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ZUSAMM ENFASSUNG

Ziel der vorliegenden Arbeit war es, die Medianismen des Masentransfers, die
Zusammensetzung und Rolle der Fluide wahrend der krustalen Metasomatose in
hochtemperierten metamorphen Gebieten zu verstehen. Fur diese Untersuchurg bietet sich
die Region Rupaha an, ein Gebiet im Hochland-Komplex von Sri Lanka. Es représentiert
einen Tel des Superkontinentes Gondvana. An 10 Lokalitéen wurden Aufschlisse
ultramafischer Gesteine, eingebettet in Granuliten, beprobt. Die Grenze zwischen
Ultramafiten und Granuliten 183t sich mit Hilfe e@ner ca 50cm breiten Re&tionszone
kartieren. Ausgehend von an Ultramafiten folgen in Richtung der Granulite drei Zonen
mit den folgenden, charakteristischen Mineravergesell schaftungen: (1). Phlogopit +
Spinell + Sapphrin, (2). Spinel + Sapphrin + Korund sowie (3). Korund + Biotit +
Plagioklas.

Um den Verlauf des P-T-t-Pfades, den HoOhepunkt der Metamorphose und de
Exhumierungsgeschichte festzustell en, wurden verschiedene Thermobarometer ebenso wie
ein Diffusionsmodell fur die Zonierung von Granat angewendet. Dabei ergab sich eine
maximale Temperatur von 875+ 20°C (Opx-Cpx-Thermometer) und ein maximaler Druck
von 9.0+ 0.1kkar (Grt-Cpx-Plag-Qz) fur die sauren Granulite. Fir die Ultramafite egeben
sich fur den Hohepunkt Temperaturen von 840+ 70°C (Opx-Cpx-Thermometer) und ein
Druck von 9kbar. Aus koexistierendem Spinell und Sapphirin in der Re&tionszone egibt
sich eine Temperatur von 820+ 40°C. Dies dimmt mit den Maximaltemperaturen Ulerein,
die von cen benadhbarten Granuliten und Ultramafiten berichtet werden. Die strukturelle
Konkardanz der Ultramafite und der sauren, granuliti schen Wirtsgesteine stiitzt die These,
dald ale untersuchten Einheiten de gleiche Peakmetamorphose efahren haben. Die
Modélli erung der Diffusion in den zonierten Granaten der mafischen Ultramafite fihrt zu
einer dreistufigen AbklUHungsgeschichte. Im initiadlen AbkiHungstadium wird de
maximale AbkuHrate auf 1°C/Ma geschétzt, gefolgt von einer zweiten AbkuHphase mit
einer Rate von 30TC/Ma. Die af¥ren Granatrander weisen auf eine dwas langsamere
AbkiHung mit einer Rate von 10— 15°C/Mahin.
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Die Abfolge der Mineralzonen, dein den Re&tionszonen, de die Ultramafite von den Si-
reichen Gesteinen trennen, verschiedene Al-reiche, Si-untersdttigte Minerale enthalten,
konren mit Hilfe des Diffusionsmodells erkléart werden. Dies bezieht auch de Diffusion
von Mg von cen Ultramafiten Gler die verschiedenen Lagen ein, sowie die Diffusion von
K und S in entgegengesetzter Richtung. Die demischen Potentiale von Mg und Si
erzeugten einen Kortinuierlichen, monaonen Gradienten, der enen dffusionaen
Transport im stabilen Zustand Uker das Profil ermoglichte. Die starke Al-Anreicherung
und dr bemerkenswerte Verlust von Si wahrend der Ausbildung der Reéaktionsbander
konren aus Isoconendiagrammen verdeutlicht werden. Der Si-Verlust und de Al-
Zunahme sind sehr wahrscheinlich auf Fluide zurickzufihren, de parallel zu den

Grenzbereichen der Gesteineinheiten zirkuli erten.

Diese Studie hat nun gezeigt, dal3 der Massentransport bei verschiedenen geologischen
Verhdltnissen nicht nur von Druck- und Temperaturbedingungen, sondern ganz besonders
auch vom Pyyo und dr Konzentration von Chlor und Fluor in wasgigen Losungen

kontrolli ert wird.



ABSTRACT

The goal of the present study is to understand the medhanism of mass transfer, the
compasition and the role of fluids during crustal metasomatism in high-temperature
metamorphic terranes. A well constrained case study, alocdity at Rupaha, Sri Lanka was
seleded. It islocaed in the Highland Complex of Sri Lanka, which represents a small, bu
important fragment of the super-continent Gondwvana. Excdlent expasures of ultramafic
rocks, which are anbedded in granulites, were found at 10 locditi es. These provide a
unique badkground for understanding the metasomatic processs. The boundry between
the ultramafic and the granulite rocks are lined with metasomatic read¢ion zones up to
50cm in width. Progressng from the ultramafics to the granulite host rock, three distinct
zones with the following mineral assemblages can be distinguished: (1). pHogopite +
spinel + sapphiring, (2). spinel + sapphirine + @rundum and (3). corundum + biotite +

plagioclase.

In order to assessthe P-T-t path, the pesk metamorphism and the exhumation history were
constrained wsing different thermobarometers, as well as a diffusion model of garnet
zoning. A maximum temperature of 875+ 20°C (Opx-Cpx thermometer) and at the pesk
pressure of 9.0 + 0.1 klar (Grt-Cpx-Pl-Qtz) was cdculated for the silicic granulite. The
ultramafic rocks recorded a pes temperature of 840+ 70°C (Opx-Cpx thermometer) at 9
kbar. Coexisting spinel and sapphrine from the readion zone yield a temperature of 820+
40°C. Thisis in agreement with the pe&-temperatures recorded in the aljacent granulites
and dtramafics rocks. The structural concordance of the ultramafic rocks with the
sili ceous granulite host rock further suppat the suggestion, that al units have experienced
the same peak metamorphism. Diffusion modeling of retrograde zoning in garnets from
mafic granulites suggests a threestep coaling history. A maximum cooling rate of 1°C/Ma
is estimated duing the initial stage of codling, followed by a wdling rate of ~30°C/Ma.
The outermost rims of garnet indicate asli ghtly slower cooling rate & abou 10-15°C/Ma.

The sequences of mineral zones, containing a variety of Al-rich, silica undersaturated
minerals in the readion zones separating the ultramafic rocks from the sili ca-rich rocks can
be explained by a diffusion model. This invalves the diffusion & Mg from ultramafic
rocks aaossthe layers, and K and Si diffuse in oppaite diredion. Chemicd potentia of

Mg and Si generated continuows monaonic gradient, allowing steady state diffusional
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transport aaossthe profile. The strong enrichment in Al, and the considerable lossof Si,
during the formation d readion bands can be inferred from isocon dagrams. Some Al was
probably added to the readion zones, while Si was lost. This is most likely due to fluids
percolating parall € to the zones at the boundary of the rock units.

This gudy has sown that not only pressure and temperature cndtions but most
importantly Py,0 and the concentration o the dilorine and fluorine in aqueous fluids aso

control the masstransport in dfferent geologicd environments.
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GENERAL INTRODUCTION

Crustal fluids have long been reaognized as an important driving force in metamorphic
systems. Fluids play a patentially major role in the transfer of thermal energy in the aqust
(Braddy 1988, as a cdayst of metamorphic readions (Rubie 1986, a driving force for
readions (Ferry 1984 and as a medium for mass transfer (Fyfe @ al. 197§. Fluids are
required for large-scde metasomatism because they transport solutes by diffusion, and
more importantly by infiltration. In such systems, the disolution and pedpitation o
minerals by crustal fluids control the locaion and the size of ore depaosits and aher
metasomatic rocks. The role of fluids, their composition, source and amourt during the
deep-crustal granulite grade metamorphism and metasomatism remains the subjed of
lively discussons (e.g. Valey and O’'Neil 1984 Newton 1986 Valey et al. 199Q Touret
and Hartl 1990.

The theoreticd studies in understanding the fundamental physicad and chemicd parameters
that governs the fluid flow and masstransport have alvanced significantly (e.g. Frantz and
Weisbroad 1974 Frantz and Mao 1976, 1979Helgeson and Lichtner 1987). Nevertheless
applicaions are limited to simple idedized systems. A few studies have dtempted to
quantify diffusion-advedion processes in deep crustal environments using, detail ed stable
isotopic analyses aaoss intad, well-exposed lithologicd contads (e.g. Cartwright and
Valley 1997).

This gudy provides constraints on the medianism of masstransfer, the compasition, and
the role of fluids in the deg crust, by means of, a well-constrained case study in a
previously poaly known terrane of Sri Lanka | have mndwted an integrated field,
petrologic and geochemicd study of the siliceous granulite-ultramafic rock suite in the
Rupaha aea This site in the Proterozoic basement Sri Lanka @ntains is one of the best-
preserved examples of metasomatic dteration. Metasomatic readion zones sparate the
sili ca-saturated granulites from meta-ultramafic rocks. The most spedaaular occurrencein
the readion zone is the presence of colourless spphrine within the readion zones. It is
the fourth reported occurrence of sapphrine in the Sri Lankan Proterozoic basement
(Osanai et a.1989, 1996Kriegsman 199%, Kriegsman and Schumader 2000. Formation
of sapphirine in metasomatic zones has © far been reported orly in a few instances
(Schumader and Robinson 1987 Dunkey et al. 1999 Hokada & a. 1999.



Chapter 1 3

The latter part of this chapter contains a short summary of the geology of Sri Lanka:
recently pulished data on basement units, lithology, geochrondogy, large-scde structural
trends and its metamorphic history. It aso includes a detailed acount of the geology of
Rupaha, which including a new geologicd map by the PhD candidate. Chapters 2 to 4
have been written in the form of papers. Hence, there may be some overlapping of the text,
espedally during the interpretation d geology of Sri Lanka. Mineral abbreviations foll ow
Kretz (1983 throughou the thesis.

Chapter 2 documents the P-T-t path o the granuites at Rupaha. The P-T-t paths
charaderized by isobaric codling at deep crustal levels suggest a more prolonged residence
in the lower crust. The rocks have experienced slow coadling during this episode aad much
or al the information needed to construct P-T paths associated with these rocks have
erased much o the prograde history. We estimated the aadling history of the aeausing
diffusion modeling of retrograde zoning in garnets from the mafic granulites. A threestage

coaling history is propaosed.

Chapter 3 gives a detailed acount of pes&k and past-pesk metamorphic condtions of the
ultramafic rocks at Rupaha. The pea&k metamorphic ssmblages enstatite, diopside,
forsterite, spinel and pHogopite ae overprinted by retrograde assemblages containing
tremolite, talc, ddomite and serpentine. P-T-Phase euilibria, adivity-adivity diagrams,
and temperature-adivity diagrams for these assemblages are used to dedpher the intricae
history of these rocks. They have undergone granulite fades metamorphism, followed by a
protracted history of fluid-rock interadions on codling and exhumation.

The mmplete petrography, textures, and phase petrology of the metasomatic zones are
discussd in Chapter 4. The sequence of mineral zones that formed between utramafic
and pelitic units are omposed o corundum, sapphirine, spinel, biotite and dagioclase.
The P-T condtions of the metasomatic zones were evaluated to ascertain this indicaes
that: these bands formed duing granuite fades condtions. This was aciieved through
spinel-sapphirine thermometry and T-p diagrams. The final part of this chapter discusses
the medianism of the mass transport between the ultramafic rocks and the siliceous
granulites. Here, chemicd potential diagrams, massbalance caculations, biotite chemistry
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are used. Mass balance caculations between two rock units show high amounts of mass
changes for Si, Mg and some trace éements. Major element chemistry and helogen content

of biotite acossthe rock unit provide insight into the fluid composition.

INTRODUCTION TO THE GEOLOGY OF SRI LANKA

Sri Lanka was a part of East Gondwana, together with fragments of Antarctica, Australia,
India, Madagascar, Mozambique and Tanzania (e.g. Powell et al., 1988 Kroner, 1991
Yoshida € al., 1992 Jawbs et a., 1998 Dissnayake and Chandrgjith 1999. Sri Lanka
aded as a bridge through which Antarctica and East Africa can be crrelated. It isthus not
surprising that Sri Lanka reveds remarkable geologicd, geochrondogica and geotedonic

simil ariti es with its neighbouing Gondwana fragments.

Sri Lankan geology has recaved increasing attention in the last two decades. As aresult of
this, the nomenclature of rock units, definition d geologicd boundiries and the timing of
major metamorphic and tedonic events have danged substantially. The nomenclature of
the basement units, as described in the speda iswue of the Journal of Precambrian
Reseach - volume 66 on’Tedonic, metamorphic and isotopic evolution d deep crustal

rocks, with spedal emphasis on Sri Lanka, is used throughou this thesis.

The Proterozoic basement of Sri Lanka exposes substantial parts of the lower continental
crust. Four different units were distinguished onthe basis of isotopicd, geochrondogicd,
geochemicd and petrologicd constraints (e.g. Kroner et al., 1991 Cooray 1994 Mili senda
etal., 1994(Fig.1.1).

(2). the Highland Complex (HC);

(2). the Vijayan Complex (VC);

(3). the Wanni Complex (WC) and

(4). the Kadugannawa Complex (KC)

The HC consists mainly of interbeded metapelites, quartzites, marbles, metabasites and
charnockites. Calc-silicae gneisss, sapphirine-beaing ganulites, cordierite-beaing
gneisses and corundum-beaing gneisses are exposed in minor quantities. The VC exposed

in eastern Sri Lanka onsists of metaigneous gneises of tonalitic to leucogranitic
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compasition. Rocks of the KC are seen in the res of the six doully plunging synforms,
which were named as 'Arenas by Vithanage (1972. The dominant rocks of the KC and
WC are hornblende-biotite gneisss, granitic, granodoritic and tonalitic asciations.
Some granulites are exposed in the southern part of VC nea Buttala and Kataragama.
They comprise rocks gmilar to thase of HC and are interpreted as tedonic nappes namely:

Buttala klippe, Kuda Oya kli ppe and Kataragama klippe (Fig 1.1).

Isotopic and tedonic history

Isotopic data from HC shows prolonged crustal history. Supracustal rocks of the central
high-grade belt of HC were derived from ealy Proterozoic to late Archaean source
terranes (3.2 - 2.4 Ga) and were probably depasited some ~2 - 2.4Ga ajo in a Proterozoic
basement, which is now believed to be the host for the present day stratigraphic successon
(Table 1.1, see &so Crowford 1969 Crowford and Oliver 1969 Ho6lzl et al. 1994 Kroner
et a. 1987 Milisenda @ a. 1988. The rocks from VC, WC and KC, which are
predominantly of granitoids, yield relatively yournger deposition ages at ~1.1Ga &o
(Milisenda @ a. 1989. Thisimplies that igneous adivity had occurred after the deposition
of supracustal rocks of HC, bu prior to fabric-forming events sncetheir teconic layering
is parall el to that of supraaustal rocks (Table 1.1.see &so Holzl et a. 1991, 1994Krdner
and Jaedkel 1994).

The HC and WC were separated from ead ather urtil at least 750 Ma ago. They must
have mme together, perhaps during WC thrusting over HC, prior to pe&k granulite fades
metamorphism (Kréner and Jaedke 1994). The boundry between HC and WC is an
isotopic boundxry based onlarge-scde sample grids and, as such, nd reagnizable in the
field (Milisenda @ a. 1988 Milisenda 1991). The ésence of field evidence d the
boundry of WC and HC provided that high-grade fabric-forming events may have been
destroyed the possble pre-pea&k metamorphic tedonism (Kroner et al. 191). The source
terrane for the Wanni supraaqustal association remains controversial and is unlikely to be
present in Sri Lanka.

Although HC and WC are dharaderized by different primary sedimentary and magmatic
ages, it appeas that both segments have been affeded by a cmmon pegk metamorphism
of Pan-African age. The timing of pegk metamorphism was estimated to be ~610-~550Ma
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old. No significant Pb loss occurred in the time record between 1900Ma (the end d the
deposition d supraaustal rocks of HC) and 600Ma ayo (Bauer, et a., 1991 Hdolzl et al.,
1991, 1994 Kroner et al., 1991 Kroner and Williams, 1993. Taking into acourt
simil arities in geology, geotedonics and geochrondogy in the other Gondwana fragments,
the rocks of the HC show a link to the Pan-African Mozambique belt (Kriegsman 1991b
Kroner et a.1991 Powell et a. 1998 Dissanayake and Chandrgjith 1999. The HC and
WC were together thrust over the VC with atop to the eatward vergence d abou 580-550
Ma under upper amphibadlite fades condtions (Kleinschrodt 1994). The rocks of WC have
been subjeded to uppr amphibdite to granulite fades metamorphism. Further
exhumation d the lower crustal rocks was not acompanied by tedonic events as all

deformation fabrics were preserved during subsequent slow codling.

During the Jurassc time, the Sri Lankan basement experienced crustal extension (Table
1.1 see 4&so Powell et a., 1989. The Jurassc sediments on the top d the aystaline
basement are preserved at threeisolated occurrences (Tabbowa, Andigama and Pallama) in
northwestern Sri Lanka (Cooray, 1984 Vithanage, 1985 (Fig 1.1). After the initial breg-
up d Gondwana, Sri Lanka has moved together with India. In the Miocene period, the
Cauvery basin, which separates India and Sri Lanka, was creaed. It was filled by a thick
cover of limestone, which is now resting on the northwestern coastal strip of Sri Lanka and
the southeastern India (Vithanage, 1989. Table.1.1 summarizes the geochrondogicd and
tedonic eventsidentified so far in the basement of Sri Lanka.

Structural history

The structural evolution presented here is based on the detailed studies of Berger and
Jayasinghe (1976, Voll and Kleinschrodt (1997, Kriegsman (1993 and Kehelpannala
(1997. At least three maor phases of structura events (D;, D, and D3) have been
recognized. Some workers have identified locdly up to 6 dformation events (e.g.
Kehelpannala, 1997. Nevertheless they can be broadly caegorised into three major
phases (Fig 1.2).

D1a— Early exenson andlow P/high T metamorphism
The growth of fibroliti ¢ sillim anite suggest the low P/high T metamorphism prior to crustal
thickening occurred at the eali est deformation.
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Dip— Crustal thickening

The austal thickening is demarcated by crenulated silli manite inclusions in garnet and the
formation d granitic layering, which nav appea as pardld to the ealy foliation danes
(S1). Crustal thickening was followed by pe&k granulite metamorphism at 9kbar at the
deeest levels of Highland Complex (Schumadher et al. 199Q Kriegsmann 1993.

D,— Extensiond collapse

D, deformation event is dominant in many places. The large-scde isoclinal and recumbent
folds, boudnage of metabasite and cdc-sili cae rocks in the metapelites matrix and the
nappe tedonics are acribed to the D, events. D, affeded close to the pe&k metamorphic
condtions as evidenced from L-S tedonic fabric with N-S stretching linedion, pesent in

many rock types.

D3 — Late folding andthrusting

The last mgjor deformation (D3) took dacewith the development of N-S trending upright
folds within HC, thrusting of HC over VC, locd development of biotite linedion with E-
W azimuth, E-verging asymmetric inclined folds nea HC/VC contad cut by eastward
dired thrusts, N-S trending upright folds and stegp shea zones.

Metamor phic history

Ped P-T condtions of crystali ne rocks of Sri Lanka have been estimated using numerous
thermobarometers and dfferent mineral paragenesis. Schumacher and Faulhaber (1994
estimated the P-T condtion d the Eastern, North-Eastern and South-Eastern parts of the
HC at 760-830°C (Grt-Opx thermometer of Harley, 1989 and 9-10kker (Grt-Cpx-Pl-Qtz
barometer of Newton and Perkins, 1982. Sandiford et a. (1988, using Grt-Cpx and Grt-
Opx thermometry, estimated that the minimum temperature of peek metamorphism was
670-730°C. Kriegsman (1993 obtained the pek equili brium temperatures of sapphirine-
beaing ganulitesin HC at 83(°C and 9 kilar with a petrogenetic grid. Schenk et al. (1989
(two-pyroxene thermometry) obtained a maximum temperature of 900°C for the HC. Voll
et al. (1999 derived pesk temperatures of metamorphism at 850-90F°C using two-fel dspar

thermometry.
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It is now evident that the ion-exchange thermometries, al of which assemblages include
garnet, show peak temperatures and presaures at lower values relative to two-pyroxene and
two-feldspar thermometries. It can be speaulated that all thermometries, which have garnet
as an exchange mineral, show lower values due to retrograde resetting of garnet during
dow coding. Therefore, it seems that most of the granulites in HC experienced a
maximum temperature of around 856900°C as reveded by two-pyroxene and two-

feldspar thermometries.

A field presaure gradient in the HC has been propased from the central and eastern part to
the southwestern regions. The maximum presaures at 9-10 khar in the central and eastern
parts of HC deaease to abou 5-6 kbar in the western part of HC (Hapuaradhchi, 1975
Newton and Hansen, 1986 Schenk et al, 1991 Schumadher et al., 199Q Faulhaber and
Raith, 1991 Schumadher and Faulhaber, 1999, though this was questioned by Perera
(1984 and Mathavan and Fernando (1991).

The retrograde path of the HC is controversial. The mading and decompresson peths
obtained from meta-igneous rocks are diff erent from thase obtained from metasedimentary
rocks, although they are part of the same supraaustal successon. Sandiford et al. (1988
obtained a ealy decompresson path for the orthogneisses followed by a isobaric codling
path. An ealy isobaric coding path prior to the decompresson event was recognised in
the metabasite and Fe-rich charnockites (Schumader et a. 199Q Prame 1991). The
isobaric coadling subsequent to the decompresson event was previously thouwght to confine
only to the meta-igneous rocks of the HC. These events are now aso reported in
metasediments in the Buttala kli ppe (Mathavan and Fernandg, in press.

A clockwise P-T path of the whole HC is indicaed by the presence of ealy kyanite
inclusions in garnets, following pe&k metamorphic sllimanite axd the retrograde
andalusite in metapeliti c rocks (Hiroi et a. 1987 Rasse and Schenk 1999. Kriegsman
(1993 reviewed the available P-T and structural data, and, combined with his own data
from sapphrine-beaing ganulites, proposed a dockwise P-T-t path for the Sri Lankan
lower crust. This would imply a austal thickening event, which was followed by heding

and urrodfing (Fig. 1.2.
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The temperatures in the WC, VC and KC are identicd to ead aher. They record
considerably lower temperatures than the rocks from HC. Hornblende-plagioclase
thermometry of amphibdlites yields a temperature of 700 = 75 °C. The overall pressure
was estimated at 6.9 kkar (Burtonand O’ Nions 1990 Schumader et a. 1990.

GEOLOGY OF THE RUPAHA AREA

The aea aound Rupaha is part of a hilly to mourntainous terrain that also forms the
majority of the central highlands of Sri Lanka. The whoe aea is crossd by a
northeasterly flowing trellis drainage system. Much of the drainage follows fradures,
joints and dstinct shea zones. In general terms, it seans that there is a dose match
between topagraphy and the geologicd framework of the aea The rocks with a high
percentage of quartz (e.g. quartzite, charnockite) are resporsible for most of the ridges of
the aea while eaily weahered carborate-beaing rocks and kiotite-feldspar-rich rocks
form valleys. A nateworthy fedure is that numerous peaks protrude a high as 2,000
metres above sealevel.

The geologicd and structural framework of this areais largely based on a provisiond
geologicd map (1:100 000 of the Geologicd survey and Mines Bureau of Sri Lanka
(GSMB). A detailled mapping on 110,000 scde was needed for very thin bands of
different rock units, which could na be identified in large-scde maps (Fig. 1.3. The rocks
strike generally N-S, a dip of 25-40° towards the west. Apart from this, the northwestern
part of the aeais charaderized by a douldy plunging synform with an axial trace of
NNW-SE.

Two principal rock units were identified and are broadly categorized as orthogneisses and
paragneisses. Orthogneisses are largely compaosed of charnockites, charnockite gneisses
and HLotite gneises. The latter are grey gneisses, bu usualy ladk orthopyroxene. The
orthogneisses in the area ae of granodoritic to quartz monzonitic composition. They
contain mafic minerals of orthopyroxene, clinopyroxene, hanblende and a few biotites.
Some quartz grains are up to few centimetres long and mark an intensely flattened and
stretched texture.
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Granulite grade, multiply deformed metasediments are expaosed within a synform in the
NW, as well as in thin bands in the rest of the mapping area These paragneisses consist
mainly of quartzites, quartzofeldspathic gneisses, a few scatered occurrences of marbles
and semi peliti c gneisses, including garnet-biotite gneisses, corundum-biotite gneisses and
garnet-sillim anite-graphite gneisses, with large porphyroblastic garnets formerly termed as
‘khonddites’. Streey, banded khondlite layers ad as gratigraphic markers in the aea
The pelitic paragneisses are extensively weahered, probably due to the presence of high
feldspar content. A few outcrops of marbles occur throughout. Accesory minerals include
apatite, zircon, ilmenite and rutile. Outcrops of garnet-biotite gneisses have been partly
migmatized. The migmatized paiches are essentialy leucocratic, distinctly layered
medium-grained quartzo-feldspathic gneisses, intercdated at places with charnockitic

gneisses.

Ultramafic complexes have been found to the west of the Rupaha village. They were
interpreted ealier as intrusive bodes, which cut through dder basement rocks.
Coomaraswamy (1904 provided the first report of a serpentinite depaosit from Rupaha and
termed it a ‘serpentine marble’ mainly due to its pale green colour and the differences in
mineralogy from those of other marbles. Soyza (1986 has provided an acournt of the
eoonamic importance of the body. Siriwardena (1988 has caried ou a preliminary study
of this ‘serpentine marble’ depaosit. He described two corundum-beaing locaions nea the
ultramafic body. Corundum-beaing rocks described here ae from one of 11 reported in-
situ occurrences in Sri Lanka referred by Coomaraswamy (1903, Cooray and Kumarapeli
(1960, Coates (1935, Wells (1956, Silva and Siriwardena (1988 and Rupasinghe and
Dissanayake (1987). Recent work by Fernando et a. (1995 interpreted the ultramafic
body as a part of the supracustal successon, which has been subjeded to intense high-

grade metamorphism and deformation events.

Despite the fad that there is a mnsiderable wedth of information on the eonamic
importance of the serpentinite body, no attempts were made to present a medchanism for the
formation d silicaundersaturated corundun beaing rocks at the cntad of this
serpentinite body. The present study focuses on the serpentinite body and its contad rock
units, which are well expaosed along the tributary of the main river Halgran Oya, named
‘GaranduKandua’ (Fig. 1.4.
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GEOLOGY OF THE STUDY AREA

The geology around the deposit was described by Siriwardena (1988. The exposure
around serpentinite body contains three mineralogicdly and the petrologicdly different
rock units; (1). granulite zone; (2). ultramafic zone; (3). readion zone. The granulite zone
preserves the original metamorphic textures and minerals typicd of granulites in the aea
The readion zone has been recognized in between these two rock units. This siccessonis
roughly repeded in at least ten locaions within 300m distances before the rocks are
covered by thick soil overburden (Fig. 1.4).

Granulite ne

The rocks from the Granulite zone ae described in the precaling sedion as garnet-biotite
gneisses and charnockites. But in particular, Garnet-biotite gneisses and charnockites
display thin compositional banding with development of lineaed quartz and mica flakes.
The thin bands of impure marble (cdc-sili cate gneisses) and sillim anite-biotite gneisses are
intercaated with charnockites and garnet-biotite gneisses in the vicinity of the ultramafic
rocks (Fig. 1.4).

Ultramafic zone

Ultramafic rocks form as svera lens aped bodes with a maximum width of 100 metres
and extensions aong strikes of 50 metres or more. The Rupaha eposure @nsists
predominantly of medium-grained, dark brown and greenish-grey serpentinites, with
caborate veins and are intensely sheaed. At places, the serpentinites contain white
coloured, fresh, medium-grained orthopyroxenes. Pale green utramafic rock is
charaderized by numerous cross cutting veinlets in irregular fashion. The dark green
ultramafic variety is lessaltered; nevertheless ®me purplish coloured clusters of spinel are
embedded at places. The textural feaures demonstrated that the ultramafic body has been
subjeded to high-grade metamorphism with aher regional granditic rocks. The

phlogopite isfoundat the interfaceof ultramafic-sili ceous granulite.

Reaction zone
The readion zone is compaosed of four distinct mineral assemblages. The zone aljacent to
sili ceous gneisses consists of syenitic-looking Crn(5%)-Bt-Pl-beaing gneisss. This zone

is generdly up to 3m thick at places. The randamly arranged paphyroblastic corundum
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crystals are anbedded in this feldspar matrix in the quartz undersaturated rock. The rest of
the zone cnsists of thin bands of Crn(30%) + Pl + Bt-beaing gneisses, Crn + Spr +
Spinel-beaing gneises and Phl + Spr + Spl-beaing gneisses. The zone boundxries are
very sharp, which are roughly aligned parall €l to the regional foliation.
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Table 1.1 Geochronological and tedonic events of crystalline and non-crystalline rocks

of Sri Lanka
Age(Ma) WC HC VC Major Tedonics
~32002400 Ageof supracustals (9)

(SHRIMP U-Pb detrital zircon)

~2287+108
(wholerock Rb-Sr, K-Ar)

~23502000
(Sm-Nd model ages,
U-Pb zirconfraction upger intercept)

Age of supraaustals (3,4)

Deposition of supraaustals
in the Proterozoic basement
(5,6,11, 12, 16,17)

~19421850 Intrusion of granitoid
(U-Pb zircon fraction upgr intercept) rocks (1,5, 6,11,12, 16, 17)
~1100 Deposition of supracustal Deposition of supracustal
(Sm-Nd model ages) rocks (5, 6,12, 14,16, 17) rocks (11,12, 16, 17)
~1100-1000 Intrusion of granitoid Intrusion of granitoid
(SHRIMP U-Pb rocks (6, 7, 8, 15) rocks (5)
detrital zircon)
~750 Amalgamation of HC
(U-Pb zircon) and WC (15)
~610-550 Regional granulite Regional granulite Pan-African orogeny
(U-Pb zircon fad es metamorphism, fades metamorphism (1, 5, 6) (colli sion between
fractionlower intercept, (1, 7, 12) East- and West-
U-Pb monazte) Gondwana)

(9,10, 12, 18)

~580-550 Thrusting of HC-WC
over VC (8)
~591-456 Regional amphibalite
(U-Pb zircon fraction lower intercept) fad es metamorphism
(5, 6,11
~160-200 Depasition of Jurasdc sediments on the aystalli ne rocks (2) Crustal extension of
East Gondwana
(12,18, 20)
~26 Deposition of carbonates sdiments in the Cauvery basin (2) Separation of Sri
Lanka from India
(19
(1). Bauer et a. (1991 (2). Cooray (1989 (3). Crowford (1969
(4). Crowford and Oliver (1969 (5). HOlZl et a. (199]) (6). HolZl et al. (1999
(7). Jaeke et al. (199]) (8). Kleinschrodt (1994). (9). Kriegsman (1991h
(20). Kriegsman (1993 (12). Kroner et al. (1987 (12). Kroner (1997
(13). Kroner et a. (199]) (14). Kroner et a. (1999 (15). Kroner and Jaekel (1994
(16). Liew et a. (1997 (17). Milisenda € al. (1988 (18). Powell et al. (1988

(19). Vithanage (1985 (20). Yoshida & a. (1992
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FIGURE CAPTIONS

Fig. 1.1 Simplified geologicd map o the Sri Lanka showing al major litho-tedonic units
(after Cooray 1994). The aeaoutlined by the box is the studied area(Rupaha aeg), which
is shown in greder detail in Fig. 1.3.

Fig. 12 P-T-t-D path for the granulites of the Highland Complex in Sri Lanka (after
Kreigsman 1993. The prograde path is charaderized by crustal thickening, and
subsequent heding, while the retrograde path shows ealy isothermal decmpresson,

foll owed by isobaric codling.

Fig. 1.3Geologicd map o the aea aound Rupaha. The Proterozoic rocks are ammpaosed
of charnockites, charnockitic gneisses, guartzites, garnet-sillim anite-graphite gneisses
(khonddites), garnet-biotite gneisses, and scatered marbles. The study concerns the
metamorphosed utramafic rocks, which are exposed at ‘Garandu Kandua' and their
adjoining rocks. Geologicd map modified after Siriwardena (1988 and Geologicd Survey
& Mines Bureau (1996. The study areagiven hy the shaded box is shown in detail in Fig
1.4.

Fig. 1.4 Detailed geologicd and locaion map o the aea a&ound the main serpentinite
body exposed at the ‘GaranduKandua’, Rupaha, Sri Lanka.
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Chapter 2

Retrograde diffusion zoning in garnet: Implicationsfor threestage madling

history of mafic granulitesin the Highland Complex of Sri Lanka
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ABSTRACT

Diffusion modeling of retrograded garnet rims from mafic granulites is used to estimate
the adling rates in the Proterozoic basement of Sri Lanka, which represents a small, bu
important fragment of the super-continent Gondwana. Metamorphic pegk temperatures and
presaures estimated with two-pyroxene thermometry and garnet-clinopyroxene-
plagioclase-quartz (GADS) barometry, yield 875+ 4°C and 8.7+ 0.4 klar, which is
significantly higher than garnet-biotite Fe-Mg exchange thermometry of 820 + 20°C.
Garnet rims exhibit narrow but regular retrograde zoning in terms of Fe and Mg exchange

between garnets touching biotite and give temperature of 685°C.

The observed garnet zoning requires a threestep coodling history. Equili brium was
adiieved along gain boundries during the first codling step. During the subsequent faster
coadling, orly locd exchange between garnet and Lotite occurs. A maximum coadling rate
of 1°C/Ma is estimated duing the initial stage of cooling followed by a @dling rate of
~30°C/Ma. The outermost rims of garnet indicate that codling slowed down at or nea the
blocking temperature of garnet to abou 10-15°C/Ma. The threestage temperature-time
history is nat in agreement with the aadling history inferred from mineral radiogenic ages
in the literature. The difference in coding rates between ou cdculations and wing
thermochrondogy is mainly due to the lak of larger reliable set of geochrondogicd

results of different minerals and radiogenic isotope systems.
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INTRODUCTION

One of the cmmon feaures of granulite fades rocks is the textural and chemicd
equilibration duing high-grade metamorphic condtions. Compositional zoning in
minerals, if formed during the prograde path, is generally completely homogenized during
granulite fades metamorphism. Existing mineral zoning in granulites is typicdly due to
prolonged coding and exhumation (e.g. Lasaga & a. 1977 Lasaga 1983 Giletti 1986
Esene 1989. Thus, mineral zoning in granulite terranes is criticd for understanding the
exhumation and ugift history of the speafic terrane. This can be dore by acarate
determination d the presaure-temperature-time evolution peth. If the compositions of
mineral phases record and preserve peek equili brium conditions, the time-temperature path
(T-t) cen be rredly pinpanted. But, if cores of zoned minerals do nd represent the
adua therma ped, utili zing core compasitions for geothermometry leads to meaningless
results. On the other hand, if one can evaluate and estimate the wrred pesk compasitions
of minerals, the adual T-t history of the rocks can be tentatively estimated. Interpretation
of the aadling history in granulites from Sri Lanka using garnet zoning and recovered peek
compositions of garnets ill ustrate a well-constrained threestage adling history of the

rocks.

Codling rates of rocks are usualy determined by three different ways; using closure
temperature of minerals for radiogenic isotopes (e.g. Mezger et a. 1992 or for stable
isotopes (e.g. Giletti 198G Eiler et al. 1992, 1995 or diffusive zoning in metamorphic
minerals (e.g. Dodson 1973 Lasaga 1983 Spea 1991, Lindstrom et al. 1991 Spea and
Florence 1992 Florence and Spea 1995 Spea and Parrish 1996 Weyer et a. 1999.

To quantify the a@adling history of rocks, many workers have discussd the use of garnet
diffusion zoning patterns. Some have used the sssumption d a large anourt of (infinite)
biotite, which implies a fixed hiotite compaosition that is unaffeded by diffusiona
exchange with the garnet (e.g. Dodson 1973. This asumption is corred for some
granulites, where biotite makes up the bulk of the rock, and dffusion d grain boundries
isfast (e.g. Weyer et a. 1999. The other extreme is to balancethe diffusional fluxes of the
elements between touching biotite and garnet grains (e.g. Lasaga 1983 Spea and Florence
1992 Lindstrom et a. 1991 Florence and Spea 1995 Spea and Parrish 1996. The
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diffusional gain or lossof garnet is balanced by the compositional change of its coexisting
biotite.

The Fe-Mg inter-diffusion d more than two mineralsin arock like that exchange between
garnet, biotite and clinopyroxene, for example, requires that all fluxes between these
minerals are balanced in a dosed system. Hence the knowledge of interdiffusion
coefficients of al individual phases, modal abundances and surface @&eas of these phases
arerequired (seeEiler et a. 1992for more detail s).

Lower crustal granulites are exposed in many places in Gondwana fragments, such as the
small fragment of Sri Lanka Granuites of Sri Lanka often have significant amourts of
ferro-magnesian rocks, which are commonly interpreted as metamorphosed basic igneous
rocks. These granulites, which show consistent isobaric codling in the aea aoundRupaha
within the Highland Complex (Fig.2.1), are used to evaluate its P-T and coadling history.
Up to now only afew studies have presented codling rates for Sri Lankan granulites (Holz
et a. 1991 Burton and O'Nions 1990. There has been renewed interest to evaluate the
internal consistency of coadling rates of Sri Lankan granulites because @aling and ugift
history of Sri Lankan basement has been poaly defined by both methodks.

We use garnet diffusion to determine the @aling rates. The interpretation is based on (1)
recovering of peak composition d garnets; (2) applicaion d diffusion models to estimate
the woadling rates using numericd zoning patterns. The results are combined with
geochrondogy from the literature to describe the complete exhumation history of the

granulites.

GEOLOGICAL SETTING

The Proterozoic basement of Sri Lanka exposes substantial parts of lower continental crust
in which four different units were distinguished on the basis of isotopicd,
geochrondogicd, geochemicd and petrologica constraints (Cooray 1994 Kroner et al.
1991 Milisenda @ a. 1994(Fig 2.1): (1) the Highland Complex (HC); (2) the Vijayan
Complex (VC); (3) the Wanni Complex (WC) and (4) the Kadugannawa Complex (KC).
The WC consists mainly of metabasites and charnockites while the HC is comprised of
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interbedded metapelites, quartzites and marbles in addition to rocks from WC. The VC is
exposed in eastern Sri Lanka, consisting of metarigneous gneises of tonditic to
leucogranitic compasition. The HC rocks yield relatively old crustal residence Sm-Nd
model ages (2-3 Ga. Milisenda @ a. 199), while rocks from the other units give
significantly yourger residence times of 1-2 Ga. Metamorphic grade reades granulite
fades throughou the HC, the WC and the KC, abeit locdly retrogressed to amphibadlite
fades, while the VC has amphibdite fades assmblages. The timing of pe&k
metamorphism was estimated between ~550-~610 Ma (HOlzl et a. 1991,1994Kroner et
al. 1991 Kroner and Willi ams 1993.

The aeaof this gudy is located in the central part of Sri Lanka, at Rupaha, within the
centra Granulite belt of the HC (Fig.2.1). It consists mainly of meta-igneous rocks
(orthogneisses and charnockitic gneisses), which are intercdated with metasediments
(quartzite, garnet-sillim anite-graphite gneisses, garnet-biotite gneisses, corundum-biotite
gneisses and minor cac-sili caes, marbles and dtramafics). The small-scde structures and
geologicd unitsin the study area aeill ustrated in Fig. 2.1.

PETROGRAPHY

Two rock-types of mafic granulites, differing in mineral paragenesis and model
propations can be distinguished. Garnet-biotite-clinopyroxene-beaing gneisses (sample
locaion No. 9708in Fig. 2.1) are wmarse-grained, dark and show a strong schistosity.
Asemblages aretypicdly Grt + Bt + Pl = lIm; Grt + Bt + Cpx + Pl + Qtz £ I1Im; Grt + Cpx
+ Pl £ Qtz £ llm (for abbreviations ®e Kretz 1982. Garnet contains inclusions of
plagioclase and hotite. Some parts of the rock are migmatized. Charnockites (sample
locaion No. 9817in Fig. 2.1) in the aea ae charaderized by the mineral paragenesis Opx
+Kfs+Pl +Qtz = Ilm + Ap; Hbl + Opx + Pl + Kfs+ Qtz + llm + Ap; Opx + Cpx +P + Qtz
* llm = Ap £ Grt. The quartz content varies in these rocks from a few volume percent up
to abou 10%. In garnet-clinopyroxene-biotite-beaing gneisses, no readion textures are
observed. Garnet-quartz grain boundries are dsent suggesting that the readion garnet +
quartz to Cpx + plagioclase +ilmenite has occurred. Biotite and garnet are in equili brium
in many places (Fig.2.23). Both pyroxenes in charnockites are generaly devoid of

inclusions, though some small rounded grains of hornblende and fdagioclase may be
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present. Large dongated crystals of hornblende in the matrix have irregular shaped edges
(Fig. 2.2h. A few grains of biotite ae present in some samples of the two-pyroxene-
hornblende-beaing asemblages. Some late stage dlorites replacel hanblende. The
primary metamorphic mineral assemblages sleded for thermobarometric study are Opx-
Cpx-PI-Hbl-Qtz and Grt-Bt-Cpx-PI-Qtz along with minor amourts of magnetite, ilmenite,

apatite, rutile and zircon.

ANALYTICAL TECHNIQUES

Thin sedions from the two rock types showing the primary mineral assemblages with no
or minor retrogresson were seleded for thermobarometry. After detailed opicd
inspedion d padished thin sedions, mineral analyses were performed on carbon-coated
thin sedions at the University of Mainz, Germany, using the JEOL microprobe (JEOL
JXA 8900 RL) with operating condtions of 15keV accéerating voltage, 12nA bean
current and 2um beam diameter. Elements were cdibrated against synthetic and retural
standards. Online ZAF corredions were performed (Amstrong 1988, 198% Mineral
compaositions  of  coexisting  garnet-biotite, garnet-clinopyroxene, and garnet-
clinopyroxene-plagioclase-quartz from garnet biotite gneissees and coexisting two-
pyroxenes from charnockites were analyzed. Garnets were analyzed for both rim and core
compasitions, that physicdly contad with ether biotite or clinopyroxene.
Thermobarometric pairs were seleded from adjacent grains in the view of separate
thermobarometric cdculations. Some representative garnets, adjacent to hiotite were
investigated for a probable zoning pattern by runnng microprobe line profile acoss the
grain at 3um spadng for Fe, Mg, Ca aad Mn. A two-dimensional compasitional map of
Mg- distribution in garnet, which is in mutual contad with hiotite, plagioclase and aher
garnet, was obtained with the aitomated JEOL microprobe using a wavelength dspersive
spedrometer (WDS)(15kV, 30mM and lum probe diameter). All iron was assumed to be

Fe?* onrecdculation.

MINERAL CHEMISTRY

Chemistry of mineral assemblages in ore dataset used for thermobarometry of Rupaha
granulites are presented in Table 2.1. The mmprehensive analyticd data set is attached in
the Appendices C1-C4.
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Garnets are mainly almandine-pyrope-grosaular solid solutions, with average dmandine
content just abou 50%. The pyrope @ntent is around 226 whil e grossular and spessartine
content are 16% and 136 respedively. They are typicd abou 700um diameter on
average. Fig.2.&is a badk-scatered image and Fig. 2.3b,a microprobe line profil e of the
same grain (Complete chemicd data is attached in Appendix C5). Flat zoning of garnet is
observed throughou most grains except in the vicinity of adjacent biotite, where Xygq
deaeases and X increases dightly towards the garnet rim. The rims are gproximately
20um wide (Fig. 2.4). Garnet is typicdly unzoned towards nonFe-Mg mineras (e.g.
plagioclase) or other garnet. Garnet is not zoned with resped to Ca. Moda abundance of
biotite is approximately half of the modal abundhnce of garnet. Biotite inclusions are
preserved in some garnet grains. No zoning was foundin clinopyroxene and there is no
compasitional zoning in contrast to the marked Fe/(Fe+HMig) gradient in garnet.
Fe/(Fe+M@) in clinopyroxene varies from 0.280.30in hiotite gneisses while it is between
0.51-0.53 in charnockitic rock. Xa values range from 0.050.07. Orthopyroxene in
charnockite is of homogeneous compasition and hes a Fe/(Fe+HMig) value of 0.640.67.

PRESSURE-TEMPERATURE ESTIMATES AND FLUID COMPOSITION

Results of ion exchange thermometry (Table 2.2) are based onthe garnet-biotite (Dasgupta
et a. 199), the garnet-clinopyroxene (Sengupta @ a. 1989 and the orthopyroxene-
clinopyroxene (Brey and Kohler 1990 equili bria. The presaures were determined from the
cdibration d garnet-clinopyroxene-plagioclase-quartz (Eckert et al. 1991 assemblages.
Temperature and presaure were cdculated by simultaneous lving of the barometric and
temperature ejuations, where gpliceble (Fig. 2.5. The highest P-T estimates were
obtained for Opx-Cpx thermometry together with GADS barometer. Temperatures range
from 870-882°C, with presaures of 8.6-9.1 kkar. All three céibrations (Lindsley et al.1981,
Kretz 1982 Brey and Kohler 1990 yield identicd results within the variation d mineral
chemistry. Mineral equili brium temperatures of 775-840°C at this locdity were obtained
from Grt-Bt/GADS, using garnet cores, at presauures of 7.6 — 8.3 klar. These ae
significantly lower than the Opx-Cpx/GADS thermobarometer values presented above.
Presaure-temperature estimates obtained from garnet rim and adjacent biotite compositions
with GADS barometer range from 685795°C and 6.77.8 khar. Pressure-temperature
estimates for Grt (rim)-Cpx (rim)/GADS are significantly lower (between 706738 C and
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6.9-7.2 kkar). More than six cdibrations (e.g. Ferry and Spea 1978 Hodges and Spea
1982 Perchuk and Lavent’eva 1983 Ganguly and Saxena 1984 Indares and Martignole
1985 Bhattacharya @ al. 1992 Kleeman and Reinhardt 1994 were used to Grt(core)-Bt
temperatures. While mnsiderable scater was observed (710-84F°C), nore of the

cdibrationsindicates pes temperatures close to that of the Opx-Cpx thermometers.

Furthermore, no significant difference of the Grt-Cpx thermometer between the
cdibrations of Ellis and Green (1979 and Sengupta € a. (1989 was observed. The wide
array of computed garnet-biotite temperatures is a function d the @adling history of the

sample.

Fluid composition d charnockites can be cdculated from the model buffering readions of
2Tr = 4Di +3En + 2Qtz +2H,0 and 2Ann + 6Qtz = 3Fs + 3San + 2H,0 (Lamb and Valley
1988. The thermodynamic database of Holland and Powell (1998 was used together with
adivity model for ar, in Ca-amphibaes of Holland and Blundy (1994). The adivity of

anorthite was cdculated after Holland and Powell (1992, whil e asan in K-feldspar and &g,

and & in Opx was obtained following Holland and Powell (1996. The cdculated a0 iS
in the range of 0.050.09. These values indicae alow adivity of water during pe&k

metamorphism.

CONSTRUCTION OF FLUID SATURATED P-T GRIDS

An adivity-correded petrogenetic grid was cdculated for the dhemicad system CaO-K,0-
FeO-MgO-Al,03-SiO-H,O (CKFMASH), using the phases Grt, Pl, Kfs, Cpx, Opx, Bt,
Hbl and Qtz (Fig.2.6)(see dbreviations for mineral adivities). They were cdculated using
the PeRpLeX software of Conndly (1990. The diagram was constructed using the X0 =
0.1, which corresponds to the cdculated water adivity of 0.05-0.09 (Holland and Powell
1991, 1998

All possble readions occurring in garnet-biotite-clinopyroxene gneiss and charnockites
are shown here with the am of unraveling the PT condtions of the area On the basis of
observed textural relationshipsin the rocks, a PT estimate of around 85691(°C and 7.59-
0 kbers can be cdculated (shaded areg. The melting curve of the system Qtz-Ab-Or-H,O-
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CO; for X0 = 0.1 was added to the diagram acarding to the experiments of Ebadi and
Johannes (1991) and Johannes and Holtz (1996. The etimated PT condtions from the
petrogenetic grid are in agreanent with PT estimates from the Cpx-Opx/GADS ion-
exchange thermobarometry.

The results of thermobarometry of our study compare well with the PT estimates of other
areas of the HC. Schumadher and Faulhaber (1994 estimated the P-T condtion d the
Eastern, North-eastern and South-eastern part of the HC at 760-830°C and 910 kiar.
Sandiford et al. (1988 used Gt-Cpx and Gt-Opx thermometry to ill ustrate the minimum
temperature of metamorphism to be 670730°C. They noted that the adual pesk
metamorphism could easily be much higher. Kriegsman (1993 obtained pe&k equili brium
temperatures for sapphrine-beaing ganuites in HC at 83°C and 9 klar using
petrogenetic grids. Schenk et al. (1988 derived from two-pyroxene thermometry in the
HC a maximum temperature of 900°C. Voll et a. (1994 estimated the pesk temperatures
of metamorphism between 856900°C by using revised two-feldspar thermometry.

INTERDIFFUSION OF ELEMENTS DURING SLOW COOLING

The recent aqquisition d diffusion coefficients for interdiffusion d Fe-Mg in garnet,
biotite and pyroxene permits to quantify the dfed of diffusion duing slow coadling of
rocks. A number of experimental values for interdiffusion d Fe and Mg in garnet have
been pubished so far (e.g. Cygan and Lasaga 1985 Chakraborthi and Ganguly 1992
Ganguly et al. 1998. Diffusion coefficients determined from the most recent experiments
by Ganguly et a. (1998 are cmonsistent with high-temperature systems and were used in
our caculations.

The Fe-Mg interdiffusion rates of biotite, pyroxene and garnet are quite different. The
diffusion coefficients of pyroxene, garnet and kotite differ by threeorders of magnitude &
850°C, and the diffusion d Ca and Mg in pyroxene is even slower by over 2 orders of
magnitude (Fig. 2.7). Similar inter-diffusion rates of Fe and Mg have been olserved in
pyroxenes and garnets (Ganguly and Tazzoli 1994 Ghose and Ganguly 1982, while
biotite has much faster Fe-Mg interdiffusion. Minerals with relatively fast diffusion
coefficients, like biotite, and to some degree garnet and Cpx, will partially re-equili brate
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during codling from granulite and amphibdlite condtions. Therefore, one caana exped to
obtain the pe& temperature from both garnet-clinopyroxene and garnet-biotite
thermometry in granulite terranes. Hence, na surprisingly, these thermometers (e.g. Ellis
and Green 1979 Sengupta d a. 1989 Dasgupta & al. 1997, yield temperatures that are
50-150°C lower than two-pyroxene thermometer for Rupaha granulites. These reset
temperatures are ‘appaent temperatures (Spea 1991 Spea and Florence 1992 Spea
and Parrish 1996, since they correspondto neither closure temperature nor equili brium
pe&k temperature. Similar observation hes been reported from the ultra-high temperature
(UHT) terranes (~950-1000°C) of Enderby Land, which show the Grt-Cpx temperature of
only 720°C (Elli sand Green 1985.

In summary, the two-pyroxene thermometer most likely records pe&k or nea pek
temperatures at Rupaha (875 + 4°C), whil e garnet (core)-biotite (820+ 20°C), Grt (rim)-Bt
(776 + 40°C) and Grt (rim)-Cpx (734 + 10°C) documents sow cooling of the terrane. In
the following chapters, we will retrieve information for the aadling history based onthe
Fe-Mg profilesin garnet.

COOLING RATES FROM GARNET PROFILES

The peauliarity of the Fe-Mg profile in garnet is that it is homogeneously reset throughou
most of the aystal, with minor Fe increases and Mg deaeases at the rim (Fig. 2.3D. This
indicates a complete resetting of the garnet during an initial protraded coding event,
which was followed by a faster codling, which resulted in the small Fe-Mg zoning at the

rim.

The composition d the Fe-Mg minerals at pea&k pressure and temperature has to be
cdculated from thermodynamic and mass balance ajuations, since the garnet as well as
biotite and clinopyroxene in the matrix changed their Fe/M g compasition throughou in the
first codling step. This was acaomplished by using the modal abundances of garnet, biotite
and clinopyroxene to cdculate the bulk Fe-Mg of the rock. The equili brium equations
between the garnet, biotite axd clinopyroxene were solved for Fe-Mg using this bulk
compasition at 875°C and 9klar. This was achieved by simultaneously solving the mass
balance euation for Fe axd Mg and the mass adion equations describing Fe-Mg
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exchange. For these cdculations it was assumed that no ret transfer readion accurred
during coding. This assumptionis suppated by fad that no retrograde growth of any high
temperature phases can be observed in the studied sample. Modal mineralogy of the rock
and the caculated Fe and Mg values of garnet at 875°C and 9 klar are given in Table 2.3
and Table 2.4, respedively.

The diffusion model was st up based on the observed mineral zoning. During the first
stage of cooling garnets are homogeneously changed, while during the second stage only
garnet adjacent to hiotite show appredable zoning. Hence the first coding step was
modeled using ‘bulk’ diffusion model, asauming grain boundry diffusionis fast compared
to that of volume diffusion in garnet (e.g. Joesten 19971 Eiler et a. 1992, 199% In that
case, diffusiona fluxes shoud be balanced in representative volumetric dements, which
are large compared to individual grains. Nevertheless clinopyroxene occurs only in small
guantities, therefore the diffusive fluxes have been balanced orly between garnet and
biotite. During the seand codling period dffusion along grain boundyries was limited, so
that garnet zoning only developed where biotite contaded and shared grain boundries.
For this case we asume amodel, which has a binary interdiffusion between garnet and
adjacent biotite grains. For a further discusson d diffusive exchange modeling and the
mathematicd treaments sseDodson 1973 Lasaga 1983 Lindstrom et a. 1991 Eiler et al.
1992 Spea and Florence 1992 Florence and Spea 1995 Spea and Parrish 1996 and
Weyer et al. 1999. We used the program Gibbs (Spea and Peamck 199Q Spea and
Florence 1992 Florence and Spea 1999 to solve the resulting diff erential equations, mass

adion and flux balance euations.

The diameter of garnet used here is 668 um. Both garnet and biotite ae asumed to be
homogeneous at starting temperatures (875°C). Significant zoning is predicted for garnets
for codling rates in excessof 1°C/Ma. Hence amaximum codling of 1°C/Maiis estimated
in the first step. During the second step, we have cdculated the zoning profil es for linea
codling rates of 100, 50, 30, 20, 1%nd 1°C/Mafor the starting temperature of 820°C. The
starting temperature is obtained from apparent garnet (core)-biotite geothermometry. The
zoning patterns caculated for the anstant coadling rates is siown for these five cding
rates in Fig 2.8, along with the microprobe data. The cdculated zoning profile for a

codling rate of 30°C/Mais in excel ent agreement with measured zoning profil es of garnet
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at Rupaha. A consistent cooling rate is obtained over the temperature interval from 820°C
to 500°C. However, Xugq profile developed at the outermost rim (7-10 pum), indicated that
the wdling rate has deaeased, sightly probably at the temperatures below 650°C. The
resulting cooling rate can be etimated around 15C/Ma (Fig. 2.9).

DISCUSSION AND CONCLUSIONS

Ca-Fe-Mg exchange thermobarometry of co-existing Opx-Cpx and Grt-Cpx-Pl.Qtz is
consistent with cdculated PT phase diagrams for the rocks of the Rupaha aea They
indicated that peek metamorphism occurred at 875+ 20°C and presaures of 9.0+ 0.1 kkar.
Water adivity is low <0.1, as infered from the darnockites. Fe-Mg exchange
thermometry of Grt(core)-Bt resulted in 820 + 20°C. The garnet-biotite exchange

temperatures are interpreted to represent apparent temperatures due to slow codling.

The experimenta studies on Opx-Cpx thermometry are primarily designed onthe transfer
of Ca-Mg comporents between co-existing Opx and Cpx (Lindsley et al. 1981 Kretz 1982
Carlson and Lindsley 1988. Brey and Kohler (1990 later used the Opx-Cpx thermometry
in the acourt of Ca-Fe-Mg exchange. The results of Opx-Cpx geothermometry from all
threemethods were nealy identicd to ead aher. The Ca-Mg interdiffusion o pyroxeneis
several orders lower than that of Fe-Mg diffusion in either garnet or pyroxenes (Fig. 2.7).
Hence ore can speaulate that the dfed on Fe-Mg exchange is negli gible when compared
to the Ca-Mg exchange on pyroxene thermometry cdculations. This is further suppated
by the observation that no retrograde zoning is present in pyroxene or garnet with resped
to Ca Therefore, we propcse that the thermometer most likely to preserve pedk

metamorphic temperature is the Opx-Cpx thermometer.

Our insight for reavering of nea-pe&k codling history isvery useful, sinceit is possble to
refine the initial coding of granulites from the Fe/Mg diffusion, which is an espedally
sensitive monitor of initial coadling at high temperatures. Results of diffusion modeling of
Fe-Mg exchange between garnet, clinopyroxene and hotite suggest that the HC of Sri
Lanka has undergone & least three ©ding stages. The U-Pb dating from metamorphic
zircons from syntedonic granitoids yields an age of 608+ 3Ma, which isinterpreted as the

period d pesk metamorphic event. The first cooling had occurred at a maximum coadling
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rate of 1°C/Ma in the first 55 Ma starting at 875°C and 9kkar. The slow codling rate is
probably due to a prolonged crustal residence time & the beginning of coadling urtil the
temperature of 820°C. In the seand step, coodling continues much faster at a rate of
~30°C/Ma until the temperature deaeases below the 600-650°C. This may be related to
rapid teaonic uplift of neighbouing Gondwvana fragments during the Ordovician period.
However, the third codling rate can also be acournted because the measured zoning profile
shows the slight deviation from the cdculated zoning profil e for 30°C/Ma & the outermost
garnet rim (Fig 2.8). This can be tentatively assumed to be aound 15C/Ma, which may
perhaps continue urtil the garnet-biotite Fe-Mg exchange dosed. The Rb-Sr biotite ayes of
439 + 10 Ma (Hdlzl et a. 1997, which is believed to record the time & temperatures
around 300+ 30°C (Spea 1993, indicaes the fina coding during the uplift of the

basement.

Some radiometric data available for Sri Lankan crystalline rocks provide a useful
comparison with ou results (Fig. 2.9. Holzl et a. (1991 have tentatively constructed a
two stage @aling history from Sm-Nd garnet ages and Rb-Sr/whade rock biotite ages from
the rocks of the HC. The madling rate of 2 to C/Ma was determined from the garnet
dating followed by a significantly higher rate of around 10to 25°C/Ma from biotite ages.
These results are not in agreement with the @mnclusions of our results, espedally the first
step of coadling. This discrepancy has occurred probably becaise they derived the maling
rates assiming the blocking temperature of garnet at 80°C. Mezger et a. (1992 reported
that the dosure temperature for Sm-Nd exchange in garnet would be ébout 600°C, which is
well below the temperature (~800°C) used to cdculate the adling rates by Holzl et al.
(199)). This suggests that the first stage of coding inferred from Sm-Nd garnet ages is
misleading. The seandstep in the adling history isin relatively good agreement with ou
findings. However, taking into acourt the few radiogenic ages and larger errors, coaling
rates determined from geochrondogy may not be crredly representing the cwaling history

of the Sri Lankan granulites.
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Table 1.1 Chemistry of mineral assemblages used to cdculate the thermobarometry at

Rupaha
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Table 2.2 Results of thermobar ometry estimatesfor granulitesfrom the Rupaha, Sri

Lanka

Temperature
(°C)
Grt-Bt / GADS
Dasgupta @ al. (1992 and Eckert et a. (1991

garnet core 774840
(820+ 20

garnet rim 685821
(780+ 40

Grt-Cpx/ GADS

Sengupta @ al. (1989 and Eckert et al. (199])
706-738
(724+ 10

Opx-Cpx/ GADS

Brey and Kohler (1990) and Eckert et a. (1991)
870882
874+ 4

Presaire
(kbar)

7.68.3
8.1+ 0.2)

6.2-8.1
7.6+ 0.6)

6.97.2
7.1£0.1)

8.69.1
8.7+ 0.4)

Table 2.3Modal mineralogy d Rupaha mafic granulites

Modal Percentage

Radiug/half length (um) of mineral grains

Mineral

Garnet 47.8 300
Biotite 27.2 300
Plagioclase 14.6 300
Cpx 7.4 200
Quartz 3.0 300

Tota 100.00
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Table 2.4 Calculated peak compositions of garnet, biotite and clinopyroxene

Pedk Apparent
temperature temperature temperature
caculated core
875C 820°C

gar net

Fe 1503 1528 1.605
Mg 0.67C 0.645 0.479
Fe/(Fe+Mg) 0.692 0.703 0.77C
Mg/(Fe+Mg) 0.308 0.297 0.230
biotite

Fe 0.967 0.928 0.928
Mg 1551 1.590 1.59C
Fe/(Fe+Mg) 0.384 0.369 0.369
Mg/(Fe+Mg) 0.61€ 0.631 0.631
Cpx

Fe 0.341 0.311 0.311
Mg 0.697 0.727 0.727
Fe/(Fe+Mg) 0.32¢ 0.300 0.300
Mg/(Fe+Mg) 0.671 0.700 0.70C
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FIGURE CAPTIONS
Fig. 2.1 Simplified geologicd map o the aea aound Rupaha, Sri Lanka (after Cooray
1994 Kroner et a. 199)

Fig. 2.2(a). Phatomicrograph showing relationship of model garnet to the rock and aher
phases in the sample. Inclusions of biotite in garnets evidence for ealy phase of biotite.
(b). Photomicrograph illustrates small hornblende inclusions in arthopyroxene in two-
pyroxene-beaing gneiss Note the m-existing Opx-Cpx assemblage in the upper right

corner.

Fig. 2.3 (). Badkscatered eledron image of co-existing garnet-biotite in granulites at
Rupaha, Sri Lanka. A chemicd composition profile was run aaoss the garnet along the
drawn line A-B. (b). Profiles are showing mole fradions of amandine, pyrope, grosaular
and spessartine dong the line depicted in Fig 2.3a. Profiles were assembled from 174
closely spaced quentitative spot analyses of garnet. Note that Xy deaeases and Xg and
Xwmn increases at the biotite cntads while no significant Xc, change is observed.

Fig. 2.4 (a). Compasitional map showing the Mg distribution d garnet contading biotite,
plagioclase and garnet with a resolution d 1um (the aeais as indicaed in the box in Fig.

2.3). Note that Mg deaeases of Mg at the rims of garnet touching biotite.

Fig. 2.5 Summary of the results of combined ionexchange thermobarometries of
granulites at Rupaha, Sri Lanka.

Fig. 2.6 Schreinemakers grid (CKFMASH) cdculated at Xpo= 0.1 wsing the
thermodynamic database of Holland and Powell (1998 (shaded areais representative of
Rupaha granulites). The following readions represent the respedive numbers in the
diagram: Note that readion equations are written such at the high temperature assemblage
isontheright of the‘ =" sign

2 Di + En=2 Hed +En;

2Tr=2Qtz+4Di + 3 En+ 2H,0;

2Ann+6Qtz + Grs=Alm + 3Hed + 2 San + 2 H,0;

San+Tr+3Hed +H,0=4Qtz+5Di +4 Ann;
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3Ann+2An+6Qtz=Alm + 3 San+ 2 Hed + 3H,0
The experimentally determined solidus curve of the system Qtz-Ab-Or-H,0-CO; at X0
= 0.1is from (Ebadi and Johannes 1991 Johannes and Holtz 1996. Abbreviations as in

Kretz (1992 [Caculated adivities used: orthopyroxene: ag, = 0.11, & = 0.39
clinopyroxene: ap;i = 0.40,84e = 0.44 biotite: dann = 0.013,80, = 0.16 feldspar:

Aan = 0.28,@np = 0.75, @gan = 0.82 garnet: app = 0.017,38gs = 0.007, 8aim = 0.089
hornblende: ar,=0.003.

Fig. 2.7 Arrhenius plots of Fe-Mg and Ca-Mg interdiff usion coefficients used in this gudy:
garnet (Ganguly et al. 1999, biotite (Pattison, 1994, orthopyroxene and clinopyroxene
(Fe-Mg: Ganguly and Tazzoli 1994 Ghost and Ganguly 1982, clinopyroxene (Ca-Mg:
Brady and McCalli ster 1983.

Fig. 2.8 Comparisons of geospeedometry simulations of Diff-Gibbs profiles with dfferent
coadling rates and measured Mg/(Fe+HMQ) of garnets in granulites at Rupaha. The best-fit
model assumed at the cadling rate of 30°C/Ma (seetext for more detail s).

Fig. 2.9 Calculated coding paths of granulites from Sri Lanka from this gudy compares
with the geochrondogicd codling rates from Holzl et al. 1991.Pe&k metamorphism was
estimated from U-Pb zircon ages (608 + 3Ma) (Holzl et a. 1991, 1994 The
geochronlogicd codling paths are inferred from: (1) blocking temperatures of garnet from
Sm-Nd garnet ages (561+12Ma) (Holzl et a. 1997, (2) blocking temperatures of biotites
from Rb-Sr ages (439 = 10Ma) (Holzl et a. 199)), (3) Rb-Sr blocking temperature of
biotite (300+ 30°C) from Spea (1993.
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Fig. 2.2
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Chapter 3

High-temperature metasomatism and retrogresson of granulite facies
ultramafics from the Highland Complex of Sri Lanka: Field

relationships, phase equilibria and fluid fluxes
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ABSTRACT

The ultramafic rocks at Rupaha, Sri Lanka were emplacel ealy into the Proterozoic
basement and subjeded to deformation and granulite fades metamorphism at 850°C at 9
kbar. The results of two-pyroxene thermometry are cnsistent with geothermobarometric
results obtained from the surroundng granulites. Structures, textures and the mineralogy of
the blackwall suggest that the K-Si-metasomatism took gace ontemporaneous to the
granulite fades metamorphism. Fluid circulating at the deg crust would result in severa
types of metasomatic processes. The metasomatic readion was garted by infiltration o
K,0 and SIO, adong the lithoogicd contads between utramafic rocks and surroundng
granulites or diffusion o these comporents from the surroundng ganulites. As the
ultramafic rock cooled together with surroundng granulites, the retrograde overprints and
the caboretion and hydration textures are produced. These textures involve apartialy
retrogresson d enstatite and forsterite to tremolite and ddomite, which formed through
introdwction d CaO and CO,. The stability of tremolite + dolomite & 730-640°C and
9kbar condtionrecrdsa0.40> Xcoo > 0.15 for the fluid phase.
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INTRODUCTION

Ultramafic rocks foundin metamorphic terranes are frequently exposed as suites of small
bodes but are of spedal petrologica interest. They may loose their original mineralogicd,
structural, textural and buk chemicd properties on their way to the surfacewith advancing
metamorphism. Nevertheless the understanding of the relationship o presaure,
temperature, fluid history, mineral transformation and readion textures of ultramafic rocks
can provide many clues to its original nature. Ultramafics are often intercdated with haost
gneisss in granulite terranes, which have diemistry different from those of ultramafics.
The mntrast in chemistry between two adjacent rocks in such a terrane wuld often lead to
metasomatism. Significant advances in understanding the process of such metamorphic
ultramafic rocks have @mme from several previous gudies (e.g. Evans and Trommsdorf
197Q Trommsdorf and Evans 1974 Springer 1974 Pinsent and Hirst 1977, Evans 1977,
Desmarais 1981, Kimball et al. 1985 Peretti et al. 1992 Kasli-Fournaraki et al. 1995
Dasgupta & al., 1997%.

Until recently, attention has been focused on pesare and temperature ndtions of the
rocks as a magjor cause of metamorphism. The finding of fluid inclusions in minerals (see
reviews by Roedder 1984 Crawford and Holli ster 1986 and recant discussons onthe role
of fluids in regional metamorphic and contad metamorphic environments (e.g. Rice and
Ferry 1982 see &so reviews by Barton et a. 1991and Ferry 1991 reved that fluids play
an important role in these environments. The study of fluid—ock ratio of rocks and the
nature of fluid flow during metamorphism has been dscussed extensively in recent times
(e.g. Walther and Wood 1986, Rumble 1989 Baumgartner and Ferry 1991 Newton et al.
1998. Mineral assemblages and the stable isotopic compasitions of metamorphic rocks are
routinely used as a monitor of metamorphic fluid flow. In particular, most mineralogicd
investigations are focussed on the role of fluid flow in driving prograde readions (e.g.
Labotka @ al. 1988 Bickle and Barker 1990 Baumgartner and Ferry 1991, Nabelek 1991
Cartwright and Buick 1999. However, the role of retrograde fluid flow, which usually
invalves hydration and carboretion, following pe& condtions, has not recaved much
attention (but Ferry 1996 Rosdle 1997). The goa of this qudy is to dscuss field
relationships, petrology and geochemistry of ultramafic enclaves that charaderize the

presaure-temperature and fluid compaositions at Rupaha, Sri Lanka. Using this data, we will
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present evidences for the high temperature and retrograde fluid-rock interadions of

ultramafic rocks.

The ultramafic rocks in the Rupaha aea ae generally massve. They crop ou as a series of
discontinuows lenses and pods enveloped by surroundng ganulites (Fig. 3.1). Pe&k
metamorphic asemblages (e.g. enstatite-forsterite-diopside) are observed ony in few
places. These rocks often show evidences for retrograde overprints in which pe&k
metamorphic asemblages are replacal by tremolite, ddomite and talc in many places.
Therefore, the path of retrograde fluid flow can be evaluated on the basis of retrograde

mineral assemblages of the ultramafic rocks at Rupaha.

GEOLOGICAL SETTING AROUND RUPAHA ULTRAMAFIC BODY

The Proterozoic basement of Sri Lanka aonsists mostly of granulite to amphibadlite fades
rocks. Sm-Nd model ages, determined for a variety of lithology, define three distinct
crustal units: the Highland Complex (HC); the Wanni Complex (WC); and the Vijayan
Complex (VC) (Fig.3.1) (Milisenda @ al. 1988, 1994Cooray 1994). The rocks of the aea
around Rupaha lie within the HC of Sri Lanka. The principle rock units in the aea ae
ortho- and para-gneisses. The meta-sediments and the meta-igneous charnockiti c rocks are
intimately intercdated in the field on all scdes (from metre to kilometre). The meta-
sediments include quartzites, marbles, pelitic gneisses and cdc-sili cae granulites. Ortho-
gneisses are present as charnockites, charnockite gneisses and hotite gneisses. At least
threemajor phases of structural events (D;, D, and D3) have been recmognized (Berger and
Jayasinghe 1976 Kriegsman 1993. The D; event is believed to predate pegk metamorphic
condtions, while the D, event is contemporaneous with it. D3 is believed to form during
the ealy retrogresson.

Field mapping in the aea of Rupaha showed, that the ultramafic bodes are exposed
discontinuowsly as elongated belts along most of the western part of Rupaha. Its length is
abou 2 km, with a thicknessranging from a few metres (northern part of the body) to
severa hunded metres (in the river tributary ‘ GaranduKandua’') whereit is best exposed
(Fig. 3.1). Apparently the ultramafic rocks aded as a cmmpetent unit during deformation o

the aea The planes of foliation and the diredion d dips within the ultramafic rocks are
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difficult to identify. But when it is visible, the foliation is smilar to the regional striking
trend, approximately N-S. Metasomatic mineral readion zones are observed at contads
between utramafic rocks and sili ceous granulites. Similar contad relations are repeded in
at least six places, al within the main exposure & ‘GaranduKandua'. Further north of the
river basement, ultramafic rocks can again be traced discontinuowsly in four places. Here,
morphdogicd, physicd and textural feaures of al rock types are similar to those &

GaranduKandua.

The ultramafic rocks at Rupaha ae mmpaosed primarily of the metamorphic equivalent of
dunites and peridatites. Based on their physicd and textural appeaance, and minera
paragenesis, four rock types have been dvided (Fig. 3.1): (1). Pae green coloured
ultramafic rocks (PG) (e.g. sample numbers 9740, 9744in Fig 3.1), (2). Dark green
coloured utramafics (DG) (e.g. sample numbers 93205, 9703in Fig 3.1), (3). Phlogopite
dominate ultramafic rocks at the physicd contads of the surroundng granulites known as
blackwall zone (BW) (e.g. sample numbers 97107, 9712in Fig 3.1), (4). Late cabonatized
and lrecaated veins (CV) (e.g. sample numbers 9316, 9317, 93181 Fig 3.1).

Olivine is the main congtituent in al rock types, except the late caboratized and
brecdated veins, where serpentine is the dominant constituent. Colourless paphyroblastic
orthopyroxenes are present in most fresh PG rocks (Fig 3.23). The DG rocks include
accesry Fe-oxides, some phlogopites and scanty relicts of spinel. The @lour of spinel
varies from dark blue to puple. The spinel occurs as subhedral crystals, smoacthly bounded
clots and frequently as clusters of grains of 1 to 2mm size. Clots are dongated resulting in
micro-scae pinch and swell structures (e.g. sample No. 932@ in Fig 3.1). Although two
different ultramafic rocks have been olserved, there does not sean to be awy spatia
relationship o distribution d the diff erent types.

The blackwall rocks (BW) often exhibit a planar fabric and are @nfined to the physicd
contads of the ultramafic body with the surroundng grandites (e.g. 971 in Fig 3.1).
These rocks occur as thin lenses abou 10-50 cm wide, they are dso composed of
predominantly olivine with lesser amourts of phlogopite, and traces of clinopyroxene and
spinel, but significantly porphyroblastic orthopyroxene is absent here. Pronourced changes
in modal abundances of minerals occur as phlogopite increases progressvely within this
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zone, and clinopyroxene and divine deaease. With further deformation, elongated
phlogopite aystas lie dong gain boundries defining a distinct fabric. Both field
relationships and textures suggest that phlogopite formed duing the bladkwall alteration
(cf. Dubinka and Wiewiora 1999).

Carborete-serpentine veins (CV) dissd the ultramafic rocks (Fig. 3.1). The caborate-

dominated veins are afew millimetres to several centimetres thick. In addition to these

veins, blakish-green, frequently brecdated shed-like bodes are well developed aong

brittle fractures and shea zones (Fig. 3.20. The orientations of these shed-like bodes are

randam. Sheaing in the rocks is confined orly to the PG part of the rock (e.g. 9316, 9317,
9318 in Fig. 3.1). The etensive occurrences of late caborete veins in pae green

ultramafic rocks perhaps lead ealier workers to describe this unit as *serpentine marble

(e.g. Coomaraswamy 1904 Soyza 1986 Rupasinghe and Dissanayake 1987 Siriwardena
1988.

METHOD OF INVESTIGATION

The Rupaha ultramafic body was sirveyed onaeaia phaographs, mapped in detail in the
field. The geologicd mapping was caried ou on the scae of 1:500 rea the ultramafic
unit during the curse of this dudy. As far as passble, al ultramafic units, na only from
the main exposure but also from other isolated locaions were identified and mapped.
Twenty-five samples representing every ultramafic unit were olleded from 18 locaions
in the ultramafic rocks, exposed at ‘Garandu Kandua' (Fig. 3.1). At ead oucrop cae
was taken to colled the least altered, freshest samples. Mineral parageneses of ead sample
were identified by petrographic observations and microprobe measurements. Modes of
every representative rock types were measured by courting 2000 pants in thin sedion.
The major and trace ¢éement analyses of whole rocks were determined by X-ray
Fluorescence spedroscopy (Philips-PW1404 at the University of Mainz, Germany.
Mineral compasitions were measured with a JEOL microprobe (JEOL JXA 8900RL) at
the University of Mainz, Germany with analyticd operating condtions of 15 keV
acceerating voltage, 12rA bean current and 2um bean diameter. Synthetic and retural
standards were used. Halides were cdibrated with tugtupite, Na;AIBeSi;01(Cl, S) (7.58
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wt % CI) and F-phlogopite (9.20wt % F). An orline ZAF corredion was used for data
processng (Amstrong 1988, 198%.

WHOLE ROCK CHEMISTRY

The dl whale rock major and traceelement compositions are listed in Table 3.1. All the
samples examined are silica poa, with SIO, compasition ranging from 37-45%. High
amourts of total Fe ae daraderistic for dark-green utramafics, in which secndary
magnetite is resporsible for this high Fe mntent. Fig. 3.3 ill ustrates the cmpositional
variability of different zones in utramafics. A marked increase in K,0, TiO,, Al,O3, and
volatiles along with a deaeease in MgO is observed for samples close to the border of the
ultramafic rocks (bladkwall zone). This is refleded by the increased modal abundance of
phlogopite, and a deaease in the moda abundance of olivine, orthopyroxene and
clinopyroxene (Table 3.1). Samples from late caboretized and krecdated veins (CV) have
low Mg and high volatile concentrations (Fig. 3.3a, b). Table 3.1 also includes ome
lithophile trace ¢ement data for Rupaha ultramafic samples. Concentrations of fluid
immobile trace éements are below detedion limit in many of our samples. Ni and Cr
concentrations, which are cmpatible with divine and spinel, show alarge increase in the
dark coloured utramafics (Table 3.1) while Ba aad Rb significantly increase towards the
bladkwall zone of the ultramafic rocks. The high Ni and Cr of the DG rocks suggest that
original protoliths environment of the ultramafic would be eath’s upper mantle (see &so
review from Evans 1977), but now have been completely metamorphosed.

MINERAL CHEMISTRY

Compaositions of the minerals found in the ultramafics are listed in Table 3.4. Olivine
composition in pale green rocks is FOgsgg, While dark green rocks have Fogs.gg)(Table
3.4a). Orthopyroxene is enstatite with Engggg, While clinopyroxene consist of 99% of

diopside comporent.

Spnel belongs close to the spinel end member of the spinel-hercynite solid solution with
Xwmg = 0.92-0.92 (Table 3.4q). It has very low Cr contentas [(Cr/(Cr + Al) = 0.00] and
(recdculated) Fe** (0.0030.021) contents. These values are mmparable with the spinels
from the high-grade meta-peridatite bodes of Ruby Range Montana (Desmarais 1981,
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Xwmg = 0.48 0.63 and [Cr/(Cr + Al) = 0.020.15, bu differ from the primary igneous
spinels found in the low grade metamorphic terranes of British Columbia (Pinsent and
Hirst 1977 Xug = 0.050.62and Cr/(Cr + Al) = 0.580.76). The same chemistry of spinel
in igneous rocks was observed by Basu and MadGresor (1974, Evans and Frost (1974,
Sadk and Ghiorso (1991 and Clynne and Borg (1997).

Phlogoptes in the BW and PC are high in Mg (Xmg = 0.9850.995, compared with
phiogopite in the DG, which are poaer in Mg (Xug = 0.9760.97§. No significant
difference between the two groups has been observed with resped to Cl (0.04-0.08 gdu)
(Table 3.4b. Phlogopite in DG rocks has a much higher Al content (2.502.85 (du)
compared to that of PG and BW variety (2.00-2.45 gdu). Fe ontent is also significantly
high in the dark green rock (Table 3.4). A remarkably high F content is observed in some
phlogopites. Phlogopite found at the BW rocks sows the highest values of F, ranging
from 0.813- 0.899pfu. This indicaes high F/ F+OH in the fluids (Table 3.4b). High F
increases the stability of biotite towards higher temperatures (Hensen and Osanai 1994).

Amphibodle is a nealy pure tremolite with a formula of Cay.94Mg4.90517.90022(OH1.93F0.06
Clooy). Talc islow in Al and Fe and, hes a Xy of 0.980.99. Talc is too fine-grained to
obtain proper analyses in the shea zone. Antigorite, which is a high temperature and
presaure form of serpentine, is perhaps the major serpentine mineral present within the
assmbl ages.

PETROGRAPHY

Mineral assmblages

Mineral associations in dfferent lithologies and the textural evidence for mineralogicd
equili brium and dsequili brium are discussed in the next sedions. Mineral associations of
four different lithologies are listed in Table 3.2and ill ustrated in Fig 3.4in the composition
map o MgO-SiO,-Ca0-(H,O-CO,). The mineral association daes not only include
presumed primary minerals, but also late-stage minerals appeaing in the readion textures.
Modes of eight samples in four different units of ultramafic rocks are listed in Table 3.3.
The pe&-metamorphic minerals and secondary minerals have been identified from

textures, where secondary minerals commonly overprint peek-metamorphic minerals.
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Pale green utramafic rocks (PG)

Pale green utramafic rocks are distinguished by the presence of forsterite, diopside,
enstatite and also tremolite and ddomite. The observed mineral asociations are; Fo + Di +
En, Fo + Tr + Dol, and En + Tr + Dol. Mineral abbreviations are those of Kretz (1983.
Textural evidences suggest that forsterite; enstatite and dopside ae from ealy
metamorphic phases (Fig. 3.48) while tremolite and ddomite overprint the former
(Fig.3.49.

Dark green utramafic rocks (DG)

Mineralogy of DG zone differs from PG zone by the gpeaance of spinel and pHogopite
(Table 3.2). Where DG rocks consist of phlogopite, thisis aways confined to the BW zone
(e.g. 9205). The occurrence of orthopyroxene has been observed in DG rocks few places
(eg. 9829, bu a the PG zone. Mode of phlogopite incresses up to ~6% due to
replacanent of many ealy metamorphic minerals. The DG consists the assmblages of Fo
+ Phl, Spl + Phl, Spl + Di + Phl, Fo + Di + Phl, Fo + Di + Dol and Fo + Phl + Dol, where
phlogopite and ddomite gpea as late overprints. This zone is the least altered zone
among all ultramafic lithologies showing an average mode of secondary minerals of abou
6%.

Phlogopte-bearing dackwall rocks (BW)

The phlogopite-beaing bladkwall rocks, in general, are medium- to coarse-grained, and
compaosed predominantly of olivine (~60%) with lessr phlogopite (~12%). The main
changes occur within BW zone, they are summarized in the Table 3.3. Minerd
associations of this zone ae dmost identicd with the DG zone, but differ significantly
with the modes of phlogopite and divine and the state of alterations (Table 3.2). The
formation d coarse-grained phogopite is quite advanced in this zone & the expense of
forsterite and spinel. Oriented pHogopites are well interlocked with divine. The marked
increase of hydrated minerals at the physicd contad indicates a flux of fluid, accompanied

by potassum and sili con.

Late arbonaized and lecaated veins (CV)
These veins contain variety of mineral assemblages that are interpreted as having formed
during retrogresson. The observed mineral assemblages in the late veins are Dol + Tlc +
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Srp and Tlc + Tre + Dol. Ninety percent of forsterite has been completely atered to

serpentine within this zone.

Textural relations

From structural and textura relationships it is clea that the Rupaha ultramafic body has
been completely transferred to new phases under high-grade metamorphic condtions.
Crystalli zation oulasted penetrative D, deformation, which is the major fabric-forming
event in the region. The foll owing evidences pointed to this conclusion; No typicd igneous
textures and structures have been observed through ou the ultramafic body; minerals have
irregular anhedral habits; absence of mineral relicts; no mineral zoning; and the presence
of micro-scde pinch and swell structuresin spinel and lineaed pHogopite in the BW zone,
which follow the D, deformation d the region.

Peak and rear-peak metamorphic assemblages

The ealiest, high temperature assmblages are forsterite-enstatite-diopside, and forsterite-
spinel (Fig. 3.5, b). They are preserved in the less altered pations of the body. Both
asemblages can be stable & granulite fades temperatures and presaures. Olivine is
variably serpentinized, whereas osme olivine grains are dtered into the serpentine minerals
along cleavage fradures and baders. The other high-temperature assemblages in
ultramafic rocks are phlogopite-beaing asemblages, which are gparently restricted to
BW zone of ultramafic rocks (Fig.3.5c). These ae mostly developed within a metre of the
body contad. In paces, pHogopite cmmmonly replacead spinel and forsterite, forming thin
coronas separating them (Fig 3.5b. The phlogopite is aligned with regiona foliation,
interpreted to be D,. The D, deformation fabric has been shown to be nea-pesk
metamorphism. Hence, pHogopite formed in utramafics close to, a at, Pe&k PT. The
formation d phlogopite & the physicd contads of the body indicaes that masstransport

between utramafics and hast granulites occurred duing granulit e fades metamorphism.

Retrograde metamorphic assemblages

Severa retrograde readion textures overprint pesk mineral assemblages within the pale
green utramafics (PG). The stable mineral assemblages are ill ustrated in Fig. 3.4 The most
common is the replacement of enstatite by tremolite and ddomite (Fig. 3.59. Tremolite

also ocaurs as well-formed prismatic aystals, which grow within the forsterite matrix as
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well. Tremolite overprints has been observed at the forsterite-forsterite grain boundries as
well (Fig. 3.%). These textures provide an urequivocd sense of tremolite formed either

from enstatite or from forsterite or both ways with infiltration o Ca-rich fluids.

Talc quite often replaces tremolite in late caboratized veins (CV) (Fig 3.5). Here talc
formed through the infiltration o H,O and CO,-beaing fluids. The source of these fluids
is external to the ultramafics. The last prominent retrograde dterations are veins of
serpentine minerals. In general, the ddundance of serpentine is greaest in samples that
have éundant late veins (Table.3.3). Here forsterites are dtered to serpentine mmpletely
in dmost every sample. Nevertheless the degree of ateration is less in zone of DG

lithdlogy.

CONDITION OF METAMORPHISM

Peak metamor phic temperature

Unaltered pations of the rocks, together with mineral fabrics discussed indicae that the
ealiest asemblage was orthopyroxene + dinopyroxene + olivine + spinel. Pedk
metamorphic temperatures were estimated using the two-pyroxene geothermometry of
Kretz (1982 and Brey and Kohler (1990. Thirteen pyroxene pairs were ciosen for
thermometry. Seleded data used for Opx-Cpx cdculations are given in the Table 3.4a
(mineral pairs 30-46, 3248, 34-53). The cdibration d Brey and Kéhler (1990 yields
temperatures of 750+ 41°C while Kretz's (1982 cdibration gives higher vaues of 842+
68°C at 9kbar condtions. A presaire estimate of 9kbar was used, based onthe surroundng
granulites (see tapter 2). The temperature estimates of the ultramafic rocks are nsistent
with thase of the surroundng granulites. This suppats the view, which is based onfield
and petrologicd observations that ultramafic rocks have equili brated under granulite fades

condtions.

Evolution of the mineral paragenesis and mineral fluid-reactions

Mineralogicd changes and readion textures observed in the ultramafic rocks have several
important implicaions in resporse to change in temperature, fluid and buk composition.
The growth of phlogopite in the ultramafic rocks was investigated by comparing
phlogopite assmblages with phase equili bria for the simplified system MgO-SiO,-K,0-
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Al;03-H,0-CO,. We used the puSiO,-uK,0 diagram and T-pK,0 diagram to ill ustrate the
pe&k metamorphic condtions, including the dfed of fluids during the formation o
phlogopite. The fluid induced retrograde metamorphic condtions are ill ustrated from
HCO2-uCa0 and T-uCaO diagrams. All diagrams were cdculated with the PerPleX
software (Conndly 1990. Reduced adivities were used for diopside, enstatite, forsterite,
talc, spinel, phogopite, and tremolite that measurably deviated from pure substances while
talc, ddomite, brucite, K-feldspar, plagioclase and periclase were cnsidered as pure
phases. The thermodynamic data of Holland and Powell (1998 were used together with

the following adivity models; The ar, in Ca-amphiboles was cdculated after Holland and

Blundy (1994 while ag, and G in enstatite were computed after Holland and Powell

(1996). Activity models for diopside, talc, spinel and divine ae from Holland and Powell
(1998. Fluids were considered CO,-H,0O solutions that obey the equation d state given by
Holland and Powell (1991, 1998 We used the ‘ionic solution model’ [aqn = (XMg)3*
(Xor)?] to cdculate the adivity of phlogopite because of the high F content that is

measured in pHogopites.

Peak metamorphic condtions

The mineral asemblages of forsterite-enstetite-diopside ae remgnized as the pe&k
asemblage in the rock and may represent the metamorphic gisode that took daceduring
the highest temperature dtained by the rock (Fig. 3.59). These mineral assemblages are
also graphicdly presented in the H,O saturated CaO-MgO-SiO, ternary diagram (Fig
3.49).

The readion texture of a phlogopite mrona aound spinel suggests a readion involving
forsterite + spinel to form phlogopite (Fig. 3.55. A model explaining the formation o
phlogopite from forsterite and spinel is $own in the uSiO2-pK,0 diagram in the Fig. 3.6.
It relates the formation d phlogopite in an open system. The influx of K,O and aso SIO,
isrequired to produce phlogopite. Therefore, the readion (1) could be the most ressonable

explanation for phlogopite formation at the given PT condition.

2Spl +5F0 + 4 HyO + 7 SiOp + 2 KpO ~--emmmemmmen > 4Pl (1)
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The geometry of bladkwall zones and mineral assemblages also suggests a locdized fluid
flow along the physicd contads. The Si and K must have been added from outside to the
system during the readion in order to form phlogopite. The influx of H,O-rich fluid, which
was probably saturated in SiO,, triggered the readion leading to the formation d
phlogopite.

The possble temperature ondtions invaving hydration and the adivity of KO,
projeding from SIO,, is shown by the T-puK,O diagram (Fig 3.7), which was cdculated for
9kbar. This diagram illustrates that the formation o phlogopite requires at lesst a
temperature of 80F°C. This is close to the pee&k metamorphic condtions of the ultramafic
rocks. This result is consistent with the temperature cdculations of two-pyroxene

thermometry of ultramafics.

The phases of muscovite, sanidine, anorthite, clinochlore, brucite and periclase were
included to highlight the condtions under which these minerals would na be expeded.

Retrograde metamorphic condtions

Phase relations of retrograde mineral assemblages are plotted in the fluid saturated (H,O-
COy) ternary diagrams of CaO-MgO-SiO, (Figs 3.4band 3.£), This ill ustrates the typicd
phase relations of retrograde minerals in the zones of PG and CV. Retrograde minerals like
tremolite, ddomite, talc and antigorite from enstatite, forsterite and dopside have formed

in these zones.

Abundance of hydrated minerals like phlogopite & the rocks from BW suggests water
must have been present in the pore fluids in the high-temperature condtions. And aso, the
evidence for CO, + H,O in fluids during retrogresson is indicaed by the overprints of
tremolite + dolomites over enstatite (Fig. 3.59 and the formation d tremolite in the
forsterite-forsterite grain boundries (Fig. 3.5%). The readion poduwcing tremolite dther
from forsterite of from enstatite requires Ca’*. For tremolite and ddomite, such areadions
may be simplified to;
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8 Fo + H,O + 13Ca0 + 22 CO, --------- - Tr+3Dal 2

A En +H,0 + 5 Ca0 + 6 COy ---------- > Tr+3Dol ©)

Significantly, diopside is absent in any of tremolite-bearing samples (see &so Table 3.2).
Hence the transition d tremolite and ddomite alditionally involved the Ca and CO; in the
readions. The cdculation d the dhemica potentia diagram of CO, Vs CaO, shown in Fig.
3.8, ill ustrates the stability of Tr-Dol-Fo-Tlc-Di-En-Qtz in a system CaO-MgO-SiO,-H,O
a 750°C and 9kkers. Diagrams were cadculated with measured mineral compositions
converted to adivities. The resulting diagram reproduces mineral readions, which are very
similar to the observed products of retrograde readions. For example, the influx of CO,
and CaO isrequired to form Tr + Dol from En or Fo.

Further evolution is governed by constant MgO adivity and progressvely deaeasing
adivity of CO, and CaO while passng the Tr + Doal, finaly arriving at the Tlc + Dol zone
(as frown in the dark linein Fig. 3.8. This path attributed to form Tlc from Tr in the late
veins. The adivity change of CaO and CO; indicaes the strong gradient in chemicd
potential. These cdculations, suppat interference from the aguments detailed abowe, are

obviously the fadors controlli ng the retrograde overprints of the ultramafic rocks.

The adivity correded T-puCaO diagram is cdculated for the system MgO-SiO,-H,O-CO;
at 9kbar condtions, using the thermodynamic database of Holland and Powell (1998 (Fig.
3.9). The shaded areamarks the stability fields of En + Tr + Dol, Fo + Tr + Dol and Tr +
Dol + Tlc. Fig. 3.9 was cdculated for Xco, [=CO,/(CO,+H,0)] = 0.30. The univariant
point A overlapped with univariant point B for Xco, of 0.40, indicaing forsterite is
unstable, when Xcoz > 0.40. Insomuch, the univariant point A overlapped with the
univariant point C, when Xco2 < 0.15.No engtatite can be formed with Xco, < 0.15at the
given pressure ondtions. Hence, it can be concluded that the stability fields of En + Tr +
Dol and Fo + Tr + Dol occur together at the fluid condtion o 0.40> Xco, >0.15at 9kbar
condtions. Therefore, T-uCaO diagram provides a ressonable estimate of 640-750°C for
En + Tr + Dol and Fo + Tr + Dol assemblages of ultramafic rocks at 9 kbar condtions
during the granulite-amphibdlit e retrograde condtion.
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When summarising the retrograde history of ultramafic rocks, it can be pointed ou that
with the progressng of retrograde readions (2) to (3), the pervasive CO, fluid flow (0.52>
Xcoz = 0.21) acompanied with the influx of Ca®* to the ultramafic rocks may have been
retrogressed at temperatures between 730and 640C. The eguili brium assmblages $oud
contain talc instead of tremolite & lower temperatures. The stability of talc rather than
tremolite in the low-grade asmblages at Rupaha shows evidence for the presence of
water-rich fluid condtions. The first appeaance of antigorite marks a pervasive hydration
event in later stages. The antigorite event therefore refleds infiltration o H,O into haost
rock at temperatures below 640°C through the brittl e fradures.

SUMM ARY AND DISCUSSION

Metamor phism

Although mineralogicdly complex, the metamorphosed utramafic rocks at Rupaha ae
compasitionally simple, permitting a relatively straightforward interpretation o their
metamorphic evolution. Such rocks are commonly mantle-derived sili ca-undersaturated
rocks. The low concentrations of Cr, Ni and Fe in spinel, divine and dopside indicate that
their protoliths have been completely transformed into a metamorphic rock during
granulite fades. They formed as a pine type peridatites in the metamorphic terranes (Evans
1977).

K-Si-metasomatism

There ae severa lines of chemicd evidences for a high temperature metasomatism at the
out side most part of the body. The diredion d the planer structural elements suggests that
the phlogopite growth took dace ontemporaneous with the major deformation episode
(D2), which in turn is believed to be syn-pea&k metamorphic (Berger and Jayasinghe 1976
Kriegsman 1993. The formation o phlogopite during deformation requires infiltration o
potassum and silica Similar circumstances have been discussed by many other workers
(e.g. Harker 1932 Bead 1973, 1976Gresens 1966 Kerrich et al. 1977 Brodie 1980).
The erichment of K, Ti, Al, Rb and Ba measured for whaoe rocks also suppats this
hypothesis (see 4so Fig. 3.3.
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Applicaion d pSIO-pK,O and T-pK,O diagrams illustrate the nea-pe&k K-Si-
metasomatism in the ultramafic rocks at the physicd contads from potassum-rich
granulites. The readion was garted by K,0, SiO, and H,O infiltration along the granulite-
ultramafic contad or diffusion o these dements from the surroundng ganuites The
stability field of phlogopite, as ill ustrated in T-pK,0, suggest the K-metasomatism may

have occurred contemporaneous to the granulite fades metamorphism.

Fluid flow during retrogresson

The replacanent of enstatite and forsterite by tremolite and ddomite @nfirms the
presence of CO,-rich infiltrating fluids (0.40> Xcopz > 0.15) at elevated temperatures (730-
640°C) at 9kbar. The retrogresson can be modelled asuuming the cemicd potential
gradientsin Ca and CO,, which may possbly have served to modify the pea&k metamorphic
mineral assemblages. The second, bu widespread hydration occurred at much lower

temperatures and is marked by the formation d serpentine from forsterite.

Field evidences and textures of the formation d retrograde minerals like, tremolite,
doomite and talc within the ultramafic rocks suggests that the formation was, in general,
not locdized by fault-controlled influx. Retrograde metamorphism simply correspondsto a
progressve opening of the system, whenever fluid circulation introduces H,O and CO; to
more permeable zones. However, it is clea that he masgve brecaation and carboretion
allowed fluid interadion with large volumes of rocks, as oppcsed to the retrogresson,

where minor brecdation accurred and fluid flowed mainly along the grain boundries.

Mechanism of the enplacement

Any model for the mechanism of emplacement of the ultramafics roud acourt for the
sequence of metamorphism, metasomatism as well as retrograde events. The ultramafic
rocks at Rupaha ae the only locdity so far foundin the entire Highland Complex of Sri
Lanka, in which they have been metamorphosed at granulite fades. One possble
explanation for the observations is that a pieceof the mantle was faulted upto the lower
crust (cf. Dick 1979. The fluid circulating at the deep crust would result in severa types
of metasomatic proceses. As the ultramafic rock cooled together with surroundng
granulites, the retrograde overprints and the caboretion and hydration textures are
produced.
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Table 3.2 Mineral associations in ultramafic rocks

Sample No

Fo

En

Di

aSpl

Phl

Tr

Dd  Tlc  Mag

974
8710
8710
9740
B82S

03205
05205
a703
85205
b824

9710A
97104
97108

9316
8317
9318

blackwall rocks (BW)

pale green ultramafics (PG)

dark green ultramafics (DG)

carbonati zed veins (CV)

b A b

b

X

LR PP

X- occurs as matrix assembl ages

X'- early retrograde phase

a .
X - ocours as alterations

Table 3.3, Modes of selected samples of metamorphosed ultramafic rock:

(PGpale green, DG-dark green, BW bladowall, CV-carb matized vems)

9710/ 9311|9720 9703A 9712 9310A/ 9316/ 9318
rock type PGl PG DG DG BW BW CVl CV
olivine 636/ 682 726 TS 562 642 40/ 46
opx 19 16 00 00 00 00 00 00
cpx of 03 00 13 05 03 00 00
spinel of 00 134 82 05 02 00 00
phlogopite 01 01 58 70 145 101 00 00
romolite’ 1 27 00 00 00 00 52 58
dolgmice” 52/ 43 12 01 23 02 84 76
serpentine” 281 228 68 42 260 250 552 542
Fe-cride’ 0 0 02 04 00 00 00 00
talc’ 0 0 00 00 00 00 272 278

" Secondary phases
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FIGURE CAPTIONS

Fig. 3.1 Geologicd and Structural map of the aea aound Rupaha. The Proterozoic
rocks are @mposed of charnockites, charnockitic gneisses, quartzites, garnet-
sillim anite-graphite gneisses (khondlites), garnet-biotite gneisss, and littl e scatered

marbles.

Fig. 3.2(a). Phatograph d the pale green coloured fresh-looking ultramafic rock has
coarse-grained colourless porphyroblast orthopyroxene in its fresh-looking samples,
(b). Photograph d dark blue to badk coloured masdve late-veins cross cutting the
ultramafic body.

Fig. 3. 3Whadle rock analyses of different zones plotted against: (a). MgO vs SiO,, (b).

LOI vs SIO,.

Fig. 3.4 Chemographic diagrams for the CaO-MgO-SiO, system projeded from H,O
and CO,. These diagrams illustrate the different mineral assemblages found in

diff erent zones in the ultramafic rock.

Fig. 3.5 Photomicrographs of ultramafic rocks dowing different prograde and
retrograde disequili brium mineral textures: (a). The gpeaance of olivine-forsterite-
enstatite in the same thin sedion (as reli cts phase?) marks the ealy pea&k metamorphic
history of the rock, (b). Phlogopite corona aound spinel marks the possble readion
between forsterite and spinel to form phlogopite, (c). Aligned pHogopite & the
bladkwall zone marks the major deformation fabric of the bladkwall rock, (d).
Poikil oblastic enstatite has numerous inclusions. Enstatite has commonly retrograde to
tremolite, (€). Formation d retrograde tremolite dong forsterite-forsterite grain
boundrries. Also nde the occurrences of late stage caborete veins, (f). Readion

textures of talc ater tremolite marks the fluid present retrogresson o the rock.

Fig. 3.6 pK,O-uSiO, diagrams at 850°C/9kbar. The arows indicae possble
infiltration pathway of phlogopite formation at the blackwall zone. The diagram was
cdculated from PerPleX software (Conndly, 1990 using the thermodynamic
database of Holland and Powell (1998.
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Fig. 3.7 T-uK,O diagrams at 9kbar. Activity correded dagram suggest that
phlogopite is dable in the temperatures above 800°C, which corresponds to pesk

metamorphism of ultramafic rocks.

Fig. 3.8Chemicd potential diagram of uCaO vs uCO, showing a gradient of CaO and
CO, at 750°C/9kbar. The dark line indicaes the existence of a dhemicd potential
gradient during the formation d retrograde mineral assemblages (shaded areg. The
diagram was cdculated from PerPleX software (Conndly, 19900 using the
thermodynamic database of Holland and Powell (1998.

Fig. 3.9 T-uCaO diagram for the system CaO-MgO-SiO,-H,O-CO, cdculated at 9
kbar. The retrograde assmblages of tremolite, ddomite and talc document the
stability limit of 640-730F°C at X o, of 0.30.Seetext for more detail s.
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(@) peak (b) retrograde - stage 1
metamorphic
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ABSTRACT

Field and petrologicd observations of ultramafic enclaves in granulites from 10 locditi es
at Rupaha in the Highland Complex of Sri Lanka, place citicd constraints on mass
transfer mechanisms in the lower crust. Mineral readion zones are observed at contads
between utramafic rocks and sili ceous granulites. The readion zones developed between
these units from ultramafic to siliceous granulites are: phlogopite + spinel + sapphirine,
spinel + sapphrine + @rundum and corundum + biotite + plagioclase. Spinel-sapphrine
thermometry yields a temperature of 820 + 40°C, which is in agreement with the pe&-

temperatures recorded in the aljacent crustal granulites and utramafics rocks.

The sequences of mineral zones, containing a variety of Al-rich, silica undersaturated
mineralsin the readion zones separating the ultramafic rocks from the sili ca-rich rocks can
be explained by a diffusion model. This invalves the diffusion d Mg from ultramafic
rocks aaossthe layers, and K and Si diffuse in oppaite diredion. Chemicd potential of
Mg generated continuows monaonic gradient, allowing steady state diffusional transport
aaossthe profile. The strong enrichment in Al, and the mnsiderable lossof Si, during the
formation d readion bands can be inferred from isocon dagrams. Some Al was probably
added to the readion zones, while Si was lost. Thisis most likely due to fluids percolating
paralel to the zones at the boundry of the rock units. High temperature supercriticd
fluids, espedally Chlorine and Fluorine, present in the pore spaces are dso resporsible for
the transport of U and Th to- and LIL elements from the readion zones.
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INTRODUCTION

Studies of metasomatism during high-grade regional metamorphism have focussed
attention onthe medanism of the mass transfer in the lower crust. Metamorphic fluids
may ad as a medium for masstransport (see &so Fyfe @ a. 1978 Ferry and Dipple 1997).
The most striking example for metasomatism is the developing of distinct readion zones
(e.g. Korzhinskii 197Q Braddy 1977 Frisch and Helgeson 1984. The present paper
discuses the @nstraints on the medianism of mass transfer between enclaves of
ultramafic rocks interbedded within thick layers of siliceous granulites at Rupaha, Sri
Lanka. Severa silicaundersaturated mineral assemblages containing spinel, sapphirine
and corundun separate the ultramafic from granulites. Here, the fourth occurrences of
sapphirine in the Sri Lankan Proterozoic basement is reported (Osanai 1989 Kriegsman
1991, Osanai et a. 1996 Kriegsman and Schumadier 2000. Formation o sapphirine in
metasomatic zones has been reported in a few instances (Schumader and Robinson 1987
DunKey et al. 1999 Hokada & a. 1999.

Understanding of mass transfer for metasomatic processes for geologic systems requires
information abou mineral paragenesis, spatia distribution d minerals, relative
abundances, and chemicd compasition d minerals and fluids. Here, we report data on the
formation d readion zones from field olservations, lateral changes in mineral chemistry,
chemicd potential diagrams and massbalance Variations of biotite chemistry and helogen
contents in biotites in closely spacel samples of a @wmplete profile (crosssedion o
ultramafic rocks, readion zones and siliceous granulites) provide insight into fluid
compasition. These data permit cdculation d the extent to which chemicd comporents
have been introduced, removed, and/or redistributed duing metasomatism. The results
suggest that readion bands were formed duing high-temperature and pressure. Diffusion
most likely was the dominant mecdhanism of transport acosslayers, wheress sgnificant Si

leskageis proposed perall €l to the layers.
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REGIONAL GEOLOGY AND P-T EVOLUTION

The study area(Fig. 4.1) islocaed in the cantral part of the Highland Complex, which is
also the part of Proterozoic belt in the Sri Lankan lower crust (Cooray 1994. The other
important metamorphic units of Sri Lankan basements are the Wanni Complex and the
Vijayan Complex. The Highland Complex shows a prolonged crustal history (~3.2 - 2.4
Ga). It consists of granulite fades rocks, as does the yourger rocks from the Vanni
Complex (~1.1 Ga) (Kroner et al. 1991 Milisenda & a. 1994. Evidence from the U-Pb
system dates granulite fades metamorphism at ~610-550Ma (Bauer et al. 1991 Holzl et al.
1994). The Vijayan Complex shows Amphibadlite fades assemblages. Three mgjor phases
of structural events have been recognized (Berger and Jayasinghe 1976 Kriegsman 1993.
The first event (D1, and Dyp) are believed to predate peek metamorphic condtions, while
the D, event is contemporaneous with peak PT. The D3 is believed to form during the ealy

retrogresson.

Supraaustal sequences, consisting of marbles, garnet-sillim anite-graphite gneisses and
gurartzites constitute @ou 50% of the HC terrane. The remainder of the terrane is
composed of orthogneisses. Peak temperature was estimated to be between 766830°C at a
pressure of 9-10kber in the eat and southeast part. Lower temperatures around~700°C/5-
6kbar are indicaed in the northwest (e.g. Faulhaber and Raith 1991 Schumader and
Faulhaber 1994). Schenk et a. (1988 and Voll et a. (1994 derived a maximum
temperature of 900°C for granulite assemblages from two-pyroxene and two-feldspar
thermometry respedively. Metamorphic peak temperatures and presaures estimated from
the rocks a Rupaha with two-pyroxene thermometry and garnet-clinopyroxene-
plagioclase-quartz barometry, yield temperatures of 875+ 20°C and pressures of 9.0+ 0.1
kbar respedively (chapter 2).

This gudy focuses on the region d ultramafic rocks that crop ou as a series of
discontinuows lenses and pod, enveloped by surroundng ganuites a Rupaha
Lithoogicd layering strikes 030-040° and dps 20-40° to west (Fig 4.1). In al mapped
exposures, the strike is broadly paralle to regional foliation. The present orientation o
lithologicd layering was that attained at the pes of the metamorphic event. Metasomatic
readion zones sparate granulite rocks from those of ultramafic enclaves. Readion zone
sequences are repeaed at least in 10 pacesin the aea The sequenceis best exposed at the
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river tributary named GaranduKandua (Fig. 4.2. The thicknessof readion zones varies
significantly from locations to locaion (10-150cm). The mineral assemblages and textural

charaderistics of the readion zones are described in the foll owing paragraph.

ANALYTICAL METHODS

The demicd compaosition d the various parts of the readion zones relative to their
original protoliths was used to evaluate the gain and losses of materials that occurred.
Rock samples were taken from a traverse acoss the sampling points of 98059806 (Fig.
4.2 and Fig. 4.3, where the least dtered samples can be found. Rock slabs were aut
roughly perpendicular to main foliation from ead sample. Thin sedions were aut, so that
profil es covering the entire samples were obtained. Nine samples from sili ceous granulites,
six from corundum gneises and three eah from the readion zones were anaysed for 34
elements and loss of ignition (LOI) at the XRF laboratory at the University of Mainz,
Germany, using a PHILIPS RV 1404 spedrometer. Mineral analyses were performed with
a JEOL microprobe (JEOL JXA 8900RL) with 15kRV voltage and a 12rA beam current
with a bean diameter of 2um. Elements were cdibrated against synthetic and retural
standards. Fluorine and chlorine were cdibrated with Tugtupite, Na;AlBeSi4O.(Cl, S)
(7.58wt % Cl) and F-phlogopite (9.20 wt% F). Online ZAF corredions were performed
using the technique of Amstrong (1988, 198%.

PETROGRAPHY OF THE RUPAHA SPINEL-SAPPHIRINE-CORUNDUM
OCCURRENCES

Two complete profiles of relatively fresh samples (profile 98059806, pofile 97159311)
were seleded for petrographic study. A schematic diagram of profile 98059806 and a
phaograph d hand spedmen of the reacion zone ae shown in Figs. 4.3a and b.Different
mineral zones were identified on the basis of mineral assemblages and textures. These
zones depicted in the Fig 4.3a ae shown in the insets labelled A, B, C and D. In ead case,
progressng from ultramafic to siliceous granuites the following minera assemblages

sequences occur:
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@ En FO DI - - - - - - - - - - (ultramafic rocks)

(20 - Fo Di Phl Spl - - (ultramafic rocks)

@ - - - Pl SplSr- - - - - - - (zoneh

4 - - - Phl Sl SprCn- - - - - - (zoneB)

- - - - - - Cn~A Bt - - - - (Crn~30%)(zoneC)
®e - - - - - - CmnP Bt - - - - (Crn~5%)(zoneD)
o - - - - - - - P Bt QzKfs- Sil (dliceousgrandites)
®- - - - - - - P Bt QtzKfs CpxGrt (siliceousgrandites)

(for abbreviations e Kretz 1983

Ultramafic rocks

The pe& metamorphic mineral assemblages in the ultramafic rocks is presented by
forsterite +diopside + enstatite (Fig. 4.4a). Olivine is the dominant phase, which contains
abou 65% of mode (withou alteration). Many of olivine grains have been atered to
serpentine. Thin bands of ultramafic rock neighbouing the readion zone cntain a
significant amourt of phlogopite, which dften exhibit a planar fabric (e.g. RU 931QA in
Fig 4.1). The width of this zone is abou 10-50 cm. These rocks are composed o
predominantly olivine with abou ~12% of phlogopite modal, and traces of spinel and
diopside (<1%)(Fig 4.4b).

Phloggoite- spinel-sapphirine mne (zone A)

The contaa between the ultramafic country rock and the Phl + Spl + Spr beaing zone A is
sharp bu lobate. Aligned pHogopites are interlocked with spinel and sapphrine (Fig.
4.4c). Sapphirine replaces phlogopite in this zone.

Spinel-sapphirine-corundum zone (zone B)

Corundun + spinel + sapphirine mineral assemblages are @wmmon in zone B. First
appeaance of corundum marks this zone. Corundum coexists with spinel and sapphirine.
Sapphirine grains are @lourless and anhedral (Fig. 4.49. Phlogopite occurs in this zone
only as rounced grains or as relicts in sapphirine. In contrast to the neighbouing zone, the
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rocks occurring in the zone B are usualy massve and ladk any preferred minera

orientation.

Corundum- bictite-plagioclase ne (zone C)
Zore cis charaderized by an abundance of samples containing plagioclase + @rundum +
biotite (Fig. 4.4e). Sapphrine is absent within this zore. Biotiteis ironrich becaise biotite is
in dark coloured in hand spedmen. Plagioclase is commonly twinned. Biotite, corundum and
plagioclase have subequal modes (~30% ead)).

Corundum- gneisszone (zone D)

Zore D isthe same & zone C in terms of the mineral assemblages, but the mineral modes and
the degree of dteration is quite different. Plagioclase is volumetricdly dominant over
corundum and kotite (mode Pl ~80%, Crn ~5%, Bt ~10%). The zone is usualy wider than
other mineralogicd zones and charaderized by barrel-shaped corundum crystals (2mm-
1cm), embedded in white mloured plagioclase matrix. Corundum crystals are not of gem
quality. They are often surrounced by bictite flakes. Secondary chlorite is present as fine-
grained, unoriented crystals, as well as intergrowths with fine-grained muscovite, which
appeas to replace orundum. Here, diaspore ocaurs as ven fillings in corundum.
Fibroliti zation d biotite is advanced in many spedmens within the zone D.

Siliceous granulites

Garnet-biotite-clinopyroxene-beaing gneisses (sample No.9708in Fig. 4.1) are marse-
grained, dark coloured and dsplay a strong schistosity (see Fig. 2.2a in chapter 2).
Asemblages aretypicdly Grt + Bt + Pl + lIm; Grt + Bt + Cpx + Pl + Qtz £ I1Im; Grt + Cpx
+ Pl £ Qtz £ [Im. Sillim anite-biotite gneisses in this zone ae intercaated in thin bands
(Fig. 4.4e). See dapter 1 for more detail s.

MINERAL CHEMISTRY

Compaositions of the minerals in the readion bands are presented in Table 4.1. The site
distribution d caions in sapphrine, spinel, corundum, plagioclase and hkotite was

cdculated assuming perfed stoichiometry.
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Sapphirine

Sapphirines are fairly rich in Xug [=Mg/(Mg+Fe)] content, ranging 0.9780.986.Along the
traverse, Xug content is dightly higher in zone A than zone B. The wlourless nature of
sapphirine is due to high Mg content. Along the traverse from zone A to zore B, the Al
content increases dightly (Table 4.13a). In general, actual sapphirines are more duminous
than the theoreticd end-member MgsAlgSi,On0 (2:2:1), dwe to SiIMg® = AIIA|A
substitution. This aibstitution alows the mpaosition d MgrAl1Si3040 (7:9:3) for
sapphirine & Rupaha.

Spind

The aalysed spinel composition kelongs to spinel-hercynite solid solution with Xyg
varying from 0.9620.965 (Fig.4.1a). Al content in spinel is aways high, which ranges
from 15.9516.07gu. No systematic variation in elements was observed aaoss the

readion zones.

Corundum
Corundum isfoundin zone B, C and D are nealy pure phases, bu contain few amourts of
Fe (0.00150.0025 pu) (Table4.1b). Ti and Cr contents are insignificant in all zones.

Plagioclase
Plagioclase in zone C is more anorthitic (An geg;) than that of zone D (An 31.37) (Table
4.1c). Si and Al contents of plagioclase have redprocd variations between bah zones

because the high Al andlow Si content were measured from zone C.

GROWTH OF THE MINERAL ZONES

Forsterite +spinel in the ultramafic zone, together with the presence of sapphirine +spinel
in the neighbouing zone A suggest that forsterite is replacal by sapphirine, which was in
turn replaced by corundum in zones B and C. Formation d sapphirine from ultramafic
rocks obviously requires the aldtion d SiO, and the removal of MgO. The relative
deaeases of Mg-beaing minerals from ultramafic-beaing rocks to siliceous granulites

through zone A to D mark the lateral variation d bulk chemistry aaossthe readion zones.
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Severa textura feaures of the readion zones examined give evidence for metasomatic
transport. Among those that place onstraints on metasomatic development are, the sharp
contads that exist between mineral zones and the presence of relatively few minera
phases in eat zone (e.g. Thompson 1959 Korzhinskii 197Q Fischer 1973, 1977 Braddy
1977, Joesten 1977.

The purpose of the following part is to present the physicd condtions, the nature of
metasomatism and its quantitative estimate of mass transfer. Quantitative demicd
potential diagrams ill ustrate diff erences in chemica potential between sili ceous granulites
and dtramafic rocks. Quantitative mass transfer of elements is cdculated from mass
balances using isocon technique. The variation d some dements in hiotites including
halogens from siliceous granulites to utramafic rocks aaoss the readion zones were
studied in order to find further constraints of fluids composition. The biotite dhemistry can

also be used as monitors of fluid compasition duing metasomatic processes.

PHYSICAL CONDITIONS OF METASOMATISM -TEMPERATURE ESTIMATES

The empiricdly derived Fe-Mg exchange thermometer for co-existing spinel-sapphrine
asemblages (Owen and Greenough 199) was used to evauate the temperatures during
the formation o readion bands. The geothermometer yields a temperature of 820+ 40°C,
asuming a presaure of 9kbar. This presaure arresponds to the peek presaure recorded by
the Grt-Cpx-Pl-Qtz barometry in the surroundng granulites (Chapter 2). The temperature
obtained agrees well with the maximum temperature recorded in these granulites of 875+
20°C (Chapter 2). Ultramafic rocks yielded a temperature of 842 + 68°C (Chapter 3). The
mineral chemistry data used for the temperature estimates are presented in Table 4.1a.

The stability field of sapphrine-spinel-corundum assemblages is $1own in a demicd
potential diagram of MgO (uUMgO)(Fig. 4.5. The adivity correded T-uMgO diagram is
cdculated for the system MgO-Al,03-Si0,-H,0-CO, at 9kbar condtion and asuming
Xcoz = 0, wsing the thermodynamic database of Holland and Powell (1998. The adivity
models for spinel and sapphirine ae those of Holland and Powell (1998. The shaded area
marks the stahility field of sapphirine. The assemblage spinel-sapphirine-corundum occurs
together at temperatures above 78(°C. The grey areain Fig.4.5was caculated for the Xcos
= 0.5. The stahility field of sapphirine extends towards the lower temperatures (725°C).
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Nevertheless the phase petrology agrees with readion bands forming at high temperatures

close to pe&, granulite fades condtions.

Thermometry and T-uMgO diagrams provide areasonable estimate of 850°C for co-
existing spinel-sapphirine-corundum assemblages at readion zones. The presaure estimates
of 9kbar in the surroundng sili ceous granulite ae taken as the reference presaire for the

foll owing cdculations.

CHEMICAL POTENTIAL DIAGRAMS

Equili brium phase relations among pertinent minerals are shown in the Fig. 4.6 for the
system Al,03-SiO,-MgO-H,0 at 850°C, 9kber fluid and solid presaure, and &40 of 1. The
univariant boundries and saturation limits were cdculated with the thermodynamic

database of Holland and Powell (1998. The adivities of sapphrine and spinel were dso
cdculated from the same database.

It can be seenin Fig 4.6 that spinel and forsterite ae stable & high pdaential of MgO at low
SiO, paential. Note that the enstatite-spinel stability field terminates against the spinel-
sapphirine with incressing SIO, potential. The further incresse in paential of SO, is
marked by the gopeaance of corundum and sapphirine. Sillim anite and quartz occupy a
relatively high SIO; patential with low MgO potential. This latter assemblage is en in the
sili ceous granuites. It is obvious from the Fig 4.6 that the two contrasting rock types show
strong chemicd patential gradientsin MgO and SIO,. The componrents MgO and SiO, will
start migrating to eliminate these gradients. As a result, the new minerals corundum and
sapphirine ae formed in the intermediate zones. The gradient of the dhemicd potentia of
MgO and SIO, changes abruptly at the boundiries of all the mineral zones. The dark line
was drawn in the Fig. 4.6to approximately a steady-state diff usional transfer of material to
and from the parent rocks. The masstransfer of comporents acosslithoogicd boundiries
a Rupaha can be acomplished through dffusion (Korzhinskii 197Q Braddy 1977,
Rumble 1982.
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MASSBALANCE CALCULATIONS

Methods and assumptions

The etent to which comporents were added to, a removed from a zone during the
formation d the metasomatic zones can be a&s®sed with the ad o mass balance
cdculations (Gresens 1967 Grant 1986 Baumgartner and Olsen 1995. The interpretation
of massbaance caculations has been a mgjor problem in many recent studies (e.g. Grant
1986 Baumgartner and Olsen 1995. Possble reference frames have to be assumed, e.g.
one can asume nstant volume or one can asuume immobility of one (or more)
comporents. The isocon method (Grant 1986 is a graphicd representation d Gresens
method (1967, which was originally developed to determine the mobility of elementsin
the metasomatized rocks. Grant (1986 expressed the composition-volume ejuation as a
linea relationship. Hence, for immobile comporents, the ratio of the wncentrations in the
original to altered rock concentration is constant, yielding a straight line, the isocon line.
Baumgartner and Olsen (1995 introdwced a statisticadly more rigorous least-square
approad to the isocon method. An agorithm was presented to identify the immobile
elements, with urcertainties, as does in ou cdculations. For a further discusson d the
mathematicd treaments and problems of massbalances e Gresens (1967, Grant (1986

and Baumgartner and Olsen (1995.

Elements with low-solubility are typicdly assumed to be immobile during an alteration
process (Ague 1991 1994 Mad.ean and Barrett 1993 Roser and Nathan 1997. This
argument is based on experimental determination o solubility of such elements
(Baumgartner and Eugster 1988 Ayers and Watson 1991,1993. For summary see Eugster
and Baumgartner (1987. Elements commonly assumed to have low mohility in rocks
during the dteration and deformations include Al, Ti and hgh field strength elements
(HFSE) such as Y, Zr, Nb, Hf and Ta (Grant 1986 Kerrich et al. 1987 Glazner and
Bartley 1991, Marquer and Burkhard 1993. Although Al and Ti are widely believed to be
relatively immobile in many geologic environments, there ae many cases where one or
both were mobile in the tedonic environments (Yardley 1977 Kerrick 1988 O’ Hara
1989 Gieré 199(g, 1990h Selverstone @ a. 199)). The proven mohility of these dements
under the gpropriate fluid compasition and PT condtions $iow that no element can be
considered as immobile. Nevertheless if several elements considered being immobile
define on isocon line, this lends suppat for their respedive immobility. The cmpasition



Chapter 4 103

of original protoliths is adso a problem, becaise the true protolith no longer exists.
However, the petrologic and field evidence presented ealier suggests that the siliceous
granulite were the protolith for the readion zones. Mass balance caculations have been
dore for ateration d this parent to; (a) corundum gneiss (5% Crn) (zone D), (b)
corundum-biotite gneiss (30% Crn) (zone C) and (c). spinel-sapphrine-phlogopite gneiss
(zore A). The compositional data in Tables 4.2a, b, ¢ and d were used to evaluate mass
transfer. A one-sigma onfidence interval was chosen to acourt for a reasonable
uncertainty in the dement concentrations. By identifying all combinations of overlapping
cone aess in the isocon dot, al possble cmmpatible dement combinations were obtained
with the Program ‘ISOCON 4.2 (Baumgartner and Olsen, 1995. At this paint,
geochemicd considerations are introduced for the modelling. The mohility of Al and Ti
deserves gedal attention when seleding the best-fit immobile dement combination. It
shoud be noted that neither Al nor Ti would fit into the same isocon in any of three
aterations. This indicaes either Ti or Al is mobile during the formation d readion bands.
The isocon combination that includes Al has more dements immobile. The light rare eath
elements (LREE) of La, Ce, Pr, Sm and Nd are dso colinea with Al in many
combinations. On the other hand, the LREE results are less ystematic than thase for major
and minor elements. The wide variations of LREE are probably due to analyticd

uncertainties due to limited sample size.

We seleded isocon (65), which includes the dements Al, Nb, Hf, Ta, Pr, Nd and Sm, all

considered to be relatively immobile (Table 4.33). Isocons in Figs. 4.7band ¢ ae mainly
based onTi, Zr and Hf, which show excdlent linea arrays (Tables 4.3b, ¢). Lanthanum,

Ce ad Sm are dso considered to be @ immobile. Similar immohility of the combination
of Ti, Zr and Hf in theses environments has also been suggested by Kerrich et al. 1987.
Therefore, the dement combination (61) would be the best-fit isocons for the dteration to
zone C and zone A. (Tables 4.3b,¢). It isinteresting to nae that all i socon dagrams how
similar geochemicd trends in Si, Mg, LREE, U, and Th, refleding systematic dement
mohility of these dements (Figs. 4.7, b, c).

Massbalance- interpretation
The geochemicd trend for the masstransfer of major and minor elements is ill ustrated in
Fig. 4.8a and 4.8b.Masslosss, particularly the depletionin Si, LIL elements (Ba, Na, K,
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Rb, Pb etc.) areinferred. In ead o the zone, the materials gained gneisses include Mg, Al,
U, Th and vdatiles. In particular, a substantial lossof Si during the formation d readion
promoted the formation d sili caundersaturated minerals like corundum and spinel. Zones
that consist corundum are charaderized by absolute gains of 30 to 50weight percent of Al
(Fig. 4.89). The massgain of Al in the zone A is comparatively lower than those of zone
C. Thisis because of the presence of sapphirine and spinel in the expense of corundum in
zone A. The enrichment of Mg in the Zone A and C correlates with the presence of Mg-
beaing minerals such as gine and sapphrine. The fad, that elements like U, Pb are
extremely enriched duing the dteration, could be due to enrichments of some acceory
minerals like monazite or aternatively, since these minerals have very low concentrations,
this might refleda the sample volumes. The dteration to zone D from gneisses is acourted
for a weight lossof 27 + 7% while dteration to zone C and A have minor overal mass
changes (~5-10%).

In summary, al rocks were metasomaticaly altered under condtions of volume reduction.
The increase of Al requires introduction d aluminum from outside the system, since
ultramafic rocks canna provide it. Such additions may have occurred by locd

redistribution from neighbouing lithoogies and/or introduction as a hydrothermal solute.

HALIDE COMPOSITION OF FLUIDS

Fluorine and chlorine ae ubiquitous in fluids from al crustal levels, because they are
incorporated into main common rock forming minerals sich as amphiboles, micas or
apatite. The presence of halogen-beaing fluids can easily be monitored and their
abundance in metamorphic fluids can quantitatively be estimated (see éso Munaz and
Ludington 1974 Munaz and Swenson 1981 Munaz 1984 Zhu and Sverjenski 1991,
1992 Finch 1995 Finch et a. 1995 Markl and Bucher 1998. As fluids are invalved in
most magmatic and metamorphic events, the halogens are rendered powerful toads for the
understanding of fluid evolution (Boudreau and McCallum 1989 Kullerud 1995, 1996
Markl and Schumader 1996. Mineral-fluid equilibria used for models of any crustal
processes depend onthe composition d co-existing fluid. Results of the various gudies
show that (e.g. Touret 1985 Mora and Valley 1989, in some high-grade metamorphic
terranes chlorine spedes doud be taken into acourt in addition to typicdly modelli ng
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H,O-CO, binary mixture. Chlorine spedes have aprofound effed on the H,O adivity.
Hence detailed knowledge of the @undance of the dhlorine in fluids is necessary to allow
predse modeling and it can help to dedpher the progressof metamorphic readions as well
asthe sources of fluids encourtered in regionally metamorphased terranes.

The fluid evaluation from the mposition d halogen-beaing minerals in high-
temperature metasomatic systems is lesswell studied. This part reports chemicd analyses
of F and Cl-beaing biotites in the readion zones at Rupaha with its neighbouing sili ceous
granulites and dtramafic rocks. The focus of this part is placed on the danges of
compasition d biotite and the dfed of halides in fluids contemporaneous with the high-

temperature metasomatism.

Samples were dhosen to provide arepresentative seledion o ead zone. Approximately
170 hotite grains, ranging along the profil e ultramafic rocks, through the readion zones to
the siliceous granulites were analysed. Nealy al biotite grains show no dteration to
chlorite. Error bars for biotite analyses, which represent the 1o standard deviations, are
presented for ead analyticd point. The demicd compasitions of biotites from the
sili ceous granulites to utramafic rocks dudied are given in Table 4.4. The biotite formula
was cdculated onthe basis of 22 okygens. The demistry of biotite was plotted against the
distance from the rock in order to demonstrate the variation with the different rock types
(Fig 4.9). Average values (given as stars in Fig.4.9) and 1o standard deviation are given
for eat set of analysis from a sedion a zone. The dhemicd compositions of biotites are
given in Tables C6 to C11 in Appendix. Biotite formulas were cdculated onthe basis of
22 xygens, excluding H,O.

Element variationsin bictite

The dement variation pettern in the tetrahedral position d biotite from sili ceous granulites
shows atrend d deaeasing of Si towards the readion zones, and subsequently increasing
towards the ultramafic rocks (Fig 4.9a). Aluminum replaces it there, showing reaprocd
relationship with Si (Fig. 4.99). Note that biotites in the silica undersaturated readion
zones have excessAl to pu into octahedra position while no excessAl is observed ether
in sliceous granulites or ultramafic rocks (Appendices C6-C11). (The site dlocaion

method assumes compl ete filli ng of tetrahedral site by Si, then Al - theoreticaly 8 atoms
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per 22 okygens- The rest of Al atoms are assgned to octahedral paositions). The dashed

linesin ead dagram dencte the palynomial fits for chemistry of the particular elements.

The Mg and Fe @ncentrations in mica ae a strong function d locaion. Biotites in
ultramafic rocks are nealy pure phlogopites. Xyug Systematicadly deaeases towards the
siliceous granulites (Fig. 4.%). The majority of the variation in biotite in the octahedral
position comes from diff erences on the Fe and Mg contents (Fig .4.99. Ti deaeases, while
Mg increases (Fig .4.%). The evaluation d the biotite stoichiometry indicaes that the
substitutions preferably take place by the Tschermaks or Ti- Tschermaks substitution
(Guidatti et al. 1977 Dymek 1983 Spea 1993.

The F-content of biotite first deaeases and then increases towards the ultramafic rocks
(Fig. 4.9). In al cases, except siliceous granulites, biotite shows grong Fe-F avoidance
The etremely high F content at the ultramafic-readion hband interface is due to
charaderistic heterogeneous F- adivity in fluids. The thin sedion evidences also suppat
the idea for the formation d biotites from forsterite and spinel at the ntads with
sufficient fluid adivity (Fig. 4.4e see &so Chapter 3). This suggests that the F contents of
biotites of the present study have two controls: (1) strong structural control which is
resporsible for Fe-F avoidance and (2). The adivity of F in the fluid with, which the
biotite last equili brated.

The dlorine ntent of biotite is low and insignificant when compared to Fluorine.
However, the high chlorine mntent is observed in the grandites (Fig. 4.9). It ranges from
0.080.12 atoms pfu in the granulites while 0.030.06 atoms pfu is measured in the
ultramafics.

Estimate of chloride mntent in fluid

The dilorine mntent of biotite can be used to cdculate the mmpasition o the dlorine
content of the fluid phese, if assumed, that it isin locd equili brium with the aqueous fluids
(e.g. Munaz 1984 Zhu and Sverjensky 1991 Robert et al. 1993 Kullerud 1995, 1996
Experimental studies on the partitioning of halogens between mica and fluids sow that the
amourt of Cl in biotite is a strong function d fluid compasition, temperature and pessure

and Fe, Mg concentrations (e.g. Munaz and Ludington 1974 Munaz and Swenson 1981
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Munaz 1984 Aksyuk and Zhukowkaya 1994). Zhu and Sverjensky (1991, 1992
developed a method to cdculate the adivity of HCI® in agueous fluids. Assuming unit
adivity of water in the system, ore can cdculate the adivity of HCI® of the fluids during
biotite aystallization. Once the HCI® concentration d aqueous fluids is known, the
spedation and metal ion concentration d the supercriticad fluids can be cdculated at the
temperature and presaure of interest (Wolery 1979, 1983Eugster and Baumgartner 1987).

The Gibbs free @ergy for the readion invalving a partitioning of OH-biotite to Cl-biotite
were cdculated using thermodynamic properties for OH end member comporents from
Berman (1988, 1990 with adjustment of free aergies acwrding to Sverjenski et al.
(1991, and for Cl end member comporents from Zhu and Sverjenski (1991). Hea
cgoadties, molar volume and entropy are taken from Zhu and Sverjenski (1991 and
references therein (Table 4.4). The thermodynamic database ae said to be internaly
consistent and therefore used for our cdculations (for more detail s £eZhu and Sverjenski
1992.

The total of 21 anayses of biotite from siliceous gneisses and 58 from ultramafic
equivaents was used for cdculations (Appendix Tables C6, C11). The number of caions
in the biotite formula was cadculated onthe basis of 22 axygens. We asumed ided mixing

of F, Cl and OH in the hydroxyl site in mole fradion cdculations.

Zhu and Sverjensky (1992 used experimenta results of previous gudies to cdculate the

slopes of the readion (1) for diff erent temperatures.

Hace O
Iog@ Xcl E:i“ R KXmg +ilogK -log AH 20 E
XoH H 2 ﬁz.soawﬁ 2 aHCl

D)

The cdculated average slope of -0.46 at 85(°C for the Rupaha rocks matches well with
the predicted value of Zhu and Sverjensky (1992 at 850°C (see Fig.10b d Zhu and
Sverjensky 1992). The plot of log(Xc/XoH) against the Xyug from biotites at Rupaha is
shown in Fig. 4.10. The dotted lines dencte the slope of —0.46, which is cdculated at
850°C. The diagram shows that the fluid compositions at the grain boundries of the
readion zones are in equili brium with the neighbouing preaursor rocks. For example,

biotites at the boundary of zone D record fluid compositions smilar to that of the sili ceous
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granulites while boundry of zone A is dmilar to that of ultramafic rocks. The average
log(Xa/Xon) and Xyg values of biotites from pelitic and utramafic equivalents are
provided in Table 4.5. The logarithms of the adivity of HCI for the sili ceous granulite ae
cdculated as —3.6 while a1 adivity of ayc of —3.5was cdculated for the ultramafic rocks.

It shows that the HCI adivitiesin fluids in the two rock types are equal within the aror of
determination.

SUMM ARY AND CONCLUSIONS

Conditions of metamor phism and metasomatism

The field and petrologic observations suggest that the readion bands associated with
siliceous granulites and utramafic rocks at Rupaha formed by diffusiona transport
between the two chemicdly different rock types. The readion bands are wmprised of
silica undersaturated corundum, sapphrine and spinel assemblages. The ion-exchange
thermometry provides an estimate of 820+ 40°C for coexisting spinel and sapphirine & 9
kbar. This observation, together with T-uMgO diagrams suggest that readion bands too
are formed duing high temperature granulite fades metamorphism. Mg contents and low
Xre, together with low SiO, and hHgh Al;Os, in the Rupaha readion zones provide
appropriate geochemicd conditions for sapphirine formation.

Mechanism of metasomatism

The zoned sequence ca be well ill ustrated by an adivity diagram of SIO, vs MgO. The
readion bands formed primarily due to Mg and Si metasomatism. Chemicd potential of
Mg generated continuous monaonic gradient aaoss the profile, alowing stealy state
diffusion. This agrees with adominant transport by diffusion.

Major and trace éement concentrations provide quantitative nstraints on element
mohility. Mass gains, particularly the errichment in Al, and the considerable loss of S,
during the formation d readion bands are inferred from isocon dagrams. Ti, Zr and Hf
behaved isochemicdly in most zones. The diffusional transport of elements over more than
centimetre distances is permitted with the presence of fluids in the system. It is most likely
that a fluid phese pervaded the grain boundries aufficiently to provide an interconreded
network through which dffusion could occur. The mncentration d the fluids in the system
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is known from the biotite chemistry. High temperature supercriticd fluids are resporsible
for carying U and Th to and LIL elements from the rocks. The @sence of a pervasive
fluid flux during the formation d readion bands was probably the most important
condtion for development of these textures and geometry, al owing them to be @ntrolled
by diffusive transport. The ideais also suppated by the presence of element variation in
biotite acossthe profile. The redprocd relationship of Si and Al in the readion zones are
illustrated. The gain of Al and losss of Si at the readion zones do nd fit with the simple
bi-metasomatic process It is most likely that the introduction d Al-rich fluids into these
rocks and le&ing of Si dong sub parale channels, most likely along the foliation danes,

while Mg is diff used acossthe layers resulted, in metasomatic readions bands.

This gudy uses the readion zones formed in the granulite-ultramafic contad at Rupaha to
derive information abou masstransport in high-grade granulites. These readion zones are
formed by diffusion-controlled readion mechanisms that develop duing pe&
metamorphism. This gudy has siown that not only pressure and temperature condtions
but most importantly P20 and the concentration o the aqueous fluids also control the
diffusion d the dements in dfferent geologicd environments. Therefore, nature and
readion kinetics of supercriticd fluids during the high-temperature metasomatism shoud

take into acourt in masstransfer cdculations.
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Table 43a. complete list of all posablelzocon compat ble dement combinat ons obtained from oved apping cone method

(slicecus granulite to zone D alteration} The element combinati on 65 has taken as best fit<i socon (Baumgartner and dsen 1995)
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Table 4. 3b. complate lit of all possible lsocon compatdble elemeant combmations obiained from cverlapping cone method (aff er Basmgariner and Olaen 1995)

(Silicecus granulita to zone C akeration) The element combination 61 has taken as best fit-Bocon

1 X X

2 X x

3 x x

4 X X

5 X X x

i x x x

7 X X x

8 X x x

@ X X X

10 X x x x

11 x X x x

12 X X x x

13 X X x x

14 X x X X

15 X x X x x

& x X x X X

17 x X X x X

18 X X X X X

1% x X X X x
20 X X X x x
21 X X x x x
22 x X X x X X

23 X X X X X X

24 X X X X X X

25 X X X X X X

26 X x X X X X

27 X X X X X X

28 X x X X X x
29 X X X X X X
30 X X X x X x
3l X X X X X X
32 x X X X x X X

33 X X X X X X X

34 X X X X X X X

35 X X X X X X X

36 X x X X X x X

37 X X X X X X X

38 X x X X x X x
ki X X X X X X X
40 X X X x X X x
41 X X X X X X X
42 x X X X X X X X

43 X X X X XN X X X

a4 x X X X X X X X

45 X X X X X X X X

Ll X X X X X X X X

47 X X X X X X X X
45 x X X L X X X
49 X X N X X X XX
S0 X X X X X X X X
51 X X X x X X X X
52 X X X X x X X x
X} x X X X X X X X X

54 x X X X X X X X X

55 X x X X X X X X X

S X X X X X X X X X

57 x X X X X X X X X
58 X X X X XN X X X X
59 x X X X X X X X X
Al b . b b b b b -
Lal X X X X X XX X X X

62 X X x X x X X X X
[} X X X x X X X X X X
64 X X X x X x X X X X
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le 4.3C. complete list of all possible Isocon compatible element combinations obtained from oved apping cone method (afier Baumgariner and Ol sen 159
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Table 4.4 Gibbs free aergies and log K values of mineral and aqueous gedes cdculated
for the ion exchange readion; KFe;[AlSi;0,(OH), + 2HCI = KFe;[AlSiz040(Cl), + 2H,0

Mineral/ Aqueous AG (850°C/9kbar) Reference

Spedes (Jmol™)

Cl- annite -509365210 Zhuand Sverjensky (1991, 1992
[KFey(AlSiz0,0)Cl,)

Annite -530127000 Zhuand Sverjensky (1991, 1992
[KFes(AlSiz0;0)0H,)]

HCl ) 18661413 Sverjensky et a. (1991)

H,0 -31935189 Berman (1989

AG™a%o" -5785762

Log K 2.6906

Table 4.5 Average values of log(Xc/Xon) and Xug in biotites and the caculated adivity
of HCI of the respedive ajueous fluids

Rock type |Og(XC|/XOH) XMg |Og aHcl
ultramafic rocks -1.720+ 0.062 0.991+0.001 -3.50

ultramafic rocks
neighbou to physicd contad) -1.650+ 0.032 0.991+0.001 -3.51

sili ceous granulites -1.551+ 0.043 0.634+0.009 -3.56
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FIGURE CAPTIONS

Fig. 4.1 Simplified Geologicd map of Sri Lanka (after Cooray 1994 Kroner et a. 199)
and location map o the aea Ultramafic-sili ceous granuliti ¢ rock units are exposed at the
‘GaranduKandua’ at Rupaha.

Fig. 4.2 Cross ®dion showing the lithologicd bands along the lines A-B-C in Fig. 4.1.
Note the repetition d the ultramafic-sili ceous granulite cntad, which consist zoning in

many places.

Fig. 4.3(a) Schematic diagram showing the complete sequence of readion bands formed
between the sili ceous granulites and the ultramafic rocks. This sdion is based on the
samples RU 9805 and RU 9806. Zone A- phogopite-spinel-sapphirine gneiss Zone B-
corundum-sapphirine-spinel gneiss Zone C-corundum-biotite-plagioclase gneiss (30%
Crn); Zone D-corundum-biotite-plagioclase gneiss (5%Crn); Seetext for further details;

(b) a hand spedmen showing the readion zones (98059806).

Fig. 4.4.Photomicrographs show the mineral assemblages of complete profil e 98059806
(a). forsterite-diopside-enstatite in utramafic rock, (b). forsterite-spinel at the contad of
ultramafic rock and the readion zones. Note the formation o phlogopite from spinel and
forsterite, (). phogopite-spinel-sapphrine gneissin zone A, (d). corundum-sapphirine-
spinel gneissin zone B, (€). corundum bictite plagioclase gneiss (zone C), (f) sillim anite,

biotite, quartz and dagioclase in sillim anite-biotite gneiss

Fig. 4.5Chemicd patential (UM gO)-temperature diagram for the system Al,03-SiO,-MgO
at 9kbar and Xco2 = 0, computed with the thermodynamic data of Holland and Powell
(1998. The light shaded areais the stability limit of sapphrine. The dark shaded area
demonstrates the increase of the spinel-sapphirine-corundun stability field toward the
lower temperatures at 725°C, for a X cop of 0.5.
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Fig 4.6 Quantitative dnemicd potential diagram of psioz VS pmgo for the system SiO.-
MgO-Al,O3 at 850°C and 9klar and X 0p=0. Phase field boundries were constructed by
balancing the minera readions with Al,O3 using thermodynamic data of Holland and
Powell (1998. The dark line represents the shift of chemicd potentia from siliceous
granulites to utramafic rock through the readion zones as inferred by co-existing
minerals. Along this path, an increase in pugo invalves the reduction d pge, towards the

ultramafic zone.

Fig 4.7 Doube-logarithmic ‘isocon dagrams showing Magjor, minor and LREE element
transfer during the dteration d siliceous granulite to: (). corundum biotite gneiss (zone
D), (b). corundum-biotite-plagioclase gneiss (zone C), (c). phogopite-spinel-sapphrine
gneiss (zone A). Elements bolded are mnsidered as immobile comporents, which are

aligned ontheisocon line. Seetext for detail s onisocon method.

Fig. 4.8Histograms simmarise the: (a). Major (b) minor element enrichment and depletion

during the dterationto readion bands with resped to sili ceous granulites.

Fig. 4.9Cation dstribution d biotite from sili ceous granulites to utramafic rocks through
readion zones: (a). distribution d Si, (b). distribution d Al, (c). distribution d Xwug
[Mg/(Fe+HMQ)], (d). distribution o Fe and Mg, (e). distribution d Ti, (f). distribution o Cl
and F. All cdions per formula unit in biotite were clculated onthe basis of 22 okygens.

Average values and standard deviation of 1o for each analytical point were also calculated.

Fig. 4.10The chemicd data for biotites from the sili ceous granulites, readion zones and
ultramafic rocks at Rupaha. The lines are cdculations of the gradient for 85°C. The
biotites from zone D are partly equilibrated from the siliceous granulites while some

biotite analyses from zone A are equivaent with utramafic rocks.
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Appendix A - List of abbreviations

A.1 Minerals and phases after Kretz (1983

Ab  dbite
Alm amandine
Annannite

An  anorthite
Atg antigorite
Ap  apatite

Bt biotite
Ca cdcite
Chl  chlorite
Crn  corundum
Di diopside
Dol  ddomite

En enstatite
Fo forsterite
Fs ferrogilite
Grt  garnet

Grs grosalar
Hed hedenbergite
[Im  ilmenite
Kfs  K-feldspar
ol olivine
Opx  orthopyroxene
Per  periclase
Phl  phlogopite

A.2 Thermodynamic and mathematical symbols

For chemicd elements and compound, the standard symbad's are used (H,0, CO, etc.)

- T 2O

—

universal gas constant (1.987cd K™ mol™)

presaure

temperature

time

adivity

Gibbsfree @mergy

natural logarithm (base €

logarithm to the base 10
standard deviation

exporent

Prp
Qtz

Sil

Spl
Srp
Tlc
Tr

plagioclase
pyrope
quartz
sanidine
sillim anite
sapphrine
spinel
serpentine
talc
tremolite
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Appendix B — Analytical procedures

(1) X-Ray Fluorescence Spedr oscopy

Overview

In X-Ray fluorescence (XRF) spedroscopy a @ntinuows pedrum of X-Rays is used to
cause anisgon d charaderistic X-Rays (semndary fluorescence) in a sample by excitation
of inner shell eledrons. Intensity and wavelength o the amitted X-Rays are charaderistic
for the dements and their concentration present in the sample. The spedrum is then
diffraded by suitable monochromator crystals, and charaderistic dement pe&ks are
measured at source-sample-detedor angles given for a spedfic wavelength by Bragg
equation nA =2d sinf. The X-Ray source is an evaauated tube where dedrons, emitted
from a heaed W cahode ae accéerated towards a meta anode by as much as 100KV,
produwcing a mntinuows gedrum of X-Rays by colli sion with the metal. The daraderistic
X-Rays of the metal anode ae superimposed onthe cntinuows edrum. Analyticd work
is performed in the Institute of Geosciences at the University of Mainz using fully
automated Philips PW-1404 wavelength dispersive X—Ray fluorescence spedrometer
operating with Rh-tube (seetable B1 for standard operating condtions) with automated
sample dhanger (72 paitions). All major and trace éement concentrations are determined
by comparing the fluorescence intensities of the sample with cdibration curve obtained
from international standards, which closely match the sample matrix in oweral
compasition. Remote antrol and data processng, including matrix corredion pocedures,

was dore with Phili ps software runnng on 486PC.

Preparation methods

Maor and trace éement anaysis performed in XRF spedrometer require different

techniques of rock powder preparation.

(&) Magor elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, Cr, Ni) are diluted with an
excess of a substance that absorbs X-Rays only we&ly (i.e. has a low atomic
number) and are fused to a glasstablet. This reduces matrix eff eds and makes them
esentialy constant in bah, the unknovn sample and the reference standards
(Skoog and Leay 1992. Additionally, better homogeneity of the sample improves
the quality in analysing the light elements (Na, Mg), which can significantly suffer
from surface éfeds.
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(b) Trace ¢ements (Sc, Y, Rb, Sr, Ba, Zn, Cu, Ni, Co, Cr, V, Ga, Nb, Zr, Pb, Th, U,
Hf, Ta) and light rare eath elements (La, Ce, Pr, Nd, Sm) are * nalysed on pessd
powder pell ets.

Glasstablet preparation

Rock powder (< 63um) was dried for 24h at 105°C to adhesive water. The glass tablet was
produced by thoroughly mixing of 0.8y of the sample with a 4.80g charge of lithium
tetraborate (Merck Spedromelt A10) in a platinum crucible and subsequent melting at
1100C using a semi-automated melting apparatus. The molten mixture was shaken
caefully for 10 minutes and then automaticdly poured into platinum mold.

Powder Pellet Preparation

Pressed ponder pell ets were produced by homogenizing of 6g of sample powder and two-
componrent SCANDIPLEX epoxy resin and hardener (ratio 32) in a ajate mortar and
subsequent compresson d the mixture & presaures of 7.0 metric ton/em? for 40 secondk.
The pellets were then dried at 60°C for 4-5 hous.

Determination of Lossof Ignition (LOI)

The amourt of volatile dements in the samples (H,O, CO,, S, F, Cl etc.) was determined
by heding if 1g rock powder, dried at 105°C, in a muffle furnaceto more than 1000C for
abou 4 hous. The weight loss reported in percent (of the origina weight) as loss of
ignition (LOI). The LOI is an essential term for the corredion d the maor element
analysis becaise it considers the lossof volatiles during gasstablet preparation. However,
errors can be introduced if ferrous ion is oxidized to a different extent in the furnace

compared to fusion d the glasstablet, which takes sgnificantly lesstime.

Analyses of ferroug/ ferricion contents
The amourt of ferrous and ferric ion present in a sample caana be distinguished by XRF

analyses. Thus, the iron content is reported as total ferric ion (Fe;O3).

International Standards
The following international standards were used for analysing of major, minor and LREE
elements. The diff erent standards were used for diff erent rock types.
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Standards for basaltic and utramafic rocks:

AN-G, BCR-1, BE-N, BHVO-1, BIR-1, BM, BR, DNC-1, DR-N, DZE-2, GSS4, GSS5,
GSS6,JA-2,JB-1, JB-3, JGB-1, JP-1, MRG-1, NBS688,NIM-D, NIM-N, NIM-P, PACS-
1,518,SDU-1, W-1, W-2

Standards for granitic rocks:

G-2,GA, GH, GM, GSD-02,GSD-08,GSD-09,GSD-12,GSR 1, GSR-1, GSR-4, GSS 3,
JA-1, JF-1, JF-2, JG-1, JG-1a, JR-2, MA-N, NBS278,NBS2704,NIM-G, RGM-1, SDC-1,
STM-1,SY-2,T-1,TB, TS,

Standards for carborate rocks:
BCS368,BCS393,GSR-6, KH-2, NBS88A

Standards for trace éements (Routine):

AGV-1, AN-G, BCR-1, BE-N, BHVO-1, BIR-1, BR, DNC-1, DR-N, DZE-2, G-2, GSD-
02,GSD-06,GSD-08, GSD-09, GSD-12,GSN, GSR-1, GSR-1, GSR-6, GSS 2, GSS 3,
GSS4,GSS5, JB-2,JG-2, MAG-1, MY -4, NIM-G, NIM-S, QLO-1, RGM-1, SCO-1,
SDC-1, SDU-1, SGR-1, SO-4, STM-1, SY-2, W-1, W-2 ,

Discusgon of analytical quality

The major element analyses im up to 99and 100.2wt% with all Fe cdculated as Fe,Os.
In order to determine the predsion d the measurements, ten replicate analyses of the same
glassand pavder tablets were performed in sequence (Tables B2 and B3). The resulting
standard deviations (1o error) from the mean are lessthan 0.6% for the magor elements
except for Na, where it is > 0.6% and for Mn with 0.88%4. The smaller preasion d Mn is

dueto its low concentration.
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Table B1. Operating condtion for mgjor- and trace éements analyses with a Phili ps PW

1404 X RF spedrometer using Rh-anode & Institute of Geosciences, University of Mainz

Element
Line
TRACE

ELEMENTS
Sc Ka
A/ Ka
Cr Ka
Co Ka
Ni Ka
Cu Ka
/n Ka
QGa Ka
As Ka
Rb Ka
Sr Ka
Y Ka
/Zr Ka
Nb Ka
Cd Kao*
Sn Ka
Sb Ka
Ba Lo
La La
Ce La
Pr La
Nd La
Sm La
Hf La
Ta Lo
Pb Lp
Th Lo
U Lo
Rh Compton
Na Ka
Mg Ka
Al Ka
Si Ka
P Ka
K Ka
Ca Ka
Ti Ka
Cr Ka
Mn Ka
Fe Ka
Ni
Ka

* with Messng-Filte

LIF lithium fluoride

Acd.
kv

40
40
40
60
60
60
80
80
80
80
80
80
80
80
80
80
80
40
40
40
40
40
40
60
60
80
80
80
80

Current
mA

6( Fine
6C Fine
6C Fine
4C Fine
4C Fine
4C Fine
3C Fine
3C Fine
3E Fine
3C Fine
3C Fine
3C Fine
3C Fine
3C Fine
3E Coarse
3E Coarse
3E Coarse
6C Fine
7C Coarse
7C Coarse
7C Coarse
7C Coarse
7C Coarse
4C Fine
4C Fine
3C Fine
3C Fine
3C Fine
3C Fine

MAJOR ELEMENTS

40
40
40
40
40
40
40
40
40
60
60
60

PE pentagythrite

6( Coarse
6C Coarse
6C Coarse
6C Coarse
6C Coarse
6C Fine
6C Fine
6C Fine
6C Fine
4C Fine
4C Fine
4 Fine

PX1multil ayer crystal GE germanium

LIF200
LIF220
LIF220
LIF220
LIF220
LIF220
LIF220
LIF200
LIF200
LIF220
LIF220
LIF220
LIF220
LIF220
LIF200
LIF200
LIF200
LIF200
LIF220
LIF220
LIF220
LIF220
LIF220
LIF200
LIF200
LIF200
LIF200
LIF200
LIF220

PX1
PX1
PE

PE

GE
LIF200
LIF200
LIF200
LIF200
LIF220
LIF220
LIF200

Collimator Crystal Detedor

8
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Table B2. Reproducibility of magjor elements

Reproducibility of major elements from 10 replicate

analyses of same glasstablets

Oxide

SO,
TiO,
Al,Os
Fex0s
MnO
MgO
Cao
NaO
K20
P.Os
Cr03
NiO

Average
(Wt%)

442
2.17
12.3:
12.2i
0.1¢
12.2:
10.0¢
2.7C
1.0¢
0.62
0.06:
0.04:

Standard

Deviation (s)
0.06(
0.00¢
0.031
0.01¢
0.00z
0.02¢
0.01¢
0.01¢
0.00¢
0.00s
0.00(
0.00(

S

(% rel)
0.17
0.1€
0.2t
0.11
0.8¢
0.2¢
0.1€
0.61
0.45
0.4¢
0.5¢
0.5¢

For the trace éements, predsion is better than 3%, except for Co (3.9%), Cu (3.7%0), Ga
(3.9%0), Pr (4.9%), Nd (5.1%), Sm (6.9%), Hf (5.02), Ta (4.3%), Th (3.1%), U (6.0%).
The large standard deviation (1o error) of these dements is caused by their low

concentration, which is close to the detedion limit.

Accuracy of al major elements, determined from re lative deviations to USGS standards,

measured together with samples, is less that 1% (Table B2). Trace éement analyses

generally have acworagy within 6% (Table B3) of the working value of the measured

standard (Govindaraju 1989.
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Table B3. Reproducibility and detedion limits of minor elements

Reproducibility of major elements from 10 replicate
analyses of same glasstablets

Element 2Verage S_ta_ndard s D_etection
(ppm) deviation (s) (%rel) limit (ppm)

\% 22( 1.8 0.8 1.1
Cr 43¢ 5.1 1.2 2.1
Co 57 2.2 3.6 1.C
Ni 34t 2.€ 0.8 1.1
Cu 60 2.2 &Ll 0.4
Zn 10¢ 1.t 1.3 1.€
Ga 18 0.7 3.6 1.4
Rb 44 1.C 2.4 1.3
Sr 75t 2.5 3 1.4
Y 26 0.€ 2.4 1.€
Zr 222 1.5 0.7 1.1
Nb 77 3 0.4 1.C
Ba 58t 3.6 0.€ 6.€
La 27¢ 1.6 0.7 3.6
Ce 40¢ &Ll 0.€ 9.1
Pr 39 1.6 4.6 2.5
Nd 10¢ 2.1 2.C 5.1
Sm 8 1.8 2.2 6.
Hf 24 1.2 5.C 2.5
Ta 23 1.C 4.2 3.2
Pb 30 0.€ 2.C 2.C
Th 13 0.4 3.1 1.C

U 5 3 6.C 1.€
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(2) Eledron Probe Microanalyser (EPMA)

Overview

The dedron microprobe (EMP) is used for the quantitative dhemica analysis of small
areas (typicdly 1-10um in diameter) on a polished surface (e.g. polished thin sections).
The @mncentration o elements from Be to U can be measured in minerals and glasses at
levels as low as 100ppm, and their lateral distribution can be determined by mapping.
When an eledron bean is focussed ona sample surface emisson d charaderistic X-Rays
is one of the numerous eff eds caused by interadion d energetic dedrons (normally 10 to
30 keV) with sample material. Wavelength and intensity of the daraderistic X-Rays
reflect the spedfic dements and their concentration in the excited area All emitted X-
Rays are diffraded by suitable monachromator crystals arranged together with the detedor

and the sample in a setting (configuration) to satisfy the Bragg equation nA =2d sin6.

All mineral compasitions were analysed using the dedron microprobe in the Institute for
Geosciences, University of Mainz. The EMP in Mainz is fully automated JEOL JXA 8900
RL with five wavelength dspersive defradometers, which is operated from a windows-
based menu runnng on a HP-UX workstation (software from JEOL). Spedrometers with
fixed monochromator crystals allow off-peak measurement of the badkground. Mean
atomic number and badground corredion are then iteratively cdculated in combination
with ZAF X-Ray absorption corredion (Amstrong 1988, 198%.

Standard operating condtions listed in Table B4 was used. The following Table B5
contain information on the spedrometer configuration and standards used for eledron
microprobe analyses at the University of Mainz, Germany. X-Ray intensities were
automaticdly correded for probe aurrent drift, dead time, badground and matrix effeds
by the built-in software.

Discusgon of Analytical quality

Accurate determination d mineral compositions is indispensable for acarrate estimates of
metamorphic temperatures, presaures and some other applications as well. He quality of
microprobe data was evaluated on the basis of stoichiometry of minerals. It can be
generally concluded that for element oxides with concentrations greaer than 5% wt the
standard deviation is snaller than 2%, and that for concentrations between 5and 0.5wt%
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it is gnaler than 1®6. Accuragy is better than 1% of the working value from mgjor
elements (Govindraju 1989.

Table B4. Normal operating condtions for the dedron probe microanayser in Institute for

Geosciences, University of Mainz

Accderation vdtage 15 kv

Probe aurrent 12 MA (Ba8nA)
Probe diameter 2um

Take off angle 40°

Absorption corredion ZAF
Badkgroundcorredion Off -peek

Table B5. Spedrometer configuration and standards used for cdibration in eledron
microprobe analysesin Institute for Geosciences, University of Mainz

Element X-Ray Spedro Crysta Standard element pek-courting
pe&k

line meter concen- time ()
intensity

(Wt%)

(cps)
Na Ka 2 TAP albite 11.7409 15 694.6
K Ka 3 PET orthoclase 14.6721 15 36.0
Fe Ka 5 LIF FeOs; 89.9765 15 4417.6
Si Ka 1 TAP wollastonite 51.5118 15 6917.7
Mg Ka 2 TAP MgO 99.9874 15 10834.1
Ca Ka 3 PET wollastonite 47.7408 15 2968.2
Ti Ka 4 PET TiO; 100.0001 15 5758.5
Mn Ka 5 LIF rhodocrosite 43.4885 15 1990.3
Al Ka 1 TAP Al,O3 99.9949 15 14128.6
Cr Ka 4 PET Cr,03 99.9985 30 7172.6
Ba La 2 LIF BaSO4 65.6948 15 745.1
Cl Ka 5 PET tugtupit 7.5800 15 564.5
F Ka 1 TAP F-phloggite 9.2000 15 36.0
TAP thallium acide phtalate LIF lithium fluoride

PET pentaerythrite
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Appendix C- Mineral Chemistry

The following tables contain detailed list of mineral analyses referenced in this

dissertation.
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Appendix C

Table C3.Temperature-pressure estimates

From combmed Grt-Bt/ GADS
Dasgupta et al. (1990) and Eckert et al. (1991)

for garnet core/biotite for garnet rim/biotite
Analysis No. Pair No T P Analysis Nc Pair No T P
33-30 13A 807 7.96 32-28 12C 780 7.68
36-35 15A 803 7.92 34-31 14C 783 7.71
40-37 16A 826 816 44-45 19C 793 7.82
41-39 17A 823 8.13 56-57 21C 814 8.04
42-43 18A 834 8.25 71-70 22C 804 7.93
46-47 20A 819 8.09 75-74 23C 794 7.83
34-37 21A 829 8.19 79-78 24C 757 7.44
55-37 21B 820 8.10 83-82 25C 821 8.11
73-70 22A 834 8.25 169-171 27C 685 6.17
72-70 22B 839 8.30 average 781 7.6
77-74 23A 812 8.02 standard 41 0.6
76-74 23B 817 8.07 deviation
81-78 24A 787 7.76
80-78 24B 774 7.62
84-82 25B 840 8.31
85-88 20A 832 822
86-88 26B 833 8.24
85-171 27A 318 7.52

average 819 8.1

standard 18 0.2

deviation
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Appendix D -Sample List

The foll owing table contains alist of sample numbers and the rocks type referenced in this
dissertation. The suffix RU, which is originally labelled in the samples, was not added to
the sample numbersin thisthesis.

Sample No. Rock Type Category

RU 9316 Carboretized vein Ultramafic rock
RU 9317 Carboretized vein Ultramafic rock
RU 9318 Carboretized vein Ultramafic rock
RU 9319 Pale green rock Ultramafic rock

RU 9319A Pale green rock Ultramafic rock
RU 9320S Dark green rock Ultramafic rock
RU 9320 Dark green rock Ultramafic rock
RU 9327 Blackwall zone Ultramafic rock
RU 9328 Bladkwall zone Ultramafic rock
RU 9703A Dark green rock Ultramafic rock
RU 9703B Dark green rock Ultramafic rock
RU 9710 Pale green rock Ultramafic rock
RU 9710A Bladkwall zone Ultramafic rock
RU 9710B Blackwall zone Ultramafic rock
RU 9712 Bladkwall zone Ultramafic rock
RU 9716 Dark green rock Ultramafic rock
RU 9717 Dark green rock Ultramafic rock
RU 9718 Dark green rock Ultramafic rock
RU 9725 Bladkwall zone Ultramafic rock
RU 97297 Dark green rock Ultramafic Rock
RU 9728 Dark green rock Ultramafic Rock
RU 9725C Dark green rock Ultramafic Rock
RU 9728 Dark green rock Ultramafic Rock
RU 9740L Pale green rock Ultramafic rock
RU 9740 M Pale green rock Ultramafic rock
RU 9740N Pale green rock Ultramafic rock
RU 9741 Pale green rock Ultramafic rock
RU 9743 Pale green rock Ultramafic rock
RU 9744L Pale green rock Ultramafic rock
RU 9744M Pale green rock Ultramafic rock
RU 9744N Pale green rock Ultramafic rock
RU 9803 Dark green rock Ultramafic rock
RU 9807 Bladkwall zone Ultramafic rock
RU 9821 Pale green rock Ultramafic rock
RU 9822 Dark green rock Ultramafic rock
RU 9824 Dark green rock Ultramafic rock
RU 9829 Bladkwall zone Ultramafic rock

RU 9830

Bladkwall zone

Ultramafic rock
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Sample No. Rock Type Category

RU 9307A ZoreA, B M etasomatic readion zones
RU 9307B ZoneC M etasomatic readion zones
RU 9310 ZoneC Metasomatic readion zones
RU 9310A ZoneC M etasomatic readion zones
RU 9311A ZoreA, B M etasomatic readion zones
RU 9311B ZoneC M etasomatic readion zones
RU 9312A ZoneA, B Metasomatic readion zones
RU 9312B ZoneC M etasomatic readion zones
RU 9713 ZoneC Metasomatic readion zones
RU 9806 ZoreA,B M etasomatic readion zones
RU 9806SL ZoreA, B Metasomatic readion zones
RU 9806SM ZoreA, B M etasomatic readion zones
RU 9806SN ZoreA,B Metasomatic readion zones
RU 9806CL ZoneC M etasomatic readion zones
RU 9806CM ZoneC M etasomatic readion zones
RU 9806CN ZoneC M etasomatic readion zones
RU 9809 ZoreA,B,C M etasomatic readion zones
RU 9827 ZoneA,B,C M etasomatic readion zones
RU 9828 ZoreA,B,C M etasomatic readion zones
RU 9828A ZoneA,B,C M etasomatic readion zones
RU 9301 ZoneD M etasomatic readion zones
RU 9302 ZoneD M etasomatic readion zones
RU 9303 ZoneD M etasomatic readion zones
RU 9322 ZoneD M etasomatic readion zones
RU 9323 ZoneD M etasomatic readion zones
RU 9324 ZoneD M etasomatic readion zones
RU 9350 ZoneD M etasomatic readion zones
RU 9706 ZoneD M etasomatic readion zones
RU 9727 ZoneD M etasomatic readion zones
RU 9701 ZoneD Metasomatic readion zones
RU 9702 ZoneD M etasomatic readion zones
RU 9801 ZoneD Metasomatic readion zones
RU 9805L ZoneD M etasomatic readion zones
RU 9805M ZoneD Metasomatic readion zones
RU 9805N ZoneD M etasomatic readion zones
RU 9805AL ZoneD Metasomatic readion zones
RU 9805AM ZoneD M etasomatic readion zones
RU 9805AN ZoneD M etasomatic readion zones
RU 9810 ZoneD M etasomatic readion zones
RU 9811 ZoneD M etasomatic readion zones
RU 9813 ZoneD M etasomatic readion zones
RU 9821 ZoneD M etasomatic readion zones
RU 9825 ZoneD M etasomatic readion zones
RU 9826 ZoneD M etasomatic readion zones
RU 9827 ZoneD M etasomatic readion zones
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Sample No. Rock Type Category

RU 9703 Metabasite Granulite

RU 9707L Metabasite Granulite

RU 9707M Metabasite Granulite

RU 9707N Metabasite Granulite

RU 9708 Charnockite Granulite

RU 9708C Metabasite Granulite

RU 9708A Garnet-biotite gneiss Granulite

RU 9708L Garnet-biotite gneiss Granulite

RU 9708M Garnet-biotite gneiss Granulite

RU 9708N Garnet-biotite gneiss Granulite

RU 9715 sillim anite-biotite gneiss Granulite

RU 9721 Charnockite Granulite

RU 9723 Charnockite Granulite

RU 9722 Garnet-biotite gneiss Granulite

RU 9801 Charnockite Granulite

RU 9802 Charnockite Granulite

RU 9804 Charnockite Granulite

RU 9804A Charnockite Granulite

RU 9814 Charnockite Granulite

RU 9815 Migmatitzed garnet-Bt gneiss Migmatite

RU 9816 Charnockite Granulite

RU 9817A Charnockite Granulite

RU 9817B Charnockite Granulite

RU 167 Cadlc Sili cate Gneiss Marble

RU 9314 Cadlc Sili cate Gneiss Marble

RU 9329 Cadlc Sili cate Gneiss Marble

RU 9701 Cadlc Sili cate Gneiss Marble

RU 9714 Cadlc Sili cate Gneiss Marble

RU 9724 Calc Sili cate Gneiss Marble

RU 9724A Cadlc Sili cate Gneiss Marble

RU 9724B Calc Sili cate Gneiss Marble

RU 97297 Scgpdlite-plagioclase-schedite Retrograded owerprints
RU 9726 Cadlc Sili cate Gneiss Marble

RU 9726A Scgpdlite-plagioclase-schedite Retrograded owerprints
RU 9825A Scepdlite-plagioclase-schedite Retrograded owerprints
RU 9823 Quartz-feldspar gneiss Pegmatite



