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Chapter 1

Introduction

The phenomena of the confinement of quarks, the existence of glueballs and hybrids
and the origin of the mass of strongly interacting, composite systems are long-standing
puzzles and represent a challenge in our attempt to understand the nature of the strong
interaction and of the hadronic matter. The strong force governs the microscopic structure
of the matter. It bounds the nucleons within the atomic nucleus. It also determines the
interaction between the quarks within the nucleon and other hadrons.

Among all possible realizations of quark and antiquark assembly, the nucleon (the
proton and the neutron), is the most stable of all hadrons and consequently has been the
subject of intensive studies. Mass, shape, radius and more complex representations of its
internal structure are measured since several decades using different probes.

The electron elastic scattering has played a major role in the quest for understanding
the intimate nature of the proton. As early as 1953, electron elastic scattering experiment
were performed at the Stanford Linear Accelerator Center (SLAC).

The composite structure of the proton was shown in the 1956 at SLAC. Since then
a whole set of tools (elastic scattering, deep inelastic scattering, exclusive and inclusive
scattering, polarization observables), has allowed a breakthrough on its structure. The
hadron form factors are considered fundamental quantities as they characterize the inter-
nal structure of a non point-like particle. A particle of spin S is parametrized by 2S+1
form factors. The proton (S=1/2) is then described by 2 form factors traditionally the
electric GE and magnetic GM form factors. GE and GM are function of one kinematical
variable q2 related to the internal distance. Schematically, at large distances (low energy),
they are interpreted in terms of charge and magnetic distributions and at small distances
(high energy) they probe the quark and gluon structure.

The simplest way to measure the proton form factors consists in measuring the angular
distribution of the electron-proton elastic scattering accessing the so-called Space-Like
region where q2 ≤ 0. Using the crossed channel pp ↔ e+e−, one accesses another kine-
matical region, the called Time-Like region where q2 > 0. However, the pp ↔ e+e− has
a threshold q2

th. Consequently, within this reaction only the kinematical domain q2 > q2
th

is available. To access the region below the threshold so-called unphysical region, one
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may use the pp → π◦e+e− reaction where the π◦ take away a part of the system energy
allowing q2 to be varied between q2

th and almost 0.

The study of the nucleon structure using electromagnetic processes is one of the research
fields of the PANDA project to be installed at the future Facility fo Antiproton and Ion
Research (FAIR).

The present thesis aims to show the feasibility of the proton electromagnetic form
factor measurements using the pp→ π◦e+e− reaction. It also comprises a technical work
dedicated to the study of the PANDA electromagnetic calorimeter.

After this introduction, the second chapter presents both FAIR experimental program
and the FAIR facility. Then, the PANDA physics program is detailed and finally the
description of the PANDA detector is given with an emphasis on the electromagnetic
calorimeter.

The third chapter summarizes the present knowledge on the nucleon electromagnetic
form factors. I start by presenting the different kinematical domain and the nucleon
electromagnetic form factors. Then extraction methods are described and the world data
are displayed. Finally, model predictions and foreseen measurements are discussed.

The fourth chapter focuses on the pp→ π◦e+e− reaction. The kinematics of this 3-body
final state is detailed. Then an overview of the existing models is given. While the very
first calculation based on one nucleon exchange is presented, I show why it was necessary
to extend the model.

The fifth chapter deals with the feasibility studies. Background channels are first listed.
Then a model for pp→ π◦π+π− is presented and background rejection factors are shown.
Finally, estimates for the signal contamination are given and the proton electromagnetic
form factors are extracted from electron angular distributions.

A part of this work was devoted to experimental aspects. Indeed, in a reaction like pp→
π◦e+e− where π◦ → γγ at almost 100%, it is important to cover the overall phase space
as much as possible and to understand the resolution of the detectors which contribute
the most to the identification of electrons, positrons and photons.

The sixth chapter is devoted to backward end cap electromagnetic calorimeter and the
determination of its resolution and efficiency.

The seventh chapter is dedicated to the prototype of the barrel electromagnetic calorime-
ter. After a brief description of the prototype, the calibration method is presented. Fi-
nally, the prototype resolution is shown.

The eighth chapter ends this thesis work, results are summarized. The conclusions and
outlook are then derived.

Study of electromagnetic channels at PANDA



Chapter 2

The PANDA project at FAIR

2.1 Facility for Antiproton and Ion Research

The concept for the FAIR facility (Facility for Antiproton and Ion Research, [1]) is
based on extensive discussions over a period of several years. It also adopted priority
recommendations from high level science committees.

2.1.1 The FAIR experimental program

The general goals and scientific objectives can be grouped into four fields: physics with
high energy antiprotons, nuclear matter physics, NuSTAR physics (Nuclear Structure,
Astrophysics and Reactions) and APPA physics (Atomic, Plasma Physics and Applica-
tions).

The PANDA (antiProton ANnihilation at DArmstadt) collaboration aims to study
fundamental questions of hadron and nuclear physics using interactions of high energy
antiprotons with nucleons and nuclei (see section 2.2 and [2]). The physics of strange and
charmed quarks will be accessible with unprecedented accuracy hence allowing tests of
the strong interaction.

The nuclear matter physics will be explored by the CBM (Compressed Baryonic Matter,
see [3]) collaboration. CBM aims at the investigation of strongly interacting matter at very
high density in relation with the questions of deconfinement and chiral phase transitions.

Using rare isotope beams, the NuSTAR collaboration [4] proposes a broad research
spectrum from nuclear structure physics to nuclear astrophysics through fundamental
interactions and symmetries.

The APPA collaborations [5] take advantage of heavy ion beams to focus on matter
under extreme conditions of temperature and pressure, on optical properties of matter
under these conditions, on the effects of irradiations on large area samples, also on atomic
spectroscopy and collisions. Moreover with low energy antiprotons, spectroscopy of an-
tiprotonic atoms and antihydrogen will be possible.
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2.1.2 The FAIR facility

The concept of the Facility for Antiproton and Ion Research (FAIR, see layout Fig. 2.1)
to be built at Darmstadt (Germany) has been developed in cooperation of an international
community of 45 countries and about 2500 scientists and engineers. Once upgraded for
high intensities, the existing GSI accelerators UNILAC (UNIversal Linear ACcelerator)
and SIS18 (synchrotron with a maximum magnetic rigidity of 18 Tm) as well as a proton
LINAC (to be built) will serve as pre-accelerator and injector for the new complex. Its
heart is a double-ring accelerator namely SIS100/300 (heavy ion synchrotron) with a 1100
meter circumference and with magnetic rigidities of 100 and 300 Tm respectively. Coupled
with a cooler system and storage rings, the synchrotrons will deliver high intensity and
high energy beams from protons to heavy ions.

Figure 2.1: Facility for Antiproton and Ion Reseach (FAIR, from [1]). Blue color stands for the
existing GSI facility (UNILAC, SIS18, ESR). The planned FAIR facility is plotted in red color
(SIS100/300 synchrotrons, the collector and accumulator rings CR and RESR respectively, the
new experimental storage ring NESR, the rare isotope production target and the superconduct-
ing fragment separator Super-FRS, the proton linac, the antiproton production target and the
high energy storage ring HESR). Experimental stations are also displayed for antiproton physics
(PANDA ), plasma physics, atomic physics, relativistic nuclear collisions (CBM), radioactive
ion beams (after Super-FRS) and low energy antiproton and ion physics (FLAIR).

Antiproton will be produced on a metal target [6] bombarded with 30 GeV/c proton
beams from SIS100. Antiprotons are collected and transfered in a Collector Ring (CR)
to be accumulated and cooled down to 3.8 GeV/c before being injected either in the
High Energy Storage Ring (HESR) or in the New Experimental Storage Ring (NESR).
The HESR will be used for high energy antiproton physics experiment like PANDA .
The HESR will be equiped with both stochastic and electron cooling to provide high
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2.2 PANDA 5

luminosity and high resolution beams. It consists of two 180◦ arcs and two straight
sections. One straight section will be occupied by the PANDA detector investigating
antiproton annihilation reactions from an internal hydrogen target [7] and the other one
by the electron cooling. Table 2.1 presents the specifications and the operating modes
of the HESR. The NESR will also be equiped with stochastic and electron cooling. It
serves to cool and decelerate stable and radioactive ions as well as antiprotons for low
energy experiments and trap experiment at FLAIR (Facility for Low Antiproton and Ion
physics).

Primary ion beams can be accelerated in the SIS100 and produce radioactive sec-
ondary beams selected via the Super-FRS (Superconducting FRagment Separator). Using
SIS100/300, high energy heavy ion beams are produced from nuclear collision experiments,
plasma and atomic physics.

HESR specifications

Ion species Antiprotons
p production rate 2 107 s−1 (1.2 1010 per 10 min)
Momentum range 1.5 to 15 GeV/c

HESR operation modes

High resolution Luminosity of 2 1031cm−2s−1 for 1010 p
momentum spread σp/p ≤ 2 10−5

1.5 to 9 GeV/c, electron cooling up to 9 GeV/c
High luminosity Luminosity of 2 1032cm−2s−1 for 1011 p

momentum spread σp/p ∼10−4

1.5 to 15 GeV/c, stochastic cooling above 3.8 GeV/c

Table 2.1: HESR specifications and operation modes

2.2 PANDA

The strong force governs the microscopic structure of the matter. It bounds the nucleons
within the atomic nucleus. It also determines the interaction between the quarks within
the nucleon and other hadrons. The modern theory of the strong interactions is the
Quantum ChromoDynamics (QCD). Together with the electroweak theory, QCD is part
of the Standard Model of particle physics.

The building blocks of the QCD are the quarks and the vectors of the interaction are
the gluons. QCD is well understood at short distances (i.e.: shorter than the nucleon size)
where the strong coupling constants small and perturbation theory can be applied. The
perturbative approach fails when the distance becomes comparable to the nucleon size.
In that case the force between quarks becomes so strong that they cannot be separated
anymore. As a consequence, quarks have never been observed as free particles and are
confined within hadrons made of three quarks or a pair quark-antiquark.

Jérôme Boucher, 2011
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A few micro seconds after the big bang, the quark sea evolved to hadron with masses.
The elementary quarks up and down have very small masses and represent only few
percents of the nucleon mass. The main part of the nucleon mass arises from the quark
confinement and the spontaneous breaking of chiral symmetry.

The confinement of quarks, the origin of mass, the existence of hybrids and glueballs
are long standing open fields. A major part of the PANDA physics program is designed
to address these questions.

2.2.1 PANDA physics program

High energy and intensity antiproton beams provided by FAIR together with PANDA
are an excellent tool to explore hadronic physics and strong interaction, see [7]. With
a momentum range from 1.5 GeV/c to 15 GeV/c, the antiproton beam will allow the
production of heavy strange and charmed hadrons as well as hybrids (combinations of
quarks and gluons) and glueballs (consisting only of gluons). Fig. 2.2 shows a spectrum
of accessible states of matter (light and heavy hadrons, gluonic excitations, . . . ).

Figure 2.2: Accessible hadrons with the antiproton beam at FAIR, from [1]. The upper scale dis-
plays the antiproton momentum and the lower one the hadron mass. The vertical line shows the
maximum mass that can be produced in pp annihilations at the former Low Energy Antiproton
Ring (LEAR) at CERN.

• Non relativistic potential models, effective field theories and lattice QCD can predict
particle spectra. To determine the good approach and have a better understanding
of QCD precise measurements are needed. PANDA will not only allow standard
meson and baryon spectroscopy (built of up, down, strange, charmed quarks and
antiquarks) but also more complicated configurations such as exotic states (hybrids
and glueballs).

Study of electromagnetic channels at PANDA



2.2 PANDA 7

• The hyperon pair production involves the creation of a quark-antiquark pair or the
knock out of such pairs out of the nucleon sea. The measurement of the reaction
antiproton proton to antihyperon hyperon (e.g.: pp → ΛcΛc) will enable to study
the mechanism of these quark antiquark pair creation.

• The study of hadronic matter will help to understand the origin of hadron masses
in the context of spontaneous chiral symmetry breaking and its partial restoration
in hadronic matter. Up to now, that was studied in the light quark sector. The high
energy antiproton beam will extend this sector to heavier hadron masses.

• Hypernuclei are systems in which up and/or down quarks are replaced by strange
quarks. Efficient production of hypernuclei will open new perspectives for nuclear
structure spectroscopy and allow to study the interactions between hyperons and
nucleons.

• By producing D-mesons, rare weak decays can be observed allowing to study elec-
troweak physics by probing predictions of the standard model.

• The nucleon structure can also be investigated using electromagnetic processes.
pp → e+e− [8] will allow the determination of the electromagnetic form factors
of the proton in the Time-Like region (see Chapter 3). The process pp → π◦e+e−

may provide access to the electromagnetic proton form factors in the unphysical re-
gion. The measurement of the electromagnetic proton form factors with the reaction
pp→ π◦e+e− is addressed in the present document.

2.2.2 PANDA detector

The PANDA detector (Fig. 2.3) is a fixed target detector based on two spectrometers
[9] to fulfil the requirements imposed by the physics cases: 4Π acceptance, high resolution
tracking, electromagnetic calorimetry and particle identification for e, µ, π, K, p and their
antiparticles as well as photons. High rate capabilities and on-line trigger are also key
features.

The target spectrometer based on a superconducting solenoid magnet surrounding the
target will measure the particles with polar θ angle above 5◦ (10◦) in the vertical (hor-
izontal) plane whereas the forward spectrometer based on a dipole magnet will be used
for the particles emitted at small polar θ angles i.e.: θ below 5◦ (10◦) in the vertical (hor-
izontal) plane. For both spectrometers, tracking, electromagnetic calorimetry, particle
identification as well as muon identification are available.

Jérôme Boucher, 2011



8 2. The PANDA project at FAIR

Figure 2.3: Side view of the PANDA detector with both target and forward spectrometers,
adapted from [2]. The target spectrometer comprises a MicroVertex Dectector (MVD), a cen-
tral tracker (Time Projection Chamber (TPC) or STraw Tubes (STT)), a Cherenkov (DIRC)
and a Time Of Flight (TOF) detectors, an ElectroMagnetic Calorimeter (EMC), Gas Electron
Multiplier chambers (GEM) and a MUOn (MUO) detector. The forward spectrometer is based
on STT chambers, Cherenkov (RICH), TOF, Shaslik calorimeter and MUO detectors.

2.2.2.1 Target spectrometer

The target spectrometer surrounds the interaction point with a 2T solenoidal field. One
of the key points of the design is the compactness: all sub-detectors must fit inside the
superconducting solenoid magnet.

The electromagnetic calorimeter (EMC, Fig. 2.4) is used to measure γ and e± energy
via the electromagnetic shower phenomena. In association with the tracking system,
the electromagnetic calorimeter will help for particle identification of charged particles.
Furthermore, the EMC providing precise photon and electron energy measurements (from
few MeV up to 10 GeV), will open a broad range of studies from the electromagnetic form
factors to excited states of charmonium studies [10].

Study of electromagnetic channels at PANDA
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Figure 2.4: The barrel and forward end cap EMC, from [10]

The EMC consists of one central barrel and two end caps (backward and forward). Fig.
2.4 displays the barrel and the forward endcap. The central barrel is composed of 11360
crystals for a weight of 11 186 kg, a 2.50 meter length and an entrance radius of 0.57 meter.
It is divided into 16 identical sectors. To avoid photons going between two crystals, their
axes are tilted by 4◦ which corresponds to a 4 cm shift of the focus point. Taking into
account the barrel dimensions and crystal orientations, the barrel covers from 22◦ up to
140◦. 6864 crystals form the forward end cap and 816 crystals compose the backward end
cap. Both end caps are divided in 4 sectors. In a similar way to the central barrel, crystals
are not pointing directly to the interaction point. Furthermore, the forward (backward)
end cap covers the angles from 5◦ - 10◦ up to 22◦ (from 147.5◦ up to ∼165◦).

PANDA will use lead tungstate crystals (PbWO4) commonly named PWO crystals (see
Fig. 2.5) produced by the Bogoroditsk Techno Chemical Plant (BTCP) in Russia. PWO
crystals were used in the Compact Muon Solenoid (CMS, [11]) experiment at CERN.
PANDA takes advantage of ten years of expertise in PWO crystal production (improve-
ment of the crystal quality and light yield). PWO has been chosen due to its attractive
characteristics (see Table 2.2). Its high density allows to have a relatively compact de-
tector and its fast decay time of 6 ns (dominant at 97%) to afford the high counting rate
especially at forward angle (107 annihilations per second are expected at PANDA ).
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Figure 2.5: Two PbWO4 crystals, from [9]

PbWO4 crystals have important drawbacks like the temperature dependence of the
light yield, the low light yield (approximatively 0.6% of NaI for the fast decay) and finally
its sensitivity to radiation. To increase the light yield of PWO crystals, they are cooled
down to -25◦C with a 0.1◦C stability (One goes from 20 phe/MeV at 25◦C to 95 phe/MeV
at -25◦C).

PWO light is produced by WO2−
4 , WO3−

4 (center of higher luminosity in PWO crystals)
and WO3. PANDA will use PWO 2nd generation (PWOII) which is PWO doped with
few ppm1 of Lanthanum or Yttrium. PWOII crystals have a light yield increase (due to
the different doping and temperature) by 80% compared to PWO crystals used by CMS.
In comparison to NaI which has a light yield of 40 γ/keV of energy deposit, PWO light
yield is 240 γ/MeV of energy deposit for the fast decay and 38 γ/MeV of energy deposit
for the slow decay. Such values are very low.

An important activity on the radiation sensitivity at -25◦C has been conducted by
several groups in the collaboration [12]. Although the final answer is not clear yet, the
gain obtained on the light yield largely compensates the loss due to radiation.

Parameter PbWO4

Density(ρ) 8,28 g.cm−3

Radiation length (X0) 0,89 cm
Energy loss (dE/dx) at MIP 10.2 MeV.cm−1

Decay time (τdecay) 6 ns
Light yield (LY) 0,6 (fast)% of NaI

0,1 (slow)% of NaI
d(ln(LY))/dT -3%.◦C−1

Table 2.2: Relevant PWOII properties.

1ppm: parts per million
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One has to note that, with the important magnetic field, photomultipliers can not be
used. Avalanche PhotoDiodes (APD) being not sensitive to magnetic fields, were then
chosen for the photon detection. They also exhibit a gain depending on temperature.
In such conditions, it is necessary to stabilize both APDs and crystals to 0.1◦C which
corresponds to light yield variations of 0.3%.

An avalanche photodiode is a PIN diode (PN diode with an inverse polarization) in
which a current amplification is obtained in the depleted zone. This method allows the
extraction of a good electric signal even if the light signal is very low. In fact, when a
gamma is absorbed in the depleted area, if its energy is above the energy gap, an electron-
hole pair is created. This electron is then accelerated by the electric field. Furthermore,
it can give to another electron of the valence band the sufficient energy to go to the
conduction band. So, there are two free electrons in the conduction band. That is called
ionization by collisions.

On one hand, APD have advantages such as insensitivity to magnetic fields and low
energy consumption but on the other hand, they exhibit drawbacks: small sizes (only
a small fraction of the photons are directly detected, the present Hamamatsu S8664-
1010 APD is 10x10 mm2 and covers 14% of the rear crystal surface), small gain (signals
must be further amplified) and temperature sensitivity (gain increases when temperature
decreases, [13]). Studies are ongoing to use two rectangular APDs instead of one to cover
the major part of the rear crystal face.

The electromagnetic calorimetry is a method of energy measurement based on electro-
magnetic showers using high density materials with high Z values. An electromagnetic
shower is produced when a particle enters any material if its energy is higher than the
critical energy. The critical energy is defined as [14]:

Ee
c ≈ 800/(Z + 1.2) GeV (2.1)

i.e.: approximatively 9 MeV in case of PbWO4. For high energy, the Bremsstrahlung
effect for electrons and positrons as well as the pair creation for gammas i.e. : e →
e′γ and γ → e+e− are contributing. If the particle energy is below the critical energy,
Bremsstrahlung and pair creation are no longer dominating, but only ionization, Compton
effect and photoelectric effect have the leading role.

Knowing the radiation length X0, the shower depth can be calculated. The following
formula gives the depth X in which 95% of the shower is contained, [15]:

X

X0

≈ 1

ln(2)
ln(

E0

Ec
) + 0.008Z + 9.6. (2.2)

For a 15 GeV electron, X
X0

=21 has to be compared to the length of PANDA calorimeter

crystals of 22 (where X0 is equal to 0.89 cm for PbWO4).
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The relative resolution σ(E)
E

of a calorimeter is usually parametrised as:

σ

E
=

a√
E
⊕ b

E
⊕ c, (2.3)

where a√
E

stands for the sampling, b
E

for the background (electronic noise, pile up, . . . )

and c for the constant term (bad calibration, inhomogeneity, . . . ). So, higher is the energy
of the incident particle, better is the resolution. The design goal for PANDA resolution
is: σ/E ≈ 1/

√
E⊕1. Tests done at the Mainz photon tagger facility at -25◦C are detailed

in Chapter 7.

The magnet is used to bend charged particle trajectories [16]. Once combined with the
microvertex detector and the central tracker, it will allow to determine the charged particle
momenta. It is a superconducting solenoid coil with an inner radius of 90 cm producing
a 2 Tesla field. A field inhomogeneity below 2% over the volume of the microvertex
and the central tracker is expected to achieve the precision needed by the physics cases.
Furthermore, the transverse field should be as small as possible in order to allow uniform
drift of charges.

A target thickness of 4 1015 hydrogen atoms per cm2 is required to reach the design
luminosity of 2 1032cm−2s−1.

The pellet target is based on a stream of frozen hydrogen micro-spheres called pellets.
With this technique, the design luminosity is reached with a 4 1015 atoms per cm−2

(average) target density. The use of other gases like deuterium, N2 or Argon is possible.

The cluster-jet target is another possible design and it is based on the expansion of
pressurized cold hydrogen gas into vacuum through a Laval-type nozzle. The advantage
of such a target is the homogeneous density profile but at the moment only 8 1014 hydrogen
atoms per cm2 target can be done (which is below the requirements).

The pipe for the target material injection will be perpendicular to the beam pipe. The
request to have the MicroVertex Detector at the minimal distance from the interaction
point combined with the compact detector design leaves very little space for the target
installation.

The Micro-Vertex Detector (MVD) is used to reconstruct charged particle trajecto-
ries and aims to detect secondary vertices from D and hyperons decays (cτ < 150 µm).
Combined with central and forward trackers, it will also improve the momentum resolu-
tion. The MVD is based on radiation hard silicon pixel and silicon strip detectors. The
design includes 4-layer barrel from 4.4 cm to 10.5 cm and six detector wheels arranged
perpendicularly to the beam to have the best acceptance for forward angles.

Study of electromagnetic channels at PANDA
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The central tracker is designed to reconstruct charged particle trajectories, to detect
secondary vertices (cτ = 2.69 cm for K0

S, cτ = 7.89 cm for Λ) out of the MVD and to
measure energy losses. With a 2 1032cm−2s−1 luminosity, the central tracker must also
deal with high fluxes of particles and also provide a momentum resolution δp/p < 2% at
1 GeV/c. Two possibilities have been considered in details up to recently: one based on
Straw Tubes (STT) or a Time-Projection Chamber (TPC) which need to fit in a 150 cm
long barrel with an inner radius of 15 cm and an outer radius of 42 cm.

Straw Tubes are aluminized mylar tubes filled with an Argon CO2 mixture at 1 bar
overpressure. The tubes are 150 cm long for a 10 mm diameter with a mylar foil thickness
of 30 µm and 20 µm diameter gold plated tungsten wires. The 4200 straw tubes will be
arranged in 24 planar layers and mounted in an hexagonal shape around the micro-vertex
detector. Eight layers are tilted to measure the z coordinate. The expected resolutions are
150 µm and 3 mm in the xy and z coordinates respectively. The energy loss measurements
can be obtained via flash ADCs.

Time Projection Chamber could be a good option providing identification capabilities
through energy loss measurements. The TPC consists of two large gas-filled half-cylinders
surrounding the beam pipes, the target and the MVD. Within an electric field along the
cylinder axis, positive ions are separated from electrons which are then detected by a pad
readout plane. The information from the readout plane and the measurement of the drift
time leads to the three coordinates of the track. To avoid a continous backflow of ions in
the drift volume which could distort the electric field, the amplification stage is based on
Gas Electron Multiplier (GEM) foils. Due to the slow drift (2.7 cm per µs for electrons)
and the high rate, the challenge for the TPC will be the accumulation of charge (around
3000 tracks at any given time) and the fast on-line reconstruction of the tracks.

In september 2011, the collaboration voted for the straw tubes as central tracker.

Gas electron multiplier (GEM) detectors cover the forward angles below 22◦. The
advantage of these detectors is to stand the high particle rate (3 104cm−2s−1). Since drift
chambers do not fulfil this rate requirements, gaseous micropattern detectors based on
GEM foils will be used.

Cherenkov detectors combined with the central tracker can help to identify particles
with momenta from 0.8 GeV/c up to about 5 GeV/c. For slower particles, Time of flight
detectors should be efficient. The particle identification is really important to remove
background from a channel of interest. Crossing a radiator with a refraction index n, a
charged particle with a velocity β > βthreshold (with βthreshold=1/n) emits radiations with
a θ angle following the formula cosθ = 1/(β n). Knowing the particle momenta (from the
central tracker) and measuring the θ angle, the particle can be identified. The Fig. 2.6
shows for n=1.47, the Cherenkov angle as a function of momentum for electron (black),
muon (red), pion (green), kaon (blue) and proton (light blue).

Jérôme Boucher, 2011
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Figure 2.6: Cherenkov angle depending on momentum for electron (black), muon (red), pion
(green), kaon (blue) and proton (light blue) taking into account a refractive index n of 1.47.

The Cherenkov detector is composed by one barrel for angles above 22◦ and a forward
end cap for angles from 5◦ to 22◦. The barrel DIRC (Dectection of Internally Reflected
Cherenkov light) covers angles from 22◦ to 140◦ and surrounds the beam line at a radial
distance from 45 to 54 cm i.e. just in front of the EMC crystals. Fused silica (i.e.: artificial
quartz) with a refractive index of 1.47 was chosen as radiator material. The advantage is
the thickness of the quartz slabs, here only 1.7 cm which limits the creation of pre-shower
since the DIRC is located in front of the EMC. The imaging will be achieved by lenses
focusing on micro-channel plate photomultiplier tubes (MCP PMTs) which are insensitive
to magnetic fields. In addition, the MCP PMTs provide good time resolution. For the
forward end cap DIRC, the same concept is used: the radiator material consists of fused
silica and MCP PMTs for the imaging. The forward end cap is a 2 cm thick disk which
fits within a 110 cm radius.

Time of Flight information combined with the momentum measured in the tracker is
helpful for the identification of slow particles at polar angles from 22◦ to 140◦. It will
be located between the central tracker and the DIRC. Therefore the time of flight must
fit within a radial interval of 3 cm. It is also designed to minimize its effects on the
electromagnetic calorimeter resolution.

The time of flight t is defined as t = l/(βc) where l is the path length and β is the
charged particle velocity. Within a 2 T magnetic field and knowing that the minimal path
length is 0.42 m, the minimum particle momenta to be detected is |−→p⊥| = 0.3Bρ = 0.125
GeV, where B is the magnetic field in Tesla and ρ stands for the radius curvature in
meter (here the minimal value of the curvature radius is 0.21 m). Since the pions and
the muons are the two particles with the closest masses, it is clear that the separation
of pions from muons will be the most difficult. To better quantify the required precision
of the time of flight, one needs to look at the time difference between two particles. The
Fig. 2.7 presents the time difference for the same path length. Black markers stand for
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|tπ-te|, red ones for |tπ-tµ|, green ones for |tπ-tK | and blue ones for |tπ-tp|. It shows that
the resolution must be of the order of the 10-20 ps to distinguish muons from pions but
also electron from pion at 1 GeV/c which is out of reach. The yellow line represents
the typical time of flight resolution of 100 ps. Therefore the time of flight will help for
electron/pion identification only below 0.4 GeV/c.

Figure 2.7: Time of flight difference depending on momentum assuming a 0.42 m path length for
|tπ-te| (black), |tπ-tµ| (red), |tπ-tK | (green) and |tπ-tp| (blue). Yellow line represents the typical
time of flight resolution of 100 ps.

Muon detector The goal of the muon detector is to separate primary muons from
secondary muons coming from pion decays. A segmentation of the yoke of the solenoid
magnet which acts as absorber with interleaved tracking detectors to measure energy
losses and decays. The barrel part is segmented in a first layer of 6 cm iron followed by
12 layers of 3 cm thickness with 3 cm gap for tracking detectors. The end cap is divided
into 5 layers of 6 cm iron plus a removable muon filter of 5 additional layers of 6 cm iron.
Aluminium drift tubes with read out on both ends (to obtain longitudinal coordinate) are
used as detectors.

2.2.2.2 Forward spectrometer

The Forward Spectrometer, covering the angular acceptance of ±10◦ (±5◦) in the hor-
izontal (vertical) direction, is designed to study the forward tracks. It is built around a
dipole magnet.

Similarly to the target spectrometer, the dipole magnet [16] will bend the charged
particle trajectories. The bending power of the dipole magnet will be 2 T.m corresponding
to a deflection of 2.2◦ for 15 GeV/c antiprotons.

The tracking will be handled by 6 straw tube chambers. Two will be located in front,
two within and two behind the dipole magnet to detect both high and low momentum
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particles. Each chamber will contain 4 double-layers, the second and the third layer being
respectively tilted by 5◦ and -5◦ to fully reconstruct tracks in both x and y direction in
each chamber separately and to handle multi-track events.

Both RICH (for high momentum particles) and Time of Flight (for low momentum
particles) detectors will contribute to the particle identification (with the tracking in-
formation) of pions, kaons and protons. The RICH detector will be composed of two
radiators: one made of silica aerogel (n=1.0304) and one made of C4F10 gas (n=1.00137)
and provide π, K and p separation from 2 to 15 GeV/c. Fig. 2.8 presents for both radi-
ators the Cherenkov angle as a function of momentum for electron (black), muon (red),
pion (green), kaon (blue) and proton (light blue). In the second radiator, in the available
kinematical range, the proton velocity is always below the threshold and therefore protons
will not radiate. The resolution is assumed to be σθ = 4 mrad = 0.2 degree. The Time of
Flight detector will be based on plastic scintillators coupled to fast phototubes on both
ends for the read out.

(a) Silica aerogel radiator (b) C4F10 radiator

Figure 2.8: Cherenkov angle depending on momentum for electron (black), muon (red), pion
(green), kaon (blue) and proton (light blue) taking into account a refractive index n of 1.0304
(2.8(a)) and n=1.00137 (2.8(b)).

The detection and identification of high momentum photons and electrons will be man-
aged by a high resolution and efficient Shashlyk-type calorimeter based on lead scintillator
sandwiches. The read out will be done via wavelength shifting fibers coupled to photo-
multipliers.

Muon detectors will discriminate pions from muons and detect the pion decays. It will
be similar to the muon detector of the target spectrometer but will be suited for higher
momenta.

2.2.2.3 Data acquisition and trigger

In PANDA, every sub-detector system is a self-triggering entity. All detectors will pre-
process signals in order to extract and transmit only the physically relevant information.
This requires hit detection, noise suppression and clustering at the read out level. The
data related to a particle hit, with a substantially reduced rate in the preprocessing step,
is marked by a precise time stamp and buffered for further processing. The final trigger
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selection will be done in computing nodes which access the buffers via a high bandwidth
network fabric.

To have such a flexible data acquisition and trigger, the hardware infrastructure will be
based on intelligent front-end electronics capable of autonomous hit detection and data
preprocessing, on a precise time distribution system to correlate all detector information,
on data concentrators providing point to point communication via optic links and on
compute nodes.

A major component providing the link for the hardware is the network fabric. The
network fabric is a network where each node is connected to all others via one or several
switches.
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Chapter 3

Nucleon electromagnetic form
factors

3.1 Introduction

The nucleon is an object composed of interacting quarks and gluons. Its cohesion is due
to the strong interaction described by the quantum chromodynamics (QCD). However, a
clean understanding of the nucleon structure is far from being reached.

In this respect, the electromagnetic probe is an excellent tool. The nucleon electromag-
netic form factors are key observables to characterize the nucleon internal structure.

Tab. 3.1 shows the notations used in the following chapters.

Notation Definition

pi 4-momentum of the particle i (GeV/c)
Ei total energy of the particle i (GeV)
Ti kinetic energy of the particle i (GeV)
−→p i 3-momentum of the particle i (GeV/c)
|−→p i| 3-momentum modulus of the particle i (GeV/c)
Mi mass of the particle i (GeV/c2)
Ωi solid angle of the particle i (sr)
mi spin projection of the particle i
L, H matrices

Table 3.1: General notations

In this thesis, the variable q2 is taken to be homogeneous to a mass squared and is
consequently expressed in terms of (GeV/c2)2. In the litterature, other conventions can
be found.
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3.2 Kinematical Region

The proton form factors can be accessed via the elastic scattering reaction ep → e′p′

(Fig. 3.1(a)) in Space-Like (SL) region or via the annihilation reactions e+e− → pp (Fig.
3.1(b)) and pp→ e+e− (Fig. 3.1(c)) in Time-Like (TL) region, in the one photon exchange
approximation.

For these three reactions, only initial and final states as well as kinematics are different
whereas e+e−γ and γNN vertices and also the photon propagator are the same. The four-
momentum transfer squared (q2) is defined as the invariant mass squared of the virtual
photon (i.e.: q2 = M2

γ∗) which is the vector of the electromagnetic interaction.

(a) ep→ e′p′ (b) e+e− → pp (c) pp→ e+e−

Figure 3.1: Possible reactions for the form factor studies: (a) ep scattering reaction in Space-Like,
(b) e+e− → pp annihilation reaction in Time-Like and (c) its time reversed reaction pp→ e+e−

in Time-Like.

In the Space-Like (SL) region, the form factors are real while in the Time-Like (TL)
region they have a non-zero imaginary part due to the presence of annihilation channels
e+e− → γ∗ → π+π−/ρ/ω/φ/ . . . However, below the 2π threshold q2 = 4m2

π, the Time-
Like form factors are real.

3.2.1 Space-Like region

In the case of electron-proton scattering, by writing the q2 expression starting from the
initial and recoil proton momenta in the lab frame one can see that q2 is negative.

q2 = (pp − pp′)2 = −2MpTp′ < 0 (3.1)

where, in the lab frame, pp and pp′ are the four-momenta of the initial and recoil protons,
Tp′ is the kinetic energy of the recoil proton and Mp is the proton mass. One therefore
uses Q2=−q2.

Q2 can also be expressed in terms of the incident and scattered electron energies.

Q2 = 4EeEe′sin
2(θe′/2) (3.2)

where, in the lab frame, Ee and Ee′ are the energy of the incident and scattered electrons,
θe′ is the scattered electron angle and the electron mass is neglected. To access different
Q2 values, one may either change the incident energy for a given θe′ or detect at different
θe′ angles if the incident energy cannot be changed easily.
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3.2.2 Time-Like region

For both e+e− → pp and pp→ e+e− annihilation reactions, q2 is positive. It is fixed at
a given system energy and greater than the threshold energy of 4M2

p .

In case of pp→ e+e− ,

q2 = s = 2Mp(Tp + 2Mp) > 4M2
p (3.3)

where Mp is the proton mass and Tp is the antiproton laboratory kinetic energy. The
region where 0 < q2 < 4M2

p is called the unphysical region and cannot be accessed by
these reactions.

3.2.3 Time-like unphysical region

The under threshold region 0 < q2 < 4M2
p is called unphysical region because it cannot

be accessed experimentally by an on shell process. A particle i with a 4-momentum
that satisfies E2

i − |−→p i|2c2 = M2
i c

4 is called on-shell. One way to access the unphysical
region, is to use the pp→ π◦e+e− reaction [17] where the q2 value may undergo below the
threshold due to pion emission (Fig. 3.2(a) shows one diagram). Another way is to study
p + A → e+e−(A − 1) reactions (more details in [18]) where the antiproton annihilates
with a bound proton (see Fig. 3.2(b) shows one diagram).

(a) pp→ π◦e+e− (b) p+A→ e+e−(A− 1)

Figure 3.2: Possible reactions for the form factor studies in the unphysical region. 3.2(a): the
antiproton collides on a proton producing a neutral pion and a virtual photon. 3.2(b): the
antiproton collides on a proton of the nucleus (A) producing a nucleus (A-1) and a virtual
photon.

To summarize, Fig. 3.3 displays as a function of q2 bothSpace-like and Time-like regions
and possible reactions to access them.
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Figure 3.3: Space-like and Time-like regions and possible reactions to access them.

3.3 Proton electromagnetic form factors

In the beginning of the 20th century, Stern [19] observed that the proton magnetic
moment was 2.8 times higher than expected for a point-like particle. In 1950, Rosenbluth
defined reduced charge and magnetic moment [20] related to the ep→ e′p′ cross section.
In 1956, Hofstadter [21] interpreted the ep→ e′p′ cross section in terms of form factors.

3.3.1 The Dirac and Pauli form factors

F1(Q2) and F2(Q2) are respectively the Dirac and Pauli form factors. At q2 = 0, F1(Q2)
and F2(Q2) are:

F p
1 (0) = 1, F p

2 (0) =
µp

µN
− 1 = κp, F n

1 (0) = 0, F n
2 (0) =

µn

µN
= κn, (3.4)

where µp and µn are the proton and neutron magnetic moments, µN = |e|~
2Mp

is the nuclear

magneton, κp and κn are the anomalous part of the magnetic moment for the proton and
the neutron.

The experimental values of the nucleon magnetic moments are:

µp = 2.792847351(28)µN and µn = −1.9130427(5)µN (3.5)

in rather good agreement with values deduced from the constituent quark model (in which
the u and d quark masses are fixed to 333 MeV):

µp =
(
2µu + µd

)
= 2.82µN and µn =

(
2µd + µu

)
= −1.88µN , (3.6)

where

µu =
2

3

|e|
2Mu

, µd = −1

3

|e|
2Md

. (3.7)
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3.3.2 The Sachs form factors

The Sachs form factors are linear combinations of Dirac and Pauli´s form factors:

Gp
E(q2) = F1(q2) +

q2

4M2
p

F2(q2), (3.8)

Gp
M(q2) = F1(q2) + F2(q2). (3.9)

They are used because the ep → e′p′ cross section has a simpler form when expressed in
terms of Sachs form factors as shown in sec. 3.4.1.

At q2 = 0, Sachs form factors are:

Gp
E(0) = 1, Gp

M(0) =
µp

µN
, (3.10)

Gn
E(0) = 0, Gn

M(0) =
µn

µN
, (3.11)

and at threshold (q2 = 4M2
p ), Gp

E(4M2
p ) = Gp

M(4M2
p ).

At low q2 within the Breit frame (where Ep = Ep′), the Space-Like form factors GE(q2)
and GM(q2) are equal to the Fourier transforms of the spatial charge and magnetization
distributions in the nucleon. At higher q2, this simple relation is not valid anymore and the
relation between form factors and spatial charge and magnetization distributions is quite
complex due to relativistic effects. Recent calculations using constituent quark proton
wave functions demonstrated the relation between form factors and transverse charge and
magnetic densities [22].

3.3.3 Boundary and asymptotic behaviour

At high Q2, the form factors should follow the perturbative QCD predictions:

F1(Q2) ∼ α2
s(Q

2)

Q4
, F2(Q2) ∼ α2

s(Q
2)

Q6
(3.12)

which gives in Space-Like:

GSL
E (Q2) ∼ GSL

M (Q2) ∼ α2
s(Q

2)

Q4
∼ 1

Q4ln2(Q2/Λ2)
(3.13)

and in Time-Like:

GTL
E (q2) ∼ GTL

M (q2) ∼ α2
s(q

2)

q4
∼ 1

q4ln2(q2/Λ2)
, (3.14)

where αs is the strong coupling constant and Λ = 0.3 GeV/c2.

In addition, as the form factors are analytical functions, the Phragmén-Lindelhöf the-
orem [23] implies that:

lim
q2→−∞

Fi(q
2) = lim

q2→+∞
Fi(q

2). (3.15)
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In Space-Like, F1 and F2 form factors are real. Therefore, this means that, in Time-
Like, the imaginary part of F1, F2, GE and GM (related to the pair creation channel)
have to vanish at large q2.

The form factor f(q2) is an analytic function and the relation between Space-Like and
Time-Like can be expressed as (dispersion relation for the imaginary part):

f(q2) =
1

π

[∫ 4M2
p

4M2
π

Imf(s)ds

s− q2
+

∫ ∞
4M2

p

Imf(s)ds

s− q2

]
, (3.16)

with q2 ≤ 0.

3.4 World data

3.4.1 Space-Like

To extract form factors, the Rosenbluth and the polarization methods can be used.
Both method are based on the assumption that the interaction between the electron and
the proton occurs via a one-photon exchange.

The Rosenbluth technique

The Rosenbluth technique allows to obtain separated values for Gp 2
M and Gp 2

E knowing
the cross section for ep→ e′p′ at a number of electron scattering angles for a fixed Q2 by
varying the beam energy.

The differential cross section in the laboratory of ep→ e′p′ is written as follows:(
dσ

dcosθe′

)lab
=

(
dσ

dcosθe′

)
Mott

τ

ε(1 + τ)

(
Gp 2
M +

ε

τ
Gp 2
E

)
(3.17)

where: (
dσ

dcosθe′

)
Mott

=

(
q2
e

2Ee

)2
cos2θe′/2

sin4θe′/2
, (3.18)

τ = Q2/(4M2
p ), (3.19)

ε−1 = 1 + 2(1 + τ)tan2(θe′/2), (3.20)

(3.21)

ε is the virtual photon polarization and Ee is the incident electron energy, qe is the electron
charge and θe′ is the final electron angle.

Defining the reduced cross section as:(
dσ

dcosθe′

)lab
red

=
ε(1 + τ)

τ

(
dσ

dcosθe′

)lab
/

(
dσ

dcosθe′

)
Mott

(3.22)

one gets the linear relation:(
dσ

dcosθe′

)lab
red

= Gp 2
M +

ε

τ
Gp 2
E . (3.23)
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Many data points [24], [25] and [26] were measured for Gp
E and Gp

M up to Q2 = 8.83
(GeV/c2)2 (see Fig. 3.4(a) and 3.4(b) from [27]). At higher Q2, the ε/τ dependence of
the reduced cross section leads to large uncertainties on the extraction of Gp

E, however
Gp
M could be extracted up to Q2 = 31 (GeV/c2)2 assuming µpG

p
E = Gp

M .

Up to 8 (GeV/c2)2, the q2 dependence of the magnetic form factor is close to the dipole
behaviour ([28], see Fig. 3.4(b)):

Gp
M(Q2) ∼ µpGd(Q

2) (3.24)

with

Gd(Q
2) =

 1

1 + Q2

M2
d

2

, (3.25)

M2
d = 0.71 (GeV/c2)2. (3.26)

Despite the larger errors on Gp
E and the large dispersion of the data sets, a similar be-

haviour could be observed for Gp
E up to 6 (GeV/c2)2.

(a) GpE/Gd (b) GpM/(µpGd)

Figure 3.4: Data base for GpE/Gd and GpM/(µpGd) obtained with the Rosenbluth technique as
a function of Q2 in Space-Like, from [27].

Polarization transfer experiments

These experiments use polarized electron beams or polarized proton targets. Measuring
the longitudinal (Pl) and tranverse (Pt) polarizations of the outgoing proton, one can
determine the ratio Gp

E/G
p
M as:

R =
Gp
E

Gp
M

= −Pt
Pl

Ee + Ee′

2Mp

tan
θe′

2
(3.27)

where Ee (Ee′) is the initial (final) electron energy in laboratory.
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26 3. Nucleon electromagnetic form factors

Gp
E is determined from R using Gp

M measured in previous experiments using the Rosen-
bluth method. The results, shown in Fig. 3.5, from [29], [30] and [31] (respectively empty
green squares, circles and triangles) are not compatible with the ones from [24], [25] and
[26] (red circles, triangles and squares) obtained via Rosenbluth method. Because the
extraction of Gp

E with the polarization method is less sensitive to systematic errors than
with the Rosenbluth method, it is believed that the polarization method gives correct
determination of Gp

E. Consequently, there is a lot of activity aiming at (re)measuring the
electromagnetic form factors in SL region with higher precision. There are also ongoing
investigations concerning radiative corrections and possible two-photon exchange to ex-
plain the discrepancy between these different data sets [27]. However the latter is not
fully understood.

Figure 3.5: Data base for µpG
p
E/G

p
M as a function of Q2. Results from [29], [30] and [31]

(respectively empty green squares, circles and triangles) are obtained using the polarization
method. Results from [24], [25] and [26] (red circles, triangles and squares) are obtained via the
Rosenbluth method. It is clear that both methods give a different trend for the ratio µpG

p
E/G

p
M .

3.4.2 Time-Like

Using the QED lagrangian within one-photon exchange, the differential cross section
for pp → e+e− in the center of mass (CM) can be expressed as (neglecting the electron
mass): (

dσ

dcosθ∗e

)CM
=

π(αem~c)2

8M2
p

√
τ(τ − 1)

[
|Gp

M |
2(1 + cos2θ∗e) +

|Gp
E|2

τ
sin2θ∗e

]
(3.28)

where τ = q2

4M2
p

and αem = 1
137

is the fine-structure constant. In a similar way to the

Space-Like region, the sensitivity to Gp
E will become lower as one goes to higher q2 since

the corresponding contribution scales with 1/τ .
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After integration, one obtains:

σ =
π(αem~c)2

6M2
p

(2τ |Gp
M |2 + |Gp

E|2)

τ
√
τ(τ − 1)

, (3.29)

and using Eq. 3.28: (
dσ

dcosθ∗e

)CM
=

2σ

3 + A

(
1 + Acos2θ∗e

)
(3.30)

where

A =
τ −R2

τ +R2
, (3.31)

R = |Gp
E|/|G

p
M |. (3.32)

The first observation is that by measuring the cosθ∗e distribution, it is a priori possible
to obtain the ratio R = |Gp

E|/|G
p
M |. Whereas the shape of the angular distribution allows

to access the ratio R, the separate determination of |Gp
M | and |Gp

E| requires a precise
knowledge of the normalization and of the luminosity.

If the angular distribution cannot be measured, one extracts an effective form factor
from the total cross section (Eq. 3.33):

σ =
π(αem~c)2

6M2
p

(2τ + 1)|Geff |2

τ
√
τ(τ − 1)

. (3.33)

Geff is then defined by:

|Geff |2 =
2τ |Gp

M |2 + |Gp
E|2

2τ + 1
(3.34)

Fig. 3.6 displays |Gp
eff |/Gd as a function of q2 obtained in e+e− → pp and pp→ e+e−

experiments. It is worth to note that |Gp
E| and |Gp

M | have never been measured separately
up to now.
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28 3. Nucleon electromagnetic form factors

Figure 3.6: Experimental ratio |Gpeff |/Gd in Time-Like (adapted from [8]). Data points from

e+e− → pp and pp→ e+e− experiments.

R was measured at BABAR (electron-positron collider) and at LEAR (proton-antiproton
collider) for q2 from 3.66 up to 7.29 (GeV/c2)2. Both sets of data show incompatible trends
(see Fig. 3.7).

Figure 3.7: Experimental ratio R = |GpE |/|G
p
M | as a function of q2. Red squares display BABAR

data [32] and blue circles show the LEAR ones [33].

To conclude, more precise data are needed in Time-Like region especially at high q2.
This will be the main goal of the pp → e+e− measurements at PANDA . On the other
hand the measurement of pp→ π◦e+e− at PANDA which is the subject of this work may
allow to access the form factors in the unphysical region for the first time.
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3.5 Form factor parametrizations 29

3.5 Form factor parametrizations

To interpret these data, different models are used [27]. Most of them are developed in
the space like region. We use in the following two models which are able to fit both space
like and time like data.

3.5.1 Vector Meson Dominance (VMD) model

A serie of models is inspired by the vector meson dominance which assumes that the
electromagnetic interaction is mediated by a vector meson [34]. A vector meson is a meson
with total spin 1 and odd parity (JP = 1−) i.e. the same quantum numbers as the photon.
The dominance of vector mesons such as ρ, ω and φ in the Time-Like region should then
play a major role.

In Ref. [35], Iachello and Wan proposed a parametrization describing both electric and
magnetic form factors in Space-Like and Time-Like regions within the framework of VMD
(ρ, ω, φ). They started from the hadronic current and to have isospin invariance they
introduced two isoscalar form factors F S

1 and F S
2 and two isovector form factors F V

1 and
F V

2 .

In case of proton form factors:

F p
1 = (F S

1 + F V
1 ), (3.35)

F p
2 = (F S

2 + F V
2 ). (3.36)

Sachs form factors can be determined via the following formula:

Gp
M = (F S

1 + F V
1 ) + (F S

2 + F V
2 ), (3.37)

Gp
E = (F S

1 + F V
1 )− τ(F S

2 + F V
2 ), (3.38)

Gn
M = (F S

1 − F V
1 ) + (F S

2 − F V
2 ), (3.39)

Gn
E = (F S

1 − F V
1 )− τ(F S

2 − F V
2 ), (3.40)

where τ = Q2

4M2
p

= − q2

4M2
p
.

3.5.1.1 Space-Like parametrization

In this model, the Space-Like Dirac and Pauli form factors are parametrized as:

F S
1 (Q2) =

1

2
g(Q2)

[
(1− βω − βφ) + βω

M2
ω

M2
ω +Q2

+ βφ
M2

φ

M2
φ +Q2

]
, (3.41)

F V
1 (Q2) =

1

2
g(Q2)

[
(1− βρ) + βρ

M2
ρ

M2
ρ +Q2

]
, (3.42)

F S
2 (Q2) =

1

2
g(Q2)

[
(−0.12− αφ)

M2
ω

M2
ω +Q2

+ αφ
M2

φ

M2
φ +Q2

]
, (3.43)

F V
2 (Q2) =

1

2
g(Q2)

[
3.706

M2
ρ

M2
ρ +Q2

]
, (3.44)

Jérôme Boucher, 2011



30 3. Nucleon electromagnetic form factors

where g(Q2) = (1 + γQ2)−2 is the intrinsic form factor and γ = 0.25 (GeV/c2)−2 a size
parameter also fitted to data. βρ = 0.672, βω = 1.102, βφ = 0.112 and αφ = −0.052
are coupling constants given in Table I which were adjusted to fit the data in Ref. [36].
Standard values of the masses (Mρ = 0.765 (GeV/c2), Mω = 0.783 (GeV/c2) and Mφ =
1.019 (GeV/c2)) and width (Γρ = 0.112 GeV/c2) were used. The isoscalar form factors
only depend on ω and φ mesons whereas ρ meson only contributes to the isovector form
factors. F S

1 , F V
1 , F S

2 and F V
2 are defined to ensure the observed nucleon charges and

magnetic moments at q2 = 0 (GeV/c2)2.

To take into account the ρ width, the following change is applied [37]:

M2
ρ

M2
ρ +Q2

→
M2

ρ + 8ΓρMπ/π

M2
ρ +Q2 + (4M2

π +Q2)Γρα(Q2)/Mπ

, (3.45)

where

α(Q2) =
2

π

[
Q2 + 4M2

π

Q2

]1/2

ln

[√
Q2 + 4M2

π +
√
Q2

2Mπ

]
. (3.46)

3.5.1.2 Time-Like parametrization

In Time-Like, the expressions are obtained by replacing Q2 by −q2:

F S
1 (q2) =

1

2
g(q2)

[
(1− βω − βφ) + βω

M2
ω

M2
ω − q2

+ βφ
M2

φ

M2
φ − q2

]
, (3.47)

F V
1 (q2) =

1

2
g(q2)

[
(1− βρ) + βρ

M2
ρ

M2
ρ − q2

]
, (3.48)

F S
2 (q2) =

1

2
g(q2)

[
(−0.12− αφ)

M2
ω

M2
ω − q2

+ αφ
M2

φ

M2
φ − q2

]
, (3.49)

F V
2 (q2) =

1

2
g(q2)

[
3.706

M2
ρ

M2
ρ − q2

]
. (3.50)

An imaginary part is introduced in the intrinsic form factor

g(q2) =
1

(1− γeiθq2)2
, (3.51)

where θ = 53◦. The phase θ takes into account the annihilation channels in the Time-Like
region and is adjusted to fit the data for |Gp

M | (see for instance Fig. 3.8).

The ρ meson term becomes also complex:

M2
ρ

M2
ρ − q2

→
M2

ρ + 8ΓρMπ/π

M2
ρ − q2 + (4M2

π − q2)Γρα(q2)/Mπ + iΓρ4Mπβ(q2)
, (3.52)
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where

α(q2) =
2

π

[
q2 − 4M2

π

q2

]1/2

ln

[√
q2 − 4M2

π +
√
q2

2Mπ

]
, (3.53)

and

β(q2) =

√√√√[
q2

4M2
π
−1

]3
q2

4M2
π

when q2 ≥ 4M2
π , (3.54)

β(q2) = 0 when q2 < 4M2
π . (3.55)

The phase vanishes for q2 < 4M2
π due to the absence of hadronic channels in this case.

To avoid the ω and φ divergences, we added two changes

Mω →Mω + iΓω/2 and Mφ →Mφ + iΓφ/2, (3.56)

leading to

M2
ω →M2

ω + iMωΓω and M2
φ →M2

φ + iMφΓφ, (3.57)

since we neglect the Γ2/4 terms (3 order of magnitude smaller than MΓ terms). With
Mω = 0.783 (GeV/c2) and Γω = 0.0085 (GeV/c2) from the particle data book, one
finds ∆M2 = 2M∆M = 0.013 (GeV/c2)2. By introducing the changes to avoid the ω
divergence, ∆M2 becomes 0.022 (GeV/c2)2.

In Fig. 3.8, |Gp
M | (|Gp

E|) on the left (right) hand side are displayed as a function of
q2 in Time-Like and unphysical region. ρ, ω and φ resonances are clearly visible in the
unphysical region.

This parametrization verify the asymptotic behaviour and that

Gp
E(0) = 1, Gp

M(0) =
µp

µN
. (3.58)

3.5.2 “pQCD inspired”

A second model [38] able to describe the data in Time-Like region is inspired by the
perturbative QCD (pQCD) prescription and does not show any resonances. The Gp

E and
Gp
M are expressed as follows (valid when q2 > Λ2):

|Gp
E| = |G

p
M | =

A(N)

q4(ln2 q
2

Λ2 + π2)
, (3.59)

where Λ = 0.3 (GeV/c2) and A(p) = 98 (GeV/c2)4 was obtained fitting data. Assuming
|Gp

E| = |G
p
M |, implies that F p

1 + F p
2 = F p

1 + τF p
2 therefore F p

2 = 0 and |Gp
E| = |G

p
M | = F p

1 .

Jérôme Boucher, 2011



32 3. Nucleon electromagnetic form factors

Fig. 3.8 presents, as a function of q2, |Gp
M | on the left side and |Gp

E| on the right one.
For the “pQCD inspired” (red curves) both curves are identical (|Gp

E| = |G
p
M |).

Figure 3.8: Sachs Form Factors: |GpM | (left side) and |GpE | (right side) are displayed depending on
q2 in TL including the unphysical region. Red (blue) color corresponds to the “pQCD inspired”
(VMD) parametrization.

3.5.3 Comparison

Fig. 3.9 presents |Gp
eff | determined for both parametrizations as a function of q2 in

Time-Like and unphysical region. Data from [32], [39], [40] and [41] (BABAR, BES and
E835) are also plotted. “pQCD inspired” parametrization nicely reproduces the data.
Above q2 = 8 (GeV/c2)2, a discrepancy appears between VMD parametrization and E835
data.
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Figure 3.9: |Gpeff | is displayed depending on q2 in TL including the unphysical region. Red (blue)
color corresponds to the “pQCD inspired” (VMD) parametrization. Data are from BABAR
(purple, [32]), BES (yellow, [39]) and E835 (green, [40] and [41]).

Another way to compare both parametrizations consists in looking at the ratio R =
|Gp

E|/|G
p
M | as a function of q2. Red color stands for the “pQCD inspired” parametriza-

tion. In this case, R is equal to one (i.e.: |Gp
E| = |Gp

M |). Blue color represents Iachello
parametrization. Its behaviour has a complete different trend due to the structures at the
meson poles are visible also in the ratio which yields to a maximum around 15 (GeV/c2)2.
BABAR [32] and LEAR [33] data sets do not help to separate the parametrizations.

Figure 3.10: Ratio R = |GpE |/|G
p
M |. Red (blue) corresponds to “pQCD inspired” (Iachello)

parametrization.
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34 3. Nucleon electromagnetic form factors

3.6 Other form factor studies

3.6.1 Foreseen measurements via pp→ e+e− reaction

The full study of the feasibility of the proton form factor measurements at PANDA in
the Time-Like region within the annihilation process pp→ e+e− can be found in [8].

The differential cross section dσ
dcosθ∗e

in the center of mass for this process is given in Eq.

3.28. It depends on the moduli squared of the proton electromagnetic form factors as [42].
The individual determination of |Gp

E| and |Gp
M | requires the measurement of the angular

distribution of the outgoing leptons, at a fixed total energy s = q2.

Counting rates were evaluated on the basis of Eq. (3.28). A parametrization of the
effective form factor Geff measurements in the Time-Like region was used [43] and three
different hypothesis were taken for |Gp

E|. Besides the case |Gp
E| = |G

p
M |, (R = 1), which is

strictly valid only at threshold, the cases R = 0 and the case R = 3, were also considered.
The corresponding angular distributions were built keeping the same total cross section at
each q2. They are shown in Fig. 3.11, for three values of q2 = 5.4, 8.2, 13.8 (GeV/c2)2. The
reported error bars are statistical only. The sensitivity to R decreases when q2 increases,
due the fast decrease of the cross section and of the relative weight of the electric term.

The identification of hadrons and leptons requires information from the micro vertex
detector, the straw tubes, the GEM detectors, the time of flight detector, the electromag-
netic calorimeter and the Cherenkov detectors.

Figure 3.11: pp→ e+e− CM angular distributions at q2=5.4, 8.2, and 13.8 (GeV/c2)2, and three
different hypothesis: R = 0 (black solid circles), R = 1 (red triangles), and R = 3 (black open
circles), keeping the same value of the total cross section [8].

Simulations were based on the same PANDA software as the one used for the physics
benchmark simulations presented in [7]. Simulations are done in two steps, the first one
being the propagation of the particles through the detectors and the digitalization of the
information including a model for electronic noise. The second step is the reconstruction
of physical quantities (momentum, ratio energy loss to path length in each straw tubes,
energy loss in the electromagnetic calorimeter, Cherenkov angle) important for electron

Study of electromagnetic channels at PANDA



3.6 Other form factor studies 35

identification. The probability of a given particle to be identify as an electron, muon,
pion, kaon or proton is calculated for each PANDA sub-detector. Then a global Particle
IDentification (PID) likelihood is determined. Thresholds can be adjusted to ensure a
high background suppression while keeping as much as signal as possible.

Reactions involving two or more hadrons in the final channel constitute an important
background. In particular, the annihilations into two hadrons (pp → π0π0 , pp → π+π−

and pp→ K+K− ) are the most difficult to eliminate since the angular correlation of the
two charged particles is very different in a 3-body reaction. Only in a 2-body reaction,
one has back to back emission in the center of mass system. Moreover, the two charged
particles missing mass is an efficient tool to separate 3-body from 2-body reactions. Con-
cerning pp → π0π0 , photons from the π◦ can produce e+e− pairs after conversion in
material. One (both) π◦ via Dalitz decay can also give e+e− pair(s) but with probability
10−2 (10−4). For pp→ π+π− and pp→ K+K− , kaons, being heavier, have lower proba-
bility of misidentification than pions. Therefore, the pp annihilations into two pions were
studied using detailed simulations.

To simulate pp→ π0π0 and pp→ π+π− , angular distributions were extrapolated from
parametrization of data [44, 45, 46, 47, 48, 49]. Both pp → π0π0 and pp → π+π− cross
sections were estimated to be about six orders of magnitude larger than for the reaction
pp→ e+e− .

Due to the background to signal cross section ratio of about 106, background samples
with at least 108 events were simulated at several q2 values. To discriminate pions from
electrons, cuts have been applied to the PID likelihood for the assumption that the de-
tected particle is an electron. Applying the PID cut a rejection factor of a few times
107 is reached. Further selection based on the reaction vertex and on the kinematical fit
(which includes 4-momentum constraint) is applied. From this a confidence level (CL) is
calculated for both e+e− and π+π− hypothesis. Confidence level brings in an additional
rejection factor of the background of ' 100. Finally, combining the confidence level with
the PID cuts, it results an overall background suppression factor of the order of a few 109

which leads to a contamination far below the percent level.

Fig. 3.12 shows the expected statistical uncertainty on R as a function of q2 as a yellow
band for the case R = 1, and compared with the existing values from Ref. [33] (squares)
and [32] (triangles).
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Figure 3.12: Expected statistical precision on the determination of the ratio R from [8], (yellow
band) for R = 1, as a function of q2, compared with the existing data from [32] (triangles) and
[33] (squares). Curves are theoretical predictions: “pQCD inspired” (red dashed line [50, 51]),
VMD (green solid line [36] and blue dashed line [52]).

Model predictions display quite a large dispersion, as shown in Fig. 3.12. A detailed
description of the models can be found in Ref. [53]. It is also worth noting that these
models give different values for the polarization observables.

At larger q2, where the sensitivity of the experiment will make the extraction of R
meaningless, it will then be possible to extract |Gp

M | under a definite hypothesis on the
ratio, notably R = 1, as done in previous measurements. Conditioned by a precise
knowledge of the luminosity, the absolute cross section can be measured up to q2 ∼ 28
(GeV/c2)2, and moreover the individual measurement of |Gp

M | and |Gp
E| will be possible.

3.6.2 The pp→ µ+µ− reaction

The expression of the angular distribution of pp → µ+µ− is the same as pp → e+e−

since the lepton mass difference has a negligible effect. Measuring the pp → µ+µ− could
bring complementary information on the proton electromagnetic form factors. Since the
muon mass is closer to pion mass than the electron mass to the pion mass, the kinematics
constraints do not help to reject the huge hadronic background. The muon identification
relies only on the muon detector. As previously said, the yoke is segmented to allow
the separation of primary muons from secondary muons coming from the pion decays.
Detailed simulations will be performed soon within the collaboration to determine if
a sufficient rejection background factor can be achieved to extract the electromagnetic
proton form factors.
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3.6.3 The interest of polarization

Although the challenges are technically large, having polarized antiproton beam at
FAIR and/or polarized target in PANDA is discussed. Polarization would open a new
field of investigation and give access to new observables. Such a beam would allow to
access for the first time the phase difference of the electric and magnetic form factors.

A general formalism to calculate the polarization observables for the reaction pp →
π◦e+e− is developed in [54]. The matrix element and the observables can be expressed in
terms of six scalar amplitudes (complex functions of three kinematical variables) which
determine the reaction dynamics. The concrete expression of these amplitudes contains
the model which is chosen for the description of the underlying physics. The numerical
prediction are given in the frame of the model [38] in the kinematical range accessible in
the PANDA experiment at FAIR.

The main results are illustrated here for single and double spin observables. The observ-
ables are represented in Fig. 3.13 as a function of cos θ (where θ is the angle between the
momenta of the antiproton and the virtual photon) for a center-of-mass energy squared
s= 5.5 GeV2 (corresponding to ELab

p̄ = 2 GeV) and three q2 values: 0.5 (GeV/c2)2 (solid

line), 2 (GeV/c2)2 (dashed line) and 4 (GeV/c2)2 (dash-dotted line). It was shown that the
single spin observables Ay and Āy coincide in Born approximation. A difference between
these two values, would be an experimental signature of the presence of terms beyond the
Born approximation.

Figure 3.13: From [54], polarization observables as function of cos θ (where θ is the angle between
the momenta of the antiproton and the virtual photon) for s = 5.5 GeV2 and for three values of
the momentum transfer squared q2 : q2 = 0.5 (GeV/c2)2(solid line), q2 = 2 (GeV/c2)2(dashed
line), q2 = 4 (GeV/c2)2 (dash-dotted line): (a) single spin asymmetry Ay (≡ Āy in Born
approximation); double spin correlations: (b) Cyy; (c) Czz; (d) Cxx; (e) Cxz; (f) Czx.
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The double spin correlations are in general large and strongly depend on energy and
angle. This is illustrated in Fig. 3.14 for a particular case in the 2D plot of Czx as function
of cos θ (where θ is the angle between the momenta of the antiproton and the virtual
photon) and q2. The large structures correspond to the masses of the mesons resonances
considered in the form factor parametrization from [36]. Forward and backward angles
are the most favourable for the experimental measurements of this correlation.

Figure 3.14: Czx as function of cos θ and q2 at s = 5.5 GeV2, from [54].
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Chapter 4

Description of pp→ π◦e+e−

In this chapter, I will first present the specificity of the reaction kinematics. Then I
will recall briefly the available theoretical predictions. While the TDA approach [55],
based on Transition Distribution Amplitude (TDA), is focusing on a specific kinematical
region where factorization arguments can be used, namely q2 close to the total CM energy
squared, the one nucleon exchange model [38] will be recalled in a more detailed way. It
will be shown how this model was considerably reworked for our purposes. In particular,
through a full derivation [56], I will show how one can extract the physical informations
out of the e+e− angular distribution in a similar way to the one used for the extraction
of |GE| and |GM | from the angular distribution of the electron in pp → e+e− reaction.
In order to realize meaningful simulations, which include not only acceptance, efficiency
and resolution effects but also the role played by the limited statistics, I will show the
importance of having realistic counting rates. For this, the one nucleon exchange model
was asked to reproduce the already available data on the reaction pp → π◦γ , which
corresponds to the photon point where the e+e− invariant mass is equal to 0.

4.1 pp→ π◦e+e− kinematics

The reaction pp→ π◦e+e− has a three body final state. Useful relations can be derived
among the kinematical variables. Using the notation of Fig. 4.7, the virtual photon mass
squared q2 is defined as follows:

q2 = (pe+ + pe−)2 , (4.1)

= (pp + pp − pπ0)2 ,

= s+M2
π0 − 2pp.pπ0 − 2MpEπ0 , (4.2)

where pp.pπ0 = EpEπ0 − |−→p p||−→p π0 |cosθπ0 .

At a fixed beam kinetic energy Tp in lab, the total CM energy squared is:

s = 2Mp (Tp + 2Mp) , (4.3)

which leads to a maximum q2
max value (obtained when the π◦ is emitted at rest) of

q2
max =

(√
s−Mπ0

)2
. (4.4)
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In Fig. 4.1, the black curve shows q2
max as a function of s. At a given s, the π◦ can

be emitted up to 180◦ in the lab frame if q2 is below the red curve, otherwise there is an
angular limit for the π◦. In a similar way, the γ∗ can be emitted up to 180◦ in the lab
frame if q2 is below the blue curve, otherwise there is an angular limit for the γ∗. For
q2 = q2

max, the π◦ and γ∗ are produced at rest in the CM, they are both emitted at 0◦

in the laboratory. As an example, Fig. 4.2 displays at s= 5.4 GeV2 (Tp = 1 GeV) the
angular limit for both π◦ (red curve) and γ∗ (blue curve).

Figure 4.1: For the reaction pp → π◦e+e− , at a fixed value of s, black curve shows the corre-
sponding q2

max. At a q2 value below the blue (red) curve, there is no angular limit on the virtual
photon (π◦).

Figure 4.2: For the reaction pp → π◦e+e− , at s= 5.4 GeV2, the red (blue) curve shows the
angular limit in the laboratory on the π◦ (γ∗).
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4.1 pp→ π◦e+e− kinematics 41

Fixing q2 and θπ0 fully determine kinematics. Fig. 4.3 displays, for pp → π◦e+e− at
Ep = 2 GeV (Tp ∼ 1 GeV) and two q2 values, in the upper (lower) line the pion (electron)
energy as a function of the pion (electron) θ angle in the laboratory. The effect of the q2

value is clearly visible on both pion and electron energy ranges: increasing the q2 value
implies a lower energy for the pion but also a smaller energy range. It is also worth to
note that there are no angular limits on the pion but a limit on the γ∗ emission angle in
the laboratory. In case of the electron, the available energy range is large from hundred
MeV to few GeV. At low energy, the tracking system will have the higher precision, while
at high energy, the electromagnetic calorimeter will give the best precision.

Figure 4.3: pp→ π◦e+e− kinematics at Ep = 2 GeV (Tp ∼ 1 GeV) and for two q2 values. Upper
plots present the pion energy as a function of the pion θ angle in the laboratory. Lower plots
present the electron energy as a function of the electron θ angle in the laboratory.

Since to reconstruct pp → π◦e+e− , the π◦ needs to be detected. Therefore, it is
interesting to look at the π◦ decay into two photons. The minimum opening angle in the
laboratory between the two photons (γ1 and γ2) is

θlimγ1γ2 = acos

(
1− 2

M2
π◦

E2
π◦

)
, (4.5)

where Eπ◦ is the pion energy in the laboratory. Fig. 4.4 shows the minimum opening
angle in the laboratory between the two photons (γ1 and γ2) as a function of θπ◦ for Tp = 1
GeV and different q2 values. From this figure one can also see that increasing q2 (at a
fixed system energy) increases the minimum opening angle in the laboratory of the two
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42 4. Description of pp→ π◦e+e−

photons. At this energy, the two photons from the π◦ decay are clearly separated by at
least 3 times the crystal opening angle which is of the order of 2.25◦. So the identification
of the π◦ in the electromagnetic calorimeter should be easy. It is worth to note that
increasing the antiproton kinetic energy will lower the minimum opening angle.

Figure 4.4: Minimum opening angle between the two photons from the π0 decay in the reaction
pp → π◦γ∗ as a function of θπ0 for Tp = 1 GeV and different virtual photon mass squared (q2)
values.

4.2 Different models for pp→ π◦e+e−

4.2.1 Transition Distribution Amplitude approach

In Ref. [55], J. P. Lansberg, B. Pire and L. Szymanowski present the reaction pp→ π◦γ∗

where γ∗ → e+e− as a factorization of the antiproton Distribution Amplitudes (DA), the
hard sub-process amplitude (Mh) and the proton to pion transition distribution amplitude
so-called TDA (see Fig. 4.5). TDAs are non-perturbative objects describing the transition
between two particles (here p to π).

Figure 4.5: Factorization of pp → π◦γ∗ into antiproton distribution amplitudes (DA), hard
sub-process amplitude (Mh) and p→ π transition distribution amplitudes (TDA), from [55].
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4.2 Different models for pp→ π◦e+e− 43

This factorization is valid for q2 of the order of s and for small t region where t =
(pπ − pp)2 implying that the virtual photon mass squared is close to the system energy.
Defining the z axis along the colliding axis, this t small means π◦ emitted at 180◦ in the
laboratory. The exchange graph, π◦ emitted by the antiproton, corresponds to π◦ close to
0◦. In this paper, one can find a first evaluation of the differential cross section dσ/dtdq2

at ∆T = 0 GeV (see Fig. 4.6) where ∆T is the transverse component of (pπ − pp) for the
backward production of the π. At s = 10 GeV2, integrating over q2 from 7 to 8 (GeV/c2)2

and dt corresponding to ∆T < 0.5 GeV leads to a cross section around 100 fb therefore
200 counts with the PANDA integrated luminosity of 2 fb−1 without neither efficiency
nor acceptance factors. Due to charge symmetry an identical result will be obtained at
small u= (pπ − pp)2 i.e.: when the pion goes at forward angle.

Figure 4.6: Evaluation of the pp→ π◦γ∗ differential cross section for 3 values of the total system
energy (s=W2), from [55].

As a conclusion, this model is valid only in a very well defined and restricted π◦ angular
range. Furthermore, it is not suited for the proton form factor far below threshold since
it is valid for q2 close to s.

4.2.2 One nucleon exchange model

The process pp→ π◦γ∗ where γ∗ → e+e− (see Fig. 4.7) is described in Ref. [38] within
a phenomenological approach based on Compton-like Feynman amplitudes.

Figure 4.7: pp→ π◦e+e− diagrams. Value in parenthesis represent the corresponding 4-vectors.
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44 4. Description of pp→ π◦e+e−

4.2.2.1 Differential cross sections

The differential cross section for pp→ π◦γ∗ is written as:

d3σ =
α2
em

6sπr

β(q2 + 2M2
e )

(q2)2
D
d3−→p π0

2πEπ0

d2σ =
α2

6sπr

β(q2 + 2M2
e )

(q2)2
D
q2M2

pdq
2dcosθπ0

s2(1− rcosθπ0)2
, (4.6)

where,

s = 2Mp(Mp + Ep), (4.7)

r =
√

1− 4M2
p/s, (4.8)

β =
√

1− 4M2
e /q

2, (4.9)

and D is the hadronic matrix element.

The hadronic matrix element is related to the nucleon form factors by

D = |f2p|2
[
Ep −Mp

Mp

− 1

2
(1− q2

4M2
p

)
(1−X)2

X

]
+ |f1p − f2p|2

(X + 1)2

X
, (4.10)

where

X =
s− q2

2MpEπ0

− 1, (4.11)

fiN(q2) = g(M2
π0)FN

i (q2). (4.12)

Here, FN
i (q2) are the Pauli and Dirac form factors.

Unfortunately, no angular distribution for the reaction γ∗ → e+e− is given in this
article.

4.2.2.2 Counting rate

To determine the counting rate, the first step is the study of the differential cross
section. Fig. 4.8 presents as an example dσ

dq2
for an antiproton beam total energy Ep = 2

GeV and for both form factor parametrizations previously described (section 3.5). Black
line corresponds to VMD parametrization and blue dashed line to the “pQCD inspired”
one. Mesonic resonances are clearly visible in case of VMD parametrization.
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4.2 Different models for pp→ π◦e+e− 45

Figure 4.8: dσ
dq2

for pp→ π◦γ∗ for both form factor parametrizations at Ep = 2 GeV. Black line
corresponds to VMD inspired parametrization and blue dashed line to pQCD one.

Then integrating over q2 from Λ2 = 0.32 (GeV/c2)2 (see [38]) up to (
√
s − Mπ)2

(GeV/c2)2, the cross section has been determined and assuming a luminosity of 2 1032

cm−2s−1 with a 107s long data taking (corresponding to 2 fb−1), the number of counts
is calculated. Table 4.1 shows the results for three different energies of the antipro-
ton. A phenomenological fit of pp → nπ data (n=0,1,2,. . . ) for Tp = 6 GeV (Ep = 7
GeV) predicts a pp → π◦π+π− cross section of the order of 75 µb [57, 58] which has
to be compared with the 10 µb (8 µb) obtained for pp → π◦e+e− within pQCD (VMD)

parametrization. This leads to a cross section ratio σ(pp→π◦π+π−)
σ(pp→π◦e+e−)

' 8. It has been shown

that σ(pp→π+π−)
σ(pp→e+e−)

' 106 (from s=5 up to s=16 GeV2) [8, 59]. From this, we concluded that

the cross section value obtained by the phenomenological approach are overestimated.
J. Van de Wiele [56] then proposed to calculate the five fold differential cross section
of pp → π◦e+e− using the same one nucleon exchange model but constraining it to the
pp→ π◦γ data since there are no available data for pp→ π◦γ∗ . For this study a formalism
based on hadronic tensors was developed.

Ep σpQCD CountspQCD σVMD CountsVMD

(GeV) (mb) (mb)

2 0.027 5.4 1010 0.020 4.0 1010

7 0.010 2.0 1010 0.008 1.6 1010

15 0.005 1.0 1010 0.004 0.8 1010

Table 4.1: Counts integrating over the full q2 range the differential cross section dσ/dq2 of Fig.
4.8 assuming an integrated luminosity of 2 fb−1.
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46 4. Description of pp→ π◦e+e−

4.2.3 New calculation of one nucleon exchange model

(a) (b)

Figure 4.9: pp→ π◦e+e− diagrams.

Before calculating the differential cross section (J. Van de Wiele, [56]) of pp→ π◦e+e−

in a specific frame, it is necessary to determine the amplitude M = Ma +Mb of the
corresponding diagrams Fig. 4.9(a) and 4.9(b).

4.2.3.1 pp→ π◦e+e− amplitude

For both diagrams, the leptonic current is:

Jνl (me+ ,me−) = −ieu (me−) γνv (me+) , (4.13)

where e is the electron charge, mi stands for the spin of the particle i, γi (i = 0, .., 3) are
the 4X4 Dirac matrices, u and v are spinors.

Then, starting from the Fig. 4.9(a), the exchanged nucleon four momentum pX1 is:

p
X1

= pp − pπ◦ , (4.14)

and the amplitude Ma is given by:

Ma (me+ ,me− ,mp,mp) = v (mp) Γµau (mp) i

(
−gµν
q2

)
Jνl (me+ ,me−) , (4.15)

Γµa = V µ
NNγiPF

(
N, p

X1

)
VNNπ. (4.16)

Here, v and u are spinors, i
(
−gµν

q2

)
is the photon propagator, PF is the nucleon prop-

agator, VNNπ is the pseudo-vector nucleon-nucleon-pion coupling and V µ
NNγ is nucleon-

nucleon-photon coupling which contains the form factor dependence:

V µ
NNγ = −ie

(
F p

1 γ
µ − i F

p
2

2Mp

σµνqν

)
, (4.17)

where e =
√

4παem, F p
1 and F p

2 are the Pauli and Dirac form factors. Since V µ
NNγ is linear

in F p
1 and F p

2 , it is also linear in Gp
E and Gp

M .
In a similar way, using the second diagram (Fig. 4.9(b)), the exchanged nucleon four

momentum pX2 is:

p
X2

= pπ◦ − pp, (4.18)
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and the amplitude Mb is given by:

Mb (me+ ,me− ,mp,mp) = v (mp) Γµbu (mp) i

(
−gµν
q2

)
Jνl (me+ ,me−) , (4.19)

Γµb = VNNπiPF

(
N, p

X2

)
V µ
NNγ. (4.20)

The amplitude of pp→ π◦e+e− taking into account both diagrams is therefore:

M (me+ ,me− ,mp,mp) = JµH (mp,mp) i

(
−gµν
q2

)
Jνl (me+ ,me−) , (4.21)

= −iJµH (mp,mp)

(
1

q2

)
Jlµ (me+ ,me−) , (4.22)

where

JµH (mp,mp) = v (mp) Γµu (mp) , (4.23)

Γµ = Γµa + Γµb . (4.24)

4.2.3.2 Differential cross section

The differential cross section of pp→ π◦e+e− is proportional to the amplitude squared
|M|2 previously defined which can be written in terms of hadronic and leptonic tensors:

|M|2 =
∑

me+ ,me− ,mp,mp

|M (me+ ,me− ,mp,mp) |2, (4.25)

=
1

q4
HµνLµν , (4.26)

where

Hµν =
∑
mp,mp

JµH (mp,mp) J
ν
H
∗ (mp,mp) (4.27)

and

Lµν =
∑

me+ ,me−

Jlµ (me+ ,me−) Jlν
∗ (me+ ,me−) , (4.28)

= 4e2

(
pe−µpe+ν + pe−νpe+µ −

q2

2
gµν

)
, (4.29)

where piµ is the µ component of the 4-momenta of the particle i and qµ is the µ component
of the 4-momenta of the virtual photon.

To remove the pe− dependence, one uses the relation q = pe+ + pe− . The leptonic
tensor can be expressed as:

Lµν = 4e2

(
−pe+µpe+ν − pe+νpe+µ −

q2

2
gµν + qµpe+ν + qνpe+µ

)
. (4.30)
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48 4. Description of pp→ π◦e+e−

Since there is no polarization, the leptonic tensor is symmetric. The Gauge invariance
can be expressed by

qµHµν = Hµνqν = 0, (4.31)

qµLµν = Lµνqν = 0, (4.32)

one can deduce:

HµνLµν = HµνLredµν , (4.33)

where Lredµν is the reduced leptonic tensor:

Lredµν = −4e2

(
2pe+µpe+ν +

q2

2
gµν

)
. (4.34)

Considering the three body final state and the 4 conservation laws, there are five

independent variables. Since d3−→p
E

is Lorentz invariant, it is possible to express the π◦

part of the differential cross section in the laboratory and the positron one in the virtual
photon rest frame (noted ∗) where the Oz axis is defined by the virtual photon momentum
in the laboratory. The five fold differential cross section is then:

d5σ

(dEπ◦dΩπ◦)lab dΩ∗e+
=

(~c)2

32 (2π)5Mp

(
|−→p π◦|
|−→p p|

)
lab

|−→p ∗e+ |√
q2

|M|2

4
, (4.35)

where

|−→p ∗e+ | =
√
q2

2

√
1− 4M2

e

q2
. (4.36)

Here, Eπ◦ (Ωπ◦) stands for the pion energy (solid angle) in the laboratory and Ω∗e+ is the
positron solid angle in the virtual photon rest frame.

As the electromagnetic form factors depend on q2, it is more convenient to derive the
five fold differential cross section as follows:

d5σ

dq2 (dΩπ◦)lab dΩ∗e+
=

(~c)2

32 (2π)5Mp

(
|−→p π◦|
|−→p p|

)
lab

(4.37)

×
|−→p ∗e+|√

q2

1

2|Ep +Mp − |−→p p| Eπ◦|−→p π◦ |
cosθπ◦|lab

|M|2

4
.

In this specific γ∗ rest frame, the gauge invariance leads to:

qµHµν = 0→ q0H0ν + qiHiν = 0. (4.38)

Here qi = 0 (i = 1, 2, 3), so H0ν = 0. Therefore,

HµνLµν = HijLredij . (4.39)

For convenience, the kinematical factors with the q2 and π◦ dependences are included
in the effective hadronic tensor Hµν

eff such as:

Hµν
eff =

(~c)2

32 (2π)5Mp

(
|−→p π◦|
|−→p p|

)
lab

|−→p ∗e+|√
q2

1

2|Ep +Mp − |−→p p| Eπ◦|−→p π◦ |
cosθπ◦|lab

Hµν

4q4
. (4.40)
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So,

d5σ

dq2 (dΩπ◦)lab dΩ∗e+
= Hij

effL
red
ij . (4.41)

Developing Hij
effLredij :

Hij
effL

red
ij = H11

effLred11 +
(
H12

eff +H21
eff

)
Lred12 +

(
H13

eff +H31
eff

)
Lred13

+H22
effLred22 +

(
H23

eff +H32
eff

)
Lred23 +H33

effLred33 . (4.42)

Then, the real part of hadronic tensor is symmetric whereas its imaginary part is anti-
symmetric. Since the leptonic tensor is also symmetric. This leads to (Hµν +Hνµ)Lµν =
2ReHµνLµν and consequently to:

Hij
effL

red
ij = H11

effLred11 + 2ReH12
effLred12 + 2ReH13

effLred13

+H22
effLred22 + 2ReH23

effLred23 +H33
effLred33 . (4.43)

Using the Eq. 4.34 and contracting, one obtains:

d5σ

dq2 (dΩπ◦)lab dΩ∗e+
= Hij

effLredij (4.44)

= 2e2q2
(
H11

eff +H22
eff +H33

eff

)
−8e2|−→p ∗e+ |2

(
H11

eff sin
2θ∗ecos

2ϕ∗e + 2ReH12
eff sin

2θ∗esinϕ
∗
ecosϕ

∗
e

+2ReH13
eff sinθ

∗
ecosθ

∗
ecosϕ

∗
e +H22

eff sin
2θ∗esin

2ϕ∗e

+2ReH23
eff sinθ

∗
ecosθ

∗
esinϕ

∗
e +H33

eff cos
2θ∗e
)
, (4.45)

where: |−→p ∗e+ |2 = q2

4
−M2

e and e = −
√

4παem.

Replacing cos2ϕ = 1+cos2ϕ
2

, sin2 ϕ = 1−cos2ϕ
2

and sinϕcosϕ = 1
2
sin2ϕ:

d5σ

dq2 (dΩπ◦)lab dΩ∗e+
= Hij

effLredij (4.46)

= 2e2q2
(
H11

eff +H22
eff +H33

eff

)
−8e2|−→p ∗e+|2

(H11
eff +H22

eff

2
sin2θ∗e +

H11
eff −H22

eff

2
sin2θ∗ecos2ϕ

∗
e

+ReH12
eff sin

2θ∗esin2ϕ∗e + 2ReH13
eff sinθ

∗
ecosθ

∗
ecosϕ

∗
e

+2ReH23
eff sinθ

∗
ecosθ

∗
esinϕ

∗
e +H33

eff cos
2θ∗e
)
. (4.47)

This expression is general and results on the particular exchange of the γ∗ (spin 1) to
electron-positron pair.

Numerical evaluation within this model and no polarization of the hadronic tensor
values indicates that H12

eff and H23
eff are zero independently of the values of s, q2 and θπ0 .

In conclusion, the five fold differential cross section depends on five kinematical variables
(q2, θπ0 , ϕπ0 , θ∗e , ϕ

∗
e) and four quantities (H11

eff , H22
eff , H33

eff , H13
eff ).
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4.2.3.3 Hadronic tensor extraction

The interest of extracting the hadronic tensors relies on the fact that they contain
information on the proton structure. Starting from the 5-fold differential cross section
(Eq. 4.44), one can see that fixing q2 and Ωπ0 , the measurement of the positron or the
electron distribution in the virtual photon rest frame would allow to access the hadronic
tensors. Such a model as the advantage to be model independent.

Then in a model dependent way, one can go from this hadronic tensors to the form
factors as shown in the following section.

4.2.3.4 Form factor extraction

From hadronic tensor to form factors

Assuming that the exchanged particles X1 and X2 are protons (Fig. 4.9(a) and 4.9(b)),
the hadronic tensor can be expressed as follows:

Hµν = αµν |GE|2 + βµν |GM |2

+ γµν |GE||GM |cos (ϕE − ϕM) + δµν |GE||GM |sin (ϕE − ϕM) , (4.48)

or:

Hµν = |GM |2
[
αµνR2 + βµν + γµνRcos (ϕE − ϕM) + δµνRsin (ϕE − ϕM)

]
, (4.49)

where αµν , βµν , γµν and δµν depend on q2 and Ωπ0 . The form factors here only depend
on q2. In our model, studies based on numerical evaluations only showed that δµν factors
are equal to zero implying that only the cosine of the phase difference cos (ϕE − ϕM) can
be accessed.

Observables

The main idea is to find observables leading to the extraction of information which is
as much as possible unbiased . For that reason, we will only count on the shape and not
on the normalization (no analytical expression has been derived) . In the real experiment,
we will have counts distributed in a spectrum as d2N/dΩ∗e+ (with dΩ∗e+ = dcosθ∗e+dϕ

∗
e+)

as a function of ϕ∗e+ and cos θ∗e+ (for ∆q2 and ∆Ωπ0 intervals fixed).

One possibility is to extract the proton form factors directly from this 2D distribution.
To avoid problems related to low or very low, one can also integrate over one more variable
and obtain dN/dϕ∗e+ or dN/dcosθ∗e+ .

Three cases are studied:

dN1

dcosθ∗e+
= Lint

∫
∆q2

∫
∆Ωπ0

∫ 2π

0

d5σ

dq2dΩπ0dcosθ∗e+dϕ
∗
e+
dϕ∗e+dq

2dΩπ0 ,

= A
[
1 +Bcos2θ∗e+

]
, (4.50)

dN2

dϕ∗e+
= Lint

∫
∆q2

∫
∆Ωπ0

∫ +1

−1

d5σ

dq2dΩπ0dcosθ∗e+dϕ
∗
e+
dcosθ∗e+dq

2dΩπ0 ,

= C [1 +Dcos2ϕ∗e+ ] , (4.51)
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dN3

dϕ∗e+
= Lint

∫
∆q2

∫
∆Ωπ0

∫ +1

0

d5σ

dq2dΩπ0dcosθ∗e+dϕ
∗
e+
dcosθ∗e+dq

2dΩπ0 ,

= E [1 + Fcos2ϕ∗e+ +Gcosϕ∗e+ ] , (4.52)

where

A =

∫
∆q2

∫
∆Ωπ0

4πe2q2
(
H11

eff +H22
eff +H33

eff

)
− 8πe2|−→p ∗

e+ |
2
(
H11

eff +H22
eff

)
dq2dΩπ0 , (4.53)

B =

∫
∆q2

∫
∆Ωπ0

8πe2|−→p ∗
e+ |

2
(
H11

eff +H22
eff − 2H33

eff

)
dq2dΩπ0∫

∆q2

∫
∆Ωπ0

4πe2q2
(
H11

eff +H22
eff +H33

eff

)
− 8πe2|−→p ∗

e+ |2
(
H11

eff +H22
eff

)
dq2dΩπ0

, (4.54)

C =

∫
∆q2

∫
∆Ωπ0

(
4e2q2 − 16

3
e2|−→p ∗

e+ |
2

)(
H11

eff +H22
eff +H33

eff

)
dq2dΩπ0 , (4.55)

D =

∫
∆q2

∫
∆Ωπ0

16
3 e

2|−→p ∗
e+ |

2
(
H22

eff −H11
eff

)
dq2dΩπ0∫

∆q2

∫
∆Ωπ0

(
4e2q2 − 16

3 e
2|−→p ∗

e+ |2
) (
H11

eff +H22
eff +H33

eff

)
dq2dΩπ0

, (4.56)

E =

∫
∆q2

∫
∆Ωπ0

(
2e2q2 − 8

3
e2|−→p ∗

e+ |
2

)(
H11

eff +H22
eff +H33

eff

)
dq2dΩπ0 , (4.57)

F =

∫
∆q2

∫
∆Ωπ0

8
3e

2|−→p ∗
e+ |

2
(
H22

eff −H11
eff

)
dq2dΩπ0∫

∆q2

∫
∆Ωπ0

(
2e2q2 − 8

3e
2|−→p ∗

e+ |2
) (
H11

eff +H22
eff +H33

eff

)
dq2dΩπ0

= D, (4.58)

G =

∫
∆q2

∫
∆Ωπ0

− 8
3e

2|−→p ∗
e+ |

22ReH13
eff dq

2dΩπ0∫
∆q2

∫
∆Ωπ0

(
2e2q2 − 8

3e
2|−→p ∗

e+ |2
) (
H11

eff +H22
eff +H33

eff

)
dq2dΩπ0

, (4.59)

and Lint = 2 fb−1 is the integrated nominal luminosity of PANDA . It is also worth
noting that N1 = N2. dN2

dϕ∗
e+

is obtained by integrating cosθ∗e+ from -1 to 1 whereas dN3

dϕ∗
e+

is obtained by integrating cosθ∗e+ from 0 to 1. In the latter case, a cosϕ∗e+ dependence
appears.

From Eq. 4.50, 4.51 and 4.52 it is clear that the important observables for the proton
form factor extraction will be B, D, F and G since they weight up the shape of the
distributions in cosθ∗e+ , cos2ϕ∗e+ and cosϕ∗e+ . So, by measuring the shape of the angular
distribution in cosθ∗e+ , and ϕ∗e+ , the 4 observables will be determined and then related to
the form factors. As these 4 quantities are simply related to |Gp

E| and |Gp
M | (Eq. 4.48 and

since we have shown that in the case of unpolarized beam and target we are not sensitive
to the sign of the phase difference and only 3 quantities are independent (F = D).
Then, without knowing the normalization it is not possible to extract separately |Gp

E|
|Gp

M | and the cosine of the phase difference cos (ϕE − ϕM) but only the form factor ratio
R = |Gp

E|/|G
p
M | and cos (ϕE − ϕM).

Since the proton form factors only depend on q2, by fixing the q2 interval, it is possible
to determine the form factors using different Ωπ0 intervals. In this case, the extraction
corresponding to each Ωπ0 interval must give the same result.
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52 4. Description of pp→ π◦e+e−

4.2.4 Constraint on the new calculation for pp→ π◦e+e−

The main goal of the present model is to be as much as possible realistic. To do this,
one needs to compare and constrain model with data. There are no available data for
pp→ π◦γ∗ but pp→ π◦γ was measured at Fermilab.

(a) (b)

Figure 4.10: pp→ π◦γ diagrams.

4.2.4.1 Calculation

This model is a direct extension of the pp → π◦e+e− model. The amplitude M =
Ma +Mb of the diagrams Fig. 4.10(a) and 4.10(b) and then the differential cross section
were calculated in a similar way (J. Van de Wiele, [56]).

Amplitude

Starting from the Fig. 4.10(a), the exchanged nucleon four momentum pX1 is:

p
X1

= pp − pπ◦ , (4.60)

and the amplitude Ma is given by:

Ma (λ,mp,mp) = v (mp) Γµau (mp) ε
∗
µ (λ) , (4.61)

Γµa = V µ
NNγiPF

(
N, p

X1

)
VNNπ. (4.62)

Using the second diagram (Fig. 4.10(b)), the exchanged nucleon four momentum pX2

is:

p
X2

= pπ◦ − pp, (4.63)

and the amplitude Mb is given by:

Mb (λ,mp,mp) = v (mp) Γµbu (mp) ε
∗
µ (λ) , (4.64)

Γµb = VNNπiPF

(
N, p

X2

)
V µ
NNγ. (4.65)

Here, v and u are spinors, PF is the nucleon propagator, VNNπ is the pseudo-vector
nucleon-nucleon-pion coupling and V µ

NNγ is the nucleon-nucleon-photon coupling which
contains the form factor dependence:

V µ
NNγ = −iep

(
F p

1 γ
µ − i F

p
2

2Mp

σµνqν

)
, (4.66)

where ep =
√

4πα is the proton charge, F p
1 and F p

2 are the Pauli and Dirac form factors.
Also, for real photon q2 = 0 therefore F p

1 = F p
1 (0) = 1 and F p

2 = F p
2 (0) = κp.
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The amplitude of pp→ π◦γ taking into account both diagrams is then:

M (λ,mp,mp) = JµH (mp,mp) ε
∗
µ (λ) , (4.67)

where

JµH (mp,mp) = v (mp) Γµu (mp) , (4.68)

Γµ = Γµa + Γµb . (4.69)

Differential cross section

The differential cross section of pp → π◦γ is proportional to the amplitude squared
|M|2:

|M|2 =
∑

λ,mp,mp

|M (λ,mp,mp) |2, (4.70)

= Hµν
∑
λ

ε∗µ (λ) εν (λ) , (4.71)

= −Hµνgµν , (4.72)

where

Hµν =
∑
mp,mp

JµH (mp,mp) J
ν
H
∗ (mp,mp) , (4.73)

and the Gauge invariance of the hadronic tensor gives

qµHµν = Hµνqν = 0. (4.74)

Going to the antiproton-proton center of mass with the Oz axis along the beam axis,
the two fold differential cross section is:

d2σ

dΩπ◦
=

(~c)2

16 (2π)2 s

|−→p π◦|
|−→p p|

|M|2

4
. (4.75)

At this point, one needs to compare the results for the pp → π◦γ differential cross
section to the data.

4.2.4.2 pp→ π◦γ data

In Ref. [44] are presented several differential cross sections of two-body neutral final
states produced in antiproton-proton annihilation at Fermilab in the center of mass for
the energy range 2.911 ≤

√
s ≤ 3.686 GeV.

The following data come from the E760 experiment at Fermilab and correspond to the
annihilation channel pp→ π◦γ . The differential cross sections dσ/dcosθ∗π were determined
at several energies with different luminosities and angular coverages. Table 4.2 presents
the energies which were used in this part. One can see from this table that the angular
coverage is very limited but also that the available energies are separated into two groups:

Jérôme Boucher, 2011



54 4. Description of pp→ π◦e+e−

one where 2.911 ≤
√
s ≤ 3.097 GeV and another one where 3.527 ≤

√
s ≤ 3.686 GeV and

nothing in between.

√
s

∫
Ldt (cosθ∗π)min (cosθ∗π)max

√
s

∫
Ldt (cosθ∗π)min (cosθ∗π)max

(GeV) (nb−1) (GeV) (nb−1)

2.911 53.1 -0.475 +0.475 3.527 1016.4 -0.625 +0.625
2.950 197.5 -0.475 +0.475 3.556 1377.4 -0.625 +0.625
2.975 423.9 -0.475 +0.475 3.591 923.8 -0.625 +0.625
2.979 165.3 -0.475 +0.475 3.595 826.8 -0.625 +0.625
2.981 392.6 -0.475 +0.475 3.613 1167.2 -0.625 +0.625
2.985 200.2 -0.475 +0.475 3.616 1048.0 -0.625 +0.625
2.990 513.0 -0.475 +0.475 3.619 575.0 -0.625 +0.625
2.994 308.9 -0.475 +0.475 3.621 1216.4 -0.625 +0.625
3.005 171.0 -0.475 +0.475 3.686 994.6 -0.625 +0.625
3.050 53.6 -0.475 +0.475
3.097 384.4 -0.525 +0.575

Table 4.2: Summary of the energies, integrated luminosities and angular coverage for the pp→
π◦γ reaction.

Due to the small angular coverage of the data, to compare the model to the data, each
set of data has been fitted with the polynomial function a + bx2 + cx4 where x = cosθ∗π0

(going to the 6th order was not helpful). These fits were then compared to the cross
section calculations and it appeared that both model and data disagree by 3-4 orders of
magnitude. Therefore, a form factor on the propagator F was introduced to take into
account the off-shellness of the proton.

4.2.4.3 Form factor on the propagator

The form factor on the propagator squared F 2 was obtained dividing the fit by the
calculation (see Eq. 4.75). Fig. 4.11 displays as an example the results for

√
s = 3.005

GeV and it shows a cosθ∗π0 dependence. Then, looking to other
√
s values, it appears that

F 2 also depends on
√
s.
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Figure 4.11: Form factor on propagator squared obtained by dividing the fit (a + bx2 + cx4

where x = cosθ∗π0) of the data by the calculation. Picture shows F 2 as a function of cosθ∗π0 at√
s = 3.005 GeV.

The following form of the form factor on the propagator squared F 2 is assumed. This
form respects Gauge invariance and is symmetric with respect to the proton and antipro-
ton vertex.

F 2
(√

s, p
X1
.p
X2

)
=

λ2
(√

s, p
X1
.p
X2

)
−M2

p

λ2
(√

s, p
X1
.p
X2

)
− p2

X1

2 λ2
(√

s, p
X1
.p
X2

)
−M2

p

λ2
(√

s, p
X1
.p
X2

)
− p2

X2

2

(4.76)

where p
Xi

are the four-momentum transfers (see Fig. 4.10) and λ
(√

s, p
X1
.p
X2

)
is a

parameter in GeV/c2. For p2

Xi
� λ2

(√
s, p

X1
.p
X2

)
, the amplitude is highly suppressed.

Furthermore when q2 is close to s i.e.: when the proton is almost on-shell, F 2 tends to 1
while when q2 tends to 0, F 2 � 1.

We want to have a simple parametrization of λ
(√

s, p
X1
.p
X2

)
depending on the system

energy
√
s and on the p

X1
.p
X2

(containing θ∗π0 dependence) to be able to extrapolate λ at

other energies. λ
(√

s, p
X1
.p
X2

)
is expressed as follows:

λ(
√
s, p

X1
.p
X2

) = P1(
√
s) + P2(

√
s) p

X1
.p
X2

10−2 + P3(
√
s) (p

X1
.p
X2

)2 10−4 (4.77)

where Pi are linear function of
√
s. The Fig. 4.12 shows the results obtained for the Pi.
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(a) P1 (b) P2 (c) P3

Figure 4.12: λ parameters: results for P1, P2 and P3.

λ was extrapolated at several kinetic energies including at T = 1 GeV (
√
s = 2.32 GeV).

A small cosθ∗π0 dependence (lower than 3%) was observed. Therefore λ was considered
only as a function of

√
s leading to λ(

√
s = 2.323) = P1(

√
s = 2.323) = 1.25 GeV/c2 at

T = 1 GeV (
√
s = 2.323 GeV).

4.2.4.4 Results

The Fig. 4.13 shows the calculation including the form factor on the propagator of the
pp→ π◦γ differential cross section at 4 different center of mass energies. The calculation
now reproduces the Fermilab data.
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Figure 4.13: Differential cross section dσ/dcosθ∗π0 in nb for pp → π◦γ at different center of
mass system energies calculated with the model including the form factor on propagator and
compared to the data.

Fig. 4.14 displays the pp → π◦e+e− differential cross section dσ
dq2

at Tp = 1 GeV. This

differential cross section includes the form factor on the propagator. The differential cross
section still present the ρ, ω and φ meson resonances. Comparing Fig. 4.14 to Fig. 4.8,
one notes that the new calculation gives a differential cross section 2-3 orders of magnitude
lower than the previous one-nucleon exchange model.

Figure 4.14: pp→ π◦e+e− differential cross section dσ
dq2

from the new calculation at Tp = 1 GeV.
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Chapter 5

Feasibility study of pp→ π◦e+e−

In this chapter, I show the feasibility studies for the proton electromagnetic form factor
measurements in the unphysical region using the reaction pp → π◦e+e− . I start by
presenting our regions of interest and the detector resolution. Then, to estimate the
background rejection, an over simplified model for the dominant hadronic background
channel was used and the corresponding rejection factors determined for several q2. The
signal contamination is obtained using realistic counting rates as well as the acceptance
and efficiency. Finally, I will show the results for the extraction of the hadronic tensors
and for the extraction of the electromagnetic proton form factors out of the e+e− angular
distribution.

5.1 Preliminary studies

5.1.1 Regions of interest

Since the main goal of studying the pp→ π◦e+e− is to determine the form factor below
threshold, it would be interesting to have one case close to the threshold where the Iachello
parametrization is smooth and structureless and one case in the mesonic region. As it was
shown in the previous section 4.2.3.4, to extract the proton form factors it is necessary to
define both q2 and θπ0 intervals.Therefore, pp→ π◦e+e− cross section dependences on the
beam kinetic energy, on q2 and on θπ0 were studied and are presented in the following.

5.1.1.1 Beam kinetic energy and q2 dependence

To have a more precise idea about the beam kinetic energy dependence of the differential
cross section, the pp→ π◦e+e− differential cross section dσ/dq2 is plotted as a function of
q2 for a broad range of antiproton beam kinetic energies (from 1 to 13 GeV) in Fig. 5.1.
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Figure 5.1: pp → π◦e+e− differential cross section dσ/dq2 as a function of q2 for several beam
kinetic energies.

The figure shows a decrease of the differential cross section when the beam kinetic
energy increases. Therefore, the lowest kinetic energy (Tp = 1 GeV) is selected.

According to Iachello parametrization, the differential cross section shows fast varia-
tions in the region of the vector meson poles and a smooth decrease for higher values.
We therefore chose two q2 intervals: q2 = 0.605 ± 0.005 (GeV/c2)2 and q2 = 2 ± 0.125
(GeV/c2)2. The width of the former interval is chosen as close as possible to the experi-
mental resolution to have a chance to scan the ω resonance and the width of the latter is
chosen to be large enough to avoid low counting rate. Both intervals were optimized to
have the best precision on the form factors.

5.1.1.2 θπ0 dependence

As example, Fig. 5.2 shows the number of counts as a function of θπ0 in lab (∆θπ0 =
1◦) at Tp = 1 GeV and both q2 intervals assuming an integrated luminosity of 2 fb−1.
Distributions show a maximum at around 25◦.
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(a) q2 = 0.605± 0.005 (GeV/c2)2 (b) q2 = 2± 0.125 (GeV/c2)2

Figure 5.2: Counts as a function of θπ0 (∆θπ0 = 1◦) at Tp = 1 GeV for q2 = 0.605 ± 0.005
(GeV/c2)2 (5.2(a)) and q2 = 2± 0.125 (GeV/c2)2 (5.2(b)). The integrated luminosity is 2 fb−1.
Yellow bands represent the selected angular regions.

As expected, at q2 = 0.605± 0.005 (GeV/c2)2 close to the ω resonance, see Fig. 5.2(a),
the number of counts is relatively high. In Fig. 5.2(b) which corresponds to q2 = 2±0.125
(GeV/c2)2, the number of counts is quite low, especially at backward θπ0 angles. It is
important to remember that this number of counts is theoretical and that later on one
has to take into account the acceptance and the detector efficiency which will further
decrease it. In case of low counting rate, this can be problematic for the proton form
factor extraction.

Three angular regions (yellow bands in Fig. 5.2) were chosen large enough to avoid low
counting rate: 10◦ < θπ0 < 30◦, 80◦ < θπ0 < 100◦ and 140◦ < θπ0 < 160◦ for both q2

intervals.

5.1.1.3 Hadronic tensor dependences on q2 and θπ0

As shown in Chapter 4.2.3.2, the effective hadronic tensorsH11
eff ,H22

eff ,H33
eff ,H13

eff (see Eq.

4.40) are the relevant quantities. They are displayed at Tp = 1 GeV for q2 = 0.605±0.005
(GeV/c2)2 and q2 = 2± 0.125 (GeV/c2)2 in Fig. 5.3 and Fig. 5.4 respectively. The first
observation is that for both figures all the hadronic tensors tend to zero while increasing
the θπ◦ angle. This implies (see Eq. 4.44) that the sensitivity to the effective hadronic
tensors becomes weaker and weaker and that the counting rate will be lower at backward
π◦ angles. The second point is that for both q2 intervals, only H13

eff reaches negative

values. Finally comparing both q2 intervals, one can note that the hadronic tensors
corresponding to q2 = 0.605± 0.005 (GeV/c2)2 are around 5-6 order of magnitude higher
than for q2 = 2± 0.125 (GeV/c2)2.
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(a) H11
eff (b) H22

eff

(c) H33
eff (d) H13

eff

Figure 5.3: Effective hadronic tensor dependences on q2 around 0.605 (GeV/c2)2 and θπ0 at
Tp = 1 GeV.
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(a) H11
eff (b) H22

eff

(c) H33
eff (d) H13

eff

Figure 5.4: Effective hadronic tensor dependences on q2 around 2 (GeV/c2)2 and θπ0 at Tp = 1
GeV.

5.1.2 Detector resolution

The resolution effect on q2 value was studied within the BABAR framework by T. Liu
[60]. The BABAR framework (detailled in [9]) contains the PANDA geometry. Simu-
lations are done as follows. First, the propagation of the particles through the detector
is based on the GEANT4 code. Then, the information on hits and energy losses are
digitalized into a response of the different detectors using a model for electronic noise. Fi-
nally, physical quantities such as momentum (tracking), energy deposit (electromagnetic
calorimeter), energy loss to path length ratio (dE/dx) and Cherenkov angles (light cone
in the DIRC) are reconstructed.

The reaction pp→ π◦e+e− was simulated with a phase space model for Tp = 1 GeV [61].
Two q2 values were studied: q2 = 0.6± 0.001 (GeV/c2)2 and q2 = 2.0± 0.003 (GeV/c2)2.
For the reconstruction, the detector acceptance, the tracking efficiency and the resolution
effects were taken into account.
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To be reconstructed, an event must fulfil the following requirements:

• at least one positively charged particle c+,

• at least one negatively charged particle c−,

• at least two photons detected in the calorimeter each of them having an energy
greater than 0.03 GeV,

• at least one π◦ which is reconstructed from two of the above photons and must have
a mass between 0.115 and 0.15 GeV/c2,

• energy and momentum conservation for all triplet (π◦, c+, c−) combinations (only
the best one is kept).

If one of the previous conditions is not fulfilled the event is not reconstructed. Having
pp → π◦c+c− reconstructed events, the particle identification (PID) for electrons and
positrons is applied to obtain pp → π◦e+e− reconstructed events. The very tight (VT)
cut was used. The VT cut means that one requires that the probability of the positively
(negatively) charged particle to be a positron (electron) is at least 99.8%. This combined
probability takes into account all the information from the MVD, the central tracker, the
DIRC, the EMC and the muon detector.

Two methods were tested to calculate q2: one is the invariant mass squared of the
lepton pair and the other one is the missing mass squared of pp→ π0X. Results showed
that the reconstructed q2 distributions are few times larger than the interval used for
these studies and these distributions therefore show pure resolution effects. Also, the first
method to calculate q2 gave better results.

The effect of the kinematic fit method was studied in this context. The kinematical fit
method is a constrained fit which takes into account energy and momentum conservation.

Results before (pink) and after (blue) kinematic fit are displayed in Fig. 5.5 (Tp = 1
GeV and q2 = 0.6 ± 0.001 (GeV/c2)2) and Fig. 5.6 (Tp = 1 GeV and q2 = 2.0 ± 0.003
(GeV/c2)2). From these figures, the resolution improvement due to the kinematic fit is
clearly visible and brings the resolution below 0.8% at q2 = 0.6 (GeV/c2)2 and below 0.5%
at q2 = 2.0 (GeV/c2)2. Hence this result validates a posteriori the choice q2 = 0.605±0.005
(GeV/c2)2 previously presented. Furthermore, within the achieved resolution about 0.005
(GeV/c2)2, ∆M2 = 2M∆M is ∼ 0.012 (GeV/c2)2 at q2 = 0.605 ± 0.005 (GeV/c2)2.
Comparing this value to the ∆M2 = 0.022 (GeV/c2)2 obtained by the parametrization,
it is possible to describe the ω resonance. Results also show that the resolution is almost
independent of the π0 angle in the laboratory.
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q2 = 0.6 ± 0.001 (GeV/c2)2

100 < θπ0 < 300 800 < θπ0 < 1000 1400 < θπ0 < 1600

σ = 0.00851± 0.00004 σ = 0.00991± 0.00006 σ = 0.01013± 0.00008
(GeV/c2)2 (GeV/c2)2 (GeV/c2)2

σq2

q2
= 1.4%

σq2

q2
= 1.7%

σq2

q2
= 1.7%

σ = 0.00413± 0.00002 σ = 0.00468± 0.00003 σ = 0.00473± 0.00004
(GeV/c2)2 (GeV/c2)2 (GeV/c2)2

σq2

q2
= 0.7%

σq2

q2
= 0.8%

σq2

q2
= 0.8%

Figure 5.5: The q2 distribution around q2 = 0.6 (GeV/c2)2 as a function of the π0 polar angle
in Lab. obtained from reconstructed events, before kinematic fit (pink histograms) and after
kinematic fit (blue histograms) from [60].

q2 = 2.0 ± 0.003 (GeV/c2)2

100 < θπ0 < 300 800 < θπ0 < 1000 1400 < θπ0 < 1600

σ = 0.0261± 0.0002 σ = 0.0266± 0.0003 σ = 0.0273± 0.0002
(GeV/c2)2 (GeV/c2)2 (GeV/c2)2

σq2

q2
= 1.3%

σq2

q2
= 1.3%

σq2

q2
= 1.4%

σ = 0.00896± 0.00005 σ = 0.00980± 0.00009 σ = 0.00908± 0.00006
(GeV/c2)2 (GeV/c2)2 (GeV/c2)2

σq2

q2
= 0.4%

σq2

q2
= 0.5%

σq2

q2
= 0.5%

Figure 5.6: The q2 distribution around q2 = 2.0 (GeV/c2)2 as a function of the π0 polar angle
in Lab. obtained from reconstructed events, before kinematic fit (pink histograms) and after
kinematic fit (blue histograms) from [60].
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5.2 Background studies

Up to now, we have worked assuming that pp → π◦e+e− can be easily identified and
is background free. In this paragraph we will investigate the role of hadronic reactions
which might lead to a pollution of the signal and try to see if additional cuts are needed.
An over simplified model for the dominant hadronic background channel was used and
the corresponding rejection factors determined for several q2 and θπ0 .

5.2.1 Possible background channels

Reactions involving two or more hadrons in the final channel constitute an important
background for the measurement of channels with creation of lepton pair. The background
channels with the highest cross section are listed below:

• pp→ nπ+nπ−mπ◦ where n ≥ 2 and m ≥ 0

• pp→ π+π−ω

• pp→ π+π−ρ◦

• pp→ π◦π◦

• pp→ π+π−π◦

• pp→ K+K−π◦

PANDA detector being almost a 4π detector, pp → nπ+nπ−mπ◦ where n ≥ 2 and
m ≥ 0 will be easily removed counting the charged particles which are detected. ω and ρ◦

decay into pions at 100%, pp→ π+π−ω and pp→ π+π−ρ◦ can be removed using the same
technique. One can also calculate the missing mass squared M2

X = (pp + pp− pπ+ − pπ−)2.

For the pp→ π0π0 channel, e+e− pairs are produced after the conversion of the photons
from the π◦ or from the Dalitz decay of one (or both) π◦ with probability 10−2 (10−4). In
this case, the final state of the background channel is the same as for the signal. Using
the invariant mass of the lepton pair and the missing mass, this background channel can
suppressed efficiently.

The main backgrounds are expected to be pp → π0π0 , pp → π◦π+π− and pp →
K

+
K
−
π◦ . For the channel pp → K

+
K
−
π◦ , the probability of misidentification of a

kaon as an electron is lower than the misidentification of a pion as an electron and the
kinematical constraints are more efficient due to their larger mass. Therefore, the most
difficult channel to suppress is expected to be pp→ π◦π+π− .

5.2.2 The pp→ π◦π+π− channel

5.2.2.1 pp→ π◦π+π− description

S. Ong and J. Van de Wiele built a model for pp→ π◦π+π− based on effective lagragian
calculation. As there is only one existing measurement of Mπ+π− invariant mass spectrum
decomposed in different channels (NR 3π, πρ → 3π, πf2 → 3π) at 1.43 GeV/c [62].The
model involves only one nucleon exchange. The included diagrams are displayed in Fig.
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5.7. It is valid at low antiproton beam kinetic energy (1 < Tp < 2 GeV). In case of higher
transfer, one needs to add the N∗ exchange and the ∆ exchange (not done here due to the
lack of data). To summary, a first approximation model has been developed and tuned
to reproduce the data (total cross section, resonances). Once the PANDA experiment
running, one must measure the pp → π◦π+π− reaction and improve or develop new
model.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Included diagrams for the pp→ π◦π+π− calculation. N stands for neutron and N+

for proton.

Fig. 5.8 shows the comparison of the calculation with data for 1.43 GeV/c antipro-
ton momentum (Tp = 0.772 GeV). The contributions of the dominant channels are well
reproduced. Furthermore, one can clearly observed the ρ and f2 resonances.
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Figure 5.8: pp→ π◦π+π− calculation compared to CERN data from [62] for 1.43 GeV/c antipro-
ton momentum. The different structures of this invariant mass spectrum are well reproduced.
The ρ and f2 resonances are visible.

5.2.2.2 pp→ π◦π+π− suppression

The pp → π◦π+π− suppression was studied within the BABAR framework in collabo-
ration with M. Sudo l [61].

The reaction pp→ π◦π+π− was simulated with a phase space model at Tp = 1 GeV, two
q2 values (q2 = 0.605±0.005 (GeV/c2)2 and q2 = 2.0±0.125 (GeV/c2)2) and three angular
ranges (10◦ < θπ0 < 30◦, 80◦ < θπ0 < 100◦ and 140◦ < θπ0 < 160◦) as for the signal. Here
q2 is defined as the invariant mass squared of the two charged pions: q2 = (pπ+ + pπ−)2.
Being five fold differential, the background suppression factor matrices will therefore be
model independent. For each case, 108 events were generated.

To be reconstructed, an event must fulfil the following requirements:

• at least one positively charged particle c+,

• at least one negatively charged particle c−,

• at least two photons detected in the calorimeter each of them having an energy
greater than 0.03 GeV,

• at least one π◦ which is reconstructed from two of the above photons and must have
a mass between 0.115 and 0.15 GeV/c2,

• energy and momentum conservation for all triplet (π◦, c+, c−) combinations (only
the best one is kept).

From these reconstructed events, we need to know how much will be misidentified as
pp→ π◦e+e− . For this we used the very tight cut as for the signal (see 5.1.2).
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Similarly to the pp → e+e− study, one can also use the confidence level associated
to the kinematical fit to suppress the background. The confidence level is based on the
reaction vertex and on the kinematical fit which includes 4-momentum constraint. The
confidence level (CL), directly derived from the X 2 value obtained after the kinematical
fit, is calculated for both π0e+e− and π0π+π− hypothesis.

Assuming that the PID and the CL cuts are not correlated [8], the total background
supression factor can be calculated as the PID supression factor multiplied by the CL
supression factor. Four cuts have been considered:

1. Cut1 = CLπ◦e+e− > CLπ◦π+π− ,

2. Cut2 = CLπ◦e+e− > 10CLπ◦π+π− ,

3. Cut3 = CLπ◦e+e− > 10CLπ◦π+π− && CLπ◦e+e− > 0.001,

4. Cut4 = CLπ◦e+e− > 10CLπ◦π+π− && CLπ◦e+e− > 0.1.

Tab. 5.1 and Tab. 5.2 present the background suppression factors for the PID and
the four cuts at Tp = 1 GeV, q2 = 0.605± 0.005 (GeV/c2)2 and q2 = 2± 0.125 (GeV/c2)2

respectively. To get a meaningful estimate of the suppression factor, which is not biased
by the low statistics, values were averaged and calculated for two angular bins: 80◦ <
θ∗e+ < 90◦ and 140◦ < θ∗e+ < 150◦.

q2 = 0.605± 0.005 (GeV/c2)2

10◦ < θπ0 < 30◦ 80◦ < θπ0 < 100◦ 140◦ < θπ0 < 160◦

PID cut
80◦ < θ∗e+ < 90◦ 4.1 10−5 9.6 10−6 1.2 10−6

140◦ < θ∗e+ < 150◦ 4.9 10−6 2.7 10−7 2.3 10−7

Cut1
80◦ < θ∗e+ < 90◦ 1.5 10−2 1.6 10−1 1.5 10−1

140◦ < θ∗e+ < 150◦ 2.1 10−3 4.4 10−2 7.3 10−2

Cut2
80◦ < θ∗e+ < 90◦ 4.0 10−3 1.5 10−2 1.1 10−2

140◦ < θ∗e+ < 150◦ 1.5 10−3 9.3 10−3 3.3 10−2

Cut3
80◦ < θ∗e+ < 90◦ 1.8 10−3 9.0 10−3 3.5 10−3

140◦ < θ∗e+ < 150◦ 2.2 10−4 2.5 10−3 1.5 10−2

Cut4
80◦ < θ∗e+ < 90◦ 9.1 10−4 4.5 10−3 3.7 10−4

140◦ < θ∗e+ < 150◦ 7.3 10−5 5.9 10−4 5.3 10−3

PID cut + Cut1
80◦ < θ∗e+ < 90◦ 6.1 10−7 1.5 10−6 1.8 10−7

140◦ < θ∗e+ < 150◦ 1.0 10−8 1.2 10−8 1.7 10−8

PID cut + Cut4
80◦ < θ∗e+ < 90◦ 3.7 10−8 4.3 10−8 4.4 10−10

140◦ < θ∗e+ < 150◦ 3.6 10−10 1.6 10−10 1.9 10−9

Table 5.1: PID and CL suppression factors at q2 = 0.605 ± 0.005 (GeV/c2)2 are summarized
in this table for two θ∗e+ intervals. As explained in the text, the different lines correspond to
different cuts.
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q2 = 2± 0.125 (GeV/c2)2

10◦ < θπ0 < 30◦ 80◦ < θπ0 < 100◦ 140◦ < θπ0 < 160◦

PID cut
80◦ < θ∗e+ < 90◦ 3.2 10−6 7.0 10−7 3.7 10−7

140◦ < θ∗e+ < 150◦ 2.6 10−7 2.0 10−7 2.1 10−7

Cut1
80◦ < θ∗e+ < 90◦ 2.2 10−2 1.4 10−1 1.9 10−1

140◦ < θ∗e+ < 150◦ 2.8 10−2 1.3 10−2 9.2 10−2

Cut2
80◦ < θ∗e+ < 90◦ 9.2 10−3 1.2 10−2 9.2 10−3

140◦ < θ∗e+ < 150◦ 7.5 10−3 1.1 10−2 1.7 10−2

Cut3
80◦ < θ∗e+ < 90◦ 4.6 10−3 6.7 10−3 3.2 10−3

140◦ < θ∗e+ < 150◦ 3.6 10−3 5.8 10−3 7.6 10−3

Cut4
80◦ < θ∗e+ < 90◦ 1.9 10−3 3.1 10−3 3.3 10−4

140◦ < θ∗e+ < 150◦ 1.8 10−3 2.9 10−3 2.7 10−3

PID cut + Cut1
80◦ < θ∗e+ < 90◦ 7.0 10−8 9.8 10−8 7.0 10−8

140◦ < θ∗e+ < 150◦ 7.3 10−9 2.6 10−9 1.9 10−8

PID cut + Cut4
80◦ < θ∗e+ < 90◦ 6.1 10−9 2.2 10−9 1.2 10−10

140◦ < θ∗e+ < 150◦ 4.7 10−10 5.8 10−10 5.7 10−10

Table 5.2: PID and CL suppression factors at q2 = 2± 0.125 (GeV/c2)2 are summarized in this
table for two θ∗e+ intervals. As explained in the text, the different lines correspond to different
cuts.

Combining the PID cut with the Cut4, a 10−8 to 10−10 background suppression factor
is reached at q2 = 0.605 ± 0.005 (GeV/c2)2 while at q2 = 2 ± 0.125 (GeV/c2)2 a 10−9 to
10−10 background suppression factor is obtained. It still remain to determine the effects
of these cuts on the signal and on the proton electromagnetic form factor extraction.

5.3 Signal studies

Since the background cross section as well as the rejection factors are known, it is
possible knowing the signal efficiency to determine the signal contamination corresponding
to each of the previous cuts in order to choose the best one. Then the hadronic tensors
and the proton electromagnetic form factors are extracted. Finally results are presented.

5.3.1 Signal contamination

The signal contamination SC is the ratio of the number of background events after cuts
to the number of signal events after the same cuts

SC =
σB
σS

εB
εS
, (5.1)

where σB and σS are the background and signal cross section respectively, εB is the
background suppression factor and εS the signal acceptance and efficiency. Cross section
ratios at Tp = 1 GeV and both q2 are first presented. Then signal acceptance and
efficiencies are determined. Finally signal contaminations are shown.

5.3.1.1 Background to signal differential cross section ratio

The pp → π◦π+π− five fold differential cross section was extrapolated at Tp = 1 GeV.
It was integrated for the same intervals as for the signal. The background to signal cross
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section ratio (σB/σS) is defined by

σB
σS

=

∫
∆q2

∫
∆Ωπ◦

∫
∆Ωπ+

∗
d5σ

dq2dΩπ◦dΩπ+
∗dq2dΩπ◦dΩπ+

∗∫
∆q2

∫
∆Ωπ◦

∫
∆Ωe+

∗
d5σ

dq2dΩπ◦dΩe+
∗dq2dΩπ◦dΩe+

∗ . (5.2)

Fig. 5.9 and 5.10 display the background to signal ratio (σB/σS). Here we used 10◦

bins for θ∗ and ϕ∗.

In Fig. 5.9 (corresponding to q2 = 0.605±0.005 (GeV/c2)2), the ratio goes from 103 up
to 2 104. With the exception of the first and last θ∗ bins, the ratio stays however below
a few 103.

In Fig. 5.10 (corresponding to q2 = 2± 0.125 (GeV/c2)2),the ratio goes from 106 up to
few 107. With the exception of the first and last θ∗ bins, the ratio stays however below 2
107.

(a) 10◦ < θπ0 < 30◦ (b) 80◦ < θπ0 < 100◦

(c) 140◦ < θπ0 < 160◦

Figure 5.9: Background to signal ratio at q2 = 0.605 ± 0.005 (GeV/c2)2 (10◦ bins for θ∗ and
ϕ∗). For most of the angular range the ratio stays below a few 103.
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(a) 10◦ < θπ0 < 30◦ (b) 80◦ < θπ0 < 100◦

(c) 140◦ < θπ0 < 160◦

Figure 5.10: Background to signal ratio at q2 = 2 ± 0.125 (GeV/c2)2 (10◦ bins for θ∗ and ϕ∗).
For most of the angular range the ratio stays below 2 107.

Tables 5.3 and 5.4 summarize the averaged background to signal cross section ratio
values at Tp = 1 GeV, q2 = 0.605 ± 0.005 (GeV/c2)2 and q2 = 2 ± 0.125 (GeV/c2)2

respectively for two selected θ∗e+ intervals.

q2 = 0.605± 0.005 (GeV/c2)2

10◦ < θπ0 < 30◦ 80◦ < θπ0 < 100◦ 140◦ < θπ0 < 160◦

σB/σS
80◦ < θ∗e+ < 90◦ 5 103 5 103 4 103

140◦ < θ∗e+ < 150◦ 8 103 8 103 5 103

Table 5.3: Background to signal cross section ratio at q2 = 0.605± 0.005 (GeV/c2)2 for two θ∗e+
intervals.

q2 = 2± 0.125 (GeV/c2)2

10◦ < θπ0 < 30◦ 80◦ < θπ0 < 100◦ 140◦ < θπ0 < 160◦

σB/σS
80◦ < θ∗e+ < 90◦ 3 106 4 106 2 106

140◦ < θ∗e+ < 150◦ 2 107 2 107 2 107

Table 5.4: Background to signal cross section ratio at q2 = 2 ± 0.125 (GeV/c2)2 for two θ∗e+
intervals.
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5.3.1.2 Signal acceptance and efficiency

Behind the term acceptance and efficiency, three main effects are included: the detec-
tor acceptance which corresponds to the detector geometry, the reconstruction efficiency
which depends on the detector capability to reconstruct an event pp → π◦c+c− and the
identification efficiency of positrons and electrons.

Like in the detector resolution part, the acceptance and the efficiency were determined
within the BABAR framework. The reaction pp→ π◦e+e− was generated in phase space
[61] for θe+

∗ and ϕe+
∗ at fixed q2 and Ωπ◦ intervals. Being five fold differential, the

acceptance and efficiency matrices will therefore be model independent. The events are
then reconstructed using the very tight (VT) cut for the particle identification. The VT
cut means that one requires that the probability of the positively (negatively) charged
particle to be an positron (electron) is 99.8%. 106 events were generated at Tp = 1 GeV
for each of the following cases (where θπ0 is in the laboratory):

• q2 = 2± 0.125 (GeV/c2)2

– 10◦ < θπ0 < 30◦

– 80◦ < θπ0 < 100◦

– 140◦ < θπ0 < 160◦

• q2 = 0.605± 0.005 (GeV/c2)2

– 10◦ < θπ0 < 30◦

– 80◦ < θπ0 < 100◦

– 140◦ < θπ0 < 160◦

The matrices of acceptance and efficiency were determined at Tp = 1 GeV, q2 = 0.605±
0.005 (GeV/c2)2 and q2 = 2± 0.125 (GeV/c2)2 respectively for 5 cases:

1. PID

2. PID + Cut1 = PID && CLπ◦e+e− > CLπ◦π+π−

3. PID + Cut2 = PID && CLπ◦e+e− > 10CLπ◦π+π−

4. PID + Cut3 = PID && CLπ◦e+e− > 10CLπ◦π+π− && CLπ◦e+e− > 0.001

5. PID + Cut4 = PID && CLπ◦e+e− > 10CLπ◦π+π− && CLπ◦e+e− > 0.1

The acceptance and efficiency matrices were determined for all 5 cases previously defined
in the virtual photon rest frame (with 10◦ bins for θe+

∗ and ϕe+
∗) since the model gives the

differential cross section in this specific frame. The acceptance and efficiency is the ratio
of the reconstructed to generated events. The Fig. 5.11(a) and 5.11(b) display using the
PID cut only the case q2 = 2±0.125 (GeV/c2)2 and 10◦ < θπ0 < 30◦ in the virtual photon
rest frame and also in the laboratory frame to have a better understanding of the shape
of the acceptance and efficiency. Fig. 5.11(b) clearly shows the effect of the target pipe,
see green color at (θe+ = 90◦, ϕe+ = 90◦) and (θe+ = 90◦, ϕe+ = 270◦). The purple color
for 160◦ < θe+ < 180◦ is due to the loss of positron since there are no detectors in this
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region. All matrices using the PID only are available in the appendix A for both frames.
The main point is that for the case q2 = 0.605 ± 0.005 (GeV/c2)2, the acceptance and
efficiency goes roughly from 0.40 to 0.20 over the whole θπ◦ range [0◦; 180◦]. For the case
q2 = 2 ± 0.125 (GeV/c2)2 the acceptance and efficiency goes roughly from 0.55 to 0.30.
These matrices are used later on for the hadronic tensor and the form factor extractions.

(a) γ∗ rest frame (b) laboratory frame

Figure 5.11: Signal acceptance and efficiency matrices (PID only) for q2 = 2± 0.125 (GeV/c2)2

and 10◦ < θπ0 < 30◦ (with 10◦ bins for θe+
∗ and ϕe+

∗).

The precision of the acceptance and efficiency matrices depends on the number of
generated events in each finite volume element. With 10◦ bins for θe+

∗ and ϕe+
∗ and

106 generated events, one has on average 1500 events per finite volume element leading
to a fluctuation of 2.5%. To have smaller fluctuations, one simply needs to generate
more events. The acceptance and efficiency matrices will at the end be however limited
by the statistics. we assume no error on the acceptance and efficiency matrices. As an
example, Tab. 5.5 presents the number of generated events in 4 finite volume elements at
q2 = 2± 0.125 (GeV/c2)2 and 10◦ < θπ0 < 30◦.

θe+
∗ [deg]

30− 40 150− 160

ϕe+
∗ [deg]

280− 290
N=1387 N=1028√
N/N=2.7%

√
N/N=3.1%

80− 90
N=1346 N=995√
N/N=2.7%

√
N/N=3.2%

Table 5.5: Number of generated events and associated precision for 4 finite volume elements at
q2 = 2± 0.125 (GeV/c2)2 and 10◦ < θπ0 < 30◦ used to determine the acceptance and efficiency.

In a similar way as for the background, acceptance and efficiency values (see Tab.
5.6 and Tab. 5.7) are averaged and calculated for two θ∗e+ bins: 80◦ < θ∗e+ < 90◦ and
140◦ < θ∗e+ < 150◦. From these two tables, one can see that by applying the particle
identification (PID), the acceptance and efficiency is reduced at least by 50%. This
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reduction is more severe for π◦ going backward. Cutting also with the confidence level,
reduces again the acceptance and efficiency. Again, for π◦ going backward, the reduction
is more severe.

q2 = 0.605± 0.005 (GeV/c2)2

10◦ < θπ0 < 30◦ 80◦ < θπ0 < 100◦ 140◦ < θπ0 < 160◦

Nth=2.91165 106 Nth=1.40504 106 Nth=517 612

PID
80◦ < θ∗e+ < 90◦ 42% 39% 23%

140◦ < θ∗e+ < 150◦ 32% 37% 12%

PID + Cut1
80◦ < θ∗e+ < 90◦ 30% 24% 10%

140◦ < θ∗e+ < 150◦ 24% 27% 7%

PID + Cut2
80◦ < θ∗e+ < 90◦ 29% 9% 1.8%

140◦ < θ∗e+ < 150◦ 23% 21% 4.2%

PID + Cut3
80◦ < θ∗e+ < 90◦ 24% 9% 0.6%

140◦ < θ∗e+ < 150◦ 19% 21% 2.5%

PID + Cut4
80◦ < θ∗e+ < 90◦ 17.8% 6.5% 0.1%

140◦ < θ∗e+ < 150◦ 14.2% 15.5% 1.7%

Table 5.6: Signal acceptance and efficiency at q2 = 0.605± 0.005 (GeV/c2)2 are summarized in
this table for two values of θ∗e+ .

q2 = 2± 0.125 (GeV/c2)2

10◦ < θπ0 < 30◦ 80◦ < θπ0 < 100◦ 140◦ < θπ0 < 160◦

Nth=18 486 Nth=9 395 Nth=2 967

PID
80◦ < θ∗e+ < 90◦ 46% 50% 34%

140◦ < θ∗e+ < 150◦ 42% 45% 24%

PID + Cut1
80◦ < θ∗e+ < 90◦ 34% 30% 16%

140◦ < θ∗e+ < 150◦ 24% 32% 14%

PID + Cut2
80◦ < θ∗e+ < 90◦ 26% 10% 0.6%

140◦ < θ∗e+ < 150◦ 17% 24% 4.2%

PID + Cut3
80◦ < θ∗e+ < 90◦ 25% 10% 0.1%

140◦ < θ∗e+ < 150◦ 16% 23% 4%

PID + Cut4
80◦ < θ∗e+ < 90◦ 18% 6.2% 0.1%

140◦ < θ∗e+ < 150◦ 13% 17% 2%

Table 5.7: Signal acceptance and efficiency at q2 = 2± 0.125 (GeV/c2)2 are summarized in this
table for two values of θ∗e+ .

5.3.1.3 Signal contamination

Knowing the background suppression factor, the background to signal cross section
ratio as well as the signal acceptance and efficiency, the signal contamination can be
calculated for each cuts. Tab. 5.8 and Tab. 5.9 show the contamination obtained. At
q2 = 0.605 ± 0.005 (GeV/c2)2, a contamination at the percent level is reached using the
condition PID+Cut1 and in principle extract the proton electromagnetic form factors for
the three π◦ angular ranges. At q2 = 2± 0.125 (GeV/c2)2, even using a strong condition
(PID+Cut4), the signal contamination remains between 7% and 14%.
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q2 = 0.605± 0.005 (GeV/c2)2

10◦ < θπ0 < 30◦ 80◦ < θπ0 < 100◦ 140◦ < θπ0 < 160◦

PID
80◦ < θ∗e+ < 90◦ 48% 12% 20%

140◦ < θ∗e+ < 150◦ 12% < 1% 1%

PID + Cut1
80◦ < θ∗e+ < 90◦ 1% 3.2% < 1%

140◦ < θ∗e+ < 150◦ < 1% < 1% < 1%

PID + Cut2
80◦ < θ∗e+ < 90◦ < 1% < 1% < 1%

140◦ < θ∗e+ < 150◦ < 1% < 1% < 1%

PID + Cut3
80◦ < θ∗e+ < 90◦ < 1% < 1% < 1%

140◦ < θ∗e+ < 150◦ < 1% < 1% < 1%

PID + Cut4
80◦ < θ∗e+ < 90◦ < 1% < 1% < 1%

140◦ < θ∗e+ < 150◦ < 1% < 1% < 1%

Table 5.8: The signal contamination at q2 = 0.605 ± 0.005 (GeV/c2)2 are summarized in this
table for two values of θ∗e+ .

q2 = 2± 0.125 (GeV/c2)2

10◦ < θπ0 < 30◦ 80◦ < θπ0 < 100◦ 140◦ < θπ0 < 160◦

PID
80◦ < θ∗e+ < 90◦ > 100% > 100% > 100%

140◦ < θ∗e+ < 150◦ > 100% > 100% > 100%

PID + Cut1
80◦ < θ∗e+ < 90◦ 62% > 100% 71%

140◦ < θ∗e+ < 150◦ 60% 16% > 100%

PID + Cut2
80◦ < θ∗e+ < 90◦ 34% 34% > 100%

140◦ < θ∗e+ < 150◦ 23% 18% > 100%

PID + Cut3
80◦ < θ∗e+ < 90◦ 17% 19% > 100%

140◦ < θ∗e+ < 150◦ 12% 10% 79%

PID + Cut4
80◦ < θ∗e+ < 90◦ 10% 14% 24%

140◦ < θ∗e+ < 150◦ 7% 7% 57%

Table 5.9: The signal contamination at q2 = 2± 0.125 (GeV/c2)2 are summarized in this table
for two values of θ∗e+ .

5.3.2 Hadronic tensor extraction

The positron angular dependence in the virtual photon rest frame is strictly limited
to L=2 spherical harmonics (spin of the virtual photon is 1) and is weighted by a linear
combination of hadronic tensors. These hadronic tensors contain information on the
exchanged particle.

The purpose of this section is to show that measuring the positron or the electron
distribution in the virtual photon rest frame, one would access the hadronic tensors. We
want here to validate the method, consequently, the acceptance and efficiency is assumed
to be 100%. As previously defined, Tp = 1 GeV, q2 = 0.605 ± 0.005 (GeV/c2)2 and
q2 = 2±0.125 (GeV/c2)2. To better describe the hadronic tensors over the θπ◦ polar angle,
they are extracted per 1◦ bin. The theoretical number of counts for both q2 intervals are
displayed in Fig. 5.2 as a function of θπ◦ (∆θπ◦ = 1◦) with an integrated luminosity of 2
fb−1.
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5.3.2.1 Simulation

The positron distribution in the virtual photon rest frame is generated using the theo-
retical five fold differential cross section (Eq. 4.44). It is possible, for well defined q2 and
Ωπ◦ intervals, to calculate the theoretical number of counts N th

ij corresponding to a finite
volume element ∆Ω∗e+ (here 10◦ bins for θ∗e+ and ϕ∗e+ which means 18 bins for θ and 36
for ϕ so 648 finite volume elements, i and j refer to the bin number):

N th
ij = Lint

∫
∆q2

∫
∆Ωπ◦

∫
∆Ω∗

e+

d5σ

dq2dΩπ◦dΩ∗e+
dq2dΩπ◦dΩ∗e+ , (5.3)

where the integrated luminosity Lint = 2 fb−1.

To take into account statistical effects and since this expected values might be small in
some cases, one generates a random number N stat

ij in a Poisson distribution with a mean

value µ = N th
ij .

5.3.2.2 Hadronic tensor determination

This 2D distribution is then fitted by the following function f
(
θ∗e+ , ϕ

∗
e+

)
:

f (θ∗e+ , ϕ
∗
e+) = 2e2q2

(
H11

fit +H22
fit +H33

fit

)
−8e2|−→p ∗e+|2

(
H11

fitsin
2θ∗ecos

2ϕ∗e + 2ReH12
fitsin

2θ∗esinϕ
∗
ecosϕ

∗
e

+2ReH13
fitsinθ

∗
ecosθ

∗
ecosϕ

∗
e +H22

fitsin
2θ∗esin

2ϕ∗e

+2ReH23
fitsinθ

∗
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. (5.4)

Using the default fit method of root (based on the χ2) which takes into account only
non-zero bins, systematic deviations were observed. Since the fit function shape is very
well constrained, it is important to take into account all bins even the empty ones. The
error on a bin content (Nb) is usually defined as the

√
Nb. In case of a zero bin, one should

have an error of zero which is not realistic. As a consequence, the fit was performed taking
all bins (including non-zero bins), each bin weighted by 1. The errors were determined
using Monte Carlo method by repeating the simulation and the extraction 1 000 times.
The error is defined as the sigma of the gaussian fit over the distribution of the 1 000
results.

Extracted effective hadronic tensors and their corresponding errors at Tp = 1 GeV for
both q2 = 0.605 ± 0.005 (GeV/c2)2 and q2 = 2 ± 0.125 (GeV/c2)2 are displayed in Figs.
5.12 and 5.13. At q2 = 0.605 ± 0.005 (GeV/c2)2, extracted values at the extremum are
slightly different from the theoretical due to strong and non-linear variations of one or
more of the other hadronic tensors. At q2 = 2 ± 0.125 (GeV/c2)2, the low counting rate
leads to larger error bars but the extracted values still nicely reproduce the theoretical
ones within the error bars. As expected, H12

fit and H23
fit are found to be zero.
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Figure 5.12: Effective hadronic tensors at Tp = 1 GeV, q2 = 0.605 ± 0.005 (GeV/c2)2. Blue
color stands for the theoretical values while the red color shows the extracted ones.

Figure 5.13: Effective hadronic tensors at Tp = 1 GeV, q2 = 2 ± 0.125 (GeV/c2)2. Blue color
stands for the theoretical values while the red color shows the extracted ones.
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5.3.3 Form factor extraction

To demonstrate the feasibility of the proton electromagnetic form factor measurements,
one needs to show that taking into account the detector resolution, the acceptance and
the efficiency as well as the statistics given by the model it is still possible to extract the
proton form factors.

5.3.3.1 Simulation

From the theoretical five fold differential cross section (Eq. 4.44), it is possible, for
well defined q2 and Ωπ◦ intervals, to calculate the theoretical number of counts N th

ij corre-
sponding to a finite volume element ∆Ωe+

∗ (here 10◦ bins for θe+
∗ and ϕe+

∗ which means
18 bins for θ and 36 for ϕ so 648 finite volume elements, i and j refer to the bin number):

N th
ij = Lint

∫
∆q2

∫
∆Ωπ◦

∫
∆Ωe+

∗

d5σ

dq2dΩπ◦dΩe+
∗dq

2dΩπ◦dΩe+
∗, (5.5)

where the integrated luminosity Lint = 2 fb−1.

Then to obtain the corresponding experimental number of count N exp within the
PANDA detector it is necessary to take into account the acceptance and efficiency leading
to an expected value µthij . The acceptance and efficiency matrices previously determined
are used. Furthermore, since this expected values might be small in some cases, one
generates a random number N exp

ij in a Poisson distribution with a mean value µ = µthij .

Afterwards, to be able to extract form factors, it is necessary to correct this experimental
spectrum from the acceptance and the efficiency. Here, the corrected number of count in
each finite volume element ∆Ωe+

∗ is:

N cor
ij ± δN cor

ij = N exp
ij /AccEff ±

√
N exp
ij /AccEff. (5.6)

All the previous steps are summarized in Fig. 5.14.

Figure 5.14: Scheme of the steps to go from N th
ij to N cor

ij .
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Fig. 5.15 and 5.16 display N th
ij and the corresponding N cor

ij both in the virtual photon

rest frame for q2 = 0.605 ± 0.005 (GeV/c2)2 and q2 = 2 ± 0.125 (GeV/c2)2 respectively
assuming an integrated luminosity of 2 fb−1. The total number of events calculated
for each theoretical distribution is shown in Tab. 5.10. As first general remark, if the
theoretical distribution and the simulated corrected distribution look similar, one notes
the importance of the bin to bin fluctuation.

q2 = 0.605± 0.005 (GeV/c2)2 q2 = 2± 0.125 (GeV/c2)2

10◦ < θπ0 < 30◦ 2.91165 106 18 486
80◦ < θπ0 < 100◦ 1.40504 106 9 395
140◦ < θπ0 < 160◦ 517 612 2 967

Table 5.10: Theoretical counting rates (100% acceptance and efficiency) assuming an integrated
luminosity of 2 fb−1

Starting from Fig. 5.15 (q2 = 0.605± 0.005 (GeV/c2)2), it is clear that, even with such
a small interval, the statistics is not a problem. Looking at the shape of the distributions,
one can still clearly see the 3 bumps in the θe+

∗, ϕe+
∗ distributions which correspond to

the theoretical distribution. At 140◦ < θπ0 < 160◦ the distribution is less structured:
whereas the 3 bumps can still be seen in the theoretical distributions, they are hard to
detect in the corrected distributions (right column of the figure).

For the case q2 = 2± 0.125 (GeV/c2)2 (Fig. 5.16), the counting rate is lower. At 10◦ <
θπ0 < 30◦ the corrected distribution still shows the 3 bumps. At 80◦ < θπ0 < 100◦, despite
the fluctuations, one can still guess the presence of the bumps. At 140◦ < θπ0 < 160◦ the
case is critical, the distribution does not appear structured.

It is important to remind that the proton form factor extraction is based on the mea-
surement of the shape of the (θe+

∗, ϕe+
∗) distribution in the γ∗ rest frame, if after cor-

rection the statistics is too low (q2 = 2 ± 0.125 (GeV/c2)2 and 140◦ < θπ0 < 160◦)
either the sensitivity to the distribution shape is low (q2 = 0.605± 0.005 (GeV/c2)2 and
140◦ < θπ0 < 160◦), the extraction may be difficult or even not possible.
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(a) N th
ij for 10◦ < θπ0 < 30◦ (b) Ncor

ij for 10◦ < θπ0 < 30◦

(c) N th
ij for 80◦ < θπ0 < 100◦ (d) Ncor

ij for 80◦ < θπ0 < 100◦

(e) N th
ij for 140◦ < θπ0 < 160◦ (f) Ncor

ij for 140◦ < θπ0 < 160◦

Figure 5.15: At q2 = 0.605 ± 0.005 (GeV/c2)2, on the left side, N th
ij as a function of ϕe+

∗ and
θe+
∗, on the right side the corresponding N cor

ij (PID+Cut1) as a function of ϕe+
∗ and θe+

∗. For

both side the integrated luminosity is 2 fb−1 with 10◦ bins for ϕe+
∗ and θe+

∗.
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(a) N th
ij for 10◦ < θπ0 < 30◦ (b) Ncor

ij for 10◦ < θπ0 < 30◦

(c) N th
ij for 80◦ < θπ0 < 100◦ (d) Ncor

ij for 80◦ < θπ0 < 100◦

(e) N th
ij for 140◦ < θπ0 < 160◦ (f) Ncor

ij for 140◦ < θπ0 < 160◦

Figure 5.16: At q2 = 2± 0.125 (GeV/c2)2, on the left side, N th
ij as a function of ϕe+

∗ and θe+
∗,

on the right side the corresponding N cor
ij (PID+Cut4) as a function of ϕe+

∗ and θe+
∗. For both

side the integrated luminosity is 2 fb−1 with 10◦ bins for ϕe+
∗ and θe+

∗.

5.3.3.2 Observables

With 10◦ bins for θe+
∗ and ϕe+

∗, if a 2D histogram contains 1296 events this means
that the mean bin content would be 2 with an error of 1.4. By projecting on θe+

∗, the
1296 events are now distributed over only 18 bins which leads to a mean bin content of 36
with an error of 6. The main advantage of such projections is to reduce the error on the
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extraction due to low statistics (especially at q2 = 2± 0.125 (GeV/c2)2). Therefore, the 3
projections suggested in section 4.2.3.4 were obtained. N cor

i , (N cor
j )′ and (N cor

j )′′ are the
number of counts per 10◦ bin in each projection:

N cor
i =

j<36∑
j=0

N cor
ij , (N cor

j )′ =
i<18∑
i=0

N cor
ij , (N cor

j )′′ =
i<18∑
i=9

N cor
ij . (5.7)

N cor
i distribution was then fitted byAcor (1 +Bcorcos2θ∗e), (N cor

j )′ by Ccor (1 +Dcorcos2ϕ∗e)
and (N cor

j )′′ by Ecor (1 + F corcos2ϕ∗e +Gcorcosϕ∗e) leading to a total of 7 parameters.

Then, using the following relations:

N cor =
i<18∑
i=0

N cor
i = 2Acor

(
1 +

Bcor

3

)
, (5.8)

N cor = (N cor)′ =

j<36∑
j=0

(N cor
j )′ = 2πCcor, (5.9)

(N cor)′′ =

j<36∑
j=0

(N cor
j )′′ = 2πEcor, (5.10)

where N cor, (N cor)′ and (N cor)′′ correspond to the total number of counts in each projec-
tion, one reduces the parameter number to 4, namely Bcor, Dcor, F cor and Gcor .

To have a more precise idea about these 3 projections and their corresponding fits,
Figs. 5.17 and 5.18 displays as an example the cases q2 = 2 ± 0.125 (GeV/c2)2 for
10◦ < θπ0 < 30◦ and 80◦ < θπ0 < 100◦ in the γ∗ rest frame. In Fig. 5.17(b) the cos2ϕ∗e
dependence is visible with a maxima reached at 0◦, 180◦ and 360◦ (blue dashed line)
whereas the minima is obtained at 90◦ and 270◦ (blue dashed line). The cosϕ∗e term can
be identified in Fig. 5.17(c) since the maximum is not anymore reached at 180◦ (red
dashed line). In Fig. 5.18, spectra exhibit larger error bars but fits can still be obtained.

(a) Ncor
i (b) (Ncor

j )′ (c) (Ncor
j )′′

Figure 5.17: N cor
i , (N cor

j )′ and (N cor
j )′′ corresponding to the case q2 = 2± 0.125 (GeV/c2)2 and

10◦ < θπ0 < 30◦ after corrections from acceptance and efficiency effects (PID+Cut4).
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(a) Ncor
i (b) (Ncor

j )′ (c) (Ncor
j )′′

Figure 5.18: N cor
i , (N cor

j )′ and (N cor
j )′′ corresponding to the case q2 = 2± 0.125 (GeV/c2)2 and

80◦ < θπ0 < 100◦ after corrections from acceptance and efficiency effects (PID+Cut4).

Before going further, it is important to have a look at the correlations between these
observables. From section 4.2.3.4, it is already known that Dcor and F cor have to be
equal, so a 100% correlation should appear. For this study, the N cor 2D histogram was
generated 2000 times for all cases. Each histogram was then projected and fitted as
previously described. The Fig. 5.19 displays as an example, for q2 = 2± 0.125 (GeV/c2)2

and 10◦ < θπ0 < 30◦, the correlations between the four fit parameters (similar results
were obtained for the 6 cases). The dispersion is due to the statistics. The same case
with 100% acceptance and efficiency gives similar correlation with smaller dispersion. As
expected, Dcor and F cor are 100% correlated parameters (Fig. 5.19(c)).

(a) Dcor versus Bcor (b) Gcor versus Bcor

(c) F cor versus Dcor (d) Gcor versus Dcor

Figure 5.19: Correlations between the fit parameters. Example for q2 = 2 ± 0.125 (GeV/c2)2

and 10◦ < θπ0 < 30◦ (PID+Cut4).
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5.3.3.3 Ratio and phase difference determination

The main use of the 3 projections is to allow the determination of the ratio R =
|Gp

E|/|G
p
M | and the cosine of the phase difference cos(δϕ) = cos(ϕE − ϕM), see Chapter

4.2.3.4. It is important to remember that R and cos(ϕE−ϕM) do not depend on Ωπ0 which
means that at a fixed q2 value the results obtained for the three different θπ0 angular range
must give the same value for R and cos(ϕE − ϕM). Integrating over q2 = 0.605 ± 0.005
(GeV/c2)2, R = 1.065 and δϕ ∼ 4◦. For q2 = 2 ± 0.125 (GeV/c2)2, R = 0.802 and
δϕ ∼ 3◦. The expression of B, D, F and G are given in section 4.2.3.4. Consequently,
they can be calculated for any (R, cos(ϕE − ϕM)) couple and be compared to Bcor, Dcor,
F cor and Gcor. Minimizing the difference between the theoretical value and the corrected
one, the best couple is found. The following quantity was minimized:

F = (Bcor −B)2 + (Dcor −D)2 + (F cor − F )2 + (Gcor −G)2 , (5.11)

where B, D, F and G are theroretical values recalculated for each (R, cos(ϕE − ϕM))
couple.

Fig. 5.20 and 5.21 present the result of the minimization function for all 6 cases.
As expected, at a fixed q2 value, the results corresponding to the three angular ranges
point out the same (R, δϕ) interval although the sensitivity to the modulus of the phase
difference cos(ϕE − ϕM) appears to be low compared to the ratio R. In Fig. 5.20(c),
one can see that the sensitivity to R is lower. For q2 = 2± 0.125 (GeV/c2)2 and 140◦ <
θπ0 < 160◦, the theoretical number of counts is really low (around 2900 counts). After
applying the PID+Cut4, the signal is too low even using the projections. Consequently
the sensitivity to R and cos(ϕE − ϕM) (Fig. 5.21(c)) is then completely lost.
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(a) 10◦ < θπ0 < 30◦ (b) 80◦ < θπ0 < 100◦

(c) 140◦ < θπ0 < 160◦

Figure 5.20: Display of F at q2 = 0.605± 0.005 (GeV/c2)2 (PID+Cut1).

(a) 10◦ < θπ0 < 30◦ (b) 80◦ < θπ0 < 100◦

(c) 140◦ < θπ0 < 160◦

Figure 5.21: Display of F at q2 = 2± 0.125 (GeV/c2)2 (PID+Cut4).
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5.3.3.4 Results and error estimations

Since Dcor and F cor are correlated, the errors on the R and cos(ϕE−ϕM) were estimated
using Monte Carlo method. The N cor

ij 2D histogram was generated 2000 times for all 6
cases. Each histogram was then projected, fitted and minimized for all 6 cases. The 2000
determination of R and cos(ϕE − ϕM) are plotted. The error on R and cos(ϕE − ϕM) is
then equal to the σ of the gaussian fit on the R and cos(ϕE − ϕM) distributions.

Fig. 5.22 and 5.23 display the results obtained for the extraction of the proton form
factor ratio R. Corresponding values are summarized in Tab. 5.11 and 5.12. The magenta
line point out the theoretical value of R integrated over the q2 interval. Blue color shows
the results obtained assuming 100% acceptance and efficiency (i.e.: only statistical effects
are taken into account). Red color stands for the results taking into account only PID.
Green color corresponds to PID+Cut1 and orange color to PID+Cut4. For most of the
cases, the ratio of the proton form factor can be extracted with a reasonable error.

The effect of the acceptance and efficiency appears clearly when comparing the blue
curve (100% acceptance and efficiency) and the red curve which is larger as a result of the
loss of acceptance and efficiency. For q2 = 0.605±0.005 (GeV/c2)2 and 140◦ < θπ0 < 160◦,
Fig. 5.22(c), despite the very low acceptance and efficiency, the statistics is large enough
and the ratio R can still is extracted but with a larger error. In Tab. 5.11, one can see
that, even with 100% acceptance and efficiency (blue color), the σR of the distribution is
10 times larger at backward angles than at forward angles (7% compared to 0.7%). This
factor is due to the loss of sensitivity to the effective hadronic tensors at backward angles
(see Chapter 5.1.1.3).
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(a) 10◦ < θπ0 < 30◦ (b) 80◦ < θπ0 < 100◦

(c) 140◦ < θπ0 < 160◦

Figure 5.22: Distributions of the extracted proton form factor ratio at q2 = 0.605 ± 0.005
(GeV/c2)2. The magenta line shows the theoretical value whereas the blue line displays the
results assuming 100% acceptance and efficiency. The red line presents the results after PID cut
whereas the green one shows after PID+Cut1. In 5.22(c) x-scale is different.

q2 = 0.605± 0.005 (GeV/c2)2

10◦ < θπ◦ < 30◦ 80◦ < θπ◦ < 100◦ 140◦ < θπ◦ < 160◦

R = 1.0656 R = 1.0656 R = 1.0656

1.0657± 0.0002 1.0632± 0.0002 1.0667± 0.0023
σ = 0.0077± 0.0001 σ = 0.0072± 0.0001 σ = 0.0742± 0.0016

1.0655± 0.0003 1.0626± 0.0003 1.0564± 0.0062
σ = 0.0137± 0.0003 σ = 0.0143± 0.0003 σ = 0.2010± 0.0057

1.0662± 0.0004 1.0628± 0.0004 1.0568± 0.0073
σ = 0.0152± 0.0003 σ = 0.0161± 0.0003 σ = 0.2439± 0.0069

Table 5.11: Results for the proton form factor ratio in the q2 = 0.605±0.005 (GeV/c2)2 interval.
Blue color shows the results assuming 100% acceptance and efficiency whereas red color presents
the results after PID cut. Green color includes PID+Cut1.
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As expected, at q2 = 2 ± 0.125 (GeV/c2)2 and 140◦ < θπ◦ < 160◦, the statistics is too
low to extract the ratio, even assuming 100% acceptance and efficiency, .

(a) 10◦ < θπ0 < 30◦ (b) 80◦ < θπ0 < 100◦

Figure 5.23: Distributions of the extracted proton form factor ratio at q2 = 2±0.125 (GeV/c2)2.
The magenta line shows the theoretical value whereas the blue line displays the results assuming
100% acceptance and efficiency. The red line presents the results after PID cut whereas the
orange one shows after PID+Cut4.

q2 = 2.± 0.125 (GeV/c2)2

10◦ < θπ◦ < 30◦ 80◦ < θπ◦ < 100◦ 140◦ < θπ◦ < 160◦

R = 0.8024 R = 0.8024 R = 0.8024

0.8006± 0.0006 0.8016± 0.0007 X
σ = 0.0282± 0.0005 σ = 0.0307± 0.0005 X

0.8016± 0.0010 0.7965± 0.0010 X
σ = 0.0421± 0.0007 σ = 0.0458± 0.0008 X

0.7984± 0.0018 0.7765± 0.0025 X
σ = 0.0735± 0.0013 σ = 0.1039± 0.0020 X

Table 5.12: Results for the proton form factor ratio in the q2 = 2. ± 0.125 (GeV/c2)2 interval.
Blue color shows the results assuming 100% acceptance and efficiency whereas red color presents
the results after PID cut. Orange color includes PID+Cut4.

Fig. 5.24 presents the relative resolution on R as a function of θπ◦ . At q2 = 0.605±0.005
(GeV/c2)2, the resolution on R is at the percent level for 10◦ < θπ◦ < 30◦ and 80◦ < θπ◦ <
100◦. For 140◦ < θπ◦ < 160◦, it reaches 20%. At q2 = 2. ± 0.125 (GeV/c2)2, it is about
10%. Since the resolution does not seem to depend very much on the θπ◦ at least in the
forward hemisphere, we expect to extract ratios with similar resolution over an extended
angular range and provides means to better constraint the mechanism. Even with this
moderate resolution, these results are extremely valuable since they will be the very first
measurements in the unphysical region.
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Figure 5.24: Relative resolution on R as a function of θπ◦ . Triangles correspond to q2 =
0.605 ± 0.005 (GeV/c2)2 and circles to q2 = 2. ± 0.125 (GeV/c2)2. Blue color shows the case
100% of acceptance and efficiency, red , green and orange colors includes only PID cuts, PID
cut +Cut1 and PID cut + Cut4 respectively.

It has been shown previously that the sensitivity to cos(ϕE−ϕM) was low at backward
π◦ and at both q2 values (see Fig. 5.20 and 5.21). As expected, for these two cases,
cos(ϕE − ϕM) could not be extracted. The results for cos(ϕE − ϕM) are displayed in
Fig. 5.25 and 5.26. Blue color shows the results obtained assuming 100% acceptance and
efficiency, red color includes only PID cut, green one PID+Cut1 and orange color stands
for PID+Cut4.

(a) 10◦ < θπ0 < 30◦ (b) 80◦ < θπ0 < 100◦

Figure 5.25: Distributions of the extracted cos(ϕE −ϕM ) at q2 = 0.605± 0.005 (GeV/c2)2. The
magenta line shows the theoretical value whereas the blue line displays the results assuming
100% acceptance and efficiency. The red line presents the results after PID cut whereas the
green one shows after PID+Cut1.
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q2 = 0.605± 0.005 (GeV/c2)2

10◦ < θπ◦ < 30◦ 80◦ < θπ◦ < 100◦ 140◦ < θπ◦ < 160◦

cos(ϕE − ϕM ) = 0.998 cos(ϕE − ϕM ) = 0.998 cos(ϕE − ϕM ) = 0.998

1.049± 0.002 0.997± 0.001 X
σ = 0.103± 0.002 σ = 0.063± 0.001 X

1.057± 0.004 1.005± 0.003 X
σ = 0.169± 0.003 σ = 0.113± 0.002 X

1.056± 0.005 0.999± 0.003 X
σ = 0.190± 0.003 σ = 0.140± 0.002 X

Table 5.13: Results for the cos(ϕE − ϕM ) in the q2 = 0.605 ± 0.005 (GeV/c2)2 interval. Blue
color shows the results assuming 100% acceptance and efficiency whereas red color presents the
results after PID cut. Green color includes PID+Cut1.

(a) 10◦ < θπ0 < 30◦ (b) 80◦ < θπ0 < 100◦

Figure 5.26: Distributions of the extracted cos(ϕE − ϕM ) at q2 = 2 ± 0.125 (GeV/c2)2. The
magenta line shows the theoretical value whereas the blue line displays the results assuming
100% acceptance and efficiency. The red line presents the results after PID cut whereas the
orange one shows after PID+Cut4.

q2 = 2.± 0.125 (GeV/c2)2

10◦ < θπ◦ < 30◦ 80◦ < θπ◦ < 100◦ 140◦ < θπ◦ < 160◦

cos(ϕE − ϕM ) = 0.999 cos(ϕE − ϕM ) = 0.999 cos(ϕE − ϕM ) = 0.999

1.001± 0.002 0.999± 0.002 X
σ = 0.076± 0.001 σ = 0.084± 0.001 X

1.011± 0.003 0.992± 0.003 X
σ = 0.116± 0.002 σ = 0.132± 0.002 X

1.063± 0.005 0.993± 0.006 X
σ = 0.207± 0.003 σ = 0.283± 0.005 X

Table 5.14: Results for the cos(ϕE − ϕM ) in the q2 = 2.± 0.125 (GeV/c2)2 interval. Blue color
shows the results assuming 100% acceptance and efficiency whereas red color presents the results
after PID cut. Orange color includes PID+Cut4.
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Fig. 5.27 presents the relative resolution on cos(ϕE − ϕM) as a function of θπ◦ . At
q2 = 0.605±0.005 (GeV/c2)2, the resolution reaches 10-20%. At q2 = 2.±0.125 (GeV/c2)2,
it is 20-30%. Again, other θπ◦ angular ranges can be used to further improved the model.

Figure 5.27: Relative resolution on cos(ϕE − ϕM ) as a function of θπ◦ . Triangles correpond to
q2 = 0.605 ± 0.005 (GeV/c2)2 and circles to q2 = 2. ± 0.125 (GeV/c2)2. Blue color shows the
case 100% of acceptance and efficiency, red , green and orange colors includes only PID cuts,
PID cut +Cut1 and PID+Cut4 respectively.

It is also interesting to see the variation of the relative resolution on cos(ϕE − ϕM)
as a function of cos(ϕE − ϕM). For this purpose, cos(ϕE − ϕM) was artificially fixed
to 0.5 corresponding to a phase difference of 60◦. Fig. 5.28 illustrates the results at
q2 = 0.605± 0.005 (GeV/c2)2 and 10◦ < θπ◦ < 30◦. Violet color corresponds to cos(ϕE −
ϕM) = 0.5 with 23% resolution (corresponding to a resolution of approximately 8◦ on the
phase difference) whereas the green color shows the previous result with cos(ϕE − ϕM)
close to 1 with 18%.
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Figure 5.28: Relative resolution on cos(ϕE − ϕM ) as a function of θπ◦ at q2 = 0.605 ± 0.005
(GeV/c2)2 and 10◦ < θπ◦ < 30◦. Both curves include PID cut +Cut1. Green curve corresponds
to the previous result. Violet color corresponds to cos(ϕE − ϕM ) = 0.5.
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Chapter 6

EMC backward end cap studies

To determine the resolution and the efficiency of the backward end cap (described
in Sec. 2.2.2), several simulations have been performed with the Pandaroot software.
Pandaroot is an object oriented software currently under development for the PANDA
experiment. Included geometry and settings for the simulations are first presented. Then
the simulation results are discussed and finally the resolutions and efficiencies are shown.

6.1 Simulations

6.1.1 Geometry

The first thing to know before starting simulations is what is the included geometry in
PandaRoot. Have been included: solenoid and dipole magnets, pipe, MVD, STT, TOF,
DIRC, EMC, MDT and yoke. D.Khaneft [63] has implemented the backward end cap
geometry designed by D.Rodriguez [64]. The Fig. 6.1 presents the geometry included in
the full simulation. Fig. 6.2 details the detector part we are interested in.
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Figure 6.1: Geometry of PANDA detector included. The microvertex (MVD), straw tubes
(STT), Cherenkov (DIRC), drift chambers (MDC) and muon (MDT) detectors are included.
The electromagnetic (EMC) and the Shashlyk calorimeter are also in as well as the solenoid and
the dipole magnets.

Figure 6.2: Geometry of the electromagnetic calorimeter included. The barrel and both forward
and backward end caps are visible.
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6.1.2 Settings

To characterize the backward end cap, the following simulations have been done on the
Mainz cluster:

• one photon per event,

• number of events: 50000,

• energy: 0.1 GeV, 0.25 GeV and 0.5 GeV,

• φ: 1◦, 22.5◦, 45◦,

• θ: 145◦, 150◦, 155◦, 160◦, 165◦.

The Fig. 6.3 presents for the 3 values of φ the theoretical tracks of the photons for the
5 values of θ. One can see that for θ = 145◦ the backward end cap is not at all hit. There
is neither hits for the case θ = 165◦ and φ = 45◦. Consequently, for those 4 cases, the
backward endcap should not, in principle, give signals.

(a) φ = 1◦ (b) φ = 22.5◦ (c) φ = 45◦

Figure 6.3: Theoretical photon tracks depending on φ and θ for the new EMC design, from [64].

6.2 True Monte Carlo results

This results include the Monte Carlo and the GEANT4 transport with the energy loss
and multiple scattering using the geometry previously described.

6.2.1 Spatial distribution of hits

The Fig. 6.4 shows the hit positions in the (x-y) plane for E=0.25 GeV, φ = 45◦

and four different θ angles. One can note that a “ring” is visible. It corresponds to the
projection on the (x-y) plane of the barrel hits. Another important point is the number of
entries up to few millions whereas only 50 000 events have been simulated in each cases.
Actually, all secondary hits are also plotted.
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Figure 6.4: Hit positions in the (x-y) plane for E=0.25 GeV, φ = 45◦. The upper left picture
stands for θ = 145◦, the upper right for θ = 150◦, the bottom left for θ = 155◦ and the bottom
right for θ = 160◦. One bin per cm for both x and y axis.

Since for θ = 145◦ the backward is not at all hit, the results concerning the case φ = 45◦

and θ = 145◦ are displayed in Fig. 6.4 is quite surprising. Actually there is an important
quantity of signals in the backward end cap. Looking more carefully to the event tracks
by hand, it has been pointed out that bremsstrahlung and pair creation in the microvertex
detector and in the straw tubes were responsible for those patterns. The Fig. 6.5 presents
(for φ = 45◦, θ = 145◦, Eγ = 0.1 GeV) two examples of interaction points in the detectors
(here the red squares). Pink tracks correspond to photons, yellow one to electron and
green one to positron.
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Figure 6.5: Bremsstrahlung and pair creation for φ = 45◦, θ = 145◦, Eγ = 0.1 GeV. Pink
tracks correspond to photons, yellow one to electron and green one to positron. Red Squares
are interaction points in the detectors.

6.3 Digitalization results

6.3.1 Spatial distribution of clusters

Digitalization starts from the True Monte Carlo results and returns the corresponding
electronic signals. A cluster is connected area of crystals with an energy deposition above
a predefined threshold. The Fig. 6.6 shows the cluster position for E=0.25 GeV, φ = 45◦

and four different θ angles. One must note that the cluster position is defined via the
center of gravity method. Comparing this figure with the Fig. 6.4 where the Z-axis is in
log scale, one can see that the shapes are similar, that the photons are reconstructed at
the good positions (see red dots) and also that the “ring” corresponding to the projection
on the (x-y) plane of the barrel hits is still visible.
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Figure 6.6: Cluster positions in the (x-y) plane for E=0.25 GeV, φ = 45◦. The upper left picture
stands for θ = 145◦, the upper right for θ = 150◦, the bottom left for θ = 155◦ and the bottom
right for θ = 160◦. One bin per cm for both x and y axis.

6.3.2 Cluster Multiplicity

Having a look to the cluster multiplicity, one can see that about 65% of the events have
a cluster multiplicity which is at least two. In order to have a multiplicity equal to one,
the more energetic cluster per event is kept. Fig. 6.7 presents as an example the case
E=0.25 GeV, φ = 45◦ and θ = 160◦. On the left hand is the multiplicity, on the middle
the cluster positions and on the right hand the cluster positions with the condition on
the energy deposit. One can see that applying this condition, all the outer clusters are
removed. Bremsstrahlung and pair creation effects are nevertheless still present. The
same results can be observed for all cases. Now, the next step is to check the energy
distribution of the clusters without and with this condition.
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Figure 6.7: Cluster positions in the (x-y) plane for E=0.25 GeV, φ = 45◦ and θ = 155◦. The left
hand side picture displays the cluster multiplicity. The central picture shows the corresponding
cluster positions. In the right hand side picture, only the most energetic cluster per event is
plotted. One bin per cm for both x and y axis.

6.3.3 Energy distribution

Here, one example of the energy distribution. Fig. 6.8(a) presents the energy distribu-
tion for the case: E=0.25 GeV, φ = 45◦ and θ = 160◦. Going to the Fig. 6.9, one can see
a zoom over the region E < 0.02 GeV (left hand) and E > 0.15 GeV (right hand).

(a) Without cluster selection (b) With cluster selection

Figure 6.8: Energy distribution of the clusters for E=0.25 GeV, φ = 45◦ and θ = 160◦. On the
left side the energy distribution for the overall clusters. On the right side, the energy distribution
keeping only the most energetic cluster for each events.
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(a) Low energy (b) Peak energy

Figure 6.9: Zoom on Fig. 6.8(a)

Looking to peak energy, one can see that its position is correct. Going to the low energy
peak, a very well structure starting from 3 MeV (corresponding to the threshold energy
of a cluster) is seen: around 0.9 MeV between each peak. This is problematic in case of
studies at low energy like 30 MeV and even for 100 MeV. Looking to the EMC parameters
for the digitalization, it appears that the parameter “EnergyRange” is equal to 15 and
the parameter “NBits” is 14. This implies a quantization step of 15 GeV/(214−1) = 0.92
MeV and that two conversion slopes are necessary.

Fig. 6.8(b) to compare to Fig. 6.8(a) presents energy distribution of the clusters after
selection for E=0.25 GeV, φ = 45◦ and θ = 160◦. The main difference comes from the
suppression of the low energy counts. One can also note that the Novosibirsk fit (red)
nicely agrees with the spectrum. The Novosibirsk function was defined as

f(E) = A exp

−1

2

 ln2
[
1 + (E−E0)

σ
sinh (τ

√
ln 4)√

ln 4

]
τ 2

+ τ 2

 , (6.1)

where A is a normalization factor, E0 is the most probable value and τ corresponds
to the tail parameter. The full width at half maximum (FWHM) can be expressed as

FWHM = 2
√
ln4σ.

6.4 Resolution and Efficiency

In the resolution and efficiency studies, have been taken into account the energy distri-
bution spectra applying the cluster selection.

Fig. 6.10, Fig. 6.11 and Fig. 6.12 show the results for the resolution and the efficiency
at E=0.5 GeV, E=0.25 GeV and E=0.1 GeV. The resolution is defined as the ratio of
the full width at half maximum (FWHM) to the most probable value. The efficiency
is the ratio of the integral from E0 − 3σ up to E0 + 2σ of the Novosibirsk function to
the generated energy. The left hand picture presents the resolution and the right one
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the efficiency. The errors on the resolution is plotted and is very small due to the high
statistics used for the simulation. The horizontal error bar is due to the binning (one
degree per bin). Due to the lack of time, results for E=0.03 GeV and E=0.7 GeV are not
presented here. One can see that at low energy the resolution is around 12% and gets
better increasing the energy.

Figure 6.10: Resolution and efficiency at E=0.5 GeV. Black color stands for φ = 45◦, red for
φ = 22.5◦ and green for φ = 1◦. Left hand picture presents the resolution and the right one the
efficiency. One degree per bin.

Figure 6.11: Resolution and efficiency at E=0.25 GeV. Black color stands for φ = 45◦, red for
φ = 22.5◦ and green for φ = 1◦. Left hand picture presents the resolution and the right one the
efficiency. One degree per bin.
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Figure 6.12: Resolution and efficiency at E=0.1 GeV. Black color stands for φ = 45◦, red for
φ = 22.5◦ and green for φ = 1◦. Left hand picture presents the resolution and the right one the
efficiency. One degree per bin.

Concerning the resolution, one can see that there is no point at θ = 145◦. Indeed,
as no primary photons hit the backward end cap, no peak can be fitted on the spectra.
Then looking to θ = 150◦, a bad resolution is obtained. In this case the fact is that the
photons enter via the front face of the calorimeter but part of the shower could spread
outside of the backward end cap (see Fig. 6.3) which implies bad energy reconstruction
for the photon and therefore bad resolution. Consequently, the useful θ range would be
from 155◦ to 165◦. Furthermore, one can note that over this range the resolution does
not seem to depend on the θ angle.

The resolution as a function of the energy of an electromagnetic calorimeter can be
expressed as σ/E = a/

√
E ⊕ b/E ⊕ c where a depends on the statistics, b on the elec-

tronic noise and c on the calibration. Since the digitalization process assumes a perfect
calibration, the c must be 0. Fig. 6.13 shows the resolution σ/E as a function of the

energy which once fitted gives a resolution σ/E = 3.09/
√
E ⊕ 0.5/E ⊕ 0 to compare to

the expected resolution from section 2.2.2 of σ/E ≈ 1/
√
E⊕ 1 (see also prototype results

in Chapter 7).
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Figure 6.13: Backward end cap energy resolution obtained from simulation. Fit gives σ/E =
3.09/

√
E ⊕ 0.5/E ⊕ 0.

Concerning the efficiency, values are above 80% which is in principle very nice. A
surprising point here is the high efficiency for θ = 160◦. Looking more in detail to the
crossed material before the photons reach the backward end cap, one can see that in case
of θ = 160◦ there is no crossed material (photons are shoot between the beam pipe and the
MVD, see Fig. 6.14). Consequently, there is no photon conversion and higher efficiency.
One should note that dead material like cables have not been implemented. Consequently
the efficiency might slightly optimistic.

Figure 6.14: Crossed material in the MVD for φ = 45◦, on the left side θ = 155◦ and on the
right side θ = 160◦. Pink track is photon track.

To conclude, the backward end cap has an effective coverage (i.e.: coverage with good
resolution and efficiency) of 2π (cos155◦ − cos165◦) /4π = 3% of the total 4π.
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Chapter 7

The proto60

Several test setups using real size components of the PANDA electromagnetic calorime-
ter have been constructed in order to validate the concepts of physics performance, me-
chanical stability, thermal robustness and integration into the PANDA solenoid together
with other detector components. The most complete setup is the real size proto60.

7.1 General description

The 60 crystal prototype was constructed at the “Institut de Physique Nucléaire d´Orsay”
(IPNO) in France (See Fig. 7.1). It can be divided in four parts: the 60 crystal block,
the cooling system, the light pulse generator box and the electronic system. Those parts
will be detailed as well as the the running of the prototype. Table 7.1 presents the used
acronyms.

(a) High voltage and electronic (b) 60 crystal block, cooling system and light pulse
generator

Figure 7.1: 60 crystal prototype at Orsay, from [65].
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Acronym Description

Shaping Signal shaper

Disc Discriminator

ADC Analog to Digital Converter

TDC Time to Digital Converter

DAQ Data AcQuisition

FEE Front End Electronic

HV High Voltage

APD Avalanche Photo Diode

Table 7.1: Used acronyms.

7.1.1 The 60 crystal block

The 60 crystal block is made of 30 right crystals and 30 left crystals of PbWO4. Crystals
have a trapezoidal shape. Front face section is: 21,9x21,3 mm2, rear face section is:
27,5x27,3 mm2 and the crystal length is equal to 200 mm. The 60 crystals of the proto60
are positioned in 6 rows of 10 crystals. Each crystal is surrounded by VM2000 which
is a reflecting polymer with a variable refractive index. The VM2000 is used to confine
gammas inside scintillators. Crystals are grouped in 4 carbon alveoles. The overall carbon
alveole system ensure the precise mechanical positioning of all crystals. Pre-amplifiers are
then connected near the rear APD faces. After, pre-amplifiers output are linked to the
motherboards which are themselves connected to the electronic acquisition system outside
of cooling system. Fig. 7.2 shows on the left side a 3D representation of the block with
carbon alveoles, crystals, avalanche photo diodes, light fibers and motherboards. On the
right side, a picture of the rear face is presented. The use of light fibers will be explained
in the light pulse generator part.

(a) 3D representation of the 60 crystal block (b) Rear face of the proto60

Figure 7.2: 60 crystal block, from [66].
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7.1.2 Cooling system

The proto60 cooling system was developed in Orsay. It is a crucial part. PWO crystals
have to be isolated and cooled down with a stability of 0.1◦C. Crystal gain as well as APD
gain strongly depends on temperature. The energy calibration will become more complex
with temperature instabilities. Typically, those instabilities have to be at least five time
smaller than 1/

√
E resolution. To control on-line variations of temperature, probes were

positioned in key points. Tests showed that for a decrease of 8◦C of ambient temperature
(in real experiment the ambient temperature is also stabilized), the temperature variation
inside the bloc is smaller than 0.5 degree.

7.1.3 Light pulse generator

Each crystal of the proto60 is connected via light fibers to the light pulse generator box.
All the light fibers have the same characteristics (length, radius, . . . ), they are packed
together and connected to the light pulse generator. It is assumed that, through the light
fibers, the same amount of light is sent to each crystal. Furthermore, the box contains
filters which allow to change on a large scale the amount of sent light. So, the light pulse
generator box could in principle enable the energy calibration of the proto60.

7.1.4 Electronic system

The electronic system is composed of a shaping system (shapes signals), discriminators
(DISC), a charge to digital converter (ADC) and a time to digital converter (TDC) to
produce respectively energy and time informations for each signal. Finally the trigger
requires a coincidence between one of the ten upper row crystals and one of the ten
crystals of the lower row to save raw data via the acquisition system (DAQ).

Electronic pedestal corresponds to the measured peak value by the ADC without signal
(i.e.: electronic “zero”). It is important to precisely know this value to determine the real
physical measured one.

7.1.5 Data taking and analysis

First, when an event has been triggered, charge and time informations corresponding to
the 60 crystals are saved into binary data. Then, raw data are obtained. The conversion
software was developed by Peter Drexler1 to go from the binary to raw data.

7.2 Beam tests with tagged photons

The proto60 has been tested under tagged photon beam in february 2009 thanks to the
MAMI facility located at Mainz university (Germany). The present section will describe
the MAMI facility as well as the experimental setup, then focus on the energy calibration
and data analysis. Finally, results and resolution will be shown.

1Physikalisches Institut, Giessen Universität, Germany
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7.2.1 MAMI facility

The development of a continuous wave electron accelerator was started at Mainz uni-
versity around 1975. Thanks to the Race Track Microtron (RTM) scheme which allows to
have multiple beam recirculations through the same accelerating unit, electrons of rela-
tively high energy can be created. Based on this technology, MAMI B was constructed in
1990. Later in 2007, MAMI B was updated to an extended complex namely MAMI C. The
proto60 was placed in the A2 hall. The parity violation experiment and the spectrometer
hall are located in the A4 and A1 hall respectively. X-ray experiments are performed in
the X1 hall.

7.2.1.1 MAMI B

MAMI B was constructed in 1990 and is based on a three-staged race track microtron
cascade with an rf-linac as injector. A RTM is composed of one linac and two 180
bending magnets. After each recirculation, the electron will gain an energy ∆E but its
curvature radius will also increase. This implies a maximum number of recirculations
before extracting the electrons via one more magnet. MAMI B was able to produce a
high quality beam of electron up to 882 MeV and 100 µA continuous wave.

7.2.1.2 MAMI C

MAMI C is an upgrade of MAMI B in order to reach higher electron beams (up to 1.538
GeV) by adding a fourth stage. This fourth stage consists into a Harmonic Double Sided
Microtron (HDSM). The electron beam coming from MAMI B is used as injector of this
fourth stage. The extracted electron beam from the HDSM will reach 1.508 GeV. The
HDSM is composed by four 90 bending magnets and two linacs. After 43 recirculations,
electron beam will go from 0.855 to 1.508 GeV. This beam is then sent to one of the three
halls.

7.2.1.3 Tagged photons

Tagged photons are photons with a well defined energy. They are obtained from the
MAMI C electron beam using the Glasgow photon tagging spectrometer. The incident
electron beam goes through a radiator (10µm thick Cu). Then, the outgoing electrons
are bent to focal plane detectors via a 1.8 T magnet and photons are produced due to
Bremsstrahlung effect. The focal plane detector is equipped with 353 overlapping plastic
scintillators which cover an energy range from 5 to 95% of the beam energy. The tagged
energy range covered by each detector is roughly constant. All the scintillators were glued
and connected to photomultiplier tubes (PMT). Coupling the 1.508 GeV electron beam
from MAMI C and the Glasgow photon tagging spectrometer, it provides tagged photons
from 0.08 to 1.401 GeV with an energy resolution of 4 MeV.
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7.2.2 Experimental setup

7.2.2.1 Beam settings

The proto60 was installed in the hall A2 and the electron beam used at its maximum
energy (1.538 GeV) with an event rate around 320 event per second. Fifteen energy of
tagged gammas were chosen in the allowed range (see Tab. 7.2).

Tag number 1 2 3 4 5 6 7
γ energy (MeV) 1441 1357 1257 1157 1058 957 858

Tag number 8 9 10 11 12 13 14 15
γ energy (MeV) 757 657 557 456 356 256 158 189

Table 7.2: Energy of tagged photons

7.2.2.2 Tests

Figure 7.3: Beam
positions

To take advantage of the available beam time (only 7 hours), the
following options were tested:

1. run with the beam shooting the center of the crystal 35

2. run with the beam shifted by 5 mm in horizontal axis from the
center of the crystal 35

3. run with the beam shifted by 10 mm in horizontal axis from the
center of the crystal 35

4. run with the beam shooting the center of the crystal 35 adding a
2 mm lead sheet in front of the proto60

5. run with the beam shooting the center of the crystal 35 changing
the electronic to KVI2 one.

7.2.2.3 Proto60 settings

The proto60 was cooled at -25◦C and each crystal individually cali-
brated for a gain 150.

2Nuclear physics institute in Groningen, Netherlands
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(a) Proto60 (b) Proto60 electronics

Figure 7.4: Proto60 at MAMI C, from [61].

7.2.3 Energy calibration methods

The idea is to use vertical cosmic rays to calibrate the prototype i.e. to determine the
conversion factor (CF) from channels to MeV. Two different approaches are valid to take
into account the energy distribution of the cosmic rays. The first one is based on the
Bethe-Bloch formula (mean energy loss) whereas the second one is based on the Landau,
Vavilov and Bichsel formula (most probable energy loss).

The conversion factor has been defined as follows: (dE/dx) ∗ material density ∗ crystal thickness
number of channels

.
Tab. 7.3 presents the notations and values used in the present chapter.

Symbol Definition Units or Value

ρ PbWO4 density 8.3 g cm−3

x Crystal thickness 2.42 cm
NA Avogadro´s number 6.0221415 1023 mol−1

Me Electron mass 0.510998 MeV/c2

Mµ Incident particle mass : Mµ 105.658367 MeV/c2

z Incident particle charge ± 1
re Classical electron radius 2.8179403 fm
K 4πNAr2

eMec
2 0.307075 MeVg−1cm2

Z/A for PbWO4 0.41315
I Mean excitation energy eV

δ(βγ) Density effect correction

Table 7.3: Summary of the variables used in this section
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7.2.3.1 Energy of cosmic rays

Fig. 7.5, taken from Ref. [67], shows p1.7dN/dp where pµ is the cosmic ray momentum
from different experiments. Unfortunately, its axis can not be handled easily. Therefore,
data for cosmic rays at θ = 0◦ have been plotted in the following way dN/dpµ depending
on pµ, see for instance Fig. 7.6. Fitting this plot, the most probable momentum of the
cosmic rays is 2.5 GeV/c and the cosmic ray mean momentum is 4.289 GeV/c assuming
that the tail stops at 20 GeV/c. Because of the effect of the tail cut (i.e.: choosing 10
GeV/c or 100 GeV/c instead of 20 GeV/c also changes the mean value), the precision on
the mean momentum is lower than the one on the most probable momentum.

Figure 7.5: Spectrum of muons from Ref. [67] (�, �, H, N, ×, +, ◦ and • correspond to cosmic
rays at θ = 0◦ and ♦ to θ = 75◦).

Figure 7.6: Cosmic ray spectrum (for cosmic rays at θ = 0◦ at sea level). From this plot are
determined the most probable and the mean cosmic ray momenta.
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7.2.3.2 Number of channels

Figure 7.7: Vertical event

To get this value, one needs to fit the pedestal as well as
the deposit energy spectrum of the cosmic rays for each crys-
tal. Gaussian fits have been used for the pedestal. Selecting
vertical events (also called one-column events, Fig. 7.7), one
limits the angular distribution of the cosmic rays crossing the
crystals and the path length of the cosmic rays in each crystal.
With this selection, the mean path length in each crystal is
2.42 cm. Then each deposit energy spectrum has been fitted
using Landau curve. In this case, the most probable value is
easy to get and different from the mean one (the MPV is one
of the parameters of the Landau fit function). The mean value
has been further determined using the counts in the spectrum.
As an example, the Fig. 7.8 shows the raw data of the crystal
24 corresponding to one night of cosmic ray acquisition. One
can note that the fits nicely agree with the data but also that
the most probable value of the Landau is well defined whereas
the mean one is less precise (again the tail cuts).

(a) Pedestal (b) One-column event signal

Figure 7.8: Raw data of the crystal 24. The MPV of the Landau is clearly different from the
mean value.

7.2.3.3 Bethe-Bloch method

Here is the so-called Bethe-Bloch formula for the mean differential energy loss:

−dE
dx

= Kz2Z

A

1

β2

{
1

2
ln

(
2Mec

2β2γ2Tmax
I2

)
− β2 − δ (βγ)

2

}
[MeVg−1cm2] (7.1)

where:

Tmax =
2Mec

2γ2β2

1 + 2γMe

Mµ
+ (Me

Mµ
)2

(7.2)

and

δ(βγ) is the density effect correction. (7.3)
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Assuming that the mean momentum of the incident cosmic rays is 4.289 GeV/c, the
mean energy loss is 1.58 MeVg−1cm2. Here, the density effect correction has been com-
puted using Sternheimer´s parametrization [68]. Fig. 7.9 shows the energy losses as a
function of the muon kinetic energy. Red dashed line corresponds to the Bethe-Bloch
formula without the density correction and the red line to the Bethe-Bloch formula with
the density correction.

To have the conversion factor for each crystal, only remains to use this dE/dx with the
mean channel number of each crystal.

7.2.3.4 Landau, Vavilov, Bichsel method

For detector of moderate thickness x (in gcm−2), the energy loss probability distribution
is well described by the Landau-Vavilov distribution [69]. The most probable energy loss
for a detector with a thickness x is defined in the following way:

∆p = ξ

[
ln(

2Mec
2β2γ2

I
) + ln(

ξ

I
) + j − β2 − δ(βγ)

]
[MeVg−1cm3] (7.4)

where:

ξ =
K

2

Z

A

x

β2
, j = 0.200 (7.5)

and

δ(βγ) is the density effect correction. (7.6)

Normalizing ∆p by x (here 2.42 cm) and assuming that the most probable cosmic ray
momentum is 2.5 GeV/c, the most probable energy loss is 1.19 MeVg−1cm2. Again, the
density effect correction has been computed using Sternheimer´s parametrization. Fig.
7.9 shows the energy losses as a function of the muon kinetic energy. Black dashed line
corresponds to the Bichsel formula without the density correction and the black line to
the Bichsel formula with the density correction.

To have the conversion factor for each crystal, only remains to use this ∆p/x with the
most probable channel number of each crystal.

7.2.3.5 Sternheimer´s parametrization

This parametrization quantifies the density effect. In Ref. [68], one can find the analytic
expression of δ(βγ) as follows:

δ(βγ) = 4.606x+ C + a(x1 − x)m, (x0 < x < x1)

δ(βγ) = 4.606x+ C, (x > x1)

where x = log10(p/M) of the incident particle and a, m, C are constants depending on
the substance. Here a=0.136, m=2.71, C=-6.03, x0=0.38 and x1=3.0. Results are shown
in Fig. 7.10.
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7.2.3.6 Comparison

Fig. 7.9 presents a comparison between the Bethe-Bloch and the Bichsel formula. Full
lines take into account the density correction whereas dashed one do not. One can see
that the effect of the density correction is really important at the present energy and
also that depending on the method used for the calibration, the energy loss value is quite
different.

Figure 7.9: Energy losses obtained by the Bethe-Bloch formula (mean energy, red color) and by
the Bichsel one (most probable energy, black color) by unit of crystal thickness. The full lines
take into account the density correction using the Sternheimer´s parametrization whereas the
dashed lines do not.

Furthermore, Fig. 7.10 shows the effect of the crystal thickness on ∆p/x. From this
picture, it can be concluded that selecting one column events, the variations of the path
length of the cosmic rays through the crystals are small enough to not affect drastically
the energy loss value.
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Figure 7.10: Energy losses calculated by the Bethe-Bloch formula (mean energy) and by the
Bichsel one (most probable energy) by unit of crystal thickness. The full red and black lines are
the same as in Fig. 7.9. The green and the blue one correspond to different crystal thicknesses.

As a consequence, the Bichsel method is used for the calibration using cosmic rays and
data were analysed for all beam options.

7.2.4 Data analysis

7.2.4.1 Raw data

The Fig. 7.11 shows the raw data in case of the beam option 1. On the left hand, raw
data are presented and pedestal as well as a few peaks can be seen. On the right side, an
overlay of the results obtained when a coincidence with each tagger value is asked. On
this figure, the 15 peaks corresponding to the 15 selected energies are clearly visible.

(a) Raw data (b) Raw data and coincidence with tagger

Figure 7.11: Crystal 35, raw data (beam at Mainz)

Jérôme Boucher, 2011



118 7. The proto60

7.2.4.2 Energy deposit reconstruction

After a proper calibration of each crystal using the method previously described, the
energy deposit of all tagged photons has to be reconstructed in order to compare the
tagged energy with the reconstructed one. Usually, due to the shower extension over the
neighbour crystals, the energy deposit in each crystal is summed over the matrix 3X3 or
5X5. The analysis has been done using 9, 25 and 60 crystals. But, only results for 60
crystals will be presented here (best case).

Fig. 7.12 presents the lineshape for the photons tagged at 1.057 GeV. Red curve stands
for the spectrum of the crystal 35, the green one is the spectrum of the sum over the 59
other crystals. The black curve represents the sum over the 60 crystals.

Figure 7.12: Lineshape of the deposit energy for Etag = 1.057 GeV and beam option 1.

7.2.5 Results

7.2.5.1 Linearity

The first step was to fit the shape of the deposited energy (sum over the 60 crystals).
The Gabler function has been used and defined in the following way:

f(E,FWHMG, λ) = G+ exp

[
(E − E0

λ

]
(1−G) θ(E0 − E) (7.7)

where G = exp

[
−4ln(2)(E − E0)2

FWHM2
G

]
, (7.8)

and θ(x) = 0 if x < 0 else θ(x) = 1. (7.9)

E0 is the position of the maximum, λ describes the tail and G is a gaussian function.
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In Fig. 7.13, one can see the measured energy (E0 obtained via the Gabler fit) as a
function of the tagged one. The red circles represent the peak positions obtained via the
Gabler function. Those points have been fitted with a linear function ax+b. Results are
good since a=0.9651± 0.0001 and b=0.01958± 0.00003.

Figure 7.13: Deposited energy as a function of tagged energy for beam option 1. The linear fit
shows good agreement.

7.2.5.2 Threshold

The resolution was determined as σ/E and the effect of the threshold on the deposited
energy in each crystal. The Fig. 7.14 presents for two extreme cases: Etag = 0.158 GeV
and Etag = 1.441 GeV, the resolution as a function of the threshold (from 0 to 2 MeV).
The best results were found for a threshold of 0.7 MeV. Therefore, for the following results
this threshold has been applied.

(a) Etag = 0.158 GeV (b) Etag = 1.441 GeV

Figure 7.14: Resolution as a function on the threshold applied on the deposit energy in each
crystal (beam option 1). Best results for a 0.7 MeV threshold.
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7.2.5.3 Resolution

The resolution of a calorimeter is typically: σ
E

= a√
E
⊕ b

E
⊕ c, where a stands for the

statistics, b for electronic noise and c for calibration errors as well as non-linearities. The
Fig. 7.15 shows the resolution as a function of the tagged photons applying a threshold
at 0.75 MeV on the deposit energy on each crystal (for beam option 1). Fit gives a=2.09,
b=0.001 and c=1.33 which is slightly higher than the requirements (a <2% and c <1%).
The resolution at 1 GeV is 2.47% which is better than the one obtained in the backward
end cap simulations.

Figure 7.15: Energy resolution for beam option 1.

One can see in Fig. 7.16 the resolutions obtained for all beam options. Red color
stands for the beam option 1, blue for beam option 2, pink for beam option 3 and green
for beam option 4. Here the best case (beam option 1) and the worse case (beam option
3) are visible. Concerning the beam option 4, one can see that the lead sheet decreases
the resolution at low energy but at high energy its effect is almost negligible.

Figure 7.16: Energy resolution for all beam options.
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Chapter 8

Conclusion and outlook

The pp → π◦e+e− reaction has been proposed to access the proton electromagnetic
form factors in the so-called unphysical region which is neither accessible via the electron-
proton elastic scattering reaction nor via pp ↔ e+e− annihilation reactions. This thesis
presents the feasibility of the pp→ π◦e+e− reaction with the future PANDA detector and
a related technical work devoted to the PANDA electromagnetic calorimeter.

To describe the pp→ π◦e+e− , a Lagrangian based approach was developed within the
group. Assuming that the electron-positron pair comes from a virtual photon (spin 1),
the 5-fold differential cross section was determined. The model has been constrained by
the few available pp → π◦γ data and the proton off-shellness is taken into account by
introducing a form factor on the propagator. It was shown that the positron (or electron)
angular distribution in the virtual photon rest frame is given by linear combinations of
hadronic tensors which weight the spherical harmonic functions up to only L=2 (spin of
γ∗=1).

Under the assumption of one nucleon exchange, the hadronic tensors were related to the
nucleon electromagnetic form factors. Following the method developed in the feasibility
studies of the pp → e+e− reaction, an extraction method of the relevant quantities was
developed. This method uses the shape of the positron (or electron) angular distribution
in the virtual photon rest frame only and not the absolute normalization. It provides an
access to the proton electromagnetic form factor ratio R = |GE|/|GM | and for the first
time in an unpolarized experiment to the cosine of the phase difference cos(ϕE − ϕM).
Such measurements have never been performed in the unphysical region up to now.

Studies were performed within a vector meson dominance parametrization of the proton
electromagnetic form factors. It was found that at Tp = 1 GeV is the most favourable case
in terms of signal counting rates. Two q2 values were studied in detail: q2 = 0.605±0.005
(GeV/c2)2 which is close to the ω resonance and q2 = 2.0 ± 0.125 (GeV/c2)2 which is
located in a structureless region. For these two q2 regions and for 3 laboratory angular
ranges of the θπ0 (10◦ < θπ0 < 30◦, 80◦ < θπ0 < 100◦ and 140◦ < θπ0 < 160◦), extended
simulations were performed to determine the signal to background cross section ratio and
the precision on the determination of R and cos(ϕE − ϕM).
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The pp → π◦π+π− reaction has been considered as the most dangerous background.
A first order model was developed and constrained by data from the LEAR experiment.
At q2 = 0.605 ± 0.005 (GeV/c2)2 and q2 = 2.0 ± 0.125 (GeV/c2)2, the background to
signal cross section ratio was estimated to be of the order of 104 and 107 respectively.
The main experimental challenge is the rejection of this background. Combining particle
identification information from the different detectors and kinematic fits, the background
contribution can be reduced to the percent level or even less. The corresponding signal
efficiency ranges from a few % to 30%. The precision on the determination of R and
cos(ϕE − ϕM) was determined using Monte Carlo method. Within the signal efficiency,
the precision on R at q2 = 0.605 ± 0.005 (GeV/c2)2 is of the percent level whereas at
q2 = 2.0 ± 0.125 (GeV/c2)2 it is few percent. The precision on cos(ϕE − ϕM) is about
10% at q2 = 0.605± 0.005 (GeV/c2)2 and 20% at q2 = 2.0± 0.125 (GeV/c2)2.

When the PANDA experiment will be running, all subdetectors must be tested and
their capabilities precisely determined. These capabilities should then be compared to
the one used in the simulations to validate the present feasibility study. One could then
extrapolate this feasibility study to the Transition Distribution Amplitude (TDA) case
since they are also related to the pp→ π◦e+e− reaction.

Since the PANDA detector has an almost 4π coverage, the complete measurement of
the pp → π◦γ reaction at low antiproton beam kinetic energy would be of great inter-
est. Indeed, these measurements are necessary since they would contribute in reaching a
common and unified description of the N → Nπ vertex in similar kinematical conditions.

Another important work would be the measurement of hadronic channels over the whole
phase space. The complete measurement of the pp→ π◦π+π− reaction at low antiproton
kinetic energy must be compared to the model. The constraints provided up to now by the
data are insufficient. Precise determination of the contribution of the different involved
resonances is mandatory to provide precise angular dependances and correlations. This
will allow to further improve on the cuts to reach the best possible signal to background
ratio.

Finally, the measurement of the pp → π◦e+e− differential cross section dσ/dq2 may
provide evidence of vector meson dominance at low q2 energy. The complete measurement
of the pp→ π◦e+e− reaction will allow to test the one nucleon exchange model developed
here. In the feasibility study presented in this thesis, the proton form factors are assumed
to be only q2 dependent (on-shell proton). To test this hypothesis, it would be interesting
to extract the ratio R and cos(ϕE − ϕM) at a fixed q2 for several s and θπ◦ . One of
the limitation of the model is the one nucleon exchange assumption. In particular, the
extraction of R in the kinematical domain where q2 & 4M2

p from the pp → π◦e+e−

reaction must be compared to R extrated in other experiment from the pp → e+e− and
e+e− → pp reactions. Any difference would be an evidence that the proton exchange is
not dominant. If the one nucleon exchange is not the dominant diagram, one may need
to add the N* or the ∆ exchange diagrams. A deviation from a constant would mean
either that the assumption is wrong or that the one proton exchange is not dominant in
the whole kinematical domain.
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Concerning the electromagnetic calorimeter, backward endcap simulations have shown
a resolution σ/E of 3.1% at E = 1 GeV. The 60 crystal barrel prototype was also studied
and data taken with a tagged photon beam were analysed. After proper calibration using
cosmic rays, the resolution is determined to be σ/E = 2.47% at 1 GeV. This activity will
continue with the construction of the full size electromagnetic calorimeter.

Jérôme Boucher, 2011
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Appendix A

Acceptance and efficiency matrices

(a) in γ∗ rest frame (b) in laboratory frame

Figure A.1: Acceptance and efficiency matrices (PID cut only) for q2 = 2 ± 0.125 (GeV/c2)2

and 10◦ < θπ0 < 30◦ (with 10◦ bins for θ∗e+ and ϕ∗e+).
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(a) in γ∗ rest frame (b) in laboratory frame

Figure A.2: Acceptance and efficiency matrices (PID cut only) for q2 = 2 ± 0.125 (GeV/c2)2

and 80◦ < θπ0 < 100◦ (with 10◦ bins for θ∗e+ and ϕ∗e+).

(a) in γ∗ rest frame (b) in laboratory frame

Figure A.3: Acceptance and efficiency matrices (PID cut only) for q2 = 2 ± 0.125 (GeV/c2)2

and 140◦ < θπ0 < 160◦ (with 10◦ bins for θ∗e+ and ϕ∗e+).
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(a) in γ∗ rest frame (b) in laboratory frame

Figure A.4: Acceptance and efficiency matrices (PID cut only) for q2 = 0.605±0.005 (GeV/c2)2

and 10◦ < θπ0 < 30◦ (with 10◦ bins for θ∗e+ and ϕ∗e+).

(a) in γ∗ rest frame (b) in laboratory frame

Figure A.5: Acceptance and efficiency matrices (PID cut only) for q2 = 0.605±0.005 (GeV/c2)2

and 80◦ < θπ0 < 100◦ (with 10◦ bins for θ∗e+ and ϕ∗e+).

Jérôme Boucher, 2011
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(a) in γ∗ rest frame (b) in laboratory frame

Figure A.6: Acceptance and efficiency matrices (PID cut only) for q2 = 0.605±0.005 (GeV/c2)2

and 140◦ < θπ0 < 160◦ (with 10◦ bins for θ∗e+ and ϕ∗e+).

Study of electromagnetic channels at PANDA



Bibliography

[1] FAIR Baseline Technical Report. http://www.fair-center.de/publications.171.0.html.
2006.

[2] PANDA webpage. http://www-panda.gsi.de/.

[3] CBM webpage. http://www.gsi.de/forschung/fair experiments/cbm/1intro e.html.

[4] NuSTAR webpage. http://www.gsi.de/forschung/fair experiments/nustar/projects
e.html.

[5] APPA webpage. http://www.fair-center.org/appa-physics.187.0.html.

[6] A. Dolinskii et al. Antiproton complex at the FAIR project. NIM A, 629:16–24,
2011.

[7] Physics performance report, March 2009. arXiv:0903.3905v1.

[8] M. Sudo l et al. Feasibility studies of the time-like proton electromagnetic form factor
measurement with panda at fair. Eur. Phys. J., A44:373–384, 2010.

[9] Technical Progress Report for PANDA: Strong Interaction Studies with Antipro-
tons. http://www.panda.gsi.de/archive/public/panda tpr.pdf. PANDA Collabora-
tion, 2005.

[10] Emc technical design report, October 2008. arXiv:0810.1216v1.

[11] CMS webpage. http://cms.web.cern.ch.

[12] R. W. Novotny et al. Stimulated recovery of the optical transmission of PbWO4

scintillation crystals for electromagnetic calorimeters after radiation damage. NIM
A, 623:1082–1085, 2010.

[13] R. W. Novotny et al. Performance of the prototype of the electromagnetic calorimeter
for panda. NIM A, 648:77–91, 2011.

[14] M.J. Berger and S.M. Seltzer. Table of energy losses and ranges of electrons and
positrons. Technical report, NASA-SP-3012, 1964.

[15] E. Longo and I. Sestili. Monte carlo calculation of photon-initiated electromagnetic
showers in lead glass. NIM, 128:283–307, 1975.

[16] Solenoid and dipole spectrometer magnet (technical design report), 2009.

[17] M.P. Rekalo. Sov. J. Nucl. Phys., 1:760, 1965.

[18] H. Fonvieille and V. A. Karmanov. Antiproton-nucleus electromagnetic annihilation
as a way to access the proton time-like form factors. Eur. Phys. J. A, 42:287–298,
2009.



130 BIBLIOGRAPHY

[19] O. Stern. Nature, 132:103, 1933.

[20] M.N. Rosenbluth. High energy scattering of electrons on protons. Phys. Rev., 79:615–
619, 1950.

[21] R. Hofstadter. Electron scattering and nuclear structure. Rev. Mod. Phys., 28:214–
254, 1956.

[22] S. Venkat et al. Relativistic transverse images of the proton charge and magnetic
densities. Phys. Rev. C, 83:015203, 2011.
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Abstract

Among all possible realizations of quark and antiquark assembly, the nucleon (the
proton and the neutron) is the most stable of all hadrons and consequently has been the
subject of intensive studies. Mass, shape, radius and more complex representations of its
internal structure are measured since several decades using different probes. The proton
(spin 1/2) is described by the electricGE and magneticGM form factors which characterise
its internal structure. The simplest way to measure the proton form factors consists
in measuring the angular distribution of the electron-proton elastic scattering accessing
the so-called Space-Like region where q2 ≤ 0. Using the crossed channel pp ↔ e+e−,
one accesses another kinematical region, the so-called Time-Like region where q2 > 0.
However, due to the pp ↔ e+e− threshold q2

th, only the kinematical domain q2 > q2
th > 0

is available. To access the unphysical region, one may use the pp → π◦e+e− reaction
where the π◦ takes away a part of the system energy allowing q2 to be varied between
q2
th and almost 0. This thesis aims to show the feasibility of such measurements with the

PANDA detector which will be installed on the new high intensity antiproton ring at the
FAIR facility at Darmstadt.

To describe the pp → π◦e+e− reaction, a Lagrangian based approach is developed.
The 5-fold differential cross section is determined and related to linear combinations of
hadronic tensors. Under the assumption of one nucleon exchange, the hadronic tensors are
expressed in terms of the 2 complex proton electromagnetic form factors. An extraction
method which provides an access to the proton electromagnetic form factor ratio R =
|GE|/|GM | and for the first time in an unpolarized experiment to the cosine of the phase
difference is developed. Such measurements have never been performed in the unphysical
region up to now. Extended simulations were performed to show how the ratio R and the
cosine can be extracted from the positron angular distribution. Furthermore, a model is
developed for the pp → π◦π+π− background reaction considered as the most dangerous
one. The background to signal cross section ratio was estimated under different cut
combinations of the particle identification information from the different detectors and of
the kinematic fits. The background contribution can be reduced to the percent level or
even less. The corresponding signal efficiency ranges from a few % to 30%. The precision
on the determination of the ratio R and of the cosine is determined using the expected
counting rates via Monte Carlo method. A part of this thesis is also dedicated to more
technical work with the study of the prototype of the electromagnetic calorimeter and the
determination of its resolution.
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Résumé

Parmi toutes les configurations d’agrégats de quark et d’antiquark, le nucléon (le proton
et le neutron) est le plus stable des hadrons et a été par conséquent le sujet d’études
intensives. Sa masse, sa forme, son rayon et des représentations plus complexes sont
mesurés depuis plusieurs décennies grâce à différentes sondes. Le proton (spin 1/2) est
décrit par les facteurs de forme électrique et magnétique qui caractérisent sa structure
interne. Le moyen le plus simple de mesurer les facteurs de forme consiste à mesurer
la distribution angulaire de la diffusion élastique électron-proton: dans cette région dite
espace q2 est négatif. En utilisant la réaction croisée pp ↔ e+e−, on atteint une autre
région cinématique appelée région temps où q2 > 0. Cependant, à cause du seuil q2

th de
les réactions pp ↔ e+e−, seul le domaine cinématique q2 > q2

th > 0 est autorisé. Pour
atteindre la région non physique, on utilise la réaction pp → π◦e+e− où le π◦ emporte
une partie de l’énergie autorisant ainsi q2 à varier entre q2

th et presque 0. Cette thèse vise
à démontrer la faisabilité de ces mesures avec le détecteur PANDA qui sera installé sur
le nouvel anneau d’antiprotons à haute intensité du futur complexe accélérateur FAIR à
Darmstadt.

Pour décrire la réaction pp → π◦e+e− une approche basée sur des lagrangiens est
développée. La section efficace 5 fois différentielle est determinée et reliée à des combi-
naisons linéaires de tenseurs hadroniques. Sous l’hypothèse de l’échange d’un nucléon, les
tenseurs hadroniques sont exprimés en fonctions des 2 facteurs de forme électromagnétiques
complexes du proton. Une méthode est développée, qui donne accès au rapport des fac-
teurs de forme électromagnétiques du proton R = |GE|/|GM | et pour la première fois avec
une expérience non polarisée au cosinus de la différence de phase. A ce jour, de telles
mesures n’ont jamais été faites dans la région non physique. Des simulations détaillées ont
été effectuées pour montrer comment le rapport R et le cosinus peuvent être extraits de
la distribution angulaire du positron. De plus, un modèle est développé pour la réaction
parasite pp→ π◦π+π− considérée comme la plus dangereuse. Le rapport des sections ef-
ficaces est estimé pour différentes coupures combinant l’identification de particules et les
fits cinématiques. La contribution du bruit de fond peut être réduite à quelques pour-cent
voire moins. L’efficacité typique de détection du signal correspondante varie de l’ordre de
5 pour-cent à 30 pour-cent. La précision sur la détermination du rapport R et du cosinus
est determinée pour le nombre de coups attendu via la méthode Monte Carlo. Une partie
de cette thèse est aussi dédiée à un travail plus technique avec l’étude du prototype du
calorimètre électromagnétique et la détermination de sa résolution.
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Zusammenfassung

Unter allen möglichen Anwendungen von Quark und Antiquark Montage ist das Nuk-
leon (das Proton und das Neutron) das stabilste aller Hadronen und folglich war es
Gegenstand intensiver Untersuchungen. Masse, Form, Radius und komplexe Darstel-
lungen von seiner inneren Struktur sind seit mehreren Jahrzehnten mit verschiedenen
Sonden gemessen worden. Das Proton (Spin 1/2) ist durch die elektrischen GE und mag-
netischen GM Formfaktoren, die die interne Struktur charakterisieren, beschrieben. Der
einfachste Weg um die Formfaktoren der Protonen zu messen, besteht aus der Messung
der Winkelverteilung der elastischen Streuung des eptoep, zugreifend auf die sogenannte
Space-Like Region, wo q2 ≤ 0 ist. Mit dem Cross-Channel pp↔ e+e−, greift die kinema-
tische Region, die sogenannte Time-Like Region, wo q2 > 0 ist. Aufgrund der pp↔ e+e−

Schwelle q2
th, ist allerdings nur die kinematische Domain q2 > q2

th > 0 verfügbar. Um auf
die unphysikalische Region zuzugreifen, kann man mit die pp→ π◦e+e− Reaktion nutzen,
bei der π◦ einen Teil der Systemenergie nimmt, was erlaubt q2 zwischen q2

th bis nahezu 0
zu variieren. Diese Arbeit zielt darauf hin, die Durchführbarkeit solcher Messungen mit
dem PANDA-Detektor zu zeigen, der auf dem neuen hochintensiven Antiproton-Ring an
der FAIR-Anlage installiert werden soll in Darmstadt.

Zur Beschreibung der pp → π◦e+e− Reaktion wird ein Lagrange-Ansatz entwickelt.
Der 5-fache Differentialquerschnitt ist bestimmt und verwandt mit linearen Kombinatio-
nen von hadronischen Tensoren. Unter der Annahme eines Nukleonenaustauschs sind die
hadronischen Tensoren in Bezug auf das 2-Komplex-Proton elektromagnetischer Formfak-
toren wiedergegeben. Eine Extraktionsmethode, die einen Zugriff auf des Protons elek-
tromagnetische Formfaktorverhältnis R = |GE|/|GM | bietet und zum ersten Mal in einem
unpolarisierten Experiment ist um Cosinus die Phasenverschiebung entwickelt. Solche
Messungen wurden bis heute noch nie in der unphysikalischen Region durchgeführt. Es
wurden erweiterte Simulationen durchgeführt um zu zeigen, wie das Verhältnis R und
der Cosinus von der Positronen-Winkelverteilung extrahiert werden können. Darüber
hinaus ist ein Modell für die pp → π◦π+π− Hintergrundreaktion entwickelt, die als die
gefährlichste betrachtet wird. Der Hintergrund zum Querschnittsverhältnissignal wurde
unter verschiedenen Kombinationen von Schnitten der Teilchenidentifizierungsinformatio-
nen aus den verschiedenen Detektoren und kinematischen Passformen geschätzt. Die Hin-
tergrundsdistribution kann auf das Prozent-Niveau oder sogar noch weniger reduziert wer-
den. Die entsprechende Signaleffizienz reicht von wenigen % bis 30%. Die Genauigkeit der
Bestimmung des Verhältnisses R und des Cosinus wird anhand der erwarteten Zählraten
über die Monte-Carlo-Methode ermittelt. Ein Teil dieser Arbeit ist auch mehr der tech-
nischen Arbeit mit dem Studium des Prototyps der elektromagnetischen Kalorimeter und
der Bestimmung ihrer Auflösung gewidmet.


