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Abstract

Taking a multidimensional time-homogeneous dynamical system and adding a randomly
perturbed time-dependent deterministic signal to some of its components gives rise to a
high-dimensional system of stochastic differential equations which is driven by possibly
very low-dimensional noise. Equations of this type are commonly used in biology for
modelling neurons or in statistical mechanics for certain Hamiltonian systems.

This thesis is focused on studying two general properties of such a system. In the
first part, we use methods from stability theory and control theory as well as Hörman-
der’s condition in order to provide conditions that are sufficient for the corresponding
stochastic process to be positive recurrent in the sense of Harris. Harris recurrence gives
rise to Limit Theorems for a large class of functionals of the process and can thus be
the foundation for applications in asymptotic statistics.

In the second part, considering a statistical model associated to a parametrised class
of smooth signals, we exploit Harris recurrence in order to prove Local Asymptotic Nor-
mality in the sense of LeCam for the estimation of these parameters under continuous
observation of certain components of the process.
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Zusammenfassung

Indem einem mehrdimensionalen zeitlich homogenen dynamischen System in einigen
Komponenten ein in zufälliger Weise gestörtes zeitabhängiges deterministisches Sig-
nal hinzugefügt wird, erhält man ein hochdimensionales System stochastischer Dif-
ferentialgleichungen, welches von möglicherweise sehr niedrigdimensionalem Rauschen
angetrieben wird. Gleichungen dieser Art finden Anwendung in der Biologie bei der
Modellierung von Neuronen oder in der statistischen Mechanik im Zusammenhang mit
gewissen Typen Hamiltonscher Bewegungsgleichungen.

Diese Doktorarbeit widmet sich zwei allgemeinen Eigenschaften solcher Systeme.
Im ersten Teil verwenden wir Methoden der Stabilitätstheorie sowie der Kontrolltheorie
und die Hörmander-Bedingung, um hinreichende Bedingungen anzugeben, unter denen
der entsprechende stochastische Prozess positiv Harris-rekurrent ist. Harris-Rekurrenz
liefert Grenzwertsätze für große Klassen von Funktionalen des Prozesses und kann somit
als Grundlage für Anwendungen in der asymptotischen Statistik dienen.

Im zweiten Teil betrachten wir ein statistisches Modell zu einer parametrischen
Klasse glatter Signale und nutzen Harris-Rekurrenz, um für die Schätzung dieser Pa-
rameter unter stetiger Beobachtung gewisser Komponenten des Prozesses Lokalasymp-
totische Normalität im Sinne von LeCam zu beweisen.
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Chapter 1

Introduction

In this chapter, we introduce the general model that we want to study in this thesis.
Afterwards, we offer insight into the backgrounds of some particular examples which
served as its motivational basis and which will be brought up repeatedly in the course
of this text.

1.1 Degenerate diffusions with internal variables and

randomly perturbed time-inhomogeneous deter-

ministic input

Let V ⊂ RL be a connected set with non-empty interior. Let

F : RN × V → RN and G : RN × V → RL

be locally Lipschitz continuous functions. Finally, let

S : [0,∞)→ RN

be a continuous signal and consider the deterministic dynamical system

ẋ = F (x, y) + S,

ẏ = G(x, y),
(DDS)

where ẋ and ẏ are the time-derivatives of the time-dependent variables x : [0,∞)→ RN

and y : [0,∞) → V , respectively. Using integral notation, we can alternatively write
(DDS) as

dx(t) = F (x, y)(t)dt+ S(t)dt,

dy(t) = G(x, y)(t)dt.
(DDS’)
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If it exists, we write
(x, y)[x0, y0, S](t) (1.1)

for its unique solution at time t ∈ [0,∞) with starting condition (x, y)(0) = (x0, y0) ∈
RN × V .1

The system is divided into two groups of variables: The N components of x whose
dynamics depend directly on the signal and the L components of the internal vari-
ables y which are affected by the signal only indirectly through the influence of x.
Intuitively speaking, we can think of (DDS) as a dynamical system with no intrinsic
time-inhomogeneity which then receives an additional time-dependent external input in
some of its variables, while the remaining variables merely describe an interior mech-
anism. Note that the only source of time-inhomogeneity is in fact the signal – if the
system receives no external input (i.e. S ≡ 0N), it is entirely homogeneous in time.
Systems of this kind frequently arise in the context of neuroscience and statistical me-
chanics – some particularly interesting specific examples (such as the Hodgkin-Huxley
model, simplified neuron models, or a chain of coupled oscillators) will be presented
and explained in Section 1.2.

The conceptual idea of our model is that the signal is not actually received in
its original shape, but is subject to perturbations by external noise (i.e. noise that
is independent of the rest of the system). To take account of this notion, it seems
natural to substitute the signal term S(t)dt in (DDS’) with the increment dZt of a
time-inhomogeneous Ornstein-Uhlenbeck process carrying S(t) in its time-dependent
mean reversion level, i.e.

dZt = [S(t)− γZt]dt+ σdWt

for an N -dimensional standard Brownian Motion W , some γ ∈ (0,∞) and a suitable
σ ∈ RN×N . While this will usually be the situation we have in mind, in general nothing
keeps us from considering slightly less restrictive Ornstein-Uhlenbeck type processes of
the shape

dZt = [S(t) + b(Zt)]dt+ σ(Zt)dWt, (1.2)

where W is now anM -dimensional standard Brownian Motion, while b : RN → RN and
σ : RN → RN×M are suitable drift and volatility functions.2 If b and σ are Lipschitz

1Consult the list of symbols for our notational conventions regarding column and row vectors.
2As usual, this notation for stochastic differential equations is short for

Z
(i)
t − Z

(i)
0 =

∫ t

0

[Si(s)− bi(Zs)]ds+

M∑
j=1

∫ t

0

σi,j(Zs)dW
(j)
s for all i ∈ {1, . . . , N},

and we will use this abbreviation throughout this text.
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continuous and S is bounded, the equation (1.2) satisfies classical growth and Lipschitz
conditions and hence admits a unique non-explosive strong solution (see for example
[43, Theorems 5.2.5 and 5.2.9]). Note that this stochastic differential equation can be
viewed as a generalised version of the classical signal in noise model (take M = N = 1,
b ≡ 0, and σ ≡ 1, see for example [39, Example I.7.3, Chapter III.5]), which arises in a
wide variety of fields including communication, radiolocation, seismic signal processing,
or computer-aided diagnosis and has been the subject of extensive study.

Perturbing S(t) randomly in this way leads to the stochastic dynamical system

dXt = F (Xt, Yt)dt+ dZt,

dYt = G(Xt, Yt)dt,

dZt = [S(t) + b(Zt)]dt+ σ(Zt)dWt,

(SDS)

issued from some starting point (x0, y0, z0) ∈ RN×V ×RN . This system can be thought
of as degenerate in the following sense: Firstly, the equation for Y does not incorporate
the driving Brownian Motion W explicitly, making it rather unclear which effect noise
has on these components. Secondly, the dimension M of the driving Brownian Motion
can (and will usually) be much lower than the dimension N+L+N of the system. This
is why we call a stochastic process satisfying a system of stochastic differential equations
of the type (SDS) a degenerate diffusion with internal variables and randomly perturbed
time-inhomogeneous deterministic input. The system (SDS) is a generalisation of the
one introduced in equation (18) of Section 4.1 of [36], which is a probabilistic version
of a class of dynamical systems that are well-known in the mathematical modelling
of neurons. This connection will be discussed in more detail in Examples 1.1 and 1.2
below.

With (SDS) we now have three groups of variables: The entirely autonomous3 ex-
ternal input governed by dZt (the "noisy signal"), the components of X that depend
directly on the noisy signal, and the components of the internal variable Y whose dy-
namics are only indirectly affected by noise, since the respective differential equations
incorporate neither Z nor the driving Brownian Motion W explicitly. Note that for
this reason Y is conditionally deterministic given X and has continuously differentiable
trajectories.

Let us write

X := (X, Y, Z)

3We use the term autonomous in the sense of "independent of the rest of the system" and not – as
is common in the theory of ordinary differential equations – in the sense of "homogeneous with respect
to time".
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for the entire diffusion process on the state space

E := RN × V × RN .

We can then express the diffusion equation (SDS) as

dXt = B(t,Xt)dt+ Σ(Xt)dWt

with drift

B : [0,∞)× E→ RN+L+N , (t, x, y, z) 7→


F (x, y) + S(t) + b(z)

G(x, y)

S(t) + b(z)

 , (1.3)

and volatility

Σ: E→ R(N+L+N)×M , (x, y, z) 7→


σ(z)

0L×M

σ(z)

 . (1.4)

Let (Ω,A,P) be a probability space on which the M -dimensional Brownian Motion W
is defined. We always assume that, for all deterministic starting points X0 ∈ E, the
equation (SDS) has a unique non-explosive strong solution X on (Ω,A) under P.

This thesis pursues two objectives. The first one (treated in Chapter 2) is to find
verifiable conditions on (DDS) and the way in which the external equation of (SDS)
perturbs the signal, under which positive Harris recurrence of X can be established
in spite of its apparent degeneracy (the main results being Theorems 2.11, 2.13, 2.25,
2.46, and 2.56 in combination with Theorem 2.3). Of course, in order to even talk about
Harris recurrence, one has to look for some time-homogeneous substructure of X, which
suggests the basic assumption that the signal function S should be periodic. As we will
see in Section 1.2, this assumption does not hurt at all, as it is commonly fulfilled in the
main applications we have in mind. This thesis’ second objective (treated in Chapter 3)
revolves around the following statistical problem: Suppose that S has an unknown peri-
odicity and also depends on some unknown finite-dimensional shape parameter. What
kind of quality can we expect to achieve for an estimator for both of these parameters,
if we cannot observe the entire process X, but only its X-components? We answer this
question by first arguing that, from a statistical point of view, it does not matter if we
observe X, X, or even Z (see Remark 3.1 and Proposition 3.3) and then proving Lo-
cal Asymptotic Normality for the sequence of statistical experiments corresponding to
continuous observation of Z (Theorem 3.11). Positive Harris recurrence plays a crucial
role in making this work, but here we only require it for the external component Z and
not for the entire process X.
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The respective tools for these two objectives will be introduced and explained when-
ever it is the most convenient for the flow of this thesis. Similarly, we will comment on
relevant existing literature in the respective spots.

1.2 Examples

In this Section, we introduce the main examples that inspired this work and will ac-
company us throughout it.

Example 1.1. Let N = 1, L = 3, V = [0, 1]3 and consider the system

ẋ = F (x, y) + S,

ẏi = αi(x)(1− yi)− βi(x)yi for all i ∈ {1, 2, 3},
(HH)

where for all (x, y) = (x, y1, y2, y3)
> ∈ R× V we set

F (x, y) = −36y41(x+ 12)− 120y32y3(x− 120)− 0.3(x− 10.6) (1.5)

and

α1(x) =

 0.1−0.01x
exp(1−0.1x)−1 , x 6= 10,

0.1, else,
β1(x) = 0.125 exp(−x/80),

α2(x) =

 2.5−0.1x
exp(2.5−0.1x)−1 , x 6= 25,

1, else,
β2(x) = 4 exp(−x/18),

α3(x) = 0.07 exp(−x/20), β3(x) = 1
exp(3−0.1x)+1

.

(1.6)

As outlined in [8, pp. 156-157] the dynamical system (HH) possesses a unique global
solution living in R × V for every starting point. It is known as the Hodgkin-Huxley
system and it was first introduced by Hodgkin and Huxley in 1952 (see [27], note
however that we use the slightly different model constants from [41]) with the aim of
describing the initiation and propagation of action potentials in the cell membrane of
a neuron in response to an external stimulus. While x is the membrane potential itself
(usually labelled V in the literature), the internal variables y1, y2, and y3 (commonly
denoted by n, m, and h) correspond to the ionic mechanism underlying its evolution.
The two predominant ion currents in the cell membrane are import of sodium Na+ and
export of potassium K+ through the membrane. Each of the internal variables signifies
the probability that a specific type of voltage-gated ion channel is open at a given time.
It is for this reason that n, m, and h are often called gating variables. This notion
of probability has to be understood in the sense of a law of large numbers, of course.
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On a microscopic level, the variable for each gate should be able to occupy only two
states: the respective ion channel being either open (equal to 1) or closed (equal to 0).
The transition rates between these two states depend only on the membrane potential
(as is also reflected in the internal equations of (HH)). Taking a suitable average over
large numbers of these {0, 1}-valued representations of ion channels leads to the [0, 1]-
valued gating variables. This idea is given a rigorous meaning by the fact that the
Hodgkin-Huxley system can indeed be obtained as the limit of a sequence of piecewise
deterministic Markov processes (compare [9], [20], [55], [57]). In the context of this
model, the signal S represents the dendritic input which the neuron receives from a large
number of other neurons, transported by an even larger number of synapses located on
the respective dendritic tree. The resulting "total dendritic input" can then be thought
of as an average of interdependent and repeating similar currents, which is why S is
usually assumed to be periodic (or even constant). When modelling neurons, particular
interest lies in the typical spiking behaviour of the membrane potential, a feature that
is commonly agreed upon to be adequately described by the Hodgkin-Huxley model.
For a more detailed modern introduction, interpretation, and an in-depth comparison
with other neuron models, see for example [41] and [15].

Adding noise to (HH) in the same way we derived (SDS) from (DDS), we intro-
duce the degenerate diffusion with internal variables and randomly perturbed time-
inhomogeneous deterministic input that is given by

dXt = F (Xt, Yt)dt+ dZt,

dY
(i)
t =

[
αi(Xt)

(
1− Y (i)

t

)
− βi(Xt)Y

(i)
t

]
dt, i ∈ {1, 2, 3},

dZt = [S(t)− γZt]dt+ σ(Zt)dWt,

(SHH)

with γ ∈ (0,∞) and σ ∈ C∞(R), starting in some (x0, y0, z0) ∈ R × [0, 1]3 × R. We
will call (SHH) the stochastic Hodgkin-Huxley system (with mean reverting Ornstein-
Uhlenbeck type input) in the sequel. It was first introduced and studied by Höpfner,
Löcherbach, and Thieullen in the series of the three papers [35], [36], and [37] which
were published in 2016 and 2017. The constant γ is determined by the so-called time
constant of the membrane which represents spontaneous voltage decay not related to
the input. For many types of neurons, the time constant is known from experiments
(see [16]). A degree of freedom lies in the choice of the volatility σ which reflects the
nature of the influence of noise. In the past, mean reverting Ornstein-Uhlenbeck type
equations with various volatilities have been used to model the membrane potential
itself (see for example [46] or [30]), and in a sense (SHH) can be viewed as a refinement
of this kind of model. If σ is Lipschitz continuous, existence of a unique non-exploding
strong solution taking values in E = R× [0, 1]3×R follows from the same arguments as
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in [35, Proposition 1] and [36, Proposition 2].
In the afore-mentioned articles [35], [36], and [37], the authors prove that if the

external equation is of classical Ornstein-Uhlenbeck type

dZt = [S(t)− γZt]dt+ σdWt

with constant σ ∈ (0,∞) or (when the signal S is non-negative) of Cox-Ingersoll-Ross
type4

dZt = [a+ S(t)− γZt]dt+
√
ZtdWt

with 2a ∈ (1,∞), the solution to the stochastic Hodgkin-Huxley system (SHH) is pos-
itive Harris recurrent (see [37, Theorem 2.7]). Moreover, they quantify the typical
spiking behaviour: Almost surely, there are infinitely many spikes but also infinitely
many periods of the signal in which no spike occurs (see [37, Theorem 2.8]). Har-
ris recurrence then enables them to prove a Glivenko-Cantelli type Theorem for the
interspike intervals (see [37, Theorem 2.9]).

Example 1.2. Considerable downsides of the deterministic Hodgkin-Huxley system
are its analytical difficulty and complex stability structures (see for example [26], [22],
[19]). Therefore, several similar but simplified neuron models have been proposed which
provide a convenient approximation – at the price of inaccurate and biologically ques-
tionable modelling of the internal mechanism. Due to its simplicity, the most prominent
and most widely used such example is the two-dimensional FitzHugh-Nagumo model

ẋ = −x(x− a)(x− 1)− y + S,

ẏ = bx− cy,

where b ∈ (0,∞), c ∈ [0,∞), and a ∈ R (see [41, equations (4.11) and (4.12)]). Here, x
is still the membrane potential, while y is a so-called recovery variable. In contrast to
the gating variables of the Hodgkin-Huxley model, this recovery variable lacks a clear
biological interpretation. The Morris-Lecar model – as originally introduced in [52] –
is a three-dimensional hybrid of the Hodgkin-Huxley model and the FitzHugh-Nagumo
model that incorporates two internal variables. However, modern presentations (see for
example [61]) also work with a version with only one internal variable which again plays
the role of a recovery variable. Another three-dimensional reduced Hodgkin-Huxley
system is looked into in [14] and [62].

Stochastic versions of such simplified systems have been studied for example in [4]
and [5]. Noise is added in a different way than in (SDS), but the much more important

4Note that a Cox-Ingersoll-Ross type equation for Z is not contained in our model, since we require
its state space to be the full euclidean space and the volatility to be defined everywhere on it. This is
only of major importance for Section 2.3, though.
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difference to our model lies in the basic spirit: in these articles, the noise is assumed to
be moderate such that essential (possibly chaotic) features of the deterministic system
are preserved, while we show positive Harris recurrence which in a sense means that
stochastic influences actually smoothen the dynamics.

Example 1.3. Systems of coupled oscillators are particularly intuitive Hamiltonian
systems and several different stochastic models have been subject to research in the
past (see e.g [24], [10], [60]). The special case that we will focus on is inspired by the
model studied by Cuneo, Eckmann, and Poquet in [11].

Let us think of three rotors, each given by their angle qi(t) ∈ R and momentum
pi(t) ∈ R at the time t ∈ [0,∞) for each i ∈ {1, 2, 3}. Assuming their respective masses
to be all equal to 1 and not taking into account units, the laws of classical mechanics
imply

q̇i = pi for all i ∈ {1, 2, 3}. (1.7)

We suppose that these rotors are coupled in row, i.e.

ṗ1 = w1(q2 − q1)− u1(q1),

ṗ2 = −[w1(q2 − q1) + w3(q2 − q3)]− u2(q2),

ṗ3 = w3(q2 − q3)− u3(q3),

(1.8)

where wi and ui are the derivatives of given interaction potentials Wi : R → R and
pinning potentials Ui : R → R for all i ∈ {1, 2, 3}. A classical model is the one that
arises if we let one or both of the outer rotors receive external torques and interact with
Langevin type heat baths. In order to give a mathematical description of this, we fix

i ∈ {1, 3}

for the remainder of this paragraph. Applying an external time-dependent torque
Si : [0,∞)→ R to the i-th rotor means expanding the equation for pi to

dpi = [wi(q2 − qi)− ui(qi)] dt+ Sidt,

which turns (1.7) and (1.8) into a system like (DDS). On top of that, we want to
add interaction with a heat bath, i.e. for a temperature τi ∈ (0,∞) and a dissipation
constant δi ∈ (0,∞), the equation for pi is further expanded to

dpi = [wi(q2 − qi)− ui(qi)] dt+ Sidt− δipidt+
√

2δiτidW
(i)
t

= [wi(q2 − qi)− ui(qi)− δipi] dt+
[
Sidt+

√
2δiτidW

(i)
t

]
,

(1.9)
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where the last term in parentheses is the total sum of external influences. Following
the spirit of the general model we study in this thesis, we may replace this term with
the increments of a more general random perturbation of the torque: We take

dpi = [wi(q2 − qi)− ui(qi)− δipi] dt+ dZ
(i)
t ,

with
dZ

(i)
t =

[
Si(t) + bi(Z

(i)
t )
]
dt+ σi(Z

(i)
t )dW

(i)
t

for some volatility σi : R → R and a drift bi : R → R. What we end up with is
indeed a degenerate diffusion with internal variables and randomly perturbed time-
inhomogeneous deterministic input as in (SDS).

If only the first rotor in the chain receives an external input, the dimensions are
M = N = 1 and L = 5, and we have to write

X = p1, Y =



p2

p3

q1

q2

q3


,

while the corresponding coefficient functions (which also define the exact pertaining
deterministic system (DDS)) are to be written as

F (x, y) = F (x, y3, y4) = w1(y4 − y3)− u1(y3)− δ1x (1.10)

and

G(x, y) =



G1(y3, y4, y5)

G2(y4, y5)

x

y1

y2


=



−w1(y4 − y3)− w3(y4 − y5)− u2(y4)
w3(y4 − y5)− u3(y5)

x

y1

y2


, (1.11)

where x ∈ R and y = (y1, . . . , y5)
> ∈ V = R5.

If both of the outer rotors receive an external input, the dimensions areM = N = 2

and L = 4, and the corresponding variables of (SDS) become

X =

(
p1

p3

)
, Y =


p2

q1

q2

q3

 ,
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and the respective coefficient functions are

F (x, y) =

(
F1(x1, y2, y3)

F2(x2, y3, y4)

)
=

(
w1(y3 − y2)− u1(y2)− δ1x1
w3(y3 − y4)− u3(y4)− δ3x2

)
(1.12)

and

G(x, y) =


G1(y2, y3, y4)

x1

y1

x2

 =


−w1(y3 − y2)− w3(y3 − y4)− u2(y3)

x1

y1

x2

 , (1.13)

where x = (x1, x2)
> ∈ R2 and y = (y1, . . . , y4)

> ∈ V = R4. The external influence can
then be written as one variable Z = (Z(1), Z(2))> which solves

dZt = [S(t) + b(Zt)] dt+ σ(Zt)dWt,

where

S : [0,∞)→ R2, t 7→

(
S1(t)

S2(t)

)
,

and

b : R2 → R2, z =

(
z1

z2

)
7→

(
b1(z1)

b2(z2)

)
,

and

σ : R2 → R2×2, z 7→

(
σ1(z1) 0

0 σ2(z2)

)
.

Admittedly, the numeration can be a bit confusing, but we present it here explicitly in
order to demonstrate how changing from one-sided to two-sided input rearranges the
roles of the equations from (1.7) and (1.8) (or (1.9)) when turning them into a system of
the type (SDS). We always implicitly assume that the choice of the coefficient functions
allows the respective system to have a unique non-exploding solution, which for example
is guaranteed if u1, u2, u3, w1, w2, w3, b and σ are Lipschitz-continuous and the signal
S is bounded.

In the present text, this example will mainly serve as a hint at the potential of
studying the general system (SDS) beyond the realm of neuroscience – which the theory
displayed in this thesis is predominantly inspired by. While it serves as a nice illustrating
example in Chapter 3, only certain parts of the results from Chapter 2 are applicable
to this stochastic rotor system, but there are enough connections to spawn optimism
for future work that may unify some of the approaches used in different settings.

Let us stress that the differences between the eight-dimensional system above with
input on both ends of the chain and the six-dimensional system that is discussed in
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[11] mainly lie in the role of the external equations and in time-inhomogeneity: Forcing
the latter into our notational framework, the equations for X and Y would remain
unaltered, while the external equations would read

dZ
(i)
t = Sidt+

√
2δiτidW

(i)
t , i ∈ {1, 2},

where the coefficient functions do not depend on Z(i)
t . Therefore, including these vari-

ables separately into the system is rendered obsolete. In addition to that, with the
external torque in [11] being constant, their entire system is homogeneous in time – in
contrast to ours. Another important difference is that while the system in [11] lets the
angle take values in the torus R mod 2π, the state space for (SDS) has to be a proper
subset of RN+L+N (without any topological identifications), and therefore we have the
angles live in R. This means that our model actually sees if a rotor has rotated multiple
times.

For the six-dimensional system from [11], the authors’ main result (Theorem 1.3)
states the existence of smooth transition densities, unique existence of an invariant
measure which again has a smooth density, and finally establishes a subgeometric con-
vergence rate of the semi-group to the invariant measure.

Example 1.4. Let us also establish a custom-built toy example that will help us illus-
trate our results in a simple context. While the dimensions N,L ∈ N of the variables
are arbitrary, the state space of the internal variables is chosen as V = [0,∞)L. We
will now describe our choice of the coefficient functions

F : RN × V → RN and G : RN × V → RL,

such that

ẋ = F (x, y) + S,

ẏ = G(x, y),
(1.14)

becomes a convenient toy example for a system of the type (DDS), which we can then
turn into a degenerate diffusion with internal variables and randomly perturbed time-
inhomogeneous deterministic input in the sense of (SDS).

Let

F : RN × V → RN , (x, y) 7→ −f(y)
(
x+ h(x)

)
+ j(x, y), (1.15)

where f ∈ C∞(V ) obeys

inf
y∈V

f(y) ≥ 1 and sup
y∈V

f(y) <∞, (1.16)
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while h ∈ C∞
(
RN ;RN

)
satisfies

h(0N) = 0N , supph ⊂ B1(0N),

x>h(x) ≥ −h0 |x|2 for some h0 ∈ [0, 1) and all x ∈ RN ,
(1.17)

and j ∈ C∞b
(
RN × V ;RN

)
has the property

j(x, y) = 0N for all (x, y) ∈ B1(0N)× V . (1.18)

For x ∈ B1(0N) the function F basically drives the x-variable back to the origin with a
force that is quantified by f(y). The function h is simply a small perturbation around
zero that we will need for technical reasons later on,5 but that has no significant influence
on the basic interpretation of F . One possible example of such a function is given by

h : RN → RN , x 7→ −h0e
− 1

1−|x|2 1B1(0N )(x) · x.

When x /∈ B1(0N), the function j can cause F to induce a multitude of different local
behaviours.

For the internal mechanism, we consider

G : RN × V → RL, (x, y) 7→ −y + g(x), (1.19)

with some Lipschitz continuous and bounded g ∈ C∞
(
RN ; (0,∞)L

)
. If g was entirely

absent, G would simply let the internal variables decay exponentially. Hence, we can
interpret the term g(x) as a source that is determined by the current state of the
x-variables.

Let us briefly comment on existence and uniqueness of a solution to (1.4) with F

and G as in (1.15) and (1.19). In this situation, F and G are obviously locally Lipschitz
continuous. Furthermore, for any signal function S ∈ C

(
[0,∞);RN

)
we have linear

growth

|F (x, y) + S(t)|+ |G(x, y)| ≤ ‖f‖∞
(
1 + Lip(h)

)
|x|+ Lip(j) |(x, y)|+ |S(t)|

+ |y|+ Lip(g) |x|

≤ cst |(x, y)|+ |S(t)|

for all (x, y) ∈ RN ×V and t ∈ [0,∞). Thus, with these choices for F and G the system
(1.14) has a unique global solution – provided the y-component cannot leave V . This
is indeed the case, as variation of constants yields

y(t) = e−ty(0) +

∫ t

0

e−(t−s)g(x(s))ds for all t ∈ [0,∞),

5To be precise, h will be needed in Example 2.53 in order to provide non-vanishing second derivatives
of F with respect to x in x∗ = 0N .
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which obviously stays in V whenever it starts there, since all of the components of the
function g are positive. Existence and uniqueness of a strong non-explosive solution of
the corresponding stochastic system in the sense of (SDS) can be checked in the same
way as for the stochastic Hodgkin-Huxley system (provided the drift and volatility of
the external equation are Lipschitz continuous).

Taking N = 1, we may also replace the internal mechanism by the one described by

G : R× V → RL, (x, y) 7→ −y + g(x, y), (1.20)

with

g(x, y) =


g1(x)

g2(y1)
...

gL(yL−1)

 ,

where g1 ∈ C∞(R) and g2, . . . , gL ∈ C∞([0,∞)) are positive Lipschitz continuous
bounded functions. Unique global existence of a solution with values in R × V re-
mains valid and is shown similarly to the above.
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Chapter 2

Positive Harris recurrence of X

The aim of this chapter is to find appropriate conditions under which we can apply
Theorem 2.2 from [37] (see Theorem 2.3 below) in order to establish positive Harris
recurrence for the Markov process X that solves the diffusion equation (SDS). Section
2.1 is devoted to presenting and explaining this Theorem, while Sections 2.2 through
2.4 will each deal with one of its main assumptions. Along the way, we will discuss
applications to the examples introduced in Section 1.2.

2.1 General strategy

Let us briefly recall some basic notions about recurrence. A time-homogeneous Markov
process is called Harris recurrent, if for some σ-finite measure ϕ on its state space, every
ϕ-positive set has infinite occupation time (almost surely for every starting point). If
this is the case, there is a unique (up to a multiplicative constant) invariant measure
µ, and it can replace ϕ in the above property. If µ is finite, it can be normalised
to a unique invariant probability measure, and the process is termed positive Harris
recurrent. Otherwise, it is called null-recurrent. Positive Harris recurrence basically
means that returning times of µ-positive sets have finite expectation.

Positive Harris recurrence is the foundation of a wide class of Limit Theorems for
Markov processes, most prominently the Ratio Limit Theorem. Classical references for
the theory of recurrence in the sense of Harris include [25], [58], and [54] in the discrete-
time setting and [1] in the continuous-time case. Almost all of the most important
results feature the invariant distribution µ as a central object.

As the notion of an invariant measure becomes far more complicated in the time-
inhomogeneous setting, one is inclined to get rid of time-dependent dynamics first, if
one is interested in studying recurrence properties of a Markov process. Therefore, it
is important to notice once again that the only time-dependence of (SDS) is contained
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in the signal S. Let us assume that

(P) Periodic signal: S is periodic with periodicity T ∈ (0,∞).

Then the entire drift of the diffusion X solving (SDS) is T -periodic in time, and conse-
quently its transition semi-group (Ps,t)t>s≥0 under P that is defined by

Ps,t(x,A) := P(Xt ∈ A |Xs = x) for all x ∈ E, A ∈ B(E), and t > s ≥ 0, (2.1)

has the property

Ps+kT,t+kT = Ps,t for all t > s ≥ 0 and k ∈ N. (2.2)

This allows us to derive several other Markov processes from this semi-group which are
homogeneous in time and whose ergodic properties we can study with classical methods.

Lemma 2.1. Let (P) hold.

1. The grid chain
Xgr := (Xgr

k )k∈N0
,

defined by
Xgr
k := XkT for all k ∈ N0,

is an E-valued time-homogeneous discrete-time Markov process with one-step tran-
sition kernel P0,T .

2. The path segment chain
Xps := (Xps

k )k∈N0
,

defined by

Xps
k :=

(
[0, T ] 3 t 7→ X(k−1)T+t

)
for all k ∈ N,

Xps
0 ∈ C([0, T ]; E) arbitrary with Xps

0 (T ) = X0,

is a C([0, T ]; E)-valued time-homogeneous discrete-time Markov process.

3. The time-space process
Xts :=

(
Xts
t

)
t∈[0,∞)

,

defined by
Xts
t := (t mod T,Xt) for all t ∈ [0,∞),

is a [0, T )× E-valued time-homogeneous continuous-time Markov process.

Proof. Since (P) implies (2.2), these assertions are evident.
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Remark 2.2. Of course, if the drift was not periodic, we could still define the time-
space process as (t,Xt)t∈[0,∞) on [0,∞)× E, and it would still be homogeneous in time
(we actually do so in Section 2.3, and this is in fact consistent with the definition
above, if we think of aperiodicity as the case T = ∞). However, with t being its first
component, there is obviously no chance of it being Harris recurrent.

Our aim is to apply the following Theorem which is a slight reformulation of Theorem
2.2 from [37] and the remark immediately below it.

Theorem 2.3 (Höpfner, Löcherbach, Thieullen (2016)). Let X be the unique strong
solution of (SDS) with deterministic starting point X0 ∈ E. Assume that the following
conditions are satisfied:

1. There is a strictly increasing sequence (Gn)n∈N of bounded open convex subsets of
E such that:

(a) The sequence of compacts Cn := Gn increases to the full space E.

(b) If X0 ∈ ∂E, the process X immediately enters int(E).

(c) If X0 ∈ Cn \Gn+1 for some n ∈ N, the process X immediately enters Gn+1.

(d) For any X0 ∈ E we have

inf{t > 0 |Xt /∈ Cn}
n→∞−−−→∞

P-almost surely.

2. Condition (P) holds: The signal S is T -periodic for some T ∈ (0,∞).

3. All of the coefficient functions F , G, S, b, and σ have derivatives of any order
with respect to any of their variables.

4. The process X possesses a Lyapunov function.

5. There is a point in int(E) which is attainable in a sense of deterministic control
and at which the local weak Hörmander condition holds.

Then the grid chain Xgr, the path segment chain Xps, and the time-space process Xts

are all positive Harris recurrent.

Proof. A detailed proof can be found in [37]. In order to convey its central ideas and to
illustrate the distinct role of each assumption, we will explain its basic route along the
way whenever we discuss the pertaining condition (see Remarks 2.8, 2.20, and 2.36).
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Assumption 1 of this Theorem is basically non-explosiveness and sufficiently nice
boundary behaviour which together avoid problems with localisation arguments. As-
sumption 2 is of course needed for the conclusion to even make sense at all, while
assumption 3 is more or less inevitable if we want to speak about Hörmander’s condi-
tion in assumption 5. Therefore, one has to think of assumptions 4 and 5 as the crucial
ones.

Let us discuss assumption 1 in the context of the examples that were introduced in
Section 1.2. Non-explosiveness has already been commented on there.

Example 2.4. For the stochastic Hodgkin-Huxley system (SHH), assumption 1 of
Theorem 2.3 can be fulfilled by choosing

Gn := (−n, n)× (0, 1)3 × (−n, n) for all n ∈ N.

Strict positivity of the functions α1, α2, α3 and β1, β2, β3 ensures that the internal vari-
ables immediately enter (0, 1)3 when started in [0, 1]3 (compare [37, bottom of page
533]).

Example 2.5. In the toy example (1.14), we can verify assumption 1 of Theorem 2.3
in a similar way: The sequence defined by

Gn := (−n, n)N × (0, n)L × (−n, n)N for all n ∈ N

does the job, since the functions g, g1, . . . gL from (1.19) and (1.20) are strictly positive.

Example 2.6. Since the chain of coupled oscillators from Example 1.3 has the entire
RN+L+N as its state space E, assumption 1 of Theorem 2.3 is trivially fulfilled with

Gn := (−n, n)N+L+N for all n ∈ N.

Of course, we still owe the reader an explanation of what exactly we mean by a
Lyapunov function, by attainability in a sense of deterministic control and by the local
weak Hörmander condition. This will be the content of the following three sections
which will each deal with one of these topics independently: Section 2.2 presents simple
criteria under which a Lyapunov function can be constructed, Section 2.3 is devoted
to finding points that are attainable in a sense of deterministic control, and finally
Section 2.4 plays through different scenarios in which verifiable and handy sufficient
conditions for the local weak Hörmander condition can be formulated. Each of these
sections can be read independently, and we try to work under as little assumptions
as necessary (within reason). For instance, when dealing with deterministic control in
Section 2.3, we will work without infinitely differentiable coefficient functions and even
without periodicity of the signal – even though both are needed anyway for Theorem
2.3.
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2.2 Lyapunov function

The foundation of Theorem 2.3 is laid by the idea that is outlined for example in
[50]. The authors discuss conditions that imply regular returning of a Markov chain
into certain sets, provided the existence of a so-called Lyapunov function. As their
technique is rooted in the theory of time-homogeneous discrete-time Markov processes,
the periodic nature of the underlying deterministic signal becomes crucial in this section.
Throughout it, we will assume that (P) holds, i.e. S is periodic with periodicity T ∈
(0,∞). Note that since S is also continuous, this necessarily means that S is bounded.

First, let us introduce and explain our notion of a Lyapunov function, which is
essentially taken from [50]. Recall from Lemma 2.1 that if (Ps,t)t>s≥0 is the transition
semi-group of X, the grid chain Xgr = (XkT )k∈N0 evolves according to the transition
kernel P0,T .

Definition 2.7. Let Φ: E→ [1,∞) be a measurable function. If there is a compact set
K ⊂ E such that

1. infE\K(1− P0,T )Φ > 0,

2. Φ(ωn)
n→∞−−−→∞ for each sequence (ωn)n∈N ⊂ E with |ωn|

n→∞−−−→∞,

3. supK P0,TΦ <∞,

we call Φ a Lyapunov function for X.

Remark 2.8. We want to interpret this definition and explain its role in the proof of
Theorem 2.3. The first condition in Definition 2.7 yields that outside of K, the pro-
cess Φ(Xgr) behaves like a non-negative strict super-martingale (which has to converge
almost surely by [59, Corollary II.2.11]) which, together with the second condition,
implies that Xgr will almost surely enter K in finite time and, thanks to the Markov
property, will visit it infinitely often. The third condition in Definition 2.7 can then
be used to establish a bound for the expected duration of excursions away from K. In
order to extend these properties to other sets, we will use the methods from Sections
2.3 and 2.4.

In order to construct a Lyapunov function for the process X, we will have to make
sure that the coefficient functions in its diffusion equation (SDS) behave favourably.
We consider the following conditions:

(L1) Backwards drift condition for X: There are a function ϕ ∈ C2
(
RN ; [1,∞)

)
and an r(ϕ) ∈ (1,∞) with

ϕ(x) = |x| for all x ∈ RN \Br(ϕ)(0N),
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and there are positive constants c1, c̃1 ∈ (0,∞) such that for all (x, y) ∈ RN × V
we have

F (x, y)>∇ϕ(x) ≤ −c1ϕ(x) + c̃1.

(L2) Backwards drift condition for Y : There are positive constants c2, c̃2 ∈ (0,∞)

such that for all (x, y) ∈ RN × V we have

G(x, y)>y ≤ −c2 |y|2 + c̃2.

(L3) Backwards drift condition for Z: There are positive constants c3, c̃3 ∈ (0,∞)

such that for all z ∈ RN we have

b(z)>z ≤ −c3 |z|2 + c̃3.

(L4) Subquadratic growth of the drift of Z: We have

|b(z)|
|z|2

|z|→∞−−−−→ 0.

(L5) Sublinear growth of the volatility of Z: We have

tr(σσ>(z))

|z|2
|z|→∞−−−−→ 0.

(L6) Bounded volatility of Z: We have

‖σi,j‖∞ <∞ for all i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}.

If condition (L1) holds and (x, y) ∈
(
RN \Br(ϕ)(0N)

)
×V , the respective bound can

be rewritten as
F (x, y)>

x

|x|
≤ −c1 |x|+ c̃1.

This means that up to some modification around the origin 0N and up to an additive
constant, the vector field F (·, y) acts on X as a back-driving force pointing towards the
origin. This force is at least of linear order with respect to the position in RN , where
the constant factor is uniform with respect to y ∈ V . Similarly, (L2) signifies that
G(x, ·) uniformly drives Y back to the origin 0L. Finally, (L3) does the same for the
drift of the Z-component, where no uniformity is present, since b does not depend on
any variables other than z ∈ RN itself. Conditions that are very similar to (L1) - (L3)
are used, for example, in [64]. Our variants are very strong, but they are simple and
can be verified in Examples 2.16 and 2.17 below. The conditions (L4) - (L6) are growth
conditions for the external equation, where (L6) is obviously much stronger than (L5).
Note also that even though (L3) and (L4) seem very similar, (L3) makes a statement
about the effect of the drift b in specific directions, while (L4) is a purely asymptotic
growth condition.
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Remark 2.9. It may appear a bit counter-intuitive that we allow additive constants
in (L1) - (L3) but require the respective inequalities to hold globally and not only away
from the origin. So, for the moment, let us assume that

there are c1, r1 ∈ (0,∞) such that for all (x, y) ∈ (RN × V ) \Br1(0N+L):

F (x, y)>∇ϕ(x) ≤ −c1ϕ(x).
(2.3)

Since F , ϕ, and ∇ϕ are continuous and hence locally bounded, we have

C := sup
(x,y)∈Br1 (0N+L)

(
|F (x, y)|+ |ϕ(x)|+ |∇ϕ(x)|

)
<∞.

Turning to the global situation, we see that for all (x, y) ∈ RN × V the property (2.3)
implies

F (x, y)>∇ϕ(x) = F (x, y)>∇ϕ(x) · 1Br1 (0N+L)c(x, y) + F (x, y)>∇ϕ(x) · 1Br1 (0N+L)(x, y)

≤ −c1ϕ(x)1Br1 (0N+L)c(x, y) + C2

= −c1ϕ(x)
(
1− 1Br1 (0N+L)(x, y)

)
+ C2

≤ −c1ϕ(x) + c1C + C2

which is (L1) with c̃1 = c1C + C2. Therefore, (2.3) in fact implies (L1). Analogously,
we see that the existence of c2, r2 ∈ (0,∞) such that

G(x, y)>y ≤ −c2 |y|2 for all (x, y) ∈ (RN × V ) \Br2(0N+L) (2.4)

is sufficient for (L2). Note that for x ∈ RN \ Br(ϕ)(0N) the condition (2.3) is entirely
analogous to (2.4).

As above, we also see that the existence of c3, r3 ∈ (0,∞) with

b(z)>z ≤ −c3 |z|2 for all z ∈ RN \Br3(0N) (2.5)

is sufficient for (L3). The property (2.5) is a (very strong) variant of what is often
referred to as Veretennikov’s drift condition (see [64, Equation (6)]).

Remark 2.10. Consider, as in (L1), a function ϕ ∈ C2
(
RN ; [1,∞)

)
such that for

some r(ϕ) ∈ (1,∞) it coincides with | · | outside of Br(ϕ)(0N). Then all of its first and
second order partial derivatives are bounded globally: Locally, this is trivial, and for
x ∈ RN \Br(ϕ)(0N) we have

∂xiϕ(x) =
xi
|x|
, ∂xj∂xiϕ(x) =

1

|x|

(
1i=j −

xixj

|x|2

)
for all i, j ∈ {1, . . . , N},

which are bounded when x is separated from the origin.
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In the sequel, we use the notation

Kr := Br(0N+L+N) ∩ E for any r ∈ (0,∞). (2.6)

Note that if V is closed, the same is true for E = RN × V × RN and hence also for Kr

which is therefore compact. Let Φ ∈ C2(E; [1,∞)) such that

Φ(x, y, z) := ϕ(x) + |y|2 + |z|2 for all (x, y, z) ∈ E \K2, (2.7)

where ϕ is the function from (L1). In Theorem 2.11 below, we will show that Φ is a
Lyapunov function for X.

Theorem 2.11. Assume that the state space V of the internal variables is closed and
that (P) and (L1) - (L4) hold. Beyond that, assume that one of the following conditions
is fulfilled:

(i) (L6) holds.

(ii) (L5) holds and σσ>(z) is a diagonal matrix for all z ∈ RN .

Then the function Φ from (2.7) is a Lyapunov function for X.

Proof. 1.) For the function Φ from (2.7), we trivially have

Φ(x, y, z)
|(x,y,z)|→∞−−−−−−−→∞, (2.8)

so the second property from Definition 2.7 is fulfilled. The rest of this proof is therefore
devoted to finding a suitable compact set K ⊂ E such that the remaining conditions

inf
E\K

(1− P0,T )Φ > 0 (2.9)

and
sup
K
P0,TΦ <∞ (2.10)

are satisfied as well. We will do this by following a well-known general route (compare
[49, (2.2) - (2.4)]).

2.) We see directly from (SDS) that the generator of the time inhomogeneous
Markov process X satisfies

Ltf(x, y, z) = F (x, y)>∇xf(x, y, z) + (S(t) + b(z))>(∇xf(x, y, z) +∇zf(x, y, z))

+G(x, y)>∇yf(x, y, z)

+
1

2

N∑
i,j=1

(σσ>)i,j(z)
(
∂xi∂xj + ∂xi∂zj + ∂zi∂xj + ∂zi∂zj

)
f(x, y, z)
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for all f ∈ C2(E) and (t, x, y, z) ∈ [0,∞) × E. If we let (t, x, y, z) ∈ [0,∞) × (E \K2),
plugging in the function Φ from (2.7) yields

LtΦ(x, y, z) = F (x, y)>∇ϕ(x) + (S(t) + b(z))>(∇ϕ(x) + 2z)

+ 2G(x, y)>y +
1

2

N∑
i,j=1

(σσ>)i,j(z)∂xi∂xjϕ(x) + tr(σσ>(z)).
(2.11)

Our intermediate goal is to prove that

lim sup
|(x,y,z)|→∞

sup
t∈[0,∞)

LtΦ(x, y, z)

Φ(x, y, z)
< 0. (2.12)

Setting

C := min{c1, 2c2, 2c3} and C̃ := max{c̃1, 2c̃2, 2c̃3}

with the constants from (L1), (L2), and (L3), we obtain from (2.11) that

LtΦ(x, y, z) ≤ −CΦ(x, y, z) + C̃ + (S(t) + b(z))>∇ϕ(x) + 2S(t)>z

+
1

2

N∑
i,j=1

(σσ>)i,j(z)∂xi∂xjϕ(x) + tr(σσ>(z))

≤ −CΦ(x, y, z) + C̃ + ‖S‖∞ (‖∇ϕ‖∞ + 2 |z|) + |b(z)| ‖∇ϕ‖∞

+
1

2

N∑
i,j=1

(σσ>)i,j(z)∂xi∂xjϕ(x) + tr(σσ>(z)).

Thanks to (2.8), this implies

lim sup
|(x,y,z)|→∞

sup
t∈[0,∞)

LtΦ(x, y, z)

Φ(x, y, z)
≤ −C + lim sup

|(x,y,z)|→∞
R(x, y, z)

with

R(x, y, z) =
2 ‖S‖∞ |z|+ |b(z)| ‖∇ϕ‖∞ + 1

2

∑N
i,j=1(σσ

>)i,j(z)∂xi∂xjϕ(x) + tr(σσ>(z))

Φ(x, y, z)
.

Showing that this remainder vanishes for |(x, y, z)| → ∞ will prove (2.12). First of all,

|z|
Φ(x, y, z)

and
|b(z)|

Φ(x, y, z)
(2.13)

both go to zero when |(x, y, z)| → ∞, which is a consequence of (2.7) and (L4). Indeed:
If
(
(xn, yn, zn)

)
n∈N ⊂ E is a sequence with |(xn, yn, zn)| n→∞−−−→ ∞ and |zn|

n→∞−−−→ ∞, the
numerators in these fractions are dominated by the denominator thanks to the definition
of Φ or thanks to (L4), respectively. If (|zn|)n∈N is bounded, (L4) is of no help, but
then the numerators have to remain bounded as well, as they depend continuously on
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z (and only on z). Because of (2.8), the denominator explodes either way, so this case
is also covered. Treating the remaining terms∑N

i,j=1(σσ
>)i,j(z)∂xi∂xjϕ(x)

Φ(x, y, z)
and

tr(σσ>(z))

Φ(x, y, z)
(2.14)

is the only part of this proof where the different assumptions (i) and (ii) actually make
a difference. In the setting (i), condition (L6) holds, i.e. the functions σi,j are bounded.
The partial derivatives of ϕ are bounded as well (see Remark 2.10), and consequently
both of the fractions in (2.14) have bounded numerators. As a result, the exploding
denominator makes sure that these terms vanish in the limit. In the setting (ii), the
matrix σσ>(z) is diagonal, and hence the numerator of the first term from (2.14) can
be bounded by some constant (arising from the bounds for the derivatives of ϕ) times
tr(σσ>(z)). It therefore remains to prove that the second fraction from (2.14) goes to
zero, but this follows from (L5) by the same argument we used for the terms in (2.13).

3.) Now that we have proved (2.12) for any of our assumptions, we can find positive
real numbers C1, r ∈ (0,∞) such that

LtΦ(x, y, z) ≤ −C1Φ(x, y, z) for all (x, y, z) ∈ E \Kr and t ∈ [0,∞).

As L·Φ is obviously continuous and depends on time only through the bounded signal,
we have

C2 := sup
(x,y,z)∈Kr

sup
t∈[0,∞)

|C1Φ(x, y, z) + LtΦ(x, y, z)| <∞,

and we finally arrive at the global property

LtΦ(x, y, z) ≤ −C1Φ(x, y, z) + C2 for all (x, y, z) ∈ E and t ∈ [0,∞). (2.15)

Applying the time dependent version of Itō’s formula to the process
(
eC1tΦ(Xt)

)
t∈[0,∞)

and then using (2.15) yields

eC1tΦ(Xt)− Φ(X0) =

∫ t

0

C1e
C1sΦ(Xs)ds+

∫ t

0

eC1sLsΦ(Xs)ds

+
N∑
i=1

M∑
j=1

∫ t

0

eC1s (∂xiΦ(Xs) + ∂ziΦ(Xs))σi,j(Zs)dW
(j)
s

≤ C2

∫ t

0

eC1sds+
N∑
i=1

M∑
j=1

∫ t

0

eC1s
(
∂xiϕ(Xs) + 2Z(i)

s

)
σi,j(Zs)dW

(j)
s

≤ C2

C1

eC1t +
N∑
i=1

M∑
j=1

∫ t

0

eC1s
(
∂xiϕ(Xs) + 2Z(i)

s

)
σi,j(Zs)dW

(j)
s .

Choosing X0 = (x, y, z) ∈ E, t = T , and taking the expected value (after localisation
with level crossing times of |Z|) leads to

eC1TP0,TΦ(x, y, z)− Φ(x, y, z) = EP
[
eC1TΦ(XT )− Φ(X0)

]
≤ C2

C1

eC1T .
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Rearranging the terms yields

(1− P0,T )Φ(x, y, z) ≥ (1− e−C1T )Φ(x, y, z)− C2

C1

. (2.16)

Thanks to (2.8) and the strict positivity of 1 − e−C1T , there is some R ∈ (0,∞) such
that for (x, y, z) outside of the compact set KR (see (2.6)) the right hand side of (2.16)
is positive and bounded away from zero. We have thus acquired the desired strict
inequality (2.9) with K := KR. Rearranging (2.16) once again and using that Φ is
continuous and therefore locally bounded, we also obtain

sup
K
P0,TΦ ≤ C2

C1

+ e−C1T sup
K

Φ <∞

which takes care of (2.10). Thus, the proof is completed.

Remark 2.12. At first glance, one might wonder why we do not take

Φ(x, y, z) := |x|2 + |y|2 + |z|2 for all (x, y, z) ∈ E \K2, (2.17)

and use a simpler variant of (L1) that is directly analogous to (L2) and does not involve
the auxiliary function ϕ. The reason is that in the second step of the proof of Theorem
2.11 (when showing that R(x, y, z) vanishes in the limit) it is crucial that the first
order partial derivatives of Φ with respect to the x-variables remain bounded (compare
Remark 2.10), which is obviously not the case for Φ as defined in (2.17). This problem
could be overcome by taking

Φ(x, y, z) := |x|+ |y|2 + |z|2 for all (x, y, z) ∈ E \K2,

but then Φ /∈ C2(E), since this expression is not differentiable with respect to the x-
variables in any (0N , y, z) ∈ E \ K2. We circumvent this problem by introducing the
function ϕ ∈ C2

(
RN ; [1,∞)

)
which is basically a smoothened version of the euclidean

norm.

We can also write down the following variant of Theorem 2.11 which states that
we can simplify the Lyapunov function and omit the condition (L2), provided that the
state space V of the internal variables is not only closed but also bounded.

Theorem 2.13. Assume that the state space V of the internal variables is compact
and that (P), (L1), (L3), and (L4) hold. Beyond that, assume that one of the following
conditions is fulfilled:

(i) (L6) holds.

(ii) (L5) holds and σσ>(z) is a diagonal matrix for all z ∈ RN .
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Let Ψ ∈ C2(E; [1,∞)) such that

Ψ(x, y, z) := ϕ(x) + |z|2 for all (x, y, z) ∈ E \K2,

where ϕ is the function from (L1). Then Ψ is a Lyapunov function for X.

Proof. Going into the proof of Theorem 2.11 and replacing Φ with Ψ, we see that we
can use the exact same arguments as before – with no need for any condition on G

due to the absence of any y-dependence in Ψ. Note that the second property from
Definition 2.7 remains true in spite of this, as with V being compact, the y-component
cannot grow indefinitely anyway.

Remark 2.14. We want to comment on and contextualise the conditions that are
imposed on the coefficients of the external equation in Theorems 2.11 and 2.13. Using
the same general approach as in the proof of Theorem 2.11, it is easy to see that
Φ(z) = |z|2 is a Lyapunov function for Z, if

sup
|z|>r

(
2

(S(t) + b(z))>z

|z|2
+

tr(σσ>(z))

|z|2

)
< 0 (2.18)

for some sufficiently large r ∈ (0,∞) (compare [44, Example 3.9]). This is obviously
covered by the conditions (P), (L3), and (L5). Turning to the entire process X, the
conditions (L4) and (L6) or diagonality of σσ> are only needed in order to decouple
the mutual influences of the x- and z-variables in the generator, as becomes apparent
in the second step of the proof of Theorem 2.11.

We observe that the requirements of Theorems 2.11 and 2.13 can be divided into
assumptions that are specific to the deterministic model (conditions (L1) and (L2) and
the topological assumption on V ) and assumptions on the external noise (everything
else). Therefore, in Example 2.15 we first give some examples of the kind of external
noise these Theorems can handle. In the line of Examples 2.16 to 2.18, we discuss
applications to the examples that were introduced in Section 1.2 by checking (L1) and
(L2) in the respective context.

Example 2.15. Concerning the drift b of the external equation, our main motivation
and interest lies in a mean reverting mechanism, i.e.

b : RN → RN , z 7→ −γz + β,

with γ ∈ (0,∞) and β ∈ RN . In this case, the conditions (L3) and (L4) are obviously
fulfilled.

Turning to the volatility σ of the external equation, the very simple yet interesting
case of σ ∈ RN×M being constant is obviously covered by (L6). For M = N = 1, the
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1× 1-matrix σσ>(z) = σ2(z) is always diagonal, and (L5) just means that σ attains no
more than sublinear growth. This includes smooth functions of the type

σ : R→ (0,∞), z 7→
(
z2 + ε

)α/4
,

with some truncation level ε > 0 and an exponent α ∈ (0, 2). For α = 1 this is
a smoothly truncated Cox-Ingersoll-Ross type volatility σ(z) ≈

√
|z|. For general

M = N and a diagonal volatility

σ : RN → RN×N , z 7→


σ1(z) 0 · · · 0

0
. . . . . . ...

... . . . . . . 0

0 · · · 0 σN(z)

 ,

the matrix σσ>(z) is also diagonal, and (L5) is satisfied if and only if

σ2
i (z)

|z|2
|z|→∞−−−−→ 0 for all i ∈ {1, . . . , N}.

In particular, if each σi only depends on zi, (L5) is equivalent to

σ2
i (zi)

|zi|2
|zi|→∞−−−−→ 0 for all i ∈ {1, . . . , N}.

This covers the simple yet interesting special case of N independent sources of noise
each acting on one of the N components of the signal S. However, note that assumption
(ii) from Theorems 2.11 and 2.13 can also be satisfied for M > N , since diagonality of
σσ>(z) just means that the rows of σ(z) are orthogonal.

Example 2.16. In the case of the stochastic Hodgkin-Huxley system (SHH), the state
space V = [0, 1]3 of the internal variables is compact. Thanks to Theorem 2.13, it
is therefore enough to check (L1), while (L2) is irrelevant. This example is handled
essentially in the same way as in the proof of [35, Proposition 4].

The function F from (1.5) can be rewritten as

F (x, y) = −x
(
0.3 + u(y)

)
+ v(y) for all (x, y) ∈ R× V ,

with suitable functions u ∈ C(V ; [0,∞)) and v ∈ C(V ) which are bounded due to
the compactness of V . Let ϕ ∈ C2(R; [1,∞)) be any function such that for some
r(ϕ) ∈ (1,∞) it coincides with | · | outside of Br(ϕ)(0). Let y ∈ V . On the one hand,
for all x ∈ R \Br(ϕ)(0) we have

F (x, y) · ϕ′(x) = F (x, y) · x
|x|

= − |x|
(
0.3 + u(y)

)
+

x

|x|
v(y)

≤ −0.3 |x|+ ‖v‖∞ = −0.3ϕ(x) + ‖v‖∞ .
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On the other hand, for x ∈ Br(ϕ)(0) we have

F (x, y) · ϕ′(x) ≤ r(ϕ) ‖ϕ′‖∞
(
0.3 + ‖u‖∞

)
+ ‖ϕ′‖∞ ‖v‖∞ =: c ∈ (0,∞).

Together, for all x ∈ R we obtain

F (x, y) · ϕ′(x) ≤ −0.3ϕ(x) + max

{
‖v‖∞ , c+ 0.3 sup

x̃∈Br(ϕ)(0)
|ϕ(x̃)|

}
,

and hence (L1) holds.

Example 2.17. In the toy example (1.14), the state space V = [0,∞)L of the internal
variables is closed but not compact. Hence, we are in the setting of Theorem 2.11 and
we have to check both (L1) and (L2). The function F as in (1.15) can be treated in
the same way as in Example 2.16. Just take any ϕ ∈ C2

(
RN ; [1,∞)

)
that for some

r(ϕ) ∈ (1,∞) coincides with | · | outside of Br(ϕ)(0N) and let y ∈ V . If x ∈ Br(ϕ)(0N),
we get the bound

F (x, y)>∇ϕ(x) ≤ ‖f‖∞
(
r(ϕ) + ‖h‖∞

)
‖∇ϕ‖∞ + ‖j‖∞ ‖∇ϕ‖∞ ,

and for x ∈ RN \Br(ϕ)(0N) (which is not in the support of h) we have

F (x, y)>∇ϕ(x) = F (x, y)>
x

|x|
= −f(y) |x|+ j(x, y)>

x

|x|
≤ − |x|+ ‖j‖∞ = −ϕ(x) + ‖j‖∞ .

As in Example 2.16, these two properties together imply that (L1) is fulfilled. In order
to treat the coefficient functions for the internal variables, let (x, y) ∈ RN × V . For G
as in (1.19), we have

G(x, y)>y = − |y|2 + g(x)>y ≤ − |y|2 + ‖g‖∞ |y|

= − |y|2 +
(
1|y|≤2‖g‖∞ + 1|y|>2‖g‖∞

)
‖g‖∞ |y|

≤ − |y|2 + 2 ‖g‖2∞ +
1

2
|y|2 = −1

2
|y|2 + 2 ‖g‖2∞ .

For G as in (1.20), we calculate analogously

G(x, y)>y = −
∣∣y2∣∣+ g(x, y)>y ≤ −1

2

∣∣y2∣∣+ 2 ‖g‖2∞ .

In other words, (L2) is fulfilled in both situations.

Example 2.18. Let us discuss to which extend the rotor models from Example 1.3
can be treated with the technique from this section. Using similar arguments as in
Examples 2.16 and 2.17, we see that both the function F from (1.10) for one-sided
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input and F from (1.12) for two-sided input satisfy (L1), provided that u1, w1 (and
u3, w3 for the two-sided case) are bounded. However, having a look at G, we see that
there is no hope for (L2) to hold, since in both cases G has components that are simply
x. In [11] and [24], the authors construct Lyapunov functions for similar systems by
using the Hamiltonian operator of the system and certain averaging techniques. Their
approach is entirely different from Theorems 2.11 and 2.13.

2.3 Deterministic control

The basic idea of this chapter is that stability properties of the deterministic dynamical
system (DDS) should translate into some kind of stability of the perturbed system
(SDS). It turns out that this is indeed the case if our notion of stability for (SDS) is
the concept of deterministic control which comes into play in assumption 5 of Theorem
2.3 and which we will now introduce and explain in some more detail.

Assume that

(C1) C1-volatility: The mapping σ : RN → RN×M is continuously differentiable.

and let

b̃ : RN → RN , z 7→ b(z)− 1

2

N∑
i=1

M∑
j=1

σi,j(z)


∂ziσ1,j(z)

...
∂ziσN,j(z)

 , (2.19)

denote the Stratonovich version of the drift b with respect to σ, i.e. b̃ is the drift
coefficient such that Z satisfies

dZt = [S(t) + b̃(Zt)]dt+ σ(Zt) ◦ dWt,

where "◦ dWt" indicates that we want to interpret the stochastic integral in the sense
of Stratonovich instead of Itō. For a short and clear introduction to the Stratonovich
integral and its relation to the Itō integral, we refer to [2, Chapter I.9 and Chapter
VIII.3]. For the moment, it is enough to know that the drift transformation (2.19)
turns an Itō equation into a Stratonovich equation. Hence, if we define B̃ in the same
way as B in (1.3), only replacing b with b̃, we obviously get the Stratonovich drift for
the entire system (SDS), i.e.

dXt = B̃(t,Xt)dt+ Σ(Xt) ◦ dWt.

Now fix some finite time horizon t0 ∈ (0,∞) and look at solutions Ψh ∈ C([0, t0]; E) to
the corresponding deterministic integral equation

dΨh(t) = B̃
(
t,Ψh(t)

)
dt+ Σ

(
Ψh(t)

)
ḣ(t)dt for all t ∈ [0, t0], Ψh(0) = X0,
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where we replaced the Brownian Motion W with a deterministic absolutely continuous
function h : [0, t0]→ RM with weak derivative ḣ. The classical Support Theorem1 states
that in the case V = RL (and hence E = RN+L+N), the support of the probability law

L([0, t0] 3 t 7→ Xt |P) on B
(
C([0, t0]; E)

)
is given by the closure of the set{

Ψh

∣∣∣∣h =

∫ ·
0

ḣ(s)ds with ḣ ∈ L2
(
[0, t0];RM

)}
⊂ C([0, t0]; E),

where both the Borel-σ-field and the closure are meant with respect to the topology of
uniform convergence. The result is obtained by approximating X by Ψh with functions h
that approximate the path of the driving Brownian MotionW and then using Girsanov’s
Theorem (see [51]). The proof of Theorem 2.3 that is given in [37] uses a localised
version of the Support Theorem which also works for other choices of V , provided that
assumption 1 of Theorem 2.3 holds (see [37, Theorem 3.1]).

In order to continue the argument from Remark 2.8, we want to find a specific
state that the process can attain from any starting point. In the spirit of the Support
Theorem, we work with the following notion of attainability.

Definition 2.19. A point (x∗, y∗, z∗) ∈ int(E) is called attainable in a sense of deter-
ministic control (or just attainable for short) if for any starting point (x0, y0, z0) ∈ E

there are ḣ ∈ L2
loc

(
[0,∞);RM

)
and a solution Ψh ∈ C([0,∞); E) to

dΨh(t) = B̃
(
t,Ψh(t)

)
dt+ Σ

(
Ψh(t)

)
ḣ(t)dt for all t ∈ [0,∞),

Ψh(0) = (x0, y0, z0)
(2.20)

with
Ψh(t)

t→∞−−−→ (x∗, y∗, z∗).

We call h =
∫ ·
0
ḣ(t)dt the control and Ψh the corresponding control path.

Remark 2.20. As in Remark 2.8, we want to discuss the relevance of this definition
in the context of the proof of Theorem 2.3. Let (x∗, y∗, z∗) ∈ int(E) be an attainable
point and U ⊂ E any open environment of it. The Support Theorem implies (see [37,
Corollary 3.6]) that for any X0 ∈ E we have

P k
0,T (X0,U) = P(Xgr

k ∈ U) > 0 for some k = k(X0) ∈ N. (2.21)

At first glance, the dependence of k on the initial value X0 appears to be problematic,
but we can get rid of it by introducing the sampled chain Xsa that is characterised by

1We use the variant that is presented in [51], for the original form see [63].
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the transition kernel

R := (1− p)
∞∑
k=1

pk−1P0,kT = (1− p)
∞∑
k=1

pk−1P k
0,T (2.22)

with some arbitrary p ∈ (0, 1). This kernel corresponds to sampling the grid chain at
independent geometrically distributed times, and it follows directly from the definition
of Harris recurrence that positive Harris recurrence of Xsa is sufficient for positive Harris
recurrence of Xgr. The property (2.21) implies

P(Xsa
1 ∈ U) = R(X0,U) > 0 for every open U 3 (x∗, y∗, z∗). (2.23)

In Remark 2.36, we will explain how, together with the local weak Hörmander condition,
this can be used to prove Theorem 2.3.

Remark 2.21. Note that if we write (u, v, w) = Ψh, the control system (2.20) in
differential notation becomes

u̇ = F (u, v) + ẇ = F (u, v) + S + b̃(w) + σ(w)ḣ,

v̇ = G(u, v),

ẇ = S + b̃(w) + σ(w)ḣ.

(2.24)

We observe that the third equation is still autonomous and that the equations for u and
v coincide with (DDS) where the signal is simply replaced by ẇ. In other words, if ẇ is
continuous, we can interpret ẇ as a new signal, and then (u, v) will equal (x, y)[x0, y0, ẇ]

with the notation we introduced in (1.1).

In order to establish the existence of an attainable point, we will have to impose
suitable stability conditions on the system (DDS). Vaguely spoken, the basic idea is to
proceed as follows:

1. Identify an equilibrium (x∗, y∗) ∈ RN × int(V ) of the zero-input system to which
its solution (x, y)[x0, y0, S ≡ 0N ] is attracted, provided that (x0, y0) is close enough
to (x∗, y∗) in some sense.

2. Define ḣ in such a way that the resulting function w will eventually rest at a fixed
value z∗ ∈ RN (that may not depend on the initial condition), while up until that
time, ẇ can serve as an input that steers (u, v) into the domain of attraction of
(x∗, y∗).

This way we establish (x∗, y∗, z∗) as an attainable point. The choice of z∗ ∈ RN turns
out to be completely arbitrary for our technique and our setting (see Theorems 2.22
and 2.25 below).
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Two different scenarios will be studied. We start with a very simple and restrictive
setting in Theorem 2.22, the primary function of which is to illustrate the general idea
in a context that allows to minimise the technical aspects. The main result of this
section is then presented in Theorem 2.25 which treats a different, more nuanced and
localised setting.

As a start, we introduce the following conditions.

(C2) Zero-input equilibrium: There is some (x∗, y∗) ∈ RN × int(V ) such that(
F

G

)
(x∗, y∗) = 0N+L.

(C3) Global attractivity of (x∗, y∗) under zero-input: For any (x0, y0) ∈ RN × V
there is a unique solution (x, y)[x0, y0, S ≡ 0N ] : [0,∞)→ RN × V to (DDS) with
zero-input, and it satisfies

(x, y)[x0, y0, S ≡ 0N ](t)
t→∞−−−→ (x∗, y∗).

(C4) Non-explosiveness for moderate input: For any (x0, y0) ∈ RN × V there is
a δ0 = δ0(x0, y0) > 0 such that for any S ∈ C∞b

(
[0,∞);RN

)
with ‖S‖∞ ≤ δ0, the

system (DDS) has a unique solution (x, y)[x0, y0, S] : [0,∞)→ RN × V .

Simply put, these conditions guarantee that for smooth and moderate input (DDS)
has a unique non-explosive solution, and if the input is in fact constantly zero from
some time on, this solution will ultimately converge to the unique equilibrium of the
zero-input system, no matter what the starting point was. This is of course a very
strong assumption that is rarely satisfied in applications (note Examples 2.23 and 2.30,
though), but treating this setting helps to understand our general approach.

Apart from these conditions on the deterministic dynamical system (DDS), we re-
quire a non-degeneracy condition for the external noise that is applied to the signal.

(C5) Non-degeneracy of Z: At each point z ∈ RN , the linear mapping that is defined
by the N ×M -matrix σ(z) is surjective and thus σ(z) has a right inverse which
we simply denote by σ−1(z) ∈ RM×N .

Note that surjectivity of the linear mapping σ(z) : RM → RN impliesM ≥ N , so in this
sense (C5) makes sure that the external equation for Z is not degenerate itself (compare
condition (H2) in Section 2.4 and condition (A1) in Section 3.1). Also note that σ−1(z)

depends continuously on z ∈ RN , as σ(·) is continuous and so is the function that maps
a surjective matrix to its right inverse.

40



Theorem 2.22. Under the assumptions (C1) - (C5), the point (x∗, y∗, z∗) is attainable
in a sense of deterministic control for all z∗ ∈ RN .

Proof. Let (x0, y0, z0) ∈ E and z∗ ∈ RN . Using linear interpolation and a mollifier,
we can easily construct a smooth function % ∈ C∞b

(
[0,∞);RN

)
with %(0) = z0 and

‖%̇‖∞ ≤ δ0 such that % ≡ z∗ on [t1,∞) for some t1 ∈ (0,∞). Setting

ḣ := σ−1(%)
(
%̇− S − b̃(%)

)
∈ C

(
[0,∞);RM

)
⊂ L2

loc

(
[0,∞);RM

)
, (2.25)

the function w := % trivially satisfies the third equation

ẇ = S + b̃(w) + σ(w)ḣ

of the respective control system (2.24). The rest of it is then turned into

u̇ = F (u, v) + %̇,

v̇ = G(u, v).

In other words, (u, v) has to be the solution (x, y)[x0, y0, %̇] to (DDS) which uniquely
exists thanks to (C4). From time t1 on, the pertaining signal %̇ rests at zero, so (C3)
implies that

lim
t→∞

(u, v)(t) = lim
t→∞

(u, v)(t1 + t) = lim
t→∞

(x, y)[u(t1), v(t1), S ≡ 0N ](t) = (x∗, y∗).

To sum things up, the differentiable function

(u, v, w) =
(
(x, y)[x0, y0, %̇], %

)
: [0,∞)→ E

is a solution to the control system (2.20) driven by the function ḣ defined in (2.25), and
it in fact converges to (x∗, y∗, z∗) when time goes to infinity.

Even if this method is quite simple and its requirements are fairly strong, we can
present an example for which we argue heuristically that it allows the use of Theorem
2.22. Another one will be presented later in Example 2.30.

Example 2.23. In the rotor model from Example 1.3, we may think of a situation
in which the interaction potentials have the rotors "attract" each other (for example
w1 = w3 = sin(·)), while the pinning potentials pull the rotors to the centre with a
force that grows with each rotation (for example u1 = u2 = u3 = −ϕ(| · |) for some
non-negative and non-decreasing function ϕ with ϕ(0) = 0 and with a sufficiently steep
slope). We do not give a rigorous proof, but it is intuitively clear that such a system
will satisfy (C2) - (C4) with (x∗, y∗) = 06. If so, the rotor system with one-sided (or
two-sided) input features 07 (or 08) as an attainable point (provided that σ fulfills (C1)
and (C5)).
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In the proof of Theorem 2.22, the control is chosen in a way that forces w to a
specific trajectory, and (C3) takes care of u and v. However, in other examples of
(DDS), the function (x, y)[x0, y0, S ≡ 0N ] may not always be attracted to the zero-
input equilibrium (x∗, y∗) as in (C3), but only if (x0, y0) is already relatively close to it.
Thus, apart from driving w to z∗, we have to drive (u, v) into a suitable neighbourhood
of (x∗, y∗). In general, these may obviously be two competing tasks, since u, v, and w
are interdependent by the dynamics of (2.24). One possible approach to this problem
is to separate x and y and make assumptions on the behaviour of y for x(·) ≡ x∗. The
method of steering the control paths in the right way then becomes more delicate, but
our basic idea – exploiting asymptotic stability of the deterministic dynamical system
with zero-input – remains unaltered. To put this into precise terms, we introduce the
following assumptions which are refinements or variations of the ones used above.

(C3’) Local attractivity of (x∗, y∗) under zero-input: There is some ε∗ > 0 such
that for any initial value (x0, y0) ∈ Bε∗(x

∗, y∗) ⊂ RN×V there is a unique solution
(x, y)[x0, y0, S ≡ 0N ] : [0,∞)→ RN ×V to (DDS) with zero-input, and it satisfies

(x, y)[x0, y0, S ≡ 0N ](t)
t→∞−−−→ (x∗, y∗).

(C4’) Signal-dependent stability of (x∗, y∗): The mapping

RN × V × C∞b
(
[0,∞);RN

)
→ C

(
[0,∞);RN × V

)
,

(x0, y0, S) 7→ (x, y)[x0, y0, S],

is well-defined around and continuous in the point (x∗, y∗, S ≡ 0N) in the sense
that for all ε > 0 there is some δ(ε) ∈ (0, ε] such that for all S ∈ C∞b

(
[0,∞);RN

)
with ‖S‖∞ < δ(ε) and all (x0, y0) ∈ Bδ(ε)(x

∗, y∗) there is a unique solution
(x, y)[x0, y0, S] : [0,∞)→ RN × V to (DDS), and it satisfies

(x, y)[x0, y0, S](t) ∈ Bε(x
∗, y∗) for all t ∈ [0,∞).

(C6) Global attractivity of y∗ for equilibrious x: For all y0 ∈ V the differential
equation

ẏ(t) = G(x∗, y(t)), y(0) = y0,

has a unique solution y[y0, x
∗] : [0,∞)→ V , and it satisfies

y[y0, x
∗](t)

t→∞−−−→ y∗.
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(C7) Relocation to the equilibrium in x: For all (x0, y0) ∈ RN × V there are
t1 ∈ (0,∞) and a function γ ∈ C1

(
[0,∞);RN

)
with γ(0) = x0 and γ ≡ x∗ on

[t1,∞) such that the differential equation

ẏ(t) = G(γ(t), y(t)), y(0) = y0, (2.26)

has a unique local solution ỹ[y0, γ] : [0, t1]→ V .

Assumption (C4’) is a stability condition that takes into account not only the start-
ing point but also the signal: If we want the solution of (DDS) to stay close to (x∗, y∗),
we can achieve this by starting not too far away from it, even if we slightly vary the
input. If the input is in fact constantly zero, hypotheses (C3’) and (C6) signify that
the equilibrium is locally attractive for x and y, and its attraction is even global for y
if x is already in its equilibrium x∗. Condition (C7) makes sure that the x-variable can
always be forced to a trajectory driving it to the equilibrium x∗, while the corresponding
equation for y still admits a local solution up to the time the x-variable hits x∗. Due to
(C6), this solution can immediately be extended to a global solution. Thus, (C7) can
equivalently be replaced by

(C7’) Relocation to the equilibrium in x: For all (x0, y0) ∈ RN × V there are
t1 ∈ (0,∞) and a function S ∈ C

(
[0,∞);RN

)
such that there is a unique solution

(x, y)[x0, y0, S] : [0,∞)→ RN × V to (DDS), and it satisfies x(·) ≡ x∗ on [t1,∞).

If (C7’) is satisfied, we can simply take γ as the corresponding trajectory of x and
acquire (C7). If on the other hand (C7) holds, we can deduce (C7’) by extending y to
a global solution with (C6) and then taking S = γ̇ − F (γ, y).

Remark 2.24. A relatively simple (but rather strong) sufficient set of conditions for
(C7) is the following:

(i) There are constants C1, C2 ∈ (0,∞) such that

|G(x, y)| ≤ C1 + C2 |(x, y)| for all (x, y) ∈ RN × V . (2.27)

(ii) V is closed and convex, and for any y ∈ ∂V we have

G(x, y)>ν ≤ 0 for all x ∈ RN and ν ∈ N (y), (2.28)

where N (y) denotes the set of all outer normals of V in y, i.e. all non-zero vectors
ν ∈ RL such that B|ν|(y + ν) ∩ V = ∅.
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Under these conditions, any t1 ∈ (0,∞) and any smooth function γ : [0,∞)→ RN with
γ(0) = x0 and γ ≡ x∗ on [t1,∞) will work with regard to (C7). First, the Picard-
Lindelöf Theorem yields unique local existence thanks to the local Lipschitz continuity
of the mapping

G̃ : [0,∞)× V → RL, (t, y) 7→ G(γ(t), y).

With G being continuous and V being closed, it can be extended to a continuous
function on RN × RL (by Tietze’s Extension Theorem) for which (2.27) remains valid.
This leads to a continuous extension of G̃ on [0,∞)× RL with∣∣∣G̃(t, y)

∣∣∣ ≤ (C1 +
√

2C2 |γ(t)|
)

+
√

2C2 |y| for all (t, y) ∈ [0,∞)× RL.

By classical extensibility results (see [56, Korollar 2.5.1]), this guarantees global ex-
istence of a solution to (2.26), but so far this solution could take values anywhere.
However, the boundary condition (2.28) ensures that for any y ∈ ∂V we have

G̃(t, y)>ν ≤ 0 for all t ∈ [0,∞) and ν ∈ N (y),

and thus the set V is positively invariant for (2.26), i.e. solutions starting in V will
never leave it (see [56, Satz 7.3.4]).

The set of conditions is now complete, and we can state the main result of this
section.

Theorem 2.25. Under the assumptions (C1), (C2), (C3’), (C4’), and (C5) - (C7),
the point (x∗, y∗, z∗) is attainable in a sense of deterministic control for all z∗ ∈ RN .

Proof. Let (x0, y0, z0) ∈ E, z∗ ∈ RN , and write Ψh = (u, v, w) as in (2.24). As indicated
above, the construction of a suitable control path is much more delicate than in Theorem
2.22. Therefore, we divide its construction into several steps, each of which corresponds
to a distinct phase in approaching the desired limit (see Figure 2.1).

Phase 1: At first, we want to choose the control h in such a way that u is forced
to the trajectory γ : [0,∞)→ RN from (C7). Therefore, we take a function (u], v], w])

with

u] = γ,

v̇] = G(γ, v]),

ẇ] = γ̇ − F (γ, v]),

and v](0) = y0, w](0) = z0. Here, the first equation indeed just prescribes u] to coincide
with γ, while (C7) secures that the second equation admits a solution in [0, t1], and
the last equation is then simply solved by integrating, as the right hand side does not
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contain the variable w]. Rearranging the first equation of the control system (2.24) for
u, we see that if we set

ḣ :=σ−1(w])
(
ẇ] − S − b̃(w])

)
=σ−1(w])

(
u̇] − F (u], v])− S − b̃(w])

)
∈ C

(
[0,∞);RM

)
,

(2.29)

the function (u, v, w) := (u], v], w]) satisfies (2.24) for all t ∈ [0, t1]. Thus we have
constructed a control path up until the time t1 at which the first variable u has reached
the equilibrium x∗.

Phase 2: With γ pinned to x∗ after time t1, the stability condition (C6) implies
that v] can be extended to a global solution with

v](t)
t→∞−−−→ y∗.

Together with the continuity of F and with (C2), this yields

ẇ](t) = γ̇(t)− F (γ(t), v](t))
t→∞−−−→ −F (x∗, y∗) = 0N (2.30)

which allows us to set

t2 := inf
{
t > t1

∣∣∣ v](t) ∈ B 1
2
δ(ε∗)(y

∗) and ẇ](t) ∈ B 1
2
δ(ε∗)(0N)

}
∈ [t1,∞)

with ε∗ from (C3’) and δ(ε∗) chosen according to (C4’). Thus, by the time t2 we have
driven (u], v]) into Bδ(ε∗)(x

∗, y∗) and have slowed down the movement in w] to less than
δ(ε∗).

Phase 3: Up to time t2, we have constructed a useful candidate for h and the
corresponding solution (u, v, w) = (u], v], w]) to (2.24). Our next step will be to change
the definition (2.29) of ḣ beyond time t2 and extend the solution (u, v, w) accordingly.
Our aim is to drive w to z∗ while keeping (u, v) close to (x∗, y∗). Since ẇ can be thought
of as an alternate signal that is fed into the equation, assumption (C4’) makes sure that
we can achieve this, as long as we move w sufficiently slowly. Linear interpolation
and classical mollification techniques allow us to take some % ∈ C∞b

(
[t2,∞);RN

)
with

%(t2) = w](t2), %̇(t2) = ẇ](t2) and ‖%̇‖∞ < δ(ε∗) such that for some t3 ∈ (t2,∞) we have
% ≡ z∗ on [t3,∞). On [t2,∞), we change the definition of ḣ to

ḣ := σ−1(%)
(
%̇− S − b̃(%)

)
∈ C

(
[t2,∞);RM

)
, (2.31)

and now we can argue in the same way as in the proof of Theorem 2.22: We can
obviously extend w by taking it equal to % beyond time t2, and thus u and v have to
obey

u̇ = F (u, v) + %̇,

v̇ = G(u, v).
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Since %̇ now plays the role of a signal whose absolute value is bounded by δ(ε∗), as-
sumption (C4’) yields that we can indeed extend (u, v) correspondingly and (u, v)(t3)

will still be in Bε∗(x
∗, y∗). Furthermore, w ≡ z∗ and ẇ ≡ 0N on [t3,∞). Note that ḣ,

as defined by (2.29) on [0, t2) and by (2.31) on [t2,∞), is actually continuous.

Phase 4: With w fixed at z∗, the control system after time t3 is essentially reduced
to the original dynamical system with constant input equal to zero, i.e.

u̇ = F (u, v) + 0N ,

v̇ = G(u, v),

ẇ = 0N .

Since (u, v)(t3) ∈ Bε∗(x
∗, y∗), assumption (C3’) ensures that (u, v)(t) converges to

(x∗, y∗) when t tends to infinity. In conclusion, we have obtained a continuous (and
thus locally square-integrable) function ḣ : [0,∞)→ RM and a continuous control path
(u, v, w) : [0,∞)→ E solving the corresponding control system (2.24) with

(u, v, w)(t)
t→∞−−−→ (x∗, y∗, z∗).

In other words, (x∗, y∗, z∗) is attainable in a sense of deterministic control.

Remark 2.26. The route we take in this proof is inspired by the one used in the
proof of Proposition 2.5 of [37], where the authors treat the stochastic Hodgkin-Huxley
system (SHH). For the special case in which the autonomous equation for Z is of
Cox-Ingersoll-Ross type, they can in fact abandon the need for σ to be well-defined on
the entire space R. This makes the early phases of the control more complicated, as
one has to make sure that w does not leave the state space by turning negative. The
case that Z is of Ornstein-Uhlenbeck type – of which our model is a generalisation – is
treated mostly in the same way as here, albeit only for the dimension M = N = 1 and
for constant volatility. However, there is one key difference in the third phase of the
control (which corresponds to "Part (V)" of the proof in [37]): In the mentioned article,
the control is defined such that u is forced to a trajectory that moves it very slightly
away from the equilibrium. If this is done slowly enough, v is assumed to stay close to
y∗, and w approaches z∗ similarly as in our third phase. No rigorous proof is given that
the deterministic Hodgkin-Huxley system actually shows this kind of behaviour. We
think that in general it is a more intuitive approach to force not u but w to a specific
trajectory, since we can interpret this as feeding a suitable signal into (DDS) that does
not let (x, y) escape from the domain of attraction of the equilibrium. Condition (C4’)
is the key to making this possible, and while for the Hodgkin-Huxley system we still
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merely give a rough intuitive argument relying on numerical simulations (see Example
2.28), this property can be checked neatly for the system we treat in Example 2.29
below.

Remark 2.27. We decided to formulate the assumptions (C2) - (C4), (C6), (C3’), and
(C4’) in terms that are commonly used in stability theory for dynamical systems (see
[56] or [65]). One may note that (C2) is mainly needed for the other conditions to make
sense. Equation (2.30) is the only instance where we make explicit use of (C2), and
all it does is secure that ḣ is continuous in t2. Since continuity of ḣ is not required in
Definition 2.19 anyway, this is of no major importance for the validity of the Theorem.

In the following examples, we want to discuss properties of certain systems like
(DDS) that allow for the application of Theorem 2.25. The basic conditions (C1) and
(C5) only concern σ, and we simply assume that they hold.

Example 2.28. We return to the stochastic Hodgkin-Huxley system (SHH), the sta-
bility of which has mainly been studied numerically. Simulations suggest that there is
a number C ∈ (0,∞) such that every constant input S ≡ c ∈ (−C,C) is injectively
and continuously mapped to an equilibrium

(x∗c , y
∗
c ) =

(
x∗c ,

α1(x
∗
c)

(α1 + β1)(x∗c)
,

α2(x
∗
c)

(α2 + β2)(x∗c)
,

α3(x
∗
c)

(α3 + β3)(x∗c)

)
∈ R× (0, 1)3

which is stable and locally attractive (see [37, pages 533 and 548]), i.e. for all ε > 0

there is a δ = δ(c, ε) > 0 such that for all (x0, y0) ∈ Bδ(x
∗
c , y
∗
c ) we have

(x, y)[x0, y0, S ≡ c](t) ∈ Bε(x
∗
c , y
∗
c ) for all t ∈ [0,∞), (2.32)

and there is some ε∗ > 0 such that for all (x0, y0) ∈ Bε∗(x
∗
c , y
∗
c ) we actually even have

(x, y)[x0, y0, S ≡ c](t)
t→∞−−−→ (x∗c , y

∗
c ).

Therefore, (C2) and (C3’) are taken for granted, and we write (x∗, y∗) := (x∗0, y
∗
0). Sim-

ulations show that if started slightly beside the equilibrium, the solution is immediately
pulled in its direction, suggesting that one can in fact take δ = ε in (2.32). This is also
the reason why stability in the sense of (2.32) should remain valid when also slightly
and slowly changing the input over time as we do with the function % in the third control
phase in the proof of Theorem 2.25: A small change of the input c simply corresponds
to a small change of the equilibrium (x∗c , y

∗
c ) towards which the trajectory is headed.

This is essentially (C4’). Concerning (C6), we first note that for a given trajectory of
the membrane potential x, variation of constants yields that for every i ∈ {1, 2, 3} and
t ∈ [0,∞) we can write

yi(t) = yi(0)e−
∫ t
0 (αi+βi)(x(s))ds +

∫ t

0

αi(x(s))e−
∫ t
s (αi+βi)(x(r))drds. (2.33)
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For x(·) ≡ x∗ this turns into

yi(t) = yi(0)e−(αi+βi)(x
∗)t +

αi(x
∗)

(αi + βi)(x∗)

(
1− e−(αi+βi)(x∗)t

)
,

which indeed converges to y∗i for t → ∞, independently of the starting point y0 ∈ V .
Equation (2.33) also takes care of (C7), since these functions remain well-defined when
x is forced to a sufficiently nice trajectory γ.

Example 2.29. We revisit the toy example from Example 1.4, where at first we consider
the system with G chosen as in (1.19). The point

(x∗, y∗) = (0N , g(0N)) ∈ RN × (0,∞)L

is obviously an equilibrium for the zero-input system in the sense of (C2). For the other
assumptions, we will mostly discuss the variables (x(t))t∈[0,∞) ⊂ RN and (y(t))t∈[0,∞) ⊂
V separately, while one of them is considered to be fixed.

If (x(t))t∈[0,∞) is any fixed continuously differentiable trajectory in RN , the function
y that is defined by

y(t) = e−ty0 +

∫ t

0

e−(t−s)g(x(s))ds ∈ (0,∞) for all t ∈ [0,∞) (2.34)

is the solution to the initial value problem

ẏ(t) = G(x(t), y(t)) = −y(t) + g(x(t)), y(0) = y0 ∈ V, (2.35)

which is why (C7) is fulfilled.
Next, we want to check the global attractivity property (C6), or actually a slightly

stronger variant of it that will be useful to check (C3’) below. If we suppose that
(x(t))t∈[0,∞) ⊂ RN is a trajectory that converges to x∗, then (2.34) and dominated
convergence imply that the corresponding solution y of (2.35) fulfills

y(t) = e−ty0 +

∫ ∞
0

1[0,t](s)e
−sg(x(t− s))ds

t→∞−−−→ g(x∗) = g(0N) = y∗.

(2.36)

For the specific choice x(·) ≡ x∗, this yields (C6).
In preparation of checking the properties (C3’) and (C4’), at first we fix any con-

tinuously differentiable trajectory (y(t))t∈[0,∞) ⊂ V and concentrate on the initial value
problem

ẋ(t) = F (x(t), y(t)) + S(t)

= −f(y(t))
(
x(t) + h(x(t))

)
+ j(x(t), y(t)) + S(t),

x(0) = x0 ∈ RN .

(2.37)
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Thanks to the assumptions (1.16), (1.17), and (1.18) on f , h, and j, we see that for all
x ∈ B1(0N) we have

x>(F (x, y(t)) + S(t)) = −f(y(t))
(
|x|2 + x>h(x)

)
+ x>S(t)

≤ −(1− h0) |x|2 + ‖S‖∞ |x| .
(2.38)

The property (2.38) allows to determine the behaviour of the solution x(·) of (2.37)
near the origin 0N = x∗, and it is thus the key to both (C3’) and (C4’). We will explain
this in detail in the next three paragraphs.

In order to check (C3’), we assume that S ≡ 0N . This turns (2.38) into

x>F (x, y(t)) ≤ −(1− h0) |x|2 < 0 for all x ∈ B1(0N) \ {0N}, (2.39)

where we used that h0 ∈ [0, 1) by (1.17). This means that near the origin the solution
x(·) to (2.37) for zero-input is driven back towards 0N = x∗ with a force that is indepen-
dent of t. Put in rigorous terms from the theory of dynamical systems, V (t, x) := 1

2
|x|2

defines a Lyapunov function for (2.37) with S ≡ 0N in the sense of [56, Definition 8.1.1]
and the left hand side of (2.39) is its orbital derivative in the sense of [56, (8.3)]. Con-
sequently, [56, Satz 8.3.3.3] yields that x∗ is stable and locally attractive for the system
(2.37) with zero-input, i.e. for all ε > 0 there is a δ > 0 such that for all x0 ∈ Bδ(x

∗) we
have x(t) ∈ Bε(x

∗) for all t ∈ [0,∞), and if δ is sufficiently small we also have x(t)→ x∗

for t→∞. We stress the crucial point that the estimate in (2.39) works independently
of (y(t))t∈[0,∞), which is why we can combine this result with the attractivity property
(2.36) and conclude that (C3’) holds.

In the context of (C4’), we have to consider non-vanishing but very small smooth
signals. We note that in this case the upper bound in (2.38) is still strictly negative
for |x| > (1 − h0)−1 ‖S‖∞ (recall that h0 ∈ [0, 1) by (1.17)). This suggests that, given
a neighbourhood of x∗ = 0N , we should be able to keep x(·) from escaping from it by
choosing S sufficiently small. The formula (2.34) and the continuity of g should then
also take care of taming the y-variables at the same time. The properties we have just
described are exactly what (C4’) demands.

We will now turn this intuitive idea into a rigorous proof. Let ε > 0 and, using the
continuity of g, choose

ζ ∈
(
0,min

{
1, ε/(3

√
L)
})

(2.40)

such that

g(Bζ(0N)) ⊂ Bε/(3
√
L)(g(0N)). (2.41)

If we choose

δ ∈ (0, (1− h0)ζ), (2.42)
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and the signal S ∈ C∞b
(
[0,∞);RN

)
satisfies ‖S‖∞ < δ, the property (2.38) yields that

in the non-empty half-open ring

Bζ(0N) \B(1−h0)−1‖S‖∞(0N),

the solution x(·) of (2.37) is driven back towards the origin – again, independently of t
and (y(t))t∈[0,∞). Using the same arguments as in [56, Lemma 8.3.1 and Satz 8.3.3.1],2

one can use this to prove that

for any trajectory (y(t))t∈[0,∞) and any x0 ∈ Bδ(0N)

the solution x(·) of (2.37) will stay in Bζ(0N) for all time.
(2.43)

We will now show that for all (x0, y0) ∈ Bδ(x
∗)×Bδ(y

∗) we have

(x, y)[x0, y0, S](t) ∈ Bε(x
∗)×Bε(y

∗) for all t ∈ [0,∞) (2.44)

which implies that (C4’) holds. Indeed, we have just shown that, no matter what the
y-variables do, the x-variables cannot leave Bζ(x

∗) which is contained in Bε(x
∗) by

(2.40). In order to prove the converse, let y0 ∈ Bδ(y
∗). Then for all k ∈ {1, . . . , L} and

t ∈ [0,∞) we can use (2.34), (2.43), and (2.41) to obtain that

yk(t) = e−tyk(0) +

∫ t

0

e−(t−s)gk(x(s))ds

≥ e−tyk(0) +
(
gk(0N)− ε/(3

√
L)
)
(1− e−t)

= y∗k − ε/(3
√
L)− e−t

(
y∗k − yk(0)− ε/(3

√
L)
)

> y∗k − ε/(3
√
L)−

(
δ + ε/(3

√
L)
)

≥ y∗k − ε/
√
L,

where the last step made use of (2.42) and (2.40). In the same way, one can show that

yk(t) < y∗k + ε/
√
L.

This means that y(t) ∈ Bε(y
∗) which implies (2.44) and hence (C4’).

In conclusion, every assumption of Theorem 2.25 is fulfilled, and thus (x∗, y∗, z∗) is
attainable in a sense of deterministic control for any choice of z∗ ∈ RN .

2The sole difference in our case is that, if the bound for the signal is fixed, we are merely interested
in not leaving a specific ball, while we do not care about arbitrarily small balls centred around the
origin. It is also important to note that the function ψ in the proof of [56, Satz 8.3.3.1] can be chosen
uniformly for all trajectories of y, which is why the same is true for δ. The reason why this works is
that (locally around x∗) the function f is the only object involved that is influenced by the y-variables,
and it is bounded from below by (1.16).
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Using basically the same arguments, one can show that for the system with G chosen
as in (1.20), the point

(x∗, y∗) =
(
0, g1(0), g2(g1(0)), . . . , gL(. . . (g2(g1(0))))

)> ∈ R× (0,∞)L

is attainable.

Example 2.30. If we take j ≡ 0N in Example 2.29, the same reasoning as there can be
used to show that (x∗, y∗) is in fact globally attractive in the sense of (C3), and hence
the conclusion also follows from the simpler Theorem 2.22.

2.4 Hörmander’s condition

In this section, we will present conditions on the external equation and on the way
X and Y interact through the functions F and G that imply the so-called local weak
Hörmander condition (see Definition 2.35 below), which is needed in assumption 5 of
Theorem 2.3.

Notation 2.31. Whenever it is convenient, we will denote elements of R1+N+L+N by

ξ = (ξ0, . . . , ξN+L+N)> := (t, x1, . . . , xN , y1, . . . , yL, z1, . . . , zN)> = (t, x, y, z)

and use the abbreviation

U(x, y) :=

(
F (x, y)

G(x, y)

)
for all (x, y) ∈ RN × V . (2.45)

Furthermore, we set

b̂(t, z) := S(t) + b̃(z) for all (t, z) ∈ [0,∞)× RN ,

where b̃ is as it was defined in (2.19). We will also use the notation

A·,k :=


A1,k

...
An,k

 ∈ Rn for all k ∈ {1, . . . ,m}

for the k-th column of a matrix A ∈ Rn×m with m,n ∈ N.

Definition 2.32. Let n ∈ N and for i ∈ {1, 2} let Vi be a continuously differentiable
vector field on some D ⊂ Rn, i.e.

Vi =
(
V

(1)
i , . . . , V

(n)
i

)> ∈ C1(D;Rn).
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The Lie bracket of V1 and V2 is defined as the vector field

[V1, V2] := JV2V1 − JV1V2 ∈ C(D;Rn),

where JVi denotes the respective Jacobian matrix, i.e.

JVi(x) = (∂xlV
(k)
i (x))k,l∈{1,...,n} for all x ∈ Rn.

Remark 2.33. Abstractly speaking, the Lie bracket is the commutator of two vector
fields with respect to the non-commutative operation

C1(D;Rn)× C1(D;Rn) 3 (V1, V2) 7→ JV2V1 ∈ C(D;Rn),

so in particular the Lie bracket of a vector field with itself is zero. Moreover, the
mapping

C1(D;Rn)× C1(D;Rn) 3 (V1, V2) 7→ [V1, V2] ∈ C(D;Rn).

is bilinear and antisymmetric. If V1 and V2 are vector fields that are differentiable of
any order, so is their Lie bracket. Hence, the Lie bracket can be viewed as a binary
operation on C∞(D;Rn).

Definition 2.34. For any C ⊂ C∞(D;Rn) the Lie algebra generated by C is defined
as the smallest linear subspace of C∞(D;Rn) that contains C and that is closed with
respect to the binary operation of taking Lie brackets. We denote it by C∗.

The idea behind the Lie bracket in the sense of Definition 2.32 is that by combining
motions in the directions V1 and V2 one can effectively approximate motion in the
direction [V1, V2] and ultimately in any direction in {V1, V2}∗. If V1 and V2 occur in the
drift or volatility of a Stratonovich stochastic differential equation, this can be exploited
in order to determine along which directions (i.e. along which subspaces of Rn) its
solution can evolve locally. Two (not quite identical) detailed heuristic explanations of
this idea can be found in [3, pages 73-75] and [23, Section 2].

If we want to apply this reasoning to our time-inhomogeneous setting, we have to
consider the homogeneous (1+N+L+N)-dimensional time-space process (t,Xt)t∈[0,∞).
It solves the Stratonovich stochastic differential equation

d(t,Xt) = V0(t,Xt)dt+
M∑
k=1

Vk(t,Xt) ◦ dW (k)
t

with the vector fields

Vk : [0,∞)× E→ R1+N+L+N ,
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defined by

V0(ξ) :=

(
1

B̃(ξ)

)
=


1

F (x, y) + S(t) + b̃(z)

G(x, y)

S(t) + b̃(z)

 =


0

F (x, y)

G(x, y)

0N

+


1

b̂(t, z)

0L

b̂(t, z)

 (2.46)

and

Vk(ξ) :=


0

Σ1,k(x, y, z)
...

ΣN+L+N,k(x, y, z)

 =


0

σ·,k(z)

0L

σ·,k(z)

 for all k ∈ {1, . . . ,M}. (2.47)

The idea outlined above suggests that we should study the collections of vector fields
that are recursively constructed by setting

L0 :={V0, . . . , VM},

Ln :=Ln−1 ∪ {±[Vk, V ] |V ∈ Ln−1, k ∈ {0, . . . ,M}}, n ∈ N,

L(ξ) := span
⋃
n∈N

{V (ξ) |V ∈ L∗n}, ξ ∈ [0,∞)× E.

(2.48)

In order for the definition in (2.48) to make sense, we will of course have to require that
all of these vector fields are smooth. More precisely, we suppose:

(H1) Smooth coefficients: The coefficient functions F , G, σ, S, and b are differen-
tiable of any order.

This will be a standing assumption for this entire section and it will not be mentioned
explicitly again.

According to the idea explained above, L(ξ) should describe where (t,Xt) can move
from ξ within an infinitesimal time step. The following Definition 2.35 formalises the
idea that it can move in any direction. Its roots go back to [38] and it has since become
classical to work with context-specific variants of it in order to prove the existence
of transition densities, usually incorporating tools from the Malliavin calculus (see for
example [23] and the references therein). The variant presented below is customised
for our time-inhomogeneous setting, in which we think this formulation is the most
intuitive. It is essentially the same as [36, (LWH)] and its connection to the common
terminology in other literature is discussed in Remark 2.38 below.

Definition 2.35. Let (x, y, z) ∈ int(E). If

L
(
(t, x, y, z)

)
= R1+N+L+N for all t ∈ [0,∞),

we say that the local weak Hörmander condition holds at (x, y, z).
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Remark 2.36. We would like to continue the thread of Remarks 2.8 and 2.20 and
thus complete our sketch of the proof of Theorem 2.3. Suppose that (x∗, y∗, z∗) is
an attainable point in the interior of E at which the local weak Hörmander condition
holds. The continuity of all coefficient functions yields that it automatically holds in
an open environment of (x∗, y∗, z∗). The crucial consequence of this is that one can
find an open neighbourhood U ⊂ E of (x∗, y∗, z∗) such that for all t ∈ (0,∞) and all
X0 ∈ E the measure P0,t(X0, · ) locally admits a Lebesgue density p0,t(X0, · ) ∈ C∞(U)

which, for fixed argument, is lower semi-continuous with respect to X0 (see [37, Lemma
4.1]). Lower semi-continuity extends to the mapping P0,t( · , A) : E → [0,∞) for any
measurable subset A ⊂ U . Mutatis mutandis, these properties are passed on to the
transition measure R(X0, · ) of the sampled chain Xsa that we introduced in (2.22).

All of the essential pieces of the puzzle that is Theorem 2.3 are now at hand, and it
remains to put them together. The main point is that, in combination with (2.23), the
transition densities and their properties enable us to find an open ball C ⊂ U around
x∗ and another open ball D ⊂ U such that the minorisation condition

R(X0, A) ≥ α1C(X0)ν(A) for all X0 ∈ E and A ∈ B(E), (2.49)

holds, where α is some positive real constant and ν is the uniform law on D. This
is the content of Lemma 3.7 of [37]. The property (2.49) is known as Nummelin’s
splitting condition (compare [53]) and it entails that C is a small set in the sense of
[54, Definition 2.3]. If there is at least one starting point from which P-almost surely
C is visited infinitely often by Xsa, part (v) of Theorem 3.7 in [54] implies that Xsa

is Harris recurrent. In order to check this condition, we first note that our Lyapunov
function for Xgr is also a Lyapunov function for Xsa. This provides a compact set
K ⊂ E to which Xsa returns infinitely often from any state. The property (2.23) and
lower semi-continuity imply

inf
X0∈K

R(X0, C) > 0, (2.50)

and the Borel-Cantelli Lemma allows us to conclude that Xsa indeed visits C infinitely
often, no matter where it is started. Hence, Xsa is Harris recurrent, and it remains to
show that recurrence is even positive.3

By combining (2.49) and (2.50), it is easy to prove the minorisation condition

R2(X0, A) ≥ α̃1K(X0)ν(A) for all X0 ∈ E and A ∈ B(E),

where
α̃ := α inf

X0∈K
R(X0, C) > 0.

3Note that this final part differs slightly from the argument given in [37], where the authors conclude
the proof with similar tools from [50].
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Consequently, K is a small set as well. Thanks to our Lyapunov function, Proposition
5.10 of [54] then yields that Harris recurrence of Xsa is indeed positive.4 As indicated
in Remark 2.20, this implies positive Harris recurrence of the grid chain Xgr and thus
also of Xps and Xts (see [37, page 531, lines 19-21]).

We will now collect some basic observations about the objects and properties we
have defined so far in this section. We note that for any two continuously differentiable
vector fields V and W on [0,∞)× E we can write their Lie bracket as

[V,W ] =
N+L+N∑
i=0

(
V (i)∂ξiW −W (i)∂ξiV

)
(2.51)

which will be convenient for the following remarks.

Remark 2.37. Let us make some comments on the role of time, i.e. the (0)-components
of the occurring vector fields on the one hand and the derivatives with respect to t = ξ0

on the other hand.
1.) First, note that for all k ∈ {0, . . . ,M} the (0)-component of Vk is constant.

Hence, (2.51) yields that for any vector field W ∈ C1
(
[0,∞)× E;R1+N+L+N

)
we have

[Vk,W ](0) =
N+L+N∑
i=0

V
(i)
k ∂ξiW

(0)

which vanishes everywhere whenever W (0) is constant as well. In particular, this is the
case for W ∈ {V0, . . . , VM}. Consequently, any vector field we could possibly create by
consecutively taking Lie brackets of V0, . . . , VM will have a vanishing (0)-component.

2.) Let V,W ∈ C1
(
[0,∞)× E;R1+N+L+N

)
. Separating the sum in (2.51) yields

[V,W ] = V (0)∂tW −W (0)∂tV +
N+L+N∑
i=1

(
V (i)∂ξiW −W (i)∂ξiV

)
,

so any possible influence of time derivatives of W is killed by a vanishing V (0) and vice
versa. The first part of this remark yields that V0 is the only vector field in Ln, n ∈ N,
whose (0)-component V (0)

0 ≡ 1 does not vanish. Thus, no time derivatives occur in

[V,W ] =
N+L+N∑
i=1

(
V (i)∂ξiW −W (i)∂ξiV

)
for all V,W ∈ Ln \ {V0}, n ∈ N, (2.52)

while

[V0,W ] = ∂tW +
N+L+N∑
i=1

(
V

(i)
0 ∂ξiW −W (i)∂ξiV0

)
for all W ∈ Ln \ {V0}, n ∈ N. (2.53)

4In fact, Theorem 2.1 of [18] shows that if R is aperiodic (see [54, page 21]), the returning time of K
(and any other compact set containing K) not only has finite expectation but even admits exponential
moments.
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As [V0, V0] vanishes and so does ∂tVk for all k ∈ {1, . . . ,M}, time derivatives can occur
in L2 at the earliest, but never in L1.

Remark 2.38. The first part of Remark 2.37 allows us to shed some more light on the
special role of V0. In close analogy to (2.48), we define

L0 :={V1, . . . , VM},

Ln :=Ln−1 ∪ {±[Vk, V ] |V ∈ Ln−1, k ∈ {0, . . . ,M}}, n ∈ N,

L(ξ) := span
⋃
n∈N

{V (ξ) |V ∈ L∗n}, ξ ∈ [0,∞)× E.

(2.54)

The only difference to (2.48) is in the "initialisation" L0 or L0, where the latter contains
V0 while the former does not. After that, the construction steps for n ≥ 1 follow the
exact same rules. The first part of Remark 2.37 implies that for every n ∈ N the
(0)-component of any vector field in Ln is zero, and in turn the dimension of L(·) can
never exceed N + L + N . The set Ln on the other hand does contain V0 which has
the non-vanishing (0)-component V (0)

0 ≡ 1. In fact, thanks to the antisymmetry of the
Lie-bracket,

L1 = {V0, . . . , VM} ∪ {±[Vk, Vl] | k, l ∈ {0, . . . ,M}}

= {V0} ∪ L0 ∪ {±[Vk, Vl] | k ∈ {0, . . . ,M}, l ∈ {1, . . . ,M}}

= {V0} ∪ L1,

and by induction it follows from (2.54) that

Ln = {V0} ∪ Ln for all n ∈ N.

In particular, this means that

dimL(ξ) = dimL(ξ) + 1 (2.55)

at any point ξ ∈ [0,∞)×E (cf. [36, Proposition 1]), and hence the local weak Hörmander
condition holds at ξ if and only if

dimL(ξ) = N + L+N. (2.56)

This variant of the local weak Hörmander condition is the time-inhomogeneous analogue
to the common version from [23, Definition 1.2]. In the sequel, we will check the local
weak Hörmander condition by checking (2.56).

For general diffusions, there is very little one can say about sufficient conditions for
the local weak Hörmander condition. One usually has to use ad hoc arguments that
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depend on the particular shape of the drift and the volatility matrix. For systems of
the special type (SDS) however, there are two fairly general scenarios which we can
treat without confining us to entirely specific examples. Both are based on the idea
that external noise (in the form of the Z-variable) is explicitly imported only into the
X-variable, while the coefficient functions F and G have to transport and distribute its
influence suitably among all of the X- and Y -variables.

(I) Star shape: Every component depends on the X-variables in such a way that
sufficient amounts of noise are able to spread from Z via X to the rest of the
system.

(II) Cascade structure: There is a chain of components such that with each step
exactly one more of them is directly influenced by the previous one, and this chain
ultimately runs through the entire system.

Of course, in both of these scenarios we also have to make sure that X and Z are
not coupled in a degenerate way. However, since the random terms in their respective
equations coincide, their interaction is basically coded in the difference of their drift
coefficients which is again simply given by the function F . It therefore seems natural
that, as long as b, σ, and S are nice enough for Z not to be degenerate itself, it should
be possible for us to find conditions solely on F and G that are sufficient for the local
weak Hörmander condition in the sense of Definition 2.35.

We will treat each of these situations separately in the Subsections 2.4.1 and 2.4.2
below (the main results being Corollaries 2.48, 2.49, and 2.50 for the star shape and
Theorem 2.56 for the cascade structure), but first we will collect some preparatory
observations and calculations.

Given the particular shape of V0, . . . , VM , the following basic Lemma will be helpful
in the sequel. It should be stressed once more at this occasion that in accordance with
Definition 2.32 we use the same Lie bracket notation – consistently – not only for vector
fields on [0,∞)× E but also for vector fields of lower dimensions.

Lemma 2.39. For i ∈ {1, 2} consider continuously differentiable functions

[0,∞)× RN 3 (t, z) 7→ Ai(t, z) ∈ RN ,

RN × V 3 (x, y) 7→ Wi(x, y) ∈ RN+L,

[0,∞)× RN 3 (t, z) 7→ ϕi(t, z) ∈ R.
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Then for all (t, x, y, z) ∈ [0,∞)× E we have

1.



A1(t, ·)

0L

A1(t, ·)

 ,


A2(t, ·)

0L

A2(t, ·)


(x, y, z) =


[A1(t, ·), A2(t, ·)](z)

0L

[A1(t, ·), A2(t, ·)](z)

 ,

2.

[
ϕ1(t, ·)

(
W1

0N

)
, ϕ2(t, ·)

(
W2

0N

)]
(x, y, z) = ϕ1(t, z)ϕ2(t, z)

(
[W1,W2](x, y)

0N

)
,

3.

ϕ1(t, ·)

(
W1

0N

)
,


A1(t, ·)

0L

A1(t, ·)


(x, y, z) = −

N∑
j=1

A
(j)
1 (t, z)

(
ϕ1(t, z)

(
∂xjW1(x, y)

0N

)

+ ∂zjϕ1(t, z)

(
W1(x, y)

0N

))
.

Proof. These formulas follow immediately from the definition of the Lie bracket by
straight forward calculations.

The following notational convention is of utmost importance for understanding the
rest of this section.

Notation 2.40. 1.) As noted under 1.) in Remark 2.37, the only relevant vector
field to feature a non-vanishing (0)-component is V0 – which is not contained in Ln
for any n ∈ N. In order to simplify our notation, in the sequel we will therefore

systematically omit this component. More precisely, we identify every vector field

W : [0,∞)× E→ R1+N+L+N , (t, x, y, z) 7→


0

W (1)(t, x, y, z)
...

W (N+L+N)(t, x, y, z)

 , (2.57)

with the collection of vector fields on E given by

W (t, ·) : E→ RN+L+N , (x, y, z) 7→


W (1)(t, x, y, z)

...
W (N+L+N)(t, x, y, z)

 , for all t ∈ [0,∞).

(2.58)
Either of these objects will simply be denoted by W . Let us stress that both directions
of this identification are actively used: on the one hand, we tacitly omit vanishing zero-
components when a vector field is given as in (2.57), but on the other hand, we also
think of each vector field that is given in terms of (2.58) as one on [0,∞) × E with a
vanishing zero-component.
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2.) If V and W are of this type, so is their Lie bracket [V,W ] (confer part 1.) of
Remark 2.37). Thus, it is natural (and consistent) to identify

[V,W ](t, x, y, z) = [V (t, ·),W (t, ·)](x, y, z) ∈ RN+L+N (2.59)

for all (t, x, y, z) ∈ [0,∞)× E.

3.) As indicated above, V0 is the only relevant vector field not of the type in (2.57)
and (2.58), but we only need it when taking Lie brackets as in (2.53). Using the notation
we just introduced (and the abbreviation (2.45)), (2.53) can be rewritten as

[V0,W ] = ∂tW +



b̂

0L

b̂

+

(
U

0N

)
,W

 . (2.60)

Note that this formula is completely consistent: [V0,W ](0) and ∂tW (0) vanish again and
are therefore omitted, while the Lie bracket on the right hand side is to be understood
as the Lie bracket of vector fields on E (which carry an additional dependence on time)
and thus has only N + L+N components to begin with.

4.) Note also that with this notational convention there is no difference between Vk
and Σ·,k for k ∈ {1, . . . ,M}.

5.) Let us further illustrate this notation by rewriting the formulas from Lemma
2.39 accordingly. With the identification of (2.57) and (2.58) and with the convention
(2.59), they read

1.



A1

0L

A1

 ,


A2

0L

A2


(ξ) =


[A1(t, ·), A2(t, ·)](z)

0L

[A1(t, ·), A2(t, ·)](z)

 ,

2.

[
ϕ1

(
W1

0N

)
, ϕ2

(
W2

0N

)]
(ξ) = ϕ1(t, z)ϕ2(t, z)

(
[W1,W2](x, y)

0N

)
,

3.

ϕ1

(
W1

0N

)
,


A1

0L

A1


(ξ) = −

N∑
j=1

A
(j)
1 (t, z)

(
ϕ1(t, z)

(
∂xjW1(x, y)

0N

)

+ ∂zjϕ1(t, z)

(
W1(x, y)

0N

))

for all ξ = (t, x, y, z) ∈ [0,∞)× E.

Using Notation 2.40 and Lemma 2.39, we will now see which vector fields we can
construct by taking Lie brackets with V0, . . . , VM . With the first formula in Lemma
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2.39, it is easy to see that

{V1, . . . , VM}∗ =



w

0L

w


∣∣∣∣∣∣∣∣w ∈ {σ·,1, . . . , σ·,M}

∗

 . (2.61)

This means that by taking Lie brackets using only the vector fields corresponding to the
volatility, we can never construct more than N linearly independent vectors. However,
for some fixed z ∈ RN the assumption

(H2) Non-degeneracy of Z: {w(z) |w ∈ {σ·,1, . . . , σ·,M}∗} = RN

is a reasonable starting point.5 If, for example, σ(z) is surjective (as is needed by
condition (C5) in Section 2.3 anyway), it has to have N linearly independent columns,
and hence we see without even taking Lie brackets that (H2) holds in z.

In order to construct suitable sequences of vector fields that can span the remaining
N + L dimensions, we will always start by taking the Lie bracket of the drift V0 with
some column Vk of the volatility matrix, k ∈ {1, . . . ,M}. Using (2.60) and Lemma 2.39
and exploiting bilinearity as well as antisymmetry of the Lie bracket, we see that

[V0, Vk](ξ) = ∂t


σ·,k(z)

0L

σ·,k(z)

+



b̂

0L

b̂

+

(
U

0N

)
,


σ·,k

0L

σ·,k


(ξ)

= 0N+L+N +



b̂

0L

b̂

 ,


σ·,k

0L

σ·,k


(ξ) +


(
U

0N

)
,


σ·,k

0L

σ·,k


(ξ)

=


[b̂(t, ·), σ·,k](z)

0L

[b̂(t, ·), σ·,k](z)

− N∑
i=1

σi,k(z)

(
∂xiU(x, y)

0N

)
(2.62)

and hence

[Vk, V0](ξ) = −[V0, Vk](ξ) =


[σ·,k, b̂(t, ·)](z)

0L

[σ·,k, b̂(t, ·)](z)

+
N∑
i=1

σi,k(z)

(
∂xiU(x, y)

0N

)
. (2.63)

In order to get a better idea of what we are dealing with here, let us see what happens
when we take an extra Lie bracket with V0 or some column Vl of the volatility matrix,

5This is basically the local strong Hörmander condition for the external equation, where "strong"
refers to the fact that we do not include its drift at all.
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l ∈ {1, . . . ,M}. Using (2.60), Lemma 2.39, and basic properties of the Lie bracket
again, we see that [V0, [V0, Vk]](ξ) is equal to

∂t[V0, Vk](ξ) +



b̂

0L

b̂

+

(
U

0N

)
, [V0, Vk]

(ξ)

=


∂t[b̂(t, ·), σ·,k](z)

0L

∂t[b̂(t, ·), σ·,k](z)

+



b̂

0L

b̂

+

(
U

0N

)
,


[b̂(t, ·), σ·,k]

0L

[b̂(t, ·), σ·,k]


(ξ)

−
N∑
i=1



b̂

0L

b̂

+

(
U

0N

)
, σi,k

(
∂xiU

0N

)(ξ)

=


∂t[b̂(t, ·), σ·,k](z)

0L

∂t[b̂(t, ·), σ·,k](z)

+



b̂

0L

b̂

 ,


[b̂(t, ·), σ·,k]

0L

[b̂(t, ·), σ·,k]


(ξ) +


(
U

0N

)
,


[b̂(t, ·), σ·,k]

0L

[b̂(t, ·), σ·,k]


(ξ)

−
N∑
i=1




b̂

0L

b̂

 , σi,k

(
∂xiU

0N

)(ξ) +

[(
U

0N

)
, σi,k

(
∂xiU

0N

)]
(ξ)



=


∂t[b̂(t, ·), σ·,k](z)

0L

∂t[b̂(t, ·), σ·,k](z)

+


[b̂(t, ·), [b̂(t, ·), σ·,k]](z)

0L

[b̂(t, ·), [b̂(t, ·), σ·,k]](z)

− N∑
i=1

[b̂(t, ·), σ·,k](i)(z)

(
∂xiU(x, y)

0N

)

−
N∑
i=1

(
N∑
j=1

b̂(j)(t, z)

(
σi,k(z)

(
∂xj∂xiU(x, y)

0N

)
+ ∂zjσi,k(z)

(
∂xiU(x, y)

0N

))

+ σi,k(z)

(
[U, ∂xiU ](x, y)

0N

))

=


[b̂(t, ·), [b̂(t, ·), σ·,k]](z) + ∂t[b̂(t, ·), σ·,k](z)

0L

[b̂(t, ·), [b̂(t, ·), σ·,k]](z) + ∂t[b̂(t, ·), σ·,k](z)


−

N∑
i=1

(
[b̂(t, ·), σ·,k](i)(z)

(
∂xiU(x, y)

0N

)
+ σi,k(z)

(
[U, ∂xiU ](x, y)

0N

)

+
N∑
j=1

b̂(j)(t, z)

(
σi,k(z)

(
∂xj∂xiU(x, y)

0N

)
+ ∂zjσi,k(z)

(
∂xiU(x, y)

0N

)))
.

(2.64)
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Similarly, we can calculate

[Vl, [Vk, V0]](ξ) =



σ·,l

0L

σ·,l

 ,


[σ·,k, b̂(t, ·)]

0L

[σ·,k, b̂(t, ·)]

+
N∑
i=1

σi,k

(
∂xiU

0N

)(ξ)

=



σ·,l

0L

σ·,l

 ,


[σ·,k, b̂(t, ·)]

0L

[σ·,k, b̂(t, ·)]


(ξ) +

N∑
i=1



σ·,l

0L

σ·,l

 , σi,k

(
∂xiU

0N

)(ξ)

=


ζk,l(t, z)

0L

ζk,l(t, z)

+
N∑

i,j=1

(
σj,l(z)σi,k(z)

(
∂xj∂xiU(x, y)

0N

)

+ σj,l(z)∂zjσi,k(z)

(
∂xiU(x, y)

0N

))
,

(2.65)

where

ζk1(t, z) := [σ·,k1 , b̂(t, ·)](z),

ζk1,...,kn(t, z) := [σ·,kn , ζk1,...,kn−1(t, ·)](z) for all n ≥ 2,
(2.66)

with any k1, k2, . . . ∈ {1, . . . ,M}.
Having thus acquired a basic idea of the typical structure of higher iterations

[V0, [. . . , [V0, Vk]]] or [Vkn , [. . . , [Vk1 , V0]]], we formulate the following two Lemmas which
will help us treat these in detail later. Their proofs are straight forward, following the
same line of arguments as in the above calculations of [V0, [V0, Vk]] and [Vl, [Vk, V0]].

Lemma 2.41. Let n ∈ N. For all i ∈ {1, . . . , n} consider continuously differentiable
functions

[0,∞)× RN 3 (t, z) 7→ ϕi(t, z) ∈ R,

RN × V 3 (x, y) 7→ Wi(x, y) ∈ RN+L,

[0,∞)× RN 3 (t, z) 7→ A(t, z) ∈ RN

and set

W (ξ) :=


A(t, z)

0L

A(t, z)

− n∑
i=1

ϕi(t, z)

(
Wi(x, y)

0N

)
for all ξ ∈ [0,∞)× E.
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Then

[V0,W ](ξ) =


[b̂(t, ·), A(t, ·)](z) + ∂tA(t, z)

0L

[b̂(t, ·), A(t, ·)](z) + ∂tA(t, z)

− n∑
i=1

∂tϕi(t, z)

(
Wi(x, y)

0N

)

−
N∑
j=1

A(j)(t, z)

(
∂xjU(x, y)

0N

)
−

n∑
i=1

ϕi(t, z)

(
[U,Wi](x, y)

0N

)

−
n∑
i=1

N∑
j=1

b̂(j)(t, z)

(
ϕi(t, z)

(
∂xjWi(x, y)

0N

)
+ ∂zjϕi(t, z)

(
Wi(x, y)

0N

))

for all ξ ∈ [0,∞)× E.

Lemma 2.42. Let n ∈ N. For all i ∈ {1, . . . , n} consider continuously differentiable
functions

RN 3 z 7→ ϕi(z) ∈ R,

RN × V 3 (x, y) 7→ Wi(x, y) ∈ RN+L,

[0,∞)× RN 3 (t, z) 7→ A(t, z) ∈ RN

and set

W (ξ) :=


A(t, z)

0L

A(t, z)

+
n∑
i=1

ϕi(z)

(
Wi(x, y)

0N

)
for all ξ ∈ [0,∞)× E.

Then

[Vk,W ](ξ) =


[σ·,k, A(t, ·)](z)

0L

[σ·,k, A(t, ·)](z)

+
n∑
i=1

N∑
j=1

σj,k(z)ϕi(z)

(
∂xjWi(x, y)

0N

)

+
n∑
i=1

N∑
j=1

σj,k(z)∂zjϕi(z)

(
Wi(x, y)

0N

)

for all ξ ∈ [0,∞)× E and any k ∈ {1, . . . ,M}.

Remark 2.43. Of course, if the pertaining vector fields are of the respective form only
in some open subset of [0,∞)×E, all of the formulas in Lemmas 2.41 and 2.42 still hold
locally in this subset.

Having collected these calculations for reference, we can now proceed to treat the
star shape situation (Subsection 2.4.1) and the cascade structure (Subsection 2.4.2).

64



2.4.1 Star shape

For the star shape, our strategy is to span the entire space with vector fields that are
constructed in the following fashion: Let l ∈ N and κ = (k1, . . . , kl) ∈ {1, . . . ,M}l and
define

Lκ,1 := [Vk1 , V0] and Lκ,n := [Vkn , Lκ,n−1] for all n ∈ {2, . . . , l}.

When this recursive procedure is finished, we have acquired the vector field Lκ,l. As
this is the result of successively taking Lie brackets with vector fields that follow the
"path" κ = (k1, . . . , kl) through the columns of the volatility matrix, we will use the
notation Lκ := Lκ,l. Our goal is to find verifiable criteria under which for some sequence
κ1, . . . , κN+L of such paths (of possibly different lengths) and for some

W1, . . . ,WN ∈ {V1, . . . , VM}∗,

the vector fields
W1, . . . ,WN , Lκ1 , . . . , LκN+L

,

evaluated at a suitable point ξ ∈ [0,∞) × E, span the entire N + L + N -dimensional
euclidean space.6 To this end, we will have to calculate Lκ for a general path

κ = (k1, . . . , kl(κ)) ∈
⋃
l∈N

{1, . . . ,M}l,

where we write l(κ) for the path length of κ. Thanks to Lemma 2.42, these calculations
are not too hard. Recall the definition of the functions ζk1,...,kn , n ∈ {1, . . . , l(κ)}, that
was given in (2.66).

Lemma 2.44. For any κ = (k1, . . . , kl) ∈ {1, . . . ,M}l, n ∈ {1, . . . , l}, and ξ ∈ [0,∞)×
E we have

Lκ,n(ξ) =


ζk1,...,kn(t, z)

0L

ζk1,...,kn(t, z)

+
N∑

i1,...,in=1

σi1,k1(z) · · ·σin,kn(z)

(
∂xi1 · · · ∂xinU(x, y)

0N

)

+
∑

α∈NN0 ,1≤|α|1≤n−1

pκ,n,α(z)

(
∂αxU(x, y)

0N

)
,

(2.67)

where each coefficient function pκ,n,α is a polynomial expression of the terms

∂βz σi,kj with β ∈ NN
0 , |β|1 ≤ |α|1 , i ∈ {1, . . . , N}, j ∈ {1, . . . , n}.

6Recall that due to the Notation 2.40 we interpret these vector fields in such a way that they take
values in RN+L+N .
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Proof. Fix some κ = (k1, . . . , kl) ∈ {1, . . . ,M}l. We want to prove this Lemma by
induction, so at first we notice that its claim is true for n = 1 and n = 2 – this
was shown in (2.63) and (2.65). Assume now that this Lemma’s claim holds for some
n ∈ {1, . . . , l − 1}. Then Lemma 2.42 yields

Lκ,n+1(ξ) =


ζk1,...,kn+1(t, z)

0L

ζk1,...,kn+1(t, z)


+

N∑
i1,...,in+1=1

σi1,k1(z) · · · σin+1,kn+1(z)

(
∂xi1 · · · ∂xin+1

U(x, y)

0N

)

+
N∑

i1,...,in+1=1

σin+1,kn+1(z)∂zin+1
[σi1,k1(z) · · ·σin,kn(z)]

(
∂xi1 · · · ∂xinU(x, y)

0N

)

+
∑

α∈NN0 ,1≤|α|1≤n−1

N∑
i=1

σi,kn+1(z)pκ,n,α(z)

(
∂xi∂

α
xU(x, y)

0N

)

+
∑

α∈NN0 ,1≤|α|1≤n−1

N∑
i=1

σi,kn+1(z)∂zipκ,n,α(z)

(
∂αxU(x, y)

0N

)
,

where the summands in the first two lines are already exactly of the shape we are aiming
for. All of the other terms correspond to derivatives of U that are of the order n at most.
By the induction hypothesis, each pκ,n,α is a polynomial expression of the terms ∂βz σi,kj
with β ∈ NN

0 , |β|1 ≤ |α|1, i ∈ {1, . . . , N}, j ∈ {1, . . . , n}. Trivially, the same is then true
for any partial derivative ∂zipκ,n,α and hence all of the respective coefficients in the above
formula are polynomial expressions of ∂βz σi,kj with i ∈ {1, . . . , N}, j ∈ {1, . . . , n + 1}
and β ∈ NN

0 with |β|1 bounded by the order of the respective derivative of U . Thus,
Lκ,n+1(ξ) is indeed of the desired form, which completes the proof.

Remark 2.45. Having a closer look at the formula in the proof of Lemma 2.44, we
note that the coefficients pκ,n,α can be calculated by the following scheme:

1. For all n ∈ N define
pκ,n,0N := 0

and

pκ,n,α :=
n∏
j=1

σij ,kj

for all α ∈ NN
0 with |α|1 = n and ∂αx = ∂xi1 · · · ∂xin .

2. Now we can recursively calculate

pκ,n,α =
N∑
i=1

σi,kn
(
∂zipκ,n−1,α + pκ,n−1,α−ei · 1αi 6=0

)
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for all n ≥ 2 and α ∈ NN
0 with |α|1 ∈ {1, . . . , n − 1}, where ei denotes the i-th

canonical unit vector in RN .

Let us now consider a finite sequence of paths

κ1, . . . , κN+L ∈
⋃
l∈N

{1, . . . ,M}l

and the corresponding sequence of vector fields

Lκ1 , . . . , LκN+L
∈ Lmax{l(κ1),...,l(κN+L)},

as defined in (2.67). Let ξ = (t, x, y, z) ∈ [0,∞) × E and assume that (H2) holds in z,
i.e. there are

w1, . . . , wN ∈ {σ·,1, . . . , σ·,M}∗

such that w1(z), . . . , wN(z) ∈ RN are linearly independent. Setting

W1 :=


w1

0L

w1

 , . . . ,WN :=


wN

0L

wN

 ∈ {V1, . . . , VM}∗,
we want to find a sufficient condition for

W1(z), . . . ,WN(z), Lκ1(ξ), . . . , LκN+L
(ξ) ∈ L(ξ)

to be linearly independent. We first note that for each κn = (kn,1, . . . , kn,l(κn)) the term

ζkn,1,...,kn,l(κn)
(t, z) ∈ RN

can of course be expressed as a linear combination of the linearly independent vectors
w1(z), . . . , wN(z) ∈ RN , and consequently the first summand

ζkn,1,...,kn,l(κn)
(t, z)

0L

ζkn,1,...,kn,l(κn)
(t, z)

 ∈ RN+L+N

of Lκn(ξ) is a linear combination of W1(z), . . . ,WN(z) ∈ RN+L+N . All of its other
summands are zero in their last N components. Therefore, the vectors

W1(z), . . . ,WN(z), Lκ1(ξ), . . . , LκN+L
(ξ) ∈ RN+L+N

are linearly independent if and only if

L̄κ1(ξ), . . . , L̄κN+L
(ξ) ∈ RN+L
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are, where

L̄κn(ξ) =
N∑

i1,...,il(κn)=1

σi1,kn,1(z) · · ·σil(κn),kn,l(κn)
(z)∂xi1 · · · ∂xil(κn)

U(x, y)

+
∑

α∈NN0 ,1≤|α|≤l(κn)−1

pκn,l(κn),α(z)∂αxU(x, y)

(2.68)

for every n ∈ {1, . . . , N +L}. Note that these vector fields in fact no longer depend on
time, which is why we can simply write

L̄κn(x, y, z) = L̄κn(ξ).

The following Theorem collects the insight we have gained so far.

Theorem 2.46. Let (x, y, z) ∈ int(E) and assume that the following two conditions
hold.

(i) Condition (H2) holds in z.

(ii) There are
κ1, . . . , κN+L ∈

⋃
l∈N

{1, . . . ,M}l

such that

L̄κ1(x, y, z), . . . , L̄κN+L
(x, y, z) are linearly independent.

Then the local weak Hörmander condition holds at (x, y, z).

Proof. As we have reasoned above, the assumptions of this Theorem imply that there
are W1, . . . ,WN ∈ {V1, . . . , VM}∗ such that the span of

W1(z), . . . ,WN(z), Lκ1(t, x, y, z), . . . , LκN+L
(t, x, y, z) ∈ L

(
t, x, y, z

)
has the maximum dimension N + L + N for all t ∈ [0,∞), and this is sufficient for
(2.56).

Remark 2.47. We note that the signal (the only time-dependent object present) is
not part of any of the vector fields featured in Theorem 2.46, which is why uniformity
in time (as required for the local weak Hörmander condition) is entirely unproblematic.
Since time-derivatives do not occur at all in the construction in this section, we could
in principal exclude the signal S from our standing smoothness assumption (H1).

In general, the assumptions of Theorem 2.46 can turn out to be still very hard to
verify, since the vector fields in (2.68) have a rather complicated structure. However,
we can present certain interesting situations in which they can be radically simplified.
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Corollary 2.48. Assume that σ is constant and that its only value is a surjective
matrix. Then the local weak Hörmander condition holds at any (x, y, z) ∈ int(E) where
for some κ1, . . . , κN+L ∈

⋃
l∈N{1, . . . ,M}l the vectors

N∑
i1,...,il(κn)=1

σi1,kn,1 · · · σil(κn),kn,l(κn)
∂xi1 · · · ∂xil(κn)

(
F (x, y)

G(x, y)

)
, n ∈ {1, . . . , N + L},

are linearly independent.

Proof. Firstly, surjectivity of σ(z) ≡ σ implies condition (i) of Theorem 2.46 for all
z ∈ RN , as was already explained right after the introduction of (H2). Secondly,
it follows from Remark 2.45 that for constant σ all of the coefficients pκn,l(κn),α with
1 ≤ |α|1 ≤ l(κn)−1 vanish. Therefore, L̄κ1 , . . . , L̄κN+L

can be simplified to the respective
expressions given in this Corollary. Their linear independence yields condition (ii) of
Theorem 2.46 which can then be applied to complete the proof.

Next, we will focus on the situation in which M = N , and the sequence of paths
κ1, . . . , κN+L is such that for some k1, . . . , kN+L ∈ {1, . . . , N} we have

κn = (k1, . . . , kn) for every n ∈ {1, . . . , N + L}, (2.69)

i.e. each path is a one-step extension of its predecessor.

Corollary 2.49. Let M = N and assume that σ : RN → RN×N takes values only in
the set of invertible diagonal matrices. Then the local weak Hörmander condition holds
at any (x, y, z) ∈ int(E) where for some k1, . . . , kN+L ∈ {1, . . . , N} the vectors

∂xk1 · · · ∂xkn

(
F (x, y)

G(x, y)

)
, n ∈ {1, . . . , N + L}, (2.70)

are linearly independent.

Proof. Once again, we want to apply Theorem 2.46. By invertibility of σ(z), all of its
columns are linearly independent, and hence condition (i) is trivially fulfilled for all z ∈
RN . Only the validity of condition (ii) remains to be shown. We let n ∈ {1, . . . , N +L}
and we use the same notation as in (2.69). The vector field L̄κn can be calculated by
the formula (2.68), and since σ(z) is a diagonal matrix, the first sum is reduced to just
the one summand

σk1,k1(z) · · ·σkn,kn(z)∂xk1 · · · ∂xknU(x, y),

while the second sum is reduced to
n−1∑
l=1

pκn,n,α(l)(z)∂xk1 · · · ∂xklU(x, y)
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with α(l) := ek1+. . .+ekl , as follows immediately from Remark 2.45. Invertibility of σ(z)

yields that σk1,k1(z) · · ·σkn,kn(z) can never be zero, so none of the leading coefficients
of L̄κn(x, y, z) vanish. Hence, starting with n = 1, we can successively add multiples of
L̄κn(x, y, z) to L̄κn+1(x, y, z) in order to eliminate any summand in L̄κn+1(x, y, z) with
derivatives of the order less than n+ 1. The resulting vectors are clearly linearly inde-
pendent if and only if L̄κ1(x, y, z), . . . , L̄κN+L

(x, y, z) are. This leads to the conclusion
that linear independence of

σk1,k1(z) · · ·σkn,kn(z)∂xk1 · · · ∂xknU(x, y), n ∈ {1, . . . , N + L},

is sufficient for condition (ii) of Theorem 2.46. As leaving out scaling factors has no
effect on linear independence, the proof is completed.

Corollary 2.50. If M = N = 1 and σ : R → R is strictly positive, the local weak
Hörmander condition holds at any (x, y, z) ∈ int(E) where the vectors

∂nx

(
F (x, y)

G(x, y)

)
, n ∈ {1, . . . , 1 + L},

are linearly independent.

Proof. For N = 1 we have no other choice than kn = 1 for all n ∈ {1, . . . , 1 + L}, and
the assertion follows immediately from Corollary 2.49.

Remark 2.51. Since all of the calculations in this section are done locally, the repre-
sentations of Lκ (and L̄κ) for different coefficient functions coincide in some open subset
of [0,∞) × E, when the respective coefficient functions coincide in that set (compare
Remark 2.43). In particular, Corollaries 2.49 and 2.50 remain valid if σ is an invertible
diagonal matrix (or strictly positive) only in a small neighbourhood of the particular
point z.

Corollary 2.50 contains Theorem 3 of [36] as a special case, and thus the following
example can be treated in the same way as in Section 5.3 of [36].

Example 2.52. Let us consider the stochastic Hodgkin-Huxley model (SHH) with
Ornstein-Uhlenbeck type input with strictly positive volatility σ ∈ C∞(R). In order to
apply Corollary 2.50, we have to calculate the derivatives of F and G from (1.5) and
(1.6) with respect to x in R× (0, 1)3. We get

∂xF (x, y) = −36y41 − 120y32y3 < 0 for all (x, y) ∈ R× (0, 1)3

and then
∂nxF (x, y) = 0 for all (x, y) ∈ R× (0, 1)3
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for any n ≥ 2. Hence, the vectors

∂nx

(
F (x, y)

G(x, y)

)
, n ∈ {1, . . . , 4},

are linearly independent if and only if

∂nxG(x, y) =


∂nxα1(x)(1− y1)− ∂nxβ1(x)y1

∂nxα2(x)(1− y2)− ∂nxβ2(x)y2

∂nxα3(x)(1− y3)− ∂nxβ3(x)y3

 , n ∈ {2, 3, 4},

are. This is of course equivalent to the condition

D(x, y) := det
(
∂2xG(x, y) ∂3xG(x, y) ∂4xG(x, y)

)
6= 0.

This determinant is discussed numerically in Section 5.4 of [36]. In particular, this
numerical study yields that in the equilibrium (x∗, y∗) of the zero-input deterministic
Hodgkin-Huxley system we have D(x∗, y∗) 6= 0.7 Continuing our line of thought from
Example 2.28, this is the other half of assumption 4 of Theorem 2.3. We have taken
care of assumptions 1 and 5 in Examples 2.4 and 2.16, respectively. Since smoothness
of the coefficients is evident and the signal S is smooth and periodic by assumption,
this means that every requirement of Theorem 2.3 is fulfilled, and hence the stochastic
Hodgkin-Huxley system is positive Harris recurrent (compare [37, Theorem 2.7]).

Example 2.53. In order to provide an elementary application of Corollary 2.49 with
N > 1, we take a look at the toy example (see Example 1.4) and show that, for a suitable
choice of the coefficient functions g and h, the local weak Hörmander condition holds
at (x, y, z) ∈ int(E) whenever x is taken from some small open environment U ⊂ RN of
x∗ = 0N . For x-values close to this point, the function j from (1.15) vanishes and is of
no relevance for our considerations. Let k1, . . . , kN+L ∈ {1, . . . , N}. For F and G as in
(1.15) and (1.19), the vectors from (2.70) are clearly linearly independent if and only if

ek1 + ∂xk1

(
h(x)

g(x)

)
, ∂xkn · · · ∂xk1

(
h(x)

g(x)

)
, n ∈ {2, . . . , N + L}, (2.71)

are linearly independent. For a simple example let us choose L = M = N = 2 and
suppose that for x ∈ U we have

h(x) =

(
x1

x1x2

)
, g(x) =

(
x21x2 + 1

x21x
2
2 + 1

)
. (2.72)

7For the sake of completeness, we should mention Proposition 7 from [36] which states that the set
of all (x, y) ∈ R× (0, 1)3 where D(x, y) vanishes has in fact Lebesgue measure zero.
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Note that, for sufficiently small U , it is obviously possible to extend this choice for h
beyond U while still obeying (1.17). Calculating the terms from (2.71) with k1 = k3 = 1,
k2 = k4 = 2, the resulting vectors

2

x2

2x1x2

2x1x
2
2

,


0

1

2x1

4x1x2

,


0

0

2

4x2

,


0

0

0

4


are trivially linearly independent. Thus, the local weak Hörmander condition is satisfied
in any (x, y, z) ∈ int(E) where x ∈ U .

Together with Examples 2.5, 2.17, and 2.29, this means that for any smooth periodic
signal we can apply Theorem 2.3. The respective degenerate diffusion with internal vari-
ables and randomly perturbed time-inhomogeneous deterministic input that is derived
from (1.14) is therefore positive Harris recurrent.

2.4.2 Cascade structure

For this section, we will stick to the case

M = N = 1.

In other words, the x- and z-variables have only one component each, and a typical
element of the state space is denoted as

ξ = (t, x, y, z) = (t, x, y1, . . . , yL, z)
> ∈ [0,∞)× E = [0,∞)× R× V × R.

Hence, the function F : R× V → R also has only one component and

U(x, y) =

(
F (x, y)

G(x, y)

)
=


F (x, y)

G1(x, y)
...

GL(x, y)

 ∈ R1+L for all (x, y) ∈ R× V .

We set
B := {z ∈ R |σ(z) 6= 0} ⊂ R (2.73)

which is open, since σ is continuous. We tacitly assume that B is non-empty, since
otherwise any randomness would be removed from our model. Note that since in di-
mension M = N = 1 the condition (H2) becomes much simpler, B is in fact the set of
all z ∈ R for which (H2) holds. Moreover, we fix an open set A ⊂ R× V and write

E∗ := A× B ⊂ E.

Let us first give a formal definition of what we mean by a cascade structure.
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(H3) Cascade condition for G: In A we have

1. ∂xG1, ∂y1G2, ∂y2G3, . . . , ∂yL−1
GL 6= 0,

2. ∂yiGj = 0 for all i ∈ {1, . . . , L} and j ∈ {i+ 2, . . . , L+ 1}.

A more compact formulation of (H3) would be that in A for all i ∈ {1, . . . , L} we have

∂ξiUi+1 6= 0 and ∂ξiUj = 0 for all j ∈ {i+ 2, . . . , L+ 1},

or in less strict but maybe more intuitive notation

∂ξiU =


�i

6= 0

0L−i

 for all i ∈ {1, . . . , L},

where �i ∈ Ri indicates that we do not care about the values of these first i entries.
Intuitively speaking, while the variable ξi may or may not influence the first i compo-
nents of U , it definitely influences Ui+1 and definitely does not immediately influence
any components afterwards – hence the term cascade structure.

This setting is inspired by Section 5.3 of [17], where the authors discuss an approx-
imating diffusion for a model of interacting neurons which are divided into two groups.
In each of these groups, a current is passed on from one neuron to the next, while only
at the ends of these chains neurons are subject to noise and interact with neurons from
the other group. The diffusion given by (5.26) in [17] features two cascades that are
similar in nature to the scenario we study in this section.

If we start with the vector field

V1 =


σ

0L

σ


corresponding to the volatility and then keep taking Lie brackets with the vector field
V0 corresponding to the drift, intuition suggests that the structure from (H3) will turn
up there again in some sense, providing more and more linearly independent vectors.
So, this time we set

L1 := [V0, V1], and Ln := [V0, Ln−1] for all n ≥ 2. (2.74)

We have already calculated L1 and L2 in (2.62) and (2.64). Using Lemma 2.41, we are
able to get a better grasp of what Ln looks like for larger n. This is the content of the
following Lemma.
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Lemma 2.54. Let n ∈ {1, . . . , L} and assume that the cascade condition (H3) holds.
Then for all ξ = (t, x, y, z) ∈ [0,∞)× E∗ we can write

Ln(ξ) =


An(t, z)

0L

An(t, z)

−
(
L̄n(ξ)

0

)
, (2.75)

where

L̄n(ξ) :=
mn−1∑
i=1

ϕn,i(t, z)Wn,i(x, y) + (−1)n+1σ(z)Wn,mn(x, y) (2.76)

for some mn ∈ N and smooth functions

[0,∞)× B 3 (t, z) 7→ ϕn,i(t, z) ∈ R, i ∈ {1, . . . ,mn − 1},

A 3 (x, y) 7→ Wn,i(x, y) ∈ R1+L, i ∈ {1, . . . ,mn},

[0,∞)× B 3 (t, z) 7→ An(t, z) ∈ R,

with

Wn,i =

(
�n

01+L−n

)
for all i ∈ {1, . . . ,mn − 1}, Wn,mn =


�n

6= 0

01+L−(n+1)


everywhere in A.

Proof. In analogy to Lemma 2.44, we prove this Lemma by induction. As seen in
(2.62), a representation of Ln as in (2.75) holds for n = 1. We assume now that such
a representation holds for some n ∈ {1, . . . , L− 1}. Set ϕn,mn(t, z) := (−1)n+1σ(z) for
all (t, z) ∈ [0,∞)× B and let ξ = (t, x, y, z) ∈ [0,∞)× E∗. Then, according to Lemma
2.41, we obtain

Ln+1(ξ) =


[b̂(t, ·), An(t, ·)](z) + ∂tAn(t, z)

0L

[b̂(t, ·), An(t, ·)](z) + ∂tAn(t, z)

− mn∑
i=1

∂tϕn,i(t, z)

(
Wn,i(x, y)

0

)

− An(t, z)

(
∂xU(x, y)

0

)
−

mn∑
i=1

ϕn,i(t, z)

(
[U,Wn,i](x, y)

0

)

−
mn∑
i=1

b̂(t, z)

(
ϕn,i(t, z)

(
∂xWn,i(x, y)

0

)
+ ∂zϕn,i(t, z)

(
Wn,i(x, y)

0

))
.

The first summand is already of the desired type, and every other summand has a
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vanishing last component. Therefore, we are left with the task to study the term

L̄n+1(ξ) :=
mn∑
i=1

∂tϕn,i(t, z)Wn,i(x, y) + An(t, z)∂xU(x, y) +
mn∑
i=1

ϕn,i(t, z)[U,Wn,i](x, y)

+
mn∑
i=1

b̂(t, z)
(
ϕn,i(t, z)∂xWn,i(x, y) + ∂zϕn,i(t, z)Wn,i(x, y)

)
.

(2.77)

We have to prove that we can extract one summand from this sum that is of the type
(−1)n+2σ(z)W (x, y) with some

W (x, y) =


�n+1

6= 0

01+L−(n+2)

 ,

while every other summand is of the type ϕ(t, z)V (x, y) with some

V (x, y) =

(
�n+1

01+L−(n+1)

)
.

In order to do so, we will expand the expressions in (2.77) step for step and discuss the
occurring terms one by one.

Due to our induction hypothesis, we get that

Wn,i(x, y), ∂xWn,i(x, y) are of the type

(
�n+1

01+L−(n+1)

)
for all i ∈ {1, . . . ,mn},

and due to (H3), the same is true for ∂xU(x, y). This is why it remains to look at

mn∑
i=1

ϕn,i(t, z)[U,Wn,i](x, y) =
mn∑
i=1

ϕn,i(t, z)
1+L∑
j=1

(
U (j)∂ξjWn,i −W (j)

n,i ∂ξjU
)

(x, y).

Thanks again to the induction hypothesis,

∂ξjWn,i(x, y) =

(
�n+1

01+L−(n+1)

)
for all i ∈ {1, . . . ,mn} and j ∈ {1, . . . , 1 + L},

which is of course still valid for the same terms multiplied by U (j)(x, y). Therefore, it
remains to discuss

−
mn∑
i=1

ϕn,i(t, z)
1+L∑
j=1

W
(j)
n,i (x, y)∂ξjU(x, y).

Using the induction hypothesis once again, we know in particular that

W
(j)
n,i (x, y) = 0 for all i ∈ {1, . . . ,mn − 1} and j ∈ {n+ 1, . . . , 1 + L}
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and
W (j)
n,mn(x, y) = 0 for all j ∈ {n+ 2, . . . , 1 + L}.

Thus, it remains to look at

−
mn−1∑
i=1

ϕn,i(t, z)
n∑
j=1

W
(j)
n,i (x, y)∂ξjU(x, y)− (−1)n+1σ(z)

n+1∑
j=1

W (j)
n,mn(x, y)∂ξjU(x, y).

Using (H3) again, we see that

∂ξjU(x, y) =

(
�n+1

01+L−(n+1)

)
for all j ∈ {1, . . . , n},

which implies that it now remains to comment on the summand

(−1)n+2σ(z)W (n+1)
n,mn (x, y)∂ξn+1U(x, y).

The two leading scalar factors do not vanish (by (2.73) and by the induction hypothesis),
and

∂ξn+1U(x, y) =


�n+1

6= 0

01+L−(n+2)


thanks to (H3). Thus, L̄n+1(ξ) is in fact of the desired form with

Wn+1,mn+1(x, y) := W (n+1)
n,mn (x, y)∂ξn+1U(x, y) =


�n+1

6= 0

01+L−(n+2)

 ,

and the proof by induction is complete.

Lemma 2.54 states that the structure of U that is given by (H3) is indeed passed
on to L1, . . . , LL in some sense. In particular, this entails the following Corollary.

Corollary 2.55. Assume that (H3) holds. Then for all ξ ∈ [0,∞)× E∗ the vectors

L̄1(ξ), . . . , L̄L(ξ) ∈ R1+L

from (2.76) are linearly independent.

Proof. An immediate consequence of Lemma 2.54 is that for arguments from [0,∞)×E∗

the vector fields L̄1, . . . , L̄L are of the type

L̄n =


�n

6= 0

01+L−(n+1)

 for all n ∈ {1, . . . , L},

which in turn yields their linear independence.
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Let us now assume that (H3) holds and let ξ = (t, x, y, z) ∈ [0,∞) × E∗. Lemma
2.54 implies that Ln differs from

−

(
L̄n(ξ)

0

)
only by a multiple of the volatility V1(z) which is non-zero since z ∈ B. Corollary 2.55
above lets us conclude that

V1(z), L1(ξ), . . . , LL(ξ)

are linearly independent. However, 1 + L vectors are obviously not enough to span
R1+L+1 which is our goal in view of (2.56). What we need is one more vector that
decouples the first and the last variable (which coincide in V1(z)). Defining an additional
vector field LL+1 by taking the Lie bracket of V0 and LL again does not seem particularly
promising, as the cascade has already run through all of the variables.8 Instead, we
work with the volatility as we did in the star shape situation, i.e. we set

LL+1(ξ) :=[V1, [V1, V0]](ξ) = −[V1, L1](ξ)

=


ζ1,1(t, z)

0L

ζ1,1(t, z)

+ σ2(z)

(
∂2xU(x, y)

0

)
+ σ(z)σ′(z)

(
∂xU(x, y)

0

)
,

where the last equality follows from (2.63). If (H3) holds, this expression takes the
slightly simpler shape

LL+1(ξ) =


ζ1,1(t, z)

0L

ζ1,1(t, z)

+ σ2(z)


∂2xF (x, y)

∂2xG1(x, y)

0L

+ σ(z)σ′(z)


∂xF (x, y)

∂xG1(x, y)

0L

 .

Using similar arguments as in the proof of Corollary 2.49, we see after subtracting a
suitable linear combination of V0(z) and L1(ξ) that LL+1(ξ) is linearly independent from
V1(z), L1(ξ), . . . , LL(ξ) whenever the following condition is fulfilled:

(H4) Decoupling of X and Z: For all (x, y) ∈ A we have

∂xF (x, y)∂2xG1(x, y) 6= ∂2xF (x, y)∂xG1(x, y).

Note that (if (H3) already holds) this is clearly equivalent to the following more handy
variant.

(H4’) Decoupling of X and Z: For all (x, y) ∈ A the vectors ∂xU(x, y) and ∂2xU(x, y)

are linearly independent.
8Of course, this construction might work in certain cases, but in general we simply cannot tell.
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This section’s essence is summed up in the following Theorem which follows immediately
from the considerations above.

Theorem 2.56. If (H3) and (H4) are valid, the local weak Hörmander condition holds
at any (x, y, z) ∈ E∗.

Proof. As follows from Corollary 2.55 and the reasoning outlined above, the assumptions
(H3) and (H4) imply that for all ξ = (t, x, y, z) ∈ [0,∞)× E∗ the vectors

V1(z), L1(ξ), . . . , LL+1(ξ) ∈ L(ξ)

are linearly independent. This is sufficient for the local weak Hörmander condition to
hold at (x, y, z).

Example 2.57. Let us return to the toy example, but this time with the choice for G
that was taken in (1.20). Let A ⊂ (−1, 1)× [0,∞)L be any non-empty open set, assume
that the set B from (2.73) is non-empty, and let (t, x, y, z) ∈ [0,∞)× E∗. Since

∂xG(x, y) =

(
g′1(x)

0L−1

)
and ∂ykG(x, y) =


0k−1

−1

g′k+1(yk)

0L−(k+1)

 for all k ∈ 1, . . . , L− 1,

the condition (H3) is obviously fulfilled if and only if

g′1(x) 6= 0 and g′k+1(yk) 6= 0 for all k ∈ 1, . . . , L− 1, (2.78)

for all (x, y) ∈ A. Note that by (1.18) the function j vanishes in A and hence

∂xF (x, y) = −f(y)(1 + h′(x)), ∂2xF (x, y) = −f(y)h′′(x), ∂2xG1(x, y) = g′′1(x).

Since f is strictly positive, this implies that the condition (H4) is equivalent to

(1 + h′(x))g′′1(x) 6= h′′(x)g′1(x) (2.79)

in this context. Note that this condition depends solely on x.
Now let us assume that A is some small open environment of the equilibrium (x∗, y∗)

that we established in Example 2.29. Since for the sake of this toy example we have
complete freedom in choosing g1, . . . , gL and h, the conditions (2.78) and (2.79) are
quite easy to satisfy – just suppose, for example, that in E∗ the functions g1, . . . , gL are
locally linear but non-constant and that the curvature h′′ is locally non-zero.

Together with Examples 2.5, 2.17, and 2.29, this means that the assumptions of
Theorem 2.3 are fulfilled for any smooth periodic signal. As in Example 2.53, we have
thus established positive Harris recurrence for the stochastic version of this variant of
(1.14).
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Example 2.58. Even though it might seem like the rotor model from Example 1.3
should involve some kind of cascade structure (at least in the setting with one-sided
input), calculating the derivatives of the respective function U shows that it actually
does not (even after renumbering the variables). If we apply the strategy from (2.74)
anyway9 and do calculations in analogy to Lemma 2.54, we can span N + L space
directions in the one-sided case at points where ∂y3G1 and ∂y4G2 do not vanish and
in the two-sided case at points where ∂y2G1 and ∂y4G1 do not vanish. For the time-
homogeneous system from [11] which includes no explicit external equations, one can
allow those derivatives to vanish as long as some higher order of them does not, as the
authors prove in [11, Lemma 5.3]. In our case however, time-inhomogeneity and the
extra dependence on z in the drift make this more difficult. Decoupling of X and Z

is even more problematic, since any dependence of U on the x-variable is linear, which
rules out working with a condition like (H4). At the moment, we do not know how to
provide a method that will work under assumptions that are neither too restrictive nor
physically irrelevant.

9For the case of two-sided input, we have N = 2 and therefore we have to do the same construction
twice: Once just as in (2.74) and once with V1 replaced with V2. For the respective calculations, recall
that Lemma 2.41 works for any N ∈ N.
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Chapter 3

Estimation of the periodicity and the

shape of the deterministic signal

In this chapter, we want to study a statistical model in which the deterministic signal
S depends on a set of parameters. More precisely, we assume that there is an open set
Θ ⊂ Rd such that

S = S(ϑ,T ) with (ϑ, T ) ∈ Θ× (0,∞),

where T is the signal’s periodicity and ϑ is a d-dimensional shape parameter. A natural
goal is to estimate ϑ and T simultaneously from continuous observation of X. However,
observing X entirely may not make sense in many models: The external variable Z can
be of a rather abstract nature and, for example, in the Hodgkin-Huxley model the only
variable that is arguably observable is the membrane potential X.

In spite of that, Section 3.1 shows that from a statistical point of view it does not
matter whether we can observe X, Z or the entire process X (Remark 3.1, Proposi-
tion 3.3). Since Z is the most convenient process to handle among all of these, our
considerations in the sequel are confined to this external variable. Being able to relate
statistical problems entirely to Z means that as long as this variable fits our setting,
we can treat any example of (SDS) (including in particular those that were introduced
in Section 1.2).

In Section 3.2, we prove Local Asymptotic Normality for the sequence of statistical
experiments corresponding to continuous observation of Z over growing time intervals
[0, n] for n → ∞. The local scales are identified as n−1/2 for the shape and n−3/2 for
the periodicity (Theorem 3.11). Section 3.2 is essentially a generalised and extended
version of the article [28] in which we only treated the case M = N = 1.
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3.1 Observing X, X, or Z

We start this section with a fundamental observation: If the starting point is known,
observing only X is actually no restriction, since we can successively reconstruct the
remaining variables. Let us explain this step for step in the following remark.

Remark 3.1. Assume that the starting point X0 = (x0, y0, z0) ∈ E is known. Fix
a finite time horizon t0 ∈ (0,∞) and assume that the trajectory (Xt)t∈[0,t0] has been
observed and is thus also known. Then the function

[0, t0]× V 3 (t, y) 7→ G(Xt, y)

is completely known, and given the structure of the internal equation in (SDS), the tra-
jectory (Yt)t∈[0,t0] is now given as the solution to the deterministic initial value problem

dYt = G(Xt, Yt)dt for all t ∈ [0, t0],

Y0 = y0.

Now we know both (Xt)t∈[0,t0] and (Yt)t∈[0,t0], and by rearranging the first line of (SDS),
this information allows us to calculate

Zt = z0 +Xt − x0 −
∫ t

0

F (Xs, Ys)ds for all t ∈ [0, t0].

All in all, we have reconstructed every component of (Xt)t∈[0,t0] just from (Xt)t∈[0,t0] and
the starting point X0.

Remark 3.1 is the legitimation for us to work with the idealised assumption that
we can in fact observe X. Next, we will precisely describe the corresponding statistical
experiment.

Incorporating the parameters into our general notation, we rewrite the equation
(SDS) for X = (X, Y, Z) as

dXt = B(ϑ,T )(t,Xt)dt+ Σ(Xt)dWt, (SDS’)

where

B(ϑ,T ) : [0,∞)× E→ RN+L+N , (t, x, y, z) 7→


F (x, y) + S(ϑ,T )(t) + b(z)

G(x, y)

S(ϑ,T )(t) + b(z)

 ,

for each (ϑ, T ) ∈ Θ× (0,∞), while the volatility Σ remains the same as in (1.4).
We will always assume that for all sets of parameters (ϑ, T ) ∈ Θ × (0,∞) and all

deterministic starting points X0 ∈ E the equation (SDS’) has a unique strong solution
X(ϑ,T ) on (Ω,A) under P.
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In order to conveniently work within the theoretical framework of parameter esti-
mation, we do not want to have a family of processes but rather a family of probability
measures. To that end, we introduce the canonical path space(

C([0,∞); E),B
(
C([0,∞); E)

))
,

where B
(
C([0,∞); E)

)
denotes the Borel-σ-field with respect to the topology of locally

uniform convergence. On this space, we can define the canonical process π = (πt)t∈[0,∞)

by setting
πt : C([0,∞); E)→ E, ω 7→ ω(t) for all t ∈ [0,∞).

We write
P(ϑ,T ) := L

(
[0,∞) 3 t 7→ X(ϑ,T )

t

∣∣∣P)
for the law on B

(
C([0,∞); E)

)
of (the trajectory of) the unique strong solution of (SDS’)

when issued from X0 ∈ E with the parameter (ϑ, T ) ∈ Θ× (0,∞). Then

L
(
π
∣∣P(ϑ,T )

)
= L

(
X(ϑ,T )

∣∣P) ,
and hence we have shifted the parameter dependence from the process to the measure.

Observing the process continuously then means working with the filtration given by

Ft :=
⋂

r∈(t,∞)

σ(πs | s ∈ [0, r]) ⊂ B
(
C([0,∞); E)

)
for all t ∈ [0,∞)

and gives rise to the sequence of statistical experiments defined by

EX :=
(
C([0,∞); E),Fn,

{
P(ϑ,T )|Fn

∣∣ (ϑ, T ) ∈ Θ× (0,∞)
} )

n∈N.

Our next step will be to calculate the log-likelihood ratios

log
dP(ϑ̃,T̃ )|Ft
dP(ϑ,T )|Ft

with (ϑ, T ), (ϑ̃, T̃ ) ∈ Θ× (0,∞), t ∈ [0,∞),

for this experiment, as our ultimate goal is to show that it is Locally Asymptotically
Normal. Before we proceed, let us briefly recall what that means.

Definition 3.2. Let Ξ ⊂ RD be an open set and assume that for each n ∈ N the set
{Pξn | ξ ∈ Ξ} is a family of probability measures on the measurable space (Ωn,An). The
sequence (

Ωn,An, {Pξn | ξ ∈ Ξ}
)
n∈N

of statistical experiments is termed Locally Asymptotically Normal in ξ, if there is a
sequence Sξ = (Sξn)n∈N of random variables

Sξn : (Ωn,An)→
(
RD,B(RD)

)
,
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a symmetric and positive definite matrix Iξ ∈ RD×D, and a sequence of symmetric and
positive definite matrices (δξn)n∈N ⊂ RD×D with δξn ↓ 0D×D,1 such that the following two
properties hold.

1. For every bounded sequence (hn)n∈N ⊂ RD the log-likelihood ratio admits a
quadratic expansion

log
dPξ+δ

ξ
nhn

n

dPξn
= h>nSξn −

1

2
h>nIξhn + oPξn(1) (3.1)

under Pξn. Here, oPξn(1) denotes an (arbitrary) sequence of random variables

Rn : (Ωn,An)→
(
R,B(R)

)
for all n ∈ N

that vanishes in probability under (Pξn)n∈N, i.e.

Pξn(|Rn| > ε)
n→∞−−−→ 0 for all ε > 0.

2. We have weak convergence

L
(
Sξn
∣∣Pξn) n→∞−−−→ N

(
0D, Iξ

)
. (3.2)

In this situation, we call (δξn)n∈N the local scale, Sξ the Score, and Iξ the Fisher Infor-
mation in ξ.

The concept behind Local Asymptotic Normality is to fix ξ ∈ Ξ and then reparam-
eterise the experiment at stage n around ξ by looking at ξ + δξnh and letting

h ∈ Ξξ
n :=

{
v ∈ RD

∣∣ ξ + δξnv ∈ Ξ
}

take the role of a local parameter. Since δξn is decreasing, for growing n ∈ N the range
Ξξ
n of possible values of h will tend to the full space RD, and thanks to (3.1) and (3.2),

we can associate a limit experiment(
Ωξ
∞,Aξ∞, {Pξ,h∞ |h ∈ RD}

)
which has

log
dPξ,h∞
dPξ,0∞

= h>Sξ∞ −
1

2
h>Iξh for all h ∈ RD,

where
L
(
Sξ∞
∣∣Pξ,0∞ ) = N

(
0D, Iξ

)
.

1Monotonicity is to be understood in the sense of the partial order induced by setting A ≥ B if and
only if A−B is non-negative definite.
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In other words, the limit experiment has the structure of a Gaussian shift experiment
– a well-studied model in which much is known about efficient parameter estimation.
The importance of Local Asymptotic Normality lies in the fact that certain statistical
properties of a Gaussian shift can be carried over to the pre-asymptotic level in some
sense. This concept was introduced by LeCam in 1960 (see [47]) and has since turned
out to be very fruitful. The most important results that can be proved following this
idea are Hájek’s Convolution Theorem and the Local Asymptotic Minimax Theorem
which are strong tools in establishing optimality for sequences (ξ̂n)n∈N of estimators
for the unknown parameter ξ, when the rescaled estimation errors are stochastically
asymptotically equivalent to the central statistic Zn := I−1ξ Sξn of the experiment, i.e.

(δξn)−1(ξ̂n − ξ) = Zn + oPξn(1) for n→∞.

See [48], [12], [45], or [29] for a detailed presentation of the relevant theory.

Having revised our knowledge about Local Asymptotic Normality, we can now return
to our train of thought. A closer look at (SDS’) reveals that the drift coefficient depends
on the parameter (ϑ, T ) ∈ Θ× (0,∞), while the volatility does not. Hence, we can use
[29, Theorem 6.10] in order to determine the log-likelihood ratios. For technical reasons
(which will become apparent shortly), we will make the following assumption.

(A1) Uniform ellipticity of σσ>: The mapping σσ> : RN → RN×N is uniformly
elliptic, i.e. there is a σ0 ∈ (0,∞) such that

x>
(
σσ>(z)

)
x ≥ σ0 |x|2 for all x, z ∈ RN .

Uniform ellipticity is of course equivalent to the assertion that at each z ∈ RN the
symmetric N × N -matrix σσ>(z) is positive definite and its smallest eigenvalue is no
smaller than σ0 which does not depend on z. This is in turn equivalent to σσ>(z) being
invertible with σ−10 as an upper bound for the eigenvalues of its symmetric inverse, so
in particular

x>
(
σσ>(z)

)−1
x ≤ σ−10 |x|

2 for all x, z ∈ RN . (3.3)

Since
(
σσ>(z)

)−1 is symmetric and positive definite, it possesses a square root, i.e. there
is some symmetric and positive definite

(
σσ>(z)

)−1/2 ∈ RN×N such that((
σσ>(z)

)−1/2)2
=
(
σσ>(z)

)−1
.

Note that invertibility of σσ>(z) also implies that σ>
(
σσ>

)−1
(z) ∈ RM×N is a right

inverse of σ(z). Thus, (A1) is an even stronger variant of the non-degeneracy condition
(C5) that we used in Section 2.3.
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We are now prepared to apply [29, Theorem 6.10]. Let ξ = (t, x, y, z) ∈ [0,∞)× E.
Comparing the drift coefficients of (SDS’) with different parameters (ϑ̃, T̃ ), (ϑ, T ) ∈
Θ× (0,∞), we see that

(
B(ϑ̃,T̃ ) −B(ϑ,T )

)
(ξ) =


S(ϑ̃,T̃ ) − S(ϑ,T )

0L

S(ϑ̃,T̃ ) − S(ϑ,T )

 (t)

=


σσ>(z) 0N×L σσ>(z)

0L×N 0L×L 0L×N

σσ>(z) 0N×L σσ>(z)


(

0N+L(
σσ>

)−1
(z)
(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(t)

)

= ΣΣ>(x, y, z)

(
0N+L(

σσ>
)−1

(z)
(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(t)

)
=: ΣΣ>(x, y, z)Γ(t, x, y, z).

Defining Γ in this way yields

∫ t

0

(
Γ>ΣΣ>Γ

)
(s, πs)ds =

∫ t

0

(
0N+L(

σσ>
)−1(

S(ϑ̃,T̃ ) − S(ϑ,T )

))>

S(ϑ̃,T̃ ) − S(ϑ,T )

0L

S(ϑ̃,T̃ ) − S(ϑ,T )

(s, πs)ds

=

∫ t

0

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)>(
σσ>

)−1(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s, πs)ds

≤ σ−10

∫ t

0

∣∣∣S(ϑ̃,T̃ )(s)− S(ϑ,T )(s)
∣∣∣2 ds

<∞,

because the signals are continuous. Thence, both conditions (+) and (++) of [29,
Theorem 6.10] are fulfilled. Writing mX,(ϑ,T ) for the local martingale part of π under
P(ϑ,T ), we can conclude that

log
dP(ϑ̃,T̃ )|Ft
dP(ϑ,T )|Ft

=

∫ t

0

Γ(s, πs)
>dmX,(ϑ,T )

s − 1

2

∫ t

0

(
Γ>ΣΣ>Γ

)
(s, πs)ds.

Setting πZ :=
(
π(N+L+1), . . . , π(N+L+N)

)> and writing m̃Z,(ϑ,T ) for its local martingale
part under P(ϑ,T ), the expression for the log-likelihood ratio can be rewritten as∫ t

0

( (
σσ>(πZs )

)−1(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)
)>
dm̃Z,(ϑ,T )

s

− 1

2

∫ t

0

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)>
(s)
(
σσ>(πZs )

)−1 (
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)ds.

In order to eliminate the rather unintuitive integral with respect to m̃Z,(ϑ,T ), we in-
troduce the local

(
P(ϑ,T ), (Ft)t∈[0,∞)

)
-martingale B̃(ϑ,T ) :=

(
B̃

(ϑ,T )
t

)
t∈[0,∞)

that is given
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by

B̃
(ϑ,T )
t =

∫ t

0

(σσ>)−1/2(πZs )dm̃Z,(ϑ,T )
s for all t ∈ [0,∞). (3.4)

Its quadratic variation process is〈∫ ·
0

(σσ>)−1/2(πZs )dm̃Z,(ϑ,T )
s

〉
t

=

∫ t

0

(σσ>)−1/2(πZs )
(
(σσ>)−1/2

)>
(πZs )d〈m̃Z,(ϑ,T )〉s

=

∫ t

0

(σσ>)−1(πZs )d

(∫ s

0

σσ>(πZr )dr

)
= t · 1N×N

for all t ∈ [0,∞), so Lévy’s Characterisation Theorem [40, Theorem II.6.1] yields that
B̃(ϑ,T ) is an N -dimensional

(
P(ϑ,T ), (Ft)t∈[0,∞)

)
-Brownian Motion. Incorporating this

process, we can write

log
dP(ϑ̃,T̃ )|Ft
dP(ϑ,T )|Ft

=

∫ t

0

(
(σσ>)−1/2

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)
)>

dB̃(ϑ,T )
s

− 1

2

∫ t

0

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)>
(s)
(
σσ>(πZs )

)−1 (
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)ds.

(3.5)

We note immediately that the only component of π that is featured explicitly in this
expression is the πZ-component. This is hardly surprising, since by (SDS’) it is the
only one that directly receives any random influence. It seems plausible that we should
get the same expression for the log-likelihood ratio in an experiment that does not even
know that any variables other than Z exist. Let us make this formally rigorous.

In analogy to π, for all t ∈ [0,∞) we define the mapping

ηt : C
(
[0,∞);RN

)
→ RN , ω 7→ ω(t), (3.6)

such that η = (ηt)t∈[0,∞) is the canonical process on C
(
[0,∞);RN

)
. We write

Q(ϑ,T ) := L
(

[0,∞) 3 t 7→ Z
(ϑ,T )
t

∣∣∣P)
for the law on B

(
C
(
[0,∞);RN

))
of the unique strong solution Z(ϑ,T ) on (Ω,A) under

P of
dZt = [S(ϑ,T )(t) + b(Zt)]dt+ σ(Zt)dWt, (3.7)

when issued from z0 ∈ RN with the parameter (ϑ, T ) ∈ Θ× (0,∞). For any t ∈ [0,∞)

let
Gt :=

⋂
r∈(t,∞)

σ(ηs | s ∈ [0, r])

and consider the sequence of experiments given by

EZ :=
(
C
(
[0,∞);RN

)
,Gn,

{
Q(ϑ,T )|Gn

∣∣ (ϑ, T ) ∈ Θ× (0,∞)
} )

n∈N. (3.8)

87



As above, we want to calculate the log-likelihood ratios corresponding to this sequence.
Comparing the drift coefficients of (3.7) with different parameters (ϑ̃, T̃ ), (ϑ, T ) ∈ Θ×
(0,∞), we see that for all (t, z) ∈ [0,∞)× RN we have(

b(z) + S(ϑ̃,T̃ )(t)
)
−
(
b(z) + S(ϑ,T )(t)

)
=
(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(t)

= σσ>(z)
(
σσ>

)−1
(z)
(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(t)

=: σσ>(z)γ(t, z).

Just as above, we obtain∫ t

0

(
γ>σσ>γ

)
(s, ηs)ds =

∫ t

0

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)>(
σσ>

)−1(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s, ηs)ds

≤ σ−10

∫ t

0

∣∣∣S(ϑ̃,T̃ )(s)− S(ϑ,T )(s)
∣∣∣2 ds

<∞

for all t ∈ (0,∞), again thanks to the continuity of the signals.
Writing mZ,(ϑ,T ) for the local martingale part of η under Q(ϑ,T ), we can again use

[29, Theorem 6.10] which yields

log
dQ(ϑ̃,T̃ )|Gt
dQ(ϑ,T )|Gt

=

∫ t

0

γ(s, ηs)
>dmZ,(ϑ,T )

s − 1

2

∫ t

0

(
γ>σσ>γ

)
(s, ηs)ds

=

∫ t

0

(
(σσ>)−1/2(ηs)

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)
)>

dB(ϑ,T )
s

− 1

2

∫ t

0

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)>
(s)
(
σσ>(ηs)

)−1 (
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)ds,

(3.9)

where the process B(ϑ,T ) :=
(
B

(ϑ,T )
t

)
t∈[0,∞)

that is given by

B
(ϑ,T )
t =

∫ t

0

(σσ>)−1/2(ηs)dm
Z,(ϑ,T )
s for all t ∈ [0,∞) (3.10)

is again an N -dimensional
(
Q(ϑ,T ), (Gt)t∈[0,∞)

)
-Brownian Motion, which is seen in the

same way as for B̃(ϑ,T ) above.
We now have calculated the log-likelihood ratios for both EX and EZ . Comparing

them leads to the following result.

Proposition 3.3. The sequences EX and EZ corresponding to continuous observation of
X or Z respectively, with the same deterministic starting point X0 = (X0, Y0, Z0) ∈ E,
are statistically equivalent in the sense that

L

(log
dQ(ϑ̃,T̃ )|Gt
dQ(ϑ,T )|Gt

)
t∈[0,∞)

∣∣∣∣∣∣ Q(ϑ,T )

 = L

(log
dP(ϑ̃,T̃ )|Ft
dP(ϑ,T )|Ft

)
t∈[0,∞)

∣∣∣∣∣∣ P(ϑ,T )

 . (3.11)

In particular, we have Local Asymptotic Normality for EX if and only if we have it for
EZ with the same local scale, Fisher Information and Score (in distribution).
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Proof. Due to the definition of P(ϑ,T ) and Q(ϑ,T ), we have

L
(
η
∣∣Q(ϑ,T )

)
= L

(
πZ
∣∣P(ϑ,T )

)
,

and in view of (3.4), (3.5), (3.9), and (3.10), this implies (3.11) from which the second
statement of this Proposition follows immediately.

Remark 3.4. Proposition 3.3 is the justification for us to restrict ourselves to studying
the simpler process Z instead of the more complex X. Let us stress that Proposition 3.3
basically lets us apply Theorem 3.11 (which we state and prove in the following section)
to X just the same as to Z. In particular, this Theorem is of practical relevance for all
of the examples that were introduced in Section 1.2, including the stochastic Hodgkin-
Huxley system (Example 1.1) and also the rotor model from Example 1.3. If we can
treat the external noise, we can treat the entire system (provided we know its starting
configuration).

3.2 Local Asymptotic Normality for Z

This section centres around the sequence of statistical experiments defined by EZ in
(3.8) which corresponds to continuous observation over growing time intervals of the
N -dimensional diffusion Z following the stochastic differential equation

dZt = [S(ϑ,T )(t) + b(Zt)]dt+ σ(Zt)dWt, (3.12)

where ϑ ∈ Θ is an unknown d-dimensional shape parameter of the signal, and T ∈
(0,∞) is its unknown periodicity. Just as we previously did for the entire process X,
we always make the following basic assumption.

(A2) Unique solvability: For each (ϑ, T ) ∈ Θ × (0,∞), the equation (3.12) has a
unique strong solution.

As mentioned in Section 1.1, takingM = N = 1, b ≡ 0, and σ ≡ 1 leads to the classical
"signal in white noise" model. For this special case, Ibragimov and Khasminskii proved
Local Asymptotic Normality with rate n−3/2 for a smooth signal with known ϑ and
discussed asymptotic efficiency for certain estimators (see [39, Sections II.7 and III.5]).
In [21], Golubev extended their approach with L2-methods in order to estimate T at the
same rate for unknown shape, which in turn was the basis for Castillo, Lévy-Leduc and
Matias for non-parametric estimation of the shape under unknown T (see [7]). For our
more general diffusion (3.12), we will stay within the confines of parametric estimation.

Our main result is Local Asymptotic Normality for the sequence of experiments
EZ with unknown ϑ and unknown T (Theorem 3.11). For M = N = 1 Höpfner and
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Kutoyants had already solved this problem both for known T with unknown ϑ (see
[31]) and for known ϑ with unknown T (see [33]). Our result extends both of these and
allows for application to simultaneous estimation of the shape and the periodicity.

Recall from (3.9) that for all (ϑ, T ), (ϑ̃, T̃ ) ∈ Θ × (0,∞) and t ∈ [0,∞) the log-
likelihood ratio for this sequence of experiments is given by

Λ
(ϑ̃,T̃ )/(ϑ,T )
t := log

(
dQ(ϑ̃,T̃ )|Gt
dQ(ϑ,T )|Gt

)

=

∫ t

0

(
(σσ>)−1/2(ηs)

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)
)>

dB(ϑ,T )
s

− 1

2

∫ t

0

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)>
(s)
(
σσ>(z)

)−1 (
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)ds,

where B(ϑ,T ) is the Brownian Motion defined in (3.10). Striving for Local Asymptotic
Normality, we need to find a suitable quadratic expansion of Λ

(ϑ̃,T̃ )/(ϑ,T )
t in the sense of

(3.1). Examining its structure suggests that we have to impose appropriate smoothness
conditions on the signal with respect to the parameters. The following set of conditions
(S1) - (S4) turns out to be sufficient:

(S1) Periodicity and basic regularity: For each ϑ ∈ Θ we have a 1-periodic function

Sϑ =


S
(1)
ϑ
...

S
(N)
ϑ

 ∈ C2
(
[0,∞);RN

)
such that

S·(s) ∈ C1
(
Θ;RN

)
for every s ∈ [0,∞)

and
∂ϑiSϑ(·) ∈ L2

loc

(
[0,∞);RN

)
for every ϑ ∈ Θ and i ∈ {1, . . . , d}.

(S2) L2
loc-differentiability with respect to (ϑ, T ): The mapping

S : Θ× (0,∞)→ L2
loc

(
[0,∞);RN

)
,

(ϑ, T ) 7→ S(ϑ,T ) := Sϑ

( ·
T

)
,

is L2
loc-differentiable with the derivative

Ṡ : Θ× (0,∞)→ L2
loc

(
[0,∞);RN×(d+1)

)
,

(ϑ, T ) 7→ Ṡ(ϑ,T ) :=


∂ϑ1S

(1)
(ϑ,T ) · · · ∂ϑdS

(1)
(ϑ,T ) ∂TS

(1)
(ϑ,T )

...
...

...
∂ϑ1S

(N)
(ϑ,T ) · · · ∂ϑdS

(N)
(ϑ,T ) ∂TS

(N)
(ϑ,T )

 ,
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in the sense that for every t ∈ (0,∞) and (ϑ, T ) ∈ Θ× (0,∞) we have

∫ t

0

∣∣∣∣∣∣S(ϑ̃,T̃ )(s)− S(ϑ,T )(s)− Ṡ(ϑ,T )(s)
(
(ϑ̃, T̃ )− (ϑ, T )

)∣∣∣(ϑ̃, T̃ )− (ϑ, T )
∣∣∣

∣∣∣∣∣∣
2

ds→ 0, as (ϑ̃, T̃ )→ (ϑ, T ).

(S3) L2
loc-continuity of the (ϑ, T )-derivative: The mapping Ṡ is L2

loc-continuous in
the sense that for all t ∈ (0,∞) and (ϑ, T ) ∈ Θ× (0,∞) we have∫ t

0

∣∣∣Ṡ(ϑ̃,T̃ )(s)− Ṡ(ϑ,T )(s)
∣∣∣2 ds→ 0, as (ϑ̃, T̃ )→ (ϑ, T ),

where the notation | · | is used for the Frobenius norm of a matrix.

(S4) L2
loc-Hölder condition with respect to T for the ϑ-derivative: For any fixed

ϑ ∈ Θ the mapping

(0,∞) 3 T 7→ DϑS(ϑ,T ) :=


∂ϑ1S

(1)
(ϑ,T ) · · · ∂ϑdS

(1)
(ϑ,T )

...
...

∂ϑ1S
(N)
(ϑ,T ) · · · ∂ϑdS

(N)
(ϑ,T )

 ∈ L2
loc

(
[0,∞);RN×d)

satisfies the following local Hölder condition: For each T ∈ (0,∞) there are

α ∈ (0, 2] and β ∈ [0, 1 + 3α/2)

such that for suitable ε > 0 and t0 ∈ [0,∞) we have∫ t

t0

∣∣∣DϑS(ϑ,T̃ )(s)−DϑS(ϑ,T )(s)
∣∣∣2 ds ≤ Ctβ

∣∣∣T̃ − T ∣∣∣α
for all t > t0, T̃ ∈ (T − ε, T + ε), and for some constant C ∈ (0,∞) that does not
depend on T̃ or t.

Remark 3.5. 1.) We observe that if (S1) holds and Ṡ(ϑ,T )(s) is continuous (and thus
also locally bounded) with respect to ϑ, T , and s, (S2) and (S3) are immediate by
dominated convergence. Note that in general, (S1) does not require that for example
∂ϑ1S(ϑ,T )(s) is continuous (or even locally bounded) in T or s.

2.) Suppose that (S1) holds. If for every (ϑ, T ) ∈ Θ × (0,∞) and t ∈ (0,∞) there
are δ = δ(ϑ, T ) ∈ (0, 1] and C(ϑ, t) ≤ cst tζ with ζ ∈ [0, δ/2) such that the mapping

[0,∞) 3 s 7→ DϑSϑ(s) :=


∂ϑ1S

(1)
ϑ (s) · · · ∂ϑdS

(1)
ϑ (s)

...
...

∂ϑ1S
(N)
ϑ (s) · · · ∂ϑdS

(N)
ϑ (s)

 ∈ RN×d
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is Hölder-δ-continuous on [0, t] with Hölder-constant C(ϑ, t), we get that for sufficiently
small ε > 0 and for all T̃ ∈ (T − ε, T + ε)∫ t

0

∣∣∣DϑS(ϑ,T̃ )(s)−DϑS(ϑ,T )(s)
∣∣∣2 ds =

∫ t

0

∣∣∣∣DϑSϑ

(
s

T̃

)
−DϑSϑ

( s
T

)∣∣∣∣2 ds
≤ sup

T ′∈(T−ε,T+ε)
C

(
ϑ,

t

T ′

)2 ∫ t

0

∣∣∣∣ sT̃ − s

T

∣∣∣∣2δ ds
≤ cst

(
t

T − ε

)2ζ

∣∣∣T̃ − T ∣∣∣
(T − ε)2

2δ ∫ t

0

s2δds

≤ cst t2ζ+2δ+1
∣∣∣T̃ − T ∣∣∣2δ .

Setting α := 2δ, we can choose

β := 2(δ + ζ) + 1 < 2

(
δ +

δ

2

)
+ 1 = 1 + 3α/2,

and hence the Hölder condition (S4) is fulfilled.
3.) As a consequence of the two preceding observations, all of the hypotheses (S1) -

(S4) are fulfilled if the mapping Θ × [0,∞) 3 (ϑ, s) 7→ Sϑ(s) is in C2
b

(
Θ × [0,∞);RN

)
and 1-periodic with respect to s. Existence and boundedness of ∂sDϑSϑ(s) ensure that
we can choose δ = 1 and ζ = 0 above.

4.) Note that the choice of the matrix norm in (S3) and (S4) is of course arbitrary.
We decided to go with the Frobenius norm, because it is commonly used and it is
convenient to handle in our calculations.

Example 3.6. 1.) Let Sϑ(s) = f(ϑ, ϕ(s)), where ϕ ∈ C2
(
[0,∞);RD

)
is 1-periodic and

f : Θ× RD 3 (x, y) = (x1, . . . , xd, y1, . . . , yD) 7→ f(x, y) =


f1(x, y)

...
fN(x, y)

 ∈ RN

is continuously differentiable with respect to x ∈ Θ and twice continuously differentiable
with respect to y ∈ RD. Clearly, the property (S1) holds, and since Ṡ(ϑ,T )(s) is given
by 

(∂x1f1)(ϑ, ϕ( s
T

)) · · · (∂xdf1)(ϑ, ϕ( s
T

)) −sT−2(∇yf1)(ϑ, ϕ( s
T

))>ϕ′( s
T

)
...

...
...

(∂x1fN)(ϑ, ϕ( s
T

)) · · · (∂xdfN)(ϑ, ϕ( s
T

)) −sT−2(∇yfN)(ϑ, ϕ( s
T

))>ϕ′( s
T

)


which is continuous with respect to ϑ, T , and s, we also have (S2) and (S3). Moreover,
we see that the Hölder property from part 2.) of Remark 3.5 is fulfilled if it is fulfilled
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by the mapping

RD 3 y 7→


(∂x1f1)(ϑ, y) · · · (∂xdf1)(ϑ, y)

...
...

(∂x1fN)(ϑ, y) · · · (∂xdfN)(ϑ, y)

 .

In that case, all of the hypotheses (S1) - (S4) hold.
2.) A special case of the preceding example is a product structure Sϑ(s) = g(ϑ)ϕ(s)

with ϕ ∈ C2
(
[0,∞);RD

)
1-periodic and g ∈ C1

(
Θ;RN×D). As for all s, s̃ ∈ [0,∞) we

have

|DϑSϑ(s)−DϑSϑ(s̃)|2 =
N∑
i=1

d∑
j=1

(
D∑
k=1

(∂ϑjgi,k)(ϑ)
(
ϕk(s)− ϕk(s̃)

))2

≤

(
N∑
i=1

d∑
j=1

D∑
k=1

(∂ϑjgi,k)
2(ϑ)

)
|ϕ(s)− ϕ(s̃)|2

≤

(
N∑
i=1

d∑
j=1

D∑
k=1

(∂ϑjgi,k)
2(ϑ)

)
‖ϕ′‖2∞ |s− s̃|

2 ,

no further conditions are needed to ensure the Hölder property from part 2.) of Remark
3.5 to hold with δ = 1 and ζ = 0.

3.) In particular, the example above includes signals of the form

Sϑ(s) =
l∑

k=1

(
sin(2kπs)gk(ϑ) + cos(2kπs)hk(ϑ)

)
for all s ∈ [0,∞)

with l ∈ N0 and gk, hk ∈ C1
(
Θ;RN

)
for all k ∈ {1, . . . , l}.

As in Chapter 2, the fact that S(ϑ,T ) and therefore the entire drift term of (3.12) is
T -periodic can be exploited in order to use properties of time-homogeneous substruc-
tures of the process η. The grid chain ηgr on RN and the path segment chain ηps on
C
(
[0, T ];RN

)
can be defined in the same way as we defined them for X in Lemma 2.1.

Next to regularity of the signal with respect to the parameters in the sense of (S1) -
(S4), the following recurrence condition is the second fundamental assumption in this
section.

(A3) Positive Harris recurrence: For all (ϑ, T ) ∈ Θ×(0,∞) the grid chain ηgr under
Q(ϑ,T ) is positive Harris recurrent with invariant probability measure µ(ϑ,T ).

Verifiable criteria for this condition can be found for example in [34], a specific example
will be given in Example 3.15 at the end of this section. Note that (A3) is weaker than
the conclusion of Theorem 2.3.
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As we know from [32, Theorem 2.1 (a)]2, the path segment chain ηps inherits positive
Harris recurrence under Q(ϑ,T ) from the grid chain and its invariant distribution m(ϑ,T )

is the unique measure on B
(
C([0, T ];RN)

)
such that for all l ∈ N, 0 = t0 < t1 < . . . <

tl = T , and B0, . . . , Bl ∈ B
(
RN
)
we have

m(ϑ,T )(ηti ∈ Bi for all i ∈ {0, . . . , l})

=

∫
B0

µ(ϑ,T )(dx0)

∫
B1

Q
(ϑ,T )
t0,t1 (x0, dx1) . . .

∫
Bl

Q
(ϑ,T )
tl−1,tl

(xl−1, dxl),
(3.13)

where
(
Q

(ϑ,T )
s,t

)
t>s≥0 is the transition semi-group of η under Q(ϑ,T ) which is defined in

analogy to (2.1).
In order to prove our main result (Theorem 3.11 below), we want to use limiting

properties of η arising from positive Harris recurrence. The foundation for this is laid
by the following strong law of large numbers, which we cite from [32, Theorem 2.1 (b)].

Proposition 3.7. Let (A2) and (A3) hold and fix some (ϑ, T ) ∈ Θ× (0,∞). Assume
that (At)t∈[0,∞) is a

(
Q(ϑ,T ), (Gt)t∈[0,∞)

)
-increasing process. If there is a non-negative

function f ∈ L1
(
m(ϑ,T )

)
such that

AkT =
k∑
j=1

f
(
ηpsj
)

Q(ϑ,T )-almost surely for all k ∈ N,

then
1

t
At

t→∞−−−→ 1

T

∫
C([0,T ];RN )

f(ϕ)m(ϑ,T )(dϕ) Q(ϑ,T )-almost surely.

Proof. See Section 2 of [32].

Proposition 3.7 is the key to the following Lemma 3.8 which is a slightly modified
multi-dimensional version of Lemmas 2.1 and 2.2 from [33].

Lemma 3.8. Grant assumptions (A2) and (A3). Further assume that the measurable
mapping g : RN → RN×N has values only in the set of symmetric matrices and is
uniformly elliptic. We define the mapping

B(ϑ,T )
g :

(
L2
(
[0, 1];RN

))2 → R,

(u, v) 7→
∫ 1

0

u(s)>
(
µ(ϑ,T )Q

(ϑ,T )
0,sT (g−1)

)
v(s)ds,

(3.14)

where
µ(ϑ,T )Q

(ϑ,T )
0,sT (g−1) =

∫
RN
µ(ϑ,T )(dz)

∫
RN
Q

(ϑ,T )
0,sT (z, dz̃)g−1(z̃) ∈ RN×N

is understood as a matrix-valued integral. Then the following statements are true.
2Note that even though this Theorem is only explicitly stated for R-valued processes, the authors

remark at the beginning of the section that it remains valid for any polish state space, in particular
RN .
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(i) B(ϑ,T )
g is a non-negative definite and symmetric bilinear form.

(ii) If we consider u, v ∈ L2
(
[0, 1];RN

)
as 1-periodic functions on (0,∞), then for

any k ∈ N0 we have

k + 1

tk+1

∫ t

0

sku(s/T )>g−1(ηs)v(s/T )ds
t→∞−−−→ B(ϑ,T )

g [u, v] (3.15)

Q(ϑ,T )-almost surely.

Proof. For the sake of simplicity and as (ϑ, T ) is fixed anyway, we drop all corresponding
superscripts. First, we check that Bg is indeed a well-defined mapping with values in R.
Let the lower bound for the eigenvalues of g(·) be denoted by g0 ∈ (0,∞). Recall that
g−1(·) always exists, is positive definite, and g−10 is an upper bound for its eigenvalues.
Then by linearity and contractivity of the operator µQ0,sT , we can estimate

0 ≤ Bg[u, u] =

∫ 1

0

µQ0,sT

(
u(s)>g−1(·)u(s)

)
ds ≤ g−10

∫ 1

0

|u(s)|2 ds <∞.

Thanks to the symmetry of g−1, we can polarise the integrand and thus the whole
expression, which allows us to use the above in order to conclude that

|Bg[u, v]| = 1

2
|Bg[u, u] + Bg[v, v]− Bg[u+ v, u+ v]| <∞,

and hence Bg is well-defined. It is then trivial to see that it is a non-negative definite
and symmetric bilinear form, and the proof for (i) is complete.

We note that the left hand side of (3.15) is bilinear in u and v as well. Thanks to
this and (i), the proof of the second statement of the Lemma can be reduced to the
case u = v, since the general case then follows by polarisation.

Let us define the process A := (At)t∈[0,∞) with

At :=

∫ t

0

u(s/T )>g−1(ηs)u(s/T )ds for all t ∈ [0,∞).

Since g−1(·) is positive definite, the integrand is non-negative, and therefore A is an
increasing process whose trajectories are obviously continuous. Note that the expression
on the left hand side of (3.15) can be rewritten as

k + 1

tk+1

∫ t

0

skdAs.

For k = 0 this is simply 1
t
At, which we will handle with Proposition 3.7. The general

statement then follows from this case by taking f(t) = (Bg[u, u])−1At in Lemma 3.17
(found at the end of this chapter).
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In order to establish the functional relation between A and η that is needed in
Proposition 3.7, we define the function

f : C
(
[0, T ];RN

)
→ [0,∞), ϕ 7→

∫ T

0

u(s/T )>g−1(ϕ(s))u(s/T )ds,

which is bounded by Tg−10 ‖u‖L2([0,1]), and thus it is integrable with respect to the
probability measure m. Due to the periodicity of u, we see that

k∑
j=1

f
(
ηpsj
)

=
k∑
j=1

∫ T

0

u(s/T )>g−1(η(j−1)T+s)u(s/T )ds

=

∫ kT

0

u(s/T )>g−1(ηs)u(s/T )ds

= AkT

for all k ∈ N, and consequently Proposition 3.7 allows to deduce Q-almost sure conver-
gence

lim
t→∞

1

t
At =

1

T

∫
C([0,T ];RN )

f(ϕ)m(dϕ)

=
1

T

∫
C([0,T ];RN )

∫ T

0

u(s/T )>g−1(ϕ(s))u(s/T )dsm(dϕ)

=
1

T

∫ T

0

u(s/T )>
∫
C([0,T ];RN )

g−1(ϕ(s))m(dϕ)u(s/T )ds

=
1

T

∫ T

0

u(s/T )>
∫
RN
g−1(x)µQ0,s(dx)u(s/T )ds

= Bg[u, u],

where the use of Fubini’s Theorem in the third step is justified by the non-negativity of
the integrand, and the fourth step makes use of (3.13). This completes the proof.

For each (ϑ, T ) ∈ Θ×(0,∞) and t ∈ [0,∞) we define the symmetric (d+1)×(d+1)-
dimensional block matrix

I(ϑ,T )(t) :=

t(B(ϑ,T )

σσ>
[∂ϑiSϑ, ∂ϑjSϑ]

)
i,j=1,...,d

− t2

2T 2

(
B(ϑ,T )

σσ>
[∂ϑiSϑ, S

′
ϑ]
)
i=1,...,d

· · · t3

3T 4B(ϑ,T )

σσ>
[S ′ϑ, S

′
ϑ]

 (3.16)

and also look at its derivative with respect to t,

I ′(ϑ,T )(t) =

(B(ϑ,T )

σσ>
[∂ϑiSϑ, ∂ϑjSϑ]

)
i,j=1,...,d

−tT−2
(
B(ϑ,T )

σσ>
[∂ϑiSϑ, S

′
ϑ]
)
i=1,...,d

· · · t2T−4B(ϑ,T )

σσ>
[S ′ϑ, S

′
ϑ]

 .

We make the following assumption.
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(S5) Regularity of the signal with respect to B(ϑ,T )

σσ>
: For all (ϑ, T ) ∈ Θ× (0,∞)

and t ∈ (0,∞) we have

(i) I(ϑ,T )(t) is invertible, (ii) I ′(ϑ,T )(t) is invertible.

Since I(ϑ,T )(t) and I ′(ϑ,T )(t) are symmetric real matrices, in this context being invertible
means the same thing as being positive definite. While part (ii) of (S5) is merely needed
for technical reasons (as will become clear in the proof of Theorem 3.11 below), part (i)
is of more general importance, since I(ϑ,T )(1) will turn out to be the Fisher Information.
We will discuss these conditions in detail in the following remark.

Remark 3.9. 1.) A simple sufficient condition for (S5) is orthogonality of the functions
∂ϑ1Sϑ, . . . , ∂ϑdSϑ, S

′
ϑ with respect to B(ϑ,T )

σσ>
, which is equivalent to both I(ϑ,T )(t) and

I ′(ϑ,T )(t) being diagonal matrices with non-vanishing diagonal entries. As such they are
invertible. However, this is not a very likely scenario, since Sϑ has d degrees of freedom,
determines the d functions ∂ϑ1Sϑ, . . . , ∂ϑdSϑ, and then S ′ϑ – while adding no further
degree of freedom – would have to be orthogonal to these as well.

2.) Without orthogonality, the situation becomes slightly more delicate. If B(ϑ,T )

σσ>
is

positive definite (and hence an inner product), part (ii) of condition (S5) is equivalent
to the assertion that ∂ϑ1Sϑ, . . . , ∂ϑdSϑ, S ′ϑ are linearly independent, since I ′(ϑ,T )(t) is the
Gramian matrix of ∂ϑ1Sϑ, . . . , ∂ϑdSϑ,−tT−2S ′ϑ with respect to B(ϑ,T )

σσ>
, and the factor

−tT−2 is irrelevant for linear independence. As we will prove now, part (i) is then
fulfilled as well, as I(ϑ,T )(t) is "almost a Gramian matrix". Indeed, setting

u1 := t
1
2∂ϑ1Sϑ, . . . , ud := t

1
2∂ϑdSϑ, ud+1 := − t

3
2

2T 2
S ′ϑ,

we can write

I(ϑ,T )(t) =


B(ϑ,T )

σσ>
[u1, u1] · · · · · · B(ϑ,T )

σσ>
[u1, ud+1]

... . . . ...

... B(ϑ,T )

σσ>
[ud, ud] B(ϑ,T )

σσ>
[ud, ud+1]

B(ϑ,T )

σσ>
[ud+1, u1] · · · B(ϑ,T )

σσ>
[ud+1, ud]

4
3
B(ϑ,T )

σσ>
[ud+1, ud+1]

 ,

and we see that for all x ∈ R(d+1)×(d+1)

x>I(ϑ,T )(t)x =
d+1∑
i,j=1

xiB(ϑ,T )

σσ>
[ui, uj]xj +

1

3
x2d+1B

(ϑ,T )

σσ>
[ud+1, ud+1]

≥ B(ϑ,T )

σσ>

[
d+1∑
i=1

xiui,
d+1∑
j=1

xjuj

]
.
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Linear independence of u1, . . . , ud+1 (which follows directly from linear independence
of ∂ϑ1Sϑ, . . . , ∂ϑdSϑ, S ′ϑ) and positive definiteness of B(ϑ,T )

σσ>
imply that this expression is

strictly positive unless x is zero. In other words, I(ϑ,T )(t) is positive definite and hence
invertible.

3.) A simple sufficient condition for B(ϑ,T )

σσ>
to be positive definite is uniform ellipticity

of
(
σσ>

)−1, i.e. the existence of some σ̃0 ∈ (0,∞) such that

x>
(
σσ>(z)

)−1
x ≥ σ̃0 |x|2 for all x, z ∈ RN .

If this is the case, for all u ∈ L2
(
[0, 1];RN

)
we can estimate

B(ϑ,T )

σσ>
[u, u] =

∫ 1

0

µ(ϑ,T )Q
(ϑ,T )
0,sT

(
u(s)>

(
σσ>

)−1
(·)u(s)

)
ds ≥ σ̃0

∫ 1

0

|u(s)|2 ds,

i.e. B(ϑ,T )

σσ>
is even coercive and hence positive definite.

4.) In conclusion, the property

(S5’) Regularity of the signal with respect to B(ϑ,T )

σσ>
: The mapping

(
σσ>

)−1 is
uniformly elliptic, and the functions ∂ϑ1Sϑ, . . . , ∂ϑdSϑ, S ′ϑ are linearly independent
for all (ϑ, T ) ∈ Θ× (0,∞).

is a relatively simple and potentially verifiable sufficient condition for (S5).

Example 3.10. 1.) If the signal is of the form

Sϑ =
d∑

k=1

ϑkϕk, (3.17)

where ϕ1, . . . , ϕd ∈ L2
(
[0,∞);RN

)
are 1-periodic and orthonormal with respect to

B(ϑ,T )

σσ>
, we have

I(ϑ,T )(t) =

t · 1d×d − t2

2T 2

(∑d
j=1 ϑjB

(ϑ,T )

σσ>
[ϕi, ϕ

′
j]
)
i=1,...,d

· · · t3

3T 4

∑d
i,j=1 ϑiϑjB

(ϑ,T )

σσ>
[ϕ′i, ϕ

′
j]


which is invertible for all t ∈ [0,∞) whenever

4

3

d∑
i,j=1

ϑiϑjB(ϑ,T )

σσ>
[ϕ′i, ϕ

′
j] 6=

d∑
i=1

(
d∑
j=1

ϑjB(ϑ,T )

σσ>
[ϕi, ϕ

′
j]

)2

. (3.18)

Similarly,

I ′(ϑ,T )(t) =

1d×d −tT−2
(∑d

j=1 ϑjB
(ϑ,T )

σσ>
[ϕi, ϕ

′
j]
)
i=1,...,d

· · · t2T−4
∑d

i,j=1 ϑiϑjB
(ϑ,T )

σσ>
[ϕ′i, ϕ

′
j]


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is invertible for all t ∈ [0,∞) whenever

d∑
i,j=1

ϑiϑjB(ϑ,T )

σσ>
[ϕ′i, ϕ

′
j] 6=

d∑
i=1

(
d∑
j=1

ϑjB(ϑ,T )

σσ>
[ϕi, ϕ

′
j]

)2

. (3.19)

2.) For M = N let σ ≡ 1N×N , then B(ϑ,T )

σσ>
is just the standard L2-inner product

with respect to Lebesgue’s measure. If N = 1, d is even, and the signal has a finite
Fourier expansion

Sϑ(s) =

d
2∑

k=1

√
2
(
ϑk sin(2kπs) + ϑ d

2
+k cos(2kπs)

)
for all s ∈ [0,∞),

it is both of the type from the first part of this example and of the type introduced in
part 3.) of Example 3.6 (so in particular it satisfies (S1) - (S4)). Elementary calculations
show that the conditions (3.18) and (3.19) then become

d
2∑

k=1

k(ϑ2
k + ϑ2

k+ d
2

) 6= α

d
2∑

k=1

k2ϑ2
k+ d

2

for α ∈ {3, 4}.

If for example there are no cos-terms involved, i.e. ϑ d
2
+1 = . . . = ϑd = 0, these inequal-

ities are valid for all (ϑ1, . . . , ϑ d
2
) 6= 0 d

2
.

Having introduced all relevant notions and assumptions, we can now give the main
result of this chapter.

Theorem 3.11 (Local Asymptotic Normality). Grant all of the hypotheses (A1) - (A3)
and (S1) - (S5) and fix (ϑ, T ) ∈ Θ× (0,∞). Set

δn :=


n−1/2 0 · · · 0

0
. . . . . . ...

... . . . n−1/2 0

0 · · · 0 n−3/2

 ∈ R(d+1)×(d+1) for all n ∈ N,

and fix any bounded sequence (hn)n∈N ⊂ Rd+1. Then Q(ϑ,T )-almost surely we have

Λ(ϑ,T )+δnhn/(ϑ,T )
n = h>nS(ϑ,T )

n − 1

2
h>nI(ϑ,T )hn + oQ(ϑ,T )(1) (3.20)

with Fisher Information I(ϑ,T ) = I(ϑ,T )(1) as introduced in (3.16) and score

S(ϑ,T )
n = δn

∫ n

0

(
(σσ>)−1/2(ηs)Ṡ(ϑ,T )(s)

)>
dB(ϑ,T )

s for all n ∈ N (3.21)

such that weak convergence

L
(
S(ϑ,T )
n

∣∣Q(ϑ,T )
) n→∞−−−→ N

(
0d+1, I(ϑ,T )

)
(3.22)

holds.
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Remark 3.12. 1.) Note that the local scale (δn)n∈N in Theorem 3.11 is the same for
every set of parameters (ϑ, T ) ∈ Θ× (0,∞).

2.) Let us briefly comment on the comparison between equations (3.1) and (3.2)
in the general Definition 3.2 of Local Asymptotic Normality on the one hand and
equations (3.20) and (3.22) in Theorem 3.11 on the other hand. The log-likelihood
ratio is adapted to (Gn)n∈N by its very definition, and by (3.21) so is the Score. Since
each Q(ϑ,T )

n is simply the restriction of Q(ϑ,T ) to Gn, there is no need to carry the n in
(3.20) and (3.22).

Proof of Theorem 3.11. We fix (ϑ, T ) ∈ Θ × (0,∞), and in order to reduce notational
complexity we drop corresponding indices whenever there is no risk of ambiguity: We
write Q := Q(ϑ,T ), B := B(ϑ,T ) (see (3.10)), Sn := S(ϑ,T )

n , I := I(ϑ,T ), I(t) := I(ϑ,T )(t)
for all t ∈ [0,∞) (see (3.16)), and B := B(ϑ,T )

σσ>
(see (3.14)). Moreover, we set

(ϑn, Tn) := (ϑ, T ) + δnhn for all n ∈ N.

We now proceed to give the proof, divided into several steps.
1.) The main idea is to introduce a time step size t ∈ (0,∞) into the log-likelihood

ratio and then interpret (
Λ

(ϑn,Tn)/(ϑ,T )
tn

)
t∈[0,∞)

, n ∈ N,

as a sequence of continuous-time stochastic processes. Splitting them into several parts
and applying Lemma 3.8 together with tools from continuous-time martingale theory
will eventually lead to the desired quadratic expansion. Indeed, adding and subtracting
the term Ṡ(ϑ,T )(s)δnhn to the difference of the signals yields

Λ
(ϑn,Tn)/(ϑ,T )
tn =

∫ tn

0

(
(σσ>)−1/2(ηs)

(
S(ϑn,Tn) − S(ϑ,T )

)
(s)
)>
dBs

− 1

2

∫ tn

0

(
S(ϑn,Tn) − S(ϑ,T )

)>
(s)
(
σσ>(z)

)−1(
S(ϑn,Tn) − S(ϑ,T )

)
(s)ds

= h>n

(
δn

∫ tn

0

(
(σσ>)−1/2(ηs)Ṡ(ϑ,T )(s)

)>
dBs

)
− 1

2
h>n

(
δn

∫ tn

0

Ṡ(ϑ,T )(s)
>(σσ>(ηs)

)−1
Ṡ(ϑ,T )(s)ds δn

)
hn

+

∫ tn

0

(
(σσ>)−1/2(ηs)

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)
(s)
)>

dBs

− 1

2

∫ tn

0

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)>
(s)
(
σσ>(ηs)

)−1
(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)
(s)ds

−
∫ tn

0

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)>
(s)
(
σσ>(ηs)

)−1(
Ṡ(ϑ,T )δnhn

)
ds
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=: h>nSn(t)− 1

2
h>nIn(t)hn +Rn(t)− 1

2
Un(t)− Vn(t),

and in order to prove the Theorem, we will study convergence in distribution of Sn(t)

for n → ∞ and show almost sure convergence of In(1) to I = I(1). Finally, we show
that Rn(t), Un(t), and Vn(t) converge to zero in probability.

2.) For any fixed n ∈ N the process

Mn := (Sn(t))t∈[0,∞) =
(
δn

∫ tn

0

(
(σσ>)−1/2(ηs)Ṡ(ϑ,T )(s)

)>
dBs

)
t∈[0,∞)

is obviously an Rd+1-valued local martingale with respect to Q. In order to determine
its weak limit for n→∞ in the Skorohod space D

(
[0,∞);Rd+1

)
, we study its quadratic

variation process 〈Mn〉 := (〈Mn〉t)t∈[0,∞) with

〈Mn〉t :=


〈
M

(1)
n ,M

(1)
n

〉
t
· · ·

〈
M

(1)
n ,M

(d+1)
n

〉
t... . . . ...〈

M
(d+1)
n ,M

(1)
n

〉
t
· · ·

〈
M

(d+1)
n ,M

(d+1)
n

〉
t

 ∈ R(d+1)×(d+1).

As follows from basic stochastic calculus, 〈Mn〉 is equal to (In(t))t∈[0,∞). Consequently,
for i, j ∈ {1, . . . , d} we have

〈
M (i)

n ,M (j)
n

〉
t

=
1

n

∫ tn

0

(
∂ϑiS(ϑ,T )(s)

)> (
σσ>(ηs)

)−1
∂ϑjS(ϑ,T )(s)ds

=t · 1

tn

∫ tn

0

(∂ϑiSϑ(s/T ))>
(
σσ>(ηs)

)−1
∂ϑjSϑ(s/T )ds,

and due to the periodicity of Sϑ and by part (ii) of Lemma 3.8 with g = σσ> and k = 0,
this expression converges to

t · B[∂ϑiSϑ, ∂ϑjSϑ] = Ii,j(t)

Q-almost surely for n→∞. Since

∂TS(ϑ,T )(s) = ∂TSϑ(s/T ) = −sT−2S ′ϑ(s/T ) for all s ∈ (0,∞),

the same argument with k = 1 yields〈
M (i)

n ,M (d+1)
n

〉
t

=
〈
M (d+1)

n ,M (i)
n

〉
t

=
1

n2

∫ tn

0

(
∂ϑiS(ϑ,T )(s)

)> (
σσ>(ηs)

)−1
∂TS(ϑ,T )(s)ds

=
−t2

2T 2
· 1

1
2
(tn)2

∫ tn

0

s · (∂ϑiSϑ(s/T ))>
(
σσ>(ηs)

)−1
S ′ϑ(s/T )ds

n→∞−−−→ −t
2

2T 2
· B[∂ϑiSϑ, S

′
ϑ] = Ii,d+1(t) = Id+1,i(t)
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Q-almost surely, and analogously (with k = 2)

〈
M (d+1)

n ,M (d+1)
n

〉
t

=
1

n3

∫ tn

0

(
∂TS(ϑ,T )(s)

)> (
σσ>(ηs)

)−1
∂TS(ϑ,T )(s)ds

=
t3

3T 4
· 1

1
3
(tn)3

∫ tn

0

s2 · S ′ϑ(s/T )>
(
σσ>(ηs)

)−1
S ′ϑ(s/T )ds

n→∞−−−→ t3

3T 4
· B[S ′ϑ, S

′
ϑ] = Id+1,d+1(t)

Q-almost surely. In other words,

〈Mn〉t
n→∞−−−→ I(t) Q-almost surely for all t ∈ [0,∞),

and hence the Martingale Convergence Theorem [42, Corollary VIII.3.24] implies weak
convergence

L(Mn|Q)
n→∞−−−→ L(M |Q) in D

(
[0,∞);Rd+1

)
(3.23)

to some limit martingaleM = (M(t))t∈[0,∞).3 Since I ′(t) is symmetric and non-negative
definite, it possesses a square root

√
I ′(t) ∈ R(d+1)×(d+1). By (S5), I ′(t) is invertible

and hence

0 6= det I ′(t) = det
√
I ′(t)

√
I ′(t)

>
=
(

det
√
I ′(t)

)2
,

which is why
√
I ′(t) is invertible as well. Thus, the Representation Theorem [40,

Theorem II.7.1] yields that M can be expressed as

M(t) =

∫ t

0

√
I ′(s)dB′s for all t ∈ [0,∞)

with some (d + 1)-dimensional Brownian Motion B′. Together with (3.23), this also
implies weak convergence

L(Mn(t)|Q)
n→∞−−−→ L(M(t)|Q) = N

(
0d+1,

∫ t

0

I ′(s)ds
)

= N (0d+1, I(t))

for all t ∈ [0,∞). In particular, choosing t = 1 yields weak convergence of the score

L(Sn|Q) = L(Mn(1)|Q)
n→∞−−−→ N (0d+1, I(1)) = N (0d+1, I),

which completes this step of the proof.

3.) In the second step, we have shown on the fly that

In(1) = 〈Mn〉1
n→∞−−−→ 〈M〉1 = I(1)

3To be exact, M is actually defined on some arbitrary probability space, but in order to avoid
making things more complicated than necessary, we assume without loss of generality that M is in
fact defined on the same probability space as the sequence (Mn)n∈N.
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Q-almost surely.

4.) It remains to show convergence to zero in Q-probability of the remainder terms
Rn(t), Un(t), and Vn(t) introduced at the very beginning of this proof. Therefore, we
consider the sequence (Rn)n∈N of the local Q-martingales

(Rn(t))t∈[0,∞) =

(∫ tn

0

(
(σσ>)−1/2(ηs)

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)
(s)
)>
dBs

)
t∈[0,∞)

.

Their quadratic variation processes are obviously given by (Un(t))t∈[0,∞). Exploiting
the uniform ellipticity assumption (A1), we can use (3.3) to estimate the quadratic
variation by

〈Rn〉t =

∫ tn

0

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)>
(s)
(
σσ>(ηs)

)−1
(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)
(s)ds

≤ σ−10

∫ tn

0

∣∣∣S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

∣∣∣2 ds
= σ−10

∫ tn

0

∣∣S(ϑn,Tn) − S(ϑ,T ) −DϑS(ϑ,T )(ϑn − ϑ)− ∂TS(ϑ,T )(s)(Tn − T )
∣∣2 ds.
(3.24)

Note that this upper bound is entirely deterministic. In order to prove that it in fact
converges to zero, we will separate the dependence on the parameters ϑ and T in such
a way that we can use the periodicity and (S1) - (S4) efficiently. This can be achieved
by continuing the inequality (3.24) with

〈Rn〉t ≤ 3σ−10

(∫ tn

0

∣∣S(ϑn,Tn)(s)− S(ϑ,Tn)(s)−DϑS(ϑ,Tn)(s)(ϑn − ϑ)
∣∣2 ds

+

∫ tn

0

∣∣(DϑS(ϑ,Tn) −DϑS(ϑ,T )(s)
)
(ϑn − ϑ)

∣∣2 ds
+

∫ tn

0

∣∣S(ϑ,Tn)(s)− S(ϑ,T )(s)− ∂TS(ϑ,T )(s)(Tn − T )
∣∣2 ds)

=: 3σ−10 (An +Bn + Cn).

We will treat convergence of An, Bn, and Cn step for step. For this purpose, set
H := supn∈N |hn| and note that for all n ∈ N we have

|ϑn − ϑ| ≤ Hn−1/2 and |Tn − T | ≤ Hn−3/2,

since (ϑn, Tn)− (ϑ, T ) = δnhn.

Starting with An, we observe that for sufficiently large n ∈ N we have Tn ∈ [T/2, 2T ]
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and thus

An ≤
(
tn

Tn
+ 1

)∫ Tn

0

∣∣S(ϑn,Tn)(s)− S(ϑ,Tn)(s)−DϑS(ϑ,Tn)(s)(ϑn − ϑ)
∣∣2 ds

=

(
tn

Tn
+ 1

)
|ϑn − ϑ|2

∫ Tn

0

∣∣∣∣S(ϑn,Tn)(s)− S(ϑ,Tn)(s)−DϑS(ϑ,Tn)(s)(ϑn − ϑ)

|ϑn − ϑ|

∣∣∣∣2ds
≤
(
tn

T/2
+ 1

)
H2n−1

∫ 2T

0

∣∣∣∣S(ϑn,Tn)(s)− S(ϑ,Tn)(s)−DϑS(ϑ,Tn)(s)(ϑn − ϑ)

|ϑn − ϑ|

∣∣∣∣2ds,
where the factor in front of the integral is obviously convergent, and the integral itself
tends to zero because of the L2-continuity condition (S3) and Lemma 3.18 (to be found
at the end of this section).

Next, using the Hölder condition (S4), we obtain for sufficiently large n ∈ N that

Bn ≤ |ϑn − ϑ|2
∫ tn

0

∣∣DϑS(ϑ,Tn)(s)−DϑS(ϑ,T )(s)
∣∣2 ds

≤ H2n−1
(∫ t0

0

∣∣DϑS(ϑ,Tn)(s)−DϑS(ϑ,T )(s)
∣∣2 ds+ C(tn)β |Tn − T |α

)
≤ H2n−1

∫ t0

0

∣∣∣Ṡ(ϑ,Tn)(s)− Ṡ(ϑ,T )(s)
∣∣∣2 ds+ CH2+αtβnβ−(1+3α/2).

The particular conditions on α and β from (S4) make the second summand vanish for
n→∞, while the first summand converges to zero because of (S3).

In order to estimate Cn, we make explicit use of the C2-property (S1) which is
readily translated into the condition that the mapping

(0,∞) 3 T 7→ S(ϑ,T )(s)

is twice continuously differentiable for any fixed s ∈ (0,∞). Consequently, for every
s ∈ (0,∞) and any i ∈ {1, . . . , N} Taylor expansion with the Lagrange form of the
remainder provides a %i = %i(s, ϑ, T, Tn, hn) between T and Tn such that for sufficiently
large n ∈ N we can infer that∣∣S(ϑ,Tn)(s)− S(ϑ,T )(s)− (Tn − T )∂TS(ϑ,T )(s)

∣∣2
=

N∑
i=1

(
S
(i)
(ϑ,Tn)

(s)− S(i)
(ϑ,T )(s)− (Tn − T )∂TS

(i)
(ϑ,T )(s)

)2
=

N∑
i=1

(
1

2
(Tn − T )2∂2TS

(i)
(ϑ,T )(s)|T=%i

)2

=
1

4
(Tn − T )4

N∑
i=1

(
s2

%4i

(
S
(i)
ϑ

)′′
(s/%i) +

2s

%3i

(
S
(i)
ϑ

)′
(s/%i)

)2

≤ 1

4
H4n−62N

[(
s2

‖S ′′ϑ‖∞
(T − n−3/2H)4

)2

+

(
s

2 ‖S ′ϑ‖∞
(T − n−3/2H)3

)2
]

≤ cstn−6(s4 + s2)
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for some positive constant not depending on s or n. Integrating yields

Cn ≤ cstn−6
∫ tn

0

(s4 + s2)ds
n→∞−−−→ 0.

So far, we have shown that the sequence of random variables (Un(t))n∈N not only van-
ishes in probability underQ for n→∞, but is even bounded by a deterministic sequence
which goes to zero. Therefore,

EQ[Rn(t)2] = EQ[〈Rn〉t] = EQ[Un(t)]
n→∞−−−→ 0, (3.25)

and in particular, Rn(t) also vanishes in probability under Q for n → ∞. Finally, the
same is true for the last remainder variable Vn(t), as by the Cauchy-Schwarz inequality
we get that

|Vn(t)|2 ≤ Un(t)h>nIn(t)hn ≤ Un(t)H2 |In(t)| n→∞−−−→ 0, (3.26)

since In(t) converges and Un(t) goes to zero. Taking t = 1 completes the proof.

Remark 3.13. The convergence in probability for n → ∞ of the remainder terms
Rn(t), Un(t), and Vn(t) (which determine the term oQ(ϑ,T )(1) in (3.20)) is in fact even
uniform with respect to t ∈ [0, t0] for every t0 ∈ (0,∞). For Un(t) this is clear, since
it only increases with t. Using the Burkholder-Davis-Gundy inequality, the estimation
(3.25) can be improved to

EQ

[
sup
t∈[0,t0]

|Rn(t)|2
]
≤ 4EQ[〈Rn〉t0 ] = 4EQ[Un(t0)]

n→∞−−−→ 0,

which also takes care of Rn(t). For Vn(t) we notice that the bound given in (3.26) only
depends on t via In(t) and Un(t) which are both non-decreasing with respect to t.

Remark 3.14. In the one-dimensional case M = N = 1, variants of Theorem 3.11 are
already known in the literature, where shape and periodicity are treated separately and
one of them is assumed to be known.

If the shape parameter ϑ is known, Theorem 3.11 includes [33, Theorem 1.1] as a
special case (only (A1) - (A3) and the C2-property from (S1) are actually needed in this
situation). If, on the other hand, the periodicity is known and the only parameter of
interest is ϑ, then Theorem 3.11 leads to the same conclusion as [31, Theorem 2.1] (note
that other than in Theorem 3.11, there Score and Fisher Information are written at a
time scale given by multiples of the known periodicity T ). In [31], the L2-smoothness
conditions on the signal are formulated not with respect to Lebesgue’s measure ds as
in (S2) and (S3) but with respect to the measure

νϑ(ds) := µϑP ϑ
0,sT (σ−2)ds
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(where we dropped the superscript T , as the periodicity is known). Under the uniform
ellipticity condition (A1), these L2-smoothness assumptions are slightly weaker than
(S2) and (S3). However, if (A1) holds (which in practice is more or less the only
verifiable condition for νϑ to be finite, as is supposed in [31] anyway) the most obvious
way to verify these is using that νϑ is thus bounded from above by a multiple of
Lebesgue’s measure. In this sense, the difference between these assumptions is just of
a very theoretical nature.

The key to bringing these results together in Theorem 3.11 is the Hölder condition
(S4) which is crucial for dealing with the term Bn in step 3.) of its proof. This is
the only instant where (in contrast to the terms An and Cn) we have to impose more
than just "joint smoothness", but a more specific relation of the interplay between
T and ϑ. It should also be noted that (A1) is essential for this step, as it removes
any randomness from the terms we effectively deal with. Otherwise, even if we would
reformulate (S2) - (S4) with L2-convergence replaced by convergence with respect to
the semi-norm induced by B(ϑ,T )

σσ>
, we could not treat this term with the methods used

in Lemma 3.8 due to the occurrence of different periodicities in the integrand.

Example 3.15. For M = N = 1 consider the case

b(z) = −γz for some γ ∈ (0,∞), σ ≡ 1,

i.e. Z is a mean reverting Ornstein-Uhlenbeck process with mean reversion speed γ and
time-dependent mean reversion level γ−1S(ϑ,T )(t). By [32, Example 2.3], the periodic
recurrence assumption (A3) is fulfilled, and we see that B(ϑ,T )

σσ>
is simply the standard

L2-inner product with respect to Lebesgue’s measure. In [13], the authors think of γ
as another unknown parameter, while they assume the periodicity T to be fixed and
known. In order to apply our result, we suppose that both γ and T are fixed and known,
while ϑ is to be estimated. The signal the authors consider is then the one introduced
in (3.17) in Example 3.10. In this setting, we see that the Fisher Information I is just
the identity matrix 1d×d and the Score is given by

Sn = n−1/2
(∫ n

0

ϕi(s)dBs

)
i=1,...,d

for all n ∈ N.

Proposition 4.1 of [13] implies that the rescaled estimation error
√
n(ϑ̂n − ϑ) of the

maximum likelihood estimator ϑ̂n is exactly the central statistic Zn = I−1Sn = Sn.
Combining this with Theorem 3.11, we see that in the sense of the Local Asymptotic
Minimax Theorem [29, Theorem 7.12], ϑ̂n is in fact optimal with rate

√
n (cf. [13,

Theorem 2]).
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Example 3.16. More generally, for M = N = 1, σ ≡ 1, and any drift b : R → R the
process Z̃ = (Z̃t)t∈[0,∞) defined by

Z̃t := Zt −
∫ t

0

b(Zs)ds for all t ∈ [0,∞)

is obviously a solution to the "signal in white noise" equation

dZ̃t = S(ϑ,T )(t)dt+ dWt. (3.27)

We will now discuss some known results about this equation. Note that even if Z
satisfies the recurrence assumption (A3), Z̃ does not. Ibragimov and Khasminskii treat
the case where ϑ is fixed and known and T is to be estimated (see [39, Sections II.7 and
III.5]). They show asymptotic normality and efficiency for the maximum likelihood and
Bayesian estimators with a normalisation factor that coincides asymptotically with

(δn)−1d+1,d+1 (Id+1,d+1)
−1/2 ,

when translated into our notation (note that they use a different parametrisation: "our
T" takes the place of "their θ−1", explaining the difference in the constants appearing
in their presentation). So both rate and limit variance are the right ones in the sense of
the Local Asymptotic Minimax Theorem. Golubev (see [21], or compare [7] for a more
detailed probabilistic explanation) gives an estimator for T under unknown infinite-
dimensional ϑ (the vector of the Fourier-coefficients of the signal) which he proves to be
asymptotically normal and efficient, where the normalisation factor is (when translated
into our notation) given by

n3/2

(
1

12T 4

∫ 1

0

(S ′ϑ(s))2ds

)1/2

= (δn)−1d+1,d+1

(
1

4
Id+1,d+1

)−1/2
.

So while the rate is indeed δn, the limit variance for Golubev’s estimator apparently
differs from what should be the optimal value by a factor of 4. This is due to the fact
that he studies a slightly different model in which the driving Brownian Motion is two-
sided, and the process is observed over time intervals [−n/2, n/2] and not [0, n]. This
can be interpreted as two independent "signal in white noise" models Z̃(1), Z̃(2) each
being observed over the interval [0, n/2], where Z̃(1) follows (3.27) and Z̃(2) follows (3.27)
with the signal replaced by the same signal run backwards in time. Obviously, Z̃(1) and
Z̃(2) both generate the same Fisher Information Id+1,d+1(1/2), using the notation of the
proof of Theorem 3.11. As a consequence of the independence structure, the Fisher
Information in the experiment arising from observation of (Z̃(1), Z̃(2)) indeed turns out
to be

2 · Id+1,d+1(1/2) = 2 · (1/2)3Id+1,d+1(1) =
1

4
Id+1,d+1,
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showing that Golubev’s estimator in fact has what is the optimal limit variance in our
model.

We close this section with the two purely analytical Lemmas 3.17 and 3.18 that
have already been referred to above. Lemma 3.17 was used in the proof of Lemma 3.8,
and Lemma 3.18 came into play in the final step of the proof of Theorem 3.11 when
showing that An vanishes in the limit. Both of these Lemmas are elementary, and it
is highly unlikely that this is the first time they have ever been stated. However, since
our humble efforts of finding them in the literature remained fruitless, we decided to
simply provide our own proofs for the sake of the completeness of this thesis.

Lemma 3.17. If f : [0,∞)→ [0,∞) is a non-decreasing continuous function with

f(t)

t

t→∞−−−→ 1, (3.28)

then
k + 1

tk+1

∫ t

0

skdf(s)
t→∞−−−→ 1

for all k ∈ N0.

Proof. Using the Stieltjes product formula, we can write

k + 1

tk+1

∫ t

0

skdf(s) =
k + 1

tk+1

(
tkf(t)−

∫ t

0

f(s)dsk
)

= (k + 1)
f(t)

t
− k + 1

tk+1

∫ t

0

f(s)ksk−1ds

= (k + 1)
f(t)

t
− k − k(k + 1)

tk+1

∫ t

0

(f(s)− s)sk−1ds.

By (3.28), the first summand converges to k+ 1 for t→∞, so it remains to prove that

g(t) :=
k + 1

tk+1

∫ t

0

(f(s)− s)sk−1ds

vanishes for t→∞. Let ε > 0. According to (3.28), there is some t0 ∈ (0,∞) such that∣∣∣∣f(s)

s
− 1

∣∣∣∣ ≤ ε for all s ∈ [t0,∞).

Then

|g(t)| ≤ k + 1

tk+1

∫ t0

0

|f(s)− s| sk−1ds+
k + 1

tk+1

∫ t

t0

(sε)sk−1ds

≤ k + 1

tk+1

∫ t0

0

|f(s)− s| sk−1ds+ ε

for all t ∈ [t0,∞). As the integral in the last step is finite and does not depend on t,
this shows that

lim sup
t→∞

|g(t)| ≤ ε,

which completes the proof, since ε was chosen arbitrarily.
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Lemma 3.18. Let U ⊂ RD open and f : U → L2
loc

(
[0,∞);RN

)
continuously dif-

ferentiable in the sense of (S2) and (S3), i.e. for each u ∈ U there is a function
ḟ(u) ∈ L2

loc

(
[0,∞);RN×D) such that for every t ∈ (0,∞)

∫ t

0

∣∣∣∣∣f(u)− f(v)− ḟ(u)(u− v)

|u− v|

∣∣∣∣∣
2

dx→ 0, as v → u,

and ∫ t

0

∣∣∣ḟ(u)− ḟ(v)
∣∣∣2 dx→ 0, as v → u.

Then for any two sequences (un)n∈N, (vn)n∈N ⊂ U converging to u ∈ U and any t ∈
(0,∞) we have ∫ t

0

∣∣∣∣∣f(un)− f(vn)− ḟ(un)(un − vn)

|un − vn|

∣∣∣∣∣
2

dx
n→∞−−−→ 0.

Proof. Let ε > 0 and choose δ > 0 such that Bδ(u) ⊂ U and for all v ∈ Bδ(u) we have∫ t

0

∣∣∣ḟ(u)− ḟ(v)
∣∣∣2 dx < ε2

4
.

There is a natural number n0 ∈ N such that for n ≥ n0 all un and vn belong to Bδ(u).
Then necessarily Bδ(u) also contains any convex combination λun + (1 − λ)vn with
λ ∈ [0, 1]. As our notion of differentiability is equivalent to Frechét differentiability
in L2

(
[0, t];RN

)
of u 7→ f(u)|[0,t] for every t ∈ (0,∞), this allows us to apply the

generalised Mean Value Theorem according to which for all n ≥ n0 we can write

f(un)− f(vn) =

∫ 1

0

ḟ
(
λun + (1− λ)vn

)
(un − vn)dλ,

where the integral is understood as an L2
(
[0, t];RN

)
-valued Riemann integral. Then∥∥∥∥∥ |f(un)− f(vn)− ḟ(un)(un − vn)|

|un − vn|

∥∥∥∥∥
L2([0,t])

≤ |un − vn|−1
∫ 1

0

∥∥∥(ḟ(λun + (1− λ)vn)− ḟ(un)
)
(un − vn)

∥∥∥
L2([0,t])

dλ

≤
∫ 1

0

(∫ t

0

∣∣∣ḟ(λun + (1− λ)vn)− ḟ(un)
∣∣∣2 dx)1/2

dλ

≤
√

2

∫ 1

0

(∫ t

0

∣∣∣ḟ(λun + (1− λ)vn)− ḟ(u)
∣∣∣2 dx+

∫ t

0

∣∣∣ḟ(u)− ḟ(un)
∣∣∣2 dx)1/2

dλ

<
√

2

∫ 1

0

(
2 · ε

2

4

)1/2

dλ = ε,

which proves the Lemma.
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List of symbols

N the set {1, 2, 3, . . .} of all natural numbers

N0 the set {0, 1, 2, 3, . . .} of all natural numbers including zero

R the set of all real numbers, the one-dimensional euclidean space

cst an arbitrary finite positive real constant whose exact value is of no
particular interest and may vary even within the same line

U × V the cartesian product of the sets U and V ; its elements x ∈ U ×
V are always assumed to be columns x = (u, v)> with u ∈ U,

v ∈ V ; however, when combining x = (u, v)> ∈ U × V and x′ =

(u′, v′)> ∈ U ′×V ′ into elements of U×V ×U ′×V ′, we often use the
notation (x, x′) := (u, v, u′, v′)> instead of the formally consistent
yet cumbersome (x>, x′>)> (these conventions canonically extend
to cartesian products of more than two sets)

Rn the n-fold cartesian product of R, the n-dimensional euclidean space

span(U) the smallest linear subspace of Rn containing the set U ⊂ Rn

0n short for (0, . . . , 0)> ∈ Rn

ei the i-th canonical unit vector in Rn; the dimension n is not reflected
in the notation, but is always clear from the context

�i some arbitrary element in Ri where the exact entries are irrelevant
for us

|x| the euclidean norm
√∑n

i=1 x
2
i of x ∈ Rn, usually simply referred to

as the absolute value; induces the euclidean topology on Rn

|x|1 the 1-norm
∑n

i=1 |xi| of x ∈ Rn

Bε(x) the euclidean ball {y ∈ Rn | |x− y| < ε} ⊂ Rn with radius ε > 0

and centre x ∈ Rn

int(U), Ū , ∂U the interior, closure and boundary of the set U with respect to the
topology of the space in which it is contained
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Rn×m the set of all real matrices A = (Ai,j)i=1,...,n, j=1,...,m with n rows and
m columns

1n×n the identity matrix in Rn×n

|A| the Frobenius norm (or Hilbert-Schmidt norm)
√∑n

i=1

∑m
j=1A

2
i,j of

a matrix A ∈ Rn×m, induces the euclidean topology on Rn×m

tr(A) the trace
∑n

i=1Ai,i of a quadratic matrix A ∈ Rn×n

det(A) the determinant of a quadratic matrix A ∈ Rn×n

f ≡ c short for saying that the function f is constant with c being its only
value

C(U ;V ) the set of all continuous functions f : U → V , where U ⊂ Rn

and V ⊂ Rm are equipped with the euclidean topology; C(U ;V )

equipped with the topology of locally uniform convergence becomes
itself a topological space; abbreviated to C(U) for V = R

Ck(U ;V ) the set of all f ∈ C(U ;V ) which are k-times continuously (partially)
differentiable, k ∈ N ∪ {∞}; abbreviated to Ck(U) for V = R

Ck
b (U ;V ) the set of all f ∈ Ck(U ;V ) whose partial derivatives of any order

up to k (including order zero, i.e. f itself) are bounded; abbreviated
to Ck

b (U) for V = R

∂kt , ∂
k
xj
, . . . the k-th (partial) derivative with respect to the variable t, xj, . . . ,

the case k = 0 corresponds to taking no derivative at all

∂t, ∂xk , . . . short for ∂1t , ∂1xj , . . .

∂αx short for ∂αnxn · · · ∂
α1
x1

with x ∈ Rn and α ∈ Nn
0

∇xu the gradient (∂x1u, . . . , ∂xnu)> with respect to x ∈ Rn of a real-
valued function u that depends on x but possibly also on other
variables; if u does not depend on any other variables and there is
no risk of ambiguity, we simply write ∇u

u′ short for the derivative of a function u of only one variable

D
(
[0,∞);Rn

)
the space of all càdlàg functions f : [0,∞)→ Rn, equipped with the
Skorohod topology (see [6, p. 111] for a definition in the case n = 1,
the general case is handled by canonically identifying D

(
[0,∞);Rn

)
with

(
D
(
[0,∞);R

))n)
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B(U) the Borel-σ-field of a topological space U ; the specific topology used
is not reflected in the notation, but it is either clear from the context
or it is mentioned in the text; unless stated otherwise, the term
measurable (for sets or functions) is always meant in the sense of
Borel-measurable

σ(F) the σ-field on Ω generated by the family F of functions mapping Ω

to a measurable space (E, E)

1A the indicator function of the set A

Lp(µ;Rn) the space of all measurable functions f : (E, E)→ (Rn,B(Rn)) such
that |f |p is integrable with respect to the measure µ : E → [0,∞];
analogously used for Rn×m-valued functions; abbreviated to Lp(µ)

for R-valued functions
Lp(E;Rn) alternate writing for Lp(µ;Rn) when µ is Lebesgue’s measure on

E ⊂ Rk; analogously used for Rn×m-valued functions; abbreviated
to Lp(E) for R-valued functions

Lploc(· · · ) analogous to any of the above with the only difference that the
respective function is supposed to be integrable only locally, i.e. in
restriction to any compact subset of E (which has to be a topological
space for this to make sense)

‖f‖L2(U) the L2 norm
√∫

U
|f(x)|2 dx of a function f that is defined on (some

superset of) U

‖f‖∞ the supremum norm supx∈U |f(x)| of a bounded function f : U → Rn

Lip(f) the optimal Lipschitz constant supx,y∈U
|f(x)−f(y)|
|x−y| of a Lipschitz con-

tinuous function f : U → Rn

f |W the restriction of the mapping f : U → V to some W ⊂ U∫
· · · dWt the Itō integral with respect to the Brownian Motion W∫
· · · ◦ dWt the Stratonovich integral with respect to the Brownian Motion W

L(X|P ) the law or image measure under the probability law P of the random
variable X on its image space

N (µ,Σ) the Gaussian law on Rn with mean vector µ ∈ Rn and covariance
matrix Σ ∈ Rn×n

EP [X] the expected value of the real-valued random variable X under the
probability law P

dµ

dν
the Radon-Nikodym derivative of the measure µ with respect to the
measure ν
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〈M,N〉 the quadratic covariation process of the locally square integrable
martingales M and N

〈M〉 short for 〈M,M〉, the quadratic variation process of the locally
square integrable martingale M
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