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1. Introduction

. Introduction

The importance of quantum chemistry in the field of chemical research is nowadays
continuously increasing due to the advances in computer science and the resulting in-
crease of computing power as well as the improvements in quantum-chemical methods
and algorithms.! Quantum chemistry is able to provide information about energies and
properties of molecules within a purely theoretical framework. Therefore, in many cases,
theoretical predictions concerning the properties of unknown molecules or systems that
are difficult to handle experimentally become feasible. Furthermore, a fruitful field lies in
the interplay between theory and experiment.? Results from quantum-chemical calcula-
tions may help in the evaluation, interpretation, as well as confirmation of experimental
findings and can even guide experiments.

The basis for the description of atoms and molecules in quantum-chemical calculations
is usually given by the Schrodinger equation. As an analytic solution to this equation
is only possible for up to two particles, in quantum chemistry a variety of methods to
solve the Schrodinger equation in an approximate manner has been developed.! These
methods differ in both the accuracy that can be obtained as well as the required compu-
tational effort. Which method can be used for a specific system depends mostly on the
system size N as the computing time for a given method scales with some power of N. In
solid-state chemistry and for large molecules mostly density-functional theory (DFT),3
which scales with N-N*, depending on the actual implementation, as well as semiempirical
methods® are employed. For small and medium-sized systems, however, computationally
more demanding yet also more accurate methods like Mgller-Plesset (MP) perturbation
theory,”® which scales with N®, and highly accurate coupled-cluster (CC) methods® 14
are applicable. Both are so called ‘post-Hartree-Fock’ theories, as they are based on the
Hartree-Fock (HF) wave function as a starting point, and include electron-correlation ef-
fects, i.e., the explicit dependence of the movement of one electron on those of the others,
missing in the HF treatment. Using, for example, the CC singles and doubles (CCSD)"
method with a perturbative correction for the triples excitations (CCSD(T)), which
scales with N7, energies can be obtained within an accuracy of a few kcal/mol.!

However, when based on the Schrodinger equation, none of these methods account for

relativistic effects, i.e., all effects that arise due to the fact that the speed of light ¢ is



finite. The formalism that combines quantum theory with special relativity is referred to

17,18

as relativistic quantum mechanics with the Dirac equation as a starting point to treat

relativistic effects in atoms and molecules. Prominent examples for relativistic effects

in chemistry are the color of gold, which, in a non-relativistic world, would be silver-

1920 45 well as the liquid state of elemental mercury at room temperature, which

19,20

colored,
should be solid from a non-relativistic perspective.
When dealing with heavy elements, it is nowadays common to account for relativistic
effects in quantum-chemical calculations while for systems containing lighter elements,
i.e., such from the first four rows (H-Kr) of the periodic table, these effects are often
ignored. Although, for example, relativistic effects on energies for elements of the second
row of the periodic table are already of the same order of magnitude as correlation ef-
fects, the reason why they are often not considered is the fact that for chemical reactions
only energy differences instead of absolute energies are relevant. Chemical reactions are
accompanied by changes in the valence shells, so that electron correlation is essential.
Relativistic effects, however, affect mostly the inner shells and thus cancel for a large part
when taking energy differences. Nevertheless, to achieve a quantitative agreement with
experiment, relativistic effects need to be accounted for even for very light elements (see,
for example, Ref. 21).

The most rigorous, yet computationally most demanding, way to treat relativistic effects
is to base the well-known methods from non-relativistic quantum chemistry directly on
the Dirac rather than the Schrodinger equation.!” As the one-electron Dirac equation
is of a four-component form, i.e., the operators are 4x4 matrices and the wave func-
tion is a four-component spinor consisting of the so-called large component (upper two
parts of the spinor) and the small component (lower two parts of the spinor), these
approaches are referred to as ‘four-component’ methods.?*?3 For most methods in non-
relativistic quantum chemistry, a four-component variant has been developed. To mention
are here the HF?*26 approach, DFT,>" % second-order MP (MP2),3%3! configuration in-
teraction (CI),23¢ CCSD,3” CCSD(T),*® and even general CC methods with arbitrary
excitations.?>* However, the computational costs compared to the non-relativistic coun-
terparts are much higher?># due to several reasons such as the use of complex algebra,
the increased basis-set size, and less symmetries that can be exploited. A four-component
CCSD calculation, for example, is at least 32 times more expensive than its non-relativistic
variant.*!

In order to reduce the computational costs, approximate schemes to treat relativistic

effects have been developed. To mention are here especially the ‘two-component’ or
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‘quasi-relativistic’ approaches.*? The full four-component Hamiltonian gives rise to both
a positive-energy (electronic states) as well as a negative-energy spectrum (positronic
states). For chemistry, only the electronic states are of interest where in the wave func-
tion the upper two components are, in fact, significantly larger (roughly by a factor of 2¢)
than the lower two. Accordingly, schemes have been suggested in which the small compon-
ent is eliminated either by expressing it in terms of the large component or via a suitable
unitary transformation. Both variants yield a two-component problem with an effect-
ive Hamiltonian which should (approximately) reproduce the positive-energy spectrum.
The detailed procedures how this reduction to two-component form is achieved define the
different quasi-relativistic methods, as, for example, the Douglas-Kroll-Hess**%3 scheme,

44748 and the more recent ‘exact two-component’ (X2c) ap-

the regular approximation,
proach.?®7 In these schemes, both the scalar-relativistic (SR) contributions, i.e., those
which are independent of the spin, as well as the spin-orbit (SO) contributions can be
accounted for.

In addition to the two-component schemes, one-component approaches have been de-
veloped.®® %2 They carry the advantage that the implementation into an existing non-
relativistic computer program is much more straightforward compared to the methods
mentioned before. One possibility is to split SR and SO effects within the two-component
schemes and to treat SR effects only. Afterwards, the SO effects can be dealt with in a
non-variational, i.e., perturbative manner. If, as it is the case in this work, inclusion of
relativistic effects is needed in order to reach high-accuracy for chemical applications in-

T are well suited, since relativistic

volving rather light elements, perturbative techniques!
effects are rather small. Perturbative schemes in these cases appear as a cost-effective
alternative to the rather expensive rigorous four-component methods, in particular when
electron correlation is considered as well.

However, the formulation of a satisfactory perturbative scheme for the treatment of re-
lativistic effects is not straightforward. When starting from the Schrodinger equation, the
proper definition of the perturbed operators appears to be an issue, while, when starting
from the Dirac equation, it is not obvious at first sight how to define the proper non-
relativistic limit. In this context, the often used scheme involving the Pauli-Hamiltonian
with mass-velocity, Darwin, and SO terms as perturbations proves to be unsatisfactory,
as it is only applicable within lowest-order perturbation theory due to singularities in the
Hamiltonian.%

An elegant solution to the above mentioned problems is offered by Direct Perturbation

Theory (DPT).53 ™ Here, perturbation theory is applied to the Dirac equation after chan-



ging the metric®® and the proper non-relativistic limit for electronic states is obtained in

68,72 i e., a four-component equation that is equivalent

form of the Lévy-Leblond equation,
to the Schrodinger equation. There is no restriction to lowest-order perturbation theory
and DPT can be in principle applied in any order. Expressions for up to DPT6 have been

70,71 Tt should be noted that orders are counted with respect to

reported in the literature.
¢!, with ¢ being the speed of light, and thus DPT6 corresponds to third-order perturb-
ation theory.

DPT was first suggested by Rutkowski in the 1980s%4 % and later pursued in more detail
by Kutzelniggf® 7177 thus presenting itself to be an attractive scheme for the treatment
of relativistic effects. The lowest-order treatment at the DPT2 level is nowadays routinely
available and efficiently implemented in terms of energy gradients.” However, for higher
orders, no general implementation has been presented so far. Promising results never-
theless have been reported for one-electron systems’® and for the series of the noble-gas
atoms™ which render a general implementation worthwhile. The development of such an
implementation has been hampered by the fact that the detailed expressions for higher
orders of DPT are rather involved and that, unlike for DPT2,7 it has not been clear

78 could be exploited to facilitate such an

how existing analytic-derivative techniques
implementation.

The investigation of DPT4, i.e., the second-order perturbation theory treatment of re-
lativistic effects, seems of particular interest, since it allows a judgement of the accuracy
and convergence of the DPT series. Additionally, it is the lowest order for which SO
contributions appear in the relativistic treatment of closed-shell systems.

In this work DPT4 is formulated in terms of energy derivatives for both the HF as well
as correlated methods in order to exploit the existing analytic second-derivative tech-

87 in the program package CFOUR®® which is used for the implementation of

niques
DPT4. Beside the modifications required to make the analytic second-derivative code
work for the DPT4 corrections, additional, so-called relativistic integrals needed in the
DPT4 treatment had to be implemented into CFOUR. Furthermore, in order to calculate
DPT4 corrections to electrical properties such as dipole moment, quadrupole moment
and electric-field gradient (efg), further integrals to account for the SO contributions in
DPT4 were included to CFOUR and the framework for calculating these DPT4 corrections
numerically was set up.

The resulting procedure is used for a study concerning the convergence behaviour of the
DPT corrections, for both the SR and SO contributions, to energies and properties at

the HF level as well as for correlated levels of theories in the case of energies. For the
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DPT4 energies at the HF level furthermore the basis set-convergence is investigated. In
addition, a joint experimental and theoretical study in rotational spectroscopy concern-
ing the importance of relativistic effects to the bromine and iodine quadrupole-coupling
tensors of selected molecules is discussed, thereby exploiting the methods which have been
developed in the present work.

Chapters II and III review the theoretical background of derivative theory as well as
quantum-chemical methods in relativistic in non-relativistic theories. In chapter IV the
underlying theory of DPT is discussed which has been developed in this work. The evalu-
ation of the necessary integrals is presented in chapter V while the implementation of the
DPT4 corrections into CFOUR is found in chapter VI. In chapter VII the calculations for
the relativistic corrections to energies and properties are discussed and in chapter VIII a

summary is given.

10



Quantum-Chemical Methods in
Non-relativistic and Relativistic

Theories

In this chapter the quantum-chemical methods that are relevant for this work are dis-
cussed. In principle, for all methods used in non-relativistic quantum chemistry a re-
lativistic counterpart exists as well. While in non-relativistic theories the starting point
is the Schrodinger equation, for a relativistic description one has to start from the Dirac
equation. This requires modifications compared to the non-relativistic treatment and
leads to increased computational costs. In the following, the Hartree-Fock (HF) method,
Mpgller-Plesset (MP) perturbation theory, as well as the coupled-cluster (CC) approach

are discussed from both the non-relativistic and the relativistic perspective.

Il.1. Basic equations in non-relativistic and relativistic
theories

The basis for describing atoms and molecules in the framework of non-relativistic

quantum chemistry is given by the time-independent Schrodinger equation
HU = EV. (IL.1)

This equation corresponds to an eigenvalue problem with the wave function ¥ which
completely describes the state of the atom or molecule, the total energy E of the system

and the Hamiltonian H which for a molecule in atomic units (a.u.) is given by

— Z ( VA) +Z <__v2> 3 ZaZp +y ( m) Z—. (11.2)

T T
. A B AB Aa ab

N
-~ ~~ ~

v~

T‘Il Te Vnn Vnc f/cc
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II. Quantum-Chemical Methods in Non-relativistic and Relativistic Theories

In (II.2) the appearing quantities are the distances r, the nuclear mass M4, the atomic
number Z4, and the nabla operator
il

oz
V=151 (I1.3)

0

9z
The T operators describe the kinetic energy of electrons and nuclei and the 1% operat-
ors account for the Coulomb interactions between charged particles. Within the Born-
Oppenheimer approximation®! the movement of electrons and nuclei is separated. As elec-
trons move about 2000 times faster than the nuclei (due to the difference in the masses)
this is a reasonable approximation. This separation leads to the electronic Schrodinger

equation which no longer includes the kinetic energy of the nuclei and the potential V;,

(Te + Vne + ‘A/:ee) \Ijel :Eellpel (114)
-z — — | Py =FqVq. I1.5
[;( 2VG+ZA:( RAa)>+az<;7“ab 1 o (IL3)

In non-relativistic quantum-chemical calculations this equation is solved using a variety

of different approximations.

For relativistic quantum chemistry, the starting point within the Born-Oppenheimer ap-

proximation is given by the time-independent Dirac equation.!”® In the one-electron

V. cop 1=£e(7). (IL6)
cop V —2mc* ] \x X
~—

(.
-~

hy,

case it is given as

where ¢ is the speed of light, V' is the electron-nucleus potential, p is the momentum

operator, m is the electron mass, and o is the vector of the Pauli matrices o,, 0y, and o,

12



I1.1. Basic equations in non-relativistic and relativistic theories

which are given by

ax:<0 1), Jy:<q _i>, JZ:<1 0). (IL.7)
10 ¢t 0 0 -1

The wave function in (I.6) is a four-component spinor consisting of the so-called large
and small components (@ and ) which are both two-component functions.!” An import-
ant property that distinguishes the Dirac equation from the Schrédinger equation is given
by its behaviour with respect to Lorentz transformations. These transformations connect
time and space coordinates and are consistent with Einstein’s principle of relativity. In-
variance with respect to Lorentz transformations is essential for a relativistic theory and
it can be shown'7 that (IL.6) is in fact Lorentz invariant.

For the many-electron case, the Dirac Hamiltonian is given by
= Y ba) + 3 ki 1Ly

with the two-electron interaction term g,, and the four-component unity matrix Ir4y. The
easiest and commonly used choice for g, is to work with the potential V. leading to the

so-called Dirac-Coulomb Hamiltonian

. ) 1
Hpo = hp(a) + ) —Ig (11.9)

r
a<b ab

Due to the instantaneous interaction in V. this Hamiltonian is not Lorentz invariant. To

make it Lorentz invariant up to the order of O(c™2), the Breit interaction is used

1 1 a' a al
Jab=— — {aaab Lo b)2<abr b)} (11.10)
Tab  2Tab T

with

Ay
0 o
a=|aq|, Oéi—< U), i=x,Y,z (I1.11)

13
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N . Al . \
wnbound electronic states wunbound electronic states

» ] NN o W

—-mc |- - - - - - -~ ———-° —-—mc {4 - -~~~ -~~~ ———°

—2mc*A-----—— - - —2mc™ :\\\\\\W -

\ . . \
unbound positronic states\

AN

Figure II.1.: Energy spectrum of the Schrédinger equation (left) and the Dirac equation
(right). In the relativistic spectrum E is defined without the rest energy
of the electron, i.e., mc>.

which yields the Dirac-Coulomb-Breit Hamiltonian

- - 1 1 o, (0T,
Hpep = Z h(a) + Z (— BT [aaab + ( b)2( b b)]) Iiy. (I1.12)

a<b T'ab Tab

As the Breit correction terms are small and their evaluation is quite laborious, the Dirac-
Coulomb Hamiltonian is used in this work.

In the Schrodinger equation the state with the lowest energy is the ground state. There-
fore, when determining the energy using the variation principle with a trial wave function
on the basis of the Schrodinger equation an upper bound for the ground-state energy is
obtained. The Dirac equation yields a negative and positive energy spectrum (see fig-
ure I1.1). While the positive energy solutions are associated with electronic states, the
negative-energy solutions correspond to positronic states. Applying the variation prin-
ciple to the Dirac equation in a naive manner will result in a variational collapse and
special care needs to be taken, i.e., in restricting the variation to bound states only, in
order to get an approximate solution for the ground-state.!”

It can be shown (see chapter IV.1) that the non-relativistic limit of the Dirac equation

is given by the so-called Lévy-Leblond equation™ which yields the same energy as the

14



I1.2. Hartree-Fock theory

Schrodinger equation (for electronic states) but includes spin and is of a four-component
form. When eliminating the small component from the Lévy-Leblond equation, the Pauli
equation is obtained which is in fact a two-component variant of the Schrodinger equa-
tion. Therefore, the Dirac equation can be considered as a relativistic generalization of

the Schrédinger equation.

1.2. Hartree-Fock theory

The simplest choice for the wave function of an N-electron system that can be used
to solve the Schrodinger or Dirac equation is given by a Slater determinant, i.e., an
antisymmetrized and normalized product of N one-electron wave functions which accounts
for the indistinguishability and the fermionic character of the electrons. In the case of the

Dirac equation the Slater determinant is constructed from four-component spinors W¥;

(4

\I, _
2 v (IL.13)

Wy X

v,

|
I
I

while in the non-relativistic case the spin orbitals ;,

Yi=¢i s, Si=awp, (11.14)

which are composed of a spatial orbital ¢; and the spin function s;, are used.
The one-electron spinors or spin orbitals are optimized variationally using the orthonor-

mality of the one-electron functions
(U, | ©;) =6y (IL.15)

as a constraint. Following this procedure, the canonical Dirac-Hartree-Fock (DHF) or

Hartree-Fock (HF') equations (in the non-relativistic case)

~

0, = e, (I1.16)

15



II. Quantum-Chemical Methods in Non-relativistic and Relativistic Theories

are obtained. These are effective one-electron equations with the Lagrange multiplier ¢;

and the Fock operator f]’D which is given by

ff, =hf, + Y " (In; — Kp;). (11.17)

J

In (I1.17) the Coulomb operator ij and the exchange operator KDj act in the following

manner

Jp,;Ti(ry) = / Ay ! (r5)G1oT0a) Wy (1) W (r2) (I1.18)
and

Kp,U,(r) = / oW (r5) 19Ty U, (1) W, (ry). (I1.19)
The HF energy is given as the expectation value

| . o . o
Eyr = Z<‘I’i | by, | W) + B Z (2%, | groXigy | O 0;) — (U, | gioligy | ©;8;)) .

% i

In the non-relativistic case, the basic equations are the same except that the spinors are
replaced by spin orbitals, the one-electron operator flb by its non-relativistic counterpart
iz, and the general two-electron interaction term gioI4) by 1 /T12.

Usually, the one-electron functions are expanded in a finite basis of Gaussian functions

centered at the atomic positions as

— [ M, wk Ms 0
v, = (_) — ZCIL” ( “) + ZCEZ ( S> (H.Ql)
X pn=1 0 pn=1 w#

with w as basis functions for the different components, M as their number, and the
coefficients c¢. To avoid a variational collapse, it is reasonable to restrict the choice for the

small-component basis set using the so-called kinetic-balance condition®® (see also chapter

IV.2.1)

{O'f)wﬁ} € {wi} (11.22)

16



11.3. Correlation methods

In the non-relativistic case the basis-set expansion is less problematic and given for the

spatial orbitals by

M

G =) ity (11.23)

p=1

Inserting the basis-set expansion into the working equations allows to significantly sim-
plify the calculations as the evaluation of the resulting integrals is rather straightforward.
However, the choice of an incomplete finite basis introduces an error which is usually
referred to as basis-set error. Therefore, care has to be taken in order to make the chosen

basis set large enough and to represent the one-electron functions in an adequate manner.

Due to the choice of the wave function as Slater determinant in HF theory the electron-
electron interaction is described in a mean-field manner, i.e., one electron is only affected
in its movement by the mean field created by all other electrons. In reality, however, the
movement of one electron depends explicitly on the position of all others. This depend-
ence is referred to as electron correlation. Accordingly, the exact energy of a system may

be expressed as
Eexact = EHF + Ecorr (1124)

with the correlation energy F ... In the next section methods are discussed which account

for the correlation energy.

11.3. Correlation methods

In the Dirac equation for many-electron systems a problem arises concerning the sep-
aration of electronic and positronic states. If, for example, a non-interacting two-particle
system is given (see figure I1.2) pure electronic or positronic states may be easily identi-
fied via their total energy. However, mixed states can appear as intruders into the energy
region of the electronic states as indicated in figure I1.2. This problem is usually referred

8384 and can be avoided via

to as continuum dissolution or the Brown-Ravenhall disease
a proper definition of the vacuum as will be discussed in the following within a second-

quantization formulation.

17



II. Quantum-Chemical Methods in Non-relativistic and Relativistic Theories

E
_|_
S E—
electronic positronic
state state
E>0 E <0

Figure I1.2.: Schematic representation of the Brown-Ravenhall disease: Mixed states

can appear in the energetic region of electronic states.

In second quantization the Dirac Hamiltonian is given as

. e o —
Hp = Z (¥, | hy, [ P,) a;[)aq + B Z (U, ¥, | Giz | ¥, W)
——— ———— N " L

pq pqrs

thq 9Dpgrs

(11.25)

with the particle creation operators d}, and the annihilation operators a, which fulfill the

following anti-commutator relations

AT AT
[ap7aq]+ _0
[&P7dQ]+ =0

A ~

[a;rﬁ Qgl4+ =0pq-

Considering in the following only the one-electron terms

. itn
Hp = E thqapaq,

Pq

18

(11.26)
(11.27)
(11.28)

(11.29)



11.3. Correlation methods

the sum which runs over all spinors, i.e., both electronic and positronic states, can be

split up
{(O,} = {¥,,p=1,...,m} electronic states (I1.30)
{(Wa=1,...,m,} positronic states (I1.31)
leading to
. Me mp mMe Mp Mp Me
HY = " hppgilig+ Y howilas+Y Y hopathaa+ Y Y hoapha,.  (11.32)
Pq , ab N P a | a D )
ﬁng Hy ™~ I%:* gg+

The Brown-Ravenhall disease cannot appear if all positronic states are occupied. However,
such a description (Dirac picture)!” is not consistent with the usual definition of a vacuum
state, as the latter is defined by the absence of particles. A consistent picture can yet be
obtained by interchanging the role of creation and annihilation operators for the positronic

states (particle-hole formalism'7) as
bl =a,, b, =al. (I1.33)

In this way, originally occupied/unoccupied positronic states are considered unoccu-
pied/occupied with respect to a new particle, the positron. The vacuum state of the
Dirac picture is now characterized by the absence of electrons in the electronic states and
positrons in the positronic states, respectively.

The Hamiltonian HY is then given as

Me mp me Mp Mp  Mme
HY =" hppgtthag+ Y hoabab) +Y 0> hopadlbl +> > hpapbads, (11.34)
pPq ab , p a a P
HET H5~ ai- H5*

and it is easily seen that the vacuum expectation value of this operator
(O HY[0) =" hpap(0 | bab] | 0) =Y hpadar = D hbaa- (I1.35)
ab ab a

is non-zero but given as the sum of the energies of all positronic states which yields —oo.

In order to avoid the negative infinite vacuum energy the normal-ordered Hamiltonian
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II. Quantum-Chemical Methods in Non-relativistic and Relativistic Theories

Hp \ is introduced as

HY  =HS — (0| HY | 0) (11.36)

me Mp  Mme

= Z hpg@hig — Z hoablby + > Z hopa@Bh + > Y hoapbadi,  (11.37)
Pq ab p a a p

leading to a vacuum energy that is zero by construction® .

For application to quantum-chemical problems only electronic states are of interest.
Therefore, in a further step, all terms with operators that create or annihilate positrons
are dropped leading to the ‘no-pair’ approximation!'” in which the (full) Hamiltonian is

given as

m m
}A[no—pair _ - h At IR At ata A
D = DpqypQq + 5 9DpgrsylaQsly
pq

pgrs

Mme . 1 Mme e
= Z thqa;aq + 1 Z(QDPW — gqusr)a;a;asar. (11.38)
Pq pars

This operator may be used in the correlation treatment which then is analogous to non-
relativistic theory. In practice one starts from a DHF calculation and drops the part of
the matrices that corresponds to the negative-energy states in the subsequent correlation
treatment.

Remaining differences to the non-relativistic treatment are, for example, that the matrix
elements are complex, that the usual spin adaptation cannot be applied and that for the
integral transformation more integrals need to be processed due to the small component

basis.

A convenient feature of this Hamiltonian is that the positronic states now have a positive energy
<(l | H]%,N | (1> = 7hDaa >0

which means that the electronic ground state may be obtained by using the variation principle.
"Note that instead of spin adaptation time-reversal symmetry can be exploited.
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11.3. Correlation methods

11.3.1. Mgller-Plesset perturbation theory

In perturbation theory, the Hamiltonian is partitioned in an unperturbed part HO

which can be solved exactly and a (small) perturbation part H , e,
oot = FO 4 fp’ (I1.39)

defining the perturbation part as the difference between the exact and the unperturbed
Hamiltonian. In Mgller-Plesset perturbation theory,” the idea is that the HF potential
already is a good approximation and is used as unperturbed problem. Starting from the

no-pair Hamiltonian in (I1.38) as Hea<t the perturbed Hamiltonian H’ is given by

]fI/ :HBO—pair _ Z (thq + Z(gDquj — gDpjjq)) d;;&q (1140)

pq J

=1 Z 9YDpars — YDpgsr )@ d:; ZZ 9Dpjaj — gDPJJQ)d Qg- (11.41)

qu‘S

The first and second-order energy expressions are then

EW =(0| H' | 0) (I1.42)

1 b At
1 Z(gqurs — gopgsr)(0 | a;;a:;asar | 0)

pgrs

— > > (90pjas — 0psia) (0 | @ity | 0) (I1.43)
rqg J

1
T Z(QDW — 9Dijji) (IT44)
i
2@ _ Z [ | H' | O (I1.45)
(O] HO[0) = (| HO | o)
Z Z | 9Dabij — gDabji)|2 (II 46)
ab € + €j — € —&p . .

Note that the correlation correction is given by the second-order energy, as the zeroth-

and first-order correction terms only recover the HF energy.
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II. Quantum-Chemical Methods in Non-relativistic and Relativistic Theories

11.3.2. Coupled-cluster theory

In CC theory, the wave function is generated using an exponential ansatz

A

\IJCC = exp(T) \IJHF (1147)

with the reference wave function usually given by the HF determinant. The cluster

operator T is defined as

T =Ty +To+T5+ - +Ty (I1.48)
N 1 2
=y (E) > te-alaiala; (I1.49)
n=1 ij..ab

with T} for single excitations, Ty for double excitations, etc., and the amplitudes t?Jb as
the wave-function parameters that need to be determined. If the untruncated excitation
range is used, the result is equal to the full configuration-interaction (FCI) method which
provides the exact solution to the electron-correlation problem in the given basis set.
However, usually the series needs to be truncated due to limited computational resources.

The truncated CC methods are referred to as

T="T CC singles (CCS)

T=T,+T, CC singles doubles (CCSD)'

T="T +Ty+T; CC singles doubles triples (CCSDT)8587

T=T +Ty+T;+T;, CC singles doubles triples quadruples (CCSDTQ)38:59

T=YNT, FCI.

The CC wave function is inserted into the Dirac or Schrodinger equation. Subtraction of

the HF energy

(I:I — EHF) exp(T)\IJHF = (E - EHF) exp(T)Q/HF, (1150)
Ay Ecc

A

multiplication from the left with exp(—T") as well as projection onto the reference determ-

inant yields the CC energy

<‘I/HF | exp(—T)I:IN exp(T) ’ ‘I/HF> = ECC (1151)
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11.3. Correlation methods

while projection onto excited determinants ®; leads to the CC equations
(@) | exp(—T)Hy exp(T) | Tgp) = 0 (I1.52)

which represent a system of non-linear equations.

At this point another often used CC scheme needs to be mentioned, the CCSD(T)
method.'6%991 In this approach, triple excitations are treated in a perturbative man-
ner on top of a CCSD calculation. The advantage is that the cost scales only with M7
(instead of M® for CCSDT), with M as the basis-set size, while a similar and sometimes
even superior accuracy is provided compared to a full treatment of triple excitations.

In relativistic CC theory, the DHF wave function is used as reference determinant and
the no-pair Hamiltonian ﬁgo'pair is employed. Details can be found, for example, in Ref.
23.
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II1. Derivative Theory

Ill. Derivative Theory

Derivative theory plays a key role in the determination of molecular properties, i.e.,
those which are specific for a given electronic state. The property is then given as a
response of the system to a perturbation. In this case, the energy depends on the corres-
ponding perturbation parameter x with which the property is associated. If the perturb-

ation is sufficiently weak, a Taylor expansion around the point x = 0, i.e.,

dFE d’E
B(2) = E(z — ) o 111
(7) (x 0)+x(dx)x:0+x (dx2>x:0+ , ( )

is suitable and the desired property is obtained as the corresponding derivative.
The idea that a property may be defined as a response of the system to an applied per-
turbation is employed in this work to obtain relativistic corrections as energy derivatives

using a suitable relativistic perturbation parameter.

111.1. Numerical versus analytical differentiation

In principle, the derivatives in (III1.1) may be calculated either analytically or using nu-
merical differentiation techniques. Both schemes have their advantages and disadvantages.

When calculating first derivatives numerically, using, for example, a two-point formula

(dE) - E(Az) — E(—Ax)

P = SAL (IT1.2)
with a step size Az, the obvious advantage is that only two energy calculations (de-
termined in the presence of £Axz) are required. This is easily implemented, however,
the accuracy of such schemes, especially for higher derivatives, is limited and it is of-
ten necessary to experiment with the step size to get reliable results. Furthermore, the
computational cost may become very high. For example, if nuclear gradients are to be
calculated, the computational cost is 2 - 3N times higher than for an energy calculation
itself, with IV as the number of atoms.

On the other hand, if the derivative is to be calculated analytically, this requires a the-

oretical expression for the derivative and a more involved implementation (unlike to only
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II1.2. Analytic derivatives

Table III.1.: Examples for different types of wave-function parameters

Unconstrained variation  Constrained variation Non-variational

CI parameters MO coefficients in HF MO coefficients in CC, CI, MP
t-amplitudes in CC and MP

including a perturbation in an energy calculation). However, once this is accomplished,
the calculation is more convenient and yields higher accuracy with often less computa-
tional cost. For first derivatives, for example, the cost is lower as the analytic expression
is independent of the number of perturbations.

In this work, both techniques, i.e., numerical and analytical differentiation, as well as
the mixed approach have been used to calculate relativistic corrections to energies and

molecular properties.

111.2. Analytic derivatives

In order to calculate a first analytic derivative the energy needs to be differentiated

with respect to the perturbation parameter x at the point z = 0, i.e.,

(@)= (7).t (7). 5. s

In (IT1.3), ¢ are the wave-function parameters which depend on the perturbation. Such
parameters are, for example, the molecular-orbital (MO) coefficients, the configuration-
interaction (CI) coefficients or the t-amplitudes in CC and MP theories as discussed in
chapter II. In (IIL.3), the first term stems from the explicit dependence of £ on the per-
turbation through the Hamiltonian and in some cases also the basis functions, whereas
the second contribution accounts for the implicit dependence on x via the wave-function
parameters ¢ due to the chain rule.

For all parameters ¢ that are determined in an unconstrained variation it follows that the
partial derivative of the energy with respect to ¢ vanishes and therefore only the first term
in (II1.3) needs to be evaluated. An example for this type of parameters is given by the
CI coefficients (see table III.1).

There are two other types of wave-function parameters, i.e., those which are determined
in a constrained variation and those which are obtained in a non-variational manner. For

both types the above mentioned derivative is non-zero and, thus, the partial derivative of
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II1. Derivative Theory

the parameter with respect to the perturbation needs in principle to be calculated. This
is possible, yet computationally not efficient.

An elegant solution to this issue is to enforce the stationarity of the energy expression
with respect to all perturbation-dependent parameters c. This can be achieved using the
method of Lagrange multipliers where side conditions are included in an energy functional.
This is done in such a way that if those side conditions are fulfilled, the functional (the
so-called Lagrangian) is equal to the energy itself.9%%

For parameters that are determined by means of a constrained variation, the side condi-
tions are given by the constraints of the variation. The side conditions may be written in

a general form as

flz,e(x) =0 (I1L.4)

and are then used to construct the Lagrangian E

E(z,c(x),\x)) = E(z,c(x)) + AMz) f(x,c(z)) (IIL.5)

with the so-called Lagrange multipliers A(x). The variation

dE
e 0 (I11.6)
then leads to the equations which determine the wave-function parameters for the given
method. In HF theory, for example, the orthonormality condition of the orbitals is added
as side condition to the Lagrangian and variation according to (II1.6) leads to the HF
equations. Solving these equations yields the MO coefficients as well as the Lagrange
multipliers (which in the canonical HF case are given by the orbital energies ¢;). Fur-
thermore, as the Lagrangian leads to the same energy as the energy expression itself, it
is achieved that for its first derivative with respect to a perturbation z, analog to the
unconstrained variation, only the term with the explicit dependence of E on x needs to
be evaluated.

For non-variational procedures as in CC and MP theories, the Lagrangian approach can be
employed to avoid the calculation of Oc/0z as well. Here, the side conditions f(z, ¢(x)) are
given as the conditional equations that determine the wave-function parameters. They
are included directly in the Lagrangian, again in such a way that if they are fulfilled,

the Lagrangian is equal to the energy (see equation (III.5)). After its construction, the

26



II1.2. Analytic derivatives

Table III.2.: Side conditions for wave-function parameters in HF, CC, and MP theories

Method Parameter Side condition L.m.* cv.p n.v.c
HF MO coefficients orthonormality €ji v
MP & CC MO coefficients orthonormality I, v
MO coefficients Brillouin condition Zai v
t-amplitudes amplitude equations A v

¢ Lagrange multiplier
b constrained variation
¢ non-variational

Lagrangian is then made stationary with respect to ¢ and A, i.e.,

dE
— = 1.
& 0 (II1.7)
dE
= 0. 1.
d\ 0 (TIL.8)

Equation (II1.7) leads to perturbation-independent conditional equations for the Lagrange
multipliers A which need to be solved. Equation (II.8) leads back to the side conditions
that are determined anyways to solve for the non-variational parameters.

For correlated methods such as MP2 and CC, the side conditions that are included in the
Lagrangian are the orthonormality condition of the molecular orbitals, the Brillouin condi-
tion, and the amplitude equations. The wave-function parameters, both non-variational,
are given by the MO coefficients as well as the amplitudes ¢ (see table II1.2 for an over-
view).

Using the method of Lagrange multipliers, the first derivative takes the form

dE _ (OE of
(a‘) (%), () e

for methods where the wave-function parameters are evaluated via a constrained vari-
ation or in a non-variational manner. The advantage is that calculation of dc/dx is
avoided but unlike a direct evaluation as in (IIL.3) for every non-variational parameter ¢
a perturbation-independent equation needs to be solved to determine the corresponding
Lagrange multiplier \.

For higher derivatives (II1.5) is differentiated with respect to all involved perturbations.
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II1. Derivative Theory

It can be shown that knowledge of the nth derivative of the parameters with respect to
the perturbation suffices for the (2n + 1)th derivative of the energy. A similar rule exists
for the Lagrange multipliers which states that the knowledge of the nth derivative suffices
to calculate the (2n + 2)th energy derivative. These rules are commonly referred to as
(2n 4+ 1) and (2n + 2) rules.9? 9

Therefore, for a second derivative of the energy with respect to the perturbations x and y
only the first derivatives of the parameters are needed while the sum of all terms involving

derivatives of the Lagrange mutipliers vanishes and the resulting functional derivative is
given as

d’E 0 dc 0*E dc
dady - (axay)w 0 * <8x80> ( y) * (6yac)y0 (%)mo
dc 0 f
(o) (0). (50), ).,
0% f dc
o (axac) ( y) (ayac)yo (%)xo
o*f oc

o (a) (a) (ag) ()

This means that for the second derivative of the energy in HF theory the so-called coupled-

perturbed HF (CPHF) equations™% need to be solved for the perturbation parameter x
as well as y. For MP2 or CC additionally the perturbed amplitude equations have to be
determined.

In some cases it turns out to be beneficial to take the second derivative starting from
(II1.9). If the derivative is evaluated in this manner, the (2n 4+ 1) and (2n + 2) rules
do not hold any longer for the second differentiation. Accordingly, derivatives of the

Lagrange multipliers with respect to the second perturbation y also appear in the resulting

d2E _<32E) +<82E> (@)
dzdy i 0xdy £y=0 dxzoc) ,_, \ 0y 0
2 2
N (2 de
0x0y / , o dxdc ) o\ ) ,—
O\ of )

T\ - 1111

(ay ) y=0 <81‘ =0 ( )

expression
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1I1.3. Numerical differentiation

Even though in this equation the derivative of the Lagrange multipliers is needed, the
number of equations to be solved may be less than in (II1.10). This is due to the fact that
in (IT1.11) the derivatives of the wave-function parameters and Lagrange multipliers are
needed only for the second perturbation y.%

In this work, this variant of taking the second derivative (which is often referred to as

asymmetric expression) has been used to calculate higher-order relativistic corrections.

111.3. Numerical differentiation

As already shown in (II1.2) a simple possibility to calculate energy derivatives numer-
ically consists in using a two-point formula. The equation given there approximates the

derivative linearly using two displacements and is derived from

flz) =a+bx
f(=x)=a—bx
e W (I11.12)

If higher accuracy is needed, the derivative may be calculated using more displacements.
In this work four-, six-, and eight-point formulas have been used which correspond to a

third-, fifth-, and seventh-grade polynomial. The four-point formula may be derived from

f(x) = a+bx + cx? + da®
f(=z) =a—br + cx® — da®

)
f(27) = a + 2bx + dea® + 8dx®
f(=2z) = a — 2bx + 4cx® — 8da®

b= I = S 1) — f(20)

(111.13)

29



II1. Derivative Theory

after elimination of ¢ and d. For the six-point formula it follows

f(z) =a+ bz + cax® + da® + ex* + f2°

f(=2) = a—br + ca® — da® + ex* — faf

)
f(22) = a+ 2bx + 4cx® + 8dx® + 16ex” + 32f2°
f(—22) = a — 2bx + 4cx® — 8da® + 16ex* — 32f "
f(37) = a + 3bx + 9ca® + 27dx> + Slex* + 243 f2°
f(=3z) = a — 3bx + 9cx® — 27dx® + 8lex* — 243 f2°
4 — f(=2)] = 9[f(22) — f(—2 — f(~
Ly A5l = FCa)] 91 Qr) — f(-20)) + [fB0) ~ S0

60x

More generally, with n points a polynomial of the order (n — 1) can be fitted. This
corresponds to a Taylor expansion and the coefficients correspond to the derivative of the

same order

=g (%), eomr (5), | epre s
a ‘g—/ T N \Cr / x

To determine the coefficients, a linear system of equations is needed:

1 =z 22 2 a f(zx)
2 3
U D I ik o
Ac=f (I11.17)
which is solved by inverting the matrix A as
c=A"'f (I11.18)

Naturally, if the derivatives are calculated using higher polynomials as approximation, the
accuracy increases. In return, however, the computational cost rises as well because more
energy calculations using different perturbation strengths have to be carried out. Yet,
one has to pay attention as using a many-point formula will not necessarily give a reliable

result. First of all, the step size x of the displacements may be too large to approximate
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1I1.3. Numerical differentiation

the derivative. In principle, one would choose very small step sizes but this can lead to
numerical difficulties likewise. Furthermore, if the numerical values of the derivatives are
small, it may be the case that the numerical accuracy of the underlying energy calculation
is not sufficient. This may be estimated using the two-point formula. If the energy is, for
example, accurate up to a value of 1- 107! and the step size is 5 - 107 then using the

two-point formula

2.1-107°

_ —5
SE g =210 (I11.19)

it is seen that the resulting derivative cannot be more accurate than to the fourth decimal

place.
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IV. Direct Perturbation Theory

IV. Direct Perturbation Theory

In Direct Perturbation Theory (DPT), the goal is to account for relativistic effects in a
perturbative manner without the high computational cost of a four-component treatment.
Therefore, a relativistic perturbation parameter A\, = ¢~2 with ¢ as the speed of light is
introduced. In this work, the fourth-order DPT corrections (second order in \.) at the
HF level as well as at correlated levels of theory, i.e., CC and MP2, are evaluated in terms
of energy derivatives starting from relativistic and non-relativistic Lagrangians. Further-
more, some aspects concerning the derivation of DPT6 in the framework of HF theory
starting from a non-relativistic Lagrangian are discussed. Finally, DPT4 corrections for
electrical properties as well as further routes on the calculation of relativistic corrections

are examined.

IV.1. DPT expansion

Starting from the one-electron Dirac equation as given in (I1.6), it is found that for
electronic solutions  is smaller than ©® by roughly a factor of ¢. For a perturbative
expansion both components should be of the same order of magnitude and accordingly a

new metric is introduced as®?

X=¢X, ¢=0o. (IV.1)

Inserting (IV.1) into the one-electron Dirac equation (see equation (I1.6)) and dividing

the lower part of (I1.6) by ¢, the modified Dirac equation is obtained

1% op ey (1 0\ [¢
oo s7) Q)02 C) e

hp,® =F Sp¥. (IV.3)
When (IV.3) is decomposed into
(b + \ahf)) ® = B (S + 1aSE)) @, (IV.4)
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IV.1. DPT expansion

DPT can be obtained in a straightforward manner using a standard perturbative ex-
pansion. Relativistic effects are here introduced by terms containing the index 2 with

2

Arel = ¢ % as perturbation parameter, while all non-relativistic (nrl) terms appear with

index 0 and define the unperturbed problem in form of the Lévy-Leblond equation.” The

operators and the wave function in (IV.4) are given by

) vV of ) 0 0 10\ . 00
e I , Sy . 8P = . (IV.5)
op —2m 0oV 00 0 1
v=("). (IV.6)

X

After expanding both wave function and energy in terms of Ay,

>
O3
I

0O + Xap® + 22 oW
W = \II(O) + )\rel\IJ + ArellIl + = + rel(ﬁ + rel(p + (IV7)
O+ Aax@ + A2 W + .
E=E©® £ \uE® 4 )2 E®
= By + AEppr2 + AEpps + .. ., (IV.8)
thereby exploiting the unitary normalization condition®
(W [Sp | ¥) =1, (IV.9)
the DPT energy corrections are obtained® as
E® =(x |V | x) = BEONO | x©) (IV.10)
1
E® =Re(x® |V | x) = EORe(x® | x'") = SE@ K | x). (IV.11)

Alternatively, these corrections can be expressed in terms of energy derivatives, as shown

in chapter II1.2, using a Taylor expansion

dE d’E
E = FEy+ A\ —Afe( > +...
’ 1 (d)\rel ) Are1=0 2 1 dA2 Are1=0

rel

= EO 4 \aE® + XL ED 4 . (IV.12)

Along this route, it is more convenient to use a Lagrangian® ! (see chapter I11.2) for the

differentiation instead of the energy since it allows to include all constraints straight from
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IV. Direct Perturbation Theory

the beginning. In the present case, the Lagrangian is given as
E:<m1:|ﬁD|\p>—g<\p|SD|qz>—1] (IV.13)

with the Lagrange multiplier ¢ accounting for the normalization as side condition.
To obtain the DPT2 energy correction, the Lagrangian is differentiated with respect to
Arel thereby exploiting Wigner’s (2n + 1) and (2n + 2) rules? 9

OF
(2 —
E < 6Aml) (IV.14)
Are1=0
8le asD
= (P U) — (¥ v . IvV.1
{< ) e | 22 >}A 0 (1v.15)
rel =

For the next higher order (DPT4), the Lagrangian is differentiated a second time with

respect to A, leading to the asymmetric variant for the second derivative as discussed
in chapter I11.2
B - FE (IV.16)
2\ oN? R ‘

ow

\II> —cRe <8)\rel

\Il> } . (IV.17)
)\reIZO

The unperturbed and perturbed Lagrange multipliers ¢ and £ turn out to be given as

the zeroth- and second-order energies as defined in (IV.8). Inserting the operators from
(IV.5) and taking their derivatives yields the same corrections as in (IV.10) and (IV.11).

IV.2. DPT corrections at the Hartree-Fock level

For the many-electron case treated using HF theory, the occupied spinors

W, — (901‘) (IV.18)
Xi
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1V.2. DPT corrections at the Hartree-Fock level

are labeled by indices 7, j, k, [, ... and the wave function is given by a Slater determinant

of four-component spinors W;,2 = 1,..., N. The Lagrangian then takes the form
- . 1 . N
E=> (¥ |hp|¥;)+ 52 (% | gp | Wi¥;) — (V¥ | gp | ¥; W)
i ij

- Zgﬁ (<‘I’z‘ S | ¥;) - 51‘]‘) (IV.19)

with hp and Sp given in (IV.2) and the two-electron interaction operator gp defined by

re 0 0 0
- 0 ArelT121 0 0
— . V.20
8D 0 0 gy 0 (1v.20)
0 0 0 M2y

The Lagrange multipliers €;; turn out to be given as
eji =(U; [ fp | ®;),  with fp =hp + > (Jpx — Kpz) (IV.21)
k

=(T; |hp | T)+ Y ((xqu:k g | 0, — (0,9, | &b | quqf>) (IV.22)
k

To obtain the DPT4 energy correction, the Lagrangian is first differentiated with respect
to A thereby exploiting Wigner’s rules

oF
5O _ TV.2
<a)\rel> (V 3)
>\rel 0
dhp 0)
— E \IJ. v,
{ X < ! |a)\rel| >
L1 Z 3gD | TOGOy (g lI,(o)| J8p B Og)
U g | Y D |0
oS
IR \I'§~°)>} (V.24
i rel Are1=0
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IV. Direct Perturbation Theory

and then differentiated a second time with respect to A, leading to

EW = OE (IV.25)
a)\fel
)\rel 0
ahD 0
v
{zRe o | g

Jgp 2~ (0) | O8p 0) 7, (0
+ZRe(<‘I'(2 v | S0 | wel?) - (eP el | 5 e e”))

el ! OArel ‘
1 Z( j gg)\fel | ‘I’EO)‘I’EO)> _ <‘I’§O)‘I’§') | giggz | \P§o)\1,§0)>>
_%z; @ (g | giz )
- ZRe( e | o aSD |\11§°)>>} . (IV.26)
Are1=0

Inserting the operators from (IV.5) and (IV.20) and taking their derivatives yields

ED =3 00" 1V 1x”)

%

(0 0 0 0 0 0
JrZ(goz xJ)Hsoz A+ 0 1))

Z ! |\ (IV.27)

EW =3 Re(x? | V| (")
0
+ 3 Re (P 1l elx7) + (P 11
tj

1
+5 2 0 ™)

—ZRe( 2], >), (IV.28)
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1V.2. DPT corrections at the Hartree-Fock level

where it is exploited in the last term that the zeroth-order € matrix is diagonal in the

canonical HF case. Note that the antisymmetrized integrals in (IV.28) are given as
s | xaps) = (xags | xaps) — (e | xgei)- (IV.29)

IV.2.1. Expansion of the perturbed wave function

In (IV.28), only the unperturbed large components QO(O)

,  are so far known and are given

via the usual non-relativistic HF spin orbitals. Therefore, it is necessary to determine in

(0)

the following the unperturbed small component y,~ as well as the perturbed components

( (2)

Z

formulated within the modified metric®® in powers of A\ (see Appendix IX.1 for details).

and x,;”. This is achieved by expanding the Dirac-Hartree-Fock (DHF) equations

The zeroth-order equation leads to

1.
X9 = 50D o, (IV.30)

which is equivalent to the result obtained from the Lévy-Leblond equation in the one-

electron case.®® Using (IV.30), the DPT2 energy may be written as

E(2) — Z hj;rel _ Zgz(o)sgrel + Z (pl (p‘] ‘ glrel + g rel ‘ ()050)()0] )>
i ] i

oo”)). (IV.31)

<(,0£0)90]) | g rel +g rel

In the above equation, the integrals and operators are given by

L
S = {2y | —4 p* | ). (1V.32)
Tt = {0y | _UPV‘TP | o), (IV.33)
1 1
A)‘re — - I o
G = g a @b —Onbn, n=1or2 (IV.34)

The perturbed large component gp(?)

,~ is expanded in terms of the unperturbed functions

Z rel (0) (1\/35)

with the generic indices p,q,r, s, ... denoting occupied and virtual orbitals. The coeffi-
cients Up)‘;e‘ are obtained by solving the Coupled-Perturbed Hartree-Fock (CPHF) equa-
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tions™ 959798 for the relativistic perturbation A, (see Appendix IX.2 for details).
The perturbed small component X@)

.~ may be determined via the second-order terms of
the DHF equations

@_ 1) . @ (0) A0 07 O
Xi —2m{apgo,- +<V—£i +;[Jk ~ K, })xi } (IV.36)
with
0 7(0 0 0 0) (0 0) (0 0
O TR = KT = 0P %) = 0% 1xdel™). (avasn)

However, a direct evaluation of )(2(2) via (IV.36) is not recommended, as it leads to diver-

gences in the evaluation of the DPT corrections.546%7

Consequently, in order to treat the perturbed small component XEZ)

ing as ¢\”, the following expansion is chosen, 7739

82

on the same foot-
consistent with the kinetic-balance

condition
Z upflxp Z ue 0'p 90](3 ), (IV.38)

To determine the expansion coefficients up;d, the above expansion is inserted into (IV.36)

followed by a projection on (Xq |= (cp((] )%ap |

1
Arel rel Arel Arel Arel _ Arel i
§ ety § SoUpee + o { iy = Sy

+ ) ({papn | 517 | pispr) — (g | 1
k

o))} (IV.39)

Note that the superscripts for the order of the perturbation are here dropped. Multipli-
cation from the left with (S)‘fcl);ql and summation over ¢ finally leads to the expansion

. A
coeflicients up;‘fl

1
re — )\re Are )\re >\re ”‘)\re
i = Ui + —2qu2<5 o et = S lei+§k3<wqwkugllmml (1V.40)

with the antisymmetrized integral

wior) — (Par | 577 | i) (IV.41)

| pir) = (@ar | 97

(P || 97
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1V.2. DPT corrections at the Hartree-Fock level

A

Accordingly, in a short-hand notation, u,;* can be expressed as

rel _ UArel + A)‘rel (IV42)
with
1 ~
Al))\irel — % Z(S)\rel) hj>\re1 S;‘irelgi + Z <80q90k: ‘ | gi\rel | | ()02()0]6)> (IV43)
q k

thereby stating that the expansion coefficients for the perturbed small component only
differ from those of the perturbed large component by the additional A;\;e‘ terms. There-
fore, alterations in the large component affect the small component as well. Furthermore,
the relation between both components changes in every order.

Using the relations for x\*, x\?, and ©'® as given in (IV.30), (IV.38), and (IV.35), the

DPT4 energy expression (IV.28) is rewritten in the following manner

1
E(4) _ Z Re ( Z U rel (h)\rel giS;\I;el>) i 5 Z gg?)Si)‘jrq

v

F2 R (Zu Howei 190 Wl eigh + 3 U oo | 27 | wi3))

+2 Z wip; 1| 915 || pis) (IV.44)
with the g73 Arel operator
LE])‘relzLa'f)a'f) iaf)a'f) (IV.45)
12 1Gma 7 1P192P2 - @1P102D2. .

The second-order €?) matrix is given as (see Appendix IX.3 for details)

Lo _ ) oY fo | @)
Jl { a)\rel (IV46)
Are1=0
= Tt e) T+ Z (2Re U (wip | 9i00)
— U™ (500 | 0rpi) = U, ”l<sojsok | %%)) (IV.47)
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with

) = hoeet > {oppn |1 607 + 35 1] apr). (IV.48)
k

In lhe deri\/a'ion Of €§i)7 the rela‘ion
Arel* Are Are I\/ 4
i/ ! —|— i/ ] ! + S = 0, ( . 9)

with the generic indices p,q, is used which is obtained by differentiating the unitary

normalization condition
<\I’p ‘ Sp ’ \Ilq> = 5pq (IV'5O)

with respect to A.q.
Using (IV.42), the expansion coefficients u;, Arel for the perturbed small component can also
be eliminated from (IV.44). Doing so, the resultmg energy expression is consistent with

the usual expressions for second derivatives from non-relativistic derivative theory™

ZRG { erel( Met) _ S;')}

5 Z S/?]r'e] (2 Re U;f'(‘ﬂj% | orpi) — U,?{el*@j% | pior) — U;f“(%% | %9%))
ijk
g SArel( Mat) _ Sm)

+z Z (i |l o3

" Z Re {A}\rel <Zl Arel) &S;\ira) } (IV.51)

| <Pi<Pj>

with
ZLEQw) =R+~ (opips || 517 || 0g05)- (IV.52)
J

The first two lines correspond here to the CPHF contribution within the DPT expan-
sion and the third line defines the reorthonormalization terms. Lines four and five are

second-order terms with the latter being an additional contribution appearing due to the
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1V.2. DPT corrections at the Hartree-Fock level

elimination of the small component.

IV.2.2. Separation of scalar-relativistic and spin-orbit contribution

The relativistic effects accounted for by (IV.51) comprise scalar-relativistic (SR) as well
as spin-orbit (SO) corrections, with the latter being the first SO contribution in the DPT

expansion. Using the Dirac identity!”
oc-aoc-b=a-b+io-(axb), (IV.53)

SR- (first term) and SO-contributions (second term) can be separated in (IV.51). Since
the SR and SO operators are of different types, i.e., of singlet type in the case of the
SR operators and of triplet type for the SO operators, no coupling appears between SR
and SO terms in the case of closed-shell systems at the DPT4 level. Note that these
couplings, however, arise for higher orders of the DPT expansion. Moreover, no coupling
arises between the different components of the SO terms.

Writing down the SR-DPT4 energy correction is straightforward. It can be achieved by
simply dropping all Pauli spin matrices in the integrals, being left with the momentum
operators only. As all integrals are real, the SR part of the DPT4 energy for closed-shell

systems reads after spin integration:
By = Z QUSR{ O g, 98R
- Z SE (40100 | 06) — (030, ) ~ (0561 | 6,0 |
Z SSR< (SR) _ €ZSSR>
Z (200105 | 535 | 665} — (6305 | G55 | 6364))
+ Z 2ASR (Zl FOR g, SSR> (IV.54)

with the spatial orbitals denoted by ¢,. The SR operators and integrals are given as

1 . 1.

~Arel N ~SR _ - IV55

41



IV. Direct Perturbation Theory

1 1
A Arel ~SR A A A A
912 912 = 16 Ta4 P1P2 12p1p2 ( )

1 1
hyit = 5@ | OBV OB | 61) = Iyl = (6, | DVD | 61) (IV.57)

and
=hpy + Z ( (Gt | 2+ 957 | dgn) — (Dptor | 57 + G5 | ¢kqﬁq>> (IV.58)

=y + Z( (0001 | 55| 0utn) — (0yn | 3T | ). 1V 50)

For the SO contributions in (IV.51), all terms containing

1
)‘rel — SR SO __ A2 \/

=0

1
4m

vanish. Additionally, contributions involving U;f' with index p corresponding to an oc-

cupied orbital, can be eliminated due to

SO SO
ReUj;” = 25]Z = 0. (IV.61)
To determine the remaining coefficients U 5\11 with indices a,b,c,... referring to virtual

orbitals, the CPHF equations need to be solved for the three components of the SO
perturbation SOz, SOy, and SOz (see Appendix IX.2 for details).

Due to its cross-product form, the SO part of the relativistically perturbed operators can
be written as a sum over its components, i.e.,

1 1
~SO . A A
- o - x V.62
91 4 K 1(P1T12 p1) ( )

1 U N o1 .1
:m(a'lxl(ply T_plz_ D1z _ply) + Ulyl(plz —Piz— P1x —plz)

12 r12 12 T12
.1 1
+ 01.1(P1e b~ ply_plzv)> (IV.63)
12
:le§1 + 0'1y91 o 4 0'1zgsoz = Z UchSOC- (IV.64)

c=x,Y,2
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1V.2. DPT corrections at the Hartree-Fock level

Concerning the two-electron integrals containing the operator gl“a1 the only non-zero SO

contributions are of the type

. 1 1
g5 = 162 ———102(P2 X io1(P1 X r—lzp1)p2) (IV.65)

due to spin orthogonality (see Appendix IX.4 for details). Furthermore, o1 and o5 have
to be of the same type, i.e., both have to be either o, 0y, or o, to give a non-vanishing
contribution.

Using the above expressions, the SO part of the DPT4 energy is finally given as

1
EQ =Y Re (URIEY) + 5 X tewes 1163 1] i) 3R (450 #1759 (1v.66)

ij

After spin integration for closed-shell systems (see Appendix IX.5 for details), the SO

energy correction reads

Eo= Y, {ZZRe (US0°7507) = D i | 335 | 6500)

c=x,Y,2 ia 1]

+Y 2Re (A;Oc 21 y(500) )} (IV.67)
ip

Using the Levi-Civita tensor

+1, for cyclic permutations of z, vy, 2
€wo = § —1, for non-cyclic permutations of z,y, 2 (IV.68)

0, for repeatedly occurring indices

the integrals and operators for a specific SO component ¢ = z,y or z can be expressed

via

MO = 3 Y cawla | iBVh| 60 (1V.69)

U=2,Y,2 V=T,Y,%

ASOc: Z Z GCWZPW pm/ (IV.70)

U=2,Y,2 V=T,Y,%

A?QOC _16m4 Z Z Z Z 6cul/Z p2u 6co',oplo' ! plp}p (IV?l)

P=T,Y,2 V=T,Y,2 O=T,Y,2 p=1T,Y,2
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f(SOc hiioc Z ( ¢a¢] | ~SOc | ¢Z¢J>

<¢a¢j 50 | 6360) — (0ady | 57| 0401)) (IV.72)
21§50 —pSoe 4 Z( (0005 | 550 | 6165} = (6005 | 55 | 656)) (IV.73)
AEZ-OC _% Z(S)\rel) 1 Zlf(SOC _ (IV.74)

q

Note that the final expressions for the SR part of the DPT4 energy (IV.54) as well as the
SO part (IV.67) are of one-component form and may therefore be implemented within a

non-relativistic code given that all additional integrals are available.

IV.2.3. DPT from a non-relativistic Lagrangian

In this section it is shown that it is possible to formulate the DPT4 energy starting
from the Schrodinger equation instead of the Dirac equation by expanding the operators
and the wave function with respect to A,. In this way, a non-relativistic Lagrangian can
be employed to arrive at the desired energy corrections using standard analytic derivative

theory.””™ The non-relativistic HF Lagrangian is given as
s . 1 R R
«E=§3%\Mw»+§§]%%ﬂgHwwﬂ—}j@&@ﬂSI%%—%) (IV.75)
i ij ij

To make this Lagrangian and the involved operators dependent on the relativistic per-
turbation, an expansion in terms of A\, of the operators ﬁ,S‘ ,g and the orbitals ¢; is
necessary.

Starting from the DHF equations formulated using the modified metric (see Appendix
IX.1),

(P, | fn | ;) = i (¥, | Sp | W) (IV.76)
(W[ B | W)+ (000 | g | Was) — (005 | go | W, 90)) = (W | Sp | W)

J

(IV.77)

and expressing the small component Y, via

Xp = Xop, (IV.78)
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1V.2. DPT corrections at the Hartree-Fock level

i.e., by means of the large component ¢, and the coupling operator X, the spinors ®;

0 (2)
) )\re
v,=| 7= + ! (IV.79)
X, X( +Arel¢z +. )

allowing the evaluation of the matrix elements in the DHF equations in the following

may be expanded

manner
(O, | hp | ®;) = (¢; | V+ XTop + opX + MaXTVX —2mXTX | ;) (IV.80)
= (i | h | @1) (IV.81)
(Wi [ Sp | ¥3) = (i | 1+ MaXTX | 05) (IV.82)
= (1| 9| 90@-> (IV.83)
) 1.
(T, | gp | ;) = (pip; \ T AaXT(1 )leX(l)
1
F haXT(2)—X(2)
12
1 - N

+ XX )XT(2)EX( )X(2) | pipj) (IV.84)
= (pip; | 9| pipj)- (IV.85)

This procedure results in expressions for the operators iL, S , and g that explicitly depend
on the relativistic perturbation A\.. To proceed further, the operator X also needs to be

expanded in orders of A\

X =XO p \aX® £ 22 XD 4 (IV.86)

Using (IV.30), X(© can already be determined
X0 = Lap. (IV.87)

2m
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With the above relation, it can be shown that the zeroth-order operators are equivalent

to the nonrelativistic (nrl) operators that appear in the Schrodinger equation

N2

A0 =V 4 XOtgp 4 opX© — 2 XOTXO — v/ 2p— — hun (IV.88)
m
GO 1§ (IV.89)
. 1 .
g(O) = = Gnrl- (IV90)
T12

For the DPT4 energy correction, the corresponding operators in second and fourth order

are needed:
h? = x Oty x(© (IV.91)
@ — Xy X o xOHy X _9p, ¥ X (IV.92)
&) — O ¢ 0) (IV.93)
$@ — @t | xOf x® (IV.94)
N N 1 -

i = (14 Ppy) [X<0>T(1)—X<0>(1)] (TV.95)

12

. 1. . . 1. 5

iD= (14 Ppy) [X<2>T(1)—X<0>(1) + c.c.] + XOH) X O 2) = XO)(1)XO(2)

T12 12

(IV.96)

with the operator Pl,g permuting electron 1 and 2 and c.c. denoting the complex conjugate

of the preceding expression.
The effect of X® on @EO) may be determined using the expansion of the perturbed small

component given in (IV.38)

Z upzxel X z()O)

X(O)SO(Z) + X(Q)@EO) Z(U)‘rel + A)‘rel)X )SOI()O)

Z U)‘relX xX® (0) _ Z UA're]AXA' <Pp + Z A)\relX(o)

Z A X O 0), (IV.97)
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On the other hand, usmg this equation, an expression for the coefficients A)‘rel can derived

by projection onto (X gp |

(pg | XOTX® | o)) = ZAM g |X°>*X<° | @p), (IV.98)

rel
qu

together with multiplication from the left with (Sﬁ;el)_l and summation over ¢

Ade — Z (52561) (pg | XOTX@ | o). (IV.99)

q

Using (IV.36), X®@ may also be expressed as

A 1 N A
KO0 = (V= e+ 37 [ = £7]) KOl (IV.100)
k
with
(o | XOTLY = KVIXO | 6) =
0 0 9% I 0 0 9 L 0 0
()"0l | X = XOM) [ 676) = (90 | X =XO1) | 676)”).
(IV.101)
If (IV.100) is inserted into (IV.99), it is seen that both expressions for A;)\;e', ie., (IV.43)

and (IV.99), are equivalent.
To obtain the DPT4 energy correction, the HF Lagrangian has to be differentiated twice

with respect to A, thereby again exploiting Wigner’s rules in the first differentiation

@ _ OF
EC ( am) - (IV.102)
={ ;w g |+ 5 2 (067 1328 17407 )
- Z & = 8)\i1 |(p(0)>},\re1 0, e
B = ( gArf; )Arelzo (IV.104)
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1 @, Oh o, h |
_2{Z<2Re<gpz | a)\re |g07, >+<QO7, |a/\2 |902 >>

i rel

A

1 2) (0 0) (0 g 0) (0
+§Z<4Re<s@§ 0 || 25 o 1”6y + (el 11 553 1 o))

rel
a8 928
(0) (0) (0) (0)
Ze <2Re |—€))\ | ;") + (¥, ’8/\2 | 5 >>

rel

N ,0 05 (0) IV.105
]’L <90z ‘ a)\rel | QDJ >}>\ 0' ( . )
rel

]

The first and second derivatives of the general operators O with respect to A, are given

by
00 . 920 .
=0® d =201, IV.106
(8)\1”61) Are1=0 . (a)\z )/\ 1=0 ( )

rel

which allows to evaluate (IV.103) and (IV.105) yielding

E® =3 (ol | XOTY X | o)

1

r12

"2 Z(*‘)Z A 11+ P[0T XOW] 4067

Z&? (0 | XOF X0 | 0y (IV.107)

BO=). (Re<so§2 | ROWEO | o0 1 (0 | KOVIO 4 e~ amXP1XO | )
1

% 0 0
—XO)] 1 6%
T12

+ > RefePol || (14 Pia) [ XOF(1)

1 -
—XO) +ce] | 476)
12

v
1 . .
32 A s P X@i)

N 1 - ~
+= Z@Z P || X© <>X<0>*<2>7HX<0><1>X 2) [] 97!y
—Ze (Refipl® | XOTXO | o) 4+ (o0 | KOO 4 e | o))
2 0 s 3 0
~3 ngi)@ N XOTXO | o), (IV.108)
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Using (IV.100), the term < | —2mXTX® | gpl ) in (IV.108) may be rewritten as

7

~ N 1 N ~
(0 | —2mX X | o) = — 2 {(@50) | XOTWXO e | o)
— e el | XPTXO 1 e | )

0 L & 0) (0
+ (e I XD = XO0) + e ] 976"
J

(IV.109)

which allows to simplify the DPT4 energy expression to
. . 1 . X
ED =37 (Re(p® | XOWXO | %) 4 2o | XOWKO 4 cc. | o))
e<901 | |901 >+2<()02 ‘ +c.c ‘(102 >

i

+ 3 Relple” || (L4 Pu) | KOTW)—XOW)] ]| 0l””)

ij

1 0), (0 % O 1 o y 0) (0
520 | XU XON2) = XOMXOQ) || 6%)")

N ~ 1 ~ A
= e (Re(e® | XOTXO | o) + (6l | XDTXO + e | o))

1 o
=52 e (el | XOTXO | o), (IV.110)
ij
Since
@1 9 e IV.111
E]z {a)\rel <SOJ | f ’ 902>}>\ i ( : )
rel=—
)
{8)\ 1((% [ Bl @)+ (ewoi Il g 1] swﬂ)} (IV.112)
re lj >\re170

is equivalent to (IV.47), the use of the X operators results in the same final DPT2 and
DPT4 corrections as the ones given in (IV.31) and (IV.51), respectively.

It is thus shown that it is possible to derive the DPT4 energy correction within a non-
relativistic framework using standard derivative theory. This approach to DPT can as

well be extended to higher orders thus rendering these energy corrections more easily

49



IV. Direct Perturbation Theory

100

accessible™™ as will also be shown in the following chapter for the DPT6 correction.

IV.2.4. DPT6 corrections from a non-relativistic Lagrangian

At the HF level of theory the DPT6 energy correction is given as a third derivative of

the chosen Lagrangian

1{ OB3E
E® —= [ 2= IV.113
6 (a)\rdg) ( )
Are1=0
:§ :(Re<so§2>|l%<2>—e§°>$<2>|¢§2>>+2Re<so§2>|h<4>— O3 | L)
+ (o | B® SO | o)

~ 2 0 2 2 A~ 0 0
+ 3 (2Re(p ! ||g<0>||goz- Jo) + Re(pPe® [] g || V67
iJ
0 0 2
+ (P01 D1 0P 4 Re(pP 0l || 9@ ] PP

1
2) (0 ~ 0 0
+2Re(p”0)” 1 9@ 1| 0”0)”) + (e 1159 11 ")

— > (P Re(e® | 8O | 1P + 2617 Re(pl? | §P | 1)
i

+ei (@l [ 59 [ o™)). (IV.114)

The (2n + 1) and (2n + 2) rules have here been applied in the last step. According to
these rules, the resulting expression contains only the first derivative of the wave function
as well as the first derivative of the Lagrange multipliers. In DPT at the HF level this
means that no higher derivatives than ¥ and 5 ) are needed for the sixth order. When
deriving DPT6 from the non-relativistic Lagranglan as given in (IV.75), the part of the
wave function which is given by the small component is incorporated into the operators.
Accordingly, when using the (2n + 1) rule in a naive manner, terms containing X (2)4,052)
(due to the operators h®, 5@ §®) as well as X(4)<,0 (due to h©® 5O ¢©) arise which
are actually contributions to ¥ In the following it is shown that these terms indeed

vanish. The terms containing X (2)90§2) are given by

Y (WP TR ) + )
=3 (46 1 89 | ) + c.c)
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2) (0 0 0 0
3 (P67 1991606 = (@6 1§D oP6)) + c.c.)

ij

(IV.115)

with the fourth-order operators given in (IV.92), (IV.94), and (IV.96). The critical terms

are now those where X®? is acting on go(?)

;s Le.,

- ..+Z<<¢§2>1X<2>TVX< —2mX @R | 0 >+C.c.>
(6 | XTI X O gp >—|—c.c.>
( (e | XMW XO )| )
— (P | XD KO0 [00") +ec).  (IV.116)

From (IV.100) it can be seen that it holds

—omX @ (1) + (v —e > (- f(ﬂ))?(o)(l)] o9(1) =0. (IV.117)
J
Therefore, rewriting (IV.116)

-+ Z [ omX? + <V - 550) + Z(j] - kj))X(O)] | gp >+c.c.
J

(. J

7
(IV.118)
shows that these terms vanish. Of course, the same holds for the complex conjugate

expression.

Concerning the terms in which X® acts on ¢

4 Z (0)>
- Z&' 901' ‘ 901('0)>

+Z (% A 1591 06") = (PG 1 g9 1 Pe™))  (v.119)

the contributions are given by
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with

A = <X<4>TVX<0> + c.c.> +XOW X _op <X<4>T X@ 4 c.c.) (IV.120)

- (f((‘*)*f((o) + c.c.> + X1 (IV.121)

<X<2>T(1)if(<2>(1) 4 c.c.)

T12

A N 1 -
+(1+ 1,2> <X(4)T(1)—X(O)(1)+c.c.)

12

1 - ~
—XOMXO2) + c.c.) : (IV.122)

12

+ (1 + P1,2> <X @f(1) X1 (2)
Accordingly, the relevant terms are

ot Z <%(0)‘ <X(4)TVX(0) i QC‘) ~om <X(4>TX(2> n ac.)
+Z<‘Pz ’( ()—i-cc) (0)>

+5 Z <<soz A0|(1+ Piz) <X<4>T(1)

0 0
- <90§ ol

which can be rearranged to

o)

0 0
PVl )>

Pl >> ) (IV.123)

N N 1 -
(1 + Pm) (X<4>T(1)—X<0>(1) - c.c.)
712

+Z [ QmX(Q)(V—éz(O)—i-Z(jj —f(j))X(O] | o +ee.

J
~

=0

(.

(IV.124)

again showing that, consistent with the (2n + 1) rule, there appear no contributions due
to the fourth-order wave function in the DPT6 energy expression. For a more detailed
discussion on DPT6, see also Ref. 100.
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IV.3. DPT corrections at correlated levels of theory

In this section the DPT4 energy expression will be derived for correlated methods, i.e.,
explicitly for the MP2 approach. For convenience, the notation | p) =| ¢,) will be used
in the following. At the MP2 level, the Lagrangian is given by

B=y S5 i 114 1| ab)

ij ab
1 i o )
™ ZZZAGJIJ ((ab || g H ZJ> - [5i+€j — &4 —€b]tij’)
ij ab

£ 3 Zuf(a b li)+ Y (as 113 11 is))
+ prq(@ [S1a) - 5pq) (IV.125)

Pq

with the amplitudes tf;’ and the Lagrange multipliers )\Z77 Zqi, and Ip, that are used to

account for the amplitude equations, the Brillouin condition, and the orthornormality of

the orbitals as side-conditions. From the stationarity conditions ;fb = 0 and 8‘?\% =0
i ab

(see chapter I11.2) the following relations are obtained

vi o _(wllgllab) e {abll g1l e)

= .t = IV.126
@b eitej—ea—e Y eitej—ca—6b ( )
yielding
A = t?;’*, (IV.127)
ab __ ab __ ba __ 4ba
ty = —ty = —t =t (IV.128)

The one- and two-particle density matrices may be defined as

1 . 1 ’
Dij = -3 ; Zb Nt Dav=5 > Nt (1V.129)

c i
1 i 1
Lapij = ZAZJb, Uijab = Zt%b’ (IV.130)

leading to a general form of the Lagrangian for correlated methods

E :erqm@q 19l rs)

pgrs
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+Zqu<P|h|q +ijllg||qj>>
+ZZ«M<“|’”L| +Zajl|g|lw>
+Z <P|5’q ) (IV.131)

For MP2 it holds that only D;;, Dap, I'apij, and I';jq, are nonzero.

The DPT4 energy at the MP2 level is again obtained as the second derivative of the
Lagrangian (IV.131) with respect to Ay;. In the derivation, Wigner’s (2n+1) and (2n+2)
rules are exploited in the first differentiation step

aii Z;me@q 199 H rs)
P (g5 10 T )
XAt m;el “”D s |19)
)
+me aArel o (IV.132)

At the point A, = 0, this leads to the DPT2 energy which at the MP2 level is given as

OF . .
(8)\ ) :ZFP(]TS<pq | gi\rel + gg\rel || s)
el ) \u=0  pars
+ Z qu Zgé\rel)
pq
+ Z Zai éj‘rel)

+ ) LS (IV.133)

with £ and Spiel as given in (IV.32) and (IV.48).
For the second derivative of the energy functional E, all terms in (IV.132) need to be
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differentiated yielding

g L[ O
_2 a)\re12 N —0
1 AT prs 9§ A(pg || 55% || rs)
=2 (Z{ T o | G 17} + Ty [——2 =]

pqrs

aD 8f()‘re1)
(rel) D pq

+Z Oy P + Dpq OMrel

pq {
YA O f(Arel)
* Z { a>\relf m 8)\rel
Olpg o 0S5
vel 4 [ . IV.134
+Z {a)\r 1Spq + Ipg a)\rel . (IV.134)

Pq
In the following, explicit expressions for the terms arising in the above equation are

evaluated, thereby assuming that they are given for A\ = 0. The perturbed amplitudes

are given by:

10ty 1 1
48)\re1 _461'—1-8]' —Eq — &b

afae eb a]Ebe ae
+Z (mmtw > lt”)] (IV.135)

d{ab || g ] 27) Ofmiap | Ofmi a
a)\rel ; a>\rel tmj a)\rel tzm

with
pq g TS re * re *
X al)\rJ ZU’\1 (tq | rs) %—ZU’\1 (pt | rs)
+ Z Uy (pq | ts) + Z U (pq | rt)
t t
+(pg | 51 + 35" | ), (IV.136)
Ofpg O

= i E ol ak
. o | P |q>+§<p 1| qk)
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= Z Upee fig + Z Ui for + My + Y (0K || g1+ G2 || gk)
k
+ 3 (U ot 11 gk) + U (o | o))
tk

:U;;;el*gq + U;\qrelgp + J‘}Sgrel) + Z <Ut/>crel*<pt || qk) + Ut?zrd (pk || qt)) ) (IV.137)
tk

and

aFijab o al—‘;bzg . 1 8t27b . 1 a (Afzjb)*

= IV.138
a)\rel a)\rel 48)\rel 4 8)\rel ( )
For the perturbed one-particle density matrix it holds
oDy _ _1 “t“ AT i IV.139
Th ~ 22 2 gy T by (V139
D ) ol
=— “Ct C 4\ IV.140
a)\rel ZZ 8)\ el N * aca)\rel ( )
Moreover, explicit expressions for the remaining integrals are needed
Opq | 5 B | rs) g dg
@) 2)
M =(p"“q | W | rs) + (g | 8Arel | 7s)
)| i 02§
+ (pq | o | 7®)s) + (pq | E)Are | 7s'?) + <pq’8kmf | rs),
g . (g | & .
#Pq| 53— Irs) =P 5% |rs) ZUt Ut | g+ g3 | rs),
°9 @)
rs)y = 24 rs
{pq | ETWE | rs) =(pq | 26 | rs)
—2{ DAt | [ rs) £ DAYt 65 |7
t
+ZA)\rel pq ’ gl)\rel ‘ t5>
+ ZAM pa | 3 | rt) + (pa | Gl5" | vs) }, (IV.141)

as well as the definitions of the derivatives

af}g(;\rcl) _ a <<
el ONal 8)\re

3y 1 9)

26



IV.3. DPT corrections at correlated levels of theory

=@ | R | )+ (p | B? | ¢P) + (p| 20W | ¢)
T (PPE G 1] ak) + (pa || 5P 11 ¢2k) + k@ || 5@ || qk)
k

+ (pk 1| g2 1] ¢k®) + (pk || 29 || gk)) (1V.142)
_ Z |: UArel* _I_ 2A)\rel*)h)‘rel (Uti}rel _|_ 2A>‘rel h)‘rel:| 4m Z A/\rel*S)\relAArel

Z U>\rel* tk H A>\1rel +92re1 H qk> +2A>\rel*<tk. H A>\rel

| qk))

+Z (Uit |1 927 + g5 || pk)* + 2457 (tk || gy || pk)")

+ Z Ut || g1 + a5 || ak) + 245" (pt || 33" || qk))

_|_ Z Ut>]\€rd qt H A>\rcl + gg\rcl ’ pk>* _'_ QA?];CI <qt H ">\rcl

| pk)™)

+2 Z@k‘ | 915 || gk), (IV.143)
k

and

85/\rel 8 aSv R R A
= — (p@ | §2) 2) | (2 9™
Ol 8Arel<p|axrel|q> P S9 gy + (| S 1¢9)+(p[25% | q)

— Z {(UtAprel* _'_ 2A)\rel*)S>\rel (Ut);rel _|_ ZAArel)SArel} . (IV144)
t

For the evaluation of Z,; and I,, instead of taking the derivative of the Lagrangian with
respect to the MO coefficients O/ Jc,q as discussed in chapter I11.2, (IV.131) is rewritten

using the orbital rotation
G =D CuTop (IV.145)
q

with the stationarity condition for the Lagrangian

oF =0 (IV.146)
M),

yielding

E=Y Tpps Y TnToToTusltul] § [ vw)

pqrs tuvw
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+ZDMZ To, hw+zz Twi(tu || g || vw)

i ZzijT;gij B + ZZ T tu || g || vw)
Z Z T*pTqutv - 6tv)-

Taking the derivative of E with respect to Ty; at T' = 1 gives

OF
T=1

=> Tiwlaa |l g1l rs) + ) Tpiilpall gl rs)”

qrs prs
+ > Togis(pa |1 31 as) + > Tpgrilpg || § || ra)
pgs pqr

+ Z D}, fi. + Z Dyifra

+Z%wwmw+§ﬁwmmmw

pq pq

(IV.147)

+ZZznfba+ZZZ} (ba [ g 1] ji)" +ZZbJ (bi | g1l ja)

+ Z Iz*qS;q + Z Iplspa
which for MP2 yields
Lyt Lo = =2 (Dijedad 11 § 11 )" + Toeig (be [] § || aj))

Jbe

= (D3 1191 i+ Dl 11 g0

_Zszfba ZZ@ ba || g || ji)* ZZbg (i [l g1l ja).

The derivative of E with respect to T}, is given by

OF
T=1

o8

(IV.148)

(IV.149)
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= Taslig || 11 78)" + > o i | 41 7s)°

qrs prs
+ > Togas(pa 19 118) + Y Togralpa [ 3 1] 1)
pgs pgr

+ Z D fi+ Z Dyafyi
+Z

+ Z LS5+ Y LSy (IV.150)
p

which leads to

It Lo =—2Y (Ui (b || § 1| k)" + Trja (ki 1] 1] D))
bk

="zt (IV.151)
J

In addition, the derivatives with respect to T, and T;; lead to expressions for I, + I,
and ]ij —|— I]*Z

Zrbqrs aquHrs +erbrs paH§|]7“S>*

qrs prs
+ > Togns(pg || 311 as) + Y Tpanpg || § 1| ra)
pgs pqr

+ Z D;,fry + Z Dy fra
+ Z Zyiaj
+ Z I;,S:, Z 55 (IV.152)

L+ Loy = =2 (Tpglac || 311 67" + Dipeli 1] § 1] ac))

cij

- Z(D;;cf;c + chfca) (IV153)
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OF
T=1

=2 Tianslia 911 78)" + 3 ST (pi 13 |l )"

qrs prs
+ > Toasspa 1 9 118) + > Tparspa I 3 1] 73)
pgs pgr

+ZD fzq+ZDmfm

+Zqumllgllqz +3 " Dyulpi 11§11 4i)
rq

+Zijfbi

+ZZbkaHng] +ZZbkb]H9Hk'Z>

Z L5ySiy+ D 1yi Sy (IV.154)
p

L4 Iy = =2 (T ik || 3 || ab)” + Tapeab || § || ik))
kab

- Z(D;k %+ Dijfri)
%

= > Dy i [l 311 4d)" + Dy (pi 1 § 11 43))

Pq

= > (Zbi 1 g 11 k)™ + Zoe(b | § 1] ki) (IV.155)
bk

Note that the Lagrange multipliers I,, may then be evaluated in a symmetrized form, i.e.,
1 *

L, — Q(Ipq +17,)- (IV.156)

Subtracting the complex conjugate of (IV.151) from (IV.149) yields the Z-vector equations

> (1 Zgba |l g 1] iy + Zog(bi 1] § 1| ja) + foadis — Fii0u)]
bj
= — 4> Theilbe || § 1] ag)
jbe

+4) Tai(ib [ g || kj)
bkj
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IV.3. DPT corrections at correlated levels of theory

—Z Jpa 1l 411 gi)* + Dyy(pi [ 4 || qa)). (IV.157)

In the DPT4 energy equation, the derivative of Z,; is needed as well. Accordingly, the

obtained Z-vector equations are differentiated once more with respect to A

6 *
Z[mrewaugnm 22 (01 g1 a) + (e ei>5z-j5ab>]

O |55 g, (A 3N, O, Oy >]
) a

== Z S O a7 el
_ 4; %1;\”: (e [l g aj) + Fbcij_a<bc gil“ aj>]
"> a;;”’f (1311 k5) + Ty, 2L S KD >]
bkj re ¢
_Z[Zfiqpaugqu + 92515119 ) g0
L pr Opa gij! @) quW], (IV.158)

Furthermore, the derivatives of I, with respect to A, are needed and may be obtained

by differentiating (IV.151), (IV.153), and (IV.155) respectively, leading to

oL, + Iy ors i |l g1l ki)*
¥=—2Z< T 1] 1] 1) + Ty 'M i

Ol o OArel
et Hgr|zb>+rk]ab—<kj!rj"ib>)>
_ Z (gf* —_ ;;) (IV.159)
Airlal 5 (aai (11 iy + Ty 20 L1110
+ S ) + P%)
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B Z (anc pr ie D, g aL) (IV.160)

v’ T DN T A @O
Wil 23 (f;fj #1191 by + 13, 2 L0
# S | ) k) + Do AL ““>>
-3 (G D + S5 2,3
- Z (gf;q pill g1 aj)" + D;q3<pi gfrlf wr
+ 2o 1 ai +D%>
¥ (gf 011911 ki) + 73, 2L LRI
+ gi’j i || g 1| ki) + Zbk%i”k”). (IV.161)

IV.3.1. Separation of scalar-relativistic and spin-orbit contribution

As in the HF case, the separation of the SR and SO contributions is achieved using
the Dirac identity (IV.53). Writing down the SR-DPT4 energy for MP2 is therefore
straightforward, i.e., all Pauli spin matrices are dropped and as all quantities are real, no
special care needs to be taken for the complex-conjugate expressions. The spin adaptation
for closed-shell systems is achieved as in the non-relativistic case which means that all
quantities involving two-electron integrals are expressed in terms of the ‘afSaf’ spin case,

i.e., it is exploited that

(pa |l g |l rs) =pq |l g || Ts)
=(pq | g |rs)—(pq|g|sr)
=g | g|7s)—(pq|g|sr)
=g | g |rs) — (pg| g | sT)
(g |l gl rs)={qll gl Ts)
=(pq | g |73)
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gl gl 7s) =Pall gl r5)
— (7| g|s7)

with
| p) =[ dpa), D) =| &) (IV.162)

The spin-adapted SR-DPT4 energy at the MP2 level is then given by

Esa :% [ZZ ;;i (8(ij | g% + 5™ | ab) — 4(ij | g™ + 5% | ba))
ij ab
+%:%:%tj]b (8 (2 ‘;;SR | ab) .y d(ij |;)\SR | ba))
o [ 0,2
+ 2%: gfsc:f(sm %zz)]
0% |t 2|
v [ Zes | s

with the definitions of the SR perturbed and unperturbed density matrices, Lagrange
multipliers, and integrals given in Appendix IX.6.

In order to get the same basic equations after spin integration for the three SO com-
ponents, i.e., SOx, SOy, and SOz, as well as to reduce all terms to a single spin case, it

is useful to define the following skeleton quantities

Tab

a)\soc g + Ej — €y — &b

> U (pb | ij +ZUSOC (ab | pj)

p

SOc fmz ab afae eb
E E IV.164
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oGP o .
T = U (tq [ rs) + > Us(pq | ts)
t t

~SOc

+(pg | g7 | rs). (IV.165)

This procedure may be exemplary shown for the different spin cases of the perturbed

amplitudes of the SOz component. From (IV.135) it follows

ot 1
USOx* b USO‘T*
3)\8093 57, +Ej— € — ¢ Z {pb | 47) Z {ap | ji))

+ZUSOI ab|m (ab | jp))

+ <5b | 977 |ij) — (@b | g5°° | ji)

afmz 4a afae 1€ fe ae
_;axso & Z(’?ASO b+za b

SOz

b 7b
s B oter ot

— — _ IV.166
Osor  Osox  OAsosx ( )
Otab ot otab ofba ofab
b g o Y O (IV.167)
OXsoz  OAsox  OAsor  Odsor  OAsos
ot ggab ofab ofab
I B B (IV.168)
OXsoz  OAsox  OAsor  OAsos
ot otab otbe oiba oiba
¥ = Y Y ! Y (IV.169)

Osor  OAsox - OAs0z B Osor  ONsox

After spin adaptation, the DPT4-SO energy at the MP2 level for a specific SO component

c=x,,z reads

tab ~ Cc C C
Eg. = sz (8067 1 97°° | ab) — 435 | 7°° | ba) — 4{ij | 35°° | ba)

— 52275%@(2[]500* (cj | 97°° | ab) —4lcj | 37°° | ba) — 4(cj | 55°° | ba))
i ab

+ DU | G5 i) — Ak | G197 i = 400 | 3 |3

+ ZZASOC* (pj | 65°° | ab) — 4(pj | 67°° | ba))
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i QZASOC (pb [ 977 | i) — 4lpb [ 977 | 1)") — 4(ij | 15" | ba>)

aD; afe
+ Z _] f(SO Z] f]
— \ OAsoc" " O0Asoc
0Dy, ,(30)e 8fa(,§o)c
+%: 3)\socf “*"Asoe
aZaz (SO f(SO
Lai IV.170
+; a/\SOCf * 0As0¢ ( )
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=——ZZ R e By
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! a)\SOC a)‘SOc a)\soc ’ )
Ofw _ ysoc 50 SO (
Do “Jpg T + Z Z ((pa | kq) — (pk | aq)), (IV.173)

TP Tq rq
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ZQASOC* (pr [ 35°¢ 1 4j) — (pr | 85°° | ja))

+22ASOC (qr 1 55°° | pi) — (qr 1 35°° | p))"
- Z (pi | §59° | ja), (IV.174)
and the perturbed Z-vector equations for the SO perturbation
GZSOC
Z Y ({ba | i) — (bi | af) + 6, 6u(ea — <))
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Sz, OG® oGt 9GY:  9GY  IGY  Ofy, 5 0fij s
B 0 Y17 0Xs0e  OAsoe  OAsoe | OAsoe  Odsoe  Orsoe © Ohsoe
oteb 67?"1. ofab
Xt gm0
O0As0c a)‘SOc 0Asoc
- Z Z taé 4 aGfb o 2 aéi: . 2 86;1];’5
- K1 OXs0c O0As0c¢ 0Asoc
kj b
ot afbc oter
+ S J— L aj | cb
Z; [ a/\so 3)\soc 0Asoe (aj | eb)
oG oG oG’
th cb 9 bc 2 cb
* Z Z 3)\soc O0As0c 0As0¢
aDmk . . oG  _9Gm _9Gim
. k) — k) 4 Dy |4 550k 9 Oak 9 Tha
Z {a)\SOC ma | ik) — {mé | ak)) + Drn O0As0c O0As0¢ 0Asoe
0Dy, . . oG™ e oG
— ((b — (b D, |4 a2 ac _ 2 ca .
Z {aksoc alic) = bifac) + Da OXsoc  OXsoe  OAsoe

(IV.175)

Note that no SO contributions appear for the last two terms in (IV.134), i.e., those that
involve the perturbed and unperturbed Lagrange multipliers I,,, and 01,,/0A .

IV.4. DPT4 for electrical properties

First-order properties may be expressed as first derivatives of the energy with respect to

an adequately chosen perturbation parameter.'°!
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(efg) at a specific nucleus is obtained by differentiating the energy with respect to the
corresponding nuclear quadrupole moment while the dipole moment is computed as first
derivative of the energy with respect to the components of an external electrical field e.
For the quadrupole moment the differentiation has to be carried out with respectto the
gradient of the electric field E = Ve. As the DPT4 energy is already given as a second
derivative of the energy, the corresponding corrections to first-order electrical properties
are defined by means of third derivatives. However, since in this work the corrections are
calculated using finite-difference techniques, the main issue in the following is how the
DPT energy expression is affected by switching on an external perturbation. Due to such

a perturbation, the potential V' is augmented by the following additional contributions:

VoV —-pe (dipole moment) (IV.176)
VsV-QE (quadrupole moment) (IV.177)
V-=V+qQ (efg) (IV.178)

with the dipole operator fi, the quadrupole operator Q, the nuclear quadrupole moment
tensor @, and the operator q for the efg at this nucleus.
Considering the DPT energy expressions given in Eqs. (IV.31) and (IV.51), this leads,
beside a change in the unperturbed non-relativistic orbitals and orbital energies, to the
following corrections: for the dipole moment, the potential in the perturbed operator el
has to be augmented by the term —fie leading to

Arel —

1 o 1 . S
lpg" = 530w [ GBVOD [ 9g) = sy | oDV — [1 €)aD | ¢4), (IV.179)

for the quadrupole moment by the term —QE,

1 R R 1 . A .
el = W(% | opVaop | p,) — m(%ﬁp |op(V - QE)op | ¢,), (IV.180)

while for the efg the term +q@ has to be inserted

1 o 1 ) X .
et = m% | opVop | @) — m(% | op(V+qQ)ap | ¢,)- (IV.181)

A further change is required in the CPHF equations, since for the determination of U;\;el
and uggel the modified integrals A have to be used as well.

Using the Dirac identity as given in (IV.53), the Al integrals in (IV.179) can be split up
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into SR and SO contributions

i =hig + g’ — (IV.182)
1 R A
3 1(n [DVD [ 0q) + (2 | D=1 )P | 20) } SR
+5{(e lio [PV XDl [ ) + (¢ [ io [D(=fr€) x P [9g)}. SO

For the quadrupole and efg integrals, see (IV.180) and (IV.181), a separation into SR and
SO parts is possible in an analogous manner.
At the DPT2 level, only the SR integrals are needed!?? while at the DPT4 level both SR

and SO integrals contribute.

IV.5. Further ideas for relativistic corrections

As the increased cost of a four-component relativistic calculation versus its non-rela-
tivistic counterpart is mainly due to the symmetry breaking of the SO operators, and,
as usually the SO contributions are significantly smaller than the SR terms (at least for
closed-shell molecules up to the fifth row of the periodic table), a further possible route
to treat relativistic effects is to calculate the SR contribution in a rigorous manner and
treat only the SO terms perturbatively.*!

To discuss this general idea the starting point is given by the Dirac equation (neglecting

all two-electron contributions) given in a projected form as

2\ %4 cop © s\ (7
“r ) PP = () (7). (IV.183)
Xp cop V —2mc Xq Xp Xq

The ‘kinetic-balance condition’®? is then used to rewrite the small component

_ .

with the so-called ‘pseudo-large’ component ¢, which possesses (for electronic solutions)
the same symmetry and the same order of magnitude as the large component. It should
be noted that in the non-relativistic limit, the pseudo-large component is equal to the
true large component as can be seen from (IV.30) when (IV.1) is inserted. While in DPT
the exact relation between large and small component is recovered via a perturbative

expansion and calculated at the operator level, i.e., as given in (IV.78), this relation, i.e.,
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1V.5. Further ideas for relativistic corrections

everything higher than the zeroth order, is here folded into the structure of the pseudo-

large component ¢, while the large component remains unchanged, i.e.,
Pp = Pp- (IV.185)
Inserting (IV.184) into (IV.183) yields

T S T
10 I A I .0 I 0 B B B (IV.186)
(bp T 0;121212'213 - T (bq (bp O 2Tr1LCQT ¢q
N N———

v

ﬁDp sDP
with

o f)2
T=—. IV.187
o ( )
The procedure sketched here again leads to a change of the metric and a new Hamiltonian
lep. Using the Dirac identity as given in (IV.53), the SO contributions in lep can be

split off yielding!®3

hpp =h3% + h3Q (IV.188)
1% T 0 0

= . . |+ SR IV.189

(7 2 1) 7 ( agho) e

If this separation is employed, and the SR, or so-called spin-free (SF) part is treated in
a full, i.e., non-perturbative manner, this leads to the spin-free Dirac Coulomb (SFDC)
versions of a given method which also provide the proper SR limit of the corresponding
DPT expansions. When calculating the SO part perturbatively, the resulting equations
are very similar to those used in the present SO-DPT4 treatment. Accordingly, it is
expected that only a few modifications are needed to provide such a perturbative scheme
as an addition to a SFDC calculation. In a first step, one can simply augment the SFDC
energy by the SO-DPT4 correction. This should already account for a major fraction of
the SO effects that are missing in the SFDC results. In a second step, the SO contributions
may be evaluated using the SFDC orbitals which should improve the results further, as
there are indications that the coupling between SR and SO effects becomes important for
elements in the higher rows of the periodic table (see chapter VII).

The advantage of such a two-step procedure is especially evident for CC treatments as
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here the additional cost for a perturbative SO treatment is much less than that for a full
four-component calculation in comparison to a SFDC computation.

The SFDC approach has been recently implemented by Lan Cheng?! into the CFOUR
program package® so that the here suggested cost-effective treatment of SO corrections

can be explored in the near future. Work along these lines is currently pursued.
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V. Calculation of Relativistic Integrals

In quantum-chemical calculations it is always necessary to evaluate integrals over the
basis functions which define the chosen basis set. Usually, these basis functions are given
as a linear combination of primitive Gaussians and are referred to as contracted Gaussians.
In practice, the corresponding integrals are evaluated over Cartesian Gaussian functions
and the contraction is done afterwards. To evaluate these integrals it is possible to use, for
example, the schemes of Obara and Saika,'%%1% Rys,1% or McMurchie and Davidson.!?”
In this work, the scheme of McMurchie and Davidson is chosen. Therefore, following Ref.
107, an overview over the calculation of standard integrals via this scheme is given while
the relativistic integrals that have been implemented as part of this work are discussed

afterwards.

V.1l. Cartesian Gaussians

A (unnormalized) Cartesian Gaussian with its center at A and exponential coefficient

a4 which determines the width of the function is given by

nm n m_  —« r2
ga"(r) = 2yl e aTA (V.1)
with
x A, TA
ra=r—A=|y| -4, |=]va]- (V.2)
z A, ZA

These functions are distinguished by the values of L=n+1+m =0,1,2,... as:

L type

0 s-function
1 p-function
2

d-function
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Since Cartesian Gaussians can be factorized as
nlm( ) _.n —ocA:L’?4 l —ocAyi m —04,42?4 (V 3)
ga"(r) = ale Y€ Zlye , )

it is sufficient to discuss in the following only the one-dimensional case for the sake of
simplicity. Gaussian functions have the advantage that it is rather easy to calculate
products, take derivatives, and to integrate, as is shown in the following. The product of
two Cartesian Gaussians, which will be referred to as charge distribution Qp4, is given

again by a Gaussian centered at the new center P,

Qs = gif gt = e rbalte A = Eapaipalite rth (v.4)

with

AJI B$
aP:aA+aBa I’P:LU—PI, Pz:w7 (V5)
ap

and

Eap = exp (w) (AB,)?, AB,=A,-B, (V.6)
ap

determining the extent of the overlap.
When taking the derivative with respect to A,, two new Cartesian Gaussians are obtained;

one with increased quantum number L and one with decreased L:

_ 2 _ 2 1 2
The M ATA = 2a 42" e T ATA — np"ilemATA (V.7)
dA,
_ n+1 n—1
= 2049’ —ngy . (V.8)

Due to the definition of x4, (V.2), differentiation with respect to x instead of A, leads to
a sign change.

Integrating a simple Gaussian leads to

+o0
/ eahdy = [ L . (V.9)

) QA
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V.2. The McMurchie-Davidson scheme

V.2. The McMurchie-Davidson scheme

V.2.1. Expansion with respect to Hermite Gaussians

To rewrite the prefactors in the charge distribution (V.4) with respect to the new center

P,, the following relation of a Hermite Gaussian to the derivatives of a Gaussian

O\ )
(0]3 ) e PP = Ay(zp;ap)e” OPTP (V.10)

is used together with an expansion of the polynomials 2’y 25" in terms of the functions

Ay and coefficients d3*"”?

na+np
Caaz? a2 S
xhte  ATAgIPeT B = Fup g A" Ay (xp; ap)e” @PTP, (V.11)
N=0

As the functions Ay up to order n constitute a complete basis for the representation of
another polynomial of the same order, the sum in the above expression runs only up to

na+ng.

V.2.2. Recursion relations for the coefficients

Via the relation
Ay(zp;ap) = ozgﬂHN(a}D/pr), (V.12)

the functions Ay are connected to the Hermite polynomials Hy for which the following

recursion relations

() = NHy 1(t) + %HNH(t) (V.13)

hold. Therefore, the recursion relations for Ay are given as

1
TaAn = NAn_1 + (Pr — Ag)AN + gANJrl- (V.14)
P
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V. Calculation of Relativistic Integrals

Inserting this into (V.11) and equating coefficients yields the recursive conditional equa-

tions for the coefficients d*"?
n n DA MmAN 1 naAn MAT
d§VA+1) B _ PAI dNA By zanNAle + (N 4 1)dNA+1B (V15)
na(n DR MAM 1 naAn MmAM
dNA( B+1) _ PB, diA"" + ZOéPdNAle + (N + 1>dNA+13 (V.16)
with the starting point for the recursion relation being d’ = 1 and

A" =0 V N >ng+ng. V.17
N

V.2.3. One-electron integrals with factorizable operators

In order to calculate one-electron integrals with factorizable operators it is exploited
that

e a factorization of three dimensional integrals into a product of one-dimensional

integrals is possible,

e the Hermite Gaussians are orthogonal with respect to exp (—apz%) so that

ap

/dZL’AN(l’p, OZP)AM<ZL‘P; Oép)eapz% = 5NM -, (V18)

e as Ag = 1, it follows

/dxANe_O‘P””%’ = 6N0 1, (Vlg)

ap

e operators which are given as polynomials of the form (z¢)"* (yc)™ (2¢)™ can be
combined with the corresponding Hermite Gaussians via the the recursion relations.
Using (V.11), the charge distribution in (V.4) can be rewritten into the form
nA+np

QBA = EAB Z d?VAnBAN(l’p; ozp)e_apz% (VZO)

N=0
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V.2. The McMurchie-Davidson scheme

and accordingly for the three-dimensional case

na+ng la+lp ma+mp )
Qpa = Eap Z AP An(zp; ap) Z A AL (yp; ap) Z It P Ay (zp; ap)e” PTF
N=0 L=0 M=0
(V.21)
na+np la+lp ma+mp X
=Eap Y dy"PAy D €PBAL D fATE Ay T (V.22)
N=0 L=0 M=0
_ 2
= Eag Z DnpymANALAy e74F7P, (V.23)
N,L,M
with
DNLM = anAnBG%leATZAmB. (V24)

Analog expansions can be established for the other components as well. Whenever the
summation is written in the following as a combined sum over N, L and M as in (V.23),
the summation ranges from (V.22) are assumed, i.e., for the  component from N = 0 to
na+ng, for the y component from L = 0 to [4 +p, and for the z component from M = 0
to my + mp. Then, a one-electron integral with a multiplicative operator 0= O(r) is

given by

(98 | O | 9a) =FEaB Z Dnry[NLM | O] (V.25)

N,L,M

with the so-called basic integral
INLM | 0] = / PrAyALAyO(r)eor (V.26)
and
ga = gZAlAmA’ g5 = g%BleB. (V.27)

The simplest possible integral in this context is the overlap integral. It is is given as

<gB | 9A> = /dgr Qpa
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V. Calculation of Relativistic Integrals

=Eap Y Dnpu[NLM | 1] (V.28)

N,L,M

with

[NLM | 1] = /deNe_aPﬁ’/dyALe_aPy%/dzAMe_aPz%

= Sx0010010 (al) . (V.29)

P

After insertion into (V.28) it follows for the overlap integral:
3
2

m AN maAm ﬂ—
(g | ga) =Eap dianselals fmams (—) : (V.30)

ap

For a x-dipole integral

(98 | zc | 9a) = / d’r Qpaze (V.31)
=Eap Y Dyiu[NLM | z(] (V.32)
N,L,M

the following basic integral is needed

2

[NLM | Zl'c] = /dZL‘AN Tc e_aPCE% /dyALe—apy% /dzAMe_aPZP (V33)
= 000010 {On1 + PCadno} <a1> (V.34)
P

where the recursion relation for the Hermite Gaussians in (V.14) was used. For the y

and z component analog expressions can be derived. Accordingly, the dipole integrals are

given as
(g5 | 76 | 92) = Eap (@475 1+ PC, dyansy et proams (ai) | (v.35)
(95 | v | 92) = Ean {€lo'> + BT, cle } ayans fams <alp> , (V36)
(95 | 2 | ga) = Eap {f{"™® + PC. fi"a™8} dga"Be'® (;—P) : (V.37)

76



V.2. The McMurchie-Davidson scheme

The integrals for the quadrupole moment may be derived in the same manner. Using the

recursion relations twice, the expression for the non-diagonal elements is
[INLM | zcyc)| = /dxANa:c o~ OPTD /dyALyc e~ oPYp /dzAMeaPZ%’ (V.38)

3
= Omo {51\71 + W$5NO} {5/:1 + Wy(;LO} (%) (V.39)

— S T
(am | 20t | 01) = Eanld?™ + PO Wb 4 PO,y o (1) (v
while the diagonal components are, for example, given by
NLM | 24 = [ deAyaz? e~ OPTE dyALe_aPy?’ dzAMe_O‘PZIQD V.41
c c

_ _ 1 3
—5100010 {251\;2 +2PC,0n + (Pci + —) 5N0} (l) (V.42)

20ép ap

e e 1
(98 | ¢ | 9a) =Fap {2d£‘A”B +2PC,di " + (Pci + E) dgA”B}

3
(s

2
< (2 (V.43)

ap

V.2.4. One-electron integrals with non-factorizable operators

For integrals that contain |ro| ™! in the operator, a factorization and analytic evaluation

is impossible. To calculate, for example, the integral over the nuclear-attraction potential

(98 | Irc|™" | ga) = Ean Z Dnim[NLM | [re| 7' (V.44)

N,L,M

the basic integral [NLM | |rc|™!] needs to be evaluated. Using, as was shown by Boys,'%®

1 2
1000 | [re|Y] = / dPr e—orrh 1 _ 2T ooy (V45)
|1“C| ap
with the error function
1
Fy(T) = / exp (—Tu?*)du (V.46)
0
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V. Calculation of Relativistic Integrals

and
T = ap(C—P)? (V.47)
as well as (V.10), it follows
INLM | Jro| "] = / d3rANALAM|r—1C|e‘aPr§> (V.48)
. (aix)N <£Dy>L (aiz)M\/dgrﬁe_aP% (V.49)
22 11

“o(am) () Gr) men o

After introducing

e () () ()

the basic integral is finally given as

21

INLM | |re|™] = —Ryim (V.52)
ap
and the nuclear-attraction integral as
1 2
(95 [ [rc|™ | 9a) = Eap— Z DyrvByrm- (V.53)
OP NIM

Thus, the sums in the expression do not vanish and the coefficients are calculated using
the recursion relations in (V.15) and (V.16). In order to generate the auxiliary functions
Rxray up to the maximal value of N + L + M recursion relations are used which can be

derived using the more general integral

Rypay =(—a' 2NN (—2a))

1
y / uNFLHMA2 (01200 H, (al/Qbu)HM(a1/2CU)e_Tu2dU (V.54)
0
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V.2. The McMurchie-Davidson scheme

and
T = a(a® +b* + ). (V.55)
With
1 ,
Fy(T) = / e Ty (V.56)
0

it follows

ROOOj = (—QQ)JF}(T) (V57)

From the recursion relations for the Hermite polynomials (V.13) the recursion relations

for Rnpaj are derived:

Roo(ar41); = cRoon(j+1) + M Roo(ar—1)(j+1)5 (V.58)
Ror+1ym; = bRopn(j+1) + LRo—1)nm(j+1)5 (V.59)
Rinyyemj = aRypy+1) + NR(N—1)Lam(+1)- (V.60)

Thus, the required Ryrar, or accordingly Ry, can be generated using a table with the

error functions F;(T') for all values of the index j from 0 to the maximum N + L + M.

V.2.5. Two-electron integrals

In the same manner as the one-electron integrals, the two-electron Coulomb integrals

may be expressed using Hermite Gaussians

na+nglat+lg ma+mp ne+np lo+lp mg+mp
(gm0 |- |onse ) ~BanEco DI IS DI
=0 L'=

dnAnB lAlemAdenaneL/lDfmcmD |:NLM
12

N’L’M’} (V.61)

—EABECD Z Z DNLMDN’L’M’ {NLM

N,L,M N',L',M'

N’L’M’] (V.62)

12
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with

12

[N LM

1
N,L/M,:| ://d3I'1dSI'QANALAMe_aPr%P—AN/AL/AMIG_O(QI‘SQ

12
oY/ o N/ o \M
‘(aP) (aPy> <8Pz)

) (%) ( : > : { ]
X | — 000|—1000
(an> (aQy) an 12
and the basic integral'®® given as
{ooo - ooo} N Fo(T)
712

with Fjy as defined in (V.46) but with

7 _4PeQ (PQi + PQi + PQz)
ap + ag

and

ot

2

N aplgy/ap + OJQ.

As T only depends on mwmy, and PQ_ it follows that

Ao

0
aif(T) :_aQif(T>’ i=x,9, 2.

Therefore, the basic integral can be rewritten as

N'L'M' _(_1)N’ 9 AR
B OP,

< (~1)¥ (aip) - aiz)MW Fo(T)ho

(=N LM ) o

8 N+N' 8 L+L' a M+M'
(an) (W) (aPz) Fo(T)

(.

1

T12

[NLM

e

RNyNt L/ MMt
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(V.65)

(V.66)

(V.67)

(V.68)
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V.3. One-electron integrals for relativistic corrections

leading to

< 1
9dBYdp
T12

1

9A90> =EspEcp Z Z Dy Dy v

N,L,M N',L/ .M’

X (—1)N/+LI+MI)\0RN+N/7L+L/’M+M/. (V?l)

V.3. One-electron integrals for relativistic corrections

In the calculation of relativistic corrections using DPT (see chapter IV) integrals of the

form (gg | opOop | ga) arise which can be separated using the Dirac identity'” into

(g | POGD | ga) = (g5 | POD | ga) + (g5 | ic (PO X P) | ga) (V.72)

with the general operator O, the Pauli spin matrices o and the momentum operators p.
The first term on the right-hand side corresponds to the scalar-relativistic (SR) contribu-

tion and is given by

A d ~ 0
(95 | POP | ga) =— ) _ <gB 53, 9A> (V.73)
V=2x,Yy,%

-5 (o) o) o

All contributions contain derivatives of g4 and thereby differentiated charge distributions

20

ov 0

G'% 4 and THY with v = z,y, z. For the x component they are given as

0
Gr  — nplpmp ~ nalama V.75
BA —YB aa:gA ( )
:g%BleB (_QQAgXLA+1)lAmA + nAgI(L‘nAfl)lAmA) (V.76)
na+np+1 la+lp ma+mp )
=FEaB Z A" AN Z AL Z ot A yemorTr (V.77)
N=0 L=0 M=0
and
2
7T — nBleBa_ nalama V.78
BA gB axQ,gA ( . )
na+ng+2 la+lp ma+mp )
=Fup Z A Ay Z e Z i me Ay *Prp (V.79)
N=0 L=0 M=0
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with

xd%AnB _ QOzAdg\?A—’_l)nB + nAd(nA—l)nB7 (V.80)
A =404 dW AT 20, (204 + 1)d"E + nalna — 1)dyr I, (V.81)

In the differentiated charge distributions only the corresponding coefficients as well as
the summation limit is changed, but the Hermite Gaussians remain unaltered. Analog
expressions also hold for coefficients and charge distributions differentiated with respect
to y and z.

Using the differentiated charge distributions, the SR contribution may be expressed as

A~ A~ aO vy
(95 | POD | ga) =— > {/dng g, /d3r0 BA} (V.82)

V=x,y,z

00 R
== > > Eus {DNLM [NLM S| + D [NLM’O]
v=w,y,z N,L,M
(V.83)
with D%, and DY}, given by
( mang lal mam
. TT JUATB AB Aamp
xx "y b
. JrAnB yylalp pFmamp
T TJnA™B lAlemAmB Yy - dN €r, f
o 2z o dpAnB elalpaz fmams
4 = . JnaAnp lalp pmamp uv o .
D = AN Ve far ; Dypyv = n Lal
Ty : md AMB yeA BfmAmB
. JrAnB lalp zfmAmB N L M
Ziayn e M o mans Lalp 2 emamE
xz:*d e f
N L M
. qrnang y lalp z fmamp
Lyz : dN ef fM
(V.84)

The summation range in the sum over N, L, and M in (V.83) depends on the superscript
of Dy which indicates for which components the differentiated coefficients are present.
Without this being denoted further, it is assumed that for these components the sum-
mation range is increased by 1 for the singly differentiated coefficients and by 2 for the

doubly differentiated ones as shown in the definitions of G%, (V.77) and T%4 (V.79).

The spin-orbit (SO) contribution, i.e., the second term on the right hand side of (V.72),
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V.3. One-electron integrals for relativistic corrections

may be expressed as

104 (pyépz - pzépy>
9A> (V.85)

<gB ‘ ZO'(f)O X IA)) ‘ gA> = <gB igy(pzépx - pzépz)
7:0'2 (mepy - pyOp;B)

where the topmost row corresponds to the spin-orbit z component (SO, ), the central row

to the SO, and the lowermost row to the SO, component. Using the Levi-Civita tensor

+1, for cyclic permutations of z,vy, 2
€uwvo = § —1, for non-cyclic permutations of x,y, 2

0,  for repeatedly occurring indices

the SO components n = x,y, z can be written as

(95 | io (PO x P) | gady Z Z Enp (9B | szOp,, | 94) (V.86)

U=,Y,2 V=2,Y,%
O—

=— oy, <gB 7:.%% o gA> (V.87)
:_w,,{ / d*rGY, ‘20 / B4 0

/ d3rG§§Ag—O - / d&*rT g*;,O} (V.88)

} (V.89)

with 7, u, v cyclic. It is exploited here that the contributions containing the doubly

0 ~0 0 ~ 0

differentiated charge distributions T}’ and T/, cancel as those quantities are defined via

J 0
T nplpmp nalama V.90
BA =9B EN oA ( )
:EAB Z DK/VLMANALAMeiaPr%, (Vgl)
N,L,M
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and therefore it holds that T5"% = TH.

V.3.1. Scalar-relativistic nuclear-electron potential integral

The first one-electron integral that is already needed for DPT2 energy calculations

and has been worked out by Christine Berger in her Ph.D. thesis!®” involves the nuclear-

electron potential
~~ 3 delel”
c

and, using (V.74), is given as

(95 [ BVaeD | 94) == > {<gB

V=x,Y,2

avne

a]j vne

994\ 094
ov 98 ov?

g .
A> /dg Z’ TBA

=— Z ZcEap Y Dy [NLM|[rc|™]
N,L,M

ZZCEAB > D¥iuBRyiu

N,L.M

with

V.

(o

where the result from (V.52) has been used in the last step.
The first term in (V.93) is given by

Ve 8gA 3 8|rc| 1
< ’au > - fan 2 %

= — Z ZcEap Y Dipu lNLM'
N,L,M

drc|™ 1]

In the evaluation of the basic integral

Ofre|™! / 3 0 (ONY(ONY AN e
{NLM‘ 5 \ar ) \ap,) \ap) el

N L M
_ 0 9, 9, 9] 2r Fo(T)
0P, \ 0P, 0P, OP, ap

84

(V.92)
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(V.95)
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(V.98)



V.3. One-electron integrals for relativistic corrections

27
:R(N+1)LM— (V.l()l)
ap

it is exploited that due to (V.2), (V.46), and (V.47) it holds

0 0 0
%RNLM - _%RNLM - aTRNL]\/[. (VlOQ)

T x

Combining the two types of integrals for all components the SR integral (g5 | pVaeD | 94)

is finally evaluated as

27T
<gB ‘ pVieD ‘ gA ZZCEAB Z {DNLMR(NJA)LM + DNLMRNLM
N,L,M

+ DX v Bnvienym + DYy Byim

+ DJZVLMRNL (M+1) + D]ZVZLMRNLM} (V.103)

ZZCEAB Z Z {D]VVLMR]\I;IJ}J+DNLMRNLM} (V-104)

v=z,y,z N,L,M

with

T R(N+1)LM

v+1
RE\/L\/} =3v:Bynaiym - (V.105)

Z RNL(M+1)

V.3.2. Spin-orbit nuclear-electron potential integral

For a full DPT4 treatment (see chapter IV, sections IV.2.2 and IV.3.1), the SO contri-
butions to the nuclear-electron potential integrals (95 | 10 (PVae X D) | ga)n, 1 = T,y, 2
are needed and have been implemented as part of this work. Using (V.89), the integrals

are given by

o R ) 0 0 0 0
(95 | i0(DVie X D) | ga)y = — ic <gB AT O gA> (V.106)
— oy Eap Y {DJ”VLM [NLM'aV"e]
N,L,M
aVne
Dt {NLM’ } } (V.107)
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with 7, u, v cyclic. As the (differentiated) charge distributions affect only the summation

range and the coefficients, the resulting expression is easily given as

(95 | 1o (PVie X P) | ga)y —wn Z ZcEap Z {DNLMRKTJEIM — D par R
N,L,M

(V.108)

while the basic integral containing the differentiated nuclear-electron potential V. is
already known from (V.101).

V.3.3. Scalar-relativistic dipole-moment integral

In the calculation of SR corrections to electrical properties, integrals of the form

(g | POD | ga)

arise at the DPT2 level'®2110 with the according operator for the property O (see chapter
IV.4). For the dipole moment, these integrals are given by (gp | pe’ up | ga) with the
components of the dipole operator p, = —ekc, k = x,y, z, the elementary charge e (=1 in

atomic units), and the vector of the electric field e. As the scalar contribution is given as

Z <gB |py5:pﬂ1pu + pugyljlypl/ + pugzlflzpu|gA> (Vlog)

vV=x,y,z

the integrals (gp | PP | ga) need to be calculated. Ignoring in the following the factor

—e as well as the component of the electric field ¢; and using (V.74) leads to

(95 | PhcD | ga) = — Z<

V=1,Y,%

red
“ov
=— EAB { NLM {NLM‘

v= x7y?

0

8

> (V.110)

ok
C] D [NLM\ko]}

(V.111)
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with D%, ,, and D%}, ,, as defined in (V.84). The basic integral [INLM |k¢] has already
been given in (V.34). For the other basic integral it holds

(V.112)

[NLM'%} _ [NLM]|1] = dno0roda0 (see (V.30)), for k =v

ov

0, otherwise
For the various components, the resulting integrals, abbreviated by DSF are then given as

™

3
DSR = — Eup <£) ’ {eéAleénAmB qnans
+ eéAlB fgnAmB (:E$d7iLAnB + Ww a:mdgAnB)
+ yyeéAlB f(’)ﬂAmB (d?AnB + Wmdg,qma)
el = fame (@ 4 PC.i) (V.113)
3
DSR = — Fap (%) {rdgans frams (clate | PG, elpin)
+ djAme f(’;nAmByeéAlB

manp pmamp (yy lalp | 7 vy lalp
+dg""" fo ("er'® + PC, Yegt?)

g g (et 1 PCe') ), (V-114)
3
DER =— FEup (l) {mdgANBeloAlB (fmams 4 PC. mams)
ap

by elta (frame 1 PO, [ )

nmang lalp z pmamp
+dy"" e Jo

+ dgAnB eéAlB (zzflmAmB + ﬁz ZZfS”AmB) } (V.115)

V.3.4. Spin-orbit dipole-moment integral

In this work, the SO contributions to the relativistic dipole-moment integrals have
been also implemented as they are needed in the full DPT4 property treatment (see

chapter IV.4). As seen from (V.85), in principle, for every spin-orbit component there are
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contributions from all components of the dipole moment:

10y (pyépz - szpy)

<gB z.O-y(szpac - prpz) gA> <V116)
io_z (p:v Opy - pyOp:C)

with

O=e"p=cyp,+ Eylly + Exfbs. (V.117)

The corresponding contributions to the SO dipole-moment integrals, abbreviated in the
following as Dio", k,n = x,y, z, while ignoring —e, the component of the electric field ey,

and the Pauli spin matrices, are given as

. o, 0 o, 0
Do — <gB Sk — gokey gA> (V.118)
B Y (0% Okc Okc

with n, u, v cyclic. Due to (V.112) only the integrals

D" =~ iBap e Y Dipn[NLM | 1] (V.120)
N,L,M

need to be evaluated which finally leads to

D3O+ =0, (V.121)
on\ 2
DSOy —i g <£> drAns elals = gmams (V.122)
3
2 2
D% = —iEap (é) g Veh'n frame, (V.123)
3
2 2
DSO= = — iEap (é) dyame efple = prams, (V.124)
DPO =0, (V.125)
on\ 2
DO =iE4p (i) TdgATE ehe frrame, (V.126)
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3
2 2
D3% =iEap (i) dgA"e Yegh'® firame, (V.127)
o7\ 2
D50 = — iE,p (a—Z) LA eghtB fiAT e, (V.128)
D50 =0. (V.129)

Note that the SO dipole integrals require only overlap-integral contributions.

V.3.5. Scalar-relativistic quadrupole-moment integral

For the SR contribution to the quadrupole moment which again first arises in a DPT2

property calculation (see chapter IV.4), the integrals to be evaluated are given by

A 0 ~ 0
(95 | PQisP | 9a) = — V;Z <£IB 5@@'5 9A> (V.130)
v OQU 127 A
ov
V=Y, N,L,M
(V.131)
with

Qij = —eicjc, fic,jo = To,Yo, zo- (V.132)

The first basic integral involving the differentiated quadrupole-moment operator Qz‘j leads
to a dipole-moment basic integral as given in (V.34) if one of the components of Qij
corresponds to the component of the derivative or vanishes otherwise. The second basic
integral involving Qij is evaluated as given in (V.39) and (V.42). The resulting expressions,
abbreviated as QSR i, j = x, v, 2, are then

iy 0

55 =— Eap(—e) Z {DfVLM[NLM | yel + DNLm[NLM | zcyc]
N,L,M

+ DX INLM | z¢) + DY 3 [INLM | zcyc)
+ DY NLM | xcyc]} (V.133)

3
m 2
:EABG — X
ap
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{f(”)nAmB(.IdgAnB +xxd711AnB _i_ﬁm Z‘:Ed'gATLB)(ellAlB +Wy eéAlB>
+fmAmB( elAlB +yy€lAlB _|_W yyelAlB)(dnAnB _I_Wx dgAnB)
 #E pmams (grans | PC, A" (e lalp +PC, elAlB)}’ (V.134)

3
3855 =FEspe (1) ’ X
ap
{eéAlB (2qnans 4 @z grans 4 PG, s nans)(fmams | PO, frams)
4 yyeéAlB(d711AnB +degAnB)<fmAmB +PC fmAmB)
e (7 PO (fyame + 7 e 4 PC, = ey, (V.135)

3
m 2
yz —EAB 6( ) X
ap

{a:;zdnAnB( lalp +PC 6lAlB)(fmAmB —I—PC fmAmB)

+ dnAnB (yelAlB + yyelAlB + WyyyeéAlB)(fmAmB + PC fmAmB)

A (e PO !®) (fy a7 + e £ PO = fame) ) (V.136)
R Eape Y {DfVLM[NLM | 22¢]
N,L.M
+ (DFias + Das + Diiuar) INLM | 2] | (V.137)

—Eap e (a ) { fle forame (2 2qpame 4 9PC, dy ")
P
_ N 1
lAlemAmB (2 x:cd;AnB —{—QPC:C xxd?AnB + (Pci + 5 ) x:cdgAnB)
ap

_ 1
+ Wegh! fyrams <2d’;A”B +2PC,d""" + (PC + 5 P) dgA"B)

Le lAlB =z pmams <2dnAnB +2PC,di"e + (PC + %) d”A”B) }, (V.138)
ap

3
2 -
=B (Z) faragees (s 2P0, v
+ dgA"E freme <2 yyeIQAlB +2PC, yyelf‘lB + (PC + 21 ) yyef{‘lB>
P

N 1
_'_degAan(')mAmB (2 lalp + 2PC elAlB (PCZ + 5 ) elOAlB)
ap
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V.3. One-electron integrals for relativistic corrections

- e 1
+dge #E forame (Qel{‘lB +2PCye'” + <PC§ + 2—) é“"B> } (V.139)

ap
SR ™
v =Lape (a—>
P

. ————
+ dg A" e <2 = fyrame 4 2PC, 7 frame (Pcﬁ + oo ) = f;“’”B)
ap

Njw

{dnAnBelAlB( meAmB —|—2PC z mAmB)

_ — 1
_i_CE-’EdgAnBeéAlB (zmeAmB + ZPCZf{nAmB + (Pcz + 5 ) 671Am3>
ap

o 1
+ qrans welaln (2fmA’"B +2PC, f"A"" + (Pci + 2—) fS”AmB) } (V.140)
ap

V.3.6. Spin-orbit quadrupole-moment integral

The SO quadrupole-moment integrals are given according to (V.85) if O is replaced by
Qij and have been implemented in this work. In this way, the corresponding contributions,
. SO, . o . .
abbreviated by Q;;”" with n, u, v,4,j = x,y, 2z and n, u, v cyclic, can be written as

s0, o 0 0. 0
Qij ——26077 <gB 8MQU8V - GVQ”8u

9A> (V.141)

0Qi; 0Qi
! a_u]] ) . (V.142)

W] — D [N LM
As was already discussed for the SR case, the derivative of Q,-j with respect to z,y or z

=—ieoyEap Y (D;VLM [NLM
N,L,M

leads either to a dipole-moment integral or vanishes. Accordingly, there are only dipole-
moment contributions present in the SO quadrupole integrals. The resulting contributions

are given by

Q2" =0, (V.143)
3
Q3% = —jeo, <1) Eap 2 eg'® 2 frame (di4" + PC, dg*"?) , (V.144)
ap
%
50: _jeg, (al) Eap 2velpl® frams (quane 4 PC, diam) (V.145)
P
3
QSO;C =ieo, (1) Eap 2 dgAnB Zf(;nAmB ( lalp + PC elAlB) ’ (V146)
ap
by =0, (V.147)

vy
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92

3
. T \?2 -
0. — _ 1€0, (—> EAB 2 C’3dgA”B f(;ﬂAmB <el1AlB + PCy eéAlB) ’

vy ap

3

s

Q0" = —ieo, (—5}3) Eap 2dj*"® Yeg'® (fi"4™* + PC, fi4™®),
3

2
QY =iea, (gp) Eap 2 *dpane ple (prmame L PC, frame)
QSOZ _0

3

i —_

QR =ieo, (—a ) Eap eg'? * fo ™" (d7*"% + PC, dy*"?) ,
P

Ty

3
. T\
SOy _ _ iea, <_ ) Eap déAlB 2 fmams ( lals PC 6lAlB> :
ap

ap

3
2
QS0 = — ico. (—“) Eap {eff' f54m2 (“d*" + PC, *dj*™)
dnAnB fmAmB (yellAlB + PCy yeéAlB> }7

3
. T\ 2 —
QSO;c = —jeo, <a > Eap yelOAlB fgnAmB (d?AnB +PC, dgAnB) 7

P
3
. T\
izoy = — €0y <_> EAB {dgA”B eéAlB ( fmAmB + PC z mAmB)
ap
lalp pmamp (x jnanpg DY T gnanp
— € fO ( dl +PCx do ) }7

3
T 2
SOZ =ieo, (—) Eup dgAnB yeéAlB (fmAmB + PC fmAmB)
ap

3
QSOz = — jeo, (l) : FEap {dSLAnB f(’;nAmB <y lalp + PC yelAlB>

ap
_ dgAnB eéAlB ( fmAmB +PC z mAmB) }’

3
2
SO ™ nAN mam lal lal
Q y_wo-y<a_> EABa:dOABfOA B( AB+PC 6AB>7
P

3
T 2
Q% = —ieo, <£) Eup "dga™® e (f{"4™E + PC, fi4™E).

(V.148)

(V.149)

(V.150)

(V.151)

(V.152)

(V.153)

(V.154)

(V.155)

(V.156)

(V.157)

(V.158)

(V.159)

(V.160)



V.3. One-electron integrals for relativistic corrections

V.3.7. Scalar-relativistic electric-field gradient integral

When calculating integrals over the electric-field gradient (efg) operator

. Bigje — oyt
dij = r—5307 tc,Jc = o, Yo, Zc, (V.161)
C
it can be exploited for the non-diagonal elements (i # j) that the operator may be
rewritten using the derivatives with respect to C;, C; or, due to (V.102), with respect to

B, B

3icic 0 0 1 9 0 1

— —_— = V.162
r?, 9C; 0Cjre  OP,0P;jrc ( )
The corresponding basic integral for the xy component is thus given as
3rcyc] O O aNaLaM/31_2
NLM = — d’r——e “P"P V.163
{ 7, ] or,op, \or,) \opr,) \or. el (V.163)
2
:_R(N+1)(L+1)M, (V164)
ap
or, more generally,
dicjo | 2T Lurn(+n)
NLM|— =—Ry (V.165)
rs ap
The non-diagonal SR efg integrals can be written as
“ 3icjc R 0 3icjc 0
=— —_— V.166
<gB D=5 P gA> V;Z<QB 50 Bv|% (V.166)
v 9, 3iCjC
=— Y Eap Y. {DNLM [NLM‘E .
V=x,Yy,% N,L,M c
vv 3iCjC’
+ Dyim [NLM o ] } (V.167)

To evaluate this expression the first basic integral on the right-hand side needs to be
tackled. Using (V.102) it can be rewritten as

0 3icjc 0 27 (i+1)(j+1) 0 2w (i+1)(5+1)
NLM|— = ROV = — RV V.168
[ ‘ay v}, | Ovap MM oP, ap MM (V.168)
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i 2m R+

“ap 'NLM
=qv=yj: ZRy (V.169)
T i+1)(j+1)(k+1
y =k : 22 QDO

with v,i,j,k = z,y,z and i # j # k . Using (V.165) and (V.168), the non-diagonal

elements, abbreviated as q%-R, 1,7 = x,y,z are given as

2T

oy =~ a_EAB Z {DfVLMR(NH)(LH)M
P NLM

+ DN Bvnya2m + Doy Bov ey @)

+ (DNw + DNpw + Do) R(N+1)(L+1)M}7 (V.170)

2 -
qi? = — a_EAB Z {DNLMR(N+2)L(M+1)
P NLM
+ D?VLMR(NH)(LH)(MH) + D%LMR(NH)L(MH)
+ (DN + D + Diar) R(NJrl)L(MJrl)}a (V.171)

2

oy =— —Eup Z {DfVLMR(N+1)(L+1)(M+1)
ap NLM

+ DY By 42 (v+1) + Doy Bv 1) (vt2)

+ (DNw + Dipar + DR RN(L—H)(M—H)}- (V.172)

For the diagonal elements, the Poisson equation!!!

1
V2— = 4716(rc) (V.173)
re
needs to be fulfilled, i.e., for rc = 0 the contribution from the delta function needs to be

accounted for. To avoid this, the diagonal elements may be rewritten into the form

32, — 12 1(202 02 a2>1

3 T o2 gk = di£j#k (V.74
re 3\70i2  0j3 0k%) |rol’ s r,y,zand 1 £ j # (V.174)
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V.3. One-electron integrals for relativistic corrections

as then the contributions mentioned above cancel out and the efg tensor is, as it should

be, also at rc = 0 a traceless quantity. The basic integral is then given by

i+2 j+2 k+2
BN 2T o R - RED) . (v

re

{N LM
ap

32%—1’20] B 27 1

The diagonal scalar-relativistic electric-field gradient integrals are thus given as

32— 12 0 32 —12 0
_ Y% —1c Y V.176
<gB D5 P|oa sz:y 95| 5 By | (V.176)
y d 3iZ, —rZ,
== > Ea Y, {DNLM [NLM‘a—rsc
V=z,Y,% N,L,M

+ DX, [NLM

9 2
Sic —re| | (V.177)
e

Analog to (V.168) and (V.169), the basic integral containing the derivative with respect

to v can be written as

0 322 —r2 0 2r1 i+2 i+2 k+2
B R -axd Lo B L B or) (va7s)
C v
. T i+3 i+1)(5+2 i+1)(k+2
v 2 (2 - BN RUN)
= dv=g: 2 (SRR B - RS (vam)
T i+2)(k+1 i+2)(k+1 k+3
v 2 (2R - R - RT)

with v,4, 7,k = x,y,z and i # j # k. Accordingly, the integrals for the diagonal elements

are given as

2w 1
R = g Z g{DfVLM(QR(NJrs)LM — Rivyiyeam — Rivgnni+2))

+ Dy CRvi2y iy — Byrsym — Bywsnar+2)
+ Dy CR(vy2ypv+1) — Bnwsoyary — Byooes)

+ (DNar + DNoar + DNoar) CR(v+2ymm — Bnaoym — RNL(M+2))}, (V.180)

2m 1.,
Gy = a_PEAB Z §{DNLM 2R+ p+2m — Bivasyin — Rven L)

+ DX CRy 13y — Rvyoywsnym — Bwanyare)

95
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+ Dy RN (p12)u+1) — Rive2)nors1) — Byoes))

+ (DN + DV + DXow) @Ry nvoynr — Rivyoyoamr — RNL(M+2))}, (V.181)

2T 1
Qi = a—EAB Z g{D?EVLM(QR(NH)L(MH) — Rnyayom — Bvinyr2)m)

+ DY s CRN (1) (42) — Rive2) ey — By(+syn)
+ DXy 2RyLrss) — Rivioynv+1) — B(pr2)arsy))

+ (D?VxLM _|_ Dy NLM —|_ D]ZVZLM)(QRNL(MJFQ) — R(N+2)LM — RN(L+2)M)}- (V182)

V.3.8. Spin-orbit electric-field gradient integral

For the SO contributions which are again needed at the full DPT4 level in a corres-
ponding property calculation (see chapter IV.4) and which have been implemented as a

part of this work, the required integrals are

i R . 94
(95 | i (Pi; X B) | ga)y = — iy Eap Y {DNLM {NLM’ J]
N,L,M

— Dt {NLM‘ aq”} } (V.183)

with 7, i, v cyclic. The basic integrals have already been evaluated in (V.169) and (V.179).

It follows therefore for the SO contributions, abbreviated as q?jO,,

2m
Qoo = — wr_EAB Z {DNLM (2Rv12)z+1ym — By@sym — By@yr+2)
ap N,L,M
- D?VLM(QR N4 L(M+1) — BNy — Byooues) }s (V.184)
q:Sc:(L‘)y == Wy_EAB Z {DNLM 2R(N+2)L(M+1) — BN(L+2)(M41) — RNL(M+3))
N.L.M
- D]ZVLM(2R Nesym — Rivenyaoyn — Rvenon+2) }s (V.185)
Gy =— iUZ—EAB Z {D% L1y QR4 — Riveny o — RivenLarse)
N,LM
— D3 QR 42y +1ym — Rnvpasyn — Rnanyi+2) }s (V.186)
. 27T
qzs/gz == —FEap Z {DNLM 2RN(L+3 M — R(N+2)(L+1 M — RN L+1 (M+2))
ap N,.L.M
- DJyVLM(QRN(L+2)(M+1) — Riny2ynovr1) — RNL(M+3))}, (V.187)
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q;;?y = - wy—EAB Z {DNLM 2RN(L+2)(M+1) - R(N+2)L(M+1) - RNL(M+3))
N,L,M
— Do CRv11ypa2ym — Rivesyinr — Rivanous2) }s (V.188)
SO, _ 27r
Ay~ =—i0,—FEap Z {D¥% 1 (2R(N+1)(12)m — Rivasym — Bivenyp+2))
ap N,L.M
— DX 2Ry sy — Ry anym — Ryani+2) § (V.189)
27T
QS = —ioc,—FEap Z {DNLM 2RN(L+1)(M+2) — Rveoy v — Bnr4s)nmr)
@p N,LM
— DX QRyLuys) — Bveonoasn) — RN(L+2)(M+1)>}7 (V.190)
2
(3" = —ioy—FEap Z { D% 1ar(2RNL(ar+3) — Riva2)pu+1) — B2 ar+1)
ap N,L.M
— Do (2R(v+1ynv+2) — Rivasyonr — Rivanyweoym) § (V.191)
27T
Q3" = —io.—FEap Z { D%y R4 L+2) — Rivasyonr — Rivanyw+2ym)
OéP
N,LM
— D3 QRN 1y (m+2) — Rivsoyw+nym — Rvwasyn) }s (V.192)
.27 .
ngC;)z - wxa_EAB Z {DNLMR(N+1)(L+2)M - D?VLMR(N+1)(L+1)(M+1)}7 (V.193)
P N,LM
.27 - B
q:SC;)y = — Zgya_EAB Z {DNLMR(N+1)(L+1)(M+1) - DNLMR(N+2)(L+1)M}7 (V194)
P N,L,M
ngcSz - ZUZ_EAB Z {DNLMR(N+2)(L+1 M — Dy BR(v+ (L+2)M} (V.195)
ap N,LM
27r
ngch - _ —FEap Z {DNLMR(N+1)(L+1)(M+1) D?]JVLMR(N-‘,-I)L(M—!-Q)}a (V.196)
p N,L.M
2 - ;
¥ = —i0y,—Eap Z { DXy Bvinyrous2) — DiparRve2) o }y (V.197)
ap N,L .M
.27
47 =—io DS —FEap Z { DXy R nonsny — DRy Roven ey o (V.198)
P N,LM
qgs/,(z)z == Z‘7m_EAB Z {DNLMRN (L+2)(M+1) — DXy Ry (L+1)(M+2)}, (V.199)
N,LM
2 ;
Qe == wy—EAB Z { DX s Bn@inire) — Dipy By b, (V.200)
ap N,LM
2w .
qSZOZ = —io.—FEap Z {DZ]!VLMR(N+1)(L+1)(M+1) - DNLMRN(L+2)(M+1)}~ (V.201)

Q
P N,L,M
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V. Calculation of Relativistic Integrals

V.4. Two-electron integrals for relativistic corrections

The integrals appearing in the DPT treatment up to DPT4 (see chapter IV) are given

by
1 .
9gBYD O'ipz'T—O'z‘Pz' gagc ), 1=12 (V~202)
12
and
. 1 .
9gBYdD 0'1P10'2P2T—0'1p10'2p2 gagc ) . (V-203)
12

Using the Dirac identity, both integrals may be separated into a SR and a SO contribution

9A90> = <ngD gAgc>

. 1 .
+ <ngD 10 (pi— X p¢>
12

leading to

<ngD

oO,pi—0;P;
r12

.1
Pi—DPi
T'12

gAgC> , i=1,2 (V.204)

and, due to spin orthogonality, to

<ngD gAgc> = (V.205)
. . . . 1, \.
9BYD gagc ) +( 9gBgp|io2 | P2 X 101 | P1 X r_pl P2 | |949c
12

(V.206)
where in the SO contribution of (V.206) the integral is only non-zero if oy and o5 are of

. 1 . N
UlplanQ_r O1P102P2
12

P R
P1P2—DP1P2
12

the same type, i.e., both have to be either o,,0,, or o, to give a non-vanishing contribu-
tion.

For the integrals in (V.204) it should be noted that it is sufficient to evaluate the contri-
butions for ¢ = 1 as the electrons 1 and 2 are interchangeable. Furthermore, unlike for
the one-electron integrals where all the operators were evaluated by working to the right,
here all operators standing left from rj, are evaluated by working to the left while all

operators to the right of r;," are acting to the right.
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V.4. Two-electron integrals for relativistic corrections

V.4.1. Scalar-relativistic two-electron integrals

The SR part of (V.204) may be written as

<ngD 9A90>=— Z <ngD

9A90>
v=x,Y,z

. 1
= > / / dsrlderGgQGDcr— (V.207)
12

V=x,y,z

o 1 0

3V1 T12 81/1

P1—DP1
12

with Gpe = Qpe and G, given for the xx component as

9B 094
BA=73 A V.208
BA (91:1 83}1 ( )
na+np+2 la+lp ma+mp X
—E.p Z ABdeAnBAN Z €lf/4lBAL Z f]\ﬂ/}AmBAMe—aprP (V.209)
N=0 L=0 M=0
=Fup Z DﬁfﬁANALAMefaPr% (V.210)
N,L,M

with the coeflicients

ABdX[AnB :4OJAOéBd§(;A+1)(nB+1) _ 2OéBnAd§\7;Afl)(nB+1) _ 2OéAan§\T;A+1)(nB*1)

+ nanpdyt s (V.211)

and

_ . AB nanp Jlalp pmamp

v=ux:Pdy"Pe? foy

DYYAB — - J"A"B AB lalp pmamp (V 212)
NLM — YV =Y ay €r, fM . .

— . Jrang lalp AB rmamp
v==z:1dy""e} hi¥;

Similar expression also hold for G%, and G%, and the corresponding coefficients. For the

integrals in (V.207), abbreviated as gi® it follows

SR E : § : TTA YYAB ZZA
g1 :EABEC'D (DNL]@DN’L’M’+DNLMDN’L’M’+DNL]]\32DN’L’M’)
N,L,M N',L' M’

12

X [NL]\/[

N/L’M’]

_ N'+L'+M' xx YYAB 2z
- E E )‘0(_1) EapEcp (DNLA]\E} + DNLM + DNfJ@)
N,L,M N',L' M’
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X Dy RN 4N L1 M4 M7 (V.213)

while the SR integrals in (V.206), abbreviated as ¢} are given by

= > <ngD

H=,Y,z2 V=T,Y,Z

1
=Y ¥ [ [enencpor (v.215)
12

H=T,Y,2 V=T,Y,2

o o0 1 0 0

Oy Ovg 112 Oty Oy

gAgc> (V.214)

_ N'+L'+M' TTAB YYAB 2ZAB
- E § )‘0(_1) EapEcp (DNLM + DNLM + DNLM)
N,L.M N’ L' M’

x (DEEGP 4+ DYSP, 4 DEGD ) Ry o pns wsar (V.216)

V.4.2. Spin-orbit two-electron integrals

The SO contribution in (V.204) to a specific component n = z,y, z is given by

) 1 .
<939D 101 (pl— X pl) 9A90>
T12

o 1 0 0o 1 0

O Ea_m Ovy r12 O

9A90> = — Oyl <ngD
n

. 74 14 1

:wln//d?’rld?’rg(G%AGDC — GBMAGDC>T_

12
(V.217)

with n, i, v cyclic and G5y given exemplary for the xy component as
dgp 094

Gy, =———= V.218
BA or ay ( )

na+np+lia+lp+lma+mp

= > N > Bdjareaeptm At AN Ay Eape P, (V.219)
N= M=0

=0 L=0
= Z D?f;ﬁANALAMEABeiaPT% <V220)
N,L,M
with
Adans =20, ATy d( AT = e nane (V.221)
Bd?i/vAnB ZQOCBd?VA(nBJ’_I) _ an}/LVA(nB_l) <V222)

100



V.4. Two-electron integrals for relativistic corrections

and
( A B lal
_ . nANB Al pmamp
v=ux =y Ay e fu
_ ~. Agnanp lalp B pmamp
H=2z: dyPer far
B, mang A lalp pmamp
H=2Z: dy e " far
Dyt =qv=y (V.223)
— - d"ATB AelAlB BfmAmB
= N L M
. B manp JlalpA pmamp
L h=ux: A "Pe P
. nang B lAlB A pmamp
p=y: dy I

Therefore, the contributions to the SO components, abbreviated as gfo”, are given by

SO — E N’+L +M’ ZAYB YAZB
’ Z )‘OEABECD(DNLM - DNLM)
N,L,M N',L', M’
X DNy RN N7 L1 MM (V.224)
SOy o N’+L +M' TAZB ZATB
Z Z )‘OEABECD(DNLM DNLM)
N,L,M N',L' .M’
X DN’L’M’RN+N’ L+L \M+M' (V.225)
N’+L’+M’ YATB TAYB
Z E : )‘OEABECD(DNLM DNLM)

N,L,M N',L' M’

X DNy BN+ N/ L1 MM (V.226)

As was already mentioned, for the SO contribution in (V.206) the only non-vanishing
terms are those for which o; and oy refer to the same spatial component. Consequently,

the only contributions, abbreviated as ngO " are

0gp 0g

994 9gp 9B 99p
0z 0z 0z Oy

7“12
995 9gp| 1 |9g9a Ogp 995 0gp | 1 |094 99D
< oy 0z 0z Oy * 0z 0z By Oy (V.227)

Z Z 1)09,01.(— 1>NI+L/+M/>\OEABECD

N,L,M N',L' M’
ZAYB 2CYD YAZB Z2CYD
(DNLMDN’L’M’ DNLMDN'L’M’

ZAYB YczZp YAZB YczZp
- DNLMDN’L’M’ + DNLMDN'L'M/)RN+N’,L+L’,M+M’ (V'228)

094 Ogp >

dy Oy Oy 0z

7“12

7"12 7”12
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SOuy i iy 99 99p dga Ogp 99 99p
912 2yt01y 9z 0=

7"12 Oor Oz Oor 0z

T12
095 0gp 094 Ogp 095 0gp 094 Ogp
< 0z Ox dr 0z * or Ox 0z 0z (V.229)

=Y Y (oo ()N NEspEep

N,L,M N',L/ .M’
TAZB TVTCZD __ T)RATB T)TCZD
X (DN DN the — DN DN Lo

TAZB TVZ2CTD ZATB TY2CTD
— DN D + DNLMDN/LIM/)RN+N',L+L/,M+M' (V.230)

SO:: g io 693 agD 89,4 39D dg5 09p 094 0g9p
J1z S Or O 8y 8y dy Ox or Oy

7“12
995 9gp 994 9gp 995 09p 994 0gp
< ox Oy Oy Ox + oy Oy Ox Ox (V-231)

Z Z 1)og.01.( 1)N,+L/+M,)\OEABECD

N,L,M N',L' M’
YATB YycTp TAYB YycTp
(l)NLAILEWLUM’ ZDNIJJZDNQYAW

YATB rcyYyp TAYB rcYyo
- DNLMDN’L’M’ + DNLMDN'L/M/)RN+N’,L+L/,M+M" (V'232)

89A dgp
0z Ox

r12 7"12
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7’12 T12
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VI. Implementation

In order to calculate DPT4 corrections for energies and properties, the quantum-
chemical program package CFOUR® has been extended and modified thereby exploiting
the available second-derivative capabilities.” For DPT4 energy calculations at the HF
level as well as at the correlated levels (MP2 and CC), an incore implementation has been
carried out first (‘pilot code’) as the simple structure of such a program is less prone to
errors and allows for a verification of the later efficient implementation. In the following,
the implemented modifications to the CFOUR program package are discussed in some
detail.

VI.1. DPT4 energy corrections at the Hartree-Fock level

As the SR and SO parts of the DPT4 energy are fully separable, they are independently
calculated and it is possible to determine either the scalar-relativistic contribution (SR-
DPT4) or the full DPT4 correction. The necessary steps for the calculation of the DPT4
energy are shown in the flowchart given in figure VI.1.

After the HF-SCF equations are solved, the required integrals for a SR-DPT4 calcu-
lation (see equation IV.54), or, if specified, a full DPT4 calculation (see equation IV.67)
are evaluated and processed in a Fock-matrix like manner.”® As a consequence, no two-
electron integrals need to be stored on disk. The contributions involving the ¢f} and
g39 integrals are directly calculated as expectation values without storage. All integral
evaluations and manipulations described here are done in the module xvdint.

In the module xcphf the CPHF equations are solved, the matrix Szg\éel is inverted, and the
DPT4 energy is calculated.
All relativistic integrals (see equations IV.54 and IV.67) are evaluated using the McMurchie-

Davidson scheme!®”

as discussed in chapter V. While the positive linear combinations
(pv | 5% + g5% | op) with atomic orbitals u,v, o, p, are already needed for the DPT2
correction,'®® the SR-DPT4 treatment also requires the corresponding negative linear
combinations (uv | 5% — g% | op). As an alternative it is in principle possible to cal-
culate only the integrals (uv | g5% | op) but then the eight-fold permutational symmetry

of the integrals can no longer be exploited. A similar procedure, however, does not work
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4 )
Solve HF-SCF equations

\ J

4 )

a) Calculate SR integrals
b) Calculate DPT2 energy as expectation value

¢) Calculate gi& contribution as expectation value

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

a) Calculate SO integrals

b) Calculate g9 contributions as expectation value

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

4 )
Invert relativistic overlap matrix S];\qfel
\ J
4 )
Calculate SR-DPT4 energy
\ J J
: Calculate SO-DPT4 energy

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Figure VI.1.: Flowchart for the calculation of the DPT4 energy (see equations IV.54 and
IV.67) at the HF level. If only scalar-relativistic corrections are calculated,
all steps in dotted boxes are omitted.
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VI.1. DPT4 energy corrections at the Hartree-Fock level

for the SO integrals. Therefore, for the SO treatment, the integrals (uv | g5 | op) are

in all cases evaluated. Concerning the (uv | gi%

| op) and (uv | §7 | op) integrals, the
eight-fold permutational symmetry can again be exploited.

The routines to calculate all the required integrals have been implemented into the module
xvdint. For the one-electron integrals the driver routine onedrv.f invokes the specific
subroutines. While the one-electron SR integrals as given in (IV.57) have been implemen-
ted by Christine Berger'® and are calculated in the routine dptpvp1.f, the one-electron
SO integrals as given in (IV.69) are calculated in the routine dptdpvxp.f. The two-
electron integrals are evaluated in the routine intdpt.f which is a subroutine of either
twodpt . £ (for all SR two-electron integrals, i.e., (uv | G52 +GR | op), (uv | G5 —G% | op)
and (uv | 7% | op)), twodptso.f (for (uv | §5° | op)), or twodptsodc.f (for (uv | §79
op)). The type of two-electron integral calculated depends on some flags and the routine
that calls intdpt.f.

The Fock-matrix like contributions are formed in the routines mvdfock.f (for ésRU,
mvdfock2.f(ﬁn‘21ésRh,dpt4sofock.f(ﬁnfﬁgob,0rdpt4sozlfock.f(ﬂn?Zaﬁﬁob.In
the case of the ¢Pl and ¢79 integrals, the expectation values are calculated in intexp.f
and intexpso4c.f, respectively.

The calculation of the two-electron integrals is illustrated for the (uv | gi% + g5% | op)

integrals which are evaluated in the following sequence:

vdint.f
twoexp.f
twod%t.f
intdpt.f
[—cldriv0.f
c2drivl.f
cldrivl.f

————c2driv0.f
mvdfock.f

In twodpt.f a loop runs over shells and corresponding basis functions thereby exploiting
the eight-fold permutational symmetry. Inside the loop, after the call of intdpt.f, in
cldriv0.f and c2drivl.f the integral

1

B
81/ T12

. 0
(989D | 95" | gage) = — Y <g 7D

9gc
ga o

V=x,y,z
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VI. Implementation

is calculated for a given subset of basis functions. The above equation is analog to
(V.213) with the only difference that the coefficients for electron 1 and 2 are inter-
changed. The subroutine c1driv0.f contracts the unperturbed coefficients for electron 1
with Ry w7 r+17 m+am Where the increased summation range for electron 2 is controlled via
the parameter ‘MAXDER+2’ (see chapter V.4). In c2drivl.f the result from c1driv0.f
is combined with the perturbed coefficients for electron 2. In the next step the subroutines

cldrivl.f and c2driv0.f evaluate

- dgs
(989D | 5" | gage) = — Y <—g

ov P

11994
T12 ov ©

using the formula given in (V.213). This evaluation is analog to the procedure described

V=x,y,z

before, only that electron 1 and 2 are exchanged, i.e., in c1drivl.f the perturbed coeffi-
cients for electron 1 are contracted with Ry v r+1/ m+n and in c2driv0. £ the result is
combined with the unperturbed coefficients for electron 1, thereby controlling the modi-
fied summation range again via ‘MAXDER+2’.

The integrals (uv | g%

| op) are implemented in a similar manner as the only difference
lies in the fact that now both coefficients, i.e., those for electron 1 and for electron 2 are
perturbed. Therefore, their calculation requires only a call of cldrivl.f and c2drivl.f

both with the parameter ‘MAXDER+2’.

VI.2. DPT4 energy corrections at correlated levels of

theory

In figure VI.2 the required steps for a closed-shell DPT4 energy calculation at the MP2
level are shown. After solving the HF equations, the amplitudes tf;’ and the MP2 energy
are calculated in the modules xintprc and xvcc, while the one- and two-electron densities
D,, and I'j,s as well as the Lagrange multipliers Z,; and I, are evaluated afterwards
in xdens. In xvdint the integrals fﬁ,))rel),S;);el, and (uv | g™ | op) are calculated in
the atomic-orbital (AO) representation and stored on disk. Then, in the module xcphf
the CPHF equations are solved for the relativistic perturbation, the derivative 0 f,,/0Ael
is evaluated, the overlap matrix 51’7\561 is inverted, the Ag‘ffl coefficients are determined,
and the HF contribution to the DPT4 energy is calculated. In the module xsdcc the
(pv | @ | op) integrals are transformed into the molecular-orbital (MO) basis and

augmented by the Ut);;e‘ (tq | rs) terms. Furthermore, the perturbed amplitudes (375%’ /OArel
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VI1.2. DPT4 energy corrections at correlated levels of theory

and the perturbed density matrices 0D,,/0Ae and O p,.s/0Ael are calculated, the per-
turbed Z-vector equations are solved yielding 07,; /0.1, and the perturbed intermediates
O1,,/OXal are evaluated. Then, all terms except those involving the ¢79 integrals are cal-
culated.
In order to make the code more efficient, the terms involving the two-electron integrals
{pq | g8 | rs) are in fact evaluated in the following manner; In xsdcc the U;thqrs
contributions are added to the perturbed two-electron density matrix 0,4/ OAsr, i-€.,
=5 Ap:: Xt: {UtSRth,,s + USET s + USRT s + UESRPW}. (VL1)
This modified two-electron density matrix I is transformed in xanti and xbcktrn from
the MO into the AO basis and in xvdint contracted with (uv | g5% + g% | op) and
(v | 95" — g™ | op), respectively. In a similar manner the quantity ARy, is set
up and transformed into the AO basis. More precisely, as in this contrlbutlon only the
(v | g% | op) integrals appear, it is calculated as (A; + Ay)I and (A; — Ay)T, with
Ay symbolically given as in (IV.43) and Ay as the same quantity with electron 1 and 2

permuted, i.e.,
(Al + A2 Z {A thrs + A Fptrs + ASRquts + ASRqurt7 } (VIQ)

(A, — AT = Z {Afg‘rtqm — ASRT g+ ASET 0 — Atsfrmt}. (VL3)
t

Then, after transformation of the terms defined in the above equations into the AO
basis, (A; + Ay)T is contracted with (ur | g5% + g% | op) and (A4; — Ao)T with
(v | 5% — gi% | op), respectively!, leading to a cancellation of the unwanted cross
terms. Note that the discussion holds for the SR case whereas for the SO terms all con-
tributions are directly evaluated in the MO representation. Finally, in xvdint the so far
missing g13°' contributions are evaluated.
The difference between the SR and the SO variant of a DPT4 calculation lies in the
fact that the perturbed quantities and the spin adaptation are different (see IV.163 and
IV.170). In addition, for the SO contributions there is a loop over the SO components
x,y, and z in the electron-correlation part.

The MP2-DPT4 energy has first been implemented into an incore program as ‘pilot imple-

iIn the actual program, the contributions due to I'" and (A1 + Ao)T are treated together, as all of them
have the same permutational symmetry, i.e., the quantity ' =T + (A; + A3)T is evaluated
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mentation’. Such a program, however, has its limitations as it is not efficient and requires
an unnecessary large amount of memory, yet it is simple and less prone to errors. In the
next step, the MP2-DPT4 energy has been included into the CFOUR program package
using an efficient implementation as discussed above.

In the module xsdcc, which deals with the electron-correlation part, the existing features
for the calculation of second derivatives could be exploited. Modifications and additions
are mainly needed for the spin adaptation of the SO contributions and all term involving
R, S™ and g, see (IV.141), (IV.143), and (IV.144), as these additional terms do not
appear for non-relativistic second derivatives. Furthermore, the loop structure for the SO

components has to be set up.

VI1.3. DPT4 corrections to electrical properties

A procedure to compute DPT4 energies at the HF level in the presence of an external
one-electron perturbation has been implemented based on the code for the calculation of
DPT4 energies described in section VI.1. For the calculation of the SR corrections, no
further implementation of integrals is required as they already have been implemented for
the analytic evaluation of DPT2 corrections to electrical properties.l®?9 These integrals
have been discussed in chapters V.3.3, V.3.5, and V.3.7. Regarding the SO contributions,
all additional integrals (see chapters V.3.4, V.3.6, and V.3.8) have been implemented us-
ing the McMurchie-Davidson scheme.!?7
The contributions due to the external perturbation are added to the one-electron Hamilto-
nian integrals, i.e., to h,, for the usual non-relativistic contributions and to ASF and A0
in the case of SR- and SO-DPT corrections. No further change in the DPT4 code is neces-
sary for the finite-differences calculations which have been done using two- to eight-point
formulas together with a field strength of 10-107% a.u. in the case of efgs and of 75-107°

a.u. for dipole moments (see Appendix IX.7).

VI1.4. Validation of the integrals

The implementation of the scalar-relativistic integrals (uv | 5% — 5% | op) poses no
challenge as the corresponding positive linear combination already has been implemented
by Christine Berger.!'% Implementation of the negative linear combination involves only

a sign change and the separate parts of the integral could easily be compared.
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e 2
Solve HF-SCF equations
\ J
e 2
Calculate amplitudes ¢¢ and MP2 energy
\ J
e 2
Calculate density matrices D,g, I'yqrs and Lagrange multipliers Zg;, I,

\ J
e N 2
Calculate perturbed integrals f,sl,“*), Shiet, (v | gt | op)

. J
( O f )
. Solve CPHF equations, form Wiql’ (S Al‘el);ql, and A;;el |

( Transform (uv | g™ | op) to MO basis & augment by U (tq | 7s) contributions J

P
\

—— For SO: Loop over components —

4 ab )
Calculate perturbed amplitudes —2

G rel J

( or oD h
Calculate perturbed density matrices ——2= ——_—24

\. P Y 8/\rel 7 a>\rel J

e ) 2
Solve perturbed Z-vector equations yielding ———

\. a)\rel J
4 I )
Calculate perturbed intermediates —22
L a)\rel J/
( Calculate MP2-DPT4 energy except for gi‘gel terms J
)

[ Back transformation of I',,.s into AO basis J
)

[ Calculate g7 contributions to DPT4 energy J

Figure VI.2.: Flowchart for the calculation of the DPT4 energy (see IV.163 and IV.170)
at the MP2 level.
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The same holds for the (uv | 5% | op) integrals as they are implemented in a similar

manner. The only difference lies in the fact that both coefficients, i.e., those for electron
1 and for electron 2 are perturbed as outlined in section VI.1. Further validation was
done implicitly via the DPT4 results for rare-gas atoms as published by Ottschofski and
Kutzelnigg.™

The ¢5© and ¢79 integrals, see chapter V.4.2, have been verified using incore implementa-
tions for testing and the g5° integrals were compared to those computed using the DALTON
program package.!!?

Additionally, for the g7 integrals the contribution to the energy was estimated in the fol-
lowing way: There is a variance between the SF-DHF implementation as done in CFOUR*!
and as done in the program package Dirac04.!'® In Dirac04 the SF-DHF results are cal-
culated by dropping all imaginary parts in the matrices that arise in the DHF procedure.
As the ¢59 integrals are real, this contribution is consequently present in the SF-DHF
results. In CFOUR the SF-DHF results are calculated based on the spin separation of the
Dirac equation'®® and consequently the ¢} contributions do not appear. Therefore, the
difference between the SF-DHF results from Dirac04 and CFOUR provides an estimate of
the g9 contribution to the energy. Nevertheless, this difference also includes higher-order
contributions and thus does not represent a strict test.

The spin-orbit integrals for electrical properties, as given in (V.3.4), (V.3.6), and (V.3.8)
have been tested using the corresponding non-relativistic integrals. This is possible be-

cause the integral for a specific SO component can be written as

iB,jB,k A A A iA,jAk 7 1),iB,k A ia,(J 1),k
<gé3]B B |piOPj |gAA]A A> :40-/AOKB<QJ(BB+ ):iB:kB | O|gAA(]A+) A>

. in=1)0.ks | A | ia(iat)k
_QQ/AZB<9(BB ).JB B|O|gAA(.7A+) Ay
. (g4 ks | A1 ia,(ja—1)k
_2aBjA<g(BB+)]B B|O|gAA(]A ) Ay
. ip—1),iB.k A ia,(ja—1),k
+4ZB]A<QJ(BB ):iB B’O’gAA(JA )A> (VI.4)

with O given as the operator of the electrical property under consideration and ¢, j, k =

xr,Y,x.

VL.5. Validation of the HF-DPT4 energy

The SR-DPT4 and SO-DPT4 results have been verified by comparing results of the

incore program with the efficient implementation in the module xcphf. Additionally, the

110
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SR-DPT4 results have been tested using the implementation of the SF-DHF approach
in CFOUR. As the SF-DHF results correspond to the infinite-order limit of DPT at the
HF level, a perturbative expansion of the SF-DHF equations with respect to A leads to
SR-DPT. The value of A, is varied in the SF-DHF calculation so that numerical DPT?2
and SR-DPT4 results can be obtained using polynomial fittings.!%°

The SO-DPT4 contribution was estimated by the difference between the result of a full

four-component DHF calculation and a corresponding SF-DHF calculation.

VI1.6. Validation of the MP2-DPT4 energy

For SR-DPT4 and full DPT4 energies at the HF level as well as at correlated levels of
theory (MP2), the results have been verified using three independent implementations,
i.e., two incore programs, one written as part of the present work and one written by
J. GauB}, as well as the efficient implementation into the CFOUR program package. The
polynomial fit as for the SR-DPT4 energy at the HF level, however, did not provide

conclusive results (see chapter VII for further discussion).
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VIl. Applications

In this chapter, calculations for the relativistic corrections to total energies and electrical
properties have been performed with a focus on the DPT4 results. The DPT corrections
are compared to results from fully relativistic calculations for both the SR and SO con-
tributions and their accuracy as well as the convergence behaviour of the DPT series
is investigated. For the DPT4 energies at the HF level furthermore a term analysis is
performed and the basis-set convergence is investigated. In the last part of this chapter,
calculations within a joint experimental and theoretical rotational-spectroscopic invest-
igation for the molecules CHyBrF, CHBrF5, and CH5FT is presented with the focus on

DPT4 corrections to the halogen quadrupole-coupling tensors.

VIl.1. Relativistic corrections to total energies at the

Hartree-Fock level

In this section the accuracy of the DPT corrections up to DPT4 is investigated.” For
this purpose, calculations were performed for the hydrogen halides HX, X=F, Cl, Br, I,
and At. The geometries and basis sets were taken from Ref. 114. The latter consist of

U519 augmented by additional polarization functions and are

large even-tempered sets
well-suited for the treatment of relativistic effects at the HF level.

Beside the total DPT4 corrections, also the SR-DPT4 (and SR-DPT6'™) as well as the
SO-DPT4 corrections are analyzed: The SR-DPT results are compared to relativistic cor-
rections obtained from the difference between results from spin-free Dirac-Hartree-Fock
(SF-DHF)*1193 and non-relativistic HF-SCF calculations and are analyzed further by giv-
ing numerical values for the individual contributions to the DPT4 energy. The SO-DPT
corrections are compared to SO contributions obtained from the difference between the
fully relativistic DHF and SF-DHF results.

Furthermore, the basis-set dependence of the DPT4 contributions is investigated in cal-
culations with basis sets from Dunning’s hierarchy of correlation-consistent polarized and
core-polarized valence-zeta sets (cc-pVXZ and cc-pCVXZ with X=T, Q, 5'207125) as well
as their uncontracted (unc) counterparts. To avoid linear dependencies in the uncontrac-

ted cc-pCVXZ sets, the additional core-polarization functions in the s- and p- and for Br
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VII.1. Relativistic corrections to total energies at the Hartree-Fock level

also in the d-shells were eliminated.

The DPT4 and SF-DHF calculations were performed using the CFOUR® program pack-
age. The DPT4 results were thereby obtained using those parts of CFOUR that have
been developed in this work. The fully relativistic DHF results were obtained with the

program package Dirac04.12¢ In all calculations the point-nuclear model was used.

VIl.1.1. DPT4 energies at the HF level: Comparison to fully

relativistic calculations

Table VIL.1 (see p.114) shows the DPT4 energy corrections for the hydrogen halides
(HF-HAt). In the upper part, the full DPT4 corrections are listed together with the
four-component DHF' results while in the middle and lower parts the DPT4 corrections

split up into SR and SO contributions are found. Using the relative error

EDPT24
ADPT24 _ |

~ DDA _ pHF (VIL1)
with EPPT24 a5 the sum of the DPT corrections DPT2 and DPT4, EPHF as the DHF
energy from a fully relativistic calculation, and EM¥ as the non-relativistic HF energy, the
overall picture shows that relativistic energies are reproduced within an error of better
than 1% up to the fifth row of the periodic table (HI) if DPT4 corrections are included.
Concerning the magnitude of the SO corrections it is found that they are for the con-
sidered closed-shell systems about two orders of magnitude smaller than the SR-DPT4
contributions.

Since the DPT2 contribution is much larger than the DPT4 correction, which in turn
exceeds the remaining error, the DPT convergence behavior is found to be smooth. Fur-
thermore, in the so far considered cases, the DPT energy corrections always underestimate
the relativistic energies from a full relativistic treatment leading to a monotonous conver-
gence.

Comparing the relative errors of the SO contributions

50 ESO—DPT4
AT =1~ [LDHF _ [ SF-DHF (VIL2)
to those of the SR corrections up to SR-DPT4
SR-DPT2,4
e | (VIL3)

- [SF-DHF _ RHF
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Table VII.1.: HF energies as well as total DPT, SR-DPT, and SO-DPT4 corrections in
comparison to results from four-component DHF, SF-DHF calculations,
and fully relativistic SO corrections. All values are given in atomic units
(a.u.). Geometries and basis sets were taken from Ref. 114.

HF HCI HBr HI HAt

Full DPT corrections
EHF -100.0705 -460.1122  -2573.0521 -6918.5743 -21267.4660
EDPT2 -0.0917 -1.4454 -31.5763 -183.8508  -1338.2337
EPPT4 -0.0002 -0.0107 -0.9832 -12.8673 -235.8894
EPPT24 -0.0919 -1.4562 -32.5596 -196.7181  -1574.1231

EPHF _ pHF)a -0.0919 -1.4563 -32.6011 -198.0437  -1650.7762
APPT24 /%, 5.7-107* 7.1-1073 0.13 0.67 4.64
SR-DPT corrections
[ESR-DPT4 -0.0002 -0.0101 -0.9043 -11.7629 -214.7659
[ESR-DPT6 -4.9-1077 -9.3-107° -0.0347 -1.0224 -47.4243
FSR-DPT2,4 -0.0919 -1.4555 -32.4807  -195.6137  -1552.9996
FSR-DPT24,6 -0.0919 -1.4556 -32.5153 -196.6362  -1600.4239

ESF-DHE _ pHEAL 00919 -1.4556 -32.5163 -196.7524  -1617.6129
ASR-DPT2:4 /07 5.4-1074 6.5-1073 0.11 0.58 3.99
ASR-DPT24,6 /07 1.6-10° 6.8-107° 3.0-1073 0.06 1.06
AFR-DPT4 /07 0.26 0.92 3.79 8.83 23.13
SO-DPT corrections
ESO-DPT4 -8.260-107%  -6.891-10~* -0.0789 -1.1044 -21.1235
(EPHE — pSEDHF)e 8 987.107°  -6.986-10™*  -0.0848 -1.2913 -33.1633
ASO /% 0.32 1.35 6.94 14.47 36.30

a

obtained by taking the difference between the DHF and the nonrelativistic HF values

b obtained by taking the difference between the spin-free DHF'%0 and the nonrelativistic HF values

¢ obtained by taking the difference between the full DHF and spin-free DHF*! values
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with ESRPPT24 45 the sum of the SR energy corrections, i.e., DPT2 and SR-DPT4, it is
found that the former are about one to two orders of magnitude larger. However, this is
easily explained by the fact that there exists already a first-order contribution (DPT?2)
for the SR correction whereas the SO correction first appears at the DPT4 level. It is
probably more meaningful to compare the SO errors to the remaining SR errors at the
SR-DPT4 level beyond DPT2, that is

ESR—DPT4
ASR—DPT4 _
B2 =1

(VILA)

- ESF-DHF _ pHF _ EDPT2’

As anticipated, the errors now are of a similar magnitude though still somewhat larger
for the SO contributions.

Concerning HF and HCI, the relativistic contributions are already reproduced within an
error smaller than 1% at the DPT?2 level, and the SO corrections are negligible. For HBr,
inclusion of the SR-DPT4 correction is necessary to get the error down to less than 1%,
which then corresponds to a deviation of 0.1 a.u. from the full relativistic contribution.
If the SO correction is also included, the deviation decreases to 0.04 a.u. The SR energy
correction up to DPT4 for HI recovers the SR energy contribution with an error of less
than 1%. However, the SO contribution is here more important than for the compounds
containing lighter elements and although the error in the computed SO correction is rather
large (about 14 %), its consideration reduces the total error for the relativistic correction
to less than 1%. The remaining deviation is about 1.3 a.u.

For HAt, the DPT series cannot be considered to be converged; the error for the SR-DPT4
energy is still about 4% in comparison to the SF-DHF result, whereas the SO correction
is even off by 36%. In terms of absolute energies this means that at the DPT4 level the
deviation is about 77 a.u. which should be compared to the fully relativistic value of
22918 a.u.

A graphical representation of the SR-DPT convergence including the SR-DPT6 results
from Ref. 100 is found in figure VII.1 (see p.116). The corresponding numerical values
are given in the middle part of table VII.1 (see p.114). Consideration of the SR-DPT6

energy correction improves the results further, i.e., reduces the relative error

SR-DPT2,4,6

ASR-DPT246 _ 1 (VIL5)

B [SF-DHF _ pHF

with ESRPPT246 a9 the sum of the SR corrections up to DPT6 for HBr to less than
0.005% (-0.002 a.u.) and to 0.06% (-0.116 a.u.) for HI. Only for HAt, the inclusion of
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DPT2

SR-
DPT4

SR-
DPT6

Rest

Figure VII.1.: Convergence of the scalar-relativistic DPT series for the hydrogen halides
HX, X=CI, Br, I, and At.
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Table VII.2.: Term analysis of the SR-DPT4 corrections for the hydrogen halides. All
values are given in atomic units (a.u.). Geometries and basis sets are
taken from Ref. 114. For an explanation of the terms see text.

Mol. ESR-DPT4 CPHF Reorth 2nd Order (g5
HF -1.873-107* -7.326-107% 8.353-107° 4.618-10~* -8.158-107
HCl -0.0101 -0.0387 4.858-1073 0.0237 -6.892-1074
HBr -0.9043 -3.3774 0.4603 2.0128 -0.0835
HI -11.7629 -43.4821 6.1635 25.5557 -1.2843
HA¢ -214.7659 -785.6790 115.2634 455.6496 -33.0609

the SR-DPT6 energy correction is not sufficient to reduce the error below 1%, i.e., the
remaining error is still 1.1% (-17.189 a.u.). Nevertheless, in all instances the SR-DPT6
results confirm observations made for the DPT4 corrections concerning the convergence
behaviour of the DPT series. It should be noted that the SO-DPT4 corrections in all
considered cases are larger or at least of the same magnitude as the SR-DPT6 results.

Finally, it is noted that the here discussed findings are in line with what Ottschofski and

Kutzelnigg™ found earlier for the noble gases.

VIlL.1.2. Term analysis of the DPT4 correction at the HF level

In table VIL.2 (see p.117) the individual contributions from (IV.54) to the SR-DPT4
energy are listed for the hydrogen halides. The major contribution to the energy stems
from the CPHF term which corresponds to the first two lines of (IV.54) and has a negative
sign, though it heavily overestimates the total energy correction. The other terms have
positive signs, with the second-order terms (last two lines of (IV.54)) being of the same
order of magnitude but smaller than the CPHF contribution. A further positive correction
comes from the reorthonormalization term (third line in (IV.54)) which however is one
order of magnitude smaller. The term symbolized by (¢5R}) is part of the second-order
terms and corresponds to the fourth line in (IV.54). It is listed separately because it

is evaluated as an expectation value and involves the gl

two-electron integrals that
are not required for all other contributions. Although one might consider to omit this
term due to the additional computational cost for the integrals, as for example suggested
by Ottschofski and Kutzelnigg in Ref. 73, this cannot be recommended since for all
considered cases its contribution is of similar magnitude as the SO correction.

Table VIL.3 (see p.118) shows the same term analysis for the SO contribution. Aside
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Table VII.3.: Term analysis of the SO-DPT4 correction for the hydrogen halides. All
values are given in atomic units (a.u.). Geometries and basis sets are
taken from Ref. 114. For an explanation of the terms see text.

Mol. ESO-DPT4 CPHF 2nd Order (g59)
HF -8.260-1076 -1.308-107° 4.820-1076 -1.293-1077
HCl -6.891-10~4 -1.378-1073 6.887-10~* -9.353-1076
HBr -0.0789 -0.1734 0.0944 -6.326-1074
HI -1.1044 -2.5299 1.4255 -6.463-1073
HAt -21.1235 -50.1595 29.0360 -0.0842

from the fact that there is no reorthonormalization term (see IV.67) the same picture
emerges. The negative CPHF term gives the largest contribution which is damped by the
second-order terms that are of the same order of magnitude but have opposite sign. Here,
the (¢79) term which is part of the second-order contributions is indeed very small and
might therefore be neglected to save the computational cost for the involved two-electron

integrals.

VII1.1.3. Basis-set convergence of the DPT4 correction at the HF

level

While there is plenty of experience in choosing basis sets for relativistic calculations
(see, for example, Refs. 127-129), the basis-set convergence in the perturbative treat-
ment is somewhat different, as there is a need to comply with the requirements of both
the non-relativistic and the subsequent relativistic treatment. In figures VII.2 and VII.3
(see p.119) the basis-set convergence of the SR-DPT4 and the SO-DPT4 energy correc-
tions for HCl and HBr are shown. In all cases the cc-pVXZ basis turns out not to be
suited for the description of relativistic effects, as it even, except for the calculation of the
SO correction of HCI with a cc-pV5Z basis, gives the wrong sign and does not converge for
HBr to the proper basis-set limit. The inclusion of core-polarization functions (cc-pCVXZ
sets) greatly improves the convergence. However, more important is the decontraction of
the basis sets, thereby providing the necessary flexibility to account for the changes in the
inner shells due to relativistic effects. On the scale of the figures, the difference between
the uncontracted cc-pVXZ and cc-pCVXZ sets is not visible since the results are nearly
indistinguishable as it can be also seen from the corresponding table in the Appendix
IX.8.
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Figure VII.2.: Basis-set convergence for the scalar-relativistic DPT4 correction to the
energy (in a.u.) for HCI (left) and HBr (right).
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Figure VII.3.: Basis-set convergence for the spin-orbit DPT4 correction to the energy
(in a.u.) for HCI (left) and HBr (right).
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Both for SR as well as for SO corrections the convergence of the contracted sets is slower
for HBr than for HCI thus showing that for heavier elements relativistic effects are more
pronounced and the basis-set requirements are more demanding to allow for a correct
description. Finally, it is observed that the basis-set convergence of the SO correction is
slightly faster than for the SR correction. Due to the fact that the shape of the orbitals
is mostly affected by SR effects?” this finding seems plausible.

VIl.2. Relativistic corrections to total energies at

correlated levels of theory

In this section, the correlation contributions to the DPT4 corrections are investigated
for the hydrogen halides HX, X=F-At and the noble gases He to Rn. The geometries
for the HX compounds were taken from Ref. 114 and the used basis set were the large
uncontracted sets given in Ref. 114, in the following referred to as ‘Neese’ basis, and the
uncontracted ANO-RCC sets from Ref. 129. In case of the SR corrections the investigation
is based on a comparison of the MP2 correlation contributions computed within the
framework of DPT to those obtained at the SFDC level. The SO correlation corrections
are compared to corresponding differences between the results for the correlation energies
from DC and SFDC calculations. Both, the SFDC as well as the DPT calculations were
performed using the CFOUR program package,® thereby exploiting in the case of DPT4
those parts that were developed in the present work while the DC calculations were carried
out with the program package Dirac04.'2% In all calculations the point-nucleus model was

used if not stated otherwise.

VIl.2.1. DPT4 energies at MP2 level: Comparison to fully

relativistic calculations

Table VII.4 (see p.122) gathers for the hydrogen halides HX the DPT2 as well as the
DPT4 correlation corrections obtained at the MP2 level. In the case of DPT4 both the SR
and SO contributions are listed. For both basis sets used it is observed that all correlation
contributions have the same sign as the corresponding HF values given in table VII.1. This
means that inclusion of electron correlation leads to a further, though small, increase in

the total relativistic corrections. The error in the correlation energies at the DPT2 level,

120



VII.2. Relativistic corrections to total energies at correlated levels of theory

defined via

EDPT2

DPT2 __ corr
APPT2 =1 - e (VIL6)

corr

is about 2 % for HF, 6% for HCI, and 9% for HBr. Noting the overall small magnitude
of the correlation energy, i.e., typically less than 1% of the total energy, this means that
already at the DPT2 level satisfactory results are obtained concerning relativistic effects
on the correlation energy. It should be furthermore noted that the correlation corrections
to the total relativistic energy contribution are tiny, i.e., less than 1%, and even decrease
when going down in the periodic table. For HI and HAt, however, the error in the DPT2
correlation energies increases substantially and amounts to about 15 and 27% when using
the Neese basis and to about 40 and 60% in case of the uncontracted ANO-RCC set.
Based on the experience with DPT at the HF level, it is surprising that the SR-DPT4
correlation corrections, calculated with the Neese basis, are for all hydrogen halides except
for HF' larger than the corresponding DPT2 contributions and at least two orders of
magnitude larger than the expected corrections.! A similar trend is seen in the ANO-
RCC(unc) calculations except that the SR-DPT4 correlation corrections are for HI and
HAt larger than the DPT2 contributions. Comparison with the SFDC results indicates
that DPT4 in all cases overshoots the correlation contributions.

Concerning the SO-DPT4 corrections, no problem seems to appear. For HCI up to HI the
errors in the SO-DPT4 values are rather small, i.e., between 8 and 16% (see table VII.4).
Significantly larger errors are observed for HF which needs further investigation. However,
as the SO correlation contribution for HF is very small this is of no major concern.

For the heavier hydrogen halides a curious trend arises. The relative errors are here smaller
for HI than for HBr and in cases of the Neese basis even decrease for HAt compared to HI.
Based on the experience with the HF' values the reverse was expected. The apparently
good performance is probably due to a fortuitous error cancellation.

In table VIL5 (see p.124) a similar analysis is presented for the noble-gas atoms He to
Rn. The results in the upper part of the table, i.e., those obtained with the point-nucleus
model, are in line with those for the hydrogen halides for all DPT corrections. In the lower
part, the calculations have been repeated using a Gaussian-nuclear model.!?° Tt is seen
that the deterioration of the DPT4 results is avoided in this case and that the SR-DPT4

corrections are within the expected order of magnitude. This effect is analyzed further in

IThe higher-order estimates may be obtained by subtracting the correlated DPT2 contributions from
the SFDC values.
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Table VII.4.: MP2 energies and correlation contributions to SR-DPT and SO-DPT4
corrections in comparison to results from SFDC calculations at the MP2
level and fully relativistic SO corrections for the hydrogen halides HX,
X=F-At. All values are given in atomic units (a.u.). Geometries and the
basis set denoted by ‘Neese’ were taken from Ref. 114. In the lower part
of the table the results were calculated with the ANO-RCC(unc) set from

Ref. 129.
HF HCI HBr HI HA¢t

Neese
EMP2 -0.336 -0.423 -1.085 -1.386 -3.007
EDPPT2.a -2.13-1074 -8.24-10~* -1.27-1072 -3.69-10~2 -1.29-1071
ESR-DPT4,a -5.48-1076 -1.23-1073 -1.70-107¢ -2.66 -8.83
ESR-DPT2+4a 9 19.10~4 -2.05-1073 -1.83-107! -2.69 -8.95
ESFDC.a.b -2.18-107* -8.79-10~* -1.38-1072 -4.32-1072 -1.76-107!
§PPT2 /% 1.98 6.26 8.59 14.67 26.46
§SR-DPT2,4 /07 -0.54 -133.17 -1222.89 -6137.55 -4990.43
ESO-DPT4.a 4.97-107° -6.11-1076 -2.49-10~* -1.68-1073 -1.44-1072
ESODCa.c 1.90-10~8 -5.64-1076 -2.16-107* -1.45-1073 -1.43-1072
55 /% 73.83 -8.19 -15.23 -15.84 -0.37
ANO-RCC(unc)
EMP2 -0.355 -0.466 -1.077 -1.693 -3.167
EDPT2,a -2.10-1074 -7.14-107% -1.25-1072 -2.85-1072 -6.99-10~2
ESR-DPT4.a -3.71-10°¢ -6.28-107° -1.94-1073 -1.61-1072 -6.38
ESR-DPT244a 9 14.10~4 -7.76-10~* -1.45-1072 -4.46-1072 -6.45
ESFDC.a.b -2.13-107* -7.63-107* -1.36-1072 -4.60-1072 -1.76-107!
§PPT2 /%, 1.56 6.49 7.42 38.08 60.18
§SR-DPT24 /07 -0.18 -1.75 -6.89 3.13 -3568.87
ESO-DPT4.a 1.51-10°8 -5.83-107¢ -2.13-10~* -1.61-1073 -1.33-1072
ESODCa,c 2.63-1078 -5.41-1076 -1.89-10~* -1.46-1073 -1.35-1072
55 /% 42.56 -7.78 -12.83 -9.77 1.63

@ only correlation contribution

b obtained by taking the difference between the SFDC values at the MP2 level and the SF-DHF
results and subtracting EMP?2

¢ obtained by taking the difference between the full DC and SFDC result at the MP2 level
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the following section.

VI1.2.2. Analysis of the correlated SR-DPT4 correction

As already noted the correlated SR-DPT4 results overshoot and indicate a divergent be-
haviour of the DPT expansion. The overestimation is mainly due to the h® contribution
(see equation IV.142 where the h(® terms are part of the f;‘(;el /OArel matrix elements). In
a less pronounced manner also the S@ terms (see equation IV.144) are responsible for the
observed divergence. Both contributions are second-order terms which arise due to the
elimination of the small component. The structure of these terms is such that problems
are expected as soon as high-lying virtual orbitals appear in the calculation. To verify this
assumption, for HCI using the Neese basis, additional calculations have been performed
with those high-lying orbitals excluded from the correlation treatment. In order to in-
vestigate in which manner the singular electron-nucleus potential is responsible for the
divergence the calculations have been repeated with the Gaussian-nuclear model. Results
of these calculations are given in table VIL.6 (see p.126). In figure VII.4 (see p.125), the
SR-DPT4 results for HCI are furthermore plotted against the cutoff energy for dropping
virtual orbitals in a logarithmic scale.

The results of these additional calculations confirm the aforementioned expectations, i.e.,
the divergent behaviour is damped as soon as high-lying orbitals are excluded. In this
way an estimate for the fourth-order SR correlation correction of about —7 to —8 - 107°
a.u. is obtained. A similar result of —8.13 - 107° a.u. is obtained if the calculation is re-
peated with the 5 steepest s-functions omitted in the AO basis. The calculation with the
Gaussian-nuclear model yields —8.19 - 107 a.u. indicating again that high-lying virtual
orbitals are the source of the problem as their orbital energies are substantially decreased
when using a finite-nuclear model. In the calculations with the ANO-RCC(unc) basis a
value of —6.28-107% a.u. is obtained when using either the point-nuclear or the Gaussian-
nuclear model. This shows that in this case, in which no divergence is observed, the effect
of using a Gaussian-nuclear model is negligible. The estimates obtained in the additional

calculations agree with the higher-order SFDC correction of —5.5-107° a.u.

To conclude, the origin of the divergent behaviour of the DPT expansion at correlated
levels has been traced back to high-lying virtual orbitals though a more detailed analysis
is necessary in the future. First results indicate that there exist several possibilities to

control these instabilities in the calculations but so far the use of correlated SR-DPT4
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Table VII.5.: MP2 energies as well as correlation contributions to SR-DPT and SO-
DPT4 corrections in comparison to results from SFDC calculations at the
MP2 level and fully relativistic SO corrections for the noble-gas atoms.

All values are given in atomic units (a.u.).

Geometries taken from Ref.

114. In all calculations the ANO-RCC(unc) set from Ref. 129 was used.

He Ne Ar Kr Xe Rn
point nucleus
EMP2 -3.58-1072 -0.358 -0.480 -1.078 -1.720 -3.171
EPPT2a 1.64-107  -2.54.10~* -7.06-107* -1.26-10"2 -3.39-10~2 -1.25-107!

ESR-DPT4a 4 48.10~° -5.50-10~6
ESR-DPT2+4.a 1 63.10=6  _2.59.10~4
ESFDC,a,b 1.63-107¢  -2.59.10~*

oPPT2 /% -0.27 1.88
§SR-DPT24 /94-0.00 -0.24

ESO-DPT4a 4 79.10~10  -2.03-10~7
ESODCac  _479.10-10 _1.86-10~7

-8.02:107°  -2.09-1073

-7.86:107%  -1.47-1072

-7.68-107*  -1.38-1072
8.09 8.09
-2.35 -7.12

-7.89-107%  -2.49-10~*
-7.32:107%  -2.22.10~*

-1.81-1072 -7.61

-5.19-1072 -7.74

-4.00-1072  -1.73-101
15.41 27.43
-29.72 -4383.29

-1.74-107%  -1.39-1072
-1.59:107%  -1.45-1072

550 /% 0.03 -9.43 772 11215 9.17 4.41
finite nucleus (Gaussian model)

EMP2 -3.58-1072 -0.358 -0.480 -1.078 -1.720 -3.171
EPPT2a 1.64-10°%  -2.54.10~* -7.06:10~* -1.26-10"%2 -3.39:-1072 -1.26-10*

ESR-DPT4a 4 48.10~9 -5.50-10~°
ESR-DPT24+4.a 1 63.10~6  _2.59.10~4

-8.02:107°  -2.01-103
-7.86:107%  -1.46-1072

-1.19-1072  -9.31-1072
-4.581072  -2.19-101

@ only correlation contribution

b obtained by taking the difference between the SFDC values at the MP2 level and the SF-DHF

results and subtracting EMP?2

¢ obtained by taking the difference between the full DC and SFDC result at the MP2 level
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corrections cannot be recommended.
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Figure VII.4.: Correlated part of the SR-DPT4 correction to the energy (in a.u.) for
HC1 with ‘Neese’ basis set from Ref. 114 for different cutoffs in the orbital
energies (in a.u., logarithmic scale).

VIIL.3. Relativistic corrections to electrical properties

In the following the improvements in the calculation of efgs and dipole moments provided
by the DPT4 corrections'! are discussed based on results from SF-DHF*19 and DHF
calculations. Using the former, the convergence of the SR contribution is investigated
while the difference between DHF and SF-DHF results provides the full SO correction
thus allowing an investigation of the SO contribution provided by the DPT4 treatment.
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Table VII.6.: Study of the correlated SR-DPT4 correction at the MP2 level using a
cutoff in the orbital energy, different basis sets and nuclear models. All
values are given in atomic units (a.u.). Geometries taken from Ref. 114.

Basis sets denoted by ‘Neese’ basis set from Ref. 114 and the uncontracted
ANO-RCC set from Ref. 129.

ESR—DPT4 E}Cj}utoﬁ k orbital # IOg E_::glutoﬁ

-1.23-1073 7.420-108 136 8.87 (full basis)
-3.69-1074 2.466-108 135 8.39

-1.75-1074 7.273-107 134 7.86

-1.02-1074 1.739-107 133 7.24

-8.19-107° 4.344-10° 132 6.64

-8.14-107° 1.201-10° 131 6.08

-8.11-107° 6.206-10° 130 5.79

-8.11-1075 3.670-10° 129 5.56

-8.06-1075° 2.550-10° 128 5.41

-7.88-107° 1.259-10° 125 5.10

-7.79-107° 7.098-10% 123 4.85

-7.38-107° 4.407-10* 120 4.64

-7.21-1075 3.127-104 119 4.50

-7.21-107° 2.175-10% 118 4.34

-6.24-1075 9.152-10° 114 3.96

-5.32:107° 6.735-10° 110 3.83

-4.92-107° 3.537-103 109 3.55
R
-5.50-1075 -8.13-107° -8.19-107° -6.28-1075 -6.28-1075

@ obtained by taking the difference between the SFDC values at the MP2 level and the SF-DHF
results and subtracting EMP? as well as the correlation contribution from EPPT2 all calculations
with Neese basis set

correlated SR-DPT4 correction with Neese basis set where the first 5 steep s-functions have been
removed from the basis set

correlated SR-DPT4 correction with Neese basis set and Gaussian nuclear model
4 correlated SR-DPT4 correction with ANO-RCC(unc) basis set
4 correlated SR-DPT4 correction with ANO-RCC(unc) basis set and Gaussian nuclear model
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Calculations for both dipole moments and efgs were performed for the hydrogen halides
HX, X=F, Cl, Br, I, and At using geometries and basis sets from Ref. 114.

Both the DPT4 and SF-DHF calculations were performed using the CFOUR®® program
package. The DPT4 results were thereby again obtained using those parts of CFOUR
that have been developed in this work. The DHF results were obtained with the program

package Dirac04. In all calculations the point-nucleus model was used.

VII.3.1. DPT4 properties at the HF level: Comparison to fully

relativistic calculations

In this section the DPT4 results for efgs and dipole moments are compared to those
from more rigorous SF-DHF and DHF calculations. Table VIL.7 (see p.130) shows the
scalar-relativistic DPT corrections to efgs and dipole moments for the hydrogen halides
together with results from SF-DHF calculations. The relative errors for the properties are
defined in an analog manner compared to those discussed for the energies (see equations
VIL.1, VIL.2, VIL.3, VIIL.4, VIL5, VIL.6). For both dipole moment and efg, the relative
error in comparison to the SF-DHF results decreases by at least one order of magnitude
when going from DPT?2 to the scalar relativistic DPT4 (SR-DPT4) contributions. This is
in agreement with what has already be seen for energies. However, in comparison to the
relative errors for the energies as discussed in chapter VII.1, it is found that the errors
here are one order of magnitude larger thus showing that the properties considered are
more sensitive to relativistic effects.

It was suggested in Ref. 102 that consideration of SR-DPT4 may reduce the relative error
for fifth-row elements to a similar magnitude as DPT2 for elements of the fourth row. In
fact, the improvement is even better: for both dipole moments and efgs, the remaining
relative errors ASRPPT24 are smaller than 2%.

For HAt, however, the DPT expansion up to fourth order cannot be considered converged
as the errors at the SR-DPT4 level are still of the order of 10% for the efg and dipole mo-
ment. These errors affect the second significant digit in the case of the dipole moment and
even the first digit in the case of the efg. Higher-order corrections seem to be necessary
to obtain more reliable results. This is in fact observed when the DPT6 corrections'® are
accounted for. The error is then reduced for the efg to 3.6% (0.4093 a.u.) and for the
dipole moment to 2.0% (0.0029 a.u.).

For all hydrogen halides the remaining relative errors at the SR-DPT4 level are larger for

the efgs than for the dipole moments. Since the efg is a so-called “core property”, in the
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sense that the efg operator samples in particular the electron density of the inner-shell
region, a proper description of this region is mandatory while for the dipole moments it
is more important to properly capture the electron density of the outer regions. Because
changes due to relativistic effects mostly happen in the inner shells, the efgs are more
affected by approximations in the treatment of relativistic effects. This might also be the
reason why the SR-DPT series converges faster in the case of dipole moments than for
efgs, at least for the heavier elements.

Table VIL.7 (see p.130) also contains the SO-DPT4 contributions which are compared to
the corresponding differences between four-component DHF and SF-DHF calculations.
These differences will be abbreviated in the following by the acronym SO-DHF. As the
SO corrections first appear in DPT4, their relative accuracy AS© might be expected to be
in the same range as the one for the DPT2 corrections. This is more or less what is ob-
served for the dipole moments. However, for the efgs the relative errors in the SO-DPT4
corrections are much larger which again is explained by the fact that for efgs a proper

relativistic description of the inner shells is more important than for dipole moments.

For the efgs, the SO corrections have a different sign than the SR contributions at least
for the cases considered here. The absolute value of the non-relativistic result is thereby
enlarged by the SR corrections and reduced by the SO contributions. Furthermore, the
SO corrections are at least one order of magnitude smaller than the contribution coming
from the SR part of the DPT4 treatment. They might therefore be neglected for elements

up to the fifth row in order to reduce computational cost.

Concerning the dipole moments, both the SO and the SR contributions have for the
hydrogen halides a negative sign so that all relativistic corrections decrease the (positive)
non-relativistic values. For the lighter compounds (HF to HBr), the SO contributions
are at least one order of magnitude smaller than the SR-DPT4 corrections and might
thus be neglected. The SO contributions for HI and HAt, however, are larger than the
corresponding SR corrections at the DPT4 level. DPT4 predicts them to be about twice
as large than the SR contributions whereas in the DHF calculations it is found that they
are even larger. Inclusion of SO effects thus appears mandatory for these compounds. For
HI, the dipole moment including the full DPT4 correction is 0.2056 a.u. which deviates
by about 0.002 a.u. from the DHF result. This corresponds to a relative error of about
1%. For HAt, the dipole moment even changes sign when SO contributions are accounted
for. But as already noted for the SR results for HAt, the DPT expansion up to fourth
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order cannot be considered converged for this molecule.

VIl.4. Relativistic corrections to hyperfine parameters in
rotational spectroscopy: Application to CH,BrF,
CHBrF,, and CH»FI

In this section, the techniques for calculating relativistic corrections to efgs as de-
veloped in this work are applied within a joint experimental and theoretical rotational-
spectroscopic investigation of the bromine and iodine quadrupole-coupling tensors for the
molecules CHyBrF, CHBrF,y, and CH,FI'3! with the focus on the DPT4 corrections. The
bromine containing species are potentially of interest in atmospheric chemistry due their
important role in stratospheric ozone depletion and global warming!3? while the investig-
ation of fluoroiodomethane is important as the knowledge of its spectroscopic parameters
enables a systematic analysis of their variation along the series CH3I, CHyFI, CHF:I, and
CFsI upon fluorine substitution.33
The corresponding experiments have been carried out at the University of Bologna by
G. Cazzoli and C. Puzzarini. Recording and in particular the analysis of the spectra
is challenging due to their complicated hyperfine structure. However, using the so-called
‘Lamb-Dip’ technique,'3* the hyperfine structure of the rotational spectra can be resolved,
but the determination of the hyperfine constants, such as, for example, the quadrupole-
coupling constants is often cumbersome. Therefore, highly accurate theoretical predictions
play an important role as they yield precise information about the (hyperfine)pattern of
the spectra and help in the assignment of specific transitions. Furthermore, they are im-
portant to verify the experimental results, i.e., to confirm the accuracy of the determined
spectroscopic parameters. Many examples of this fruitful interplay between theory and
experiment can be found in the literature.?

For the theoretical prediction of the quadrupole-coupling constants, the following relation
to the efg at the nucleus K is used?

— K
Xij = % (VILT)

with (—eQg) as the nuclear quadrupole moment for the nucleus K. For the conversion
from the efgs to quadrupole coupling constants, the nuclear quadrupole moment for "Br
has been chosen to 307.5(10) mb*® and for 271 to -696(12) mb.136:137
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Table VII.7.: Scalar-relativistic DPT corrections to the halogen electric-field gradient
q.. and to the dipole moments u, of the hydrogen halides in comparison
to results from SF-DHF calculations as well as the corresponding SO-
DPT4 corrections in comparison to results for the SO contributions from
four-component DHF calculations. All values are given in atomic units
(a.u.). Geometries and basis sets were taken from Ref. 114.

HF HCI HBr HI HA¢
qHF-SCF 2.8704 3.6095 7.0704 9.7311 15.4088
q°Pr1? 0.0101 0.0496 0.5057 1.7167 7.4555
¢R-DPT24a 0.0102 0.0501 0.5337 1.9476 10.1437
¢SR-DPT24,6d 0.0102 0.0502 0.5352 1.9765 11.0358
gSF-DHED 0.0102 0.0502 0.5352 1.9805 11.4451
ADPPT2 /0% 2.8:107! 1.1 5.5 13.3 34.9
ASR-DPT24/% 3.0-1073 1.2:1072 2.9-107! 1.7 11.4
ASR-DPT246/% — 93.1073 3.4-107* 1.4-1072 0.2 3.6
pHE-SCF 0.7580 0.4797 0.3728 0.2595 0.1904
uPrT? -0.0014 -0.0049 -0.0176 -0.0398 -0.1002
pSR-DPT24a -0.0014 -0.0050 -0.0186 -0.0448 -0.1321
pSR-DPT2,4,6d -0.0014 -0.0050 -0.0186 -0.0453 -0.1409
pSF-DHED -0.0014 -0.0050 -0.0186 -0.0454 -0.1438
ADPPT2 jO 3.4:107! 1.2 5.3 12.3 30.3
ASR-DPT2:4/% 9.2:107* 1.0-1072 2.3-1071 1.3 8.1
ASR-DPT246/% —15.10~* 5.2-107% 9.8-1073 1.4E-1 2.0

q>0-PPT4 -9.109-10~¢ -6.883-107° -2.577-1073 -0.0179 -0.2125

q>O-PHFe -9.200-107° -7.158-107° -3.313-1073 -0.0317 -0.8540

ASO /% 1.0 3.8 22.2 43.4 75.1

pSO-DPT4 -6.570-107¢ -7.610-107° -0.001677 -0.00914 -0.0675

pSO-PHEe -6.603-107° -7.730-107° -0.001809 -0.01095 -0.1095

ASO /% 0.6 1.5 7.3 16.5 38.4

¢ sum of DPT2 and SR-DPT4 corrections

b difference between SF-DHF and HF-SCF value

¢ obtained by taking the difference between the full DHF and SF-DHF values
@ sum of DPT2, SR-DPT4, and SR-DPT6 corrections
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Figure VIIL.5.: Structure of CHBrF; as well as a portion of its rotational spectrum. For
details see Ref. 139.

For CH,BrF and CHBrF5 a detailed account of the experimental and theoretical results
including DPT2 corrections computed at the CCSD(T) level is found in Refs. 138 and
139, respectively. Furthermore, for CHyFI a rotational-spectroscopic investigation has
been published in Ref. 140 together with CCSD(T) calculations for the parameters of
interest both at the DPT2 and the spin-free Dirac Coulomb (SFDC)* level. The geomet-
rical structure as well as a representative portion of the rotational spectra of CHBrF, and
CH,FT can be found in the figures VIL5 (p. 131) and VIL.6 (p. 132), respectively. All
details for the quantum-chemical calculations prior to the DPT4 study discussed in the
following as well as the employed geometries are found in the references mentioned before.
The emphasis is in the following on the DPT4 corrections which were calculated at the
HF level using uncontracted versions of Dunning’s correlation-consistent valence polarized
basis sets (cc-pVXZ) with X=T, Q, 520122 as well as the uncontracted ANO-RCC basis

set. 129
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Figure VII.6.: Structure of CHyFI as well as a portion of its rotational spectrum. For
details see Ref. 140.

VIl.4.1. Halogen quadrupole-coupling tensors of CH,BrF and
CHBI‘F2

In table VIL.8 (see p.133) the computed and experimental bromine quadrupole-coupling
constants for CHBrF, are shown.'®® The deviations of the theoretical predictions from
experiment are lower than 0.5%. This good agreement is due to the fact that the present
calculations include relativistic effects (they range from 15 to 32 MHz, i.e., about 6.5%,
as expected from previous investigations of bromine-containing molecules'®%!38) and that
the conversion of the computed efg is based on the most recent values for the bromine

135 On the other hand, vibrational corrections are small, their rel-

quadrupole moments.
ative contribution being lower than 1%.

Furthermore, calculations at the DPT4, SF-DHF, as well as DHF level have been carried
out in order to compute higher-order relativistic corrections to the diagonal elements of
the quadrupole-coupling tensors of the bromine nucleus in CHBrF; and CHy;BrF. This
allows to analyze the convergence of the DPT corrections and to assess the importance
of SO effects at least at the HF level.

The results are found in table VIL.9 (see p.134). For both CHBrFy and CH,BrF it can be
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VII.4. Relativistic corrections to hyperfine parameters

Table VII.8.: Individual contributions to the diagonal elements of the computed bromine
quadrupole-coupling tensor of CHBrF, in MHz®.

non- relativistic vibrational
relativistic correction correction total experiment”
Xaa 489.854 31.827 -0.328 521.353 521.257(9)
Xbb -262.496 -17.078 -0.085 -279.659 -279.804(40)
Xee -227.358 -14.750 0.413 -241.694 -241.453(40)

@ non-relativistic values obtained at the CCSD(T)/cc-pCVQZ level, the relativistic DPT2 corrections
at the CCSD(T)/cc-pVQZ(unc) level, and the vibrational corrections at the MP2/cc-pCVTZ level.
Geometries from CCSD(T)/cc-pCVQZ calculations.

b from Ref. 139

seen that the SR-DPT4 corrections are about 1-2 MHz while the SO contributions are one
order of magnitude smaller, i.e., about 0.1-0.3 MHz. Inclusion of the DPT4 corrections
does not improve the agreement with the experimental numbers. It should be noted in
this context that the error estimate for the bromine quadrupole moment is about 1 mb,
so that the remaining uncertainty in the theoretical estimates is up to 1 MHz. Since
the SR-DPT4 corrections are of the same order of magnitude as this uncertainty, and
since the SO corrections are even smaller, it seems sufficient to limit the treatment of
relativistic effects in these cases to the DPT2 level. Furthermore, since correlation and
relativistic effects are not additive, we expect, based on previous experience,*"192 that the
presented corrections computed here at the HF level overestimate the relativistic contri-
bution. Nevertheless, by means of a DPT4 calculation at the HF level, a rough estimate
for higher-order relativistic corrections is accessible. In the present case, this estimate
justifies the use of and restriction to DPT2.

Regarding the basis-set dependence of the DPT4 corrections, it is seen that they converge
rather smoothly when increasing the cardinal number X in the cc-pVXZ(unc) sets. For
the SR corrections there is a satisfactory agreement between the values calculated using
the cc-pV5Z(unc) and the ANO-RCC(unc) basis set while for the SO contributions larger
differences are observed. Since the ANO-RCC basis includes more basis functions in the

inner-shell region, these numbers are probably more accurate.
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Table VIL.9.: Higher-order relativistic corrections (beyond DPT2) to the diagonal ele-
ments of the bromine quadrupole-coupling tensor of CHBrF; and CHyBrF
in MHz. Geometries for CHBrF5 from Ref. 139 and for CH,BrF from Ref.

138.

basis SR-DPT4  SO-DPT4  h.o. SF-DHF? SO-DHF® ‘ Exp.© Theory*
CHBrF»

Xlllli

ce-pVTZ(unc) 1.74 -0.32 1.82 -0.37 521.257(9) 521.353

ce-pVQZ(unc) 1.84 0.29 1.93 0.34

cc-pV5Z(unc) 1.86 -0.28 1.95 -0.32

ANO-RCC(unc)  1.87 0.23 1.97 -0.26

Xbb:

cc-pVTZ(unc) -0.94 0.17 -0.98 0.20 -279.804(40)  -279.659

cc-pVQZ(unc) -0.99 0.15 -1.04 0.18

cc-pV5Z(unc) -1.00 0.15 -1.05 0.17

ANO-RCC(unc)  -1.01 0.12 -1.06 0.14

XCCZ

cc-pVTZ(unc) -0.80 0.15 -0.84 0.18 -241.453(40) -241.694

cc-pVQZ(unc) -0.85 0.14 -0.89 0.16

cc-pV5Z(unc) -0.86 0.13 -0.90 0.15

ANO-RCC(unc) -0.86 0.11 -0.91 0.12
CHQBT’F

Xaa

cc-pVTZ(unc) 1.44 -0.23 1.50 -0.27 443.431(8) 441.8

cc-pVQZ(unc) 1.52 -0.21 1.59 -0.25

ce-pV5Z(unc) 1.53 -0.20 1.61 -0.23

ANO-RCC(unc) 1.55 -0.15 1.63 -0.19

Xbb — Xece

cc-pVTZ(unc) 0.45 -0.07 0.47 -0.08 153.566(26) 153.63

cc-pVQZ(unc) 0.47 -0.06 0.50 -0.07

cc-pV5Z(unc) 0.48 -0.06 0.50 -0.07

ANO-RCC(unc)  0.48 -0.04 0.51 -0.05

¢ higher-order SF-DHF result defined as the difference between SF-DHF and the total DPT2 value
b difference between the full DHF and SF-DHF values

¢ experimental value and previous theoretical estimate from Ref. 139 in the case of CHBrF5 and from

Ref. 138 in the case of CHyBrF. The non-relativistic values were obtained at the CCSD(T)/cc-
pCVQZ level, the relativistic DPT2 corrections at the CCSD(T)/cc-pVQZ-unc level, and the
vibrational corrections at the MP2/cc-pCVTZ level.
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VII.4. Relativistic corrections to hyperfine parameters

VIl.4.2. Halogen quadrupole-coupling tensor of CH;FI

The computational results for the iodine quadrupole-coupling tensor of CHyFI are given
in table VIL.10 (see p.136) together with the experimental results.'® Relativistic effects
treated at the CCSD(T)/DPT2 level amount here to about 14%. However, the deviation
of the theoretical results from experiment is still in the range of 5-26 MHz. These de-
viations are reduced by inclusion of the DPT4 corrections, i.e., for x,, from around 26
MHz to 2 MHz, and for y.. from 21 MHz to 4 MHz. For x4, the absolute deviation is
more or less unchanged, i.e., changes from 5 MHz to —6 MHz. The agreement appears
convincing even though the relative error in the SO treatment in comparison to a full
DHF calculation is about 36%. However, as seen by the SF-DHF and the full DHF values
in table VII.10, relativistic corrections beyond DPT4 are non-negligible. Furthermore,
at the HF level, the relativistic contributions are overestimated1%2 so that the missing
higher-order corrections and the HF treatment lead to a fortuitous error compensation.
This is confirmed by the SFDC values calculated at the CCSD(T) level.!%? Taking the
difference between the SFDC and the DPT2 results yields a higher-order SFDC contri-
bution that is around 2 to 4 MHz smaller than the corresponding higher-order SF-DHF
correction and agrees well with the SR-DPT4 results.

Nevertheless, the DPT4 calculations at the HF level provide a useful estimate for missing
higher-order relativistic effects beyond the DPT2 treatment. Finally, it is noted that due
to the large uncertainty of 12 mb in the iodine nuclear quadrupole moment the comparison

to experiment needs to be viewed with some caution.
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Table VII.10.: Theoretical predictions and experimental values for the diagonal com-
ponents of the iodine quadrupole-coupling tensor of CHyFI in MHz. All
theoretical values calculated with the ANO-RCC(unc) basis set'*® and
geometries from CCSD(T)/cc-pwCVQZ'"! calculations (see Ref. 140).

Theoretical and experimental results from Ref. 140

nrl® DpPT2¢ total Exp.b Ay Exp-—total
Xaa -1337.32 -218.47 -1555.79 -1581.6142(27) -25.82
Xop  497.72 81.58 579.30 584.1657(52) 4.87
Xee  839.60 136.89 976.49 997.4485(52) 20.96
Higher-order relativistic corrections
SR-DPT4¢ h.o. SF-DHF? h.o. SFDC*¢ SO-DPT4¢ SO-DHFf AxPPT4  Ayho. DHF
Xaa -29.80 -33.97 -29.77 2.46 3.85 -27.34 -30.12
Xoo  11.51 13.12 11.11 -0.96 -1.52 10.54 11.60
Xee — 18.29 20.86 18.66 -1.50 -2.33 16.80 18.53

@ Calculated at CCSD(T) level of theory
b Reference 140
¢ Calculated at HF level of theory

¢ Higher-order SF-DHF result defined as the difference between SF-DHF and the total DPT2 values

¢ Higher-order SFDC result defined as the difference between SFDC and the total DPT2 values

/" Difference between the full DHF and the SF-DHF values
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VIlIl. Conclusion

In order to reach high-accuracy consideration of relativistic effects in systems contain-
ing light elements can be essential. Perturbative schemes represent an attractive and
cost-effective option in these cases where relativistic effects are small. Use of the Pauli
Hamiltonian, however, is unsatisfactory in the sense that it contains singular operators
and can only be applied in lowest order. An alternative route to treat relativistic effects
in a perturbative manner is given by Direct Perturbation Theory (DPT). In contrast to
schemes based on the Pauli Hamiltonian, DPT can, for example, be applied in arbitrary
order. Furthermore, the general theory is systematic and elegant. It can be formulated in
terms of energy derivatives based either on the Schrodinger or the Dirac equation making
the implementation rather straightforward. The option to calculate higher-order correc-
tions makes it possible to investigate both the convergence of the perturbative expansion
as well as spin-orbit contributions for closed-shell systems.

In this work, higher-order relativistic corrections to energies and electrical properties have
been investigated in the framework of DPT. A detailed summary of the results is given

in the following.

General formulation of DPT in terms of energy derivatives

A general formulation of DPT was presented in terms of analytic-derivative theory.
For instance, the DPT4 energy can be expressed as second derivative of the energy with
respect to the relativistic perturbation parameter A\ = ¢ 2. Using the method of Lag-
range multipliers DPT corrections have been derived from two different perspectives, i.e.,

starting from either the Schrodinger or the Dirac equation.

DPT4 expressions in the framework of HF and MP2

For both Hartree-Fock (HF) and second-order Mgller-Plesset perturbation theory (MP2)
explicit expressions for the DPT4 correction have been worked out for closed-shell sys-
tems. The MP2 formulation is easily extended to other electron-correlation treatments
such as coupled-cluster (CC) theory. The spin-orbit corrections which first appear at the
DPT4 level have been separated from the scalar-relativistic contributions, thus enabling

an independent treatment.
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VIII. Conclusion

Implementation of the DPT4 corrections

The DPT4 energy corrections at HF and MP2 level have been implemented into the
CFOUR program package,®® thereby exploiting available second-derivative capabilities.™
For the calculation of DPT4 corrections to electrical properties the required numerical
differentiation techniques have been set up.

All integrals relevant for DPT4 except for those already implemented for DPT2!09:110
have been evaluated using the McMurchie-Davidson scheme!®” and implemented into the

CFOUR program package.

Convergence of the DPT series at the HF level

The accuracy of the DPT4 corrections as well as the convergence behaviour of the DPT
series have been investigated for both the SR and SO contributions at the HF level. The
general observation was that the quality of the description degrades for heavier elements.
However, the DPT convergence behaviour was found to be smooth and monotonous. For
the energies, DPT4 represents a significant improvement over DPT2 and is capable to
provide relativistic corrections to the energy with a remaining error in the relativistic
description of 1% or less even for molecules containing elements of the fifth row of the
periodic table. In the case of even heavier elements, the DPT series could no longer be
considered converged in fourth order. In the considered closed-shell cases, the SR con-
tributions were found to be dominant while the SO corrections are about two orders of
magnitude smaller. For the DPT4 corrections to electrical properties, the results con-
cerning the convergence were similar except that the relative errors are larger compared
to those obtained for the energies.

Concerning the basis-set dependence, it is noted that the chosen basis set needs to comply
with requirements of both the non-relativistic and the subsequent relativistic treatment.
For the DPT4 energy corrections at the HF level it was found that decontraction of a

non-relativistic basis set leads to the fastest convergence.

DPT in electron correlation treatments

At a correlated level of theory the DPT4 contribution tends to overestimate the correl-
ation contribution of the relativistic correction. For the SR contribution, the fourth-order
results even indicate a divergence of the DPT expansion. The origin of this problem can be

traced back to high-lying virtual s-orbitals together with the use of a point-nucleus model.
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The correlated SO-DPT4 corrections, however, do not suffer from numerical instabilities

and can be used to estimate correlated SO contributions.

Application to rotational spectroscopy

For the molecules CHy;BrF, CHBrF;, and CHyFT, the importance of higher-order relativ-
istic corrections to the halogen quadrupole-coupling tensors was investigated. Concerning
the bromine-containing species, it was found that the restriction to DPT2 is justified
while for the iodine quadrupole-coupling tensor higher-order relativistic corrections are

important to reach an accuracy of better than 1%.

The present work shows that DPT is an elegant theory for the description of relativistic
effects and works well in the framework of HF theory. Furthermore, it enables a detailed
analysis of the individual contributions to the relativistic corrections and a formulation
in terms of energy derivatives is possible in all orders making the corrections straightfor-
ward to implement into quantum-chemical programs. However, DPT in higher orders will
probably not become a standard tool for the treatment of relativistic effects in the future
because the convergence of the DPT series depends strongly on the atomic number and
correlation treatments using higher-order SR-DPT seem to be divergent. Despite these
drawbacks, the theory is not to be discarded. DPT2 corrections both at the HF as well as
at correlated levels yield excellent results for light elements (up to the fourth row of the
periodic table) at low computational cost. Furthermore, understanding the structure and
magnitude of all contributions to relativistic corrections is important for the educated ap-
plication and the development of approaches to treat relativistic effects. Such an analysis
is possible only within the framework of DPT. In addition, the SO treatment in DPT
can be utilized in other contexts. For example, if the full SR contribution is calculated
and only the SO terms are treated perturbatively, the resulting equations are very similar
to those used in the present SO-DPT4 treatment rendering their implementation rather
straightforward. In this way the insight and computational capabilities resulting from

this work will be of advantage in future developments.
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IX. Appendix

IX. Appendix

IX.1. Perturbative expansion of the Dirac-Hartree-Fock

equations

Using the modified metric (see chapter IV.1) the Dirac-Hartree-Fock (DHF') equations

are given as

with

P V4 Jun — Kin + S Jss
D = .
op — 5 Kis

‘Ili — v ) SD =
Xi

f'D‘I’i :éTiSD‘I’z

10
0 %)’

and the Coulomb and Exchange operators defined as

JLL¢’L

Jssbi(1

KLL¢’L

Kssoi(1

KLS¢2

KSL¢1
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IX.1. Perturbative expansion of the Dirac-Hartree-Fock equations

Note that in all non-vanishing two-electron integrals both components have to be of the
same type for a given electron, i.e., either large or small.
When a perturbative expansion of the DHF equations is carried out in terms of terms of

Arel = ¢~ 2, the zeroth order is given by

EOgO = (080 g©® (IX.10)
with
. V4 o — K9 of 2\ ao (100
f](30) _ + LL<02 L OP 7\I,Z(‘O) =" 731(30) , (IX.11)
op —2m Xi 0 0
and from the second row of (IX.10) it follows
o 1 o
X, = =—ODy; (IX.lZ)

2m

which is equivalent to the result from the one-electron Lévy-Leblond equation. The

second-order equation is given by

OGO | ERg0 _ 05RO 2g0g0 | 0G0 g® (1X.13)

7 7 7 7

which can be rearranged to

(£ — S w? + (£ — cU8)) — PSP wl” =0 (IX.14)
with
7(0) 7(2) (2) (0)
§O) _ Jsg + i — K, —Kgp g _ 00 (IX.15)
D 7O 0 |+ Sp : :
—ALs V + JLL 0 1

2)

The perturbed small component x;” is again obtained from the second row of (1X.14)

1 A o .
& = (V0 TN — KD + o) (1X.10
1

SES RN

- 2m

+ / P Y o2 [l @) @] +ope )} axam)
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1 ) .
= {ope? + (v -2+ D - KT 18
k
with
0 0 (0 0 0 0 0 0 0 0 0 0
K IO = RO 1) = @@ [ x Q0@ — (0@ | x O, (IX.19)

1X.2. CPHF equations for the relativistic perturbation

The CPHF equations for the relativistic perturbation A, are obtained by setting the

derivative of the virtual-occupied block of the Fock matrix equal to zero

oW, | fp | W)
= IX.2
0 { a>\rel =0 ( 0)

:{< AD‘\I'§°)>+<\1:§P>‘%D‘\I:§2)>+<\If o >>} (IX.21)
>\r91:0

— Upee; + Unlea + fi) + Z Uy [{pap | 0i05) — (Patop | 0¢01)]

afD
8)\rel

ZU o (as | pispp) — <<pa90j | opei)] (1X.22)
yielding
> (2Re Uy {aps | 9i03) — Un™ (0aps | @3608) — Upg™ (a5 | 4)

bj

—+ Ulf;reléabéij(€a — 51))

Ae) L
= — S = L+ 5 DSy (20000 | 91603} = (Pasr | @308
ik

— {wa; | s&m))- (IX.23)

For the SR part, it follows after spin integration for the closed-shell case

Z P (40001 | 6105) — (Gutn | 60 — (6a6; | 6163) + Swbiglea —21))

=~ - 150+ Zs (440utn | 0165) — (Bute | 6300 = (6005 | dni))  (1X.24)
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IX.3. First derivative of the Lagrange multipliers

while for a specific SO component ¢ = z, ¥, z the spin-integrated CPHF equations are

Z SOC( DaPp | 0j0i) — (Pt | Pvdi) + Savlij(€a — 51)) = —féisoc)- (IX.25)

Note that in this expression for the y component iUE}Oy instead of Ubsjoy is determined.
The spin cases for the specific components that are evaluated are U%O’” = UES].O’”, iU%Og
and UijOz'

I1X.3. First derivative of the Lagrange multipliers

The second-order Lagrange multipliers 5( ) are given as

@ _ ) 0(%, | fo | @) IX.26
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Z Upetl) (IX.30)
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k

while dropping the superscripts (0), it follows

; * re R )‘re
o = ZWM%MM%+ZW1%mmw+m”

T Z (2 Re Uy (0;0p | goigok> — U™ (0i0p | sy — Uni (s | %%))
k
’ (1X.32)
=U"e; + Updie; + fi
+ Z (2 Re Ui (0500 | 0isor) — Unp™* (0500 | orps) — Unp {0601 | s%%))
(IX.33)
ZS]’\;EI (ei +e5) + f;{\rel)
+) (2 Re Uy (0i0p | pisor) — Upi™(pi0p | orpi) — Ui {pipu | wpz))
k,p

(IX.34)
where it was used that due to (IV.50) it holds
ozﬁ{@ 1Sp | @ >} (IX.35)
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IX.4. Spin orthogonality for the ¢} integrals

=( | 0q) + (@ 1) + O [ XxP) (IX.36)
=Upp™ + Upe + S (IX.37)

IX.4. Spin orthogonality for the ¢}y integrals
After separation of the SR and SO parts of the integral
(pq | 01910 2D217y O1P102D2 | 75)

the contributions involving the SO part are given by

(pq | o1P102P2r 1, G1D103D2 | Ts) —(pq | i1 P2(P1 X 715 P1)D2 | TS)
+ (pq | io2 (P2 ¥ 1517“1_21f>1f>2) | s)
+ (pq | ioa(P2 X io1(P1 X 715 P1)D2) | s). (IX.38)
where the first and second term are of the same type, i.e., io - R with k=1,2 and R as

the spin-independent part of the operator. In the DPT4 energy expressions (see IV.51,

IV.134) the terms containing the §73 el integrals are given as

Zqu Z pj || g1r°1 | 47, (IX.39)
rq J
and
> Toars(pa I gt || vs). (IX.40)

pgrs

Note that the contribution appearing in (IV.51) is a special case of (IX.39) and therefore
does not need a separate discussion.

For the first and second term in (IX.38) it holds that there cannot be a contribution for
the SOz and SOy component as the only possible spin cases for D,, and I',,,s are those
where there is an even number of o and f spins, i.e., D,g, I'pgrs, I'pgrs: I'pgrs Plus those
where o and [ spin are exchanged. In the integrals however an odd number of o and (8
spins is needed to give a non-vanishing contribution as o, and o, both change the spin
case. The SOz component does not change the spin case and therefore contributions of

the aforementioned terms are possible. However, they add up to zero for closed-shell
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systems as shown for the first term in (IX.38)

ZquZ (0 || 1R || 45)
= Z Z ZDprp Z ((Ppju | 011 | ijw> — (PpJu | 01 R | jw(]p)) (IX.41)

p=a,Bw=a,8 pq

—ZZ{ (i | 01-R | a3) + 9 | 01-R | ai) ~ (03 | 1R | )

(pi| Rlaj) (pi|Rlaj) (pi|Rlja)
+ D77 | o1 R | @)+ pi | o1-R | @) - (7 | 1R | Fa)) . (1X.42)
—(pi|Rlad) —(pi|Rlad) —(pi|Rlja)
As D,, = Dy it follows that
> Dy > (pjllorR | qj) = 0. (IX.43)
Pq J

When contracted with the two-electron density matrix, these terms add up to zero for

closed-shell systems in a similar manner

> Tors(pa |l o1R || 7s)

pgrs

=5 S Thwrses(pots | 00 R | ross) — (o | 01.R | ssra))  (IX.A4)

pqrs pwld=a,3
=3 {Twrsllpa | 712K | rs) = (pa | o1-R | 57)
paTs (palRlrs) (palRls)

+ Tors (97 | 012 | 75) — (57 | 12 | 57))
—(pq‘|§%|m> —(pq‘\;?ISﬂ

+ Dpgrs (Pa | 0121 | 75) +Tgrs (07 | 01 | 75)

—(pa|Rlrs) (pa|Rlrs)
~Tpars (g | 01.R | 57) ~Lyars (7 | 01.R | 57) } (IX.45)
—(pal RJsr) (pa|Rlsr)

As qu'r’s = Fm7 F;T)qu = qurs, and qu’rs = qu75 it follows that

> Tyrs(pq || o12R || 7s) = 0. (TX.46)

pgrs
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IX.4. Spin orthogonality for the ¢} integrals

In the same manner it can be shown that the second term in (IX.38) vanishes when
contracted as given in (IX.39) or (IX.40).

Furthermore, for the third term in (IX.38) it holds that oy and o3 have to be of the
same type, i.e., both have to be either o,,0,, or o, to give a non-vanishing contribution.
For the combinations (1 + p172)0_1x0'2z and (1 + ]51,2)011/0% the reason is again that in
the density matrices an even number of o and [ spins appear whereas the only non-zero
contributions in the integrals would have to involve an odd number of a and 3. Concerning
the contributions (1 —1—15172)01:5021/ it holds that similar to the previous discussion, the terms
add up to zero in the case of closed-shell systems. As both o, and o, change the spin case,
the only non-vanishing contributions from the integrals can come from terms where the
spins for electron 1 and 2 on the left-hand side of the integral and those on the right hand

side are exchanged. For the contraction with the one-electron density matrix it follows

therefore
Z Dy, Z pq || o101y R || 75)
- Z Z { (i ] leglyR | jq>) + Dyg(— (pj | o0y R | j7))} - (IX.A7)
' <pJ\RIJq> —i<p;|,R\jq>
- (IX.48)

and for the two-electron density matrix

erqm@q | o101y R || 75)

pgrs

=2 { pars( = (P2 | 91201 B | 5T)) + Dyrs (= (P | 91201 1 | 7))

pars ~i(pa|Rlsr) i(pal Rls)
+ Tpprs (pq | O'le'lyR ] 7“5} +T s (pq \ alxalyR ] rs) } (IX.49)
<pq|R\7“S> (quRITS>
0. (IX.50)

Obviously the result is the same if electron 1 and 2 are exchanged.
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IX.5. Spin integration for the fégo) matrix elements

The spin integration for the spin-orbit components may be exemplary shown for the

SO : . :
,Eq ) matrix elements which are given as

1 i . S R R :
159 = 5 (W lio(®V x B) | a) + Y (0 |l o (Buriy’ x B) + oa(Bariyt x B2)) || 43))
J

(IX.51)

For the SOx component the only possible spin cases are f;; ) and f (502) and therefore

it follows

SOx . SOz | — - - ~SOz | ==
150 =(p | 6207 | 9) +Z{ pj | 01377 | @5) + (pj | 0120:°% | )

—(pj | 02:95°7 | j@) — (p7 | 01207°" \3@)} (IX.52)
=h507 + > {20 1 657 | a) — (0 | 557 | o) — (pi 1 5% | ja) | (1X.58)
J
with

AC

1 o A 1a
01 :mecuuz(puvpu - puvpu) (IX54)

and the Levi-Civita tensor as given in (IV.68). For f;/ (507) the same result is found.

As o, introduces the imaginary unit ¢, the equation is premultiplied by i:
SO . . o . SOy | — - ~ SOy | ==
if2 " =ilp | 6,08 |7+ {(m | o1y Y | @) + (0 | o193 | @)
J

—(pj | 02485 | ja) — (0 | 01,57 | 3@} (IX.55)

=150+ 3 L2pj 1 55 La) — (0 1 65 | ja) — (s 1 65 | ja) }. (1X.56)
J

Furthermore it holds that ¢ f (80y) _ fésoy). The SOz component involves the Pauli
spin matrix o,. As it does not change the spin case but only the sign, the possible matrix

(SOz)

elements are (802) and . For the aa element it holds
pq pq

F597 =(p | 607 | ) + Z{ pj | 01077 | af) + (pi | 0107 | 47)
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~SOz ~SOz

+ (pj | 022057 | 4J) + (pj | 02:95°% | 4J)
—(pj | 01,877 | ja) — ) | 01.97°7 | Ja

)
— (pj | 022857 | Gig) — (pJ | 02:95°° !3q>} (IX.57)
) —

=h50% 4 Z{ pi |32 L ag) — i | 7% 1 ja) — (i | 35° Ijq>} (IX.58)
J

~SOz

and fPS’OZ = f}gjoz). From (IX.53), (IX.56), and (IX.58) it follows that the equations
for f,- (80z) Vi fp () and £5°7 all have the same structure. As this is generally the case for
the SO quantities, it is possible to implement their evaluation in form of loop structure

over the SOz, SOy, and SOz component.

1X.6. Spin-integrated quantities for SR-DPT4 at the
MP2 level

The definitions of the SR perturbed and unperturbed density matrices, Lagrange mul-

tipliers and integrals from (IV.163) are given as

ab
ot _ 1 Aab | g ij) Z O fmi sab Z O fmj 4ab
OXsg & + €j —E€q —E&p OAsR OAsR m OAsR tim
afae b 8fbe
t2 + e IX.

0 1
S = = 5 SMey ey) IS + S (U Ctor | ak) — o | ko) — ok | 7))}
rk

(IX.60)

ab)

0(ij | 53
O0Asr

=3 {USR g | G5+ 557 | ab) + UG | g5 + 5™ | pb)

p
+ US M ip | 7™ + 957 | ab) + USig | g7 + 357 | ap)
+ 245 (pj | g7 | ab) + 2A§5 (ZJ | 97" | pb)
245 | 5 | ab) + 2457 | 65 | ap) }
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+2(ij | g5 | ab), (IX.61)
0D;; g [ ot o
— —_Z 9 (4872 — 2% + X7 | 4 — otk IX.62
OAsr Z Z {a)\SR W) 5/\SR INsr | [’ (1X.62)
Dy oNa . = c‘%eb 8t?%

__ ea 4 ei _ € J ki 2 J IX.
OAsr Z Z { a)\SR i £5) & Aca a)\SR MNsr | |7 (1X.63)
orsm 9
o = (¢ )+ 30 (20K | 530 ok = 0k 3 )

-3 (U5 + 2ATRR + (U8 + 2457 hSR] 4mZA§55gRA§§

TS JICRE 5 ko)
+22ASR (2(tk | g7° | gk) — (tk | g7 | kq))

ZUSR (pk | g7™ + 65" | th) — (pk | g7 + g3 | kt))
+22ASR 2ok | G5 | 1h) — ok | G5 | k#))

Z (2(pt | 7"+ 35 | qk) — (pt | 37+ 35" | kq))
+Z2Afk}‘ (2(pt | 65" | ak) — (pt | 65" | kq))

Z (2(pk | 7™ + 35" | at) — (pk | 67" + 35" | tq))
+Z2Atsz? (2(pk | G5™ | at) — (pk | 57 | ta))

tk

+2) (2(pk | 335 | ak) — ok | 335 | kq)), (IX.64)
k

I+ L == > > (401 | ab) = 2(jt | ba)) — 2Dy
ab

= > Dua(d(ky | Uiy — (kj | il) — (ki | D))

150



IX.6. Spin-integrated quantities for SR-DPT4 at the MP2 level

— > Duc(4(bj | ci) = (bj | ic) — (bi | jc))
be

= Zan(4aj | ki) —(aj | ik) —(ai | jk)), (IX.65)

Lit+Ta=—)_ Z B (40K | ib) — 2(kj | bi)) — Zaies, (IX.66)
kj

Loy + Lo = Z Zt (ij | ca) — 2(ij | ac)) — 2Dgpep, (IX.67)

M+ L) ZZ S (4t | ab) = 2031 ba)
SR
_Zzt 9l g | ab) 2(]”9‘5@)
O0Asr O0Asr
9D; A [k
—2 (a)\SRéT +§le8)\SR)
8Dkl P . .
ZaAR (kj [ li) — (kg | il) — (ki | j1))

_ZD( WARARD) 8<kj|§|il>_5<ki|§|jl>)

8)\5}{ 8/\SR 8)\SR

anC . .
_Z(?/\R (bj | ci)y — (bj | ic) — (bi | jc))

_ZD L2071 glery 9bjlglic 0Obilg]je)
b OAsr O0Asr OAsr

—Zg’f;’: (4aj | ki) — {aj | i) — (ai | j8)

a]‘g|kz> 5<aj|gA‘ik> 5<ai|9A|jk>
— g 4 — — IX.68
o+ ( 6)\SR 5)\SR 8)\SR ’ ( )

a(Iai + Iza
Alai T lia) _ _9
) 5 0 i )20 )
_Zztab Olkj | glib) ,0(kj|g]bi)
OAsr OAsr

8ZaZ O fin
- : Za )
Mar Z F O an

(1X.69)

a(Iab + Iba o
W ZZ 6/\ A(ij | ca) = 2(ij | ac))
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S3Y JHNiglglea) 065 g]ac)
el R O0Asr OAsr
8Dab 8fca
2 (c‘»sﬁ’ + Z Dd’%) , (IX.70)

while the unperturbed and perturbed Z-vector equations read

ZZb] €i)0ap0ij + 4{ba | ji) — (ba [ i) — (bi | aj)]
_ZZt“b (kj | ib) —2(kj | bi)) ZZth {aj | cb) —2(aj | be))

- Zle (la | ki) — (la | ik) — (li | ak))

— Y Dy(4(ba | ci) — (ba | ic) — (bi | ac)), (IX.71)

07,
3 Gl 0aah + 4 |9 G )~ )
3/\SR

0/\SR 8)\SR 8)\SR
B 8fba N 8fzy
LD WLy v
+sz Alkj | ib) — 2(kj | bi))
(kjlg|ib) O(kj|g|bi)
ab
+ Z Zt ( Den 2 e
—ZZ& 4aj | cb) — 2(aj | be))
_Zztcb d{aj | g | cb) 2<aj]§]\bc>
: OAsr OAsr
> ale (4(la | ki) — (la | ik) — (li | ak))
OAsr

~Y Dy (43<la|§|kz’> ~ la] g |ik) _8<[¢|g|ak>>

_ ZZ{ (ba|g]ji) _ofbalglij) abil§]aj)
Sz, _

aASR (9)\SR a)\SR
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=5 9P ytha | iy — (ba | ich — (bi | ac))
— OAsr
ba | g|ci) 9ba|g|ic) 0O{bilg]|ac)
— Dy | 4 — — . IX.72
%: . ( DAsr s Dsr (1X.72)

IX.7. Accuracy of the numerical SR-DPT4 and
SO-DPT4 results

The accuracy of the DPT corrections to dipole moments and efgs obtained by nu-
merical differentiation was tested with different field strengths, i.e., X - 107¢ a.u., with
X =1,5,10,20,50,75, and 100 using two- to eight-point formulas for the calculation of
the corresponding corrections. For the efgs, a field strength of 10 - 107% a.u. seems to
be well suited as there is a fast convergence when increasing the number of points in the
differentiation formula as can be seen in figure IX.1. Larger field strengths result in de-
terioration of the results. For the dipole moments, as seen in figure 1X.2, a field strength
of 75-107% a.u. appears the best choice, as it shows the most stable convergence pattern.
To ensure that the reported digits in the computed DPT corrections are significant, cal-

culations were carried out using different convergence criteria in the SCF procedure.

HI EFG DPT2 HI EFG SR-DPT4 HI EFG SO-DPT4
1.7170 i i : \ \ 0.2325 w w w w w -0.0174 \ : : : :
17167+ e A o 0.2321+ 1 -0.0175¢
A
17163 | 02317 N 100177}
1.7160+ | 1 0.2313¢ 1 -0.0178¢ P ]
— \\ B 2
17157} S 0.2308} 5% -0.0180¢ ]
* ——5.10° " - " =
17153} o Re |l 0.2304] oo el 0081 O e |
—— andlytic - 20.10° 0 20.10°
1.71502 4 6 8 0.23002 4 6 8 —0.01832 7 6 8
Number of points Number of points Number of points

Figure IX.1.: Convergence of the DPT2, SR-DPT4, and SO-DPT4 corrections to the
iodine efg (in a.u.) in HI with different field strengths
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HI DIPOLE DPT2 HI DIPOLE SR-DPle/. HI DIPOLE SO-DPT4

-0.004965 -0.00906

= )
-0.03963[| ® 1.10° || O 75-10° | ./"’ ——
W5.00° || O 100-10° | -0.004970 { -0.00007| ]
-0.03968 - A0 ~1076 — analytic || [ |
— 1  w——% 0004975, & 1 -0.00909} ]
-0.039735 — - X o1 10° 1 75.10°
-0.004980% =4 000010} | T S0 ©100-20° |
-0.03979| : s
! i -0.004985} : 075.10° || -0.00912} R
T ®1.10° ©100-10° -
0.03%4g W 5.10° ~o_ o
-0.004990 | A 10.10° ——_, -0.00913
-0.03989 - ] * 50.10° 1 & &
2 —0.0049952 4 6 8 —0.009152 4 6 8
Number of points Number of points Number of points

Figure IX.2.: Convergence of the DPT2, SR-DPT4, and SO-DPT4 corrections to the
dipole moment (in a.u.) of HI with different field strengths

1X.8. Basis-set dependence of DPT4

Table IX.1 provides information about the basis-set dependence of the DPT4 correction
at the HF level. The results show that uncontraction of the basis is more important than
choosing the cc-pCVXZ instead of the cc-pVXZ set.
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Table IX.1.: Basis-set dependence of the DPT4 correction, see chapter VII.1.2, geomet-
ries from CCSD(T)/cc-pCVQZ calculations including DPT?2 corrections: 1%
HCL: R =1.27351 A, HBr: R = 1.44121 A.

SR-DPT4 for HCI

X cc-pVXZ cc-pVXZ(unc) cc-pCVXZ cc-pCVXZ(unc)
T 1.10393E-02 -1.00003E-02 -7.19218E-04 -1.00004E-02
Q 1.23711E-02 -1.00317E-02 -7.02785E-03 -1.00317E-02
D 6.20376E-03 -1.00521E-02 -8.89171E-03 -1.00521E-02
SR-DPT4 for HBr

X cc-pVXZ cc-pVXZ(unc) cc-pCVXZ cc-pCVXZ(unc)
T 1.00137 -9.02804E-01 1.03991 -9.02804E-01
Q 1.02158 -9.03687E-01 -6.00360E-01 -9.03687E-01
D 1.04047 -9.04133E-01 -6.15448E-01 -9.04133E-01
SO-DPT4 for HC1

X cc-pVXZ cc-pVXZ(unc) cc-pCVXZ cc-pCVXZ(unc)
T 3.86488E-05 -6.58307E-04 -5.04987E-04 -6.58348E-04
Q 5.18253E-05 -6.77950E-04 -5.98344E-04 -6.77975E-04
5 -6.06518E-04 -6.81965E-04 -6.60495E-04 -6.81972E-04
SO-DPT4 for HBr

X cc-pVXZ cc-pVXZ(unc) cc-pCVXZ cc-pCVXZ(unc)
T 2.95111E-02 -7.77068E-02 -1.65122E-02 -7.77067E-02
Q 2.87774E-02 -7.85726E-02 -5.49387E-02 -7.85725E-02
> 1.61329E-02 -7.87018E-02 -6.90552E-02 -7.87017E-02
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