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Zusammenfassung
Die Untersuchung von dissipativen Quantensystemen erm•oglicht es, Quantenph•anomene
auch auf makroskopischen L•angenskalen zu beobachten. Dasin dieser Dissertation
gew•ahlte mikroskopische Modell erlaubt es, den bisher nurph•anomenologisch zug•ang-
lichen E�ekt der Quantendissipation mathematisch und physikalisch herzuleiten und zu
untersuchen.
Bei dem betrachteten mikroskopischen Modell handelt es sich um eine 1-dimensionale
Kette von harmonischen Freiheitsgraden, die sowohl untereinander als auch anr anhar-
monische Freiheitsgrade gekoppelt sind. Die F•alle einer,respektive zwei anharmonischer
Bindungen werden in dieser Arbeit explizit betrachtet.
Hierf•ur wird eine analytische Trennung der harmonischen von den anharmonischen Frei-
heitsgraden auf zwei verschiedenen Wegen durchgef•uhrt. Das anharmonische Potential
wird als symmetrisches Doppelmuldenpotential gew•ahlt, welches mit Hilfe der Wick Ro-
tation die Berechnung der•Uberg•ange zwischen beiden Minima erlaubt. Das Eliminieren
der harmonischen Freiheitsgrade erfolgt mit Hilfe des wohlbekannten Feynman-Vernon
Pfadintegral-Formalismus [21].
In dieser Arbeit wird zuerst die Positionsabh•angigkeit einer anharmonischen Bindung
im Tunnelverhalten untersucht. F•ur den Fall einer fernab von den R•andern lokalisierten
anharmonischen Bindung wird ein Ohmsches dissipatives Tunneln gefunden, was bei
der Temperatur T = 0 zu einem Phasen•ubergang in Abh•angigkeit einer kritischen Kop-
plungskonstantenCcrit f•uhrt. Dieser Phasen•ubergang wurde bereits in rein ph•anome-
nologisches Modellen mit Ohmscher Dissipation durch das Abbilden des Systems auf
das Ising-Modell [26] erkl•art. Wenn die anharmonische Bindung jedoch an einem der
R•ander der makroskopisch grossen Kette liegt, tritt nach einer vom Abstand der beiden
anharmonischen Bindungen abh•angigen ZeittD ein •Ubergang von Ohmscher zu super-
Ohmscher Dissipation auf, welche im KernK M (� ) klar sichtbar ist.
F•ur zwei anharmonische Bindungen spielt deren indirekte Wechselwirkung eine entschei-
dende Rolle. Es wird gezeigt, dass der AbstandD beider Bindungen und die Wahl des
Anfangs- und Endzustandes die Dissipation bestimmt. Unter der Annahme, dass beide
anharmonischen Bindung gleichzeitig tunneln, wird eine Tunnelwahrscheinlichkeitp(t)
analog zu [14], jedoch f•ur zwei anharmonische Bindungen, berechnet. Als Resultat
erhalten wir entweder Ohmsche Dissipation f•ur den Fall, dass beide anharmonischen
Bindungen ihre Gesamtl•ange •andern, oder super-Ohmsche Dissipation, wenn beide an-
harmonischen Bindungen durch das Tunneln ihre Gesamtl•ange nicht •andern.
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Abstract

The investigation of dissipative quantum systems makes it possible to observe quantum

phenomena also on macroscopic length scales. The microscopic model selected in this

thesis allows to deduce and examine the so far only phenomenologically accessible e�ect

of quantum dissipation in a clear mathematical and physicalway.

The investigated microscopic model is a 1-dimensional chain of harmonic degrees of

freedom which are linearly coupled to each other as well as tor anharmonic degrees of

freedom. The case of one respectively two anharmonic bonds are explicitly analysed in

this thesis.

An analytic separation of the harmonic from the anharmonic degrees of freedom is ac-

complished in two di�erent ways. The anharmonic potential is chosen as a symmetrical

double well potential which allows the calculation of the transitions between the two

minima by performing a Wick rotation. Eliminating the harmonic degrees of freedom

is done via the well-known Feynman-Vernon path integral formalism [21].

This thesis starts investigating the position dependence of the tunnelling behaviour of

one anharmonic bond. If the anharmonic bond is located in thebulk ohmic dissipative

tunnelling is found which leads to a phase transition for temperature T = 0 at critical

coupling constantCcrit . This phase transition has been explained in purely phenomeno-

logical models with ohmic dissipation by mapping the systemonto the Ising model [26].

If the anharmonic bond is however close to one of the edges of the macroscopically large

chain, a transition from ohmic to super-ohmic dissipation is observed after a distance-

dependent timetd which is clearly observable in the kernelK M (� ).

For the case of two anharmonic bonds the indirect interaction of both anharmonic bonds

plays a crucial role. It is shown, that the distanceD between both anharmonic bonds

and the choice of the initial and �nal conditions, determinethe dissipative tunnelling

behaviour.

With the assumption of both anharmonic bonds tunnelling at the same time, a tun-

nelling probability p(t) is calculated as in [14], not for one but for two anharmonic

bonds. As a result we either have ohmic dissipation for the case that both anharmonic

bonds change their total length, or super-ohmic dissipation if both anharmonic bonds

do not change their total length in the tunnelling process.
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Chapter 1

Introduction

Quantum-mechanical e�ects such as tunnelling are experimentally well-veri�ed on a
microscopic scale. But to be a fundamental theory, quantum mechanics has to be valid
for all scales. This problem was addressed by the famous thought experiment named
Schroedinger's cat, proposed in 1935. In quantum mechanicslinear combinations of
solutions, labeledj	 + i ; j	 � i , of the Schr•odinger equation are also solutions. So not
only j	 + i ; j	 � i but also j	 i = � + j	 + i + � � j	 � i , with the normalised coe�cients
j� + j2 + j� � j2 = 1, solve the Schr•odinger equation. Considering Schr•odinger's thought
experiment, how is it then possible, that a cat has only been observed as being dead
or alive, but not in a superposition (deadand alive)? Or expressed more generally,
when does a quantum system stop being a linear combination ofstates, each of which
correspond to di�erent states, and instead begin to have a unique classical description?
First of all, one has to keep in mind, that the Schr•odinger equation is valid only for
isolated (quantum-)systems following a unitary evolution

i~
@
@t

j	 i = H j	 i (1.1)

In reality a totally isolated system does not exist. Only approximatively a system can
been regarded as "isolated". Let an object have two possibleinitial states j+ i ; j�i and
a measuring device also having two statesjM+ i ; jM � i . The measuring device is initially
prepared in statejM � i and reacts in the following way on the two possible states of the
objects

(j+ i ) jM � i measurement! j + ij M+ i � j 	 +
f in: i ; (j�i ) jM � i measurement! j�ij M � i � j 	 �

f in: i (1.2)

The measuring device acts as a pointer showing which state the object is in after the
measurement. Now we would like to measure the state of the object. The initial state
j	( t = 0) i � j 	 ini: i before the measurement is de�ned as

j	 ini: i =
(

� + j+ i + � � j�i
)

jM � i (1.3)

After performing the measurement using the rules de�ned in Eq. (1.2), one gets the
�nal state j	( t > 0)i � j 	 f in: i

j	 f in: i = � + j+ ij M+ i + � � j�ij M � i � � + j	 +
f in: i + � � j	 �

f in: i (1.4)

3
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Now the state j	 f in: i is a superposition of states and does not show a de�nite result.
Applied to Schr•odinger's cat, the �nal state of the cat is a superposition of dead and
alive. How can this paradox be resolved? Considering the state j	 f in: i as a pure state,
the density operator of such a pure state (1.4) is de�ned as

� pure = j	 f in: ih	 f in: j =
(

j� + j2 � + � �
�

� �
+ � � j� � j2

)
(1.5)

, where the o�-diagonal elements show interference betweenthe componentsj	 +
f in: i and

j	 �
f in: i . The "observation" leads to the "collapse" of the wavefunction j	 f in: i into state

j	 +
f in: i with the probability j� + j2 or into state j	 �

f in: i with the probability j� � j2 = 1 �
j� + j2.The Copenhagen interpretation of quantum mechanics postulated this "collapse"
of the wavefunction du to the "observation". This "collapse" occurs instantaneously
and cannot be described by the Schr•odinger equation, whichfollows a unitary evolution
[1]. There are of course also other interpretations such as for example the "Many-
worlds interpretation" by Everret [2], but this will not be discussed here. An interesting
approach to the "collapse" of the wavefunction is the use of decoherence. As mentioned
above, totally isolated systems do not exist, hence the Schr•odinger equation describing
the object coupled to the measurement devicej	 ini: i misses another term describing
the e�ect of the environment jEU i . The environment consists of a very large number
of states, basically all states of the whole universe exceptthe already described cat and
the measurement device. Expressed mathematically this reads

jEU i = jE1ij E2i : : : jEN i ; N very large (1.6)

A small deviation � of one of the environmental states can be described as

hE 0
i jE i i = 1 � � (1.7)

, where jE 0
i i is the state that received the small deviation. Applying thatfor the very

large number of environmental states yields

hE 0
U jEU i = (1 � � )N � 1 (1.8)

This leads to the new form of Eq. (1.3)

j	 0
ini: i =

(
� + j+ i + � � j�i

)
jM � ij EU i (1.9)

, where jEU i are the environmental states before the measurement. Using again Eq.
(1.2) yields the new �nal state

j	 0
f in: i = � + j+ ij M+ ij EU+ i + � � j�ij M � ij EU� i (1.10)

Tracing out the environmental states yields the reduced density operator describing the
�nal state of the cat and measuring device

� red = TrEU j	 0
f in: ih	 0

f in: j = j� + j2j	 +
f in: ih	 +

f in: j + j� � j2j	 �
f in: ih	 �

f in: j

+ � + � �
� j	 +

f in: ih	 �
f in: j jEU+ ihEU� j︸ ︷︷ ︸

� 0

+ � � � �
+ j	 �

f in: ih	 +
f in: j jEU� ihEU+ j︸ ︷︷ ︸

� 0

(1.11)
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The reduced density operator describes an open system constantly interacting with the
environment. Using the trace as in Eq. (1.11) is like averaging out the environmental
degrees of freedom. WithhEU+ jEU� i = hEU� jEU+ i � 0, which results from Eq. (1.8)
the reduced density matrix de�ned in Eq. (1.11) yields

� red
�= j� + j2j	 + ih	 +

f in: j + j� � j2j	 �
f in: ih	 � j =

(
j� + j2 0

0 j� � j2

)
(1.12)

The loss of quantum coherence to the environment leads to thepossibility of describing
quantum systems in the language of statistical mechanics.
The model calculated in this thesis consists of a quantum system coupled to an environ-
ment. The e�ect of tracing out the environment on the quantumsystem is considered
in detail.
This thesis investigates the dissipative e�ect of the environment on a tunnelling two-
state system (TSS) and on the interaction between tunnelling TSS. The low-temperature
properties of amorphous materials have been attributed to the existence of tunnelling
but noninteracting TSS in amorphous materials [3, 4]. Theircentral hypothesis is the
statistical distribution of atoms (or groups of atoms) sitting more or less in TSS. There is
no interaction between TSS considered. From that, they derive the linear speci�c heat,
a universal property of amorphous materials and the anomalous thermal conductivity.
Later the interaction between those TSS in amorphous materials have been considered
as the main reason for the observed low temperature anomalies [5]. Investigation of in-
teracting TSS in amorphous solids have nowadays been widelyinvestigated [6, 7]. These
publications focus mainly on the low-temperature (T < 100mK ) kinetics and thermody-
namic properties of dielectric glasses. The interaction ofthe TSS is phenomenologically
de�ned and arises from the strain �eld or the direct electrical dipole-dipole interaction
with distance dependent strength decaying asR� 3 in those systems [7]. Anomalous
temperature behaviour in the relaxation properties at ultralow temperatures are found
in those publications [6, 7].
This thesis is not interested in the phenomenologically derived TSS of dielectric glasses,
but instead uses a microscopic model, where the position dependence of the TSS in the
environment is investigated.
The model investigated in this thesis consists of a translationally invariant chain of
N particles with harmonic nearest neighbour interaction with one exception. One, re-
spectively two bonds are anharmonic. The anharmonicity is described by a symmetric
double well potential in which the continuos degree of freedom can tunnel between the
two minima.
One method of calculating such a tunnelling process is the instanton technique. In-
stantons were �rst applied in quantum chromodynamics (QCD)in the late '70s, early
'80s [8, 9, 10, 11]. The instanton technique provided an exact �nite-action solution to
the classical Yang-Mills [8, 11] equations in Euclidean space-time. But also its use in
statistical mechanics has been discussed extensively [12,13].
Another possibility is to e�ectively restrict the anharmonic potential to the Hilbert space
spanned by the two minima of the wells [14, 15, 16]. This allows a mapping onto the
well known spin-boson Hamiltonian, which has been applied tomany di�erent physical
systems some of which are discussed in [17, 18, 19, 20]. This mapping and the restric-
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tions implied are discussed in detail in [14, 16].
Now we can investigate the dissipative e�ect the environment, sometimes named har-
monic bath, has on the quantum mechanical tunnelling of the TSS. Quantum dissipation
describes the quantum-mechanical analogon to the classical irreversible loss of energy.
In quantum theory usually a Hamiltonian is used. The total energy of the full system
is then a conserved quantity. A way to avoid this problem and being able to introduce
dissipation is to split up the full system into two parts. The�rst is called the system,
where dissipation occurs and the second is the environment,which receives the energy

owing out of the system. The energy is only transferred fromone system to another
and hence conserved.
The �rst approach of modelling such a system was done by Feynman and Vernon [21].
They modelled the environment as an in�nite set of harmonic oscillators.
With the path integral formalism and for certain kinds of coupling to the quantum-
mechanical system, the harmonic degrees of freedom can be eliminated, leaving a quantum-
mechanical system showing dissipation.
In 1981 the idea of Feynman and Vernon has been applied to a speci�c system by
Caldeira and Leggett [22]. Considering the magnetic 
ux trapped in a SQUID [23]
and ignoring dissipation, a standard WKB1 calculation shows quantum tunnelling as
the dominant 
ux transition mechanism for temperaturesT . 100mK . Experiments
[24, 25] with even higher temperaturesT � 1 � 2K have been interpreted as possible
evidence for quantum tunnelling of the 
ux [22].
A SQUID (superconducting quantum interference device) is used to measure extremely
weak magnetic �elds. In Fig. 1.2 a dc-Squid (direct current)is shown. Its func-
tionality is based on the 
ux-quantisation � 0 � h

qs
; (h is the Planck constant andqs =

2eis the electron charge of the Cooper pairs) occuring in superconducting loops and the
Josephson e�ect. Caldeira and Leggett mention a SQUID as a promising candidate to
observe quantum tunnelling on a macroscopic scale [22]. Therelevant macroscopic vari-
able is the magnetic 
ux trapped in the superconducting loop.

1Wentzel{Kramers{Brillouin
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Figure 1.1: A schematic picture of a dc-SQUID (direct current superconducting quantu m interference device). The
Josephson junctions have to be thin enough to allow Cooper-pairs to tunnel through.

By considering linear coupling of the system with its environment, they �nd, that dis-
sipation multiplies the tunnelling probability by a factor depending among other con-
stants, on the phenomenological friction coe�cient.
They discuss an imaginary time propagator for zero temperature (the derivation of
those quantities follow, when the Caldeira-Leggett model is presented in the respective
section). This propagator consists of an e�ective action, where the in
uence of the
harmonic degrees of freedom on the tunnelling is described by a function2 � (t � t0).
Caldeira and Leggett relate that function to the phenomenological friction coe�cient
� , by comparing the equations of motion of the phenomenological expression of the
linear damped harmonic oscillator, with the ones achieved from the Caldeira-Leggett
Lagrangian. Expressing the function� (t � t0) in terms of the spectral densityJ (! ), they
are able to provide the frequency dependence of this spectral density up to some cut-o�
frequency! c as J (! � ! c) = �! , in terms of the phenomenological friction coe�cient
� . The exact derivation is shown in the next chapter. With that, a connection of the
quantum-mechanical e�ect of tunnelling to the classical e�ect of dissipation was made.
Model Hamiltonians of quantum systems coupled linearly to a bath of harmonic oscilla-
tors are well known nowadays as Caldeira-Leggett Hamiltonians and have been discussed
in many articles e.g. [14, 16, 26, 27].
In this thesis the tunnelling of anharmonic bonds describedby a symmetric double-well
potential with the dissipative e�ect of the linearly coupled bath of harmonic oscillators,
is investigated.

This potential is a TSS if the potential height V0 � ~! cl , where ! cl is the classical
small-oscillation frequency and the separation of the ground state from the �rst excited
state is of order~! cl .

2see section "The Caldeira-Leggett Model" for details
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Figure 1.2: A double-well potential considered in the "two-state" limit. ~! cl denote the energy di�erence of the two-
fold degenerate ground state to the �rst excited states. Symmetric TSS (reg arded in this thesis) with two-fold degenerate
ground states xMin; xMax (without considering the coupling to the bath) of the system. V0 represents the barrier height.

The e�ect of the environment on the tunnelling variable is described by the spectral
density J (! ). The spectral density is derived and related to other quantities in chapter
2.2.1 - 2.2.3. The quantum dissipation generated by the harmonic bath depends quali-
tatively on the low-frequency behaviour ofJ (! ) [14, 16, 28]. The spectral density has a
power-law form for frequencies much smaller than the cut-o�frequencyJ (! � ! c) � ! s,
where! c denotes the cut-o� frequency introduced earlier. The exponent s classi�es the
dissipative in
uences. A detailed discussion on the e�ect of the spectral density will be
given in section "The Caldeira-Leggett Model".
The indirect interaction of these TSS mediated through the harmonic bath depends on
the microscopically derived spectral densityJ (! ). The harmonic bath leads to dissipa-
tive tunnelling behaviour of the TSS. This thesis is restricted to T = 0 and calculates the
tunnelling probability of anharmonic bonds (described by TSS) in a chain of harmonic
bonds (harmonic bath), whereas [6, 7] focus on the investigation of dielectric glasses and
the anomalous temperature behaviour of their relaxation times.
Dub�e and Stamp [29] investigate a similar system of interacting TSS as considered here.
The main di�erence of the publication of Dub�e and Stamp is allowing direct coupling
and considering the continuous TSS coordinate of this thesis as a spin. The direct
coupling leads to phenomena, that are not considered in thisthesis. The calculations
and approximations in their publications are not derived clearly and will be put on
more stable ground in this thesis. From the microscopic model considered in this thesis
the analytical derivation of the Caldeira-Leggett type Hamiltonian is performed. The
Hamiltonian for this microscopic model is brought into the form of the Caldeira-Leggett
Hamiltonian by separating the harmonic and anharmonic degrees of freedom analytically
in di�erent ways. First the position-dependence of one anharmonic bond is discussed.
Since an open chain without periodic boundary conditions isconsidered, the position of
the anharmonic bond e�ects the tunnelling behaviour. This will be shown in an analytic
discussion.
Another motivation is the discussion of interacting TSS, since the model system allows
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to include more than one anharmonic bond. A �nite distance between the anharmonic
bonds describes indirect interaction between the TSS, whereas the limit of an in�nite
distance corresponds to the non-interacting case.
This thesis gives an insight in how interacting TSS change the tunnelling behaviour com-
pared to the non-interacting case for the considered model system. In order to get the
full physical e�ect of the interacting TSS, certain restrictions of the investigated system
are considered. For one, both anharmonic bonds are located in the bulk, to diminish
the e�ects an anharmonic bond receives at one of the boardersof the chain. Secondly
�nite distances D between both defects are considered, to get an indirect interaction of
both anharmonic bonds via the harmonic bath.

This thesis splits up into 6 parts

� Chapter 1 gives an introduction to the topic of this thesis. It explains what has
been done up to now on the topic of quantum dissipation and where quantum
dissipation can be observed in experiment.

� Chapter 2 shows mathematical and physical preliminaries used throughout this
thesis. This chapter is put at the beginning to allow more 
uent reading later
on, because the main mathematical and physical prescriptions are given. The
phenomenological model of Caldeira and Leggett, used to calculate the e�ect of
quantum dissipation, is presented and derived.

� Chapter 3 explains the used microscopic model in detail. A de�nition of all vari-
ables and the properties of the Hamiltonian are given. The reason for separating
the harmonic from the anharmonic degrees of freedom will be explained.

– Chapter 3.1 and 3.2 present two di�erent ways of how to separate the har-
monic from the anharmonic degrees of freedom. The �rst method is more
intuitive but restricted to one dimensional problems, whereas the second
method allows diagonalisation in every dimension. It will be shown that
both methods are equivalent leading to the same Caldeira-Leggett Hamilto-
nian [22] (or Euclidean Lagrangian respectively).

– Chapter 3.3 discusses the position dependent quantum tunnelling of the one
dimensional one anharmonic bond model system. Analytical results (within
approximations) are given on how the position e�ects the tunnelling. Also
a critical coupling constant, where tunnelling changes from oscillatory (de-
localised state) to stochastic (localised state), is discussed.

– Chapter 3.4 introduces the notation and ways of calculatingthe probability
and not the propagator (as in the sections before) of this microscopic system.
The methods used here are equivalent to [14] and will be expanded later on
for the two anharmonic bond case.

� Chapter 4 shows the calculation for the case of two anharmonic bonds interacting
indirectly through the harmonic bath.
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– Chapter 4.1 investigates how interaction between the TSS a�ect the tun-
nelling behaviour. First one has to perform a diagonalisation procedure as
in the one anharmonic bond case. The technique of the �rst method is used
for that.

– Chapter 4.2 generalizes the methods used in chapter 3.4 to the two anhar-
monic bond case. Here the techniques used in the one anharmonic bond
case are used and explained and necessary additional simpli�cations are in-
troduced. As a result one gets the expectation value of the twoanharmonic
bonds, tunnelling under the in
uence of the harmonic bath, which introduces
dissipative e�ects. The dependency on the choice of initialand �nal state is
also presented.

� Chapter 5 concludes and summarises the results achieved in this thesis.

� Chapter 6 is the Appendix, where certain procedures, such as diagonalisation of
the di�erent methods, derivation of the probability using the Feynman-Vernon
path integral technique, are discussed in detail.



Chapter 2

Preliminaries

2.1 Mathematical Preliminaries
In this chapter mathematical de�nitions and notations are introduced, which are essen-
tial for this thesis. By introducing the mathematical notations and de�nitions here, the
Appendix will be restricted to calculations, which are, due to their length, left out of the
main part of the thesis. This will hopefully give the reader awell organised presentation
of this thesis and allow 
uent reading.

2.1.1 Laplace Transform

Let f (t) be a function, then ~f (� ) is the Laplace transform of this functionf : [0; 1 [! C,
de�ned by

~f (� ) = Lf f (t)g =

1∫

0

dt e� �t f (t) ; � 2 C; < (� ) > 0 (2.1)

, where f must be locally integrable on [0; 1 [. The Laplace transform will be used in
this thesis to transform convolutions into a product of Laplace transforms

L f f � gg = L






t∫

0

dt0f (t0)g(t � t0)





= Lf f (t)gLf g(t)g = ~f (� )~g(� ) (2.2)

The above equation can be proven as follows. Let~f (� )~g(� ) = ~h(� ), then

~h(� ) =

1∫

0

dt e� �t




t∫

0

dt0f (t0)g(t � t0)





~h(� ) =

1∫

0

dt

t∫

0

dt0e� �t f (t0)g(t � t0) (2.3)

11
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The �rst integration is carried out from 0 � t0 � t. Changing the order of integration
results in

~h(� ) =

1∫

0

dt0

1∫

t0

dt e� �t f (t0)g(t � t0) (2.4)

Now changing the variablet to t00= t � t0; dt00= dt, the region of integration becomes
t0 � 0; t00� 0

~h(� ) =

1∫

0

dt0

1∫

0

dt00e� � (t0+ t00) f (t0)g(t00) (2.5)

=




1∫

0

dt0e� �t 0
f (t0)








1∫

0

dt00e� �t 00
g(t00)





= ~f (� )~g(� ) (2.6)

2.1.2 Inverse Laplace Transform

The inverse Laplace transform is de�ned as

f (t) = L � 1f ~f (� )g =
1

2�i

∫

C
d� e �t ~f (� ) (2.7)

, whereC denotes the standard Bromwich contour, i.e. any contour in the complex plane
from � i1 to i1 lying entirely to the right of all singularities of ~f (� ). In this thesis,
the inverse Laplace transform is not of primary interest. Mainly the Laplace transform
will be used to discuss the poles of a Laplace transform~f (� ) to get information about
the function in time spacef (t).

2.1.3 Wick Rotation

Wick rotations are commonly used to connect statistical mechanics with quantum me-
chanics by replacing the inverse temperature1

kB T with the imaginary time it
~ . In this

thesis the Wick rotation is needed to achieve the transitionamplitude from the instanton
solutions of the path integral formulation. The propagatorin real time reads

G(x f ; t; x i ; t0) = hx f je� iH (t � t 0)
~ jx i i =

x(t )= x f∫

x(t0)= x i

Dx(t) e
iS [x (t )]

~ (2.8)

Choosing the starting timet0 = 0 and performing the Wick rotation

t = � i� (2.9)
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yields

GE (x f ; � = T; x i ; � = 0) = hx f je� H�
~ jx i i =

x f∫

x i

Dx(� ) e� S E [x (� )]
~ (2.10)

, where the indexE stands for Euclidean and indicates, that the Wick rotation has been
performed.
In this thesis the Euclidean action is de�ned for a free particle in a double well potential

SE =
∫

d�

(
m
2

(
dx
d�

)2

+ V(x)

)

(2.11)

, which is nothing but the normal action with a sign change in the potential V(x) !
� V(x). The advantage can be easily seen in the following example:
Lets consider a symmetric double well potential

V(x) = x4 + �x 2 ; � < 0 (2.12)

where we want to calculate the tunnelling amplitudeG(x f ; t; x i ; 0). Classically the
particle sitting in one of the two wells has no possible way toreach the other well for
energies smaller than the barrier. In other words the equations of motion resulting from
the Lagrangian has no solutions. By performing the Wick rotation and hence changing
the sign of the potential, the particle is able to tunnel fromone well to the other. That
means the Euclidean Lagrangian has a solution. This solution of the Euclidean integral
is named "kink"-solution and is an example of an instanton solution. The name results
from the following fact. By changing the sign of the potential as discussed before the
wells become hills and the particle rolls from onehill to the other. For the double
well potential introduced above the solution of the Euclidean equations of motion is a
hyperbolic tangent. The shape of this solutions lead to the name instanton solution,
because the hyperbolic tangent stays in�nitely long at� 1 and then as the argument
approaches zero itinstantaneously
ips to +1. Instantaneouslyis not meant as a sharp
step or a discontinuity, but as a comparison of a fast change in a short period of the
argument around zero, compared to the almost not changing value of the hyperbolic
tangent for the rest of the arguments value.

2.1.4 Feynman-Vernon Method
Here the Feynman-Vernon method of describing quantum dissipation via a system cou-
pled linearly to a harmonic bath, is used. Let there be a Hamiltonian of the following
form

H = Hbath + Hsys. + H I

Hbath = Hbath (f P� g; f Q� g)

Hsys. = Hsys.(p; q)

H I = q
∑

�

c� Q� (2.13)
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, wherec� are the coupling constants of the bath coordinatesf Q� g to the system coor-
dinate q.
Using the Liouville-von-Neumann equation for the time dependent density operator
� tot (t) of the total Hamiltonian, we can write

d
dt

� tot (t) = �
i
~

[H; � tot (t)] ; � tot (t) = e� i
~ Ht � tot (0)e

i
~ Ht (2.14)

The full density matrix element in spatial representation reads

hfQ� g; qj� tot (t)jq0; f Q0
� gi =

∫
dq0 dq00 df Q0

� gdf Q00
� g hfQ� g; qje� i

~ Ht jq0; f Q0
� gi

�hfQ0
� g; q0j� tot (0)jq00; f Q00

� gi

�hfQ00
� g; q00je

i
~ Ht jq0; f Q0

� gi (2.15)

Let an operator Â have a matrix representationAmn = hmjÂjni , then the trace is
de�ned as

T r Â =
∑

n

hnjÂjni =
∑

n

Ann (2.16)

Now in the case considered here the density operator� tot (t) includes the behaviour of
the bath and the system. Tracing out the bath degrees of freedom f Q� g; f Q0

� g in the
way shown above, we get

� red(t) = T rbath � tot (t)

) h qj� red(t)jq0i =
∫

dq0 dq00 df Q0
� gdf Q00

� gdf Q� g hfQ� g; qje� i
~ Ht jq0; f Q0

� gi

�hfQ0
� g; q0j� tot (0)jq00; f Q00

� gihf Q00
� g; q00je

i
~ Ht jq0; f Q� gi (2.17)

Assuming the density matrix has factorising initial conditions � tot (0) = � red(0) 
 � bath ,
we are able to write down the �nal result for the propagator matrix elements

hqj� red(t)jq0i =
∫

dq0 dq00 hq0j� red(0)jq00i
∫

Dq
∫

Dq0e
i
~ (Ssys [q]� Ssys [q0]) F [q; q0] (2.18)

The last term F is called the in
uence functional in literature and describes the e�ect
of the bath on the system. For zero system-bath coupling the in
uence functional yields
one. This in
uence functional is derived in greater detail for the more general case of
two system coordinates coupling to a harmonic bath in Appendix D.

2.1.5 Functions

In this subsection, all functions used throughout this thesis will be de�ned. First the
generating functions for canonical transformations are introduced. They are de�ned in
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the following way

p(q; q0; t) =
@R1
@q

(q; q0; t) ; p0(q; q0; t) = �
@R1
@q0

(q; q0; t)

p(q; p0; t) =
@R2
@q

(q; p0; t) ; q0(q; p0; t) =
@R2
@p0

(q; p0; t)

p0(p; q0; t) = �
@R3
@q0

(p; q0; t) ; q(p; q0; t) = �
@R3
@p

(p; q0; t)

q(p; p0; t) = �
@R4
@p

(p; p0; t) ; q0(p; p0; t) =
@R4
@p0

(p; p0; t) (2.19)

A derivation of the generating functions, as a special kind of point transformation, will
not be given here, but can be seen in [30].
The next de�nition is for the propagator or Green's function. A Green's function is a
function used to to solve an inhomogeneous di�erential equation subject to boundary
conditions. Let L be a linear di�erential operator, f be the inhomogeneity andy the
function we would like to �nd a solution for, then the following equation

Ly(x) = f (x) (2.20)

can be solved by a Green's functionG(x) with the following property

LG(x) = � (x) (2.21)

The solution is then

y(x) = ( G � f ) (x) =
∫

f (x0)G(x � x0) dx0 (2.22)

This can be seen by applying the de�nition of Eq. (2.20), as shown below

Ly(x) = f (x)

, L
(∫

f (x0)G(x � x0)dx0

)
= f (x)

,
∫

f (x0)LG(x � x0) = f (x)

,
∫

f (x0)� (x � x0) = f (x)

, f (x) = f (x) (2.23)

The functions Si(x), Ci(x) are Sine and Cosine Integrals, de�ned as

Si(x) =

x∫

0

dt
sin(t)

t

Ci(x) = 
 + ln( x) +

x∫

0

dt
cos(t) � 1

t
(2.24)
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, where
 is the Euler-Mascheroni constant, de�ned as


 = lim
n!1

(
n∑

k=1

1
k

� ln(n)

)

(2.25)
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2.2 Physical Preliminaries
In this chapter functions needed for an essential understanding of this thesis are intro-
duced. These functions will be presented, explained and their use will be shown shortly
in this section in order to leave out the information and improve easy reading in the
main part. As in the section "Mathematical Preliminaries", the reason for this section
is to give the reader a well organised presentation of this thesis and allow 
uent reading.

2.2.1 Model
In order to investigate quantum dissipation, a simple modelHamiltonian (or equivalently
a Euclidean Lagrangian [22]), known as the Caldeira-Leggett model, is introduced.

H = Hbath + Hsys + H int (2.26)

Hbath =
1
2

N∑

� =1

(
P2

�

m�
+ m� ! 2

� Q2
�

)

Hsys =
p2

2m
+ V(q)

H int = � q
N∑

� =1

c� Q� + � V (q)

q; pare the coordinate and momentum andV(q) is the potential of the system. � V (q)
is a counter term, which depends on the parametersm� ; ! � , only [16] (chapter 3). Its
physical signi�cance is seen in Eqs. (2.36), (2.37). Those parameters are the masses and
the frequencies of the harmonic bath coordinates, respectively. Q� ; P� are the coordinate
and momentum of the harmonic bath, where the index� denotes the individual bath
modes running from 1 toN . c� is the coupling constant. In this model we used linear
coupling of the system to the bath. Other types of coupling are possible, but are not
used throughout this thesis.
If we want to solely describe dissipation with our model without renormalising the
potential V (q), the counter term must have the following form [16]

� V (q) =
N∑

� =1

c2
�

2m� ! 2
�

q2 (2.27)

Including the above counter term, we are able to write the Hamiltonian in a di�erent
form

H =
p2

2m
+ V(q) +

1
2

N∑

� =1

[
P2

�

m�
+ m� ! 2

�

(
Q� �

c�

m� ! 2
�

q
)2

]

(2.28)

The equations of motions from a Hamiltonian are easily achieved

_p = �
@H
@q

_q =
@H
@p

(2.29)
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they read for the Hamiltonian of Eq. (2.28)

m•q+
@V(q)

@q
+

N∑

� =1

c2
�

m� ! 2
�

q =
N∑

� =1

c� Q�

m�
•Q� + m� ! 2

� Q� = c� q (2.30)

The solution forQ� (t) can be achieved by Green's functions techniques introduced earlier
in section "Mathematical Preliminaries". They are

Q� (t) = Q� (0) cos(! � t) +
P� (0)
m� ! �

sin(! � t) +
c�

m� ! �

t∫

0

dt0sin(! � [t � t0])q(t0) (2.31)

Now following the notation and technique of [16], we get by integration by parts

Q� (t) = Q� (0) cos(! � t) +
P� (0)
m� ! �

sin(! � t)

+
c�

m� ! 2
�



q(t) � q(0) cos(! � t) �

t∫

0

dt0cos(! � [t � t0]) _q(t0)



 (2.32)

Now using this solution and plugging it into Eq. (2.30), we get

m•q(t) + m

t∫

0

dt0
 (t � t0) _q(t0) +
@V(q)

@q
= � m
 (t)q(0) + � (t) (2.33)

, with the force

� (t) =
∑

�

c�

(
Q� (0) cos(! � t) +

P� (0)
m� ! �

sin(! � t)
)

(2.34)

and the memory-friction kernel obeying causality (
 (t) = 0 for t < 0)


 (t � t0) =
�( t � t0)

m

∑

�

c2
�

m� ! 2
�

cos(! � [t � t0]) (2.35)

The Eq. (2.33) is a Langevin-type equation with an additional term � m
 (t)q(0) de-
pending on the initial valueq(0). This additional term can be included in the random
force by the following de�nition

� (t) = � (t) � m
 (t)q(0) (2.36)

The properties of a classical Langevin equation are well known. Taking the average of
the initial values with respect to the shifted canonical equilibrium density

� bath = Z � 1 e
� �

NP

� =1

 
P 2

� (0)
2m �

+ m � ! 2
�

2

�
Q � (0) � c�

m � ! 2
�

q(0)
� 2

!

(2.37)
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� (t) becomes a 
uctuating force with Gaussian statistical properties

h� (t)i � bath = 0

h� (t)� (t0)i � bath =
m
�


 (t � t0) (2.38)

, where� = 1
kB T .

Fourier transforming the memory-friction kernel of Eq. (2.35), we get

~
 (! ) = �
i!
m

N∑

� =1

c2
�

m� ! 2
�

lim
� ! 0+

1
! 2

� � ! 2 � i� !

2.2.2 Spectral Density
The spectral density functionJ (! ), contains the complete information about the e�ect
of the environment. It is de�ned as

J (! ) =
�
2

N∑

� =1

c2
�

m� ! �
� (! � ! � ) (2.39)

Considering the spectral density as a smooth function of! and performing the thermody-
namic limit N ! 1 , we are able to rewrite the Fourier Transform of the memory-friction
kernel (2.39) in terms of the spectral density [16]

~
 (! ) = lim
� ! 0+

�
i!
m

2
�

1∫

0

d! 0 J (! 0)
! 0

1
! 02 � ! 2 � i� !

(2.40)

Up to now, this spectral density has only been derived phenomenologically. In those
derivations [14, 16, 22] the following assumptions were made. J (! ) is considered a
reasonably smooth function of! and that it is of the form ! s; s > 0 up to some cut-o�
frequency! c.
In this thesis the spectral density will be derived analytically for a microscopic model
in the thermodynamic limit (N ! 1 ). The variablesc� ; m� ; ! � can be calculated from
the microscopic model, which is shown for the case of one and two anharmonic bonds.
The spectral density is of main importance for this thesis and is derived showing the
behaviour � ! s assumed by Leggett et al.. Three di�erent cases occur generally for
J (! ) � ! s:

� 0 < s < 1 the sub-ohmic case

� s = 1 the ohmic case

� 1 < s the super-ohmic case
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The sub-ohmic case will not be discussed in this thesis. It has been shown [14], that
sub-ohmic dissipation leads to complete localisation atT = 0, whereas the super-ohmic
case yields weakly damped oscillations [14]. The critical dimension is achieved fors = 1,
the ohmic case, where the coupling constantc� � C of the anharmonic bond coordinate
to the harmonic bath coordinates, has a critical value yielding tunnelling for C < C crit:

and localisation for the other case.

2.2.3 Kernel
But the spectral density is not only useful to express the Fourier Transform of the
memory-friction kernel ~
 (! ), it can also be used in a di�erent approach of describing
quantum dissipation.
In [22] the authors calculate the Euclidean propagator

GE (qf ; f Q(f )
� g; T; qi ; f Q(i )

� g; 0) =

qf∫

qi

Dq(� )

f Q(f )
� g∫

f Q(i )
� g

D f Q� (� )ge

� 1
~

∫ �

0
d� 0LE (q(� 0); _q(� 0); f Q� (� 0)g; f _Q� (� 0)g)

︸ ︷︷ ︸
S E

using the Euclidean Lagrangian (which is nothing but the Legendre Transform of the
Hamiltonian (2.28) in Euclidean form)

LE =
m
2

_q2(� ) + V(q) +
N∑

� =1

m�

2

[
_Q2

� (� ) + ! 2
�

(
Q� (� ) �

c�

m� ! 2
�

q(� )
)2

]

(2.41)

To calculate the Euclidean tunnelling propagator, the Euclidean actionSE can be split
up into two parts

SE = SE
0 + SE

harm;int

, where the integral of the �rst two terms are SE
0 without interaction of the environ-

ment, whereas the interaction with the environment is fullycaptured in SE
harm;int . The

discussion of this part is done explicitly in the next subsection "Instantons".
Now the elimination of the harmonic degrees of freedom is performed. The paths
q(� ); f Q� (� )g are periodically continued outside the range of 0� � < T (where �
denotes the imaginarytime variable) by writing them as a Fourier series [16]

q(� ) =
1
T

1∑

n= �1

qn ei� n �

Q� (� ) =
1
T

1∑

n= �1

Q�;n ei� n � (2.42)

where � n = 2�n=T is the frequency of the Fourier series. Applying this transformation
to the Euclidean action yields

SE
harm;int =

1
T

∑

�

1∑

n= �1

m�

2

(

� 2
n jQ�;n j2 + ! 2

�

∣∣∣∣Q�;n �
c�

m� ! 2
�

qn

∣∣∣∣
2
)
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Next, Q�;n will be decomposed into a classical termQ�;n and a deviationy�;n describing
quantum 
uctuations [16]

Q�;n = Q�;n + y�;n =
c�

m� (� 2
n + ! 2

� )
qn + y�;n (2.43)

This result is trivially achieved using Eqs. (2.42) and (2.30). In the second part the
classical solutions of the Euclidean equations of motion are used. SinceQ� (� ) is a
stationary point of the action, the term linear in the deviation y�;n is eliminated. With
this approach it is possible to decouple the bilinear forms containing the anharmonic
bond and the harmonic degrees of freedom

SE
harm;int = SE

harm + SE
inf l:

SE
harm =

1
T

∑

�

1∑

n= �1

m�

2
(� 2

n + ! 2
� )jy�;n j2 =

∑

�

T∫

0

d�
m�

2

(
_y2
�;n + ! 2

� y2
�;n

)

SE
inf l: =

1
T

∑

�

c2
�

2m�

1∑

n= �1

(
jqM;n j2

! 2
�

�
jqM;n j2

� 2
n + ! 2

�

)
(2.44)

The �rst term in SE
inf l: originates from the potential counter termC

4 q2
n . Changing to the

time representation the in
uence action (2.44) reads [16]

SE
inf l: =

T∫

0

d�

�∫

0

d� 0k(� � � 0)q(� )q(� 0)

k(� ) =
1
T

∑

�

c2
�

m� ! 2
�

1∑

n= �1

� 2
n

� 2
n + ! 2

�
ei� n � =

2
�T

1∫

0

d!
J (! )

!

1∑

n= �1

� 2
n

� 2
n + ! 2

ei� n �

(2.45)

, where the de�nition of the spectral density (2.39) has beenused. The form of the
kernel can be written in many forms (see [16]), here the zero temperature kernelK (� )
will be used which can be achieved after some minor manipulations of k(� ) [16]

K (� ) =
C
2

1∑

n= �1

� (� � nT ) � k(� ) =
1
T

∑

�

1∑

n= �1

c2
�

m� (� 2
n + ! 2

� )
ei� n � (2.46)

where the summation overn is easily performed yielding in the principle interval 0�
� < T [16]

K (� ) =
∑

�

c2
�

2m� ! �

cosh
(
! �

[
T
2 � �

])

sinh
(

! � T
2

) =
1
�

1∫

0

d! J (! )
cosh

(
!

[
T
2 � �

])

sinh
(

!T
2

) (2.47)
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The resulting in
uence action with paths q(� ) extended outside the range of 0� � < T
using q(� + nT) = q(� ) ; 8n 2 N is

SE
inf l: =

T∫

0

d�

�∫

0

d� 0K (� � � 0)q(� )q(� 0)

K (� ) �=
∑

�

c2
�

2m� ! �
e� ! � � =

1
�

1∫

0

d! J (! ) e� !� (2.48)

Since quantum dissipative e�ects due to the bath qualitatively depend on the large� or

low frequency behaviour, the fraction
cosh(! [ T

2 � � ])
sinh( !T

2 ) can be well approximated for small

but �xed ! , large T and � not to close to T,( T
2 � � = O(1)), by e� !� as can be seen

from the following calculation

� = �
T
2

; 0 < � < 1

! 6= 0 : lim
T !1

cosh
(
!

[
T
2 � �

])

sinh
(

!T
2

) = lim
T !1

e
!T
2 (1� � ) + e� !T

2 (1� � )

e
!T
2 � e� !T

2
= e� !�

(2.49)

In this thesis the kernelK (� ) will be used to determine the position dependent tunnelling
of the anharmonic bond(s). We will be able to show, that in theone anharmonic bond
case there is ohmic dissipation (� � � 2) for the anharmonic bond located in the bulk
of the chain, whereas there will be a transition from ohmic tosuper-ohmic (� � � 4)
dissipation for the case of the anharmonic bond located at the border of the chain
depending on a time scale de�ned by the position of the bond.

2.2.4 Instantons
The path integral formalism allows one to investigate quantum tunnelling by determining
the instanton solutions [16], i.e. the solutions of the classical equation of motion for a
double well potential without coupling to an environment, in imaginary time. The
in
uence of the bath on the calculated instanton paths introduces the dissipative e�ect
on the tunnelling. Getting the classical equations of motion from the Euclidean action
SE

0

SE
0 [q(� ); _q(� )] =

�∫

0

d� 0LE
0 [q(� 0); _q(� 0)]

LE
0 [q(� 0); _q(� 0)] =

m
2

_q(� 0) + V0(q(� 0)) (2.50)

yields

•q(� 0) �
1
m

@V0(q(� 0))
@q(� 0)

= 0
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Multiplying both sides by _q(� 0) and integrating [12], we get

�∫

0

d� 0•q(� 0) _q(� 0) =
1
m

�∫

0

d� 0 @V0(q(� 0))
@q(� 0)

_q(� 0) (2.51)

, which is equivalent to

1
2

_q2 =
V0(q)

m

,
dq(� 0)

d� 0
= �

√
2V0(q(� 0))

m

, � = �

q(� )∫

q(0)

dq
√

m
2V0(q)

(2.52)

Plugging in the symmetric double well potentialV0(q) = C
2

(
q � q0

2

)2 (
q+ q0

2

)2
we get

� = �

√
m
C

q(� )∫

q(0)

dq(
q � q0

2

) (
q+ q0

2

)

� = �
2
q0

√
m
C

Artanh
(

2q(� 0)
q0

) ∣∣∣
� 0= �

� 0=0
(2.53)

Choosingq(0) = 0 and inverting the Artanh, we get the instanton solution

q(� ) = �
q0

2
tanh

(
q0�
2

√
C
m

)

(2.54)

By using the fact, that the upper phonon band edge! 0 is roughly ! 0 �
√

C
m and

assuming thatV 00
0

(
� q0

2

)
� C, we can set the kink-width, the time an instanton needs

to 
ip from one state to the other, � kink =
√

m
V 00

0 (� q0
2 ) to � kink � ! � 1

0 . We are now

able to write down the �nal form for the instanton solution for a symmetric double well
potential

q(� ) = �
q0

2
tanh

(
q0

2
�

� kink

)
�= �

q0

2
tanh

(q0

2
! 0�

)
(2.55)

2.3 The Caldeira-Leggett Model
This section explains the Caldeira-Leggett model, which isused throughout this thesis.
At �rst one has to know, that the Caldeira-Leggett Hamiltonian or Euclidean Lagrangian
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is originally of phenomenological nature. It is a model to describe a tunnelling quantum
system at T = 0, linearly coupled to an environment. This model allows toobserve
quantum tunnelling on a macroscopic scale. The most promising candidate to see the
e�ect of quantum tunnelling as a dominant factor in the transition is a SQUID (super-
conducting quantum interference device). The magnetic 
uxis the macroscopic variable
in this scenario. WKB1 approximations ignoring quantum dissipation donot show the
full physical behaviour at low temperature compared to experiments. At large enough
temperatures, the e�ect of thermal 
uctuations a�ect the SQUID. Those corrections
have been investigated by Kramers [31] and Kurkij•arvi [32]. But these thermal 
uc-
tuations do not explain the experimentally observed deviations for low temperatures
[24, 25]. This problem can be resolved by including quantum dissipative e�ects, which
lead to a multiplicative factor in the tunnelling probability.
In 1981 Caldeira and Leggett proposed this simple model Euclidean Lagrangian [22] to
describe the e�ect of quantum dissipation. The model Euclidean Lagrangian has the
following form

LE =
m
2

_q2 + V(q) +
1
2

∑

�

m�

(
_Q2

� + ! 2
� Q2

�

)
+ q

∑

�

c� Q� (2.56)

where f Q� g; f _Q� g denote coordinates and velocities of the harmonic environment and
q; _q the coordinate and velocity of the system. The parametersm� ; ! � are at the masses
and frequencies of the harmonic coordinates andc� are the coupling constants. With
this Euclidean Lagrangian a propagator can be de�ned

GE (qf ; f Q(f )
� g; T; qi ; f Q(i )

� g; 0) =

qf∫

qi

Dq(� )

f Q(f )g
�∫

f Q(i )g
�

Df Q� (t)g
∏

�

e
� 1

~

�R

0
d� 0L E

(2.57)

where the harmonic degrees of freedom can be eliminated considering periodic paths
f Q(i )

� g = f Q(f )
� g. Hence the propagator reads

GE (qf ; � ; qi ; 0) =

qf∫

qi

Dq(� ) e
� 1

~

�R

0
d� 0( m

2 _q2+ V (q))
e

1
~

1R

�1
d� 0

� 0R

0
d� 00� (� 0� � 00)q(� 0)q(� 00)+const.

(2.58)

where q(� 0) has been periodically continued outside the region 0< � 0 < � by the
prescription q(� 0 + � ) � q(� 0), which does not a�ect the tunnelling. The quantity
� (� 0 � � 00) is de�ned as follows

� (� 0 � � 00) =
∑

�

c2
�

4m� ! �
e� ! � j � 0� � 00j =

1
2�

1∫

0

d! J (! )e� ! j� 0� � 00j (2.59)

where J (! ) is the spectral density de�ned in the subsection "SpectralDensity". The
constant is a term not contributing to the tunnelling and canbe included into the po-
tential V(q) acting as a renormalization.

1Wentzel-Kramers-Brillouin
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Now the main aspect of this model is to relate the quantity� (� 0 � � 00) with the phe-
nomenological friction coe�cient � . Caldeira and Leggett note that since the charac-
teristic times needed for the tunnelling are of order! � 1

cl , or longer, hence� (� 0 � � 00) is
only needed for times of this order or expressed in terms of the spectral densityJ (! ) for
frequencies! � ! cl . Now if the classical motion is to be determined by a well-de�ned
friction coe�cient, the following relation must hold

J (! � ! c) = �! (2.60)

! c denotes a critical frequency, where the spectral density deviates appreciably from its
low-frequency form, which is considered [22].
Using this restriction for the spectral density, the relation between quantity � (� 0 � � 00)
and the phenomenological friction coe�cient is valid in lowest order of! cl=! c and reads

1∫

�1

d� 0

� 0∫

0

d� 00� (� 0 � � 00)q(� 0)q(� 00) + const. =
�

4�

1∫

�1

d� 0

� 0∫

0

d� 00q(� 0) � q(� 00)
(� 0 � � 00)

2

(2.61)

A weakness of this model is, that it is purely phenomenological. The spectral density
J (! ) is given a power law form (� ! s ; s > 0) for low enough frequencies (! � ! c), but
there is no microscopic model used to evaluate the spectral density analytically.
That is one of the main aspects of this thesis, to propose a model system/Hamiltonian,
which can analytically be put into the Caldeira-Leggett form. This allows us, to mi-
croscopically derive the spectral density and hence the phenomenological input is not
needed. The Caldeira-Leggett model has been researched quite intensively, but only
for di�erent exponents s of ! in the spectral density. The reason for this is the phase
transition occurring at the critical value of s = 1. For s < 1 there is the localisation
phenomenon. That means quantum tunnelling is fully suppressed, due to the interac-
tion with the environment. For s > 1 quantum tunnelling is never suppressed. The
e�ect of the environment is to damp the oscillation of the system. At the critical value
s = 1 there is a phase transition from localisation to the damped oscillative behaviour,
depending on the bonding constants.

2.4 Summary
In this chapter we have introduced mathematical and physical preliminaries, that are
needed to fully understand the topics discussed in this thesis. The presentation of these
de�nitions and techniques as a separate chapter will allow amore 
uent reading of the
main part. In this chapter only the basic techniques are presented, the derivation of the
two anharmonic bond probability with the Feynman-Vernon path integral formalism,
is shown here for one anharmonic bond in rough sketches. The full derivation for the
more general case of two anharmonic bonds is presented in detail in the Appendix of
the thesis.
In section "The Caldeira-Leggett Model" the model used in this thesis is presented. The
model is motivated and its validity and possible applications are shown.
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Chapter 3

The 1-defect Model

Lets consider a simple model of a 1-dimensional open chain ofN -particles described by
a classical Hamiltonian

H =
N∑

n=1

p2
n

2mn
+ V(x1; :::; xN )

V(x1; :::; xN ) =
C
2

N � 1∑

n =1
6=M i

(xn+1 � xn � an )2 +
r∑

i =1

V0(xM i +1 � xM i ) (3.1)

wherer are the number of anharmonic bonds,xn is the position of then-th particle, pn

the momentum of then-th particle, C is the elastic constant of the harmonic nearest
neighbour interaction, an are the equilibrium lengths of the harmonic bonds. The an-
harmonic potentials considered in this thesis are double well potentials with symmetric
wells of the following form

Figure 3.1: A symmetric double-well potential, for a one dimensional system. qM i = xM i +1 � xM i , and with the
local minima (ground states) � q0

2 and q0
2 . The barrier height is labelled V0

Here two methods of separating the harmonic from the anharmonic degrees of freedom

27
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are presented in sections "First Method" and "Second Method". The goal of the sep-
aration is to bring the Hamiltonian Eq. (3.1) into the form of the Caldeira-Leggett
Hamiltonian or Euclidean Lagrangian, respectively

LE = LE
0 + LE

1 ; LE
1 = LE

harm + LE
inf l

LE
0 (qM ; _qM ) =

M
2

_q2
M + V0(qM )

LE
1 (qM ; f Q� g; _qM ; f _Q� g) =

1
2

N∑

� =1

m�

[
_Q2

� + ! 2
�

(
Q� �

c�

m� ! 2
�

qM

)2
]

(3.2)

where thef Q� g are the harmonic bath modes, that can be eliminated (the exact way to
do this can be seen in the section "Physical Preliminaries"). The goal is to investigate
the Euclidean propagatorGE (� q0

2 ; T; � q0
2 ; 0), where the harmonic degrees of freedom

have been eliminated, leading to an in
uence term in the Euclidean action

GE

(
�

q0

2
; T; �

q0

2
; 0

)
=

qM (T )= � q0
2∫

qM (0)= � q0
2

DqM (� ) e� 1
~

(
SE

0 [qM (� )]+ SE
inf l [qM (� )]

)
(3.3)

where the Euclidean action in the exponent is de�ned as

SE
0 [qM (� )] =

T∫

0

d�
(m

2
_q2
M (� ) + V0(qM (� ))

)

SE
inf l: [qM (� )] = �

T∫

0

d�

�∫

0

d� 0K (� � � 0)qM (� )qM (� 0) (3.4)

This propagator describes the tunnelling of one classical minimum to the other during
the observation time T. The kernel K (� � � 0) shows the in
uence of the harmonic
bath and will be derived in detail in section "Quantum Tunnelling". The main aspect
being discussed here is the di�erent behaviour of the kerneldue to the position of the
anharmonic bond. The kernel appears due to the elimination of the harmonic bath
and leads to damping in the tunnelling behaviour of the anharmonic bond. Two cases
are presented. One considers a macroscopically large chain, where the anharmonic
bond is located at one of the borders of the chain with distance � M . Because of the
translational invariance of the system, tunnelling of the anharmonic bond requires only
a movement of a �nite mass. In this case tunnelling is of super-ohmic dissipative nature
and never surpressed. Whereas in the second case the anharmonic bond is located in
the bulk of the macroscopically large chain. Tunnelling of the anharmonic bond requires
now a movement of an in�nite mass. For this case tunnelling isof ohmic dissipative
nature and is fully surpressed if the coupling constant between the anharmonic bond
and the harmonic bath exceeds a critical value. The details of what will happen are
shown in section "Quantum Tunnelling".
In section "Two Defects" the separation of the harmonic and anharmonic degrees of
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freedom for two anharmonic bonds in one dimension is shown. The investigation of
the kernel in the in
uence action is done to show the e�ect of interaction between the
anharmonic bonds. Since only the e�ect of interaction between the two anharmonic
bonds is of interest, both bonds are considered in the bulk with a �nite distance D
between each other. This scenario corresponds to an indirect interaction of both bonds
via a �nite harmonic bath between them and is discussed in detail in chapter "Two
Defects".
The model Eq. (3.1) has been chosen so that an analytical discussion is possible without
applying too many restrictions. Lets start with the case of one anharmonic bond (r = 1).
First the two methods for separating the anharmonic from theharmonic degrees of
freedom are presented.
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3.1 First Method

The Hamiltonian Eq. (3.1) for one anharmonic bond (r = 1) in one dimension (d = 1)
reads

H =
N∑

n=1

p2
n

2mn
+ V(x1; :::; xN )

V(x1; :::; xN ) =
C
2

N � 1∑

n =1
(6=M )

(xn+1 � xn � an )2 + V0(xM +1 � xM ) (3.5)

The �rst method is to introduce centre of mass of thetotal chain and relative coordi-
nates. This approach is only applicable to 1d systems. The advantage of this approach is
the way in which the harmonic and anharmonic degrees of freedom can be separated an-
alytically and the resulting Hamiltonian be put in the form ofthe Euclidean Lagrangian
of Caldeira and Leggett Eq. (3.2). Let

X c =
1

M c

N∑

n=1

mnxn

M c =
N∑

n=1

mn (3.6)

be the centre of mass and total mass for all particles and

qi =

{
x i +1 � x i � ai ; i = 1; :::; N � 1

X C ; n = 0

aM = 0 (3.7)

be the relative coordinates, respectively. Now the canonical conjugate momenta have to
be found. One can de�ne a generating function (2.19)

R2(x1; :::; xN ; � 0; :::; � N � 1) =
N � 1∑

k=0

� k f k(x1; :::; xN )

f k(x1; :::; xN ) = qk(x1; :::; xN ) + ak ; a0 = 0 (3.8)

This generating function (see section "Physical Preliminaries" (2.19)) de�nes the con-
jugate momenta as

pn =
@R2
@xn

=
N � 1∑

k=0

� k
@fk(x1; :::; xN )

@xn
=:

N � 1∑

k=0

M kn � k

M kn =
mn

M c
� 0;k + ( � k+1 ;n � � k;n )(1 � � 0;k ) (3.9)
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where � k are the canonical conjugate momenta ofqk . The matrix elementsM nk read
explicitly

1 2 N-1 N

0

1

N-2

N-1





m1
M c

m2
M c

::: ::: ::: mN
M c

� 1 1 0 ::: ::: 0

0 � 1 1
. . .

...
...

. . . . . . . . . . . .
...

...
. . . � 1 1 0

0 ::: ::: 0 � 1 1





= ( M kn ) (3.10)

Applying the transformations for pn of Eq. (3.9) to Eq. (3.5) yields

N∑

n=1

p2
n

2mn
=

1
2

N � 1∑

k;k 0=0

� k � k0

N∑

n=1

1
mn

M kn M k0n =
1
2

N � 1∑

k;k 0=0

� k � k0

N∑

n=1

1
mn

M kn M T
nk 0

︸ ︷︷ ︸
fM

(3.11)

whereM̃ is de�ned as

0 1 N-2 N-1

0

1

N-2

N-1





1
M c

0 0 0 ::: ::: 0

0 1
m1

+ 1
m2

� 1
m2

0 ::: ::: 0

0 � 1
m2

1
m2

+ 1
m3

� 1
m3

0 ::: 0
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 ::: ::: 0 � 1
mN � 2

1
mN � 2

+ 1
mN � 1

� 1
mN � 1

0 ::: ::: ::: 0 � 1
mN � 1

1
mN � 1

+ 1
mN





= M̃

The resulting Hamiltonian is

H =
� 2

0

2M c
+

1
2

N � 1∑

k=1

(
1

mk
+

1
mk+1

)
� 2

k �
N � 2∑

k=1

� k � k+1

mk+1
+

C
2

N � 1∑

k =1
(6=M )

q2
k + V0(qM ) (3.12)

The �rst term is the kinetic energy of the centre of mass and will be dropped from now
on. The Hamiltonian has to be diagonalised. To achieve this a canonical transformation
decoupling the anharmonic momentum� M from the harmonic momenta� k ; k 6= M is
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performed. The coupling of� M with � M � 1 reads

1
2

(
1

mM
+

1
mM +1

)
� 2

M �
(

� M � 1

mM
+

� M +1

mM +1

)
� M =

1
2

mM + mM +1

mM mM +1

[
� M �

mM +1 � M � 1 + mM � M +1

mM + mM +1

]2

�
(mM +1 � M � 1 + mM � M +1 )2

2mM mM +1 (mM + mM +1 )
(3.13)

From this, the transformation decoupling the anharmonic momentum � M from the har-
monic momenta, can easily be seen

~pM = � M �
1

mM + mM +1

(
mM +1 � M � 1 + mM � M +1

)
(3.14)

~pk = � k ; k = 1; :::; M � 1; M + 1; :::; N � 1 (3.15)

Now the canonical conjugate coordinates have to be found. Onecan de�ne a generating
function (2.19)

R3(~q1; :::; ~qN � 1; � 1; :::; � N � 1) = � ~qM

[
� M �

mM +1 � M � 1 + mM � M +1

mM + mM +1

]

�
N � 1∑

k =1
(6=M )

~qk � k (3.16)

With the generating function (2.19) the conjugate coordinates can be evaluated in the
following way

qk = �
@R3
@�k

= ~qk ; k = 1; :::; M � 2; M; M + 2; :::; N � 1 (3.17)

qM � 1 = �
@R3

@�M � 1
= ~qM � 1 �

1
2

~qM (3.18)

qM +1 = �
@R3

@�M +1
= ~qM +1 �

1
2

~qM (3.19)

Substituting these new coordinates and momenta in Eq. (3.12) (note that the c.o.m.
has been dropped) leads to

H = Hharm + Hd + H int

Hharm =
1
2

N � 1∑

k;j =1
(6=M )

Tkj ~pk ~pj +
C
2

N � 1∑

k =1
(6=M )

~q2
k

Hd =
mM + mM +1

2mM mM +1
~p2

M +
C
2

m2
M + m2

M +1

(mM + mM +1 )2
q2

M + V0(qM )

H int = � C
mM +1 ~qM � 1 + mM ~qM +1

mM + mM +1
qM (3.20)
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The Hamiltonian has been split up into three parts. The �rst one describes the harmonic
part, where the matrix elementsTkj depend on the massesmk and hence cannot be
analytically diagonalised. Considering the simplest caseof equal massesmk = m solves
this problem and allows an analytical diagonalisation. Thediagonalisation and the
structure of Tkj for equal masses, is discussed in Appendix A. The second part describes
the coordinatesqM , momenta ~pM and interaction V0(qM ). The last term contains the
coupling of the harmonic with the anharmonic coordinates.
After the diagonalisation the introduction of normal coordinates

Q� =
N � 1∑

k =1
(6=M )

~qku(� )
k ; P� =

N � 1∑

k =1
(6=M )

~pku(� )
k ; � = 1; :::; N � 2 (3.21)

is possible. The eigenmodesu(� )
k are derived and their explicit expressions are given in

Eq. (A.11) in Appendix A. Applying Eq. (3.21) to Hharm of Eq. (3.20) yields

Hharm =
1
2

N � 2∑

� =1

(
� � P2

� + CQ2
�

)
(3.22)

where � � are the mass weighted eigenvalues de�ned in Eq. (A.10) in Appendix A.
Applying the transformation to normal modes Eq. (3.21) toH int of Eq. (3.20) yields

H int = � ~qM

N � 2∑

� =1

c� Q� ; c� =
C
2

(
u(� )

M +1 + u(� )
M � 1

)
(3.23)

Or expressed di�erently to make it easier to show the equivalence between the di�erent
approaches "First Method" and "Second Method" of separating the harmonic from the
anharmonic degrees of freedom:

H int = � ~qM C
N � 2∑

� =1

Nb� Q� sin (q� M ) (3.24)

, where the normalisation constantNb� is de�ned in Appendix A (A.23). The term
containing only the anharmonic degrees of freedom has the form

Hd =
~p2

M

m
+ V0(~qM ) +

C
4

~q2
M (3.25)

Comparing the harmonic Hamiltonian Eq. (3.22) with a standard harmonic Hamiltonian

H (stand: )
harm =

1
2

∑

�

[
P2

�

m�
+ m� ! 2

� Q2
�

]
(3.26)

yields the following equations with! � > 0

m� =
1
� �

m� ! 2
� =

! 2
�

� �
= C

) ! � =
√

C� � =

√
2C
m

(1 � cos (q� )) = 2

√
C
m

sin
(q�

2

)
= ! 0 sin

(q�

2

)
(3.27)
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, where ! 0 is the frequency of the upper phonon band edge. The �nal step now is to
Legendre transform the Hamiltonian, which leads to a Lagrangian. After performing a
Wick rotation ( t = � i� ) to the Lagrangian, the Euclidean Lagrangian reads

LE = LE
0 + LE

1 ; LE
1 = LE

harm + LE
int

LE
0 =

m
4

_q2
M + V0(qM )

LE
1 =

1
2

N � 2∑

� =1

m�

[
_Q2

� + ! 2
�

(
Q� �

c�

m� ! 2
�

qM

)2
]

(3.28)

This Euclidean Lagrangian is of the exact same form as the Caldeira-Leggett Euclidean
Lagrangian presented in Eq. (3.2) needed to discuss the tunnelling behaviour. The
completeness of the eigenvectorsu(� )

k leads to the equality

N � 2∑

� =1

c2
�

m� ! 2
�

(3.23);(3.27)
=

C
4

N � 2∑

� =1

(
u(� )

M +1 + u(� )
M � 1

)2

=
C
2

(3.29)

This completeness Eq. (3.29) makes it possible to include the counter term (third term
in Hd Eq. (3.25)) in L1. This counter term, the role of which has been discussed by Weiss
[16], results from the canonical transformations, Eq. (3.18)-(3.19). This transformation
eliminates the coupling between the harmonic and the anharmonic momenta, as desired,
and generates a coupling between the normal (harmonic-)coordinates f Q� g and the
corresponding system coordinateqM . The Lagrangian now has the desired form for
eliminating the normal (harmonic-)coordinatesf Q� g by the use of the path integral
formalism. This procedure will be shown in section "QuantumTunnelling".
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3.2 Second Method
The second method of separating the harmonic and anharmonicdegrees of freedom has
the advantage that it can be applied to higher dimensional systems. Starting from the
same Hamiltonian as in the �rst method Eq. (3.5) the centre of mass X d is chosen
for the anharmonic bond only,not for the whole chain as in method one. The relative
system coordinateqM stays equivalent to the �rst approach:

X d =
mM xM + mM +1 xM +1

mM + mM +1

qM = xM +1 � xM (3.30)

The corresponding canonical momenta can be achieved using agenerating function
(2.19) (like in the �rst approach). The generating functionreads

R2(xM ; xM +1 ; � M ; Pd) = � M qM + PdX d (3.31)

This generating function de�nes the conjugate momenta as

pn =
@R2
@xn

; n = M; M + 1 (3.32)

The resulting two equations can be put into the following form

Pd = pM + pM +1

� M =
mM

mM + mM +1
pM +1 �

mM +1

mM + mM +1
pM (3.33)

Substituting these transformations Eqs. (3.30), (3.33) into Eq. (3.5) yields

H = Hd + Hharm + H int

Hd =
� 2

M

2� M
+ V0(qM ) +

C
2

m2
M + m2

M +1

(mM + mM +1 )2
q2

M

Hharm =
N∑

n =1
(n 6=M;M +1)

p2
n

2mn
+

P2
d

2(mM + mM +1 )
+

C
2

N � 1∑

n =1
(n 6=M;M � 1)

(xn+1 � xn � an )2

+
C
2

(X d � xM � 1 � aM � 1)2 +
C
2

(xM +2 � X d � aM +1 )2

H int = � C

[
mM +1

mM + mM +1
(X d � xM � 1 � aM � 1)

+
mM

mM + mM +1
(xM +2 � X d � aM +1 )

]

qM (3.34)

where � M = mM mM +1 =(mM + mM +1 ) is the reduced mass of the anharmonic bond.
For the transformation of Hharm Eq. (3.34) to normal coordinates, new coordinates are
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introduced for convenience

x0
n =






xn ; n = 1; :::; M � 1

X d ; n = M

xn+1 ; n = M + 1; :::; N � 1

p0
n =






pn ; n = 1; :::; M � 1

Pd ; n = M

pn+1 ; n = M + 1; :::; N � 1

a0
n =

{
an ; n = 1; :::; M � 1

an+1 ; n = M; :::; N � 2

m0
n =






mn ; n = 1; :::; M � 1

mM + mM +1 ; n = M

mn+1 ; n = M + 1; :::; N � 1

(3.35)

The explicit diagonalisation of the Hamiltonian by introducing again equal massesmn =
m, for the same reason as before, is done in Appendix B. This leads to

m0
n = m

{
1 ; n 6= M

2 ; n = M
(3.36)

A transformation to mass weighted normal modes

q0
� =

N � 1∑

n=1

~u0
ne(� )

n ; p0
� =

N � 1∑

n=1

~p0
ne(� )

n (3.37)

with the eigenmodese(� )
n and ~u0

n ; ~p0
n de�ned in Appendix B, Eq. (B.5), yields:

H = Hharm + H int + Hd

Hharm =
1
2

N � 2∑

� =0

(
p02

� + ~� � q02
�

)

H int = � qM

N � 2∑

� =1

~c� q0
� ~c� =

C
2
p

m

(
e(� )

M +1 � e(� )
M � 1

)

Hd =
� 2

M

m
+ V0(qM ) +

C
4

q2
M (3.38)

, where ~� � are the eigenvalues de�ned in Appendix B, Eq. (B.9). SinceHharm (Eq.
(3.38)) is still translationally invariant (note that only the c.o.m. for the defect has
been separated of the total chain) there is a zero frequency mode which is chosen for
� = 0. The eigenvalue of the zero mode ~x � reads~� 0 = 2C

m (1 � cos (~x0)) = 0.
After showing the equivalence of the transcendental equations (for the explicit calcula-
tion see Appendix B Eqs. (B.13)-(B.16)), only the equivalence of the Hamiltonian of
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the �rst approach Eqs. (3.22)-(3.25) with the Hamiltonian ofthe second method Eqs.
(3.38) remains to be shown. SinceHd already has the same form, as can be seen by
comparingHd of the �rst method (Eq. (3.25) with Hd of the second method Eq. (3.38)
(and replacing coordinates (� M ; qM ) by (~pM ; ~qM )), only the harmonic and interaction
part remains. Extracting the zero frequency mode from the harmonic Hamiltonian of
Eq. (3.38) one gets a harmonic and a c.o.m. part

Hcom + Hharm =
p02

0

2
+

1
2

N � 2∑

� =1

(
p02

� + ~� � q02
�

)

The c.o.m. Hamiltonian is the kinetic energy of thetotal chain. Note that the mass
weighted eigenvalues from the �rst method� � can be transformed into the mass weighted
eigenvalues of the second method~� � by

~� � = C� � (3.39)

With the canonical transformations

p0
� :=

√
� � P� ; q0

� :=
1

p
� �

Q� � = 1; :::; N � 2 (3.40)

the same harmonic Hamiltonian as in the �rst approach

Hharm =
1
2

N � 2∑

� =1

(
� � P2

� + CQ2
�

)
(3.41)

is achieved. The c.o.m. momentump0
0 in the second approach (which is mass weighted)

is of course nothing put the massless momentum of the �rst approach � 0 with the mass
added (in a multiplicative way) separately (see Eq. (3.12)). The transformation reads

p0
0 =

� 0p
M c

(3.42)

This shows the equivalence of the c.o.m. and harmonic Hamiltonian of both approaches.
The interaction part is more tedious. Starting with the interaction part of Eq. (3.38)
and using the transformation given in Eq. (3.40) one gets

H int = � qM
C

2
p

m

N � 2∑

� =1

Q�p
� �

(
e(� )

M +1 � e(� )
M � 1

)
(3.43)

By using the derived eigenmodes from Eqs. (B.9), (B.10) one gets the following expres-
sion for H int

H int = � qM
C

2
p

m

N � 2∑

� =1

Ñ~b�

Q�p
� �

(
cos

(
~x �

[
M � 1

2

])
cos

(
~x �

[
N � M � 3

2

])

cos
(
~x �

[
N � M � 1

2

]) � cos
(
~x �

[
M �

3
2

])
)
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Now with the help of the transcendental equation Eq. (B.13) one can replace the
�rst term in parenthesis by 2 (2 cos(~x � ) � 1) cos

(
~x �

[
M � 1

2

])
� cos

(
~x �

[
M � 3

2

])
. This

allows us to rewrite the interaction part as

H int = � qM
C

p
m

N � 2∑

� =1

Ñ~b�

Q�p
� �

(
(2 cos(~x � ) � 1) cos

(
~x �

[
M �

1
2

])
� cos

(
~x �

[
M �

3
2

]))

With the help of some basic trigonometric identities we get

H int = 2qM
C

p
m

N � 2∑

� =1

Ñ~b�

Q�p
� �

sin (~x � M ) sin
(

~x �

2

)
(3.44)

using the equation for the eigenvalues Eqs. (3.39) ,(B.9) the interaction part has exactly
the same form as in the �rst method Eq. (3.24).

H int = � qM C
N � 2∑

� =1

Ñ~b�
Q� sin (~x � M ) (3.45)

To show the full equivalence one has to look closer at the variables. Both approaches
yield the sameQ� and of course ~qM = qM . The equivalence of the transcendental
equations (proven in Appendix B Eq. (B.16)) also provide the same wave numbers
q� = ~x � for both approaches.
The only equivalence left to prove is that of the normalisation constants. Since this is
not only tedious, but also more to write down, the proof is given at the end of Appendix
B. With this result the equivalence of both approaches has been shown.
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3.3 Quantum Tunnelling

Since both approaches lead to the same Euclidean Lagrangian, the notation of the
�rst approach is used from now on. This section is restrictedto the zero temperature
quantum tunnelling behaviour of the anharmonic bond embedded in the harmonic chain.
The tunnelling behaviour is graphically shown in Figure (3.2)

Figure 3.2: Two degenerate classical ground states of the open chain with N particles. The masses mn are chosen
to be equal. a is the equilibrium length of the harmonic bonds and as ; al the two degenerate equilibrium lengths of the
anharmonic bond.

The defect potentialV0(qM ) of Eq. (3.28) is assumed to be a double-well potential with
degenerate minima at� q0

2 , which corresponds to the equilibrium lengthas > 0 of the
anharmonic bond andq0

2 , which corresponds to the other equilibrium lengthal > a s

of the anharmonic bond. The interest lies in calculating theEuclidean propagator
describing the tunnelling between the degenerated equilibrium ground states� q0

2 and
q0
2 . The propagator describing this tunnelling behaviour is de�ned as

GE (qf ; T; qi ; 0) =

qM (T )= qf∫

qM (0)= qi

DqM (� ) e�
S E [qM (� )]

~ (3.46)

where the harmonic degrees of freedom have already been eliminated1. The Euclidean

1The elimination procedure for the harmonic degrees of freedom has been shown explicitly in section
"Physical Preliminaries"
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action SE [qM (� )] for this model can be split up into two parts

SE [qM (� )] = SE
0 [qM (� )] + SE

inf l: [qM (� )]

SE
0 [qM (� )] =

T∫

0

d�
(m

2
_q2
M (� ) + V(qM (� )

)

SE
inf l: [qM (� )] = �

T∫

0

d�

�∫

0

d� 0K M (� � � 0)qM (� )qM (� 0) (3.47)

K M (� ) =
N � 2∑

� =1

c2
�

2m� ! �
e� ! � � (3.48)

The kernelK M (� ) will now be discussed to show the tunnelling behaviour for this case.
The index M stands for the position dependence of the anharmonic bond. Inserting c�

from Eq. (3.23) andm� ; ! � from Eqs. (3.27) into the kernel (3.48) yields

K M (� ) =
C! 0

2

N � 2∑

� =1

N 2
b�

sin
(q�

2

)
sin2 (q� M ) e� ! 0 sin( q�

2 )� (3.49)

Replacing the normalisation constantNb� (A.23) by its low-frequency behaviour
√

2
N

which is a valid assumption for the case of taking the thermodynamic limit ( N ! 1 ),
yields the integral representation of the kernel

K M (� ) �=
C! 0

2�

�∫

0

dq qsin2(qM) e� ! 0q
2 � (3.50)

From the integrand of Eq. (3.50) twoq-scales follow. They are

qM =
1

M
and q� =

1
! 0�

(3.51)

Equating qM = q� de�nes a time scale

� M =
M
! 0

(3.52)

The kernel Eq. (3.50) can be evaluated by performing theq� integration, the result is

K M (� ) �=
8CM 2! 0e� �

2 ! 0�
(

16M 2

[
2e

�
2 ! 0� � 2 � �! 0�

]
� (! 0� )2

[
6 � 6e

�
2 ! 0� + �! 0�

])

� (16M 2! 0� + ( ! 0� )3)2

This result can be approximated neglecting the exponentially decaying factors regarding
the long time limit ! 0� � 1

K M (� ) �=
8CM 2! 0

(
32M 2 + 6( ! 0� )2

)

� (16M 2! 0� + ( ! 0� )3)2
(3.53)
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This memory kernel now has to be investigated regarding the above de�ned two time
scales.

� � � � M :

ReplacingM by ! 0� M and applying � � � M , yields

K M (� � � M ) �=
48C! 0M 2

�
1

(! 0� )4
(3.54)

� � � � M :

In this case� M yields the largest contribution, applying this to Eq. (3.53)

K M (� � � M ) �=
C! 0

�
1

(! 0� )2
(3.55)

which leads to ohmic behaviour.
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Figure 3.3: � -dependence of K M (� ) for di�erent �nite and in�nite M (green: M = 5, red: M = 10, blue: M = 20,
brown: M = 40, grey: M = 80, magenta: M = 160, dashed orange: M = 1 ) on a log-log representation. The dotted
and dashed line, corresponding to � � 2 and � � 4, respectively included to see the transition.

Finally one can summarise the results as follows. If the observation time T of the prop-
agator (3.46) is smaller than� M , Eq. (3.55) holds, which shows ohmic dissipation. This
can be explained as follows.� M is the time a phonon emitted from the anharmonic
bond during a change of length, needs to reach one of the chainends. If the anharmonic
bond is located in the bulk of a macroscopically large chain,it never feelsthe ends of
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the chain, because� M is in�nitely large and thus � is always smaller� M . That means
the dissipation for an anharmonic bond located in the bulk ofan in�nitely large set of
harmonic oscillators with linear coupling, is always ohmic.
Figure 3.3 shows the KernelK M (� ) in a log-log-plot. The transition from ohmic disipa-
tive behaviour � � � 2 for � < � M to superohmic dissipative behaviour� � � 4 is clearly
visible in Figure 3.3 for di�erent values ofM . For the case of ohmic dissipation, which
means observation timesT < � M , there exists a phase transition allowing a mapping
of this problem on the one dimensional Ising model with long range interactions of the
form 1

� 2 , as has been performed by [33] showing this phase transition.
There exists a critical couplingCcrit (T) which separates the ordered phaseC > C crit (T)
from the disordered phaseC < C crit (T). The parameterT represents thelength of the
Ising chain. The expressionfeeling(used above) can be interpreted in terms of the Ising
chain as a correlation length� (C). In the Ising model the correlation length is usually
given as a function of the temperature [34] (section III 17.1), but since the temperature
is zero here, the relevant variable is the couplingC. Since the one dimensional Ising
model does not show a sharp transition for a �nite lengthT, there is also no sharp
transition from tunnelling C < C crit (T) to "long range order" at C > C crit (T), which
corresponds to localisation. A sharp transition (phase transition) can be observed for
T = 1 , only.



Chapter 4

The 2-defect Model

4.1 Two Defects
The case of an open linear chain ofN particles with next neighbour interactions and
two defectsM 1; M2 is considered. The Hamiltonian for this system reads as

H =
N∑

n=1

p2
n

2mn
+

C
2

N � 1∑

n =1
(6=M 1;M 2)

(xn+1 � xn � an )2 +
2∑

i =1

V0(xM i +1 � xM i ) (4.1)

Separating the harmonic from the anharmonic degrees of freedom is done in the same
way and for the same reasons as in the �rst method of the one anharmonic bond case
(see Eq. (3.14)-(3.19)). Let

X c =
1

M c

N∑

n=1

xnmn

M c =
N∑

n=1

mn (4.2)

be the centre of mass and the total mass for all particles and

yn = xn+1 � xn � an ; n = 1; :::; N � 1;n 6= M 1; M2 (4.3)

be the relative coordinates, respectively. As in the one anharmonic bond case, one
can de�ne a generating function (since the procedure isabsolutely equivalent (3.8),
the calculation will not be shown here). For convenience thesimplest case making an
analytical diagonalisation possiblemn = m, is chosen. It yields

H =
� 2

0

2M c
+

1
m

(
N � 1∑

k=1

� 2
k �

N � 2∑

k=1

� k � k+1

)

+
C
2

N � 1∑

k =1
(6=M 1 ;M 2)

y2
k + V0(yM 1) + V0(yM 2) (4.4)

This Hamiltonian is the starting point for the diagonalisation procedure. One assump-
tion needed to perform the analytical diagonalisation in the way shown in Appendix C

43



44 CHAPTER 4. THE 2-DEFECT MODEL

is to de�ne the middle of the open chainM as eitherM = N
2 for an even chain-length

and M = N � 1
2 for an odd chain-length. Choosing the anharmonic bonds symmetrically

located with respect toM , one can express the variablesM 1; M2; N in terms of N; D ,
where D = M 2 � M 1 is the di�erence between both bonds andN = M 1 + M 2 is the
total chain-length. This approximation does not qualitatively change the tunnelling
behaviour, since both anharmonic bonds are only investigated in the bulk. In the next
subsection the relevant canonical transformations forD � 2 are presented. That covers
all possible cases, since the case ofD = 1 means that both anharmonic bonds are cou-
pled directly and could be considered as one anharmonic bondwith an additional degree
of freedom. This case will not be considered, since the indirect interaction between both
anharmonic bonds through the harmonic bath is of interest.

4.1.1 Pre-diagonalisation Transformations

Again canonical transformations for the diagonalisation procedure are applied (see ex-
planation before Eqs. (3.14)-(3.19)). The decoupling of both anharmonic bonds from
the harmonic degrees of freedom is done analogously to section "First Method". The
generating function is achieved in the same way as before andreads

R3(q1; :::; qN � 1; � 1; :::; � N � 1) = � qM i

[
� M i �

� M i +1 + � M i � 1

2

]

�
N � 1∑

k =1
(6=f M i g)

qk � k ; i = 1; 2 (4.5)

With this generating function the conjugate coordinates can be evaluated in the following
way

qk = �
@R3
@�k

= yk ; k 6= M i � 1 (4.6)

qM i � 1 = �
@R3

@�M i � 1
= yM i � 1 �

1
2

yM i ; i = 1; 2 (4.7)

The transformations forD = M 2 � M 1 � 2 read

� k = pk ; k = 1; :::; N � 1 ;k 6= M 1; M2

� M 1 = pM 1 +
1
2

(pM 1+1 + pM 1� 1)

� M 2 = pM 2 +
1
2

(pM 2+1 + pM 2� 1)

yk = qk ; k = 1; :::; N � 1 ;k 6= M 1 � 1; M2 � 1

yM 1� 1 = qM 1� 1 �
qM 1

2
yM 2� 1 = qM 2� 1 �

qM 2

2
(4.8)
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Substituting Eq. (4.8) into Eq. (4.4) the Hamiltonian can be split up into four parts

H = Hcom + Hharm + H int + Hd

Hcom =
� 2

0

2M c

Hharm =
1
m




N � 1∑

k =1
(6=f M i g)

p2
k �

N � 2∑

k=1
(6= f M i g;f M i � 1g)

pkpk+1 �
1
4

2∑

i =1

(pM i +1 + pM i � 1)2





+
C
2

N � 1∑

k =1
(6=f M i g)

q2
k

H int = �
C
2

qM 1

(
qM 1� 1 + qM 1+1

)
�

C
2

qM 2

(
qM 2� 1 + qM 2+1

)

Hd =
1
m

(
p2

M 1
+ p2

M 2

)
+

C
4

(
q2

M 1
+ q2

M 2

)
+ V0(qM 1) + V0(qM 2) (4.9)

The c.o.m. term will be dropped from now on. It just represents the translational
invariance of the system and does not contribute to the in
uence action. The relevant
term for the diagonalisationTharm (kinetic part of the harmonic Hamiltonian) will now
be treated. The explicit derivation is presented in detail in Appendix C.

4.1.2 Caldeira-Leggett form for D � 2

After the diagonalisation a transformation to normal modes as done in (3.21)

pk =
N � 3∑

� =1

P (� )
� u(� );�

k ; k 6= M 1; M2

qk =
N � 3∑

� =1

Q(� )
� u(� );�

k ; k 6= M 1; M2 (4.10)

where ~u(� );� denote the eigenvectors achieved in the diagonalisation procedure. The
additional index � can take two values "symmetric" and "antisymmetric" and is due to
the diagonalisation procedure performed in Appendix C. Thattransformation applied
to Eq. (4.9) yields (the c.o.m. term has been omitted)

Hharm =
1

2m

N � 1∑

k;l =1
(6=M 1;M 2)

Tkl pkpl +
C
2

N � 1∑

k =1
(6=M 1;M 2)

q2
k

=
1
2

∑

�

N � 1∑

k =1
(6=M 1 ;M 2)

N � 3∑

�;� 0=1

� (� )
� P (� )

� P (� )
� 0 u(� );�

k u(� 0);�
k

+
C
2

∑

�

N � 1∑

k =1
(6=M 1 ;M 2)

N � 3∑

�;� 0=1

Q(� )
� Q(� )

� 0 u(� );�
k u(� 0);�

k (4.11)
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where Tkl denotes the matrix elements and� (� )
� the eigenvalues used in Eq. (C.9) for

the diagonalisation. Performing the summation overk simpli�es the expression yielding

Hharm =
1
2

∑

�

N � 3∑

� =1

[

� (� )
�

(
P (� )

�

)2
+ C

(
Q(� )

�

)2

]

(4.12)

The interaction part reads

H int = �
∑

�

N � 3∑

� =1

Q(� )
�

[
c�

1;� qM 1 + c�
2;� qM 2

]
; c�

i;� =
C
2

(

u(� );�
M i +1 + u(� );�

M i � 1

)

; i = 1; 2

(4.13)

and �nally the defect part stays as it was

Hd =
1
m

(
p2

M 1
+ p2

M 2

)
+

C
4

(
q2

M 1
+ q2

M 2

)
+ V0(qM 1) + V0(qM 2) (4.14)

A Legendre transformation and some basic mathematical manipulation lead to the de-
sired Euclidean Lagrangian in the form of Caldeira-Leggett

LE = LE
0 + LE

1

LE
0 =

m
4

[
_q2
M 1

+ _q2
M 2

]
+ V0(qM 1) + V0(qM 2)

LE
1 =

1
2

∑

�

N � 3∑

� =1

m�
�

[(
_Q(� )

�

)2
+

(
! (� )

�

)2 (
Q(� )

�

)2

]

�
∑

�

N � 3∑

� =1

Q(� )
�

(
c�

1;� qM 1 + c�
2;� qM 2

)

+
∑

�

N � 3∑

� =1

(
c�

1;� qM 1

)2
+

(
c�

2;� qM 2

)2

2m�
�

(
! (� )

�

)2 (4.15)

where

m�
� =

1

� (� )
�

; ! (� )
� =

√
C� (� )

� = ! 0 sin

(
q(� )

�

2

)

; ! 0 = 2

√
C
m

(4.16)

are achieved in the same way and for! (� )
� > 0 as in Eq. (3.27). The coupling coe�cients

read with the eigenvectors from Eq. (C.9)

ca
1;� = � ca

2;� = CN �;a sin
(

q(a)
�

N � D
2

)

cs
1;� = cs

2;� = CN �;s sin
(

q(s)
�

N � D
2

)
(4.17)

and are necessary for the calculation of the zero temperature kernel. The normalisation
constants have been calculated in Appendix C, Eqs. (C.26), (C.27).
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4.1.3 The Kernel for two anharmonic Bonds
To discuss the tunnelling behaviour for two anharmonic bonds, the propagator in form
of an Euclidean Green's function as in the one anharmonic bond case is needed. The
propagator reads

GE (qf
M 1

; qf
M 2

; T; qi
M 1

; qi
M 2

; 0) =

qM 1 (T )= qf
M 1∫

qM 1 (0)= qi
M 1

DqM 1(� )

qM 2 (T )= qf
M 2∫

qM 2 (0)= qi
M 2

DqM 2(� ) e�
S E [qM 1 (� );qM 2 (� )]

~ (4.18)

Splitting the Euclidean action into a local and an in
uence part as done in Eq. (3.4),
where the local part yields the instanton solutions and the in
uence part the kernel, we
are able to write down the in
uence action for the two defect case (derivation analogous
to the one anharmonic bond case see Eq. (3.47)) as

SE
inf l: [qM 1; qM 2 ] = �

2∑

i;j =1

T∫

0

d�

�∫

0

d� 0K ij
D (� � � 0)qM i (� )qM j (�

0) (4.19)

where the indicesi; j show the e�ect of two instead of one anharmonic bond, as discussed
before. The derivation of the zero temperature kernel for the two anharmonic bond case
can be achieved from the Euclidean Lagrangian in exactly thesame way as before (see
Section: "Physical Preliminaries"). The calculation will not be presented here. The
result is:

K ij
D (� ) =

∑

�

K (� );ij
D (� ) �=

∑

�

N � 3∑

� =1

c(� )
i;� c(� )

j;�

2m(� )
� ! (� )

�

e� ! (� )
� � (4.20)

The coupling of symmetric with antisysmmetric eigenvectors is of course zero by de�-
nition, hence c(s)

i;� c(a)
j;� = 0. That is the reason only c(� )

i;� c(� )
j;� is considered in Eq. (4.20).

The calculation of the kernel is only necessary for one symmetric and one antisymmetric
case, because the kernel obeys, as can be seen from Eqs. (4.17) the following relations

K (s);11
D (� ) = K (s);12

D (� ) = K (s);21
D (� ) = K (s);22

D (� )

K (a);11
D (� ) = � K (a);12

D (� ) = � K (a);21
D (� ) = K (a);22

D (� ) (4.21)

As discussed in Appendix C, the thermodynamic limitN ! 1 makes an even chain-
length indistinguishable from an odd chainlength. This is the reason only evenN are
considered in the calculations and derivations, respectively. Starting with the symmetric
case using Eqs. (4.16), (4.17), the kernel reads as

K (s);ij
D (� ) =

C! 0

2

∑

�

N 2
�;s sin2

(
q(s)

�
N � D

2

)
sin

(
q(s)

�

2

)

e
� ! 0 sin

�
q

(s)
�
2

�
�

=
C! 0

2

∑

�

N 2
�;s sin

(
q(s)

�

2

)

e
� ! 0 sin

�
q

(s)
�
2

�
�

�

[

sin

(
q(s)

� N
2

)

cos

(
q(s)

� D
2

)

� cos

(
q(s)

� N
2

)

sin

(
q(s)

� D
2

)]2
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Now sin
(

q(� )
� N

2

)
; cos

(
q(� )

� N
2

)
can be replaced with the results obtained from the tran-

scendental equations (C.29), and since the main contribution comes from the low fre-
quency behaviourq(� )

� � 1 in the case of largeN , which is used since the thermodynamic
limit N ! 1 is taken, the approximations used in those Eqs. and for the normalisation
constant (C.32) are valid, leading to

K (s);ij
D (� ) �=

C! 0

2�

�∫

0

dq qcos2
(

qD
2

)
e� ! 0q

2 �

The antisymmetric kernel is treated in the same way, but herethe matrix elements
(i = j ) are shown. With Eqs. (4.21), the case (i 6= j ) is easily seen. It reads

K (a);ii
D (� ) �=

C! 0

2�

�∫

0

dq qsin2

(
qD
2

)
e� ! 0q

2 �

Now the D-dependence of the matrix elements have to be discussed. Starting with the
matrix elements (i = j ) the integrals can of course be evaluated exactly and theD
dependence disappears by applying a trigonometric identity:

K ii
D (� ) = K (s);ii

D (� ) + K (a);ii
D (� ) �=

C! 0

2�

�∫

0

dq q
[
cos2

(
qD
2

)
+ sin2

(
qD
2

)

︸ ︷︷ ︸
=1

]
e� ! 0q

2 �

what is left now is the kernel for the case ofi = j showing ohmic dissipation with no
D-dependence:

K ii
D (� ) �=

C! 0

2�

�∫

0

dq q e�
! 0q

2 � �
2C! 0

�
1

(! 0� )2
(4.22)

This makes sense, sinceD has been chosen in the bulk and the kernelK ii
D (� ) shows

strictly ohmic dissipative behaviour as it should be for an anharmonic bond located
in the bulk. The kernel for i 6= j allows to calculate the interaction between both
anharmonic bonds with respect to the distanceD in between them. Two cases are of
interest. One is the distance of both anharmonic bondsD is �nite, which should lead
to an interaction represented in a non vanishing kernelK 12

D (� ). For the limit of D ! 1
this interaction vanishes as it should be. The only di�erence to the previously discussed
case is a minus sign for the asymmetric kernel leading to aD-dependent result

K i 6= j
D (� ) = K (s);i 6= j

D (� ) + K (a);i 6= j
D (� )

�=
C! 0

2�

�∫

0

dq q
[
cos2

(
qD
2

)
� sin2

(
qD
2

)]
e� ! 0q

2 � (4.23)
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As can be seen these kernels (i 6= j ) have a D-dependence, that needs to be examined
carefully. Using a trigonometric identity the cosine and sine squared can be replaced

K i 6= j
D (� ) �=

C! 0

2�

�∫

0

dq qcos (qD) e� ! 0q
2 � (4.24)

, yielding the proof that lim
D !1

K i 6= j
D (� ) = 0.

Evaluating this integral(4.24) yields

K i 6= j
D (� ) �=

C! 0

�

e� �! 0 �
2

(
2e

�! 0 �
2 (( ! 0� )2 � 4D 2) � (� 1)D (4D 2(�! 0� � 2) + ( ! 0� )2(2 + �! 0� ))

)

(4D 2 + ( ! 0� )2)2

Two q scales occur in the integrand of Eqs. (4.22),(4.22).

qD =
1
D

and q� =
1

! 0�
(4.25)

Equating qD = q� de�nes the time scale

� D =
D
! 0

(4.26)

Considering! 0� � 1 one gets from (4.25)

K i 6= j
D (� ) �=

2C! 0

�
(! 0� )2 � 4D 2

(( ! 0� )2 + 4D 2)2 (4.27)

From this result it is easy to discuss the to relevant cases� � � D and � � � D .

K i 6= j
D (� � � D ) �

1
D 2

K i 6= j
D (� � � D ) �=

2C! 0

�
1

(! 0� )2

[
1 � 12

( � D

�

)2
]

(4.28)

In the limit D ! 1 the kernelK i 6= j
D (� � � D ) vanishes as it should be, because in�nitely

large D corresponds to no interaction. For the case of� � � D it makes no sense
taking the limit D ! 1 , since� D is still considered to be much smaller than� . The
variablesqM 1 and qM 2 and the respective kernelsK ij

D (� ); i; j = 1; 2 do not correspond to
physically relevant quantities, since we are interested inthe di�erent (ohmic or super-
ohmic) dissipative behaviour that occurs depending on the overall chain-length changing
or not. Due to the matrix structure of the kernel a transformation to physically relevant1

variables has to be considered.

q+ = qM 1 + qM 2 ; q� = qM 1 � qM 2 (4.29)

1the reason for this transformation is given below
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Applying this transformation to Eq. (4.19) and using the symmetry relations for the
kernel Eq. (4.21) yields

SE
inf l: [q+ ; q� ] = �

T∫

0

d�

�∫

0

d� 0
[
K ++

D (� � � 0)q+ (� )q+ (� 0) + K ��
D (� � � 0)q� (� )q� (� 0)

]

(4.30)

, with

K ++
D (� ) =

K 11
D (� ) + K 12

D (� )
2

! 0� � 1�=

{
C! 0

�

[
1

(! 0� )2 � 1
4D 2

]
; � � � D

2C! 0
�

1
(! 0� )2 ; � � � D

K ��
D (� ) =

K 11
D (� ) � K 12

D (� )
2

! 0� � 1�=

{
C! 0

�

[
1

(! 0� )2 + 1
4D 2

]
; � � � D

C! 0
�

24D 2

(! 0� )4 ; � � � D

(4.31)

It is now easy to see, that kernelK ++
D (� ) always shows ohmic dissipative behaviour in

leading order, whereas the kernelK ��
D (� ) shows a transition from ohmic to superohmic

dissipative behaviour. The kernelsK ++
D (� ); K ��

D (� ) are shown in the following �gures:
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Figure 4.1: � -dependence of K ++
D (� ) for di�erent D (green: D = 5, red: D = 10, brown D = 40, magenta: D = 160)

on a log-log representation. The dotted line corresponds to a � � 2 behaviour.
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Figure 4.2: � -dependence of K ��
D (� ) for di�erent D (green: D = 5, red: D = 10, brown D = 40, magenta: D = 160)

on a log-log representation. The dotted and dashed line, corresponding t o � � 2 and � � 4, respectively included to see the
transition.
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In Figure 4.1 the KernelK ++
D (� ) is shown. It shows a� � 2 clearly depicted on the log-

log-plot. This plot is a graphical representation of Eq. (4.31), which shows a ohmic
dissipative behaviour independent on the introduced timescale � D . The small shift
resulting from the factor 2 the kernel receives after crossing � D is not understood, but
nevertheless the dissipative behaviour remains ohmic.
In Figure 4.2 the KernelK ��

D (� ) is shown. It shows a transition from ohmic dissipative
behaviour� � 2 to super-ohmic dissipative behaviour� � 4. This transition is clearly visible
on the log-log-plot and di�erent anharmonic bond distancesD have been included.
Now the advantage of this transformation has to be discussed.In the one anharmonic
bond case each of the bonds has two di�erent initial and two di�erent �nal positions.
We were able to show ohmic dissipative behaviour of the Kernel if the anharmonic bond
is located in the bulk and a transition from ohmic to super-ohmic dissipative behaviour
if the anharmonic bond is located at one of the borders.
For two anharmonic bonds the scenario is more complicated. The reason for switching
from ohmic to super-ohmic dissipative behaviour was the position of the anharmonic
bond. Tunnelling of the anharmonic bond, located at one of the borders, only requires
a �nite mass � M = O(1) of the harmonic bath to be moved in the translationally
invariant chain. But if the anharmonic bond is located in thebulk, tunnelling of the
anharmonic bond requires to move an in�nite mass� M = O(N ); N ! 1 of the
harmonic chain. For two anharmonic bonds located in the bulk, both can tunnel with a
movement of an in�nite mass or with a movement of a �nite mass of the harmonic bath.
A movement of a �nite mass requires both initial positions ofthe anharmonic bonds
to di�erent, i.e. one having length as and the other al . Now if one anharmonic bond
tunnels and changes its length, the other anharmonic bond can react and also tunnel.
The mass that has to be moved is just� D = O(1) and hence �nite. Only a �nite
length � D of the harmonic bath had to be moved to allow this tunnelling.Hence one
would expect a transition from ohmic to super-ohmic dissipative for times � depending
on the time-scale� D in analogy to the one anharmonic bond case, with the bond located
at one of the borders.
All other scenarios of both anharmonic bonds tunnelling require a movement of an
in�nite mass of the harmonic bath, which should result in ohmic dissipative behaviour
in analogy to the one anharmonic bond case located in the bulk. Consider for example
both anharmonic bonds having lengthsas, then every tunnelling, no matter if only
one anharmonic bond or both bonds tunnel, requires the movement of an in�nite mass
� O (N ); N ! 1 , since both bonds are located in the bulk.
The transformation necessary to measure the change in the overall chain-length is given
in Eq. (4.29). This is of course only valid for equal equilibrium bond-lengths as1 =
as2 � as; al1 = al2 � al of the relative coordinatesqM 1; qM 2 , which is considered here.
This is obvious, since if the length-changes of both anharmonic bonds are not the same,
movement of an in�nite mass of the harmonic chain is still required no matter how the
anharmonic bonds tunnel, leading to ohmic dissipative behaviour. The transformation
can be interpreted as follows. The kernel matrixKD , consisting of four elementsK ij

D
with i; j = 1; 2 (4.19), is diagonalisedand contains now only the diagonal elements
K ++

D ; K ��
D and no coupling betweenq+ and q� (4.30). The kernel matrix element

describing a change in the total length is labeledK ++
D , whereas the overall chain-length
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does not vary forK ��
D . Those new coordinates allow to treat the two elements of the

in
uence action of the anharmonic bond case equivalently tothe one anharmonic bond
case, namely just considering a movement of a �nite or an in�nite length of the harmonic
bath.
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The case of small overall length-change requires of course tunnelling of the anharmonic
bonds at di�erent times. This graphic shows, that even though there are many more
paths in the two anharmonic bond case compared to the one anharmonic bond case, the
number of di�erent kernels describing the paths does not change. In the one anharmonic
bond case the kernel was either ohmic or super-ohmic dependent on the position of the
anharmonic bond, whereas in the case of two anharmonic bondsthe kernel is also either
ohmic or super-ohmic, dependent on the initial and �nal positions of the anharmonic
bonds. The transformation fromqM 1; qM 2 to q+ ; q� does not only decouple the in
uence
action, but introduces a new coupling in the local action, namely a term � q2

+ q2
� . This

term yields a coupling of the up to now bare instantonsq1; q2 in the local action. The
e�ect of this coupling is not fully understood.
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4.2 Tunnelling expectation value using extended NIBA

De�ning a measurable quantityp(t) = Tr
[
� red(t)� (1)

z 
 � (2)
z

]
, where the matrix elements

of the reduced density operator� red(t) have been calculated Appendix E and are given
in form of a path integral Eq. (E.14). The derivation of the in
uence functional F for
the two anharmonic bond case is similar to the derivation of the one anharmonic bond
case. The derivation is given in detail in Appendix E. Using thein
uence functional for
two anharmonic bonds

F [qM 1; qM 2 ; q0
M 1

; q0
M 2

] = exp
[
�

1
~

2∑

a;b=1

t∫

0

d�

�∫

0

d� 0
(

qM a (� ) � q0
M a

(� )
)

�
(

Lab(� � � 0)qM b(�
0) � L �

ab(� � � 0)q0
M b

(� 0)
)]

(4.32)

where the functionLab(� ) is de�ned, for zero temperature, as

Lab(� ) =
N � 3∑

� =1

ca;� cb;�

2m� ! �
[cos(! � � ) � i sin(! � � )] (4.33)

Splitting the function Lab(� ) into a real and an imaginary part one can put this in
uence
functional in the following form

F [� (1) (� ); � (1) (� ); � (2) (� 0); � (2) (� 0)] =

exp

[

�
q2

0

� ~

2∑

a;b=1

t∫

0

d�

�∫

0

d� 0

(
Lab

2 (� � � 0)� (a)(� )� (b)(� 0) � iL ab
1 (� � � 0)� (a)(� )� (b)(� 0)

)]

(4.34)

by using

Lab
1 (� � � 0) =

1∫

0

d! J ab(! ) sin (! [� � � 0])

Lab
2 (� � � 0) =

1∫

0

d! J ab(! ) cos (! [� � � 0]) (4.35)

and applying (as in the one anharmonic bond case) a transformation of the coordinates
qM a ; q0

M a
to blips � a and sojourns� a with the following transformation

� (a)(� ) =
qM a (� ) � q0

M a
(� )

q0

� (a)(� ) =
qM a (� ) + q0

M a
(� )

q0
(4.36)



4.2. TUNNELLING EXPECTATION VALUE USING EXTENDED NIBA 55

The spectral densityJab(! ) is de�ned as

Jab(! ) =
�
2

N � 3∑

� =1

ca;� cb;�

m� ! �
� (! � ! � ) (4.37)

Splitting the spectral density into a symmetric (s) and an antisymmetric (a) part and
using the de�nitions of the variables from Eqs. (4.16), (4.17), one gets

Jaa(! ) =
C! 0�

2

N
2 � 1∑

� =1

N 2
�;s sin2

(
q(s)

�
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2

)
sin

(
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2

)
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2
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+
C! 0�

2

N
2 � 2∑
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N 2
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�
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2

)
sin

(
q(a)

�

2

)

�

(

! � ! 0 sin

(
q(a)

�

2

))

(4.38)

Replacing the normalisation constants for �niteD = O(1) according to Eq. (C.32),
splitting the squared sine into one component containingN and the other containingD,
we are able to get rid of theN dependence. To do this, the results from the transcen-
dental equation Eqs. (C.29) are used. We are then able to perform the thermodynamic
limit ( N ! 1 ), yielding

Jaa(! ) =
C! 0

2

�∫

0

dq sin
(q

2

)
�

(
! � ! 0 sin

(q
2
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2
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f 2
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(4.39)

Evaluating the integral gives
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(4.40)
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Since the quantum dissipation generated by the harmonic bath depends on the low
frequencies! � ! 0 of the spectral density, it is possible to Taylor expand the result,
considering �nite D, yielding

Jaa(! � ! 0) = C
!
! 0

� C
7 + 8D

2

(
!
! 0

)3

+ O

((
!
! 0

)5
)

(4.41)

The calculation ofJa6= b(! ) is done analogously. The result is

Ja6= b(! � ! 0) = C
!
! 0

� C
7 + 8D + 4D 2

2

(
!
! 0

)3

+ O

((
!
! 0

)5
)

(4.42)

As in the one anharmonic bond case a transformation of the blipand sojourn variables to
"charges" is performed, but one essential assumption is included in the two anharmonic
bond case. Since it seems impossible to calculate the tunnelling probability of two
anharmonic bonds tunnelling at di�erent timesteps, a crudeassumption, namely setting
the timesteps of both anharmonic bonds equal, is made.

� (1) (� ) =
n∑

j =1

� (1)
j

[
�( � � t2j � 1) � �( � � t2j )

]

� (2) (� ) =
n∑

j =1

� (2)
j

[
�( � � t2j � 1) � �( � � t2j )

]

� (1) (� ) =
n∑

j =0

� (1)
j

[
�( � � t2j ) � �( � � t2j +1 )

]

� (2) (� ) =
n∑

j =0

� (2)
j

[
�( � � t2j ) � �( � � t2j +1 )

]
(4.43)

This approximation forces one of the anharmonic bonds to react instantaneously to a
tunnelling of one of the other bond variables. This is of course not the case, since both
anharmonic bonds are separated by the distanceD, but the time information needs
to travel from one anharmonic bond to the other is given by thetime a phonon needs
tD = ! 0D to cross this distance. But for small distancesD the approximation gets
better and better. The detailed calculation of the above (4.43) transformation applied
to the in
uence functional (4.34) is done in Appendix D.
Equating the tunnelling of both anharmonic bonds has also been applied by [29]. They
write "when the indirect coupling is the largest energy scale, the two spins will tend to
tunnel simultaneously". Since there is no direct coupling between the two anharmonic
bonds, but only the indirect coupling through the harmonic bath, this assumption is
always ful�lled. The only di�erence, that the two continuous anharmonic bond coordi-
nates are no spins, but are considered to 
ip instantaneously, which makes it possible
to treat them as spins. In [35] it is written, that "For the double-impurity case, ..., a
low-temperature and short-distance regime, where correlated tunnelling is established
...", which also strengthens the assumption used in this thesis of setting the 
ipping
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times of both anharmonic bonds equal under the restrictionsgiven above.
Another point shows the validity of this approximation. The in
uence functional Eq.
(4.32) has an oscillating part containing the imaginary part of the function Lab(t) in the
exponent. This term is called friction term. The other term,with the real part of the
function Lab(t) in the exponent, is called the noise term. This noise term isalways bigger
than zero and randomly pumps back energy to the system. In theone anharmonic bond
case, summing over the same subset of blip-charges, makes this term always positive, as
mentioned by Leggett et al. [14]. But for two anharmonic bonds a new situation arises.
The argument of the exponent of the noise term looks like

�
q2

0

� ~

t∫

0

d�

�∫

0

d� 0
[
L11

2 (� � � 0)� (1) (� )� (1) (� 0) + L12
2 (� � � 0)� (1) (� )� (2) (� 0)

+ L21
2 (� � � 0)� (2) (� )� (1) (� 0) + L22

2 (� � � 0)� (2) (� )� (2) (� 0)
]

(4.44)

Now one has to look at all possible cases, they are

1) � (1) = � (2) =






+1; a

� 1; b

0; c

2) � (1) 6= � (2) =






(+1 ; � 1); a

(� 1; +1) ; b

(+1 ; 0); c

(0; +1) ; d

(� 1; 0); e

(0; � 1); f

Using all possible cases in (4.44), one gets for the argument

� 0 , 1c

� � 2q2
0

� ~ Q�
2 (t) , 2a, 2b

� � q2
0

� ~Q2(t) , 2c, 2d, 2e, 2f

� � 2q2
0

� ~ Q+
2 (t) , 1a, 1b

, with

Q(aa)
1=2 (t) � Q1=2(t) ; a = 1; 2

Q�
1=2(t) = Q1=2(t) � Q(12)

1=2 (t) (4.45)
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, which implies of course also

J � (! ) = Jaa(! ) � Ja6= b(! ) (4.46)

The functions Q(ab)
1=2 where de�ned in (4.75) and are the result of performing the two

time integrations
t∫

0
d�

�∫

0
d� 0 of the functionsLab

1 (� � � 0); Lab
2 (� � � 0) in Eq. (4.44).

The possible cases are given in descending order, largest value on top smallest value at
the bottom. This can be seen in the interesting2 time regime ! 0t � 13 in Eq. (4.86),
where Q2(t)(4.48) has of course the same time dependence in the long time limit as
Q+

2 (t)(4.86). Using the calculation of the spectral densityJaa(! )(4.41) it is possible to
calculateQ2(t)

Q2(t) =
C

2! 0

[
(7 + 8D)(cos(! 0t) � 1)

(! 0t)2
+

(7 + 8D) sin(! 0t)
! 0t

+ 2 ln( ! 0t) � 2Ci(! 0t)
]

(4.47)

now considering the long time limit! 0t � 1 one gets

Q2(t) =
C
! 0

ln(! 0t) (4.48)

The noise term is maximised for the case of 1c, which is nothing but both anharmonic
bonds being at the same time in a sojourn state. This is physically reasonable, since
maximising the noise term in the one anharmonic bond case acts as a Gaussian �lter
quenching o�-diagonal quantum 
uctuations [16]. It is alsothe reason, why the NIBA
is a valid approximation in the one anharmonic bond case, since the system stays longer
in a sojourn state and hence the blips can be treated as a dilute gas.
This is already enough to assume, that both anharmonic bondstend two be either
together in a sojourn state or together in a blip state, rather then one in a sojourn and
the other in a blip, at the same time.
The second biggest value for the noise functional is achieved in the case of 2a, 2b, which
is both anharmonic bonds being at the same time in di�erent blip states. This clearly
shows, that both anharmonic bonds tend to be either both in a sojourn state or both
in di�erent blip states, compared to one being in a blip and the other one being in a
sojourn state. The only case even less probable than one bondin a sojourn and the
other in a blip state, is both bonds being in the same blip state 1a, 1b.
This e�ect, that both bonds tend to be at the same time in sojourn states or di�erent
blip states, is captured by forcing both anharmonic bonds tobehave as one bond. Since
we are investigating both anharmonic bonds changing the states of their tunnelling
coordinates qM 1; q0

M 1
; qM 2; q0

M 2
at the same timesteps, it is possible to treat the two

two-state coordinates (every coordinate has two possible values� q0
2 ) as one four state

2As has been mentioned in [14], forωct . 1 the corrections to 1 in P1(t) (and to 0 in P2/3(t)

respectively), are of order
(

�
ωc

)2
, at most and hence of little interest.

3Since we assumet � tD = D
ω0

, the case ofω0t � 1 is of course always ful�lled sinceD � 2.
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coordinate. The total bare amplitudesA[qM 1(� )]; B [qM 2(� )] for a given path are now
A[qM 1(� ); qM 2(� )] and may be broken up into small pieces of lengthdt[14]. The amplitude
to remain in the state is one, whereas the amplitude of switching states isi �

2 dt. In the
one anharmonic bond case [14] the basis for de�ning the tunnelling amplitudes is the
spin-boson Hamiltonian without bias� and no coupling to the bath Eq. (1.1) [14].

H � =0 = �
~�
2

� x = �
~�
2

(
0 1
1 0

)

The basis is formed by the localized statesjRi =
(

1
0

)
; jL i =

(
0
1

)
representing

the right or left well of the symmetric double well potentialV(q), which are eigenstates
of � z belonging to the eigenvalues 1; � 1, respectively. The path integral of the bare
amplitudes de�ned in [14] Eq. (4.1) is nothing but the tunnelling matrix element of the
time-evolution of the above given Hamiltonian.

qf∫

qi

Dq(� )A[q(� )] = hqf je� iH � =0t
~ jqi i

q0
f∫

q0
i

Dq0(� )A � [q0(� 0)] = hq0
f je

iH � =0t
~ jq0

i i (4.49)

In the following we will only calculate the bare tunnelling amplitude of q(� ), the results
for q0(� 0) are just the complex conjugate results. Splitting the timeinto small time steps
dt allows the Taylor expansion of the exponential leading to

hqf je� iH � =0 dt
~ jqi i = hqf jqi i �

i dt
~

hqf jH � =0 jqi i + O(dt2) (4.50)

Two examples are explicitely calculated, up toO(dt2), to show how the tunnelling
matrix element is de�ned

hRje� iH � =0 dt
~ jL i = hRjL i︸ ︷︷ ︸

= 0

�
i dt
~

hRjH � =0 jL i + O(dt2)

=
i �
2

dt
(

1
0

) (
0 1
1 0

) (
0
1

)
+ O(dt2)

=
i �
2

dt + O(dt2) (4.51)

hRje� iH � =0 dt
~ jRi = hRjRi︸ ︷︷ ︸

= 1

�
i dt
~

hRjH � =0 jRi + O(dt2)

= 1 +
i �
2

dt
(

1
0

) (
0 1
1 0

) (
1
0

)
+ O(dt2)

= 1 + O(dt2) (4.52)
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This is how the path integral of the bare tunnelling amplitude for the spin-boson Hamil-
tonian without bias � is calculated in [14]. The amplitudeA � [q0(� 0)] leads to the same
results, except for a minus in the switching amplitudei �

2 dt. The two-state variables
q(� ); q0(� 0) have been considered as a pair [q(� ); q0(� 0)] jumping between four states[14].
The four possible states are

A = f + ; + g

B = f + ; �g

C = f� ; + g

D = f� ; �g (4.53)

, where + � + q0
2 ; � � � q0

2 . The tunnelling amplitudes, up toO(dt2), are hence

0

{
A $ D

B $ C

� i
�
2

dt

{
A $ B

D $ C

i
�
2

dt

{
A $ C

D $ B
(4.54)

For the two anharmonic bond case, where both bonds tunnel at the same time both
bonds can be considered as onesuper-bond.
The amplitudesA[qM 1(� )]B [qM 2(� )]; A � [q0

M 1
(� 0)]B � [q0

M 2
(� 0)] to switch between states dur-

ing the time intervall dt merge together toA[qM 1(� ); qM 2(� )]; A � [q0
M 1

(� 0); q0
M 2

(� 0)] and
are de�ned analogously to the one anharmonic bond case as

� i
�
2

dt






AA $ BB

AD $ BC

DA $ CB

DD $ CC

i
�
2

dt






AA $ CC

AD $ BC

DA $ CB

DD $ BB

all others are 0 (4.55)
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Where the states are de�ned analogeously to the one anharmonic bond case in the
following way

AA = f ++ ; ++ g

AB = f ++ ; + �g

AC = f ++ ; � + g

AD = f ++ ; ��g

BA = f + � ; ++ g

BB = f + � ; + �g

BC = f + � ; � + g

BD = f + � ; ��g

CA = f� + ; ++ g

CB = f� + ; + �g

CC = f� + ; � + g

CD = f� + ; ��g

DA = f�� ; ++ g

DB = f�� ; + �g

DC = f�� ; � + g

DD = f�� ; ��g (4.56)

The calculation of these tunnelling amplitudes is done analogeously to the one anhar-
monic case, considering a spin-boson Hamiltonian of the following form

H � =0 = �
~�
2

� (1)
x 
 � (2)

x = �
~�
2





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



 (4.57)
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The basis is formed by the localized states

jRRi = jRi 
 j Ri =





1
0
0
0





jRL i = jRi 
 j L i =





0
1
0
0





jLR i = jL i 
 j Ri =





0
0
1
0





jLL i = jL i 
 j L i =





0
0
0
1



 (4.58)

representing the four possible states, which are eigenstates of� (1)
z 
 � (2)

z belonging to the
two-fold degenerate eigenvalues 1; � 1, respectively. Now following the same procedure
as in the one anharmonic bond case three possible transitions are calculated in detail
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to prove the assumption of Eq.(4.55).

hRRje� iH � =0 dt
~ jRL i = hRRjRL i︸ ︷︷ ︸

= 0

�
i dt
~

hRRjH � =0 jRL i + O(dt2)

=
i �
2

dt





1
0
0
0









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









0
1
0
0



 + O(dt2)

= 0 + O(dt2) (4.59)

hLL je� iH � =0 dt
~ jRRi = hLL jRRi︸ ︷︷ ︸

= 0

�
i dt
~

hRRjH � =0 jLL i + O(dt2)

=
i �
2

dt





1
0
0
0









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









0
0
0
1



 + O(dt2)

=
i �
2

dt + O(dt2) (4.60)

hLR je� iH � =0 dt
~ jRL i = hLR jRL i︸ ︷︷ ︸

= 0

�
i dt
~

hLR jH � =0 jRL i + O(dt2)

=
i �
2

dt





0
0
1
0









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









0
1
0
0



 + O(dt2)

=
i �
2

dt + O(dt2) (4.61)

With the bare tunnelling amplitude A � [q0
M 1

(� 0); q0
M 2

(� 0)] leading to the same results,
except for the minus in the tunnelling amplitude i �

2 dt as in the one anharmonic bond
case, it is now possible to calculate the tunnelling amplitudes and verify the assumption
of Eq. (4.55). Since both anharmonic bonds tunnel at the sametime, states such as e.g.
AB; AC; BD; ::: are not allowed and do not occur due to the spin-boson Hamiltonian
(4.57), because the starting statemust be AA; AD; DA or DD . This meansqM 1 = q0

M 1

and qM 2 = q0
M 2

, which is absolutely equivalent to the requirement of starting in state A
or D in the one anharmonic bond case considered by [14]. The approximation of forcing
both anharmonic bonds to tunnel at the same time is one of the main di�erences to the
scenario presented by [29]. This thesis restricts already the bare tunnelling amplitudes
and hence investigates aP(t), where both bonds tunnel at the same timestepsdt. Dub�e
and Stamp derive aP(t) where both bonds can tunnel at di�erent timestepsdt; du and
discuss certain special scenarios, where the timescales are set equal. The mathematical
rigor used by Dub�e and Stamp in setting the timescales equalis questionable, since
there are no explicit calculations given and most of the approximations are hand-waving
arguments. The probabilityp(t) derived in Appendix D Eq. (E.20) will be presented for
four di�erent cases (labelledp1(t); p2(t); p3(t); p4(t)), depending on the relation of the
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initial and �nal states. The probability p(t) for starting and ending in the same state is
for all possible initial states

p1=2(t) = 1 +
1
2

1∑

n=1

(� 1)n � 2nK (1=2)
n (t) (4.62)

, whereas ending in a di�erent state from the one starting from, gives

p3=4(t) = 1 � p1=2(t) (4.63)

The indices 1=2 distinguish the following scenarios

initial and �nal state for index 1: qM 1 = q0
M 1

= qM 2 = q0
M 2

, which corresponds to the choice ofAA or DD

initial and �nal state for index 2: qM 1 = q0
M 1

6= qM 2 = q0
M 2

, which corresponds to the choice ofAD or DA (4.64)

, whereas the indices 3=4 label the scenarios presented below

initial not equal �nal state for index 3: qM 1 = q0
M 1

= qM 2 = q0
M 2

, which corresponds to the choice ofAA or DD

initial not equal �nal state for index 4: qM 1 = q0
M 1

6= qM 2 = q0
M 2

, which corresponds to the choice ofAD or DA (4.65)

Because of Eq. (4.63) it is only needed to investigatep1=2(t), since it already contains
all the information about the other two cases, as has alreadybeen noticed in [14] for
the case of one anharmonic bond.
The e�ect of only allowing tunneling of both anharmonic bonds at equal timesteps can
be investigated best by looking at Eq. (4.34). Lets considerp1(t) for the choice of
the initial states qM 1(0) = q0

M 1
(0) = qM 2(0) = q0

M 2
(0) = + q0

2 . Since the tunnelling is
restricted to qM 1(� ); qM 2(� ) and respectivelyq0

M 1
(� ); q0

M 2
(� ) tunnelling at the same time,

the choice of the initial states and the free choice of the path of one variable (hereqM 1(� ))
de�nes all the other pathes. For the initial states chosen above and therestriction of
tunnelling at the same time, the following relations hold ascan be easily veri�ed

� (1) (� ) = � (2) (� )

� (1) (� ) = � (2) (� ) (4.66)

The initial positions of the anharmonic bonds are de�ned above and yield the following
functions with use of Eq. (4.36)

� (1) (0) =
qM 1(0) � q0

M 1
(0)

q0
= 0 = � (2) (0) =

qM 2(0) � q0
M 2

(0)
q0

� (1) (0) =
qM 1(0) + q0

M 1
(0)

q0
= 1 = � (2) (0) =

qM 2(0) + q0
M 2

(0)
q0

(4.67)
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Now the �rst tunnelling process happens at timestept1. Lets haveqM 1(� = t1) switch
states from +q0

2 to � q0
2 and see what happens. Since we forced both bonds to tunnel at

the same time alsoqM 2(� = t1) switches its state from +q0
2 to � q0

2 . As in the publication
[14] eitherq or q0 switches, soq0

M 1
(� = t1); q0

M 2
(� = t1) stay as they were. This yields

� (1) (� = t1) =
qM 1(� = t1) � q0

M 1
(� = t1)

q0
= � 1 = � (2) (� = t1) =

qM 2(� = t1) � q0
M 2

(� = t1)
q0

� (1) (� = t1) =
qM 1(� = t1) + q0

M 1
(� = t1)

q0
= 0 = � (2) (� = t1) =

qM 2(� = t1) + q0
M 2

(� = t1)
q0

(4.68)

Now the second tunnelling process happens at timestept2. Here we letq0
M 1

(� = t2)
switch states from +q0

2 to � q0
2 . As in the case beforeq0

M 2
(� = t1) has to switch its state

from + q0
2 to � q0

2 , whereasqM 1(� = t2); qM 2(� = t2) stay as they were, yielding

� (1) (� = t2) =
qM 1(� = t2) � q0

M 1
(� = t2)

q0
= 0 = � (2) (� = t2) =

qM 2(� = t2) � q0
M 2

(� = t2)
q0

� (1) (� = t2) =
qM 1(� = t2) + q0

M 1
(� = t2)

q0
= � 1 = � (2) (� = t2) =

qM 2(� = t2) + q0
M 2

(� = t2)
q0

(4.69)

Now we look at the 
ips that occured. Initially ( � = 0) we started with AA , the �rst
tunnelling at � = t1 switches toCC and the second tunnelling at� = t2 switches to
DD . What we see and can easily be calculated is, that the initialstatesAA; DD allow
only tunnelling to the states BB; CC . The other types of initial statesAD; DA allow
only tunnelling to the states BC; CB as has already been de�ned in Eq. (4.55). It is
obvious now what kind of tunnelling processes are describedby pi (t); i = 1; 2; 3; 4.
As mentioned above we will only look atpi (t); i = 1; 2. The calculation of thosepi (t) is
done exactly as in [14] starting from (E.20), then introducing the "charges" from (4.43)
and the calculation of Appendix D for the in
uence functionaland breaking up the

tunnelling into small transition amplitudes into small timestepsdt yields the
t∫

0
Df t2ng

included in the function K (i )
n (t) of Eqs. (4.62). The factorK (i )

0 (t) is as in the one
anharmonic bond case +1 of [14] by de�nition. The termK (i )

n (t); i = 1; 2 is de�ned as

K (i )
n (t) = 2 � (2n� 1)

∑

f � (1)
j ;� (2)

j 0 g

∑

f � (1)
j ;� (2)

j 0 g

t∫

0

Df t2ng F n

F n = F n [f t j g; f � (1)
j g; f � (1)

j g; f � (2)
j 0 g; f � (2)

j 0 g] (4.70)

, where the summation of the blip- and sojourn-charges is explained later in Appendix
F. The probability pi (t) is related to the expectation valuePi (t) by the following relation

h� (1)
z (t) 
 � (2)

z (t)i � Pi (t) = 2 pi (t) � 1; i = 1; 2 (4.71)
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Pi (t) =
1∑

n=0

(� 1)n � 2nK (i )
n (t); i = 1; 2

(4.72)

with
t∫

0

Df t2ng =

t∫

0

dt2n

t2n∫

0

dt2n� 1 :::

t2∫

0

dt1

(4.73)

The functional F n de�ned in Eq. (4.70) and derived in Appendix D can be split up into
three parts

F n = F n
(1) [f t j g; f � (1)

j g; f � (1)
j g]F n

(2) [f t j g; f � (2)
j 0 g; f � (2)

j 0 g]

�Gn
(12) [f t j g; f � (1)

j g; f � (1)
j g; f � (2)

j 0 g; f � (2)
j 0 g] (4.74)

F n
(1) = e

�
q2

0
� ~

nP

j =1
Q(11)

2 (t2j � t2j � 1)

︸ ︷︷ ︸
self-energy

e
�

q2
0

� ~

nP

j 0=1

nP

j =j 0+1
� (1)

j � (1)
j 0 � (11)

jj 0

︸ ︷︷ ︸
blip-blip interaction

e
iq 2

0
� ~

n � 1P

j 0=0

nP

j =j 0+1
� (1)

j � (1)
j 0 X (11)

jj 0

︸ ︷︷ ︸
blip-sojourn interaction

F n
(2) = e

�
q2

0
� ~

nP

j =1
Q(22)

2 (t2j � t2j � 1)

︸ ︷︷ ︸
self-energy

e
�

q2
0

� ~

nP

j 0=1

nP

j =j 0+1
� (2)

j � (2)
j 0 � (22)

jj 0

︸ ︷︷ ︸
blip-blip interaction

e
iq 2

0
� ~

n � 1P

j 0=0

nP

j =j 0+1
� (2)

j � (2)
j 0 X (22)

jj 0

︸ ︷︷ ︸
blip-sojourn interaction

Gn
(12) = e

�
q2

0
� ~

nP

j;j 0=1
� (1)

j � (2)
j 0 � (12)

jj 0

︸ ︷︷ ︸
blip-blip interaction

e
iq 2

0
� ~

 
n � 1P

j 0=0

nP

j =j 0+1
� (1)

j � (2)
j 0 X (12)

jj 0 +
n � 1P

j =0

nP

j 0=j +1
� (2)

j 0 � (1)
j X (21)

j 0j

!

︸ ︷︷ ︸
blip-sojourn interaction

, where F n
(1) describes the �rst anharmonic bond,F n

(2) the second anharmonic bond
and Gn

(12) the interaction between both bonds. The functionalsF n
(1) ; F n

(2) can be treated
exactly as in the one anharmonic bond case, since no interaction is present.
As in the one anharmonic bond case, the functionsQ1=2(t) appear now, but with an
additional index specifying the bond or the interaction between the two bonds.

Q(ab)
1 (t) =

! 0∫

0

d!
Jab(! )

! 2
sin (!t )

Q(ab)
2 (t) =

! 0∫

0

d!
Jab(! )

! 2
(1 � cos (!t )) (4.75)

The functions � (ab)
jj 0 ; X (ab)

jj 0 are de�ned as in [14], only extended for the case of two an-
harmonic bonds

� (ab)
jj 0 = Q(ab)

2 (t2j � t2j 0� 1) + Q(ab)
2 (t2j � 1 � t2j 0) � Q(ab)

2 (t2j � t2j 0) � Q(ab)
2 (t2j � 1 � t2j 0� 1)

X (ab)
jj 0 = Q(ab)

1 (t2j � t2j 0+1 ) + Q(ab)
1 (t2j � 1 � t2j 0) � Q(ab)

1 (t2j � t2j 0) � Q(ab)
1 (t2j � 1 � t2j 0+1 )

(4.76)
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Applying the noninteracting blip approximation (NIBA), an approximation derived by
[14] yields

F n
(1) ;NIBA � e

�
q2

0
� ~

nP

j =1
Q(11)

2 (t2j � t2j � 1)
e

iq 2
0

� ~

nP

j =1
� (1)

j � 1� (1)
j Q(11)

1 (t2j � t2j � 1)

F n
(2) ;NIBA � e

�
q2

0
� ~

mP

k =1
Q(22)

2 (t2j � t2j � 1)
e

iq 2
0

� ~

nP

j =1
� (2)

j � 1� (2)
j Q(22)

1 (t2j � t2j � 1)
(4.77)

, where the same approximations as in the one anharmonic bondcase (see [14] for details)
have been performed

1. X (aa)
jj 0 = 0 ; j 0 6= j � 1; and put X (aa)

j;j � 1 = Q(aa)
1 (t2j � t2j � 1)

2. � (aa)
jj 0 = 0

But now the interaction part Gn
(12) requires an extension of the NIBA. The in
uence

functional describing the interaction between both anharmonic bonds can be simpli�ed
by expanding the NIBA with the following requirements

� (12)
jj = 2Q(12)

2 (t2j � t2j � 1)

� (12)
jj 0 = 0 ; 8j 6= j 0

X (12)
j;j � 1 = X (21)

j � 1;j = Q(12)
1 (t2j � t2j � 1)

X (12)
j;j 0 = X (21)

j 0;j = 0 ; 8j 6= j 0 � 1 (4.78)

, which results in the functionalGn
(12) ;NIBA

Gn
(12) ;NIBA = e

�
2q2

0
� ~

nP

j =1
� (1)

j � (2)
j Q(12)

2 (t2j � t2j � 1)
e

iq 2
0

� ~

nP

j =1

�
� (1)

j � (2)
j � 1+ � (2)

j � (1)
j � 1

�
Q(12)

1 (t2j � t2j � 1)

The �rst approximation of the expanded NIBA lets only blips of di�erent anharmonic
bonds interact with each other at equal times. This keeps theinteraction between both
bonds alive and is also consistent with the normal NIBA. The interaction of blips of
di�erent anharmonic bonds at equal times, can be seen as aself-energyterm between
bond one and two. The second approximation lets the blip interact with its previous
sojourn as in the one anharmonic bond case, but a blip of one anharmonic bond interacts
with the sojourn of the other anharmonic bond, which preceded it in time.

PNIBA
i (t) =






1∑
n=0

(� 1)n � 2nK (i );NIBA
n (t); i = 1; 2

1∑
n=1

(� 1)n � 2nK (i );NIBA
n (t); i = 3; 4
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K (i ); NIBA
n (t) = 2 � (2n� 1)

∑

f � (1)
j ;� (2)

j g

∑

f � (1)
j ;� (2)

j g

t∫

0

Df t2ng F n
(1) ;NIBA [f t j g; f � (1)

j g; f � (1)
j g]

�F n
(2) ;NIBA [f t j g; f � (2)

j g; f � (2)
j g]

�Gn
(12) ;NIBA [f t j g; f � (1)

j g; f � (1)
j g; f � (2)

j g; f � (2)
j g]

(4.79)

F n
(1) ;NIBA = e

�
q2

0
� ~

nP

j =1
Q2(t2j � t2j � 1)

︸ ︷︷ ︸
SE1

e
iq 2

0
� ~

nP

j =1
� (1)

j � 1� (1)
j Q1(t2j � t2j � 1)

︸ ︷︷ ︸
BS1

F n
(2) ;NIBA = e

�
q2

0
� ~

nP

j =1
Q2(t2j � t2j � 1)

︸ ︷︷ ︸
SE2

e
iq 2

0
� ~

nP

j =1
� (2)

j � 1� (2)
j Q1(t2j � t2j � 1)

︸ ︷︷ ︸
BS2

Gn
(12) ;NIBA = e

�
2q2

0
� ~

nP

j =1
� (1)

j � (2)
j Q(12)

2 (t2j � t2j � 1)

︸ ︷︷ ︸
BB12

e
iq 2

0
� ~

nP

j =1

�
� (1)

j � (2)
j � 1+ � (2)

j � (1)
j � 1

�
Q(12)

1 (t2j � t2j � 1)

︸ ︷︷ ︸
BS12

(4.80)

Now the summation of the blip- and sojourn-charges has to be performed. For two
anharmonic bonds this di�ers slightly, from the summation performed in [14].
A straightforward but tedious calculation4 yields

K (i ); NIBA
n (t) =

t∫

0

Df t2ngF (i )
n (f t2ng)

, with the functionals F (i )
n , having been derived in Appendix F, of the following form

F (1)
n (f t2ng) = 2 2n� 1

n∏

j =1

cos
(

2q2
0

� ~
Q+

1 (t2j � t2j � 1)
)

� e�
2q2

0
� ~ Q+

2 (t2j � t2j � 1)

F (2)
n (f t2ng) = 2 2n� 1

n∏

j =1

cos
(

2q2
0

� ~
Q�

1 (t2j � t2j � 1)
)

� e�
2q2

0
� ~ Q �

2 (t2j � t2j � 1) (4.81)

The factor of 22n� 1 in the term F (i )
n (f t2ng) cancels the factor of 2� (2n� 1) in K (i ); NIBA

n (t)
of Eq. (4.79), as it should be, since this term covers then blip-charge-pairs andn � 1
sojourn-charge-pairs, because the initial and �nal sojourn-charges are �xed.
De�ning the function f i (t); i = 1; 2 in the following form

f 1(t) = � 2 cos
(

2q2
0

� ~
Q+

1 (t)
)

� e�
2q2

0
� ~ Q+

2 (t )

f 2(t) = � 2 cos
(

2q2
0

� ~
Q�

1 (t)
)

� e�
2q2

0
� ~ Q �

2 (t ) (4.82)

4details presented in Appendix F
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Expressed in terms ofPNIBA
i (t)

PNIBA
i (t) =

1∑

n=0

(� 1)n

t∫

0

Df t2ng
n∏

j =1

f i (t2j � t2j � 1) (4.83)

In order to calculate the 2n-time integrations, a Laplace transform (see subsection 2.1.1
Laplace Transform) is helpful.

P̃NIBA
i (� ) =

1∫

0

dt e� �t PNIBA
i (t)

=
1∑

n=0

(� 1)n

(
~f i (� )

)n

� n+1
=

1

� + ~f i (� )
(4.84)

, where ~f i (� ) is of course nothing but the Laplace transform of the earlier de�ned f i (t).
Now inverting the Laplace transform, we are able to expressPNIBA

i (t) as

PNIBA
i (t) =

1
2�i

i 1 + �∫

� i 1 + �

d�
e�t

� + ~f i (� )
(4.85)

Now the functions ~f i (� ), respectivelyf i (t) have to be calculated to perform the inverse
Laplace transform. Since we are interested in the long time limit ! 0t � 1 one has to
look �rst at the long time limit of the functions Q�

1=2(t). The following long time limits
can easily be seen using the spectral densitiesJab(! ) of Eqs. (4.41), (4.42) and the
de�nition Eq. (4.45).

Q+
1 (t) �=

2C
! 0

[
Si(! 0t) +

(2 � 4D + D 2)( ! 0t cos(! 0t) � sin(! 0t))
2(! 0t)2

]
! 0t � 1

�
C�
! 0

Q�
1 (t) �=

CD2

2! 0

[
(sin(! 0t) � ! 0t cos(! 0t))

(! 0t)2

]
w0t � 1

� 0

Q+
2 (t) �=

C
4! 0

[

8
 � 8Ci(! 0t) + 8 ln( ! 0t) � (2 � 4D + D 2)

+
(4 � 8D + 2D 2) (cos(! 0t) + ! 0t sin(! 0t) � 1)

(w0t)2

]

w0t � 1
�

C
4! 0

(
8
 + 8 ln( ! 0t) � (2 � 4D + D 2)

) t � tD
�

2C
! 0

(

 + ln( ! 0t)

)

Q�
2 (t) �=

CD2

2! 0

[
1 � cos(! 0t) � ! 0t sin(! 0t)

(w0t)2
+

1
2

]
w0t � 1

�
CD2

4! 0
(4.86)

These long time limits are for the case ofQ+
1 (t); Q�

2 (t) constants, as in the phenomeno-
logical approachQohm

1 (t); Qsuperohm
2 (t) used by Leggett et al. [14].Q�

1 (t); Q+
2 (t) behave
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in the long time limit like Qsuperohm
1 (t); Qohm

2 (t) in Leggett's phenomenological approach.
This strengthens the assumption of treating functions withthe index "+ " as a function
showing ohmic dissipation, whereas the index "� " stands for super-ohmic dissipation.
Leggett et al. do not have to consider the long time limit for the ohmic case, since they
choose their spectral density phenomenologically and hence also their functionsQ1=2(t).
Their choice is made in a way, that allows further simpli�cations, but since we do not
have this choice, the only possible way is an approximation regarding the physically
interesting regime! 0t � 1, which is achieved by the long time limit.
Next the long time approximation presented earlier, is applied for the Laplace transform
of the functions f 1(t); f 2(t) yielding

~f 1(� ) �= � 2! � 2�
0 cos (�� ) � (1 � 2� ) � 2� � 1e� 2�


~f 2(� ) �= � 2� � 1e� �D 2
4 (4.87)

, where the parameter� plays the same role as in Leggett's article [14] and has the
following de�nition

� =
2q2

0C
� ~! 0

(4.88)

The behaviour of the functions ~f 1(� ); ~f 2(� ) presented above can be easily seen. The
only relevant property for our case is the behaviour of thosefunctions for the argument
approaching zero and in�nity. For � ! 1 all functions go to zero, as can easily be seen
in Eqs. (4.87).
The divergence for� ! 0 may appear to give rise to complications. This is not the case.
The function ~f 1(� ) is of order � 2� � 1, exactly as the function for the ohmic case in [14].
The function ~f 2(� ) has a� � 1 pole, as the function describing super-ohmic behaviour in
[14]. That again strengthens the assumption, thatPNIBA

i (t) is either ohmic dissipative,
for the case ofi = 1 and super-ohmic dissipative, for the case ofi = 2.
Now it is possible to treat the two di�erent scenarios analogiously as in [14]. First we
look at the poles ofPNIBA

1 (t).

~f 1(� ) + � = 0
! 0t � 1, � 2(1� � )

ef f � 2� � 1e� 2�
 + � = 0 (4.89)

, with the following de�nition for � ef f

� ef f = [�(1 � 2� ) cos (�� )]
1

2(1� � ) �
(

�
! 0

) �
1� �

(4.90)

For � < 1
2 there are three poles. A branch-cut at� = 0 and

� p2=3 = � ef f e� �

1� � e� i�

2(1� � ) (4.91)

For 1
2 < � < 1 the poles are not on the principal� sheet and hencePNIBA

1 (t) is given
by the branch-cut. For � > 1 the function ~f (� ) no longer yields the leading factor in
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O(� ) with the factor � 2� � 1. Now the term linear in � is the leading term, hence we
can write P̃NIBA

1 (� ) � � � 1, yielding PNIBA
1 (t) = 1, which is nothing but the localisation

phenomenon of Bray and Moore [26].
In the super-ohmic case we have to be careful. Up to now, we considered the NIBA,
which requires considering the blips as a dilute gas. This isachieved by the self-energy of
the blips, which reduces their "length" (in time) compared to the sojourn "length". The
self-energy can be seen in the in
uence functional Eq. (4.74), by the term containing
Q2(t). But in the super-ohmic case, this term approaches a constant for t ! 1 , whereas
it reaches zero in the ohmic case (see Eqs. (4.86)). Due to this, the self-energy no longer
suppresses the blip "length" compared to the sojourn "length", thus the blips cannot be
considered as a dilute gas, and hence the NIBA appears not to bevalid for the super-
ohmic case.
The solution to this problem, has already been discussed in [14] and consists of a slight
modi�cation, which is explained below, that makes the NIBA still a valid approximation.
Splitting up the function Q�

2 (t) into a constant and a time-dependent functionQ�
3 (t)

Q�
2 (t) �=

CD2

4! 0
+ Q�

3 (t)

Q�
3 (t) �=

CD2

2! 0

(
1 � cos(! 0t) � ! 0t sin(! 0t)

(! 0t)2

)
(4.92)

As in [14] the time independent piece ofQ�
2 (t) will be absorbed into the level splitting

� in the following way

�̃ = � e�
2q2

0
� ~ Q �

2 (t= 1 )

= � e� �D 2
4 (4.93)

Now following [14] one can de�ne a dimensionless quantityb � 1 in the following way

q2
0

� ~
Q�

1 (t = �̃ � 1);
q2

0

� ~
Q�

3 (t = �̃ � 1) �
q2

0

~
J� (�̃)

�̃
� b (4.94)

Pulling out the 1
� pole, that can clearly be seen from the fact, thatQ�

1 (t) and Q�
3 (t)

approach zero fort ! 1 , one gets the following equation for �nding the poles of̃P(� )

� 2 + �̃ 2
(

1 + � ~h� (� )
)

= 0 (4.95)

, with ~h� (� ) being the Laplace transform ofh� (t) de�ned as

h� (t) = cos
(

2q2
0

� ~
Q�

1 (t)
)

e�
2q2

0
� ~ Q �

2 (t ) � 1 (4.96)

In the absence of damping (h� = 0), the poles are entirely imaginary� = � i �̃. On
physical grounds the poles will shift slightly o� the imaginary axis and pick up a small
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negative real part. Expanding the above equation around thepoles without damping,
one �nds

� = � i �̃

(

1 �
i �̃
2

+ :::

)

(4.97)

Looking at the lowest order inb, the real and imaginary parts of� are

= (� ) = � �̃

< (� ) = �
�̃ 2

2
< (~h� (� = i �̃)) � � � s

� s =
�̃ 2

2

1∫

0

dt cos(̃� t)h� (t) (4.98)

Now expandingh� (t) in Q�
1=3(t) to lowest order ofb yields

h� (t) =
2q2

0

� ~
Q�

3 (t) + O(b2) (4.99)

With this expansion the integration can be performed

� s =
q2

0 �̃ 2

� ~

1∫

0

dt cos(̃� t)Q�
3 (t)

=
q2

0 �̃ 2

� ~

1∫

0

dt cos(̃� t)

! 0∫

0

d!
J� (! )

! 2
cos(!t )

Now changing the order of integration, yields the �nal resultfor � s

� s =
q2

0 �̃ 2

� ~

! 0∫

0

d!
J� (! )

! 2

1∫

0

dt cos(̃� t) cos(!t )

=
q2

0 �̃ 2

2� ~

! 0∫

0

d!
J� (! )

! 2

1∫

�1

dt cos(̃� t) cos(!t )

=
q2

0 �̃ 2

2~

! 0∫

0

d!
J� (! )

! 2
� (! � �̃)

=
q2

0

2~
J� (�̃) (4.100)

A self-consistent check of the smallness of the dimensionless quantity b, de�ned in Eq.
(4.94), gives the following inequality

� s

�̃
� 1
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Using the results and de�nitions of Eqs. (4.93) and (4.92) oneobtains

� s

�̃
�=

J� (�̃)

�̃

=
CD2

2! 0

(
�
! 0

)2

e� �D 2
2 (4.101)

We know, that �
! 0

is much smaller than one. AsD 2 increases quadratically, the expo-
nential factor also containingD 2, leads to ful�lment of the above inequality.
Performing an inverse Laplace transform of̃PNIBA

2 (� ), with the above calculated complex
conjugate poles� = � � s � i �̃, gives the �nal result

PNIBA
2 (t) = cos(�̃ t)e� � s t (4.102)

This describes under-damped coherent oscillations at frequency �̃ with the damping-
rate � s for the case of super-ohmic dissipation described by the function f 1(t).

4.2.1 Summary
First of all one has to look at howP(t) behaves depending on di�erent initial positions
of the anharmonic bonds. What we see, is that the overall tunnelling process, by which
starting from an initial con�guration and reaching a �nal con�guration is meant, does
not only depend on the initial position, but on the relation of the initial con�guration
to the �nal con�guration. The four tunnelling probabilitie s hence can be reduced to two
di�erent scenarios, because of the simple relation of Eq. (4.63).
The two di�erent overall tunnelling processes describe either tunnelling with length-
change, which is described byP1(t) and shows ohmic dissipation and tunnelling without
length-change, which results in super-ohmic dissipation.For P1(t) a phase transition
occurs depending on� , since now we have purely ohmic dissipation in every tunnelling
transition. For � < 1 there is no localisation, that means both anharmonic bondsspend
on average the same time in each of the two equilibrium positions, whereas the symmetry
becomes broken for� � 1 leading to localisation. That means both anharmonic bonds
spend on average most of their time in the equilibrium position they were initially
prepared in. This has already been calculated for the purelyphenomenological choice of
the spectral density of [14]. The phase transition has been found by [26], as mentioned
before. P2(t) exhibits super-ohmic dissipation and hence tunnelling isnever surpressed.
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Chapter 5

Results and Conclusions

We considered a microscopic model system in 1 dimension withN particles. All parti-
cles interact with their nearest neighbour described by a harmonic potential except the
r anharmonic bonds. Those anharmonic bonds interact througha symmetric double
well potential with each other. The coupling between the harmonic and the anharmonic
bonds have been described by the coupling constantsc� . At �rst we looked at the sim-
plest case of one anharmonic bond (r = 1). Two methods were presented to analytically
separate the harmonic form the anharmonic degrees of freedom. The �rst method is
intuitive, but only applicable to one dimension, whereas the second can be generalized
to d-dimensions. A third method, which is not presented in this thesis, is shown in
the publication [36]. This analytical separation of the harmonic from the anharmonic
degrees of freedom allows us to derive the up to now phenomenologically considered
Caldeira-Leggett Hamiltonian, analytically from a microscopic model.
Next we consider the position dependence of the anharmonic bond in the tunnelling
behaviour. As a result we get, that if the anharmonic bond is located at the border of
the chain, we have a transition from ohmic to super-ohmic dissipation, which is seen in
the frequency dependence ofc� exhibiting a sensitivity of the location of the anharmonic
bond M . That means, the anharmonic bond tunnels between the two minima of the
potential, dissipating energy to the harmonic bath around it. The terms ohmic and
super-ohmic refer to the way the energy is dissipated. The dissipation for low frequen-
cies has the form of a power-law� ! s, where the term ohmic stands fors = 1, while
super-ohmic refers tos > 1. The super-ohmic terms calculated in this thesis yielded
s = 3 for the considered model.
As shown in [26] the quantum-mechanical tunnelling in a symmetric double well poten-
tial under the in
uence of a harmonic bath introducing dissipation, can be mapped one
the one-dimensional Ising-model with inverse-square-lawinteractions R� 2 for the ohmic
case and interactions falling o� likeR� 4 in the super-ohmic case. As has been shown by
Thouless [37] an interaction energy falling o� likeR� n in an one-dimensional system,
shows a phase transition from an "ordered" to a "disordered"phase atn = 2.
The expression "ordered" can be interpreted as the anharmonic bond spending most of
its time in the well it has been initially prepared in. The case of "disordered" refers to
the anharmonic bond spending half of its time in one well and the the other half in the
other well.
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From this we can see, that the case of super-ohmic dissipation refers to the disordered
phase and hence tunnelling is never suppressed. If the anharmonic bond is located in
the bulk, the system shows a much more interesting behaviour. Calculations show, that
in this case the system shows only ohmic dissipation. Ohmic dissipation � ! described
in language of the Ising-model, has an interaction falling o� as R� 2. This is exactly the
critical exponent [37] in an in�nite one-dimensional system, where a phase transition
occurs. For a coupling constant below a critical value, the system will show ohmic dis-
sipative behaviour, where the anharmonic bond tunnels between the two wells as in the
super-ohmic case. But for a coupling stronger than the critical coupling constant, the
system will stop tunnelling back and forth and will remain most of its time in the well it
started in. This is a spontaneous symmetry breaking, which is of the same universality
class as the one-dimensional Ising model with inverse-square-law interactions [26].
The next step was to include a second anharmonic bond into theone-dimensional model.
This leads to indirect interaction of both anharmonic bondsthrough the environment.
There are many possible positions of both bonds, but we focuson both anharmonic
bonds located in the bulk with a �nite, but variable distanceD between them.
The choice of a �nite distanceD can be explained as follows. For the case ofin�nite
distance, both bonds do no longer interact indirectly with each other and hence the
system reduces to two isolated anharmonic bonds and their position dependence. This
has already been discussed in the �rst part of this thesis. The choice of both anharmonic
bonds located in the bulk is due to the following argument. As we saw in the �rst part,
the position of the anharmonic bond in the bulk showed ohmic dissipation and a phase
transition for a coupling constant higher than the criticalvalue. Since we clearly want
to show, that the transition is due to the indirect interaction andnot due to both bonds
being at one of the borders, we chose to consider only the caseof both bonds being in
the bulk.
The �rst problem that had to be solved was the analytical diagonalisation procedure.
Following the �rst method presented in chapter 3.1, we had tochoose the anharmonic
bond positionsM 1; M2 symmetrically around the center of the chain. This allowed to
replace the bond positions and the total chain-lengthN by just two parametersD; N .
Next the calculation of the kernel followed. The kernel appearing in the in
uence Eu-
clidean action is coupled to both anharmonic bonds. That is the reason a mapping like
in the one anharmonic bond case, as done by Bray and Moore [26], is no longer possible.
With a transformation the coupling can be eliminated in the in
uence part, but it is
only shifted to the local part. This results in an direct interaction of the instantons
of both anharmonic bonds, whose e�ect is not fully understood. The kernel K ++

D (� ),
which is achieved after the transformation in the in
uence action exhibits ohmic dis-
sipative behaviour, whereas the the kernelK ��

D (� ) shows a transition to super-ohmic
dissipative behaviour for� � � D . Since the coupling of the instantons in the local part
of the in
uence action occurs, we wanted to put these resultson more stable ground and
hence chose to calculate the tunnelling probability in the way Leggett et al. [14] did, but
generalized to two anharmonic bonds interacting indirectly through the environment.
Using the Feynman-Vernon technique [21] to eliminate the harmonic degrees of freedom
via the path integral formalism, we were able to express the tunnelling probabilities. A
necessary restriction was to set the tunnelling times of both anharmonic bonds equal.
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This restriction has also been applied by Dub�e and Stamp [29], but without mathemati-
cal rigour and with incomprehensible argumentations. We already imply this restrictions
at an earlier point, namely when de�ning the bare tunnellingamplitudes using the spin-
boson approach applied by Leggett et al. [14]. This of coursesimpli�es the calculations
of the tunnelling probability p(t), but also allows only two physically di�erent scenarios
labelled asp1(t) and p2(t). The tunnelling probability p1(t) stands for an initial and �nal
position, where both anharmonic bonds are in equal equilibrium positionsas or al . The
tunnelling is split up in 2n tunnelling transitions, where each transitions means both
anharmonic bonds changing their equilibrium positions from as to al or the other way
around. The calculated spectral density results inp1(t) showing only ohmic dissipation.
This is understandable, since ohmic dissipation already appeared for one anharmonic
bond located in the bulk in chapter 3.3. Tunnelling requiresas in the one anharmonic
bond case a movement of an in�nite mass, which leads to ohmic dissipative tunnelling.
The other scenariop2(t) implies both anharmonic bonds having di�erent initial equi-
librium length as; al and �nal positions. Because of the restriction of both anharmonic
bonds tunnelling at equal times, one of the bonds tunnels from as to al , whereas the
other bond does just the opposite. The total length of the anharmonic bonds stays the
same at each of the 2n tunnelling transitions. The calculated spectral density for this
case is purely super-ohmic. For the case of one anharmonic bond located at the border
of the chain in chapter 3.3, the spectral density is also super-ohmic, hence the result
achieved forp2(t) is not surprising. The calculation of the functionpi (t); i = 1; 2 is
done in analogy to [14] using the NIBA and extending it to the case of two anharmonic
bonds. The extension of the NIBA allows coupling of blips of both anharmonic bonds
at the same time, which can be interpreted as a blip-self-energy. The other extension is
a blip not only coupling with its previous sojourn, but also with the previous sojourn
of the other anharmonic bond.
The �nal results for the tunnelling probability are achieved as in the one anharmonic
case solved by Leggett et al. [14], by Laplace transformation and investigation of the
poles.
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Appendix A

Diagonalisation of the first approach

The separation of the harmonic and anharmonic degrees of freedom by using centre of
mass and relative coordinates of thetotal chain has been described in section "First
Method". The transformation to normal coordinates requires the diagonalisation of
(Tkj ). In the present Appendix the steps of the diagonalisation procedure will be given.
Making use of Eqs. (3.14), (3.15), (3.17) - (3.19) one obtains the harmonic part of the
Hamiltonian Eq. (3.12) with the following symmetric matrix (Tkj )

Tii =

{
2; i = 1; :::; M � 2; M + 2; :::; N � 1
3
2 ; i = M � 1; M + 1

Ti;i +1 =

{
� 1; i = 1; :::; M � 2; M + 1; :::; N � 2

0; i = M � 1

Ti;i +2 =

{
0; i = 1; :::; M � 3; M + 1; :::; N � 3

� 1
2; i = M � 1

(A.1)

Then it is straightforward to solve the eigenvalue equation

N � 1∑

j =1
(j 6=M )

Tkj u(� )
j = � 0

� u(� )
k ; � = 1; :::; N � 2 (A.2)

Writing this equation explicitly, gives

(2 � � 0
� ) u(� )

1 � u(� )
2 = 0; k = 1 (A.3)

(2 � � 0
� ) u(� )

k �
(

u(� )
k+1 + u(� )

k� 1

)
= 0; k = 2; :::; M � 2; M + 2; :::; N � 2 (A.4)

(
3
2

� � 0
�

)
u(� )

M � 1 � u(� )
M � 2 �

1
2

u(� )
M +1 = 0; k = M � 1 (A.5)

(
3
2

� � 0
�

)
u(� )

M +1 � u(� )
M +2 �

1
2

u(� )
M � 1 = 0; k = M + 1 (A.6)

(2 � � 0
� ) u(� )

N � 1 � u(� )
N � 2 = 0; k = N � 1 (A.7)
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The form of Eq. (A.4) suggests an ansatz of plain waves for the left and the right part
of the form

u(� )
k =

{
A+ eiq � k + A � e� iq � k k = 1; :::; M � 2

B+ eiq � k + B � e� iq � k k = M + 2; :::; N � 1
(A.8)

Using this ansatz it is possible to include Eq. (A.3) in Eq. (A.4)and Eq. (A.7) in

Eq. (A.6) using the requirementsu(� )
0 = u(� )

N
!= 0. These requirements are boundary

conditions of anopen chain, that lead to q� 2 (0; � ). 0 and � are not included, because
these values do not lead to non-zero eigenvectors. Applying these boundary conditions
yields

u(� )
0 = A+ + A �

!= 0 , A � = � A+

u(� )
N = B+ eiq � N + B � e� iq � N != 0 , B � = � B+ e2iq � N (A.9)

Using those results in Eqs. (A.4) and (A.6) leads to

u(� )
k = Nb�

{
sin (q� k) ; k = 1; :::; M � 2 ; Nb� = 2iA +

b� sin (q� [N � k]) ; k = M + 2; :::; N � 1 ; b� = B +
A +

eiq � N

� 0
� = 2

(
1 � cos(q� )

)
= m� � (A.10)

The eigenvector componentsu(� )
M � 1; u(� )

M +1 can be calculated straightforward by using the
results obtained and plugging them into Eq. (A.4) for the cases of k = M � 2. Hence
the full set of eigenvectors reads

u(� )
k = Nb�

{
sin(q� k); 1 � k � M � 1

b� sin(q� [N � k]); M + 1 � k � N � 1
(A.11)

with N � as the normalisation constant andb� being a coe�cient depending on the wave
number q� , the location M of the anharmonic bond and the total length of the chain
N . The coe�cient b� can be obtained from Eq. (A.5) by straightforward calculation,
yielding

b� =
2 sin (q� M ) � sin (q� [M � 1])

sin (q� [N � M � 1])
(A.12)

Using (A.6) and the result obtained from (A.12), it is possible to obtain a transcendental
equation of the form

sin (q� [N � M � 1]) sin (q� [M � 1]) �
(

2 sin (q� [N � M ]) � sin (q� [N � M � 1])
)

�
(

2 sin (q� M ) � sin (q� [M � 1])
)

= 0 :(A.13)

This equation cannot be solved analytically. Hence a separation of the parameters
N; M using trigonometric identities is useful for a further discussion. The main steps of
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the separation will be shown. By performing the multiplication of the two factors the
transcendental equation can be put into

sin (q� [N � M � 1]) sin (q� M ) + sin ( q� [N � M ]) sin (q� [M � 1])

� 2 sin (q� [N � M ]) sin (q� M ) = 0 (A.14)

now separating the parametersN; M and assuming sin (q� N ) 6= 0 leads to

sin (q� N )

[(
cos (q� [M + 1]) sin (q� M ) + cos (q� M ) sin (q� [M � 1]) � 2 cos (q� M ) sin (q� M )

)

� cot (q� N )
(

sin (q� [M + 1]) sin (q� M ) + sin ( q� M ) sin (q� [M � 1]) � 2 sin2 (q� M )
)]

= 0

Using the assumption sin (q� M ) 6= 0 allows to write the equation as

cot (q� N ) =
cos (q� [M + 1]) + cot ( q� M ) sin (q� [M � 1]) � 2 cos (q� M )

sin (q� [M � 1]) + sin (q� [M + 1]) � 2 sin (q� M )

The identity sin(x) + sin( y) = 2 sin
( x+ y

2

)
cos

( x� y
2

)
applied to the denominator gives

cot (q� N ) =
2 cos (q� M ) � cos (q� [M + 1]) � cot (q� M ) sin (q� [M � 1])

4 sin (q� M ) sin2
(q�

2

)

In the numerator the parameterM can be isolated leading to

cot (q� N ) =
2 cos (q� M )

(
1 � cos (q� )

)
+ sin ( q� M ) sin (q� )

(
1 + cot2 (q� M )

)

4 sin (q� M ) sin2
(q�

2

)

Now the two additive factors of the numerator can be separatedand using basic trigono-
metric identities one gets

cot(q� N ) = cot( q� M ) +
cot( q�

2 )

2 sin2(q� M )︸ ︷︷ ︸
f (q� )

(A.15)

Since the transcendental Eq. (A.15) is not analytically solvable a detailed discussion for
approximative solutions is given. The l.h.s. behaves as follows

lim
q� & ��

N

cot (q� N ) = 1 ; lim
q� % ��

N

cot (q� N ) = �1 ; � = 0; :::; N (A.16)

which means the l.h.s.oscillatesin every interval
[

��
N ; � (� +1)

N

]
; � = 0; :::; N � 1 from

1 to �1 . The r.h.s. shows this behaviour:

lim
q� & ��

M

f (q� ) = 1 ; lim
q� % ��

M

f (q� ) = 1 ; � = 1; :::; M � 1

lim
q� % �

f (q� ) = �1 (A.17)
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Since M < N and with the results obtained from Eqs. (A.16), (A.17), it is easy to

see that there is exactly one solution in every interval
[

��
N ; � (� +1)

N

]
for � = 1; :::; N � 2,

leading to the expected number ofN � 2 solutions. The remaining two degrees of freedom
are the centre of mass and the anharmonic bond coordinateX c and qM , respectively.
The solutions can hence be written as

q� =
�
N

� � + � � ; � = 1; :::; N � 2 (A.18)

with 0 � � � < �
N . That means � � is of the form � � = N � � ; � � 1. For � = O(1) the

form of � � can be determined from the transcendental equation by applying Eq. (A.18)
and using basic trigonometric identities and the followingbasic approximations

cos(x � y) = cos(x) cos(y) � sin(x) sin(y)

sin(x � y) = sin( x) cos(y) � cos(x) sin(y)

sin(x)
x� 1
� x (A.19)

cos(x)
x� 1
� 1 (A.20)

The transcendental equation can be written as

cos(� � N )
sin(� � N )

=
cos

(
��M

N

)
cos(� � M ) � sin

(
��M

N

)
sin(� � M )

cos
(

��M
N

)
sin(� � M ) + sin

(
��M

N

)
cos(� � M )

︸ ︷︷ ︸
O(1)

+
1 � ��

4N � �

2
[

��
2N + � �

2

] [
sin

(
��M

N

)
+ � � M

2 cos
(

��M
N

)]2

︸ ︷︷ ︸
O(N )

(A.21)

where it is obvious that the �rst term is of O(1), since the denominator is non-zero and
all trigonometric functions are ofO(1). The second term shows a numerator ofO(1)
and a denominator ofO

(
1
N

)
in leading order. To ful�l this equation the l.h.s. must be

of order O(N ). This can only be achieved if� � = O (N � � ) ; � > 1. By assuming this
and Taylor expanding the l.h.s. one sees immediately that� � is of order O

(
1

N 2

)
. The

exact result is

� � =
�� sin2

(
��M

N

)

N 2
+ O

(
1

N 3

)
(A.22)

In the thermodynamic limit N ! 1 , q� becomes continuous within (0; � ) with constant
density which implies a constant low energy density of states.
The normalisation constantN � and the coe�cient b� are functions ofq� ; M and N . The
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normalisation reads explicitly

1 = N 2
b�

[
M � 1∑

k=1

sin2(q� k) + b2
�

N � 1∑

k= M +1

sin2(q� [N � k])

]

=
N 2

b�

2

[
M � 1∑

k=1

(
1 � cos(2q� k)

)
+ b2

�

N � 1∑

k= M +1

(
1 � cos(2q� [N � k])

)
]

=
N 2

b�

2

[

(M � 1) + b2
� (N � M � 1) �

M � 1∑

k=1

cos(2q� k) � b2
�

N � M � 1∑

k0=1

cos(2q� k0)

]

) N b� =

√
2

(M � 1) + b2
� (N � M � 1) � sin(q� [M � 1]) cos(q� M )+ b2

� sin(q� (N � M � 1) cos(q� [N � M ])
sin(q� )

(A.23)

and in the limit of large N (or low frequency behaviour! � � 1) we get

Nb� �

√
2
N

(A.24)
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Appendix B

Diagonalisation of the second
approach

In this Appendix the diagonalisation procedure of the harmonic coordinates will be
discussed, since in the second approach the momenta alreadyare diagonal. As stated
in section "Second Method" equal massesmn = m are considered. Applying Eq. (3.35)
to Eq. (3.34) yields

H = Hd + Hharm + H int

Hd =
� 2

M

m
+ V0(qM ) +

C
4

q2
M

Hharm =
N � 1∑

n =1
n 6=M;M +1

p0
n

2

2m
+

C
2

N � 2∑

n=1

(
x0

n+1 � x0
n � a0

n

)2

︸ ︷︷ ︸
Vharm (f x0

n g)

H int = �
C
2

(
x0

M +1 � x0
M � 1 � a0

M � a0
M � 1

)
qM (B.1)

A transformation

x0
n

(eq) = x0
1 +

n� 1∑

i =1

a0
i

x0
n = x0

n
(eq) + u0

n (B.2)

de�ning an equilibrium position x0(eq)
n , allows to rewrite the harmonic Hamiltonian as

Hharm =
N � 1∑

n =1
n 6=M;M +1

p0
n

2

2m
+

C
2

N � 2∑

n=1

(u0
n+1 � u0

n )2 (B.3)

Expanding the harmonic potentialVharm (f x0
ng) around the equilibrium con�guration

Vharm

(
f x0(eq)

n g
)

up to quadratic order, yields

Vharm (x0
n ) = V

(
x0

n
(eq) + u0

n

)

︸ ︷︷ ︸
constant

+
@Vharm

@x0k

(
x0

n
(eq)

)
u0

k

︸ ︷︷ ︸
0

+
1
2

@2Vharm

@x0k @x0l

(
x0

n
(eq)

)

︸ ︷︷ ︸
V 0

kl

u0
ku0

l (B.4)
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This is not an approximation, sinceVharm is a harmonic potential. The variableu0
n

represents the displacement ofx0
n from the equilibrium con�guration x0(eq)

n .
Introducing mass weighted coordinates

~u0
n =

p
m u0

n

~p0
n =

p0
np
m

(B.5)

yields the harmonic Hamiltonian

Hharm =
1
2

N � 1∑

n=1

(~p0
n )2 +

1
2

N � 1∑

k;l =1

Ṽ 0
kl ~u

0
k ~u0

l (B.6)

With the nonzero elements of the symmetric matrix
(

Ṽ 0
kl

)
read explicitly

Ṽ 0
kk =

C
m

{
1; k = 1; M; N � 1

2; k = 2; :::; N � 2

Ṽ 0
k;k +1 =

C
m

{
� 1; k = 1; M � 2; M + 1N � 2

� 1p
2
; k = M � 1; M

(B.7)

Diagonalising this matrix in the standard way

N � 1∑

k =1
(6=M � 1;M )

Ṽ 0
kl e

(� )
k = ~� � e(� )

l (B.8)

and considering the remaining equations (k = M � 1; M; M + 1), which yield a non-
trivial solution if a corresponding determinant vanishes.This leads to the following
mass weighted eigenvectors and eigenvalues (the calculation for k 6= M � 1; M; M + 1
is absolutely analogous to the procedure in Appendix A Eqs. (A.3)-(A.11)) and the
determinant condition is a straightforward calculation, yielding

e(� )
n = Ñ~b�

{
cos

(
~x � [n � 1

2]
)

; n = 1; :::; M � 1
~b� cos

(
~x � [N � n � 1

2]
)

; n = M + 1; :::; N � 1

e(� )
M =

p
2Ñ~b�

cos
(

~x �

[
M �

1
2

])

~� � =
2C
m

(1 � cos(~x � )) (B.9)

where ~x � are the wave numbers used in the ansatz (which is equivalent in the form to
the ansatz used in Appendix A Eq. (A.8)). The other parameters are the normalisation
constant Ñ~b�

and a coe�cient ~b� describing the position dependence of the anharmonic
bond. The parameters are functions depending on ~x � ; N and M . Their explicit expres-
sion are

~b� =
cos

(
~x �

[
M � 1

2

])

cos
(
~x �

[
N � M � 1

2

]) (B.10)
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the calculation of the normalisation constant

1 = Ñ 2
~b�

[
M � 1∑

k=1

cos2
(

~x �

[
k �

1
2

])
+ 2 cos2

(
~x �

[
M �

1
2

])

+ ~b2
�

N � 1∑

k= M +1

cos2
(

~x �

[
N � k �

1
2

])]

=
Ñ 2

~b�

2

[
M∑

k=1

(
1 + cos(2~x � k) cos(~x � ) + sin(2~x � k) sin(~x � )

)
+ 2 cos2

(
~x �

[
M �

1
2

])

+ ~b2
�

N � 1∑

k= M +1

(
1 + cos(2~x � [N � k]) cos(~x � ) + sin(2~x � [N � k]) sin(~x � )

)]

(B.11)

yields

Ñ~b�
=

√
2

denom

denom = M � 1 + ~b2
� [N � M � 1] + 2 cos2

(
~x �

[
M �

1
2

])

+
sin(~x � [M � 1]) cos(~x � [M � 1]) + ~b2

� sin(~x � [N � M � 1]) cos(~x � [N � M � 1])
sin(~x � )

(B.12)

The determinant condition for the equations ~e(� )
n with n = M � 1; M and M + 1 not

only yield these eigenvectors, but also the following transcendental equation (obtaining
this equation is done absolutely analogous to Appendix A Eq. (A.13))

2(� 1 + 2 cos(~x � )) =
cos

(
~x � [M � 3

2]
)

cos
(
~x � [M � 1

2]
) +

cos
(
~x � [N � M � 3

2]
)

cos
(
~x � [N � M � 1

2]
) (B.13)

This transcendental equation looks di�erent from the equation of the �rst approach
Eq. (A.15), but after the use of some trigonometric identities, their equivalence can
be shown. This will be presented here in a few steps with some comments. First the
separation ofN (and assuming sin (~x � N ) 6= 0) is done leading to

cot(~x � N ) = �
sin

(
~x �

[
M + 1

2

])
cos

(
~x �

[
M � 3

2

])
+ sin

(
~x �

[
M + 3

2

])
cos

(
~x �

[
M � 1

2

])

denominator

�

[
4 cos (~x � ) � 2

]
sin

(
~x �

[
M + 1

2

])
cos

(
~x �

[
M � 1

2

])

denominator
(B.14)

denominator = cos
(

~x �

[
M +

1
2

])
cos

(
~x �

[
M �

3
2

])

+ cos
(

~x �

[
M +

3
2

])
cos

(
~x �

[
M �

1
2

])

�
[
4 cos (~x � ) � 2

]
cos

(
~x �

[
M +

1
2

])
cos

(
~x �

[
M �

1
2

])
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The next step is to further simplify the expression using thefollowing identities

cos(x) cos(y) =
1
2

(cos(x � y) + cos(x + y)) ;

sin(x) cos(y) =
1
2

(sin(x � y) + sin( x + y)) ;

cos(2x) = 2 cos2(x) � 1 sin(2x) = 2 sin(x) cos(x) (B.15)

, this yields

cot(~x � N ) =
2 sin

(
~x �
2

) [
2 sin (2~x � M ) sin

(
~x �
2

)
+ cos

(
~x �
2

)]

2 sin2
(

~x �
2

) [
1 � cos (2~x � M )

]

Now only a few minor steps using the trigonometric identitiesgiven above have to be
done to get to the same form as in Eq. (A.15)

cot(~x � N ) = cot(~x � M ) +
cot

(
~x �
2

)

2 sin2(~x � M )
(B.16)

This equation is absolute equivalent to (A.15) by just replacing the wave numberq�

used in the �rst approach, by the wave number used in the second approach ~x � . Hence
this transcendental equation yields of course the exact same solutions as in the �rst
approach.
As mentioned at the end of section "Second Method" the equivalence of the normalisa-
tion constants of the �rst Nb� and the secondÑ~b�

method has to be proven. Comparing
the extensive part of both normalisation constants from Eq.(A.23) and Eq. (B.12) one
gets

N ext:
b�

=

√
2

(M � 1) + b2
� (N � M � 1)

Ñ ext:
~b�

=

√
2

M � 1 + ~b2
� [N � M � 1]

(B.17)

To show that the extensive parts of both normalisation constants are identical one has
to check whether the following equation holds

b2
�

?= ~b2
� (B.18)

Taking the square root and using the de�nitions of Eq. (A.12) and Eq. (B.10) yields

2 sin (q� M ) � sin (q� [M � 1])
sin (q� [N � M � 1])

= �
cos

(
q�

[
M � 1

2

])

cos
(
q�

[
N � M � 1

2

]) (B.19)
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The "+" option is not ful�lled in general, but the " � " option yields the transcendental
equation Eq. (B.16) hence showing the equivalence. The mainsteps to show how to
achieve the transcendental equation are shown. Bringing both sides of Eq. (B.19) on a
common denominator yields

(
2 sin (q� M ) � sin (q� [M � 1])

)
cos

(
q�

[
N � M �

1
2

])

+ sin ( q� [N � M � 1]) cos
(

q�

[
M �

1
2

])
= 0 (B.20)

Separation ofN and assuming sin(q� N ) 6= 0 as before leads to

cot (q� N ) =
Z
N

Z = cos (q� [M + 1])
(

cos (q� M ) cos
(q�

2

)
+ sin ( q� M ) sin

(q�

2

))

� sin
(

q�

[
M +

1
2

]) (
sin (q� M ) cos (q� ) � cos (q� M ) sin (q� ) � 2 sin (q� M )

)

N = sin ( q� [M + 1])
(

cos (q� M ) cos
(q�

2

)
+ sin ( q� M ) sin

(q�

2

))

+ cos
(

q�

[
M +

1
2

]) (
sin (q� M ) cos (q� ) � cos (q� M ) sin (q� ) � 2 sin (q� M )

)

Z and N can be brought in the following form by applying trigonometric identities just
like those used above

Z = cos
(q�

2

)
+ 2 sin

(q�

2

)
sin (q� M ) cos (q� M )

N = 2 sin
(q�

2

)
sin2 (q� M ) (B.21)

With that one can immediately see the equivalence of both (extensive) normalisation
constants.
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Appendix C

Diagonalisation for two anharmonic
bonds

The diagonalisation of the harmonic kinetic part of the Hamiltonian for D � 2

Tharm =
1
m

N � 1∑

k;l =1
6=M 1 ;M 2

Tkl pkpl (C.1)

with the nonzero elements of the symmetric matrix (Tkl ) de�ned as

Tkk =

{
2; k = 1; :::; M1 � 2; M1 + 2; :::; M2 � 2; M2 + 2; :::; N � 1
3
2; k = M 1 � 1; M1 + 1; M2 � 1; M2 + 1

Tk;k +1 = � 1; k = 1; :::; M1 � 2; M1 + 2; :::; M2 � 2; M2 + 2; :::; N � 2

TM i � 1;M i +1 = �
1
2

; i = 1; 2 (C.2)

can be done in the standard way. The eigenvalue equation
N � 1∑

l =1
l 6=M 1;M 2

Tkl u
(� );�
l = � (� )

� u(� );�
k (C.3)

reads explicitly

(2 � � (� )
� )u(� );�

k �
(

u(� );�
k+1 + u(� );�

k� 1

)
= 0;






1 � k � M 1 � 2

M 1 + 2 � k � M 2 � 2

M 2 + 2 � k � N � 1

(C.4)

(
3
2

� � (� )
�

)
u(� );�

M 1� 1 � u(� );�
M 1� 2 �

1
2

u(� );�
M 1+1 = 0; k = M 1 � 1 (C.5)

(
3
2

� � (� )
�

)
u(� );�

M 1+1 � u(� );�
M 1+2 �

1
2

u(� );�
M 1� 1 = 0; k = M 1 + 1 (C.6)

(
3
2

� � (� )
�

)
u(� );�

M 2� 1 � u(� );�
M 2� 2 �

1
2

u(� );�
M 2+1 = 0; k = M 2 � 1 (C.7)

(
3
2

� � (� )
�

)
u(� );�

M 2+1 � u(� );�
M 2+2 �

1
2

u(� );�
M 2� 1 = 0; k = M 2 + 1 (C.8)
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The equation above is solved by the ansatz

u(� );�
k = N �;�






sin(q(� )
� k); 1 � k � M 1 � 1

b(s)
� cos(q(s)

� (M � k)); M1 + 1 � k � M 2 � 1

b(a)
� sin(q(a)

� (M � k)); M1 + 1 � k � M 2 � 1

sin(q(� )
� (N � k)); M2 + 1 � k � N � 1

where the parameter� can take twovaluessymmetric and antisymmetric and the vari-
able M represents "the centre" of the chain and depends on the totalchain-length N
being even (M = N

2 ) or odd (M = N +1
2 ). The eigenvalues can be achieved by using the

ansatz and applying it to Eqs. (C.4). They are

� (� )
� = 2

(
1 � cos

(
q(� )

�

))
(C.9)

The ansatz fork = 1; :::; M1 � 1; M2 + 1; :::; N � 1 is motivated by the analogy seen from
the discussion of the one anharmonic bond case (see Appendix A). Since the defects are
chosen symmetric with respect to the centre of the chainM , Eq. (C.6) is equivalent
to Eq. (C.7). The same counts for Eqs. (C.5) and (C.8).The ansatz for the case of
M 1 + 1 � k � M 2 � 1 has been done using plane waves of the form

u(� );�
k = A (� )

+ eiq(� )
� k + A (� )

� e� iq � )
� k (C.10)

and following the same symmetry argument used before. That means

� = symmetric

u(� );s
M 1+1

!= u(� );s
M 2� 1

u(� );s
M 1+2

!= u(� );s
M 2� 2

... !=
... (C.11)

� = antisymmetric

u(� );a
M 1+1

!= � u(� );a
M 2� 1

u(� );a
M 1+2

!= � u(� );a
M 2� 2

... !=
... (C.12)

The coe�cient is de�ned as

b(s)
� = 2A (s)

+ e
iq

(s)
� N

2 ; A(s)
� = A (s)

+ eiq(s)
� N

b(a)
� = 2iA (a)

+ e
iq

(a)
� N

2 ; A(a)
� = � A (a)

+ eiq(a)
� N (C.13)
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and its value is easily derived using the ansatz and taking Eqs. (C.5), (C.7). The
procedure is analogous to the one anharmonic bond case (see Appendix A). For N
being even it reads as

beven;(� )
� =






2 sin
�

q(s)
� [ N � D

2 ]
�

� sin
�

q(s)
� [ N � D

2 � 1]
�

cos
�

q(s)
� [ D

2 � 1]
� ; symmetric

2 sin
�

q(a)
� [ N � D

2 ]
�

� sin
�

q(a)
� [ N � D

2 � 1]
�

sin
�

q(a)
� [ D

2 � 1]
� ; antisymmetric

(C.14)

whereas forN being odd, there is only a slight di�erence

bodd;(� )
� =






2 sin
�

q(s)
� [ N � D

2 ]
�

� sin
�

q(s)
� [ N � D

2 � 1]
�

cos
�

q(s)
� [ D � 1

2 ]
� ; symmetric

2 sin
�

q(a)
� [ N � D

2 ]
�

� sin
�

q(a)
� [ N � D

2 � 1]
�

sin
�

q(a)
� [ D � 1

2 ]
� ; antisymmetric

(C.15)

Since the thermodynamic limit is taken later on, the di�erence between even and odd
N disappear like it was discussed in the one anharmonic bond case. This is the reason,
that from now on, only N being even will be discussed. For easier calculation only
the parametersN; D are used from now on. All transformations necessary to achieve
functions dependent only onN; D are:

M 1 = N � D
2

M 2 = N + D
2

The transcendental equations for the symmetric and antisymmetric case arise from Eqs.
(C.6), (C.8) and the explicit calculation will be shown for the symmetric case (the
antisymmetric case is done analogously). The transcendental equation in the symmetric
case reads as

N �;s

[(
2 cos

(
q(s)

�

)
�

1
2

)
b(s)

� cos
(

q(s)
�

[
D
2

� 1
])

� b(s)
� cos

(
q(s)

�

[
D
2

� 2
])

�
1
2

sin
(

q(s)
�

[
N � D

2
� 1

])]

= 0 (C.16)

Using the fact, that the normalisation constant is not zero the transcendental equation
can be put into the following form

[

cos

(
Dq(s)

�

2

)

�
1
2

cos
(

q(s)
�

[
D
2

� 1
])]

b(s)
� =

1
2

sin
(

q(s)
�

[
N � D

2
� 1

])

and plugging in the result of Eq. (C.15) for the coe�cient, the transcendental equation
can be further simpli�ed into

2 sin
(

q(s)
�

[
N � D

2

])
cos

(
q(s)

� D
2

)

� sin
(

q(s)
�

[
N � D

2
� 1

])
cos

(
q(s)

� D
2

)

� sin
(

q(s)
�

[
N � D

2

])
cos

(
q(s)

�

[
D
2

� 1
])

= 0
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Now using the following trigonometric identity sin(x) cos(y) = 1
2

(
sin(x + y)+sin( x � y)

)

the transcendental equation transforms to

sin
(

q(s)
�

[
N
2

� D
])

+ sin

(
q(s)

� N
2

)

� sin
(

q(s)
�

[
N
2

� 1
])

�
1
2

[

sin
(

q(s)
�

[
N
2

� D � 1
])

+ sin
(

q(s)
�

[
N
2

� D + 1
])]

= 0

The next trigonometric identities used are sin(x) � sin(y) = 2 sin
( x� y

2

)
cos

( x� y
2

)
. With

those identities the equation takes the form

sin
(

q(s)
�

[
N
2

� D
]) [

1 � cos
(
q(s)

�

)
]

+ 2 cos
(

q(s)
�

[
N � 1

2

])
sin

(
q(s)

�

2

)

= 0

Sinceq(s)
� 2 (0; � ) (due to the open chain) the factor sin

(
q(s)

�
2

)
is never zero and can be

cancelled out by division, giving

sin
(

q(s)
�

[
N
2

� D
])

sin

(
q(s)

�

2

)

+ cos
(

q(s)
�

[
N � 1

2

])
= 0

The discussion of this transcendental equation is more descriptive if the parameters
N; D are separated. Using basic trigonometric identities one gets

[

sin

(
q(s)

� N
2

)

cos
(
q(s)

� D
)

� cos

(
q(s)

� N
2

)

sin
(
q(s)

� D
)
]

sin

(
q(s)

�

2

)

+ cos

(
q(s)

� N
2

)

cos

(
q(s)

�

2

)

+ sin

(
q(s)

� N
2

)

sin

(
q(s)

�

2

)

= 0

Again cancelling a factor of sin
(

q(s)
�
2

)
yields

sin

(
q(s)

� N
2

) [

cos
(
q(s)

� D
)

+ 1

]

= cos

(
q(s)

� N
2

) [

sin
(
q(s)

� D
)

� cot

(
q(s)

�

2

)]

Assuming cos
(

q(s)
� D

2

)
6= 0 the �nal forms (the antisymmetric requires sin

(
q(a)

� D
2

)
6= 0,

is also presented), �t for discussion are achieved

symmetric tan

(
q(s)

� N
2

)

=
sin(q(s)

� D) � cot
(

q(s)
�
2

)

2 cos2
(

q(s)
� D

2

)

︸ ︷︷ ︸
f s

�
q(s)

� ;D
�

(C.17)

antisymmetric cot

(
q(a)

� N
2

)

=
sin(q(a)

� D) + cot
(

q(a)
�
2

)

2 sin2
(

q(a)
� D

2

)

︸ ︷︷ ︸
f a

�
q(a)

� ;D
�

(C.18)
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Since both transcendental equations are not analytically solvable a detailed discussion
for the approximative solutions is given. Considering the symmetric case, the left hand
side (l.h.s.) shows divergences forq(s)

� = 2� � 1
N � ; � = 1; :::; N

2 . The form of these
divergences show the following behaviour

lim
q(s)

� & 0
tan

(
q(s)

� N
2

)

= 0; lim
q(s)

� % �
tan

(
q(s)

� N
2

)

= 0 ;

lim
q(s)

� & 2� � 1
N �

tan

(
q(s)

� N
2

)

= �1 ; lim
q(s)

� % 2� � 1
N �

tan

(
q(s)

� N
2

)

= 1 ; � = 1; :::;
N
2

(C.19)

which means the l.h.s.oscillatesfrom �1 to 1 in every interval [2� � 1
N �; 2� +1

N � ] ; � =
1; :::; N

2 � 1, except for the �rst interval [0; �
N ], where the oscillation starts at 0 and the

last interval where the oscillation ends at 0.
The right hand side (r.h.s.) f s

(
q(s)

� ; D
)

has divergences atq(s)
� = 2� � 1

D � ; � = 1; :::; D
2 .

Looking at the form of these divergences show the following behaviour

lim
q(s)

� & 0
f s

(
q(s)

� ; D
)

= �1 ; lim
q(s)

� % �
f s

(
q(s)

� ; D
)

= 1 ;

lim
q(s)

� & 2��
D

f s
(
q(s)

� ; D
)

= �1 ; lim
q(s)

� % 2��
D

f s
(
q(s)

� ; D
)

= �1 ; � = 1; :::;
D
2

(C.20)

Since D < N it is easy to see, that in the �rst interval [0; �
N ] and the last interval[

(N � 1)�
N ; �

]
there is no intersection of the l.h.s. and the r.h.s.. All other intervals have

exactly one intersection, this reduces the total number of solutions to N
2 � 1 for the

symmetric case.
Regarding the case ofD = O(N ) we are allowed to chooseD = N

2 , since it does not
matter how large D exactly is, the only important thing is, that it scales with N . In
this case, we get

q(s)
� =

2� � 1
N � 1

� (C.21)

as exact solution.
The same discussion has to be done for the antisymmetric case. The l.h.s. has diver-
gences atq(a)

� = 2��
N ; � = 1; :::; N

2 . The form of these divergences show the following
behaviour

lim
q(a)

� & 0
cot

(
q(a)

� N
2

)

= 1 ; lim
q(a)

� % �
cot

(
q(a)

� N
2

)

= 0 ;

lim
q(a)

� & 2��
N

cot

(
q(a)

� N
2

)

= 1 ; lim
q(a)

� % 2��
N

cot

(
q(a)

� N
2

)

= �1 ; � = 1; :::;
N
2

� 1

(C.22)
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which means the l.h.s.oscillatesfrom 1 to �1 in every interval [2��
N ; 2� (� +1)

N ] ; � =
0; :::; N

2 � 1 The r.h.s. diverges forq(a)
� = 2��

D � = 1; :::; D
2 . The divergences behave as

follows

lim
q(a)

� & 0
f a

(
q(a)

� ; D
)

= 1 ; lim
q(a)

� % �
f a

(
q(a)

� ; D
)

= 0;

lim
q(a)

� & 2��
D

f a
(
q(a)

� ; D
)

= 1 ; lim
q(a)

� % 2��
D

f a
(
q(a)

� ; D
)

= 1 (C.23)

Since D < N it is easy to see, that in the �rst interval [0; 2�
N ] and the last interval[

(N � 1)�
N ; �

]
there is no intersection of the l.h.s. and the r.h.s.. All other intervals have

exactly one intersection, this reduces the total number of solutions to N
2 � 2 for the

antisymmetric case.
ConsideringD = O(N ), again choosingD = N

2 , we get the exact result

q(a)
� =

2(2� � 1)
N � 2

� ; � = 1; :::;
N
4

� 1

q(a)
� =

4��
N

; � = 1; :::;
N
4

� 1 (C.24)

Note that through the choice ofD = M 2 � M 1 and N = M 2 + M 1 even, N
4 must be an

integer.
For even N the number of symmetric and antisymmetric solutions add up to a total
number of N � 3 solutions as it should be.
Now the case of an oddN has to be discussed. Even though the transcendental equa-
tions di�er slightly from the ones achieved from evenN one immediately sees, that the
symmetric case and the antisymmetric case provideN � 3

2 solutions each, for the same
reasons as discussed before. As before adding up the symmetric and the antisymmetric
case leads toN � 3 solutions of the transcendental equation as it should be.
In the thermodynamic limit (N ! 1 ) both cases (N being even or odd) yield homoge-
neously distributed solutionsq(� )

� 2 (0; � ).
That is the reason why the normalisation constant will only be calculated forN being
even and henceM = N

2 . Using the eigenvectors one can calculate the normalisation
constant for both cases (symmetric and antisymmetric). It yields

1 = ( N �;s )2

[
M 1� 1∑

k=1

sin2
(
q(s)

� k
)

+
(
b(s)

�

)2
M 2� 1∑

k= M 1+1

cos2
(

q(s)
�

[
N
2

� k
])

+
N � 1∑

k= M 2+1

sin2
(
q(s)

� [N � k]
)
]

and

1 = ( N �;a )2

[
M 1� 1∑

k=1

sin2
(
q(a)

� k
)

+
(
b(a)

�

)2
M 2� 1∑

k= M 1+1

sin2

(
q(a)

�

[
N
2

� k
])

+
N � 1∑

k= M 2+1

sin2
(
q(a)

� [N � k]
)
]

(C.25)
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The calculation is done in the same manner as in the one anharmonic bond case. Re-
placing M 1 by N � D

2 and M 2 by N + D
2 , yields the �nal results

N �;s =

√√√√
2

N � D � 1 � sin(q(s)
� [N � D � 1])

sin(q(s)
� )

+
(

b(s)
�

)2 [
D � 1 + sin(q(s)

� [D � 1])

sin(q(s)
� )

] (C.26)

and

N �;a =

√√√√
2

N � D � 1 � sin(q(a)
� [N � D � 1])

sin(q(a)
� )

+
(

b(a)
�

)2 [
D � 1 � sin(q(a)

� [D � 1])

sin(q(a)
� )

] (C.27)

The low frequency limit (q(� )
� � 1) has to be discussed in detail. Starting with the

coe�cient b(� )
� for the symmetric case (only the symmetric will be shown, theprocedure

for the antisymmetric is identical) �rst a separation of the arguments of Eq. (C.15) is
performed

b(s)
� =

2 sin
(

q(s)
� N

2

)
cos

(
q(s)

� D
2

)
� 2 cos

(
q(s)

� N
2

)
sin

(
q(s)

� D
2

)

cos
(

q(s)
�

[
D
2 � 1

])

�
sin

(
q(s)

� N
2

)
cos

(
q(s)

�
[

D
2 + 1

])
� cos

(
q(s)

� N
2

)
sin

(
q(s)

�
[

D
2 + 1

])

cos
(

q(s)
�

[
D
2 � 1

]) :(C.28)
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Now the following approximations are helpful and achieved using the transcendental
equations with the help of basic trigonometric identities.They are

sin

(
q(s)

� N
2

)

=
f s

(
q(s)

� ; D
)

√
1 + f 2

s

(
q(s)

� ; D
)

q(s)
� � 1
� � 1

cos

(
q(s)

� N
2

)

=
1

√
1 + f 2

s

(
q(s)

� ; D
)

q(s)
� � 1
� q(s)

�

sin
(
q(s)

� N
)

=
2f s

(
q(s)

� ; D
)

1 + f 2
s

(
q(s)

� ; D
)

q(s)
� � 1
� � 2q(s)

�

cos
(
q(s)

� N
)

=
1 � f 2

s

(
q(s)

� ; D
)

1 + f 2
s

(
q(s)

� ; D
)

q(s)
� � 1
� � 1

sin

(
q(a)

� N
2

)

=
1

√
1 + f 2

a

(
q(a)

� ; D
)

q(a)
� � 1
�

D 2

4

(
q(a)

�

)3

cos

(
q(a)

� N
2

)

=
f a

(
q(a)

� ; D
)

√
1 + f 2

a

(
q(a)

� ; D
)

q(a)
� � 1
� 1

sin
(
q(a)

� N
)

=
2f a

(
q(a)

� ; D
)

1 + f 2
a

(
q(a)

� ; D
)

q(a)
� � 1
�

D 2

2

(
q(a)

�

)3

cos
(
q(a)

� N
)

=
f 2

a

(
q(a)

� ; D
)

� 1

1 + f 2
a

(
q(a)

� ; D
)

q(a)
� � 1
� 1 (C.29)

These approximations yield the �nal result for the coe�cient b(s)
� for q(s)

� � 1

b(s)
� � � 1 + O(q(s)

� ) (C.30)

The antisymmetric case is done analogously yielding

b(a)
� � � 1 + O(q(a)

� ) (C.31)

which yields for low frequencies and respectively largeN

N �;� �

√
2
N

(C.32)

the expectedN -dependence of the normalisation constant.



Appendix D

Calculation of the influence
functional

Here the explicit calculation of the functionalF n de�ned in Eq. (4.70) is shown. The
result is is given in Eq. (4.74) asF n = F n

(1) F
n
(2) G

n
(12) . The functions Lab

1 (� ); Lab
2 (� )

are given with their dependence on the coupling constantsca;� ; cb;� . Only here in the
Appendix the full calculation with the dependence of the coupling constants for each
anharmonic bond is given. Starting with the bilinear blip-term one gets the following
argument by applying the transformations Eq. (4.43). The calculation of the �rst term
(with the indices a; b for the functions Lab

2 (� ); Lab
1 (� ) of Eq. (4.34)) with the use of the

transformations Eqs. (4.43) yields:

2∑

a;b=1

t∫

0

d�

�∫

0

d� 0Lab
2 (� � � 0)� (a)(� )� (b)(� 0) (D.1)
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=
2∑

a;b=1

n∑

j;j 0=1

� (a)
j � (b)

j 0

t∫

0

d�

�∫

0

d� 0Lab
2 (� � � 0)

[

�( � � t2j � 1)�( � 0 � t2j 0� 1)

� �( � � t2j � 1)�( � 0 � t2j 0) � �( � � t2j )�( � 0 � t2j 0� 1) + �( � � t2j )�( � 0 � t2j 0)

]

=
2∑

a;b=1

n∑

j;j 0=1

� (a)
j � (b)

j 0

[ t∫

t2j � 1

d�

( �∫

t2j 0� 1

d� 0Lab
2 (� � � 0) �

�∫

t2j 0

d� 0Lab
2 (� � � 0)

)

�

t∫

t2j

d�

( �∫

t2j 0

d� 0Lab
2 (� � � 0) �

�∫

t2j 0� 1

d� 0Lab
2 (� � � 0)

)]

=
2∑

a;b=1

n∑

j;j 0=1

� (a)
j � (b)

j 0

[ t∫

t2j � 1

d�

(

L ab
2 (� � t2j 0� 1) � L ab

2 (� � t2j 0)

)

+

t∫

t2j

d�

(

L ab
2 (� � t2j 0) � L ab

2 (� � t2j 0� 1)

)]

=
2∑

a;b=1

n∑

j;j 0=1

� (a)
j � (b)

j

[

Q(ab)
2 (t2j � 1 � t2j 0) + Q(ab)

2 (t2j � t2j 0� 1)

� Q(ab)
2 (t2j � 1 � t2j 0� 1) � Q(ab)

2 (t2j � t2j 0)

]

=
2∑

a;b=1

n∑

j;j 0=1

� (a)
j � (b)

j 0 � (ab)
jj 0 (D.2)

The functions Q(ab)
2 are de�ned in Eq. (4.75) and the function �(ab)

jj 0 is de�ned in Eq.
(4.76). This is the blip-blip-interaction and self-energypart of the argument of the
exponential (together with the constant factor ofq2

0
� ~ ) of Eq. (4.74). And now the same

procedure for the term containing the functionLab
1 (� ) yields:

i
2∑

a;b=1

t∫

0

d�

�∫

0

d� 0Lab
1 (� � � 0)� (a)(� )� (b)(� 0) (D.3)
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= i
2∑

a;b=1

n� 1∑

j 0=0

n∑

j = j 0+1

� (a)
j 0 � (b)

j

t∫

0

d�

�∫

0

d� 0Lab
1 (� � � 0)

[

�( � � t2j � 1)�( � 0 � t2j 0)

� �( � � t2j � 1)�( � 0 � t2j 0+1 ) � �( � � t2j )�( � 0 � t2j 0) + �( � � t2j )�( � 0 � t2j 0+1 )

]

= i
2∑

a;b=1

n� 1∑

j 0=0

n∑

j = j 0+1

� (a)
j 0 � (b)

j

[ t∫

t2j � 1

d�

( �∫

t2j 0

d� 0Lab
1 (� � � 0) �

�∫

t2j 0+1

d� 0Lab
1 (� � � 0)

)

+

t∫

t2j

d�

( �∫

t2j 0+1

d� 0Lab
1 (� � � 0) �

�∫

t2j 0

d� 0Lab
1 (� � � 0)

)]

= i
2∑

a;b=1

n� 1∑

j 0=0

n∑

j = j 0+1

� (a)
j 0 � (b)

j

[ t∫

t2j � 1

d�

(

L ab
1 (� � t2j 0) � L ab

1 (� � t2j 0+1 )

)

+

t∫

t2j

d�

(

L ab
1 (� � t2j 0+1 ) � L ab

1 (� � t2j 0)

)]

= i
2∑

a;b=1

n� 1∑

j 0=0

n∑

j = j 0+1

� (a)
j 0 � (b)

j

[

Q(ab)
1 (t2j � 1 � t2j 0) + Q(ab)

1 (t2j � t2j 0+1 )

� Q(ab)
1 (t2j � 1 � t2j 0+1 ) � Q(ab)

1 (t2j � t2j 0)

]

= i
2∑

a;b=1

n� 1∑

j 0=0

n∑

j = j 0+1

� (a)
j 0 � (b)

j X (ab)
jj 0 (D.4)

The functions Q(ab)
1 are de�ned in Eq. (4.75) and the functionX (ab)

jj 0 is de�ned in Eq.
(4.76). This is the blip-sojourn-interaction part of the argument of the exponential
(together with the constant factor of q2

0
� ~ ) of Eq. (4.74).



102 APPENDIX D. CALCULATION OF THE INFLUENCE FUNCTIONAL



Appendix E

Density matrix for two anharmonic
bonds

Starting with the Hamiltonian for two anharmonic bonds presented in Eq. (4.1) it can
be brought, omitting the c.o.m., into the form of Eqs. (4.12), (4.13), (4.14)

H = H 0
d + H 0

int + Hharm (E.1)

H 0
d =

1
m

(
p2

M 1
+ p2

M 2

)
+

C
4

(
q2

M 1
+ q2

M 2

)
+ V0(qM 1) + V0(qM 2) (E.2)

Hharm =
1
2

N � 3∑

� =1

[

� � P2
� + CQ2

�

]

(E.3)

H 0
int = �

N � 3∑

� =1

Q�

2∑

a=1

ca;� qM a (E.4)

Including the potential renormalisation of H 0
d in H 0

int allows us to rewrite the above
given Hamiltonian in the form of

H = Hd + H int + Hharm (E.5)

Hd =
1
m

(
p2

M 1
+ p2

M 2

)
+ V0(qM 1) + V0(qM 2) (E.6)

Hharm =
1
2

N � 3∑

� =1

[

� � P2
� + CQ2

�

]

(E.7)

H int =
N � 3∑

� =1

2∑

a=1

(
� Q� ca;� qM a +

1
2

c2
a;� q2

M a

m� ! 2
�

)
(E.8)

From now on the explicit time dependence is shown, because for the calculation it is
necessary to distinguish between time dependent and time independent quantities.
Using the Liouville-von-Neumann Equation for the time dependent density matrix � tot (t)
of the system-bath Hamiltonian one can write down:

d
dt

� tot (t) = �
i
~

[H; � tot (t)] ; � tot (t) = e� i
~ Ht � tot (0)e

i
~ Ht (E.9)
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The full density matrix element in spatial representation reads

hfQf
� g; qf

M 1
; qf

M 2
j� tot (t)jq

0f
M 1

; q0f
M 2

; f Q0f
� gi =

∫
dqi

M 1
dqi

M 2
dq0i

M 1
dq0i

M 2
df Qi

� gdf Q0i
� g

�hfQf
� g; qf

M 1
; qf

M 2
je� i

~ Ht jqi
M 1

; qi
M 2

; f Qi
� gi

�hfQi
� g; qi

M 1
; qi

M 2
j� tot (0)jq0i

M 1
; q0i

M 2
; f Q0i

� gi

�hfQ0i
� g; q0i

M 1
; q0i

M 2
je

i
~ Ht jq0f

M 1
; q0f

M 2
; f Q0f

� gi

(E.10)

, where

qi
M 1

= qM 1(0); qi
M 2

= qM 2(0); q0i
M 1

= q0
M 1

(0); q0i
M 2

= q0
M 2

(0)

qf
M 1

= qM 1(t); qf
M 2

= qM 2(t); q0f
M 1

= q0
M 1

(t); q0f
M 2

= q0
M 2

(t) (E.11)

and

f Qi
� g = f Q� (0)g; f Q0i

� g = f Q0
� (0)g

f Qf
� g = f Q� (t)g; f Q0f

� g = f Q0
� (t)g (E.12)

By tracing out the bath degrees of freedom one obtains the reduced density matrix
� red(t) = Tr bath � tot (t), which is done by settingf Q0f

� g = f Qf
� g.

hqf
M 1

; qf
M 2

j� red(t)jq0f
M 1

; q0f
M 2

i =
∫

dqi
M 1

dqi
M 2

dq0i
M 1

dq0i
M 2

df Qi
� gdf Q0i

� gdf Qf
� g

�hfQf
� g; qf

M 1
; qf

M 2
je� i

~ Ht jqi
M 1

; qi
M 2

; f Qi
� gi

�hfQi
� g; qi

M 1
; qi

M 2
j� tot (0)jq0i

M 1
; q0i

M 2
; f Q0i

� gi

�hfQ0i
� g; q0i

M 1
; q0i

M 2
je

i
~ Ht jq0f

M 1
; q0f

M 2
; f Qf

� gi (E.13)

Assuming the density matrix has factorising initial conditions1 � tot (0) = � red(0) 

� harm (0) and knowing that the Hamiltonian (E.5) induces a classical action S = Sd[qM 1 ; qM 2]+
Sharm [f Q� g] + Sint [f Q� gqM 1; qM 2] one can rewrite the equation above in the following
form

hqf
M 1

; qf
M 2

j� red(t)jq0f
M 1

; q0f
M 2

i =
∫

dqi
M 1

dqi
M 2

dq0i
M 1

dq0i
M 2

hqi
M 1

; qi
M 2

j� red(0)jq0i
M 1

; q0i
M 2

i

�

qf
M 1∫

qi
M 1

DqM 1

qf
M 2∫

qi
M 2

DqM 2

q0f
M 1∫

q0i
M 1

Dq0
M 1

q0f
M 2∫

q0i
M 2

Dq0
M 2

e
i
~ (Sd [qM 1 ;qM 2 ]� Sd [q0

M 1
;q0

M 2
])

�F
[
qM 1; qM 2 ; q0

M 1
; q0

M 2

]
(E.14)

1as assumed in [21]
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The �rst term before the path integrals describes the preparation of the initial state of
the anharmonic bonds.

F
[
qM 1; qM 2 ; q0

M 1
; q0

M 2

]
=

∫
df Qi

� gdf Q0i
� gdf Qf

� g hfQi
� gj� harm (0)jf Q0i

� gi

�

f Qf
� g∫

f Q i
� g

Df Q� g

f Qf
� g∫

f Q0i
� g

Df Q0
� g

�e
i
~ (Sharm [f Q � g]+ Sint [f Q � g;qM 1 ;qM 2 ]� Sharm [f Q0

� g]� Sint [f Q0
� g;q0

M 1
;q0

M 2
])

(E.15)

The term presented above Eq. (E.15) is called in
uence functional in literature. The
exponential right before the in
uence functional containing Sd gives the bare tunnelling
amplitudes of the anharmonic bondsA[qM 1]; A � [q0

M 1
]; B [qM 2 ]; B � [q0

M 2
]. The separation

of the harmonic and anharmonic degrees of freedom yields a functional containing only
the anharmonic bondsSd, which describes tunnelling of both bonds without coupling
to the harmonic bath. The dissipative in
uence of the harmonic bath is fully captured
in the in
uence functional Eq. (E.15). The density matrix elements of the bath can be
written [16, 21] as a product of allN � 3 harmonic modes.

hfQi
� gj� harm (0)jf Q0i

� gi =
N � 3∏

� =1

1

2 sinh
( ! � ~�

2

)
√

m� ! �

2� ~ sinh(! � ~� )

� exp

[

�
m� ! �

2~ sinh(! � ~� )

([(
Qi

�

)2
+

(
Q0i

�

)2
]

cosh(! � ~� ) � 2Qi
� Q0i

�

)]

(E.16)

The expression for the second part of the in
uence functional (only the functional for
f Q� g; qM 1; qM 2 is given, the functional forf Q0

� g; q0
M 1

; q0
M 2

is performed in the same way)
reads after performing the path integration over the harmonic degrees of freedom [16, 21]

f Qf
� g∫

f Q i
� g

Df Q� ge
i
~ (Sharm [f Q � g]+ Sint [f Q � g;qM 1 ;qM 2 ]) =

N � 3∏

� =1

√
m� ! �

2i� ~ sin(! � t)
e

i
~ � [qM 1 ;qM 2 ;Q i

� ;Q f
� ]
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� [qM 1; qM 2; Qi
� ; Qf

� ] =
m� ! �

2 sin(! � t)

[([(
Qi

�

)2
+

(
Qf

�

)2
]

cos(! � t) � 2Qi
� Qf

�

)]

+
2∑

a=1

Qi
� ca;�

sin(! � t)

t∫

0

d� sin (! � (t � � )) qM a (� )

+
2∑

a=1

Qf
� ca;�

sin(! � t)

t∫

0

d� sin (! � � ) qM a (� ) �
2∑

a=1

c2
a;�

2m� ! 2
�

t∫

0

d� q2
M a

(� )

�
2∑

a;b=1

ca;� cb;�

m� ! � sin(! � t)

t∫

0

d�

�∫

0

d� 0

� sin (! � (t � � )) sin (! � � 0) qM a (� )qM b(�
0) (E.17)

Applying the calculations given above the in
uence functional can be given in the
Feynman-Vernon [21] form (after performing the Gaussian-Integration overdf Qi

� g; df Q0i
� g,

df Qf
� g), not for one but two anharmonic bonds and a suitable choice of initial and �nal

conditions for the anharmonic bonds.

F [qM 1; qM 2 ; q0
M 1

; q0
M 2

] = exp
[
�

1
~

2∑

a;b=1

t∫

0

d�

�∫

0

d� 0
(

qM a (� ) � q0
M a

(� )
)

�
(

Lab(� � � 0)qM b(�
0) � L �

ab(� � � 0)q0
M b

(� 0)
)]

(E.18)

where the functionLab(� ) is de�ned as

Lab(� ) =
N � 3∑

� =1

ca;� cb;�

2m� ! �

[

coth
(

! � ~�
2

)
cos(! � � ) � i sin(! � � )

]

(E.19)

the in
uence functional presented here has the same form as in [22] with the di�erence,
that now not only one anharmonic bond, but two are considered. The complete ex-
pression for the probability to have arrived in the �nal state at time t (i.e. the element
hqf

M 1
; qf

M 2
j� red(t)jqf

M 1
; qf

M 2
i of the reduced density matrix), is

p(t) =
∫

DqM 1(� ) Dq0
M 1

(� 0)DqM 2(� ) Dq0
M 2

(� 0)A[qM 1]A � [q0
M 1

]B [qM 2]B � [q0
M 2

]

�F [qM 1(� ); q0
M 1

(� 0); qM 2(� ); q0
M 2

(� 0)] (E.20)

, wherepa(t) =
∑

i
hai j� red(t)jai i . Splitting the function Lab(� ) into imaginary and real

part Lab(� ) = Lab
2 (� ) � iL ab

1 (� ) one gets the form needed to understand the derivation
of (4.62), (4.63) in subsection "Tunnelling expectation value using extended NIBA".



Appendix F

Blip- and Sojourn charge
summation

The summation of blip- and sojourn-charges for the functionalsF n
(1) ;NIBA �F n

(2) ;NIBA �Gn
NIBA ,

de�ned in Eq. (4.80) is performed here in detail. At �rst the summation for P1(t) is
performed. Since it is obviously irrelevant if the initial state is AA or DD , as long as
the �nal state is �xed to be the same as the initial state (forP1(t)). Beginning with the
summation of sojourn-chargesf � (1)

j g; f � (2)
j g; n > j � 1, yields

∑

f � (1)
j g;f � (2)

j g

F n
(1) ;NIBA � F n

(2) ;NIBA � Gn
NIBA

= SE1 � SE2 � BB12 � e�
iq 2

0
� ~

�
� (1)

1

n
Q1(t2� t1)+ Q(12)

1 (t2� t1)
o

+ � (2)
1

n
Q1(t2� t1)+ Q(12)

1 (t2� t1)
o�

︸ ︷︷ ︸
f +

0 (� (1)
0 = � (2)

0 = � 1; � (1)
1 ; � (2)

1 )

� 2n� 1
n∏

j=2
cos

(
q2

0
π~

[
ζ (1)

j

{
Q1(t2j � t2j� 1) + Q(12)

1 (t2j � t2j� 1)
}

+ ζ (2)
j

{
Q1(t2j � t2j� 1) + Q(12)

1 (t2j � t2j� 1)
}])

︸ ︷︷ ︸
g+(� (1)

j ; � (2)
j )

The expressions SE1; SE2; BS1; BS2; BS12; BB12 are de�ned in Eq. (4.80). To understand
the summation more easily, the restrictions applied here can be expressed mathemati-
cally as � (1)

j = � (2)
j . Now the summation of the blip-charges can be performed.

As in the sojourn-charge summation, the charges of both anharmonic bonds have to be
equal (� (1)

j = � (2)
j ), yielding

SE1 � SE2 �
∑

f � (1)
j g;f � (2)

j g

f +
0 (� (1)

1 ; � (2)
1 ) � g+ (� (1)

j ; � (2)
j ) � BB12

= SE1 � SE2 � e
�

2q2
0

� ~

nP

j =1
Q(12)

2 (t2j � t2j � 1)
� 2 cos

(
2q2

0

� ~

[
Q1(t2 � t1) + Q(12)

1 (t2 � t1)
])

� 22(n� 1)
n∏

j =2

cos
(

2q2
0

� ~

[
Q1(t2j � t2j � 1) + Q(12)

1 (t2j � t2j � 1)
])
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Now using the de�nition of Eqs. (4.86), we are able to write theresult in a simpler way

F (1)
n (f t2ng) = 2 2n� 1

n∏

j =1

cos
(

2q2
0

� ~
Q+

1 (t2j � t2j � 1)
)

� e�
2q2

0
� ~ Q+

2 (t2j � t2j � 1) (F.1)

Performing the summation of the blip- and sojourn-charges for P2(t), we can choose an
initial state of AD or DA . As before, the choice of the initial state �xes the �nal state.
That allows a simpli�cation of the summation as before to� (1)

j = � � (2)
j and � (1)

j = � � (2)
j ,

yielding
∑

f � (1)
j g;f � (2)

j g

F n
(1) ;NIBA � F n

(2) ;NIBA � Gn
NIBA

= SE1 � SE2 � BB12 � e�
iq 2

0
� ~

�
� (1)

1

n
Q1(t2� t1)� Q(12)

1 (t2� t1)
o

� � (2)
1

n
Q1(t2� t1)� Q(12)

1 (t2� t1)
o�

︸ ︷︷ ︸
f �

0 (� (1)
0 = � � (2)

0 = � 1; � (1)
1 ; � (2)

1 )

� 2n� 1
n∏

j=2
cos

(
q2

0
π~

[
ζ (1)

j

{
Q1(t2j � t2j� 1) � Q(12)

1 (t2j � t2j� 1)
}

� ζ (2)
j

{
Q1(t2j � t2j� 1) � Q(12)

1 (t2j � t2j� 1)
}])

︸ ︷︷ ︸
g� (� (1)

j ; � (2)
j )

Now the summation of the blip-charges can be performed.
As in the sojourn-charge summation, the charges of both anharmonic bonds are not
allowed to be equal, so that� (1)

j = � � (2)
j , yielding

SE1 � SE2 �
∑

f � (1)
j g;f � (2)

j g

f �
0 (� (1)

1 ; � (2)
1 ) � g� (� (1)

j ; � (2)
j ) � BB12

= SE1 � SE2 � e
2q2

0
� ~

nP

j =1
Q(12)

2 (t2j � t2j � 1)
� 2 cos

(
2q2

0

� ~

[
Q1(t2 � t1) � Q(12)

1 (t2 � t1)
])

� 22(n� 1)
n∏

j =2

cos
(

2q2
0

� ~

[
Q1(t2j � t2j � 1) � Q(12)

1 (t2j � t2j � 1)
])

Now using the de�nition of Eqs. (4.86), we are able to write theresult in a simpler way

F (2)
n (f t2ng) = 2 2n� 1

n∏

j =1

cos
(

2q2
0

� ~
Q�

1 (t2j � t2j � 1)
)

� e�
2q2

0
� ~ Q �

2 (t2j � t2j � 1) (F.2)
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