Y , the pull-back via the diagonal morphism X → X ×k X
gives the associative cup product of complexes of sheaves

∪ : Ccb
n (Ztr((P1/∞)q))⊗ Ccb

m(Ztr((P1/∞)p))→ Ccb
m+n(Ztr((P1/∞)q+p)).

Applying the alternating projection

Alt := 1
(n+m)!

∑
σ∈Sn+m

sgn(σ)σ

on �n+m and the symmetric projection on (P1)q+p gives the associative,
commutative product on N

· : N (q)⊗N (p)→ N (p+ q).

This makes N = ⊕q≥0N (q) into an Adams-graded cdga object in
C(Shtr

Nis(k)Q), i.e. N (X) is an Adams-graded cdga for any X ∈ Smk, where
N (q)(X) denotes the subcomplex of N (X) that is in Adams degree q.

For S ∈ Smk we denote by NS(q) the restriction of N (q) to Cor(S) giving
us the Adams graded cdga object NS = ⊕q≥0NS(q) in C(Shtr

Nis(S)Q). Note
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that for X ∈ SmS we have NS(X) = N (X). Therefore, NS is in fact a
presheaf of Adams graded cdgas over N (S). In particular, For f : X → S
in SmS, we have an algebra homomorphism f# : N (S) → N (X) induced
by the pull-back of algebraic cycles.

3.2 Cell modules

The subject of this section is to give the definition of the category of finite
cell modules CMf

A over an Adams-graded commutative differential graded
Q-algebra A following [Lev10]. CMf

A is a subcategory ofMA, the category
of dg A-modules. Subsequently we construct the homotopy category of
CMf

A which in fact is equivalent to the derived category ofMA and define
a t-structure on these categories if the base algebra A is (cohomologically)
connected. This discussion allows us to consider the homotopy category
of cell modules KCMf

N (S) over the cycle algebra N (S). This category is
used to prove Spitzweck’s representation theorem in section 3.4.

3.2.1 Definition

Throughout this section let A be an Adams-graded cdga. Note that every
Adams graded cdga A has a canonical augmentation A→ Q given by the
projection onto A(0) ' Q with augmentation ideal A+ := ⊕r>0A(r).

If A = ⊕n,rAn(r) is an Adams graded cdga, we denote by A〈r〉[n] the (left)
A-module which is Am+n(r+s) in bi-degree (m, s), with A-action given by
left multiplication.

Definition 3.7
Let A be a cdga.

1. A dg A-module (M,d) consists of a complex M = ⊕nMn of Q-vector
spaces with differential d that satisfies the Leibniz rule, together with
a graded, degree zero map A⊗M →M , a⊗m 7→ a ·m which makes
M into a graded A-module.

2. If A = ⊕r≥0A(r) is an Adams graded cdga, an Adams graded dg
A-module is a dg A-module M together with a decomposition into
subcomplexes M = ⊕sM(s) such that A(r) ·M(s) ⊂M(r + s).

3. An Adams graded dg A-module M is called A-cell module if
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(a) M is free as a bi-graded A-module, that is, there is a set J and
elements bj ∈ Mnj(rj), j ∈ J , such that the maps a 7→ a · bj
induce an isomorphism of bi-graded A-modules

⊕jA〈−rj〉[−nj]→M ;

(b) there is a filtration on the index set J of generators

J−1 = ∅ ⊂ J0 ⊂ . . . ⊂ J

such that J = ∪nJn and dbj = ∑
i∈Jn−1 aijbi for j ∈ Jn.

4. A cell module with finite index set J is called finite A-cell module.

5. We denote the category of Adams graded dg A-modules by MA, the
category of A-cell modules by CMA and the category of finite cell
modules by CMf

A.

Let M , N be two Adams graded dg A-modules. Let HomA(M,N) be the
Adams graded dg A-module with HomA(M,N)n(r) the A-module con-
sisting of maps f : M → N with f(M t(s)) ⊂ N t+n(r + s), f(am) =
(−1)npaf(m) for a ∈ Ap and m ∈ M , and with differential d defined
by df(m) = d(f(m)) + (−1)n+1f(dm) for f ∈ HomA(M,N)n(r).

This makes MA into a differential graded category. Thus, we can define
the homotopy category ofMA.

Definition 3.8
Let A be an Adams graded cdga. We define KA as the homotopy category
ofMA, i.e. the objects of KA are the objects ofMA and

HomKA(M,N) := H0(HomA(M,N)(0)).

We define the homotopy categories of A-cell modules respectively of finite
A-cell modules as the full subcategories of KA with objects in CMA respec-
tively in CMf

A and denote them by KCMA and KCMf
A respectively.

On KA there is the natural translation functor [1] : M 7→ M [1], where
M [1]i := M i+1 and diM [1] := −di+1

M . The cone of a map f : M → N of
Adams graded dg modules is the well-defined object Cone(f) = M [1]⊕N
with differential d(m,n) = (−dM(m), f(m) + dN(n)) in MA. We call a
triangle in KA distinguished if it is isomorphic to a cone triangle.
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Proposition 3.9
The homotopy category KA ofMA is a triangulated category, with distin-
guished triangles being those triangles which are isomorphic in KA to a
cone sequence.

Proof. This can be shown by imitating the proof of Proposition 1.5. The
definitions of the mapping cone agree in both cases and the maps needed to
satisfy the axioms (TR1) - (TR4) can be constructed in the same way.

If M and N are both (finite) cell-modules, then the cone Cone(f) of any
map f : M → N is isomorphic to M [1] ⊕ N as a bi-graded A-module.
Moreover, the filtrations on the sets of generators of M and N give a
filtration on the set of generators of Cone(f : M → N). More explicitly,
let (JMi )mi=1 be the filtration on the index set JM of generators of M and
likewise (JNi )ni=1. Now, put Ji = JNi for i ≤ n and Jn+i = JN ∪JMi for any
i ≥ 1. Thus, the cone Cone(f) of any map between (finite) cell modules
is again a (finite) cell module making KCMA and KCMf

A triangulated
subcategories of KA.

For two Adams-graded dg A-modules M , N let M ⊗A N be the Adams-
graded dg A-module with underlying module M ⊗A N and differential
d(m ⊗ n) = dm ⊗ n + (−1)degmm ⊗ dn. If furthermore, M and N are
A-cell modules with index sets J ′ and J ′′ respectively of generators, then
Ji := J ′i × J ′′i defines a filtration on the index set of generators of M ⊗AN
making CMA and CMf

A closed under tensor products. Therefore, KCMA

and KCMf
A are triangulated tensor categories.

Example 3.10
For n ∈ Z we define the Tate object QA(n) as the object of CMf

A which
is the free rank one A-module with generator bn having Adams degree −n,
cohomological degree 0 and dbn = 0, i.e. QA(n) = A〈n〉. Then:

HomKCMf
A

(QA(−a)[n],QA(−b)[m]) = Hm−n(A(a− b)).

In particular,

HomKCMf
A

(QA(−a),QA(−b)) = H0(A(a− b)) =

0, if a < b

Q · id, if a = b

since A(a− b) = 0 for a < b. By comparing this result to Corollary 2.23,
we see that the Tate objects QA(n) in KCMA behave like the Tate motives
QS(n) in DMgm(S) which motivates the similar notation and name.
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Furthermore, for n ≥ 0 we have QA(±n) ∼= QA(±1)⊗n and for all n ∈ Z
we have Q(n)∨ ∼= QA(−n).

These Tate objects are of particular interest for us since they generate
KCMf

A as a triangulated subcategory:

Lemma 3.11
KCMf

A is the strictly full triangulated subcategory of KA generated by the
Tate objects QA(n), n ∈ Z.

Proof. We denote the full triangulated subcategory of KA generated by
the Tate objects QA(n) by A.

Obviously, A ⊂ KCMf
A since the generators QA(n), n ∈ Z are in KCMf

A.

Conversely, let M ∈ KCMf
A. We prove the result by induction on the

number of generators of M .

LetM be a cell module that is of rank two as a bigraded module, i.e. there
are two generators b1, b2 such that M ' A · b1 ⊕A · b2. Since M is a finite
cell module, there is a filtration ∅ = J−1 ⊂ J0 ⊂ J1 ⊂ J on the index
set J = {1, 2} such that for any j ∈ Jn the differential dbj only depends
on those bi with i ∈ Jn−1. For J = {1, 2} there are only the possibilities
J0 = J = {1, 2} or J0 = {1} and J1 = J = {1, 2}.
If J0 = J , i.e. db1 = db2 = 0, then M is isomorphic to the direct sum of
two rank one modules, hence modules of the form QA(n)[m] and therefore
clearly in A.

Now, we assume db1 = 0 and db2 = a · b1 for some a ∈ A with deg b1 = p,
deg b2 = q, and deg a+deg b1 = q+1. Since 0 = d(db2) = d(a ·b1) = da ·b1,
da = 0 in A. Without loss of generality, we may assume that q = deg b2 =
0.

We want to show that M is isomorphic to the cone of a map in A. To that
end we define the Adams-graded A-modules M1 := A · b1 and M2 := A · b2
with differentials given by dM1 : c · b1 7→ dc · b1 and dM2 : c · b2 7→ dc · b2.
Then M1 ' QA(r)[−p] and M2 ' QA(s)[−q], where r := |b1| and s := |b2|.
Therefore, M1, M2 are in A.

We compute the differential on M = ⊕iM i. Let a1b1 + a2b2 ∈ M i, i.e.
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deg a1 + deg b1 = i and deg a2 = i.

dM(a1b1 + a2b2) = d(a1b1) + d(a2b2)
= da1 · b1 + (−1)deg a1a1db1 + da2 · b2 + (−1)ia2db2

= dM1(a1 · b1) + dM2(a2 · b2) + (−1)ia2 · a · b1.

Now, we put f i : M i
2 → M i+1

1 , c · b2 7→ (−1)ica · b1. This defines an dg A-
module map M2 → M1[1] since f = (f i) commutes with the differentials
dM1[1] = −dM1 and dM2 . Indeed, let a2 · b2 ∈M i

2.

f(dM2(a2 · b2)) = f(da2 · b2) = ((−1)i+1da2 · a) · b1 = (−1)i+1d(a2a)b1

= (−1)idM1[−1](a2a · b1) = dM1[−1](f(a2 · b2)).

The cone of f is given as the Adams graded A-module M2[1]⊕M1[1] with
differential given by

d(a2b2 + a1b1) = −dM2(a2b2) + f(a2b2) + dM1[1](a1b1)
= −dM2(a2b2) + (−1)i+1a2a · b1 − dM1(a1b1)
= −dM(a2b2 + a1b1),

where a2b2 + a1b1 ∈ (M2[1]⊕M1[1])i ' (M i+1
2 ⊕M i+1

1 ).

Therefore, M is isomorphic to Cone(f)[−1].

More generally, if M is of rank n + 1, then by the filtration of the set
of generators, we can write M ' M0 ⊕Mn+1 where Mn+1 is of rank one
with generator bn+1 in degree 0 and dbn+1 = ∑n

i=1 aibi. We define the
differentials dM0 = dM (restricted to M0) and dMn+1 : c · bn+1 → dc · bn+1.
Computing the differential on M gives us in degree m:

dM(
n∑
j=1

cjbj + an+1 · bn+1)

= dM(
n∑
j=1

cjbj) + dM(an+1 · bn+1)

= dM0(
n∑
j=1

cjbj) + da · bn+1 + (−1)m · an+1 ·
n∑
i=1

aibi.

We define f : Mm
n+1 → Mm+1

0 by an+1bn+1 7→ (−1)man+1 ·
∑n
i=1 aibi which

defines an A-module map f : Mn+1 → M0[1]. Again, this commutes with
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the differentials, hence is a map of Adams graded A-modules and M is
isomorphic to Cone(f)[−1] as Adams-graded A-modules.

This shows that every finite cell module is given by iterated cones of maps
between the Tate objects QA(n)[m], n,m ∈ Z, proving the claim.

Since Q∨A(n) ' QA(−n) for all n ∈ Z, it follows by Lemma 3.11 that
every object in KCMf

A admits a dual and is in particular rigid, proving
the following corollary.

Corollary 3.12
KCMf

A is a rigid triangulated tensor category.

Remark 3.13
In [Lev10, Proposition 1.7.1], Levine even proves that KCMf

A is exactly
the subcategory of rigid objects of KCMA, i.e. an object M ∈ KCMA is
rigid if and only if M is a finite cell module.

We want to construct a t-structure on KCMf
A. To be able to do so we

define a weight structure on CMA yielding a weight structure on KCMf
A.

Let M ∈ CMA. Thus, we can choose a basis B = {bj : j ∈ J} of
M ' ⊕jA · bj. If we write dbj = ∑

i aijbi, aij ∈ A, we see |bi| ≤ |bj| if
aij 6= 0 since |aij| ≥ 0 and d has Adams degree 0.

Therefore, WB
nM = {⊕j,|bj |≤nA · bj} is in fact a subcomplex of M . The

subcomplex does not depend on the choice of the base B, thus we just
write WnM instead of WB

nM . This defines an increasing filtration of
A-cell modules

W∗M : . . . ⊂ WnM ⊂ Wn+1M ⊂ . . . ⊂M

such that M = ∪nWnM .

For n ≤ m we define Wn/mM as the cokernel of the inclusion WmM →
WnM . We write grW

n for Wn/n−1 and W>n for W∞/n.

This filtration is functorial inM . In particular, if f : M → N is a homotopy
equivalence in CMA with inverse g : N → M , then Wng : WnN → WnM
is a homotopy inverse to Wnf : WnM → WnN . Hence the functors Wn

respect homotopy equivalence of cell modules, so they yield a functorial
tower of exact endo-functors on KCMA:

. . .→ Wn → Wn+1 → . . .→ id .



58 CHAPTER 3. CELL MODULES

Remark 3.14 ([Lev10, Proposition 1.5.1])
The endo-functor Wn is exact for each n. Furthermore, for m ≤ n ≤ ∞,
the sequence of endo-functors Wm → Wn → Wn/m canonically extends to
a distinguished triangle of endo-functors.

This filtration allows us to define the full subcategory CM+W
A of CMA

with objects M such that WnM = 0 for some n.

If we denote by KCM+W
A the homotopy category of CM+W

A , then KCM+W
A

is exactly the full subcategory of KCMA with objectsM such thatWn ' 0
in KCMA for some n.

Clearly, KCMf
A is a subcategory of KCM+W

A . In subsection 3.2.4 we con-
struct a t-structure on KCM+W

A that induces the desired t-structure on
KCMf

A.

3.2.2 The derived category

Another possibility to describe the category of A-cell modules is the derived
category of dg A-modules as we will outline in this subsection following
[Lev10].

Definition 3.15
The derived category DA of dg A-modules is the localization of KA with
respect to morphisms M → N which are quasi-isomorphisms on the un-
derlying complexes of vector spaces.

The derived category inherits the structure of a triangulated category from
KA. This follows by the same arguments that show that the derived cate-
gory of an abelian category is triangulated (see e.g. [Sos12]).

In [KM95], Kriz and May prove that the categories DA and KCMA are
equivalent. We give the result as stated by Levine in [Lev10].

Theorem 3.16 ([Lev10, Proposition 1.4.3])
The evident functor KCMA → DA is an equivalence of triangulated cate-
gories.

Equivalently, let f : M ′ →M be a quasi-isomorphism inMA, N ∈ CMA.
Then the induced map f : HomKA(N,M ′)→ HomKA(N,M) is an isomor-
phism.
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Proof. See [KM95, Construction 2.7].

We denote by DfA the full subcategory of DA of those objects M that
are isomorphic in DA to a finite cell module. Then we get the following
statement as an immediate consequence of Theorem 3.16:

Corollary 3.17 ([Lev10, Proposition 1.4.4])
The induced functor KCMf

A → D
f
A is an equivalence of triangulated cate-

gories.

The equivalence KCMA → DA is a very powerful tool to impose additional
structure on DA as we see in the following.

The tensor functor on KCMA defines a well-defined derived tensor product
on DA via the equivalence given in Theorem 3.16, making DA a triangu-
lated tensor category and DfA a triangulated tensor subcategory.

Similarly, the weight filtration Wn on KCMA defines a weight filtration on
DA via the equivalence in Theorem 3.16.

Note that even though it is possible to define the weight filtration Wn for
not just cell modules but any Adams graded dg A-module which is free as
a bi-graded module, this definition does not work for modules that are not
free. Thus, it is not possible to define the weight filtration Wn directly on
DA. Furthermore, even for free modules M it is not clear that WnM is
invariant under quasi-isomorphisms in general.

Since cell modules are in particular free as bi-graded modules, they can be
easily described by choosing a basis. Therefore, Theorem 3.16 allows us a
better description of the objects of DA.

As in KCMA we can consider the full subcategory D+W
A of DA of objects

M such that WnM ' 0 for some n.

The equivalence KCMA ∼ DA restricts in fact to an equivalence
KCM+W

A ∼ D+W
A as was shown by Levine (see [Lev10, Lemma 1.5.6]).

3.2.3 Base change

To define the t-structure on KCMf
A, we need the base change of an A-cell

module along the augmentation A → Q. Furthermore, the base change
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allows us to substitute a cohomologically connected cdga A by its minimal
model, i.e. by a connected cdga (see Remark 3.18).

Let φ : A→ B be a homomorphism of Adams graded cdgas.

The functor
−⊗A B : MA →MB

induces a functor on cell modules and on the homotopy category

φ∗ : KCMA → KCMB

that restricts to an exact tensor functor

φ∗ : KCMf
A → KCM

f
B.

Via the equivalence KCMA ∼ DA and the equivalences of their respective
subcategories, there are also exact tensor functors on the derived categories

φ∗ : DA → DB,
φ∗ : D+W

A → D+W
B ,

φ∗ : DfA → D
f
B.

Remark 3.18
In [KM95, Proposition 4.2] it is shown that if φ : A → B is a quasi-
isomorphism, then φ∗ : DA → DB is an equivalence of categories. Since
φ∗ is compatible with the weight filtrations, φ∗ restricts to an equivalence
φ∗ : D+W

A → D+W
B . Because an equivalence of triangulated tensor categories

induces an equivalence on the subcategory of rigid objects, φ∗ also restricts
by Remark 3.13 to an equivalence φ∗ : DfA → D

f
B as was pointed out by

Levine in [Lev10, Corrallary 1.8.2 and Corollary 1.8.3]. These facts allow
us in the following (see e.g. Theorem 3.21) to weaken the condition of
A being a connected cdga to the condition of A being a cohomologically
connected cdga by replacing A with its minimal model. See [Lev10, Section
1.11] for more details.

Recall that every cdga A admits an augmentation ε : A→ Q that is given
by the projection on A(0) = Q ·1. This induces the base change functor

q := ε∗ : CMA → CMQ, qM := M ⊗A Q
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and the exact tensor functors

q : KCMA → KCMQ,

q : KCMf
A → KCM

f
Q,

q : DA → DQ,

q : D+W
A → D+W

Q ,

q : DfA → D
f
Q.

The inclusion Q→ A splits the augmentation ε, identifying DQ, D+w
Q and

DfQ with full subcategories of DA, D+w
A and DfA. Under this identification,

the functor q is identified with the functor grW∗ := ∏
n∈Z grW

n .

We end this section by giving two lemmas that are needed for the definition
of the t-structure.

Lemma 3.19 ([Lev10, Proposition 1.8.4])
Let φ : A→ B be a homomorphism of Adams graded cdgas.
Then φ∗ : D+W

A → D+W
B is conservative, i.e. φ∗(M) ∼= 0 implies M ∼= 0,

or equivalently, if φ∗(f) is an isomorphism, then f is an isomorphism.

Proof. We use the equivalence KCM+W
A → D+W

A and prove the claim for
cell modules using the weight filtration. See [Lev10, Proposition 1.8.4] for
further details.

Lemma 3.20 ([Lev10, Proposition 1.9.2])
Let M be in D+W

A . Then M is in DfA if and only if

1. grW
n M is in Db(Q) ⊂ D(Q) for all n and

2. grW
n M ∼= 0 for all but finitely many n.

Proof. It is clear that M ∈ DfA satisfies the conditions 1 and 2. For the
proof of the converse, we use Lemma 3.19. See [Lev10, Proposition 1.9.2]
for details.

3.2.4 t-structure

With the help of the functor q : D+W
A → D+W

Q we can construct a t-
structure on the triangulated category D+W

A .
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We define the full subcategories D≤0
A , D≥0

A and HA of D+W
A by

D≤0
A := {M ∈ D+W

A : Hn(qM) = 0 for n > 0}
D≥0
A := {M ∈ D+W

A : Hn(qM) = 0 for n < 0}
HA := {M ∈ D+W

A : Hn(qM) = 0 for n 6= 0}.

Theorem 3.21 ([Lev10, Theorem 1.12.6])
Let A be a cohomologically connected Adams graded cdga. Then (D≤0

A ,D≥0
A )

defines a non-degenerate t-structure on D+W
A with heart HA.

For the proof of Theorem 3.21 we need the following lemma.

Lemma 3.22 ([Lev10, Lemma 1.12.3])
Let A be a connected Adams graded cdga.

1. Let M be in D≤0
A . Then there exists an A-cell module P ∈ CM+W

A

with basis {eα} such that deg(eα) ≤ 0 for all α and a quasi-
isomorphism P →M .

2. Let M be in D≥0
A . Then there exists an A-cell module P ∈ CM+W

A

with basis {eα} such that deg(eα) ≥ 0 for all α and a quasi-
isomorphism P →M .

Proof.

1. Choose a quasi-isomorphism Q→M with Q ∈ CM+W
A . Let {eα} be

a basis for Q. Decompose the differential dQ as dQ = d0
q + d+

Q. After
a Q-linear change of basis, we may assume that the collection S0 of
eα with deg eα und d0

qeα = 0 forms a basis of

ker
(
d0 : ⊕deg eα=0 Q ·eα → ⊕deg eα=1 Q ·eα

)
.

Let τ≤0Q be the A-submodule of Q with basis S0 ∪ {eα| deg eα < 0}.
Then one can check that τ≤0Q is in fact a subcomplex of Q.

We claim that τ≤0Q → Q is a quasi-isomorphism. Applying
Lemma 3.19 to the augmentation A → Q the functor q : D+W

A →
D+W

Q is conservative, thus it suffices to show that qτ≤0Q → qQ is a
quasi-isomorphism. Now, qQ represents qM in DQ and by assump-
tion qM is inD≤0

Q , hence qQ is inD≤0
Q . By construction, qτ≤0Q→ qQ

is an isomorphism on Hn for all n ≤ 0. Since Hn(qτ≤0Q) = 0 for all
n > 0, it follows that qτ≤0Q→ qQ is a quasi-isomorphism as claimed.
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2. This follows by [Lev10, Lemma 1.6.2].

Now we are able to give the proof of Theorem 3.21.

Proof of Theorem 3.21. By replacing A with its minimal model, we may
assume that A is connected (see Remark 3.18).

The inclusions D≤0
A [1] ⊂ D≤0

A and D≥0
A [−1] ⊂ D≥0

A are obvious.

Let M ∈ D≤0
A and N ∈ D≥0

A . We need to show HomD+W
A

(M,N [−1]) = 0.
By Lemma 3.22 we can assume thatM and N [−1] are A-cell modules with
bases {eα} of M and {fβ} of N [−1], where deg eα ≤ 0 and deg fβ ≥ 1 for
all α, β. Via the equivalence D+W

A → KCM+W
A we have

HomD+W
A

(M,N [−1]) = HomKCM+W
A

(M,N [−1]).

But if φ : M → N [−1] is a map in KCM+W
A , then φ is given by a degree

zero map of complexes and

φ(eα) =
∑
β

aαβfβ,

where aαβ ∈ A. Since A is connected, deg(aαβ) ≥ 0 for all α and β. Thus,
we have

0 ≥ deg(eα) = deg(aαβ) + deg(fβ) ≥ 1
which is not possible. Therefore, HomD+W

A
(M,N [−1]) = 0.

For the third axiom of a t-structure we need to show the existence of a
distinguished triangle for every M ∈ D+W

A .
We may assumeM ∈ KCM+W

A . As in the proof of Lemma 3.22 we consider
τ≤0M which is by construction in D≤0

A . We choose M≤0 = τ≤0M and
M>0 = Cone(τ≤0M → M). This gives us the distinguished triangle in
D+W
A :

M≤0 →M →M>0 →M≤0[1].
Applying q to the distinguished triangle gives us a distinguished triangle
in D+W

Q :
qM≤0 → qM → qM>0 → qM≤0[1].

Since Hn(qM≤0) ∼= Hn(qM) for all n ≤ 0 and H0(qM≤0[1]) = H1(qM≤0) =
0, Hn(qM>0) = 0 for all n ≤ 0. So qM>0 is in D≥1

Q and hence M>0 is in
D≥1
A , as desired.
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The t-structure is non-degenerate:
Let M ∈ ∩n≤0D≤nA , i.e. Hn(qM) = 0 for all n, hence qM ∼= 0 in D+W

Q
and since q is conservative by Lemma 3.19, M ∼= 0 in D+W

A . Similarly,
M ∈ ∩n≥0D≥nA implies M ∼= 0.

This t-structure on D+W
A restricts to a t-structure on the full triangu-

lated subcategory DfA. Let Df,≤0
A := DfA ∩ D

≤0
A , Df,≥0

A := DfA ∩ D
≥0
A and

Hf
A := HA ∩ DfA = Df,≤0

A ∩ Df,≥0
A .

Corollary 3.23 ([Lev10, Corollary 1.12.8])
Let A be a cohomologically connected Adams graded cdga. Then (Df,≤0

A ,Df,≥0
A )

defines a non-degenerate t-structure on DfA with heart Hf
A.

Proof. Since DfA is a full triangulated subcategory of D+W
A , closed under

isomorphisms in D+W
A , all the properties of a non-degenerate t-structure

are inherited from the non-degenerate t-structure on D+W
A , except for the

existence of a distinguished triangle in DfA.

Let M ∈ DfA. Then there exists a distinguished triangle in D+W
A

M≤0 →M →M>0 →M≤0[1]

with M≤0 ∈ D≤0
A and M>0 ∈ D≥1

A .

Applying the exact functor grW
n gives the distinguished triangle

grW
n M≤0 → grW

n M → grW
n M>0 → grW

n M≤0[1]

in D(Q) such that grW
n M≤0 ∈ D(Q)≤0 and grW

n M>0 ∈ D(Q)≥1, i.e.
Hn(grW

n M≤0) = 0 for n > 0 and Hn(grW
n M>0) = 0 for n ≤ 0.

Since M is in DfA, it follows by Lemma 3.20 that grW
n M is in Db(Q) for all

n and grW
n M ∼= 0 for all but finitely many n. The long exact cohomology

sequence for a distinguished triangle in D(Q) shows that grW
n M≤0 and

grW
n M>0 are in Db(Q) as well for all n and that they are isomorphic to

zero for all but finitely many n. Applying Lemma 3.20 again shows that
M≤0 and M>0 are in DfA.

Remark 3.24
When identifying the functor q with ⊕n grW

n , we see that the t-structure
(Df,≤0

A ,Df,≥0
A ) on DfA is defined in the same way as the t-structure

(DMT(S)≤0,DMT(S)≥0) on DMT(S).

Indeed, the subcategory Df,≤0
A is the category of those objects M ∈ DfA such

that Hm(grW
n M) = 0 for all m > 0 and all n. Similarly, Df,≥0

A is the
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category of objects M ∈ DfA such that Hm(grW
n M) = 0 for all m < 0 and

all n, while Hf
A consists of the objects M ∈ DfA such that Hm(grW

n M) = 0
for all m 6= 0 and all n.

The subcategory WnDfA of DfA is the strictly full triangulated subcategory
generated by the objects QA(−q), where q ≤ n and dually W>nKCMf

A is
the strictly full triangulated subcategory generated by the objects QA(−q),
where q > n. Thus, grWn D

f
A is the full triangulated subcategory generated

by the object QA(−n).

If we define Df,≤0
n as the full subcategory of DfA generated by the objects

QA(−n)[m], where m ≤ 0, then Df,≤0
A is given as the strictly full subcat-

egory generated by objects M ∈ DfA such that grW
n M ∈ Df,≤0

n . Dually,
if we define Df,≥0

n as the strictly full subcategory of DfA generated by the
objects QA(−n)[m], where m ≥ 0, then Df,≥0

A is given as the strictly full
subcategory generated by objects M ∈ DfA such that grW

n M ∈ Df,≥0
n .

The heart of a t-structure is always an abelian category, but as in the case
of Tate motives the category Hf

A has even nicer properties.

Theorem 3.25 ([Lev10, Proposition 1.12.11 and Lemma 1.12.9])
Let A be a cohomologically connected Adams graded cdga. Hf

A is neutral
Tannakian category over Q with fibre functor ω given by the composition
of q : Hf

A → H
f
Q with the forgetful functor to Q-vector spaces.

Furthermore, Hf
A is the smallest abelian subcategory of Hf

A containing the
Tate objects QA(n), n ∈ Z and closed under extensions in Hf

A.

Before we prove this theorem, we give a lemma that is used in the proof.

Lemma 3.26
Let A be a cohomologically connected cdga. Then:

HomHfA(QA(a),QA(b)) ' H0(A(b− a)) =

0 if a 6= b

Q · id if a = b.

Proof. Since A is cohomologically connected, H0(A) = Q. On the other
hand, using the decomposition A = A(0)⊕ A+ we have

Q ' H0(A) = H0(A(0)⊕ A+) ' H0(A(0))⊕ H0(A+),
showing that H0(A+) = 0 and in particular H0(A(r)) = 0 for r > 0. This
proves the case a < b.
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The cases a = b and a > b follow from the facts that H0(A(0)) = A(0) =
Q ·1 and A(r) = 0 for r < 0.

Corollary 3.27 ([Lev10, Lemma 1.12.10])
Let A be a connected Adams graded cdga. Let M , N ∈ Hf

A and n ≤ m.
Then we have

HomHfA(W>mM,WnN) = 0.

Proof. Let M = QA(−a) and N = QA(−b) with a > b, then

HomHfA(M,N) = H0(QA(a− b)) = 0

by the previous lemma. The general result follows by induction on the
weight filtration.

Proof of Theorem 3.25. To check thatHf
A is a Tannakian category we have

to show that Hf
A is a rigid abelian Q-linear tensor category and that the

fibre functor is an exact and faithful tensor functor.

Hf
A is an abelian category since it is the heart of a t-structure. The restric-

tion of the tensor product on the rigid tensor category DfA to Hf
A makes

DfA a rigid tensor category. Clearly, Hf
A is Q-linear.

The fibre functor Hf
A → Q-VecQ is given by the composition of

q : Hf
A → Hf

Q with the forgetful functor since Hf
Q is equivalent to the

category of finite dimensional graded Q-vector spaces. This functor is an
exact tensor functor since q and the forgetful functor are. The forgetful
functor is also faithful, so it remains to check that q is faithful as well.
Let f : M → N be a map in Hf

A such that grW
n f = 0 for all n. By in-

duction on the length of the weight structure, it follows that W>mf = 0,
where m is the minimal integer such that WmM ⊕ WmN 6= 0. Since
M → N → W>mN is therefore zero, f is given by a mapW>mM → grWm N
which is zero by Corollary 3.27.

Finally, let HT
A be a full abelian subcategory of Hf

A containing the objects
QA(n), n ∈ Z, and being closed under extensions in Hf

A.

Let M ∈ Hf
A. Then grW

n M ' Q(−n)rn for some rn ≥ 0, hence
grW

n M ∈ HT
A. If N is the minimal n such that Wn 6= 0. Then we have

the exact sequence grW
n M → M → W>NM in Hf

A. By induction on the
weight filtration, also W>N is in HT

A. HT
A is closed under extensions and

therefore M ∈ HT
A completing the proof.
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3.3 Cell modules over N (S)

We now have associated to any smooth scheme S ∈ Smk an Adams-graded
cdga N (S). Our goal in section 3.4 is to prove that the homotopy category
of finite N (S)-cell modules is equivalent to the triangulated category of
Tate motives DMT(S). Recall that the homotopy category of cell-modules
is generated by the modules QN (S)(n), n ∈ Z, by Lemma 3.11. Therefore,
we are interested in the groups of morphisms between these generators.
As we have seen in Example 3.10, these are determined by the homology
groups of N (S):

HomKCMf
N (S)

(QN (S)(0),QN (S)(q)[p]) = Hp(N (S)(q)).

Applying Lemma 3.3 and Lemma 3.5 we obtain an isomorphism

Hp(N (S)(q)) ' Hp(CSus
∗ (Ztr

S ((P1 /∞)q))(S)) ' Hp(CSus
∗ (Ztr

k (q)[2q])(S)).

By [Voe00, Theorem 4.2.2 and Proposition 4.2.3], we have an isomorphism
to the motivic cohomology

Hp(CSus
∗ (Ztr

k (q)[2q])(S)) ' Hp(S,Q(q))

proving the following proposition.

Proposition 3.28
Let S ∈ Smk. There is an isomorphism

Hp(S,Q(q)) ' Hp(N (S)(q)) = HomKCMf
N (S)

(QN (S)(0),QN (S)(q)[p]).

Corollary 3.29
Let S ∈ Smk. S satisfies the Beilinson-Soulé vanishing conjectures if and
only if N (S) is cohomologically connected.

Therefore, if S satisfies the Beilinon-Soulé conjectures, we can apply the
results of section 3.2 to N (S), especially we can utilize Theorem 3.21 and
Theorem 3.25.

Theorem 3.30
Suppose S satisfies the Beilinson-Soulé vanishing conjectures. Then:
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1. (Df,≤0
N (S),D

f,≥0
N (S)) is a non-degenerate t-structure on DfN (S) with heart

Hf
N (S) containing the Tate objects QN (S)(q), q ∈ Z.

2. Hf
N (S) is equal to the smallest abelian subcategory of Hf

N (S) which
contains the Tate objects QN (S)(q), q ∈ Z, and is closed under exten-
sions in Hf

N (S).

3. The tensor product in DN (S) makes Hf
N (S) a rigid Q-linear abelian

tensor category.

4. The functor ω : Hf
N (S) → Q-Vec is a fibre functor making Hf

N (S) a
Tannakian category.

3.4 Spitzweck’s representation theorem

We constructed the triangulated category of Tate motives DMT(S) in
chapter 2 as well as the derived category DfN (S) in this chapter. By com-
paring Theorem 2.29 and Theorem 3.30, we see that the structure of both
categories is very similar. In fact, they are equivalent as we show in this
section. Furthermore, the weight filtrations and therefore the t-structures
on both categories are obtained in the same fashion out of the "base ob-
jects" QS(q) respectively QN (S)(q), q ∈ Z, such that the equivalence of
triangulated tensor categories restricts to an equivalence of the Tannakian
subcategories MT(S) and Hf

N (S) in case S satisfies the Beilinson-Soulé
vanishing conjectures.

This result is known as Spitzweck’s representation. We formulate it as
stated in [Lev05, Theorem 5.23], where it is proven for the case of S the
spectrum of a field, but extend it to the case of smooth base schemes
S ∈ Smk by [Lev10, Theorem 5.3.2].

Theorem 3.31 (Spitzweck’s representation theorem)
Let S be a separated, smooth scheme of finite type over a field k. Then
there is a natural exact tensor functor

ΦS : DfN (S) → DMgm(S)Q

that induces an equivalence of triangulated tensor categories

ΦS : DfN (S) → DMT(S).
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The functor ΦS is compatible with the weight filtrations in DfN (S) and
DMT(S).

If S satisfies the Beilinson-Soulé vanishing conjectures, then the functor
ΦS induces an equivalence of Tannakian categories

ΦS : Hf
N (S) → MT(S)

transforming the fibre functor ω on Hf
N (S) into the fibre functor grW∗ on

MT(S).

For the proof of the theorem we use the following lemma.

Lemma 3.32
Let KCMf

N (S),≥0 be the full triangulated subcategory of KCMf
N (S) that is

generated by the objects QN (S)(q), where q ≥ 0. Then KCMf
N (S) is equiv-

alent the category one obtains by inverting the functor − ⊗ QN (S)(1) on
KCMf

N (S),≥0.

Proof. We denote by C the category obtained by inverting the functor
−⊗QN (S)(1) on KCMf

N (S),≥0. The objects of C are given as X(n), where
X ∈ KCMf

N (S),≥0 and n ∈ Z and

HomC(X(n), Y (m))
:= lim−→

N

HomKCMN (S)f
(X ⊗QN (S)(n+N), Y ⊗QN (S)(m+N)).

We have the canonical isomorphisms QN (S)(q)(n) ' QN ((S)(q + n)(0) for
q > 0 and n ≥ −q.

Sending X(n) to X⊗QN (S)(n) defines a tensor functor F : C → KCMf
N (S).

This functor is clearly fully faithful since − ⊗ QN (S)(1) is a fully faithful
endo-functor on KCMf

N (S).

Lastly, we need to check that F is essentially surjective. We do this by
induction on the weight filtration. For the generators QN (S)(q), q ∈ Z, of
the triangulated category KCMf

N (S) we have F (QN (S)(0)(q)) = QN (S)(q).
Now, let A′, B′ in KCMf

N (S) such that A′ ' F (A) and B′ ' F (B) for some
objects A, B in C. Let f : A′ → B′. We need to construct an objects C ∈ C
such that F (C) ' Cone(f). Since A′ and B′ are finite cell modules, there
exists an N ≥ 0 such that A′ ⊗QN (S)(N), B′ ⊗QN (S)(N) and Cone(f)⊗
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QN (S)(N) are in KCMf
N (S),≥0. Now define A := (A′ ⊗ QN (S)(N))(−N)

and B := (B′ ⊗ QN (S)(N))(−N). The morphism f : A′ → B′ induces a
morphism f〈N〉 : A′ ⊗ QN (S)(N) → B′ ⊗ QN (S)(N) in KCMf

N (S),≥0 and
hence an object C := Cone(f〈N〉)(−N) ∈ C. Then:

F (C) = Cone(f〈N〉)⊗QN (S)(−N) ' Cone(f).

Proof of Theorem 3.31. We actually define a tensor functor

ΦS : KCMf,′
N (S) → DMgm(S)Q,

where KCMf,′
N (S) is the homotopy category of N (S)-cell modules with a

choice of a basis. This is equivalent toKCMf
N (S) which in turn is equivalent

to DfN (S) by Corollary 3.17.

Such a functor ΦS is in fact determined by giving a tensor functor
KCMf,′

N (S),≥0 → DMeff
gm(S)Q which extends canonically to a tensor func-

tor KCMf,′
N (S) → DMgm(S)Q by Lemma 3.32.

Let M = ⊕jN (S)mj be a N (S)-cell module in KCMf,′
N (S),≥0 with basis

{mj} and differential d given by

dmj =
∑
i

aijmi.

Let ΦS(M,d) be the complex of sheaves ∑j N (rj)[nj]µj, where µj is a
formal basis, −rj is the Adams-degree of mj and −nj is the cohomological
degree of mj. Note that rj ≥ 0 since M is in KCMf,′

N (S),≥0, hence N (rj) is
well-defined. The differential δ on ΦS(M,d) is defined by

δµj :=
∑
i

aijµi

and the Leibniz rule. By d2 = 0 it follows δ2 = 0, giving a well-defined
object in DMeff(S)Q.

If f : M → N is a morphism of N (S)-cell modules, we choose bases {mj}
and {nj} of M respectively N with corresponding bases {µj} and {νj} of
ΦS(M) respectively ΦS(N). If f(mj) = ∑

i fijnj, we define ΦS(f)(µj) :=∑
i fijνi.
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Since ΦS(QN (S)(q)), q ≥ 0, is the object NS(q) which isomorphic to QS(q)
in DMeff(S)Q by Lemma 3.6, the image of the functor ΦS is in fact in
DMeff

gm(S)Q.

One easily checks that ΦS respects tensor products, the translation functor
and cone sequences, so it yields a well-defined exact tensor functor

ΦS : KCMf ′
N (S) → DMgm(S)Q.

Furthermore, we have

HomKCMf
N (S)

(QN (S)(0),QN (S)(n)[m]) ' HomDMT(S)(QS(0),QS(n)[m])

by Proposition 3.28 and Lemma 2.28 and ΦS induces the identity maps
between these Hom-groups.

Since the objects QN (S)(q), q ∈ Z, generate KCMf
N (S) as a triangulated

category by Lemma 3.11, ΦS is fully faithful. And since DMT(S) is gen-
erated by the objects QS(q), q ∈ Z, as a triangulated subcategory of
DMgm(S)Q, the essential image of the functor ΦS is DMT(S) and there-
fore, ΦS induces an equivalence DfN (S) → DMT(S) of triangulated tensor
categories.

By definition the functor ΦS respects the weight filtrations in DfN (S) and
DMT(S).

Now assume S satisfies the Beilinson-Soulé vanishing conjectures. Since
the functor ΦS is compatible with the weight filtration, it also respects the
t-structures on DfN (S) respectively DMT(S). Furthermore, identifying the
fibre functor ω on Hf

N (S) with ⊕n grW
n (see Remark 3.24) shows that ω is

indeed transformed into grW∗ by ΦS.

This completes the proof.
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4 Artin-Tate motives and
cell modules

In the previous chapter we constructed an equivalence between the trian-
gulated category of Tate motives DMT(k) over a number field k and the
derived category of Adams-graded dg modules DfN (k) of finite rank over
the cycle algebra N (k) over k. The category DMT(k) is a full triangulated
subcategory of the triangulated category of Artin-Tate motives DMAT(k)
over k which consists of the push-forwards of Tate motives under finite
maps to Spec k. So it is natural to ask whether a triangulated category of
cell modules can be constructed that contains DfN (k) as a full triangulated
subcategory and is equivalent to DMAT(k). This question was the main
motivation for this thesis and is answered in this chapter.

In the first section of this chapter we recall the definition of the triangulated
category of Artin-Tate motives DMAT(k) over k and summarise some of
its essential properties, first and foremost the existence of a non-degenerate
t-structure that yields a Tannakian category as its heart that we denote
by MAT(k). This was shown by Wildeshaus in [Wil08]. Furthermore, we
define the triangulated category of Artin-Tate motives over k trivialisable
over L, DMAT(L|k), that is used in the second section. The first section
concludes with the computation of the Tannaka group of MAT(k) in The-
orem 4.24 as the semi-direct product of the absolute Galois group Gal(k̄|k)
with the Tannaka group of MT(k̄).

Subject of the second section is the construction of a triangulated category
of cell modules D(k) that is equivalent to DMAT(k) and contains the cat-
egory DfN (k) as a full triangulated subcategory. Furthermore, D(k) should
carry a non-degenerate t-structure whose heart A(k) is a Tannakian cate-
gory. This is done by constructing a triangulated category D(L|k), where
L is a finite Galois extension of k, that is equivalent to DMAT(L|k) and
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carries the desired properties. Furthermore, there are canonical embedding
D(K|k) → D(L|k) if K is an intermediate Galois extension k ⊂ K ⊂ L,
that preserves the structures. Then, D(k) is the union of the categories
D(L|k) over all finite Galois extensions L of k.

The chapter concludes with the main result of this thesis (Theorem 4.41).
It states the desired equivalence of the triangulated tensor categories
D(k) → DMAT(k) that, restricted to the full subcategory DfN (k), yields
the equivalence DfN (k) → DMT(k) given in Spitzweck’s representation the-
orem (Theorem 3.31). Moreover, the equivalence is compatible with the
t-structures on D(k) and DMAT(k) respectively and hence gives an equiv-
alence of the Tannakian categories A(k) and MAT(k).

Throughout this chapter let k be a number field.

4.1 Artin-Tate motives over number fields

In this section we construct the Tannakian category of mixed Artin-Tate
motives over a number field k. There are several approaches to do this.
We start by giving the construction of Scholbach in [Sch11] who defines
the triangulated category of Artin-Tate motives DMAT(k) over k as the
full triangulated subcategory of DM(S)Q generated by the push-forwards
of the Tate motives under finite morphisms to Spec k. For number fields,
this is equivalent to the definition by Wildeshaus in [Wil08] who defines
DMAT(k) as the triangulated category generated by the Tate motives over
k and the motives of zero-dimensional schemes over k.

Similar to the case of Tate motives, a t-structure can be defined on DMAT(k)
which again yields a Tannakian category MAT(k) as its heart. This was
done by Wildeshaus in [Wil08] and we give his result in Theorem 4.13, but
using the notations of [Sch11].

Furthermore, we state some properties of the category DMAT(k) that give
us an indication of how to define an equivalent category of cell modules
(and allow us to prove this equivalence). These results are also used to
compute the Tannaka group G(MAT(k)) as the semi-direct product of
the absolute Galois group Gal(k̄|k) with the Tannaka group of MT(k̄) in
Corollary 4.24.
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4.1.1 Definition

Let X, Y ∈ Smk and φ : X → Y a k-morphism. Recall that there exist
adjoint functors φ∗ : DMgm(Y )Q � DMgm(X)Q : φ∗ and φ∗ : DM(Y )Q �
DM(X)Q : φ∗. The functor φ∗ respects the category of Tate motives, in
particular φ∗QY (0) = QX(0), whereas the functor φ∗ does not.

So it makes sense to consider the full triangulated subcategory of DM(Y )Q
generated by the objects φ∗QX(0) or φ∗QX(q), q ∈ Z, respectively.

Definition 4.1 ([Sch11, Definition 2.1])
The triangulated category DMA(k) of Artin motives over k is the full
triangulated subcategory of DMgm(k)Q generated by direct summands of
φ∗QX(0), where φ : X → Spec k is a finite morphism.

If S is a scheme of the form S = ⊔
i Spec ki, a finite disjoint union of

spectra of fields, we put DMA(S) := ⊕i DMA(ki).

Note that by Proposition 2.20, DMA(k) is equivalent to the full triangu-
lated subcategory of DM(k)Q generated by direct summands of φ∗QX(0),
where φ : X → Spec k is a finite morphism.

Remark 4.2
Let φ : X → Spec k be a finite morphism. In particular, φ is affine, hence
X ' SpecR for some ring R. Since φ is surjective, we have dimR =
dimX = dim k = 0, so R is a finite product of finite field extensions ki
of k: X ' SpecR ' Spec(∏ ki) ' ⊔ Spec ki and φ∗QX(0) ' ⊕φi∗Qki(0).
Therefore, one can also define DMA(k) to be the full triangulated subcat-
egory of DM(k)Q that is generated by direct summands of φ∗QL(0), where
L is a finite field extension of k.

Lemma 4.3
Every finite morphism φ : X → Spec k, k a number field, is étale, hence
smooth. Conversely, every smooth zero-dimensional scheme X φ→ Spec k
in Smk is finite over k.

Proof. If φ : X → Spec k is finite, we have seen in the previous remark
that X is isomorphic to SpecR, where R is a finite product of finite field
extensions. Since k is a number field, every such field extension is finite and
separable. Therefore, R is an étale k-algebra and φ is an étale morphism.
Conversely, let X be a smooth zero-dimensional scheme over k. Then



76 CHAPTER 4. ARTIN-TATE MOTIVES AND CELL MODULES

φ : X → Spec k is étale, hence, X ' SpecR, where R is a finite product
of finite separable field extensions of k. Therefore, φ : X → Spec k is
finite.

Hence, the following definition by Wildeshaus in [Wil08] is equivalent to
Definition 4.1 given above. Recall that for φ : X → Spec k finite (and
hence étale) φ∗QX(0) ' φ# QX(0) ' mk(X)Q.

Definition 4.4 ([Wil08, Definition 1.2])
The triangulated category of Artin motives DMA(k) is the full triangulated
subcategory of DMgm(k)Q generated by the motives mk(X)Q of smooth zero-
dimensional schemes X over Spec k.

Remark 4.5 ([Wil08, Remark 1.4])
The triangulated category of Artin motives DMA(k) is equivalent to the
bounded derived category Db(MA(k)) of the Tannakian category MA(k) of
representations of the absolute Galois group Gal(k̄|k) of k in finitely gener-
ated Q-vector spaces, i.e. G(MA(L(k))) = Gal(k̄|k). More precisely, if X
is a smooth zero-dimensional scheme over k, Gal(k̄/k) acts canonically on
the set of k̄-valued points of X. Then the object in MA(k) corresponding
to mk(X)Q is just the formal Q-linear envelope of this set with the in-
duced Galois action. In particular, MA(k) is semi-simple and every object
mk(X)Q admits a dual.
This follows by [Voe00, Remark 2 on page 33].

Now, we obtain the category of Artin-Tate motives if we consider the full
triangulated subcategory of DMgm(k)Q generated by the push-forwards of
all Tate motives (not just of the trivial motive Q(0)) under finite maps
X → Spec k.

Definition 4.6 ([Sch11, Definition 2.1])
The triangulated category of mixed Artin-Tate motives DMAT(k) over k
is the full thick triangulated subcategory of DMgm(k)Q generated by the
objects φ∗QX(q), where φ : X → Spec k is a finite morphism of schemes
and q ∈ Z, i.e. DMAT(k) is the smallest full triangulated subcategory of
DMgm(k)Q that contains the objects φ∗QX(q) and is closed under direct
summands.

In [Wil08, Definition 1.3], DMAT(k) is defined as the full triangulated ten-
sor subcategory of DMgm(k)Q generated by DMT(k) and DMA(k). Since
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φ∗QX(q) ∼= φ∗QX(0)⊗Qk(q) for any finite map X → Spec k this definition
agrees with Definition 4.6. As a consequence the category DMAT(k) is a
rigid tensor category since the generators Qk(q), q ∈ Z, and φ∗QX(0) are
rigid.

The same arguments as in Remark 4.2 show that DMAT(k) is the full thick
triangulated subcategory of DMgm(k)Q generated by direct summands of
φ∗QL(q), where L is a finite field extension of k, φ : SpecL→ Spec k and
q ∈ Z.

Remark 4.7
Like the category of Tate motives, one can define the category DMAT(S) of
Artin-Tate motives over an arbitrary smooth separated scheme S of finite
type over k. However, in general it is not possible to define a t-structure
on DMAT(S), even if S satisfies the Beilinson-Soulé vanishing conjectures.
For the case S = SpecOk, the spectrum of the ring of integers of a number
field k, the construction of a t-structure was given by Scholbach in [Sch11].

4.1.2 Hom-groups

In this subsection we compute the Q-vector spaces of morphisms between
the generators of DMAT(k). This serves two purposes. First we need
the vanishing of certain morphism groups to ensure the existence of a
t-structure on DMAT(k) (cf. Corollary 2.23 and the Beilinson-Soulé van-
ishing conjectures in the case of Tate motives) and secondly we use these
results to show an equivalence of categories between DMAT(k) and the
triangulated category of cell modules with Galois-action that we define in
section 4.2.

Let L and K be two finite field extensions of k. We denote the struc-
ture morphisms over Spec k by φ : SpecL → Spec k and ψ : SpecK →
Spec k respectively. We define S as the fibre product SpecL×k SpecK '
Spec(L⊗k K):

Spec(L⊗k K) SpecL

SpecK Spec k.

ψ′

φ′ φ

ψ

We are interested in HomDM(k)Q(φ∗QL(0), ψ∗QK(q)[p]), for all q,
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p ∈ Z. These Q-vector spaces are given by

HomDM(k)Q(φ∗QL(0), ψ∗QK(q)[p])
(1)
' HomDM(L)Q(QL(0), φ∗ψ∗QK(q)[p])
(2)
' HomDM(L)Q(QL(0), ψ′∗φ′∗QK(q)[p])
(3)
' HomDM(S)Q(ψ′∗QL(0), φ′∗QK(q)[p])
(4)
' HomDM(S)Q(QS(0),QS(q)[p])

using the following facts from Lemma 2.16:

(1) φ∗ is right adjoint to φ∗ since φ is finite and étale;

(2) φ∗ψ∗ ' ψ′∗φ
′∗ (base change);

(3) ψ′∗ is right adjoint to ψ′∗;

(4) ψ′∗QL(0) ' QS(0) and φ′∗QK(0) ' QS(0).

Now, S = Spec(L ⊗k K) ' Spec(∏r
i=1 ki) '

⊔r
i=1 Spec(ki) for some finite

field extensions ki over k and some r ∈ Z, so

HomDM(S)Q(QS(0),QS(q)[p]) '
r⊕
i=1

HomDM(ki)Q(Qki(0),Qki(q)[p])

'
r⊕
i=1

K2q−p(ki)(q)
Q .

These computations allow us to prove the following lemma.

Lemma 4.8 (Variant of [Sch11, Lemma 3.2])
Let φ : X → Spec k and ψ : Y → Spec k be two finite maps. Then:

HomDM(k)Q(φ∗QX(0), ψ∗QY (q)[p]) =


0 if q < 0
0 if q = 0, p 6= 0
finite-dimensional if q = p = 0
0 if q 6= 0, p ≤ 0.

Proof. X and Y are given as the disjoint union of spectra of number fields
over k by Remark 4.2. In particular, QX(0) ' ⊕iQki(0) for some number
fields ki and hence φ∗QX(0) ' ⊕iφi∗Qki(0), and similarly ψ∗QY (q)[p] '
⊕jψj∗Qlj(q)[p].
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Since the functors Hom(M,−) and Hom(−,M) are additive, the Q-vector
spaces HomDMgm(k)Q(φ∗QX(0), ψ∗QY (n)[m]) are given as direct sums of the
vector spaces HomDMgm(k)Q(φi∗Qki(0), ψj∗Qlj(q)[p]). On the other hand, by
the computations preceding the lemma, these are given by direct sums of
K-groups of number fields.
By the (known) K-theory for number fields (see Example 2.24), the state-
ment follows.

Example 4.9
Let L be a finite Galois extension of k of degree n with Galois group
G = Gal(L|k) and let φ : SpecL → Spec k. Then L ⊗k L ' Ln and
Spec(L⊗k L) ' ⊕ni=1 SpecL. Therefore, for q, p ∈ Z:

HomDM(k)Q(φ∗QL(0), φ∗QL(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p])n

in particular for p = q = 0:

HomDM(k)Q(φ∗QL(0), φ∗QL(0)) ' Qn .

Furthermore, since L⊗k k ' L we have:

HomDM(k)Q(Qk(0), φ∗QL(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p])

and

HomDM(k)Q(φ∗QL(0),Qk(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p]).

In particular for q = p = 0:

HomDM(k)Q(Qk(0), φ∗QL(0)) ' HomDM(k)Q(φ∗QL(0),Qk(0)) ' Q .

Let K be an intermediate Galois field extension k ⊂ K ⊂ L of degree m
over k with Galois group H = Gal(K|k) and ψ : SpecK → Spec k. Then
L⊗k K ' Lm and hence:

HomDM(k)Q(φ∗QL(0), ψ∗QK(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p])m

and

HomDM(k)Q(ψ∗QK(0), φ∗QL(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p])m.

We discuss these vector spaces in more detail in subsection 4.1.4.
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Let L be a finite field extension of k and φ : SpecL→ Spec k.
Using the adjointness of the functors φ∗ and φ∗ we see that the Q-vector
spaces HomDM(k)Q(φ∗QL(0),Qk(0)) and HomDM(k)Q(Qk(0), φ∗QL(0)) are
isomorphic to the Q-vector space HomDM(L)Q(QL(0),QL(0)) ' Q. The
first one is the Q-vector space generated by the map p : φ∗QL(0)→ Qk(0)
in DMgm(k) that is induced by the morphism φ : SpecL→ Spec k, whereas
the latter Q-vector space is generated by a map s that is not induced by
a morphism of schemes. The composition p ◦ s is a non-zero element in
HomDM(k)Q(Qk(0),Qk(0)) = Q · idQk(0), hence a Q-multiple of idQk(0) show-
ing that Qk(0) is in fact a direct summand of φ∗QL(0) in DMgm(k)Q.

More generally, we have the following lemma:

Lemma 4.10
Let k be a number field. Let k ⊂ K ⊂ L be a tower of finite field extensions
of k. We denote the corresponding morphisms of schemes by ψ : SpecK →
Spec k and φ : SpecL→ SpecK.

Then ψ∗QK(n) is a direct summand of (ψ ◦ φ)∗QL(n) in DMAT(k). In
particular, Qk(n) is direct summand of ψ∗QK(n).

Proof. Since

HomDM(K)Q(φ∗QL(n),QK(n)) ∼= HomDM(L)Q(QL(n),QL(n)) ∼= Q

and similarly
HomDM(K)Q(QK(n), φ∗QL(n)) ∼= Q

as well as
HomDM(K)Q(QK(n),QK(n)) ' Q,

there exist morphisms p : φ∗QL(n) → QK(n) and s : QK(n) → φ∗QL(n)
in DM(K)Q such that p ◦ s = idQK(n). (Choose p 6= 0 and s 6= 0. Then
p ◦ s 6= 0, so p ◦ s = λ · idQK(n) for some λ. Now scale accordingly.) Since
DMAT(k) is pseudo-abelian by [Wil08, Corollary 2.6], this is equivalent to
QK(n) being a direct summand of φ∗QL(n) corresponding to the image of
the idempotent endomorphism s ◦ p on φ∗QL(n).
Because φ∗ is an adjoint functor, it is additive and hence preserves direct
summands. Therefore, ψ∗QK(n) is a direct summand of (ψ ◦ φ)∗QL(n) in
DMAT(k).
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4.1.3 t-structure

Now we are able to imitate the definition of the t-structure of the previous
chapter to obtain the Tannakian category of mixed Artin-Tate motives
over a number field k, as done in [Wil08] and [Sch11].

For any q ∈ Z we define the category W≤q DMAT(k) as the full thick tri-
angulated subcategory of DMAT(k) generated by the objects φ∗QX(−m),
where m ≤ q and φ : X → Spec k a finite morphism. Dually, we define
W>q DMAT(k) to be the full thick triangulated subcategory generated by
the objects φ∗QX(−q), where m > q and φ : X → Spec k a finite mor-
phism. (W≤q DMAT(k),W>q DMT(k)) defines a t-structure on DMT(k)
for every q ∈ Z since

HomDMAT(k)(φ∗QX(a)[i], ψ∗QY (b)[j]) ' 0

for b < a and two finite maps φ : SpecX → Spec k, ψ : Y → Spec k by
Lemma 4.8.

We denote the corresponding truncation functors by

W≤q : DMAT(k)→ W≤q DMAT(k)

and
W>q : DMAT(k)→ W>q DMAT(k).

For a ≤ b we denote by W[a,b] DMAT(k) the full thick triangulated sub-
category generated by the objects φ∗QX(−m), where a ≤ m ≤ b and
φ : X → Spec k a finite morphism. We write grWa for the functor W[a,a] and
grWa DMAT(k) for the category W[a,a] DMAT(k).

Let DMAT(k)≤0
q be the smallest full additive subcategory of DMAT(k)

containing the objects φ∗QX(−q)[m], where m ≤ 0 and φ : X → Spec k
a finite morphism, and that is closed under direct summands and cones.
Dually, let DMAT(k)≥0

q be the smallest full subcategory of DMAT(k) con-
taining the objects φ∗QX(−q)[m], where m ≥ 0, and that is closed under
direct summands and fibres (i.e. if f is a morphism in DMAT(k)≥0

q , then
Cone(f)[−1] is in DMAT(k)≥0

q ).

Definition 4.11
We define DMAT(k)≤0 as the full subcategory of DMAT(k) containing the
objects M ∈ DMAT(k) with grWq M ∈ DMAT(k)≤0

q and dually the full
subcategory DMAT(k)≥0. Let MAT(k) := DMAT(k)≤0 ∩DMAT(k)≥0.
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Remark 4.12
Obviously grW0 DMAT(k) is equal to the category DMA(k) which is gen-
erated by direct summands of the objects φ∗QX(0), where φ : X → Spec k
is a finite morphism. Similarly tensoring with Qk(q) gives an equivalence
between grWq DMAT(k) and DMA(k) ∼ Db(MA(k)) ∼ GrZ(MA(k)). This
restricts to an equivalence of grWq MAT(k) and MA(k). Hereby denotes
GrZ(MA(k)) the Z-graded category ⊕i∈Z MA(k).

As in the case of Tate-motives (see Theorem 2.29), the full subcategories
DMAT(k)≤0 and DMAT(k)≥0 define a non-degenerate t-structure on
DMAT(k) as proven by Wildeshaus:

Theorem 4.13 ([Wil08, Theorem 3.1])
Let k be a number field. Then:

1. (DMAT(k)≤0,DMAT(k)≥0) is a non-degenerate t-structure on
DMAT(k) with heart MAT(k) containing the objects φ∗QX(q), where
q ∈ Z and φ : X → Spec k is a finite morphism.

2. MAT(k) is equal to the smallest abelian subcategory of MAT(k) which
contains the objects φ∗QX(q), where q ∈ Z, and φ : X → Spec k
finite, and is closed under extensions in MAT(k).

3. The tensor operation in DMAT(k) makes MAT(k) a rigid Q-linear
abelian tensor category.

4. The functor grW∗ : MAT(k)→ Q-Vec which is defined by the compo-
sition of ⊕q grWq : MAT(k) → GrZ(MA(k)) and the forgetful functor
to the category of (graded) Q-vector spaces is an exact fibre func-
tor, thus making MAT(k) a Tannakian category which we call the
category of mixed Artin-Tate motives over k.

5. Each object M in MAT(k) has a canonical weight filtration by sub-
objects

0 ⊂ . . . ⊂ Wq−1M ⊂ WqM ⊂ . . . ⊂M.

This filtration is functorial and exact in M . It is uniquely char-
acterized by the properties of being finite (i.e. WqM = 0 for q
small and WqM = M for q large), and of admitting subquotients
grWq M = WqM/Wq−1M ∈ grWq MAT(k), q ∈ Z.

6. The natural maps

ExtpMAT(k)(M,N)→ Homp
DMAT(k)(M,N)
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are isomorphisms, for all p, and all M , N ∈ MAT(k). Both sides
are zero for p ≥ 2.

Proof. See [Wil08, Theorem 3.1 and Variant 3.2] for the proof. It uses
the facts stated in Lemma 4.8 and the same arguments as in the proof of
Theorem 2.29, namely [Lev93, Theorem 1.4].

Remark 4.14
A similar construction can be done for a finite field k. Then k is again a
perfect field and every finite field extension is separable. Furthermore, the
K-theory for finite fields gives a similar result to Lemma 4.8, so the corre-
sponding t-structure with heart MAT(k) can be constructed. This is used
in [Sch11] to define a t-structure on DMAT(OK), where K is a number
field.

4.1.4 Fixing a Galois extension L

Throughout this subsection we fix a finite Galois extension L of k of degree
n with Galois group G = Gal(L|k).

The goal of this subsection is to study the full thick triangulated subcate-
gory DMAT(L|k) of DMgm(k)Q that is generated by the objects ψ∗QK(q)[p],
where K is any intermediate field extension k ⊂ K ⊂ L (not necessarily
Galois) and ψ : SpecK → Spec k. This category is called the triangulated
category of Artin-Tate motives over k trivialisable over L by Wildeshaus
in [Wil08].

We have seen in Lemma 4.10 that ψ∗QK(q)[p] is a direct summand of
φ∗QL(q)[p], hence we can define DMAT(L|k) in the following way:

Definition 4.15
Let k be a number field. Let L be a finite Galois extension of k. We define
the category DMAT(L|k) to be the full thick triangulated tensor subcat-
egory of DMAT(k) generated by the objects φ∗QL(q), where q ∈ Z and
φ : SpecL→ Spec k.
Similarly, we define MAT(L|k) to be the full thick tensor
subcategory of MAT(k) generated by the objects φ∗QL(q), where q ∈ Z and
φ : SpecL→ Spec k.

This was inspired by Deligne’s and Goncharov’s definition of Artin-Tate
motives in [DG05]. The major advantage of this approach is that it suf-
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fices to understand the morphisms φ∗QL(0) → φ∗QL(q)[p] since these
already determine the morphisms between their direct summands, e.g.
ψ∗QK(q)[p] for any intermediate field extension K. Limiting ourselves
to Galois extensions L of k allows us to easily describe the morphisms
φ∗QL(0) → φ∗QL(q)[p] in terms of morphisms QL(0) → QL(q)[p] in
DMT(L) and the Galois group G as we have seen in Example 4.9.

Lemma 4.16
The category DMAT(L|k) is exactly the full thick triangulated subcate-
gory (without taking tensor products) of DMAT(K) generated by φ∗QL(q),
where φ : SpecL→ Spec k and q ∈ Z.

Proof. We have to show that the tensor products of any two objects in
the full thick triangulated subcategory generated φ∗QL(q) is still in this
subcategory. We denote this category by C.
For the generators we have:

φ∗QL(q)⊗ φ∗QL(p) ' ⊕ni=1φ∗QL(q + p) ∈ C.

Similarly, tensor products of direct summands or direct sums of the gen-
erators are in C. Let f : A→ B be a map in C such that A⊗C and B⊗C
are in C for some C ∈ C. Then:

Cone(f : A→ B)⊗ C ' Cone(f ⊗ idC : A⊗ C → B ⊗ C) ∈ C.

It remains to show that the tensor product of two mapping cones
Cone(f : A→ B)⊗Cone(g : C → D) is in C if the tensor products A⊗C,
A⊗D, B ⊗ C and B ⊗D are in C. Then:

Cone(f : A→ B)⊗ Cone(g : C → D)
' Cone(idCone(f)⊗g : Cone(f)⊗ C → Cone(f)⊗D)
' Cone(Cone(f ⊗ idC)→ Cone(f ⊗ idD)) ∈ C

since all expressions are given as

(A⊗ C)[2]⊕ (B ⊗ C)[1]⊕ (A⊗D)[1]⊕ (B ⊗D)

and carry the same differential. This concludes the proof.

Remark 4.17
If we denote by DMAT(k)L the full triangulated tensor subcategory of
DMgm(k) generated by the objects φ∗QL(q) (without taking direct sum-
mands), DMAT(L|k) is the pseudo-abelian hull of DMAT(k)L. This fol-
lows from the fact that the category DMAT(k) and hence also DMAT(L|k)
is pseudo-abelian and the uniqueness of the pseudo-abelian hull.
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The t-structure (DMAT≤0(k),DMAT≥0(k)) on DMAT(k) restricts to a
t-structure on DMAT(L|k) with heart MAT(L|k).
Let DMAT(L|k)≤0 := DMAT(L|k) ∩ DMAT(k)≤0 and DMAT(L|k)≥0 :=
DMAT(L|k) ∩ DMAT(k)≥0. It is easy to see from the proof of Theo-
rem 4.13 that (DMAT(L|k)≤0,DMAT(L|k)≥0) defines indeed a t-structure
on DMAT(L|k) and its heart MAT(L|k) is exactly MAT(k)∩DMAT(L|k).
Thus, MAT(L|k) is an abelian category and therefore a Tannakian sub-
category of MAT(k).

For a tower of finite Galois extensions L|K|k we have the evident embed-
ding DMAT(K|k)→ DMAT(L|k) that respects the triangulated structure
as well as the t-structures.

In particular forK = k we have an embedding of DMT(k) into DMAT(L|k)
and DMAT(k) is the full subcategory of DMgm(k)Q generated by the sub-
categories DMAT(L|k), L a finite Galois extension of k.

As we have seen in Example 4.9 we have a natural isomorphism of Q-vector
spaces

HomDM(k)Q(φ∗QL(0), φ∗QL(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p])n,

for all p, q ∈ Z.

On the other hand, we have the evident map

HomDM(L)Q(QL(0),QL(q)[p])[G]→ HomDM(k)Q(φ∗QL(0), φ∗QL(q)[p]).

We claim this map is injective and therefore, for dimension reasons an
isomorphism.

First, we consider the case q = p = 0. Let σ ∈ G. We also denote by σ
the corresponding map σ : φ∗QL(0) → φ∗QL(0). The functor φ∗ induces
a map

HomDM(k)Q(φ∗QL(0), φ∗QL(0))→ HomDM(L)Q(φ∗φ∗QL(0), φ∗φ∗QL(0))
' HomDM(L)Q(⊕τ∈GQL(0),⊕τ∈GQL(0)).

Under this map σ is mapped to the permutation n × n-matrix that is
corresponding to σ ∈ End(Q[G]) ' End(Qn). Since φ∗ and φ∗ are adjoint
functors, we have a unit η : idDM(L)Q → φ∗φ∗ such that ηQL(0) : QL(0) →
⊕τ∈GQL(0) is given by (id, 0, . . . , 0). Composition with ηQL(0) yields a map

HomDM(L)Q(⊕τ∈GQL(0),⊕τ∈GQL(0))→ HomDM(L)Q(QL(0),⊕τ∈GQL(0))
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such that

HomDM(k)Q(φ∗QL(0), φ∗QL(0))→ HomDM(L)Q(φ∗φ∗QL(0), φ∗φ∗QL(0))
' HomDM(L)Q(⊕τ∈GQL(0),⊕τ∈GQL(0))
→ HomDM(L)Q(QL(0),⊕τ∈GQL(0))
' HomDM(L)Q(QL(0),QL(0))n

is exactly the adjunction isomorphism

HomDM(k)Q(φ∗QL(0), φ∗QL(0)) ' HomDM(L)Q(QL(0),QL(0))n.

It is easy to see that the induced map

HomDM(L)Q(QL(0),QL(0))[G]→ HomDM(L)Q(QL(0),⊕τ∈GQL(0))

is injective and hence an isomorphism since σ ∈ G is mapped to the mor-
phism QL(0)→ ⊕τ∈GQL(0) with id at the σ-component and 0 elsewhere,
i.e. the images σ ∈ G are linearly independent.

The general case for q, p ∈ Z is shown in a similar way. Again, we consider
the map

HomDM(k)Q(φ∗QL(0), φ∗QL(q)[p])
→ HomDM(L)Q(⊕τ∈GQL(0),⊕τ∈GQL(q)[p])

and note that a morphism f : QL(0)→ QL(q)[p] that is defined over K is
mapped to the diagonal matrix f · 1n. Again, it is easy to see that

HomDM(L)Q(QL(0),QL(q)[p])[G]→ HomDM(L)Q(QL(0),⊕τ∈GQL(q)[p])

is injective. Thus we have proven:

Lemma 4.18
Let L be a finite Galois extension of a number field k with Galois group
G = Gal(L|k). Then there is a canonical isomorphism:

HomDM(k)Q(φ∗QL(0), φ∗QL(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p])[G].

G acts canonically on HomDM(L)Q(QL(0),QL(q)[p])[G] by multiplication
and hence on HomDM(k)Q(φ∗QL(0), φ∗QL(q)[p]) via composition with σ ∈
G. More generally, G acts on HomDM(k)Q(φ∗QL(0),M) forM ∈ DM(k)Q in
the same way. Putting M = Qk(q)[p] we have the adjunction isomorphism

HomDM(k)Q(φ∗QL(0),Qk(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p])

and we are interested in the behaviour of the G-action under this isomor-
phism.
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Lemma 4.19
G acts via conjugation on HomDM(L)Q(QL(0),QL(q)[p]). Then the isomor-
phism

HomDM(k)Q(φ∗QL(0),Qk(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p])

respects the G-action.
In particular,

HomDM(k)Q(φ∗QL(0),Qk(q)[p])G ' HomDM(L)Q(QL(0),QL(q)[p])G.

Proof. A morphism f : φ∗QL(0)→ Qk(q)[p] is mapped to the composition

f̃ : QL(0) ∆L−→ QL(0)⊗k QL(0) f⊗id−→ Qk(q)[p]⊗k QL(0) ' QL(q)[p]

under the isomorphism

HomDM(k)Q(φ∗QL(0),Qk(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p]).

Now, we claim that G acts on morphisms g : QL(0)→ QL(q)[p] via conju-
gation, i.e. gσ := σ◦g◦σ−1, where σ : QL(0)→ QL(0) and σ−1 : Qk(q)[p]⊗k
QL(0)→ Qk(q)[p]⊗k QL(0) denotes the morphism (id⊗σ−1). It is easy to
see that

(̃f ◦ σ) = f̃σ

proving that gσ is again a morphism QL(0) → QL(q)[p] in DM(L)Q.
Clearly, gσ◦τ = (gσ)τ and hence this defines indeed a G-action. By con-
struction, the G-action is compatible with the isomorphism

HomDM(k)Q(φ∗QL(0),Qk(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p]).

We have seen that for any intermediate field extension k ⊂ K ⊂ L
the motive ψ∗QK(0), where ψ : SpecK → Spec k, is a direct summand
of φ∗QL(0). Therefore, DMAT(K|k) is a subcategory of DMAT(L|k)
and since both are full triangulated tensor subcategories of DMgm(k)Q,
DMAT(K|k) is also a full triangulated subcategory of DMAT(L|k).

Every direct summand of QL(0) can be expressed as the image of an idem-
potent endomorphism on QL(0). The endomorphism

α ∈ HomDMAT(L|k)(φ∗QL(0), φ∗QL(0)) ' HomDM(L)Q(QL(0),QL(0))n
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corresponding to Qk(0) is given by 1
n

∑
σ∈G σ. Since

Q ' HomDM(k)Q(Qk(0), φ∗QL(0))
' {f ◦ α : f ∈ HomDM(k)Q(φ∗QL(0), φ∗QL(0))}
' {f ◦ α : f ∈ Q[G]},

α can be only of the form ∑
σ∈G λ · σ for some λ ∈ Q (otherwise the

latter vector space is not one-dimensional). And the condition that α is
idempotent implies that λ = 1

n
.

Similarly, let K be any intermediate field k ⊂ K ⊂ L with Galois group
H = Gal(K|k) and ψ : SpecK → Spec k. We identify Gal(L|K) with a
subgroup N ⊂ G of order m. Now, ψ∗QK(0) is given as the image of
the idempotent endomorphism αH = 1

m

∑
σ∈N σ. This description of Qk(0)

allows us to prove the following fact in [MVW06].

Lemma 4.20 ([MVW06, Exercise 1.11])
Let L be a finite Galois extension of k with Galois group G = Gal(L|k)
and φ : SpecL→ Spec k. Then:

HomDM(k)Q(Qk(0),Qk(q)[p]) ' HomDM(L)Q(QL(0),QL(q)[p])G,

where G acts via conjugation.

Proof. The functor φ∗ : DMT(k)→ DMT(L) induces a map

HomDM(k)Q(Qk(0),Qk(q)[p])→ HomDM(L)Q(QL(0),QL(q)[p]).

Let

α := 1
n

∑
σ∈G

σ ∈ HomDM(k)Q(φ∗QL(0), φ∗QL(0)) and

β := 1
n

∑
σ∈G

σ ∈ HomDM(k)Q(φ∗QL(q)[p], φ∗QL(q)[p]).

Let f = ∑
σ∈G fσ◦σ : φ∗QL(0)→ φ∗QL(q)[p], where fσ : QL(0)→ QL(q)[p].

Then:

β ◦ f ◦ α = 1
n2 (

∑
σ

σ) ◦ (
∑
σ

fσ ◦ σ) ◦ (
∑
σ

σ)

= 1
n2 (

∑
σ

σ) ◦ (
∑
σ

(
∑
τ

fτ ) ◦ σ)

= 1
n2

∑
σ

(
∑
ν,τ

f ντ ) ◦ σ.
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Clearly, the morphism ∑
ν,τ

f ντ : QL(0)→ QL(q)[p]

is G-equivariant and every G-equivariant morphism QL(0)→ QL(q)[p] can
be written this way. Therefore:

HomDMT(k)(Qk(0)Qk(q)[p]) ' {β ◦ f ◦ α, f : φ∗QL(0)→ φ∗QL(q)[p]}

'
{

1
n2

∑
σ

(
∑
ν,τ

f ντ ) ◦ σ
}

' HomDM(L)Q(QL(0),QL(q)[p])G.

4.1.5 Tannaka formalism

We compute the Tannaka group of MAT(L|k) for a finite Galois extension
L of k utilizing the following lemma in [DM82].

Lemma 4.21 ([DM82, Proposition 2.21])
Let f : G→ G′ be a homomorphism of affine group schemes over k and let
ωf be the corresponding functor RepQ(G′)→ RepQ(G).

1. f is faithfully flat if and only if ωf is fully faithful and every subob-
ject of ωf (X ′), for X ′ ∈ RepQ(G′), is isomorphic to the image of a
subobject of X ′.

2. f is a closed immersion if and only if every object of RepQ(G) is
isomorphic to a subquotient of an object of the form ωf (X ′), where
X ′ ∈ RepQ(G′).

Theorem 4.22
Let L be a finite Galois extension of k with Galois group G = Gal(L|k).
Then there exists a split exact sequence

1→ G(MT(L))→ G(MAT(L|k)) � Gal(L|k)→ 1.

Before we prove the theorem, we give a lemma used in the proof.

Lemma 4.23
Let L be a finite Galois extension of k. Let φ : SpecL→ Spec k.
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1. Every M ∈ MT(L) is a direct summand of φ∗φ∗M .

2. Every M ∈ MAT(L|k), such that φ∗M is in the additive subcategory
of MT(L) that is generated by QL(0), is in MA(L|k).

Proof. 1. We prove the more general claim that every M ∈ DMT(L)
is a direct summand of φ∗φ∗M . For M = QL(q), q ∈ Z, we have
φ∗φ∗QL(q) ' QL(q)⊕n, where n = [L : k]. Now, the claim follows by
induction. Let A, B be objects in DMT(L) such that A and B are di-
rect summands of φ∗φ∗A respectively φ∗φ∗B and let f : A→ B. Then
it is easy to see that Cone(f) is a direct summand of Cone(φ∗φ∗f)
and that Cone(φ∗φ∗f) ' φ∗φ∗Cone(f) since the functors φ∗ and φ∗
are triangulated. Therefore, every motive M ∈ DMT(L) and is a
direct summand of φ∗φ∗M .

2. Let M ∈ MAT(L|k) such that φ∗M ∈ 〈QL(0)〉, i.e. in the additive
subcategory of MT(L) that is generated by QL(0). We claim that
M ∈ MAT(L|k) is a direct summand of φ∗φ∗M . By the same ar-
guments as in the proof of the first claim, it is enough to check this
for the objects φ∗QL(q), q ∈ Z. Now, φ∗φ∗φ∗QL(q) ' φ∗QL(q)⊕n.
Therefore, M is a direct summand of φ∗φ∗M . On the other hand,
φ∗φ

∗M is by assumption in the subcategory generated by φ∗QL(0)
which equals MA(L|k). Since MA(L|k) is closed under direct sum-
mands, M is in MA(L|k).

Proof of Theorem 4.22. We use the same arguments as in the proof of
[HMS17, Theorem 9.1.16].
Let φ : SpecL → Spec k. The map G(MT(L)) → G(MAT(L|k)) is in-
duced by the functor φ∗ : DM(L) → DM(k). This functor restricts to a
functor φ∗ : DMAT(L|k) → DMT(L). Note that the functor φ∗ is trian-
gulated and φ∗φ∗QL(q) ' QL(q)⊕n for q ∈ Z to see that the image of φ∗ is
actually in DMT(L). Since the functor φ∗ is compatible with the weight
filtrations and hence the t-structures on DMAT(L|k) and DMT(L), it re-
stricts to a functor φ∗ : MAT(L|k)→ MT(L) which is the dual of the map
G(MT(L)) → G(MAT(L|k)). By Lemma 4.21, this map is a closed im-
mersion if every motive M ∈ MT(L) is a subquotient of an object in the
image of φ∗ which follows by Lemma 4.23.

G(MAT(L|k)) → Gal(L|k) = G(MA(L|k)) is the homomorphism dual to
the inclusion functor i : MA(L|k) → MAT(L|k). By Lemma 4.21, this
map is surjective if the functor i is fully faithful and its image is closed
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under subquotients. Clearly, i is fully faithful and MA(L|k) is semi-simple
by Remark 4.5, hence the second condition is satisfied.

Furthermore, the functor ⊕q grWq : MAT(L|k) → MA(L|k) defines a right
inverse to the inclusion MA(L|k) → MAT(L|k) and therefore, induces a
splitting to the homomorphism G(MAT(L|k))→ Gal(L|k).

Lastly, we have to show that the sequence is exact at G(MAT(L|k)).
We claim that Gal(L|k) is the cokernel of the the map G(MT(L)) →
G(MAT(L|k)). We consider the dual map φ∗ : MAT(L|k)→ MT(L). Let
A be the biggest full Tannakian subcategory of MT(L) containing the ob-
jects M such that ηM = idM for all η ∈ G(MT(L)). Furthermore, we
denote by B the biggest full Tannakian subcategory of MAT(L|k) such
that the image of B under φ∗ is in A. By Tannaka duality, G(B) is the
cokernel of the map G(MT(L)) → G(MAT(L|k)). Hence, we need to
show that D ∼ MA(L|k). In Lemma 2.30 we have computed the Tannaka
group G(MT(L)). The proof of Lemma 4.21 shows that C = gr0 MT(L) =
〈QL(0)〉. Therefore, D = {M ∈ MAT(L|k) : φ∗M ∈ 〈QL(0)〉} and we
claim that D = MA(L|k). The inclusion MA(L|k) ↪→ D is obvious since
φ∗φ∗QL(0) ' QL(0)⊕n ∈ 〈QL(0)〉. For the converse, we need to show that
every motive M ∈ MAT(L|k) such that φ∗M ∈ 〈QL(0)〉 is in MA(L|k).
This follows by Lemma 4.23.

This completes the proof.

Theorem 4.24
Let k be a number field and let k̄ denote its algebraic closure. Then there
exists a split exact sequence

1→ G(MT(k̄))→ G(MAT(k))→ Gal(k̄|k)→ 1.

Proof. The map G(MT(k̄)) → G(MAT(k)) is again induced by the func-
tor φ∗ : MAT(k)→ MT(k̄), where φ : Spec k̄ → Spec k. Note that while φ
itself is not finite, the functor φ∗ factors for any motive ψ∗QL(n) through
ψ∗ and therefore, φ∗ψ∗QL(q) ' Qk̄(q)⊕n for some finite number n. Then
the statement follows by the same arguments as in the proof of Theo-
rem 4.22.



92 CHAPTER 4. ARTIN-TATE MOTIVES AND CELL MODULES

4.2 Cell modules with Galois action

As we have seen in the previous chapter, the derived category DfN (k) of
Adams graded modules over the cycle algebra N (k) is equivalent to the
triangulated category of Tate motives DMT(k) over k. The goal of this sec-
tion is to construct a triangulated category D(k) of cell modules containing
DfN (k) that is equivalent to the triangulated category of Artin-Tate motives
DMAT(k) over k and that restricts to the equivalence DfN (k) → DMT(k)
given in Spitzweck’s representation theorem (Theorem 3.31).

Furthermore, D(k) should carry a non-degenerate t-structure whose heart
is a Tannakian category that we denote by A(k). The t-structure should be
compatible with the equivalence D(k)→ DMAT(k) and therefore, induce
an equivalence of Tannakian categories A(k)→ MAT(k).

To achieve this goal we construct a triangulated tensor category D(L|k) of
N (L)-cell modules with Gal(L|k)-action for every finite Galois extension
L over k that is equivalent to DMAT(L|k) with the desired properties and
such that for a tower of Galois extensions L|K|k there exists an embedding
D(K|k) → D(L|k). The union of these categories is our desired category
D(k).

Let L be a finite Galois extension of k of degree n with Galois group
G = Gal(L|k). Let φ : SpecL→ Spec k.

4.2.1 Idea

Recall thatMN (L) is the category of Adams graded dg modules over the
cycle algebra N (L) that we defined in section 3.1 and CMf

N (L) is the
category of finite cell modules over N (L). Their homotopy categories are
denoted by KMN (L) and KCMf

N (L) respectively.

Recall further that QN (L)(q)[p] is the Tate object in MN (L) which is the
free rank one N (L)-module with generator bq having Adams degree −q,
cohomological degree −p and dbq = 0, where d is its differential.

The algebra map φ# : N (k) → N (L) induces a pair of adjoint functors
φ∗ : MN (k) → MN (L) (extension of scalars) and φ∗ : MN (L) → MN (k)
(restriction of scalars). The functor φ∗ allows us to consider N (L)-modules
as N (k)-modules, i.e. φ∗QN (L)(0) is just N (L) considered as an N (k)-
module and similarly for φ∗QN (L)(q)[p], where q, p ∈ Z. In the same way
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as in the case of Artin-Tate motives we can consider the full triangulated
subcategory of KMN (k) generated by the objects φ∗QN (L)(q)[p].

In DMAT(L|k) we have

HomDMAT(L|k)(φ∗QL(0), φ∗QL(q)[p]) ' HomDMT(L)(QL(0),QL(q)[p])[G].

Thus, if we define the full thick triangulated subcategory of KMN (k) gen-
erated by the objects φ∗QN (L)(q)[p], we have to check whether

HomKMN (k)(φ∗QN (L)(0), φ∗QN (L)(q)[p])

and

HomKMN (L)(QN (L)(0),QN (L)(q)[p])[G] ' HomDMT(L)(QL(0),QL(q)[p])[G]

agree. Otherwise, these categories cannot be equivalent.

G = Gal(L|k) acts canonically on N (L) by sending a cycle W to its con-
jugate cycle W σ for σ ∈ G. Therefore, we have a G-action on every
free N (L)-module. Note that if M is a dg N (L)-module (or an N (L)-
cell module), the action of G does not necessarily commute with the dif-
ferential on M . However, this is the case for the modules QN (L)(q)[p],
q, p ∈ Z. Thus, every σ ∈ G induces an (N (k)-linear) endomorphism on
QN (L)(q)[p], i.e. an endomorphisms on φ∗QN (L)(q)[p] inMN (k).

Clearly, every N (L)-module morphism f : QN (L)(0) → QN (L)(q)[p] gives
an N (k)-module morphism φ∗f : φ∗QN (L)(0) → φ∗QN (L)(q)[p] that we
also denote by f . Composing the endomorphism σ on QN (L)(q)[p] with f
defines another N (k)-module morphism

f ◦ σ : φ∗QN (L)(0)→ φ∗QN (L)(q)[p].

As in the case of motives, this gives an injective map:

HomKMN (L)(QN (L)(0),QN (L)(q)[p])[G]
↪→ HomKMN (k)(φ∗QN (L)(0), φ∗QN (L)(q)[p]).

But the other inclusion is not evident, namely if every N (k)-linear mor-
phism φ∗QN (L)(0) → φ∗QN (L)(q)[p] is necessarily a Q-linear combination
of morphisms of the form

f ◦ σ, where σ ∈ G and f ∈ HomKMN (L)(φ∗QN (L)(0), φ∗QN (L)(q)[p]).
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Thus, the full triangulated subcategory of MN (k) generated by the ob-
jects φ∗QN (L)(q)[p] might not be equivalent to the respective category
DMAT(L|k) of motives.

An intuitive approach to solve this issue is to consider not the full trian-
gulated subcategory of KMN (k) generated by the objects φ∗QN (L)(q)[p],
p, q ∈ Z, but the triangulated subcategory generated by the N (k)-modules
φ∗QN (L)(q)[p] and putting

Hom(φ∗QN (L)(0), φ∗QN (L)(q)[p])
:= HomKMN (L)(QN (L)(0),QN (L)(q)[p])[G]
⊂ HomKMN (k))(φ∗QN (L), φ∗QN (L)(q)[p]).

However, there is no nice machinery for defining a non-full triangulated
subcategory generated by certain objects and morphisms.

To circumvent this we construct a triangulated category of modules con-
taining the category DfN (k) and "base objects" ML(q)[p], q, p ∈ Z, such
that

Hom(ML(0),ML(q)[p]) ' HomKMN (L)(QN (L)(0),QN (L)(q)[p])[G]

and then consider inside this category the full triangulated subcategory
generated by the objects ML(q)[p].

A candidate for such a category containing DfN (k) arises in the following
way. The functor φ∗ : KCMf

N (k) → KCM
f
N (L) identifies D

f
N (k) ∼ KCM

f
N (k)

with a triangulated subcategory of KCMf
N (L). Note that this subcategory

is not full, but rather by Lemma 4.20 we have

HomKMN (k)(QN (k)(0),QN (k)(q)[p]) ' HomKMN (L)(QN (L)(0),QN (L)(q)[p])G,

where the G-action is given by conjugation. On the other hand,
HomKMN (L)(QN (L)(0),QN (L)(q)[p])G is exactly the Q-vector space of G-
equivariant morphisms QN (L)(0)→ QN (L)(q)[p] with respect to the natural
action of G on N (L). Therefore, we consider in the following the category
of N (L)-cell modules with G-action and G-equivariant morphisms.

4.2.2 Definition

We denote by G-CMf
N (L) the category of finite N (L)-cell modules with

G-action. Its objects are finite N (L)-cell modules M together with a
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bi-degree preserving G-action on M that is compatible with the module
structure and the differential on M in the following sense. For all a ∈
N (L), m ∈M and σ ∈ G:

σ(dm) = d(σm) and σ(a ·m) = σ(a) · σ(m).

The morphisms f : M → N in G-CMf
N (L) are exactly the morphisms

f : M → N in CMf
N (L) that are G-equivariant with respect to the G-action

on M and N .

Recall that for M , N ∈ MN (L) we have the Adams graded N (L)-module
HomN (L)(M,N), where HomN (L)(M,N)p(q) consists of N (L)-linear maps
f : M → N (they do not need to be compatible with the differentials dM
and dN onM and N respectively) such that f(Ma(b)) ⊂ Na+p(s+q). The
differential of f ∈ HomN (L)(M,N)p(q) is given by

df(m) := dN(f(m)) + (−1)p+1f(dM(m))

for m ∈M . Note that for p even (especially for p = 0) df = 0 is equivalent
to f commuting with the differentials dM and dN .

Now, ifM and N are in G-CMf
N (L), then HomN (L)(M,N) is also endowed

with a G-action that is given by conjugation: fσ := σ−1 ◦ f ◦ σ. It is easy
to see that fσ is N (L)-linear if f is N (L)-linear. The G-equivariant maps
are exactly the maps that are invariant under this G-action. Furthermore,
the G-action is compatible with the differential on HomN (L)(M,N):

dfσ(m) = dN(σ−1 ◦ f ◦ σ(m)) + (−1)p+1σ−1 ◦ f ◦ σ(dM(m))
= σ−1 ◦ dN(f(σ(m))) + (−1)p+1σ−1 ◦ f(dM(σ(m)))
= (σ−1 ◦ df ◦ σ)(m) = (df)σ(m).

In other words, the differential of a G-equivariant map is again G-equi-
variant and theG-equivariant maps form a subcomplex ofHomN (L)(M,N).
We denote this subcomplex by HomN (L)(M,N)G.

We denote by G-KCMf
N (L) the homotopy category of G-CMf

N (L). Thus,
the objects of G-KCMf

N (L) are the objects of G-CMf
N (L) and for M , N ∈

G-KCMf
N (L) the morphisms are given by

HomG-KCMf
N (L)

(M,N) := H0(HomN (L)(M,N)(0)G).
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Since the G-action commutes with the differential of HomN (L)(M,N), we
have for all M , N ∈ G-KCMf

N (L) the equality

H0(HomN (L)(M,N)(0)G) ' H0(HomN (L)(M,N)(0))G

' HomKMN (L)(M,N)G.

Let f : M → N be a map in G-KCMf
N (L). Then, the G-actions on M

and N induce a natural G-action on Cone(f) that is defined by σ(m,n) :=
(σ(m), σ(n)) for m ∈ M , n ∈ N . Clearly, this action is compatible with
the N (L)-module structure of Cone(f) since Cone(f) is just the direct sum
M [1] ⊕ N as a N (L)-module. Furthermore, the differential of Cone(f) is
compatible with the G-action:

d(σ(m,n)) = (−dM(σ(m)), f(σ(m) + dN(σ(n))))
= (−σ(dM(m)), σ(f(m) + σ(dN(n)))
= σ(d(m,n))

since dM , dN and f commute with all σ ∈ G. Therefore, Cone(f) is in
G-KCMf

N (L) if f : M → N is G-equivariant. Note that the canonical
projection Cone(f)→M [1] and the canonical inclusion N → Cone(f) are
G-equivariant.

Similarly, the tensor product over N (L) of two N (L)-modules M and N
in G-KCMf

N (L) is in G-KCMf
N (L). The G-action on M ⊗N (L) N is given

by σ(m⊗ n) := σ(m)⊗ σ(n) and is again compatible with the differential
d(m⊗ n) := dM(m)⊗ n+ (−1)degmm⊗ dN(n) on M ⊗N (L) N :

d(σ(m,n)) = dM(σ(m))⊗ σ(n) + (−1)degmσ(m)⊗ dN(σ(n))
= σ(dMm)⊗ σ(n) + (−1)degmσ(m)⊗ σ(dNn)
= σ(d(m⊗ n)).

Proposition 4.25
G-KCMf

N (L) is triangulated category, where the distinguished triangles are
those triangles that are isomorphic to a cone sequence.

Proof. We have already seen that KCMN (L) is a triangulated category.
Therefore, the maps needed to satisfy the axioms (TR1)-(TR2) exist in
KCMN (L). It remains to show that these maps are G-equivariant if the
maps in the assumptions are.

Clearly, (TR1) is satisfied for G-KCMf
N (L) since the maps id and 0 are

G-equivariant.
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For (TR2) we have to show that if A f→ B → C is a distinguished triangle
in G-KCMf

N (L), then so is B → C → A[1] and vice versa. This follows
by the fact that A[1] is isomorphic to Cone(B → C). The isomorphism
is given by φk = (−fk+1, idk+1

A , 0) : A[1] → Cone(B → C) with inverse
ψk = (0, idk+1

A , 0) which are G-equivariant maps since the maps f , idA and
idB are G-equivariant. See [Sos12, Lemma 2.6] for details.

Similarly, one proves (TR3) and (TR4). Again the maps required in (TR3)
and (TR4) exist in KCMf

N (L) and are G-equivariant if the maps in the
assumption are G-equivariant. See the proof of Proposition 1.5 and [Sos12,
Theorem 2.7] for details.

As mentioned before, we can identify DfN (k) with a full subcategory of G-
KCMf

N (L) via the functor φ∗ : KCMf
N (k) → KCM

f
N (L). To see this, the

image of every finite N (k)-cell module M under φ∗ must be endowed with
a natural G-action. For M = QN (k)(q), q ∈ Z, we have φ∗M ' QN (L)(q)
which carries the natural action of G on N (L). If f : QN (k)(0)→ QN (k)(q)
is a morphism in KCMf

N (k), then φ∗f : QN (L)(0) → QN (L)(q)[p] is G-
equivariant by Lemma 4.20 and the fact that the equivalence KCMf

N (L) →
DMAT(L) respects the G-action. We have already seen that Cone(φ∗f)
carries a natural G-action induced by the G-actions on QN (L)(0) and
QN (L)(q)[p]. Since the objects QN (k)(q)[p], q, p ∈ Z, generate KCMf

N (k) as
a triangulated category, we have endowed φ∗M with a G-action induced by
the G-action on N (L) for every objectM ∈ KCMf

N (k) giving the following
theorem:

Theorem 4.26
The image of every M ∈ KCMf

N (k) under the functor

φ∗ : KCMf
N (k) → KCM

f
N (L)

can be endowed with a natural G-action yielding a fully faithful tensor
triangulated functor

φ∗ : KCMf
N (k) → G-KCMf

N (L)

identifying KCMf
N (k) with a full triangulated subcategory of G-KCMf

N (L).

Proof. We have already described the G-action on φ∗M for every M ∈
KCMf

N (k). To obtain a functor φ∗ : KCMf
N (k) → G-KCMf

N (L), we need
to check that φ∗f : φ∗M → φ∗N is G-equivariant for every morphism
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f : M → N in KCMf
N (k). For M = QN (k)(0) and N = QN (k)(q)[p],

this is true by Lemma 4.20. For arbitrary M and N , the N (L)-modules
with Galois action φ∗M and φ∗N , where we ignore the differential, are
given as direct sums of the base objects QN (L)(q)[p] ' φ∗QN (k)(q)[p] and
morphisms φ∗f : φ∗M → φ∗N are given as sums of G-equivariant maps
QN (L)(0)→ QN (L)(q)[p] and hence also G-equivariant.

Therefore, φ∗ defines indeed a functor

φ∗ : KCMf
N (k) → G-KCMf

N (L)

that induces a bijection

HomKCMN (k)(QN (k)(0),QN (k)(q)[p])
' HomKCMN (L)(QN (L)(0),QN (L)(q)[p])G.

Since the objects QN (k)(q)[p], q, p ∈ Z generate KCMf
N (k) as a triangulated

category and the functor φ∗ is triangulated, φ∗ gives an equivalence of
KCMf

N (k) with the full triangulated subcategory of G-KCMf
N (L) generated

by the objects QN (L)(q)[p], q, p ∈ Z.

Our goal is to define a category that is equivalent to DMAT(L|k). Inside
G-KCMf

N (L) we already identified a full triangulated subcategory that is
equivalent to DMT(k), where the objects QN (L)(q) correspond to the Tate
motives Qk(q). We still need to find N (L)-modules that correspond to the
Artin-Tate motives φ∗QL(q), i.e. objects ML(q) ∈ G-KCMf

N (L), q ∈ Z,
such that

HomKCMN (L)(ML(0),ML(q)[p])G

' HomDM(k)Q(φ∗QL(0), φ∗QL(q)[p])
' HomDM(L)Q(QL(0),QL(q)[p])[G]
' HomKCMN (L)(QN (L)(0),QN (L)(q)[p])[G].

Furthermore, QN (L)(q) should be a direct summand of ML(q) in
G-KCMf

N (L) such that

HomKCMN (L)(ML(0),QN (L)(0))G ' Q

and
HomKCMN (L)(QN (L)(0),ML(0))G ' Q

mirroring the results in Example 4.9 for motives.
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Therefore,ML(q) should be the direct sum of copies of QN (L)(q) as aN (L)-
module, but the G-action on M(q) cannot be the canonical G-action on
every direct summands (since in this case there are too many projections
ML(q)→ QN (L)(q)).

The N (L)-cell modules N (L)[G](q), q ∈ Z, have the desired properties.
These are the free rank n = [L : k] modules with generators τ ∈ G having
Adams degree −q, cohomological degree 0 and d(τ) = 0. The G-action is
defined by

σ(
∑
τ∈G

aττ) :=
∑
τ∈G

σ(aτ )σ ◦ τ.

Lemma 4.27
Let k be a number field. Let L be a finite Galois extension of k with Galois
group G = Gal(L|k). Let ML(q) := N (L)[G](q). Then:

HomKCMN (L)(ML(0),ML(q)[p])G ' HomKCMN (L)(QN (L)(0)QN (L)(q)[p])[G].

Furthermore, we have:

HomKCMN (L)(QN (L)(0),ML(q)[p])G ' HomKCMN (L)(QN (L)(0),QN (L)(q)[p]),
HomKCMN (L)(ML(0),QN (L)(q)[p])G ' HomKCMN (L)(QN (L)(0),QN (L)(q)[p]).

Proof. For the first claim let f : ML(0) → ML(q)[p] be a G-equivariant
map. Since f is N (L)-linear, f is determined by its values on ν ∈ G. Let
f(ν) =: ∑τ∈G fτ,ντ , where fτ,ν ∈ N (L)p(q). Then:

f(σν) =
∑
τ

fτ,σντ.

On the other hand,

σ(f(ν)) =
∑
τ

σ(fτ,ν)σ ◦ τ =
∑
τ

σ(fσ−1τ,ν)τ.

Equating coefficients and putting ν = id yields the equality

fτ,σ = σ(fσ−1τ,id)

for all σ, τ ∈ G. In other words, f is already determined by f(id), i.e. by
giving fτ,id ∈ HomKCMN (L)(QN (L)(0)QN (L)(q)[p]) for all τ ∈ G.
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For the second isomorphism consider a map f : QN (L)(0)→ML(q)[p]. It is
determined by f(1) =: ∑τ fττ , where fτ ∈ N (L)p(q). If f is G-equivariant,
we have∑

τ

fττ = f(1) = σ(f(1)) =
∑
τ

σ(fτ )σ ◦ τ =
∑
τ

σ(fσ−1τ )τ

for all σ ∈ G. By equating coefficients, we see that for τ = id: σ(fσ−1) = fid
or, equivalently, fσ = σ(fid) for all σ ∈ G. Therefore, f is determined by
fid ∈ HomKCMN (L)(QN (L)(0),QN (L)(q)[p]).

For the last isomorphism we write fτ := f(τ) for a G-equivariant map
f : ML(0)→ QN (L)(q)[p]. Then for all σ, τ ∈ G:

σ(fτ ) = σ(f(τ)) = f(σ ◦ τ) = fστ .

For τ = id we get fσ = σ(fid). Again, f is determined by fid and the claim
follows.

Corollary 4.28
QN (L)(q) is a direct summand of ML(q) in G-KCMf

N (L).

Proof. Without loss of generality we assume q = 0. Recall that n = |G|.
By the proof of the previous lemma, the maps

s : QN (L)(0)→ML(q), a 7→ 1
n

∑
τ

aτ,

p : ML(q)→ QN (L)(q),
∑
τ

aττ 7→
∑
τ

aτ

are G-equivariant and satisfy p ◦ s = idQN (L)(q).

We see that the modules ML(q) = N (L)[G](q) behave like the Artin-Tate
motives φ∗QL(q) in DMAT(L|k). Therefore, we consider the full thick
triangulated subcategory of G-KCMf

N (L) generated by the objects ML(q),
q ∈ Z, to obtain a category that is equivalent to DMAT(L|k).

Definition 4.29
Let D(L|k) be the full thick triangulated subcategory of G-KCMf

N (L) gen-
erated by the objects ML(q) := N (L)[G](q), q ∈ Z.

If we denote by D(k)L the full triangulated subcategory (without taking
direct summands) of G-KCMf

N (L) generated by the objects ML(q), q ∈ Z,
then D(L|k) is given as the pseudo-abelian hull of D(k)L.
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Lemma 4.30
DfN (k) is a full triangulated subcategory of D(L|k).

Proof. We identify DfN (k) with KCM
f
N (k). The essential image of the func-

tor
φ∗ : KCMf

N (k) → G-KCMf
N (L)

in Theorem 4.26 is in D(L|k) since φ∗QN (k)(q) ' QN (L)(q), q ∈ Z, is a
direct summand of ML(q) by Corollary 4.28.

Now we are able to prove that the categories D(L|k) and DMAT(L|k) are
indeed equivalent.

Theorem 4.31
Let k be a number field. Let L be a finite Galois extension of k of degree
n with Galois group G. Then there is a tensor functor

ΦL|k : D(L|k)→ DMgm(k)Q

that induces an equivalence of triangulated tensor categories

ΦL|k : D(L|k)→ DMAT(L|k).

Restricted to the full subcategory DfN (k) of D(L|k), ΦL|k agrees with the
equivalence

Φk : DfN (k) → DMT(k)
in Spitzweck’s representation theorem 3.31.

Proof. We prove the theorem by giving an equivalence of D(k)L and
DMAT(k)L which then in turn induces an equivalence of the respective
pseudo-abelian hulls D(L|k)→ DMAT(L|k).

As in the proof of Spitzweck’s representation theorem 3.31, we do not con-
sider the category D(k)L but instead the equivalent category of N (L)-cell
modules inD(k)L with the choice of a basis overN (L). Again, we construct
a functor from the full triangulated subcategory D(k)L,≥0 of D(k)L that is
generated by the objects ML(q), q ≥ 0, to DMeff

gm(k). D(k)L,≥0 consists of
the cell modules with Adams-degree concentrated in non-positive degrees.
The same arguments as in the proof of Lemma 3.32 show that D(k)L is
equivalent to the category obtained by inverting the functor − ⊗ML(1)
on the triangulated subcategory D(k)L,≥0 of D(k)L and a tensor functor
D(k)L,≥0 → DMeff

gm(k) extends canonically to the desired tensor functor
D(k)L → DMgm(k).
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Any M ∈ D(k)L is a finite direct sum of copies of N (L)[G] as a N (L)-
module with G-action. Therefore, we can choose elements mj ∈M , j ∈ J ,
such that

M '
⊕
j∈J
N (L)[G]mj '

⊕
j,τ

N (L)(τmj),

i.e. the basis of M is given as {τmj}j,τ with differential

d(τmj) =
∑
i,ν

ci,j,ν,τ · νmi

and G-action
σ(τmj) = (σ ◦ τ)mj.

The condition d ◦ d = 0 implies

d(ck,j,σ,id) =
∑
i,ν

(−1)deg ci,j,ν,idci,j,ν,idck,i,σ,ν

for all k, j ∈ J and all σ ∈ G. The compatibility of the differential and
G-action on M yields the equation σ(ci,j,id,τ ) = ci,j,σ,στ for all i, j ∈ J and
all σ, ν ∈ G. Therefore, {ci,j,id,τ}τ∈G already determines ci,j,ν,σ for all σ,
ν ∈ G.

We put

ΦL|k(M) := φ∗

⊕
j∈J
NL(rj)[nj]µj

 ,
where φ : SpecL → Spec k, {µj} is a formal basis over N (L), −rj is the
Adams degree of mj and −nj is the cohomological degree of mj. The
differential δ on ΦL|k(M) is defined by

δ(c · µj) := dN (L)(c) · µj + (−1)deg c∑
i,τ

τ(c)ci,j,id,τ · µi,

where c ∈ N (L). Note that δ does not satisfy the Leibniz rule for all
c ∈ N (L), but for all c ∈ N (k) since τ(c) = c for all τ ∈ G. By d ◦ d = 0
and using the compatibility of d and the G-action onM , it follows δ◦δ = 0,
giving a well-defined object in DMeff(k)Q.

If f : M → N is a G-equivariant morphism of N (L)-cell modules with
G-action, we choose bases {τmj} and {τnj} of M respectively N with
corresponding bases {µj} and {νj} of ΦL|k(M) and ΦL|k(N) respectively.
Let

f(τmj) =
∑
i,σ

fi,j,σ,τ (σni).
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The condition to be G-equivariant is equivalent to the equation fi,j,σ,στ =
σ(fi,j,id,τ ) for all i, j ∈ J and all σ, τ ∈ G. We put

ΦL|k(f)(c · µj) :=
∑
i,τ

τ(c)fi,j,id,τ · νi

for c ∈ N (L). Again, note that ΦL|k(f) is not N (L)-linear, but N (k)-
linear, since τ(c) = c for all c ∈ N (k) and all τ ∈ G.

We omit the (easy but tedious) computation that ΦL|k(g ◦ f) = ΦL|k(g) ◦
ΦL|k(f) showing that ΦL|k is indeed a functor.

Since ΦL|k(ML(q)) ' φ∗QL(q) for q ≥ 0, the image of ΦL|k is in DMeff
gm(k)Q.

From the definitions above it is easy (but again tedious) to deduce that
the functor ΦL|k respects cone sequences and hence distinguished triangles.
Furthermore, ΦL|k commutes with the respective translation functors.

To see that ΦL|k is a tensor functor, it is enough to show

ML(0)⊗N (L) ML(q) ' ⊕ni=1ML(q).

Clearly, as N (L)-modules both sides are free modules of rank n2. The
set of generators of the left hand side is given by {σ ⊗ τ}σ,τ and on the
right hand side by {τmi}τ,i. Writing G = {σ1, . . . , σn} and sending (σ ⊗
σσi) = σ(id⊗σi) to σmi = σ(idmi) defines an N (L)-module isomorphism
that is compatible with the respective G-actions. The differentials of all
generators is 0, hence it is an isomorphism of N (L)-cell modules with
G-action.

Therefore, ΦL|k induces a triangulated tensor functor

ΦL|k : D(k)L → DMgm(k).

Furthermore, we have

HomKCM(ML(0),ML(q)[p])G ' HomDM(k)Q(φ∗QL(0), φ∗QL(q)[p])

since by Lemma 4.27 and Example 4.9 both agree with

HomKCMN (L)(QN (L)(0),QN (L)(q)[p])[G] ' HomDM(L)Q(QL(0),QL(q)[p])[G]

and ΦL|k gives a bijection between these Q-vector spaces.

Since the objectsML(q), q ∈ Z, generate D(k)L as a triangulated category,
ΦL|k is fully faithful. On the other hand, DMAT(k)L is generated by
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the objects φ∗QL(q) ' ΦL|k(ML(q)) as a full triangulated subcategory of
DMgm(k)Q. Hence, the essential image of the functor is DMAT(k)L.

Therefore, ΦL|k is an equivalence D(k)L → DMAT(k)L that induces an
equivalence of triangulated categories between the pseudo-abelian hulls:

ΦL|k : D(L|k)→ DMAT(L|k).

For the last claim, recall that φ∗QN (k)(0) ∈ D(L|k) is given as the image
of the idempotent endomorphism

α :
∑
τ

aττ 7→
1
n

∑
σ

(
∑
τ

aτ )σ

on ML(q). Now,
ΦL|k(α) = 1

n

∑
σ

σ

on φ∗QL(0). Therefore, ΦL|k(φ∗QN (k)(0)) ' Qk(0) and since ΦL|k is trian-
gulated, it identifies DfN (k) with DMT(k).

Every finite N (k)-cell module M ' ⊕iN (L)mi is isomorphic to the direct
summand generated by {∑i

∑
τ aiτmi} of⊕iN (L)[G]mi, showing ΦL|k(M) '

Φk(M) for all M ∈ DfN (k). Identifying M ∈ D
f
N (k) with a direct summand

makes it easy to see that ΦL|k(f) ' Φk(f) for all morphisms f in DfN (k)
and likewise for the differentials. This completes the proof.

4.2.3 Embeddings

If we are given an intermediate Galois extension k ⊂ K ⊂ L with Galois
group H = Gal(K|k), we have seen in section 4.1 that DMAT(K|k) is
a full subcategory of DMAT(L|k). Now, we prove the same fact for the
categories D(K|k) and D(L|k). For K = k we have already seen this in
Lemma 4.30 and the same arguments show:

Lemma 4.32
Let K be an intermediate Galois extension k ⊂ K ⊂ L over k. Then
D(K|k) is a full triangulated tensor subcategory of D(L|k).

Proof. Let ϕ : SpecL → SpecK and ψ : SpecK → Spec k. We identify
N = Gal(L|K) with a subgroup of G such that G = N · H. Let m :=
[L : K].
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We apply Theorem 4.26 for k = K and obtain a functor

ϕ∗ : KCMf
N (K) → N -KCMf

N (L).

Applying the functor ϕ∗ to H-KCMf
N (K) yields a functor

ϕ∗ : H-KCMf
N (K) → G-KCMf

N (L)

with ϕ∗(N (K)[H](q)) ' N (L)[H](q), q ∈ Z. N (L)[H](q) is a direct sum-
mand of ML(q) = N (L)[G](q), namely the image of the idempotent endo-
morphism

α :
∑
τ

aττ 7→
1
m

∑
ν∈N,
σ∈H

(∑
τ∈N

aτσ

)
νσ

on ML(q). Therefore, we get a triangulated tensor functor

ϕ∗ : D(K|k)→ D(L|k).

It is fully faithful since

HomKCMN (K)(MK(0),MK(q)[p])H

' HomKCMN (K)(QN (K)(0),QN (K)(q)[p])[H]
' (HomKCMN (K)(QN (L)(0),QN (L)(q)[p])[H])N

' (HomKCMN (K)(N (L)[H](0),N (L)[H](q)[p])H)N

' HomKCMN (K)(N (L)[H](0),N (L)[H](q)[p])G.

The embeddings D(K|k) → D(L|k) are compatible with the equivalences
D(L|k)→ DMAT(L|k) as the following lemma shows.

Lemma 4.33
Let L|K|k be a tower of finite Galois extensions over a number field k.
Then the equivalences ΦL|k : D(L|k)→ DMAT(L|k) and ΦK|k : D(K|k)→
DMAT(K|k) given in Theorem 4.31 respect the embeddings DMAT(K|k)→
DMAT(L|k) and D(K|k)→ D(L|k), i.e. the following diagram commutes:

D(K|k) ∼ //

��

DMAT(K|k)

��
D(L|k) ∼ // DMAT(L|k).
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Proof. Let m = [L : K] and N = Gal(L|K) ⊂ G. Recall that ϕ∗MK(q) is
given as the image of the idempotent endomorphism

α :
∑
τ

aττ 7→
1
m

∑
ν∈N,
σ∈H

(∑
τ∈N

aτσ

)
νσ

onML(q). ϕ∗QK(q) is exactly the image of the idempotent endomorphism
ΦL|k(α) = 1

m

∑
σ∈N σ on φ∗QL(q) in DMAT(L|k).

4.2.4 t-structure

We constructed a triangulated tensor category D(L|k) that is equivalent
to DMAT(L|k). Our next goal is to define a t-structure on D(L|k) that
is preserved under the equivalence yielding an equivalence of the hearts of
the respective t-structures.

The equality

HomD(L|k)(ML(0),ML(q)[p])
' HomKCMN (L)(ML(0),ML(q)[p])G

' HomKCMN (L)(QN (L)(0),QN (L)(q)[p])[G]

ensures that HomD(L|k)(ML(0),ML(q)[p]) vanishes if and only if
HomKCMN (L)(QL(0),QL(q)[p]) does. This makes it easy to imitate the
construction of the t-structure on KCMf

N (L) to define a t-structure on
D(L|k).

For any m ∈ Z we define the category W≤mD(L|k) as the full thick trian-
gulated subcategory of D(L|k) generated by the objects ML(−q), q ≤ m.
Dually, we define W>mD(L|k) to be the full thick triangulated subcate-
gory generated by ML(−q), q > m. (W≤mD(L|k),W>mD(L|k)) defines a
t-structure on D(L|k) for every m ∈ Z, since

HomD(L|k)(ML(a)[i],ML(b)[j])
' HomD(L|k)(ML(0)[i],ML(b− a)[j])
' HomKCMN (L)(QN (L)(0)[i],QN (L)(b− a)[j])[G]
' 0
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for b < a.

We denote the corresponding truncation functors by

W≤m : D(L|k)→ W≤mD(L|k)

and
W>m : D(L|k)→ W>mD(L|k).

For a ≤ b we denote byW[a,b]D(L|k) the full thick triangulated subcategory
generated by ML(−q), a ≤ q ≤ b. We write grWa for the functor W[a,a] and
grWa D(L|k) for the subcategory W[a,a]D(L|k).

Since the weight structures W on DMAT(L|k) and D(L|k) are defined in
the same way using the "base objects" ML(q) respectively φ∗QL(q) and
since ΦL|k(ML(q)) ' φ∗QL(q), the following statement is obvious:

Proposition 4.34
The equivalence ΦL|k : D(L|k)→ DMAT(L|k) is compatible with the weight
filtrations on D(L|k) and DMAT(L|k).

Let D(L|k)≤0
q be the smallest full thick additive subcategory of D(L|k)

containing the objectsML(−q)[p], where p ≤ 0, that is closed under cones.
Dually, let D(L|k)≥0

q be the smallest full thick additive subcategory of
D(L|k) containing the objects ML(−q)[p], where p ≥ 0, and that is closed
under fibres.

We define D(L|k)≤0 as the full thick subcategory of D(L|k) consisting of
the objects M ∈ D(L|k) with grWq M ∈ D(L|k)≤0

q and dually the full thick
subcategory D(L|k)≥0. Let A(L|k) := D(L|k)≤0 ∩ D(L|k)≥0.

Theorem 4.35
The equivalence ΦL|k : D(L|k) → DMAT(L|k) identifies the full subcate-
gories D(L|k)≤0 and D(L|k)≥0 of D(L|k) with the full subcategories
DMAT(k)≤0 and DMAT(k)≥0 respectively of DMAT(L|k). In particular,
the functor ΦL|k induces an equivalence of categories

A(L|k)→ MAT(L|k).

Proof. This follows by the fact that ΦL|k(ML(q)[p]) = φ∗QL(q)[p] and
that the equivalence ΦL|k : D(L|k) → DMAT(L|k) preserves the weight
structures by Proposition 4.34.
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As in the case of Artin-Tate motives, (D(L|k)≤0,D(L|k)≥0) is a non-
degenerate t-structure on D(L|k). This can be seen by imitating the
proof of Theorem 4.13 or using the equivalence D(L|k) → DMAT(L|k).
Furthermore, the category grW0 D(L|k) is equal to the full thick subcat-
egory of D(L|k) generated by the object ML(0) which in turn is equiva-
lent to grW0 DMAT(L|k) by Theorem 4.31 and Theorem 4.35. Therefore,
Remark 4.5 gives an equivalence of grW0 D(L|k) and Db(MA(L|k)), the
bounded derived category of the abelian category MA(L|k) of representa-
tions of the Galois group G = Gal(L|k) of L over k in finitely generated
Q-vector spaces. The object in MA(L|k) corresponding to ML(0) is just
the Q-vector space Q[G] endowed with its natural G-action.

Similarly, tensoring with QN (L)(q), q ∈ Z, gives an equivalence
grWq D(L|k) ∼ grW0 D(L|k) ∼ Db(MA(L|k)). This restricts to an equiv-
alence of grWq A(L|k) and MA(L|k).

We summarise our results about the t-structure on D(L|k) in the following
two theorems:

Theorem 4.36
Let k be a number field. Let L be a finite Galois extension of k of degree
n with Galois group G = Gal(L|k). Then:

1. (D(L|k)≤0,D(L|k)≥0) is a non-degenerate t-structure on D(L|k) with
heart A(L|k) containing all direct summands of the objects
ML(q), q ∈ Z.

2. A(L|k) is equal to the smallest abelian subcategory of A(L|k) which
contains (the direct summands of) the objects ML(q), q ∈ Z, and is
closed under extensions in A(L|k).

3. The tensor operation in D(L|k) makes A(L|k) a rigid Q-linear abelian
tensor category.

4. The functor grW∗ : A(L|k)→ Q-VecQ which is defined by the compo-
sition of ⊕q grWq : A(L|k) → Db(MA(L|k)) and the forgetful functor
to the category of (graded) Q-vector spaces is an exact fibre functor
making A(L|k) a Tannakian category.

5. Each object M in A(L|k) has a canonical weight filtration by subob-
jects

0 ⊂ . . . ⊂ Wm−1M ⊂ WmM ⊂ . . . ⊂M.

This filtration is functorial and exact in M . It is uniquely char-
acterized by the properties of being finite (i.e. WmM = 0 for m
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small and WmM = M for m large), and of admitting subquotients
grWmM = WmM/Wm−1M ∈ grWm A(L|k), m ∈ Z.

6. The natural maps

ExtpA(L|k)(M,N)→ Homp
D(L|k)(M,N)

are isomorphisms, for all p, and all M , N ∈ A(L|k). Both sides are
zero for p ≥ 2.

Proof. This follows from the equivalence D(L|k) ∼ DMAT(L|k) that is
compatible with the respective weight filtrations by Proposition 4.34 and
Theorem 4.13 stating the corresponding results for DMAT(L|k).

Now, we can rephrase Theorem 4.35 as follows:

Theorem 4.37
The equivalence ΦL|k : D(L|k) → DMAT(L|k) is compatible with the t-
structures (D(L|k)≤0,D(L|k)≥0) and (DMAT(k)≤0,DMAT(k)≥0) on D(L|k)
and DMAT(L|k) respectively.
In particular, the functor ΦL|k induces an equivalence of Tannakian cate-
gories

A(L|k)→ MAT(L|k)

transforming the fibre functor grW∗ on A(L|k) into the fibre functor grW∗ on
MAT(L|k).

Corollary 4.38
For K an intermediate Galois extension k ⊂ K ⊂ L, the embedding
D(K|k)→ D(L|k) also preserves the t-structure.

Proof. This can be seen directly from the definitions or by applying the
commutative diagram in Lemma 4.33 and using Theorem 4.37.

The category DMAT(k) of Artin-Tate motives over k is given as the full
subcategory of DMgm(k)Q generated by the categories DMAT(L|k), L a
finite Galois extension of k. On the modules side there is no obvious
counterpart for the category DMgm(k), i.e. a category that contains the
categories D(L|k) as full triangulated subcategories.

But it is still possible to define a union D(k) of the categories D(L|k), L|k
a finite Galois extension. The class of objects of D(k) is the union of the
objects of D(L|k), L|k Galois. Recall that for a tower of Galois extensions
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L|K|k, D(K|k) is a full subcategory of D(L|k) and therefore, this union is
not disjoint.

IfM andN are two objects inD(k), we can find two finite Galois extensions
L and K of k such that M ∈ D(L|k) and N ∈ D(K|k). Then there exists
another finite Galois extension E of k containing L and K. Therefore, M ,
N ∈ D(E|k). Now, we define

HomD(k)(M,N) := HomD(E|k)(M,N).

This is independent of the choice of the field E. Indeed, if E ′ is another
finite Galois extension containing L and K, then again there exists a finite
Galois extension F containing E and E ′ and D(E|k) and D(E ′|k) are full
subcategories of D(F |k) by Lemma 4.32.

Clearly, D(L|k) is a full subcategory of D(k) for all Galois extensions L
of k. Furthermore, D(k) is exactly the subcategory of D(k) generated
by the categories D(L|k), L|k Galois. Since the categories D(L|k) are
triangulated, D(k) has a natural structure of a triangulated category.

Furthermore, the tensor structure on D(L|k) induces a tensor product
on D(k) since the tensor structures are compatible with the embeddings
D(K|k)→ D(L|k), L|K|k a tower of Galois extensions.

By the previous discussion, we have proven the following theorem:

Theorem 4.39
Let k be a number field.
D(k) is a triangulated tensor category. If L is a finite Galois extension of
k, then D(L|k) is a full triangulated tensor subcategory of D(k).

The t-structures on the subcategories D(L|k) induce a t-structure on D(k):

Let D(k)≤0 be the union of the full subcategories D(L|k)≤0, L|k finite
Galois, of D(k). Dually, let D(k)≥0 be the union of the full subcategories
D(L|k)≥0 of D(k). Define A(k) := D(k)≤0∩D(k)≥0 which equals the union
of the Tannakian categories A(L|k).

Since the embeddings D(K|k)→ D(L|k) for L|K|k respect the t-structures
by Corollary 4.38, (D(k)≤0,D(k)≥0) defines a t-structure on D(k).

Theorem 4.40
Let k be a number field.
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1. (D(k)≤0,D(k)≥0) is a non-degenerate t-structure on D(k) with heart
A(k) containing all direct summands of the objects φ∗QN (L)(q), where
L is a finite Galois extension of k, φ : SpecL→ Spec k and q ∈ Z.

2. A(k) is equal to the smallest abelian subcategory of A(k) which con-
tains (the direct summands of) the objects φ∗QN (L)(q), L a finite
Galois extension of k and q ∈ Z, and is closed under extensions in
A(k).

3. The tensor operation in D(k) makes A(k) a rigid Q-linear abelian
tensor category.

4. The functor grW∗ : A(k) → Q-VecQ which is defined by the composi-
tion of ⊕q grWq : A(k) → Db(MA(k)) and the forgetful functor to the
category of (graded) Q-vector spaces is an exact fibre functor making
A(k) a Tannakian category.

5. Each object M in A(k) has a canonical weight filtration by subobjects

0 ⊂ . . . ⊂ Wm−1M ⊂ WmM ⊂ . . . ⊂M.

This filtration is functorial and exact in M . It is uniquely char-
acterized by the properties of being finite (i.e. WmM = 0 for n
small and WmM = M for m large), and of admitting subquotients
grWmM = WmM/Wm−1M ∈ grWm A(k), m ∈ Z.

6. The natural maps

ExtpA(k)(M,N)→ Homp
D(k)(M,N)

are isomorphisms, for all p, and all M , N ∈ A(k). Both sides are
zero for p ≥ 2.

Proof. This follows by Theorem 4.36 that states the corresponding prop-
erties for the full triangulated subcategories D(L|k) of D(k), where L is a
finite Galois extension of k.

Furthermore, the functors ΦL|k : D(L|k) → DMgm(k)Q in Theorem 4.35
yield a functor Φ: D(k)→ DMgm(k)Q that induces the desired equivalence
D(k)→ DMAT(k):

Theorem 4.41
Let k be a number field. There is a natural exact functor

Φ: D(k)→ DMgm(k)Q
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that induces an equivalence of triangulated tensor categories

Φ: D(k)→ DMAT(k).

Furthermore, the functor Φ is compatible with the weight filtrations in D(k)
and DMAT(k) and yields an equivalence of Tannakian categories

Φ: A(k)→ MAT(k).

Restricted to the the full subcategory DfN (k) of D(k), the functor Φ agrees
with the functor

Φk : DfN (k) → DMgm(k)Q
in Spitzweck’s representation theorem 3.31.
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