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I. Introduction

I. Introduction

The importance of quantum chemistry in the field of chemical research is nowadays

continuously increasing due to the advances in computer science and the resulting in-

crease of computing power as well as the improvements in quantum-chemical methods

and algorithms.1 Quantum chemistry is able to provide information about energies and

properties of molecules within a purely theoretical framework. Therefore, in many cases,

theoretical predictions concerning the properties of unknown molecules or systems that

are difficult to handle experimentally become feasible. Furthermore, a fruitful field lies in

the interplay between theory and experiment.2 Results from quantum-chemical calcula-

tions may help in the evaluation, interpretation, as well as confirmation of experimental

findings and can even guide experiments.

The basis for the description of atoms and molecules in quantum-chemical calculations

is usually given by the Schrödinger equation. As an analytic solution to this equation

is only possible for up to two particles, in quantum chemistry a variety of methods to

solve the Schrödinger equation in an approximate manner has been developed.1 These

methods differ in both the accuracy that can be obtained as well as the required compu-

tational effort. Which method can be used for a specific system depends mostly on the

system size N as the computing time for a given method scales with some power of N . In

solid-state chemistry and for large molecules mostly density-functional theory (DFT),3–5

which scales withN -N4, depending on the actual implementation, as well as semiempirical

methods6 are employed. For small and medium-sized systems, however, computationally

more demanding yet also more accurate methods like Møller-Plesset (MP) perturbation

theory,7,8 which scales with N5, and highly accurate coupled-cluster (CC) methods9–14

are applicable. Both are so called ‘post-Hartree-Fock’ theories, as they are based on the

Hartree-Fock (HF) wave function as a starting point, and include electron-correlation ef-

fects, i.e., the explicit dependence of the movement of one electron on those of the others,

missing in the HF treatment. Using, for example, the CC singles and doubles (CCSD)15

method with a perturbative correction for the triples excitations (CCSD(T)16), which

scales with N7, energies can be obtained within an accuracy of a few kcal/mol.1

However, when based on the Schrödinger equation, none of these methods account for

relativistic effects, i.e., all effects that arise due to the fact that the speed of light c is
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finite. The formalism that combines quantum theory with special relativity is referred to

as relativistic quantum mechanics17,18 with the Dirac equation as a starting point to treat

relativistic effects in atoms and molecules. Prominent examples for relativistic effects

in chemistry are the color of gold, which, in a non-relativistic world, would be silver-

colored,19,20 as well as the liquid state of elemental mercury at room temperature, which

should be solid from a non-relativistic perspective.19,20

When dealing with heavy elements, it is nowadays common to account for relativistic

effects in quantum-chemical calculations while for systems containing lighter elements,

i.e., such from the first four rows (H-Kr) of the periodic table, these effects are often

ignored. Although, for example, relativistic effects on energies for elements of the second

row of the periodic table are already of the same order of magnitude as correlation ef-

fects, the reason why they are often not considered is the fact that for chemical reactions

only energy differences instead of absolute energies are relevant. Chemical reactions are

accompanied by changes in the valence shells, so that electron correlation is essential.

Relativistic effects, however, affect mostly the inner shells and thus cancel for a large part

when taking energy differences. Nevertheless, to achieve a quantitative agreement with

experiment, relativistic effects need to be accounted for even for very light elements (see,

for example, Ref. 21).

The most rigorous, yet computationally most demanding, way to treat relativistic effects

is to base the well-known methods from non-relativistic quantum chemistry directly on

the Dirac rather than the Schrödinger equation.17 As the one-electron Dirac equation

is of a four-component form, i.e., the operators are 4×4 matrices and the wave func-

tion is a four-component spinor consisting of the so-called large component (upper two

parts of the spinor) and the small component (lower two parts of the spinor), these

approaches are referred to as ‘four-component’ methods.22,23 For most methods in non-

relativistic quantum chemistry, a four-component variant has been developed. To mention

are here the HF24–26 approach, DFT,27–29 second-order MP (MP2),30,31 configuration in-

teraction (CI),32–36 CCSD,37 CCSD(T),38 and even general CC methods with arbitrary

excitations.39,40 However, the computational costs compared to the non-relativistic coun-

terparts are much higher23,41 due to several reasons such as the use of complex algebra,

the increased basis-set size, and less symmetries that can be exploited. A four-component

CCSD calculation, for example, is at least 32 times more expensive than its non-relativistic

variant.41

In order to reduce the computational costs, approximate schemes to treat relativistic

effects have been developed. To mention are here especially the ‘two-component’ or
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I. Introduction

‘quasi-relativistic’ approaches.42 The full four-component Hamiltonian gives rise to both

a positive-energy (electronic states) as well as a negative-energy spectrum (positronic

states). For chemistry, only the electronic states are of interest where in the wave func-

tion the upper two components are, in fact, significantly larger (roughly by a factor of 2c)

than the lower two. Accordingly, schemes have been suggested in which the small compon-

ent is eliminated either by expressing it in terms of the large component or via a suitable

unitary transformation. Both variants yield a two-component problem with an effect-

ive Hamiltonian which should (approximately) reproduce the positive-energy spectrum.

The detailed procedures how this reduction to two-component form is achieved define the

different quasi-relativistic methods, as, for example, the Douglas-Kroll-Hess42,43 scheme,

the regular approximation,44–48 and the more recent ‘exact two-component’ (X2c) ap-

proach.49–57 In these schemes, both the scalar-relativistic (SR) contributions, i.e., those

which are independent of the spin, as well as the spin-orbit (SO) contributions can be

accounted for.

In addition to the two-component schemes, one-component approaches have been de-

veloped.58–62 They carry the advantage that the implementation into an existing non-

relativistic computer program is much more straightforward compared to the methods

mentioned before. One possibility is to split SR and SO effects within the two-component

schemes and to treat SR effects only. Afterwards, the SO effects can be dealt with in a

non-variational, i.e., perturbative manner. If, as it is the case in this work, inclusion of

relativistic effects is needed in order to reach high-accuracy for chemical applications in-

volving rather light elements, perturbative techniques17 are well suited, since relativistic

effects are rather small. Perturbative schemes in these cases appear as a cost-effective

alternative to the rather expensive rigorous four-component methods, in particular when

electron correlation is considered as well.

However, the formulation of a satisfactory perturbative scheme for the treatment of re-

lativistic effects is not straightforward. When starting from the Schrödinger equation, the

proper definition of the perturbed operators appears to be an issue, while, when starting

from the Dirac equation, it is not obvious at first sight how to define the proper non-

relativistic limit. In this context, the often used scheme involving the Pauli-Hamiltonian

with mass-velocity, Darwin, and SO terms as perturbations proves to be unsatisfactory,

as it is only applicable within lowest-order perturbation theory due to singularities in the

Hamiltonian.63

An elegant solution to the above mentioned problems is offered by Direct Perturbation

Theory (DPT).63–71 Here, perturbation theory is applied to the Dirac equation after chan-
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ging the metric68 and the proper non-relativistic limit for electronic states is obtained in

form of the Lévy-Leblond equation,68,72 i.e., a four-component equation that is equivalent

to the Schrödinger equation. There is no restriction to lowest-order perturbation theory

and DPT can be in principle applied in any order. Expressions for up to DPT6 have been

reported in the literature.70,71 It should be noted that orders are counted with respect to

c−1, with c being the speed of light, and thus DPT6 corresponds to third-order perturb-

ation theory.

DPT was first suggested by Rutkowski in the 1980s64–66 and later pursued in more detail

by Kutzelnigg68–71,73,74 thus presenting itself to be an attractive scheme for the treatment

of relativistic effects. The lowest-order treatment at the DPT2 level is nowadays routinely

available and efficiently implemented in terms of energy gradients.75 However, for higher

orders, no general implementation has been presented so far. Promising results never-

theless have been reported for one-electron systems76 and for the series of the noble-gas

atoms73 which render a general implementation worthwhile. The development of such an

implementation has been hampered by the fact that the detailed expressions for higher

orders of DPT are rather involved and that, unlike for DPT2,75 it has not been clear

how existing analytic-derivative techniques77,78 could be exploited to facilitate such an

implementation.

The investigation of DPT4, i.e., the second-order perturbation theory treatment of re-

lativistic effects, seems of particular interest, since it allows a judgement of the accuracy

and convergence of the DPT series. Additionally, it is the lowest order for which SO

contributions appear in the relativistic treatment of closed-shell systems.

In this work DPT4 is formulated in terms of energy derivatives for both the HF as well

as correlated methods in order to exploit the existing analytic second-derivative tech-

niques78,79 in the program package Cfour80 which is used for the implementation of

DPT4. Beside the modifications required to make the analytic second-derivative code

work for the DPT4 corrections, additional, so-called relativistic integrals needed in the

DPT4 treatment had to be implemented into Cfour. Furthermore, in order to calculate

DPT4 corrections to electrical properties such as dipole moment, quadrupole moment

and electric-field gradient (efg), further integrals to account for the SO contributions in

DPT4 were included to Cfour and the framework for calculating these DPT4 corrections

numerically was set up.

The resulting procedure is used for a study concerning the convergence behaviour of the

DPT corrections, for both the SR and SO contributions, to energies and properties at

the HF level as well as for correlated levels of theories in the case of energies. For the
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I. Introduction

DPT4 energies at the HF level furthermore the basis set-convergence is investigated. In

addition, a joint experimental and theoretical study in rotational spectroscopy concern-

ing the importance of relativistic effects to the bromine and iodine quadrupole-coupling

tensors of selected molecules is discussed, thereby exploiting the methods which have been

developed in the present work.

Chapters II and III review the theoretical background of derivative theory as well as

quantum-chemical methods in relativistic in non-relativistic theories. In chapter IV the

underlying theory of DPT is discussed which has been developed in this work. The evalu-

ation of the necessary integrals is presented in chapter V while the implementation of the

DPT4 corrections into Cfour is found in chapter VI. In chapter VII the calculations for

the relativistic corrections to energies and properties are discussed and in chapter VIII a

summary is given.
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II. Quantum-Chemical Methods in

Non-relativistic and Relativistic

Theories

In this chapter the quantum-chemical methods that are relevant for this work are dis-

cussed. In principle, for all methods used in non-relativistic quantum chemistry a re-

lativistic counterpart exists as well. While in non-relativistic theories the starting point

is the Schrödinger equation, for a relativistic description one has to start from the Dirac

equation. This requires modifications compared to the non-relativistic treatment and

leads to increased computational costs. In the following, the Hartree-Fock (HF) method,

Møller-Plesset (MP) perturbation theory, as well as the coupled-cluster (CC) approach

are discussed from both the non-relativistic and the relativistic perspective.

II.1. Basic equations in non-relativistic and relativistic

theories

The basis for describing atoms and molecules in the framework of non-relativistic

quantum chemistry is given by the time-independent Schrödinger equation

ĤΨ = EΨ. (II.1)

This equation corresponds to an eigenvalue problem with the wave function Ψ which

completely describes the state of the atom or molecule, the total energy E of the system

and the Hamiltonian Ĥ which for a molecule in atomic units (a.u.) is given by

Ĥ =
∑

A

(

− 1

2MA

∇2
A

)

︸ ︷︷ ︸

T̂n

+
∑

a

(

−1

2
∇2

a

)

︸ ︷︷ ︸

T̂e

+
∑

A<B

ZAZB

rAB

︸ ︷︷ ︸

V̂nn

+
∑

A,a

(

−ZA

rAa

)

︸ ︷︷ ︸

V̂ne

+
∑

a<b

1

rab
︸ ︷︷ ︸

V̂ee

. (II.2)
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II. Quantum-Chemical Methods in Non-relativistic and Relativistic Theories

In (II.2) the appearing quantities are the distances r, the nuclear mass MA, the atomic

number ZA, and the nabla operator

∇ =






∂
∂x
∂
∂y
∂
∂z




 . (II.3)

The T̂ operators describe the kinetic energy of electrons and nuclei and the V̂ operat-

ors account for the Coulomb interactions between charged particles. Within the Born-

Oppenheimer approximation81 the movement of electrons and nuclei is separated. As elec-

trons move about 2000 times faster than the nuclei (due to the difference in the masses)

this is a reasonable approximation. This separation leads to the electronic Schrödinger

equation which no longer includes the kinetic energy of the nuclei and the potential Vnn

(T̂e + V̂ne + V̂ee)
︸ ︷︷ ︸

Ĥel

Ψel =EelΨel (II.4)

[
∑

a

(

−1

2
∇2

a +
∑

A

(

− ZA

RAa

))

︸ ︷︷ ︸

ĥ(a)

+
∑

a<b

1

rab

]

Ψel =EelΨel. (II.5)

In non-relativistic quantum-chemical calculations this equation is solved using a variety

of different approximations.

For relativistic quantum chemistry, the starting point within the Born-Oppenheimer ap-

proximation is given by the time-independent Dirac equation.17,18 In the one-electron

case it is given as

(

V cσp̂

cσp̂ V − 2mc2

)

︸ ︷︷ ︸

h′

D

(

ϕ

χ

)

︸ ︷︷ ︸

Ψ

= E

(

ϕ

χ

)

, (II.6)

where c is the speed of light, V is the electron-nucleus potential, p̂ is the momentum

operator, m is the electron mass, and σ is the vector of the Pauli matrices σx, σy, and σz,
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II.1. Basic equations in non-relativistic and relativistic theories

which are given by

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

. (II.7)

The wave function in (II.6) is a four-component spinor consisting of the so-called large

and small components (ϕ and χ) which are both two-component functions.17 An import-

ant property that distinguishes the Dirac equation from the Schrödinger equation is given

by its behaviour with respect to Lorentz transformations. These transformations connect

time and space coordinates and are consistent with Einstein’s principle of relativity. In-

variance with respect to Lorentz transformations is essential for a relativistic theory and

it can be shown17 that (II.6) is in fact Lorentz invariant.

For the many-electron case, the Dirac Hamiltonian is given by

Ĥ ′
D =

∑

a

ĥ′
D(a) +

∑

a<b

ĝabI(4) (II.8)

with the two-electron interaction term ĝab and the four-component unity matrix I(4). The

easiest and commonly used choice for ĝab is to work with the potential Vee leading to the

so-called Dirac-Coulomb Hamiltonian

ĤDC =
∑

a

ĥ′
D(a) +

∑

a<b

1

rab
I(4) (II.9)

Due to the instantaneous interaction in Vee this Hamiltonian is not Lorentz invariant. To

make it Lorentz invariant up to the order of O(c−2), the Breit interaction is used

ĝab =
1

rab
− 1

2rab

[

αaαb +
(αarab)(αbrab)

r2ab

]

(II.10)

with

α =






αx

αy

αz




 , αi =

(

0 σi

σi 0

)

, i = x, y, z (II.11)
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E
unbound electronic states

0

−mc2

−2mc2

E

unbound positronic states

0

unbound electronic states

−mc2

−2mc2

Figure II.1.: Energy spectrum of the Schrödinger equation (left) and the Dirac equation
(right). In the relativistic spectrum E is defined without the rest energy
of the electron, i.e., mc2.

which yields the Dirac-Coulomb-Breit Hamiltonian

ĤDCB =
∑

a

ĥ′
D(a) +

∑

a<b

(
1

rab
− 1

2rab

[

αaαb +
(αarab)(αbrab)

r2ab

])

I(4). (II.12)

As the Breit correction terms are small and their evaluation is quite laborious, the Dirac-

Coulomb Hamiltonian is used in this work.

In the Schrödinger equation the state with the lowest energy is the ground state. There-

fore, when determining the energy using the variation principle with a trial wave function

on the basis of the Schrödinger equation an upper bound for the ground-state energy is

obtained. The Dirac equation yields a negative and positive energy spectrum (see fig-

ure II.1). While the positive energy solutions are associated with electronic states, the

negative-energy solutions correspond to positronic states. Applying the variation prin-

ciple to the Dirac equation in a naive manner will result in a variational collapse and

special care needs to be taken, i.e., in restricting the variation to bound states only, in

order to get an approximate solution for the ground-state.17

It can be shown (see chapter IV.1) that the non-relativistic limit of the Dirac equation

is given by the so-called Lévy-Leblond equation72 which yields the same energy as the

14



II.2. Hartree-Fock theory

Schrödinger equation (for electronic states) but includes spin and is of a four-component

form. When eliminating the small component from the Lévy-Leblond equation, the Pauli

equation is obtained which is in fact a two-component variant of the Schrödinger equa-

tion. Therefore, the Dirac equation can be considered as a relativistic generalization of

the Schrödinger equation.

II.2. Hartree-Fock theory

The simplest choice for the wave function of an N -electron system that can be used

to solve the Schrödinger or Dirac equation is given by a Slater determinant, i.e., an

antisymmetrized and normalized product ofN one-electron wave functions which accounts

for the indistinguishability and the fermionic character of the electrons. In the case of the

Dirac equation the Slater determinant is constructed from four-component spinors Ψi

Ψi =









Ψ1

Ψ2

Ψ3

Ψ4









=

(

ϕ

χ

)

(II.13)

while in the non-relativistic case the spin orbitals ϕi,

ϕi = φi · si, si = α, β, (II.14)

which are composed of a spatial orbital φi and the spin function si, are used.

The one-electron spinors or spin orbitals are optimized variationally using the orthonor-

mality of the one-electron functions

〈Ψi | Ψj〉 = δij (II.15)

as a constraint. Following this procedure, the canonical Dirac-Hartree-Fock (DHF) or

Hartree-Fock (HF) equations (in the non-relativistic case)

f̂ ′DΨi = εiψi (II.16)
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II. Quantum-Chemical Methods in Non-relativistic and Relativistic Theories

are obtained. These are effective one-electron equations with the Lagrange multiplier εi

and the Fock operator f̂ ′D which is given by

f̂ ′D =ĥ′
D +

∑

j

(ĴDj − K̂Dj). (II.17)

In (II.17) the Coulomb operator ĴDj and the exchange operator K̂Dj act in the following

manner

ĴDjΨi(r1) =

∫

d3r2Ψ
†

j(r2)ĝ12I(4)Ψi(r1)Ψj(r2) (II.18)

and

K̂DjΨi(r1) =

∫

d3r2Ψ
†

j(r2)ĝ12I(4)Ψj(r1)Ψi(r2). (II.19)

The HF energy is given as the expectation value

EHF =
∑

i

〈Ψi | ĥ′
D | Ψi〉+

1

2

∑

ij

(
〈ΨiΨj | ĝ12I(4) | ΨiΨj〉 − 〈ΨiΨj | ĝ12I(4) | ΨjΨi〉

)
.

(II.20)

In the non-relativistic case, the basic equations are the same except that the spinors are

replaced by spin orbitals, the one-electron operator ĥ′
D by its non-relativistic counterpart

ĥ, and the general two-electron interaction term ĝ12I(4) by 1/r12.

Usually, the one-electron functions are expanded in a finite basis of Gaussian functions

centered at the atomic positions as

Ψi =

(

ϕ

χ

)

=

ML∑

µ=1

cLµi

(

ωL
µ

0

)

+

MS∑

µ=1

cSµi

(

0

ωS
µ

)

(II.21)

with ω as basis functions for the different components, M as their number, and the

coefficients c. To avoid a variational collapse, it is reasonable to restrict the choice for the

small-component basis set using the so-called kinetic-balance condition82 (see also chapter

IV.2.1)

{
σp̂ωL

µ

}
∈
{
ωS
µ

}
. (II.22)
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II.3. Correlation methods

In the non-relativistic case the basis-set expansion is less problematic and given for the

spatial orbitals by

φi =
M∑

µ=1

cµiωµ. (II.23)

Inserting the basis-set expansion into the working equations allows to significantly sim-

plify the calculations as the evaluation of the resulting integrals is rather straightforward.

However, the choice of an incomplete finite basis introduces an error which is usually

referred to as basis-set error. Therefore, care has to be taken in order to make the chosen

basis set large enough and to represent the one-electron functions in an adequate manner.

Due to the choice of the wave function as Slater determinant in HF theory the electron-

electron interaction is described in a mean-field manner, i.e., one electron is only affected

in its movement by the mean field created by all other electrons. In reality, however, the

movement of one electron depends explicitly on the position of all others. This depend-

ence is referred to as electron correlation. Accordingly, the exact energy of a system may

be expressed as

Eexact = EHF + Ecorr (II.24)

with the correlation energy Ecorr. In the next section methods are discussed which account

for the correlation energy.

II.3. Correlation methods

In the Dirac equation for many-electron systems a problem arises concerning the sep-

aration of electronic and positronic states. If, for example, a non-interacting two-particle

system is given (see figure II.2) pure electronic or positronic states may be easily identi-

fied via their total energy. However, mixed states can appear as intruders into the energy

region of the electronic states as indicated in figure II.2. This problem is usually referred

to as continuum dissolution or the Brown-Ravenhall disease83,84 and can be avoided via

a proper definition of the vacuum as will be discussed in the following within a second-

quantization formulation.

17



II. Quantum-Chemical Methods in Non-relativistic and Relativistic Theories

E

electronic
state
E > 0

positronic
state
E < 0

mixed
state

Figure II.2.: Schematic representation of the Brown-Ravenhall disease: Mixed states
can appear in the energetic region of electronic states.

In second quantization the Dirac Hamiltonian is given as

ĤD =
∑

pq

〈Ψp | ĥ′
D | Ψq〉

︸ ︷︷ ︸

hDpq

â†pâq +
1

2

∑

pqrs

〈ΨpΨq | ĝ12 | ΨrΨs〉
︸ ︷︷ ︸

gDpqrs

â†pâ
†
qâsâr (II.25)

with the particle creation operators â†p and the annihilation operators âp which fulfill the

following anti-commutator relations

[â†p, â
†
q]+ =0 (II.26)

[âp, âq]+ =0 (II.27)

[â†p, âq]+ =δpq. (II.28)

Considering in the following only the one-electron terms

Ĥ0
D =

∑

pq

hDpqâ
†
pâq, (II.29)
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II.3. Correlation methods

the sum which runs over all spinors, i.e., both electronic and positronic states, can be

split up

{Ψp} → {Ψp, p = 1, . . . ,me} electronic states (II.30)

{Ψa, a = 1, . . . ,ma} positronic states (II.31)

leading to

Ĥ0
D =

me∑

pq

hDpqâ
†
pâq

︸ ︷︷ ︸

Ĥ++
D

+

mp∑

ab

hDabâ
†
aâb

︸ ︷︷ ︸

Ĥ−−

D

+
me∑

p

mp∑

a

hDpaâ
†
pâa

︸ ︷︷ ︸

Ĥ+−

D

+

mp∑

a

me∑

p

hDapâ
†
aâp

︸ ︷︷ ︸

Ĥ−+
D

. (II.32)

The Brown-Ravenhall disease cannot appear if all positronic states are occupied. However,

such a description (Dirac picture)17 is not consistent with the usual definition of a vacuum

state, as the latter is defined by the absence of particles. A consistent picture can yet be

obtained by interchanging the role of creation and annihilation operators for the positronic

states (particle-hole formalism17) as

b̂†a = âa, b̂a = â†a. (II.33)

In this way, originally occupied/unoccupied positronic states are considered unoccu-

pied/occupied with respect to a new particle, the positron. The vacuum state of the

Dirac picture is now characterized by the absence of electrons in the electronic states and

positrons in the positronic states, respectively.

The Hamiltonian Ĥ0
D is then given as

Ĥ0
D =

me∑

pq

hDpqâ
†
pâq

︸ ︷︷ ︸

Ĥ++
D

+

mp∑

ab

hDabb̂ab̂
†
b

︸ ︷︷ ︸

Ĥ−−

D

+
me∑

p

mp∑

a

hDpaâ
†
pb̂

†
a

︸ ︷︷ ︸

Ĥ+−

D

+

mp∑

a

me∑

p

hDapb̂aâp

︸ ︷︷ ︸

Ĥ−+
D

(II.34)

and it is easily seen that the vacuum expectation value of this operator

〈0 | Ĥ0
D | 0〉 =

∑

ab

hDab〈0 | b̂ab̂†b | 0〉 =
∑

ab

hDabδab =
∑

a

hDaa. (II.35)

is non-zero but given as the sum of the energies of all positronic states which yields −∞.

In order to avoid the negative infinite vacuum energy the normal-ordered Hamiltonian
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II. Quantum-Chemical Methods in Non-relativistic and Relativistic Theories

H0
D,N is introduced as

H0
D,N =H0

D − 〈0 | H0
D | 0〉 (II.36)

=
me∑

pq

hDpqâ
†
pâq −

mp∑

ab

hDabb̂
†
ab̂b +

me∑

p

mp∑

a

hDpaâ
†
pb̂

†
a +

mp∑

a

me∑

p

hDapb̂aâp (II.37)

leading to a vacuum energy that is zero by constructioni .

For application to quantum-chemical problems only electronic states are of interest.

Therefore, in a further step, all terms with operators that create or annihilate positrons

are dropped leading to the ‘no-pair’ approximation17 in which the (full) Hamiltonian is

given as

Ĥno-pair
D =

me∑

pq

hDpqâ
†
pâq +

1

2

me∑

pqrs

gDpqrsâ
†
pâ

†
qâsâr

=
me∑

pq

hDpqâ
†
pâq +

1

4

me∑

pqrs

(gDpqrs − gDpqsr)â
†
pâ

†
qâsâr. (II.38)

This operator may be used in the correlation treatment which then is analogous to non-

relativistic theory. In practice one starts from a DHF calculation and drops the part of

the matrices that corresponds to the negative-energy states in the subsequent correlation

treatment.

Remaining differences to the non-relativistic treatment are, for example, that the matrix

elements are complex, that the usual spin adaptation cannot be appliedii and that for the

integral transformation more integrals need to be processed due to the small component

basis.

iA convenient feature of this Hamiltonian is that the positronic states now have a positive energy

〈a | H0
D,N | a〉 = −hDaa > 0

which means that the electronic ground state may be obtained by using the variation principle.
iiNote that instead of spin adaptation time-reversal symmetry can be exploited.
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II.3. Correlation methods

II.3.1. Møller-Plesset perturbation theory

In perturbation theory, the Hamiltonian is partitioned in an unperturbed part Ĥ(0)

which can be solved exactly and a (small) perturbation part Ĥ ′, i.e.,

Ĥexact = Ĥ(0) + Ĥ ′ (II.39)

defining the perturbation part as the difference between the exact and the unperturbed

Hamiltonian. In Møller-Plesset perturbation theory,7 the idea is that the HF potential

already is a good approximation and is used as unperturbed problem. Starting from the

no-pair Hamiltonian in (II.38) as Ĥexact, the perturbed Hamiltonian Ĥ ′ is given by

Ĥ ′ =Hno-pair
D −

∑

pq

(

hDpq +
∑

j

(gDpjqj − gDpjjq)

)

â†pâq (II.40)

=
1

4

∑

pqrs

(gDpqrs − gDpqsr)â
†
pâ

†
qâsâr −

∑

pq

∑

j

(gDpjqj − gDpjjq)â
†
pâq. (II.41)

The first and second-order energy expressions are then

E(1) =〈0 | Ĥ ′ | 0〉 (II.42)

=
1

4

∑

pqrs

(gDpqrs − gDpqsr)〈0 | â†pâ†qâsâr | 0〉

−
∑

pq

∑

j

(gDpjqj − gDpjjq)〈0 | â†pâq | 0〉 (II.43)

=− 1

2

∑

ij

(gDijij − gDijji) (II.44)

E(2) =
∑

µ

|〈µ | Ĥ ′ | 0〉|2

〈0 | Ĥ(0) | 0〉 − 〈µ | Ĥ(0) | µ〉
(II.45)

=
1

4

∑

ij

∑

ab

|(gDabij − gDabji)|2
εi + εj − εa − εb

. (II.46)

Note that the correlation correction is given by the second-order energy, as the zeroth-

and first-order correction terms only recover the HF energy.
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II. Quantum-Chemical Methods in Non-relativistic and Relativistic Theories

II.3.2. Coupled-cluster theory

In CC theory, the wave function is generated using an exponential ansatz

ΨCC = exp(T̂ )ΨHF (II.47)

with the reference wave function usually given by the HF determinant. The cluster

operator T̂ is defined as

T̂ =T̂1 + T̂2 + T̂3 + · · ·+ T̂N (II.48)

=
N∑

n=1

(
1

n!

)2 ∑

ij..ab

tab..ij.. â
†
aâiâ

†
bâj (II.49)

with T1 for single excitations, T̂2 for double excitations, etc., and the amplitudes tab..ij.. as

the wave-function parameters that need to be determined. If the untruncated excitation

range is used, the result is equal to the full configuration-interaction (FCI) method which

provides the exact solution to the electron-correlation problem in the given basis set.

However, usually the series needs to be truncated due to limited computational resources.

The truncated CC methods are referred to as

T̂ = T̂1 CC singles (CCS)

T̂ = T̂1 + T̂2 CC singles doubles (CCSD)15

T̂ = T̂1 + T̂2 + T̂3 CC singles doubles triples (CCSDT)85–87

T̂ = T̂1 + T̂2 + T̂3 + T̂4 CC singles doubles triples quadruples (CCSDTQ)88,89

...

T̂ =
∑N

n T̂n FCI.

The CC wave function is inserted into the Dirac or Schrödinger equation. Subtraction of

the HF energy

(Ĥ − EHF
︸ ︷︷ ︸

ĤN

) exp(T̂ )ΨHF = (E − EHF
︸ ︷︷ ︸

ECC

) exp(T̂ )ΨHF, (II.50)

multiplication from the left with exp(−T̂ ) as well as projection onto the reference determ-

inant yields the CC energy

〈ΨHF | exp(−T̂ )ĤN exp(T̂ ) | ΨHF〉 = ECC (II.51)
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II.3. Correlation methods

while projection onto excited determinants ΦI leads to the CC equations

〈ΦI | exp(−T̂ )ĤN exp(T̂ ) | ΨHF〉 = 0 (II.52)

which represent a system of non-linear equations.

At this point another often used CC scheme needs to be mentioned, the CCSD(T)

method.16,90,91 In this approach, triple excitations are treated in a perturbative man-

ner on top of a CCSD calculation. The advantage is that the cost scales only with M7

(instead of M8 for CCSDT), with M as the basis-set size, while a similar and sometimes

even superior accuracy is provided compared to a full treatment of triple excitations.

In relativistic CC theory, the DHF wave function is used as reference determinant and

the no-pair Hamiltonian Ĥno-pair
D is employed. Details can be found, for example, in Ref.

23.
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III. Derivative Theory

III. Derivative Theory

Derivative theory plays a key role in the determination of molecular properties, i.e.,

those which are specific for a given electronic state. The property is then given as a

response of the system to a perturbation. In this case, the energy depends on the corres-

ponding perturbation parameter x with which the property is associated. If the perturb-

ation is sufficiently weak, a Taylor expansion around the point x = 0, i.e.,

E(x) = E(x = 0) + x

(
dE

dx

)

x=0

+ x2

(
d2E

dx2

)

x=0

+ . . . , (III.1)

is suitable and the desired property is obtained as the corresponding derivative.

The idea that a property may be defined as a response of the system to an applied per-

turbation is employed in this work to obtain relativistic corrections as energy derivatives

using a suitable relativistic perturbation parameter.

III.1. Numerical versus analytical differentiation

In principle, the derivatives in (III.1) may be calculated either analytically or using nu-

merical differentiation techniques. Both schemes have their advantages and disadvantages.

When calculating first derivatives numerically, using, for example, a two-point formula

(
dE

dx

)

x=0

=
E(∆x)− E(−∆x)

2∆x
(III.2)

with a step size ∆x, the obvious advantage is that only two energy calculations (de-

termined in the presence of ±∆x) are required. This is easily implemented, however,

the accuracy of such schemes, especially for higher derivatives, is limited and it is of-

ten necessary to experiment with the step size to get reliable results. Furthermore, the

computational cost may become very high. For example, if nuclear gradients are to be

calculated, the computational cost is 2 · 3N times higher than for an energy calculation

itself, with N as the number of atoms.

On the other hand, if the derivative is to be calculated analytically, this requires a the-

oretical expression for the derivative and a more involved implementation (unlike to only
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III.2. Analytic derivatives

Table III.1.: Examples for different types of wave-function parameters

Unconstrained variation Constrained variation Non-variational

CI parameters MO coefficients in HF MO coefficients in CC, CI, MP
t-amplitudes in CC and MP

including a perturbation in an energy calculation). However, once this is accomplished,

the calculation is more convenient and yields higher accuracy with often less computa-

tional cost. For first derivatives, for example, the cost is lower as the analytic expression

is independent of the number of perturbations.

In this work, both techniques, i.e., numerical and analytical differentiation, as well as

the mixed approach have been used to calculate relativistic corrections to energies and

molecular properties.

III.2. Analytic derivatives

In order to calculate a first analytic derivative the energy needs to be differentiated

with respect to the perturbation parameter x at the point x = 0, i.e.,

(
dE

dx

)

x=0

=

(
∂E

∂x

)

x=0

+

(
∂E

∂c

)

x=0

(
∂c

∂x

)

x=0

. (III.3)

In (III.3), c are the wave-function parameters which depend on the perturbation. Such

parameters are, for example, the molecular-orbital (MO) coefficients, the configuration-

interaction (CI) coefficients or the t-amplitudes in CC and MP theories as discussed in

chapter II. In (III.3), the first term stems from the explicit dependence of E on the per-

turbation through the Hamiltonian and in some cases also the basis functions, whereas

the second contribution accounts for the implicit dependence on x via the wave-function

parameters c due to the chain rule.

For all parameters c that are determined in an unconstrained variation it follows that the

partial derivative of the energy with respect to c vanishes and therefore only the first term

in (III.3) needs to be evaluated. An example for this type of parameters is given by the

CI coefficients (see table III.1).

There are two other types of wave-function parameters, i.e., those which are determined

in a constrained variation and those which are obtained in a non-variational manner. For

both types the above mentioned derivative is non-zero and, thus, the partial derivative of

25



III. Derivative Theory

the parameter with respect to the perturbation needs in principle to be calculated. This

is possible, yet computationally not efficient.

An elegant solution to this issue is to enforce the stationarity of the energy expression

with respect to all perturbation-dependent parameters c. This can be achieved using the

method of Lagrange multipliers where side conditions are included in an energy functional.

This is done in such a way that if those side conditions are fulfilled, the functional (the

so-called Lagrangian) is equal to the energy itself.92,93

For parameters that are determined by means of a constrained variation, the side condi-

tions are given by the constraints of the variation. The side conditions may be written in

a general form as

f(x, c(x)) = 0 (III.4)

and are then used to construct the Lagrangian Ẽ

Ẽ(x, c(x), λ(x)) = E(x, c(x)) + λ(x) f(x, c(x))
︸ ︷︷ ︸

=0

(III.5)

with the so-called Lagrange multipliers λ(x). The variation

dẼ

dc
= 0 (III.6)

then leads to the equations which determine the wave-function parameters for the given

method. In HF theory, for example, the orthonormality condition of the orbitals is added

as side condition to the Lagrangian and variation according to (III.6) leads to the HF

equations. Solving these equations yields the MO coefficients as well as the Lagrange

multipliers (which in the canonical HF case are given by the orbital energies εi). Fur-

thermore, as the Lagrangian leads to the same energy as the energy expression itself, it

is achieved that for its first derivative with respect to a perturbation x, analog to the

unconstrained variation, only the term with the explicit dependence of Ẽ on x needs to

be evaluated.

For non-variational procedures as in CC and MP theories, the Lagrangian approach can be

employed to avoid the calculation of ∂c/∂x as well. Here, the side conditions f(x, c(x)) are

given as the conditional equations that determine the wave-function parameters. They

are included directly in the Lagrangian, again in such a way that if they are fulfilled,

the Lagrangian is equal to the energy (see equation (III.5)). After its construction, the
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III.2. Analytic derivatives

Table III.2.: Side conditions for wave-function parameters in HF, CC, and MP theories

Method Parameter Side condition L.m.a c.v.b n.v.c

HF MO coefficients orthonormality εji !

MP & CC MO coefficients orthonormality Ipq !

MO coefficients Brillouin condition Zai !

t-amplitudes amplitude equations λij
ab !

a Lagrange multiplier
b constrained variation
c non-variational

Lagrangian is then made stationary with respect to c and λ, i.e.,

dẼ

dc
= 0 (III.7)

dẼ

dλ
= 0. (III.8)

Equation (III.7) leads to perturbation-independent conditional equations for the Lagrange

multipliers λ which need to be solved. Equation (III.8) leads back to the side conditions

that are determined anyways to solve for the non-variational parameters.

For correlated methods such as MP2 and CC, the side conditions that are included in the

Lagrangian are the orthonormality condition of the molecular orbitals, the Brillouin condi-

tion, and the amplitude equations. The wave-function parameters, both non-variational,

are given by the MO coefficients as well as the amplitudes t (see table III.2 for an over-

view).

Using the method of Lagrange multipliers, the first derivative takes the form

(

dẼ

dx

)

x=0

=

(
∂E

∂x

)

x=0

+ λ

(
∂f

∂x

)

x=0

(III.9)

for methods where the wave-function parameters are evaluated via a constrained vari-

ation or in a non-variational manner. The advantage is that calculation of ∂c/∂x is

avoided but unlike a direct evaluation as in (III.3) for every non-variational parameter c

a perturbation-independent equation needs to be solved to determine the corresponding

Lagrange multiplier λ.

For higher derivatives (III.5) is differentiated with respect to all involved perturbations.
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III. Derivative Theory

It can be shown that knowledge of the nth derivative of the parameters with respect to

the perturbation suffices for the (2n+ 1)th derivative of the energy. A similar rule exists

for the Lagrange multipliers which states that the knowledge of the nth derivative suffices

to calculate the (2n + 2)th energy derivative. These rules are commonly referred to as

(2n+ 1) and (2n+ 2) rules.92–94

Therefore, for a second derivative of the energy with respect to the perturbations x and y

only the first derivatives of the parameters are needed while the sum of all terms involving

derivatives of the Lagrange mutipliers vanishes and the resulting functional derivative is

given as

(

d2Ẽ

dxdy

)

x,y=0

=

(
∂2E

∂x∂y

)

x,y=0

+

(
∂2E

∂x∂c

)

x=0

(
∂c

∂y

)

y=0

+

(
∂2E

∂y∂c

)

y=0

(
∂c

∂x

)

x=0

+

(
∂2E

∂c∂c

)(
∂c

∂x

)

x=0

(
∂c

∂y

)

y=0

+ λ

(
∂2f

∂x∂y

)

x,y=0

+ λ

(
∂2f

∂x∂c

)

x=0

(
∂c

∂y

)

y=0

+ λ

(
∂2f

∂y∂c

)

y=0

(
∂c

∂x

)

x=0

+ λ

(
∂2f

∂c2

)(
∂c

∂x

)

x=0

(
∂c

∂y

)

y=0

. (III.10)

This means that for the second derivative of the energy in HF theory the so-called coupled-

perturbed HF (CPHF) equations79,95 need to be solved for the perturbation parameter x

as well as y. For MP2 or CC additionally the perturbed amplitude equations have to be

determined.

In some cases it turns out to be beneficial to take the second derivative starting from

(III.9). If the derivative is evaluated in this manner, the (2n + 1) and (2n + 2) rules

do not hold any longer for the second differentiation. Accordingly, derivatives of the

Lagrange multipliers with respect to the second perturbation y also appear in the resulting

expression

(

d2Ẽ

dxdy

)

x,y=0

=

(
∂2E

∂x∂y

)

x,y=0

+

(
∂2E

∂x∂c

)

x=0

(
∂c

∂y

)

y=0

+ λ

(
∂2f

∂x∂y

)

x,y=0

+ λ

(
∂2f

∂x∂c

)

x=0

(
∂c

∂y

)

y=0

+

(
∂λ

∂y

)

y=0

(
∂f

∂x

)

x=0

. (III.11)
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Even though in this equation the derivative of the Lagrange multipliers is needed, the

number of equations to be solved may be less than in (III.10). This is due to the fact that

in (III.11) the derivatives of the wave-function parameters and Lagrange multipliers are

needed only for the second perturbation y.96

In this work, this variant of taking the second derivative (which is often referred to as

asymmetric expression) has been used to calculate higher-order relativistic corrections.

III.3. Numerical differentiation

As already shown in (III.2) a simple possibility to calculate energy derivatives numer-

ically consists in using a two-point formula. The equation given there approximates the

derivative linearly using two displacements and is derived from

f(x) = a+ bx

f(−x) = a− bx

→ b =
f(x)− f(−x)

2x
. (III.12)

If higher accuracy is needed, the derivative may be calculated using more displacements.

In this work four-, six-, and eight-point formulas have been used which correspond to a

third-, fifth-, and seventh-grade polynomial. The four-point formula may be derived from

f(x) = a+ bx+ cx2 + dx3

f(−x) = a− bx+ cx2 − dx3

f(2x) = a+ 2bx+ 4cx2 + 8dx3

f(−2x) = a− 2bx+ 4cx2 − 8dx3

→ b =
8[f(x)− f(−x)]− [f(2x)− f(−2x)]

12x
(III.13)
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III. Derivative Theory

after elimination of c and d. For the six-point formula it follows

f(x) = a+ bx+ cx2 + dx3 + ex4 + fx5

f(−x) = a− bx+ cx2 − dx3 + ex4 − fx5

f(2x) = a+ 2bx+ 4cx2 + 8dx3 + 16ex4 + 32fx5

f(−2x) = a− 2bx+ 4cx2 − 8dx3 + 16ex4 − 32fx5

f(3x) = a+ 3bx+ 9cx2 + 27dx3 + 81ex4 + 243fx5

f(−3x) = a− 3bx+ 9cx2 − 27dx3 + 81ex4 − 243fx5

→ b =
45[f(x)− f(−x)]− 9[f(2x)− f(−2x)] + [f(3x)− f(−3x)]

60x
. (III.14)

More generally, with n points a polynomial of the order (n − 1) can be fitted. This

corresponds to a Taylor expansion and the coefficients correspond to the derivative of the

same order

f(k) = f(k0)
︸ ︷︷ ︸

a

+

(
∂f(k)

∂k

)

k=k0
︸ ︷︷ ︸

b

(k − k0)
︸ ︷︷ ︸

x

+
1

2

(
∂2f(k)

∂k2

)

k=k0
︸ ︷︷ ︸

c

(k − k0)
2

︸ ︷︷ ︸

x2

+ . . . (III.15)

To determine the coefficients, a linear system of equations is needed:









1 x x2 x3 . . .

1 2x (2x)2 (2x)3 . . .

1 3x (3x)2 (3x)3 . . .
...

...
...

...

















a

b

c
...









=









f(x)

f(2x)

f(3x)
...









(III.16)

Ac = f (III.17)

which is solved by inverting the matrix A as

c = A−1f . (III.18)

Naturally, if the derivatives are calculated using higher polynomials as approximation, the

accuracy increases. In return, however, the computational cost rises as well because more

energy calculations using different perturbation strengths have to be carried out. Yet,

one has to pay attention as using a many-point formula will not necessarily give a reliable

result. First of all, the step size x of the displacements may be too large to approximate
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III.3. Numerical differentiation

the derivative. In principle, one would choose very small step sizes but this can lead to

numerical difficulties likewise. Furthermore, if the numerical values of the derivatives are

small, it may be the case that the numerical accuracy of the underlying energy calculation

is not sufficient. This may be estimated using the two-point formula. If the energy is, for

example, accurate up to a value of 1 · 10−10 and the step size is 5 · 10−6 then using the

two-point formula

2 · 1 · 10−6

2 · 5 · 10−6
= 2 · 10−5 (III.19)

it is seen that the resulting derivative cannot be more accurate than to the fourth decimal

place.
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IV. Direct Perturbation Theory

IV. Direct Perturbation Theory

In Direct Perturbation Theory (DPT), the goal is to account for relativistic effects in a

perturbative manner without the high computational cost of a four-component treatment.

Therefore, a relativistic perturbation parameter λrel = c−2 with c as the speed of light is

introduced. In this work, the fourth-order DPT corrections (second order in λrel) at the

HF level as well as at correlated levels of theory, i.e., CC and MP2, are evaluated in terms

of energy derivatives starting from relativistic and non-relativistic Lagrangians. Further-

more, some aspects concerning the derivation of DPT6 in the framework of HF theory

starting from a non-relativistic Lagrangian are discussed. Finally, DPT4 corrections for

electrical properties as well as further routes on the calculation of relativistic corrections

are examined.

IV.1. DPT expansion

Starting from the one-electron Dirac equation as given in (II.6), it is found that for

electronic solutions χ is smaller than ϕ by roughly a factor of c. For a perturbative

expansion both components should be of the same order of magnitude and accordingly a

new metric is introduced as63

χ = cχ, ϕ = ϕ. (IV.1)

Inserting (IV.1) into the one-electron Dirac equation (see equation (II.6)) and dividing

the lower part of (II.6) by c, the modified Dirac equation is obtained

(

V σp̂

σp̂ V
c2
− 2m

)(

ϕ

χ

)

=E

(

1 0

0 1
c2

)(

ϕ

χ

)

, (IV.2)

ĥDΨ =E ŜDΨ. (IV.3)

When (IV.3) is decomposed into

(

ĥ
(0)
D + λrelĥ

(2)
D

)

Ψ = E
(

Ŝ
(0)
D + λrelŜ

(2)
D

)

Ψ, (IV.4)
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IV.1. DPT expansion

DPT can be obtained in a straightforward manner using a standard perturbative ex-

pansion. Relativistic effects are here introduced by terms containing the index 2 with

λrel = c−2 as perturbation parameter, while all non-relativistic (nrl) terms appear with

index 0 and define the unperturbed problem in form of the Lévy-Leblond equation.72 The

operators and the wave function in (IV.4) are given by

ĥ
(0)
D =

(

V σp̂

σp̂ −2m

)

, ĥ
(2)
D =

(

0 0

0 V

)

, Ŝ
(0)
D =

(

1 0

0 0

)

, Ŝ
(2)
D =

(

0 0

0 1

)

, (IV.5)

Ψ =

(

ϕ

χ

)

. (IV.6)

After expanding both wave function and energy in terms of λrel,

Ψ = Ψ(0) + λrelΨ
(2) + λ2

relΨ
(4) + · · · =

(

ϕ(0) + λrelϕ
(2) + λ2

relϕ
(4) + . . .

χ(0) + λrelχ
(2) + λ2

relχ
(4) + . . .

)

(IV.7)

E = E(0) + λrelE
(2) + λ2

relE
(4) + . . .

= Enrl +∆EDPT2 +∆EDPT4 + . . . , (IV.8)

thereby exploiting the unitary normalization condition63

〈Ψ | ŜD | Ψ〉 = 1, (IV.9)

the DPT energy corrections are obtained63 as

E(2) =〈χ(0) | V | χ(0)〉 − E(0)〈χ(0) | χ(0)〉 (IV.10)

E(4) =Re〈χ(2) | V | χ(0)〉 − E(0)Re〈χ(2) | χ(0)〉 − 1

2
E(2)〈χ(0) | χ(0)〉. (IV.11)

Alternatively, these corrections can be expressed in terms of energy derivatives, as shown

in chapter III.2, using a Taylor expansion

E = E0 + λrel

(
dE

dλrel

)

λrel=0

+
1

2
λ2
rel

(
d2E

dλ2
rel

)

λrel=0

+ . . .

= E(0) + λrelE
(2) + λ2

relE
(4) + . . . (IV.12)

Along this route, it is more convenient to use a Lagrangian92–94 (see chapter III.2) for the

differentiation instead of the energy since it allows to include all constraints straight from
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IV. Direct Perturbation Theory

the beginning. In the present case, the Lagrangian is given as

Ẽ = 〈Ψ | ĥD | Ψ〉 − ε
[

〈Ψ | ŜD | Ψ〉 − 1
]

(IV.13)

with the Lagrange multiplier ε accounting for the normalization as side condition.

To obtain the DPT2 energy correction, the Lagrangian is differentiated with respect to

λrel thereby exploiting Wigner’s (2n+ 1) and (2n+ 2) rules92–94

E(2) =

(

∂Ẽ

∂λrel

)

λrel=0

(IV.14)

=

{

〈Ψ | ∂ĥD

∂λrel

| Ψ〉 − ε〈Ψ | ∂ŜD

∂λrel

| Ψ〉
}

λrel=0

. (IV.15)

For the next higher order (DPT4), the Lagrangian is differentiated a second time with

respect to λrel, leading to the asymmetric variant for the second derivative as discussed

in chapter III.2

E(4) =
1

2

(

∂2Ẽ

∂λ2
rel

)

λrel=0

(IV.16)

=

{

Re

〈

∂Ψ

∂λrel

∣
∣
∣
∣
∣

∂ĥD

∂λrel

∣
∣
∣
∣
∣
Ψ

〉

− εRe

〈

∂Ψ

∂λrel

∣
∣
∣
∣
∣

∂ŜD

∂λrel

∣
∣
∣
∣
∣
Ψ

〉

− 1

2

∂ε

∂λrel

〈

Ψ

∣
∣
∣
∣
∣

∂ŜD

∂λrel

∣
∣
∣
∣
∣
Ψ

〉}

λrel=0

. (IV.17)

The unperturbed and perturbed Lagrange multipliers ε(0) and ε(2) turn out to be given as

the zeroth- and second-order energies as defined in (IV.8). Inserting the operators from

(IV.5) and taking their derivatives yields the same corrections as in (IV.10) and (IV.11).

IV.2. DPT corrections at the Hartree-Fock level

For the many-electron case treated using HF theory, the occupied spinors

Ψi =

(

ϕi

χi

)

(IV.18)
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IV.2. DPT corrections at the Hartree-Fock level

are labeled by indices i, j, k, l, . . . and the wave function is given by a Slater determinant

of four-component spinors Ψi, i = 1, . . . , N . The Lagrangian then takes the form

Ẽ =
∑

i

〈Ψi | ĥD | Ψi〉+
1

2

∑

ij

(〈ΨiΨj | ĝD | ΨiΨj〉 − 〈ΨiΨj | ĝD | ΨjΨi〉)

−
∑

ij

εji

(

〈Ψi | ŜD | Ψj〉 − δij

)

(IV.19)

with ĥD and ŜD given in (IV.2) and the two-electron interaction operator ĝD defined by

ĝD =









r−1
12 0 0 0

0 λrelr
−1
12 0 0

0 0 λrelr
−1
12 0

0 0 0 λ2
relr

−1
12









. (IV.20)

The Lagrange multipliers εji turn out to be given as

εji =〈Ψj | f̂D | Ψi〉, with f̂D = ĥD +
∑

k

(
ĴDk − K̂Dk

)
(IV.21)

=〈Ψj | ĥD | Ψi〉+
∑

k

(

〈ΨjΨk | ĝD | ΨiΨk〉 − 〈ΨjΨk | ĝD | ΨkΨi〉
)

. (IV.22)

To obtain the DPT4 energy correction, the Lagrangian is first differentiated with respect

to λrel thereby exploiting Wigner’s rules

E(2) =

(

∂Ẽ

∂λrel

)

λrel=0

(IV.23)

=

{
∑

i

〈Ψ(0)
i | ∂ĥD

∂λrel

| Ψ(0)
i 〉

+
1

2

∑

ij

(

〈Ψ(0)
i Ψ

(0)
j | ∂ĝD

∂λrel

| Ψ(0)
i Ψ

(0)
j 〉 − 〈Ψ(0)

i Ψ
(0)
j | ∂ĝD

∂λrel

| Ψ(0)
j Ψ

(0)
i 〉
)

−
∑

ij

ε
(0)
ji 〈Ψ

(0)
i | ∂ŜD

∂λrel

| Ψ(0)
j 〉
}

λrel=0

(IV.24)
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IV. Direct Perturbation Theory

and then differentiated a second time with respect to λrel, leading to

E(4) =
1

2

(

∂2Ẽ

∂λ2
rel

)

λrel=0

(IV.25)

=

{
∑

i

Re〈Ψ(2)
i | ∂ĥD

∂λrel

| Ψ(0)
i 〉

+
∑

ij

Re
(

〈Ψ(2)
i Ψ

(0)
j | ∂ĝD

∂λrel

| Ψ(0)
i Ψ

(0)
j 〉 − 〈Ψ(2)

i Ψ
(0)
j | ∂ĝD

∂λrel

| Ψ(0)
j Ψ

(0)
i 〉
)

+
1

4

∑

ij

(

〈Ψ(0)
i Ψ

(0)
j | ∂

2ĝD

∂λ2
rel

| Ψ(0)
i Ψ

(0)
j 〉 − 〈Ψ(0)

i Ψ
(0)
j | ∂

2ĝD

∂λ2
rel

| Ψ(0)
j Ψ

(0)
i 〉
)

− 1

2

∑

ij

ε
(2)
ji 〈Ψ

(0)
i | ∂ŜD

∂λrel

| Ψ(0)
j 〉

−
∑

ij

Re
(

ε
(0)
ji 〈Ψ

(2)
i | ∂ŜD

∂λrel

| Ψ(0)
j 〉
)
}

λrel=0

. (IV.26)

Inserting the operators from (IV.5) and (IV.20) and taking their derivatives yields

E(2) =
∑

i

〈χ(0)
i | V | χ(0)

i 〉

+
∑

ij

(

〈ϕ(0)
i χ

(0)
j || ϕ(0)

i χ
(0)
j 〉+ 〈χ(0)

i ϕ
(0)
j || χ(0)

i ϕ
(0)
j 〉
)

−
∑

i

ε
(0)
i 〈χ(0)

i | χ(0)
i 〉 (IV.27)

E(4) =
∑

i

Re〈χ(2)
i | V | χ(0)

i 〉

+
∑

ij

Re
(

〈ϕ(2)
i χ

(0)
j || ϕ(0)

i χ
(0)
j 〉+ 〈χ(2)

i ϕ
(0)
j || χ(0)

i ϕ
(0)
j 〉
)

+
1

2

∑

ij

〈χ(0)
i χ

(0)
j || χ(0)

i χ
(0)
j 〉

− 1

2

∑

ij

ε
(2)
ji 〈χ

(0)
i | χ(0)

j 〉

−
∑

i

Re
(

ε
(0)
i 〈χ(2)

i | χ(0)
i 〉
)

, (IV.28)
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IV.2. DPT corrections at the Hartree-Fock level

where it is exploited in the last term that the zeroth-order ε matrix is diagonal in the

canonical HF case. Note that the antisymmetrized integrals in (IV.28) are given as

〈χiϕj || χiϕj〉 = 〈χiϕj | χiϕj〉 − 〈χiϕj | χjϕi〉. (IV.29)

IV.2.1. Expansion of the perturbed wave function

In (IV.28), only the unperturbed large components ϕ
(0)
i are so far known and are given

via the usual non-relativistic HF spin orbitals. Therefore, it is necessary to determine in

the following the unperturbed small component χ
(0)
i as well as the perturbed components

ϕ
(2)
i and χ

(2)
i . This is achieved by expanding the Dirac-Hartree-Fock (DHF) equations

formulated within the modified metric63 in powers of λrel (see Appendix IX.1 for details).

The zeroth-order equation leads to

χ(0)
p =

1

2m
σp̂ ϕ(0)

p , (IV.30)

which is equivalent to the result obtained from the Lévy-Leblond equation in the one-

electron case.63 Using (IV.30), the DPT2 energy may be written as

E(2) =
∑

i

hλrel
ii −

∑

i

ε
(0)
i Sλrel

ii +
∑

ij

(
〈ϕ(0)

i ϕ
(0)
j | ĝλrel

1 + ĝλrel
2 | ϕ(0)

i ϕ
(0)
j 〉

− 〈ϕ(0)
i ϕ

(0)
j | ĝλrel

1 + ĝλrel
2 | ϕ(0)

j ϕ
(0)
i 〉
)
. (IV.31)

In the above equation, the integrals and operators are given by

Sλrel
pq = 〈ϕ(0)

p | 1

4m2
p̂2 | ϕ(0)

q 〉, (IV.32)

hλrel
pq = 〈ϕ(0)

p | 1

4m2
σp̂V σp̂ | ϕ(0)

q 〉, (IV.33)

ĝλrel
n =

1

4m2
σnp̂n

1

r12
σnp̂n, n = 1 or 2. (IV.34)

The perturbed large component ϕ
(2)
i is expanded in terms of the unperturbed functions

ϕ
(2)
i =

∑

p

Uλrel
pi ϕ(0)

p (IV.35)

with the generic indices p, q, r, s, . . . denoting occupied and virtual orbitals. The coeffi-

cients Uλrel
pi are obtained by solving the Coupled-Perturbed Hartree-Fock (CPHF) equa-
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IV. Direct Perturbation Theory

tions79,95,97,98 for the relativistic perturbation λrel (see Appendix IX.2 for details).

The perturbed small component χ
(2)
i may be determined via the second-order terms of

the DHF equations

χ
(2)
i =

1

2m

{

σp̂ϕ
(2)
i +

(

V − ε
(0)
i +

∑

k

[
Ĵ
(0)
k − K̂

(0)
k

])

χ
(0)
i

}

, (IV.36)

with

〈χ(0)
j |

[
Ĵ
(0)
k − K̂

(0)
k

]
| χ(0)

i 〉 = 〈χ(0)
j ϕ

(0)
k | χ(0)

i ϕ
(0)
k 〉 − 〈χ(0)

j ϕ
(0)
k | χ(0)

k ϕ
(0)
i 〉. (IV.37)

However, a direct evaluation of χ
(2)
i via (IV.36) is not recommended, as it leads to diver-

gences in the evaluation of the DPT corrections.64,65,71

Consequently, in order to treat the perturbed small component χ
(2)
i on the same foot-

ing as ϕ
(2)
i , the following expansion is chosen,70,73,99 consistent with the kinetic-balance

condition82

χ
(2)
i =

∑

p

uλrel
pi χ(0)

p =
∑

p

uλrel
pi

1

2m
σp̂ ϕ(0)

p . (IV.38)

To determine the expansion coefficients uλrel
pi , the above expansion is inserted into (IV.36)

followed by a projection on 〈χ(0)
q |= 〈ϕ(0)

q
1
2m
σp̂ |

∑

p

Sλrel
qp uλrel

pi =
∑

p

Sλrel
qp Uλrel

pi +
1

2m

{

hλrel
qi − Sλrel

qi εi

+
∑

k

(〈ϕqϕk | ĝλrel
1 | ϕiϕk〉 − 〈ϕqϕk | ĝλrel

1 | ϕkϕi〉)
}

. (IV.39)

Note that the superscripts for the order of the perturbation are here dropped. Multipli-

cation from the left with (Sλrel)−1
rq and summation over q finally leads to the expansion

coefficients uλrel
pi

uλrel
pi = Uλrel

pi +
1

2m

∑

q

(Sλrel)−1
pq

[

hλrel
qi − Sλrel

qi εi +
∑

k

〈ϕqϕk || ĝλrel
1 || ϕiϕk〉

]

(IV.40)

with the antisymmetrized integral

〈ϕqϕk || ĝλrel
1 || ϕiϕk〉 = 〈ϕqϕk | ĝλrel

1 | ϕiϕk〉 − 〈ϕqϕk | ĝλrel
1 | ϕkϕi〉. (IV.41)
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IV.2. DPT corrections at the Hartree-Fock level

Accordingly, in a short-hand notation, uλrel
pi can be expressed as

uλrel
pi = Uλrel

pi + Aλrel
pi (IV.42)

with

Aλrel
pi =

1

2m

∑

q

(Sλrel)−1
pq

[

hλrel
qi − Sλrel

qi εi +
∑

k

〈ϕqϕk || ĝλrel
1 || ϕiϕk〉

]

(IV.43)

thereby stating that the expansion coefficients for the perturbed small component only

differ from those of the perturbed large component by the additional Aλrel
pi terms. There-

fore, alterations in the large component affect the small component as well. Furthermore,

the relation between both components changes in every order.

Using the relations for χ
(0)
i , χ

(2)
i , and ϕ

(2)
i as given in (IV.30), (IV.38), and (IV.35), the

DPT4 energy expression (IV.28) is rewritten in the following manner

E(4) =
∑

i

Re
(∑

p

uλrel
pi

(

hλrel
pi − εiS

λrel
ip

))

− 1

2

∑

ij

ε
(2)
ij S

λrel
ij

+
∑

ij

Re
(∑

p

uλrel
pi 〈ϕpϕj || ĝλrel

1 || ϕiϕj〉+
∑

p

Uλrel
pi 〈ϕpϕj || ĝλrel

2 || ϕiϕj〉
)

+
1

2

∑

ij

〈ϕiϕj || ĝλrel
12 || ϕiϕj〉 (IV.44)

with the ĝλrel
12 operator

ĝλrel
12 =

1

16m4
σ1p̂1σ2p̂2

1

r12
σ1p̂1σ2p̂2. (IV.45)

The second-order ε(2) matrix is given as (see Appendix IX.3 for details)

ε
(2)
ji =

{

∂〈Ψj | f̂D | Ψi〉
∂λrel

}

λrel=0

(IV.46)

=− 1

2
Sλrel
ji (εi + εj) + f

(λrel)
ji +

∑

k,p

(

2ReUλrel
pk 〈ϕjϕp | ϕiϕk〉

− Uλrel∗
pk 〈ϕjϕp | ϕkϕi〉 − Uλrel

pk 〈ϕjϕk | ϕpϕi〉
)

(IV.47)
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with

f (λrel)
pq = hλrel

pq +
∑

k

〈ϕpϕk || ĝλrel
1 + ĝλrel

2 || ϕqϕk〉. (IV.48)

In the derivation of ε
(2)
ji , the relation

Uλrel∗
qp + Uλrel

pq + Sλrel
pq = 0, (IV.49)

with the generic indices p, q, is used which is obtained by differentiating the unitary

normalization condition

〈Ψp | ŜD | Ψq〉 = δpq (IV.50)

with respect to λrel.

Using (IV.42), the expansion coefficients uλrel
pi for the perturbed small component can also

be eliminated from (IV.44). Doing so, the resulting energy expression is consistent with

the usual expressions for second derivatives from non-relativistic derivative theory79

E(4) =
∑

ip

Re
{

Uλrel
pi

(

f
(λrel)
pi − εiS

λrel
pi

)}

− 1

2

∑

ijkp

Sλrel
kj

(

2ReUλrel
pi 〈ϕjϕp | ϕkϕi〉 − Uλrel∗

pi 〈ϕjϕp | ϕiϕk〉 − Uλrel
pi 〈ϕjϕi | ϕpϕk〉

)

− 1

2

∑

ij

Sλrel
ij

(

f
(λrel)
ji − εiS

λrel
ji

)

+
1

2

∑

ij

〈ϕiϕj || ĝλrel
12 || ϕiϕj〉

+
∑

ip

Re
{

Aλrel
pi

(
Z1f

(λrel)
pi − εiS

λrel
pi

)}

(IV.51)

with

Z1f (λrel)
pq =hλrel

pq +
∑

j

〈ϕpϕj || ĝλrel
1 || ϕqϕj〉. (IV.52)

The first two lines correspond here to the CPHF contribution within the DPT expan-

sion and the third line defines the reorthonormalization terms. Lines four and five are

second-order terms with the latter being an additional contribution appearing due to the
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IV.2. DPT corrections at the Hartree-Fock level

elimination of the small component.

IV.2.2. Separation of scalar-relativistic and spin-orbit contribution

The relativistic effects accounted for by (IV.51) comprise scalar-relativistic (SR) as well

as spin-orbit (SO) corrections, with the latter being the first SO contribution in the DPT

expansion. Using the Dirac identity17

σ · a σ · b = a · b+ iσ · (a× b), (IV.53)

SR- (first term) and SO-contributions (second term) can be separated in (IV.51). Since

the SR and SO operators are of different types, i.e., of singlet type in the case of the

SR operators and of triplet type for the SO operators, no coupling appears between SR

and SO terms in the case of closed-shell systems at the DPT4 level. Note that these

couplings, however, arise for higher orders of the DPT expansion. Moreover, no coupling

arises between the different components of the SO terms.

Writing down the SR-DPT4 energy correction is straightforward. It can be achieved by

simply dropping all Pauli spin matrices in the integrals, being left with the momentum

operators only. As all integrals are real, the SR part of the DPT4 energy for closed-shell

systems reads after spin integration:

E
(4)
SR =

∑

ip

2USR
pi

{

f
(SR)
pi − εiS

SR
pi

− 1

2

∑

jk

SSR
kj

(

4〈φjφp | φkφi〉 − 〈φjφp | φiφk〉 − 〈φjφi | φpφk〉
)}

−
∑

ij

SSR
ij

(

f
(SR)
ji − εiS

SR
ji

)

+
∑

ij

(

2〈φiφj | ĝSR12 | φiφj〉 − 〈φiφj | ĝSR12 | φjφi〉
)

+
∑

ip

2ASR
pi

(
Z1f

(SR)
pi − εiS

SR
pi

)

(IV.54)

with the spatial orbitals denoted by φp. The SR operators and integrals are given as

ĝλrel
n → ĝSRn =

1

4m2
p̂n

1

r12
p̂n (IV.55)
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ĝλrel
12 → ĝSR12 =

1

16m4
p̂1p̂2

1

r12
p̂1p̂2 (IV.56)

hλrel
pi =

1

4m2
〈φp | σp̂V σp̂ | φi〉 → hSR

pi =
1

4m2
〈φp | p̂V p̂ | φi〉 (IV.57)

and

f (SR)
pq =hSR

pq +
∑

k

(

2〈φpφk | ĝSR1 + ĝSR2 | φqφk〉 − 〈φpφk | ĝSR1 + ĝSR2 | φkφq〉
)

(IV.58)

Z1f (SR)
pq =hSR

pq +
∑

k

(

2〈φpφk | ĝSR1 | φqφk〉 − 〈φpφk | ĝSR1 | φkφq〉
)

. (IV.59)

For the SO contributions in (IV.51), all terms containing

Sλrel
pi = SSR

pi + SSO
pi =

1

4m2
〈ϕp | p̂2 | ϕi〉+

1

4m2
〈ϕp | iσ (p̂× p̂)

︸ ︷︷ ︸

=0

| ϕi〉 (IV.60)

vanish. Additionally, contributions involving Uλrel
pi with index p corresponding to an oc-

cupied orbital, can be eliminated due to

ReUSO
ji = −1

2
SSO
ji = 0. (IV.61)

To determine the remaining coefficients Uλrel
ai with indices a, b, c, . . . referring to virtual

orbitals, the CPHF equations need to be solved for the three components of the SO

perturbation SOx, SOy, and SOz (see Appendix IX.2 for details).

Due to its cross-product form, the SO part of the relativistically perturbed operators can

be written as a sum over its components, i.e.,

ĝSO1 =
1

4m2
iσ1(p̂1

1

r12
× p̂1) (IV.62)

=
1

4m2

(

σ1xi(p̂1y
1

r12
p̂1z− p̂1z

1

r12
p̂1y) + σ1yi(p̂1z

1

r12
p̂1x− p̂1x

1

r12
p̂1z)

+ σ1zi(p̂1x
1

r12
p̂1y− p̂1y

1

r12
p̂1x)

)

(IV.63)

=σ1xĝ
SOx
1 + σ1yĝ

SOy
1 + σ1z ĝ

SOz
1 =

∑

c=x,y,z

σ1cĝ
SOc
1 . (IV.64)
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Concerning the two-electron integrals containing the operator ĝλrel
12 , the only non-zero SO

contributions are of the type

ĝSO12 =
1

16m4
iσ2(p̂2 × iσ1(p̂1 ×

1

r12
p̂1)p̂2) (IV.65)

due to spin orthogonality (see Appendix IX.4 for details). Furthermore, σ1 and σ2 have

to be of the same type, i.e., both have to be either σx, σy, or σz to give a non-vanishing

contribution.

Using the above expressions, the SO part of the DPT4 energy is finally given as

E
(4)
SO =

∑

ia

Re
(

USO
ai f

(SO)
ai

)

+
1

2

∑

ij

〈ϕiϕj || ĝSO12 || ϕiϕj〉+
∑

ip

Re
(

ASO
pi

Z1f
(SO)
pi

)

. (IV.66)

After spin integration for closed-shell systems (see Appendix IX.5 for details), the SO

energy correction reads

E
(4)
SO =

∑

c=x,y,z

[
∑

ia

2Re
(

USOc
ai f

(SOc)
ai

)

−
∑

ij

〈φiφj | ĝSOc
12 | φjφi〉

+
∑

ip

2Re
(

ASOc
pi

Z1f
(SOc)
pi

)]

. (IV.67)

Using the Levi-Cività tensor

ǫµνσ =







+1, for cyclic permutations of x, y, z

−1, for non-cyclic permutations of x, y, z

0, for repeatedly occurring indices

(IV.68)

the integrals and operators for a specific SO component c = x, y or z can be expressed

via

hSOc
ai =

1

4m2

∑

µ=x,y,z

∑

ν=x,y,z

ǫcµν〈φa | ip̂µV p̂ν | φi〉 (IV.69)

ĝSOc
n =

1

4m2

∑

µ=x,y,z

∑

ν=x,y,z

ǫcµνip̂nµ
1

r12
p̂nν (IV.70)

ĝSOc
12 =

1

16m4

∑

µ=x,y,z

∑

ν=x,y,z

∑

σ=x,y,z

∑

ρ=x,y,z

ǫcµνi
2p̂2µ

[
ǫcσρp̂1σ

1

r12
p̂1ρ
]
p̂2ν (IV.71)
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f
(SOc)
ai =hSOc

ai +
∑

j

(

2〈φaφj | ĝSOc
1 | φiφj〉

− 〈φaφj | ĝSOc
1 | φjφi〉 − 〈φaφj | ĝSOc

2 | φjφi〉
)

(IV.72)

Z1f
(SOc)
pi =hSOc

pi +
∑

j

(

2〈φpφj | ĝSOc
1 | φiφj〉 − 〈φpφj | ĝSOc

1 | φjφi〉
)

(IV.73)

ASOc
pi =

1

2m

∑

q

(Sλrel)−1
pq

Z1f
(SOc)
qi . (IV.74)

Note that the final expressions for the SR part of the DPT4 energy (IV.54) as well as the

SO part (IV.67) are of one-component form and may therefore be implemented within a

non-relativistic code given that all additional integrals are available.

IV.2.3. DPT from a non-relativistic Lagrangian

In this section it is shown that it is possible to formulate the DPT4 energy starting

from the Schrödinger equation instead of the Dirac equation by expanding the operators

and the wave function with respect to λrel. In this way, a non-relativistic Lagrangian can

be employed to arrive at the desired energy corrections using standard analytic derivative

theory.77,78 The non-relativistic HF Lagrangian is given as

Ẽ =
∑

i

〈ϕi | ĥ | ϕi〉+
1

2

∑

ij

〈ϕiϕj || ĝ || ϕiϕj〉 −
∑

ij

εji

(

〈ϕi | Ŝ | ϕj〉 − δij

)

. (IV.75)

To make this Lagrangian and the involved operators dependent on the relativistic per-

turbation, an expansion in terms of λrel of the operators ĥ, Ŝ, ĝ and the orbitals ϕi is

necessary.

Starting from the DHF equations formulated using the modified metric (see Appendix

IX.1),

〈Ψi | f̂D | Ψi〉 = εi〈Ψi | ŜD | Ψi〉 (IV.76)

〈Ψi | ĥD | Ψi〉+
∑

j

(

〈ΨiΨj | ĝD | ΨiΨj〉 − 〈ΨiΨj | ĝD | ΨjΨi〉
)

= εi〈Ψi | ŜD | Ψi〉

(IV.77)

and expressing the small component χp via

χp = X̂ϕp, (IV.78)
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i.e., by means of the large component ϕp and the coupling operator X̂,45,71 the spinors Ψi

may be expanded

Ψi =

(

ϕi

X̂ϕi

)

=

(

ϕ
(0)
i + λrelϕ

(2)
i + . . .

X̂(ϕ
(0)
i + λrelϕ

(2)
i + . . . )

)

(IV.79)

allowing the evaluation of the matrix elements in the DHF equations in the following

manner

〈Ψi | ĥD | Ψi〉 = 〈ϕi | V + X̂†σp̂+ σp̂X̂ + λrelX̂
†V X̂ − 2mX̂†X̂ | ϕi〉 (IV.80)

= 〈ϕi | ĥ | ϕi〉 (IV.81)

〈Ψi | ŜD | Ψi〉 = 〈ϕi | 1 + λrelX̂
†X̂ | ϕi〉 (IV.82)

= 〈ϕi | Ŝ | ϕi〉 (IV.83)

〈ΨiΨj | ĝD | ΨiΨj〉 = 〈ϕiϕj |
1

r12
+ λrelX̂

†(1)
1

r12
X̂(1)

+ λrelX̂
†(2)

1

r12
X̂(2)

+ λ2
relX̂

†(1)X̂†(2)
1

r12
X̂(1)X̂(2) | ϕiϕj〉 (IV.84)

= 〈ϕiϕj | ĝ | ϕiϕj〉. (IV.85)

This procedure results in expressions for the operators ĥ, Ŝ, and ĝ that explicitly depend

on the relativistic perturbation λrel. To proceed further, the operator X̂ also needs to be

expanded in orders of λrel

X̂ = X̂(0) + λrelX̂
(2) + λ2

relX̂
(4) + . . . (IV.86)

Using (IV.30), X̂(0) can already be determined

X̂(0) =
1

2m
σp̂. (IV.87)
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With the above relation, it can be shown that the zeroth-order operators are equivalent

to the nonrelativistic (nrl) operators that appear in the Schrödinger equation

ĥ(0) = V + X̂(0)†σp̂+ σp̂X̂(0) − 2mX̂(0)†X̂(0) = V +
p̂2

2m
= ĥnrl (IV.88)

Ŝ(0) = 1 = Ŝnrl (IV.89)

ĝ(0) =
1

r12
= ĝnrl. (IV.90)

For the DPT4 energy correction, the corresponding operators in second and fourth order

are needed:

ĥ(2) = X̂(0)†V X̂(0) (IV.91)

ĥ(4) = X̂(2)†V X̂(0) + X̂(0)†V X̂(2) − 2mX̂(2)†X̂(2) (IV.92)

Ŝ(2) = X̂(0)†X̂(0) (IV.93)

Ŝ(4) = X̂(2)†X̂(0) + X̂(0)†X̂(2) (IV.94)

ĝ(2) = (1 + P̂1,2)
[

X̂(0)†(1)
1

r12
X̂(0)(1)

]

(IV.95)

ĝ(4) = (1 + P̂1,2)
[

X̂(2)†(1)
1

r12
X̂(0)(1) + c.c.

]

+ X̂(0)†(1)X̂(0)†(2)
1

r12
X̂(0)(1)X̂(0)(2)

(IV.96)

with the operator P̂1,2 permuting electron 1 and 2 and c.c. denoting the complex conjugate

of the preceding expression.

The effect of X̂(2) on ϕ
(0)
i may be determined using the expansion of the perturbed small

component given in (IV.38)

χ
(2)
i =

∑

p

uλrel
pi χ(0)

p

X̂(0)ϕ
(2)
i + X̂(2)ϕ

(0)
i =

∑

p

(Uλrel
pi + Aλrel

pi )X̂(0)ϕ(0)
p

∑

p

Uλrel
pi X̂(0)ϕ(0)

p + X̂(2)ϕ
(0)
i =

∑

p

Uλrel
pi X̂(0)ϕ(0)

p +
∑

p

Aλrel
pi X̂(0)ϕ(0)

p

⇒ X̂(2)ϕ
(0)
i =

∑

p

Aλrel
pi X̂(0)ϕ(0)

p . (IV.97)
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On the other hand, using this equation, an expression for the coefficients Aλrel
pi can derived

by projection onto 〈X̂(0)ϕq |

〈ϕq | X̂(0)†X̂(2) | ϕi〉 =
∑

p

Aλrel
pi 〈ϕq | X̂(0)†X̂(0) | ϕp〉
︸ ︷︷ ︸

S
λrel
qp

, (IV.98)

together with multiplication from the left with
(
Sλrel
rq

)−1
and summation over q

Aλrel
pi =

∑

q

(
Sλrel
pq

)−1 〈ϕq | X̂(0)†X̂(2) | ϕi〉. (IV.99)

Using (IV.36), X̂(2) may also be expressed as

X̂(2)ϕ
(0)
i =

1

2m

(

V − ε
(0)
i +

∑

k

[
Ĵ
(0)
k − K̂

(0)
k

])

X̂(0)ϕ
(0)
i (IV.100)

with

〈ϕ(0)
j | X̂(0)†

[
Ĵ
(0)
k − K̂

(0)
k

]
X̂(0) | ϕ(0)

i 〉 =

〈ϕ(0)
j ϕ

(0)
k | X̂(0)†(1)

1

r12
X̂(0)(1) | ϕ(0)

i ϕ
(0)
k 〉 − 〈ϕ(0)

j ϕ
(0)
k | X̂(0)†(1)

1

r12
X̂(0)(1) | ϕ(0)

k ϕ
(0)
i 〉.

(IV.101)

If (IV.100) is inserted into (IV.99), it is seen that both expressions for Aλrel
pi , i.e., (IV.43)

and (IV.99), are equivalent.

To obtain the DPT4 energy correction, the HF Lagrangian has to be differentiated twice

with respect to λrel, thereby again exploiting Wigner’s rules in the first differentiation

E(2) =

(

∂Ẽ

∂λrel

)

λrel=0

(IV.102)

=

{
∑

i

〈ϕ(0)
i | ∂ĥ

∂λrel

| ϕ(0)
i 〉+ 1

2

∑

ij

(

〈ϕ(0)
i ϕ

(0)
j || ∂ĝ

∂λrel

|| ϕ(0)
i ϕ

(0)
j 〉
)

−
∑

ij

ε
(0)
ji 〈ϕ

(0)
i | ∂Ŝ

∂λrel

| ϕ(0)
j 〉
}

λrel=0

, (IV.103)

E(4) =
1

2

(

∂2Ẽ

∂λ2
rel

)

λrel=0

(IV.104)

47



IV. Direct Perturbation Theory

=
1

2

{
∑

i

(

2Re〈ϕ(2)
i | ∂ĥ

∂λrel

| ϕ(0)
i 〉+ 〈ϕ(0)

i | ∂2ĥ

∂λ2
rel

| ϕ(0)
i 〉
)

+
1

2

∑

ij

(

4Re〈ϕ(2)
i ϕ

(0)
j || ∂ĝ

∂λrel

|| ϕ(0)
i ϕ

(0)
j 〉+ 〈ϕ(0)

i ϕ
(0)
j || ∂2ĝ

∂λ2
rel

|| ϕ(0)
i ϕ

(0)
j 〉
)

−
∑

i

ε
(0)
i

(

2Re〈ϕ(2)
i | ∂Ŝ

∂λrel

| ϕ(0)
i 〉+ 〈ϕ(0)

i | ∂2Ŝ

∂λ2
rel

| ϕ(0)
i 〉
)

−
∑

ij

ε
(2)
ji 〈ϕ

(0)
i | ∂Ŝ

∂λrel

| ϕ(0)
j 〉
}

λrel=0

. (IV.105)

The first and second derivatives of the general operators Ô with respect to λrel are given

by

(

∂Ô

∂λrel

)

λrel=0

= Ô(2) and

(

∂2Ô

∂λ2
rel

)

λrel=0

= 2Ô(4). (IV.106)

which allows to evaluate (IV.103) and (IV.105) yielding

E(2) =
∑

i

〈ϕ(0)
i | X̂(0)†V X̂(0) | ϕ(0)

i 〉

+
1

2

∑

ij

(

〈ϕ(0)
i ϕ

(0)
j || (1 + P̂1,2)

[

X̂(0)†(1)
1

r12
X̂(0)(1)

]

|| ϕ(0)
i ϕ

(0)
j 〉
)

−
∑

i

ε
(0)
i 〈ϕ(0)

i | X(0)†X̂(0) | ϕ(0)
i 〉 (IV.107)

E(4) =
∑

i

(

Re〈ϕ(2)
i | X̂(0)†V X̂(0) | ϕ(0)

i 〉+ 〈ϕ(0)
i | X̂(2)†V X̂(0) + c.c.− 2mX̂(2)†X̂(2) | ϕ(0)

i 〉
)

+
∑

ij

Re〈ϕ(2)
i ϕ

(0)
j || (1 + P̂1,2)

[

X̂(0)†(1)
1

r12
X̂(0)(1)

]

|| ϕ(0)
i ϕ

(0)
j 〉

+
1

2

∑

ij

〈ϕ(0)
i ϕ

(0)
j || (1 + P̂1,2)

[

X̂(2)†(1)
1

r12
X̂(0)(1) + c.c.

]

|| ϕ(0)
i ϕ

(0)
j 〉

+
1

2

∑

ij

〈ϕ(0)
i ϕ

(0)
j || X̂(0)†(1)X̂(0)†(2)

1

r12
X̂(0)(1)X̂(0)(2) || ϕ(0)

i ϕ
(0)
j 〉

−
∑

i

ε
(0)
i

(

Re〈ϕ(2)
i | X̂(0)†X̂(0) | ϕ(0)

i 〉+ 〈ϕ(0)
i | X̂(2)†X̂(0) + c.c. | ϕ(0)

i 〉
)

− 1

2

∑

ij

ε
(2)
ji 〈ϕ

(0)
i | X̂(0)†X̂(0) | ϕ(0)

j 〉. (IV.108)
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Using (IV.100), the term 〈ϕ(0)
i | −2mX̂(2)†X̂(2) | ϕ(0)

i 〉 in (IV.108) may be rewritten as

〈ϕ(0)
i | −2mX̂(2)†X̂(2) | ϕ(0)

i 〉 =− 1

2

[

〈ϕ(0)
i | X̂(2)†V X̂(0) + c.c. | ϕ(0)

i 〉

− ε
(0)
i 〈ϕ(0)

i | X̂(2)†X̂(0) + c.c. | ϕ(0)
i 〉

+
∑

j

〈ϕ(0)
i ϕ

(0)
j || X̂(2)†(1)

1

r12
X̂(0)(1) + c.c. || ϕ(0)

i ϕ
(0)
j 〉
]

(IV.109)

which allows to simplify the DPT4 energy expression to

E(4) =
∑

i

(

Re〈ϕ(2)
i | X̂(0)†V X̂(0) | ϕ(0)

i 〉+ 1

2
〈ϕ(0)

i | X̂(2)†V X̂(0) + c.c. | ϕ(0)
i 〉
)

+
∑

ij

Re〈ϕ(2)
i ϕ

(0)
j || (1 + P̂1,2)

[

X̂(0)†(1)
1

r12
X̂(0)(1)

]

|| ϕ(0)
i ϕ

(0)
j 〉

+
1

2

∑

ij

〈ϕ(0)
i ϕ

(0)
j || X̂(2)†(2)

1

r12
X̂(0)(2) + c.c. || ϕ(0)

i ϕ
(0)
j 〉

+
1

2

∑

ij

〈ϕ(0)
i ϕ

(0)
j || X̂(0)†(1)X̂(0)†(2)

1

r12
X̂(0)(1)X̂(0)(2) || ϕ(0)

i ϕ
(0)
j 〉

−
∑

i

ε
(0)
i

(

Re〈ϕ(2)
i | X̂(0)†X̂(0) | ϕ(0)

i 〉+ 1

2
〈ϕ(0)

i | X̂(2)†X̂(0) + c.c. | ϕ(0)
i 〉
)

− 1

2

∑

ij

ε
(2)
ji 〈ϕ

(0)
i | X̂(0)†X̂(0) | ϕ(0)

j 〉. (IV.110)

Since

ε
(2)
ji =

{

∂

∂λrel

〈ϕj | f̂ | ϕi〉
}

λrel=0

(IV.111)

=

{

∂

∂λrel

(

〈ϕj | ĥ | ϕi〉+
∑

ij

〈ϕiϕj || ĝ || ϕiϕj〉
)
}

λrel=0

(IV.112)

is equivalent to (IV.47), the use of the X̂ operators results in the same final DPT2 and

DPT4 corrections as the ones given in (IV.31) and (IV.51), respectively.

It is thus shown that it is possible to derive the DPT4 energy correction within a non-

relativistic framework using standard derivative theory. This approach to DPT can as

well be extended to higher orders thus rendering these energy corrections more easily
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accessible100 as will also be shown in the following chapter for the DPT6 correction.

IV.2.4. DPT6 corrections from a non-relativistic Lagrangian

At the HF level of theory the DPT6 energy correction is given as a third derivative of

the chosen Lagrangian

E(6) =
1

6

(

∂3Ẽ

∂λrel
3

)

λrel=0

(IV.113)

=
∑

i

(
Re〈ϕ(2)

i | ĥ(2) − ε
(0)
i Ŝ(2) | ϕ(2)

i 〉+ 2Re〈ϕ(2)
i | ĥ(4) − ε

(0)
i Ŝ(4) | ϕ(0)

i 〉

+ 〈ϕ(0)
i | ĥ(6) − ε

(0)
i Ŝ(6) | ϕ(0)

i 〉
)

+
∑

ij

(
2Re〈ϕ(2)

i ϕ
(2)
j || ĝ(0) || ϕ(2)

i ϕ
(0)
j 〉+ Re〈ϕ(2)

i ϕ
(2)
j || ĝ(2) || ϕ(0)

i ϕ
(0)
j 〉

+ 〈ϕ(2)
i ϕ

(0)
j || ĝ(2) || ϕ(2)

i ϕ
(0)
j 〉+ Re〈ϕ(2)

i ϕ
(0)
j || ĝ(2) || ϕ(0)

i ϕ
(2)
j 〉

+ 2Re〈ϕ(2)
i ϕ

(0)
j || ĝ(4) || ϕ(0)

i ϕ
(0)
j 〉+ 1

2
〈ϕ(0)

i ϕ
(0)
j || ĝ(6) || ϕ(0)

i ϕ
(0)
j 〉
)

−
∑

ij

(
ε
(2)
ji Re〈ϕ(2)

i | Ŝ(0) | ϕ(2)
j 〉+ 2ε

(2)
ji Re〈ϕ(2)

i | Ŝ(2) | ϕ(0)
j 〉

+ ε
(2)
ij 〈ϕ

(0)
i | Ŝ(4) | ϕ(0)

j 〉
)
. (IV.114)

The (2n + 1) and (2n + 2) rules have here been applied in the last step. According to

these rules, the resulting expression contains only the first derivative of the wave function

as well as the first derivative of the Lagrange multipliers. In DPT at the HF level this

means that no higher derivatives than Ψ(2) and ε
(2)
ji are needed for the sixth order. When

deriving DPT6 from the non-relativistic Lagrangian as given in (IV.75), the part of the

wave function which is given by the small component is incorporated into the operators.

Accordingly, when using the (2n + 1) rule in a naive manner, terms containing X̂(2)ϕ
(2)
i

(due to the operators ĥ(4), Ŝ(4), ĝ(4)) as well as X̂(4)ϕ
(0)
i (due to ĥ(6), Ŝ(6), g(6)) arise which

are actually contributions to Ψ(4). In the following it is shown that these terms indeed

vanish. The terms containing X̂(2)ϕ
(2)
i are given by

E(6) = . . .+
∑

i

(

〈ϕ(2)
i | ĥ(4) | ϕ(0)

i 〉+ c.c.
)

−
∑

i

(

ε
(0)
i 〈ϕ(2)

i | Ŝ(4) | ϕ(0)
i 〉+ c.c

)
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+
∑

ij

((

〈ϕ(2)
i ϕ

(0)
j | ĝ(4) | ϕ(0)

i ϕ
(0)
j 〉 − 〈ϕ(2)

i ϕ
(0)
j | ĝ(4) | ϕ(0)

j ϕ
(0)
i 〉
)

+ c.c.
)

(IV.115)

with the fourth-order operators given in (IV.92), (IV.94), and (IV.96). The critical terms

are now those where X̂(2) is acting on ϕ
(2)
i , i.e.,

E(6) = . . .+
∑

i

(

〈ϕ(2)
i | X̂(2)†V X̂(0) − 2mX̂(2)†X̂(2) | ϕ(0)

i 〉+ c.c.
)

−
∑

i

(

ε
(0)
i 〈ϕ(2)

i | X̂(2)†X̂(0) | ϕ(0)
i 〉+ c.c.

)

+
∑

ij

((
〈ϕ(2)

i ϕ
(0)
j | X̂(2)†(1)r−1

12 X̂
(0)(1) | ϕ(0)

i ϕ
(0)
j 〉

− 〈ϕ(2)
i ϕ

(0)
j | X̂(2)†(1)r−1

12 X̂
(0)(1) | ϕ(0)

j ϕ
(0)
i 〉
)
+ c.c.

)

. (IV.116)

From (IV.100) it can be seen that it holds

[

−2mX̂(2)(1) +
(

V − ε
(0)
i +

∑

j

(Ĵj − K̂j)
)

X̂(0)(1)

]

ϕ
(0)
i (1) = 0. (IV.117)

Therefore, rewriting (IV.116)

E(6) = . . .+
∑

i

〈ϕ(2)
i | X̂(2)†

[

−2mX̂(2) +
(

V − ε
(0)
i +

∑

j

(Ĵj − K̂j)
)

X̂(0)

]

| ϕ(0)
i 〉

︸ ︷︷ ︸

=0

+c.c.

(IV.118)

shows that these terms vanish. Of course, the same holds for the complex conjugate

expression.

Concerning the terms in which X̂(4) acts on ϕ
(0)
i , the contributions are given by

E(6) = . . .+
∑

i

〈ϕ(0)
i | ĥ(6) | ϕ(0)

i 〉

−
∑

i

εi〈ϕ(0)
i | Ŝ(6) | ϕ(0)

i 〉

+
∑

ij

1

2

(

〈ϕ(0)
i ϕ

(0)
j | ĝ(6) | ϕ(0)

i ϕ
(0)
j 〉 − 〈ϕ(0)

i ϕ
(0)
j | ĝ(6) | ϕ(0)

j ϕ
(0)
i 〉
)

(IV.119)
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with

ĥ(6) =
(

X̂(4)†V X̂(0) + c.c.
)

+ X̂(2)†V X̂(2) − 2m
(

X(4)†X̂(2) + c.c.
)

(IV.120)

Ŝ(6) =
(

X̂(4)†X̂(0) + c.c.
)

+ X̂(2)†X̂(2) (IV.121)

ĝ(6) =
(

1 + P̂1,2

)(

X̂(2)†(1)
1

r12
X̂(2)(1) + c.c.

)

+
(

1 + P̂1,2

)(

X̂(4)†(1)
1

r12
X̂(0)(1) + c.c.

)

+
(

1 + P̂1,2

)(

X̂(2)†(1)X̂(0)†(2)
1

r12
X̂(0)(1)X̂(0)(2) + c.c.

)

. (IV.122)

Accordingly, the relevant terms are

E(6) = . . .+
∑

i

〈

ϕ
(0)
i

∣
∣
∣

(

X̂(4)†V X̂(0) + c.c.
)

− 2m
(

X(4)†X̂(2) + c.c.
)∣
∣
∣ϕ

(0)
i

〉

+
∑

i

〈

ϕ
(0)
i

∣
∣
∣

(

X̂(4)†X̂(0) + c.c.
)∣
∣
∣ϕ

(0)
i

〉

+
1

2

∑

ij

(〈

ϕ
(0)
i ϕ

(0)
j

∣
∣
∣
∣

(

1 + P̂1,2

)(

X̂(4)†(1)
1

r12
X̂(0)(1) + c.c.

)∣
∣
∣
∣
ϕ
(0)
i ϕ

(0)
j

〉

−
〈

ϕ
(0)
i ϕ

(0)
j

∣
∣
∣
∣

(

1 + P̂1,2

)(

X̂(4)†(1)
1

r12
X̂(0)(1) + c.c.

)∣
∣
∣
∣
ϕ
(0)
j ϕ

(0)
i

〉)

(IV.123)

which can be rearranged to

E(6) = . . .+
∑

i

〈ϕ(0)
i | X̂(4)†

[

−2mX̂(2)
(

V − ε
(0)
i +

∑

j

(Ĵj − K̂j)
)

X̂(0)

]

| ϕ(0)
i 〉

︸ ︷︷ ︸

=0

+c.c.

(IV.124)

again showing that, consistent with the (2n+ 1) rule, there appear no contributions due

to the fourth-order wave function in the DPT6 energy expression. For a more detailed

discussion on DPT6, see also Ref. 100.
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IV.3. DPT corrections at correlated levels of theory

In this section the DPT4 energy expression will be derived for correlated methods, i.e.,

explicitly for the MP2 approach. For convenience, the notation | p〉 =| ϕp〉 will be used

in the following. At the MP2 level, the Lagrangian is given by

Ẽ =
1

4

∑

ij

∑

ab

tabij 〈ij || ĝ || ab〉

+
1

4

∑

ij

∑

ab

λij
ab

(
〈ab || ĝ || ij〉 − [εi + εj − εa − εb] t

ab
ij

)

+
∑

ai

Zai

(

〈a | ĥ | i〉+
∑

j

〈aj || ĝ || ij〉
)

+
∑

pq

Ipq

(

〈p | Ŝ | q〉 − δpq

)

(IV.125)

with the amplitudes tabij and the Lagrange multipliers λij
ab, Zai, and Ipq that are used to

account for the amplitude equations, the Brillouin condition, and the orthornormality of

the orbitals as side-conditions. From the stationarity conditions ∂Ẽ
∂tabij

= 0 and ∂Ẽ

∂λij
ab

= 0

(see chapter III.2) the following relations are obtained

λij
ab =

〈ij || ĝ || ab〉
εi + εj − εa − εb

, tabij =
〈ab || ĝ || ij〉

εi + εj − εa − εb
(IV.126)

yielding

λij
ab = tab∗ij , (IV.127)

tabij = −tabji = −tbaij = tbaji . (IV.128)

The one- and two-particle density matrices may be defined as

Dij = −1

2

∑

k

∑

ab

λkj
abt

ab
ki , Dab =

1

2

∑

c

∑

ij

λij
act

bc
ij , (IV.129)

Γabij =
1

4
λij
ab, Γijab =

1

4
tabij , (IV.130)

leading to a general form of the Lagrangian for correlated methods

Ẽ =
∑

pqrs

Γpqrs〈pq || ĝ || rs〉
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+
∑

pq

Dpq

(

〈p | ĥ | q〉+
∑

j

〈pj || ĝ || qj〉
)

+
∑

ai

Zai

(

〈a | ĥ | i〉+
∑

j

〈aj || ĝ || ij〉
)

+
∑

pq

Ipq

(

〈p | Ŝ | q〉 − δpq

)

. (IV.131)

For MP2 it holds that only Dij, Dab, Γabij, and Γijab are nonzero.

The DPT4 energy at the MP2 level is again obtained as the second derivative of the

Lagrangian (IV.131) with respect to λrel. In the derivation, Wigner’s (2n+1) and (2n+2)

rules are exploited in the first differentiation step

∂Ẽ

∂λrel

=
∑

pqrs

Γpqrs〈pq ||
∂ĝ

∂λrel

|| rs〉

+
∑

pq

Dpq

(

〈p | ∂ĥ

∂λrel

| q〉+
∑

j

〈pj || ∂ĝ

∂λrel

|| qj〉
)

+
∑

ai

Zai

(

〈a | ∂ĥ

∂λrel

| i〉+
∑

j

〈aj || ∂ĝ

∂λrel

|| ij〉
)

+
∑

pq

Ipq〈p | ∂Ŝ

∂λrel

| q〉 (IV.132)

At the point λrel = 0, this leads to the DPT2 energy which at the MP2 level is given as

(

∂Ẽ

∂λrel

)

λrel=0

=
∑

pqrs

Γpqrs〈pq || ĝλrel
1 + ĝλrel

2 || rs〉

+
∑

pq

Dpqf
(λrel)
pq

+
∑

ai

Zaif
(λrel)
ai

+
∑

pq

IpqS
λrel
pq (IV.133)

with f
(λrel)
pq and Sλrel

pq as given in (IV.32) and (IV.48).

For the second derivative of the energy functional Ẽ, all terms in (IV.132) need to be
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differentiated yielding

E(4) =
1

2

(

∂2Ẽ

∂λrel
2

)

λrel=0

=
1

2

(
∑

pqrs

{

∂Γpqrs

∂λrel

〈pq || ∂ĝ

∂λrel

|| rs〉+ Γpqrs

[∂〈pq || ∂ĝ
∂λrel

|| rs〉
∂λrel

]
}

+
∑

pq

{

∂Dpq

∂λrel

f (λrel)
pq +Dpq

∂f
(λrel)
pq

∂λrel

}

+
∑

ai

{

∂Zai

∂λrel

f
(λrel)
ai + Zai

∂f
(λrel)
ai

∂λrel

}

+
∑

pq

{

∂Ipq
∂λrel

Sλrel
pq + Ipq

∂Sλrel
pq

∂λrel

})

λrel=0

. (IV.134)

In the following, explicit expressions for the terms arising in the above equation are

evaluated, thereby assuming that they are given for λrel = 0. The perturbed amplitudes

are given by:

1

4

∂tabij
∂λrel

=
1

4

1

εi + εj − εa − εb

[

∂〈ab || ĝ || ij〉
∂λrel

−
∑

m

(
∂fmi

∂λrel

tabmj +
∂fmj

∂λrel

tabim

)

+
∑

e

(
∂fae
∂λrel

tebij +
∂fbe
∂λrel

taeij

)]

(IV.135)

with

∂〈pq | ĝ | rs〉
∂λrel

=
∑

t

Uλrel∗
tp 〈tq | rs〉+

∑

t

Uλrel∗
tq 〈pt | rs〉

+
∑

t

Uλrel
tr 〈pq | ts〉+

∑

t

Uλrel
ts 〈pq | rt〉

+ 〈pq | ĝλrel
1 + ĝλrel

2 | rs〉, (IV.136)

∂fpq
∂λrel

=
∂

∂λrel

[

〈p | ĥ | q〉+
∑

k

〈pk || ĝ || qk〉
]
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=
∑

t

Uλrel∗
tp ftq +

∑

t

Uλrel
tq fpt + hλrel

pq +
∑

k

〈pk || ĝ1 + ĝ2 || qk〉

+
∑

tk

(

Uλrel∗
tk 〈pt || qk〉+ Uλrel

tk 〈pk || qt〉
)

=Uλrel∗
qp εq + Uλrel

pq εp + f (λrel)
pq +

∑

tk

(

Uλrel∗
tk 〈pt || qk〉+ Uλrel

tk 〈pk || qt〉
)

, (IV.137)

and

∂Γijab

∂λrel

=
∂Γ∗

abij

∂λrel

=
1

4

∂tabij
∂λrel

=
1

4

∂
(
λij
ab

)∗

∂λrel

. (IV.138)

For the perturbed one-particle density matrix it holds

∂Dij

∂λrel

=− 1

2

∑

k

∑

ab

∂λkj
ab

∂λrel

tabki + λkj
ab

∂tabki
∂λrel

, (IV.139)

∂Dab

∂λrel

=
1

2

∑

c

∑

ij

∂λij
ac

∂λrel

tbcij + λij
ac

∂tbcij
∂λrel

. (IV.140)

Moreover, explicit expressions for the remaining integrals are needed

∂〈pq | ∂ĝ
∂λrel

| rs〉
∂λrel

=〈p(2)q | ∂ĝ

∂λrel

| rs〉+ 〈pq(2) | ∂ĝ

∂λrel

| rs〉

+ 〈pq | ∂ĝ

∂λrel

| r(2)s〉+ 〈pq | ∂ĝ

∂λrel

| rs(2)〉+ 〈pq | ∂2ĝ

∂λrel
2 | rs〉,

〈p(2)q | ∂ĝ

∂λrel

| rs〉 =〈p(2)q | ĝ(2) | rs〉 =
∑

p

Uλrel∗
tp 〈tq | ĝλrel

1 + ĝλrel
2 | rs〉,

〈pq | ∂2ĝ

∂λrel
2 | rs〉 =〈pq | 2ĝ(4) | rs〉

=2
{∑

t

Aλrel∗
tp 〈tq | ĝλrel

1 | rs〉+
∑

t

Aλrel∗
tq 〈pt | ĝλrel

2 | rs〉

+
∑

t

Aλrel
tr 〈pq | ĝλrel

1 | ts〉

+
∑

t

Aλrel
ts 〈pq | ĝλrel

2 | rt〉+ 〈pq | ĝλrel
12 | rs〉

}

, (IV.141)

as well as the definitions of the derivatives

∂f
(λrel)
pq

∂λrel

=
∂

∂λrel

(

〈p | ∂ĥ

∂λrel

| q〉+
∑

k

〈pk || ∂ĝ

∂λrel

|| qk〉
)
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=〈p(2) | ĥ(2) | q〉+ 〈p | ĥ(2) | q(2)〉+ 〈p | 2ĥ(4) | q〉
+
∑

k

(
〈p(2)k || ĝ(2) || qk〉+ 〈pq || ĝ(2) || q(2)k〉+ 〈pk(2) || ĝ(2) || qk〉

+ 〈pk || ĝ(2) || qk(2)〉+ 〈pk || 2ĝ(4) || qk〉
)

(IV.142)

=
∑

t

[

(Uλrel∗
tp + 2Aλrel∗

tp )hλrel
tq + (Uλrel

tq + 2Aλrel
tq )hλrel

pt

]

−4m
∑

ts

Aλrel∗
tp Sλrel

ts Aλrel
sq

+
∑

tk

(Uλrel∗
tp 〈tk || ĝλrel

1 + ĝλrel
2 || qk〉+ 2Aλrel∗

tq 〈tk || ĝλrel
1 || qk〉)

+
∑

tk

(Uλrel
tq 〈tk || ĝλrel

1 + ĝλrel
2 || pk〉∗ + 2Aλrel

tq 〈tk || ĝλrel
1 || pk〉∗)

+
∑

tk

(Uλrel∗
tk 〈pt || ĝλrel

1 + ĝλrel
2 || qk〉+ 2Aλrel∗

tk 〈pt || ĝλrel
2 || qk〉)

+
∑

tk

(Uλrel
tk 〈qt || ĝλrel

1 + ĝλrel
2 || pk〉∗ + 2Aλrel

tk 〈qt || ĝλrel
2 || pk〉∗)

+ 2
∑

k

〈pk || ĝλrel
12 || qk〉, (IV.143)

and

∂Sλrel
pq

∂λrel

=
∂

∂λrel

〈p | ∂Ŝ

∂λrel

| q〉 = 〈p(2) | Ŝ(2) | q〉+ 〈p | Ŝ(2) | q(2)〉+ 〈p | 2Ŝ(4) | q〉

=
∑

t

{

(Uλrel∗
tp + 2Aλrel∗

tp )Sλrel
tq + (Uλrel

tq + 2Aλrel
tq )Sλrel

pt

}

. (IV.144)

For the evaluation of Zai and Ipq instead of taking the derivative of the Lagrangian with

respect to the MO coefficients ∂Ẽ/∂cµq as discussed in chapter III.2, (IV.131) is rewritten

using the orbital rotation

c′µp =
∑

q

cµqTqp (IV.145)

with the stationarity condition for the Lagrangian

(

∂Ẽ

∂Tqp

)

T=1

= 0 (IV.146)

yielding

Ẽ =
∑

pqrs

Γpqrs

∑

tuvw

T ∗
tpT

∗
uqTvrTws〈tu || ĝ || vw〉
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+
∑

pq

Dpq

∑

tv

T ∗
tpTvq

[

htv +
∑

uw

∑

l

T ∗
ulTwl〈tu || ĝ || vw〉

]

+
∑

bj

Zbj

∑

tv

T ∗
tbTvj

[

htv +
∑

uw

∑

l

T ∗
ulTwl〈tu || ĝ || vw〉

]

+
∑

pq

Ipq
∑

tv

(T ∗
tpTvqStv − δtv). (IV.147)

Taking the derivative of Ẽ with respect to Tai at T = 1 gives

(

∂Ẽ

∂Tai

)

T=1

=0

=
∑

qrs

Γ∗
iqrs〈aq || ĝ || rs〉∗ +

∑

prs

Γ∗
pirs〈pa || ĝ || rs〉∗

+
∑

pqs

Γpqis〈pq || ĝ || as〉+
∑

pqr

Γpqri〈pq || ĝ || ra〉

+
∑

q

D∗
iqf

∗
aq +

∑

p

Dpifpa

+
∑

pq

D∗
pq〈pa || ĝ || qi〉∗ +

∑

pq

Dpq〈pi || ĝ || qa〉

+
∑

b

Zbifba +
∑

bj

Z∗
bj〈ba || ĝ || ji〉∗ +

∑

bj

Zbj〈bi || ĝ || ja〉

+
∑

q

I∗iqS
∗
aq +

∑

p

IpiSpa (IV.148)

which for MP2 yields

I∗ia + Iai =− 2
∑

jbc

(Γ∗
ijbc〈aj || ĝ || bc〉∗ + Γbcij〈bc || ĝ || aj〉)

−
∑

pq

(D∗
pq〈pa || ĝ || qi〉∗ +Dpq〈pi || ĝ || qa〉)

−
∑

b

Zbifba −
∑

bj

Z∗
bj〈ba || ĝ || ji〉∗ −

∑

bj

Zbj〈bi || ĝ || ja〉. (IV.149)

The derivative of Ẽ with respect to Tia is given by

(

∂Ẽ

∂Tia

)

T=1

=0
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=
∑

qrs

Γ∗
aqrs〈iq || ĝ || rs〉∗ +

∑

prs

Γ∗
pars〈pi || ĝ || rs〉∗

+
∑

pqs

Γpqas〈pq || ĝ || is〉+
∑

pqr

Γpqra〈pq || ĝ || ri〉

+
∑

q

D∗
aqf

∗
iq +

∑

p

Dpafpi

+
∑

j

Z∗
ajf

∗
ij

+
∑

q

I∗aqS
∗
iq +

∑

p

IpaSpi (IV.150)

which leads to

I∗ai + Iia =− 2
∑

bkj

(Γ∗
abkj〈ib || ĝ || kj〉∗ + Γkjab〈kj || ĝ || ib〉)

−
∑

j

Z∗
ajf

∗
ij . (IV.151)

In addition, the derivatives with respect to Tab and Tij lead to expressions for Iab + I∗ba
and Iij + I∗ji

(

∂Ẽ

∂Tab

)

T=1

=0

=
∑

qrs

Γ∗
bqrs〈aq || ĝ || rs〉∗ +

∑

prs

Γ∗
pbrs〈pa || ĝ || rs〉∗

+
∑

pqs

Γpqbs〈pq || ĝ || as〉+
∑

pqr

Γpqrb〈pq || ĝ || ra〉

+
∑

q

D∗
bqf

∗
aq +

∑

p

Dpbfpa

+
∑

j

Z∗
bjf

∗
aj

+
∑

q

I∗bqS
∗
aq +

∑

p

IpbSpa (IV.152)

I∗ba + Iab =− 2
∑

cij

(Γ∗
bcij〈ac || ĝ || ij〉∗ + Γijbc〈ij || ĝ || ac〉)

−
∑

c

(D∗
bcf

∗
ac +Dcbfca) (IV.153)
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(

∂Ẽ

∂Tij

)

T=1

=0

=
∑

qrs

Γ∗
jqrs〈iq || ĝ || rs〉∗ +

∑

prs

Γ∗
pjrs〈pi || ĝ || rs〉∗

+
∑

pqs

Γpqjs〈pq || ĝ || is〉+
∑

pqr

Γpqrj〈pq || ĝ || ri〉

+
∑

q

D∗
jqf

∗
iq +

∑

p

Dpjfpi

+
∑

pq

D∗
pq〈pi || ĝ || qj〉∗ +

∑

pq

Dpq〈pj || ĝ || qi〉

+
∑

b

Zbjfbi

+
∑

bk

Z∗
bk〈bi || ĝ || kj〉∗ +

∑

bk

Zbk〈bj || ĝ || ki〉

+
∑

q

I∗jqS
∗
iq +

∑

p

IpjSpi (IV.154)

I∗ji + Iij =− 2
∑

kab

(Γ∗
jkab〈ik || ĝ || ab〉∗ + Γabjk〈ab || ĝ || ik〉)

−
∑

k

(D∗
jkf

∗
ik +Dkjfki)

−
∑

pq

(D∗
pq〈pi || ĝ || qj〉∗ +Dpq〈pj || ĝ || qi〉)

−
∑

bk

(Z∗
bk〈bi || ĝ || kj〉∗ + Zbk〈bj || ĝ || ki〉). (IV.155)

Note that the Lagrange multipliers Ipq may then be evaluated in a symmetrized form, i.e.,

Ipq →
1

2
(Ipq + I∗qp). (IV.156)

Subtracting the complex conjugate of (IV.151) from (IV.149) yields the Z-vector equations

∑

bj

[
Z∗

bj〈ba || ĝ || ji〉∗ + Zbj(〈bi || ĝ || ja〉+ fbaδij − fijδab)
]

=− 4
∑

jbc

Γbcij〈bc || ĝ || aj〉

+ 4
∑

bkj

Γabkj〈ib || ĝ || kj〉
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−
∑

pq

(D∗
pq〈pa || ĝ || qi〉∗ +Dpq〈pi || ĝ || qa〉). (IV.157)

In the DPT4 energy equation, the derivative of Zai is needed as well. Accordingly, the

obtained Z-vector equations are differentiated once more with respect to λrel

∑

bj

[

∂Z∗
bj

∂λrel

〈ba || ĝ || ji〉∗ + ∂Zbj

∂λrel

(
〈bi || ĝ || ja〉+ (εa − εi)δijδab

)

]

=−
∑

bj

[

Z∗
bj

∂〈ba || ĝ || ji〉∗
∂λrel

+ Zbj

(
∂〈bi || ĝ || ja〉

∂λrel

+
∂fba
∂λrel

δij −
∂fij
∂λrel

δab

)]

− 4
∑

jbc

[

∂Γbcij

∂λrel

〈bc || ĝ || aj〉+ Γbcij
∂〈bc || ĝ || aj〉

∂λrel

]

+ 4
∑

bkj

[

∂Γabkj

∂λrel

〈ib || ĝ || kj〉+ Γabkj
∂〈ib || ĝ || kj〉

∂λrel

]

−
∑

pq

[

∂D∗
pq

∂λrel

〈pa || ĝ || qi〉∗ + ∂Dpq

∂λrel

〈pi || ĝ || qa〉

+D∗
pq

∂〈pa || ĝ || qi〉∗
∂λrel

+Dpq
∂〈pi || ĝ || qa〉

∂λrel

]

. (IV.158)

Furthermore, the derivatives of Ipq with respect to λrel are needed and may be obtained

by differentiating (IV.151), (IV.153), and (IV.155) respectively, leading to

∂(I∗ai + Iia)

∂λrel

=− 2
∑

bkj

(

∂Γ∗
abkj

∂λrel

〈ib || ĝ || kj〉∗ + Γ∗
abkj

∂〈ib || ĝ || kj〉∗
∂λrel

+
∂Γkjab

∂λrel

〈kj || ĝ || ib〉+ Γkjab
∂〈kj || ĝ || ib〉

λrel

)
)

−
∑

j

(

∂Z∗
aj

∂λrel

f ∗
ij + Z∗

aj

∂f ∗
ij

∂λrel

)

, (IV.159)

∂(I∗ba + Iab)

∂λrel

=− 2
∑

cij

(

∂Γ∗
bcij

∂λrel

〈ac || ĝ || ij〉∗ + Γ∗
bcij

∂〈ac || ĝ || ij〉∗
∂λrel

+
∂Γijbc

∂λrel

〈ij || ĝ || ac〉+ Γijbc
∂〈ij || ĝ || ac〉

∂λrel

)
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−
∑

c

(

∂D∗
bc

∂λrel

f ∗
ac +D∗

bc

∂f ∗
ac

∂λrel

+
∂Dcb

∂λrel

fca +Dcb
∂fca
∂λrel

)

, (IV.160)

∂(I∗ji + Iij)

∂λrel

=− 2
∑

kab

(

∂Γ∗
jkab

∂λrel

〈ik || ĝ || ab〉∗ + Γ∗
jkab

∂〈ik || ĝ || ab〉∗
∂λrel

+
∂Γabjk

∂λrel

〈ab || ĝ || ik〉+ Γabjk
∂〈ab || ĝ || ik〉

∂λrel

)

−
∑

k

(

∂D∗
jk

∂λrel

f ∗
ik +D∗

jk

∂f ∗
ik

∂λrel

+
∂Dkj

∂λrel

fki +Dkj
∂fki
∂λrel

)

−
∑

pq

(

∂D∗
pq

∂λrel

〈pi || ĝ || qj〉∗ +D∗
pq

∂〈pi || ĝ || qj〉∗
∂λrel

+
∂Dpq

∂λrel

〈pj || ĝ || qi〉+Dpq
∂〈pj || ĝ || qi〉

∂λrel

)

−
∑

bk

(

∂Z∗
bk

∂λrel

〈bi || ĝ || kj〉∗ + Z∗
bk

∂〈bi || ĝ || kj〉∗
∂λrel

+
∂Zbk

∂λrel

〈bj || ĝ || ki〉+ Zbk
∂〈bj || ĝ || ki〉

∂λrel

)

. (IV.161)

IV.3.1. Separation of scalar-relativistic and spin-orbit contribution

As in the HF case, the separation of the SR and SO contributions is achieved using

the Dirac identity (IV.53). Writing down the SR-DPT4 energy for MP2 is therefore

straightforward, i.e., all Pauli spin matrices are dropped and as all quantities are real, no

special care needs to be taken for the complex-conjugate expressions. The spin adaptation

for closed-shell systems is achieved as in the non-relativistic case which means that all

quantities involving two-electron integrals are expressed in terms of the ‘αβαβ’ spin case,

i.e., it is exploited that

〈pq || ĝ || rs〉 =〈pq || ĝ || rs〉
=〈pq | ĝ | rs〉 − 〈pq | ĝ | sr〉
=〈pq | ĝ | rs〉 − 〈pq | ĝ | sr〉
=〈pq | ĝ | rs〉 − 〈pq | ĝ | sr〉

〈pq || ĝ || rs〉 =〈pq || ĝ || rs〉
=〈pq | ĝ | rs〉
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〈pq || ĝ || rs〉 =〈pq || ĝ || rs〉
=− 〈pq | ĝ | sr〉

with

| p〉 =| φpα〉, | p〉 =| φpβ〉. (IV.162)

The spin-adapted SR-DPT4 energy at the MP2 level is then given by

E
(4)
SR =

1

2

[
∑

ij

∑

ab

1

2

∂tab
ij

∂λSR

(
8〈ij | ĝSR1 + ĝSR2 | ab〉 − 4〈ij | ĝSR1 + ĝSR2 | ba〉

)

+
∑

ij

∑

ab

1

2
tab
ij

(

8
∂〈ij | ∂ĝ

∂λSR
| ab〉

∂λSR

− 4
∂〈ij | ∂ĝ

∂λSR
| ba〉

∂λSR

)

+ 2
∑

ij

[

∂Dij

∂λSR

f
(SR)
ij +Dij

∂f
(SR)
ij

∂λSR

]

+ 2
∑

ab

[

∂Dab

∂λSR

f
(SR)
ab +Dab

∂f
(SR)
ab

∂λSR

]

+ 2
∑

ai

[

∂Zai

∂λSR

f
(SR)
ai + Zai

∂f
(SR)
ai

∂λSR

]

+ 2
∑

pq

[

∂Ipq
∂λSR

SSR
pq + Ipq

∂SSR
pq

∂λSR

]]

(IV.163)

with the definitions of the SR perturbed and unperturbed density matrices, Lagrange

multipliers, and integrals given in Appendix IX.6.

In order to get the same basic equations after spin integration for the three SO com-

ponents, i.e., SOx, SOy, and SOz, as well as to reduce all terms to a single spin case, it

is useful to define the following skeleton quantities

∂t̃abij
∂λSOc

=
1

εi + εj − εa − εb

[
∑

p

USOc∗
pa 〈pb | ij〉+

∑

p

USOc
pi 〈ab | pj〉

+ 〈ab | gSOc
1 | ij〉 −

∑

m

∂fmi

∂λSOc

tab
mj

+
∑

e

∂fae
∂λSOc

teb
ij

]

, (IV.164)
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∂G̃pq
rs

∂λSOc

=
∑

t

USOc∗
tp 〈tq | rs〉+

∑

t

USOc
tr 〈pq | ts〉

+ 〈pq | ĝSOc
1 | rs〉. (IV.165)

This procedure may be exemplary shown for the different spin cases of the perturbed

amplitudes of the SOx component. From (IV.135) it follows

∂tab
ij

∂λSOx

=
1

εi + εj − εa − εb

[
∑

p

USOx∗
pa 〈pb | ij〉+

∑

p

USOx∗
pb

(−〈qp | ji〉)

+
∑

p

USOx
pi

(〈ab | pj〉 − 〈ab | jp〉)

+ 〈ab | ĝSOx
1 | ij〉 − 〈ab | ĝSOx

2 | ji〉

−
∑

m

∂fmi

∂λSOx

tab
mj

+
∑

e

∂fae
∂λSOx

teb
ij
+
∑

e

∂fbe
∂λSOx

tae
ij

]

=
∂tab

ij

∂λSOx

=
∂t̃abij
∂λSOx

−
∂t̃baij
∂λSOx

, (IV.166)

∂tab
ij

∂λSOx

=
∂tab

ij

∂λSOx

=
∂tab

ji

∂λSOx

=
∂t̃baji
∂λSOx

−
∂t̃abji
∂λSOx

, (IV.167)

∂tab
ij

∂λSOx

=
∂tabij
∂λSOx

=
∂t̃abij
∂λSOx

−
∂t̃abji
∂λSOx

, (IV.168)

∂tab
ij

∂λSOx

=
∂tabij
∂λSOx

=
∂tba

ij

∂λSOx

=
∂t̃baji
∂λSOx

−
∂t̃baij
∂λSOx

. (IV.169)

After spin adaptation, the DPT4-SO energy at the MP2 level for a specific SO component

c = x, y, z reads

E
(4)
SOc =

1

2

∑

ij

∑

ab

∂t̃abij
∂λSOc

(
8〈ij | ĝSOc

1 | ab〉 − 4〈ij | ĝSOc
1 | ba〉 − 4〈ij | ĝSOc

2 | ba〉
)

+
1

2

∑

ij

∑

ab

tab
ij

(
∑

c

USOc∗
ci (8〈cj | ĝSOc

1 | ab〉 − 4〈cj | ĝSOc
1 | ba〉 − 4〈cj | ĝSOc

2 | ba〉)

+
∑

k

USOc
ak (8〈kb | ĝSOc

1 | ij〉∗ − 4〈kb | ĝSOc
1 | ji〉∗ − 4〈kb | ĝSOc

2 | ji〉∗)

+ 2
∑

p

ASOc∗
pi (8〈pj | ĝSOc

1 | ab〉 − 4〈pj | ĝSOc
1 | ba〉)
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+ 2
∑

p

ASOc
pa (8〈pb | ĝSOc

1 | ij〉∗ − 4〈pb | ĝSOc
1 | ji〉∗)− 4〈ij | ĝSOc

12 | ba〉
)

+
∑

ij

(

∂Dij

∂λSOc

f
(SO)c
ij +Dij

∂f
(SO)c
ij

∂λSOc

)

+
∑

ab

(

∂Dab

∂λSOc

f
(SO)c
ab +Dab

∂f
(SO)c
ab

∂λSOc

)

+
∑

ai

(

∂Zai

∂λSOc

f
(SO)c
ai + Zai

∂f
(SO)c
ai

∂λSOc

)

(IV.170)

with

∂Dij

∂λSOc

=− 1

2

∑

k

∑

ab

[(

−4
∂t̃bajk
∂λSOc

+ 2
∂t̃abjk
∂λSOc

+ 2
∂t̃bakj
∂λSOc

)

tab
ki

+ tab
kj

(

4
∂t̃baik
∂λSOc

− 2
∂t̃abik
∂λSOc

− 2
∂t̃baki
∂λSOc

)]

, (IV.171)

∂Dab

∂λSOc

=
1

2

∑

a

∑

ij

[(

−4
∂t̃acij
∂λSOc

+ 2
∂t̃acji
∂λSOc

+ 2
∂t̃caij
∂λSOc

)

tbc
ij

+ tac
ij

(

4
∂t̃bcij
∂λSOc

− 2
∂t̃bcji
∂λSOc

− 2
∂t̃cbij
∂λSOc

)]

, (IV.172)

∂fpq
∂λSOc

=fSOc
pq = f (SO)c

pq +
∑

k

∑

a

USOc
ak (〈pa | kq〉 − 〈pk | aq〉) , (IV.173)

∂f
(SO)c
pq

∂λ(SO)c

=
∑

r

(
USOc∗
rp f (SO)c

rq + USOc
rq f (SO)c∗

rp

)

+
∑

r

2ASOc∗
rp

[

hSOc
rq +

∑

j

(〈rj | ĝSOc
1 | qj〉 − 〈rj | ĝSOc

1 | jq〉)
]

+
∑

r

2ASOc
rq

[

hSOc
rp +

∑

j

(〈rj | ĝSOc
1 | pj〉 − 〈rj | ĝSOc

1 | jp〉)
]∗

− 4m
∑

rs

ASOc∗
rp Sλrel

rs ASOc
sq

+
∑

j

USOc∗
rj (2〈pr | ĝSOc

2 | qj〉 − 〈pr | ĝSOc
2 | jq〉 − 〈pr | ĝSOc

1 | jq〉)

+
∑

j

USOc
rj (2〈qr | ĝSOc

2 | pj〉 − 〈qr | ĝSOc
2 | jp〉 − 〈qr | ĝSOc

1 | jp〉)∗
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+
∑

j

2ASOc∗
rj (2〈pr | ĝSOc

2 | qj〉 − 〈pr | ĝSOc
2 | jq〉)

+
∑

j

2ASOc
rj (2〈qr | ĝSOc

2 | pj〉 − 〈qr | ĝSOc
2 | jp〉)∗

−
∑

j

〈pj | ĝSOc
12 | jq〉, (IV.174)

and the perturbed Z-vector equations for the SO perturbation

∑

bj

∂ZSOc
bj

∂λSOc

[〈ba | ij〉 − 〈bi | aj〉+ δijδab(εa − εi)]

=−
∑

bj

Zbj

[

4
∂G̃ib

aj

∂λSOc

−
∂G̃bi

aj

∂λSOc

−
∂G̃ib

ja

∂λSOc

+
∂G̃ab

ji

∂λSOc

+
∂G̃ba

ij

∂λSOc

+
∂fba
∂λSOc

δij −
∂fij
∂λSOc

δab

]

−
∑

kj

∑

b

[

4
∂t̃abkj
∂λSOc

− 2
∂t̃bakj
∂λSOc

− 2
∂t̃abjk
∂λSOc

]

〈kj | ib〉

−
∑

kj

∑

b

tab
kj

[

4
∂G̃kj

ib

∂λSOc

− 2
∂G̃jk

ib

∂λSOc

− 2
∂G̃kj

bi

∂λSOc

]

+
∑

bc

∑

j

[

4
∂t̃cbij
∂λSOc

− 2
∂t̃bcij
∂λSOc

− 2
∂t̃cbji
∂λSOc

]

〈aj | cb〉

+
∑

bc

∑

j

tcb
ij

[

4
∂G̃aj

cb

∂λSOc

− 2
∂G̃aj

bc

∂λSOc

− 2
∂G̃ja

cb

∂λSOc

]

−
∑

km

{

∂Dmk

∂λSOc

(〈ma | ik〉 − 〈mi | ak〉) +Dmk

[

4
∂G̃im

ak

∂λSOc

− 2
∂G̃mi

ak

∂λSOc

− 2
∂G̃im

ka

∂λSOc

]}

−
∑

bc

{

∂Dbc

∂λSOc

(〈ba | ic〉 − 〈bi | ac〉) +Dab

[

4
∂G̃ib

ac

∂λSOc

− 2
∂G̃bi

ac

∂λSOc

− 2
∂G̃ib

ca

∂λSOc

]}

.

(IV.175)

Note that no SO contributions appear for the last two terms in (IV.134), i.e., those that

involve the perturbed and unperturbed Lagrange multipliers Ipq and ∂Ipq/∂λrel.

IV.4. DPT4 for electrical properties

First-order properties may be expressed as first derivatives of the energy with respect to

an adequately chosen perturbation parameter.101 In this way, the electrical-field gradient
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(efg) at a specific nucleus is obtained by differentiating the energy with respect to the

corresponding nuclear quadrupole moment while the dipole moment is computed as first

derivative of the energy with respect to the components of an external electrical field ǫ.

For the quadrupole moment the differentiation has to be carried out with respectto the

gradient of the electric field E = ∇ǫ. As the DPT4 energy is already given as a second

derivative of the energy, the corresponding corrections to first-order electrical properties

are defined by means of third derivatives. However, since in this work the corrections are

calculated using finite-difference techniques, the main issue in the following is how the

DPT energy expression is affected by switching on an external perturbation. Due to such

a perturbation, the potential V is augmented by the following additional contributions:

V → V − µ̂ ǫ (dipole moment) (IV.176)

V → V − Q̂ E (quadrupole moment) (IV.177)

V → V + q̂ Q (efg) (IV.178)

with the dipole operator µ̂, the quadrupole operator Q̂, the nuclear quadrupole moment

tensor Q, and the operator q̂ for the efg at this nucleus.

Considering the DPT energy expressions given in Eqs. (IV.31) and (IV.51), this leads,

beside a change in the unperturbed non-relativistic orbitals and orbital energies, to the

following corrections: for the dipole moment, the potential in the perturbed operator ĥλrel

has to be augmented by the term −µ̂ǫ leading to

hλrel
pq =

1

4m2
〈ϕp | σp̂V σp̂ | ϕq〉 →

1

4m2
〈ϕp | σp̂(V − µ̂ ǫ)σp̂ | ϕq〉, (IV.179)

for the quadrupole moment by the term −Q̂E,

hλrel
pq =

1

4m2
〈ϕp | σp̂V σp̂ | ϕq〉 →

1

4m2
〈ϕp | σp̂(V − Q̂ E)σp̂ | ϕq〉, (IV.180)

while for the efg the term +q̂Q has to be inserted

hλrel
pq =

1

4m2
〈ϕp | σp̂V σp̂ | ϕq〉 →

1

4m2
〈ϕp | σp̂(V + q̂ Q)σp̂ | ϕq〉. (IV.181)

A further change is required in the CPHF equations, since for the determination of Uλrel
pi

and uλrel
pi the modified integrals hλrel

pq have to be used as well.

Using the Dirac identity as given in (IV.53), the hλrel
pq integrals in (IV.179) can be split up
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into SR and SO contributions

hλrel
pq =hSR

pq + hSO
pq → (IV.182)

1

4m2

{
〈ϕp | p̂V p̂ | ϕq〉+ 〈ϕp | p̂(−µ̂ ǫ)p̂ | ϕq〉

}
SR

+
1

4m2

{
〈ϕp | iσ [p̂V × p̂] | ϕq〉+ 〈ϕp | iσ [p̂(−µ̂ ǫ)× p̂] | ϕq〉

}
. SO

For the quadrupole and efg integrals, see (IV.180) and (IV.181), a separation into SR and

SO parts is possible in an analogous manner.

At the DPT2 level, only the SR integrals are needed102 while at the DPT4 level both SR

and SO integrals contribute.

IV.5. Further ideas for relativistic corrections

As the increased cost of a four-component relativistic calculation versus its non-rela-

tivistic counterpart is mainly due to the symmetry breaking of the SO operators, and,

as usually the SO contributions are significantly smaller than the SR terms (at least for

closed-shell molecules up to the fifth row of the periodic table), a further possible route

to treat relativistic effects is to calculate the SR contribution in a rigorous manner and

treat only the SO terms perturbatively.41

To discuss this general idea the starting point is given by the Dirac equation (neglecting

all two-electron contributions) given in a projected form as

(

ϕp

χp

)†(

V cσp̂

cσp̂ V − 2mc2

)(

ϕq

χq

)

=εq

(

ϕp

χp

)†(

ϕq

χq

)

. (IV.183)

The ‘kinetic-balance condition’82 is then used to rewrite the small component

χp =
1

2mc
σp̂φp (IV.184)

with the so-called ‘pseudo-large’ component φp which possesses (for electronic solutions)

the same symmetry and the same order of magnitude as the large component. It should

be noted that in the non-relativistic limit, the pseudo-large component is equal to the

true large component as can be seen from (IV.30) when (IV.1) is inserted. While in DPT

the exact relation between large and small component is recovered via a perturbative

expansion and calculated at the operator level, i.e., as given in (IV.78), this relation, i.e.,
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IV.5. Further ideas for relativistic corrections

everything higher than the zeroth order, is here folded into the structure of the pseudo-

large component φp while the large component remains unchanged, i.e.,

ϕp = ϕp. (IV.185)

Inserting (IV.184) into (IV.183) yields

(

ϕp

φp

)†(

V T̂

T̂ σp̂V σp̂

4m2c2
− T̂

)

︸ ︷︷ ︸

ĥDP

(

ϕq

φq

)

=εq

(

ϕp

φp

)†(

1 0

0 1
2mc2

T̂

)

︸ ︷︷ ︸

ŜDP

(

ϕq

φq

)

(IV.186)

with

T̂ =
p̂2

2m
. (IV.187)

The procedure sketched here again leads to a change of the metric and a new Hamiltonian

ĥDP. Using the Dirac identity as given in (IV.53), the SO contributions in ĥDP can be

split off yielding103

ĥDP =ĥSR
DP + ĥSO

DP (IV.188)

=

(

V T̂

T̂ p̂V p̂

4m2c2
− T̂

)

+

(

0 0

0 iσ(p̂V×p̂)
4m2c2

)

(IV.189)

If this separation is employed, and the SR, or so-called spin-free (SF) part is treated in

a full, i.e., non-perturbative manner, this leads to the spin-free Dirac Coulomb (SFDC)

versions of a given method which also provide the proper SR limit of the corresponding

DPT expansions. When calculating the SO part perturbatively, the resulting equations

are very similar to those used in the present SO-DPT4 treatment. Accordingly, it is

expected that only a few modifications are needed to provide such a perturbative scheme

as an addition to a SFDC calculation. In a first step, one can simply augment the SFDC

energy by the SO-DPT4 correction. This should already account for a major fraction of

the SO effects that are missing in the SFDC results. In a second step, the SO contributions

may be evaluated using the SFDC orbitals which should improve the results further, as

there are indications that the coupling between SR and SO effects becomes important for

elements in the higher rows of the periodic table (see chapter VII).

The advantage of such a two-step procedure is especially evident for CC treatments as
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IV. Direct Perturbation Theory

here the additional cost for a perturbative SO treatment is much less than that for a full

four-component calculation in comparison to a SFDC computation.

The SFDC approach has been recently implemented by Lan Cheng41 into the Cfour

program package80 so that the here suggested cost-effective treatment of SO corrections

can be explored in the near future. Work along these lines is currently pursued.
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V. Calculation of Relativistic Integrals

In quantum-chemical calculations it is always necessary to evaluate integrals over the

basis functions which define the chosen basis set. Usually, these basis functions are given

as a linear combination of primitive Gaussians and are referred to as contracted Gaussians.

In practice, the corresponding integrals are evaluated over Cartesian Gaussian functions

and the contraction is done afterwards. To evaluate these integrals it is possible to use, for

example, the schemes of Obara and Saika,104,105 Rys,106 or McMurchie and Davidson.107

In this work, the scheme of McMurchie and Davidson is chosen. Therefore, following Ref.

107, an overview over the calculation of standard integrals via this scheme is given while

the relativistic integrals that have been implemented as part of this work are discussed

afterwards.

V.1. Cartesian Gaussians

A (unnormalized) Cartesian Gaussian with its center at A and exponential coefficient

αA which determines the width of the function is given by

gnlmA (r) = xn
Ay

l
Az

m
A e−αAr2

A (V.1)

with

rA = r−A =






x

y

z




−






Ax

Ay

Az




 =






xA

yA

zA




 . (V.2)

These functions are distinguished by the values of L = n+ l +m = 0, 1, 2, . . . as:

L type

0 s-function

1 p-function

2 d-function
...

...
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V. Calculation of Relativistic Integrals

Since Cartesian Gaussians can be factorized as

gnlmA (r) = xn
Ae

−αAx2
A ylAe

−αAy2A zmA e−αAz2A , (V.3)

it is sufficient to discuss in the following only the one-dimensional case for the sake of

simplicity. Gaussian functions have the advantage that it is rather easy to calculate

products, take derivatives, and to integrate, as is shown in the following. The product of

two Cartesian Gaussians, which will be referred to as charge distribution ΩBA, is given

again by a Gaussian centered at the new center Px

ΩBA = gnB

B gnA

A = xnB

B e−αBx2
BxnA

A e−αAx2
A = EABx

nB

B xnA

A e−αP x2
P (V.4)

with

αP = αA + αB, xP = x− Px, Px =
αAAx + αBBx

αP

, (V.5)

and

EAB = exp

(−αAαB

αP

)

(ABx)
2, ABx = Ax −Bx (V.6)

determining the extent of the overlap.

When taking the derivative with respect to Ax, two new Cartesian Gaussians are obtained;

one with increased quantum number L and one with decreased L:

d

dAx

xn
Ae

−αAx2
A = 2αAx

n+1
A e−αAx2

A − nxn−1
A e−αAx2

A (V.7)

= 2αAg
n+1
A − ngn−1

A . (V.8)

Due to the definition of xA, (V.2), differentiation with respect to x instead of Ax leads to

a sign change.

Integrating a simple Gaussian leads to

∫ +∞

−∞

e−αAx2
Adx =

√
π

αA

. (V.9)
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V.2. The McMurchie-Davidson scheme

V.2. The McMurchie-Davidson scheme

V.2.1. Expansion with respect to Hermite Gaussians

To rewrite the prefactors in the charge distribution (V.4) with respect to the new center

Px, the following relation of a Hermite Gaussian to the derivatives of a Gaussian

(
∂

∂Px

)N

e−αP x2
P = ΛN(xP ;αP )e

−αP x2
P (V.10)

is used together with an expansion of the polynomials xnA

A xnB

B in terms of the functions

ΛN and coefficients dnAnB

N

xnA

A e−αAx2
AxnB

B e−αBx2
B = EAB

nA+nB∑

N=0

dnAnB

N ΛN(xP ;αP )e
−αP x2

P . (V.11)

As the functions ΛN up to order n constitute a complete basis for the representation of

another polynomial of the same order, the sum in the above expression runs only up to

nA + nB.

V.2.2. Recursion relations for the coefficients

Via the relation

ΛN(xP ;αP ) = α
N/2
P HN(α

1/2
P xP ), (V.12)

the functions ΛN are connected to the Hermite polynomials HN for which the following

recursion relations

tHN(t) = NHN−1(t) +
1

2
HN+1(t) (V.13)

hold. Therefore, the recursion relations for ΛN are given as

xAΛN = NΛN−1 + (Px − Ax)ΛN +
1

2αP

ΛN+1. (V.14)
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V. Calculation of Relativistic Integrals

Inserting this into (V.11) and equating coefficients yields the recursive conditional equa-

tions for the coefficients dnAnB

N

d
(nA+1)nB

N = PAx dnAnB

N +
1

2αP

dnAnB

N−1 + (N + 1)dnAnB

N+1 (V.15)

d
nA(nB+1)
N = PBx dnAnB

N +
1

2αP

dnAnB

N−1 + (N + 1)dnAnB

N+1 (V.16)

with the starting point for the recursion relation being d000 = 1 and

dnAnB

N = 0 ∀ N > nA + nB. (V.17)

V.2.3. One-electron integrals with factorizable operators

In order to calculate one-electron integrals with factorizable operators it is exploited

that

• a factorization of three dimensional integrals into a product of one-dimensional

integrals is possible,

• the Hermite Gaussians are orthogonal with respect to exp (−αPx
2
P ) so that

∫

dxΛN(xP ;αP )ΛM(xP ;αP )e
αP x2

P = δNM

√
π

αP

, (V.18)

• as Λ0 = 1, it follows

∫

dxΛNe
−αP x2

P = δN0

√
π

αP

, (V.19)

• operators which are given as polynomials of the form (xC)
nx(yC)

ny(zC)
nz can be

combined with the corresponding Hermite Gaussians via the the recursion relations.

Using (V.11), the charge distribution in (V.4) can be rewritten into the form

ΩBA = EAB

nA+nB∑

N=0

dnAnB

N ΛN(xP ;αP )e
−αP x2

P (V.20)
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V.2. The McMurchie-Davidson scheme

and accordingly for the three-dimensional case

ΩBA = EAB

nA+nB∑

N=0

dnAnB

N ΛN(xP ;αP )

lA+lB∑

L=0

elAlB
L ΛL(yP ;αP )

mA+mB∑

M=0

fmAmB

M ΛM(zP ;αP )e
−αP r2P

(V.21)

= EAB

nA+nB∑

N=0

dnAnB

N ΛN

lA+lB∑

L=0

elAlB
L ΛL

mA+mB∑

M=0

fmAmB

M ΛMe−αP r2P , (V.22)

= EAB

∑

N,L,M

DNLMΛNΛLΛM e−αP r2P , (V.23)

with

DNLM = dnAnB

N elAlB
L fmAmB

M . (V.24)

Analog expansions can be established for the other components as well. Whenever the

summation is written in the following as a combined sum over N,L and M as in (V.23),

the summation ranges from (V.22) are assumed, i.e., for the x component from N = 0 to

nA+nB, for the y component from L = 0 to lA+ lB, and for the z component from M = 0

to mA + mB. Then, a one-electron integral with a multiplicative operator Ô = O(r) is

given by

〈gB | Ô | gA〉 =EAB

∑

N,L,M

DNLM [NLM | O] (V.25)

with the so-called basic integral

[NLM | O] =

∫

d3rΛNΛLΛMO(r)e−αP r2P (V.26)

and

gA = gnAlAmA

A , gB = gnB lBmB

B . (V.27)

The simplest possible integral in this context is the overlap integral. It is is given as

〈gB | gA〉 =
∫

d3r ΩBA
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V. Calculation of Relativistic Integrals

= EAB

∑

N,L,M

DNLM [NLM | 1] (V.28)

with

[NLM | 1] =
∫

dxΛNe
−αP x2

P

∫

dyΛLe
−αP y2P

∫

dzΛMe−αP z2P

= δN0δL0δM0

(
π

αP

) 3
2

. (V.29)

After insertion into (V.28) it follows for the overlap integral:

〈gB | gA〉 =EAB dnAnB

0 elAlB
0 fmAmB

0

(
π

αP

) 3
2

. (V.30)

For a x-dipole integral

〈gB | xC | gA〉 =
∫

d3r ΩBAxC (V.31)

=EAB

∑

N,L,M

DNLM [NLM | xC ] (V.32)

the following basic integral is needed

[NLM | xC ] =

∫

dxΛN xC e−αP x2
P

∫

dyΛLe
−αP y2P

∫

dzΛMe−αP z2P (V.33)

= δL0δM0

{
δN1 +PCxδN0

}
(

π

αP

) 3
2

(V.34)

where the recursion relation for the Hermite Gaussians in (V.14) was used. For the y

and z component analog expressions can be derived. Accordingly, the dipole integrals are

given as

〈gB | xC | gA〉 = EAB

{
dnAnB

1 +PCx dnAnB

0

}
elAlB
0 fmAmB

0

(
π

αP

) 3
2

, (V.35)

〈gB | yC | gA〉 = EAB

{

elAlB
1 +PCy e

lAlB
0

}

dnAnB

0 fmAmB

0

(
π

αP

) 3
2

, (V.36)

〈gB | zC | gA〉 = EAB

{
fmAmB

1 +PCz f
mAmB

0

}
dnAnB

0 elAlB
0

(
π

αP

) 3
2

. (V.37)
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V.2. The McMurchie-Davidson scheme

The integrals for the quadrupole moment may be derived in the same manner. Using the

recursion relations twice, the expression for the non-diagonal elements is

[NLM | xCyC ] =

∫

dxΛNxC e−αP x2
P

∫

dyΛLyC e−αP y2P

∫

dzΛMe−αP z2P (V.38)

= δM0

{
δN1 +PCxδN0

}{
δL1 +PCyδL0

}
(

π

αP

) 3
2

(V.39)

〈gB | xCyC | gA〉 = EAB{dnAnB

1 +PCxd
nAnB

0 }{elAlB
1 +PCye

lAlB
0 }fmAmB

0

(
π

αP

) 3
2

(V.40)

while the diagonal components are, for example, given by

[NLM | x2
C ] =

∫

dxΛNx
2
C e−αP x2

P

∫

dyΛLe
−αP y2P

∫

dzΛMe−αP z2P (V.41)

=δL0δM0

{

2δN2 + 2PCxδN1 +

(

PC
2

x +
1

2αP

)

δN0

}(
π

αP

) 3
2

(V.42)

〈gB | x2
C | gA〉 =EAB

{

2dnAnB

2 + 2PCxd
nAnB

1 +

(

PC
2

x +
1

2αP

)

dnAnB

0

}

× elAlB
0 fmAmB

0

(
π

αP

) 3
2

. (V.43)

V.2.4. One-electron integrals with non-factorizable operators

For integrals that contain |rC |−1 in the operator, a factorization and analytic evaluation

is impossible. To calculate, for example, the integral over the nuclear-attraction potential

〈gB | |rC |−1 | gA〉 = EAB

∑

N,L,M

DNLM [NLM | |rC |−1]. (V.44)

the basic integral [NLM | |rC |−1] needs to be evaluated. Using, as was shown by Boys,108

[000 | |rC |−1] =

∫

d3r e−αP r2P
1

|rC |
=

2π

αP

F0(T ) (V.45)

with the error function

F0(T ) =

∫ 1

0

exp (−Tu2)du (V.46)
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V. Calculation of Relativistic Integrals

and

T = αP (C−P)2, (V.47)

as well as (V.10), it follows

[NLM | |rC |−1] =

∫

d3rΛNΛLΛM
1

|rC |
e−αP r2P (V.48)

=

(
∂

∂Px

)N (
∂

∂Py

)L(
∂

∂Pz

)M ∫

d3r
1

|rC |
e−αP r2P

︸ ︷︷ ︸
2π
αP

F0(T )

(V.49)

=
2π

αP

(
∂

∂Px

)N (
∂

∂Py

)L(
∂

∂Pz

)M

F0(T ). (V.50)

After introducing

RNLM =

(
∂

∂Px

)N (
∂

∂Py

)L(
∂

∂Pz

)M

F0(T ), (V.51)

the basic integral is finally given as

[NLM | |rC |−1] =
2π

αP

RNLM (V.52)

and the nuclear-attraction integral as

〈gB | |rC |−1 | gA〉 = EAB
2π

αP

∑

N,L,M

DNLMRNLM . (V.53)

Thus, the sums in the expression do not vanish and the coefficients are calculated using

the recursion relations in (V.15) and (V.16). In order to generate the auxiliary functions

RNLM up to the maximal value of N + L+M recursion relations are used which can be

derived using the more general integral

RNLMj =(−α1/2)N+L+M(−2α)j

×
∫ 1

0

uN+L+M+2jHN(α
1/2au)HL(α

1/2bu)HM(α1/2cu)e−Tu2

du (V.54)
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and

T = α(a2 + b2 + c2). (V.55)

With

Fj(T ) =

∫ 1

0

u2je−Tu2

du (V.56)

it follows

R000j = (−2α)jFj(T ). (V.57)

From the recursion relations for the Hermite polynomials (V.13) the recursion relations

for RNLMj are derived:

R00(M+1)j = cR00M(j+1) +MR00(M−1)(j+1), (V.58)

R0(L+1)Mj = bR0LM(j+1) + LR0(L−1)M(j+1), (V.59)

R(N+1)LMj = aRNLM(j+1) +NR(N−1)LM(j+1). (V.60)

Thus, the required RNLM , or accordingly RNLM0, can be generated using a table with the

error functions Fj(T ) for all values of the index j from 0 to the maximum N + L+M .

V.2.5. Two-electron integrals

In the same manner as the one-electron integrals, the two-electron Coulomb integrals

may be expressed using Hermite Gaussians

〈

gBgD

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
gAgC

〉

=EABECD

nA+nB∑

N=0

lA+lB∑

L=0

mA+mB∑

M=0

nC+nD∑

N ′=0

lC+lD∑

L′=0

mC+mD∑

M ′=0

dnAnB
N elAlB

L fmAmB

M dnCnD

N ′ elC lD
L′ fmCmD

M ′

[

NLM

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
N ′L′M ′

]

(V.61)

=EABECD

∑

N,L,M

∑

N ′,L′,M ′

DNLMDN ′L′M ′

[

NLM

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
N ′L′M ′

]

(V.62)
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with

[

NLM

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
N ′L′M ′

]

=

∫ ∫

d3r1d
3r2ΛNΛLΛMe−αP r21P

1

r12
ΛN ′ΛL′ΛM ′e−αQr22Q (V.63)

=

(
∂

∂Px

)N (
∂

∂Py

)L(
∂

∂Pz

)M

×
(

∂

∂Qx

)N ′ (
∂

∂Qy

)L′ (
∂

∂Qz

)M ′ [

000

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
000

]

(V.64)

and the basic integral108 given as

[

000

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
000

]

=λ0F0(T ) (V.65)

with F0 as defined in (V.46) but with

T =
αPαQ

αP + αQ

(

PQ
2

x +PQ
2

y +PQ
2

z

)

(V.66)

and

λ0 =
2π

5
2

αPαQ
√
αP + αQ

. (V.67)

As T only depends on PQx,PQy, and PQz it follows that

∂

∂Pi

f(T ) = − ∂

∂Qi

f(T ), i = x, y, z. (V.68)

Therefore, the basic integral can be rewritten as

[

NLM

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
N ′L′M ′

]

=(−1)N
′

(
∂

∂Px

)N+N ′

× (−1)L
′

(
∂

∂Py

)L+L′

(−1)M
′

(
∂

∂Pz

)M+M ′

F0(T )λ0 (V.69)

=(−1)N
′+L′+M ′

λ0×
(

∂

∂Px

)N+N ′ (
∂

∂Py

)L+L′ (
∂

∂Pz

)M+M ′

F0(T )

︸ ︷︷ ︸

RN+N′,L+L′,M+M′

(V.70)
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leading to

〈

gBgD

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
gAgC

〉

=EABECD

∑

N,L,M

∑

N ′,L′,M ′

DNLMDN ′L′M ′

× (−1)N
′+L′+M ′

λ0RN+N ′,L+L′,M+M ′ . (V.71)

V.3. One-electron integrals for relativistic corrections

In the calculation of relativistic corrections using DPT (see chapter IV) integrals of the

form 〈gB | σp̂Ôσp̂ | gA〉 arise which can be separated using the Dirac identity17 into

〈gB | σp̂Ôσp̂ | gA〉 = 〈gB | p̂Ôp̂ | gA〉+ 〈gB | iσ(p̂Ô × p̂) | gA〉 (V.72)

with the general operator Ô, the Pauli spin matrices σ and the momentum operators p̂.

The first term on the right-hand side corresponds to the scalar-relativistic (SR) contribu-

tion and is given by

〈gB | p̂Ôp̂ | gA〉 =−
∑

ν=x,y,z

〈

gB

∣
∣
∣
∣

∂

∂ν
Ô

∂

∂ν

∣
∣
∣
∣
gA

〉

(V.73)

=−
∑

ν=x,y,z

{〈

gB

∣
∣
∣
∣
∣

∂Ô

∂ν

∣
∣
∣
∣
∣

∂gA
∂ν

〉

+

〈

gB

∣
∣
∣
∣
Ô

∣
∣
∣
∣

∂2gA
∂ν2

〉}

. (V.74)

All contributions contain derivatives of gA and thereby differentiated charge distributions

Gν
BA and T νν

BA with ν = x, y, z. For the x component they are given as

Gx
BA =gnB lBmB

B

∂

∂x
gnAlAmA

A . (V.75)

=gnB lBmB

B

(

−2αAg
(nA+1)lAmA

A + nAg
(nA−1)lAmA

A

)

(V.76)

=EAB

nA+nB+1∑

N=0

xdnAnB

N ΛN

lA+lB∑

L=0

elAlB
L ΛL

mA+mB∑

M=0

fmAmB

M ΛMe−αP r2P (V.77)

and

T xx
BA =gnB lBmB

B

∂2

∂x2
gnAlAmA

A (V.78)

=EAB

nA+nB+2∑

N=0

xxdnAnB

N ΛN

lA+lB∑

L=0

elAlB
L ΛL

mA+mB∑

M=0

fmAmB

M ΛMe−αP r2P (V.79)
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with

xdnAnB

N =− 2αAd
(nA+1)nB

N + nAd
(nA−1)nB

N , (V.80)

xxdnAnB

N =4α2
Ad

(nA+2)nB

N − 2αA(2nA + 1)dnAnB

N + nA(nA − 1)d
(nA−2)nB

N . (V.81)

In the differentiated charge distributions only the corresponding coefficients as well as

the summation limit is changed, but the Hermite Gaussians remain unaltered. Analog

expressions also hold for coefficients and charge distributions differentiated with respect

to y and z.

Using the differentiated charge distributions, the SR contribution may be expressed as

〈gB | p̂Ôp̂ | gA〉 =−
∑

ν=x,y,z

{
∫

d3rGν
BA

∂Ô

∂ν
+

∫

d3rÔT νν
BA

}

(V.82)

=−
∑

ν=x,y,z

∑

N,L,M

EAB

{

Dν
NLM

[

NLM

∣
∣
∣
∣
∣

∂Ô

∂ν

]

+Dνν
NLM

[

NLM
∣
∣
∣Ô
]
}

(V.83)

with Dν
NLM and Dµν

NLM given by

Dν
NLM =







x : xdnAnB

N elAlB
L fmAmB

M

y : dnAnB

N
yelAlB

L fmAmB

M

z : dnAnB

N elAlB
L

zfmAmB

M

, Dµν
NLM =







xx : xxdnAnB

N elAlB
L fmAmB

M

yy : dnAnB

N
yyelAlB

L fmAmB

M

zz : dnAnB

N elAlB
L

zzfmAmB

M

xy : xdnAnB

N
yelAlB

L fmAmB

M

xz : xdnAnB

N elAlB
L

zfmAmB

M

yz : dnAnB

N
yelAlB

L
zfmAmB

M

.

(V.84)

The summation range in the sum over N,L, and M in (V.83) depends on the superscript

of DNLM which indicates for which components the differentiated coefficients are present.

Without this being denoted further, it is assumed that for these components the sum-

mation range is increased by 1 for the singly differentiated coefficients and by 2 for the

doubly differentiated ones as shown in the definitions of Gν
BA (V.77) and T νν

BA (V.79).

The spin-orbit (SO) contribution, i.e., the second term on the right hand side of (V.72),
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may be expressed as

〈gB | iσ(p̂Ô × p̂) | gA〉 =
〈

gB

∣
∣
∣
∣
∣
∣
∣






iσx(pyÔpz − pzÔpy)

iσy(pzÔpx − pxÔpz)

iσz(pxÔpy − pyÔpx)






∣
∣
∣
∣
∣
∣
∣

gA

〉

(V.85)

where the topmost row corresponds to the spin-orbit x component (SOx), the central row

to the SOy, and the lowermost row to the SOz component. Using the Levi-Cività tensor

ǫµνσ =







+1, for cyclic permutations of x, y, z

−1, for non-cyclic permutations of x, y, z

0, for repeatedly occurring indices

the SO components η = x, y, z can be written as

〈gB | iσ(p̂Ô × p̂) | gA〉η =
∑

µ=x,y,z

∑

ν=x,y,z

ǫηµνση〈gB | ipµÔpν | gA〉 (V.86)

=− iση

〈

gB

∣
∣
∣
∣

∂

∂µ
Ô

∂

∂ν
− ∂

∂ν
Ô

∂

∂µ

∣
∣
∣
∣
gA

〉

(V.87)

=− iση

{
∫

d3rGν
BA

∂Ô

∂µ
+

∫

d3rT µν
BAÔ

−
∫

d3rGµ
BA

∂Ô

∂ν
−
∫

d3rT νµ
BAÔ

}

(V.88)

=− iση

∑

N,L,M

EAB

{

Dν
NLM

[

NLM

∣
∣
∣
∣
∣

∂Ô

∂µ

]

−Dµ
NLM

[

NLM

∣
∣
∣
∣
∣

∂Ô

∂ν

]}

(V.89)

with η, µ, ν cyclic. It is exploited here that the contributions containing the doubly

differentiated charge distributions T µν
BA and T νµ

BA cancel as those quantities are defined via

T µν
BA =gnB lBmB

B

∂

∂µ

∂

∂ν
gnAlAmA

A (V.90)

=EAB

∑

N,L,M

Dµν
NLMΛNΛLΛMe−αP r2P , (V.91)
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and therefore it holds that T µν
BA = T νµ

BA.

V.3.1. Scalar-relativistic nuclear-electron potential integral

The first one-electron integral that is already needed for DPT2 energy calculations

and has been worked out by Christine Berger in her Ph.D. thesis109 involves the nuclear-

electron potential

Vne = −
∑

C

ZC |rC |−1 (V.92)

and, using (V.74), is given as

〈gB | p̂Vnep̂ | gA〉 =−
∑

ν=x,y,z

{〈

gB

∣
∣
∣
∣

∂Vne

∂ν

∣
∣
∣
∣

∂gA
∂ν

〉

+

〈

gB

∣
∣
∣
∣
Vne

∣
∣
∣
∣

∂2gA
∂ν2

〉}

(V.93)

with

〈

gB

∣
∣
∣
∣
Vne

∣
∣
∣
∣

∂2gA
∂ν2

〉

=−
∫

d3r
∑

C

ZC

|rC |
T νν
BA (V.94)

=−
∑

C

ZCEAB

∑

N,L,M

Dνν
NLM [NLM ||rC |−1] (V.95)

=− 2π

αP

∑

C

ZCEAB

∑

N,L,M

Dνν
NLMRNLM (V.96)

where the result from (V.52) has been used in the last step.

The first term in (V.93) is given by

〈

gB

∣
∣
∣
∣

∂Vne

∂ν

∣
∣
∣
∣

∂gA
∂ν

〉

=−
∫

d3r
∑

C

ZC
∂|rC |−1

∂x
Gν

BA (V.97)

=−
∑

C

ZCEAB

∑

N,L,M

Dν
NLM

[

NLM

∣
∣
∣
∣

∂|rC |−1

∂x

]

. (V.98)

In the evaluation of the basic integral

[

NLM

∣
∣
∣
∣

∂|rC |−1

∂x

]

=

∫

dr3
∂

∂x

(
∂

∂Px

)N (
∂

∂Py

)L(
∂

∂Pz

)M

|r−1
C |e−αP r2P (V.99)

=
∂

∂Px

(
∂

∂Px

)N (
∂

∂Py

)L(
∂

∂Pz

)M
2π

αP

F0(T ) (V.100)
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=R(N+1)LM
2π

αP

(V.101)

it is exploited that due to (V.2), (V.46), and (V.47) it holds

∂

∂x
RNLM = − ∂

∂Cx

RNLM =
∂

∂Px

RNLM . (V.102)

Combining the two types of integrals for all components the SR integral 〈gB | p̂Vnep̂ | gA〉
is finally evaluated as

〈gB | p̂Vnep̂ | gA〉 =
2π

αP

∑

C

ZCEAB

∑

N,L,M

{

Dx
NLMR(N+1)LM +Dxx

NLMRNLM

+Dy
NLMRN(L+1)M +Dyy

NLMRNLM

+Dz
NLMRNL(M+1) +Dzz

NLMRNLM

}

(V.103)

=
2π

αP

∑

C

ZCEAB

∑

ν=x,y,z

∑

N,L,M

{

Dν
NLMR

(ν+1)
NLM +Dνν

NLMRNLM

}

(V.104)

with

R
(ν+1)
NLM =







x : R(N+1)LM

y : RN(L+1)M

z : RNL(M+1)

. (V.105)

V.3.2. Spin-orbit nuclear-electron potential integral

For a full DPT4 treatment (see chapter IV, sections IV.2.2 and IV.3.1), the SO contri-

butions to the nuclear-electron potential integrals 〈gB | iσ(p̂Vne × p̂) | gA〉η, η = x, y, z

are needed and have been implemented as part of this work. Using (V.89), the integrals

are given by

〈gB | iσ(p̂Vne × p̂) | gA〉η =− iση

〈

gB

∣
∣
∣
∣

∂

∂µ
Vne

∂

∂ν
− ∂

∂ν
Vne

∂

∂µ

∣
∣
∣
∣
gA

〉

(V.106)

=− iσηEAB

∑

N,L,M

{

Dν
NLM

[

NLM

∣
∣
∣
∣

∂Vne

∂µ

]

−Dµ
NLM

[

NLM

∣
∣
∣
∣

∂Vne

∂ν

]}

(V.107)

85



V. Calculation of Relativistic Integrals

with η, µ, ν cyclic. As the (differentiated) charge distributions affect only the summation

range and the coefficients, the resulting expression is easily given as

〈gB | iσ(p̂Vne × p̂) | gA〉η =iση
2π

αP

∑

C

ZCEAB

∑

N,L,M

{
Dν

NLMRµ+1
NLM −Dµ

NLMRν+1
NLM

}

(V.108)

while the basic integral containing the differentiated nuclear-electron potential Vne is

already known from (V.101).

V.3.3. Scalar-relativistic dipole-moment integral

In the calculation of SR corrections to electrical properties, integrals of the form

〈 gB | p̂ Ô p̂ | gA 〉

arise at the DPT2 level102,110 with the according operator for the property Ô (see chapter

IV.4). For the dipole moment, these integrals are given by 〈gB | p̂εTµp̂ | gA〉 with the

components of the dipole operator µk = −ekC , k = x, y, z, the elementary charge e (=1 in

atomic units), and the vector of the electric field ε. As the scalar contribution is given as

∑

ν=x,y,z

〈gB|pνεxµxpν + pνεyµypν + pνεzµzpν |gA〉 (V.109)

the integrals 〈gB | p̂µip̂ | gA〉 need to be calculated. Ignoring in the following the factor

−e as well as the component of the electric field εi and using (V.74) leads to

〈gB | p̂kCp̂ | gA〉 =−
∑

ν=x,y,z

〈

gB

∣
∣
∣
∣

∂

∂ν
kC

∂

∂ν

∣
∣
∣
∣
gA

〉

(V.110)

=−
∑

ν=x,y,z

EAB

∑

N,L,M

{

Dν
NLM

[

NLM

∣
∣
∣
∣

∂kC
∂ν

]

+Dνν
NLM [NLM |kC ]

}

(V.111)
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with Dν
NLM and Dνν

NLM as defined in (V.84). The basic integral [NLM |kC ] has already

been given in (V.34). For the other basic integral it holds

[

NLM

∣
∣
∣
∣

∂kC
∂ν

]

=







[NLM |1] = δN0δL0δM0 (see (V.30)), for k = ν

0, otherwise
. (V.112)

For the various components, the resulting integrals, abbreviated by DSR
ν are then given as

DSR
x =− EAB

(
π

αP

) 3
2 {

elAlB
0 fmAmB

0
xdnAnB

0

+ elAlB
0 fmAmB

0

(
xxdnAnB

1 +PCx
xxdnAnB

0

)

+ yyelAlB
0 fmAmB

0

(
dnAnB

1 +PCxd
nAnB

0

)

+ elAlB
0

zzfmAmB

0

(
dnAnB

1 +PCxd
nAnB

0

)}

, (V.113)

DSR
y =− EAB

(
π

αP

) 3
2 {

xxdnAnB

0 fmAmB

0 (elAlB
1 +PCye

lAlB
0 )

+ dnAnB

0 fmAmB

0
yelAlB

0

+ dnAnB

0 fmAmB

0 (yyelAlB
1 +PCy

yyelAlB
0 )

+ dnAnB

0
zzfmAmB

0 (elAlB
1 +PCye

lAlB
0 )

}

, (V.114)

DSR
z =− EAB

(
π

αP

) 3
2 {

xxdnAnB

0 elAlB
0 (fmAmB

1 +PCzf
mAmB

0 )

+ dnAnB

0
yyelAlB

0 (fmAmB

1 +PCzf
mAmB

0 )

+ dnAnB

0 elAlB
0

zfmAmB

0

+ dnAnB

0 elAlB
0 (zzfmAmB

1 +PCz
zzfmAmB

0 )
}

. (V.115)

V.3.4. Spin-orbit dipole-moment integral

In this work, the SO contributions to the relativistic dipole-moment integrals have

been also implemented as they are needed in the full DPT4 property treatment (see

chapter IV.4). As seen from (V.85), in principle, for every spin-orbit component there are
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contributions from all components of the dipole moment:

〈

gB

∣
∣
∣
∣
∣
∣
∣






iσx(pyÔpz − pzÔpy)

iσy(pzÔpx − pxÔpz)

iσz(pxÔpy − pyÔpx)






∣
∣
∣
∣
∣
∣
∣

gA

〉

(V.116)

with

Ô = εTµ = εxµx + εyµy + εzµz. (V.117)

The corresponding contributions to the SO dipole-moment integrals, abbreviated in the

following as D
SOη

k , k, η = x, y, z, while ignoring −e, the component of the electric field εk,

and the Pauli spin matrices, are given as

D
SOη

k =− i

〈

gB

∣
∣
∣
∣

∂

∂µ
kC

∂

∂ν
− ∂

∂ν
kC

∂

∂µ

∣
∣
∣
∣
gA

〉

(V.118)

=− iEAB

∑

N,L,M

(

Dν
NLM

[

NLM

∣
∣
∣
∣

∂kC
∂µ

]

−Dµ
NLM

[

NLM

∣
∣
∣
∣

∂kC
∂ν

])

(V.119)

with η, µ, ν cyclic. Due to (V.112) only the integrals

D
SOη

k =− iEAB ǫηkν
∑

N,L,M

Dν
NLM [NLM | 1] (V.120)

need to be evaluated which finally leads to

DSOx
x =0, (V.121)

DSOy
x =iEAB

(
2π

αP

) 3
2

dnAnB

0 elAlB
0

zfmAmB

0 , (V.122)

DSOz
x =− iEAB

(
2π

αP

) 3
2

dnAnB

0
yelAlB

0 fmAmB

0 , (V.123)

DSOx
y =− iEAB

(
2π

αP

) 3
2

dnAnB

0 elAlB
0

zfmAmB

0 , (V.124)

DSOy
y =0, (V.125)

DSOz
y =iEAB

(
2π

αP

) 3
2

xdnAnB

0 elAlB
0 fmAmB

0 , (V.126)
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DSOx
z =iEAB

(
2π

αP

) 3
2

dnAnB

0
yelAlB

0 fmAmB

0 , (V.127)

DSOy
z =− iEAB

(
2π

αP

) 3
2

xdnAnB

0 elAlB
0 fmAmB

0 , (V.128)

DSOz
z =0. (V.129)

Note that the SO dipole integrals require only overlap-integral contributions.

V.3.5. Scalar-relativistic quadrupole-moment integral

For the SR contribution to the quadrupole moment which again first arises in a DPT2

property calculation (see chapter IV.4), the integrals to be evaluated are given by

〈gB | p̂Q̂ijp̂ | gA〉 =−
∑

ν=x,y,z

〈

gB

∣
∣
∣
∣

∂

∂ν
Q̂ij

∂

∂ν

∣
∣
∣
∣
gA

〉

(V.130)

=−
∑

ν=x,y,z

EAB

∑

N,L,M

{

Dν
NLM

[

NLM

∣
∣
∣
∣
∣

∂Q̂ij

∂ν

]

+Dνν
NLM

[

NLM
∣
∣
∣Q̂ij

]
}

(V.131)

with

Q̂ij = −eiCjC , iC , jC = xC , yC , zC . (V.132)

The first basic integral involving the differentiated quadrupole-moment operator Q̂ij leads

to a dipole-moment basic integral as given in (V.34) if one of the components of Q̂ij

corresponds to the component of the derivative or vanishes otherwise. The second basic

integral involving Q̂ij is evaluated as given in (V.39) and (V.42). The resulting expressions,

abbreviated as QSR
ij , i, j = x, y, z, are then

QSR
xy =− EAB(−e)

∑

N,L,M

{

Dx
NLM [NLM | yC ] +Dxx

NLM [NLM | xCyC ]

+Dy
NLM [NLM | xC ] +Dyy

NLM [NLM | xCyC ]

+Dzz
NLM [NLM | xCyC ]

}

(V.133)

=EAB e

(
π

αP

) 3
2

×
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{

fmAmB

0 (xdnAnB

0 + xxdnAnB

1 +PCx
xxdnAnB

0 )(elAlB
1 +PCy e

lAlB
0 )

+ fmAmB

0 (yelAlB
0 + yyelAlB

1 +PCy
yyelAlB

0 )(dnAnB

1 +PCx dnAnB

0 )

+ zzfmAmB

0 (dnAnB

1 +PCx dnAnB

0 )(elAlB
1 +PCy e

lAlB
0 )

}

, (V.134)

QSR
xz =EAB e

(
π

αP

) 3
2

×
{

elAlB
0 (xdnAnB

0 + xxdnAnB

1 +PCx
xxdnAnB

0 )(fmAmB

1 +PCzf
mAmB

0 )

+ yyelAlB
0 (dnAnB

1 +PCxd
nAnB
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0 )

+ elAlB
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1 +PCxd
nAnB
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1 +PCz
zzfmAmB

0 )
}

, (V.135)

QSR
yz =EAB e

(
π

αP

) 3
2

×
{
xxdnAnB

0 (elAlB
1 +PCye

lAlB
0 )(fmAmB

1 +PCzf
mAmB

0 )

+ dnAnB

0 (yelAlB
0 + yyelAlB
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, (V.136)

QSR
xx =EAB e

∑

N,L,M

{

Dx
NLM [NLM | 2xC ]

+ (Dxx
NLM +Dyy

NLM +Dzz
NLM)[NLM | x2

C ]
}

(V.137)

=EAB e
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(
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(
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, (V.138)

QSR
yy =EAB e
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π

αP

) 3
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)
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+ dnAnB

0
zzfmAmB

0
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2elAlB
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1 +
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, (V.139)
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0

(

2fmAmB

2 + 2PCzf
mAmB

1 +

(

PC
2

z +
1

2αP

)

fmAmB

0

)

+ dnAnB

0
yyelAlB

0

(

2fmAmB

2 + 2PCzf
mAmB

1 +

(

PC
2

z +
1

2αP

)

fmAmB

0

)}

. (V.140)

V.3.6. Spin-orbit quadrupole-moment integral

The SO quadrupole-moment integrals are given according to (V.85) if Ô is replaced by

Q̂ij and have been implemented in this work. In this way, the corresponding contributions,

abbreviated by Q
SOη

ij with η, µ, ν, i, j = x, y, z and η, µ, ν cyclic, can be written as

Q
SOη

ij =− i eση

〈

gB

∣
∣
∣
∣

∂

∂µ
Q̂ij

∂

∂ν
− ∂

∂ν
Q̂ij

∂

∂µ

∣
∣
∣
∣
gA

〉

(V.141)

=− i eσηEAB

∑

N,L,M

(

Dν
NLM

[

NLM

∣
∣
∣
∣
∣

∂Q̂ij

∂µ

]

−Dµ
NLM

[

NLM

∣
∣
∣
∣
∣

∂Q̂ij

∂ν

])

. (V.142)

As was already discussed for the SR case, the derivative of Q̂ij with respect to x, y or z

leads either to a dipole-moment integral or vanishes. Accordingly, there are only dipole-

moment contributions present in the SO quadrupole integrals. The resulting contributions

are given by

QSOx
xx =0, (V.143)

QSOy
xx =− ieσy

(
π

αP

) 3
2

EAB 2 elAlB
0

zfmAmB

0

(
dnAnB

1 +PCx dnAnB

0

)
, (V.144)

QSOz
xx =ieσz

(
π

αP

) 3
2

EAB 2 yelAlB
0 fmAmB

0

(
dnAnB

1 +PCx dnAnB

0

)
, (V.145)

QSOx
yy =ieσx

(
π

αP

) 3
2

EAB 2 dnAnB

0
zfmAmB

0

(

elAlB
1 +PCy e

lAlB
0

)

, (V.146)

QSOy
yy =0, (V.147)
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QSOz
yy =− ieσz

(
π

αP

) 3
2

EAB 2 xdnAnB

0 fmAmB

0

(

elAlB
1 +PCy e

lAlB
0

)

, (V.148)

QSOx
zz =− ieσx

(
π

αP

) 3
2

EAB 2 dnAnB

0
yelAlB

0

(
fmAmB

1 +PCz f
mAmB

0

)
, (V.149)

QSOy
zz =ieσy

(
π

αP

) 3
2

EAB 2 xdnAnB

0 elAlB
0

(
fmAmB

1 +PCz f
mAmB

0

)
, (V.150)

QSOz
zz =0, (V.151)

QSOx
xy =ieσx

(
π

αP

) 3
2

EAB elAlB
0

zfmAmB

0

(
dnAnB

1 +PCx dnAnB

0

)
, (V.152)

QSOy
xy =− ieσy

(
π

αP

) 3
2

EAB dlAlB
0

zfmAmB

0

(

elAlB
1 +PCy e

lAlB
0

)

, (V.153)

QSOz
xy =− ieσz

(
π

αP

) 3
2

EAB

{

elAlB
0 fmAmB

0

(
xdnAnB

1 +PCx
xdnAnB

0

)

− dnAnB

0 fmAmB

0

(
yelAlB

1 +PCy
yelAlB

0

)}

, (V.154)

QSOx
xz =− ieσx

(
π

αP

) 3
2

EAB
yelAlB

0 fmAmB

0

(
dnAnB

1 +PCx dnAnB

0

)
, (V.155)

QSOy
xz =− ieσy

(
π

αP

) 3
2

EAB

{

dnAnB

0 elAlB
0

(
zfmAmB

1 +PCz
zfmAmB

0

)

− elAlB
0 fmAmB

0

(
xdnAnB

1 +PCx
xdnAnB

0

)}

, (V.156)

QSOz
xz =ieσz

(
π

αP

) 3
2

EAB dnAnB

0
yelAlB

0

(
fmAmB

1 +PCz f
mAmB

0

)
, (V.157)

QSOx
yz =− ieσx

(
π

αP

) 3
2

EAB

{

dnAnB

0 fmAmB

0

(
yelAlB

1 +PCy
yelAlB

0

)

− dnAnB

0 elAlB
0

(
zfmAmB

1 +PCz
zfmAmB

0

)}

, (V.158)

QSOy
yz =ieσy

(
π

αP

) 3
2

EAB
xdnAnB

0 fmAmB

0

(

elAlB
1 +PCy e

lAlB
0

)

, (V.159)

QSOz
yz =− i eσz

(
π

αP

) 3
2

EAB
xdnAnB

0 elAlB
0

(
fmAmB

1 +PCz f
mAmB

0

)
. (V.160)
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V.3.7. Scalar-relativistic electric-field gradient integral

When calculating integrals over the electric-field gradient (efg) operator

q̂ij =
3iCjC − δijr

2
C

r5C
, iC , jC = xC , yC , zC , (V.161)

it can be exploited for the non-diagonal elements (i 6= j) that the operator may be

rewritten using the derivatives with respect to Ci, Cj or, due to (V.102), with respect to

Pi, Pj

3iCjC
r5C

=
∂

∂Ci

∂

∂Cj

1

rC
=

∂

∂Pi

∂

∂Pj

1

rC
. (V.162)

The corresponding basic integral for the xy component is thus given as

[

NLM

∣
∣
∣
∣

3xCyC
r5C

]

=
∂

∂Px

∂

∂Py

(
∂

∂Px

)N (
∂

∂Py

)L(
∂

∂Pz

)M ∫

d3r
1

|rC |
e−αP r2P (V.163)

=
2π

αP

R(N+1)(L+1)M , (V.164)

or, more generally,

[

NLM

∣
∣
∣
∣

3iCjC
r5C

]

=
2π

αP

R
(i+1)(j+1)
NLM . (V.165)

The non-diagonal SR efg integrals can be written as

〈

gB

∣
∣
∣
∣
p̂
3iCjC
r5C

p̂

∣
∣
∣
∣
gA

〉

=−
∑

ν=x,y,z

〈

gB

∣
∣
∣
∣

∂

∂ν

3iCjC
r5C

∂

∂ν

∣
∣
∣
∣
gA

〉

(V.166)

=−
∑

ν=x,y,z

EAB

∑

N,L,M

{

Dν
NLM

[

NLM

∣
∣
∣
∣

∂

∂ν

3iCjC
r5C

]

+Dνν
NLM

[

NLM

∣
∣
∣
∣

3iCjC
r5C

]}

. (V.167)

To evaluate this expression the first basic integral on the right-hand side needs to be

tackled. Using (V.102) it can be rewritten as

[

NLM

∣
∣
∣
∣

∂

∂ν

3iCjC
r5C

]

=
∂

∂ν

2π

αP

R
(i+1)(j+1)
NLM =

∂

∂Pν

2π

αP

R
(i+1)(j+1)
NLM (V.168)
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=







ν = i : 2π
αP

R
(i+2)(j+1)
NLM

ν = j : 2π
αP

R
(i+1)(j+2)
NLM

ν = k : 2π
αP

R
(i+1)(j+1)(k+1)
NLM

(V.169)

with ν, i, j, k = x, y, z and i 6= j 6= k . Using (V.165) and (V.168), the non-diagonal

elements, abbreviated as qSRij , i, j = x, y, z are given as

qSRxy =− 2π

αP

EAB

∑

NLM

{

Dx
NLMR(N+2)(L+1)M

+Dy
NLMR(N+1)(L+2)M +Dz

NLMR(N+1)(L+1)(M+1)

+ (Dxx
NLM +Dyy

NLM +Dzz
NLM)R(N+1)(L+1)M

}

, (V.170)

qSRxz =− 2π

αP

EAB

∑

NLM

{

Dx
NLMR(N+2)L(M+1)

+Dy
NLMR(N+1)(L+1)(M+1) +Dz

NLMR(N+1)L(M+2)

+ (Dxx
NLM +Dyy

NLM +Dzz
NLM)R(N+1)L(M+1)

}

, (V.171)

qSRyz =− 2π

αP

EAB

∑

NLM

{

Dx
NLMR(N+1)(L+1)(M+1)

+Dy
NLMRN(L+2)(M+1) +Dz

NLMRN(L+1)(M+2)

+ (Dxx
NLM +Dyy

NLM +Dzz
NLM)RN(L+1)(M+1)

}

. (V.172)

For the diagonal elements, the Poisson equation111

∇2 1

rC
= 4πδ(rC) (V.173)

needs to be fulfilled, i.e., for rC = 0 the contribution from the delta function needs to be

accounted for. To avoid this, the diagonal elements may be rewritten into the form

3i2C − r2C
r5C

=
1

3

(

2
∂2

∂i2C
− ∂2

∂j2C
− ∂2

∂k2
C

)
1

|rC |
, i, j, k = x, y, z and i 6= j 6= k (V.174)
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as then the contributions mentioned above cancel out and the efg tensor is, as it should

be, also at rC = 0 a traceless quantity. The basic integral is then given by

[

NLM

∣
∣
∣
∣

3i2C − r2C
r5C

]

=
2π

αP

1

3

(

2R
(i+2)
NLM −R

(j+2)
NLM −R

(k+2)
NLM

)

. (V.175)

The diagonal scalar-relativistic electric-field gradient integrals are thus given as

〈

gB

∣
∣
∣
∣
p̂
3i2C − r2C

r5C
p̂

∣
∣
∣
∣
gA

〉

=−
∑

ν=x,y,z

〈

gB

∣
∣
∣
∣

∂

∂ν

3i2C − r2C
r5C

∂

∂ν

∣
∣
∣
∣
gA

〉

(V.176)

=−
∑

ν=x,y,z

EAB

∑

N,L,M

{

Dν
NLM

[

NLM

∣
∣
∣
∣

∂

∂ν

3i2C − r2C
r5C

]

+Dνν
NLM

[

NLM

∣
∣
∣
∣

3i2C − r2C
r5C

]}

. (V.177)

Analog to (V.168) and (V.169), the basic integral containing the derivative with respect

to ν can be written as

[

NLM

∣
∣
∣
∣

∂

∂ν

3i2C − r2C
r5C

]

=
∂

∂Pν

2π

αP

1

3

(

2R
(i+2)
NLM −R

(j+2)
NLM −R

(k+2)
NLM

)

(V.178)

=







ν = i : 2π
αP

1
3

(

2R
(i+3)
NLM −R

(i+1)(j+2)
NLM −R

(i+1)(k+2)
NLM

)

ν = j : 2π
αP

1
3

(

2R
(i+2)(j+1)
NLM −R

(j+3)
NLM −R

(j+1)(k+2)
NLM

)

ν = k : 2π
αP

1
3

(

2R
(i+2)(k+1)
NLM −R

(j+2)(k+1)
NLM −R

(k+3)
NLM

)

(V.179)

with ν, i, j, k = x, y, z and i 6= j 6= k. Accordingly, the integrals for the diagonal elements

are given as

qSRxx =− 2π

αP

EAB

∑

N,L,M

1

3

{

Dx
NLM(2R(N+3)LM −R(N+1)(L+2)M −R(N+1)L(M+2))

+Dy
NLM(2R(N+2)(L+1)M −RN(L+3)M −RN(L+1)(M+2))

+Dz
NLM(2R(N+2)L(M+1) −RN(L+2)(M+1) −RNL(M+3))

+ (Dxx
NLM +Dyy

NLM +Dzz
NLM)(2R(N+2)LM −RN(L+2)M −RNL(M+2))

}

, (V.180)

qSRyy =− 2π

αP

EAB

∑

N,L,M

1

3

{

Dx
NLM(2R(N+1)(L+2)M −R(N+3)LM −R(N+1)L(M+2))

+Dy
NLM(2RN(L+3)M −R(N+2)(L+1)M −RN(L+1)(M+2))
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+Dz
NLM(2RN(L+2)(M+1) −R(N+2)L(M+1) −RNL(M+3))

+ (Dxx
NLM +Dyy

NLM +Dzz
NLM)(2RN(L+2)M −R(N+2)LM −RNL(M+2))

}

, (V.181)

qSRzz =− 2π

αP

EAB

∑

N,L,M

1

3

{

Dx
NLM(2R(N+1)L(M+2) −R(N+3)LM −R(N+1)(L+2)M)

+Dy
NLM(2RN(L+1)(M+2) −R(N+2)(L+1)M −RN(L+3)M)

+Dz
NLM(2RNL(M+3) −R(N+2)L(M+1) −RN(L+2)(M+1))

+ (Dxx
NLM +Dyy

NLM +Dzz
NLM)(2RNL(M+2) −R(N+2)LM −RN(L+2)M)

}

. (V.182)

V.3.8. Spin-orbit electric-field gradient integral

For the SO contributions which are again needed at the full DPT4 level in a corres-

ponding property calculation (see chapter IV.4) and which have been implemented as a

part of this work, the required integrals are

〈gB | iσ(p̂q̂ij × p̂) | gA〉η =− iσηEAB

∑

N,L,M

{

Dν
NLM

[

NLM

∣
∣
∣
∣

∂q̂ij
∂µ

]

−Dµ
NLM

[

NLM

∣
∣
∣
∣

∂q̂ij
∂ν

]}

(V.183)

with η, µ, ν cyclic. The basic integrals have already been evaluated in (V.169) and (V.179).

It follows therefore for the SO contributions, abbreviated as q
SOη

ij :

qSOx
xx =− iσx

2π

αP

EAB

∑

N,L,M

{
Dz

NLM(2R(N+2)(L+1)M −RN(L+3)M −RN(L+1)(M+2))

−Dy
NLM(2R(N+2)L(M+1) −RN(L+2)(M+1) −RNL(M+3))

}
, (V.184)

qSOy
xx =− iσy

2π

αP

EAB

∑

N,L,M

{
Dx

NLM(2R(N+2)L(M+1) −RN(L+2)(M+1) −RNL(M+3))

−Dz
NLM(2R(N+3)LM −R(N+1)(L+2)M −R(N+1)L(M+2))

}
, (V.185)

qSOz
xx =− iσz

2π

αP

EAB

∑

N,L,M

{
Dy

NLM(2R(N+3)LM −R(N+1)(L+2)M −R(N+1)L(M+2))

−Dx
NLM(2R(N+2)(L+1)M −RN(L+3)M −RN(L+1)(M+2))

}
, (V.186)

qSOx
yy =− iσx

2π

αP

EAB

∑

N,L,M

{
Dz

NLM(2RN(L+3)M −R(N+2)(L+1)M −RN(L+1)(M+2))

−Dy
NLM(2RN(L+2)(M+1) −R(N+2)L(M+1) −RNL(M+3))

}
, (V.187)
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qSOy
yy =− iσy

2π

αP

EAB

∑

N,L,M

{
Dx

NLM(2RN(L+2)(M+1) −R(N+2)L(M+1) −RNL(M+3))

−Dz
NLM(2R(N+1)(L+2)M −R(N+3)LM −R(N+1)L(M+2))

}
, (V.188)

qSOz
yy =− iσz

2π

αP

EAB

∑

N,L,M

{
Dy

NLM(2R(N+1)(L+2)M −R(N+3)LM −R(N+1)L(M+2))

−Dx
NLM(2RN(L+3)M −R(N+2)(L+1)M −RN(L+1)(M+2))

}
, (V.189)

qSOx
zz =− iσx

2π

αP

EAB

∑

N,L,M

{
Dz

NLM(2RN(L+1)(M+2) −R(N+2)(L+1)M −RN(L+3)M)

−Dy
NLM(2RNL(M+3) −R(N+2)L(M+1) −RN(L+2)(M+1))

}
, (V.190)

qSOy
zz =− iσy

2π

αP

EAB

∑

N,L,M

{
Dx

NLM(2RNL(M+3) −R(N+2)L(M+1) −RN(L+2)(M+1))

−Dz
NLM(2R(N+1)L(M+2) −R(N+3)LM −R(N+1)(L+2)M)

}
, (V.191)

qSOz
zz =− iσz

2π

αP

EAB

∑

N,L,M

{
Dy

NLM(2R(N+1)L(M+2) −R(N+3)LM −R(N+1)(L+2)M)

−Dx
NLM(2RN(L+1)(M+2) −R(N+2)(L+1)M −RN(L+3)M)

}
, (V.192)

qSOx
xy =− iσx

2π

αP

EAB

∑

N,L,M

{
Dz

NLMR(N+1)(L+2)M −Dy
NLMR(N+1)(L+1)(M+1)

}
, (V.193)

qSOy
xy =− iσy

2π

αP

EAB

∑

N,L,M

{
Dx

NLMR(N+1)(L+1)(M+1) −Dz
NLMR(N+2)(L+1)M

}
, (V.194)

qSOz
xy =− iσz

2π

αP

EAB

∑

N,L,M

{
Dy

NLMR(N+2)(L+1)M −Dx
NLMR(N+1)(L+2)M

}
, (V.195)

qSOx
xz =− iσx

2π

αP

EAB

∑

N,L,M

{
Dz

NLMR(N+1)(L+1)(M+1) −Dy
NLMR(N+1)L(M+2)

}
, (V.196)

qSOy
xz =− iσy

2π

αP

EAB

∑

N,L,M

{
Dx

NLMR(N+1)L(M+2) −Dz
NLMR(N+2)L(M+1)

}
, (V.197)

qSOz
xz =− iσz

2π

αP

EAB

∑

N,L,M

{
Dy

NLMR(N+2)L(M+1) −Dx
NLMR(N+1)(L+1)(M+1)

}
, (V.198)

qSOx
yz =− iσx

2π

αP

EAB

∑

N,L,M

{
Dz

NLMRN(L+2)(M+1) −Dy
NLMRN(L+1)(M+2)

}
, (V.199)

qSOy
yz =− iσy

2π

αP

EAB

∑

N,L,M

{
Dx

NLMRN(L+1)(M+2) −Dz
NLMR(N+1)(L+1)(M+1)

}
, (V.200)

qSOz
yz =− iσz

2π

αP

EAB

∑

N,L,M

{
Dy

NLMR(N+1)(L+1)(M+1) −Dx
NLMRN(L+2)(M+1)

}
. (V.201)
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V.4. Two-electron integrals for relativistic corrections

The integrals appearing in the DPT treatment up to DPT4 (see chapter IV) are given

by

〈

gBgD

∣
∣
∣
∣
σip̂i

1

r12
σip̂i

∣
∣
∣
∣
gAgC

〉

, i = 1, 2 (V.202)

and

〈

gBgD

∣
∣
∣
∣
σ1p̂1σ2p̂2

1

r12
σ1p̂1σ2p̂2

∣
∣
∣
∣
gAgC

〉

. (V.203)

Using the Dirac identity, both integrals may be separated into a SR and a SO contribution

leading to

〈

gBgD

∣
∣
∣
∣
σip̂i

1

r12
σip̂i

∣
∣
∣
∣
gAgC

〉

=

〈

gBgD

∣
∣
∣
∣
p̂i

1

r12
p̂i

∣
∣
∣
∣
gAgC

〉

+

〈

gBgD

∣
∣
∣
∣
iσi

(

p̂i
1

r12
× p̂i

)∣
∣
∣
∣
gAgC

〉

, i = 1, 2 (V.204)

and, due to spin orthogonality, to

〈

gBgD

∣
∣
∣
∣
σ1p̂1σ2p̂2

1

r12
σ1p̂1σ2p̂2

∣
∣
∣
∣
gAgC

〉

= (V.205)

〈

gBgD

∣
∣
∣
∣
p̂1p̂2

1

r12
p̂1p̂2

∣
∣
∣
∣
gAgC

〉

+

〈

gBgD

∣
∣
∣
∣
iσ2

(

p̂2 × iσ1

(

p̂1 ×
1

r12
p̂1

)

p̂2

)∣
∣
∣
∣
gAgC

〉

(V.206)

where in the SO contribution of (V.206) the integral is only non-zero if σ1 and σ2 are of

the same type, i.e., both have to be either σx, σy, or σz to give a non-vanishing contribu-

tion.

For the integrals in (V.204) it should be noted that it is sufficient to evaluate the contri-

butions for i = 1 as the electrons 1 and 2 are interchangeable. Furthermore, unlike for

the one-electron integrals where all the operators were evaluated by working to the right,

here all operators standing left from r−1
12 are evaluated by working to the left while all

operators to the right of r−1
12 are acting to the right.
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V.4. Two-electron integrals for relativistic corrections

V.4.1. Scalar-relativistic two-electron integrals

The SR part of (V.204) may be written as

〈

gBgD

∣
∣
∣
∣
p̂1

1

r12
p̂1

∣
∣
∣
∣
gAgC

〉

=−
∑

ν=x,y,z

〈

gBgD

∣
∣
∣
∣

∂

∂ν1

1

r12

∂

∂ν1

∣
∣
∣
∣
gAgC

〉

=
∑

ν=x,y,z

∫ ∫

d3r1d
3r2G

νν
BAGDC

1

r12
(V.207)

with GDC = ΩDC and Gνν
BA given for the xx component as

Gxx
BA =

∂gB
∂x1

∂gA
∂x1

(V.208)

=EAB

nA+nB+2∑

N=0

ABdnAnB

N ΛN

lA+lB∑

L=0

elAlB
L ΛL

mA+mB∑

M=0

fmAmB

M ΛMe−αP r2P (V.209)

=EAB

∑

N,L,M

DxxAB

NLMΛNΛLΛMe−αP r2P (V.210)

with the coefficients

ABdnAnB

N =4αAαBd
(nA+1)(nB+1)
N − 2αBnAd

(nA−1)(nB+1)
N − 2αAnBd

(nA+1)(nB−1)
N

+ nAnBd
(nA−1)(nB−1)
N (V.211)

and

DννAB

NLM =







ν = x : ABdnAnB

N elAlB
L fmAmB

M

ν = y : dnAnB

N
ABelAlB

L fmAmB

M

ν = z : dnAnB

N elAlB
L

ABfmAmB

M

. (V.212)

Similar expression also hold for Gyy
BA and Gzz

BA and the corresponding coefficients. For the

integrals in (V.207), abbreviated as gSR1 it follows

gSR1 =EABECD

∑

N,L,M

∑

N ′,L′,M ′

(
DxxAB

NLMDN ′L′M ′ +DyyAB

NLMDN ′L′M ′ +DzzAB

NLMDN ′L′M ′

)

×
[

NLM

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
N ′L′M ′

]

=
∑

N,L,M

∑

N ′,L′,M ′

λ0(−1)N
′+L′+M ′

EABECD (DxxAB

NLM +DyyAB

NLM +DzzAB

NLM)
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×DN ′L′M ′RN+N ′,L+L′,M+M ′ , (V.213)

while the SR integrals in (V.206), abbreviated as gSR12 are given by

gSR12 =
∑

µ=x,y,z

∑

ν=x,y,z

〈

gBgD

∣
∣
∣
∣

∂

∂µ1

∂

∂ν2

1

r12

∂

∂µ1

∂

∂ν2

∣
∣
∣
∣
gAgC

〉

(V.214)

=
∑

µ=x,y,z

∑

ν=x,y,z

∫ ∫

d3r1d
3r2G

µµ
BAG

νν
DC

1

r12
(V.215)

=
∑

N,L,M

∑

N ′,L′,M ′

λ0(−1)N
′+L′+M ′

EABECD (DxxAB

NLM +DyyAB

NLM +DzzAB

NLM)

× (DxxCD

N ′L′M ′ +DyyCD

N ′L′M ′ +DzzCD

N ′L′M ′)RN+N ′,L+L′,M+M ′ . (V.216)

V.4.2. Spin-orbit two-electron integrals

The SO contribution in (V.204) to a specific component η = x, y, z is given by

〈

gBgD

∣
∣
∣
∣
iσ1

(

p̂1
1

r12
× p̂1

)∣
∣
∣
∣
gAgC

〉

η

=− σ1ηi

〈

gBgD

∣
∣
∣
∣

∂

∂µ1

1

r12

∂

∂ν1
− ∂

∂ν1

1

r12

∂

∂µ1

∣
∣
∣
∣
gAgC

〉

=iσ1η

∫ ∫

d3r1d
3r2(G

µν
BAGDC −Gνµ

BAGDC)
1

r12
(V.217)

with η, µ, ν cyclic and Gµν
BA given exemplary for the xy component as

Gxy
BA =

∂gB
∂x

∂gA
∂y

(V.218)

=

nA+nB+1∑

N=0

lA+lB+1∑

L=0

mA+mB∑

M=0

BdnAnB

N
AelAlB

L fmAmB

M ΛNΛLΛMEABe
−αP r2P , (V.219)

=
∑

N,L,M

DyAxB

NLMΛNΛLΛMEABe
−αP r2P (V.220)

with

AdnAnB

N =2αAd
(nA+1)nB

N − nAd
(nA−1)nB

N = −xdnAnB

N (V.221)

BdnAnB

N =2αBd
nA(nB+1)
N − nBd

nA(nB−1)
N (V.222)
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and

DνAµB

NLM =







ν = x







µ = y : AdnAnB

N
BelAlB

L fmAmB

M

µ = z : AdnAnB

N elAlB
L

BfmAmB

M

ν = y







µ = x : BdnAnB

N
AelAlB

L fmAmB

M

µ = z : dnAnB

N
AelAlB

L
BfmAmB

M

ν = z







µ = x : BdnAnB

N elAlB
L

AfmAmB

M

µ = y : dnAnB

N
BelAlB

L
AfmAmB

M

. (V.223)

Therefore, the contributions to the SO components, abbreviated as g
SOη

1 , are given by

gSOx

1 =
∑

N,L,M

∑

N ′,L′,M ′

i(−1)N
′+L′+M ′

λ0EABECD(D
zAyB
NLM −DyAzB

NLM)

×DN ′L′M ′RN+N ′,L+L′,M+M ′ , (V.224)

g
SOy

1 =
∑

N,L,M

∑

N ′,L′,M ′

i(−1)N
′+L′+M ′

λ0EABECD(D
xAzB
NLM −DzAxB

NLM)

×DN ′L′M ′RN+N ′,L+L′,M+M ′ , (V.225)

gSOz

1 =
∑

N,L,M

∑

N ′,L′,M ′

i(−1)N
′+L′+M ′

λ0EABECD(D
yAxB

NLM −DxAyB
NLM)

×DN ′L′M ′RN+N ′,L+L′,M+M ′ . (V.226)

As was already mentioned, for the SO contribution in (V.206) the only non-vanishing

terms are those for which σ1 and σ2 refer to the same spatial component. Consequently,

the only contributions, abbreviated as g
SOηη

12 , are

gSOxx

12 =iσ2xiσ1x

(〈
∂gB
∂y

∂gD
∂y

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂z

∂gD
∂z

〉

−
〈
∂gB
∂z

∂gD
∂y

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂y

∂gD
∂z

〉

−
〈
∂gB
∂y

∂gD
∂z

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂z

∂gD
∂y

〉

+

〈
∂gB
∂z

∂gD
∂z

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂y

∂gD
∂y

〉)

(V.227)

=
∑

N,L,M

∑

N ′,L′,M ′

(−1)σ2xσ1x(−1)N
′+L′+M ′

λ0EABECD

× (DzAyB
NLMDzCyD

N ′L′M ′ −DyAzB
NLMDzCyD

N ′L′M ′

−DzAyB
NLMDyCzD

N ′L′M ′ +DyAzB
NLMDyCzD

N ′L′M ′)RN+N ′,L+L′,M+M ′ (V.228)
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g
SOyy

12 =iσ2yiσ1y

(〈
∂gB
∂z

∂gD
∂z

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂x

∂gD
∂x

〉

−
〈
∂gB
∂x

∂gD
∂z

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂z

∂gD
∂x

〉

−
〈
∂gB
∂z

∂gD
∂x

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂x

∂gD
∂z

〉

+

〈
∂gB
∂x

∂gD
∂x

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂z

∂gD
∂z

〉)

(V.229)

=
∑

N,L,M

∑

N ′,L′,M ′

(−1)σ2yσ1y(−1)N
′+L′+M ′

λ0EABECD

× (DxAzB
NLMDxCzD

N ′L′M ′ −DzAxB

NLMDxCzD
N ′L′M ′

−DxAzB
NLMDzCxD

N ′L′M ′ +DzAxB

NLMDzCxD

N ′L′M ′)RN+N ′,L+L′,M+M ′ (V.230)

gSOzz

12 =iσ2ziσ1z

(〈
∂gB
∂x

∂gD
∂x

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂y

∂gD
∂y

〉

−
〈
∂gB
∂y

∂gD
∂x

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂x

∂gD
∂y

〉

−
〈
∂gB
∂x

∂gD
∂y

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂y

∂gD
∂x

〉

+

〈
∂gB
∂y

∂gD
∂y

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂x

∂gD
∂x

〉)

(V.231)

=
∑

N,L,M

∑

N ′,L′,M ′

(−1)σ2zσ1z(−1)N
′+L′+M ′

λ0EABECD

× (DyAxB

NLMDyCxD

N ′L′M ′ −DxAyB
NLMDyCxD

N ′L′M ′

−DyAxB

NLMDxCyD
N ′L′M ′ +DxAyB

NLMDxCyD
N ′L′M ′)RN+N ′,L+L′,M+M ′ . (V.232)
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VI. Implementation

In order to calculate DPT4 corrections for energies and properties, the quantum-

chemical program package Cfour80 has been extended and modified thereby exploiting

the available second-derivative capabilities.78 For DPT4 energy calculations at the HF

level as well as at the correlated levels (MP2 and CC), an incore implementation has been

carried out first (‘pilot code’) as the simple structure of such a program is less prone to

errors and allows for a verification of the later efficient implementation. In the following,

the implemented modifications to the Cfour program package are discussed in some

detail.

VI.1. DPT4 energy corrections at the Hartree-Fock level

As the SR and SO parts of the DPT4 energy are fully separable, they are independently

calculated and it is possible to determine either the scalar-relativistic contribution (SR-

DPT4) or the full DPT4 correction. The necessary steps for the calculation of the DPT4

energy are shown in the flowchart given in figure VI.1.

After the HF-SCF equations are solved, the required integrals for a SR-DPT4 calcu-

lation (see equation IV.54), or, if specified, a full DPT4 calculation (see equation IV.67)

are evaluated and processed in a Fock-matrix like manner.99 As a consequence, no two-

electron integrals need to be stored on disk. The contributions involving the gSR12 and

gSO12 integrals are directly calculated as expectation values without storage. All integral

evaluations and manipulations described here are done in the module xvdint.

In the module xcphf the CPHF equations are solved, the matrix Sλrel
pq is inverted, and the

DPT4 energy is calculated.

All relativistic integrals (see equations IV.54 and IV.67) are evaluated using the McMurchie-

Davidson scheme107 as discussed in chapter V. While the positive linear combinations

〈µν | ĝSR2 + ĝSR1 | σρ〉 with atomic orbitals µ, ν, σ, ρ, are already needed for the DPT2

correction,109 the SR-DPT4 treatment also requires the corresponding negative linear

combinations 〈µν | ĝSR2 − ĝSR1 | σρ〉. As an alternative it is in principle possible to cal-

culate only the integrals 〈µν | ĝSR2 | σρ〉 but then the eight-fold permutational symmetry

of the integrals can no longer be exploited. A similar procedure, however, does not work
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VI. Implementation

Solve HF-SCF equations

a) Calculate SR integrals

b) Calculate DPT2 energy as expectation value

c) Calculate gSR12 contribution as expectation value

a) Calculate SO integrals

b) Calculate gSO12 contributions as expectation value

Solve CPHF equations for SR perturbation → USR
bj

Solve CPHF equations for SO perturbations → USO
bj

Invert relativistic overlap matrix Sλrel
pq

Calculate SR-DPT4 energy

Calculate SO-DPT4 energy

Figure VI.1.: Flowchart for the calculation of the DPT4 energy (see equations IV.54 and
IV.67) at the HF level. If only scalar-relativistic corrections are calculated,
all steps in dotted boxes are omitted.
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VI.1. DPT4 energy corrections at the Hartree-Fock level

for the SO integrals. Therefore, for the SO treatment, the integrals 〈µν | ĝSO2 | σρ〉 are

in all cases evaluated. Concerning the 〈µν | ĝSR12 | σρ〉 and 〈µν | ĝSO12 | σρ〉 integrals, the

eight-fold permutational symmetry can again be exploited.

The routines to calculate all the required integrals have been implemented into the module

xvdint. For the one-electron integrals the driver routine onedrv.f invokes the specific

subroutines. While the one-electron SR integrals as given in (IV.57) have been implemen-

ted by Christine Berger109 and are calculated in the routine dptpvp1.f, the one-electron

SO integrals as given in (IV.69) are calculated in the routine dpt4pvxp.f. The two-

electron integrals are evaluated in the routine intdpt.f which is a subroutine of either

twodpt.f (for all SR two-electron integrals, i.e., 〈µν | ĝSR2 +ĝSR1 | σρ〉, 〈µν | ĝSR2 −ĝSR1 | σρ〉
and 〈µν | ĝSR12 | σρ〉), twodptso.f (for 〈µν | ĝSO2 | σρ〉), or twodptso4c.f (for 〈µν | ĝSO12 |
σρ〉). The type of two-electron integral calculated depends on some flags and the routine

that calls intdpt.f.

The Fock-matrix like contributions are formed in the routines mvdfock.f (for f
(SR)
pq ),

mvdfock2.f (for Z1f
(SR)
pq ), dpt4sofock.f (for f

(SO)
pq ), or dpt4soz1fock.f (for Z1f

(SO)
pq ). In

the case of the ĝSR12 and ĝSO12 integrals, the expectation values are calculated in intexp.f

and intexpso4c.f, respectively.

The calculation of the two-electron integrals is illustrated for the 〈µν | ĝSR1 + ĝSR2 | σρ〉
integrals which are evaluated in the following sequence:

vdint.f

twoexp.f

twodpt.f

intdpt.f

c1driv0.f

c2driv1.f

c1driv1.f

c2driv0.f

mvdfock.f

In twodpt.f a loop runs over shells and corresponding basis functions thereby exploiting

the eight-fold permutational symmetry. Inside the loop, after the call of intdpt.f, in

c1driv0.f and c2driv1.f the integral

〈gBgD | ĝSR2 | gAgC〉 = −
∑

ν=x,y,z

〈

gB
∂gD
∂ν

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
gA

∂gC
∂ν

〉
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is calculated for a given subset of basis functions. The above equation is analog to

(V.213) with the only difference that the coefficients for electron 1 and 2 are inter-

changed. The subroutine c1driv0.f contracts the unperturbed coefficients for electron 1

with RN+N ′,L+L′,M+M ′ where the increased summation range for electron 2 is controlled via

the parameter ‘MAXDER+2’ (see chapter V.4). In c2driv1.f the result from c1driv0.f

is combined with the perturbed coefficients for electron 2. In the next step the subroutines

c1driv1.f and c2driv0.f evaluate

〈gBgD | ĝSR1 | gAgC〉 = −
∑

ν=x,y,z

〈
∂gB
∂ν

gD

∣
∣
∣
∣

1

r12

∣
∣
∣
∣

∂gA
∂ν

gC

〉

using the formula given in (V.213). This evaluation is analog to the procedure described

before, only that electron 1 and 2 are exchanged, i.e., in c1driv1.f the perturbed coeffi-

cients for electron 1 are contracted with RN+N ′,L+L′,M+M ′ and in c2driv0.f the result is

combined with the unperturbed coefficients for electron 1, thereby controlling the modi-

fied summation range again via ‘MAXDER+2’.

The integrals 〈µν | ĝSR12 | σρ〉 are implemented in a similar manner as the only difference

lies in the fact that now both coefficients, i.e., those for electron 1 and for electron 2 are

perturbed. Therefore, their calculation requires only a call of c1driv1.f and c2driv1.f

both with the parameter ‘MAXDER+2’.

VI.2. DPT4 energy corrections at correlated levels of

theory

In figure VI.2 the required steps for a closed-shell DPT4 energy calculation at the MP2

level are shown. After solving the HF equations, the amplitudes tabij and the MP2 energy

are calculated in the modules xintprc and xvcc, while the one- and two-electron densities

Dpq and Γpqrs as well as the Lagrange multipliers Zai and Ipq are evaluated afterwards

in xdens. In xvdint the integrals f
(λrel)
µν , Sλrel

µν , and 〈µν | ĝλrel
1 | σρ〉 are calculated in

the atomic-orbital (AO) representation and stored on disk. Then, in the module xcphf

the CPHF equations are solved for the relativistic perturbation, the derivative ∂fpq/∂λrel

is evaluated, the overlap matrix Sλrel
pq is inverted, the Aλrel

pq coefficients are determined,

and the HF contribution to the DPT4 energy is calculated. In the module xsdcc the

〈 µ ν | ĝλrel
1 | σ ρ 〉 integrals are transformed into the molecular-orbital (MO) basis and

augmented by the Uλrel
tp 〈tq | rs〉 terms. Furthermore, the perturbed amplitudes ∂tabij /∂λrel
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and the perturbed density matrices ∂Dpq/∂λrel and ∂Γpqrs/∂λrel are calculated, the per-

turbed Z-vector equations are solved yielding ∂Zai/∂λrel, and the perturbed intermediates

∂Ipq/∂λrel are evaluated. Then, all terms except those involving the gSO12 integrals are cal-

culated.

In order to make the code more efficient, the terms involving the two-electron integrals

〈pq | ĝSR1 | rs〉 are in fact evaluated in the following manner; In xsdcc the USR
tp Γtqrs

contributions are added to the perturbed two-electron density matrix ∂Γpqrs/∂λSR, i.e.,

Γ
′ ≡ ∂Γpqrs

∂λSR

+
∑

t

{

USR
tp Γtqrs + USR

tq Γptrs + USR
tr Γpqts + USR

ts Γpqrt

}

. (VI.1)

This modified two-electron density matrix Γ
′

is transformed in xanti and xbcktrn from

the MO into the AO basis and in xvdint contracted with 〈µν | ĝSR2 + ĝSR1 | σρ〉 and

〈µν | ĝSR2 − ĝSR1 | σρ〉, respectively. In a similar manner the quantity ASR
tp Γtprs is set

up and transformed into the AO basis. More precisely, as in this contribution only the

〈µν | ĝSR1 | σρ〉 integrals appear, it is calculated as (A1 + A2)Γ and (A1 − A2)Γ, with

A1 symbolically given as in (IV.43) and A2 as the same quantity with electron 1 and 2

permuted, i.e.,

(A1 + A2)Γ ≡
∑

t

{

ASR
tp Γtqrs + ASR

tq Γptrs + ASR
tr Γpqts + ASR

ts Γpqrt,
}

(VI.2)

(A1 − A2)Γ ≡
∑

t

{

ASR
tp Γtqrs − ASR

tq Γptrs + ASR
tr Γpqts − ASR

ts Γpqrt

}

. (VI.3)

Then, after transformation of the terms defined in the above equations into the AO

basis, (A1 + A2)Γ is contracted with 〈µν | ĝSR2 + ĝSR1 | σρ〉 and (A1 − A2)Γ with

〈µν | ĝSR2 − ĝSR1 | σρ〉, respectivelyi, leading to a cancellation of the unwanted cross

terms. Note that the discussion holds for the SR case whereas for the SO terms all con-

tributions are directly evaluated in the MO representation. Finally, in xvdint the so far

missing gλrel
12 contributions are evaluated.

The difference between the SR and the SO variant of a DPT4 calculation lies in the

fact that the perturbed quantities and the spin adaptation are different (see IV.163 and

IV.170). In addition, for the SO contributions there is a loop over the SO components

x, y, and z in the electron-correlation part.

The MP2-DPT4 energy has first been implemented into an incore program as ‘pilot imple-

iIn the actual program, the contributions due to Γ
′

and (A1 +A2)Γ are treated together, as all of them
have the same permutational symmetry, i.e., the quantity Γ

′′ ≡ Γ
′

+ (A1 +A2)Γ is evaluated
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mentation’. Such a program, however, has its limitations as it is not efficient and requires

an unnecessary large amount of memory, yet it is simple and less prone to errors. In the

next step, the MP2-DPT4 energy has been included into the Cfour program package

using an efficient implementation as discussed above.

In the module xsdcc, which deals with the electron-correlation part, the existing features

for the calculation of second derivatives could be exploited. Modifications and additions

are mainly needed for the spin adaptation of the SO contributions and all term involving

h(4), S(4), and g(4), see (IV.141), (IV.143), and (IV.144), as these additional terms do not

appear for non-relativistic second derivatives. Furthermore, the loop structure for the SO

components has to be set up.

VI.3. DPT4 corrections to electrical properties

A procedure to compute DPT4 energies at the HF level in the presence of an external

one-electron perturbation has been implemented based on the code for the calculation of

DPT4 energies described in section VI.1. For the calculation of the SR corrections, no

further implementation of integrals is required as they already have been implemented for

the analytic evaluation of DPT2 corrections to electrical properties.102,110 These integrals

have been discussed in chapters V.3.3, V.3.5, and V.3.7. Regarding the SO contributions,

all additional integrals (see chapters V.3.4, V.3.6, and V.3.8) have been implemented us-

ing the McMurchie-Davidson scheme.107

The contributions due to the external perturbation are added to the one-electron Hamilto-

nian integrals, i.e., to hpq for the usual non-relativistic contributions and to hSR
pq and hSO

pq

in the case of SR- and SO-DPT corrections. No further change in the DPT4 code is neces-

sary for the finite-differences calculations which have been done using two- to eight-point

formulas together with a field strength of 10 · 10−6 a.u. in the case of efgs and of 75 · 10−6

a.u. for dipole moments (see Appendix IX.7).

VI.4. Validation of the integrals

The implementation of the scalar-relativistic integrals 〈µν | ĝSR2 − ĝSR1 | σρ〉 poses no

challenge as the corresponding positive linear combination already has been implemented

by Christine Berger.109 Implementation of the negative linear combination involves only

a sign change and the separate parts of the integral could easily be compared.
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Solve HF-SCF equations

Calculate amplitudes tabij and MP2 energy

Calculate density matrices Dpq,Γpqrs and Lagrange multipliers Zai, Ipq
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Figure VI.2.: Flowchart for the calculation of the DPT4 energy (see IV.163 and IV.170)
at the MP2 level.
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The same holds for the 〈µν | ĝSR12 | σρ〉 integrals as they are implemented in a similar

manner. The only difference lies in the fact that both coefficients, i.e., those for electron

1 and for electron 2 are perturbed as outlined in section VI.1. Further validation was

done implicitly via the DPT4 results for rare-gas atoms as published by Ottschofski and

Kutzelnigg.73

The gSO2 and gSO12 integrals, see chapter V.4.2, have been verified using incore implementa-

tions for testing and the gSO2 integrals were compared to those computed using the dalton

program package.112

Additionally, for the gSO12 integrals the contribution to the energy was estimated in the fol-

lowing way: There is a variance between the SF-DHF implementation as done in Cfour41

and as done in the program package Dirac04.113 In Dirac04 the SF-DHF results are cal-

culated by dropping all imaginary parts in the matrices that arise in the DHF procedure.

As the gSO12 integrals are real, this contribution is consequently present in the SF-DHF

results. In Cfour the SF-DHF results are calculated based on the spin separation of the

Dirac equation103 and consequently the gSO12 contributions do not appear. Therefore, the

difference between the SF-DHF results from Dirac04 and Cfour provides an estimate of

the gSO12 contribution to the energy. Nevertheless, this difference also includes higher-order

contributions and thus does not represent a strict test.

The spin-orbit integrals for electrical properties, as given in (V.3.4), (V.3.6), and (V.3.8)

have been tested using the corresponding non-relativistic integrals. This is possible be-

cause the integral for a specific SO component can be written as

〈giB ,jB ,kB
B | p̂iÔp̂j | giA,jA,kA

A 〉 =4αAαB〈g(iB+1),jB ,kB
B | Ô | giA,(jA+1),kA

A 〉
− 2αAiB〈g(iB−1),jB ,kB

B | Ô | giA,(jA+1),kA
A 〉

− 2αBjA〈g(iB+1),jB ,kB
B | Ô | giA,(jA−1),kA

A 〉
+ 4iBjA〈g(iB−1),jB ,kB

B | Ô | giA,(jA−1),kA
A 〉 (VI.4)

with Ô given as the operator of the electrical property under consideration and i, j, k =

x, y, z.

VI.5. Validation of the HF-DPT4 energy

The SR-DPT4 and SO-DPT4 results have been verified by comparing results of the

incore program with the efficient implementation in the module xcphf. Additionally, the
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SR-DPT4 results have been tested using the implementation of the SF-DHF approach

in Cfour. As the SF-DHF results correspond to the infinite-order limit of DPT at the

HF level, a perturbative expansion of the SF-DHF equations with respect to λrel leads to

SR-DPT. The value of λrel is varied in the SF-DHF calculation so that numerical DPT2

and SR-DPT4 results can be obtained using polynomial fittings.100

The SO-DPT4 contribution was estimated by the difference between the result of a full

four-component DHF calculation and a corresponding SF-DHF calculation.

VI.6. Validation of the MP2-DPT4 energy

For SR-DPT4 and full DPT4 energies at the HF level as well as at correlated levels of

theory (MP2), the results have been verified using three independent implementations,

i.e., two incore programs, one written as part of the present work and one written by

J. Gauß, as well as the efficient implementation into the Cfour program package. The

polynomial fit as for the SR-DPT4 energy at the HF level, however, did not provide

conclusive results (see chapter VII for further discussion).
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VII. Applications

In this chapter, calculations for the relativistic corrections to total energies and electrical

properties have been performed with a focus on the DPT4 results. The DPT corrections

are compared to results from fully relativistic calculations for both the SR and SO con-

tributions and their accuracy as well as the convergence behaviour of the DPT series

is investigated. For the DPT4 energies at the HF level furthermore a term analysis is

performed and the basis-set convergence is investigated. In the last part of this chapter,

calculations within a joint experimental and theoretical rotational-spectroscopic invest-

igation for the molecules CH2BrF, CHBrF2, and CH2FI is presented with the focus on

DPT4 corrections to the halogen quadrupole-coupling tensors.

VII.1. Relativistic corrections to total energies at the

Hartree-Fock level

In this section the accuracy of the DPT corrections up to DPT4 is investigated.99 For

this purpose, calculations were performed for the hydrogen halides HX, X=F, Cl, Br, I,

and At. The geometries and basis sets were taken from Ref. 114. The latter consist of

large even-tempered sets115–119 augmented by additional polarization functions and are

well-suited for the treatment of relativistic effects at the HF level.

Beside the total DPT4 corrections, also the SR-DPT4 (and SR-DPT6100) as well as the

SO-DPT4 corrections are analyzed: The SR-DPT results are compared to relativistic cor-

rections obtained from the difference between results from spin-free Dirac-Hartree-Fock

(SF-DHF)41,103 and non-relativistic HF-SCF calculations and are analyzed further by giv-

ing numerical values for the individual contributions to the DPT4 energy. The SO-DPT

corrections are compared to SO contributions obtained from the difference between the

fully relativistic DHF and SF-DHF results.

Furthermore, the basis-set dependence of the DPT4 contributions is investigated in cal-

culations with basis sets from Dunning’s hierarchy of correlation-consistent polarized and

core-polarized valence-zeta sets (cc-pVXZ and cc-pCVXZ with X=T, Q, 5120–125) as well

as their uncontracted (unc) counterparts. To avoid linear dependencies in the uncontrac-

ted cc-pCVXZ sets, the additional core-polarization functions in the s- and p- and for Br
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VII.1. Relativistic corrections to total energies at the Hartree-Fock level

also in the d-shells were eliminated.

The DPT4 and SF-DHF calculations were performed using the Cfour80 program pack-

age. The DPT4 results were thereby obtained using those parts of Cfour that have

been developed in this work. The fully relativistic DHF results were obtained with the

program package Dirac04.126 In all calculations the point-nuclear model was used.

VII.1.1. DPT4 energies at the HF level: Comparison to fully

relativistic calculations

Table VII.1 (see p.114) shows the DPT4 energy corrections for the hydrogen halides

(HF-HAt). In the upper part, the full DPT4 corrections are listed together with the

four-component DHF results while in the middle and lower parts the DPT4 corrections

split up into SR and SO contributions are found. Using the relative error

∆DPT2,4 = 1− EDPT2,4

EDHF − EHF
, (VII.1)

with EDPT2,4 as the sum of the DPT corrections DPT2 and DPT4, EDHF as the DHF

energy from a fully relativistic calculation, and EHF as the non-relativistic HF energy, the

overall picture shows that relativistic energies are reproduced within an error of better

than 1% up to the fifth row of the periodic table (HI) if DPT4 corrections are included.

Concerning the magnitude of the SO corrections it is found that they are for the con-

sidered closed-shell systems about two orders of magnitude smaller than the SR-DPT4

contributions.

Since the DPT2 contribution is much larger than the DPT4 correction, which in turn

exceeds the remaining error, the DPT convergence behavior is found to be smooth. Fur-

thermore, in the so far considered cases, the DPT energy corrections always underestimate

the relativistic energies from a full relativistic treatment leading to a monotonous conver-

gence.

Comparing the relative errors of the SO contributions

∆SO = 1− ESO-DPT4

EDHF − ESF-DHF
(VII.2)

to those of the SR corrections up to SR-DPT4

∆SR-DPT2,4 = 1− ESR-DPT2,4

ESF-DHF − EHF
(VII.3)
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Table VII.1.: HF energies as well as total DPT, SR-DPT, and SO-DPT4 corrections in
comparison to results from four-component DHF, SF-DHF calculations,
and fully relativistic SO corrections. All values are given in atomic units
(a.u.). Geometries and basis sets were taken from Ref. 114.

HF HCl HBr HI HAt

Full DPT corrections

EHF -100.0705 -460.1122 -2573.0521 -6918.5743 -21267.4660
EDPT2 -0.0917 -1.4454 -31.5763 -183.8508 -1338.2337
EDPT4 -0.0002 -0.0107 -0.9832 -12.8673 -235.8894
EDPT2,4 -0.0919 -1.4562 -32.5596 -196.7181 -1574.1231
(
EDHF − EHF

)
a -0.0919 -1.4563 -32.6011 -198.0437 -1650.7762

∆DPT2,4/% 5.7·10−4 7.1·10−3 0.13 0.67 4.64

SR-DPT corrections

ESR-DPT4 -0.0002 -0.0101 -0.9043 -11.7629 -214.7659
ESR-DPT6 -4.9·10−7 -9.3·10−5 -0.0347 -1.0224 -47.4243
ESR-DPT2,4 -0.0919 -1.4555 -32.4807 -195.6137 -1552.9996
ESR-DPT2,4,6 -0.0919 -1.4556 -32.5153 -196.6362 -1600.4239
(
ESF-DHF − EHF

)
b -0.0919 -1.4556 -32.5163 -196.7524 -1617.6129

∆SR-DPT2,4/% 5.4·10−4 6.5·10−3 0.11 0.58 3.99
∆SR-DPT2,4,6/% 1.6·10−6 6.8·10−5 3.0·10−3 0.06 1.06
∆SR-DPT4

B2 /% 0.26 0.92 3.79 8.83 23.13

SO-DPT corrections

ESO-DPT4 -8.260·10−6 -6.891·10−4 -0.0789 -1.1044 -21.1235
(
EDHF − ESF-DHF

)
c -8.287·10−6 -6.986·10−4 -0.0848 -1.2913 -33.1633

∆SO/% 0.32 1.35 6.94 14.47 36.30

a obtained by taking the difference between the DHF and the nonrelativistic HF values

b obtained by taking the difference between the spin-free DHF100 and the nonrelativistic HF values

c obtained by taking the difference between the full DHF and spin-free DHF41 values
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VII.1. Relativistic corrections to total energies at the Hartree-Fock level

with ESR-DPT2,4 as the sum of the SR energy corrections, i.e., DPT2 and SR-DPT4, it is

found that the former are about one to two orders of magnitude larger. However, this is

easily explained by the fact that there exists already a first-order contribution (DPT2)

for the SR correction whereas the SO correction first appears at the DPT4 level. It is

probably more meaningful to compare the SO errors to the remaining SR errors at the

SR-DPT4 level beyond DPT2, that is

∆SR-DPT4
B2 = 1− ESR-DPT4

ESF-DHF − EHF − EDPT2
. (VII.4)

As anticipated, the errors now are of a similar magnitude though still somewhat larger

for the SO contributions.

Concerning HF and HCl, the relativistic contributions are already reproduced within an

error smaller than 1% at the DPT2 level, and the SO corrections are negligible. For HBr,

inclusion of the SR-DPT4 correction is necessary to get the error down to less than 1%,

which then corresponds to a deviation of 0.1 a.u. from the full relativistic contribution.

If the SO correction is also included, the deviation decreases to 0.04 a.u. The SR energy

correction up to DPT4 for HI recovers the SR energy contribution with an error of less

than 1%. However, the SO contribution is here more important than for the compounds

containing lighter elements and although the error in the computed SO correction is rather

large (about 14 %), its consideration reduces the total error for the relativistic correction

to less than 1%. The remaining deviation is about 1.3 a.u.

For HAt, the DPT series cannot be considered to be converged; the error for the SR-DPT4

energy is still about 4% in comparison to the SF-DHF result, whereas the SO correction

is even off by 36%. In terms of absolute energies this means that at the DPT4 level the

deviation is about 77 a.u. which should be compared to the fully relativistic value of

22918 a.u.

A graphical representation of the SR-DPT convergence including the SR-DPT6 results

from Ref. 100 is found in figure VII.1 (see p.116). The corresponding numerical values

are given in the middle part of table VII.1 (see p.114). Consideration of the SR-DPT6

energy correction improves the results further, i.e., reduces the relative error

∆SR-DPT2,4,6 = 1− ESR-DPT2,4,6

ESF-DHF − EHF
(VII.5)

with ESR-DPT2,4,6 as the sum of the SR corrections up to DPT6 for HBr to less than

0.005% (-0.002 a.u.) and to 0.06% (-0.116 a.u.) for HI. Only for HAt, the inclusion of
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DPT2
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DPT4
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Rest
HCl HBr

HI HAt

Figure VII.1.: Convergence of the scalar-relativistic DPT series for the hydrogen halides
HX, X=Cl, Br, I, and At.
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Table VII.2.: Term analysis of the SR-DPT4 corrections for the hydrogen halides. All
values are given in atomic units (a.u.). Geometries and basis sets are
taken from Ref. 114. For an explanation of the terms see text.

Mol. ESR-DPT4 CPHF Reorth 2nd Order 〈gSR12 〉
HF -1.873·10−4 -7.326·10−4 8.353·10−5 4.618·10−4 -8.158·10−6

HCl -0.0101 -0.0387 4.858·10−3 0.0237 -6.892·10−4

HBr -0.9043 -3.3774 0.4603 2.0128 -0.0835
HI -11.7629 -43.4821 6.1635 25.5557 -1.2843
HAt -214.7659 -785.6790 115.2634 455.6496 -33.0609

the SR-DPT6 energy correction is not sufficient to reduce the error below 1%, i.e., the

remaining error is still 1.1% (-17.189 a.u.). Nevertheless, in all instances the SR-DPT6

results confirm observations made for the DPT4 corrections concerning the convergence

behaviour of the DPT series. It should be noted that the SO-DPT4 corrections in all

considered cases are larger or at least of the same magnitude as the SR-DPT6 results.

Finally, it is noted that the here discussed findings are in line with what Ottschofski and

Kutzelnigg73 found earlier for the noble gases.

VII.1.2. Term analysis of the DPT4 correction at the HF level

In table VII.2 (see p.117) the individual contributions from (IV.54) to the SR-DPT4

energy are listed for the hydrogen halides. The major contribution to the energy stems

from the CPHF term which corresponds to the first two lines of (IV.54) and has a negative

sign, though it heavily overestimates the total energy correction. The other terms have

positive signs, with the second-order terms (last two lines of (IV.54)) being of the same

order of magnitude but smaller than the CPHF contribution. A further positive correction

comes from the reorthonormalization term (third line in (IV.54)) which however is one

order of magnitude smaller. The term symbolized by 〈gSR12 〉 is part of the second-order

terms and corresponds to the fourth line in (IV.54). It is listed separately because it

is evaluated as an expectation value and involves the gSR12 two-electron integrals that

are not required for all other contributions. Although one might consider to omit this

term due to the additional computational cost for the integrals, as for example suggested

by Ottschofski and Kutzelnigg in Ref. 73, this cannot be recommended since for all

considered cases its contribution is of similar magnitude as the SO correction.

Table VII.3 (see p.118) shows the same term analysis for the SO contribution. Aside
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Table VII.3.: Term analysis of the SO-DPT4 correction for the hydrogen halides. All
values are given in atomic units (a.u.). Geometries and basis sets are
taken from Ref. 114. For an explanation of the terms see text.

Mol. ESO-DPT4 CPHF 2nd Order 〈gSO12 〉
HF -8.260·10−6 -1.308·10−5 4.820·10−6 -1.293·10−7

HCl -6.891·10−4 -1.378·10−3 6.887·10−4 -9.353·10−6

HBr -0.0789 -0.1734 0.0944 -6.326·10−4

HI -1.1044 -2.5299 1.4255 -6.463·10−3

HAt -21.1235 -50.1595 29.0360 -0.0842

from the fact that there is no reorthonormalization term (see IV.67) the same picture

emerges. The negative CPHF term gives the largest contribution which is damped by the

second-order terms that are of the same order of magnitude but have opposite sign. Here,

the 〈gSO12 〉 term which is part of the second-order contributions is indeed very small and

might therefore be neglected to save the computational cost for the involved two-electron

integrals.

VII.1.3. Basis-set convergence of the DPT4 correction at the HF

level

While there is plenty of experience in choosing basis sets for relativistic calculations

(see, for example, Refs. 127–129), the basis-set convergence in the perturbative treat-

ment is somewhat different, as there is a need to comply with the requirements of both

the non-relativistic and the subsequent relativistic treatment. In figures VII.2 and VII.3

(see p.119) the basis-set convergence of the SR-DPT4 and the SO-DPT4 energy correc-

tions for HCl and HBr are shown. In all cases the cc-pVXZ basis turns out not to be

suited for the description of relativistic effects, as it even, except for the calculation of the

SO correction of HCl with a cc-pV5Z basis, gives the wrong sign and does not converge for

HBr to the proper basis-set limit. The inclusion of core-polarization functions (cc-pCVXZ

sets) greatly improves the convergence. However, more important is the decontraction of

the basis sets, thereby providing the necessary flexibility to account for the changes in the

inner shells due to relativistic effects. On the scale of the figures, the difference between

the uncontracted cc-pVXZ and cc-pCVXZ sets is not visible since the results are nearly

indistinguishable as it can be also seen from the corresponding table in the Appendix

IX.8.

118



VII.1. Relativistic corrections to total energies at the Hartree-Fock level

-0.015

-0.01

-0.005

0.0

0.005

0.01

0.015

T Q 5
Cardinal number X

cc-pVXZ
cc-pVXZ(unc)
cc-pCVXZ
cc-pCVXZ(unc)

-1.0

-0.5

0.0

0.5

1.0

T Q 5
Cardinal number X

cc-pVXZ
cc-pVXZ(unc)
cc-pCVXZ
cc-pCVXZ(unc)

Figure VII.2.: Basis-set convergence for the scalar-relativistic DPT4 correction to the
energy (in a.u.) for HCl (left) and HBr (right).
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Figure VII.3.: Basis-set convergence for the spin-orbit DPT4 correction to the energy
(in a.u.) for HCl (left) and HBr (right).
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Both for SR as well as for SO corrections the convergence of the contracted sets is slower

for HBr than for HCl thus showing that for heavier elements relativistic effects are more

pronounced and the basis-set requirements are more demanding to allow for a correct

description. Finally, it is observed that the basis-set convergence of the SO correction is

slightly faster than for the SR correction. Due to the fact that the shape of the orbitals

is mostly affected by SR effects20 this finding seems plausible.

VII.2. Relativistic corrections to total energies at

correlated levels of theory

In this section, the correlation contributions to the DPT4 corrections are investigated

for the hydrogen halides HX, X=F-At and the noble gases He to Rn. The geometries

for the HX compounds were taken from Ref. 114 and the used basis set were the large

uncontracted sets given in Ref. 114, in the following referred to as ‘Neese’ basis, and the

uncontracted ANO-RCC sets from Ref. 129. In case of the SR corrections the investigation

is based on a comparison of the MP2 correlation contributions computed within the

framework of DPT to those obtained at the SFDC level. The SO correlation corrections

are compared to corresponding differences between the results for the correlation energies

from DC and SFDC calculations. Both, the SFDC as well as the DPT calculations were

performed using the Cfour program package,80 thereby exploiting in the case of DPT4

those parts that were developed in the present work while the DC calculations were carried

out with the program package Dirac04.126 In all calculations the point-nucleus model was

used if not stated otherwise.

VII.2.1. DPT4 energies at MP2 level: Comparison to fully

relativistic calculations

Table VII.4 (see p.122) gathers for the hydrogen halides HX the DPT2 as well as the

DPT4 correlation corrections obtained at the MP2 level. In the case of DPT4 both the SR

and SO contributions are listed. For both basis sets used it is observed that all correlation

contributions have the same sign as the corresponding HF values given in table VII.1. This

means that inclusion of electron correlation leads to a further, though small, increase in

the total relativistic corrections. The error in the correlation energies at the DPT2 level,
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VII.2. Relativistic corrections to total energies at correlated levels of theory

defined via

∆DPT2 = 1− EDPT2
corr

ESFDC
corr

(VII.6)

is about 2 % for HF, 6% for HCl, and 9% for HBr. Noting the overall small magnitude

of the correlation energy, i.e., typically less than 1% of the total energy, this means that

already at the DPT2 level satisfactory results are obtained concerning relativistic effects

on the correlation energy. It should be furthermore noted that the correlation corrections

to the total relativistic energy contribution are tiny, i.e., less than 1%, and even decrease

when going down in the periodic table. For HI and HAt, however, the error in the DPT2

correlation energies increases substantially and amounts to about 15 and 27% when using

the Neese basis and to about 40 and 60% in case of the uncontracted ANO-RCC set.

Based on the experience with DPT at the HF level, it is surprising that the SR-DPT4

correlation corrections, calculated with the Neese basis, are for all hydrogen halides except

for HF larger than the corresponding DPT2 contributions and at least two orders of

magnitude larger than the expected corrections.i A similar trend is seen in the ANO-

RCC(unc) calculations except that the SR-DPT4 correlation corrections are for HI and

HAt larger than the DPT2 contributions. Comparison with the SFDC results indicates

that DPT4 in all cases overshoots the correlation contributions.

Concerning the SO-DPT4 corrections, no problem seems to appear. For HCl up to HI the

errors in the SO-DPT4 values are rather small, i.e., between 8 and 16% (see table VII.4).

Significantly larger errors are observed for HF which needs further investigation. However,

as the SO correlation contribution for HF is very small this is of no major concern.

For the heavier hydrogen halides a curious trend arises. The relative errors are here smaller

for HI than for HBr and in cases of the Neese basis even decrease for HAt compared to HI.

Based on the experience with the HF values the reverse was expected. The apparently

good performance is probably due to a fortuitous error cancellation.

In table VII.5 (see p.124) a similar analysis is presented for the noble-gas atoms He to

Rn. The results in the upper part of the table, i.e., those obtained with the point-nucleus

model, are in line with those for the hydrogen halides for all DPT corrections. In the lower

part, the calculations have been repeated using a Gaussian-nuclear model.130 It is seen

that the deterioration of the DPT4 results is avoided in this case and that the SR-DPT4

corrections are within the expected order of magnitude. This effect is analyzed further in

iThe higher-order estimates may be obtained by subtracting the correlated DPT2 contributions from
the SFDC values.
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Table VII.4.: MP2 energies and correlation contributions to SR-DPT and SO-DPT4
corrections in comparison to results from SFDC calculations at the MP2
level and fully relativistic SO corrections for the hydrogen halides HX,
X=F-At. All values are given in atomic units (a.u.). Geometries and the
basis set denoted by ‘Neese’ were taken from Ref. 114. In the lower part
of the table the results were calculated with the ANO-RCC(unc) set from
Ref. 129.

HF HCl HBr HI HAt

Neese

EMP2 -0.336 -0.423 -1.085 -1.386 -3.007
EDPT2,a -2.13·10−4 -8.24·10−4 -1.27·10−2 -3.69·10−2 -1.29·10−1

ESR-DPT4,a -5.48·10−6 -1.23·10−3 -1.70·10−1 -2.66 -8.83
ESR-DPT2+4,a -2.19·10−4 -2.05·10−3 -1.83·10−1 -2.69 -8.95
ESFDC,a,b -2.18·10−4 -8.79·10−4 -1.38·10−2 -4.32·10−2 -1.76·10−1

δDPT2/% 1.98 6.26 8.59 14.67 26.46
δSR-DPT2,4/% -0.54 -133.17 -1222.89 -6137.55 -4990.43

ESO-DPT4,a 4.97·10−9 -6.11·10−6 -2.49·10−4 -1.68·10−3 -1.44·10−2

ESODC,a,c 1.90·10−8 -5.64·10−6 -2.16·10−4 -1.45·10−3 -1.43·10−2

δSO/% 73.83 -8.19 -15.23 -15.84 -0.37

ANO-RCC(unc)

EMP2 -0.355 -0.466 -1.077 -1.693 -3.167
EDPT2,a -2.10·10−4 -7.14·10−4 -1.25·10−2 -2.85·10−2 -6.99·10−2

ESR-DPT4,a -3.71·10−6 -6.28·10−5 -1.94·10−3 -1.61·10−2 -6.38
ESR-DPT2+4,a -2.14·10−4 -7.76·10−4 -1.45·10−2 -4.46·10−2 -6.45
ESFDC,a,b -2.13·10−4 -7.63·10−4 -1.36·10−2 -4.60·10−2 -1.76·10−1

δDPT2/% 1.56 6.49 7.42 38.08 60.18
δSR-DPT2,4/% -0.18 -1.75 -6.89 3.13 -3568.87

ESO-DPT4,a 1.51·10−8 -5.83·10−6 -2.13·10−4 -1.61·10−3 -1.33·10−2

ESODC,a,c 2.63·10−8 -5.41·10−6 -1.89·10−4 -1.46·10−3 -1.35·10−2

δSO/% 42.56 -7.78 -12.83 -9.77 1.63

a only correlation contribution

b obtained by taking the difference between the SFDC values at the MP2 level and the SF-DHF
results and subtracting EMP2

c obtained by taking the difference between the full DC and SFDC result at the MP2 level
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the following section.

VII.2.2. Analysis of the correlated SR-DPT4 correction

As already noted the correlated SR-DPT4 results overshoot and indicate a divergent be-

haviour of the DPT expansion. The overestimation is mainly due to the ĥ(4) contribution

(see equation IV.142 where the ĥ(4) terms are part of the ∂fλrel
pq /∂λrel matrix elements). In

a less pronounced manner also the Ŝ(4) terms (see equation IV.144) are responsible for the

observed divergence. Both contributions are second-order terms which arise due to the

elimination of the small component. The structure of these terms is such that problems

are expected as soon as high-lying virtual orbitals appear in the calculation. To verify this

assumption, for HCl using the Neese basis, additional calculations have been performed

with those high-lying orbitals excluded from the correlation treatment. In order to in-

vestigate in which manner the singular electron-nucleus potential is responsible for the

divergence the calculations have been repeated with the Gaussian-nuclear model. Results

of these calculations are given in table VII.6 (see p.126). In figure VII.4 (see p.125), the

SR-DPT4 results for HCl are furthermore plotted against the cutoff energy for dropping

virtual orbitals in a logarithmic scale.

The results of these additional calculations confirm the aforementioned expectations, i.e.,

the divergent behaviour is damped as soon as high-lying orbitals are excluded. In this

way an estimate for the fourth-order SR correlation correction of about −7 to −8 · 10−5

a.u. is obtained. A similar result of −8.13 · 10−5 a.u. is obtained if the calculation is re-

peated with the 5 steepest s-functions omitted in the AO basis. The calculation with the

Gaussian-nuclear model yields −8.19 · 10−5 a.u. indicating again that high-lying virtual

orbitals are the source of the problem as their orbital energies are substantially decreased

when using a finite-nuclear model. In the calculations with the ANO-RCC(unc) basis a

value of −6.28 ·10−5 a.u. is obtained when using either the point-nuclear or the Gaussian-

nuclear model. This shows that in this case, in which no divergence is observed, the effect

of using a Gaussian-nuclear model is negligible. The estimates obtained in the additional

calculations agree with the higher-order SFDC correction of −5.5 · 10−5 a.u.

To conclude, the origin of the divergent behaviour of the DPT expansion at correlated

levels has been traced back to high-lying virtual orbitals though a more detailed analysis

is necessary in the future. First results indicate that there exist several possibilities to

control these instabilities in the calculations but so far the use of correlated SR-DPT4
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Table VII.5.: MP2 energies as well as correlation contributions to SR-DPT and SO-
DPT4 corrections in comparison to results from SFDC calculations at the
MP2 level and fully relativistic SO corrections for the noble-gas atoms.
All values are given in atomic units (a.u.). Geometries taken from Ref.
114. In all calculations the ANO-RCC(unc) set from Ref. 129 was used.

He Ne Ar Kr Xe Rn

point nucleus

EMP2 -3.58·10−2 -0.358 -0.480 -1.078 -1.720 -3.171
EDPT2,a 1.64·10−6 -2.54·10−4 -7.06·10−4 -1.26·10−2 -3.39·10−2 -1.25·10−1

ESR-DPT4,a -4.48·10−9 -5.50·10−6 -8.02·10−5 -2.09·10−3 -1.81·10−2 -7.61
ESR-DPT2+4,a 1.63·10−6 -2.59·10−4 -7.86·10−4 -1.47·10−2 -5.19·10−2 -7.74
ESFDC,a,b 1.63·10−6 -2.59·10−4 -7.68·10−4 -1.38·10−2 -4.00·10−2 -1.73·10−1

δDPT2/% -0.27 1.88 8.09 8.09 15.41 27.43
δSR-DPT2,4/% 0.00 -0.24 -2.35 -7.12 -29.72 -4383.29

ESO-DPT4,a -4.79·10−10 -2.03·10−7 -7.89·10−6 -2.49·10−4 -1.74·10−3 -1.39·10−2

ESODC,a,c -4.79·10−10 -1.86·10−7 -7.32·10−6 -2.22·10−4 -1.59·10−3 -1.45·10−2

δSO/% 0.03 -9.43 -7.72 -12.15 -9.17 4.41

finite nucleus (Gaussian model)

EMP2 -3.58·10−2 -0.358 -0.480 -1.078 -1.720 -3.171
EDPT2,a 1.64·10−6 -2.54·10−4 -7.06·10−4 -1.26·10−2 -3.39·10−2 -1.26·10−1

ESR-DPT4,a -4.48·10−9 -5.50·10−6 -8.02·10−5 -2.01·10−3 -1.19·10−2 -9.31·10−2

ESR-DPT2+4,a 1.63·10−6 -2.59·10−4 -7.86·10−4 -1.46·10−2 -4.58·10−2 -2.19·10−1

a only correlation contribution

b obtained by taking the difference between the SFDC values at the MP2 level and the SF-DHF
results and subtracting EMP2

c obtained by taking the difference between the full DC and SFDC result at the MP2 level
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corrections cannot be recommended.
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Figure VII.4.: Correlated part of the SR-DPT4 correction to the energy (in a.u.) for
HCl with ‘Neese’ basis set from Ref. 114 for different cutoffs in the orbital
energies (in a.u., logarithmic scale).

VII.3. Relativistic corrections to electrical properties

In the following the improvements in the calculation of efgs and dipole moments provided

by the DPT4 corrections131 are discussed based on results from SF-DHF41,103 and DHF

calculations. Using the former, the convergence of the SR contribution is investigated

while the difference between DHF and SF-DHF results provides the full SO correction

thus allowing an investigation of the SO contribution provided by the DPT4 treatment.
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Table VII.6.: Study of the correlated SR-DPT4 correction at the MP2 level using a
cutoff in the orbital energy, different basis sets and nuclear models. All
values are given in atomic units (a.u.). Geometries taken from Ref. 114.
Basis sets denoted by ‘Neese’ basis set from Ref. 114 and the uncontracted
ANO-RCC set from Ref. 129.

ESR-DPT4 εCutoff
p k orbital # log εCutoff

p

-1.23·10−3 7.420·108 136 8.87 (full basis)
-3.69·10−4 2.466·108 135 8.39
-1.75·10−4 7.273·107 134 7.86
-1.02·10−4 1.739·107 133 7.24
-8.19·10−5 4.344·106 132 6.64
-8.14·10−5 1.201·106 131 6.08
-8.11·10−5 6.206·105 130 5.79
-8.11·10−5 3.670·105 129 5.56
-8.06·10−5 2.550·105 128 5.41
-7.88·10−5 1.259·105 125 5.10
-7.79·10−5 7.098·104 123 4.85
-7.38·10−5 4.407·104 120 4.64
-7.21·10−5 3.127·104 119 4.50
-7.21·10−5 2.175·104 118 4.34
-6.24·10−5 9.152·103 114 3.96
-5.32·10−5 6.735·103 110 3.83
-4.92·10−5 3.537·103 109 3.55

Eh.o. SFDCa ESR-DPT4
Neese,cut

b ESR-DPT4
Neese,FN

c ESR-DPT4
ANO

d ESR-DPT4
ANO,FN

e

-5.50·10−5 -8.13·10−5 -8.19·10−5 -6.28·10−5 -6.28·10−5

a obtained by taking the difference between the SFDC values at the MP2 level and the SF-DHF
results and subtracting EMP2 as well as the correlation contribution from EDPT2, all calculations
with Neese basis set

b correlated SR-DPT4 correction with Neese basis set where the first 5 steep s-functions have been
removed from the basis set

c correlated SR-DPT4 correction with Neese basis set and Gaussian nuclear model

d correlated SR-DPT4 correction with ANO-RCC(unc) basis set

d correlated SR-DPT4 correction with ANO-RCC(unc) basis set and Gaussian nuclear model
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Calculations for both dipole moments and efgs were performed for the hydrogen halides

HX, X=F, Cl, Br, I, and At using geometries and basis sets from Ref. 114.

Both the DPT4 and SF-DHF calculations were performed using the Cfour80 program

package. The DPT4 results were thereby again obtained using those parts of Cfour

that have been developed in this work. The DHF results were obtained with the program

package Dirac04. In all calculations the point-nucleus model was used.

VII.3.1. DPT4 properties at the HF level: Comparison to fully

relativistic calculations

In this section the DPT4 results for efgs and dipole moments are compared to those

from more rigorous SF-DHF and DHF calculations. Table VII.7 (see p.130) shows the

scalar-relativistic DPT corrections to efgs and dipole moments for the hydrogen halides

together with results from SF-DHF calculations. The relative errors for the properties are

defined in an analog manner compared to those discussed for the energies (see equations

VII.1, VII.2, VII.3, VII.4, VII.5, VII.6). For both dipole moment and efg, the relative

error in comparison to the SF-DHF results decreases by at least one order of magnitude

when going from DPT2 to the scalar relativistic DPT4 (SR-DPT4) contributions. This is

in agreement with what has already be seen for energies. However, in comparison to the

relative errors for the energies as discussed in chapter VII.1, it is found that the errors

here are one order of magnitude larger thus showing that the properties considered are

more sensitive to relativistic effects.

It was suggested in Ref. 102 that consideration of SR-DPT4 may reduce the relative error

for fifth-row elements to a similar magnitude as DPT2 for elements of the fourth row. In

fact, the improvement is even better: for both dipole moments and efgs, the remaining

relative errors ∆SR-DPT2,4 are smaller than 2%.

For HAt, however, the DPT expansion up to fourth order cannot be considered converged

as the errors at the SR-DPT4 level are still of the order of 10% for the efg and dipole mo-

ment. These errors affect the second significant digit in the case of the dipole moment and

even the first digit in the case of the efg. Higher-order corrections seem to be necessary

to obtain more reliable results. This is in fact observed when the DPT6 corrections100 are

accounted for. The error is then reduced for the efg to 3.6% (0.4093 a.u.) and for the

dipole moment to 2.0% (0.0029 a.u.).

For all hydrogen halides the remaining relative errors at the SR-DPT4 level are larger for

the efgs than for the dipole moments. Since the efg is a so-called “core property”, in the
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sense that the efg operator samples in particular the electron density of the inner-shell

region, a proper description of this region is mandatory while for the dipole moments it

is more important to properly capture the electron density of the outer regions. Because

changes due to relativistic effects mostly happen in the inner shells, the efgs are more

affected by approximations in the treatment of relativistic effects. This might also be the

reason why the SR-DPT series converges faster in the case of dipole moments than for

efgs, at least for the heavier elements.

Table VII.7 (see p.130) also contains the SO-DPT4 contributions which are compared to

the corresponding differences between four-component DHF and SF-DHF calculations.

These differences will be abbreviated in the following by the acronym SO-DHF. As the

SO corrections first appear in DPT4, their relative accuracy ∆SO might be expected to be

in the same range as the one for the DPT2 corrections. This is more or less what is ob-

served for the dipole moments. However, for the efgs the relative errors in the SO-DPT4

corrections are much larger which again is explained by the fact that for efgs a proper

relativistic description of the inner shells is more important than for dipole moments.

For the efgs, the SO corrections have a different sign than the SR contributions at least

for the cases considered here. The absolute value of the non-relativistic result is thereby

enlarged by the SR corrections and reduced by the SO contributions. Furthermore, the

SO corrections are at least one order of magnitude smaller than the contribution coming

from the SR part of the DPT4 treatment. They might therefore be neglected for elements

up to the fifth row in order to reduce computational cost.

Concerning the dipole moments, both the SO and the SR contributions have for the

hydrogen halides a negative sign so that all relativistic corrections decrease the (positive)

non-relativistic values. For the lighter compounds (HF to HBr), the SO contributions

are at least one order of magnitude smaller than the SR-DPT4 corrections and might

thus be neglected. The SO contributions for HI and HAt, however, are larger than the

corresponding SR corrections at the DPT4 level. DPT4 predicts them to be about twice

as large than the SR contributions whereas in the DHF calculations it is found that they

are even larger. Inclusion of SO effects thus appears mandatory for these compounds. For

HI, the dipole moment including the full DPT4 correction is 0.2056 a.u. which deviates

by about 0.002 a.u. from the DHF result. This corresponds to a relative error of about

1%. For HAt, the dipole moment even changes sign when SO contributions are accounted

for. But as already noted for the SR results for HAt, the DPT expansion up to fourth

128



VII.4. Relativistic corrections to hyperfine parameters

order cannot be considered converged for this molecule.

VII.4. Relativistic corrections to hyperfine parameters in

rotational spectroscopy: Application to CH2BrF,

CHBrF2, and CH2FI

In this section, the techniques for calculating relativistic corrections to efgs as de-

veloped in this work are applied within a joint experimental and theoretical rotational-

spectroscopic investigation of the bromine and iodine quadrupole-coupling tensors for the

molecules CH2BrF, CHBrF2, and CH2FI
131 with the focus on the DPT4 corrections. The

bromine containing species are potentially of interest in atmospheric chemistry due their

important role in stratospheric ozone depletion and global warming132 while the investig-

ation of fluoroiodomethane is important as the knowledge of its spectroscopic parameters

enables a systematic analysis of their variation along the series CH3I, CH2FI, CHF2I, and

CF3I upon fluorine substitution.133

The corresponding experiments have been carried out at the University of Bologna by

G. Cazzoli and C. Puzzarini. Recording and in particular the analysis of the spectra

is challenging due to their complicated hyperfine structure. However, using the so-called

‘Lamb-Dip’ technique,134 the hyperfine structure of the rotational spectra can be resolved,

but the determination of the hyperfine constants, such as, for example, the quadrupole-

coupling constants is often cumbersome. Therefore, highly accurate theoretical predictions

play an important role as they yield precise information about the (hyperfine)pattern of

the spectra and help in the assignment of specific transitions. Furthermore, they are im-

portant to verify the experimental results, i.e., to confirm the accuracy of the determined

spectroscopic parameters. Many examples of this fruitful interplay between theory and

experiment can be found in the literature.2

For the theoretical prediction of the quadrupole-coupling constants, the following relation

to the efg at the nucleus K is used2

χij =
(−eQK)q

K
ij

~
(VII.7)

with (−eQK) as the nuclear quadrupole moment for the nucleus K. For the conversion

from the efgs to quadrupole coupling constants, the nuclear quadrupole moment for 79Br

has been chosen to 307.5(10) mb135 and for 127I to -696(12) mb.136,137
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Table VII.7.: Scalar-relativistic DPT corrections to the halogen electric-field gradient
qzz and to the dipole moments µz of the hydrogen halides in comparison
to results from SF-DHF calculations as well as the corresponding SO-
DPT4 corrections in comparison to results for the SO contributions from
four-component DHF calculations. All values are given in atomic units
(a.u.). Geometries and basis sets were taken from Ref. 114.

HF HCl HBr HI HAt

qHF-SCF 2.8704 3.6095 7.0704 9.7311 15.4088
qDPT2 0.0101 0.0496 0.5057 1.7167 7.4555
qSR-DPT2,4a 0.0102 0.0501 0.5337 1.9476 10.1437
qSR-DPT2,4,6d 0.0102 0.0502 0.5352 1.9765 11.0358
qSF-DHFb 0.0102 0.0502 0.5352 1.9805 11.4451
∆DPT2/% 2.8·10−1 1.1 5.5 13.3 34.9
∆SR-DPT2,4/% 3.0·10−3 1.2·10−2 2.9·10−1 1.7 11.4
∆SR-DPT2,4,6/% 2.3·10−3 3.4·10−4 1.4·10−2 0.2 3.6

µHF-SCF 0.7580 0.4797 0.3728 0.2595 0.1904
µDPT2 -0.0014 -0.0049 -0.0176 -0.0398 -0.1002
µSR-DPT2,4a -0.0014 -0.0050 -0.0186 -0.0448 -0.1321
µSR-DPT2,4,6d -0.0014 -0.0050 -0.0186 -0.0453 -0.1409
µSF-DHFb -0.0014 -0.0050 -0.0186 -0.0454 -0.1438
∆DPT2/% 3.4·10−1 1.2 5.3 12.3 30.3
∆SR-DPT2,4/% 9.2·10−4 1.0·10−2 2.3·10−1 1.3 8.1
∆SR-DPT2,4,6/% 1.5·10−4 5.2·10−4 9.8·10−3 1.4E-1 2.0

qSO-DPT4 -9.109·10−6 -6.883·10−5 -2.577·10−3 -0.0179 -0.2125
qSO-DHFc -9.200·10−6 -7.158·10−5 -3.313·10−3 -0.0317 -0.8540
∆SO/% 1.0 3.8 22.2 43.4 75.1

µSO-DPT4 -6.570·10−6 -7.610·10−5 -0.001677 -0.00914 -0.0675
µSO-DHFc -6.603·10−6 -7.730·10−5 -0.001809 -0.01095 -0.1095
∆SO/% 0.6 1.5 7.3 16.5 38.4

a sum of DPT2 and SR-DPT4 corrections

b difference between SF-DHF and HF-SCF value

c obtained by taking the difference between the full DHF and SF-DHF values

d sum of DPT2, SR-DPT4, and SR-DPT6 corrections
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Br

H

F

F

Figure VII.5.: Structure of CHBrF2 as well as a portion of its rotational spectrum. For
details see Ref. 139.

For CH2BrF and CHBrF2 a detailed account of the experimental and theoretical results

including DPT2 corrections computed at the CCSD(T) level is found in Refs. 138 and

139, respectively. Furthermore, for CH2FI a rotational-spectroscopic investigation has

been published in Ref. 140 together with CCSD(T) calculations for the parameters of

interest both at the DPT2 and the spin-free Dirac Coulomb (SFDC)41 level. The geomet-

rical structure as well as a representative portion of the rotational spectra of CHBrF2 and

CH2FI can be found in the figures VII.5 (p. 131) and VII.6 (p. 132), respectively. All

details for the quantum-chemical calculations prior to the DPT4 study discussed in the

following as well as the employed geometries are found in the references mentioned before.

The emphasis is in the following on the DPT4 corrections which were calculated at the

HF level using uncontracted versions of Dunning’s correlation-consistent valence polarized

basis sets (cc-pVXZ) with X=T, Q, 5120–122 as well as the uncontracted ANO-RCC basis

set.129
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I

F

H
H

Figure VII.6.: Structure of CH2FI as well as a portion of its rotational spectrum. For
details see Ref. 140.

VII.4.1. Halogen quadrupole-coupling tensors of CH2BrF and

CHBrF2

In table VII.8 (see p.133) the computed and experimental bromine quadrupole-coupling

constants for CHBrF2 are shown.139 The deviations of the theoretical predictions from

experiment are lower than 0.5%. This good agreement is due to the fact that the present

calculations include relativistic effects (they range from 15 to 32 MHz, i.e., about 6.5%,

as expected from previous investigations of bromine-containing molecules102,138) and that

the conversion of the computed efg is based on the most recent values for the bromine

quadrupole moments.135 On the other hand, vibrational corrections are small, their rel-

ative contribution being lower than 1%.

Furthermore, calculations at the DPT4, SF-DHF, as well as DHF level have been carried

out in order to compute higher-order relativistic corrections to the diagonal elements of

the quadrupole-coupling tensors of the bromine nucleus in CHBrF2 and CH2BrF. This

allows to analyze the convergence of the DPT corrections and to assess the importance

of SO effects at least at the HF level.

The results are found in table VII.9 (see p.134). For both CHBrF2 and CH2BrF it can be
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Table VII.8.: Individual contributions to the diagonal elements of the computed bromine
quadrupole-coupling tensor of CHBrF2 in MHza.

non- relativistic vibrational
relativistic correction correction total experimentb

χaa 489.854 31.827 -0.328 521.353 521.257(9)
χbb -262.496 -17.078 -0.085 -279.659 -279.804(40)
χcc -227.358 -14.750 0.413 -241.694 -241.453(40)

a non-relativistic values obtained at the CCSD(T)/cc-pCVQZ level, the relativistic DPT2 corrections
at the CCSD(T)/cc-pVQZ(unc) level, and the vibrational corrections at the MP2/cc-pCVTZ level.
Geometries from CCSD(T)/cc-pCVQZ calculations.

b from Ref. 139

seen that the SR-DPT4 corrections are about 1-2 MHz while the SO contributions are one

order of magnitude smaller, i.e., about 0.1-0.3 MHz. Inclusion of the DPT4 corrections

does not improve the agreement with the experimental numbers. It should be noted in

this context that the error estimate for the bromine quadrupole moment is about 1 mb,

so that the remaining uncertainty in the theoretical estimates is up to 1 MHz. Since

the SR-DPT4 corrections are of the same order of magnitude as this uncertainty, and

since the SO corrections are even smaller, it seems sufficient to limit the treatment of

relativistic effects in these cases to the DPT2 level. Furthermore, since correlation and

relativistic effects are not additive, we expect, based on previous experience,41,102 that the

presented corrections computed here at the HF level overestimate the relativistic contri-

bution. Nevertheless, by means of a DPT4 calculation at the HF level, a rough estimate

for higher-order relativistic corrections is accessible. In the present case, this estimate

justifies the use of and restriction to DPT2.

Regarding the basis-set dependence of the DPT4 corrections, it is seen that they converge

rather smoothly when increasing the cardinal number X in the cc-pVXZ(unc) sets. For

the SR corrections there is a satisfactory agreement between the values calculated using

the cc-pV5Z(unc) and the ANO-RCC(unc) basis set while for the SO contributions larger

differences are observed. Since the ANO-RCC basis includes more basis functions in the

inner-shell region, these numbers are probably more accurate.
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Table VII.9.: Higher-order relativistic corrections (beyond DPT2) to the diagonal ele-
ments of the bromine quadrupole-coupling tensor of CHBrF2 and CH2BrF
in MHz. Geometries for CHBrF2 from Ref. 139 and for CH2BrF from Ref.
138.

basis SR-DPT4 SO-DPT4 h.o. SF-DHFa SO-DHFb Exp.c Theoryc

CHBrF2

χaa:

cc-pVTZ(unc) 1.74 -0.32 1.82 -0.37 521.257(9) 521.353
cc-pVQZ(unc) 1.84 -0.29 1.93 -0.34
cc-pV5Z(unc) 1.86 -0.28 1.95 -0.32
ANO-RCC(unc) 1.87 -0.23 1.97 -0.26

χbb:

cc-pVTZ(unc) -0.94 0.17 -0.98 0.20 -279.804(40) -279.659
cc-pVQZ(unc) -0.99 0.15 -1.04 0.18
cc-pV5Z(unc) -1.00 0.15 -1.05 0.17
ANO-RCC(unc) -1.01 0.12 -1.06 0.14

χcc:

cc-pVTZ(unc) -0.80 0.15 -0.84 0.18 -241.453(40) -241.694
cc-pVQZ(unc) -0.85 0.14 -0.89 0.16
cc-pV5Z(unc) -0.86 0.13 -0.90 0.15
ANO-RCC(unc) -0.86 0.11 -0.91 0.12

CH2BrF

χaa

cc-pVTZ(unc) 1.44 -0.23 1.50 -0.27 443.431(8) 441.8
cc-pVQZ(unc) 1.52 -0.21 1.59 -0.25
cc-pV5Z(unc) 1.53 -0.20 1.61 -0.23
ANO-RCC(unc) 1.55 -0.15 1.63 -0.19

χbb − χcc

cc-pVTZ(unc) 0.45 -0.07 0.47 -0.08 153.566(26) 153.63
cc-pVQZ(unc) 0.47 -0.06 0.50 -0.07
cc-pV5Z(unc) 0.48 -0.06 0.50 -0.07
ANO-RCC(unc) 0.48 -0.04 0.51 -0.05

a higher-order SF-DHF result defined as the difference between SF-DHF and the total DPT2 value

b difference between the full DHF and SF-DHF values

c experimental value and previous theoretical estimate from Ref. 139 in the case of CHBrF2 and from
Ref. 138 in the case of CH2BrF. The non-relativistic values were obtained at the CCSD(T)/cc-
pCVQZ level, the relativistic DPT2 corrections at the CCSD(T)/cc-pVQZ-unc level, and the
vibrational corrections at the MP2/cc-pCVTZ level.
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VII.4. Relativistic corrections to hyperfine parameters

VII.4.2. Halogen quadrupole-coupling tensor of CH2FI

The computational results for the iodine quadrupole-coupling tensor of CH2FI are given

in table VII.10 (see p.136) together with the experimental results.140 Relativistic effects

treated at the CCSD(T)/DPT2 level amount here to about 14%. However, the deviation

of the theoretical results from experiment is still in the range of 5-26 MHz. These de-

viations are reduced by inclusion of the DPT4 corrections, i.e., for χaa from around 26

MHz to 2 MHz, and for χcc from 21 MHz to 4 MHz. For χbb the absolute deviation is

more or less unchanged, i.e., changes from 5 MHz to −6 MHz. The agreement appears

convincing even though the relative error in the SO treatment in comparison to a full

DHF calculation is about 36%. However, as seen by the SF-DHF and the full DHF values

in table VII.10, relativistic corrections beyond DPT4 are non-negligible. Furthermore,

at the HF level, the relativistic contributions are overestimated41,102 so that the missing

higher-order corrections and the HF treatment lead to a fortuitous error compensation.

This is confirmed by the SFDC values calculated at the CCSD(T) level.140 Taking the

difference between the SFDC and the DPT2 results yields a higher-order SFDC contri-

bution that is around 2 to 4 MHz smaller than the corresponding higher-order SF-DHF

correction and agrees well with the SR-DPT4 results.

Nevertheless, the DPT4 calculations at the HF level provide a useful estimate for missing

higher-order relativistic effects beyond the DPT2 treatment. Finally, it is noted that due

to the large uncertainty of 12 mb in the iodine nuclear quadrupole moment the comparison

to experiment needs to be viewed with some caution.
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VII. Applications

Table VII.10.: Theoretical predictions and experimental values for the diagonal com-
ponents of the iodine quadrupole-coupling tensor of CH2FI in MHz. All
theoretical values calculated with the ANO-RCC(unc) basis set129 and
geometries from CCSD(T)/cc-pwCVQZ141 calculations (see Ref. 140).

Theoretical and experimental results from Ref. 140

nrla DPT2a total Exp.b ∆χExp.−total

χaa -1337.32 -218.47 -1555.79 -1581.6142(27) -25.82
χbb 497.72 81.58 579.30 584.1657(52) 4.87
χcc 839.60 136.89 976.49 997.4485(52) 20.96

Higher-order relativistic corrections

SR-DPT4c h.o. SF-DHFd h.o. SFDCa,e SO-DPT4c SO-DHFf ∆χDPT4 ∆χh.o. DHF

χaa -29.80 -33.97 -29.77 2.46 3.85 -27.34 -30.12
χbb 11.51 13.12 11.11 -0.96 -1.52 10.54 11.60
χcc 18.29 20.86 18.66 -1.50 -2.33 16.80 18.53

a Calculated at CCSD(T) level of theory

b Reference 140

c Calculated at HF level of theory

d Higher-order SF-DHF result defined as the difference between SF-DHF and the total DPT2 values

e Higher-order SFDC result defined as the difference between SFDC and the total DPT2 values

f Difference between the full DHF and the SF-DHF values
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VIII. Conclusion

In order to reach high-accuracy consideration of relativistic effects in systems contain-

ing light elements can be essential. Perturbative schemes represent an attractive and

cost-effective option in these cases where relativistic effects are small. Use of the Pauli

Hamiltonian, however, is unsatisfactory in the sense that it contains singular operators

and can only be applied in lowest order. An alternative route to treat relativistic effects

in a perturbative manner is given by Direct Perturbation Theory (DPT). In contrast to

schemes based on the Pauli Hamiltonian, DPT can, for example, be applied in arbitrary

order. Furthermore, the general theory is systematic and elegant. It can be formulated in

terms of energy derivatives based either on the Schrödinger or the Dirac equation making

the implementation rather straightforward. The option to calculate higher-order correc-

tions makes it possible to investigate both the convergence of the perturbative expansion

as well as spin-orbit contributions for closed-shell systems.

In this work, higher-order relativistic corrections to energies and electrical properties have

been investigated in the framework of DPT. A detailed summary of the results is given

in the following.

General formulation of DPT in terms of energy derivatives

A general formulation of DPT was presented in terms of analytic-derivative theory.

For instance, the DPT4 energy can be expressed as second derivative of the energy with

respect to the relativistic perturbation parameter λrel = c−2. Using the method of Lag-

range multipliers DPT corrections have been derived from two different perspectives, i.e.,

starting from either the Schrödinger or the Dirac equation.

DPT4 expressions in the framework of HF and MP2

For both Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory (MP2)

explicit expressions for the DPT4 correction have been worked out for closed-shell sys-

tems. The MP2 formulation is easily extended to other electron-correlation treatments

such as coupled-cluster (CC) theory. The spin-orbit corrections which first appear at the

DPT4 level have been separated from the scalar-relativistic contributions, thus enabling

an independent treatment.
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VIII. Conclusion

Implementation of the DPT4 corrections

The DPT4 energy corrections at HF and MP2 level have been implemented into the

Cfour program package,80 thereby exploiting available second-derivative capabilities.78

For the calculation of DPT4 corrections to electrical properties the required numerical

differentiation techniques have been set up.

All integrals relevant for DPT4 except for those already implemented for DPT2109,110

have been evaluated using the McMurchie-Davidson scheme107 and implemented into the

Cfour program package.

Convergence of the DPT series at the HF level

The accuracy of the DPT4 corrections as well as the convergence behaviour of the DPT

series have been investigated for both the SR and SO contributions at the HF level. The

general observation was that the quality of the description degrades for heavier elements.

However, the DPT convergence behaviour was found to be smooth and monotonous. For

the energies, DPT4 represents a significant improvement over DPT2 and is capable to

provide relativistic corrections to the energy with a remaining error in the relativistic

description of 1% or less even for molecules containing elements of the fifth row of the

periodic table. In the case of even heavier elements, the DPT series could no longer be

considered converged in fourth order. In the considered closed-shell cases, the SR con-

tributions were found to be dominant while the SO corrections are about two orders of

magnitude smaller. For the DPT4 corrections to electrical properties, the results con-

cerning the convergence were similar except that the relative errors are larger compared

to those obtained for the energies.

Concerning the basis-set dependence, it is noted that the chosen basis set needs to comply

with requirements of both the non-relativistic and the subsequent relativistic treatment.

For the DPT4 energy corrections at the HF level it was found that decontraction of a

non-relativistic basis set leads to the fastest convergence.

DPT in electron correlation treatments

At a correlated level of theory the DPT4 contribution tends to overestimate the correl-

ation contribution of the relativistic correction. For the SR contribution, the fourth-order

results even indicate a divergence of the DPT expansion. The origin of this problem can be

traced back to high-lying virtual s-orbitals together with the use of a point-nucleus model.
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The correlated SO-DPT4 corrections, however, do not suffer from numerical instabilities

and can be used to estimate correlated SO contributions.

Application to rotational spectroscopy

For the molecules CH2BrF, CHBrF2, and CH2FI, the importance of higher-order relativ-

istic corrections to the halogen quadrupole-coupling tensors was investigated. Concerning

the bromine-containing species, it was found that the restriction to DPT2 is justified

while for the iodine quadrupole-coupling tensor higher-order relativistic corrections are

important to reach an accuracy of better than 1%.

The present work shows that DPT is an elegant theory for the description of relativistic

effects and works well in the framework of HF theory. Furthermore, it enables a detailed

analysis of the individual contributions to the relativistic corrections and a formulation

in terms of energy derivatives is possible in all orders making the corrections straightfor-

ward to implement into quantum-chemical programs. However, DPT in higher orders will

probably not become a standard tool for the treatment of relativistic effects in the future

because the convergence of the DPT series depends strongly on the atomic number and

correlation treatments using higher-order SR-DPT seem to be divergent. Despite these

drawbacks, the theory is not to be discarded. DPT2 corrections both at the HF as well as

at correlated levels yield excellent results for light elements (up to the fourth row of the

periodic table) at low computational cost. Furthermore, understanding the structure and

magnitude of all contributions to relativistic corrections is important for the educated ap-

plication and the development of approaches to treat relativistic effects. Such an analysis

is possible only within the framework of DPT. In addition, the SO treatment in DPT

can be utilized in other contexts. For example, if the full SR contribution is calculated

and only the SO terms are treated perturbatively, the resulting equations are very similar

to those used in the present SO-DPT4 treatment rendering their implementation rather

straightforward. In this way the insight and computational capabilities resulting from

this work will be of advantage in future developments.
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IX. Appendix

IX. Appendix

IX.1. Perturbative expansion of the Dirac-Hartree-Fock

equations

Using the modified metric (see chapter IV.1) the Dirac-Hartree-Fock (DHF) equations

are given as

f̂DΨi =εiŜDΨi (IX.1)

with

f̂D =

(

V + ĴLL − K̂LL +
1
c2
ĴSS σp− 1

c2
K̂SL

σp− 1
c2
K̂LS

1
c2
V − 2m+ 1

c2
ĴLL +

1
c4
(ĴSS − K̂SS)

)

, (IX.2)

Ψi =

(

ϕi

χi

)

, ŜD =

(

1 0

0 1
c2

)

, (IX.3)

and the Coulomb and Exchange operators defined as

ĴLLφi(1) =

∫

d3r2
∑

k

ϕ∗
k(2)

1

r12
φi(1)ϕk(2), φi = ϕi, χi, (IX.4)

ĴSSφi(1) =

∫

d3r2
∑

k

χ∗
k(2)

1

r12
φi(1)χk(2), φi = ϕi, χi, (IX.5)

K̂LLφi(1) =

∫

d3r2
∑

k

ϕ∗
k(2)

1

r12
ϕk(1)φi(2), φi = ϕi, (IX.6)

K̂SSφi(1) =

∫

d3r2
∑

k

χ∗
k(2)

1

r12
χk(1)φi(2), φi = χi, (IX.7)

K̂LSφi(1) =

∫

d3r2
∑

k

ϕ∗
k(2)

1

r12
χk(1)φi(2), φi = ϕi, (IX.8)

K̂SLφi(1) =

∫

d3r2
∑

k

χ∗
k(2)

1

r12
ϕk(1)φi(2), φi = χi. (IX.9)
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IX.1. Perturbative expansion of the Dirac-Hartree-Fock equations

Note that in all non-vanishing two-electron integrals both components have to be of the

same type for a given electron, i.e., either large or small.

When a perturbative expansion of the DHF equations is carried out in terms of terms of

λrel = c−2, the zeroth order is given by

f̂
(0)
D Ψ

(0)
i = ε

(0)
i Ŝ

(0)
D Ψ

(0)
i (IX.10)

with

f̂
(0)
D =

(

V + ĴLL(0) − K̂
(0)
LL σp̂

σp̂ −2m

)

,Ψ
(0)
i =

(

ϕ
(0)
i

χ
(0)
i

)

, Ŝ
(0)
D

(

1 0

0 0

)

, (IX.11)

and from the second row of (IX.10) it follows

χ
(0)
i =

1

2m
σp̂ϕ

(0)
i (IX.12)

which is equivalent to the result from the one-electron Lévy-Leblond equation. The

second-order equation is given by

f̂
(0)
D Ψ

(2)
i + f̂

(2)
D Ψ

(0)
i = ε

(0)
i Ŝ

(2)
D Ψ

(0)
i + ε

(2)
i Ŝ

(0)
D Ψ

(0)
i + ε

(0)
i Ŝ

(0)
D Ψ

(2)
i (IX.13)

which can be rearranged to

(f̂
(0)
D − ε

(0)
i Ŝ

(0)
D )Ψ

(2)
i + (f̂

(2)
D − ε

(0)
i Ŝ

(2)
D − ε

(2)
i Ŝ

(0)
D )Ψ

(0)
i = 0 (IX.14)

with

f̂
(2)
D =

(

Ĵ
(0)
SS + Ĵ

(2)
LL − K̂

(2)
LL −K̂

(0)
SL

−K̂
(0)
LS V + Ĵ

(0)
LL

)

, Ŝ
(2)
D =

(

0 0

0 1

)

. (IX.15)

The perturbed small component χ
(2)
i is again obtained from the second row of (IX.14)

χ
(2)
i =

1

2m

{

(V − ε
(0)
i + Ĵ

(0)
LL )χ

(0)
i − K̂

(0)
LSϕ

(0)
i + σp̂ϕ

(2)
i

}

(IX.16)

=
1

2m

{

(V − ε
(0)
i )χ

(0)
i

+

∫

d3r2
∑

k

ϕ
(0)
k (2)

1

r12

[

χ
(0)
i (1)ϕ

(0)
k (2)− χ

(0)
k (1)ϕ

(0)
i (2)

]

+ σp̂ϕ
(2)
i (1)

}

(IX.17)
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=
1

2m

{

σpϕ
(2)
i +

(

V − ε
(0)
i +

∑

k

[
Ĵ
(0)
k − K̂

(0)
k

])

χ
(0)
i

}

(IX.18)

with

〈χ(0)
j |

[
Ĵ
(0)
k − K̂

(0)
k

]
| χ(0)

i 〉 = 〈χ(0)
j ϕ

(0)
k | χ(0)

i ϕ
(0)
k 〉 − 〈χ(0)

j ϕ
(0)
k | χ(0)

k ϕ
(0)
i 〉. (IX.19)

IX.2. CPHF equations for the relativistic perturbation

The CPHF equations for the relativistic perturbation λrel are obtained by setting the

derivative of the virtual-occupied block of the Fock matrix equal to zero

0 =

{

∂〈Ψa | f̂D | Ψi〉
∂λrel

}

λrel=0

(IX.20)

=
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(IX.21)

=− Uλrel∗
ia εi + Uλrel

ai εa + f
(λrel)
ai +

∑

p,j

Uλrel∗
pj [〈ϕaϕp | ϕiϕj〉 − 〈ϕaϕp | ϕjϕi〉]

+
∑

p,j

Uλrel
pj [〈ϕaϕj | ϕiϕp〉 − 〈ϕaϕj | ϕpϕi〉] (IX.22)

yielding

∑

bj

(

2ReUλrel
bj 〈ϕaϕb | ϕiϕj〉 − Uλrel∗
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. (IX.23)

For the SR part, it follows after spin integration for the closed-shell case

∑

bj

USR
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(
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(IX.24)
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IX.3. First derivative of the Lagrange multipliers

while for a specific SO component c = x, y, z the spin-integrated CPHF equations are

∑

bj

USOc
bj

(

〈φaφb | φjφi〉 − 〈φaφj | φbφi〉+ δabδij(εa − εi)
)

= −f
(SOc)
ai . (IX.25)

Note that in this expression for the y component iUSOy
bj instead of USOy

bj is determined.

The spin cases for the specific components that are evaluated are USOx
bj

= USOx
bj

, iUSOy

bj

and USOz
bj .

IX.3. First derivative of the Lagrange multipliers

The second-order Lagrange multipliers ε
(2)
ji are given as
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With
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and
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while dropping the superscripts (0), it follows
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where it was used that due to (IV.50) it holds
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=〈ϕ(2)
p | ϕq〉+ 〈ϕ(0)

p | ϕ(2)
q 〉+ 〈χ(0)

p | χ(0)
q 〉 (IX.36)

=Uλrel∗
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pq + Sλrel
pq (IX.37)

IX.4. Spin orthogonality for the gSO12 integrals

After separation of the SR and SO parts of the integral

〈pq | σ1p̂1σ2p̂2r
−1
12 σ1p̂1σ2p̂2 | rs〉

the contributions involving the SO part are given by

〈pq | σ1p̂1σ2p̂2r
−1
12 σ1p̂1σ2p̂2 | rs〉 →〈pq | iσ1p̂2(p̂1 × r−1
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−1
12 p̂1p̂2) | rs〉

+ 〈pq | iσ2(p̂2 × iσ1(p̂1 × r−1
12 p̂1)p̂2) | rs〉. (IX.38)

where the first and second term are of the same type, i.e., iσk · R with k=1,2 and R as

the spin-independent part of the operator. In the DPT4 energy expressions (see IV.51,

IV.134) the terms containing the ĝλrel
12 integrals are given as

∑

pq

Dpq

∑

j

〈pj || gλrel
12 || qj〉, (IX.39)

and

∑

pqrs

Γpqrs〈pq || gλrel
12 || rs〉. (IX.40)

Note that the contribution appearing in (IV.51) is a special case of (IX.39) and therefore

does not need a separate discussion.

For the first and second term in (IX.38) it holds that there cannot be a contribution for

the SOx and SOy component as the only possible spin cases for Dpq and Γpqrs are those

where there is an even number of α and β spins, i.e., Dpq,Γpqrs,Γpqrs,Γpqrs plus those

where α and β spin are exchanged. In the integrals however an odd number of α and β

spins is needed to give a non-vanishing contribution as σx and σy both change the spin

case. The SOz component does not change the spin case and therefore contributions of

the aforementioned terms are possible. However, they add up to zero for closed-shell
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systems as shown for the first term in (IX.38)

∑

pq

Dpq

∑

j

〈pj || σ1zR || qj〉

=
∑

ρ=α,β

∑

ω=α,β

∑

pq

Dpρqρ

∑

j

(〈pρjω | σ1zR | qρjω〉 − 〈pρjω | σ1zR | jωqρ〉) (IX.41)

=
∑

pq

∑

j

{

Dpq(〈pj | σ1zR | qj〉
︸ ︷︷ ︸

〈pj|R|qj〉

+ 〈pj | σ1zR | qj〉
︸ ︷︷ ︸

〈pj|R|qj〉

−〈pj | σ1zR | jq〉
︸ ︷︷ ︸

〈pj|R|jq〉

)

+Dpq(〈pj | σ1zR | qj〉+
︸ ︷︷ ︸

−〈pj|R|qj〉

〈pj | σ1zR | qj〉
︸ ︷︷ ︸

−〈pj|R|qj〉

−〈pj | σ1zR | jq〉
︸ ︷︷ ︸

−〈pj|R|jq〉

)
}

. (IX.42)

As Dpq = Dpq it follows that

∑

pq

Dpq

∑

j

〈pj || σ1zR || qj〉 = 0. (IX.43)

When contracted with the two-electron density matrix, these terms add up to zero for

closed-shell systems in a similar manner

∑

pqrs

Γpqrs〈pq || σ1zR || rs〉

=
∑

pqrs

∑

ρωθδ=α,β

Γpρqωrθsδ(〈pρqω | σ1zR | rθsδ〉 − 〈pρqω | σ1zR | sδrθ〉) (IX.44)

=
∑

pqrs

{

Γpqrs(〈pq | σ1zR | rs〉
︸ ︷︷ ︸

〈pq|R|rs〉

−〈pq | σ1zR | sr〉
︸ ︷︷ ︸

〈pq|R|sr〉

)

+ Γpqrs(〈pq | σ1zR | rs〉
︸ ︷︷ ︸

−〈pq|R|rs〉

−〈pq | σ1zR | sr〉
︸ ︷︷ ︸

−〈pq|R|sr〉

)

+ Γpqrs 〈pq | σ1zR | rs〉
︸ ︷︷ ︸

−〈pq|R|rs〉

+Γpqrs 〈pq | σ1zR | rs〉
︸ ︷︷ ︸

〈pq|R|rs〉

− Γpqrs 〈pq | σ1zR | sr〉
︸ ︷︷ ︸

−〈pq|R|sr〉

−Γpqrs 〈pq | σ1zR | sr〉
︸ ︷︷ ︸

〈pq|R|sr〉

}

. (IX.45)

As Γpqrs = Γpqrs,Γpqrs = Γpqrs, and Γpqrs = Γpqrs it follows that

∑

pqrs

Γpqrs〈pq || σ1zR || rs〉 = 0. (IX.46)
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In the same manner it can be shown that the second term in (IX.38) vanishes when

contracted as given in (IX.39) or (IX.40).

Furthermore, for the third term in (IX.38) it holds that σ1 and σ2 have to be of the

same type, i.e., both have to be either σx, σy, or σz to give a non-vanishing contribution.

For the combinations (1 + P̂1,2)σ1xσ2z and (1 + P̂1,2)σ1yσ2z the reason is again that in

the density matrices an even number of α and β spins appear whereas the only non-zero

contributions in the integrals would have to involve an odd number of α and β. Concerning

the contributions (1+P̂1,2)σ1xσ2y it holds that similar to the previous discussion, the terms

add up to zero in the case of closed-shell systems. As both σx and σy change the spin case,

the only non-vanishing contributions from the integrals can come from terms where the

spins for electron 1 and 2 on the left-hand side of the integral and those on the right hand

side are exchanged. For the contraction with the one-electron density matrix it follows

therefore

∑

pq

Dpq

∑

j

〈pq || σ1xσ1yR || rs〉

=
∑

pq

∑

j

{

Dpq(−〈pj | σ1xσ1yR | jq〉
︸ ︷︷ ︸

i〈pj|R|jq〉

) +Dpq(−〈pj | σ1xσ1yR | jq〉
︸ ︷︷ ︸

−i〈pj|R|jq〉

)} (IX.47)

=0 (IX.48)

and for the two-electron density matrix

∑

pqrs

Γpqrs〈pq || σ1xσ1yR || rs〉

=
∑

pqrs

{

Γpqrs(−〈pq | σ1xσ1yR | sr〉
︸ ︷︷ ︸

−i〈pq|R|sr〉

) + Γpqrs(−〈pq | σ1xσ1yR | sr〉
︸ ︷︷ ︸

i〈pq|R|sr〉

)

+ Γpqrs 〈pq | σ1xσ1yR | rs〉
︸ ︷︷ ︸

−i〈pq|R|rs〉

+Γpqrs 〈pq | σ1xσ1yR | rs〉
︸ ︷︷ ︸

i〈pq|R|rs〉

}

(IX.49)

=0. (IX.50)

Obviously the result is the same if electron 1 and 2 are exchanged.
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IX.5. Spin integration for the f
(SO)
pq matrix elements

The spin integration for the spin-orbit components may be exemplary shown for the

f
(SO)
pq matrix elements which are given as

f (SO)
pq =

1

4m2

(

〈p | iσ(p̂V × p̂) | q〉+
∑

j

〈pj || i(σ1(p̂1r
−1
12 × p̂1) + σ2(p̂2r

−1
12 × p̂2)) || qj〉

)

(IX.51)

For the SOx component the only possible spin cases are f
(SOx)
pq and f

(SOx)
pq and therefore

it follows

f
(SOx)
pq =〈p | σ̂xo

x
1 | q〉+

∑

j

{

〈pj | σ1xĝ
SOx
1 | qj〉+ 〈pj | σ1xĝ

SOx
1 | qj〉

− 〈pj | σ2xĝ
SOx
2 | jq〉 − 〈pj | σ1xĝ

SOx
1 | jq〉

}

(IX.52)

=hSOx
pq +

∑

j

{

2〈pj | ĝSOx
1 | qj〉 − 〈pj | ĝSOx

1 | jq〉 − 〈pj | ĝSOx
2 | jq〉

}

(IX.53)

with

ôc1 =
1

4m2
ǫcµνi(p̂µV p̂ν − p̂νV p̂µ) (IX.54)

and the Levi-Cività tensor as given in (IV.68). For f
(SOx)
pq the same result is found.

As σy introduces the imaginary unit i, the equation is premultiplied by i:

if
(SOy)
pq =i〈p | σ̂yo

y
1 | q〉+ i

∑

j

{

〈pj | σ1yĝ
SOy
1 | qj〉+ 〈pj | σ1yĝ

SOy
1 | qj〉

− 〈pj | σ2yĝ
SOy
2 | jq〉 − 〈pj | σ1yĝ

SOy
1 | jq〉

}

(IX.55)

=hSOy
pq +

∑

j

{

2〈pj | ĝSOy
1 | qj〉 − 〈pj | ĝSOy

1 | jq〉 − 〈pj | ĝSOy
2 | jq〉

}

. (IX.56)

Furthermore it holds that if
(SOy)
pq = −if

(SOy)
pq . The SOz component involves the Pauli

spin matrix σz. As it does not change the spin case but only the sign, the possible matrix

elements are f
(SOz)
pq and f

(SOz)
pq . For the αα element it holds

f (SOz)
pq =〈p | σ̂zo

z
1 | q〉+

∑

j

{

〈pj | σ1z ĝ
SOz
1 | qj〉+ 〈pj | σ1z ĝ

SOz
1 | qj〉
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+ 〈pj | σ2z ĝ
SOz
2 | qj〉+ 〈pj | σ2z ĝ

SOz
2 | qj〉

− 〈pj | σ1z ĝ
SOy
1 | jq〉 − 〈pj | σ1z ĝ

SOz
1 | jq〉

− 〈pj | σ2z ĝ
SOy
2 | jq〉 − 〈pj | σ2z ĝ

SOz
2 | jq〉

}

(IX.57)

=hSOz
pq +

∑

j

{

2〈pj | ĝSOz
1 | qj〉 − 〈pj | ĝSOz

1 | jq〉 − 〈pj | ĝSOz
2 | jq〉

}

(IX.58)

and f
(SOz)
pq = −f

(SOz)
pq . From (IX.53), (IX.56), and (IX.58) it follows that the equations

for f
(SOx)
pq , if

(SOy)
pq and f

(SOz)
pq all have the same structure. As this is generally the case for

the SO quantities, it is possible to implement their evaluation in form of loop structure

over the SOx, SOy, and SOz component.

IX.6. Spin-integrated quantities for SR-DPT4 at the

MP2 level

The definitions of the SR perturbed and unperturbed density matrices, Lagrange mul-

tipliers and integrals from (IV.163) are given as

∂tab
ij

∂λSR

=
1

εi + εj − εa − εb

[

∂〈ab | ĝ | ij〉
∂λSR

−
∑

m

∂fmi

∂λSR

tab
mj

−
∑

m

∂fmj

∂λSR

tabim

+
∑

e

∂fae
∂λSR

teb
ij
+
∑

e

∂fbe
∂λSR

tae
ij

]

, (IX.59)

∂fpq
∂λSR

=− 1

2
SSR
pq (εp + εq) + f (SR)

pq +
∑

rk

{
USR
rk (4〈pr | qk〉 − 〈pr | kq〉 − 〈pk | rq〉)

}
,

(IX.60)

∂〈ij | ∂ĝ
∂λSR

| ab〉
∂λSR

=
∑

p

{

USR
pi 〈pj | ĝSR1 + ĝSR2 | ab〉+ USR

pa 〈ij | ĝSR1 + ĝSR2 | pb〉

+ USR
pj 〈ip | ĝSR1 + ĝSR2 | ab〉+ USR

pb 〈ij | ĝSR1 + ĝSR2 | ap〉
+ 2ASR

pi 〈pj | ĝSR1 | ab〉+ 2ASR
pa 〈ij | ĝSR1 | pb〉

+ 2ASR
pj 〈ip | ĝSR1 | ab〉+ 2ASR

pb 〈ij | ĝSR1 | ap〉
}
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+ 2〈ij | ĝSR12 | ab〉, (IX.61)

∂Dij

∂λSR

=− 1

2

∑

ab

∑

k

{

∂λkj

ab

∂λSR

(4tab
ki
− 2tab

ik
) + λkj

ab

(

4
∂tab

ki

∂λSR

− 2
∂tab

ik

∂λSR

)}

, (IX.62)

∂Dab

∂λSR

=
1

2

∑

kj

∑

e

{

∂λkj
ea

∂λSR

(4teb
kj
− 2teb

jk
) + λkj

ea

(

4
∂teb

kj

∂λSR

− 2
∂teb

jk

∂λSR

)}

, (IX.63)

∂f
(SR)
pq

λSR

=
∂

∂λSR

(

〈p | ∂ĥ

∂λSR

| q〉+
∑

k

(

2〈pk | ∂ĝ

∂λSR

| qk〉 − 〈pk | ∂ĝ

∂λSR

| kq〉
))

=
∑

t

[

(USR
tp + 2ASR

tp )h
SR
tq + (USR

tq + 2ASR
tq )h

SR
pt

]

−4m
∑

ts

ASR
tp S

SR
ts ASR

sq

+
∑

tk

USR
tp (2〈tk | ĝSR1 + ĝSR2 | qk〉 − 〈tk | ĝSR1 + ĝSR2 | kq〉)

+
∑

tk

2ASR
tp (2〈tk | ĝSR1 | qk〉 − 〈tk | ĝSR1 | kq〉)

+
∑

tk

USR
tq (2〈pk | ĝSR1 + ĝSR2 | tk〉 − 〈pk | ĝSR1 + ĝSR2 | kt〉)

+
∑

tk

2ASR
tp (2〈pk | ĝSR1 | tk〉 − 〈pk | ĝSR2 | kt〉)

+
∑

tk

USR
tk (2〈pt | ĝSR1 + ĝSR2 | qk〉 − 〈pt | ĝSR1 + ĝSR2 | kq〉)

+
∑

tk

2ASR
tk (2〈pt | ĝSR2 | qk〉 − 〈pt | ĝSR2 | kq〉)

+
∑

tk

USR
tk (2〈pk | ĝSR1 + ĝSR2 | qt〉 − 〈pk | ĝSR1 + ĝSR2 | tq〉)

+
∑

tk

2ASR
tk (2〈pk | ĝSR2 | qt〉 − 〈pk | ĝSR1 | tq〉)

+ 2
∑

k

(2〈pk | ĝSR12 | qk〉 − 〈pk | ĝSR12 | kq〉), (IX.64)

Iij + Iji =−
∑

l

∑

ab

tab
il
(4〈jl | ab〉 − 2〈jl | ba〉)− 2Dijεj

−
∑

kl

Dkl(4〈kj | li〉 − 〈kj | il〉 − 〈ki | jl〉)
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−
∑

bc

Dbc(4〈bj | ci〉 − 〈bj | ic〉 − 〈bi | jc〉)

−
∑

ak

Zak(4〈aj | ki〉 − 〈aj | ik〉 − 〈ai | jk〉), (IX.65)

Iai + Iia =−
∑

kj

∑

b

tab
kj
(4〈kj | ib〉 − 2〈kj | bi〉)− Zaiεi, (IX.66)

Iab + Iba =−
∑

ij

∑

c

tcb
ij
(4〈ij | ca〉 − 2〈ij | ac〉)− 2Dabεb, (IX.67)

∂(Iij + Iji)

∂λSR

=−
∑

l

∑

ab

∂tab
il

∂λSR

(4〈jl | ab〉 − 2〈jl | ba〉)

−
∑

l

∑

ab

tab
il

(

4
∂〈jl | ĝ | ab〉

∂λSR

− 2
〈jl | ĝ | ba〉

∂λSR

)

− 2

(

∂Dij

∂λSR

εj +
∑

k

Dik
∂fjk
∂λSR

)

−
∑

kl

∂Dkl

∂λSR

(4〈kj | li〉 − 〈kj | il〉 − 〈ki | jl〉)

−
∑

kl

Dkl

(

4
∂〈kj | ĝ | li〉

∂λSR

− ∂〈kj | ĝ | il〉
∂λSR

− ∂〈ki | ĝ | jl〉
∂λSR

)

−
∑

bc

∂Dbc

∂λSR

(4〈bj | ci〉 − 〈bj | ic〉 − 〈bi | jc〉)

−
∑

bc

Dbc

(

4
∂〈bj | ĝ | ci〉

∂λSR

− ∂〈bj | ĝ | ic〉
∂λSR

− ∂〈bi | ĝ | jc〉
∂λSR

)

−
∑

ak

∂Zak

∂λSR

(4〈aj | ki〉 − 〈aj | ik〉 − 〈ai | jk〉)

−
∑

ak

Zak

(

4
∂〈aj | ĝ | ki〉

∂λSR

− ∂〈aj | ĝ | ik〉
∂λSR

− ∂〈ai | ĝ | jk〉
∂λSR

)

, (IX.68)

∂(Iai + Iia)

∂λSR

=−
∑

kj

∑

b

∂tab
kj

∂λSR

(4〈kj | ib〉 − 2〈kj | bi〉)

−
∑

kj

∑

b

tab
kj

(

4
∂〈kj | ĝ | ib〉

∂λSR

− 2
∂〈kj | ĝ | bi〉

∂λSR

)

− ∂Zai

∂λSR

εi −
∑

k

Zak
∂fik
∂λSR

, (IX.69)

∂(Iab + Iba)

∂λSR

=−
∑

ij

∑

c

∂tcb
ij

∂λSR

(4〈ij | ca〉 − 2〈ij | ac〉)
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−
∑

ij

∑

c

tcb
ij

(

4
∂〈ij | ĝ | ca〉

∂λSR

− 2
∂〈ij | ĝ | ac〉

∂λSR

)

− 2

(

∂Dab

∂λSR

εb +
∑

c

Dcb
∂fca
∂λSR

)

, (IX.70)

while the unperturbed and perturbed Z-vector equations read

∑

bj

Zbj[(εa − εi)δabδij + 4〈ba | ji〉 − 〈ba | ij〉 − 〈bi | aj〉]

=
∑

kj

∑

b

tab
kj
(4〈kj | ib〉 − 2〈kj | bi〉)−

∑

j

∑

bc

tcb
ij
(4〈aj | cb〉 − 2〈aj | bc〉)

−
∑

lk

Dlk(4〈la | ki〉 − 〈la | ik〉 − 〈li | ak〉)

−
∑

bc

Dbc(4〈ba | ci〉 − 〈ba | ic〉 − 〈bi | ac〉), (IX.71)

∑

bj

∂Zbj

∂λSR

[(εa − εi)δabδij + 4〈ba | ji〉 − 〈ba | ij〉 − 〈bi | aj〉]

=−
∑

bj

Zbj

{

4
∂〈ba | ĝ | ji〉

∂λSR

− ∂〈ba | ĝ | ij〉
∂λSR

− ∂〈bi | ĝ | aj〉
∂λSR

+ δij
∂fba
∂λSR

− δab
∂fij
∂λSR

}

+
∑

kj

∑

b

∂tab
kj

∂λSR

(4〈kj | ib〉 − 2〈kj | bi〉)

+
∑

kj

∑

b

tab
kj

(

4
∂〈kj | ĝ | ib〉

∂λSR

− 2
∂〈kj | ĝ | bi〉

∂λSR

)

−
∑

j

∑

bc

∂tcb
ij

∂λSR

(4〈aj | cb〉 − 2〈aj | bc〉)

−
∑

j

∑

bc

tcb
ij

(

4
∂〈aj | ĝ | cb〉

∂λSR

− 2
∂〈aj | ĝ | bc〉

∂λSR

)

−
∑

lk

∂Dlk

∂λSR

(4〈la | ki〉 − 〈la | ik〉 − 〈li | ak〉)

−
∑

lk

Dlk

(

4
∂〈la | ĝ | ki〉

∂λSR

− ∂〈la | ĝ | ik〉
∂λSR

− ∂〈li | ĝ | ak〉
∂λSR

)
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−
∑

bc

∂Dbc

∂λSR

(4〈ba | ci〉 − 〈ba | ic〉 − 〈bi | ac〉)

−
∑

bc

Dbc

(

4
∂〈ba | ĝ | ci〉

∂λSR

− ∂〈ba | ĝ | ic〉
∂λSR

− ∂〈bi | ĝ | ac〉
∂λSR

)

. (IX.72)

IX.7. Accuracy of the numerical SR-DPT4 and

SO-DPT4 results

The accuracy of the DPT corrections to dipole moments and efgs obtained by nu-

merical differentiation was tested with different field strengths, i.e., X · 10−6 a.u., with

X = 1, 5, 10, 20, 50, 75, and 100 using two- to eight-point formulas for the calculation of

the corresponding corrections. For the efgs, a field strength of 10 · 10−6 a.u. seems to

be well suited as there is a fast convergence when increasing the number of points in the

differentiation formula as can be seen in figure IX.1. Larger field strengths result in de-

terioration of the results. For the dipole moments, as seen in figure IX.2, a field strength

of 75 · 10−6 a.u. appears the best choice, as it shows the most stable convergence pattern.

To ensure that the reported digits in the computed DPT corrections are significant, cal-

culations were carried out using different convergence criteria in the SCF procedure.
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Figure IX.1.: Convergence of the DPT2, SR-DPT4, and SO-DPT4 corrections to the
iodine efg (in a.u.) in HI with different field strengths
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Figure IX.2.: Convergence of the DPT2, SR-DPT4, and SO-DPT4 corrections to the
dipole moment (in a.u.) of HI with different field strengths

IX.8. Basis-set dependence of DPT4

Table IX.1 provides information about the basis-set dependence of the DPT4 correction

at the HF level. The results show that uncontraction of the basis is more important than

choosing the cc-pCVXZ instead of the cc-pVXZ set.
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IX.8. Basis-set dependence of DPT4

Table IX.1.: Basis-set dependence of the DPT4 correction, see chapter VII.1.2, geomet-
ries from CCSD(T)/cc-pCVQZ calculations including DPT2 corrections:109

HCl: R = 1.27351 Å, HBr: R = 1.44121 Å.

SR-DPT4 for HCl
X cc-pVXZ cc-pVXZ(unc) cc-pCVXZ cc-pCVXZ(unc)

T 1.10393E-02 -1.00003E-02 -7.19218E-04 -1.00004E-02
Q 1.23711E-02 -1.00317E-02 -7.02785E-03 -1.00317E-02
5 6.20376E-03 -1.00521E-02 -8.89171E-03 -1.00521E-02

SR-DPT4 for HBr
X cc-pVXZ cc-pVXZ(unc) cc-pCVXZ cc-pCVXZ(unc)

T 1.00137 -9.02804E-01 1.03991 -9.02804E-01
Q 1.02158 -9.03687E-01 -6.00360E-01 -9.03687E-01
5 1.04047 -9.04133E-01 -6.15448E-01 -9.04133E-01

SO-DPT4 for HCl
X cc-pVXZ cc-pVXZ(unc) cc-pCVXZ cc-pCVXZ(unc)

T 3.86488E-05 -6.58307E-04 -5.04987E-04 -6.58348E-04
Q 5.18253E-05 -6.77950E-04 -5.98344E-04 -6.77975E-04
5 -6.06518E-04 -6.81965E-04 -6.60495E-04 -6.81972E-04

SO-DPT4 for HBr
X cc-pVXZ cc-pVXZ(unc) cc-pCVXZ cc-pCVXZ(unc)

T 2.95111E-02 -7.77068E-02 -1.65122E-02 -7.77067E-02
Q 2.87774E-02 -7.85726E-02 -5.49387E-02 -7.85725E-02
5 1.61329E-02 -7.87018E-02 -6.90552E-02 -7.87017E-02
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