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Zusammenfassung

Observablen, die durch eine transversale Targetpolarisation erfasst werden
können, werden in Hochenergieexperimenten untersucht. Das Teilchenphysik-
experiment P̄ANDA besteht aus einem Detektor am Teilchenbeschleuniger
FAIR, der am GSI Helmholtzzentrum für Schwerionenforschung in Darm-
stadt gebaut wird. Dieser Detektor benötigt ein hohes Magnetfeld in longi-
tudinaler Richtung bezüglich des Antiprotonenstrahls, um eine hohe Impuls-
auflösung elektrisch geladener Teilchen zu ermöglichen. Für die Machbarkeit
eines transversal polarisierten Targets ist es erforderlich, das longitudinale
Magnetfeld abzuschirmen.

Die Möglichkeit ein intensives Magnetfeld mit Hilfe eines Abschirmrohres
aus einem BSCCO Hochtemperatursupraleiter abzuschirmen wurde bezüglich
eines erreichbaren Abschirmfaktors, dessen Stabilität in der Zeit und der
residualen magnetischen Flussdichte entlang der Rohrachse experimentell un-
tersucht. Eine numerische Simulation des induzierten Stromes im Abschirm-
rohr und der residualen magnetischen Flussdichte entlang seiner Achse wurde
entwickelt, und die experimentellen Ergebnisse mit den Vorhersagen dieser
Simulation verglichen.

Am Helmholtz-Institut Mainz (HIM) wurde eigens für diese Untersuchung
eine Experimentierapparatur bestehend aus einem Kryostaten für flüssiges
Helium bei einer Temperatur von 4,2 K entwickelt und aufgebaut. Das Ab-
schirmrohr wurde mit einer beweglichen Hall-Sonde, mit einem speziellen
Null-Feld Magneten aufgesetzt, versehen. Das externe Magnetfeld wurde
von einem hierfür angefertigten supraleitenden Solenoiden, der auf dem Ab-
schirmrohr montiert werden kann, erzeugt.

Eine magnetische Flussdichte von 1 T wurde angelegt und abgeschirmt,
mit einem Abschirmfaktor von mindestens 3, 2 · 105, bei einem Konfidenz-
niveau von 95 %. Bei einer Messung über vier Tage konnte ein weiteres Ein-
dringen nicht beobachtet werden. Die Messung der residualen magnetischen
Flussdichte entlang der Rohrachse zeigte eine Abschirmung über 80 mm (bei
150 mm Abschirmrohrlänge) bis 1 T. BSCCO ist ein geeignetes Material, das
hohe Magnetfeld im P̄ANDA Spektrometer abzuschirmen.
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Abstract

In high energy particle experiments one is interested in observables that
require a transverse target polarization. The particle physics experiment
P̄ANDA consists of a detector at the particle accelerator FAIR currently
under construction at GSI Helmholtz Centre for Heavy Ion Research, Darm-
stadt (GSI). The detector requires a high magnetic field in longitudinal
direction with respect to the antiproton beam to provide high momentum
resolution of the electrically charged particles. For the feasibility of a trans-
verse polarized target in P̄ANDA, it is essential to shield the longitudinal
magnetic field.

The ability to shield an intense magnetic flux with a high temperature
superconductor BSCCO in form of a shielding tube was investigated experi-
mentally. A shielding factor was extracted. A measurement of the stability
of the shielding in time and a measurement of the residual magnetic flux den-
sity along the axis of the tube was performed. A numerical simulation of the
induced current in the shielding tube and the residual magnetic flux density
along its axis was developed. The experimental results were compared to the
predictions based on the numerical simulation.

For the measurements a dedicated apparatus consisting of a cryostat,
filled with liquid helium, at a temperature of 4.2 K was developed and con-
structed at the Helmholtz-Institut Mainz (HIM). The shielding tube was
equipped with a movable Hall probe, with a Zero-field Magnet on top. The
external magnetic field was generated by a purpose-built superconducting
solenoid, which can be mounted on top of the shielding tube.

An external magnetic flux density of 1 T was applied and shielded with
a shielding factor of at least 3.2 · 105 with a 95 % confidence level. In a
measurement over four days a penetration of it into the shielding tube could
not be observed. The measurement of the residual magnetic flux density
along the axis of the tube showed a shielding of the the central region of
80 mm (from total 150 mm shielding tube) up to 1 T. BSCCO is a good
shielding material and can be used to shield the high magnetic field within
the P̄ANDA spectrometer.
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Chapter 1

Introduction and overview

The standard model of particle physics is a theory that describes the ele-
mentary particles and interactions between those that we can observe today.
The interactions are mediated by the so-called force particles. Today three
fundamental interactions are well described by this model. The first one is
the electromagnetic force, mediated by the photon that is e.g. responsible
for the Coulomb force that makes two oppositely charged particles to attract
each other, and two particles of the same charge to repel. It is also the
interaction that underlies the electromagnetic field that we see as light in
the visible regime. The second interaction is the week force, with attributed
bosons W and Z. It governs some decay of particles, like the beta decay or
fusion. This two forces could be unified in one theory, the electro-week force.
It states that this two forces are two different aspects of the same force that
unifies them above an energy of the order by 100 GeV. Nevertheless, for
a long time it remained unclear, why the photon is massless, while the W
and the Z have masses that exceeds 80 times that of the proton. Also the
masses of the fermions cannot be explained without introducing a new field,
called the Higgs field. The recently found Higgs particle that is a quantum of
that field, solves this problem. The third interaction, the strong force is the
binding force of the quarks in a hadron. The large proton mass compared
to the masses of its constituents, the quarks, is still an open question. The
structure of the hadrons, those particles built by quarks, is one of the main
subjects of the study of the experiment antiProton ANnihilation in DArm-
stadt (P̄ANDA), a detector at the particle accelerator Facility for Antiproton
and Ion Research (FAIR). The gravitational force is not included as a quan-
tized theory in the standard model of particle physics. It is the dominating
interaction on large scales where the universe is electromagnetically neutral.
Because of the relatively week interaction compared to the other three it is
usually negligible at small scales.

1



2 Chapter 1. Introduction and overview

Understanding the hadron structure is one of the main issues of study-
ing the strong interaction described by Quantum Chromo-Dynamics (QCD).
Especially the non-perturbative QCD is of great interest, since it is not well
understood and can only be accessed experimentally to have an exact and
model independent description. The proton is the only stable hadron and
its structure has been largely studied. The internal structure of the proton
can be expressed in terms of structure functions that provide a probe of non-
perturbative QCD. They can be extracted from various processes involving
a proton. Electron-proton elastic scattering or antiproton-proton annihila-
tion gives access to the electromagnetic form factors. Electromagnetic form
factors are quantities, which describe the distribution of the electric charge
and magnetization within the proton. The Drell-Yan process and its cross-
channel deep inelastic scattering allows for measuring parton distribution
functions which describe how the momentum of a nucleon is divided among
its constituents, quarks and gluons. The description of the structure func-
tions is not yet complete and requires more experimental effort. This work
is related to electromagnetic processes that can be observed in the P̄ANDA
experiment.

A fixed target particle experiment as P̄ANDA is based on an accelerator
for the particle beam and a detector with the target inside. The experimen-
tal setup will be introduced and a brief discussion on the physics program
as it is foreseen will follow. In particular a transversely polarized target in
P̄ANDA is foreseen to access polarization observables, to have a more com-
plete description of the structure functions like time-like form factors. A
short overview on the observables are given and also the main principles of
a polarized experiment provided.

In order to operate a transverse polarized target in P̄ANDA, a transverse
magnetic field is needed at the target region. The longitudinal 2 T magnetic
field of the solenoid in the P̄ANDA spectrometer has to be compensated. A
very promising approach to this issue, is the shielding of a high magnetic field
with a high-temperature superconducting shielding tube. First the physical
properties of the shielding tube are introduced, followed by a detailed de-
scription of how the residual field of a shielding tube is calculated, and the
results of a simulation. After an introduction to the experimental setup and
the experimental procedure, the results of the measurements are presented,
and compared to the simulation.



Chapter 2

The P̄ANDA experiment at
FAIR

The P̄ANDA spectrometer [1] will be installed at the High Energy Storage
Ring (HESR), a storage ring of the future FAIR accelerator facility at GSI
Darmstadt [2]. The already existing accelerator facility at GSI will be used
as an injector into the newly built complex of storage rings. The protons
or ions are accelerated in several steps to provide the experiments with a
high intensity and a high quality beam. P̄ANDA will detect products of
an annihilation reaction induced by a high intensity antiproton beam with
momentum from 1.5 to 15 GeV/c. The average interaction rate is expected
to reach 2 · 107 s−1. The HESR stores a secondary beam of antiprotons,
created by colliding protons on a target. The stored antiprotons can collide
and annihilate with a fixed target in the P̄ANDA spectrometer. The use of
matter and antimatter as target and projectile makes it a unique probe of
the standard model, since they can annihilate and produce pure energy.

2.1 Physics program of P̄ANDA

The use of antiproton-proton annihilation allows for the access to all non-
exotic quantum numbers that makes precise measurements of mass and width
of known states possible. In contrast to proton-proton colliders, where the
high discovery potential is in foreground, or electron-positron colliders that
are limited to one quantum number (1−−). The P̄ANDA experiment will
offer a broad physics program thanks to the large detector acceptance, high
resolution, tracking capabilities and excellent neutral and charged particle
identification. Charmonium (cc̄) spectroscopy, investigation of gluonic ex-
citations, in-medium properties of mesons, gamma ray spectroscopy of hy-
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4 Chapter 2. The P̄ANDA experiment at FAIR

pernuclei, and study of hadron structure are included and described here
briefly.

2.1.1 Hadron spectroscopy and exotic hadrons

P̄ANDA will search for gluonic excitations and do charmonium, D-meson
and baryon spectroscopy.

Gluonic excitation are states where gluons can act as principle compo-
nents . This can be a glue ball, where only gluons contribute to the overall
quantum number, and hybrids, where also quarks and anti-quarks are in-
volved. Because of a direct access to a full set of quantum numbers that are
possible by proton-antiproton annihilation, P̄ANDA is a favorable environ-
ment for gluonic excitations.

Charmonium states are mesons composed of a valence charm anti-charm
pair. The decay modes and widths of states that are already known but
grossly incomplete can be accessed with P̄ANDA with high accuracy. Also
missing states and the nature of newly discovered states will be investigated.

D-mesons are composed by one charm quark as the heavy constituent of
this heavy-light system and a quark or an antiquark. Some of the measured
states do not fit well into quark model predictions. This has risen theoretical
and experimental interest in D-mesons. A determination of the decay widths
of these states with P̄ANDA, with a resolution down to values of 100 keV,
will allow distinction between the different theoretical pictures for heavy-light
systems.

The understanding of the baryon spectrum is the main goal of non-
perturbative QCD. Whereas agreement of experimental data with quark
model predictions is very poor. P̄ANDA is well-equipped for a thorough
baryon spectroscopy.

2.1.2 Hadrons in nuclear matter

The mass of an atom or an atomic nucleus is close to the sum of the masses
of its constituents and the binding energy effect is rather small. In a nucleon
this is no longer the case. The mass of a proton is 938 MeV/c2 and the mass
of its constituents, the up quark, 2.3 MeV/c2, and down quark, 4.8 MeV/c2

[3]. How is it possible to build protons and neutrons from these nearly
massless blocks? In the strong interaction, as gluons also obtain a color,
gluon-gluon interactions are also possible in a hadron and beside the valence
quarks also a quark sea can exist. Can one understand hadron masses as
a consequence of the motion and interaction of quarks? Chiral symmetry
is a fundamental symmetry of QCD for massless quarks. In this theory, in
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the interaction of quarks by gluon exchange, the orientation of the spin of
the quarks with respect to their momentum, their chirality, is conserved.
The chiral symmetry is broken, when the quarks change their chirality in the
presence of a quark anti-quark pair. At high temperatures and high densities,
the chiral symmetry can be partially restored. An experimental verification
would be a measurement of a mass shift of a hadron in nuclear medium.
Also a broadening of the resonance and other structures in it are expected.
The experimental search until now was concentrated only on light quarks.
An antiproton beam with a momentum up to 15 GeV/c will also include the
charm sector.

2.1.3 Hypernuclei

By replacing an up or a down quark with a strange quark in a nucleon, a
hyperon is formed. The study of nuclei containing strange baryons provides
information on the nuclear structure and also on strange baryons in nuclear
medium. With a beam of antiprotons in P̄ANDA ΛΛ-hypernuclei can be
formed to study the strong nuclear interaction [4]. With an internal target,
production of Ξ-hyperons is expected, which can be used to form a bound
state of a Ξ-hypernuclei in an absorber. The Ξ-hypernuclei can be converted
into ΛΛ-hypernuclei and allow the investigation of double strange systems
by performing gamma-spectroscopy on them. The two step formation of
ΛΛ-hypernuclei requires a primary and a secondary interaction point. A
modification of the inner part of the P̄ANDA spectrometer is needed, where
some detector components are removed or adapted to the hypernuclei-setup
[5].

2.1.4 Nucleon structure

One main goal in hadron physics is the direct investigation of the nucleon
structure via electromagnetic processes. Elastic electron nucleon scattering
was used to determine the electric and magnetic form factors GM and GE

in the space-like regime, where the form factors are real functions of the
momentum transfer squared. The time-like regime can only be accessed via
annihilation, where the form factors are complex. In this region experiments
so far were carried out with low luminosity and individual values for GM and
GE have remained undetermined. Therefore P̄ANDA, as a high luminosity
detector, is a brilliant tool for the determination of the time-like form fac-
tors. Because of their complex nature, for a complete determination also the
relative phase between GM and GE is needed. For this purpose a transverse
polarization of the target is highly desirable.
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Another important issue in the field of electromagnetic processes are the
generalized parton distribution functions (GPDs) [6]. They can be measured
in processes like deep virtual compton scattering (ep → epγ) or wide angle
compton scattering (γp → γp). Their counterpart, called generalized distri-
bution amplitudes (GDA), can be measured in the crossed channel process
pp̄ → γγ. They give information about the longitudinal momentum and
transverse position of the constituent quarks and gluons, in this way the
3-dimensional structure of the nucleon can be accessed.

2.1.5 Detector requirements from the physics case

The physics at P̄ANDA described here requires a momentum range of the an-
tiproton beam from the HESR of 1.5 and 15 GeV/c to have access to the tar-
geted hadronic states (fig. 2.1). Concerning the electromagnetic processes an-
other difficulty comes into play. The governing process in proton-antiproton
annihilation is the pion production. The hadronic cross sections are 6 orders
of magnitude higher than that of electromagnetic processes. For a successful
suppression of background events a very good particle identification is re-
quired. For a high rate capability for 2 · 107s−1 interactions, a high data rate
and consequently a high degree of radiation resistance is needed.

2.2 The P̄ANDA spectrometer

P̄ANDA (fig. 2.2) is a fixed target experiment with good particle identifica-
tion, high energy and angular resolutions for charged particles and photons,
good vertex reconstruction and excellent calorimetry. There are two main
parts of the detector: A target spectrometer, consisting of a solenoid around
the interaction region, and a forward spectrometer, based on a dipole mag-
net to reconstruct the momentum of particles emitted at forward angles. By
this combination, an almost full coverage of the solid angle will be possible.
Some components of the spectrometer will be mentioned here very briefly. A
detailed technical description is given in ref. [9].

2.2.1 The HESR at FAIR

At the accelerator complex FAIR (fig. 2.3), protons from the LINAC will
be accelerated up to 30 GeV/c and will collide with a copper or nickel tar-
get to produce antiprotons. After collecting those and pre-cooling, they will
be stored in the HESR. At HESR, an antiproton beam in the momentum
range between 1.5 and 15 GeV/c will be available. There are two operational
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Fig. 2.1: Mass range of hadrons that P̄ANDA is going to investigate. The upper
scale indicates the required beam momentum range to have access to the mass
region of the shown hadronic states. The HESR will provide a beam in the range
of 1.5 and 15 GeV/c [8].

modes of the HESR that use either stochastic cooling or electron cooling [7].
Cooling of the beam means reducing the phase space occupied by the beam
(emittance) and allowing a better momentum resolution. Stochastic cooling
is a method where a feedback loop determines the signal of the deviation of
particles in a bunch at one point of the storage ring. At a later point, by
taking a shorter way across the ring, a correction to the bunch is given in
a way that the particles in the bunch get closer to the desired trajectory.
By successive application, the transverse momentum of the beam is reduced.
Electron cooling exploits the momentum transfer of a low-emittance electron
beam parallel to the antiproton beam. The electron beam is not circulating,
it is generated just for one turn. By collisions of the electrons with the an-
tiprotons, the antiproton beam emittance is reduced. In the high momentum
resolution mode, electron-cooling is applied, allowing a very high momentum
resolution δp/p ∼ 10−5 and a luminosity of L = 1031cm−2s−1. In the high lu-
minosity mode, stochastic cooling will be used, and the momentum resolution
is reduced to δp/p ∼ 10−4 while the luminosity reaches L = 2× 1032cm−2s−1.
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Fig. 2.2: P̄ANDA Detector at HESR (FAIR). Shown are the target spectrometer,
the forward spectrometer and the detector components described in the text [9]

2.2.2 Magnet systems

For the momentum resolution and identification of charged particles in the
target spectrometer a superconducting solenoid with an inner diameter of
1.9 m and a length of 2.7 m is foreseen. It will provide a 2 T longitudinal
magnetic field parallel to the beam axis, that will interact via the Lorentz
force on charged particles and create curved tracks. From the tracking of
the particles, their mass and velocity can be reconstructed. The lower the
momentum of the particle, the higher its curvature in the magnetic field. In
the ideal case the magnetic field should be uniform over the tracking volume.
The homogeneity of the P̄ANDA solenoid is planned to be better than 2 %
over the volume of the tracker. The magnet in the forward spectrometer
is a large-aperture dipole magnet which will provide a bending power of
2 Tm [10].

2.2.3 Target system

The target material required in P̄ANDA for antiproton-proton experiments
is a high density hydrogen target. It should provide a primary vertex point
and at the same time fit in a small space by not worsening the vacuum in
the beam pipe. Currently there are three types of targets foreseen depending
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Fig. 2.3: The FAIR accelerator complex. The part already existing at the GSI site
(blue) will be extended (red). The P̄ANDA experiment at the HESR and also other
experiments are shown [9].

on the requirements of the experiment. A cluster, a pellet, a fiber or a wire
target [11,12]. The target pipe is perpendicular to the beam pipe. The cluster
target is produced by pressing hydrogen gas through a nozzle that makes the
gas to cool down and reach a supersonic speed. The gas condensates to nano-
particles, the so-called clusters, with a thickness of 8 · 1014 atoms/cm2. A
pellet target consists of micro-spheres of frozen hydrogen. This target type
has a low divergence leading to an uncertainty of ±1 mm of the interaction
position with the beam. The average thickness of this target type is 1016

atoms/cm2. The speed of 60 m/s of a pellet and a flow rate of 10000 pellets/s
leads to a distance between two successive pellets on the order of a millimeter.
A fiber or wire target would exploit the low beam emittance of the HESR
best and will be needed for the physics with D mesons.

2.2.4 Detector components

The tracking system is the closest detector component to the interaction
point. The micro vertex detector (MVD) is the innermost part of the track-
ing system. It allows the precise reconstruction of displaced vertices of short
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lived particles with charm or strangeness content. Due to the magnetic field
over the volume of the tracking system the particle momentum can be re-
constructed by looking at the curvature of the tracks of charged particles.
The information about the energy loss of a particle facilitate the particle
identification.

In addition to the observables mentioned above a DIRC (detection of in-
ternally reflected cherenkov radiation) detector and a ToF (time of flight)
detector will provide additional information. Cherenkov radiation is emit-
ted by particles traveling through a medium with a faster velocity than the
velocity of light in that medium. The angle is related to the velocity of the
particle. The ToF measures the arrival time of the particle at two points
at a distance, and by this the velocity and makes it possible to distinguish
between particles of the same momentum but different mass.

Between the solenoid and the tracker, the electromagnetic calorimeter
(EMC) measures the energy deposit of particles in its sensitive volume in an
energy range of 10 MeV to 15 GeV. Electrons and photons will deposit their
full energy by an electromagnetic shower, hadrons will lose just a fraction
of their energy by a hadronic shower and muons penetrate the calorimeter
almost without energy loss and have to be detected in the muon detector
outside of the solenoid. Another issue for the EMC is, it has to be designed
in a way that it can resist the hard radiation due to the high luminosity. For
the particle identification the information of several independent detector
components are correlated.

Particles emitted in the forward direction close to the beam pipe will be
detected in the forward spectrometer equipped with a dipole magnet and the
components described above placed in this part of the detector.



Chapter 3

Transversely polarized target
measurements in P̄ANDA

The electromagnetic form factors in the space-like regime that can be ac-
cessed by scattering electrons on protons, are real. In the time-like region,
when a proton and an antiproton annihilates into an electron-positron pair,
the form factors are complex. An unpolarized measurement in the time
like region gives access to their moduli squared. For a full determination
one needs additional information about the relative phase from a polarized
measurement. A transversely polarized target in P̄ANDA would allow the
first-time extraction of their relative phase, opening a new window for inves-
tigating the nucleon structure.

3.1 Description of the nucleon structure

A complete description of the nucleon structure can be given in terms of
structure functions, describing electromagnetic processes in the space-like
and the time-like region. A scattering process for the former, and an anni-
hilation for the latter is required involving a lepton pair or a photon and a
nucleon or an additional meson. They are connected by crossing symmetry
and the observables are counterparts in different kinematic regions.

� Generalized distribution amplitudes can be extracted from the anni-
hilation channel of the wide angle Compton scattering [13]. And the
measurement of transition distribution amplitudes from the process
proton-antiproton annihilation and electron-positron pair production
with an additional neutral pion [14].

� In the Drell-Yan production a quark of the proton and an antiquark

11



12 Chapter 3. Transversely polarized target measurements

of the antiproton annihilate, creating a virtual photon, which then
decays into an antilepton-lepton pair. From this process transverse
momentum dependent (TMD) parton distribution functions (PDFs)
can be extracted. At leading twist 8 TMD PDFs are needed to fully
describe the nucleon structure [15,16].

� With an unpolarized measurement in P̄ANDA the Boer-Mulders func-
tions can be measured which describes the distribution of polarized
partons in unpolarized hadrons.

� If the target could be polarized transversely, also the Transversity and
Sivers functions are accessible. These describe the distribution of polar-
ized and respectively unpolarized partons in polarized hadrons. Com-
paring the Transversity and the Boer-Mulders functions from the Drell-
Yan production to the Transversity and the Boer-Mulders functions
from the crossed process semi inclusive deep inelastic scattering is a
test of their universality.

3.2 Electromagnetic form factors

After the identification of an electron as an elementary particle in an ex-
periment with cathode rays in 1897 by J.J. Thomson, he proposed that the
negatively charged electrons (he called them ”corpuscles”) where distributed
inside an atom in a sea of positive charge like plums in a bowl of pudding [17].
This was believed until the first scattering experiment to investigate the nu-
cleon structure was carried out. In a scattering experiment of alpha particles
generated by the radioactive decay of radium showed a behavior that con-
tradicted this picture. In his analysis of the gold foil experiment published
in 1911 by E. Rutherford in [18], he described the differential cross section
for an alpha particle scattered from a static point charge. In a case where
the incident particle is an electron, the differential cross section is:(

dσ

dΩ

)
Ruth

=
Z2α2

16E2
k sin4 (θ/2)

, (3.1)

where dΩ = 2πd cos θ is the solid angle of the scattered electron at polar
angle θ in the laboratory frame, α = e2

4π
is the electromagnetic coupling

constant (e is the elementary charge), Ek is the kinetic energy of the inci-
dent electron, Z is the atomic number of the target. From this result he
concluded that the atoms in the foil consist of a positively charged nucleus
that is concentrated in the center with a relatively high mass. Otherwise
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the alpha particles would have passed the foil with a few minor deflections.
The Rutherford cross section (eq. 3.1) is accurate in the case of a scattering
of non-relativistic, point-like, spin zero particles, without recoil of the tar-
get nucleus. The scattering is non-relativistic, if the kinetic energy of the
involved particles is much smaller than their rest mass.

The differential cross section of the Mott scattering [19], by taking into
account the spin of the electron and treating it as relativistic, is(

dσ

dΩ

)
Mott

=
Z2α2 cos2 ( θ

2
)

4ε21 sin4 (θ/2)
(3.2)

ε1 is the total energy of the incident electron in the laboratory frame. The
term cos2 ( θ

2
) comes from the spin of the electron. If the target is not point-

like but has a finite extension, the charge distribution of the target introduces
a correction term called form factor [20, 21]. The scattering amplitude due
to a distributed charge is the scattering amplitude due to a point multiplied
with the form factor F (q) =

∫
ρ(x)eq·xdx. The differential cross section, in

the case of a non-relativistic recoil of the proton, becomes

dσ

dΩ
=

(
dσ

dΩ

)
Mott

∣∣∣∣∫ ρ(x)eq·xdx

∣∣∣∣2 (3.3)

where ρ(x) is the charge distribution at distance x from the center of the
proton, and q is the momentum transfer from the scattered electron. The
form factor F (q) is the Fourier transform of the charge distribution (in case
of a non-relativistic proton). The spin of the target is not taken into account
in eq. 3.3.

Form factors can be defined for any non-point-like particle. In the fol-
lowing we will focus on the proton form factor. The number of form factors
for a spin-1/2 particle is two. Considering that the electromagnetic coupling
has to fulfill Lorentz-invariance, charge- and parity conservation. There is
also a contribution to the cross section coming from the magnetic moment of
the proton. Hofstadter [21] described the cross section based on formalism
by Foldy [22] and Rosenbluth [23] as

dσ

dΩ
=

(
dσ

dΩ

)
Mott

ε1
ε2

[
F 2

1 + τF 2
2 + 2τ tan2(θ/2)(F1 + F2)2

]
(3.4)

where ε1 and ε2 is the energy of the incident and scattered electron in the
laboratory system, respectively. F1 and F2 are the Dirac and Pauli form
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Fig. 3.1: Feynman diagram of the scattering process of an electron and a proton

factors as functions of the momentum transfer squared q2, τ = q2

4m2 and m is
the mass of the nucleon.

It is convenient to use the Sachs form factors GM and GE which are linear
combinations of the Pauli and Dirac form factors [24]

GE = F1 − τF2, GM = F1 + F2. (3.5)

They are related to the charge and magnetization distribution. Particularly,
if q2 = 0, GE = 1 and GM = µp, where µp = 1.4106067873 · 10−26 J/T is
the proton magnetic moment [25]. At large q2, GM and GE are phenomeno-
logical probes for the internal structure of the proton. At high q2, where
the interaction between the quarks gets weaker, perturbative QCD (pQCD)
can be applied. At low q2 QCD cannot be solved exactly and the transition
region to pQCD is unclear too. By measuring GM and GE over a large q2

range the transition region between perturbative QCD and non-perturbative
QCD can be accessed experimentally.

3.2.1 Space-like form factors

The form factors in the space-like region when q2 < 0 can be extracted by two
different measurement methods both based on the elastic scattering process
shown in fig. 3.1. One is called the Rosenbluth separation method [23], the
other one the polarization transfer method [26], that allows the determination
of the ratio of the form factors. The Rosenbluth separation method consists
in measurement of the unpolarized differential cross section of the electron
proton scattering (a detailed description can be found in ref. [28]):

dσ

dΩ
=

(
dσ

dΩ

)
Mott

ε1

ε2

1

E(1 + τ)
(τG2

M + EG2
E) (3.6)

E−1 = 1 + 2(1 + τ) tan2(θ/2) (3.7)

A reduced cross section can be defined:

σred(θ, q
2) = τG2

M + EG2
E. (3.8)
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Fig. 3.2: Form factors GM and GE as a function of Q2 = q2 in terms of the dipol
function GD = (1 + q2/0.71GeV2)−2, extracted with the Rosenbluth method [28].

One can extract G2
E as the slope and τG2

M as the y-intercept of a linear
fit of the function σred(θ, q

2) depending on E . The data obtained with the
Rosenbluth separation method are shown in fig. 3.2. There are two main
disadvantages of this method: At large q2 the cross section is dominated by
GM . Also exchange of more than one virtual photon in the scattering pro-
cess is neglected. The development of polarized electron beams and proton
polarimetry allowed for measurements of polarization observables. Starting
in 1998 three measurements were carried out at Thomas Jefferson National
Accelerator Facility of a measurement of the ratio of the form factors. They
followed the suggestion of Akhiezer and Rekalo [26, 27], measuring the po-
larization of the recoil proton after scattering would be more sensitive to
GE rather than of an unpolarized cross section as in the Rosenbluth sep-
aration method. Moreover, the contributions from radiative corrections in
this method are minimised, since polarization observables are ratios of cross
sections. From the simultaneous measurement of the transverse Pt and longi-
tudinal Pl component of the polarization of the recoil proton one can extract
the ratio of the form factors:

R =
GE

GM

= −Pt
Pl

ε1 + ε2

2m
tan(θ/2). (3.9)

Figure 3.3 shows the discrepancy of the results obtained with the two different
methods. Until now this discrepancy is not yet fully understood.
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Fig. 3.3: Comparison between the two different methods to obtain proton form fac-
tors by electron-proton scattering. The black points are the result of the Rosenbluth
separation method. The green stars are results from measurements via the proton
recoil polarization method [33].

3.2.2 Time-like form factors

The proton form factors for q2 > 0 (time-like region) can not be accessed
in the electron-proton scattering process, where q2 < 0 (space-like). They
can be measured in the process where a proton and an antiproton annihilate
and an electron-positron pair is produced (e.g. at LEAR [29]) or vice versa.
The latter case, based on e+e−-annihilation, has been investigated e.g. at
BaBar [30] and BESIII [31]. These data suffered from low precision and
are also partly inconsistent with each other within their total uncertainties.
P̄ANDA as a detector with near to 4π angular coverage and a high luminosity
will be able to measure with higher accuracy and cover also higher values of
q2. The measurements of the ratio of the time-like form factors are shown
in fig. 3.4 a) as black symbols [34–37]. The colored symbols are obtained by
individual extraction of GM and GE via the P̄ANDA simulation package [38]

with the hypothesis of the ratio R = |GE |
|GM |

= 1 [39]. In fig. 3.4 b) [40] the
same simulation was done for the similar process involving a muon pair in the
final state. More details are given in ref. [38]. For the unpolarized process:

p+ p̄→ e− + e+, (3.10)

see the Feynman-diagram in fig. 3.5, the differential cross section in the
center-of-mass system is(

dσ

dΩ

)
0

= N [(1 + cos2 Θ)|GM |2 +
1

τ
sin2 Θ|GE|2] (3.11)
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Fig. 3.4: a) World data of time like form factor ratio in proton-antiproton annihila-
tion and electron-positron pair production [34–37] compared to simulations as it can
be measured with P̄ANDA (PANDA pp̄ → e+e−) [38]. b) Simulation of time like
form factors involving a muon pair in the final state (PANDA pp̄ → µ+µ−) [40].
The simulations assume an integrated luminosity of 2fb−1.
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Fig. 3.5: Proton-antiproton annihilation and electron positron pair production pro-
cess.

N =
α2

4
√
q2(q2 − 4m2)

(3.12)

α = e2/(4π) ' 1/137 (3.13)

with the Sachs form factors GM and GE, q2 = 4E2, τ = q2

4m2 with the
antiproton energy E in the center of mass frame and an approximation of
zero electron mass. m is the mass of the proton. Θ is the angle between
the antiproton and the electron in the center-of-mass frame. This formula
was first shown in ref. [41]. The cross section depends only on the moduli
squared of the complex Sachs form factors GM and GE. To have access to the
relative phase between GM and GE, a measurement of the transverse single
spin polarization observable is needed. By polarizing the proton transversely
in the same process the polarized differential cross section is:(

dσ

dΩ

)
0

A1,y =
N√
τ

sin 2Θ Im(GMG
∗
E), (3.14)

and A1,y is the single spin asymmetry by polarizing transverse to the pro-
duction plane. This was derived in ref. [42]. By fixing the energy and the
scattering angle, Im(GMG

∗
E) can be extracted from a polarized measurement:

|GM ||GE| (cos (ΦM − ΦE) + i sin (ΦM − ΦE)) (3.15)

Im(GMG
∗
E) = |GM ||GE| sin (ΦM − ΦE) (3.16)

where ΦM and ΦE is the phase of the magnetic, electric form factor, respec-
tively. If |GM | and |GE| are known from an unpolarized measurement, the
relative phase can be determined. This is true for a polarized measurement
where the target is 100% polarized. How to take a less polarized target into
account, is described in the next section.

3.3 Polarization principles

The design and development of a transverse polarized target for P̄ANDA
needs to be investigated in details. Nevertheless, the development of a shield-
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ing against the 2 T longitudinal magnetic flux density of the solenoid of the
P̄ANDA spectrometer at the target region is the first step towards a trans-
verse target polarization in P̄ANDA, and therefore the main focus of this
thesis. In this section basic considerations of target polarization are given.

3.3.1 Optimizing the performance of a polarization ex-
periment

The first approaches of producing beams of polarized hydrogen atoms were
reported at the International Symposium on Polarization Phenomena of Nu-
cleons (Basel, 1960) [43]. A summary of polarized target experiments is given
in tab. 3.1. A detailed description of polarization principles and techniques
can be found in [44]. The main quantities that have to be considered in a
polarization experiment are summarized here.

In a fixed target experiment the counting rate is:

N = L dσ
dΩ

∆Ω, (3.17)

where dσ
dΩ

is the differential cross section of interest and ∆Ω the detector solid
angle. The luminosity

L = Int (3.18)

is defined as the product of the beam current I (number of beam particles per
second) and the target thickness nt (number of target particles per volume
times the target length). L determines the accuracy and how fast an experi-
ment can be carried out. In a storage ring, like HESR at FAIR, to guarantee
a sufficient long lifetime of the beam, the target is usually very thin (typically
< 1015 atoms/cm2). If the experiment requires a polarized target, one of the
main issues is the maximization of the degree of polarization of the target
Pt.

In an ensemble of nuclei with nuclear spin 1/2 the degree of nuclear target
polarization is defined as

Pt =
n+ 1

2
− n− 1

2

n+ 1
2

+ n− 1
2

, (3.19)

where n+/− 1
2

is the number of nuclei with spin +/ − 1
2
. The experimentally

measured quantity is the counting rate asymmetry

ε =
N↑ −N↓
N↑ +N↓

, (3.20)
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where N↑↓ = 1
2
(N↑ + N↓)(1 ± PtA) is the counting rate for an experiment

with a target, polarized transversely to the production plane. The plus sign
is for the positive, the minus for the negative polarization. The asymmetry
A can than be extracted from

A =
1

Pt
ε (3.21)

meaning that A = ε if the target is 100% polarized. Thus measuring Pt is
necessary for the determination of A. If the target contains a fraction fpol of
polarizable and funpol = (1 − fpol) of unpolarized nuclei, the dilution factor
f due to scattering from unpolarized material has to be taken into account:

f =
fpolσpol

funpolσunpol + fpolσpol
, (3.22)

where σunpol is the cross section for an unpolarized measurement. For the
comparison of target materials a simpler expression, without the dependence
on the cross section, can be applied. In this case

f =
number of polarizable nuclei

total number of nuclei in the target material
. (3.23)

This quantity is 1 in the case of H and D gas targets, 0.33 for 3He targets,
and ranges between 0.13 and 0.5 for solid H and D target materials. The
uncertainty in the asymmetry A is

(∆A)2 =

(
1

f

1

Pt
∆ε

)2

+

(
A

∆Pt
Pt

)2

+
∆f

f
(A)2 , (3.24)

and ∆ε = (N↑ +N↓)
− 1

2 . The main contribution is the first term.
If T is the running time of the experiment ∆A can be written as

∆A ≈ 1

f

1

Pt

1√
TntI

(3.25)

which gives a running time of

T ≈ 1

f 2P 2
t ntI∆A2

. (3.26)

The running time, required to fulfill a predefined accuracy ∆A in the asym-
metry measurement, becomes short, if a quantity called ”figure of merit”

FOMext = ntP
2
t f

2 (3.27)
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Fig. 3.6: Generalized storage cell target. F is the flow of atoms that interact with
the beam.

is large. Therefore the performance of an external target experiment can be
expressed by this quantity. For a storage cell target (fig. 3.6) the thickness is

nt = ρl, (3.28)

where l is the length of the storage cell along the beam line. The density ρ
of the gas in the cell is

ρ =
F

C
, (3.29)

with the flow F (number of atoms injected per second) and the conductance
C (volume per second). Since the conductance is proportional to the velocity
of the atoms, it is also proportional to

√
T where T is the temperature of the

wall of the cell. Thus the ”figure of merit” for a gas storage cell target is

FOMcell = F
√
T
−1
P 2
t f

2, (3.30)

which implies that the cell should be cooled in order to obtain a better figure
of merit. the cooling of the cell. Some examples of gas target setups can be
found here ref. [45].

3.3.2 Polarization techniques

The method called dynamic nuclear polarization, discovered by Erb, Motchane,
and Ubersfeld (ref. [46]) and Abragam and Proctor (ref. [47]), led to the de-
velopment of a variety of target systems used in polarization experiments.
The first experiment with a polarized target was done by Abragam et al. at
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Saclay in 1962 [48] followed by Chamberlain et al. at Berkeley [49]. The
principle of nuclear polarization is the same for all target systems and con-
sists of two main steps, described in detail in ref. [50]. The first step is to
achieve an atomic polarization in a strong magnetic field. Since the magnetic
moment of the nucleus is much lower than that of the electron, the nuclear
polarization is poor. In a second step, by triggering the hyperfine interaction
of the atomic spin with the nuclear spin, the polarization of the electrons can
be transferred to a polarization of the nuclei.

The main categories of nuclear species for polarized targets are the fol-
lowing: hydrogen (H) or deuteron (D), both are used as solid state targets
in experiments in an external beam, i. e. the beam is extracted from the
accelerator and the collision with the target happens externally. Or as inter-
nal gas targets in a storage ring. Helium (3He) gas targets can be used in
external or internal experiments (tab. 3.1).

H and D solid state targets are doped with radicals to create paramagnetic
centers. At very low temperature a strong magnetic field achieves a high
atomic polarization in the radicals. Irradiation of microwaves changes the
electron spin and the nuclear spin simultaneously. By a much faster relax-
ation of the electrons, they can act on another nucleus again, and this process
leads to a polarization of the nuclei.

For a H or D gas target the atomic polarization is produced by selecting
spin states by a magnetic field with a gradient. The irradiation of radio
frequency exploits then the atomic polarization to polarize the nuclei that
can be filtered by a sextupole magnet and injected into a storage cell. The
storage cell ensures the multiple crossing of the target particles through the
beam and thus a higher interaction rate. Nevertheless the recombination and
depolarization due to wall collisions have to be suppressed.

For a 3He target a circularly polarized laser beam is used to bring rubid-
ium atoms into an excited state. Collisions between the rubidium and 3He
transfers then the atomic to a nuclear polarization.

The degree of polarization is measured by nuclear magnetic resonance in
the case of solid state targets and 3He. The polarization of H and D gas is
measured with a Breit-Rabi polarimeter.

Since P̄ANDA needs an internal target, a very thin target is required. The
main issue is to maximize the transverse target polarization. This requires a
vanishing longitudinal magnetic field after shielding, or a longitudinal resid-
ual field, as small as possible. The discussion of a particular target type
is much too early at this stage of the study, since the specifications of the
shielding system determines the conditions for further components.
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Laboratory Gas 3He Solid Physics goal Ref.
H, D H, D

DESY (Hamburg) • • - NSS [51,52]
BINP (Novosibirsk) • - - NSS [53]
TSR (Heidelberg) • - - TD [54]

NIKHEF (Amsterdam) • • -
NSS [55]
FF

IUCF (Indiana) • • - NSS [56]
MIT-Bates
(Massachusetts)

• • -
NSS [57–59]
FF

JLAB (Virginia) - • -
NSS [60]
FF

LAMPF (Los Alamos) - • - TD [61,62]

MAMI (Mainz) - • • NR, [63,64]
GDH, FF

TJNAF (Newport News) - • •
NSS, [65]
NR,
GDH, FF

TRIUMPF (Vancouver) - • - TD [66,67]
SLAC (Stanford) - • • NSS [68]
CERN (Genava) - - • NSS [69]
ELSA (Bonn) - - • NR, GDH [70,71]
GRAAL (Grenoble) - - • GDH [72]
LEGS (Brookhaven) - - • GDH [73]
SPRING8 (Osaka) - - • GDH [74]

Tab. 3.1: Summary of polarized target experiments and their scientific purpose.
NSS: Nucleon spin structure, NR: Nucleon resonances, FF: Form factors, GDH
sum rule derived by Gerasimov [75] and Drell and Hearn [76], TD: Target devel-
opment.
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Chapter 4

Realization of a shielding of a
magnetic field

A transverse polarized target in the P̄ANDA spectrometer requires a shield-
ing against the 2 T longitudinal field, generated by a solenoid, in a volume
that is big enough for a polarized target, whereas the rest of the detector
volume remains largely unaffected. The residual field at an applied external
field of 2 T should be as low as possible, to maintain a strong degree of
transverse polarization. Another important issue is to minimize the mate-
rial budget introduced by the shielding tube. To be able to detect particles
by the surrounding detectors, the energy loss, given by the thickness of the
shielding tube in units of radiation length, should be minimized. This means
to lower the material budget, introduced by the shielding tube.

A passive high-temperature superconducting shielding tube is the most
promising solution to meet this two requirements. The choice of Bismuth-
2 Strontium-2 Calcium-1 Copper-2 Oxid (BSCCO) has the following rea-
son. Fagnard et al. [88] used BSCCO-2212 compound, a melt cast high-
temperature superconductor, formed to a hollow cylinder. They shielded
1 T with a shielding factor of 1000 at the temperature T = 10 K. Lowering
the temperature to T = 4.2 K will increase the current density even more
leading to a higher shielding factor at the same external field.

Beside a qualitative introduction to the principles of a shielding tube,
some important physical properties of a BSCCO-2212 shielding tube are
given here.

25
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4.1 The superconducting state

A comprehensive description of superconductivity is given in ref. [77]. The
most important properties of a superconductor, in particular in form of a
hollow cylinder, are given here. The very low electrical resistance and the
high current density is the reason for choosing a superconductor for magnetic
flux shielding. The vanishing electrical resistance in superconductors below
a transition temperature was discovered in 1913 by Heike Kamerlingh-Onnes
and called superconductivity [78]. He measured the resistance of mercury at
liquid helium temperature 4.2 K and found it to be less than 10−6Ω.

Although this is not the property used for the shielding effect, the other
remarkable property of superconductors should be mentioned here, too. Ex-
pulsion of the magnetic field from the material, as soon as the material
is below a transition temperature, was discovered in 1933 by Meissner and
Ochsenfeld [79]. The so called Meissner-effect, is independent of the magnetic
field inside the material, before the probe has become superconducting.

In 1935, Lev Shubnikov [80] discovered that in some alloys superconduc-
tivity has two different phases shown schematically in fig. 4.1.

Because of the Shubnikov-phase the current density and second critical
magnetic field in type II superconductors can reach very high values. Some of
them, called high-temperature superconductors, have a transition tempera-
ture well above the boiling point of liquid nitrogen and a high second critical
magnetic field. For example, the transition temperature for BSCCO-2212 is
94 K and the second critical magnetic field of more than 60 T [81]. The values
for the critical current density increase with decreasing temperature. There-
fore, the maximum current density in high-temperature superconductors are
reached at very low temperatures. They can be considered for shielding a
high magnetic field.

4.2 Generation of a shielding field

The main issue is to create a shielding magnetic field, opposing to the external
field in the whole volume, in which a polarized target should be installed.
In the ideal case, the flux density has the same value but with opposite sign
in this region, so that the superposition vanishes. The field of a shielding
solenoid, surrounding the target region, would result in a poor shielding
effect. A large inhomogeneity would be introduced, since the field at the ends
of the solenoid would drop to approximately half of the value of that in the
center. At the same time, the homogeneity of the external field is better then
2%, therefore, the residual field will follow the inhomogeneity of the shielding
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Fig. 4.1: Schematic picture of the phase diagram of the two different types of
superconductors. The phase diagram for type one is shown on the left side. The
superconducting state is limited by a surface that is spanned by the three variables
the temperature T , the magnetic field B and the current density J that is applied
to a superconductor. The three critical values TC , BC and JC determine the phase
boundary. The phase below the surface, where the magnetic field is expelled from
the material, is called the Meissner-phase. The second type is shown on the right.
The area between the two critical values, the first BC1 and second BC2 critical
magnetic field, is called the Shubnikov-phase, where magnetic field can enter the
material but superconductivity is still observed. BC2 can be much higher as BC or
BC1. Typical values of BC in type I superconductors are well below 1 T. Whereas
BC2 in type II can be at the order of 10 T to 100 T.
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Fig. 4.2: Principle sketch of a shielding tube for shielding a magnetic field inside
a perfectly conducting tube. The variation of the magnetic flux inside a perfect
conductor (0 resistance) is zero, independent of the variation of the external flux.
The induced shielding current Jind by an external field Bext creates a field Bind of
the same value but opposite direction inside the shielding tube.

solenoid, and it would make it very hard to maintain a polarization.

One needs a solution, where the opposing magnetic field is not exclusively
at one point equal to the negative value of the external field, but follows the
external field also in a larger volume. A shielding tube can be viewed as
many superconducting rings in a row. If a superconducting ring is placed in
an the external field, where a magnetic field is varied in time (ramping the
field from zero to a maximum value), the current induced by the external
field generates itself a magnetic flux in the plane of the ring that cancels the
external flux. Thinking of a tube instead of a ring, the residual field will be
of the desired quality. The electrodynamics of this process will be described
in this chapter and also in sec. 5.

The current needed for a homogeneous opposing field in a shielding tube
is created in the following way. A variation of the magnetic flux inside a
conducting ring leads to an induced current I0 = I(t = 0) as a function of
time that decays exponentially, depending on the electrical resistance R and
the inductance L of the ring. A shielding tube is a concatenation of single
rings.

I(t) = I0e−
R
L
t (4.1)

If R is close to zero, as in a superconductor, a near to steady current will
be observed after application of an external field. This current will create an
opposing field and the flux from inside is expelled as described in fig.4.2. A
quantitative description will be given in sec.5.1.3. The current is distributed
in a way that the residual field is homogeneous. This is a consequence from
Faraday’s law of induction and that the current is not constrained to flow
homogeneously with respect to the axis of the tube. Also no additional
current supply is needed to drive the shield. The electromotive force created
by the external field is enough to operate the shielding tube. Since a high-
temperature superconductor is not exactly an ideal conductor, penetration
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of flux at a certain value of the external magnetic flux and degradation of
the shielding with time can be observed.

4.3 Characteristics of a shielding tube

Current density. Shielding of a magnetic field means to reduce the ex-
ternal field to an acceptable residual value. The maximum shielding current
determines the maximum magnetic field that can be shielded. The maximum
current density specifies the wall thickness that is needed to obtain the de-
sired shielding current. By application of an external field that exceeds the
shielded field, a residual field appears in the tube that cannot be removed
by lowering the external field below the shielded field. To understand this
behavior, a phenomenological theory of a high-temperature superconductor
exposed to a magnetic field was introduced by C. P. Bean [82]. He suggested
that as a result of a time varying magnetic field, a current density JC is
induced, that is either zero or has a constant value. The shielding current
is then obtained by multiplying the current density with the wall thickness,
that is carrying the current. In the other parts of the material the current is
zero. With this model one can calculate the flux density distribution inside
a superconductor. It can also explain the hysteresis-like behavior of the in-
duced current and residual field after application and removal of an external
field. This is shown in fig. 4.3 and fig. 4.4. The weakness of this model is the
assumption of an infinitely extended material, plus that the current density
is independent of the value of the external field. The hysteresis-like behavior
will become important, when the residual field is measured. Especially, if the
external field is increased and decreased again, one has to take into account,
that some field might remain as described above. Also the earth magnetic
field and other local fields are maintained in the shielding tube, after it is
cooled below a transition temperature.

The average induced current density Jind in a shielding tube and its thick-
ness determines the maximum magnetic field that can be shielded. The av-
erage current density is defined as to create a magnetic flux density that
compensates the external flux density at the center in an equivalent solenoid
with the thickness of the shielding tube. This is an approximation in the
case of a solenoid (shielding tube) with a large length over diameter ratio.
The average induced current density Jind in the shielding tube at the applied
external magnetic field Bext is shown in tab.4.1. The current density is a
function of the temperature and was determined for BSCCO-2212 in ref. [88]
with a shielding factor of 1000. It is shown in fig.4.5. At a fixed tempera-
ture one can estimate the thickness d of the material necessary to shield the
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Fig. 4.3: Model of a high-temperature superconducting shielding tube of infinite
length, as suggested by C. P. Bean [82]. Originally he considered an infinite long
slab of thickness D, that can be applied to the case of an infinitely long shielding
tube with a wall thickness of OD−ID

2 = d = D/2, within the simplifications of his
model. The horizontal axis of the plots is the spacial direction r perpendicular to
the wall of a superconducting shielding tube. The vertical axis of the upper plots
show the magnetic field B and the lower plots the corresponding current density
J(r). This sketch and fig. 4.4 show four states of the shielding tube in time as
the external field is increased and decreased. The first state is shown in the left
plots, where the external field Ba

ext is applied parallel to the axis of the shielding
tube (vertical direction in the plot). The field decreases linearly as it penetrates
the material until it vanishes. The second state is shown in the right plots, where
the external field reaches a value Bb

ext, so that it vanishes exactly at r = ID/2
The external field is shielded up to this value. The corresponding shielding current
density J is either a constant or zero. As the external field rises, the shielding
current is created by the induced current density times the wall thickness occupied
by the current.
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Fig. 4.4: Third and fourth states of a superconducting shielding tube during in-
creasing and decreasing the external magnetic field. The first and second states
are shown in fig. 4.3. The third state is shown in the left plots, where the external
field rises above Bb

ext. The difference enters the inner part of a shielding tube unaf-
fected. The last state is shown in the two plots on the right. This is the consecutive
decrease of the external field to Bd

ext = 0. A trapped flux Bd
res remains in the su-

perconductor. The shielding current Jd in the shielding tube after removing the
external field is not zero. The residual field can be lowered or removed by applying
an opposite external field. This is the hysteresis-like behavior of the shielding tube.

Average current density

Jind = Bext

µ0d
· 10−8

Symbol Unit Definition
Jind A/cm2 induced average current density
d m thickness of the shielding tube
µ0 Vs/Am vacuum permeability
Bext G external magnetic flux density

Tab. 4.1: Formula for the calculation of the average current density.
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magnetic field Bext. If Bext exceeds this value, the difference will enter the
shielding tube. If one is interested in the induced current vs. the position on

Fig. 4.5: Temperature dependence of the current density of BSCCO-2212 and
BSCCO-2223 at a shielding factor of 1000 [88]. Our choice of BSCCO-2212 is
due to the higher current density in this material at low temperatures. The fitting
functions of the current density versus the temperature are also shown.

the axis without averaging over the length, the Bean model is insufficient.
One needs to apply a calculation as in sec. 5.1.3.

Mechanical stress on the shielding tube. The Lorentz force on the
current in the shielding tube is defined as

~FL = I

∮
d~l × ~B (4.2)

in presence of a magnetic flux density B and a current I along the infinites-
imal line element dl. We consider the z component of the magnetic field
parallel to the shielding tube axis. This magnetic field results in a pressure
from outside to inside the shielding tube, as we will see in the following cal-
culation. The x and y components of the magnetic field are low compared
to the dominating z component. They create a force along the axis and can-
not apply a pressure on the shielding tube. Since the current is everywhere
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Fig. 4.6: Cross section of the shielding tube. Lorentz force FL on the current in
presence of a magnetic flux density B and a current I along the infinitesimal line
element d~l.

Lorentz force

FL = JinddLstlB
z
ext

Symbol Unit Definition
Jind A/cm2 induced average current density

Bz
ext T

z component of the
external magnetic flux density

d m thickness of the shielding tube
l m circumference of the shielding tube l = 2πrst
Lst m length of the shielding tube

Tab. 4.2: Formula for calculation of the Lorentz force.

perpendicular to the magnetic flux density along the integration region, we
get

FL = IlBz
ext = JinddLstlB

z
ext (4.3)

The symbols are defined in tab. 4.2. The Pressure is

P =
FL

asurface

(4.4)

where aside = Lstl is the surface area of the side of the shielding tube. The
pressure on the shielding tube due to the magnetic field determines the max-
imum field that can be applied without destruction of the shielding tube. An
additional holding tube can stabilize the shielding tube mechanically. For
example, at an external field of 1.4 T the induced average current density
in a shielding tube of 3.5 mm thickness is Jind =

Bz
ext

µ0d
is 3.2 kA/cm2. The

pressure due to the Lorentz force (fig. 4.6) is thus FL = 1.6 MPa.

4.3.0.0.1 Material budget. The material budget of the BSCCO-2212
shielding tube can be estimated in the following way. Traversing the thickness
d of the shielding tube, consisting of the BSCCO-2212 material and the
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holding tube, a particle with the initial energy E0 will have an average energy

E(d) = E0e
− d

X0 (4.5)

due to radiation loss. This energy loss has to be reduced to a minimum.
The radiation length X0 of a material divided by the density is defined as
the mean length to reduce the energy of an electron by the factor 1/e (e is
Euler’s number) when the electron is propagating through the material [83]

X0 =
716.4A

Z(Z + 1)ln 287√
Z

g

cm2
(4.6)

with the atomic mass A and atomic number Z. In this case the shielding
tube consists of the composite material Bi2Sr2CaCu2O8 (BSCCO-2212), and
therefore we have to add the reciprocal of the single radiation lengths Xi of
every atom weighted by wi, the atomic mass of the element relative to the
total mass of the BISCO-2212 molecule. We obtain X0 from the following
formula

1

X0

=
∑ wi

Xi

(4.7)

The density of BSCCO-2212 is 6 g
cm3 and the radiation length divided by the

density is 1.5 cm. The same calculation for the holding tube (Mn20%, Ni20%,
Cu 60%) with a density of 8.25 g

cm3 leads to a radiation length of 1.6 cm. The
BSSCO tube is (3.5 ± 0.2) mm and the holding tube (2 ± 0.1) mm thick.

This leads to a relative energy loss Irel of Irel = 1 − e− 0.35
1.5
− 0.2

1.6 = 0.3. The
electrons lose 30% of their initial energy by traversing the shielding tube.

Operating the shielding tube in this way, concerning the thickness of the
tube itself and the holding tube, results in a very high energy loss. Choosing
this shielding tube material, the energy loss can only be reduced by the
following options: Lowering the operating temperature could increase the
shielding current density, that means less material is needed to achieve the
same shielding current. Try to minimize the amount of material for the
holding tube by ensuring the mechanical stability of the shielding tube at
the same time.

4.4 Grain boundaries in sintered high-temperature

superconductors

BSCCO-2212 is categorized as a cuprate superconductor. Its structure is
shown in fig. 4.7 [77]. It consists of two CuO2 layers close to each other, and
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Fig. 4.7: Molecular structure in a BSCCO-2212 superconductor crystal [77]. The
atoms bismuth (Bi), strontium (Sr), calcium (Ca), copper (Cu) and oxygen (O)
and their position in the crystal structure are shown. One elementary cell occu-
pies a volume of a few nanometers. The conducting copper layers alternate with
isolating bismuth and strontium.

between them is a layer of calcium. This sandwich structure alternates with
two layers of bismuth and two layers of strontium. The superconductivity
builds up in the close layers of CuO2 by forming cooper-pairs. The oxygen
content in BSCCO-2212 is a critical issue since one oxygen excess takes one
electron from CuO2 leaving a hole behind as a charge carrier. In a BSCCO-
2212 crystal molecule are 8+x oxygen atoms. At an optimal value of x = 0.16
(0.16 holes per cu-atom) the transition temperature TC is 90 K. For smaller
x values TC is very low and decreases also for larger values, until it vanishes
at x = 0.27. After this point BSCCO-2212 is a normal conductor at all
temperatures.

For manufacturing a shielding tube, the starting material of a super-
conducting compound is mixed and melted between 1000 ◦C and 1200 ◦C,
followed by an annealing procedure between 750 ◦C and 850 ◦C [84]. An
important issue is the existence of grain boundaries in sintered material.
These are formed by misalignment of neighboring superconductor crystals
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and the current density is limited by the inter-granular current. An exam-
ple is the investigation for bicrystals of the high-temperature superconductor
Yttrium-1 Barium-2 Copper-3 Oxid (YBCO) in ref. [85]. The melt cast pro-
cessed BSCCO-2212 contains a partially textured region which can carry a
high current density [84].



Chapter 5

Numerical simulation of a
shielding tube

In addition to the experimental investigation of the shielding of an external
field with a superconducting shielding tube, it is of great importance to
provide support in form of a numerical calculation. On the one hand it can
be used for including a field map into particle tracking simulations. On the
other hand, it offers a cheap and fast tool to optimize and design a final
geometry of the shielding tube.

The induced current in a shielding tube which creates the shielding mag-
netic counter-field, depends on the position along the axis of the tube and is
inhomogeneous. It is high at the edges and low towards the center. A simple
Biot-Savart calculation with the assumption of a homogeneous current in the
whole tube is not sufficient to calculate the residual magnetic field.

Therefore, the induced current is calculated by using the exact forms
of the Maxwell equations in integral form and the Biot-Savart law. This
is an alternative method to the finite element method (FEM) calculation
(appendix A) that solves the differential form of the Maxwell equations on
a mesh, by discretization of the volume. The FEM calculation is optimized
for simulation of complicated geometries. Since all shapes involved in the
calculation are cylindrically symmetric, a simplified model can be used. An
additional advantage of the calculation described here is the modular setup
which allows for calculation of single steps separately. If e.g., one is interested
in the optimization of the length of the shielding tube, the external magnetic
flux can be calculated only once. To make the calculations more effective,
the induced current is flowing on the surface of the shielding tube.

37
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5.1 Introduction to the calculation method

5.1.1 Equations in a quasistatic electromagnetic field

The simulation is based on the calculation of the induced current by a vary-
ing magnetic field. The self and mutual inductances in a system of ideally
conducting current loops can be used to describe the current density distri-
bution in a superconducting tube. The principles are described in ref. [86].
For creating a static magnetic field in a solenoid a rise of the field is required
from zero to the maximum value. Since the change in the magnetic field
during this procedure is slow, the wavelength of the electromagnetic field is
very long. The lengths of the involved structures are much shorter than this
wavelength, so the Maxwell equations can be reduced to the quasistatic case

where the displacement current ∂ε0 ~E
∂t

is negligible. Since there are no static

electric sources ∇ · ε0 ~E = 0, too. The governing equations in this case are
therefore

∇× ~E = −∂
~B

∂t
(5.1)

∇× ~B = µ0
~j (5.2)

∇ · ε0 ~E = 0 (5.3)

∇ · ~B = 0 (5.4)

by using the operators for the curl ∇× and the divergence ∇·, the electric
field ~E, the magnetic flux density ~B, the current density ~j, the vacuum
permittivity ε0 and the vacuum permeability µ0.

5.1.2 Geometry of the external magnet and shielding
tube

The geometrical parameters of the external magnet and the shielding tube
are shown in tab. 5.1. This calculation method can be applied to any size of
the shielding tube or external magnet. Since we want to compare the results
from the simulation and the measurement described in chapter 6, we use
the same geometry here as in the experiment. The symbols that we use for
the fields are defined in tab. 5.2. In fig. 5.1 the arrangement of the external
magnet and the shielding tube is visualized. In fig. 5.2 the discretization of
the shielding tube into rings is shown.
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External
magnet

Length Lem 138 mm
Radius rem 31.5 mm

Number of windings per layer Nem 460
Number of layers n0 22

Distance between windings dw 0.3 mm

Shielding
tube

Length Lst 150 mm
Radius rst 25 mm

Number of divisions Nst 3750
Distance between neighboring rings dR 0.04 mm

Thickness of the shielding tube d 3.5 mm

Tab. 5.1: Geometrical parameters of the external magnet and the shielding tube in
the calculation.

Magn.
flux
density ~B

Magn.
flux∫
a
~B · d~a

Current

External ~Bext F ext Iext

Induced ~Bind F ind I ind

Residual ~Bres F res -

Tab. 5.2: Symbols used in the calculation documentation for the external mag-
netic flux density and flux that is created by the external current and the induced
quantities. The residual quantities are a superposition of the external and induced
ones.

Fig. 5.1: Geometrical arrangement underlying the calculations. The shielding tube
is inside the external magnet as shown in the picture.
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dR

~rst

a = π|~rst|2

~Bext

I indj=1

I indj=2...

~Bind

Fig. 5.2: Sketch of the method of dividing the tube in Nst equidistant rings at
distance dR. Each of them carrying a current Iindj , j = 1...Nst induced by ~Bext

creating an induced magnetic field ~Bind. We calculate Iindj and ~Bind as shown in
the text. The induced current density Jind in the tube is then a function of the ring
position.

5.1.3 Compensation of the magnetic flux

The property of a superconducting hollow cylinder of shielding a magnetic
flux can be explained by application of Faraday’s law to an ideally-conducting
circular ring. It can be shown that the external magnetic flux is compensated.

We assume that the superconductor is an ideal conductor and from this
the following behavior concerning the induced flux can be derived. A constant
magnetic flux inside the shielding tube can be shown by an argumentation
with Faraday’s law.

− d

dt

∫
a

~B · d~a =

∮
∂a

~E · d~l (5.5)

In the case of an ideally conducting ring or tube as shown in fig. 5.3∮
∂a

~E · d~l = 0 (5.6)

Since the tangential component of the electric field ~E is everywhere zero on
an ideal conductor, the scalar product ~E ·d~l vanishes. It follows that also the
right-hand side, which is the change of the magnetic flux through a surface,
must be zero

− d

dt

∫
a

~B · d~a = 0 (5.7)

which leads to the central statement that the magnetic flux is constant
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~E

~dl

a = π|~rst|2

rst

Fig. 5.3: Sketch of an ideally conducting current loop. The electric field ~E is
perpendicular to the surface of the loop at every point on the loop. It can be
shown, by the use of Faraday’s law, that the change of the magnetic flux inside the
loop is zero, independent of the change of the external magnetic flux.

through a surface bounded by an ideal conductor. Because∫
a

~B · d~a = F res = F ext + F ind (5.8)

it follows, if the external magnetic flux in the shielding tube is zero at the
beginning of the process and is changed afterwards, the flux in the inner
part of the shielding tube remains zero. It is constant, if there was already a
magnetic flux present before it got superconducting. 1 By assuming Fres = 0
it follows that

F ind = −F ext (5.9)

The external magnetic flux is compensated by the induced flux inside the
shielding tube. This will be the magnetic flux that we use for our calculation
of the induced current.

5.1.4 Calculation steps and simplifications

The calculation steps are shown in fig. 5.4. From the parameters of the
external magnet, the external magnetic flux inside the shielding tube can be
calculated. This is equal to the induced flux. The relationship between the

1In the literature one can find that the first situation is referred to as ”zero field cooled
(zfc)” and the latter one ”field cooled (fc)”.
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Solve
MijI

ind
j = −F ext

j

Result
I ind

Calculate residual
flux density

via Biot-Savart
Bres = Bext+Bind

F ind = −F ext

Calculate external
flux F ext

j via Biot-
Savart

Calculate induc-
tance matrix ele-
ments Mij

External magnet
• Length
• Wire thickness
• Number of layers
• Ext. current

Shielding tube
• Length
• Radius
• Number of rings

Fig. 5.4: Calculation steps. Symbols are described in the text.

induced flux in a ring and the induced current in that ring is given by the
inductance. By solving a matrix equation an induced current to each ring
can be assigned. The induced magnetic flux density can then be calculated
from the induced current by using Biot-Savart. By superposition one can
calculate the residual magnetic flux density.

The following simplifications are used: First, the induced current is not
limited. Second, we also neglect the finite wall thickness of the shielding
tube. The induced current is confined to the surface of the cylinder.

5.2 Calculation of the magnetic flux density

The first step in the calculation is the calculation of the external magnetic
flux density. In a later step, this formulation will also be used to calculate
the induced magnetic flux density. Let us consider a winding of the external
magnet in the x-y plane (fig. 5.5) that creates a magnetic flux density in the x-
z plane. This has a simple geometry of a circular closed loop in approximation
to a helix of a very small height of one wire diameter compared to the total
length of the external magnet. The z component of the magnetic flux density

at position P (x, z) OP = ~r(x, z) can be calculated via the Biot-Savart law
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Fig. 5.5: One winding of the external magnet in the x-y plane. The symbols are
used for the calculation of the external magnetic flux density. The magnetic flux
density generated by the induced current in sec. 5.5 is calculated in the same way.

[86]

Bz(~r) =
µ0

4π
I

∮
(d~s× ~r′)z
|~r′|3

. (5.10)

The parametrization of the winding is

~s(φ) = (R cosφ,R sinφ, z0), (5.11)

where φ ∈ [0; 2π] and R is the radius of the winding. The tangent d~s(φ) that
describes the current density

d~s = R(− sinφ, cosφ, 0)dφ. (5.12)

The vector ~r′(φ) that connects ~s(φ) with the observation point P (x, z) is

~r′ = ~r − ~s = (rx −R cosφ,−R sinφ, rz − z0). (5.13)

And the z component of the cross product

(d~s× ~r′)z = (R2 −Rrx cosφ)dφ. (5.14)

The square of the length of of ~r′(φ) is

|~r′|2 = r2
x − 2rxR cosφ+R2 + (rz − z0)2. (5.15)

Therefore we can write the z component of the magnetic flux density of a
winding as

Bw
z (rx,∆z) =

Iextµ0

4π

∫ 2π

0

(R2 −Rrx cosφ)

(r2
x − 2rxR cosφ+R2 + ∆2

z)
3
2

dφ, (5.16)

with the relative distance ∆z = rz − z0.
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Fig. 5.6: Example of the layout with 2 windings and 3 layers. With this structure
an ideally winded solenoid is calculated.

The external magnet has 460 windings and 22 layers (n0 = 22). This is
taken into account by a summation over the layers. Fig. 5.6 shows an example
with 2 windings and 3 layers for visualizing the layout cross section of the
windings and layers. two variables are defined (that describe the horizontal
and vertical position of a single winding on the axis of the magnet and in
radial direction) that are functions of the layer number n

zn = ((n− 1) mod 2)
dw
2

(5.17)

Rn = rem +
dw
2

+ (n− 1)
√

3
dw
2

(5.18)

with z0 = z1.
The formula for the z component of the magnetic flux density of one

winding is defined then as

Bwn
z (rx,∆z) =

Iextµ0

4π

n=n0∑
n=1

∫ 2π

0

(Rn
2 −Rnrx cosφ)

(r2
x − 2rxRn cosφ+Rn

2 + (∆z − zn)2)
3
2

dφ.

(5.19)

5.3 External magnetic flux

The external magnetic flux is calculated in three steps:

1. External magnetic flux of a winding in a shielding tube ring

2. External magnetic flux of the external magnet in a shielding tube ring

3. External magnetic flux of the external magnet in the shielding tube
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Fig. 5.7: Sketch of the geometry of the external magnet and shielding tube. The
shaded area shows where the flux of the external magnet is calculated.

The external magnet is outside, but shorter than the shielding tube. In
fig. 5.7 the shaded area inside the whole shielding tube indicates where the
flux of the external magnet is calculated.

A formula for the external magnetic flux of one winding can be written
down by integrating over a = π|~rst|2. A sketch of the underlying geometry is
shown in fig. 5.8.

Fwn(∆z) =

∫
Bwn
z (ρ,∆z)da (5.20)

The surface element of the shielding tube (x-y plane) is

da = ρdρdφ′ (5.21)

with
φ′ ∈ [0; 2π], ρ ∈ [0; rst], ρ

2 = x2 + y2. (5.22)

The magnetic flux density is symmetric in the azimuth φ′

Bwn
z (ρ,∆z) = Bwn

z (rx,∆z). (5.23)

Integration of Bwn
z over ρ and φ′

Fwn(∆z) =

∫ ρ=rst

ρ=0

∫ φ′=2π

φ′=0

Bwn
z (ρ,∆z)ρdρdφ

′. (5.24)

Integration over φ′ is 2π, hence

Fwn(∆z) = 2π

∫ ρ=rst

ρ=0

Bwn
z (ρ,∆z)ρdρ. (5.25)
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Fig. 5.8: Sketch with symbols for calculation of the magnetic flux inside the shield-
ing tube.

By summation over all windings of the external magnet, each of them creating
a magnetic flux in a ring of the shielding tube, the total flux in one ring is
calculated. Considering the distance between the ith winding and the jth ring
(fig. 5.9)

∆z = ∆ij = |zemi − zstj |, (5.26)

where zemi , i = 1...Nem is the z position of a winding and zstj , j = 1...Nst is
the z position of a ring. Now the flux in every shielding tube ring can be
calculated as a function of the relative distance of the windings and the rings
∆ij (fig. 5.10). The external flux in the shielding tube ring j is

F ext
j =

Nem∑
i=1

Fwn(∆ij). (5.27)

The external magnetic flux of the external magnet in the shielding tube is
calculated in the following way. By calculating eq. 5.27 for all j and write
it as a function of zstj we obtain the flux in the shielding tube as shown in
fig. 5.11. Iext is chosen such that the external magnetic flux density is 1 T
at the center (z = 0, ρ = 0), as in the experiment, to be able to compare the
results. The current is determined by a fit of the calculated field map to the
measured one (sec. 6.3.2).
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Fig. 5.9: The big circles are the windings of the external magnet. Each of them
creates a magnetic flux in the shielding tube ring, showed here as a small circle.
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Fig. 5.10: External magnetic flux in the shielding tube ring j = 1 and j = Nst/2
as a function of the relative distance of the windings to the rings ∆ij.
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Fig. 5.11: External magnetic flux of the external magnet in the shielding tube.

5.4 Inductance of the rings

The current in the rings can be calculated by solving a linear equation, con-
taining the flux and the inductance. This quantity depends only on the radii
and distances of the rings as shown here. The derivation for a system of thin
wires can be found in ref. [86]. This is extended here by considering also the
width of the rings in z-direction. The flux in ring j, F ind

j , arising from ring

k, can be written by use of the vector potential ~Ak arising from the ring k

~Ak(x, y, z) =
µ0

4π

∫
k

~jk(~rk(x, y, z))

|~rk(x, y, z)− ~rj(x, y, z)|
dxdydz, (5.28)

where ~rk(x, y, z) is a vector pointing on the kth ring, that generates a vector
potential in the jth ring. ~jk is the current density in the kth ring, and dxdydz
the volume element. The integration goes over the volume of the kth ring with
radius rst and width dR. The expression can be simplified by introducing the
following parametrization of a ring (fig. 5.12):

x(r, φ, z) = r cosφ

y(r, φ, z) = r sinφ

z(r, φ, z) = z

(5.29)

And dxdydz is rdrdφdz. By using the integration intervals

r = rst, φ ∈ [0; 2π], z ∈ [−dR
2

;
dR
2

], (5.30)
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Fig. 5.12: Sketch of two rings with symbols used to calculate the inductance matrix
elements.

the integration over r can be left out. The current density is integrated over
a surface and has the unit [A

m
]. To take into account the thickness, d, of

the shielding tube, the result of the induced current will be divided by d. A
current density ~jk in the kth ring can be defined as:

~jk(φk) = jk~eφ(φk), (5.31)

where ~eφ(φk) = (− sinφk, cosφk, 0) and jk =
Iind
k

dR
are introduced. The vector

potential Ak(φj, zj) at the jth ring generated by the kth ring is then

~Ak(φj, zj) =
µ0I

ind
k rst

4πdR

∫ φk=2π

φk=0

∫ z′k=zk+
dR
2

z′k=zk−
dR
2

~eφ(φk)

|~rk − ~rj|
dφkdz

′
k. (5.32)
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The induced magnetic flux F ′j in the jth ring at position zj (middle position
in the ring) generated by the current in the kth ring is

F
′

j (z
′
j) =

∫
~Bk · da

=

∫
(~∇× ~Ak) · da = rst

∫ φj=2π

φj=0

~Ak · ~eφ(φj)dφj

=rst

∫ φj=2π

φj=0

µ0I
ind
k rst

4πdR

∫ φk=2π

φk=0

∫ z′k=zk+
dR
2

z′k=zk−
dR
2

~eφ(φk)

|~rk − ~rj|
dφkdz

′
k︸ ︷︷ ︸

~Ak

·~eφ(φj)dφj,

(5.33)

where ~Bk is the magnetic flux density created by the ring k. The scalar
product in the integrand ~eφ(φj)~eφ(φk) is

~eφ(φj)~eφ(φk) = (sinφk sinφj + cosφk cosφj)

= cos(φk − φj). (5.34)

The distance is

|~rk − ~rj| =
√

(xk − xj)2 + (yk − yj)2 + (zk − zj)2

=
√

2r2
st[1− cos(φk − φj)] + (zk − zj)2. (5.35)

To take into account the width of the jth ring, the following consideration
can be used. The flux in a ring F ind

j can be expressed as an average over the

flux at a given z, F
′
j (zj), in the interval of the width dR of the jth ring,

F ind
j =

1

dR

∫ z′j=zj+
dR
2

z′j=zj−
dR
2

F
′

j (z
′
j)dz

′
j. (5.36)

From eq. 5.9 it can be seen that the external flux is equal but opposite
in sign to the induced flux F ind

j = −F ext
j . In eq. 5.33 it is shown that the

flux is proportional to the current Ik and the proportionality constant is the
inductance matrix element Mkj

− F ext
j = MkjI

ind
k . (5.37)

The summation over k, running from 1 to Nst, is due to the fact that all
rings contribute to the flux in the jth ring. The inductance matrix element
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Fig. 5.13: Deviation of the inductances between the calculation with a point-like
cross section and a finite extent in z-direction relative to the inductance in %. The
discretization size (distance of neighboring rings) is 0.04 mm.

depends only on the geometry of the rings, in our case this are the radius rst
and the distance (width of a ring) dR.

If the rings are relatively far from each other, one can neglect they finite
thickness in z-direction. The current density is then jk = I indk and the vector
potential is independent of z,

~Ak =
µ0I

ind
k rst
4π

∮
φk

~eφ(φk)

|~rk − ~rj|
dφk. (5.38)

And the flux becomes

F ind
j =

µ0I
ind
k r2

st

4π

∮
φk

∮
φj

~eφ(φk) · ~eφ(φj)

|~rk − ~rj|
dφjdφk. (5.39)

The deviation of the inductances between the calculation with a point-like
cross section and a finite extent of the rings in z-direction relative to the
inductance is shown in the plot in fig. 5.13. From the ninth neighbor, the
cross section is approximated as point-like. The result of the calculation,
with a point-like cross section for all rings is significantly different from the
measured value of the residual field of a shielding tube. This can be seen in
appendix B.

For the diagonal elements of the inductance matrix, when k = j and
|zstk − zstj | = 0 eq. 5.33 cannot be integrated because of the term

1− cos(φk − φj) + (zk − zj)2 = 0 (5.40)
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Fig. 5.14: Cross section of a ring with the thickness dR (equal to the distance of
neighboring rings). The self inductance of a ring can be approximated by a formula
for the self inductance of a thin tape-like one dimensional cross section.

for φk = φj. To overcome this an approximation to the exact solution can
be used. The cross section considered here is like a thin tape as shown
in fig. 5.14. We assume that the current is distributed homogeneously on
the cross-sectional area (thickness of the ring). The tabulated formula to
calculate the self inductance is [87]:

Mk=j = µ0rst

[
ln

8rst
dR
− 1

2
+

d2
R

32r2
st

(
ln

8rst
dR

+
1

4

)]
(5.41)

5.5 Induced magnetic flux density

The solution of MkjI
ind
j = −F ext

j is the induced current I indj . The magnetic
flux density can be calculated from it (under the assumption that the rings
have a point-like cross section) via Biot-Savart (eq. 5.16)

I indj −→ Bind
j,rx=0 −→ Bres

j,rx=0 = Bext
j,rx=0 +Bind

j,rx=0. (5.42)

The radius is R = rst, and the distance between rings ∆z = ∆kj = |zstk − zstj |.
The z-component of the induced magnetic flux density created by the current
I indj = I ind(z = z(j)) of the jth ring is

Bring
z (rx = 0,∆z) =

I indj µ0

4π

∫ 2π

0

R2

(R2 + ∆2
z)

3
2

dφ

=
I indj µ0

2

R2

(R2 + ∆2
z)

3
2

. (5.43)
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Fig. 5.15: Induced current density along the axis of the shielding tube. The average
induced current density is also shown. It is consistent with the experimentally
estimated value in sec. 6.3.3 JEXPind = (23000±2000) A

cm2 . The size of the shielding
tube and the external magnet is also shown. The dashed line indicates the average
current density.

We obtain the induced magnetic flux density along the axis of the shielding
tube by summation over all rings

Bind
rx=0 =

Nst∑
i=1

Bring
z (∆kj). (5.44)

5.6 Results of the calculation

The magnetic flux in the shielding tube of the external magnet, when the
magnetic flux density in the center is 1 T, is calculated and used as an
input to the the matrix equation 5.37. This equation can be solved for the
induced current in the shielding tube. This is shown in fig. 5.15. The current
density is determined from the current by taking the finite wall thickness of
the shielding tube into account. The residual magnetic flux density is the
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Fig. 5.16: Result of the simulation. The z-component of the residual field and the
applied external field on the axis of the shielding tube.

superposition of the external and induced magnetic flux densities

Bres = Bext +Bind. (5.45)

This is the final result of my simulation. In fig. 5.16 the residual field on the
axis of the shielding tube and the applied external field are shown.

5.7 Residual flux density in the limit of zero

ring width

The expectation is that the residual flux density goes to zero, when the dis-
cretization size dR (equal to the width of a ring and also the distance of neigh-
boring rings) is approaching the continuum limit with dR = 0. We calculate
the residual magnetic flux density at different discretization sizes dR. The
plot is shown in fig. 5.17. A fitting function to the ratio of the residual flux
density and the external flux density Bres/Bext vs. dR is constructed. The
difference of the data and the fitting function should be negligible compared
to the expected measurement errors. The fitting function is then extrapo-
lated to estimate the value at dR = 0. The expectation of zero residual flux
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density at dR = 0 is fulfilled by the calculation to the accuracy at the order
of 10−7.

5.8 Varying the length of the shielding tube

and the external magnet

In this section the behavior of the induced current at the edges of the shielding
tube is investigated, by variation of the length of the tube and the external
magnet. Also the numerical stability of the calculation is tested at the same
time, since the discretization changes, by changing the length of the tube
and thus the number of rings.

The resulting current and residual field under variation of the length of
the shielding tube in the range Lst = 150to450 mm was investigated. The
current density in the shielding tube is shown in fig. 5.18 and the residual
field in fig. 5.19. The length of the external magnet is fixed to Lem = 138
mm. The discretization size in this simulation part is dR = 0.1 mm. The
reason for this coarse value is to spare computational resources for long tubes
and consequently large amount of rings at small discretization size. As the
shielding tube gets longer the current at the edges of the tube decreases until
a saturation at 225 mm. This is expected since the length of the external
magnet and therefore the external magnetic field does not increase, whereas
at the same time, the shielding tube has more surface. The interval, where
the residual field is minimal, increases as expected. Above a tube length of
225 mm, a saturation of the shielded length can be observed.

The current and the residual field at different lengths of the external
magnet in the range of Lem = 138to3000 mm was investigated. The current
density in the shielding tube is shown in fig. 5.20 and the residual field in
fig. 5.21. The length of the shielding tube is fixed at Lst = 150 mm. The
discretization size is dR = 0.04 mm. As the length of the external magnet
increases the inhomogeneity of the external field decreases, in a way that
the field at the ends of the shielding tube increases. As a consequence the
current density and the residual field also increases as expected.
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Fig. 5.17: a) Ratio of the residual flux density and the external flux density
Bres/Bext vs. dR. The estimated values for the parameters of the linear regres-
sion function f(x) = afit + bfit · x that reduce the residuals to less than 10−4%
are bfit = −0.0201 ± 1 · 10−4 and afit = 0 ± 3 · 10−5. Extrapolation of the fitting
function, where x = dR, to the continuum limit with dR = 0. b) Residuals of the
fits.
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Fig. 5.18: Current density by variation of the length of the shielding tube. The
inset plot shows the maximum current in the shielding tube.
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Fig. 5.19: Variation of the length of the shielding tube. Scale on the right for the
external field (dashed line). The external field was the same for all simulations.
The tube lengths and the corresponding colors are given in the legend of the plot.
The residual field decreases on the axes of the shielding tube in the plotted region,
when the shielding tube gets longer. From the tube length of 225 mm and higher,
the residual field does not change much, so the corresponding curves overlap.
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Fig. 5.20: Current density by variation of the length of the external magnet. The
inset plot shows the maximum current in the shielding tube.
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Fig. 5.21: Residual field by variation of the length of the external magnet. Scale
on the right for the external field (dashed lines).



Chapter 6

Experimental test of the
shielding tube

As described in the earlier chapters the main objective of this work is to shield
the magnetic flux at the target region created by the P̄ANDA solenoid. The
shielding is constrained by the following requirements. It should:

� Reduce the magnetic flux density as much as possible

� Shield a volume large enough for installation of a polarized target (ho-
mogeneity in space)

� Allow for a long data taking time by stability of the residual field
(stability in time)

� Minimize the radiation loss in the material by making it as thin as
possible

In this chapter an experimental approach will be discussed that tries to an-
swer the question whether the above requirements can be fulfilled by using
a BSCCO shielding tube, a high-temperature superconductor. The basic
principle is to apply a longitudinal magnetic field parallel to the wall of the
shielding tube and measure the residual field. The measurement of the exter-
nal field is essential to determine the shielding factor. The superconducting
magnet and the shielding tube cannot be cooled and operated separately with
the cryogenic equipment available. In the first part of this experiment the
external magnet is measured alone without the shielding tube. In the second
part, also the shielding tube is installed. Because of the Lorentz force on the
tube, for safety reasons, the maximally applied magnetic field is 1.4 T. The
longitudinal component of the residual field is measured with a Hall probe on
the axis of the tube with a manually driven moving system. Also a stability

59
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measurement is done by applying a constant external field over several days.
The measurements are carried out in a liquid helium environment. The ex-
perimental setup, the measurement method, the analysis of the data and the
results will be presented. At the end, the results will be summarized.

6.1 Experimental setup for testing the shield-

ing tube

The experimental setup consists of the following elements (fig. 6.1): The
liquid helium that is used, to cool down the tube system (shielding tube and
external magnet) to 4.2 K is hold in a dewar. Underneath the dewar there is a
scale (weighing machine). The level of liquid helium needed for full coverage
of the tube system was calculated. By controlling the weight and knowing
the density of helium 0.1786 g/L the volume is calculated and converted to
the level of the liquid in the dewar. The shielding tube was covered entirely
during the experiments. The insert in fig. 6.1 is a construction for holding
the tube system, consisting of the external magnet, the shielding tube and
the Hall probe together with the Zero-field magnet on top, in the liquid
helium and guiding the wire leads from the tube system out of the dewar.
All components are made of non-ferromagnetic materials, that would distort
the magnetic field measurements. A picture of the tube system is shown in
fig. 6.2 and the drawing is given in fig. 6.3. The shielding tube is surrounded
by a superconducting magnet applying an external field to the shielding tube.
With a Hall probe inside the shielding tube the residual magnetic field can
be measured. Since the residual field is expected to be very close to zero,
one has to ensure the functionality of the Hall probe also in the case, when
it does not show a nonzero magnetic flux density. To be always able to to
check the response of the Hall probe, an additional coil is mounted directly
on the top of it.

6.1.1 The external magnet and copper tube

Since the shielding of 1 T to 2 T will be demonstrated, a special supercon-
ducting magnet (external magnet) is constructed that can apply at least 2 T
to the shielding tube. The size of this magnet is relatively small (length
138 mm, inner diameter 63 mm), compared to solenoid of the P̄ANDA spec-
trometer (length 2.7 m, inner diameter 1.9 m). This difference leads to a
larger inhomogeneity of the external magnet in the experiment. The re-
quired Ampere-turns can be approximated with a calculation for a solenoid
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(a) Experimental setup. Dewar filled
with liquid helium to keep the exter-
nal magnet and the shielding tube at
a temperature of 4.2 K. The insert
is shown seperately in b). By mea-
suring the weight of the dewar with
the weighing machine before and af-
ter filling with helium, the volume of
helium in the dewar is determined.
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(b) The insert with the shielding tube.
It is holding the external magnet
(superconducting magnet) and the
shielding tube. The Hall probe and
the Zero-field magnet are mounted on
the end of a sliding rod (glass fiber
rod in the upper section of the insert
is connected to an aluminum rod in
the lower section). It allows for mea-
surement of the magnetic field along
the axis of the shielding tube by man-
ual alignment. The rod is equipped
with a scale in mm that can be read
back to determine the position of the
Hall probe. The head on the top of
the dewar has bores which are used to
lead the cable system out from inside.
Also a helium transfer line, used to
fill the dewar, can be attached.

Fig. 6.1
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(a) External (superconducting) mag-
net with the copper holding tube.

(b) External (superconducting) mag-
net with the shielding tube.

Fig. 6.2: Tube system in the first (a) and second (b) part of the experiment. In
the first part the magnetic field created by the external magnet is measured. In the
second part the shielding tube is inside the external magnet and the residual field
is measured. The Hall probe is inside the shielding tube on a stick that is moved
to its position on the axis of the tube.

Fig. 6.3: Drawing of the holding structure installation and tube system with shield-
ing tube and external magnet on top. The Zero-field magnet is shown separately.
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Calculation parameter

Wire diameter 0.291 mm
Winding per layer 474
Number of layers 22

Calculated field at center at 1 A 848.5 G

Tab. 6.1: Parameter list used for the calculation of the field map of the external
magnet.

Superconducting magnet

Inner diameter 63 mm
Outer diameter ca. 68 mm

Length 138 mm
Winding per layer 474
Number of layers 22

Measured field at center at 1 A (833.6± 1.6) G
Quench (measured) (24150± 90) G

Tab. 6.2: External magnet specifications

with a large length over diameter ratio:

nI =
Bl

µ0

=
2 T · 0.15 m

4π · 10−7 Vs
Am

= 238732A

with the magnetic flux density B, the length of the magnet l, the num-
ber of windings n and current I. The required current density can only
be achieved by a superconductor. The resulting field map of a calculation
with Biot-Savart (sec. 5.2) is shown in fig. 6.4. The calculation of the field
map is based on the parameter list in tab. 6.1. They are chosen in a way
that the required magnetic field of 2 T can be achieved. A picture how the
external magnet is mounted onto the top of the shielding tube is shown in
fig. 6.5. The specification of the magnet is given in tab. 6.2. For the wire
a multi-filamentary Niobium-Titanium (NbTi) was selected. It has a transi-
tion temperature around 9 K. The copper holding structure that holds the
solenoid, is fixed with three centering screws on the ends of the shielding
tube. For the operation of the external magnet a bipolar high current supply
with specifications shown in tab. 6.3 is used. The copper current leads inside
the dewar should be designed to carry at least 40 A and with an insulation
that is appropriate to work with liquid helium.

As a replacement for the shielding tube in the first part of the measure-
ment, when the field of the external magnet will be measured, a copper tube
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Fig. 6.4: Calculation of the magnetic field map fmap(x, z)of the external magnet
at a current of Iext = 12 A. The contour lines of the longitudinal component z of
the magnetic flux density and the values in G on the lines are shown. The colors
refer to the strength of the magnetic field. The gray regions are the windings of
the solenoid.

Fig. 6.5: The shielding tube and the external magnet mounted on the top.
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I U
Range ±75 A ±10 V

Accuracy 0.1 % 0.5 %
Ripple and noise max. 2 %

Tab. 6.3: Specifications of the high current power supply (Kepco BOP 1000W) used
for operation of the external superconducting magnet. For currents lower than 2.48
A the measured uncertainty is 2.5 mA

Fig. 6.6: Copper tube (Inner/ Outer diameter 60 mm/ 63 mm) used as a replace-
ment for the shielding tube in the first part of the experiment

is used (fig. 6.6). inside the external magnet. Copper is not ferromagnetic
(magnetic susceptibility χm = −9.6 · 10−6) and does not have an effect on
the magnetic field measurements. The variation of the magnetic field in time
is very low compared to the inductance of the copper tube, also all mea-
surements are done in a static magnetic field. Thus the inductance can be
neglected.

6.1.2 The BSCCO shielding tube

The shielding tube used in the second part of this experiment (fig. 6.7) is a
melt cast BSCCO hollow cylinder purchased from Nexans1. The technical
drawing with all dimensions is given in fig. 6.8. Its shielding performance
at the temperature of 10 K was reported in ref. [88] and is summarized in
tab. 6.4. At this temperature the BSCCO shielding tube is able to shield a
magnetic field of 1 T with a residual field of 1 mT (shielding factor 103). A
better performance at 4.2 K is expected, since the critical current density in
a high-temperature superconductor increases with decreasing temperature.
The shielding tube has the dimensions outer diameter 50 mm, inner diameter
43 mm and length 150 mm. The uncertainty in the wall thickness is 0.2 mm.
(sec. 6.3.3). It is hold by a steel tube. Its dimensions are described in tab. 6.5.

1Nexans SuperConductors GmbH Hürth
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Fig. 6.7: BSCCO-2212 shielding tube. The length is 150 mm and the wall thickness
3.5 mm. It is hold by a CuNiMn (LV7) tube with a wall thickness of 2 mm from
Nexans soldered to a copper thread with that the connection to the insert can be
established.

Fig. 6.8: Technical drawing of the BSCCO shielding tube with the holding structure
and thread for installation on the insert.

BSCCO-2212 Characteristics

Critical temperature 92 K
Current density at 10 K 16 kA/cm2

Shielding factor at 10 K; 1 T 1000
Radiation length of BSCCO 1.5 cm

Density of BSCCO 6.3 g/cm3

Tab. 6.4: Measurement results of a BSCCO shielding tube that can be found in
ref. [88]
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BSCCO-2212 Shielding tube

Inner diameter 43 mm ±0.3
Outer diameter 50 mm ±0.3

Length 150 mm
Inner diameter of CuNiMn (LV7) tube 50 mm ±0.1
Outer diameter of CuNiMn (LV7) tube 54 mm ±0.1

Radiation length of CuNiMn 1.6 cm
Density of CuNiMn 8.25 g/cm3

Tab. 6.5: Dimensions of the shielding tube

6.1.3 The YBCO tube

A tube with the same length, an inner diameter of 50 mm and an outer
diameter 60 mm consisting of the high temperature superconductor Yttrium-
1 Barium-2 Copper-3 Oxid (YBCO) was tested in a cryostat in Bonn2 at the
temperature of 1.5 K. This test was carried out twice. In the first experiment
a good shielding effect was recorded, but the Hall probe was realized to be
broken after the experiment. Therefore a shielding effect could not be shown
for sure. For the second test with a new Hall probe a 4 mm bore was drilled
in the wall of the tube. Since there was no shielding effect it was unclear,
whether the broken Hall probe was the reason, that the two experiments
were not consistent with each other, or the drilling of the bore caused the
YBCO tube to be useless for shielding in the second test.

For this reason the experiment was repeated with the experimental setup
described here with a new YBCO tube, that was manufactured in the same
way, with the same length and a wall thickness of 3 mm. A shielding effect
could not be observed.

6.1.4 The Hall probe and the Zero-field magnet

A Hall probe is a sensor made of a semiconductor that is operated by driving
a control current Ic through the sensor. If a magnetic field B perpendicular to
the current direction is present, the electrons will be bended by the Lorentz
force perpendicular to the current and the magnetic field in a way that a
static charge is built up, by separation of electrons and holes, and an electric
field results that equals the Lorentz force. A voltage UH appears on the sides

2Polarized Target Group at the Physikalisches Institut der Universität Bonn
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Fig. 6.9: Left: The two Hall probes used for the measurement in liquid helium.
They are built into the Hall probe holder on the sliding rod. In all measurements
the Hall probe 1. is used. The numbering of the Hall probes is as in the picture.
Right: Principle sketch of the HGCA 3020 Indium Arsenide cryogenic Hall probe
sensor chip with the configuration of the leads.

T= 298 K T =4 K
Magnetic sensitivity
γ [mV/kG]

0.827
0.821
(±0.01%/K)

Zero field offset
3.1 µV
(± 0.4 µV/K)

Tab. 6.6: Specifications of the Hall probe Lake Shore HGCA 3020.

of the sensor and is proportional to B as follows UH = γB. In fig. 6.9 the two
Hall probes built into the Hall probe holder are shown. Both are fabricated
by Lake Shore (HGCA 3020). We used the Hall probe number 1 sensitive to
the longitudinal component of the field of the external magnet. It has the
specification shown in tab. 6.6. The Hall probe was calibrated by Lake Shore
and corrections to the linearity are given in appendix C. The given accuracy
of better than 0.1 % up to 2 T magnetic field is guaranteed after applying
the corrections and by using a nominal control current Ic = 100 mA with
a stability better than 10−4. The temperature range is 1.5 K to 375 K. For
the control current and readout of the Hall voltage the devices specified in
tab. 6.7 and tab. 6.8 are used. The Hall-probe holder is fixed on a sliding
rod that can be moved along the axis of the shielding tube. On a scale on
the top of the dewar the position of the Hall probe is read back.

The Zero-field magnet is shown in fig. 6.10. It is a small normal con-
ducting solenoid on the top of the Hall-probe with specifications tabulated
in tab. 6.9. As a current supply for the Zero-field magnet the device In-
stek PSP 603 with the specifications in tab. 6.10 is used. The maximum field
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Current supply
Digistant 6425 T

Range 200 mA
Resolution 1 µA

Error
(0.005%rdg
+5 · 10−10) A

Noise
(0.0002%rdg
+1 · 10−11) A

Tab. 6.7: Specifications of the control device to operate the Hall probe. The abbre-
viation rdg stands for the read back value on the display of the instrument. rng
stands for the chosen range.

Voltmeter
Prema 5017

Range 0.1 µV to 300 mV (0.1 G to 365.4 kG)
Resolution 10 nV (0.0122 G)

Error
(0.0008%rdg
+0.0002%rng) (24 h)

Accuracy
for low field

(0.821± 0.6) µV ((1± 0.73) G)

Accuracy
for high field

(8210± 6.6) µV ((10, 000± 8) G)

Tab. 6.8: Specifications of the read out device of the Hall probe. The abbreviation
rdg stands for the read back value on the display of the instrument. rng stands
for the chosen range.

Wire diameter 0.75 mm
Winding per layer 27
Number of layers 2

Field at center at 1 A 21.9 G
Inner diameter 22 mm

Length 20 mm

Tab. 6.9: Parameter list of the Zero-field magnet.
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Fig. 6.10: The Zero-field magnet is a normal conducting coil on an aluminum
holder directly on the top of the Hall probe to ensure the Hall probe functionality
when the external field is shielded.

Range 3.5 A
Resolution 2 mA

Accuracy
(0.1 % rdg
+5 digits)

Ripple max. 10 mA

Tab. 6.10: Current supply for operation of the Zero-field magnet (Instek PSP
603). The abbreviation rdg stands for the read back value on the display of the
instrument.
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Fig. 6.11: Calculation with Biot-Savart of the magnetic field strength of the Zero-
field magnet. The z-component of the magnetic flux density Bz vs. the radial
distance from the center of the Zero-field magnet is shown. It decreases fast outside
of the magnets surface (at ca. r = 11 mm).

of about 21 · 10−3 T will not affect the shielding tube. Since only a varia-
tion of the flux induces a shielding current, the magnetic field lines that do
not exit the inner part of the shielding tube and thus not varying the flux,
will not induce any current. A part of the magnetic field lines do exit, but
they are very weak, since the magnetic field strength outside of a solenoid
decreases relatively fast (fig. 6.11). Therefore, the induced shielding current
due to the Zero-field magnet can be neglected.

6.1.5 The data acquisition system

In order to control the power supplies for the magnets, read out the Hall
voltage, the pressure and acquire and save the measured data, a data ac-
quisition system is needed. Fig. 6.12 gives an overview of what was used
for this measurement. The magnets, the Hall sensor and the pressure sensor
are installed in the dewar. The magnets are connected to power supplies,
the Hall sensor to a current supply and a voltage readout device. The are
located directly next to the dewar. The pressure sensor is located at the
inner part of the dewar at the top. It converts the pressure to a voltage. It
is connected to a voltage read out device outside the dewar. All readout and
control devices are connected via a RS-232 interface to a computer running
the EPICS software, for controlling the input and output of the data. A
read-out cycle once every 2 seconds is sufficient. The data from all devices
are synchronized with a time delay, less then a second, and written together
in the same output stream. The total number of readout parameters is 6.
The Zero-field magnet current supply is controlled automatically with a spe-
cial software. The driving of the current supply for the external magnet is
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Fig. 6.12: Design of the data acquisition system. The sensors, the devices and
they connection to a computer that is taking the data in digitized form and writing
it to a single data stream, is shown.
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done manually. The computer is connected to the network. All access of the
data and controlling can be done remotely through a terminal. A log-book
software is recording all data taking runs started by the operator.

6.2 Experimental procedure of the measure-

ments

This experiment is divided into two main parts. In the first part the magnetic
field at the center of the external magnet is measured by increasing the
current in it. The shielding tube is not installed. Also the magnetic field
along the axis of the external magnet at a constant current is measured. In
the second part the BSCCO shielding tube is installed inside and the residual
field is measured. It is measured at the center of the tube and also along
the axis. Also a measurement of the residual field stability over 4 days at
1 T external field and 14 h at 1.4 T is performed. The limit 1.4 T is chosen
because of the mechanical stability of the shielding tube due to the Lorentz
force described in sec. 4.3. The main measurements are shown in tab. D.1 in
appendix D and all measurements listed in tab. D.2, tab. D.3 and tab. D.4.
The following types of measurements are carried out:

� Measurement of the the external magnet: The magnetic field gener-
ated by the external magnet as a response to the current generated by
the current supply was measured, and the functional relation between
the current of the external magnet and the magnetic flux density deter-
mined. As a comparison to the residual field on the axis of the shielding
tube, the field map of the external magnet has to be measured.

� Residual field measurement in the shielding tube: The shielding tube is
installed on the insert that is slid into the dewar and fixed in position.
The dewar is filled with liquid helium. When the tube system is covered
with the liquid, the measurement starts. The external field is increased
in positive and negative direction and the residual field in the center of
the shielding tube measured.

� Residual field measurement with the Zero-field magnet: We expect to
detect an extremely low signal in the Hall probe when the magnetic
field from the external magnet is shielded. A secondary magnet (Zero-
field magnet described in sec. 6.1.4) between the Hall probe and the
shielding tube, is used to test the Hall probe functionality also in case
the signal is very low. Turning on the current in the Zero-field magnet
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generates a magnetic field of known value and therefore a signal of the
Hall-probe can be detected to ensure its functionality.

For acquiring the data, the current of the Zero-field magnet is increased
and the values of the magnetic flux density taken as measured by the
Hall probe at equidistant current values. We read back the current
and the Hall voltage and get a relation between the current and the
magnetic field. These data are plotted and linearly fitted to estimate
the value at zero current (zero magnetic field) of the Zero-field magnet.
In the following, this is called the ”inc.” (increase) value. The same
procedure is done by reducing the current and thus the magnetic field
to zero, this value is called ”dec.” (decrease). Two additional data
points are obtained, one before the ”inc.”, and one before the ”dec.”
measurement starts. The Zero-field magnet is still off but the Hall-
probe is measuring. This data points are called ”0 inc.” or ”0 dec.”
respectively.

� Field map of the shielding tube: Measuring the residual field along the
axis of the tube at constant external field (1 T and 1.4 T).

� Stability of the shielding tube: Measuring the residual field in the center
at a constant external magnetic field (1 T and 1.4 T) versus time.

Treatment of the nonzero residual field in the shielding tube. In the
measurement of the residual field in the shielding tube, the offset is defined as
the measured residual field, when no magnetic field is applied externally. The
following components contributing to the offset are independent from the field
of the external magnet: The temperature dependent offset of the Hall probe
itself (1.9 G at room temperature), the temperature dependent fluctuations
of the Hall-probe, the earth magnetic field (< 0.5 G), contributions from
local fields and also from the voltmeter measuring the Hall-voltage.

Another contribution to the offset comes from the residual field in the
shielding tube. The dewar was filled with liquid helium at a different loca-
tion than the laboratory for the experiment. This is important to take into
account, since the magnetic field inside the shielding tube, when the shield-
ing tube was cooled below the superconducting temperature, remains inside
as long as it is superconducting (see sec. 4.2). That means, even if the dewar
is filled with liquid helium and transported to another place, the local mag-
netic field, where the shielding tube got superconducting, is ”transported”
together with the shielding tube.

And there is a component of the offset depending on the external field,
that is applied to the shielding tube. In the following the hysteresis-like be-
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havior of the shielding tube (see sec. 4.3) will be considered. Let us start the
process with zero external field. We increase it to a threshold value, when
it begins to enter the shielding tube. Further increase of the external field
will result in a residual field. To reduce the residual field again to zero, it is
not sufficient to decrease the external field to zero. The external field must
exceed the zero point into the negative regime until negative external field
enters the shielding tube. In this way the residual field is reduced to zero.
This happens solely in case, the negative external field has the same absolute
value as the maximum positive external field that was applied. Otherwise
the difference appears as an additional offset to the next measurement. The
residual field left is therefore treated as a component of the offset of the
following measurement. Especially the offset in the first part of the measure-
ment without shielding tube (5.7 G ±0.9 G) is not the same as the offset in
the second part of the measurement with the shielding tube (-1.0 G ±0.9 G
and -1.4 G ±0.9 G). Nevertheless, in this experiment the determination of
the difference between the residual field when the external field is turned off
and the residual field when the external magnet is increased is of interest.
The offset is subtracted from all values of the residual field measurement.
The difference in the residual field is then independent from all contributions
to the offset as long as they are constant in time on the time scale of the
duration of the measurement.

6.3 Analysis of the measurements

6.3.1 Estimation of the uncertainty in the magnetic
field measurement

The uncertainty in the magnetic field measurement is generated by the uncer-
tainty in the Hall probe output voltage, and the volt meter that is connected
to the Hall probe sensor. The main source of uncertainty in the measure-
ment of the magnetic field is found in the Hall voltage readout device. For
the investigation of the Hall voltage fluctuation, the output of the voltmeter
is recorded for 14 hours. This is shown in fig. 6.13. The first two hours the
voltage rises due to warming up of the voltmeter. A statistical analysis is
performed in intervals of two hours distributed in six parts over the whole
time range. For each data set, a mean value µ and a standard deviation σ is

determined from a Gaussian fit P (x) = 1
σ
√

2π
e−(x−µ)2/2σ2

to the data, where x
is the Hall voltage. The results for σ are shown in fig. 6.15. The Gaussian fit
to each data set is shown in fig. 6.14. The reduced χ2, χ2/ndf , where ndf is
the number of degrees of freedom, is also shown. In the 4th interval, σ = 0.14
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Fig. 6.13: Fluctuation and drift of the voltmeter measuring the Hall voltage at
room temperature. In the first two hours the voltmeter needs to warm up. After
this phase, the statistical uncertainty is determined by partitioning of the time axis
into two hour sections and projection of the data points onto the vertical axis, and
fitting a Gaussian distribution to the data (fig. 6.14).

µV is the largest. This corresponds to 0.17 G (converted value of the Hall
voltage to a magnetic field using the conversion factor at helium temperature
0.821 mV/kG). This is the value that is applied as a the statistical error to
all Hall voltage data taken during the experiment. This leads sometimes
to an overestimate of the error. The drift given by the manufacturer for a
24 h measurement is maximal 0.6 µV corresponding 0.73 G. A conservative
estimate for the uncertainty in the magnetic field measurement is therefore
∆B =

√
0.732 + 0.172 G = 0.75 G.

6.3.2 Magnetic field of the external magnet

Because a stabilization of the current with the power supply, used as a current
supply for the external magnet, was not successful, a mode was used, where
the voltage is stabilized. This is not the usual mode to operate a magnet. It is
described here, how the difficulty of taking a measurement at a stable current
value was dealt with. A voltage is set, and the current approximates a stable
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Fig. 6.14: Statistical analysis of the fluctuation of the Hall voltage readout device,
to determine the uncertainty of the output. The 12 hours long measurement is
divided into intervals of two hours and shown in a histogram with bins of 0.1 µV.
The standard deviation σ is determined for all six histograms and in fig. 6.15
plotted against the measuring time.
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Fig. 6.15: Standard deviations σ from fig. 6.14 in two hour intervals of the fluc-
tuation of the Hall voltage plotted against the measuring time.

value. The magnetic field strength is measured at stability of the current,
i.e. the mean value of those data points where the current is constant for
at least 20 s, and the reading of the built in voltmeter of the current supply
settled down. The evolution of the current and the external magnetic field
as a function of time is shown in fig. 6.16. A detailed view on the points at
stability is shown in appendix E.

A linear fit function fext of the form

fext(x) = ax+ c (6.1)

is fitted to the data. The fit result and the residuals (difference between data
points and fit function) are shown in fig. 6.17. By looking at the residuals
one realizes that the linear fit does not describe the data well. This might
be because of some magnetic material in the setup. A nonlinear fit of a
parabolic model fext of the form

fext(x) = ax+ bx2 + c (6.2)

is applied to the data with the parameters a,b and c and the variable x. The
result of the fit is shown in the table in fig. 6.18c. The uncertainty of the
data is determined mainly by the error of the power supply of the external
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Fig. 6.16: a) Current of the external magnet vs. time. b) Magnetic flux density
vs. time measured with the Hall-probe. The data points estimated to be stable are
at the horizontal part of the steps. Here the current is stable and the Hall voltage
shows the same value within the uncertainty.
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fext(x) = ax+ c
Slope(a) σslope Offset(c) σoffset χ2/ndf

837.6 0.5 5.5 1.8 2.3

(c)

Fig. 6.17: a) Magnetic flux density vs. the current of the external magnet and
linear fit to the data. b) The residuals (difference between data points and fit
function) of the fit show a nonlinear behavior. c) Table of fit results.
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magnet. The error in the current is propagated to the error in the magnetic
field. After a parabolic fit the residuals are smaller than the uncertainty of
the data points. This is not the case for a linear fit. This subject is still open
and one needs additional data points at higher magnetic fields. The plot of
the data, the fit and the residuals are shown in fig. 6.18. The covariance
matrix Ma,b,c,x of the parameters a, b, c and x is

Ma,b,c,x =


1.37 −0.16 −1.15 0
−0.16 0.02 0.10 0
−1.15 0.10 2.71 0

0 0 0 10−6x2

 (6.3)

and

∇fext(x) =


∂f(x)ext

∂a
∂f(x)ext

∂b
∂f(x)ext

∂c
∂f(x)ext

∂x

 =


x
x2

1
a+ 2bx

 (6.4)

The variance of the magnetic field measurement is

∇fext(x)Ma,b,c,x∇fext(x)T

= 2.71− 2.30x+ (1.57 + 10−6a2)x2

+ (−0.31 + 4 · 10−6ab)x3 + (0.02 + 4 · 10−6b2)x4 (6.5)

The field map of the external magnet was measured. In the plot in fig. 6.19
the stability of the current of the external magnet during this measurement
is shown. The stability ensures that for all data points the only variable
is the position on the axis of the external magnet, and that the current is
constant. The error bars overlap and form the broad band in the diagram.
The mean value is Iext = (9.88±0.01)A. The magnetic field is (8280± 10) G
when the Hall probe is at the center position of the tube. The value of the
magnetic flux density along the axis of the tube, that was measured with the
Hall-probe, is shown in fig. 6.20. 3

3In later measurements of the field map of the residual field, the current of the external
magnet and thus the magnetic field is not the same as in this measurement. The value of
the external magnetic field at the center (z = 0) that correspond to a certain current is
calculated by applying the fit function fext to the current. The field map points are then
determined by scaling the field map points from this measurement.
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fext(x) = ax+ bx2 + c

Parameter Estimate Uncertainty

a 833.03 G/A 1.17 G/A

b 0.58 G/A2 0.14 G/A2

c 9.42 G 1.65 G
χ2/ndf 0.2

(c)

Fig. 6.18: a) Magnetic flux density vs. the current of the external magnet. The
result of the linear fit in fig. 6.17 implies that a small second order contribution
to the linear fit function reduces the fit residuals. b) Residuals (difference between
data points and fit function) of the second order polynomial. c) Table of fit results.
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Fig. 6.19: Stability of the current supply of the external magnet during the mea-
surement of the field map of the external magnet. The maximum variation is within
the uncertainty of the device specification of 0.1% of the reading of the device.
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Fig. 6.20: The magnetic field along the axis at a constant current of the external
magnet is measured.
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6.3.3 Measurements at 1 T

Residual field of the shielding tube. In fig. 6.21 the data points of the
residual magnetic field in the center of the shielding tube by increasing the
external magnetic field to 1 T are shown. The mean value µmeas is calculated
as usual

µmeas =
1

N

N∑
i=1

xi = −1 G (6.6)

The mean value is defined as the offset and subtracted from all data. A
Histogram of the data points (projection on the Bres-axis) (fig. 6.22) shows
a fluctuation of

σres =

√√√√ 1

N(N − 1)

N∑
i=1

(xi − µres)2 = 0.016 G (6.7)

The xi are the N recorded stable data points (see sec. 6.3.2). In the cal-
culation of the µmeas and σres also data from operation of the Zero-field
magnet are included. The linear fits to the data points are shown in fig. 6.23.
The external field Bext and the residual field Bmeas and its uncertainty as
measured with the Zero-field magnet after subtraction of the offset -1 G are
summarized in the table. From this result one can conclude that, besides
the offset, no residual field is entering the shielding tube by increasing the
external field up to 1 T. Since (d = 3.5 ± 0.2) mm, µ0 = 4π · 10−7Vs/Am
and Bext = (10140± 14) G (this is the external field that was shielded) the
average current density is Jind = (23000± 2000) A

cm2 . The uncertainty of the
average current density σJ is calculated via

σ2
J =

σ2
ext

(µ0d)2
+

B2
ext

(µ0d2)2
σ2
d (6.8)

The uncertainty in the wall thickness of the shielding tube, σ2
d, is the main

source of uncertainty when calculating the average current density. The
shielding factor SF is defined as

SF =
Bext

Bres

(6.9)

and is extracted from the results for the residual field. Since the denominator
for this case is compatible with zero within the uncertainty, the calculation of
the shielding factor require to use a Monte-Carlo (MC) simulation, where two
normally distributed random numbers are generated, the ratio calculated and
the absolute value of the result aggregated. Another method is an analytical
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Fig. 6.21: External Bext and residual magnetic field Bres vs. time in the center of
the shielding tube by increasing the external magnetic field to 1 T (104 G). a) The
symbols denote the value of the external field during the increasing procedure (data
points 1. in black and 3. in magenta) and the decreasing (data points 2. in green)
exactly at the time when the residual field was measured. The filled triangles are
estimates of the residual field by using the Zero-field magnet. The open triangles
are the values obtained just before the Zero-field magnet measurement started. The
apex of the triangle indicates the increasing and decreasing procedures of the Zero-
field magnet measurement. b) Residual field at the center of the tube. The offset
-1 G is subtracted from the data.
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Fig. 6.22: Histogram of the residual field values obtained while increasing the ex-
ternal magnet to 1 T and decreasing to -1 T. The binning of the values is 0.1 G.
The total number of events in the histogram is 63. The offset is defined as the
mean value of this data set µmeas = −1 G and this is subtracted from all data.
Therefore the mean value after subtraction of the offset µres, as shown here, is
µres = 6 · 10−18 ≈ 0. As shown in the text, the fluctuation is σres = 0.016 G.

µe 10140
σe 14
µr 0.000
σr 0.016
Max. SF in MC 2.52× 1011

MC simulated 106

Mode of SF dist. 454594
95 % C.L. ca. 3.2 · 105

Tab. 6.11: Results from the Monte-Carlo simulation

calculation of a ratio distribution of two normal distributions. Both are
described in the next sections.

By assuming two normal distributions N{µe,r, σe,r} with mean µext,res
and variance σext,res, 106 random numbers are generated for each of these
distributions. For x ∈ N{µe, σe} and y ∈ N{µr, σr}, the ratio sf = |x

y
| is

calculated whenever y is not zero. The results are aggregated and a distribu-
tion SF is obtained. The resulting probability density function SF together
with the shielding factor at a confidence level of 95% (0.05-quantile), that
is considered as a lower limit (ca. SF2σ = 3.2 · 105), are shown in fig. 6.24.
The results are summarized in tab. 6.11. The numerical stability of the MC
calculation was tested. The results can be found in appendix F.
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inc 0.2 0.13 -17 2 −18.18 0.2 0.1
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Fig. 6.23: Linear regressions at different external fields obtained with the Zero-field
magnet. The current in the Zero-field magnet Ical is increased and decreased and
the magnetic field measured with the Hall-probe, while the external magnet is at a
constant value (-17 G and 10140 G). In total four different linear fits are obtained
(the offset is not subtracted from the data). The value of the magnetic field created
by the external magnet while the data were taken can be found in the legend of the
plot. The data are summarized in the table (with subtraction of the offset).

Parameter µ [G] σ [G]

Bext 10140 14
Bres 0.000 0.016

Tab. 6.12: External and residual field used as location and scale parameter of the
normal distributions taken for the calculation of the shielding factor.
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Fig. 6.24: a) Probability density function for the shielding factor as obtained via
Monte-Carlo calculation compared to the analytical calculation. The maximum
event in the MC, 2.52 · 1011 is not shown in this plot. The probability is decreasing
for higher shielding factor events. and b) Residuals, difference between MC and
the analytical calculation. The two methods lead to the same result at the order of
10−8.
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By considering the joint probability of the random vector Z = X/Y one
can calculate the joint probability density function f analytically by assuming

a normal distribution for g: gx(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

and the same for hy(y).

The derivation, as it can be found for example in ref. [89], is shown. X,Y
are random variables and Z = X/Y a random vector. For the cumulative
distribution function FZ(z) one gets

Fz(z) =P (Z ≤ z) (6.10)

=P (X/Y ≤ z)

=P (X ≤ zy, y > 0) + P (X > zy, y < 0)

Fz(z) =

∫ ∞
0

dy

∫ yz

−∞
dx fX,Y (x, y) +

∫ 0

−∞
dy

∫ ∞
yz

dx fX,Y (x, y)

(6.11)

After a variable transformation x = yz ⇒ dx = y dz one gets

Fz(z) =

∫ ∞
0

dy

∫ yz

−∞
y dz fY Z,Y (yz, y) +

∫ 0

−∞
dy

∫ ∞
yz

−y dz fY Z,Y (yz, y)

From the cumulative distribution function one can calculate the probability
density function

dFz(z)

dz
=

∫ ∞
−∞

dy |y|fY Z,Y (yz, y) (6.12)

If X and Y are independent fX,Y (x, y) = gX(x)hY (y). SF is then

f(z) =

∫ ∞
−∞

ygY Z(yz)hY (y) dy (6.13)

g : Probability density function N{µe, σe}
h : Probability density function N{µr, σr}

f(z) : Probability density function SF

We plot the resulting distribution function by using values for the location
and scale parameters that can be found in tab. 6.12. and compare it to the
Monte-Carlo calculation in fig. 6.24. The two different methods lead to the
same result.

Stability and field map of the residual field. The stability of the resid-
ual field of the shielding tube was measured at a constant external magnetic
field for 4 days. In the first 10 hours a rise in the residual field cannot be
observed. (fig. 6.25). The mean value µ of the fluctuation of the residual
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Fig. 6.25: a) Stability measurement of the shielding tube at an external magnetic
field of ca. 1 T for 10 hours. b) Drift of the external field. Symbols as in fig. 6.21
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Fig. 6.26: a) Stability measurement of the shielding tube at an external magnetic
field of ca. 1 T for 4 days. b) Drift of the external field. During the measurement,
the magnetic field decreased slowly, due to the power supply of the external magnet
that was in constant voltage mode. Close to the end of the measurement, after
ca. 100 h, the current of the external magnet is increased, so the magnetic field is
above 1 T again. Symbols as in fig. 6.21
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0 to 10 h 20 h to 100 h

Parameter µ [G] σ [G] µ [G] σ [G]

Bext 10081 14 10000 200
Bres 0.000 0.008 0.499 0.003

Tab. 6.13: Mean value µ of the residual field Bres and its uncertainty σ for the
stability measurement at 1 T after subtraction of the offset (−0.751± 0.008) G.
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Fig. 6.27: External and residual field along the axis of the tube. The black points
show the external field. The blue points are the residual field and the red ones
estimated values with the Zero-field magnet.

field Bres and its uncertainty σ are summarized in tab. 6.13. One can see
in fig. 6.26, after ca. 9 hours the residual field undergoes a quite fast jump
within a few hours. After this jump the residual field stabilizes again.

The residual field along the axis of the shielding tube was measured at
an external field of (10330± 14) G at the center of the tube. The shielded
length, where the residual field is lower than 1 G, is 80 mm. Since the tube
length is 150 mm, at more than half of the length of the shielding tube the
residual field is less than 1 G. The plot is shown in fig. 6.27. The stability
of the current supply of the external magnet is shown in fig. 6.28.
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Fig. 6.28: Stability of the current supply of the external magnet in the measurement
of the shielding tube field map at 1 T. The measurement was interrupted in the
time interval between 8 min and 25 min.

6.3.4 Measurements at 1.4 T

Residual field at the center of the tube at 1.4 T. The same procedure,
as described in section 6.3.3, is carried out, with the difference that the
external field exceeds the point where it enters the shielding tube. The Hall-
probe is fixed in the center of the tube axis, and the current of the external
field rises to a value where the field begins to enter the shielding tube. The
ramping of the external field is stopped at ca. 1.4 T. The plot of the residual
field vs. the external field is shown in fig. 6.29. The verification of the residual
field with the Zero-field magnet is shown in the plots fig. 6.30. The residual
field is calculated as follows

Bres = Bmax
res −B0

res

whereBmax
res andB0

res are the values of the residual field atBext = (14640± 30) G
and Bext = (17 ± 2) G, respectively. The residual field Bmax

res and B0
res are

determined from the average over the Zero-field magnet measurements, as
listed in tab. 6.14. A shielding factor, SF = Bext

Bres
= 12200, and a current

density (as calculated in sec. 6.3.3) Jind = (33000± 3000)A/cm2 results and
is summarized in tab. 6.15. The uncertainty of the shielding factor σSF is

calculated via σ2
SF =

σ2
ext

σ2
res

+
B2

ext

B4
res
σ2
res.
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Fig. 6.29: Residual field vs. external field. Symbols as in fig. 6.21. The black line
shows the first increasing of the external field. The curve shows a hysteresis. The
hysteresis is caused by the irreversible behavior of the shielding tube discussed in
sec. 6.2. The offset and the upper limit of the external field is verified with the
Zero-field magnet. At the maximum external field of (14640± 30) G the residual
field increases to (1.2± 0.06) G.
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Fig. 6.30: Linear regressions at different external fields obtained with the Zero-field
magnet. The different linear fits are obtained at two different states (low and high)
of the external magnet before subtracting the offset. The value of the magnetic field
created by the external magnet while the data were taken can be found in the legend
of the plot. The fit results are listed in tab. 6.14
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Time Mod. Bres σres Bext σext Slope σslope χ2/ndf
[min] [G] [G] [G] [G] [G/A] [G/A]

0 inc −0.22 0.13 17 2 −18.21 0.2 0.2
6 dec −0.43 0.12 17 2 −18.06 0.2 0.9
10 inc −0.19 0.13 17 2 −18.35 0.2 0.2
14 dec −0.4 0.12 17 2 −18.1 0.2 1.1
67 inc 0.72 0.13 14640 30 −18.2 0.2 0.4
72 dec 0.86 0.12 14640 30 −18.16 0.2 0.3
77 inc 1.04 0.13 14630 30 −18.6 0.2 1.3
83 dec 0.98 0.12 14630 30 −18.22 0.19 0.4
147 inc 1.04 0.13 -31 2 −18.3 0.2 0.8
157 dec 1.08 0.12 -33 2 −18.21 0.2 0.4

Tab. 6.14: External field Bext and residual field Bres and its uncertainty as mea-
sured with the Zero-field magnet after subtraction of the offset (−1.44± 0.04) G.
The measurements show the penetration of the external field into the shielding tube
when exceeding 1 T. Because of a hysteresis-like behavior the residual field still re-
mains in the shielding tube after decreasing the external field to zero. The data
points and fit functions are shown in fig. 6.30.

Parameter Value Uncertainty

Bext [G] 14640 30
Bres [G] 1.22 0.06
SF 12000 1000

Current density Jind [A/cm2] 33000 3000
Offset (subtracted from all data) [G] -1.44 0.04

Tab. 6.15: External and residual field, shielding factor and estimated average cur-
rent density at ca. 1.4 T.
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Time Mod. Bres σres Bext σext Slope σslope χ2/ndf
[min] [G] [G] [G] [G] [G/A] [G/A]

0 inc 0.01 0.15 -6 2 −18.42 0.19 0.1
5 dec −0.02 0.15 -6 2 −18.3 0.19 0.5
20 inc 0.41 0.16 14790 38 −18.19 0.2 1.1
25 dec 0.53 0.15 14790 38 −18.21 0.19 0.2
889 inc 2.68 0.16 14780 38 −18.2 0.22 1.2
894 dec 2.7 0.15 14780 38 −18.2 0.19 1.4

Tab. 6.16: External field Bext and residual field Bres and its uncertainty as mea-
sured with the Zero-field magnet during the stability measurement at ca. 1.4 T
after subtraction of the offset (1.135± 0.085) G.

Parameter Value Uncertainty

Bres 2.7 G 0.15 G
Iext 17.516 A 0.004 A
Bext 14765 G 30 G

Tab. 6.17: Residual field Bres, constant current supply Iext, constant external field
Bext and its uncertainty for the stability measurement at ca. 1.4 T after 14 hours.
The residual field in the shielding tube increases with time.

Stability and field map of the residual field. As for 1 T external field
the stability of the residual field of the shielding tube at a constant external
magnetic field of (14765± 30) G is measured for 14 hours (See the plot in
fig. 6.31). In addition to the data points the Zero-field magnet for estimat-
ing the residual field was used. The values are in tab. 6.16. The Residual
field Bres, constant external field Bext and its uncertainty is summarized in
tab. 6.17.

The residual field along the axis of the tube was measured at a constant
external field of (14793± 30) G. The shielded length is 80 mm. The result
is similar to that at 1 T. Since the tube length is 150 mm at more than half
of the length of the shielding tube the residual field is less than 2 G. The
plot is shown in fig. 6.32.
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Fig. 6.31: a) Increasing residual field of the shielding tube at a constant exter-
nal magnetic field of ca. 1.4 T for 14 hours. Symbols as in fig. 6.21. The offset
(1.14± 0.08) G is subtracted. b) Drift of the current supplying the external mag-
net creating a field of (14765± 30) G . The uncertainty in the magnetic field is a
result from sec. 6.3.2. The uncertainty of the current is 0.05 %.
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Fig. 6.32: External and residual field along the axis of the tube. The black points
show the external field. The blue points are the residual field and the red ones
estimated values with the Zero-field magnet.

6.4 Comparison of the simulation with the

experimental result

To estimate the validity of the simulation, presented in chapter 5, the results
of the calculated field map of the residual field along the axis of the shielding
tube is compared with the values from the experiment. For the comparison
one needs to apply numerically the same external field as in the experiment.
Therefore one needs a function f fitmap(x = 0, z) where f fitmap is the value of the
magnetic field at position z on the axis (x = 0 means, the radial distance
from the axis is zero). f fitmap describes the measured field map best. The
procedure to get this function is as follows. The field map fmap(x, z) can be
calculated via Biot-Savart (s.5.2) for the current Iext = 1 A. For any other
Iext the function fmap(x, z) is scaled linearly with Iext, in fig.6.4 the function
fmap(x, z) is shown by using Iext = 12 A for the calculation. By using the
current Iext = 9.88 A, c · fmap(x = 0, z) with fit parameter c can be fitted
to the measured data. The fit result for c is shown in tab.6.18 and plotted
with the measured data in fig.6.33 a). The residuals in fig.6.33 b) show a
deviation from the calculated form 4. The external current for input into the

4This can be due to winding errors during winding of the wire into layers of a solenoid.
The length of the holding structure has to be adjusted to the wire diameter. The wire
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Fig. 6.33: a) The data points from the measurement are plotted together with the

field map ffitmap(x = 0, z). b) Residuals (data-fit)
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Parameter Estimate Uncertainty

c 0.993856 0.000035

Tab. 6.18: Fit result of the calculated magnetic field map to the measured one.
The field map can be used as an input to the simulation. With the same field
map used for the simulation of the residual field, the result can be compared to the
measurement.
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Fig. 6.34: Comparison of simulation and measurement. The black and blue dashed
lines are the simulated external and residual field in G with corresponding scales
on the right and left, respectively. The points with the error bars are the measured
data as described in chap.6.

simulation is then determined by the mean external current (fig.6.19) while
measuring the field map of the residual field of shielding tube corrected by
the fit parameter c. The result of this comparison is shown in fig.6.34. The
simulated residual field follows the measured one within the measurement
errors on the left side (negative values of the axis) and in the middle part.
The deviation of the measured data points and the simulated curve on the
right side has to be studied. The measured data points are slightly shifted on
the z-axis with respect to the z = 0 position. This can be due to a systematic

diameter alters in the range of some 10 to 100 µm because of the uncertainty of the
wire coating during fabrication of the wire and and gluing during the winding procedure.
Therefore, the last winding at the end of a layer is not exactly a whole loop. This leads to
an imperfection in the profile of the windings and causes the magnetic field to be stronger
towards the center, where the windings are well-arranged.
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error not taken into account in the analysis. In particular, the position of the
sliding rod and the Hall-probe on it. The measurement of points at different
z positions require the manually movement of the rod. This would introduce
a shift of the residual field map to one side, adding an offset in z direction
to the measured data points.

6.5 Summary of the results

The performance of the BSCCO shielding tube concerning the issue of min-
imizing the longitudinal magnetic flux density, created by an external mag-
net, was tested. A testing apparatus was built consisting of the following
elements: The external magnet is realized by a superconducting coil. It is
mounted on the top of the shielding tube. It applies a magnetic field parallel
to the wall of the tube. Inside the shielding tube a Hall probe is measuring
the residual magnetic flux density. A dewar, that contains the whole testing
apparatus, is filled with liquid helium, sustaining the apparatus at a constant
temperature of 4.2 K.

The residual field was measured, a shielding factor for 1 T and 1.4 T
external field was extracted and the induced average current density in the
shielding tube estimated. The residual field along the axis of the shielding
tube, where it is lower than 1 G, was determined. A long term stability
measurement was performed. The results are summarized in tab. 6.19.

The measurement has shown that with a 150 mm long shielding tube with
an inner diameter of 43 mm and a wall thickness of 3.5 mm a magnetic flux
density of (10140± 14) G can be shielded with a vanishing residual field and
an uncertainty of 0.016 G. The shielding factor is at least 3.2·105 with a 95 %
confidence level. The 4 days long stability measurement at 1 T shows a stable
operation of the shielding tube. The residual field does not increase with an
uncertainty of 0.008 G until 10 h and stabilizes at Bres = (0.499± 0.003) G
for the rest of the measured time. At 1.4 T the residual field Bres increases
to Bres = 2.7 G after 14 h. The residual field was also measured along the
axis of the tube and it shows that the residual field is Bres < 1 G at the
length of 80 mm. Above 1 T the field starts to penetrate into the inner part
of the shielding tube. At 1.4 T the residual field in the center of the tube is
Bres = 1.2 G.
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External field 1 T 1.4 T

Shielding factor > 320000 (95 % C.L.) 12000± 1000
Average induced current density Jind [ A

cm2 ] 23000± 2000 33000± 3000
Shielded length [mm] (tube length 150 mm) 80± 2 80± 2
Residual field [G]
after 9 h at 1 T and 14 h at 1.4 T

0.0000± 0.0024 2.70± 0.15

Residual field [G]
in the range of 20 to 80 h

0.499± 0.003

Tab. 6.19: Results for measurements with the BSCCO shielding tube at an external
field of 1 T and 1.4 T in longitudinal direction (applied parallel to the wall of the
tube) at 4.2 K. The tube length is 150 mm and its wall thickness 3.5 mm.



Chapter 7

Conclusion and future
development

A transverse polarized target is a highly demanded tool to investigate the
nucleon structure in a way that would not be accessible otherwise. In first
place, a transverse polarized target in the PANDA detector requires a shield-
ing tube that can shield the 2 T longitudinal field created by the PANDA
solenoid with a shielding factor as high as possible to be able to maintain a
high degree of transverse polarization. Also a low material budget is required.
Therefore a BSCCO high-temperature superconducting hollow cylinder was
tested experimentally whether it can shield an intense magnetic flux.

Simulations of the shielding tube where carried out by assuming that the
superconductor is an ideal conductor.

It was shown experimentally that a magnetic flux density of (10140± 22) G
can be shielded. The stability measurement at 1 T external field shows a
stable operation of the shielding tube. The residual field was also measured
along the axis of the tube and showed the homogeneity of the shielding.
Above 1 T the field starts to penetrate into the inner part of the shielding
tube and at 1.4 T the residual field is Bres = 1.2 G.

A comparison of the results of the calculated field map of the shielding
tube with the measured data from the experiment showed a good agreement
of the calculated values to the data. The calculation can be used to adjust
and optimize the geometry of the shielding tube. The calculated field map
can be used as an input for particle tracking simulations.

The shielding tube is suitable for shielding 1 T with a good homogeneity
and stability, and with a high shielding factor. The shielding tube is sufficient
for an operation of a polarized target at 1 T at the temperature 4.2 K if the
P̄ANDA solenoid operating point is 1 T. Although, shielding of 2 T would
be more desirable. At 1.4 T the shielding performance is reduced. The

103
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applicability depends on which is the maximum residual field that can be
accepted, and the required stability in time.

Shielding of more than 1 T with BSCCO would require a thicker tube
or an additional BSCCO tube placed inside the first tube. A combination
of different superconducting materials could also be an option. Another
possibility to enhance the shielding performance, by higher current density,
is to lower the temperature, where more experimental studies are needed.
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Appendix A

Finite element method
calculation

Using a commercial program (CST Studio Suite r 2017) a finite element
method calculation was performed with the same geometrical parameters
and external magnetic field as in the calculation in chapter 5. The shielding
tube is modeled as a perfect electric conductor, in analogy to the assumptions
made in this chapter. The comparison of both methods show an overlap of the
result (fig. A.1). The residuals (difference between both simulation results)
are shown in fig. A.2.
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External field (calculated)

Residual field (Inductance method)
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Fig. A.1: Simulation of residual field with CST Studio Suite r 2017 (red dashed
line) compared to the result of the numerical simulation in sec. 5 (blue line). The
black dashed line is the external field as calculated via Biot-Savart. The scale on
the right (left) corresponds to the external (residual) field.
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Fig. A.2: Difference (residuals) of the two calculation methods shown in the plot
fig. A.1.



Appendix B

Calculation of the residual field
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Fig. B.1: Simulation of the residual field with approximation of the geometry of all
rings with a point-like cross section. This leads to an over-induced magnetic field
in the shielding tube and a negative residual field.
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Magnetic flux density B ∆B Magnetic flux density B ∆B

-20000 91.524
-19000 79.277 50 -0.408
-18000 67.693 300 -2.198
-17000 56.774 1000 -7.408
-16000 46.521 2000 -15.054
-15000 36.934 3000 -21.524
-14000 28.014 4000 -26.23
-13000 19.763 5000 -29.108
-12000 12.18 6000 -29.654
-11000 5.266 7000 -27.646
-10000 -0.985 8000 -25.653
-9000 -6.584 9000 -22.801
-8000 -11.518 10000 -18.911
-7000 -16.646 11000 -14.191
-6000 -20.439 12000 -8.589
-5000 -20.863 13000 -2.088
-4000 -19.524 14000 5.308
-3000 -16.943 15000 13.596
-2000 -12.54 16000 22.772
-1000 -6.714 17000 32.835
-300 -2.134 18000 43.779
-50 -0.43 19000 55.602
0 0 20000 68.301

Tab. C.1: Linearity error of the Hall probe Lake Shore HGCA 3020. After correc-
tion with this values the error for operation with IC = 100 mA is less then 0.01
mA.
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No. Sec. Date min. field [G] max. field [G] Type

1. a) 6.3.2 Aug 24 −12± 2 8290± 16 Calibration
1. f) 6.3.2 Aug 24 −12± 2 8290± 16 Field map
2. a) 6.3.3 Sep 3 −10250± 20 10180± 20 Ramp
2. s) 6.3.3 Sep 3 - 7 9811± 21 10343± 22 Stability
2. f) 6.3.3 Sep 2 - 10332± 22 Field map
3. a) 6.3.4 Aug 31 −14260± 40 14640± 40 Ramp
3. f) 6.3.4 Sep 8 - 14794± 38 Field map

Tab. D.1: Measurement program 2015 at Institut für Kernphysik Mainz. Cali-
bration: Measuring the magnetic field versus the current of the external magnet.
Ramp: Measuring the residual magnetic field in the center of the shielding tube by
increasing and decreasing the external magnetic field. Field map: Measuring the
residual field along the axis of the tube at constant external field. Stability: Mea-
suring the residual field in the center at a constant external magnetic field. The
temperature of the external magnet and the shielding tube was T = 4.2 K. Mea-
surements before 31st Aug are measurements without the shielding tube. Magnetic
fields higher than 10000 G means a residual field in the shielding tube, also for
follow up experiments.
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No. Date Ext. mag. [A] Zero-field 
mag.  [A] 

Hallprobe 
pos. [mm] 

Measurement 

78 Mon Aug 24 18:23:04 0..10 0 0 ext. 

80 Mon Aug 24 20:43:21 10..0 0 0 ext. 

86 Mon Aug 24 23:15:50 0..10 0 0 ext. 

87 Mon Aug 24 23:40:09 10 0 0..70 fieldmap 

88 Tue Aug 25 00:42:08 10 0 0..-65 fieldmap 

89 Tue Aug 25 01:13:56 0..24 0 0 quench 

95 Tue Aug 25 16:21:05 0..30 0 0 quench 

8 Mon Aug 31 17:52:52 0..17.3 0 0 loop 

14 Mon Aug 31 19:01:32 17.3..0 0 0 loop 

18 Mon Aug 31 20:27:37 0..-17.3 0 0 loop 

19 Mon Aug 31 21:29:06 -17.3..0 0 0 loop 

21 Mon Aug 31 22:27:31 0..17.3 0 0 loop 

no 
entry 

 17.3..0 0 0 loop 

28 Tue Sep 1 12:05:51 0..17..0..-17..0 0 0 ext. 

32 Tue Sep 1 13:45:15 0..3.7 0 0 ext. 

34 Tue Sep 1 14:27:39 3.7 0 0..70 fieldmap 

38 Tue Sep 1 15:22:13 3.7 0 0..-65 fieldmap 

43 Tue Sep 1 18:32:50 0..17.5 0 0 loop 

44 Tue Sep 1 19:34:20 17.5..0..-17.2 0 0 loop 

47 Tue Sep 1 22:06:47 -17.5..0..17.2 0 0 loop 

49 Tue Sep 1 23:48:13 17.5..0..-17.2 0 0 loop 

50 Wed Sep 2 00:12:38 -17..0 0 0 loop 

59 Wed Sep 2 12:45:05 9.25 0 0..70 fieldmap 

64 Wed Sep 2 13:27:13 9.25 0 0..-65 fieldmap 

67 Wed Sep 2 13:53:32 12.3 0 0 ext. 

71 Wed Sep 2 15:44:45 12.3 0 -65..0 fieldmap 

Tab. D.2: See caption of tab.D.4
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No. Date Ext. mag. [A] Zero-field 
mag.  [A] 

Hallprobe 
pos. [mm] 

Measurement 

74 Wed Sep 2 16:10:12 12.3 0 0..70 fieldmap 

79 Wed Sep 2 17:32:04 0 0 0..70 fieldmap 

88 Wed Sep 2 18:10:45 0 0 0..-65 fieldmap 

92 Wed Sep 2 18:44:00 3.7 0 -65..0 fieldmap 

96 Wed Sep 2 19:08:32 3.7 0 0..70 fieldmap 

101 Thu Sep 3 12:11:28 0..12..0..12..0..12 0 0 loop 

106 Thu Sep 3 15:42:48 12 0 0 relax. 

113 Thu Sep 3 23:32:40 12 0 0 relax. 

119 Fri Sep 4 06:48:36 12 0 0 relax. 

127 Fri Sep 4 15:58:39 12 0 0 relax. 

137 Fri Sep 4 23:51:58 12 0 0 relax. 

144 Sat Sep 5 07:29:08 12 0 0 relax. 

152 Sat Sep 5 16:20:33 12 0 0 relax. 

161 Sun Sep 6 00:44:39 12 0 0 relax. 

172 Sun Sep 6 07:23:38 12 0 0 relax. 

186 Sun Sep 6 16:48:06 12 0 0 relax. 

195 Mon Sep 7 00:03:08 12 0 0 relax. 

202 Mon Sep 7 07:12:36 12 0 0 relax. 

210 Mon Sep 7 15:41:43 12 0 0 relax. 

213 Mon Sep 7 16:03:05 12 0 0 relax. 

221 Mon Sep 7 22:09:21 0 0 0 ext. 

224 Mon Sep 7 22:29:34 0 0 0 relax. 

233 Tue Sep 8 16:52:28 0..12 0 0 loop 

237 Tue Sep 8 17:08:39 12..0 0 0 loop 

240 Tue Sep 8 17:30:56 0..-12 0 0 loop 

244 Tue Sep 8 17:47:04 -12..0 0 0 loop 

247 Tue Sep 8 18:12:31 0..17.5 0 0 ext. 

Tab. D.3: See caption of tab.D.4
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No. Date Ext. mag. [A] Zero-field 
mag.  [A] 

Hallprobe 
pos. [mm] 

Measurement 

250,251 Tue Sep 8 18:35:36 17.5 0 0..70..-65 fieldmap 

254 Tue Sep 8 19:36:17 17.5..0 0 0 loop 

259 Tue Sep 8 21:11:44 0..-17.5 0 0 loop 

262 Tue Sep 8 21:39:47 -17.5..0 0 0 loop 

265 Tue Sep 8 22:10:46 0..17.5 0 0 loop 

272 Wed Sep 9 13:33:09 0 0 0 relax. 

275 Wed Sep 9 17:56:16 0..15.9 0 0 ext. 

280 Wed Sep 9 18:26:18 15.9 0 0..70 fieldmap 

286 Wed Sep 9 19:14:19 15.9 0 0..-65 fieldmap 

293 Wed Sep 9 19:43:05 15.9..0 0 0 loop 

296 Wed Sep 9 20:02:26 0..-15.9 0 0 loop 

299 Wed Sep 9 20:24:20 -15.9..0 0 0 loop 

302 Wed Sep 9 20:43:08 0..15.9 0 0 loop 

308 Wed Sep 9 21:41:13 0 0 0 relax. 

312 Thu Sep 10 07:35:34 0..17.5 0 0 ext. 

315 Thu Sep 10 07:56:26 17.5 0 0 relax. 

322 Thu Sep 10 22:23:18 17.5 0 0 relax. 

335 Mon Sep 14 15:09:27 13.37 0 0 ext. 

340 Mon Sep 14 15:20:51 13.37 0 0..70 fieldmap 

346 Mon Sep 14 15:49:23 13.37 0 0..-65 fieldmap 

349 Mon Sep 14 16:07:41 14.58 0 -65 ext. 

352 Mon Sep 14 16:20:10 14.58 0 -65..0 fieldmap 

355 Mon Sep 14 16:35:48 14.58 0 0..70 fieldmap 

362 Mon Sep 14 17:56:05 0 0 0 relax. 

369 Wed Sep 16 17:36:37 0..14.56 0 0 loop 

372 Wed Sep 16 17:53:45 14.56..0 0 0 loop 

375 Wed Sep 16 18:09:01 0..-14.56 0 0 loop 

378 Wed Sep 16 18:24:41 -14.56..0 0 0 loop 

381 Wed Sep 16 18:40:38 0..14.56 0 0 loop 

Tab. D.4: All measurements in a chronological order. The columns from left to
right: No.: The serial number as in the log book. Date: the date of the measure-
ment. Ext. mag. [A]: current of the external magnet. Zero-field mag. [A]: current
of the Zero-field magnet. Hallprobe position: Position of the Hall probe along the
axes of the shielding tube. Measurement: ”loop”: Ramping the current of the ex-
ternal magnet. ”relax”: Stability measurement at constant current of the external
magnet. ”ext”: Constant current of the external magnet. ”fieldmap”: Probing
the magnetic field along the axes of the tube at constant current of the external
magnet. ”quench”: Ramping the current of the external magnet until quenching
it.
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Appendix E

Extracting points of stable
current

During the measurement the stability of the current supply of the external
magnet is essential for an exact magnetic field measurement. The current
vs. time is recorded and a stable value is extracted from a region where the
current is fluctuating around a constant value. The regions are plotted in
fig. E.1 and fig. E.2.
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Fig. E.1: Detailed plots of the stable regions of the current and the magnetic field
that were taken into account by determination of the stable value. The uncertainty
is calculated and verified as given by the manufacturer. Except at the lowest point
of the current, where the estimated uncertainty is 2.5 mA.
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Fig. E.2: Detailed plots of the stable regions of the current and the magnetic field
that were taken into account by determination of the stable value.
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Appendix F

The numerical stability of the
MC calculation

The numerical stability of the MC calculation was tested for two concerns.
The first one is the variation of the number of generated random numbers. A
convergence of the result is expected by decreasing statistical uncertainties
due to increased number of generated random numbers. The Monte-Carlo
data were compared with a reference function, that was calculated analyti-
cally (sec. 6.3.3). The differences of the Monte-Carlo simulated data and the
analytical calculated data (residuals) for 104 and 105 generated numbers are
shown in the plots fig. F.1 and fig. F.2, respectively. The residuals for 106

generated numbers is shown in fig. 6.24. The second concern is the proximity
of a singularity resulting from the division by zero. The denominator is a
random number from a normal distribution symmetric around zero. The di-
vision by zero in the simulation was avoided by cutting away those numbers
equal to 0. The simulation was also tested for a cut off of those numbers,
whose absolute value is greater than a predefined cut off value. The plots in
fig. F.3, fig. F.4 and fig. F.5 show the results, when the cut off is 10−5, 10−6

or 10−7. The differences of the Monte-Carlo simulated data to the analytical
calculated data (residuals) are shown. As expected, the total variation of the
residuals does not change, while the cut off goes closer to zero.
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Fig. F.1: Differences of the Monte-Carlo simulation to the analytical calculation
(residuals) of the shielding factor with 104 simulated events.
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Fig. F.2: Differences of the Monte-Carlo simulation to the analytical calculation
(residuals) of the shielding factor with 105 simulated events.
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Fig. F.3: Differences of the Monte-Carlo simulation to the analytical calculation
(residuals) when the cut off value is 10−5.
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Fig. F.4: Differences of the Monte-Carlo simulation to the analytical calculation
(residuals) when the cut off value is 10−6.
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Fig. F.5: Differences of the Monte-Carlo simulation to the analytical calculation
(residuals) when the cut off value is 10−7.



Appendix G

Acronyms

GSI GSI Helmholtz Centre for Heavy Ion Research, Darmstadt

HIM Helmholtz-Institut Mainz

P̄ANDA antiProton ANnihilation in DArmstadt

FAIR Facility for Antiproton and Ion Research

HESR High Energy Storage Ring

YBCO Yttrium-1 Barium-2 Copper-3 Oxid

BSCCO Bismuth-2 Strontium-2 Calcium-1 Copper-2 Oxid

CST CST Studio Suite® 2015
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