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Zusammenfassung

Die Untersuchung von dissipativen Quantensystemen ermöglicht es, Quantenphänomene
auch auf makroskopischen Längenskalen zu beobachten. Das in dieser Dissertation
gewählte mikroskopische Modell erlaubt es, den bisher nur phänomenologisch zugäng-
lichen Effekt der Quantendissipation mathematisch und physikalisch herzuleiten und zu
untersuchen.
Bei dem betrachteten mikroskopischen Modell handelt es sich um eine 1-dimensionale
Kette von harmonischen Freiheitsgraden, die sowohl untereinander als auch an r anhar-
monische Freiheitsgrade gekoppelt sind. Die Fälle einer, respektive zwei anharmonischer
Bindungen werden in dieser Arbeit explizit betrachtet.
Hierfür wird eine analytische Trennung der harmonischen von den anharmonischen Frei-
heitsgraden auf zwei verschiedenen Wegen durchgeführt. Das anharmonische Potential
wird als symmetrisches Doppelmuldenpotential gewählt, welches mit Hilfe der Wick Ro-
tation die Berechnung der Übergänge zwischen beiden Minima erlaubt. Das Eliminieren
der harmonischen Freiheitsgrade erfolgt mit Hilfe des wohlbekannten Feynman-Vernon
Pfadintegral-Formalismus [21].
In dieser Arbeit wird zuerst die Positionsabhängigkeit einer anharmonischen Bindung
im Tunnelverhalten untersucht. Für den Fall einer fernab von den Rändern lokalisierten
anharmonischen Bindung wird ein Ohmsches dissipatives Tunneln gefunden, was bei
der Temperatur T = 0 zu einem Phasenübergang in Abhängigkeit einer kritischen Kop-
plungskonstanten Ccrit führt. Dieser Phasenübergang wurde bereits in rein phänome-
nologisches Modellen mit Ohmscher Dissipation durch das Abbilden des Systems auf
das Ising-Modell [26] erklärt. Wenn die anharmonische Bindung jedoch an einem der
Ränder der makroskopisch grossen Kette liegt, tritt nach einer vom Abstand der beiden
anharmonischen Bindungen abhängigen Zeit tD ein Übergang von Ohmscher zu super-
Ohmscher Dissipation auf, welche im Kern KM(τ) klar sichtbar ist.
Für zwei anharmonische Bindungen spielt deren indirekte Wechselwirkung eine entschei-
dende Rolle. Es wird gezeigt, dass der Abstand D beider Bindungen und die Wahl des
Anfangs- und Endzustandes die Dissipation bestimmt. Unter der Annahme, dass beide
anharmonischen Bindung gleichzeitig tunneln, wird eine Tunnelwahrscheinlichkeit p(t)
analog zu [14], jedoch für zwei anharmonische Bindungen, berechnet. Als Resultat
erhalten wir entweder Ohmsche Dissipation für den Fall, dass beide anharmonischen
Bindungen ihre Gesamtlänge ändern, oder super-Ohmsche Dissipation, wenn beide an-
harmonischen Bindungen durch das Tunneln ihre Gesamtlänge nicht ändern.
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Abstract

The investigation of dissipative quantum systems makes it possible to observe quantum

phenomena also on macroscopic length scales. The microscopic model selected in this

thesis allows to deduce and examine the so far only phenomenologically accessible effect

of quantum dissipation in a clear mathematical and physical way.

The investigated microscopic model is a 1-dimensional chain of harmonic degrees of

freedom which are linearly coupled to each other as well as to r anharmonic degrees of

freedom. The case of one respectively two anharmonic bonds are explicitly analysed in

this thesis.

An analytic separation of the harmonic from the anharmonic degrees of freedom is ac-

complished in two different ways. The anharmonic potential is chosen as a symmetrical

double well potential which allows the calculation of the transitions between the two

minima by performing a Wick rotation. Eliminating the harmonic degrees of freedom

is done via the well-known Feynman-Vernon path integral formalism [21].

This thesis starts investigating the position dependence of the tunnelling behaviour of

one anharmonic bond. If the anharmonic bond is located in the bulk ohmic dissipative

tunnelling is found which leads to a phase transition for temperature T = 0 at critical

coupling constant Ccrit. This phase transition has been explained in purely phenomeno-

logical models with ohmic dissipation by mapping the system onto the Ising model [26].

If the anharmonic bond is however close to one of the edges of the macroscopically large

chain, a transition from ohmic to super-ohmic dissipation is observed after a distance-

dependent time td which is clearly observable in the kernel KM(τ).

For the case of two anharmonic bonds the indirect interaction of both anharmonic bonds

plays a crucial role. It is shown, that the distance D between both anharmonic bonds

and the choice of the initial and final conditions, determine the dissipative tunnelling

behaviour.

With the assumption of both anharmonic bonds tunnelling at the same time, a tun-

nelling probability p(t) is calculated as in [14], not for one but for two anharmonic

bonds. As a result we either have ohmic dissipation for the case that both anharmonic

bonds change their total length, or super-ohmic dissipation if both anharmonic bonds

do not change their total length in the tunnelling process.
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Chapter 1

Introduction

Quantum-mechanical effects such as tunnelling are experimentally well-verified on a
microscopic scale. But to be a fundamental theory, quantum mechanics has to be valid
for all scales. This problem was addressed by the famous thought experiment named
Schroedinger’s cat, proposed in 1935. In quantum mechanics linear combinations of
solutions, labeled |Ψ+〉, |Ψ−〉, of the Schrödinger equation are also solutions. So not
only |Ψ+〉, |Ψ−〉 but also |Ψ〉 = λ+|Ψ+〉 + λ−|Ψ−〉, with the normalised coefficients
|λ+|2 + |λ−|2 = 1, solve the Schrödinger equation. Considering Schrödinger’s thought
experiment, how is it then possible, that a cat has only been observed as being dead
or alive, but not in a superposition (dead and alive)? Or expressed more generally,
when does a quantum system stop being a linear combination of states, each of which
correspond to different states, and instead begin to have a unique classical description?
First of all, one has to keep in mind, that the Schrödinger equation is valid only for
isolated (quantum-)systems following a unitary evolution

i~
∂

∂t
|Ψ〉 = H|Ψ〉 (1.1)

In reality a totally isolated system does not exist. Only approximatively a system can
been regarded as ”isolated”. Let an object have two possible initial states |+〉, |−〉 and
a measuring device also having two states |M+〉, |M−〉. The measuring device is initially
prepared in state |M−〉 and reacts in the following way on the two possible states of the
objects

(|+〉) |M−〉 measurement→ |+〉|M+〉 ≡ |Ψ+
fin.〉 , (|−〉) |M−〉 measurement→ |−〉|M−〉 ≡ |Ψ−

fin.〉 (1.2)

The measuring device acts as a pointer showing which state the object is in after the
measurement. Now we would like to measure the state of the object. The initial state
|Ψ(t = 0)〉 ≡ |Ψini.〉 before the measurement is defined as

|Ψini.〉 =
(
λ+|+〉+ λ−|−〉

)
|M−〉 (1.3)

After performing the measurement using the rules defined in Eq. (1.2), one gets the
final state |Ψ(t > 0)〉 ≡ |Ψfin.〉

|Ψfin.〉 = λ+|+〉|M+〉+ λ−|−〉|M−〉 ≡ λ+|Ψ+
fin.〉+ λ−|Ψ−

fin.〉 (1.4)

3
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Now the state |Ψfin.〉 is a superposition of states and does not show a definite result.
Applied to Schrödinger’s cat, the final state of the cat is a superposition of dead and
alive. How can this paradox be resolved? Considering the state |Ψfin.〉 as a pure state,
the density operator of such a pure state (1.4) is defined as

ρpure = |Ψfin.〉〈Ψfin.| =
(

|λ+|2 λ+λ
∗
−

λ∗
+λ− |λ−|2

)
(1.5)

, where the off-diagonal elements show interference between the components |Ψ+
fin.〉 and

|Ψ−
fin.〉. The ”observation” leads to the ”collapse” of the wavefunction |Ψfin.〉 into state

|Ψ+
fin.〉 with the probability |λ+|2 or into state |Ψ−

fin.〉 with the probability |λ−|2 = 1 −
|λ+|2.The Copenhagen interpretation of quantum mechanics postulated this ”collapse”
of the wavefunction du to the ”observation”. This ”collapse” occurs instantaneously
and cannot be described by the Schrödinger equation, which follows a unitary evolution
[1]. There are of course also other interpretations such as for example the ”Many-
worlds interpretation” by Everret [2], but this will not be discussed here. An interesting
approach to the ”collapse” of the wavefunction is the use of decoherence. As mentioned
above, totally isolated systems do not exist, hence the Schrödinger equation describing
the object coupled to the measurement device |Ψini.〉 misses another term describing
the effect of the environment |EU〉. The environment consists of a very large number
of states, basically all states of the whole universe except the already described cat and
the measurement device. Expressed mathematically this reads

|EU〉 = |E1〉|E2〉 . . . |EN〉 , N very large (1.6)

A small deviation ǫ of one of the environmental states can be described as

〈E ′
i|Ei〉 = 1− ǫ (1.7)

, where |E ′
i〉 is the state that received the small deviation. Applying that for the very

large number of environmental states yields

〈E ′
U |EU〉 = (1− ǫ)N ≪ 1 (1.8)

This leads to the new form of Eq. (1.3)

|Ψ′
ini.〉 =

(
λ+|+〉+ λ−|−〉

)
|M−〉|EU〉 (1.9)

, where |EU〉 are the environmental states before the measurement. Using again Eq.
(1.2) yields the new final state

|Ψ′
fin.〉 = λ+|+〉|M+〉|EU+〉+ λ−|−〉|M−〉|EU−〉 (1.10)

Tracing out the environmental states yields the reduced density operator describing the
final state of the cat and measuring device

ρred = TrEU
|Ψ′

fin.〉〈Ψ′
fin.| = |λ+|2|Ψ+

fin.〉〈Ψ+
fin.|+ |λ−|2|Ψ−

fin.〉〈Ψ−
fin.|

+ λ+λ
∗
−|Ψ+

fin.〉〈Ψ−
fin.| |EU+〉〈EU−|︸ ︷︷ ︸

≈0

+λ−λ
∗
+|Ψ−

fin.〉〈Ψ+
fin.| |EU−〉〈EU+|︸ ︷︷ ︸

≈0

(1.11)
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The reduced density operator describes an open system constantly interacting with the
environment. Using the trace as in Eq. (1.11) is like averaging out the environmental
degrees of freedom. With 〈EU+|EU−〉 = 〈EU−|EU+〉 ≈ 0, which results from Eq. (1.8)
the reduced density matrix defined in Eq. (1.11) yields

ρred ∼= |λ+|2|Ψ+〉〈Ψ+
fin.|+ |λ−|2|Ψ−

fin.〉〈Ψ−| =
(

|λ+|2 0
0 |λ−|2

)
(1.12)

The loss of quantum coherence to the environment leads to the possibility of describing
quantum systems in the language of statistical mechanics.
The model calculated in this thesis consists of a quantum system coupled to an environ-
ment. The effect of tracing out the environment on the quantum system is considered
in detail.
This thesis investigates the dissipative effect of the environment on a tunnelling two-
state system (TSS) and on the interaction between tunnelling TSS. The low-temperature
properties of amorphous materials have been attributed to the existence of tunnelling
but noninteracting TSS in amorphous materials [3, 4]. Their central hypothesis is the
statistical distribution of atoms (or groups of atoms) sitting more or less in TSS. There is
no interaction between TSS considered. From that, they derive the linear specific heat,
a universal property of amorphous materials and the anomalous thermal conductivity.
Later the interaction between those TSS in amorphous materials have been considered
as the main reason for the observed low temperature anomalies [5]. Investigation of in-
teracting TSS in amorphous solids have nowadays been widely investigated [6, 7]. These
publications focus mainly on the low-temperature (T < 100mK) kinetics and thermody-
namic properties of dielectric glasses. The interaction of the TSS is phenomenologically
defined and arises from the strain field or the direct electrical dipole-dipole interaction
with distance dependent strength decaying as R−3 in those systems [7]. Anomalous
temperature behaviour in the relaxation properties at ultralow temperatures are found
in those publications [6, 7].
This thesis is not interested in the phenomenologically derived TSS of dielectric glasses,
but instead uses a microscopic model, where the position dependence of the TSS in the
environment is investigated.
The model investigated in this thesis consists of a translationally invariant chain of
N particles with harmonic nearest neighbour interaction with one exception. One, re-
spectively two bonds are anharmonic. The anharmonicity is described by a symmetric
double well potential in which the continuos degree of freedom can tunnel between the
two minima.
One method of calculating such a tunnelling process is the instanton technique. In-
stantons were first applied in quantum chromodynamics (QCD) in the late ’70s, early
’80s [8, 9, 10, 11]. The instanton technique provided an exact finite-action solution to
the classical Yang-Mills [8, 11] equations in Euclidean space-time. But also its use in
statistical mechanics has been discussed extensively [12, 13].
Another possibility is to effectively restrict the anharmonic potential to the Hilbert space
spanned by the two minima of the wells [14, 15, 16]. This allows a mapping onto the
well known spin-boson Hamiltonian, which has been applied to many different physical
systems some of which are discussed in [17, 18, 19, 20]. This mapping and the restric-
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tions implied are discussed in detail in [14, 16].
Now we can investigate the dissipative effect the environment, sometimes named har-
monic bath, has on the quantum mechanical tunnelling of the TSS. Quantum dissipation
describes the quantum-mechanical analogon to the classical irreversible loss of energy.
In quantum theory usually a Hamiltonian is used. The total energy of the full system
is then a conserved quantity. A way to avoid this problem and being able to introduce
dissipation is to split up the full system into two parts. The first is called the system,
where dissipation occurs and the second is the environment, which receives the energy
flowing out of the system. The energy is only transferred from one system to another
and hence conserved.
The first approach of modelling such a system was done by Feynman and Vernon [21].
They modelled the environment as an infinite set of harmonic oscillators.
With the path integral formalism and for certain kinds of coupling to the quantum-
mechanical system, the harmonic degrees of freedom can be eliminated, leaving a quantum-
mechanical system showing dissipation.
In 1981 the idea of Feynman and Vernon has been applied to a specific system by
Caldeira and Leggett [22]. Considering the magnetic flux trapped in a SQUID [23]
and ignoring dissipation, a standard WKB1 calculation shows quantum tunnelling as
the dominant flux transition mechanism for temperatures T . 100mK. Experiments
[24, 25] with even higher temperatures T ∼ 1 − 2K have been interpreted as possible
evidence for quantum tunnelling of the flux [22].
A SQUID (superconducting quantum interference device) is used to measure extremely
weak magnetic fields. In Fig. 1.2 a dc-Squid (direct current) is shown. Its func-
tionality is based on the flux-quantisation φ0 ≡ h

qs
, (h is the Planck constant and qs =

2e is the electron charge of the Cooper pairs) occuring in superconducting loops and the
Josephson effect. Caldeira and Leggett mention a SQUID as a promising candidate to
observe quantum tunnelling on a macroscopic scale [22]. The relevant macroscopic vari-
able is the magnetic flux trapped in the superconducting loop.

1Wentzel–Kramers–Brillouin
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Figure 1.1: A schematic picture of a dc-SQUID (direct current superconducting quantum interference device). The
Josephson junctions have to be thin enough to allow Cooper-pairs to tunnel through.

By considering linear coupling of the system with its environment, they find, that dis-
sipation multiplies the tunnelling probability by a factor depending among other con-
stants, on the phenomenological friction coefficient.
They discuss an imaginary time propagator for zero temperature (the derivation of
those quantities follow, when the Caldeira-Leggett model is presented in the respective
section). This propagator consists of an effective action, where the influence of the
harmonic degrees of freedom on the tunnelling is described by a function2 α(t − t′).
Caldeira and Leggett relate that function to the phenomenological friction coefficient
η, by comparing the equations of motion of the phenomenological expression of the
linear damped harmonic oscillator, with the ones achieved from the Caldeira-Leggett
Lagrangian. Expressing the function α(t− t′) in terms of the spectral density J(ω), they
are able to provide the frequency dependence of this spectral density up to some cut-off
frequency ωc as J(ω ≤ ωc) = ηω, in terms of the phenomenological friction coefficient
η. The exact derivation is shown in the next chapter. With that, a connection of the
quantum-mechanical effect of tunnelling to the classical effect of dissipation was made.
Model Hamiltonians of quantum systems coupled linearly to a bath of harmonic oscilla-
tors are well known nowadays as Caldeira-Leggett Hamiltonians and have been discussed
in many articles e.g. [14, 16, 26, 27].
In this thesis the tunnelling of anharmonic bonds described by a symmetric double-well
potential with the dissipative effect of the linearly coupled bath of harmonic oscillators,
is investigated.

This potential is a TSS if the potential height V0 ≫ ~ωcl, where ωcl is the classical
small-oscillation frequency and the separation of the ground state from the first excited
state is of order ~ωcl.

2see section ”The Caldeira-Leggett Model” for details
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Figure 1.2: A double-well potential considered in the ”two-state” limit. ~ωcl denote the energy difference of the two-
fold degenerate ground state to the first excited states. Symmetric TSS (regarded in this thesis) with two-fold degenerate
ground states xMin, xMax (without considering the coupling to the bath) of the system. V0 represents the barrier height.

The effect of the environment on the tunnelling variable is described by the spectral
density J(ω). The spectral density is derived and related to other quantities in chapter
2.2.1 - 2.2.3. The quantum dissipation generated by the harmonic bath depends quali-
tatively on the low-frequency behaviour of J(ω) [14, 16, 28]. The spectral density has a
power-law form for frequencies much smaller than the cut-off frequency J(ω ≤ ωc) ∼ ωs,
where ωc denotes the cut-off frequency introduced earlier. The exponent s classifies the
dissipative influences. A detailed discussion on the effect of the spectral density will be
given in section ”The Caldeira-Leggett Model”.
The indirect interaction of these TSS mediated through the harmonic bath depends on
the microscopically derived spectral density J(ω). The harmonic bath leads to dissipa-
tive tunnelling behaviour of the TSS. This thesis is restricted to T = 0 and calculates the
tunnelling probability of anharmonic bonds (described by TSS) in a chain of harmonic
bonds (harmonic bath), whereas [6, 7] focus on the investigation of dielectric glasses and
the anomalous temperature behaviour of their relaxation times.
Dubé and Stamp [29] investigate a similar system of interacting TSS as considered here.
The main difference of the publication of Dubé and Stamp is allowing direct coupling
and considering the continuous TSS coordinate of this thesis as a spin. The direct
coupling leads to phenomena, that are not considered in this thesis. The calculations
and approximations in their publications are not derived clearly and will be put on
more stable ground in this thesis. From the microscopic model considered in this thesis
the analytical derivation of the Caldeira-Leggett type Hamiltonian is performed. The
Hamiltonian for this microscopic model is brought into the form of the Caldeira-Leggett
Hamiltonian by separating the harmonic and anharmonic degrees of freedom analytically
in different ways. First the position-dependence of one anharmonic bond is discussed.
Since an open chain without periodic boundary conditions is considered, the position of
the anharmonic bond effects the tunnelling behaviour. This will be shown in an analytic
discussion.
Another motivation is the discussion of interacting TSS, since the model system allows
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to include more than one anharmonic bond. A finite distance between the anharmonic
bonds describes indirect interaction between the TSS, whereas the limit of an infinite
distance corresponds to the non-interacting case.
This thesis gives an insight in how interacting TSS change the tunnelling behaviour com-
pared to the non-interacting case for the considered model system. In order to get the
full physical effect of the interacting TSS, certain restrictions of the investigated system
are considered. For one, both anharmonic bonds are located in the bulk, to diminish
the effects an anharmonic bond receives at one of the boarders of the chain. Secondly
finite distances D between both defects are considered, to get an indirect interaction of
both anharmonic bonds via the harmonic bath.

This thesis splits up into 6 parts

• Chapter 1 gives an introduction to the topic of this thesis. It explains what has
been done up to now on the topic of quantum dissipation and where quantum
dissipation can be observed in experiment.

• Chapter 2 shows mathematical and physical preliminaries used throughout this
thesis. This chapter is put at the beginning to allow more fluent reading later
on, because the main mathematical and physical prescriptions are given. The
phenomenological model of Caldeira and Leggett, used to calculate the effect of
quantum dissipation, is presented and derived.

• Chapter 3 explains the used microscopic model in detail. A definition of all vari-
ables and the properties of the Hamiltonian are given. The reason for separating
the harmonic from the anharmonic degrees of freedom will be explained.

– Chapter 3.1 and 3.2 present two different ways of how to separate the har-
monic from the anharmonic degrees of freedom. The first method is more
intuitive but restricted to one dimensional problems, whereas the second
method allows diagonalisation in every dimension. It will be shown that
both methods are equivalent leading to the same Caldeira-Leggett Hamilto-
nian [22] (or Euclidean Lagrangian respectively).

– Chapter 3.3 discusses the position dependent quantum tunnelling of the one
dimensional one anharmonic bond model system. Analytical results (within
approximations) are given on how the position effects the tunnelling. Also
a critical coupling constant, where tunnelling changes from oscillatory (de-
localised state) to stochastic (localised state), is discussed.

– Chapter 3.4 introduces the notation and ways of calculating the probability
and not the propagator (as in the sections before) of this microscopic system.
The methods used here are equivalent to [14] and will be expanded later on
for the two anharmonic bond case.

• Chapter 4 shows the calculation for the case of two anharmonic bonds interacting
indirectly through the harmonic bath.
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– Chapter 4.1 investigates how interaction between the TSS affect the tun-
nelling behaviour. First one has to perform a diagonalisation procedure as
in the one anharmonic bond case. The technique of the first method is used
for that.

– Chapter 4.2 generalizes the methods used in chapter 3.4 to the two anhar-
monic bond case. Here the techniques used in the one anharmonic bond
case are used and explained and necessary additional simplifications are in-
troduced. As a result one gets the expectation value of the two anharmonic
bonds, tunnelling under the influence of the harmonic bath, which introduces
dissipative effects. The dependency on the choice of initial and final state is
also presented.

• Chapter 5 concludes and summarises the results achieved in this thesis.

• Chapter 6 is the Appendix, where certain procedures, such as diagonalisation of
the different methods, derivation of the probability using the Feynman-Vernon
path integral technique, are discussed in detail.



Chapter 2

Preliminaries

2.1 Mathematical Preliminaries

In this chapter mathematical definitions and notations are introduced, which are essen-
tial for this thesis. By introducing the mathematical notations and definitions here, the
Appendix will be restricted to calculations, which are, due to their length, left out of the
main part of the thesis. This will hopefully give the reader a well organised presentation
of this thesis and allow fluent reading.

2.1.1 Laplace Transform

Let f(t) be a function, then f̃(λ) is the Laplace transform of this function f : [0,∞[→ C,
defined by

f̃(λ) = L{f(t)} =

∞∫

0

dt e−λtf(t) , λ ∈ C, ℜ(λ) > 0 (2.1)

, where f must be locally integrable on [0,∞[. The Laplace transform will be used in
this thesis to transform convolutions into a product of Laplace transforms

L{f ∗ g} = L





t∫

0

dt′ f(t′)g(t− t′)



 = L{f(t)}L{g(t)} = f̃(λ)g̃(λ) (2.2)

The above equation can be proven as follows. Let f̃(λ)g̃(λ) = h̃(λ), then

h̃(λ) =

∞∫

0

dt e−λt




t∫

0

dt′ f(t′)g(t− t′)




h̃(λ) =

∞∫

0

dt

t∫

0

dt′ e−λtf(t′)g(t− t′) (2.3)

11
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The first integration is carried out from 0 ≤ t′ ≤ t. Changing the order of integration
results in

h̃(λ) =

∞∫

0

dt′
∞∫

t′

dt e−λtf(t′)g(t− t′) (2.4)

Now changing the variable t to t′′ = t − t′; dt′′ = dt, the region of integration becomes
t′ ≥ 0, t′′ ≥ 0

h̃(λ) =

∞∫

0

dt′
∞∫

0

dt′′ e−λ(t′+t′′)f(t′)g(t′′) (2.5)

=




∞∫

0

dt′ e−λt′f(t′)






∞∫

0

dt′′ e−λt′′g(t′′)




= f̃(λ)g̃(λ) (2.6)

2.1.2 Inverse Laplace Transform

The inverse Laplace transform is defined as

f(t) = L−1{f̃(λ)} =
1

2πi

∫

C

dλ eλtf̃(λ) (2.7)

, where C denotes the standard Bromwich contour, i.e. any contour in the complex plane
from −i∞ to i∞ lying entirely to the right of all singularities of f̃(λ). In this thesis,
the inverse Laplace transform is not of primary interest. Mainly the Laplace transform
will be used to discuss the poles of a Laplace transform f̃(λ) to get information about
the function in time space f(t).

2.1.3 Wick Rotation

Wick rotations are commonly used to connect statistical mechanics with quantum me-
chanics by replacing the inverse temperature 1

kBT
with the imaginary time it

~
. In this

thesis the Wick rotation is needed to achieve the transition amplitude from the instanton
solutions of the path integral formulation. The propagator in real time reads

G(xf , t; xi, t0) = 〈xf |e−
iH(t−t0)

~ |xi〉 =
x(t)=xf∫

x(t0)=xi

Dx(t) e
iS[x(t)]

~ (2.8)

Choosing the starting time t0 = 0 and performing the Wick rotation

t = −iτ (2.9)
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yields

GE(xf , τ = T ; xi, τ = 0) = 〈xf |e−
Hτ
~ |xi〉 =

xf∫

xi

Dx(τ) e−
SE [x(τ)]

~ (2.10)

, where the index E stands for Euclidean and indicates, that the Wick rotation has been
performed.
In this thesis the Euclidean action is defined for a free particle in a double well potential

SE =

∫
dτ

(
m

2

(
dx

dτ

)2

+V (x)

)
(2.11)

, which is nothing but the normal action with a sign change in the potential V (x) →
−V (x). The advantage can be easily seen in the following example:
Lets consider a symmetric double well potential

V (x) = x4 + σx2 , σ < 0 (2.12)

where we want to calculate the tunnelling amplitude G(xf , t; xi, 0). Classically the
particle sitting in one of the two wells has no possible way to reach the other well for
energies smaller than the barrier. In other words the equations of motion resulting from
the Lagrangian has no solutions. By performing the Wick rotation and hence changing
the sign of the potential, the particle is able to tunnel from one well to the other. That
means the Euclidean Lagrangian has a solution. This solution of the Euclidean integral
is named ”kink”-solution and is an example of an instanton solution. The name results
from the following fact. By changing the sign of the potential as discussed before the
wells become hills and the particle rolls from one hill to the other. For the double
well potential introduced above the solution of the Euclidean equations of motion is a
hyperbolic tangent. The shape of this solutions lead to the name instanton solution,
because the hyperbolic tangent stays infinitely long at −1 and then as the argument
approaches zero it instantaneously flips to +1. Instantaneously is not meant as a sharp
step or a discontinuity, but as a comparison of a fast change in a short period of the
argument around zero, compared to the almost not changing value of the hyperbolic
tangent for the rest of the arguments value.

2.1.4 Feynman-Vernon Method

Here the Feynman-Vernon method of describing quantum dissipation via a system cou-
pled linearly to a harmonic bath, is used. Let there be a Hamiltonian of the following
form

H = Hbath +Hsys. +HI

Hbath = Hbath({Pσ}, {Qσ})
Hsys. = Hsys.(p, q)

HI = q
∑

σ

cσQσ (2.13)
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, where cσ are the coupling constants of the bath coordinates {Qσ} to the system coor-
dinate q.
Using the Liouville-von-Neumann equation for the time dependent density operator
ρtot(t) of the total Hamiltonian, we can write

d

dt
ρtot(t) = − i

~
[H, ρtot(t)] , ρtot(t) = e−

i
~
Htρtot(0)e

i
~
Ht (2.14)

The full density matrix element in spatial representation reads

〈{Qσ}, q|ρtot(t)|q′, {Q′
σ}〉 =

∫
dq0 dq′0 d{Q0

σ} d{Q′0
σ } 〈{Qσ}, q|e−

i
~
Ht|q0, {Q0

σ}〉

·〈{Q0
σ}, q0|ρtot(0)|q′0, {Q′0

σ }〉
·〈{Q′0

σ }, q′0|e
i
~
Ht|q′, {Q′

σ}〉 (2.15)

Let an operator Â have a matrix representation Amn = 〈m|Â|n〉, then the trace is
defined as

Tr Â =
∑

n

〈n|Â|n〉 =
∑

n

Ann (2.16)

Now in the case considered here the density operator ρtot(t) includes the behaviour of
the bath and the system. Tracing out the bath degrees of freedom {Qσ}, {Q′

σ} in the
way shown above, we get

ρred(t) = Trbath ρtot(t)

⇒ 〈q|ρred(t)|q′〉 =

∫
dq0 dq′0 d{Q0

σ} d{Q′0
σ } d{Qσ} 〈{Qσ}, q|e−

i
~
Ht|q0, {Q0

σ}〉

·〈{Q0
σ}, q0|ρtot(0)|q′0, {Q′0

σ }〉〈{Q′0
σ }, q′0|e

i
~
Ht|q′, {Qσ}〉 (2.17)

Assuming the density matrix has factorising initial conditions ρtot(0) = ρred(0) ⊗ ρbath,
we are able to write down the final result for the propagator matrix elements

〈q|ρred(t)|q′〉 =
∫

dq0 dq′0 〈q0|ρred(0)|q′0〉
∫

Dq

∫
Dq′ e

i
~
(Ssys[q]−Ssys[q′]) F [q, q′] (2.18)

The last term F is called the influence functional in literature and describes the effect
of the bath on the system. For zero system-bath coupling the influence functional yields
one. This influence functional is derived in greater detail for the more general case of
two system coordinates coupling to a harmonic bath in Appendix D.

2.1.5 Functions

In this subsection, all functions used throughout this thesis will be defined. First the
generating functions for canonical transformations are introduced. They are defined in
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the following way

p(q, q′, t) =
∂R1

∂q
(q, q′, t) , p′(q, q′, t) = −∂R1

∂q′
(q, q′, t)

p(q, p′, t) =
∂R2

∂q
(q, p′, t) , q′(q, p′, t) =

∂R2

∂p′
(q, p′, t)

p′(p, q′, t) = −∂R3

∂q′
(p, q′, t) , q(p, q′, t) = −∂R3

∂p
(p, q′, t)

q(p, p′, t) = −∂R4

∂p
(p, p′, t) , q′(p, p′, t) =

∂R4

∂p′
(p, p′, t) (2.19)

A derivation of the generating functions, as a special kind of point transformation, will
not be given here, but can be seen in [30].
The next definition is for the propagator or Green’s function. A Green’s function is a
function used to to solve an inhomogeneous differential equation subject to boundary
conditions. Let L be a linear differential operator, f be the inhomogeneity and y the
function we would like to find a solution for, then the following equation

Ly(x) = f(x) (2.20)

can be solved by a Green’s function G(x) with the following property

LG(x) = δ(x) (2.21)

The solution is then

y(x) = (G ∗ f) (x) =
∫

f(x0)G(x− x0) dx0 (2.22)

This can be seen by applying the definition of Eq. (2.20), as shown below

Ly(x) = f(x)

⇔ L

(∫
f(x0)G(x− x0)dx0

)
= f(x)

⇔
∫

f(x0)LG(x− x0) = f(x)

⇔
∫

f(x0)δ(x− x0) = f(x)

⇔ f(x) = f(x) (2.23)

The functions Si(x), Ci(x) are Sine and Cosine Integrals, defined as

Si(x) =

x∫

0

dt
sin(t)

t

Ci(x) = γ + ln(x) +

x∫

0

dt
cos(t)− 1

t
(2.24)
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, where γ is the Euler-Mascheroni constant, defined as

γ = lim
n→∞

(
n∑

k=1

1

k
− ln(n)

)
(2.25)
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2.2 Physical Preliminaries

In this chapter functions needed for an essential understanding of this thesis are intro-
duced. These functions will be presented, explained and their use will be shown shortly
in this section in order to leave out the information and improve easy reading in the
main part. As in the section ”Mathematical Preliminaries”, the reason for this section
is to give the reader a well organised presentation of this thesis and allow fluent reading.

2.2.1 Model

In order to investigate quantum dissipation, a simple model Hamiltonian (or equivalently
a Euclidean Lagrangian [22]), known as the Caldeira-Leggett model, is introduced.

H = Hbath +Hsys +Hint (2.26)

Hbath =
1

2

N∑

σ=1

(
P 2
σ

mσ

+mσω
2
σQ

2
σ

)

Hsys =
p2

2m
+ V (q)

Hint = −q
N∑

σ=1

cσQσ +∆V (q)

q, p are the coordinate and momentum and V (q) is the potential of the system. ∆V (q)
is a counter term, which depends on the parameters mσ, ωσ, only [16] (chapter 3). Its
physical significance is seen in Eqs. (2.36), (2.37). Those parameters are the masses and
the frequencies of the harmonic bath coordinates, respectively. Qσ, Pσ are the coordinate
and momentum of the harmonic bath, where the index σ denotes the individual bath
modes running from 1 to N . cσ is the coupling constant. In this model we used linear
coupling of the system to the bath. Other types of coupling are possible, but are not
used throughout this thesis.
If we want to solely describe dissipation with our model without renormalising the
potential V (q), the counter term must have the following form [16]

∆V (q) =
N∑

σ=1

c2σ
2mσω2

σ

q2 (2.27)

Including the above counter term, we are able to write the Hamiltonian in a different
form

H =
p2

2m
+ V (q) +

1

2

N∑

σ=1

[
P 2
σ

mσ

+mσω
2
σ

(
Qσ −

cσ
mσω2

σ

q

)2
]

(2.28)

The equations of motions from a Hamiltonian are easily achieved

ṗ = −∂H

∂q

q̇ =
∂H

∂p
(2.29)
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they read for the Hamiltonian of Eq. (2.28)

mq̈ +
∂V (q)

∂q
+

N∑

σ=1

c2σ
mσω2

σ

q =
N∑

σ=1

cσQσ

mσQ̈σ +mσω
2
σQσ = cσq (2.30)

The solution forQσ(t) can be achieved by Green’s functions techniques introduced earlier
in section ”Mathematical Preliminaries”. They are

Qσ(t) = Qσ(0) cos(ωσt) +
Pσ(0)

mσωσ

sin(ωσt) +
cσ

mσωσ

t∫

0

dt′ sin(ωσ[t− t′])q(t′) (2.31)

Now following the notation and technique of [16], we get by integration by parts

Qσ(t) = Qσ(0) cos(ωσt) +
Pσ(0)

mσωσ

sin(ωσt)

+
cσ

mσω2
σ


q(t)− q(0) cos(ωσt)−

t∫

0

dt′ cos(ωσ[t− t′])q̇(t′)


 (2.32)

Now using this solution and plugging it into Eq. (2.30), we get

mq̈(t) +m

t∫

0

dt′γ(t− t′)q̇(t′) +
∂V (q)

∂q
= −mγ(t)q(0) + ζ(t) (2.33)

, with the force

ζ(t) =
∑

σ

cσ

(
Qσ(0) cos(ωσt) +

Pσ(0)

mσωσ

sin(ωσt)

)
(2.34)

and the memory-friction kernel obeying causality (γ(t) = 0 for t < 0)

γ(t− t′) =
Θ(t− t′)

m

∑

σ

c2σ
mσω2

σ

cos(ωσ[t− t′]) (2.35)

The Eq. (2.33) is a Langevin-type equation with an additional term −mγ(t)q(0) de-
pending on the initial value q(0). This additional term can be included in the random
force by the following definition

ξ(t) = ζ(t)−mγ(t)q(0) (2.36)

The properties of a classical Langevin equation are well known. Taking the average of
the initial values with respect to the shifted canonical equilibrium density

ρbath = Z−1 e
−β

N∑
σ=1

(
P2
σ(0)

2mσ
+

mσω2
σ

2

(
Qσ(0)− cσ

mσω2
σ
q(0)

)2
)

(2.37)
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ξ(t) becomes a fluctuating force with Gaussian statistical properties

〈ξ(t)〉ρbath = 0

〈ξ(t)ξ(t′)〉ρbath =
m

β
γ(t− t′) (2.38)

, where β = 1
kBT

.
Fourier transforming the memory-friction kernel of Eq. (2.35), we get

γ̃(ω) = − iω

m

N∑

σ=1

c2σ
mσω2

σ

lim
ǫ→0+

1

ω2
σ − ω2 − iǫ ω

2.2.2 Spectral Density

The spectral density function J(ω), contains the complete information about the effect
of the environment. It is defined as

J(ω) =
π

2

N∑

σ=1

c2σ
mσωσ

δ(ω − ωσ) (2.39)

Considering the spectral density as a smooth function of ω and performing the thermody-
namic limit N → ∞, we are able to rewrite the Fourier Transform of the memory-friction
kernel (2.39) in terms of the spectral density [16]

γ̃(ω) = lim
ǫ→0+

− iω

m

2

π

∞∫

0

dω′ J(ω
′)

ω′
1

ω′2 − ω2 − iǫ ω
(2.40)

Up to now, this spectral density has only been derived phenomenologically. In those
derivations [14, 16, 22] the following assumptions were made. J(ω) is considered a
reasonably smooth function of ω and that it is of the form ωs, s > 0 up to some cut-off
frequency ωc.
In this thesis the spectral density will be derived analytically for a microscopic model
in the thermodynamic limit (N → ∞). The variables cσ,mσ, ωσ can be calculated from
the microscopic model, which is shown for the case of one and two anharmonic bonds.
The spectral density is of main importance for this thesis and is derived showing the
behaviour ∼ ωs assumed by Leggett et al.. Three different cases occur generally for
J(ω) ∼ ωs:

• 0 < s < 1 the sub-ohmic case

• s = 1 the ohmic case

• 1 < s the super-ohmic case



20 CHAPTER 2. PRELIMINARIES

The sub-ohmic case will not be discussed in this thesis. It has been shown [14], that
sub-ohmic dissipation leads to complete localisation at T = 0, whereas the super-ohmic
case yields weakly damped oscillations [14]. The critical dimension is achieved for s = 1,
the ohmic case, where the coupling constant cσ ∼ C of the anharmonic bond coordinate
to the harmonic bath coordinates, has a critical value yielding tunnelling for C < Ccrit.

and localisation for the other case.

2.2.3 Kernel

But the spectral density is not only useful to express the Fourier Transform of the
memory-friction kernel γ̃(ω), it can also be used in a different approach of describing
quantum dissipation.
In [22] the authors calculate the Euclidean propagator

GE(qf , {Q(f)
σ }, T ; qi, {Q(i)

σ }, 0) =
qf∫

qi

Dq(τ)

{Q(f)
σ }∫

{Q(i)
σ }

D {Qσ(τ)} e

− 1
~

∫ τ

0

dτ ′LE(q(τ ′), q̇(τ ′); {Qσ(τ
′)}, {Q̇σ(τ

′)})
︸ ︷︷ ︸

SE

using the Euclidean Lagrangian (which is nothing but the Legendre Transform of the
Hamiltonian (2.28) in Euclidean form)

LE =
m

2
q̇2(τ) + V (q) +

N∑

σ=1

mσ

2

[
Q̇2

σ(τ) + ω2
σ

(
Qσ(τ)−

cσ
mσω2

σ

q(τ)

)2
]

(2.41)

To calculate the Euclidean tunnelling propagator, the Euclidean action SE can be split
up into two parts

SE = SE
0 + SE

harm,int

, where the integral of the first two terms are SE
0 without interaction of the environ-

ment, whereas the interaction with the environment is fully captured in SE
harm,int. The

discussion of this part is done explicitly in the next subsection ”Instantons”.
Now the elimination of the harmonic degrees of freedom is performed. The paths
q(τ), {Qσ(τ)} are periodically continued outside the range of 0 ≤ τ < T (where τ
denotes the imaginary time variable) by writing them as a Fourier series [16]

q(τ) =
1

T

∞∑

n=−∞
qn e

iνnτ

Qσ(τ) =
1

T

∞∑

n=−∞
Qσ,n e

iνnτ (2.42)

where νn = 2πn/T is the frequency of the Fourier series. Applying this transformation
to the Euclidean action yields

SE
harm,int =

1

T

∑

σ

∞∑

n=−∞

mσ

2

(
ν2
n|Qσ,n|2 + ω2

σ

∣∣∣∣Qσ,n −
cσ

mσω2
σ

qn

∣∣∣∣
2
)
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Next, Qσ,n will be decomposed into a classical term Qσ,n and a deviation yσ,n describing
quantum fluctuations [16]

Qσ,n = Qσ,n + yσ,n =
cσ

mσ(ν2
n + ω2

σ)
qn + yσ,n (2.43)

This result is trivially achieved using Eqs. (2.42) and (2.30). In the second part the
classical solutions of the Euclidean equations of motion are used. Since Qσ(τ) is a
stationary point of the action, the term linear in the deviation yσ,n is eliminated. With
this approach it is possible to decouple the bilinear forms containing the anharmonic
bond and the harmonic degrees of freedom

SE
harm,int = SE

harm + SE
infl.

SE
harm =

1

T

∑

σ

∞∑

n=−∞

mσ

2
(ν2

n + ω2
σ)|yσ,n|2 =

∑

σ

T∫

0

dτ
mσ

2

(
ẏ2σ,n + ω2

σy
2
σ,n

)

SE
infl. =

1

T

∑

σ

c2σ
2mσ

∞∑

n=−∞

( |qM,n|2
ω2
σ

− |qM,n|2
ν2
n + ω2

σ

)
(2.44)

The first term in SE
infl. originates from the potential counter term C

4
q2n. Changing to the

time representation the influence action (2.44) reads [16]

SE
infl. =

T∫

0

dτ

τ∫

0

dτ ′ k(τ − τ ′)q(τ)q(τ ′)

k(τ) =
1

T

∑

σ

c2σ
mσω2

σ

∞∑

n=−∞

ν2
n

ν2
n + ω2

σ

eiνnτ =
2

πT

∞∫

0

dω
J(ω)

ω

∞∑

n=−∞

ν2
n

ν2
n + ω2

eiνnτ

(2.45)

, where the definition of the spectral density (2.39) has been used. The form of the
kernel can be written in many forms (see [16]), here the zero temperature kernel K(τ)
will be used which can be achieved after some minor manipulations of k(τ) [16]

K(τ) =
C

2

∞∑

n=−∞
δ(τ − nT )− k(τ) =

1

T

∑

σ

∞∑

n=−∞

c2σ
mσ(ν2

n + ω2
σ)

eiνnτ (2.46)

where the summation over n is easily performed yielding in the principle interval 0 ≤
τ < T [16]

K(τ) =
∑

σ

c2σ
2mσωσ

cosh
(
ωσ

[
T
2
− τ
])

sinh
(
ωσT
2

) =
1

π

∞∫

0

dω J(ω)
cosh

(
ω
[
T
2
− τ
])

sinh
(
ωT
2

) (2.47)
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The resulting influence action with paths q(τ) extended outside the range of 0 ≤ τ < T
using q(τ + nT ) = q(τ) , ∀n ∈ N is

SE
infl. =

T∫

0

dτ

τ∫

0

dτ ′ K(τ − τ ′)q(τ)q(τ ′)

K(τ) ∼=
∑

σ

c2σ
2mσωσ

e−ωστ =
1

π

∞∫

0

dω J(ω) e−ωτ (2.48)

Since quantum dissipative effects due to the bath qualitatively depend on the large τ or

low frequency behaviour, the fraction
cosh(ω[T2 −τ])

sinh(ωT
2 )

can be well approximated for small

but fixed ω, large T and τ not to close to T ,(T
2
− τ = O(1)), by e−ωτ as can be seen

from the following calculation

τ = α
T

2
, 0 < α < 1

ω 6= 0 : lim
T→∞

cosh
(
ω
[
T
2
− τ
])

sinh
(
ωT
2

) = lim
T→∞

e
ωT
2

(1−α) + e−
ωT
2

(1−α)

e
ωT
2 − e−

ωT
2

= e−ωτ

(2.49)

In this thesis the kernelK(τ) will be used to determine the position dependent tunnelling
of the anharmonic bond(s). We will be able to show, that in the one anharmonic bond
case there is ohmic dissipation (∼ τ−2) for the anharmonic bond located in the bulk
of the chain, whereas there will be a transition from ohmic to super-ohmic (∼ τ−4)
dissipation for the case of the anharmonic bond located at the border of the chain
depending on a time scale defined by the position of the bond.

2.2.4 Instantons

The path integral formalism allows one to investigate quantum tunnelling by determining
the instanton solutions [16], i.e. the solutions of the classical equation of motion for a
double well potential without coupling to an environment, in imaginary time. The
influence of the bath on the calculated instanton paths introduces the dissipative effect
on the tunnelling. Getting the classical equations of motion from the Euclidean action
SE
0

SE
0 [q(τ), q̇(τ)] =

τ∫

0

dτ ′LE
0 [q(τ

′), q̇(τ ′)]

LE
0 [q(τ

′), q̇(τ ′)] =
m

2
q̇(τ ′) + V0(q(τ

′)) (2.50)

yields

q̈(τ ′)− 1

m

∂V0(q(τ
′))

∂q(τ ′)
= 0
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Multiplying both sides by q̇(τ ′) and integrating [12], we get

τ∫

0

dτ ′ q̈(τ ′)q̇(τ ′) =
1

m

τ∫

0

dτ ′
∂V0(q(τ

′))

∂q(τ ′)
q̇(τ ′) (2.51)

, which is equivalent to

1

2
q̇2 =

V0(q)

m

⇔ dq(τ ′)

dτ ′
= ±

√
2V0(q(τ ′))

m

⇔ τ = ±
q(τ)∫

q(0)

dq

√
m

2V0(q)
(2.52)

Plugging in the symmetric double well potential V0(q) =
C
2

(
q − q0

2

)2 (
q + q0

2

)2
we get

τ = ±
√

m

C

q(τ)∫

q(0)

dq(
q − q0

2

) (
q + q0

2

)

τ = ± 2

q0

√
m

C
Artanh

(
2q(τ ′)

q0

) ∣∣∣
τ ′=τ

τ ′=0
(2.53)

Choosing q(0) = 0 and inverting the Artanh, we get the instanton solution

q(τ) = ±q0
2
tanh

(
q0τ

2

√
C

m

)
(2.54)

By using the fact, that the upper phonon band edge ω0 is roughly ω0 ∼
√

C
m

and

assuming that V ′′
0

(
± q0

2

)
≈ C, we can set the kink-width, the time an instanton needs

to flip from one state to the other, τkink =
√

m

V ′′
0 (±

q0
2 )

to τkink ≈ ω−1
0 . We are now

able to write down the final form for the instanton solution for a symmetric double well
potential

q(τ) = ±q0
2
tanh

(
q0
2

τ

τkink

)
∼= ±q0

2
tanh

(q0
2
ω0τ
)

(2.55)

2.3 The Caldeira-Leggett Model

This section explains the Caldeira-Leggett model, which is used throughout this thesis.
At first one has to know, that the Caldeira-Leggett Hamiltonian or Euclidean Lagrangian
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is originally of phenomenological nature. It is a model to describe a tunnelling quantum
system at T = 0, linearly coupled to an environment. This model allows to observe
quantum tunnelling on a macroscopic scale. The most promising candidate to see the
effect of quantum tunnelling as a dominant factor in the transition is a SQUID (super-
conducting quantum interference device). The magnetic flux is the macroscopic variable
in this scenario. WKB1 approximations ignoring quantum dissipation do not show the
full physical behaviour at low temperature compared to experiments. At large enough
temperatures, the effect of thermal fluctuations affect the SQUID. Those corrections
have been investigated by Kramers [31] and Kurkijärvi [32]. But these thermal fluc-
tuations do not explain the experimentally observed deviations for low temperatures
[24, 25]. This problem can be resolved by including quantum dissipative effects, which
lead to a multiplicative factor in the tunnelling probability.
In 1981 Caldeira and Leggett proposed this simple model Euclidean Lagrangian [22] to
describe the effect of quantum dissipation. The model Euclidean Lagrangian has the
following form

LE =
m

2
q̇2 + V (q) +

1

2

∑

σ

mσ

(
Q̇2

σ + ω2
σQ

2
σ

)
+ q

∑

σ

cσQσ (2.56)

where {Qσ}, {Q̇σ} denote coordinates and velocities of the harmonic environment and
q, q̇ the coordinate and velocity of the system. The parameters mσ, ωσ are at the masses
and frequencies of the harmonic coordinates and cσ are the coupling constants. With
this Euclidean Lagrangian a propagator can be defined

GE(qf , {Q(f)
σ }, T ; qi, {Q(i)

σ }, 0) =
qf∫

qi

Dq(τ)

{Q(f)}
σ∫

{Q(i)}
σ

D{Qσ(t)}
∏

σ

e
− 1

~

τ∫
0

dτ ′ LE

(2.57)

where the harmonic degrees of freedom can be eliminated considering periodic paths
{Q(i)

σ } = {Q(f)
σ }. Hence the propagator reads

GE(qf , τ ; qi, 0) =

qf∫

qi

Dq(τ) e
− 1

~

τ∫
0

dτ ′ (m
2
q̇2+V (q))

e
1
~

∞∫
−∞

dτ ′
τ ′∫
0

dτ ′′ α(τ ′−τ ′′)q(τ ′)q(τ ′′)+const.

(2.58)

where q(τ ′) has been periodically continued outside the region 0 < τ ′ < τ by the
prescription q(τ ′ + τ) ≡ q(τ ′), which does not affect the tunnelling. The quantity
α(τ ′ − τ ′′) is defined as follows

α(τ ′ − τ ′′) =
∑

σ

c2σ
4mσωσ

e−ωσ |τ ′−τ ′′| =
1

2π

∞∫

0

dω J(ω)e−ω|τ ′−τ ′′| (2.59)

where J(ω) is the spectral density defined in the subsection ”Spectral Density”. The
constant is a term not contributing to the tunnelling and can be included into the po-
tential V (q) acting as a renormalization.

1Wentzel-Kramers-Brillouin
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Now the main aspect of this model is to relate the quantity α(τ ′ − τ ′′) with the phe-
nomenological friction coefficient η. Caldeira and Leggett note that since the charac-
teristic times needed for the tunnelling are of order ω−1

cl , or longer, hence α(τ ′ − τ ′′) is
only needed for times of this order or expressed in terms of the spectral density J(ω) for
frequencies ω ≤ ωcl. Now if the classical motion is to be determined by a well-defined
friction coefficient, the following relation must hold

J(ω ≤ ωc) = ηω (2.60)

ωc denotes a critical frequency, where the spectral density deviates appreciably from its
low-frequency form, which is considered [22].
Using this restriction for the spectral density, the relation between quantity α(τ ′ − τ ′′)
and the phenomenological friction coefficient is valid in lowest order of ωcl/ωc and reads

∞∫

−∞

dτ ′
τ ′∫

0

dτ ′′ α(τ ′ − τ ′′)q(τ ′)q(τ ′′) + const. =
η

4π

∞∫

−∞

dτ ′
τ ′∫

0

dτ ′′
q(τ ′)− q(τ ′′)

(τ ′ − τ ′′)

2

(2.61)

A weakness of this model is, that it is purely phenomenological. The spectral density
J(ω) is given a power law form (∼ ωs , s > 0) for low enough frequencies (ω ≤ ωc), but
there is no microscopic model used to evaluate the spectral density analytically.
That is one of the main aspects of this thesis, to propose a model system/Hamiltonian,
which can analytically be put into the Caldeira-Leggett form. This allows us, to mi-
croscopically derive the spectral density and hence the phenomenological input is not
needed. The Caldeira-Leggett model has been researched quite intensively, but only
for different exponents s of ω in the spectral density. The reason for this is the phase
transition occurring at the critical value of s = 1. For s < 1 there is the localisation
phenomenon. That means quantum tunnelling is fully suppressed, due to the interac-
tion with the environment. For s > 1 quantum tunnelling is never suppressed. The
effect of the environment is to damp the oscillation of the system. At the critical value
s = 1 there is a phase transition from localisation to the damped oscillative behaviour,
depending on the bonding constants.

2.4 Summary

In this chapter we have introduced mathematical and physical preliminaries, that are
needed to fully understand the topics discussed in this thesis. The presentation of these
definitions and techniques as a separate chapter will allow a more fluent reading of the
main part. In this chapter only the basic techniques are presented, the derivation of the
two anharmonic bond probability with the Feynman-Vernon path integral formalism,
is shown here for one anharmonic bond in rough sketches. The full derivation for the
more general case of two anharmonic bonds is presented in detail in the Appendix of
the thesis.
In section ”The Caldeira-Leggett Model” the model used in this thesis is presented. The
model is motivated and its validity and possible applications are shown.
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Chapter 3

The 1-defect Model

Lets consider a simple model of a 1-dimensional open chain of N -particles described by
a classical Hamiltonian

H =
N∑

n=1

p 2
n

2mn

+ V (x1, ..., xN )

V (x1, ..., xN ) =
C

2

N−1∑

n=1
6=Mi

(xn+1 − xn − an)
2 +

r∑

i=1

V0(xMi+1 − xMi
) (3.1)

where r are the number of anharmonic bonds, xn is the position of the n-th particle, pn
the momentum of the n-th particle, C is the elastic constant of the harmonic nearest
neighbour interaction, an are the equilibrium lengths of the harmonic bonds. The an-
harmonic potentials considered in this thesis are double well potentials with symmetric
wells of the following form

Figure 3.1: A symmetric double-well potential, for a one dimensional system. qMi
= xMi+1 − xMi

, and with the
local minima (ground states) − q0

2
and q0

2
. The barrier height is labelled V0

Here two methods of separating the harmonic from the anharmonic degrees of freedom

27



28 CHAPTER 3. THE 1-DEFECT MODEL

are presented in sections ”First Method” and ”Second Method”. The goal of the sep-
aration is to bring the Hamiltonian Eq. (3.1) into the form of the Caldeira-Leggett
Hamiltonian or Euclidean Lagrangian, respectively

LE = LE
0 + LE

1 , LE
1 = LE

harm + LE
infl

LE
0 (qM , q̇M) =

M

2
q̇2M + V0(qM)

LE
1 (qM , {Qσ}; q̇M , {Q̇σ}) =

1

2

N∑

σ=1

mσ

[
Q̇2

σ + ω2
σ

(
Qσ −

cσ
mσω2

σ

qM

)2
]

(3.2)

where the {Qσ} are the harmonic bath modes, that can be eliminated (the exact way to
do this can be seen in the section ”Physical Preliminaries”). The goal is to investigate
the Euclidean propagator GE(± q0

2
, T ;∓ q0

2
, 0), where the harmonic degrees of freedom

have been eliminated, leading to an influence term in the Euclidean action

GE

(
±q0

2
, T ;∓q0

2
, 0
)
=

qM (T )=± q0
2∫

qM (0)=∓ q0
2

DqM(τ) e−
1
~

(
SE
0 [qM (τ)]+SE

infl
[qM (τ)]

)
(3.3)

where the Euclidean action in the exponent is defined as

SE
0 [qM(τ)] =

T∫

0

dτ
(m
2
q̇2M(τ) + V0(qM(τ))

)

SE
infl.[qM(τ)] = −

T∫

0

dτ

τ∫

0

dτ ′ K(τ − τ ′)qM(τ)qM(τ ′) (3.4)

This propagator describes the tunnelling of one classical minimum to the other during
the observation time T . The kernel K(τ − τ ′) shows the influence of the harmonic
bath and will be derived in detail in section ”Quantum Tunnelling”. The main aspect
being discussed here is the different behaviour of the kernel due to the position of the
anharmonic bond. The kernel appears due to the elimination of the harmonic bath
and leads to damping in the tunnelling behaviour of the anharmonic bond. Two cases
are presented. One considers a macroscopically large chain, where the anharmonic
bond is located at one of the borders of the chain with distance ∼ M . Because of the
translational invariance of the system, tunnelling of the anharmonic bond requires only
a movement of a finite mass. In this case tunnelling is of super-ohmic dissipative nature
and never surpressed. Whereas in the second case the anharmonic bond is located in
the bulk of the macroscopically large chain. Tunnelling of the anharmonic bond requires
now a movement of an infinite mass. For this case tunnelling is of ohmic dissipative
nature and is fully surpressed if the coupling constant between the anharmonic bond
and the harmonic bath exceeds a critical value. The details of what will happen are
shown in section ”Quantum Tunnelling”.
In section ”Two Defects” the separation of the harmonic and anharmonic degrees of
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freedom for two anharmonic bonds in one dimension is shown. The investigation of
the kernel in the influence action is done to show the effect of interaction between the
anharmonic bonds. Since only the effect of interaction between the two anharmonic
bonds is of interest, both bonds are considered in the bulk with a finite distance D
between each other. This scenario corresponds to an indirect interaction of both bonds
via a finite harmonic bath between them and is discussed in detail in chapter ”Two
Defects”.
The model Eq. (3.1) has been chosen so that an analytical discussion is possible without
applying too many restrictions. Lets start with the case of one anharmonic bond (r = 1).
First the two methods for separating the anharmonic from the harmonic degrees of
freedom are presented.
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3.1 First Method

The Hamiltonian Eq. (3.1) for one anharmonic bond (r = 1) in one dimension (d = 1)
reads

H =
N∑

n=1

p2n
2mn

+ V (x1, ..., xN )

V (x1, ..., xN ) =
C

2

N−1∑

n=1
( 6=M)

(xn+1 − xn − an)
2 + V0(xM+1 − xM) (3.5)

The first method is to introduce centre of mass of the total chain and relative coordi-
nates. This approach is only applicable to 1d systems. The advantage of this approach is
the way in which the harmonic and anharmonic degrees of freedom can be separated an-
alytically and the resulting Hamiltonian be put in the form of the Euclidean Lagrangian
of Caldeira and Leggett Eq. (3.2). Let

Xc =
1

Mc

N∑

n=1

mnxn

Mc =
N∑

n=1

mn (3.6)

be the centre of mass and total mass for all particles and

qi =

{
xi+1 − xi − ai , i = 1, ..., N − 1

XC , n = 0

aM = 0 (3.7)

be the relative coordinates, respectively. Now the canonical conjugate momenta have to
be found. One can define a generating function (2.19)

R2(x1, ..., xN ; π0, ..., πN−1) =
N−1∑

k=0

πkfk(x1, ..., xN )

fk(x1, ..., xN ) = qk(x1, ..., xN ) + ak , a0 = 0 (3.8)

This generating function (see section ”Physical Preliminaries” (2.19)) defines the con-
jugate momenta as

pn =
∂R2

∂xn

=
N−1∑

k=0

πk
∂fk(x1, ..., xN )

∂xn

=:
N−1∑

k=0

Mknπk

Mkn =
mn

Mc

δ0,k + (δk+1,n − δk,n)(1− δ0,k) (3.9)
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where πk are the canonical conjugate momenta of qk. The matrix elements Mnk read
explicitly

1 2 N-1 N

0

1

N-2

N-1




m1

Mc

m2

Mc
... ... ... mN

Mc

−1 1 0 ... ... 0

0 − 1 1
. . .

...

...
. . . . . . . . . . . .

...

...
. . . −1 1 0

0 ... ... 0 − 1 1




= (Mkn) (3.10)

Applying the transformations for pn of Eq. (3.9) to Eq. (3.5) yields

N∑

n=1

p2n
2mn

=
1

2

N−1∑

k,k′=0

πkπk′

N∑

n=1

1

mn

MknMk′n =
1

2

N−1∑

k,k′=0

πkπk′

N∑

n=1

1

mn

MknM
T
nk′

︸ ︷︷ ︸
M̃

(3.11)

where M̃ is defined as

0 1 N-2 N-1

0

1

N-2

N-1




1
Mc

0 0 0 ... ... 0

0 1
m1

+ 1
m2

− 1
m2

0 ... ... 0

0 − 1
m2

1
m2

+ 1
m3

− 1
m3

0 ... 0

...
. . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

0 ... ... 0 − 1
mN−2

1
mN−2

+ 1
mN−1

− 1
mN−1

0 ... ... ... 0 − 1
mN−1

1
mN−1

+ 1
mN




= M̃

The resulting Hamiltonian is

H =
π2
0

2Mc

+
1

2

N−1∑

k=1

(
1

mk

+
1

mk+1

)
π2
k −

N−2∑

k=1

πkπk+1

mk+1

+
C

2

N−1∑

k=1
( 6=M)

q2k + V0(qM) (3.12)

The first term is the kinetic energy of the centre of mass and will be dropped from now
on. The Hamiltonian has to be diagonalised. To achieve this a canonical transformation
decoupling the anharmonic momentum πM from the harmonic momenta πk, k 6= M is
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performed. The coupling of πM with πM±1 reads

1
2

(
1

mM

+
1

mM+1

)
π2
M −

(
πM−1

mM

+
πM+1

mM+1

)
πM =

1
2

mM +mM+1

mMmM+1

[
πM − mM+1πM−1 +mMπM+1

mM +mM+1

]2
− (mM+1πM−1 +mMπM+1)

2

2mMmM+1(mM +mM+1)

(3.13)

From this, the transformation decoupling the anharmonic momentum πM from the har-
monic momenta, can easily be seen

p̃M = πM − 1

mM +mM+1

(
mM+1πM−1 +mMπM+1

)
(3.14)

p̃k = πk , k = 1, ...,M − 1,M + 1, ..., N − 1 (3.15)

Now the canonical conjugate coordinates have to be found. One can define a generating
function (2.19)

R3(q̃1, ..., q̃N−1; π1, ..., πN−1) = − q̃M

[
πM − mM+1πM−1 +mMπM+1

mM +mM+1

]

−
N−1∑

k=1
( 6=M)

q̃kπk (3.16)

With the generating function (2.19) the conjugate coordinates can be evaluated in the
following way

qk = −∂R3

∂πk

= q̃k , k = 1, ...,M − 2,M,M + 2, ..., N − 1 (3.17)

qM−1 = − ∂R3

∂πM−1

= q̃M−1 −
1

2
q̃M (3.18)

qM+1 = − ∂R3

∂πM+1

= q̃M+1 −
1

2
q̃M (3.19)

Substituting these new coordinates and momenta in Eq. (3.12) (note that the c.o.m.
has been dropped) leads to

H = Hharm +Hd +Hint

Hharm =
1

2

N−1∑

k,j=1
( 6=M)

Tkj p̃kp̃j +
C

2

N−1∑

k=1
( 6=M)

q̃2k

Hd =
mM +mM+1

2mMmM+1

p̃2M +
C

2

m2
M +m2

M+1

(mM +mM+1)2
q2M + V0(qM)

Hint = −C
mM+1q̃M−1 +mM q̃M+1

mM +mM+1

qM (3.20)
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The Hamiltonian has been split up into three parts. The first one describes the harmonic
part, where the matrix elements Tkj depend on the masses mk and hence cannot be
analytically diagonalised. Considering the simplest case of equal masses mk = m solves
this problem and allows an analytical diagonalisation. The diagonalisation and the
structure of Tkj for equal masses, is discussed in Appendix A. The second part describes
the coordinates qM , momenta p̃M and interaction V0(qM). The last term contains the
coupling of the harmonic with the anharmonic coordinates.
After the diagonalisation the introduction of normal coordinates

Qσ =
N−1∑

k=1
( 6=M)

q̃ku
(σ)
k , Pσ =

N−1∑

k=1
( 6=M)

p̃ku
(σ)
k , σ = 1, ..., N − 2 (3.21)

is possible. The eigenmodes u
(σ)
k are derived and their explicit expressions are given in

Eq. (A.11) in Appendix A. Applying Eq. (3.21) to Hharm of Eq. (3.20) yields

Hharm =
1

2

N−2∑

σ=1

(
λσP

2
σ + CQ2

σ

)
(3.22)

where λσ are the mass weighted eigenvalues defined in Eq. (A.10) in Appendix A.
Applying the transformation to normal modes Eq. (3.21) to Hint of Eq. (3.20) yields

Hint = −q̃M

N−2∑

σ=1

cσQσ , cσ =
C

2

(
u
(σ)
M+1 + u

(σ)
M−1

)
(3.23)

Or expressed differently to make it easier to show the equivalence between the different
approaches ”First Method” and ”Second Method” of separating the harmonic from the
anharmonic degrees of freedom:

Hint = −q̃MC

N−2∑

σ=1

NbσQσ sin (qσM) (3.24)

, where the normalisation constant Nbσ is defined in Appendix A (A.23). The term
containing only the anharmonic degrees of freedom has the form

Hd =
p̃2M
m

+ V0(q̃M) +
C

4
q̃2M (3.25)

Comparing the harmonic Hamiltonian Eq. (3.22) with a standard harmonic Hamiltonian

H
(stand.)
harm =

1

2

∑

σ

[
P 2
σ

mσ

+mσω
2
σQ

2
σ

]
(3.26)

yields the following equations with ωσ > 0

mσ =
1

λσ

mσω
2
σ =

ω2
σ

λσ

= C

⇒ ωσ =
√
Cλσ =

√
2C

m
(1− cos (qσ)) = 2

√
C

m
sin
(qσ
2

)
= ω0 sin

(qσ
2

)
(3.27)
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, where ω0 is the frequency of the upper phonon band edge. The final step now is to
Legendre transform the Hamiltonian, which leads to a Lagrangian. After performing a
Wick rotation (t = −iτ) to the Lagrangian, the Euclidean Lagrangian reads

LE = LE
0 + LE

1 , LE
1 = LE

harm + LE
int

LE
0 =

m

4
q̇2M + V0(qM)

LE
1 =

1

2

N−2∑

σ=1

mσ

[
Q̇2

σ + ω2
σ

(
Qσ −

cσ
mσω2

σ

qM

)2
]

(3.28)

This Euclidean Lagrangian is of the exact same form as the Caldeira-Leggett Euclidean
Lagrangian presented in Eq. (3.2) needed to discuss the tunnelling behaviour. The

completeness of the eigenvectors u
(σ)
k leads to the equality

N−2∑

σ=1

c2σ
mσω2

σ

(3.23),(3.27)
=

C

4

N−2∑

σ=1

(
u
(σ)
M+1 + u

(σ)
M−1

)2

=
C

2
(3.29)

This completeness Eq. (3.29) makes it possible to include the counter term (third term
inHd Eq. (3.25)) in L1. This counter term, the role of which has been discussed by Weiss
[16], results from the canonical transformations, Eq. (3.18)-(3.19). This transformation
eliminates the coupling between the harmonic and the anharmonic momenta, as desired,
and generates a coupling between the normal (harmonic-)coordinates {Qσ} and the
corresponding system coordinate qM . The Lagrangian now has the desired form for
eliminating the normal (harmonic-)coordinates {Qσ} by the use of the path integral
formalism. This procedure will be shown in section ”Quantum Tunnelling”.
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3.2 Second Method

The second method of separating the harmonic and anharmonic degrees of freedom has
the advantage that it can be applied to higher dimensional systems. Starting from the
same Hamiltonian as in the first method Eq. (3.5) the centre of mass Xd is chosen
for the anharmonic bond only, not for the whole chain as in method one. The relative
system coordinate qM stays equivalent to the first approach:

Xd =
mMxM +mM+1xM+1

mM +mM+1

qM = xM+1 − xM (3.30)

The corresponding canonical momenta can be achieved using a generating function
(2.19) (like in the first approach). The generating function reads

R2(xM , xM+1; πM , Pd) = πMqM + PdXd (3.31)

This generating function defines the conjugate momenta as

pn =
∂R2

∂xn

, n = M,M + 1 (3.32)

The resulting two equations can be put into the following form

Pd = pM + pM+1

πM =
mM

mM +mM+1

pM+1 −
mM+1

mM +mM+1

pM (3.33)

Substituting these transformations Eqs. (3.30), (3.33) into Eq. (3.5) yields

H = Hd +Hharm +Hint

Hd =
π2
M

2µM

+ V0(qM) +
C

2

m2
M +m2

M+1

(mM +mM+1)2
q2M

Hharm =
N∑

n=1
(n 6=M,M+1)

p2n
2mn

+
P 2
d

2(mM +mM+1)
+

C

2

N−1∑

n=1
(n 6=M,M±1)

(xn+1 − xn − an)
2

+
C

2
(Xd − xM−1 − aM−1)

2 +
C

2
(xM+2 −Xd − aM+1)

2

Hint = −C

[
mM+1

mM +mM+1

(Xd − xM−1 − aM−1)

+
mM

mM +mM+1

(xM+2 −Xd − aM+1)

]
qM (3.34)

where µM = mMmM+1/(mM + mM+1) is the reduced mass of the anharmonic bond.
For the transformation of Hharm Eq. (3.34) to normal coordinates, new coordinates are
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introduced for convenience

x′
n =





xn , n = 1, ...,M − 1

Xd , n = M

xn+1 , n = M + 1, ..., N − 1

p′n =





pn , n = 1, ...,M − 1

Pd , n = M

pn+1 , n = M + 1, ..., N − 1

a′n =

{
an , n = 1, ...,M − 1

an+1 , n = M, ..., N − 2

m′
n =





mn , n = 1, ...,M − 1

mM +mM+1 , n = M

mn+1 , n = M + 1, ..., N − 1

(3.35)

The explicit diagonalisation of the Hamiltonian by introducing again equal masses mn =
m, for the same reason as before, is done in Appendix B. This leads to

m′
n = m

{
1 , n 6= M

2 , n = M
(3.36)

A transformation to mass weighted normal modes

q′σ =
N−1∑

n=1

ũ′
ne

(σ)
n , p′σ =

N−1∑

n=1

p̃′ne
(σ)
n (3.37)

with the eigenmodes e
(σ)
n and ũ′

n, p̃
′
n defined in Appendix B, Eq. (B.5), yields:

H = Hharm +Hint +Hd

Hharm =
1

2

N−2∑

σ=0

(
p′2σ + λ̃σq

′2
σ

)

Hint = −qM

N−2∑

σ=1

c̃σq
′
σ c̃σ =

C

2
√
m

(
e
(σ)
M+1 − e

(σ)
M−1

)

Hd =
π2
M

m
+ V0(qM) +

C

4
q2M (3.38)

, where λ̃σ are the eigenvalues defined in Appendix B, Eq. (B.9). Since Hharm (Eq.
(3.38)) is still translationally invariant (note that only the c.o.m. for the defect has
been separated of the total chain) there is a zero frequency mode which is chosen for
σ = 0. The eigenvalue of the zero mode x̃σ reads λ̃0 =

2C
m

(1− cos (x̃0)) = 0.
After showing the equivalence of the transcendental equations (for the explicit calcula-
tion see Appendix B Eqs. (B.13)-(B.16)), only the equivalence of the Hamiltonian of
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the first approach Eqs. (3.22)-(3.25) with the Hamiltonian of the second method Eqs.
(3.38) remains to be shown. Since Hd already has the same form, as can be seen by
comparing Hd of the first method (Eq. (3.25) with Hd of the second method Eq. (3.38)
(and replacing coordinates (πM , qM) by (p̃M , q̃M)), only the harmonic and interaction
part remains. Extracting the zero frequency mode from the harmonic Hamiltonian of
Eq. (3.38) one gets a harmonic and a c.o.m. part

Hcom +Hharm =
p′20
2

+
1

2

N−2∑

σ=1

(
p′2σ + λ̃σq

′2
σ

)

The c.o.m. Hamiltonian is the kinetic energy of the total chain. Note that the mass
weighted eigenvalues from the first method λσ can be transformed into the mass weighted
eigenvalues of the second method λ̃σ by

λ̃σ = Cλσ (3.39)

With the canonical transformations

p′σ :=
√
λσPσ, q′σ :=

1√
λσ

Qσ σ = 1, ..., N − 2 (3.40)

the same harmonic Hamiltonian as in the first approach

Hharm =
1

2

N−2∑

σ=1

(
λσP

2
σ + CQ2

σ

)
(3.41)

is achieved. The c.o.m. momentum p′0 in the second approach (which is mass weighted)
is of course nothing put the massless momentum of the first approach π0 with the mass
added (in a multiplicative way) separately (see Eq. (3.12)). The transformation reads

p′0 =
π0√
Mc

(3.42)

This shows the equivalence of the c.o.m. and harmonic Hamiltonian of both approaches.
The interaction part is more tedious. Starting with the interaction part of Eq. (3.38)
and using the transformation given in Eq. (3.40) one gets

Hint = −qM
C

2
√
m

N−2∑

σ=1

Qσ√
λσ

(
e
(σ)
M+1 − e

(σ)
M−1

)
(3.43)

By using the derived eigenmodes from Eqs. (B.9), (B.10) one gets the following expres-
sion for Hint

Hint = −qM
C

2
√
m

N−2∑

σ=1

Ñb̃σ

Qσ√
λσ

(
cos
(
x̃σ

[
M − 1

2

])
cos
(
x̃σ

[
N −M − 3

2

])

cos
(
x̃σ

[
N −M − 1

2

]) − cos
(
x̃σ

[
M − 3

2

])
)
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Now with the help of the transcendental equation Eq. (B.13) one can replace the
first term in parenthesis by 2 (2 cos(x̃σ)− 1) cos

(
x̃σ

[
M − 1

2

])
− cos

(
x̃σ

[
M − 3

2

])
. This

allows us to rewrite the interaction part as

Hint = −qM
C√
m

N−2∑

σ=1

Ñb̃σ

Qσ√
λσ

(
(2 cos(x̃σ)− 1) cos

(
x̃σ

[
M − 1

2

])
− cos

(
x̃σ

[
M − 3

2

]))

With the help of some basic trigonometric identities we get

Hint = 2qM
C√
m

N−2∑

σ=1

Ñb̃σ

Qσ√
λσ

sin (x̃σM) sin

(
x̃σ

2

)
(3.44)

using the equation for the eigenvalues Eqs. (3.39) ,(B.9) the interaction part has exactly
the same form as in the first method Eq. (3.24).

Hint = −qMC
N−2∑

σ=1

Ñb̃σ
Qσ sin (x̃σM) (3.45)

To show the full equivalence one has to look closer at the variables. Both approaches
yield the same Qσ and of course q̃M = qM . The equivalence of the transcendental
equations (proven in Appendix B Eq. (B.16)) also provide the same wave numbers
qσ = x̃σ for both approaches.
The only equivalence left to prove is that of the normalisation constants. Since this is
not only tedious, but also more to write down, the proof is given at the end of Appendix
B. With this result the equivalence of both approaches has been shown.
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3.3 Quantum Tunnelling

Since both approaches lead to the same Euclidean Lagrangian, the notation of the
first approach is used from now on. This section is restricted to the zero temperature
quantum tunnelling behaviour of the anharmonic bond embedded in the harmonic chain.
The tunnelling behaviour is graphically shown in Figure (3.2)

Figure 3.2: Two degenerate classical ground states of the open chain with N particles. The masses mn are chosen
to be equal. a is the equilibrium length of the harmonic bonds and as, al the two degenerate equilibrium lengths of the
anharmonic bond.

The defect potential V0(qM) of Eq. (3.28) is assumed to be a double-well potential with
degenerate minima at − q0

2
, which corresponds to the equilibrium length as > 0 of the

anharmonic bond and q0
2
, which corresponds to the other equilibrium length al > as

of the anharmonic bond. The interest lies in calculating the Euclidean propagator
describing the tunnelling between the degenerated equilibrium ground states − q0

2
and

q0
2
. The propagator describing this tunnelling behaviour is defined as

GE(qf , T ; qi, 0) =

qM (T )=qf∫

qM (0)=qi

DqM(τ) e−
SE [qM (τ)]

~ (3.46)

where the harmonic degrees of freedom have already been eliminated1. The Euclidean

1The elimination procedure for the harmonic degrees of freedom has been shown explicitly in section
”Physical Preliminaries”



40 CHAPTER 3. THE 1-DEFECT MODEL

action SE[qM(τ)] for this model can be split up into two parts

SE[qM(τ)] = SE
0 [qM(τ)] + SE

infl.[qM(τ)]

SE
0 [qM(τ)] =

T∫

0

dτ
(m
2
q̇2M(τ) + V (qM(τ)

)

SE
infl.[qM(τ)] = −

T∫

0

dτ

τ∫

0

dτ ′ KM(τ − τ ′)qM(τ)qM(τ ′) (3.47)

KM(τ) =
N−2∑

σ=1

c2σ
2mσωσ

e−ωστ (3.48)

The kernel KM(τ) will now be discussed to show the tunnelling behaviour for this case.
The index M stands for the position dependence of the anharmonic bond. Inserting cσ
from Eq. (3.23) and mσ, ωσ from Eqs. (3.27) into the kernel (3.48) yields

KM(τ) =
Cω0

2

N−2∑

σ=1

N 2
bσ sin

(qσ
2

)
sin2 (qσM) e−ω0 sin( qσ

2 )τ (3.49)

Replacing the normalisation constant Nbσ (A.23) by its low-frequency behaviour
√

2
N

which is a valid assumption for the case of taking the thermodynamic limit (N → ∞),
yields the integral representation of the kernel

KM(τ) ∼= Cω0

2π

π∫

0

dq q sin2(qM) e−
ω0q
2

τ (3.50)

From the integrand of Eq. (3.50) two q-scales follow. They are

qM =
1

M
and qτ =

1

ω0τ
(3.51)

Equating qM = qτ defines a time scale

τM =
M

ω0

(3.52)

The kernel Eq. (3.50) can be evaluated by performing the q−integration, the result is

KM(τ) ∼=
8CM2ω0e

−π
2
ω0τ
(
16M2

[
2e

π
2
ω0τ − 2− πω0τ

]
− (ω0τ)

2

[
6− 6e

π
2
ω0τ + πω0τ

])

π(16M2ω0τ + (ω0τ)3)2

This result can be approximated neglecting the exponentially decaying factors regarding
the long time limit ω0τ ≫ 1

KM(τ) ∼=
8CM2ω0

(
32M2 + 6(ω0τ)

2
)

π(16M2ω0τ + (ω0τ)3)2
(3.53)
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This memory kernel now has to be investigated regarding the above defined two time
scales.

• τ ≫ τM :

Replacing M by ω0τM and applying τ ≫ τM , yields

KM(τ ≫ τM) ∼= 48Cω0M
2

π

1

(ω0τ)4
(3.54)

• τ ≪ τM :

In this case τM yields the largest contribution, applying this to Eq. (3.53)

KM(τ ≪ τM) ∼= Cω0

π

1

(ω0τ)2
(3.55)

which leads to ohmic behaviour.

10
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4
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)

Figure 3.3: τ -dependence of KM (τ) for different finite and infinite M (green: M = 5, red: M = 10, blue: M = 20,
brown: M = 40, grey: M = 80, magenta: M = 160, dashed orange: M = ∞) on a log-log representation. The dotted
and dashed line, corresponding to τ−2 and τ−4, respectively included to see the transition.

Finally one can summarise the results as follows. If the observation time T of the prop-
agator (3.46) is smaller than τM , Eq. (3.55) holds, which shows ohmic dissipation. This
can be explained as follows. τM is the time a phonon emitted from the anharmonic
bond during a change of length, needs to reach one of the chain ends. If the anharmonic
bond is located in the bulk of a macroscopically large chain, it never feels the ends of
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the chain, because τM is infinitely large and thus τ is always smaller τM . That means
the dissipation for an anharmonic bond located in the bulk of an infinitely large set of
harmonic oscillators with linear coupling, is always ohmic.
Figure 3.3 shows the Kernel KM(τ) in a log-log-plot. The transition from ohmic disipa-
tive behaviour ∼ τ−2 for τ < τM to superohmic dissipative behaviour ∼ τ−4 is clearly
visible in Figure 3.3 for different values of M . For the case of ohmic dissipation, which
means observation times T < τM , there exists a phase transition allowing a mapping
of this problem on the one dimensional Ising model with long range interactions of the
form 1

τ2
, as has been performed by [33] showing this phase transition.

There exists a critical coupling Ccrit(T ) which separates the ordered phase C > Ccrit(T )
from the disordered phase C < Ccrit(T ). The parameter T represents the length of the
Ising chain. The expression feeling (used above) can be interpreted in terms of the Ising
chain as a correlation length ξ(C). In the Ising model the correlation length is usually
given as a function of the temperature [34] (section III 17.1), but since the temperature
is zero here, the relevant variable is the coupling C. Since the one dimensional Ising
model does not show a sharp transition for a finite length T , there is also no sharp
transition from tunnelling C < Ccrit(T ) to ”long range order” at C > Ccrit(T ), which
corresponds to localisation. A sharp transition (phase transition) can be observed for
T = ∞, only.



Chapter 4

The 2-defect Model

4.1 Two Defects

The case of an open linear chain of N particles with next neighbour interactions and
two defects M1,M2 is considered. The Hamiltonian for this system reads as

H =
N∑

n=1

p2n
2mn

+
C

2

N−1∑

n=1
( 6=M1,M2)

(xn+1 − xn − an)
2 +

2∑

i=1

V0(xMi+1 − xMi
) (4.1)

Separating the harmonic from the anharmonic degrees of freedom is done in the same
way and for the same reasons as in the first method of the one anharmonic bond case
(see Eq. (3.14)-(3.19)). Let

Xc =
1

Mc

N∑

n=1

xnmn

Mc =
N∑

n=1

mn (4.2)

be the centre of mass and the total mass for all particles and

yn = xn+1 − xn − an , n = 1, ..., N − 1;n 6= M1,M2 (4.3)

be the relative coordinates, respectively. As in the one anharmonic bond case, one
can define a generating function (since the procedure is absolutely equivalent (3.8),
the calculation will not be shown here). For convenience the simplest case making an
analytical diagonalisation possible mn = m, is chosen. It yields

H =
π2
0

2Mc

+
1

m

(
N−1∑

k=1

π2
k −

N−2∑

k=1

πkπk+1

)
+

C

2

N−1∑

k=1
( 6=M1,M2)

y2k + V0(yM1) + V0(yM2) (4.4)

This Hamiltonian is the starting point for the diagonalisation procedure. One assump-
tion needed to perform the analytical diagonalisation in the way shown in Appendix C

43
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is to define the middle of the open chain M as either M = N
2
for an even chain-length

and M = N−1
2

for an odd chain-length. Choosing the anharmonic bonds symmetrically
located with respect to M , one can express the variables M1,M2, N in terms of N,D,
where D = M2 − M1 is the difference between both bonds and N = M1 + M2 is the
total chain-length. This approximation does not qualitatively change the tunnelling
behaviour, since both anharmonic bonds are only investigated in the bulk. In the next
subsection the relevant canonical transformations for D ≥ 2 are presented. That covers
all possible cases, since the case of D = 1 means that both anharmonic bonds are cou-
pled directly and could be considered as one anharmonic bond with an additional degree
of freedom. This case will not be considered, since the indirect interaction between both
anharmonic bonds through the harmonic bath is of interest.

4.1.1 Pre-diagonalisation Transformations

Again canonical transformations for the diagonalisation procedure are applied (see ex-
planation before Eqs. (3.14)-(3.19)). The decoupling of both anharmonic bonds from
the harmonic degrees of freedom is done analogously to section ”First Method”. The
generating function is achieved in the same way as before and reads

R3(q1, ..., qN−1; π1, ..., πN−1) = − qMi

[
πMi

− πMi+1 + πMi−1

2

]

−
N−1∑

k=1
( 6={Mi})

qkπk , i = 1, 2 (4.5)

With this generating function the conjugate coordinates can be evaluated in the following
way

qk = −∂R3

∂πk

= yk , k 6= Mi ± 1 (4.6)

qMi±1 = − ∂R3

∂πMi±1

= yMi±1 −
1

2
yMi

, i = 1, 2 (4.7)

The transformations for D = M2 −M1 ≥ 2 read

πk = pk , k = 1, ..., N − 1 ; k 6= M1,M2

πM1 = pM1 +
1

2
(pM1+1 + pM1−1)

πM2 = pM2 +
1

2
(pM2+1 + pM2−1)

yk = qk , k = 1, ..., N − 1 ; k 6= M1 ± 1,M2 ± 1

yM1±1 = qM1±1 −
qM1

2

yM2±1 = qM2±1 −
qM2

2
(4.8)



4.1. TWO DEFECTS 45

Substituting Eq. (4.8) into Eq. (4.4) the Hamiltonian can be split up into four parts

H = Hcom +Hharm +Hint +Hd

Hcom =
π2
0

2Mc

Hharm =
1

m




N−1∑

k=1
( 6={Mi})

p2k −
N−2∑

k=1
( 6={Mi},{Mi−1})

pkpk+1 −
1

4

2∑

i=1

(pMi+1 + pMi−1)
2




+
C

2

N−1∑

k=1
( 6={Mi})

q2k

Hint = −C

2
qM1

(
qM1−1 + qM1+1

)
− C

2
qM2

(
qM2−1 + qM2+1

)

Hd =
1

m

(
p2M1

+ p2M2

)
+

C

4

(
q2M1

+ q2M2

)
+ V0(qM1) + V0(qM2) (4.9)

The c.o.m. term will be dropped from now on. It just represents the translational
invariance of the system and does not contribute to the influence action. The relevant
term for the diagonalisation Tharm (kinetic part of the harmonic Hamiltonian) will now
be treated. The explicit derivation is presented in detail in Appendix C.

4.1.2 Caldeira-Leggett form for D ≥ 2

After the diagonalisation a transformation to normal modes as done in (3.21)

pk =
N−3∑

σ=1

P (α)
σ u

(σ),α
k , k 6= M1,M2

qk =
N−3∑

σ=1

Q(α)
σ u

(σ),α
k , k 6= M1,M2 (4.10)

where ~u(σ),α denote the eigenvectors achieved in the diagonalisation procedure. The
additional index α can take two values ”symmetric” and ”antisymmetric” and is due to
the diagonalisation procedure performed in Appendix C. That transformation applied
to Eq. (4.9) yields (the c.o.m. term has been omitted)

Hharm =
1

2m

N−1∑

k,l=1
( 6=M1,M2)

Tklpkpl +
C

2

N−1∑

k=1
( 6=M1,M2)

q2k

=
1

2

∑

α

N−1∑

k=1
( 6=M1,M2)

N−3∑

σ,σ′=1

λ(α)
σ P (α)

σ P
(α)
σ′ u

(σ),α
k u

(σ′),α
k

+
C

2

∑

α

N−1∑

k=1
( 6=M1,M2)

N−3∑

σ,σ′=1

Q(α)
σ Q

(α)
σ′ u

(σ),α
k u

(σ′),α
k (4.11)
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where Tkl denotes the matrix elements and λ
(α)
σ the eigenvalues used in Eq. (C.9) for

the diagonalisation. Performing the summation over k simplifies the expression yielding

Hharm =
1

2

∑

α

N−3∑

σ=1

[
λ(α)
σ

(
P (α)
σ

)2
+ C

(
Q(α)

σ

)2
]

(4.12)

The interaction part reads

Hint = −
∑

α

N−3∑

σ=1

Q(α)
σ

[
cα1,σqM1 + cα2,σqM2

]
, cαi,σ =

C

2

(
u
(σ),α
Mi+1 + u

(σ),α
Mi−1

)
, i = 1, 2

(4.13)

and finally the defect part stays as it was

Hd =
1

m

(
p2M1

+ p2M2

)
+

C

4

(
q2M1

+ q2M2

)
+ V0(qM1) + V0(qM2) (4.14)

A Legendre transformation and some basic mathematical manipulation lead to the de-
sired Euclidean Lagrangian in the form of Caldeira-Leggett

LE = LE
0 + LE

1

LE
0 =

m

4

[
q̇2M1

+ q̇2M2

]
+ V0(qM1) + V0(qM2)

LE
1 =

1

2

∑

α

N−3∑

σ=1

mα
σ

[(
Q̇(α)

σ

)2
+
(
ω(α)
σ

)2 (
Q(α)

σ

)2
]
−
∑

α

N−3∑

σ=1

Q(α)
σ

(
cα1,σqM1 + cα2,σqM2

)

+
∑

α

N−3∑

σ=1

(
cα1,σqM1

)2
+
(
cα2,σqM2

)2

2mα
σ

(
ω
(α)
σ

)2 (4.15)

where

mα
σ =

1

λ
(α)
σ

, ω(α)
σ =

√
Cλ

(α)
σ = ω0 sin

(
q
(α)
σ

2

)
, ω0 = 2

√
C

m
(4.16)

are achieved in the same way and for ω
(α)
σ > 0 as in Eq. (3.27). The coupling coefficients

read with the eigenvectors from Eq. (C.9)

ca1,σ = −ca2,σ = CNσ,a sin

(
q(a)σ

N −D

2

)

cs1,σ = cs2,σ = CNσ,s sin

(
q(s)σ

N −D

2

)
(4.17)

and are necessary for the calculation of the zero temperature kernel. The normalisation
constants have been calculated in Appendix C, Eqs. (C.26), (C.27).
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4.1.3 The Kernel for two anharmonic Bonds

To discuss the tunnelling behaviour for two anharmonic bonds, the propagator in form
of an Euclidean Green’s function as in the one anharmonic bond case is needed. The
propagator reads

GE(q
f
M1

, qfM2
, T ; qiM1

, qiM2
, 0) =

qM1
(T )=qf

M1∫

qM1
(0)=qi

M1

DqM1(τ)

qM2
(T )=qf

M2∫

qM2
(0)=qi

M2

DqM2(τ) e
−

SE[qM1
(τ),qM2

(τ)]
~ (4.18)

Splitting the Euclidean action into a local and an influence part as done in Eq. (3.4),
where the local part yields the instanton solutions and the influence part the kernel, we
are able to write down the influence action for the two defect case (derivation analogous
to the one anharmonic bond case see Eq. (3.47)) as

SE
infl.[qM1 , qM2 ] = −

2∑

i,j=1

T∫

0

dτ

τ∫

0

dτ ′ Kij
D(τ − τ ′)qMi

(τ)qMj
(τ ′) (4.19)

where the indices i, j show the effect of two instead of one anharmonic bond, as discussed
before. The derivation of the zero temperature kernel for the two anharmonic bond case
can be achieved from the Euclidean Lagrangian in exactly the same way as before (see
Section: ”Physical Preliminaries”). The calculation will not be presented here. The
result is:

Kij
D(τ) =

∑

α

K
(α),ij
D (τ) ∼=

∑

α

N−3∑

σ=1

c
(α)
i,σ c

(α)
j,σ

2m
(α)
σ ω

(α)
σ

e−ω
(α)
σ τ (4.20)

The coupling of symmetric with antisysmmetric eigenvectors is of course zero by defi-
nition, hence c

(s)
i,σc

(a)
j,σ = 0. That is the reason only c

(α)
i,σ c

(α)
j,σ is considered in Eq. (4.20).

The calculation of the kernel is only necessary for one symmetric and one antisymmetric
case, because the kernel obeys, as can be seen from Eqs. (4.17) the following relations

K
(s),11
D (τ) = K

(s),12
D (τ) = K

(s),21
D (τ) = K

(s),22
D (τ)

K
(a),11
D (τ) = −K

(a),12
D (τ) = −K

(a),21
D (τ) = K

(a),22
D (τ) (4.21)

As discussed in Appendix C, the thermodynamic limit N → ∞ makes an even chain-
length indistinguishable from an odd chainlength. This is the reason only even N are
considered in the calculations and derivations, respectively. Starting with the symmetric
case using Eqs. (4.16), (4.17), the kernel reads as

K
(s),ij
D (τ) =

Cω0

2

∑

σ

N 2
σ,s sin

2

(
q(s)σ

N −D

2

)
sin

(
q
(s)
σ

2

)
e
−ω0 sin

(
q
(s)
σ
2

)
τ

=
Cω0

2

∑

σ

N 2
σ,s sin

(
q
(s)
σ

2

)
e
−ω0 sin

(
q
(s)
σ
2

)
τ

·
[
sin

(
q
(s)
σ N

2

)
cos

(
q
(s)
σ D

2

)
− cos

(
q
(s)
σ N

2

)
sin

(
q
(s)
σ D

2

)]2
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Now sin
(

q
(α)
σ N
2

)
, cos

(
q
(α)
σ N
2

)
can be replaced with the results obtained from the tran-

scendental equations (C.29), and since the main contribution comes from the low fre-

quency behaviour q
(α)
σ ≪ 1 in the case of large N , which is used since the thermodynamic

limit N → ∞ is taken, the approximations used in those Eqs. and for the normalisation
constant (C.32) are valid, leading to

K
(s),ij
D (τ) ∼= Cω0

2π

π∫

0

dq q cos2
(
qD

2

)
e−

ω0q
2

τ

The antisymmetric kernel is treated in the same way, but here the matrix elements
(i = j) are shown. With Eqs. (4.21), the case (i 6= j) is easily seen. It reads

K
(a),ii
D (τ) ∼= Cω0

2π

π∫

0

dq q sin2

(
qD

2

)
e−

ω0q
2

τ

Now the D-dependence of the matrix elements have to be discussed. Starting with the
matrix elements (i = j) the integrals can of course be evaluated exactly and the D
dependence disappears by applying a trigonometric identity:

Kii
D(τ) = K

(s),ii
D (τ) +K

(a),ii
D (τ) ∼= Cω0

2π

π∫

0

dq q
[
cos2

(
qD

2

)
+ sin2

(
qD

2

)

︸ ︷︷ ︸
=1

]
e−

ω0q
2

τ

what is left now is the kernel for the case of i = j showing ohmic dissipation with no
D-dependence:

Kii
D(τ)

∼= Cω0

2π

π∫

0

dq q e−
ω0q
2

τ ≈ 2Cω0

π

1

(ω0τ)2
(4.22)

This makes sense, since D has been chosen in the bulk and the kernel Kii
D(τ) shows

strictly ohmic dissipative behaviour as it should be for an anharmonic bond located
in the bulk. The kernel for i 6= j allows to calculate the interaction between both
anharmonic bonds with respect to the distance D in between them. Two cases are of
interest. One is the distance of both anharmonic bonds D is finite, which should lead
to an interaction represented in a non vanishing kernel K12

D (τ). For the limit of D → ∞
this interaction vanishes as it should be. The only difference to the previously discussed
case is a minus sign for the asymmetric kernel leading to a D-dependent result

Ki 6=j
D (τ) = K

(s),i 6=j
D (τ) +K

(a),i 6=j
D (τ)

∼= Cω0

2π

π∫

0

dq q
[
cos2

(
qD

2

)
− sin2

(
qD

2

)]
e−

ω0q
2

τ (4.23)
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As can be seen these kernels (i 6= j) have a D-dependence, that needs to be examined
carefully. Using a trigonometric identity the cosine and sine squared can be replaced

Ki 6=j
D (τ) ∼= Cω0

2π

π∫

0

dq q cos (qD) e−
ω0q
2

τ (4.24)

, yielding the proof that lim
D→∞

Ki 6=j
D (τ) = 0.

Evaluating this integral(4.24) yields

Ki 6=j
D (τ) ∼= Cω0

π

e−
πω0τ

2

(
2e

πω0τ
2 ((ω0τ)

2 − 4D2)− (−1)D (4D2(πω0τ − 2) + (ω0τ)
2(2 + πω0τ))

)

(4D2 + (ω0τ)2)
2

Two q scales occur in the integrand of Eqs. (4.22),(4.22).

qD =
1

D
and qτ =

1

ω0τ
(4.25)

Equating qD = qτ defines the time scale

τD =
D

ω0

(4.26)

Considering ω0τ ≫ 1 one gets from (4.25)

Ki 6=j
D (τ) ∼= 2Cω0

π

(ω0τ)
2 − 4D2

((ω0τ)2 + 4D2)2
(4.27)

From this result it is easy to discuss the to relevant cases τ ≪ τD and τ ≫ τD.

Ki 6=j
D (τ ≪ τD) ∼ 1

D2

Ki 6=j
D (τ ≫ τD) ∼= 2Cω0

π

1

(ω0τ)2

[
1− 12

(τD
τ

)2]
(4.28)

In the limit D → ∞ the kernel Ki 6=j
D (τ ≪ τD) vanishes as it should be, because infinitely

large D corresponds to no interaction. For the case of τ ≫ τD it makes no sense
taking the limit D → ∞, since τD is still considered to be much smaller than τ . The
variables qM1 and qM2 and the respective kernels Kij

D(τ), i, j = 1, 2 do not correspond to
physically relevant quantities, since we are interested in the different (ohmic or super-
ohmic) dissipative behaviour that occurs depending on the overall chain-length changing
or not. Due to the matrix structure of the kernel a transformation to physically relevant1

variables has to be considered.

q+ = qM1 + qM2 , q− = qM1 − qM2 (4.29)

1the reason for this transformation is given below
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Applying this transformation to Eq. (4.19) and using the symmetry relations for the
kernel Eq. (4.21) yields

SE
infl.[q+, q−] = −

T∫

0

dτ

τ∫

0

dτ ′
[
K++

D (τ − τ ′)q+(τ)q+(τ
′) +K−−

D (τ − τ ′)q−(τ)q−(τ
′)
]

(4.30)

, with

K++
D (τ) =

K11
D (τ) +K12

D (τ)

2

ω0τ≫1∼=
{

Cω0

π

[
1

(ω0τ)2
− 1

4D2

]
, τ ≪ τD

2Cω0

π
1

(ω0τ)2
, τ ≫ τD

K−−
D (τ) =

K11
D (τ)−K12

D (τ)

2

ω0τ≫1∼=
{

Cω0

π

[
1

(ω0τ)2
+ 1

4D2

]
, τ ≪ τD

Cω0

π
24D2

(ω0τ)4
, τ ≫ τD

(4.31)

It is now easy to see, that kernel K++
D (τ) always shows ohmic dissipative behaviour in

leading order, whereas the kernel K−−
D (τ) shows a transition from ohmic to superohmic

dissipative behaviour. The kernels K++
D (τ), K−−

D (τ) are shown in the following figures:
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Figure 4.1: τ -dependence of K++
D

(τ) for different D (green: D = 5, red: D = 10, brown D = 40, magenta: D = 160)
on a log-log representation. The dotted line corresponds to a τ−2 behaviour.
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Figure 4.2: τ -dependence of K−−
D

(τ) for different D (green: D = 5, red: D = 10, brown D = 40, magenta: D = 160)
on a log-log representation. The dotted and dashed line, corresponding to τ−2 and τ−4, respectively included to see the
transition.
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In Figure 4.1 the Kernel K++
D (τ) is shown. It shows a τ−2 clearly depicted on the log-

log-plot. This plot is a graphical representation of Eq. (4.31), which shows a ohmic
dissipative behaviour independent on the introduced timescale τD. The small shift
resulting from the factor 2 the kernel receives after crossing τD is not understood, but
nevertheless the dissipative behaviour remains ohmic.
In Figure 4.2 the Kernel K−−

D (τ) is shown. It shows a transition from ohmic dissipative
behaviour τ−2 to super-ohmic dissipative behaviour τ−4. This transition is clearly visible
on the log-log-plot and different anharmonic bond distances D have been included.
Now the advantage of this transformation has to be discussed. In the one anharmonic
bond case each of the bonds has two different initial and two different final positions.
We were able to show ohmic dissipative behaviour of the Kernel if the anharmonic bond
is located in the bulk and a transition from ohmic to super-ohmic dissipative behaviour
if the anharmonic bond is located at one of the borders.
For two anharmonic bonds the scenario is more complicated. The reason for switching
from ohmic to super-ohmic dissipative behaviour was the position of the anharmonic
bond. Tunnelling of the anharmonic bond, located at one of the borders, only requires
a finite mass ∼ M = O(1) of the harmonic bath to be moved in the translationally
invariant chain. But if the anharmonic bond is located in the bulk, tunnelling of the
anharmonic bond requires to move an infinite mass ∼ M = O(N), N → ∞ of the
harmonic chain. For two anharmonic bonds located in the bulk, both can tunnel with a
movement of an infinite mass or with a movement of a finite mass of the harmonic bath.
A movement of a finite mass requires both initial positions of the anharmonic bonds
to different, i.e. one having length as and the other al. Now if one anharmonic bond
tunnels and changes its length, the other anharmonic bond can react and also tunnel.
The mass that has to be moved is just ∼ D = O(1) and hence finite. Only a finite
length ∼ D of the harmonic bath had to be moved to allow this tunnelling. Hence one
would expect a transition from ohmic to super-ohmic dissipative for times τ depending
on the time-scale τD in analogy to the one anharmonic bond case, with the bond located
at one of the borders.
All other scenarios of both anharmonic bonds tunnelling require a movement of an
infinite mass of the harmonic bath, which should result in ohmic dissipative behaviour
in analogy to the one anharmonic bond case located in the bulk. Consider for example
both anharmonic bonds having lengths as, then every tunnelling, no matter if only
one anharmonic bond or both bonds tunnel, requires the movement of an infinite mass
∼ O(N), N → ∞, since both bonds are located in the bulk.
The transformation necessary to measure the change in the overall chain-length is given
in Eq. (4.29). This is of course only valid for equal equilibrium bond-lengths as1 =
as2 ≡ as, al1 = al2 ≡ al of the relative coordinates qM1 , qM2 , which is considered here.
This is obvious, since if the length-changes of both anharmonic bonds are not the same,
movement of an infinite mass of the harmonic chain is still required no matter how the
anharmonic bonds tunnel, leading to ohmic dissipative behaviour. The transformation
can be interpreted as follows. The kernel matrix KD, consisting of four elements Kij

D

with i, j = 1, 2 (4.19), is diagonalised and contains now only the diagonal elements
K++

D , K−−
D and no coupling between q+ and q− (4.30). The kernel matrix element

describing a change in the total length is labeled K++
D , whereas the overall chain-length



4.1. TWO DEFECTS 53

does not vary for K−−
D . Those new coordinates allow to treat the two elements of the

influence action of the anharmonic bond case equivalently to the one anharmonic bond
case, namely just considering a movement of a finite or an infinite length of the harmonic
bath.

• 1-anharmonic bond:

anharm. bond at border:

{
q−M −→ q+M
q+M −→ q−M

super-ohmic dissipation

anharm. bond in bulk:

{
q−M −→ q+M
q+M −→ q−M

ohmic dissipation

• 2-anharmonic bonds:

no overall length-change:

{
q+M1

, q−M2
−→ q−M1

, q+M2

q−M1
, q+M2

−→ q+M1
, q−M2

super-ohmic dissipation

big overall length-change:

{
q−M1

, q−M2
−→ q+M1

, q+M2

q+M1
, q+M2

−→ q−M1
, q−M2

ohmic dissipation

small overall length-change:





q−M1
, q−M2

−→ q−M1
, q+M2

q−M1
, q−M2

−→ q+M1
, q−M2

q+M1
, q+M2

−→ q+M1
, q−M2

q+M1
, q+M2

−→ q−M1
, q+M2

q−M1
, q+M2

−→ q−M1
, q−M2

q−M1
, q+M2

−→ q+M1
, q+M2

q+M1
, q−M2

−→ q+M1
, q+M2

q+M1
, q−M2

−→ q−M1
, q−M2

ohmic dissipation

The case of small overall length-change requires of course tunnelling of the anharmonic
bonds at different times. This graphic shows, that even though there are many more
paths in the two anharmonic bond case compared to the one anharmonic bond case, the
number of different kernels describing the paths does not change. In the one anharmonic
bond case the kernel was either ohmic or super-ohmic dependent on the position of the
anharmonic bond, whereas in the case of two anharmonic bonds the kernel is also either
ohmic or super-ohmic, dependent on the initial and final positions of the anharmonic
bonds. The transformation from qM1 , qM2 to q+, q− does not only decouple the influence
action, but introduces a new coupling in the local action, namely a term ∼ q2+q

2
−. This

term yields a coupling of the up to now bare instantons q1, q2 in the local action. The
effect of this coupling is not fully understood.
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4.2 Tunnelling expectation value using extended NIBA

Defining a measurable quantity p(t) = Tr
[
ρred(t)σ

(1)
z ⊗ σ

(2)
z

]
, where the matrix elements

of the reduced density operator ρred(t) have been calculated Appendix E and are given
in form of a path integral Eq. (E.14). The derivation of the influence functional F for
the two anharmonic bond case is similar to the derivation of the one anharmonic bond
case. The derivation is given in detail in Appendix E. Using the influence functional for
two anharmonic bonds

F [qM1 , qM2 , q
′
M1

, q′M2
] = exp

[
−1

~

2∑

a,b=1

t∫

0

dτ

τ∫

0

dτ ′
(
qMa

(τ)− q′Ma
(τ)
)

·
(
Lab(τ − τ ′)qMb

(τ ′)− L∗
ab(τ − τ ′)q′Mb

(τ ′)
)]

(4.32)

where the function Lab(τ) is defined, for zero temperature, as

Lab(τ) =
N−3∑

σ=1

ca,σcb,σ
2mσωσ

[cos(ωστ)− i sin(ωστ)] (4.33)

Splitting the function Lab(τ) into a real and an imaginary part one can put this influence
functional in the following form

F [ξ(1)(τ), χ(1)(τ); ξ(2)(τ ′), χ(2)(τ ′)] =

exp

[
− q20
π~

2∑

a,b=1

t∫

0

dτ

τ∫

0

dτ ′
(
Lab
2 (τ − τ ′)ξ(a)(τ)ξ(b)(τ ′)− iLab

1 (τ − τ ′)ξ(a)(τ)χ(b)(τ ′)

)]

(4.34)

by using

Lab
1 (τ − τ ′) =

∞∫

0

dω Jab(ω) sin (ω [τ − τ ′])

Lab
2 (τ − τ ′) =

∞∫

0

dω Jab(ω) cos (ω [τ − τ ′]) (4.35)

and applying (as in the one anharmonic bond case) a transformation of the coordinates
qMa

, q′Ma
to blips ξa and sojourns χa with the following transformation

ξ(a)(τ) =
qMa

(τ)− q′Ma
(τ)

q0

χ(a)(τ) =
qMa

(τ) + q′Ma
(τ)

q0
(4.36)
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The spectral density Jab(ω) is defined as

Jab(ω) =
π

2

N−3∑

σ=1

ca,σcb,σ
mσωσ

δ(ω − ωσ) (4.37)

Splitting the spectral density into a symmetric (s) and an antisymmetric (a) part and
using the definitions of the variables from Eqs. (4.16), (4.17), one gets

Jaa(ω) =
Cω0π

2

N
2
−1∑

σ=1

N 2
σ,s sin

2

(
q(s)σ

N −D

2

)
sin

(
q
(s)
σ

2

)
δ

(
ω − ω0 sin

(
q
(s)
σ

2

))

+
Cω0π

2

N
2
−2∑

σ=1

N 2
σ,a sin

2

(
q(a)σ

N −D

2

)
sin

(
q
(a)
σ

2

)
δ

(
ω − ω0 sin

(
q
(a)
σ

2

))

(4.38)

Replacing the normalisation constants for finite D = O(1) according to Eq. (C.32),
splitting the squared sine into one component containing N and the other containing D,
we are able to get rid of the N dependence. To do this, the results from the transcen-
dental equation Eqs. (C.29) are used. We are then able to perform the thermodynamic
limit (N → ∞), yielding

Jaa(ω) =
Cω0

2

π∫

0

dq sin
(q
2

)
δ
(
ω − ω0 sin

(q
2

))

·
[

1

1 + f 2
s (q,D)

{
cos2

(
qD

2

)
f 2
s (q,D)− sin (qD) fs(q,D) + sin2

(
qD

2

)}

+
1

1 + f 2
a (q,D)

{
cos2

(
qD

2

)
− sin (qD) fa(q,D) + sin2

(
qD

2

)
f 2
a (q,D)

}]

(4.39)

Evaluating the integral gives

Jaa(ω) =
Cω

ω0

(
1−

(
ω

ω0

)2
)− 1

2
(

1

1 + f 2
s

(
ω
ω0
, D
)
[
cos2

(
D arcsin

(
ω

ω0

))
f 2
s

(
ω

ω0

, D

)

− sin

(
2D arcsin

(
ω

ω0

))
fs

(
ω

ω0

, D

)
+ sin2

(
D arcsin

(
ω

ω0

))]

+
1

1 + f 2
a

(
ω
ω0
, D
)
[
cos2

(
D arcsin

(
ω

ω0

))

− sin

(
2D arcsin

(
ω

ω0

))
fa

(
ω

ω0

, D

)
+ sin2

(
D arcsin

(
ω

ω0

))
f 2
a

(
ω

ω0

, D

)])

(4.40)
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Since the quantum dissipation generated by the harmonic bath depends on the low
frequencies ω ≪ ω0 of the spectral density, it is possible to Taylor expand the result,
considering finite D, yielding

Jaa(ω ≪ ω0) = C
ω

ω0

− C
7 + 8D

2

(
ω

ω0

)3

+O
((

ω

ω0

)5
)

(4.41)

The calculation of Ja 6=b(ω) is done analogously. The result is

Ja 6=b(ω ≪ ω0) = C
ω

ω0

− C
7 + 8D + 4D2

2

(
ω

ω0

)3

+O
((

ω

ω0

)5
)

(4.42)

As in the one anharmonic bond case a transformation of the blip and sojourn variables to
”charges” is performed, but one essential assumption is included in the two anharmonic
bond case. Since it seems impossible to calculate the tunnelling probability of two
anharmonic bonds tunnelling at different timesteps, a crude assumption, namely setting
the timesteps of both anharmonic bonds equal, is made.

ξ(1)(τ) =
n∑

j=1

ζ
(1)
j

[
Θ(τ − t2j−1)−Θ(τ − t2j)

]

ξ(2)(τ) =
n∑

j=1

ζ
(2)
j

[
Θ(τ − t2j−1)−Θ(τ − t2j)

]

χ(1)(τ) =
n∑

j=0

η
(1)
j

[
Θ(τ − t2j)−Θ(τ − t2j+1)

]

χ(2)(τ) =
n∑

j=0

η
(2)
j

[
Θ(τ − t2j)−Θ(τ − t2j+1)

]
(4.43)

This approximation forces one of the anharmonic bonds to react instantaneously to a
tunnelling of one of the other bond variables. This is of course not the case, since both
anharmonic bonds are separated by the distance D, but the time information needs
to travel from one anharmonic bond to the other is given by the time a phonon needs
tD = ω0D to cross this distance. But for small distances D the approximation gets
better and better. The detailed calculation of the above (4.43) transformation applied
to the influence functional (4.34) is done in Appendix D.
Equating the tunnelling of both anharmonic bonds has also been applied by [29]. They
write ”when the indirect coupling is the largest energy scale, the two spins will tend to
tunnel simultaneously”. Since there is no direct coupling between the two anharmonic
bonds, but only the indirect coupling through the harmonic bath, this assumption is
always fulfilled. The only difference, that the two continuous anharmonic bond coordi-
nates are no spins, but are considered to flip instantaneously, which makes it possible
to treat them as spins. In [35] it is written, that ”For the double-impurity case, ..., a
low-temperature and short-distance regime, where correlated tunnelling is established
...”, which also strengthens the assumption used in this thesis of setting the flipping
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times of both anharmonic bonds equal under the restrictions given above.
Another point shows the validity of this approximation. The influence functional Eq.
(4.32) has an oscillating part containing the imaginary part of the function Lab(t) in the
exponent. This term is called friction term. The other term, with the real part of the
function Lab(t) in the exponent, is called the noise term. This noise term is always bigger
than zero and randomly pumps back energy to the system. In the one anharmonic bond
case, summing over the same subset of blip-charges, makes this term always positive, as
mentioned by Leggett et al. [14]. But for two anharmonic bonds a new situation arises.
The argument of the exponent of the noise term looks like

− q20
π~

t∫

0

dτ

τ∫

0

dτ ′
[
L11
2 (τ − τ ′)ξ(1)(τ)ξ(1)(τ ′) + L12

2 (τ − τ ′)ξ(1)(τ)ξ(2)(τ ′)

+ L21
2 (τ − τ ′)ξ(2)(τ)ξ(1)(τ ′) + L22

2 (τ − τ ′)ξ(2)(τ)ξ(2)(τ ′)
]

(4.44)

Now one has to look at all possible cases, they are

1) ξ(1) = ξ(2) =





+1, a

−1, b

0, c

2) ξ(1) 6= ξ(2) =





(+1,−1), a

(−1,+1), b

(+1, 0), c

(0,+1), d

(−1, 0), e

(0,−1), f

Using all possible cases in (4.44), one gets for the argument

• 0 , 1c

• −2q20
π~

Q−
2 (t) , 2a, 2b

• − q20
π~
Q2(t) , 2c, 2d, 2e, 2f

• −2q20
π~

Q+
2 (t) , 1a, 1b

, with

Q
(aa)
1/2 (t) ≡ Q1/2(t) , a = 1, 2

Q±
1/2(t) = Q1/2(t)±Q

(12)
1/2 (t) (4.45)
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, which implies of course also

J±(ω) = Jaa(ω)± Ja 6=b(ω) (4.46)

The functions Q
(ab)
1/2 where defined in (4.75) and are the result of performing the two

time integrations
t∫
0

dτ
τ∫
0

dτ ′ of the functions Lab
1 (τ − τ ′), Lab

2 (τ − τ ′) in Eq. (4.44).

The possible cases are given in descending order, largest value on top smallest value at
the bottom. This can be seen in the interesting2 time regime ω0t ≫ 13 in Eq. (4.86),
where Q2(t)(4.48) has of course the same time dependence in the long time limit as
Q+

2 (t)(4.86). Using the calculation of the spectral density Jaa(ω)(4.41) it is possible to
calculate Q2(t)

Q2(t) =
C

2ω0

[
(7 + 8D)(cos(ω0t)− 1)

(ω0t)2
+

(7 + 8D) sin(ω0t)

ω0t
+ 2 ln(ω0t)− 2Ci(ω0t)

]

(4.47)

now considering the long time limit ω0t ≫ 1 one gets

Q2(t) =
C

ω0

ln(ω0t) (4.48)

The noise term is maximised for the case of 1c, which is nothing but both anharmonic
bonds being at the same time in a sojourn state. This is physically reasonable, since
maximising the noise term in the one anharmonic bond case acts as a Gaussian filter
quenching off-diagonal quantum fluctuations [16]. It is also the reason, why the NIBA
is a valid approximation in the one anharmonic bond case, since the system stays longer
in a sojourn state and hence the blips can be treated as a dilute gas.
This is already enough to assume, that both anharmonic bonds tend two be either
together in a sojourn state or together in a blip state, rather then one in a sojourn and
the other in a blip, at the same time.
The second biggest value for the noise functional is achieved in the case of 2a, 2b, which
is both anharmonic bonds being at the same time in different blip states. This clearly
shows, that both anharmonic bonds tend to be either both in a sojourn state or both
in different blip states, compared to one being in a blip and the other one being in a
sojourn state. The only case even less probable than one bond in a sojourn and the
other in a blip state, is both bonds being in the same blip state 1a, 1b.
This effect, that both bonds tend to be at the same time in sojourn states or different
blip states, is captured by forcing both anharmonic bonds to behave as one bond. Since
we are investigating both anharmonic bonds changing the states of their tunnelling
coordinates qM1 , q

′
M1

, qM2 , q
′
M2

at the same timesteps, it is possible to treat the two
two-state coordinates (every coordinate has two possible values ± q0

2
) as one four state

2As has been mentioned in [14], for ωct . 1 the corrections to 1 in P1(t) (and to 0 in P2/3(t)

respectively), are of order
(

∆
ωc

)2
, at most and hence of little interest.

3Since we assume t ≫ tD = D
ω0

, the case of ω0t ≫ 1 is of course always fulfilled since D ≥ 2.
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coordinate. The total bare amplitudes A[qM1(τ)], B[qM2(τ)] for a given path are now
A[qM1(τ), qM2(τ)] and may be broken up into small pieces of length dt[14]. The amplitude
to remain in the state is one, whereas the amplitude of switching states is i∆

2
dt. In the

one anharmonic bond case [14] the basis for defining the tunnelling amplitudes is the
spin-boson Hamiltonian without bias ǫ and no coupling to the bath Eq. (1.1) [14].

Hǫ=0 = −~∆

2
σx = −~∆

2

(
0 1
1 0

)

The basis is formed by the localized states |R〉 =

(
1
0

)
, |L〉 =

(
0
1

)
representing

the right or left well of the symmetric double well potential V (q), which are eigenstates
of σz belonging to the eigenvalues 1,−1, respectively. The path integral of the bare
amplitudes defined in [14] Eq. (4.1) is nothing but the tunnelling matrix element of the
time-evolution of the above given Hamiltonian.

qf∫

qi

Dq(τ)A[q(τ)] = 〈qf |e−
iHǫ=0t

~ |qi〉

q′
f∫

q′i

Dq′(τ)A∗[q′(τ ′)] = 〈q′f |e
iHǫ=0t

~ |q′i〉 (4.49)

In the following we will only calculate the bare tunnelling amplitude of q(τ), the results
for q′(τ ′) are just the complex conjugate results. Splitting the time into small time steps
dt allows the Taylor expansion of the exponential leading to

〈qf |e−
iHǫ=0 dt

~ |qi〉 = 〈qf |qi〉 −
i dt

~
〈qf |Hǫ=0|qi〉+O(dt2) (4.50)

Two examples are explicitely calculated, up to O(dt2), to show how the tunnelling
matrix element is defined

〈R|e− iHǫ=0 dt

~ |L〉 = 〈R|L〉︸ ︷︷ ︸
=0

− i dt

~
〈R|Hǫ=0|L〉+O(dt2)

=
i∆

2
dt

(
1
0

)(
0 1
1 0

)(
0
1

)
+O(dt2)

=
i∆

2
dt+O(dt2) (4.51)

〈R|e− iHǫ=0 dt

~ |R〉 = 〈R|R〉︸ ︷︷ ︸
=1

− i dt

~
〈R|Hǫ=0|R〉+O(dt2)

= 1 +
i∆

2
dt

(
1
0

)(
0 1
1 0

)(
1
0

)
+O(dt2)

= 1 +O(dt2) (4.52)
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This is how the path integral of the bare tunnelling amplitude for the spin-boson Hamil-
tonian without bias ǫ is calculated in [14]. The amplitude A∗[q′(τ ′)] leads to the same
results, except for a minus in the switching amplitude i∆

2
dt. The two-state variables

q(τ), q′(τ ′) have been considered as a pair [q(τ), q′(τ ′)] jumping between four states[14].
The four possible states are

A = {+,+}
B = {+,−}
C = {−,+}
D = {−,−} (4.53)

, where + ≡ + q0
2
,− ≡ − q0

2
. The tunnelling amplitudes, up to O(dt2), are hence

0

{
A ↔ D

B ↔ C

−i
∆

2
dt

{
A ↔ B

D ↔ C

i
∆

2
dt

{
A ↔ C

D ↔ B
(4.54)

For the two anharmonic bond case, where both bonds tunnel at the same time both
bonds can be considered as one super-bond.
The amplitudesA[qM1(τ)]B[qM2(τ)], A

∗[q′M1
(τ ′)]B∗[q′M2

(τ ′)] to switch between states dur-
ing the time intervall dt merge together to A[qM1(τ), qM2(τ)], A

∗[q′M1
(τ ′), q′M2

(τ ′)] and
are defined analogously to the one anharmonic bond case as

−i
∆

2
dt





AA ↔ BB

AD ↔ BC

DA ↔ CB

DD ↔ CC

i
∆

2
dt





AA ↔ CC

AD ↔ BC

DA ↔ CB

DD ↔ BB

all others are 0 (4.55)
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Where the states are defined analogeously to the one anharmonic bond case in the
following way

AA = {++,++}
AB = {++,+−}
AC = {++,−+}
AD = {++,−−}
BA = {+−,++}
BB = {+−,+−}
BC = {+−,−+}
BD = {+−,−−}
CA = {−+,++}
CB = {−+,+−}
CC = {−+,−+}
CD = {−+,−−}
DA = {−−,++}
DB = {−−,+−}
DC = {−−,−+}
DD = {−−,−−} (4.56)

The calculation of these tunnelling amplitudes is done analogeously to the one anhar-
monic case, considering a spin-boson Hamiltonian of the following form

Hǫ=0 = −~∆

2
σ(1)
x ⊗ σ(2)

x = −~∆

2




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 (4.57)
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The basis is formed by the localized states

|RR〉 = |R〉 ⊗ |R〉 =




1
0
0
0




|RL〉 = |R〉 ⊗ |L〉 =




0
1
0
0




|LR〉 = |L〉 ⊗ |R〉 =




0
0
1
0




|LL〉 = |L〉 ⊗ |L〉 =




0
0
0
1


 (4.58)

representing the four possible states, which are eigenstates of σ
(1)
z ⊗σ

(2)
z belonging to the

two-fold degenerate eigenvalues 1,−1, respectively. Now following the same procedure
as in the one anharmonic bond case three possible transitions are calculated in detail
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to prove the assumption of Eq.(4.55).

〈RR|e− iHǫ=0 dt

~ |RL〉 = 〈RR|RL〉︸ ︷︷ ︸
=0

− i dt

~
〈RR|Hǫ=0|RL〉+O(dt2)

=
i∆

2
dt




1
0
0
0







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0







0
1
0
0


+O(dt2)

= 0 +O(dt2) (4.59)

〈LL|e− iHǫ=0 dt

~ |RR〉 = 〈LL|RR〉︸ ︷︷ ︸
=0

− i dt

~
〈RR|Hǫ=0|LL〉+O(dt2)

=
i∆

2
dt




1
0
0
0







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0







0
0
0
1


+O(dt2)

=
i∆

2
dt+O(dt2) (4.60)

〈LR|e− iHǫ=0 dt

~ |RL〉 = 〈LR|RL〉︸ ︷︷ ︸
=0

− i dt

~
〈LR|Hǫ=0|RL〉+O(dt2)

=
i∆

2
dt




0
0
1
0







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0







0
1
0
0


+O(dt2)

=
i∆

2
dt+O(dt2) (4.61)

With the bare tunnelling amplitude A∗[q′M1
(τ ′), q′M2

(τ ′)] leading to the same results,
except for the minus in the tunnelling amplitude i∆

2
dt as in the one anharmonic bond

case, it is now possible to calculate the tunnelling amplitudes and verify the assumption
of Eq. (4.55). Since both anharmonic bonds tunnel at the same time, states such as e.g.
AB,AC,BD, ... are not allowed and do not occur due to the spin-boson Hamiltonian
(4.57), because the starting state must be AA,AD,DA or DD. This means qM1 = q′M1

and qM2 = q′M2
, which is absolutely equivalent to the requirement of starting in state A

or D in the one anharmonic bond case considered by [14]. The approximation of forcing
both anharmonic bonds to tunnel at the same time is one of the main differences to the
scenario presented by [29]. This thesis restricts already the bare tunnelling amplitudes
and hence investigates a P (t), where both bonds tunnel at the same timesteps dt. Dubé
and Stamp derive a P (t) where both bonds can tunnel at different timesteps dt, du and
discuss certain special scenarios, where the timescales are set equal. The mathematical
rigor used by Dubé and Stamp in setting the timescales equal is questionable, since
there are no explicit calculations given and most of the approximations are hand-waving
arguments. The probability p(t) derived in Appendix D Eq. (E.20) will be presented for
four different cases (labelled p1(t), p2(t), p3(t), p4(t)), depending on the relation of the
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initial and final states. The probability p(t) for starting and ending in the same state is
for all possible initial states

p1/2(t) = 1 +
1

2

∞∑

n=1

(−1)n∆2nK(1/2)
n (t) (4.62)

, whereas ending in a different state from the one starting from, gives

p3/4(t) = 1− p1/2(t) (4.63)

The indices 1/2 distinguish the following scenarios

initial and final state for index 1: qM1 = q′M1
= qM2 = q′M2

, which corresponds to the choice of AA or DD

initial and final state for index 2: qM1 = q′M1
6= qM2 = q′M2

, which corresponds to the choice of AD or DA (4.64)

, whereas the indices 3/4 label the scenarios presented below

initial not equal final state for index 3: qM1 = q′M1
= qM2 = q′M2

, which corresponds to the choice of AA or DD

initial not equal final state for index 4: qM1 = q′M1
6= qM2 = q′M2

, which corresponds to the choice of AD or DA (4.65)

Because of Eq. (4.63) it is only needed to investigate p1/2(t), since it already contains
all the information about the other two cases, as has already been noticed in [14] for
the case of one anharmonic bond.
The effect of only allowing tunneling of both anharmonic bonds at equal timesteps can
be investigated best by looking at Eq. (4.34). Lets consider p1(t) for the choice of
the initial states qM1(0) = q′M1

(0) = qM2(0) = q′M2
(0) = + q0

2
. Since the tunnelling is

restricted to qM1(τ), qM2(τ) and respectively q′M1
(τ), q′M2

(τ) tunnelling at the same time,
the choice of the initial states and the free choice of the path of one variable (here qM1(τ))
defines all the other pathes. For the initial states chosen above and the restriction of
tunnelling at the same time, the following relations hold as can be easily verified

ξ(1)(τ) = ξ(2)(τ)

χ(1)(τ) = χ(2)(τ) (4.66)

The initial positions of the anharmonic bonds are defined above and yield the following
functions with use of Eq. (4.36)

ξ(1)(0) =
qM1(0)− q′M1

(0)

q0
= 0 = ξ(2)(0) =

qM2(0)− q′M2
(0)

q0

χ(1)(0) =
qM1(0) + q′M1

(0)

q0
= 1 = χ(2)(0) =

qM2(0) + q′M2
(0)

q0
(4.67)
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Now the first tunnelling process happens at timestep t1. Lets have qM1(τ = t1) switch
states from + q0

2
to − q0

2
and see what happens. Since we forced both bonds to tunnel at

the same time also qM2(τ = t1) switches its state from + q0
2
to − q0

2
. As in the publication

[14] either q or q′ switches, so q′M1
(τ = t1), q

′
M2

(τ = t1) stay as they were. This yields

ξ(1)(τ = t1) =
qM1(τ = t1)− q′M1

(τ = t1)

q0
= −1 = ξ(2)(τ = t1) =

qM2(τ = t1)− q′M2
(τ = t1)

q0

χ(1)(τ = t1) =
qM1(τ = t1) + q′M1

(τ = t1)

q0
= 0 = χ(2)(τ = t1) =

qM2(τ = t1) + q′M2
(τ = t1)

q0
(4.68)

Now the second tunnelling process happens at timestep t2. Here we let q′M1
(τ = t2)

switch states from + q0
2
to − q0

2
. As in the case before q′M2

(τ = t1) has to switch its state
from + q0

2
to − q0

2
, whereas qM1(τ = t2), qM2(τ = t2) stay as they were, yielding

ξ(1)(τ = t2) =
qM1(τ = t2)− q′M1

(τ = t2)

q0
= 0 = ξ(2)(τ = t2) =

qM2(τ = t2)− q′M2
(τ = t2)

q0

χ(1)(τ = t2) =
qM1(τ = t2) + q′M1

(τ = t2)

q0
= −1 = χ(2)(τ = t2) =

qM2(τ = t2) + q′M2
(τ = t2)

q0
(4.69)

Now we look at the flips that occured. Initially (τ = 0) we started with AA, the first
tunnelling at τ = t1 switches to CC and the second tunnelling at τ = t2 switches to
DD. What we see and can easily be calculated is, that the initial states AA,DD allow
only tunnelling to the states BB,CC. The other types of initial states AD,DA allow
only tunnelling to the states BC,CB as has already been defined in Eq. (4.55). It is
obvious now what kind of tunnelling processes are described by pi(t), i = 1, 2, 3, 4.
As mentioned above we will only look at pi(t), i = 1, 2. The calculation of those pi(t) is
done exactly as in [14] starting from (E.20), then introducing the ”charges” from (4.43)
and the calculation of Appendix D for the influence functional and breaking up the

tunnelling into small transition amplitudes into small timesteps dt yields the
t∫
0

D{t2n}

included in the function K
(i)
n (t) of Eqs. (4.62). The factor K

(i)
0 (t) is as in the one

anharmonic bond case +1 of [14] by definition. The term K
(i)
n (t), i = 1, 2 is defined as

K(i)
n (t) = 2−(2n−1)

∑

{ζ(1)j ,ζ
(2)

j′
}

∑

{η(1)j ,η
(2)

j′
}

t∫

0

D{t2n}Fn

Fn = Fn[{tj}; {ζ(1)j }; {η(1)j }; {ζ(2)j′ }; {η(2)j′ }] (4.70)

, where the summation of the blip- and sojourn-charges is explained later in Appendix
F. The probability pi(t) is related to the expectation value Pi(t) by the following relation

〈σ(1)
z (t)⊗ σ(2)

z (t)〉 ≡ Pi(t) = 2pi(t)− 1, i = 1, 2 (4.71)
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Pi(t) =
∞∑

n=0

(−1)n∆2nK(i)
n (t), i = 1, 2

(4.72)

with

t∫

0

D{t2n} =

t∫

0

dt2n

t2n∫

0

dt2n−1 ...

t2∫

0

dt1

(4.73)

The functional Fn defined in Eq. (4.70) and derived in Appendix D can be split up into
three parts

Fn = Fn
(1)[{tj}; {ζ(1)j }; {η(1)j }]Fn

(2)[{tj}; {ζ(2)j′ }; {η(2)j′ }]
·Gn

(12)[{tj}; {ζ(1)j }; {η(1)j }; {ζ(2)j′ }; {η(2)j′ }] (4.74)

Fn
(1) = e

− q20
π~

n∑
j=1

Q
(11)
2 (t2j−t2j−1)

︸ ︷︷ ︸
self-energy

e
− q20

π~

n∑
j′=1

n∑
j=j′+1

ζ
(1)
j ζ

(1)

j′
Λ
(11)

jj′

︸ ︷︷ ︸
blip-blip interaction

e

iq20
π~

n−1∑
j′=0

n∑
j=j′+1

ζ
(1)
j η

(1)

j′
X

(11)

jj′

︸ ︷︷ ︸
blip-sojourn interaction

Fn
(2) = e

− q20
π~

n∑
j=1

Q
(22)
2 (t2j−t2j−1)

︸ ︷︷ ︸
self-energy

e
− q20

π~

n∑
j′=1

n∑
j=j′+1

ζ
(2)
j ζ

(2)

j′
Λ
(22)

jj′

︸ ︷︷ ︸
blip-blip interaction

e

iq20
π~

n−1∑
j′=0

n∑
j=j′+1

ζ
(2)
j η

(2)

j′
X

(22)

jj′

︸ ︷︷ ︸
blip-sojourn interaction

Gn
(12) = e

− q20
π~

n∑
j,j′=1

ζ
(1)
j ζ

(2)

j′
Λ
(12)

jj′

︸ ︷︷ ︸
blip-blip interaction

e

iq20
π~

(
n−1∑
j′=0

n∑
j=j′+1

ζ
(1)
j η

(2)

j′
X

(12)

jj′
+

n−1∑
j=0

n∑
j′=j+1

ζ
(2)

j′
η
(1)
j X

(21)

j′j

)

︸ ︷︷ ︸
blip-sojourn interaction

, where Fn
(1) describes the first anharmonic bond, Fn

(2) the second anharmonic bond
and Gn

(12) the interaction between both bonds. The functionals Fn
(1),Fn

(2) can be treated
exactly as in the one anharmonic bond case, since no interaction is present.
As in the one anharmonic bond case, the functions Q1/2(t) appear now, but with an
additional index specifying the bond or the interaction between the two bonds.

Q
(ab)
1 (t) =

ω0∫

0

dω
Jab(ω)

ω2
sin (ωt)

Q
(ab)
2 (t) =

ω0∫

0

dω
Jab(ω)

ω2
(1− cos (ωt)) (4.75)

The functions Λ
(ab)
jj′ , X

(ab)
jj′ are defined as in [14], only extended for the case of two an-

harmonic bonds

Λ
(ab)
jj′ = Q

(ab)
2 (t2j − t2j′−1) +Q

(ab)
2 (t2j−1 − t2j′)−Q

(ab)
2 (t2j − t2j′)−Q

(ab)
2 (t2j−1 − t2j′−1)

X
(ab)
jj′ = Q

(ab)
1 (t2j − t2j′+1) +Q

(ab)
1 (t2j−1 − t2j′)−Q

(ab)
1 (t2j − t2j′)−Q

(ab)
1 (t2j−1 − t2j′+1)

(4.76)
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Applying the noninteracting blip approximation (NIBA), an approximation derived by
[14] yields

Fn
(1),NIBA ≡ e

− q20
π~

n∑
j=1

Q
(11)
2 (t2j−t2j−1)

e

iq20
π~

n∑
j=1

η
(1)
j−1ζ

(1)
j Q

(11)
1 (t2j−t2j−1)

Fn
(2),NIBA ≡ e

− q20
π~

m∑
k=1

Q
(22)
2 (t2j−t2j−1)

e

iq20
π~

n∑
j=1

η
(2)
j−1ζ

(2)
j Q

(22)
1 (t2j−t2j−1)

(4.77)

, where the same approximations as in the one anharmonic bond case (see [14] for details)
have been performed

1. X
(aa)
jj′ = 0 , j′ 6= j − 1, and put X

(aa)
j,j−1 = Q

(aa)
1 (t2j − t2j−1)

2. Λ
(aa)
jj′ = 0

But now the interaction part Gn
(12) requires an extension of the NIBA. The influence

functional describing the interaction between both anharmonic bonds can be simplified
by expanding the NIBA with the following requirements

Λ
(12)
jj = 2Q

(12)
2 (t2j − t2j−1)

Λ
(12)
jj′ = 0 , ∀j 6= j′

X
(12)
j,j−1 = X

(21)
j−1,j = Q

(12)
1 (t2j − t2j−1)

X
(12)
j,j′ = X

(21)
j′,j = 0 , ∀j 6= j′ − 1 (4.78)

, which results in the functional Gn
(12),NIBA

Gn
(12),NIBA = e

− 2q20
π~

n∑
j=1

ζ
(1)
j ζ

(2)
j Q

(12)
2 (t2j−t2j−1)

e

iq20
π~

n∑
j=1

(
ζ
(1)
j η

(2)
j−1+ζ

(2)
j η

(1)
j−1

)
Q

(12)
1 (t2j−t2j−1)

The first approximation of the expanded NIBA lets only blips of different anharmonic
bonds interact with each other at equal times. This keeps the interaction between both
bonds alive and is also consistent with the normal NIBA. The interaction of blips of
different anharmonic bonds at equal times, can be seen as a self-energy term between
bond one and two. The second approximation lets the blip interact with its previous
sojourn as in the one anharmonic bond case, but a blip of one anharmonic bond interacts
with the sojourn of the other anharmonic bond, which preceded it in time.

PNIBA
i (t) =





∞∑
n=0

(−1)n∆2nK
(i),NIBA
n (t), i = 1, 2

∞∑
n=1

(−1)n∆2nK
(i),NIBA
n (t), i = 3, 4
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K(i),NIBA
n (t) = 2−(2n−1)

∑

{ζ(1)j ,ζ
(2)
j }

∑

{η(1)j ,η
(2)
j }

t∫

0

D{t2n} Fn
(1),NIBA[{tj}; {ζ(1)j }; {η(1)j }]

·Fn
(2),NIBA[{tj}; {ζ(2)j }; {η(2)j }]

·Gn
(12),NIBA[{tj}; {ζ(1)j }; {η(1)j }; {ζ(2)j }; {η(2)j }]

(4.79)

Fn
(1),NIBA = e

− q20
π~

n∑
j=1

Q2(t2j−t2j−1)

︸ ︷︷ ︸
SE1

e

iq20
π~

n∑
j=1

η
(1)
j−1ζ

(1)
j Q1(t2j−t2j−1)

︸ ︷︷ ︸
BS1

Fn
(2),NIBA = e

− q20
π~

n∑
j=1

Q2(t2j−t2j−1)

︸ ︷︷ ︸
SE2

e

iq20
π~

n∑
j=1

η
(2)
j−1ζ

(2)
j Q1(t2j−t2j−1)

︸ ︷︷ ︸
BS2

Gn
(12),NIBA = e

− 2q20
π~

n∑
j=1

ζ
(1)
j ζ

(2)
j Q

(12)
2 (t2j−t2j−1)

︸ ︷︷ ︸
BB12

e

iq20
π~

n∑
j=1

(
ζ
(1)
j η

(2)
j−1+ζ

(2)
j η

(1)
j−1

)
Q

(12)
1 (t2j−t2j−1)

︸ ︷︷ ︸
BS12

(4.80)

Now the summation of the blip- and sojourn-charges has to be performed. For two
anharmonic bonds this differs slightly, from the summation performed in [14].
A straightforward but tedious calculation4 yields

K(i),NIBA
n (t) =

t∫

0

D{t2n}F (i)
n ({t2n})

, with the functionals F
(i)
n , having been derived in Appendix F, of the following form

F (1)
n ({t2n}) = 22n−1

n∏

j=1

cos

(
2q20
π~

Q+
1 (t2j − t2j−1)

)
· e−

2q20
π~

Q+
2 (t2j−t2j−1)

F (2)
n ({t2n}) = 22n−1

n∏

j=1

cos

(
2q20
π~

Q−
1 (t2j − t2j−1)

)
· e−

2q20
π~

Q−
2 (t2j−t2j−1) (4.81)

The factor of 22n−1 in the term F
(i)
n ({t2n}) cancels the factor of 2−(2n−1) in K

(i),NIBA
n (t)

of Eq. (4.79), as it should be, since this term covers the n blip-charge-pairs and n − 1
sojourn-charge-pairs, because the initial and final sojourn-charges are fixed.
Defining the function fi(t), i = 1, 2 in the following form

f1(t) = ∆2 cos

(
2q20
π~

Q+
1 (t)

)
· e−

2q20
π~

Q+
2 (t)

f2(t) = ∆2 cos

(
2q20
π~

Q−
1 (t)

)
· e−

2q20
π~

Q−
2 (t) (4.82)

4details presented in Appendix F
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Expressed in terms of PNIBA
i (t)

PNIBA
i (t) =

∞∑

n=0

(−1)n
t∫

0

D{t2n}
n∏

j=1

fi(t2j − t2j−1) (4.83)

In order to calculate the 2n-time integrations, a Laplace transform (see subsection 2.1.1
Laplace Transform) is helpful.

P̃NIBA
i (λ) =

∞∫

0

dt e−λtPNIBA
i (t)

=
∞∑

n=0

(−1)n

(
f̃i(λ)

)n

λn+1
=

1

λ+ f̃i(λ)
(4.84)

, where f̃i(λ) is of course nothing but the Laplace transform of the earlier defined fi(t).
Now inverting the Laplace transform, we are able to express PNIBA

i (t) as

PNIBA
i (t) =

1

2πi

i∞+δ∫

−i∞+δ

dλ
eλt

λ+ f̃i(λ)
(4.85)

Now the functions f̃i(λ), respectively fi(t) have to be calculated to perform the inverse
Laplace transform. Since we are interested in the long time limit ω0t ≫ 1 one has to
look first at the long time limit of the functions Q±

1/2(t). The following long time limits

can easily be seen using the spectral densities Jab(ω) of Eqs. (4.41), (4.42) and the
definition Eq. (4.45).

Q+
1 (t)

∼= 2C

ω0

[
Si(ω0t) +

(2− 4D +D2)(ω0t cos(ω0t)− sin(ω0t))

2(ω0t)2

]
ω0t≫1≈ Cπ

ω0

Q−
1 (t)

∼= CD2

2ω0

[
(sin(ω0t)− ω0t cos(ω0t))

(ω0t)2

]
w0t≫1≈ 0

Q+
2 (t)

∼= C

4ω0

[
8γ − 8Ci(ω0t) + 8 ln(ω0t)− (2− 4D +D2)

+
(4− 8D + 2D2) (cos(ω0t) + ω0t sin(ω0t)− 1)

(w0t)2

]

w0t≫1≈ C

4ω0

(
8γ + 8 ln(ω0t)− (2− 4D +D2)

) t≫tD≈ 2C

ω0

(
γ + ln(ω0t)

)

Q−
2 (t)

∼= CD2

2ω0

[
1− cos(ω0t)− ω0t sin(ω0t)

(w0t)2
+

1

2

]
w0t≫1≈ CD2

4ω0

(4.86)

These long time limits are for the case of Q+
1 (t), Q

−
2 (t) constants, as in the phenomeno-

logical approach Qohm
1 (t), Qsuperohm

2 (t) used by Leggett et al. [14]. Q−
1 (t), Q

+
2 (t) behave
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in the long time limit like Qsuperohm
1 (t), Qohm

2 (t) in Leggett’s phenomenological approach.
This strengthens the assumption of treating functions with the index ”+” as a function
showing ohmic dissipation, whereas the index ”− ” stands for super-ohmic dissipation.
Leggett et al. do not have to consider the long time limit for the ohmic case, since they
choose their spectral density phenomenologically and hence also their functions Q1/2(t).
Their choice is made in a way, that allows further simplifications, but since we do not
have this choice, the only possible way is an approximation regarding the physically
interesting regime ω0t ≫ 1, which is achieved by the long time limit.
Next the long time approximation presented earlier, is applied for the Laplace transform
of the functions f1(t), f2(t) yielding

f̃1(λ) ∼= ∆2ω−2α
0 cos (απ) Γ (1− 2α)λ2α−1e−2αγ

f̃2(λ) ∼= ∆2λ−1e−
αD2

4 (4.87)

, where the parameter α plays the same role as in Leggett’s article [14] and has the
following definition

α =
2q20C

π~ω0

(4.88)

The behaviour of the functions f̃1(λ), f̃2(λ) presented above can be easily seen. The
only relevant property for our case is the behaviour of those functions for the argument
approaching zero and infinity. For λ → ∞ all functions go to zero, as can easily be seen
in Eqs. (4.87).
The divergence for λ → 0 may appear to give rise to complications. This is not the case.
The function f̃1(λ) is of order λ

2α−1, exactly as the function for the ohmic case in [14].
The function f̃2(λ) has a λ−1 pole, as the function describing super-ohmic behaviour in
[14]. That again strengthens the assumption, that PNIBA

i (t) is either ohmic dissipative,
for the case of i = 1 and super-ohmic dissipative, for the case of i = 2.
Now it is possible to treat the two different scenarios analogiously as in [14]. First we
look at the poles of PNIBA

1 (t).

f̃1(λ) + λ = 0
ω0t≫1⇔ ∆

2(1−α)
eff λ2α−1e−2αγ + λ = 0 (4.89)

, with the following definition for ∆eff

∆eff = [Γ(1− 2α) cos (πα)]
1

2(1−α) ∆

(
∆

ω0

) α
1−α

(4.90)

For α < 1
2
there are three poles. A branch-cut at λ = 0 and

λp2/3 = ∆eff e
− αγ

1−α e±
iπ

2(1−α) (4.91)

For 1
2
< α < 1 the poles are not on the principal λ sheet and hence PNIBA

1 (t) is given

by the branch-cut. For α > 1 the function f̃(λ) no longer yields the leading factor in
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O(λ) with the factor λ2α−1. Now the term linear in λ is the leading term, hence we

can write P̃NIBA
1 (λ) ∼ λ−1, yielding PNIBA

1 (t) = 1, which is nothing but the localisation
phenomenon of Bray and Moore [26].
In the super-ohmic case we have to be careful. Up to now, we considered the NIBA,
which requires considering the blips as a dilute gas. This is achieved by the self-energy of
the blips, which reduces their ”length” (in time) compared to the sojourn ”length”. The
self-energy can be seen in the influence functional Eq. (4.74), by the term containing
Q2(t). But in the super-ohmic case, this term approaches a constant for t → ∞, whereas
it reaches zero in the ohmic case (see Eqs. (4.86)). Due to this, the self-energy no longer
suppresses the blip ”length” compared to the sojourn ”length”, thus the blips cannot be
considered as a dilute gas, and hence the NIBA appears not to be valid for the super-
ohmic case.
The solution to this problem, has already been discussed in [14] and consists of a slight
modification, which is explained below, that makes the NIBA still a valid approximation.
Splitting up the function Q−

2 (t) into a constant and a time-dependent function Q−
3 (t)

Q−
2 (t)

∼= CD2

4ω0

+Q−
3 (t)

Q−
3 (t)

∼= CD2

2ω0

(
1− cos(ω0t)− ω0t sin(ω0t)

(ω0t)2

)
(4.92)

As in [14] the time independent piece of Q−
2 (t) will be absorbed into the level splitting

∆ in the following way

∆̃ = ∆ e−
2q20
π~

Q−
2 (t=∞)

= ∆ e−
αD2

4 (4.93)

Now following [14] one can define a dimensionless quantity b ≪ 1 in the following way

q20
π~

Q−
1 (t = ∆̃−1),

q20
π~

Q−
3 (t = ∆̃−1) ∼ q20

~

J−(∆̃)

∆̃
≡ b (4.94)

Pulling out the 1
λ
pole, that can clearly be seen from the fact, that Q−

1 (t) and Q−
3 (t)

approach zero for t → ∞, one gets the following equation for finding the poles of P̃ (λ)

λ2 + ∆̃2
(
1 + λh̃−(λ)

)
= 0 (4.95)

, with h̃−(λ) being the Laplace transform of h−(t) defined as

h−(t) = cos

(
2q20
π~

Q−
1 (t)

)
e−

2q20
π~

Q−
2 (t) − 1 (4.96)

In the absence of damping (h− = 0), the poles are entirely imaginary λ = ±i∆̃. On
physical grounds the poles will shift slightly off the imaginary axis and pick up a small
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negative real part. Expanding the above equation around the poles without damping,
one finds

λ = ±i∆̃

(
1± i∆̃

2
+ ...

)
(4.97)

Looking at the lowest order in b, the real and imaginary parts of λ are

ℑ(λ) = ±∆̃

ℜ(λ) = −∆̃2

2
ℜ(h̃−(λ = i∆̃)) ≡ −Γs

Γs =
∆̃2

2

∞∫

0

dt cos(∆̃t)h−(t) (4.98)

Now expanding h−(t) in Q−
1/3(t) to lowest order of b yields

h−(t) =
2q20
π~

Q−
3 (t) +O(b2) (4.99)

With this expansion the integration can be performed

Γs =
q20∆̃

2

π~

∞∫

0

dt cos(∆̃t)Q−
3 (t)

=
q20∆̃

2

π~

∞∫

0

dt cos(∆̃t)

ω0∫

0

dω
J−(ω)

ω2
cos(ωt)

Now changing the order of integration, yields the final result for Γs

Γs =
q20∆̃

2

π~

ω0∫

0

dω
J−(ω)

ω2

∞∫

0

dt cos(∆̃t) cos(ωt)

=
q20∆̃

2

2π~

ω0∫

0

dω
J−(ω)

ω2

∞∫

−∞

dt cos(∆̃t) cos(ωt)

=
q20∆̃

2

2~

ω0∫

0

dω
J−(ω)

ω2
δ(ω − ∆̃)

=
q20
2~

J−(∆̃) (4.100)

A self-consistent check of the smallness of the dimensionless quantity b, defined in Eq.
(4.94), gives the following inequality

Γs

∆̃
≪ 1
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Using the results and definitions of Eqs. (4.93) and (4.92) one obtains

Γs

∆̃
∼= J−(∆̃)

∆̃

=
CD2

2ω0

(
∆

ω0

)2

e−
αD2

2 (4.101)

We know, that ∆
ω0

is much smaller than one. As D2 increases quadratically, the expo-

nential factor also containing D2, leads to fulfilment of the above inequality.
Performing an inverse Laplace transform of P̃NIBA

2 (λ), with the above calculated complex

conjugate poles λ = −Γs ± i∆̃, gives the final result

PNIBA
2 (t) = cos(∆̃t)e−Γst (4.102)

This describes under-damped coherent oscillations at frequency ∆̃ with the damping-
rate Γs for the case of super-ohmic dissipation described by the function f1(t).

4.2.1 Summary

First of all one has to look at how P (t) behaves depending on different initial positions
of the anharmonic bonds. What we see, is that the overall tunnelling process, by which
starting from an initial configuration and reaching a final configuration is meant, does
not only depend on the initial position, but on the relation of the initial configuration
to the final configuration. The four tunnelling probabilities hence can be reduced to two
different scenarios, because of the simple relation of Eq. (4.63).
The two different overall tunnelling processes describe either tunnelling with length-
change, which is described by P1(t) and shows ohmic dissipation and tunnelling without
length-change, which results in super-ohmic dissipation. For P1(t) a phase transition
occurs depending on α, since now we have purely ohmic dissipation in every tunnelling
transition. For α < 1 there is no localisation, that means both anharmonic bonds spend
on average the same time in each of the two equilibrium positions, whereas the symmetry
becomes broken for α ≥ 1 leading to localisation. That means both anharmonic bonds
spend on average most of their time in the equilibrium position they were initially
prepared in. This has already been calculated for the purely phenomenological choice of
the spectral density of [14]. The phase transition has been found by [26], as mentioned
before. P2(t) exhibits super-ohmic dissipation and hence tunnelling is never surpressed.
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Chapter 5

Results and Conclusions

We considered a microscopic model system in 1 dimension with N particles. All parti-
cles interact with their nearest neighbour described by a harmonic potential except the
r anharmonic bonds. Those anharmonic bonds interact through a symmetric double
well potential with each other. The coupling between the harmonic and the anharmonic
bonds have been described by the coupling constants cσ. At first we looked at the sim-
plest case of one anharmonic bond (r = 1). Two methods were presented to analytically
separate the harmonic form the anharmonic degrees of freedom. The first method is
intuitive, but only applicable to one dimension, whereas the second can be generalized
to d-dimensions. A third method, which is not presented in this thesis, is shown in
the publication [36]. This analytical separation of the harmonic from the anharmonic
degrees of freedom allows us to derive the up to now phenomenologically considered
Caldeira-Leggett Hamiltonian, analytically from a microscopic model.
Next we consider the position dependence of the anharmonic bond in the tunnelling
behaviour. As a result we get, that if the anharmonic bond is located at the border of
the chain, we have a transition from ohmic to super-ohmic dissipation, which is seen in
the frequency dependence of cσ exhibiting a sensitivity of the location of the anharmonic
bond M . That means, the anharmonic bond tunnels between the two minima of the
potential, dissipating energy to the harmonic bath around it. The terms ohmic and
super-ohmic refer to the way the energy is dissipated. The dissipation for low frequen-
cies has the form of a power-law ∼ ωs, where the term ohmic stands for s = 1, while
super-ohmic refers to s > 1. The super-ohmic terms calculated in this thesis yielded
s = 3 for the considered model.
As shown in [26] the quantum-mechanical tunnelling in a symmetric double well poten-
tial under the influence of a harmonic bath introducing dissipation, can be mapped one
the one-dimensional Ising-model with inverse-square-law interactions R−2 for the ohmic
case and interactions falling off like R−4 in the super-ohmic case. As has been shown by
Thouless [37] an interaction energy falling off like R−n in an one-dimensional system,
shows a phase transition from an ”ordered” to a ”disordered” phase at n = 2.
The expression ”ordered” can be interpreted as the anharmonic bond spending most of
its time in the well it has been initially prepared in. The case of ”disordered” refers to
the anharmonic bond spending half of its time in one well and the the other half in the
other well.

75
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From this we can see, that the case of super-ohmic dissipation refers to the disordered
phase and hence tunnelling is never suppressed. If the anharmonic bond is located in
the bulk, the system shows a much more interesting behaviour. Calculations show, that
in this case the system shows only ohmic dissipation. Ohmic dissipation ∼ ω described
in language of the Ising-model, has an interaction falling off as R−2. This is exactly the
critical exponent [37] in an infinite one-dimensional system, where a phase transition
occurs. For a coupling constant below a critical value, the system will show ohmic dis-
sipative behaviour, where the anharmonic bond tunnels between the two wells as in the
super-ohmic case. But for a coupling stronger than the critical coupling constant, the
system will stop tunnelling back and forth and will remain most of its time in the well it
started in. This is a spontaneous symmetry breaking, which is of the same universality
class as the one-dimensional Ising model with inverse-square-law interactions [26].
The next step was to include a second anharmonic bond into the one-dimensional model.
This leads to indirect interaction of both anharmonic bonds through the environment.
There are many possible positions of both bonds, but we focus on both anharmonic
bonds located in the bulk with a finite, but variable distance D between them.
The choice of a finite distance D can be explained as follows. For the case of infinite
distance, both bonds do no longer interact indirectly with each other and hence the
system reduces to two isolated anharmonic bonds and their position dependence. This
has already been discussed in the first part of this thesis. The choice of both anharmonic
bonds located in the bulk is due to the following argument. As we saw in the first part,
the position of the anharmonic bond in the bulk showed ohmic dissipation and a phase
transition for a coupling constant higher than the critical value. Since we clearly want
to show, that the transition is due to the indirect interaction and not due to both bonds
being at one of the borders, we chose to consider only the case of both bonds being in
the bulk.
The first problem that had to be solved was the analytical diagonalisation procedure.
Following the first method presented in chapter 3.1, we had to choose the anharmonic
bond positions M1,M2 symmetrically around the center of the chain. This allowed to
replace the bond positions and the total chain-length N by just two parameters D,N .
Next the calculation of the kernel followed. The kernel appearing in the influence Eu-
clidean action is coupled to both anharmonic bonds. That is the reason a mapping like
in the one anharmonic bond case, as done by Bray and Moore [26], is no longer possible.
With a transformation the coupling can be eliminated in the influence part, but it is
only shifted to the local part. This results in an direct interaction of the instantons
of both anharmonic bonds, whose effect is not fully understood. The kernel K++

D (τ),
which is achieved after the transformation in the influence action exhibits ohmic dis-
sipative behaviour, whereas the the kernel K−−

D (τ) shows a transition to super-ohmic
dissipative behaviour for τ ≫ τD. Since the coupling of the instantons in the local part
of the influence action occurs, we wanted to put these results on more stable ground and
hence chose to calculate the tunnelling probability in the way Leggett et al. [14] did, but
generalized to two anharmonic bonds interacting indirectly through the environment.
Using the Feynman-Vernon technique [21] to eliminate the harmonic degrees of freedom
via the path integral formalism, we were able to express the tunnelling probabilities. A
necessary restriction was to set the tunnelling times of both anharmonic bonds equal.
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This restriction has also been applied by Dubé and Stamp [29], but without mathemati-
cal rigour and with incomprehensible argumentations. We already imply this restrictions
at an earlier point, namely when defining the bare tunnelling amplitudes using the spin-
boson approach applied by Leggett et al. [14]. This of course simplifies the calculations
of the tunnelling probability p(t), but also allows only two physically different scenarios
labelled as p1(t) and p2(t). The tunnelling probability p1(t) stands for an initial and final
position, where both anharmonic bonds are in equal equilibrium positions as or al. The
tunnelling is split up in 2n tunnelling transitions, where each transitions means both
anharmonic bonds changing their equilibrium positions from as to al or the other way
around. The calculated spectral density results in p1(t) showing only ohmic dissipation.
This is understandable, since ohmic dissipation already appeared for one anharmonic
bond located in the bulk in chapter 3.3. Tunnelling requires as in the one anharmonic
bond case a movement of an infinite mass, which leads to ohmic dissipative tunnelling.
The other scenario p2(t) implies both anharmonic bonds having different initial equi-
librium length as, al and final positions. Because of the restriction of both anharmonic
bonds tunnelling at equal times, one of the bonds tunnels from as to al, whereas the
other bond does just the opposite. The total length of the anharmonic bonds stays the
same at each of the 2n tunnelling transitions. The calculated spectral density for this
case is purely super-ohmic. For the case of one anharmonic bond located at the border
of the chain in chapter 3.3, the spectral density is also super-ohmic, hence the result
achieved for p2(t) is not surprising. The calculation of the function pi(t), i = 1, 2 is
done in analogy to [14] using the NIBA and extending it to the case of two anharmonic
bonds. The extension of the NIBA allows coupling of blips of both anharmonic bonds
at the same time, which can be interpreted as a blip-self-energy. The other extension is
a blip not only coupling with its previous sojourn, but also with the previous sojourn
of the other anharmonic bond.
The final results for the tunnelling probability are achieved as in the one anharmonic
case solved by Leggett et al. [14], by Laplace transformation and investigation of the
poles.



78 CHAPTER 5. RESULTS AND CONCLUSIONS



Appendix A

Diagonalisation of the first approach

The separation of the harmonic and anharmonic degrees of freedom by using centre of
mass and relative coordinates of the total chain has been described in section ”First
Method”. The transformation to normal coordinates requires the diagonalisation of
(Tkj). In the present Appendix the steps of the diagonalisation procedure will be given.
Making use of Eqs. (3.14), (3.15), (3.17) - (3.19) one obtains the harmonic part of the
Hamiltonian Eq. (3.12) with the following symmetric matrix (Tkj)

Tii =

{
2, i = 1, ...,M − 2,M + 2, ..., N − 1
3
2
, i = M − 1,M + 1

Ti,i+1 =

{
−1, i = 1, ...,M − 2,M + 1, ..., N − 2

0, i = M − 1

Ti,i+2 =

{
0, i = 1, ...,M − 3,M + 1, ..., N − 3

−1
2
, i = M − 1

(A.1)

Then it is straightforward to solve the eigenvalue equation

N−1∑

j=1
(j 6=M)

Tkju
(σ)
j = λ′

σu
(σ)
k , σ = 1, ..., N − 2 (A.2)

Writing this equation explicitly, gives

(2− λ′
σ) u

(σ)
1 − u

(σ)
2 = 0, k = 1 (A.3)

(2− λ′
σ) u

(σ)
k −

(
u
(σ)
k+1 + u

(σ)
k−1

)
= 0, k = 2, ...,M − 2,M + 2, ..., N − 2(A.4)

(
3

2
− λ′

σ

)
u
(σ)
M−1 − u

(σ)
M−2 −

1

2
u
(σ)
M+1 = 0, k = M − 1 (A.5)

(
3

2
− λ′

σ

)
u
(σ)
M+1 − u

(σ)
M+2 −

1

2
u
(σ)
M−1 = 0, k = M + 1 (A.6)

(2− λ′
σ) u

(σ)
N−1 − u

(σ)
N−2 = 0, k = N − 1 (A.7)
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The form of Eq. (A.4) suggests an ansatz of plain waves for the left and the right part
of the form

u
(σ)
k =

{
A+e

iqσk + A−e
−iqσk k = 1, ...,M − 2

B+e
iqσk + B−e

−iqσk k = M + 2, ..., N − 1
(A.8)

Using this ansatz it is possible to include Eq. (A.3) in Eq. (A.4) and Eq. (A.7) in

Eq. (A.6) using the requirements u
(σ)
0 = u

(σ)
N

!
= 0. These requirements are boundary

conditions of an open chain, that lead to qσ ∈ (0, π). 0 and π are not included, because
these values do not lead to non-zero eigenvectors. Applying these boundary conditions
yields

u
(σ)
0 = A+ + A−

!
= 0 ⇔ A− = −A+

u
(σ)
N = B+e

iqσN + B−e
−iqσN !

= 0 ⇔ B− = −B+e
2iqσN (A.9)

Using those results in Eqs. (A.4) and (A.6) leads to

u
(σ)
k = Nbσ

{
sin (qσk) , k = 1, ...,M − 2 ; Nbσ = 2iA+

bσ sin (qσ[N − k]) , k = M + 2, ..., N − 1 ; bσ = B+

A+
eiqσN

λ′
σ = 2

(
1− cos(qσ)

)
= mλσ (A.10)

The eigenvector components u
(σ)
M−1, u

(σ)
M+1 can be calculated straightforward by using the

results obtained and plugging them into Eq. (A.4) for the cases of k = M ± 2. Hence
the full set of eigenvectors reads

u
(σ)
k = Nbσ

{
sin(qσk), 1 ≤ k ≤ M − 1

bσ sin(qσ[N − k]), M + 1 ≤ k ≤ N − 1
(A.11)

with Nσ as the normalisation constant and bσ being a coefficient depending on the wave
number qσ, the location M of the anharmonic bond and the total length of the chain
N . The coefficient bσ can be obtained from Eq. (A.5) by straightforward calculation,
yielding

bσ =
2 sin (qσM)− sin (qσ[M − 1])

sin (qσ[N −M − 1])
(A.12)

Using (A.6) and the result obtained from (A.12), it is possible to obtain a transcendental
equation of the form

sin (qσ[N −M − 1]) sin (qσ[M − 1])−
(
2 sin (qσ[N −M ])− sin (qσ[N −M − 1])

)

·
(
2 sin (qσM)− sin (qσ[M − 1])

)
= 0 .(A.13)

This equation cannot be solved analytically. Hence a separation of the parameters
N,M using trigonometric identities is useful for a further discussion. The main steps of
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the separation will be shown. By performing the multiplication of the two factors the
transcendental equation can be put into

sin (qσ[N −M − 1]) sin (qσM) + sin (qσ[N −M ]) sin (qσ[M − 1])

−2 sin (qσ[N −M ]) sin (qσM) = 0 (A.14)

now separating the parameters N,M and assuming sin (qσN) 6= 0 leads to

sin (qσN)

[(
cos (qσ[M + 1]) sin (qσM) + cos (qσM) sin (qσ[M − 1])− 2 cos (qσM) sin (qσM)

)

− cot (qσN)
(
sin (qσ[M + 1]) sin (qσM) + sin (qσM) sin (qσ[M − 1])− 2 sin2 (qσM)

)]
= 0

Using the assumption sin (qσM) 6= 0 allows to write the equation as

cot (qσN) =
cos (qσ[M + 1]) + cot (qσM) sin (qσ[M − 1])− 2 cos (qσM)

sin (qσ[M − 1]) + sin (qσ[M + 1])− 2 sin (qσM)

The identity sin(x) + sin(y) = 2 sin
(
x+y
2

)
cos
(
x−y
2

)
applied to the denominator gives

cot (qσN) =
2 cos (qσM)− cos (qσ[M + 1])− cot (qσM) sin (qσ[M − 1])

4 sin (qσM) sin2
(
qσ
2

)

In the numerator the parameter M can be isolated leading to

cot (qσN) =
2 cos (qσM)

(
1− cos (qσ)

)
+ sin (qσM) sin (qσ)

(
1 + cot2 (qσM)

)

4 sin (qσM) sin2
(
qσ
2

)

Now the two additive factors of the numerator can be separated and using basic trigono-
metric identities one gets

cot(qσN) = cot(qσM) +
cot( qσ

2
)

2 sin2(qσM)︸ ︷︷ ︸
f(qσ)

(A.15)

Since the transcendental Eq. (A.15) is not analytically solvable a detailed discussion for
approximative solutions is given. The l.h.s. behaves as follows

lim
qσցπσ

N

cot (qσN) = ∞ , lim
qσրπσ

N

cot (qσN) = −∞ , σ = 0, ..., N (A.16)

which means the l.h.s. oscillates in every interval
[
πσ
N
, π(σ+1)

N

]
, σ = 0, ..., N − 1 from

∞ to −∞. The r.h.s. shows this behaviour:

lim
qσցπσ

M

f(qσ) = ∞ , lim
qσրπσ

M

f(qσ) = ∞ , σ = 1, ...,M − 1

lim
qσրπ

f(qσ) = −∞ (A.17)
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Since M < N and with the results obtained from Eqs. (A.16), (A.17), it is easy to

see that there is exactly one solution in every interval
[
πσ
N
, π(σ+1)

N

]
for σ = 1, ..., N − 2,

leading to the expected number ofN−2 solutions. The remaining two degrees of freedom
are the centre of mass and the anharmonic bond coordinate Xc and qM , respectively.
The solutions can hence be written as

qσ =
π

N
· σ + ǫσ, σ = 1, ..., N − 2 (A.18)

with 0 ≤ ǫσ < π
N
. That means ǫσ is of the form ǫσ = N−α, α ≥ 1. For σ = O(1) the

form of ǫσ can be determined from the transcendental equation by applying Eq. (A.18)
and using basic trigonometric identities and the following basic approximations

cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y)

sin(x± y) = sin(x) cos(y)± cos(x) sin(y)

sin(x)
x≪1≈ x (A.19)

cos(x)
x≪1≈ 1 (A.20)

The transcendental equation can be written as

cos(ǫσN)

sin(ǫσN)
=

cos
(
πσM
N

)
cos(ǫσM)− sin

(
πσM
N

)
sin(ǫσM)

cos
(
πσM
N

)
sin(ǫσM) + sin

(
πσM
N

)
cos(ǫσM)︸ ︷︷ ︸

O(1)

+
1− πσ

4N
ǫσ

2
[
πσ
2N

+ ǫσ
2

] [
sin
(
πσM
N

)
+ ǫσM

2
cos
(
πσM
N

)]2
︸ ︷︷ ︸

O(N)

(A.21)

where it is obvious that the first term is of O(1), since the denominator is non-zero and
all trigonometric functions are of O(1). The second term shows a numerator of O(1)
and a denominator of O

(
1
N

)
in leading order. To fulfil this equation the l.h.s. must be

of order O(N). This can only be achieved if ǫσ = O (N−α) , α > 1. By assuming this
and Taylor expanding the l.h.s. one sees immediately that ǫσ is of order O

(
1
N2

)
. The

exact result is

ǫσ =
πσ sin2

(
πσM
N

)

N2
+O

(
1

N3

)
(A.22)

In the thermodynamic limit N → ∞, qσ becomes continuous within (0, π) with constant
density which implies a constant low energy density of states.
The normalisation constant Nσ and the coefficient bσ are functions of qσ,M and N . The
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normalisation reads explicitly

1 = N 2
bσ

[
M−1∑

k=1

sin2(qσk) + b2σ

N−1∑

k=M+1

sin2(qσ[N − k])

]

=
N 2

bσ

2

[
M−1∑

k=1

(
1− cos(2qσk)

)
+ b2σ

N−1∑

k=M+1

(
1− cos(2qσ[N − k])

)
]

=
N 2

bσ

2

[
(M − 1) + b2σ(N −M − 1)−

M−1∑

k=1

cos(2qσk)− b2σ

N−M−1∑

k′=1

cos(2qσk
′)

]

⇒ Nbσ =

√
2

(M − 1) + b2σ(N −M − 1)− sin(qσ [M−1]) cos(qσM)+b2σ sin(qσ(N−M−1) cos(qσ [N−M ])
sin(qσ)

(A.23)

and in the limit of large N (or low frequency behaviour ωσ ≪ 1) we get

Nbσ ∼
√

2

N
(A.24)
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Appendix B

Diagonalisation of the second
approach

In this Appendix the diagonalisation procedure of the harmonic coordinates will be
discussed, since in the second approach the momenta already are diagonal. As stated
in section ”Second Method” equal masses mn = m are considered. Applying Eq. (3.35)
to Eq. (3.34) yields

H = Hd +Hharm +Hint

Hd =
π2
M

m
+ V0(qM) +

C

4
q2M

Hharm =
N−1∑

n=1
n 6=M,M+1

p′n
2

2m
+

C

2

N−2∑

n=1

(
x′
n+1 − x′

n − a′n
)2

︸ ︷︷ ︸
Vharm({x′

n})

Hint = −C

2

(
x′
M+1 − x′

M−1 − a′M − a′M−1

)
qM (B.1)

A transformation

x′
n
(eq)

= x′
1 +

n−1∑

i=1

a′i

x′
n = x′

n
(eq)

+ u′
n (B.2)

defining an equilibrium position x
′(eq)
n , allows to rewrite the harmonic Hamiltonian as

Hharm =
N−1∑

n=1
n 6=M,M+1

p′n
2

2m
+

C

2

N−2∑

n=1

(u′
n+1 − u′

n)
2 (B.3)

Expanding the harmonic potential Vharm ({x′
n}) around the equilibrium configuration

Vharm

(
{x′(eq)

n }
)
up to quadratic order, yields

Vharm (x′
n) = V

(
x′
n
(eq)

+ u′
n

)

︸ ︷︷ ︸
constant

+
∂Vharm

∂x′
k

(
x′
n
(eq)
)
u′
k

︸ ︷︷ ︸
0

+
1

2

∂2Vharm

∂x′
k ∂x

′
l

(
x′
n
(eq)
)

︸ ︷︷ ︸
V ′
kl

u′
ku

′
l (B.4)

85



86 APPENDIX B. DIAGONALISATION OF THE SECOND APPROACH

This is not an approximation, since Vharm is a harmonic potential. The variable u′
n

represents the displacement of x′
n from the equilibrium configuration x

′(eq)
n .

Introducing mass weighted coordinates

ũ′
n =

√
mu′

n

p̃′n =
p′n√
m

(B.5)

yields the harmonic Hamiltonian

Hharm =
1

2

N−1∑

n=1

(p̃′n)
2
+

1

2

N−1∑

k,l=1

Ṽ ′
klũ

′
kũ

′
l (B.6)

With the nonzero elements of the symmetric matrix
(
Ṽ ′
kl

)
read explicitly

Ṽ ′
kk =

C

m

{
1, k = 1,M,N − 1

2, k = 2, ..., N − 2

Ṽ ′
k,k+1 =

C

m

{
−1, k = 1,M − 2,M + 1N − 2

− 1√
2
, k = M − 1,M

(B.7)

Diagonalising this matrix in the standard way

N−1∑

k=1
( 6=M±1,M)

Ṽ ′
kle

(σ)
k = λ̃σ e

(σ)
l (B.8)

and considering the remaining equations (k = M − 1,M,M + 1), which yield a non-
trivial solution if a corresponding determinant vanishes. This leads to the following
mass weighted eigenvectors and eigenvalues (the calculation for k 6= M − 1,M,M + 1
is absolutely analogous to the procedure in Appendix A Eqs. (A.3)-(A.11)) and the
determinant condition is a straightforward calculation, yielding

e(σ)n = Ñb̃σ

{
cos
(
x̃σ[n− 1

2
]
)

, n = 1, ...,M − 1

b̃σ cos
(
x̃σ[N − n− 1

2
]
)

, n = M + 1, ..., N − 1

e
(σ)
M =

√
2Ñb̃σ

cos

(
x̃σ

[
M − 1

2

])

λ̃σ =
2C

m
(1− cos(x̃σ)) (B.9)

where x̃σ are the wave numbers used in the ansatz (which is equivalent in the form to
the ansatz used in Appendix A Eq. (A.8)). The other parameters are the normalisation

constant Ñb̃σ
and a coefficient b̃σ describing the position dependence of the anharmonic

bond. The parameters are functions depending on x̃σ, N and M . Their explicit expres-
sion are

b̃σ =
cos
(
x̃σ

[
M − 1

2

])

cos
(
x̃σ

[
N −M − 1

2

]) (B.10)
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the calculation of the normalisation constant

1 = Ñ 2
b̃σ

[
M−1∑

k=1

cos2
(
x̃σ

[
k − 1

2

])
+ 2 cos2

(
x̃σ

[
M − 1

2

])

+b̃2σ

N−1∑

k=M+1

cos2
(
x̃σ

[
N − k − 1

2

])]

=
Ñ 2

b̃σ

2

[
M∑

k=1

(
1 + cos(2x̃σk) cos(x̃σ) + sin(2x̃σk) sin(x̃σ)

)
+ 2 cos2

(
x̃σ

[
M − 1

2

])

+b̃2σ

N−1∑

k=M+1

(
1 + cos(2x̃σ[N − k]) cos(x̃σ) + sin(2x̃σ[N − k]) sin(x̃σ)

)]
(B.11)

yields

Ñb̃σ
=

√
2

denom

denom = M − 1 + b̃2σ [N −M − 1] + 2 cos2
(
x̃σ

[
M − 1

2

])

+
sin(x̃σ[M − 1]) cos(x̃σ[M − 1]) + b̃2σ sin(x̃σ[N −M − 1]) cos(x̃σ[N −M − 1])

sin(x̃σ)

(B.12)

The determinant condition for the equations ẽ
(σ)
n with n = M − 1,M and M + 1 not

only yield these eigenvectors, but also the following transcendental equation (obtaining
this equation is done absolutely analogous to Appendix A Eq. (A.13))

2(−1 + 2 cos(x̃σ)) =
cos
(
x̃σ[M − 3

2
]
)

cos
(
x̃σ[M − 1

2
]
) + cos

(
x̃σ[N −M − 3

2
]
)

cos
(
x̃σ[N −M − 1

2
]
) (B.13)

This transcendental equation looks different from the equation of the first approach
Eq. (A.15), but after the use of some trigonometric identities, their equivalence can
be shown. This will be presented here in a few steps with some comments. First the
separation of N (and assuming sin (x̃σN) 6= 0) is done leading to

cot(x̃σN) = −sin
(
x̃σ

[
M + 1

2

])
cos
(
x̃σ

[
M − 3

2

])
+ sin

(
x̃σ

[
M + 3

2

])
cos
(
x̃σ

[
M − 1

2

])

denominator

−

[
4 cos (x̃σ)− 2

]
sin
(
x̃σ

[
M + 1

2

])
cos
(
x̃σ

[
M − 1

2

])

denominator
(B.14)

denominator = cos

(
x̃σ

[
M +

1

2

])
cos

(
x̃σ

[
M − 3

2

])

+cos

(
x̃σ

[
M +

3

2

])
cos

(
x̃σ

[
M − 1

2

])

−
[
4 cos (x̃σ)− 2

]
cos

(
x̃σ

[
M +

1

2

])
cos

(
x̃σ

[
M − 1

2

])
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The next step is to further simplify the expression using the following identities

cos(x) cos(y) =
1

2
(cos(x− y) + cos(x+ y)) ,

sin(x) cos(y) =
1

2
(sin(x− y) + sin(x+ y)) ,

cos(2x) = 2 cos2(x)− 1 sin(2x) = 2 sin(x) cos(x) (B.15)

, this yields

cot(x̃σN) =

2 sin
(
x̃σ

2

) [
2 sin (2x̃σM) sin

(
x̃σ

2

)
+ cos

(
x̃σ

2

)]

2 sin2
(
x̃σ

2

) [
1− cos (2x̃σM)

]

Now only a few minor steps using the trigonometric identities given above have to be
done to get to the same form as in Eq. (A.15)

cot(x̃σN) = cot(x̃σM) +
cot
(
x̃σ

2

)

2 sin2(x̃σM)
(B.16)

This equation is absolute equivalent to (A.15) by just replacing the wave number qσ
used in the first approach, by the wave number used in the second approach x̃σ. Hence
this transcendental equation yields of course the exact same solutions as in the first
approach.
As mentioned at the end of section ”Second Method” the equivalence of the normalisa-
tion constants of the first Nbσ and the second Ñb̃σ

method has to be proven. Comparing
the extensive part of both normalisation constants from Eq. (A.23) and Eq. (B.12) one
gets

N ext.
bσ =

√
2

(M − 1) + b2σ(N −M − 1)

Ñ ext.
b̃σ

=

√
2

M − 1 + b̃2σ [N −M − 1]

(B.17)

To show that the extensive parts of both normalisation constants are identical one has
to check whether the following equation holds

b2σ
?
= b̃2σ (B.18)

Taking the square root and using the definitions of Eq. (A.12) and Eq. (B.10) yields

2 sin (qσM)− sin (qσ[M − 1])

sin (qσ[N −M − 1])
= ± cos

(
qσ
[
M − 1

2

])

cos
(
qσ
[
N −M − 1

2

]) (B.19)
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The ”+” option is not fulfilled in general, but the ”−” option yields the transcendental
equation Eq. (B.16) hence showing the equivalence. The main steps to show how to
achieve the transcendental equation are shown. Bringing both sides of Eq. (B.19) on a
common denominator yields

(
2 sin (qσM)− sin (qσ[M − 1])

)
cos

(
qσ

[
N −M − 1

2

])

+sin (qσ[N −M − 1]) cos

(
qσ

[
M − 1

2

])
= 0 (B.20)

Separation of N and assuming sin(qσN) 6= 0 as before leads to

cot (qσN) =
Z

N

Z = cos (qσ[M + 1])
(
cos (qσM) cos

(qσ
2

)
+ sin (qσM) sin

(qσ
2

))

− sin

(
qσ

[
M +

1

2

])(
sin (qσM) cos (qσ)− cos (qσM) sin (qσ)− 2 sin (qσM)

)

N = sin (qσ[M + 1])
(
cos (qσM) cos

(qσ
2

)
+ sin (qσM) sin

(qσ
2

))

+cos

(
qσ

[
M +

1

2

])(
sin (qσM) cos (qσ)− cos (qσM) sin (qσ)− 2 sin (qσM)

)

Z and N can be brought in the following form by applying trigonometric identities just
like those used above

Z = cos
(qσ
2

)
+ 2 sin

(qσ
2

)
sin (qσM) cos (qσM)

N = 2 sin
(qσ
2

)
sin2 (qσM) (B.21)

With that one can immediately see the equivalence of both (extensive) normalisation
constants.
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Appendix C

Diagonalisation for two anharmonic
bonds

The diagonalisation of the harmonic kinetic part of the Hamiltonian for D ≥ 2

Tharm =
1

m

N−1∑

k,l=1
6=M1,M2

Tkl pkpl (C.1)

with the nonzero elements of the symmetric matrix (Tkl) defined as

Tkk =

{
2, k = 1, ...,M1 − 2,M1 + 2, ...,M2 − 2,M2 + 2, ..., N − 1
3
2
, k = M1 − 1,M1 + 1,M2 − 1,M2 + 1

Tk,k+1 = −1, k = 1, ...,M1 − 2,M1 + 2, ...,M2 − 2,M2 + 2, ..., N − 2

TMi−1,Mi+1 = −1

2
, i = 1, 2 (C.2)

can be done in the standard way. The eigenvalue equation

N−1∑

l=1
l 6=M1,M2

Tklu
(σ),α
l = λ(α)

σ u
(σ),α
k (C.3)

reads explicitly

(2− λ(α)
σ )u

(σ),α
k −

(
u
(σ),α
k+1 + u

(σ),α
k−1

)
= 0,





1 ≤ k ≤ M1 − 2

M1 + 2 ≤ k ≤ M2 − 2

M2 + 2 ≤ k ≤ N − 1

(C.4)

(
3

2
− λ(α)

σ

)
u
(σ),α
M1−1 − u

(σ),α
M1−2 −

1

2
u
(σ),α
M1+1 = 0, k = M1 − 1 (C.5)

(
3

2
− λ(α)

σ

)
u
(σ),α
M1+1 − u

(σ),α
M1+2 −

1

2
u
(σ),α
M1−1 = 0, k = M1 + 1 (C.6)

(
3

2
− λ(α)

σ

)
u
(σ),α
M2−1 − u

(σ),α
M2−2 −

1

2
u
(σ),α
M2+1 = 0, k = M2 − 1 (C.7)

(
3

2
− λ(α)

σ

)
u
(σ),α
M2+1 − u

(σ),α
M2+2 −

1

2
u
(σ),α
M2−1 = 0, k = M2 + 1 (C.8)
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The equation above is solved by the ansatz

u
(σ),α
k = Nσ,α





sin(q
(α)
σ k), 1 ≤ k ≤ M1 − 1

b
(s)
σ cos(q

(s)
σ (M − k)), M1 + 1 ≤ k ≤ M2 − 1

b
(a)
σ sin(q

(a)
σ (M − k)), M1 + 1 ≤ k ≤ M2 − 1

sin(q
(α)
σ (N − k)), M2 + 1 ≤ k ≤ N − 1

where the parameter α can take two values symmetric and antisymmetric and the vari-
able M represents ”the centre” of the chain and depends on the total chain-length N
being even (M = N

2
) or odd (M = N+1

2
). The eigenvalues can be achieved by using the

ansatz and applying it to Eqs. (C.4). They are

λ(α)
σ = 2

(
1− cos

(
q(α)σ

))
(C.9)

The ansatz for k = 1, ...,M1−1,M2+1, ..., N −1 is motivated by the analogy seen from
the discussion of the one anharmonic bond case (see Appendix A). Since the defects are
chosen symmetric with respect to the centre of the chain M , Eq. (C.6) is equivalent
to Eq. (C.7). The same counts for Eqs. (C.5) and (C.8).The ansatz for the case of
M1 + 1 ≤ k ≤ M2 − 1 has been done using plane waves of the form

u
(σ),α
k = A

(α)
+ eiq

(α)
σ k + A

(α)
− e−iq

α)
σ k (C.10)

and following the same symmetry argument used before. That means

α = symmetric

u
(σ),s
M1+1

!
= u

(σ),s
M2−1

u
(σ),s
M1+2

!
= u

(σ),s
M2−2

...
!
=

... (C.11)

α = antisymmetric

u
(σ),a
M1+1

!
= −u

(σ),a
M2−1

u
(σ),a
M1+2

!
= −u

(σ),a
M2−2

...
!
=

... (C.12)

The coefficient is defined as

b(s)σ = 2A
(s)
+ e

iq
(s)
σ N

2 , A
(s)
− = A

(s)
+ eiq

(s)
σ N

b(a)σ = 2iA
(a)
+ e

iq
(a)
σ N

2 , A
(a)
− = −A

(a)
+ eiq

(a)
σ N (C.13)
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and its value is easily derived using the ansatz and taking Eqs. (C.5), (C.7). The
procedure is analogous to the one anharmonic bond case (see Appendix A). For N
being even it reads as

beven,(α)σ =





2 sin
(
q
(s)
σ [N−D

2
]
)
−sin

(
q
(s)
σ [N−D

2
−1]
)

cos
(
q
(s)
σ [D

2
−1]
) , symmetric

2 sin
(
q
(a)
σ [N−D

2
]
)
−sin

(
q
(a)
σ [N−D

2
−1]
)

sin
(
q
(a)
σ [D

2
−1]
) , antisymmetric

(C.14)

whereas for N being odd, there is only a slight difference

bodd,(α)σ =





2 sin
(
q
(s)
σ [N−D

2
]
)
−sin

(
q
(s)
σ [N−D

2
−1]
)

cos
(
q
(s)
σ [D−1

2
]
) , symmetric

2 sin
(
q
(a)
σ [N−D

2
]
)
−sin

(
q
(a)
σ [N−D

2
−1]
)

sin
(
q
(a)
σ [D−1

2
]
) , antisymmetric

(C.15)

Since the thermodynamic limit is taken later on, the difference between even and odd
N disappear like it was discussed in the one anharmonic bond case. This is the reason,
that from now on, only N being even will be discussed. For easier calculation only
the parameters N,D are used from now on. All transformations necessary to achieve
functions dependent only on N,D are:

M1 =
N−D

2

M2 =
N+D

2

The transcendental equations for the symmetric and antisymmetric case arise from Eqs.
(C.6), (C.8) and the explicit calculation will be shown for the symmetric case (the
antisymmetric case is done analogously). The transcendental equation in the symmetric
case reads as

Nσ,s

[(
2 cos

(
q(s)σ

)
− 1

2

)
b(s)σ cos

(
q(s)σ

[
D

2
− 1

])
− b(s)σ cos

(
q(s)σ

[
D

2
− 2

])

−1

2
sin

(
q(s)σ

[
N −D

2
− 1

])]
= 0 (C.16)

Using the fact, that the normalisation constant is not zero the transcendental equation
can be put into the following form

[
cos

(
Dq

(s)
σ

2

)
− 1

2
cos

(
q(s)σ

[
D

2
− 1

])]
b(s)σ =

1

2
sin

(
q(s)σ

[
N −D

2
− 1

])

and plugging in the result of Eq. (C.15) for the coefficient, the transcendental equation
can be further simplified into

2 sin

(
q(s)σ

[
N −D

2

])
cos

(
q
(s)
σ D

2

)
− sin

(
q(s)σ

[
N −D

2
− 1

])
cos

(
q
(s)
σ D

2

)

− sin

(
q(s)σ

[
N −D

2

])
cos

(
q(s)σ

[
D

2
− 1

])
= 0
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Now using the following trigonometric identity sin(x) cos(y) = 1
2

(
sin(x+y)+sin(x−y)

)

the transcendental equation transforms to

sin

(
q(s)σ

[
N

2
−D

])
+ sin

(
q
(s)
σ N

2

)
− sin

(
q(s)σ

[
N

2
− 1

])

−1

2

[
sin

(
q(s)σ

[
N

2
−D − 1

])
+ sin

(
q(s)σ

[
N

2
−D + 1

])]
= 0

The next trigonometric identities used are sin(x)± sin(y) = 2 sin
(
x±y
2

)
cos
(
x∓y
2

)
. With

those identities the equation takes the form

sin

(
q(s)σ

[
N

2
−D

])[
1− cos

(
q(s)σ

)
]
+ 2 cos

(
q(s)σ

[
N − 1

2

])
sin

(
q
(s)
σ

2

)
= 0

Since q
(s)
σ ∈ (0, π) (due to the open chain) the factor sin

(
q
(s)
σ

2

)
is never zero and can be

cancelled out by division, giving

sin

(
q(s)σ

[
N

2
−D

])
sin

(
q
(s)
σ

2

)
+ cos

(
q(s)σ

[
N − 1

2

])
= 0

The discussion of this transcendental equation is more descriptive if the parameters
N,D are separated. Using basic trigonometric identities one gets

[
sin

(
q
(s)
σ N

2

)
cos
(
q(s)σ D

)
− cos

(
q
(s)
σ N

2

)
sin
(
q(s)σ D

)
]
sin

(
q
(s)
σ

2

)

+cos

(
q
(s)
σ N

2

)
cos

(
q
(s)
σ

2

)
+ sin

(
q
(s)
σ N

2

)
sin

(
q
(s)
σ

2

)
= 0

Again cancelling a factor of sin
(

q
(s)
σ

2

)
yields

sin

(
q
(s)
σ N

2

)[
cos
(
q(s)σ D

)
+ 1

]
= cos

(
q
(s)
σ N

2

)[
sin
(
q(s)σ D

)
− cot

(
q
(s)
σ

2

)]

Assuming cos
(

q
(s)
σ D
2

)
6= 0 the final forms (the antisymmetric requires sin

(
q
(a)
σ D
2

)
6= 0,

is also presented), fit for discussion are achieved

symmetric tan

(
q
(s)
σ N

2

)
=

sin(q
(s)
σ D)− cot

(
q
(s)
σ

2

)

2 cos2
(

q
(s)
σ D
2

)

︸ ︷︷ ︸
fs
(
q
(s)
σ ,D

)

(C.17)

antisymmetric cot

(
q
(a)
σ N

2

)
=

sin(q
(a)
σ D) + cot

(
q
(a)
σ

2

)

2 sin2
(

q
(a)
σ D
2

)

︸ ︷︷ ︸
fa
(
q
(a)
σ ,D

)

(C.18)
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Since both transcendental equations are not analytically solvable a detailed discussion
for the approximative solutions is given. Considering the symmetric case, the left hand
side (l.h.s.) shows divergences for q

(s)
σ = 2σ−1

N
π , σ = 1, ..., N

2
. The form of these

divergences show the following behaviour

lim
q
(s)
σ ց0

tan

(
q
(s)
σ N

2

)
= 0, lim

q
(s)
σ րπ

tan

(
q
(s)
σ N

2

)
= 0 ,

lim
q
(s)
σ ց 2σ−1

N
π

tan

(
q
(s)
σ N

2

)
= −∞, lim

q
(s)
σ ր 2σ−1

N
π

tan

(
q
(s)
σ N

2

)
= ∞ , σ = 1, ...,

N

2

(C.19)

which means the l.h.s. oscillates from −∞ to ∞ in every interval [2σ−1
N

π, 2σ+1
N

π] , σ =
1, ..., N

2
− 1, except for the first interval [0, π

N
], where the oscillation starts at 0 and the

last interval where the oscillation ends at 0.
The right hand side (r.h.s.) fs

(
q
(s)
σ , D

)
has divergences at q

(s)
σ = 2σ−1

D
π , σ = 1, ..., D

2
.

Looking at the form of these divergences show the following behaviour

lim
q
(s)
σ ց0

fs
(
q(s)σ , D

)
= −∞, lim

q
(s)
σ րπ

fs
(
q(s)σ , D

)
= ∞ ,

lim
q
(s)
σ ց 2πσ

D

fs
(
q(s)σ , D

)
= −∞, lim

q
(s)
σ ր 2πσ

D

fs
(
q(s)σ , D

)
= −∞ , σ = 1, ...,

D

2

(C.20)

Since D < N it is easy to see, that in the first interval [0, π
N
] and the last interval[

(N−1)π
N

, π
]
there is no intersection of the l.h.s. and the r.h.s.. All other intervals have

exactly one intersection, this reduces the total number of solutions to N
2
− 1 for the

symmetric case.
Regarding the case of D = O(N) we are allowed to choose D = N

2
, since it does not

matter how large D exactly is, the only important thing is, that it scales with N . In
this case, we get

q(s)σ =
2σ − 1

N − 1
π (C.21)

as exact solution.
The same discussion has to be done for the antisymmetric case. The l.h.s. has diver-
gences at q

(a)
σ = 2πσ

N
, σ = 1, ..., N

2
. The form of these divergences show the following

behaviour

lim
q
(a)
σ ց0

cot

(
q
(a)
σ N

2

)
= ∞, lim

q
(a)
σ րπ

cot

(
q
(a)
σ N

2

)
= 0 ,

lim
q
(a)
σ ց 2πσ

N

cot

(
q
(a)
σ N

2

)
= ∞, lim

q
(a)
σ ր 2πσ

N

cot

(
q
(a)
σ N

2

)
= −∞ , σ = 1, ...,

N

2
− 1

(C.22)
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which means the l.h.s. oscillates from ∞ to −∞ in every interval [2πσ
N

, 2π(σ+1)
N

] , σ =

0, ..., N
2
− 1 The r.h.s. diverges for q

(a)
σ = 2πσ

D
σ = 1, ..., D

2
. The divergences behave as

follows

lim
q
(a)
σ ց0

fa
(
q(a)σ , D

)
= ∞, lim

q
(a)
σ րπ

fa
(
q(a)σ , D

)
= 0,

lim
q
(a)
σ ց 2πσ

D

fa
(
q(a)σ , D

)
= ∞, lim

q
(a)
σ ր 2πσ

D

fa
(
q(a)σ , D

)
= ∞ (C.23)

Since D < N it is easy to see, that in the first interval [0, 2π
N
] and the last interval[

(N−1)π
N

, π
]
there is no intersection of the l.h.s. and the r.h.s.. All other intervals have

exactly one intersection, this reduces the total number of solutions to N
2
− 2 for the

antisymmetric case.
Considering D = O(N), again choosing D = N

2
, we get the exact result

q(a)σ =
2(2σ − 1)

N − 2
π , σ = 1, ...,

N

4
− 1

q(a)σ =
4πσ

N
, σ = 1, ...,

N

4
− 1 (C.24)

Note that through the choice of D = M2 −M1 and N = M2 +M1 even, N
4
must be an

integer.
For even N the number of symmetric and antisymmetric solutions add up to a total
number of N − 3 solutions as it should be.
Now the case of an odd N has to be discussed. Even though the transcendental equa-
tions differ slightly from the ones achieved from even N one immediately sees, that the
symmetric case and the antisymmetric case provide N−3

2
solutions each, for the same

reasons as discussed before. As before adding up the symmetric and the antisymmetric
case leads to N − 3 solutions of the transcendental equation as it should be.
In the thermodynamic limit (N → ∞) both cases (N being even or odd) yield homoge-

neously distributed solutions q
(α)
σ ∈ (0, π).

That is the reason why the normalisation constant will only be calculated for N being
even and hence M = N

2
. Using the eigenvectors one can calculate the normalisation

constant for both cases (symmetric and antisymmetric). It yields

1 = (Nσ,s)
2

[
M1−1∑

k=1

sin2
(
q(s)σ k

)
+
(
b(s)σ

)2 M2−1∑

k=M1+1

cos2
(
q(s)σ

[
N

2
− k

])

+
N−1∑

k=M2+1

sin2
(
q(s)σ [N − k]

)
]

and

1 = (Nσ,a)
2

[
M1−1∑

k=1

sin2
(
q(a)σ k

)
+
(
b(a)σ

)2 M2−1∑

k=M1+1

sin2

(
q(a)σ

[
N

2
− k

])

+
N−1∑

k=M2+1

sin2
(
q(a)σ [N − k]

)
]

(C.25)
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The calculation is done in the same manner as in the one anharmonic bond case. Re-
placing M1 by N−D

2
and M2 by N+D

2
, yields the final results

Nσ,s =

√√√√
2

N −D − 1− sin(q
(s)
σ [N−D−1])

sin(q
(s)
σ )

+
(
b
(s)
σ

)2 [
D − 1 + sin(q

(s)
σ [D−1])

sin(q
(s)
σ )

] (C.26)

and

Nσ,a =

√√√√
2

N −D − 1− sin(q
(a)
σ [N−D−1])

sin(q
(a)
σ )

+
(
b
(a)
σ

)2 [
D − 1− sin(q

(a)
σ [D−1])

sin(q
(a)
σ )

] (C.27)

The low frequency limit (q
(α)
σ ≪ 1) has to be discussed in detail. Starting with the

coefficient b
(α)
σ for the symmetric case (only the symmetric will be shown, the procedure

for the antisymmetric is identical) first a separation of the arguments of Eq. (C.15) is
performed

b(s)σ =
2 sin

(
q
(s)
σ N
2

)
cos
(

q
(s)
σ D
2

)
− 2 cos

(
q
(s)
σ N
2

)
sin
(

q
(s)
σ D
2

)

cos
(
q
(s)
σ

[
D
2
− 1
])

−
sin
(

q
(s)
σ N
2

)
cos
(
q
(s)
σ

[
D
2
+ 1
])

− cos
(

q
(s)
σ N
2

)
sin
(
q
(s)
σ

[
D
2
+ 1
])

cos
(
q
(s)
σ

[
D
2
− 1
]) .(C.28)
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Now the following approximations are helpful and achieved using the transcendental
equations with the help of basic trigonometric identities. They are

sin

(
q
(s)
σ N

2

)
=

fs

(
q
(s)
σ , D

)

√
1 + f 2

s

(
q
(s)
σ , D

)
q
(s)
σ ≪1≈ −1

cos

(
q
(s)
σ N

2

)
=

1√
1 + f 2

s

(
q
(s)
σ , D

)
q
(s)
σ ≪1≈ q(s)σ

sin
(
q(s)σ N

)
=

2fs

(
q
(s)
σ , D

)

1 + f 2
s

(
q
(s)
σ , D

) q
(s)
σ ≪1≈ −2q(s)σ

cos
(
q(s)σ N

)
=

1− f 2
s

(
q
(s)
σ , D

)

1 + f 2
s

(
q
(s)
σ , D

) q
(s)
σ ≪1≈ −1

sin

(
q
(a)
σ N

2

)
=

1√
1 + f 2

a

(
q
(a)
σ , D

)
q
(a)
σ ≪1≈ D2

4

(
q(a)σ

)3

cos

(
q
(a)
σ N

2

)
=

fa

(
q
(a)
σ , D

)

√
1 + f 2

a

(
q
(a)
σ , D

)
q
(a)
σ ≪1≈ 1

sin
(
q(a)σ N

)
=

2fa

(
q
(a)
σ , D

)

1 + f 2
a

(
q
(a)
σ , D

) q
(a)
σ ≪1≈ D2

2

(
q(a)σ

)3

cos
(
q(a)σ N

)
=

f 2
a

(
q
(a)
σ , D

)
− 1

1 + f 2
a

(
q
(a)
σ , D

) q
(a)
σ ≪1≈ 1 (C.29)

These approximations yield the final result for the coefficient b
(s)
σ for q

(s)
σ ≪ 1

b(s)σ ≈ −1 +O(q(s)σ ) (C.30)

The antisymmetric case is done analogously yielding

b(a)σ ≈ −1 +O(q(a)σ ) (C.31)

which yields for low frequencies and respectively large N

Nσ,α ∼
√

2

N
(C.32)

the expected N -dependence of the normalisation constant.



Appendix D

Calculation of the influence
functional

Here the explicit calculation of the functional Fn defined in Eq. (4.70) is shown. The
result is is given in Eq. (4.74) as Fn = Fn

(1)Fn
(2)Gn

(12). The functions Lab
1 (τ), Lab

2 (τ)
are given with their dependence on the coupling constants ca,σ, cb,σ. Only here in the
Appendix the full calculation with the dependence of the coupling constants for each
anharmonic bond is given. Starting with the bilinear blip-term one gets the following
argument by applying the transformations Eq. (4.43). The calculation of the first term
(with the indices a, b for the functions Lab

2 (τ), Lab
1 (τ) of Eq. (4.34)) with the use of the

transformations Eqs. (4.43) yields:

2∑

a,b=1

t∫

0

dτ

τ∫

0

dτ ′ Lab
2 (τ − τ ′)ξ(a)(τ)ξ(b)(τ ′) (D.1)
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=
2∑

a,b=1

n∑

j,j′=1

ζ
(a)
j ζ

(b)
j′

t∫

0

dτ

τ∫

0

dτ ′ Lab
2 (τ − τ ′)

[
Θ(τ − t2j−1)Θ(τ ′ − t2j′−1)

− Θ(τ − t2j−1)Θ(τ ′ − t2j′)−Θ(τ − t2j)Θ(τ ′ − t2j′−1) + Θ(τ − t2j)Θ(τ ′ − t2j′)

]

=
2∑

a,b=1

n∑

j,j′=1

ζ
(a)
j ζ

(b)
j′

[ t∫

t2j−1

dτ

( τ∫

t2j′−1

dτ ′ Lab
2 (τ − τ ′)−

τ∫

t2j′

dτ ′ Lab
2 (τ − τ ′)

)

−
t∫

t2j

dτ

( τ∫

t2j′

dτ ′ Lab
2 (τ − τ ′)−

τ∫

t2j′−1

dτ ′ Lab
2 (τ − τ ′)

)]

=
2∑

a,b=1

n∑

j,j′=1

ζ
(a)
j ζ

(b)
j′

[ t∫

t2j−1

dτ

(
Lab

2 (τ − t2j′−1)− Lab
2 (τ − t2j′)

)

+

t∫

t2j

dτ

(
Lab

2 (τ − t2j′)− Lab
2 (τ − t2j′−1)

)]

=
2∑

a,b=1

n∑

j,j′=1

ζ
(a)
j ζ

(b)
j

[
Q

(ab)
2 (t2j−1 − t2j′) +Q

(ab)
2 (t2j − t2j′−1)

−Q
(ab)
2 (t2j−1 − t2j′−1)−Q

(ab)
2 (t2j − t2j′)

]

=
2∑

a,b=1

n∑

j,j′=1

ζ
(a)
j ζ

(b)
j′ Λ

(ab)
jj′ (D.2)

The functions Q
(ab)
2 are defined in Eq. (4.75) and the function Λ

(ab)
jj′ is defined in Eq.

(4.76). This is the blip-blip-interaction and self-energy part of the argument of the

exponential (together with the constant factor of
q20
π~
) of Eq. (4.74). And now the same

procedure for the term containing the function Lab
1 (τ) yields:

i

2∑

a,b=1

t∫

0

dτ

τ∫

0

dτ ′ Lab
1 (τ − τ ′)ξ(a)(τ)χ(b)(τ ′) (D.3)
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= i
2∑

a,b=1

n−1∑

j′=0

n∑

j=j′+1

η
(a)
j′ ζ

(b)
j

t∫

0

dτ

τ∫

0

dτ ′ Lab
1 (τ − τ ′)

[
Θ(τ − t2j−1)Θ(τ ′ − t2j′)

−Θ(τ − t2j−1)Θ(τ ′ − t2j′+1)−Θ(τ − t2j)Θ(τ ′ − t2j′) + Θ(τ − t2j)Θ(τ ′ − t2j′+1)

]

= i

2∑

a,b=1

n−1∑

j′=0

n∑

j=j′+1

η
(a)
j′ ζ

(b)
j

[ t∫

t2j−1

dτ

( τ∫

t2j′

dτ ′ Lab
1 (τ − τ ′)−

τ∫

t2j′+1

dτ ′ Lab
1 (τ − τ ′)

)

+

t∫

t2j

dτ

( τ∫

t2j′+1

dτ ′ Lab
1 (τ − τ ′)−

τ∫

t2j′

dτ ′ Lab
1 (τ − τ ′)

)]

= i

2∑

a,b=1

n−1∑

j′=0

n∑

j=j′+1

η
(a)
j′ ζ

(b)
j

[ t∫

t2j−1

dτ

(
Lab

1 (τ − t2j′)− Lab
1 (τ − t2j′+1)

)

+

t∫

t2j

dτ

(
Lab

1 (τ − t2j′+1)− Lab
1 (τ − t2j′)

)]

= i
2∑

a,b=1

n−1∑

j′=0

n∑

j=j′+1

η
(a)
j′ ζ

(b)
j

[
Q

(ab)
1 (t2j−1 − t2j′) +Q

(ab)
1 (t2j − t2j′+1)

−Q
(ab)
1 (t2j−1 − t2j′+1)−Q

(ab)
1 (t2j − t2j′)

]

= i
2∑

a,b=1

n−1∑

j′=0

n∑

j=j′+1

η
(a)
j′ ζ

(b)
j X

(ab)
jj′ (D.4)

The functions Q
(ab)
1 are defined in Eq. (4.75) and the function X

(ab)
jj′ is defined in Eq.

(4.76). This is the blip-sojourn-interaction part of the argument of the exponential

(together with the constant factor of
q20
π~
) of Eq. (4.74).
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Appendix E

Density matrix for two anharmonic
bonds

Starting with the Hamiltonian for two anharmonic bonds presented in Eq. (4.1) it can
be brought, omitting the c.o.m., into the form of Eqs. (4.12), (4.13), (4.14)

H = H ′
d +H ′

int +Hharm (E.1)

H ′
d =

1

m

(
p2M1

+ p2M2

)
+

C

4

(
q2M1

+ q2M2

)
+ V0(qM1) + V0(qM2) (E.2)

Hharm =
1

2

N−3∑

σ=1

[
λσP

2
σ + CQ2

σ

]
(E.3)

H ′
int = −

N−3∑

σ=1

Qσ

2∑

a=1

ca,σqMa
(E.4)

Including the potential renormalisation of H ′
d in H ′

int allows us to rewrite the above
given Hamiltonian in the form of

H = Hd +Hint +Hharm (E.5)

Hd =
1

m

(
p2M1

+ p2M2

)
+ V0(qM1) + V0(qM2) (E.6)

Hharm =
1

2

N−3∑

σ=1

[
λσP

2
σ + CQ2

σ

]
(E.7)

Hint =
N−3∑

σ=1

2∑

a=1

(
−Qσca,σqMa

+
1

2

c2a,σq
2
Ma

mσω2
σ

)
(E.8)

From now on the explicit time dependence is shown, because for the calculation it is
necessary to distinguish between time dependent and time independent quantities.
Using the Liouville-von-Neumann Equation for the time dependent density matrix ρtot(t)
of the system-bath Hamiltonian one can write down:

d

dt
ρtot(t) = − i

~
[H, ρtot(t)] , ρtot(t) = e−

i
~
Htρtot(0)e

i
~
Ht (E.9)

103



104 APPENDIX E. DENSITY MATRIX FOR TWO ANHARMONIC BONDS

The full density matrix element in spatial representation reads

〈{Qf
σ}, qfM1

, qfM2
|ρtot(t)|q′fM1

, q′fM2
, {Q′f

σ }〉 =

∫
dqiM1

dqiM2
dq′iM1

dq′iM2
d{Qi

σ}d{Q′i
σ}

·〈{Qf
σ}, qfM1

, qfM2
|e− i

~
Ht|qiM1

, qiM2
, {Qi

σ}〉
·〈{Qi

σ}, qiM1
, qiM2

|ρtot(0)|q′iM1
, q′iM2

, {Q′i
σ}〉

·〈{Q′i
σ}, q′iM1

, q′iM2
|e i

~
Ht|q′fM1

, q′fM2
, {Q′f

σ }〉
(E.10)

, where

qiM1
= qM1(0), q

i
M2

= qM2(0), q
′i
M1

= q′M1
(0), q′iM2

= q′M2
(0)

qfM1
= qM1(t), q

f
M2

= qM2(t), q
′f
M1

= q′M1
(t), q′fM2

= q′M2
(t) (E.11)

and

{Qi
σ} = {Qσ(0)}, {Q′i

σ} = {Q′
σ(0)}

{Qf
σ} = {Qσ(t)}, {Q′f

σ } = {Q′
σ(t)} (E.12)

By tracing out the bath degrees of freedom one obtains the reduced density matrix
ρred(t) = Trbathρtot(t), which is done by setting {Q′f

σ } = {Qf
σ}.

〈qfM1
, qfM2

|ρred(t)|q′fM1
, q′fM2

〉 =
∫
dqiM1

dqiM2
dq′iM1

dq′iM2
d{Qi

σ} d{Q′i
σ} d{Qf

σ}

·〈{Qf
σ}, qfM1

, qfM2
|e− i

~
Ht|qiM1

, qiM2
, {Qi

σ}〉
·〈{Qi

σ}, qiM1
, qiM2

|ρtot(0)|q′iM1
, q′iM2

, {Q′i
σ}〉

·〈{Q′i
σ}, q′iM1

, q′iM2
|e i

~
Ht|q′fM1

, q′fM2
, {Qf

σ}〉 (E.13)

Assuming the density matrix has factorising initial conditions1 ρtot(0) = ρred(0) ⊗
ρharm(0) and knowing that the Hamiltonian (E.5) induces a classical action S = Sd[qM1 , qM2 ]+
Sharm[{Qσ}] + Sint[{Qσ}qM1 , qM2 ] one can rewrite the equation above in the following
form

〈qfM1
, qfM2

|ρred(t)|q′fM1
, q′fM2

〉 =

∫
dqiM1

dqiM2
dq′iM1

dq′iM2
〈qiM1

, qiM2
|ρred(0)|q′iM1

, q′iM2
〉

·
qf
M1∫

qi
M1

DqM1

qf
M2∫

qi
M2

DqM2

q′f
M1∫

q′i
M1

Dq′M1

q′f
M2∫

q′i
M2

Dq′M2
e

i
~
(Sd[qM1

,qM2
]−Sd[q

′
M1

,q′M2
])

·F
[
qM1 , qM2 , q

′
M1

, q′M2

]
(E.14)

1as assumed in [21]
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The first term before the path integrals describes the preparation of the initial state of
the anharmonic bonds.

F
[
qM1 , qM2 , q

′
M1

, q′M2

]
=

∫
d{Qi

σ}d{Q′i
σ}d{Qf

σ} 〈{Qi
σ}|ρharm(0)|{Q′i

σ}〉

·
{Qf

σ}∫

{Qi
σ}

D{Qσ}
{Qf

σ}∫

{Q′i
σ}

D{Q′
σ}

·e i
~
(Sharm[{Qσ}]+Sint[{Qσ},qM1

,qM2
]−Sharm[{Q′

σ}]−Sint[{Q′
σ},q′M1

,q′M2
])

(E.15)

The term presented above Eq. (E.15) is called influence functional in literature. The
exponential right before the influence functional containing Sd gives the bare tunnelling
amplitudes of the anharmonic bonds A[qM1 ], A

∗[q′M1
], B[qM2 ], B

∗[q′M2
]. The separation

of the harmonic and anharmonic degrees of freedom yields a functional containing only
the anharmonic bonds Sd, which describes tunnelling of both bonds without coupling
to the harmonic bath. The dissipative influence of the harmonic bath is fully captured
in the influence functional Eq. (E.15). The density matrix elements of the bath can be
written [16, 21] as a product of all N − 3 harmonic modes.

〈{Qi
σ}|ρharm(0)|{Q′i

σ}〉 =
N−3∏

σ=1

1

2 sinh
(
ωσ~β
2

)
√

mσωσ

2π~ sinh(ωσ~β)

· exp
[
− mσωσ

2~ sinh(ωσ~β)

([(
Qi

σ

)2
+
(
Q′i

σ

)2]
cosh(ωσ~β)− 2Qi

σQ
′i
σ

)]

(E.16)

The expression for the second part of the influence functional (only the functional for
{Qσ}, qM1 , qM2 is given, the functional for {Q′

σ}, q′M1
, q′M2

is performed in the same way)
reads after performing the path integration over the harmonic degrees of freedom [16, 21]

{Qf
σ}∫

{Qi
σ}

D{Qσ} e
i
~
(Sharm[{Qσ}]+Sint[{Qσ},qM1

,qM2
]) =

N−3∏

σ=1

√
mσωσ

2iπ~ sin(ωσt)
e

i
~
φ[qM1

,qM2
,Qi

σ ,Q
f
σ ]
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φ[qM1 , qM2 , Q
i
σ, Q

f
σ] =

mσωσ

2 sin(ωσt)

[([(
Qi

σ

)2
+
(
Qf

σ

)2]
cos(ωσt)− 2Qi

σQ
f
σ

)]

+
2∑

a=1

Qi
σca,σ

sin(ωσt)

t∫

0

dτ sin (ωσ(t− τ)) qMa
(τ)

+
2∑

a=1

Qf
σca,σ

sin(ωσt)

t∫

0

dτ sin (ωστ) qMa
(τ)−

2∑

a=1

c2a,σ
2mσω2

σ

t∫

0

dτ q2Ma
(τ)

−
2∑

a,b=1

ca,σcb,σ
mσωσ sin(ωσt)

t∫

0

dτ

τ∫

0

dτ ′

· sin (ωσ(t− τ)) sin (ωστ
′) qMa

(τ)qMb
(τ ′) (E.17)

Applying the calculations given above the influence functional can be given in the
Feynman-Vernon [21] form (after performing the Gaussian-Integration over d{Qi

σ}, d{Q′i
σ},

d{Qf
σ}), not for one but two anharmonic bonds and a suitable choice of initial and final

conditions for the anharmonic bonds.

F [qM1 , qM2 , q
′
M1

, q′M2
] = exp

[
−1

~

2∑

a,b=1

t∫

0

dτ

τ∫

0

dτ ′
(
qMa

(τ)− q′Ma
(τ)
)

·
(
Lab(τ − τ ′)qMb

(τ ′)− L∗
ab(τ − τ ′)q′Mb

(τ ′)
)]

(E.18)

where the function Lab(τ) is defined as

Lab(τ) =
N−3∑

σ=1

ca,σcb,σ
2mσωσ

[
coth

(
ωσ~β

2

)
cos(ωστ)− i sin(ωστ)

]
(E.19)

the influence functional presented here has the same form as in [22] with the difference,
that now not only one anharmonic bond, but two are considered. The complete ex-
pression for the probability to have arrived in the final state at time t (i.e. the element
〈qfM1

, qfM2
|ρred(t)|qfM1

, qfM2
〉 of the reduced density matrix), is

p(t) =

∫
DqM1(τ)Dq′M1

(τ ′)DqM2(τ)Dq′M2
(τ ′)A[qM1 ]A

∗[q′M1
]B[qM2 ]B

∗[q′M2
]

·F [qM1(τ), q
′
M1

(τ ′); qM2(τ), q
′
M2

(τ ′)] (E.20)

, where pa(t) =
∑
i

〈ai|ρred(t)|ai〉. Splitting the function Lab(τ) into imaginary and real

part Lab(τ) = Lab
2 (τ) − iLab

1 (τ) one gets the form needed to understand the derivation
of (4.62), (4.63) in subsection ”Tunnelling expectation value using extended NIBA”.



Appendix F

Blip- and Sojourn charge
summation

The summation of blip- and sojourn-charges for the functionals Fn
(1),NIBA·Fn

(2),NIBA·Gn
NIBA,

defined in Eq. (4.80) is performed here in detail. At first the summation for P1(t) is
performed. Since it is obviously irrelevant if the initial state is AA or DD, as long as
the final state is fixed to be the same as the initial state (for P1(t)). Beginning with the

summation of sojourn-charges {η(1)j }, {η(2)j }, n > j ≥ 1, yields

∑

{η(1)j },{η(2)j }

Fn
(1),NIBA · Fn

(2),NIBA · Gn
NIBA

= SE1 · SE2 · BB12 · e±
iq20
π~

(
ζ
(1)
1

{
Q1(t2−t1)+Q

(12)
1 (t2−t1)

}
+ζ

(2)
1

{
Q1(t2−t1)+Q

(12)
1 (t2−t1)

})

︸ ︷︷ ︸
f+
0 (η

(1)
0 =η

(2)
0 =±1, ζ

(1)
1 , ζ

(2)
1 )

· 2n−1
n∏

j=2

cos
(

q2
0

π~

[
ζ
(1)
j

{
Q1(t2j − t2j−1) +Q

(12)
1 (t2j − t2j−1)

}
+ ζ

(2)
j

{
Q1(t2j − t2j−1) +Q

(12)
1 (t2j − t2j−1)

}])

︸ ︷︷ ︸
g+(ζ

(1)
j , ζ

(2)
j )

The expressions SE1, SE2,BS1,BS2,BS12,BB12 are defined in Eq. (4.80). To understand
the summation more easily, the restrictions applied here can be expressed mathemati-
cally as η

(1)
j = η

(2)
j . Now the summation of the blip-charges can be performed.

As in the sojourn-charge summation, the charges of both anharmonic bonds have to be
equal (ζ

(1)
j = ζ

(2)
j ), yielding

SE1 · SE2 ·
∑

{ζ(1)j },{ζ(2)j }

f+
0 (ζ

(1)
1 , ζ

(2)
1 ) · g+(ζ(1)j , ζ

(2)
j ) · BB12

= SE1 · SE2 · e
− 2q20

π~

n∑
j=1

Q
(12)
2 (t2j−t2j−1)

· 2 cos
(
2q20
π~

[
Q1(t2 − t1) +Q

(12)
1 (t2 − t1)

])

· 22(n−1)

n∏

j=2

cos

(
2q20
π~

[
Q1(t2j − t2j−1) +Q

(12)
1 (t2j − t2j−1)

])
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Now using the definition of Eqs. (4.86), we are able to write the result in a simpler way

F (1)
n ({t2n}) = 22n−1

n∏

j=1

cos

(
2q20
π~

Q+
1 (t2j − t2j−1)

)
· e−

2q20
π~

Q+
2 (t2j−t2j−1) (F.1)

Performing the summation of the blip- and sojourn-charges for P2(t), we can choose an
initial state of AD or DA. As before, the choice of the initial state fixes the final state.
That allows a simplification of the summation as before to η

(1)
j = −η

(2)
j and ζ

(1)
j = −ζ

(2)
j ,

yielding

∑

{η(1)j },{η(2)j }

Fn
(1),NIBA · Fn

(2),NIBA · Gn
NIBA

= SE1 · SE2 · BB12 · e±
iq20
π~

(
ζ
(1)
1

{
Q1(t2−t1)−Q

(12)
1 (t2−t1)

}
−ζ

(2)
1

{
Q1(t2−t1)−Q

(12)
1 (t2−t1)

})

︸ ︷︷ ︸
f−
0 (η

(1)
0 =−η

(2)
0 =±1, ζ

(1)
1 , ζ

(2)
1 )

· 2n−1
n∏

j=2

cos
(

q2
0

π~

[
ζ
(1)
j

{
Q1(t2j − t2j−1)−Q

(12)
1 (t2j − t2j−1)

}
− ζ

(2)
j

{
Q1(t2j − t2j−1)−Q

(12)
1 (t2j − t2j−1)

}])

︸ ︷︷ ︸
g−(ζ

(1)
j , ζ

(2)
j )

Now the summation of the blip-charges can be performed.
As in the sojourn-charge summation, the charges of both anharmonic bonds are not
allowed to be equal, so that ζ

(1)
j = −ζ

(2)
j , yielding

SE1 · SE2 ·
∑

{ζ(1)j },{ζ(2)j }

f−
0 (ζ

(1)
1 , ζ

(2)
1 ) · g−(ζ(1)j , ζ

(2)
j ) · BB12

= SE1 · SE2 · e
2q20
π~

n∑
j=1

Q
(12)
2 (t2j−t2j−1)

· 2 cos
(
2q20
π~

[
Q1(t2 − t1)−Q

(12)
1 (t2 − t1)

])

· 22(n−1)

n∏

j=2

cos

(
2q20
π~

[
Q1(t2j − t2j−1)−Q

(12)
1 (t2j − t2j−1)

])

Now using the definition of Eqs. (4.86), we are able to write the result in a simpler way

F (2)
n ({t2n}) = 22n−1

n∏

j=1

cos

(
2q20
π~

Q−
1 (t2j − t2j−1)

)
· e−

2q20
π~

Q−
2 (t2j−t2j−1) (F.2)
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