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Ein Pomeron ist, wenn man sich vorstellt, es gäbe ein Teilchen, das es aber gar nicht gibt,
und dann berechnet, wie es aussähe, wenn es es gäbe.

(Hans Graßmann in “Sperrt das DESY zu”, Der Spiegel 44/1999)





A B S T R A C T

The quark model successfully describes all ground state baryons as members of SU(N)

flavour multiplets. For excited baryon states the situation is totally different. There are much
less states found in the experiment than predicted in most theoretical calculations. This fact
has been known for a long time as the ’missing resonance problem’. In addition, many states
found in experiments are only poorly measured up to now. Therefore, further experimental
efforts are needed to clarify the situation.
At COMPASS, reactions of a 190GeV/c hadron beam impinging on a liquid hydrogen tar-
get are investigated. The hadron beam contains different species of particles (π, K, p). To
distinguish these particles, two Cherenkov detectors are used. In this thesis, a new method
for the identification of particles from the detector information is developed. This method
is based on statistical approaches and allows a better kaon identification efficiency with a
similar purity compared to the method, which was used before.
The reaction pp → ppX with X = (π0, η, ω, φ) is used to study different production
mechanisms. A previous analysis of ω and φ mesons is extended to pseudoscalar mesons.
As the resonance contributions in pη are smaller than in pπ0 a different behaviour of these
two final states is expected as a function of kinematic variables. The investigation of these
differences allows to study different production mechanisms and to estimate the size of the
resonant contribution in the different channels.
In addition, the channel pp→ ppX allows to study baryon resonances in the pX system. In the
COMPASS energy regime, the reaction is dominated by Pomeron exchange. As a Pomeron
carries vacuum quantum numbers, no isospin is transferred between the target proton and
the beam proton. Therefore, the pX final state has isospin 1

2 and all baryon resonances in
this channel are N∗ baryons. This offers the opportunity to do spectroscopy without taking
∆ resonances into account.
To disentangle the contributions of different resonances a partial wave analysis (PWA) is
used. Different resonances have different spin and parity JP, which results in different an-
gular distributions of the decay particles. These angular distributions can be calculated from
models and then be fitted to the data. From the fit the contributions of the single resonances
as well as resonance parameters – namely the mass and the width – can be extracted. In this
thesis, two different approaches for a partial wave analysis of the reaction pp → ppπ0 are
developed and tested.
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Z U S A M M E N FA S S U N G

Das Quarkmodell beschreibt erfolgreich alle baryonischen Grundzustände in Multipletts
einer Flavour-SU(N). Für die angeregten Zustände ist die Situation eine andere. Die Zahl
der experimentell gefundenen Baryonen ist viel kleiner als die Zahl der theoretisch vorherge-
sagten Zustände. Dies kennt man schon lange als das “missing resonance problem”. Außer-
dem sind viele der experimentell gefundenen Baryonen bisher nur unzureichend gemessen
worden. Weitere Experimente werden also benötigt, um die Situation zu klären.
Im COMPASS-Experiment werden Reaktionen von 190GeV/c Hadronen mit einem Flüssig-
wasserstofftarget untersucht. Der Hadronstrahl beinhaltet verschiedene Teilchensorten (π, K,
p). Zur Trennung der verschiedenen Teilchensorten werden zwei Cherenkovdetektoren ver-
wendet. In dieser Arbeit wird eine neue Methode zur Identifikation von Teilchen mithilfe der
Detektorinformation entwickelt. Diese Methode nutzt statistische Ansätze und erreicht eine
höhere Identifikationseffizienz für Kaonen im Vergleich zur bisher verwendeten Methode.
Die Reinheit der Kaonselektion ist dabei vergleichbar.
Die Reaktion pp → ppX mit X = (π0, η, ω, φ) wird verwendet, um unterschiedliche Reak-
tionsmechanismen zu untersuchen. Dabei wird die existierende COMPASS-Analyse auf pseu-
doskalare Mesonen erweitert. Da die resonanten Beiträge in pη kleiner sind als in pπ0, wird
erwartet, dass sich beide Endzustände in ihren kinematischen Abhängigkeiten unterscheiden.
Die Untersuchung dieser Unterschiede gibt Hinweise auf verschiedene Produktionsmecha-
nismen und die Größe der resonanten Beiträge.
Des weiteren erlaubt der Kanal pp → ppX die Untersuchung von Baryonresonanzen im pX

System. Im betrachteten Energiebereich dominiert der Pomeronaustausch. Da das Pomeron
Vakuumquantenzahlen besitzt, wird kein Isospin zwischen dem Targetproton und dem Strahl-
proton ausgetauscht. Daher hat der Endzustand pX immer Isospin 1

2 und alle Resonanzen in
diesem Kanal sind N∗ Baryonen. Dies ermöglicht Spektroskopie ohne Berücksichtigung von
∆ Resonanzen.
Um die Beiträge der einzelnen Resonanzen von einander zu trennen, wird eine Partialwellen-
analyse (PWA) verwendet. Resonanzen mit unterschiedlicher Spin-Parität JP führen zu un-
terschiedlichen Winkelverteilungen der Zerfallsteilchen. Diese Winkelverteilungen können
mit Modellen berechnet und dann an die Daten angepasst werden. Aus dieser Anpassung
können die Resonanzparameter, d. h. die Massen und die Zerfallsbreiten, der Resonanzen
extrahiert werden. In der vorliegenden Arbeit werden zwei Ansätze für eine Partialwellen-
analyse der Reaktion pp→ ppπ0 entwickelt und getestet.
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I N T R O D U C T I O N

Dissertatio est omnis divisa in partes tres – this thesis contains three main parts, which cover
three different topics. They can be read independently of each other and are introduced in
the following. Prior to those three parts, chapter 1 gives an overview on the standard model
of particle physics with an emphasis on strong interactions and quantum chromodynamics
(QCD). In the end of that chapter, scattering processes will be discussed. Those cannot be
calculated in QCD and therefore, they are discussed in the framework of Regge theory. With
Regge theory, the process of diffractive dissociation, which is the dominant reaction mecha-
nism at COMPASS, can be described as the exchange of a Pomeron. Diffractive dissociation
processes will be investigated in parts II and III. The data used in this work were taken
in 2009 with the COMPASS experiment. Components of the experimental set-up that are
important for the presented analyses will be discussed in chapter 2.

iiii beam particle identification with statistical methods

The negative hadron beam used for the COMPASS experiment mainly contains pions (97%)
but also a small fraction of kaons (2.4%) and anti-protons. To perform physics analyses,
the different particle species have to be separated. Two Cherenkov detectors are used to
distinguish kaons from pions by selecting with a diaphragm the light ring of one species.
The Cherenkov light is detected by a ring of eight photomultipliers. Until now, a multiplicity
method was used to identify particles: If a certain number of photomultipliers produce a
signal, the particle is identified as a kaon. This method relies on small angles between the
particle path through the detector and the detector axis. However, the COMPASS hadron
beam has a natural angular spread, which goes beyond the requirement for the multiplicity
method. In this thesis, a new method for the identification of beam particles was developed.
The method is based on a statistical approach and takes the beam divergence into account.
This allows for a significant improvement in the kaon identification efficiency.
In chapter 3, the design and functional principle of the Cherenkov detectors is discussed.
The new method is introduced in chapter 4. In chapter 5, the efficiency and purity for kaon
selection as well as for pion selection are calculated and compared to the old multiplicity
method.

iiii production of single mesons in pp reactions

The ratio of production cross sections for mesons contains information on production mech-
anisms and resonance contributions in the intermediate state. For this work, the reaction
pp → ppM of 190 GeV/c protons impinging on a liquid hydrogen target is investigated,
where M is a π0 , η, ω or φ meson. The presented analyis is an extension of a previous
COMPASS analysis to pseudoscalar mesons. Up to now, the production of π0 and η mesons
was investigated only in very limited kinematic regions. In this work, a comparison of all
four meson production cross sections will be performed in a wide kinematic range.
The event selection for the different final states is presented in chapter 6. In chapter 7, the ex-
perimental acceptance is determined with a Monte-Carlo simulation. Afterwards, kinematic
distributions for the different channels are presented in chapter 8. Possible resonance contri-
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2 introduction

butions and the influence of the acceptance correction are discussed. The results for the cross
section ratios as a function of kinematic variables are presented in chapter 9.

iiii partial wave analysis of pπ0 final states

The excitation spectrum of the proton contains several resonances, which have a difference in
mass that is well below the decay width. To disentangle the contributions of such overlapping
resonances, a partial wave analysis (PWA) is used. Different resonances have different spin
and parity JP, which results in different angular distributions of the decay particles. These
angular distributions can be calculated from models and then be fitted to the data. From the
fit the contributions of the single resonances as well as resonance parameters – namely the
mass and the width – can be extracted.
The original idea of this thesis was to develop a partial wave analysis for resonances that
decay into a proton and a pseudoscalar meson (π0 or η). The goal was to reproduce the well
established N∗ → pπ0 decays and to perform an analysis of the still not very well known
N∗ → pη resonances afterwards. However, the pπ0 channel turned out to be much more
complicated than expected due to the contributions of non-resonant reaction mechanisms.
Thus, only the pπ0 final state is considered in this work. For the analysis, the data set from
part II is used.
Chapter 10 gives an overview on previous experimental results as well as theoretical models
for the baryon spectrum. The helicity formalism is introduced in chapter 11 to describe the
two-body decay of resonances. In chapter 12 a partial wave analysis program based on the
helicity formalism is developed and tested on pseudo data. Afterwards an analysis of the data
is tried and different possibilities for background reduction are investigated. The form of the
invariant mass spectrum of pπ0 will be discussed qualitatively based on theory calculations
in chapter 13. The results will be used to estimate the background contribution in the reaction.
Finally, an alternative approach for the partial wave analysis is presented in chapter 14. This
approach allows for a proper inclusion of background processes.



1
Q C D A N D T H E S T R O N G I N T E R A C T I O N

1.1 standard model and qcd

All known physics processes can be attributed to four basic interactions: gravitation, electro-
magnetic interaction, weak interaction and strong interaction. While gravitation is negligible
in the short-distance interactions of particles, the other three are combined into the very
successful standard model of particle physics.
The standard model describes fundamental fermions (quarks and leptons) and the funda-
mental interactions (electromagnetic, weak, strong), which are mediated by gauge bosons.
The particle content of the standard model (without the Higgs boson) is given in figure 1.1,
some more details are given in the following.

Quarks
u c t

d s b

Leptons
e µ τ

νe νµ ντ

Fermions Gauge Bosons

g
γ

W±,Z

strong el.mag. weak

Figure 1.1: Particle content of the standard model. The box size of the gauge bosons denotes, which
fermions participate in the single interactions: The strong interaction only acts on quarks,
the electromagnetic interaction on quarks and charged leptons. Neutrinos only interact
weakly.

quarks are spin-12 fermions that can interact strongly. There are six different quarks in three
generations. Each generation contains an up-type quark with an electric charge of 23e
and a down-type quark with a charge of −13e. Some basic properties of the quarks are
given in table 1.1.

leptons are also spin-12 fermions but do not participate in the strong interaction. The six
fermions are also grouped in three generations. Each generation contains an electrically
charged fermion (with charge −e) and a neutrino, which only participates in weak
interaction. The six leptons are summarised in table 1.2.

gauge bosons are spin-1 particles which mediate the interactions through gauge coup-
lings. More details are given in sections 1.1.1 and 1.1.2. The gauge bosons for the differ-
ent interactions are given in table 1.3.

the higgs boson results from the electroweak symmetry breaking (see section 1.1.1). All
other massive elementary particles acquire their masses via couplings to the Higgs
boson. Although it was already predicted in 1964 [2–4] it was only recently found at
the LHC [5, 6].
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charge mass

up 2
3e 2.3+0.7

−0.5 MeV/c2

down −13e 4.8+0.7
−0.3 MeV/c2

charm 2
3e (1.275± 0.025) GeV/c2

strange −13e (95± 5) MeV/c2

top 2
3e (173.21± 0.51± 0.71) GeV/c2

bottom −13e (4.18± 0.03) GeV/c2

Table 1.1: The six quarks with their charges and masses. The only mass which can be directly mea-
sured is the mass of the top quark, the other masses are given in the MS renormalisation
scheme with µ = 2GeV/c2 (for u,d,s) and µ = mb,c (for c,b), respectively. For more details
refer to [1].

mass in MeV/c2 life time in s

electron e 0.510998928(11) stable

electron neutrino νe 0∗ stable∗

muon µ 105.6583715(35) 2.1969811(22)× 10−6

muon neutrino νµ 0∗ stable∗

tau τ 1776.82(16) (290.6± 1.0)× 10−15

tau neutrino ντ 0∗ stable∗

Table 1.2: The six fermions with their masses and life times. ∗In the standard model the neutrinos are
massless and stable. However, the observation of neutrino oscillations (a review is given in
[1]) requires the neutrinos to have small masses.

interaction gauge boson mass in GeV/c2

electromagnetic photon γ 0

weak W± 80.385(15)

Z0 91.1876(21)

strong 8 gluons 0

Table 1.3: The gauge bosons for the three interactions. While the photon and the gluons are massless,
the weak gauge bosons are massive. They acquire their masses through the Higgs mecha-
nism of electroweak symmetry breaking (see section 1.1.1).

1.1.1 Electroweak Interactions

The electromagnetic and weak interactions can be commonly described in one gauge theory
[7–9], namely an SU(2)×U(1). The gauge bosons Wi

µ (i = 1, 2, 3) of SU(2) and Bµ of U(1)
are connected to the observed gauge bosons by

W±µ =
1√
2

(
W1
µ ∓W2

µ

)
Aµ = cos(θW)Bµ + sin(θW)W3

µ

Z0µ = − sin(θW)Bµ + cos(θW)W3
µ

(1.1)
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where Aµ denotes the photon. The weak mixing angle θW connects the two couplings g of
U(1) and g ′ of SU(2) via

θW = arctan
(
g ′

g

)
= 0.23116(12) , (1.2)

and relates g to the electric charge e of the electron as

e = g sin(θW) . (1.3)

The mass of the gauge bosons is generated through a spontaneous symmetry breaking. A
scalar Higgs doublet φ =

(φ+

φ0

)
with a potential

V(φ) = µ2φ†φ+
λ2

2
(φ†φ)2 (1.4)

is added to the Lagrangian. For µ2 < 0 and λ2 > 0, the field φ has a vacuum expectation
value v√

2
which breaks the electroweak symmetry. After the symmetry breaking only one

neutral Higgs boson H remains in the theory. The masses of the gauge bosons and the Higgs
boson can be expressed in terms of the vacuum expectation value

MH = λv

MW =
gv

2
=

ev

2 sin(θW)

MZ =
MW

cos(θW)

Mγ = 0 ,

(1.5)

with v = 246.22GeV. λ is not fixed by theory and thus the mass of the Higgs boson is a free
parameter of the standard model. The current value for the Higgs mass is 125.09± 0.24GeV
[10].

1.1.2 Strong Interactions and QCD

The strong interaction between quarks is described by an SU(3) gauge theory, the so-called
quantum chromodynamics (QCD). Quarks can carry three different kinds of QCD charges,
which are called colours (antiquarks carry the corresponding anti-colour). The interaction
between quarks is mediated by 8 gluons which – due to the non-abelian gauge group –
also carry colour. The fact that no free quarks or gluons are observed lead to the confinement
hypothesis: All asymptotic QCD states are colourless, i. e. only certain combinations of quarks
and antiquarks, called hadrons, are allowed and described by colour-singlets. The simplest
possibilities are mesons (quark-antiquark states) and baryons (three-quark states):

M =
1√
3
δαβ|qαqβ〉 B =

1√
6
εαβγ|qαqβqγ〉 (1.6)

More details on the quark model and bound states of QCD are given in section 1.2.

The Structure of the Proton and Asymptotic Freedom

The cross section for elastic electron-proton scattering e−p→ e−p in the proton rest frame is
given by

dσ

dQ2
=

πα2 cos θ2
4E2 sin4 θ2EE

′

∣∣GE(Q2)∣∣2 + Q2

4M2
p

∣∣GM(Q2)
∣∣2

1+ Q2

4M2
p

+
Q2

2M2
p

∣∣GM(Q2)
∣∣2 tan2

θ

2

 , (1.7)
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where E and E’ are the energies of the incoming and scattered electron, respectively, θ the
electron scattering angle, Mp the proton mass and

Q2 ≡ −q2 ≈ 4EE′ sin2
θ

2
(1.8)

the squared four-momentum transfer by the virtual photon, where the lepton masses are
neglected. The electric and magnetic form factors GE(Q2) and GM(Q2) describe the structure
of the proton. For a point-like spin-12 particle they would be equal to GE = 1 (electric charge
in units of e) and GM = 5.59 (magnetic moment in units of the nuclear magneton µN),
respectively. This can be observed at very low energies (Q2 � 1 GeV2) where the proton
behaves like a point-like particle. For higher energies the form factors can be approximated
by the dipole form

GM(Q2)/µp ≈ GE(Q2) ≈
(
1+

Q2

0.7GeV2

)−2

. (1.9)

Thus, the proton is an extended object with a size of approximately 1 fm.
For even higher energies, the inelastic process e−p → e−X becomes dominant. The one
photon exchange differential cross section is given by

dσ

dQ2dν
=

πα2 cos θ2
4E2 sin4 θ2EE

′

[
W2(Q

2,ν) + 2W1(Q2,ν) tan2
θ

2

]
, (1.10)

with the energy transfer in the proton rest frame ν = E − E′ and the structure functions
W1(Q

2,ν) and W2(Q2,ν). The behaviour of the structure functions at large Q2 hints at the
existence of point-like objects inside the proton. Assuming the proton to be made of spin-12
constituents (so-called partons), which carry a fraction ξi of the total proton momentum each,
the structure functions of the single partons can be written as

W
(i)
1 (Q2,ν) =

e2i
2Mp

δ(ξi − x)

W
(i)
2 (Q2,ν) = e2i

x

ν
δ(ξi − x) .

(1.11)

Here, ei is the electric charge of the parton and x = Q2

2Mpν
the Bjorken variable. Thus, the

structure functions of the single partons only depend on x, which fixes the parton momentum
fraction ξi. In the limit of large Q2 and ν→∞, where x is fixed and the transverse momenta
of the partons can be neglected, the proton structure functions are given as an incoherent
sum of the parton structure functions:

W1(Q
2,ν) =

∑
i

1∫
0

dξifi(ξi)W
(i)
1 (Q2,ν) =

1

2Mp

∑
i

e2i fi(x) ≡
1

Mp
F1(x)

W2(Q
2,ν) =

∑
i

1∫
0

dξifi(ξi)W
(i)
2 (Q2,ν) =

x

ν

∑
i

e2i fi(x) ≡
1

ν
F2(x) .

(1.12)

In this model, the proton structure functions only depend on x. This behaviour is called
Bjorken scaling [11]. In addition, the Callan-Gross relation [12]

F2(x) = 2xF1(x) (1.13)

is a direct consequence of the assumption of spin-12 partons (spin-0 partons would have lead
to F1(x) = 0). The experimental confirmation of Bjorken scaling exhibits another property of
the strong interaction: At high energies quarks are only weakly bound and behave like free
particles. This behaviour is called asymptotic freedom.
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The Running QCD Coupling

Similar to QED, renormalisation leads to a running coupling constant in QCD. On one-loop
level the running coupling is given by

αs(Q
2) =

αs(Q
2
0)

1−
β1αs(Q

2
0)

2π ln
(
Q2

Q20

) , (1.14)

with the first coefficient of the β-function

β1 =
2Nf − 11NC

6
, (1.15)

where Nf and NC are the number of flavours and colours, respectively. For NC = 3 and
Nf 6 16 the coupling decreases with increasing Q2 leading to asymptotic freedom of QCD.
For low energies, αs rises and a perturbative approach is no longer valid for bound states.
Figure 1.2 shows a collection of extractions of the QCD coupling constant as a function of Q.
The world average for αs at the mass of the Z boson is given by the PDG [1] as

αs(M
2
Z) = 0.1185± 0.0006

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1

0.2

0.3

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)
(–)

Figure 1.2: Summary of measurements [1] of αs as a function of the momentum transfer Q using
several channels and different orders of perturbation theory.

The QCD Lagrangian

QCD can be formulated as a non-abelian gauge theory with symmetry group SU(3)c in
colour space. The fundamental degrees of freedom are the quarks. In the limit of massless
quarks, QCD does not distinguish between different flavours. The non-abelian gauge group
leads to self interactions among the gluons, which also carry colour charge. This self interac-
tion influences the running of the coupling constant which results in asymptotic freedom at
high energies.
In compact notation the Lagrangian of QCD, which is invariant under SU(3)c transforma-
tions in colour space, is given as

LQCD = −
1

4
Gµνa Gaµν +

∑
f

q̄f(iγ
µDµ −mf)qf , (1.16)
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where a = 1, . . . , 8 counts the eight gluons, f = u,d, s, c,b, t denotes the six quark flavours
and µ,ν are Lorentz indices using the Einstein summation convention. The gluonic field
strength tensor is given as

Gµνa = ∂µGνa − ∂
νGµa + gsf

abcG
µ
bG

ν
c (1.17)

and the covariant derivative as

Dµ = ∂µ − igs
λa

2
Gµa , (1.18)

where the generators λa of SU(3) and the corresponding structure constants fabc are linked
by1

[λa, λb] = 2ifabcλc . (1.19)

With equations (1.17) and (1.18) the QCD Lagrangian can be decomposed in different terms

LQCD =
∑
f

q̄αf (iγ
µ∂µ −mf)qf,α −

1

4
(∂µGνa − ∂

νGµa)(∂µG
a
ν − ∂νG

a
µ)

+ gsG
µ
a

∑
f

q̄αf γµ

(
λa

2

)
αβ

q
β
f

−
gs

2
fabc(∂µGνa − ∂

νGµa)G
b
µG

c
ν −

g2s
4
fabcfadeG

µ
bG

ν
cG

d
µG

e
ν ,

(1.20)

where α,β = r,g,b denote the three different colours. The first line describes the propagation
of gluons and quarks, the second line the interaction of quarks with a gluon and the third
line shows the self interaction of three and four gluons, respectively. Thus, the Lagrangian
can symbolically written as

LQCD = + + + + , (1.21)

where a summation over all possible combination of flavours and colours is implied.
There is no analytic solution for QCD as a gauge theory. In the high energy regime, where
the coupling constant is sufficiently small, a perturbation series expansion is possible. In the
low energy regime, where quarks are confined into hadrons, the coupling constant is too
large for a perturbative calculation. However, hadrons – the bound states of QCD – can be
described by the quark model, which will be presented in the following.

1.2 quark model and qcd bound states

The large number of different particles which were discovered in the 1950s and 60s led to the
development of the quark model, mainly driven by the work of Gell-Mann and Ne’emann
[13]. The model only included the three light quarks (u,d,s) which were known at that time.
Today, the model is well established and extended to six quarks. However, the following
considerations will mainly focus on the three light quarks, which are well separated in mass
from the heavier quarks (compare table 1.1).
Starting point is the experimentally well confirmed confinement hypothesis: Only colourless
hadrons are observed in nature. Therefore, only certain combinations of quarks are possible.
This can be achieved, if the three lightest quarks are in the fundamental representation 3 of
an SU(3)f in flavour space. The three antiquarks belong to the adjoint representation 3. In
this model, the hadrons are part of different SU(3)f multiplets. This SU(3)f is not a perfect
symmetry; it is broken by the difference in quark masses.

1 Some more details on the group SU(3) can be found in appendix A.1.
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1.2.1 Flavour Quantum Numbers

The experimental observations on the formation and decay of hadrons led to the introduction
of several quantum numbers, which are related to the quark flavours:

• The up and down quark, which have similar masses, fulfil a nearly perfect SU(2) sym-
metry, which is called isospin I. The concept was originally introduced by Heisenberg
[14] to explain the similar properties of protons and neutrons (mn−mp

mp
≈ 0.14%), the

name isospin was suggested by Wigner [15]. In strong interaction, isospin is conserved
and no down quarks can be turned into up quarks. However, the decay of down quarks
into up quarks is possible via weak interaction (e. g. neutron β decay n→ peνe).

• The observation of particles with an unusual long life time led to the introduction of
a new quantum number called strangeness S. Today, strangeness is associated with
strange quarks which have S = −1 while anti-strange quarks have S = 1. Like isospin,
strangeness is only conserved in strong interaction.

• Like strangeness, there are also quantum numbers for charm, bottom and top quarks.

• Experimental observations show, that the number of baryons B is conserved in all
reactions. As baryons are three-quark states, each quark has a baryon number of B = 1

3

and each antiquark a baryon number of B = −13 .

u d s c b t

I – isospin 1
2

1
2 0 0 0 0

I3 – isospin projection +12 −12 0 0 0 0

S – strangeness 0 0 -1 0 0 0

C – charm 0 0 0 1 0 0

B – bottomness 0 0 0 0 -1 0

T – topness 0 0 0 0 0 1

Table 1.4: Additive flavour quantum numbers of quarks.

Those flavour quantum numbers for the six quarks are listed in table 1.4. They are chosen
such that the sign of the flavour corresponds to the sign of the electric charge of the quark.
This holds also for any charged meson. The flavour quantum numbers are connected to the
electric charge through the Gell-Mann–Nishijima formula [16, 17]

Q = I3 +
B+ S+C+B+ T

2
, (1.22)

which is also valid for any hadron.

1.2.2 Mesons

The simplest combination of quarks to colourless states is the combination of a quark with a
certain colour with an antiquark of the corresponding anti-colour (qq′), where the flavours
of the two quarks might be different. These bound states are called mesons. They can have a
spin of 0 (anti parallel quark spins) or 1 (parallel quark spins). For an angular momentum l

of the qq′ state, the total angular momentum J is in the range

|l− s| 6 J 6 |l+ s| . (1.23)
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The parity of a meson is given by

P = (−1)l+1 , (1.24)

the charge conjugation of a meson which is made of a quark and its own antiquark is

C = (−1)l+s . (1.25)

Mesons are members of SU(3)f multiplets for a given JPC. For l = 0 those are pseudoscalars
(0−+) and vectors (1−−). Taking only the three light quarks (u,d,s) into account, nine possible
qq′ combinations form a singlet and an octet

3⊗ 3 = 8⊕ 1 . (1.26)

The isoscalar states of the octet (ψ8) and the singlet (ψ1) mix into the physically observed
states. Therefore, the octet and singlet are normally seen together as meson nonets, which
are shown in figures 1.3 and 1.4 for the pseudoscalar and vector mesons, respectively.

I3

S

ηπ0

η′
π+π−

K0 K+

K− K
0

+1

−1

1
2− 1

2

Figure 1.3: The pseudoscalar mesons.

I3

S

ωρ0

φ
ρ+ρ−

K∗0 K∗+

K∗−
K

∗0

+1

−1

1
2− 1

2

Figure 1.4: The vector mesons.

1.2.3 Baryons

Another possibility for colourless states is the combination of three quarks with different
colours which are called baryons. Taking again only the three light quarks into account the
27 possible q1q2q3 combinations decompose as

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A , (1.27)

where the subscripts denote the symmetry (S = symmetric, M = mixed symmetry, A = anti-
symmetric) of the multiplets. To obtain the experimentally observed states, flavour and spin
are combined into a spin-flavour SU(6) which decomposes as

6⊗ 6⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A . (1.28)

The ground states have to be symmetric in the spin-flavour wave function. The 56 possible
states form a spin-12 octet (8 · 2 states) and a spin-32 decuplet (10 · 4 states). They are shown
in figures 1.5 and 1.6, respectively. In the decuplet, in contrast to the octet, also states with
three identical quark flavours are allowed, namely the ∆++ = |uuu〉, the ∆− = |ddd〉 and the
Ω− = |sss〉. These states led to the introduction of colour: The wave function in space, spin
and flavour is symmetric for these particles. According to the spin-statistics theorem [18] the
wave function of a fermion has to be antisymmetric. Thus, an additional degree of freedom
with an antisymmetric wave function had to be introduced. The discovery of the Ω− in 1964
[19] was a great success for the quark model, which this particles properties were predicted
in.
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I3

S

Λ

Σ0

Σ+Σ−

n p

Ξ− Ξ0

0

−2

1
2− 1

2

Figure 1.5: The octet of spin-12 baryons

I3

S

Σ∗0 Σ∗+Σ∗−

∆− ∆0 ∆+ ∆++

Ξ∗− Ξ∗0

Ω−

0

−2

1
2

3
2− 1

2− 3
2

Figure 1.6: The decuplet of spin-32 baryons

1.2.4 Beyond Mesons and Baryons

Not only mesons and baryons, but also more complex combinations of quarks and gluons are
allowed within the standard model. However, only a few of those states have been observed
by now and are still controversially discussed. The “simplest” states beyond mesons and
baryons are

• States with 4 quarks |qqqq〉, mostly assumed to be of a molecular type |qq̄〉|qq̄〉. Some
high-mass states in the charmonium and bottomonium spectrum, such as the X(3872)
[20, 21], the Υb(10890) [22] and Zc(3900) [23, 24] are now assumed to be 4-quark states.

• States with gluonic degrees of freedom, such as hybrids |qq′g〉 or glue balls |gg . . .〉,
can carry non-mesonic quantum numbers, i. e. JPC-combinations that are not allowed
in |qq′〉-states. Candidates for those states where found, e. g. at COMPASS [25].

A summary and discussion on glue balls and other exotic mesons may be found in [26].

1.3 strong interactions and the pomeron

Scattering processes involving strong interactions cannot be calculated from QCD due to the
large coupling constant. Even before QCD was developed, those processes were described in
a phenomenological way. This description was based on imposing reasonable properties of
the scattering matrix (S-matrix) based on classical theories. The basic ideas and consequences
of this approach are given in the following based on the first chapter of [27].

1.3.1 Properties of the S-Matrix

The ij-element of the S-matrix is the probability for an incoming state |ψin
i 〉 to become the

outgoing state |ψout
j 〉

Sij = 〈ψout
j |ψin

i 〉 . (1.29)

The scattering amplitude Aij is related to the S-matrix by

Sij = δij + i(2π)
4δ4

(∑
pi −

∑
pj

)
Aij ≡ δij + iTij , (1.30)

with the T -matrix element Tij describing the non-elastic scattering process.
The properties imposed on the S-matrix are:
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1. The S-matrix is Lorentz invariant.

2. The S-matrix is unitary, i. e. SS† = S†S = 1.

3. The S-matrix is an analytic function of Lorentz-invariant variables which are taken as
complex variables. Singularities have to be implied by unitarity.

Lorentz invariance implies that the S-matrix can be written as a function of Lorentz invariant
variables. For a simple two-particle scattering process

a+ b→ c+ d

those are the Mandelstam variables [28]

s = (pa + pb)
2

t = (pa − pc)
2

u = (pa − pd)
2 ,

(1.31)

which are connected to the invariant masses of the particles via

s+ t+ u = m2a +m
2
b +m

2
c +m

2
d. (1.32)

Thus, the S-matrix can be written as a function of s and t only.

Unitarity of the S-matrix is connected to conservation of probability, i. e. the probabilities for
an in-state to end up in a certain out-state must sum up to one. An important consequence
of unitarity [29] is the optical theorem

2Im(Aii) = Ψσtot , (1.33)

which connects the forward elastic amplitude Aii to the total cross section σtot. Ψ is a flux
factor with Ψ ≈ 2s for

√
s� mi.

Analyticity is connected to causality and has some consequences:
Together with unitarity, analyticity implies the properties of s-plane singularities in the scat-
tering Amplitude Aij(s, t). Every n-particle threshold leads to an s-plane cut, which con-
tributes to the imaginary part of the scattering amplitude above threshold. Below threshold
the amplitude is purely real and thus

A(s, t)∗ = A(s∗, t) (1.34)

is valid in the whole complex s-plane (Schwarz reflection principle). The imaginary part

Im(A(s, t)) =
1

2i
lim
ε→0

[A(s+ iε, t) −A(s− iε, t)] (1.35)

is only non-zero if there is a cut along the real axis with a branch point at threshold. The
right-hand side of (1.35) is then called s-channel discontinuity ∆s(A(s, t)).
Analyticity implies crossing symmetry, that means that the amplitude for the t-channel pro-
cess

a+ c→ b+ d

is given by the s-channel amplitude by interchanging s and t

Aa+c→b+d(s, t;u) = Aa+b→c+d(t, s;u) . (1.36)
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Similarly, the amplitude for the u-channel process

a+ d→ b+ c

is given by

Aa+d→b+c(s, t;u) = Aa+b→c+d(u, t; s) . (1.37)

Analyticity allows to connect the real and imaginary parts of the amplitudes via dispersion
relations. Using the Cauchy integral formula for a contour not containing any singularities
(see figure 1.7) yields

A(s, t) =
1

π

+∞∫
+sth

Im(A(s′, t))
s′ − s

ds′ +

−sth∫
−∞

Im(A(s′, t))
s′ − s

ds′ . (1.38)

Re(s)

Im(s)

−sth +sth

C

Figure 1.7: The contour C does not contain the singularities, which are in this case cuts and denoted
by thick lines.

Without any assumptions about the underlying theory, it is possible to construct conditions
for the scattering amplitudes. To fully reconstruct amplitudes, their asymptotic behaviour is
needed. The determination of this asymptotic behaviour of amplitudes is the goal of Regge
theory [30, 31].

1.3.2 Regge Theory and the Pomeron

The two-particle scattering process in the t-channel

a+ c→ b+ d

for
√
s � mi can be expanded in a series of Legendre polynomials P`(cos θ), where θ is the

scattering angle in the centre-of-mass frame and

cos θ = 1+
2t

s
. (1.39)
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This expansion

Aa+c→b+d(s, t) =
∞∑
`=0

(2`+ 1)a`(s)P`
(
1+ 22ts

)
(1.40)

is called a partial wave expansion and a`(s) are the partial wave amplitudes. By crossing
symmetry this amplitude can be continued into the s-channel as

Aa+b→c+d(s, t) =
∞∑
`=0

(2`+ 1)a`(t)P`
(
1+ 22st

)
(1.41)

and rewritten [32, 33] as an integral in the complex angular-momentum plane (see figure 1.8)

A(s, t) =
1

2i

∮
C

(2`+ 1)
a(`, t)
sin(π`)

P
(
`, 1+ 2s

t

)
d` , (1.42)

where the Legendre polynomials are expressed using hypergeometric functions2 and ana-
lytically continued in `. The function a(`, t) is the analytic continuation of the partial wave
amplitude a`(t).

Re(`)

Im(`)

1 3 3- 12

C′

C

αnξ

C′

Figure 1.8: Contours C and C′.

The expansion (1.42) is unique [34] as long as

a(l, t) < exp(π |`|) for |`|→∞ . (1.43)

As the amplitude contains terms proportional to (−1)`, this condition is violated along the
negative imaginary axis3. Therefore, two analytic functions a(+1)(`, t) and a(−1)(`, t) are
introduced, which are analytic continuations of even and odd partial waves, respectively.
The partial wave expansion (1.42) can then be rewritten

A(s, t) =
1

2i

∮
C

2`+ 1

sin(π`)

∑
ξ=±1

ξ+ e−iπ`

2
a(ξ)P

(
`, 1+ 2s

t

)
d` , (1.44)

2 P`(x) = F

(
−`, `+ 1

1
, 1−x2

)
, see http://dlmf.nist.gov/15.9 (called August 30, 2015).

3 (−1)−αi = exp(απ) for α ∈ R+ violating the inequality.

http://dlmf.nist.gov/15.9
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with the signature ξ of the partial wave. The contour C is deformed to the contour C′ parallel
to the imaginary axis at Re(`) = −12 . To restore analyticity, any poles that the functions
a(ξ)(`, t) might have at a given ` = αnξ(t) have to be circled by the contour (see figure 1.8).
The integral in eq. (1.44) can then be calculated using the residue theorem

A(s, t) =
1

2i

−
1
2 + i∞∫

−
1
2 − i∞

2`+ 1

sin(π`)

∑
ξ=±1

ξ+ e−iπ`

2
a(ξ)P

(
`, 1+ 2s

t

)
d`

+
∑
ξ=±1

∑
nξ

ξ+ e−iπαnξ(t)

2

β̂nξ(t)

sin
(
παnξ(t)

)P(αnξ(t), 1+ 2s
t

)
,

(1.45)

where αnξ(t) are even- and odd-signature Regge poles and

β̂ = π
(
2αnξ(t)

)
Res
(
A(s, t),αnξ(t)) . (1.46)

In the so-called Regge region (s � |t|) the Legendre polynomials are dominated by the
leading term

P`
(
1+ 2s

t

) s�|t|−−−→ Γ(2`+ 1)

Γ2(`+ 1)

( s
2t

)`
, (1.47)

with Euler’s gamma function Γ(x). For s → ∞ the integral in eq. (1.45) vanishes and the
asymptotic behaviour of the amplitude is dominated by the leading Regge pole (the one
with the largest real part of αnξ(t)) and given by

A(s, t) s→∞−−−→ ξ+ e−iπα(t)

2
β(t)sα(t) , (1.48)

where α(t) is the leading Regge pole with its signature ξ and β(t) contains all remaining
factors.
The amplitude (1.48) describes the t-channel exchange of an object with “angular momentum”
α(t). This object is not a particle (as its “angular momentum” is a function of t and thus

a c

b d

Reggeon R

γac

γbd

Figure 1.9: A t-channel Reggeon exchange diagram.

not (half-)integer) and called a Reggeon. The exchange of a Reggeon is a superposition of
all possible particle exchanges in the t-channel. The amplitude (1.48) of the process shown
in figure 1.9 can be factorised into the two couplings γab and γbd of two particles to the
Reggeon

A(s, t) s→∞−−−→ ξ+ e−iπα(t)

2 sin
(
πα(t)

) γabγbd
Γ
(
α(t)

) sα(t) . (1.49)

For integer values of α(t), the factor sin
(
πα(t)

)
in the denominator leads to a pole in the am-

plitude which corresponds to a t-channel exchange of a resonance with integer spin, where
the gamma function cancels so-called nonsense poles at negative integer values of α(t). The
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mass and spin of the resonances are connected via α(m2i ) = Ji. In the Chew-Frautschi plot
[35, 36] in figure 1.10, the lightest meson resonances for each spin are plotted against their
squared mass. All resonances lie on a straight line, thus α(t) is a linear function of t

α(t) = α(0) +α′t (1.50)

with α(0) = 0.55 and α′ = 0.86GeV−2, which is called Regge trajectory, or – as it includes the
ρ meson – also ρ-trajectory.

2 = t in GeV2M
0 1 2 3 4 5 6 7 8

α
J 

=
 

0

1

2

3

4

5

6

ω, ρ

2
, a2f

3
ρ, 3ω

4
, f4a

5
ρ

6
, f6a

Figure 1.10: The Chew-Frautschi plot using the newest masses taken from the PDG [1].

The intercept α(0) together with the optical theorem (1.33) lead to the asymptotic behaviour
of the cross section

σtot ∝ sα(0)−1 . (1.51)

For the ρ-trajectory described above α(0) < 1, which leads to a falling cross section (∝ s−0.45)
with increasing centre-of-mass energy. The Pomeranchuk theorem [37, 38] states, that any
charge-exchange cross section vanishes asymptotically. Experimental observations show that
the total cross section for pp- and pp-scattering, which is shown in figure 1.11, only falls with
increasing s for small s and then rises slightly for higher values of s. For such a behaviour,
the process must be dominated by the exchange of vacuum quantum numbers (I = 0, C = +)
[39]. The slow rising of cross sections for increasing s can be attributed to a Regge trajectory
with intercept α(0) > 1 that carries vacuum quantum numbers. This trajectory is called the
Pomeron. The particles on the Pomeron trajectory have so far not been discovered and would
be candidates for glue balls.
The total cross sections for pp- and pp-scattering shown in figure 1.11 can be fitted as [40]

σpp = 21.7s0.08 + 56.1s−0.45 mb

σpp = 21.7s0.08 + 98.4s−0.45 mb .
(1.52)

The first term in (1.52) is due to the Pomeron, which does not distinguish between protons
and antiprotons, the second term is due to the Regge trajectory with α(0) = 0.55, which
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Figure 1.11: The total cross sections for pp- and pp-scattering together with the fits taken from [40].
The cross section data are taken from the PDG at http://pdg.lbl.gov/current/xsect

(called August 30, 2015, courtesy of the COMPAS group, IHEP, Protvino).

has different couplings to particles and antiparticles. Similar fits containing the same trajec-
tories can be done for π±- and γp-scattering. The intercept of the Pomeron trajectory can be
extracted from the fit and equation (1.51) to αP(0) = 1.08, the slope can be extracted from dif-
ferential cross section measurements [41–43] as α′P = 0.25GeV−2. In figure 1.12 the Pomeron

2

4

6

J
=
α

2 4 6
M2 = t in GeV2

Figure 1.12: The ρ-trajectory (red) together with the Pomeron trajectory (blue). The red dots denote
the intersections with integer spins, where real particles are present. The blue circle shows
the intersection of the Pomeron trajectory with J = 2, where a real particle is expected.

trajectory is shown in blue together with the ρ-trajectory in red. The Pomeron trajectory inter-
sects J = 2 at t = 3.68GeV2. Therefore, a particle with a mass of roughly 1.9GeV/c2 with spin

http://pdg.lbl.gov/current/xsect
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2 and vacuum quantum numbers is expected. Indeed, the f2(1950) [1] has vacuum quantum
numbers with a spin of J = 2 and is discussed as a glue ball candidate.

1.3.3 Diffractive Dissociation

Another process, in which the Pomeron plays in important role, is diffractive dissociation.
In this hadron-hadron scattering process, one of the hadrons gains enough energy to either
break up and produce a cluster of hadrons due to hadronisation, or to be exited into a
resonance that decays into hadrons. This process can be described as a Pomeron emission by
one hadron followed by a (resonant) Pomeron-hadron scattering into a hadronic final state.
This process is depicted in figure 1.13.

h1

h2

h′2

X

P

Figure 1.13: Diffractive dissociation of the hadron h1 into the hadronic final state X through a Pomeron
exchange with hadron h2.

Rapidity
-3 -2 -1 0 1 2 3

E
ve

nt
s 

/ 0
.0

5

0

5

10

15

20

25

610×

outgoing system

recoil proton

Figure 1.14: Rapidity of outgoing pπ0 system (blue) and recoil proton (red) for pp → ppπ0. A large
rapidity gap can be observed which is typical for diffractive dissociation. Details on the
data used in this plot can be found in chapter 6.
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Diffractive dissociation events are characterised by a large gap in rapidity between the hadron
h2 providing the Pomeron and the outgoing hadronic system X, where rapidity is defined as

y =
1

2
ln
(
E+ pz
E− pz

)
, (1.53)

with the z-axis in the direction of the beam (h1 in figure 1.13). In figure 1.14 the rapidity
distributions are shown for the reaction pp→ ppπ0, which will be discussed in detail in the
following. The large rapidity gap between the recoiling proton (red) and the outgoing pπ0

system (blue) shows the dominance of diffractive dissociation in this channel.





2
T H E C O M PA S S E X P E R I M E N T AT C E R N

The goal of the COMPASS (COmmon Muon and Proton Apparatus for Structure and Spec-
troscopy) experiment is to study QCD in a large range of momentum transfers covering
perturbative as well as non-perturbative regions. The experimental set-up is shown in figure
2.1. COMPASS is a two-stage fixed-target spectrometer. The spectrometer magnet SM1 for the
large angle spectrometer (LAS) has an integrated field strength up to 1 Tm, the magnet SM2
for the small angle spectrometer (SAS) an integrated field strength up to 4.4Tm. The original
set-up for data taking with muon beams is described in [44], the modifications for hadron
beams in [45]. In the following a short overview is given over the components essential for
the analyses presented in this work.

Figure 2.1: The COMPASS set-up for physics with hadron beams [45]. Different colours denote the
different types of components.

Coordinate System

The z-axis of the COMPASS coordinate system points along the beam axis. The origin z = 0
is roughly the position of the target1, the axis points in the direction of the beam, thus, the
spectrometer components have positive z values, elements in front of the target have negative
z values. The y-axis points upwards with y = 0 on the beam line. The x-axis completes the
right-handed coordinate system.

2.1 the m2 beam line and hadron beams for compass

The hadron beams used at COMPASS are secondary beams. Protons from the Super Proton
Synchrotron (SPS) with a momentum of 400GeV/c impinge on a production target consisting

1 The centre of the liquid hydrogen target is at −49 cm.

21
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p

SPS

400GeV/c
Be target

p/p,K±,π±

hadron
absorber

p,K
+ ,π

+
COMPASS

100m 600m

decay path

400m

Figure 2.2: Schematic view of the M2 beam line [46] for positive hadron beam.

of 40, 100 or 500mm long beryllium blocks. By the interaction with this target, charged
hadrons (p/p,K±,π±) are produced. In the so-called M2 beam line, which is schematically
depicted in figure 2.2, the hadrons are transported, collimated and momentum selected over
a total length of 1132m. For the hadron beam measurements at an intensity of 5× 106 s−1

and 190GeV/c, 9× 1012 protons per 10 s cycle are needed on the 500mm target. In addition,
the beam line contains a ≈ 600m long decay path where hadrons decay to muons. After this
decay path the remaining hadrons can be absorbed which allows also for data taking with a
naturally polarised muon beam.
The beam line can deliver negative as well as positive hadron beams. While negative beams
consist mainly of pions, the positive beams contain a large proton component. The compo-
sition of both beams at 190GeV/c is shown in table 2.1. For the purpose of beam particle

negative beam positive beam

π− 96.8% π+ 24.0%

K− 2.4% K+ 1.4%

p 0.8% p 74.6%

Table 2.1: The composition of the 190GeV/c hadron beams at the COMPASS target calculated from
measurements [47]. The relative errors are 1% for pions (π±) and protons and 2− 3% for
kaons (K±) and antiprotons.

identification, two CEDAR (ChErenkov Differential Counter with Achromatic Ring focus)
detectors are installed 30m upstream of the COMPASS target. These detectors are described
in detail in chapter 3.

2.2 the target region

In addition to the target itself, the target region, which is depicted in figure 2.3, contains a
recoil proton detector (RPD), a beam telescope, a vertex detector and parts of the veto system.
For hadron-proton scattering a liquid-hydrogen target is used. The target cell is a 400mm
long cylinder corresponding to 0.045 radiation length (X0) and 0.055 nuclear interaction
length λI. The diameter of 3.5mm is chosen as four times the size of the beam spot (σ ≈
8mm). The hydrogen is contained in a Mylar cylinder with a thickness of 125 µm which is
placed inside an evacuated aluminium cryostat. Due to the 1.8mm thick wall of the cryostat,
only protons with a momentum above 100MeV/c can be measured in the RPD. The cryostat
is connected to a cooling system and a vacuum system. The complete target can be removed
from the area and substituted by a structure which can hold several different nuclear targets
(Ni, Pb, W).
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Figure 13: Schematic drawing of the target region. The beam enters from the left side
through the silicon microstrip beam telescope. The liquid hydrogen target in
the centre is surrounded by the recoil proton detector (RPD).

angular acceptance is ±180 mrad for charged particles. The detectors in the LAS
comprise thin dead zones and central holes corresponding to the angular accep-
tance of the SAS.

Charged Particle Tracking

Both spectrometer stages include micro pattern gas detectors (GEMs [91, 116], Pix-
elGEMs [21, 90], MicroMegas [96]) and scintillating fibre stations (SciFis [37, 84])
for small and very small angle tracking. For large angle tracking with rather low
occupancies, i.e. the percentage of either time or area on which the detector is be-
ing hit by particles, the LAS is equipped with drift chambers (DCs [2]) and straw
tube detectors (Straws [43]). The SAS has both multi-wire proportional chambers
(MWPCs [2]) and Straws, as well as very large drift chambers. The large area DCs
described in [41] were refurbished and upgraded with a digital read-out for the
COMPASS data-taking.
The achieved momentum resolution is about 0.3% for tracks identified with SM1
and 0.1% for tracks identified with SM2 [2].

Calorimetry

The spectrometer comprises both hadron and electromagnetic calorimeters in each
stage. Calorimeters measure the energy of particles by the detection of showers
originating from particles passing through matter. In COMPASS, several types of

Figure 2.3: Schematic picture of the COMPASS target region. The target cell (blue) is surrounded
by the two scintillator layers of the recoil proton detector (red). The silicon microstrip
detectors for the beam telescope and the vertex detector are shown in green. In addition,
parts of the veto system (compare section 2.6) are shown. The figure is taken from [48].

The target is surrounded by the RPD, which measures the energy loss and velocity of the
hit protons which are pushed out of the target. It consists of two concentric cylindrical
layers (“rings”) of plastic scintillators, where the inner ring is made of 12 segments of
50× 6.6× 0.5 cm3 and the outer ring of 24 segments of 173× 20× 1 cm3. The RPD is also
used in the trigger as described in section 2.6. A detailed description of the RPD can be
found in [48]. Upstream of the target, three stations of silicon microstrip detectors are used
as a beam telescope. Two additional stations downstream of the target are used for vertex re-
construction. To reduce noise induced by radiation damage as well as to improve spatial and
time resolution, the stations are cooled with liquid nitrogen. The veto system is explained in
section 2.6.

2.3 the tracking system

The COMPASS tracking system for charged particles is based on several tracking stations
along the experiment. Different detector technologies are used. Far away from the beam,
large area tracking systems use multi-wire proportional chambers (MWPC), drift chambers
(DC) and straw tube chambers. Closer to the beam, where the rates are higher, Micromegas
and gas electron multipliers (GEM) are used. In the beam region scintillating fibre detectors
(SciFi) and GEMs with pixel readout are used. The tracking in the target region is done with
silicon microstrip detectors.
The measurements of the tracking detectors are used to reconstruct particle tracks. The mag-
netic fields of the spectrometer magnets are used to determine the track momentum and
the material distribution in the spectrometer to determine the number of passed radiation
lengths. The algorithm for track reconstruction is divided into two steps. First, straight track
segments are searched for in regions without magnetic field or much material. In the second
step those segments are combined to tracks over the magnets and absorbers. An iterative
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algorithm is used to account for deviations from straight lines caused e. g. by multiple scat-
tering inside the detector material.

2.4 the rich

For the identification of secondary particles in the LAS, a ring imaging Cherenkov detector
(RICH) [49] is used. It covers the horizontal and vertical acceptance downstream of the first
magnet (250mrad× 180mrad) and uses C4F10 as radiator gas [50]. The Cherenkov light is
reflected by an array of UV mirrors [51] onto the photon detectors. In the peripheral regions
the detection is done using MWPCs with CsI photo cathodes, in the central region multi-
anode photomultiplier tubes (MAPMT) [52] are used. In figure 2.4 the measured Cherenkov
angle is shown as a function of the particle momentum. The Cherenkov thresholds are 2.5, 9
and 17GeV/c for pions, kaons and protons, respectively. The particle identification is based
on an extended maximum likelihood method. For each particle, the likelihoods for different
particles hypotheses are compared. The method is trained with pions, kaons and protons
from the decays of K0S, φ and Λ, respectively. Up to 30 GeV/c the efficiency for particle
separation is above 90%, a separation is possible up to 50GeV/c.
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Figure 2.4: Cherenkov angles measured in the RICH as a function of the particle momentum. Clear
bands are seen for pions, kaons and protons. The background mainly stems from electrons.
The different particle species can be separated up to 50GeV/c. This picture is based on run
77723 from the 2009 data taking.

2.5 the electromagnetic calorimeters

In both spectrometer stages, electromagnetic calorimeters are used to detect photons. Details
on the set-up of the two calorimeters and the calibration procedure are given in the following.
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2.5.1 ECAL1

The electromagnetic calorimeter of the LAS, ECAL1, consist of 1500 lead glass modules of
different dimensions. These are the GAMS (3.83× 3.83 cm2) [53], Mainz (7.5× 7.5 cm2) [54]
and OLGA (14.1× 14.1 cm2) [55] modules, respectively. The configuration of the modules is
shown in figure 2.5, details on the modules can be found in table 4 in [45]. The Cherenkov
light from the electromagnetic showers is detected with PMTs and sampled through sampling
analogue-to-digital converters (SADC). The angular coverage for photons from the target
centre is 37mrad to 136mrad in horizontal and 21mrad to 98mrad in vertical direction. For
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Figure 2.5: The configuration of ECAL1.

offline calibration, a 15 GeV electron beam is used in an automatic calibration procedure,
which is typically run twice per data taking period. In addition, a laser monitoring system
is installed to control the light collection efficiency and photomultiplier gains of all 1500
modules during the data taking.

2.5.2 ECAL2

The SAS electromagnetic calorimeter, ECAL2, has its modules arranged in a 64× 48 matrix
stretching over 244× 183 cm2. The configuration is shown in figure 2.6. The 1332 outer mod-
ules are identical to the ECAL1 GAMS modules, the 848 modules in the intermediate part
(GAMS-R) are radiation hardened. In the inner part, there are 888 modules of the Shashlik
type, which are composed of 154 double layers of 0.8mm of lead and 1.55mm of scintillator.
The photomultiplier signals are again sampled by SADCs. The angular coverage of 1.3mrad
to 39mrad in horizontal and 1.3mrad to 29mrad has an overlap with the acceptance of
ECAL1. The according rows and columns of ECAL2 are therefore not used for photon re-
construction as the photons can be detected by ECAL1. Offline calibration is done similar to
ECAL1, but using a 40GeV electron beam. Time stability of the ECAL2 modules is ensured
by a LED-based monitoring system.
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Figure 2.6: The configuration of ECAL2.

2.5.3 ECAL calibration with π0 → γγ

Before physics analyses a calibration of the ECALs is performed which uses the decay π0 →
γγ. Events with up to five electromagnetic showers are used and the two-photon invariant
mass Mγγ is calculated for each pair of showers. Pairs with Mγγ within 50MeV/c2 of the
π0 mass are taken into account and assigned to the module with the highest energy deposit
(central module). For each module the photon energies against (Mγγ −Mπ0) are filled into
a two-dimensional histogram. From these histograms the mass-difference spectrum is fitted
in slices of 2GeV/c2 with a Gaussian peak and a first-order polynomial background. The fits
are used to calculate a correction factor for each energy slice in each module

α =
1(

1+ ∆m
M
π0

)2 , (2.1)

where Mπ0 is the nominal π0 mass and ∆m the fitted mass offset. With this procedure the
mass resolution for the π0 in ECAL2 is 4.6MeV/c2.

2.6 hadron triggers

The processes investigated in hadron data analyses mainly stem from diffractive dissociation
(see 1.3.3) and thus have a common signature:
An incoming beam particle interacts in the liquid-hydrogen target and produces a recoil
proton. In this interaction the beam particle is either deflected or destroyed while additional
particles are produced.
The idea behind the principle hadron trigger (diffractive trigger DT-0) is to use this signature
and to trigger on

1. an incoming beam particle,

2. a recoiling target proton and
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3. no non-interacting beam.

The DT-0 trigger does not account for any outgoing particles and thus introduces only a
minimum bias. The different components used for this trigger condition are explained in the
following.

2.6.1 Beam Trigger

The beam trigger (BT) consists of a coincidence of SciFi1 (located 7m upstream of the target)
and a beam counter. Its purpose is the selection of incoming beam particles and the setting of
the reference time for a single event. The beam counter is a scintillator disc with a diameter
of 3.2 cm located 50 cm downstream of SciFi1. Its geometry fits the geometric acceptance of
the target.

2.6.2 Proton Trigger

The proton trigger (PT) uses the RPD information (see 2.2) for target pointing and the discrim-
ination of protons from pions and delta electrons. Target pointing is implemented through a
coincidence of an element in the inner ring with three corresponding elements in the outer
ring as depicted in figure 2.7). The discrimination of protons from other particles is achieved
by thresholds on the energy loss in the two rings.

Figure 2.7: Allowed combinations for target pointing in the RPD.

2.6.3 Veto System

The veto system consists of different parts and serves the following purposes:

1. A veto on non-interacting beam particles is achieved using two scintillators at z =

+15m and z = +33m.

2. The Sandwich veto detector [56] covers most of the acceptance gap between the RPD
and the LAS to veto on events with photons or charged particles inside this gap.

3. A hodoscope veto system [44, 57] located at z = −20m, z = −7.5m and z = −1.5m
removes events with high multiplicities in the RPD.
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2.6.4 Physics Triggers

The trigger condition of the DT-0 trigger can now be written as

BT ∧ PT Z veto ,

which fulfils the requirement listed above. A kaon trigger,

BT ∧ CEDAR Z veto ,

uses the particle identification of both CEDAR detectors, requiring a multiplicity of 6 (see
section 3.1). It is used for luminosity monitoring with free kaon decays (K± → π±π+π−) and
systematic studies. For data takings with special requirements such as the measurement of
Primakoff reactions [58] further triggers are available. Those are described in [45].
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T H E C E D A R D E T E C T O R S

The hadron beam used in the COMPASS experiment contains different particle species, the
beam composition was given in table 2.1. For physics analyses, it is crucial to separate the par-
ticle species. To identify beam particles, two Cherenkov detectors of the CEDAR (ChErenkov
Differential Counter with Achromatic Ring focus) type are used. They are located ≈ 30m
upstream of the COMPASS target. The location of the CEDARs is shown in figure 3.1, which
shows the last 100m of the M2 beam line. Detailed information on the CEDAR detectors
and their operation can be found in [59] and [60], the main features will be presented in the
following.
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Figure 3.1: Side view of the last 100m of the M2 beam line [61]. Dipole magnets are shown in green,
quadrupole magnets in blue, steering and monitoring systems (including the CEDAR de-
tectors) in red and purple.

3.1 functional principle of a cedar

At COMPASS, the CEDAR detectors are used to distinguish pions from kaons (when taking
data with negative hadron beams) or protons from pions and kaons (when taking data with
positive hadron beam). To achieve this distinction, the Cherenkov effect is used. Charged
particles in a medium, which move faster than the speed of light in that medium, emit light
at an angle θ with respect to the direction of flight. The angle depends on the velocity β = v

c

of the particle and the refractive index n of the medium according to

cos(θ) =
1

nβ
. (3.1)

Particles with the same momentum but differing masses, which are components of the M2
hadron beam, produce Cherenkov light at different angles. If the light for all particle species
has to travel through the same optics, as depicted in figure 3.2, the difference in the angles
translates to a difference in the radius of the light rings of

∆R =
f

θ

∆M2

2p2
(3.2)

31
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Figure 3.2: Functional principle of a CEDAR detector. The pions and kaons emit Cherenkov light at
different angles. Via a mirror and several lenses the light rings emitted at different positions
in the detector are focused to a common point in the focal plane. There one of the rings
can be selected by a diaphragm with an adjustable opening. The radius of the rings is
controlled via the pressure of the helium gas.

with the focal length f = 3.88m, the squared mass difference ∆M2 and the momentum p of
the particles. In the CEDAR detectors a diaphragm with a small opening of typically 0.5mm
is used to select a certain radius of the light ring and thus only one particle species. The light
is then collected with 8 photomultiplier tubes (PMT).
To ensure the correct ring is selected, the refractive index of the helium filling has to be
adjusted. This is done by changing the pressure of the gas. The approximate form of the
Lorenz-Lorentz equation [62, 63] is

n ≈
√
1+

3A

R

p

T
, (3.3)

where R = 8.3144621(75) J/mol K is the gas constant and

A =
4π

3
NAα (3.4)

the molar refractivity with the Avogadro number NA and the polarisability α of the gas
molecules. The refractive index does not depend only on the pressure but on the ratio of
pressure and temperature pT . Thus, the temperature has to be controlled during the running
of the detectors. For thermal conduction and insulation, the vessel of the CEDARs is covered
with copper filaments and 10 cm of polyethylene foam, which also ensures that the temper-
ature gradient inside the vessel is as small as possible. The PMT voltage dividers are placed
outside of the detector to reduce heat emission into the gas. The correct value for pT is ob-
tained by a so-called pressure scan. During this scan the pressure is changed in small steps
over the range of interest and the count rates in the PMTs are measured and normalised to
the number of total beam particles crossing the detector, which is obtained from two scin-
tillator discs (FISCs in figure 3.1). A typical output of such a scan is shown in figure 3.3.
The different colours correspond to multiplicities (i. e. the number of photomultipliers with
a signal) of > 6 (red), > 7 (green) and 8 (blue). The larger peak at lower pressure is produced
by pions, the smaller peak at higher pressure by kaons. The separation of the peaks is better
for a higher multiplicity, on the other hand a higher multiplicity reduces the total number of
measured particles and thus the efficiency of the particle identification. A detailed descrip-
tion of the performance of the CEDAR detectors and more information on pressure scans
can be found in [64].
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Figure 3.3: Outcome of a typical pressure scan. The different colours correspond to multiplicities of 6
(red), 7 (green) and 8 (blue). The larger peak at lower pressure is produced by pions, the
smaller peak at higher pressure by kaons. The scan was done at CEDAR 1 on May 30, 2012
during the preparation of the data taking.

3.2 cedar detectors in analyses

No CEDAR information is used in the principle hadron trigger (DT-0 trigger, see section 2.6).
Therefore, the selection of single beam particle species is done during the physics analyses.
Up to now, a multiplicity method was used in analyses to distinguish the beam particles: pT
is chosen to allow the light ring of one particle species (e. g. kaons) to pass the diaphragm.
A particle which produces Cherenkov light is then assumed to be a kaon if at least a certain
number of PMTs have seen a signal. The actual number is chosen by means of efficiency and
purity needed for the performed analysis. The larger the number of required PMT hits the
cleaner the selected sample but on the other hand more particles are missed and the selection
efficiency drops, which can be seen in figure 3.3. For most analyses a multiplicity setting of 6
of 8, which results in a good balance between efficiency and purity, is used. This setting will
also be used for a comparison with the new method in chapter 5. Details on the performance
of the multiplicity method can be found in [64].

3.3 limitations for particle identification

The multiplicity method explained above will only work correctly if the emitted light rings
are perfectly shaped when they pass the focal plane with the diaphragm. But, there are many
effects which influence the shape and width of the light ring, such as

• optical aberration

• chromatic dispersion

• multiple scattering

• inhomogeneity of the refractive index
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The influence of these effects could be reduced to a certain point during the development of
the detectors [59]. In addition, the position of the light ring is mainly affected by two effects,
namely misalignment of the detectors with respect to the beam axis and the (intrinsic) beam
divergence.

misalignment : The influence of misalignment is reduced by a correct alignment of the
optical axis of the cedar with the direction of the beam. This alignment is done with a step
motor and thus is only possible up to a small remaining deviation which is small compared
to the beam divergence and can thus be neglected.

Figure 3.4: Influence of beam divergence: If a beam particle traverses the CEDAR parallel to the beam
axis (left) the rings for kaons (green) and pions (red) are correctly focused for the kaon
ring to pass the diaphragm (indicated in black) and hits the photomultiplier tubes (blue).
If the beam has a certain divergence (right) the rings are shifted and the pion ring enters
the acceptance of the diaphragm.

beam divergence : The M2 beam is focused to the hole of HCAL2 which is located 30m
downstream of the target. Thus, the focal point of the beam is ≈ 60m away from the CEDAR
region. Still, the beam is not completely parallel when it passes the CEDAR region. This
can only partially be corrected for by quadrupoles in front of and behind the CEDARs (Q33
and Q34 in figure 3.1). Thus, the light rings are shifted to a different direction for each single
particle, which is depicted in figure 3.4. This can lead to a misidentification of beam particles.

To reduce the influence of the beam divergence on the identification of beam particles a new
method has been developed. This method will be explained in detail and discussed in the
following chapters.



4
T H E S TAT I S T I C A L A P P R O A C H

Due to the large influence of beam divergence on the identification of beam particles a new
method based on a purely statistical approach was developed. The key idea of this method is
to use calibration samples to determine the hit patterns of the CEDAR photomultiplier tubes
as a function of the beam divergence. These hit patterns are used to calculate the probabilities
for any beam particle to be a kaon or a pion, respectively. To identify beam particles five steps
have to be made:

1. The divergence of the single beam particles has to be determined.

2. Samples, which contain only pions and only kaons, respectively, have to be produced
to determine the hit patterns for kaons and pions.

3. The hit patterns are used to calculate the probabilities of a beam particle to be a pion
or a kaon. This is done for each photomultiplier tube separately.

4. The probabilities of the single photomultipliers are combined to likelihoods.

5. The likelihoods are used to identify beam particles.

These single steps are described in the following sections. So far, the method is only valid for
separating kaons from pions in the 2008 negative hadron beam data. The adaption to further
data sets will be discussed in section 4.6.

4.1 determination of beam divergence

The beam divergence is calculated from the position of the beam upstream and downstream
of the CEDARs. No direct measurement of the beam position is possible in the CEDAR
region, therefore, the position and direction measured in the beam telescope (see section 2.2)
are propagated backwards to positions upstream of CEDAR 1 and downstream of CEDAR 2.
The beam divergence is then calculated by

θx = arctan
(
∆x

∆z

)
≈ ∆x
∆z

(4.1a)

θy = arctan
(
∆y

∆z

)
≈ ∆y
∆z

, (4.1b)

where ∆z = 1283.4 cm is the distance between the two calculated positions.
As the propagation through the beam line magnets is not fully implemented in the analy-
sis software, the calculated divergence is not centred around zero. To correct for this offset,
the divergence distribution of particles, which produce a signal in all eight PMTs of a given
CEDAR, is used. These particles are assumed to pass the CEDAR parallel to the beam axis
and thus without any divergence. The divergence calculated for that type of particles is
shown in figure 4.1 and the values for offset and width of the divergence distribution ob-
tained from a Gaussian fit are given in table 4.1.

35
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(a) Divergence at CEDAR 1
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(b) Divergence at CEDAR 2
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(c) x-Divergence at CEDAR 1

Mean      0.53±  7.75 
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(d) x-Divergence at CEDAR 2

Mean      0.41± 29.33 
Sigma     0.22± 57.68 
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(e) y-Divergence at CEDAR 1

Mean      0.50± 35.87 
Sigma     0.30± 58.86 
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(f) y-Divergence at CEDAR 2

Figure 4.1: Determination of the offset of the beam divergence at the CEDARs using events with sig-
nals in all eight photomultipliers.The upper panel shows the two-dimensional distribution
of divergence for CEDAR 1 (left) and CEDAR 2 (right). The two lower lines show the di-
vergences θx and θy, respectively. The given fit values are obtained from a Gaussian fit
although the beam profile is not fully Gaussian in y.
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CEDAR 1

θx0 13.09± 0.43 σx 63.01± 0.27
θy0 29.33± 0.41 σy 57.68± 0.22

CEDAR 2

θx0 7.75± 0.53 σx 65.07± 0.36
θy0 35.87± 0.05 σy 58.86± 0.30

Table 4.1: Offset (θx0 , θy0 ) and width (σx, σy) of the beam divergence distributions in the two
CEDARs (in µrad).

Several conclusions can be drawn from those numbers:

• The two CEDARs are not fully aligned with respect to each other, the values for the
divergence offset differ by ≈ 5.3µrad for x and ≈ 6.5µrad for y, respectively. This is
due to the step motor which was already mentioned before. In the following sections
all given values for θx and θy are already corrected for the offset.

• The divergence distribution is slightly broader in x than in y. Also both in x and y the
divergence is smaller than in the target region, where θx = 80 µrad and θy = 200 µrad
[45].

• The width of the divergence distribution is around 60µrad both in x and y. Given
the focal length of 3.88m the displacement of the light ring for a particle with a 1σ
deviation from the optical axis is already 0.23mm, which is about half of the typical
opening of the diaphragm. This shows, that a method taking divergent beams into
account is crucial for a correct treatment of beam particles.

4.2 creation of calibration samples

No dedicated data has been taken to produce calibration samples for this method. Therefore,
the calibration samples have to be extracted from the full data set. The samples have to
be as clean as possible to reduce contamination that would lead to problems with particle
identification.

4.2.1 Kaon Sample

A kaon sample is prepared from the decay K− → π−π+π− of kaons outside of the target.
This channel provides a clean signal with an easily reconstructible final state. To obtain this
sample the following cuts have been applied:

• The decay of free kaons is a rare process. Thus, the kaon trigger had to be used to enrich
the sample. This leads to a small bias in the angular distributions of this sample as the
CEDARs are already used. In further data takings the use of the kaon trigger can be
avoided by performing dedicated calibration runs with only beam trigger, which does
not induce a bias on particle species in the CEDAR region.

• The primary vertex of the event is required to be located outside of the target, which
corresponds to zvertex < −70 cm. Therefore, the outgoing particles should not originate
from a diffractive reaction.

• The number of outgoing charged particles has to be equal to 3 with a total charge of
−1. These particles are assumed to be pions.
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Figure 4.2: Invariant mass of π−π+π− in the kaon mass region after selection of free kaon decays. The
coloured area shows the events accepted by the cut on the kaon mass.

• Exclusive events1 are selected by a cut of |190GeV − p3πc| < 4GeV for the momentum
p3π of the three pion system.

• As a last step kaon events are selected if the mass of the three pion system is within
50MeV/c2 around the physical kaon mass [1] of MK = 493.677MeV/c2. The mass of
the three pion system in the region of the kaon mass is shown in figure 4.2.

With the full 2008 hadron beam data, the final sample after all cuts contains 124470 events.

4.2.2 Pion Sample

To obtain a clean pion beam sample is more challenging. There is no final state which can
only be produced by an incoming pion and can be easily reconstructed. The idea is to use
diffractively produced three pion events. If all outgoing particles are pions, the incoming
particle must also be a pion. Therefore, events with three outgoing charged particles with
a small angle with respect to each other and similar momenta are selected. These particles
are most likely of the same species as a heavier particle would introduce some transverse
momentum and have a larger angle with respect to the others. The following cuts are applied:

• Only events with DT-0 trigger are used to ensure a reaction with a target proton which
produces a recoil particle.

• The primary vertex of the event has to be reconstructed within the target region, i. e.
−70 cm < zvertex < −30 cm.

• The number of outgoing charged particles has to be equal to 3 with a total charge of
−1. These particles are then assumed to be pions.

1 More information on the selection of exclusive events can be found in chapter 6.3.2
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• Exclusive events are selected by a cut of |190GeV − p3πc| < 4GeV for the momentum
p3π of the three pion system.

• To get rid of kaon contamination the angle α of the single pions with respect to each
other has to fulfil α < 0.2 rad and the momentum difference between each pair of
particles has to be smaller than 10GeV/c.

The final sample contains 107334 events. The invariant mass distribution shown in figure 4.3
does not show any resonant structures. This shows that the required small angles enhance
non-resonant production of pions. In addition, the inlay in figure 4.3 shows the kaon mass
region where no peak is observed as expected.
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Figure 4.3: Invariant mass of π−π+π− after selection of free diffractive pion events. As expected no
resonant structures are visible. The inlay shows the kaon mass region (same x-axis as in
figure 4.2) where no kaon mass peak is observed.

4.2.3 Beam Sample

The method could in principle be tested with the full 2008 data set which would take unne-
cessarily much computing time. Therefore, a sub-sample of the full data set, which contains
about 3.7 million beam trigger events, is used. Beam trigger events have an incoming beam
particle which reaches the target. No further requirements were put on this data set.

4.3 obtaining probabilities

In the next step, the probability for a particle to be a kaon or pion has to be determined. The
only available information is the hit pattern in the PMTs and the divergence. This calculation
is a bit complicated and thus a simplified example will be given before the full formalism is
built up.

example : Assume, a beam particle traverses the CEDAR with a certain divergence Θ =

(θx, θy) and a signal in a given photomultiplier is observed. Assume further, that we want
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to know if this particle was a kaon. Thus, the probability PΘ(kaon|signal), that this observed
signal was produced by a kaon, has to be calculated. Bayes’ theorem2 [65]

PΘ(kaon|signal) =
PΘ(signal|kaon) ·PΘ(kaon)

PΘ(signal)
. (4.2)

connects this probability with its ’inverse’, namely the probability PΘ(signal|kaon) that a
kaon with divergence Θ produces a signal. This probability can be obtained from the kaon
sample of section 4.2 and is simply the number of events in the bin with divergence Θ that
have a signal in our given PMT divided by the full number of events in this bin. All events
either have a signal in a PMT or not and thus the relation

PΘ(signal|kaon) + PΘ(signal|kaon) = 1 (4.3)

holds for each single bin and each PMT.
Two additional probabilities are needed to use Bayes’ theorem:

1. The probability PΘ(kaon) that a kaon traverses the CEDAR region with a given diver-
gence Θ can also be obtained from the kaon sample. It is simply the number of events
in the corresponding Θ bin divided by the number of events in the full kaon sample.

2. PΘ(signal) is the probability that any particle with a divergence Θ produces a signal in
the given PMT. This probability is obtained from the beam sample and is given as the
number of events in the given Θ bin divided by the full number of events.

Therefore, the calculation of the desired probability PΘ(kaon|signal) that the observed signal
was produced by a kaon is possible by correctly combining information from the calibration
samples.

general case : The formula from the example can now be generalised and the probabil-
ity Pi(θx,θy)

(particle|PMT response) that a given response (either signal or no signal) in PMT
i was produced by a given particle (either kaon or pion) can be calculated as:

Pi(θx,θy)(particle|PMT response) =
Pi(θx,θy)

(PMT response|particle) ·P(θx,θy)(particle)

Pi(θx,θy)
(PMT response)

. (4.4)

Every particle species in the beam is assumed to have the same behaviour in means of diver-
gence. This assumption might not fully be true but with the available data it is not possible
to check for it. It is assumed that the difference between pions and kaons is small compared
to the total divergence and therefore, the relation

P(θx,θy)(kaon) = P(θx,θy)(pion) ≡ P(θx,θy)(beam) (4.5)

is used. This factor P(θx,θy)(beam) is common for all calculated probabilities and thus can be
dropped out. In addition, Pi(θx,θy)

(PMT response) is another common factor for all probabil-
ities of a given response in PMT i. In total only two values are needed to calculate the four
desired probabilities:

Pi(θx,θy)(kaon|signal) ∝ Pi(θx,θy)(signal|kaon) (4.6a)

Pi(θx,θy)(kaon|signal) ∝
(
1− Pi(θx,θy)(signal|kaon)

)
(4.6b)

Pi(θx,θy)(pion|signal) ∝ Pi(θx,θy)(signal|pion) (4.6c)

Pi(θx,θy)(pion|signal) ∝
(
1− Pi(θx,θy)(signal|pion)

)
(4.6d)

2 A short remark: Although Bayes’ theorem is used for the calculations in this chapter, nevertheless a frequentist
interpretation of probabilities is used throughout the whole method.
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As an example the probability Pi=2(θx,θy)
(signal|pion) for a pion to produce a signal in PMT 2

of CEDAR 1 is shown in figure 4.4. The distributions for all PMTs are collected in appendix
B.1.
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Figure 4.4: Probability distribution Pi=2(θx,θy)
(signal|pion) for pions in PMT 2 of CEDAR 1. The colour

scale denotes the percentage of particles in the given bin that produce a signal in the
photomultiplier.

Several observations can be made on this distribution:

• For small divergences only few signals are seen which is expected as only the light ring
produced by kaons should be able to pass the diaphragm.

• For a certain direction of the beam divergence the number of received signals grows
rapidly as the pion light ring enters the acceptance. For divergences in the opposite
direction the number of signals nearly drops to zero.

• For large divergences (θx,y > 200µrad) many empty bins as well as bins with a prob-
ability of exactly 100% can be observed due to low statistics in this region. This leads
to problems in the following calculation of likelihoods. To avoid these problems two
strategies were tested:

method 1: Impose an additional cut of
√
θ2x + θ

2
y < 200µrad to get rid of the low

statistics region. This method will be referred to as cut200 in the following.

method 2: Do not use any events which have an entry of exactly 1 or exactly 0 in any
of the probability distributions, which will be denoted as cut01 in the following.
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These two methods will be compared to each other by means of efficiency and purity
in chapter 5.

4.4 calculating likelihoods

With the probabilities determined in section 4.3, likelihoods for any particle to be a kaon or
pion can be calculated. The likelihood is given as the product of the according probabilities
for the eight single photomultipliers. It is more convenient to calculate the logarithm of
the likelihood as a sum of the logarithms of the probabilities for the single PMTs. The log-
likelihood for kaons is given by

lnL(kaon) =
8∑
i=1

ηi log
(
Pi(θx,θy)(kaon|signal)

)
+

8∑
i=1

(1− ηi) log
(
Pi(θx,θy)(kaon|signal)

)
,

(4.7)

where

ηi =

1 signal in PMT i

0 no signal in PMT i
(4.8)

makes sure that the correct probabilities are taken into account. The likelihood for pions is
calculated accordingly. The resulting likelihood distributions (for CEDAR 2) for the three
different samples are shown in figure 4.5. Particles above the red line are more likely kaons
and particles below the red line are more likely pions, respectively. Most particles in the kaon
sample have a larger likelihood to be kaons rather than pions. The likelihood distribution for
the pion sample and the beam sample look similar as the beam mainly contains pions.

4.5 identifying beam particles

The likelihoods calculated in 4.4 can be used to identify any beam particle, i. e. this method
is able to identify not only kaons (like the multiplicity method) but also pions. For the dis-
tinction between pions and kaons likelihood ratios are used. A particle is identified as a kaon
if the likelihoods fulfil

L(kaon)
L(pion)

> α (4.9a)

with α > 1. This can be directly translated into a condition for the log-likelihoods

lnL(kaon) > lnL(pion) +A , (4.9b)

with A = ln(α) > 0. To identify a given particle as a pion the relations

L(pion)
L(kaon)

> β (4.10a)

lnL(pion) > lnL(kaon) +B , (4.10b)

with β > 1, B = ln(β) > 0, have to be fulfilled. For particles that do not fulfil any of these
conditions no ID is set. α and β or accordingly A and B can in principle be chosen freely
but have an influence on the efficiency and the purity of the method. This influence will be
discussed in detail in chapter 5.
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Figure 4.5: Likelihoods at CEDAR 2 for the different samples. Particles above the red line are more
likely kaons and particles below the red line are more likely pions, respectively.

Combining the Two CEDARs

To finally identify a given particle as a pion or a kaon the information of the two CEDAR
detectors has to be combined. Every particle has one of the three tags kaon, pion, no ID

from each of the two CEDARs. To combine these two single IDs to a final ID there are three
different possibilities:

or combination : In this case a particle is identified as a kaon if the particle is identified
as a kaon (conditions (4.9a) and (4.9b) are fulfilled) in one of the two CEDARs and not
identified as a pion in the other one. In this case, the final ID is set to kaon. The same
is done for the identification of pions. Particles that pick up no ID from both CEDARs
or kaon from one CEDAR and pion from the other one obtain the final flag no ID. All
possible combinations and resulting final IDs are given in table 4.2.

and combination : In this case a particle is identified as a kaon if and only if a kaon ID
is received from both CEDARs. The identification for pions is done the same way as
for the OR combination as the kaon contamination is not expected to be large. The
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number of kaons in the beam is only 2.4% and thus a contamination of identified
pions with misidentified kaons is not that important compared to a contamination of
identified kaons with misidentified pions, which amount to 97% of the total beam.
Further investigations on these issues will be done in chapter 5. Also for this case the
full list of combinations and final IDs is given in table 4.2.

combined likelihood : A last possibility is to treat the two CEDARs as one detector with
16 photomultiplier tubes. In this case the likelihood in equation (4.7) is not calculated
separately for both CEDARs but as a sum over all 16 photomultipliers in both detectors.
Then, only one single ID is received which is then used as the final ID.

A comparison of these different methods will be given in chapter 5.4.

OR CEDAR 2

kaon pion no ID

C
ED

A
R

1 kaon kaon no ID kaon

pion no ID pion pion

no ID kaon pion no ID

AND CEDAR 2

kaon pion no ID

C
ED

A
R

1 kaon kaon no ID no ID

pion no ID pion pion

no ID no ID pion no ID

Table 4.2: Resulting PIDs for the AND and OR combination of the two CEDARs

4.6 application to further data takings

The method presented here has been developed for 2008 negative hadron beam data. The
adaption to further data takings will be discussed in the following.

4.6.1 2009 Negative Hadron Beam

The most convenient data to adapt the method to is the 2009 negative hadron beam data
as most of the settings for this data taking were similar to the 2008 data. The only crucial
difference is the beam divergence. On the one hand the beam is tuned differently for every
data taking, on the other hand the CEDAR detectors were taken out of the beam line in
between and thus had to be newly aligned for the 2009 data taking. Thus new calibration
samples and new hit patterns have to be produced. For the production of these hit patterns a
phast user event is provided in the CEDAR part of the COMPASS hadron tools (see appendix
G).

4.6.2 Primakoff Data Taking

For the adaption to Primakoff data taking (2009 and 2012) the trigger time shift has also
to be taken into account. The new timings have already been implemented in the CEDAR
helper class of the hadron tools. Hence, also in this case only new calibration samples and
hit patterns have to be produced with the provided software.
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4.6.3 Positive Hadron Beam

For positive hadron beam data normally only an identification of protons is desired. The
pressure scan in figure 4.6 shows the clear separation of the proton peak and the meson
(pion, kaon) peak. Therefore, in this case the multiplicity method works sufficiently well.
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Figure 4.6: Pressure scan for positive hadron beam for different multiplicities [45]. The proton peak is
well separated from the peak which contains the pions and kaons.
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P E R F O R M A N C E O F T H E N E W M E T H O D

In this chapter, the performance of the new likelihood method will be investigated and com-
pared to the multiplicity method. First, the performance of the single photomultipliers is
studied. Afterwards, techniques to calculate the efficiency and the purity of the method will
be presented and values for the likelihood differences A and B will be determined. All calcu-
lations will be done for the OR combination of the two CEDARs. In a final step, the different
possible combinations of the two CEDARs will be compared.

5.1 performance of the single photomultipliers

In a first step, the correlation among the photomultipliers in CEDAR 1 and CEDAR 2 is
examined. In figure 5.1 the correlation matrix between CEDAR 1 and CEDAR 2 is shown. To
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Figure 5.1: Correlation Matrix of PMT hits for the beam sample in percent of all particles. A clear
correlation between the two CEDARs is visible.

obtain this matrix, the hits in the single photomultipliers are counted for the beam sample.
Afterwards the numbers are normalised to the full number of beam particles in the sample.
If the beam was perfectly parallel and all photomultipliers were 100% efficient, a uniform
distribution of hits would be expected in the matrix with a value of 2.44%, which corresponds

47



48 beam particle identification with statistical methods

to the number of kaons in the beam. In fact, a strong correlation between photomultipliers
with the same number is observed. These have the same orientation relative to the beam axis.
Thus, for a divergent beam the pion ring hits the same photomultipliers in both CEDARs.
The correlation is not uniform due to different efficiencies of the single PMTs.
To investigate the efficiencies of the photomultipliers the kaon sample is used. In addition,
the divergence is chosen to be small (θx, θy < 30µrad) to ensure the kaon light ring passes
the diaphragm. The correlation matrix for these events is shown in figure 5.2. If all pho-
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Figure 5.2: Correlation matrix of low-divergence PMT hits for the kaon sample to determine the effi-
ciency of the single photomultipliers.

tomultipliers would be equally efficient, again uniform distribution is expected. Instead of
that, clear band structures can be observed which point to lower efficiencies for single pho-
tomultipliers. The number of hits in the single photomultipliers compared to the number
of beam particles with small divergence in the sample can be used as an estimate for the
efficiencies of the photomultipliers. The resulting numbers are given in table 5.1. Most of the
photomultipliers have an efficiency of more than 80%, where PMTs 3,7 and 8 in CEDAR 2
have much lower efficiencies. This can also be seen in figure 5.2 where these photomultipliers
produce horizontal bands. Corrections to these efficiencies may stem from remaining pion
background, which would not produce any signal. Additionally, also for the chosen small
divergences, the Cherenkov photons from the kaon ring might not reach every PMT.
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PMT
Efficiency in %

CEDAR 1 CEDAR 2

1 83.5 82.5

2 85.3 87.0

3 85.2 74.6

4 83.1 86.4

5 84.8 79.7

6 86.7 81.5

7 85.9 66.5

8 80.0 66.5

Table 5.1: Estimated efficiencies (in %) of the single photomultipliers in CEDAR 1 and CEDAR 2.

5.2 efficiency calculation

One method to determine the efficiency are pressure scans as explained in [64]. Due to the
low number and low quality of available pressure scans this method will not be used in the
following. Instead of that, the efficiency is determined through a comparison of the number of
identified particles with the expected number. The beam composition at the CEDAR detectors
is (see chapter 2.1)

π− : (96.77± 0.98)%
K− : (2.44± 0.07)%
p̄ : (0.79± 0.02)% .

The number of identified kaons and pions in the beam sample for different log likelihood
differences is compared to the numbers given above to obtain the efficiency. Basically, any
data sample could be used here. For stable beam conditions over the full data taking, the
results obtained here should not change on a different sample.

5.2.1 Kaon Efficiency

Figure 5.3 shows the calculated kaon identification efficiency as a function of the log likeli-
hood difference A as defined in equation (4.9b). For A a logarithmic binning is used to cover
a larger range of values from 0.1 to 20. The left plot shows the results for cut200, the right one
for cut01, respectively. The blue dotted line denotes the value obtained from the multiplicity
method (48.4%).
Two observations can be made:

1. The number of identified kaons is much higher for cut200 than for cut01. This is due to
the strict handling of low statistic bins for cut01: If any of the 8 PMTs of a CEDAR has a
low statistic bin, the particle picks up a no ID flag. This case occurs in a sizeable number
of bins with large divergence. Nevertheless, we will still keep this cut to investigate the
purity.

2. The number of identified kaons drops – as expected – with increasing A, where the
drop between A = 0.1 and A = 1 is small.



50 beam particle identification with statistical methods

A
-110 1 10

E
ff

ic
ie

nc
y

0

10

20

30

40

50

60

70

80

90

100

A
-110 1 10

E
ff

ic
ie

nc
y

0

10

20

30

40

50

60

70

80

90

100

Figure 5.3: Kaon identification efficiency for cut200 (left) and cut01 (right) as a function of the log like-
lihood difference A. Displayed are the results for an OR combination of the two CEDARs.
The blue dotted line shows the result for the multiplicity method.

5.2.2 Pion Efficiency

For the pion case the procedure is the same as for the kaon case. Figure 5.4 shows the result-
ing efficiencies for the OR combination of the CEDARs as a function of the log likelihood
difference B.
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Figure 5.4: Pion identification efficiency for cut200 (left) and cut01 (right) as a function of the log like-
lihood difference B. Displayed are the results for an OR combination of the two CEDARs.

The obtained efficiencies are in the same order of magnitude (for cut200 as well as cut01) as
in the kaon case. This is expected as the method used here is a purely statistical approach
and thus does not distinguish between kaon and pion identification. Therefore, the efficiency
for kaon and pion identification should be of the same order of magnitude.
In figure 5.4 no value for the multiplicity method is given. The reason is simple: The multi-
plicity method only identifies kaons, while every particle not identified as a kaon is tagged
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as a pion (there is simply no no ID decision foreseen). Hence, it is not sensible to define a
pion efficiency for that method.

5.3 purity calculation

For the calculation of the CEDAR purity the beam particle has to be identified without the
CEDARs themselves. No direct method is available at COMPASS and thus, a reaction has to
be used in which the beam particle is determined via the final state particles. One possible
pair of reactions [66] is the production of single neutral kaons

π−p→ K−K0Sp

K−p→ π−K0Sp .
(5.1)

In this reactions, the final charged meson (K− or π−) is linked to the beam particle (π− or K−)
due to conservation of strangeness in the strong interaction: If the beam particle is a pion, a
K0 in the final state can only be produced together with a charged kaon (S = 0 → S = 0). If
otherwise the beam particle itself is a kaon, the K0 in the final state can only occur together
with a pion (S = −1→ S = −1).
Therefore, it is sufficient to identify the outgoing charged hadron to determine the type of
beam particle. This identification of the outgoing hadron is achieved by the RICH. The purity
of the RICH selection itself causes a systematic error which is considered to be small and thus
neglected.

5.3.1 Kaon Purity

To determine the kaon purity, final states with a reconstructed K0 and a negatively charged
hadron are selected from the full 2008 data set with negative hadron beam. Only events with
CEDAR identified beam kaons are used, the number of available events depends on the like-
lihood cut and ranges from 6967 (A = 10 and cut01) to 20710 (A = 1 and cut200). The RICH
probabilities for the outgoing hadron to be a pion or kaon, respectively, are used. In figure 5.5
the base 2 logarithm of the ratio of kaon probability over pion probability log2(p(K)/p(π)) for
the outgoing charged hadron is shown as a function of the momentum. Entries above zero
correspond to RICH identified kaons, entries below zero to RICH identified pions, respec-
tively. If the CEDAR kaon selection was perfect, only RICH identified pions would be visible.
The appearance of RICH identified kaons shows the impurity of the CEDAR selection. For
the calculation of purity the RICH identified pions are counted and compared to the total
number of RICH identified particles. Before this calculation, two additional cuts are applied:

1. Only particles with a momentum between 12GeV/c and 50GeV/c are taken into ac-
count. This is the momentum range where the separation of kaons and pions in the
RICH is sufficient.

2. RICH identified kaons are required to fulfil log2(p(K)/p(π)) > 0.4, which corresponds
to a ratio of p(K)/p(π) > 1.32. Similarly, pions have to fulfil log2(p(K)/p(π)) < −0.1 or
p(π)/p(K) > 1.07. This ensures a clean selection of particles in the RICH.

Figure 5.6 shows the results for the purity obtained for different values of the log likelihood
difference A for both cut200 (red) and cut01 (blue). The black line corresponds to the value
obtained by the same event counting with the multiplicity method. The error bars and error
band are

√
n Poisson counting errors. The obtained purity is nearly constant as a function of
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Figure 5.5: RICH probabilities log2(p(K)/p(π)) for CEDAR identified kaons as a function of the mo-
mentum of the outgoing charged hadron.
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Figure 5.6: Kaon purity as a function of the log likelihood difference A for cut200 (red) and cut01

(blue). The black line corresponds to the multiplicity method.

the likelihood difference A. For cut200 the purity is slightly smaller compared to the multi-
plicity method, but the errors are large due to the small available statistics in this channel. For
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both of the cuts, the values are compatible with the multiplicity method. Due to the small
change of purity as a function of the likelihood difference A, this difference can be tuned
purely for efficiency.

5.3.2 Pion Purity

The purity of the pion selection is determined in the same way as for the kaon selection by
switching the CEDAR and RICH conditions. The RICH probabilities of CEDAR identified
pions are shown in figure 5.7. Each RICH identified pion (corresponding to a value below
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Figure 5.7: RICH probabilities log2(p(K)/p(π)) for CEDAR identified pions as a function of the mo-
mentum of the outgoing charged hadron.

zero) contributes to the impurity of the CEDAR selection. The same cuts as before are used,
the obtained purities are shown in figure 5.8 as a function of the log likelihood difference B.
Here, the value given for the multiplicity method needs some further clarification. The multi-
plicity is only valid to positively identify kaons. Hence, each kaon which is not identified by
the multiplicity method is counted as a pion in this calculation. The low kaon identification
efficiency then accounts for the lower purity of the multiplicity method compared with the
likelihood method. The purity obtained from the likelihood method slightly rises up to B = 6

and drops again for higher values of B. The observed variations are smaller than the statis-
tical errors. Similar to the kaon case, the purity does not strongly depend on the likelihood
difference B, which can be tuned for efficiency.

5.4 different combinations of the cedar detectors

The beam sample is used for the comparison of the different possible combinations of the
two CEDARs. Table 5.2 shows the obtained PIDs for the different combinations and for the
multiplicity method as well as the kaon and pion identification efficiency, which is calculated
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Figure 5.8: Pion purity as a function of the log likelihood difference B for cut200 (red) and cut01

(blue). The black line corresponds to the multiplicity method.

as explained above. For all methods cut200 and likelihood differences A = B = 1 are used.
As the pion identification efficiency is of the same size for all the different combinations, the

method kaon pion no ID K eff. π eff.

CEDAR 1 2.35% 75.0% 22.6% 96.3% 77.4%

CEDAR 2 2.66% 74.3% 23.1% 109.0% 76.8%

AND 1.62% 74.6% 23.8% 66.4% 77.0%

OR 1.96% 74.6% 23.4% 80.3% 77.1%

16 PMT 2.66% 75.2% 22.2% 109.0% 77.7%

Multiplicity 1.18% 98.8% 48.4%

Beam 2.44% 96.8%

Table 5.2: PIDs obtained from the beam sample for CEDAR 1 and 2 separately, for different combina-
tions of both and for the multiplicity method (in percent of the full sample). The last line
shows the nominal beam composition. The two rightmost columns give the kaon and pion
identification efficiency.

kaon identification efficiency is the main criterion for the selection of the method. The OR
combination results in the best value of 80%, where the AND combination only yields 66%.
The calculated efficiency for the direct combination of all 16 photomultipliers is even above
100%, which leads to a low purity as at least 9% of the identified kaons simply cannot be
kaons.



S U M M A RY – B E A M PA RT I C L E I D E N T I F I C AT I O N W I T H S TAT I S T I C A L
M E T H O D S

A new method for the identification of beam particles in the CEDAR detectors has been de-
veloped. The method is based on statistical methods and likelihoods are used to distinguish
the different particle species. As shown in section 5.3 the purity of the likelihood method
does not depend strongly on the log likelihood differences A and B. Therefore, the method
can be tuned purely by means of efficiency. The efficiency drops with increasing values of
A and B (see section 5.2). The efficiency for cut01 is much smaller compared with cut200,
while the purity does not differ between those two. Thus, a good starting point for analyses
would be the choice of A = B = 1 with cut200, which results in the efficiencies and purities
given in table 5.3.

Likelihood Multiplicity

Kaon Efficiency (80.3± 0.4)% (48.4± 0.2)%
Kaon Purity (96.8± 2.8)% (97.4+2.6

−4.2)%

Pion Efficiency (77.1± 0.3)% X

Pion Purity (85.2± 0.1)% (78.0± 0.3)%

Table 5.3: Efficiencies and purities for the likelihood method (A = B = 1, cut200) in comparison with
the multiplicity method.

The efficiency for the identification of kaons is ≈ 80% which is a gain of ≈ 65% compared to
the multiplicity method. The pion efficiency is in the same order of magnitude. The purity
for kaon identification is compatible with the value obtained from the multiplicity method;
the pion purity is ≈ 85%, which is an improvement compared to the multiplicity method.
For the multiplicity method no value for the pion efficiency can be given (see section 5.2.2)
and the value for the purity is not reliable as explained in section 5.3.2.
The presented likelihood method is a big improvement – concerning the kaon identification
efficiency – compared to the multiplicity method. In addition a positive identification of pions
(and not only a kaon rejection) is possible. Last but not least, the new method works well up

to total divergences of
√
θ2x + θ

2
y < 200µrad, whereas the multiplicity method only works

sufficiently for small divergences.
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E V E N T S E L E C T I O N F O R D I F F E R E N T C H A N N E L S

In the following, the production of a single meson M in the reaction pp → precoilMpfast

will be investigated. The goal is the determination of cross section ratios. This reaction is
schematically shown in figure 6.1. The meson M decays into the final state X. A fast outgoing

pbeam

ptarget

pfast (pf)

precoil (ps)

M
}
X

Figure 6.1: Schematic picture of the production of a single meson M in proton-proton reactions. The
meson M decays into the final state X. A fast outgoing proton and a recoil proton can are
measured together with X.

proton and a recoil proton can are measured together with X. There are several different final
states X, in which a single meson M can be found:

In the final state precoilγγpfast, the two photons can originate from decays of the pseudoscalar
mesons π0 and η. There is also a small fraction of η′ → γγ, which will not be considered
here.

The ω dominantly decays into π+π−π0 and thus will be selected in the precoilπ
+π−γγpfast

final state. In this channel also the decay η→ π+π−π0 and η′ → π+π−η could be investigated.

In the precoilK
+K−pfast final state, there is a significant contribution of φ mesons, which dom-

inantly decay into K+K−.

Finally, the event selection for precoilπ
+π−pfast is essentially the same as for kaon pair pro-

duction. This channel contains a contribution of ρ → π+π− which cannot be easily used for
analyses due to the large decay width of that meson. Nevertheless, the kinematic distribu-
tions in this channel are very similar to precoilK

+K−pfast but with a much higher statistics and
therefore, this channel is also considered in the following.

Thus, the following reactions will be investigated:

pp→precoilπ
0pfast

with π0 → γγ

pp→precoilηpfast

with η→ γγ

pp→precoilωpfast

with ω→ π+π−π0

pp→precoilφpfast

with ω→ K+K−(
pp→precoilπ

+π−pfast

)
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In the following, a common basic selection for the different final states will be presented.
Afterwards, the selection for the two-particle (π0pfast and ηpfast), three-particle (K+K−pfast

and π+π−pfast) and the ωpfast final states will be discussed.

6.1 the 2009 data taking with proton beam

The 2009 data taking with a positive hadron beam took place during six weeks between July
16, 2009 and August 26, 2009. In three periods more than 11 billion data events were recorded.
The available statistics with all triggers for the single periods and the full data taking is given
in table 6.1. For the analyses shown here the full data set was used. Basically, this data could

Period Time #Runs #Spills #Events %

W29 July 16 – July 29 190 93,554 4,110,218,046 36.3

W31 July 29 – August 9 208 77,357 3,791,891,038 33.5

W33 August 13 – August 26 200 64,625 3,418,950,503 30.2

total July 16 – August 26 598 235,536 11,321,059,587

Table 6.1: Available statistics with all triggers for the 2009 data taken with proton beam. 96% of these
events were recorded with the DT-0 trigger (see 6.3.1).

be supplemented with the 2008 data set, which contains another 1.2 billion events. However,
the combination of the two data sets is not easy, due to some differences in the set-up of the
spectrometer. Given the high statistics obtained for the single channels using 2009 data, the
2008 data are not included here.

6.2 event reconstruction and data analysis

Before the reconstruction of events, the recorded raw detector information is calibrated and
corrected with methods specific for each single detector. After these calibrations, the event
reconstruction is performed by the CORAL (COMPASS Reconstruction ALgorithms [67])
software package. In this step the hits in the detectors are used to construct physics events.
The following steps are performed by CORAL:

• Hits in tracking detectors are formed into track segments.

• The track segments are combined into tracks taking magnetic fields and detector mate-
rial into account. In this step also the track momentum is determined.

• Vertices are reconstructed from charged tracks.

• Calorimeter showers are reconstructed from hits in the calorimeter modules.

• Likelihoods for particle identification in the RICH detector are calculated.

CORAL provides the information on reconstructed events (vertex positions, particle mo-
menta and charge, particle ID information,. . . ) in the form of ROOT trees, which are in
this context referred to as mini Data Summary Trees (mDST).

For the analysis of the data stored in the mDST, the PHAST (PHysics Analysis Software
Tools [68]) package is used. It provides ready-to-use classes to easily access the available
information, e. g. for the construction of Lorentz vectors for the different outgoing particles.
The up-to-date list of available classes and the manual can be found at [69]. For data taking
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with hadron beams, the detector information of the CEDARs and the RPD is not processed
by CORAL, but contained in the mDST as raw information. To process these information, an
additional package (“HadronTools” [70]) is provided.

6.3 data selection

In this section some of the cuts which are used in the selection of different channels are
explained in detail. In addition, the common selection criteria for the investigated reactions
are given.

6.3.1 Trigger

The main trigger for hadron data taking is the so-called DT-0 trigger (see section 2.6). It is a
minimum bias trigger requiring three conditions to be fulfilled:

1. An incoming beam particle has to be detected.

2. A recoil proton has to be measured in the RPD.

3. No particle is found in the veto system.

For data analyses, only events which fulfil the DT-0 trigger conditions are used. These are
96% of the recorded events.

6.3.2 Exclusivity and Coplanarity

In this thesis only exclusive measurements, i. e. only fully reconstructed events, are used
for analyses. Therefore, the energy of the full final state has to match with the energy of
the incoming beam. The energy of the hadron beam is not measured at COMPASS. Thus,
exclusive events are selected in two steps:

1. The beam energy is calculated from the final state particles. There are two possible
methods: For the π+π− and K+K− channel the beam energy is calculated as the energy
sum of the outgoing particles (including the recoil proton). For all other final states
(π0, η, ω) a kinematic calculation of the beam energy based on [71] is done. In both
cases the reconstructed energy has a peak at the nominal beam energy of 191 GeV.
Events outside a certain range (normally 1σ) around the peak position are rejected. The
distribution and the effect of the cut for the π0 case is shown in figure 6.2a.

2. To further improve the selection of exclusive events a check on the conservation of trans-
verse momentum is performed. The azimuthal angle of the outgoing system (pfast +X)
and of the recoiling proton should differ by exactly 180 degrees. Only events that fulfil
this condition within a certain range (normally ±0.26 rad, which is the resolution of the
RPD) are taken into account for further analyses. Figure 6.2b shows the distribution for
the π0 case as well as the influence of the cut and the correlation with the energy cut.

6.3.3 CEDAR and RICH particle ID

For positive hadron beams both CEDARs are set to select the proton light ring. As shown
in figure 4.6 the proton peak in the pressure scan is well separated from the pion peak, thus
it is sufficient if one of the CEDARs identifies the beam particle as a protons as long as the
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Figure 6.2: This figure shows the influence of the exclusivity (left) and coplanarity (right) cut for
pp → precoilπ

0pfast. The light blue area corresponds to the distribution before both cuts,
the dark blue area to the distribution after the other cut. The lines denote the cut on the
value itself.

other CEDAR does not identify it as a pion. In this way 71.6% of the events pass this cut (see
table 6.2) where 75% of the events should contain an incoming proton.
For the channels containing charged pions or kaons there are two positively charged particles
in the final state, namely π+ and proton or K+ and proton. To fully reconstruct the final state
the charged meson has to be identified by the RICH. The identification is done using ratios
of RICH likelihoods. For the identification of a pion the likelihood for a pion should be larger
than for the other hypothesis, namely

L(π)

L(K)
> 1.0,

L(π)

L(p)
> 1.0 and

L(π)

L(bkg)
> 1.0 . (6.1)

As the number of kaon events is much smaller it is crucial to get rid of as much pion back-
ground as possible. Therefore, the required likelihood ratio of kaons compared to pions is
chosen to be larger than 1.3. This leads to the following ratios:

L(K)

L(π)
> 1.3,

L(K)

L(p)
> 1.0 and

L(K)

L(bkg)
> 1.0 (6.2)

In both cases, only tracks with a momentum between 12GeV/c and 50GeV/c are used to
ensure a good separation efficiency (compare figure 2.4).

6.3.4 Common selection criteria for the investigated reactions

A number of basic cuts are common for all analysis channels. These are:

1. Events are required to be recorded by the DT-0 trigger.

2. Only events with exactly one primary vertex inside the liquid hydrogen target, i. e.
−74 cm < zvertex < − 24 cm, are used.

3. The beam particle is identified as a proton.

4. Events should contain exactly one reconstructed recoil proton in the RPD.

These cuts are passed by 35% of all available events. The numbers of events after each cut are
given in table 6.2.
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Cut Events

no cuts 11,321,059,587

1. DT-0 trigger 10,825,412,397

2. 1 primary vertex in target 7,925,572,030

3. incoming proton in CEDAR 5,674,142,337

4. recoil proton in RPD 3,967,769,836

Table 6.2: Cut flow for the cuts that are common to all analyses.

6.4 event selection for two-particle final states

After the common cuts given in 6.3.4, the two-particle final states π0pfast and ηpfast can be
selected with another set of cuts, which is discussed in the following.

There should be only a single charged track attached to the primary vertex. This track is
assigned to be the outgoing proton. Basically, this track could also be a pion if the incoming
particle was misidentified in the CEDAR. However, there is no way to check whether the
charged track belongs to a proton as the RICH can only identify particles up to a momentum
of 50GeV/c where the momentum of the fast particle, which is shown in figure 6.3, reaches
190GeV/c.
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Figure 6.3: Momentum of the charged particle attached to the primary vertex which is most likely a
proton.

The incoming beam particles are positively charged. Therefore, due to charge conservation,
the outgoing track is required to have a measured positive charge.

To reconstruct a π0 or η the event should contain exactly two clusters without an associated
charged track in the ECAL with an energy of at least 1GeV in ECAL1 and 2GeV in ECAL2,
respectively. The energy of the clusters is corrected using the LED/Laser calibration. Due to
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missing corrections, three runs (77594, 77595 and 77598) with in total 1.4 million events (0.8%
of all events) are not used for the analysis.

The invariant mass of the two neutral clusters is fitted for different combinations of the
two ECALs. The fits, which are shown in figure 6.5, are performed in the region of the
PDG masses (60− 200MeV for π0 and 370− 730MeV for η) using a Gaussian signal and a
polynomial background. Only events within 2σ around the central peak value are used for
the analysis. The widths obtained from the fit are given in table 6.3. For these events the
energy of the ECAL clusters is rescaled1 such, that the invariant mass of the reconstructed
particle fits the nominal mass of the π0 or η.

ECAL π0 η

1 only 9.79 26.0

2 only 4.68 14.1

mixed 8.87 25.8

Table 6.3: Widths in MeVc2 of the γγ peaks obtained from the fits given in figure 6.5.

The beam energy calculated from the formulas given in [71] is required to be in the range
of ±5GeV around the peak value of 191 GeV. In addition, the difference of the azimuthal
angles between the two-particle final state and the recoiling proton has to be within ±0.26 rad
around the expected value of π. The connection between those two cuts for ppπ0 was already
demonstrated in figure 6.2, where the two distributions are shown each without (light blue)
and with (dark blue) the cut on the other variable. Black lines denote the cut on the variable
itself. Figure 6.4 shows the same distributions for ppη.
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Figure 6.4: This figure shows the influence of the exclusivity (left) and coplanarity (right) cut for
pp → precoilπ

0pfast. The light blue area corresponds to the distribution before both cuts,
the dark blue area to the distribution after the other cut. The lines denote the cut on the
value itself.

The momentum transfer t is defined as t = (pbeam − pX)
2 with the four momenta pbeam of

the beam and pX of the outgoing pπ0 or pη system. For diffractive reactions, it is useful to
subtract the minimal t necessary to produce the outgoing system with mass mX and define

t ′ = |t|− |tmin| > 0 . (6.3)

1 The energy is rescaled by Mnominal
Mmeasured

.
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(a) π0 – both photons in ECAL1
σ = 9.79MeV/c2
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(b) η – both photons in ECAL1
σ = 26.0MeVc2
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(c) π0 – both photons in ECAL2
σ = 4.68MeVc2
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(d) η – both photons in ECAL2
σ = 14.1MeVc2
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(e) π0 – one photon in each ECAL
σ = 8.87MeVc2
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(f) η – one photon in each ECAL
σ = 25.8MeVc2

Figure 6.5: Invariant γγ mass in the π0 region (left column) and the η region (right column) for the
different ECAL combinations. The fits (blue) are done using a Gaussian signal (green)
together with a polynomial background (red).
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For high beam energies, the minimal momentum transfer can be approximately calculated
as [71]

|tmin| ≈
(m2X −m2beam)2

4 | #»p beam|
2
lab

. (6.4)

A cut on the momentum transfer t ′ of 0.1 (GeV/c)2 < t ′ < 1.0 (GeV/c)2 is performed.
Above 1.0 (GeV/c)2 non-diffractive events may contribute too much, the lower cut is due
to the threshold of the RPD of 0.07 (GeV/c)2. Figure 6.6 shows the t′ distribution for t′ for
pp→ precoilπ

0pfast before the cuts on exclusivity and coplanarity. The RPD threshold around
0.1 (GeV/c)2 is clearly visible.
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Figure 6.6: Momentum transfer t′ for pp→ precoilπ
0pfast before the exclusivity cuts.

Table 6.4 shows the cut flow for the selection of the two final states π0pfast and ηpfast.

π0 η

after common selection 3,967,769,836

1 charged track 2,538,252,264

Q = +1 2,509,970,011

2 ECAL clusters 181,914,889

without skipped runs 180,531,815

π0/η identified 25,026,750 2,955,537

exclusivity and coplanarity 10,844,146 526,620

t′ 8,835,835 442,236

Table 6.4: Cut flow for final selection of events for pp→ precoilπ
0pfast and pp→ precoilηpfast

6.5 event selection for three-particle final states

The selection cuts for three-particle final states π+π−pfast and K+K−pfast are very similar to
the ones for two-particle final states. However, the presence of two equally charged particles
has to be taken into account according to 6.3.3. The selection is done as follows:

1. Three charged tracks have to be assigned to the primary vertex.
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2. The charge sum of these tracks has to be +1 matching the charge of the incoming beam
particle.

3. The positive meson (π+ or K+) has to be identified by the RICH following the criteria
given in section 6.3.3.
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Figure 6.7: This figure shows the influence of the exclusivity (left) and coplanarity (right) cut for
pp → precoilK

+K−pfast. The light blue area corresponds to the distribution before both
cuts, the dark blue area to the distribution after the other cut. The lines denote the cut on
the value itself.
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Figure 6.8: This figure shows the influence of the exclusivity (left) and coplanarity (right) cut for
pp→ precoilπ

+π−pfast. The light blue area corresponds to the distribution before both cuts,
the dark blue area to the distribution after the other cut. The lines denote the cut on the
value itself.

4. The energy of the outgoing π+π−p (K+K−p) system has to be within ±5GeV around
the peak value of 191 GeV. Additionally, the difference of the azimuthal angles be-
tween the three-particle final state and the recoiling proton has to be within ±0.26 rad
around the expected value of π. The cuts are demonstrated in figure 6.7 for the case
of pp→ precoilK

+K−pfast. In this channel, the non-exclusive background is much larger
compared to pp→ precoilπ

+π−pfast, which is shown in figure 6.8 for comparison. How-
ever, the background contribution is reduced very well by the two cuts.



68 production of single mesons in pp reactions

5. A cut on the momentum transfer 0.1 (GeV/c)2 < t ′ < 1.0 (GeV/c)2 is performed.

The cut flow for the two final states precoilK
+K−pfast and precoilπ

+π−pfast is shown in table
6.5.

π+π− K+K−

after common selection 3,967,769,836

1. 3 charged tracks 463,920,924

2.
∑
Q = +1 413,080,610

3. RICH cut 228,904,119 13,043,511

4. exclusivity and coplanarity 58,219,871 900,671

5. t′ 46,470,396 733,704

Table 6.5: Cut flow for final selection of events for precoilπ
+π−pfast and precoilK

+K−pfast

6.5.1 The reaction pp→ precoilφpfast

In the K+K− mass spectrum shown in figure 6.9, the φ peak is clearly visible directly above
the K+K− threshold. The peak is narrow (the φ meson has a width of 4.266(31) MeV/c2)
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Figure 6.9: Invariant mass of K+K−. The φ peak is clearly visible above threshold.

and asymmetric. Therefore, a relativistic Breit-Wigner [72], which includes the spin of the
resonance and a mass dependent width, is used to fit the peak. To take the experimental
resolution into account, this relativistic Breit-Wigner is convoluted with a Gaussian. For the
background a functional form is chosen to describe the threshold behaviour and the follow-
ing decrease, namely

bg(mKK) = (mKK −mthr)
n exp

[
− a(mKK −mthr)

]
. (6.5)

An extended likelihood fit is performed to ensure that the number of signal and background
events from the fit sum up to the total number of events. Figure 6.10 shows the invariant mass
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spectrum of K+K− in the φ region together with the full fit in red and the φ contribution in
blue. The fit yields a total number of
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Figure 6.10: Fit of φ mass together with the background. The full fit is shown as a red line, the
background as a dashed red line. The pure φ contribution is shown in blue.

Nφ = 12228± 303 ,

which corresponds to roughly 1.7% of all K+K− events.

6.6 event selection for pp → precoilωpfast

In the presented analysis, the decay ω → π+π−π0 is used. Thus, the event selection for this
channel is a combination of both selections described in 6.4 and 6.5. The following cuts are
performed after the preselection:

1. Events must contain three outgoing charged tracks with one RICH identified pion,
where the conditions from 6.5 have to be fulfilled. In addition, two ECAL clusters as
described in 6.4 are required.

2. The ECAL clusters must form a π0 within 2σ for the single ECAL combinations.

3. Cuts on the beam energy, the coplanarity angle and the momentum transfer t′ are
performed in the same way as for the π0/η selection.

The cut flow is given in table 6.6. The invariant mass of the π+π−π0 system after these cuts
is shown in figure 6.11. Besides the large ω peak also a small contribution from η→ π+π−π0

is visible.
The number of ω mesons in this spectrum is determined by a fit. As the background is
moderate, the peak is fitted together with a third degree polynomial background. For the
peak itself a convolution of a Breit-Wigner function and a Gaussian is used. An extended
likelihood fit is performed to ensure that the number of signal and background events from
the fit sum up to the total number of events. In figure 6.12 the data is shown together with
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π+π−π0

1. tracks and ECAL clusters 38,764,390

2. identified π0 10,354,227

3. exclusivity, coplanarity, t′ 4,455,400

Table 6.6: Cut flow for final selection of events for pp→ pfπ
+π−π0ps
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Figure 6.11: Mass of the π+π−π0 system after all
cuts. The large peak stems from ω

decays, whereas the smaller peak is
due to η→ π+π−π0.
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Figure 6.12: Fit of ω mass together with a poly-
nomial background.

the fit where the peak is shown in blue and the full fit is shown in red. The number of ω
events obtained from the fit is

Nω = 613479± 1607 ,

which corresponds to roughly 14% of all π+π−π0 events.
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D E T E R M I N AT I O N O F E X P E R I M E N TA L A C C E P TA N C E

A proper knowledge of the experimental acceptance (which is composed of geometric accep-
tance as well as detector efficiencies) is crucial for the correct determination of physical quan-
tities such as cross sections. A Monte-Carlo simulation is used to obtain the acceptance. The
simulated events are processed and reconstructed in the same way as the real data events.
The comparison of reconstructed events and the generated events allows to determine the
loss of events as a function of kinematic variables. Only reactions with a single meson in the
final state, namely

pp→precoilπ
0pfast

pp→precoilηpfast

pp→precoilωpfast

pp→precoilφpfast

are considered. These two-particle final states can be described by three independent kine-
matic variables and therefore, a three-dimensional acceptance correction in these variables is
performed. For this analysis, the choice of variables corresponds to the variables, which will
be used for the partial wave analysis in part III. These variables are

• the invariant mass of the proton-meson system MpM and

• the angles cos(θ) and ϕ of the meson in the Gottfried-Jackson frame, which is defined
as shown in figure 7.1.

p
fast

π0

p
rec

ptarget

θ

ϕ

p
beam P

Figure 7.1: The Gottfried-Jackson frame is defined as the rest frame of the resonance X, where the
z-axis points in the direction of the beam, the x-axis is the original direction of the reso-
nance and y = z× x. Then, the angle θ is the angle between the beam direction and one
of the outgoing particles (in this case the meson) and the angle ϕ is the angle between
the production plane (beam + recoiling proton, grey) and decay plane (beam + outgoing
particles, red).
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7.1 the monte-carlo set-up

The acceptance calculation with a Monte-Carlo simulation is done in three steps:

1. Monte-Carlo events are generated.

2. The generated events are processed through a detector simulation and the same event
reconstruction as real data events.

3. The acceptance is calculated by comparing the reconstructed Monte-Carlo events with
the information from the Monte-Carlo generator.

These three steps are described in the following.

7.1.1 Generator

Monte-Carlo events are generated using the genpw generator from the rootpwa package
[73]. The generator produces events that are “flat in phase space” which simply means, that
no resonant processes etc. are taken into account. The only inputs for the generator, which
simulates the diffractive production of mesons, are the measured slope of the momentum
transfer t′ from the target proton to the beam proton and information on the beam profile,
which is taken from real data events. The generated events contain four-vectors of the initial
and final state particles as well as an interaction vertex in the target region. The distributions
(for pp→ ppπ0) of generated events in the three variables are shown in figure 7.2.
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Figure 7.2: Kinematic distributions of generated Monte-Carlo events for Mpπ0 , cos(θ) and ϕ (from
left to right).

7.1.2 Detector Simulation and Event Reconstruction

The generated events are directly used in the detector simulation done by COMGEANT
which is based on GEANT3 [74]. The full material description and active detector volumes
are included in the description. In COMGEANT particles from the generator are traversed
through the detector material, where the interaction of the particles with the material are
simulated. This includes positron annihilation, bremsstrahlung, Compton scattering, decay in
flight, delta-electron production, hadron interactions, energy loss, multiple scattering, muon-
nucleus interactions, pair production and photoelectric effect. Some details can be found
in [75]. Hits and deposed energy in the single detectors are stored to be used in the event
reconstruction. The event reconstruction itself is done with CORAL (compare section 6.2).
Here, the same CORAL version, that was used in the reconstruction of the real data events,
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has to be used to ensure a consistent handling of the detector information in real data and
Monte-Carlo.

7.1.3 Calculation of Acceptance

The calculation of the acceptance is done in PHAST. The same cuts as for the data (see chapter
6) are performed on reconstructed Monte-Carlo events. The acceptance and its error is then
calculated with the help of the ROOT TEfficiency class [76], which calculates the acceptance
from the generated Monte-Carlo events and the information whether they passed all cuts or
not. The result is a three-dimensional acceptance matrix (in MpM, cos(θ) and ϕ) which con-
tains the fractions of the generated events (= acceptance) that passed the full reconstruction
and analysis. For the error a 95% confidence Clopper-Pearson [77] interval, which is based
on binomial statistics, is used. The acceptance correction of kinematic distributions is then
done on an event by event basis. For each event, the corresponding acceptance is taken from
the three-dimensional matrix and the event is weighted with 1/acceptance.

7.1.4 Available Monte-Carlo Statistics

In table 7.1 the available Monte-Carlo statistics NMC for the individual reactions together
with the number of accepted events Nacc and the available data statistics Ndata are shown.

channel NMC Nacc Ndata

pp→ ppπ0 17,493,052 2,229,354 8,835,835

pp→ ppη 14,005,248 2,144,556 442,241

pp→ ppω 13,884,149 1,124,837 613,479

pp→ ppφ 15,160,323 2,224,502 12,228

Table 7.1: Available statistics of generated Monte-Carlo events (NMC), reconstructed Monte-Carlo
events (Nacc) and data events (Ndata) for different channels.

For a sufficiently smooth calculation of the acceptance the number of accepted events should
at least be as large as the number of data events. Then, the error on the acceptance is in the
same order as the statistical error on the data. Especially for the π0 channel, more Monte-
Carlo statistics would be desirable but is presently not available.

7.2 acceptance for pion production

In figure 7.3, the one-dimensional projections of the three-dimensional acceptance matrix for
pp→ ppπ0 are shown as a function of the three variablesMpπ0 , cos(θ) andϕ. The acceptance
in the invariant mass is flat, the acceptance in cos(θ) shows a dip around 0.7 which can
be attributed to photons absorbed in the RICH beam pipe. The sinusoidal variation of the
acceptance in ϕ is most likely connected to the rectangular shape of the geometric acceptance
of the single detectors. To prove this assumption, further studies are needed in the future.
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Figure 7.3: One-dimensional projections of the acceptance for Mpπ0 , cos(θ) and ϕ (from left to right)
for pp→ ppπ0.

7.3 acceptance for eta production

The following figures show the same distributions for pp → ppη which were shown in the
pion case before. For η production the acceptance in the invariant mass is also flat. The effect
of the RICH pipe is smaller due to larger angles of the decay photons in η → γγ compared
to π0 → γγ.
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Figure 7.4: One-dimensional projections of the acceptance for Mpη, cos(θ) and ϕ (from left to right)
for pp→ ppη.

7.4 acceptance for phi production

The one-dimensional projections of the acceptance for φ production in the same variables
as before is shown in figure 7.5. The acceptance in the invariant mass and in the azimuthal
angle ϕ looks similar as for π0 and η production. In contrast, the acceptance in the polar
angle drops to zero for cos(θ) & 0.4. This behaviour can be attributed to the momentum cut
on the K+, which is needed for the kaon identification in the RICH detector (see section 6.3.3).
Previous analyses showed, that this affects also the acceptance as a function of Feynman xF
of the fast proton [48]. In the following, a cut of 0.5 < xF(p) < 0.9 will be applied on the
pp→ ppφ data to account for the effects of the RICH momentum cut.
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Figure 7.5: One-dimensional projections of the acceptance for Mpφ, cos(θ) and ϕ (from left to right)
for pp→ ppφ.

7.5 acceptance for omega production

In figure 7.6 the one-dimensional projections of the acceptance for pp → ppω are shown in
the three variables. Also here, the acceptance drops for large cos(θ), but this is mainly due
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Figure 7.6: One-dimensional projections of the acceptance for Mpφ, cos(θ) and ϕ (from left to right)
for pp→ ppω.

to the ECAL acceptance as in the pp → ppπ0 case and not an effect induced by the RICH.
However, in order to compare ω and φ production, the same cut on xF of the fast proton is
applied on the ω data.
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K I N E M AT I C D I S T R I B U T I O N S

In this chapter kinematic distributions, namely invariant masses and angular distributions,
for the different channels will be shown and possible contributions from different reaction
mechanisms and resonances will be discussed. In addition, the effects of the acceptance
correction will be examined. The investigated channels are pp → ppπ0, pp → ppη, pp →
ppK+K− (which includes φ→ K+K−) and pp→ ppπ+π−π0 (which includes ω→ π+π−π0).
The reaction pp→ ppπ+π− is additionally discussed in appendix C.

8.1 pion production

8.1.1 Invariant Mass of pπ0

In the left panel of figure 8.1 the invariant mass of the outgoing pπ0 system is shown with
acceptance correction applied. The distribution shows some eye-catching features:

• There are two peaks at roughly 1500MeV/c2 and a bit below 1700MeV/c2. Candidate
resonances for the first peak are the N(1520)3/2− and the N(1535)1/2− as well as the
Roper resonance N(1440)1/2+. For the second peak there are at least two candidates,
namely the N(1675)5/2− and N(1680)5/2+, but there are further resonances close to
this mass region. A compilation of known resonances will be given in chapter 10.

• Beyond the second peak the mass spectrum drops exponentially without any clear
further resonance contributions. This can be explained by the weak coupling of the
higher resonances into the Nπ channel [78]. The exponential decrease of non-resonant
processes is predicted by theory and will be discussed in chapter 13.
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Figure 8.1: Invariant Mass of pπ0. The left plot shows the acceptance corrected distribution, the right
plot shows a comparison of uncorrected and corrected data normalised to each other.

Another observation is the absence of the ∆(1232). This shows the dominance of diffractive
dissociation (see section 1.3.3) in the reaction: The exchanged Pomeron does not transfer any
isospin between the target and beam protons. As the recoiling proton is detected, the final
state must have isospin I = 1

2 . Without transfer of isospin, only N∗ resonances (and non-
resonant background) are expected in the final state. This simplifies the analysis procedure.

77
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The influence of the acceptance correction can be seen in the right panel of figure 8.1, where
the distributions with and without acceptance correction applied are shown normalised to
each other. The influence of the acceptance correction is small, the only visible effect is a
slight change in the ratio of the two peak heights as well as a small change in the exponential
drop, which is less steep with applied acceptance correction.
In chapter 13 the background contributions will be investigated in comparison with theory,
in chapters 12 and 14 the possibility to disentangle resonant contributions with a partial wave
analysis will be discussed.

8.1.2 Angular Distributions

The angular distributions are given in the Gottfried-Jackson frame as defined in figure 7.1.
The angle θ is defined as the angle between the outgoing π0 and the beam direction, and ϕ is
the angle between the production plane (containing the beam and the recoiling proton) and
the decay plane (containing the beam and the outgoing π0) in the pπ0 rest frame.

The ϕ distribution, which is shown in the left panel of figure 8.2 is symmetric around ϕ = 0,
which is expected if there is no dominant phase correlation in the final state. The influence
of the acceptance correction can be seen in the right panel of figure 8.2. The distribution is a
bit narrower around ϕ = 0 and gets enhanced around ϕ = π.
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Figure 8.2: Gottfried-Jackson angle ϕ for pπ0. The left plot shows the distribution with applied accep-
tance correction, the right plot shows the comparison of corrected and uncorrected data
normalised to each other.

The cos(θ) distribution in the left panel of figure 8.3 shows a clear backward peak (cos(θ) ≈
−1). This is a clear hint for pions which are not produced in resonance decays but in exchange
processes, which will be discussed in chapter 13. Due to acceptance correction the height of
the peak is reduced1. This can be seen in the right panel of figure 8.3. The contribution of the
backward peak changes with the invariant mass; this can be seen in figure 8.4, where cos(θ)
is plotted against the invariant mass with a linear scale (left panel) and a logarithmic scale
(right panel). While in the region with the two peaks significant contributions are observed
for cos(θ) ≈ 1, the backward peak dominates the distribution for masses above 1800MeV/c2.
This behaviour is better visible in the plot with a logarithmic scale: Some structure in cos(θ)
is observed in the peak region, but is no longer visible in the higher mass region, which is
dominated by the backward peak.

1 Actually the distribution is enhanced for positive values of cos(θ) due to the smaller acceptance there (compare
middle panel of figure 7.3). This leads to a smaller peak compared to the rest of the distribution.
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Figure 8.3: Gottfried-Jackson angle cos(θ) for pπ0. The left plot shows the distribution with applied
acceptance correction, the right plot shows the comparison of corrected and uncorrected
data normalised to each other.
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Figure 8.4: Gottfried-Jackson angle cos(θ) for pπ0 plotted against the invariant mass Mpπ0 with ac-
ceptance correction applied.

8.2 eta production

8.2.1 Invariant Mass of pη

The invariant mass spectrum of pη is shown in the left panel of figure 8.5. It also shows
an exponential decrease for higher masses, which is less steep than in the case of pπ0. In
this spectrum there are some weak structures around 1700MeV/c2 and 1900MeV/c2, which
might be due to resonances. The structure directly at threshold could originate from the decay
of N(1535)1/2−, which has a large branching ratio (42± 10%) into pη and is located directly
above the pη threshold (1485.8MeV/c2). The acceptance correction enhances the structures;
this can be seen in the right panel of figure 8.5.

8.2.2 Angular Distributions

In figure 8.6 cos(θ) is shown as a function of the invariant mass of pη with a linear scale
(left panel) and a logarithmic scale (right panel). Similar to the pπ0 case, the region above the
possibly resonant structures is dominated by a backward peak. In the pη case, the backward
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Figure 8.5: Invariant Mass of pη. The left plot shows the distribution with applied acceptance correc-
tion, the right plot shows the comparison of corrected and uncorrected data normalised to
each other.

peak is broader compared with pπ0. The cos(θ) and ϕ distributions for this channel are
shown and discussed in appendix C.
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Figure 8.6: Gottfried-Jackson angle cos(θ) for pη plotted against the invariant mass Mpη with accep-
tance correction applied.

8.3 kaon pair production

For the channel pp → ppK+K−, Monte-Carlo data is only available for the sub-channel,
where the two kaons stem from the decay of a φ meson. Therefore, no acceptance correction
is applied to the distributions which are shown in the following. The production of φmesons
will be investigated in chapter 9.3.
In figure 8.7 the invariant mass spectra of pK+K− and the three possible sub-systems are
shown. In the three-particle invariant mass (top left) there are no visible structures. This is in
agreement with the PDG listings, where no baryons are known which decay into pK+K− (or
pφ). In the K+K− spectrum (top right) the most striking contribution stems from the decay
φ → K+K−, which produces a narrow peak just above the two-kaon threshold. The promi-
nent peak around 1500MeV/c2 could come from f′2(1525) decays, which have a branching
fraction of nearly 90% into K+K−. The pK− spectrum (bottom left) exhibits a large Λ(1520)
contribution, which could serve as a starting point for future analyses of the interesting chan-



8 kinematic distributions 81

)2 System (GeV/c
f

p-K+Invariant Mass of K
1.5 2.0 2.5 3.0 3.5 4.0 4.5

2
E

ve
nt

s 
/ 5

 M
eV

/c

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

310×

(a) pK+K−

)2 System (GeV/c-K+Invariant Mass of K

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

2
E

ve
nt

s 
/ 5

 M
eV

/c

0

2

4

6

8

10

12

310×

(b) K+K−

)2 System (GeV/c
f

p-Invariant Mass of K
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

2
E

ve
nt

s 
/ 5

 M
eV

/c

0

2

4

6

8

10

12

14
310×

(c) pK−

)2 System (GeV/c
f

p+Invariant Mass of K
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

2
E

ve
nt

s 
/ 5

 M
eV

/c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

310×

(d) pK+

Figure 8.7: Invariant mass spectra of pK+K− and the different two-particle sub-systems for pp →
ppK+K−.

nel pp → pK+Λ. The second peak in this spectrum is probably some mixture of Λ(1800),
Λ(1810), Λ(1820) and Λ(1830). Finally, no resonant structures are observed in pK+ (bottom
right). Those would result from strange baryons with a charge of +2, which do not exist
in the quark model and are thus not expected. Any structure in the pK+ invariant mass
distribution would be a hint for exotic states.



82 production of single mesons in pp reactions

8.4 three-pion production

The channel pp→ ppπ+π−π0 has a four-particle final state and is thus complicated to handle.
Similar to the kaon pair production, Monte-Carlo data is only available for the pp → ppω

sub-channel and thus, no acceptance corrections are applied to the spectra shown in this
section.
The three-body π+π−π0 invariant mass spectrum, which is given in figure 8.8, shows a large
contribution of ω(782). In addition, there are some η → π+π−π0 events, which could be
used to enhance the statistics of the η → γγ final state. However, the gain in statistics is
not high enough to justify the additional work in the framework of this thesis. In figure
8.9 the invariant mass of pπ+π−π0 is shown without any cuts on the three-body mass. The
bump around 1700MeV/c2 possibly stems from the known decay of N(1710) into pω (BR=
(8± 5)%) and pη (BR= 10− 30%).
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Figure 8.8: Invariant mass of π+π−π0.
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Figure 8.9: Invariant mass of pπ+π−π0.
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R E S U LT S F O R S I N G L E M E S O N P R O D U C T I O N

In this chapter, the production cross sections for pseudoscalar mesons (π0, η) and vector
mesons (ω, φ) will be compared. For the case of pseudoscalar mesons, this comparison was
done in several experiments, but in a very limited kinematic range. The production of vector
mesons has been investigated before at COMPASS in view of a study of the OZI rule [79].

9.1 calculation of cross section ratios

For the calculation of cross section ratios, the acceptance corrected data sets described in the
previous chapters are used. The different reactions are extracted from the same measurement
and thus, the luminosity drops out and the cross section ratio is simply given as the ratio of
the (acceptance corrected) number of events, e. g.

σ(pp→ ppη)

σ(pp→ ppπ0)
=
N(pp→ ppη)

N(pp→ ppπ0)
. (9.1)

As only one decay channel of the meson is used in the analysis, the event numbers have to
be corrected by the according branching fraction, i. e.

σ(pp→ ppη)

σ(pp→ ppπ0)
=

N(pp→ ppη→ ppγγ)/BR(η→ γγ)

N(pp→ ppπ0 → ppγγ)/BR(π0 → γγ)
. (9.2)

The branching ratios for the decays used in this analysis are given as [1]

π0 → γγ BR = 98.823(34)%

η→ γγ BR = 39.41(20)%

ω→ π+π−π0 BR = 89.2(7)%

φ→ K+K− BR = 48.9(5)% .

In the case of ω and φ production, the number of events is taken from the fit, that was intro-
duced in 6.6 and 6.5.1, respectively. The cross section ratios will be calculated in bins of the
Feynman scaling variable xF [80] of the meson M. It measures the longitudinal momentum
fraction of a particle in the centre-of-mass-frame and can be approximately calculated as

xF =
2pL(M)√

s
≈
(

pz(M)

pz(beam)

)
CMS

, (9.3)

where the momenta have to be calculated in the pp centre-of-mass frame (CMS). The variable
xF can take values between −1 and 1, where negative values of the meson xF are outside of the
acceptance of the COMPASS spectrometer. It can – to some extend – be used to characterize
the reaction: Mesons produced with small xF are less likely produced in a decay of a pM
bound state, but more likely in a meson exchange process. In the case of π0 and η, which are
available in the full xF range, a comparison is performed not only in bins of xF but also in
bins of t′, which was defined in equation (6.3). Additionally, due to the large statistics of the
data set, a two-dimensional binning in xF and t′ is possible.
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9.2 results for pseudoscalar mesons

In the following, the results for the cross section ratio σ(pp→ppη)
σ(pp→ppπ0) will be shown in bins of

xF, in bins of t′ and in a two-dimensional xF-t′ binning.

9.2.1 Cross Section Ratio as a Function of xF

In figure 9.1, the cross section ratio of η and π0 production is shown as a function of xF.
the corresponding values are given in the table within the figure. The ratio varies roughly
between 6.5% and 12.5% with a dip around xF = 0.2. This dip is correlated with the different
shapes of the xF distributions, which are shown in figure 9.2. The bump on the falling xF
distributions can be mainly attributed to resonance production, which is enhanced for pion
production. The dotted line in figure 9.1 denotes the average cross section ratio over the full
data set of

σ(pp→ ppη)

σ(pp→ ppπ0)
= 9.245± 0.004% (9.4)

The statistical uncertainties (
√
N Poisson errors) are small due to the large available data set.

As discussed in 9.4, the systematic uncertainties cancel to a large part in the ratios as the
observed final state is identical for both π0 and η.
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0.5− 0.6 596959/5158200 11.57± 0.02
0.6− 0.7 231332/1858381 12.45± 0.04

Figure 9.1: Cross section ratio η/π0 as a function of xF. The statistical uncertainties are smaller than
the size of the symbols. The dotted line denotes the average ratio over the full xF range.
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Figure 9.2: The Feynman xF distributions of π0 (left) and η (right) produced in pp→ p(π0/η)p.
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The cross section ratio of η and π0 production was already measured in several experiments
in different regions of xF:
The WA102 experiment measured the cross section ratio in 450MeV/c pp reactions on a fixed
target. They report a cross section ratio of

σ(π0) : σ(η) = 1 : 0.073± 0.005 (9.5)

for 0.0 6 xF 6 0.1 [81]. This result is in tension to the result of this analysis of

σ(π0) : σ(η) = 1 : 0.1208± 0.0002 (9.6)

in the same xF range. However, the cuts used in the WA102 analysis are not given in detail
in [81]. The xF distributions of π0 and η given in their paper fall off quite steeply. The bump,
which is observed in figure 9.2, is missing and no data is available for xF > 0.4. The only
cut, which is given in [81], is a cut on the invariant proton-π0 mass of M(pπ0) > 2.0GeV/c2

“to remove proton excitations”. Applying this cut in my analysis yields an even larger cross
section ratio of 1 : 0.2016 ± 0.0002. Thus, there seem to be additional cuts in the WA102
analysis.
The NA12/2 experiment [82] measured the same cross section ratios at 300GeV/c fixed-target
π−N reactions. They report a value of

σ(π0) : σ(η) = 1 : 0.083± 0.014 (9.7)

for 0.05 6 xF 6 0.20. For the same range, I obtain a result of

σ(π0) : σ(η) = 1 : 0.0866± 0.0002 , (9.8)

which is in reasonable agreement (2.6σ) with the published result.
The Axial Field Spectrometer collaboration [83] measured cross section ratios at

√
s = 53GeV

pp and pp collisions for large transverse momenta 2GeV/c 6 pT 6 6GeV/c of the meson. In
this totally different kinematic regime a value of

σ(π0) : σ(η) = 1 : 0.55± 0.04 (9.9)

is reported but cannot be compared to the COMPASS result.

9.2.2 Cross Section Ratio as a Function of t′

The cross section ratio σ(pp→ppη)
σ(pp→ppπ0) is now calculated in nine bins of t′ between 0.1 (GeV/c)2

and 1.0 (GeV/c)2. The results is shown in figure 9.3, the corresponding values are given in
the table in the figure. The dotted line denotes the value for the full data set of 9.245± 0.004%.
This value is dominated by the first bin, which has the largest statistics (the t′ distribution
falls exponentially, compare figure 6.6), and thus, most of the data points are above the
average value. The cross section ratio rises slowly from ≈ 8% to ≈ 14% over the investigated
range. A possible explanation of this behaviour is the enhanced production of the heavier η
meson when more energy is transferred from the target to the final state.
Finally, a two-dimensional comparison in xF and t′ is possible. Figure 9.4 shows the cross
section ratio σ(pp→ppη)

σ(pp→ppπ0) as a function of xF in bins of t′. The t′ bins are denoted by different
colours, the single distributions come with an offset ci, which is given in the figure. The dip
in the cross section ratio as a function of xF which can be seen in figure 9.1 is even more
pronounced in the region above t′ = 0.3 (GeV/c)2.
In figure 9.5, the cross section ratio σ(pp→ppη)

σ(pp→ppπ0) is shown as a function of t′ in bins of xF. The
rise of the cross section ratio as a function of t′ can be observed in all xF bins, but is weaker



86 production of single mesons in pp reactions

2/c2t' in GeV
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 in
 %

0 π/η
C

ro
ss

 s
ec

tio
n 

ra
tio

 

0

2

4

6

8

10

12

14

16

18

20

t′ in (GeV/c)2 Cross section
ratio in %

0.1− 0.2 7.98± 0.01
0.2− 0.3 9.91± 0.01
0.3− 0.4 10.37± 0.01
0.4− 0.5 10.67± 0.01
0.5− 0.6 11.08± 0.02
0.6− 0.7 11.47± 0.02
0.7− 0.8 12.28± 0.03
0.8− 0.9 12.63± 0.04
0.9− 1.0 13.66± 0.05

Figure 9.3: Cross section ratio η/π0 as a function of t′. The error bars are not visible due to the large
statistics. The dotted line denotes the average ratio over the full t′ range.
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Figure 9.4: Cross section ratio η/π0 as a function of xF in bins of t′. The bins are denoted by different
colours, the single distributions come with an offset ci given in the figure.

in the medium xF range between 0.3 and 0.5, where the bump in the xF distribution of the η
meson is located (compare right panel of figure 9.2). The largest effect can be observed in the
highest xF bin, where the cross section ratio rises rapidly in the low t′ bins.
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colours, the single distributions come with an offset ci given in the figure.

9.3 results for vector mesons

The production of vector mesons has already been investigated at COMPASS as a function
of xF of the fast proton [48, 79]. In addition, the analysis was performed on the combined
2008 and 2009 data set, and therefore, the results cannot be directly compared to the ones
obtained for the pseudoscalar mesons. However, it is possible to compare the ratio of φ and
ω production, which is independent of the data set, when the same cuts are applied.
As shown in section 7.4 the acceptance for φ mesons is nearly zero in certain ranges of the
proton xF. Therefore, a cut of 0.5 < xF(p) < 0.9 is performed on φ as well on ω data and the
selection is done in the remaining 4 bins of the meson xF between 0.1 and 0.5. The invariant
mass spectra, corrected for acceptance and branching fractions, for π+π−π0 and K+K− in
the full xF range are shown in figures 9.6 and 9.7 together with the fits of the ω and φ peak,
respectively. The full fit is shown in red, the contribution from ω and φ in blue.
With acceptance correction and branching fraction the fit yields a total number of Nφ =

139067± 1648 φ mesons and Nω = 8704642± 1029 ω mesons, which corresponds to a ratio
of

Nφ

Nω
= 1.60(2)% .

This result is in perfect agreement with the value of 1.60(3)%, which was obtained before at
COMPASS.

In figure 9.8 the absolute numbers, corrected for acceptance and branching fractions, of pro-
duced mesons (π0, η, ω, φ) are shown as a function of the meson xF. Dividing these numbers
by the integrated luminosity would yield the cross section. In the case of π0 and η the open
symbols denote the values without the cut on xF, the filled symbols the values with the cut
on xF of the fast proton. The statistical errors are too small to be visible in the plot. In the
upper part of table 9.1 the event numbers used in figure 9.8 are given for the case of the
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Figure 9.6: Fit of ω mass together with a polyno-
mial background on acceptance cor-
rected data. The full fit is shown in
red, the ω contribution in blue.
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Figure 9.7: Fit of φ mass together with back-
ground on acceptance corrected data.
The full fit is shown in red, the φ con-
tribution in blue.

cut on xF of the fast proton1. In addition, the cross section ratios for η, ω and φ relative to
the production of π0 mesons are given in the lower part of table 9.1. The cross section for
ω meson production is roughly twice as high as for η meson production. The cross section
ratio σ(ω)

σ(π0)
behaves very similar to σ(η)

σ(π0)
in the considered xF range. The cross section for φ

production is quite small, which is expected due to the OZI suppression of φ production [84–
87]. The change of the cross section ratio σ(φ)

σ(ω) as a function of the meson xF is in agreement
with the previous COMPASS result [79].
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Figure 9.8: Number of produced mesons (π0, η, ω, φ) as a function of their xF. In the case of π0 and
η the open symbols denote the values without the cut on xF, the filled symbols the values
with the cut on xF of the fast proton as it is done for ω and φ.

1 The numbers for π0 and η without the cut are already given in the table in figure 9.1.



9 results for single meson production 89

Number of events

xF π0 η ω φ

0.1− 0.2 13602595± 5959 1031969± 5335 1930117± 15450 24134± 723
0.2− 0.3 15206953± 6525 1015047± 5249 1927425± 15392 32339± 679
0.3− 0.4 13269721± 5841 1117607± 5769 1804984± 14715 30388± 515
0.4− 0.5 8562599± 4152 893812± 4633 1716769± 13672 43694± 770

Cross section ratio relative to π0 in %

xF η ω φ

0.1− 0.2 7.59± 0.04 14.19± 0.11 0.177± 0.005
0.2− 0.3 6.67± 0.03 12.69± 0.10 0.229± 0.004
0.3− 0.4 8.42± 0.04 13.60± 0.11 0.229± 0.004
0.4− 0.5 10.44± 0.05 20.05± 0.16 0.510± 0.009

Table 9.1: Absolute number of events for the production of π0, η, ω and φ mesons in pp → ppM

(upper table) and cross section ratios for the production of η, ω and φ mesons relative to
the production of π0 mesons (lower table).

9.4 discussion of systematic uncertainties

In the calculation of cross section ratios, most of the detector effects (CEDAR, RPD, tracking)
cancel due to the same selection criteria for all investigated reactions. Since the acceptance
correction is done in three dimensions, the systematic effects from the Monte-Carlo generator
are small. Remaining systematic effects stem from the identification of charged particles in
the RICH, photon reconstruction in the electromagnetic calorimeters and from the fits that are
used to determine the number ofω and φ events. These systematic uncertainties were already
studied during the previous analysis [48]. The uncertainty from the RICH is estimated to 5%,
the photon reconstruction efficiency to 10%. The systematic uncertainty on the ω and φ

fits was confirmed to be 5% in this analysis by applying different parametrisations for the
background descriptions. In the different cross section ratios, some of these effects also cancel
to a large part:

σ(η)
σ(π0)

The selection of π0 and η uses the same final state (ppγγ). Thus, this ratio is (nearly)
free of systematic uncertainties.

σ(ω)
σ(π0)

In this case, the ECAL uncertainties cancel to a large part as both states have two photon
clusters in the final state. The quadratic sum of the RICH and fit uncertainties yields a
total systematic uncertainty of 7% for this cross section ratio.

σ(φ)
σ(π0)

In the cross section ratio of φ and π0 all sources of systematic uncertainties have to be
taken into account. The total uncertainty is 12% in this case.





S U M M A RY – P R O D U C T I O N O F S I N G L E M E S O N S I N pp R E A C T I O N S

In the previous chapters, the determination of cross sections for single meson production
was presented. This is the first measurement of four different mesons (π 0 , η , ω and φ) over
a large range of the Feynman variable x F of the meson. The final results for the cross section
ratios relative to π 0 production are given in table 9.2. The results include the systematic
uncertainties, which were discussed in section 9.4. The cross section ratio of η and π0 as

Cross section ratio relative to π 0 in %

x F η ω φ

0 . 1 − 0 . 2 7 . 5 9 ± 0 . 0 4 1 4 . 1 9 ± 0 . 1 1 ± 0 . 9 9 0 . 1 7 7 ± 0 . 0 0 5 ± 0 . 0 2 1

0 . 2 − 0 . 3 6 . 6 7 ± 0 . 0 3 1 2 . 6 9 ± 0 . 1 0 ± 0 . 8 9 0 . 2 1 3 ± 0 . 0 0 4 ± 0 . 0 2 6

0 . 3 − 0 . 4 8 . 4 2 ± 0 . 0 4 1 3 . 6 0 ± 0 . 1 1 ± 0 . 9 5 0 . 2 2 9 ± 0 . 0 0 4 ± 0 . 0 2 7

0 . 4 − 0 . 5 1 0 . 4 4 ± 0 . 0 5 2 0 . 0 5 ± 0 . 1 6 ± 1 . 4 0 0 . 5 1 0 ± 0 . 0 0 9 ± 0 . 0 6 1

Table 9.2: Cross section ratios for the production of η, ω and φ mesons relative to the production of
π0 mesons with statistical and systematic uncertainties as discussed in section 9.4.

a function of xF shows a resonant enhancement of π0 production in the medium xF range.
The obtained cross section ratio of φ and ω production is in agreement with the previous
COMPASS analysis [79]. In addition, the cross section ratio of η and π0 production was
analysed as a function of the momentum transfer t′ and in a two-dimensional binning of xF
and t′. The results were shown in figures 9.4 and 9.5.

For the future, an inclusion of the two additional neutral mesons, namely η′ and ρ would be
desirable. Both are available in the data set used in this analysis. However, the extraction of
event numbers is more complicated for those. The production cross section for η′ mesons is
quite small, therefore several decay channels have to be combined to achieve enough statistics.
The ρ meson is available from ppπ+π− final states, but the ρ resonance has a large width
and is located in a mass region with large background2. Thus, a precise determination of the
number of ρ mesons is challenging.

2 The π+π− mass spectrum can be found in the upper right panel of figure C.3 in the appendix.
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L I G H T B A RY O N S I N E X P E R I M E N T A N D T H E O RY

In this chapter an overview on experimental results in baryon spectroscopy, that were ob-
tained in the past decades and with experiments that are still ongoing, will be given. Only
light baryon resonances, containing u and d (and some s) quarks, which are important in
this work, are covered. A more detailed review, which also includes heavy baryons, can be
found in [88]. An up-to-date analysis of all available data on light baryons may be found in
[89], recent results in Nη final states are given in [90]. In addition, a short overview over theo-
retical baryon models will be given, those are reviewed in [91], oscillator models are covered
in more detailed in [92]. A recent report on experimental techniques as well as theoretical
approaches appeared in [93].

10.1 naming and notation conventions for baryons

The naming convention for light baryons is based on the number of strange quarks:

• Baryons without strange quarks (only u and d) are called N (I = 1
2 ) or ∆ (I = 3

2 ).

• Baryons with one strange quark are called Λ (I = 0) or Σ (I = 1).

• Baryons with two strange quarks are called Ξ (I = 1
2 ).

• Baryons with three strange quarks are called Ω (I = 0).

Strongly decaying baryons have their mass in MeV/c2 as a part of their name, e. g. ∆(1232),
N(1440),. . . For baryons containing heavy quarks (c,b) the heavy quark, that substitutes one
of the strange quarks, is given as an index, e. g. Λ−

c = (udc).
Exited baryons (with u and d quarks) are either characterised with JP, i. e. spin J and parity
P, or in a spectroscopic notation L2I,2J, with total spin J, isospin I and angular momentum
L, denoted in spectroscopic notation (S,P,D, . . . ). A relation between the two notations for N
resonances is given in table

JP 1
2

+ 1
2

− 3
2

+ 3
2

− 5
2

+ 5
2

− 7
2

+ 7
2

− 9
2

+ 9
2

−

L2I,2J P11 S11 P13 D13 F15 D15 F17 G17 H19 G19

Table 10.1: Different notation conventions for N baryon resonances.

10.2 baryons in experiments

Baryon resonances are accessible in different types of experiments, namely

• meson-nucleon (or nucleon-nucleon) scattering

• decay of charmonium states

• photoproduction.

Results from those will be discussed in the following.
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10.2.1 Scattering Experiments

The first large analyses in the field of baryon spectroscopy were based on pion-nucleon scat-
tering data. The cross sections for the scattering of π± off protons as shown in figure 10.1
exhibit several structures. The dominant contribution arises from the ∆(1232) resonance. The
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Figure 49.9D13: Total and elastic cross sections for π±p and π±d (total only) collisions as a
function of laboratory beam momentum and total center-of-mass energy. Corresponding data files
may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS Group,
IHEP, Protvino, September 2013.)

6

Figure 10.1: Total and elastic cross sections for π± scattering off protons and deuterons taken from
the PDG at http://pdg.lbl.gov/current/xsect (called August 30, 2015, courtesy of the
COMPAS group, IHEP, Protvino).

original analyses were performed in the late 70s [94–96], later reanalyses [97, 98] mainly
confirmed the original results for strong resonances but yielded different results for several
weaker resonances. The results from these (re)analyses are the main ingredients for the list-
ings and the rating of resonances by the PDG.

Inelastic reactions of pions and kaons (e. g. π−p → nπ+π−) were investigated at the Large
Aperture Superconducting Solenoid (LASS) spectrometer at SLAC [99] in the 80s. The focus
of the analyses was on meson spectroscopy, nevertheless the data also contain information
on strange baryons, but only few results were actually published [100, 101]. Prior to that
analyses, those inelastic channels were investigated in bubble chamber experiments. A review
on these is given in [102].
In the late 90s, the Crystal Ball Collaboration at BNL measured different reactions with ne-
gative pions and kaons impinging on protons. Cross sections and angular distributions were

http://pdg.lbl.gov/current/xsect
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measured in the reaction π−p→ nη starting from threshold [103, 104] and resonance parame-
ters were extracted using the SAID partial wave analysis program [105, 106]. In π−p → nπ0

the effect of the η threshold [107] and the ∆(1232) region [108] were investigated.

10.2.2 Charmonium Decays

Baryon resonances can be observed in decays of charmonium states such as J/ψ → ppπ0 or
J/ψ→ ppη, where resonances appear both in the pπ0(η) and the pπ0(η) system. Such decays
are studied at the BESIII experiment [109] at the BEPCII e+e− collider. Reviews on baryon
spectroscopy results can be found in [110, 111].

10.2.3 Photoproduction

Alternatively, baryon resonances can be produced in the reaction of high energy photons with
protons (γp → X). The total photoabsorption cross section is shown in figure 10.2. It shows
a large peak for the ∆(1232) but also further structures at higher masses. The necessity of
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Figure 49.9D16: Total and elastic cross sections for Λp, total cross section for Σ−p, and total
hadronic cross sections for γd, γp, and γγ collisions as a function of laboratory beam momentum
and the total center-of-mass energy.
Corresponding data files may be found at http://pdg.lbl.gov/xsect/contents.html

(Courtesy of the COMPAS group, IHEP, Protvino, September 2013.)

9

Figure 10.2: Total photoabsorption cross sections for protons and deuterons taken from the PDG at
http://pdg.lbl.gov/current/xsect (called August 30, 2015, courtesy of the COMPAS
group, IHEP, Protvino).

photoproduction experiments is based on open questions arising from πN-scattering results:

• The reanalysis [98] of the original πN-scattering data [95, 96] points to some open ques-
tions about the existence of several states, which should be clarified by independent
measurements.

• The number of baryon resonances found above 1.8 GeV/c2 is smaller than expected
in any model. A reason might be that these high mass states decouple from the πN
channel [78]. Some of these resonances should be accessible in photoproduction expe-
riments.

• Photoproduction allows to access additional properties of baryon resonances such as
form factors, polarisabilities and helicity amplitudes. A review on these low Q2 proper-
ties can be found in [112].

http://pdg.lbl.gov/current/xsect
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First photoproduction experiments were carried out in the 60s and 70s on bubble chambers,
e. g. at DESY [113] or SLAC [114, 115], and at the electron synchrotron NINA (see [116, 117]
and references therein).
Today, photoproduction experiments are done in a large range of photon energies. The
MAMI electron accelerator facility in Mainz [118] consists of three racetrack microtrons
and a harmonic double-sided microtron, reaching an electron energy up to 1.5GeV. Baryon
spectroscopy and other photoproduction experiments are carried out with the Crystal Ball
detector and a forward calorimeter (TAPS) [119]. The CBELSA experiment at the electron
stretcher ring ELSA in Bonn uses the 4π detector Crystal Barrel [120] together with a a for-
ward calorimeter (TAPS). The electron beam has an energy of up to 3.5GeV. At JLab Hall B
the CLAS spectrometer [121] is used for baryon spectroscopy using a primary 6GeV electron
beam.

10.3 partial wave analysis for baryon spectroscopy

To disentangle the contributions of different resonances a partial wave analysis (PWA) is
used. Different resonances have different spin and parity JP which results in different angu-
lar distributions of the decay particles. These angular distributions can be calculated from
models and then be fitted to the data. From the fit, the contributions of the single resonances
as well as resonance parameters – namely the mass and the width – can be extracted. For
the partial wave analysis of baryon resonances several programs have been developed which
use different descriptions of the amplitudes. The most commonly used models are MAID
[122, 123], SAID [124], the Bonn-Gatchina [125, 126] and the Giessen [127, 128] model. These
models use different theoretical approaches to the production of resonances. In the following,
the MAID model for photoproduction of single pions will be discussed as an example1.

The production of single pions in photoproduction is shown in figure 10.3. The four-momen-

e e′

γ(ω,q)

N(Ei,Pi)

π(ωπ,k)

N(Ef,Pf)

Figure 10.3: Photoproduction of single pions.

tum of the photon q = (ω,q) is fixed by the incoming and scattered electron. The momentum
transfer is denoted by Q2 = −q2. The scattered electron is measured in coincidence with the
recoiling nucleon Pf = (Ef,Pf) and the produced pion k = (ωπ,k). The target nucleon is
described by the four-momentum Pi = (Ei,Pi). As all particles (except for the photon) are
on-shell, the system has three independent kinematic variables which are chosen to be the
momentum transfer Q2 and two of the Mandelstam variables

s =W2 = (Pi + q)
2

t = (q− k)2

u = (Pi − k)
2 ,

(10.1)

1 Natural units  h = c = 1 will be used.
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where the centre-of-mass energy
√
s is equal to the invariant mass W of the produced res-

onance. The transition current Jµ = (ρ, J) between initial and final states can be written in
terms of CGLN2 amplitudes, which are defined in [129], as

J =
4πW

m

(
i(σ− (σ · q̂)q̂)F1 + (σ · k̂)(σ× q̂)F2 + i(k̂− (k̂ · q̂)q̂)(σ · q̂)F3

+ i(k̂− (k̂ · q̂)q̂)(σ · k̂)F4 + iq̂(σ · q̂)F5 + iq̂(σ · k̂)F6
)

(10.2a)

ρ =
4πW

m

(
i(σ · k̂)F7 + i(σ · q̂)F8

)
=
q · J
ω

. (10.2b)

The structure functions Fi describe the transverse (i = 1, 2, 3, 4) and longitudinal (i = 5, 6)
components of the current, respectively. They are complex-valued and therefore reactions
can be described by six moduli and five relative phases. The structure functions can be
decomposed into a series of electric (E`±), magnetic (M`±) and longitudinal (L`±) multipoles
[130] in terms of first and second order derivatives of the Legendre polynomials P`, where ` is
the orbital angular momentum between pion and recoiling nucleon and the ± sign denotes
whether the spin of the nucleon is parallel (+) or anti-parallel (−) to the orbital angular
momentum.

F1 =
∑
`>0

[
(`M`+ + E`+)P

′
`+1 +

(
(`+ 1)M`− + E`−

)
P′`−1

]
F2 =

∑
`>1

(
(`+ 1)M`+ + `M`−

)
P′`

F3 =
∑
`>1

[
(E`+ −M`+)P

′′
`+1 + (E`− +M`−)P

′′
`−1

]
F4 =

∑
`>2

(M`+ − E`+ −M`− − E`−)P
′′
`

F5 =
∑
`>0

[
(`+ 1)L`+P

′
`+1 − `L`−P

′
`−1

]
F6 =

∑
`>1

(
`L`− − (`+ 1)L`+

)
P′`

(10.3)

The Legendre polynomials depend on the polar angle of the pion in the centre-of-mass frame,
the multipoles depend on the centre-of-mass energy W =

√
s and the momentum transfer

Q2.
Assuming isospin conservation, the electromagnetic current can be split into an isoscalar and
an isovector part [131]. The amplitudes Fi (or equivalently the multipoles) can then be written
in terms of three independent isospin amplitudes [132] for the isoscalar part (A(0)) and for
the isovector part (A(1/2) and A(3/2)) for a total isospin of the πN system of I = 1

2 and I = 3
2 ,

respectively3. These are used to construct the proton and neutron isospin-12 amplitudes as

pA
(1/2) = A(0) +

1

3
A(1/2)

nA
(1/2) = A(0) −

1

3
A(1/2) .

(10.4)

2 They were introduced by Chew, Goldberger, Low and Nambu.
3 The isoscalar part of the current can produce only N∗ (I = 1

2 ) resonances when coupling to the target proton.
The isovector part can produce N∗ (I = 1

2 ) as well as ∆ (I = 3
2 ) resonances.
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With these, the amplitudes of different physical processes can be expressed as follows:

A(γ∗p→ nπ+) =
√
2
[
pA

(1/2) −
1

3
A(3/2)

]
A(γ∗p→ pπ0) = pA

(1/2) +
2

3
A(3/2)

A(γ∗n→ pπ−) =
√
2
[
nA

(1/2) +
1

3
A(3/2)

]
A(γ∗n→ nπ0) = −nA

(1/2) +
2

3
A(3/2) .

(10.5)

All observables in these processes can also be expressed in terms of the structure functions
Fi. In pion photoproduction these are in general 16 different polarisation observables for
different combinations of photon, target and recoil polarisation. Details can be found in
[133].
In the MAID model, resonant contributions from real as well as from virtual photons are in-
cluded. In the model “dressed” resonances are considered which contain not only the “bare”
resonance parameters but also vertex corrections from interference with the background. For
the resonance contributions of the multipoles Breit-Wigner forms

A`± = A`±fγN(W)
ΓtotWRe

iφ

W2
R −W

2 − iWRΓtot
fπN(W)CπN . (10.6)

are used. The factor CπN is
√
3
2 for I = 1

2 and − 1√
3

for I = 3
2 , respectively. The decay of the

resonance with spin j, which has a partial decay width ΓπN into πN and a total decay width
Γtot, is described by the function fπN(W) with

fπN(W) =

√
1

(2j+ 1)π

kW
|q|

mN
W

ΓπN

Γ2tot
with kW =

W2 −m2N
2W

. (10.7)

The energy dependence of the partial width [134, 135] is given by

ΓπN = βπΓtot

(
|q|

qR

)2`+1(X2 + q2R
X2 +q2

)`
WR
W

(10.8)

with the πN branching fraction βπ and the pion momentum qR in the centre-of-mass frame
at the resonance mass (W =WR). The damping parameter X is assumed to be 500MeV for all
resonances. Further contributions to the total decay width are assumed to be dominated by
the two-pion channel and parametrised according to [136]. Only in the case of N(1535)1/2−,
which has a large branching fraction into into ηN, an additional ηN width similar to (10.8) is
added. The energy dependence of the coupling of the photon with the target proton into the
resonance is parametrised with a form factor

fγN(W) =

(
kW
kR

)n( X2 + k2R
X2 + k2W

)
, n > `γ (10.9)

with X as above and kR = kW for W = WR. The parameter n > `γ is introduced to repro-
duce the correct threshold behaviour induced by the Born terms, where `γ is the photon
orbital angular momentum. The unitary phase φ in (10.6) adjusts the phase of the total mul-
tipole (with background) to the pion-nucleon scattering phase (Fermi-Watson theorem [131]:
The amplitude is complex only due to pion-nucleon interaction.) or to the experimentally
observed phase. The main challenge when including virtual photons is the determination
of the Q2 dependence of the amplitudes, which is described in [123]. The main sources of
background are on the one hand Born and vector meson exchange terms and on the other
hand non-resonant multipoles. Details on these backgrounds are given in [123]. More details
on the fitting procedure are given in [137].
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10.4 light baryons in the pdg

The PDG lists a total of 26 N resonances (I = 1
2 ). Out of these 26 N resonances, 10 are rated

as certain (∗∗∗∗), 5 as very likely (∗∗∗), 7 as fair (∗∗) and 4 as poor (∗). Figure 10.4 shows the
spectrum of those states. The colour of the boxes denotes the rating, the size of the boxes
shows the mass range that is given for the single resonances. In addition, 22 ∆ resonances
(I = 3

2 ) are listed. Those are not the topic of this thesis and will not be considered here.

+ 

2
1 − 

2
1 + 

2
3 − 

2
3 + 

2
5 − 

2
5 + 

2
7 − 

2
7 + 

2
9 − 

2
9 + 

2
11 − 

2
11 + 

2
13 − 

2
13

2
M

as
s 

in
 G

eV
/c

1

1.5

2

2.5

3

****
***
**

Figure 10.4: The spectrum of N (I = 1
2 ) Baryons as listed by the PDG (2012 edition, see [138]). The

colours correspond to the status of the resonances (∗∗∗∗ certain, ∗∗∗ very likely, ∗∗ fair).
Baryons with a ∗ rating (poor evidence) are omitted. The size of the boxes denotes the
mass range for the resonances given in the listings.

10.5 baryon models

The excitation spectrum of baryons cannot be directly calculated from QCD. A perturbative
treatment is also not possible due to the large coupling constant in the low energy regime.
Therefore, models are needed to predict the spin and mass of resonances. Several models
for the three-quark interaction inside a baryon are used. In the case of equal masses (mu =

md ≈ ms) Jacobi coordinates

R =
r1 + r2 + r3

3

x = r2 − r1

y =
2r3 − r1 − r2√

3
,

(10.10)

as depicted in figure 10.5, describe the three quarks inside a baryon. In the centre of mass
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m1

m2

m3

x

√
3
2 y

Figure 10.5: Jacobi coordinates for the three quarks inside a baryon. The coordinate R is the centre of
mass of the three quarks.

frame the intrinsic Hamiltonian becomes

H =
p2x
m

+
p2y

m
+ V(x,y) , (10.11)

with an unknown potential V(x,y). A typical choice for this potential is a harmonic oscillator

V(r1, r2, r3) =
2

3
K(r212 + r

2
23 + r

2
13) , (10.12)

where rij = |rij| = |rj − ri|. The transformation into Jacobi coordinates yields

H =
p2x
m

+
p2y

m
+K(x2 +y2) . (10.13)

This corresponds to the sum of two independent three-dimensional harmonic oscillators. The
energies are given as

E = 2(N+ 3)
√
K
m , (10.14)

where N = 2nx + `x + 2ny + `y is the cumulated quantum number. For N > 2 different
JP states are degenerate. These states form SU(6) supermultiplets (d, `P)(N), where d is the
spin-flavour dimensionality, ` the total angular momentum and P the total parity. The ground
state supermultiplet (56, 0+)(0) contains the spin-12 octet from figure 1.5 (2 spin projections
each) and the spin-32 decuplet from figure 1.6 (4 spin projections each) giving a total of
2× 8+ 4× 10 = 56 states.
More sophisticated calculations include e. g. perturbative expansions [139–141], variational
methods [142, 143], Fadeev equations [144] or hyperspherical expansions [145, 146] of the
harmonic oscillator.
Figure 10.6 shows the results of a quark model calculation [147] together with the states
listed in the PDG review. Up to 2.4GeV/c2 about 45 N resonances are predicted, but only 19
are found, 7 of which are only ∗∗ or ∗. This has been known for a long time as the ’missing
resonance’ problem.

Baryons in Lattice QCD

Lattice QCD [148] allows for an ab initio treatment of QCD in the non-perturbative regime,
where quarks are confined into hadrons. It introduces a four-dimensional Euclidean space-
time lattice on which the properties of hadrons can be calculated numerically. In the limit
of an infinite large lattice with an infinitesimal small spacing, continuum QCD is recovered.
In the past years a lot of effort has been undertaken in lattice QCD to determine the hadron
spectrum. A recent overview on methods and results can be found in [149]. A comparison
between lattice results and experimental values is given in [150] and is shown in figure 10.7.
The calculations (red circles) are in good agreement with the experiment (black lines).
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T H E H E L I C I T Y F O R M A L I S M

11.1 motivation

To describe the contribution of a single resonance to the total cross section, the angular distri-
bution of a resonance with a given spin J and parity P, the so-called partial-wave amplitude,
has to be calculated. The coherent sum of those amplitudes yields the total cross section. To
calculate the partial-wave amplitudes, the helicity formalism [151, 152] is used.
For a decay of a particle a with spin J (parity is ignored for now and will be added later) and
spin projection M into two particles

a→ 1+ 2 (11.1)

the amplitude is given by the transition matrix element between the initial state and the final
state. In the centre-of-mass system of a, the outgoing particles have momenta p1 = −p2 ≡ pf
and helicities λ1 and λ2. The transition matrix element is given as1

A = 〈pf, λ1;pf, λ2| U |J,M〉 (11.2)

where U is the transition operator. In spherical coordinates the momentum pf is replaced by
the angles θ and ϕ,

A = 〈θ,ϕ, λ1, λ2| U |J,M〉 , (11.3)

where |A|2 describes the probability for a to decay with particle 1 emitted with angles θ and
ϕ and thus describes the angular distribution. Therefore, the calculation of amplitudes will
be sketched in the following.

11.2 rotations in angular momentum space

11.2.1 Euler Angles

A rotation of a coordinate system (x̂, ŷ, ẑ) into a new system (X̂, Ŷ, Ẑ) can be parametrised
through the Euler angles [153], where one of the possible conventions is:

1. Rotation about ẑ with angle α: ŷ→ û

2. Rotation about û with angle β: ẑ→ Ẑ

3. Rotation about Ẑ with angle γ: û→ Ŷ

With the generators of the Lie algebra so(3), which are the angular momentum operators Ji,
the rotation operator can be written as

R(α,β,γ) = exp(−iγJZ) exp(−iβJu) exp(−iαJz) . (11.4)

This equation can be rewritten to use only rotations about the original coordinate system
(x̂, ŷ, ẑ) as

R(α,β,γ) = exp(−iαJz) exp(−iβJy) exp(−iγJz) . (11.5)

1 Note: In this and the following chapters natural units c =  h = 1 will be used.
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11.2.2 Wigner D-Matrices

Rotations commute with the angular momentum operator J2

[R, J2] = 0 (11.6)

and therefore, the eigenfunctions |jm〉 transform in an irreducible representation of the group
SO(3), i. e. states with different total angular momentum j do not mix. A rotation of an
angular momentum state is given as

R(α,β,γ)|jm〉 =
j∑

m ′=−j

D
j
m ′m(α,β,γ)|jm ′〉 , (11.7)

with the elements of the Wigner D-matrices [154] Djm ′m(α,β,γ). These are calculated with
equation (11.5)

D
j
m ′m(α,β,γ) = 〈jm ′| exp(−iαJz) exp(−iβJy) exp(−iγJz)|jm〉

= exp(−iαm ′)〈jm ′| exp(−iβJy)|jm〉 exp(−iγm)

= exp(−iαm ′)djm ′m(β) exp(−iγm) , (11.8)

with the elements of the Wigner d-matrices djm ′m(β). The Wigner D-matrix elements are
orthogonal and normalised as

2π∫
0

dα

2π∫
0

dγ

1∫
−1

d(cosβ)Djmn(α,β,γ)∗Dj
′

m ′n ′(α,β,γ) =
8π2

2j+ 1
δjj ′δmm ′δnn ′ (11.9)

and are connected to spherical harmonics by

Yml (θ,ϕ) =

√
2l+ 1

4π
dlm0(θ) exp(imϕ) =

√
2l+ 1

4π
Dlm0(ϕ, θ,ψ) . (11.10)

An explicit form of the D-functions can for example be found in [155]. Some of the functions
used in this work are listed in appendix A.2.

11.3 plane-wave helicity states

For the calculation of decay amplitudes 〈θ,ϕ, λ1, λ2| U |J,M〉, two particle states |θ,ϕ, λ1, λ2〉
are needed. In the following, these two-particle states will be constructed from one-particle
states.

11.3.1 One-Particle States

Starting point is a particle with spin s and spin projection λ along the ẑ axis in its rest
frame |p = 0, s, λ〉. In the rest frame, spin projection and helicity λ = s ·p are equivalent,
but only λ remains invariant under a rotation of the state. To obtain the state |p, s, λ〉 in the
laboratory system, the state is rotated such, that the quantisation axis Ẑ points along the
particle momentum and then a Lorentz boost is performed

|p, s, λ〉 = L(p)R(α = ϕ,β = θ,γ = 0)|p = 0, s, λ〉 (11.11)

The choice γ = 0 is convention and has no influence on physics quantities [156]. The one-
particle states are normalised in a Lorentz-invariant way as

〈p ′, s ′, λ ′ |p, s, λ〉 = (2π)32Eδ3(p ′ −p)δs ′sδλ ′λ . (11.12)
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11.3.2 Two-Particle State

A two-particle state is the direct product of two one-particle states

|p1, λ1;p2, λ2〉 = |p1, s1, λ1〉 ⊗ |p2, s2, λ2〉 (11.13)

and is also normalised in a Lorentz invariant way as

〈p ′1, λ ′1;p ′2, λ ′2 |p1, λ1;p2, λ2〉
= (2π)64E1E2δ

3(p ′1 −p1)δ
3(p ′2 −p2)δλ ′1λ1δλ ′2λ2 .

(11.14)

In the centre-of-mass system, p1 = −p2 = p, spherical coordinates (p, θ,ϕ) can be used,
where p = |p1| = |p2| is the centre-of-mass momentum and (θ,ϕ) denote the direction of p1.
The state can then be written as |p, θ,ϕ, λ1, λ2〉 with the normalisation

〈p ′, θ ′,ϕ ′, λ ′1, λ ′2 |p, θ,ϕ, λ1, λ2〉

= (2π)6
4
√
s

p
δ4(P ′α − Pα)δ(cos θ ′ − cos θ)δ(ϕ ′ −ϕ)δλ ′1λ1δλ ′2λ2 .

(11.15)

Here,

Pα = Pα1 + Pα2 = (
√
s, 0, 0, 0)

is the total four-momentum with the centre-of-mass energy

√
s = E1 + E2 =

√
p2 +m21 +

√
p2 +m22 . (11.16)

For the calculation of angular distributions, the centre-of-mass momentum can be separated
from the two-particle states

|p, θ,ϕ, λ1, λ2〉 = (2π)3

√
4
√
s

p
|θ,ϕ, λ1, λ2〉|Pα〉 , (11.17)

where the normalisation of the separated state |θ,ϕ, λ1, λ2〉 is given as

〈P ′α |Pα〉 = δ4(P ′α − Pα) (11.18a)

〈θ ′,ϕ ′, λ ′1, λ ′2 |θ,ϕ, λ1, λ2〉 = δ(cos θ ′ − cos θ)δ(ϕ ′ −ϕ)δλ ′1λ1δλ ′2λ2 . (11.18b)

For the construction of partial wave amplitudes the states can be expressed through the total
spin J and the spin projection M. After the separation of the centre-of-mass momentum one
obtains

|θ,ϕ, λ1, λ2〉 =
∑
J,M

√
2J+ 1

4π
DJMλ(ϕ, θ, 0)|J,M, λ1, λ2〉 . (11.19)

The choice of the third angle in the Wigner function is arbitrary (the rotation is around the
z-axis) and thus, again a value of 0 is chosen. This relation is inverted with the orthogonality
relation (11.9) for the final result

|J,M, λ1, λ2〉 =
√
2J+ 1

4π

2π∫
0

dϕ

1∫
−1

d(cos θ)DJMλ(ϕ, θ, 0)∗|θ,ϕ, λ1, λ2〉 (11.20)

and with this

〈J,M, λ ′1, λ ′2 |θ,ϕ, λ1, λ2〉 = δλ ′1λ1δλ ′2λ2
√
2J+ 1

4π
DJMλ(ϕ, θ, 0) . (11.21)
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11.4 calculation of the angular distribution for a → 1 + 2

The two-particle helicity state of the decay products is given as

|f〉 = |pf , θf , ϕf , λ1 , λ2〉 = (2π)3

√
4ma

pf
|θf , ϕf , λ1 , λ2〉 |Pαf 〉 , (11.22)

where (θf,ϕf) are the angles of pf in the rest frame of a. The decay amplitude is

A(a→ 1+ 2) = (2π)3

√
4ma

pf
〈θf,ϕf, λ1, λ2|U|J,M〉 . (11.23)

A complete set of two-particle states is introduced

A(a→ 1+ 2) = C 〈θf,ϕf, λ1, λ2|U|J,M〉
= C

∑
Jf,Mf

〈θf,ϕf, λ1, λ2 |Jf,Mf, λ1, λ2〉〈Jf,Mf, λ1, λ2|U|J,M〉

(11.21)
= C

∑
Jf,Mf

√
2Jf + 1

4π
DJfMfλ

(ϕf, θf, 0)∗δJfJδMfM〈λ1, λ2|U|J,M〉 , (11.24)

where λ = λ1 − λ2, and C = (2π)3
√
4ma

pf
. The matrix element 〈λ1, λ2|U|J,M〉 is rotationally

invariant and thus cannot depend on M, i. e. 〈λ1, λ2|U|J,M〉 = Aλ1,λ2 , and thus

A(a→ 1+ 2) = C

√
2J+ 1

4π
DJ ∗Mλ(ϕf, θf, 0)Aλ1,λ2 . (11.25)

11.5 inclusion of parity

In the decay a → 1+ 2 the parity P(a) of the initial state is connected to the parities of the
final states P(1, 2) via

P(a) = P(1) ·P(2) · (−1)L , (11.26)

where L is the orbital angular momentum between the particles 1 and 2. Therefore, if parity is
considered, the amplitude from (11.24) has to be modified to include an explicit dependence
on the angular momentum L. Again, a complete set of two-particle states is introduced

A(a→ 1+ 2) = C

√
2J+ 1

4π
DJ ∗Mλ(ϕf, θf, 0)〈λ1, λ2|U|J,M〉

= C
∑
L,S

√
2J+ 1

4π
DJ ∗Mλ(ϕf, θf, 0)〈λ1, λ2 |J,M,L,S〉〈J,M,L,S|U|J,M〉 . (11.27)

The product 〈λ1, λ2 |J,M,L,S〉 can be written in terms of Clebsch-Gordan coefficients as (see
[151])

〈λ1, λ2 |J,M,L,S〉 =
(
LS0λ

∣∣JM)(s1s2λ1 − λ2∣∣Sλ) . (11.28)

With this, the final form of the decay amplitude is obtained

A(a→ 1+ 2) = C
∑
L,S

√
2L+ 1

4π
DJ ∗Mλ(ϕf, θf, 0)

(
LS0λ

∣∣JM)(s1s2λ1 − λ2∣∣Sλ)AJLS , (11.29)

where the matrix element AJLS = 〈J,M,L,S|U|J,M〉 again does not depend on the spin pro-
jection M due to rotational invariance. The possible values of orbital angular momentum L

and the total spin S of the decay products are determined by their spin and parity JP.
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The resonant contributions observed in the pπ0 invariant mass spectrum (see figure 8.1) have
to be entangled by a partial wave analysis. The first approach for this partial wave analysis
is to parameterise only the decay of the baryon resonance into pπ0, neglecting the formation
of the resonance. For this parametrisation, the helicity formalism from chapter 11 is used.

12.1 the amplitudes

Starting point for the construction of amplitudes is the decay amplitude from equation (11.29)

A(a→ 1+ 2) = C
∑
L,S

√
2L+ 1

4π
DJ ∗Mλ(ϕ, θ, 0)

(
LS0λ

∣∣JM)(s1s2λ1 − λ2∣∣Sλ)AJLS .

For the angles θ and ϕ the Gottfried-Jackson frame (see figure 12.1) is chosen. The Gottfried-
Jackson frame is defined as the rest frame of the resonance X, where the z-axis points in the
direction of the beam, the x-axis is the original direction of the resonance and y = z× x. Then,
the angle θ is the angle between the beam direction and one of the outgoing particles (in our
case the meson) and the angle ϕ is the angle between the production plane (beam + recoiling
proton, grey in figure 12.1) and decay plane (beam + outgoing particles, red in figure 12.1 ).

p
fast

π0

p
rec

ptarget

θ

ϕ

p
beam P

Figure 12.1: The Gottfried-Jackson frame.

For the case of a → pπ0 the spins are given as s1 = 0 and s2 = 1
2 . Thus, the second

Clebsch-Gordan coefficient
(
s1s2λ1− λ2

∣∣Sλ) fixes S to 1
2 and no summation over S is needed.

Furthermore, all constant factors can be included into the partial wave amplitude TLJ =
C√
4π
AJLS and thus, one obtains

A(a→ 1+ 2) =
∑
L

√
2L+ 1DJ ∗Mλ(ϕ, θ, 0)

(
LS0λ

∣∣JM)TLJ . (12.1)
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To account for the angular momentum barrier in the decay of the resonance, the Blatt-
Weisskopf barrier factors [157–159] FL(pf) (see A.3) are introduced in the amplitude. When
the parity of the resonance is considered, the angular momentum L is fixed by parity and the
partial wave amplitude TLJ can be written a as function of parity TJP . In this work, the Wigner
D-functions are taken in the reflectivity base [160]

DJ,εMλ(ϕ, θ, 0) =
1√
2

[
DJMλ(ϕ, θ, 0) − ε ·P · (−1)J−MDJ−Mλ(ϕ, θ, 0)

]
, (12.2)

where the reflectivity ε is given as ε = ±i and only positive values of the spin projection M
are taken into account. In this case, the partial wave amplitude additionally depends on the
reflectivity, Tε

JP
. The decay amplitude 12.1 can now be written as

Aε,λ
JP

(θ,ϕ;mX) =
√
2L+ 1

(
L120λ

∣∣JM)DJ,ε ∗Mλ (ϕ, θ, 0)FL(pf)TεJP . (12.3)

The parity P of the resonance X is connected to the relative angular momentum L via

P(X) = P(p) ·P(π0/η) · (−1)L = (+1) · (−1) · (−1)L = (−1)L+1 . (12.4)

The Clebsch-Gordan coefficient
(
L120λ

∣∣Jλ) fixes the helicity1 such, that only one amplitude
remains for each JP and ε. Thus, the intensity function, that will be fitted to the data, is given
by

I(mX) =
∑
ε

∣∣∣∣∣∣
∑
JP

TεJPA
ε,λ
JP

(θ,ϕ;mX)

∣∣∣∣∣∣
2

, (12.5)

where the complex numbers Tε
JP

contain the strengths and phases of the individual reso-
nances. The following amplitudes remain after the evaluation of the Clebsch-Gordan coeffi-
cients and calculation of all factors:

1
2

+
: Tε

1
2

+ · 1√
2

·
(
D
1
2
1
2
1
2

− εD
1
2

− 1
2
1
2

)
· F1(q)

1
2

−
: −Tε

1
2

− · 1√
2

·
(
D
1
2
1
2
1
2

+ εD
1
2

− 1
2
1
2

)
· F0(q)

3
2

+
: −Tε

3
2

+ · 1 ·
(
D
3
2
1
2
1
2
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3
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2
1
2
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−
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√
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2 ·
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√
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2 ·
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1
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2 ·
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1
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2 ·
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In addition, the reflectivity is coupled directly to the parity (see appendix A.4) and thus only
ε = +i is used in the following.

1 The coupling of (L, 0) and (12 , λ) to (J,M) leads to M = λ only. In the reflectivity base, M is only positive and
thus fixed to 1

2 .
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12.2 fitting procedure

The fit of resonances in this simple model is done in two steps:
In a first step the intensity given in equation (12.5) are fitted to the angular distributions in
bins of the invariant mass to obtain the strengths and phases of the single JP contributions.
The outcome of these fits are expected to already produce visible resonance-like structures.
In a second step, the outcome of the fits for the single JP combinations can be fitted by
resonance descriptions which include the phase shifts between the resonances (e. g. complex
Breit-Wigner functions). From this fit, the resonance parameters (position and width) can be
obtained. In the following sections, the first step will be performed on pseudo data first and
on real data afterwards.

12.3 fits on pseudo data and fit performance

I developed a program that mimics the fits on real data in order to test the performance of
the fitting algorithm. The program features are the following:

• The program is able to sample angular distributions for the 14 three-star and four-star
resonances of the PDG up to J = 9

2 :
N(1440)12

+
, N(1520)32

−
, N(1535)12

−
, N(1650)12

−
, N(1675)52

−
,

N(1680)52
+

, N(1700)32
−

, N(1710)12
+

, N(1720)32
+

, N(1875)32
−

,
N(1900)32

+
, N(2190)72

−
, N(2220)92

+
and N(2250)92

−
.

• The resonance shapes in the invariant mass mX are implemented as relativistic Breit-
Wigner distributions [161]

f(mX) =
k

(m2X −M2)2 +M2Γ2
(12.6)

(12.7)

with

k =
2
√
2MΓγ

π
√
M2 + γ2

, γ =
√
M2(M2 + Γ2) ,

where M and Γ are the resonance mass and width, respectively. The values used are
given in table 12.1.

Resonance Mass Width Resonance Mass Width

N(1440)12
+

1440 300 N(1710)12
+

1710 100

N(1520)32
−

1520 115 N(1720)32
+

1720 250

N(1535)12
−

1535 150 N(1875)32
−

1875 220

N(1650)12
−

1655 150 N(1900)32
+

1900 250

N(1675)52
−

1675 150 N(2190)72
−

2190 500

N(1680)52
+

1685 130 N(2220)92
+

2250 400

N(1700)32
−

1700 150 N(2250)92
−

2275 500

Table 12.1: Mass and width (in MeV/c2) of the resonances used in the model. The values are the given
averages or the centre of the given ranges listed by the PDG (2012 edition [1]).
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• The phase of the resonances is taken to be a smooth curve, changing from −π2 to π
2 over

the resonance (i. e. between M− Γ
2 and M+ Γ

2 ). A centrally symmetric polynomial of
degree five,

ϕ(mX) =
6π

Γ5
(mX −M)5 −

5π

Γ3
(mX −M)3 +

15π

8Γ
(mX −M) , (12.8)

is chosen. The calculation of this polynomial and the comparison to a degree-three
polynomial are shown in appendix A.5.

• The data is sampled in 76 bins of mX between 1.1 GeV/c2 and 3.0 GeV/c2 and 40 bins
each in cos(θ) and ϕ, i. e. the same binning as in the real data case is used. After
the sampling, the histograms are smeared by setting the content Ni of each of the
76× 40× 40 to a random Gaussian number with µ = N and σ =

√
N, i. e. 68% of the

bin contents are now within 1σ of the nominal value obtained from the model.

• A binned minimum-χ2 fit in 40 bins each of cos(θ) and ϕ is performed in each of
the 76 mass bins. The fits are done using Minuit2 [162] in the numerical minimisation
package [163] ROOT::Math::Minimizer of ROOT. Each fit is done up to 20 times until
Minuit reaches a valid minimum.

• To collect possible background (or JP combinations which are not included in the fit) a
simple constant parameter C is added to the fit function, thus the actual fit function is
given as

I(mX) =

∣∣∣∣∣∣
∑
JP

TεJPA
ε,λ
JP

(θ,ϕ;mX)

∣∣∣∣∣∣
2

+C . (12.9)

• To be independent of the model input during the fit, the starting values for each single
parameter are chosen randomly. To get rid of the freedom to choose an overall phase,
the phase for the 12

+
wave is fixed to zero in the fit.

• Fits on real data can be performed using the same program. The sampled pseudo-data
histograms are simply substituted by real data histograms in this case.

12.3.1 Fits to the Model

In this section, results of fits to the model described above for different number of included
waves are presented. Starting point are the 1

2

±
waves, the number of waves is increased to

the full model up to 9
2

±
. The fits for the single waves, which are not shown in this chapter,

can be found in appendix E.

Resonances with JP = 1
2

±

In a first step the two resonances N1440(12
+
) and N1535(12

−
) are used. In each mass bin ten

fits are performed yielding a total number of 380 fits2. The fit with the best value of χ2/ndf
is kept as the final result. The model input as a function of the invariant mass and the result
of the fit are shown in figures 12.2 and 12.3, respectively. Besides the moduli of the single
waves, also the relative phases have to be fitted correctly. The phase between the two waves

2 All fits are performed on the CERN LXBATCH system (http://information-technology.web.cern.ch/
services/batch).

http://information-technology.web.cern.ch/services/batch
http://information-technology.web.cern.ch/services/batch
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1
2

+
and 1

2

−
is shown in figure 12.4. The two phase motions for the two resonances are clearly

visible. Due to the overlapping resonance, the phase does not shift by 180 degrees (compare
equation (12.8)). Outside of the resonance region, the relative phase is ambiguous (±180 ◦)
and therefore, the fits end up in one of the possibilities. Due to this ambiguity, the errors are
quite large and thus, the phase in figure 12.4 is shown without error bars. In the following,
always the same relative phase is shown and can be compared to figure 12.4.
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Figure 12.2: The model input for the two res-
onances N(1440) and N(1535) and
their coherent sum.
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Figure 12.3: The results of the best fits for the
single waves and the coherent sum
together with the model input for
N1440(12

+
) and N(1535)(12

−
).
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Figure 12.4: Relative phase between 1
2

+
and 1

2

−

in degrees. The phase shift due to
the two resonances is clearly visible.
No error bars are shown due to large
errors outside of the resonance re-
gion.
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Figure 12.5: Fit output (black lines) together with
the model data for the best fit in bin
15. All structures are reproduced
correctly by the fit.

In this simple model the fit works fine and the resulting errors are low. An example for a fit
together with the model input for bin 15 (1450MeV/c2) is shown in figure 12.5. The shape of
the model is simple and all structures are reproduced by the fit.

Resonances with JP = 1
2

± and 32
±

In addition to the resonances used before, the J = 3
2 resonances N1720(32

+
) and N1520(32

−
)

are added to the model. The model input is shown in figure 12.6. In each mass bin ten fits
are performed, the result for the best-χ2 fit is shown in figure 12.7. In most bins 10 fits were
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Figure 12.6: The model input for the four res-
onances N1440(12

+
), N(1535)(12

−
),

N1720(32
+
) andN1520(32

−
) together

with their coherent sum.
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Figure 12.7: The results of the best fits for
the single waves and the coherent
sum together with the model in-
put for N1440(12

+
), N(1535)(12

−
),

N1720(32
+
) and N1520(32

−
).

sufficient to get a good description of the model. In figure 12.8, the phase shift between 1
2

+

and 1
2

−
is shown. No differences are visible compared to the fit of two resonances.
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Figure 12.8: Relative phase between 1
2

+
and 1

2

−
in degrees. The phase shift due to the two resonances

is clearly visible. No error bars are shown due to large errors outside of the resonance
region.

In bin 27 at 1750MeV/c2 the fit output for the coherent sum is correct, nevertheless the er-
ror is large. As the errors on the single strengths are small, the error comes from a badly
determined phase. The output of the best fit (black lines) together with the modelled data in
this bin is shown in figure 12.9. The structures are in principle reproduced correctly but are
a bit shifted from the position given by the model. This can be attributed to a badly fitted
phase of at least one of the waves, as the phases control the “rotation” of the fit function in
the cos(θ) −ϕ plane. For comparison, the best fit in the neighbouring bin 28 (1775MeV/c2)
is shown in figure 12.10, where all structures in a very similar angular distribution are re-
produced in the correct place. Thus, increasing the number of fit attempts should lead to a
proper fit of the badly fitted points.
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Figure 12.9: Fit output (black lines) together with
the model data for the best fit in bin
27. The structures in the fit are off a
bit from the structures in the model
due to a bad fit of the phases.
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Figure 12.10: Fit output (black lines) together
with the model data for the best fit
in bin 28. All structures are repro-
duced correctly by the fit.

Full set of waves

For this test, all possible JP combinations up to 9
2

−
are included, where 7

2

+
is excluded, be-

cause there is no known resonance with this quantum numbers. For waves with more than
one known resonance, only the one with the lowest mass is used, which results in the fol-
lowing list of used resonances: N(1440)12

+
, N(1535)12

−
, N(1720)32

+
, N(1520)32

−
, N(1680)52

+
,

N(1675)52
−

, N(2190)72
−

, N(2220)92
+

, N(2250)92
−

. The model output is shown in figure 12.11.
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Figure 12.11: The model input for a complete list
of resonances up to 9

2

±
together

with their coherent sum.
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Figure 12.12: The results of the best fits out of 20
attempts for the single waves and
the coherent sum together with the
model input for the full list of
waves up to 9
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±
.

In figure 12.12, the best fit after 20 attempts is shown for this model. The result already looks
quite reasonable in most regions of the spectrum, especially at low and high masses, but also
in the region around 1.9GeV/c2 between the two regions with resonances.
To improve the results also in the regions with many overlapping resonances, 50 fit attempts
per mass bin are done. The result of the best fit of those 50 attempts is shown in figure 12.13.
The improvement is reasonable, but there are still some points which do not fit to the model.
However, when looking into the single waves, which are shown in figure 12.15, it is clearly
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visible, that they fit well to the model despite single points, which would not too much affect
a fit of the single resonances. In figure 12.14, again the relative phase (after 50 fit attempts)
between 1

2

+
and 1

2

−
is shown. Except for a single point outside of the resonance region, the

phase behaviour is described correctly.
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Figure 12.13: The results of the best fits out of 50
attempts for the single waves and
the coherent sum together with the
model input for the full list of
waves up to 9

2

±
.
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Figure 12.14: Relative phase between 1
2

+
and 1

2

−

in degrees. The phase shift due to
the two resonances is clearly visi-
ble. No error bars are shown due
to large errors outside of the reso-
nance region.
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Figure 12.15: The fit results (blue points) together with the model (red line) for the single waves in the
model. Except for single points the model is reproduced well by the fit.
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12.3.2 Further Tests of the Fit

To further test the fit, more complicated fit scenarios, such as fits with too many or too
few parameters, are considered. The starting point for these tests is a four resonance fit of
N1440(12

+
), N(1535)(12

−
), N1720(32

+
) and N1520(32

−
) which will be modified accordingly.

For each mass bin 20 fits are performed. Single bins, which are off after that or have large
errors, can be improved by additional fits as shown above. The following three tests will be
performed:

• A fit to a model with two resonances in a single wave.

• A fit of four waves to a model with resonances in only three waves.

• A fit of only three waves to a model with resonances in four waves.

In a first test an additional resonance is included into one of the waves, namely N1700(32
−
),

i. e. in the 3
2

−
wave, there are now two resonances. The fit shown in figure 12.16 perfectly

describes the model also with this configuration. In figure 12.17, the phase shift between 1
2

+

and 3
2

−
, which includes two resonances, is shown. Three phase motions due to N1440(12

+
)

(up),N1520(32
−
) (down) andN1700(32

−
) (down) are clearly visible. The direction of the phase

motion (up or down) and the sudden jump between N1520(32
−
) and N1700(32

−
) are due to

the chosen model of phase shifts.
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Figure 12.16: Fit results for the single waves and
the coherent sum for the model
with two resonances in one wave.
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Figure 12.17: Relative phase between 1
2

+
and 3

2

−

in degrees for two resonances in
the 3

2

−
wave. The phase shift due

to the three resonances is clearly
visible. No error bars are shown
due to large errors outside of the
resonance region.

For the next test, the N1520(32
−
) resonance is excluded from the model sampling but, never-

theless, the 3
2

−
wave is kept in the fit. Thus, the fit has two additional parameters, namely

the strength and phase of this wave. The result for the fit is shown in figure 12.18. The model
is fitted well, the 3

2

−
is correctly set to zero by the fit. However, with a strength of zero, the

phase of the resonance is completely arbitrary and thus it cannot be determined by the fit
which then leads to larger errors on this phase and therefore also on the coherent sum. In
figure 12.19, the relative phase between 1

2

+
and 1

2

−
is shown. Also in this scenario, the phase

is fitted correctly.
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Figure 12.18: Fit result for the single waves and
their coherent sum for a model
without the 32

−
wave (orange).
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Figure 12.19: Relative phase between 1
2

+
and 1

2

−

in degrees. The phase shift due to
the two resonances is clearly visi-
ble. No error bars are shown due
to large errors outside of the reso-
nance region.

Now, the opposite is done andN1520(32
−
) is kept in the sampling but the 32

−
wave is removed

from the fit. Thus, the fit is missing two parameters to fully describe the spectrum. The result
shown in figure 12.20 does not follow the coherent sum any more but, nevertheless, describes
the other resonances in a reasonable manner. This is even better visible when looking at the
single fitted waves in figure 12.22. There, the peaks are disturbed by additional structures
but they still are visible and remain more or less at the correct position. The relative phase
between 1

2

+
and 1

2

−
shown in figure 12.21 does not have the same form as before, yet there

are still phase shifts visible for the two resonances in these waves.
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Figure 12.20: Fit result for the single waves and
their coherent sum for a model
with one resonance more than reso-
nances in the fit.

2Invariant Mass in GeV/c
1 1.5 2 2.5 3

Ph
as

e

-200

-150

-100

-50

0

50

100

150

200

−

2
1 vs 

+

2
1
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in degrees for a fit with too few
waves. The phase shift due to the
two resonances is still visible. No
error bars are shown due to large
errors outside of the resonance re-
gion.
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Figure 12.22: The fit results (blue points) together with the model (red line) for the single waves in the
model. The model is still fitted reasonably although one resonance is missing in the fit.

From the several test fits shown above, I can conclude that the developed fit program is able
to find resonances in a large number of waves (at least up to nine). The program is capable
of finding more than one resonance in a single wave and also able to handle empty waves in
a good way. The results obtained in fits with too few waves are still reasonable. Therefore – if
the resonance decay is described appropriately by this model – it should be possible to also
find resonances in the data with this fit program.

12.4 fits on real data

The model, which was developed and tested as described above, will now be applied to the
pp → ppπ0 data, which was already discussed in part II. Here, always the best-χ2 fit out of
20 fits will be shown. The fits for the single waves, which are not shown here, can be found
in appendix E.

12.4.1 Starting Point

As a first step, the data are analysed with the full model including all waves (except 72
+

,
compare 12.3.1). Figure 12.23 shows the results for the strengths3 of the single waves and
their coherent sum. The strengths of the single waves are shown in different colours, their
coherent sum is shown in black. The error bars of the coherent sum are again calculated
using the formula given in appendix A.6. The coherent sum of all waves reproduces the
overall invariant mass distribution well. This shows that the fit converged properly. In the
single waves one would expect to observe resonance like peaks with a width of typically
150MeV/c2 equivalent to around six bins. Three single waves are shown in figure 12.25, the
other ones can be found in the appendix. In this figure the blue stars show the outcome of
the fit in the single bins. As the points jump around they are connected with a line to better
guide the eye. The red lines denote the positions of known resonances (as listed in table
12.1). No resonant structures are observed at these positions (nor are any resonant structures
observed anywhere else). In figure 12.24 the relative phase between 1

2

+
and 1

2

−
is shown. In

the region of the resonances strong phase motions are expected. Instead of that, the observed
phase only varies slowly over the full mass range, the two “bands” observed in figure 12.24
are separated by 360 degrees and are actual ambiguous outcomes of one solution.

3 All real data fits shown here are not normalised to the total number of events. This could be done by a factor
which includes essentially the bin area in the angular distributions and the total number of events. It does not
change the physical meaning when this factor is omitted.
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Figure 12.23: Fit result for the single waves and
the coherent sum for the full model
without any additional cuts.
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Figure 12.24: Relative phase between 1
2

+
and 1
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in degrees for a fit to the data us-
ing the full model. No error bars
are shown due to large errors of the
single phases.
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Figure 12.25: The fit results (blue points) connected by a line to better guide the eye for some of the
single waves in the model. The red lines denote the nominal position of resonances as
listed in table 12.1. The full set of fits can be found in appendix E.2.1.

Most of the intensity ends up in the J = 1
2 waves. This can also be seen in the results for the

fits in the single mass bins; an example for the mass bin 1700− 1725MeV/c2, which belongs
to the second resonance like region in the pπ0 invariant mass distribution, is shown in figure
12.26. In this figure the angular distribution is shown as a two-dimensional histogram in
colour scale together with the fit output as a contour plot. The fit converged to a valid
minimum but does not fit the distribution. This is true for most of the mass bins. As the
J = 1

2 are not suppressed by Blatt-Weisskopf factors, they dominate the fits.
The structures in the angular distribution are obviously not clearly correlated to specific
waves and thus, the fit has difficulties to disentangle the single waves. Therefore, in the
following on the one hand the model will be simplified, on the other hand several cuts
will be applied to the data set to reduce the background contributions from non-resonant
processes and to enhance the structures produced by resonance decays.

12.4.2 Simplifying the Model

In a first step, the number of free parameters in the fit is reduced by omitting the waves
with J > 5

2 . These waves couple only weakly into pπ0 and thus could be absorbed by the
constant background term. The number of free parameters in the fit is reduced from 18 to 12.
The result for the single waves and their coherent sum is shown in figure 12.27. Like the full
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Figure 12.26: Fit result in bin 17 (1700− 1725MeV/c2). The result is dominated by the J = 1
2 waves.

model, this reduced model does not show any resonant structures in the single waves. Also
in the relative phase between 1

2

+
and 1

2

−
, which is shown in figure 12.28, no improvement is

visible compared to the fit with the full data set. Therefore, this approach will not be followed
any further
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Figure 12.27: Fit result for the single waves and
the coherent sum for the reduced
model without any additional cuts.
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Figure 12.28: Relative phase between 1
2

+
and

1
2

−
in degrees for a fit to the data

using the reduced model. No error
bars are shown due to large errors
of the single phases.

As shown above, the structures due to resonances are not very pronounced in the angular
distributions. To enhance the structures it is possible to enlarge the statistics in the angular
distributions. Therefore, the number of mass bins is reduced by a factor of two, i. e. the fit is
done in 38 mass bins of 50MeV/c2 each. The result for the full model is shown in figure 12.29,
the relative phase between 1

2

+
and 1

2

−
in figure 12.30. The result does not look promising

for further analyses. In addition, the typical width of a baryon resonance would now only be
three to four bins and thus not easy to fit in a second step. Therefore, this approach will not
be followed any longer.
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Figure 12.29: Fit result for the single waves and
the coherent sum for the full model
without any additional cuts in 38
mass bins.
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Figure 12.30: Relative phase between 1
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in degrees for a fit to the data using
the full model in 38 mass bins. No
error bars are shown due to large
errors of the single phases.

12.4.3 Reducing the Background

In this section, different approaches to reduce the amount of background in the data set are
discussed. Two cuts will be tested, namely a cut on the proton momentum and a cut on the
cos(θ) distribution, both are done to reduce the amount of centrally produced pions in the
data set. Finally, both cuts will be combined. Details are given in the following.
In the COMPASS central production analysis [164] a cut on the momentum of the fast proton
of p(pf) > 140GeV/c is performed to enhance centrally produced π+π− and K+K− events.
In this analysis the contribution of central production should be reduced and thus, the cut
is inverted and a momentum of p(pf) < 140GeV/c is required. With this cut, the number of
events used in the analysis is reduced by more than a factor of two, 4, 283, 925 events survive
the cut. The effect of the cut can be seen in figure 12.31. After the cut, the high mass tail of
the invariant mass distribution is reduced and the ratio of the peak height to the background
is enlarged.
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Figure 12.31: Invariant mass of pπ0 before (left) and after (right) the cut on the proton momentum.

In figure 12.32 the outcome of the fit for the full model is shown, figure 12.33 shows the
relative phase between 1

2

+
and 1

2

−
. The coherent sum does not resemble the invariant mass

distribution properly. In addition, the phase correlation, which was observed for the full data
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set, is nearly lost. For higher invariant masses the errors on the waves and the coherent sum
are larger, which is due to the reduced statistics in this region.
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Figure 12.32: Fit result for the single waves and
the coherent sum for the full model
with cut on proton momentum.
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Figure 12.33: Relative phase between 1
2

+
and 1

2
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in degrees for a fit to the data us-
ing the full model with a cut on the
proton momentum. No error bars
are shown due to large errors of the
single phases.

Most of the intensity is again found in the 12
±

waves. Especially the high-J waves only carry
a small intensity. This was expected to some extend as the cut reduces the amount of cen-
tral production events, which tend to have higher orbital angular momentum between the
outgoing proton and the pion produced in π0∗P scattering.
Pions which are produced in a pion exchange process tend to go backwards in the Gottfried-
Jackson frame. This produces a large peak at −1 in the angular distributions (see figure 8.4).
Therefore, in a next step the first four bins (−1 < cos(θ) < −0.8) are excluded from the fit
to be more sensitive on structures due to directly produced resonances. The outcome of the
fit with the full model is shown in figure 12.34, the relative phase between 1

2

+
and 1

2

−
in

figure 12.35. The invariant mass distribution is resembled by the fit, which shows that this fit
describes the data better than the fit with a cut on the proton momentum. However, again no
resonant structures can be observed in the single waves and the phase correlation between
1
2

+
and 1

2

−
is completely lost.

In the next step the two cuts discussed above are combined and the fit is performed on
the data set with the momentum cut where we in addition exclude the first four bins in
cos(θ). The single waves and their coherent sum are shown in figure 12.36, the relative phase
between 1

2

+
and 1

2

−
in figure 12.37. Again, the invariant mass distribution is not described

by the fit and no phase correlation is observed.
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Figure 12.34: Fit result for the single waves and
the coherent sum for the full model
with excluded backward peak.
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Figure 12.35: Relative phase between 1
2

+
and 1

2
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in degrees for a fit to the data us-
ing the full model with a cut on the
cos(θ) distribution. No error bars
are shown due to large errors of the
single phases.
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Figure 12.36: Fit result for the single waves and
the coherent sum for the full model
with momentum cut and excluded
backward peak.
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Figure 12.37: Relative phase between 1
2

+
and 1
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in degrees for a fit to the data us-
ing the full model with a cut on
the cos(θ) distribution and the pro-
ton momentum. No error bars are
shown due to large errors of the sin-
gle phases.

12.5 conclusion

In section 12.3 I have shown that the developed fit program is capable of fitting partial
waves to distributions that were sampled using the model constructed using equation (12.5).
However, the very same fit program cannot disentangle the partial waves in the real data
distributions in a proper way. The fits shown in section 12.4 do not show any resonant
structures at the expected positions (and also not at other positions) which could be fitted in
a second step of the analysis. The relative phases between the single waves do not show the
expected rapid phase motions due to resonances. Neither cuts on the data nor variations of
the model lead to real improvements in the fit results.
The reasons may lie in the following shortcomings of the model:

1. The background in the model is described by a single constant parameter (see equa-
tion 12.9). Contrary to this simple approach, the background observed in data has an
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angular dependence (see figure 8.4), which cannot be described by a single parameter.
Therefore, intensity from the background is distributed among the single partial waves.

2. The model used in this analysis only describes the decay of the resonance. This simple
ansatz seems to be not sufficient to describe the complete process. The azimuthal angle
ϕ in the Gottfried-Jackson frame, which is used in the Wigner functions, is the angle
between the production plane of the resonance and the decay plane of the resonance
(see figure 12.1), i. e. the angle is correlated to the formation of the resonance which is
not included in the model.

In the following chapter the non-resonant processes in pp → ppπ0 will be discussed to get
an estimate for the background contribution in the partial wave analysis. Afterwards, an
alternative approach for a partial wave analysis of pp→ ppπ0 will be presented.





13
S I N G L E P I O N P R O D U C T I O N I N P R O T O N - P R O T O N R E A C T I O N S

The simple partial wave analysis approach, which was presented in the previous chapter, did
not yield any sensible results on the data. This is most likely due to the large contribution
from non-resonant backgrounds, which have an angular distribution by themselves. The non-
resonant production of single π0 in pp→ ppπ0 is calculated in [165] for RHIC (

√
s = 500GeV)

and LHC (
√
s = 14 TeV) energies. In this chapter the main ideas of the calculation will be

presented and compared with COMPASS data. The goal is to understand the contribution of
background as well as resonances to the invariant mass spectrum, which is shown again in
figure 13.1. The most striking features of the spectrum are the two peaks, which may stem
from different resonances (compare section 8.1), and the rapid decline after the second peak.
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Figure 13.1: Invariant Mass of pπ0. The spectrum shows two peaks followed by a rapid decline.

13.1 production mechanisms

For the production of single π0 in pp → ppπ0 several mechanisms are possible, namely
diffractive dissociation (compare section 1.3.3), photon-photon and omega-photon fusion
processes, and photon-odderon fusion, where the odderon O is the C = −1 partner of the
pomeron [166]. At COMPASS energies (

√
s ≈ 19.5GeV), diffractive dissociation (also called

diffractive bremsstrahlung in this context) is the dominant contribution to the total cross
section and will be discussed in the following.
The dominant mechanism for diffractive bremsstrahlung is the Drell-Hiida-Deck mechanism
[167, 168]. At large

√
s diffractive processes are dominated by pomeron exchange, the possible

contributions are shown in figure 13.2. Here, only reactions on the beam proton are taken
into account, as reactions on the target proton are not part of the data set used in this thesis.
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Figure 13.2: The diffractive bremsstrahlung processes: (a) pion exchange, (b) proton exchange, (c) di-
rect production.

In addition, these are suppressed in fixed-target experiments. However, in a collider the role
of the protons is interchangeable. Reactions 13.2a and 13.2b are exchange reactions of virtual
particles which are put on-shell by the pomeron. Processes of type (a) are sometimes referred
to as central production. In the direct production channel 13.2c non-resonant off-shell protons
(p∗) as well as resonances (N∗) can be produced.
In [165] the cross sections for the three processes in figure 13.2 are calculated as a function of
different kinematic variables for RHIC (

√
s = 500GeV) and LHC (

√
s = 14 TeV) energies. In

the direct production channel 13.2c only non-resonant contributions are taken into account
and no resonances are included in the calculations.

13.2 results and comparison to data

Figure 13.3 shows the result of the calculation in [165] of the differential cross section for the
different production mechanisms as a function of the rapidity yπ (see equation (1.53)) of the
π0. The solid black line shows the contribution from bremsstrahlung, the dashed purple and
dotted blue line the contributions from γω and γγ exchange, respectively. The different line
widths correspond to

√
s = 45GeV (ISR),

√
s = 500GeV (RHIC) and

√
s = 14TeV (LHC) from

thin to thick. For lower centre-of-mass energies, the diffractive processes are the dominant
contribution to the cross section. This rapidity distribution can now be compared with the
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Figure 13.3: Rapidity of the π0 in pp→ ppπ0 for different production mechanisms (denoted by differ-
ent colours) and different centre-of-mass energies (denoted by different line widths). The
figure is taken from [165].
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one measured at COMPASS, which is shown in figure 13.4:
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Figure 13.4: Rapidity of the π0 in pp→ ppπ0 measured at COMPASS.

• Due to the fixed target geometry, only positive rapidity values are inside of the accep-
tance of the COMPASS spectrometer.

• Comparing to the theory calculations in figure 13.3, the shape of the distribution is
similar, the maximum value is yπ ≈ 4.5, which is smaller than for the experiments with
higher centre-of-mass energies.

• The measured rapidity distribution has a peak around 2.4. This peak is a hint for the
production of resonances, which seem to be dominantly produced in this kinematic
region.

13.2.1 Background Contribution in the Invariant Mass Distribution

The best comparison between theory results and data can be done in the invariant mass
distribution of pfπ0. In figure 13.5 the calculated invariant mass distribution for diffractive
bremsstrahlung from [165] is shown on the left in comparison to COMPASS data in the same
scale on the right.
The form of the invariant mass spectrum can be understood as non-resonant diffractive π0

production with additional resonance production in the low mass region. The exponential
decay of the measured spectrum is very similar to the calculation although the slope is
smaller. This can be a hint on further resonant contributions at higher masses. Now, that the
shape of the non-resonant contributions is known, it can be used to estimate the amount of
background in the mass spectrum. The functional form of the bremsstrahlung processes as
a function of mass is not given in [165] (they only give the matrix elements, from which the
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Figure 13.5: The theory calculation for the invariant mass of pfπ0 (left, only bremsstrahlung) together
with COMPASS data (right). The dashed lines correspond to a different choice of free
QCD parameters, the red lines include one photon exchange diagrams. For details see
[165].

mass dependence can be derived). Therefore, the non-resonant pion production as a function
of the invariant pπ0 mass is parametrised as

F(mpπ) = (mpπ −mthr)
n exp

[
− a(mpπ −mthr)

]
, (13.1)

where mthr = 1073.249MeV/c2 is the pπ0 threshold. This function is fitted to the high mass
tail of the pπ0 mass spectrum and extrapolated to the resonance region. The fits are per-
formed in bins of the momentum transfer t′. In figure 13.6 two examples1 are shown for
0.1 6 t′ < 0.2GeV2/c2 (left) and 0.6 6 t′ < 0.7GeV2/c2 (right). The different colours denote
different ranges in which the fit is performed. The dashed lines show the extrapolation of the
single fits into the resonance region. For the higher t′ regions (right panel of 13.6) the choice
of the fit range has no large influence on the extrapolation, in the lower t′ region (left panel
of 13.6) the influence is clearly visible. For lower limits of the fitting range of 2.2GeV/c2 and
below, the shape of the background function changes compared to higher limits, where the
shape does not change much. By eye, the blue curve (lower limit of 2.2GeV/c2) seems to
describe the background shape reasonably for all t′ bins.
To estimate the non-resonant contribution beneath the resonances, the extrapolated fit curves
are compared to the mass distribution in the region between threshold and 3GeV/c2. The
background contribution is given as the ratio of the integral of the extrapolated function and
the total number of events in that mass region. The ratios in bins of t′ for the different fit
regions are shown in figure 13.7. For all fits, the background contribution is at least 15% in
all bins of the momentum transfer. If again the blue curve is assumed to be the most suited
one, the background contribution is larger than 20%.

1 The fits in the full set of t′ bins is given in appendix F.
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13.3 inclusion of resonances in the theory

The inclusion of resonances in the theoretical description of this channel is not an easy task.
Nevertheless, there exists an approach which includes single and double Reggeon (Pomeron)
exchange for LHC data [169, 170]. In the calculation, only the resonances of the Regge-
trajectory of the proton, namely N(1680), N(2220) and N(2700) as well as the N(1440) are
included. A theory prediction for the differential cross section as a function of the squared
pion-proton mass is shown in figure 13.8 (left panel) together with COMPASS data (right
panel). Although the calculation is done for

√
s = 1.8 TeV the main features are quite similar

in calculation and measured data.
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Figure 13.8: The theory calculation for the square of the invariant mass of pfπ0 (left, only single
Reggeon exchange) together with COMPASS data (right).

13.4 conclusion

The form of the pπ0 invariant mass spectrum (see figure 13.1) from pp→ ppπ0 can be under-
stood as non-resonant diffractive pion production together with resonances in the low mass
region (below 2GeV/c2). The calculations done in [165] could also be done for COMPASS
energies but have not been performed so far. However, the matrix elements for the different
processes are known and can be used for a proper description of the non-resonant back-
ground in a partial wave analysis. For such an inclusion, a description of the resonances is
needed that includes the full process (formation and decay of the resonance). A possible ap-
proach, which is loosely based on the MAID model (compare section 10.3), will be presented
in the following chapter.
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A LT E R N AT I V E A P P R O A C H F O R PA RT I A L WAV E A N A LY S I S

A simple approach for a partial wave analysis of pp → ppπ0, which only models the decay
of the resonance to pπ0, was presented and tested in chapter 12. This approach did not yield
sensible results due to the large non-resonant background, which was estimated to be of the
order of 20% in chapter 13. To account for this background contribution, a model for a partial
wave analysis is needed, which takes the full process (production and decay of the resonance)
into account. In such a model, a proper inclusion of background amplitudes is possible.

14.1 the partial wave amplitude

After a discussion with baryon experts in Mainz, a new model was proposed by A. Fiks [171],
which is partly inspired by the model used in the MAID analysis (see section 10.3). In this
model the complete reaction, i. e. the formation of the resonance in single-Pomeron exchange
and the decay of the resonance to pπ0, is described. The resonant production of N∗ in the
diffractive scattering of protons

p(E, #»p ) + p(E,− #»p )→ p(E ′1, #»p ′1) + p(E
′
2, #»p ′2) + π

0(ωπ, #»qπ) (14.1)

in the pp centre-of-mass frame is shown in figure 14.1, where #»p is the momentum of the inci-

p( #»p ,mi)

p(− #»p ,m) p(
#»

p ′2,m ′)

P

N∗
π0(q)

p(
#»

p ′1,mf)

Figure 14.1: Diffractive production of N∗ resonances in proton diffraction.

dent proton, #»p ′1 and #»p ′2 are the momenta of the fast proton and the recoiling proton, respec-
tively and q = (ωπ, #»qπ) is the four-momentum of the π0. The spin projections mi,mf,m,m ′

of the protons are ±12 . In this reaction there are five independent kinematic variables, which
will be chosen as follows:

• The invariant mass Mπp of pion and fast proton p ′1.

• The direction of the π-p ′1-system (or equivalently the direction of the recoil proton p ′2),
in the following denoted by the two angles Ω = (θ,ϕ).

• The direction of the outgoing pion in the Gottfried-Jackson frame, again denoted by
two angles Ω∗π = (θ∗π,ϕ∗π).

Additional kinematic variables appearing in the following (e. g. Mandelstam variables) are
not independent and can be expressed by those five variables. The fivefold differential cross
section for this reaction is then given as

dσ

dMπpdΩdΩ∗π
=

1

(2π)5
2M4

Np
′
2q

E2p

∑
Si,Mi,Sf,Mf

|TSi,Mi,Sf,Mf
|
2 , (14.2)
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where the total spins of the initial and final state are given by Si,f = 0, 1 with Mi,f =

−Si,f, . . . ,Si,f. The amplitude TSi,Mi,Sf,Mf
(Mπp,Ω,Ω∗π) is given as a sum over the different

N∗ resonances with spin-parity JP

TSi,Mi,Sf,Mf
(Mπp,Ω,Ω∗π) =

∑
N∗(JP)

∑
mi,mf,m,m ′,mπ,mP,MJ

(1
2
mi,

1

2
m
∣∣∣SiMi

)(1
2
mf,

1

2
m ′
∣∣∣SfMf

)(1
2
mi,LPmP

∣∣∣JMJ

)(1
2
mf,Lπmπ

∣∣∣JMJ

)
fPNN∗fPNN

MLπ+LP
π

× F(Mπp)fπNN∗GN∗(Mπp)×GP(t)× (−1)mPq
[Lπ]
mπ P

[LP]
−mP

.

(14.3)

The different contributions to this amplitude will be described in the following: The second
sum in (14.3) runs over the spin projections of the four protons (mi,mf,m,m ′, compare
figure 14.1), the spin projection of the resonance MJ and the projections mπ and mP of the
orbital angular momenta of the pion and the pomeron with respect to the proton. Those
orbital angular momenta, Lπ and LP, are fixed for a given JP as shown in table 14.1.

N∗(JP) S11(
1
2

−
) P11(

1
2

+
) P13(

3
2

+
) D13(

3
2

−
) D15(

5
2

−
) F15(

5
2

+
)

Lπ 0 1 1 2 2 3

LP 1 0 2 1 3 2

Table 14.1: The orbital angular momenta of pion and pomeron for the lowest values of JP.

The four Clebsch-Gordan coefficients (in the given order) describe the couplings of

1. the beam proton and the target proton to the total spin Si of the initial state,

2. the outgoing fast proton and the recoil proton to the total spin Sf of the final state,

3. the spin of the beam proton and the orbital angular momentum of the pomeron to the
resonance with spin-parity JP (formation of the resonance) and

4. the spin of the outgoing fast proton and the orbital angular momentum of the pion to
the resonance (decay of the resonance).

The couplings fPNN∗ of the pomeron to the proton and the resonance and fPNN of the
pomeron to two protons are unknown (and thus arbitrary) constants. Mπ is the mass of the
π0.

F(Mπp) is a vertex form factor

F(Mπp) =
Λ4

Λ4 − (M2
πp −M

2
N∗)

2
, (14.4)

with Λ = 1.3GeV and the mass of the resonance MN∗ .

The coupling of the resonance to pion and proton fπNN∗ is related to the N∗ → π0N partial
decay width as

ΓN∗(Mπp) =
f2πNN∗

4π

F2(Mπp)

Mπp

2MN

M2Lπ
π

Lπ!
(2Lπ + 1)!!

q2Lπ+1 , (14.5)
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where q is the momentum of the pion in the centre-of-mass frame as introduced above and
F(Mπp) is again the vertex form factor from eq. (14.4).

GN∗(Mπp) is the propagator of the resonance. Here a non-relativistic Breit-Wigner ansatz is
chosen with

GN∗(Mπp) =
1

Mπp −MN∗ +
i
2ΓN∗(Mπp)

. (14.6)

The pomeron propagator is assumed to have the reggeized form (see chapter 1.3)

GP(t) =

(
s

s0

)α(t)−1
πα ′

sin
(
πα(t)

) e−iπα(t)
Γ
(
α(t)

) , (14.7)

with s0 = 1GeV2 and the Mandelstam variables

s = 2

√
#»p ′21 +M

2
N

t = (E(N∗) − E)2 − (
#  »

N∗ − #»p )2 .
(14.8)

The parameters of the Regge trajectory are given as

α(t) = α0 +α
′t

α0 = 1.08

α ′ = 0.25GeV−2 .

(14.9)

The last two terms appearing in (14.3) are momenta Q[L]
M of rank L, which are determined as

Q
[L]
M =

√
4πL!

(2L+ 1)!!
QLYLM(θQ,ϕQ) , (14.10)

where YLM are the spherical harmonics. The momenta are the centre-of-mass momentum
#»q of the π0 and the relative momentum

#»

P of the Pomeron and the beam proton that is
calculated as

#»

P =
#»pPE−

#»pEP

E+ EP

(14.11)

with he momentum and energy of the Pomeron

#»pP =
#  »

N∗ − #»p , EP = E(N∗) − E . (14.12)

The model has two free parameters for each resonance, namely the mass MN∗ and the coup-
ling constant fπNN∗ , which is related to the partial decay width (see equation (14.5)). Un-
fortunately, these parameters appear in the amplitude (14.3) in a complicated way and are
thus not easy to extract. In addition, there are many kinematic variables (like momenta or
Mandelstam variables) which are of course not independent but depend on the five chosen
variables. Therefore, this model can only be fitted to data with a likelihood formalism. The
inclusion of the experimental acceptance can then be achieved with an extended likelihood
formalism, which will be described in the following.
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14.2 the extended likelihood formalism

In short-hand notation the cross section from (14.2) and (14.3) is given as

Σ(τ) ≡ dσ
dτ

=
∑
α

∣∣∑
β

T̃αβ(τ)
∣∣2 , (14.13)

where τ = (Mπp,Ω,Ω∗π) denotes the kinematic variables, α = (Si,Mi,Sf,Mf) the incoherent
summation variables and β = (N∗(JP);mi,mf,m,m ′,mπ,mP,MJ) the coherent summation

variables. T̃ in addition contains the kinematic factor 1
(2π)5

2M4
Np
′
2q

E2p
.

The probability to observe an event with kinematic variables τi is given as

pi =
Σ(τi)∫

Σ(τ)A(τ)dτ
, (14.14)

where the integral runs over the full phase space. The acceptance A(τ) is the probability for
an event with a given kinematics to be observed in the detector (see chapter 7). The simple
likelihood function would then be the product of the probabilities for the single events

L0 =

N∏
i

pi . (14.15)

The number N of observed events in the experiment follows a Poisson distribution. This is
taken into account by the extended likelihood formalism which includes the Poisson distri-
bution in the calculation of the likelihood

L =
e−N0NN0
N!

L0 =
e−N0NN0
N!

N∏
i

pi , (14.16)

where the number N0 of expected events is equal to the phase-space integral from equation
(14.14)

N0 =

∫
Σ(τ)A(τ)dτ . (14.17)

The Poisson distribution has its maximum for N = N0 and fixes the normalisation of the
likelihood function. Details on this formalism can be for example be found in [172]. With the
probabilities pi from equation (14.14) the likelihood function simplifies as

L =
eN0

N!

N∏
i

Σ(τi) , (14.18)

which yields the more convenient logarithmic likelihood

logL = − logN! −N0 +
N∑
i

logΣ(τi) . (14.19)

The number of observed events N does not depend on the cross section but only on the
used data set. Thus, the term − logN! can be omitted in the likelihood calculation. The final
extended log-likelihood function is then given as

logL = −

∫
Σ(τ)A(τ)dτ+

N∑
i

logΣ(τi) . (14.20)
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The acceptance A(τ) only enters in the first term, the experimental data only in the second
term. Therefore, the first term can be evaluated from Monte Carlo events. A large number
NMC of Monte Carlo events with kinematic variables τi,MC with a flat distribution in phase
space are produced and reconstructed (see chapter 7). The phase space integral can then be
sampled numerically with the Monte Carlo events as

∫
Σ(τ)A(τ)dτ ≈

∫
dτ

NMC

NMC∑
i

Σ(τi,MC)A(τi,MC) , (14.21)

where the normalisation factor contains the phase space volume
∫
dτ [173].

Unfortunately, in this approach the free parameters MN∗ and fπNN∗ are contained in the
cross section Σ(τ) in a complicated way and thus, the phase space integral (14.21) has to
be calculated in every single step of the likelihood calculation1. Therefore, the minimisation
of the log-likelihood becomes expensive in computing time as it scales – in addition to the
number of events in data – with the number of Monte Carlo events.

14.3 a first fit attempt

A Likelihood fit with more than eight million events is not possible in a reasonable time
without a proper parallelisation of the likelihood calculation. Thus, I tried the same method
as in the previous analysis, namely to do a fit in mass bins. For that, the mass dependent
part

F(Mπp)fπNN∗GN∗(Mπp) (14.22)

was taken out of the amplitude (14.3) and substituted by a complex parameter. The modulus
and phase of this parameter (one for each combination of JP) are then fitted with a simple
likelihood fit in 25MeV/c2 mass bins of the invariant pπ0 mass Mπp. From the result of
those fits it should then be possible to extract the resonance parameters with a sophisticated
fit. For a first test ten fit attempts were performed in each bin. Unfortunately, the fits did not
give any promising results. In figure 14.2 as an example the result for JP = 3

2

−
is shown. The

dark blue line shows the result of the best fit, the light blue band gives the range of all ten
fits. Errors are omitted as they are quite large. The red lines denote the nominal position of
resonances for this JP. It is clearly visible, that the best fit does not show any sensible result,
although the range of fits includes fits, which follow the distribution of the full invariant
mass spectrum.

1 In many analyses – for example in [173] – the free parameters can be factored out and the phase space integral
becomes a constant for each event.
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Figure 14.2: Fit result for the JP = 3
2

−
channel. The dark blue line is the best fit, the light blue band

gives the range of results for all fits. The red lines denote expected resonances.

14.4 conclusion on this approach

Although the first fit attempt did not yield a promising result, this approach should be
considered further. However, there are still some things which have do be done:

• The cross section (14.2) only includes the resonance amplitude (14.3). The background
contributions discussed in chapter 13 are not included, but, in this approach an inclu-
sion should be possible.

• For a proper extended likelihood fit, the Monte-Carlo statistics has to be improved.
The number of used Monte Carlo events should be optimised in this case. A sufficient
statistics is needed to ensure a smooth acceptance correction, but the computation time
for the phase space integrals depends on the number of Monte Carlo events.

• The fit has to be done on the full number of events including the full description of the
resonances. As stated above, the calculation of likelihoods for more than eight million
events needs an appropriate handling of computer resources such as parallelisation of
the calculation, which also should help in the calculation of the phase space integrals.

In summary, this approach is surely promising and has a potential to yield physics results,
especially if the background description is fully included. Unfortunately, this project exceeds
the time scale of this thesis.



S U M M A RY – PA RT I A L WAV E A N A LY S I S O F pπ 0 F I N A L S TAT E S

In chapter 12 a simple approach for the partial wave analysis of pp → ppπ 0 was presented.
The helicity formalism was used to parametrise only the decay of a resonance in a pπ 0 final
state. A program was developed and several tests were performed on simulated angular
distributions. The developed program proved to be capable to fit a large number of JP states
together. However, the simple approach failed to describe the measured angular distributions.
This can be attributed to the large non-resonant background, which was estimated to be
of the order of 20% by comparing the measured invariant mass distribution to a theory
calculation (see chapter 13). Several cuts were tested to reduce the background contribution
in the angular distributions, but non of those led to a sensible result in the partial wave
fits. Therefore, the simple approach will not be considered any further. In chapter 14 an
alternative approach for a partial wave analysis was shown. This time, the full process pp →
ppπ 0 including the Pomeron exchange, the formation and the decay of the resonance was
parametrised. The parametrisation contains a large number of kinematic variables (of which
only five are independent) and thus a simple fit of angular distributions is no longer possible.
The fits in this case have to be done with an extended likelihood formalism, which also
takes the acceptance calculation into account. The advantage of this approach is the possible
inclusion of correctly parametrised non-resonant contributions, which could be done in the
future. However, with some effort and sufficient computing resources this approach seems
very promising.

139





C O N C L U S I O N A N D O U T L O O K

Nihil tam difficile est, quin quaerendo investigari possit – I worked on several topics, some of them
turned out to be more complicated than expected. Nevertheless, I obtained good results in
some parts and deeper insights in others. Still, there are many possibilities to continue the
work I have begun here.

iiii beam particle identification with statistical methods

The newly developed likelihood method for the beam particle identification in the CEDAR
detectors is clearly an improvement compared to the previously used multiplicity method.
With the new method, the kaon identification efficiency is improved by ≈ 65% without losing
purity. In addition, the method allows to identify pions with a good efficiency and purity.
This method can be applied for future data takings; all tools that are needed are provided
within the COMPASS software.

iiii production of single mesons in pp reactions

With the large available data set the determination of the cross section ratio σ(η)/σ(π0)
was possible over a wide kinematic range. Results from previous experiments obtained in
limited ranges could be improved due to a much better accuracy. The cross section ratio
shows a resonant enhancement of π0 production in the medium xF range. The cross section
ratio σ(φ)/σ(ω) for vector mesons obtained in this thesis is compatible with a previous
COMPASS analysis. The extracted cross section ratios can be used in the future for model
building due to their small uncertainties. The presented analysis can be extended to η′ and
ρ mesons, which are more complicated to extract from the data. The data used in this work
would also allow to study strangeness exchange reactions, such as pp → pKΛ or pp →
pKΣ.

iiii partial wave analysis of pπ0 final states

The pp → ppπ0 data can also be used to study the production of baryon resonances. Al-
though everything seemed to be easy in the beginning, it soon turned out that the channel
pp → ppπ0 is everything but simple. The simple approach for a partial wave analysis to
only model the decay of the resonances proofed to be too naïve to describe the data. One
reason for that is the non-resonant background, which turned out to be of the order of 20%
and has an angular dependence. This angular dependence is not parametrised in the simple
model. A comparison with theory calculations allowed to understand the invariant mass dis-
tribution qualitatively as a non-resonant background with resonances on top. An alternative
model for partial wave analysis was developed, which describes the full reaction mechanism
and therefore also allows to include a proper description of the background processes. How-
ever, applying this model to the available data still needs a larger amount of work, mainly
due to the huge amount of data, which has to be treated properly during the fitting process
to reduce the time consumption of the program. If the alternative method turns out to de-
scribe the data and yield results, an extension to the pη final state should be possible without
problems.
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A
S O M E M AT H E M AT I C S

a.1 the group su(3)

The special unitary group of complex-valued 3× 3 matrices with determinant +1 is a Lie
group of dimension 8. The eight generators Ta of the corresponding Lie algebra su(3) are for
example given by the Gell-Mann matrices [13] λa via

Ta =
λa

2
. (A.1)

The Gell-Mann matrices are traceless matrices and explicitly given as

λ1 =

0 1 0

1 0 0

0 0 0

 λ2 =

0 −i 0

i 0 0

0 0 0

 λ3 =

1 0 0

0 −1 0

0 0 0



λ4 =

0 0 1

0 0 0

1 0 0

 λ5 =

0 0 −i

0 0 0

i 0 0

 λ6 =

0 0 0

0 0 1

0 1 0



λ6 =

0 0 0

0 0 1

0 1 0

 λ8 =
1√
3

1 0 0

0 1 0

0 0 −2



(A.2)

The generators obey the following (anti-) commutator relations:

[Ta, Tb] = ifabcTc

{Ta, Tb} =
1

3
δab + dabcTc

(A.3)

The structure constants fabc are antisymmetric in all three indices and given as

f123 = 1

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2

f458 = f678 =

√
3

2
,

(A.4)

where all combinations of abc which are not permutations of the ones given above lead to
fabc = 0. Similarly, the dabc are symmetric in all three indices and the non-zero values are

d118 = d228 = d338 = −d888 =
1√
3

d448 = d558 = d668 = d778 = −
1

2
√
3

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1

2
.

(A.5)
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a.2 explicit form of wigner d-functions

In the following tables, explicit forms of the Wigner (small) d-functions dJMM′(θ) are given
for half-integer values of J. Only functions for certain combinations of M and M′ are listed,
further functions can be calculated via

dJMM′(θ) = (−1)M−M′dJM′M(θ) = −dJ−M′−M(θ) (A.6)

All functions are taken from [174]. The J = 9
2 functions are omitted as they are even more

complicated.

H
HHH

HHM

M′ 1
2

+12 cos
(
θ
2

)
−12 sin

(
θ
2

)
Table A.1: J = 1

2
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−
√
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√
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√
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) √
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Table A.2: J = 3
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M′ M = 5
2 M′ M = 3
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√
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Table A.3: J = 5

2
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M′ M = 7
2

+72 cos7
(
θ
2
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√
7 cos6
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θ
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√
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√
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√
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√
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θ
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Table A.4: J = 7

2

a.3 blatt-weisskopf barrier factors

The Blatt-Weisskopf barrier factors [157] describe the centrifugal barrier in a particle decay.
They have been parametrised by von Hippel and Quigg [158]. In this work, a slightly different
parametrisation given in [159] is used. In this parametrisation, the Blatt-Weisskopf factors are
defined as

F`(p) =

√√√√√√
∣∣∣h(1)` (1)

∣∣∣2∣∣∣xh(1)` (x)
∣∣∣2 x =

p

pR
, (A.7)

where x = p
pR

with pR = 0.1973GeV/c. The spherical Hankel functions of the first kind are
solutions to Bessel’s differential equation

x2
d2h(1)` (x)

dx2
+ x

dh(1)` (x)

dx
+

[
x2 −

(
`+

1

2

)]
h
(1)
` (x) = 0 . (A.8)

They can be calculated via

h
(1)
` (x) = −i(−x)`

(
1

x

d
dx

)`
eix

x
(A.9)
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or, with a series expansion,

h
(1)
` (x) =

(
−ieix

x`

) ∑̀
k=0

[
(`+ k)!

2kk!(`− k)!
(−ix)`−k

]
. (A.10)

The normalisation of the Blatt-Weisskopf factors is chosen, that F`(pR) = 1. The first six
barrier factors (up to ` = 5) are

F0(p) = 1

F1(p) =

√
2z

z+ 1

F2(p) =

√
13z2

z2 + 3z+ 9

F3(p) =

√
277z3

z3 + 6z2 + 45z+ 225

F4(p) =

√
12746z4

z4 + 10z3 + 135z2 + 1575z+ 11025

F5(p) =

√
998881z5

z5 + 15z4 + 315z3 + 6300z2 + 99225z+ 893025
,

where z =
(
p
pR

)2
. They are shown in figure A.1
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Figure A.1: The first six Blatt-Weisskopf barrier factors.

a.4 why the reflectivity ε can be fixed

The Wigner D-functions in the reflectivity base are given as

DJ ,ε
Mλ(φ , θ , 0) =

1√
2

[
DJMλ(φ , θ , 0) − ε · P · (−1)J−MDJ−Mλ(φ , θ , 0)

]
. (A.11)
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The angular distributions are given by the square of the absolute value, which we will calcu-
late here (omitting the factor 1√

2
for convenience):

|DJ ,ε
Mλ |

2 ∝ |DJMλ − εP(−1)J−MDJ−Mλ |
2

=
(
DJMλ − εP(−1)J−MDJ−Mλ

)
·
(
DJ ∗Mλ − ε∗P(−1)J−MDJ ∗−Mλ

)
= |DJMλ |

2
− DJMλD

J ∗
−Mλε

∗P(−1)J−M

− DJ ∗MλD
J
−Mλε

∗P(−1)J−M + εε∗P2(−1)2(J−M)︸ ︷︷ ︸
=1

|DJ−Mλ |
2

= |DJMλ |
2
+ |DJ−Mλ |

2
− P(−1)J−M

×
[
ε∗e−iMφdJMλ · e−iMφdJ−Mλ + εeiMφdJMλ · eiMφdJ−Mλ

]
.

From ε = ±i follows ε∗ = −ε. Substituting ε = ηi with η = ±1 yields

= |DJMλ |
2
+ |DJ−Mλ |

2
− ηP(−1)J−MdJMλd

J
−Mλ i

[
−e−2iMφ + e2iMφ

]
.

With 2i sin(x) = eix − e−ix the final result is obtained as

|DJ,εMλ(φ, θ, 0)|
2 ∝ |DJMλ(φ, θ, 0)|

2
+ |DJ−Mλ(φ, θ, 0)|

2

+ 2 ·ηP · (−1)J−MdJMλ(φ, θ, 0)dJ−Mλ(φ, θ, 0) sin(2Mφ) .
(A.12)

Thus, for given J and (in our case) M = 1
2 the angular distributions depend only on ηP.

Therefore, switching the sign of the reflectivity corresponds to a parity flip and

DJ
+,i
Mλ = DJ

−,−i
Mλ . (A.13)

This effect can be seen in figure A.2. Changing both, parity and reflectivity, results in the
same angular distributions.
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for different combinations of reflectivity ε and parity P.

a.5 modelling a smooth phase shift

For a model of several baryon resonances a model for the phase shifts is needed. The actual
arctan

(
M2Γ2

x2−M2

)
behaviour, whereM and Γ are the resonance mass and width, has a too steep

phase jump for x = M and leads to jumps in the modelled invariant mass distributions. A
model is needed, that provides a smooth phase shift from −π2 to π

2 over the resonance. Thus,
the phase p(x) has to fulfil the following properties:

p(M− Γ
2 ) = −π2

p(M+ Γ
2 ) = +π2

p(M) = 0

p′(M− Γ
2 ) = 0

p′(M+ Γ
2 ) = 0

p′′(M) = 0 .

A shift of the coordinate system such, that the resonance is located at x = 0, reduces the
number of conditions:

p(Γ) = −p(−Γ) = π
2

p′(Γ) = p′(−Γ) = 0

p(0) = p′′(0) = 0 .

(A.14)
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These properties are fulfilled by any centrally symmetric function. In this case, polynomials
of degrees three and five will be considered.

a.5.1 Polynomial of Degree 3

For a centrally symmetric polynomial of degree 3

p(x) = ax3 + bx , (A.15)

the given conditions (A.14) can be directly used. For simplification γ ≡ Γ
2 will be used, which

leads to

p(γ) = aγ3 + bγ =
π

2

p′(γ) = 3aγ2 + b = 0 .
(A.16)

Solving for a and b, one obtains

p(x) = −
π

4γ3
x3 +

3π

4γ
x , (A.17)

or, using the original coordinate system,

p3(x) = −
2π

Γ3
(x−M)3 +

3π

2Γ
(x−M) . (A.18)

a.5.2 Polynomial of Degree 5

For a centrally symmetric polynomial of degree 5

p(x) = ax5 + bx3 + cx , (A.19)

an additional condition can be imposed, which is chosen to be the slope at x =M. Thus, one
obtains

p(γ) = aγ5 + bγ3 + cγ =
π

2

p′(γ) = 5aγ4 + 3bγ2 + c = 0

p′(0) = c = K ,

(A.20)

where K is the slope at the resonance and has to be fixed later. Solving for a, b, c yields

p(x) =

(
K

γ4
−
3π

4γ5

)
x5 +

(
5π

4γ3
−
2K

γ2

)
x3 +Kx , (A.21)

or

p5(x) =

(
16K

Γ4
−
24π

Γ5

)
(x−M)5 +

(
10π

Γ3
−
8K

Γ2

)
(x−M)3 +K(x−M) . (A.22)

The function p5(x) has four extrema at x = ±Γ2 and x = ± KΓ3

20KΓ−30π . The first ones are wanted
and imposed by (A.14), the latter ones are not wanted and can lie inside of the interval of the
resonance. To avoid this behaviour, the value of the slope K has to be chosen such, that

KΓ3

20KΓ − 30π
>

(
Γ

2

)2
. (A.23)
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Solving for K yields

K 6
15π

8Γ
. (A.24)

Choosing the lower bound for K in (A.24), the final form for p5(x),

p5(x) =
6π

Γ5
(x−M)5 −

5π

Γ3
(x−M)3 +

15π

8Γ
(x−M) , (A.25)

is obtained In figure A.3 the two solutions p3(x) (blue) and p5(x) (red) are shown.
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Figure A.3: The two possible solutions for the phase shift.

a.6 error propagation of coherent sums

We want to calculate the error of the coherent sum

S =

∣∣∣∣∣∑
i

Ai

∣∣∣∣∣ =
∣∣∣∣∣∑
i

Aie
iαi

∣∣∣∣∣ (A.26)

of fitted amplitudes Ai, which have errors on their strengths Ai and phases αi. For the
calculation of errors we use

S =
√
S2 , (A.27)

and thus

∆S =
1

2S
(∆S2) , (A.28)

where

S2 =

(∑
i

ReAi

)2
+

(∑
i

ImAi

)2
≡ (ReΣ)2 + (ImΣ)2 (A.29)

and

(∆S2) =

√[
2(ReΣ)(∆ReΣ)

]2
+
[
2(ImΣ)(∆ImΣ)

]2 . (A.30)
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The errors of the real and imaginary part of Σ =
∑
iAi is given as the sum of the errors of

the real and imaginary part of the single amplitudes

(∆ReΣ) =

√∑
i

(∆ReAi)2

(∆ImΣ) =

√∑
i

(∆ImAi)2 .
(A.31)

Finally, using ReAi = Ai cos(αi) and ReAi = Ai sin(αi), we obtain

(∆ReAi) =

√
(cos(αi)∆Ai)

2 + (Ai sin(αi)∆αi)
2

(∆ImAi) =

√
(sin(αi)∆Ai)

2 + (Ai cos(αi)∆αi)
2 .

(A.32)
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In this chapter, the probability and likelihood distributions, which were not shown in chapter
4, will be presented.

b.1 probability distributions
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Figure B.1: Probability distribution Pi(θx,θy)
(signal|kaon) for having no signal in the different PMTs

with the kaon sample.
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Figure B.2: Probability distribution Pi(θx,θy)
(signal|kaon) for having a signal in the different PMTs

with the kaon sample.
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Figure B.3: Probability distribution Pi(θx,θy)
(signal|pion) for having no signal in the different PMTs

with the pion sample.
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Figure B.4: Probability distribution Pi(θx,θy)
(signal|pion) for having a signal in the different PMTs with

the pion sample.
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b.2 likelihood distributions
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Figure B.5: Likelihoods for the beam sample using cut200 for both CEDARs and using all 16 photo-
multipiers together.
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Figure B.6: Likelihoods for the beam sample using cut01 for both CEDARs and using all 16 photomul-
tipiers together.

ln L(pion)
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

ln
 L

(k
ao

n)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

1

10

210

310

(a) CEDAR 1

ln L(pion)
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

ln
 L

(k
ao

n)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

1

10

210

(b) CEDAR 2

ln L(pion)
-40 -35 -30 -25 -20 -15 -10 -5 0

ln
 L

(k
ao

n)

-40

-35

-30

-25

-20

-15

-10

-5

0

1

10

210

(c) 16 PMT

Figure B.7: Likelihoods for the kaon sample using cut200 for both CEDARs and using all 16 photo-
multipiers together.
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Figure B.8: Likelihoods for the kaon sample using cut01 for both CEDARs and using all 16 photomul-
tipiers together.
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Figure B.9: Likelihoods for the pion sample using cut200 for both CEDARs and using all 16 photo-
multipiers together.
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Figure B.10: Likelihoods for the pion sample using cut01 for both CEDARs and using all 16 photo-
multipiers together.
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In this chapter additional kinematic distributions are shown, which were omitted in chapter
8.

c.1 angular distributions for pp → ppη

The Gottfried-Jackson angle cos(θ) for pp → ppη is shown in the left panel of figure C.1.
As for pp → ppπ0 , the distribution is dominated by a backward peak, which is broader
in this case. Due to the acceptance correction, which is shown in the right panel of figure
C.1 the peak height is reduced compared with the rest of the distribution. This was already
observed in the pion case.
The distribution of the angle ϕ is given in the right panel of figure C.2. In contrast to the pion
case, where the distribution was peaked around ϕ = 0 (and ϕ = π), the distribution for the
η case is peaked around ϕ = ± 12 , i. e. the decay plane is dominantly perpendicular to the
production plane in this reaction. Due to acceptance correction, the structures are broadened
a bit compared to the uncorrected distribution. This can be seen in the right panel of figure
C.2.
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Figure C.1: Gottfried-Jackson angle cos(θ) for pη. The left plot shows the distribution with applied
acceptance correction, the right plot shows the comparison of corrected and uncorrected
data normalised to each other.
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Figure C.2: Gottfried-Jackson angle ϕ for pη. The left plot shows the distribution with applied accep-
tance correction, the right plot shows the comparison of corrected and uncorrected data
normalised to each other.

c.2 pion pair production

For the channel pp→ ppπ+π−, there are no acceptance corrections available and only the un-
corrected spectra are shown. Nevertheless, it can be assumed1 that the acceptance correction
for this channel is flat and does not change the distributions too much.
In this channel with three outgoing particles, it is interesting to look at the two-particle
subsystems (pπ+, pπ− and π+π−) to get information on sequential decays such as pp →
∆0π+p with ∆0 → pπ−. These kind of sequential decays are used in the so-called isobar
model for meson spectroscopy in π−p→ π−π+π−p [175, 176].
In figure C.3 the invariant mass spectra of the outgoing three-particle system pπ+π− and the
spectra of the three different sub-systems, namely π+π−, pπ+ and pπ−, are shown.
The three-particle system exhibits a large structure around 1700MeV/c2 and a smaller one
around 1500 MeV/c2 similar to the pπ0 system. The π+π− spectrum contains structures
which should be contributions from ρ(770), f0(980) and f2(1270). In the pπ+ and pπ− spec-
trum the ∆(1232) and some further features from higher ∆ states are visible. These different
contributions in the single distributions have to be addressed by a partial wave analysis
which is not done in this thesis. A first idea of the involved decays can be seen in figure C.4
where we show the invariant mass of the 3-particle system as a function of the masses of the
pπ+ and pπ− system. The structure around 1500MeV/c2 seems do decay via ∆(1232)++π−

and ∆(1232)0π+, while the larger 1700MeV/c2 structure also decays via ∆(1232)++π− but in
the second channel dominantly via ∆∗π+.

1 The acceptance distributions of the very similar channel π−p→ π−π+π−p are known to be flat.
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Figure C.3: Invariant mass spectra for pp→ ppπ+π−.
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Figure C.4: Invariant mass of pπ+π− against the masses of the 2-particle states.
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In figures D.1 and D.2 the fits of the ω and φ peaks in the single bins of xF are shown. These
fits are used for the event yields plotted in figure 9.8.
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Figure D.1: Fits of ω mass in bins of xF.
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Figure D.2: Fits of φ mass in bins of xF.
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In this chapter all results for the fit in mass bins for the single waves are shown for the
different tests, which were done in chapter 12. This is the complete list of fits, some of these
have already been shown before.

e.1 fits to the model
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Figure E.1: The fit results (blue points) together with the model (red line) for the single waves in the
model.
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Figure E.2: The fit results (blue points) together with the model (red line) for the single waves in the
model.
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e.1.3 Full set of waves
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Figure E.3: The fit results (blue points) together with the model (red line) for the single waves in the
model.
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Figure E.4: The fit results (blue points) together with the model (red line) for the single waves in the
model.
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e.1.5 Fitting with too many resonances
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Figure E.5: The fit results (blue points) together with the model (red line) for the single waves in the
model.
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Figure E.6: The fit results (blue points) together with the model (red line) for the single waves in the
model.
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e.2 fits on real data

e.2.1 Full model without cuts
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Figure E.7: The fit results (blue points) connected by a line to better guide the eye for the single waves
in the model. The red lines denote the nominal position of resonances.

e.2.2 Only waves up to 5
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Figure E.8: The fit results (blue points) connected by a line to better guide the eye for the single waves
in the model. The red lines denote the nominal position of resonances.
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e.2.3 Fit in 38 mass bins
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Figure E.9: The fit results (blue points) connected by a line to better guide the eye for the single waves
in the model. The red lines denote the nominal position of resonances.
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e.2.4 Cut on proton momentum
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Figure E.10: The fit results (blue points) connected by a line to better guide the eye for the single
waves in the model. The red lines denote the nominal position of resonances.
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e.2.5 Exclusion of the backward peak
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Figure E.11: The fit results (blue points) connected by a line to better guide the eye for the single
waves in the model. The red lines denote the nominal position of resonances.
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e.2.6 Momentum cut and exclusion of backward peak
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Figure E.12: The fit results (blue points) connected by a line to better guide the eye for the single
waves in the model. The red lines denote the nominal position of resonances.
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Figure F.1 shows the different fits of the background contribution in pp→ ppπ0 in nine bins
of the momentum transfer t′, which are used to calculate the ratios given in figure 13.7.

2 in GeV/c0π
f

Invariant Mass of p
1 1.5 2 2.5 3 3.5 4 4.5 5

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

210

310

410

510 3.0 - 5.0
2.5 - 5.0
2.4 - 5.0
2.3 - 5.0
2.2 - 5.0
2.1 - 5.0
2.0 - 5.0

(a) 0.1 < t′ < 0.2GeV2/c2

2 in GeV/c0π
f

Invariant Mass of p
1 1.5 2 2.5 3 3.5 4 4.5 5

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

210

310

410

3.0 - 5.0
2.5 - 5.0
2.4 - 5.0
2.3 - 5.0
2.2 - 5.0
2.1 - 5.0
2.0 - 5.0

(b) 0.2 < t′ < 0.3GeV2/c2

2 in GeV/c0π
f

Invariant Mass of p
1 1.5 2 2.5 3 3.5 4 4.5 5

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

210

310

410

3.0 - 5.0
2.5 - 5.0
2.4 - 5.0
2.3 - 5.0
2.2 - 5.0
2.1 - 5.0
2.0 - 5.0

(c) 0.3 < t′ < 0.4GeV2/c2

2 in GeV/c0π
f

Invariant Mass of p
1 1.5 2 2.5 3 3.5 4 4.5 5

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

210

310

410

3.0 - 5.0
2.5 - 5.0
2.4 - 5.0
2.3 - 5.0
2.2 - 5.0
2.1 - 5.0
2.0 - 5.0

(d) 0.4 < t′ < 0.5GeV2/c2

2 in GeV/c0π
f

Invariant Mass of p
1 1.5 2 2.5 3 3.5 4 4.5 5

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

10

210

310

410 3.0 - 5.0
2.5 - 5.0
2.4 - 5.0
2.3 - 5.0
2.2 - 5.0
2.1 - 5.0
2.0 - 5.0

(e) 0.5 < t′ < 0.6GeV2/c2

2 in GeV/c0π
f

Invariant Mass of p
1 1.5 2 2.5 3 3.5 4 4.5 5

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

10

210

310

3.0 - 5.0
2.5 - 5.0
2.4 - 5.0
2.3 - 5.0
2.2 - 5.0
2.1 - 5.0
2.0 - 5.0

(f) 0.6 < t′ < 0.7GeV2/c2

2 in GeV/c0π
f

Invariant Mass of p
1 1.5 2 2.5 3 3.5 4 4.5 5

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

10

210

310

3.0 - 5.0
2.5 - 5.0
2.4 - 5.0
2.3 - 5.0
2.2 - 5.0
2.1 - 5.0
2.0 - 5.0

(g) 0.7 < t′ < 0.8GeV2/c2

2 in GeV/c0π
f

Invariant Mass of p
1 1.5 2 2.5 3 3.5 4 4.5 5

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

10

210

310

3.0 - 5.0
2.5 - 5.0
2.4 - 5.0
2.3 - 5.0
2.2 - 5.0
2.1 - 5.0
2.0 - 5.0

(h) 0.8 < t′ < 0.9GeV2/c2

2 in GeV/c0π
f

Invariant Mass of p
1 1.5 2 2.5 3 3.5 4 4.5 5

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

1

10

210

310
3.0 - 5.0
2.5 - 5.0
2.4 - 5.0
2.3 - 5.0
2.2 - 5.0
2.1 - 5.0
2.0 - 5.0

(i) 0.9 < t′ < 1.0GeV2/c2

Figure F.1: Fits of the non-resonant background contribution to the invariant mass spectrum of pπ0

in bins of the momentum transfer t′. Different colours denote different fit ranges in the
invariant mass.

175





G
U S E R ’ S M A N U A L F O R B AY E S I A N L I K E L I H O O D S I N T H E C E D A R
H E L P E R

The full likelihood method introduced in chapter 4 including all five steps is implemented
in the CEDAR helper class available in the COMPASS hadron tools [70]. To successfully use
this class inside phast the following files have to be made available during compilation:

• The source file CEDAR_Helper.cc and the corresponding header file,

• the file cedar_time_corr.h containing corrections for PMT timings for certain runs,

• the folder CEDAR_DB containing the hit maps1.

g.1 getting the pid

To get the PID for the beam particle in an event, the function

int CEDAR::LikeID_bayes

(const PaEvent& e, const int iv, double A, double B)

is called, which determines the likelihood for the OR combination of the CEDARs as de-
scribed in 4.4. const PaEvent& e is the current event and const int iv the index of the
primary vertex. The values for A and B of the log likelihood differences (compare eq. (4.9b)
and (4.10b)) are set to default values of A = B = 1 and thus do not have to be specified. To
access the PID information of a single CEDAR or the combination of all 16 photomultipliers
the method

int CEDAR::LikeID_bayes

(const PaEvent& e, const int iv, int cedar, double A, double B)

is used. int cedar has to be chosen as

• cedar=1: CEDAR 1 (8 photomultipliers)

• cedar=2: CEDAR 2 (8 photomultipliers)

• cedar=3: CEDARs combined (16 photomultipliers)

In this case the values of A and B have to be specified (there is no default).
In both cases the PID uses the following convention (same as RICH):

value PID

-1 no ID

0 π

1 K

1 Also other files are included in this folder which are not needed by the likelihood method but are essential for
other parts of the CEDAR helper class to work.
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g.2 tools for further studies

For more detailed analyses also the likelihoods from the different CEDARs (and the combi-
nation of the 16 PMTs) can be obtained using the methods

double CEDAR::GetLikes_Pion

(const PaEvent& e, const int iv, int cedar)

double CEDAR::GetLikes_Kaon

(const PaEvent& e, const int iv, int cedar)

where all arguments are chosen as in the case of PID.
Using

double CEDAR::GetTheta_X

(const PaEvent& e, const int iv, int cedar)

double CEDAR::GetTheta_Y

(const PaEvent& e, const int iv, int cedar)

the corrected values for the beam divergence – θx and θy – for both CEDARs can be accessed.
The information whether a certain photomultiplier registered a photon can be accessed
through

bool CEDAR::Hit_in_PMT

(const PaEvent& e, const int iv, int cedar, int pmt)

which will be true if photomultiplier pmt (0− 7) in CEDAR cedar (1, 2) has a hit.

g.3 how to produce hit maps

In the CEDAR folder of the hadron tools repository there is a phast user event
(UserEvent493677.cc) which is used to produce hit maps. To use this user event a cali-
bration sample (kaon or pion) is needed with as little background as possible. Running
UserEvent493677 over this sample will produce the needed histograms. After specifying the
type of sample new hit maps probKxy.db or probPxy.db are automatically produced. These
files have to be moved to the CEDAR_DB folder. After a recompilation of phast the new hit
maps are ready to use.
Caveat: If you want to use the likelihood method for Primakoff data taking the hit maps have
to be renamed probKxy_2009.db and probPxy_2009.db!
Caveat 2: Up to now (August 30, 2015) no hit maps have been produced for Primakoff data
taking. The available hit maps are just dummy files!

g.4 adapting the method to primakoff data

The method is more or less ready to use for 2009 and 2012 Primakoff data taking. Neverthe-
less some adaptions have to be made. At first the zero corrections for the beam divergence
(see chapter 4.1) have to be set to the correct values obtained from Primakoff data. The values
have to be set in the variables double x_cent_20XX[2] and double y_cent_20XX[2] (where
XX=09/12) in CEDAR_Helper.cc.
Having set the divergence corrections new hit maps have to be produced using appropriate
calibration samples. After that at least the values for the log likelihood differences A and B
should be checked.



A C R O N Y M S

BEPC Beijing Electron Positron Collider

BES BEijing Spectrometer

BNL Brookhaven National Laboratory

BT Beam Trigger

CEBAF Continuous Electron Beam Accelerator Facility

CEDAR ChErenkov Differential Counter with Acromatic Ring focus

CERN Conseil Européen pour la Recherche Nucléaire, European Organization for
Nuclear Research

CLAS CEBAF Large Acceptance Spectrometer

CMS Centre-of-Mass System

COMGEANT COMPASS GEANT

COMPASS COmmom Muon and Proton Apparatus for Structure and Spectroscopy

CORAL COMPASS Reconstruction ALgorithms

DC Drift Chamber

DESY Deutsches Elektronen-SYnchrotron

DST Data Summary Tree

ECAL Electromagnetic CALorimeter

ELSA Elektronen-Stretcher-Anlage

GEANT GEometry ANd Tracking

GEM Gas Electron Multiplier

HCAL Hadronic CALorimeter

ISR Intersecting Storage Rings

LAS Large Angle Spectrometer

LASS Large Aperture Superconducting Solenoid

LHC Large Hadron Collider
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MAMI MAinzer MIkrotron

MAPMT Multi-Anode PhotoMultiplier Tube

mDST mini Data Summary Tree

MWPC MultiWire Proportional Chamber

PDG Particle Data Group

PHAST PHysics Analysis Software Tools

PMT PhotoMultiplier Tube

PT Proton Trigger

QCD Quantum Chromo Dynamics

RICH Ring Imaging CHrenkov detector

RHIC Relativistic Heavy Ion Collider

RPD Recoil Proton Detector

SAS Small Angle Spectrometer

SciFi Scintillating Fibre

SLAC Stanford Linear Accelerator Center

SM Spectrometer Magnet

SPS Super Proton Synchrotron
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• The likelihood method for the CEDAR detectors was presented at the SPIN-Praha-
2012 conference and submitted as proceedings, which – up to now – have not been
published.

• The likelihood method for the CEDAR detectors and some details and figures of the
pp → ppπ0/η channel are included in the spectrometer description for the hadron
beam set-up in [45].

• The likelihood method for the CEDAR detectors is described in the COMPASS internal
note 2013-8.

• The event selection and kinematic distributions for pp → ppπ0/η as well as pp →
ppπ+π−(K+K−) are shown in COMPASS internal release notes.
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