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Zusammenfassung

Das magnetische Moment des Myons, das dessen Kopplung an ein externes magneti-
sches Feld beschreibt, ist eine der am genauesten experimentell bestimmten Größen in
der Teilchenphysik. Sie wird durch die Anomalie des magnetischen Momentes des Myons
ausgedrückt, aµ = (g − 2)µ/2, die mit einer relativen Genauigkeit von 0,5·10−6 gemessen
wurde. Die Messung zeigt eine Differenz von mehr als 3,5 Standardabweichungen zur
Theorievorhersage im Rahmen des Standardmodells. Auf theoretischer Seite können die
Beiträge der Quantenelektrodynamik sowie der schwachen Wechselwirkung mit sehr ho-
her Präzision mittels eines Störungsansatzes berechnet werden. Der hadronische Beitrag
ahadµ läßt sich bei niedrigen Energien nicht störungstheoretisch ermitteln. Es ist jedoch
möglich, den führenden Beitrag, die hadronische Vakuumpolarisation, in Form eines Di-
spersionsintegrals mit gemessenen hadronischen Wirkungsquerschnitten in der Elektron-
Positron-Annihilation in Verbindung zu setzen. Für eine präzise Standardmodellvorher-
sage von aµ ist es deshalb essentiell, die experimentellen Unsicherheiten der hadronischen
Wirkungsquerschnittsmessungen zu minimieren.

Zur Messung der hadronischen Wirkungsquerschnitte wird zusätzlich zu den traditionel-
len Energiescan-Experimenten die Methode der Photonabstrahlung im Anfangszustand
(Initial State Radiation, ISR) verwendet. Hierbei werden Ereignisse untersucht, bei denen
ein hochenergetisches Photon aus dem Eingangszustand des Elektron-Positron-Systems
abgestrahlt wurde und somit die effektive Schwerpunktsenergie absenkt. Mit dieser Me-
thode kann bei BABAR der Energiebereich von der hadronischen Produktionsschwelle bis
zu ungefähr 4,5GeV untersucht werden.

Der Wirkungsquerschnitt e+e− → π+π− hat mit ungefähr 70% den größten Beitrag zu
ahadµ und ist mit einer Präzision von besser als 1% bekannt. Durch diese Hochpräzi-
sionsmessung kommt der führende Beitrag zur Unsicherheit von ahadµ von dem Ener-
giebereich zwischen 1GeV und 2GeV, in welchem die Kanäle e+e− → π+π−π0π0 und
e+e− → π+π−π+π− den inklusiven hadronischen Wirkungsquerschnitt dominieren. Die
präziseste Messung des Prozesses e+e− → π+π−π+π− wird in dieser Doktorarbeit vor-
gestellt. Dieser Kanal wurde von BABAR bereits basierend auf 25% der Gesamtstatistik
gemessen. Im Vergleich zur ersten Analyse werden detailliertere Studien des Untergrunds
anderer ISR- wie auch nicht-radiativer-Kanäle durchgefhrt. Zusätzliche umfangreiche Stu-
dien zur Spur- sowie zur Photon-Rekonstruktionseffizienz reduzieren die systematische
Unsicherheit in der Peakregion des Wirkungsquerschnittes von 5% auf 2.4%.

Neben der Extraktion des Wirkungsquerschnittes σ(e+e− → π+π−π+π−) wird eine erste
Analyse interner Strukturen durchgeführt, die Hinweise auf resonante Zwischenzustände
ρ(770)0f2(1270), ρ(770)

0f0(980) wie auch a1(1260)
±π∓ ergibt. Schließlich werden in die-

ser Arbeit auch die Verzweigungsverhältnisse BJ/ψ→π+π−π+π− sowie Bψ(2S)→J/ψπ+π− be-
stimmt.





Summary

One of the most precisely measured quantities in particle physics is the magnetic moment
of the muon, which describes its coupling to an external magnetic field. It is expressed
in form of the anomalous magnetic moment of the muon aµ = (g − 2)µ/2 and has been
determined experimentally with a precision of 0.5 parts per million. The current direct
measurement and the theoretical prediction of the standard model differ by more than
3.5 standard deviations. Concerning theory, the contribution of the QED and weak in-
teraction to aµ can be calculated with very high precision in a perturbative approach.
At low energies, however, perturbation theory cannot be used to determine the hadronic
contribution ahadµ . On the other hand, ahadµ may be derived via a dispersion relation from
the sum of measured cross sections of exclusive hadronic reactions. Decreasing the ex-
perimental uncertainty on these hadronic cross sections is of utmost importance for an
improved standard model prediction of aµ.

In addition to traditional energy scan experiments, the method of Initial State Radiation
(ISR) is used to measure hadronic cross sections. This approach allows experiments at
colliders running at a fixed centre-of-mass energy to access smaller effective energies by
studying events which contain a high-energetic photon emitted from the initial electron
or positron. Using the technique of ISR, the energy range from threshold up to 4.5GeV
can be accessed at BABAR.

The cross section e+e− → π+π− contributes with approximately 70% to the hadronic
part of the anomalous magnetic moment of the muon ahadµ . This important channel
has been measured with a precision of better than 1%. Therefore, the leading con-
tribution to the uncertainty of ahadµ at present stems from the invariant mass region
between 1GeV and 2GeV. In this energy range, the channels e+e− → π+π−π0π0 and
e+e− → π+π−π+π− dominate the inclusive hadronic cross section. The measurement
of the process e+e− → π+π−π+π− will be presented in this thesis. This channel has
been previously measured by BABAR based on 25% of the total dataset. The new analy-
sis includes a more detailed study of the background contamination from other ISR and
non-radiative background reactions. In addition, sophisticated studies of the track recon-
struction as well as the photon efficiency difference between the data and the simulation
of the BABAR detector are performed. With these auxiliary studies, a reduction of the
systematic uncertainty from 5.0% to 2.4% in the peak region was achieved.

The π+π−π+π− final state has a rich internal structure. Hints are seen for the interme-
diate states ρ(770)0f2(1270), ρ(770)

0f0(980), as well as a1(1260)
±π∓. In addition, the

branching ratios BJ/ψ→π+π−π+π− and Bψ(2S)→J/ψπ+π− are extracted.
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Preamble

Physics faces an arbitrarily large amount of complex problems. Solving these by sub-
dividing them into smaller problems, classifying similar types of problems, as well as
detecting common patterns and symmetries between problems is one of the paradigms
of problem solving in physics. This procedure can be visualised as a pyramid ranging
from the initial complex problem at the top to a large number of basic problems at the
bottom, as illustrated in Fig. 1.

Figure 1: Illustration of the pyramidal problem
structure as well as the tree-like theo-
retical basis describing these phenom-
ena with a unified theory as the trunk.

In order to understand and solve these ba-
sic problems, a theoretical description is
needed. In Fig. 1, these theories are repre-
sented by the branches of a tree. A general
motivation of physics has always been to cre-
ate a common theoretical basis for the solv-
able problems at the bottom of the pyramid.
This common foundation is represented as
the trunk of the tree, comprising the spe-
cific theories and procedures to solve all ba-
sic problems in the different fields of natu-
ral sciences. Thus, the complex problem at
the top of a problem pyramid can be solved
based on one unified basic theory.

In the 16th century Newton realized that
the same mechanism which forces planets
to move on elliptical trajectories around the
sun also forces an apple to fall from a tree to
the ground. Since then, physicists have suc-
cessfully continued to connect theory twigs
to common branches. Maxwell’s equations,
formulated in the 19th century, unified the
phenomena of electricity and magnetism.

In the beginning of the 20th century, Einstein formulated the theories of special and later
general relativity. Almost at the same time, the theory of quantum mechanics was devel-
oped. These theories superseded existing ones. In addition to the well-established results
they predicted new phenomena.



2 Preamble

The discovery of a structured periodic table of elements led to the assumption that the
formerly thought to be fundamental particles called “atoms” have a substructure. The
constituents are the protons, neutrons and electrons. Soon additional particles have been
found in studies of cosmic rays as well as particle accelerator experiments. A combination
of quantum mechanics and special relativity, the quantum field theory, was postulated
in order to try to describe these phenomena. The first ingredients as well as the general
recipe to formulate the standard model of particle physics were discovered.

According to the standard model, the fundamental point-like particles are the leptons
and the quarks. They appear in nature in three families or generations, which differ
in mass. For each of these fermions1 the theory contains a corresponding anti-particle
with opposite discrete quantum numbers. The standard model describes three out of
the four known fundamental interactions: the weak, the electromagnetic and the strong
interaction. The forces are transmitted via interaction particles, the so-called vector or
gauge bosons. These standard model constituents are illustrated in Fig. 2.
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Figure 2: Elementary particles in the standard model: three generations of neutrinos (neutral leptons)
coupling to the weak interaction (W±, Z0), charged leptons interacting in addition with
photons, and finally quarks also coupling to the strong interaction transmitted via gluons.
Through coupling to the Higgs particle, the fermions acquire their mass. The anti-particles
are not listed.

The uncharged leptons - the very light neutrinos - only carry the weak charge and there-
fore are solely able to exchange the weak interaction particles (W± and Z0). The charged

1In the standard model particles with half-integer spin are called fermions. Particles with integer spin
are bosons.
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leptons (electron e, muon µ, tau τ) carry electric charge and thus also couple to the pho-
ton. The quarks carry an additional charge called color, enabling them to couple to the
strong interaction transmitted by gluons. They form strongly coupled composite objects
like protons and neutrons. The Higgs particle is the only standard model constituent
which has not been discovered, yet. The Higgs mechanism explains why in the elec-
troweak interaction the photon is massless whereas the W±- and Z0-bosons are massive.
In addition, it generates the mass of the fermions.

The standard model, which describes all these fundamental interactions, has not been fal-
sified until today. Many new particles and states had been predicted and found. However,
there are fundamental reasons to believe that the standard model is only the low-energy
limit of a more complete theory. Masses of the fundamental particles as well as addi-
tional parameters describing the interactions need to enter as input parameters and the
distinct mass pattern is not understood. Furthermore, it is not understood why exactly
three generations of leptons and quarks exist. In addition, the standard model provides
neither an explanation for dark matter nor for dark energy. A complete theory should
also incorporate the gravitational interaction described by the general relativity theory.

These and additional open questions lead to the common interest in tests of this theory
in order to find its possible leaks and help theorists by finding the frontiers to look for
phenomena of physics beyond the standard model. Experimental tests of the standard
model fall into two distinct categories: The search for new structures at high energies on
the one hand, and the performance of high precision measurements of parameters which
can be calculated in the standard model to high accuracy at comparably low energies on
the other hand.

One particular high precision test is provided by the anomaly of the magnetic moment
of the muon, the so-called muon anomaly. The movement of a muon in an external mag-
netic field is sensitive to this quantity. This interaction and thus the muon anomaly has
been measured with very high precision. The uncertainty of the theoretical prediction to
the muon anomaly is limited by experimental input. This experimental input consists of
hadronic cross sections which are measured with high precision as described within this
thesis.





Chapter 1

Hadronic Cross Sections and their
Impact on the Standard Model

This chapter introduces the electromagnetic coupling constant αQED and the anomaly
of the magnetic moment of the muon aµ. Then the influence of hadronic cross section
measurements at e+e− accelerators on the theoretical prediction of these physical quan-
tities is discussed. Finally the present experimental situation of hadronic cross section
measurements is presented.



6 1 Hadronic Cross Sections and their Impact on the Standard Model

In the standard model (SM), the strength of a fundamental interaction is parameterized
by the corresponding coupling constant α. In a quantum field theory such as QED, vir-
tual particle-antiparticle loops (“vacuum polarization”, VP) occur, to which a photon
can couple. This leads to an energy (or scale) dependence of the effective coupling. This
is briefly explained in the first part of this chapter.

Another example where the vacuum polarization plays a crucial role in a precision test of
the standard model is the anomalous magnetic moment of the muon. Charged particles
with spin carry a magnetic moment and therefore interact with magnetic fields. The
strength of the interaction is proportional to the gyromagnetic factor g. According to the
Dirac Theory for point-like particles with spin 1/2, g is equal to 2. A deviation of g from
2 is caused by virtual corrections. The size of this effect is usually given by the anomaly
of the magnetic moment a = (g−2)/2. The precision of the theoretical prediction within
the standard model of particle physics of these corrections is limited by hadronic quark-
antiquark loops, the hadronic vacuum polarization. Experimental determinations of the
anomalous magnetic moment of the muon aµ = (g − 2)µ/2 are presented in this chapter
as well as the theoretical predictions. It is moreover explained how experimental data on
the cross section σ(e+e− → hadrons) are related to these theoretical predictions via the
fundamental assumptions of analyticity and causality. Finally, the current experimental
situation concerning hadronic cross section data is presented.

1.1 The Running of the Fine Structure Constant αQED

One fundamental input parameter for the electroweak SM is the fine structure constant
αQED. It is related to the electrical charge e via α = e2

4πε0~c
with the vacuum permittivity

ε0, the reduced Planck Constant ~ and the speed of light c. Vacuum polarization due
to virtual particle-antiparticle pairs partially screens the electrical charge, modifying the
value of the so-called bare charge e0. This effect is illustrated in Fig. 1.1.
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Figure 1.1: (a): Illustration of effective screening of the bare electrical charge through VP; (b): VP
affects the coupling αQED via higher order corrections in the SM.

Thus, e0 needs to be replaced by a running charge depending on the momentum transfer
q according to equation 1.1.

e2 → e2(q2) =
e20 · Z3

1 + Π′
γ(q

2)
(1.1)
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The renormalization factor Z3
1 is fixed by the boundary condition that in the limit q2 → 0

the running charge has to be equal to e0, Π
′
γ(q

2) is the so-called vacuum polarization
amplitude. This leads to Formula 1.2 for the running of the fine structure constant,

αQED(q
2) =

αQED(0)

1−∆αQED(q2)
, (1.2)

with α−1
QED(0) = 137.035999084(51) as measured in [1]. The screening is more effective

at low momentum transfers. Therefore the strength of interaction increases with growing
q2. The value for the fine structure constant is approximately larger by 6% at q2 =M2

Z ,
the mass of the Z-boson squared, compared to q2 = 0 [2]. It is convenient to subdivide
this effect into three loop contributions:

∆αQED(q
2) = ∆αlep

QED(q
2) + ∆α

had(5)
QED (q2) + ∆αtop

QED(q
2). (1.3)

The QED contribution from the leptonic sector ∆αlep
QED has been calculated in pertur-

bation theory up to three loops. The following value has been determined at q2 = s =
M2

Z [3], where in the past most of the electroweak precision tests have been performed at
LEP/CERN:

∆αlep
QED(M

2
Z) = 314.98× 10−4. (1.4)

In the hadronic sector, the contribution from the top-antitop quark loops is very small [4]:

∆αtop
QED(M

2
Z) = −(0.728± 0.014)× 10−4, (1.5)

and has therefore been separated in equation 1.3. The hadronic contribution from the
loops of the remaining five quarks (uu, dd, cc, ss, bb) are grouped into ∆α

had(5)
QED . The opti-

cal theorem expresses the relation between the hadronic vacuum polarization amplitude
and hadronic e+e− cross sections as illustrated in Fig. 1.2. Making use of the analytic-

γ γ

had ⇔

ImΠ
′
had
γ

(q2)

γ

had

2

imσ
had
tot (q2)

Figure 1.2: The optical theorem for the hadronic contribution to the photon propagator. [5].

ity of the vacuum polarization amplitude, in addition to the optical theorem allows to
express the hadronic contribution to ∆α

had(5)
QED via a dispersion relation:

∆α
had(5)
QED (s) =

−e2s
12π2

Re

∫ ∞

m2
π0

ds′
R(s′)

s′ − s− iε
. (1.6)

1in a certain regularization scheme
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R(s) is given as the ratio of the hadronic to the muonic e+e− annihilation cross section:

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (1.7)

At high energies, perturbative quantum chromodynamics (pQCD) in an expansion of the
strong coupling constant αs can be applied in order to determine R(s). Below a certain
energy, EpQCD, R(s) has to be measured in e+e− experiments, because αs is of O(1) at
these energies. Therefore, the integral is subdivided into these two regions:

∆α
had(5)
QED (s) =

−e2s
12π2

[

Re

∫ EpQCD

m2
π0

ds′
R(s′)

s′ − s− iε
+Re

∫ ∞

EpQCD

ds′
R(s′)

s′ − s− iε

]

(1.8)

Methods to determine this integral typically differ by the choice of EpQCD and different
approaches to combine the datasets for R(s′), e.g. the Adler function approach [6].
Concerning EpQCD, some authors assume the validity of pQCD already above 1.8 or 2.5
GeV [7–10], while others prefer to use experimental data up to 12GeV [10, 11]. Fig. 1.3
shows different evaluations of ∆αhad

QED on the lower scale and the resulting α−1
QED(M

2
Z) on

the upper scale. It can be seen that the different assumptions are in reasonably good
agreement with each other.

∆α(5) had(MZ
2) x 104                  

α(MZ
2)-1                  

Kühn & Steinhauser (98) [4]

Martin et al. (00) [10]

Troconiz & Yndurain (05) [11]

Burkhardt & Pietrzyk (05) [12]

HMNT (06) [13]

Jegerlehner (08) [14]

Jegerlehner (08) [14]

Jegerlehner (10) [15]

Davier et al. (10) [2]

HLMNT (11) [16]

pQCD

data driven

pQCD

data driven

data driven

data driven/pQCD

Adler function

Adler function

pQCD from 1.8-3.7 GeV

data driven

270 280 290

129 128.9 128.8

277.5±1.7

273.8±2.0

274.9±1.2

275.8±3.5

276.8±2.2

275.94±2.19

275.15±1.49

274.98±1.35

274.2±1.0

276.26±1.03

Figure 1.3: Evaluations of ∆αhad
QED(M2

Z) (lower scale) and the corresponding value of α−1
QED(M2

Z) (up-
per scale) at the Z boson mass MZ . This information is presented in more detail in [16].

The most recent evaluation of ∆α
had(5)
QED is given by [16]:

∆α
had(5)
QED (M2

Z) = (276.26± 1.03)× 10−4, (1.9)
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leading via Equation (1.2) to the following prediction for the QED coupling constant at
the Z boson mass:

α−1
QED(M

2
Z) = 128.944± 0.014 (1.10)

The uncertainty of α−1
QED(M

2
Z) is completely dominated by the ∆α

had(5)
QED contribution.

In Fig. 1.4 (left) it is shown how the data on R(s) from different energy intervals
√
s

contribute in Equation (1.6) to the absolute value of ∆α
had(5)
QED (M2

Z). Fig. 1.4 (right) shows

the corresponding contributions to the uncertainty of ∆α
had(5)
QED (M2

Z) [5]. The leading
contribution to the uncertainty stems from R(s) data from the energy region between
1-2GeV. Although the absolute contribution is small in this energy range (see Fig. 1.4
(left)), the contribution to the uncertainty is larger than 30%. The leading contribution
to the inclusive hadronic cross section in this region stems from the hadronic reactions
e+e− → π+π−π+π− and e+e− → π+π−π0π0. Therefore, it is necessary to measure these
contributions with the highest possible precision, since they dominate the uncertainty of
the determination of αQED.
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Figure 1.4: Fraction of total contributions (left) and uncertainty (right) to ∆α
had(5)
QED (M2

Z) from different
energy intervals [5].

A precise knowledge of a set of SM parameters is needed to test its internal consistency
and in order to make predictions for properties of so-far unknown particles as the mass
of the Higgs-boson. These predictions are performed e.g. by the LEP (Large Electron-
Positron Collider) ElectroWeak Working Group (EWWG) [17] or the Gfitter group [18].
They combine electroweak measurements from the LEP experiments with additional ex-
perimental results of NuTeV, CDF, D�0 and SLD in order to perform a SM fit. As an
example, in Fig. 1.5 (left), experimental extractions of the sine-square of the Weinberg an-
gle sin2 θlepteff are shown [19]. This angle is obtained by asymmetry measurements at LEP-1
and SLC (Stanford Linear Collider) depending only on leptonic couplings (top three) as
well as additional quark couplings (bottom three), which require small electroweak cor-
rections. Also shown is the weighted average value as well as the SM prediction of the
running of sin2 θlepteff as a function of the Higgs-boson mass. The uncertainties due to the

hadronic contribution of the fine structure constant ∆α
had(5)
QED (M2

Z) as well as due to the
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uncertainty of the top-quark mass mt are indicated. Using the average value of sin2 θlepteff

as well as other electroweak fits, the SM prediction of the Higgs-boson mass mH is dis-
played in Fig. 1.5 (right). The regions excluded by direct measurements at LEP [20]
and the Tevatron [21, 22] are also indicated. The Higgs-boson mass is predicted to be
mH = 89+35

−26GeV/c2 at 68% confidence level as shown by the black curve (∆χ2 = 1).
Most of this region is already excluded by direct LEP measurements. The fit result in-
cludes a theory based evaluation of α

had(5)
QED (M2

Z) [23]. Including hadronic cross section
measurements decreases the tension with the SM for the prediction of mH . Thus, the
prediction for the mass of the Higgs-boson strongly depends on the running of the fine
structure constant and therefore on the hadronic cross section data.
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Figure 1.5: Left: Extractions of the Weinberg angle sin2 θlepteff from LEP-1 and SLC measurements
depending only on lepton couplings (top) and in addition on quark couplings (middle) as
well as the weighted average; bottom: the running of the standard model prediction of
sin2 θlepteff as a function of the mass of the Higgs-boson mH (black line); the uncertainties

due to the hadronic contribution of the fine structure constant ∆α
had(5)
QED (M2

Z) (red band)
as well as due to the uncertainty of the top-quark mass mt (blue shaded band) are also
indicated. Right: ∆χ2 curve derived from the EWWG fit as a function of the Higgs-boson
mass mH , assuming the standard model to be valid. The vertical bands represent the
excluded mH regions with a confidence level of 95% derived by direct measurements at
LEP [20] and the Tevatron [21, 22]. The dashed lines include a more recent evaluation of

∆α
had(5)
QED (M2

Z) based on hadronic cross section measurements [23] instead of a more theory

based evaluation [24]. Also shown is the influence of additional low Q2 data, e.g. from the
NuTev measurement, [19]. Images are taken from [17,19].
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1.2 The Magnetic Moment of the Muon aµ

A massive, charged particle with spin ~s interacts with a magnetic field ~B. The interaction
causes an energy-splitting ∆E, which is proportional to ~B and the magnetic moment ~µ
of the particle, ∆E = −~µ ~B, where ~µ is defined as:

~µ = g
e~

2m
~s. (1.11)

In the Dirac theory of point-like particles with spin 1/2, the gyromagnetic factor g is
equal to 2. In a relativistic quantum field theory, however, quantum corrections need to
be considered, leading to a deviation of g from 2. This deviation is typically given in
terms of the anomalous magnetic moment which is defined as al = (g−2)l/2 (l = e, µ, τ).

Contributions to the anomalous magnetic moment of leptons δal by quantum fluctuations
from higher energy scales or heavier particles are typically proportional to the square of
the mass of the lepton:

δal ∝
ml

2

M2
(M ≫ ml) (1.12)

Here M may be either the mass of a heavier SM particle or a heavy state beyond the
SM, or an energy scale (ultraviolet cut–off) at which the SM is not valid anymore.

In order to test the SM predictions, free, point-like, massive, charged particles are needed.
These requirements are fulfilled by the charged leptons (electron e, muon µ, tau τ). The
electron anomaly is known with the highest precision, by a factor 2000 more precise than
the muon anomaly aµ. Due to the fact that in the case of the muon anomaly loop effects
of heavy gauge bosons or hypothetical heavy particles beyond the SM are magnified by
the factor (mµ/me)

2 ≈ 40000, aµ is 20 times more sensitive to physics beyond the SM
(New Physics). For ae the effects of the weak and the hadronic corrections cannot yet
be resolved at the given level of experimental precision. Testing the electron anomaly
is thus a unique test of QED and in addition allows an extremely precise determination
of the fine structure constant αQED at essentially zero momentum transfer [1]. aτ is
in principle even more sensitive to effects of New Physics in comparison to aµ and ae.
However, by current experimental means a precision measurement is not feasible due to
the short lifetime t1/2 of the τ (t1/2(τ) ≈ 10−13s). Thus a comparison of high precision
measurements of aµ with the SM prediction provides the best SM probe and is considered
as a “monitor for New Physics”. At the same time, the physics of (g − 2)µ challenges
also New Physics with a large parameter space already being ruled out with the given
precision of theory and experiment. This section will cover the current experimental
determination as well as the SM predictions of (g − 2)µ.
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Experiment: High precision measurements of (g − 2)µ

The concept of the (g − 2)µ measurement is the following: Polarized muons are injected

into a constant and well known homogeneous magnetic field ~B. The muons perform a
cyclotron motion with a characteristic angular frequency ~ωc. Due to the motion of the
muons’ magnetic moment in ~B, the spin axis is changed as described by the Larmor
frequency ~ωl. Because of the muon anomaly, ~ωl is slightly larger than ~ωc. Therefore
after each full circle the muon’s momentum is unchanged, whereas the spin axis changes
its relative angle as illustrated in Fig. 1.6 [25]. This results in a precessing muon spin
according to the frequency difference ~ωa = ~ωl − ~ωc.

~ωc =
e ~B

mµ γ
, ~ωl =

e ~B

mµ γ
+ aµ

e ~B

mµ
, ~ωa = aµ

e ~B

mµ
, (1.13)

with the relativistic Lorentz factor γ = 1/
√

1− v2

c2
and the muon velocity v.

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒
µ

⇒
spin

momentum

Storage

Ring

ωa = aµ
eB
mµ

actual precession × 2

Figure 1.6: Spin precession due to aµ in the (g − 2)µ storage ring (∼ 12◦/circle) [25].

This basic principle of the aµ measurement via the precession frequency ~ωa had already
been used in the last CERN experiment [26]. It was re-adapted in the latest BNL experi-
ment with major improvements including a high intensity primary proton beam provided
from the proton storage ring AGS (Alternating Gradient Synchrotron) and a separate
muon – instead of pion – storage ring with a super–ferric magnet [27]. The working prin-
ciple of the muon (g−2)µ experiment at Brookhaven is illustrated in Fig. 1.7. Additional
information is given in [28–30].

Pions are produced in the collision of the 24GeV proton beam of the AGS with a fixed
target. Eventually the pions decay into a muon and a neutrino. Thanks to the helicity
structure of the weak decay the spin of the muons is directed along the direction of their
momentum, i.e. the muons are longitudinally polarized. Next, they are injected into the
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toroid–shaped ring with a 1.45T magnetic field keeping them on a circular path with a
diameter of 14 meters.

π
+

Storage

Ring

Protons

from AGS

Target

Pions

p=3.1 GeV

π
+
→ µ

+
νµ

Inflector

Polarized Muons

Injection Point

Kicker

Modules

Injection Orbit

Storage Ring Orbit

νµ µ
+

⇒ ⇐ spin
momentum

In Pion Rest Frame

“Forward” Decay Muons

are highly polarized

Figure 1.7: Illustration of muon production, injection and storage in the BNL (g − 2)µ ring [25].

Retaining the muons on their trajectories requires an electrostatic focusing system. There-
fore in addition to the magnetic field ~B, an electric quadrupole field ~E needs to be applied
in the plane defined by the muon orbit. This transversal electric field has an impact on the
precession frequency ~ωa as calculated by Bargmann, Michel and Telegdi in 1959 [31, 32]:

~ωa =
e

mµ

(

aµ ~B −
[

aµ −
1

γ2 − 1

]

~v × ~E

)

. (1.14)

It is remarkable that for a certain choice of γ (γ = 29.3), the term (aµ − 1/(γ2 − 1))
approximately vanishes, such that the precession frequency ~ωa becomes almost indepen-
dent of ~E. This corresponds to a “magic” muon energy of Emagic = γmµ = 3.098GeV.

In addition to the suppression of the ~E effect, this energy leads to a large time dilata-
tion, increasing the lifetime of the muon in the laboratory frame from 2.20µs to 64.4µs.
Therefore the muons are circulating in the ring many times before decaying according to
µ+ → e+ + νe+ ν̄µ. High-energetic positrons are emitted with high probability along the
current spin axis of the muon. Again this relation is due to the structure of the weak
decay. Finally, as illustrated in Fig. 1.8, the energy of the positrons is measured with 24
calorimeters distributed evenly inside the muon storage ring. This allows a selection of
forward decaying positrons above a certain energy threshold ET and thus to determine
the direction of the muon’s spin.

The number of detected decay positrons N(t) with an energy above ET emitted at time
t after the muon injection is given by

N(t) = N0(ET ) exp

( −t
γτµ

)

[1 + A(ET ) sin(ωat + φ(ET ))] (1.15)
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Figure 1.8: Decay of µ+ and detection of the emitted e+ [25]. High-energetic positrons are correlated
with the current muon spin direction.

with a normalization factor N0(ET ), the muon life time τµ, the asymmetry factor A(ET ),
and a phase φ(ET ). This expected exponential decay law with a modulation due to the
(g − 2)µ precession is observed in Fig. 1.9 for approximately 3.6 billion recorded decays
in the 2001 data–taking period.
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Figure 1.9: Counts of detected positrons versus time distribution for 3.6 billion decays in the 2001 µ−

data–taking period (E821 experiment, BNL) [27].
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For a precision measurement of aµ, in addition to ~B (measurement described in [33]),
also the mass of the muon mµ must be known to very high precision. The experiments
on the microwave spectrum of ground state muonium (µ+ e−) [34] performed at LAMPF
at Los Alamos in combination with the theoretical prediction of the muonium hyperfine
splitting [35, 36] provides the needed result.

Experiment Year Polarity aµ × 1011 ∆aµ/aµ [ppm] Ref.

CERN I 1961 µ+ 114 500 000(2200000) 4300 [37]

CERN II 1962-1968 µ+ 116 616 000(31000) 270 [38]

CERN III 1974-1976 µ+ 116 591 000(1100) 10 [26]

CERN III 1975-1976 µ− 116 593 600(1200) 10 [26]

BNL 1997 µ+ 116 592 510(1500) 13 [39]

BNL 1998 µ+ 116 591 910(590) 5 [40]

BNL 1999 µ+ 116 592 020(150) 1.3 [41]

BNL 2000 µ+ 116 592 040(90) 0.73 [42]

BNL 2001 µ− 116 592 140(90) 0.72 [43]

Average 116 592 080(63) 0.54 [27]

Table 1.1: Summary of the CERN and BNL results. Information is taken from [27].

Table 1.1 summarizes all aµ measurements from the CERN and BNL experiments. The
average result for aµ is published in [27]:

aµ = 116 592 080(54)(33)× 10−11 [0.54 ppm]. (1.16)

The uncertainties correspond to the statistical and systematic uncertainties, respectively.

Theory: Pre/Post-diction of aµ

The radiative corrections giving rise to the muon anomaly are subdivided into QED,
electroweak and hadronic contributions according to the nature of the interaction leading
to the correction.

aSMµ = aQED
µ + aweakµ + ahadµ (1.17)

The QED part includes all diagrams containing only photons and leptonic loops as radia-
tive corrections and may in general be written as a power series in α/π. The Schwinger
term containing the one-photon exchange correction, illustrated in Fig. 1.10 (a), accounts
for more than 99% of the total correction. The corrections including two leptonic loops
are illustrated in Fig. 1.10 (b)-(h). These two loop corrections [44,45] as well as the three
loop terms [46–48] are known analytically. The four loop corrections, containing already
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Figure 1.10: Leading order QED contribution (a) and NLO QED corrections (b-h) of (g − 2)µ.

more than 1000 diagrams, as well as the most important five loop contributions are de-
termined numerically. This leads to the following evaluation of the QED contribution to
the muon anomaly [25]:

aQEDµ = (116 584 718.104± 0.148)× 10−11 (1.18)

The uncertainty is dominated by the estimated uncertainty of the five loop contribution.

W

νµ
µ

W

Z H

a) b) c)

Figure 1.11: Leading order weak corrections of (g − 2)µ.

The leading contributions of the electroweak correction are illustrated in Fig. 1.11. The
most relevant graph at this order is the triple gauge boson vertex term shown in Fig. 1.11
(a). The graph including the virtual Z boson, Fig. 1.11 (b), has opposite sign and is half
as large. The Higgs term Fig. 1.11 (c) is estimated to be smaller than 5 × 10−14 taking
into account the current lower mass bound for the Higgs mass from the LEP experiments
(mH > 114GeV/c2). Typical electroweak 2-loop corrections are a combination of the
1-loop diagrams with additional fermionic loop insertions. The electroweak contribution
to aµ is found to be [49, 50]:
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aweakµ = (153.2± 1.0± 1.5)× 10−11. (1.19)

The first uncertainty is an estimate of hadronic loop effects, while the second uncertainty
is due to estimates with different Higgs masses.

The hadronic contribution finally may be subdivided again into Leading Order (LO)
and Higher Order (HO) terms as well as the hadronic Light-by-Light (LbL) scattering
contribution.

ahadµ = ahadµ,LO + ahadµ,HO + ahadµ,LbL (1.20)

The LO contribution is shown in Fig. 1.12 (a).

µ

γ

µ

l

l̄

a) b) c)

l

l̄

d) e) f)

Figure 1.12: (a) Leading order hadronic contribution of (g − 2)µ; (b)-(e) NLO corrections and (f) the
hadronic LbL scatteing contribution. The shaded circles represent the hadronic loop.

Fig. 1.12 (a)-(d) include LO vacuum polarization contributions, whereas Fig. 1.12 (e) in
addition involves HO vacuum polarization corresponding to final state radiation (FSR)
of hadrons. Fig. 1.12 (f) represents the leading order contribution of the hadronic LbL
scattering contribution with three exchanged virtual photons. The LbL contribution to
ahadµ is theoretically estimated to be [51]

ahadµ,LbL = (105± 26)× 10−11. (1.21)

As described in Section 1.1, it is not possible to determine the vacuum polarization
contribution theoretically. Experimental input is needed. Exploiting the analyticity
and causality of the vacuum polarization amplitude enables us to relate the vacuum
polarization to the inclusive hadronic cross section via a dispersion integral:
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ahadµ,LO =
1

4π3

∫ ∞

m2
π0

dsσhad(s)K(s) =
(αmµ

3π

)

∫ ∞

m2
π0

ds
R(s)K̂(s)

s2
(1.22)

where the Kernel functions K(s) and K̂(s) =
(

3s
m2
µ

)

K(s) are known analytically2. In

this expression K̂(s) is a bound function between K̂(m2
π) = 0.63 and K̂(∞) = 1. This

clarifies the 1/s2 dependence of the weighting of the R(s) contributions in the dispersion
integral. The dominant channel at low energies is e+e− → π+π−, contributing with a
relative fraction of 73% to the total hadronic correction of aµ, as illustrated in Fig. 1.14
(left). The hadronic cross section measurements are presented in detail in Section 1.3.
The following contribution to ahadµ due to LO and HO hadronic corrections according to
Ref. [2, 15] is found:

ahadµ,LO = (6 923± 42)× 10−11, (1.23)

ahadµ,HO = (−97.9± 0.9)× 10−11. (1.24)

This leads to the SM prediction for aµ according to [2]:

ahadµ,SM = (116 595 802± 42± 26± 2)× 10−11, (1.25)

where the uncertainties have been split into lowest and higher order hadronic, and other
contributions, respectively.

In Fig. 1.13 the theoretical evaluations of aµ using different experimental input are com-
pared to the BNL measurement. Instead of electron-positron annihilation measurements,
it is also possible to determine ahadµ,SM from hadronic τ -decay measurements exploiting the
conserved vector current. The e+e− → π+π− channel after isospin rotation corresponds
to the τ± → ντπ

±π0 decay. After taking into account the QED and the isospin breaking
effects, i.e. γ-radiation and the mass splitting (mu 6= md), a difference to the electron-
positron annihilation result remains. Recently a possible missing contribution to the
correction due to the ρ-γ-mixing has been pointed out [52], shifting the τ -decay results
into agreement with electron-positron annihilation measurements.

Including the newest BABAR data of the channel e+e− → π+π−, the difference between
the theoretical prediction and the measurement of aµ has been determined to be [2]:

aexpµ − atheoryµ = (287± 80)× 10−11. (1.26)

This corresponds to a difference with a statistical significance of 3.6 standard deviations.
Whether this deviation is due to an underestimated uncertainty in the direct (g − 2)µ

2K(s) = x2

2 (2− x2) + (1+x2)(1+x)2

x2

(

ln(1 + x)− x+ x2

2

)

+ (1+x)
(1−x)x

2 ln(x),

with x =
1−βµ

1+βµ
, βµ =

√

1− 4m2
µ/s according to [25].
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Figure 1.13: Compilation of recent results [2] for aSM
µ (in units of 10−11), subtracted by the central

value of the experimental average [27,53]. The experimental BNL uncertainty is indicated
with the blue-shaded vertical band. The SM predictions are determined in: DHMZ 10 [2],
HLMNT (unpublished) [54] (e+e−-based, including BABAR and KLOE 2010 π+π− data),
Davier et al., 09/1 [55] (τ -based), Davier et al., 09/1 [55] (e+e−-based, not including
BABAR π+π− data), Davier et al., 09/2 [56] (e+e−-based including BABAR π+π− data),
HMNT 07 [15] and JN 09 [25] (not including BABAR π+π− data).

measurement or the SM prediction or whether New Physics leads to the difference is not
known at present.

1.3 Measurements of Hadronic Cross Sections

The measurement of hadronic cross sections is essential for the determination of the
hadronic vacuum polarization. As shown in 1.14 (left) the most important contribution
from this vacuum polarization correction to aµ comes from the low energy region. This
region is dominated by the e+e− → π+π− cross section with a contribution of 73% to
ahadµ . The recent high precision cross section measurements of BABAR and KLOE of the
exclusive channel e+e− → π+π− and various measurements of higher multiplicity channels
are presented in the following.

The e+e− → π+π− Cross Section

The recent cross section measurement at BABAR [57] of this channel is shown in Fig. 1.15.
The method of Initial State Radiation, which will be described in detail in Chapter 3, al-
lows a cross section measurement from production threshold until 3GeV. The dominant



20 1 Hadronic Cross Sections and their Impact on the Standard Model

0.0 GeV, ∞

ρ, ω

1.0 GeV

φ, . . . 2.0 GeV

3.1 GeV

ψ 9.5 GeVΥ
0.0 GeV, ∞

ρ, ω

1.0 GeV

φ, . . .

2.0 GeV

3.1 GeV

Figure 1.14: The distribution of contributions (left) and uncertainties (right) in % for ahadµ from differ-
ent energy regions. The uncertainty of a contribution i shown is σ2

itot/Σiσ
2
itot in %. The

total uncertaintiy combines statistical and systematic uncertainties in quadrature [25].

ρ peak is visible in Fig. 1.15 (a). The zoom in Fig. 1.15 (b) shows a striking drop on the
high mass side of the peak which is due to ρ−ω interference. The systematic uncertainty
in the ρ peak region is 0.5%. Between 1.5 and 1.6GeV a dip due to interference of higher
ρ resonances is seen as well as another structure at around 2.2GeV.
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Figure 1.15: (a) The measured cross section for e+e− → π+π−(γ) from BABAR between 0.3 and 3GeV;
(b) Enlarged view of the ρ region in energy intervals of 2MeV. The plotted uncertainties
are from the sum of the diagonal elements of the statistical and systematic covariance
matrices. This plot is published in [57].

The important cross section σ(e+e− → π+π−) has been measured by various experi-
ments including TOF [58], OLYA [59,60], CMD [59], CMD2 [61,62], SND [63], DM1 [64],
DM2 [65] and most recently KLOE [66–68]. All results are displayed together in Fig. 1.16
(top). Like BABAR the KLOE measurements also have a systematic uncertainty below
1%. Fig. 1.16 (bottom) compares the BABAR and KLOE data points using the HVPTools
averaging tool [56]. Both experiments dominate the overall average. In the energy in-
terval between 0.63 and 0.958GeV, the discrepancy between the ahad,LOµ [ππ] evaluations
from KLOE and BABAR amounts to 2.0σ [56].
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Figure 1.16: Top: e+e− → π+π− cross section as a function of center of mass energy. Shown are
data from TOF [58], OLYA [59, 60], CMD [59], CMD2 [61, 62], SND [63], DM1 [64],
DM2 [65], KLOE [66,67] and BABAR [57]. The error bars show statistical and systematic
uncertainties added in quadrature. The light shaded (green) band indicates the HVPTools
average within 1 σ uncertainties [2]. Bottom: Difference of BABAR (left) and KLOE (right)
to the HVPTools average. These plots are published in [2].

The pie plot shown in Fig. 1.14 shows the relative fraction of contributions (left) and
uncertainties (right) of different energy ranges to ahadµ . Due to the very precise measure-
ment of the largest contribution to ahadµ from σ(e+e− → π+π−), the leading contribution
to the uncertainty of ahadµ stems now from the energy region between 1GeV and 2GeV,
see Fig. 1.14 (right).
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Higher Multiplicity Channels

A number of additional cross section measurements of channels with higher multiplicity
have been performed at BABAR [69–76]. These results are displayed as a function of
the center of mass energy E =

√
s in Fig. 1.17. From this figure, it is clear that the
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Figure 1.17: Cross section measurements performed at BABAR: e+e− → π+π− (black points), e+e− →
π+π−π0π0 (black crosses, preliminary results) and e+e− → π+π−π+π− (red stars). This
image is published in [77].

channels e+e− → π+π−π+π− and e+e− → π+π−π0π0 have the largest impact in the
energy region 1GeV <

√
s < 2GeV. The BABAR measurements provide the most precise

available cross section evaluations for these channels. The preliminary e+e− → π+π−π0π0

result will be finalized and published at the beginning of 2012 using the full data sample of
L = 454.4 fb−1. The e+e− → π+π−π+π− result shown in Fig. 1.17 is based on a luminosity
of L = 89 fb−1 with a systematic uncertainty of 5% in the peak region 1.2GeV < E <
2.2GeV. It is the main goal of this work to improve the uncertainty of the e+e− →
π+π−π+π− cross section measurement. In addition to the higher statistics due to the
additional data, corresponding to a luminosity of L = 454.4 fb−1, especially the systematic
uncertainties should be improved. This is achieved by additional systematic studies and
corrections as well as an alternative approach concerning background channel suppression.
The systematic studies are also needed in order to finalize the preliminary e+e− →
π+π−π0π0 result. The results of this thesis will therefore reduce the uncertainty of ahadµ

and thus the theoretical uncertainty of aµ.



Chapter 2

The BABAR Experiment

This chapter is dedicated to the BABAR experiment. In the beginning the accelerator and
the experimental setup is discussed. Then a detailed description of the different sub-
detection systems of the multi-purpose BABAR detector is given. The chapter closes with
a brief overview of the data acquisition at BABAR.
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The BABAR experiment was taking data in the years 1999-2008 at the Stanford Linear
Accelerator Center (SLAC1) in Menlo Park, California. The PEP-II collider operated
at the Center-of-Mass (CM) energy of 10.58GeV which corresponds to the mass of the
Υ (4S) resonance, slightly above the BB production threshold. Due to the large cross
section for the production of B meson pairs (σ = 1.05 nb [78]) at this CM energy and the
high luminosity of PEP-II, the facility is called a B Factory. In this chapter, the PEP-II
collider as well as the main features of the BABAR detector are presented. Ref. [79, 80]
provide additional information.

2.1 The Asymmetric Collider PEP-II

The accelerator facility needed for the BABAR experiment is shown in Fig. 2.1. It is
composed by an electron gun, a linear accelerator (linac), the positron source and the
e+e− storage rings (PEP-II).

Figure 2.1: A schematic view of SLAC facility including the linear accelerator and the asymmetric
PEP-II collider with the BABAR detector [81].

The electron gun produces the electron bunches and inserts them into the linac. Elec-
tromagnetic pulses with synchronized radio-frequency (RF) accelerate these bunches to
an energy of approximately 1GeV. Half of these bunches are inserted into and collected
in a damping ring, where energy losses due to synchrotron radiation are compensated
by RF cavities. This leads to a reduction of the spatial and momentum beam spread,
the so-called cooling. The damped beam is redirected to the linac and accelerated to the
final energy of 8.9GeV. The other half of the generated electron bunches are further ac-
celerated to 30GeV and directed onto a tungsten target in order to generate the positron
beam (positron source). The positron bunches are led back to the start of the linac.

1since October 2010 renamed to SLAC National Accelerator Laboratory
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Run on-peak [ fb−1 ] off-peak [ fb−1 ]

1 20.4 2.6

2 61.1 6.9

3 32.3 2.5

4 100.3 10.1

5 132.9 14.5

6 66.1 4.6

Table 2.1: Amount of accumulated data in various Run periods.

Similar to the electrons, they are pre-accelerated and damped in a separate damping ring
for cooling and collection. Finally these positrons are further accelerated in the linac up
to an energy of 3.1GeV. After reaching their nominal energies, electron and positron
bunches are injected from the linac into the PEP-II storage rings. They are continuously
focused by a magnetic system, and again synchrotron-radiation losses are compensated
by RF acceleration. The BABAR detector is located at the crossing point of the electron
and the positron beam.

Data taking started in October 1999 and ended in April 2008. An integrated luminosity
of 454.4 fb−1 in six Run periods at (on-peak) or in the vicinity (off-peak) of the Υ (4S)
resonance has been recorded, see Table 2.1. Due to additional Runs on the Υ (3S) and
Υ (2S) resonances, a total recorded integrated luminosity of 553.48 fb−1 was accumulated,
see Fig. 2.2.

Due to the energy difference between the electron and positron beam, the e+e− center-of-
mass system is boosted relative to the laboratory system. This boost is intended to allow
separation of the decay vertices of B-mesons, which are produced almost at rest in the
e+e− CM frame. This spatial difference translates into a time difference and therefore
allows for the determination of decay time differences of B-decays, which is needed in
many BABAR analyses [78]. PEP-II was designed for an instantaneous luminosity of
3 × 1033 cm−2s−1. The peak luminosity has been improved in the course of the years to
a luminosity value of 12× 1033 cm−2s−1.

One of the main goals of the BABAR physics programme was to over-constrain the CKM
quark mixing matrix parameters. Some of these parameters can be extracted by mea-
surements of CP asymmetries in B decays. The cleanest test of CP violation in the B
meson system within the Standard Model consists of the study of time-dependent CP
violation in the channel B → J/ψK0

S
. The B0 and the B0 mesons decay with a dif-

ferent time behavior into the common final state. In studies of rare B decay channels,
searches for physics beyond the SM are performed. The cross section for e+e− → cc and
e+e− → τ+τ− is similar as for the process e+e− → bb at BABAR. In the open charm
system, studies concerning mixing and CP violation in D decays are performed and one
of the major discoveries of BABAR was indeed the evidence found for D0-D0 mixing. Con-
cerning the τ sector, tests of lepton universality, searches for lepton flavor violation as
well as a precision measurement of |Vus| were performed. ISR studies are focused on
cross section measurements of hadronic final states as well as spectroscopy. Various new
resonances such as the Y(4260) particle were discovered via ISR.
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Figure 2.2: The PEP-II integrated luminosity recorded by the BABAR detector from the beginning of
the data taking period in 1999 until 2008 [82].

2.2 The BABAR Detector

The asymmetric beam energies of PEP-II reflected also in the design of the BABAR de-
tector. BABAR is a typical high energy physics detector, consisting of several detector
elements, and being thus a multi-purpose detector.

Fig. 2.3 (a) shows a the longitudinal cross section of the BABAR detector. The high energy
electrons enter the detector from the left, low energy positrons from the right hand side.
The geometric center of the detector is offset in relation to the interaction point (IP)
by 0.37m in the direction of the high energy electron beam to maximize the geometric
acceptance for the boosted B decays. The inner detection unit consists of a five-layer
silicon vertex tracker (SVT) and a drift chamber (DCH) for vertex and track reconstruc-
tion, a Cherenkov detector (DIRC) for particle identification, and a CsI electromagnetic
calorimeter (EMC) for the detection of photons. This inner detector is surrounded by a
super-conducting solenoid creating a magnetic field of 1.5T, which allows to measure the
momenta of charged particle tracks. The instrumented steel flux return (IFR) enables
muon and neutral hadron detection. Fig. 2.3 (b) shows a transverse cross section of the
BABAR detector, where in addition the layers of the different detector components is vis-
ible.
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Figure 2.3: Cross section of the BABAR detector in longitudinal (a) and transverse (b) direction. The
main components are the silicon vertex tracker, the drift chamber, the Cherenkov detector,
the electromagnetic calorimeter and the instrumented flux return. The nominal interaction
point (IP) as well as the geometric center (GC) are indicated. Also shown are the pairs of
quadrupole and dipole magnets denoted with the symbols Q1/2/4 and B1 [80].
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The material in the inner region of the detector is restricted to a minimum in order
to minimize effects due to multiple scattering of tracks. Fig. 2.4 shows the material in
units of radiation lengths before a high energy particle reaches the different detector
sub-systems. The material budget is plotted as a function of the polar angle θ. In the
following, the individual detector subsystems are described in more detail.
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Figure 2.4: Material budget in units of radiation lengths for different detector systems for high energy
particles before reaching the first active element of the named sub-detector system. Image
is taken from [80].

Silicon Vertex Tracker

The BABAR tracking system, consisting of the SVT and the DCH, is designed to optimize
the detection of charged tracks. With the information of the SVT, decay vertices can
be reconstructed very precisely as well as momenta and energy loss dE/dx for charged
particle identification (PID).

Fig. 2.5 displays a longitudinal (left) as well as a transverse (right) cross section of the
SVT detector component. It consists of five cylindrically arranged layers of double-sided
silicon micro strip sensors. The strips on the outer side of each layer are parallel to the z-
direction allowing a precise φ measurement. The ones on the inner side are perpendicular
and thus measure the z-coordinate. The polar angular range in the lab frame from 20◦ to
150◦ [80] is covered with active detection material leading to a coverage of approximately
90% of the solid angle in the CM system.
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Figure 2.5: Cross section of the SVT in longitudinal (left) and transverse (right) direction [80].

The three inner detection layers (r1 ≈ 32mm) are mounted directly outside the water-
cooled beryllium beam pipe (r ≈ 27.8mm) in order to minimize the influence of multiple
scattering on the tracks and vertex extrapolation. The purpose of the two outer layers
(r5 ≈ 144mm) is mainly to link the SVT hits to the DCH track information. The excellent
vertex resolution of approximately 70µm for fully reconstructed B meson decays is one of
the main requirements in order to measure time-dependent CP asymmetries in B decays.

Drift Chamber

The main purpose of the multi-wire drift chamber is a precise measurement of the trans-
verse momentum of the tracks using their curvature in the 1.5T magnetic field. In
addition, the energy loss measurement dE/dx is used for charged PID.

The cylindrical shaped detector component extends from a radius of 26.6 cm to 80.9 cm
with a length of 280 cm as shown in Fig. 2.6 (left). Ten super-layers are subdivided in
four layers each. The resulting 7104 hexagonal drift cells are formed by six gold-coated
aluminum field wires with a diameter of 120µm surrounding one gold-coated tungsten-
rhenium sense wire with a diameter of 10µm. This allows up to 40 position and dE/dx
measurements per trajectory. In order to enable a position measurement along the beam
axis, only four axial super layers are parallel to the beam axis and six so-called stereo
layers have alternating tilts of ±(45 − 76)mrad with respect to the beam axis. This
design, as illustrated in Fig. 2.6 (b), guarantees an optimal mean spatial resolution of
approximately 125µm [80].

The transverse momentum resolution σpt of the tracking system is [80]:

σpt
pt

= (0.13± 0.01)% · pt
GeV/c

⊕ (0.45± 0.03)%. (2.1)

The resolution of the energy loss measurement is in the order of 7% [80] and allows
to separate K from π for low momentum tracks, pLab < 700MeV/c, as can be seen
in Fig. 2.7 (left). For tracks with higher momenta the DIRC complements the PID
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Figure 2.6: Longitudinal cross section of the DCH (left) and transverse cross section of one of its
segments (right) indicating the pattern of axial (A) and stereo (U,V) layers. Dimensions
are indicated in mm [81].

capability. The tracking efficiency for tracks traversing the good detection region of
the DCH is approximately 97-98%. The track reconstruction efficiency and especially
differences between data and MC are crucial for this analysis and are studied in detail as
presented in Chapter 5.3.
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Figure 2.7: Left: specific energy loss, dE/dx, in the DCH as a function of the momentum for different
types of charged particles, superimposed with predictions from the Bethe-Bloch formula.
Image is taken from [81]. Right: measured Cherenkov angle θC as a function of the track
momentum pLab for different types of particles. Image is taken from [83].
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Detector of Internally Reflected Cherenkov Emission

The Cherenkov detector is used as a PID device. In particular, it has an excellent K/π
separation for particles with a momentum of pLab > 700MeV/c.

A novel design has been chosen in order to minimize the amount of material in front of
the EMC. Fig. 2.8 (left) illustrates the concept of the detector. 144 bars of fused silica
(quartz) with a refraction index of n = 1.473 are arranged in a 12-sided polygonal barrel
with 12 bars per side (Fig. 2.8 (right)). Each bar has a width of 35mm, a thickness
of 17mm and a length of 4.9m. A charged particle traversing the quartz bars with
β = v/c ≥ 1/n emits Cherenkov light in a cone at an opening angle θC :

cos(θC) =
1

nβ
(2.2)

with β = v/c, the velocity of the particle v, and the velocity of light in vacuum c. The
emitted light is internally reflected to the rear end side outside the BABAR detector to the
standoff box, which is filled with purified water (Fig. 2.8 (left)). About 1.2m away from
the end of the bars, 12 sectors of 896 photo multiplier tubes (PMTs) each are mounted on
the wall of the standoff box in order to detect the light. After correcting for the different
refraction indices of the quartz bars and the water, the Cherenkov angle can be obtained
from the light cone opening angle in combination with the timing information measured
by the PMTs.

Bar

Track 
Trajectory

17.25 mm Thickness
(35.00 mm Width)

Mirror

Bar Box

Standoff Box 

Light
Catcher

PMT Surface

PMT + Base
~11,000
    PMT's

Purified Water

Wedge

91 mm 10mm
4.90 m

4 x 1.225 m �
Synthetic Fused Silica �
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Window

Figure 2.8: Left: Working principle of the DIRC illustrated for a single quartz bar. The traversing
charged particle (red) emits Cherenkov light (green), which is internally reflected and finally
detected by the PMT in the standoff box [83]. Right: Transverse cross section of one bar
box containing 12 quartz bars [81].

Measuring the Cherenkov angle corresponds to a velocity measurement of the particle as
shown in equation 2.2. In combination with the momentum measurement in the SVT
and DCH, the mass of the particle can be identified:

m2c2 =
1− β2

β2
· p2 (2.3)

Fig. 2.7 (right) shows the measured Cherenkov angle θC as a function of the measured
track momenta for different types of particles. In combination with the DCH-information,
an excellent π/K separation is achieved which is necessary in this study.



32 2 The BABAR Experiment

Electromagnetic Calorimeter

The EMC was constructed to measure the energy, shape and position of electromagnetic
showers from 20MeV to 9GeV with high efficiency. In addition, it provides information
for traversing muons and hadrons. The quantity E/p is the ratio of deposited energy
E in the EMC to the momentum of a track p, determined in the tracking system. The
value of E/p as well as the measured shower shape in the EMC are used for PID.

A schematic view of the EMC is shown in Fig. 2.9 and Fig. 2.10 (left) in longitudinal
and transverse direction respectively. It is composed of a finely segmented array of 6580
thallium-doped cesium iodide (CsI(Tl)) crystals. The material has a short radiation
lengthX0 ≈ 1.85 cm as well as a small Molière radius describing the scale of the transverse
extension of the electromagnetic shower. This allows to fully contain the showers with
high efficiency and achieves a good angular resolution in a compact EMC.

11271375
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Figure 2.9: Schematic view on one crystal layer of the electromagnetic calorimeter. The crystals ar-
rangement is subdivided in a barrel region and a forward region accounting for the asym-
metry due to the boost. Each crystal represents one axially symmetric crystal ring. The
indicated dimensions are given in mm [84]

The EMC consists of a central barrel ranging from a radius of 92 cm to 136 cm with a
length of 3m and a forward end-cap accounting for the asymmetry due to the boost in
forward direction. The crystal length varies between 29.8 cm (16.1X0) in the backward
barrel and 32.6 cm (17.6X0) in the end-cap. Two silicon photo-diodes at the rear end of
each crystal read out the scintillation light emitted by the corresponding crystal.

The EMC provides excellent energy and angular resolutions, which can be empirically
parameterized as [80, 85]:

σE
E

=
(2.32± 0.30)%

4
√

(E/GeV)
⊕ (1.85± 0.12)%, (2.4)

σθ = σφ =

(

(4.16± 0.04)
√

(E/GeV)
⊕ (0.00± 0.04)

)

mrad. (2.5)
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Figure 2.10: Left: Schematic transverse cross section of the EMC, showing the crystal arrangement of
the barrel (outer ring) and the different end-cap layers (inner rings). Right: Composition
of an EMC crystal including the readout photo-diodes [84].

Here, E represents the measured energy and θ and φ the polar and azimuthal angles re-
spectively and ⊕ is the quadratic sum. A detailed study for the EMC has been performed
within this thesis concerning the energy and position measurement (Section 5.1) as well
as the efficiency difference in photon detection between the data and the simulation
(Section 5.2).

Instrumented Flux Return

The iron yoke of the solenoidal magnet has two main purposes. On the one hand, it
returns the magnetic flux which is produced by the superconducting coil. The solenoidal
magnetic field of 1.5T is needed to get the curvature of the particle tracks in order to
measure the momenta of the particles very precisely with the inner detector components.
On the other hand, it is used for muon and neutral hadron detection.

It consists of a central barrel and two end-cap sections (Fig. 2.11). Between the iron
plates, ionization detector layers are installed in order to measure the traversing particles.
The original setup with resistive plate chambers (RPCs) has been partly replaced with
limited streamer tubes (LSTs).

For this analysis the IFR detector is of special interest due to the fact that a µ+µ−

γ sample is used to fine-tune the EMC calibration and measure the photon efficiency
(Chapter 5).
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Figure 2.11: IFR overview: Barrel sectors (left) and forward and backward end doors (right) with 18
and 19 ionization detector layers respectively [80].

Trigger and Background Filter

The trigger and background filter are important tools of the data acquisition system of
BABAR. They are incorporated in order to decide whether an event, observed by the
BABAR detector, is interesting enough for further analysis. Recording exclusively these
events significantly reduces the amount of recorded data.

The trigger consists of two levels: The Level 1 (L1) trigger operates on the hardware
level, the Level 3 (L3) trigger on the software level. A Level 2 trigger is not present at
BABAR.

The L1 trigger system contains four subsystems: the charged particle trigger (DCT), the
neutral particle trigger (EMT), the cosmic trigger (IFT) and the Global Level Trigger
(GLT). The DCT and EMT receive information from the DCH and the EMC detector
sub-systems, respectively. This information is processed and forwarded as condensed data
to the GLT. The GLT attempts to match the angular information of the EMC clusters
and the tracks measured in the DCH. Hereby L1 triggers are generated and sent to the
Fast Control and Timing System (FCTS), based on the results of the processing. The
GLT also uses the IFT information to independently trigger on cosmic rays and µ+µ−

events. The Level 1 trigger rate for an instantaneous luminosity of L = 8 · 1033 cm−2s−1

is typically 2.5 kHz.

Events fulfilling the L1 trigger criteria are forwarded to the L3 trigger. This trigger
analyses data with more detailed information from the DCH and EMC sub-systems in
combination with the L1 trigger content to further reduce background contributions.
Background filters are applied in order to suppress various background contributions,
such as Bhabha events. In addition, the L3 trigger selects various types of events for
detector calibration and is used for online monitoring tasks. The L3 operates with fast
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algorithms resulting in a processing time of ≈ 4ms per event. Hereby, the L1 information
is typically reduced by a factor of approximately 10, before the data is forwarded to the
storage system.





Chapter 3

ISR Physics at BABAR

As described in Chapter 1.2, the particular interest in hadronic cross section measure-
ments arises due to their impact on the theoretical prediction of (g − 2)µ as well as
αQED(M

2
Z). In order to increase the precision of the hadronic contribution ahadµ additional

measurements of hadronic cross sections, especially at low Center-of-Mass energies, are
essential.

Two experimental approaches to extract these hadronic cross sections are introduced: The
energy scan and the ISR method. Then the influence of Vacuum Polarization (VP) on
the hadronic cross sections is investigated. Radiative Corrections due to Next-to-Leading
Order (NLO) ISR as well as due to Leading Order (LO) and NLO Final State Radiation
(FSR) are discussed and quantified. Finally a comparison of the ISR and energy scan
approaches is presented.
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The cross section of hadron production in e+e− annihilation has been measured at e+e−

colliders up to recently exclusively by energy scan experiments. These experiments run
at different fixed CM energies as illustrated in Fig. 3.1 (a). The measurement of the
π+π−π+π− channel, using this method, has been performed at several experiments, most
recently at VEPP-2M by SND [86] and CMD-2 [87, 88] up to 1.4GeV. Older data has
been obtained at DCI by DM2 [89] with a maximum CM energy of 2.0GeV.

Figure 3.1: Principal concept of hadronic cross section measurement at energy scan experiments (a) in
comparison to ISR experiments (b).

An alternative method, depicted in Fig. 3.1 (b), was developed during the last decade.
The study using ISR events enables high statistics e+e− experiments running at a fixed
CM energy to access hadronic processes at lower effective CM energies by studying
events with a high energetic photon emitted from the initial state. The use of this
technique at high luminosity φ- and B-factories has been discussed in detail in [90–92].
The BABAR Collaboration has an intensive program to investigate low multiplicity ISR
processes [57, 69–76] at effective CM energies below 5GeV as mentioned in Chapter 1.3.
In addition to the cross section measurements, these studies include many additional
physics topics, e.g. spectroscopy as well as nuclear form factor measurements.

3.1 ISR Analyses

The schematic analysis path using the ISR technique is illustrated in Fig. 3.2. The first
step of an exclusive ISR analysis is a dedicated selection of the radiative hadronic chan-
nel of interest. This leads to the extraction of the number of events as a function of the
invariant mass Mhad, corresponding to the effective CM energy ECM .

The same selection procedure is also applied to signal simulation (MC), which is needed
to determine the selection efficiency for the corresponding specific final state. Additional
simulation of other ISR and non-radiative background channels is used to estimate the
contamination due to background. These background channels are then either subtracted
according to simulation or removed via dedicated requirements, depending on the sys-
tematic uncertainty introduced by the applied procedure. Thus, simulation is needed for
acceptance corrections on the one hand and background contribution estimation and/or
subtraction on the other hand. All analysis items (e.g. background, efficiencies) need to
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Figure 3.2: Typical ISR analysis path.

be studied as a function of the invariant mass of the hadronic system. In addition, both
efficiency and efficiency corrections strongly depend on the investigated final state. This
leads to complications in the determination of the inclusive hadronic cross section with
high precision. So far, a much higher precision is achieved by studying hadronic channels
exclusively.

Depending on the required precision, additional tests need to be performed, focusing on
possible differences in the selection between data and simulation. The photon efficiency
is of importance, since our ISR analyses require a detected high-energetic photon. A ded-
icated study of photon efficiency differences between data and simulation is presented in
Section 5.2. In case of multi-hadronic events with charged tracks, a precise understanding
of differences in the track reconstruction efficiency between data and MC is needed. This
study is presented in Section 5.3. After these corrections, the invariant mass spectrum is
weighted with the integrated luminosity in order to receive the so-called radiative or ISR
cross section σFS,γ(m). This ISR cross section for a particular final state (FS) is related
to the non-radiative cross section σFS(m) through the following relation [92]:

dσFS,γ(m)

dm
=

2m

s
·W (s, x, θ∗γ) · σFS(m), (3.1)
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where x =
2·E∗

γ√
s
,
√
s is the nominal CM energy, θ∗γ and E∗

γ are the polar angle and the
energy of the ISR photon in the nominal CM frame, lowering the effective CM energy
to

√
s′ = m. The quantity

√
s′ is here the invariant mass of the virtual photon or - in

absence of FSR effects - the invariant mass of the hadronic system. The radiator function
W describes the photon emission probability in the angular range | cos(θ∗γ)| < C and can
be derived analytically at leading order (LO) [92]:

W (s, x, θ∗γ) =
α

πx
·
[

(2− 2x+ x2) · ln 1 + C

1− C
− x2C

]

. (3.2)

A considerably more precise determination ofW is presented in Section 3.3. In principle,
the radiative cross section is the product of the probability to emit a photon from ini-
tial state reducing the CM energy to the invariant mass of the hadronic system and the
non-radiative cross section at this reduced CM energy. The assumption of factorisation
between these two processes has been assumed in equation (3.1). As already mentioned,
this formula does not take into account corrections due to final state radiation.

3.2 Vacuum Polarization

After resolving for the non-radiative cross section in equation (3.1), the so-called dressed
cross section σdressed(s) is obtained. This means the cross section contains vacuum polar-
ization (VP) contributions of the intermediate photon and can be directly compared to
e+e− energy scan measurements. However, the cross section to be put into the dispersion
integral for ahadµ has to be corrected for VP effects δvac(s) of the intermediate photon as
well as for photons emitted from the final state (FSR). The extraction of the so-called
undressed cross section σundressed(s) requires the VP as a multiplicative factor [5]:

σundressed(s) = σdressed(s) ·
(

αQED(0)

αQED(s)

)2

=
σdressed(s)

δvac(s)
. (3.3)

This multiplicative correction factor δvac(s) due to the VP [93] is shown in Fig. 3.3 as a
function of the CM energy ECM =

√
s.

Since the cross section itself is used to derive the hadronic contribution ∆αhad(s) to the
running fine structure constant α(s), the correct procedure would be an iterative treat-
ment of the VP correction. However, the size of the correction is at most of the order
of a few percent and therefore the additional correction is negligible at the given level of
precision.
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Figure 3.3: Multiplicative correction δvac factor due to VP [93] in dependence of the CM energy ECM =√
s.

3.3 Radiative Corrections

In equation (3.1), the relation of the radiative cross section to the non-radiative cross sec-
tion via the radiator function W is introduced. This formula, shown in equation (3.2), is
only correct for LO ISR photons. It is evident that additional NLO radiative corrections
might influence the result significantly.

The event generator AFKQED [94] was used to produce the π+π−π+π−γ signal MC.
It is based on the EVA generator [95], which was then updated to PHOKHARA, the
state-of-the-art event generator for the ISR channels of interest. The effects on the ra-
diator function due to NLO ISR radiation are estimated with AFKQED and compared
with version 5.0 of PHOKHARA [96]. While AFKQED contains a structure function
approach for radiation beyond LO, the Phokhara code contains the full NLO correction.
Differently from PHOKHARA, final state radiation is implemented in AFKQED via the
PHOTOS package [97]. PHOTOS is not implemented in the PHOKHARA event gener-
ator for the π+π−π+π−γ channel. The influence on the cross section due to LO as well
as NLO FSR is investigated below.
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Precision of NLO ISR Effects in AFKQED

The BABAR ISR simulation in AFKQED is performed with the requirement on the com-
bined invariant mass of the four pions and the ISR photon to be:

Q2 = (p4π + pγISR)
2 > (8GeV/c)2, (3.4)

where p4π and pγISR correspond to the energy-momentum 4-vector of the hadronic sys-
tem and the ISR photon, respectively. For events without NLO radiation the momentum
transfer Q2 = (10.56GeV/c)2 is equal to the nominal BABAR CM energy. The require-
ment (3.4), therefore, suppresses the production of events with high-energetic NLO ra-
diation (NLO-ISR or NLO-FSR). These events are filtered out in the event selection by
the kinematic fit requirements (see Chapter 4). Adding these events to the simulation
would simply decrease the global efficiency. This would be compensated by a shift of the
radiator function.

Equation (3.2) allows us to relate the radiative cross section to the radiator function:

σLO,4πγ
σNLO,4πγ,Q2>(8GeV/c)2

=
WLO

WNLO,4πγ,Q2>(8GeV/c)2
(3.5)

Fig. 3.4 shows a comparison between two spectra obtained with AFKQED for (i) LO-
ISR and (ii) NLO FSR with the requirement Q2 > (8GeV/c)2. Of course this compar-
ison depends on the specific choice of the Q2 requirement. Choosing the specific value
Q2 > (8GeV/c)2 ensures that the radiator function is almost identical to the LO theoret-
ical formula, equation (3.2).
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Figure 3.4: Ratio of the radiative cross section in LO σLO,4πγ and the radiative cross section in NLO
σNLO,4πγ,Q2>(8GeV/c)2 with the additional requirement Q2 > (8GeV/c)2. Event samples
are produced with AFKQED [94].

As long as no final state radiation is investigated, the result in equation (3.5) is inde-
pendent of the final state. The corresponding test in PHOKHARA has been performed
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with the π+π−γ final state. In Fig. 3.5 the corresponding distribution is shown for dif-
ferent requirements of Q2 simulated with PHOKHARA. Fig. 3.5 (a) shows the difference
between NLO and LO estimated with PHOKHARA for Q2 > 0GeV/c2. Differences in
the order of 7% are observed. In Fig. 3.5 (b) it is seen that the radiator function with
the Q2 > (8GeV/c)2 requirement for PHOKHARA is also almost identical to the radia-
tor function in LO. It is important to mention that this agreement is rather accidental,
because an even stronger requirement on the extra radiation would further increase the
radiator function as shown in Fig 3.5 (c). Finally the test with PHOKHARA shows
differences of 1.1%± 0.2% between AFKQED and PHOKHARA.
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Figure 3.5: Ratio of σLO,π+π−γ to σNLO,π+π−γ with Q2 > 0(GeV/c)2 (a), Q2 > 64(GeV/c)2 (b) and
Q2 > 90(GeV/c)2 (c), event samples produced with PHOKHARA; in (b) a constant fit is
performed: 0.989± 0.001.

To summarize, according to AFKQED the radiator function in LO order is in perfect
agreement with the radiator function in NLO with the additional requirement Q2 >
(8GeV/c)2. The comparison with PHOKHARA shows, however, that a small correc-
tion of 1.1% ± 0.2% needs to be applied, but allows us to use the LO radiator function
to extract the non-radiative cross section from data. The difference observed between
AFKQED and PHOKHARA can be understood due to the different approaches used in
the calculation of the generators as discussed above.
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Effect of LO and NLO FSR

In order to estimate the influence of LO FSR on the radiator function, a µ+µ−γ and
a π+π−γ sample were simulated with PHOKHARA. In Fig. 3.6 (a), the radiative cross
section for µ+µ−γ is shown with and without LO FSR photons allowed. The ratio of these
cross sections in Fig. 3.6 (b) shows that the correction of this effect is very important
for the leptonic cross section. The corresponding distributions for the π+π−γ sample are
displayed in Fig. 3.6 (c) and (d). It can be observed that the LO FSR contributions are
strongly suppressed and can be neglected. This is due to the fact, that the point-like
µ+µ−γ cross section is decreased by the additional electromagnetic form factor.
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Figure 3.6: µ+µ−γ cross section with and without LO FSR (a) and the corresponding ratio (b). The
corresponding distributions for the π+π−γ sample are shown in (c) and (d).

The study for NLO FSR photons was performed using AFKQED with PHOTOS for
modelling the NLO FSR photons. In PHOKHARA, PHOTOS is not implemented for the
π+π−π+π−γ channel. Due to NLO FSR radiation, the invariant mass of the reconstructed
hadronic system will be reduced compared to the virtual photon’s invariant mass

√
s′.

As a consequence, the measured cross section will be slightly shifted towards smaller
masses. This effect is visualised in Fig. 3.7, where the ratio of σLO,4πγ to σNLO,4πγ with
Q2 > (8GeV/c)2 and NLO FSR corrections included, is displayed. Differences of up to
3% are observed and are corrected for.
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Figure 3.7: Ratio of σLO,4πγ to σNLO,4πγ with Q2 > (8GeV/c)2 and NLO FSR corrections included.

Summary of Radiative Corrections

AFKQED and PHOKHARA have been compared for the computation of the radiator
function. A deviation of 1.1% is observed and used as correction on the final result for
the non-radiative cross section σ(π+π−π+π−). The influence of LO FSR is negligible.
The effect of NLO FSR with deviations up to 3% is corrected according to the displayed
fit function in Fig. 3.7.

3.4 ISR vs. Energy Scan

Thanks to the large data sample of BABAR, the BABAR statistics for ISR measurements is
very high, even after taking into account that a high energetic photon has to be emitted
from initial state. The effective ISR luminosity is plotted in Fig. 3.8. The luminosity
achieved at BABAR is considerably higher than the one collected at a single ECM with the
existing energy scan experiments.

Due to the high statistics, the uncertainties of the low multiplicity cross section mea-
surements are dominated by systematic effects. The measurements are limited by the
precision of the modelling of the BABAR detector and reconstruction algorithms in the
detector simulation. Thus a number of corrections have to be determined to extract
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the final result. A drawback for ISR measurements is the requirement to rely on a the-
oretical radiator function W describing the emission of an initial state photon. This
QED emission, however, is theoretically known at the few permil level and the radiator
function implemented at NLO in the PHOKHARA event generator [96]. In principle
this systematic uncertainty is avoidable, by normalizing the hadronic cross section to
the e+e− → µ+µ−γ yield. This latter approach has been followed in the measurement
of the pion form factor at BABAR [57]. Another disadvantage of the ISR method is the
in general higher background level due to events (continuum background or ISR events)
with different multiplicities, which have a similar event kinematics and are hence (almost)
indistinguishable from signal events.

An important feature of ISR analyses at BABAR is the requirement of a high energetic
photon. This photon requirement is known to have a 100% rejection power for Υ (4S)
decays. On the other hand it leads to the typical ISR back-to-back topology between
the high energetic ISR photon and a collimated hadronic system in the other hemisphere
of the experiment. If the ISR photon is emitted at angles inside the active detection
region, the hadronic system is with a high probability detected as well. This increases
the geometrical acceptance in comparison to energy scan experiments. In addition, this
event topology reduces systematic uncertainties which arise due to the limited knowledge
of the hadronic form factor under study in the MC simulation. In classical energy scan
experiments, all systematic uncertainties as well as the determination of the luminosity
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have to be studied for each CM energy separately.

Another advantage of the ISR kinematics at BABAR is the fact that at the production
threshold, when the sum of the invariant masses of the individual hadrons is almost as
small as the invariant mass of the combined hadronic system, the momentum of these
particles is very small. Typically the detection efficiency decreases for small momentum
tracks. Due to the boost of the final state of the hadronic system in the laboratory frame,
the momentum of these very slow particles increases and a measurement of the hadronic
cross section is feasible almost from the production threshold of the hadronic system up
to energies of 4-5GeV. At higher masses, the cross section of most hadronic reactions
with low multiplicities become very small and furthermore, background from B-decays
cannot be neglected anymore.

The energy scan and the ISR method are complementary and therefore both are needed
to learn more about the nature of the different systematic corrections. The highest
precision in measurements with multiplicities of three hadrons or more at present is
achieved in ISR measurements, but new results are expected soon from the SND2 and
CMD3 experiments in Novosibirsk. For the measurement of the cross section e+e− →
π+π− (time-like pion form factor), precision data with O(1%) uncertainties exist also
from the VEPP-2M experiments CMD-2 and SND. The ISR cross section measurement
σ(e+e− → π+π−π+π−) at BABAR is explained in detail in Chapter 4.





Chapter 4

Event Selection for π+π−π+π−γ

This chapter is focused on the event selection for π+π−π+π−γ events. Due to the typical
ISR event topology, ISR events can be well separated from non-ISR background events.
This signature in addition to a kinematic fit is the major selection criterion in order to
separate signal from other ISR background channels as well as continuum events. The
ratio of signal to background yield shows a strong dependence on the invariant mass of
the hadronic system. Therefore different approaches are implemented to clean the exper-
imental data from background depending on the invariant mass of the hadronic system.
Finally the global acceptance is extracted with simulation.
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4.1 Dataset and Primary Event Selection

The analysis of the π+π−π+π−γ channel is based on the full BABAR dataset collected at
(on-peak) or in the vicinity (off-peak) of the Υ (4S) resonance. This corresponds to an
integrated luminosity of 454.3 fb−1 of data. The luminosity has been determined with
the BABAR detector via large angle Bhabha (e+e− → e+e−) and di-muon (e+e− → µ+µ−)
events, which may include radiated photons in the final state. The precision of the lu-
minosity measurement is dominated by the theoretical precision of the event generators
BHWIDE [98] and BKQED [99]. By implementing the Babayaga@NLO [100, 101] event
generator and comparing the results of BHWIDE to Babayaga@NLO [101,102], a reduc-
tion of the total uncertainty from 0.9% to 0.5% has been achieved.

The BABAR software continuously changed during the last decade due to further improve-
ments, e.g. in terms of detector calibration and particle identification. In order to assure
the usage of the correct conditions in an analysis, BABAR software is organized in releases
with a fixed set of software conditions. The production release version used in the current
analysis is 22.3.4 in combination with the R22d dataset. All systematic studies presented
in this thesis are performed using these software conditions.

Concerning the event selection, the basic ingredients are tracks as pion candidates and
neutral clusters as photon candidates. The selection criteria for charged tracks impose
that the polar angle θch points to the reconstruction region of the detector (0.41 rad <
θch < 2.54 rad) and that they originate from the collision region. The latter is the case
if the transverse distance of closest approach to the event vertex (docaXY) – or nominal
interaction point if no primary event vertex is found – is smaller than 1.5 cm and the
distance in beam direction (∆Z) is smaller than 2.5 cm. Tracks with less than 100MeV/c
transverse momentum are rejected. Photons are used if they have a minimum energy
of Eγ,lab > 50MeV. The ISR-photon is restricted to the polar angle range inside the
well-understood EMC detection region (0.35 rad < θγ < 2.4 rad), and a minimum energy
of Eγ,CM > 3GeV is required.

Data was processed with some preliminary loose selection requirements, named ISRfilter
and ISRselpass. The ISRfilter ensures the ISR photon energy requirement: Eγ,CM >
3 GeV. In addition, the filter rejects γγ-events with another high energetic photon
(Eγ,CM > 4 GeV) in opposite direction to the first one. The ISRselpass requires at least
one good track in the event and in addition demands the tracks to be in the opposite
direction of the ISR photon. About 2% of all BABAR events satisfy the required criteria.
For these events, all detected tracks and neutral clusters are stored in primary ntuples
for further analysis.

In order to enable the determination of the event acceptance and detection efficiency,
a simulation of the π+π−π+π−γ process is needed. A special package of generators for
radiative processes (AFKQED) based on the code of Ref. [94] has been developed and
is available in the BABAR analysis framework as described in Section 3.3. This package
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includes many exclusive ISR modes with the option to vary from 2-6 pions or kaons in
the final states. For most of the modes, experimental e+e− data is used as input, partly
including the description of intermediate states. For example, for the e+e− → π+π−π0γ
mode, the ρπ dominance is implemented. In addition, experimental approximations of
cross sections are included. The radiative corrections, multiple (real) photon emission
by initial and final particles, have been added with the technique of the structure func-
tions [103, 104] and the PHOTOS package [97]. Concerning the cross section measure-
ment, the accuracy of radiative corrections is better or about 1% (Section 3.3). For the
π+π−π+π−γ final state, the simulation assumes a dominance of the a1(1260)π interme-
diate state as it was measured at CMD2 [105] and observed in the CLEOII and ALEPH
data [106]. Due to the decay a1(1260) → ρ0π each event contains one pair of pions pro-
duced by the ρ0 → π+π− decay. A comparison of the intermediate states between data
and simulation is discussed in Chapter 7.

The sample of simulated MC events is reconstructed in the same way as experimental
data. For the estimation of background contributions a relatively large sample of different
ISR processes has been simulated. In addition, the non-ISR background resulting from
e+e− → qq (q =u,d,s) is available, simulated with the JETSET event generator [109]
as well as e+e− → τ+τ− simulation based on the KORALB [110] software package.
It is difficult to estimate the uncertainty on the given cross section of the continuum
background, since internal branching ratios of the JETSET simulation do not reflect
their actual physical values. Therefore a special procedure is applied in order to normalize
continuum production (Section 4.3.2). The cross sections of the other processes and the
branching fractions of the inclusive processes leading to final states similar to our signal
are known with about 10% accuracy or better, which is sufficient for this measurement.
The contributions from Υ (4S) decays and cc production are negligible. All simulated
samples used in this study are listed in Tab. 4.1. Beside the total radiative cross section,
the number of events within each sample Nproduced and the corresponding integrated
luminosity LMC is listed as well as the scaling factor in order to scale the number of
events to the luminosity of data.

4.2 Constrained Kinematic Fit and Further Selec-

tion

A relatively clean sample of π+π−π+π−γ candidate events is already obtained by the
preliminary selection of four charged tracks and one high energetic ISR photon. The
selection leads to a relative amount of background of approximately 10% in respect to
the π+π−π+π−γ final state.

For signal events a minimum number of four tracks is required. In addition, events oc-
casionally contain one or two extra tracks due to either beam losses, converted extra
radiation, or other interaction. Therefore, events with 4, 5 or 6 tracks are considered as
signal candidates. The four tracks closest to the event vertex are taken as input for the
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final state σ [ pb] Nproduced LMC [ fb−1 ] scaling factor

π+π−γ 21.4 87.6M 4090 0.11

π+π−π0γ 2.6 7.4M 2800 0.16

π+π−π0π0γ 3.7 3.5M 950 0.49

π+π−π+π−π0γ 0.9 473k 530 0.87

π+π−π+π−π0π0γ 3.4 137k 40 10.9

K0
S
K±π∓γ 0.3 978k 3300 0.14

K+K−π+π−γ 0.6 100k 170 2.7

π+π−π+π−π+π−γ 0.7 357k 510 0.62

µ+µ− 42.9 49.25M 1150 0.40

continuum 2090 874.9M 420 0.23 (1.09)

ττ 890 382.6M 430 1.06

π+π−π+π−γ 3.3 31.7M 9610 0.047

Table 4.1: Summary of background channel contributions to π+π−π+π−γ from other ISR and non-ISR
processes for Runs 1–6. The radiative cross section σ, the number of available simulated
events Nproduced and the corresponding effective luminosities LMC as well as the resulting
scaling factors are displayed for the different final states. Continuum background includes
several non-ISR modes. The scaling factor strongly depends on the internal branching ratio
for the individual background of interest. It is determined in a dedicated study, described
in Section 4.3.2. The scaling factor in brackets corresponds to the given total cross section
and therefore to an average scaling factor for different final states. It is not of interest for
this study.

constrained kinematic fit procedure.

The fit uses the measured momenta and angles of the charged particles and the corre-
sponding error matrices, as measured in the DCH and imposing the mass of the four pion
candidates, and the measured photon energy and angles to solve the energy-momentum-
equation. Therefore the four original constraints from the energy-momentum-equation
lead to a fit with four constraints (4C).

Due to the fact that the parameters of the measured photon are used in the kinematic
fit, they have to be known with very high precision. A micro-alignment and energy cali-
bration of the EMC have been performed using a µ+µ−γ sample (Section 5.1).

The kinematic fit is not only performed in the signal hypothesis of the π+π−π+π−γ
channel (χ2

4π), but also in the hypothesis K+K−π+π−γ (χ2
2K2π) if two tracks are identified

as kaons. This allows the application of dedicated K+K−π+π−γ background suppression
requirements. The selected events are recorded into a smaller set of π+π−π+π−γ ntuples
along with additional information, e.g. the goodness of fit χ2, recalculated (denoted
rec) track and ISR photon momenta and angles. These values are used to apply tighter
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Erec
γISR,lab

> 3.0GeV

0.35 rad < θrecγ < 2.4 rad

0.5 rad < θrecch < 2.4 rad

Qtot = 0

(((EEMC/ptot − 1)/0.15)2 + ((dE/dXDCH − 690)/150)2) > 1

χ2
4π < 30

Table 4.2: Signal selection criteria.

selection criteria (see Table 4.2). The high energetic ISR photon Eγrec
ISR

,lab > 3.0GeV
is required to be directed into the well-understood polar angle of the EMC, 0.35 rad <
θrecγ < 2.4 rad. The polar angle requirement for the charged tracks is chosen to force these
tracks in the DIRC acceptance, which significantly improves kaon from pion separation.
In addition, the total charge of the four tracks has to satisfy Qtot = 0. In order to suppress
radiative Bhabha events, it is required that the deposited energy in the EMC EEMC, the
total measured momentum ptot, and the specific energy loss in the DCH dE/dXDCH of
the two most energetic tracks satisfy the conditions, indicated in Table 4.2.

Fig. 4.1 shows the χ2
4π distributions for data before background subtraction and the signal

simulation in logarithmic (a) and linear scale (b). The distributions are normalized to
the number of events in χ2

4π < 10. The absolute difference between the data and MC
χ2
4π distributions is shown in Fig. 4.1 (d) for χ2

4π > 10. For high χ2
4π values the difference

between the data and the simulation, which is due to the backgrounds shown in Fig. 4.1
(c), is nearly constant.

Towards small χ2
4π values it is visible that the χ2 resolution is slightly different for data

and MC simulation. The data distribution is above MC simulation for χ2
4π < 3 and

below for 3 < χ2
4π < 10. Cutting into the χ2 region, which is influenced by this resolution

effect, might introduce an artificial efficiency difference between data and MC simulation.
Therefore, it has to be ensured that the applied requirement is not too tight. This can
be checked by varying the requirement to very high χ2 values and comparing the relative
change in data to simulation. Since the background description of MC simulation is
not perfect, and the relative background contamination is higher for high χ2 values, this
might cause a difference between data and MC simulation. In order to get only the
difference due to the χ2 requirement, this variation has to be performed for a very clean
sample. Therefore exactly four detected tracks and one photon are required. In addition,
the four tracks have to be identified as pions. Fig. 4.1 (e) shows the χ2 distributions for
this clean sample for data and signal MC simulation normalized again to the number of
events in χ2

4π < 10 in data. The relative difference is shown in Fig. 4.1 (f). Varying the
requirement of χ2 from 30 to 200 increases the number of events in data by 12.7± 0.3%
and in MC simulation by 12.5 ± 0.1%. The difference between data and MC simulation
is consistent with zero. Therefore no correction needs to be applied, but a systematic
uncertainty of 0.3% on this χ2 selection is assigned.
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Figure 4.1: The χ2
4π distributions in the π+π−π+π− hypothesis for the data and signal MC in loga-

rithmic (a) and linear scale (b). The simulated background MC samples are shown in (c)
and the difference between the data and signal MC in (d). The dashed line indicates the
the upper limit of the region of normalization for simulation according to the number of
events in data (0 < χ2

4π < 10). (e): χ2
4π distribution for events with exactly four detected

pion tracks and one photon. The histogram shows the data (red) and signal MC simulation
(blue) normalized to the number of events in χ2

4π < 10 in data. (f): Relative difference
between data and simulation taken from (e).

4.3 Background Subtraction

A difference in the χ2
4π distribution between the data and the MC simulation is observed

in Fig. 4.1 (a). Essentially, this deviation is due to background contamination. The
difference almost completely disappears in the clean sample with exactly four tracks and
one photon detected, see Fig. 4.1 (e). This is an indicator of a non-negligible background
contribution in our data.

Figure 4.2 (a) shows the invariant mass distribution M4π of the hadronic system for
data after applying all selection requirements described above, together with the sum of
all relevant simulated background channels. A large peak is visible in data most likely
due to excited ρ resonances, e.g. the ρ(1450). The background distribution also shows a
peaking structure around the same mass. A signal from J/ψ → π+π−π+π− is clearly seen
in data. There is also a J/ψ contribution present in the background simulation, visible
as a broader structure at slightly lower invariant masses. The shift in the invariant mass
M4π is due to a mis-identification of kaons as pions. In the data, an additional narrow
peak at the ψ(2S) invariant mass is visible. The background contamination is on the
level of a few % in the M4π peak region, but contributes up to 20% at high invariant
masses.

The individual background contributions are displayed in Fig. 4.2 (b). In the peak re-
gion (1.2GeV/c2 < M4π < 2.2GeV/c2) the main contributions are coming from the ISR
channels K+K−π+π−γ and K0

S
K±π∓γ, whereas above 2.2GeV/c2 the additional back-
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Figure 4.2: (a): The invariant π+π−π+π− invariant mass distribution for data (red) and the sum of the
simulated K+K−π+π−γ, K0

S
K±π∓γ and continuum production background distributions

(black). (b): The individual background contributions as a function of the π+π−π+π−

invariant mass.

ground of the non-ISR continuum events gains importance. At low invariant masses,
M4π < 1.2GeV/c2, the π+π−γ and π+π−π0γ are dominant and not included in Fig. 4.2.
In the following, the different methods to clean data from the various background con-
tributions are described.

4.3.1 Background in Peak Region (1.2GeV/c2 < M4π < 2.2GeV/c2)

The background channels which dominate in the peak region of the invariant mass are
the ISR final states K+K−π+π−γ and K0

S
K±π∓γ. Two different approaches are used for

the background subtraction, and the difference between the two methods serves as an
estimate of the systematic uncertainty related to the background subtraction:

• Method 1: Subtract the simulated invariant 4-pion mass distributions of the back-
ground channels directly

• Method 2: Use specific selection criteria to suppress background channels

Method 1: Subtraction of Simulated Background Channels

The background channels simulated in AFKQED have not been updated yet according
to the recent BABAR cross section measurements of these channels. The basic principle of
this method is to scale the individual MC channels according to their cross section and
to the luminosity of data. The same event selection for data, signal MC and the back-
ground MC channels is applied. Then the M4π spectrum of each background channel is
subtracted from theM4π distribution of data. Figure 4.3 (a) and (b) display the invariant
mass distributions of the simulation on generator level as well as the shape of the mea-
sured differential cross section as a function of the invariant mass for K+K−π+π−γ [75]
and K0

S
K±π∓γ [76] respectively. Both distributions are normalized to the same integral.
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Differences between the MC simulations and the measurements are clearly visible.
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K±π∓γ [76]. Scaling factor for

K+K−π+π−γ (c) and K0
S
K±π∓γ (d).

Consequently, each event in the invariant mass distribution needs to be weighted accord-
ing to its true invariant mass information in order to assure that the MC invariant mass
distribution matches the measured distributions. The corresponding scaling factors are
displayed in Fig. 4.3 (c) and (d). After this re-weighting process, the background con-
tributions of K0

S
K±π∓γ and K+K−π+π−γ in the invariant π+π−π+π−-mass spectrum

are displayed in Fig. 4.4 (a) and (b). Only the J/ψ peak, which is not generated in
K+K−π+π−γ, is not reproduced. This has to be taken into account when measuring the
branching ratio B(J/ψ → π+π−π+π−), see Chapter 7.1.

Method 2: Specific Background Requirements

The basic principle of this approach is to apply specific selection criteria in order to sup-
press the K+K−π+π−γ and K0

S
K±π∓γ background contributions. This is achieved by
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Figure 4.4: Re-weighted π+π−π+π− invariant mass distribution M4π for K0
S
K±π∓γ and

K+K−π+π−γ simulation, Run 5.

the following two requirements: the K0
S
K±π∓γ veto and the K+K−π+π−γ veto.

The K0
S
K±π∓γ veto is performed if exactly one track is identified as charged kaon ac-

cording to a tight PID requirement. According to simulation, the pion fake rate for
this requirement is about 1.0% per event (0.25% per track). In addition, the invariant
π+π−-mass M2π of two of the three pions in the event is required to lie near the nominal
invariant mass of the K0

S
, 0.460GeV/c2 < M2π < 0.535GeV/c2. TheM2π distributions for

events with one detected K± is shown in Fig. 4.5 for data, signal MC and K0
S
K±π∓γ MC.

The K0
S
peak is clearly visible in data in addition to a flat background due to π+π−π+π−γ

events with one pion misidentified as kaon. A corresponding flat distribution is seen in
Fig. 4.5 (b) for signal MC. As expected, a peaking structure at the K0

S
mass is visible for

K0
S
K±π∓γ MC in Fig. 4.5 (c).

Due to this veto, when the K0
S
and the K± are identified, approximately 1% of signal

MC is lost and 73% of K0
S
K±π∓γ are removed as can be seen in Table 4.3. The total

number of events in data is approximately 280000. The sum of predicted loss with MC
(8774 events) matches the real loss in data (8072 events) reasonably well. The differences
of 702 events are either due to the uncertainty in the scaling of the K0

S
K±π∓γ MC or

to data-MC differences of the kaon PID selector. In comparison to the total number of
events in data the difference is very small (< 0.3%), which is a measure for the systematic
uncertainty due to this veto.

The K+K−π+π−γ veto is performed if the event contains two tracks which are iden-
tified as kaons according to a slightly looser kaon PID selector than the one used for
the K0

S
K±π∓γ veto. In addition the event needs to satisfy χ2

2K2π < 10 in order to be
rejected. By this requirement, almost no signal is lost (< 0.1%), see Tab. 4.3. This is
due to the fact that the pion as kaon mis-identification rate of the PID selector is quite
low for two pions simultaneously. In combination with the χ2

2K2π < 10 requirement – the
corresponding distributions are shown in Fig. 4.6 – almost no signal is rejected. However,
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S
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a reduction of 55% of K+K−π+π−γ background events (5432 events) is achieved. 45%
remain because the kaon selector has an average efficiency of approximately 90%. The
difference between data and MC is on the level of 1%. Since 2 kaons are required, ap-
proximately 80% of the K+K−π+π−γ are properly identified. Not all of them satisfy the
χ2
2K2π requirement, as can be seen in Fig. 4.6. The remaining 42% of K+K−π+π− back-

ground can finally be subtracted according to method 1. The small difference between
the number of lost events in data (5019) and MC (5432 events) is due to differences in the
kaon PID selection and differences in the shape of the χ2

2K2π distributions. This global
difference in comparison to the number of signal events is a measure of the systematic
uncertainty of this method which is approximately 0.2% ( 413

264000
see Table 4.3).

The number of events removed in data due to the vetoes (-4.9%) is very well reflected
by the luminosity-weighted MC (-4.6%). The remaining background events are finally
subtracted according to method 1.
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Figure 4.6: The χ2
2K2π distributions for data (red) and various simulated final states (black), Run 5.

Comparison of Method 1 and Method 2

Performing the two methods leads to a good estimate of the systematic uncertainty due
to K+K−π+π−γ and K0

S
K±π∓γ background subtraction. This can be seen in Table 4.3.

On the one hand, the total number of subtracted events with the two methods matches

Method 1 Method 2

final no veto K0
S
K±π∓ K+K−π+π− combined complete

state veto veto veto

π+π−π+π−γ 264000 261130 263960 261090 -1.1% 261090 -1.1%

K0
S
K±π∓γ 6744 1798 6663 1742 -74.2% 0 -100%

K+K−π+π−γ 9598 8674 4305 3649 -62% 0 -100%

continuum 1110 1075 1093 1058 -4.7% 0 -100%

sum MC 281452 272677 276021 267539 -4.9% 261090 -7.8%

data 282250 274178 277231 269354 -4.6% 262905 -7.4%

Table 4.3: Number of events (second column), scaled to the data luminosity for different final states
(first column). Third and fourth column display the remaining number of events after the
K0

S
K±π∓γ and K+K−π+π−γ veto, respectively. Since the π+π−π+π−γ cross section is a

result of this study, the π+π−π+π−γ MC is preliminary scaled to the difference in number
of events between data and the sum of all background contributions. The number of events
with the combined veto is displayed in the fourth column and after subtracting the remaining
background contribution according to simulation in the last column.

nicely as shown in Table 4.3. In addition, the background subtraction according to both
methods agrees as a function of the invariant mass M4π. Figure 4.7 shows the difference
in the results of the invariant mass distributions using method 1 and 2. The plot on the
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left hand side displays the differences in the two methods using the original MC invariant
mass distribution. In the integral, hardly any differences is visible. However MC is not
subtracted properly bin by bin. On the right hand side the corrected mass distribution of
K+K−π+π−γ and K0

S
K±π∓γ MC is used. The two methods agree much better, leading

to the assumption of a systematic uncertainty of 1% due to the background subtraction.
Finally, method 2, which is a hybrid of the vetos and the subtraction of the simulated
background channels, is used in order to remove the background contributions, since it
depends less on the absolute scaling of simulation.
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Figure 4.7: The relative difference of the invariant mass distributions of data between corrections
according to method 1 or 2 without (left) and with (right) MC invariant mass corrections.

4.3.2 Background at Large Invariant Masses (M4π > 2.2GeV/c2)

The main background contribution at large invariant masses stems in addition to the
K+K−π+π−γ and K0

S
K±π∓γ contributions from non-ISR continuum background, in-

creasing towards high invariant masses. The best choice to clean data from background
at large invariant masses is to subtract continuum production MC from data. In the fol-
lowing, the method to determine the correct scaling factor for the continuum production
is described. The largest contribution of the non-radiative continuum events that fake
signal events is π+π−π+π−π0, with π0 → γγ. One of the two photons resulting from the
π0 decay can be misidentified as a fake ISR photon.

In previous similar studies, the invariant γγ-mass (MγγISR) of the ISR photon with that
photon which leads to the invariant mass closest to the π0-mass was compared between
data and the sum of signal MC and continuum production MC. These distributions are
shown in Fig. 4.8 for data (a), signal MC (c) and continuum production MC (e). Plotting
only the combination with MγγISR closest to the π0-mass creates an artificial peak at the
π0-mass. If the artificial peak in data and MC were very similar, the strategy would allow
a proper determination of the scaling factor. However, this is not the case. Figure 4.8
shows allMγγISR combinations for data (b) and signal MC (d). It is visible that data and
signal MC have a very different shape at low invariant masses. The peaking structure for
signal MC close to threshold is much larger than in data. This peak clearly influences the
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γγISR combinations.

π0 invariant mass region. Therefore the scaling of continuum production in this study is
performed with the previously discussed event selection and the additional modification
to subdivide the sample into two subsamples. The first sample is restricted to large
invariant π+π−π+π− masses (2.2GeV/c2 < M4π < 4.5GeV/c2). In this invariant mass
region continuum production is the largest source of background. All ISR background
channels have a rather small contribution, and moreover their invariant MγγISR mass
distribution should not be different from signal MC. The second sample with a very
small continuum production content is at small invariant masses M4π < 2.2GeV/c2. For
both samples, the MγγISR distribution of all possible pairings of the ISR photon with all
other photons in an event are created. These distributions can be seen in Fig. 4.9 (a)
for M4πγ < 2.2GeV/c2 and in (b) for 2.2GeV/c2 < M4πγ < 4.5GeV/c2. Only a small π0

peak is visible in (a) as expected. This sample can be used to estimate the shape of the
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non-continuum production distribution.

In order to describe the background properly, the sum of a Gaussian distribution, which
describes the π0 peak, and the function

f(x) =
c1

c2 · x− c3
+ c4 + c5 · x (4.1)

is fitted to the MγγISR distribution of data in (a).

Once the 5 parameters c1 − c5 are determined by the fit, the approximate shape of
the background is known. As a next step, a second fit is performed for the histogram
in (b) again with a Gaussian with three free parameters and f(x) for the background
distribution with the previously determined parameters c1 − c5 kept fixed in the fit. As
a result of the fit, the parameters of the Gaussian are obtained and the number of events
in the peak are determined.

Figure 4.9 (c) displays the corresponding distribution for continuum production MC.
Using the sum of a flat and a Gaussian distribution gives a sufficient estimate for the
number of events in the π0-mass peak region. This MC sample has to be rescaled in
order to match the number of events in the peak in (b). The resulting scaling factor of
0.23± 0.05 will be used in the following to scale the continuum background.
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Figure 4.9: Invariant γγISR mass distribution Mγγ for data at low invariant masses M4π < 2.2GeV/c2

(a). Corresponding distribution at large invariant masses 2.2GeV/c2 < M4π < 4.5GeV/c2

for data (b) and continuum production MC (c).

The main uncertainty of the resulting scaling factor is the uncertainty of the number of
events in the Gaussian distribution describing the π0-mass peak. This scaling factor is
the average scaling factor for all continuum events with 2.2GeV/c2 < M4π < 4.5GeV/c2.
Figure 4.10 shows the relative variation of the final π+π− cross section when varying
the continuum scaling factor according to the fit result (0.23 ± 0.05) by one standard
deviation to 0.18 and 0.28.

Determining the scaling factor with the same method using events withM4π < 2.2GeV/c2

gives a different result: 0.45± 0.2. The relative uncertainty of 50% of this scaling factor
in this region is due to the fact that the number of events in the π0-mass peak is diffi-
cult to determine due to the small contribution of continuum production in that region.
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However, the impact of continuum production background at M4π < 2.2GeV/c2 is very
small. Even the variation of the scaling factor from 0.23 to 0.45 influences the π+π−π+π−

cross section result by less than 0.5%, which is used as an estimate for the systematic
uncertainty in this region.

The determination of the scaling factor separately for 3.0GeV/c2 < M4π < 4.5GeV/c2

gives a similar result (0.28±0.06) as for the whole region 2.2GeV/c2 < M4π < 4.5GeV/c2.
This supports the assumption that the variation of the scaling factor within our deter-
mined average value of 0.23 ± 0.05 leads to a reasonable estimate for the systematic
uncertainty due to continuum background subtraction. The black lines in Fig. 4.10 are
used as the systematic uncertainty for the indicated region of M4π.
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Figure 4.10: Systematic uncertainty due to continuum subtraction. Relative variation of the cross
section σ(e+e− → π+π−π+π−) due to the variation of the continuum background scaling
factor within its uncertainty to 0.18 and 0.28 (points); estimated systematic uncertainty
due to this background subtraction (lines).

There is an additional background contribution in the charmonium region. Figure 4.11
(a) shows the π+π−π+π− invariant mass distribution for data. Peaks around the J/ψ and
ψ(2S) masses are clearly visible. In Fig. 4.11 (b), the π+π− invariant mass distribution
M2π for events within the ψ(2S) mass region 3.65GeV/c2 < M4π < 3.75GeV/c2, as indi-
cated in Fig. 4.11 (a), are plotted. The distribution contains 4 entries per event. The J/ψ
peak is clearly visible. The PDG value for the branching fraction of J/ψ → π+π− is two
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orders of magnitude smaller than for J/ψ → µ+µ−: B(J/ψ→µ+µ−)
B(J/ψ→π+π−)

≈ 400. Due to the fact
that no dedicated PID selector is used, events which contain muons are not suppressed.
Also the kinematic fit does not suppress π+π−µ+µ− events, because the mass difference
between muons and pions is only 34MeV/c2. This mass difference is negligible, because
both particles are highly relativistic, being produced by the J/ψ decay. Requiring that
M2π is around the J/ψ -mass removes these background events as can be seen in Fig. 4.11
(c). The ψ(2S) peak almost entirely consists of π+π−µ+µ− events.

0

500

1000

1500

0.5 1 1.5 2 2.5 3 3.5 4

0

200

400

600

800

0.5 1 1.5 2 2.5 3 3.5 4

0

500

1000

1500

0.5 1 1.5 2 2.5 3 3.5 4

(a)

M4π [GeV/c2]

E
nt

rie
s 

/ 2
5 

M
eV

/c
2

(b)

M2π [GeV/c2]

E
nt

rie
s 

/ 2
0 

M
eV

/c
2

(c)

M4π [GeV/c2]

E
nt

rie
s 

/ 2
5 

M
eV

/c
2

Figure 4.11: (a): π+π−π+π− invariant mass distribution for data; (b): π+π− invariant mass distribu-
tion for events within the ψ(2S) invariant mass region 3.65GeV/c2 < M4π < 3.75GeV/c2

as indicated by the vertical lines in (a) (4 entries per event); (c): π+π−π+π− invariant
mass distribution for data without entries of the π+π− invariant mass in the J/ψ mass
region represented by the vertical lines in (b).

4.3.3 Background at Small Invariant Masses (M4π < 1.2GeV/c2)

At small invariant π+π−π+π−-masses, there is a large signal pollution due to events
coming from the ISR-channels π+π−π0γ and π+π−γ. These processes are illustrated in
Fig. 4.12. In the case of the π+π−π0γ final state, the π0 decays to two photons (π0 → γγ)
and one of the photons emitted from the π0 converts in the detector. In the case of the
π+π−γ final state, NLO real radiation converts in the detector or NLO internal conver-
sion takes place. These conversion electrons and positrons can get misidentified as pions.
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Figure 4.12: Illustration of background contributions due to the ISR-channels π+π−γ (a) and π+π−π0γ
(b).

As a result of the investigation of Chapter 5.2, an estimate of the ratio of real conver-
sion to internal conversion of approximately 5:1 is obtained. Real conversion is dominant.
The background contributions from this source are estimated with two different methods.

Method 1: Conversion Veto

A primary vertex routine computes a common vertex of all charged tracks of an event. It
assigns a corresponding vertex probability PV ertex, reflecting the probability that all tracks
have been created at this vertex. Due to the fact that two real conversion tracks are not
emitted from the interaction point, the primary vertex probability for this kind of events
is small. Figure 4.13 (left) and (right) display the vertex probability distributions in
logarithmic scale for data and MC respectively. Events which have a vertex probability of
less than 0.01 are rejected. These events are clearly present in data and hardly present in
MC. This requirement, however, will hardly reject very high energetic electrons, produced
in the inner structure of the detector (beam-pipe, SVT). This is due to the fact that these
conversion tracks are very straight and point back to the origin of the conversion photon.
Furthermore, this method cannot reject events with internal conversion.

Therefore, this requirement needs to be combined with a veto which rejects events if two
electrons are identified according to an electron PID selector. The selector used has a very
high electron efficiency (≈ 99%). However it has a non negligible pion mis-identification
rate of approximately 5− 10%, depending on momentum and polar angle.

Method 2: π-PID

Since the background contribution is high in this M4π mass region, a second approach is
needed to confirm the result of method 1: Another way of estimating the signal distri-
bution is to require actively a pion PID selector. This selector has a difference between
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Figure 4.13: Vertex probability distribution for data (left) and MC (right). The large peak in data at
-11 corresponds to a vertex probability of 0 and is hardly present in MC. It is due to real
conversion events.

data and MC of up to approximately 1.5% per track, depending on its momentum. So
finally, the requirement of all four tracks to be identified as a pion in the invariant mass
region M4π < 1.1GeV/c2 is expected to introduce a systematic shift of approximately
2 − 5%. Therefore, it is not used in the peak region, 1.2GeV/c2 < M4π < 2.2GeV/c2,
where the background contamination is very low and the previously described methods
lead to a smaller systematic uncertainty. Since it is known that the relative background
contamination is small in the peak region of M4π, this region can be used to estimate the
PID efficiency differences between the data and the MC simulation. In a first step, it is
verified that the momentum distribution atM4π > 1.0GeV/c2 is similar to the momentum
distribution at very low invariant masses, i.e. M4π < 0.8GeV/c2, since the PID efficiency
differences depend on the momentum of the particle. Figure 4.14 (a) and (b) display
the momentum distribution for tracks at small invariant masses (M4π < 0.8GeV/c2)
for tracks identified as pions and not identified as pions. Both distributions at small
invariant masses are very similar to the corresponding ones at higher invariant masses
M4π > 1.0GeV/c2, which is shown in Fig. 4.14 (c) and (d). This allows us to measure
the efficiency difference between data and MC due to the PID selector in the peak region
and apply the corresponding correction at low invariant masses.

The shift in the peak region of the M4π distribution due to the π PID can be seen in
Fig. 4.15 (a). In this clean region, a shift of slightly above 2% is observed and corrected,
as shown in Fig. 4.15 (b).

The electron as pion mis-ID probability is approximately 5%. Therefore the probability
to misidentify the two conversion electrons as pions is about 5% · 5% = 0.25%. The
number of events removed by the pion selection multiplied by 0.25% gives an estimate
for the systematic uncertainty due to remaining conversion background.
The contributions to the uncertainty are shown in Fig. 4.16 for the π efficiency difference
(black) and the remaining conversion background (blue). The sum of both contributions
(red) gives an estimate for the total systematic uncertainty, which is approximately 3%.
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Figure 4.14: Momentum distribution of all four tracks of events with M4π < 0.8GeV/c2 (top) and
M4π > 1.0GeV/c2 (bottom) for events with all 4 tracks identified as pions (right) and
events with one track not identified as pion (left).

Comparison: Method 1 and Method 2

The cross section at low 4-pion masses with and without the two different background
subtraction methods is displayed in Fig. 4.15 (c). Both methods remove the large frac-
tion of conversion events and agree well. In the end the pion selector is used, and the
distribution is corrected for the difference between data and MC as described before. It
should also be noted that the peaking structure at approximately 700MeV/c2 strongly
diminishes, and - if at all - only remains as a small shoulder after applying the vetos.

4.3.4 Background Summary

After applying standard selection requirements, the background contamination at low
invariant masses is very in comparison to the number of signal events in that region.
Therefore it is suppressed by requiring all tracks to satisfy the pion PID selection. This
allows a background subtraction with an uncertainty of 3%. In the peak region, the
corresponding uncertainty due to the K0

S
K±π∓γ, K+K−π+π−γ subtraction is 1%. This
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Figure 4.15: Cross section without and with two different electron vetoes in the M4π peak region (a).
(b): Same distribution as (a) after correcting for MC-data difference of PID selector. (c):
Result for cross section in the small invariant mass region after PID selector corrections.

uncertainty raises above M4π > 2.2GeV/c2 to up to 3% and 7% due to the increasing
continuum contribution below 4GeV/c2 and 4.5GeV/c2 respectively.

In Fig. 4.17 (a) the χ2 distribution for data and signal MC are shown after application
of the described background vetoes and subtraction of the remaining background contri-
butions. The difference of these distributions is displayed in Fig. 4.17 (b) and gives an
estimate for the remaining background of approximately 55 events per bin. This differ-
ence can be explained due to uncertainties in the subtraction of the background channels
K+K−π+π−γ or ωπ+π−γ as as previously described. In order to be conservative, it is
assumed that the remaining tail is due to an additional uniform background contributions
as a function of χ2

4π. In this case, the uncertainty on the cross section is below 0.4% for
M4π < 2.8GeV/c2 and below 4.0% for 2.8GeV/c2 < M4π < 4.5GeV/c2.
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Figure 4.16: Systematic uncertainty in dependence of the invariant M4π mass due to the background
suppression with the pion PID selector in the region M4π < 1.2GeV/c2. Variation of the
cross section due to remaining conversion background (black) according to the electron
as pion mis-ID rate and due to the efficiency difference in the pion selection (blue) and
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after background suppression. (b): Remaining difference between the distributions in (a).
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4.4 Global Efficiency

The previously described selection and background suppression procedure is also applied
to simulated signal MC. Fig. 4.18 (a) shows the invariant mass distributions from simula-
tion for all generated signal events and the signal events that passed the event selection.
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Figure 4.18: (a): The invariant mass M4π distribution from simulation for all generated signal events
and events after final selection. (b): The resulting global efficiency vs. invariant mass
M4π determined with simulation. Each line corresponds to a sum of a Gaussian and a
polynomial fit. The vertical line at M4π = 1.1GeV/c2 separates the regions with and
without π-PID requirement for the reconstructed tracks.

Fig. 4.18 (b) displays the distribution of the global detection and reconstruction efficiency,
which is calculated as the ratio of selected π+π−π+π−γ events to the number of generated
events as a function of the invariant mass M4π.

The influence of the individual requirements to the overall detection efficiency is shown
in Table 6.1.

The usage of the ISRfilter and ISRselpass selectors removes almost 47% of the gener-
ated events. This is mainly due to the requirement on the photon with an energy of
ECMS > 3GeV: The simulation conditions are set for a wide ISR photon angular range
20◦ < θγ,CMS < 160◦. An angle of 20◦ in the CM corresponds to approximately 11◦
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Requirement NEvents Fraction

All events 31706768 1

ISRfilter and Pass 17014876 0.537

Elab > 3GeV 16806152 0.530

Ntracks ≥ 4 10742561 0.339

Trigger & BGF 10727975 0.338

Qtot = 0 10686431 0.337

Bhabha veto 10639690 0.336

χ2
4π < 30 7001721 0.221

0.35 rad < θγ < 2.4 rad 6747050 0.213

0.5 rad < θπ < 2.4 rad 5651529 0.178

pt,π > 0.1GeV/c 5639186 0.178

∆ψ > 1.0 rad 5580120 0.176

Ne− < 2 5567618 0.1756

K0
S
K±π∓ veto 5507693 0.174

K+K−π−π− veto 5506874 0.174

Table 4.4: The number and fraction of events surviving various selection requirements in π+π−π+π−γ
simulation.

in the laboratory frame. Since most ISR photons are emitted at small polar angles, a
large number of photons is therefore not detected because they have been emitted outside
the detection region. The MC production is performed with ECMS > 3GeV, however,
the measured photon energy distribution has a tail due to the limited energy resolution
towards low energies. Since also the true energy distribution increases towards low en-
ergies, many events are lost due to this energy requirement. The additional requirement
Elab > 3GeV only has a small impact on the number of selected events.

Applying the requirement that the number of detected tracks is four or more is dominated
by the angular requirement to keep all charged tracks in the well-understood region of
the DCH and DIRC acceptance. As mentioned above, only events with pt > 0.1GeV/c
for each track, close to the minimum DCH threshold, are accepted. Due to the very high
efficiency of the BABAR trigger system (L1, L3, Bkgfilter) for signal events with four tracks
and one high energetic photon, the resulting trigger and background filter inefficiency is
in the sub-per mil level and thus negligible.

The χ2
4π < 30 requirement decreases the number of events by approximately one third.

All remaining requirements used to clean the data sample were discussed already above
and result in a final overall efficiency of 17.4%. However, as can be seen in Fig. 4.18 the
dependence on M4π has to be taken into account.

A MC model with the dominance of the a1(1260)
±π∓ final state was used for simula-

tion [95]. The a1(1260)
± mass and width were changed from (Ma1 = 1.251GeV/c2,Γa1 =

0.599GeV) in the original code [95] to (Ma1 = 1.33GeV/c2,Γa1 = 0.57GeV) as obtained
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from a combined analysis of CLEO and CMD-2 data [106]. In the model used for the
simulation, the a1(1260) is decaying to ρ(770)0π. Due to theoretical expectations [95]
(not yet confirmed by experiment) the model also includes the f0(1370)ρ final state.

The presence of other intermediate resonances with different spin structure in data is a
possible source of systematic error for the cross section measurement. These resonances
might lead to changes in the angular distributions of the charged tracks and therefore to a
mis-calculated efficiency. A detailed study of these intermediate resonances is performed
in Chapter 7. It is demonstrated that the influence on the efficiency is negligible.



Chapter 5

Systematic Corrections and
Uncertainties

Thanks to the high luminosity delivered by PEP-II, the systematic uncertainties will dom-
inate the precision of the e+e− → π+π−π+π− cross section measurement. It is therefore
of utmost importance to understand the BABAR detector with high precision and fine tune
the Monte Carlo simulation in order to minimize the systematic uncertainties.
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The high integrated luminosity at BABAR allows the accumulation of approximately
280, 000 measured π+π−π+π−γ signal candidate events, which corresponds to the highest
data sample of this channel ever collected. Therefore, especially in the peak region of
the invariant mass, 1.2GeV/c2 < M4π < 2.2GeV/c2, the total uncertainty is dominated
by systematic effects.

The energy and position of the ISR photon is measured with the EMC. In standard
BABAR analyses, photons typically have energies smaller than 3GeV, and the energy
scale calibration focuses on these lower energetic photons. In the first part of this chapter,
the fine tuning of the standard BABAR photon energy calibration and angular alignment
for high energetic photons is presented. The second part focuses on the EMC photon
reconstruction efficiency difference between data and simulation. In our particular final
state, four charged particles are present. Thus, the track reconstruction efficiency of
the tracking system and possible differences between data and simulation need to be
determined. This measurement is described in the last part of this chapter.

5.1 Energy and Position Calibration of the EMC

Reconstructed quantities of the photons are an essential input for the kinematic fit of
ISR analyses. Therefore a dedicated study to check the calibration of the photon energy
and angles as well as the corresponding resolutions using the µ+µ−γ final state has been
performed. The two muon tracks are measured and used in a kinematic fit to predict
the kinematic parameters of the ISR photon. Thus, the photon parameters are obtained
using only tracking information from the SVT and DCH. To validate the kinematic fit,
these predictions are compared in simulation to the true photon parameters. As a next
step, the actually reconstructed position and energy values in the EMC are compared to
the fit result for simulation and data. Hereby not only improved EMC-DCH alignment
parameters, but in addition the energy and angular resolutions for data and simulation
are obtained. This allows small corrections in data and a fine-tuning of MC.

5.1.1 Event Selection for µ+µ−γ

The primary ISR event selection as described in Section 4.1 is applied, with the modifi-
cation that the minimum required measured ISR photon energy is reduced to 500MeV.
The following additional selection requirements have been chosen in order to filter out a
clean µ+µ−γ event sample:

• Ntracks = 2

• χ2
2µ < 5

• PV ertex > 0.01

• PID(Track1) = PID(Track2) = µ
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• |Z20| > 0.82

• θγ,meas > 0.31 rad

• |∆φγ| = |φγ,meas − φγ,fit| < 0.015 rad

• |∆θγ | = |θγ,meas − θγ,fit| < 0.015 rad

The vertex probability PV ertex requirement ensures that both tracks are emitted from a
common vertex. The muon PID selector is a standard BABAR tool, combining information
from several sub-detectors in a maximum likelihood fit. The Zernike moment Z20 is
related to the shower shape of the neutral cluster which in addition needs to be located
at polar angles θγ,meas > 0.31 rad, corresponding to the efficient detection region of the
EMC. The |∆φγ| and |∆θγ | requirements lead to an additional reduction of background
events as well as events with additional radiation.
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Figure 5.1: Measured ISR photon energy distribution in the laboratory system Eγ,lab in the µ+µ−γ
event sample for simulation (a) and data (b).

Figure 5.1 compares the ISR photon energy distributions measured in the laboratory
system for the data and the MC simulation. The µ+µ−γ simulation is produced with a
minimal energy for the ISR photons in the CM system of Eγ,CM > 3GeV on generator
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level. Thanks to the asymmetric beam energies of PEP-II this study is feasible in the
energy region 2GeV < Eγ,lab < 8GeV with good statistics for the given simulation
sample. In the energy range 1GeV < Eγ,lab < 2GeV, a low statistics sample is still
available, whereas for lower energies, the study is not feasible with the simulated sample
of events.

The observed structure in the MC spectrum is due to this energy requirement, the PEP-II
boost and the fact that ISR photons are preferably emitted in the direction of flight of the
mother particle. In simulation, the positron emits photons in the energy range 3GeV <
Eγ,CM < 5.3GeV, preferentially in opposite direction of the boost vector (βγ = 0.56).
Thus, the peaking structure at 3.5GeV < Eγ,lab < 4.0GeV is produced by the highest
energetic photons emitted by the positrons which are boosted towards lower energies.
The ones with low CM energy at small polar angles form the tail towards lower energies
down to Eγ,lab < 2.0GeV. The very small tail at Eγ,lab < 2.0GeV is due to not properly
reconstructed photons. The photons emitted from the electrons, preferentially in the
direction of the boost, end up with energies as high as Eγ,lab = 8.5GeV. The structure in
data is similar with additional entries at low energies due to the fact that photons with
Eγ,CM < 3.0GeV are present.

5.1.2 Consistency Check of Kinematic Fit with Simulation: An-

gles and Energy

The accuracy of the prediction of the photon parameters obtained in the kinematic fit is
studied by comparison with the generator-level (or true) information. In order to study
energy dependent effects the sample is subdivided into eight 1GeV wide energy regions
between 1GeV and 9GeV.

Consistency of Photon Angles

Figure 5.2 (top) displays the average differences between the measured azimuthal photon
angles φγ,meas on the one hand and the true angles φγ,true as well as the calculated ones
in the kinematic fit φγ,fit on the other hand. The distributions φγ,meas − φγ,true and
φγ,meas − φγ,fit are shown in Fig. 5.2 (a) for low energetic photons (3.0GeV < Etrue,lab <
4.0GeV) and in (b) for high energetic photons (7.0GeV < Etrue,lab < 8.0GeV). The
corresponding distributions for the polar angles θγ are shown in Fig. 5.2 (c) and (d). In
general, these angular distributions show shifts of about 0.001 rad or smaller. In Fig. 5.2
(a) a small shift of less than 0.0005 rad is observed. This corresponds to a slight rotation
of the EMC with respect to the DCH. Figure 5.2 (b) shows that this shift slightly increases
for high energetic photons. Due to the boost, these photons are emitted towards the very
forward directions (EMC end-cap) at small polar angles. Therefore, the observed small
increase in shift of more than 0.0005 rad seen for high energetic photons in Fig. 5.2 (b)
corresponds to a slightly larger rotation of the EMC end-cap relative to the DCH. All
observed shifts of less than 0.001 rad are, however, a very small effect in comparison to
the angular resolutions as will be shown in the following. This self-consistent check shows
the power of this method: The EMC-DCH alignment can be studied with a precision of
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better than 0.001 rad. These plots also demonstrate that the EMC-DCH alignment in
simulation is almost perfect, as expected.
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Figure 5.2: Top: Azimuthal misalignment shift vs. azimuthal angle in simulation: φγ,meas − φγ,true
(red) and φγ,meas − φγ,fit (blue). These distributions are shown for 3.0GeV < Etrue,lab <
4.0GeV (a) and 7.0GeV < Etrue,lab < 8.0GeV (b) in the laboratory system. Bottom:
Corresponding polar misalignment shift vs. polar angle.

For the same energy slices, the angular resolution of the ISR photon is investigated in
Fig. 5.3. The red histograms are the resolutions calculated as the difference between re-
constructed and true values of the angle of the photon; the blue histograms are resolutions
relative to the calculated ones from the kinematic fit. The lines represent a single Gaus-
sian fit. A double Gaussian fit would lead to a better fit result, with approximately 10%
contribution from the wider Gaussian. In the kinematic fit, however, probability density
functions (PDFs) corresponding to a single Gaussian resolution are used. Therefore, the
parameters for the single Gaussian approximation are extracted.

As expected, the angular resolution obtained from the 1C fit is always worse than the
true EMC resolution. The obtained resolutions (i.e. widths of the Gaussian distributions)
are summarized in Figs. 5.3 (right). A better polar angle resolution for the high energy
photons compared to lower energies is also observed. This is due to a geometrical effect,
namely the increasing distance between the IP and the EMC.
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Figure 5.3: Left: Azimuthal angle resolution for 3-4GeV (a) and 7-8GeV (b) photons in MC. Corre-
sponding distributions for the polar angle (c) and (d). Red: true resolution, blue: with the
additional uncertainties from the kinematic fit. e: Azimuthal angular fit parameters (for
single Gaussian fit) for the EMC response of MC events relative to the true (red) and the
1C fit values (blue); f: corresponding distribution for the polar angle.
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Figure 5.4: Difference of energies calculated in the kinematic 1C fit and true MC energies for 3GeV
and 8GeV photons.

In order to study the energy resolution of the kinematic fit prediction of the ISR photon,
small, ±20MeV wide energy slices around 3GeV and 8GeV are created to study the
EMC-energy response.

For these events, Fig. 5.4 shows the difference between the fitted and the true energy of
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the ISR photon. The kinematic fit prediction agrees with the true energies to an accuracy
of approximately 10−15MeV. The small tails on the right hand side of the distributions
are due to extra soft photon radiation, which is not included in the kinematic fit. The fit
associates the extra energy to the ISR photon and predicts a higher energy. This small
effect is not completely suppressed by the requirement χ2

2µ < 5.

The ±20MeV slices are smaller than the EMC resolution. Similar to the angular study,
the obtained energies after the full reconstruction procedure are considered as the EMC
response. Figure 5.5 shows the EMC response for the different photon energy regions.
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Figure 5.5: Left: Reconstructed energy in the EMC for 40MeV wide energy slices according to MC
true (blue) and fit prediction (red). Fit performed with the asymmetric “Novosibirsk”
function. Right: Energy (c) and energy resolution (d) for the EMC response relative to
true (blue) and kinematic fit values (red). The line is the “official” [80] BABAR resolution

σE/Eγ =
√

(0.023/E0.25
γ )2 + 0.0182

An asymmetric tail at low energy is present due to shower leakage. This energy response
shape is relatively well described by a PDF as suggested by the Novosibirsk group:

P (eγ) =
N0√

2πσ(e0 − eγ)
· exp

(

− Z2

2σ2

)

, (5.1)

where eγ = Eγ/E0, Eγ is the measured and E0 the true photon energy, e0 the asymmetry
(or cut-off), Z and σ are determined as:

Z = ln
e0 − eγ
e0 − emax

− σ2 (5.2)
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B0 =
2.35 · (σEMC/Eγ)

2(e0 − emax)
(5.3)

σ =
1√

2 ln 2 · ln(B0 +
√

1 +B2
0)
, (5.4)

and emax corresponds to the peak value. By definition σEMC = FWHM/2.35 ·E0 is corre-
lated to e0. The parameter emax is strongly correlated with E0 and must be fixed during
the fitting procedure at a value close to unity to provide the correct E0. The important
feature of this function is that the PDF is a Gaussian relative to the parameter Z. There-
fore, it can be used in the kinematic fitting programs which assume Gaussian distributions
for the parameters. Small deviations between simulation and the “Novosibirsk” function
are visible. It has an energy cut-off at E = e0 ·E0, whereas the experimental distributions
have some statistical tails towards larger energies. In the limit of e0 ≫ emax ≈ 1, this
PDF becomes symmetric and Gaussian.

This function is used to fit EMC responses for 3GeV and 8GeV photons selected by
±20 MeV slices in the true energy or in the calculated from 1C fit. In both cases the
distributions are practically identical. The results of the fits with five free parameters
(emax fixed at 0.9975) are shown in Fig. 5.5. For a better description of the tails, which
correspond to true photon energies, not background, the PDF is modified by varying
the asymmetry parameter as e0 = e00 + p6 · (e9γ − 1.). The power of 9 allows to keep e0
constant at eγ ≈ 1 and eγ < 1 but to increase rapidly at eγ ≈ e0. This modification gives
an excellent fit of the simulated distributions, including the long tails at low energies, as
presented in Fig. 5.5 (a) and (b).

Fig. 5.5 (c) and (d) show the fit parameters as a function of the energy in case of the EMC
true response and the EMC response obtained from the 1C fit. The energy prediction
of the kinematic fit (E0) agrees within 10MeV with the true values in simulation as well
as with the measured energy. In addition, the resolutions agree within approximately
1MeV. Therefore, in the energy region above 2GeV the kinematic fit method can be
used to obtain the measured EMC energy and resolution. It is also seen that the present
simulation has a better resolution in comparison to the “official” BABAR values as illus-
trated by the line in Fig. 5.5 (d). This is corrected by performing an additional Gaussian
spread to simulation as will be shown in more detail in the following Fig. 5.7.

5.1.3 EMC Energy Calibration and Alignment

The DCH has small systematic uncertainties related to the momentum and angle calibra-
tion for charged tracks. As seen in Section 5.1.2, the predictive power of the kinematic
fit, which relies on the DCH parameters, is very strong. Thus, the values calculated in
the kinematic 1C fit for the ISR photon can be used to check the EMC energy calibration
as well as the alignment of the EMC relative to the DCH. In Fig. 5.1 (b) the energy of
the ISR photons is shown for µ+µ−γ events in data. The selection of Eγ,CM > 0.5GeV is
used and in principle photons in the range 1GeV < Eγ,lab < 9GeV can be studied. The
statistics of the simulation sample for photons in the energy range 1GeV < Eγ,lab < 2GeV
is, however, not sufficient for a detailed study (Fig. 5.1 (a)).
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EMC Alignment

The EMC is composed of a barrel and an end-cap component (see Section 2.2). On the
one hand, there is the possibility of a misalignment between these two EMC detector-
units, on the other hand, time-dependent misalignment might occur most likely due to
works on the detector between the Run periods. Thus, this alignment study is performed
separately for both EMC components and the six Run periods. The method is based on
comparing the prediction of the kinematic fit of the polar and azimuthal angles to the
actual EMC photon cluster position. Not only possible misalignment between the EMC
components relative to the DCH is investigated, but also the photon angular resolutions
in the simulation and the data.

In general, a deviation between the prediction of the kinematic fit and the measurement
in the azimuthal angle corresponds to a rotation of the EMC relative to the DCH. A
sinusoidal behavior is related to a displacement in the x-y-plane. Displacements in the
z-direction result to first order in a shift of the polar angles.

Figure 5.6 shows the differences in the cluster angles obtained from the EMC response and
from the kinematic fit for Run 5 (a-f) and Run 6 (g-l) as a function of the corresponding
angles. The azimuthal angular differences in the barrel are displayed in the top, the
azimuthal differences in the end-cap in the middle, and the polar angular differences in
the bottom.
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Figure 5.6: Left: Azimuthal and polar angle shifts vs. angles in Run 5 (a-f) and Run 6 (g-l). EMC
barrel (top) and end-cap (middle) are studied separately. The results are shown with the
standard BABAR misalignment parameters and with additional fine-tuning corrections.

A sinusoidal behavior in combination with a shift is visible in the azimuthal distributions
(a) and (c) for Run 5. Therefore in the barrel (a) as well as in the end-cap (c) a small x-y
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displacement in addition to a rotation is present. The shift in the polar angular distribu-
tion (e) reflects an additional shift in z-direction. Performing a fine-tuning of the EMC
cluster position leads to the corresponding distributions (b), (d) and (f) with deviations
of less than 1mrad. In Run 6 a comparatively large deviation of 4mrad is observed in
the end-cap (i) and corrected (j). An additional small correction in z-direction is applied,
transforming the small deviation of 2-3mrad in the polar angle in (k) to an agreement
within 1mrad (l). The deviations for Runs 1-4 are in the same order of magnitude as or
smaller than in Run 5 and also corrected for.

A fit with a single Gaussian distribution is used to describe the observed deviations of the
measured angles and the ones obtained from the kinematic fit by the same way as shown
in Fig. 5.3. The extracted fit parameters for the EMC response is shown in Fig. 5.7. The
EMC response in simulation relative to the true information (red) and the kinematic fit
prediction (blue) are displayed. Also indicated is the EMC response in data relative to
the kinematic fit prediction for Runs 1-6 (other colors). The line shows the “official”
EMC angular resolution [85]: σφ,θ =

√

(4.16)2/Eγ(GeV)mrad. The true resolution of
simulation agrees with the “official” resolution within 1mrad. The resolution based on
the kinematic fit prediction of simulation agrees nicely with the data. Thus, it can be
summarized that the EMC angular resolutions are well described by the MC simulation.
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Figure 5.7: Azimuthal (left) and polar (right) angle fit parameters (single Gaussian fit) for the EMC
response relative to true simulation information (red) and kinematic fit values of simula-
tion (blue) and Runs 1-6 (all other colors). The line shows the “official” EMC angular
resolution [85]: σφ,θ =

√

(4.16)2/Eγ(GeV)mrad

The observed resolution is 3-4 times wider than the residual mis-alignment after all align-
ment corrections. It is seen, that after the standard BABAR alignment, a small level of
misalignment remained especially for the Run 6 data taking period and is corrected. The
alignment is improved.
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Calibration of Photon Energy

In Section 5.1.2, the EMC energy response in simulation is investigated by selecting
±20MeV energy slices in the true MC energy. It was demonstrated that the fit prediction
agrees within 10-15MeV with the true information of simulation (Fig. 5.4). This enables
us to perform the same check in data by selecting small energy slices around the kinematic
fit predictions. The energy response is shown for ±20MeV energy slices around 3GeV
and 8GeV for data and simulation in Fig. 5.8 and two different running periods, Run 1
and Run 5. The fit is performed to data according to function(5.1) and represented by
the black line.

1

10

10 2

2 2.5 3 3.5

1

10

10 2

6 7 8 9

1

10

10 2

10 3

2 2.5 3 3.5

1

10

10 2

10 3

6 7 8 9

(a)

Run 1

2.98 GeV < Efit  < 3.02 GeV

E
ve

nt
s 

/ 2
2 

M
eV (b)

Run 1

7.98 GeV < Efit  < 8.02 GeV

E
ve

nt
s 

/ 5
5 

M
eV

(c)

Run 5

2.98 GeV < Efit  < 3.02 GeV

Eγ [GeV]

E
ve

nt
s 

/ 2
2 

M
eV (d)

Run 5

7.98 GeV < Efit  < 8.02 GeV

Eγ [GeV]

E
ve

nt
s 

/ 5
5 

M
eV

Figure 5.8: EMC energy response for 3GeV (a) and 8GeV (b) photons in the Run 1 data taking period.
The corresponding distributions for Run 5 are displayed in (c) and (d). The fit is performed
with a function according to equation 5.1.

It is seen in Fig. 5.8 (c) and (d) that for Run 5, the simulation is in good agreement with
data, except for small shifts in the photon energy and differences in the resolution, which
is small but visible. Run 1 data, however, demonstrates significantly different behavior.
A clear discrepancy in shape and position is visible. These results are summarized in
Fig. 5.9 for the difference of the energy prediction of the kinematic fit to the energy
result of the fit to the EMC energy response according to equation 5.1. The results for
simulation (blue), Run 1 data (red) and all other data (other colors) are shown. Runs
2-6 show a similar behavior with small shifts of up to 50MeV for the energy response of
the most energetic photons. A shift of almost 150MeV is observed for the most energetic
photons in Run 1. In Fig. 5.9 (b) the corresponding resolutions are displayed. Again a
different behavior for Run 1 and Runs 2-6 is present. The “official” BABAR resolution
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function [80]

σE/Eγ =
√

(0.023/E0.25
γ )2 + 0.0182 (5.5)

is also displayed. The present data is better described by the functions

σE/Eγ =
√

(0.040/E0.25
γ )2 + 0.0122 (Run 1) (5.6)

and

σE/Eγ =
√

(0.027/E0.25
γ )2 + 0.0102 (Runs 2− 6) (5.7)

and the simulation by

σE/Eγ =
√

(0.025/E0.25
γ )2 + 0.0092. (5.8)
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Figure 5.9: Deviation from the kinematic fit prediction for the energy and the EMC response fit (a).
The corresponding resolution in (b). Simulation (blue), Run 1 (red points), Runs 2-6 (all
other points). The Fit is performed with the asymmetric Novosibirskfunction. The official
BABAR resolution is represented by the black line. The additional lines are an estimate for
the measured resolution in data for Run 1(red) and Runs 2-6 (green) and in simulation
(blue).

The obtained parameters allow to apply corrections for the photon energies in data ac-
cording to the deviations observed in Fig. 5.9 (a). An additional Gaussian spread for the
measured energy is applied to simulation in order to compensate for the small resolution
difference seen in Fig. 5.9 (b). The results after these small additional calibration is
shown in Fig. 5.10. It displays EMC response for data and simulation after the applied
energy shifts to data and the extra Gaussian spread to MC. A relatively good agreement
is seen.

5.1.4 Use of Photon Parameters in the Kinematic Fit

This study shows that the constrained kinematic based on energy-momentum conserva-
tion is a powerful tool for the event selection in ISR-events. However, small corrections
to the standard BABAR EMC calibration and alignment should be applied. Including
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Figure 5.10: EMC energy response for 3GeV, 5GeV and 8GeV photons in Run 5 for data (red) and
simulation (blue) after all corrections. An energy shift is applied to data as well as an
additional Gaussian spread to MC.

the photon parameters into the constrained fit becomes even more important for multi-
photon events. It is demonstrated how the EMC response should be corrected for photons
in data and simulation in order to obtain a better agreement. After the EMC-DCH mis-
alignment correction for data the angular resolutions in data and simulation were found
to be almost identical and the approximation σφ,θ =

√

(0.0045)2/Eγ + (0.0015)2 rad can
be used in both cases.

There exist additional complications if the photon energies are used in the fit. The pho-
ton energy resolution is better in simulation compared to both Run 1 and Runs 2-6. An
additional Gaussian smearing is applied to simulation with different widths for Run 1
and Runs 2-6 according to Fig. 5.9 (b). Fig. 5.9 (a) shows the necessary photon energy
correction in Run 1 and Runs 2-6.

After the described corrections are applied the functions

σE/Eγ =
√

(0.027/E0.25)2 + 0.0102 (5.9)

for the energy resolution of Runs 2-6 and

σE/Eγ =
√

(0.040/E0.25)2 + 0.0122 (5.10)
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for Run 1 provide a similar description of the photons in data and MC. However, some
events would be rejected through the kinematic fit due to the very asymmetric response
of the EMC.

Therefore the “Novosibirsk” function (equation 5.1) needs to be used in the kinematic
fit, which has a normal Gaussian form relative to Z. Instead of the photon energy E0 the
fit parameter eas = ln e0−eγ

e0−emax is used with the input value eas = 0. In the equation for
the energy-momentum conservation the true photon energy should be calculated as:

E0 =
Eγ

emax + (e0 − emax) · exp(eas + σ2)
. (5.11)

In our case, after the correction, Eγ is the measured photon energy, emax = 1.0 and e0 is
calculated via the obtained resolution parameters as described in the previous section.

The influence of the corrections on a typical ISR analysis has been checked with the
e+e− → K+K−π0γ → K+K−3γ analysis. The corrections have been applied to all
photons in the final state. Fig. 5.11 (left) shows the χ2 distributions obtained in the 4C
fit for the 4ππ0γ → 4π3γ MC events. All information from the three photons is included
in the fit. The distributions with and without the described correction procedure are
displayed. Using the requirement χ2 < 50, approximately 10% more events are selected
with the asymmetric PDF and all corrections described above. This demonstrates that
the correction procedure works as intended.

Figure 5.11: Comparison of χ2 distributions obtained in the 5C kinematic fit for K+K−π0γ →
K+K−3γ data with the standard BABAR parameter error matrix used for the fit (black)
in comparison to the result with corrected photon parameters and the asymmetric photon
PDF (red).
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5.2 Photon Efficiency

In Section 5.1, the EMC energy calibration and alignment were performed in order to
optimize the agreement of the photon parameters between simulation and data. Dif-
ferences in the photon reconstruction efficiency have a direct influence on the measured
cross section and therefore need to be understood with high precision.

Initial State Radiation photons are produced at all angles relative to the collision axis.
They are, however, emitted with a high probability close to the direction of flight of the
emitting particle. This leads to an acceptance of approximately 10-15 % for ISR photons
at BABAR. It is essential, not only for this analysis, but also for other BABAR analyses
to know the reconstruction efficiency and in particular the difference in reconstruction
efficiency between data and simulation for photons that have been emitted into the good
detection region of the BABAR detector.

Similar to the EMC energy calibration and alignment studies, the photon inefficiency is
measured with a µ+µ−γ sample. The most important difference in the event selection
in comparison to the cross section study is to not explicitly require the photon in the
final state. The basic principle of the measurement is to predict the photon from the
momenta and energies of the detected tracks of the two muons and the beam parameters,
very similar to the method used for the EMC calibration in Section 5.1. This prediction
is performed by a kinematic fit using energy and momentum conservation as four con-
straints. The energy and momentum of the ISR photon is not included in the kinematic
fit. Imposing that the photon is massless leads to one remaining constraint (1C). The
predictions of this 1C kinematic fit for the energy and momentum of the photon for each
event can be compared to the actual measured photon. The photon inefficiency η in an
arbitrary phase space volume element ∆V is defined according to the following equation:

η =
Nev, no matched γ(∆V)

Nev(∆V) (5.12)

A sensible choice of variables to describe the phase space V are the polar and azimuth
angle of the photon θγ and φγ, and its energy Eγ . The study is performed separately for
the barrel and end-cap components of the EMC. In the following the event selection with
a focus on the difference to the selection in Section 5.1 is presented. The applied efficiency
determination method is explained and the photon inefficiency and its difference between
data and simulation are shown.

5.2.1 Event Selection

The study is performed with data collected “on” as well as “off” the Υ (4S) resonance,
resulting in a total integrated luminosity of 454.4 fb−1. Essentially, the same selection as
described in Section 5.1 is applied, with the modification that no high energetic photon
is required. The difference in momenta of the incoming beams and the sum of all tracks
gives a first estimate of the missing momentum ~pmiss. In order to decrease the amount
of data to be processed, the following loose requirements have to be fulfilled:
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• |~pmiss| > 200MeV/c

• 0.2 rad < θmiss < 2.9 rad

Photon candidates are neutral clusters with a minimum measured energy of Eγ,lab >
50MeV. The photon calibration described in Section 5.1 is applied. It will be shown,
however, in Section 5.2.6 that the effect of these corrections on the photon efficiency is
negligible.

Additional selection criteria for the photon efficiency study are the trigger and the back-
ground filter (BGF). In order to avoid a bias introduced by the trigger, the events has to be
triggered by the “L3OutDch” trigger line, which requires only at least two charged tracks
in the DCH. Different choices of BGF allows the study of different effects: BGFRadT-
woProng is a special filter for the efficiency study with µ+µ−γ. It does not require a
photon, but rejects events with more than two tracks. It is therefore perfectly suited
for studies of detector inefficiencies due to dead crystals or gaps between detection ele-
ments (2-track sample). In addition, this BGF requires the missing momentum to point
towards the polar angular region 0.25 rad < θmiss < 2.1 rad, i.e. very backward photons
cannot be studied. The study of the effect of lost photons due to pair production in the
BABAR detector material (conversion) requires looser filter criteria. Accepting events if
any of the BGFs accepts the event allows the study of these conversion events (conversion
sample). However, it is important to demonstrate that the additional events are due to
converted photons. This is achieved by the application of an additional electron veto
(conversion sample with electron veto). A certain fraction of the extra tracks is due to
internal conversion. In this case, no real photon entered the detector, but the e+e− pair
is emitted from the event vertex. This creates an artificial inefficiency, which must not be
included in the efficiency derived here. Therefore, an internal conversion veto is imple-
mented, allowing to estimate the contribution to the inefficiency by internal conversion
events (conversion sample with internal conversion veto). Therefore the following four
data samples which are partially overlapping, are defined:

• 2-track sample: Study of detector inefficiencies due to dead crystals or gaps
between detection elements.

• conversion sample: Study of events with additional tracks allowing a dedicated
study for conversion events.

• conversion sample with electron veto: Reject events with tracks from photon
conversion to demonstrate that the inefficiency difference between the conversion
and the 2-track sample is exclusively due to conversion events.

• conversion sample with internal conversion veto: Additional filter rejects
internal conversion background events.

In order to compare the photon efficiency of data with simulation, the same µ+µ−γ sig-
nal MC sample as in Section 5.1, produced with the AfkQed [94] event generator, was
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used. In simulation, an ISR photon with Eγ,CM > 3GeV is required in the CM system.
In the laboratory system, however, a study of photon energies until Eγ,lab ≈ 2GeV is
feasible, as shown in Fig. 5.1 (a). MC statistics becomes insufficient for energies below
Eγ,lab < 2GeV. The contributions from background channels are estimated by simulating
the main background processes π+π−γ and π+π−π0γ and requiring the same selection
criteria as for the data selection. These samples are scaled according to the data lumi-
nosity and their respective cross sections. The individual contributions are summarized
in Table 5.1.

Final State σ, pb 454.4 fb−1 MC sample size

π+π−γ 21.4 9.7M 87.6M

π+π−π0γ 2.6 1.2M 7.4M

µ+µ−(γ) 42.9 19.5M 49.25M

Table 5.1: Summary of MC channels with cross section and corresponding expected number of events
for the data luminosity of 454.4 fb−1. Also shown is the used number of events before scaling
simulation to data luminosity.

5.2.2 Constrained Fit and Background

The constrained kinematic fit uses the measured momenta and angles of charged parti-
cles and the corresponding error matrix as input. Only the beam information and the
momentum of the charged tracks measured in the DCH are used in the fit. The photon
energy and angles are the result from this kinematic fit with one constraint (1C).

The resulting χ2
1C distributions for signal and background simulation are displayed in

Fig. 5.12. The contribution of the π+π−γ background channel is on the level of 4-5%.
However, the kinematics of these events is almost identical to µ+µ−γ events. Since the
muon mass and the pion mass are very similar, even the fit predictions for the emitted
ISR photon is sufficient. Using the π-tracks in the µ+µ−γ-hypothesis will not introduce
a sizable difference in the photon efficiency measurement. Therefore, this kind of back-
ground is not dangerous and can even be considered as signal. The π+π−π0γ channel
is more dangerous if the π0 is not reconstructed, since the energy of the undetected π0

is assigned to the ISR photon by the kinematic fit. As a consequence, the fit prediction
does not match the measured photon quantities, even if the photon is reconstructed per-
fectly. Therefore, these events are an unwanted source of artificial inefficiency. However,
due to the suppression via the kinematic fit and the low cross section of this channel,
this background is suppressed by more than 4 orders of magnitude and therefore can be
neglected as well. The tight requirement χ2

1C < 3 has been chosen, in order to strongly
suppress events with high energetic NLO radiation.

The energy distribution of the predicted photon is shown in Fig. 5.13 (left) and as a scatter
plot versus the polar angle of the photon (right). As mentioned in Section 5.2.1, events
with low ISR photon energies are not simulated. Therefore an additional requirement
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Figure 5.12: The χ2
2µ MC distributions for signal (black), π+π−γ (red) and π+π−π0γ (green), scaled

according to their cross sections and the luminosity in data.
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Figure 5.13: Left: Predicted energy distributions by the kinematic fit for data (red) and simulation
(black); right: predicted energy vs. polar angle for data and MC.

on Minv(µ
+µ−) < 6GeV/c2 ensures that the low energy tail of ISR photons in the data

is removed and that the energy range is very similar in the data and the simulation. A
remaining difference of up to 10% in the MC description of the energy distribution in
data is visible. This effect, however, cancels in the inefficiency and is therefore negligible.
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5.2.3 Matching Predicted and Reconstructed Photons

One essential element of the photon efficiency study is the matching requirement for
reconstructed and predicted photons from the kinematic fit. This requirement is to a
certain extent arbitrary and changes the numerical result for the inefficiency. It has to
be the same (or very similar) in the efficiency study and the subsequent analysis. A very
intuitive method declares the detected photon to be matched to the predicted photon if
the following requirements are fulfilled:

• 0.5 < Emeas
Epred

< 1.2

• ∆ψ = ∢(~pmeas, ~ppred) < 0.1 rad

A photon candidate is matched, if it has more than half of the energy predicted by the
kinematic fit. In addition, the 3-dimensional angle ∆ψ to the predicted photon direction
has to be smaller than than 0.1 rad. The corresponding distributions are displayed in
Fig. 5.14. The energy and angular resolutions for data and simulation are slightly dif-
ferent. This is partly due to differences in the detector resolution, but mostly due to
imperfections in the description of extra radiation in MC. Since extra radiation photons
are not used in the kinematic fit, a slight mis-prediction of the angle and energy of the
ISR photon is expected. The requirement χ2

1C < 3 removes a significant fraction of events
with extra radiation. The requirements on Emeas

Epred
and ∆ψ have been chosen wide enough

so that the inefficiency is not affected by these resolution effects.
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Figure 5.14: Left: Photon energy divided by predicted energy for data (red) and simulation (black)
for the 2-track sample. Right: absolute value of 3-D angle between predicted and recon-
structed photon for photons satisfying the energy condition. The distributions are shown
in linear (top) as well as logarithmic scale (bottom).
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Figure 5.15: Polar angle distribution all photons (black) and for not matched photons (blue) in the
2-track sample for data (left) and simulation (right).

5.2.4 Results for Photon Inefficiency

The results of the inefficiency study are determined in four steps: First, detector ineffi-
ciencies due to dead crystals and detection gaps are investigated. This is performed with
the 2-track sample. Since these events only contain two detected tracks, the effect of
conversion needs to be studied seperately. It is demonstrated that the difference between
the conversion and the 2-track samples is exclusively due to conversion and that no addi-
tional artificial inefficiency is created by the different filter requirements of the samples.
This is achieved by reproducing the result of the pure detector inefficiencies with the con-
version sample and an additional electron veto. The conversion sample, however, does
not only contain conversion events in which a real photon is emitted and converts in the
detector material. In addition, it contains events with internal conversion, in which an
electron-positron pair is produced at the vertex via a virtual photon. This process is not
included in our simulation but is, of course, present in the data. Therefore, this effect
creates a fake inefficiency only in data, finally leading to a data-MC photon efficiency
difference. In order to remove this effect, a sample with the filter requirements of the
conversion sample and an additional internal conversion veto is studied. It solely reflects
the effects of detection inefficiencies as well as the inefficiency due to conversion in the
detector material.

2-Track Sample

The 2-track sample contains approximately 1.3 million events. The angular distributions
for all photons and predicted photons without match are shown in Fig. 5.15 for data
(left) and simulation (right). The photon distribution shows an asymmetric shape with a
double peak structure. The peaks result from the fact that photons are preferably emitted
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in the direction of flight of the emitting particle. Due to the boost in forward direction,
the polar angles of the forward photons gets smaller leading to an increasing peaking
structure. In the backward region on the other hand, the same effect leads to a smearing
of the peak towards smaller polar angles and broadens the peak. Below θγ = 0.35 rad no
active detection material of the EMC is present and therefore no reconstructed clusters
match the predicted photons.
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Figure 5.16: Photon inefficiency in dependence of θ (left) and φ (right) of the 2-track sample for data
(red) and simulation (black).

The ratio of the distributions in Fig. 5.15 is the photon inefficiency as a function of the
predicted polar angle θpred, displayed in Fig. 5.16 (left) for data and MC. The periodic
structures result from the almost projective design of the EMC. The structure in modules,
containing 7×3 (θ×φ) crystals, leads to the major bumps, which are perfectly described
by simulation in the backward region. In the forward region, however, the simulation
description seems to be worse. Differences between data and simulation are visible. The
constant inefficiency in θ which is approximately 1.7 · 10−2 in the barrel is due to gaps
between the crystals in the azimuthal angle φ. The inefficiency as a function of φ is shown
in Fig. 5.16 (right). The large peaks in φ correspond to gaps between EMC crystals, which
are schematically displayed in Fig. 2.10 (left). An overall difference in the inefficiency
between the simulation and the data is visible.

The θ vs. φ distribution of the photon inefficiency for data and simulation is shown in
Fig. 5.17. This plot nicely reflects the regions of low efficiency of the detector. The bumps
in the θ and φ projections are now visible as bands. It is noticeable that the θ bands in
the forward direction of barrel are not visible in MC. The small inefficient rectangular
regions correspond to dead crystals, which, in principle, should also be present in the
simulation. A few of them seem to be not properly described.
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Figure 5.17: Photon inefficiency in dependence of the polar angle θpred and azimuthal angle φpred of
the photon for the 2-track sample for data (left) and simulation (right).

Conversion Sample

The conversion sample contains additional events with more than two tracks and therefore
includes events with converted photons. The sample size increases by approximately
20% to 1.55 million events. The corresponding inefficiency distributions in data and
MC for this sample are presented in Fig. 5.18 (left). Again, the backward region of the
barrel seems to be described well by simulation, with only a small shift towards higher
inefficiencies for data. In the forward region, however, there is a larger difference between
the data and the MC simulation in the order of (1 − 2) · 10−2. Especially in the end-
cap (θpred < 0.5 rad), the difference rises to approximately 5 · 10−2. The origin of this
discrepancy is further studied in the following.

Conversion Sample with Electron Veto

As a next step an additional electron veto is implemented which rejects events with tracks
identified as electrons according to a dedicated BABAR PID selector. This reduces the
sample size by 5% to 1.48 million events. The corresponding inefficiency distributions for
this sample are shown in Fig. 5.18 (right) and with zoom in Fig. 5.19 for data and MC.

The inefficiencies for data and simulation are almost exactly the same as for the 2-track
sample in Fig. 5.16. The average inefficiency in the data increases by less than 0.1 · 10−2

from (2.89± 0.02) · 10−2 to (2.96± 0.01) · 10−2 and in simulation from (2.15± 0.01) · 10−2

to (2.23±0.01) ·10−2. The uncertainties correspond to statistical uncertainties only. This
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Figure 5.18: Left: photon inefficiency of the conversion sample including conversion (“real” and inter-
nal) for data (red) and simulation (black); right: corresponding distribution with addi-
tional electron veto in order to suppress events with conversion.
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Figure 5.19: Zoom in on the photon inefficiency as a function of the predicted polar angle θpred of the
conversion sample with an electron veto to suppress conversion events for data (red) and
simulation (black).

confirms that the additional photon inefficiency in the conversion sample is solely due
to events with conversion. It is due neither to background filter problems nor to any
background not containing electrons. The only reasonable remaining background in data
is internal conversion background, which is described and investigated in the following.
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Conversion Sample with Internal Conversion Veto

As illustrated in Fig. 5.18 (left), there is quite a large difference between data and sim-
ulation in the sample containing events with conversion. This difference, however, is
not only due to conversion events in which a real photon is emitted and converts in the
detector material. A second source are internal conversion events in which an electron
positron pair is directly produced via a virtual photon near the IP. Events of this type are
present in data, but are not included in the simulation. They are therefore a source of an
additional fake inefficiency. It is important to distinguish internal from real conversion
events in order to study exclusively real photon inefficiencies.
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Figure 5.20: Left: DocaXY vs. Mee for data (top) and simulation (bottom) for events with 4 tracks.
Right: The corresponding plots with an additional veto in order to suppress events with
internal conversion.

Internal conversion electrons are emitted from the IP and therefore have a very small
transverse distance of closest approach to the event vertex(docaXY). They are produced
by a virtual photon, so their invariant mass Mee can be quite large. Events with real
conversion, on the other hand, are produced in the detector material and therefore have
a large tail in the docaXY distribution. Since they are produced by a real photon, Mee

is peaked near 0. The angle between the two conversion tracks is not reconstructed
properly. Therefore, real conversion events also have a quite large tail towards larger
invariant masses. However, Fig. 5.20 shows the docaXY vs. Mee distribution for the two
tracks which are not identified as muons in 4-track events. In data (top left) a band is
visible at small docaXY and large Mee, which is not present in simulation (bottom left).
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It is due to internal conversion events. It is, however, hard to separate these events only
by the variables docaXY andMee, because of the invariant mass tail of the real conversion
events.
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Figure 5.21: Illustration of the method to reconstruct the conversion vertex in the x-y-plane.

In order to properly separate events with internal conversion, the vertex of conversion
needs to be reconstructed. The applied reconstruction method is illustrated in Fig. 5.21.
The three-momenta ~p Poca1,2 are reported at the point of closest approach of the track
to the z axis Poca1,2. Since the conversion might, however, occur far from the IP, the
momenta ~p Poca1,2 can differ significantly from the real three-momenta ~p Conv1,2 at the con-
version point Conv1,2. The absolute value of the momenta at the two different points
is approximately the same, but the angle is not correctly reconstructed, as shown in
Fig. 5.21.

The pair of tracks from a photon conversion has a very small opening angle at the
conversion point. Knowing the magnetic field ~B and the momenta ~p Poca1,2 , the centers of
curvature Ω1 and Ω2 can be reconstructed. The conversion points Conv1,2 are located at
the intersection of the circles with the connection of the centers of curvatures as illustrated
in Fig. 5.21. The actual conversion point is taken to be the midpoint of these two points.
The z-coordinate of the vertex can be reconstructed via the ratio pz

pT
and the length b1 of

the virtual flight path of the electrons from Poca1,2 to Conv1,2. The variable dxy (dz) is
defined as the separation between the intersection points in the x-y plane (z-direction)
and can be used as an estimate of the quality of the reconstruction.
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Figure 5.22: Top: Ratio of distance dxy between reconstructed conversion points Conv1,2 and the
reconstructed radial distance of the conversion point to the IP r for the data and the
MC simulation. Bottom: Ratio of distance dz between reconstructed conversion points
Conv1,2 in z-direction dz and the z-distance z of the conversion point to the IP. These
distributions reflect the quality of the conversion vertex reconstruction.

The following quality requirements were chosen in order to study only well reconstructed
conversion events with their conversion point well separated from the IP in order to filter
out internal conversion:

• Ntracks = 4

• r =
√

(x+ 0.05)2 + (y + 0.3)2 > 1.5 cm

• dxy/r < 0.5

• dz/z < 0.5 (for z < 2cm: dz < 1 cm)

Tracks that have been converted at a larger radius r (z-distance) are allowed to have a
larger dxy (dz). This is reflected by the dxy

r
(dz
z
) requirement. The corresponding distribu-

tions are shown in Fig. 5.22 for data and MC. Thus, the first three requirements ensure
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Figure 5.23: Top: conversion vertex distribution for data (left) and simulation (right); bottom: corre-
sponding distributions with zoom.

a well reconstructed conversion event. The last one separates the real conversion from
internal conversion events, which would be emitted from the IP inside the beam pipe.
After the application of these requirements, the docaXY vs. Mee distribution is plotted
on the right hand side of Fig. 5.20. The band at small docaXY and large invariant masses
which was present in data (top left) diminishes by more than one order of magnitude.
This confirms the hypothesis that internal conversion events are removed in data by the
above restrictions.

The x and y position of the reconstructed vertex for the two non-muon tracks in the
events is displayed in Fig. 5.23 (top) for data (left) and simulation (right). In average,
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the IP is approximately shifted 3mm in y and 0.5mm in x direction. This effect is well
described by simulation. At a radius of approximately 10-12 cm, two circular structures
corresponding to the two outer layers of the SVT can be observed. The beginning of the
DCH is also visible at around 22 cm. The plots on the bottom are a zoom on the three
inner layers of the SVT and the beam-pipe. The structures in radial direction reflect
supporting material. In Fig. 5.24 the corresponding structures can be seen in the r-z
plane.
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Figure 5.24: r vs. z of the conversion vertex for data (top) and simulation (bottom).

It should be noted that these requirements reduce a large fraction of internal conversion
events, and in addition 87% of the 4 track-events in simulation have a well reconstructed
vertex outside the IP region. Thus the reconstruction algorithm is very efficient. This
method is therefore perfectly suited for the internal conversion study. In data 65% of
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the events survive the requirements. Therefore, it can be assumed that approximately
one-fourth of the conversion events correspond to internal conversion.
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Figure 5.25: Photon inefficiency after all corrections in dependence of the predicted polar angle θpred
of the photon for data (red) and simulation (black).

The final result for the inefficiency distribution as a function of θγ including all detector
gaps as well as real photon conversion is shown in Fig. 5.25. The backward region of the
barrel is described perfectly by simulation. The gaps in the forward direction are partially
missing in MC, leading to a data-MC difference of 0.79 · 10−2 in the barrel. The end-cap
shows a large difference of 2.70 · 10−2, mostly due to a lack of description of conversion
events, which is probably due to imperfections in the dead material description at small
polar angles, where most of the dead material is present. Table 5.2 displays the photon
inefficiencies for data and simulation and the different event samples. It can be seen that
internal conversion events have a quite large contribution of almost 1 ·10−2 to the average
photon efficiency difference between data and simulation and need to be removed.

5.2.5 Inefficiency Difference for ISR Studies

In ISR studies the definition of a photon candidate is different from the one described
so far. The only requirement is the presence of a neutral cluster with more than 3GeV
energy within a cone with opening angle of 0.1 rad around the predicted direction of an
ISR photon. This changes the inefficiency distribution according to Fig. 5.26 (left). Due
to the small statistics of high energetic photons at large polar angles in the lab system,
the binning is changed for θ > 2.1 rad, which is displayed in Fig. 5.26 (right). The inef-
ficiency distribution is similar to before at small polar angles. At large polar angles, in
opposite direction to the boost, the average CM energy of the photons is relatively low.
A large fraction has a true CM energy slightly above 3GeV. As shown in Section 5.1, the
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barrel end-cap all

data 2.61 ± 0.02 4.80 ± 0.05 2.90 ± 0.02

2-track sample MC 2.01 ± 0.01 3.00 ± 0.01 2.15 ± 0.01

data - MC 0.60 ± 0.02 1.80 ± 0.05 0.75 ± 0.02

data 5.98 ± 0.02 14.07 ± 0.09 7.02 ± 0.02

conversion sample MC 4.45 ± 0.01 8.97 ± 0.03 5.06 ± 0.01

data - MC 1.53 ± 0.02 5.10 ± 0.09 1.96 ± 0.02

data 2.70 ± 0.01 4.84 ± 0.05 2.96 ± 0.01

conversion sample & e−-veto MC 2.12 ± 0.01 2.99 ± 0.02 2.24 ± 0.01

data - MC 0.58 ± 0.02 1.85 ± 0.06 0.72 ± 0.02

data 4.90 ± 0.02 10.42 ± 0.08 5.59 ± 0.02

conversion sample & MC 4.11 ± 0.01 7.72 ± 0.03 4.59 ± 0.01

internal conversion veto data - MC 0.79 ± 0.02 2.70 ± 0.08 1.00 ± 0.02

Table 5.2: Photon inefficiency and inefficiency difference with statistical error in 10−2 for data and MC.

reconstructed energy distribution has a long tail towards smaller energies. Thus a large
fraction of these events does not satisfy the 3GeV selection criteria for the measured pho-
ton energy in ISR events. The principal behavior for the inefficiency difference between
data and simulation is the same as for the previous photon requirements. The resulting
differences in numbers are displayed in Table 5.3. The average inefficiency difference
slightly increases from 1.0 · 10−2 to 1.3 · 10−2. This is partly due to small imperfections
in the description of the strong rising inefficiency at large polar angles. However, it also
reflects the fact that the backward region has a lower statistical weight than before.

barrel end-cap all

data 4.90 ± 0.02 10.42 ± 0.08 5.59 ± 0.02

standard MC 4.11 ± 0.01 7.72 ± 0.03 4.59 ± 0.01

data - MC 0.79 ± 0.02 2.70 ± 0.08 1.00 ± 0.02

data 7.38 ± 0.03 9.69 ± 0.08 7.69 ± 0.02

ISR γ MC 6.19 ± 0.01 7.31 ± 0.02 6.35 ± 0.01

data - MC 1.19 ± 0.03 2.38 ± 0.08 1.34 ± 0.03

Table 5.3: Photon inefficiency and inefficiency difference in 10−2 for different photon definitions for the
data and MC simulation. The uncertainty given is statistical only.
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Figure 5.26: Photon inefficiency in dependence of the predicted polar angle of the photon θpred for
data (red) and simulation (black). Conversion is included and the ISR photon definition
is used.

5.2.6 Systematic Uncertainties

The photon inefficiency is an important correction for the π+π−π+π−γ cross section mea-
surement. Therefore, the systematic uncertainties due to the requirements for the event as
well as the photon selection on the photon efficiency are studied in detail (χ2,Emeas

Epred
,|∆ψ|).

The influence of the background filter is investigated as well as the possible impact of
3-track events. In addition, the influence of the additional photon calibration (see Sec-
tion 5.1) on the photon inefficiency and the stability with time of the inefficiency correc-
tion are studied.

Variation of Requirements

Table 5.4 shows that a considerable variation of the requirement on |∆ψ| changes the
inefficiency difference between simulation and data on a sub-permil level. A larger effect
on the inefficiencies results from the variation of the 0.5 < Emeas

Epred
< 1.2 requirement

because this distribution has a relatively large tail as can be seen in Fig. 5.12. As
expected the inefficiency increases with a tighter requirement. The relative value for
the inefficiency is almost exactly identical for the different requirements. However, the
absolute value of the difference between data and simulation increases, leading to the
largest contribution to the uncertainty. The inefficiency difference between the data and
the simulation depends therefore on the definition of a good photon of the analysis and
it can change ∆η by large amounts. The χ2 requirement variation leads to a systematic
uncertainty of less than 0.2 · 10−2.
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standard cut loose cut tight cut

χ2 < 3 χ2 < 10 χ2 < 1

data 5.59 ± 0.02 6.04 ± 0.02 5.37 ± 0.02

MC 4.59 ± 0.01 4.89 ± 0.01 4.44 ± 0.01

data - MC 1.00 ± 0.02 1.15 ± 0.02 0.96 ± 0.02

|∆ψ| < 0.1 rad |∆ψ| < 0.2 rad |∆ψ| < 0.05 rad

data 5.59 ± 0.02 5.42 ± 0.02 6.28 ± 0.02

MC 4.59 ± 0.01 4.43 ± 0.01 5.26 ± 0.01

data - MC 1.00 ± 0.02 0.98 ± 0.02 1.02 ± 0.02

0.5 < Emeas
Epred

< 1.2 0.1 < Emeas
Epred

< 1.2 0.8 < Emeas
Epred

< 1.2

data 5.59 ± 0.02 3.87 ± 0.02 8.93 ± 0.03

MC 4.59 ± 0.01 3.21 ± 0.01 7.16 ± 0.01

data - MC 1.00 ± 0.02 0.66 ± 0.02 1.76 ± 0.03

0.5 < Emeas
Epred

< 1.5 0.5 < Emeas
Epred

< 1.1

data 5.58 ± 0.02 5.63 ± 0.02

MC 4.59 ± 0.01 4.59 ± 0.01

data - MC 0.99 ± 0.02 1.04 ± 0.02

Emeas, Epred > 3GeV Emeas, Epred > 3.2GeV Emeas, Epred > 3.4GeV

data 7.69 ± 0.02 8.09 ± 0.03 8.63 ± 0.03

MC 6.35 ± 0.01 6.66 ± 0.01 7.11 ± 0.01

data - MC 1.34 ± 0.02 1.44 ± 0.03 1.52 ± 0.03

Table 5.4: Photon inefficiency and inefficiency difference behavior due to systematic variations with
statistical error in 10−2 for data and MC.

Background Filter

The effect of the background filter is estimated by comparing the 2-track and the con-
version samples. The 2-track sample is produced with a dedicated filter for the µ+µ−γ
study. Requiring only an arbitrary filter might introduce an additional inefficiency, if the
filter efficiency was different for events with and without a photon. However the fact that
the inefficiencies of the two samples agree nicely after only applying the electron veto,
indicates that no artificial inefficiency is introduced by the filter to the conversion sample.
This hypothesis is strengthened by the following observation: The background filter for
the 2-track sample restricts the sample to polar angles smaller than θγ < 2.1 rad. The
conversion sample completes the distribution at larger angles continuously, which can be
seen in Fig. 5.19. The contribution to the uncertainty of the filter requirement is smaller
than 0.5 · 10−2.
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3-Track Events

A considerable number of three track events is present in our data sample when the filter
requirements for the conversion sample are applied. These events are partly signal events
with an additional random background track. A sample of these events should have the
same inefficiency as the 2-track data sample. However, a non-negligible number of events
are due to conversion events with only one reconstructed electron. This effect is estimated
in Table 5.5. Including these events, the difference between data and simulation rises by
approximately 0.3 · 10−2. This increase is, however, partly due to internal conversion
events with one missing electron. Therefore it is systematically too large. It can be used
as a conservative estimate for the systematic error due to this effect.

ntr = 2, 4 ntr > 1

data 5.59 ± 0.02 6.29 ± 0.02

MC 4.59 ± 0.01 5.95 ± 0.01

data - MC 1.00 ± 0.02 1.34 ± 0.02

Table 5.5: Photon inefficiency and inefficiency difference including and excluding 3-track events with
statistical error in 10−2 for data and MC.

Photon Correction

In ISR analyses small additional photon corrections to the standard BABAR calibration is
used as documented in Chapter 5.1. Table 5.6 clearly shows that these corrections have
hardly any influence on the photon efficiency photon efficiency and can be neglected in
comparison to other systematic uncertainties.

including photon correction no photon correction

data 7.02 ± 0.02 7.05 ± 0.02

MC 5.06 ± 0.01 5.07 ± 0.01

data - MC 1.96 ± 0.02 1.98 ± 0.02

Table 5.6: Photon inefficiency and inefficiency difference with and without photon energy corrections
with statistical error in 10−2 for data and MC.
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Run Dependence

Fig. 5.27 shows the Run dependence of the photon inefficiency in data and MC. There
are slight differences between Run 1 and Runs 2-6, but neglecting a few dead crystals
the difference is constant over time. If one chooses to correct the photon efficiency only
for certain Runs this effect has to be estimated accordingly and needs to be taken into
account as an additional systematic uncertainty. Since also for the π+π−π+π−γ analysis
the Run 1-6 data is used, no additional correction and systematic uncertainty needs to
be included.
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Figure 5.27: Photon inefficiency for data (red) and simulation (black) in different Run periods.
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Summary of Systematic Uncertainties

Table 5.7 summarizes the systematic uncertainties for the difference in photon efficiency
between the data and the MC simulation. For most of the uncertainties the maximum
deviation has been chosen as systematic uncertainty. However, some requirement varia-
tions were very wide. The energy requirement on the photon in the analysis is chosen to
be 50% of the predicted energy. This requirement was varied to 10% and 80%. It is hard
to imagine that a real analysis filters this loosely or tightly on the photon. Basically these
variations were chosen to see the maximum variation of the uncertainty. The estimate of
the systematic uncertainty is taken to be 1√

3
of this maximum deviation, as motivated in

Appendix B. The photon energy requirement for the σ(e+e− → π+π−π+π−) analysis has
been studied separately. Hereby a reduction of the systematic uncertainty from 0.44 ·10−2

to 0.18 ·10−2 is achieved. The same approach is chosen for the estimate of the systematic
error for the 3-track sample, since most of the observed additional difference between
data and simulation is due to the fact that it is impossible to filter out internal conver-
sion in the 3-track events. An estimate for the number of remaining internal conversion
events in the data can be obtained by comparing the difference between the data and
the MC simulation in the conversion sample and in the conversion sample with internal
conversion veto. 20% of this difference can be used as an estimate for the remaining
internal conversion events. The reconstruction efficiency for real conversions is about
87%. Internal conversions are cut out, if they are reconstructed properly and therefore
have a vertex near the IP (87%) or if the reconstruction failed and the dxy (dz) is large.
The estimate of 13% of remaining internal conversion is based on MC simulation. Thus
a more conservative estimation of 20% is used for the data.

end-cap barrel end-cap & barrel

|∆ψ| 0.10 0.01 0.02
Emeas
Epred

1.10 0.35 0.44

χ2 0.15 0.15 0.15

BGF 0.05 0.05 0.05

3-track events 0.75 0.11 0.20

ISR-γ-corr. 0.03 0.02 0.02

Emeas, Epred > 3GeV 0.19 0.17 0.18

int. conversion correction 0.45 0.07 0.20

sum with Emeas
Epred

1.42 0.41 0.55

sum with Emeas, Epred > 3GeV 0.91 0.27 0.37

Table 5.7: Systematic uncertainties for the photon inefficiency difference between data and simulation
in units of 10−2.
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5.2.7 MC Correction

In order to correct the observed MC-data difference, efficient as well as inefficient events
have been re-weighted. The weight of an event is determined by the prediction of the
polar angle of the photon. Fig. 5.28 (left) demonstrates that the re-weighting procedure
works properly.
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Figure 5.28: Left: photon inefficiency in dependence of θ for data (red), simulation (black) and re-
weighted simulation (blue); Top right: photon inefficiency in dependence of the predicted
photon energy for data (red), simulation (black) and re-weighted simulation (blue); Bot-
tom right: relative difference of the photon inefficiency between data and simulation
(black) and re-weighted simulation (blue).

A priori, a one-dimensional correction according to the photon’s polar angle needs not
be sufficient. It might be necessary to perform a two dimensional correction according
to, e.g. the polar angle and the energy of the photon. Fig. 5.28 (right, top) shows the
energy distribution before and after the correction according to the polar angle. After the
correction the distributions agree to high precision. The chosen approach, to correct as a
function of the photon’s polar angle, is sufficient, as shown in Fig. 5.28 (right, bottom).

5.2.8 Conclusion

A photon inefficiency difference between data of (0.79 ± 0.02stat ± 0.41syst) · 10−2 in the
barrel and (2.70± 0.08stat± 1.42syst) · 10−2 in the end-cap is observed in this study. This
leads to an average of (1.00±0.02stat±0.55syst) ·10−2. Using the ISR photon requirement,
the inefficiency difference is (1.34 ± 0.03stat ± 0.37syst) · 10−2. Since the difference is not
distributed uniformly over the detector, it has to be corrected as a function of the polar
angle of the photon as described in section 5.2.7.
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5.3 Tracking Efficiency

In the previous sections, it is demonstrated that the reconstruction efficiency of the high
energetic photon in ISR events is understood with an uncertainty of 0.4%. For the
cross section measurement of σ(e+e− → π+π−π+π−γ), four charged tracks are present
in a properly reconstructed signal event. A precise knowledge of the track reconstruc-
tion efficiency is therefore particularly important. Potential differences between data
and MC of the tracking system (DCH and SVT) have to be understood and quanti-
fied. The tracking efficiency has previously been studied at BABAR with a sample of
e+e− → τ±(→ π±ντ )τ

∓(→ π∓π+π−ντ ) events. The idea of this so-called τ31 study is to
compare the number of reconstructed 3-track events to 4-track events in the final state
in order to extract the tracking efficiency. It has been demonstrated that simulation and
data agree within systematic uncertainties to the level of 0.3-0.4%. However, due to the
specific ISR back-to-back topology of the high energetic photon and the hadronic system,
the track overlap probability in ISR events is strongly enhanced in comparison to the ττ
events. It needs to be tested whether this effect is sufficiently well simulated or demands
additional corrections. These corrections are depending on the track-multiplicity and the
momentum spectrum of the tracks.

Similar to the τ31 study, the essential point of this ISR study is the selection of two clean
samples of π+π−π+π−γ and π+π−π±γ events. In the three track sample, one track is lost
due to either nuclear interaction or failed reconstruction of the track. Using energy and
momentum conservation in a kinematic fit, the kinematic variables of the missing track
are predicted.

By calculating the ratio of number of lost tracks Nlost tracks to the total number of tracks
Ntracks in the same phase-space volume element ∆V, the tracking inefficiency η, equation
(5.13), and the tracking efficiency ǫ, equation (5.14), are obtained:

η =
Nlost tracks(∆V)
Ntracks(∆V) (5.13)

ǫ = 1− η (5.14)

A sensible choice of variables to describe the phase space V are the polar angle of the
track θch and the corresponding transversal momentum pt. Additional variables, which
are sensitive to the track overlap probability, will be introduced in Section 5.3.4.

5.3.1 Event Selection

The standard ISR pre-selection described in Chapter 4 is used to select event candidates.
The most important feature for the track reconstruction efficiency is the definition of a
track which is the same as for the σ(e+e− → π+π−π+π−γ) cross section analysis:

• 0.4 rad < θch < 2.45 rad,
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• DocaXY < 1.5 cm,

• ∆Z < 2.5 cm,

• pt > 0.1GeV/c.

The selection criteria for charged tracks require that the polar angle θch is in the well-
understood acceptance region of the detector (0.4 rad < θch < 2.45 rad) and that they
originate from the collision region. The latter is the case if the transverse distance of
closest approach to the event vertex (DocaXY) – or nominal interaction point if no
primary event vertex is found – is smaller than 1.5 cm and the distance in beam direction
(∆Z) smaller than 2.5 cm. Tracks with transverse momentum less than 100MeV/c are
rejected.

The pre-selected events are subdivided into a 3-track and 4-track sample according to
the following criteria:

3-track sample: Events containing exactly three tracks and a total charge of |Qtot| = 1.

4-track sample: Events containing four or more tracks. If more than four tracks are
found, the four tracks with the smallest DocaXY and a total charge of |Qtot| = 0
are chosen. Events with up to 7 tracks are considered.

The essential point in this efficiency study is to clean the π+π−π±(π∓)γ data sample from
background channel contributions. In order to estimate the background contributions,
a large number of background processes are studied with simulation. As for the cross
section analysis, the background channels are divided into two types: ISR background
and non-ISR background. For non-ISR background contributions, a JETSET [109] MC
simulation was used in order to simulate e+e− → qq events, the continuum background
(uds). The ττ MC sample was produced with KORALB [110]. The ISR channels were
simulated with the AFKQED generator package [94]. The number of available MC and
the corresponding effective cross sections are listed in Table 5.8. These MC distributions
are normalized according to the luminosity of data.

The best signal selection tool is a kinematic fit using the π+π−π+π−γ hypothesis, which
is performed for each event. The fit in case of the 4-track events sample contains the
four tracks, the ISR photon and the kinematic information of the incoming electron and
positron. Energy and momentum conservation lead to four constraints (4C). For 3-track
events, the momentum and angle of the fourth, missing, particle are determined by means
of the kinematic fit. The kinematic information of the fourth track is not available. The
only remaining constraint is the imposed π-mass, leading to a one-constraint fit (1C).

Additional selection requirements are listed in Table 5.9. The requirements on the number
of tracks Ntracks and total charge |Qtot| have already been discussed. The χ2

4π requirements
are discussed in the following. Fig. 5.29 displays the invariant mass distributions of data
and the different MC channels in the π+π−π+π−γ hypothesis. The selection on the
invariant mass 1.2GeV/c2 < M4π < 2.4GeV/c2 suppresses mainly π+π−γ, π+π−π0γ at
low masses and ττ , ωπ+π−γ, K0

S
K±π∓γ and uds-continuum background channels at
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final state σ, pb events in NMC 3 - track events 4 - track events

454.4 fb−1 signal control signal control

π+π−γ 21.4 9.7M 69.8M 1240 242 45 21

π+π−π0γ 2.6 1.2M 7.9M 682 95 78 55

π+π−π0π0γ 3.7 1.7M 3.5M 748 76 1 3

π+π−π+π−π0γ 0.9 410k 473k 2588 473 233 451

π+π−π+π−π0π0γ 3.4 1.5M 137k 591 102 0 0

K0
S
K±π∓γ 0.3 140k 978k 463 35 790 200

K+K−π+π−γ 0.6 270k 100k 188 50 105 144

π+π−π+π−π+π−γ 0.7 220k 357k 15 7 0 5

SUM (ISR) 5915 1080 1252 876

uds 2090 950M 874.9M 926 566 830 235

ττ 890 404M 382.6M 1071 2516 0 1

SUM (non-ISR) 1997 3082 830 236

π+π−π+π−γ 3.0 1.36M 3.5M 12700 1600 170906 12656

DATA - - 30079 9394 170986 13534

Table 5.8: Summary of the background contributions to π+π−π+π−γ from other ISR and non-ISR
processes for Runs 1-6. The individual final states and its cross cross section are shown as
well as the resulting number of events corresponding to the data luminosity of 454.4 fb−1.
Column 4 displays the amount of available MC eventually scaled down to the corresponding
expected number in column 3. The four columns on the right hand side reflect the number
of background events in the signal and control region after all requirements for the 3-track
and 4-track samples.

3-track sample 4-track sample

Ntracks = 3 3 < Ntracks ≤ 7

|Qtot| = 1 |Qtot| = 0

χ2
4π,1C < 3 χ2

4π,4C < 30

1.2GeV/c2 < M4π < 2.4GeV/c2

∆ψ > 1.0 rad

NK < 1 NK < 2

χ2
2K2π > 30

Table 5.9: Applied selection criteria for the 3- and 4-track sample.

high masses, while only removing a small fraction of signal events. The requirement on
the smallest angle between the tracks and the ISR photon ∆Ψ > 1.0 rad ensures the
characteristic back-to-back topology of ISR events. After these selections, additional
requirements are used in order to specifically remove the K+K−π+π−γ contribution,
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namely in form of an additional kinematic fit in the 2K2π-hypothesis and a veto on the
output a dedicated K-PID algorithm.
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Figure 5.29: Invariant mass distributions in the π+π−π+π− hypothesisM4π for the 3-track samples of
MC. The fourth track is predicted by the kinematic fit. The individual MC distributions
are scaled to the luminosity in data according to their cross section. Distributions are
shown before the 1.2GeV/c2 < M4π < 2.4GeV/c2 requirement is applied.

After having applied the selection criteria except the χ2
4π,4C requirement listed in Ta-

ble 5.9, the resulting χ2
4π,4C for the 4-track sample is shown in Fig. 5.30 for data, signal

MC and the sum of background MC. The amount of background in comparison to data
is negligible. The resulting χ2

4π,4C distributions are wider than usual χ2 distributions
with four constraints. This reflects the fact that in addition to the detector resolution,
NLO photons are not included in the kinematic fit, thus enlarging the χ2 values. The
contributions from the individual background channels are illustrated in Fig. 5.31. The
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Figure 5.30: χ2
4π,4C distribution for the 4-track sample (4C fit). Data with subtracted background

(red), signal MC (black) and the sum of background MC (blue) are shown.

major background contributions arise from the uds-continuum and K0
S
K±π∓γ channels.

In Fig. 5.32 the corresponding χ2
4π,1C are shown for the 3-track sample with the additional

constraint that the predicted missing track points to the well-understood acceptance
region (0.5 rad < θch < 2.4 rad). The relative amount of background is much larger, since
the kinematic closure of the 4-track sample that suppresses a lot of background is not
present. The contributions from the individual background channels are illustrated in
Fig. 5.33.

A difference in the integral of the χ2
4π,1C distributions between the data and MC dis-

tribution can be observed in Fig. 5.32 (a) and (b). This leads to the conclusion that
more π tracks in data are lost than described by MC, reflecting a difference in tracking
inefficiency between data and MC.

Figure 5.32 (c) displays the same χ2
4π,1C distribution as before for data and simulation.

Here signal simulation data are normalized to the number of events in data with χ2
4π,1C < 1

instead of the cross section. A difference in shape between the data and MC χ2
4π,1C

distributions is observed. One reason for this disagreement might be a difference in
the NLO photon production. The plateau at large χ2 values, however, leads to the
assumption that not all background is properly subtracted from data. In principle, there
are two possible reasons for this plateau. On the one hand, the normalization of the
background MC channels according to their cross section has a non-negligible uncertainty.
The choice of a too small scaling factor, especially of ττ and uds-continuum, has a
significant influence on the tail of the χ2 distribution. The influence of the scaling factor
on the track reconstruction efficiency is estimated in Section 5.3.5. The other possible
source for the plateau is additional background with a linear χ2 behavior. This kind of
background is subtracted from the data sample with a sideband subtraction method in
χ2:
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Figure 5.31: χ2 distribution for data and the individual simulated background contribution in the 4-
track sample (4C fit). Simulation data are normalized to the luminosity of data and the
corresponding cross section.

The 3- and 4-track samples are sub-divided into two regions according to the χ2 value,
a signal and a control region. These regions were chosen for the 4-track sample as follows:

0 < χ2
4C < 30 : signal region,

30 < χ2
4C < 60 : sideband region.

The signal region in the 3-track sample for the 1C fit was chosen with the requirement
that the fraction of events in the signal region is the same as in the 4C fit signal region
for the 4-track sample.

0 < χ2
1C < 3 : signal region
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Figure 5.32: χ2 distribution for events with one missing track in 0.5 rad < θch < 2.4 rad (1C fit). Data
with subtracted background (red), signal MC (black) and the sum of background MC
(blue). (c): χ2 distribution for events with one missing track in 0.5 rad < θch < 2.4 rad
(1C fit) for data after subtraction of background simulation (red) and signal MC (black).
The distributions are normalized to the number of events in χ2

4π,1C < 1. (d): difference

between the χ2 distribution between data and signal MC.

3 < χ2
1C < 6 : sideband region

The idea of the sideband subtraction is the following: As illustrated in Fig. 5.34 the
sample is divided into the signal region containing N1 events and the control region
containing N2 events. N1s (N1b) is the number of signal (background) events in the
signal region. N2s (N2b) the corresponding number for the control region. Assuming one
knows the ratios,

a =
N2s

N1s
and b =

N2b

N1b
, (5.15)
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Figure 5.33: χ2 distribution for data and the individual simulated background contribution in the 3-
track sample (1C fit). Simulation data are normalized to the luminosity of data and the
corresponding cross section.

the number of signal events can be calculated according to the following equation:

N1s =
b ·N1 −N2

b− a
. (5.16)

In this study, ratio a is determined with signal MC. Ratio b is found according to the
following approach: It is assumed that a difference in tracking inefficiency between data
and MC would result in a constant scaling factor between the χ2 distributions in data
and MC. Therefore a linear probability density function (PDF) is fitted to the difference
between data and a free scaling factor times MC.

The result of the fit for Run 5 is shown in Fig. 5.35 (top) and with an additional zoom
in Fig. 5.35 (bottom). In this example, the value for b = 0.714 ± 0.021 with a χ2 of
117.8 and 98 degrees of freedom is obtained. This corresponds to a χ2 probability of
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Figure 5.34: Illustration of the sideband subtraction method.

0.09. The small discrepancy of the reduced χ2 from 1 indicates that there is still a small
amount of peaking background in the data sample. This is very likely due to uncertainties
in the knowledge of the cross section of the subtracted peaking MC background channels.

To summarize, the procedure is first to remove the largest background identified with
the help of simulation. The scaling factor of the individual MC background channels is
varied, corresponding to the uncertainty in knowledge of the cross section. The influence
of the scaling factor variation on the track reconstruction efficiency is used as systematic
uncertainty as described in Section 5.3.5. Additional linear background contributions in
χ2 are removed via the method of sideband subtraction.

5.3.2 Kinematic Distributions

The tracking inefficiency is investigated as a function of the polar angle θch and the
transverse momentum pt of the tracks. Figure 5.36 (a) shows the polar angle distribution
of tracks from the 4-track sample for data, signal MC, and the sum of all background
contributions. The very small background contribution in this case is already subtracted
from data. All four tracks have been properly reconstructed. The shape of the distri-
bution reflects the ISR topology of the events. Towards the borders θch = 2.4 rad and
θch = 0.5 rad the distribution decreases. The hadronic system in ISR events is back-to-
back to the high energetic photon and confined into a rather small cone. If one track
is close to the border, the probability that several other tracks are outside the selected
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Figure 5.35: Upper plot: fitting signal MC (blue histogram) and a linear background (blue line) to
data (black points); lower plot: the same distribution with zoom. The number of degrees
of freedom for the fit is 100.

region or that the event is neither in the 4-track nor in the 3-track sample is strongly
increased. In addition, it is visible that the data distribution drops below the MC value at
large polar angles. This is most likely due to the difference in photon efficiency between
data and MC. Due to the back-to-back topology of ISR events, photons in the forward
region of the detector correspond to tracks in the backward region. In the forward region
photon reconstruction in data is less efficient than in simulation due to imperfections in
the material description. Therefore, in the backward region fewer tracks are expected in
data than in simulation.

Figure 5.36 (b) shows the same distribution for the detected tracks in the 3-track sample,
indicating the same features as in the 4-track sample. More events are present in data
than in signal MC, indicating that the tracking inefficiency is different in data and MC. In
Fig. 5.36 (c), the undetected tracks are displayed. Again, it is seen that more tracks are
missing in data than in MC. A large fraction is not detected, because the track was simply
located outside the acceptance region of the tracking system, causing the two bumps at
very small and large polar angles. The tracking efficiency is studied in the following for
all tracks inside the well-understood acceptance region (0.5 rad < θch < 2.4 rad).

For these tracks the transverse momentum pt distributions are shown in Fig. 5.37 (a) for
the 4-track sample, again for data, signal MC, and the sum of background contributions.
The distribution is peaked at pt ≈ 0.7− 0.8GeV/c. A good agreement between data and
MC is visible. The detected tracks in the 3-track sample are shown in Fig. 5.37 (b). In
Fig. 5.37 (c), it is visible that, as expected, the pt distribution for the missing tracks is
peaking at small transverse momenta.
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Figure 5.36: (a): polar angle distributions of background-subtracted data (red), signal MC (black) and
the sum of background contributions including sideband subtraction (blue) in the 4-track
sample; (b): corresponding distributions for the detected tracks in the 3-track sample.
(c): prediction of the polar angle of the missing track in the 3-track sample.
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(black) and the sum of background contributions including sideband subtraction (blue)
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θch < 2.4 rad); (b): corresponding distributions for the detected tracks in the 3-track
sample. (c): prediction of the transverse momentum of the missing track in the 3-track
sample.
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5.3.3 Tracking Inefficiency

The tracking inefficiency η is obtained according to equation 5.14. In case of the study as
a function of the polar angle θ, it is the ratio of Fig. 5.36 (c) and the sum of histograms
(a)-(c) for data and signal MC. The obtained inefficiency is shown in Fig. 5.38 (a) for
events with all tracks pointed into the polar angular range 0.5 rad < θ < 2.4 rad. The
same procedure is applied for the kinematic distributions in dependence of pt with the
corresponding inefficiency displayed in Fig. 5.38 (b) for the data and the MC simulation.
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Figure 5.38: Tracking inefficiency in dependence of θch (a) and pt (b) for data (red) and signal MC
(black), all runs. Absolute difference of the tracking inefficiency between data and MC in
dependence of θch (c) and pt (d) between data and MC.
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The difference in tracking inefficiency per track between data and MC for Runs 1-6 is
determined as:

∆ηRun1 = 0.0104± 0.0013stat ± 0.0047syst

∆ηRun2 = 0.0059± 0.0007stat ± 0.0047syst

∆ηRun3 = 0.0026± 0.0010stat ± 0.0046syst

∆ηRun4 = 0.0066± 0.0006stat ± 0.0040syst

∆ηRun5 = 0.0068± 0.0005stat ± 0.0048syst

∆ηRun6 = 0.0099± 0.0008stat ± 0.0054syst

Analysing the total data sample (Runs 1-6) leads to the following inefficiency difference
between data and MC:

∆η = (0.75± 0.05stat ± 0.34syst) · 10−2

Figure 5.38 (c) and (d) show the absolute tracking inefficiency difference between data
and MC. The dependence on pt (d) is flat within the uncertainties of 0.4%. A slight de-
pendence on the polar angle in Fig. 5.38 (c) is visible with almost no difference between
data and MC in the forward region at small polar angles and a difference of approximately
1% in the backward region. Due to the beam energy asymmetry at BABAR, high energy
photons are preferably emitted in the forward direction. In ISR events the hadronic sys-
tem is emitted back-to-back to the ISR photon. The energy of the photon is correlated
to the opening angle of the cone of the hadronic system. This correlation leads to an
increasing track overlap probability at large polar angles. The track loss due to track
overlap seems to be not perfectly modeled in simulation. This will be further discussed
in the following.

5.3.4 Track Overlap Corrections

The tracking efficiency, determined in Chapter 5.3.3, is perfectly suited for the π+π−π+π−γ
analysis. It is, however, of interest for other BABAR analyses and also for a better un-
derstanding of the tracking inefficiency differences between data and MC to further in-
vestigate this effect. In comparison to other BABAR analyses, ISR events have typically a
rather large track overlap probability, because the final state hadrons are confined to a
narrow cone opposite to the ISR photon. In the following, it is shown that the difference
between data and MC is mostly due to track overlap. This track overlap strongly de-
pends on the investigated physics channel. The single track loss effect is sub-divided in
the effect of overlap of two tracks with opposite charge (OC) and overlap of two tracks
with the same charge (SC). In this study, only events with at least three detected tracks
are included. According to simulation, double or multiple losses are negligible.
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Single Loss Due to Oppositely Charged Tracks

One important effect that has to be investigated is the single track loss due to overlapping
tracks with opposite charges. A good variable to describe OC track overlap is ∆φOC =
φ(π+

1,2)−φ(π−
1,2). It is the signed difference azimuthal angle between the lost track and the

reconstructed track with opposite charge: It is always taken to be the difference between
the angle of the positively charged pion and the negatively charged pion. Since in this
study there are always two pions with the opposite charge of the missing pion present,
two combinations are obtained for each event. In Fig. 5.39 (a) the ∆φOC distribution is
plotted for all Runs.

Without the additional reconstruction inefficiency due to track overlap, a symmetric
distribution around 0 is expected. The distributions, however, show a clear asymmetry.
The distribution is a superposition of the distribution due detection inefficiency and a
peaking distribution at small positive values for ∆φOC due to track overlap losses. The
number of tracks lost due to track overlap can be estimated by determining the difference
of number of events on the right and left side. Reflecting the ∆φOC < 0 distribution
through the axis ∆φOC = 0 demonstrates the asymmetry of the ∆φOC distribution. This
process is illustrated for simulation in Fig. 5.39 (b).

Single Loss Due to Same Charged Tracks

The next step is the investigation of single track loss due to overlapping tracks with the
same charge (SC). A good variable to describe SC track overlap is ∆φSC = |φ(π±

1 ) −
φ(π±

2 )|. It is the azimuthal angle between the lost track and the reconstructed track with
the same charge. In this case only one entry per event is expected. In Fig. 5.39 (c) and
(d), the angle between lost track and reconstructed track with the same charge in the
3-track sample is plotted for data and MC, respectively. The corresponding distribution
for the two detected tracks is also shown. Again the peak at small ∆φSC is due to single
loss induced by overlapping tracks. The distribution with one lost track is therefore the
superposition of the distribution due to detection inefficiency and a peaking distribution
at small ∆φSC due to track overlap losses. The distribution due to usual detection
inefficiency has the same ∆φSC dependence as the distribution of the two measured
tracks. The number of tracks lost due to track overlap is estimated by scaling down
the distribution of the measured tracks until the tails of the distribution match with the
distribution including one missing pion. The difference at small ∆φSC is a good estimate
for the number of tracks lost due to same-charge track overlap.

Overlap Corrections in Numbers

The number of tracks lost due to track overlap is determined as previously described.
Concerning the tracking inefficiency only the numerator of equation 5.13 has to be cor-
rected. The events with one lost track due to overlap are signal events. In principle,
they need to be moved from the 3-track sample back to the 4-track sample. The overall
number of tracks Ntracks therefore remains unchanged. Thus, the inefficiency is corrected
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Figure 5.39: Angle between missing pion and detected pions with opposite charge (a) for data (red) and
simulation (black); 2 entries per event; (b): illustration of extraction of asymmetry due
to overlap of differently charged tracks. (c): angle between the lost track and the recon-
structed track (red) with the same charge for data (c) and simulation (d). Corresponding
angular difference distribution for detected tracks with the same charge (blue).

as indicated in equation 5.17:

η =
Nlost tracks(∆V)−Noverlapping tracks(∆V)

Ntracks(∆V) (5.17)

The corrections on the tracking inefficiency for data and MC are applied Run by Run.
These corrections for overlapping tracks with opposite charge OC and same charge SC
are listed in Table 5.10.
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Table 5.10: Corrections on tracking inefficiency for data and MC in percent, Runs 1-6.

ηdata in10
−2 ηMC in10

−2

Run no cor OC SC no cor OC SC

1 3.05 -0.51 -0.44 1.97 -0.53 -0.44

2 2.80 -0.76 -0.55 2.16 -0.52 -0.47

3 2.69 -0.96 -0.27 1.92 -0.43 -0.38

4 2.93 -0.72 -0.62 2.17 -0.53 -0.45

5 3.51 -1.03 -0.72 2.68 -0.70 -0.58

6 3.65 -0.87 -0.66 2.67 -0.83 -0.60

Table 5.11: Corrections on tracking inefficiency difference between data and MC in percent, Runs 1-6.

ηdata − ηMC in 10−2

Run no cor OC SC final value

1 1.07 +0.02 -0.01 1.08

2 0.64 -0.25 -0.08 0.31

3 0.77 -0.53 +0.12 0.36

4 0.77 -0.18 -0.16 0.42

5 0.82 -0.32 -0.14 0.37

6 0.98 -0.04 -0.07 0.87

5.3.5 Estimate of Uncertainties

Statistical Error

The tracking inefficiency η per track can be calculated with equation 5.18:

η =
Nlost trk

Nlost trk +N3trk +N4trk
, (5.18)

with N4trk the number of detected tracks in the 4-track sample, N3trk the number of
detected tracks in the 3-track sample, and the number of lost tracks in the 3-track sample
Nlost trk. The corresponding numbers to determine the tracking inefficiency for Runs 1-6
are listed in Table 5.12.

The resulting statistical errors on the inefficiency η for data and MC as well as the
inefficiency difference ∆η can be found in Table 5.13.

Systematic Uncertainty

As discussed previously, background subtraction is performed in two steps for either peak-
ing or non-peaking background as a function of χ2. Peaking background is simulated with
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Table 5.12: Numbers to determine tracking inefficiency, Runs 1-6.

data after bkg-subtraction signal MC data before bkg-subtraction

Run Nlosttrk N3trk N4trk Nlosttrk N3trk N4trk Nlosttrk N3trk N4trk

1 786 2357 34076 554 1663 35429 1447 4341 34848

2 2274 6821 99924 1791 5375 104441 4116 12348 101004

3 1088 3264 55014 807 2421 53980 2152 6456 55708

4 3733 11199 167059 2797 8393 168429 7032 21096 169784

5 6421 19264 214960 4718 14156 218014 10870 32610 218072

6 3122 9367 104038 2220 6662 103333 5280 15840 104528

Table 5.13: Statistical error on tracking inefficiency for data, MC and the difference between data and
MC, Runs 1-6.

Run ∆ηdata ∆ηMC ∆(ηdata − ηMC)

1 0.00117 0.00061 0.0013

2 0.00065 0.00036 0.0007

3 0.00087 0.00047 0.0010

4 0.00051 0.00028 0.0006

5 0.00046 0.00027 0.0005

6 0.00066 0.00039 0.0008

MC, normalized according to the luminosity and subtracted bin by bin in the kinematic
distributions. The main uncertainty of this method is determined by the accuracy of the
knowledge of the cross section of the individual background channels and the precision of
the theoretical model of the MC generator to create the kinematic distributions of these
channels. To check this, quantities unrelated to those used so far are compared. The ττ
production is very precise: In Fig. 5.40 the minimum angle between the charged tracks
and the ISR photon for each event is displayed. For signal events the ISR photon and
the hadronic system are mostly back to back. The peak at small angles is dominated by
ττ events.

The uncertainty of the cross section is estimated to be smaller than 15%. All other
channels are normalized according to their radiative cross sections measured in other
BABAR analyses. The resulting estimated systematic uncertainties on the knowledge of
these cross sections are summarized in Table 5.14. The influence of the background
normalization on the difference of the tracking inefficiency between data and MC is listed
in Table 5.15 and visualized in Fig. 5.41 (left).

Background that has a linear behavior in χ2 can be subtracted by means of the sideband
subtraction method as described. The advantage of this method is that the cross sections
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Figure 5.40: Minimum angle between γISR and all charged tracks. Data (red), sum of signal and all
background MC (black) and contribution of ττ MC (blue) for 3-track events. The vertical
line indicates the event selection requirement ∆ψ > 1.0 rad.

Table 5.14: Uncertainty of the cross section scaling factor in simulation.

final state σ [ pb] estimated precision of σ

π+π−γ 21.4 5%

π+π−π0γ 2.6 5%

π+π−π0π0γ 3.7 10%

π+π−π+π−π0γ 0.9 40%

π+π−π+π−π0π0γ 3.4 10%

K0
S
K±π∓γ 0.3 10%

K+K−π+π−γ 0.6 10%

π+π−π+π−π+π−γ 0.7 10%

uds-continuum 2090 40%

ττ 890 15%

of these background processes need not to be known. There is, however, an additional
complication since the 4-track sample is fitted with a 4C fit, while the 3-track sample
uses a 1C fit. Table 5.16 displays the 1C fit signal regions that are equivalent to the listed
4C fit signal regions concerning the fraction of events in the signal region. In Table 5.17
the influence of the choice of the χ2 signal region on the tracking inefficiency difference
between data and MC is listed. The corresponding tracking efficiency variation for the
individual Runs is displayed in Fig. 5.41 (right) and summarized in Table 5.17.
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Table 5.15: Dependence of tracking inefficiency difference in between data and MC on scaling of back-
ground MC.

Run nominal scaling high scaling low scaling σscaling bkg MC

1 0.0064 0.0051 0.0076 0.0013

2 0.0048 0.0035 0.0061 0.0013

3 0.0042 0.0029 0.0054 0.0013

4 0.0049 0.0036 0.0062 0.0013

5 0.0068 0.0055 0.0080 0.0013

6 0.0070 0.0056 0.0083 0.0014
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Figure 5.41: Left: dependence of tracking inefficiency difference on scaling of background MC for Runs
1-6. Right: dependence of tracking inefficiency difference on cut of signal region in χ2 for
Runs 1-6.

Fig. 5.42 (left) displays the dependency of the tracking inefficiency difference on the choice
of the polar angular region for the detected and missing tracks. The region 0.4 rad <
θch < 2.45 rad was required for the charged tracks. In order to suppress edge effects, the
tracking inefficiency is determined in the polar angle region of 0.5 rad < θch < 2.4 rad. In
an additional study, effects of the requirements on the invariant mass were investigated.
The results are shown in Fig. 5.42 (right). The resulting systematic uncertainty of the
tracking inefficiency difference by these requirements is smaller than 0.05 ·10−2, which is,
conservatively taken as estimate for the uncertainty.
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Table 5.16: Corresponding regions in 1C and 4C fit ensuring that the fraction of events in signal region
is the same in both cases.

boarders of signal/sideband fraction of events in signal region

χ2
signal,4C χ2

sideband,4C χ2
signal,1C χ2

sideband,1C 4C 1C

15 30 1.8 3.6 0.741 0.749

20 40 2.2 4.4 0.790 0.785

25 50 2.7 5.4 0.820 0.822

30 60 3.0 6.0 0.841 0.839

40 80 3.7 7.4 0.870 0.871

Table 5.17: Influence of variation of signal region on tracking inefficiency difference between data and
MC.

Run χ2
sig,4C < 15 χ2

sig,4C < 20 χ2
sig,4C < 25 χ2

sig,4C < 30 χ2
sig,4C < 40 σsig var

1 0.0066 0.0042 0.0061 0.0064 0.0061 0.0022

2 0.0029 0.0024 0.0038 0.0048 0.0052 0.0019

3 0.0025 0.0045 0.0043 0.0042 0.0041 0.0017

4 0.0042 0.0053 0.0047 0.0049 0.0054 0.0007

5 0.0061 0.0060 0.0069 0.0068 0.0072 0.0007

6 0.0061 0.0054 0.0068 0.0070 0.0081 0.0016
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Figure 5.42: Left: dependence of tracking inefficiency difference on polar angular acceptance region
for charged tracks for Runs 1-6. Right: dependence of tracking inefficiency difference on
invariant mass acceptance region for charged tracks for Runs 1-6.
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Finally, the differences in tracking inefficiency per track for Runs 1-6 are determined as:

∆ηRun1 = 0.0109± 0.0017stat ± 0.0049syst,

∆ηRun2 = 0.0035± 0.0010stat ± 0.0042syst,

∆ηRun3 = 0.0028± 0.0014stat ± 0.0037syst,

∆ηRun4 = 0.0060± 0.0008stat ± 0.0039syst,

∆ηRun5 = 0.0053± 0.0008stat ± 0.0042syst,

∆ηRun6 = 0.0099± 0.0011stat ± 0.0043syst.

5.3.6 Conclusion

The difference in tracking inefficiency per track including track overlap, averaged over
the whole BABAR data set, is determined as:

∆η = (0.75± 0.05stat ± 0.34syst) · 10−2.

This inefficiency correction will be used in the following for the cross section measurement
of σ(π+π−π+π−γ). A large fraction of this inefficiency difference is due to not properly
described track loss caused by overlap in simulation.

Depending on multiplicity and kinematics, many BABAR analyses need the inefficiency
without these track overlap effects. This leads to the following result, which is in agree-
ment with the results of the τ31 study:

∆η = (0.38± 0.05stat ± 0.39syst) · 10−2.



Chapter 6

Extraction of the Cross Section
σ(e+e− → π+π−π+π−)

The measurement of the hadronic cross section σ(e+e− → π+π−π+π−) is the main result
of this work.
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The principal method to extract the hadronic cross section σ(e+e− → π+π−π+π−) is de-
scribed in detail in Chapter 3. In the beginning of this chapter the systematic corrections
and uncertainties are summarized. Then the result for the cross section measurement is
presented and compared to previous measurements with a focus on the comparison to
the previous BABAR publication.

6.1 Summary of Systematic Corrections and Uncer-

tainties

The systematic corrections and uncertainties, e.g. background subtraction, photon and
tracking efficiency, and global efficiency, have been discussed in detail. All individual
contributions are summarized in Table 6.1, separately for different regions in the invariant
M4π mass.

Table 6.1: Systematic corrections and uncertainties for the measurement of the e+e− → π+π−π+π−

cross section for different invariant M4π mass regions in %.

M4π[ GeV/c2] < 1.1 1.1− 2.8 2.8− 4.0 4.0− 4.5

K+K−π+π−γ, K0
S
K±π∓γ ±1.0 ±1.0 ±3.0 ±7.0

continuum background - ±0.5 ±1.0 ±1.5

π+π−e+e−γ ±3.0 - - -

additional background ±0.4 ±0.4 ±4.0 ±4.0

tracking efficiency 3.0± 1.4 3.0± 1.4 3.0± 1.4 3.0± 1.4

photon efficiency 1.3± 0.4 1.3± 0.4 1.3± 0.4 1.3± 0.4

rad. luminosity ±1.0 ±1.0 ±1.0 ±1.0

AFKQED − PHOKHARA −1.0± 0.2 −1.0± 0.2 −1.0± 0.2 −1.0± 0.2

FSR corrections ±0.5 ±0.2 ±0.1 ±0.1

χ2
4π < 30 ±0.3 ±0.3 ±0.3 ±0.3

global efficiency ±10.0 ±1.0 ±1.0 ±1.0

sum ±10.7 ±2.4 ±5.5 ±8.5

The individual background contributions have been discussed in Chapter 4.3. At low
invariant 4π-masses, M4π < 1.1GeV/c2, the leading background contributions stem from
the low multiplicity hadronic background channels e+e− → π+π−γ and e+e− → π+π−π0γ.
Misidentified tracks, e.g. from converted NLO photons lead to the e+e− → π+π−π+π−γ
signal signature. These contributions are subtracted with an uncertainty of 3%. In
the peak region, 1.1GeV/c2 < M4π < 2.8GeV/c2, the channels e+e− → K+K−π+π−γ
and e+e− → K0

S
K±π∓γ dominate the background contribution. Removing these events

leads to an uncertainty of 1%. At higher invariant 4π-masses, M4π > 2.8GeV/c2 and
M4π > 4.0GeV/c2, the subtraction of these ISR background channels leads to a system-
atic uncertainty of 3% and 7%, respectively. The additional background contribution
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due to continuum events is removed with an uncertainty of 0.5% in the peak region,
1.1GeV/c2 < M4π < 2.8GeV/c2, increasing to 1.5% at M4π > 4.0GeV/c2. Remaining
background can be estimated with an uncertainty on the cross section below 0.4% for
M4π < 2.8GeV/c2 and below 4.0% for 2.8GeV/c2 < M4π < 4.5GeV/c2.

The observed tracking efficiency difference between data and MC simulation of 3% has
been corrected with an uncertainty of 1.5% (Chapter 5.3). Concerning the photon ef-
ficiency effects (Chapter 5.2) an average shift of 1.3% with an uncertainty of 0.4% is
applied. The radiative luminosity at BABAR is known with a precision of 1%. Comparing
the radiator function modeled in the AFKQED simulation to the PHOKHARA simu-
lation (Chapter 3.3) leads to a correction of 1% with a systematic uncertainty of 0.2%.
The uncertainty on the correction of eventual differences concerning the FSR description
by PHOTOS in simulation and data is estimated to be 0.5% for M4π < 1.1GeV/c2 and
even smaller for larger invariant 4π-masses. The χ2

4π distribution is properly described by
simulation (Chapter 4.2) within a systematic uncertainty of 0.3%. Concerning the global
efficiency, the uncertainty is estimated to be 1% for M4π > 1.1GeV/c2 (Chapter 4.4).
Towards low invariant masses M4π < 1.1GeV/c2 a rather strong efficiency decrease of up
to 10% is observed. A conservative estimate for the uncertainty of 10% has been chosen
corresponding to the total efficiency decrease in this region.

All corrections listed in Table 6.1 have been applied to the measured hadronic cross sec-
tion. Assuming no correlation, the individual uncertainties can be added in quadrature,
resulting in the total systematic uncertainty for the e+e− → π+π−π+π− cross section
measurement of 10.7% for M4π < 1.1GeV/c2, 2.4% for 1.1GeV/c2 < M4π < 2.8GeV/c2,
5.5% for 2.8GeV/c2 < M4π < 4.0GeV/c2 and 8.5% for higher invariant masses.

6.2 The Cross Section σ(e+e− → π+π−π+π−)

The general extraction of the non-radiative hadronic cross section from the radiative cross
section is performed by using equation (3.1), which translates in the case of e+e− →
π+π−π+π− to

σ4π(M4π) =
dσ4π,γ(M4π)

dM4π
· s

2 ·M4π
· 1

W (s, x, θ∗γ)
. (6.1)

The differential radiative cross section is obtained in dependence of the invariant M4π

mass:

dσ4π,γ(M4π)

dM4π

=
dN4π,γ(M4π)

dM4π

· 1

Ltot · ǫeff · (1 + δrad,FSR)
, (6.2)

where dN4π,γ corresponds to the number of selected signal events, Ltot to the integrated
luminosity, ǫeff to the global efficiency which has been corrected for tracking and photon
efficiency differences between the data and MC, and δrad,FSR represents the radiative
corrections includi ng LO-FSR and NLO-FSR effects. This efficiency is corrected for the
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effects of the tracking and photon efficiency difference between data and MC simulation
as well as radiative effects.
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Figure 6.1: The cross section σ(e+e− → π+π−π+π−) as a function of the e+e− CM energy ECM.

After having applied all radiative corrections and after having taken into account the
relevant differences in efficiencies between the data and the simulation, equation 6.1
is applied and the non-radiative cross section e+e− → π+π−π+π− is extracted. It is
displayed in Fig. 6.1 as a function of the center of mass energy of the hadronic system
ECM, which is equivalent to the invariant M4π mass of the hadronic system. A dominant
structure from the ρ(1450) is visible. In addition the J/ψ -peak can be clearly seen at
ECM = 3.1GeV.
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6.3 Comparison to Existing Data

In Fig. 6.2 the extracted non-radiative cross section σ(e+e− → π+π−π+π−) of this work,
together with the previous BABAR result [70] and all energy scan experiments running at
fixed CM energies ECM are shown. It agrees within the systematic uncertainty with the
previous BABAR measurement and supersedes this measurement. The result is in good
agreement and higher in precision with the data taken at VEPP-2M by SND [86] and
CMD-2 [87, 88], as well as with data obtained at DCI by DM2 [89] in the 1.4-2.0GeV
range.
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Figure 6.2: The cross section σ(e+e− → π+π−π+π−) in comparison to other experiments, error bars
correspond to statistical errors only.

In the following, the differences between this analysis and the previously performed BABAR

analysis are investigated. Fig. 6.3 shows the ratio of the cross sections in the peak region
1.2GeV/c2 < M4π < 2.2GeV/c2 and for invariant 4π-masses M4π > 2.2GeV/c2. In
the peak region, a constant deviation of 3.4% between the results of the two studies is
observed, which is consistent within the systematic uncertainties. Besides the different
statistics of the dataset, which corresponds to luminosities of 89 fb−1 in case of the 2005
BABAR analysis and 454 fb−1 in the new case, the systematic studies were significantly
improved for the new result. This allows to understand the observed deviation.

The previous analysis included an upper limit on the amount of neutral energy per event
Eneutral < 3GeV in addition to the ISR photon. It is the sum of the energy of all addi-
tionally reconstructed photons. This requirement was used in order to reduce the amount
of π+π−π0γ at small invariant masses and π+π−π+π−π0γ in the peak region. Simula-
tion shows, however, that the amount of π+π−π+π−π0γ has only a small contribution in
the M4π peak region and in addition in data no significant amount of π0 was found. In
addition (see Section 4.3.2), the amount of additional photons and especially the energy
distribution of these photons is not perfectly modeled in simulation. This introduces an
efficiency bias. Fig. 6.4 shows the ratio of the cross sections of the two analyses after
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Figure 6.3: Ratio of cross section of this study to the previous study in the peak region (a) and at high
invariant masses (b).

implementing this requirement on the neutral energy in this analysis. The distributions
are displayed in the invariant 4π-mass regions 1.2GeV/c2 < M4π < 2.2GeV/c2 Fig. 6.4
(a) and 2.2GeV/c2 < M4π < 4.5GeV/c Fig. 6.4 (b). An agreement in the peak region
within 1% is observed. At large invariant 4π-masses, the large difference between these
two results is still present.

One additional difference between the analyses is the scaling of continuum background.
This background is scaled according to the π0 yield as explained in Chapter 4.3.2. There,
it is also shown that the π0 yield needs to be compared for all combinations of pho-
tons with the ISR photon. Choosing only one entry per event, which is closest to the
π0-mass, introduces again a bias due to differences in the description of additional pho-
tons between data and simulation. Thus a different scaling parameter has been used in
the previous analysis. Using the continuum background scaling factor from the previ-
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Figure 6.4: Ratio of cross sections of this study to the previous BABAR study in the peak region (a) and
at large invariant masses (b) with a cut on the additional neutral energy Eneutral < 3GeV.

ous BABAR study in this analysis allows to understand the observed differences in the
cross section measurement at large invariant masses (Fig. 6.4 (b)). Fig. 6.5 (a) and (b)
show the ratio of the cross section of this analysis and the previous BABAR study for
1.2GeV/c2 < M4π < 2.2GeV/c2 and 2.2GeV/c2 < M4π < 4.5GeV/c2 respectively, with
the same continuum scaling factor. By comparing Fig. 6.4 (b) with Fig. 6.5 (b), it is
visible that the difference of the results decreases significantly.

At small invariant masses, M4π < 1.2GeV/c2, more background is subtracted in this
analysis than in the previous BABAR analysis. In the latter, no dedicated conversion
veto (see Section 4.3.3) was applied. Simulation was used to subtract this background
contribution. This is, however, not sufficient for low invariant 4π-masses since an excellent
description of NLO radiation of the π+π−γ as well as the π+π−π0γ background channels
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Figure 6.5: Ratio of cross section of this study to the previous study in the peak region (a) and at high
invariant masses (b) with a cut on the neutral energy and the previously used continuum
background scaling factor.

would be needed. The description of the conversion of these NLO photons is one source of
uncertainty. Internal conversion is, however, also not included in the simulation. At very
low invariant masses, the background contamination is so high that small variations in
the simulation lead to significant changes in the signal distribution. This can be seen in
Fig. 6.6, where the ratio of the cross sections at low invariant 4π-massesM4π < 1.2GeV/c2

is displayed. The agreement, which is sufficient around and above M4π = 1GeV/c2,
becomes worse in the threshold region.

The additional systematic tests lead to a significant improvement in terms of understand-
ing of the physical situation and therefore a reduction of the systematic uncertainties.
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Figure 6.6: Ratio of cross sections of this study to the previous BABAR study at small invariant masses.

6.4 Influence on prediction of aµ and ∆α
had(5)
QED

Using the new cross section measurement σ(e+e− → π+π−π+π−), the contributions of
this channel to the anomalous magnetic moment of the muon aµ and to the running of

the fine structure constant ∆α
had(5)
QED are computed via the dispersion relation described

in Chapter 1.2 using the HVPTool [56] in the energy region 0.6GeV < ECM < 1.8GeV:

ahadµ (e+e− → π+π−π+π−) = (136.4± 0.3stat ± 3.6syst) · 10−11,

∆α
had(5)
QED (M2

Z) = (3.57± 0.01stat ± 0.09syst) · 10−4.

The new evaluations are more precise than the current world average for these quantities:

aaverageµ (π+π−π+π−) = (133.5± 1.0stat ± 4.3syst ± 2.9syst) · 10−11,

∆α
had(5)
QED (M2

Z) = (3.49± 0.03stat ± 0.12syst ± 0.08syst) · 10−4,

where the first uncertainty is statistical, the second channel-specific systematic, and the
third common systematic, which is correlated with at least one other channel [2].





Chapter 7

Study of Internal Structures and
Charmonium Branching Ratios

This chapter is dedicated to the rich internal structure of the π+π−π+π− final state
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In addition to the important contribution of the hadronic cross section measurement
σ(e+e− → π+π−π+π−) to the theoretical extraction of the anomalous magnetic moment
of the muon aµ as well as of the running fine structure constant at the Z-mass αQED(M

2
Z),

the final state e+e− → π+π−π+π− contains a rich internal structure.

A scan for additional resonances at high invariant masses follows. In addition, various
invariant mass combinations have been studied for the data and the signal simulation in
order to search for internal structures not included in the MC simulation model. Finally,
the branching fractions BJ/ψ→π+π−π+π− and Bψ(2S)→J/ψπ+π− are determined.

7.1 J/ψ and ψ(2S)

In the invariant π+π−π+π−-mass spectrum in Fig. 4.2 (a) a clear J/ψ -peak at M4π =
3.095GeV/c2 is visible. Fig. 7.1 (a) shows an expanded view of the π+π−π+π− cross
section as a function of the invariant π+π−π+π−-mass.
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Figure 7.1: π+π−π+π− cross section for data with an expanded view on the J/ψ -peak (a) and the
ψ(2S)-peak (b). In both cases, the fit consists of a sum of two Gaussian distributions,
describing the sharp resonance, in addition to and linear fit, describing the non-resonant
π+π−π+π− contribution.

The measured width of the J/ψ , Γ ≈ 15MeV, is due to the limited momentum resolution
of the BABAR detector, since the nominal width of the J/ψ , ΓJ/ψ = 93 keV [111], is much
smaller. The small tail towards higher masses is mostly produced by extra radiation, not
included in the kinematic fit. In this case, the energy of the extra photon is assigned to
the hadronic system by the kinematic fit. This smeared J/ψ -structure is described with
the sum of two Gaussian distributions. In order to describe the non-resonant π+π−π+π−

production a linear approximation satisfies the needed precision. The integrated number
of events of the J/ψ -peak N(J/ψ → π+π−π+π−) is used to measure the branching ratio
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BJ/ψ→π+π−π+π− according to Equations (7.1) and (7.2).

BJ/ψ→π+π−π+π− · σJ/ψint =
N(J/ψ → π+π−π+π−)

dL/dE · ǫMC
= (48.9± 2.1stat ± 1.0syst)MeV nb (7.1)

BJ/ψ→π+π−π+π− · ΓJ/ψee =
N(J/ψ → π+π−π+π−) ·M2

J/ψ c
4

6π2 · dL/dE · ǫMC · C = (20.4± 0.9stat ± 0.4syst) eV

(7.2)

The relation between the partial electronic width Γ
J/ψ
ee and the integrated cross section

σ
J/ψ
int is derived in Appendix C. The effective ISR luminosity dL/dE is visualized in

Fig. 3.8. In addition to the efficiency ǫMC , determined with simulation (Section 4.4),
and the conversion constant C = (~c)2 = 3.8938 · 1011MeV2 nb, the J/ψ -mass, MJ/ψ =

3096.92 ± 0.01MeV/c2 [111], is needed as input. Using the electronic width Γ
J/ψ
ee =

5.55± 0.14 keV [111] the branching fraction for J/ψ → π+π−π+π− can be calculated:

BJ/ψ→π+π−π+π− = (3.67± 0.16stat ± 0.08syst ± 0.09external) · 10−3. (7.3)

The statistical uncertainty corresponds to the fit uncertainty on the area of the two
Gaussian distributions, which is a fit parameter. The systematic uncertainty corresponds
to 2.1% and covers the uncertainty of the luminosity and efficiencies as summarized in
Table 6.1. Contributions from peaking background are negligible. The external uncer-
tainty is due to the input values, dominated by the uncertainty of the electronic width
Γ
J/ψ
ee . This measurement is higher in precision than the current PDG [111] value of

BJ/ψ→π+π−π+π− = (3.55± 0.23) · 10−3 and agrees within the uncertainties.

In Fig. 4.2 (a) a peaking structure due to the ψ(2S) → π+π−µ+µ− background channel
is visible in data at M4π = 3.691GeV/c2. It was checked that the selection efficiency
for this channel is the same as for the signal channel. This allows to obtain the ψ(2S)
branching ratio Bψ(2S)→J/ψπ+π− for the reaction ψ(2S) → J/ψπ+π− with J/ψ → µ+µ−.
As in case of the J/ψ , the measured width of ψ(2S), Γ ≈ 20MeV, is due to the limited
momentum resolution, since also the natural width of the ψ(2S), Γ = 317 keV [111], is
much smaller. This is slightly broader than in the J/ψ -case due to the additional smearing
caused by the wrong mass hypothesis of the µ instead of the π-mass. Again, a fit with
two Gaussian distributions was applied to describe the ψ(2S) peak of the invariant mass
spectrum in Fig. 7.1 (b). The non-resonant π+π−π+π− production is estimated with a
linear approximation.

The integrated number of events N(ψ(2S) → π+π−µ+µ−) is used to estimate the branch-
ing ratio Bψ(2S)→J/ψπ+π−:

Bψ(2S)→J/ψπ+π− · BJ/ψ→µ+µ− · σψ(2S)int =
N(ψ(2S) → π+π−µ+µ−)

dL/dE · ǫMC

= (84.7± 2.2stat ± 1.8syst)MeV nb (7.4)

Bψ(2S)→J/ψπ+π− · BJ/ψ→µ+µ− · Γψ(2S)ee =
N(ψ(2S) → π+π−µ+µ−) ·M2

ψ(2S)c
4

6π2 · dL/dE · ǫMC · C
= (49.9± 1.3stat ± 1.0syst) eV (7.5)



144 7 Study of Internal Structures and Charmonium Branching Ratios

dL/dE, ǫMC , and C are defined as for the determination of the J/ψ branching ratio. In
addition, for the result in Equation (7.5), the PDG valueMψ(2S) = 3686.09±0.04MeV/c2

is used [111]. The statistical uncertainty corresponds to the fit uncertainty on the area of
the two Gaussian distributions and the systematic uncertainty of 2.1% covers the uncer-
tainty of the luminosity and efficiencies. Contributions from other peaking background
channels are negligible. Using the branching fraction BJ/ψ→µ+µ− = 0.0593 ± 0.0006 and

the electronic width of the ψ(2S) Γ
ψ(2S)
ee = (2.38± 0.04) keV [111], the branching fraction

for ψ(2S) → J/ψπ+π− is determined:

Bψ(2S)→J/ψπ+π− = 0.354± 0.009stat ± 0.007syst ± 0.007external. (7.6)

The external uncertainty is due to the input values dominated by the uncertainties
of BJ/ψ→µ+µ− and Γ

ψ(2S)
ee . The result of this work agrees with the PDG world aver-

age Bψ(2S)→J/ψπ+π− = 0.336 ± 0.005 [111] within the uncertainties. It is worthwhile to
mention that it is comparable in precision to the individual contributions leading to
the PDG average value and perfectly agrees with the most recent CLEO measurement
BCLEO
ψ(2S)→J/ψπ+π− = 0.3504± 0.0007± 0.0077 [112].

7.2 Scan For Additional Resonances

Fig. 7.2 (a) displays the invariant π+π−π+π−-mass distribution M4π for data at large
invariant masses. This is the invariant mass region where many resonances, e.g. the
Y (4260), Y (4350), were recently found [113, 114]. The data shown is not corrected for
efficiency, but the efficiency in this π+π−π+π−-mass is flat. No clear signal can be identi-
fied. However, there might be some interesting structure above 4GeV. The inset, Fig. 7.2
(b), shows the same distribution with a zoom. A detailed study would be needed in order
to prove the existence of resonant structures in this invariant π+π−π+π−-mass region,
but this is beyond the scope of this thesis.

7.3 Substructures

The scatter plots in Fig. 7.3 display the distributions of the invariant π+π−π±- and π+π−-
mass vs. the invariant π+π−π+π−-mass for data and signal MC simulation. The ρ(770)0

band is clearly visible in the invariant π+π−-mass of data and simulation. In general a
good agreement is seen except in the narrow region of the J/ψ which is not included in
the MC model.

In a more detailed study, Fig. 7.4, the invariant π+π−π+π−-mass spectrum is divided
into five intervals:

• 1.0-1.4GeV/c2 low mass region

• 1.4-1.8GeV/c2 peak region of the cross section
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Figure 7.2: Invariant π+π−π+π− mass distribution for the data in the invariant mass range
3.2GeV/c2 < M4π < 6.0GeV/c2 (a) and 3.75GeV/c2 < M4π < 4.25GeV/c2 (inset, b).

• 1.8-2.3GeV/c2 high mass “shoulder”

• 2.3-3.0GeV/c2

• 3.0-4.5GeV/c2 charmonium region without the narrow region around the J/ψ

Figs. 7.4 (left) show the distributions for the invariant π+π−π±-mass in these five in-
variant π+π−π+π−-mass regions for the data in comparison with the MC simulation; 4
entries per event are plotted. In the region between 1.0-1.4GeV/c2, there is not enough
phase space for direct a1(1260)

± production in the invariant π+π−π±-masses. For higher
energies, 2.3GeV/c2 < M4π < 4.5GeV/c2, the contribution of a1(1260)

± is noticeable.
It is visible as a peaking structure at a mass of M3π ≈ 1300MeV/c2 and a width of
Γ ≈ 200MeV. In comparison, the averaged mass value given in the PDG [111] is
Ma1(1260)± = 1.230 ± 0.040GeV/c2 with experiments varying from 1.04 to 1.33GeV/c2.
The corresponding width varies between 250 and 600MeV. In the simulation the param-
eters M=1.33GeV/c2 and Γ = 570MeV were used, which were obtained from combined
analysis of CLEO and CMD-2 data [106]. The experimental distributions seem to be in
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Figure 7.3: Invariant π+π−π±- and π+π−-mass vs. invariant π+π−π+π−-mass for the data (left)
and the MC simulation (right) without background subtraction (number of events are in
logarithmic scale).

favor of a slightly lower a1(1260)
± mass and a smaller width.

In the invariant π+π−-mass distributions, Figs. 7.4 (middle), four entries per event are
plotted. At low invariant π+π−π+π−-masses and in the peak region, M4π < 1.8GeV/c2,
solely the ρ(770)0 resonance is seen. At larger invariant masses, a second peaking struc-
ture appears at a mass of M2π = 1270MeV/c2, which most likely corresponds to the
f2(1270). This resonance is not present in the simulation. It is observed that in the
entire invariant π+π−π+π−-mass region, approximately 25% of the entries are in the
ρ(770)0-mass peak. This leads to the conclusion, that in each event one ρ(770)0 meson is
present, since the ρ(770)0ρ(770)0 production is not allowed. In simulation, the f0(1300)
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Figure 7.4: Invariant mass distributions for the data (red) and the AFKQED simulation (black); the
data is not corrected for the efficiency. Left: Invariant π+π−π±-mass (4 entries per event)
for different regions in M4π. Middle: Invariant π+π−-mass distributions (4 entries per
event). Right: Invariant π+π−-mass distributions with another π+π− mass in the ρ-mass
region.

is implemented. The mass and width are set to 1.3GeV/c2 and 0.6GeV respectively.
With the observed distributions it is not possible to confirm the parameters of this broad
resonance.

In order to further investigate the presence of the f2(1270)ρ(770)
0 final state the π+π−

combination is plotted with the additional requirement that the other invariant π+π−-
mass combination is located within ±25MeV/c2 of the ρ(770)0 mass 745MeV/c2 < M2π <
795MeV/c2. In these distributions, a dip at the ρ(770)0 mass due to the ρ(770)0 se-
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lection is observed as expected. The f2(1270) resonance is already visible as a shoul-
der at 1270MeV/c2 in the 1.8GeV/c2 < M4π < 2.3GeV/c2 invariant mass region in
Fig. 7.4 (right). It is even more prominent in the region 2.3GeV/c2 < M4π < 4.5GeV/c2,
where enough phase space for the production of the f2(1270)ρ(770)

0 final state is avail-
able. In addition an edge slightly below M2π = 1.0GeV/c2 seems to be present in the
M4π > 1.8GeV/c2 invariant mass region in Fig. 7.4 (right). This might be the result of
the interference with the f0(980) final state.
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Figure 7.5: Invariant mass distributions for the data (red) and the PHOKHARA7 simulation (black);
the data is not corrected for the efficiency. Left: Invariant π+π−π+π−-mass (4 entries per
event) for different regions in M4π. Middle: Invariant π+π−-mass distributions (4 entries
per event). Right: Invariant π+π−-mass distributions with another π+π− mass in the
ρ-mass region.

It is shown in Appendix D that a comparison between the stand-alone event generator



7.3 Substructures 149

PHOKHARA5 (which is based on the same theoretical model concerning intermediate
resonances as AFKQED) sample to the data leads to very similar results as observed in
the comparison between AFKQED to data, shown in Fig. 7.4. This leads to the conclusion
that it is justified to compare the data to the PHOKHARA simulation neglecting the
effects of the BABAR detector. The efficiency is approximately uniform in dependence of
M2π and M3π for the five given energy regions in M4π.

An additional study is performed with the PHOKHARA7 (version 7) event generator,
including a more recent update of the internal structures based on the results of the
π+π−π0π0 final state as described in [96]. An event sample is created with similar ac-
ceptance requirements as in the presented π+π−π+π− study. A detector simulation is
not performed, since this event generator is not implemented in the BABAR software
environment and as shown before, it is allowed to compare it directly to the data.

Figure 7.5 shows the corresponding π+π−π±- and π+π−-mass distributions for the data
and the events, simulated with PHOKHARA7. Concerning the a1(1260)

±, the data
prefers a larger mass and a larger contribution in comparison to the PHOKHARA7
simulation. On the other hand, the contribution of the f0(1370)ρ(770)

0, which is included
in the simulation, seems to be stronger than in the data. An interference with f0(980)
is not included in the MC model. A partial wave analysis is needed to determine the
parameters, e.g. mass, width, and the spin structure of these intermediate resonances.





Conclusion and Outlook

The ISR technique together with the large luminosity delivered by PEP-II and the ex-
cellent performance of the BABAR detector allows the extraction of the cross section
σ(e+e− → π+π−π+π−) as a function of the invariant π+π−π+π−-mass in the range from
threshold up to 4.5GeV/c2 with unprecedented statistical and systematic precision. The
luminosity and efficiencies are understood on the level of few percent, resulting in a sys-
tematic uncertainty of 2.4% in the peak region, 10.7% below 1.1GeV/c2, 5.5% above
2.8GeV/c2 and 8.5% above 4.0GeV/c2.

The resulting contribution of the cross section σ(e+e− → π+π−π+π−) to the anomalous
magnetic moment of the muon ahadµ (e+e− → π+π−π+π−) and to the running of the fine

structure constant ∆α
had(5)
QED are evaluated according to the method described in [55] in

the energy region 0.6GeV < ECM < 1.8GeV:

ahadµ (e+e− → π+π−π+π−) = (136.4± 0.3stat ± 3.6syst)× 10−11,

∆α
had(5)
QED (M2

Z) = (3.57± 0.01stat ± 0.09syst)× 10−4.

These evaluations are more precise than the current corresponding world average for
these quantities [2]:

aaverageµ (π+π−π+π−) = (133.5± 1.0stat ± 4.3syst ± 2.9syst)× 10−11,

∆α
had(5)
QED (M2

Z) = (3.49± 0.03stat ± 0.12syst ± 0.08syst)× 10−4,

where the first uncertainty is statistical, the second channel-specific systematic, and the
third common systematic, which is correlated with at least one other channel.

The invariant π+π− and π+π−π±-mass distributions provide evidence of resonant sub-
structure, with preferred quasi-three-body production of ρ(770)0π+π− and quasi-two-
body production of a1(1260)π. There are also indications for the intermediate states
f0(980)ρ(770)

0 and f2(1270)ρ(770)
0. For a detailed understanding of the dynamics of the

π+π−π+π− final state, additional information from the π+π−π0π0 final state will help to
disentangle the contributing intermediate states.

The extracted ISR dataset allows a study of the decays J/ψ → π+π−π+π− and ψ(2S) →
π+π−µ+µ− production. The measurement of the product of decay branching fractions
and e+e− width of the J/ψ is the most precise single measurement to date:

BJ/ψ→π+π−π+π− · ΓeeJ/ψ = (20.4± 0.9stat ± 0.4syst) eV,

Bψ(2S)→J/ψπ+π− · BJ/ψ→µ+µ− · Γeeψ(2S) = (49.9± 1.3stat ± 1.0syst) eV.



The anomalous magnetic moment of the muon aµ provides one of the most precise tests
of the electroweak SM. On the one hand the more than 3.5σ deviation [2] between theory
and experiment constrains physics beyond the SM severely, but on the other hand can
also be seen as a hint for physics beyond the SM:

δaNPµ = aexpµ − atheoryµ = (287± 80)× 10−11.

There are various theoretical explanations for this deviation, assuming it to be an indica-
tion of something missing in the SM. These assumptions go into various directions, such as
generic contributions from Physics beyond the SM, flavor changing processes, two-Higgs
doublet models, supersymmetry, little Higgs models, extra dimensions, anomalous gauge
couplings, or the Dark Photon. Also investigated are possible errors in the assumptions
of the theory prediction, assuming the BNL direct measurement to be valid.

Clearly, the major source of the theoretical uncertainty enters via the hadronic contribu-
tions. The contribution and uncertainty on the Light-by-Light term in [51] has changed
significantly through the last decade. However, if the discrepancy is exclusively due to
a mis-evaluation of these contributions, they would need to be shifted by approximately
10 standard deviations. The other large hadronic contribution enters through the exper-
imental measurements of the cross sections of hadronic final states. An increase of the
hadronic cross sections at low energies could solve the muon anomaly discrepancy, even
though it is unlikely due to the diverse independent measurements, confirming this devi-
ation. However, increasing the hadronic cross section would directly lead to a decrease on
the electroweak upper bound on the SM Higgs boson mass, as discussed in Chapter 1.1.
This is evaluated in detail in [115]: The upper bound for the Higgs boson mass of currently
MUB

Higgs < 160GeV/c2 at 95% confidence level – based on precision electroweak data and
the preliminary top quark mass Mt = 172.6(1.4)GeV/c2 from a combined CDF-D�0 fit –
would be reduced to approximately MUB

Higgs < 130GeV/c2. Taking into account the lower
bound of the mLB

Higgs = 114GeV/c2 at 95% confidence level obtained by direct searches at
LEP [20], leaves only a narrow window for the mass of this fundamental particle.

There is an ongoing experimental effort to further reduce the systematic uncertainty on
the hadronic contribution of the anomalous magnetic moment of the muon. The intensive
program of ISR analyses at BABAR will continue with the publication of the final states
K+K− and π+π−π0π0 in the beginning of 2012. At BES-III, the ISR measurement
of the π+π− cross section as well as final states with higher multiplicities is proposed.
Also, the CMD3 Collaboration has already started a high precision measurement of the
π+π− and the 4π final states using the traditional energy scan method. Concerning the
direct measurement of the muon anomaly, the proposal for a new (g − 2)µ experiment
at Fermilab is approved, reducing the statistical uncertainty approximately by a factor
4. Thus not only the theoretical predictions, but also the experimental measurement will
be improved in the near future in order to further investigate the present difference of
3.6 standard deviations.



Appendix A

Table 1: Summary of e+e− → π+π−π+π− cross section measurement. Dressed and undressed (without
VP) cross sections are presented with statistical uncertainties only.

ECM (MeV) σdr.
4π ( nb) σundr.

4π ( nb) ECM (MeV) σdr.
4π ( nb) σundr.

4π ( nb) ECM (MeV) σdr.
4π ( nb) σundr.

4π ( nb)

612.5 0.02 ± 0.01 0.02 ± 0.01 1912.5 7.17 ± 0.14 6.90 ± 0.13 3212.5 0.50 ± 0.03 0.47 ± 0.03

637.5 0.04 ± 0.02 0.04 ± 0.02 1937.5 6.93 ± 0.13 6.67 ± 0.13 3237.5 0.49 ± 0.03 0.46 ± 0.03

662.5 0.02 ± 0.01 0.02 ± 0.01 1962.5 6.54 ± 0.13 6.30 ± 0.13 3262.5 0.48 ± 0.03 0.45 ± 0.03

687.5 0.01 ± 0.01 0.01 ± 0.01 1987.5 6.04 ± 0.12 5.82 ± 0.12 3287.5 0.49 ± 0.03 0.47 ± 0.03

712.5 0.02 ± 0.01 0.02 ± 0.01 2012.5 6.18 ± 0.13 5.95 ± 0.12 3312.5 0.47 ± 0.03 0.45 ± 0.03

737.5 0.03 ± 0.01 0.03 ± 0.01 2037.5 5.66 ± 0.12 5.45 ± 0.12 3337.5 0.44 ± 0.03 0.42 ± 0.03

762.5 0.05 ± 0.02 0.05 ± 0.02 2062.5 5.68 ± 0.12 5.47 ± 0.12 3362.5 0.44 ± 0.03 0.42 ± 0.03

787.5 0.11 ± 0.03 0.10 ± 0.02 2087.5 5.34 ± 0.12 5.14 ± 0.11 3387.5 0.40 ± 0.03 0.38 ± 0.03

812.5 0.11 ± 0.02 0.10 ± 0.02 2112.5 4.92 ± 0.11 4.73 ± 0.11 3412.5 0.38 ± 0.03 0.36 ± 0.03

837.5 0.12 ± 0.03 0.12 ± 0.02 2137.5 4.83 ± 0.11 4.64 ± 0.11 3437.5 0.38 ± 0.03 0.36 ± 0.03

862.5 0.17 ± 0.03 0.16 ± 0.03 2162.5 4.59 ± 0.11 4.41 ± 0.10 3462.5 0.36 ± 0.03 0.34 ± 0.02

887.5 0.26 ± 0.04 0.25 ± 0.03 2187.5 4.28 ± 0.10 4.12 ± 0.10 3487.5 0.30 ± 0.02 0.28 ± 0.02

912.5 0.33 ± 0.04 0.32 ± 0.04 2212.5 3.72 ± 0.10 3.58 ± 0.09 3512.5 0.35 ± 0.03 0.33 ± 0.02

937.5 0.57 ± 0.05 0.55 ± 0.05 2237.5 3.72 ± 0.09 3.57 ± 0.09 3537.5 0.31 ± 0.02 0.29 ± 0.02

962.5 0.71 ± 0.06 0.69 ± 0.05 2262.5 3.53 ± 0.09 3.39 ± 0.09 3562.5 0.33 ± 0.02 0.31 ± 0.02

987.5 0.89 ± 0.06 0.86 ± 0.06 2287.5 3.26 ± 0.09 3.13 ± 0.08 3587.5 0.29 ± 0.02 0.28 ± 0.02

1012.5 1.20 ± 0.07 1.23 ± 0.07 2312.5 3.18 ± 0.09 3.06 ± 0.08 3612.5 0.27 ± 0.02 0.26 ± 0.02

1037.5 1.61 ± 0.08 1.51 ± 0.08 2337.5 3.06 ± 0.08 2.94 ± 0.08 3637.5 0.26 ± 0.02 0.25 ± 0.02

1062.5 2.17 ± 0.09 2.06 ± 0.09 2362.5 2.97 ± 0.08 2.86 ± 0.08 3662.5 0.22 ± 0.02 0.22 ± 0.02

1087.5 3.29 ± 0.11 3.14 ± 0.11 2387.5 2.59 ± 0.08 2.48 ± 0.07 3687.5 0.29 ± 0.02 0.13 ± 0.02

1112.5 4.49 ± 0.13 4.31 ± 0.12 2412.5 2.47 ± 0.08 2.38 ± 0.07 3712.5 0.23 ± 0.02 0.21 ± 0.02

1137.5 5.95 ± 0.14 5.72 ± 0.14 2437.5 2.30 ± 0.07 2.21 ± 0.07 3737.5 0.26 ± 0.02 0.24 ± 0.02

1162.5 7.37 ± 0.16 7.09 ± 0.15 2462.5 2.25 ± 0.07 2.16 ± 0.07 3762.5 0.25 ± 0.02 0.23 ± 0.02

1187.5 8.84 ± 0.17 8.51 ± 0.17 2487.5 2.11 ± 0.07 2.02 ± 0.07 3787.5 0.21 ± 0.02 0.20 ± 0.02

1212.5 10.79 ± 0.19 10.40 ± 0.18 2512.5 2.03 ± 0.07 1.95 ± 0.07 3812.5 0.19 ± 0.02 0.18 ± 0.02

1237.5 12.62 ± 0.20 12.17 ± 0.20 2537.5 1.87 ± 0.07 1.80 ± 0.06 3837.5 0.18 ± 0.02 0.17 ± 0.02

1262.5 14.56 ± 0.22 14.05 ± 0.21 2562.5 1.71 ± 0.06 1.65 ± 0.06 3862.5 0.18 ± 0.02 0.17 ± 0.02

1287.5 16.39 ± 0.23 15.83 ± 0.22 2587.5 1.85 ± 0.06 1.77 ± 0.06 3887.5 0.21 ± 0.02 0.20 ± 0.02

1312.5 19.06 ± 0.25 18.41 ± 0.24 2612.5 1.79 ± 0.06 1.72 ± 0.06 3912.5 0.20 ± 0.02 0.19 ± 0.02

1337.5 21.14 ± 0.26 20.42 ± 0.25 2637.5 1.62 ± 0.06 1.56 ± 0.06 3937.5 0.15 ± 0.02 0.14 ± 0.02

1362.5 23.37 ± 0.27 22.59 ± 0.26 2662.5 1.43 ± 0.06 1.37 ± 0.05 3962.5 0.14 ± 0.02 0.14 ± 0.01

1387.5 25.76 ± 0.28 24.90 ± 0.28 2687.5 1.31 ± 0.05 1.26 ± 0.05 3987.5 0.16 ± 0.02 0.16 ± 0.02

1412.5 27.53 ± 0.29 26.61 ± 0.29 2712.5 1.30 ± 0.05 1.26 ± 0.05 4012.5 0.17 ± 0.02 0.16 ± 0.02

1437.5 29.95 ± 0.30 28.96 ± 0.30 2737.5 1.21 ± 0.05 1.16 ± 0.05 4037.5 0.12 ± 0.01 0.11 ± 0.01

1462.5 30.32 ± 0.31 29.32 ± 0.30 2762.5 1.17 ± 0.05 1.13 ± 0.05 4062.5 0.20 ± 0.02 0.19 ± 0.02

1487.5 32.04 ± 0.31 30.97 ± 0.30 2787.5 1.17 ± 0.05 1.12 ± 0.05 4087.5 0.13 ± 0.01 0.12 ± 0.01

1512.5 30.98 ± 0.31 29.93 ± 0.30 2812.5 1.09 ± 0.05 1.05 ± 0.05 4112.5 0.14 ± 0.02 0.13 ± 0.01

1537.5 30.11 ± 0.30 29.06 ± 0.29 2837.5 1.07 ± 0.05 1.04 ± 0.05 4137.5 0.14 ± 0.02 0.13 ± 0.01

1562.5 28.26 ± 0.29 27.26 ± 0.28 2862.5 0.96 ± 0.05 0.93 ± 0.04 4162.5 0.14 ± 0.01 0.13 ± 0.01

1587.5 26.81 ± 0.28 25.86 ± 0.27 2887.5 0.89 ± 0.04 0.86 ± 0.04 4187.5 0.15 ± 0.02 0.14 ± 0.01

1612.5 24.66 ± 0.27 23.78 ± 0.26 2912.5 1.08 ± 0.05 1.05 ± 0.05 4212.5 0.11 ± 0.01 0.10 ± 0.01

1637.5 22.69 ± 0.26 21.89 ± 0.25 2937.5 0.88 ± 0.04 0.85 ± 0.04 4237.5 0.13 ± 0.01 0.12 ± 0.01

1662.5 20.95 ± 0.25 20.19 ± 0.24 2962.5 0.77 ± 0.04 0.75 ± 0.04 4262.5 0.13 ± 0.01 0.12 ± 0.01

1687.5 18.78 ± 0.23 18.09 ± 0.22 2987.5 0.82 ± 0.04 0.81 ± 0.04 4287.5 0.13 ± 0.01 0.12 ± 0.01

1712.5 17.25 ± 0.22 16.61 ± 0.21 3012.5 0.75 ± 0.04 0.74 ± 0.04 4312.5 0.11 ± 0.01 0.11 ± 0.01

1737.5 15.33 ± 0.21 14.75 ± 0.20 3037.5 0.71 ± 0.04 0.71 ± 0.04 4337.5 0.11 ± 0.01 0.11 ± 0.01

1762.5 13.37 ± 0.19 12.86 ± 0.19 3062.5 0.62 ± 0.04 0.66 ± 0.04 4362.5 0.09 ± 0.01 0.09 ± 0.01

1787.5 11.61 ± 0.18 11.17 ± 0.17 3087.5 1.93 ± 0.06 2.30 ± 0.08 4387.5 0.10 ± 0.01 0.10 ± 0.01

1812.5 10.23 ± 0.17 9.84 ± 0.16 3112.5 1.30 ± 0.05 1.03 ± 0.04 4412.5 0.11 ± 0.01 0.10 ± 0.01

1837.5 8.87 ± 0.15 8.53 ± 0.15 3137.5 0.62 ± 0.04 0.55 ± 0.03 4437.5 0.09 ± 0.01 0.09 ± 0.01

1862.5 7.67 ± 0.14 7.37 ± 0.14 3162.5 0.59 ± 0.03 0.54 ± 0.03 4462.5 0.09 ± 0.01 0.08 ± 0.01

1887.5 7.29 ± 0.14 7.02 ± 0.13 3187.5 0.51 ± 0.03 0.47 ± 0.03 4487.5 0.10 ± 0.01 0.09 ± 0.01



Appendix B

Estimating Systematic Uncertainties

This section is focused on the influence of certain selection criteria on a measured value
x̂. It is assumed that by varying the requirements in different analyses, x̂ stays within the
borders xmin and xmax. The aim is to estimate the systematic uncertainty of x̂ assuming
that the influence on the diverse selection criteria on x̂ can be described by a uniform
probability density function f(x):

f(x) =
1

xmax − xmin
, for xmin < x < xmax,

f(x) = 0 , for x < xmin or x > xmax.

Then according to σx̂ =
√
< x >2− < x2 > after a short calculation, the variance is

found to be σx̂ = (xmax − xmin) · 1
2·
√
3
. The assumption of a flat distribution of x is

rather conservative, since most analyses require similar selection criteria, which are rather
peaked near x. Furthermore, the maximum deviation ∆max from the measured value x
is defined as:

∆max = xmax − x̂ , if xmax − x̂ > x̂− xmin,

∆max = x̂− xmin , if xmax − x̂ < x̂− xmin.

Then the uncertainty of x̂ can be estimated conservatively as:

σx̂ = ∆max ·
1√
3
.



Appendix C

Relation between Width and
Integrated Cross Section of J/ψ and
ψ(2S)

The peaking structure of the charmonium resonances in the cross section as a function
of the center-of-mass energy can be described with the Breit-Wigner-formula, which is
given as [116]:

σi→f(s) = 12π(~c)2 · Γi · Γf
(s−M2

ψc
4)2 +M2

ψc
4Γ2

int

. (C.1)

Γi is the partial width of the input channel and Γf the partial width of the resonance decay
process. The total width is given as the sum of all partial widths for all possible fermion-
antifermion decays. Integration over the cross section as a function of the effective CM
ECM =

√
s leads to:

σint =

∫ ∞

0

d
√
sσi→f(s) = A ·

∫ ∞

0

dx
1

(x2 − B)2 + 1
= A · I, (C.2)

with

A =
12π(~c)2Γi · Γf

M2
ψc

4Γ2
tot

·
√

Mψc2Γtot, B =
Mψc

2

Γtot
, (C.3)

(C.4)

and

I =

∫ ∞

0

dx
1

(x2 − B)2 + 1
. (C.5)

The exact solution for the integral I as a function of B is plotted in Fig. C.1 and given
as:

I =
i · π
2

(

1√
−i−B

− 1√
i−B

)

. (C.6)

By Taylor expansion and the assumption B ≫ 1, which translates into Mψc
2 ≫ Γtot the

following solution for I is obtained:
∫ ∞

0

dx
1

(x2 − B)2 + 1
≈ π

2
√
B
. (C.7)
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The approximation Mψc
2 ≫ Γtot is satisfied by the J/ψ and the ψ(2S) (MJ/ψ c

2 =
3097MeV ≫ ΓJ/ψ = 0.09MeV and Mψ(2S)c

2 = 3686MeV ≫ ΓJ/ψ = 0.32MeV, pa-
rameters are taken from [111]). This approximate solution is also indicated in Fig. C.1.

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B

I

Figure C.1: The exact solution of the Integral I (blue line) as well as the approximate solution (red
line).

The approximate solution for I leads to the following equation:

∫ ∞

0

d
√
sσi→f(s) = 6π(~c)2ΓiΓf

1

M2
ψc

4Γtot
. (C.8)

The inital process i, corresponding to the e+e− → ψ production (Γi = Γψee), can be

separated by eliminating the branching ratio Bψ→f =
Γf
Γtot

on the right hand side of the

equation. This leads to the final result for the cross section σψint:

∫ ∞

0

d
√
sσe+e−→ψ(s) = σψint(s) =

6π(~c)2Γψee
M2

ψc
4

. (C.9)



Appendix D

Comparison of PHOKHARA5
Simulation with Data

In Fig. 7.4 of Chapter 7 the intermediate resonances of the AFKQED simulation are
compared to the intermediate resonances found in data. The AFKQED code is based
on an early version of the PHOKHARA generator. PHOKHARA5 (Version 5) includes
the same model for the intermediate resonances as AFKQED. Fig. D.1 shows invari-
ant π+π−π±-mass and π+π−-mass distributions for data and the standalone version of
PHOKHARA5. The same features are seen as in the comparison between data and
AFKQED including the BABAR detector simulation. Thus the efficiencies are rather flat
as a function of the invariant π+π−π±-mass and π+π−-mass for the five indicatedM4π re-
gions. This allows a comparison study of data with PHOKHARA7, including additional
intermediate resonances.
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Figure D.1: Invariant mass distributions for data (red) and PHOKHARA5 simulation (black). Left: In-
variant π+π−π±-mass (4 entries per event) for different regions in M4π. Middle: Invariant
π+π−-mass distributions (4 entries per event). Right: Invariant π+π−-mass distributions
with another π+π− mass in the ρ(770)0-mass region.
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[95] H. Czyż, J. H. Kühn, Eur. Phys. J C 18, 497 (2000).
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