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Zusammenfassung

Die Untersuchung von dissipativen Quantensystemen ermagit es, Quantenphanomene
auch auf makroskopischen Langenskalen zu beobachten. Dasdieser Dissertation
gewahlte mikroskopische Modell erlaubt es, den bisher nghanomenologisch zugang-
lichen E ekt der Quantendissipation mathematisch und physalisch herzuleiten und zu
untersuchen.

Bei dem betrachteten mikroskopischen Modell handelt es Bicm eine 1-dimensionale
Kette von harmonischen Freiheitsgraden, die sowohl untenander als auch arr anhar-
monische Freiheitsgrade gekoppelt sind. Die Falle eingespektive zwei anharmonischer
Bindungen werden in dieser Arbeit explizit betrachtet.

Hieriar wird eine analytische Trennung der harmonischen wvoden anharmonischen Frei-
heitsgraden auf zwei verschiedenen Wegen durchgefahrta®anharmonische Potential
wird als symmetrisches Doppelmuldenpotential gewahlt, @ches mit Hilfe der Wick Ro-
tation die Berechnung defYbergange zwischen beiden Minima erlaubt. Das Eliminieren
der harmonischen Freiheitsgrade erfolgt mit Hilfe des woh#iiannten Feynman-Vernon
Pfadintegral-Formalismus [21].

In dieser Arbeit wird zuerst die Positionsabhangigkeit eiar anharmonischen Bindung
im Tunnelverhalten untersucht. Far den Fall einer fernab wn den Randern lokalisierten
anharmonischen Bindung wird ein Ohmsches dissipatives Tioeln gefunden, was bei
der Temperatur T = 0 zu einem Phasensbergang in Abhangigkeit einer kritisobn Kop-
plungskonstantenC,;; fahrt. Dieser Phasendabergang wurde bereits in rein phaome-
nologisches Modellen mit Ohmscher Dissipation durch das Aifden des Systems auf
das Ising-Modell [26] erklart. Wenn die anharmonische Bdung jedoch an einem der
Rander der makroskopisch grossen Kette liegt, tritt nachieer vom Abstand der beiden
anharmonischen Bindungen abhangigen Zett, ein Ubergang von Ohmscher zu super-
Ohmscher Dissipation auf, welche im KeriKy, ( ) klar sichtbar ist.

Rar zwei anharmonische Bindungen spielt deren indirekte ¥¢hselwirkung eine entschei-
dende Rolle. Es wird gezeigt, dass der Abstarid beider Bindungen und die Wahl des
Anfangs- und Endzustandes die Dissipation bestimmt. Unter dé&nnahme, dass beide
anharmonischen Bindung gleichzeitig tunneln, wird eine Tanelwahrscheinlichkeitp(t)
analog zu [14], jedoch far zwei anharmonische Bindungengiechnet. Als Resultat
erhalten wir entweder Ohmsche Dissipation far den Fall, des beide anharmonischen
Bindungen ihre Gesamtlange andern, oder super-OhmschddSipation, wenn beide an-
harmonischen Bindungen durch das Tunneln ihre Gesamtlaegicht andern.
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Abstract

The investigation of dissipative quantum systems makes itgssible to observe quantum
phenomena also on macroscopic length scales. The microscopodel selected in this
thesis allows to deduce and examine the so far only phenomiegically accessible e ect
of quantum dissipation in a clear mathematical and physicakay.

The investigated microscopic model is a 1-dimensional chaof harmonic degrees of
freedom which are linearly coupled to each other as well as tcanharmonic degrees of
freedom. The case of one respectively two anharmonic bonds axplicitly analysed in
this thesis.

An analytic separation of the harmonic from the anharmonic dgees of freedom is ac-
complished in two di erent ways. The anharmonic potential$ chosen as a symmetrical
double well potential which allows the calculation of the tansitions between the two
minima by performing a Wick rotation. Eliminating the harmonic degrees of freedom
is done via the well-known Feynman-Vernon path integral fonalism [21].

This thesis starts investigating the position dependencd the tunnelling behaviour of
one anharmonic bond. If the anharmonic bond is located in theulk ohmic dissipative
tunnelling is found which leads to a phase transition for teperature T = 0 at critical
coupling constantC,; . This phase transition has been explained in purely phenome
logical models with ohmic dissipation by mapping the systemnto the Ising model [26].
If the anharmonic bond is however close to one of the edges lo¢ imacroscopically large
chain, a transition from ohmic to super-ohmic dissipationsi observed after a distance-
dependent timety which is clearly observable in the kerneky, ().

For the case of two anharmonic bonds the indirect interactioof both anharmonic bonds
plays a crucial role. It is shown, that the distanceD between both anharmonic bonds
and the choice of the initial and nal conditions, determinethe dissipative tunnelling
behaviour.

With the assumption of both anharmonic bonds tunnelling at he same time, a tun-
nelling probability p(t) is calculated as in [14], not for one but for two anharmonic
bonds. As a result we either have ohmic dissipation for the @ashat both anharmonic
bonds change their total length, or super-ohmic dissipatoif both anharmonic bonds
do not change their total length in the tunnelling process.
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Chapter 1

Introduction

Quantum-mechanical e ects such as tunnelling are experimilly well-veried on a
microscopic scale. But to be a fundamental theory, quantum eehanics has to be valid
for all scales. This problem was addressed by the famous tlghti experiment named
Schroedinger's cat, proposed in 1935. In quantum mechaniiosear combinations of
solutions, labeled] .i;j i, of the Schmedinger equation are also solutions. So not
only j +i;j i butalsoj i = 4j +i+ | i, with the normalised coe cients

j +i>+]j j? =1, solve the Schredinger equation. Considering Schredger's thought
experiment, how is it then possible, that a cat has only beerbserved as being dead
or alive, but not in a superposition (deadand alive)? Or expressed more generally,
when does a quantum system stop being a linear combination siates, each of which
correspond to di erent states, and instead begin to have a igue classical description?
First of all, one has to keep in mind, that the Schmdinger agption is valid only for
isolated (quantum-)systems following a unitary evolution

i~@@'{ i=Hj i (1.1)

In reality a totally isolated system does not exist. Only appximatively a system can
been regarded as "isolated". Let an object have two possililgtial states j+i;ji and
a measuring device also having two statgs!.i;jM i. The measuring device is initially
prepared in statejM i and reacts in the following way on the two possible states dfe
objects
GHI)IM ™ ML G GEIM T MO i (12)
The measuring device acts as a pointer showing which stateetlobject is in after the
measurement. Now we would like to measure the state of the obije The initial state
Jj(t=0)i j in | before the measurement is de ned as
1 1
Jomi:d = ajri+ i M (1.3)

After performing the measurement using the rules de ned in Eq(1.2), one gets the
nal state j( t> 0)i | fin |

ot i = FMei+ il M0 L i o (1.4)

fin:

3



4 CHAPTER 1. INTRODUCTION

Now the state . i iS a superposition of states and does not show a de nite resul
Applied to Schredinger's cat, the nal state of the cat is a sperposition of dead and
alive. How can this paradox be resolved? Considering the stgt ¢j,. i as a pure state,
the density operator of such a pure state (1.4) is de ned as

—1 —1

il
o (L.5)

pure = 1 fin: I fin: ] = j

, where the o -diagonal elements show interference betwe#dre componenty {,. i and
j s 1. The "observation" leads to the "collapse" of the wavefundon j iy, i into state
j fn 1 with the probability j .j2 or into state j . i with the probability j j2=1

j +j2.The Copenhagen interpretation of quantum mechanics poséaied this "collapse"
of the wavefunction du to the "observation". This "collapsé occurs instantaneously
and cannot be described by the Schredinger equation, whid¢bllows a unitary evolution
[1]. There are of course also other interpretations such agr fexample the "Many-
worlds interpretation” by Everret [2], but this will not be discussed here. An interesting
approach to the "collapse" of the wavefunction is the use ofedoherence. As mentioned
above, totally isolated systems do not exist, hence the Seldinger equation describing
the object coupled to the measurement device i i misses another term describing
the e ect of the environment jEyi. The environment consists of a very large number
of states, basically all states of the whole universe excepe already described cat and
the measurement device. Expressed mathematically this dsa

JEul = JEqijEai i JENT; N very large (1.6)
A small deviation of one of the environmental states can be described as
hEJEi =1 1.7)

, whereE{ is the state that received the small deviation. Applying thatfor the very
large number of environmental states yields

EJjEyi=( )V 1 (1.8)
This leads to the new form of Eq. (1.3)
1 1
j 0= Lj+i+ ji M ijEyi (1.9)

, Where JEyi are the environmental states before the measurement. Usingain Eq.
(1.2) yields the new nal state

j %= 4jFiMLjEyusi+  jij M jEy i (1.10)

Tracing out the environmental states yields the reduced dsity operator describing the
nal state of the cat and measuring device

red — TrEuj 19in: ih lgin: J = J +j2j :in: ih ;-in: J +j JZJ fin: ih fin:j

+ + J ?—ini ih fln“&ﬁ&ﬁ +j fin: ih :m“ll_iv_ﬁ&tflll)
0 0
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The reduced density operator describes an open system camslty interacting with the
environment. Using the trace as in Eq. (1.11) is like averaginout the environmental
degrees of freedom. WithEy.JEy 1 = hEy jEy+i 0, which results from Eqg. (1.8)
the reduced density matrix de ned in Eqg. (1.11) yields
[
red = | +j2j +ih f+in: jt] JZJ fin: ih j= J 61 i

The loss of quantum coherence to the environment leads to tpessibility of describing
guantum systems in the language of statistical mechanics.

The model calculated in this thesis consists of a quantum ggm coupled to an environ-
ment. The e ect of tracing out the environment on the quantumsystem is considered
in detail.

This thesis investigates the dissipative e ect of the envanment on a tunnelling two-
state system (TSS) and on the interaction between tunnellnTSS. The low-temperature
properties of amorphous materials have been attributed tche existence of tunnelling
but noninteracting TSS in amorphous materials [3, 4]. Theicentral hypothesis is the
statistical distribution of atoms (or groups of atoms) sittng more or less in TSS. There is
no interaction between TSS considered. From that, they dee the linear speci c heat,
a universal property of amorphous materials and the anomals thermal conductivity.
Later the interaction between those TSS in amorphous mataifs have been considered
as the main reason for the observed low temperature anomaligs]. Investigation of in-
teracting TSS in amorphous solids have nowadays been widelyestigated [6, 7]. These
publications focus mainly on the low-temperaturef < 100nK ) kinetics and thermody-
namic properties of dielectric glasses. The interaction tdfe TSS is phenomenologically
de ned and arises from the strain eld or the direct electrial dipole-dipole interaction
with distance dependent strength decaying aR 3 in those systems [7]. Anomalous
temperature behaviour in the relaxation properties at ultalow temperatures are found
in those publications [6, 7].

This thesis is not interested in the phenomenologically deed TSS of dielectric glasses,
but instead uses a microscopic model, where the position dgglence of the TSS in the
environment is investigated.

The model investigated in this thesis consists of a transianhally invariant chain of
N particles with harmonic nearest neighbour interaction wh one exception. One, re-
spectively two bonds are anharmonic. The anharmonicity isescribed by a symmetric
double well potential in which the continuos degree of freeth can tunnel between the
two minima.

One method of calculating such a tunnelling process is thestanton technique. In-
stantons were rst applied in quantum chromodynamics (QCD)n the late '70s, early
'80s [8, 9, 10, 11]. The instanton technique provided an exaaite-action solution to
the classical Yang-Mills [8, 11] equations in Euclidean spatime. But also its use in
statistical mechanics has been discussed extensively [13].

Another possibility is to e ectively restrict the anharmonic potential to the Hilbert space
spanned by the two minima of the wells [14, 15, 16]. This allera mapping onto the
well known spin-boson Hamiltonian, which has been applied taany di erent physical
systems some of which are discussed in [17, 18, 19, 20]. Th&pping and the restric-

1
i (1.12)
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tions implied are discussed in detail in [14, 16].

Now we can investigate the dissipative e ect the environmentsometimes named har-
monic bath, has on the quantum mechanical tunnelling of the §S. Quantum dissipation
describes the quantum-mechanical analogon to the classioaeversible loss of energy.
In quantum theory usually a Hamiltonian is used. The total engy of the full system
is then a conserved quantity. A way to avoid this problem and éing able to introduce
dissipation is to split up the full system into two parts. The rst is called the system,
where dissipation occurs and the second is the environmenthich receives the energy
owing out of the system. The energy is only transferred fronone system to another
and hence conserved.

The rst approach of modelling such a system was done by Feyram and Vernon [21].
They modelled the environment as an in nite set of harmonic sxillators.

With the path integral formalism and for certain kinds of cogpling to the quantum-
mechanical system, the harmonic degrees of freedom can lmigelated, leaving a quantum-
mechanical system showing dissipation.

In 1981 the idea of Feynman and Vernon has been applied to a spe system by
Caldeira and Leggett [22]. Considering the magnetic ux traped in a SQUID [23]
and ignoring dissipation, a standard WKB calculation shows quantum tunnelling as
the dominant ux transition mechanism for temperaturesT . 100nK . Experiments
[24, 25] with even higher temperature§ 1 2K have been interpreted as possible
evidence for quantum tunnelling of the ux [22].

A SQUID (superconducting quantum interference device) is ad to measure extremely
weak magnetic elds. In Fig. 1.2 a dc-Squid (direct current)is shown. Its func-
tionality is based on the ux-quantisation | (;‘—S; (his the Planck constant andy =
2eis the electron charge of the Cooper pairs) occuring in sugenducting loops and the
Josephson e ect. Caldeira and Leggett mention a SQUID as a prising candidate to
observe quantum tunnelling on a macroscopic scale [22]. Tisevant macroscopic vari-
able is the magnetic ux trapped in the superconducting loop

wentzel{Kramers{Brillouin



magnetic flux

Josephson
contact

d
= L=
=N
SR

Figure 1.1: A schematic picture of a dc-SQUID (direct current superconducting quantu ~ m interference device). The
Josephson junctions have to be thin enough to allow Cooper-pairs to  tunnel through.

By considering linear coupling of the system with its envirament, they nd, that dis-
sipation multiplies the tunnelling probability by a factor depending among other con-
stants, on the phenomenological friction coe cient.
They discuss an imaginary time propagator for zero tempenate (the derivation of
those quantities follow, when the Caldeira-Leggett modes$ ipresented in the respective
section). This propagator consists of an e ective action, kere the in uence of the
harmonic degrees of freedom on the tunnelling is described & function? (t 9.
Caldeira and Leggett relate that function to the phenomenofical friction coe cient

, by comparing the equations of motion of the phenomenologicexpression of the
linear damped harmonic oscillator, with the ones achievedoim the Caldeira-Leggett
Lagrangian. Expressing the function (t t9 in terms of the spectral densityd (! ), they
are able to provide the frequency dependence of this spetiansity up to some cut-o
frequency! . as J(! ') = ! ,in terms of the phenomenological friction coe cient

. The exact derivation is shown in the next chapter. With that a connection of the
guantum-mechanical e ect of tunnelling to the classical eact of dissipation was made.
Model Hamiltonians of quantum systems coupled linearly to adbh of harmonic oscilla-
tors are well known nowadays as Caldeira-Leggett Hamiltoma and have been discussed
in many articles e.g. [14, 16, 26, 27].
In this thesis the tunnelling of anharmonic bonds describeay a symmetric double-well
potential with the dissipative e ect of the linearly coupled bath of harmonic oscillators,
is investigated.

This potential is a TSS if the potential height ~!l o, where! ;4 is the classical
small-oscillation frequency and the separation of the grad state from the rst excited
state is of order~! .

2see section "The Caldeira-Leggett Model" for details
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Figure 1.2: A double-well potential considered in the "two-state" limit. ~! ¢ denote the energy di erence of the two-
fold degenerate ground state to the rst excited states. Symmetric TSS (reg arded in this thesis) with two-fold degenerate
ground states Xwin; Xmax (Without considering the coupling to the bath) of the system. Vo represents the barrier height.

The e ect of the environment on the tunnelling variable is dscribed by the spectral
density J(! ). The spectral density is derived and related to other quaittes in chapter
2.2.1 - 2.2.3. The quantum dissipation generated by the haomic bath depends quali-
tatively on the low-frequency behaviour ofl (! ) [14, 16, 28]. The spectral density has a
power-law form for frequencies much smaller than the cut-drequencyJ (! o) 1S,
where! . denotes the cut-o frequency introduced earlier. The expant s classi es the
dissipative in uences. A detailed discussion on the e ectfdhe spectral density will be
given in section "The Caldeira-Leggett Model".

The indirect interaction of these TSS mediated through the &rmonic bath depends on
the microscopically derived spectral density (! ). The harmonic bath leads to dissipa-
tive tunnelling behaviour of the TSS. This thesis is restried to T = 0 and calculates the
tunnelling probability of anharmonic bonds (described by ¥S) in a chain of harmonic
bonds (harmonic bath), whereas [6, 7] focus on the investigan of dielectric glasses and
the anomalous temperature behaviour of their relaxation mes.

Dubke and Stamp [29] investigate a similar system of interding TSS as considered here.
The main di erence of the publication of Dule and Stamp is dbwing direct coupling
and considering the continuous TSS coordinate of this thesas a spin. The direct
coupling leads to phenomena, that are not considered in thikesis. The calculations
and approximations in their publications are not derived darly and will be put on
more stable ground in this thesis. From the microscopic moldeonsidered in this thesis
the analytical derivation of the Caldeira-Leggett type Hamtonian is performed. The
Hamiltonian for this microscopic model is brought into the fom of the Caldeira-Leggett
Hamiltonian by separating the harmonic and anharmonic deges of freedom analytically
in di erent ways. First the position-dependence of one anmmonic bond is discussed.
Since an open chain without periodic boundary conditions onsidered, the position of
the anharmonic bond e ects the tunnelling behaviour. This Wl be shown in an analytic
discussion.

Another motivation is the discussion of interacting TSS, site the model system allows



to include more than one anharmonic bond. A nite distance kteveen the anharmonic
bonds describes indirect interaction between the TSS, wieas the limit of an in nite
distance corresponds to the non-interacting case.

This thesis gives an insight in how interacting TSS change ¢tunnelling behaviour com-
pared to the non-interacting case for the considered modsistem. In order to get the
full physical e ect of the interacting TSS, certain restricions of the investigated system
are considered. For one, both anharmonic bonds are locatedthe bulk, to diminish
the e ects an anharmonic bond receives at one of the boardavsthe chain. Secondly
nite distances D between both defects are considered, to get an indirect inéetion of
both anharmonic bonds via the harmonic bath.

This thesis splits up into 6 parts

Chapter 1 gives an introduction to the topic of this thesis. tlexplains what has
been done up to now on the topic of quantum dissipation and wtes quantum
dissipation can be observed in experiment.

Chapter 2 shows mathematical and physical preliminaries @8 throughout this
thesis. This chapter is put at the beginning to allow more uat reading later
on, because the main mathematical and physical prescriptis are given. The
phenomenological model of Caldeira and Leggett, used to @alate the e ect of
guantum dissipation, is presented and derived.

Chapter 3 explains the used microscopic model in detail. A ahtion of all vari-
ables and the properties of the Hamiltonian are given. The rean for separating
the harmonic from the anharmonic degrees of freedom will bgpained.

— Chapter 3.1 and 3.2 present two di erent ways of how to sepai@athe har-
monic from the anharmonic degrees of freedom. The rst metkois more
intuitive but restricted to one dimensional problems, whezas the second
method allows diagonalisation in every dimension. It will & shown that
both methods are equivalent leading to the same Caldeira-gigett Hamilto-
nian [22] (or Euclidean Lagrangian respectively).

— Chapter 3.3 discusses the position dependent quantum turleg of the one
dimensional one anharmonic bond model system. Analyticalg@ts (within
approximations) are given on how the position e ects the tunelling. Also
a critical coupling constant, where tunnelling changes fno oscillatory (de-
localised state) to stochastic (localised state), is disssed.

— Chapter 3.4 introduces the notation and ways of calculatinthe probability
and not the propagator (as in the sections before) of this nmascopic system.
The methods used here are equivalent to [14] and will be exphad later on
for the two anharmonic bond case.

Chapter 4 shows the calculation for the case of two anharmanbonds interacting
indirectly through the harmonic bath.



10

CHAPTER 1. INTRODUCTION

— Chapter 4.1 investigates how interaction between the TSS act the tun-
nelling behaviour. First one has to perform a diagonalisatn procedure as
in the one anharmonic bond case. The technique of the rst miedd is used
for that.

— Chapter 4.2 generalizes the methods used in chapter 3.4 teetbwo anhar-
monic bond case. Here the techniques used in the one anharncobond
case are used and explained and necessary additional sinoptions are in-
troduced. As a result one gets the expectation value of the twamharmonic
bonds, tunnelling under the in uence of the harmonic bath, wich introduces
dissipative e ects. The dependency on the choice of initi@nd nal state is
also presented.

Chapter 5 concludes and summarises the results achieved listthesis.

Chapter 6 is the Appendix, where certain procedures, such amgonalisation of
the di erent methods, derivation of the probability using the Feynman-Vernon
path integral technique, are discussed in detalil.



Chapter 2

Preliminaries

2.1 Mathematical Preliminaries

In this chapter mathematical de nitions and notations are ntroduced, which are essen-
tial for this thesis. By introducing the mathematical notations and de nitions here, the
Appendix will be restricted to calculations, which are, dued their length, left out of the
main part of the thesis. This will hopefully give the reader avell organised presentation
of this thesis and allow uent reading.

2.1.1 Laplace Transform

Let f (t) be a function, thenfT ) is the Laplace transform of this functionf : [0;1 [! C,
de ned by

]
()= Lif()g= dte 'f(1); 2C;<()>0 2.1)
0

, Wheref must be locally integrable on [01 [. The Laplace transform will be used in
this thesis to transform convolutions into a product of Lapce transforms

% L1

L1
Lff gg=L gf (gt t) =[Ff(DgLfgt)g= T )e( ) (2.2)
0

The above equation can be proven as follows. LE{ )g( ) = RA( ), then

i —
() = dte ' L—ht% t9g(t t4
0 0
]
A() = dt  dt% 'f(t9gt t9 (2.3)
0 0

11



12 CHAPTER 2. PRELIMINARIES

The rst integration is carried out from 0  t® t. Changing the order of integration
results in

L1 [
A( )= dt® dte 'f(t9g(t t9 (2.4)
0 t0
Now changing the variablet to t%°= t t%dt®= dt, the region of integration becomes
t° 0;t° 0

]
dt®  dt%% 9 (t9g(t% (2.5)

R N
[ Ht%e t°f (19 CLIT Ht%% t *g(t°§ 1

0 0

e ) (2.6)

aC )

2.1.2 Inverse Laplace Transform

The inverse Laplace transform is de ned as
1 1
f(t)=L fY )gzﬁ de'f{) (2.7)
C
, WhereC denotes the standard Bromwich contour, i.e. any contour irhe complex plane
from i1 to il lying entirely to the right of all singularities of f{ ). In this thesis,
the inverse Laplace transform is not of primary interest. Mialy the Laplace transform

will be used to discuss the poles of a Laplace transforfif ) to get information about
the function in time spacef (t).

2.1.3 W.ick Rotation

Wick rotations are commonly used to connect statistical méanics with quantum me-
chanics by replacing the inverse temperaturg— with the imaginary time L. In this
thesis the Wick rotation is needed to achieve the transitioamplitude from the instanton
solutions of the path integral formulation. The propagatorin real time reads

(D=
iH (t tg). iS [x (]

G(Xs;t; X tg) = k¢ je — = jxji = Dx(t)e -~ (2.8)

X(to)= Xi

Choosing the starting timet, = 0 and performing the Wick rotation

t= i (2.9)
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yields
Ge(Xs; =T;x;; =0)= Ixje Hfjxii = Dx()e

Xi

sEx( 1

(2.10)

, Where the indexE stands for Euclidean and indicates, that the Wick rotation s been
performed.
In this thesis the Euclidean action is de ned for a free partie in a double well potential
— -
m dx Lo

SE= d > + V(X) (2.11)

, Which is nothing but the normal action with a sign change intie potential V (x) !
V (x). The advantage can be easily seen in the following example:
Lets consider a symmetric double well potential

V(x)= x*+ x?; <0 (2.12)

where we want to calculate the tunnelling amplitudeG(x; ;t; x;;0). Classically the
particle sitting in one of the two wells has no possible way teeach the other well for
energies smaller than the barrier. In other words the equatis of motion resulting from
the Lagrangian has no solutions. By performing the Wick rotaon and hence changing
the sign of the potential, the particle is able to tunnel fromone well to the other. That
means the Euclidean Lagrangian has a solution. This solutimf the Euclidean integral
is named "kink"-solution and is an example of an instanton $ation. The name results
from the following fact. By changing the sign of the potentibas discussed before the
wells become hills and the patrticle rolls from onéill to the other. For the double
well potential introduced above the solution of the Eucliden equations of motion is a
hyperbolic tangent. The shape of this solutions lead to theame instanton solution,
because the hyperbolic tangent stays in nitely long at 1 and then as the argument
approaches zero iinstantaneously ips to +1. Instantaneouslyis not meant as a sharp
step or a discontinuity, but as a comparison of a fast changa a short period of the
argument around zero, compared to the almost not changing lug of the hyperbolic
tangent for the rest of the arguments value.

2.1.4 Feynman-Vernon Method

Here the Feynman-Vernon method of describing quantum dissifpon via a system cou-
pled linearly to a harmonic bath, is used. Let there be a Haminhian of the following
form

I
I

Hbath + Hsys."‘ H|
Hpah = Hpan (P 9;TQ 0)

H = ¢ cQ (2.13)
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, Wwherec are the coupling constants of the bath coordinatelsQ g to the system coor-

dinate q.

Using the Liouville-von-Neumann equation for the time deperaht density operator
wot (t) of the total Hamiltonian, we can write

% wt (1) = i:[H; ot (1)] ; wt(t) = € =t tot(o)eiﬂ-lt (2.14)

The full density matrix element in spatial representation eads
1

hfQ g,d w(ig’fQ%i = ddf ddf® df Q°gdf QPghfQ g;gje ~"j¢’; f Q gi
hfQg; ¢} 1t (0)jg”; f Q%
hfQ®g; ¢®je-"tjq” f Q°gi (2.15)

Let an operator A have a matrix representationAn, = Mmj&jni, then the trace is
de ned as

I 1 | 1
TrA=  mjAini= A, (2.16)

n n

Now in the case considered here the density operatag: (t) includes the behaviour of
the bath and the system. Tracing out the bath degrees of freeth fQ g;fQ%g in the
way shown above, we get

red(t) = Tﬁath tot(t)
)h G rea(t)jcfl def do® of Qg df QPgdf Q ghfQ g;gje “'jc;f Qg
hfQ%g; ) 1t (0)id®; f QPginf Q®g; e it fQ gi  (2.17)

Assuming the density matrix has factorising initial conditons ;(0) = eq(0) bath s
we are able to write down the nal result for the propagator maix elements

] I s
g rea(t)jdl = dPdd® e 1ea(0)jq®  Dg Dole-Swsld SwslD E [q: f) (2.18)

The last term F is called the in uence functional in literature and descrils the e ect
of the bath on the system. For zero system-bath coupling the uence functional yields
one. This in uence functional is derived in greater detaildr the more general case of
two system coordinates coupling to a harmonic bath in AppenxiD.

2.1.5 Functions

In this subsection, all functions used throughout this thas will be de ned. First the
generating functions for canonical transformations are troduced. They are de ned in
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the following way

pla;dht) = %—%(q;d%t); Pla;dht) = %—E(q;&t)

p(a;Bit) = %—%(q;ﬁft); q"(q;&t)=%%(q;ﬁft)

plpidfit) = %z(p;q“,t); qlp; i t) = %;(p;q“,t)

By = EY: dpBn= S (2.19)

A derivation of the generating functions, as a special kindf @oint transformation, will

not be given here, but can be seen in [30].

The next de nition is for the propagator or Green's function A Green's function is a
function used to to solve an inhomogeneous di erential eqtian subject to boundary
conditions. LetL be a linear di erential operator, f be the inhomogeneity andy the
function we would like to nd a solution for, then the following equation

Ly(x) = f(x) (2.20)
can be solved by a Green's functio(x) with the following property
LG(X) = (X) (2.22)

The solution is then
1

y(x) = (G f)(x)= f(x)G(x Xo)dxo (2.22)

This can be seen by applying the de nition of Eq. (2.20), as skwn below

= y0g-5 109
L f(Xo)G(x  Xo)dxo = f(x)
1
, f(Xo)LG(X Xo) = f(x)
L]
v f(Xo) (X X0) = f(x)
, f(xX) = f(x) (2.23)
The functions Sif), Ci(x) are Sine and Cosine Integrals, de ned as
.
Six) = dt S'r;(t)
0
1
Cix) = +In(x+ a1 (2.24)

t
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, where is the Euler-Mascheroni constant, de ned as
I | 1

= lim P In(n) (2.25)

n!l
k=1
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2.2 Physical Preliminaries

In this chapter functions needed for an essential understdimg of this thesis are intro-
duced. These functions will be presented, explained and these will be shown shortly
in this section in order to leave out the information and impove easy reading in the
main part. As in the section "Mathematical Preliminaries”, the reason for this section
is to give the reader a well organised presentation of thisekis and allow uent reading.

2.2.1 Model

In order to investigate quantum dissipation, a simple mode&familtonian (or equivalently
a Euclidean Lagrangian [22]), known as the Caldeira-Leggenhodel, is introduced.

H = Hpan+ |_|sys + Hint (2.26)

1 1]

H - = o+ I 22

bath > ,om m ! “Q

pZ

Hsys = % + V(q)

1
Hint = q c Q + \ (q)

=1
g; pare the coordinate and momentum and/ (q) is the potential of the system. V (q)
is a counter term, which depends on the parametera ;! , only [16] (chapter 3). Its
physical signi cance is seen in Egs. (2.36), (2.37). Thosanameters are the masses and
the frequencies of the harmonic bath coordinates, respely. Q ;P are the coordinate
and momentum of the harmonic bath, where the index denotes the individual bath
modes running from 1 toN. ¢ is the coupling constant. In this model we used linear
coupling of the system to the bath. Other types of coupling a&rpossible, but are not
used throughout this thesis.
If we want to solely describe dissipation with our model witbut renormalising the
potential V (q), the counter term must have the following form [16]

| —

oF (2.27)
,, 2m ! 2

V(g =

Including the above counter term, we are able to write the Haronian in a di erent
form -
——7 1 I;EI
H= P v+ P miz g G (2.28)
©2m 2 ., m ' m120 '

The equations of motions from a Hamiltonian are easily achied

_ oH
57 @q
q = @H (2.29)

@p
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they read for the Hamiltonian of Eq. (2.28)

@\(q) 21 _ 1
@q :lm,ZCI— :1CQ

mQ@ +m!?Q = cq (2.30)

me +

The solution forQ (t) can be achieved by Green's functions techniques introdwtearlier
in section "Mathematical Preliminaries". They are

di%sin(t [t tPg(th (2.31)

0

Q (M= Q @cost )+

) c
sin(! t)+
¢+

Now following the notation and technique of [16], we get by iegration by parts
Q () = Q (0O)cos( t)+ :}ﬁo) sin(! t)
Lgitd  q(0)cos( 1) dt®°cost [t t9) gty L—12.32)

0

mI2

Now using this solution and plugging it into Eqg. (2.30), we get

met)+ m  dt® (&t tdq(tY + @éz) = m ()q0)+ (t) (2.33)
0
, with the force
~ Iﬂl P (0) .
(t) = c Q (O)cos( t)+ p sin(! t) (2.34)

and the memory-friction kernel obeying causality ((t) =0 for t < 0)

t t9=

( tm 9 — cost [t t9) (2.35)

The Eq. (2.33) is a Langevin-type equation with an additionlaterm m (t)g(0) de-
pending on the initial value g(0). This additional term can be included in the random
force by the following de nition

M= (© m (©)a0) (2.36)

The properties of a classical Langevin equation are well kmp. Taking the average of
the initial values with respect to the shifted canonical eqlibrium density

!
R p20p 12 2
2+ © —*5d0)

batn = Z ‘e 7 ' (2.37)
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(t) becomes a uctuating force with Gaussian statistical proerties

h(t)i,, =0
. m
h(t) (1) o = — (& 1 (2.38)
, where = L.
Fourier transforming the memory-friction kernel of Eq. (235), we get
i el
~(1)= — lim .
m m!l2uros12 12 jlI

=1

2.2.2 Spectral Density

The spectral density functionJ(! ), contains the complete information about the e ect
of the environment. It is de ned as

| —~1
J(')= = — (! ! 2.39

=3 1) (2.:39)

Considering the spectral density as a smooth function bfand performing the thermody-
namiclimit N 'l |, we are able to rewrite the Fourier Transform of the memoryrittion

kernel (2.39) in terms of the spectral density [16]

i
2 309 1
= e e o

0

(2.40)

Up to now, this spectral density has only been derived phenomaogically. In those
derivations [14, 16, 22] the following assumptions were nmad J(! ) is considered a
reasonably smooth function of and that it is of the form ! 5;s > 0 up to some cut-o0
frequency! ..

In this thesis the spectral density will be derived analytially for a microscopic model
in the thermodynamic limit (N !'1 ). The variablesc ;m ;! can be calculated from
the microscopic model, which is shown for the case of one amegbtanharmonic bonds.
The spectral density is of main importance for this thesis ahis derived showing the
behaviour !*° assumed by Leggett et al.. Three di erent cases occur genkyafor
J(g)y s

0< s < 1 the sub-ohmic case

s =1 the ohmic case

1 < s the super-ohmic case
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The sub-ohmic case will not be discussed in this thesis. It f#dbeen shown [14], that
sub-ohmic dissipation leads to complete localisation dt = 0, whereas the super-ohmic
case Yyields weakly damped oscillations [14]. The criticaingdension is achieved fos = 1,
the ohmic case, where the coupling constant C of the anharmonic bond coordinate
to the harmonic bath coordinates, has a critical value yieldg tunnelling for C < C
and localisation for the other case.

2.2.3 Kernel

But the spectral density is not only useful to express the Foier Transform of the
memory-friction kernel ~!), it can also be used in a di erent approach of describing
guantum dissipation.

In [22] the authors calculate the Euclidean propagator

1od LE(g( 5o 9:fQ ( 9a:fQ ( Y9)

L 0] [ O
Ge(q;fQMg T;q;fQg0)= Dq() DfQ ()ge sE
G fQ(i)g

using the Euclidean Lagrangian (which is nothing but the Lesndre Transform of the
Hamiltonian (2.28) in Euclidean form)

L?F' 1 O

e_ Mo 2 2 c

L —Eq_()"'V(Q)"' > Q()+!'° Q() WQ() (2.41)
=1 )

To calculate the Euclidean tunnelling propagator, the Euallean actionSg can be split

up into two parts

E _ E E
S - S0 + Sharm;int

, where the integral of the rst two terms are S§ without interaction of the environ-
ment, whereas the interaction with the environment is fullycaptured in Sf, ;e - The
discussion of this part is done explicitly in the next subséon "Instantons”.

Now the elimination of the harmonic degrees of freedom is penfned. The paths
q( );fQ ( )g are periodically continued outside the range of O < T (where
denotes the imaginarytime variable) by writing them as a Fourier series [16]

1 1
a ) = £ the "
n=1
1 L1
Q() = T Qné€r (2.42)
n=1

where , =2 n=T is the frequency of the Fourier series. Applying this transfmation
to the Euclidean action yields
1 1
A = & - I % c E
Sharm;int - f 7 nJQ;nJ + n Wqﬁ

n=1
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Next, Q., will be decomposed into a classical ter® ., and a deviationy., describing
guantum uctuations [16]

Qn =Q, tyn = m% + ¥ (2.43)

This result is trivially achieved using Egs. (2.42) and (2@). In the second part the
classical solutions of the Euclidean equations of motion earused. SinceQ ( ) is a
stationary point of the action, the term linear in the deviaion y., is eliminated. With
this approach it is possible to decouple the bilinear formsontaining the anharmonic
bond and the harmonic degrees of freedom

SEarm;int = Srllzarm + SiEfI:
C Y11 (|
SEm = = i L R
T 2 ’ 2 : N
n=1
SE — 1 Iil ]ﬁ;njz Jq\/l:njz (2 44)
infl: T om |2 2412 '
n=1

The rsttermin S originates from the potential counter term$ 2. Changing to the
time representation the in uence action (2.44) reads [16]

1 L[]
SHIE d d °k( Ya( da( 9
0 0
1 1 ~21 1 I2 _ 2 L] J() — _
K= 7 Gz 23z = A —— 278"
1z . E+! , N A
(2.45)

, Where the de nition of the spectral density (2.39) has beensed. The form of the
kernel can be written in many forms (see [16]), here the zeremperature kernelK ( )
will be used which can be achieved after some minor manipulats ofk( ) [16]

—
K() = 5 (0 kO)=z

=1 n=1

C YT 1

where the summation ovem is easily performed yielding in the principle interval O
<T [16]

1
LA cosh! I_L_%I
=

2m | sinh

M o m[mE
g2 s m o o
TT Slnhl_%

K()=
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The resulting in uence action with pathsq( ) extended outside the range of 0 < T
usingg( +nT)=q( );8n2 N s

[ I
SiEfI: = d d °K( Ya( a( 9

0 0

—a ]
K() ] e’ -1 dti()e' (2.48)

0
Since quantum dissipative e ects due to the bath qualitatiely depend on the large or
T
low frequency behaviour, the fractionw can be well approximated for small

sinh (%)

but xed !, largeT and not to close toT,(% = 0O(1)), by e ' as can be seen
from the following calculation

= ; ;0< < 1

L1 (HEN] . |
_ cosh ! 4 ezl Dy e F@ ) ,
I 60: lim — L1 = |im - - =e'
T sinh - TI1 e e -

(2.49)

In this thesis the kernelK ( ) will be used to determine the position dependent tunnellon
of the anharmonic bond(s). We will be able to show, that in th@ne anharmonic bond
case there is ohmic dissipation ( 2) for the anharmonic bond located in the bulk
of the chain, whereas there will be a transition from ohmic teuper-ohmic ( 4

dissipation for the case of the anharmonic bond located at ¢hborder of the chain
depending on a time scale de ned by the position of the bond.

2.2.4 Instantons

The path integral formalism allows one to investigate quanim tunnelling by determining
the instanton solutions [16], i.e. the solutions of the clagal equation of motion for a
double well potential without coupling to an environment, in imaginary time. The
in uence of the bath on the calculated instanton paths intraluces the dissipative e ect
on the tunnelling. Getting the classical equations of motiofrom the Euclidean action
So

1

d L&Al % a 9

0

2 9+ Vo(o( 9) (2.50)

Sela );al )]

Lol % a 9
yields

1@Ma( 9 _

o 9 @49 =0
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Multiplying both sides by g( 9 and integrating [12], we get

L] 1
1 @ 9)
d®° == d°== 7 2.51
o 9o 9=~ aqo %9 (251)
0 0
, Which is equivalent to
:—L(_f — VO(q)
2 T
d ) _ 2% 9
do m
L) |:r|n_
, = d 2.52
q 2Vo(0) (2.52)
q(0)
(I []
Plugging in the symmetric double well potentiaMy(q) = & ¢ %g q+ %gwe get
(I ()
= T ] %
C, 9 2 93
T
= — —<Artanh —= 2.53
c rtan & L ( )
Choosingq(0) = 0 and inverting the Artanh, we get the instanton solution
I | 1
- @ ® C
q( ) = > tanh > o (2.54)
1
By using the fact thaHhe upper phonon band edgé ¢ is roughly ! o % and
assuming thatV°® % C, we can set the kinkswidth, the time an instanton needs
to ip from one state to the other, nw = Voo(r“—qo) t0  kink 1,1 We are now
0 2

able to write down the nal form for the instanton solution for a symmetric double well
potential

1 1 ]
s D - B @
q( ) = > tanh 2 T 2 tanh >lo (2.55)

2.3 The Caldeira-Leggett Model

This section explains the Caldeira-Leggett model, which issed throughout this thesis.
At rst one has to know, that the Caldeira-Leggett Hamiltonian or Euclidean Lagrangian
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is originally of phenomenological nature. It is a model to deribe a tunnelling quantum
system atT = 0, linearly coupled to an environment. This model allows tabserve
guantum tunnelling on a macroscopic scale. The most pronmg candidate to see the
e ect of quantum tunnelling as a dominant factor in the trangtion is a SQUID (super-
conducting quantum interference device). The magnetic uis the macroscopic variable
in this scenario. WKB! approximations ignoring quantum dissipation danot show the
full physical behaviour at low temperature compared to expenents. At large enough
temperatures, the e ect of thermal uctuations a ect the SQUID. Those corrections
have been investigated by Kramers [31] and Kurkiarvi [32] But these thermal uc-
tuations do not explain the experimentally observed deviations for low teperatures
[24, 25]. This problem can be resolved by including quantumssipative e ects, which
lead to a multiplicative factor in the tunnelling probability.

In 1981 Caldeira and Leggett proposed this simple model Eig#dan Lagrangian [22] to
describe the e ect of quantum dissipation. The model Euclean Lagrangian has the
following form

L1 C—

LE=T@rv+ s m Q@+12Q7 +q cQ (2.56)
2'j | |

m
2
wherefQ g;fQ g denote coordinates and velocities of the harmonic envirommt and

g;q the coordinate and velocity of the system. The parametera ;! are at the masses

and frequencies of the harmonic coordinates ared are the coupling constants. With
this Euclidean Lagrangian a propagator can be de ned

| e —
Ge(4:fQ"g;T;g;fQg;0)= Dg() DIQ (g e o (2.57)

G fQMe
where the harmonic degrees of freedom can be eliminated edesng periodic paths
fQ"g= fQ"g. Hence the propagator reads

o 174 o(mg+v(g)) 2 R g oRg oo (° 99q( 9a( 9+const.
Ge(q; ;9;0)= Dg()e o et o

Gi

(2.58)

where g( 9 has been periodically continued outside the region 8 ° < by the
prescription g( °+ ) q( 9, which does not aect the tunnelling. The quantity
(% %is dened as follows

1]
e e e e

0

where J(! ) is the spectral density de ned in the subsection "SpectraDensity". The
constant is a term not contributing to the tunnelling and canbe included into the po-
tential V() acting as a renormalization.

IWwentzel-Kramers-Brillouin
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Now the main aspect of this model is to relate the quantity ( ©  °Y with the phe-
nomenological friction coe cient . Caldeira and Leggett note that since the charac-
teristic times needed for the tunnelling are of ordeY Cll, or longer, hence ( © %is
only needed for times of this order or expressed in terms ofetilspectral densityJ (! ) for

frequencies! I . Now if the classical motion is to be determined by a well-deed
friction coe cient, the following relation must hold
J(! )= ! (2.60)

I . denotes a critical frequency, where the spectral density vlates appreciably from its
low-frequency form, which is considered [22].

Using this restriction for the spectral density, the relatio between quantity ( © 9
and the phenomenological friction coe cient is valid in lovest order of! =! . and reads

(L I [ I I 082

d° d%®(° % 9a( J+const= - d° d Oo—q((cbo qf)g )" (261)
1 0 1 0
A weakness of this model is, that it is purely phenomenologic The spectral density
J(!) is given a power law form ( ! ®; s > 0) for low enough frequencies ( ! .), but
there is no microscopic model used to evaluate the spectrarsity analytically.
That is one of the main aspects of this thesis, to propose a nadystem/Hamiltonian,
which can analytically be put into the Caldeira-Leggett fom. This allows us, to mi-
croscopically derive the spectral density and hence the pi@mnenological input is not
needed. The Caldeira-Leggett model has been researchedtayumtensively, but only
for di erent exponents s of ! in the spectral density. The reason for this is the phase
transition occurring at the critical value ofs = 1. For s < 1 there is the localisation
phenomenon. That means quantum tunnelling is fully suppresd, due to the interac-
tion with the environment. For s > 1 quantum tunnelling is never suppressed. The
e ect of the environment is to damp the oscillation of the syem. At the critical value
s = 1 there is a phase transition from localisation to the dampe oscillative behaviour,
depending on the bonding constants.

2.4 Summary

In this chapter we have introduced mathematical and physitgreliminaries, that are
needed to fully understand the topics discussed in this thies The presentation of these
de nitions and techniques as a separate chapter will allow more uent reading of the
main part. In this chapter only the basic techniques are prested, the derivation of the
two anharmonic bond probability with the Feynman-Vernon p#h integral formalism,
is shown here for one anharmonic bond in rough sketches. Th#l derivation for the
more general case of two anharmonic bonds is presented inalein the Appendix of
the thesis.

In section "The Caldeira-Leggett Model" the model used in tis thesis is presented. The
model is motivated and its validity and possible applicatios are shown.
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Chapter 3
The 1-defect Model

Lets consider a simple model of a 1-dimensional open chain\biparticles described by
a classical Hamiltonian

H = "N V(XX
o, (X1 N)
o E— N s—
V(X1 X)) = 5 (Xps1 Xn o @)+ Vo(Xmi+z  Xwm;) (3.1)
n=1 i=1

&M

wherer are the number of anharmonic bondsx, is the position of then-th particle, p,
the momentum of then-th particle, C is the elastic constant of the harmonic nearest
neighbour interaction, a, are the equilibrium lengths of the harmonic bonds. The an-
harmonic potentials considered in this thesis are double Ivpotentials with symmetric
wells of the following form

Vy(dy)

NS
INTES]

A

Figure 3.1: A symmetric double-well potential, for a one dimensional system.  gu, = Xw,+1 Xu,, and with the
local minima (ground states) “70 and %0. The barrier height is labelled Vo

Here two methods of separating the harmonic from the anharmiendegrees of freedom

27
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are presented in sections "First Method" and "Second Methdd The goal of the sep-
aration is to bring the Hamiltonian Eq. (3.1) into the form of the Caldeira-Leggett
Hamiltonian or Euclidean Lagrangian, respectively
LE = Lg + LE; LE = I-Earm + I-ilifl
M
Lo(avian) = -G + Vo(am)
— L] -

m Q+12 Q mC| 5O (3.2)
=1 )

LT (gu:fQ giaw:fQ g)

2
1
2

where thef Q g are the harmonic bath modes, that can be eliminated (the exaway to
do this can be seen in the section "Physical Preliminaries")The goal is to investigate
the Euclidean propagatorGE( %;T; %;0), where the harmonic degrees of freedom
have been eliminated, leading to an in uence term in the Euiclean action

— @™ 2 ] L]
_bo;T; %;0 _ Dy ( )e = S50 O SEy [aw () (3.3)

Ge >

where the Euclidean action in the exponent is de ned as

I"r_—lq ]
d 3

Selaw ()] = a () + Vo(aw ()
0
LI R I
Siv: [am ()] = d d°%(  Jau()am( 9 (3.4)
0 0

This propagator describes the tunnelling of one classicalimmum to the other during
the observation time T. The kernel K ( 9 shows the in uence of the harmonic
bath and will be derived in detail in section "Quantum Tunneling”. The main aspect
being discussed here is the di erent behaviour of the kerndlie to the position of the
anharmonic bond. The kernel appears due to the eliminationf dhe harmonic bath
and leads to damping in the tunnelling behaviour of the anhamonic bond. Two cases
are presented. One considers a macroscopically large chawhere the anharmonic
bond is located at one of the borders of the chain with distaec M. Because of the
translational invariance of the system, tunnelling of the mharmonic bond requires only
a movement of a nite mass. In this case tunnelling is of sup@hmic dissipative nature
and never surpressed. Whereas in the second case the anhaimbond is located in
the bulk of the macroscopically large chain. Tunnelling otie anharmonic bond requires
now a movement of an in nite mass. For this case tunnelling isf ohmic dissipative
nature and is fully surpressed if the coupling constant beten the anharmonic bond
and the harmonic bath exceeds a critical value. The detaild evhat will happen are
shown in section "Quantum Tunnelling”.

In section "Two Defects" the separation of the harmonic and rdharmonic degrees of
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freedom for two anharmonic bonds in one dimension is shown.hd investigation of
the kernel in the in uence action is done to show the e ect ofniteraction between the
anharmonic bonds. Since only the e ect of interaction betven the two anharmonic
bonds is of interest, both bonds are considered in the bulk thia nite distance D
between each other. This scenario corresponds to an indir@tderaction of both bonds
via a nite harmonic bath between them and is discussed in dail in chapter "Two
Defects".

The model Eg. (3.1) has been chosen so that an analytical dission is possible without
applying too many restrictions. Lets start with the case ofime anharmonic bond = 1).
First the two methods for separating the anharmonic from theéharmonic degrees of
freedom are presented.
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3.1 First Method

The Hamiltonian Eg. (3.1) for one anharmonic bondr(= 1) in one dimension @ = 1)
reads

H = rl——le—”+V X155 X
_, 2m, (X1 N)
N[
(Xns1 Xn  @n)’+ Vo(Xm+1  Xm) (3.5)

n=1
(&M )

>

V(X155 XN)

N O

The rst method is to introduce centre of mass of theotal chain and relative coordi-

nates. This approach is only applicable to 1d systems. Theahtage of this approach is
the way in which the harmonic and anharmonic degrees of fremd can be separated an-
alytically and the resulting Hamiltonian be put in the form ofthe Euclidean Lagrangian

of Caldeira and Leggett Eq. (3.2). Let

(I
XC = M_ man
Chn=1
1
M. = mp (3.6)
n=1

1
Xis1 Xi & ; 1=1;u:uN 1
9 Xc : n=0
ay =0 (3.7)

be the relative coordinates, respectively. Now the canonicaonjugate momenta have to
be found. One can de ne a generating function (2.19)

N[
Rao(X1; XNy 003 N 1) = k(X1 5 XN)
k=0
freXe;oxn) = k(X inxn)+t a ;a=0 (3.8)

This generating function (see section "Physical Preliminges" (2.19)) de nes the con-
jugate momenta as

@R _ "E—@h(xy; ) _
@x < @ '
m,

Mkn = M_ 0;k+( k+1:n k;n)(l 0;k) (3-9)
c

|
<
=
E
=~

P =

k=0
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where ¢ are the canonical conjugate momenta af. The matrix elementsM  read
explicitly

1 2 N-1 N
1 —1
O mia ma my
M M¢ M
kil 1 0 0
S, 1 1
—=—{ Myn) (3.10)
N-2 : 1 1
N-1 0 n o 0 1 1

Applying the transformations for p, of Eq. (3.9) to Eq. (3.5) yields

NC—1 T 1

1 N[E 1 0 1 1 1 1 .
—= Kk k0 —MaMe = 5 0 —MMIo  (3.11)
_ 2mn 2 _ n 2 — mn
n=1 k;k0=0 n=1 k;k =0 Irﬁ T ]
f
where M-is He ned as
0 1 N-2 N-1
1 1
0 =+ 0 0 0
1 1 1
0 L 141 1 g
mo mo ms3 ms3
=N
. 0
n 1 1 1 1
N-2 = 0 mn 2 my 2 mn 1 mn 1
1 1 1
N-1 0 0 o ATt e

The resulting Hamiltonian is

N .|  a—
— L@ e (312)
k

k
m m
k=1 k+l k=1 k¥l k=1

6
H= -2+
2M,

NI =

(&M)

The rst term is the kinetic energy of the centre of mass and Wibe dropped from now
on. The Hamiltonian has to be diagonalised. To achieve this amonical transformation
decoupling the anharmonic momentum , from the harmonic momenta ;k 6 M is
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performed. The coupling of \, with  ; reads

—1 —1 —1 1
1 1 + 1 2 M 1, M+ _
M M =
Mu mM+I1:I My My +1 5
2
1 My + My M+ M 2t My M+ (Mm+1 M 1+ My m+1)
5 —————— M
2 MyMya My + My 41 2My My 41 (M + My 41)

(3.13)

From this, the transformation decoupling the anharmonic mmentum , from the har-
monic momenta, can easily be seen
1t I:I 3.14
= My + +m + .
Pwv M My + Myt M+1 M 1 M M+l ( )
Pk = « yk=1;:5M LM +1;05N 1 (3.15)

Now the canonical conjugate coordinates have to be found. Oocan de ne a generating
function (2.19)

- -
Ra(6h; 6w 15 15 N 0= 6w mMﬂmE Jf:nm“"l M
N1
& « (3.16)

k=1
(&M )

With the generating function (2.19) the conjugate coordins can be evaluated in the
following way

G = 2—826‘( k=125 M 0 Z2M;M +2;05N 0 1 (3.17)
k
_ @R _ 1
Ov 1 = @ l—ﬁvl 1 EQVI (3.18)
_ @R _ 1
Qv+ = @t = Gv+1 EQVI (3.19)

Substituting these new coordinates and momenta in Eqg. (3.12note that the c.o.m.
has been dropped) leads to

H = Hpam + Hg+ Hi
N1 o N
Hham = 2 Tkjpkpj+ =y
2k;j =1 2 k=1
&M) &)

H _ mM+mM+1p2 C m%/l+m§/|+1
d = S5 ———bBut >
2My My 41 2 (my + my.p)?

Mpy+168u 1+ MM Ev+1
C P ap—— O (3.20)

% + Vo(am)

H int
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The Hamiltonian has been split up into three parts. The rst ore describes the harmonic
part, where the matrix elementsT,; depend on the massem and hence cannot be
analytically diagonalised. Considering the simplest casé equal masses, = m solves
this problem and allows an analytical diagonalisation. Thaliagonalisation and the
structure of Ty; for equal masses, is discussed in Appendix A. The second parsciébes
the coordinatesqgy , momentapy and interaction Vo(gy ). The last term contains the
coupling of the harmonic with the anharmonic coordinates.
After the diagonalisation the introduction of normal coordnates
er:(l er:(l
Q = ekuk); P = pkuk); =1;:uN 2 (3.21)
k=1 k=1
(&M) (&M)
is possible. The eigenmodas, ’ are derived and their explicit expressions are given in
Eq. (A.11) in Appendix A. Applying Eq. (3.21) to Hpam Of Eq. (3.20) yields
L NZET L]
Hham = 5 P2+ CQ? (3.22)
=1
where  are the mass weighted eigenvalues de ned in Eq. (A.10) in Appdix A.
Applying the transformation to normal modes Eq. (3.21) tdH;,; of Eq. (3.20) yields
N[Z ] c L1 1
Hri = & cQ . c=5 ulh, +ul) (3.23)
=1
Or expressed di erently to make it easier to show the equivahce between the di erent
approaches "First Method" and "Second Method" of separatig the harmonic from the
anharmonic degrees of freedom:
N2
Hin = e&C Ny, Q sin(gM) (3.24)
=1
, Where the normalisation constantN, is de ned in Appendix A (A.23). The term
containing only the anharmonic degrees of freedom has therfo

C
Ha = P + Vo(em) + — € (3.25)
m 4
Comparing the harmonic Hamiltonian Eq. (3.22) with a stl%ldad harmonic Hamiltonian
d: 1
H Sand) = 5 oo tmiQ? (3.26)

yields the following equations with! > 0

N
I
O
1
N
3|O
—~~
=

o

o]

7]
=
N
N

I

N
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, Where! ¢ is the frequency of the upper phonon band edge. The nal stepow is to
Legendre transform the Hamiltonian, which leads to a Lagraman. After performing a

Wick rotation (t = 1 ) to the Lagrangian, the Euclidean Lagrangian reads
LE = L5+ L LE= i + LR
L5 = 2%+ ) o
L1
LE = %NPT—I@ +12 Q mC| G (3.28)

=1

This Euclidean Lagrangian is of the exact same form as the @aira-Leggett Euclidean
Lagrangian presented in Eg. (3.2) needed to discuss the tuwglling behaviour. The

completeness of the eigenvectoré ) leads to the equality

|7——é| (3.23);(3.27) C |7£§

m12 UM+1+UM1
=1 =

C
> (3.29)
This completeness Eq. (3.29) makes it possible to includeetitounter term (third term
in Hyq EqQ. (3.25)) inL ;. This counter term, the role of which has been discussed by W&
[16], results from the canonical transformations, Eq. (38)-(3.19). This transformation
eliminates the coupling between the harmonic and the anhaonic momenta, as desired,
and generates a coupling between the normal (harmonic-)edmates fQ g and the
corresponding system coordinatey,. The Lagrangian now has the desired form for
eliminating the normal (harmonic-)coordinatesf Q g by the use of the path integral
formalism. This procedure will be shown in section "QuantunTunnelling".
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3.2 Second Method

The second method of separating the harmonic and anharmoregrees of freedom has
the advantage that it can be applied to higher dimensional syems. Starting from the
same Hamiltonian as in the rst method Eq. (3.5) the centre of rmss Xy is chosen
for the anharmonic bond only,not for the whole chain as in method one. The relative
system coordinategy stays equivalent to the rst approach:

My Xp + My 41 XM +2
My + My +1
Qv = Xm+1 Xwm (3.30)

Xd=

The corresponding canonical momenta can be achieved usingg@nerating function
(2.19) (like in the rst approach). The generating functionreads

Ro(Xm;Xm+1; M3iPd)= mOu + PaXy (3.31)
This generating function de nes the conjugate momenta as

_ @R,

=—;, n=MM +1 3.32
= @y (3.32)
The resulting two equations can be put into the following fan
Pa = pm + Pu+t
My My +1
= ———————Pu+ _ 3.33
M mM+mM+1pM ! mM+mM+lpM ( )

Substituting these transformations Eqgs. (3.30), (3.33) to Eq. (3.5) yields

H = I_|d"' Hharm + Hint
2 2 2
C my + My

H = _M 4 V, + — 2
d 7. o(0m) 2(mM+mM+1)20M
'IQ§ P2 c N(E_—1 )
H = + + = X X
harm s 2mn 2(mM + My +1) 2 - ( n+1 n an)
(h&EMM +1) (n&M;M 1)

C C
+—-(Xg Xm 1 am 1)2+§(XM+2 Xg aw+1)?

2]
My +
Hnw = C W(Xd XM 1 aw 1)
1
m
" (Xmsz Xd A1) Ou (3.34)

My + My +1

where y = mymy+=(my + my+1) is the reduced mass of the anharmonic bond.
For the transformation of Hnam EQ. (3.34) to normal coordinates, new coordinates are
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introduced for convenience

—1
Ed ; n=1:;M 1
x¢ = % . n=M
?+l 1 n:M+1liN 1
B ; n=1;:;M 1
pg = ; =M
1, h=M+1;2;5N 1
aﬂ+1 ’ _Mi"!N 2
1
e ; =15 M 1
m = %+m,\4+1 . n=M (3.35)
n+1 ; n=M+1;:;N 1

The explicit diagonalisation of the Hamiltonian by introdudéng again equal masse®,, =
m, for the same reason as before, is done in Appendix B. This |satd

1
1 :n6M

mo = m " (3.36)
2 ;n=M

A transformation to mass weighted normal modes

N e — N —
= ) p’=  ple’ (3.37)

n=1 n=1

with the eigenmodese% ) and ud; p? de ned in Appendix B, Eq. (B.5), yields:

H = Hharm+Hint+Hd
1Nz L]
Hharm = E IDOZ-l'qu2
=0
N2 c L1
_ _ 0 — () ()
Hin =  Om €q € —Ep: €vu+1 v 1
=1 m

2 C

Hy = M4 Vo) + 3.38

d p (0 ) 4q§| (3.38)

, where =~ are the eigenvalues de ned in Appendix B, Eq. (B.9). Sincélam (EQ.

(3.38)) is still translationally invariant (note that only the c.o.m. for the defect has

been separated of the total chain) there is a zero frequencyode which is chosen for
= 0. The eigenvalue of the zero mod& ~reads ™ = % (1 cosép)) =0.

After showing the equivalence of the transcendental equatis (for the explicit calcula-

tion see Appendix B Eqgs. (B.13)-(B.16)), only the equivalercof the Hamiltonian of
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the rst approach Egs. (3.22)-(3.25) with the Hamiltonian ofthe second method Egs.
(3.38) remains to be shown. Sinckly already has the same form, as can be seen by
comparingHy of the rst method (Eq. (3.25) with Hq of the second method Eq. (3.38)
(and replacing coordinates (v ;ov) by (pu;6uv)), only the harmonic and interaction
part remains. Extracting the zero frequency mode from the manonic Hamiltonian of
Eq. (3.38) one gets a harmonic and a c.o.m. part

The c.0.m. Hamiltonian is the kinetic energy of theotal chain. Note that the mass
weighted eigenvalues from the rst method can be transformed into the mass weighted
eigenvalues of the second method by

- =C (3.39)
With the canonical transformations
—1 1
p° = P; o :=p=Q =1;:uN 2 (3.40)

the same harmonic Hamiltonian as in the rst approach

1Nz -
Hharm = é P2+ CQZ (3.41)
=1
is achieved. The c.0.m. momenturpj in the second approach (which is mass weighted)
is of course nothing put the massless momentum of the rst appach  with the mass

added (in a multiplicative way) separately (see Eq. (3.12))The transformation reads

Py = P (3.42)
Cc
This shows the equivalence of the c.0.m. and harmonic Hamitian of both approaches.
The interaction part is more tedious. Starting with the inteaction part of Eq. (3.38)
and using the transformation given in Eqg. (3.40) one gets

c Mz g1l ]
Hin = uoPe P= @&a &1 (3.43)

=1

By using the derived eigenmodes from Egs. (B.9), (B.10) onetg the following expres-
sion for Hj

L] (NN

c " S M L N M e 301
COS X = 0S X =
Hint = Q\/Izpﬁ Iﬁ 2 '_-—-Cl o2 cosx M =

cosx N M 1 2

=1 é

L1
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Now with the help of the transcendental equatier; Eq. D@ 13) (e £3n replgge the
rst term in parenthesis by 2 (2cosf) 1)cos x M 5 cos x M % This
allows us to rewrite the interaction part as

c N 1 I | 1IZIZI:I I | 3III]:I:I
Hint = Om 19ﬁ Iﬁ (2cosf=) 1)cos x M > cos x M >
=1

With the help of some basic trigonometric identities we get

N|—2:|: C 11
Hint = 20w pc—m Ng=— sin (x M)sin ’% (3.44)
=1

using the equation for the eigenvalues Eqgs. (3.39) ,(B.9)¢hinteraction part has exactly
the same form as in the rst method Eq. (3.24).

N
Hin = oguC Iﬁ sin(x M) (3.45)

=1

To show the full equivalence one has to look closer at the vables. Both approaches
yield the sameQ and of coursegr = gu. The equivalence of the transcendental
equations (proven in Appendix B Eq. (B.16)) also provide theane wave numbers
g = x for both approaches.

The only equivalence left to prove is that of the normalisatin constants. Since this is
not only tedious, but also more to write down, the proof is gen at the end of Appendix

B. With this result the equivalence of both approaches has be shown.
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3.3 Quantum Tunnelling

Since both approaches lead to the same Euclidean Lagrangiahe notation of the
rst approach is used from now on. This section is restrictetb the zero temperature
guantum tunnelling behaviour of the anharmonic bond embeddl in the harmonic chain.
The tunnelling behaviour is graphically shown in Figure (2)

a ag
e O O o 0 0 0 © D
1 M M+1 N

a a
oo o o - o o o o o0
1 M M+1 N

Figure 3.2: Two degenerate classical ground states of the open chain with N particles. The masses m, are chosen
to be equal. a is the equilibrium length of the harmonic bonds and as;a, the two degenerate equilibrium lengths of the
anharmonic bond.

The defect potential Vo(gv ) of Eq. (3.28) is assumed to be a double-well potential with
degenerate minima at ¥, which corresponds to the equilibrium lengttas > 0 of the
anharmonic bond and®, which corresponds to the other equilibrium lengthe, > as
of the anharmonic bond. The interest lies in calculating theEuclidean propagator
describing the tunnelling between the degenerated equilibm ground states % and
% The propagator describing this tunnelling behaviour is deed as

av (T o
Ge(%;T;q;0) = Dau( )e

am (0)= qi

sE [am ()]

(3.46)

where the harmonic degrees of freedom have already been ilated'. The Euclidean

1The elimination procedure for the harmonic degrees of freeam has been shown explicitly in section
"Physical Preliminaries"
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action SE[qy ( )] for this model can be split up into two parts

S [aw( ) = Sglow( )]+ S [ow ()]
] 1
Sglam() = d Eq?A()+V(qM()
0
1
Sk [om ()] = d d°%Ku( Yam ( Yam (9 (3.47)
0 0
N[Z_—A
Km() = o e (3.48)

The kernelKy () will now be discussed to show the tunnelling behaviour fohis case.
The index M stands for the position dependence of the anharmonic bondskrting ¢
from Eq. (3.23) andm ;! from Eqgs. (3.27) into the kernel (3.48) yields
NI‘Z:I :
Kum( )= b N2 sin LEJ sirf(gM) e Losin(%) (3.49)
=1
L1

Replacing the normalisation constaniN, (A.23) by its low-frequency behaviour Ni

which is a valid assumption for the case of taking the thermgdamic limit (N !'1 ),
yields the integral representation of the kernel
C! ] .
Ku()= == dggsir(aM)e & (3.50)

2
0

From the integrand of Eq. (3.50) twog-scales follow. They are
1 1
= d = 3.51
voand a = (3.51)
Equating gy = g de nes a time scale
M

"o

M = (352)

The kernel Eq. (3.50) can be evaluated by performing thg integration, the result is

— L] L] L5
8CM? e 2'0 16MZ2 2ez'c 2 1 ('o)26 6ez'c + 1,

Ku()=

(16M21 5 + (1o )3)?

This result can be approximated neglecting the exponentlgldecaying factors regarding
the long time limit ! 1
1 1
8CM?2l g 32M2+6(! o )2

(16M21 5 + (1o )3)?

Km( )= (3.53)
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This memory kernel now has to be investigated regarding thebave de ned two time
scales.

M -
ReplacingM by ! 3 » and applying M, yields

48C!I M2 1
(o )4

K ( M) = (3.54)

M -
In this case \ Yields the largest contribution, applying this to Eq. (3.53

Clo 1

o) (3:59)

Kwm ( M)

which leads to ohmic behaviour.

10 T T — T

16 L ooyl ooyl
10" 10°

0
t

Figure 3.3 -dependence ofK y ( ) for dierent nite and in nite M (green: M =5, red: M =10, blue: M = 20,
brown: M =40, grey: M =80, magenta: M = 160, dashed orange: M = 1) on a log-log representation. The dotted
and dashed line, corresponding to 2and 4, respectively included to see the transition.

Finally one can summarise the results as follows. If the obigation time T of the prop-
agator (3.46) is smaller than y, Eg. (3.55) holds, which shows ohmic dissipation. This
can be explained as follows. , is the time a phonon emitted from the anharmonic
bond during a change of length, needs to reach one of the chaimds. If the anharmonic
bond is located in the bulk of a macroscopically large chaiit, never feelsthe ends of
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the chain, becausey, is in nitely large and thus is always smaller ,. That means
the dissipation for an anharmonic bond located in the bulk cén in nitely large set of
harmonic oscillators with linear coupling, is always ohmic

Figure 3.3 shows the KerneKy, ( ) in a log-log-plot. The transition from ohmic disipa-
tive behaviour 2for < \ to superohmic dissipative behaviour 4is clearly
visible in Figure 3.3 for di erent values ofM . For the case of ohmic dissipation, which
means observation timeds < |, there exists a phase transition allowing a mapping
of this problem on the one dimensional Ising model with longange interactions of the
form L, as has been performed by [33] showing this phase transition

There exists a critical couplingCeit (T) which separates the ordered phagseé > Ci; (T)
from the disordered phase€C < C; (T). The parameterT represents thelength of the
Ising chain. The expressiofieeling(used above) can be interpreted in terms of the Ising
chain as a correlation length (C). In the Ising model the correlation length is usually
given as a function of the temperature [34] (section Ill 17),lbut since the temperature
is zero here, the relevant variable is the couplin@. Since the one dimensional Ising
model does not show a sharp transition for a nite lengthl, there is also no sharp
transition from tunnelling C < C; (T) to "long range order" at C > C; (T), which
corresponds to localisation. A sharp transition (phase tresition) can be observed for
T=1,only.



Chapter 4
The 2-defect Model

4.1 Two Defects

The case of an open linear chain dff particles with next neighbour interactions and
two defectsM; M, is considered. The Hamiltonian for this system reads as

C N[ X 1
H = 4n o4 = (Xn+1 Xn an) + VO(XMi+1 XMi) (41)
i 2mn 20 i1
(&M 1M 2)

Separating the harmonic from the anharmonic degrees of foeem is done in the same
way and for the same reasons as in the rst method of the one amonic bond case
(see Eg. (3.14)-(3.19)). Let

1 1
XC = — Xnmn
MC n=1
—1
Me=  m, (4.2)
n=1

be the centre of mass and the total mass for all particles and
Yn = Xp+1 Xn & ; n=1;u5N  1;n6 M; M, (4.3)

be the relative coordinates, respectively. As in the one antmonic bond case, one
can de ne a generating function (since the procedure mbsolutely equivalent (3.8),
the calculation will not be shown here). For convenience th@mplest case making an
analytical diagonalisation possiblan, = m, is chosen. It yields

1
;L1 e T e
H = + — k k ka1 T = Y + Vo(Ym,) + Vo(ym,) (4.4)
2Mc  m k=1 k=1 2 k=1

(&M 1M 2)

This Hamiltonian is the starting point for the diagonalisaton procedure. One assump-
tion needed to perform the analytical diagonalisation in tB way shown in Appendix C

43
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is to de ne the middle of the open chainM as eitherM = % for an even chain-length
and M = % for an odd chain-length. Choosing the anharmonic bonds synetnically
located with respect toM, one can express the variablel;; M,; N in terms of N; D,
whereD = M, Mj is the di erence between both bonds and = M, + M, is the
total chain-length. This approximation does not qualitatvely change the tunnelling
behaviour, since both anharmonic bonds are only investigat in the bulk. In the next
subsection the relevant canonical transformations fdd 2 are presented. That covers
all possible cases, since the case®»f= 1 means that both anharmonic bonds are cou-
pled directly and could be considered as one anharmonic bondh an additional degree
of freedom. This case will not be considered, since the inglit interaction between both
anharmonic bonds through the harmonic bath is of interest.

4.1.1 Pre-diagonalisation Transformations

Again canonical transformations for the diagonalisation mcedure are applied (see ex-
planation before Egs. (3.14)-(3.19)). The decoupling of boanharmonic bonds from
the harmonic degrees of freedom is done analogously to sactiFirst Method". The
generating function is achieved in the same way as before amhds

1 N 1
Ra(on; 5o 15 155 N 1) = v, ™ Ml 5 M 1
NI
G k ;i=1;2 (4.5)
k=1
(&fM;9)

With this generating function the conjugate coordinates aabe evaluated in the following
way

Q@R

& = —=¥% k&M 1 (4.6)
@«
@R 1 .
. = = Ym. =ym, ;1=1;2 4.7
Ov; 1 @w, 1 Ymi o1 2yM| 4.7)

The transformations forD = M, M; 2 read
kK = P  k=1;:uN 1 k6 M{; M,
1
My = I0M1+§(DM1+1+DM1 1)

1
Mz = Pum,t é(pMzﬂ + Pv, 1)

Yo = G o k=1;:uN 1 k6 My LM, 1
_ Owv 1
YMi 1 = Oup 2 2
YM2 1 = Ouy 1 L (4.8)

2
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Substituting Eq. (4.8) into Eq. (4.4) the Hamiltonian can be plit up into four parts

H = Hcem* Hpham + Hine + Hyg
2
Heom = S
2M
F1 1
1 1 N[Z 1 1
Hharm = E IENI pﬁ Pk Pr+1 Z (pMi+1 + Pwm, 1)2E|
k=1 k=1 i=1
(&fMjg) (6fMig;ifM; 19)
c "’ —1
<
(@‘Fif(;l-g)
c L1 . [
Hint - SO0 Oy 11 Omg+ Eq\/lz Ov, 11 Qv
e
Hd = E le + pM2 + Z (}\Al + (ﬁz + Vo(qvll)+ VO(quz) (4'9)

The c.o.m. term will be dropped from now on. It just represemst the translational
invariance of the system and does not contribute to the in uece action. The relevant
term for the diagonalisationTham (Kinetic part of the harmonic Hamiltonian) will now
be treated. The explicit derivation is presented in detailn Appendix C.

4.1.2 Caldeira-Leggett form for D 2

After the diagonalisation a transformation to normal modes @done in (3.21)
N

P = PO . k6 MM,
=1
Ul a—
G = QU ; k& My;M, (4.10)

=1

where t ) denote the eigenvectors achieved in the diagonalisationgmedure. The
additional index can take two values "symmetric" and "antisymmetric" and is die to
the diagonalisation procedure performed in Appendix C. Thatransformation applied
to Eq. (4.9) yields (the c.o.m. term has been omitted)

'L ES. c "\’
Hn = o= Tapkp + — 2
arm om | kl Mk Ml 2
Kkl =1 k=1
(&M 1M 2) (&M 1M 2)
1 I N"]. N3 1 . .
= 5 OpOPpIyl )yl
k=1 - 0=
&M M o)
C I N||1 N3 1 ‘ .
to QUQ!Juf ' uf ” (4.12)
k=1 - 0=1

&M 1M o)
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where Ty denotes the matrix elements and ¢ ) the eigenvalues used in Eqg. (C.9) for
the diagonalisation. Performing the summation ovek simpli es the expression yielding

1] - - 1]
1
Hharm = > ) pl )L2__|+ C Q( )|-2_—| (4.12)
=1
The interaction part reads
O - |:I. | 1
Hine = Q() Cp, Ov: * & Qu, G; :E UE\A?'+1+U§\/|?'1 , 1=1;2
=1
(4.13)
and nally the defect part stays as it was
1 [ oy 1
Ha= = Py * P, * 7 Gy ¥ Gap * Vo(Os) + Vo(O,) (4.14)

A Legendre transformation and some basic mathematical mamilation lead to the de-
sired Euclidean Lagrangian in the form of Caldeira-Leggett

LF = Lepls
E _ M 2
Lo = Zo.fnl*‘ng + Vo(Gu,) + Vo(Qu,)
NI e 8 B
E 1 L 0 RG] o -
L]_ = E m Q— + | Q Q Cl;q\/|1+C2;q\/|2
=1 =1
) Ex o TR
+ My G e (4.15)
=1 2m 1)
where
1 L1 L1 1
1 ) ) d’ c
m = T , ! = C = |05|n T ; !0:2 E (416)

are achieved in the same way and for' ’ > 0 asin Eq. (3.27). The coupling coe cients
read with the eigenvectors from Eqg. (C.9)

1 1
¢, = G =CNjsin q(a)¥
1 1
& = & =CNgsin @92 (4.17)

2

and are necessary for the calculation of the zero temperagéukernel. The normalisation
constants have been calculated in Appendix C, Egs. (C.26), &7).
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4.1.3 The Kernel for two anharmonic Bonds

To discuss the tunnelling behaviour for two anharmonic borgj the propagator in form
of an Euclidean Green's function as in the one anharmonic bartase is needed. The
propagator reads

e e T e
Ge (G5 G, TiGuyi G, 0) = Daw,( ) Dau,( )e - (4.18)
a5 (0)= gy, a5 (0)= gy,

Splitting the Euclidean action into a local and an in uence prt as done in Eq. (3.4),
where the local part yields the instanton solutions and theniuence part the kernel, we
are able to write down the in uence action for the two defect&se (derivation analogous
to the one anharmonic bond case see Eq. (3.47)) as

1
St (O Ou,] = d d ng( Yam, ( )0 ( 9 (4.19)
=l 0
where the indices; | show the e ect of two instead of one anharmonic bond, as disssed
before. The derivation of the zero temperature kernel for thtwo anharmonic bond case
can be achieved from the Euclidean Lagrangian in exactly treame way as before (see
Section: "Physical Preliminaries”). The calculation willnot be presented here. The

result is:
) 1 I__"TIIE:I
KE()= K M ()= e'" (4.20)

2m(),<)

The coupling of symmetric with antlsysmmetrlc elgenvectsrls of course zero by de -
nition, hencec(s)q(a) = 0. That is the reason only¢ ' ) is considered in Eq. (4.20).
The calculation of the kernel is only necessary for one symme and one antisymmetric

case, because the kernel obeys, as can be seen from Egs. )(th&7ollowing relations
KS™M() = KEHP()= KP™()= Kg™()
KE™M() = Kg™()= KP()= KP™() (4.21)

As discussed in Appendix C, the thermodynamic limiN ! 1  makes an even chain-
length indistinguishable from an odd chainlength. This ishe reason only everN are
considered in the calculations and derivations, respec#ly. Starting with the symmetric
case using Egs. (4.16), (4.17), the kernel reads as

—— — 11 .
(s);ij — CI 0 2 ) (s) N D . q(s) osin Q
K™ () = — N% sin® d —— sin =~
()
= o IN:.zslsin q7  tesn
2 ' 2
C1 1 C1C1 [C1 L1 [ 1C 1 LL1
(°) (s) ) )
. N D N . D
sin 3 cos I cos I sin 3
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_ W 1 IfCI)N 1 _ _
Now sin 4= ;cos 45~ can be replaced with the results obtained from the tran-
scendental equations (C.29), and since the main contriboth comes from the low fre-
guency behaviowq( ) 1inthe case of largdN , which is used since the thermodynamic
limit N !'1 is taken, the approximations used in those Eqgs. and for the noalisation

constant (C.32) are valid, leading to

) Cl 1 |:[|)|:|
KI(DS);”():Z—'O dq gcog q7 e &

0

The antisymmetric kernel is treated in the same way, but heréhe matrix elements
(i =) are shown. With Egs. (4.21), the casei 6 |) is easily seen. It reads

) Cl 1] I:l:l)l:l
KI(Da);u()ZZ_-O dqqsin2 q7 e%

0
Now the D-dependence of the matrix elements have to be discussed. ritg with the

matrix elements § = j) the integrals can of course be evaluated exactly and tHe
dependence disappears by applying a trigonometric identit

O [ C1Ca 10
N | |
KS()=K§)‘“()+K9'“(>=%ﬁ dqqcos %? +sin® %? e ¥
0 [ [TL1 ]

=1

what is left now is the kernel for the case af = j showing ohmic dissipation with no
D -dependence:

L]
0 ! od 2C|0 1

c 2 B (4.22)

. |
Kp()=—— dage:
0
This makes sense, sincB has been chosen in the bulk and the kern& [ ( ) shows
strictly ohmic dissipative behaviour as it should be for an r@harmonic bond located
in the bulk. The kernel fori 6 j allows to calculate the interaction between both
anharmonic bonds with respect to the distanc® in between them. Two cases are of
interest. One is the distance of both anharmonic bondd is nite, which should lead
to an interaction represented in a non vanishing kerndd }2( ). For the limitof D !1

this interaction vanishes as it should be. The only di erene to the previously discussed
case is a minus sign for the asymmetric kernel leading toDxdependent result

Ke'() = K" ()+ Kg"()
0 o 11 1
| !
= % dq q cos % sin? % e & (4.23)
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As can be seen these kernels § j) have aD-dependence, that needs to be examined
carefully. Using a trigonometric identity the cosine and si& squared can be replaced
L C! ] !
KEi()= 2—0 dgqcos@D) e ¢ (4.24)
0

, yielding the proof that lim KEi()=o.
Evaluating this integral(4.24) yields

1 I:I 1 I:I
e 2 27 ((1o)* 4D ( 1°@D(!o 2+(10)2+ ! o))

(4D2+ (1o )?)°

. |
K@i()= S

Two g scales occur in the integrand of Egs. (4.22),(4.22).

1 1
=5 and q = T (4.25)

Equating o = g de nes the time scale

D

b= (4.26)
‘0
Considering! 1 one gets from (4.25)
6 2Cly (1o )2 4D2
((to )>+4D?)
From this result it is easy to discuss the to relevant cases p and D.
. 1
Ko ( D) D2
A 2CI 1 - L]
K21 p) = —2—o 1 12 2 (4.28)
(‘o)
Inthe limit D 11 the kernelK [ ( b) vanishes as it should be, because in nitely
large D corresponds to no interaction. For the case of p it makes no sense

taking the limit D !' 1, since p is still considered to be much smaller than. The

variablesqgy, and gy, and the respective kernel& 2 ( );i;j =1;2 do not correspond to
physically relevant quantities, since we are interested itime di erent (ohmic or super-

ohmic) dissipative behaviour that occurs depending on theverall chain-length changing
or not. Due to the matrix structure of the kernel a transforméion to physically relevant*

variables has to be considered.

O =COu,tOv, 5 0 =0v;  Ow, (4.29)

the reason for this transformation is given below
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Applying this transformation to Eq. (4.19) and using the symrmtry relations for the
kernel Eq. (4.21) yields

(LI O I B oy 1
Sk [@:0 1 = d d°KJ Y (Ja( 9+ Ky (- g ()a (9
0 0
(4.30)
, with
] ]
k) = KBOFKEQ) oot =2 iy w2 0 o
o () = 2 - 2t 1 . 5
|:|Iﬁ) 1’
_OKE() KE()'eor S gt D
Ko () = > = ey a0 _ ] (4.31)
(Yo )* !

It is now easy to see, that kerneK % () always shows ohmic dissipative behaviour in
leading order, whereas the kerndd , ( ) shows a transition from ohmic to superohmic
dissipative behaviour. The kernel& 3" ( ); K ( ) are shown in the following gures:
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10" [T — T — T —TT T

10°

KD++(t)

10°

10° 10" 10° 10° 10*

Figure 4.1: -dependence of K5 ¥ ( )fordierent D (green: D =5, red: D =10, brown D =40, magenta: D = 160)
on a log-log representation. The dotted line corresponds to a 2 pehaviour.

10° Feo T T — T — T

g ~.
10 b
n q
10—20= ol ol Lol Lo d
10° 10" 1{)2 10° 10*

Figure 4.2 -dependence ofK, ( )fordierent D (green: D =5, red: D =10, brown D =40, magenta: D = 160)
on a log-log representation. The dotted and dashed line, correspondingt o 2 and 4, respectively included to see the
transition.
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In Figure 4.1 the KernelK 5" (') is shown. It shows a 2 clearly depicted on the log-
log-plot. This plot is a graphical representation of Eq. (481), which shows a ohmic
dissipative behaviour independent on the introduced timesale p. The small shift
resulting from the factor 2 the kernel receives after crosg p is not understood, but
nevertheless the dissipative behaviour remains ohmic.
In Figure 4.2 the KernelK, ( ) is shown. It shows a transition from ohmic dissipative
behaviour 2 to super-ohmic dissipative behaviour 4. This transition is clearly visible
on the log-log-plot and di erent anharmonic bond distance® have been included.
Now the advantage of this transformation has to be discusseth the one anharmonic
bond case each of the bonds has two di erent initial and two dirent nal positions.
We were able to show ohmic dissipative behaviour of the Keidnéthe anharmonic bond
is located in the bulk and a transition from ohmic to super-omic dissipative behaviour
if the anharmonic bond is located at one of the borders.
For two anharmonic bonds the scenario is more complicated.h& reason for switching
from ohmic to super-ohmic dissipative behaviour was the pitien of the anharmonic
bond. Tunnelling of the anharmonic bond, located at one of thborders, only requires
a nite mass M = O(1) of the harmonic bath to be moved in the translationally
invariant chain. But if the anharmonic bond is located in thebulk, tunnelling of the
anharmonic bond requires to move an innite mass M = O(N); N !1 of the
harmonic chain. For two anharmonic bonds located in the bujlkboth can tunnel with a
movement of an in nite mass or with a movement of a nite massfahe harmonic bath.
A movement of a nite mass requires both initial positions othe anharmonic bonds
to di erent, i.e. one having length a; and the othera. Now if one anharmonic bond
tunnels and changes its length, the other anharmonic bond rcaeact and also tunnel.
The mass that has to be moved is just D = O(1) and hence nite. Only a nite
length D of the harmonic bath had to be moved to allow this tunnellingHence one
would expect a transition from ohmic to super-ohmic dissipae for times depending
on the time-scale p in analogy to the one anharmonic bond case, with the bond laea
at one of the borders.
All other scenarios of both anharmonic bonds tunnelling requ@ a movement of an
in nite mass of the harmonic bath, which should result in ohnt dissipative behaviour
in analogy to the one anharmonic bond case located in the bul€onsider for example
both anharmonic bonds having lengthss, then every tunnelling, no matter if only
one anharmonic bond or both bonds tunnel, requires the movemt of an in nite mass
O (N); N1!1 | since both bonds are located in the bulk.
The transformation necessary to measure the change in theeoall chain-length is given
in Eq. (4.29). This is of course only valid for equal equilibum bond-lengthsas, =
as, as;a, = a, g of the relative coordinatesqy,; gu,, which is considered here.
This is obvious, since if the length-changes of both anharmic bonds are not the same,
movement of an in nite mass of the harmonic chain is still regired no matter how the
anharmonic bonds tunnel, leading to ohmic dissipative beti@ur. The transformation
can be interpreted as follows. The kernel matri¥p, consisting of four elements<
with i;j = 1;2 (4.19), isdiagonalisedand contains now only the diagonal elements
K5";Kp and no coupling betweeng. and q (4.30). The kernel matrix element
describing a change in the total length is labelel * , whereas the overall chain-length
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does not vary forK, . Those new coordinates allow to treat the two elements of the
in uence action of the anharmonic bond case equivalently tthe one anharmonic bond

case, namely just considering a movement of a nite or an inite length of the harmonic
bath.

1-anharmonic bond:

anharm. bond at border: super-ohmic dissipation

anharm. bond in bulk: ohmic dissipation

se[leel
20 22

2-anharmonic bonds:

no overall length-change: G O - 2 super-ohmic dissipation

!
big overall length-change: G O - 2 ohmic dissipation

small overall length-change: LT E 2 ohmic dissipation

E;q\ﬂz )
O COu, !

The case of small overall length-change requires of cours@anelling of the anharmonic
bonds at di erent times. This graphic shows, that even thoulg there are many more
paths in the two anharmonic bond case compared to the one amh®nic bond case, the
number of di erent kernels describing the paths does not chge. In the one anharmonic
bond case the kernel was either ohmic or super-ohmic depemniden the position of the
anharmonic bond, whereas in the case of two anharmonic borttle kernel is also either
ohmic or super-ohmic, dependent on the initial and nal posibns of the anharmonic
bonds. The transformation fromqy,; gu, to 0. ;q does not only decouple the in uence
action, but introduces a new coupling in the local action, maely a term o2 ¢?. This
term yields a coupling of the up to now bare instantons; ¢ in the local action. The
e ect of this coupling is not fully understood.
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4.2 Tunnelling expectation value using extended NIBA

]
De ning a measurable quantityp(t) = Tr  eq(t) M @ where the matrix elements

of the reduced density operator eq(t) have been calculated Appendix E and are given
in form of a path integral Eq. (E.14). The derivation of the inuence functional F for
the two anharmonic bond case is similar to the derivation ofhe one anharmonic bond
case. The derivation is given in detail in Appendix E. Using the uence functional for
two anharmonic bonds

0, = H O -
Flow,:Ov,in, o] = exp = d d°%au.() o.()
] ab=1 0 0 T
Lab( (bq\/lb( % Lab( ()q(\)/lb( % (4-32)

where the functionL 5,( ) is de ned, for zero temperature, as

N|§ !
~ 2 _[cost ) isin(l )] (4.33)

Lan( ) = m 1

Splitting the function L,( ) into a real and an imaginary part one can put this in uence
functional in the following form

FLOC) @) @9 @9 =
I

2 1 1 RS
exp &i d d° L3 9 @) O L 9 @) OC9
a;b=1 0 0
(4.34)
by using
L1
L 9 = dida()sint [ 9
s
L 9 = dIa(t)cost [ 9 (4.35)

0

and applying (as in the one anharmonic bond case) a transfoation of the coordinates
Om.; oﬁ’,,a to blips 5 and sojourns , with the following transformation

ma() ()
G

. () + ()
09

@)

@)

(4.36)
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The spectral densityJa(! ) is de ned as

TR ) (4.37)

Y= _—
ab( 2

Splitting the spectral density into a symmetric (s) and an atfisymmetric (a) part and
using the de nitions of the variables from Eqgs. (4.16), (4.2), one gets

o ¥ 1 1 '?(Sl) LT | %l) L
Jaa(l) = '20 NZ si? o 5 sin 5 I lgosin —
=1
o ¥ = I — %I) - — ? 111
+ N < sin sin — ! loSin —
2 0" 2 2 ° 2
(4.38)

Replacing the normalisation constants for niteD = O(1) according to Eq. (C.32),
splitting the squared sine into one component containiny and the other containingD,
we are able to get rid of theN dependence. To do this, the results from the transcen-
dental equation Egs. (C.29) are used. We are then able to penin the thermodynamic
limit (N !'1 ), yielding

I%I:II:I e

O

Jaa(!) = T dqsm I osin 5
° 1 |q[|)| | I%I [T
2 . H . a2
1+72q D) cog = f2(q;D) sin(gD)fs(qg; D) + sin -
1 101 - - =
+————_ cog ab sin(qD) f a(q; D) + sin? gb f2(q; D)
1+fZ(q;D) 2 o 2 T
(4.39)
Evaluating the integral gives
cl ot L1 s [
Ja(l) = — 1 — b E tog D arcsin 1 f2 '—;D
Lo Lo 1+f2 :D Lo Lo
0
(- | ) R s [ |:I|Dj§'
sin 2D arcsin — fs —;D +sin? Darcsin —
'o 'o I'o
L1 C T
+ - [ tod D arcsin T
1+f2 ;D $ 0
1 o i s [ s [ - =18
sin 2D arcsin — f, —;D +sin? D arcsin i f2 '—;D
Mo Mo Mo Mo

(4.40)
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Since the quantum dissipation generated by the harmonic Hdatdepends on the low
frequencied! I o of the spectral density, it is possible to Taylor expand theesult,

considering nite D, yielding
1 HEagh
N !

! 7+8D 1
Ja(! !g=C— C — o - (4.41)
Lo 2 Lo o

The calculation of Jag (! ) is done analogously. The result is

C 101
7+8D +4D? 1
c— =77 1y

@)
2 o

. HEHLE
Jag b(! ! 0) =C G —0 (442)

As in the one anharmonic bond case a transformation of the blgnd sojourn variables to
"charges" is performed, but one essential assumption is lnded in the two anharmonic
bond case. Since it seems impossible to calculate the turlimg probability of two
anharmonic bonds tunnelling at di erent timesteps, a crudeassumption, namely setting
the timesteps of both anharmonic bonds equal, is made.

1
W) = # (

j ty 1) t3)
j=1
E— =
@y = 0 By ()
i=1 ]
(1)( ) = | J{ ( tzj) ( t2j+1)
i=0 ]
(2)( ) = J{ ( tzj) ( t2j +l) (4-43)

This approximation forces one of the anharmonic bonds to refinstantaneously to a

tunnelling of one of the other bond variables. This is of cose not the case, since both
anharmonic bonds are separated by the distand®, but the time information needs

to travel from one anharmonic bond to the other is given by théime a phonon needs
to = ! oD to cross this distance. But for small distance® the approximation gets

better and better. The detailed calculation of the above (43) transformation applied

to the in uence functional (4.34) is done in Appendix D.

Equating the tunnelling of both anharmonic bonds has also ka applied by [29]. They
write "when the indirect coupling is the largest energy scal the two spins will tend to

tunnel simultaneously”. Since there is no direct couplingdiween the two anharmonic
bonds, but only the indirect coupling through the harmonic kth, this assumption is

always ful lled. The only di erence, that the two continuous anharmonic bond coordi-
nates are no spins, but are considered to ip instantaneoyslwhich makes it possible
to treat them as spins. In [35] it is written, that "For the double-impurity case, ..., a

low-temperature and short-distance regime, where corréda tunnelling is established
...", which also strengthens the assumption used in this tkes of setting the ipping
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times of both anharmonic bonds equal under the restrictiongiven above.

Another point shows the validity of this approximation. The n uence functional Eq.
(4.32) has an oscillating part containing the imaginary parof the function L2°(t) in the
exponent. This term is called friction term. The other term,with the real part of the
function L2°(t) in the exponent, is called the noise term. This noise term &ways bigger
than zero and randomly pumps back energy to the system. In tfeme anharmonic bond
case, summing over the same subset of blip-charges, makas term always positive, as
mentioned by Leggett et al. [14]. But for two anharmonic borgla new situation arises.
The argument of the exponent of the noise term looks like

2 I
Bog oL 9O @Y LRC 9 O() A9
0 0 ]
PO 9 @) D9+ LP( 9 @) @9 (4.44)

Now one has to look at all possible cases, they are

1) W= @=

B0 0. &

=, 1), a
=.+1); b
(+1;0);, c
£ d
e
f

2) e @

(G4+1);
=1, 0);
©; 1),

Using all possible cases in (4.44), one gets for the argument

0, 1c
%Q,(t), 2a2b
BQ,(t),  2c, 2d, 2e, 2f

%Qi(t), 1la,1b
, with

Q(l"i? (1) Q1=0(1) ; a=1;2
QL) = Q) Q(b) (4.45)
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, which implies of course also

J (1)= Jaa(!)  Jasn(!) (4.46)

The functions Q(lig) where de ned in (4.75) and are the result of performing the ta

o I . .
time integrations d  d °of the functions L"( 9; L35 9 in Eq. (4.44).

The possible cas?es ar(()e given in descending order, largesti@aon top smallest value at
the bottom. This can be seen in the interestifgtime regime! ot 13 in Eq. (4.86),
where Q,(t)(4.48) has of course the same time dependence in the long diimit as
Q5 (t)(4.86). Using the calculation of the spectral densitya,(! )(4.41) it is possible to
calculate Q,(t)

]
| in(!
Qult) = C I%I7+8D)(cos(. of) 1) N (7 +8D)sin(! ot) F2In(1 o) 2Ci(l of)
2! 0 (I ot)2 ! 0t
(4.47)
now considering the long time limit! gt 1 one gets
C
Qx(t) = Gln(! ot) (4.48)

The noise term is maximised for the case ot 1which is nothing but both anharmonic
bonds being at the same time in a sojourn state. This is physiity reasonable, since
maximising the noise term in the one anharmonic bond case acs a Gaussian lter
guenching o -diagonal quantum uctuations [16]. It is alsothe reason, why the NIBA
is a valid approximation in the one anharmonic bond case, si@ the system stays longer
in a sojourn state and hence the blips can be treated as a didugas.

This is already enough to assume, that both anharmonic bondsnd two be either
together in a sojourn state or together in a blip state, rathethen one in a sojourn and
the other in a blip, at the same time.

The second biggest value for the noise functional is achievi@ the case of 2a, 2b, which
is both anharmonic bonds being at the same time in di erent Iy states. This clearly
shows, that both anharmonic bonds tend to be either both in aocgourn state or both
in di erent blip states, compared to one being in a blip and tle other one being in a
sojourn state. The only case even less probable than one bdnda sojourn and the
other in a blip state, is both bonds being in the same blip stat1a, 1b.

This e ect, that both bonds tend to be at the same time in sojotn states or di erent
blip states, is captured by forcing both anharmonic bonds tbehave as one bond. Since
we are investigating both anharmonic bonds changing the s&s of their tunnelling
coordinates v, ; of),; Ou,; oy, at the same timesteps, it is possible to treat the two
two-state coordinates (every coordinate has two possiblalues %) as one four state

2As has been mentionleij_| iE2:{14], forwct . 1 the corrections to 1 in Py(t) (and to 0 in Py/3(t)

respectively), are of order o »atmost and hence of little interest.
3Since we assumé  tp = %, the case ofwgt 1 is of course always ful lled sinceD 2.
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coordinate. The total bare amplitudesA[gv,( )]; Blogu,( )] for a given path are now
Algu,( );au,( )land may be broken up into small pieces of lengtiit[14]. The amplitude
to remain in the state is one, whereas the amplitude of swittly states isi 5 dt. In the
one anharmonic bond case [14] the basis for de ning the tunheg amplitudes is the
spin-boson Hamiltonian without bias and no coupling to the bath Eq. (1.1) [14].

1 [
H.o= - = 01
=0 — 2 X = 2 1 O
:1I 1 C 101
The basis is formed by the localized stategRi = 0 JjLi = 1 representing

the right or left well of the symmetric double well potentialV (g), which are eigenstates
of , belonging to the eigenvalues;l 1, respectively. The path integral of the bare
amplitudes de ned in [14] Eqg. (4.1) is nothing but the tunnding matrix element of the
time-evolution of the above given Hamiltonian.

qu__l iH t
Dq( )A[9( )] = hgje ~ = jqi
Gi
Iil iH t
DAY )A o 91 = hfje = jdfl (4.49)

q

In the following we will only calculate the bare tunnelling aplitude of g( ), the results
for g 9 are just the complex conjugate results. Splitting the timénto small time steps
dt allows the Taylor expansion of the exponential leading to

- Cooodt .
hgje "~ jgi = hgjgi  —HojH jqi + O(dt?) (4.50)

Two examples are explicitely calculated, up taO(dt?), to show how the tunnelling
matrix element is de ned

Rje =""jLi = rﬁﬂm'dt RjH LojLi + O(dt?)
i [ 1| (| |0| 1 CIT 10 1
= 7dt 0 10 .t O(dt?)
= i—dt+ O(dt?) (4.51)
Rje "R = 'ﬁtﬁt Tt RiH LojRi + O(dt?)
. L 1L I11T1 CIT 10 1
= 1+ 7o|t . 2 (1) L+ o)

= 1+ O(dt?) (4.52)
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This is how the path integral of the bare tunnelling amplituce for the spin-boson Hamil-
tonian without bias is calculated in [14]. The amplitudeA [0 9] leads to the same
results, except for a minus in the switching amplitude-dt. The two-state variables

a( ); o 9 have been considered as a paig([ ); 0 9] jumping between four states[14].
The four possible states are

A = f+;+g
B = f+;g9
C = f ;+g¢
D =f ;g (4.53)
, where +  +%; L. The tunnelling amplitudes, up to O(dt?), are hence
1
0 A$ D
B$ C
1
i — dt AS B
2 D$ C
1
. A$ C
i—dt 4.54
2 D$ B ( )

For the two anharmonic bond case, where both bonds tunnel ahé same time both
bonds can be considered as oseper-bond
The amplitudesA[aw, ( )I1Blaw,( )I; A [, ( 9B [of,( 9]to switch between states dur-

ing the time intervall dt merge together toA[ow,( ); av,( ); A [, ( 9; of,( 9] and
are de ned analogously to the one anharmonic bond case as

AN $ BB
AD $ BC
DA $ CB
$ CC
AA$ CC
AD $ BC
BA$ CB
DD $ BB
all others are0 (4.55)
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Where the states are de ned analogeously to the one anharmorbond case in the
following way

AA = f++;++¢g
AB = f++;+g
AC = f++; +g
AD = f++; ¢

BA = f+ ;++g
BB = f+ ;+g¢
BC = f+ ; +g
BD = f+ ;¢

CA = f +;++¢g

CB = f +;+4¢

CC = f +; +g

CD =f +; ¢

DA = f ;++ g

DB = f i+

DC = f ; +g

DD = f ;g (4.56)

The calculation of these tunnelling amplitudes is done anageously to the one anhar-
monic case, considering a spin-boson Hamiltonian of the falling form

- 1
000 1
- oo 1 0
- O 2 = __
Ho= 70 > Eol1 00 (4.57)
1000
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The basis is formed by the localized states

T
/a)
jRRi = jRi j Ri= |
0
— —
0
1
iRLi = jRi | Li= |5
0
- —
0
/a)
jLRi = jLi j Ri= |5
0
— —
0
a)
jLLi = jLij Li= 5 (4.58)
1

representing the four possible states, which are eigenstatof o@ belonging to the
two-fold degenerate eigenvalues 11, respectively. Now following the same procedure
as in the one anharmonic bond case three possible transitsooare calculated in detalil
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to prove the assumption of Eq.(4.55).

RRje " =""jRLi = E%bgFRRszojRLHO(dtZ)
S CaCr [ —
1 0001 O
i o oo 1 o FHHF., .
= ZUglidgly o o EglEPn)
0 1000 0
= 0+ O(dt?) (4.59)
nlje "="jRRi = H&ﬁﬁb@ijHzojLLHO(dtz)
il | - [ I | -
1 0001 O
i o oo 1 o FHIF., .
= S iglEgl ) o o EgdEEPEr)
0 1000 1
= '7dt+ o(dt?) (4.60)
HRje ~="jRLi = &E&b@mmmojmwomtz)
=0 11T T
0 0001 O
i o glo 1 o FH&
= Ut glhgl ; o o Eigl+PEr)
0 1000 O
= Lodt+ O(d) (4.61)

With the bare tunnelling amplitude A [og,( 9;0y,( 9] leading to the same results,
except for the minus in the tunnelling amplitude';-dt as in the one anharmonic bond
case, it is now possible to calculate the tunnelling amplities and verify the assumption
of Eq. (4.55). Since both anharmonic bonds tunnel at the santiene, states such as e.g.
AB;AC;BD;::: are not allowed and do not occur due to the spin-boson Hamilt@m
(4.57), because the starting statenust be AA; AD; DA or DD . This meansqv, = o,
and gy, = q?,,z, which is absolutely equivalent to the requirement of stamg in state A
or D in the one anharmonic bond case considered by [14]. The appnoation of forcing
both anharmonic bonds to tunnel at the same time is one of theam di erences to the
scenario presented by [29]. This thesis restricts alreadlget bare tunnelling amplitudes
and hence investigates & (t), where both bonds tunnel at the same timestepdt. Duke
and Stamp derive aP (t) where both bonds can tunnel at di erent timestepsdt; du and
discuss certain special scenarios, where the timescales set equal. The mathematical
rigor used by Dulke and Stamp in setting the timescales equas questionable, since
there are no explicit calculations given and most of the appximations are hand-waving
arguments. The probabilityp(t) derived in Appendix D Eq. (E.20) will be presented for
four di erent cases (labelledp(t); p2(t); ps(t); ps(t)), depending on the relation of the
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initial and nal states. The probability p(t) for starting and ending in the same state is
for all possible initial states

¢ I |
pea® =1+ 5 (1) 7KED() (4.62)

n=1

, Whereas ending in a di erent state from the one starting fnm, gives

Pe=a(t) =1 pu=o(t) (4.63)
The indices E2 distinguish the following scenarios

initial and nal state for index 1: o, = Oy, = Ov, = Oy,
, Which corresponds to the choice c&A or DD
initial and nal state for index 2: qu, = o)y, 6 Gu, = Oy,
, Which corresponds to the choice cAD or DA (4.64)

, Whereas the indices =31 label the scenarios presented below

initial not equal nal state for index 3: o, = oy, = G, = Oy,
, which corresponds to the choice &&A or DD
initial not equal nal state for index 4: o, = oy, 6 Ov, = Oy,
, Which corresponds to the choice GAD or DA (4.65)

Because of Eq. (4.63) it is only needed to investigaf®-,(t), since it already contains
all the information about the other two cases, as has alreadyeen noticed in [14] for
the case of one anharmonic bond.

The e ect of only allowing tunneling of both anharmonic bond at equal timesteps can
be investigated best by looking at Eq. (4.34). Lets considex(t) for the choice of
the initial states gu,(0) = ¢f.(0) = ou.(0) = o,(0) = + £. Since the tunnelling is
restricted to gu,( ); qu,( ) and respectivelycy, ( ); o, ( ) tunnelling at the same time,
the choice of the initial states and the free choice of the gabf one variable (herey,,( ))
de nes all the other pathes. For the initial states chosen above and thestriction of
tunnelling at the same time, the following relations hold asan be easily veri ed

Oy = @)
Dy = @) (4.66)

The initial positions of the anharmonic bonds are de ned ab@ and yield the following
functions with use of Eq. (4.36)

0.0) &, 0 _
G
30,0+ G, _ gy 30+ 6,0
G G

) 0= @)=

W,(0) @,(0)
G

(1) (0)

(4.67)
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Now the rst tunnelling process happens at timestefi;. Lets haveqgy,( = t;) switch
states from +%2 to % and see what happens. Since we forced both bonds to tunnel at
the same time alsay,( = t;) switches its state from +2 to 2. As in the publication
[14] eitherq or ® switches, soofy (= t1); (= t1) stay as they were. This yields

o, ( =1t) oy,( =ty) _ Ovo( =) on,( = 1t1)

W =t) = : - 1= @O =t .
W( =) = Qv ( =t1);q(\)/|1( =t1):0: @( = t,)= O ( :tl);.po&z( = t,)

(4.68)

Now the second tunnelling process happens at timestép Here we Ietq?,ll( = 1))
switch states from +£ to  %. As in the case beforef,lz( = t;) has to switch its state
from+% to %, whereasgu,( = t2);0u,( = tp) stay as they were, yielding

(1)( :tz) = q\/ll( :tz)ooqe/ll( :tZ):O: (2)( :tz): q\/lz( :tZ)quQ/IZ( :tz)
(1)( :tZ) = qV|1( =t2);q(\)/|1( :tZ): 1= (2)( :tz): qv'z( =t2);q?/|2( =t2)

(4.69)

Now we look at the ips that occured. Initially ( = 0) we started with AA, the rst
tunnelling at = t; switches toCC and the second tunnelling at = t, switches to
DD . What we see and can easily be calculated is, that the initistates AA; DD allow
only tunnelling to the statesBB; CC. The other types of initial statesAD; DA allow
only tunnelling to the statesBC; CB as has already been de ned in Eq. (4.55). Itis
obvious now what kind of tunnelling processes are describbg pi(t); i =1;2; 3;4.

As mentioned above we will only look ap;(t); i =1;2. The calculation of thosep;(t) is
done exactly as in [14] starting from (E.20), then introducig the "charges” from (4.43)

and the calculation of Appendix D for the in uence functionaland breaking up the
tunnelling into small transition amplitudes into small timestepsdt yields the Dft,,g
0

included in the function K,ﬁi)(t) of Eqs. (4.62). The facthK((,i)(t) is as in the one
anharmonic bond case +1 of [14] by de nition. The terrrKrﬁ')(t); i =1;2is de ned as

|  — ) —
KO = 2 @b Df tang F"
O @gr @ @go
Fr = Frigef Pt Pt Qof Pd (4.70)

, Where the summation of the blip- and sojourn-charges is damed later in Appendix
F. The probability p;(t) is related to the expectation valueP;(t) by the following relation

h®w® @i Pi)=2p@) 1i=1;2 (4.71)
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I | .
Pt)y= ()" >KP@); i=1;2
n=0
(4.72)
with
Df tong = dth dt2n 1 dtl

(4.73)

The functional F" de ned in Eg. (4.70) and derived in Appendix D can be split up ito
three parts

F'o= Foltyaf Paf PdFgfyaf Paf Dd

Gplfitaf Pt Yaf Pgf Pg (4.74)
ﬁ P lel)(tzj to 1) ﬁ i g (1) J(é) (11) Iq% PR (1) (é) Jflé)
Fh = €17 o e =V f = Rhidinsse -
self-energy blip-blip interaction blip-sojourn interaction
ﬁ ] 0Pty tn 1) ﬁ PP J(S) @2 lqg LR (g J(g)x]fzg)
F(”Z) = e i=1 T 87 10—11—J|_|_1|_| I—@_| JO_OJ_IOH—I—l ]

self-energy blip-blip interaction blip-sojourn mteractio'n

@ P ® @ an g PP @ ey, P o @y &n
i - j i0 7Mj i J j

Gy = 1" r@—| 0=0j =] 0+1 l_l_l_f_o,%ﬂ 0

blip-blip interaction blip-sojourn interaction

, where F 7, describes the rst anharmonic bond,F 3, the second anharmonic bond
and G, the interaction between both bonds. The functional& (“1), (2 can be treated

exactly as in the one anharmonic bond case, since no interact is present.

As in the one anharmonic bond case, the function®,-,(t) appear now, but with an

additional index specifying the bond or the interaction beteen the two bonds.

(ab)(t) = d! Jalb(Z! ) sin('t)
J

oM@ = d ab( )(l cos (t )) (4.75)
0

The functions {%; X (% are de ned as in [14], only extended for the case of two an-

harmonic bonds
b b b b b
B = Q(ty  tyo )+ QFty 1 ty0) APy ty) QFV(ty 1 tyo o)
Xﬁag) = Qty tgoa)+ QP(ty 1 ty0) Qty tz0) QF(ty 1 tyea)
(4.76)
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Applying the noninteracting blip approximation (NIBA), an approximation derived by
[14] yields

s P 11 ag P @ @~
En q%_ 1Q§ )(th taj 1) L?, ) j( )1 j( )Qg )(tzj tyj 1)
j= e i=
(1):NIBA €
2 m g P @ @n~@2
n i QgZZ)(IZj taj 1) *9__ j( )1 j( Qg ty 1)
F 2):niBa e k= e = (4.77)

, Where the same approximations as in the one anharmonic bocake (see [14] for details)
have been performed

LX) =0; j°8) LandputX{; = Q' ty 1)

2. ¥9=0

But now the interaction part G}, requires an extension of the NIBA. The in uence
functional describing the interaction between both anharwnic bonds can be simpli ed
by expanding the NIBA with the following requirements

j(le) = (12)(t21 ty 1)
j(jlﬁ) 0:8j6j°
X, = X = oty
xG9 = xj(§})=o;81 6j° 1 (4.78)

, which results in the functional Gj,) \za

23 P 1) (2 12 iqg P 1) (2 2) (1 12
245 j() j( )Qg )(t2j to 1) 0 j() j( )1+ J_() J_( )1 Qg )(t2j ty 1)

Al —_ i = i =
Giynea = €7 e i=1

The rst approximation of the expanded NIBA lets only blips ofdi erent anharmonic
bonds interact with each other at equal times. This keeps thateraction between both
bonds alive and is also consistent with the normal NIBA. The imraction of blips of
di erent anharmonic bonds at equal times, can be seen assalf-energyterm between
bond one and two. The second approximation lets the blip intact with its previous
sojourn as in the one anharmonic bond case, but a blip of onel@mmonic bond interacts
with the sojourn of the other anharmonic bond, which precedkit in time.

2 (1)NIBA .
( ;
%:I nNKy t); i=1;2
PNIBA (t)_
é 1)n 2nK(|)N|BA() |:3,4
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N NiBA on Ja— Wy f @
Kr(1|)' (t)=2 2n 1) Df tong I:(nl):N|BA [ftjg:f j g:f j ]

@yt @
J

Foaealftiof Pgf Pg

Ghoymea F46:f Paf Pof Pof Pg

2 p g2 P
n _ q%__le(tzj taj 1) L9._1 j(l)]_ j(l)Ql(th tyj 1)
Fonea = €31 7' O R ak [ ]
SE BS,
2 pm iq2 P
n _ q%__le(tzj ty 1) L?__l j(2)1 j(Z)Ql(tzj ty 1)
Fonea = €1 '~ mmo C§1 T ]
SE, BS,
2 P g2 P
n _ 21179-71 j(l) j(Z)lez)(tzj to; 1) lq*?_il j(l) j(2)1+ j(Z) j(l)l lez)(tzj to; 1)
Giynea = €7 7 IO sk O ]
BB, BSe

(4.80)

Now the summation of the blip- and sojourn-charges has to be gff@med. For two
anharmonic bonds this di ers slightly, from the summation grformed in [14].
A straightforward but tedious calculatiort yields

K (NBA (1) = Df tongF M (fton0)
0

, with the functionals F{", having been derived in Appendix F, of the following form

2 L1,
202 &+
FO(ftzng) = 22" 1 cos if_’Q’{(tzj ty 1) e Qi ty
-
J 5 1 )
2
Féz)(ftgng) = 22n L Ccos ;.le(th t2j 1) e i9Q2(t2j ta 1) (481)
i=1

The factor of 21 1 in the term F{"(ft,ng) cancels the factor of 2@" 1 jn K {)"NBA (1)
of Eq. (4.79), as it should be, since this term covers the blip-charge-pairs andn 1
sojourn-charge-pairs, because the initial and nal sojoarcharges are xed.

De ning the function f;(t); i =1;2 in the following form
L1
2
fi(t) =  2cos I%'E%Q{ (t) e oz
L1
2¢2
fo(t) = 2cos %%Ql ) e RO (4.82)

4details presented in Appendix F

(4.79)
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Expressed in terms oPNBA (1)

oA r— —
Pi (t) = ( 1)n Df tong fi(tzj t2j 1) (483)
n=0 0 j=1

In order to calculate the Z-time integrations, a Laplace transform (see subsection12l
Laplace Transform) is helpful.

]
pNBA () = dte ' PNBA (1)
0 1
_ ]ﬁ] () _ 1 (4.84)
. 1 1) |

, Wheref7( ) is of course nothing but the Laplace transform of the earliede ned f;(t).
Now inverting the Laplace transform, we are able to expregV'BA (t) as

ifT+]
1 et

il d ——
2i ~
i1+ +1h0)

pNBA () = (4.85)

Now the functionsfi( ), respectivelyf;(t) have to be calculated to perform the inverse
Laplace transform. Since we are interested in the long timerit ! gt 1 one has to
look rst at the long time limit of the functions Q,_,(t). The following long time limits
can easily be seen using the spectral densitidg,(! ) of Egs. (4.41), (4.42) and the
de nition Eq. (4.45).

1 ) 1
Qi () = % Si(l of) + (2 4D + D?)(! OT c:))szc ot) sin(! ot)) 1ot 1 CIZ_O
CD? I__(Isin(! ot)  !otcost ot)) wot 1
Ql(t) = 2| (| t)2 O
F O ‘o
Q1) = 4|£ 8 8Ci(lot)+8In(!ot) (2 4D + D?)
0
1
N (4 8D +2D?) (cos(l ot) + ! otsin(l ot) 1)
(Wot)?
1 1
ot 112%' +8In(1qt) (2 4D+ DZ)El 0 ?—C +1n( ! ot)
1 -0
_ CD? T cosfot) !otsin(lot) 1 wet 1CD?
QM = 5 0 (Wot)2 T3 a4, (4.86)

These long time limits are for the case dj (t); Q, (t) constants, as in the phenomeno-
logical approachQ2" (t); Q5"P*°"™(t) used by Leggett et al. [14].Q, (t); Q} (t) behave
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superohm

in the long time limit like Q3 (t); QS"M(t) in Leggett's phenomenological approach.
This strengthens the assumption of treating functions withhe index "+" as a function
showing ohmic dissipation, whereas the index " " stands for super-ohmic dissipation.
Leggett et al. do not have to consider the long time limit for he ohmic case, since they
choose their spectral density phenomenologically and henalso their functionsQ;-,(t).
Their choice is made in a way, that allows further simpli caions, but since we do not
have this choice, the only possible way is an approximatioregarding the physically
interesting regime! ¢t 1, which is achieved by the long time limit.

Next the long time approximation presented earlier, is appd for the Laplace transform
of the functionsf (t); f,(t) yielding

() = HePcos( ) (1 2) % le?
5() = 2 le (4.87)

, Where the parameter plays the same role as in Leggett's article [14] and has the
following de nition

@

_ 2

(4.88)

o

The behaviour of the functionsfi( );f2( ) presented above can be easily seen. The
only relevant property for our case is the behaviour of thodenctions for the argument
approaching zero and in nity. For !1  all functions go to zero, as can easily be seen
in Eqs. (4.87).

The divergence for ! 0 may appear to give rise to complications. This is not the cas
The function f1( ) is of order 2 1, exactly as the function for the ohmic case in [14].
The function f3( ) has a ! pole, as the function describing super-ohmic behaviour in
[14]. That again strengthens the assumption, thaPN'®A (t) is either ohmic dissipative,
for the case ofi = 1 and super-ohmic dissipative, for the case of= 2.

Now it is possible to treat the two di erent scenarios analogiusly as in [14]. First we
look at the poles ofPNIBA (t).

a()+ =
ot 1 2# )2 192 4 = ¢ (4.89)
, with the following de nition for ¢
L 11
1

et =[(1 2 )cos( )@ — (4.90)

For < % there are three poles. A branch-cut at =0 and
p2=3 = eff € 1 € 2 (4.91)

For 7 < < 1 the poles are not on the principal sheet and hencd®]'®A (t) is given
by the branch-cut. For > 1 the function f{ ) no longer yields the leading factor in
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O( ) with the factor 2 1. Now the term linear in is the leading term, hence we
can write PNBA () 1, yielding PN'BA (t) = 1, which is nothing but the localisation
phenomenon of Bray and Moore [26].

In the super-ohmic case we have to be careful. Up to now, we colesed the NIBA,
which requires considering the blips as a dilute gas. Thisashieved by the self-energy of
the blips, which reduces their "length” (in time) compared o the sojourn "length". The
self-energy can be seen in the in uence functional Eq. (4)74y the term containing
Q2(t). Butin the super-ohmic case, this term approaches a constdor t ! 1, whereas
it reaches zero in the ohmic case (see Egs. (4.86)). Due tosththe self-energy no longer
suppresses the blip "length" compared to the sojourn "lenbt, thus the blips cannot be
considered as a dilute gas, and hence the NIBA appears not to Wadid for the super-
ohmic case.

The solution to this problem, has already been discussed it4] and consists of a slight
modi cation, which is explained below, that makes the NIBA sil a valid approximation.
Splitting up the function Q, (t) into a constant and a time-dependent functiorQ; (t)

CD?

Q) = S+ Q)
.02 L | in(!
Qi (t) = (;,D : 1 cost Ogot);otsm(' L (4.92)

As in [14] the time independent piece of, (t) will be absorbed into the level splitting
in the following way

2
3 e 0Q,=1)

D 2

= e (4.93)

Now following [14] one can de ne a dimensionless quantity 1 in the following way
2 2
J
B, = Oy Bg,p= ) BLOT (4.94)

Pulling out the * pole, that can clearly be seen from the fact, thaQ, (t) and Q, (t)
approach zero fot ! 1, one gets the following equation for nding the poles di{J)

] 1
24+ 1+ n() =0 (4.95)

, with i () being the Laplace transform oh (t) de ned as

[ 5 1
2% 294, ()
h (t)=cos —Q,(t) e 2 1 (4.96)
In the absence of dampingi{ = 0), the poles are entirely imaginary = il-bn

physical grounds the poles will shift slightly o the imagirary axis and pick up a small
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negative real part. Expanding the above equation around thpoles without damping,

one nds
| 1

= b1 I7+::: (4.97)

Looking at the lowest order inb, the real and imaginary parts of are

=() =
<() = 7<(ﬁ(=i}¥' s
]
s = dt cos(Lh (1) (4.98)

0

Now expandingh (t) in Q,_,(t) to lowest order ofbyields

2 2
h ()= =2, (m+ o) (4.99)
With this expansion the integration can be performed
i
2
s = 2 dtcos(CeQ, (1)
0
|
. ¢ 3 ()
= 22— dtcos(tyy 5 cos(t)
0 0

Now changing the order of integration, yields the nal resulfor ¢

s = 05! J|(2!) IE(IJIt cos(Lcos(t )
0 0
= 02‘2’! J!(z!) EIolt cos(L)cos(t )
= 032! JI(;)1(| |-
= gg—iJ (0}:' (4.100)

A self-consistent check of the smallness of the dimensisdequantity b, de ned in Eq.
(4.94), gives the following inequality

=
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Using the results and de nitions of Egs. (4.93) and (4.92) onebtains
s _ 3 (H

- 1

CD?2 — D 2
A T T (4.101)

We know, that — is much smaller than one. AD? increases quadratically, the expo-
nential factor also containingD?, leads to ful Iment of the above inequality.

Performing an inverse Laplace transform Q-A ( ), with the above calculated complex
conjugate poles = s i Lglves the nal result

PJBA (1) = cos( e (4.102)

This describes under-damped coherent oscillations at fieency Lbwith the damping-
rate s for the case of super-ohmic dissipation described by the fttion f ,(t).

4.2.1 Summary

First of all one has to look at howP (t) behaves depending on di erent initial positions
of the anharmonic bonds. What we see, is that the overall turtliing process, by which
starting from an initial con guration and reaching a nal con guration is meant, does
not only depend on the initial position, but on the relation @ the initial con guration

to the nal con guration. The four tunnelling probabilitie s hence can be reduced to two
di erent scenarios, because of the simple relation of Eq. .GB).

The two di erent overall tunnelling processes describe dier tunnelling with length-
change, which is described bk, (t) and shows ohmic dissipation and tunnelling without
length-change, which results in super-ohmic dissipationf-or P;(t) a phase transition
occurs depending on, since now we have purely ohmic dissipation in every tunnigig
transition. For < 1 there is no localisation, that means both anharmonic bondpend
on average the same time in each of the two equilibrium pogitis, whereas the symmetry
becomes broken for 1 leading to localisation. That means both anharmonic bonds
spend on average most of their time in the equilibrium posdn they were initially
prepared in. This has already been calculated for the purebhenomenological choice of
the spectral density of [14]. The phase transition has beeaund by [26], as mentioned
before. P,(t) exhibits super-ohmic dissipation and hence tunnelling isever surpressed.
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Chapter 5

Results and Conclusions

We considered a microscopic model system in 1 dimension withparticles. All parti-
cles interact with their nearest neighbour described by a haonic potential except the
r anharmonic bonds. Those anharmonic bonds interact througé symmetric double
well potential with each other. The coupling between the hanonic and the anharmonic
bonds have been described by the coupling constamts At rst we looked at the sim-
plest case of one anharmonic bond € 1). Two methods were presented to analytically
separate the harmonic form the anharmonic degrees of freedo The rst method is
intuitive, but only applicable to one dimension, whereas th second can be generalized
to d-dimensions. A third method, which is not presented in thishesis, is shown in
the publication [36]. This analytical separation of the hanonic from the anharmonic
degrees of freedom allows us to derive the up to now phenomlegaally considered
Caldeira-Leggett Hamiltonian, analytically from a microsopic model.

Next we consider the position dependence of the anharmonicngbin the tunnelling
behaviour. As a result we get, that if the anharmonic bond is tated at the border of
the chain, we have a transition from ohmic to super-ohmic digation, which is seen in
the frequency dependence af exhibiting a sensitivity of the location of the anharmonic
bond M. That means, the anharmonic bond tunnels between the two nima of the
potential, dissipating energy to the harmonic bath aroundti The terms ohmic and
super-ohmic refer to the way the energy is dissipated. Thesdipation for low frequen-
cies has the form of a power-law ! °, where the term ohmic stands fors = 1, while
super-ohmic refers tos > 1. The super-ohmic terms calculated in this thesis yielded
s = 3 for the considered model.

As shown in [26] the quantum-mechanical tunnelling in a symrtrec double well poten-
tial under the in uence of a harmonic bath introducing disgpation, can be mapped one
the one-dimensional Ising-model with inverse-square-lamteractions R 2 for the ohmic
case and interactions falling o likeR “in the super-ohmic case. As has been shown by
Thouless [37] an interaction energy falling o likeR " in an one-dimensional system,
shows a phase transition from an "ordered" to a "disorderedphase atn = 2.

The expression "ordered" can be interpreted as the anharmiocrbond spending most of
its time in the well it has been initially prepared in. The cae of "disordered" refers to
the anharmonic bond spending half of its time in one well anche the other half in the
other well.

75
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From this we can see, that the case of super-ohmic dissipaticefers to the disordered
phase and hence tunnelling is never suppressed. If the anhanic bond is located in
the bulk, the system shows a much more interesting behaviou€alculations show, that
in this case the system shows only ohmic dissipation. Ohmicsdipation ! described
in language of the Ising-model, has an interaction falling @as R 2. This is exactly the
critical exponent [37] in an in nite one-dimensional syst@, where a phase transition
occurs. For a coupling constant below a critical value, theystem will show ohmic dis-
sipative behaviour, where the anharmonic bond tunnels beéen the two wells as in the
super-ohmic case. But for a coupling stronger than the crdal coupling constant, the
system will stop tunnelling back and forth and will remain met of its time in the well it
started in. This is a spontaneous symmetry breaking, whicls iof the same universality
class as the one-dimensional Ising model with inverse-sgerdaw interactions [26].

The next step was to include a second anharmonic bond into tie@e-dimensional model.
This leads to indirect interaction of both anharmonic bondshrough the environment.
There are many possible positions of both bonds, but we focos both anharmonic
bonds located in the bulk with a nite, but variable distanceD between them.

The choice of a nite distanceD can be explained as follows. For the case of nite
distance, both bonds do no longer interact indirectly with ach other and hence the
system reduces to two isolated anharmonic bonds and their gtbon dependence. This
has already been discussed in the rst part of this thesis. Ehchoice of both anharmonic
bonds located in the bulk is due to the following argument. As&vsaw in the rst part,
the position of the anharmonic bond in the bulk showed ohmiciskipation and a phase
transition for a coupling constant higher than the criticalvalue. Since we clearly want
to show, that the transition is due to the indirect interaction andnot due to both bonds
being at one of the borders, we chose to consider only the caddoth bonds being in
the bulk.

The rst problem that had to be solved was the analytical diagnalisation procedure.
Following the rst method presented in chapter 3.1, we had ta@hoose the anharmonic
bond positionsM; M, symmetrically around the center of the chain. This alloweda
replace the bond positions and the total chain-lengtiN by just two parametersD; N .
Next the calculation of the kernel followed. The kernel appeiag in the in uence Eu-
clidean action is coupled to both anharmonic bonds. That ishe reason a mapping like
in the one anharmonic bond case, as done by Bray and Moore [26]no longer possible.
With a transformation the coupling can be eliminated in the m uence part, but it is
only shifted to the local part. This results in an direct inteaction of the instantons
of both anharmonic bonds, whose e ect is not fully understab The kernel K™ ( ),
which is achieved after the transformation in the in uence etion exhibits ohmic dis-
sipative behaviour, whereas the the kernél, ( ) shows a transition to super-ohmic
dissipative behaviour for p. Since the coupling of the instantons in the local part
of the in uence action occurs, we wanted to put these resultsn more stable ground and
hence chose to calculate the tunnelling probability in the &y Leggett et al. [14] did, but
generalized to two anharmonic bonds interacting indiregtlthrough the environment.
Using the Feynman-Vernon technique [21] to eliminate the haronic degrees of freedom
via the path integral formalism, we were able to express theimnelling probabilities. A
necessary restriction was to set the tunnelling times of bletanharmonic bonds equal.
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This restriction has also been applied by Dule and Stamp [2%ut without mathemati-
cal rigour and with incomprehensible argumentations. We iaady imply this restrictions
at an earlier point, namely when de ning the bare tunnellingamplitudes using the spin-
boson approach applied by Leggett et al. [14]. This of coursenpli es the calculations
of the tunnelling probability p(t), but also allows only two physically di erent scenarios
labelled asp;(t) and p,(t). The tunnelling probability p;(t) stands for an initial and nal
position, where both anharmonic bonds are in equal equiliobm positionsag or . The
tunnelling is split up in 2n tunnelling transitions, where each transitions means both
anharmonic bonds changing their equilibrium positions fra a5 to a or the other way
around. The calculated spectral density results ip;(t) showing only ohmic dissipation.
This is understandable, since ohmic dissipation already ppared for one anharmonic
bond located in the bulk in chapter 3.3. Tunnelling requiress in the one anharmonic
bond case a movement of an in nite mass, which leads to ohmicsdipative tunnelling.
The other scenariop,(t) implies both anharmonic bonds having di erent initial equ-
librium length as; & and nal positions. Because of the restriction of both anhanonic
bonds tunnelling at equal times, one of the bonds tunnels froas to a, whereas the
other bond does just the opposite. The total length of the ardrmonic bonds stays the
same at each of the 2 tunnelling transitions. The calculated spectral densitydr this
case is purely super-ohmic. For the case of one anharmonimddocated at the border
of the chain in chapter 3.3, the spectral density is also supehmic, hence the result
achieved forp,(t) is not surprising. The calculation of the functionp;(t); 1=1;21is
done in analogy to [14] using the NIBA and extending it to the g of two anharmonic
bonds. The extension of the NIBA allows coupling of blips of blo anharmonic bonds
at the same time, which can be interpreted as a blip-self-engg. The other extension is
a blip not only coupling with its previous sojourn, but also wWth the previous sojourn
of the other anharmonic bond.

The nal results for the tunnelling probability are achieved as in the one anharmonic
case solved by Leggett et al. [14], by Laplace transformatiaand investigation of the
poles.
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CHAPTER 5. RESULTS AND CONCLUSIONS



Appendix A

Diagonalisation of the first approach

The separation of the harmonic and anharmonic degrees ofdd®mm by using centre of
mass and relative coordinates of théotal chain has been described in section "First
Method". The transformation to normal coordinates require the diagonalisation of
(Ty ). In the present Appendix the steps of the diagonalisation picedure will be given.
Making use of Egs. (3.14), (3.15), (3.17) - (3.19) one obtarthe harmonic part of the
Hamiltonian Eq. (3.12) with the following symmetric matrix (Ty;)

—1
T = 2, i=1;:5M M +2;05N 1
2 i=M 1IM+1
(-
I, i=1;:x:M 2M+1::N 2
T = 6 iowm 1
1
0; i=1;:M 3M+1;:N 3
Ti;i 2 = 1. . _ 1 (A.l)
> 1=

Then it is straightforward to solve the eigenvalue equation

N[
Ty uj( ) = Ou(k ). =1::uN 2 (A.2)
(ijg::’\})

Writing this equation explicitly, gives

@ :‘qu(l) u(2|>:|= 0; k=1 (A.3)

(2 O)u(k) u(k+)1+ u(k )1 = 0;k=2;:;M 0 2ZM +2;5N 0 2(A4)
R 1

20 gl ) Eugﬂ)ﬂ = 0;k=M 1 (A.5)
o) 1

5 o ull,  ul), Eu(,v,)l = 0;k=M+1 (A.6)

2 9u’), u’, =0, k=N 1 (A7)
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The form of Eq. (A.4) suggests an ansatz of plain waves for thefl and the right part
of the form

iq k iq k
A, gl + A el k=1;2:M 2
u) = o o (A.8)
B.e9*+B e" k=M+2;2:N 1

Using this ansatz it is possible to include Eg. (A.3) in Eq. (A.4Jand Eq. (A.7) in
Eq. (A.6) using the requirementsug) = uE\,) = 0. These requirements are boundary
conditions of anopen chain, that lead toq 2 (0; ). 0 and are not included, because
these values do not lead to non-zero eigenvectors. Applyinigese boundary conditions

yields

W) = AL+A 20, A = A,
u,) = B.é"N+B edN=Zg , B = B,eN (A.9)
Using those results in Egs. (A.4) and (A.6) leads to
L1
G = sin (g k) ; k=1;:;M  2; Ny, =2iA.
k - H . _ . _ B+ g N
b sin([N K] ; k=M+2;:;N 1; b = ;e
R BN =
= 21 cos@) =m (A.10)

The eigenvector componenteﬁ,l) . ufvl )+1 can be calculated straightforward by using the

results obtained and plugging them into Eq. (A.4) for the caseofk = M 2. Hence
the full set of eigenvectors reads

L1

u= N, SNAK: Lok Mo (A11)
bsing[N kl); M+1 k N 1

with N as the normalisation constant and being a coe cient depending on the wave
number g , the location M of the anharmonic bond and the total length of the chain
N. The coecient b can be obtained from Eq. (A.5) by straightforward calculatia,
yielding

_2sin@M) sin(q[M 1))
- sin@[N M 1))

(A.12)

Using (A.6) and the result obtained from (A.12), it is possibled obtain a transcendental
equation of the form
L1 L1

sin@[N M 1])sin(g[M 1] 2sin@[N M] sin([N M 1))

1 1

2sin@M) sin(@[M 1]) =0 (A.13)
This equation cannot be solved analytically. Hence a sepaiah of the parameters
N; M using trigonometric identities is useful for a further disgssion. The main steps of
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the separation will be shown. By performing the multiplicabn of the two factors the
transcendental equation can be put into

sin@[N M 1])sin@M)+sin(q[N M]sin(g[M 1]
2sin@[N M]sin(gM)=0 (A.14)

now separating the parameter; M and assuming sing N) 6 O leads to

h -

sin(N) cos@[M +1])sin(qM)+cos(gM)sin(q[M 1)) 2cosf M)sin(g M)

- !

cot(q N) sin(q[M +1])sin(g M) +sin(qgM)sin(g[M 1)) 2sif(qM) =0

Using the assumption singg M) 6 O allows to write the equation as

cos@[M +1])+cot(gM)sin(g[M 1]) 2cos@ M)

cot(@N) = sin@[M 1) +sin(gM +1]) 2sin@M)
e : S I [y BN D B : :
The identity sin(x) +sin(y) =2sin ¥ cos =¥ applied to the denominator gives
cot(q N) = 2cos@ M) cos@[M +1]) cot(qgM)sin(q[M 1])

4sin@@ M)sin? T

In the numerator the parameterM can be isolated leading to
(I L1 (I L1
2cosEM) 1 cos@) +sin(gM)sin(q) 1+cot?(qM)
1]

4sin@@ M)sin? T

cot(gN) =

Now the two additive factors of the numerator can be separateghd using basic trigono-
metric identities one gets

_ cot(%)
cot(q N) —clgtl(q MHW}:

f(q)

(A.15)

Since the transcendental Eq. (A.15) is not analytically solble a detailed discussion for
approximative solutions is given. The l.h.s. behaves as lfmks

lim cot(gN)=1 ; lim cot(qN)= 1 ; =0;:5N (A.16)
q & q %
L]
which means the |.h.s.oscillatesin every interval -; (N+1) X =0;:5N 1 from

1 to 1 . The r.h.s. shows this behaviour:

im f(qg) = 1 ; Iim f(q)=1; =1;:;M 1
q & 5 q %

imf(q) = 1 (A.17)
q %
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SinceM < N and with the results obtained from Egs; (A.16{A.17), it is eay to

see that there is exactly one solution in every interval; 2 for =1;:5N 2,

leading to the expected number dil 2 solutions. The remaining two degrees of freedom
are the centre of mass and the anharmonic bond coordina¥. and qy , respectively.
The solutions can hence be written as

a=g * =1:::N 2 (A.18)
with O < . That means is of the form =N ; 1. For = O(1) the
form of can be determined from the transcendental equation by apphg Eqg. (A.18)
and using basic trigonometric identities and the followindpasic approximations

cosk y) = cos(x)cosfy) sin(x)sin(y)

sin(x y) = sin(x)cosfy) cosk)sin(y)
sinx) © ' x (A.19)
cos) 1 (A.20)

The transcendental equation can be written as

cos( N) _ COSENV'—EOS( M) sinE!"ngin( M)
sin( N) Icﬁosf'MT?,in( M) +sin M cos( M)EI
o@)
+ — =i E'MWJ N il (A.21)
|2_]2—+ 7 SN Nt 7 C0S N o
O(N)

where it is obvious that the rst term is of O(1), since the denominator is non-zero and
all trigonometric functioEsI,”a_ch ofO(1). The second term shows a numerator dd(1)
and a denominator of0 g in leading order. To ful | this equation the I.h.s. must be
of order O(N). This can only be achievedif = O(N ); > 1. By asqgg‘n this
and Taylor expanding the l.h.s. one sees immediately that is of orderO . The
exact result is

NZ

_ N+ 0 - (A.22)

In the thermodynamic limit N ' 1, g becomes continuous within (0 ) with constant
density which implies a constant low energy density of stage
The normalisation constantN and the coe cient b are functions ofgq ;M andN. The
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normalisation reads explicitly

1
I_"j'_ll_lil N1
1 = NZ sin’(q k) + b sir(q [N K])
[l;l;j k=M +1 ]
N2 M O, " ]
= o 1 cos(q k) +P 1 cos(@ [N K]
=1 k=M +1
N 2 & L e — N T =
= Tb (M D+PIN M 1) cos(1 k) B cos(2y k9
—1 k=1 ko=1
_ 2
)N p = M D+BN M 1) sin(q [M_ 1])cos(q M)+ bZSiii(nq(q) (N M 1)ycos(q [N M]J)
(A.23)
and in the limit of large N (or low frequency behaviour 1) we get
2
Ny o (A.24)



84

APPENDIX A. DIAGONALISATION OF THE FIRST APPROACH



Appendix B

Diagonalisation of the second
approach

In this Appendix the diagonalisation procedure of the harman coordinates will be
discussed, since in the second approach the momenta alreadg diagonal. As stated
in section "Second Method" equal masses, = m are considered. Applying Eq. (3.35)
to Eqg. (3.34) yields

H = Hg+ Hpam + Hint

H = _'%/'-{- V( )+ E 2
d m 0(Ov 4%
N.-a N
H — 'n + C @ 0 oLZ_‘|
harm — % E Xn+1 Xi a,
nEMM 1 =t [T ]
Vharm (fx30)
C 1
Moo = SR & d o B
A transformation
) S |
0 = g
i=1
x0 = x0 4 0 (B.2)
qeq

de ning an equilibrium position X, allows to rewrite the harmonic Hamiltonian as

N B N|_2:|
H — P E 0 0)2 B.3
harm — om 2 (un+1 Un) ( . )
n=1 n=1

n&EMM +1
Expangifg thg-hprmonic potential Vharm (fx%g) around the equilibrium con guration
Viarm  Tx%%g  up to quadratic order, yields
L] EIC@Mﬁrm ] L 1@ harm ] ]

Vi (60 = V00 g+ @l s, TG en o 4
O 8% 1 EPR@R .
constant 0 V.0

85
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This is not an approximation, sinceVham is @ harmonic potential. The variableu®
represents the displacement of from the equilibrium con guration xi°?.
Introducing mass weighted coordlnates

H = pﬁuﬂ
(0]
h = P (B.5)
yields the harmonic Hamiltonian
N N
y R BRI N
Hharm = E (pg) + E U'IO (BG)
n=1 k;l=1
1]
With the nonzero elements of the symmetric matrix & read explicitly
1
C 1 k=1;M;N 1
W= o > o
m 2 k=2;:5;N 2
1
C 1, k=1;M 2M+1N 2
W, == 7 ’ ’ B.7
k;k+1 m p%; =M 1; M ( )
Diagonalising this matrix in the standard way
NI ]
( ) = ~ eI( ) (B.8)
k=1
(&M 1M)

and considering the remaining equationsk(= M 1;M;M + 1), which yield a non-
trivial solution if a corresponding determinant vanishes.This leads to the following
mass weighted eigenvectors and eigenvalues (the calcdatfork 6 M 1;,M;M +1
is absolutely analogous to the procedure in Appendix A Egs. (B)-(A.11)) and the
determinant condition is a straightforward calculation, yelding

L1
CoS % 2] o on=1;:5M 1
& = Nb:l bcos@% %! n=M+1;:;N 1
e,) = p2l\|:|cos x M E
2C
T = S cosk)) (B.9)

wherex- are the wave numbers used in the ansatz (which is equivalemnt the form to
the ansatz used in Appendix A Eq. (A.8)). The other parametersra the normalisation
constantl\ibjand a coe cient b describing the position dependence of the anharmonic
bond. The parameters are functions depending on ;N and M. Their explicit expres-

sion are
1 1

c M
R s O (B.10)
cosx N M

NI

NI
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the calculatjon of the normalisation constant

I | 1I_Ll_| I | . (111
1 = NZ co§xk§+20052>eM§
k=1
Ny 1 1|:|]§'
+1F cos x N k 5
= +1
té% 1 R
= Tb 1+ cos(2¢ k) cosfe ) +sin(2x k)sin(¢ ) +2cos x M >
k=1
 E— =
+17 1+cos(2¢ [N Kk])cosf)+sin(2x [N  K])sin(¢ ) (B.11)
k=M +1
yields
IZE_
Ngd = 5
enom o S o

1
denom = M 1+®[N M 1]+2co§ x M >

+sin(x~ [M  1])cos¢e[M 1)+ sin(¢ [N M 1])cosg[N M 1))
sin(x )

(B.12)

The determinant condition for the equationse%-) withn=M 1M andM + 1 not
only yield these eigenvectors, but also the following tranendental equation (obtaining
this equation is done absolutely arl%logous tOEAI\ppenld__ilx A EqA(13))

cos x, [M %]G cosx [N M %]EI
cosx[M 1] cosx [N M 1]

This transcendental equation looks di erent from the equabn of the rst approach
Eg. (A.15), but after the use of some trigonometric identitis, their equivalence can
be shown. This will be presented here in a few steps with somenaments. First the
separation ofN (and assuming sinXx~N) 6 0) is done leading to
P ( _I:II:Ig Iﬁ])lill):l IIIII_I%II:I
sin¥ M+ cosx M 2 +sin x M+

cot(x N) = 2 2
. . denominator

R (1 1 Cd [IT]
4cosf) 2 sinx M+1 cosx M 1

2( 1+2cosf)) =

(B.13)

[ 111
cos x M %

Nlw

NI

- B.14
denominator ( )

11 1T 1 11 111
. 1 3
denominator = cos ¥ M+ = cos x M

:llil2 (111 :IEI2 (111
3 1
+cos ¥ M+—- cosx M =
] &I 1] 1Iilil 1] 1IZI]:I

4cosf-) 2 cos x M+§ cos x M >
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The next step is to further simplify the expression using théollowing identities

cos) cosfy) %(cos(x y) + cos(x +Y)) ;

sin(x) cos(y) %(sin(x y)+sin(x +vy)) ;

cos(X) = 2cos’(x) 1 sin() =2sin(x)cos) (B.15)
, this yields
2sin % 2sin(2¢M)sin % +cos %
cot(x N) = - I__“IG —
2sif £ 1 cos(2M)

Now only a few minor steps using the trigopnometric identitiegiven above have to be
done to get to the same form as in Eq. (A.15)

(e
Ccot =5
2 (B.16)

cot(x N)=cot(x M)+ 2sirf(x M)

This equation is absolute equivalent to (A.15) by just replaog the wave numberq
used in the rst approach, by the wave number used in the secdrapproachx-. Hence
this transcendental equation yields of course the exact sansolutions as in the rst
approach.

As mentioned at the end of section "Second Method" the equiaice of the normalisa-
tion constants of the rst N, and the second\lm:I method has to be proven. Comparing
the extensive part of both normalisation constants from Eq(A.23) and Eqg. (B.12) one
gets

1
N ext: — 2
b (M 1)+BFP(N M 1)
—
NS = :
M 1+®[N M 1]

(B.17)

To show that the extensive parts of both normalisation conants are identical one has
to check whether the following equation holds

< 7 (B.18)
Taking the square root and using the de nitions of Eq. (A.12) ad Eq. (B.10) yields
_ _ 1] I%l/l , 1
2sin@M) sin(g[M 1)) _ CE gj 5 _am (8.19)

sin([N M 1] cosqg N M

2
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The "+" option is not ful lled in general, but the " " option yields the transcendental
equation Eq. (B.16) hence showing the equivalence. The masteps to show how to
achieve the transcendental equation are shown. Bringing thosides of Eq. (B.19) on a
common denominator yields

] — L1 (111

2sin@M) sin([M 1)) cosgq N M

I [ 1IZI]:I 2
+sin(g[N M 1])cos q M > =0 (B.20)
Separation ofN and assuming sing N) 6 0 as before leads to
cot(qN) = z
N 1 ] Lo D
Z = cos(q[M +1]) cosgM)cos — +sin(gM)sin —
1 OIgh 2 2 O
sin g M+ = sin(M)cos(@) cos@M)sin(qg) 2sin(@@M)
1 I%I (111
N = sin(g[M +1]) cos@M)cos — +sin(qM)sin —
] 2 2

1
+cos q M+% sin(gM)cos(@) cos@M)sin(g) 2sin(@M)

Z and N can be brought in the following form by applying trigonometic identities just
like those used above

1 1
Z = cos — +2sin — sin(gM)cos@@ M)
] 2
N = 2sin ) sin?(q M) (B.21)

With that one can immediately see the equivalence of both (&ensive) normalisation
constants.
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Appendix C

Diagonalisation for two anharmonic

bonds

The diagonalisation of the harmonic kinetic part of the Hamtbnian forD 2
1 NE
Tharm = — Tui Pcpi (C.1)
&N
with the nonzero elenl%lts of the symmetric matrixTy ) de ned as
1= 2, k=1;:::M1 2Z2Mi+2::20 My 22Mo+ 20N 1
“ S k=M; LM;+1;Mp LM,+1
Tkk+r = 1, k=1;:xM; 22Mi+2;:5My 2M+2:0N 2
1 .
Tvi 1M+ = o> 1=1;2 (C.2)
can be done in the standard way. The eigenvalue equation
NCIT—1 _
Tk|U|( = ()U(k )i (C3)
|&r\}|=1;lM2
reads explicitl
pHCY 1
L] Edk My 2
e Oyl ooul) +d) = o $+2 k M, 2 (C4)
2+t2 k N 1
= 1
- Ol ), éumﬂ = 0; k=M; 1 (C.5)
SN
5 Y u§v|11+1 u§\/|1'+2 éuﬁ/li’l = 0; k=M;+1 (C.6)
=R 1
5 U U)o SWwa = 00 k=Mp 1 (C.7)
SIS .
5 Ol (), éuﬁ,,z ., = 0; k=M,+1 (C.8)
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The equation above is solved by the ansatz

L_1 (),y-
q k); 1 k M; 1
O - N “cos(q(s)(M k): Mi+1 k M, 1
k CBEYsin@®@(M K); Mi+1 ko My 1
sm(q( )(N K)); M,+1 k N 1

where the parameter can take twovaluessymmetric and antisymmetric and the vari-
able M represents "the centre" of the chain and depends on the totahain-length N
being even ¥ = ) or odd (M = Y:1). The eigenvalues can be achieved by using the
ansatz and applying it to Egs. (C.4). They are

] 111
(V=21 cos%)

The ansatz fork =1;::;;M;  1;M,+1;::;;N 1 is motivated by the analogy seen from
the discussion of the one anharmonic bond case (see Appendix 8ince the defects are
chosen symmetric with respect to the centre of the chaiM, Eq. (C.6) is equivalent
to Egq. (C.7). The same counts for Eqs. (C.5) and (C.8).The aatz for the case of

(C.9)

M:+1 k M, 1 has been done using plane waves of the form
ul ) = AT ke Al ik (C.10)
and following the same symmetry argument used before. Thateaans
= symmetric
(s 1L ()s
Uyiv1 = Uu, 1
(s 1L ()s
uM1+2 - uM2 2
= (C.11)
= antisymmetric
(ya 1L ( )a
Uyi+1 = Uy, 1
()a 2 ()
Urvllfz = UM2a2
= (C.12)
The coe cient is de ned as
i (s) . (s
B9 = 2A9e™>; A = AN
iq @ @
Y = 2ia@ez; A@ = A@ga®N (C.13)
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and its value is easily derived using the ansatz and taking Eq (C.5), (C.7). The
procedure is analogous to the one anharmonic bond case (see&mulix A). For N
being even it reads as

% a9 sin O 1
2 d ; symmetric

ven;( ) — S cos q(s)[D 1] '
be ' = (@)N D (a) N D (Cl4)
@ q’[F5=] sin [NB g _ _
@D ; antisymmetric
sin 7[5 1]
whereas forN being odd there is only a slight di erence
(S)rN D (s)rN D
@ q’[*=] sin g2 1] )
®p_1 ,  Symmetric
Pddi( ) = cos q[=5=] C15
(@)N D @)N D ( . )
@ g¥NB] sin g [NE g ) _
; antisymmetric
sin q(a)[D 1]

Since the thermodynamic limit is taken later on, the di ererwe between even and odd
N disappear like it was discussed in the one anharmonic bondsea This is the reason,
that from now on, only N being even will be discussed. For easier calculation only
the parametersN; D are used from now on. All transformations necessary to achev
functions dependent only orN; D are:

— N D
M, = ND

— N+D
M, = =

The transcendental equations for the symmetric and antisymetric case arise from Eqgs.
(C.6), (C.8) and the explicit calculation will be shown for he symmetric case (the
antisymmetric case is done analogously). The transcendahequation in the symmetric

case rea%
1 C 101 111 C 101 (111
yH 1 s D ) s D
N.s 2cosq > B cos q 5 1 B cos q > 2
1 L] I:NI D

Using the fact, that the normalisation constant is not zero tk transcendental equation
can b%ut into the foIIowmg form
P S s I s B 5 L= 0] (1

Dg ~cos ¥ % 1 B9= 1sm q® D 1

Cos > > >

and plugging in the result of Eq. (C.15) for the coe cient, the transcendental equation
can be further simpli ed into
0] Dljrl':(sl)D':' 0] .

. . N D
2sin ® cos 3 sin d® —— 1 cos g

2 2
I LI 1 L 101 LI 1

. N D D
sin ® —— cos q® > 1 =0
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1 1
Now using the following trigonometric identity sink) cosfy) = % sin(x+ y)+sin(x y)
the transcendental equation transforms to
oy oo g B o oo
qg’N N
2

sin > D +sin sin 1
1D - BRI miLE=Y
Zqj (s) + gj (s) + =
> sin ¢ > D 1 sin ¢ > D+1 0
1,0 01,01

The next trigonometric identities used are sir) sin(y) =2sin =¥ cos =¥ . With
those identities the equation takes the form

0y e L1 g  matbgdtd
oo N i o N 1 . 4
sin ¢ > D 1 cosq® +2cos Q° —5— sin E3 =0

L1
Sinceq(s) 2 (0; ) (due to the open chain) the factor sin q—z) is never zero and can be
cancelled out by division, giving
) ot dtd oy | o
sin g N b osin & 4cos q® N1
2 2 2
The discussion of this transcendental equation is more degtive if the parameters

N:D are separated. Using basic trigonometric identities one get
i 1 e R e gonqmere jaeq . -

1
(s) (s) (s)
. N L] N . 1.
sin 4 cos%‘JS)D cos qT sin %‘JS)D sin q?
[ (SI) L1 1 (SI) L1 [ (SI) L 11 (sl) L1
gq~’N q . gq’N . ¢
+ 14 - =
cos > cos > sin > sin > 0
| . 3
Again cancelling a factor of sin - yields
I:(ls) (i - 1 I:(IS) (I I:(SI) (I
. N N .
sin 9 COS%S)D +1 =cos I sin %(IS)D cot q?

. S) . . . . a
Assuming cos % 8 0 the nal forms (the antisymmetric requires sin 5= 60,

is also presented), t for discussion are achieved

I .

I:I . (S)
N sin(q™’D) cotl_q?

symmetric tan > = D@D = (C.17)
2cog ¢
- (ot O
fs ¢®:D —
I%ﬂl),\' sin(@®D) +cot &
antisymmetric cot = = =3 (C.18)
2 2sit 42
- (ot O
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Since both transcendental equations are not analyticallyok/able a detailed discussion
for the approximative solutions is given. Considering theysnmetric case, the left hand

side (l.h.s.) shows divergences fat® = z1 = 1;:;%. The form of these
divergences show the following behaviour
(s) (s)
: N : N
lim tan d = 0; lim tan g =0;
©& 0 2 %
(s) (s)
: N . N N
lim tan d = 1 ; lim tan g =1; =1;: =
(g 2 1 2 (@2 1 2 2
(C.19)

which means the l.h.s.oscillatesfrom 1 to 1 in every interval [% ; ZN—” 1; =

1 N7 1, except for the rstinterval [O; ], where the oscillation starts at O and the
last interval where the oscillation endgat 0.

The right hand side (r.h.s.) fs q(s); D has divergences aq(s) = Tl ; =1;:52.

Looking at the form of these divergences show the followinglbaviour

. L), U
lim fs 9:D =1 :

. L), U
lim fs g¥:D = 1

: L] _ ] D
lim fS%LJS);D = 1 ; lim fs%ls);D =1 ; =100 —
(g 2 Doy 2 2
q7'& 55 q°’% 45

(C.20)

%‘ICGD <|—_IS’I it is easy to see, that in the rst interval [0; ] and the last interval

NL . there is no intersection of the L.h.s. and the r.h.s.. All otheintervals have

exactly one intersection, this reduces the total number ofolutions to & 1 for the
symmetric case.

Regarding the case oD = O(N) we are allowed to choos® = N7 since it does not
matter how large D exactly is, the only important thing is, that it scales with N. In

this case, we get

1

2
(s) = =~
TN 1

(C.21)

as exact solution.
The same discussion has to be done for the antisymmetric caséhe I.h.s. has diver-

gences ag® = 2—; = 1;:;, 5. The form of these divergences show the following
behaviour
(2) (a)
) N )
lim cot 9 = 1; lim cot 9 =0;
&0 2 @9
() (a)
. N . N N
lim cot 9 = 1; lim cot g =1 ; =1:;::— 1
(@g 2 2 (@02 2



96 APPENDIX C. DIAGONALISATION FOR TWO ANHARMONIC BONDS

which means the L.h.s.oscillatesfrom 1 to 1 in every interval [3—; 2C]; =

0;:;N 1 The rhs. diverges fog® = 2~ =1;::;2. The divergences behave as
follows - B
lim fa%]a);D = 1: lim fa%(]a);D =0;
(@& 0 oM
H Iq:a). I:I_ . ; I:(Ja). I:I_
im f, gD = 1; lim f, g% D =1 (C.23)
q(a)& 2T q(a)%zT

%meD <|—_I5]| it is easy to see, that in the rst interval [O; ZW] and the last interval

(N 1) .
N 1

exactly one intersection, this reduces the total number ofokitions to N; 2 for the
antisymmetric case.
ConsideringD = O(N), again choosingD = N7 we get the exact result

2(2 1 N
q® = a2 1. =1;u5— 1

there is no intersection of the I.h.s. and the r.h.s.. All otheintervals have

q(a) = —: :]_;;;;;NZ 1 (C.24)

Note that through the choice ofD = M, Mj;andN = M, + M, even,% must be an
integer.

For even N the number of symmetric and antisymmetric solutions add upa a total
number of N 3 solutions as it should be.

Now the case of an oddN has to be discussed. Even though the transcendental equa-
tions di er slightly from the ones achieved from everN one immediately sees, that the
symmetric case and the antisymmetric case provid<"é2—3 solutions each, for the same
reasons as discussed before. As before adding up the symroetnd the antisymmetric
case leads toN 3 solutions of the transcendental equation as it should be.

In the thermodynamic limit (N !'1 ) both cases N being even or odd) yield homoge-
neously distributed solutionsg( ’ 2 (0; ).

That is the reason why the normalisation constant will only b calculated forN being
even and henceM = Ni Using the eigenvectors one can calculate the normalisation
constant for both cases (symmetric and antisymmetric). It ields

[ R o
f RS . ML)
(N )2 sin? %(Is)k + %5@ cog o NE k

1 —-—
k=1 k=M q1+1
1
Nﬂ:lzq 1
+ sin ¥[N K]
k=M+1
and I%I
C 10} (1T 1
| B | 1 M1
1 = (Na)° sin? %Ja)k + %‘60@ sif @ % k
k=1 k=Mi1+1
[ 1
N[ q ]
+ sin® d¥[N K] (C.25)

k=Mo+1
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The calculation is done in the same manner as in the one anhanic bond case. Re-
placing M, by Y2 and M, by Y32, yields the nal results

2
N = 51 C.26)
; S e L (s)
N D 1 sin(q : [N(S)D 1 4+ b(S) D 1+ sm(g [(2) 1)
sin(g*®’) sin(g*>")
and
N, = ZE I C27)
, @) 2 in(g@®
N D 1 sin(q . [N(a)D 1) + b(a) D 1 sm(q [(2) 1])
sin(g'?’) sin(q*"*)

The low frequency limit (q( ) 1) has to be discussed in detail. Starting with the

coe cient b’ for the symmetric case (only the symmetric will be shown, thprocedure

for the antisymmetric is identical) rst a separation of thearguments of Eq. (C.15) is
performed
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Now the following approximations are helpful and achieved gy the transcendental
eqguations with the help of basic trigonometric identities.They are

o — T
) q(S)N fs q D q® 1
sin- = = 1
1+f2 ;D
I:(SI) 1
q”’N 1 q® 1
cos = = o
1+f2 ;D
PO
2fs q¥;D s
sin %JS)N = o R 20
1+f2 9D
PO
1] 1 f2 qS;D )
cos%JS)N = B e B s R
— — " 47D
q¥N 1 @ 1D2L0C) L]
sin = Ee—g—7 — q@
1+f2 ¥;D ‘
1] 1
%I) — fa q¥;D @ 1
cos = BEe—pF—%7 1
1+f2 o¥;D
o
2f a,D a 2
sin%]a)N = i ?3 Y’ 1D_%Ja)b~_*|
1+f2 ;D 2
1 1
q 7 f2 q(a);D 1 @ ,
cos N = =] 1 (C.29)
1+f2 ¥;D

These approximations yield the nal result for the coe cient b for q(s) 1
R 1+ O(q®) (C.30)

The antisymmetric case is done analogously yielding

[ 1+ O(q¥) (C.31)
which yields for low frequencies and respectively lardge
2
N . N (C.32)

the expectedN -dependence of the normalisation constant.



Appendix D

Calculation of the influence
functional

Here the explicit calculation of the functionalF" de ned in Eq. (4.70) is shown. The
result is is given in Eq. (4.74) asF" = F},F0 G, . The functions L§%( );L5%( )

are given with their dependence on the coupling constantg. ;c, . Only here in the
Appendix the full calculation with the dependence of the codimg constants for each
anharmonic bond is given. Starting with the bilinear blip-erm one gets the following
argument by applying the transformations Eq. (4.43). The daulation of the rst term

(with the indices a; b for the functions L&>( ); L3( ) of Eq. (4.34)) with the use of the

transformations Eqgs. (4.43) yields:

-
d d°LPC 9 @) P9 (D.1)

ab=1 0 0
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The functions Q

APPENDIX D. CALCULATION OF THE INFLUENCE FUNCTIONAL

i -
T d o dLPC 9 (
ajb=1 j;j ®=1 0 0

ty 1) ( % tyo 1)
1
( ty )( % tyo) ( t) (0 tyo )+ ( ty) (% tyo)

[ S— — - [ 1
b)
2 d oL 9 doP 9
ab=1 jjj %=1 ty 1 thi0 1 ty0
L ]
d d L3 9 d °Lab( 9
t2) tyo0 ty0 1
- - — L
b)
R d L tyo1) L 3°( tyo)
ab=1 j;j %=1 ty 1
- Ll
+ d L3°( tyo) L 3P( tyoq)
t2] |:|
ja j(b) Q(zab)(tzj 1 tyo)+ Q(zab)(tzj tyo 1)
a;b=1 j;j %=1 L

Q(Zab)(th 1 tyo 1) (zab)(tzj ty0)

:I:I%I(b) (ab) (D.2)

e e
ajb=1 j;j %=1

(ab) (ab)
2

are de ned in Eq. (4.75) and the function ;¢ is de ned in Eq.

(4.76). This is the blip-blip-interaction and self-energypart of the argument of the

exponential (together with the constant factor ofq—‘i) of Eq. (4.74). And now the same
procedure for the term containing the functionL3°( ) yields:

-
i d d°LPC 9 @) OC9 (D.3)

ab=1 0 0
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1 [ [

1
WO g 4o 9 (ot )( ° ty)

ab=1j0=0 j=j0+1 0 0

E"I1 01

1
( ty 1)( % tyoa) ( th) (0 tyo)+ ( t) (% tyoa)

o, o B -
. b
= j(gl) j() d d OL?b( (ﬁ d OLilb( 0)
ab=1j0=0 j=j0+1 ty 1 ty0 L2041
L5 ]
+ d d °L3( 9 d OLa%( 9
t2] t2j0+1 t2j0
- -
= S d L tgo) L ( tyoea)
ab=1j0=0 j=j0%1 toj 1
1 L1
+ d L®( tyoa) L P ty0)
& ]
PRIl (a)l (b) ~(ab) (ab)
= | 0 Q]_ (th 1 t2j°)+ Ql (t2] t210+1)
a;b=1 ]0=0 =] 0+1 |:I

b
QP (ty 1 tyon) ®(ty  tyo)

S LI RN (a)l (B« (ab)
ab=1j0=0 j=j%1

The functions Q(lab) are de ned in Eq. (4.75) and the functionxjga(?) is de ned in Eq.
(4.76). This is the blip-sojourn-interaction part of the agument of the exponential

(together with the constant factor ofq—‘?) of Eq. (4.74).
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Appendix E

Density matrix for two anharmonic
bonds

Starting with the Hamiltonian for two anharmonic bonds preseted in Eg. (4.1) it can
be brought, omitting the c.0.m., into the form of Egs. (4.12)(4.13), (4.14)

H = H%+HO2 +H E.l
1d|:| int I'ﬂ‘c ] 1 ED
HE = Bt B, * o Gt d, +Vo(tn)* Vo(tn)  (E2)
[ 1]
1NE— 1
Hharm E P2+ CQZ (ES)
=1
. NS K 1
Hint = Q C%l; qua (E4)
=1 a=1

Including the potential renormalisation of HJ in HY, allows us to rewrite the above

int
given Hamiltonian in the form of

H = Ha+Hp +H E.5
1d|:| int @] ( )
Hqg = -~ P, + P, + Vo(Ou,) + Vo(aw,) (E.6)
N 1 1
1 2 2
Hharm = é P+ CQ (E-7)
=1
I—g_—EEI 1
— N 1C§, q%/la
Hint - Q Ca; qV'a + E m ! 2 (E8)
=1 a=1

From now on the explicit time dependence is shown, because tbe calculation it is
necessary to distinguish between time dependent and timedependent quantities.
Using the Liouville-von-Neumann Equation for the time deperght density matrix o (t)
of the system-bath Hamiltonian one can write down:

%mt(t): H w® (= e M0 (E.9)
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The full density matrix element in spatial representation eads
1
hfQ' g; cly, s Gl o (Dichy, i, FQ7gi = dd,, ddy, ddfj, defy,df Q' gdf Q°g
hfQ' g; cfy,: chy,ie “idu,: t,:TQ gi
hfQ' g; Ay 5 Gu,i wt (0)ichy ;o f Qgi
hfQ%g; o, : oy ie~ iy oy, T Q% g

(E.10)
, where
G, = Ov,(0); Ay, = i, (0); oy, = o, (0); oy, = o, (0)
G, = Ga(D); Gy, = G (D) oy, = o, (D) oy, = o, (D) (E.11)
and
fQ'g = fQ (0)g fQ%y= fQ°(0)gy
fQ'g = fQ (1)g fQYg= fQ°(t)g (E.12)

By tracing out the bath degrees of freedom one obtains the neckd density matrix
red(t) = Tr pan 1ot (t), Which is done by settingf Q9 g= fQ' g.

1]
by, i G, reaDicy,ida,i = ddy, ddy, defy, defy, df Q' gaf Q°gdf Q'g
hQ gidy ;i dyie “™idu,idu,ifQ i
hfQ' g; Gy, i 1ot (O)idh,: o,: T Q%0
hfQ g o, b ie ™ icy, i oy, fQ'gi (E.13)
Assuming the density matrix has factorising initial conditons ;(0) = (eq(0)

harm (0) @and knowing that the Hamiltonian (E.5) induces a classidaction S = S4[qu, ; Ov,]+

Sharm [fQ 9] + Sint [fQ 99u,; Gu,] one can rewrite the equation above in the following
form

1]
I‘I:{\/Il;q(/lzj red(t)jq(\jlll;q?/lzi = dqﬂldqﬂzd(f/lldcﬂ\zrqﬂl7%gj red(o)jq?/ll;q(\)ﬂzi

|
Dgu, Dgu, D¢, Dd, o (Salav yiam .1 Salofy 59y ,1)
1 2
%y G, Q&Ol O ¥
F i Ooi i o, (E.14)

tas assumed in [21]
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The rst term before the path integrals describes the prepation of the initial state of
the anharmonic bonds.

1

F %1;qw2;q%1;0§’ﬂzm= df Q' gdf Q%gdf Q" g hfQ' gj harm (0)jf Q%gi
o) o)
DfQ g  DfQg
fQ' g fQ
e (Stam [fQ o+ S [FQ giam ;oM ] Sham [FQ%0) S [FQOgiay oy ,])

(E.15)

The term presented above Eq. (E.15) is called in uence furiohal in literature. The
exponential right before the in uence functional contaimg Sy gives the bare tunnelling
amplitudes of the anharmonic bonds\[gu,]; A [q?,,l]; Blau,]; B [q?,,z]. The separation
of the harmonic and anharmonic degrees of freedom yields adtional containing only
the anharmonic bondsSy, which describes tunnelling of both bonds without coupling
to the harmonic bath. The dissipative in uence of the harmoit bath is fully captured
in the in uence functional Eqg. (E.15). The density matrix eements of the bath can be
written [16, 21] as a product of allN 3 harmonic modes.

N
P . 0~ — Jl_l m
hfQ' gj nharm (0)if Q"9 :1|:2|sinhL!_'T~D 2 ~sinh(! ~) 1
m ! G G 'Q°
exp S=sint =) Q “+ Q" cosht ~) 20'Q

(E.16)

The expression for the second part of the in uence functiohgonly the functional for
fQ 0;qv,;au, is given, the functional forf Q°g; of} ; o, is performed in the same way)
reads after performing the path integration over the harman degrees of freedom [16, 21]

= ==
N
Df Q gei:(Sharm [fQ g+ St [FQ giam ;oM ,]) = - m! et [auyiau, Q' Q']
2i ~sin(! t)

Qg -
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m! ED%LZ_JD o

Q' EEIOSQ ) 20'Q

[y Gz Q5 Q'] = Tsnd 0
o,
+ a_lm d sin(! (t ))au.()
o 0
ey snC a0 EEs d )
- 0 - 0
1
— G P
a_bzlm! sin(! t)
’ 0 0
sin(t (t )sin(t Yo, ( )au,( 9 (E.17)

Applying the calculations given above the in uence functioal can be given in the
Feynman-Vernon [21] form (after performing the Gaussiamiegration overdf Q' g; df Q%g,
df Q" g), not for one but two anharmonic bonds and a suitable choicd mitial and nal
conditions for the anharmonic bonds.

o e = 1
F oMy Ovoi Gy in,] = exp : d d°%au.() ()
] a;b=1 0 0 T
L an( Yam,( ) Lo Y, ( 9 (E.18)

where the functionL 5,( ) is de ned as

\ L1 /1 1 1
Lan( ) = 2—%‘ af coth !2~ cos( ) isin( ) (E.19)

the in uence functional presented here has the same form as[22] with the di erence,
that now not only one anharmonic bond, but two are consideredThe complete ex-
pressmn for the probablllty to have arrived in the nal state at timet (i.e. the element

I”o,\,I Ov,J red(t)jq\,] LI of the reduced density matrix), is
1
pt) =  Daw,( ) Doy, ( IDaw,( ) Dy, ( YAlgu,]A [ay,1Blav 1B [ay,]
F[OM() YO YR @ H: ) (E.20)

, Where p,(t) = haij red(t)jai. Splitting the function L,,( ) into imaginary and real
i

part Lap( ) = L3° ) iL%( ) one gets the form needed to understand the derivation
of (4.62), (4.63) in subsection "Tunnelling expectation dae using extended NIBA".



Appendix F

Blip- and Sojourn charge
summation

The summation of blip- and sojourn-charges for the functi@isF i) .\iga F 2):nea Siga -
de ned in Eg. (4.80) is performed here in detail. At rst the simmation for Py(t) is
performed. Since it is obviously irrelevant if the initial ate is AA or DD, as long as
the nal state is xed to be the same as the initial state (forP,(t)). Beginning with the

summation of sojourn-charge$ j(l)g;f j(z)g; n>j 1, yields
n n n
F(l);NIBA F(Z);NIBA AT
i Wgf @g

iq2 n (0] n (o]
= SE,; SE, BBy, ?_ILQ il) Qi(tz ta)+ Qilz)(tz tll_)l_ljl 52) Qa(tz ta)+ lez)(tz t1)

(O @O 1 @O @
I:I O( 0 (o] 1 0 1 )
- 12 2 12
2" 1 cos Zj() Qultzj tj 1)+ QFP(tj 1ty 1) + Zj() Quityy ty 1)+ QM (ty ty 1)
= [0 ]
(@ @)

The expressions SE SE;; BS;; BS;; BS;,; BB, are de ned in Eq. (4.80). To understand
the summation more easily, the restrictions applied here nebe expressed mathemati-

callyas ) = . Now the summation of the blip-charges can be performed.
As in the sojourn-charge summation, the charges of both antmonic bonds have to be
equal (j(l) = J-(Z)), yielding

L 1
SE SE fo(i ) g (P ) BBy
f Wgs @
] |

g
2 p
29 =1Q§12)(tzj tajp 1) I%IZ ] @

= SE; SE, e 200 “2 Qu(tz t)+ QM(t; 1)

o [ 5

2
220 D cos Qulty ty )+ Q(ty ty 1)

j=2
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Now using the de nition of Egs. (4.86), we are able to write theesult in a simpler way
5 [
205 ~+
FO(ftong) =22 1 cos “2Qi(ty ty 1) € ~%ta ta (F.1)
j=1
Performing the summation of the blip- and sojourn-charge®i P,(t), we can choose an
initial state of AD or DA. As before, the choice of the initial state xes the nal state

That allows a simpli cation of the summation as beforeto ® = @ and @ = @,
yielding
L 1
Foynea Foynea Riea
i Wgs @g

2 n o] n o
- SE, SE, BBy, ?_IQ—P Pt ) Pt W P Qutz t1) QfP(t2 1)

W- @- ;. @. @
fO(O_O_l'l'l)

n 1 — q I:(|1) (12) 2 (12)
2" © cos ot G Qi 1) QiU (f Ty 1) G Qulty Ty 1) QiU (fy Ty 1)
= [0 ]
g (@ @
|

Now the summation of the blip-charges can be performed.
As in the sojourn-charge summation, the charges of both anmonic bonds are not
allowed to be equal, so thatj(l) = j(z), yielding

1
SE,  SE fo (525 ) g (Y ) BBy

f Dgr @
ﬁ.p QSPty ty 1) o L (12) rh-!
= SE; SE, e it 2cos — Qu(tz t1) Qi7(t2 ty)
205 L 12
22" U cos — Qu(tyg  ty 1) Q(l )(th ty 1)
j=2

Now using the de nition of Egs. (4.86), we are able to write theesult in a simpler way
 — —r
FP(ftng) =22+ cos —2Q,(ty ty 1) e -0 = (F.2)
j=1
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