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Abstract

 

Mylonites are foliated and usually also lineated rocks, that show evidence for strong ductile
deformation. The deformation of mylonitic rocks with mica fish is investigated in this thesis.
Mica fish are lenticular or parallelogram-shaped single mica crystals, that are often used as
shear sense indicators. Tools for establishment of the shear sense are the stair-stepping of tails
of the mica fish, their asymmetrical shape, and their orientation with respect to the mylonitic
foliation. The aim of this thesis is to determine the mechanisms responsible for the develop-
ment of mica fish and related structures, and to investigate what these structures indicate about
strain distribution and rheology of mylonitic rocks.

The microstructures of natural mica fish in thin sections are described in Chapter 2. Possible
mechanisms for the evolution of these mica fish are determined from the microstructures. The
mica fish are also compared with other minerals showing similar structures. Possible mecha-
nisms for the evolution of mica- and other 'mineral' fish are divided into two groups: mecha-
nisms changing the shape of a single crystal and mechanisms to split a crystal into several
parts. The first group of mechanisms include intracrystalline deformation, rigid body rotation,
bending and folding, dynamic recrystallisation at the rim of the crystal, and pressure solution
accompanied by local growth of the crystal. The mechanisms responsible for the shape of a
mineral fish depend on the physical properties of the mineral. For some minerals the fish-shape
seems to be developed during a certain stage of their evolution, before the crystal is destroyed
by one of the grain size reducing mechanisms. Splitting the crystal into smaller parts is possi-
ble where a microfault is developed parallel to the basal planes of the fish, followed by sliding
of the parts past each other, or when a mica fish is folded, and broken apart along the fold
hinge, again followed by sliding of the two parts past each other. These mechanisms are based
on inhomogeneous strain distribution in the matrix. A mica fragment can only be transported
along a host clast if a micro-shear zone is developed along its grain boundary. The fish-shaped
structures in the different minerals have their asymmetrical shape and their orientation with
respect to the foliation in common. These characteristics make them all excellent shear sense
indicators.

A new apparatus for deformation of rock analogues is presented in Chapter 3. Different flow
types, varying from pure shear to simple shear and everything between them can be modelled
with this apparatus. Suitable materials for deformation are so-called rock analogues. These
materials have similar characteristics as rocks at high temperature and pressure, but are softer.
This means that experiments can be performed in a relatively short time. Polymers are an
example of a commonly used rock analogue. The rheology of polymers, which can be used in
combination with the deformation apparatus in Chapter 3, is described in Chapter 4. The use of
polymers as rock analogues is also discussed.
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Analogue experiments to study the preferred orientation of the mica fish, using the apparatus
described in Chapter 3, are presented in Chapter 5. Two different matrix materials are used:
PDMS, a homogeneous Newtonian viscous polymer, and tapioca pearls, a granular material
with low cohesion and a Mohr-Coulomb rheology. Rigid fish-shaped objects are used. The
rotation of the objects in PDMS is similar to theoretical rotation of ellipsoids with a similar
aspect ratio in a Newtonian viscous fluid. The objects obtain a stable orientation in a matrix of
tapioca pearls. The stable orientations of the objects in simple shear experiments with tapioca
pearls are similar to the orientation of mica fish in natural mylonitic rocks. Deformation in ta-
pioca pearls is not homogeneously distributed, but concentrated in discrete shear bands. These
results suggest that strain is localised in mylonites.

Numerical experiments with the finite difference code FLAC are performed to study the effect
of matrix rheology and of inhomogeneous matrix properties on strain distribution and rotation
of rigid objects in simple shear. These experiments show that homogeneous power-law rheo-
logy cannot explain the preferred orientation of the mica fish. The stable orientation of mica
fish is probably the result of strain localisation around the object and anisotropy in the matrix. 

General conclusions, following from the results presented in this thesis, are given in Chapter 7.
This chapter also contains suggestions for future research related to the subjects presented in
this thesis. 
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Chapter 1

General introduction

 

1.1 Introduction

 

Mylonites are foliated and usually lineated rocks that show evidence for strong ductile defor-
mation (Hobbs et al. 1976, Passchier and Trouw 1996). Mylonites develop in zones of intense
non-coaxial deformation, called mylonite zones or shear zones. Deformation of the earth's
crust is largely localised in faults and shear zones (White et al. 1980, Ramsay 1980, Passchier
and Trouw 1996). Shear zones range from micrometer- to kilometre-scale, where they accom-
modate relative movement of tectonic units in orogenic belts. Shear zones are weaker than the
surrounding rock and crustal deformation is believed to be largely determined by the rheology
of shear zones (Sibson 1997, White et al. 1980, Holdsworth et al. 1997). Rocks in shear zones
in the crust range from brittle fault gouges and cataclasites at shallow depths to ductile mylo-
nites at deeper levels (Passchier and Trouw 1996).
Mylonites normally contain fabric elements with monoclinic shape symmetry, attributed to the
monoclinic geometry of flow in ductile shear zones (Bell and Etheridge 1973, Hobbs et al.
1976, White et al. 1980, Hanmer and Passchier 1991, Passchier and Trouw 1996). A large
range of microstructures can be preserved in these deformed rocks that can potentially be used
to reconstruct parts of the deformation history of the rock. Porphyroclasts, remnants of resis-
tant mineral grains, which are at least an order of magnitude larger than grains in the matrix,
are common microstructures in mylonitic rocks. They can be important to determine shear
sense in a mylonite zone, because of their usually asymmetric shape and stair-stepping, differ-
ence in elevation of wings or tails, on both sides of the porphyroclast (Passchier and Simpson
1986). The asymmetric shape of porphyroclasts can be determined by their own shape or by
the shape of recrystallised mantles or strain shadows. Porphyroclasts develop because of a dif-
ference in rheology between the clast and the matrix material. Minerals forming porphyro-
clasts are relatively 'hard' compared to the minerals forming the matrix.
Mica fish, a special type of porphyroclasts, are single crystals of mica with a lenticular or par-
allelogram shape (Fig 1.1). They are common in mylonites derived from micaceous quartzites
and granitoid rocks. Mica fish are frequently used to determine the sense of shear in a mylonite
zone (Eisbacher 1970, Lister and Snoke 1984). The stair stepping of the trails of small mica
fragments, which extend into the matrix from the tips of the fish, the orientation of the fish with
respect to foliation and the shape of the mica fish have all been used as empirically reliable
shear sense indicators (Fig. 1.2, Lister and Snoke 1984, Passchier and Trouw 1996). Neverthe-
less, little work has been done investigating how mica fish actually form, and which factors
influence their development.
Once it is understood how a microstructure develops, the observed microstructure in a rock
sample can be used as a source of information on deformation mechanisms, deformation
regime and deformation history. Mica fish and related structures are a potential source of such
information on deformation mechanisms active during mylonitisation, the rheological beha-
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viour of the mylonitic rock and on the geometry of ductile flow. In this thesis mylonitic rocks
containing mica fish and similar structures in other minerals are investigated in order to
improve our understanding of this microstructure. The formation of mica fish and related struc-
tures, the strain distribution in the matrix around mica fish, and the preferred orientation of
mica fish have been studied with field observations, analogue experiments, and numerical
modelling, and results are presented in this thesis. 

Figure 1.1. Photograph of

mica fish from shear zone

near Conceiçao do Rio

Verde, Brazil, with crossed

polarised light. Sense of

shear is dextral. S and C in-

dicate S-planes, defined by

oblique foliation, and C-

planes, defined by mica

trails, according to Lister

and Snoke (1984).
0.5 mm

s

c

Figure 1.2. (a) Schematic dia-

gram showing the geometry of a

mylonite zone and how thin sec-

tions are cut to observe shear

sense indicators; mf =mylonitic

foliation, L = lineation.  (b) Sche-

matic drawing of mica fish with

trails. 

a

mf

L

b
mica fish

b

trail
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1.2 Previous work

 

1.2.1 Previous work on mica fish

 

Although frequently used as kinematic indicators, the development of mica fish and related
structures has been relatively unexplored. Eisbacher (1970) was the first to describe mica fish
and has shown that the shape of lenticular muscovite crystals and the orientation of their clea-
vage planes with respect to the foliation can be used to deduce the shear sense in mylonitic
rocks. Lister and Snoke (1984) described mylonites containing mica fish and classified these
rocks as a special type of S-C mylonite (Berthé et al. 1979). The C-surfaces, shear zone paral-
lel displacement discontinuities or zones of relatively high shear strain, are defined by trails of
fine grained mica between mica fish (Fig. 1.1). The S-surfaces are defined by oblique foliations
in the adjacent quartz aggregates, formed as a result of dynamic recrystallisation (Law et al.
1984, Lister and Snoke 1984). According to Lister and Snoke (1984) mica fish form as a result
of boudinage of pre-existing large mica grains by a combination of brittle and crystal-plastic
processes. Recrystallisation processes initiated at the boundaries of the fish are also considered
important for the formation of mica fish. According to Passchier and Trouw (1996) possible
deformation mechanisms for mica fish are slip on the basal plane, rigid body rotation, bou-
dinage, and recrystallisation at the edges. They also report that other minerals, such as kyanite
and feldspar, can show similar fish-shaped structures. Asymmetrical fish shapes are also
described for garnet (Ji and Martingole 1994, Azor et al. 1997), aggregates of fine-grained leu-
coxene (Oliver and Goodge 1996) and quartz in a calcite matrix (Bestmann 1999). 

 

1.2.2 Analytical work on porphyroclasts in non-coaxial flow

 

Porphyroclasts develop because they are relatively hard compared to the matrix in which they
are embedded. The matrix material of mylonitic rocks is usually considered to be an isotropic
material deforming plastically, according to a 'power-law' flow law with an exponent between 1
and 3 (Poirier 1985). Therefore, the work on flow kinematics of mylonitic rocks and analysis
of rigid body rotation of porphyroclasts in a deforming continuum follows the viscous fluid
mechanics studies of flow behaviour of fluids around obstacles. Jeffery (1922) analysed the
motion of rigid ellipsoidal particles immersed in a viscous shearing fluid with infinitely low
Reynolds number in simple shear. His results show that the rotation rate of a particle is a func-
tion of the shape and orientation of the particle, and the shear strain rate of the fluid. Solutions
for pure shear flow and plane strain general flow are give by Gay (1968) and Ghosh and Ram-
berg (1976), respectively. The angular velocity (     ) of an object in plane strain general flow is
given by:

(1.1)

(after Ghosh and Ramberg 1976), where     is strain rate, 
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 is the aspect ratio of the object in
the plane of deformation, 
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is orientation of the object, and using
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the vorticity number of

flow (Means et al. 1980). According to this equation for the motion of rigid bodies, all objects,
except lines and planes, are continuously rotating in simple shear flow. Objects rotate clock-
wise in dextral flow (Fig 1.3a). 
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rate under these conditions. All objects rotate towards a stable orientation during ongoing
deformation in pure shear. In plane strain general flow,(0 < W

 

k

 

 < 1) the combination of flow

type and aspect ratio of the particle determine whether an object will keep rotating or reaches a
stable position. Ghosh and Ramberg (1976) defined a critical aspect ratio (R

 

crit

 

):

(1.2)

This is the smallest possible aspect ratio for an object that will reach a stable orientation during
continuous deformation with a given vorticity number (W

 

k

 

) (Fig 1.3b). For example, in flow

with W

 

k

 

 = 0.8 all objects with an aspect ratio 

 

≥

 

 3 will eventually reach a stable orientation.

The work of Jeffery (1922) also includes equations that describe the surrounding velocity field
in the matrix. Bretherton (1962) defined a two dimensional stream function that describes the
flow field in shear flow around a cylinder. His solutions are based on the first inner expansion
of the Stokes equation. This stream function is also applicable to cylinders that rotate with an
arbitrary angular velocity. Robertson and Acrivos (1970), using the approach of Bretherton
(1962) showed that the flow pattern around a cylinder is a function of the rotation rate of the
cylinder. A free floating cylinder gives rise to a 'eye-shaped' flow geometry, and a small exter-
nally imposed reduction of the rotation rate results in a 'bow-tie-shaped' flow pattern (Passchier
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Figure 1.3. (a) Drawing showing the

rotation direction of a rigid object in

dextral simple shear and the sign con-

vention for the orientation of the object

used in this thesis. (b) Critical object

aspect ratio (Rcrit) as a function of the

vorticity number (Wk) of flow. The plot

indicates which objects will continu-

ously rotate and which will go towards

a stable orientation during progressive

deformation.
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et al. 1993, Fig. 1.4). Chwang and Wu (1975) used the singularity method, based on single
point disturbances to find solutions for the Stokes equation. This method can be used to solve
problems with difficult geometries in three dimensions. For a cylinder in shear flow the solu-
tions of Bretherton (1962) and Chwang and Wu (1975) are equivalent. Jezek et al. (1999)
found an efficient way to compute the equations of Jeffery (1922) that describe the velocity
field around an object. They used these equations to develop a computer program, which shows
the velocity field around rotating porphyroclasts and also around growing porphyroblasts in
any homogeneous flow that can be described by the velocity gradient tensor. 
The analytical solutions are used by several workers to analyse the vorticity and finite strain in
rocks by using the orientation of porphyroclasts. Passchier (1987) used the critical aspect ratio
described above to determine the vorticity number of flow by studying the orientation of por-
phyroclasts with different aspect ratios. Wallis (1995) and Beam and Fischer (1999) used the
absolute rotation of porphyroblasts to determine the vorticity number and finite strain in shear
zones. Masuda et al. (1995) produced distribution plots of porphyroclast aspect ratio versus
orientation of initially random orientated objects based on the analytical solution for different
flow regimes and different amounts of strain. These plots were compared with plots orientation
versus aspect ratio of porphyroclasts from natural examples to determine vorticity and amount
of strain of these samples. 

 

1.2.3 Analogue experiments related to porphyroclasts. 

 

 
In analogue experiments with rigid particles different materials have been used as analogue for
the matrix, such as: silicon putty (e.g. Ghosh and Ramberg 1976, Ildefonse et al. 1992), honey
with titanium oxide (Fernandez et al. 1983), paraffin wax (Ildefonse and Mancktelow 1993)
and OCP, polyacrylamide (pAA) solution and glycerine (ten Brink 1996). Either pure or sim-
ple shear was usually modelled in these experiments and rectangular objects were used. The
results from these experiments for single objects in a deforming matrix are mostly very similar
and closely resemble behaviour predicted for elliptical particles by the analytical solutions
mentioned above, indicating that the non-ellipticity of the object has only minor influence on
the rotation rate. Experimental work on elongated objects with a non-coherent boundary
between particle and matrix (Ildefonse and Mancktelow 1993) and with a non-Newtonian an-
isotropic viscous matrix material (pAA solution, ten Brink 1996) shows results that differ from
the analytical solutions. Decoupled objects rotate slower in simple shear and faster in pure
shear, compared to analytical solutions. Experiments by ten Brink (1996) with pAA solution

a

b Figure 1.4. Schematic representation of

(a) an 'eye-shaped', and (b) a 'bow-tie-

shaped' flow geometry. Grey circle repre-

sents a rigid object, dashed lines separa-

trices, and continuous lines stream lines.
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also show lower rotation rates in simple shear compared to experiments with a Newtonian
matrix material. Experiments with interacting objects (Ildefonse et al. 1992, Ildefonse and
Mancktelow, 1993) show that the rotation of individual objects is influenced if the distance
between the objects is less that one particle length. 

 

1.2.4 Numerical modelling of flow around rigid objects

 

Flow around rigid circular particles and the development of inclusion patterns have also been
considered in numerical modelling. The development of inclusion patterns in porphyroblasts
depending on initial orientation of the foliation with respect to the flow plane was studied by
Masuda & Mochizuki (1989) with a hydrodynamical model. Ten Brink (1996) and Bons et al.
(1997) investigated the flow pertubation around rigid objects under different boundary condi-
tions and in different matrix materials with finite element modelling. Ten Brink (1996) also
studied the effect of a slow or not rotating object on the flow pattern. Pennachioni et al. (2000)
studied the effect of an incoherent particle matrix boundary with finite element modelling.
These numerical models show that depending on the conditions during deformation a 'eye-
shaped' or 'bow-tie-shaped' flow pattern develops around a rigid circular object. An 'eye-
shaped' flow pattern only develops when simple shear boundary conditions are imposed at
infinity from the object. Rigid boundaries of the model, reduced rotation of the object, or an
incoherent particle matrix boundary lead to a 'bow-tie-shaped' flow pattern. The use of these
models is mainly to interpret inclusion patterns in porphyroblasts and winged structures, such
as sigma and delta clasts in deformed rocks.  

 

1.2.5 Strain partitioning and rotation of objects

 

A contrasting theory on the behaviour of rigid objects in a shear zone is presented by Bell
(1985). According to this theory non-coaxial deformation involving a component of bulk shor-
tening does not deform homogeneously, but partitions into zones of nearly coaxial progressive
deformation and zones of generally non-coaxial progressive shearing. Simple shear flow parti-
tions into zones without deformation and zones of non-coaxial progressive shearing (Fig 1.5).
Porphyroblasts or other rigid objects will be situated in the zones with coaxial deformation or
without deformation and do not rotate during progressive deformation (e.g. Bell et al. 1992)
with respect to the flow plane. This theory is based on strain field diagrams that duplicate
geometries observed in and around porphyroblasts (Ramsay 1962, Bell 1981, 1985, Bell et al.
1992). 

Figure 1.5. Model for simple shear defor-

mation in a shear zone after Bell (1985).

Deformation is partitioned into zones

with high strain and zones without strain. 
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1.2.6 Rheology of mylonites

 

The results from analogue and numerical modelling related to the behaviour of porphyroclasts
in mylonites indicate that the rotation behaviour of the clast and the flow patters around it
depend on the behaviour of the matrix material. The dominant behaviour of fault rocks in the
crust changes from brittle or frictional behaviour at shallow depths, less than 10 to 20 kilome-
tres, to dislocation creep or ductile behaviour at deeper levels. This transition is illustrated with
a crustal strength profile (Fig 1.6a). Ductile deformation in mylonites is usually described with
viscous flow laws based on data from experimental rock deformation (Poirier 1985, Kirby and
Kronenberg 1987). The data from experiments can be used to determine which mechanisms
are expected to be dominant under particular conditions. For polymineralic mylonites it is
more difficult to describe their rheological behaviour. Different models based on the rheo-logy
of the components, their volume fractions and their geometrical distribution have been pro-
posed (Jordan 1988, Bons 1993, Handy et al. 1999). Imber et al. (1997) presented a crustal
strength profile for phyllisilicate bearing rocks, where the upper limit is determined by fric-
tional behaviour and dislocation creep of phylosilicate free rocks and the lower boundary by
the extrapolated data for deformation of a single muscovite crystal, oriented favourably for slip
(Fig 1.6b). In these two-phase models a small fraction of a second phase, which is usually the
case for mica in a mylonitic quartzite with mica fish, does not have a significant influence on
the bulk rheological behaviour. 

depth

Shear strength

Frictional

Dislocation creep

depth

Shear strength

Frictional
    quartz

Dislocation creep
quartz

a Quartz b Phylosilicate-bearing

<––  increasing
     mica content

mica

Figure 1.6. Crustal strength as a function of depth, for (a) quartzo-feldspatic crust, at shallow 
depths the strength is determined by brittle or frictional behaviour, at deeper levels by dislo-
cation creep, and for (b) phyllosilicate bearing rocks; upper boundary same as in (a), lower 
boundary extrapolated from deformation of a single muscovite crystal (Mares and Kronen-
berg 1993). Figure after Imber et al. (1997)
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1.3 Remaining problems

 

A couple of problems related to porphyroclasts in mylonitic rocks are remaining. For example
only few experiments in 3D or in a crystalline material are performed, and the effect of non-
homogeneous flow on the rotation of porphyroclasts is not known. 
Mica fish are a special type of porphyroclasts with a specific shape and orientation. The pro-
blems studied in this thesis are related to: (1) formation of mica fish and related structures, (2)
strain distribution in matrix around mica fish, and (3) the preferred orientation of mica fish. 
The mechanisms responsible for the formation of mica fish have been discussed by Lister and
Snoke (1984) and Passchier and Trouw (1996). Lister and Snoke (1984) give boudinage of pre-
existing large mica grains by a combination of brittle and crystal-plastic processes and recrys-
tallisation processes as mayor mechanisms. According to Passchier and Trouw (1996) mica
fish are formed by slip on the basal plane, rigid body rotation, boudinage, and recrystallisation
at the edges. The importance of each mechanism is not discussed. A comparison between mica
fish and fish-shaped structures formed by other minerals and the mechanisms responsible for
the formation of these structures is lacking. The reliability of mica fish as shear sense indica-
tors has been discussed (Eisbacher 1970, Lister and Snoke 1984, Passchier and Trouw, 1996),
but it is not known if the other minerals with a lenticular or parallelogram shape also form reli-
able shear sense indicators.  
The trails of mica between boudinaged mica fish may indicate strain localisation on these
trails, as suggested by Lister and Snoke (1984). However, the quartz in the matrix does not
show a change in crystallographic or shape preferred orientation, or in grain size towards these
trails, which would indicate a gradient in finite strain in the matrix. In fact, the matrix fabric is
homogeneous and suggests homogeneous flow. 
The preferred orientation of the mica fish seems to be contradicting with the studies of the
behaviour of rigid object in simple shear viscous flow, where all objects except lines or planes
are continuously rotating. Rigid objects can have a stable orientation in a viscous fluid in gen-
eral flow, but their orientation is different than the orientation found for mica fish (Section 1.2,
Fig. 1.7). Analytical, analogue and numerical models show that several factors are influencing
the rotational behaviour of rigid objects, such as the vorticity number of flow, the shape of the
object, the rheology of the matrix and coherence between object and matrix. The factors deter-
mining the preferred orientation of the mica fish are not clear. 

flow plane

minimum rotation rate
orientation Wk=1 (Jeffery, 1922)

stable orientation Wk=0.88
(Ghosh and Ramberg, 1976)

orientation natural mica fish Figure 1.7. Comparison between orien-

tation of mica fish in mylonites and rigid

ellipsoidal objects in simple shear and

general flow, according to the analytical

solutions for the motion of rigid objects

in a viscous fluid (Jeffery 1922, Ghosh

and Ramberg 1976).
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1.4 Aims and methods 

 

In this thesis the evolution of mica fish and related structures in mylonitic rocks is investigated
in order to determine which processes contributed to the development of these structures and
what these structures tell us about the flow kinematics, deformation mechanisms and rheology
of the rock. The aims of this thesis are: (a) to determine the mechanisms responsible for evolu-
tion of mica fish and similar structures, (b) to investigate which factors influence the orienta-
tion of these structures, and (c) to discuss the implications of the results for rheology of
mylonitic rocks.
To achieve this, the following methods were used: investigation of natural mylonitic rocks with
mica fish and related structures, analogue modelling on the behaviour of fish-shaped rigid
objects in experimental shear zones and numerical experiments on the behaviour of relatively
rigid objects in different matrix materials. 
Field examples of mica fish and other minerals with similar structures were studied in thin sec-
tions (Chapter 2). The morphology of the structures and their orientation with respect to the
mylonitic foliation is described and possible mechanisms that were active during deformation
were determined. Similarly shaped structures in other minerals were compared with the mica
fish in order to determine whether the same or different mechanisms play a role. Also the relia-
bility of these structures as kinematic indicators is discussed. 
Information deduced from thin sections is limited, because small scale structures can be inter-
preted in different ways and evidence for deformation mechanisms may be destroyed by pro-
gressive deformation and recrystallisation. Therefore, fish-shaped structures were studied in
analogue experiments, where the evolution of structures during progressive deformation was
followed. A new apparatus to model general flow of analogue materials, developed together
with Sandra Piazolo, is presented in Chapter 3. This apparatus can model homogeneous defor-
mation in general flow regimes, i.e. combinations of pure and simple shear. In Chapter 4 the
deformation behaviour of polymers is explained. A thorough knowledge of the rheologic pro-
perties of the materials used in experiments is necessary for the correct interpretation of the
experimental results. Among the possible materials are several polymeric liquids. Properties of
several polymers and polymer mixtures, which can be used with the apparatus described in
Chapter 3, were investigated and subsequently described in detail. The use of polymers as
rock-analogues is also discussed. Chapter 3 and 4 have been written in close collaboration with
Sandra Piazolo (University of Mainz) and T. Pakula (Max Planck institute for polymer
research, Mainz) is a co-author on Chapter 4. 
Analogue experiments with fish-shaped structures in two different matrix materials are
described in Chapter 5. The first matrix material was PDMS, a homogeneous Newtonian vis-
cous material, and the second was tapioca pearls, a granular material with a Mohr-Coulomb
rheology. Rigid objects made of India rubber were used as an analogue for the mica fish. The
results of these experiments were compared with the results from the thin sections study. 
In Chapter 6 numerical experiments with the computer code FLAC are presented. With these
experiments, the effect of matrix rheology on strain distribution and rotation of a rigid object in
the matrix was studied in more detail. Not only the matrix rheology, but also the effect of in-
homogeneous matrix properties, of the boundary conditions and of slip along the object matrix
boundary on strain distribution and rotation of the object were studied.  
The results of the study of the thin sections, the analogue modelling and the numerical model-
ling are discussed together in Chapter 7. Implications of the results for crustal rheology are
given as are suggestions for further work related to this subject.
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1.5 Published parts

 

Parts of this thesis have been prepared for publication and are either in press or review. These
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Chapter 2

Evolution of mica fish in mylonitic rocks

 

Abstract

 

Mica fish are asymmetric microstructures in mylonites which can be used as shear sense
indicators. This chapter presents a morphological subdivision of mica fish, based on shape
and internal cleavage orientation. Using this subdivision and other morphological aspects
the relative importance of the following possible formation mechanisms is estimated:
intracrystalline deformation, rigid body rotation, grain size reduction either by recrystalli-
sation or by peeling off of fragments from larger grains, and pressure solution accompanied
by local growth. Although microboudinage seems a likely process for the break down of
large fish into smaller ones, evidence in the form of microfolds and kinks indicates that
many fish suffer shortening rather than extension along their long axes. Evidence is pre-
sented for an alternative process in which tips of mica fish are isoclinally folded and then
break off along the hinge. Mica fish-like structures also occur in other minerals, including
tourmaline, feldspar, garnet, hypersthene and quartz. For each of these minerals the relative
importance of the formation mechanisms mentioned above is evaluated based on morpho-
logical aspects. 

 

2.1 Introduction

 

Mylonites are rocks that develop dominantly by strong ductile deformation, usually in zones of
intense non-coaxial flow known as mylonite zones (Bell and Etheridge 1973). Many mylonites
contain porphyroclasts with a larger grain size than the matrix material. Porphyroclasts
develop because they are more resistant to deformation and dynamic recrystallisation than the
matrix. During deformation these porphyroclasts can develop into sense-of-shear markers,
such as sigma and delta clasts (Hanmer 1984; Passchier and Simpson 1986) and mica fish (Eis-
bacher 1970; Lister and Snoke 1984). Mica fish are lozenge- or lens-shaped mica crystals
usually accompanied by trails consisting of small mica fragments. Frequently, these trails show
stair-stepping; they are parallel to each other, but offset across the mica fish. Mica fish are rela-
tively common in mylonitised gneisses and in mylonites derived from micaceous quartzites
(Eisbacher 1970; Lister and Snoke 1984). According to Lister and Snoke (1984), quartzites
with mica fish are a special type of S-C mylonite, a structural setting in which two foliations
are developed; C-surfaces related to displacement discontinuities and S-surfaces related to the
accumulation of finite strain (Berthe et al. 1979). In quartz-mica rocks, Lister and Snoke
(1984) define the C-surfaces as trails of mica fragments forming the mylonitic foliation; each
C-plane is believed to be the result of microscopically thin displacement discontinuities. The
S-surface is defined by oblique foliation of quartz in the matrix, characterised by the grain
shape preferred orientation. This oblique foliation is formed when the matrix is dynamically
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recrystallised during deformation (Means 1981). According to Lister and Snoke (1984), the
mica fish in these rocks result from micro-boudinage of pre-existing large (white) mica grains
by brittle and crystal-plastic processes. Mica fish have shown empirically to be reliable shear
sense indicators, because of their asymmetrical shape and stair stepping of the trails. Although
the importance of mica fish has been widely recognised (e.g. Eisbacher 1970, Simpson and
Schmid 1983, Lister and Snoke 1984, Passchier and Trouw 1996), their genesis and kinematic
significance have remained relatively unexplored, with the exception of the work of Lister and
Snoke (1984). 
Although the mechanism of mica-fish development as proposed by Lister and Snoke (1984) is
possible, we decided to study a different dataset to see if it is the only possible solution. The
shape of approximately 1500 muscovite fish was established in 28 thin sections from a single
outcrop. It is thought that in this large number of samples it will be possible to see intermediate
stages of active processes in the development of mica fish. Mapping of these intermediate
stages can help to determine to what extent each process was active. Fish-shaped structures are
most common for white mica, but have also been described for some other minerals, e.g. asym-
metrical aggregates of fine-grained leucoxene (Oliver and Goodge 1996), garnets with asym-
metrical shapes (Azor et al. 1997) and asymmetric quartz grains in a calcite matrix (Bestmann
1999). We found that several other minerals can have a fish-shape including biotite, feldspars,
quartz, garnet, hypersthene and tourmaline. In this chapter these structures are described and
compared to the structures observed in white mica fish. Seventy-five thin sections from other
locations with fish-shaped structures in other minerals were studied. The morphological char-
acteristics of muscovite fish are compared to the fish-shaped structures in these minerals, in
order to determine whether the deformation processes, like intracrystalline deformation, rigid
body rotation, recrystallisation and pressure solution, that contributed to the development of
these structures, acted in similar proportions or not. Finally, the reliability of all fish-shaped
structures as kinematic indicators is discussed. In this chapter we attempt to relate deformation
mechanisms to the observed microstructures, although this is obviously interpretative. Experi-
mental work related to the development of mica fish, to control some of the mechanisms sug-
gested here, is in progress.

 

2.2 Morphology of mica fish

 

The studied samples of muscovite fish come from an outcrop along the highway that links the
cities of Caxambu and Cambuquira, approximately 5 km south of Conceição do Rio Verde,
Southern Minas Gerais State, Brazil (Fig. 2.1). The quartzites containing the mica fish belong
to the lower unit of the Neoproterozoic Andrelândia Depositional Sequence (Trouw et al. 1983,
Paciullo et al. 1993, Ribeiro et al. 1995) that consists of banded gneisses with intercalated
quartzites and schists. The outcrop is situated in an ENE trending subvertical dextral shear
zone of about 500 m thickness. The metamorphic grade during deformation is estimated as
upper greenschist facies, according to the metamorphic mineral association biotite + chlorite +
garnet + muscovite + quartz, apparently stable during mylonitisation.
The mica fish usually have a flake or disc-shape in three dimensions, in some cases bent or
folded (Fig. 2.2). In the plane parallel to the foliation they are only slightly elongated in the
direction of the stretching lineation. The length of the longest axis of mica fish is up to 4 mm.
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In the plane parallel to the stretching lineation and perpendicular to the foliation the mica fish
are elongated and the average aspect ratio of 400 measured mica fish is 5.7. The matrix sur-
rounding the mica fish consists of fine-grained quartz with an oblique foliation, which makes
an average angle of 34° with the mylonitic foliation. Trails of very small mica fragments
extend from the tips of the mica fish into the matrix (Fig. 2.2). These 10-100 µm wide trails
define the mylonitic foliation. They usually show very clear 'stair-stepping'  (Lister and Snoke
1984, Passchier et al. 1993, Passchier and Trouw 1996) over each mica fish. Mica fish are
inclined to the mylonitic foliation in the same direction as the oblique foliation. The angle
between the long axes of 400 measured mica fish and the mylonitic foliation has a mean value
of 13° (Fig. 2.3a), whereas the angle between the basal plane (001) and the mylonitic foliation
has a mean value of 11° (Fig. 2.3b). 

Figure 2.1. Geological map of the region between Cambuquira and Caxambu, Minas Gerais,

Brazil, modified after Trouw et al. (1983). Locality of the outcrop of the studied mica fish is

indicated on the map
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The morphology of mica fish as seen in thin sections cut parallel to the lineation and perpen-
dicular to the foliation permits a subdivision into several groups based on their shape and the
orientation of the lattice planes. Most common is a lenticular shape (Fig. 2.4a, 2.5a) with
curved sides, usually ending in sharp tips: 33% of the mica fish belong to this group. The orien-
tation of the lattice planes is usually parallel or at a small angle to the long axes of these fish. In
some of the lenticular shaped fish the lattice planes converge on an internal discontinuity at one
or both tips (Fig. 2.4b, 2.5b). Also common are mica fish with their tips bent over in the direc-
tion of the mylonitic foliation (19%, Fig. 2.4c). The lattice planes of these fish are typically
curved at the tips. Fish with a parallelogram shape form another group, sides of these fish are
straight compared to the lenticular ones. The longest side of this type of fish is typically sub-
parallel to the mylonitic foliation. Lattice planes are usually parallel to this side (25%, Fig.
2.4d, 5c). Less common are mica fish with a parallelogram shape in which lattice planes are
parallel to the short side (8%, Fig. 2.4e, 2.5d). The corners forming the tips of these fish are
sharp, whereas the other corners are usually rounded. The next group, representing 5% of the
mica fish, are thick lenses (Fig. 2.4f, 2.5e). The orientation of the lattice planes is usually
steeper than the long axes of the fish in this group. The sides of the mica fish of this type are
typically smoothly curved. The difference between this group and the lenticular mica fish is
that the trails of fine-grained mica are not on the same line as the upper and lower parts of the
central mica fish, but curved towards the points (Fig. 2.4f). The last group, representing 5% of
the mica fish, consists of elongate thin micas. The average aspect ratio of this type is 9.7. They
are usually orientated with their long axes parallel or at a small angle to the mylonitic foliation, 

Figure 2.3. Orientation of the long axes (a) and (001) planes (b) with respect to the mylonitic

foliation of 400 mica fish. 
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but with their lattice planes dipping in the opposite direction to the oblique foliation of quartz,
and sometimes also a slight stair-stepping in the opposite direction. Therefore, these thin
micas, if considered separately, could lead to an erroneous shear sense determination (Fig.
2.4g, 2.5f). Lattice planes make a small angle with the long axes of these fish. Most of the mica
fish can be placed in one of these groups, but transitions between the different shapes are also
observed and some fish shapes (about 5%) do not fit in any of the groups.

 

2.3 Evolution of mica fish

 

Mica fish are porphyroclasts and, as such, are derived from pre-existing grains by some defor-
mation mechanism. We consider the main mechanisms to play a role during the formation of
mica fish the following: internal deformation, especially shear on (001) basal planes; rigid
body rotation; bending and folding of mica grains; grain size reduction either by dynamic
recrystallisation at the rims or the peeling off of small fragments; and pressure solution accom-
panied by local growth.
Mares and Kronenberg (1993) carried out experiments on shortening of single mica grains.

Figure 2.4. Schematic drawings of the different morphological types of mica fish.  (a) Lentic-

ular mica fish; (b) lenticular fish with internal fault plane where part of the mica is dissolved;

(c) lenticular fish with points inclined in the direction of the foliation; (d) parallelogram

shaped fish with (001) parallel to longest side of the fish; (e) parallelogram shaped fish with

(001) parallel to the shortest side of the fish; (f) fish with small aspect ratio and curved tails;

(g) mica fish with high aspect ratio and inverted stair stepping; if considered out of their con-

text, this structure could lead to an erroneous shear sense determination.
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They have shown that due to their mechanical anisotropy, muscovite single crystals deform by
several mechanisms depending on the orientation of the cleavage planes. In their experiments
the deformation was either accomplished by dislocation glide, where the crystals were shor-
tened at 45° to (001), by kinkbands where shortening was parallel to (001) or by fracturing
where the crystals were shortened at 90° to (001). Shear on (001) by dislocation glide is appar-
ently an important deformation mechanism in muscovite, but the effect of this mechanism

a

c

e

b

d

f

Figure 2.5. Photographs of different types of mica fish. (a) lenticular mica fish with slightly 

inclined tips showing undulose extinction. (b) lenticular fish with internal fault plane in the 

right tip of the fish. (c) parallelogram  shaped fish with (001) parallel to longest side of the 

fish, (d) parallelogram  shaped fish with (001) parallel to the shortest side of the fish, (e) fish 

with small aspect ratio (f) mica fish with high aspect ratio. Samples are from Conceição do 

Rio Verde, Brazil. Shear sense in all photographs is dextral. Width of view (a) 3 mm, (b) 0.75 

mm, (c), (d) and (e) 3 mm, (f) 6 mm. Crossed polars.
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depends on the orientation of the cleavage planes with respect to the shortening direction and
on the critical resolved shear stress. In non-coaxial flow, the sense of movement can be anti-
thetic or synthetic. This phenomenon has been described for grains transected by microfaults
(Etchecopar 1977; Simpson and Schmid 1983; Passchier and Trouw 1996) and may work in
the same way for shear on (001) in mica crystals. In mica fish with cleavage planes parallel to
the mylonitic foliation (Fig. 2.4d) shear strain on (001) is synthetic and for mica fish with
cleavage planes at a high angle to the foliation (Fig. 2.4e) the shear strain may be antithetic.
For mica fish with cleavage planes at small to moderate angles to the foliation this mechanism
will have minor or no influence on the shape of the mica fish, because the critical resolved
shear stress is not likely to be exceeded. The relative importance of this mechanism in our
studied material is therefore estimated to be approximately proportional to the percentage of
parallelogram shaped fish (Fig. 2.4d, e) which is 33%.
The relative importance of the second mechanism, rigid body rotation can be estimated from
their orientation. All mica fish are orientated with their long axes between -8 and 32° with the
mylonitic foliation (Fig. 2.3a). Similar orientations are observed for mica fish from other loca-
lities (Eisbacher 1970, Lister and Snoke 1984). Analytical studies of rotating elliptical rigid
objects in a homogeneous Newtonian viscous matrix do not predict a stable position for par-
ticles in progressive simple shear (Jeffery 1922, Ghosh and Ramberg 1976). Masuda et al.
(1995) studied distribution patterns of the longest axes of initially randomly distributed ellipti-
cal particles in general plane strain flow according to the equations given by Ghosh and Ram-
berg (1976). These patterns show that in simple shear there is a concentration of the orientation
of the long axes, depending on the amount of strain. However, none of the patterns given for
simple shear or combinations of pure and simple shear as given by Masuda et al. (1995) is
similar to the distribution pattern of the measured mica fish. We therefore suggest that this
small variety in the orientation of the mica fish indicates that this orientation represents a stable
or semi-stable position in the process of progressive non-coaxial flow. It is likely that the mica
fish are rotated towards their current position during the first stages of the deformation history.
After that the rotation rate is apparently decreased to such an extent that most fish remain in
approximately the same position for the remainder of the deformation history. Explanations for
the stable or semi-stable position of the mica fish in natural examples could be that the matrix
does not behave as a Newtonian viscous material, or that strain is not distributed homo-
geneously through the matrix. Another possibility is that the mica fish cannot be regarded as
relatively rigid objects and internal deformation of the fish influences their orientation.  
The importance of bending and folding of mica fish (Lister and Snoke 1984, their Fig. 5i,j) can
be judged from their common undulatory extinction (Fig. 2.5a). One out of five mica fish is of
the type with bent tips (Fig. 2.4c) and mica fish with isoclinally folded tips are relatively com-
mon (5%). Kink folds were observed in some mica fish with their lattice planes orientated sub-
parallel to the mylonitic foliation. These structures indicative of shortening are probably gene-
rated when the basal planes of the fish rotate locally into the compressional quadrant of the
flow. 
The importance of grain size reduction can be estimated from the large number of small mica
grains that are formed by dynamic recrystallisation at the tips and sides of the mica fish.
Recrystallisation of muscovite is the result of rotation of small parts at the boundary of the fish.
Growth of these parts results in small new mica grains (Lister and Snoke 1984). These new
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grains are subsequently torn into the matrix by intense ductile deformation to form the trails
that define the mylonitic foliation. The amount of small recrystallised grains is high at the sides
of the mica fish that have a significant angle with the (001) planes (Fig. 2.5c) indicating that
this grain size reduction mechanism is most intense at these sides. This mechanism can also
contribute to the development of the fish shape of the mica grains by rounding the corners of
the crystal. According to Lister and Snoke (1984) the convergence of lattice planes on a
discontinuity in the tips of some mica fish (Fig. 2.4b, 2.5b) is also due to a recrystallisation
mechanism. They suggest that rotation of the cleavage planes towards parallelism with the
boundary, followed by migration recrystallisation, leads to the formation of a recrystallisation
front, which is observed as a discontinuity in the crystal. An attempt was made to detect pos-
sible cut-off effects by erosion of zoned grains, with the help of microprobe analysis. However,

Figure 2.6. Schematic drawing of mica fish

illustrating a proposed process in which a

crystal is divided into two parts. (a) The

point of the crystal is folded; (b) the fold

becomes very tight and the fish breaks

apart along the fold hinge; (c) the smaller

part is transported along the side of the

bigger part, (d) two separate mica fish

have formed.

c

b

d

a

a b

Figure 2.7. Photographs showing different stages of the process proposed in Figure 5. (a). Iso-

clinal folds both on the right and left-hand side of this mica fish show the first stage of the

process. (b) Lower mica fish shows isoclinal fold with tight fold hinge on the left-hand side;

on top of the mica fish is a small mica grain, which can be interpreted as a fragment broken

off from the tip and now being transported along the grain. Samples are from Conceição do

Rio Verde, Brazil. Shear sense in both photographs is dextral. Width of view (a) and (b) 3 mm.

Crossed polars.
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all analysed mica fish proved extremely homogeneous in composition, not showing any zoning
pattern. The relative importance of pressure solution accompanied by local growth in the for-
mation of mica fish could not be assessed for the same reason.
Apart from the one-to-one formation of mica fish from isolated crystals there is also micro-
structural evidence for mechanisms where one big crystal is divided into several smaller ones.
Lister and Snoke (1984) drew attention to several microstructures related to the peeling off of
smaller fish from large ones. At first sight boudinage seems to be the most logical mechanism
to explain these structures, because the majority of the mica fish lie with their long axes in the
extensional quadrant of the deformation. Direct evidence of boudinage in the form of two
pieces that can be linked together does occur, but is not common in our samples. An alternative
mechanism for the peeling off of smaller mica fish is demonstrated in Figure 2.6. In this pro-
cess the tips of the fish are folded and separated from the parent crystal along tightly bent fold
hinges, following the axial plane. The small separated part is subsequently thrusted over the
larger part. Structures that can be interpreted to represent several stages of this process occur

a

b

c

Figure 2.8. Photographs of micro-

faults separating mica fish in two or

more smaller parts. (a) and (b) differ-

ent stages of a process in which a mica

fish is divided in two parts along basal

planes with synthetic sense of move-

ment. (c) Micro-faults through a mica

fish at a high angle to the basal planes,

showing antithetic movement. All

samples are from Conceição do Rio

Verde, Brazil. Shear sense in all pho-

tographs is dextral. Width of view (a)

1.5 mm, (b) 6 mm, (c) 3 mm. Crossed

polars.
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with considerable frequency in our studied material (Fig. 2.7). Another mechanism to split a
mica fish in two parts presented by Lister and Snoke (1984) is the development of fractures
parallel to the basal plane of mica (Fig. 2.8). This process is similar to the earlier described
shear along the cleavage planes, except that shear strain is now accommodated by brittle
behaviour resulting in movement along a fracture. Depending on the orientation of the clea-
vage planes in the mica grain this may result in antithetic or synthetic micro-faults. Indications
for this mechanism are also commonly observed in our material, especially in fish with basal
planes subparallel to the mylonitic foliation. Micro-faults through the mica fish both at low and
high angles to the basal planes were also occasionally observed, showing synthetic or antithetic
movement depending on the orientation of the fault (Fig. 2.8c). Evidence for a mechanism
explained by Lister and Snoke (1984) where a smaller fish is separated from his parent by an
antithetic listric fault (their Fig. 7) was not observed in our material. 
It can be concluded that mica fish form by rigid body rotation, principally in the early stages,
accompanied by shear on basal planes, some bending and folding, and 'tectonic erosion' along
the rims mainly due to recrystallisation and possibly pressure solution and local growth. The
relative importance of each mechanism in a single crystal depends on its shape and orientation
with respect to the foliation and on metamorphic grade, fluid pressure and composition, and
strain rate.

 

2.4 Comparison to other minerals showing similar shapes

 

Fish-shaped structures, comparable to the structures described for white mica, are also found
in a number of other minerals. Previously studied minerals with an asymmetrical fish shape
are: garnet (Ji and Martignole 1994; Azor et al. 1997), aggregates of fine-grained leucoxene
(Oliver and Goodge 1996), and quartz in a calcite matrix (Bestmann 1999). The development
of fish-shaped garnet will be described below, together with new observations of garnet fish.
The leucoxene fish described by Oliver and Goodge (1996) are an alteration product of pri-
mary detrital constituents, rutile, ilmenite or titanite, in a siliciclastic protolith. Deformation of
the initially equidimensional aggregates which are described as passive features in the quartz
matrix results in an ellipsoid, whose long axis rotates towards the mylonitic foliation with
increasing strain. The quartz grains described by Bestmann (1999) are detrital quartz grains
surrounded by a calcite matrix. The evolution of the asymmetrical shape of these distortion-
free quartz grains is explained by lattice diffusion creep.
We found that a fish shape is also developed in biotite, quartz, K-feldspar, garnet, hypersthene,
and tourmaline. The most significant differences between the fish structures in these minerals
as compared to muscovite fish, and the possible mechanisms by which they are formed are dis-
cussed below. 

 

2.4.1 Biotite

 

In our experience biotite fish are much less common than muscovite fish. The studied samples
are mylonitized granodiorites from Palm canyon, Santa Rosa mylonite zone, California. The
studied samples consist of quartz and biotite and minor amounts of plagioclase, K-feldspar and
muscovite. The muscovite in these samples also shows fish-shapes. The samples are deformed
under middle amphibolite conditions (Wenk and Pannetier, 1990, Goodwin and Wenk 1995).
The biotite and muscovite fish from this location are lenticular in cross-sections parallel to the
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stretching lineation and perpendicular to the foliation (Fig. 

 

2.

 

9a), similar to the lenticular white
mica fish described above (Fig. 2.4a). Measurements of the angle between the long axes of 69
biotite fish and the mylonitic foliation give a mean value of 12° (Fig 2.10a) and measurements
of 31 muscovite fish give a mean angle of 15°. Both angles are very similar to the median angle
for white mica fish from Minas Gerais. Their morphology suggests that biotite fish are formed
by the same mechanisms as suggested above for the muscovite fish: a combination of disloca-
tion glide, dynamic recrystallisation at the rims and rigid body rotation. Compared to mus-
covite, biotite is more resistant to shear on (001) at experimental conditions (Mares and Kro-
nenberg 1993). The recrystallisation mechanism in biotite and in muscovite is the same. Rota-
tion of part of the fish leads to high angle boundaries and new grains (Etheridge and Hobbs
1974). The muscovite fish in the studied thin sections are surrounded by very small amounts of
recrystallised material, compared to the amount of recrystallised material around the biotite
fish. So, apparently, under similar circumstances, biotite recrystallises more readily than mus-
covite (Passchier 1985). This relative facility to recrystallise may account for the less frequent
occurrence of biotite fish, as compared to muscovite fish.

 

2.4.2 Tourmaline

 

 
Tourmaline fish were found in the Andrelândia Depositional Sequence (Paciullo et al., 1993;
Ribeiro et al., 1995), near Lambari, Minas Gerais, Brazil. The metamorphic grade during
deformation of these samples is middle amphibolite facies. The tourmaline fish usually have a
parallelogram shape with straight sides and typically an angle of about 50-55° between the
sides (Fig. 2.9b). They are orientated with their long side parallel to the mylonitic foliation.
The long axes of 56 tourmaline fish were measured and give a median value of 16° (Fig 2.10b),

Figure 2.10. Orientation of the long axes with respect to the mylonitic foliation of (a) 69

biotite fish from the Santa Rosa mylonite zone, California and (b) 56 tourmaline fish from

Lambari, Minas Gerais, Brazil.
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Figure 2.9. Photographs of different minerals showing fish shapes similar to mica fish. (a) Bi-

otite fish with small recrystallised biotite grains along the rims from Santa Rosa Mylonite zone,

California. (b) Small tourmaline fish showing parallelogram shape from Lambari, Brazil.

Crossed polars. (c) K-feldspar fish with myrmekite along the high stress sides of the fish. Below

the K-feldspar fish is a recrystallised mica fish. Sample from Espinhaço belt, Brazil. Crossed

polars. (d) K-feldspar fish with subgrains along the rim from Roraima, Brazil. Crossed polars.

(e) Garnet fish in static recrystallised quartz matrix from Morro Cara de Cão, Brazil. (f) Gar-

net fish in quartz-mica matrix with chlorite concentrated along upper and lower rims from San-

tana do Garambeu, Brazil. At the right-hand side of the fish straight crystal faces are

preserved. (g) Hypersthene fish with trails of recrystallised material from Caparao, Brazil. (h)

Quartz fish in fine-grained matrix composed of quartz and mica with elongated subgrains from

Serra do Espinhaço, Brazil. Crossed polars. Shear sense in all photographs is dextral. Width

of view (a) 6 mm, (b) 1.5 mm, (c) 6 mm, (d) and (e) 1.5 mm, (f), (g) and (h) 3 mm.
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which is similar to the median value for the measured muscovite and biotite fish. The studied
tourmaline fish do not show evidence for internal deformation. Back scatter electron (BSE)
images of the tourmaline fish show zoning in the tourmaline fish, which is often cut-off at the
edges in the shortening quarters. The tips of the fish are usually a lot brighter, indicating a dif-
ferent composition than the remainder of the fish (Fig. 2.11). This suggests that the shape of
the tourmaline fish is the result of dissolution at the edges in the shortening quarters of the fish
and precipitation of tourmaline at the tips of the fish.  

 

2.4.3 K-feldspar

 

Lenticular shaped K-feldspars have been described by Simpson and Wintsch (1989) from a S-
C mylonite. The tips of these K-feldspar grains are recrystallised and quartz-plagioclase sym-
plectite (myrmekite) is observed in shortening quarters in the rims of the crystals. The reaction
from K-feldspar to plagioclase and quartz is favoured at sites of high normal stress, because it
involves a volume decrease (Simpson and Wintsch 1989). K-feldspar fish used in this study
come from Roraima, Brazil, and from the Espinhaço Belt, Diamantina, Minas Gerais, Brazil.
The studied samples are deformed under lower amphibolite facies (Roraima) and upper green-
schist (Espinhaço Belt) conditions. The K-feldspar fish from both localities usually have a
disc-shape with subgrains and recrystallised new grains concentrated in the rim of the fish (Fig.
2.9c,d). Concentration of mica at the sides of the clasts suggests that pressure solution also
played a role in the development of these fish. In the samples from the Espinhaço Belt the fish
have myrmekite in shortening quarters in the rim of the crystal (Fig. 2.9c). It can be concluded
that the mechanisms that contributed to the formation of K-feldspar fish are principally re-
covery and recrystallisation along the rims, accompanied by rigid body rotation and in some
cases myrmekite formation. Internal deformation by dislocation glide is certainly less impor-
tant as compared to the white micas, but dissolution may be more significant. These structures
are more common in high grade mylonites, since the mechanisms for the formation of K-feld-
spar fish are enhanced at relatively high metamorphic temperatures. 

 

2.4.4 Garnet

 

Fish-shaped garnets from a middle amphibolite shear zone were reported by Azor et al. (1997).
Compositional X-ray maps of their samples show that the growth zoning is truncated along the
borders of the garnets. Based on this fact they claim selective dissolution as the main mecha-
nism responsible for the final shape of the garnets in their samples. Ji and Martignole (1994)
studied elongated garnets in high grade rocks and suggested dislocation slip and recovery as

Figure 2.11. BSE image of tourmaline

fish from Lambari, Brazil, showing

zoning in the centre and indicating

new growth of tourmaline at the tips of

the fish. Width of view 140 µm.
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deformation mechanisms for their garnets, although Den Brok and Kruhl (1996) argued that
these structures could also have been formed by grain boundary diffusional creep. The garnet
fish studied here are from two high-grade, mylonitised pelitic metasediments, a granulite facies
mylonite from Varginha, Minas Gerais, Brazil, and a high amphibolite-granulite mylonite from
Morro Cara de Cão, Rio de Janeiro, Brazil (Fig. 2.9e). A third set of samples with garnet fish
(Fig 2.9f) is from a middle ampibolite facies garnet-staurolite schist from Santana do Garam-
beu, Minas Gerais, Brazil, with much white mica and biotite in the matrix. The garnet fish from
the two high-grade mylonites have very similar structures, lenticular shapes, with pointed cor-
ners (Fig. 2.9e). In our samples the deformation mechanism in the garnets may involve internal
deformation, selective dissolution or diffusional creep. The quartz matrix in these samples is
statically recrystallised, so sense of shear cannot be determined from the matrix. The garnet
fish are the only kinematic indicators in these rocks.
The garnet fish deformed under middle amphibolite facies conditions may initially have had
ideomorphic crystal shapes, since in some garnet fish straight faces were found at the un-
deformed sides, with the appearance of crystal faces (Fig. 2.9f). The fish-shape of these grains
is probably the result of a grain size reducing mechanism enhanced at sides of the crystal per-
pendicular to the principal shortening direction, combined with rigid body rotation of the fish-
shaped structure towards a semi-stable position. The reduction of the grain size could be the
result of a retrograde reaction, suggested by the concentration of chlorite at the rim of the gar-
net crystals in the shortening quarters. 

 

2.4.5 Hypersthene

 

Hypersthene fish were found in a granulite facies mylonite zone near Caparao, Minas Gerais,
Brazil. They typically show a disc-like shape with very clear stair stepping (Fig. 2.9g). Evi-
dence for dynamic recrystallisation is found mainly at the rim of the crystal in the form of
small fragments of hypersthene around the crystal and in trails extending from the tips of the
fish into the matrix. Microprobe analysis proved the hypersthenes to be very homogeneous in
composition, without any detected zoning. The fish shape is probably developed by recrystalli-
sation or mechanical erosion at the rim of the crystal, acting preferentially at the sides perpen-
dicular to the shortening direction, combined with rigid body rotation. 

 

2.4.6 Quartz

 

Quartz fish are uncommon in mylonitic rocks, since quartz tends to constitute the matrix rather
than porphyroclasts in most mylonites. The studied quartz fish are formed in low greenschist
facies rocks of volcanic origin from Serra do Espinhaço, Minas Gerais, Brazil.  The quartz phe-
nocrysts in this sample are embedded in a fine-grained matrix consisting of mica and quartz.
The quartz fish are elongated grains with undulose extinction and irregular boundaries (Fig.
2.9h). Elongated subgrains are observed and also domains with small recrystallised grains,
mainly in the tips of the fish. Some domains of small recrystallised grains are subparallel to the
long axes of the fish, separating them in two parts in a similar way as the microfaults in the
white mica fish. The combination of large subgrains and domains of small recrystallised grains
is a typical fabric of dynamic recrystallisation due to internal deformation in quartz. The undu-
lose extinction indicates that the quartz grains are deformed by dislocation glide and climb.
Recrystallisation in the tips of the fish tends to destroy the fish shape. The concentration of
mica at the sides perpendicular to the shortening direction indicates that pressure solution also
played a role in the formation of the fish shape. 
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2.5 Discussion and Conclusions

 

As shown above, fish-shaped structures develop in a number of different minerals in mylonitic
rocks. Apart from the minerals discussed, fish-shapes were also observed in staurolite, amphi-
bole, diopside, apatite, rutile, hematite, plagioclase and prehnite. Minerals showing fish-shapes
have different crystal structures and a wide range of physical properties. All fish structures
have in common that they are formed as porphyroclasts embedded in a matrix that underwent
non-coaxial flow. All mineral fish can be used to infer the sense of shear in a zone of non-co-
axial flow. Their asymmetrical, lenticular or parallelogram shape and the inclination of their
long axes with respect to the mylonitic foliation makes them reliable kinematic indicators,
which can be used even in samples where the matrix is statically recrystallised. 
Detailed observations of the fish-shaped structures in different minerals indicate that different
mechanisms predominated during the deformation of each mineral. Most minerals have in
common that they are embedded in a matrix rich in quartz. The studied minerals are probably
stronger then the quartz-rich matrix. At least for some of the minerals it seems that the fish-
shape represents only a short stage in their evolution, before the grain is completely recrystal-
lised (e.g. in the case of biotite), or destroyed by other grain size reducing mechanisms. 
The ideas presented here and by Lister and Snoke (1984) about the separation of parts of mica
fish are all based on inhomogeneous flow around these structures. The proposed transport of
separated parts of the fish along the grain boundary of the host clast is only possible if there is
a micro-shear zone along this boundary. With such micro-shear zones it is also possible to
transport little recrystallised fragments of the fish far into the matrix, as observed for mus-
covite, biotite and hypersthene. The observed orientation distributions for muscovite, biotite
and tourmaline fish indicate that they cannot have formed in homogeneous Newtonian flow.
These observations imply that in rocks containing such structures the shear strain is partly
accommodated in narrow zones. The fabric of mica fish with trails of fine grained mica exten-
ding from the tips of the fish into the matrix combined with the oblique foliation of the quartz
in the matrix, show resemblance to mylonites with an S-C fabric as suggested by Lister and
Snoke (1984). However, in the studied samples with fish-shaped structures in other minerals, in
some cases the oblique foliation is destroyed by static recrystallisation (e.g. Fig. 2.9e), or the
mylonitic foliation is not well developed (e.g. Fig. 2.9g). The fish-shape is very similar in all
cases. Therefore, we believe that it is not useful to consider mylonites with fish-shaped struc-
tures as a type of S-C mylonite. Suggested mechanisms for the formation of mica fish and fish-
shaped structures in other minerals are intracrystalline deformation, rigid body rotation, ben-
ding and folding, grain size reduction either by dynamic recrystallisation or by peeling off of
small fragments, and pressure solution accompanied by local growth. The proportion in which
each mechanism contributes to the microstructure is different for each mineral. A remaining
problem is that the relative importance of these mechanisms cannot always be deduced from
the microstructure. 
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Chapter 3

A new apparatus for controlled general flow modeling of
analog materials

 

Abstract

 

We present a new deformation apparatus to model homogeneous deformation in general
flow regimes, in which all combinations of simple shear parallel to the xy-plane and pure
shear parallel to the x-, y- and z-axes can be realized. With this apparatus it is possible to
control the kinematic vorticity number of monoclinic flow during progressive deforma-
tion. The user defines the type of deformation by a set of parameters such as kinematic
vorticity number, strain rate, and duration of the experiment. The apparatus consists of a
set of mobile pistons on a low friction sole and is open at the top. All pistons are flexible
to ensure homogeneity of deformation in a major part of the sample. The corners of the
box are connected to four sliding carriages, which themselves are sliding on another set
of four carriages positioned at right angles to the first set. This set-up and the controlled
movement of the sliding carriages allow the user to model any type of monoclinic tran-
stension and transpression. A computer program controls six stepping motors used to
move the different carriages simultaneously and accurately. In the apparatus materials
with a viscosity range of 10

 

3

 

 to 10

 

6

 

 Pa s can be used. A set of pilot experiments investi-
gating the rotation of mica fish in different general regimes is presented as an example for
the use of this apparatus. 

 

3.1 Introduction

 

Research in recent years has shown that many shear zones cannot be explained with a simple
shear model but that combinations of simple and pure shear are likely to represent the true
character of flow in natural shear zones. Therefore, noncoaxial monoclinic and/or triclinic
shear zones have been the focus of recent work including both analytical and numerical studies
(e.g. Ghosh and Ramberg 1976, Sanderson and Marchini 1984, Weijermars 1991, 1993, 1997,
Jezek et al. 1994, Robin and Cruden 1994, Jezek et al. 1996, Dewey et al. 1998 and reference
therein, Fossen and Tikoff 1998, Passchier 1998), field studies (e. g. Druguet et al. 1997, Tikoff
and Greene 1997, Krabbendam and Dewey 1998) and analog modeling (e.g. Giesekus 1962,
Weijermars 1998, Cruden and Robin 1999, Griera and Carreras 1999). However, the effect of
different flow geometries on the development of structural elements within and at the boun-
daries of shear zones is still unclear. Data from the field and field-derived samples are the most
important source of information on shear zones. Nevertheless, small-scale structures in shear
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zones can only be correctly interpreted if their development is modeled under controlled condi-
tions. An important complementary tool to field data and analytical work is experimental rock
deformation (e.g. Price and Torok 1989, Tullis and Yund 1991) and analog modeling using
paraffin wax (e.g. Abbassi and Mancktelow 1990, Grujic 1993), modeling clay and bouncing
putties (e.g. Ramberg 1955, Ghosh and Ramberg 1976) and crystalline materials (e.g. Bons
and Urai 1995). Analog modeling using viscous materials such as polymers and bouncing put-
ties offers the opportunity to investigate the development of structural elements such as folds,
shear sense indicators, and stretching lineations in three dimensions during progressive defor-
mation up to relatively high finite strain. 
Several deformation machines have been designed to model flow in shear zones using analog
materials; these are used to model simple shear flow (e.g. Robertson and Acrivos 1970, Price
and Torok 1989), “circular” simple shear or Couette flow (e.g. Passchier and Sokoutis 1993)
and general flow i.e. combinations of pure and simple shear (e.g. Giesekus 1962, Weijermars
1998, Cruden and Robin 1999, Griera and Carreras 1999). We designed an apparatus in which
flow is homogeneous over a large part of the sample. In this apparatus it is possible to control
strain rates along three perpendicular directions, and therefore all types of shear zones in mo-
noclinic flow such as transpression and transtension (Fig. 3.1) can be modeled. Extending and
contracting flexible walls of the deformation box are used to obtain homogeneous deformation.
The described apparatus, therefore, offers the possibility to perform progressive homogeneous
deformation at a chosen constant or changing strain rate and kinematic vorticity number W

 

n

 

(Means et al. 1980) during progressive deformation in monoclinic flow. A large number of con-

Figure 3.1. Illustration of homogeneous transpression (Sanderson and Marchini 1984) as

combination of simple shear (wrench) component and simultaneous coaxial shortening com-

ponent perpendicular to vertical shear plane. Example here is in plane strain (modified from

Sanderson and Marchini 1984). 

y

z

x

Wrench (simple shear)
component

Perpendicular shortening
component
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trolled inhomogeneous flow types and histories can also be modeled. A general description of
the new apparatus, its possibilities and limitations, suitable materials, and experimental proce-
dure is presented here. A set of pilot experiments is described to illustrate the scope of the
apparatus. 

3.2 Description of the apparatus
The apparatus assembly consists of four main parts: the deformation apparatus, a computer, a
power driver subsystem, and a camera placed 50 cm above the deformation apparatus (Figs.
3.2 and 3.3). 
The deformation apparatus consists of a four-sided deformation box that contains the sample
and that we describe in an x-y-z reference frame (Fig. 3.2A). Two opposing sides are always
parallel to the x-direction and the two other sides can rotate about the z-axis. The walls of the
box are constructed from 1 cm × 12 cm Plexiglas segments (30 on the sides parallel to the x-
direction, 20 on the other two sides), which are connected with flexible plastic to corrugated
deformable pistons. Every second Plexiglas piece is connected at its back (side facing away
from inner part of the box) to two metal springs. This construction ensures homogeneous con-
traction and extension of the walls. The range of the length of the sides parallel to the x-direc-
tion is between 15 and 30 cm and of the other two sides is between 5 and 20 cm. The springs
are connected to four aluminum plates at the corners of the deformation box. A sheet made of
0.35 mm thick elastic latex forms the bottom of the deformation box. Its corners are fixed to
the four aluminum plates. This construction results in a deformation box that slides with low
friction on the basal plate and that is open at the top. Each one of the four aluminum plates (P)
is attached to a sliding carriage (C1). These four sliding carriages are arranged two by two at
each long side of the box, parallel to the x-direction. The sliding carriages sit on two PVC
boards (B1) that are parallel to the long side of the box and attached to another set of four sli-
ding carriages (C2) oriented parallel to the y-direction. These sliding carriages (C2) are
attached to a 1 m × 1 m basal plate (B2). The contraction or extension of the flexible sides of
the deformation box is controlled by six stepping motors  (M). Four motors drive the move-
ment of the corners of the box (P) in the x-direction via shafts and are fixed to the two PVC
boards (B1). Two other motors are attached with shafts to the basal plate (B2) and control
movement in the y-direction. 
This configuration of motors and sliding carriages is chosen to meet two requirements: (1) the
center of the deformation box has to remain in one place so that objects of interest in the
deforming sample do not move with respect to the camera (Fig. 3.3); (2) all possible mono-
clinic flow types should be attainable. For simple shear, motors M1, M2, M3, and M4 move the
corners of the deformation box at the same constant velocity but in different directions; M1
and M4 in the one direction and M2 and M3 in the opposite (Fig. 3.4). For pure shear M1 and
M3 drive their corners of the deformation box in the x-direction and M2 and M4 move their
corners in the y-direction. M5 and M6 control movement in the y-direction, and their velocity
is determined by the velocity of the other 4 motors (Fig. 3.4) if flow is to be plane strain.
Deformation in monoclinic flow at a constant kinematic vorticity number requires movement
to be transmitted by all motors and recalculation of the velocity generated by the six motors for
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Figure 3.2. (a) Schematic drawing of deformation apparatus (view from top) where x and y

are along symmetry axes of apparatus. B1 are PVC boards, B2 is base plate, C1 is set of 4

sliding carriages parallel to x-direction, C2 is set of 4 sliding carriages parallel to y-direc-

tion, P is .connecting aluminum plates and M1 - M6 are motors. (b) Close-up of deformation

box with flexible walls (view from top). Angle ψ is angle between sides of deformation box
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each time step, because the ratio of pure and simple shear is constantly changing during pro-
gressive deformation if the kinematic vorticity number Wn is to remain constant. Correspon-
ding particle paths (Ramberg 1975) or flow lines (Fig. 3.4) are shown for the coordinate system
used here, because the geometry of the flow lines is characteristic for each flow type (Passchier
1998). 
A control panel allows the user to set specific parameters, such as the kinematic vorticity num-
ber and strain rate along a specific axis and duration of the experiment. Each second signals are
passed on from the PC to the stepping motors via the power driver subsystem. The rotation
angle per step is 1.8° with an accuracy of 0.05°. The velocity range is 1-10000 steps/s, which
result in 0.005-50 rotations/s and a displacement of 0.005-50 mm/s. The range of possible dis-
placement rates guarantees an accurate control of the movement of the four sides of the box,
bulk strain rate, and progressive deformation type. The maximum shear strain that can be
reached with our apparatus is restricted by the geometry of the shear box. For one experimental
run, the maximum attainable Rxy value, defined as the strain axis ratio in the xy-plane, is 10 in
simple shear and 4 in pure shear. Corresponding maximum finite shear strain γ for simple shear
is 3, and for pure shear the maximum k-value is 2. In other flow types an Rxy of at least 4 can
always be obtained. In practice, this means that the maximum duration of one experimental run
achieving maximum finite shear strain is 180 min. Higher finite strains than the values men-
tioned here can be achieved with our machine, but only by running series of experiments. After
each experimental run the precise orientation of the object is measured and photographed.
After returning the box to the starting position the object is placed in the corresponding mea-
sured orientation and another experimental run under the same conditions as the previous run
can be carried out. This technique is particularly useful when studying one or a few rigid
objects (Passchier and Simpson 1986). 

PC

power driver
subsystem

deformation apparatus

y

z

M mM
M

M

camera

Figure 3.3. General set-up of appa-

ratus; y and z are along symmetry

axes of apparatus.
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3.3 Experimental materials
The range of suitable analog materials for our apparatus is restricted by two factors: leakage at
the bottom of the deformation box and strength of the stepping motors. Leakage problems of
the deformation box limits suitable materials to those with viscosities of at least 103 Pa s. The
strength of the motors limits suitable materials to those with viscosities ≤ 106 Pa s, leaving a
viscosity range of 103 - 106 Pa s. This means that most crystalline analog materials, as well as
paraffin wax, cannot be deformed in our apparatus. Polymers such as Polydimethylsiloxane
(PDMS; trade name: SGM 36; produced by Dow Corning, UK) a transparent polymer with a
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Figure 3.4. Schematic diagrams illustrating different flow types in shear box  (see Figure 3.1).

Arrows indicate direction of movement of pistons and specific parts in reference frame of ma-

chine; arrows with bold arrowheads signify constant velocity; double arrow heads indicate

continuously changing velocity. Longer arrow indicates higher velocity. Within deformation

box, bold lines signify flow apophyses (λ1 and λ2), and thin lines trace particle paths where

small arrowheads point in direction of particle movement. Black dot is center of reference

frame. M1- M6 are motors. Figure is not to scale. 
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density of 0.965gcm-3 and consisting of repetitive chains; the longer the chain the higher the
viscosity (Weijermars 1986), Rhodorsil Gomme a pinkish opaque bouncing putty produced by
the Société des Chemiques Rhône-Poulenc (France) and mixtures of Rhodorsil Gomme and
Plastilina (Swedish version of Harbutt´s Plasticine; McClay (1976)) are ideally suitable for use
in our shear box. For the first tests, which were performed to establish the properties of this
shear box and for pilot experiments, we used PDMS and Rhodorsil Gomme. The flow behavior
of both materials is Newtonian for strain rates below 10-1 s-1 (Fig. 3.5). At room temperature
viscosities of PDMS and Rhodorsil Gomme are 5.0 × 104 Pa s and 2.9 × 104 Pa s (Weijermars
1986), respectively. A major advantage of PDMS over other materials commonly used in geo-
logical modeling is its transparency. Furthermore, it is nontoxic and relatively cheap. The flow
behavior of Plastilina is highly non-Newtonian (Fig. 3.5) with n = 7.5 (Weijermars 1986),
where n is the stress exponent of power law flow. 

3.4 Types of flow modeled by new apparatus
In order to discuss the flow types that can be modeled with the new apparatus we use the termi-
nology of Passchier (1998) to describe monoclinic flow. Passchier (1998) defined monoclinic
flow using the instantaneous stretching axes (ISA), defined as vectors aI, aII   and aIII , where aI,
aII  and aIII  are the magnitudes of stretching rates of material lines instantaneously parallel to
the ISA. The vorticity vector w is parallel to aI ; w , the vorticity, is the sum of the angular
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velocity of material lines instantaneously parallel to aII  and aIII (Passchier 1997). Any type of
monoclinic flow can now be described by the four numbers w, aI, aII , and aIII . Alternatively,
three normalized numbers Wn, An and Tn can be defined that describe the geometry of mono-
clinic flow completely. 
These numbers are defined as the sectional kinematic vorticity number

Wn = w/(aII  - aIII ) ,

the sectional kinematic dilatancy number (representing the instantaneous area change in the x-
y plane during progressive deformation):

An = (aII  + aIII ) /(aII  - aIII ) ,

and the sectional kinematic extrusion number (representing the shortening or extension in the
z-direction):  

Tn= aI /(aII  - aIII ). 

In addition, a kinematic volume change number can be defined as. 

Vn = Tn + An.

Figure 3.6. Representation of all types of

homogeneous constant-volume monoclinic

flow (modified from Passchier 1998). Wn is

sectional kinematic vorticity number, An is

sectional kinematic dilatancy number, Tn is

sectional kinematic extrusion number. Vn,

kinematic volume change number, is 0.

With apparatus it is possible to model all

shear zone types in this graph; open

squares represent test experiments and

black dots represent  pilot experiments.
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In our case Vn is approximately zero because of the incompressibility of the sample materials
under our experimental conditions, and therefore Tn = -An. This means that all possible mono-
clinic flow types at Vn = 0 can be depicted in a plane plotting Wn against  An or Tn (Fig. 3.6).
As many as three nonrotating material lines can be defined in monoclinic flow, the flow eigen-
vectors or apophyses. For our apparatus eigenvector λ3 is always parallel to the z-axis of our
reference frame and λ1 is always parallel to the x-axis. The third eigenvector λ2 coincides with
λ1 in simple shear flow, and otherwise λ2 is situated somewhere in the xy-plane. Two different
main groups of monoclinic model shear regimes can be defined for shear boxes of this type,
based on the magnitude of λ1 and λ2. If  |λ1| > |λ2| the shear zone is of group 1, and if |λ1| < |λ2|
it is of group 2 (Fig. 3.6). Material lines parallel to the flow apophyses can be either instanta-
neously extending, shortening, or not changing in length. When there is no stretching or shor-
tening along λ3 (plane strain flow), An and Tn are zero. Material lines parallel to either λ1 or λ2
are not deforming when An

2 + Wn
2 = 1 (Passchier 1991, 1997), and these situations are repre-

sented by the circular curves in figure 3.6. All types of flow shown in figure 3.6 can be modeled
with our apparatus. 

3.5 Flow tests and boundary conditions
In order to test flow conditions that can be obtained in the shear box, we (1) checked the flow
patterns in the shear box using particle paths, (2) obtained the distribution of Rxy throughout
the sample, and (3) investigated the rotation rate of a sphere in simple shear flow. 
To check the flow patterns several experimental runs were performed with different kinematic
vorticity numbers and strain rates. We then compared flow lines observed in the matrix mate-
rial with flow lines predicted by theory (Ramberg 1975) and the movement of particle in the
central area of the box. The shear box was filled with PDMS. After a few hours of settling car-
bon powder was sprinkled on top of the material. An additional 5 mm thick layer of PDMS was
then put on top of the carbon powder. Again a few hours of settling were needed to ensure a flat
surface, which is necessary to observe the exact movement of the marker particles. All experi-
ments were performed with a dextral shear sense. For the experiments, the initial dimensions
of the shear box were 150 x 100 mm and the angle ψ between the sides (Fig. 3.2B) was 135˚ at
the beginning of each experiment. The test experiments presented here were performed at con-
stant kinematic vorticity numbers (Wn) of 0.8 and 0.6, a strain rate in the x-direction of 3.3 ×
10-4 s-1, and plane strain flow (Tn = An = 0). Photographs were stacked on top of each other in
order to determine the flow pattern (ten Brink 1996; Weijermars 1998). The acute angle α
between the two flow apophyses (Fig. 3.4) during homogeneous deformation can be expressed
as α = arc cos Wn for plane strain flow (Bobyarchick 1986, Passchier 1986). At Wn = 0.8 the
angle α is 36.9° and at Wn = 0.6 it is 53.1°. The observed α values in the test experiments are
37° ± 0.5° at Wn = 0.8 (Fig. 3.7A) and 53° ± 0.5° at Wn = 0.6 (Fig. 3.7B). This demonstrates
that the apparatus is well suited to model homogeneous flow in monoclinic shear zones. The
experiments also indicate that the flow pattern is constant in time, as particle paths do not inter-
sect during progressive deformation (Fig. 3.7). Hence, time independent plane strain flow is
realized in at least part of the apparatus. 
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To quantify the area of homogeneous deformation in the sample we performed a number of
plane strain test experiments with different vorticities (Wn = 0.8, 0.6), strain rates (stretching
rate of the x-axis: 2.0 × 10-4 s-1, 3.3 × 10-4 s-1, 4.7 × 10-4 s-1) and matrix materials (PDMS,
Rhodorsil Gomme). The preparation and procedure of the experimental runs were identical to
those described for the other test experiments. We used the computer program PatMatch (Bons
and Jessell 1995), which performs strain analysis by analyzing displacements between two
images to obtain the distribution of Rxy within a deformed sample. Results reveal that a large
area of the samples deform homogeneously and the Rxy values closely correspond to theore-
tical values (Fig. 3.8). Inhomogeneous flow occurs only in a narrow zone adjacent to the corru-
gated walls. The width of this zone depends on the viscosity of the matrix material and is inde-
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b
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10 mm

area of  photographs

c

A and B

original shape of
deformation box

Figure 3.7. Diagrams illustrating

particle paths within matrix mate-

rial PDMS during progressive de-

formation at Wn = 0.8 (A) and at

Wn = 0.6 (B). Series of photo-

graphs taken during test experi-

ments were stacked onto each

other in order to determine flow

pattern during progressive defor-

mation. Insets in (a) and (b) show

theoretical acute angle α between

two flow apophyses (see Figure

3.4) during progressive deforma-

tion. (c) Position of area photo-

graphed during deformation

(white box) inside deformation

box. Original shape of deforma-

tion box is shown in gray and final

shape is shown by dashed line.
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pendent of the kinematic vorticity number and strain rate (within the accuracy of our
measurements). For PDMS the width of the zone with inhomogeneous flow is 0.8 to 1.3 cm
measured from the tips of the corrugated wall; for Rhodorsil Gomme this width is 0.6 to 1.1
cm.
A third set of experiments investigated the behavior of a rigid sphere in plane strain simple
shear flow at a simple shear strain rate of 1 × 10-3 s-1 to a finite strain γ of 2. We inserted a
Plexiglas sphere with a diameter of 0.8 cm in the middle of the deformation box and took a
number of consecutive photos during progressive deformation. Figure 3.9 shows the change in
orientation of the sphere (θ) against simple shear strain (γ) observed in the experiment and the
theoretical values of rotation (Ghosh and Ramberg 1976). Experimental values show good
agreement with theoretical values. 

1.25

1.15 1.35 1.551

R
xy

1.75

Figure 3.8. Photograph of deformation box. Inset represents distribution of Rxy values over

analyzed area of sample. Inset was generated using pattern matching program PatMatch

(Bons and Jessell 1995). Different gray shades represent different ranges of Rxy values.

Dashed line in legend represents theoretical value of Rxy (Rxy = 1.25) and at same time mea-

sured average of analyzed area (excluding narrow zone close to pistons). Most of analyzed

area exhibits Rxy values that correspond to theoretical value of Rxy. Note that on upper left

corner and on upper right side reflections cause significant errors in PatMatch routine,

because program cannot identify patterns in reflected areas. Experimental conditions are:

Wn = 0.6, stretching rate in x-direction is 3.3 × 10-4 s-1, and sample material is Rhodorsil

Gomme. Scale bar = 1 cm.
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The flow tests presented here are all in plane strain (An = Tn = 0), where the specimen surface
remains flat. Under these conditions a large volume of homogeneous flow can be obtained. In
experiments with extrusion of material parallel to the z-axis (An≠ 0 and Tn≠ 0), the rigidity of
the pistons in the z-direction causes the sample surface to attain a parabolic shape, which has
an effect on the flow homogeneity. Accordingly, any user of our apparatus working at Tn≠ 0
should test the effect of boundary conditions for the specific experimental setup used.
Leakage of material with a viscosity of 5.0 × 104 Pa s out of the deformation box is < 0.5 vol%
during one experimental run if the experimental duration is < 4 hr. Leakage does not exceed 1
vol% in 24 hr if the sample material (viscosity: 5.0 × 104 Pa s) is left in the deformation box
without performing experiments.

3.6 Pilot experiments: rotation of mica fish in plane strain
As an example of the practical application of our apparatus, we present the modeling of mica
fish. Mica fish are commonly observed in mylonites and their asymmetrical form and the stair-
stepping of their tails are often used to determine shear sense (Lister and Snoke 1984, Pas-
schier and Trouw 1996). Study of natural mica fish shows that in the plane parallel to the
stretching lineation and perpendicular to the foliation, their shape is predominantly mono-
clinic. All studied examples lie with their long axis tilted 2° - 40° with respect to the inferred
flow plane (ten Grotenhuis and Passchier 1999). This could mean that mica fish are in a stable
irrotational position with respect to the apophyses of bulk flow for at least part of their evolu-
tion. In addition, it is not clear to what extent object shape, flow partitioning, Wn, or other fac-
tors influence the development of mica fish. Our deformation apparatus is suitable to study
kinematic aspects of the development of such mica fish. 
Analytical work of Ghosh and Ramberg (1976) showed that in two-dimensional homogeneous
flow with a particular kinematic vorticity number, the rate of rotation of a rigid elliptical par-
ticle in a Newtonian viscous fluid varies in a systematic manner depending on the orientation
and the axial ratio (Rob) of the inclusion. This means that the orientation of the particle is a

Figure 3.9. Graph illustrating change in ori-

entation of rigid sphere as function of shear

strain in simple shear flow (Wn = 1). Solid

line represents theoretical values (after

Ghosh and Ramberg, 1976) and squares

represent experimental values. 
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function of the initial angle, the aspect ratio of the particle, and strain. Until now, experiments
investigating the rotation of rigid objects in homogeneous flow were mainly restricted to sim-
ple shear (Ghosh and Ramberg 1976, ten Brink 1996). With our apparatus, we can expand such
work to homogeneous monoclinic flow experiments. 
To investigate the effect of object shape on the rotation behavior we performed experiments
with a monoclinic object in a Newtonian viscous fluid (PDMS). The object is made of rigid
India rubber and has a long side A of 10 mm, a short side B of 7 mm, and height h of 16 mm
(Fig. 3.10). The angle between A and B is 135°. The aspect ratio of the object (Rob) in the xy-
plane is three. The angle θ is between the long axis of the object and the y-direction of the
reference frame. Angles are measured clockwise. A and B are parallel to the z-axis. The object
is placed in the middle of the box with its top 5 mm below the surface of the PDMS and paral-
lel to the y-direction, θ0 = 0°. The experiments model plane strain monoclinic flow (Tn = 0)
with kinematic vorticity numbers (Wn) of 1 (simple shear flow), 0.8, and 0.6 (Fig. 3.6). In the
simple shear experiment the simple shear strain rate is 1 × 10-3 s-1 and the final shear strain γ is
3. For the flow experiments at Wn = 0.8 and Wn = 0.6 the stretching rate along the x-axis is
held constant at 3.3 × 10-4 s-1. After one experimental run the maximum Rxy value reached was
3.58 at Wn = 0.8  and 2.68 at Wk = 0.6. For the experiments with Wn = 0.8 and 0.6, seven con-
secutive runs were performed. 

Figure 3.10. (a) Natural example of muscovite mica fish (Ribeira belt, Brazil); crossed polars,

scale bar = 1 mm. (b) Photograph of object used in experiments, inserted in its matrix

(PDMS); scale bar = 10 mm. (c) Schematic three-dimensional drawing of rigid monoclinic

object used as analog for mica fish; x, y, and z correspond to reference frame of apparatus, h

is height, l is longest axis of object, and θ is angle between longest axis (l) and y-axis of refe-

rence frame. (d) Schematic drawing of AB-plane of object
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Figure 3.11 shows the experimental results and the theoretical orientation of the long axis for
ellipses with Rob = 3 against the simple shear component of strain (γ) for Wn = 1, Wn = 0.8 and
Wn = 0.6 (equations (11) - (13) in Ghosh and Ramberg 1976). We chose to plot the simple
shear component of strain (γ) and not Rxy in Figure 3.11 because γ increases linearly with pro-
gressive deformation. The highest γ value for one experimental run was 1.08 at Wn = 0.8 and
0.61 at Wn = 0.6.
The experiments show a deviation in the orientation of the lozenge object from theoretical
values for ellipses. In simple shear the rotation curves of the object and the theoretical curve of
an ellipse with Rob = 3 differ considerably (Fig. 3.11A). The theoretical curve for an ellipse of
Rob = 2.7 fits the experimental results better with regard to the amount of shear strain necessary

Figure 3.11. (a) Graph illustra-

ting change in orientation of rigid

monoclinic object (θ) as function

of simple shear component of

strain in monoclinic flow with Wn
= 1. Solid line represents theoret-

ical values (after Ghosh and

Ramberg, 1976) and symbols rep-

resent experimental values. Rob is

aspect ratio of object. (b) Graph

illustrating change in orientation

of rigid monoclinic object (θ)

with aspect ratio of 3 as function

of simple shear strain in mono-

clinic flow with Wn = 0.8 and 0.6.

Solid lines represent theoretical

values (after Ghosh and Ram-

berg, 1976) and symbols repre-

sent experimental values.
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for a 180° rotation of the object ,but the shape of the curves (θ versus γ) is systematically dif-
ferent (Fig. 3.11A). In monoclinic flow with Wn = 0.8 and Wn = 0.6 experimental results show
that the object attains a semi-stable position (Fig. 3.11A). This position is 95° at Wn = 0.8 and
90° at Wn = 0.6 (Fig. 3.11B). Theory predicts 5° higher values for the semistable position of an
ellipse of Rob = 3 in both experimental flow types. Theoretical values for an ellipsoid with Rob

= 2.7 show even stronger deviations from experimental results. We suggest that the observed
deviation from theory is due to the shape of the rigid object. Both the axial ratio of an object
and its shape i.e. elliptical, rectangular, or lozenge-shaped influence the behavior of such an
object in monoclinic flow. 
Nevertheless, the preferred orientation (θ) of mica fish in nature is 50° to 88° using the refe-
rence frame of the experiments. Therefore, monoclinic flow with a kinematic vorticity number
smaller than 1 cannot be the only explanation for the orientation of mica fish in shear zones,
and further experiments are needed to explain the behavior of these structures. 

3.7 Conclusions
The newly developed apparatus described in this paper can combine simple and pure shear
independently and simultaneously and allows the modeling of structures in all types of homo-
geneous monoclinic flow, as illustrated in Passchier (1998). Test and pilot experiments show
that flow in the apparatus is homogeneous in plane strain except for a small zone along the
pistons, and that particle paths, Rxy, and rotation rates of spheres are comparable to theoretical
values in monoclinic shear zones. Limitations of the apparatus are the maximum finite strain of
one experimental run, availability of suitable analog materials, and the limited range of attain-
able strain rates. For one experimental run, the maximum strain axis ratio in the xy-plane Rxy

is at least 4 for all types of monoclinic flow that can be modeled in the machine. The setup of
the apparatus and technical limitations restrict suitable materials to those with a viscosity in the
range of 103 to 106 Pa s. The attainable range of strain rate is strongly dependent on the analog
material used. 
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Chapter 4

Are polymers suitable rock-analogs?

Abstract
To evaluate if a polymer is suitable for analog modeling it is essential to know the rheolo-
gical properties of the material. Polymers used in analog modeling exhibit a complex rheo-
logical behavior only part of which has been taken into account in most modeling studies.
The mechanical behavior is strongly dependent on strain rate and temperature, and is char-
acterized by specific dependencies of the storage and loss moduli, related to the elasticity
and viscosity, on the deformation rate (frequency). 
We present a set of new data from measurements with an oscillatory parallel-disk rheo-
meter obtaining the storage and loss moduli at a broad range of frequencies and strains.
Investigated materials are polydimethylsiloxane (PDMS), mixtures of PDMS and BaSO4
(filler), Rhodorsil Gomme and mixtures of Rhodorsil Gomme and plasticine, all com-
monly used in analog experiments. 
Our results show that mixtures of plasticine and Rhodorsil Gomme exhibit a dependence

of the rheological properties with strain and therefore these mixtures are problematic for

analog modeling. For mixtures of PDMS and BaSO4, the significance of the elastic com-

ponent increases with increasing filler content, accordingly these mixtures have a limited

application for modeling of viscous deformation. Pure PDMS and Rhodorsil Gomme

exhibit Newtonian flow behavior at strain rates commonly used in analog modeling. 

4.1 Introduction
Polymers (e.g. Polydimethylsiloxane (PDMS)) and polymers with fillers (e.g. bouncing or sili-
cone putties) in combination with other materials (e.g. sand) have been extensively used for
analog modeling in geosciences for decades. Polymers have been applied in experiments
modeling the development of small-scale structures in ductile shear zones (e.g. Ghosh and
Sengupta 1973, Fernandez et al. 1983, Ildefonse et al. 1992a,b, Passchier and Sokoutis 1993),
medium-scale structures such as boudinage or mullions (e.g. Ramberg 1955, Ghosh and Ram-
berg 1976, Sokoutis 1987, Kobberger and Zulauf 1995) and strain variation in layers of diffe-
rent rheology (e.g. Treagus and Sokoutis 1992), and large scale fold and fault structures (e.g.
Dixon and Summers 1985, Brun et al. 1994). In large-scale experiments polymers are com-
monly used to represent the ductile lower crust. Polymers are also used to model rising plumes,
convection, magmatic fabric developments, and emplacement of igneous bodies (e.g. White-
head and Luther, 1975, Nataf et al., 1984, Roman-Berdiel et al. 1995, Anma 1997, Anma and
Sokoutis 1997, Donnadieu and Merle 1998).
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Several papers have been published in the geological literature which specifically or in parts
investigate the physical properties of polymeric liquids and related materials (e.g. McClay
1979, Dixon and Summers 1985, 1986, Weijermars 1986, Sokoutis 1987, Treagus and Sokou-
tis 1992, Kobberger  and Zulauf 1995). McClay (1976) and Kobberger and Zulauf (1995) per-
formed constant strain rate, plane strain compression tests and concluded that the mechanical
behavior of different types of plasticine is complex, but that after a certain amount of strain it is
linear viscoelastic. Dixon and Summers (1985, 1986) used an annular shear rig to obtain rheo-
logical properties of a silicone putty. They have shown that the mechanical behavior of the sili-
cone putty and the plasticine cannot be fully described by flow laws which are used to describe
rock deformation (power-law flow, Newtonian flow, Bingham flow behavior). Sokoutis (1987)
and Sokoutis and Treagus (1992) used a capillary (extrusion) viscometer and a concentric
cylinder (Couette) viscometer. Weijermars (1986) performed additional measurements with a
Stokes (falling-ball) viscometer and a Weissenberg cone and plate rheometer, for the investiga-
tion of the viscosity of polymeric analog materials (plasticine, Rhodorsil Gomme, polymers
and mixtures). They reported changes in viscosity with strain rate. In all these studies no other
rheological properties than effective viscosity were measured. 
Geologists performing analog modeling need comprehensive information about the rheologi-
cal character of a material to evaluate its suitability as a rock analog. However the knowledge
of the rheological properties of analog materials in the geological literature is strongly
restricted to analyses of effective viscosity without specification of any other rheological quan-
tities. Quantities such as the loss and storage moduli especially when determined in a broad
range of deformation rates allow to determine the rheological character of a material (Nelson
and Dealy 1993). 
We performed a series of rheological measurements on several commonly used polymers. Our
results show that the mechanical behavior is complex and that some commonly used polymers
are in fact problematic as analog materials for rocks.

4.2 Structure and deformation of polymeric liquids 
4.2.1 Structure and mechanical behavior of polymeric liquids 
Polymeric materials used for analog modeling belong to the so-called thermoplastics. These
are characterized by flexible linear chain-like macromolecules, which are formed by chemical
binding of a number of small molecules (monomers). The polymer chains, when sufficiently
long, are entangled and assume complex three dimensional structures. The mean form of the
three dimensional structure can be characterized as a soft ellipsoid, the size of which is chain
length dependent. In an undeformed system, the chains assume an equilibrium state with ran-
dom orientation of their long axes (Winter et al. 1993). During deformation chains can reorient
with their long axes preferentially directed towards the drawing direction, can straighten and
finally can glide past each other (Fig. 4.1). When deformation ceases, chains tend to "relax" to
their equilibrium state both by a form retraction and by a randomization of orientation. There-
fore, polymers behave like an elastic material when a high stress is applied for a short time
(less than the chain relaxation time) but like a viscous material when a low stress is applied for
a long time (longer than the chain relaxation time). For a constant imposed strain, the initial
elastic response is gradually converted into permanent viscous deformation and the associated
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stress decays with time (Maxwell model). Such behavior is termed viscoelastic as it is charac-
terized by a combination of elastic deformation and viscous flow. An important feature of vis-
coelastic materials is the time-dependence of rheological properties (Askeland 1990). At a
certain range of deformation rates time-independent rheological properties may be observed
for a given material but there certainly exists a range where the material will show time-depen-
dent properties. Besides this time-dependence, properties of viscoelastic materials can be
strain-independent, "linear" or strain-dependent, "non-linear".  The term linear viscoelastic is
used when during testing the material remains in equilibrium state and the rheological proper-
ties are not influenced by the conditions of testing, hence rheological properties are strain-inde-
pendent. The term non-linear viscoelastic is used when the material structure is altered under
observed conditions and consequently rheological properties are strain-dependent. (Fig. 4.1).

4.2.2 Viscoelastic properties of polymers
4.2.2.1 Linear viscoelastic behavior
The properties of linear viscoelastic materials are usually described by the storage G' and loss
G'' moduli (Table 4.1), whereby the storage and loss moduli are representative for the elastic
and viscous component, respectively (Nelson and Dealy 1993). 
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c Figure 4.1. Sketch of chains of a poly-

meric liquid in a) undeformed equili-

brium state, b) deformed state at low

deformation rate relative to relaxation
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state at high deformation rate relative

to relaxation time of polymer chains.
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These material properties are usually determined by applying sinusoidal shear strain of ampli-
tude γ0 and frequency ω to a sample. The shear strain as a function of time is 

(4.1)

and the corresponding shear strain rate

           (4.2)

If the response is linear, the resulting shear stress will also be sinusoidal but can be shifted in
phase as follows

(4.3)

where δ is the phase shift angle and σ0 is the stress amplitude (Nelson and Dealy 1993, Jeffrey
Giacomin and Dealy 1993). 

Table 4.1. Notation

aT  shift factor for calculation of mastercurve

G' storage modulus, Pa
G'' loss modulus, Pa
G0 elastic shear modulus, Pa

G shear modulus, Pa
k constant
n power law exponent
Tref  reference temperature for the calculation of mastercurve, °C

Tm  experimental temperature for the calculation of mastercurve, °C

δ phase shift angle
γ shear strain

shear strain rate, s-1

γ0 shear strain amplitude

η kinematic viscosity, Pa s
η* complex viscosity, Pa s
η0 zero shear viscosity, Pa s

ω frequency, rad s-1

ωm  experimental frequency, rad s-1

ωr  frequency where G' = G'', rad s-1

σ shear stress
σ shear stress amplitude
τ relaxation time,  s

γ
.

γ γ ω( ) sin( )t t= 0

γ γ ω ω
•
( ) = ( )t t0 cos

σ(t) = σ 0sin(ωt +δ )
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The phase angle δ can be regarded as characterizing the distribution of the deformation energy
into the two fractions: (1) the energy stored in the system as an elastic deformation and (2) the
energy lost irreversibly. For purely elastic behavior δ is zero, and the ratio between shear stress
and strain is constant in time. For viscous behavior δ = π/2 and the ratio between the shear
stress and strain rate is constant (Fig. 4.2).
The shear stress is usually written as a trigonometric identity as follows

(4.4)

and δ as

 (4.5)
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where G'(ω) is the storage modulus and G''(ω) is the loss modulus.In a simple viscoelastic sys-
tem both moduli are functions of frequency with a characteristic behavior, which is linked to
the relaxation time of the structural units e.g. the polymer chains. An example of such behavior
is illustrated schematically in Figure 4.3. In such a diagram a plateau of G' and a low G'/G''
ratio (G'>>G'') are both characteristic for elastic behavior (Hookean). The elastic shear modu-
lus describing the material properties in this range is given by 

(4.6)

In the frequency range where G''>>G' and where G' and G'' obey the characteristic proportion-
alities to ω2 and ω, respectively, flow behavior is viscous (Newtonian). Here the system can be
characterized by the complex viscosity η*(ω) given by

 (4.7)
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 (Winter et al. 1993). The complex viscosity η*(ω) is equal to the kinematic viscosity η only if
G'' >> G'. Only in this range, the viscosity is a meaningful material property and the complex
viscosity can then approach the value of the zero shear viscosity

(4.8)

The intermediate cross-over region between the two limiting types of behavior (elastic and vis-
cous) can be regarded as typically viscoelastic (Maxwell). The point at which G' and G'' cross
each other determines the place (ωr) on the frequency scale which is related to the relaxation
time τ of the structural units constituting the system, (τ=1/ωr). Assuming a simple Maxwell
model, the maximum of G'' and intersection of the functions of log(G') and log(G'') vs. log(ω)
always occur at the same frequency. 
Fig. 4.3b gives an example of a possible structural interpretation of the mechanically observed
relaxation which can be considered for molecular or colloidal systems. For a dense system of
spheres which can be regarded as representing molecules or particles there is a solid-like state
at higher and a liquid-like state at low frequencies. In the high frequency regime, they indicate
only vibrational motions and quasi localized positions of particles between the neighbors,
whereas, at low frequencies displacements exceeding particle sizes make the system viscous -
changing neighbors becomes possible. According to such a model, the relaxation is related to
the position correlation of particles and the mechanical response can be considered as a Fourier
transform of the position autocorrelation function with the characteristic relaxation time neces-
sary for particles to escape from the surroundings of the initial neighbors.      

4.2.2.2 Non-linear viscoelastic behavior
In non-linear viscoelastic materials increasing deformation amplitude, i.e. finite strain at a con-
stant frequency leads to structural changes, for example, chain orientation and extension,
which influence the material properties. In such cases, the stress-response becomes non-sinu-
soidal, therefore the property definitions for G', G'' and δ are not meaningful for such a
response (Jeffrey Giacomin and Dealy 1993). Other methods of analysis as those discussed
here are required in order to characterize such non-linear viscoelastic behavior.

4.2.3 Relation of G' and G'' to shear modulus and coefficient of viscosity
In geological literature it is common to describe the viscous and elastic behavior of rocks in
terms of the coefficient of viscosity (η), which relates the shear strain rate to shear stress, and
the shear modulus (G),which relates elastic shear strain to shear stress. 

(4.9)

(4.10)

Using the equations (4.2 - 4.7) the coefficient of viscosity η and the shear modulus G can be
rewritten in terms of G' and G''

η ω ω
ω0

0
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•

G = σ (t)
γ t( )
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 (4.11)

(4.12)

The coefficient of viscosity η may only be used in ranges where the material exhibits viscous
behavior (tan δ -> ∞). The shear modulus G can only be used for elastic behavior (tan δ -> 0).
Therefore, to describe the rheological behavior of rocks either the viscosity or the shear modu-
lus is an appropriate quantity. 

4.2.4 Typical rheological behavior of polymeric liquids and polymeric liquids with fillers 
In complex systems like polymers, structural units of considerably different size, i.e. mono-
mers and polymer chains relax with rates which differ by many orders of magnitude. There-
fore, the observed frequency dependencies of G' and G'' indicate more than one relaxation
region as illustrated in Figure 4.4. This figure shows a typical example of viscoelastic behavior
of a melt of a polyisoprene sample with linear chains of the molecular weight Mw=130000
(Pakula et al. 1996). 
The two different relaxation ranges observed for the polymer melt at low and high frequencies
correspond to structural rearrangements concerning two different structural units i.e. mono-
mers and polymers, respectively. The ranges characteristic to viscous and elastic response
appear now at various deformation rates and correspond to different size scales in the exa-
mined system. Further complication of the structure, for example by introduction of fillers, can
lead to creation of new structural scales and new relaxation processes with relaxation times
which will depend on particle size and the structure that particles form in the matrix (Gohr et
al. 1999). Such additional relaxation can shift the regions of typical deformation behavior (vis-
cous, elastic and viscoelastic) of the material to different deformation rates. 

η
ω

= ′′G

G G= ′

Figure 4.4. Typical example of results characterizing the viscoelastic behavior of a melt of a 
polyisoprene sample (Mw 130000) with linear chains.
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The examples given above show that details of viscoelastic and consequently rheological
response of polymeric materials can be strongly influenced both qualitatively and quantita-
tively. In complex polymers with a broad chain length distribution or with fillers with a broad
particle size distribution regions may exist where, for example, G'' > G', the slope of G'' is not
equal to 1, and the viscosity is a function of the strain rate. For such behavior the relation
between shear stress and strain rate is often empirically described by a power-law function. 

 (4.13)

where k is a constant and n the power-law index. A constant power-law index (n) for a range of
strain rates is achieved if the slopes of the functions of log(G'') and log(G') vs. log(ω) are both
constant. In polymers the power-law behavior is due to specific superposition of various
molecular or supramolecular relaxation processes whereas in rocks the power-law behavior is
considered as associated with dislocation creep or relaxation. Hence, in polymers and rocks
two structurally different mechanisms result in a similar macroscopic behavior. 

4.3 Rheological measurements
A number of polymers that are commonly used in geological experiments have been tested.
The first step in the rheological characterization of polymeric liquids and similar materials is
the determination if the material is linear or non-linear viscoelastic. This is done by deriving
G', G'' and η∗ at a constant frequency but varying applied strain. The material is linear vis-
coelastic only if the values of G', G'' and η∗ are constant in the applied strain range. The
second step is to derive G', G'' and η∗ at a range of frequencies. 

4.3.1 Method
For measurements we used an oscillatory parallel-disk rheometer (Rheometric RMS 800). The
rheometer cell consists of two equally sized parallel disks (Fig. 4.5) of radius R=6.5mm and
the distance between the disks d=1.5 mm.The sample is put between the two plates. At a given
frequency of the sinusoidal strain the phase angle δ and the amplitude of the stress response
σ(t) are measured.  

γ σ
•

= k n

Figure 4.5. Sketch of parallel-disk rheometer geom-

etry. The fluid (polymer) is sheared between an oscil-

lating lower and upper disk. Strain is applied with a 

certain amplitude and frequency and resulting stress 

is measured

sample

upper plate

lower plate

force transducer

motor
3 mm
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The rheometer has a limited range of frequencies (10-3 - 102  rad/s) that can be applied. To
obtain values for G' and G'' over a wider range of frequencies a so-called master curve is con-
structed. To do this, measurements are performed at different temperatures and are later shifted
along the frequency scale to positions supposed as corresponding to the behavior at a chosen
reference temperature Tref according to

(4.14)

(4.15)

The value of the shift factor aT is calculated with

(4.16)

where Tm  is the temperature and ωm the frequency at which measurements were performed
(Winter et al. 1993). The procedure works well for melts of amorphous polymers in which
temperature independent structure and temperature independent relaxation spectrum can be
assumed.

4.3.2 Results
4.3.2.1 PDMS and mixtures of PDMS and BaSO4
PDMS (trade name: SGM 36; produced by Dow Corning, UK) is a transparent polymer with a
density of 965 kgm-3 (Weijermars 1986). 
To determine if PDMS is linear or non-linear viscoelastic measurement of rheological proper-
ties as a function of finite strain at constant strain rate were performed (Fig. 4.6) and revealed a
linear viscoelastic flow behavior. Figure 4.7a shows the temperature dependence of the rheo-
logical properties for pure PDMS. Figure 4.7b illustrates the calculated master curve of PDMS

′ = ′ ⋅G T G a Tref T m m( , ) ( , )ω ω

′′ = ′′ ⋅G T G a Tref T m m( , ) ( , )ω ω

log log ( ) log ( )a T TT m ref( ) = ( ) − ( )ω ω

Figure 4.6. Plot of finite shear strain

versus G' and G'' for PDMS, confirming

its linear viscoelastic flow behavior.
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for a reference temperature of 20°C. The mastercurve for PDMS shows that at 20°C, at strain
rates below 5 × 10-1 s-1 the slope of G'' is 1 and that of G' is 2, indicating viscous flow behavior.
In this range of strain rates the complex viscosity represents a meaningful value which is 3 ×
104 Pa s. For strain rates between 5 × 10-1 s-1 and 13 s-1 G'' > G'. 
Rheological data for 3 different mixtures of PDMS with the filler material BaSO4 (25 wt%, 33
wt%, 50 wt%) are given in Figure 4.8. For increasing filler content the values of G' and G''
increase. For mixtures with 33 wt% and 50 wt% BaSO4 G' > G'' at the range of measured strain
rates, indicating viscoelastic behavior with a high elastic component. The mixture with 25 wt%
BaSO4 has a G'-G'' crossover at a strain rate of 16 s-1. Below this value G'' is larger than G'.
Below a strain rate of 1 s-1 the slopes of G' and G'' have a constant value, indicating power-law
behavior. The viscosity decreases from 1 × 105 Pa s at a strain rate of 4.3 × 10-2 s-1 to 3 × 104

Pa s at a strain rate of 1 s-1 . This corresponds to a power-law index (n-value) of 1.23. 

Figure 4.7. Rheological

data of PDMS; a) plot of

strain rate versus G' and G''

measured at different tem-

peratures; b) mastercurve

for 20°C, showing G', G'',

η* and tan δ, below a strain

rate of 0.5 s-1 PDMS shows

viscous (Newtonian) flow

behavior.
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4.3.2.2 Rhodorsil Gomme 
The mastercurve for Rhodorsil Gomme (pinkish opaque bouncing putty, Société des
Chemiques Rhône-Poulenc (France)) at Tref of 20°C is shown in Figure 4.9. Three strain rate
ranges with distinctly different mechanical behavior can be distinguished. Below a strain rate
of 1 × 102 s-1 the slope of G'' is 1 and that of G' is 2 and G’’ > G’, i.e. the material is in the vis-
cous behavior range. The complex viscosity η∗  in this range is 8 × 103 Pa s. Between 1 × 102

s-1 and 2 × 103 s-1 the slopes of both G' and G'' are not constant; this is the viscoelastic range.
The cross-over of G' and G'' occurs at a strain rate of 2.7 × 102 s-1. Above a strain rate of 2 ×
103 s-1 G' approaches a plateau at 5 × 105 Pa in the elastic range. 

Figure 4.8. Rheological measurements of three mixtures of PDMS and BaSO4; a) results for 

PDMS with 25 wt% BaSO4, plot shows strain rate versus G' , G'' ,  η∗ tan(δ). This material 

shows power-law behavior below a strain rate of 16 s-1; b)  results for PDMS with 33 and 50 

wt% BaSO4, plot shows shear strain rate versus G' , G''. Both materials behave viscoelastic 

with a high elastic component.
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4.3.2.3 Mixtures Rhodorsil Gomme and white plastilina
Figure 4.10 depicts strain percentage versus G' and G'' at different frequencies for 2 different
mixtures of white plasticine (Pl; Swedish version of Harebutt´s Plasticine (McClay 1976)) and
Rhodorsil Gomme (RG) (32wt% Pl/68wt% RG, 50wt% Pl/50wt% RG, 75wt% Pl/25wt% RG).
The mixture of 32wt% Pl/68wt% RG exhibits constant values of G' and G'' with increasing
finite strain, thus this mixture is linear viscoelastic. Figure 4.11 depicts the corresponding mas-
tercurve. Below a strain rate of 26 s-1 the slopes of G'' and G' are constant, but not equal to 1
and 2, respectively. The calculated n-value assuming power law flow is 1.25. Above a strain
rate of 5 × 103 s-1 the mechanical behavior is elastic. For mixtures of 50wt% Pl/50wt% RG and
75wt% Pl/25wt% RG values of G' and G'' are not constant with increasing finite strain and
therefore the material is non-linear viscoelastic. 

4.3.3 Comparison of results with existing data
Our data for PDMS closely resemble those given by Weijermars (1986) (Fig. 4.12) and confirm
a Newtonian flow behavior below a strain rate of around 5 × 10-1 s-1 at room temperature (20-
25°C). Between strain rates of 2 × 10-1 s-1 and 13 s-1 the flow behavior is viscoelastic, whereby
G'' > G'. Above a strain rate of 13 s-1 no viscous flow is present as G' > G''. Our data addition-
ally show that the mechanical behavior of PDMS changes significantly with temperature (Fig.
4.7). Treagus and Sokoutis (1992) measured the viscosity of PDMS mixed with 23wt% BaSO4
at strain rates between 6 × 10-3 s-1 and 1 × 10-1 s-1 (Fig. 4.12). Their finding of a non-Newto-
nian flow behavior for this mixture is confirmed by our data for a mixture of PDMS and 25wt%
BaSO4. The power-law index (n) for the mixture with 25 wt% BaSO4 is 1.23, which is slightly
above the n-value of 1.1 for the mixture investigated by Treagus and Sokoutis (1992). 
Viscosity measurements of Rhodorsil Gomme have been performed by Weijermars (1986) and
Sokoutis (1987) (Fig. 4.12). Our data for Rhodorsil Gomme confirm the Newtonian flow
behavior below a strain rate of 1 × 102 s-1, as concluded from these measurements. The visco-
sity determined from our data is 8 × 103 Pa s, in contrast to the value of 3 × 104 Pa s from ear-
lier measurements (Weijermars 1986, Sokoutis 1987). Above a strain rate of 1 × 102 s-1 the
material shows viscoelastic behavior and above 2 × 103 s-1 elastic behavior. Earlier measure-
ments were not performed in the latter range. 

Figure 4.9. Mastercurve of

Rhodorsil Gomme, showing

G', G'', η* and tan δ versus

strain rate. Rhodorsil Gom-

me behaves viscously below a
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Figure 4.10. Variation of G'

and G'' with shear strain

showing the non-linear,

strain-dependent viscoelas-

tic behavior of mixtures of

plasicine and Rhodorsil

Gomme, 25-75, 50-50 and

68-32 are the weight ratios of

Rhodorsil Gomme and plasti-

cine. 
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Our data for mixtures of white plasticine and Rhodorsil Gomme do not confirm comparable
data of Weijermars (1986) and Sokoutis (1987). Our findings show that these materials are
non-linear viscoelastic (Fig. 4.10), and therefore viscosity is not a meaningful rheological
property. 
McClay (1976) and Kobberger and Zulauf (1995) measured the rheological properties of seve-
ral types of plasticine and a mixture of plasticine and oil using a uniaxial compression appara-
tus. They investigated the response of the different materials at constant strain rate and a range
of finite strains and used measured values only at a finite strain at which a constant stress
response was seen to derive the power-law exponent of the materials. With this procedure they
assured linear viscoelastic behavior of the investigated materials. Therefore, the derived power-
law exponents are meaningful for the specific range of strain percentage. Dixon and Summers
(1985, 1986) investigated the rheological properties of a silicon putty with an annular shear rig.
The plots (Fig. 4.10; Dixon and Summers 1985) of time versus shear strain clearly show the
time-dependent response of the material and therefore the significance of the elastic compo-
nent in the rheological behavior of the material. Nevertheless, it is not clear whether the mate-
rial is linear or non-linear viscoelastic.  

Figure 4.11. Mastercurve of

the mixture of 32 wt% Plastili-

na and 68 wt%, Rhodorsil

Gomme, showing G', G'', η*

and tan δ versus strain rate.
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Weijermars (1986) measured the viscosity of several mixtures of Rhodorsil Gomme and
BaSO4 with different ratios of the filler to matrix. The purpose of this work was a) to derive
power-law exponents for the different mixtures and b) a function to predict the power-law
exponent of mixtures of Newtonian polymers and filler material. As shown by our data for
mixtures of PDMS and BaSO4 (Fig. 4.8) mixtures with a filler content of 33 and 50 wt% are
characterized by higher storage moduli than loss moduli. Therefore, mixtures of polymeric
liquids and fillers do not necessarily flow viscously. If G' > G'' derived power-law exponents
are meaningless. Hence, the general function given by Weijermars (1986) should not be used.

4.4 Implications for the use of polymers and related materials as rock analogs
Analogs are used as scaled-down models of rocks. Their rheolgical properties should closely fit
the requirements of scaling. This should not be checked only according to viscosity but by a
complete rheological investigation of material properties. A modern analysis of polymers must
include the determination of the storage and loss moduli. 
First of all, the rheological behavior at a range of strains at a given strain rate should be known
in order to determine if the material is linear or non-linear viscoelastic. If it is non-linear vis-
coelastic the behavior of the material strongly depends on its deformation history. Therefore,
the behavior of these materials is unpredictable. If the material is linear viscoelastic the next
step is to determine the values for the storage and loss moduli. The relation of these two moduli
is an expression of the different types of linear viscoelastic behavior. If the value of the loss
modulus is below the value of the storage modulus viscosity, measurements are not meaningful
as the elastic behavior dominates. For polymers the rheological behavior is strongly dependent
on strain rate and temperature. Therefore, it is necessary to know the rheological properties of
a material exactly at experimental conditions. 
As the rheological properties of polymers depend on the relaxation time of the structural units,
mixing of polymers with different chain lengths or addition of filler may result in materials
with rheological properties very different from those of the endmembers. Therefore, it should
be possible to create materials with properties favorable for analog modeling of rocks.

4.5 Conclusions
The knowledge of the effective viscosity alone is not sufficient to fully describe the rheological
properties of polymers and related materials. The values of the storage and loss moduli are
necessary to evaluate the suitability of a polymer for analog modeling. First of all, the proper-
ties as a function of the finite strain must be known in order to determine if the material linear
or non-linear viscoelastic. If the properties are not constant with increasing finite strain, a
material is non-linear viscoelastic. In this case, its use as a rock-analog is problematic as the
material properties (i.e. viscosity, storage and loss moduli) are a function of the deformation
history. Examples for non-linear viscoelastic materials are mixtures of Rhodorsil Gomme and
Plastilina used by Passchier and Sokoutis (1993), and Treagus and Sokoutis (1992) (weight
percent ratio: 25/75, 50/50). 
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If a material is linear viscoelastic the values of the storage and loss moduli as a function of
strain rate determine the mechanical behavior at specific strain rates.  Three types of mechani-
cal behavior can be distinguished:
1) elastic (Hookean) behavior
2) viscoelastic (Maxwell) behavior
3) viscous (Newtonian) behavior
Our results reveal that commonly used analog materials can only be used to model viscous
deformation at specific strain rates. The upper limit for viscous deformation modeling is 5 ×
10-1 s-1 for PDMS and is 1 × 102 s-1 for Rhodorsil Gomme. To model power law behavior of
rocks mixtures of PDMS and BaSO4 with a BaSO4 content below approximately 30 wt% and
mixtures of Rhodorsil Gomme and plastilina with a plastilina content of 32 wt% can be used at
strain rates below 1 s-1 and 26 s-1, respectively. The power law exponent (n-value) for a mix-
ture of PDMS and BaSO4 with a BaSO4 content of 30 wt% is 1.23 and for a mixture of
Rhodorsil Gomme and plastilina with a plastilina content of 32 wt% it is 1.25. For mixtures
with a BaSO4 content above 30 wt% (mixture PDMS/BaSO4) the elastic component domi-
nates. 
These results show that exclusive measurements of viscosity are not sufficient to determine the
mechanical behavior of a material and therefore to assess its suitability for specific analog
modeling requirements.
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Chapter 5

The influence of strain localisation on the rotation 
behaviour of rigid objects in experimental shear zones

Abstract
Mica fish and tourmaline fish were analysed in thin section to determine their orientation
distribution. They are oriented with their long axes tilted with respect to the mylonitic foli-
ation, where fish with a small aspect ratio exhibit a slightly larger angle as fish with a large
aspect ratio. This orientation seems to be a stable orientation for the mica and tourmaline
fish. Analogue experiments with two rheologically different matrix materials are per-
formed to explain the data. One material is PDMS, a linear viscous polymer. The other is
tapioca pearls, a granular material with low cohesion and Mohr-Coulomb type behaviour.
In contrast to a fairly homogeneous strain distribution in PDMS, distinct small-scale shear
bands develop in tapioca pearls during deformation. Experiments model different vorticity
numbers, and parallelogram-shaped rigid objects with different aspect ratios are used.
Rotation rates of objects in a viscous matrix are very similar to analytical solutions for
ellipses in viscous flow, but stable orientations differ from data of natural examples. In all
experiments with a Mohr-Coulomb matrix elongated objects have a stable orientation due
to strain localisation. We therefore suggest that strain localisation is an important charac-
teristic of the rheology of mylonites. 

5.1 Introduction
Mylonitic rocks usually contain porphyroclasts that can develop into shear sense indicators
such as sigma and delta clasts or lenticular structures such as mica fish (White et al. 1980,
Simpson and Schmid 1983, Lister and Snoke 1984, Passchier and Simpson 1986, Hanmer and
Passchier 1991, Passchier and Trouw, 1996). The understanding of these structures is essential
for the correct interpretation of the flow kinematics in mylonites with porphyroclasts. 
To gain better understanding of the behaviour of porphyroclasts in mylonites, analytical and
experimental studies have investigated the behaviour of single or multiple objects or inclusions
in a homogeneous viscous matrix. The rheology of a deforming mylonite is usually described
as non-linear viscous, with a power-law relationship between strain rate and stress (Kirby and
Kronenberg 1987). Although the stress exponent, n, which defines the sensitivity of strain rate
to stress is usually assumed to be 1-3 in mylonites, most modelling studies on porphyroclast
behaviour assumed linear (Newtonian) viscous behaviour with n = 1. Jeffery's (1922) work
shows that the rotation rate of an elliptical object in simple shear is a function of the strain rate,
and of the aspect ratio and orientation of the object. Solutions for pure shear flow (Gay 1968)
and combinations of pure and simple shear, general flow (Ghosh and Ramberg 1976), have
also been proposed. This early work has been extended to the motion of rigid particles in non-
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Newtonian fluids by Ferguson (1979) and to triaxial elliptical particles by Jezek et al. (1994).
According to the equations for rigid elliptical particles in a Newtonian viscous fluid all objects,
except lines and planes rotate continuously in simple shear. Elongated objects have a pulsating
rotation rate under these conditions. In plane strain general flow with kinematic vorticity
number (Wk, Means et al. 1980) between 0 and 1, elliptical objects rotate towards a stable

orientation, if their aspect ratio exceeds a critical value (Rcrit). Rcrit is a function of the kine-

matic vorticity number (Wk):  

(Ghosh and Ramberg 1976, Passchier 1987). Objects with a lower aspect ratio rotate conti-
nuously, but with a pulsating rotation rate. In simple shear (Rcrit = ∞) there are no stable orien-

tations except for lines and planes. In pure shear (Rcrit = 1) all objects rotate towards a stable

position, and spheres are stationary. 
In analogue experiments and numerical modelling several aspects of the deformation of por-
phyroclast systems have been studied. For the behaviour of rigid objects in a ductile matrix dif-
ferent materials have been used as an analogue for the matrix, such as silicon putty (e.g. Ghosh
and Ramberg 1976, Ildefonse et al. 1992), honey with titanium oxide (Fernandez et al. 1983),
paraffin wax (Ildefonse and Mancktelow 1993) and octachloropropane (OCP), polyacrylamide
(pAA) solution, and glycerine (Ten Brink 1996). These experiments modelled either simple or
pure shear flow and rigid object were usually rectangular. Results from these experiments show
that for most matrix materials the embedded rectangular particles behave as predicted for ellip-
tical particles with a similar aspect ratio by the analytical solutions mentioned above. In the
case of a non-coherent boundary (Ildefonse and Mancktelow 1993) and for experiments with a
non-Newtonian anisotropic viscous matrix material (OCP and pAA solution, ten Brink 1996)
the results differ from these analytical solutions. These results indicate that the rheological
properties of the matrix are an important factor for the behaviour of porphyroclasts. Numerical
models mainly concentrate on the flow perturbation around a rigid particle (Bons et al. 1997,
Pennacchioni et al. 2000). All the above models predict that after large strains, most objects in
a population are orientated close to their stable slow rotation orientation. Vorticity analysis,
based on the orientation distribution of particles is a natural shear zone were done by several
authors, e.g. Passchier (1987), Jezek et al. (1994), and Masuda et al. (1995). Masuda et al.
(1995) made distribution plots of aspect ratio versus orientation for initially randomly distri-
buted particles in plane strain flow after different amounts of finite strain, to predict both vorti-
city number of flow and finite strain in mylonites. 
Bell (1985) proposed a contrasting theory on the behaviour of rigid objects in a shear zone. He
suggested that non-coaxial deformation partitions into zones of nearly coaxial deformation and
zones of generally non-coaxial shearing. Porphyroblasts and porphyroclasts would lie within
coaxial deformation zones and would rotate little or not at all with respect to bulk flow axes. 
In this study attention is paid to the behaviour of objects with a parallelogram shape in simple
shear and combinations of pure and simple shear. In natural shear zones objects with a
parallelogram or lenticular shape are common as so-called mica fish, usually composed of
muscovite or biotite (Eisbacher 1970, Fig. 5.1). Similar structures can also be formed by other

R W Wcrit k k= + −( ) /( )1 1
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minerals, such as garnet (Azor et al 1997) and tourmaline (Fig. 5.1). From observations on
natural mica fish by Eisbacher (1970) and Lister and Snoke (1984) it is known that mica fish all
have a similar orientation, with their long axis tilted with respect to the flow plane. This sug-
gests that they rotated towards a stable orientation. This orientation is different from the stable
or slow rotation rate orientation of elongate rigid objects predicted by theory and observed in
experiments with rigid ellipsoids. We tried to investigate how the orientation of these structures
can be explained and what this tells us about the flow kinematics and rheology in ductile shear
zones. The shape and orientations of mica and tourmaline fish from three different localities
are described and the observed geometries and orientations were used as a basis to perform a
number of analogue experiments.

5.2 Measurements of natural samples 
Two sets of mica fish and one set of tourmaline fish were analysed in thin section to determine
their orientation distribution. The first set are isolated muscovite fish within pure quartzites
from a shear zone near Conceição do Rio Verde, Southern Minas Gerais State, Brazil (Trouw et
al. 1983). The quartzites belong to the lower unit of the Neoproterozoic Andrelândia Deposi-
tional Sequence (Paciullo et al. 1993, Ribeiro et al. 1995). The outcrop (Locality 45°06' E,
21°56'S, Chapter 2) is situated in an ENE trending subvertical dextral shear zone of about 500
m thickness. The metamorphic grade during deformation is estimated as upper greenschist
facies. In 3D the mica fish have a flake or disc shape. In the plane parallel to the stretching
lineation and perpendicular to the foliation the mica fish are elongated and have a parallelo-
gram or lenticular shape (Fig. 5.1a & b). 

(a)

1 mm

(b)

0.5 mm

(c)

0.5 mm

(d)

0.1 mm

Figure 5.1. Photomicrographs of mica and tourmaline fish in thin sections parallel to stretching

lineation and perpendicular to  foliation. Shear sense is dextral in all pictures. a) Lenticular

shaped muscovite fish from Conceição do Rio Verde, Brazil. b) Parallelogram shaped muscovite

fish from Conceição do Rio Verde, Brazil. c) Lenticular biotite fish from Santa Rosa Mylonite

zone, California, U.S.A. d) Parallelogram shaped tourmaline fish from Lambari, Brazil. 
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The aspect ratio (Rfish = longest axis/shortest axis) of the fish in this plane is between 2 and 16,

with an average of 5.7 (Fig. 5.2). Trails of very small mica fragments extend from the tips of
the mica fish into the matrix. These 10-100 µm wide trails define the mylonitic foliation. The
matrix surrounding the mica fish consists of fine-grained quartz with a crystallographic pre-
ferred orientation (CPO) and an oblique shape foliation (Means 1981), which makes an angle
of 34° with the mylonitic foliation. The mica fish are inclined to the mylonitic foliation in the
same direction as the oblique foliation. The angle (ϕ) between the long axes of 400 measured
mica fish and the mylonitic foliation has a median value of 13° (Fig. 5.2). 
The second set of samples comes from the Santa Rosa mylonite zone, Palm Canyon, Califor-
nia. The mica fish are developed in mylonitized granodiorites, which are present in a 700-900
m thick sequence of mylonites in Palm Canyon (Wenk and Pannetier 1990). The movement
related with these mylonites is a thrust system and deformation occurred at middle amphibolite
facies conditions (Simpson 1984, Wenk and Pannetier, 1990, Goodwin and Wenk 1995). The
matrix of these mylonites is composed of quartz with a clear CPO. The mica fish from this
location are muscovite as well as biotite fish. Both minerals show lenticular shapes (Fig. 5.1c).
One hundred mica fish (31 muscovite & 69 biotite) were measured (Fig. 5.2). The aspect ratio
of these fish is between Rfish = 2 and 10, with an average of 4.3. The mica fish from this shear

zone are also orientated with their long axis inclined with respect to the mylonitic foliation.
The median value of ϕ for this shear zone is 12° for the biotite fish and 15° for the muscovite
fish.

Figure 5.2. Plot of the orientation of long axis with respect to aspect ratio (long axis/short

axis) of mica and tourmaline fish. Small grey dots show the distribution pattern of initially

homogeneously distributed ellipses for simple shear after a shear strain of γ = 10, according

to the solutions of Jeffery (1922) (after Masuda et al. (1995)). Inset shows definition of ϕ and

the sign convention used throughout this paper.
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The third set of studied samples contains tourmaline fish (Fig. 5.1d). These samples are from a
shear zone near Lambari, Southern Minas Gerais State, Brazil (Trouw et al. 1983) in the
Andrelândia Depositional Sequence (Paciullo et al. 1993, Ribeiro et al. 1995). Deformation in
these samples occurred under middle amphibolite facies conditions. The matrix consists of
fine-grained quartz with a clear CPO. In contrast to the more smooth mica fish the tourmaline
fish have an angular parallelogram shape with straight sides and typically have an angle of
about 50-55° between the sides (Fig. 5.1d). Their long side is usually parallel to the mylonitic
foliation. The aspect ratio Rfish = 1.5 - 6. The orientation of the long axes of the tourmaline

crystals has a median value of 17° (Fig. 5.2).
The data from each location show a similar trend, a slightly higher angle for the fish with a
small aspect ratio and lower angle for fish with a high aspect ratio. None off the distribution
plots of aspect ratio with respect to orientation of rigid ellipsoids of Masuda et al. (1995)
resemble the pattern observed in figure 5.2. For comparison the distribution pattern of the long-
est axes of initially homogeneously distributed ellipses for simple shear after a shear strain of γ
= 10 is plotted (Fig. 5.2). Lister and Snoke (1984) suggested that inhomogeneous flow of the
matrix might play a role in mylonites containing mica fish. Observation of boudinaged mica
fish, linked by fine-grained mica trails could be taken as evidence that part of the deformation
is accommodated in narrow zones in the investigated mylonites, as in the case of S-C mylo-
nites (Berthé et al. 1979, Lister and Snoke 1984). However, such mylonites normally show no
decrease in grain size, change in crystallographic preferred orientation or other signs of
enhanced strain towards the trails of mica grains. Also, these trails are normally parallel with-
out the anastomosing geometry seen in many ductile shear zones with flow partitioning. There-
fore these trails could also represent the trace of the finite strain ellipsoid. Clearly, the
orientation of the mica fish is a crucial feature. We therefore carried out two sets of experi-
ments with opposite rheological matrix properties to see which one could mimic the observed
object orientations: one with a homogeneous viscous material and one with extreme flow loca-
lisation.  

5.3 Experimental Method
5.3.1 The apparatus
The experiments were performed with a deformation apparatus that can model deformation in
general flow regimes (Chapter 3). The apparatus consists of a four-sided deformation box, with
walls constructed from 1 cm wide, 12 cm high Plexiglas segments, which are connected with
flexible plastic (Fig. 5.3). The segments are connected at the outside to two metal springs. This
construction ensures homogeneous contraction and extension of the walls. Two opposing sides
of the deformation box, consisting of 30 segments, are always parallel to the x-direction of the
x, y, z-reference frame of the apparatus (Fig. 5.3). The two other sides, made with 20 segments,
can rotate about the z-axis. A 0.35 mm thick elastic latex sheet forms the bottom of the defor-
mation box. This construction results in a deformation box that slides with low friction on the
base plate and which is open at the top. The contraction or extension of the flexible sides of the
deformation box is controlled by six stepping motors. This set-up allows all types of mono-
clinic flow to be modelled. Boundary effects extend 10-15 mm into the matrix from the walls

(Chapter 3). Velocity of the motors is controlled by the computer program LabView®. 
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5.3.2 Experimental procedure
Experiments were carried out in dextral plane strain progressive deformation, also known as
subsimple shear (Simpson and De Paor 1993) or stretching shear zone geometry (Passchier
1998). The kinematic vorticity number values of deformation modelled in the experiments
were 1 (simple shear), 0.95, 0.8 and 0.6. Two different analogue matrix materials were used.
(1) PDMS (polydimetylsiloxane, trade name SGM 36, produced by Dow Corning, UK), a

transparent Newtonian viscous polymer with viscosity 5.0 × 104 Pa·s at room temperature and

a density of 0.97 g/cm3  (Weijermars 1986). (2) As an analogue with extreme flow localisation
we searched for a material with semi-brittle behaviour and low cohesion. Sand would have
been suitable, except for its high density. We settled for densely packed tapioca pearls, appro-
ximately equidimensional spheres with a cross section of 2.0 ± 0.4 mm. The tapioca pearls
show Mohr-Coulomb type behaviour similar to sand, but with a low cohesion that is suitable
for the deformation apparatus. The coefficient of internal friction, µ, and cohesion, C0, for fault

initiation in tapioca pearls are: µ = 0.74 ± 0.05 and C0 = 39 ± 44 Pa (Appendix A).

Rigid blocks of India Rubber with a density of 1.46 g/ cm3 are used as analogue for the mica
and tourmaline fish. The objects are always placed with their flat top side parallel to the base
plane (xy-plane) of the apparatus. In the xy-plane the objects had two principal shapes, paral-
lelogram shape and square (Rob = 1), (Fig. 5.4). Parallelogram shapes in the xy-plane were

used to resemble natural mica and tourmaline fish. The angle between the sides was 45° and
length width ratios (Rob) were 3, 4, 6, and 10 (Fig. 5.4). The square object (Rob = 1) was used

for reference. The major and minor axis of the object in the xy-plane are referred to as the a-
axis and b-axis (Fig. 5.4, Table 5.1). The c-axis of the object is always parallel to the z-axis of

Figure 5.3. Schematic drawing of deformation apparatus, seen from top. The sides of the box

can be independently moved by the six motors to create any type of bulk monoclinic flow.
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the apparatus. According to the analytical equations of Jeffery (1922), only the ratio between
the a- and b-axis is important for the behaviour of the object in this orientation. The orientation
of the a-axis of the objects (ϕ) is measured with respect to the x-direction op the apparatus.
Objects were placed with their long axis perpendicular to the x-direction (ϕ = 90°) or parallel
to the x-direction (ϕ=0°) at the start of the first run of each experiment. Table 5.2 gives an over-
view of the performed experiments with the used strain rate (experiments with Wk = 1) or

stretching rates (Wk < 1). 

The finite strain that can be reached in the apparatus is limited to γ = 3 for Wk=1 and to a

stretch of 150% along the x-axis for Wk < 1. Higher strains were achieved by running series of

experiments (Passchier and Simpson 1986). After each experimental run the precise orientation
of the object was photographed and measured. After returning the box to the starting position
the object was placed in the measured final orientation and another experimental run under the
same conditions as the previous run was carried out. This technique is particularly useful when
studying one or a few rigid objects. Experiments presented here were run until the object
stopped rotating for at least a strain of γ = 0.5 or stretch along x-axis of 105%, or had rotated a
full 180°. Images of the sample were taken with a digital camera with a resolution of 800 by
600 pixels. The orientation of the objects was measured with the program NIH image; the
accuracy of measured orientation is 0.5°. We present the orientation of the object (ϕ) as a func-
tion of the simple shear component of deformation (γ) rather that strain ratio Rf. This is done

for two reasons: a) the equations given by Ghosh and Ramberg (1976) give the orientation as a
function of the simple shear component of deformation and b) this component increases in a
linear way with time at constant vorticity number and strain rate, unlike the strain ratio (Rf).

Table 5.1. Dimensions of the objects. *Sharp angle between the sides of the object.

Particle name A (mm) b (mm) c (mm) Angle ∗

3 22.5 7.5 24.0 45°

4 22.0 5.5 33.0 45°

6 27.5 4.5 21.5 45°

10 35.0 3.5 21.5 45°

1rect 20.5 20.5 41.0 90°

Figure 5.4. Schematic

drawing of the rigid

objects used in the ex-

periments, with angles

used to describe their

orientation (ϕ). 
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5.4 Results of the experiments
5.4.1 Orientation of objects
The results for the simple shear experiments with the square object (Rob = 1) in PDMS and

tapioca pearls matrices are shown in figure 5.5. The rotation rate of the object in PDMS is con-
stant and similar to the rate predicted by theoretical solutions. In tapioca pearls the object is
also continuously rotating, but at a lower rate as in PDMS, and the rotation rate is not constant.
The minimum and maximum rotation rates in tapioca pearls are reached when the object has
an orientation of ϕ = 65-75° and ϕ = 20-30°, respectively.
Figure 5.6 shows the results of the experiments with elongate objects in PDMS for a vorticity
number of 1 (simple shear) and 0.8. In simple shear (Wk = 1) the rotation rate of the objects has

a minimum and maximum when their long axis is orientated at ϕ =0° and ϕ = 90° respectively.
For objects with Rob = 3 and 4 the curves are very similar to the analytical solution for ellip-

soids with the same aspect ratio. For Rob = 6, the analytical solution for an ellipse with a

Table 5.2. List of performed experiments: * TP = tapioca pearls 

Vorticity
number  
(Wk)

Matrix  
material

Rob of studied 
objects,  starting ori-
entation ϕ0 =  90°

Rob of studied 
objects,  starting ori-

entation ϕ0 =  0°

Strain rate (Wk=1 ) 
or  stretching rate 

(Wk <  1) (s-1)

1 PDMS 1rect, 3, 4, 6 2 10-3

1 TP* 1rect, 3, 4, 6, 10 4 2 10-3

0.95 TP 3, 4, 6, 10 3,6 3.3 10-4

0.8 PDMS 3, 4, 6 3.3 10-4

0.8 TP 3, 4, 6, 10 10 3.3 10-4

0.6 TP 3, 4, 6, 10 4 3.3 10-4

Figure 5.5. Object orientation (ϕ) versus

strain for experiments with a square ob-

ject with two different matrix materials.

Solid thick line indicates expected orien-

tation of the object according to analy-

tical solutions of Jeffery (1922) for a cir-

cular object.
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theory
(Jeffery 1922)
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slightly smaller aspect ratio (Rob = 5.6) fits better. In experiments with vorticity number 0.8 all

objects reach a semi-stable orientation with a small negative ϕ-value (Table 5.3) as predicted
by Ghosh and Ramberg (1976). Objects with Rob = 3, 4 and 6 closely follow the rotation rates

predicted by analytical solutions for Wk =0.8. 

Figure 5.7 shows the results for experiments with non-square objects in a matrix of tapioca
pearls for Wk = 1 (simple shear). From a starting orientation of ϕ0 = 90°, all objects rotated

clockwise in the dextral shear. Their rotation rate decreased with increasing finite strain to
reach a stable orientation, which is different for each aspect ratio. In all cases this orientation is
at a positive angle (ϕ > 0). These results are completely different from the analytical solutions
given by Ghosh and Ramberg (1976) for an elliptical object in simple shear. One experiment
with ϕ0 = 0° was performed for the monoclinic object with Rob = 4 to check if this angle is a

stable or a semi-stable orientation. In this case the object started to rotate counterclockwise and

Figure 5.6. Object orientation (ϕ) versus strain for different object aspect ratios with PDMS

as a matrix material. Analytical solutions according to Jeffery (1922) are given as solid

lines. (a) Simple shear Wk = 1. (b) Wk = 0.8.
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Table 5.3. Stable orientations (ϕ) of the particles, -: object does not have a stable orientation under these con-
ditions 

Object PDMS Tapioca pearls

(Rob) Wk = 1 Wk = 0.8 Wk = 1 Wk = 0.95 Wk = 0.8 Wk = 0.6

3 - -5.6 24.4 2.9 10.7 10.8

4 - -4.4 16.7 8.8 13.5 10.8

6 - -4.4 14.4 4.9 14.4 12.4

10 11.8 0.4 8.7 12.1

1rect - -
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reached the same orientation as for the experiment with ϕ0 = 90°. This indicates that the small

positive angle is indeed a stable orientation for the object. The stable orientation (ϕstable) is a

function of the aspect ratio and decreases with increasing aspect ratio. This was also observed
in the mineral-fishes in natural shear zones (Fig. 5.2).
The results for the experiments with tapioca pearls as matrix material with vorticity numbers
0.95, 0.8 and 0.6 are given in figure 5.8. The objects in these experiments show the same trend
as in experiments with Wk = 1. When ϕ0 = 90° all objects start to rotate clockwise, towards a

stable orientation (Table 5.3). Experiments with ϕ0 = 0° gave the same stable position as the

experiments with ϕ0 = 90° for the same objects under the same conditions. The stable orienta-

tion (ϕstable) as a function of aspect ratio of the object (Rob) for all experiments is plotted in

figure 5.9. For experiments with a tapioca pearls matrix the maximum value for ϕstable is

observed for the object with Rob = 3 in simple shear. Additionally it is shown that for all

objects the lowest angle is observed for the experiments with Wk = 0.95. 

Figure 5.7. Object orientation (ϕ) versus strain for experiments with tapioca pearls as a

matrix material with four different objects. All experiments model simple shear deformation.

Initial orientation for the objects is ϕ0 = 90° for all objects and ϕ0 = 0° for an additional ex-

periment with the object with Rob = 4. Solid lines are analytical solutions according to Jeffery

(1922) for comparison. 
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Figure 5.8. Object orientation (ϕ) versus

strain for experiments with tapioca
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2 cm

(a) Wk = 1, PDMS

Wk = 0.8, PDMS

(b) Wk = 1, tapioca pearls

Wk = 0.8, tapioca pearls

Figure 5.10. Analysis of the distribution of strain in samples without rigid object, shown as

grey scale plots of the finite strain ellipse axial ratio (R f ) and as deformed superimposed

grids for a strain increments of R f = 1.2. (a) Deformation in PDMS is homogeneously distri-

buted throughout the sample and rarely exceeds the minimum finite strain value of Rf = 1.25

that can be resolved. (b) Deformation in tapioca pearls aggregates is localised in dark dextral

shear bands.
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5.4.2 Analyses of strain distribution
Strain distribution during a strain increment within the sample was determined using pattern
matching software "PatMatch" (Bons and Jessell 1995). With this program the distribution of
deformation during each strain increment can be determined. Both materials were first investi-
gated in the absence of a rigid object. In deforming PDMS, strain is distributed homogeneously
throughout the material (Fig. 5.10a, Piazolo 2000). In a matrix of tapioca pearls the strain is
concentrated in small fault zones or shear bands (Fig. 5.10b), which are approximately parallel
to the xz-direction. The regions between these zones show relatively little deformation. Analy-
sis of the experiments with PDMS with a central object (Fig. 5.11) show the finite strain is dis-
tributed very homogeneously during the analysed time interval. Analysis of the experiments
with tapioca pearls with a central object in its stable position show that in progressive simple
shear deformation microfaults or shear bands are developed in the sample. The orientation of
the shear bands is similar in tapioca pearls with and without a central object (Fig. 5.10 and
5.12). The shear bands accommodate up to 60% of the strain in the experiments with a central
object. The long side of the object is parallel to the shear bands. The shear bands are not stable
through time, but disappear while new bands appear at different places. With a decreasing vor-
ticity number the spacing between the shear bands increases and the shear bands develop at a
larger distance from the object (Fig. 5.12). Figure 5.12 shows the analyses of experiments with
an object with Rob = 6 in its stable position. For this object the long side is parallel to the shear

bands for Wk = 0.95, but not for Wk = 0.8 and 0.6. For objects with Rob  = 4 and 10 in their sta-

ble positions the same is true. For an object with Rob = 3 in its stable position the long axis is

only parallel to the shear bands in simple shear, not in shear with Wk = 0.95, 0.8 and 0.6.

2 cm

1.2-1.3

<1.2 1.3-1.4

1.4-1.5

>1.5
Rf

(a) Wk=1

(b) Wk=0.8

Figure 5.11. Contours of Rf values for experiments with PDMS as matrix material and object

R = 6. a) Simple shear Wk = 1. b) Wk = 0.8. Bulk strain is in both cases Rf = 1.2
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Figure  5.12. Contours of Rf values for experiments with tapioca pearls as matrix material

and object R = 6. a) Simple shear Wk = 1. b) Wk = 0.95, c) Wk = 0.8, d) Wk = 0.6. Dark bands

are highest strain rate zones. Bulk strain is in all cases Rf = 1.2.
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5.5 Discussion
5.5.1 Discussion of experimental results
Analytical solutions of Jeffery (1922) and Ghosh and Ramberg (1976) for the rotation of ellip-
tical objects in a Newtonian fluid are very similar to the results from experiments with mono-
clinic shaped objects in PDMS for objects with the same aspect ratio. The monoclinic instead
of an elliptical shape of the objects appears to have very little effect on the rotation behaviour
of the object.
The experiments with tapioca pearls show completely different results. The square object (Rob

= 1) in simple shear is the only object with continuous clockwise rotation, although the rotation
rate of this object is much lower than predicted by the analytical solutions and not constant. In
all other experiments with tapioca pearls as a matrix material the object rotate towards a stable
orientation, which is with its long axis at a positive angle to the x-axis of the apparatus. The
orientation depends on the aspect ratio of the object and the vorticity number. The reason for
this difference in behaviour compared to the experiments with PDMS is the different deforma-
tion behaviour of the matrix material. In tapioca pearls a significant part of the deformation is
concentrated in shear bands and the areas between the shear bands undergo only limited defor-
mation. This localisation of the strain is more pronounced in experiments with a central object,
where the shear bands accommodate 60% of the deformation. This type of deformation is
similar to the model of Bell (1985) and Bell et al. (1992): in the experiments the objects are
situated in the low deformation areas or microlithons and therefore rotate slower compared to
rotation rates in analytical solutions and experiments with PDMS. However, a significant part
of the deformation is accommodated in the microlithons and the square object (Rob = 1) con-

tinues to rotate, in contrast to the model of Bell et al. (1992). The stable orientation of the
monoclinic objects in the simple shear experiments and of the objects with Rob = 4, 6 and 10 in

experiments with Wk = 0.95 is with their long side subparallel to the shear bands in the matrix

(Fig. 5.12a and b). Therefore, in these experiments the orientation of the shear bands seems to
determine the orientation of the object. In the other cases, where the long side of the object is
not parallel to the shear bands, the distance from the object to the closest shear bands is proba-
bly to large for the shear bands to have an influence on the orientation of the object. The con-
trolling factor for the orientation of the objects in these experiments is not clear, but is probably
due to stress distribution in the complex arrangement of shear bands, object and microlithon
matrix. The incoherence of the matrix/object boundary as studied by Ildefondse and Manckte-
low (1993) and Pennacchioni (2000) does not seem to be of great importance in our experi-
ments, since no concentration of strain was observed along the object.

5.5.2 Comparison of experimental results with measurements of mica and tourmaline fish.
The measurements of natural mica and tourmaline fish from three different shear zones show
very similar results for each shear zone. On average the long axes of fish with a low aspect
ratio have a slightly higher angle to the mylonitic foliation than the long axes of fish with a
high aspect ratio. To explain the orientation of the mineral fish in these measurements they are
compared to the analytical solutions for rigid elliptical objects in Newtonian fluids (Jeffery
1922, Ghosh and Ramberg 1976) and to the experiments with monoclinic shaped objects in
PDMS and tapioca pearls. For this comparison a few assumptions must be made. First of all
the deformation of the mica and tourmaline fish should be slow in order to regard them as rigid
objects. We think this is a valid assumption, because the mica and tourmaline fish can still be
found as relatively large clasts in the intensely sheared matrix. Secondly, there should be little
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interaction between the fish. The orientation of the fish is assumed to be only a function of their
aspect ratio, and not influenced by interaction with neighbouring mineral fish. In the samples,
the distance between the fish is usually large enough (more than a fish length) that interaction
can be assumed to be negligible for most of the fish.
The trend of long axis versus aspect ratio for the natural mica and tourmaline fish and the trend
for analytical solutions for ellipses in a Newtonian fluid and experiments with PDMS as matrix
material show very little resemblance (Fig. 5.9). A stable orientation (ϕstable) for the elongated

objects can be found in experiments with vorticity number Wk < 1, but the stable orientations

as observed in these experiments and also the orientations resulting from analytical solution for
elongated objects in viscous flow with Wk < 1 (Ghosh and Ramberg 1976) are all negative,

whereas the orientation of most of the natural mica and tourmaline fish is positive. The orienta-
tion of the long object axis versus aspect ratio as observed for the natural mica and tourmaline
fish is however similar to the stable orientations for rigid objects in a matrix of tapioca pearls
deformed in simple shear (Fig. 5.9). 
Obviously, deformation in the mylonite zones containing mica and tourmaline fish is by com-
pletely different mechanisms from our analogue materials. PDMS is a Newtonian viscoelastic
fluid; tapioca pearls a low cohesion granular material with Mohr-Coulomb type deformation.
Nevertheless, it is remarkable that despite this difference such a close relation exists between
mica fish in mylonites and rigid objects in tapioca pearls. This probably means that the crucial
factor influencing the development of mica fish is the geometry of flow kinematics. Deforma-
tion is distributed fairly homogeneously in PDMS, and is localised in discrete shear bands in
tapioca pearls or any other granular, Mohr-Coulomb material. The similarity between the data
from natural examples and results from experiments with a Mohr-Coulomb matrix suggests
that there must be strain localisation in mylonites in order to form mica fish. Strain localisation
is also predicted by Lister and Snoke (1984), although we do not agree with all details of the
mechanisms they propose. Lister and Snoke (1984) proposed that mica fish bordered by shear
bands, but experiments with tapioca pearls show that shear bands can be further away and
migrating through the sample with the same effect. Possibly, deformation in mylonites can be
described by inhomogeneous flow that occurs by short living shear bands that shift position, as
in tapioca pearls. Ongoing deformation and recovery mechanisms may overprint earlier fabrics
and erase traces of flow partitioning and may explain the absence of grain-size gradients or
other signs of enhanced strain towards the trails of mica grains. This kind of flow partitioning
which is homogenised over time in progressive deformation has also been observed in experi-
ments with the polycrystalline material octachloropropane (Bons and Jessell 1999). 
The observed decrease in angle with aspect ratio of the mica and tourmaline fish of the natural
samples fits best with the results of the simple shear experiments. However, as mentioned in
the previous section the distance of the shear bands to the objects is the important for the stable
orientation of the objects in the simple shear experiments. In the experiments with Wk < 1, the

distance between object and the nearest shear bands increases with decreasing vorticity
number. Besides the vorticity, the distance from the object to the nearest shear bands depends
probably also on the grain size of the material. We did not test the effect of grain size, since in
rocks the deformation mechanism is different. Therefore it is not possible to give a conclusion
about the natural samples considering the vorticity number here. 
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5.6 Conclusions
Analogue experiments on the rotational behaviour of elongated rigid objects were carried out
using two end-member model materials: PDMS (a Newtonian viscous polymer) and tapioca
pearls (with Mohr-Coulomb behaviour). Several kinematic vorticity numbers were modelled.
The results from the experiments with PDMS as a matrix gave similar results as analytical
solutions for ellipses in viscous flow (Jeffery 1922, Ghosh and Ramberg 1976), indicating that
the aspect ratio, not the detailed shape is the controlling factor for the rotation behaviour of
objects in viscous materials. The results of the experiments with tapioca pearls as a matrix
material give completely different result. Under all studied conditions, the elongated objects
obtain a stable orientation, between ϕ = 0.4° ± 0.5° and 24.4° ± 0.5°. The deformation in tapi-
oca pearls is concentrated in small shear bands on the scale of the tapioca pearls. Measure-
ments of the long axis of natural samples of mica and tourmaline fish with respect to the
mylonitic foliation show an average a tilted, positive orientation. The average angle decreases
with aspect ratio of the object. These results fit very well with the results from the experiments
in tapioca pearls in simple shear. This indicates that strain localisation in micro shear bands or
zones is probably an important characteristic of the rheology of natural rocks with mica fish or
other "mineral fish" and possibly of all mylonites. The presence of fish-shaped objects may be
indicative for strain partitioning, even where no other microstructural indications for flow par-
titioning are found.

Appendix A
Aggregates of tapioca pearls show Mohr-Coulomb type behaviour, where the shear stress (τ)
for failure is related to the normal stress (σn) on the failure plane by:

σn = C0 + µτ.

The coefficient of internal friction, µ, and cohesion, C0, for tapioca pearls where determined

using the method described by Kranz (1991). The simple apparatus consists of two compart-
ments, the lower one fixed and the upper one supported by four cables of about 40 cm length
(Fig. 5.13). The compartments are 7.5 cm high, have a cross section of 4.35 cm and were both

Figure 5.13. Schematic drawing of the set up used to

measure the coefficient of internal friction and cohe-

sion of tapioca pearls. Two cylinders are both filled

with tapioca pearls. The bottom cylinder is fixed and

the top cylinder is hanging on four cables, so the top

cylinders can move frictionless with respect to the

bottom one. The normal load is applied by the tapio-

ca pearls in the upper cylinder and extra metal loads

on top. The shear load is applied by the hanging

mass over a pulley. Figure is not to scale. 

τ

σn
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filled with the pearls. A horizontal fault is created in the pearls when the top cylinder is shifted.
The overlying tapioca pearls and extra metal loads determine the normal load across the hori-
zontal fault surface between the two cylinders. Tapioca pearls were poured to the desired depth
above the fault plane and the extra load was put on top. A shear load was applied to the top
cylinder by adding water to a container hanging over a frictionless pulley. The shear load was
increased until a distinct failure event occurred. The data points of this experiment are plotted
in figure 5.14 as normal stress (σn) versus shear stress (τ). The coefficient of internal friction,

µ, (slope) and cohesion, C0, (intercept) follow from this plot. For tapioca pearls these values

are µ = 0.74 ± 0.05 and C0, = 39 ± 44 Pa. 

Figure 5.14. Plot of data from shear

test on tapioca pearls shown as shear

stress versus normal stress. The line is

the best fit by linear regression and

suggest that for failure in this mate-

rial µ= 0.74 (slope) and C0 = 39 Pa

(intercept)
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Chapter 6

Numerical modelling of simple shear flow around rigid

objects in different matrix materials

Abstract
The preferred orientation of certain objects such as mica fish in mylonites suggests that

they reach a stable orientation during deformation. Theoretical and most experimental

studies suggest continuous rotation of rigid objects in simple shear flow. In this study

the effect of matrix rheology, the existence of inhomogeneities, boundary conditions

and a slipping object-matrix interface on strain distribution and on rotation rate of rigid

objects is studied with the finite difference code FLAC. Results of the experiments show

that strain is localised around the rigid object in experiments with a Mohr-Coulomb type

matrix, when soft layers are present in the matrix, or in the case of a soft object-matrix

boundary in a power-law or Newtonian viscous matrix. In each of these cases rotation

rate of the object is reduced and strain is localised, compared to the relatively homoge-

neously deforming power-law or Newtonian viscous matrix materials. This indicates

that in mylonites an elongated rigid object can only reach a stable position in simple

shear if deformation is localised around the object.

6.1 Introduction
The influence of the rheology of the matrix material, vorticity number of deformation, and
aspect ratio of the object on the rotation of rigid elongated objects in plane strain deformation
in analogue experiments was discussed in the previous chapter. These experiments have shown
that the rheology of the matrix has a considerable effect on the rotational behaviour of rigid
objects and that kinematic studies can therefore not be used to model all aspects of the beha-
viour of rigid objects in a deforming matrix. Analogue experiments and analytical solutions
have shown that all rigid objects, except lines or planes, are continuously rotating in simple
shear in a viscous matrix (Jeffery 1922, Ghosh and Ramberg 1976, Chapter 5). In a granular
matrix material with a Mohr-Coulomb rheology, however, elongated objects obtain a stable
position in simple shear (Chapter 5). In a viscous material strain is distributed relatively homo-
geneously, even when a single object is embedded in the material. Strain distribution is always
inhomogeneous in a Mohr-Coulomb material. Discrete shear bands accommodate a large part
of the strain, whereas the zones between the shear bands show only minor deformation, similar
to the model of Bell et al. (1992) for partitioning of strain in mylonitic rocks. The localisation
of strain is believed to be the decisive factor for the stable position of rigid elongated objects in
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a Mohr-Coulomb matrix material. For the experiments in chapter 5 two matrix materials with
completely different rheological behaviour were used, while the vorticity number of flow and
the aspect ratio of the object were varied. Both matrix materials were homogeneous throughout
the sample, and boundary conditions were equal for all the experiments. Anisotropy of the
matrix material (Ten Brink 1996) and a non-cohesive object-matrix boundary (Ildefondse and
Mancktelow 1993, Pennaccioni et al. 2000) are also considered to be important factors for the
rotation of objects in a viscous matrix. Mechanical properties in mylonitic rocks are most
likely anisotropic to some extend, due to alignment of micaceous minerals or a crystallo-
graphic preferred orientation. It can be envisaged that the object and matrix are partly or
wholly decoupled.
Numerical models (Bons et al. 1997, Pennacchioni et al. 2000) and analytical solutions (Fergu-
son 1979, Jezek et al. 1994) of flow around circular objects in Newtonian and non-Newtonian
viscous simple shear flow have shown that the stress exponent of the matrix material is of
secondary importance for the flow pattern of the matrix and rotation of the object. However,
boundary conditions (Bons et al. 1997) and cohesion between object and matrix (Pennacchioni
et al. 2000) have a significant effect on the flow pattern. Bos (2000) reported microstructures
from deformation experiments with mixtures of halite and kaolinite, which resemble the
microstructures of mylonites with mica fish. In his experiments asymmetric halite clasts with
elongated tails were developed in a fine grained anisotropic matrix of halite and kaolinite.
Deformation of the mixture involved frictional sliding along kaolinite layers and pressure solu-
tion, giving a frictional-viscous behaviour. 
The effect of several factors on strain distribution in the matrix and on the rotation rate of a
rigid object in the matrix are studied with numerical simulations in this chapter. These factors
are: (1) an inhomogeneous matrix with weak layers, (2) Mohr-Coulomb, power-law and New-
tonian viscous rheologies, (3) the boundary conditions of the model, and (4) a slipping object-
matrix boundary. The results of the numerical simulations are compared to microstructures of
natural rocks with mica fish, presented in previous chapters, in order to get a better understan-
ding of deformation around rigid objects and of rheology of the matrix material.
The computer code FLAC (Fast Lagrangian Analysis of Continua, Cundall and Board 1988;
see also www.itascacg.com) was used for the numerical simulations. FLAC is a plane-stress or
plane-strain explicit finite difference code. In this code the discretised equations are solved by
a dynamic relaxation scheme. New velocities and displacements are derived from stresses and
forces through the equations of motion for each time step. Strain rates are derived from the
velocities, and new stresses from the strain rates according to the relationship between stress
and strain rate for the material (Ord 1994). This computer code has proven to be very useful in
understanding the development of different microstructures, for example the formation of
shear bands (Hobbs and Ord, 1989; Ord 1990), and fold geometry (Zhang et al. 1996a, 2000),
and the understanding of glide processes, grain boundary sliding, and lattice rotation in poly-
crystalline aggregates (Zhang et al. 1996b; Zhang and Wilson, 1997). 
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6.2 Experimental method
6.2.1 Matrix models and material properties 
Three different rheologies were used for the matrix: 1a) power-law viscous, 1b) linear (Newto-
nian) viscous, and 2) Mohr-Coulomb (plastic). The basic equation for the relation between
strain rate (    ) and stress (τ) for a viscous material is:

(6.1)

(e.g. Sibson 1977), where B depends on the diffusion constant and temperature, Q is the activa-
tion energy, R is the gasconstant, T is the temperature, and n is called the power-law constant.
For constant temperature this formula is simplified to:

(6.2)

where A is a constant, used values are given in table 6.1. The power-law exponent (n) in the
experiments described here is n = 3, as in the flow law for bulk diffusion controlled dislocation
creep. A value of n = 3 is thought to be realistic in rock deformation (Poirier 1980). This type
of behaviour is called power-law or non-Newtonian viscous behaviour. In this study I use the
term power-law matrix for a matrix deforming according to this stress-strain rate relationship. 
Viscous deformation with a power-law exponent of n = 1 is also called Newtonian viscous
behaviour. The relation between strain rate (    ) and stress (τ) is given by:

(6.3)

(Twiss and Moores 1992) where η is the viscosity (table 6.1), and η  = 1/A. The viscosity used
here is η = 1018 Pa·s, which is the estimated effective viscosity for the lower crust in exten-
sional regimes and beneath low-gradient boundaries in convergent orogens (Clarck and Roy-
den 2000).  The value for the constant A was estimated using the values for activation energy
and the diffusion constant for self diffusion of Farver and Yund (1991). For a temperature of T
= 450°C, A = 10-30. 
The third model material is deforming by frictional sliding. Sliding occurs when a critical
shear stress (τ) is exceeded. 

(6.4)

(Twiss and Moores 1992), where σn = normal stress. Cohesion (c) and coefficient of internal
friction (µ) or friction angle (φ, where µ = tan(φ)) are material properties. The Mohr-Coulomb
yield function is sometimes expressed in terms of the critical principal stresses. The maximum
compressive stress required for yield is:

 (6.5)

(Twiss and Moores 1992). 
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In this study a matrix material deforming according to this model is called a Mohr-Coulomb
matrix. The values for friction (φ = 45°) and cohesion (c = 50 MPa, Table 6.1), are typical val-
ues for quartzites, (Goodman 1980). In the FLAC code all materials also have elastic proper-
ties, where bulk and shear modulus were similar to values used for numerical simulations by
Hobbs and Ord (1989), (Table 6.1). The rheological model, matrix properties boundary condi-
tions, and type of object-matrix boundary for all 23 experiments are listed in Table 6.2.  A cen-
tral object was inserted in the matrix. This object has a viscous rheology, with a high viscosity
compared to the matrix (Table 6.1) in all experiments.

6.2.2 Boundary conditions
The model consists of a central object, embedded in a less competent matrix. The finite differ-
ence grid is rectangular and contains 80 x 80 elements (Fig. 6.1a), for experiments where the
matrix has a Newtonian or non-Newtonian viscous rheology. Two different central objects
were used, a square object consisting of 8 x 8 elements and a horizontally aligned rectangular
object with a length-width ratio of three, consisting of 16 x 8 elements (Fig 6.1a). For the rec-
tangular object the width of the elements in the y-direction is reduced to 2/3 times the standard
unit size to get the desired aspect ratio (Fig. 6.1). The grid for the Mohr-Coulomb matrix rheo-
logy measured 180 by 60 elements in x- and y-direction respectively. The square object mea-
sured 12 x 12 elements and the rectangular object 24 x 12 elements. The length-width ratio for
the Mohr-Coulomb matrix rheology was different, to reduce boundary effects, that will be dis-
cussed later. The object was located in the centre of the grid, initially parallel to the boundaries
of the model, in all experiments. 
Dextral simple shear deformation was modelled with two different sets of boundary condi-
tions: 1) Fully velocity constrained, where the velocities in both x- and y-direction direction
were set for all boundary nodes (Fig. 6.1). In this case all boundaries remain perfectly planar
during the experiment. 2) Laterally unconstrained, where velocities in the x- and y-direction

Table 6.1. Values of matrix properties.
Power-law 
viscous 

Newtonian 
viscous

Object in viscous 
matrix

Density (g/dm3) 2700 Density (g/dm3) 2700 Density (g/dm3) 2700

Shear modulus (Pa) 1·109 Shear modulus (Pa) 1·109 Shear modulus (Pa) 2·1011

Bulk modulus (Pa) 0.6·109 Bulk modulus (Pa) 0.6·109 Bulk modulus (Pa) 1.2·1011

Constant A 1·1030 Viscosity η (Pa·s) 1·1018 Viscosity η (Pa·s) 1·1020

Stress exponent n 3

Mohr-Coulomb Object in Mohr-
Coulomb matrix

Density (g/dm3) 2700 Density (g/dm3) 2700

Shear modulus (Pa) 2·1010 Shear modulus (Pa) 2·1011

Bulk modulus (Pa) 1·1010 Bulk modulus (Pa) 1.2·1011

Friction angle φ (°) 45 Viscosity η (Pa·s) 5·1023

Cohesion (Pa) 5·107

γ τ
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were only set on the horizontal boundaries (Fig. 6.1). Stress was zero at the unconstrained
boundaries. Only few experiments were performed with the latter set of boundary condition.
Both sets of boundary conditions are comparable to those of different types of shear boxes. The
first set is comparable to boundary conditions of a deformation box as described in chapter 3
and 5, and the second set is like the boundary conditions of a shear box where the sample is
deformed between two rigid plates, but is laterally unconstrained. The shear strain rate was     =
2·10-14 s-1 in all experiments, which is in the range of 10-13 s-1 to 10-15 s-1 deduced from natu-
ral rocks (Pfiffner and Ramsey 1982). Calculations were carried out in 5·105 strain increments
of γ = 2·10-6, or 1·108 s (≈ 3.2 year), to a finite strain of γ = 1. 

Figure 6.1. (a) The model showing the dimensions of the rectangular object (Rob = 3, shaded)

and the finite difference grid. Velocities in x- and y-direction for each boundary node are in-

dicated at the sides of the model. (b, c) A 1.5 times magnification of the central part of the

grid, showing the object (grey) and the weak zones (light grey) in the matrix in the model with

inhomogeneous matrix I (b) and inhomogeneous matrix II (c).
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6.2.3 Build-in inhomogeneities
Additional experiments were carried out with an inhomogeneous viscous matrix (Newtonian
and power-law), by inserting relatively soft horizontal layers in the matrix. Two sets of experi-
ments with such inhomogeneous properties were performed: inhomogeneous matrix type I
with two horizontal soft rows above and below the object (row j=36 en j=45, Fig. 6.1b), and
inhomogeneous matrix type II an arrangement of soft layers as shown in Fig. 6.1c. Soft layers
formed 25% of the matrix in this latter model. 
The ratio between the constant A in the soft layers and the remainder of the matrix is given by
ZA = Alayers / Amatrix. In the experiments with a Newtonian viscous matrix the weaker zones
have a viscosity two times less then the remainder of the matrix, ZA = 2. Experiments with a
power-law matrix are performed with variable ZA, where the constant A is set at 2, 4, 10 or 25
times higher then the remainder of the matrix (ZA = 2, 4, 10 and 25, Table 6.2). The stress
exponent n is kept the same in both strong and weak matrix materials.  
The effect of the weak zones on the relative rotation rate of the object (Ωrel) compared to the
rotation rate of the object in a homogeneous matrix is described by

Ωrel = Ωinhom/Ωhom (6.6)

where Ωinhom is the rotation rate of the object in the inhomogeneous matrix and Ωhom is the
rotation rate of the object in a homogeneous matrix.

6.2.4 Soft boundary between object and matrix
In one experiment the boundary between the object and the matrix was made softer than the
remainder of the matrix, to model the effect of a less coherent object matrix boundary. A soft
boundary was created by giving one layer of elements around the object a higher value for A.
In the experiment a power-law matrix with ZA = 10 was modelled, the object was rectangular,
and velocities on all boundaries were constrained. 

6.3 Experimental results
Experiments were set to run up to a shear strain of γ = 1. This was not reached for all experi-
ments, due to geometrical problems of the model. In zones of high material contrast, grid ele-
ments may rapidly obtain highly distorted shaped. Once the shape of grid elements exceed a
certain degree of deformation, the model shuts down since stress and strain can not longer be
calculated for these elements. Finite strain for each model is listed in table 6.2. Results of the
numerical experiments were saved after every strain increment of ∆γ = 0.2. Experiments with
fully velocity-constrained boundaries are first discussed in section 6.3.1, while those with late-
rally unconstrained boundaries are presented in section 6.3.2. The deformed grid and the strain
rate distribution are shown together. Comparison of the deformed grid with the strain rate
distribution at a certain moment gives an idea whether the strain rate distribution is constant
during deformation or not. When the strain rate distribution is constant through time the zones
with a high strain rate coincide with high finite strain zones in the deformed grid. The orienta-
tion of the side of the object with respect to the x-direction is measured after each strain incre-
ment of ∆γ = 0.2 or 100.000 steps. 
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6.3.1 Fully velocity constrained boundaries.
6.3.1.1 Homogeneous viscous matrix
The experiments with a homogeneous power-law or Newtonian viscous material are showing
similar results. In the experiments with the rectangular object (Fig. 6.2), the highest strain rate
is observed along the upper and lower side of the object and lowest in the zones next to the
right and left sides of the object. For the square object (Fig. 6.3) highest strain rates are
observed at the corners and lowest strain rates at the sides of the object. The strain distribution
is constant through time, because the zones high and low strain rate coincide with the parts of
the grid that are most and less deformed, respectively. The slight difference between the expe-
riments with a power-law and Newtonian viscous matrix is that the values for the maximum
and minimum strain rate are more extreme in the power-law matrix material. The effect of the
object on the strain rate can be noticed at a significant distance from the object, for the elon-
gated object especially around the upper left and lower right corner (Fig. 6.2).

Table 6.2. List of experiments. 1 M-C = Mohr-coulomb matrix material, 2 Boundary conditions C = velocity on
all boundaries is constrained. U = Velocity is laterally unconstrained. 3 Properties of the matrix are inhomoge-
neous in some experiments, see text for explanation. 4 Ratio between constant A.

Matrix rheol-
ogy

Length/width  
ratio object

Boundary  con-
ditions2

Inhomogeneous
  matrix 3

ZA
4 Finite strain γ

M-C 3 C - 1

M-C 1 C - 1

Power-law 3 C - 1

Power-law 3 C I 2 1
Power-law 3 C II 2 1
Power-law 3 C I 4 0.88
Power-law 3 C II 4 0.93
Power-law 3 C I 10 0.77
Power-law 3 C II 10 0.92
Power-law 3 C I 25 0.6
Power-law 3 C II 25 0.8
Power-law 3 C o/m boundary 10 0.49
Power-law 3 U - 1

Power-law 3 U I 2 1
Power-law 1 C - 1

Power-law 1 U - 1

Newtonian 3 C - 1

Newtonian 3 C I 2 1
Newtonian 3 C II 2 1
Newtonian 3 U - 1

Newtonian 3 U I 2 1
Newtonian 1 C - 1

Newtonian 1 U - 1
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Figure 6.2. Deformed grid and distribution of the maximum strain rate after a finite strain of

γ = 1 for the experiments with a power-law (a) and Newtonian (b) viscous matrix material

with homogeneous properties and a rectangular object. 
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Figure 6.3. Deformed grid and distribution of the maximum strain rate after a finite strain of

γ = 1 for the experiments with a power-law (a) and Newtonian (b) viscous matrix material

with homogeneous properties and a square object.
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In a power-law or Newtonian viscous matrix in experiments with constrained velocity at the
sides of the model, the square object rotates as predicted by analytical solutions for a sphere in
a viscous fluid (Fig 6.4, Jeffery, 1922). The rectangular object has a rotational behaviour equal
to the theoretical rotation of an ellipsoid with a 12.5% smaller aspect ratio under these condi-

Figure 6.4. Graphs of the orientation of the object with respect to the x-direction of the model

(α) versus the finite strain (γ). (a) For the rectangular object in a Mohr-Coulomb or Newto-

nian viscous matrix. (b) For the rectangular object in a power-law matrix with homogeneous

properties, or with soft layers inserted in the matrix. (c) For the rectangular object in a power-

law matrix with a soft layer around the object, and with unconstrained boundaries of the mod-

el. (d) For the square object. The slope of these graphs represents the rotation rate of the ob-

ject, ZA is the contrast between the constant A in the soft layers and the remainder of the

matrix.
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tions. This result is similar to that determined in experiments by Ten Brink (1996) with a New-
tonian viscous matrix material.
Both strain distribution and rotation of the object are similar in experiments with a power-law
viscous matrix (n = 3) and with a Newtonian viscous matrix, indicating that an increase in the
stress exponent does not change the behaviour of the object significantly. Similar findings were
reported by Ferguson (1979), Bons et al. (1997) and Pennacchioni et al (2000). 

6.3.1.2 Inhomogeneous viscous matrix
The strain distribution in the experiments with weaker zones in the matrix also is similar for
experiments with a power-law and with a Newtonian viscous matrix rheology. In all experi-
ments with an inhomogeneous matrix type I and type II the effect of the weaker zones is that
the strain rate and finite strain is increased in the weak zones and more homogeneously distri-
buted in the remainder of the matrix (Fig. 6.5), compared to the experiments with a homoge-
neous viscous matrix. The highest strain rates are observed in the weak zones next to the upper
left and lower right corner of the object. Although the velocity of the sides of the model is con-
strained, the effect of the weaker zones is seen at a small distance from the sides of the model.
Localisation is more pronounced if the difference between the strength of the soft layers and
the remainder of the matrix is higher. In the experiments with inhomogeneous matrix type II
the ratio of the strain rate in soft layers and in the remainder of the matrix is similar to the value
of ΖA, the ratio between constant A in the matrix and in the weak zones. This means that for
the experiments with matrix type II and with ZA = 2 as expected about 40% of the total strain is
accommodated by the soft layers, for ZA = 4 about 57%, for ZA = 10 about 77%, and for ZA =
25 about 90% of the strain. 
The effect of weaker zones in the matrix material on the rotation rate of the central object is
generally a reduction of the rotation rate compared to a matrix with homogeneous properties
(Fig. 6.4b). For the Newtonian viscous matrix with ZA = 2 the effect of two weak zones above
and below the object (type I) is a reduction of 8.3% of the rotation rate of the rectangular object
a viscous matrix with homogeneous properties. In the experiments with matrix type II the rota-
tion rate is reduced 5.5%. 
In the case of a power-law matrix there is also a reduction of the rotation rate due to the weaker
zones in the matrix. Figure 6.6 shows the reduction of strain rate compared to the power-law
matrix with homogeneous properties given as a function of the factor ZA. This figure shows
that the reduction of the rotation rate is higher for matrix type I then for matrix type II for low
values of ZA (ZA < 4). For higher values of ZA, the effect of the inhomogeneous matrix on the
rotation rate is higher for the model with matrix type II. The effect on the rotation rate for
experiments with matrix type I does not increase significantly for values of ZA > 4, but stays
around Ωrel = 0.66. This indicates that in a matrix with only two weak zones above and below
the object there is a limit to the influence of these zones on the rotation rate. In our experiments
this limit was reached at a value of ZA ≈ 4.
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Figure 6.5. Deformed grid and distribution of the maximum strain rate after a finite strain of

γ = 1 for the experiments with a power-law viscous matrix material with soft layers inserted

in the matrix and with a rectangular object. (ZA = 2)
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With matrix type II and a power-law viscous matrix the rotation rate of the object as a function
of the factor ZA , as shown in Figure 6.6, is described by the formula 

Ωrel = (Ωhom - k·log(ZA)) /Ωhom (6.7)

where k is a constant and Ωhom is the rotation rate of the object in a homogeneous viscous
matrix. In the experiments where 25% of the matrix consists of soft layers, the constant k was
found to be k = 0.53 for the rectangular object. If this formula is also valid for higher values of
ZA, this would mean that rotation rate is reduced to zero for an effective viscosity contrast
between the matrix and the soft layers of ZA ≈ 80. The function for Ωrel is possibly valid for all
experiments with shear bands distributed through the matrix. The constant k would in that case
be a function of the amount and the width of the shear bands, and the stress exponent (n) of the
matrix material.
In figure 6.7 the principal stress tensor is plotted as crosses where bars indicate the magnitude
and orientation of the principal stresses. Diagrams are given for experiments with a homoge-
neous matrix with power-law rheology and with an inhomogeneous matrix type I with  ZA =
10. This figure shows that stress is more homogeneously distributed in the matrix above and
below the object in the experiments with the inhomogeneous matrix. At the side of the object
there is no significant difference in stress distribution between the two experiments. The high-
est differential stresses (σ1-σ3) are found in the upper left and lower right corner of the object
(Fig. 6.7) and lowest in the matrix besides the lower left and upper right corner of the object.
Differential stress on upper and lower boundary of the object is low in the experiments with an
inhomogeneous matrix, compared to the stress in the matrix with homogeneous properties (Fig
6.7). This probably causes the reduction in rotation rate of the object. 
The stress and strain is localised in the upper left and lower right corners of the object in dex-
tral simple shear, which indicates that these corners are potential areas for dynamic recrystalli-
sation, and source areas for pressure solution. Sink areas for pressure solution would be the
lower left and upper right corners of a rectangular object in dextral shear, where stress and
strain rate are low. 
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6.3.1.3 Soft object-matrix boundary
In the experiments with a soft object-matrix boundary high strain and strain rates are found on
each side of the object (Fig. 6.8). This effect is more pronounced along the upper and lower
boundary of the object and less on the sides of the object. Deformation in the remainder of the
matrix is very homogeneous. The experiments with a soft object-matrix boundary also results
in a reduction of the rotation rate compared to the homogeneous model (Fig. 6.4c), with Ωrel =
0.71. This rotation rate, for the model with ZA = 10, is comparable to Ωrel in inhomogeneous
matrix I or II with ZA = 2. 
The effect of slip on the object-matrix boundary has been studied in analogue experiments
(Ildefondse and Mancktelow 1993) and in numerical experiments (Pennacchioni et al. 2000).
The analogue experiments of Ildefondse and Mancktelow (1993) have shown a reduction of
the rotation rate for rectangular rigid objects in simple shear deformation, compared to theore-
tical rotation rates. In our experiments the boundary between object and matrix has weak pro-
perties. Although slip on the boundary is not allowed, the effect on the rotation rate of the
object is similar. Strain is localised at the boundaries of the object, especially the upper and
lower boundary, leading to a value of Ωrel < 1.

a Homogeneous matrix b Inhomogeneous matrix type I ZA = 10

Stress (MPa)

0   2

Figure 6.7. Plot of the principal stress tensor as crosses with magnitude and orientation of the

principal stresses, for experiments with a homogeneous matrix with power-law rheology and

with inhomogeneous matrix I with  ZA = 10.
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6.3.1.4 Mohr-Coulomb matrix
The results from the experiments with a homogeneous Mohr Coulomb matrix material show
strong strain localisation in several, 1-2 unit wide shear bands in the model (Fig. 6.9). These
shear bands largely accommodate the deformation, while the areas between these bands
remain almost undeformed. Both in the model with a rectangular object and with a square
object shear bands developed along the upper and lower boundary of the object. At the left and
right side of the model folds developed, which is attributed to the boundary constrains. The
length/width ratio of the model with a Mohr-Coulomb matrix is three, because strong strain
localisation is only seen in a model with high length/width ratio. The zones of high finite strain
are not always zones of high strain rate (Fig. 6.9), indicating that the distribution of the strain
rate is not constant through time. In the Mohr-Coulomb matrix the square object and the rec-
tangular object both hardly rotate, the object is orientated within 0.12° of its initial position for
the rectangular object and 0.51° for the square object during the whole experiment. The rota-
tion rate of the object is this matrix is not constant in value and in direction (Fig. 6.4a). The
strong partitioning of the deformation probably prevents rotation of the object, similar to the
model of Bell et al. (1992).

Max. shear strain-rate
       0           
       1.0·10

-14
           

       2.0·10
-14

           
       3.0·10

-14
           

       4.0·10
-14

         
       5.0·10

-14
         

       6.0·10
-14

           
       7.0·10

-14
         

       8.0·10
-14

           
       9.0·10

-14
         

Figure 6.8. Deformed grid and distribution of the maximum strain rate after a finite strain of

γ = 0.4 for the experiments with a power-law viscous matrix material with a soft layer around

the rectangular object.
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6.3.2 Laterally unconstrained boundaries.
The effect of unconstrained velocity at the side of the boundary is tested for the power-law and
Newtonian viscous matrix without and with two weaker zones and with a rectangular object.
The results for the experiments with a power-law and a Newtonian viscous matrix are very
similar (Fig. 6.10). The deformed grids resulting from these experiments show that there is a
significant movement in the y-direction on the sides of the model, in the positive y-direction at
the left and in the negative y-direction at the right side of the model (Fig. 6.10). The units at the
side of the model do not change their shape significantly, except in the lower left and upper

Mohr Coulomb
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Figure 6.9. Deformed grid and distribution of the maximum strain rate after a finite strain of

γ = 1 for experiments with a Mohr-Coulomb matrix material with homogeneous properties

and a rectangular object (a) and a square object (b). Notice that high finite strain and high

strain rate zones only partly coincide.
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right corner, but have a high rotational component compared to the rotation of the units in the
models with constrained velocity at the sides of the model. The effect of the weak zones is
reduced due to this rotation. Strong strain localisation in the weaker zones is only observed in
the middle of the model. 
The effect of unconstrained velocities at the sides of the model is a higher rotation rate of the
rigid object. For the experiments with a Newtonian viscous matrix and a rectangular object, the
rotation rate is about 60% higher compared to the experiments with constrained velocities at
the side of the model (Fig. 6.4c). For the experiments with a power-law matrix the rotation rate
is about 50% higher. The increase in rotation rate is similar for the experiments with homoge-
neous and with inhomogeneous matrix properties. For the experiments with a square object
there is also an higher rotation rate compared to the model with constrained boundary condi-
tions, but less significant: 15% for the Newtonian viscous model and 11% for the model with a
power- law rheology.
Unconstrained velocities at the sides of the model resulting in deformation of the matrix mate-
rial with a large velocity component in the y-direction at the sides of the model, does not seem
like something realistic for a model of a natural mylonitic rock. However, in analogue experi-
ments these boundary conditions can be realised, which would give wrong values for the rota-
tion of objects.

6.4 Discussion
In this part the results from the numerical experiments are discussed and compared to micro-
structures of natural rocks with mica fish, presented in the previous chapters. The mylonites
with mica fish (chapter 2) were deformed under greenschist facies conditions and consist of a
quartz-rich matrix with single fish-shaped mica crystals and trails of fine-grained mica. The
mica grains all have similar orientations with respect to the mylonitic foliation, which seems to
be a stable orientation (Eisbacher 1970, Lister and Snoke 1984, Chapter 2 and 5). The quartz
rich matrix is dynamically recrystallised and has a homogeneous shape and crystallographic
preferred orientation, which suggests that the finite strain distribution is relatively homoge-
neous through the matrix. Mica trails that link boudinaged mica fishes may indicate strain
localisation along discrete bands (C-planes, Lister and Snoke 1984), but could also be
explained as boudin-necks connecting boudins (individual mica fish) formed by extension in
relatively homogeneous flow. Quartz under greenschist conditions is thought to deform accor-
ding to a power-law flow law (Poirier 1985, Kirby and Kronenberg 1987). However, numerical
experiments presented here and those of Bons et al. (1997), and Pennacchioni et al. (2000)
have shown that a homogeneous power-law matrix rheology alone cannot explain the rota-
tional behaviour of the mica fish. Additional factors must play a role. 
Results of the numerical experiments presented here have shown that an inhomogeneous
(power-law) viscous matrix, or a Mohr-Coulomb matrix both lead to a reduction in the rotation
rate of the object. An inhomogeneous matrix can be a matrix with soft layers in the matrix or
with a soft layer around the object. Strain will be localised in the soft layers. The matrix in
experiments with inhomogeneous matrix II also has characteristics of an anisotropic matrix.
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The homogeneously distributed soft layers will give the matrix different properties in the x-
direction and in the y-direction. In a Mohr-Coulomb matrix the strain is localised in discrete
shear bands. These results indicate that elongated rectangular objects can have a stable orienta-
tion in a matrix where strain is localised. 
In the mylonites discussed in chapter 2 there is no evidence for partitioning in low strain and
high strain zones. A homogeneous crystallographic and shape preferred orientation of the
quartz is observed everywhere in the matrix. Softening mechanisms are most likely at high dif-
ferential stress and strain rate localities in natural mylonites (White et al. 1980). The experi-
ments have shown that the highest differential stress and strain rate are at the object matrix
interface, especially on the upper and lower boundary of an object. A reduction in matrix
strength there will lead to a reduction in rotation rate of the object. In the case of mica fish,
other processes like dynamic recrystallisation at the rim (Chapter 2) could also reduce the
coherence between the object and the matrix and therefore reduce the rotation rate of the object
(Passchier and Simpson 1986, Ildefonse and Mancktelow 1993). 
These results indicate that the localisation needed to get a stable orientation of elongated
objects in simple shear is not explained by a homogeneous power-law rheology of the matrix.
This suggests that a single strain-independent power-law equation is insufficient to describe the
behaviour of the matrix material in these rocks. The bulk rheology of the material can be
described with a power-law flow behaviour (Poirier 1985, Kirby and Kronenberg 1989), but
details of the microstucture in these rocks can not be explained with a power-law rheology of
the matrix only. The stable orientation of mica fish in mylonitic rocks is probably the result of
strain localisation around the object, anisotropy of the matrix and a reduced coherence on
object-matrix boundary.

6.5 Conclusions
The effect of matrix rheology, the existence of inhomogeneties, boundary conditions and a soft
layer around an object on strain distribution and on rotation rate of rigid objects is studied with
numerical experiments. A reduction in the rotation rate of the object compared to the object in
a homogeneous power-law matrix is observed when soft layers are introduced in the matrix,
with a soft layer around the object and with a Mohr-Coulomb matrix rheology. In each of these
cases strain is localised around the object. These results indicate that object can reach a stable
orientation when strain is localised around the object, which suggests that minor parts of the
rheology can have a significant effect on the microstructure. These results have consequences
for the behaviour of rigid objects in mylonite zones, the preferred orientation of objects such as
mica fish can not be explained with a homogeneous power-law viscous rheology of the matrix.
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Chapter 7

General conclusions and suggestions for future research

7.1 General conclusions
The aim of the project described in this thesis was to understand the development of mica fish,
and to derive information about flow kinematics and rheological behaviour of mylonites from
this microstructure. The following steps have been taken to achieve this: (a) field observations,
(b) analogue modelling and (c) numerical modelling. The general conclusions are given in this
section. 

7.1.1 Mechanisms for evolution of mica fish
A large range of minerals with different physical properties can form fish-shaped structures.
Study of fish-shaped structures that developed in different minerals and from different loca-
tions showed that they all have an asymmetrical shape and their long axis is consistently
inclined with respect to the mylonitic foliation, which makes these structures reliable shear
sense indicators. Mechanisms involved in the formation of mica and other mineral fish can be
divided in two groups: (1) mechanisms to deform single crystals into a fish-shape, and (2)
mechanisms to split a large crystal in smaller parts. The first group of mechanisms include
intracrystalline deformation, rigid body rotation, bending and folding, dynamic recrystallisa-
tion at the rim of the crystal, and pressure solution accompanied by local growth (Lister and
Snoke 1984, Mares and Kronenberg 1993, Passchier and Trouw 1996, Chapter 2). The impor-
tance of each mechanism depends mainly on the properties of the material. Most mechanisms
are enhanced at the high normal stress side of the fish (the instantaneous shortening direction),
which can be seen for example in K-feldspar with myrmekite (Simpson and Wintsch 1989) and
also in tourmaline with dissolution at the corners of the crystal. For some minerals it seems that
the fish-shape only represents a certain stage in their evolution, before the mineral fish is com-
pletely recrystallised, e.g. in the case of biotite (Passchier 1985), or destroyed by other grain
size reducing mechanisms. 
Mechanisms to split a large crystal in smaller ones are discussed in Chapter 2 and by Lister and
Snoke (1984). Possible mechanisms include: development of micro-cracks usually parallel to
the basal planes, followed by synthetic or antithetic sliding of the particles along each other;
separation of a part from its parent by an antithetic listric fault; and isoclinal folding of the fish,
followed by break off along the fold hinge and transport of the parts past each other. These
mechanisms are all based on inhomogeneous flow in and around the mineral fish. Transport of
fragments along the grain boundary of another mineral fish is only possible if there is a micro-
shear zone along this boundary. The combination of splitting and mechanisms to deform single
crystals give the fish-shaped minerals their characteristic geometry. 
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7.1.2 Preferred orientation of objects
Measurements of the long axis of mica and tourmaline fish have shown that on average the
long axis of the fish has an angle of about 10-15° with the flow plane (Chapter 2, 5). This ave-
rage orientation can not be explained with analytical equations of Jeffery (1922) and Ghosh
and Ramberg (1976) for the rotation of rigid ellipsoids in viscous flow. According to these
equations, rigid objects do not have a stable orientation in simple shear flow and minimum
rotation rate is reached when the long axis of the object is parallel to the flow plane. In general
flow (0 < Wk < 1), a stable position is possible, but the orientation of elongate object is differ-
ent from that of mica fish. Analogue and numerical experiments were performed to investigate
which factors are important for the observed preferred orientation of mica fish. 
Two different matrix materials were used in the analogue experiments, a Newtonian viscous
(PDMS) and a Mohr-Coulomb material (tapioca pearls). Rigid parallelogram-shaped object
were used as an analogue for the mineral fish. The kinematic vorticity number (Wk, Means
1980) and the aspect ratio of the object were varied. The results for the experiments with a
PDMS matrix are similar to the analytical solutions of Jeffery (1922) and Ghosh and Ramberg
(1976). In contrast, the objects rotated towards stable orientations in experiments with a matrix
consisting of tapioca pearls. The stable orientations of the objects in simple shear deformation
in tapioca pearls are similar to the data from natural mica fish (Fig 5.10). The orientation of the
object is a function of its aspect ratio. The deformation in the Mohr-Coulomb matrix material
is localised in discrete shear bands. The longest side of the object is parallel to these shear
bands in the simple shear experiments. These results indicate that localisation of deformation
in shear bands is probably a crucial factor for the orientation of mica fish and related structures
in mylonites. 
Experiments with the finite difference code FLAC were performed to investigate the role of
matrix rheology on the strain distribution and object rotation in more detail. Experiments with
different rheological models for the matrix and with inhomogeneous matrix properties were
performed. A rigid rectangular or square object is initially parallel to the model boundaries.
These experiments confirm that a homogeneous power-law matrix cannot explain the observed
preferred orientation of mica fish. The existence of soft layers in a power-law matrix, in the
form of layers parallel to the flow plane or of a soft layer around the object, reduce the rotation
rate compared to the rotation rate of an object in a homogeneous power-law matrix. However,
the existence of a soft layer around the object or of soft layers directly above and below the
object has only limited influence on the rotation rate of the object. A homogeneous distribution
of soft layers in the matrix, resembling an anisotropic matrix, has a mayor effect on the rotation
rate. Contrary to the other matrix materials, objects in a Mohr-Coulomb matrix material do not
rotate and finite strain in the matrix is partitioned in zones with high finite strain and zones
with very low finite strain. 
The results from the analogue and numerical experiments combined with the study of natural
mica fish indicate that the stable orientation of mica fish in mylonitic rocks must be the result
of a combination of strain localisation around the object, anisotropy of the matrix and reduced
coherence on the object-matrix boundary. 
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7.1.3 Implications for rheology of mylonites.
The mechanisms to split mica fish in smaller parts, deduced from the microstructures observed
in thin sections, imply that localisation of strain must occur on the mica fish-matrix boundary
and on the trails of fine-grained mica forming the tails of the mica fish. The analogue and
numerical experiments indicate that strain localisation is required to get a stable orientation for
the rigid elongated objects in simple shear experiments. This is supported by the observation
that the stable orientation of the objects in experiments with localisation in the matrix is similar
to the orientation of mica fish in mylonitic rocks. Usually, a power-law rheology is assumed for
mylonitic rocks (e.g. Poirier 1985, Kirby and Kronenberg 1987). However, the results of the
analogue and numerical experiments indicate that the description of the rheology of a mylo-
nitic rock by a single strain-independent power-law equation is inadequate to explain the for-
mation of mica fish structures. There is localisation beyond that which can be explained by a
time-independent power-law rheology. This localisation is probably the result of softening in
high differential stress zones at the boundary of a rigid object. An additional factor is that the
matrix in mylonites with mica fish is not isotropic, and this also has an effect on the rotation of
the mica fish. It is therefore hard to tell to what extent power-law rheology is adequate to
describe the rheology of mylonitic rocks. Flow laws are normally deduced in coaxial rock
deformation experiments, where localisation is suppressed. Possibly, deformation experiments
where localisation is possible would give different results. It is possible, however, that a power-
law rheology is adequate to describe the bulk rheology of a mylonitic rock, but the rheology
fluctuates on a smaller scale influencing details of the resulting microstructure, like the orienta-
tion of mica fish. 

7.2 Suggestions for future research
The results described in this thesis have brought up a number of question and possibilities for
future research.

1. Deformation mechanisms discussed in Chapter 2 are inferred from observations of struc-
tures in thin sections. For some of the processes experimental data are available, but espe-
cially the relative importance of each mechanism remains unclear. Deformation
experiments with the different minerals are necessary to get a better understanding of the
interaction between different mineral fish forming mechanisms.

2. The development of a new deformation apparatus for general flow and the use of tapioca
pearls as a matrix material to model microstructures in mylonitic rocks have brought new
possibilities for analogue experiments. The experiments described in this thesis are done
with one rigid object in the matrix. Interacting rigid objects in either simple or pure shear
in a viscous matrix have different rotation behaviour as single objects under similar condi-
tions (Ildefondse et al. 1992, Ildefonse and Mancktelow 1993). Experiments with interac-
ting objects in general shear or in a matrix of tapioca pearls will probably improve the
understanding of the development of fabrics in mylonitic rocks.   
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3. The behaviour of rigid objects in the analogue experiments was a function of their aspect
ratio, the matrix rheology, and also of the vorticity number of the deformation. The exper-
iments presented in this thesis are not sufficient to give a complete model for vorticity
analysis in rocks, because it was not yet fully clarified which factor determines the stable
orientation of the objects in the experiments with tapioca pearls as a matrix material. More
experiments, maybe with different matrix materials, and numerical simulations could help
to establish what determined the stable orientation of these objects and this could lead to a
model to determine the vorticity number of deformation in mylonitic rocks.   

4. The results of the analogue and numerical experiments with rigid objects suggest that strain
localisation around the object is crucial to explain the preferred orientation of mineral fish
in mylonitic rocks. Deformation in a natural mylonite is by completely different mecha-
nisms than deformation in the analogue materials. In the numerical models the inhomoge-
neous properties of the matrix were given prior to the deformation and were not changed
during the experiment. Experiments with crystalline rock analogues or with computer
models that model different deformation mechanisms, including softening processes (Jes-
sell et al. 2001), are needed to gain a better understanding of the localisation processes in
these rocks.  

5. The experiments presented in this thesis have shown that the strain localisation needed to
get a stable orientation for elongated objects cannot be explained with a homogeneous
power-law rheology of the matrix. Usually rheological data for rocks are determined in
coaxial deformation experiments with a limited amount of finite strain. In coaxial experi-
ments, strain localisation is suppressed. Experiments with non-coaxial deformation and
higher finite strain (e.g. Bos 2000, Paterson and Olgaard 2000) should be carried out and
might give different results for the rheology of rocks. 



Appendix: Deformation apparatus

In this appendix, a detailed account on the programs written for the deformation apparatus
described in Chapter 3 is given. The appendix includes a general introduction to the different
types of transpressional regimes, a User Manual, technical specifications and settings used in
experiments described in Chapter 3 and Chapter 5.

A1 General Introduction
Transpression is broadly defined as a combination of perpendicular components of pure and
simple shear. In three dimensions such a deformation can be described by the following defor-
mation tensor under the assumption that shear occurs exclusively in the x-direction:

Where k1, k2 and k3 represent extensions along the x, y, and z coordinate axes, respectively,

and the off-diagonal terms represent elements of effective shear deformation (Tikoff and Fos-
sen, 1993). 
The 5 programs available right now model 5 different regimes of transpression assuming shear
in the x direction and constant volume (k1* k2* k3 = 1; Vn = 1 (Passchier 1998)). All programs

except Program A model transpressional deformation where the relative components of pure
and simple shear i. e. the vorticity number can be varied (e.g. Means et al. 1980, Passchier
1986, Bobyarchick 1986).

Program A (A/ Simple shear.vi):
Simple shear; k1= k2 = k3 = 1.

Program B (Transpression B.vi):
Transpression; extension along the z-axis and k1 = 1.

Program C (Transpression C.vi):
Transpression; extension in the x and z direction and k1= k3.

Program D (Transpression D.vi):
Transpression; plane strain deformation; no extension along the z-axis (k3 = 1).

Program E (Transpression E.vi):
Transpression; shortening along the y and z axis with k2= k3.

For all five deformation types (Fig. A1) the movement of the 6 stepping motors of the appara-
tus (see Fig. 3.2) is calculated for each time step depending on the current dimensions of the
deformation box and using dextral shear along the x-axis.
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Calculations:
Based on the deformation matrix given above for each of the programs the movement of the
motors i.e. the movement along the x, y and z direction can be calculated. We adopt a similar
approach as Tikoff and Fossen (1993) and base our calculation on the division of deformation
in a pure and simple shear component as shown below. With this knowledge the extension or
shortening along each of the 3 axis can be calculated for each time step. For a specific vorticity
number the pure and simple shear components along the different axes must satisfy the follow-
ing equation.

As it is assumed that shear only occurs along the x axis    xz and    yz are zero. For each of the

programs this equation is modified to meet the definition of the 5 different deformation
regimes (see above).

Program A:
Simple shear; Wk=1.

Program B:

Program C:

Figure A1. Schematic illustration of the 5 different types of transpressional regimes for which 

LabView programs exist.
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Program D:

Program E:

A2 User Manual
Open one of the 5 programs, located at folder LabView -> programms for shearapparatus (e.g.
Transpression B.vi). For each program the control panel shows five types of boxes (Fig. A2)

1) Green boxes are inputs concerning the initial dimensions of the deformation box,
2) yellow boxes specify the deformation rate, vorticity number and amount of final deforma-

tion, 
3) red box characterizes the timing of a signal (e.g. to alert the user to take pictures),
4) orange boxes and diagram provide information about the deformation during the experi-

ment, remaining time of the experiment and to next beep, 
5) grey box specifies the slot for the hardware card (PCI-STEP-4OX). 

The user should ONLY change values in the green, yellow and red boxes. If by accident the
slot number is changed the motors will not respond. Resetting the slot number to 3 fixes the
problem. Additionally, there is an emergency STOP button, which can be pressed (mouse
click) if desired.
Once an experiment has finished or is stopped manually by the user (emergency STOP), open
program Back to 0.vi (Fig. A3). This program will move the deformation box to its initial posi-
tion. Here, the velocity of movement is given by the user. 
Never quit LabView or turn off the computer before the deformation box is returned to its ini-
tial position, otherwise the true initial position of the box will not be “remembered” by the pro-
gram. If for unforeseen reason this does happen, the program Step Axis Control Simple (Fig. 3)
can be used to reposition the deformation box. The same program can be used to reposition the
deformation box, e.g. if a different initial position is required. After repositioning, restart the
computer so that the position is recognized by LabView as the new default zero position. Fig-
ure A4 shows axis numbers as used by the programs.
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Click here to start experiment

Values to be
changed by
user

Information 
for user

Click here for 
emergency stop

Hardware slot 
number:
Do not change!

Values to be
changed by
user

Hardware slot 
number:
Do not change!

Click here for 
emergency stop

Information 
for user

Click here to start experiment

a

b

Figure A2. (a) Control panel of program A (A/Simple Shear.vi), (b) Control panel of program 

B (Transpression B.
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Values to be
changed by
user 
(numbers
correspond
to axes)

Click here to start

Click here to start

Value to be 
changed by
user

Axes 
corresponding
to motors
(see labels
on motors
and Fig. 2)

Axes 
corresponding
to motors
(see labels
on motors)

a

b

Figure A3. (a) Control panel of Back to 0.vi, (b) Control panel of Step Axis Control Simple
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A3 Technical specifications
Product Description Manufacturer
LabView 5.0 Graphical Programming for 

Instrumentation
National Instruments Germany GmbH
Konrad-Celtis-Str. 79
81369 München
089-7413130

ValueMotion Additional LabView libary 
for stepping motors

National Instruments

PCI–STEP-4OX 4-Axis 
Open Loop Step controller 
for Macintosh

Hardware card to communi-
cate with power device and 
computer

National Instruments

Power Device 
Connection block CB-50 + 
MTL-400/6 4 axis multiplier

Electronic link between per-
sonal computer and stepping 
motors

MovTec  Stütz & Wacht GmbH
Goldschmiedeschulstr.6
75173 Pforzheim
movtex@t-online.de

Stepping Motors 
MTS-230-E80

MovTec

Carriages Length 300 mm Baumarkt, Mainz
PVC platelets and board different thickness and 

length
Cadillac Plastic GmbH, Mainz-Kastel 
06134-22036

Springs: 
Zugfeder 12/3/5

Zugfeder 11/5/2

Length l0 128 mm, 
R  0.11 N/mm
Length l0 60.8 mm, 
R 0.09 N/mm

Federntechnik Knörzer GmbH
Postfach 7282
72785 Pfullingen
07121-97840

Shaft 270-164 M6, messing RS Components GmbH
Hessenring 13b
64546 Mörfelden-Walldorf
rs-gmbh@rs-components.com

Shaft joint 689-007 Shaft diameter 6 mm RS Components GmbH
Latex sheet Thickness 0.35 mm, Width 

±21 cm, Length ±28 cm
Skintight, Netherlands
linda@skintight.nl

Figure A4. Diagram

illustrating the axis

numbers (e.g. A1)

used by the LabView

programs.

A1

A3A2

A4

A4

y

x

box
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 A4 Used set-up for experiments

Chapter 3, flow tests, flow pattern:

Chapter 3, flow tests, area of homogeneous deformation:

Chapter 3, flow tests, rotation of sphere:

Chapter 5, experiments with PDMS, Wk = 1.

Program type D
Initial dimensions x, y, z [mm] 150, 100, 100

Wk 0.6 and 0.8

Shortening rate [s-1] 3.3 × 10-4

End x value [mm] 225

Matrix material PDMS

Program type D

Initial dimensions x, y, z [mm] 150, 100, 100

Wk 0.6 and 0.8

Shortening rate [s-1] 2.0 × 10-4, 3.3 × 10-4, 4.7 × 10-4

End x value [mm] 225

Matrix material PDMS and Rhodorsil gomme

Program type A/ simple shear

Initial dimensions x, y, z [mm] 150, 100, 100

Wk 1

Strain rate [s-1] 1.0 × 10-3

Displacement along x-axis [mm] 100

Matrix material PDMS

Object dimensions [mm] Sphere Ø 8 mm

Object material Plexiglas

Program type A/ simple shear

Initial dimensions x, y, z [mm] 210, 70, 100

Wk 1

Strain rate [s-1] 2.0 × 10-3

Displacement along x-axis [mm] 122.5

Matrix material PDMS

Object dimensions [mm] Different sizes

Object material India rubber
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Chapter 5, experiments with PDMS, Wk = 0.8.

 

Chapter 5, experiments with Tapioca pearls, Wk = 1.

Chapter 5, experiments with Tapioca pearls, Wk = 0.95, 0.8 and 0.6.

Program type D

Initial dimensions x, y, z [mm] 150, 100, 100

Wk 0.8

Shortening rate [s-1] 3.3 × 10-4

End x value [mm] 225

Matrix material PDMS 

Object dimensions [mm] Different sizes

Object material India rubber

Program type A/ simple shear

Initial dimensions x, y, z [mm] 150, 100, 100

Wk 1

Strain rate [s-1] 2.0 × 10-3

Displacement along x-axis [mm] 150

Matrix material Tapioca pearls

Object dimensions [mm] Different sizes

Object material India rubber

Program type D

Initial dimensions x, y, z [mm] 150, 100, 100

Wk 0.95, 0.8 and 0.6

Shortening rate [s-1] 3.3 × 10-4

End x value [mm] 225

Matrix material Tapioca pearls

Object dimensions [mm] Different sizes

Object material India rubber
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Zusammenfassung

In der vorliegenden Arbeit wird die Verformung von Gesteinen in Scherzonen beschrieben. Ein
Großteil der Verformung in der Erdkruste findet innerhalb solcher mikrometer- bis kilometer-
breiten Zonen statt. Die allgemeine Rheologie dieser Scherzonen hängt von der Tiefe ab, in der
sie sich befinden. Befindet sich eine Scherzone weniger als in 10 bis 20 Kilometer Tiefe, so
verhält sie sich spröde, in einer größeren Tiefe jedoch duktil. 
Ein Mylonit ist ein duktil verformtes Gestein mit einer deutlich ausgebildeten Foliation und
meist auch Lineation. Häufig sind in Myloniten Porphyroklasten vorzufinden. Diese sind
Rückstände von relativ harten Mineralen, die mindestens eine Größenordnung größer als die
Körner der umgebenden Matrix sind. Glimmerfische, die aus linsen- bzw. parallelogrammför-
migen Glimmerkristallen bestehen, stellen eine bestimmte Art von Porphyroklasten dar. Solche
Glimmerfische werden genutzt, um die Bewegungsrichtung innerhalb von Scherzonen zu
ermitteln. Hierzu können der relative Versatz der "Schwänze" der Glimmerfische, deren Orien-
tierung im Bezug auf die Foliation, sowie ihre Assymmetrie zur Hilfe genommen werden. Auf-
grund diese Eigenschaften sind Glimmerfische zuverlässige Indikatoren für die
Bewegungsrichtung in Scherzonen. In dieser Arbeit wird die Entstehung von Glimmerfischen
beschrieben und untersucht was diese Strukturen über die Verteilung von Verformung in Scher-
zonen aussagen. 

In Kapitel 2 werden die Mikrostrukturen von natürlichen Glimmerfischen in Dünnschliffen
beschrieben. Es werden die möglichen Verformungsmechanismen untersucht, die zur heutigen
Form der Glimmerfische geführt haben. Zusätzlich werden Glimmerfische mit anderen ähnlich
geformten Mineralen verglichen, wie z.B. Turmalin. Mögliche Verformungsmechanismen, die
zu den verschiedenen Mineralfischen führen, können in zwei Gruppen eingeteilt werden: (a)
Mechanismen, die direkt die Form eines Kristalls verändern, und (b) Mechanismen, die ein
großes Mineral in mehrere kleine, fischförmige Kristalle aufspalten. Zu (a) gehören:
intrakristalline Verformung, Kristallrotation,  Biegung und Faltung, Drucklösung in Kombina-
tion mit Ausfällung und dynamische Rekristallisation am Rande des Kristalles. Welche dieser
Mechanismen zur Form des "Fisches" beigetragen haben, hängt von den Eigenschaften des
jeweiligen Minerals ab. Einige Minerale können nur bedingt eine Fischform ausbilden, weil sie
dazu tendieren vollkommen zu rekristallisieren. Aufspaltung eines großen Kristalls erfolgt,
indem sich ein Bruch entlang der basalen Kristallflächen entwicklt und Scherung entlang die-
ser Flächen stattfindet. Eine andere Möglichkeit ist die Faltung eines Kristalls und Bruch
entlang der Faltenachsenfläche, wiederum gefolgt von Scherung entlang der enstandenen
Bruchfläche. Diese Mechanismen basieren auf die inhomogene Deformationsverteilung in der
direkten Umgebung des Kristalls. Ein Fragment kann nur entlang eines Kristalls tranportiert
werden, wenn sich zusätzlich eine Mikroscherzone entwickelt. Die assymmetrische Form und
Orientierung im Bezug auf die Foliation sind gemeinsame Merkmale der verschiedenen
Mineralfische. 
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In Kapitel 3 bis 5 wird auf Analogexperimente eingegangen. In Kapitel 3 wird ein neues Ver-
formungsgerät vorgestellt. Mit diesem Gerät können verschiedene Kombinationen von ein-
facher und reiner Scherung modelliert werden. In diesem Gerät können Materialien verformt
werden, die ähnliche Eigenschaften wie Gesteine haben. Jedoch müssen sie nicht wie Gesteine
hohen Druck und Temperatur ausgesetzt werden, um in kurzen Zeiträumen deformiert zu wer-
den. Ein Beispiel für ein solches Material sind Polymere. In Kapitel 4 wird das rheologische
Verhalten von mehreren Polymeren und verwandten Materialien beschrieben, welche mit dem
beschriebenen Verformungsgerät benutzt werden können. Die Relevanz von Polymeren als
Gesteinsanaloge wird diskutiert.

In Kapitel 5 werden Experimente mit fischförmingen Objekten in zwei verschiedenen Matrix-
materialien beschrieben. Das eine ist PDMS, ein homogenes, Newtonianisch viskoses Poly-
mer, und das andere Tapioca Perlen. Diese Tapioca Perlen sind runde Körner mit einem
Durchmesser von ungefähr 2 mm und weisen ein Mohr-Couloumb Verhalten auf. Die fischför-
migen Objekte, die als Analoge für Glimmerfische dienen, sind nicht verformbar. Die Rotation
von Objekten in Experimenten mit PDMS stimmt gut mit der theoretischen Rotationsrate für
ellipsenförmige Objekte in einem homogenen, Newtonianischen Material überein. In einer
Matrix von Tapioca Perlen nehmen die Objekte eine stabile Lage ein. Diese Orientierung ist
vergleichbar mit der Orientierung von natürlichen Glimmer- und Turmalinfischen. Die Verfor-
mung in der Matrix von Tapioca Perlen ist nicht homogen, sondern konzentriert auf dünne
Scherzonen. Diese Ergebnisse implizieren, daß die Verformung in natürlichen Gesteinen wahr-
scheinlich auch in dünnen Scherzonen konzentriert und nicht homogen verteilt ist. 

In Kapitel 6 werden Computersimulationen beschrieben, mit denen der Einfluß der rheolo-
gischen Eigenschaften einer Matrix auf die Rotation von Objekten und Verteilung von Defor-
mation untersucht wird. Mit diesen Experimenten wird gezeigt, daß die stabile Orientierung
von Glimmerfischen nicht mit Verformung in einem homogenen, nicht linearen viskosen Mate-
rial erklärt werden kann. Eine solche homogene, nicht lineare Rheologie wird jedoch im Allge-
meinen für die Erdkurste angenommen. Die stabile Orientierung eines Objektes kann mit der
Anwesenheit von weicheren Lagen in der Matrix erklärt werden.

Kapitel 7 beinhaltet die Schlußfolgerungen, die aus den beschriebenen Ergebnissen der Arbeit
folgen. Zusätzlich werden Möglichkeiten zukünftige Untersuchungen gegeben. 



Samenvatting

In dit proefschrift wordt ingegaan op de vervorming van gesteentes in schuifzones. Deze
enkele micrometer tot meerdere kilometers brede schuifzones zijn voor een groot deel verant-
woordelijk voor de vervorming in de aardkorst. Het vervormingsgedrag van gesteentes in zulke
schuifzones hangt van de diepte van de zone af. In ondiep gesitueerde schuifzones (minder dan
10 tot 20 kilometer) vertoont het gesteente bros gedrag, in diepere delen van de aardkorst duc-
tiel- of vloeigedrag. 
Een myloniet is een gesteente met duidelijke foliatie en meestal ook lineatie, dat vervormd is
door ductiel gedrag. In mylonieten zijn meestal 'porfieroklasten' aanwezig. Dit zijn overblijf-
selen van relatief harde mineralen, die minimaal een orde van grootte groter zijn dan de korrels
in de matrix. 'Mica vissen', lens- of parallelogramvormige mica kristallen, zijn een speciaal
soort porfieroclast. Deze mica vissen worden vaak gebruikt om de bewegingsrichting in een
schuif-zone te bepalen. Dit wordt gedaan met het verzet van de staarten van de mica vis aan
beide zijden van de vis, de oriëntatie van de vis ten opzichte van de foliatie en met de asymme-
trische vorm van de vis. Deze kenmerken maken van een mica vis een zeer betrouwbare indica-
tor voor de bewegingsrichting. In dit proefschrift wordt beschreven hoe mica vissen ontstaan,
en wat deze structuren vertellen over de richting en de verdeling van de vervorming in de schu-
ifzone. 

In hoofdstuk 2 worden de microstructuren van natuurlijke mica vissen in dunne doorsnedes
beschreven. Er is gekeken welke vervormingsmechanismen mogelijk hebben bijgedragen aan
de huidige vorm van de mica vissen. Bovendien worden mica vissen vergeleken met gelijk-
vormige structuren in andere mineralen. Mogelijke mechanismen die de vorm van de verschil-
lende mineraalvissen veroorzaken zijn verdeeld in twee groepen: mechanismen die de vorm
van een kristal veranderen en mechanismen die een groter kristal opsplitsen in verschillende
kleinere. Tot de eerste groep behoren: intrakristallijne vervorming, rotatie van het kristal,
ombuigen en plooien, dynamische rekristallisatie aan de rand van het kristal, en drukoplossing
vergezeld van plaatselijke groei van het kristal. Welke van deze mechanismen bijgedragen
heeft tot de vorm van de 'vis' hangt van de eigenschappen van het desbetrefende mineraal af.
Voor enkele mineralen lijkt de visvorm een tijdelijk situatie, voordat het kristal volkomen
gerekristalliseersd is. Opsplitsen van een groter kristal kan doordat een breuk zich ontwikkelt
parallel aan de basale kristalvlakken, gevolgd door beweging van de twee ontstane delen langs
elkaar. Een andere mogelijkheid is dat het kristal plooit en vervolgens afbreekt langs het assen-
vlak, wederom gevolgd door beweging van beide delen van het kristal langs elkaar. Deze
mechanismen zijn gebaseerd op een inhomogene verdeling van de vervorming rond het kristal.
Alleen als er een micro-schuifzone ontwikkeld is aan de rand van de mica vis kan een fragment
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langs deze grens worden getransporteerd. De verschillende 'mineraal vissen' hebben met elkaar
gemeen dat ze allemaal een asymmetrische vorm hebben en een vergelijkbare oriëntatie ten
opzichte van de foliatie. Door deze eigenschappen zijn al deze structuren uitstekende indica-
toren voor de bewegingsrichting in het gesteente.  

Hoofdstuk 3 tot en met 5 zijn gewijd aan analoog experimenten. In hoofdstuk 3 wordt een
nieuw vervormingsapparaat voorgesteld, dat ontwikkeld is in het kader van dit onderzoek. Met
dit apparaat kunnen verschillende soorten vervorming worden gemodelleerd, variërend van
samendrukken in een richting (pure shear) tot eenvoudige schuifbewegingen (simple shear) en
combinaties van beide bewegingen. Materialen die vervormd kunnen worden met dit apparaat
zijn zogenaamde gesteentenanalogen. Deze materialen hebben vergelijkbare eigenschappen als
gesteentes bij hogere temperatuur en druk, maar zijn minder sterk, zodat experimenten in rela-
tief korte tijd kunnen worden gedaan. Polymeren worden vaak gebruikt als gesteentenanaloog.
In hoofdstuk 4 wordt het gedrag van enkele polymeren beschreven, die geschikt zijn om te
gebruiken in combinatie met het apparaat uit hoofdstuk 3. Daarnaast wordt het gebruik van
polymeren als gesteentenanaloog bediscussieerd. 

In hoofdstuk 5 worden analoog experimenten beschreven met visvormige objecten in twee ver-
schillende matrix materialen. Het eerste is PDMS, een homogeen Newtoniaans-visceus
polymeer, en het tweede tapioca parels, ronde korrels met een doorsnede van ongeveer 2 mm
met Mohr-Coulomb vervormingsgedrag. De visvormige objecten, die als analoog voor de mica
vissen dienen, zijn niet vervormbaar. De rotatie van de objecten in experimenten met PDMS
komen zeer goed overeen met de voorspelde rotatie volgens de theorie voor beweging van
ellipsvormige objecten in een Newtoniaanse vloeistof. In een matrix van tapioca parels hebben
de objecten een stabiele oriëntatie. Deze oriëntatie komt overeen met de data van natuurlijke
mica- en toermalijn vissen. De vervorming in een matrix van tapioca parels is niet homogeen,
maar geconcentreerd in dunne schuifzones. Deze resultaten impliceren dat de vervorming in
natuurlijke gesteentes waarschijnlijk ook geconcentreerd is in dunne zones, en niet homogeen
verdeeld over de matrix. 

In hoofdstuk 6 zijn computerexperimenten beschreven, die de rol van het vervormingsgedrag
van de matrix en van inhomogene matrix eigenschappen op de rotatie van objecten en op de
verdeling van de vervorming laten zien. In deze experimenten wordt duidelijk dat homogeen
niet-lineair vloeigedrag, wat meestal wordt aangenomen voor de vervorming in de aardkorst,
niet voldoende is om de oriëntatie van mica vissen in mylonieten te verklaren. De aanwezig-
heid van zachte lagen in de matrix of rondom het object kunnen een verklaring voor de stabiele
oriëntatie van de mica vissen zijn. 

In hoofdstuk 7 worden de belangrijkste conclusies gegeven die uit de beschreven resultaten
volgen. Daarnaast worden mogelijkheden voor toekomstig onderzoek gegeven. 
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