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“My friends and I have been thinking another year had come gone

And so we started drinking and singing new years songs.

Like Auld Lang Syne, There Comes a Time, and Prince’s 1999...

But none of those songs seem to do it for us, at the time...

This year a lot of things have come to pass

Raise a glass, raise a glass

Some made us cry some made us laugh

Raise a glass, raise a glass

Next year will be better

The old year is gone forever

Thank god it’s over, thank god it’s over

Thank god it’s over, it’s over now

Thank god it’s over, thank god it’s over

Thank god it’s over, it’s over now

To all are friends and those we’ve left behind

Sing Auld Lang Syne, sing Auld Lang Syne

Thou you’re gone you’re never far from mind

Auld Lang Syne, sing Auld Lang Syne

Let bygones be bygones

Bye-bye gone we’re moving on

Thank god it’s over, thank god it’s over

Thank god it’s over, it’s over now

Thank god it’s over, thank god it’s over

Thank god it’s over, it’s over now

This year many things have come to pass

Raise a glass, raise a glass

Some things really kicked our ass

Raise a glass, raise a glass

Come raise your spirits

Sing loud so the dead will hear it

Thank god it’s over, thank god it’s over

Thank god it’s over, it’s over now

Thank god it’s over, thank god it’s over

Thank god it’s over, it’s over now

Thank god it’s over, thank god it’s over

Thank god it’s over, it’s over now

Thank god it’s over, thank god it’s over

Thank god it’s over, it’s over now”

Jim’S Big Ego - New Lang Syne (Thank God It’s Over)



Molecular dynamics simulations of silicate and borate glasses and melts: Structure,

diffusion dynamics and vibrational properties

In this work, computer simulations of the model glass formers SiO2 and B2O3 are presented,

using the techniques of classical molecular dynamics (MD) simulations and quantum mechanical

calculations, based on density functional theory (DFT). The latter limits the system size to about

100 − 200 atoms. SiO2 and B2O3 are the two most important network formers for industrial

applications of oxide glasses.

In case of SiO2, classical MD simulations are carried out, employing two different classical

potentials: the well studied BKS potential and the CHIK potential. In agreement with previous

results, it is found that small systems (as small as 165 atoms) show all characteristic features

of glassy dynamics, the main finite size effect is a dynamical slowing down and the temperature

dependence of the self-diffusion constants shows an Arrhenius behavior at low temperatures.

Glass samples are generated by means of a quench from the melt with classical MD simulations

and a subsequent structural relaxation with DFT forces. The latter mainly reduces the mean

Si-O-Si angle by about 4◦ − 6◦. After the relaxation, the glass configurations of the BKS

and the CHIK potential show no significant structural differences. In addition, the structural

properties are in good agreement to the ones of a full ab initio quench from the melt and

to experimental results from neutron and X-ray scattering. A special focus is on the study

of vibrational properties, as they give access to low-temperature thermodynamic properties.

Therefore, a comparison of the calculated vibrational spectrum g (ν) with the experimental one

is a good test for the quality of a glass structure. The vibrational spectra are calculated by

the so-called ”frozen phonon” method, employing classical and quantum mechanical forces. In

accordance to previous work, the DFT curves show excellent agreement with experimental results

of inelastic neutron scattering. The same is observed, regarding the heat capacity at constant

volume CV (T ).

These glass configurations after the structural relaxation are the basis for calculations of the

linear thermal expansion coefficients αL (T ), employing the quasi-harmonic approximation. The

striking observation is a change of sign of αL (T ), both, using quantum mechanical (DFT) and

classical forces for all but one examined glass configuration. To my knowledge this has not been

reported before. The temperature range of negative thermal expansion is below about 130 K to

160 K (DFT forces) and 290 K to 325 K (classical forces). At temperatures below about 200 K,

the DFT curves show a very good agreement with experimental results.

There is strong experimental evidence that in vitreousB2O3, about 60%−80% of the boron atoms

are located in planar, 3-membered boroxol rings. Having this in mind, ab initio MD simulations

of the glass melt are carried out, showing an increased amount of 3-membered rings at 2300 K.

The liquid trajectory at 2300 K is the basis for the development of a new classical interaction

potential by extending the structural fitting procedure used for the development of the CHIK

potential. The inclusion of 3-body angular terms leads to a significantly improved agreement of

the liquid properties of the classical MD and ab initio MD simulations. In the course of this, a

new angular potential type is introduced that is smoothly switched on and off, depending on the



inter-atomic distances. It is implemented as a new pair style of the LAMMPS software package.

Again, glass samples are generated by quenches from the melt with classical MD simulations and

a subsequent quantum mechanical relaxation, comparing two different parametrizations of the

new potential type and the original parameter set before the fitting procedure. In addition, 4

full ab initio quenches are conducted. In all cases, the mean B-O and O-O distances are in good

agreement with experimental results from neutron diffraction. The glass structures of the new 3-

body potentials show an improvement, in terms of a slightly smaller mean B-B distance and the

occurrence of some boroxol rings, compared to the ones of the original parameter set. However,

the mean boroxol ring fraction is still quite small (f = 2.5±1.1% to f = 8±2.3%). The ab initio

quenches show a slightly larger mean boroxol ring fractions of f = 5± 5% (quench from 3600 K)

and f = 15 ± 5% (quench from 2300 K). In agreement with previous work, this demonstrates

that the occurrence of boroxol rings is a particularly sensitive measure of the quality of a classical

force field and that the very high quench rates in computer experiments prevent the emergence

of boroxol ring fractions comparable to the experimental one. The DFT vibrational spectra g (ν)

show an acceptable agreement with results from inelastic neutron scattering. The peak height

of the boroxol ring signature depends on the value of f .

Summarizing the above results, a quench from the melt with a classical MD simulation and a

subsequent structural relaxation can lead to a glass configuration comparable to the one of a

full ab initio quench, given a suitable classical force field. No general statement can be given,

which method leads to a glass structure that is in better agreement with the one obtained in a

real laboratory experiment.



Molekulardynamiksimulationen von Silikat- und Boratgläsern: Struktur, Diffusions-

dynamik und Vibrationseigensschaften

In dieser Arbeit werden Computersimulationen der Modellglasbildner SiO2 undB2O3 vorgestellt,

mittels klassischer Molekulardynamik(MD)-Simulationen und quantenmechanischer Rechnun-

gen, basierend auf der Dichtefunktionaltheorie (DFT). Letzteres limitiert die Systemgröße auf

in etwa 100 − 200 Atome. SiO2 und B2O3 sind die beiden wichtigsten Netzwerkbildner für

industrielle Anwendungen oxidischer Gläser.

Im Falle von SiO2 werden klassische MD-Simulationen mit zwei verschiedenen klassischen Po-

tentialen durchgeführt: Dem gut untersuchten BKS und dem CHIK Potential. In Überein-

stimmung mit bisherigen Ergebnissen zeigen auch kleine Systeme (ca. 165 Atome) alle charak-

teristischen Merkmale glasiger Dynamik, der vorwiegende “Finite Size Effekt” ist eine Ver-

langsamung der Dynamik und die Diffusionskonstanten weisen ein Arrheniusverhalten in der

Temperaturabhängigkeit bei niedrigen Temperaturen auf. Glaskonfigurationen werden durch

einen Quench aus der Schmelze mit klassischen MD Simulationen und einer nachfolgenden

strukturellen Relaxation mit DFT Kräften generiert. Letzteres verringert im Wesentlichen den

mittleren Si-O-Si Winkel um etwa 4◦ − 6◦. Nach der Relaxation weisen die Glasproben des

BKS Potential und des CHIK Potentials keine signifikanten strukturellen Unterschiede auf. Des

Weiteren stimmen die strukturellen Eigenschaften gut mit denen eines Ab Initio Quenches und

mit experimentellen Ergebnissen von Röntgen- und Neutronenstreuung überein. Ein besonderer

Fokus liegt auf den Vibrationseigenschaften, da diese die Berechnung der Niedertemperatur-

Thermodynamik ermöglichen. Daher ist ein Vergleich des berechneten mit dem experimentellen

Vibrationsspektrums g (ν) ein guter Test für die Qualität einer Glasstruktur. Die Vibrationsspek-

tren werden unter Verwendung von klassischen und quantenmechanischen Kräften mit der so-

genannten ”Frozen Phonon”-Methode berechnet. In Analogie zu bisherigen Arbeiten zeigen die

DFT-Kurven eine hervorragende Übereinstimmung mit experimentellen Ergebnissen inelasti-

scher Neutronenstreuung. Entsprechendes gilt für die Wärmekapazität bei konstantem Volumen

CV (T ).

Diese Glaskonfigurationen nach der strukturellen Relaxation sind Basis für Berechnung der

linearen thermischen Ausdehnungskoeffizienten αL (T ) in quasiharmonischer Näherung. Be-

merkenswert ist die Beobachtung eines Vorzeichenwechsels in αL (T ) sowohl im Falle von quan-

tenmechanischen (DFT) als auch von klassischen Kräften bei allen außer einer Glaskonfiguration,

was meines Wissens bis jetzt noch nicht berichtet wurde. Der Temperaturbereich der negativen

thermischen Ausdehnung reicht von 0 K bis hin zu etwa 130 K und 160 K (DFT Kräfte) und

bis hin zu etwa 90 K und 325 K (klassische Kräfte). Bei Temperaturen unter 200 K zeigen die

DFT-Kurven eine sehr gute Übereinstimmung mit experimentellen Daten.

Es gibt starke experimentelle Belege dafür, dass sich in purem B2O3-Glas etwa 60%− 80% der

Boratome in planaren Boroxolringen mit je 3 Bor- und 3 Sauerstoffatomen befinden. Dies vorweg

geschickt, werden Ab Initio MD Simulationen der Glasschmelze durchgeführt, welche bei 2300 K

eine vermehrte Anzahl von Dreiringen aufweisen. Die Flüssig-Trajektorie bei 2300 K dient als

Grundlage für die Entwicklung eines neuen klassischen Wechselwirkungspotentials, basierend auf



einer erweiterten Version der strukturellen Fitprozedur, welche dem CHIK Potential zugrunde

liegt. Die Einbeziehung von Dreikörper-Winkeltermen führt zu einer signifikant verbesserten

Übereinstimmung der Eigenschaften von klassischen MD und Ab Initio MD Simulationen. Ein

neuer Typ Winkelpotential wird eingeführt, bei welchem die Wechselwirkungen kontinuierlich

ein- und ausgeschaltet werden abhängig vom interatomaren Abstand. Dieser wird als neuer

Pair Style des LAMMPS Softwarepakets implementiert. Wiederum werden Glaskonfigurationen

generiert durch Quenches aus der Schmelze mit klassischen MD Simulationen und nachfolgen-

der quantenmechanischer Relaxation. Zwei unterschiedliche Parametrisierungen des neuen Po-

tentialtyps werden mit den Originalparametern vor der Fitprozedur verglichen. Des Weiteren

werden 4 Ab Initio Quenches durchgeführt. In allen Fällen stimmen die mittleren B-O und O-O

Abstände gut mit experimentellen Daten aus Neutronenstreuung überein. Die Glasstrukturen

des neuen Dreikörperpotentials zeigen eine Verbesserung im Vergleich zu den Originalparame-

tern bezüglich leicht kleinerer mittlerer B-B Abstände und des Vorkommens von Boroxolringen.

Allerdings ist der mittlere Anteil von Boroxolringen immer noch recht klein (f = 2.5 ± 1.1% -

f = 8± 2.3%). Die Ab Initio Quenches weisen leicht größere mittlere Anteile von Boroxolringen

auf: f = 5 ± 5% (Quench von 3600 K) und f = 15 ± 5% (Quench von 2300 K). In Überein-

stimmung mit bisherigen Arbeiten demonstriert dies, dass das Auftreten von Boroxolringen ein

besonders sensitives Maß für die Qualität eines klassischen Kraftfelds ist und dass sehr hohe

Quenchraten in Computerexperimenten das Entstehen von Boroxolringen in einer Größenord-

nung, wie sie im Experiment beobachtet wird, verhindern. Die DFT-Vibrationsspektren g (ν)

zeigen eine akzeptable Übereinstimmung mit den Ergebnissen inelastischer Neutronenstreuung.

Die Peakhöhe der Boroxolring-Signatur hängt von f ab.

Durch einem Quench aus der Schmelze mittels klassischer MD Simulation und nachfolgender

struktureller Relaxation kann eine Glasstruktur generiert werden, die vergleichbar ist mit der

eines Ab Initio Quenches, wenn man ein zweckmäßiges klassisches Kraftfeld verwendet. Es kann

keine generelle Aussage getroffen werden, welche Methode zu einer Glasstruktur führt, welche

besser mit der eines echten Laborexperiments übereinstimmt.
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dang = 0.05 Å
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6
. . . . . . 138

6.42 pαβγ (Φ) , α, β, γ ∈ {B,O}. Comparison of 1200 (p = 0) and 150 (ρ = 1.83 g/cm3)

atom system. Classical potential with 3-body terms and COO 6= 0 eV Å
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6
. Comparison with

experimental results of Cp (T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.71 CV (T ) of B2O3, according to classical and quantum mechanical forces. Ab initio
quenches at different equilibration temperatures and alternative model structure
[131–133]. Comparison with experimental results of Cp (T ) . . . . . . . . . . . . 164



List of Tables

4.2 Parameters of the BKS [22] and the CHIK [43] potential. . . . . . . . . . . . . . 50

4.4 Parameters of short-range the repulsive substitution V Harm (r) (see equation (4.2))
of the BKS [22] and the CHIK [43] potential at distances r ≤ rin. . . . . . . . . . 52

4.6 Comparison of mean total energies per atom and mean pressures for partly and
fully tabulated, partly and fully smoothed short-range potentials and different
Ewald precisions. NVT runs at 4300 K of 165 atom system at a system density
of ρ = 2.37 g/cm3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Cooling procedure of liquid SiO2 with number of time steps and equilibration
times at each temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 Mean first neighbor distances and average angles of classical quenches and one full
ab initio quench at 0 K after the structural relaxation. Comparison with single
ab initio run at 300 K and experimental results [113, 114]. . . . . . . . . . . . . . 75

5.2 Fit parameters V0, E0, K0 and K ′0 for fits of different equations of state E (V ) to
the numerical values of F (T, V ), based on DFT forces. One glass configuration,
generated with the BKS potential, after the structural relaxation. Fits to all 10
and 4 data points at T = 0 K and T = 500 K. . . . . . . . . . . . . . . . . . . . . 90

6.2 Number of time steps and simulation time at each temperature for ab initio MD
simulations of liquid B2O3 (150 atom system at constant density of ρ = 1.83 g/cm3).108

6.5 Different parametrizations of the pair potential (see equation (3.122)) for B2O3.
Comparison of original parameter set [97] to 3 different parametrizations after
structural fits at 3600 K and 2300 K. . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.7 Different parametrizations of the pair potential (see equation (3.122)) and 3-body
potentials (see equation (6.1)) for B2O3. Comparison of different parametrizations
after structural fits at 2300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.9 Cooling procedure of liquid B2O3 with number of time steps and equilibration
times at each temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.11 Probabilities pαβ (n) , α, β ∈ {B,O}, of having the exact number of atomic neigh-
bors n of an “ideal” glass configuration. Glass structures after classical classi-
cal quench with 3-body potentials and structural relaxation. In case of COO =

0 eV Å
6
, quenches from the melt at two different temperatures. . . . . . . . . . . 150

6.13 Mean first neighbor distances and average angles of B2O3 for all examined glass
configurations after the structural relaxation at 0 K. Comparison with experi-
mental results [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xvii





Chapter 1

Introduction

In the year 1893, the first laboratory borosilicate glass was introduced onto the market by the

“Glastechnisches Laboratorium Schott & Genossen Jena”, which nowadays is the “Schott AG”.

Since 1887 borosilicate glasses, containing the glass former B2O3, as well as the glass former

SiO2, have been developed by Otto Schott and patented in 1891 [1]. In 1938 the name DURAN R©
was introduced for the marketing of laboratory borosilicate glass. DURAN R© has the chemical

composition in weight percent of 81 %SiO2, 13 %B2O3, 4 %Na2O+K2O and 2 %Al2O3 [2]. This

was a great progress with respect to the alkaline silicate (soda-lime) or lead silicate glasses, as

borosilicate glasses have an improved chemical resistance, mechanical strength, heat resistance

and thermal shock resistance. The latter is connected to a significantly lower coefficient of

thermal expansion. Regarding these properties, pure SiO2 glass, or vitreous silica, shows even

superior behavior. However, it is very hard and expensive to process, due to its very high glass

transition temperature of Tg ' 1475 K [3]. Adding glass modifiers, like alkaline oxides, alkaline

earth oxides and aluminum oxide, significantly reduces the glass transition temperature and leads

to glasses that are easy and cheap to process [4]. However, the before mentioned properties are

significantly deteriorated, making these glasses unusable, for example, as laboratory glasses.

Adding the glass former B2O3 (boric acid, Tg ' 526 K [5]) and reducing the amount of glass

modifiers, helps in producing a glass, which shows a significant improvement of the relevant

properties, in combination with a significantly lower glass transition temperature than pure

SiO2.

This substantiates the interest in the model glass former SiO2, as well as the model glass former

B2O3. Regarding glasses with different components, as the aforementioned borosilicate glasses,

the exact glass structure is still not known in many cases. Furthermore, the dependence of the

properties of a glass on its composition is still hard to predict. In practice, glass development

goes along with conducting a series of test melts with a slight variation of the glass compositions

and a subsequent interpolation of the glass properties, one is interested in. Therefore, a better

understanding of the glass structure on an atomistic level and the prediction of resulting glass

properties is desirable.

1



Chapter 1. Introduction 2

The first model of oxide glasses was proposed by Zachariasen’s random network theory [6]. In

this model, the glass consists of a three-dimensional random network built up by glass formers

and modified by glass modifiers, following certain rules. However, it turns out that the degree

of randomness varies from glass to glass. Some glasses are closer to Zachariasen’s picture,

whereas others show a more microcrystalline structure [4]. Nowadays, computer simulations

are an important tool in the modeling of oxide glasses on an atomistic level. For instance,

classical molecular dynamics (MD) [7] or Monte Carlo (MC) [8] simulations can be carried out.

Here, typical system sizes are of the order of 1000 to a few 100000 atoms and time scales up

to the order of microseconds are accessible. However, the inter-atomic forces are described

on the basis of empirical force fields, which are less accurate than a full quantum-mechanical

description. The latter can be accomplished on the basis of density functional theory (DFT) [9],

limiting the system sizes to about 100 - 200 atoms and the accessible time scales to the order

of picoseconds. In principle, both techniques can be combined, which, for example, has already

been successfully done in case of the model glass former SiO2 [10, 11]. Here, the glass structure

is generated by means of a classical MD simulation, with a subsequent structural relaxation

by means of a quantum-mechanical calculation and a computation of the vibrational properties

based on quantum-mechanical forces. This method requires a suitable classical force field to

generate a realistic glass structure in the first place.

The work presented in this thesis follows this direction. Due to the aforementioned reasons,

the model glass formers SiO2 and B2O3 are examined and glass structures are generated by

means of cooling down a glass melt with classical MD simulations, followed by a subsequent

quantum-mechanical relaxation (see chapters 4 and 6). In case of SiO2, two different classical

force fields are employed. In case of B2O3, a new classical force field is developed, based on the

liquid structure at high temperatures extracted from a quantum-mechanical (DFT) calculation.

The structural properties of the generated glasses are compared to experimental results. In

addition, special focus is placed on the vibrational properties, as the latter give access to the

low-temperature thermodynamics. It turns out that a realistic glass structure, in combination

with quantum-mechanical forces, leads to a vibrational density of states comparable to the

experimental one and a good accordance of the specific heat with respect to temperature. The

thermal expansion also shows a good agreement with experimental results in the low-temperature

regime. This is demonstrated in case of SiO2 in chapter 5. Here, a change of sign of the linear

expansion coefficient and a range of negative thermal expansion at low temperatures is observed,

in agreement to experimental results. To my knowledge, this has not been reported before in

case of DFT calculations of vitreous silica.



Chapter 2

Simulation of real glass formers?

2.1 The glass transition - phenomenology

Glass is a non-equilibrium state of matter. At temperatures below the solid-liquid phase transi-

tion the equilibrium configuration is a crystalline structure and the corresponding phase depends

on the ambient conditions. However, many liquids can form a glass if they are cooled fast enough

to avoid crystallization. In this way, a so-called supercooled phase can be reached at tempera-

tures below the melting temperature Tm of the corresponding crystalline structure. In a glass

forming liquid the distinction of two typical timescales becomes necessary when cooling the sys-

tem down [12]. The atom trajectories are constituted of frequent collisions with the neighboring

particles. This rattling motion happens on a very short timescale of typically about 10− 100 fs

in oxide glasses. After several collisions, an atom can break out of the cage of the surrounding

particles and change its relative position. This diffusive motion is typically a collective phe-

nomenon and occurs on longer timescales than the rattling motion. This structural relaxation

time or α-relaxation time τα [13] increases by many orders of magnitude, when cooling the sys-

tem down and at some point the glass transition temperature Tg is reached. In Fig. 2.1 this

two-step relaxation process and the increase of the α-relaxation time by orders of magnitude

is impressively demonstrated by means of photon-correlation spectroscopy of the “strong” net-

work forming glass former B2O3 at different temperatures [14]. In contrast to the crystallization

transition, this is not a phase transition in the sense of the Ehrenfest classification [15], but a

kinetic transition. The glass transition temperature Tg is the temperature at which the system

falls out of equilibrium and no stress relaxation is possible anymore on the timescale of the ex-

periment. Therefore, there is no unique definition of Tg, but it depends on the experiment. One

way of measuring Tg is the increase of the heat capacity Cp from a solid-like to a liquid-like value

by means of scanning calorimetry [16]. This is connected to the fact that the configurational

contribution to the specific heat decreases to zero at temperatures below Tg [17] and leads to

one possible definition of Tg as the onset temperature of the jump in heat capacity at a heating

rate of 10 K/min [18]. At the glass transition temperature Tg defined in this way, the structural

3
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relaxation time is about 100 s. Another common definition of Tg is the temperature at which

the shear viscosity η of the glass forming system is equal to 1013 Poise = 1012 Pa/s [13].

Figure 2.1: Structural relaxation
functions Φ(t)/A and Φ (t) of B2O3

above Tg and just below Tg, mea-
sured by photon-correlation spectroscopy.
Reprinted figure with permission from [14],
http://dx.doi.org/10.1103/PhysRevLett.71.2260.
Copyright (2015) by the American Physical

Society.

Figure 2.2: Schematic V-T diagram of a glass
forming liquid. Figure reprinted from [19],
page 380. With permission of Springer Science

+Business Media.

A consequence of the kinetic nature of the glass transition is the dependence of the glass prop-

erties on the cooling rate. This is schematically shown in Fig. 2.2, taken from [19]. So, for

example, a higher cooling rate often leads to a lower glass density. When generating glass struc-

tures by means of computer simulations, the cooling rates are typically higher by many orders

of magnitude compared to values reached in real experimental setups. In classical molecular

dynamics simulations, the lowest cooling rates are of the order of Γ = 1011 K/s to Γ = 1010 K/s.

Even in the latter case, the glass melt is cooled from about 2300 K to room temperature in

approximately 0.2µs. In quantum mechanical simulations, the cooling rates are even higher by

about three orders of magnitude. The consequence is that effects of different cooling rates are

visible in the generated glass structures [20, 21] and the systems fall out of equilibrium at a

much higher temperatures than in real experiments and, thus, the glass transition temperatures

are not comparable. In addition to other general limitations of a computer model, one has to

keep in mind this difference in the cooling history, when examining glass structures generated

by computer simulations.

In different glass forming systems, the temperature dependence of the structural relaxation time

τα can have a different functional form. A convenient way of demonstrating this feature is

plotting the shear viscosities η or the relaxation times τα with respect to T/Tg in the so-called

http://dx.doi.org/10.1103/PhysRevLett.71.2260
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Figure 2.3: Angell plots of the shear viscosity η and structural relaxation time τα with
respect to Tg/T for different glass forming systems, including computer simulations of SiO2

with the BKS potential [22]. Figure from [12], http://dx.doi.org/10.1126/science.267.5206.1924.
Reprinted with permission from AAAS. Reprinted figure with permission from [13],
http://dx.doi.org/10.1103/RevModPhys.83.587. Copyright (2015) by the American Physical Society.

Angell plot [12]. Here, the definition of Tg according to η = 1013 Poise is employed. In Fig. 2.3,

examples for different glass forming systems are shown, including computer simulations of SiO2

with the BKS potential [22]. The “strong” glass formers, like, for example, SiO2, GeO2 and B2O3

show an Arrhenius-like behavior of η (T ) or τα (T ) over the whole temperature range, whereas

the “fragile” glass formers show a super-Arrhenius behavior with a dramatic change of η or τα

in the glass transition range. Here, the relaxation times increase faster than exponentially with

decreasing temperature. This behavior can be modeled by means of a Vogel-Fulcher-Tammann-

law [15]:

η (T ) = η0 exp

[
B

T − T0

]
. (2.1)

This functional form diverges at the Vogel-temperature T0. The temperature T0 is close to the

so-called Kauzmann temperature TK [23], at which the excess entropy of a fluid with respect to

the corresponding crystalline structure 4S = S − Scryst can be extrapolated to zero. A small

value B/T0 leads to a strong curvature of η (T ) and the super-Arrhenius behavior of η (T ) or

τα (T ) in case of the so-called “fragile” glass formers. In the limit of T0 → 0, equation (2.1)

shows the Arrhenius dependence. Therefore, a large value of B/T0 leads to a good description

of the so-called “strong” glass formers. However, the Vogel-Fulcher-Tammann law does not

have a solid theoretical foundation [15]. Another functional form with a more solid theoretical

foundation is predicted by Mode-Coupling Theory [24]:

http://dx.doi.org/10.1126/science.267.5206.1924
http://dx.doi.org/10.1103/RevModPhys.83.587
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η (T ) = η0 (T − Tc)
−γ . (2.2)

Here, Tc is the critical temperature, corresponding to the transition temperature of the system

to an ideal glass and γ is a critical exponent. The parameters Tc and γ depend on the material

and can be calculated.

Another matter of fact, clearly visible in Fig. 2.3, is that the timescales accessible by computer

simulations only allow the calculation of equilibrium properties at higher temperatures than the

ones accessible in experiments. A way to overcome this gap is to extrapolate different properties

to lower temperatures if the temperature dependence is known. At least for rather strong glass

formers, many properties should show an Arrhenius-like temperature dependence and therefore

an extrapolation is possible in some cases.

2.2 Vibrational properties, structure and anomalies of oxide

glasses

As already described in the introduction, oxide glasses consist of network formers and network

modifiers. The most important network formers for industrial applications are silicon oxide SiO2

and boron oxide B2O3. Other oxides that are capable of forming a three-dimensional network

are, for example, water H2O and germanium oxide GeO2.

Figure 2.4: Illustration of two connected SiO4

tetrahedra.
Figure 2.5: Illustration of BO3 triangle

and boroxol ring.

All network formers are capable of building a stable three dimensional network. In each case, the

glassy network consists of basic building blocks that are connected via bridging oxygen atoms.

In the case of SiO2, the basic building block of the glass structure is a tetrahedron consisting

of a silicon atom surrounded by four oxygen atoms: SiO4. This is illustrated in Fig. 2.4. In

the case of B2O3, the basic building block is a plane triangular structure consisting of a boron

atom surrounded by three oxygen atoms: BO3 (see Fig. 2.5). These glassy networks show no

long-range order, but there is an intermediate or medium range structure. A way to describe
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the intermediate range structure is the notation of ring sizes n. Here, n is the number of Si-O or

B-O pairs that are linearly connected in a way that the first and last oxygen atom are identical.

Figure 2.6: Raman spectrum of vitreous
SiO2. Reprinted from [25], http://dx.doi.org/
10.1016/0038-1098(82)90329-5, with permission

from Elsevier.

Figure 2.7: Raman spectrum of vitre-
ous B2O3. Reprinted figure with permis-
sion from [26], http://dx.doi.org/10.1103/Phys
RevB.22.3983. Copyright (2015) by the Ameri-

can Physical Society.

The vibrational spectrum of oxide glasses gives valuable information on the glass structure. In

combination with different structural models, conclusions also on the intermediate range order

can be drawn. There are different experimental techniques that give insight into the vibrational

properties, for example Raman spectroscopy and inelastic neutron scattering. However, the

intensities of the Raman spectrum are highly influenced by the Raman coupling factors. In Fig.

2.6, for example, a Raman spectrum of vitreous SiO2 is shown. Generally, the high frequency

part of the spectrum is connected to vibrational modes that are spatially more localized and the

low frequency part is connected to less localized vibrational modes. So, for example, the modes

in the frequency range from about 1000 cm−1 =̂ 30.0 THz to 1200 cm−1 =̂ 36 THz are connected to

Si-O bond-stretching motions. In addition to the rather broad vibrational bands, distinct sharp

peaks are visible. These sharp peaks are connected to certain structural features. The so-called

D1 and D2 lines in the vibrational spectrum of SiO2 at approximately 495 cm−1 =̂ 14.8 THz and

606 cm−1 =̂ 18.2 THz are connected to the breathing motion of four-membered (n = 4) and three-

membered (n = 3) rings [27, 28]. In the vibrational spectrum g (ν) of B2O3, the most prominent

feature is the sharp peak at about 808 cm−1 =̂ 24.2 THz. This feature is most pronounced in

the Raman spectrum (see Fig. 2.7), due to the Raman coupling factors, but also visible in

inelastic neutron scattering [29, 30]. This is connected to the breathing mode of oxygens in a

three-membered ring (n = 3). A planar ring consisting of 3 boron and 3 oxygen atoms is called

boroxol ring, when the participating boron atoms are all 3-fold coordinated with respect to the

oxygen atoms and the oxygen atoms are all 2-fold coordinated with respect to the boron atoms

[31]. This is illustrated in Fig. 2.5. The high intensity of this peak in the vibrational spectrum

in combination with NMR measurements leads to the conclusion that about 60%− 80% of the

boron atoms are localized within such boroxol rings. As a consequence, pure B2O3 glass can be

seen as a network of BO3 triangles and B3O6 rings.

http://dx.doi.org/10.1016/0038-1098(82)90329-5
http://dx.doi.org/10.1016/0038-1098(82)90329-5
http://dx.doi.org/10.1103/PhysRevB.22.3983
http://dx.doi.org/10.1103/PhysRevB.22.3983
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The above mentioned oxide glasses have rather striking thermo-mechanical properties. For

example, vitreous SiO2 shows a change of sign of the the linear expansion coefficient αL (T ) and

a range of negative thermal expansion near the absolute zero at temperatures below about 200 K

[32, 33]. In addition, a density maximum occurs in the molten state at approximately 1823 K

[34].

Figure 2.8: Longitudinal (M) and shear (G)
elastic moduli of SiO2, B2O3 and GeO2 glass
with respect to temperature. Reprinted from
[35] with permission from the Society of Glass

Technology.

Figure 2.9: Raman spectrum of vitreous B2O3

at different temperatures. Reprinted figure
with permission from [36], http://dx.doi.org/
10.1103/PhysRevB.45.12797. Copyright (2015)

by the American Physical Society.

Also SiO2, as well as B2O3 and GeO2, show an increase of the elastic moduli with increasing

temperature in certain temperature regimes [35, 37]. For SiO2, the elastic moduli increase

steadily over the whole temperature range displayed in Fig. 2.8. In the case of GeO2, they

show a steady increase with a small cusp at about the glass transition temperature. B2O3

shows first a sharp decrease around the glass transition temperature, whereas in the melt at

high temperatures, the elastic moduli show a steady increase. This means that the effect of

the glass transition is most pronounced for the most fragile of the three glasses, namely B2O3.

Here, the decay of the elastic moduli is connected to the dissolution of boroxol rings. In fact,

Raman spectroscopy at different temperatures below and above the glass transition range shows

a strong decrease of the full width at half maximum (FWHM) and the Raman intensity of the

peak at around 808 cm−1 =̂ 24.2 THz [36] (see Fig. 2.9). In contrast to the immediate drop of the

elastic moduli at about the glass transition temperature in the case of B2O3, the steady increase

of the moduli, in all cases, is connected to topological changes of the network structure without

changing the ring sizes. For example in SiO2, the steady increase is attributed to spontaneous

Si-O-Si bond rotations similar to the phase transformation from α- to β-cristobalite [38], which

http://dx.doi.org/10.1103/PhysRevB.45.12797
http://dx.doi.org/10.1103/PhysRevB.45.12797
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both show a structure with six-membered rings (n = 6). The α-cristobalite has a higher density

and less symmetric six-membered rings, whereas β-cristobalite has a lower density and six-

membered rings with a higher symmetry. In vitreous SiO2, the dominant ring size is n = 6, as

well, and the so-called amorphous-amorphous transition leads to a structure with a lower density

and, at the same time, higher elastic moduli.

2.3 Modeling of oxide glasses

The modeling of oxide glasses can be performed in different ways. A simple approach for

modeling the glass structure is the construction of ball and stick models [39]. More sophisticated

models can be developed by means of computer simulations. To perform computer simulations of

oxide glasses on an atomistic level, two different things have to be considered: On the one hand,

the interactions of the atoms have to be specified. On the other hand, an initial configuration

of the atoms has to be generated and the atom positions have to be updated in a specified

manner in each simulation step. A common update scheme of the atoms is the technique of

classical molecular dynamics simulations [40]. Here, the particles, in principle, follow trajectories

according to Newton’s laws of motion of classical mechanics. In addition, the implementation

of a thermostat is necessary to perform simulations at a specific temperature. The technique

of classical molecular dynamics simulations is described in detail in section 3.1. In classical

mechanics, the interactions between particles are described by classical forces. It is convenient

to model the atomic interactions by conservative forces which can be derived from a classical

potential V ({ri (t)}) depending on the positions of all atoms of the system. The concrete

mathematical form of the interaction potential V ({ri (t)}) can be arbitrarily complex. The

chemical bonds between the atomic constituents of oxide glasses have an ionic and a directional

covalent character. Therefore, a typical potential consists of a long-range electrostatic term and

short-range terms. The electrostatic term is composed of 2-body pairwise interactions as the

electrostatic force between two atoms only depends on their charge and the distance between

them. Specific difficulties, arising from the long-range nature of this interaction, and common

ways of implementation techniques are discussed in section 3.1. The short-range interactions

typically are only active within a certain cutoff radius rc of a few angstroms Å (1 Å = 10−10 m)

and consist of a repulsive term, originating from the Pauli exclusion principle of the electrons

in the atomic shells, and different attractive terms (see section 3.5). Often, van der Waals

interactions are used for this purpose. A common addition are further attractive contributions

to model the covalent character of inter-atomic bonds. The short-range potential V ({ri (t)}) has

to include 3-body interactions, in addition to pairwise interactions, if the directional character

of the covalent bonds should be included into the model. In this case, the forces on the atoms

not only depend on the pairwise distances between them, but also on the magnitude of angles

between distinct triples of atoms. Typical functional forms are given in section 3.5. This makes

the implementation more difficult. However, especially in glasses containing boron oxide B2O3,

the directional term is found to be important to get an acceptable model of the glass structure
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(see chapter 6). In the case of SiO2, it is possible to simulate good model glasses only using

2-body interactions (see chapter 4).

More sophisticated simulation techniques include quantum mechanical interactions between

atoms. In principle, the atomic nuclei and the surrounding electrons have to be mathemati-

cally described within the framework of quantum mechanics by means of a total wave function

|Ψ ({ri} ; {xi})〉 depending on all degrees of freedom of the system, by solving the many-body

Schrödinger equation with the interaction potential V ({ri} ; {xi}). Here, {xi} stands for the

degrees of freedom of the n electrons and {ri} for the degrees of freedom of the N nuclei. Often,

it is sufficient to treat only the electrons quantum mechanically and the atomic nuclei as classi-

cal particles. This simplification is called Born-Oppenheimer approximation [41] and is justified

by the fact that the electronic mass me is of the order 10−4 of the mass of an atomic nucleus.

However, treating all electronic degrees of freedom quantum mechanically is still a many-body

problem which is mathematically to complex to solve computationally with present computer

technology. Further simplifications have to be made, leading to the density functional theory

(DFT). The basic idea of DFT is that any property of the system can be expressed as a func-

tional of the ground state density of the electrons n0 (x) and that the electronic density n (x)

that minimizes the functional of the total energy E [n (x)] is the ground state density n0 (x).

These are implications of the two Hohenberg-Kohn theorems [9]. Another implication is that it

is possible to introduce a system of fictive non-interacting electrons, described by one-particle

Schroedinger equations with only 1-body interactions VS (xi), such, that the electronic density

n (x) of the system is unchanged. An additional simplification is to treat only the valence elec-

trons of a system explicitly and replace the effects of the core electrons by a pseudopotential.

The formalism of DFT is described in detail in section 3.2. DFT is a powerful technique that

is broadly used nowadays to simulate different kinds of systems as the interactions between the

atoms of the system are quite realistic, despite the simplifications made. Also no empirical forces

have to be used. As already described in section 2.1, this technique is computationally much

more demanding and requires much smaller system sizes of about 100 - 200 atoms and much

faster cooling rates.

Therefore, a useful scheme to generate good glass structures on the computer could be to equi-

librate a system at high temperatures with a classical molecular dynamics simulation and after

a quench down to room temperature or 0 K switch off the classical force field and continue the

computer simulation with a DFT calculation. This combination of classical and quantum me-

chanical simulation has already been successfully applied, for example, in case of the model glass

former SiO2 [10, 11]. A crucial requirement for the application of this technique is a reliable

interaction potential or force field for the classical MD simulation. Once a glass structure has

been generated, a comparison of the vibrational spectrum or phonon density of states g (ν) with

experimental results is a good test for the quality of the structure as a good glass structure, in

combination with DFT forces, can lead to a realistic g (ν). Here, ν = ω/2π is the vibrational

frequency. By thermal occupation of g (ν) or the respective eigenmodes with eigenfrequencies

νn, the thermodynamic properties of heat capacity at constant volume CV (T ), entropy S (T )

and Helmholtz free energy F (T ) can be calculated (see section 3.4). The calculation of F (T ) at
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different system densities gives also access to the linear expansion coefficients αL (T ) = 1
L

(
∂L
∂T

)
p

(see chapter 5). Especially, CV (T ) and αL (T ) can be directly compared to experimental results.

2.4 Themes of this work

As mentioned before, the quality of a classical force field is an important issue when examining

glass melts and generating glass structures by classical MD simulations. For glasses containing

SiO2, a widely used interaction potential is the BKS potential, established by Beest, Kramer

and Van Santen in 1990 [22]. The parameters are derived by an iterative process of parameter

fitting to microscopic ab initio data of small clusters and optimizing the values to reproduce

the experimental unit-cell dimensions and elastic constants of quartz. The BKS potential is

an interaction potential only containing 2-body terms. In large scale MD simulations [42], the

structural properties, like the static structure factor, are found to be in quite good agreement

with experimental results. However, the effective phonon density of states g (ν) shows discre-

pancies to the experimental one for low and intermediate frequencies [20]. By employing a new

fitting scheme for potential parameters, the properties of the BKS potential could be improved

[43]. Here, the potential parameters have been fitted according to the structural properties of a

quantum mechanical molecular dynamics simulation of liquid SiO2, starting with the parameter

set from the BKS potential. However, the vibrational spectrum g (ν) of the new CHIK potential

still shows significant differences to the experimental one. As already mentioned in section 2.3, in

addition to a realistic structure of the glass or vitreous liquid, it is also necessary to use realistic

forces to calculate a realistic g (ν). In most cases, this can only be achieved by means of a

quantum mechanical calculation. Due to the success of the new fitting method [43] in improving

the structural properties of liquid and vitreous SiO2, one theme of this work is the application of

this structure-matching scheme to the model glass former B2O3. As described in section 2.2, the

structure of glasses, containing boron oxide is rather complex and so far, no force field was able

to generate a glass structure with a sufficiently high amount of atoms contained in boroxol rings

when quenched from the melt. Promising existing potentials are all rather complicated and, for

example, include coordination-dependent terms [44, 45], 4-body terms [46, 47], charge-transfer

terms [48] or polarization effects [49, 50]. An overview over existing classical force fields of B2O3

is given in section 6.1. Regarding this matter, one goal of this work is to test how the structure

matching scheme [43] in combination with a simple 2- or 3- body model potential, can lead to

a competitive interaction potential and how this scheme could be extended to multi-component

glasses.

As already explained in section 2.3, the general course of action in this work is to generate glass

structures by quenches from the melt with classical MD simulations and subsequent quantum

mechanical relaxations. The latter restrict the examined system sizes to about 100 - 200 atoms.

These glass configurations are compared to glass structures, generated by full ab initio quenches,

and to experimental results. In chapter 4, these methods are employed in case of the model glass

former SiO2. Here, classical simulations are carried out with the BKS [22] potential and the
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CHIK [43] potential. A system size of 165 atoms turns out to be a reasonable choice. In addition

to the structural and vibrational properties of the quenched glasses, the structural and dynamical

properties of the glass melts are studied (see section 4.1), including the comparison of different

system sizes and the temperature dependence of the self-diffusion constants. In principle, the

properties of the BKS and the CHIK potential have been compared before [43, 51]. However,

to my knowledge, it has not been studied before if structural differences are visible in the glass

configurations after the classical quench and the subsequent quantum mechanical relaxation. The

respective glass structures are examined in section 4.2. In section 4.3, the vibrational properties

are calculated and compared to experimental results. In chapter 5, the thermal expansion

of these model glass structures is calculated using the so-called quasi-harmonic approximation,

based on the vibrational spectra at different system densities. Classical and quantum mechanical

forces are employed and the linear expansion coefficients αL (T ) are compared to experimental

results. To my knowledge, the calculation of the thermal expansion of vitreous silica by ab initio

methods has not been reported before. In chapter 6, the model glass former B2O3 is studied. On

the one hand, a set of new force field parameters is fitted, based on the liquid trajectory of an

ab initio MD simulation at 2300 K (see section 6.3). On the other hand, the properties of liquid

B2O3 are studied by means of ab initio MD simulations at different temperatures and compared

to the ones of the new classical parameter sets (see sections 6.2 and 6.4). These simulations are

carried out at a system size of 150 atoms and a constant system density. Additionally, classical

MD simulations of 1200 atoms at p = 0 external pressure are conducted. In all cases, the

dependence of different properties on temperature are examined, as the internal pressure (150

atom simulations at constant density), the system density ρ (1200 atom simulations at constant

external pressure), the self-diffusion constants, the mean B-O-B angles, the mean coordination

numbers and the ring sizes. Finally, a set of glass structures is generated in the way described

above. The structural and vibrational properties of the glass structures, according to the new

parameter set, the original parameter set before the fitting procedure and 4 independent full

ab initio quenches are compared to each other and to experimental results (see sections 6.5 and

6.6), both, using classical and quantum mechanical forces.



Chapter 3

Simulation techniques and analysis

3.1 Classical MD simulations

3.1.1 Basic concept

Basic idea of molecular dynamics (MD) simulations

There are different ways to sample the equilibrium properties of a classical many-body system.

One way are classical Monte Carlo (MC) simulations [52]. Here, the positions of the particles

are updated in a stochastic manner, depending on a sequence of random numbers. Another

approach is the one of classical molecular dynamics (MD) simulations. Here, in principle, the

classical equations of motion are solved [40]:

Mi r̈i = −∇ri V = Fi. (3.1)

This allows to follow the real-time trajectory of the particles and to compute time dependent

quantities of the system, such as time correlation functions. The interaction-potential V =

V ({ri (t)}) can be written as a series of different 1-, 2- and many-body contributions:

V =

N∑

i=1

V1 (ri) +
1

2!

N∑

i,j 6=i=1

V2 (rij) +
1

3!

N∑

i,j 6=i,k 6=i=1

V3 (rij , rik) + . . . , rij = ri − rj . (3.2)

In principle, it can contain up to N-body terms. If no external fields are applied, it is convenient

to chose V1 = 0. In general, equation 3.1 can not be solved analytically, but has to be integrated

numerically. The most naive algorithm would be to just make a Taylor-expansion up to a specific

order:

13
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ri (t+ δt) = ri (t) + vi (t) δt+
Fi (t)

2Mi
δt2, Fi (t) = −∇ri V ({ri (t)}) , (3.3)

vi (t+ δt) = vi (t) +
Fi (t)

Mi
δt, (3.4)

This Euler algorithm has some severe drawbacks [7]: It is not time-reversible, meaning that

ri (t+ δt) − vi (t+ δt) δt + Fi(t+δt)
2Mi

δt2 6= ri (t). Furthermore, it is not symplectic, meaning the

volume in phase space is not preserved. This can result in a long-term energy drift, which is, of

course, unfavorable. A time-reversible and symplectic form of the numerical integration scheme

can be achieved by adding the second-order Taylor expansion of ri (t) with negative sign to the

one, according to equation (3.3). This leads to the Verlet algorithm [53] for the update of the

particle positions:

ri (t+ δt) = 2 ri (t)− ri (t− δt) +
Fi (t)

2Mi
δt2. (3.5)

In this algorithm, the velocities are not included explicitly to compute the trajectories. However,

they are needed to calculate the kinetic energy and the total energy of the system

Ekin (t) =

N∑

i=1

vi (t)2

2Mi
, Etot (t) = Ekin (t) + V ({ri (t)}) (3.6)

The velocities can be obtained by means of the particle positions at times t+ δt and t− δt:

vi (t) =
ri (t+ δt)− ri (t− δt)

2δt
, (3.7)

meaning they can only be calculated when the particle positions at ri (t+ δt) are known. This

drawback can be overcome by using the velocity Verlet algorithm [54]. Here, the particle positions

are updated, according to equation (3.3) and the velocities are update in the following way:

vi (t+ δt) = vi (t) +
Fi (t) + Fi (t+ δt)

2Mi
δt. (3.8)

In fact, this algorithm is equivalent to the Verlet algorithm (equation (3.5)). This can be seen

by substituting vi (t) = vi (t− δt)+ δt
2Mi

[Fi (t− δt) + Fi (t)] (equation (3.8) evaluated at t−δt)
into equation (3.3). Usually this algorithm is implemented in the following way:

� Update the particle positions according to equation 3.3.
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� Update the velocities according to: vi
(
t+ 1

2δt
)

= vi (t) + Fi(t)
Mi

1
2δt.

� Calculate the inter-particle forces according to the particle positions ri (t+ δt): Fi (t+ δt) =

−∇ri V (ri (t+ δt) , .., rN (t+ δt)).

� Update the velocities according to: vi (t+ δt) = vi
(
t+ 1

2δt
)

+ Fi(t+δt)
Mi

1
2δt.

Integrating the equations of motion (3.1), using one of the above integration schemes, leads to

the statistical sampling of the system in the microcanonical (NVE) ensemble, meaning the total

energy of the system (see equation (3.6)) is conserved. In the limit of δt→ 0 this is exactly the

case, meaning the Hamiltonian

H =

N∑

i=1

p2
i

2Mi
+ V ({ri}) , (3.9)

which is the Legendre transform of the Lagrangian

L =

N∑

i=1

Mi

(
∂ri
∂t

)2

2
− V ({ri}) , (3.10)

is a conserved quantity. In practice, the total energy fluctuates around the mean value during a

simulation run. This is connected to the fact that the discretized equations of motion with finite

δt have a different conserved quantity, called shadow Hamiltonian [55]. The leading corrections

to the functional form of equation (3.9) are of the order δt2. Therefore, the amplitude of the

total energy fluctuations δEtot = |Etot − 〈Etot〉| should be proportional to the time step squared

(δt)2:

|Etot − 〈Etot〉| ∝ (δt)2 . (3.11)

This relation is tested in case of the model glass formers SiO2 and B2O3 in subsection 4.1.1 and

section 6.4.

More details of molecular dynamics (MD) simulations

In a MC, as well as an MD simulation, the typical number of particles N is of the order of

a few 10000 to 100000. In practice, they are confined in a finite simulation box with box length

LBox. When studying the bulk properties of the system, one is not interested in the effects

due to the surface of the system. As the surface area scales with N 1/3, surface effects become
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irrelevant, when studying macroscopic systems of the order of N > 1023 atoms. To avoid surface

effects, the concept of periodic boundary conditions is introduced [40]. Here, the simulation

box is surrounded by its own replicas. When a particle moves in the original box, its periodic

image moves in the same way and when a particle leaves the original box through one of the

walls, an image particle enters through the opposite one. This is illustrated in Fig. 3.1. This

implies that only the coordinates of the atoms in the original box have to be stored during the

simulation run. In addition, the number of times is counted that an atom passes one of the walls

in each direction. With this information the so-called unwrapped atom coordinates ri,u. can be

calculated. These are important to study, for example, the diffusive properties of the system, as

ri,u. (t)− ri,u. (0) is the total distance that atom i moved in time t.

Figure 3.1: Illustration of periodic boundary
conditions. Figure reprinted from [40], page 24.

With permission of Oxford University Press.

Figure 3.2: Illustration of minimum image
convention. Figure reprinted from [40], page 28.

With permission of Oxford University Press.

The method of periodic boundary conditions preserves the total momentum and energy. How-

ever, long-wavelength fluctuations with a wavelength longer than the length of the simulation

box LBox are suppressed. Also, depending on the interaction potential V ({ri (t)}), a particle

can interact with its own image, leading to unwanted effects. This means that the summations

in equation (3.2) not only run over the particles 1, . . . , N within the original simulation box, but

also over all relevant image particles. To avoid this, usually, the minimal image convention is

applied for short-range interactions. This states, that an atom interacts with all atoms that lie

within the closest periodic image of the N −1 other atoms in the system [40]. This is illustrated

in Fig. 3.2.

As stated above, in a classical molecular dynamics simulation, the forces on the atoms are

computed by the derivatives of the interaction potential (see equation (3.1)):
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Fi = −∇ri V ({ri (t)}) . (3.12)

As already stated above, the total interaction potential (see equation (3.2)) can contain short-

range and long-range interactions. Normally, the number of contributions to the total potential

energy of the system, according to the individual 2- and 3- body terms of the interaction potential

V2 (rij) and V3 (rij , rik), increases with increasing inter-particle distances rij = |rij |. This is the

case, as the number of particles at a distance rij increases asymptotically with rd−1
ij , when d is

the dimension of the system [7]. Therefore, interactions are classified as short-range interactions

when the respective potential term decreases faster than r−dij and vice versa. In section 3.5,

examples of typical short-range 2-body and 3-body potentials are given. To fulfill the minimum

image convention, it is necessary to truncate all short-range parts of the potential at a specific

cutoff radius rc < LBox/2. Usually, the potential term has already decayed to a value close

to 0 at inter-particle distances of rij = rc. However, it is convenient to shift the short-range

potential to zero at rij = rc by subtracting the numerical value at the cutoff radius V (rc). This

guarantees an overall continuous potential V ({ri (t)}). However, it is still not differentiable at

the cutoff rc. According to equation (3.12), the forces between atoms at inter-atomic distances

of rij = rc would be proportional to delta-distributions: Fi ∝ δ (rij). To avoid this, the short-

range potential can be multiplied with a smoothing function after shifting it to zero at rij = rc.

In this work, the functional form of

G (r) = exp

[
− d

(r − rc)
2

]
(3.13)

is chosen, leading to a short-range potential of

V S,Shifted+Smoothed =
(
V S (r)− V S (rc)

)
G (r) . (3.14)

In subsection 4.1.1 and section 6.4, the effect of the smoothing on the long term energy drift

and the fluctuations of the total energy δEtot is studied in the case of SiO2 and B2O3.

The most prominent example of a long-range interaction is the Coulomb interaction. Of course,

this plays an important role in the modeling of oxide glasses. In case of periodic boundary

conditions, the summations of the 2-body terms in equation (3.2) would run over infinite numbers

of particles, leading to:
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V =
1

2

∑

n∈Z3

N∑

i,j=1,i 6=jforn=0

V Coul (rij + nLBox) =
1

2

∑

n∈Z3

N∑

i,j=1,i 6=jforn=0

CCoul qi qj
|rij + nLBox|

. (3.15)

The proportionality constant CCoul depends on the units used in the simulation. In case of

[E] = eV, [q] = e and [r] = Å, the value is CCoul = 14.399644846 eV Å. In equation (3.15),

an infinite summation over all n ∈ Z3 has to be carried out. Here, the standard method for

the numerical treatment of this problem is presented, the Ewald summation [56]. Following the

description of [57], a potential decaying with 1
r can be re-written as:

1

r
=

1

r
− 2√

π

ˆ gew

0
dt exp

[
−r2 t2

]
+

2√
π

ˆ gew

0
dt exp

[
−r2 t2

]
(3.16)

⇔ 1

r
=

erfc (gew r)

r
+

2√
π

ˆ gew

0
dt exp

[
−r2 t2

]
. (3.17)

Here, erfc (x) is the complementary error function erfc (x) = 2√
π

´∞
x dt exp

[
−t2
]
. It has the

property that it is fast decaying to zero with increasing x. Putting this into equation (3.15) the

sum can be split into two parts:

V = V S + V L (3.18)

V S :=
1

2

∑

n∈Z3

N∑

i,j=1,i 6=jforn=0

V CS (|rij + nLBox|) (3.19)

⇔ V S =
1

2

∑

n∈Z3

N∑

i,j=1,i 6=jforn=0

CCoul qi qj
|rij + nLBox|

erfc (gew |rij + nLBox|) (3.20)

V L :=
1

2

∑

n∈Z3

N∑

i,j=1,i 6=jforn=0

2CCoul qi qj√
π

ˆ gew

0
dt exp

[
− |rij + nLBox|2 t2

]
. (3.21)

Due to the properties of erfc (x), the 2-body term V CS (r) in equation (3.20) is a short-range

interaction and can be cut off at an appropriate cutoff rew
c , according to the minimum image

convention. When adding the terms for n = 0 to i = j = 0 in equation (3.21), the long-range

part of the potential, V L, becomes a periodic function expanded in a Fourier series. For f̂ being

the Fourier transform of f

f̂ (k) =

ˆ
R3

dx f (x) exp [−ik · x] , f (x) =
1

(2π)3

ˆ
R3

dk f̂ (k) exp [ik · x] , (3.22)
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the Poisson summation formula holds [58]:

∑

n∈Z3

f (n) =
∑

n∈Z3

f̂ (2πn) =
∑

k∈ 2π n
LBox

f̂ (kLBox) . (3.23)

This in mind, the term V L in equation (3.21) can be reformulated:

V L =
1

2

N∑

i,j=1

2CCoul qi qj√
π

ˆ gew

0
dt

∑

k∈ 2π n
LBox

\k≡0

ˆ
R3

dn exp
[
− |rij + nLBox|2 t2 − LBox k · n

]

− V L
self.

(3.24)

The solution of the integrals leads to [40]:

V L =
1

2πL3
Box

∑

k∈ 2π n
LBox

\k≡0

(2π)2 exp

[
−
(

k
2 gew

)2
]

k2

N∑

i,j=1

CCoul qi qj exp [ik · rij ]− V L
self . (3.25)

The self term V L
self in equations (3.24) and (3.25) contains the terms for n = 0 to i = j = 0 that

have been added to V L before. It can be calculated in the limit of εi := rij → 0:

V L
self =

1

2

N∑

i=1

2CCoul q
2
i√

π
lim
εi→0

ˆ gew

0
dt exp

[
−ε2i t2

]
(3.26)

⇔ V L
self =

1

2

N∑

i=1

CCoul q
2
i lim
εi→0

1− erfc (gew εi)

εi
' gew√

π

N∑

i=1

CCoul q
2
i , (3.27)

as erfc (x) = 1− 2√
π
x+O

(
x3
)
.

The exclusion of k ≡ 0 in equations (3.24) and (3.25) is a direct consequence of the conditional

convergence of the Ewald sum. This assumption is consistent with a situation, where the periodic

system (the original simulation box with its infinite periodic images) is embedded in a medium

with infinite dielectric constant, meaning an ideal conductor [7].

In practice, the complementary error function can be approximated as
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erfc (x) = tp (x) exp
[
−x2

]
+ ε (x) , |ε (x)| ≤ 1.5 · 10−7.

Here, tp (x) is a polynomial of the order 5 in (1 + 0.3275911x)−1 [59].

As limx→∞ erfc(x)/x = exp(−x2)/x2, the error, due to the cutting off of the short-range term V CS

at rew
c , scales as exp[−(gew rew

c )2]/(gew rew
c )2 (see equations (3.19) and (3.20)). According to equation

(3.25), the cutoff error in reciprocal space is exp

[
−
(

kc
2 gew

)2
]
/
(

kc
2 gew

)2
. In practice, the choice of the

real space cutoff and the cutoff error determines the parameters gew and kc and therefore the

number of k-vectors included in the summation.

As stated above, the numerical integration of equation (3.1) leads to the trajectories in the NVE

ensemble. When calculating the statistical average of certain quantities, the ensemble average

is equal to the time average of this quantity with respect to particular simulation times t, where

the atom configurations ri (t) are uncorrelated to the previous ones. It should be mentioned that

the exact trajectory of the individual atoms is not important for the statistical sampling and the

accurate prediction of an atomic trajectory is not possible for longer simulation times, due to

the Lyapunov instability. It states that the difference between two different particle trajectories

diverges as |∆r (t)| ∝ ε exp [λt], when the initial conditions are disturbed by a small amount ε

[7].

Techniques to speed up simulations

As explained above, all short-range interactions are cut off at a certain cutoff distance rc (or

rew
c ). This means that particles with larger minimum image distances do not interact. This

motivates the utilization of Verlet neighbor lists [40] for each atom in the simulation box. This

list contains all neighboring atoms within a first neighbor distance less than the cutoff distance

plus a so-called skin distance rskin. Interactions between the atoms are only calculated for atoms

contained in the neighbor list, reducing the computational cost significantly. In an ideal case

the computational costs scale like O (N) instead of O
(
N2
)
.

Nowadays, it is convenient to run a simulation program on more than one processor in parallel.

There are different schemes for parallelization of a computer program. The parallelization of

the LAMMPS software package [60, 61], used for all classical MD simulations in this work, is

based on the Message Passing Interface (MPI) standard [62]. Here, the program is started on

Nproc processors in parallel. Each of the processes carries out a part of the simulation and

communicates with the other processes in terms of messages. Input and output is only done by

one process. In case of classical MD simulations and the LAMMPS software package, a domain

decomposition is applied. Here, the simulation box is divided into a 3-dimensional grid of Nproc

domains. Each processor calculates the interactions and integrates the equations of motion for

the atoms within its domain. Therefore, the positions of all atoms in the Verlet neighbor lists

have to be known. Atoms, contained in the neighbor list that are not located in the respective
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domain, are called ghost or halo atoms. These position have to be stored, as well, in every of

the Nproc processes and are updated after the positions of the original atoms are updated. In

an ideal case, the parallelization on Nproc processors should speed up the simulation by a factor

of Nproc. However, the speedup is usually less pronounced due to communication times and an

unequal load balancing on each processor. The speedup in case of a 165 system of the model

glass former SiO2 is tested in subsection 4.1.1.

Calculating temperature and pressure

The standard method to measure the instantaneous temperature in a classical MD simulation

is to employ the kinetic energy of the atoms (see equation (3.6)). In case of a 3-dimensional

system the relation between the kinetic energy and the temperature is

T :=
2

3N kBEkin
, Ekin =

N∑

i=1

v2
i

2Mi
. (3.28)

Using the instantaneous values of vi (t), the temperature at the simulation time t can be calcu-

lated.

The virial of a N particle system in a simulation box of volume V is defined as cite:

V := −1

2

N∑

i=1

〈ri · Ftot,i〉 , Ftot,i = Fi + Fext,i. (3.29)

Here, Ftot,i is the total force on each particle due to the internal interactions with the other

particles of the system, Fi = −∇ri V , and external contributions Fext,i, due to the collisions

with the confining simulation box. Following the description in [51], the external virial, resulting

from Fext,i, is connected to the internal pressure of the system as:

3

2
pint V = Vext = −1

2

N∑

i=1

〈ri · Fext,i〉 . (3.30)

Combination of equations (3.28), (3.29) and (3.29) with the virial theorem [63]

〈Ekin〉 = V, (3.31)

leads to
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〈Ekin〉 = −1

2

N∑

i=1

〈ri · Fi〉+
3

2
pint V (3.32)

pint =
N kB T

V
+

1

3V

N∑

i=1

(ri · Fi) . (3.33)

Using the instantaneous value of ri (t)·Fi (t), the internal pressure of the system at the simulation

time t can be calculated.

The above description can be extended to the non-isotropic case, leading to:

Sint,αβ =
1

V

N∑

i=1

Mi vi,α vi,β +
1

V

N∑

i=1

(ri,α Fi,β) , α, β ∈ {1, 2, 3} . (3.34)

Here, Sint,αβ is the internal stress tensor.

3.1.2 MD sampling in different statistical ensembles

It is possible to conduct molecular dynamics simulations in others than the microcanonical

ensemble. This can be achieved by employing thermostats and barostats, resembling the coupling

of the system to an external bath.

To simulate in the canonical ensemble, different kinds of thermostats can be used. The idea of

the Nosé thermostat [64] is to introduce an additional degree of freedom in the Lagrangian of

the system L and the corresponding Hamiltonian of the system (see equations (3.10) and (3.9)).

In the following, the formulations of the Nosé and Nosé-Hoover thermostat of [65] are employed.

The Lagrangian, proposed by Nosé in [64], and the corresponding Hamiltonian are:

LNosé =
N∑

i=1

Mis
2
(
∂ri
∂t′

)2

2
− V ({ri}) +

Q
(
∂s
∂t′

)2

2
− g kBT ln (s) , (3.35)

HNosé =

N∑

i=1

p
′2
i

2Mis2
+ V ({ri}) +

p2
s

2Q
+ g kBT ln (s) . (3.36)

Here, a virtual time t
′

is introduced. The respective equations of motion are:
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∂ri
∂t′

=
p
′
i

Mis2
,

∂p
′
i

∂t′
= −∇ri V, (3.37)

∂s

∂t′
=
ps

Q
,

∂ps

∂t′
=

1

s

(
N∑

i=1

p
′2
i

Mis2
− g kBT

)
. (3.38)

The corresponding equations of motion for the variable pairs
{

ri,pi = p
′
i/s
}

in real time t = t
′
/s

are:

∂ri
∂t

= s
∂ri
∂t′

=
p
′
i

Mis
=

pi
Mi

, (3.39)

∂pi
∂t

= s
∂

∂t′

(
p
′
i

s

)
=
∂p
′
i

∂t′
− 1

s

∂s

∂t′
p
′
i = −∇ri V −

1

s

∂s

∂t
pi, (3.40)

∂s

∂t
= s

∂s

∂t′
= s

ps

Q
, (3.41)

∂ps

∂t
= s

∂ps

∂t′
=

N∑

i=1

p2
i

Mi
− g kBT. (3.42)

The microcanonical partition function of the system described by HNosé is:

Ω =

ˆ N∏

i=1

dp
′
idridpsds δ

(
HNosé

({
ri,p

′
i

}
, ps, s

)
− E

)
(3.43)

⇔ Ω =

ˆ N∏

i=1

dpidridpsds s
3N δ (HNosé ({ri,pi} , ps, s)− E) . (3.44)

Applying the identity

δ (f (s)) =
δ (s− s0)

|f ′ (s0)| , f (s0) = 0, (3.45)

to equation (3.44), leads to:

Ω =

ˆ N∏

i=1

dpidridpsds s
3N

δ

(
s− exp

[
E− p2

i
2Mi
−V ({ri})− p2s

2Q

g kBT

])

g kBT
s

. (3.46)
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By choosing g = (3N + 1), equation (3.46) is the partition function of the canonical ensemble,

coupled to a heat bath with the temperature T :

Ω =

ˆ N∏

i=1

dpidri exp


−

p2
i

2Mi
− V ({ri})
kBT



ˆ
dps

exp

[
E− p2s

2Q

kBT

]

(3N + 1) kBT
. (3.47)

The second term can be regarded as a constant.

As proposed by Hoover [66], one can simplify the equations of motion (equations (3.39) to (3.42))

by introducing a new variable:

ξ :=
1

s

∂s

∂t
=
ps

Q
=:

pε
Q
. (3.48)

This leads to the following equations of motion:

∂ri
∂t

=
pi
Mi

,
∂pi
∂t

= −∇ri V − ξ pi,
∂ξ

∂t
=

1

Q

(
N∑

i=1

p2
i

Mi
− g kBT

)
. (3.49)

The term ξ pi = pξ pi/Q in equation (3.49) can be interpreted as a friction term. The magnitude

depends on the difference between the instantaneous temperature of the system and the temper-

ature of the external heat bath T . In this way, the temperature of the system is controlled. The

Nosé-Hoover thermostat has a resonance frequency of ω2 = g kBT/Q. By changing the so-called

mass term Q, this resonance frequency or the timespan in which the temperature is relaxed to

the target temperature T can be controlled.

In a similar way, simulations in an isothermal-isobaric (NpT) ensemble can be conducted, in-

troducing an additional degree of freedom. Following the description of [67], in this case the

conserved quantity for a system in 3-dimensions is:

HNpT =

N∑

i=1

p2
i

2Mi
+ V ({ri}) +

p2
ξ

2Q
+ (3N + 1) kBT ξ +

p2
ε

2Wg
+ p V. (3.50)

According to [67], the corresponding equations of motion are:
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∂ri
∂t

=
pi
Mi

+
pε
Wg

ri,
∂pi
∂t

= −∇ri V ({ri})−
(

1 +
1

N

)
pε
Wg

pi −
pξ
Q

pi, (3.51)

∂V

∂t
=

3V pε
Wg

,
∂pε
∂t

= 3V (pint − p) +
1

N

N∑

i=1

p2
i

Mi
− pξpε

Q
(3.52)

ξ =
pξ
Q
,

∂pξ
∂t

=

N∑

i=1

p2
i

Mi
+

p2
ε

Wg
− (3N + 1) kBT. (3.53)

These equations, in principle, generate the isothermal-isobaric partition function at external

temperature T and pressure p. Here, the volume of the simulation box V is allowed to change as

well and pint is the internal pressure of the system (see equation (3.33)). As above, the frequency

of the barostat can be controlled by altering the mass term Wg.

In [68], a set of equations of motion are given that allow the shape of the simulation box to

fluctuate as well, due to an arbitrary external stress, following the ideas of [69]. In addition to

the latter, a chain of k = 1, . . . ,M Nosé-Hoover thermostats is coupled to the system, to simulate

the system at arbitrary external temperature as well. As described above, the frequencies of

the fluctuations can be controlled by changing the mass terms Wg and Qk, k = 1, . . . ,M . The

implementation in the LAMMPS software package [60, 61], used for all classical MD simulations

in this work, is based on the formulations of [68].

3.2 Density functional theory

In this section, an overview over the basic concepts is given, describing a quantum mechanical

many-body system in terms of density functional theory (DFT).

3.2.1 Basic concepts of quantum mechanics

In principle, a system of N atoms and n electrons located at positions {ri} and {xi} is described

by a many-body Schrödinger equation. When the Hamiltonian Ĥ does not depend on time

explicitly, which is the case for the system of N atoms and n electrons in absence of time-

dependent external potentials, the time-independent Schrödinger equation is given as:

Ĥ |Ψ ({ri} ; {xi})〉 = E |Ψ ({ri} ; {xi})〉 , (3.54)

with the many-body Hamiltonian
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Ĥ = T̂N + T̂e + V̂NN + V̂Ne + V̂ee. (3.55)

In the whole section 3.2, atomic units are used, meaning e2 = ~ = me = 1. The different terms

in equation (3.55) are the operators of the kinetic energy of the N nuclei and n electrons,

T̂N =
N∑

i=1

−∇2
ri

2Mi
, T̂e =

n∑

i=1

−∇2
xi

2
, (3.56)

and the potential energy operators for the nuclei-nuclei, nuclei-electron and electron-electron

interaction:

V̂NN =
1

2

N∑

i,j 6=i=1

Zi Zj
|ri − rj |

, V̂Ne =
N∑

i=1

n∑

j=1

Zi
|ri − xj |

, V̂ee =
1

2

n∑

i,j 6=i=1

1

|xi − xj |
. (3.57)

Here, Mi are the masses and Zi the charge numbers of the nuclei. Equation (3.54) is analytically

not solvable.

Equation (3.54), in combination with equation (3.55), can be reduced to the Schrödinger equation

only for the electronic degrees of freedom, applying the Born-Oppenheimer approximation [41].

This states that because of the difference between the masses of the nuclei and the electrons of

about 4 orders of magnitude, it is an excellent approximation to separate the total wave function

|Ψ ({ri} ; {xi})〉 into a product of the wave function of the nuclei and the one of the electrons:

|Ψ ({ri} ; {xi})〉 ' |Φ ({ri}〉 |Ψ {xi})〉 . (3.58)

Furthermore, it is assumed that, at room temperature, the electrons are always in the ground

state. This is a reasonable assumption as the typical energies of electronic excitations are of the

order of several eV which is much greater than the thermal energy of an electron at 300K of

about 0.026 eV. Following the formulations in [70], the energy eigenvalues E of equation (3.54)

can be written as

Etotal ({ri}) = VNN ({ri}) + Eelec ({ri}) . (3.59)
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This means that quantum mechanical many-body problem is reduced to the one of n electrons

in an external potential, due to the N nuclei at fixed positions {ri}, leading to

Ĥ |Ψ ({xi})〉 = Eelec ({ri}) |Ψ ({xi})〉 , Ĥ = T̂e + V̂ext + V̂ee, (3.60)

and the potential energy of the N nuclei VNN ({ri}) is just treated as a constant energy term.

In the case of absent additional external fields, the potential operator V̂ext =
∑n

j=1 vext (xj) is

the one due to the nuclei-electron interaction V̂Ne in equation (3.57). Here, V̂ext is a one-body

operator with respect to the electron positions {xi} with

vext (xj) =
N∑

i=1

Zi
|ri − xj |

(3.61)

in the case of V̂ext = V̂Ne. In the following, the notation of the eigenvalue Eelec ({ri}) is replaced

by E again, in the sense of being the energy eigenvalue of the n electron system for a fixed set

of nuclei positions {ri}.

The ground state energy, according to equation (3.60), satisfies the variational principle

E = min
Ψ

〈
Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉
, (3.62)

minimizing over all antisymmetric n-body wave functions |Ψ〉. This is the basis for the Hartree-

Fock (HF) approximation, where the many-body wave function |Ψ〉 is approximated by an

anti-symmetrized product of single-particle wave functions [71], based on the so-called Slater

determinant [72].

The one-particle density, which is defined as expectation value of the density operator n̂ (x) =∑n
i=1 δ (x− xi), is given as:

n (x) = 〈Ψ |n̂ (x)|Ψ〉 = n
∑

σ1

· · ·
∑

σn

ˆ
dx2 . . .dxn |Ψ (xσ1,x2 σ2, . . . ,xn σn)|2 . (3.63)

Here, the spin degrees of freedom {σi} are explicitly included that have been omitted in the above

equations and it is assumed that |Ψ〉 is normalized to |Ψ|2 = 1. The one-particle density is a

much simpler quantity than the many-body wave function |Ψ〉 and n (x) dx gives the probability

to find any electron in a volume element dx around x.
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3.2.2 Hohenberg-Kohn theorems

The basis for the description of the many-body system of n electrons in terms of the one-

particle density (see equation (3.63)) are the two Hohenberg-Kohn theorems [9]. Following the

description in [73], they can be written as:

Theorem I

The ground state one-particle density n (x) of a many body-system (see equation (3.60)) uniquely

determines the external potential V̂ext up to a constant.

This implies that any property of the system can be written as a function of the ground state

density n0 (x), because by determining V̂ext, the Hamiltonian Ĥ in equation (3.60) is fixed up to

a constant. This means that also the wave functions |Ψ〉 are, in principle, uniquely determined.

Theorem II

The energy functional in equation (3.62) can be written as a functional E [n (x)] of the one-

particle density n (x) for any external potential V̂ext. The global minimum of this functional is

the ground state energy and the density n (x) that minimizes the functional is the ground state

density n0 (x).

This implies that the functional E [n (x)] by itself determines the ground state energy and ground

state density. Following [70], the variational problem can be formulated in two steps. In the

first step,

F [n (x)] = min
Ψ→n

〈
Ψ
∣∣∣T̂ + V̂ee

∣∣∣Ψ
〉

(3.64)

is minimized. This has to be understood as a minimization over all antisymmetric wave functions

yielding a given density n (x). In the second step,

E [n] = min
n

(
F [n] +

ˆ
dxn (x) vext (x)

)
(3.65)

is minimized over all reasonable densities fulfilling n (x) ≥ 0,
´

dxn (x) = N , with vext (x),

according to equation (3.61).

3.2.3 Kohn-Sham equations

The main statement of the two Hohenberg-Kohn theorems (see subsection 3.2.2) is that any

system property can be expressed in terms of the one-particle density n (x). Due to Kohn
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and Sham [74], one can replace the complex many-body system of interacting electrons with a

set of fictive non-interacting electrons in some effective local potentials vs,σ (x). Following the

descriptions in [70] and [73], the so-called Kohn-Sham (KS) system can be described by:

(
−1

2
∇2

x + vs,σ (x)

)
φi,σ (x) = εi,σ φi,σ (x) . (3.66)

Here, the spin variables σ ∈ {↑, ↓} are introduced explicitly. Depending on the type of system,

it makes sense to treat the two different spin states separately, leading to more accurate approx-

imations for systems with an odd number of electrons. Consequently, all considered quantities

are functionals of the spin up and down densities nσ (x), σ ∈ {↑, ↓}, separately. As in the

Hartree-Fock case, the wave function of the KS system is usually an anti-symmetrized product

of the orbitals or eigenstates φi,σ (x) of the n = n↑ + n↓ electrons of the system. In the ground

state, usually all of the n↑ and n↓ eigenstates are occupied and the total ground state density

can be written as

n (x) =
∑

σ

nσ (x) =
∑

σ

nσ∑

i=1

|φi (x)|2 . (3.67)

The local potential has to be chosen in a way that the ground state density of the KS system

is equal to the ground state density of the fully interacting system. The relation between the

energy terms of the KS system and the real electrons in equation (3.60) is the following:

E = Te + Vext + Vee = Ts + U + Vext + Exc = Ts + Vs, (3.68)

with

Vext =
∑

σ=↑,↓

ˆ
dxnσ (x) vext (x) , Vs =

∑

σ=↑,↓

ˆ
dxnσ (x) vs (x) . (3.69)

Here,

Ts = −1

2

∑

σ=↑,↓

nσ∑

i=1

〈
φi,σ

∣∣∇2
x

∣∣φi,σ
〉

=
1

2

∑

σ=↑,↓

nσ∑

i=1

ˆ
dx |∇xφi,σ (x)|2 > 0 (3.70)
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is the kinetic energy of the KS eigenstates and

U =
1

2

∑

σ,σ
′
=↑,↓

ˆ
dx

ˆ
dx
′ nσ (x) nσ′

(
x
′
)

|x− x′ | > 0 (3.71)

is the electrostatic or Hartree repulsive self-energy, according to the one-particle densities of

charged electrons nσ (x), σ ∈ {↑, ↓}.

Equations (3.67) and (3.70) allow the calculation of the functional derivatives of Ts and nσ (x)

with respect to the KS eigenstates φi,σ:

δnσ (x)

δφi,σ (x)
= φi,σ (x) ,

δTs

δφi,σ (x)
= −1

2
∇2

x φi,σ (x) . (3.72)

The set of KS eigenstates that minimize E = Ts+U+Vext+Exc, according to equation (3.68), can

be obtained employing a variational principle. Using equation (3.72) this leads to the following

expression:

δE

δφi,σ (x)
=

δTs

δφi,σ (x)
+

[
δU

δnσ (x)
+

δVext

δnσ (x)
+

δExc

δnσ (x)

]
δnσ (x)

δφi,σ (x)
= 0 (3.73)

⇔ δE

δφi,σ (x)
= −1

2
∇2

x φi,σ (x) +

[
δU

δnσ (x)
+

δVext

δnσ (x)
+

δExc

δnσ (x)

]
φi,σ (x) = 0. (3.74)

Using equations (3.68), (3.69) and (3.71), this leads to the one-electron Schrödinger equations

of the KS system (3.66) with

vs (x) = vext (x) + u (x) +
δExc

δnσ (x)
(3.75)

and

u (x) =
∑

σ=↑,↓

ˆ
dx
′ nσ

(
x
′
)

|x− x′ | . (3.76)

This implies that the exact ground state energy E and ground state density n0,σ (x) could be

calculated, if the so-called exchange-correlation functional Exc was known. In practice, the
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computation works by an initial guess of the density nσ (x). Then, the potential term vs (x) is

calculated, according to equation (3.75). Subsequently, the KS equations (3.66) are solved and

a new density is obtained from the resulting φi,σ (x) (see equation (3.67)). The procedure is

iterated until the differences in nσ (x) are lower than a desired cutoff value.

This means that the KS equations, in principle, allow for an exact solution of the complex many-

body problem, limited by the numerical accuracy of the iteration process. The approximative

nature of the Kohn-Sham approach is caused by the guess of a suitable exchange-correlation

functional

Exc = Ex + Ec. (3.77)

The exchange part Ex of the exchange-correlation energy is given by

Ex = −1

2

∑

σ,i,j

ˆ
dx

ˆ
dx
′ φ
∗
i,σ (x)φ∗j,σ

(
x
′
)
φi,σ

(
x
′
)
φ∗j,σ (x)

|x− x′ | . (3.78)

According to [70], this is the energy contribution due to V̂ee (see equation (3.57)), evaluated in

terms of the KS eigenstates φi,σ minus the respective the Hartree energy (see equation (3.71)).

This means, Ex follows exactly the same anti-symmetrized product of the Hartree-Fock method

[71], based on the Slater determinant [72]. The correlation part Ec, in principle, is everything

else needed to make equation (3.68) exact. This can be understood as the remaining differences

between the non-interacting KS electrons and the interacting real electrons with correlation

effects. However, no general formulation of Ec can be found.

At this point it should be stated that the KS eigenstates φi,σ (x) have no physical meaning at

all [75], but in many cases their interpretation as real electronic states works quite well.

As explained in subsection 3.1.1, the set of atoms is located in a simulation box with periodic

boundary conditions and surrounding replicas of the latter. In this sense, the system can be

viewed as a crystalline structure with the unit cell being the simulation box. According to Bloch’s

theorem [76], the one-electron wave functions, which are solutions of the stationary Schrödinger

equation with a periodic potential V (x) = V (x + R) (R ∈ {nLBox}, n ∈ Z3, in case of a cubic

simulation box with box length LBox), have the functional form:

φi,σ (x) = eik·x ui,σ;k (x) , with ui,σ;k (x) = ui,σ;k (x + R) . (3.79)
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Here, k is a wave-vector of the reciprocal space of the first Brillouin zone, according to the

periodicity of uj,σ;k (x).

In practice, the terms ui,σ;k in equation (3.79) are expanded in terms of an orthonormal basis

set. It is convenient to expand ui,σ;k in terms of plane waves as in this approach the boundary

conditions are automatically satisfied. This results in:

ui,σ;k (x) =
1√
V

∑

G∈ 2π n
LBox

Ci,σ;G,k eiG·x and φi,σ =
1√
V

∑

G∈ 2π n
LBox

Ci,σ;G,k ei(G+k)·x. (3.80)

The summation over vectors G is restricted to reciprocal lattice vectors, meaning G ∈ 2π n
LBox

,

n ∈ Z3, to fulfill equation (3.79). In this work, all DFT calculations are carried out with the

Vienna Ab initio Simulation Package (VASP) [77–79], which is a plane wave code. In practice,

only distinct k-values of the Brillouin zone are chosen and the expansion over G-vectors has to

be cut off at a certain value Gcut such that only plane waves are included with

1

2
|G + k|2 < Ecut. (3.81)

The number of k-points included and the cutoff energy Ecut influence the accuracy of the cal-

culation.

3.2.4 Exchange-correlation functionals

As explained in subsection 3.2.3, the solution of the complex quantum mechanical many-body

problem of n electrons in an external potential Vext in terms of the KS approach depends on the

a-priori unknown choice of the exchange-correlation functional Exc [nσ (x)].

The simplest approximation of an exchange-correlation functional is the local (spin) density

approximation (LDA):

ELDA
xc =

ˆ
dx ehom

xc (n↑ (x) , n↓ (x)) . (3.82)

Here, ehom
xc (n↑ (x) , n↓ (x)) is the energy density of a homogeneous electron gas with the density

nσ (x). This means that the corresponding eigenstates are plane waves. The exchange part of

equation (3.77) can be calculated by inserting the latter in equation (3.78). The correlation

part can be parametrized [80]. The justification for this approach is that, in solids with slowly

varying electron density, the density is often close to the one of a homogeneous electron gas [74].
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The exchange-correlation functional ELDA
xc is uniquely defined. It tends to lead to systematically

too large binding energies by about 1 eV per bond [70] and too short bond lengths by about 1%

[81].

The next step in improving the exchange-correlation functional is taking into account the gra-

dient of the electron density, leading to the generalized gradient approximation (GGA):

EGGA
xc =

ˆ
dx eGGA

xc (n↑ (x) , n↓ (x) , |∇xn↑ (x)| , |∇xn↓ (x)|) . (3.83)

Another approach is the use of so-called hybrid functionals [70]:

EHybrid
xc = c

(
Ex − EGGA

x

)
+ EGGA

xc . (3.84)

Here, EGGA
x is the exchange part of equation (3.83) and Ex is the “exact” exchange energy,

obtained by putting the KS eigenstates into equation (3.78) and c ∈ [0, 1] is some parameter.

In contrast to the local (spin) density approximation (LDA), the functionals of the generalized

gradient approximation (GGA) and hybrid functionals are not uniquely defined. On the one

hand, they can be parametrized empirically by parameter fits to reference data of atoms and

molecules. On the other hand, they can be parametrized without the empirical data by known

exact conditions of the functional. The standard GGA potential, parametrized in the second way,

is the Perdew-Burke-Ernzerhof (PBE) type [82, 83]. The GGA exchange-correlation functional

of the PBE type reduces the overbinding of the LDA potential to about 0.3 eV [70]. However,

it tends to lead to overestimate the bond lengths systematically by about 1%[81]. In this work,

the GGA potential of type PBE, revised for solids, is used [84]. This leads to a slightly better

fitting of the bond lengths [81].

3.2.5 Pseudopotentials

In subsections 3.2.1 to 3.2.4, the basic ideas of calculating quantum mechanical properties on the

basis of density functional theory are explained. However, the chemical properties of a system

are largely determined by the outer or valence electrons of the atoms, in contrast to the core

electrons which are localized close to the nuclei. The strong Coulomb potentials of the nuclei

V̂Ne (see equation (3.57)) lead to strongly varying electronic wave functions in their vicinity,

increasing the computational effort, as more plane waves have to be included (see equations

(3.80) and (3.81)). Also, in principle, relativistic effects play a role, due to the rather high

(kinetic) energy (E = k2/2) of the electrons close to the nuclei. A way to overcome this, is

the employment of pseudopotentials. Here, the potential terms of the nuclei VNe (see equation

(3.57)) are replaced by effective potentials that include the effects of core electrons within a core
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radius rcore around the nuclei. This means that the external potential V̂ext = V̂Ne in equations

(3.68) and (3.69) is replaced by an effective potential V̂eff and only the valence electrons are

treated explicitly in the way described in the subsections 3.2.1 to 3.2.4. The KS eigenstates

φi,σ (x) and the respective gradients ∇xφi,σ (x) of the valence electrons, according to V̂eff, must

agree with the ones, resulting from calculations with the original V̂ext = V̂Ne with all electrons,

outside the core radius rcore.

There are different types of pseudopotentials. In general, it is desired that the pseudopotentials

are a smooth function of x− ri, with ri being the positions of the ith nuclei. This allows a lower

cutoff energy Ecut, according to equation (3.81). For the norm-conserving pseudopotentials, the

integrated charge density, due to equation (3.67), is the same for the eigenstates of the effective

potential V̂eff, as well, as for the ones of the original potential V̂ext = V̂Ne. For the ultrasoft

pseudopotentials (USPP) [85], this restriction is given up, leading to an increased smoothness

of the pseudopotentials and a lower Ecut.

In this work, the projector augmented-wave method [86, 87] is applied. Here, the contributions

of all electrons are treated explicitly. The all-electron wave function |Ψ〉 is replaced by a pseudo

wave function
∣∣∣Ψ̃
〉

inside the core radius rcore (or augmentation sphere). Here, |Ψ〉 =
∑

i,σ (|φi,σ〉
is the all-electron wave function of the KS system, not of the real system. Outside the augmen-

tation sphere, the two are constructed to be the same. This can be achieved by means of a

projection operator T̂:

|Ψ〉 = T̂
∣∣∣Ψ̃
〉
. (3.85)

3.3 Static and dynamic correlation functions

During a simulation run, several structural and dynamical quantities are measured. As explained

in section 3.1, classical molecular dynamics simulations allow the calculation of ensemble averages

in terms of time averages over the respective trajectories. In the following, 〈·〉 represents such a

time average. In practice, every Ndis time steps the atom configurations are stored to calculate

the structural properties. This is done Nrep times. A typical value of Nrep is Nrep = 1000,

meaning the quantities are averaged over 1000 (independent) configurations. This requires to

select the value of Ndis in a way that the configurations are uncorrelated. In the following, the

indices α, β and γ stand for the different occurring atom types, namely α, β, γ ∈ {B,Si,O}, in

this work.

Pair correlation function

One important structural quantity is the partial pair correlation function or pair distribution

function gαβ (r). The pair correlation function gαβ (r) describes the probability density of finding
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two particles, one of type α and the other of type β, at a distance r, divided by the probability

density of the same event in a noninteracting system, namely an ideal gas. It is defined as:

gαβ (r) := Nαβ
〈
Nα∑

i=1

Nβ∑

j=1

1

4π r2
δ (r − |ri − rj |)

〉
, (3.86)

with i 6= j for α 6= β and the normalization constant

Nαβ =





N
ρNα(Nα−1) = V

Nα(Nα−1) , α = β

N
ρNαNβ

= V
NαNβ

, α 6= β
. (3.87)

Here, N is the total number of atoms in the system, ρ = N/V is the total particle number density,

Nα and Nβ are the total numbers of atoms of type α, β in the configuration and V is the volume

of the simulation box. This means that limr→∞ gαβ (r) = 1 as then no correlations between the

particles due to inter-atomic interactions are visible.

In practice, the pair correlation function can be calculated, applying the following formula [40]:

gαβ (r) = 〈Nαβ (r)〉 Nαβ
(

4π

3

[
(r + dr)3 − r3

])−1

. (3.88)

In equation (3.88), the distance r refers to the minimal image distance between the atoms of

types α and β, according to the considerations in subsection 3.1.1. Nαβ (r) is the number of

particles, one of type α and the other of type β, within a minimal image distance between r and

r+dr and 4π
3

[
(r + dr)3 − r3

]
is the volume of a 2-dimensional shell of width dr. This means that

the computation is done with respect to bins of width dr. In case of a cubic simulation box with

box length LBox, the formulation of equation (3.88) holds for all minimal image distances smaller

than LBox/2, restricting the distances r, gαβ (r) can be calculated for. In case of a simulation box

with a different shape, the same holds for distances smaller than half of the smallest dimension

of the box.

Static structure factor

Scattering experiments give access to information in reciprocal space, in contrast to real space.

A structural quantity in reciprocal space corresponding to the partial pair correlation function

is the partial static structure factor. It is defined by:
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Sαβ (k) :=
fαβ
N

〈
Nα∑

i=1

Nβ∑

j=1

exp [ik · (ri − rj)]

〉
, (3.89)

with N being the total atom number, Nα and Nβ being the atom numbers of types α and β

and fαβ = 0.5 for α 6= β and fαβ = 1 for α = β being normalization constants, correcting for

the double counting in case of α 6= β. For an isotropic system, Sαβ (k) only depends on the

magnitude of the wave-vector k = |k|. The connection between Sαβ (k) and gαβ (r) is as follows

[40]:

Sαβ (k) = 1 +
N

V

ˆ
dr exp [ik · r] gαβ (r) . (3.90)

Regarding this expression, it can be seen that Sαβ (k) diverges at k = 0 ( Sαβ (k = 0) ∝ δ (k) as

limr→∞ gαβ (r) = 1). This contribution, of course, is inaccessible experimentally and is ignored

in the following.

For simulations in a finite box, only specific k-values are allowed in the calculation of Sαβ (k). In

this work Sαβ (k) is calculated only in the case of a cubic simulation box. This leads to k ∈ 2π n
LBox

,

n ∈ Z3, as in equations (3.24) and (3.25) for the calculation of the long-range part of the Ewald

summation. In practice, first all possible k-vectors are determined with 0 ≤ k1 ≤ nmax
2π
LBox

,

−nmax
2π
LBox

≤ k2 ≤ nmax
2π
LBox

and −nmax
2π
LBox

≤ k3 ≤ nmax
2π
LBox

for some maximum nmax ∈ N.

If k1 = 0, the minimum value of k2 considered is 0 and if k1 = 0 and k2 = 0, the minimum value of

k3 considered is 0. Then, the degeneracy d (k) of possible k-vectors with the same absolute value

k is determined. In this way, all vectors k, together with all vectors −k, represent all allowed

k-vectors with |kα| ≤ nmax
2π
LBox

, α ∈ {1, 2, 3}. For k ≤ kall, all possible k-vectors are included

in the calculation of the partial static structure factors. Whereas, for k > kall, the k-range up to

a maximum value of k is divided into a certain number of intervals and for each interval a fixed

number of k-vectors is chosen randomly. Regarding this, the partial static structure factors are

calculated by implementing the following formulas:

Sαβ (k) =
1

Nd (k)

∑

k,|k|=k

〈(
Nα∑

i=1

eik·ri
)(

Nα∑

i=1

e−ik·ri
)〉

(3.91)

=
1

Nd (k)

∑

k,|k|=k

〈(
Nα∑

i=1

cos k · ri
)2

+

(
Nα∑

i=1

sin k · ri
)2〉

(3.92)

and
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Sαβ (k) =
1

2Nd (k)

∑

k,|k|=k

〈(
Nα∑

i=1

eik·ri
)


Nβ∑

i=1

e−ik·ri


+




Nβ∑

i=1

eik·ri



(
Nα∑

i=1

e−ik·ri
)〉

(3.93)

=
1

2Nd (k)

∑

k,|k|=k

〈(
Nα∑

i=1

cos k · ri
)


Nβ∑

i=1

cos k · ri


+

(
Nα∑

i=1

sin k · ri
)


Nβ∑

i=1

sin k · ri



〉
.

(3.94)

In sections 4.2 and 6.5, the simulation results are compared to neutron diffraction experiments.

According to [88], the neutron structure factors Sneutr. (k) can be extracted from the partial

static structure factors Sαβ (k):

Sneutr. (k) =
N∑

α (Nα b2α)

∑

α,β

bαbβSαβ (k) . (3.95)

In fact, in [88], the factor N is not present. However, without N , wrong results are obtained.

Here, bα and bβ are the neutron scattering lengths of the respective elements [89].

Angular distributions

In addition to the partial pair correlation functions and partial static structure factors it is

also interesting to get information about the distribution of angles in the system. This can be

obtained by the angular distribution. Following the description of [51], the latter is defined as:

pαβγ (Φ) :=
1

C

〈
Nα∑

i=1

Nβ∑

j=1

Nγ∑

k=1

δ (Φijk − Φ) θ (rmin,αβ − rij) θ (rmin,γβ − rkj)
〉
. (3.96)

Here, C is a normalization constant. In this work it is chosen in a way that the integrated

distribution is equal to
´ 180◦

0◦ dΦ pαβγ (Φ) = 1. Here, rij = |rij | = |ri − rj | and rkj = |rkj | =

|rk − rj | are the actual minimal image distances between the triplet of atoms i, j and k, forming

an angle, and Φijk = arccos
[
rij
rij
· rkjrkj

]
are the respective angles. The function θ (x) is the

Heaviside step function which, in equation (3.96), is equal to zero for distances greater than

rmin,αβ and rmin,γβ. These distances are chosen as the positions of the first minima in the

corresponding partial pair correlation functions (see equation (3.86)). This is a common way to

define the maximum bond length of an atom correlation.

Distribution of coordination numbers

Other structural quantities of interest are the partial coordination numbers of all correlations
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of atom types. In principle, the average partial coordination numbers n̄αβ are equal to the

integrated areas of the first peaks in the corresponding partial pair correlation functions:

n̄αβ =

ˆ rmin,αβ

0
dr gαβ (r) . (3.97)

In practice, the number of atomic neighbors of the specific type with a minimal image distance

r < rmin,αβ is counted in each case. Again, rmin,αβ is the distance corresponding to the first

minimum in gαβ (r). In this way, the average coordination number n̄αβ and the distribution of

coordination numbers pαβ (n) can be determined for each atom correlation.

Probability of an atom to be a member of a ring of size n

Additional interesting quantities are the probability that an atom of type α is member of a

ring of size n, pα (n), or the probability to find a ring of size n. According to [20], these are two

different quantities. In this work, the first one is computed. For that, starting with an atom of

type α, all neighboring atoms of type β are explored and, subsequently, all atom neighbors of

type α of the latter. This procedure is repeated until the starting atom α is reached again. The

number n of atoms of type α defines the ring size n. Again, neighboring atoms are all atoms

with a minimal image distance r < rmin,αβ. Rings of size n = 1 are defined as follows: Either

an atom of type α with only one atom neighbor of type β or vice versa. In this work, only rings

are examined with α ∈ {Si,O} and β ∈ {O}.

Computation of time correlation functions on a logarithmic time scale

In addition to these structural quantities, also dynamical properties are of interest. For this

purpose, atom configurations are stored on a logarithmic time scale, to calculate the time cor-

relation functions for time differences that differ in many orders of magnitude. This is done by

first choosing a fixed number Ns of time steps for each considered order of magnitude nm. Sub-

sequently, for each order of magnitude nm = 1, . . . , nmax, the relevant time steps are computed

by truncation of 10nm−1 · 101/Ns ts, 10nm−1 · 102/Ns ts, . . . , 10nm−1 · 101 ts to integer values. The

time step 0 is always included. So, for instance, for nmax = 4 and Ns = 4, the appropriate time

steps are: 0, 1, 3, 5, 10, 17, 31, 56, 100, 177, 316, 562, 1000, 1778, 3162, 5623, 10000. Next,

Nrep repetitions of these lists are constructed with starting points shifted on a linear timescale

by 0 ·Ndis, . . . , (Nrep−1) ·Ndis. Therefore, the total list contains Nrep ·nmax ·Ns time steps. This

list is sorted and double counted time steps are rejected. Typical values of the parameters are,

for example, nmax = 7, Ns = 5, Nrep = 1000 and Ndis = 100000. After sorting and rejecting the

double counted time steps, the final list for these values of the parameters, for example, contains

33100 time steps. In the course of a simulation run, the atom configurations are saved at the

distinct time steps, contained in the final list.
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Mean square displacement

One important time correlation function is the mean square displacement
〈
r2
α (t)

〉
. It is de-

fined as:

〈
r2
α (t)

〉
:=

1

Nα

Nα∑

i=1

〈
(ri,u. (t)− ri,u. (0))2

〉
. (3.98)

In fact,
√
〈r2
α (t)〉 is the mean absolute distance, an atom of type α moved away from its starting

position in the simulation time t. In equation (3.98), ri,u. (t) are the unwrapped atom coordinates,

as explained in subsection 3.1.1. In case of normal diffusion, the mean square displacement is

proportional to t in the limit of t→∞ and the self-diffusion constant Dα can be determined as

follows [7]:

Dα = lim
t→∞

〈
r2
α (t)

〉

6t
. (3.99)

Incoherent intermediate scattering function

Another important time correlation function is the incoherent intermediate scattering function

FS,α (k, t). It characterizes how a density fluctuation of a tagged particle of type α decays. It is

formally defined as:

FS,α (k, t) :=
1

N

〈
Nα∑

i=1

exp [ik · (ri (t)− ri (0))]

〉
. (3.100)

Here, ri are the atom coordinates within the original simulation box, in contrast to the un-

wrapped coordinates in case of the mean square displacement
〈
r2
α (t)

〉
. In practice, the incoherent

intermediate scattering functions are calculated in the following way:
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FS,α (k, t) :=
1

2Nd (k)

∑

k,|k|=k

〈
Nα∑

i=1

eik·(ri(t)−ri(0)) +

Nα∑

i=1

e−ik·(ri(t)−ri(0))

〉
(3.101)

=
1

2Nd (k)

∑

k,|k|=k

〈
Nα∑

i=1

(
eik·ri(t) e−ik·ri(0)

)
+

Nα∑

i=1

(
e−ik·ri(t) eik·ri(0)

)〉
(3.102)

=
1

Nd (k)

∑

k,|k|=k

〈
Nα∑

i=1

(cos (k · ri (t)) cos (k · ri (0)) + sin (k · ri (t)) sin (k · ri (0)))

〉
.

(3.103)

FS,α (k, t) is computed for one absolute value k = |k| and all possible k-vectors with this absolute

value are considered. As in case of the partial static structure factors, using the formulas above,

a summation over k and over −k is performed.

3.4 Vibrational properties

In this section, the basic concepts of the theory of lattice vibrations are given. As explained in

subsection 3.2.3, the set of atoms is located in a simulation box with periodic boundary conditions

and surrounding replicas of the latter can be viewed as a crystalline structure with the unit

cell being the simulation box. Therefore, the theory of lattice vibrations can be applied to the

amorphous structures as well. Here, the so-called “frozen-phonon” method is explained, meaning

the vibrational properties are calculated at a temperature of T = 0K. This method is based

on the assumption that for small displacements of the atoms from their equilibrium position at

0 K, the potential energy V of the system increases proportionally to the displacement of the

respective atom. Therefore, it is named harmonic approximation. Following the description

in the manual of the open source package Phonopy [90, 91], this allows to calculate the force

constants

Fi,α := −∂V ({ri})
∂ri,α

, i ∈ {1, . . . , N} , α ∈ {1, 2, 3} . (3.104)

Here, V ({ri}) is the total potential energy of the system for the equilibrium atom positions ri.

In this description, only the case of the restriction of the calculation to the original unit cell is

presented. In principle, the calculation can be extended to larger supercells in a straightforward

way by introducing another index, labeling the unit cells. Calculating the force constants Fi,α

for all N atoms of the unit cell and all Cartesian directions {1, 2, 3} leads to the force constant

matrix:
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Φαβ;i,j :=
∂2V ({ri})
∂ri,α∂rj,β

= −∂Fj,β
∂ri,α

. (3.105)

In practice, the derivatives with respect to the particle positions ri,α are calculated numerically

with respect to finite displacements ∆ri,α. Therefore, all atoms of the equilibrium configuration

are displaced by ∆ri,α in each Cartesian direction and the resulting forces on all atoms are

computed: Fj,β (∆ri,α) with i, j ∈ {1, N} and α, β ∈ {1, 2, 3}. This results in the approximation:

Φαβ;i,j := −Fj,β (∆ri,α)− Fj,β
∆ri,α

. (3.106)

Based on the force constant matrix, the dynamical matrix can be calculated [92]:

Dαβ;i,j (k) :=
1√

MiMj

Φαβ;i,j exp [ik · (ri − rj)] (3.107)

Here, Mi and Mj are the masses of the atoms. The k vector can take all possible values in the

first Brillouin zone, as described in subsection 3.2.3.

The dynamical matrix can be diagonalized:

N∑

j=1

N∑

j=1

Dαβ;i,j (k) êj;n := [2π νn (k)]2 êi;n. (3.108)

Here, νn (k), n ∈ {1, . . . , 3N} is the nth eigenfrequency, according to the nth eigenvalue of the

3N × 3N dimensional dynamical matrix and êi;n is the contribution of the ith atom to the

eigenvector of the corresponding vibrational mode. The product Dαβ;i,j (k) êj;n in equation has

to be understood as a product of the 3×3-dimensional matrix Dαβ;i,j (k) with the 3-dimensional

vector êj;n. In case of an amorphous system, no degeneracy of the eigenfrequencies is observed

due to lattice symmetries and all 3N eigenfrequencies ν (k)n are different.

Based on νn (k) the phonon density of states can be calculated [93]. In case of discrete k-values,

it is defined as:

g (ν) :=
1

3N Nk

∑

k

3N∑

n=1

δ (ν − νn (k)) . (3.109)
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Following the description in [93], the vibrations can be treated as 3N independent quantum

mechanical oscillators. This leads to a description of the internal energy of the system in terms

of the 3N eigenfrequencies νn (k):

UVib (T ) =
1

Nk

∑

k

3N∑

n=1

hνn (k)

[
n (νn (k)) +

1

2

]
(3.110)

⇔ UVib (T ) =
1

Nk

∑

k

3N∑

n=1

hνn (k)


 1

exp
[
hνn(k)
kBT

]
− 1

+
1

2


 (3.111)

⇔ UVib (T ) =
1

2Nk

∑

k

3N∑

n=1

hνn coth

[
hνn (k)

2 kBT

]
. (3.112)

The quantum mechanical treatment of the vibrations in lattices as a phonon gas is reflected in

the occupation number due to a Bose-Einstein statistics n (νn (k)) [63]. According to statistical

mechanics, the internal energy can be written as derivative of the canonical partition function

ZVib

UVib (T ) = kBT
2 ∂

∂T
ln [ZVib] , ZVib =

∑

i

e
−UVib,i

kBT , (3.113)

for a system with discrete energy levels UVib,i:

UVib,i =
1

Nk

∑

k,n

UVib,i;n (k) =
1

Nk

∑

k,n

hνn (k)

[
ni;n (k) +

1

2

]
. (3.114)

Here, UVib,i is expressed as a sum over individual modes ni;n (k), with ni;n (k) being an integer

value ni;n ∈ N0. This leads to the following expression for the canonical partition function ZVib:

ZVib (T ) =
∏

k,n

[∑

i

e
−UVib,i;n(k)

kBT

] 1
Nk

(3.115)

⇔ ZVib (T ) =
∏

k,n

[(
e
−hνn(k)

2 kBT + e
−3hνn(k)

2 kBT + e
−5hνn(k)

2 kBT + . . .

)] 1
Nk

(3.116)

⇔ ZVib (T ) =
∏

k,n


 e

−hνn(k)
2 kBT

1− e
−hνn(k)

kBT




1
Nk

. (3.117)
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From this, the vibrational part of the Helmholtz free energy FVib (T ) follows as

FVib (T ) = −kBT ln [ZVib (T )] = kBT
1

Nk

∑

k

3N∑

n=1

ln

[
2 sinh

(
hνn (k)

2kBT

)]
(3.118)

and the vibrational entropy follows as:

SVib (T ) = −∂FVib (T )

∂T
=
UVib (T )

T
+ kB ln [ZVib (T )] (3.119)

⇔ SVib (T ) =
1

2T Nk

∑

k

3N∑

n=1

hνn coth

[
hνn (k)

2 kBT

]
− kB

Nk

∑

k

3N∑

n=1

ln

[
2 sinh

(
hνn (k)

2kBT

)]
.

(3.120)

The specific heat at constant volume can be calculated using the following thermodynamic

relation:

CV (T ) =

(
∂UVib (T )

∂T

)

V

=
kB

Nk

∑

k

3N∑

n=1

(
hνn (k)

kBT

)2 exp
[
hνn(k)
kBT

]

(
exp

[
hνn(k)
kBT

]
− 1
)2 . (3.121)

3.5 Determination of classical potentials

As explained in subsection 3.1.1, the classical interaction potential V ({ri (t)}), in principle,

includes up to N -body interactions for a system of N particles (see equation (3.2)). For many

systems, 2-body terms Vij (rij) are sufficient to get appropriate estimates for the structural and

dynamical properties of the system. Here, rij = |ri − rj | is the minimal image distance between

a pair of atoms i and j. As explained in chapter 4, in the case of the model glass former SiO2,

the description with only 2-body potentials leads to reasonable results. In this case, the system

can be described quite well in terms of a Buckingham potential [94] with Coulomb interactions:

V Buck+Coul (r) = V Buck (r) + V Coul (r) = Aαβ exp [−bαβ r]−
Cαβ
r6

+ CCoul
qα qβ
r

. (3.122)

As in section 3.3, the indices α and β stand for the different atom types, namely α, β ∈ {B,Si,O}.
The different terms of the short-range Buckingham potential describe the Pauli repulsion energy

Aαβ exp [−bαβ r] and the attractive van der Waals energy −Cαβ
r6 for non-bonded atoms. Other

common functional forms of short-range 2-body potentials are the Lennard-Jones potential [95]:
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V LJ (r) = 4εαβ

[(σαβ
r

)12
−
(σαβ
r

)6
]

(3.123)

and the Morse potential [96]:

V Morse (r) = Aαβ (1− exp [−bαβ (r − r0,αβ)])2 . (3.124)

The two terms in the Lennard-Jones potential describe the Pauli repulsion energy
(σαβ

r

)12
and

the attractive van der Waals energy −
(σαβ

r

)6
, as in the case of the Buckingham potential. On

the other hand, the Morse potential describes the potential energy of a 2-atomic molecule with

equilibrium distance r0,αβ.

However, any classical potential is an approximation of the real interactions with some empirical

force field parameters. This means that a priori, no functional form is preferred. In fact, the

depth and gradient around the local minimum is most important. For all functional forms, the

latter strongly depend on the parameter set. As the description of the model glass former SiO2

in terms of the Buckingham potential with Coulomb interactions is quite successful, in this work

only this functional form is considered.

Regarding 3-body potentials, typically angular potentials Vijk (Φijk) , i, j, k ∈ {1, . . . , N}, are

studied. Here, Φijk = arccos
[
rij
rij
· rkjrkj

]
is the angle between the triplet of atoms with positions

ri, rj and rk. Usually, angular potentials are only included for certain triplets of atom types, for

example the O-B-O or the B-O-B angle in case of the model glass former B2O3, with minimal

image distances rij and rkj closer than the maximum bond lengths. In section 6.3, a way to

smoothly switch on and off the 3-body angular potentials, depending on the distances between

the corresponding atoms, is presented.

Common functional forms of 3-body angular potentials are a harmonic potential

V Harm (Φ) =
1

2
Kαβγ (Φ− Φ0,αβγ)2 , (3.125)

or a cosine potential

V Cos (Φ) = Kαβγ [1 + cos (Φ− Φ0,αβγ)] . (3.126)

Another possible functional form, used in [97], is the one of a Gaussian type with negative sign
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V Gauss (Φ) = −Kαβγ exp
[
−σαβγ (Φ− Φ0,αβγ)2

]
. (3.127)

In all cases, an equilibrium angle Φ0,αβγ is defined and the potential increases steadily for

Φ < Φ0,αβγ and Φ > Φ0,αβγ . Again, αβγ ∈ {B,Si,O} stand for the different considered atom

types.

There are different ways to determine the potential parameters of force fields. Typically, force

fields are parametrized with respect to ab initio data from crystals or small molecules in con-

junction with experimental data. In contrast to this, in the work of Carré [43], the force field

parameters of the BKS potential [22] for SiO2 are improved, according to an ab initio MD

simulation of liquid SiO2 at high temperature of 3600 K. In this case, the parameter fitting,

according to the structural properties of the liquid leads to better results than a force matching

scheme [51]. In the work of Carré [43], the structure matching is done by means of a minimiza-

tion of the differences in r gαβ (r) between the classical MD simulation and the ab initio MD

run at the same temperature. In this work, this scheme is adapted and extended to include the

angular distributions pαβγ (Φ) as well.

Following the description of [51], one can define a Chi-Square χ2 as:

χ2 ({ai}) :=
∑

α,β

Nd∑

i=1

[
gab initio
αβ

(
4d

(
i− 1

2

))
− gclassical

αβ

(
4d

(
i− 1

2

)
; {ai}

)

σαβ
(
4d

(
i− 1

2

))
]2

+
∑

α,β,γ

Na∑

i=1

[
pab initio
αβγ

(
4a

(
i− 1

2

))
− pclassical

αβγ

(
4a

(
i− 1

2

)
; {ai}

)

σαβγ
(
4a

(
i− 1

2

))
]2

.

(3.128)

Here, gab initio
αβ and pab initio

αβγ are the pair correlation functions and the angular distributions of

the liquid ab initio MD simulation, the structural fit is based on. The label classical in gclassical
αβ

and pclassical
αβγ stands for the corresponding structural quantities of the classical MD simulation

at the same temperature with some interaction potential with a parameter set of M potential

parameters: {ai}, i ∈ {1, . . . ,M}. The values of Nd and Na refer to the number of discretization

points or bins of the pair correlation functions and angular distributions. As the pair correlation

functions are calculated only for distances smaller than LBox/2 (see section 3.3), the corresponding

bin width is 4d = LBox/2Nd. The bin width of the angular distributions is 4a = 180◦/2Nd. In

equation (3.128), different data points can be given different statistical weight, according to their

statistical error or standard deviation, namely σαβ
(
4d

(
i− 1

2

))
and σαβγ

(
4a

(
i− 1

2

))
. In case

of σαβ = σαβγ all data points are equally weighted. In fact, χ2 ({ai}) is a measure of the quality

of the actual parameter set {ai}, i ∈ {1, . . . ,M}, implying that, the lower χ2, the lower are the

mean-squared differences between the structural quantities of the ab initio and the classical MD

simulation.
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In the procedure of parameter fitting, starting with an initial guess of {ai}, the next (local)

minimum of χ2 ({ai}) is searched employing a Levenberg-Marquardt procedure. This is a com-

bination of searching the next minimum via the gradient of χ2 ({ai}) and a second order method,

using the Hessian of χ2 ({ai}) with respect to the fit parameters {ai}. Following the description

in [51], the following notations are introduced:

βi := −1

2

∂χ2 ({ai})
∂ai

(3.129)

=
∑

α,β

Nd∑

i=1

gab initio
αβ − gclassical

αβ

σ2
αβ

∂gclassical
αβ

(
4d

(
i− 1

2

)
; {ai}

)

∂ai

+
∑

α,βγ

Na∑

i=1

pab initio
αβγ − pclassical

αβγ

σ2
αβγ

∂pclassical
αβγ

(
4a

(
i− 1

2

)
; {ai}

)

∂ai

(3.130)

and

αij :=
1

2

∂2χ2 ({ai})
∂ai∂aj

(3.131)

=
∑

α,β

Nd∑

i=1

1

σ2
αβ

[
∂gclassical

αβ

∂ai

∂gclassical
αβ

∂aj
−
[
gab initio
αβ − gclassical

αβ

] ∂2gclassical
αβ

∂ai∂aj

]

+
∑

α,βγ

Na∑

i=1

1

σ2
αβγ

[
∂pclassical

αβγ

∂ai

∂pclassical
αβγ

∂aj
−
[
pab initio
αβγ − pclassical

αβγ

] ∂2pclassical
αβγ

∂ai∂aj

]
.

(3.132)

Regarding these definitions, the Levenberg-Marquardt procedure can be written as follows:

M∑

j=1

αij (1 + λ δij)
(
a

(n+1)
i − a(n)

i

)
=:

M∑

j=1

α′ij
(
a

(n+1)
i − a(n)

i

)
= βi. (3.133)

Here, a
(n)
i stands for the actual value of the parameter ai at the nth iteration step of the iterative

procedure. Equation (3.133) has to be understood in the sense that, starting with a parameter

set {ai}(n), the next set of parameters {ai}(n+1) is found by inverting the matrix α′ij , leading to

a
(n+1)
i =

M∑

j=1

(
α′
)−1

ij
βj + a

(n)
i . (3.134)

Close to the (local) minimum, the following assumption holds
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[
gab initio
αβ

(
4d

(
i− 1

2

))
− gclassical

αβ

(
4d

(
i− 1

2

)
; {ai}

)]
' 0 (3.135)

and the matrix αij can be approximated as:

αij '
∑

α,β

Nd∑

i=1

1

σ2
αβ

[
∂gclassical

αβ

∂ai

∂gclassical
αβ

∂aj

]
. (3.136)

The parameter λ in equation (3.133) controls the balance between the first-order and second-

order terms. For λ � 1, the redefined α′ij is basically equal to the original Hessian matrix αij

and for λ � 1, the diagonal terms in α′ij dominate. During the iterative solving process λ is

divided by the factor 1.5 if the new parameter set leads to a decrease of χ2 (a1, . . . , aM ) and λ

is multiplied by the factor 1.5 if the new parameters give a higher χ2 (a1, . . . , aM ) (see equation

(3.128)).

To apply this algorithm, the numerical derivatives

∂gclassical
αβ

∂ai
= lim

εi→0

gclassical
αβ (ai, . . . , ai + εi, . . . , aM )− gclassical

αβ (ai, . . . , ai − εi, . . . , aM )

2εi
(3.137)

and

∂pclassical
αβγ

∂ai
= lim

εi→0

pclassical
αβγ (ai, . . . , ai + εi, . . . , aM )− pclassical

αβγ (ai, . . . , ai − εi, . . . , aM )

2εi
(3.138)

have to be calculated. This is done by calculating gclassical
αβ (r) for a small perturbation of the

specific parameter ai, while keeping the other parameters constant and evaluating the numeric

derivative for each of the Nd and Na discretization points. This implies that for each iteration

step 2 ·M + 1 different classical MD simulations have to be carried out.





Chapter 4

Model glass former SiO2

In this chapter, the simulation results of the model glass former SiO2 are summarized. In section

4.1, the structural and dynamical properties of liquid SiO2 are described in a temperature range

between 4300 K and 2700 K. After conducting several test runs, simulations at different system

sizes are carried out at a constant system density of ρ = 2.37 g/cm3, employing the BKS [22]

potential. The BKS potential has the unphysical property that the mean density is slightly

higher than ρ = 2.2 g/cm3 in a temperature range from about 6000 K down to 0 K [20], meaning

the mean pressure of a system at ρ = 2.2 g/cm3 is negative in this temperature range. This

motivates to study also a slightly higher mass density. The main finite size effects are the

slowing down of the dynamics and a decrease of the number of rings containing more than 6

Si atoms with decreasing system size. Next, the properties, according to the BKS [22], are

compared to the ones, according to the CHIK [43] potential, at a constant system density of

ρ = 2.2 g/cm3, which is the experimental density of vitreous SiO2 [98]. These simulation results

are in agreement with the ones, presented in [43], taking into account finite size effects. In

section 4.2, glass structures are generated by means of a quench from the melt with classical

MD simulations, using the BKS and the CHIK potential. The corresponding glass structures

before and after a structural relaxation with quantum mechanical forces are compared to one

glass structure generated by means of a full ab initio quench. The glass structures after the

quantum mechanical relaxation are in good agreement with experimental results, in all cases.

In section 4.3, the vibrational spectra are calculated, using classical and quantum mechanical

forces. The vibrational spectra, according to the quantum mechanical forces, show a significantly

improved agreement with results from inelastic neutron scattering [99, 100], compared to the

ones, according to the classical forces of the BKS, as well as the CHIK potential.

In principle, the liquid properties of the BKS and the CHIK potential are well studied. Also, the

structural differences of glass structures before and after a structural relaxation with quantum

mechanical forces have been examined before [10, 11] for glass samples, generated initially by a

quench from the melt with classical MD simulations. However, it has not been investigated if

there are differences in the glass structures, generated with the BKS and the CHIK potential,

both, before and after a structural relaxation with DFT forces.

49
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4.1 Liquid properties by means of classical MD simulation

As already described in section 3.5, the BKS as well as the CHIK potential only consists of pair

interactions of the functional form of a Buckingham potential with Coulomb interactions (see

equation (3.122)). In the case of the BKS potential, the Si-Si interaction is purely electrostatic.

The parameters are listed in Table 4.2.

parameters units BKS CHIK

qSi [e] 2.4 1.910418

ASiSi [eV] 3150.462646

bSiSi

[
Å
−1
]

2.851451

CSiSi

[
eV Å

6
]

626.751953

ASiO [eV] 18003.7572 27029.419922

bSiO

[
Å
−1
]

4.87318 5.158606

CSiO

[
eV Å

6
]

133.5381 148.099091

AOO [eV] 1388.7730 659.595398

bOO

[
Å
−1
]

2.760 2.590066

COO

[
eV Å

6
]

175.0 26.836679

Table 4.2: Parameters of the BKS [22] and the CHIK [43] potential.

In subsection 3.1.1, the necessity of a cutoff radius for the short-range interactions, the intro-

duction of a smoothing function (3.13) and the technique of splitting the long-range Coulomb

interaction into a short-range V CS (r) (3.20), evaluated in real space, and a long-range part, eval-

uated in Fourier space, have been explained. In all simulations of this work, the long-range part

of the Coulomb interaction is computed by means of a standard Ewald summation over k-vectors.

The simulation box for the smallest system size has only a box length LBox = 13.22944 Å. There-

fore, in all cases, a cutoff radius of rc = 5.5 Å is chosen for the short-range Buckingham part of

the potential, V Buck (r). The cutoff radius of V CS (r), rew
c , depends on the system size to ensure

a good balance of the computational effort for the computation of the real space and the Fourier

space parts. To guarantee an overall smooth potential, both, V Buck (r) and V CS (r) are shifted

to zero at the respective cutoff distances, rc = 5.5 and rew
c , and, subsequently, are multiplied by

a smoothing function, namely G (r) and Gew (r), with the functional form of equation (3.13). In

all cases, a value of d = dew = 0.05 Å
2

is chosen.

The Buckingham potential has the unphysical property that it diverges to minus infinity for

r → 0. In order that particle distances become close to zero, an energy barrier has to be crossed.

This is very unlikely, but not impossible. To prevent such problems, the shifted and smoothed

Buckingham potential with Coulomb interactions
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V ModBuck+Coul (r) =
(
V Buck (r)− V Buck (rc)

)
G (r) + V Coul (r) (4.1)

is substituted by a harmonic potential of the form

V Harm (r) = a1,αβ + a2,αβ (r − a3,αβ)2 (4.2)

for particle distances smaller than the positions of the local maxima r < rin,αβ, again, with

α, β ∈ {Si,O}. For a smooth crossover from the potential, according to equation (4.1), to the

harmonic potential V Harm (r) at rin,αβ, the parameters in (4.2) have to be chosen as follows:

a3,αβ is the position of the local maximum for the specific atom pair, according to equation

(4.1), a1,αβ is the value of the potential at r = a3,αβ, according to equation (4.1) and a2,αβ is

still unfixed. The positions of the local maxima are determined by means of Newton’s method

[101]. In case of the BKS potential, the values of a2,αβ are chosen, according to [57]. In case of

the CHIK potential, the values of a2,αβ = 100 eV Å
−2

are chosen in all cases. This results in the

following parameters, listed in Table 4.4.

Finally, this leads to the following functional form of total the short-range pair potential used

in the simulations:

V S (r) =





V Harm (r)− V Coul (r) +
(
V CS (r)− V CS (rew

c )
)
Gew (r) , r ≤ rin

(
V Buck (r)− V Buck (rc)

)
G (r) +

(
V CS (r)− V CS (rew

c )
)
Gew (r) , rin ≤ r ≤ rc

0 , r > rc

.

(4.3)

Using this short-range potential V S (r) together with the long-range part of the Coulomb inter-

action, the total pair potential V (r) for r ≤ rin then resembles the harmonic V Harm (r) potential

(4.2), within the accuracy of the Ewald summation.

In Fig. 4.1, the original BKS potential is compared to the modified one, according to equation

(4.1), with the short-range harmonic correction (see equation (4.2)). This illustrates the diver-

gence of the Buckingham potential for r → 0. In Fig. 4.2, the total short-range potential is

shown, given by equation (4.3), for the BKS parameter set [22].

4.1.1 Tests

In this work, all classical MD simulations are conducted with the open source software package

LAMMPS [60, 61]. The package LAMMPS has several built in potential forms for pair potentials,
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parameters units BKS CHIK

a1,SiSi [eV] 29.728739

a2,SiSi

[
eV Å

−2
]

100

a3,SiSi

[
Å
]

1.7201447

a1,SiO [eV] -27.330929 -14.725522

a2,SiO

[
eV Å

−2
]

12.5 100

a3,SiO

[
Å
]

1.1941241 1.0982165

a1,OO [eV] 20.854644 35.961774

a2,OO

[
eV Å

−2
]

13.5 100

a3,OO

[
Å
]

1.4384771 1.0299079

Table 4.4: Parameters of short-range the repulsive substitution V Harm (r) (see equation (4.2)) of
the BKS [22] and the CHIK [43] potential at distances r ≤ rin.
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(4.3) used in simulation in case of BKS param-

eters.

many-body interactions, et cetera. However, the functional form of the total short-range poten-

tial, used in this work (see equation (4.3)), is not included. It is decided to use tabulated poten-

tials. The numerical values of the total short-range pair potentials V S (r) (see equation (4.3)) and

the total short-range pair forces − ∂
∂rV

S (r) are pre-computed for certain values of rij in a tabu-

lated form, for pair distances r ≥ 0.25 Å. For the Si-Si interactions of the BKS potential, only the

smoothed and shifted short-range part of the Coulomb potential
(
V CS (r)− V CS (rew

c )
)
Gew (r)

has to be taken into account. A table style of the so-called bitmap style is chosen, according to

[102]. The table has 2N table entries. Numerical values of the pair potential and the pair force

are stored equally spaced in r2 between all relevant powers of two in the range of 2z ≤ r2 < 2z+1.

An inner cutoff of the pair distances of 0.25 Å and an outer cutoff smaller than 64 Å lead to the

relevant exponents: z = −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. The dependence of

the pair distance r on the position in the bitmap table with 216 table entries, as used in the



Chapter 4. Model glass former SiO2 53

simulation, is displayed in Fig. 4.3. For particle distances between adjacent table entries a lin-

ear interpolation is performed within the LAMMPS package. The k-space parts of the Coulomb

interactions, in all cases, are computed with the standard routine for Ewald summations of the

LAMMPS package. In all cases, a skin distance of rskin = 2 Å is used and the Verlet neighbor

lists are rebuilt when the first atom has moved more than half the skin distance.
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precision 2N of the bitmap table.

To test the tabulated potentials, several different cases are studied. These first tests are carried

out for a system size of 165 atoms at a constant system density of ρ = 2.37 g/cm3 with the BKS

parameters. The atoms are randomly initialized in a cubic simulation box with a box length

of LBox = 13.22944 Å. Next, Lennard-Jones potentials are switched on. The parameters are

tuned in a way that for each atom pair the minima are roughly at the positions of the first peaks

in the corresponding pair correlation functions. Then, the system is relaxed to those minima

by a short NVE run with a maximum limit each atom can move in a simulation step of 0.1 Å.

Afterwards, the Lennard-Jones potentials are switched off and the real potentials are switched

on. In all cases, the system is equilibrated for 5 · 105 ts at 4300 K, followed by a test run of

2 · 107 ts, where the mean total energy, the mean potential energy and the mean pressure are

measured. In all cases, a time step of δt = 0.6 fs and a chain of 3 Nosé-Hoover thermostats (see

subsection 3.1.2) is chosen, integrating the equations of motions according to [68]. A damping

parameter of 60 fs is used, meaning the temperature is relaxed to the target temperature in a

timespan of 100 time steps.

First it is tested, if the tabulated potentials are generated in a correct way. In one approach,

only the shifted and smoothed Buckingham part of the BKS potential is tabulated and not

the short-range part of the Coulomb interactions, according to equation (4.3) without the parts

containing V CS. The Coulomb interaction is calculated by means of the coul/long routine of the

LAMMPS software package, which means that the total pair potential has a small discontinuity

at rew
c = 6.5 Å, as the short-range part of the Coulomb interactions is just cut off at rew

c and
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not shifted to zero and/or smoothed. In the second approach, exactly the same form of the

short-range potential is used and the total short-range potential is tabulated. Different numbers

of table entries are tested in the range from 28 to 216. Simulations are carried out with an

gew = 0.473375 which corresponds to an Ewald accuracy of about 10−5, as explained in subsection

3.1.1. In Fig. 4.4, the total simulation time (Loop time) for 2 · 107 ts on 8 CPUs is compared for

the different forms of the potential. It can be seen in general that the simulation time is smaller

for the fully tabulated potentials and there is only a slight increase with increasing number of

table entries. As shown in Table 4.6, there is no significant difference in the mean total energy

per atom and mean pressure between the fully tabulated potential and the one with a tabulation

of just the Buckingham part. This justifies the use of fully tabulated potentials with 216 table

entries. The quite weak dependence of the simulation time on the number of table entries comes

from the fact that for this very small system about 60 − 70% of the simulation time is used for

the k-space summation. In Fig. 4.8, the speed up of the simulation with respect to the number of

parallel processors Nproc is displayed, again for runs of 2·107 ts with a fully tabulated short-range

potential. It can be seen that the speed up is sublinear and the slope of the curve decreases with

increasing Nproc. As explained in subsection 3.1.1, this is connected to communication times

and an unequal load balancing on each processor. These effects get more pronounced for smaller

system sizes, as in case of the 165 atom system. For simulations of these small system sizes, a

parallelization on Nproc = 8 CPUs seems reasonable. Only in some cases of very long simulation

runs at low temperatures, Nproc = 32 or Nproc = 64 is chosen.

Run Etot/N [eV] p [GPa]

N = 165, V CS only cut off, only Buckingham part tabulated, Pew = 10−5 -17.820 0.633

N = 165, V CS only cut off, fully tabulated potential, Pew = 10−4 -17.821 0.664

N = 165, V CS only cut off, fully tabulated potential, Pew = 10−5 -17.821 0.662

N = 165, V CS only cut off, fully tabulated potential, Pew = 10−6 -17.820 0.627

N = 165, V CS only cut off, fully tabulated potential, Pew = 10−7 -17.820 0.651

N = 165, V CS only cut off, fully tabulated potential, Pew = 10−8 -17.822 0.656

N = 165, V CS shifted and smoothed, all tab., Pew = 10−5 -17.806 0.645

Table 4.6: Comparison of mean total energies per atom and mean pressures for partly and fully
tabulated, partly and fully smoothed short-range potentials and different Ewald precisions. NVT

runs at 4300 K of 165 atom system at a system density of ρ = 2.37 g/cm3.

Next, the effect of the accuracy of the Ewald summation is tested for the same functional form

of the potential with V CS only cut off at rew
c = 6.5 Å. For this, additional simulations with

an Ewald precision of Pew = 10−4, Pew = 10−6, Pew = 10−7 and Pew = 10−8 are carried out,

which corresponds to gew = 0.453903, gew = 0.561272, gew = 0.607886 and gew = 0.651171,

according to subsection 3.1.1. The effect of the Ewald accuracy on the mean total energy per

atom and mean pressure is negligible (see Table 4.6), whereas the total simulation time (Loop

time) for 2 ·107 ts on 8 CPUs increases from 12751.2 s to 51690.2 s for Pew = 10−4 to Pew = 10−8.

Therefore, in the following, an Ewald accuracy of 10−5 is chosen.
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Dynamical quantities like time correlation functions have to be measured in the microcanonical

ensemble as a thermostat always has an influence on the dynamics of the system (see subsec-

tion 3.1.1). This means that after the equilibration of the system at a given temperature, the

thermostat has to be switched off for the microcanonical production run. For the small system

sizes considered in this work, the thermodynamical quantities show large fluctuations. This

leads to the problem that the mean temperature, total energy, et cetera, in the microcanonical

run depend strongly on the exact state of the system at the time step when the thermostat

is switched off. To overcome that problem 10000 configurations are stored at the end of each

equilibration run. As a starting point of the microcanonical run the configuration is chosen with

a total energy Etot = Ekin + Epot closest to the mean total energy of the equilibration run at

the given temperature.

As explained in subsection 3.1.1, the absolute value of the fluctuations of the total energy

|Etot − 〈Etot〉| of the system should be proportional to the times step squared (δt2) (see equation

(3.11)). To test this, short microcanonical runs of 1 · 105 ts with different time steps from

δt = 0.2 fs to δt = 2.8 fs are carried out, after the equilibration of the 165 atom system at 4300 K.

This test is performed for two different cases. First, only the Buckingham part of the potential is

cut off at rc = 5.5 Å, shifted and smoothed and the short-range part of the Coulomb interactions

is just cut off at rew
c = 6.5 Å. Therefore, the total pair potential has a small discontinuity at

rew
c , as explained above. Second, the Buckingham part is cut off, shifted and smoothed and the

short-range Coulomb part is cut off at rew
c , shifted to zero and smoothed, as well. Thus, the total

short-range part of the potential has the functional form of equation (4.3) and is continuous and

smooth over the whole range. The amplitude of fluctuations is determined by computing half of

the mean difference between neighboring maxima and minima of Etot in the microcanonical run.

The neighboring maxima and minima are only taken into account if there is a time difference
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of 10 time steps in between. In Figs. 4.5 and 4.6, it can be seen that the prediction holds

quite good for the whole range of examined time steps δt, in both cases. Despite the relation

δEtot ∝ (δt)2 being fulfilled quite well also in case of V CS, only cut off at rew
c , the potential

form with V CS cut off at rew
c , shifted to zero and smoothed is chosen in all simulations of this

work, due to the preference of an overall continuous potential. In addition to the fulfillment

of |Etot − 〈Etot〉| ∝ (δt)2, the system also should show no significant drift of the total energy

in the microcanonical production runs. In Fig. 4.7, the absolute difference of the total energy

between the end and the beginning of a microcanonical production run of 10 ns is shown for both

potential forms for time steps in the range of δt = 0.2 fs to δt = 2.8 fs at 4300 K on a logarithmic

scale. It can be seen that in both cases, the energy difference |Etot,end − Etot,beg| increases by

orders of magnitude with increasing time step δt. It seems to be a good compromise between

computational efficiency and accuracy to chose a time step of δt = 0.6 fs at this temperature. At

lower temperatures the time step can be increased up to δt = 1.6 fs without a noticeable energy

drift.

4.1.2 Comparison of different system sizes

As explained above, the relaxation of glass structures by means of a quantum mechanical DFT

calculation and the subsequent calculation of the phonon density of states g (ν) requires rather

small system sizes of about 100-200 atoms. The purpose of this subsection is to justify the

simulation of systems with only a few hundred atoms. In [103] it has been shown that simulations

of liquid SiO2 with the BKS potential with only 99 atoms show all characteristic features of

glassy dynamics. However, the dynamics of this small system is significantly slower compared

to a system size of 1002 atoms. In [104], simulations of SiO2 are presented for system sizes of

336, 1002, 3006 and 8016 atoms. Also in this case, finite size effects are visible in the dynamical
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properties in the system. However, no dependence of the structural quantities on the system

size is found. In this subsection, system sizes of 114, 165, 216 and 1152 are studied at a system

density of ρ = 2.37 g/cm3, using the modified BKS potential, according to equation (4.3). In all

cases the Ewald accuracy is chosen as 10−5. This leads to the following parameters: rew
c = 5.5 Å,

gew = 0.559443, |k| ≤ 7 ·2π/LBox and LBox = 11.6954 Å (114 atoms), rew
c = 6.5 Å, gew = 0.473375,

|k| ≤ 6 · 2π/LBox and LBox = 13.22944 Å (165 atoms), rew
c = 7 Å, gew = 0.439563, |k| ≤ 6 · 2π/LBox

and LBox = 14.4721 Å (216 atoms) and rew
c = 10 Å, gew = 0.307694, |k| ≤ 8 · 2π/LBox and

LBox = 25.2851 Å (1152 atoms). In the case of 114 and 216 atoms, five independent cooling

runs are carried out. In the case of 165 atoms, 10 independent runs are conducted and for the

1152 atoms one cooling run is carried out. The cutoff of the short-range part of the Coulomb

interaction can be increased within the minimum-image convention as the box length increases

with increasing number of atoms which results in a better balancing of the pair time and k-space

time.

temperature # time steps simulation time δt

4300 K 5 · 106 ts 3 ns 0.6 fs

4000 K 2 · 106 ts 1.2 ns 0.6 fs

3800 K 2 · 106 ts 1.6 ns 0.8 fs

3600 K 4 · 106 ts 4 ns 1.0 fs

3400 K 8 · 106 ts 9.6 ns 1.2 fs

3200 K 1.5 · 107 ts 24 ns 1.6 fs

3100 K 2 · 107 ts 32 ns 1.6 fs

3000 K 3 · 107 ts 48 ns 1.6 fs

2900 K 6 · 107 ts 96 ns 1.6 fs

2800 K 1 · 108 ts 160 ns 1.6 fs

2700 K 1.5 · 108 ts 240 ns 1.6 fs

Table 4.8: Cooling procedure of liquid SiO2 with number of time steps and equilibration times at
each temperature.

All systems are first randomly initialized and then pre-relaxed with Lennard-Jones potentials,

as explained in subsection 4.1.1. Subsequently, the systems are equilibrated in NVT runs at

4300 K and then cooled down in different steps to 2700 K. In each case, a chain of 3 Nosé-

Hoover thermostats (see subsection 3.1.2) is chosen with a damping parameter of 100 ts. The

equilibration times are tabulated in Table 4.8. At each temperature, microcanonical production

runs are carried out at the mean total energy of the preceding equilibration run, following the

procedure described in subsection 4.1.1.

The comparison of the structural and dynamic properties of the different system sizes is demon-

strated at a temperature of 3200 K. At this temperature the systems already show a pronounced

two-step relaxation with α- and β-relaxation times separated by about four orders of magnitude.

In all cases, the depicted curves represent the averaged data over all independent runs.

In Figs. 4.9 and 4.10, the partial static structure factors (see equation (3.89)) and the partial pair

correlation functions (see equation (3.86)) are shown for the Si-Si correlation. The curves of the
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different system sizes are in quite good agreement with each other. However, little discrepancies

between the different system sizes can be observed, which are most pronounced for the Si-Si

correlation. The accordance of the different curves of the Si-O and O-O correlation is better. In

general, the discrepancies between the different system sizes are most pronounced for the second

peaks of the corresponding pair correlation functions, representing the next-nearest neighbors.

In all cases, the deviations are largest for the smallest system size of 114 atoms. Regarding the

partial static structure factors, SSiSi (k) and to some extend SOO (k) show an additional extra-

peak at about k = 4.298 Å
−1

= 8 · 2π/LBox for the 114 atom system. This is clearly a finite size

effect, as the extra-peak vanishes for larger system sizes. It is connected to the intermittency

of the periodic images of the simulation box. In Figs. 4.11 and 4.12, the angular distributions

pSiSiSi (Φ) (see equation (3.96)) between three neighboring Si atoms and the probability of
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an Si atom being member of a ring of size n, pSi (n), is shown (see section 3.3). Regarding

pSiSiSi (Φ), slight discrepancies between the different system sizes are visible. All other angular

distributions show nearly negligible differences, which are in all cases most pronounced for the

114 atom system. The distribution of ring sizes displays the largest variation of static properties

between systems of different size. In particular, the probability of an Si atom to be in a ring of

size n > 6 decreases with decreasing system size. This truncation of pSi (n) for large n is clearly

a finite size effect. In addition, the 114 atom system shows the peculiarity that the maximum

of pSi (n) is shifted from n = 6 to n = 5 and the probability of a Si atom being in a ring of size

n = 4 is significantly decreased with respect to the other system sizes.
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Next, the dynamical properties are compared. In Figs. 4.13 and 4.14, the incoherent interme-

diate scattering functions FS,Si (k, t) (see equation (3.100)) and the mean square displacements〈
r2
Si (t)

〉
(see equation (3.98)) are shown. The incoherent intermediate scattering functions are

evaluated at k = 1.78 Å
−1

(114 and 165 atoms) and k = 1.74 Å
−1

(216 and 1152 atoms). This

is about the k-value of the so-called first sharp diffraction peak (FSDP) visible in all partial

static structure factors. It can be seen that the curves of the different system sizes show the

same qualitative characteristics of a two-step decay with an intermediate plateau. However, the

α-relaxation times and the plateau heights of the normalized incoherent intermediate scattering

functions decrease with increasing system size. The same feature is visible in the mean square

displacements, whereas the plateau heights increase with increasing system size. In Fig. 4.15,

the self-diffusion constants Dα, α ∈ {Si,O}, are displayed with respect to the inverse box length

1/LBox, to further illustrate the dependence of the dynamical properties on the system size. They

are determined by means of the slope of a linear fit to the corresponding mean square displace-

ments at large simulation times, where the Einstein relation Dα = limt→∞
〈r2
α(t)〉
6t [15] holds (see

equation (3.99)). In Fig. 4.16, the 1/e relaxation times are displayed, meaning the times τ1/e,α at

which the incoherent intermediate scattering functions FS,α (k, t) have decayed to the numerical

value of 1/e. The shown statistical errors are computed as the standard deviation of the mean,

with respect to the independent runs, σ = σ√
N

. It can be seen that the diffusion constants of

the 114 atom system are about 2.5 times (O) and 3 times (Si) as large as the ones of the 1152

atom system. This is in agreement with the 1/e relaxation times being about 3.5 (O) to 4 (Si)

times as large in case of the 114 atom system compared to the 1152 atom system. In all cases,

the differences between the 165 and the 216 atom system are the smallest. The slowing down of

the dynamics with decreasing system size is clearly a finite size effect [103, 104].

Summarizing, the structural properties show only a small dependence on the system size. The

most pronounced differences between the different system sizes are visible in the distribution of

ring sizes, which show a decrease of the number of rings containing more than 6 Si atoms with

decreasing system size. In contrast to all other considered system sizes, the maximum of pSi (n)

is shifted from n = 5 to n = 6 for the 114 atom system. This feature is reflected in the other

structural quantities, where the 114 atom system also shows the largest finite-size effects. The

dynamical properties show a greater dependence on the system size. However, all system sizes

show the generic features of glassy dynamics like the two-step decay process with the separation

of time scales. Having this in mind, this subsection motivates and justifies the choice of a 165

atom system for further considerations.

4.1.3 Liquid properties at different temperatures

This subsection provides an overview over the structural and dynamical properties of liquid

SiO2 at different temperatures, comparing the BKS [22] with the CHIK [43] potential. Here,

simulations are carried out for 165 atom systems at the experimental glass density of ρ = 2.2 g/cm3

[98]. For all simulations the modified form of the Buckingham potential (4.3) is used, as explained

in subsection 4.1.1. This leads to the following parameters: rew
c = 5.5 Å, gew = 0.473375,
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|k| ≤ 7 · 2π/LBox and LBox = 13.5618 Å. As mentioned in the beginning of this chapter, the BKS

potential has the property that the mean density is slightly larger than 2.2 g/cm3 for temperatures

lower than 6000 K [20]. However, the simulations of the 165 atom systems at ρ = 2.2 g/cm3 show

only a small mean negative pressure of about −0.5GPa at the maximum with no noticeable

negative effects. The simulations with the CHIK potential show a positive pressure over the

whole temperature range.
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Figure 4.17: Mean square displacements〈
r2
α (t)

〉
, α ∈ {Si,O}, comparison of BKS and

CHIK potential
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Figure 4.18: Incoherent intermediate scatter-
ing functions FS,α (k, t) , α ∈ {Si,O}, compari-

son of BKS and CHIK potential

The systems are initialized as explained in section 4.1 and then subsequently cooled from 4300 K

to 2700 K, as given in Table 4.8. Again, the properties are analyzed in a microcanonical produc-

tion run at the mean total energy of the preceding equilibration run at the same temperature.

In Figs. 4.17 and 4.18, the mean square displacements
〈
r2
α (t)

〉
and the incoherent intermediate

scattering functions FS,α (k, t) are compared for both potentials at different temperatures. The

incoherent intermediate scattering functions are evaluated at k = 1.60 Å
−1

. Again, this is

about the k-value of the first sharp diffraction peak (FSDP) visible in all partial static structure
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factors. As already described before, the curves show the characteristic two-step process with

an intermediate plateau. The longest time scales considered in the production run are 160 ns.

It can be seen that the α-relaxation times of the BKS potential are longer by about the factor

3− 10 at the same temperature. So, for example the α-relaxation time at 2700 K for the CHIK

potential is of the order of the relaxation time at 3000 K for the BKS potential. Actually, the

lowest temperature at which the system still can be relaxed within the simulation time of 160 ns

is 3000 K in case of the BKS potential. Therefore, in the following, only temperatures down to

3000 K are considered.

In Fig. 4.19. the partial pair correlation functions are compared at 4300 K and 3000 K. As

expected, the peak heights increase with decreasing temperature. This indicates a higher degree

of structuring in the liquid. In all cases, the peak heights of the CHIK potential are slightly

reduced compared to the corresponding peaks of the BKS potential, as already explained in [43].

Also, the average first neighbor distances in all cases are slightly larger by about 0.02 Å to 0.03 Å

for the CHIK parameters.

In Fig. 4.20, the partial static structure factors are compared at 4300 K and 3000 K. Again, the

height of the peaks increases with decreasing temperature and peaks are slightly less pronounced

in case of the CHIK potential. As before, the peak positions are nearly identical for the two

different potentials. The most dominant peaks of Sαβ (k) are located at about k = 2.7 Å
−1

,

corresponding to a length scale of 2π/2.7Å ' 2.3 Å for the Si-Si and the Si-O correlation and at

approximately k = 2.8 Å
−1

, corresponding to a length scale of 2π/2.8Å ' 2.2 Å for the O-O cor-

relation. These length scales are of the order of the first minimum of gSiO (r), in agreement with

[42]. The reason for the occurrence of the first sharp diffraction peak (FSDP) at approximately

1.6 Å
−1

, corresponding to a length scale of 2π/1.6Å ' 3.9 Å, in all correlations, is the ordering of

the ions in a tetrahedral-like structure [42] with a distance of about 3.9 Å between neighboring

tetrahedra.

In Fig. 4.21, the angular distributions are shown for the Si-Si-Si and the Si-O-Si correlation

at 4300 K and 3000 K. In general, the angular distributions get narrower with decreasing tem-

perature, as expected. They are also slightly more pronounced for the CHIK potential, which

corresponds to the slightly higher peaks of the partial pair correlation functions at the same

temperature. Regarding pSiSiSi (Φ), for both potentials the average angle increases from about

105◦ at 4300 K to 108◦ at 3000 K. Also, in both cases, there is an additional peak visible at about

56◦ that nearly vanishes at 3000 K. The main peak is connected to rings of size n = 6, which

in all cases is the dominant ring size and the extra peak is connected to defect structures, like

3- and 4-membered rings. The mean Si-O-Si angle increases from about 139◦ (4300 K) to about

146◦ (3000 K) for the CHIK potential and from about 142◦ (4300 K) to about 148◦ (3000 K) for

the BKS potential. In addition to the main peak, a shoulder at about 90◦ is visible for both po-

tentials which vanishes for lower temperatures. It is connected to the emergence of edge-sharing

tetrahedra [43]. The mean O-Si-O angle in all cases is about 109◦, which is in nearly perfect

agreement with the theoretical value of 109.5◦ for a tetrahedral structure.
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Figure 4.19: gαβ (r) , α, β ∈ {Si,O}, compar-
ison of BKS and CHIK potential
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Figure 4.21: Angular distributions pαβγ (Φ) , α, β, γ ∈ {Si,O}, comparison of BKS and CHIK
potential.
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Figure 4.22: Probability that a Si atom is member of a ring of size n, pSi (n), at different temper-
atures, comparison of BKS and CHIK potential

In Fig. 4.22, the probability of a Si atom being member of a ring of size n, pSi (n), is shown for

both potentials in the temperature range from 4300 K to 3000 K. Both potentials show a similar

behavior. The most dominant ring size in all cases is n = 6. This can be understood by the

fact that the equilibrium crystalline phase at zero pressure is β-cristobalite, which consists of

6-membered rings [38], as already mentioned in section 2.2. With decreasing temperature, the

probability pSi (n = 6) to find 6-membered rings increases and the probabilities pSi (n) decrease

for n 6= 6, both, for the BKS and the CHIK potential. As mentioned above, the decrease of the

number of small rings corresponds to the vanishing of the small extra peak in pSiSiSi (Φ). The

ring statistics of the BKS and the CHIK potential are pretty similar. At each temperature, the

number of Si atoms located in 6-membered rings of the BKS potential is slightly higher.
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Figure 4.23: Distribution of coordination numbers pαβ (n) , α, β ∈ {Si,O} at different tempera-
tures, comparison of BKS and CHIK potential

In Fig. 4.23, the distribution of coordination numbers are shown for the Si-Si and the O-

O correlation at 4300 K and 3000 K for both potentials. In all cases, the probability of the Si

atoms pαβ (n) , α, β ∈ {Si,O}, to have a partial coordination of n = 4 with respect to neighboring

oxygen, as well as silicon atoms, increases with decreasing temperature. At 3000 K, about 94%

of the Si atoms are coordinated fourfold with respect to the next nearest Si atoms, in case of the

BKS potential. This holds for approximately 90% of the Si atoms, in case of the CHIK potential.

At the same temperature, nearly 100% of the Si atoms are coordinated fourfold with respect to

neighboring O atoms for both potentials. Correspondingly, nearly 100% of the oxygen atoms are

coordinated twofold with respect to neighboring silicon atoms for both potentials. Regarding

the coordination of the oxygen atoms, at 4300 K the predominant coordination number with

respect to neighboring oxygen atoms is 7 in case of the BKS potential, whereas the probability

for 7- and 8-fold coordinated oxygen atoms is nearly identical in case of the CHIK potential. At

3000 K about 56% of the oxygen atoms have 6 oxygen neighbors in case of the BKS potential,

whereas the probability is only about 44% in case of the CHIK potential.

In Fig. 4.24, the self-diffusion constants Dα, α ∈ {Si,O} are plotted on a logarithmic scale

against the inverse temperatures 1/T . As in subsection 4.1.3, they are determined by means of

the slope of a linear fit to the corresponding mean square displacements, shown in Fig. 4.17 at

large simulation times, where the Einstein relation Dα = limt→∞
〈r2
α(t)〉
6t [15] holds (see equation

(3.99)). Here, the whole examined temperature range from 4300 K to 2700 K is shown. The

shown statistical errors are computed as the standard deviation of the mean with respect to the

10 independent runs, σ = σ√
N

. As expected, Dα decreases by about four orders of magnitude

from the highest to the lowest temperature for the CHIK, as well as for the BKS potential. At

a given temperature, the self-diffusion constants of the CHIK potential are about 3 − 10 times

larger than the appropriate values of the BKS potential, in agreement with the behavior of the

α-relaxation times.
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Figure 4.24: Arrhenius plot of self diffusion constants for Si and O at different temperatures,
comparison of BKS and CHIK potential

The activation energies are extracted by means of an Arrhenius fit [105]

Dα = Aα exp [−EA,α/kBT ] α ∈ {Si,O} (4.4)

at temperatures ≤ 3200 K. In this temperature range, the self-diffusion constants can be well

described by an Arrhenius law (4.4). In case of the BKS potential, the lowest temperature of

2700 K is not included into the fit, as Dα, α ∈ {Si,O} is significantly larger than expected,

according to equation (4.4). This can be explained by the fact that, at 2700 K the equilibration

time of 240 ns (Table 4.8) is too short for the equilibration of the system. In all cases, the given

errors are the asymptotic standard errors of the least-squares fit with gnuplot [101, 106].

The extracted activation energies for the BKS potential are: EA,Si ' 7.08±0.30 eV and EA,O '
6.23 ± 0.24 eV. They show significant differences to values reported in previous simulations,

namely EA,Si = 5.18 eV and EA,O = 4.66 eV for simulations of 8016 atoms at a system density

of ρ = 2.37 g/cm3 [42] and EA,O = 4.84 eV for simulations of 99 atoms at ρ = 2.30 g/cm3 [107, 108].

These differences can be understood in terms of effects of the system size and the system density,

as the activation energies increase with decreasing system size and decreasing system density.

To illustrate these effects, the respective low-temperature activation energies of the 114, 165,

216 and 1152 atom simulations at ρ = 2.37 g/cm3 (see subsection 4.1.2) are extracted in exactly

the same way, leading to: EA,Si ' 6.29 ± 0.44 eV and EA,O ' 5.82 ± 0.28 eV (114 atoms),

EA,Si ' 5.81 ± 0.13 eV and EA,O ' 5.21 ± 0.09 eV (165 atoms), EA,Si ' 5.99 ± 0.14 eV and

EA,O ' 5.36± 0.11 eV (216 atoms) and EA,Si ' 5.34± 0.09 eV and EA,O ' 4.77± 0.11 eV (1152

atoms). In particular, the activation energies of the 1152 atom simulations are in reasonable

agreement with the values reported for the 8016 atom system at the same density [42].

In case of the CHIK potential, the extracted activation energies are EA,Si ' 5.77± 0.03 eV and

EA,O ' 5.42± 0.03 eV for the 165 atom system at ρ = 2.2 g/cm3. Again, they show differences to

values reported in previous simulations, namely EA,Si = 4.9712 eV and EA,O = 4.5109 eV [43].
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In this case, the differences can be explained in terms of system size effects as the simulations,

reported in [43], have been carried out at the same system density. Experimental values are

EA,Si = 6.0 eV for the diffusion of 30Si in amorphous silicon [109] and EA,O = 4.7 eV for

diffusion of 16O and 18O in a thin-film structure of vitreous SiO2 [110].

In this subsection, structural and dynamical properties of liquid SiO2 have been compared at

different temperatures for the BKS and the CHIK potential at a small system size of 165 atoms.

Here, finite size effects are apparent, especially in the dynamics of the systems. To compare the

properties of the BKS and the CHIK potential without the strong influence of finite size effects,

simulations at larger system sizes are necessary. This has already been done in [43]. However,

the purpose of this section is to demonstrate that the structural differences, according to the

different potentials, are in rather good agreement with results obtained by simulations of larger

system sizes. Again, this justifies the employment of small system sizes.

4.2 Glass Structure

In the previous section, the model glass former SiO2 has been examined in the liquid state. Here,

the structural properties in the glassy state are described. In this section, only system sizes of

165 atoms at the experimental glass density of ρ = 2.2g/cm3 [98] are considered. As explained in

subsection 4.1.2, this is a reasonable system size in terms of balancing between the influence of

finite size effects and computational feasibility for quantum mechanical DFT calculations. As

already mentioned in section 2.4, the glass structures are generated in the following way: After

a random initialization (see section 4.1), the systems are equilibrated at 4300 K for 1.6 ns with

a time step of 1.6 fs and then linearly cooled down to 300 K at a cooling rate of Γ = 1 · 1011 K/s.

After annealing at 300 K for 1.6 ns, the configurations are quenched down to 0 K. Following this

cooling scheme, 10 independent runs with the BKS potential and 10 independent runs with the

CHIK potential are carried out. During the cooling procedure, the systems fall out of equilibrium

at the temperature, where the relaxation time is of the order of the time scale of the cooling

process, which is at about 3000 K, in case of the BKS potential, and at approximately 2700 K,

in case of the CHIK potential. After the quench to 0 K, in each case, the configurations are

structurally relaxed by means of a quantum mechanical DFT calculation. In the last part of this

section, the structural properties of these configurations are compared to one the glass structure

generated by a full ab initio quench from the melt and to experimental results.

As already mentioned in subsection 3.2.3, in this work, all DFT calculations are carried out

using the Vienna Ab initio Simulation Package (VASP) [77–79]. In the following, all references to

electronic states or energies are with respect to the ”fictive” electrons in the Kohn-Sham system,

as explained in subsection 3.2.3. The different types of exchange-correlation functionals and the

use of pseudopotentials have been explained in detail in subsections 3.2.4 and 3.2.5. For all DFT

calculations of this work, a Perdew-Burke-Ernzerhof (PBE) type exchange-correlation functional

of the generalized gradient approximation (GGA), revised for solids (PBEsol) [84], is chosen.

Computations are conducted using a plane wave basis set and the projector augmented-wave
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method (PAW) [86, 87]. A Gaussian smearing method is applied for the partial occupancies

of the energy levels of the electronic states around the Fermi-level with a smearing width of

σ = 0.02 eV. Due to the large simulation box, only Gamma-point calculations are conducted

with one k-point at the zone center of the Brillouin zone (k = (0, 0, 0)T ). Also, the projection

operators of the PAW wave functions are evaluated in real space (see subsection 3.2.5).

A set of single point calculations at 0 K is performed, based on the structural configuration

of one cooling run with the BKS potential. In this test calculations, the convergence of the

total energy at zero temperature E0 and the diagonal elements of the external stress tensor

Sαα = −Sint,αα, α ∈ {1, 2, 3} (see equation (3.34)), are examined with respect to the number of

k-points, the cutoff energy Ecut for the plane wave basis set and the accuracy of the relaxation

of the electronic degrees of freedom. The external stress tensor describes the stress imposed

on the system, meaning negative values of Sαα would cause an expansion of the system. The

energy E0 consists of all electronic contributions, the Coulomb energy of the interactions between

the nuclei and the contributions of the atomic energies according to the PAW potentials (see

subsection 3.2.5). It is the ground state energy of the system in the limit of zero smearing width

E0 = limσ→0Eσ. Tests are done with accurate and normal VASP precision. Accurate precision

means that Fourier components up to 2Gcut instead of 1.5Gcut are taken into account in the

evaluation of charge densities and the action of the Hamiltonian on a wave function, to overcome

so-called wrap around errors. Here, Gcut is the cutoff wave vector corresponding to Ecut of the

plane wave basis set (see equation (3.81)). Also, a finer grid spacing is chosen for the evaluation

of the real space projection operators.
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Figure 4.25: Dependence of E0 and Sαα on the number of k-points for 165 atom system of SiO2

First, the influence of k-mesh is examined. Calculations are done with a cutoff energy Ecut =

500 eV and the electronic relaxation is stopped when the relative change in total energy between

two adjacent steps of the self-consistent field loop is less than 10−6. In Fig. 4.25, the dependence

of the ground state energy E0 and the diagonal elements of the external stress tensor Sαα on the

number of k-points in each direction of the simulation cell is shown for accurate precision. It
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can be seen that the values show nearly no dependence on the number of k-points. This justifies

the utilization of Gamma point (k = (0, 0, 0)T ) calculation for this large system sizes.
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Figure 4.26: Dependence of E0 and Sαα on the accuracy of the electronic relaxation for 165 atom
system of SiO2

In Fig. 4.26, the dependence of E0 and Sαα, α ∈ {1, 2, 3}, on the accuracy of the electronic

relaxation is examined in terms of Gamma point calculations (k = (0, 0, 0)T ) with fixed Ecut =

500 eV, again with accurate precision. Both, E0 and Sαα show a slight increase with increasing

accuracy of the electronic relaxation with a transition into a plateau at about the value of 10−6.

However, the overall dependence of E0 and Sαα on the accuracy is quite small.
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Figure 4.27: Dependence of E0 and Sαα on the plane wave cutoff Ecut for 165 atom system of
SiO2

In Fig. 4.27, the dependence of E0 and Sαα, α ∈ {1, 2, 3}, on the plane-wave cutoff Ecut is

shown. Again, Gamma point calculations (k = (0, 0, 0)T ) are conducted with accurate precision

and fixed accuracy of 10−6 for the electronic relaxation. The total energy E0 shows an initial

increase with increasing Ecut with a maximum at about Ecut = 500 eV, followed by a slight
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decrease and the transition into a plateau at about Ecut = 800 eV. This would motivate the

choice of the latter value of Ecut. However, such a high cutoff energy leads to significantly longer

computation times, as the number of plane waves increases with E2
cut. In contrast to this, the

diagonal elements of the external stress tensor Sαα show a strong decrease with increasing Ecut

and a transition into a plateau at about Ecut = 500 eV. Regarding this behavior, a value of

Ecut = 500 eV can be justified and this numerical value is used in all DFT calculations of SiO2.

In fact, the absolute value of the total energy of a DFT calculation is rather meaningless. It

is important to use the same numerical value in all calculations. The recommended minimal

values for the employed PAW potentials [86, 87] are Ecut = 400 eV in the case of oxygen and

Ecut = 245 eV in the case of silicon.

In Figs. 4.25, 4.26 and 4.27, only the curves for accurate VASP precision are shown. However,

the curves for normal VASP precision show the same behavior.

As described in the first paragraph of this section, the atomic configurations are structurally

relaxed after the classical quench employing a conjugate gradient algorithm [111]. The system

volume is fixed and the relaxation is stopped when all forces on the atoms are smaller than

5 ·10−4 eV/Å. Here, accurate VASP precision is applied and the break condition for the electronic

relaxation is a relative energy difference of 10−8. The DFT forces are calculated, according to

the Hellman-Feynman theorem [112]. In the following, the main structural changes before and

after the relaxation are compared for configurations generated with the BKS and the CHIK

potential. In each case, the displayed results are averaged over 10 independent runs.

In Fig. 4.28, the pair correlation functions are shown before and after the structural relaxation.

In contrast to the observations in the liquid state, no significant differences can be observed

between the curves of the BKS and the CHIK potential, both before and after the structural

relaxation for all different correlations. In both cases, the main effect of the structural relaxation

is the slight decrease of the mean first neighbor Si-Si distance and the slight increase of the

mean first neighbor Si-O and O-O distance. In addition, the first neighbor peaks of gSiSi (r) and

gSiO (r) are slightly broadened and the first neighbor peak of gOO (r) is slightly narrowed. In

comparison to the liquid state, the corresponding peaks are much higher and more pronounced,

as expected. However, the peak positions of the first and second-neighbor peaks are rather

similar to the positions at 3000 K.

To further illustrate the structural changes, in Fig. 4.29, the angular distributions are shown

before and after the relaxation for the Si-Si-Si, the Si-O-Si and the O-Si-O correlations. Regard-

ing the Si-Si-Si correlation, no significant differences can be observed, both, between the BKS

and the CHIK potential and before and after the structural relaxation. This indicates that the

medium-range structure of the network is not altered in the process of the structural relaxation.

Similar to the behavior at 3000 K, pSiSiSi (Φ) shows a broad peak with a mean angle of about

109◦ and an additional small extra peak at about 60◦. As explained in subsection 4.1.3, this

small peak is connected to the amount of small rings. In contrast to pSiSiSi (Φ), pSiOSi (Φ) and

pOSiO (Φ) are altered during the structural relaxation. The main effects are the slight decrease

of the mean Si-O-Si angle from about 153◦ to about 147◦ (BKS potential) and from about 152◦
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Å
]

BKS MD+DFT
CHIK MD+DFT

BKS MD
CHIK MD

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

2 2.5 3 3.5 4

g O
O

(r
)

r
[
Å
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Figure 4.28: gαβ (r) , α, β ∈ {Si,O} at 0 K,
before and after structural relaxation. Compar-

ison of BKS and CHIK potential
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Comparison of BKS and CHIK potential
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Figure 4.30: Snapshot of the glass structure of a 165 atom system SiO2 after the full ab initio
quench and the structural relaxation. Si atoms are displayed green and O atoms are displayed blue.

to about 148◦ (CHIK potential) and the sharpening of the O-Si-O angular distribution. This is

in agreement with [10]. The mean O-Si-O angle, in all cases, perfectly agrees to the theoretical

value of 109.5◦ for a tetrahedral structure. Again, no significant differences are observed in the

shape of the distributions between the BKS and the CHIK potential.

In Fig. 4.30, a snapshot of a 165 atom glass structure of SiO2 is shown after the structural

relaxation. Here, the structure of interconnected SiO4 tetrahedra is clearly visible.

Next, the effect of the structural relaxation on the probability of a Si atom being member of

a ring of size n, pSi (n), and the distribution of coordination numbers pαβ (n) , α, β ∈ {Si,O}
are examined. Regarding pSi (n), the structural relaxation has no effect at all. The probability
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Figure 4.32: Distribution of coordination
numbers pOO (n) at 0 K before and after struc-
tural relaxation. Comparison of BKS and CHIK

potential

that a Si atom is member of a ring of size n is exactly the same before and after the structural

relaxation for the BKS, as well as for the CHIK potential. In Fig. 4.31, the corresponding curves

of the BKS and the CHIK potential are compared to the ones at 3000 K. As already described

in subsection 4.1.3, pSi (n) has a maximum at ring sizes of n = 6 and the probability pSi (n)

is slightly higher for n = 6 and lower for n = 4 in case of the BKS potential, compared to the

CHIK potential. In general, pSi (n) at 0 K shows no significant differences to the distribution

at 3000 K. For both potentials, the probability of a Si atom to be in a ring of size n = 6 has

slightly increased at 0 K, whereas the probability is about the same in the case of n = 4. Rings

of size n = 3 are still apparent in the glass configurations for both potentials with a probability

of about pSi (n = 3) ' 0.5%− 1%.

Regarding the distribution of coordination numbers pαβ (n) , αβ ∈ {Si,O}, all Si atoms are 4-

fold coordinated with respect to Si atoms and O atoms, in contrast to the liquid state at 3000 K,

where the value is only about 90% (CHIK) to 94% (BKS) in case of the Si-Si coordination. All

O atoms are 2-fold coordinated with respect to Si atoms and the most prominent coordination

number for the O-O coordination is still n = 6, before, as well as after the structural relaxation.

In Fig. 4.32, the distribution of pOO (n) is compared before and after the structural relaxation

for both potentials. It can be seen that the curves of the BKS and the CHIK potential are nearly

identical. In both cases, pOO (n = 6) slightly decreases and pOO (n = 7) slightly increases during

the structural relaxation by about 6 to 8 percentage points.

Summarizing, the main effect of the structural relaxation is the reduction of the mean O-Si-

O angle of about 6◦ (BKS potential) and 4◦ (CHIK potential). This is reflected in the slight

decrease of the mean first neighbor Si-Si distance in both cases and a slight change of the

distribution of coordination numbers pOO (n). The medium range structure, in terms of the

distribution of ring sizes and the Si-Si-Si angular distribution of the glass systems, is not altered
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significantly during the structural relaxation. Furthermore, the structure of the configurations

generated with the BKS potential are nearly identical to the structure of the ones generated

with the CHIK potential.
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Figure 4.33: Probability that a Si atom is
member of a ring of size n, pSi (n), at 0 K. Com-
parison of BKS and CHIK potential after struc-
tural relaxation with full ab initio quench at 0 K

and 300 K.
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Figure 4.34: Distribution of coordination
numbers pOO (n) at 0 K. Comparison of BKS
and CHIK potential after structural relaxation

with full ab initio quench at 0 K and 300 K.

In addition, one glass structure is generated by a quench from the melt with a Born-Oppenheimer

ab initio MD simulation. Again, the VASP software package [77–79] is used and the simulation

is conducted at the experimental glass density of ρ = 2.2g/cm3 [98]. The DFT parameters

are the same as in case of the structural relaxation, besides using normal instead of accurate

VASP precision and a relative energy difference of 10−6 instead of 10−8 as break condition

for the electronic relaxation. In a Born-Oppenheimer ab initio MD simulation, at each time

step, the forces on the ions are calculated, according to the Hellman-Feynman theorem [112].

Based on this forces, the ion positions are updated in the same manner as in a classical MD

simulation. As mentioned in section 3.2, the DFT calculations are with respect to the electronic

ground state, implying this MD scheme is applicable in a temperature range where electronic

excitations are negligible. The Born Oppenheimer MD run is carried out in a NVT ensemble,

where the ionic motion is coupled to a Nosé thermostat (see subsection 3.1.2) with a Nosé-mass

corresponding to a period of 40 time steps. First, the configuration is equilibrated at 3600 K for

31797 ts (38.1564 ps) with a time step of 1.2 fs. Next, the system is linearly quenched to 300 K

and afterwards to 0 K with a cooling rate of Γ = 1.6 · 1014 K/s. Subsequently, the system is

structurally relaxed in the same way as described above. In addition, a Born-Oppenheimer MD

run at 300 K is carried out for 5000 ts (6 ps), again, with a time step of 1.2 fs. In the following,

the structural quantities at 300 K refer to the last 3 ps of this Born-Oppenheimer run.

In general, the structure of this configuration does not differ significantly from the structure

of the systems generated by classical MD simulations with a subsequent quantum mechanical

relaxation. However, it has to be kept in mind that in case of the ab initio quench, only a
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single atomic configuration is regarded. Again, all Si-atoms are 4-fold coordinated with respect

to Si and O atoms and all O atoms are 2-fold coordinated with respect to Si atoms. The main

differences with respect to samples generated employing the BKS and the CHIK potential are

the probabilities that a Si atom is member of a ring of size n, pSi (n), and the distribution

of coordination numbers pOO (n). In Fig. 4.33, it can be seen that pSi (n) at 0 K is identical

to the distribution at 300 K, in case of the single ab initio quench. This implies there is no

difference in the medium range structure between 300 K and 0 K. Regarding the differences

to the classical quenches, the values of pSi (n = 4) and pSi (n = 5) are slightly higher and the

value of pSi (n = 6) is slightly lower compared to the corresponding values of the CHIK and BKS

potential after the structural relaxation. However, 6-membered rings are still the dominant rings

size of the full ab initio quench and also 3-membered rings are still apparent in the glass structure

with a probability of pSi (n = 3) ' 0.9%. Regarding the coordination distribution pOO (n), the

probability of an O atom to have 6 neighboring O atoms is slightly lower in case of the ab initio

quench at 0 K, compared to the classical quenches after the structural relaxation (see Fig. 4.34).

This trend is enhanced, regarding the coordination distribution pOO (n) at 300 K.

BKS [22] 0 K CHIK [43] 0 K ab initio
0 K

ab initio
300 K

experiment
[113, 114]

rSiSi
[
Å
]

3.106± 0.004 3.114± 0.004 3.082 3.085 3.08± 0.10

rSiO
[
Å
]

1.6288± 0.0007 1.6303± 0.0005 1.6276 1.6317 1.61± 0.05

rOO
[
Å
]

2.663± 0.001 2.665± 0.001 2.661 2.669 2.63± 0.09

pSiOSi (Φ) [◦] 147.2± 0.3 147.8± 0.5 145.0 144.5 148.3± 7.5

pOSiO (Φ) [◦] 109.468± 0.002 109.467± 0.002 109.468 109.426 109.47± 4.2

Table 4.10: Mean first neighbor distances and average angles of classical quenches and one full ab
initio quench at 0 K after the structural relaxation. Comparison with single ab initio run at 300 K

and experimental results [113, 114].

In addition to the structural quantities, it is interesting to compare the total energies E0 and

the total energies per atom E0/N of the respective structures. In case of the classical quenches,

the corresponding values after the quantum mechanical relaxation are E0 = −1349.8878 ±
0.2608 eV and E0/N = −8.1811 ± 0. 0.0016 eV (BKS quench) and E0 = −1349.3441 ± 0.1687 eV

and E0/N = −8.1778 ± 0. 0.0010 eV (CHIK quench). The statistical errors, in both cases, are

the standard deviations of the mean with respect to the 10 independent cooling runs, σ = σ√
N

.

The corresponding values of the one ab initio quench are E0 = −1347.4409 eV and E0/N =

−8.1663 eV. The value of the full ab initio quench is shown without the specification of an error,

because only one independent run is carried out. Overall, these values are in good agreement

with each other. However, the mean energy per atom of the full ab initio quench is about

0.012 − 0.015 eV higher compared to the other cases. This could suggest that in this case the

method of the MD quenches with the subsequent quantum mechanical relaxation lead to slightly

better glass structures.

In the first three columns of Table 4.10, the average first neighbor distances and average inter-

and intra-tetrahedral angles are shown for the glass structures of the classical MD simulations
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and the glass structure of the full ab initio quench. In each case, the results refer to the atomic

configurations after the structural relaxation at 0 K. The values of the fourth column refer to the

single Born-Oppenheimer run at 300 K. Again, the depicted errors of the BKS and the CHIK

potential are the standard deviations of the mean of the 10 independent cooling runs and the

values of the full ab initio quench are shown without the specification of an error. The mean first

neighbor distances are compared to experimental results from neutron scattering [113] at room

temperature. The experimental data is extracted from the real space correlation function T (r),

which basically is the Fourier transform of the interference function. The displayed experimental

errors are the root mean square of the Gaussian fits of the peaks in T (r). The mean Si-O-Si

and O-Si-O angles are compared to experimental results, which are re-determined combining

previous neutron diffraction and high energy X-ray diffraction experiments [114]. Here, the

experimental value of the mean O-Si-O angle, in fact, is the theoretical value from an ideal

tetrahedron. The experimental errors represent the peak width of the angular distributions.

In all cases the agreement with experimental data is very good. On the one hand, nearly no

differences between the different schemes of generating the glass structures are visible. On the

other hand, the structural properties at 0 K are nearly identical to the structural properties at

300 K in case of the single ab initio quench. This justifies the comparison of glass properties

after the structural relaxation at 0 K with experimental results at room temperature.
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Figure 4.35: Sneutr. (k). Comparison of BKS
and CHIK potential after structural relaxation

with experimental results [115].
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Figure 4.36: Sneutr. (k). Comparison of full ab
initio quench at 0 K and 300 K with experimen-

tal results [115].

Next, the total neutron structure factor Sneutr. (k) is examined. As explained in section 3.3, it

is obtained by weighting the partial static structure factors Sαβ (k) , α, β ∈ {Si,O}, with the

Si and O neutron scattering lengths (see equation (3.95)). The neutron scattering lengths are

bSi = 4.1491 fm and bO = 5.803 fm [89]. In Fig. 4.35, Sneutr. (k) of the BKS and CHIK potential

after structural relaxation at 0 K are compared to experimental results [115]. In Fig. 4.36,

the corresponding curves of the single ab initio quench at 0 K and 300 K are compared to the

same experimental curve. The experimental data shown in this case is generated by means of

time-of-flight measurements at room temperature. Again, the overall agreement is quite good,
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in all cases. Nearly no difference is visible between the ab initio results at 0 K and 300 K. The

greatest differences between the experimental data and the simulation results are visible in the

position of first sharp diffraction peak (FSDP) (see 4.1.2). The experimental peak is located

at about k = 1.45 Å
−1

. In case of the single ab initio quench the peak position is about the

same, whereas the position of the BKS and the CHIK potential after the structural relaxation

is shifted to slightly larger k-values by approximately k = 0.1 Å
−1

. However, the curve of the

single ab initio quench is much more noisy.

4.3 Vibrational Properties

In this section, different vibrational properties of the model glass former SiO2 are examined and

compared with experimental results. As explained in section 3.4, the thermal occupation of the

phonon density of states g (ν) (see equation (3.109)) or the respective eigenmodes with eigenfre-

quencies νn, gives access to the thermodynamic properties at low temperatures. In principle, the

vibrational density of states includes harmonic and anharmonic terms. However, the importance

of anharmonic terms decreases with decreasing temperature and at low temperatures, g (ν) can

be well described in terms of the harmonic approximation. Therefore, in this section all vibra-

tional properties are calculated employing the so-called ”frozen phonon” method. For a detailed

description, see section 3.4. In this approach, the vibrational properties are described in terms

of the dynamical matrix Dαβ;i,j (k), α, β, ∈ {1, 2, 3} and i, j, ∈ {1, N} (see equation (3.107)).

The latter is based on the force constant matrix Φαβ;i,j (see equation (3.105)). In this approach,

the glass structures are treated as crystalline structures with a large unit cell containing all 165

atoms.

In principle, it is favorable to consider larger supercells of the original system to increase the

accuracy of the calculation. However, the 165 atom system is already quite large regarding

quantum mechanical calculations. As a consequence, the calculations of the vibrational proper-

ties of vitreous SiO2 are restricted to the original system size. In this section, the vibrational

properties, due to quantum mechanical forces are compared to the vibrational properties, due to

the BKS [22] and the CHIK [43] potential. The basis for calculating the vibrational properties

are the corresponding glass configurations at 0 K after structural relaxation, as explained in

section 4.2. Ideally, in these structures the forces on all atoms are equal to zero. To calculate

the vibrational spectra for the BKS and the CHIK potential, also a structural relaxation of the

configurations at 0 K is performed with respect to the classical forces. Again, this is done by

means of a conjugate gradient algorithm [111]. After the structural relaxation, in each case,

all atoms i ∈ {1, N} are displaced by ∆rα;i = ± 0.02 Å, α {1, 2, 3} and the forces on all atoms

Fα;i (∆rβ;j) are computed. Again, all quantum mechanical calculations are conducted with the

VASP package, using the same DFT parameters as in section 4.2 for the structural relaxation

and the DFT forces are calculated, according to the Hellman-Feynman theorem [112]. The

classical forces are computed with the LAMMPS package [60, 61].
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In the DFT case, two different software packages are used to calculate the vibrational properties,

namely the Phonon routine, originally developed by Krzysztof Parlinski [116], contained in the

MedeA R© software package [117] and the open source package Phonopy [90, 91]. In case of the

classical forces, only the Phonopy package is employed. The input parameters, in both cases,

are the forces with respect to all atomic displacements Fα;i (∆rβ;j). The computation of the

force constants Φαβ;i,j , the dynamical matrix Dαβ;i,j (k) and the derived properties is done by

the respective software package.
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Figure 4.37: g (ν) of SiO2 after structural relaxation with DFT calculation. Comparison of different
software packages

In Fig. 4.37, the phonon densities of states are are compared to each other, calculated with

the different software packages. The calculations are based on the atomic configurations after

the classical quench with the BKS and the CHIK potential and the structural relaxation with

quantum mechanical forces. All curves are averaged over 5 independent configurations. In case

of the Phonon routine, the force constants Φαβ;i,j are computed employing the so-called original

Parlinski-Li-Kawazoe method [116] and the dynamical matrix Dαβ;i,j (k) is calculated, according

to a statistical sampling over k-points in the Brillouin-zone. In case of the Phonopy package,

the force constants Φαβ;i,j are computed using a slightly modified form of the original Parlinski-

Li-Kawazoe method [118] and Dαβ;i,j (k) is evaluated on a fixed mesh of k-points within the

Brillouin-zone with a mesh-grid of 5 points along each of the k-axes. In each case, the phonon

density of states g (ν) (see equation (3.109)) is evaluated according to the eigenfrequencies of

Dαβ;i,j (k) at the specific k-points νn (k) , n ∈ {1, . . . , 3N} (see equation (3.108)). In the Phonopy

routine, a Gaussian smearing is applied with a smearing width of 0.1 THz. It can be seen that

both curves are nearly identical. As in case of the classical forces, only the Phonopy software

package could be employed, the following results are according to this package.

In Fig. 4.38, the phonon densities of states g (ν), according to the quantum mechanical forces

after the structural relaxation, are compared to the ones, according to the classical forces, both,

for the BKS and the CHIK potential. The DFT curves after the structural relaxation are

identical to the ones in Fig. 4.37. Here, also the phonon density of states g (ν) of the one full
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Figure 4.38: g (ν) of SiO2. Comparison of classical with quantum mechanical forces

ab initio quench is shown. The curves according to the classical potentials are averaged over 10

different configurations. In all cases, there are significant differences between the DFT and the

classical phonon densities of states. The main difference is the reduced number of low frequency

modes between 0 THz and about 14 THz and the excess of modes between about 14 THz and

22 THz in the classical spectra. The peak at approximately 12 THz, in both cases, is completely

missing in the classical spectra. According to [11], the vibrational modes below about 22 THz

are delocalized and have a collective nature in the sense that many atoms in the whole simulation

box take part in the vibrational motion of these modes. Exceptions are the so-called D1 and D2

lines at approximately 14.8 THz and 18.2 THz, which are connected to the breathing motion of

four-membered (n = 4) and three-membered (n = 3) rings [27, 28]. However, these modes are

not visible in the vibrational spectra, both for the classical as well as the quantum mechanical

forces. In contrast to this, the high frequency modes with frequencies greater than about 22 THz

are more localized. According to [119], the modes in this frequency range can be predominantly

assigned to vibrational motions within the SiO4 tetrahedra. In this frequency range, the peak

at approximately 22 − 23 THz is much less pronounced in the classical spectra and slightly

shifted to lower frequencies, in both cases. The high-frequency doublet at about 30 − 38 THz

is present in the DFT, as well as in the classical spectra. However the position is shifted by

approximately 1.5 to 2 THz to lower frequencies in the quantum mechanical spectra. The low

frequency part of this doublet and the peak at approximately 22 − 23 THz are predominantly

assigned to asymmetric stretching motions of the oxygen atoms with respect to the central Si

atom and bond-bending motions of the Si-O-Si bonds [119] and the position of the 22− 23 THz

peak mainly depends on the mean Si-O-Si angle [120]. The peak positions of the DFT curves

(approximately 23 THz) and the mean Si-O-Si angle of about 145◦ − 148◦ (see Table 4.10) are

comparable to the ones of model I (about 24 THz and 148◦) in [120]. The high frequency part

of the double peak at about 30 − 38 THz is ascribed to an in-phase stretching motion of the

oxygen atoms with respect to the central Si atom in a tetrahedron [119].
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Figure 4.39: G (ν) of SiO2. Comparison of classical and DFT spectra with inelastic neutron
scattering [99, 100].

In Fig. 4.39, the so-called effective neutron scattering cross section G (ν) = C (ν) g (ν) is com-

pared to experimental results from inelastic neutron scattering [99, 100]. The correction function

C (ν) is calculated using the incoherent approximation, according to [121]. In this case, the cor-

rection function can be approximated by

C (ν) = 1 +
〈m〉
〈b2〉

(
gSi (ν)

g (ν)
− NSimSi

N 〈m〉

) (
b2Si
mSi

− b2O
mO

)
. (4.5)

Here, bSi = 4.1491 fm and bO = 5.803 fm [89] are the neutron scattering lengths, 〈m〉 =

20.028100333 amu is the mean atomic mass of the system,
〈
b2
〉

= N−1
∑

i b
2
i = 28.18821627 fm2

is the mean squared neutron scattering length, g (ν) is the full phonon density of states and

gα (ν) , α ∈ {Si,O}, are the partial phonon densities of states. In fact, Si and O in equation

(4.5) can be exchanged, as gO(ν)
g(ν) −

NOmO
N 〈m〉 = −gSi(ν)

g(ν) + NSimSi
N 〈m〉 . In this formulation, a Debye-

Waller factor of exp
[
−k2 〈u2

α〉/3
]
' 1, α ∈ {Si,O}, [92] is assumed, which is a good assumption

at low temperature. Here,
〈
u2
α

〉
are the mean square atomic displacements of atoms of type α.

Comparing the curves in Fig. 4.39 with the ones in Fig. 4.38, it can be seen that the main

effect of C (ν) is the reduction of the height of the 22 − 23 THz peak and the peak positions

are not altered. The experimental curves show data measured at 33 K [99] and a combination

of different measurements at three different spectrometers in a temperature range from 50 K to

room temperature [100]. The experimental resolution is about 3.6 THz [99] and 0.15 THz [100].

The lack of vibrational modes for ν < 5 THz in [99] is due to the substraction of resolution-

broadened elastic scattering in this region. In Fig. 4.39, the experimental curve [99], as well as

the calculated ones, are normalized to
´
G (ν) = 1. In case of the quantum mechanical spectra

after the structural relaxation, the calculated G (ν) are in good agreement with the experimen-

tal results. This agreement is in accordance with previous studies [11, 28, 119, 120]. Nearly
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no difference is visible between the curves of the BKS and the CHIK potential and the full ab

initio quench and all relevant peaks are resolved. The main difference is a shift of 22− 23 THz

peak and the high-frequency doublet to lower frequencies. One reason for this can be the ten-

dency to overestimate bond-length and to underestimate vibrational frequencies in case of the

applied exchange-correlation functional (PBEsol) [81]. The classical spectra, in both cases, show

an inferior agreement with the experimental G (ν), mainly due to the reduced number of low

frequency modes and the missing 12 THz peak. However, in both cases, the high-frequency dou-

blet is in good agreement with the experimental G (ν). Regarding G (ν) of the CHIK potential,

the 22 − 23 THz peak is slightly more pronounced and the 30 − 38 THz double peak is shifted

to slightly higher frequencies compared to the curve, according to the BKS forces. A similar

behavior has been already observed at 300 K [43].
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Figure 4.40: g (ν) of SiO2. Comparison with Raman scattering of fused silica. Measured at Otto
Schott Research Centre in Mainz.

In Fig. 4.40, the vibrational spectra are compared to results from Raman scattering. The

Raman measurements have been conducted at the Otto Schott Research Centre in Mainz. The

experimental curve is recorded based on a sample of fused silica (Schott Lithosil R©, [122]) with

a focal point about 150µm below the surface of the sample to measure the bulk properties. It

is recorded with a diffraction grating with 600 lines per mm. A frequency-doubled Nd:YAG-

Laser is used with an incident laser power of 1 W and wavelength of 532 nm. All polarization

directions are included. The curve is averaged over 60 measurements, each of a duration of 10 s.

The experimental Raman scattering cross section is proportional to

Is ∝ |ês ·R · êi|
1

ν
(nB (ν) + 1) g (ν) , nB (ν) =

1

exp
[
hν
kB T

]
− 1

, (4.6)

where g (ν) is the phonon density of states, ês and êi are the polarizations of the scattered

and incident light beams and R is the second-rank Raman tensor [120]. The shown curve is the
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experimental data divided by 1
ν (nB (ν) + 1) with T = 300 K and then normalized to

´
g (ν) = 1.

The general shape of the spectrum is similar to the shape of the effective neutron scattering cross

section. Differences in the peak heights are due to the different Raman susceptibilities of the

respective modes. In the Raman measurement, the D1 and D2 lines at about 14.8 THz and

18.2 THz [27, 28] are clearly visible. Regarding the comparison with the simulated spectra, the

same arguments hold as in case of the comparison with the effective neutron scattering cross

section G (ν).
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Figure 4.41: CV (T ) of SiO2. Comparison with experimental results of Cp (T ) [123]

Next, the specific heat at constant volume CV (T ) is calculated, according to equation (3.121),

multiplied by the factor NA
Nunits

to obtain the numerical values in units of [J/mol]. Here, NA is

the Avogadro constant and Nunits is the number of structural units in the configuration, which

is 55 SiO2 units in the case of a 165 atom system of SiO2. The calculation is based on the

eigenfrequencies νn (k) , n ∈ {1, . . . , 3N}, on a k-mesh with 15 points along each of the k-axes.

In Fig. 4.41, CV (T ) based on νn (k) , n ∈ {1, . . . , 3N}, according to the quantum mechanical

and the classical forces, are compared to Cp (T ) from calorimetric measurements [123] for all
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considered cases. The difference between CV and Cp per mol is expressed by the thermodynamic

relation [124]

Cp − CV = T
M

ρ
α2

VK, αV =
1

V

(
∂V

∂T

)

p

, K = −V
(
∂p

∂V

)

T

(4.7)

where M is the molar mass, ρ the density, αV the volumetric coefficient of thermal expansion at

constant pressure and K the bulk modulus at constant temperature. In case of SiO2, the values

at room temperature are M = 60.08430 g/mol (molar mass of one SiO2 unit), ρ ' 2.2 g/cm3 [98],

αV ' 3×αL ' 3× 5.5 · 10−7K−1 [122] and K ' 37 GPa (derived from the values of the Young’s

modulus, Shear modulus and Poisson’s ratio, given in [122]). Due to the low thermal expansion

of SiO2, the difference between Cp and CV is only about Cp−CV = 2.75 · 10−6 J
K2 mol

T [K] and

can be neglected. The agreement between the theoretical curves and the experimental curve

is rather good, in all cases. However, in the temperature range between 50 K and 900 K the

agreement with the experimental curve is significantly better for the data based on the quantum

mechanical forces, both for the BKS and the CHIK potential, as well as for the full ab initio

quench. In this temperature range, CV (T ) based on the classical forces is visibly below the

experimental curve, which can be explained due to the reduced number of low frequency modes

in the vibrational spectrum. Comparing the BKS and the CHIK potential, the corresponding

curves are virtually on top of each other.

In this chapter, the simulation results of the model glass former SiO2 are summarized. First,

simulations of the liquid state are presented in a temperature range between 4300 K and 2700 K.

On the one hand, the effects of different system sizes are studied, carrying out simulations of

114, 165, 216 and 1152 systems with the BKS potential [22] at a constant system density of

ρ = 2.37 g/cm3. The main finite size effects are the slowing down of the dynamics and a decrease

of the number of rings, containing more than 6 Si atoms, with decreasing system size. The 114

atom system shows some additional artifacts in the curves of the static structure factors. This

motivates the choice of a 165 atom system for further considerations. On the other hand, the

structural and dynamical properties of the BKS [22] and the CHIK [43] potential are compared.

The main differences are slightly larger peak heights and about 3− 10 times larger α-relaxation

times, in case of the BKS potential. In addition, the temperature dependence of of the self-

diffusion constants Dα, α ∈ {Si,O}, is studied. At temperatures below about 3200 K, the

curves of Dα with respect to 1/T show an Arrhenius behavior (see equation (4.4)). Regarding

the BKS potential, the extracted activation energies EA,α, α ∈ {Si,O}, are significantly larger

than the ones reported in [42] and [107, 108]. The differences can be explained in terms of

finite size effects and effects due to different system densities. Regarding the CHIK potential,

the values of EA,α, α ∈ {Si,O}, are also larger than the ones reported in [43], which can be

explained in terms of finite size effects. Next, glass structures are generated by quenches from the

melt with classical MD simulations, employing the BKS and the CHIK potential. Afterwards, a

structural relaxation is carried out with respect to quantum mechanical forces, mainly reducing
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the mean Si-O-Si angle by about 4◦−6◦, in agreement with [10]. After the quantum mechanical

relaxation, no significant differences are visible in the glass structures generated by the BKS

and the CHIK potential and the agreement, both, with one glass structure generated by a full

ab initio quench from the melt and with experimental results is good. Finally, the vibrational

properties are studied. Here, the vibrational spectra, according to the quantum mechanical

forces, show a good agreement with results from inelastic neutron scattering [99, 100]. The

agreement is significantly better compared to the spectra, according to the classical forces of the

BKS, as well as the CHIK potential. The latter show a reduced number of vibrational modes in

the low frequency range. This leads to a significantly better agreement of the specific heat at

constant volume CV (T ) with experimental results as well. The results of this chapter suggest

that, both, a classical quench with a subsequent quantum mechanical relaxation and a full ab

initio quench can lead to comparable glass structures, given a reliable classical potential.



Chapter 5

Calculating thermal expansion

In this chapter, the temperature dependence of the system volume, V (T ), is examined for the

model glass former SiO2. The calculations are based on the glass structures, generated in section

4.2, and the concept of the so-called quasi-harmonic approximation is applied. In section 5.1,

the theoretical background is summarized. In section 5.2, the numerical results of the model

glass former SiO2 are presented for quantum mechanical and classical forces. Here, a change of

sign of the linear coefficient of thermal expansion αL (T ) is observed with a range of negative

thermal expansion at temperatures below approximately 130 K to 160 K (quantum mechanical

forces) and 290 K to 325 K (classical forces). This behavior is in accordance with experimental

results. To my knowledge, the calculation of the thermal expansion of vitreous silica by means

of ab initio calculations has not been done before.

5.1 Theoretical considerations

In section 3.4, the theory of lattice vibrations within the harmonic approximation has been sum-

marized. As already explained in section 4.3, the simulated glass structures are theoretically

treated as crystalline structures with a large unit cell containing 165 atoms. In this context,

harmonic approximation means that the forces on each of the N atoms of a solid are consid-

ered to be proportional to the atomic displacements and the individual atoms can be treated as

3-dimensional harmonic oscillators. Therefore, the vibrational properties of the whole configu-

ration can be mathematically treated as an ensemble of 3N independent quantum mechanical

harmonic oscillators. According to equations (3.113), (3.120) and (3.118), the relevant ther-

modynamical properties, as the internal energy, the entropy and the free energy of the lattice

vibrations can be described in terms of the respective eigenfrequencies νn (k) , n ∈ {1, . . . 3N}.
This model is not capable to describe the thermal expansion of the solid as the eigenfrequencies

νn (k) are independent of the temperature.

The quasi-harmonic approximation [125] is a way to introduce the temperature dependence of

the eigenmodes νn (k) and provides a way to describe thermal expansion. In this model, the

85
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lattice vibrations are still described within the harmonic approximation, however the assumption

is that the eigenfrequencies depend on the volume of the system: νn (k;V ). As a consequence,

the phonon density of states and the thermodynamical properties have a volume dependence,

as well. The exact relation between the Helmholtz free energy F (T, V ) and the internal energy

U (T, V ) of a system is [63]:

F (T, V ) = U (T, V )− T S (T, V ) . (5.1)

Neglecting effects due to electronic excitations and configurational degrees of freedom, the rela-

tion can be written in the following form:

F (T, V ) = E0 (V ) + UVib (T, V )− T SVib (T, V ) , (5.2)

⇔ F (T, V ) = E0 (V ) + FVib (T, V ) . (5.3)

Here, UVib (T, V ) is the internal energy, SVib (T, V ) the entropy and FVib (T, V ) the free energy

of the lattice vibrations. They have the same functional forms as in equations (3.113), (3.120)

and (3.118), introducing the volume dependence by means of the volume dependence of the

eigenfrequencies νn (k;V ). This leads to the functional form of the vibrational free energy of

FVib (T, V ) =
RT

NunitsNk

∑

k

3N∑

n=1

ln

[
2 sinh

(
hνn (k;V )

2kBT

)]
(5.4)

in units of [J/mol] (equation (3.118) multiplied by NA
Nunits

). Here, Nunits is the number of structural

units in the configuration, which is 55 SiO2 units in the case of a 165 atom system of SiO2. The

energy E0 (V ) in equations (5.2) and (5.3) is the total energy of the structural configuration at

0 K at a given volume V . It consists of all electronic contributions, the Coulomb energy of the

interactions between the nuclei and the contributions of the atomic energies, according to the

PAW potentials, as already explained in section 4.2. Given the Helmholtz free energy F (T, V ),

the Gibbs free energy G (T, p) can be written as

G (T, p) = min
V

[F (T, V ) + p V ] = min
V

[E0 (V ) + FVib (T, V ) + p V ] . (5.5)

Equation (5.5) has to be understood in a sense that for each temperature T and external pres-

sure p, the minimization of [F (T, V ) + p V ] with respect to V yields the Gibbs free energy of

the system. Following the volume with minimal [F (T, V ) + p V ], the volume dependence on

temperature V (T ) can be obtained.
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This means that in this approximation, the overall volume dependence of the Helmholtz free

energy F (T, V ) and the Gibbs free energy G (T, p) comes from the volume dependence of the

total energy E0 (V ) of the atomic configuration at 0 K and the volume dependence of the eigen-

frequencies νn (k;V ).

In this chapter, only properties at normal conditions are studied, meaning an external pressure

of p = 1 atm ' 0.1 MPa. The magnitude of relevant pressures in solids is of the order of GPa,

meaning an external pressure of p ' 0 is a reasonable assumption. In practice, the unit cell

of the given structure has to be slightly compressed and enlarged, without altering the relative

coordinates of the atoms in the system. This leads to a series of configurations at slightly

different volumes V . For each of the configurations, a structural relaxation has to be conducted

to obtain the total energy for the specific system volume E0 (V ), followed by a calculation of the

vibrational properties with the ”frozen phonon” method to compute FVib (T, V ). Given the set

of F (T, V ) at discrete cell volumes V , at each temperature T , the volume with minimal F (T, V )

(p ' 0) is found by means of a fit to a given functional form of E (V ).

To describe the volume-dependence of the eigenfrequencies νn (k), the so-called dimensionless

microscopic mode Grüneisen parameters can be defined [93]:

γn (k) = − V

νn (k)

∂νn (k)

∂V
. (5.6)

Based on equation (5.6), the macroscopic Grüneisen parameter γ (T ) can be defined in terms of

a weighted average of the microscopic γn (k):

γ (T ) =

∑
k

∑3N
n=1 γn (k) cV,n (k;T )

∑
k

∑3N
n=1 cV,n (k;T )

, (5.7)

cV,n (k;T ) =

(
hνn (k)

kBT

)2 exp
[
hνn(k)
kBT

]

[
exp

[
hνn(k)
kBT

]
− 1
]2 . (5.8)

Here, cV,n (k;T ) is the contribution of each individual vibrational mode n to the specific heat at

constant volume CV (T ), according to equation (3.121). It can be shown that the macroscopic

Grüneisen parameter γ (T ) correlates CV (T ) with the volumetric thermal expansion coefficient

αV (T ) and the isothermal bulk modulus K (T ) (see equation (4.7)) by the following relation:

γ (T ) =
αV (T ) K (T ) M

CV (T ) ρ
. (5.9)
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Here, M is the molar mass, ρ is the density of the system and CV (T ) is given in units of [J/mol].

As a result of equation (5.9), a temperature regime with negative thermal expansion coefficient

αV (T ) relates to a negative macroscopic Grüneisen parameter γ (T ) in the respective tempera-

ture range and, due to equation (5.7), a negative γ (T ) relates to negative microscopic Grüneisen

parameters γn (k). As a consequence of equation (5.6), the vibrational modes contributing to

a temperature regime with negative thermal expansion show a positive frequency dependence

with respect to the system volume V , namely ∂νn(k)/∂V > 0. This means that the corresponding

force constants increase with V .

5.2 Application to model glass former SiO2

In this section, the method to calculate thermal expansion is applied to the model glass former

SiO2. The basis for the calculations are the 165 atom glass structures after the classical quench

and the subsequent quantum mechanical relaxation, as explained in section 4.2. Following the

considerations of section 4.3, the analysis is done for 5 independent glass structures generated

with the BKS potential and 5 configurations generated with the CHIK potential. Additionally,

the thermal expansion is calculated for 10 independent configurations generated by the BKS and

the CHIK potential, where all calculations are done with respect to the classical force fields (see

section 4.3). As explained in section 5.1, it is necessary to calculate the vibrational properties

of the same structural configuration at different system volumes. Therefore, the densities of

the configurations are manually changed to ρ = 2.1 g/cm3, ρ = 2.3 g/cm3 and ρ = 2.4 g/cm3,

corresponding to box lengths of LBox = 13.7737 Å, LBox = 13.3623 Å and LBox = 13.17407 Å.

In case of the classical force fields, the system density of ρ = 2.0 g/cm3 is included, as well, in

all calculations. The latter corresponds to a box length of LBox = 13.99954 Å. In case of the

DFT forces, the additional system densities of ρ = 2.0 g/cm3, ρ = 2.15 g/cm3, ρ = 2.22 g/cm3, ρ =

2.23 g/cm3, ρ = 2.25 g/cm3 and ρ = 2.275 g/cm3 are examined for one glass configuration, generated

with the BKS potential. These densities correspond to box lengths of LBox = 13.99954 Å,

LBox = 13.6661 Å, LBox = 13.52173767 Å, LBox = 13.501 Å, LBox = 13.4606 Å and LBox =

13.411 Å. In each case, a structural relaxation at constant box size is performed by means of a

conjugate gradient algorithm [111]. Again, the VASP software package [77–79] is used in case of

DFT forces and the LAMMPS package [60, 61] is employed in case of the classical force fields.

The computational details and DFT parameters are the same as in section 4.2 for the structural

relaxation. The vibrational properties are calculated with the ”frozen phonon” method, using the

Phonopy package [90, 91]. The respective parameters are the same as in section 4.3. Again, the

atomic displacements are d = 0.02 Å and the thermodynamic properties are evaluated according

to the eigenfrequencies νn (k) , n ∈ {1, . . . , 3N}, on a k-mesh with a grid of 15 points along each

of the k-axes.

In Fig. 5.1, the Helmholtz free energy F (T, V ) is shown at 0 K and 500 K, according to equation

(5.3). Calculations are done with respect to quantum mechanical forces for one glass configu-

ration of the BKS potential after the structural relaxation. Here, the configuration is chosen
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Figure 5.1: Helmholtz free energy F (T, V ) of one glass configuration SiO2 at different tempera-
tures, DFT forces.

where the 10 different system densities are studied. To determine minV [F (T, V )] at a given

temperature, parameter fits to theoretical curves are conducted. Three different theoretical

equations of states E (V ) are considered that describe the dependence of the volume of a solid

on external pressure. The simplest theoretical form is the so-called Murnaghan equation of state

[126], based on the assumption that the bulk modulus at constant temperature (see equation

(4.7)) is a linear function of the pressure (K = K0 + pK ′0). Here, K0 is the bulk modulus at

zero external pressure p = 0 and K ′0 is the first derivative of the bulk modulus evaluated at zero

external pressure ∂K
∂p |p=0. A generalization of the latter, including the effects of finite strain in

crystals, is the so-called Birch-Murnaghan equation of state [127]. The third functional form is

the so-called Vinet equation of state [128]. It is based on a study of universal features in the

energetics of metals and theoretical arguments are given that it holds for all classes of solids also

at temperatures T > 0 in the absence of phase transitions. The functional forms of the three

equations of state are the following:

E (V ) = E0 +
K0 V

K ′0

[(
V0

V

)K′0 1

K ′0 − 1
+ 1

]
− K0 V0

K ′0 − 1
, (5.10)

E (V ) = E0 +
9K0 V0

16





[(
V0

V

) 2
3

− 1

]3

K ′0 +

[(
V0

V

) 2
3

− 1

]2 [
6− 4

(
V0

V

) 2
3

]
 , (5.11)

E (V ) = E0 +
9K0 V0((

3
2

)
(K ′0 − 1)

)2

{
1 +

[(
3

2

) (
K ′0 − 1

)
(

1−
(
V

V0

) 1
3

)
− 1

]
exp [A]

}
, (5.12)

A =
3

2

(
K ′0 − 1

)
[

1−
(
V

V0

) 1
3

]
. (5.13)

In Fig. 5.1, it can be seen that at both temperatures all three different equations of state show
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a good agreement with the discrete set data points of F (T, V ) at the 10 considered system

densities. The differences between the shape of the fitted curves is rather small, especially

around the minimum value V0. As a second check, the parameter fit is repeated based only on 4

discrete points of F (T, V ) at the system densities ρ = 2.1 g/cm3, ρ = 2.2 g/cm3, ρ = 2.3 g/cm3 and

ρ = 2.4 g/cm3 of the same configuration, again at T = 0 K and T = 500 K.

10 data points, 0 K V0

[
Å

3
]

E0 [eV] K0 [GPa] K ′0 [ ]

Murnaghan [126] 2441.68 -1333.18 40.49 -2.10

Birch-Murnaghan [127] 2442.88 -1333.18 41.29 -2.86

Vinet [128] 2441.65 -1333.18 40.48 -2.09

4 data points, 0 K V0

[
Å

3
]

E0 [eV] K0 [GPa] K ′0 [ ]

Murnaghan [126] 2440.56 -1333.18 40.45 -1.16

Birch-Murnaghan [127] 2440.56 -1333.18 40.87 -1.13

Vinet [128] 2440.56 -1333.18 40.44 -1.16

10 data points, 500 K V0

[
Å

3
]

E0 [eV] K0 [GPa] K ′0 [ ]

Murnaghan [126] 2450.49 -1343.23 43.38 -2.42

Birch-Murnaghan [127] 2451.64 -1343.23 44.45 -3.08

Vinet [128] 2450.48 -1343.23 43.38 -2.41

4 data points, 500 K V0

[
Å

3
]

E0 [eV] K0 [GPa] K ′0 [ ]

Murnaghan [126] 2451.33 -1343.22 42.70 -2.44

Birch-Murnaghan [127] 2451.15 -1343.22 43.36 -2.22

Vinet [128] 2451.33 -1343.22 42.70 -2.44

Table 5.2: Fit parameters V0, E0, K0 and K ′0 for fits of different equations of state E (V ) to the
numerical values of F (T, V ), based on DFT forces. One glass configuration, generated with the BKS
potential, after the structural relaxation. Fits to all 10 and 4 data points at T = 0 K and T = 500 K.

In Table 5.2, the values of the parameters V0, E0, K0 and K ′0 are exemplarily shown for this

configuration at T = 0 K and T = 500 K for the fits to 4 and to 10 data points. In all cases, the

differences of the fit parameters for the different equations of state E (V ) are small. Regarding the

different parameters, the biggest deviation is visible in the value of K ′0, which is the parameter

with the largest asymptotic standard error of about 10 − 20 %. In general, the parameters,

according to the Murnaghan equation of state [126] are nearly identical to the ones, according

to the Vinet equation of state [128], in all cases.

Regarding the thermal expansion, the dependence of the fit parameter V0 on the temperature

T is of the greatest interest. In Fig. 5.2, the V (T ) curve is shown for the parameter fits to the

4 and 10 different system densities of this specific glass configuration, according to the Vinet

equation of state (equation (5.12)). In Fig. 5.3, V (T ) is shown for parameter fits to the 10

different system densities, according to the three different equations of state (equations (5.10) to

(5.12)). Regarding the different equations of state, nearly no differences are visible between the

three curves. The differences are largest for small temperatures. Here, the curves according to

the Vinet [128] and the Murnaghan [126] equation of state are virtually on top of each other and
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Figure 5.2: V (T ) of one glass configuration
SiO2. Evaluation according to 4 and 10 different
system densities, DFT forces, Vinet equation of

state (equation (5.12)).
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Figure 5.3: V (T ) of one glass configuration
SiO2. Evaluation according to different equa-
tions of state (equations (5.10) to (5.12)), DFT

forces, 4 data points.

the curve, according to the Birch-Murnaghan equation of state [127] shows slight differences.

Regarding the different number of system densities, the deviations between the two curves are

larger. The curve fitted to 4 system densities is slightly steeper than the curve according to the

10 different densities.

In the following, all calculations are based on a fit with respect to the Vinet equation of state

(equation (5.12)). This is clearly justified by the previous considerations as the differences,

according to the different equations of state, are small. Regarding the number of system den-

sities, a higher number of data points for each configuration would be desirable. So far, only

calculations, according to 4 different system densities, have been conducted for all considered

configurations. However, the previous considerations suggest that the error due to the limited

number of data points is controllable.

In Fig. 5.4, the V (T ) curves are displayed for the 5 independent glass configurations generated

with the BKS and the CHIK potential, using DFT forces. The parameter fits are conducted in the

way described above, employing the Vinet [128] equation of state and the free energies F (T, V )

of the 4 different system densities ρ = 2.1 g/cm3, ρ = 2.2 g/cm3, ρ = 2.3 g/cm3 and ρ = 2.4 g/cm3. In

Fig. 5.5, the curves of the BKS and the CHIK potential are shown, according to the classical

force fields. Again, the Vinet [128] equation of state is employed and, in this case, 5 different

system densities are studied, namely ρ = 2.0 g/cm3, ρ = 2.1 g/cm3, ρ = 2.2 g/cm3, ρ = 2.3 g/cm3 and

ρ = 2.4 g/cm3. For either classical potential, the dependence of the volume on the temperature

exhibits differences between the different glass samples, both, with respect to the equilibrium

volume at a given temperature, as well as the gradient of the curves. The volume, according

to minV [F (T, V )] at 0 K, corresponds to system densities from 2.25 g/cm3 to 2.30 g/cm3 for the

BKS potential and to system densities from to 2.25 g/cm3 for 2.29 g/cm3 the CHIK potential, in

case of the DFT forces. In case of the classical force fields, the corresponding system densities
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Figure 5.4: V (T ) of 5 different glass configurations SiO2. BKS and CHIK potential, DFT forces.
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Figure 5.5: V (T ) of 10 different glass configurations SiO2. BKS and CHIK potential, classical
forces.

are located between 2.15 g/cm3 and 2.25 g/cm3 for the BKS potential and between 2.12 g/cm3 and

2.17 g/cm3 for the CHIK potential.

In Figs. 5.6 and 5.7, the linear expansion coefficients αL (T ) = 1
L

(
∂L
∂T

)
p

of the latter glass

configurations are shown. For isotropic systems, the linear expansion coefficient is about one

third of the volumetric expansion coefficient (see equation (4.7)) αL (T ) = 1/3αV (T ) within

the order of O (∆T ). The volumetric expansion coefficients are obtained by means of numerical

derivatives of the V (T ) curves. Again, there are distinct differences visible between the curves of

the different independent samples, in all cases. For example, at room temperature, the numerical

values of αL (T ) lie in a range between 0.8 · 10−6 1/K and 3.8 · 10−6 1/K for the BKS potential and

between 0.8 ·10−6 1/K and 2.8 ·10−6 1/K for the CHIK potential, in case of the DFT forces. In case

of the classical forces, the respective values lie in a range between −1.0·10−6 1/K and 0.7·10−6 1/K

for the BKS potential and between −0.6 · 10−6 1/K and 1.0 · 10−6 1/K for the CHIK potential.
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Figure 5.6: Linear expansion coefficient αL (T ) of 5 different glass configurations SiO2. BKS and
CHIK potential, DFT forces.
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Figure 5.7: Linear expansion coefficient αL (T ) of 10 different glass configurations SiO2. BKS and
CHIK potential, classical forces.

Regarding the shapes of the DFT curves, in case of the BKS potential, all configurations but one

show a change of sign of αL and a regime of negative thermal expansion in the low temperature

regime below about 140−200 K. In case of the CHIK potential, this behavior is apparent for all

configurations at temperatures below about 100− 200 K. It is remarkable that this temperature

regime of negative thermal expansion is apparent in all curves of the classical force fields, both,

in case of the BKS potential (below about 225−470 K) and in case of the CHIK potential (below

about 200− 370 K). At higher temperatures, the linear expansion coefficients in all cases show

a steady increase until reaching a plateau value at about 1000 K. The range of the plateau

values is less pronounced and lies in a range between about 2.7 · 10−6 1/K and 5.6 · 10−6 1/K for

the BKS and about 2.8 · 10−6 1/K and 5.0 · 10−6 1/K for the CHIK potential, in case of the DFT

forces. In case of the classical forces, the plateau values lie in a range between 1.0 · 10−6 1/K and

2.9 · 10−6 1/K for the BKS potential and between 1.9 · 10−6 1/K and 3.5 · 10−6 1/K for the CHIK
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potential.

As described in the previous section, the temperature range of negative thermal expansion is

connected to a negative sign of the macroscopic Grüneisen parameters and mode Grüneisen

parameters. The macroscopic Grüneisen parameters, according to equation (5.9), in each case

have a negative sign in the temperature range where the linear expansion coefficients αL (T ) get

negative (see Figs. 5.6 and 5.7). As already mentioned before, this is the case in all independent

configurations except for one glass configuration generated with the BKS potential and employing

quantum mechanical forces. To get a better understanding of the underlying mechanism, the

mode Grüneisen parameters γn are calculated, according to equation (5.6). This is done in the

following way. For each vibrational mode n ∈ {1, . . . , 3N}, a quadratic fit of νn with respect to

the system volume V is conducted

fn (V ) = an + bn (V − x0,n)2 , (5.14)

taking into account the system volumes corresponding to the system densities used for the

determination of V (T ). After the parameter fit, according to equation (5.14), in each case, the

numerical value of γn is approximated in the following way:

γn ' −
V0

fn (V0)

∂fn (V )

∂V

∣∣∣∣
V=V0

= − V0

an + bn (V0 − x0,n)2 2 bn (V0 − x0,n) . (5.15)

Here, V0 is the equilibrium volume of the system at 0 K, determined by means of the Vinet

equation of state [128]. Of course this is an approximation. However, regarding the discrete set

of system volumes at which the eigenfrequencies νn are calculated, this method gives more reliable

results than using a standard scheme of numerical differentiation, like ∂νn(V )
∂V ' νn(V+∆V )−νn(V )

∆V

or ∂νn(V )
∂V ' νn(V+∆V )νn(V−∆V )

2 ∆V . Here, only the numerical values at 2 discrete system volumes

are taken into account. In the following, the analysis of the mode Grüneisen parameters γn is

presented, with the restriction to the numerical values at the Gamma-point (k = (0, 0, 0)T ).

In Fig. 5.8, the dependence of the eigenfrequencies on the volume is exemplarily shown for

the eigenmodes n = 4 and n = 5 for two different glass configurations generated with the

BKS potential, using DFT forces. Additionally, the quadratic fits fn (V ), according to equation

(5.14), are shown. The equilibrium volumes at 0 K are (1: V0 = 2440.56 Å
3
, 2: V0 = 2432.12 Å

3
).

The lowest 3 eigenfrequencies are not displayed as the first 3 eigenmodes are so-called soft

modes or Goldstone bosons and are related to the lattice translations in 3 dimensions [93]. At

the Gamma-point (k = (0, 0, 0)T ), the corresponding eigenfrequencies should be equal to zero

[93]. In practice, they show slight imaginary values due to numerical inaccuracies. The glass

configuration 1 is the one configuration that does not show a change of sign of αL and a range

of negative thermal expansion. In Fig. 5.8, it can be seen that it makes sense to include the
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Figure 5.8: eigenfrequencies νn with respect to V . Mode n = 4 and n = 5. Two configurations of
SiO2 according to BKS potential, DFT forces.
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Figure 5.9: eigenfrequencies νn with respect to V . Mode n = 150 and n = 300. Two configurations
of SiO2 according to BKS potential, DFT forces.

numerical value of νn at all system volumes into the determination of γn and that a quadratic fit

is an acceptable method. Due to the definition of the mode Grüneisen parameters γn (equation

(5.6)), a positive slope of fn (V0) at the equilibrium volume V0 leads to a negative value of the

respective γn and vice versa. In the case of glass configuration 1, the slope of fn (V ) changes, in

contrast to a monotonous increasing behavior in the case of glass configuration 2 in the range of

the examined system volumes V . This is the case also for the other low frequency eigenmodes νn

and the other 3 glass configurations of the BKS potential with DFT forces, not displayed here,

show a similar behavior as glass configuration 2. This difference in the volume dependence of

νn (V ) could explain the deviating behavior of glass configuration 1 with respect to the missing

change of sign of αL and temperature range of negative thermal expansion. However, this

explanation is speculative. In Fig. 5.9, the same investigation is carried out for two eigenmodes
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(n = 150 and n = 300) in a frequency range where all 5 different glass configurations show

a similar behavior and the corresponding mode Grüneisen parameters γn are positive, in all

cases. Here, the quadratic fits fn (V ) show a monotonous increasing behavior in both cases

(glass configurations 1 and 2), leading to a positive γn. Again, the other 3 glass configurations,

not displayed here, show a similar behavior.
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Figure 5.10: Mode Grüneisen parameters γn of 5 different glass configurations SiO2. BKS and
CHIK potential, DFT forces.

In Figs. 5.10 and 5.11, the mode Grüneisen parameters γn (k) at k = (0, 0, 0)T are plotted against

the eigenfrequencies νn for all examined glass configurations, using DFT and classical forces. The

numerical values of γn are calculated, according to equation (5.15) and the numerical values of

νn are calculated, according to the quadratic fits (equation (5.14)) evaluated at the equilibrium

volumes, namely fn (V0). Again, the lowest 3 eigenfrequencies are not displayed. It can be

seen that the microscopic Grüneisen parameters γn of the eigenmodes with low eigenfrequencies

have a negative sign for all examined glass configurations. In case of the one glass structure

(configuration 1, BKS potential, DFT forces) that does not show a temperature range with
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Figure 5.11: Mode Grüneisen parameters γn of 10 different glass configurations SiO2. BKS and
CHIK potential, classical forces.

negative thermal expansion, the magnitude of the negative value of γn for the lowest eigenmodes

is significantly smaller as in case of the other glass configurations (see Fig. 5.10).

In Figs. 5.12 and 5.13, the average linear expansion coefficients αL (T ) are shown. The error

bars displayed are the the standard deviation of the mean with respect to the N independent

configurations: σ = σ√
N

. First, they are compared to measurements of the NIST standard

reference material 739 [32] down to 80 K with an experimental error of about ±0.03 · 10−6 K−1.

This material is synthetically fused silica, annealed at 1373 K and then cooled to 1173 K at

12 K per hour. Second, the calculated αL (T ) are compared to low-temperature measurements

down to 10 K of Spectrosil which is synthetically fused silica and Vitreosil, which is electrically

fused from quartz powder, both, annealed at 1400 C◦ [33]. Here, the experimental error is

about ±0.01 · 10−6 K−1 below 30 K and about ±0.1 · 10−6 K−1 for higher temperatures. In

the low-temperature regime, in fact, the curves of these different materials are identical. All

measurements show a range of negative thermal expansion below about 200 K with a minimum

of approximately −0.8 · 10−6 K−1 at about 50 K. Afterwards, αL (T ) increases until it reaches a
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Figure 5.12: Average linear expansion coefficient αL (T ), SiO2. BKS and CHIK potential, DFT
forces. Comparison with experimental measurements of NIST Standard Reference Material 739,

Spectrosil and Vitreosil [32, 33].
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Figure 5.13: Average linear expansion coefficient αL (T ), SiO2. BKS and CHIK potential, classical
forces. Comparison with experimental measurements of NIST Standard Reference Material 739,

Spectrosil and Vitreosil [32, 33].

maximum of about 0.63 · 10−6 K−1 at approximately 450 K with a subsequent steady decrease.

In Fig. 5.12, it can be seen that the agreement of the calculated αL (T ) with the experimental

values is quite good in the low-temperature regime below 200 K in both cases for the DFT

forces. At higher temperatures, the increase of αL (T ) of the calculated curves is significantly

steeper, compared to the experimental results, leading to a value of αL (T ) at 1000 K that is

about one order of magnitude higher than the corresponding experimental value. In case of

the classical forces, the behavior is similar in both cases (see 5.13). However, the agreement at

low temperatures is significantly inferior compared to the DFT curves, as the range of negative

thermal expansion is more extended in both cases. This behavior is slightly more apparent in

the αL (T ) curve, according to the BKS forces.
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As already explained in section 4.3, calculating the vibrational properties employing the har-

monic approximation is only valid at low temperatures as at higher temperatures anharmonic

effects become more important. The calculation of the thermal expansion is based on these

harmonic vibrational properties. Therefore, it is understandable that the agreement with ex-

perimental results gets inferior at higher temperatures. The observed range of negative thermal

expansion is connected to the network structure of vitreous silica, as it is for example not ob-

served in crystalline α-quartz [129]. One explanation is that it comes from the low frequency

vibrational modes of the oxygen atoms vibrating normal to the Si-O-Si interconnection between

two neighboring tetrahedra [130]. This explanation is consistent with the observation of the

negative mode Grüneisen parameters γn at low eigenfrequencies. It is striking that the range

of negative thermal expansion is apparent, as well, for the calculations based on the classical

forces. However, one should be aware of the fact that the theoretical considerations underlying

the calculation of αL (T ) are based on the theoretical description of 3N independent quan-

tum mechanical harmonic oscillators (see section 5.1). This means that somehow, a quantum

mechanical description is combined with inter-atomic forces from classical force fields.

Summarizing, in this chapter the temperature dependence of the system volume V (T ) is exam-

ined for the model glass former SiO2, based on the quasi-harmonic approximation. Following

the volume with minimal F (T, V ) (assumption of p ' 0), allows to obtain V (T ) and, subse-

quently, the linear thermal expansion coefficient αL (T ). The striking observation is a change

of sign of αL (T ), both, using quantum mechanical (DFT) forces and classical forces for all but

one examined glass configuration. To my knowledge, this has not been reported before. The

temperature range of negative thermal expansion is about 130 K to 160 K (quantum mechanical

forces) and 290 K to 325 K (classical forces). In particular, in the low-temperature regime below

about 200 K, the curves of αL (T ) due to the DFT forces show a very good agreement with

experimental results [32, 33]. The change of sign in the thermal expansion can be explained by

negative microscopic mode Grüneisen parameters γn at low eigenfrequencies.





Chapter 6

Model glass former B2O3

In this chapter, the simulation results of the model glass former B2O3 are summarized. As

already emphasized in sections 2.2 and 2.4, the glass structure of pure B2O3 has the special

feature that about 60% − 80% of the boron atoms are localized within planar rings, consisting

of 3 boron and 3 oxygen atoms. These are called boroxol rings when the participating boron

atoms are all 3-fold coordinated with respect to the oxygen atoms and the oxygen atoms are all

2-fold coordinated with respect to the boron atoms [31]. In section 6.1, different experiments

are summarized, supporting the high fraction of boroxol rings in vitreous B2O3. Additionally,

an overview over several previous classical molecular dynamics studies of boron oxide is given

with classical potentials, as simple as pair potentials, up to complicated many-body potentials.

In section 6.2, the results of Born-Oppenheimer molecular dynamics (MD) simulations based on

quantum mechanical DFT forces are presented. Here, the structural and dynamical properties

of liquid B2O3 in a temperature range between 3600 K and 2300 K are discussed. The latter is

the lowest temperature at which the system still can be equilibrated by means of an ab initio

MD simulation. The liquid structure at 2300 K shows an increased amount of rings containing 3

boron and 3 oxygen atoms, compared to the liquid structures at 2500 K and 2700 K. In section

6.3, the fitting of new force field parameters for classical MD simulations is discussed, using

a modified form of the structural fitting procedure, described in [43]. Basis for the parameter

fits is the ab initio MD trajectory at 2300 K. The inclusion of 3-body terms leads to improved

results, regarding the accordance of the liquid properties of the classical MD and ab initio

MD simulations. In section 6.4, the structural and dynamical properties of liquid B2O3 are

examined, in detail, at different temperatures for the two most promising parameter sets after

the structural fit in the previous section. Special focus is on the temperature dependence of

certain structural quantities and the self-diffusion constants Dα, α ∈ {B,O}. The latter show

an unusual temperature dependence, not observed in case of the model glass former SiO2. In

section 6.5, a set of glass samples is analyzed, generated in different ways, namely by classical

quenches from the melt with a subsequent quantum mechanical relaxation and by full ab initio

quenches from different starting temperatures. The classical MD simulations are conducted with

the two different parameter sets employed in section 6.4 and the original parameter set before

101
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the structural fit. The structural properties of this set of glass structures are in reasonable

agreement with experimental results from neutron scattering [29]. However, the boroxol ring

fraction is significantly lower than the experimental prediction and varies from about f = 2.5%

(one classical potential with 3-body terms) to f = 15% (full ab initio quench from 2300 K).

In addition, a comparison to a structural model is presented, generated in an alternative way

[131–133], where f = 75% of the boron atoms are located in boroxol rings. In section 6.6,

the vibrational properties of the glass configurations are studied. The calculated vibrational

spectra show an acceptable agreement with experimental results from inelastic neutron scattering

[30, 134]. The significantly too low boroxol ring fraction is reflected in the significantly reduced

intensity of the corresponding peak.

6.1 Experimental evidence for the existence of boroxol rings and

overview over previous classical molecular dynamics simu-

lations

First, a summary of different experiments is given, supporting the hypothesis of a boroxol ring

fraction of about 60% − 80% in B2O3 glass. Second, an overview over several previous studies

of boron oxide by means of classical MD simulations is given, including pair interactions and

many-body potentials.

Regarding the experimental evidence of the existence of boroxol rings in vitreous B2O3, the

first summary is given in [135]. Here, it is concluded that the best structural model is the one

of a random three-dimensional network of BO3 triangles with a high fraction of boroxol rings.

One experimental evidence for the existence of boroxol rings comes from Raman measurements,

showing a very sharp and pronounced peak in the horizontal-horizontal (HH) Raman spectrum

at 808 cm−1 =̂ 24.2 THz, where the polarization of the incident and the scattered laser beam

are parallel [26]. This peak is assigned to the breathing mode of a symmetric boroxol ring.

Regarding Raman measurements, in [36], the Raman spectrum of vitreous and liquid B2O3 is

measured in a temperature range from room temperature to 1273 K. Here, a decrease of the

boroxol ring fraction from about f ' 0.62 to f ' 0.22 at 1273 K is derived with an experimental

error of 4f ' 0.15.

Another independent evidence comes from nuclear magnetic resonance (NMR) measurements.

In [136], 10B, 11B and 17O NMR is used to study the respective chemical environment in B2O3

glass. From the 17O spectra the presence of two distinct oxygen sites is predicted of oxygen

atoms within and outside of boroxol rings. From this, a boroxol ring fraction of f ' 0.82± 0.08

is deduced. In [137], a boroxol ring fraction of f ' 0.7 is derived from 11B dynamic angle

spinning (DAS) NMR results. This value is in agreement to 17O high-resolution magic angle

spinning (MAS) NMR measurements, reported [138]. Here, a value of 0.5 ± 0.1 is reported for

the fraction of oxygen atoms in boroxol rings, corresponding to f = 0.75± 0.15.
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In addition, X-ray and neutron diffraction experiments are in good agreement with model struc-

tures, containing a high amount of boroxol rings. In [139], the real space correlation function

T (r) derived from X-ray diffraction is found to be in good agreement with a structural model

containing a high fraction of B atoms localized within boroxol rings. In [140] it is stated that a

model structure with f ' 0.6± 0.2 shows the best agreement with the T (r), according to [139],

and to the one derived from neutron scattering in their work. A fit to the neutron diffraction

results in [29], yields a value of f ' 0.8± 0.05. In the same work, results from inelastic neutron

scattering are reported. The neutron-weighted vibrational density of states has a signature at

the energy of the boroxol ring breathing mode at about 100.2 meV =̂ 24.2 THz with a similar area

to the one predicted for a structural model with f = 0.75. In [30], inelastic neutron scattering

experiments also show a sharp peak at 100.2 meV =̂ 24.2 THz. In addition, another small peak

at 151.1 meV =̂ 36.5 THz is visible, which is also assigned to boroxol rings. Here, no estimate of

the boroxol ring fraction is given.

A boroxol ring fraction of f ' 0.75 is also supported by two DFT studies. In [141], a 160 atom

glass sample is generated by an ab initio MD quench from the melt, using the Car-Parrinello

method [142]. The resulting model glass structure contains 2 boroxol rings, corresponding to

f = 0.094. By comparing the intensity of the boroxol ring peak in the HH Raman spectrum

of the simulated structure to the experimental one [26] and by comparing the simulated 11B

NMR chemical shift to the experimental one [137], a value of f ' 0.75 is derived. In [133], DFT

calculations of an alternative model structure with f = 0.75 are presented. This model structure

is obtained, starting from the crystal structure of caesium enneaborate Cs2O.9B2O3 [143] and

extracting the Cs2O units and several BO3 units from the original structure [131, 132]. The

calculated 11B DAS and 17O MAS NMR spectra show a good agreement with the experimental

ones [137, 138]. In addition, the simulated HH Raman spectrum matches the experimental one

[26], within an estimated error, associated to the comparison, of 15%. This supports a boroxol

ring fraction of f ' 0.75 in pure B2O3 glass.

Regarding the computer modeling of B2O3, in [144], [145] and [146, 147], classical molecular

dynamics simulations are presented with pure pair interactions. In all cases, an interaction po-

tential of the so-called Born-Mayer-Huggins type is employed. This corresponds to the functional

form of the Buckingham potential with Coulomb interactions (see equation (3.122)), without

the attractive van der Waals term −C/r6. In [144], the potential parameters are determined

empirically, according to the size of the respective ions. The same set of parameters for the B

and O atoms is used in [146, 147]. The potential parameters in [145] are determined in a way

that the MD simulations reproduce the experimental crystal structures. In all cases, the full

atomic charges (qB = 3 e, qO = −2 e) are used and the glass structures resemble a network of

BO3 triangles, containing no boroxol rings at all. Also, the first neighbor B-B distances (2.71 Å

[144], 2.72 Å [145], 2.68 Å [146] and 2.71 Å [147]) are significantly larger as derived from neu-

tron diffraction [29]. This reflects in the distribution of B-O-B angles, having a maximum at

significantly too large values of 155◦ to 156◦, compared to the experimental value of about 130◦

for boron atoms outside of boroxol rings [139, 140], in all cases. These values correspond to

simulations at the experimental glass density [144, 146, 147] or an external pressure of 1 GPa to
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obtain a reasonable glass density [145]. Simulations at external pressure of about p = 0 which

is a reasonable assumption for normal conditions (p = 1 atm ' 0.1 MPa) lead to a glass density

of about ρ = 1.21 g/cm3 in [146].

In the following, classical molecular dynamics simulations are discussed, including 2-body and 3-

body interactions. In [148], the pair potentials are of the Born-Mayer-Huggins type, as described

above. Here, the 3-body terms are introduced by assuming an additional ion at the center of

mass of the BO3 triangles and additional pair potentials between this artificial ion and the B

and O atoms are introduced. Here, the full atomic charges (qB = 3 e, qO = −2 e) are used.

The resulting glass structure for simulations at the experimental glass density shows a rather

sharp B-O-B angular distribution with a maximum at about 120◦ and a boroxol ring fraction of

f ' 0.225 (3 boroxol rings and 40 B atoms).

In [149], angular potentials for the O-B-O and the B-O-B angle of the harmonic form (3.125) are

introduced with equilibrium angles of Φ0,OBO = 120◦ and Φ0,BOB = 130◦ in potential 4. The

constant KOBO is chosen in a way, to obtain the correct energy for the high frequency mode

in the simulated infrared spectra and the constant KBOB is chosen empirically. Here, partial

charges are employed (qB = 2 e, qO = −1.3̄ e). Simulations at constant experimental density lead

to a glass structure with a maximum of the B-O-B angular distribution at approximately 140.5◦,

which is significantly lower than in case of the pure 2-body potentials [146, 147]. However, no

boroxol rings are found in the glass structure.

In [44, 45], the most promising potential sets C1 and C2 are derived by means of a simulta-

neous fit to ab initio calculations of the energy surfaces of both known crystalline polymorphs

B2O3 − I and B2O3 − II with additional constraints. The potential form is of the Buckingham

type with Coulomb interactions (see equation (3.122)) for the O-O and the B-B interactions

and the Morse type with Coulomb interactions (see equation (3.124)) for the B-O interactions.

Additional harmonic 3-body terms (see equation (3.125)) for the O-B-O and the B-O-B interac-

tions with equilibrium angles of Φ0,BOB = 120◦, Φ0,OBO = 120◦ for 3-fold coordinated B atoms

and Φ0,OBO = 109.47◦ for 4-fold coordinated B atoms are used. Here, the atomic charges are

qB = 1.2 e, qO = −0.8 e (C1) and qB = 0.9 e, qO = −0.6 e (C2). The parameters of the B-O and

the O-O interactions depend on the coordination number around the oxygen atoms. To study

liquids and glasses, a continuous interpolation between the parameter sets of the different co-

ordination states is introduced, depending on the local coordination numbers. Also, a bonding

state function is introduced, which allows bonds to break. The resulting glass structures for

simulations at the experimental glass density show B-O-B bond angle distributions with ΦBOB

between about 120◦ and 130◦ and boroxol ring fractions of about f ' 0.25 (C1) to f ' 0.42

(C2). However, in the latter case about 6% of the B atoms are fourfold coordinated with respect

to O atoms. Simulations at p = 0 external pressure lead to configurations with about f ' 0.36

(C1) to f ' 0.53 (C2) and glass densities of 1.43 g/cm3 (C1) and 1.15 g/cm3 (C2). In [150], a

coupled MD/MC simulation is presented. Starting with a model crystal structure with f = 0.5

[131], BO3 units and B3O6 are exchanged randomly and the resulting structures are quenched to

0 K without allowing bond breakage. After each sampling, the structure with the lower energy



Chapter 6. Model glass former B2O3 105

is chosen. Also the box volume is varied to keep the system at the experimental glass den-

sity. Calculations are performed based on the before mentioned classical potential, according

to [44, 45]. For the final structure, corresponding to a (local) energy minimum, a boroxol ring

fraction of f = 0.74 is reported and two corresponding maxima in pBOB (Φ) are reported at 120◦

and 130◦. In [151], the dependence of the total energy on the boroxol ring concentration is stud-

ied, based on the same classical potential [44, 45] without the coordination dependence. Here,

glass configurations are generated by MD quenches from the melt. Samples with boroxol ring

contents from 0% to 100% are generated by preparing initial configurations with a mixture of

randomly distributed boroxol rings and additional B and O atoms and constraining the boroxol

rings during the simulation. Here, system sizes of 90 atoms at fixed experimental density are

studied. After the quench, a structural relaxation is carried out with a quantum mechanical

DFT calculation, using GGA and LDA exchange-correlation functionals (see subsection 3.2.4).

Here, mean first neighbor B-O distances of 1.36 Å, O-O distances of 2.33 Å and B-B distances

of 2.44 Å to 2.55 Å are reported, depending on the number of boroxol rings. Minima of the total

energy with respect to f at about f = 0.15 and f = 0.7 are reported.

In [152], exactly the same functional forms of the 2- and 3-body potentials is applied. In

addition, the angular potential is multiplied by a term, decaying exponentially with respect to

the inter-atomic distances. Following [45], the strength of the interaction depends on the local

coordination of the oxygen atoms. The atomic charges of the atoms and exact parameters are

not given. Simulations at constant glass density lead to glass structures with a boroxol ring

fraction of about f ' 0.15 and a good agreement of the real space correlation function T (r)

with the experimental one from neutron scattering [29].

Another study of B2O3 with a potential including 3-body terms is presented in [37]. Here, a

potential of the Born-Mayer-Huggins type (as explained above) is combined with 3-body terms

of the Gaussian type with negative sign (see equation (3.127)), multiplied with a term decaying

exponentially with respect to the inter-atomic distances. The parameters are determined em-

pirically, based on a potential for SiO2 [153]. The atomic charges, first neighbor B-B distances

and B-O-B angles are not stated. However, a boroxol ring fraction of f ' 0.2 is reported.

In [154], the 3-body potential with O-B-O and B-O-B angular interactions, according to [149] is

refined to yield a better agreement with the experimental total neutron structure factor Sneutr. (k)

[140], leading, for example to Φ0,BOB = 110◦. In addition, a O-B-O-B 4-body dihedral term

is introduced, parametrized according to Hartree-Fock calculations [71] on model B3O3 (OH)3

structures [46]. The partial charges are the same as in potential 4 of [149]. However, simulations

at the experimental glass density lead to a boroxol ring fraction of only f ' 0.036 (2 boroxol

rings in a 420 atom sample). The first neighbor B-B distances and B-O-B angles are not stated.

In [47], the functional form of the 2-body and 3-body terms correspond to the ones in [45, 152].

Here, only a 3-body term is chosen for the O-B-O interaction with Φ0,OBO = 120◦. In addition, a

B-O-B-O 4-body term is introduced with a minimum at the torsion angle of Φ0 = 0◦. Parameters

are obtained by DFT calculations of BO3, B2O5, BO3H3, B3O6, B3O6H3, B4O8 and B4O8H4

aggregates. The atomic charges of the atoms and exact parameters are not stated. The glass
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structures are generated in NVT runs at the experimental glass density, with a subsequent NpT

run at room temperature at atmospheric external pressure, leading to system densities of about

ρ = 1.67g/cm3 to ρ = 1.77g/cm3 in the slow cooling case and boroxol ring fractions of f ' 0.1 to

f ' 0.32, depending on the system size. The first neighbor B-B distances are 2.367 Å, showing

a good agreement to the one of B atoms in boroxol rings in [29]. However, the system density

and boroxol ring fraction decreases with increasing system size.

In [48], a coordination dependent charge-transfer potential is presented, based on a previous

one for the study of SiO2 [155]. The potential consists of 2-body terms of the Born-Mayer-

Huggins type (Buckingham potential with Coulomb interactions (see equation (3.122)), without

the van der Waals term −C/r6) and 3-body terms of the Gaussian type with negative sign (see

equation (3.127)), multiplied with a term decaying exponentially with respect to the inter-atomic

distances. The equilibrium angles are Φ0,BOB = 120◦ and Φ0,OBO = 120◦ or Φ0,OBO = 109.47◦,

depending on the local coordination environment of the B atom (3-fold or 4-fold with respect to

O atoms). In addition to this local coordination dependence, the atomic charge is determined

dynamically depending on the coordination number (qB = 1.7 e for 3-fold and qB = 1.48 e for

4-fold coordinated B atoms). The potential is parametrized, according to the crystal structure

of B2O3− I in combination with the adjustment to available experimental data of the structure

and vibrational properties of vitreous B2O3. Here, glass structures are generated in NpT runs,

with the starting configuration of the alternative model structure with f = 0.75 [131, 132].

Depending on the equilibration time at 2500 K, glass structures with different values of f ' 0.1

to f ' 0.75 are generated with corresponding system densities of ρ = 1.75 g/cm3 to ρ = 1.81 g/cm3

[35, 48, 156]. However, no additional rings are generated in the cooling process. The first

neighbor B-B distances and B-O-B angles are not stated. The calculated Sneutr. (k) shows good

agreement with experimental results.

In [49], a many-body polarizable force field is introduced. This force field includes a non-

additive interaction, describing the dipole moments induced by local electric fields and is rather

complicated. The parameters are confirmed by a comparison of the minimum energy structures,

according to the classical force field, with experimental and ab initio structures of B2O3, HBO2,

H3BO3, H3B3O6 and H4B2O5. Also, the system is confined by external forces as an alternative

to periodic boundary conditions. For a system of 81 boron and 124 oxygen atoms, equilibrated

at 1800 K, 4 boroxol rings are reported, corresponding to f ' 0.15. The first neighbor peak

of gBB (r) is located at approximately 2.4 Å and the density differs less than 1% from the

experimental glass density. In [157], boroxol ring fractions of about f ' 0.22 are reported in a

temperature range between 1761 K and 2163 K in the liquid state at experimental glass density.

Another complicated interaction potential is reported in [50], including polarization terms and

changes in the shape of the ions due to dipolar and quadrupolar shape distortions. The repulsive

and polarization terms of the aspherical ion model (AIM) are parametrized, according to forces

and dipoles from ab initio calculations on glass structures of 100 atoms, with boroxol ring

fractions from f = 0.0 to f = 0.22, according to [133]. In [50], the focus is on structural

transformations in B2O3 glass under pressure. The simulations are performed with a starting
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configuration of the alternative model structure with f = 0.75, according to [131, 132]. In

[50], it is not reported if the AIM is capable of yielding glass structures with a high number of

boroxol rings f when starting with a random initial configuration. However, the AIM is capable

to reproduce the experimental dependence of the system density ρ with respect to external

pressure p, measured for the cold compression of glass in in situ experiments [158], which is very

promising.

6.2 Liquid properties by means of ab initio calculations

In this section, the properties of liquid B2O3 are examined, based on ab initio MD simulations

at a fixed system density of ρ = 1.83 g/cm3. This corresponds to the experimental glass density,

measured at about 300 K [159]. Following the considerations of chapter 4, a system size of 150

atoms is chosen, leading to a box length of LBox = 12.375 Å. (Due to numerical inaccuracies,

at some temperatures the initial simulation box has been set up with a very small deviation

from the cubic shape, leading to a triclinic simulation box. Here, the angles between the faces

of the simulation box are 89.999998935◦ instead of 90◦.) Some of the results are compared to

previous ab initio molecular dynamics studies of a 120 atom system at different system densities

[160–162].

Again, all quantum mechanical DFT calculations are carried out with the VASP package [78, 79],

using a Perdew-Burke-Ernzerhof (PBE) type exchange-correlation functional of the generalized

gradient approximation (GGA), revised for solids (PBEsol) [84]. As explained in section 4.2,

all computations are done, using a plane wave basis set, the PAW method [86, 87], Gaussian

smearing with a smearing width of σ = 0.02 eV and all projection operators of the PAW wave

functions are evaluated in real space.
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Figure 6.1: Dependence of E0 and Sαα on the plane wave cutoff Ecut for 150 atom system of B2O3

Next, the convergence of the total energy is studied with respect to the number of k-points

for accurate, as well as normal VASP precision. Again, different k-meshes with 1 (Gamma
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point calculation) to 6 points along each of the k-axes are chosen and the electronic relaxation

is stopped when the relative change of the total energy E0 of two adjacent steps of the self-

consistent field loop is less than 10−6. Same as in case of the 165 atom system SiO2 (see section

4.2), the dependence of the number of k-points is rather weak. This justifies the restriction to

Gamma point calculations (k = (0, 0, 0)T ), which is a reasonable choice for this rather large

system (150 atoms) in terms of DFT calculations.

To fix the cutoff energy Ecut for the plane wave basis set, the dependence of the total energy E0

and the diagonal elements of the external stress tensor Sαα = −Sint,αα, α ∈ {1, 2, 3} (see equation

(3.34)) are examined. In Fig. 6.1, the dependence of E0 and Sαα on the plane-wave cutoff Ecut

is shown for Gamma point calculations (k = (0, 0, 0)T ) with accurate VASP precision and fixed

accuracy of 10−6 for the electronic relaxation. However, the plots show the same behavior for

normal VASP precision as well. Similar to the 165 atom system SiO2, the total energy E0

shows an increase with increasing Ecut with a maximum at about Ecut = 500 eV, followed by

a slight decrease and a transition into a plateau at approximately Ecut = 800 eV. Again, this

would motivate the choice of the latter value of Ecut. However, as explained in section 4.2, the

number of plane waves increases with E2
cut, making large values of Ecut unfavorable due to a

significant increase of the computational effort. Again, the diagonal elements of the external

stress tensor Sαα show a strong decrease with increasing Ecut and a transition into a plateau at

about Ecut = 500 eV, which justifies a value of Ecut = 500 eV for the subsequent simulations of

B2O3. The recommended minimal values for the used PAW potentials [86, 87] are Ecut = 400 eV,

in the case of oxygen and Ecut = 319 eV, in the case of boron.

temperature # time steps simulation time δt

3600 K 30000 ts 36 ps 1.2 fs

3300 K 30000 ts 36 ps 1.2 fs

3000 K 31508 ts 63.018 ps 2.0 fs

2700 K 45900 ts 55.08 ps 1.2 fs

2500 K 70352 ts 84.4224 ps 1.2 fs

2300 K 103500 ts 124.2 ps 1.2 fs

Table 6.2: Number of time steps and simulation time at each temperature for ab initio MD simu-
lations of liquid B2O3 (150 atom system at constant density of ρ = 1.83 g/cm3).

All ab initio MD simulations presented in this section are of the the Born-Oppenheimer type.

As described in section 4.2, at each time step a single point DFT calculation is conducted,

taking into account only the electronic ground state, and the forces on the ions are the Hellman-

Feynman forces [112]. Simulations are carried out in a NVT ensemble where the ionic motion is

coupled to a Nosé thermostat (see subsection 3.1.2) with a Nosé-mass corresponding to a period

of 40 time steps, using normal VASP precision and a fixed accuracy of 10−6 for the electronic

relaxation. In table 6.2, the considered temperatures and simulation times are displayed.

In Figs. 6.2 and 6.3, the mean square displacements
〈
r2
α (t)

〉
(see equation (3.98)) and the in-

coherent intermediate scattering functions FS,α (k, t) (see equation (3.100)) are shown at the
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Figure 6.2: Mean square displacements〈
r2
α (t)

〉
, α ∈ {B,O}, B2O3. Ab initio MD at

different temperatures.
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Figure 6.3: Incoherent intermediate scattering
functions FS,α (k, t) , α, β ∈ {B,O}, B2O3. Ab

initio MD at different temperatures.

examined temperatures. The incoherent intermediate scattering functions are evaluated at

k = 1.68 Å
−1

. Again, this is about the k-value of the first sharp diffraction peak (FSDP),

visible in all partial static structure factors. In contrast to the classical MD simulations, the

analysis is done according to the ab initio MD runs in the NVT ensemble and not, according

to microcanonical runs. Also, the underlying data is from a single simulation run only due to

the huge computational effort. As a consequence, one has to be careful when interpreting the

displayed curves. However, the shape of the curves give an indication about the relaxation times

at the examined temperatures. It can be seen that also in case of the Born-Oppenheimer MD

runs, the curves show the characteristic two-step process with an intermediate plateau. They

indicate that at all regarded temperatures the configurations could be equilibrated within the

simulation run. The α-relaxation times increase by a factor of 30 from 3600 K to 2300 K.

Next, the behavior of different structural quantities in the observed temperature range is studied.

These quantities are averaged over the last 20000 time steps (24 ps) of the simulation runs, except
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Figure 6.4: Partial pair correlation functions
gαβ (r) , α, β ∈ {B,O}, B2O3. Ab initio MD
at different temperatures. Comparison with ab
initio MD simulation at 2500 K and 1.92 g/cm3

[162].
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the displayed data at 3000 K. Here, the data is averaged over the last 10000 ts (20 ps), due to

a larger time step of 2.0 fs. In Figs. 6.4, the partial pair correlation functions are shown. As

expected, the peak heights increase with decreasing temperature. The curves at 2500K are

compared to simulation data of a 120 atom system at 2500K at a system density of 1.92 g/cm3

[162]. In this work, the properties of liquid B2O3 are studied at 2500 K and 3500 K for systems

under external pressure. The latter system density is the one closest to the system density of this

work (1.83 g/cm3) and corresponds to an external pressure of 3.2 GPa, according to [161]. Basis of

the displayed curves is an ab initio MD run of 21.6 ps with a time step of 1.2 fs, using the PAW-

method [86, 87] and a Perdew-Burke-Ernzerhof (PBE) type exchange-correlation functional of

the generalized gradient approximation (GGA) [163], instead of the one revised for solids (GGA-

PBEsol), used in this work [84]. In [162], the mean square displacements after 8 ps are given

to be about
〈
r2
B (t = 8 ps)

〉
' 6.6 Å

2
and

〈
r2
B (t = 8 ps)

〉
' 8.0 Å

2
for a slightly lower system

density of 1.69 g/cm3. Having this in mind, one has to be careful about the equilibration of the

system at 2500 K. Regarding this, the agreement is acceptable.

In Fig. 6.5, the partial static structure factors are shown in the examined temperature range.

Again, the height of the peaks increases with decreasing temperature. However, the difference

is less apparent as in case of the partial pair correlation functions. The most dominant peaks of

Sαβ (k) are located at about k = 3.1 Å
−1

, corresponding to a length scale of 2π/3.1 Å ' 2.0 Å for

the all correlations. Similar to the structural properties of SiO2 (see section 4.1), this length scale

is of the order of the first minimum of gBO (r). There is an additional peak for all correlations

at approximately k = 1.7 Å
−1

, corresponding to a length scale of about 2π/1.7 Å ' 3.7 Å. As

in case of SiO2, this first sharp diffraction peak (FSDP) is a signature of a medium range

structure. At the temperature of 2700 K, the quite sharp maximum of the FSDP is shifted to

about 1.44 Å
−1

, corresponding to a length scale of about 4.4 Å, which is not clearly understood.

In [160], the partial static structure factors are displayed for a simulation of liquid B2O3 at

2500 K and 1.50 g/cm3, corresponding to an external pressure of 0.0 GPa. The DFT parameters

are the same as described in the previous paragraph and the simulation time is 10.8 ps. The

displayed results are in agreement with this work. The FSDP and the most dominant peak are

located at about 1.6 Å
−1

and 3.0 Å
−1

. The slight shift to lower k-values, compared to this work,

can be explained by the slightly lower system density.

Regarding the distribution of coordination numbers, the probability of the B atoms pαβ (n) , α, β ∈
{B,O}, to have a partial coordination of n = 3 with respect to neighboring oxygen, as well as

boron atoms increases with decreasing temperature. At 2300 K, about 81% of the B atoms are

threefold coordinated with respect to the neighboring B atoms and about 98% are threefold

coordinated with respect to the neighboring oxygen atoms. About 99% of the oxygen atoms are

twofold coordinated with respect to neighboring boron atoms. Regarding the coordination of

the oxygen atoms, at 3600 K the predominant coordination number with respect to neighboring

oxygen atoms is 5. At 2300 K, the predominant coordination number is 4 and about 51% of the

oxygen atoms have 4 oxygen neighbors.
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Figure 6.6: Angular distributions pαβγ (Φ) , α, β, γ ∈ {B,O}, B2O3. Ab initio MD at different
temperatures.

In Fig. 6.6, the angular distributions are exemplarily shown for the B-B-B and the B-O-B

correlation at the examined temperatures. In general, the angular distributions get narrower

with decreasing temperature, as expected. Regarding pBBB (Φ), the average angle increases from

about 107◦ at 3600 K to about 113◦ at 2300 K. In all cases there is an additional peak visible at

about 58◦. The main peak is connected to rings of size n = 6 to n = 8, which are the dominant

ring sizes in all cases. The extra peak is mainly connected to smaller ring sizes n ≤ 4. Regarding

the latter, the 3-membered rings are of specific interest, due to the high number of boroxol rings

observed in vitreous B2O3. It can be seen that the peak height of this additional peak decreases

with temperature for all temperatures T ≥ 2500K. An exception is the temperature of 3000 K,

where the peak height is about the same as at 3300 K. This reflects the decreases of defect

structures in the liquid with decreasing temperature. However, at the lowest temperature of

2300 K, the peak height is significantly higher than at T = 2500 K and T = 2700 K. This is

connected to the increased formation of 3-membered rings at lower temperatures. Regarding

pBOB (Φ), the average angle increases from about 125◦ at 3600 K to about 129◦ at 2300 K. In

addition to the main peak, there is a shoulder visible at approximately 80◦, connected to defect

structures of edge-sharing BO3 triangles.

In Fig. 6.7, the probability that a B atom is member of a ring of size n, pB (n), is shown in the

examined temperature range. The most dominant ring size is n = 7 for temperatures in the range

of 3000 K − 3600 K and n = 8 for the temperatures 2300 K and 2700 K. In the case of 2500 K,

the probability pB (n = 6) is a about the same than for the most dominant ring size pB (n = 7).

In all cases, pB (n = 2), reflecting the before-mentioned edge-sharing BO3 triangles, decreases

with decreasing temperature. In the case of pB (n = 4) the same behavior is observed, with the

exception of T = 2500 K. Here, pB (n = 4) is slightly higher than at the temperatures 2300 K

and 2700 K. Also, this is the only temperature where pB (n = 4) > pB (n = 3). Reflecting the

behavior of pBBB (Φ), the probability pB (n = 3) decreases with decreasing temperature, except
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at the temperature of 3000 K. However, at the lowest temperature of 2300 K, pB (n = 3) is

greater again than the corresponding values at 2700 K and 2500 K.

In Fig. 6.8, the evolution of pB (n) is followed during the last 100000 ts of the 124.2 ps simulation

run at 2300 K, in the cases of n = 3, n = 7 and n = 8. Each data point represents the averaged

data over 10000 time steps. It can be seen that all displayed probabilities pB (n) show an

unsteady behavior with minima and maxima during the examined last 100000 ts (120 ps) of the

simulation run at 2300 K. This reflects the rather long equilibration time at this temperature

of about 80 ps to 100 ps (see Fig. 6.3). As explained above, the value of n = 3, corresponds

to the formation of boroxol rings. Regarding the development of the latter, an increase of

pB (n = 3) ' 0.025 to pB (n = 3) ' 0.052 can be observed during the simulation run with an

intermediate minimum of about pB (n = 3) ' 0.016. As explained above, this can be interpreted

as the onset of the formation of 3-membered rings at 2300 K, also seen in Fig. 6.7.

6.3 Determination of classical potential parameters

As already mentioned in section 2.4, one theme of this work is to develop a rather simple interac-

tion potential based on the structural properties of liquid B2O3 with ab initio MD simulations,

as presented in the previous section.

Regarding the overview over previous studies in section 6.1, to my knowledge, so far no interac-

tion potential has been parametrized according to the structure of an ab initio MD trajectory

of liquid B2O3. In case of the model glass former SiO2, the force field parameters of the BKS

potential [22] could be improved by means of a structural fit to r · gαβ (r) , α, β ∈ {Si,O} of an

ab initio MD run at 3600 K [43]. Here, the structure matching scheme proved to be superior
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to a force matching method [51]. This motivates the application of this method also to the

model glass former B2O3. In this section it is tested, whether this structure matching scheme

in combination with a rather simple interaction potential leads to an acceptable classical force

field for the model glass former B2O3. The basis for the development of an improved inter-

action potential is the classical force field, due to the dissertation of C. R. Trott [97]. In the

second part of this thesis, a classical force field has been developed for a general composition

of wLi2O − xSiO2 − yB2O3 − zP2O5. The basis of this force field is the existing interaction

potential of J. Habasaki [164] for alkali silicates which has been developed by quantum mechan-

ical calculations of potential energy surfaces of small clusters. The interaction potential has

the functional form of a Buckingham potential with Coulomb interactions V Buck+Coul (r) (see

equation (3.122)), in all cases. In addition, angular 3-body terms are introduced for the O-B-O

angle and the O-P-O angle.

The parameters of the B-B, B-O and O-O interaction are tabulated in Table 6.5. It is found

that the simulation results are practically the same if the B-B interaction is chosen to be purely

electrostatic, meaning ABB = 0 eV. This can be understood by the very large value of bBB =

15.2207 Å
−1

and the value of CBB = 0 eV Å
6
. Therefore, the short-range Buckingham part of

the potential V Buck (r) (see equation (3.122)) only consists of a fast decaying exponential term,

which is virtually equal to zero at relevant inter-particle distances. Therefore, in the following

considerations, only the Coulomb part of the potential is considered for the B-B interaction.

As in case of the model glass former SiO2, all classical MD simulations are carried out with the

LAMMPS software package [60, 61] and a slightly modified form of the Buckingham potential

is used. Following the considerations of section 4.1, the Coulomb interaction is split up into a

short-range part V CS (r) (see equation (3.20)), evaluated in real space, and a long-range part,

evaluated in Fourier space employing a standard Ewald summation over k-vectors. Again, a

skin distance of rskin = 2 Å is used and the Verlet neighbor lists are rebuilt when the first

atom has moved more than half the skin distance. In all cases, rc = 5.5 Å is chosen as cutoff

radius for the short-range Buckingham part of the potential V Buck (r). In this section, the

cutoff distance of V CS (r) is equal to rew
c = 5.5, as well, as the system size of the classical MD

simulations is chosen to be equivalent to the one of the ab initio MD simulations in section

6.2, namely 150 atoms. This means that the box length is LBox = 12.375 Å, when simulating

at the experimental glass density of ρ = 1.83 g/cm3 [159]. Computations are carried out with

an gew = 0.599052, which corresponds to an Ewald accuracy of about 10−5, as explained in

subsection 3.1.1. Again, V Buck (r) and V CS (r) are shifted to zero at rc = 5.5 and rew
c and

subsequently multiplied by a smoothing function, namely G (r) and Gew (r), with the functional

form of equation (3.13). In all cases, a value of d = dew = 0.05 Å
2

is chosen. As explained

in section 4.1, the shifted and smoothed Buckingham potentials with Coulomb interactions are

substituted by harmonic potentials V Harm (r) (see equation (4.2)) for particle distances smaller

than the positions of the local maxima r < rin,αβ, α, β ∈ {B,O}. In cases where V Buck+Coul (r)

shows no local maximum, the shifted and smoothed V Buck+Coul (r) is substituted by a harmonic

potential V Harm (r) for pair distances smaller than r = 1 Å. As explained in section 4.1, a3,αβ

is the position of local maximum for the specific atom pair, according to equation (4.1), and
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a1,αβ is the value of the potential at r = a3,αβ, according to equation (4.1). In cases, where

no local maximum is found, the latter are substituted by the respective values at r = 1 Å.

Regarding the third parameter, the value of a2,αβ = 100 eV Å
−2

is chosen in all cases. Again,

these considerations lead to the functional form of the short-range pair potential used in the

simulations, according to equation (4.3). As in the case of SiO2 (see subsection 4.1.1), the

numerical values of the total short-range pair potentials V S (r) (see equation (4.3)) and the total

short-range pair forces − ∂
∂rV

S (r) are pre-computed for certain values of rij in a tabulated form

for pair distances r ≥ 0.25 Å and r < 64 Å. Again, a table style of the so-called bitmap style is

chosen, according to [102] with 216 table entries.

parameters units start parameter set [97] 3600 K fit

qB [e] 2.01 1.401065

ABB [eV] 873077800 -

bBB

[
Å
−1
]

15.2207 -

CBB

[
eV Å

6
]

0.0 -

ABO [eV] 108500 85950.148438

bBO

[
Å
−1
]

7.9365 8.176078

CBO

[
eV Å

6
]

13.02 9.752701

AOO [eV] 1758.3076 1978.926025

bOO

[
Å
−1
]

2.8464 2.938332

COO

[
eV Å

6
]

214.9168 267.403687

Parameters Units 2300 K fit 1 2300 K fit 2

qB [e] 0.967746 1.018960

ABB [eV] - -

bBB

[
Å
−1
]

- -

CBB

[
eV Å

6
]

- -

ABO [eV] 199523.734375 202543.21875

bBO

[
Å
−1
]

8.607712 8.642187

CBO

[
eV Å

6
]

20.803251 20.122923

AOO [eV] 8276.772461 6406.353516

bOO

[
Å
−1
]

4.089084 3.757303

COO

[
eV Å

6
]

- 78.624069

Table 6.5: Different parametrizations of the pair potential (see equation (3.122)) for B2O3. Com-
parison of original parameter set [97] to 3 different parametrizations after structural fits at 3600 K

and 2300 K.

Starting with the parameter set of Table 6.5, according to [97], with the B-B interaction being

purely electrostatic (ABB = 0 eV), parameter fits are carried out with respect to the liquid

trajectories of the ab initio MD simulations of B2O3 at the temperatures of 3600 K and 2300 K.
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These are the highest and the lowest temperatures at which ab initio MD simulations are carried

out, described in detail in section 6.2. Therefore, it is interesting to examine if the fitting

procedures at these two temperatures lead to significantly different parameter sets. At the

temperature of 2300 K, two different fits are carried out. In the second one, the O-O interaction

is chosen to be purely repulsive, meaning a fixed value of COO = 0 eV Å
6

is chosen. This means

that, in each case, a set of M = 7 (M = 6 in the case of COO = 0 eV Å
6
) parameters a1, . . . , aM

is optimized, including the charge of the boron atoms, namely qB, ABO, bBO, CBO, AOO, bOO

and COO. The charge of the oxygen atoms follows from the requirement of charge neutrality

(qO = −2/3 qB). The basis for the structural fits are the last 20000 time steps of the liquid

trajectories at 3600 K and 2300 K. The parameter optimization is performed by a Levenberg-

Marquardt algorithm, which is an iterative scheme to find the (local) minimum of the sum of

squares χ2 of the deviations between a set of data points and a model curve depending on a

set of parameters. The method of structure matching and the Levenberg-Marquardt procedure

are described in detail in section 3.5. The optimization of the force field parameters is carried

out with respect to the partial pair correlation functions of all correlations gBB (r), gBO (r) and

gOO (r) and all 6 relevant angular distributions pαβγ (Φ) , α, β, γ ∈ {B,O}, meaning pBBB (Φ),

pBBO (Φ), pBOB (Φ), pBOO (Φ), pOBO (Φ) and pOOO (Φ). (pOBB (Φ) is identical to pBBO (Φ)

and pOOB (Φ) is identical to pBOO (Φ).) The values of the relevant pαβγ (Φ) , α, β, γ ∈ {B,O},
are multiplied by the factor 100. This ensures that the numerical values of pαβγ (Φ) are of

the same order of magnitude as the ones of gαβ (r). The determination of new parameters is

based on the original fitting routine of A. Carré [51], which is extended to include the relevant

angular distributions into the fitting procedure. Regarding these considerations, the numerical

value of Chi-Square χ2 (a1, . . . , aM ) at each iteration step is calculated, according to equation

(3.128) with σαβ = 1, α, β, γ ∈ {B,O}, in case of the pair correlation functions and σαβγ =

0.01, α, β, γ ∈ {B,O}, in case of the angular distributions. (The multiplication of the angular

distributions by a factor 100 is equivalent to the choice of σαβγ = 0.01.) gclassical MD
αβ (r) and

P classical MD
αβγ (Φ) in equation (3.128) are computed with respect to a classical molecular dynamics

run of the same system size (150 atoms, LBox = 12.375 Å) and at the same temperature as in

case of the ab initio molecular dynamics run. In each case, a numerical discretization of 250

data points is chosen, meaning that the corresponding parameters in equation (3.128) are 4d =
LBox
2·250 = 12.375 Å

2·250 = 0.02475 Å, in case of the pair correlation functions and 4a = 180◦
2·250 = 0.36◦,

in case of the angular distributions. Except for the reweighting of pαβγ (Φ) with respect to

gαβ (r), all data points are considered to have the same weight.

At each iteration step of the Levenberg-Marquardt procedure (see section 3.5), the numerical

derivatives with respect to the independent fit parameters a1, . . . , aM (M = 7 or M = 6)

have to be calculated (see equations (3.129) to (3.132) and (3.137) to (3.138)). This requires

two additional classical MD runs per parameter for each iteration step with the parameter

sets a1, . . . , ai ± εai , . . . , aM , i ∈ {1, . . . ,M}, meaning a total of 2M + 1 classical MD runs

per iteration step. In each case, the parameters εai are chosen in the following way: εqB =

0.02 · qB = 0.0402 e, εABO = 0.1 · ABO = 10850 eV, εbBO = 0.03 · bBO = 0.238095 Å
−1

, εCBO =

0.05 · CBO = 0.651 eV Å
6
, εAOO = 0.1 · AOO = 175.83076 eV, εbOO = 0.03 · bOO = 0.085392 Å

−1
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and εCOO = 0.1 ·COO = 21.49168 eV Å
6
. Here, the value of ai refers to the original parameter set

[97], as listed in Table 6.5. The numerical value of εai remains unchanged during the structural

fitting procedure. As explained in section 3.5, in case of a small λ � 1, the second order

terms (Hessian of χ2 (a1, . . . , aM )) dominate and in case of a large λ� 1, the first order terms

(gradient of χ2 (a1, . . . , aM )) dominate when computing a new trial parameter set. As explained

in section 3.5, a larger value of λ should be more favorable at a larger value of χ2 (a1, . . . , aM )

and a smaller value of λ should be more favorable at a smaller value of χ2 (a1, . . . , aM ) close

to the (local) minimum, with respect to the parameter set a1, . . . , aM . Therefore, in all cases,

λ is multiplied by 1.5 if the new parameter set leads to an increase of χ2 and λ is divided by

1.5 if the new parameter set leads to a decrease of χ2 during the iterative solving process. In

each case, the Levenberg-Marquardt procedure is run for n = 40 iteration steps starting with a

parameter of λ = 0.01. Next, the optimization scheme is conducted again with n = 30 iteration

steps and a start value of λ = 0.001 as the numerical value of χ2 (a1, . . . , aM ) now already is

closer to the (local) minimum. The latter is repeated until the parameter set does not change

any more significantly during the 30 optimization steps.
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Figure 6.9: χ2 with respect to iteration step.
Parameter fitting of pair potentials for B2O3 at

3600 K and 2300 K.
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Parameter fitting of pair potentials for B2O3 at

3600 K and 2300 K.

In all cases, the classical molecular dynamics simulations are carried out with a time step of

1.2 fs. As described subsection 4.1.1, a chain of 3 Nosé-Hoover thermostats (see subsection

3.1.2) is employed with a damping parameter of 120 fs, integrating the equations of motions

according to [68]. This means that the temperature is relaxed to the target temperature in a

timespan of 100 time steps. In all cases, the systems are equilibrated for 100000 ts, followed by

a production run of 100000 ts, where configurations are stored every 10 ts to calculate the pair

correlation functions and angular distributions.

In Fig. 6.9, the evolution of χ2 (see equation (3.128)) is displayed with respect to the iteration

steps n for the first n = 40 steps of the structural fits at 3600 K and 2300 K. It can be seen that,

in all cases, χ2 decreases quite rapidly during the first iteration steps. This is an indication that
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the structural fitting procedure according to the Levenberg-Marquardt scheme works reasonably

well and the start parameter of λ = 0.01 is a sensible choice. In Fig. 6.10, the evolution of λ is

displayed with respect to the iteration steps n, again for the first n = 40 steps of the structural

fits at 3600 K and 2300 K. The decrease of λ at a specific iteration step implies that at this step

a parameter optimization could be achieved and vice versa. It can be seen that, in all cases, after

several iteration steps at which λ decreases, an increase can be observed at the end of this set of

iteration steps. In general, the parameter λ stays larger for the optimization at 3600 K, meaning

there are less iteration steps, where the fit parameters could be optimized. It should be noted

that the optimization procedures at 2300 K, displayed in Figs. 6.9 and 6.10, are conducted with

respect to the liquid structure between time steps 62000 and 72000 of the 124.2 ps ab initio run

at 2300 K. At the point in time where these structural fits have been performed, the simulation

of the liquid trajectory at 2300 K has not yet been completed. However, no significant change

of the fit parameters is observed when the optimization scheme is rerun with respect to the

last 20000 ts of the 124.2 ps run, starting with the already optimized parameter set after 72000

time steps and a start parameter of λ = 0.001. The final values of χ2 after all iterations of the

parameter optimizations are: χ2 = 43.1828 at 3600 K and χ2 = 50.267151 (COO = 0 eV Å
6
) and

χ2 = 50.831890 (COO 6= 0 eV Å
6
) at 2300 K.

The optimized parameter sets are displayed in table 6.5 together with the start parameters,

according to [97]. It can be seen that at T = 3600 K, as well as T = 2300 K, a main effect of the

structure matching scheme is to reduce the charge of the boron atoms qB (and as a consequence

also the charge of the oxygen atoms qO). The decrease of the atomic charges is more pronounced

at the temperature of 2300 K. Of course, in this considerations, qB only is a force field parameter

and the numerical value of qB (and qO) should not be taken literally. However, it is known that

the bonding of B2O3 is partly covalent [165]. In this work, the Mulliken charges of crystalline

B2O3 are calculated and it is found that both investigated crystalline phases show a degree of

covalency in the bonding, which is more pronounced for the low-pressure phase B2O3− I. Also,

the most-promising classical force fields, according to [44], show a partial charge of qB = 1.2 e

(C1) and qB = 0.9 e (C2). These values of the parameter qB agree quite well with the results of

this work.

In Figs. 6.11 and 6.12, the partial pair correlation functions gBB (r) and gOO (r) and the an-

gular distributions pBOB (Φ) and pOBO (Φ), according to the structural fit at T = 3600 K, are

compared to the curves, based on the last 20000ts of the ab initio MD trajectory at the same

temperature, and to the curves of the original parameter set [97]. These are the correlations that

show the most pronounced differences between the classical and the ab initio MD run. The main

difference between the classical MD simulation with the new parameter set and the ab initio MD

run is that the peak position of the first neighbor peak in gBB (r) is shifted to a larger distance

r of about 0.1 Å in the classical MD run. This reflects in the peak position of the main peak in

pBOB (Φ) being shifted to larger angles by about 10◦, as well. The classical gOO (r) curve shows

some irregularities for small r-values. In general, the peak heights of the classical curves after

the structural fit are slightly lower than in the ab initio MD run. However, these curves show

a significantly improved agreement to the ab initio curves, compared to the original parameter



Chapter 6. Model glass former B2O3 119

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 3 4 5 6

g B
B

(r
)

r
[
Å
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3600 K and comparison with original parameter
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Figure 6.12: pBOB (Φ) and pOBO (Φ). Result
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at 3600 K and comparison with original para-
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set. Here, the corresponding peak heights are substantially increased, compared to the curves

after the structural fit. Also, the mean first neighbor B-B distance and the mean B-O-B angle

are significantly larger.

In Figs. 6.13 and 6.14, the partial pair correlation functions gBB (r) and gOO (r) and the an-

gular distributions pBOB (Φ)and pOBO (Φ), according to the structural fits at T = 2300 K, are

compared to the curves based on the last 20000ts of the ab initio MD trajectory at the same

temperature and, once again, to the curves of the original parameter set [97]. It can be seen

that the curves of the two different fits (COO = 0 eV Å
6

and COO 6= 0 eV Å
6
) have a pretty

similar shape. Again, the peak positions of the main peaks in gBB (r) and pBOB (Φ) are shifted

to larger values of about 0.1 Å and 10◦ for both classical force fields. Also, the peak heights of

the classical MD runs with both new parameter sets are significantly lower, compared to the ab

initio MD simulation. This feature is even more pronounced than at T = 3600 K. Again, the
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curves of the original parameter set show a significantly inferior agreement with the ab initio

curves, with substantially increased peak heights and a larger first neighbor B-B distance and

mean B-O-B angle.

Following these results, the next step is to include 3-body terms into the description of the

system. As already mentioned above, the B-O bonding shows a rather high degree of covalency.

To model the directional properties of covalent bonding, it seems sensible to include angular

potential terms V (Φ) into the classical force field. In the beginning of this section, it is already

mentioned that all force-fields leading to a significant amount of 3-membered boroxol rings

include at least 3-body terms. Also in the work of C.R. Trott [97], used as a starting point

for the parameter optimization in this section, angular terms for the O-B-O and the P-O-P

interactions are introduced. When simulating in the liquid state, angular terms have to be

introduced in a way that angles can form and dissolve dynamically during the simulation run.
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In [97], this is accomplished in terms of an additional fix of the LAMMPS software package

(LAMMPS fix dynamic/angles). Here, every n time steps, the list of angles is re-written based

on the inter-particle distances. This list includes all triplets of atoms that form an angle and

for this triplets, forces according to the derivative of Vijk (Φ) , i, j, k ∈ {1, . . . , N}, have to be

included into the calculation of the total force on each atom. The angular terms Vijk (Φ) are

only included if the three atoms with indices i, j and k are of a specific type, for example O,

B and O. However, in this approach, either three atoms of the specific types form an angle (for

example an O-B-O angle if the two O atoms both have a distance r to the central B atom smaller

than a specific cutoff radius rang
c ) or they do not form an angle. This means that the additional

potential terms Vijk (Φ) are instantaneously switched on and off, meaning the total energy of

the system V ({ri (t)}) is a discontinuous function of the atomic coordinates {ri (t)}.

Therefore, a slightly different approach is chosen to introduce the angular interactions in this

work. The functional form of the angular potential, in all cases, is chosen to be of the Gaussian

type with negative sign (see equation (3.127))

V Gauss
ijk (Φ) = V Gauss

ijk (Φ (ri, rj , rk)) = −Kijk exp
[
−σijk (Φ (ri, rj , rk)− Φ0,ijk)

2
]
, (6.1)

i, j, k ∈ {1, . . . , N}, following the work of [97]. Again, the angular potential is only included, if

the atoms with indices i, j and k are of specific types. In the following, only angular interactions

between two oxygen and one boron atom, forming a O-B-O angle, and interactions between two

boron and one oxygen atom, forming a B-O-B angle are considered. To smoothly switch on

and off the angular terms, the following procedure is chosen. The angular potential, according

to equation (6.1), is multiplied by a smoothing function with the functional form, according to

(3.13). However, the inter-particle distance r is substituted by a mean distance r̄, leading to the

following functional form:

V Smooth
ijk (ri, rj , rk) = V Gauss

ijk (Φ (ri, rj , rk)) G (r̄ijk (ri, rj , rk)) , (6.2)

⇔ V Smooth
ijk (ri, rj , rk) = V Gauss

ijk (Φ (ri, rj , rk)) exp

[
− dang

(r̄ijk (ri, rj , rk)− rang
c )

2

]
(6.3)

r̄ijk (ri, rj , rk) = N

√
rNij + rNkj , rij = |ri − rj | , rkj = |rk − rj | . (6.4)

In the limit of N → ∞, the value of r̄ijk is equivalent to the maximum of rij and rjk. The

potential energy according to equation (6.2) is only added to the total potential energy of the

system V ({ri (t)}) if both inter-atomic distances rij and rjk are smaller than the cutoff distance

rang
c . Otherwise, the additional 3-body term is set to V Smooth

ijk = 0. The smooth decay to zero

of G (r̄ijk) for r̄ijk → rang
c ensures that the potential V Smooth

ijk is smoothly switched on if the

value of r̄ijk gets smaller than rang
c during the simulation run (meaning in the situation when
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both relevant distances rij and rjk get smaller than the cutoff radius rang
c ). Choosing a finite,

but rather high value of the parameter N , causes V Smooth
ijk (ri, rj , rk) (see equation (6.2)) to

be continuously differentiable with respect to the atomic positions {ri (t)}, but still decaying

reasonably fast to 0 at rang
c . In appendix A, the differentiation with respect to the atomic

coordinates ri, rj and rk is carried out, leading to the functional form of the additional forces

on the corresponding atoms (see equations (A.1), (A.16) and (A.17)).
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Figure 6.15: r̄123 (r12) for N = 5, 10, 100 and
∞ and r23 = 1.0 Å.
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The calculation of the (additional) potential energy and (additional) forces on the atoms, accord-

ing to V Smooth
ijk (ri, rj , rk), is implemented in a new pair style of the LAMMPS software package

[60, 61], called “gauss/smooth”. So far, only the case is implemented where the atom with index

i is of the same type as the atom with index k. The pair coefficients of this new pair style

(pair coeff command of the LAMMPS software package) are Kijk, σijk, Φ0,ijk, d
ang and N . The

parameter rang
c is determined by means of the cutoff radius when invoking the pair style. The

atom types of the central atom j and the two neighboring atoms i and k are determined by the

first and the second atom type when invoking the pair style. When the pair style is included, at

each time step of the simulation run, the potential energy term, according to equations (6.2) to

(6.4), is evaluated and the forces on the atoms i, j and k are calculated, according to equations

(A.1), (A.16) and (A.17), in the case of both rij and rjk being smaller than rang
c .

In Fig. 6.15, the functional form of r̄123 is depicted with respect to the distance between atoms

1 and 2, r12, for a triplet of atoms with a fixed inter-atomic distance of r23 = 1.0 Å. It can be

seen that in in case of N =∞, the function value is equal to 1.0 for r12 < 1.0 and for r12 > 1.0

it increases linearly with increasing r12. For finite N , this transition is smoothed. In Fig. 6.16,

the smoothing function G (r̄123) is displayed with respect to r12 for a fixed r23 = 1.0 Å, a cutoff

radius of rang
c = 2 Å and dang = 0.05 Å

2
. It can be seen that, in all cases, it decays smoothly to

zero for r12 → rang
c . The decay gets slightly steeper with increasing N .
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Next, structural fits are carried out, including angular terms, according to equations (6.2) to

(6.4). In all cases, a value of N = 100 is chosen, a cutoff radius of rang
c = 2 Å and dang = 0.05 Å

2
.

A value of rang
c = 2 Å corresponds to the position of the first minimum of gBO (r), according

to the ab initio MD run at 2300 K. Structural fits including angular terms are only carried

out at the lowest temperature accessed by ab liquid ab initio MD runs, namely 2300 K. This

is motivated by the fact that the liquid structure at this temperature is the one closest to the

glass structure and the number of 3-membered rings starts to increase again at this temperature

(see section 6.2). Also, the 2-body fit at 3600 K shows a slight irregularity at low distances r in

gOO (r), which is not apparent for the parameter fits at 2300 K.

Following the work of [97], in a first attempt, structural fits are carried out with the additional

3-body term applied only to the O-B-O correlation. In a second attempt, the 3-body term is

applied to the B-O-B correlation, as well as the O-B-O correlation. The 2-body interactions are

chosen to be the same as described above, meaning the shifted and smoothed pair potential of the

Buckingham type with Coulomb interactions and a harmonic substitution for small distances r,

according to equation (4.3). Again, the B-B interaction is chosen to be purely electrostatic and

the initial parameter set is the start parameter set, according to Table 6.5. The start parameters

for the 3-body term are chosen as KOBO = KBOB = 0.3 eV and σOBO = σBOB = 0.01 ◦−2.

parameters units 3-body O-B-O 3-body O-B-O
and B-O-B fit 1

3-body O-B-O
and B-O-B fit 2

qB [e] 0.979987 1.005560 0.996922

ABB [eV] - - -

bBB

[
Å
−1
]

- - -

CBB

[
eV Å

6
]

- - -

ABO [eV] 86093.78125 335996.8125 236849.265625

bBO

[
Å
−1
]

8.205286 9.461655 9.101221

CBO

[
eV Å

6
]

13.519357 11.320659 12.766488

AOO [eV] 2191.408203 2635.602051 1405.565063

bOO

[
Å
−1
]

3.37808 3.629571 2.967662

COO

[
eV Å

6
]

74.013123 - 127.219231

KOBO [eV] 0.235306 0.269162 0.299261

σOBO
◦−2 0.003204 0.001113 0.001170

KBOB [eV] - 0.268771 0.267305

σBOB
◦−2 - 0.001656 0.001458

Table 6.7: Different parametrizations of the pair potential (see equation (3.122)) and 3-body
potentials (see equation (6.1)) for B2O3. Comparison of different parametrizations after structural

fits at 2300 K.

Again, structural fits are carried out, applying the Levenberg-Marquardt scheme, described in

detail in section 3.5. As in the case of pure 2-body interactions, the structural fits are carried

out with respect to the partial pair correlation functions and the relevant angular distributions,
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meaning the parameters χ2 are calculated, according to equation (3.128). This means, parameter

sets of M = 9 to M = 11 parameters are optimized, namely qB, ABO, bBO, CBO, AOO, bOO,

COO, KOBO, σOBO, KBOB and σBOB. As described above, this requires the conduction of

2M + 1 classical MD runs per iteration step of the Levenberg-Marquardt procedure. These

classical MD runs are carried out in exactly the same way as in case of the parameter fits for

the pure 2-body potentials described above. The parameters εai for the 2-body terms are the

same as described above and the values of the additional εai are chosen to be εKOBO = εKBOB =

0.06̄ ·KOBO = 0.02 eV and εσOBO = εσBOB = 0.05 · σOBO = 0.0005 ◦−2. Again, the Levenberg-

Marquardt procedures are carried out with an initial parameter of λ = 0.01, continuing in the

same way as described above for the pure 2-body potentials. In the case of applying 3-body

terms to the O-B-O, as well as the B-O-B correlation, two different fits are carried out, as

in case of the 2-body fits at 2300 K. In the second one, the O-O interaction is chosen to be

purely repulsive, meaning a fixed value of COO = 0 eV Å
6

is chosen. In this case a set of M = 10

parameters is optimized. The final values of χ2 after all iterations of the parameter optimizations

are χ2 = 46.08730 (3-body terms for the O-B-O correlation) and χ2 = 11.732140 (3-body terms

for the O-B-O and B-O-B correlation and COO = 0 eV Å
6
) and χ2 = 10.961948 (3-body terms

for the O-B-O and B-O-B correlation and COO 6= 0 eV Å
6
) at 2300 K.

The optimized parameter sets are displayed in table 6.7. As in the 2-body case, a main effect

of the structure matching scheme is to reduce the charge of the boron atoms qB (and as a

consequence also the charge of the oxygen atoms qO). In all cases, the charges of the boron

atoms are about qB = 1 e. Again, this value agrees quite well with the ones of the two most-

promising classical force fields, according to [44] (qB = 1.2 e (C1) and qB = 0.9 e (C2)). The

parameters of the 3-body interactions in all cases are pretty similar.
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Figure 6.17: χ2 with respect to iteration step.
Parameter fitting of potentials including 3-body

terms for B2O3 at 2300 K.
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Figure 6.18: λ with respect to iteration step.
Parameter fitting of potentials including 3-body

terms for B2O3 at 2300 K.

In Figs. 6.17 and 6.18, the evolution of χ2 (see equation (3.128)) and λ are displayed with respect

to the iteration steps n for the first n = 40 steps of the structural fit. In case of the application of
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3-body terms to the O-B-O and the B-O-B correlation and COO 6= 0 eV Å
6
, the displayed values

of χ2 and λ are a composition of three consecutive iteration runs, as the Levenberg-Marquardt

procedure has been aborted twice due to the crash of the compute node. It has been restarted,

first, with an initial value of λ = 0.01 at the 8th, and, second, with an initial value of λ = 0.001

at the 33th iteration step. Both, the developments of χ2, as well as λ, show a similar behavior

as in the case of the pair interactions, as described above.
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Å
]

MD fit, COO = 0
MD fit, COO 6= 0

MD fit, only O-B-O
DFT

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 3 4 5 6

g O
O

(r
)

r
[
Å
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Figure 6.20: pBOB (Φ) and pOBO (Φ). Results
of parameter fitting of potentials including 3-

body terms for B2O3 at 2300 K.

In Figs. 6.19 and 6.20, the partial pair correlation functions gBB (r) and gOO (r) and the angular

distributions pBOB (Φ) and pOBO (Φ) are displayed. The curves, according to the structural fits

at T = 2300 K including 3-body terms, are compared to the curves based on the last 20000ts of

the ab initio MD trajectory at the same temperature. As in case of the pure 2-body interactions,

the curves of the two different fits with both 3-body terms (COO 6= 0 eV Å
6

and COO = 0 eV Å
6
)

have a pretty similar shape. It can be seen that the curves of the parameter sets with 3-body

terms for the O-B-O, as well as the B-O-B interaction show an enhanced agreement with the
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curves of the ab initio MD run. The curves of the parameter set with 3-body terms only for the

O-B-O correlation show a similar behavior as the ones of the 2-body fits. Here, the agreement

of gOO (r) and pOBO (Φ) with the ab initio curves is pretty good. However, the positions of the

main peaks in gBB (r) and pBOB (Φ) are shifted to larger values by about 0.1 Å and 10◦, as in

case of the 2-body fits.

The results of the structural fitting procedure encourage to examine the two different parameter

sets, including 3-body terms for the O-B-O and the B-O-B interaction, in detail. This is done

in the next section with respect to the liquid properties. In sections 6.5 and 6.6, the structural

and vibrational properties of B2O3 glass configurations, generated by this two force fields, are

compared to the properties of the glass configurations, generated by full ab initio quenches and

the original parameter set [97].

6.4 Liquid properties by means of classical MD simulations

In this section, the properties of liquid B2O3, according to the two most-promising force fields

after the structural fit (see section 6.3), are studied. On the one hand, the structural and

dynamical properties are compared to the ones of the ab initio MD simulations (see section

6.2) at the corresponding temperatures. On the other hand, the temperature dependence of

certain structural and dynamical properties is examined. All classical simulations are carried

out based on the two force fields, including 3-body interactions with fixed COO = 0 eV Å
6

and

COO 6= 0 eV Å
6

(see Table 6.7). Again, all simulations are carried out with the LAMMPS

software package [60, 61], in this case, employing the new pair style “gauss/smooth”.
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Simulations are carried out for two system sizes, namely 150 atoms and 1200 atoms. In the

case of 150 atoms, all simulations are carried out at the fixed system density of ρ = 1.83 g/cm3



Chapter 6. Model glass former B2O3 127

(LBox = 12.375 Å), as in the previous chapter. In the case of 1200 atoms, simulations are

carried out at constant external pressure of p = 0 to study the dependence of the system

density ρ on the temperature. This system size is large enough to avoid significant finite size

effects and the external pressure of p = 0 is a reasonable assumption for normal conditions

(p = 1 atm ' 0.1 MPa), as the magnitude of relevant pressures in solids is in the order of GPa.

To test the implementation of the new pair style (“gauss/smooth”), a series of test runs is

conducted, similar to the test runs in the case of SiO2, described in subsection 4.1.1. The

test runs are performed for the parameter set with fixed COO = 0 eV Å
6
. After a random

initialization (see subsection 4.1.1), the system is equilibrated at 3600 for 200000 ts, using a

time step of 0.6 fs. The equilibration run is done in a NVT ensemble, again using a chain of 3

Nosé-Hoover thermostats (see subsection 3.1.2) with a damping parameter of 60 fs, integrating

the equations of motions, according to [68]. Again, at the end of the equilibration run, 10000

configurations are stored. As a starting point of the microcanonical test runs, the configuration

is chosen with a total energy Etot = Ekin +Epot closest to the mean total energy of the preceding

equilibration run.

To test the relation |Etot − 〈Etot〉| ∝ (δt)2 (see equation (3.11)), short microcanonical runs

of 1 · 105 ts are carried out with different time steps from δt = 0.2 fs to δt = 1.4 fs. Again,

the amplitude of fluctuations is determined by computing half of the mean difference between

neighboring maxima and minima of Etot in the microcanonical runs. The neighboring maxima

and minima are only taken into account if there is a time difference of 10 time steps in between.

In Fig. 6.22, |Etot − 〈Etot〉| is displayed with respect to the time step δt. It can be seen that in

this range of time steps δt, the relation δEtot ∝ δt2 is fulfilled.

To examine the drift of the total energy, microcanonical test runs of 10 ns are carried out, again

with different time steps from δt = 0.2 fs to δt = 1.4 fs. In Fig. 6.22, the absolute difference of the

total energy between the end and the beginning of the test runs is shown on a logarithmic scale.

It can be seen that the energy difference |Etot,end − Etot,beg| increases by orders of magnitude

with increasing time step δt. As in case of the model glass former SiO2 (see subsection 4.1.1), it

seems to be a good compromise between computational efficiency and accuracy, to chose a time

step of δt = 0.6 fs. In the following, this time step is applied at all temperatures and system

sizes.

To study the liquid properties at different temperatures, all systems are first randomly ini-

tialized and then pre-relaxed with Lennard-Jones potentials, as explained in subsection 4.1.1.

Afterwards, they are equilibrated at 3600 K and then cooled down in different steps to 1000 K.

The equilibration times are tabulated in Table 6.9. The 150 systems are equilibrated in NVT

runs, using a chain of 3 Nosé-Hoover thermostats with a damping parameter of 60 fs (100 ts).

The 1200 systems first are equilibrated in NpT runs in the isothermal-isobaric ensemble at p = 0

external pressure. In both cases, the equations of motions are integrated, according to [68]. Sim-

ulations are carried out using a Nosé-Hoover type barostat with a damping parameter of 600 fs

(1000 ts), meaning the system volume is allowed to fluctuate and the pressure of the system

is relaxed to the target pressure in a timespan of 1000 time steps. A chain of 3 Nosé-Hoover
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temperature # time steps simulation time δt

3600 K 2 · 105 ts 120 ps 0.6 fs

3300 K 2 · 105 ts 120 ps 0.6 fs

3000 K 2 · 105 ts 120 ps 0.6 fs

2700 K 4 · 105 ts 240 ps 0.6 fs

2500 K 6 · 105 ts 360 ps 0.6 fs

2300 K 1 · 106 ts 600 ps 0.6 fs

2100 K 2 · 106 ts 1.2 ns 0.6 fs

1800 K 3 · 106 ts 1.8 ns 0.6 fs

1500 K 1 · 107 ts 6 ns 0.6 fs

1200 K 2 · 107 ts 12 ns 0.6 fs

1000 K 4 · 107 ts 24 ns 0.6 fs

800 K (COO = 0 eV Å
6
) 8 · 107 ts 48 ns 0.6 fs

800 K (COO 6= 0 eV Å
6
) 2 · 108 ts 120 ns 0.6 fs

Table 6.9: Cooling procedure of liquid B2O3 with number of time steps and equilibration times at
each temperature.

thermostats is coupled to the barostat with a damping parameter of 60 fs (see subsection 3.1.2).

Subsequently, at each temperature, a second equilibration run is conducted in the canonical en-

semble at fixed system density, corresponding to the mean density of the preceding equilibration

run at constant external pressure (p = 0). Again, a chain of 3 Nosé-Hoover thermostats with a

damping parameter of 60 fs is employed. Afterwards, in each case, microcanonical production

runs are carried out at the mean total energy of the preceding equilibration runs. In the case

of the 1200 atom systems, the highest examined temperatures are 2500 K (COO = 0 eV Å
6
) and

3000 K (COO 6= 0 eV Å
6
). At higher temperatures, a simulation in the NpT ensemble was not

possible, as a strong expansion of the simulation box occurred. Also, the lowest considered

temperature for the 1200 atom systems is 1000 K. In each case, the properties of the 150 atom

systems are averaged over 10 independent simulation runs and the properties of the 1200 atom

systems are averaged over 3 independent runs.

In section 6.3, already gBB (r), gOO (r), pBOB (Φ) and pOBO (Φ) of the classical potentials in-

cluding 3-body terms have been compared to the corresponding curves of the ab initio MD sim-

ulations at 2300 K. In this section, this comparison is continued in the whole temperature range,

ab initio MD simulations have been carried out. Here, only the curves of the classical potential

with COO 6= 0 eV Å
6

are displayed as in the temperature range between 2300 K and 3600 K, the

dynamical and structural properties of the two different parametrizations (COO = 0 eV Å
6

and

COO 6= 0 eV Å
6
) are nearly identical, in case of 150 atom simulations at constant density.

In Figs. 6.23 and 6.24, the incoherent intermediate scattering functions FS,B (k, t) (see equation

(3.100)) and the mean square displacements
〈
r2
B (t)

〉
(see equation (3.98)) of the classical MD

simulations are compared to the curves of the ab initio MD simulations at 3600 K and 2300 K.

The incoherent intermediate scattering functions are evaluated at k = 1.68 Å
−1

. This is about

the k-value of the first sharp diffraction peak (FSDP), visible in the partial static structure
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factors (see section 6.2). It should be noted that the curves of the ab initio MD simulations

are evaluated with respect to the MD runs in the canonical ensemble, meaning the dynamics

is influenced by the Nosé thermostat (see subsection 3.1.2). At 2300 K, both curves show a

two-step decay with an intermediate plateau. However, the characteristics of a two-step decay is

much more pronounced in case of the ab initio MD simulations. At 3600 K, the two-step process

is not yet apparent. The α-relaxation time at 3600 K is about 2-times smaller in case of the

classical MD simulation as in case of the ab initio MD simulation. This ratio increases to about

one order of magnitude at 2300 K. In principle, the dynamics of the oxygen atoms (not shown

here) exhibits the same behavior. However, in the incoherent intermediate scattering functions

of the boron atoms (see Fig. 6.24) a small shoulder is visible at a simulation time of about

50− 60 fs, which is not apparent in the curves of the oxygen atoms. So far, no clear explanation

of the origin of this shoulder can be given.

In Figs. 6.25 and 6.26, the partial pair correlation functions gBB (r), gOO (r) and angular

distributions pBOB (Φ) and pOBO (Φ) are shown at 3600 K and 2300 K. Reflecting the faster

dynamics of the classical MD simulations, the peaks of gBB (r) are significantly lower. This

already is described in section 6.3 at the temperature of 2300 K and is apparent, as well, at

3600 K. In gBO (r) (not shown here), this behavior is not visible at both temperatures and the

agreement in both cases is very good. In the case of gOO (r), the curves of the classical MD

and the ab initio MD simulations are nearly identical at the temperature of 2300 K, where the

parameter fits are carried out. At 3600 K, the peak height of the classical MD simulation is

significantly lower. Regarding pBOB (Φ) and pOBO (Φ), the agreement between the classical MD

and the ab initio MD results is pretty good at both temperatures. The peak heights increase

with decreasing temperature and the observed shoulder at about 80◦ in pBOB (Φ) is visible in

the classical, as well as in the ab initio MD curves.
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Figure 6.25: gBB (r) and gOO (r) at 3600 K
and at 2300 K. Comparison of classical potential

including 3-body terms with ab initio MD.
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Figure 6.26: pBOB (Φ) and pOBO (Φ) at
3600 K and at 2300 K. Comparison of classical
potential including 3-body terms with ab initio

MD.

In Fig. 6.27, the probability that a B atom is member of a ring of size n is shown at 3600 K

and 2300 K. Regarding pB (n), the classical MD simulations and the ab initio MD runs show

some differences. At 3600 K, the most dominant ring size is n = 7 in both cases. However,

the probability of a B atom to be in a ring of size n = 1 is significantly higher in case of the

classical MD simulation. A ring size of n = 1 reflects the case of so-called non-bridging oxygen

atoms, connected only to one boron atom. At 2300 K, the most dominant ring size is n = 7 in

case of the classical MD simulation and n = 8 in case of the ab initio MD simulation. Again,

the probability of a B atom to be in a ring of size n = 1 is significantly higher in case of the

classical MD simulation. Also, the ab initio curve shows an increased probability of pB (n = 3),

with respect to pB (n = 2) and pB (n = 4). This is not apparent in the classical MD curve.

Overall, the number of small rings with n ≤ 4 is larger in case of the classical MD simulations,

at all examined temperatures. This behavior is reflected in Fig. 6.28, which shows the angular

distributions of the B-B-B correlation. As already explained in section 6.2, the additional peak
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Figure 6.27: pB (n) at 3600 K and at 2300 K.
Comparison of classical potential including 3-

body terms with ab initio MD.
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Figure 6.28: pBBB (Φ) at 3600 K and at
2300 K. Comparison of classical potential in-

cluding 3-body terms with ab initio MD.

at approximately 58◦ is connected to these small ring sizes with n ≤ 4. At 3600 K, as well as

2300 K, this additional peak is slightly higher in case of the classical MD simulations. Overall,

the agreement between the classical and the ab initio curves is slightly better at the temperature

of the parameter fitting of 2300 K, compared to 3600 K.
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Figure 6.29: Mean system density ρ̄ with re-
spect to T at constant external pressure p = 0
for 1200 atom systems. Classical potentials in-

cluding 3-body terms.
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Figure 6.30: Mean internal pressure p̄int with
respect to T for 150 atom systems at constant
density ρ = 1.83 g/cm3. Classical potentials in-

cluding 3-body terms.

After the comparison with the results from the ab initio simulations, the properties of liquid

B2O3, according to the 150 atom simulations at constant density of ρ = 1.83 g/cm3, are compared

to the ones, according to the 1200 atom simulations at constant external pressure of p = 0.

In Fig. 6.29, the temporal development of the mean system densities is compared for the

two different classical potentials COO = 0 eV Å
6

and COO 6= 0 eV Å
6
, according to the 1200
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atom simulations. Despite the nearly identical dynamic and structural properties of the 150

atom system in the temperature range between 3600 K and 2300 K, the temporal development

of the system densities between 3000 K and 1000 K (COO 6= 0 eV Å
6
) and 2500 K and 1000 K

(COO = 0 eV Å
6
) shows significant differences. In the case of COO = 0 eV Å

6
, the mean system

density increases from about ρ̄ = 0.97 ± 0.002 g/cm3 at 2500 K to about ρ̄ = 1.280 ± 0.014 g/cm3

at 1000 K. For COO 6= 0 eV Å
6
, ρ̄ increases from about ρ̄ = 1.209 ± 0.008 g/cm3 at 3000 K to

about ρ̄ = 1.892 ± 0.003 g/cm3 at 1000 K. The latter is pretty close to the experimental glass

density of ρ = 1.83 g/cm3 [159]. Regarding this behavior, the potential with attractive O-O

interactions (COO 6= 0 eV Å
6
) is preferable to the one with purely repulsive O-O interactions

(COO = 0 eV Å
6
). In Fig. 6.29, the temporal development of the mean internal pressure (see

equation (3.33)) is compared, according to simulations of the two different classical potentials

for the 150 atom systems in the canonical ensemble. Reflecting the behavior of the system

densities, the internal pressure decreases from about pint = 3.954±0.004 GPa at 3600 K to about

pint = 1.117± 0.015 GPa at 800 K (COO = 0 eV Å
6
) and from about pint = 2.537± 0.005 GPa at

3600 K to about pint = −0.447± 0.042 GPa at 800 K (COO 6= 0 eV Å
6
). In all cases, the depicted

statistical errors are the standard deviations of the mean, with respect to the N independent

simulation runs, σ = σ√
N

. Apparently, the additional attractive force between two neighboring

oxygen atoms in the case of COO 6= 0 eV Å
6

has a significant effect on the internal pressure of

the system.
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Figure 6.31:
〈
r2
α (t)

〉
, α ∈ {B,O}, at different temperatures for 1200 atom system at constant

external pressure p = 0. Classical potential with 3-body terms and COO = 0 eV Å
6
.

Next, the dynamical properties are discussed for all examined cases, namely the two different

classical potentials and the two different system sizes. In case of the mean square displacements

(see equation (3.98)), the curves of the boron and the oxygen atoms are discussed separately.

In case of the incoherent intermediate scattering functions (see equation (3.100)), only selected

curves of the boron atoms are displayed.
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Figure 6.32:
〈
r2
α (t)

〉
, α ∈ {B,O}, at different temperatures for 1200 atom system at constant

external pressure p = 0. Classical potential with 3-body terms and COO 6= 0 eV Å
6
.

0.001

0.01

0.1

1

10

100

1000

1e-06 0.0001 0.01 1 100

〈r
2 B

(t
)〉
[ Å
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Figure 6.33:
〈
r2
α (t)

〉
, α ∈ {B,O}, at different temperatures for 150 atom system at constant

density ρ = 1.83 g/cm3. Classical potential with 3-body terms and COO = 0 eV Å
6
.

In Figs. 6.31 and 6.32, the mean square displacements
〈
r2
α (t)

〉
, α ∈ {B,O}, are shown for the

1200 atom simulations at constant external pressure of p = 0 for temperatures between 2500 K

and 1000 K (COO = 0 eV Å
6
) and 3000 K and 1000 K (COO 6= 0 eV Å

6
). In both cases, this

corresponds to the entire examined temperature range. As expected, the emergence of a 2-step

process with an intermediate plateau can be observed with decreasing temperature, coming along

with an increase of the α-relaxation times by about 4 to 5 orders of magnitude. The height of the

intermediate plateau decreases slightly with decreasing temperature, in all cases. The increase

of the α-relaxation times is significantly larger for the classical potential with COO = 0 eV Å
6
.

This slowing down of the dynamics can be explained by the significantly lower system density

in the low-temperature range (ρ̄ = 1.280 ± 0.014 g/cm3 at 1000 K), compared to COO 6= 0 eV Å
6

(ρ̄ = 1.892 ± 0.003 g/cm3 at 1000 K). This is the main difference in the dynamics at constant
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Figure 6.34:
〈
r2
α (t)

〉
, α ∈ {B,O}, at different temperatures for 150 atom system at constant

density ρ = 1.83 g/cm3. Classical potential with 3-body terms and COO 6= 0 eV Å
6
.
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Figure 6.35:
〈
r2
B (t)

〉
. Comparison of 1200

(p = 0) and 150 (ρ = 1.83 g/cm3) atom sys-
tem. Classical potential with 3-body terms and

COO = 0 eV Å
6
.
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Figure 6.36:
〈
r2
B (t)

〉
. Comparison of 1200

(p = 0) and 150 (ρ = 1.83 g/cm3) atom sys-
tem. Classical potential with 3-body terms and

COO 6= 0 eV Å
6
.

external pressure p = 0 of the two different classical potentials. Regarding the differences of the

oxygen and the boron dynamics, the dynamics of the oxygen atoms is slightly faster. However

this difference is much less pronounced as in case of the model glass former SiO2 (see subsection

4.1.3). The main difference is the emergence of a shoulder of unknown origin at a simulation

time of about 50− 60 fs in the boron curves, as already discussed in section 6.2.

In Figs. 6.33 and 6.34, the mean square displacements
〈
r2
α (t)

〉
, α ∈ {B,O}, are shown for

the 150 atom simulations at constant density of ρ = 1.83 g/cm3. Here, the same temperature

range is examined as in case of the 1200 atom simulations at constant external pressure of

p = 0, extended by the temperature of 800 K. In principle, the curves show show the same
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characteristics as in case of the 1200 atom simulations, including the shoulder in
〈
r2
B (t)

〉
at

about 50−60 fs. However, the 150 atom simulations show a significantly slower dynamics as the

1200 atom simulations in the high temperature regime for both examined potentials. This can

be explained as a finite size effect and corresponds to the behavior observed for the model glass

former SiO2 (see subsection 4.1.2). In contrast to this, the dynamics of the 150 atom system is

significantly faster than the one of the 1200 atom system in the low-temperature regime, in case

of the classical potential with COO = 0 eV Å
6
. This effect is not observed, in case of the classical

potential with COO 6= 0 eV Å
6
. Here, the dynamics of the 150 atom system is slower than the one

of the 1200 atom system at all examined temperatures. As discussed above, this can be explained

by the significantly lower system density in the low-temperature range (ρ̄ = 1.280± 0.014 g/cm3

at 1000 K), in the case of COO = 0 eV Å
6
.

In Figs. 6.35 and 6.36, the mean square displacements
〈
r2
B (t)

〉
of the different system sizes

(150 atoms at constant ρ = 1.83 g/cm3 and 1200 atoms at constant external pressure p = 0) are

directly compared to each other for the two different classical potentials (COO = 0 eV Å
6

and

COO 6= 0 eV Å
6
). Here, the curves of the boron atoms are exemplarily shown at the highest and

lowest examined temperatures. The differences in the dynamics of the different system sizes,

discussed above, are clearly visible in this direct comparison.
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Figure 6.37: FS,B (k, t). Comparison of 1200
(p = 0) and 150 (ρ = 1.83 g/cm3) atom sys-
tem. Classical potential with 3-body terms and

COO = 0 eV Å
6
.
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Figure 6.38: FS,B (k, t). Comparison of 1200
(p = 0) and 150 (ρ = 1.83 g/cm3) atom sys-
tem. Classical potential with 3-body terms and

COO 6= 0 eV Å
6
.

In Figs. 6.37 and 6.38, the incoherent intermediate scattering functions FS,B (k, t) are displayed,

comparing exactly the same simulation runs to each other, as in case of the mean square dis-

placements in Figs. 6.35 and 6.36. The curves are evaluated at k-values between k = 1.68 Å
−1

and k = 1.68 Å
−1

, depending on the system size. As explained above, this is about the k-value of

the corresponding first sharp diffraction peak (FSDP). The depicted curves reflects the behavior

of the mean square displacements. Regarding the classical potential with COO = 0 eV Å
6
, at

2500 K, the α-relaxation time is significantly lower, in case of the 1200 atom system compared to



Chapter 6. Model glass former B2O3 136

the 150 atom system and no two-step process is visible. At 1000 K, the α-relaxation time of the

1200 atom system is over an order of magnitude larger, which can be explained in terms of the

significantly lower system density (ρ̄ = 1.280± 0.014 g/cm3 at 1000 K), in case of the 1200 atom

simulation. Regarding the classical potential with COO 6= 0 eV Å
6
, the α-relaxation time of the

150 atom system is about 2-3 times longer, as in case of the 1200 atom systems. As mentioned

above, this can be explained as a finite size effect. Another interesting aspect is that, in all cases,

the height of the intermediate plateau is significantly lower, in case of the 1200 atom systems.

Focusing on the 150 atom simulations at constant ρ = 1.83 g/cm3, the α-relaxation times are

about the same at 2500 K for the two different potentials. However, at the lowest considered

temperature of 800 K, the α-relaxation time is about 4-times larger for the potential including

O-O attractions (COO 6= 0 eV Å
6
). This can be explained in terms of the higher internal pres-

sure (pint = 1.117 ± 0.015 GPa at 800 K) of the system with purely repulsive O-O interactions

(COO = 0 eV Å
6
), compared to the one (pint = −0.447 ± 0.042 GPa at 800 K) of the system

with additional attractive force between two neighboring oxygen atoms (COO 6= 0 eV Å
6
). The

plateau heights of the 150 atom systems are nearly identical for the two different potentials, in

all cases.

Next, the structural properties of the different system sizes and potential sets are compared.

In Figs. 6.41 and 6.42, the partial pair correlation functions gBB (r) and gOO (r) are displayed

for the two different potentials, again comparing the 1200 atom (constant pressure) with the

150 atom (constant volume) simulations at the same temperatures as the dynamical properties.

Comparing the curves of the same system size at different temperatures, the peak heights increase

with decreasing temperature, as expected. Regarding the potential with COO = 0 eV Å
6
, the

curves of the two different system sizes show significant differences in the whole temperature

range. At 2500 K, as well as 1000 K, the peak height of the first neighbor peaks is increased

for the 1200 atom system, in both cases. Regarding gBB (r), the first neighbor peaks are also

slightly broader in the 1200 atom case and the second-neighbor peaks are shifted to slightly

larger distances. This can be attributed to the significantly lower system density in the 1200

atom case. Regarding the potential with COO 6= 0 eV Å
6
, the increased peak height of the 1200

atom system is only observed at 3000 K. At 1000 K, the curves of the 1200 atom and the 150

atom simulations are nearly identical. This holds for gBB (r), as well as for gOO (r).

In Figs. 6.41 and 6.42, the angular distributions are displayed for the B-B-B, B-O-B and the O-B-

O correlation, again comparing the different potentials and system sizes at the same temperatures

as above. Regarding the O-B-O correlation, the curves of the different system sizes do not show

significant differences in all cases. The peak heights increase with decreasing temperature and

the mean O-B-O angles are between 118◦ and 120◦ in all cases. Regarding the B-O-B correlation,

in case of COO = 0 eV Å
6
, at 2500 K, as well as 1000 K, the peak positions of main peaks of the

1200 atom curves are shifted to larger angles by about 2◦. In case of COO 6= 0 eV Å
6
, this shift

to slightly larger angles for the 1200 atom curve can only be observed at 3000 K. At 1000 K

the curves of the 150 atom and the 1200 atom simulations are nearly identical. Regarding the

B-B-B correlation, in case of COO = 0 eV Å
6
, the peak positions of the main peaks of the 1200

atom simulations are shifted to larger angles by about 5◦ (2500 K) to 4◦ (1000 K). The peak
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Figure 6.39: gBB (r) and gOO (r). Compar-
ison of 1200 (p = 0) and 150 (ρ = 1.83 g/cm3)
atom system. Classical potential with 3-body

terms and COO = 0 eV Å
6
.
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Figure 6.40: gBB (r) and gOO (r). Compar-
ison of 1200 (p = 0) and 150 (ρ = 1.83 g/cm3)
atom system. Classical potential with 3-body

terms and COO 6= 0 eV Å
6
.

height of the additional peak at about 58◦ is nearly identical for both system sizes at 2500 K. At

1000 K, the peak height is slightly reduced for the larger system size. As already explained in

section 6.2, this peak is mainly connected to smaller ring sizes n ≤ 4. In case of COO 6= 0 eV Å
6
,

the peak position of the main peak of the 1200 atom simulation is shifted to larger angles by

about 3◦ at 3000 K. At 1000 K, the curves of the different system sizes are nearly identical. At

both temperatures, the peak heights of the 58◦-peak are pretty similar for both system sizes.

To further study the liquid properties of the different system sizes in the examined temperature

range, in Figs. 6.43 and 6.44, the probabilities of a B atom to be in a ring of size n, pB (n), are

displayed. Regarding the 150 atom simulations, in all cases the most dominant ring size is n = 7,

as already explained above. The probability pB (n = 7) increases with decreasing temperature

for both potentials and the probabilities pB (n ≤ 4) decrease with decreasing temperature. A

slight difference between the two potentials is that the probabilities pB (n = 7) and pB (n = 3)
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Figure 6.41: pαβγ (Φ) , α, β, γ ∈ {B,O}. Com-
parison of 1200 (p = 0) and 150 (ρ = 1.83 g/cm3)
atom system. Classical potential with 3-body

terms and COO = 0 eV Å
6
.
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Figure 6.42: pαβγ (Φ) , α, β, γ ∈ {B,O}. Com-
parison of 1200 (p = 0) and 150 (ρ = 1.83 g/cm3)
atom system. Classical potential with 3-body

terms and COO 6= 0 eV Å
6
.
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Figure 6.43: pB (n). Comparison of 1200
(p = 0) and 150 (ρ = 1.83 g/cm3) atom sys-
tem. Classical potential with 3-body terms and

COO = 0 eV Å
6
.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16

p B
(n
)

n

3000 K, 1200 atoms
3000 K, 150 atoms
1000 K, 1200 atoms
1000 K, 150 atoms
800 K, 150 atoms

Figure 6.44: pB (n). Comparison of 1200
(p = 0) and 150 (ρ = 1.83 g/cm3) atom sys-
tem. Classical potential with 3-body terms and

COO 6= 0 eV Å
6
.

are slightly higher at 800 K than at 1000 K in the case of COO = 0 eV Å
6

and slightly lower in

the case of COO 6= 0 eV Å
6
. Regarding the simulations of the 1200 atom systems, in all cases,

the most dominant ring size is n = 8. In the case of COO = 0 eV Å
6
, the probabilities pB (n ≤ 4)

are increased for the 1200 atom system at the highest examined temperature of 2500 K. Also

the distribution pB (n) is rather flat in the latter case with only a small maximum at n = 8 and

a rather high probability of pB (n = 16). This stands for the probability of a B atom to be in a

ring of size n ≥ 16. At 1000 K, the agreement between the 150 and the 1200 atom distributions

is better for lower ring sizes n. Overall, the distribution in the 1200 atom case is broader with

a significant amount of rings with size n ≥ 10, not apparent in the 150 atom case. Regarding

the case of COO 6= 0 eV Å
6
, the behavior at the highest examined temperature of 3000 K is

comparable to the behavior in the case of COO = 0 eV Å
6

at 2500 K and the behavior at 1000 K

is also quite similar. Here, the 150 and the 1200 atom distributions are nearly identical for n ≤ 4.

The lack of rings with n ≥ 10 in the 150 atom simulations clearly is a finite size effect, due to the

rather small simulation box with LBox = 12.375 Å in the 150 atom case. The broad distribution

at high temperatures in the 1200 atom case can be explained by the rather low system densities

of ρ̄ = 0.97± 0.002 g/cm3 (COO = 0 eV Å
6
, 2500 K) and (ρ̄ = 1.209± 0.008 g/cm3 (COO 6= 0 eV Å

6
,

3000 K).

In the following, the dependence of several quantities on the temperature is compared for all

different cases, namely ab initio MD simulations of the 150 atom system and classical MD

simulations of the 150 atom systems at constant density ρ = 1.83 g/cm3 and the 1200 atom

systems at constant external pressure p = 0.

First, the dependence of the self-diffusion constants Dα, α ∈ {B,O}, on the temperature is

examined. As explained in subsection 4.1.3, they are determined by means of the slope of a linear

fit to the corresponding mean square displacements at large simulation times, where the Einstein



Chapter 6. Model glass former B2O3 140

relation Dα = limt→∞
〈r2
α(t)〉
6t [15] holds (see equation (3.99)). In all cases, Dα (T ) , α ∈ {B,O},

are plotted on a logarithmic scale with respect to the inverse temperatures 1/T . In case of

the classical MD simulations, the displayed statistical errors are the standard deviations of the

mean, with respect to the N independent simulation runs, σ = σ√
N

. In case of the ab initio MD

simulations, no statistical errors are shown, as only one simulation run is carried out at each

examined temperature.
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Figure 6.45: Arrhenius plot of self diffusion constants for B and O at different temperatures for
1200 atom systems at constant external pressure p = 0. Different classical potentials with 3-body

terms.

In Fig. 6.45, Dα (T ) , α ∈ {B,O}, of the 1200 atom simulations at constant external pressure p =

0 are analyzed for both classical potentials (COO = 0 eV Å
6

and COO 6= 0 eV Å
6
). As expected, in

both cases, the diffusion constants decrease by orders of magnitude with decreasing temperature.

Regarding the differences of the oxygen and the boron dynamics, at each temperature, the self-

diffusion constants of the oxygen atoms are slightly larger than the ones of the boron atoms in

agreement with the behavior of the mean square displacements. However, this difference is much

less pronounced as in case of the model glass former SiO2 (see subsection 4.1.3). In principle, the

temperature dependence of Dα (T ) , α ∈ {B,O}, follows an Arrhenius behavior (see equation

(4.4)). However, in all cases the slope of the exponential decrease of Dα (T ) with respect to 1/T is

significantly lower at temperatures below about 1800 K, leading to a different activation energy

EA,α at low than at high temperatures. This difference in activation energies at low and high

temperatures has not been observed in case of the model glass former SiO2 (see subsection 4.1.3)

and so far is not clearly understood. It could be connected to a different diffusion mechanism

at low temperatures. The decrease of the slope at low temperatures is less pronounced in case

of the classical potential with COO = 0 eV Å
6
, leading to lower self-diffusion constants at low

temperatures. As in case of the longer α-relaxation times, this can be explained in terms of

the significantly lower system density (ρ̄ = 1.280 ± 0.014 g/cm3 at 1000 K) for COO = 0 eV Å
6
,

compared to ρ̄ = 1.892± 0.003 g/cm3 at 1000 K for COO 6= 0 eV Å
6
. As in case of the model glass

former SiO2 (see subsection 4.1.3), the activation energies EA,α, α ∈ {B,O}, are extracted by
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means of an Arrhenius fit (see equation (4.4)). Here, the temperature range of T ≤ 1500 K is

taken into account and the given errors are the asymptotic standard errors of the least-squares

fit with gnuplot [101, 106]. The values are: EA,B ' 1.10 ± 0.03eV, EA,O ' 1.07 ± 0.02eV

(COO = 0 eV Å
6
) and EA,B ' 0.74± 0.02eV, EA,O ' 0.75± 0.01eV (COO 6= 0 eV Å

6
).
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Figure 6.46: Arrhenius plot of self diffusion constants for B and O at different temperatures for 150
atom systems at constant density ρ = 1.83 g/cm3. Different classical potentials with 3-body terms.

In Fig. 6.46, Dα (T ) , α ∈ {B,O}, of the 150 atom simulations at constant density of ρ =

1.83 g/cm3 are displayed for both classical potentials (COO = 0 eV Å
6

and COO 6= 0 eV Å
6
). The

overall temporal behavior of the self-diffusion constants is the same as in case of the 1200 atom

simulations at constant external pressure of p = 0. Again, at each temperature, the values of

DO are slightly larger than the values of DB, in agreement with the behavior of the mean square

displacements. Also, the temperature dependence of Dα (T ) , α ∈ {B,O}, follows an Arrhenius

behavior (see equation (4.4)) with a significantly lower slope of the exponential decrease ofDα (T )

with respect to 1/T at temperatures below about 1800 K. As explained above, this behavior is

not clearly understood. In this case, additional equilibration runs have been carried out at

1200 K and 1000 K with significant longer equilibration times as the ones displayed in Table 6.9,

to check the influence of the equilibration time on the diffusive behavior. The corresponding

equilibration times are 42 ns at 1200 K and 600 ns at 100 K (COO = 0 eV Å
6
) and 54 ns at

1200 K and 600 ns at 100 K (COO 6= 0 eV Å
6
). However, the mean square displacements and self-

diffusion constants of the subsequent microcanonical measure runs are nearly identical to the

runs with the shorter equilibration times displayed in Table 6.9. This indicates that the change

of the diffusive behavior at low temperatures is no artifact of a too short equilibration time.

Here, the decrease of the slope at low temperatures is less pronounced in case of the classical

potential with COO 6= 0 eV Å
6
, leading to lower self-diffusion constants at low temperatures. As

in case of the longer α-relaxation times, this can be explained in terms of the significantly higher

internal pressure (pint = 1.117 ± 0.015 GPa at 800 K) of the system with purely repulsive O-O

interactions (COO = 0 eV Å
6
), compared to the one (pint = −0.447± 0.042 GPa at 800 K) of the

system with additional attractive force between two neighboring oxygen atoms (COO 6= 0 eV Å
6
).
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Again, the activation energies EA,α, α ∈ {B,O} are extracted by means of an Arrhenius fit (see

equation (4.4)) for temperatures T ≤ 1500 K, leading to the values of EA,B ' 0.75 ± 0.01eV,

EA,O ' 0.75 ± 0.01eV (COO = 0 eV Å
6
) and EA,B ' 0.87 ± 0.02eV, EA,O ' 0.86 ± 0.01eV

(COO 6= 0 eV Å
6
).
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Figure 6.47: Arrhenius plot of self diffusion constants for B and O at different temperatures for
150 atom systems at constant density ρ = 1.83 g/cm3. Comparison of different classical potentials

with 3-body terms with ab initio MD simulations.

In Fig. 6.47, Dα (T ) , α ∈ {B,O}, of the 150 atom simulations with both parameter sets

(COO = 0 eV Å
6

and COO 6= 0 eV Å
6
) at constant density of ρ = 1.83 g/cm3 are compared to the

ones of the ab initio MD simulations. Here, the temperature range is shown, in which the ab initio

runs could still be equilibrated (see section 6.2). In contrast to the classical MD simulations,

no change of the slope of the exponential decrease of Dα (T ) , α ∈ {B,O}, with respect to 1/T

is visible in case of the ab initio MD simulations. However, in the temperature range, the ab

initio MD simulations can be equilibrated, this change of slope is not observed in the classical

MD simulations, as well. In all cases, the diffusion constants of the ab initio MD simulations

are significantly smaller than the ones of the classical MD simulations, in agreement with the

significantly slower dynamics observed in the curves of FS,B (k, t) and
〈
r2
B (t)

〉
(see Figs. 6.23

and 6.24). Also, the slope of the exponential decrease of Dα (T ) , α ∈ {B,O}, is significantly

steeper in case of the ab initio MD simulations, compared to the classical MD simulations with

both parameter sets (COO = 0 eV Å
6

and COO 6= 0 eV Å
6
). Again, the activation energies

EA,α, α ∈ {B,O}, are extracted by means of an Arrhenius fit (see equation (4.4)). Here,

the temperature range of T ≥ 2300 K is taken into account, leading to different values of the

activation energies of the classical MD simulations as in the low temperature range of T ≤ 1500 K.

The corresponding values are: EA,B ' 1.87 ± 0.16eV, EA,O ' 2.18 ± 0.19eV (ab initio MD),

EA,B ' 1.28 ± 0.01eV, EA,O ' 1.23 ± 0.01eV (COO = 0 eV Å
6
) and EA,B ' 1.31 ± 0.02eV,

EA,O ' 1.28 ± 0.02eV (COO 6= 0 eV Å
6
). As explained above, it should be taken into account

that the analysis of the ab initio MD runs is carried out with respect to NVT runs in contrast

to the microcanonical runs of the classical MD simulations. Also, the underlying data is from

a single simulation run only due to the huge computational effort. As a consequence, one
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has to be careful when interpreting the displayed curves. However, the temporal development

of Dα (T ) , α ∈ {B,O}, give an indication about dynamics of the system at the examined

temperatures.
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Figure 6.48: Temporal development of mean B-O-B angle. Comparison of different classical po-
tentials with 3-body terms with ab initio MD simulations.

Next, the temporal development of the mean B-O-B angle is displayed for all studied cases (see

Fig. 6.48). Again, the statistical errors are calculated in terms of the standard deviation of the

mean, σ = σ√
N

, with respect to the independent simulation runs. In general, the agreement

of the classical MD simulations of the 150 atom systems and the ab initio MD simulations

is quite good in the temperature range, the latter still can be equilibrated. In all cases, the

mean B-O-B angle increases initially with decreasing temperature. Regarding the classical MD

simulations, the initial increase with decreaseing temperature is followed by a plateau at about

Φ̄BOB ' 134◦ (COO = 0 eV Å
6
, 150 atoms and COO 6= 0 eV Å

6
, 150 atoms and 1200 atoms)

and about Φ̄BOB ' 136◦ (COO = 0 eV Å
6
, 1200 atoms) in the temperature range between

aprroximately 1200 K to 800 K. In the case of COO = 0 eV Å
6
, 150 atoms, a slight decrease

of Φ̄BOB is visible at T = 800 K, compared to T = 1000 K. Regarding the ab initio MD

simulations, the initial increase of Φ̄BOB with decreasing temperature is followed by a slight

decrease at T = 2300 K.

Other interesting quantities to study, are the mean coordination numbers of the B-B and the B-O

correlation (see Fig. 6.49). Regarding the B-B correlation, n̄BB shows a decrease from n̄BB ' 3.5

at T = 3600 K (classical MD simulations, 150 atoms) to n̄BB ' 3.2 (COO = 0 eV Å
6
, 150 atoms)

and n̄BB ' 3.1 (COO 6= 0 eV Å
6
, 150 atoms) at T = 800 K. Here, the agreement to the ab

initio MD simulations is less pronounced. The latter show a decrease from about n̄BB ' 3.4

(T = 3600 K) to n̄BB ' 3.15 (T = 2300 K). In contrast to the 150 simulations, the classical MD

simulations of the 1200 atom systems show an initial increase of n̄BB, followed by a subsequent

decrease. This is connected to the significantly lower system density at high temperatures (see

Fig. 6.29). The value of n̄BB is significantly lower in the case of COO = 0 eV Å
6
. Again,

this can be explained by the significantly lower system density. Regarding the B-O correlation,
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Figure 6.49: Temporal development of mean B-B and B-O coordination. Comparison of different
classical potentials with 3-body terms with ab initio MD simulations.

all classical MD simulations show an initial increase with decreasing temperature, followed by

a transition to a plateau at about T = 1800 K. The plateau values are about n̄BO ' 3.03

(COO = 0 eV Å
6
, 150 atoms), n̄BO ' 3.00 (COO = 0 eV Å

6
, 1200 atoms) and n̄BO ' 3.02

(COO 6= 0 eV Å
6
, 150 and 1200 atoms). Again, the ab initio MD simulations show a slightly

different behavior with a slight initial increase to n̄BO ' 3.03 at T = 3000 K, followed by a

decrease to n̄BO ' 3.01 at T = 2300 K.

Last, the temporal development of the probability of a B atom to be in a ring of size pB (n = 3),

pB (n = 4), pB (n = 7) and pB (n = 8) is studied (see Fig. 6.50). In case of the classical MD

simulations, a ring size of pB (n = 7) corresponds to the maximum value of pB (n) of the 150 atom

simulations and a and ring size of pB (n = 8) corresponds to the maximum value of pB (n) of the

1200 atom simulations (see Figs. 6.43 and 6.44). In case of the ab initio MD simulations, a ring

size of pB (n = 7) corresponds to the maximum value of pB (n), as well. Only at T = 2700 K and

T = 2300 K, the probability of pB (n = 8) is higher than pB (n = 7) (see Fig. 6.7). Regarding

n = 3, pB (n = 3), in all cases, shows an initial decrease with decreasing temperature and the
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Figure 6.50: Temporal development of probability of B atom to be in a ring of size n, pB (n), for
n = 3, n = 4, n = 7 and n = 8. Comparison of different classical potentials with 3-body terms with

ab initio MD simulations.

agreement of the 150 atom and the 1200 atom simulations is quite good. In case of the ab initio

MD simulations, a significant increase of pB (n = 3) is visible from T = 2500 K to T = 2300 K

(compare Fig. 6.7). In case of the classical MD simulations, a slight increase of pB (n = 3) can

be observed from T = 1000 K to T = 800 K in the 150 atom simulation with COO = 0 eV Å
6
.

In all other cases, pB (n = 3) shows a steady decrease with decreasing temperature in the whole

examined temperature range. Looking at n = 4, the classical MD simulations show a slight

initial increase of pB (n = 4) with decreasing temperature, followed by a steady decrease with

decreasing temperature. In contrast to this, the ab initio MD simulations show an initial decrease

of pB (n = 4) with decreasing temperature, followed by an increase of pB (n = 4) from T = 2700 K

to T = 2500 K and a subsequent decrease from T = 2500 K to T = 2300 K. Regarding n = 7,

the classical MD simulations show an initial increase of pB (n = 7) with decreasing temperature

that gets less pronounced at lower temperatures. Only in case of the 150 atom simulation with

COO 6= 0 eV Å
6
, the value of pB (n = 7) starts to decreases again at T ≤ 1000 K. Here, the ab
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initio MD simulations show a different behavior. An initial increase of pB (n = 7) is followed by a

decrease of pB (n = 7) from T = 3300 K to T = 2500 K and an increase at T = 2300 K. Finally,

looking at n = 8, a steady increase of pB (n = 8) with decreasing temperature is observed

in all classical MD simulations. The ab initio MD simulations show an unsteady temporal

development of pB (n = 8), reflecting the fact that the maximum of pB (n) is observed at n = 8

at T = 2700 K and T = 2300 K and at n = 7 at all other temperatures (see Fig. 6.7). In

general, the temporal development of pB (n) reflects the decrease of defects (small ring sizes)

with decreasing temperature and the narrowing of the distribution of pB (n) with decreasing

temperature (compare Figs. 6.7, 6.27, 6.43 and 6.44). An exception is the rather strong increase

of pB (n = 3) at T = 2300 K, in case of the ab initio MD simulations.

6.5 Glass structure

After examining the properties of the model glass former B2O3 in the liquid state, in this section

the structural properties of the vitreous state are examined. The glass structures investigated

in this section are generated in different ways. However, in all cases systems of 150 atoms are

regarded at the experimental glass density of ρ = 1.83 g/cm3 [159]. As in case of the model glass

former SiO2 (see section 4.2), this is a reasonable system size in terms of balancing between

the influence of finite size effect and computational feasibility for quantum mechanical DFT

calculations.

In one approach, the glass configurations are generated by a quench from the melt with classical

molecular dynamics simulations after an initial random initialization, as described in subsection

4.1.1. Here, in all cases, 10 independent simulation runs are carried out in the NVT ensemble,

using a chain of 3 Nosé-Hoover thermostats (see subsection 3.1.2) with a damping parameter of

100 ts (see section 6.3). First, 10 independent glass configurations are generated with the original

potential parameters before the structural fit [97], according to Table 6.5, again choosing the B-B

interaction to be purely electrostatic. After an equilibration at 3600 K for 240 ps (ts = 1.2 fs),

the configurations are cooled linearly down to 300 K with a cooling rate of Γ = 1 · 1011 K/s.

After annealing at 300 K for 240 ps, the configurations are quenched down to 0 K. Next, glass

configurations are generated with the two different parameter sets of the classical force field,

including 3-body terms, as displayed in Table 6.7. This is done in two different ways. On the

one hand, the configurations are equilibrated at 2300 K for 300 ps (ts = 0.6 fs), followed by a

quench to 300 K with a cooling rate of Γ = 1 ·1011 K/s. On the other hand, the configurations are

quenched down to 300 K after the stepwise cooling procedure down to 800 K and equilibration at

800 K, according to Table 6.9. In both cases, the configurations are quenched down to 0 K after

annealing at 300 K for 600 ps. The first procedure is only applied in the case of COO = 0 eV Å
6
.

The second one is applied for both classical potentials.

In another approach, glass configurations are generated by quenches from the melt with ab

initio MD simulations. Here, two different cases are studied. First, the system is equilibrated at

3600 K for 36 ps (30000 ts, δt = 1.2 fs), as described in section 6.2. To generate two independent
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glass samples, one quench is started after the first 20000 K time steps of this equilibration run,

continuing the simulation at 3600 K for another 3000 ts. Another quench is started at the end

of the 30000 ts equilibration run. Second, the system is equilibrated at 2300 K for 124.2 ps

(103500 ts, δt = 1.2 fs, as described in section 6.2. Here, one quench is started after the first

72000 ts of this equilibration run and the second quench is started at the end of the 103500 ts

equilibration run, to generated two independent glass samples. In all four cases, the systems

are linearly quenched to 300 K and afterwards to 0 K with a cooling rate of Γ = 1.6 · 1014 K/s.

In addition, in all four cases, Born-Oppenheimer MD runs at 300 K are carried out for 5000 ts

(6 ps). In the following, the structural quantities at 300 K refer to the last 3 ps of these Born-

Oppenheimer runs. All ab initio MD simulations are carried out with the VASP package [78, 79],

using exactly the same parameters as for the ab initio MD simulations in section 6.2.
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Figure 6.51: gBB (r) and gOO (r) at 0 K, be-
fore and after structural relaxation. 3-body po-

tential with COO = 0 eV Å
6
, different equilibra-

tion temperatures.
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.

These glass structures are compared to one model glass structure, not generated by a quench
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from the melt, but in terms of an alternative method [131–133] where f = 75% of the boron

atoms are located within boroxol rings.

After employing the different quenching schemes to 0 K, all glass configurations are structurally

relaxed at constant volume by a conjugate gradient method [111]. This is done in the same way,

as described in section 4.2 about the model glass former SiO2. Again, the structural relaxation

is stopped when all forces on the atoms are smaller than 5 · 10−4 eV/Å, accurate VASP precision

is applied and the break condition for the electronic relaxation is a relative energy difference of

10−8.

Next, the structural changes before and after the quantum mechanical relaxation at 0 K are

studied for the glass samples generated by means of the classical MD simulations.
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Figure 6.53: pBOB (Φ) and pOBO (Φ) at 0 K,
before and after structural relaxation. 3-body

potential with COO = 0 eV Å
6
, different equili-

bration temperatures.
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.
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In Figs. 6.51 and 6.52, the partial pair correlation functions for the B-B and O-O correlations

are shown before and after the structural relaxation for all considered classical potentials. These

are the correlations that show the most significant differences before and after the structural

relaxation. For the classical potential with 3-body terms and COO = 0 eV Å
6
, the cases of the

quenches from 2300 K and 800 K are distinguished. Regarding the 3-body potentials after the

fitting procedure (see section 6.3), the main effect of the structural relaxation is the slight increase

of all mean first neighbor distances by about 0.01 Å to 0.02 Å. In addition, all first neighbor

peaks of the partial pair correlation functions are slightly broadened and the peak heights are

decreased. Regarding the original parameter set, the structural change is more pronounced.

Here, the average first neighbor B-B distance is decreased by about 0.1 Å and the first neighbor

B-O and O-O distances are slightly increased by about 0.01 Å. Here, the peak heights of the first

neighbor peak is slightly decreased in case of gBB (r) and slightly increased in case of gOO (r).

In Figs. 6.53 and 6.54, the angular distributions of the B-O-B and the O-B-O correlations

are exemplarily shown. Regarding pBBB (Φ), not shown here, no significant differences can be

observed before and after the structural relaxation, in all cases. As in case of the model glass

former SiO2 (see section 4.2), this indicates that the medium-range structure of the network is

not altered significantly. Regarding the 3-body potentials after the fitting procedure (see section

6.3), the main effect of the structural relaxation is a slight increase of the mean B-O-B angle

by about 1◦ to 2◦, in combination with a broadening of the main peaks and the decrease of the

peak heights in pBOB (Φ) and pOBO (Φ). The mean O-B-O angle is not altered significantly.

Regarding pOBO (Φ), a small secondary peak is visible at about 109.5◦ which diminishes in

size after the structural relaxation. This is connected to a small percentage of boron atoms

with 4 oxygen neighbors, as further explained below. Regarding the original parameter set, the

main structural change is the decrease of the mean B-O-B angle by about 16◦. This reflects

the decrease of the mean B-B distance, described above. Again, the mean O-B-O angle is not

altered significantly. The main peak in pOBO (Φ) gets slightly higher and narrower. Here, no

secondary peak at approximately 109.5◦ is visible.

Next, the effect of the structural relaxation on the distribution of coordination numbers pαβ (n),

α, β ∈ {B,O}, is studied. In Table 6.11, the probabilities of boron atoms to be 3-fold coordinated

with respect to neighboring boron and oxygen atoms and the probabilities of oxygen atoms to

be 2-fold coordinated with respect to neighboring boron atoms and 4-fold coordinated with

respect to neighboring oxygen atoms are depicted. These are the configurations of an “ideal”

glass structure without defects. It can be seen that all probabilities are close to 100 % and that

they increase during the structural relaxation procedure. In all cases, the partial coordination

numbers are equal to 0 for less atomic neighbors n of the respective atom type, as displayed in

Table 6.11. However, in all cases a certain number of overcoordinated atoms exist. Regarding

the classical quenches from 800 K, in all cases, the probabilities shown in Table 6.11 are close to

the corresponding values of the 150 atom simulations at 800 K as shown at the end of section 6.4.

In case of the original potential [97], all boron atoms have n = 3 boron and oxygen neighbors

and all oxygen atoms have n = 2 boron and n = 4 oxygen neighbors.
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COO =
0 eV Å

6

2300 K

COO =
0 eV Å

6

800 K

COO 6=
0 eV Å

6

800 K

quench relaxation quench relaxation quench relaxation

pBB (n = 3) 0.89 0.93 0.85 0.92 0.94 0.96

pBO (n = 3) 0.96 0.97 0.94 0.97 0.98 0.98

pOB (n = 2) 0.97 0.98 0.96 0.98 0.98 0.99

pOO (n = 4) 0.90 0.93 0.86 0.92 0.94 0.96

Table 6.11: Probabilities pαβ (n) , α, β ∈ {B,O}, of having the exact number of atomic neighbors
n of an “ideal” glass configuration. Glass structures after classical classical quench with 3-body

potentials and structural relaxation. In case of COO = 0 eV Å
6
, quenches from the melt at two

different temperatures.
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Figure 6.56: pB (n) at 0 K, before and af-
ter structural relaxation. Original potential [97]

and 3-body potential with COO 6= 0 eV Å
6
.

In Figs. 6.55 and 6.56, the probability that a boron atom is member of a ring of size n is shown

before and after the structural relaxation for all considered classical potentials. In contrast

to the model glass former SiO2, slight changes in pB (n) are observed in case of the classical

potentials including 3-body terms. However, the curves after the classical quenches are similar

to the ones for the 150 atom simulations at 800 K (see section 6.4). The most dominant ring

size, in all cases, is n = 7 and the probability of a boron atom to be in a ring of size n = 3 is

lower in case of COO 6= 0 eV Å
6

than in the case of COO = 0 eV Å
6
. In case of COO = 0 eV Å

6
,

the probability of a boron atom to be in a ring of size n ≤ 5, pB (n ≤ 5), is slightly higher for

the quench from 800 K than for the quench from 2300 K. In all cases, the effect of the structural

relaxation is the slight decrease of the probabilities pB (n = 7) and pB (n ≤ 5) and the slight

increase of pB (n = 8). In contrast to this, the distribution of ring sizes is not altered after the

structural relaxation, in case of the classical quench with the original parameter set. Here, the
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dominant ring size is n = 8 and rings with size n ≤ 4 are not apparent at all.

Despite the inclusion of 3-body terms, the probability of a B atom to be in a ring of size n = 3

is still lower than 2.6% in the glass structures after the classical quenches and the quantum

mechanical relaxation. However, in the glass structures after the classical quench with the

original parameter set [97], no rings of size n = 3 are apparent at all.
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Figure 6.57: pB (n) at 0 K. Comparison of
full ab initio quenches (different equilibration
temperatures) with one classical quench after

structural relaxation (COO = 0 eV Å
6
, equilibra-

tion at 800 K) and model glass structure with
f = 75% [131–133].
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Figure 6.58: gBB (r) at 0 K. Comparison of
full ab initio quenches (different equilibration
temperatures) with one classical quench after

structural relaxation (COO = 0 eV Å
6
, equilibra-

tion at 800 K) and model glass structure with
f = 75% [131–133].

Next, the structural properties of the glass configurations generated by the full ab initio quenches

from 3600 K and 2300 K are studied. In Fig. 6.57, the probability that a boron atom is member of

a ring of size n is shown. The curves of the ab initio quenches are compared to the ones, according

to the classical quench with subsequent quantum mechanical relaxation with the largest amount

of 3-membered rings (COO = 0 eV Å
6
, equilibration at 800 K), and the model glass structure with

f = 75% of the boron atoms located within boroxol rings, scaled to the experimental density

of ρ = 1.83 g/cm3. The structure file of this configuration has been provided by the first author

of [133], G. Ferlat. The curves of the ab initio quenches, in each case, are averaged over two

independent runs. The distributions of ring sizes show significant differences with respect to the

starting temperatures of the full ab initio quenches. In both cases, the most dominant ring size

is n = 7. However, in case of the quench from 3600 K, the probability pB (n ≥ 9) is higher than

in all other quenched glass structures. Also, the respective curve shows a depletion of rings with

size n = 6 and an increased amount of rings with size n ≤ 5 with respect to all other quenched

glass configurations, except for pB (n = 3), which is only about pB (n = 3) = 0.016. Regarding

the quench from 2300 K, the probabilities pB (n ≥ 9), pB (n = 6) and pB (n = 5) are similar to

the ones of the classical quenches with 3-body potentials after the structural relaxation. The

probabilities pB (n = 7) and pB (n = 8) are slightly lower than the ones of the latter and slightly

higher than the ones of the ab initio quench from 3600 K. The most pronounced difference to
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all other quenched configurations is that pB (n = 4) = pB (n ≤ 2) = 0 in combination with a

probability of pB (n = 3) = 0.05, which is higher than in all other cases of glass structures,

quenched from the melt. Regarding the model glass structure of G. Ferlat, the distribution of

ring sizes looks completely different. In contrast to all glass structures, generated in this work,

rings of size n = 7, n = 8 and n = 9 are not apparent at all. The probability pB (n ≤ 5) is

much higher compared to the configurations, quenched from the melt. It is remarkable that

the probability of a B atom to be in a ring of size n = 4, pB (n = 4) = 0.3̄, is higher than

pB (n = 3) = 0.25.

Regarding the distribution of coordination numbers, in case of the full ab initio quench from

2300 K, all boron atoms have n = 3 boron and oxygen neighbors and all oxygen atoms have

n = 2 boron and n = 4 oxygen neighbors. The same holds for the structure file from G.

Ferlat [133]. In case of the quench from 3600 K, the probabilities are pBB (n = 3) = 0.95,

pBO (n = 3) = 0.98, pOB (n = 2) = 0.99 and pOO (n = 4) = 0.96. In contrast to the classical

quenches, the differences to 100% are not only due to overcoordinated atoms. In case of the B-B

correlation, the probability pBB (n = 2) = 0.016̄. This can be assigned to a defect structure of

two edge-sharing BO3 triangles apparent in one of the two quenched samples.

To further illustrate the structural properties of the ab initio quenches, in Fig. 6.58, the curves

of gBB (r) are shown for the same glass configurations investigated in Fig. 6.57. As in case

of the classical quenches, this is the correlation with the most distinct differences between the

different glass configurations. The peak positions and shapes of the main peak of both curves,

according to the ab initio quenches, are pretty similar to the ones after the classical quenches

with the 3-body potentials after the structural relaxation. However, in both ab initio curves

a small secondary peak is visible at inter-atomic distances of about r = 2.39 Å which can be

attributed to boron atoms within boroxol rings, which is more pronounced in case of the 2300 K

quench. In case of the 3600 K quench, also a small peak at about r = 1.84 Å is visible, which

can be attributed to the above-mentioned defect structure of two edge-sharing BO3 triangles.

Regarding the model glass structure of G. Ferlat, the shape of the main peak is completely

different. Here, a sharp peak is visible at approximately r = 2.38 Å, connected to the B atoms

within boroxol rings. The curves of gBO (r) and gOO (r), not shown here, show less distinct

variations between the different glass configurations.

As mentioned above, in case of the ab initio quenches also 5000 ts (6 ps) NVT runs are carried out

at 300 K. As in case of the model glass former SiO2, the distribution of ring sizes is exactly the

same at 300 K compared to 0 K, implying that the medium range structure remains unchanged

between 300 K and 0 K. Also the local structure remains unchanged in the sense that the average

first neighbor distances and average angles do not show any significant differences between 300 K

and 0 K.

As already mentioned above, the highest amount of boroxol rings in the glass structures is

apparent in the ab initio glass samples quenched from 2300 K. Here, the mean number of 3-

membered rings is 3.0±1.0, corresponding to a fraction of f = 15±5% of the boron atoms located

in 3-membered rings. In the ab initio samples quenched from 3600 K, the average number of
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COO = 0 eV Å
6

2300 K
COO = 0 eV Å

6

800 K
COO 6= 0 eV Å

6

800 K
original parameters

[97]

rBB
[
Å
]

2.5115± 0.0029 2.5092± 0.0038 2.5104± 0.0039 2.5672± 0.0038

rBO
[
Å
]

1.3735± 0.0012 1.3747± 0.0014 1.3721± 0.0014 1.3707± 0.0002

rOO
[
Å
]

2.3728± 0.0007 2.3737± 0.0008 2.3724± 0.0010 2.3731± 0.0003

pBOB (Φ) [◦] 132.57± 0.41 131.94± 0.15 132.87± 0.40 140.27± 0.50

pOBO (Φ) [◦] 119.34± 0.16 119.25± 0.19 119.58± 0.18 119.964± 0.002

Ab initio 3600 K Ab initio 2300 K Alternative
Model [131–133]

Experiment [29]

rBB
[
Å
]

2.4935± 0.0003 2.5077± 0.0032 2.44 2.364/2.474± 0.07

rBO
[
Å
]

1.3729± 0.0016 1.3694± 0.0004 1.37 1.365± 0.043

rOO
[
Å
]

2.3742± 0.0001 2.3708± 0.0008 2.37 2.364± 0.07

pBOB (Φ) [◦] 130.75± 0.57 133.61± 0.07 126.4 120/130

pOBO (Φ) [◦] 119.60± 0.35 119.96± 0.01 120.0 120

Table 6.13: Mean first neighbor distances and average angles of B2O3 for all examined glass
configurations after the structural relaxation at 0 K. Comparison with experimental results [29].

3-membered rings is 1.0± 1.0, meaning f = 5± 5%. In both cases, all boron atoms within these

rings are 3-fold coordinated with respect to neighboring oxygen atoms and all oxygen atoms are

2-fold coordinated with respect to neighboring boron atoms. The same holds for the model glass

structure of G. Ferlat [131–133], with a boroxol ring fraction of f = 75%. In case of the glass

structures after the classical quenches and the subsequent quantum mechanical relaxation, the

boroxol ring fraction is f = 0% in case of the original parameter set [97] before the structural fit,

as already stated above. In case of the 3-body potentials, the glass structures contain an average

number of 0.7± 0.3 and 1.6± 0.5 3-membered rings (COO = 0 eV Å
6
, quenches from 2300 K and

800 K) and 0.5 ± 0.2 3-membered rings (COO 6= 0 eV Å
6
, quench from 800 K), corresponding

to fractions of B atoms located in 3-membered rings of f = 3.5 ± 1.5%, f = 8 ± 2.3% and

f = 2.5 ± 1.1%. The statistical errors shown, in each case, are the standard deviation of the

mean with respect to the N independent quenches from the melt, σ = σ√
N

. However, here not all

3-membered rings of the classical quenches are boroxol rings in a sense that all boron atoms in

the ring are 3-fold coordinated with respect to neighboring oxygen atoms and all oxygen atoms

are 2-fold coordinated with respect to neighboring boron atoms [31]. In case of the potential

COO = 0 eV Å
6

and the quench from 2300 K, the respective proportion of atoms is about 76% in

case of boron and 81% in case of oxygen. Only 3 out of the 7 three-membered rings contained

in the 10 independent glass structures, in total, are boroxol rings. In case of the quench from

800 K, the proportion of 3-fold coordinated B atoms is about 63% and the proportion of 2-

fold coordinated O atoms is about 65%. Only 4 out of the 16 three-membered rings contained

in the 10 independent glass structures, in total, are boroxol rings. In case of the potential

COO 6= 0 eV Å
6

and the quench from 800 K, the proportion of 3-fold coordinated B atoms is

80% and the proportion of 2-fold coordinated O atoms is 80%, as well. Here, only 3 out of the

5 three-membered rings contained in the 10 independent glass structures, in total, are boroxol

rings.
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Figure 6.59: Snapshot of the glass structure of a 150 atom system B2O3 containing 4 boroxol
rings. Configuration of one full ab initio quench from 2300 K. B atoms outside of boroxol rings are
displayed green and B atoms inside of boroxol rings are displayed red. O atoms are displayed blue.

In Fig. 6.59, a snapshot of a 150 atom glass structure of B2O3 is shown. Here the glass structure

with the highest boroxol ring fraction is chosen, containing 4 boroxol rings. This is one of the 2

glass structures generated by a full ab initio quench from 2300 K. (The second one contains only

2 boroxol rings). It can be seen that the glass structure consist of interconnected BO3 triangles.

Also, the 4 boroxol rings are clearly visible.

In Table 6.13, the mean first neighbor distances and mean B-O-B and O-B-O angles are displayed

for all examined glass configurations after the structural relaxation. Again, the statistical errors

shown, are the standard deviation of the mean with respect to the N independent quenches

from the melt. Therefore, the values of the alternative model [131–133] are shown without the
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specification of an error. The mean first neighbor distances are compared to experimental results

from neutron diffraction at room temperature [29]. As in case of the model glass former SiO2

(see section 4.2), the experimental data is extracted from the real space correlation function

T (r), which basically is the Fourier transform of the interference function, assuming a certain

structural model. In this model, a certain fraction f of B atoms is localized within boroxol rings

with an O-B-O, as well as an B-O-B angle of 120◦. The B-O-B angle for boron atoms outside

a boroxol group is assumed to be 130◦. This value is found to give a good fit to X-ray data,

according to [139]. The displayed experimental errors are the root mean square of the Gaussian

fits of the peaks in T (r). The two different experimental first neighbor B-B distances refer to

the two cases of B atoms localized within and outside a boroxol ring. The displayed values of

the first neighbor distances agree within the statistical errors to previous values from neutron

scattering [140] and X-ray scattering [139]. For all glass configurations, except the one generated

with the original parameter set before the structural fit, the mean first neighbor distances agree

nearly perfectly with the experimental results in the case of boron atoms localized outside a

boroxol group. This can be understood, as the highest fraction of boron atoms within boroxol

rings in all generated glass structures is f = 0.15. In case of the original parameter set, the

agreement of the mean B-B distance and mean B-O-B angle is inferior compared to the other

glass samples.

As in case of the model glass former SiO2 (see section 4.2), the total energies E0 and the

total energies per atom E0/N of the different glass structures are compared. In case of the

classical quenches, the corresponding values after the structural relaxation by means of the DFT

calculation are E0 = −1244.3362±0.1583 eV and E0/N = −8.2956±0. 0.0011 eV (COO = 0 eV Å
6
,

quench from 2300 K), E0 = −1243.9831± 0.2858 eV and E0/N = −8.2932± 0. 0.0019 eV (COO =

0 eV Å
6
, quench from 800 K), E0 = −1244.0339± 0.2828 eV and E0/N = −8.2936± 0. 0.0019 eV

(COO 6= 0 eV Å
6
, quench from 800 K) and E0 = −1244.1764± 0.2332 eV and E0/N = −8.2945±

0. 0.0016 eV (original parameter set, quench from 3600 K). The values in case of the full ab initio

quenches are E0 = −1245.2646 ± 0.4383 eV and E0/N = −8.3018 ± 0. 0.0029 eV (quench from

2300 K) and E0 = −1243.5606 ± 1.0604 eV and E0/N = −8.2904 ± 0. 0.0071 eV (quench from

3600 K). In case of the alternative model structure [131–133], consisting of 80 atoms, the values

are E0 = −665.3687 eV and E0/N = −8.3171 eV. The depicted errors are the standard deviation

of the mean with respect to the N independent quenches. Regarding the mean total energies

after the structural relaxation of the classical quenches, no significant differences between the

different potentials are visible. It is remarkable that, despite the significantly larger mean first

neighbor B-B distance and mean B-O-B angle of the glass structures generated with the original

parameter set, no difference in the mean total energy per atom E0/N is visible with respect to

the glass structures of the 3-body potentials. An explanation could be that the energetic cost

of defects (overcoordinated atoms in case of the 3-body potentials, see Table 6.11) in average

cancels out the energetic gain of the improved mean B-B distances and the existence of boroxol

rings.

Regarding the ab initio quenches, the mean per atom energy of the quench from 3600 K is about

0.003− 0.005 eV higher than in case of the classical quenches. On the other hand, the mean per
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atom energy of the quench from 2300 K is about 0.006−0.009 eV lower than in case of the classical

quenches. The picture is becoming clearer, when looking at the total energies of the 4 different

ab initio quenches, individually, as the content of boroxol rings in the individual quenches varies

from 0 to 4 rings. The corresponding values are E0 = −1242.5002 eV, E0/N = −8.2833 eV

(3600 K quench, 0 boroxol rings), E0 = −1244.6209 eV, E0/N = −8.2975 eV (3600 K quench, 2

boroxol rings), E0 = −1244.8263 eV, E0/N = −8.2988 eV (2300 K quench, 2 boroxol rings) and

E0 = −1245.7029 eV, E0/N = −8.3047 eV (2300 K quench, 4 boroxol rings). In [133], the average

energetic gain per boroxol ring is given by about 6.6± 1 kcal/mol =̂ 0.2862± 0.0430 eV from DFT

calculations, compared to an experimental value of 6.4 ± 0.4 kcal/mol =̂ 0.2775 ± 0.0174 eV from

Raman measurements [166]. Two times this value is about the order of the energy difference of

the two structures, quenched from 2300 K. In case of the 3600 K quenches, the energy difference

is larger. This can be attributed to the existence of a defect structure of two edge-sharing BO3

triangles in the first structure, containing 0 boroxol rings. Also, the difference of the mean per

atom energy of the alternative model structure with respect to the mean per atom energies of

the glass structures, generated in this work, can be explained in terms of the energy gain per

boroxol ring.
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atures. Comparison with experimental results
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[29], taken from [141].

Next, the total neutron structure factor Sneutr. (k) is examined. As explained in section 3.3, it is

obtained by weighting the partial static structure factors Sαβ (k) , α, β ∈ {B,O}, with the B and

O neutron scattering lengths (see equation (3.95)). The curves are compared to experimental

data, according to the same experimental results, the mean first neighbor distances are extracted

[29] from. Here, the glass samples contain 99.57% 11B, in contrast to 80% natural abundance.

Regarding this, the respective neutron scattering length of 11B is chosen, meaning bB = 6.65 fm

and bO = 5.803 fm [89]. In Figs. 6.61 and 6.61, the total neutron structure factor is compared

to the experimental one for all classical quenches before and after the structural relaxation. It
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Figure 6.63: Sneutr. (k) at 300 K. Compari-
son of full ab initio quenches with experimental

results [29], taken from [141].

can be seen that the overall agreement is quite good. In case of the 3-body potentials after the

structural fit, the curves before and after the structural relaxation at 0 K are nearly identical.

The biggest differences before and after the structural relaxation are visible in the case of the

original parameter set. In Figs. 6.62 and 6.63, the curves of the ab initio quenches are compared

to the experimental ones. Here, the curves at 0K and at 300 K are depicted. Again, the overall

agreement is quite good. Also, no significant difference is visible between the curves at 0 K and

300 K. The agreement of the static structure factor, despite the reduced number of boroxol rings

in the simulated glass structures f ≤ 0.15, shows that this is not a sufficient condition for the

agreement of the glass structures, as well. This is in agreement with [141] and [133]. Here, model

glass structures generated by ab initio quenches from the melt with a boroxol ring fraction of

f = 0.094 and f = 0.22 show a good accordance of Sneutr. (k) with experimental results, as well.

6.6 Vibrational properties

In this section, different vibrational properties of the model glass former B2O3 are examined

and compared with experimental results, following the approach of section 4.3. As in case of the

model glass former SiO2, the glass structures are treated as a crystalline structure with a large

unit cell containing all 150 atoms and the so-called ”frozen phonon” method is used, based on

the harmonic approximation.

Again, the vibrational properties of the quantum mechanical forces are compared to the ones of

the classical forces. Here, the classical force fields after the structural fit including 3-body terms

(see section 6.3) and the original parameter set [97] are employed. The basis for calculating

the vibrational properties, according to the DFT forces, are the glass samples at 0 K after

the classical quenches and the full ab initio quenches, followed by a structural relaxation with
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quantum mechanical forces, as explained in section 6.5. To calculate the vibrational spectra of

the classical interaction potentials, also a structural relaxation of the configurations at 0 K is

performed with respect to the classical forces, again, employing a conjugate gradient algorithm

[111]. Afterwards, all atoms i ∈ {1, N} are displaced by ∆rα;i = ±0.02 Å, α {1, 2, 3} and the

forces on all atoms Fα;i (∆rβ;j) are computed. Again, all DFT calculations are conducted with

the VASP package, using the same DFT parameters as in section 6.5 for the structural relaxation,

and the forces on the atoms are the Hellman-Feynman forces [112].

In all cases, the vibrational properties are calculated by means of the open source package

Phonopy [90, 91]. As in case of the model glass former SiO2 (see section 4.3), the input pa-

rameters are the forces with respect to all atomic displacements Fα;i (∆rβ;j). Again, the force

constants Φαβ;i,j are computed by means of a slightly modified form of the so-called original

Parlinski-Li-Kawazoe method [118] and the dynamical matrix Dαβ;i,j (k) is evaluated on a fixed

mesh of k-points within the Brillouin-zone with a mesh-grid of 5 points along each of the k-axes.

In each case, the phonon density of states g (ν) (see equation (3.109)) is evaluated, according to

the eigenfrequencies of Dαβ;i,j (k) at the specific k-points νn (k) , n ∈ {1, . . . , 3N} (see equation

(3.108)), and Gaussian smearing is applied with a smearing width of 0.1 THz.

Regarding the pure ab initio quenches from 3600 K to 0 K and from 2300 K to 0 K, in each case,

the curves are averaged over the 2 independent glass configurations. In case of the classical

quenches with the potentials including 3-body terms and the subsequent quantum mechanical

relaxation, the vibrational properties, according to the DFT forces, in each case, are averaged

over 5 independent glass samples. Regarding the classical quench with the original potential

before the structural fit, the curves, according to the quantum mechanical forces, are averaged

over 2 independent configurations. All curves with respect to the different classical potentials

are averaged over 10 different configurations.
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Figure 6.64: g (ν) of B2O3, classical quench.
Comparison of classical with quantum mechan-
ical forces. 3-body potential with COO =
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In Figs. 6.64 and 6.65, the phonon densities of states g (ν), according to the quantum mechanical

forces after the classical quench and the structural relaxation are compared to the ones, according

to the classical forces. In case of the force field including 3-body terms with COO = 0 eV Å
6
,

the different quenches from 2300 K and from 800 K are distinguished. Regarding the phonon

densities of states of the classical potentials with 3-body terms, the shape of the different curves

is nearly identical. In all cases, a low-frequency peak at about 1 - 5 THz is observed followed

by a rather broad double peak between about 12 and 22 THz and a high-frequency doublet

at about 38 - 48 THz. The vibrational spectra, according to the quantum mechanical forces

also all have a pretty similar shape, in all cases. Here, the main features are a low-frequency

peak at approximately 1.5 - 5 THz, followed by a rather distinct peak at approximately 18 - 21

THz. In the high-frequency regime, a distinct peak is visible at about 37 - 40 THz, followed by a

shoulder at approximately 43 - 45 THz. The biggest differences to the phonon densities of states,

according to the classical forces with 3-body terms, are the rather distinct peak at intermediate

frequencies (about 18 - 21 THz) in contrast to the broader one in the classical curves and

differences in the high-frequency regime (single peak with shoulder in contrast to double peak).

Also this high-frequency pattern of the DFT curves is shifted to slightly lower frequencies with

respect to the classical curves. According to [134], the distinct peak at intermediate frequencies

is connected to symmetric stretching modes within a BO3 triangle, where the oxygen atoms

are vibrating together in phase with respect to the central boron atom and to so-called out-of-

plane deformations of the BO3 triangle. The high-frequency peak (about 37 - 40 THz) and the

shoulder (about 43 - 45 THz) are also connected to vibrational modes localized within the BO3

triangles [26]. According to [134], the high-frequency modes are connected to anti-symmetric

stretching modes, where two oxygen atoms move towards the central boron atom and the other

oxygen atom moves away. Regarding this, the data suggest that the forces between neighboring

boron and oxygen atoms are slightly larger in the classical case leading to this shift of the local

vibrational modes. In contrast to the model glass former SiO2 (see section 4.3), the accordance

of the classical curves with the DFT curves in the low-frequency range of the spectrum which is

connected to the more delocalized vibrational modes is quite good. This comparison does not

hold for g (ν), according to the original parameters. In this case, the differences to the DFT

curve are much more distinct. The classical g (ν) shows a peak at about 2 - 6 THz, a rather broad

peak at about 20 - 27 THz and a high-frequency doublet at approximately 50 - 64 THz. This

means that the corresponding vibrational modes are shifted to higher frequencies with respect to

all other cases. An explanation could be the much stronger inter-atomic forces compared to the

other models, connected to the increased Coulomb interactions due to the significantly higher

partial charges of the boron and the oxygen atoms (see Tables 6.5 and 6.7).

In Fig. 6.66, the phonon densities of states of the glass structures after the classical quenches,

followed by a structural relaxation, are compared to the ones after the full ab initio quenches and

to the one of the alternative model structure [131–133]. In all cases, DFT forces are employed.

Regarding the glass structures generated in this work, all vibrational spectra have a nearly

identical shape. The biggest difference with respect to the other curves is visible in case of

the glass samples generated with the original parameter set. Here, the peak heights of all
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Figure 6.66: g (ν) of B2O3, DFT forces. Comparison of classical quenches with subsequent struc-
tural relaxation to full ab initio quenches and alternative model structure [131–133].

peaks are slightly higher with respect to the other cases. In addition, the position of the high-

frequency peak (about 37 - 40 THz) is shifted to slightly lower frequencies. The main structural

differences with respect to the other glass structures are the slightly larger first neighbor B-B

distances (about 0.06Å to 0.08Å) and the slightly larger mean B-O-B angle (about 8◦ 10◦), as

displayed in Table 6.13. As explained above, the high frequency pattern is connected to the

vibrational modes within the BO3 triangles [26]. This implies that the arrangement of the BO3

units also has a slight effect on the vibrational modes within the BO3 triangles, connected to

the strength of the bonding forces between neighboring boron and oxygen atoms. Regarding

the alternative model structure, the overall shape of the vibrational spectrum is similar to the

ones according to the glass samples generated in this work. There are distinct differences in

the high-frequency pattern (about 38 to 48 THz). Again, this can be explained in terms of the

differences in the inter-connection of the BO3 triangles. As already explained in section 6.5, in

this model structure f = 75% of the B atoms are localized within boroxol rings, connected to a

B-O-B angle of 120◦. Besides the differences in the high-frequency range, the most noticeable
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feature of this model structure is the very prominent peak at about 23.2 to 23.4 THz. This

peak can be assigned to the breathing mode of the boroxol ring [26, 30]. Also a second distinct

peak at approximately 36 to 36.4 THz is visible in this g (ν), which is a boroxol ring signature,

as well [30]. As examined in section 6.5, the ratio of B atoms localized in 3-membered rings

varies from about f = 2.5% (classical potential with 3-body terms, COO 6= 0 eV Å
6
) to f = 15%

(full ab initio quench from 2300 K). In all cases, a small distinct peak is visible at about 23.2

to 23.4 THz, increasing in size with increasing ratio f . Also, in all cases, a small pattern at

approximately 36 to 36.4 THz is visible. However, this is not as pronounced as the distinct peak

at about 23.2 to 23.4 THz. In case of the model glass structure with f = 0% (classical potential

with original parameter set) this peak is clearly missing. Regarding once again the vibrational

spectra according to the classical forces (see Figs. 6.64 and 6.65), this signature is missing as

well. As explained in section 6.5, the distribution of ring sizes is only altered insignificantly by

the structural relaxation. This means that the value of f is about the same in the respective

glass structures. In the vibrational spectra of the classical force fields with 3-body interactions,

a small feature is visible between about 27.5 and 28.5. This could be connected to vibrations

within the 3-membered rings.

Next, the so-called effective neutron scattering cross sections G (ν) = C (ν) g (ν) are compared to

experimental results from inelastic neutron scattering [30, 134]. Here, only the case of DFT forces

is studied. As in case of the model glass former SiO2 (see section 4.3), the correction function

C (ν) is calculated using the incoherent approximation, according to [121]. This means that the

functional form of C (ν) is equal to the one of equation (4.5), substituting Si with B. As in case

of the static neutron structure factor [29], the glass samples, according to [30], contain 99.57% of

the isotope 11B, in contrast to 80% natural abundance. In [134], the isotope composition is not

stated. However, the authors of [134] are also authors of the corresponding publications [29] and

[30]. Having this in mind and the enhanced absorption of neutrons of 11B, it is assumed that

also in the latter case a 11B sample is used. Regarding this, the respective neutron scattering

length of 11B is chosen, meaning bB = 6.65 fm and bO = 5.803 fm [89] and the atomic mass of

the isotope 11B is chosen, meaning mB = 11.0093 amu and mO = 15.9994 amu. This means

that in equation (4.5) (Si substituted with B), 〈m〉 = 14.00336 amu is the mean atomic mass of

the system,
〈
b2
〉

= N−1
∑

i b
2
i = 37.8938854 fm2 is the mean squared neutron scattering length,

g (ν) is the full phonon density of states and gα (ν) , α ∈ {B,O}, are the partial phonon densities

of states. As in case of the model glass former SiO2, a Debye-Waller factor exp
[
−k2 〈u2

α〉/3
]
'

1, α ∈ {B,O}, is assumed [92] which is a good assumption at low temperature. Comparing the

curves in Figs. 6.67 and 6.68 with the ones in Fig. 6.66, it can be seen that the main effect of

C (ν) is the slight increase of the height of the peaks at intermediate (about 18 - 21 THz) and high

frequencies (about 37 - 40 THz) and a slight reduction of the peak height of the low-frequency

peak (about 1.5 - 5 THz). In [134], the experimental spectrum is composed of two parts, a low-

and a high-frequency part, measured at two different spectrometers and temperatures of 15 K

and 300 K, respectively. In [30], the full spectrum is measured in a single scattering experiment

at 20 K with an incident neutron energy of E0 = 250 meV =̂ 60.45 THz. Here, the experimental
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Figure 6.67: G (ν) of B2O3 according to
quantum mechanical forces. Different classical
quenches. Comparison with inelastic neutron

scattering [30, 134].
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Figure 6.68: G (ν) of B2O3 according to quan-
tum mechanical forces. Ab initio quenches, dif-
ferent equilibration temperatures. Comparison

with inelastic neutron scattering [30, 134].

resolution is increased compared to [134] in the intermediate and high-frequency range. However,

the low-frequency peak is not resolved.

In Figs. 6.67 and 6.68, all curves are normalized to
´
G (ν) = 1. It can be seen that the overall

agreement between the calculated G (ν) and the experimental ones is quite good. Regarding

[134], all three peaks are apparent in the quantum mechanical curves, as discussed above. In

[30], two distinct peaks are visible at 24.2 THz and 36.5, assigned to the boroxol rings. As

discussed above, these two patterns are also visible in the generated glass structures containing

boroxol rings. However, they are shifted to slightly lower frequencies (about 23.2 to 23.4 THz

and about 36 to 36.4 THz). This shift to slightly lower frequencies is also apparent, regarding the

intermediate frequency peak (about 18 - 21 THz) and the high frequency pattern (about 37 to 47

THz). As explained in section 4.3, a reason for this can be the tendency to overestimate bond-

lengths and to underestimate vibrational frequencies in case of the applied exchange-correlation
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functional (PBEsol) [81]. In addition to the shift, the peaks of the calculated G (ν) are higher

than the experimental ones. This is connected to the experimental resolution.
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. Comparison with experimen-

tal results of Cp (T ) [167]

Next, the specific heat at constant volume CV (T ) is calculated, according to equation (3.121),

multiplied by the factor NA
Nunits

to obtain the values in units of [J/mol]. Again, NA is the Avogadro

constant and Nunits is the number of structural units in the configuration, which is 30 B2O3

units in the case of a 150 atom system of B2O3. As in case of the model glass former SiO2

(see section 4.3), the calculation is based on the eigenfrequencies νn (k) , n ∈ {1, . . . , 3N}, on

a k-mesh with 15 points along each of the k-axes. In Figs. 6.69, 6.70 and 6.71, the curves of

CV (T ), according to the quantum mechanical and the classical forces, are compared to Cp (T )

from calorimetric measurements [167] for all considered cases. In [167], Cp (T ) is measured in

a temperature range from 5 K to 350 K. The reported results are in good agreement with the

ones of [168] for temperatures greater than 20 K. In the temperature range between 10 K and
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Figure 6.71: CV (T ) of B2O3, according to quantum mechanical forces. Ab initio quenches at
different equilibration temperatures and alternative model structure [131–133]. Comparison with

experimental results of Cp (T ) [167]

20 K, the measured values of Cp (T ), according to [168], are about 3% lower, which is within

the error bars of the techniques. However, the reason for the difference could be the different

thermal histories of the glass samples. As stated in section 4.3, the difference between CV and

Cp per mol is expressed by the thermodynamic relation of equation (4.7), according to [124].

Again, M is the molar mass, ρ the density, αV the volumetric coefficient of thermal expansion

at constant pressure and K the bulk modulus at constant temperature. In case of B2O3, the

values at room temperature are M = 69.6182 g/mol (molar mass of one B2O3 unit), ρ = 1.83 g/cm3

[159], αV ' 3× αL ' 3× 1.545 · 10−5K−1 and K ' 13 GPa. To calculate the value of the molar

mass of a B2O3 unit, in this case, an atomic mass of mB = 10.81 amu is assumed, according to

the natural abundance of 11B of 80%. The values of αL and K are given in [168]. This leads to

a difference between Cp and CV of about Cp−CV = 1.06 · 10−3 J
K2 mol

T [K]. This value is more

than 2 magnitudes higher than in case of the model glass former SiO2 (see section 4.3), due to

the significantly larger linear expansion coefficient αL at room temperature (about 28 times).

However, also in this case the difference between Cp and CV is only about Cp−CV = 0.37 J/mol K

at the largest considered temperature of 350 K.

In Figs. 6.69, 6.70 and 6.71 it can be seen that the agreement between the theoretical and the

experimental curves is good in all cases, except for the curve based on νn (k) , n ∈ {1, . . . , 3N},
according to the classical forces of the original parameter set. Here, the theoretical curve of

CV (T ) is significantly below the experimental one of Cp (T ) with a deviation of about Cp−CV '
−13.5 J/mol K at 350 K. This is related to the shift of the respective vibrational patterns to

higher frequencies and therefore, to a reduced number of vibrational modes in the low and

intermediate frequency-range. In contrast to the model glass former SiO2, the curves, according

to the quantum mechanical forces, and the ones, according to the classical forces, do not show

a significant difference for both classical force fields with 3-body terms. This is related to the

fact that the classical and quantum mechanical vibrational spectra g (ν) are in better agreement
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with each other in the low and intermediate frequency range as observed in case of SiO2 for the

BKS and the CHIK potential (see Figs. 6.64 and 6.65). In addition, there are also no significant

differences visible in CV (T ) of the glass samples after the classical quench and subsequent

quantum mechanical relaxation and the ab initio quenches. Here, the highest differences between

the theoretical and the experimental values at 350 K are about Cp − CV ' −2.8 J/mol K. In case

of the alternative model structure [131–133], the agreement is slightly inferior with a deviation

of about Cp − CV ' −4 J/mol K at 350 K.

In this chapter, the simulation results of the model glass former B2O3 are summarized. First,

an overview over different experimental results is given, supporting the special feature of about

60% − 80% of the boron atoms located in planar, 3-membered boroxol rings in vitreous B2O3.

In addition, a summary over previous classical molecular dynamics studies of boron oxide is

presented. Next, the results of ab initio molecular dynamics (MD) simulations of 150 atom

systems at the experimental density of ρ = 1.83 g/cm3 are depicted in a temperature range,

the systems still can be equilibrated, namely between 3600 K and 2300 K. At 2300 K, an

increased amount of 3-membered rings is observed, compared to the liquid structures at 2500

K and 2700 K. This motivates to take the latter as a basis for the development of a new

interaction potential for classical MD simulations of liquid B2O3. The parameter fits are carried

out, using a modified form of the structural fitting procedure, presented in [43]. Starting with

the parameter set, according to [97], the differences in the pair correlation functions and the

angular distributions of the classical and the ab initio MD simulation are minimized, using

a Levenberg-Marquardt procedure. The best results are obtained, including 3-body angular

interactions for the O-B-O and the B-O-B angles. A new angular potential type is introduced,

namely an inverse Gaussian potential that is smoothly switched on and off, depending on the

inter-atomic distances (see equations (6.1) to (6.4)). This potential type is implemented into

a new LAMMPS pair style, called “gauss/smooth”. Classical MD simulations of 150 are atom

systems are carried out at the experimental glass density of ρ = 1.83 g/cm3 in a temperature

range between 3600 K and 800 K, using two different parametrizations of the 3-body potential,

with (COO 6= 0 eV Å
6
) and without (COO = 0 eV Å

6
) O-O attractions. The main difference

between these simulation runs and the ab initio MD simulations are reduced peak heights and

2−10 times shorter α-relaxation times in the classical MD simulations. In addition, classical MD

simulations of 1200 atom systems at constant external pressure p = 0 are presented. Here, the

parametrization with O-O attractions leads to a system density comparable to the experimental

one at low temperatures (ρ̄ = 1.892±0.003 g/cm3 at 1000 K), whereas the parametrization without

O-O attractions leads to a significantly lower system density at low temperatures (ρ̄ = 1.280±
0.014 g/cm3 at 1000 K). Regarding the temperature dependence of the self-diffusion constants Dα,

α ∈ {B,O}, in principle, an Arrhenius behavior can be observed (see equation (4.4)). However,

the slope of the exponential decrease of Dα (T ) with respect to 1/T significantly decreases at

temperatures below about 1800 K, leading to a different activation energy EA,α, α ∈ {B,O},
at low than at high temperatures. So far, this behavior is not clearly understood. It could be

connected to a different diffusion mechanism at low temperatures. Finally, glass structures are

generated in different ways, namely by quenches from the melt with classical MD and ab initio
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MD simulations with a subsequent structural relaxation with quantum mechanical forces. The

main improvement of the glass structures, generated by the new 3-body potentials, are a slightly

smaller B-B distance and the occurrence of some boroxol rings, compared to the ones generated

by the original parameter set before the structural fit. However, the boroxol ring fraction is still

small (f = 2.5 ± 1.1% to f = 8 ± 2.3%). The ab initio quenches show slightly larger boroxol

ring fractions of f = 5± 5% (3600 K quench) and f = 15± 5% (2300 K quench). Regarding the

vibrational properties, the phonon densities of state, according to the quantum mechanical forces

show an acceptable agreement with results from inelastic neutron scattering [30, 134]. However,

the peak height of the peak, assigned to boroxol rings, is significantly lower than in case of an

alternative model structure with a boroxol ring fraction of f = 75%. The vibrational spectra,

according to the classical forces of the new 3-body potentials, show an acceptable agreement

with experimental results, as well.



Chapter 7

Discussion and Conclusions

In this work, computer simulations of the model glass formers SiO2 and B2O3 are carried out by

means of classical molecular dynamics (MD) simulations with the LAMMPS software package

[60, 61] and quantum mechanical calculations, based on density functional theory (DFT) with

the VASP software package [77–79].

Regarding the model glass former SiO2, the structural and dynamical properties of the liquid

state are studied at different temperatures between 4300 K and 2700 K by classical MD simula-

tions (see section 4.1). First, different system sizes of 114, 165, 256 and 1152 are compared at

constant density of ρ = 2.37 g/cm3, which is slightly larger than the experimental density of vitre-

ous SiO2 of ρ = 2.2 g/cm3 [98] (see subsection 4.1.2). These studies are carried out using a slightly

modified form of the BKS potential [22], leading to an overall smooth pair potential. As already

reported in [104], the main finite size effect is a dynamical slowing down, visible the mean square

displacements
〈
r2
α (t)

〉
and the incoherent intermediate scattering functions FS,α (k, t). Regard-

ing the structural quantities, nearly no dependence on the system size is found in the static

structure factors Sαβ (k), pair correlation functions gαβ (r) and angular distributions pαβγ (Φ)

(α, β, γ ∈ {Si,O}). The distribution of ring sizes shows a reduced probability pSi (n) for rings

of size n > 6 in the small system sizes. Finite size effects are significantly larger for the 114

atom than for the 165 atom system, justifying the choice of the latter system size in the fol-

lowing considerations. In subsection 4.1.3, the structural and dynamical properties of the BKS

[22] and the CHIK [43] potential are compared to each other for the system size of 165 atoms,

again, in the temperature range between 4300 K and 2700 K. Here, simulations are carried out

at ρ = 2.2 g/cm3. In agreement to [43], the structural relaxation times τα of the CHIK potential

are about 3 − 10 times shorter at the same temperature than in case of the BKS potential.

Regarding the structural quantities Sαβ (k), gαβ (r) and pαβγ (Φ), the peak heights of the CHIK

potential are slightly lower and the mean Si-O-Si angles are slightly smaller by approximately

2◦ − 3◦ at all examined temperatures. This is in agreement with [43]. The activation energies

EA,α, α ∈ {Si,O}, are determined by means of the temperature dependence of the self-diffusion

constants Dα. In case of the BKS potential, they are about 1.9 eV (Si) to 1.6 eV (O) larger than

the ones reported in [42] for simulations of 8016 atoms at ρ = 2.37 g/cm3 and about 1.4 eV (O)

167



Chapter 7. Discussion and Conclusions 168

larger than the ones reported in [107, 108] for simulations of 99 atoms at ρ = 2.30 g/cm3. These

differences can be understood in terms of effects of the system size and the system density, as

the activation energies increase with decreasing system size and decreasing system density. In

case of the CHIK potential, the activation energies are approximately 0.8 eV (Si) to 0.9 eV (O)

larger than the ones reported in [43] for simulations of 1152 atoms at ρ = 2.2 g/cm3. Here, the

differences are due to the different system sizes.

In section 4.2, glass structures are generated by quenches from the melt from 4300 K to 0 K with

a cooling rate of Γ = 1 · 1011 K/s. The BKS and CHIK potential are employed and the glass

configurations at 0 K are structurally relaxed in terms of a quantum mechanical DFT calculation.

The main effect of the structural relaxation, in both cases, is the decrease of the mean Si-O-Si

angle by about 4◦ − 6◦, in agreement with [10]. After the structural relaxation, no significant

differences are visible in the glass structures generated with the BKS potential and the CHIK

potential. These glass structures are compared to the one of a full ab initio quench from the

melt from 3600 K to 0 K with Γ = 1.6 · 1014 K/s. A good agreement is observed. However,

the latter shows a slightly smaller mean Si-O-Si angle by approximately 2◦ − 3◦. All mean

first neighbor distances and mean angles of the different glass structures are in good agreement

with experimental results of neutron and X-ray scattering [113, 114]. This aspect has not been

investigated so far for the CHIK potential. The mean total energies per atom of the glass

structures generated with the BKS and the CHIK potential are comparable (E0/N = −8.1811±
0. 0.0016 eV and E0/N = −8.1778± 0. 0.0010 eV) and slightly lower than the value of the full ab

initio quench (E0/N = −8.1663 eV). In section 4.3, the vibrational properties are calculated using

the so-called ”frozen phonon” method, based on the harmonic approximation. All vibrational

spectra, according to the DFT forces, show excellent accordance with experimental results from

inelastic neutron scattering [99, 100], in agreement with [11, 28, 119, 120]. The accordance

with experimental results is clearly improved, compared to the classical forces. Also the specific

heat CV (T ) shows a significantly improved agreement with the experimental curve at constant

pressure [123] in the DFT case, compared to both classical force fields.

In chapter 5, the thermal expansion of vitreous silica is calculated, based on the vibrational

properties of glass structures, generated in section 4.2, at different system densities. The applied

method is the so-called quasi-harmonic approximation [125]. It is based on the dependence of the

Helmholtz free energy F (T, V ) on the volume of the system, due to the volume dependence of

the eigenfrequencies νn (k;V ). The calculated curves of the linear expansion coefficients αL (T )

show the striking result of a change of sign in αL (T ) and a temperature range of negative thermal

expansion, both, using quantum mechanical and classical forces for all but one examined glass

configuration. To my knowledge this has not been reported before. The temperature range of

negative thermal expansion is below approximately 140 K to 160 K, in case of the DFT forces. In

fact, the DFT curves are in good agreement with experimental results [32, 33] at temperatures

below approximately 200 K. At higher temperatures, however, the calculated curves of αL (T )

are significantly higher than the experimental ones. The linear expansion coefficients, according

to the classical forces of the BKS and the CHIK potential, show a negative sign at temperatures

below about 290 K to 325 K. Here, the agreement with experimental results is less pronounced, as
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in case of the DFT forces. The change of sign in the linear thermal expansion coefficient αL (T ),

in all cases, can be explained in terms of negative microscopic mode Grüneisen parameters γn

at low eigenfrequencies.

In chapter 6, the model glass former B2O3 is studied. In vitreous B2O3, about 60%−80% of the

boron atoms are localized within 3-membered boroxol rings (see section 6.1). A 3-membered ring

is called boroxol ring when the participating boron atoms are all 3-fold coordinated with respect

to the oxygen atoms and the oxygen atoms are all 2-fold coordinated with respect to the boron

atoms [31]. Therefore, these 3-membered rings are of special interest in the study of B2O3. First,

the structural and dynamical properties of liquid B2O3 are studied by means of ab initio Born-

Oppenheimer MD simulations of a 150 atom system in a temperature range between 3600 K

and 2300 K at the experimental glass density of ρ = 1.83 g/cm3 [159] (see section 6.2). Regarding

the dynamical properties, the structural relaxation time increases by about the factor 30 from

3600 K to 2300 K. The pair correlation functions gαβ (r) at 2500 K are compared to the ones in

[162] at a system density of 1.92 g/cm3, showing an acceptable agreement. In principle, pB (n = 3)

decreases with decreasing temperature. However, at 2300 K, the probability pB (n = 3) starts to

increase again, reflecting the emergence of new 3-membered rings.

In section 6.3, a set of new force field parameters is obtained by means of a structural fit to

gαβ (r) and pαβγ (Φ) of the ab initio MD trajectory at 2300 K. Here, the structural fitting routine

of A. Carré is applied [43, 51], extended in terms of including the relevant angular distributions

pαβγ (Φ) into the fitting procedure. Starting with the parameter set of the force field of C. R.

Trott [97], the agreement of the structural quantities of the MD simulation with the ones of

the ab initio MD trajectory can be significantly improved. One effect, is the reduction of the

partial charge of the boron atom to approximately qB = 1 e, in all cases. The best agreement

is obtained in the case of including 3-body angular interactions for the O-B-O and the B-O-B

angles, in addition to the pair potential of a slightly modified form of the Buckingham type [94]

with Coulomb interactions. In this course, a new angular potential type is introduced, namely an

inverse Gaussian potential that is smoothly switched on and off, depending on the inter-atomic

distances. It is implemented into a new LAMMPS pair style, called “gauss/smooth”. This leads

to an overall smooth interaction potential. The main improvement of the additional angular

terms is a reduction of the mean B-B distance and mean B-O-B angle. Trials of the structural

fitting procedure at 3600 K lead to inferior results.

In section 6.4, the static and dynamic properties of the two parameter sets with angular in-

teractions are calculated in a temperature range between 3600 K and 800 K. In one case, the

O-O interaction is purely repulsive (COO = 0 eV Å
6
). The results of 150 atom simulations at

constant experimental glass density ρ = 1.83 g/cm3 [159] are compared to the ones of the ab initio

MD simulations, in the temperature range the latter can still be equilibrated, namely between

3600 K and 2300 K. In general, the agreement is acceptable. The main differences are the 2− 10

times shorter α-relaxation times τα and the reduced peak heights in case of the classical MD

simulations. In contrast to the ab initio MD simulations, the probability for a B atom to be

in a 3-membered ring pB (n = 3) is smaller than pB (n = 3) in the classical MD simulations. In
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addition, NpT MD simulations at p = 0 external pressure are carried out for a system size of

1200 atoms, where finite size effects play a less significant role. Here, distinct differences between

the two different parameter sets are visible. The parameter set with COO = 0 eV Å
6

shows a

significantly too low system density of approximately ρ̄ = 1.280 ± 0.024g/cm3 at 1000 K. The

corresponding value of the potential with COO 6= 0 eV Å
6

is about ρ̄ = 1.892 ± 0.005g/cm3 at

1000 K. This is in quite good agreement with the experimental glass density of ρ = 1.83 g/cm3

[159]. Regarding the dynamical properties, at high temperatures, the structural relaxation times

of the 1200 atom simulations are significantly lower than the ones of the 150 atom simulations,

in both cases. The same holds for all other examined temperatures, in case of the potential with

COO 6= 0 eV Å
6
. This is due to finite size effects. In the case of COO = 0 eV Å

6
, τα is over an order

of magnitude larger for the 1200 than for the 150 atom system at 1000 K. This can be explained

in terms of the significantly lower system density of the 1200 simulation at this temperature.

Regarding the structural properties, the most significant difference between the large and the

small systems is seen in the distribution of ring sizes. The distribution is much broader in case

of 1200 atom simulations and the 150 atom simulations show a lack of ring sizes with n ≥ 10, in

both cases. As in case of SiO2, the temperature dependence of the self-diffusion constants Dα

is studied, in all cases. Here, the slope of the exponential decrease of Dα (T ), α ∈ {B,O}, with

respect to 1/T significantly decreases at temperatures below approximately 1800 K, leading to

different activation energies EA,α, α ∈ {B,O} at low than at high temperatures. So far, this be-

havior is not clearly understood. It could be connected to a different diffusion mechanism at low

temperatures. To exclude effects of insufficient equilibration, in case of the 150 atom systems,

additional equilibration runs are carried out at 1200 K and 1000 K with significant longer equi-

libration times. The activation energies at low temperatures are between EA,B ' 0.74± 0.02eV

and EA,B ' 1.10± 0.03eV and EA,O ' 0.75± 0.01eV and EA,O ' 1.07± 0.02eV. The respective

values at high temperatures are between EA,B ' 1.28 ± 0.01eV and EA,B ' 1.31 ± 0.02eV and

EA,O ' 1.23 ± 0.02eV and EA,O ' 1.28 ± 0.02eV for the classical potentials, compared to the

values of EA,B ' 1.87 ± 0.16eV and EA,O ' 2.18 ± 0.19eV, extracted from the ab initio MD

runs.

In section 6.5, glass structures, generated by quenches from the melt with classical MD simula-

tions and subsequent quantum mechanical relaxations, are compared to the ones, generated by

pure ab initio quenches. In the first case, the quench rate is Γ = 1 · 1011 K/s and the starting

temperatures of the quenches are 2300 K (COO = 0 eV Å
6
) and 800 K (both parameter sets). In

addition, classical quenches from 3600 K are studied with the original parameter set before the

structural fit. In the second case, the quench rate is Γ = 1.6 · 1014 K/s and the starting tem-

peratures of the quenches are 3600 K and 2300 K. Regarding the different glass configurations,

the mean first neighbor B-O and O-O distances show a very good agreement with experimental

results [29], in all cases. In contrast to this, the mean B-B distances and the number of boroxol

rings show significant differences between the different glass samples. In case of the original pa-

rameter set, all atoms show “ideal” coordination numbers. However, no boroxol rings are present

in the structures and the mean B-B distance is significantly larger by about 0.06 Å than in all

other cases. In case of the 3-body potentials after the structural fit, between 4% and 7% of the
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boron atoms are overcoordinated with respect to B atoms and approximately 3% and 4% of the

B atoms are overcoordinated with respect to O atoms, after the structural relaxation. However,

the mean first neighbor B-B distances show an acceptable agreement with experimental results

[29] for the B atoms, not located in boroxol rings. These glass structures have a boroxol ring

fraction of approximately f = 2.5 ± 1.1% to f = 8 ± 2.3%, which is significantly lower than

the experimentally predicted value of about f = 60% to f = 80%. In case of the glass struc-

tures generated by means of ab initio MD simulations, the corresponding values are f = 5± 5%

(3600 K quench) and f = 15±5% (2300 K quench) and the mean first neighbor distances show an

acceptable agreement with experimental results, as well. Here, the first neighbor peak in gBB (r)

shows clearly a second maximum attributed to B atoms within a boroxol ring. As in case of

SiO2, the mean total energies per atom of the different glass structures are studied. Regarding

the classical quenches and subsequent structural relaxations, the values are of comparable size

in all cases, namely between E0/N = −8.2956± 0. 0.0011 eV and E0/N = −8.2932± 0. 0.0019 eV.

An explanation is that the energetic cost of defects (overcoordinated atoms in case of the 3-body

potentials) in average cancels out the energetic gain of the improved mean B-B distances and

the existence of boroxol rings, with respect to the original parameter set [97]. Comparing the 4

different full ab initio quenches, the energies per atom are in a range between E0/N = −8.3047 eV

one (2300 K quench with 4 boroxol rings) and E0/N = −8.2833 eV (one 3600 K quench with 0

boroxol rings). These value (regarding the total energy of the whole 150 atom systems, namely

E0/N · 150) fit to the average energetic gain per boroxol ring of about 0.2862 ± 0.0430 eV [133],

in addition to the defect energy of two edge-sharing BO3 triangles in the one 3600 K quench

without boroxol rings.

In section 6.6, the vibrational properties of the glass structures are examined in terms of classi-

cal and DFT forces, again using the so-called ”frozen phonon” method. Regarding the 3-body

potentials after the structural fit, the classical spectra show an improved agreement to quan-

tum mechanical spectra, compared to the one, according to the classical forces of the original

parameter set [97]. Overall, the agreement of the quantum mechanical spectra with results from

inelastic neutron scattering [30, 134] is acceptable. Also the boroxol ring signature is visible

for all glass structures containing boroxol rings. The corresponding sharp peak is shifted to

slightly lower frequencies as in the experimental curves (23.2 to 23.4 THz in contrast to 24.2

THz). However, the peak heights of the boroxol ring signatures are significantly lower as in case

of the alternative model structure with f = 0.75. In addition, the specific heat CV (T ) shows

good agreement with the experimental curve at constant pressure [167]. In contrast to SiO2,

the agreement, according to the DFT forces, is comparable to the one, according to the classical

forces of the new 3-body potentials after the structural fit.

Summarizing the above results, it is possible to generate glass structures by quenches from the

melt with classical MD simulations and a subsequent quantum mechanical relaxation that are

comparable to the ones generated by quenches from the melt with ab initio MD calculations.

The requirement is to employ a classical force field that leads to glass structures which are close

to the ones obtained from pure ab initio quenches. No general statement can be given, which

method leads to a glass structure that is in better agreement with the ”real” one obtained by a
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quench from the melt in a laboratory experiment. On the one hand, in case of the classical MD

simulations, the system can be equilibrated at lower temperatures and slower quench rates by

about 3 - 4 orders of magnitude are possible. On the other hand, in ab initio MD simulations

the inter-atomic forces are described much more realistically. In case of the model glass former

SiO2, both methods lead to comparable results. Regarding the mean total energy per atom, the

MD quenches lead to a slightly lower value after the structural relaxation. In case of the model

glass former B2O3, the best results with the lowest energies per atom (and also containing the

largest amount of boroxol rings) are obtained by full ab initio quenches from 2300 K. In case

of the glass structures after the classical quench and the structural relaxation, the accordance

of the mean B-B distances and B-O-B angles is improved applying new force field parameters,

including 3-body terms. Regarding the significantly improved agreement of the structural and

dynamical properties of liquid B2O3 with ab initio MD results, the structural differences of the

generated glass structures are less than expected, compared to the original parameter set [97].

This is reflected in nearly identical mean total energies per atom. The existence of boroxol rings

in the glass structures generated with the new parameter sets goes along with approximately

2% to 3% overcoordinated B atoms with respect to the next nearest O atoms. In principle,

the structure matching scheme according to a liquid ab initio MD trajectory, developed by A.

Carré [43] for the model glass former SiO2, is proven to be successfully also in case of the

model glass former B2O3. In the latter case (at least) angular terms have to be included. The

perspective is to apply this fitting scheme to more complicated systems as alkaline borate or

alkaline borosilicate glasses.



Appendix A

Calculation of forces for new 3-body

interaction term

Here, the differentiation of the total smooth potential V smooth
ijk = Vijk (Φ)Gauss G (r̄ijk) (see equa-

tion (6.2) in combination with equations (6.1), (6.3) and (6.4)) is carried out with respect to the

atomic coordinates of the three atoms forming an angle: ri, rj and ri. Due to Newton’s third

theorem, the force on atom j, Fj is equal to:

Fj = −Fi − Fk. (A.1)

Therefore, it is sufficient to calculate the forces on atoms i and k:

Fi = [−∇ri Vijk (Φ)] G (r̄ijk)− Vijk (Φ) [∇ri G (r̄ijk)] (A.2)

and Fk = [−∇rk Vijk (Φ)] G (r̄ijk)− Vijk (Φ) [∇rk G (r̄ijk)] . (A.3)

Using the notation

rij = ri − rj , rkj = rk − rj , rij = |rij | , rkj = |rkj | , (A.4)

the cosine of the angle formed by the atoms i, j and k can be expressed as

cos [Φ (ri, rj , rk)] =
rij · rkj
rij rkj

. (A.5)

With

∇ri,k cos [Φ (ri, rj , rk)] = − sin [Φ (ri, rj , rk)] ∇ri,k Φ (ri, rj , rk) , (A.6)

the derivative of the angle Φ with respect to the coordinates ri and ri can be written as:

∇ri,k Φ (ri, rj , rk) = − 1

sin [Φ (ri, rj , rk)]
∇ri,k

rij · rkj
rij rkj

. (A.7)
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The last term in equation (A.7) is evaluated exemplarily for atom i as:

∂

∂ri,α

rij · rkj
rij rkj

=

(
∂

∂ri,α

rij
rij

)
· rkj
rkj

=

(
êα
rij

+ rij
−rij,α
rij r2

ij

)
· rkj
rkj

(A.8)

⇔ ∂

∂ri,α

rij · rkj
rij rkj

=
rkj,α
rij rkj

− cos [Φ]
rij,α
r2
ij

. (A.9)

The evaluation for atom k leads to the same results, exchanging i with k. Finally, the derivative

of the angle Φ (ri, rj , rk) with respect to ri and rk can be written as:

∇ri Φ (ri, rj , rk) = − 1

sin [Φ (ri, rj , rk)]

(
rk − rj
rij rkj

− cos [Φ (ri, rj , rk)]
ri − rj
r2
ij

)
(A.10)

and ∇rk Φ (ri, rj , rk) = − 1

sin [Φ (ri, rj , rk)]

(
ri − rj
rij rkj

− cos [Φ (ri, rj , rk)]
rk − rj
r2
kj

)
. (A.11)

The derivative of the angular potential of the inverse gaussian form (see equation (6.1)) with

respect to the angle Φ can be written as:

∂

∂Φ
V Gauss
ijk (Φ) = 2Kijk σijk (Φ− Φ0,ijk) exp

[
−σijk (Φ− Φ0,ijk)

2
]
. (A.12)

Finally, the derivative of the smoothing function G (r̄ijk) (see equations (6.2) and (6.3)) with

respect to the atom positions ri and ri can be decomposed into

∂

∂r̄ijk
G (r̄ijk) =

2 dang

(r̄ijk − rang
c )

3 exp

[
− dang

(r̄ijk − rang
c )

2

]
(A.13)

and (see equation (6.4))

∂r̄ijk
∂rij

∇ri rij = r
(N−1)
ij

(
rNij + rNkj

)( 1
N
−1) ri − rj

rij
, (A.14)

∂r̄ijk
∂rkj

∇rk rkj = r
(N−1)
kj

(
rNij + rNkj

)( 1
N
−1) rk − rj

rkj
. (A.15)

Combining equations (A.10), (A.11), (A.12), (A.13), (A.14) and (A.15), the total force acting on

atom i and k due to the smoothed angular potential V smooth
ijk (Φ (ri, rj , rk)) (see equation (6.2)

in combination with equations (6.1), (6.3) and (6.4)) can be written as:

Fi = 2Kijk σijk (Φ− Φ0,ijk) e−σijk (Φ−Φ0,ijk)
2 1

sin [Φ]

(
rk − rj
rij rkj

− cos [Φ]
ri − rj
r2
ij

)
e
− dang

(r̄ijk−rang
c )

2

+Kijk e−σijk (Φ−Φ0,ijk)
2 2 dang

(r̄ijk − rang
c )

3 e
− dang

(r̄ijk−rang
c )

2

r
(N−1)
ij

(
rNij + rNkj

)( 1
N
−1) ri − rj

rij

(A.16)
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and

Fk = 2Kijk σijk (Φ− Φ0,ijk) e−σijk (Φ−Φ0,ijk)
2 1

sin [Φ]

(
ri − rj
rij rkj

− cos [Φ]
rk − rj
r2
kj

)
e
− dang

(r̄ijk−rang
c )

2

+Kijk e−σijk (Φ−Φ0,ijk)
2 2 dang

(r̄ijk − rang
c )

3 e
− dang

(r̄ijk−rang
c )

2

r
(N−1)
kj

(
rNij + rNkj

)( 1
N
−1) rk − rj

rkj
.

(A.17)
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