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Summary

This PhD thesis is concerned with the investigation of the behavior of complex fluids espe-
cially in static out of equilibrium states. For this purpose a simple model is introduced which
is then used in molecular dynamics simulations.
Since the influence of shear flows on structure formation in complex fluids is the main inter-
est of this work, a novel shear algorithm and the thermostat of the DPD simulation method
have been parallelized and implemented into an existing simulation program. The change of
the thermostat is necessary since the default one is proved to fail under shear flow conditions.
The treatment of the periodic boundary condition by the program is completely redesigned
in order to fit the requirements of the new thermostat.

Important equilibrium properties of simple fluids and dimers are investigated within the
scope of the simulation model. Among them is the order–disorder transition (ODT) from
the isotropic to the lamellar phase.
The influence of shear flows at constant strain rate on the lamellar phase near the ODT is
investigated. The results are later compared with two analytic theories. Shear on a lamel-
lar phase with layers parallel to the shear plane leads to a flow alignment of the director. It
is shown that this alignment causes an effective shrinkage of the layers. Above a critical
strain rate undulation of the lamellae can be observed as predicted by the analytical theory.
A similar behavior can be observed in smectic systems which are dilated along the director.
It turned out that the type of bifurcation towards the formation of undulation is different in
comparison to the case of applied shear.

Similar to observations in experiments of complex fluids a second phase transition, the tran-
sition from a parallel orientation of the layers to a perpendicular alignment, can be identified.
The shear stress is observed to be lower in the perpendicular aligned phase than in the parallel
one at same strain rates. It is known that such a behavior leads under certain conditions to the
occurrence of shear bands. Under high strain rates shear bands are found to occur in form of
a coexistence of perpendicular aligned lamellae and an isotropic phase. The ordered bands
can crystallize and will then move as plugs. These bands exhibit various defect structures
which are very similar to those which have been found in diblock copolymer experiments.

This work succeeds in accounting for many aspects of complex fluids with a remarkable
simple model. This leads to the conclusion that influences on structure formation under
shear seem to be caused by interaction of shear with the superstructure itself rather than with
local properties of the different molecules.
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Kurzfassung

Diese Doktorarbeit besch¨aftigt sich mit der Untersuchung des Verhaltens von komplexen
Fluiden speziell im statischen Nichtgleichgewicht. Dazu wird ein allgemeines Modell dieser
entworfen, welches dann im Rahmen von Molekulardynamik Simulationen verwendet wird.
Da insbesondere der Einfluss von Scherfl¨ussen auf die Strukturbildung von komplexen Flui-
den untersucht werden soll, wird zu diesem Zweck ein neuartiger Scheralgorithmus und
der Thermostat der DPD Simulationsmethode parallelisiert und in ein bestehendes Simu-
lationsprogramm eingebaut. Die Einf¨uhrung eines neuen Thermostaten ist notwendig, da der
übliche unter Scherflussbedingungen versagt, wie gezeigt wird.
Zunächst werden wichtige Gleichgewichtseigenschaften von einfachen Fl¨ussigkeiten und Di-
merschmelzen im Rahmen des Modells untersucht. Hierbei wird u.a. die Lage des Ordnungs–
Unordnungs¨ubergangs von der isotropen zur lamellaren Phase der Dimere bestimmt.
Der Einfluss von Scherfl¨ussen mit konstanter Scherrate auf diese lamellare Phase wird nun
untersucht. Die Ergebnisse werden mit zwei analytischen Theorien verglichen. Die Scherung
einer lamellaren Phase, deren Schichten in der Scherebene liegen, ruft eine Neuausrichtung
des Direktors in Flussrichtung hervor. Es kann gezeigt werden, dass diese Ausrichtung als
Funktion der Scherrate eine effektive Verminderung der Schichtdicke zur Folge hat. Ober-
halb eines Schwellwertes in der Scherrate zeigt das lamellare System Ondulationen, wie von
dem analytischen Modell vorhergesagt. Ein vergleichbares Verhalten wird auch in einem
lamellaren System gefunden, an dem in Richtung des Direktors gezogen wird. Allerdings
wird festgestellt, dass die Art der Bifurkation zu dem System, das Ondulationen zeigt, unter
Scherfluss und einfachem Ziehen verschieden ist.
Unter Scherung wird ein Phasen¨ubergang von einem System mit paralleler Ausrichtung zu
einem senkrecht orientiertem System gefunden. Dabei wird festgestellt, dass die Scherspan-
nung in senkrechter Orientierung niedriger als in der parallelen ist. Es ist bekannt, dass dies
unter bestimmten Bedingungen zum Auftreten von Scherb¨andern führen kann. Unter hohen
Scherraten werden dann auch das Auftauchen von Scherb¨andern und Scherkristallisation mit
dem Vorliegen einer Koexistenz von senkrecht orientierten Lamellen und isotroper Phase be-
obachtet.Ähnlich den Ergebnissen von Experimenten werden in den orientierten B¨andern
verschiedene Defekte gefunden.
Es ist gelungen mit einem einfachen Modell viele Apsekte des Verhalten von komplexen
Fluiden wiederzugeben. Dies l¨asst den Schluss zu, dass Einfl¨usse auf die Strukturbildung
unter Scherung Ph¨anomene sind, die nur bedingt von den lokalen Eigenschaften der Mo-
leküle abhängen.
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The road goes ever on and on
Down from the door where it began.
Now far ahead the road has gone,
And I must follow if I can,

Bilbo Baggins [Tol54]





Prologue

Experiment – Theory – Simulation

On the way of understanding nature experiments are often a first step, their theoretical expla-
nation the second. But not less often theories based on some model of the nature are validated
by experiments.

Since the power of computers has likewise exploded, simulation become more and more
important. Their relevance is twofold. They have the possibility to test and verify theories
and serve in this role as a kind of experiment themselves. On the other hand they are able
to make predictions about the outcome of experiments. This is, e.g., used in the chemical
industry where computers predict the result of chemical reactions or the behavior chemically
modified substances and molecular modeling helps to find and design new drugs.

Quite often a triangle as displayed in figure P.1 is drawn, where experiment, theory and sim-

Experiment Simulation

Theory

Nature

Figure P.1.: Theory, experiment, and simulation help to the unravel of the mystery nature. The edges
serve as bilateral connections.

ulation act together in order to obtain a suitable picture of the nature. Edges are the pathways
of bilateral communication, e.g. in form of verification of one endpoint’s statements.

Simulations are carried out on different length scales reaching from the modeling of single
atoms up to stellar systems. In the present work the simulation model substances such as
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soaps, liquid crystals and special kind of polymers, diblock copolymers. Even those complex
fluid exhibit a broad range of important length scales. Equivalent to the edges of the triangle
the results will be compared with theory and experiment.

Soaps – Diblock Copolymers – Liquid Crystals

A polymer is a molecule which is made of usually many chemical identical subgroups,
the monomers. In the following only polymers will be considered where each monomer
is bonded to at least one neighbor and maximum two. Such kind of polymers are also called
linear polymers.

Diblock copolymers(DBCP) are special polymers where two differenthomopolymers(poly-
mers which incorporate only one type of monomers) have been chemically glued together.
Figure P.2 shows a model copolymer made of A (white) and B (blue) monomer blocks.
Below a certain temperature those two block are physically incompatible and try to separate

Figure P.2.: Schematic representation of a sym-
metric diblock copolymer. Monomers belong-
ing to block A are white, the ones belonging to
the B block are blue.

from each other. Since the block are chemically linked they cannot move far apart from each
other, these phase seperations is named microphase separation. Dependent on the relative
length of each block in comparison to the total length of the DBCP various patterns evolve
on length scales much larger than the polymer size. Figure P.3 shows sketches of typical
micro-structures which can be found below the mentionend temperature, theorder–disorder
transition(ODT) temperatureTODT. Figure P.4 shows monomers of the broadly used poly-

fB

fA

Figure P.3.: Typical equilibrium nanostructures of diblock copolymers with increasing fraction of
monomers of type B (blue),fB. Phases from left to right: Micellar, hexagonal, lamellar, inverted
hexagonal, inverted micellar.

mers. Their range of technical applications reaches from food containers (PS) over packing
foils (PE) to hitech fibers like Polartech (PP,PEP).



Figure P.4.: The basic “ingredients” of the diblock copolymers polystyrene–polyisoprene (PS-PI)
and polyethylethylen–polyethylpropylen (PEE-PEP). From left to right: the monomers of polysty-
rol, polyisoprene, polyethylethylene, and polyethylpropylene.

Soapsare quite similar to diblock copolymers at least in one aspects, they have two unlike
parts which are chemically linked. They are very different in one other aspect: They are usu-
ally much smaller (shorter) than an ordinary polymer. Those molecules have ahydrophilic,
water loving head and alipophilic, oil friendly tail and hence they are often referred to as
amphiphiles, loving both. Systems incorporating such amphiphiles are calledlyotropic. Ly-
otropic system exhibit a large variety of ordered phases, among them the lamellar phase.
Their phase behavior is mainly influenced by the concentration of surfactant molecules. Since
these are most often charged, altering the salt concentration does affect the phase behavior
as well. Figure P.5 shows a sodium dodecyl sulfate molecule which quite popular in shear
experiment on lyotropic systems. Since is a charged molecule the salt concentration in many

S
O

OO

O

Figure P.5.: Sodium dedocyl sulfate (SDS), a popular
ingredient of lyotropic system investigated under shear

experiments is quite hight in order to screen the electrostatic interaction (See next chapter,
section Onions).

A lamellar phase can also be found in liquid crystal (LC) systems. In the language of LC the-
ory and experiment, this lamellar phase is denoted by the termsmectic(from ancient Greek,
soap). LC molecules have unlike amphiphiles no pronounced head or tail. It is more correct
to see them as small rods. Below a certain temperature those rods keep there molecular axis
in average pointing into the same single direction. This phase is callednematicand the vec-
torlike magnitude wich points along this preferred direction is nameddirector. The smectic
phase lies at even lower temperature and due to the fact that those phases are reached by the
variation of temperature those systems are denoted by the termthermotropic. The nematic
and the smectic phase are sketched in figure P.6.

All three kinds of molecules, which are in common namedcomplex fluids, show ordered
phases but their range of order is seldom of macroscopic length scales, but nevertheless much
larger in comparison to the molecular size. Flow fields now lead to microstructural changes
and rearrangements which enhances or destroys long range order. Optical, permeability or
electrical properties of complex fluids are influenced by the presence and orientation of or-
dered phases. As a cause of technical processing these fluid are often subjected to property
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d
En

Figure P.6.: Sketches of the nematic and smectic phase. The nematic phase is shown on the right. The
molecules are aligned into the same direction. The smectic phase, shown on the right, exhibits a layer
structure in addition to a global alignment of the molecules.d denotes the layer thickness.

altering shear flows. Therefore a precise knowledge of their behavior under non–equilibrium
conditions such as shear flows is of great interest. And since those systems are in a steady
state out of equilibrium they are a good “toy” for researchers in fundamental physics.

Shear flow fields and their effect on a lamellar model system will be investigated by this
work, simulation results will be compared to theory and experiment.

Conventions

But first, in order to avoid confusion some conventions have to be made. In the notation of
this work, shear fields,Ev0, are always parallel to thex–directions and theirvelocity gradientis
parallel to thez–axis,∇v0‖ẑ. This leaves they–direction unperturbed, which is also referred
to as thevorticity direction,∇× Ev0. Figure P.7 shows, the resulting coordinate system.

vo
rti

cit
y

sh
ea

r 
g

ra
d

ie
n

t

flow

Ev0‖x̂

∇v
0‖

ẑ z

x

y

Figure P.7.: Coordinate system and
shear flow. Shear flow in this work
is always parallel to thex–axis. Its
gradient direction is parallel to thez–
axis and the vorticity direction toy.

All over this thesis, oriented lamellar structures will be mentioned. There are three basic



orientations,parallel, perpendicular, and transverse, which are defined as usual and depicted
in figure P.8. A well ordered lamellar system is said to be perpendicular oriented if the layer

vo
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y

flow
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r 
g
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d
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n

t

perpendicular parallel transverse

Figure P.8.: Perpendicular, parallel, and transverse orientation of lamellae.

normal points along the vorticity direction. A parallel orientation of the lamellae is defined
by an orientation of the layers parallel to the flow–vorticity plane. The transverse orientation
is given if the layer normal points along the flow direction.

It will turn out that at least the parallel and perpendicular orientation of the lamellae are
favored under some certain conditions by complex fluids. The understanding of the pathways
of alignment to each of those direction under different conditions of shear flow is believed to
be the key to the understanding of shear alignment processes in general.

Organization of the Thesis

This work is organized as follows. The first chapter reviews various experiments which
have been conducted on diblock copolymers under shear. Many experimentalists suggested
mechanisms based on their and others findings of how alignment of layers from arbitrary
orientations to parallel or perpendicular may work. These mechanisms are briefly described
since some of them might be observable in simulations as well. The formation ofonions
is certainly a very interesting research object. Nevertheless it is definitely one of the least
understood. There is some considerable knowledge of how to find the onion phase but it still
lacks an analytic treatment. At the end of the chapter some experimental setups are described.

A theoretical treatment of smectic liquid crystals under shear has been developed recently.
A brief introduction into the theory of smectic liquid crystals is preceding the review of
that analytical considerations. The equilibrium properties of diblock copolymers have been
described analytically, too. One broadly applied theory has been extended to be able to handle
shear flows. Since this has been the best accepted approach to the problem of DBCP under
shear flow, its review has equally its place in chapter two. Both theories will be compared to
simulation results later on.

The following chapter introduces the simulation methods to the reader.Molecular dynamics
(MD) and the integration of the equations of motions in the different thermodynamical en-
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sembles will be described. Most important in this chapter, the way how shear is applied to
the model system within a simulation is discussed. A novel method of how to thermalize a
system under flow conditions correctly will be derived from the so calleddissipative particle
dynamics(DPD) method which is germane to MD.

In the fourth chapter the model which will be used in the simulation, is introduced and tested.
It will be shown that this model exhibits a broad range of possible applications apart from
the current work, too.

The fifth chapter will be dedicated to simulation runs where shear is applied to lamellar model
systems. A comparison with the findings to the two theories presented in the second chapter
will be made. Especially the smectic liquid crystal description will turn out to match the
results obtains from the simulations very well.

Shear bandsare coexisting phases of different velocity gradient and hence a wonderful ex-
ample of a nonlinear response to a shear field despite the laminar regime has not been left
towards turbulent flows. This effect has been observed to be present under special conditions
in complex fluids and it could be observed in form of plug flow in simulations, too. First
findings and preliminary results which leaves plenty of space for further investigations, are
discussed in this chapter.

This work is finished with a conclusion and outlook chapter where also further, future inves-
tigation are motivated.



1. Complex Fluids under Shear

1.1. Diblock Copolymers under Shear

The experiments on diblock copolymer melts reviewed in the following sections are all car-
ried out under oscillatory shear. A sample is oscillatory deformed with an strain amplitudeγ0

and a frequencyω. Since all investigated copolymer species are below their glass transition
the samples are heated in cone–to–plate and plate–to–plate rheometer geometries to temper-
atures around 100◦C. The setups of those experiments are briefly described in the last section
of this chapter. The theoretical treatment follows in the next chapter.

1.1.1. Experimental Observations

Koppi et al.[KTB+92] investigated the behavior of the order–disorder transition of a diblock
copolymer melt under oscillatory shear. They used PEP-PEE which exhibits a significant
difference in the entanglement lengths of its blocks (molecular weight of the used copoly-
mer: 50 kg/mol). In binary fluid mixtures one observes a drop of the unmixing temperature
with increasing shear stress, but they found an increase forTODT in their DBCP system in-
stead, which is now known to be a normal feature of some complex fluids [KTB93, CK98a]
(and references therein). All phase transitions they observed were isotropic to perpendicular
transitions.

In some experiments the microstructural orientation was determined by ex–situ measurement
methods after applying the shear field, while in others, more recent ones, by in–situ methods.
They have the advantage to be able to follow the dynamics in the response to shear. But they
are not for all cases applicable. The combination of both in–situ measurement like SAXS
and SANS in flow and flow–gradient direction combined with ex–situ TEM and SAXS in
vorticity direction seems to be most promising in recording the relevant data. E.g. Gupta
et al. [GKC+96] showed that the lamellar alignment in a DBCP sample changed first from
isotropic to perpendicular, and later to parallel, which underlines the importance of following
intermediate states.

Defects may contribute to the degree of alignment of a lamellar phase and it is known that
DBCP exhibit defects and imperfections. A DBCP–melt which is quenched belowTODT

shows ordered regions (grains), consisting of a limited but not necessary small number of
layers, which are separated by discrete or continuous defects, such as lines, points, walls, and
textures.Those defects are likely to persists, at least partly, under shear. Other factors like

9
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1. Complex Fluids under Shear

undulations and imperfect alignment contribute to the degree of alignment, too.

ω
ωd ω′c 10ω′c

IV I II III

? perpendicular parallel

Figure 1.1.: Sketch of experimental finding of the phase behavior of DBCP under LAOS. The resulting
long term alignment is depected as both a function of the reduced oder–disorder transition temperature
and shear frequency.

Two characteristic frequencieshave been proposed,ω′c andωd. At frequencies aboveω′c
the viscoelasticity is dominated by the distortion of the chain conformations and belowωd

the relaxation of the domains becomes significant. Betweenω′c andωd the distortion of the
nanostructure dominates the viscoelastic response of the material [CK98a].

In experiments four regimes have been identified which are dominated by two different types
of alignment. Those regimes are sketched in figure 1.1. Regime I describes the regime where
the shear field couples to the nanostructure of the system. A perpendicular alignment of the
lamellae is predominant. In Regime II (ω′c <ω < 10ω′c) parallel orientation is found. On the
way to this alignment perpendicular, parallel and all orientations in between can be seen. At
frequencies higher than 10ω′c parallel alignment is induced, too, but the path leads through
bimodal distributions rich in parallel and transverse orientations. At low frequencies (ω <

ωd) in some systems parallel (such as PS–PI–type [CKS+97, PLWW95] except following
a specific thermal treatment: prolonged annealing close to the BCPs’ upper glass transition
[ZW95, ZWY+96]) and in other perpendicular alignment (e.g. PEP–PEE–type) can be found
[KTB93, KK94].

The strain amplitude is able to affect the rate and degree of alignment, and the especially the
orientation of the alignment in the vicinity of the transitions between neighboring regimes.
There are various hypothesis about the underlying mechanisms which lead to the observed
behavior. In the following those proposed mechanisms and their relevance are briefly de-
scribed.

When an unaligned and probably disordered DBCP sample is exposed to shear flow, two
dynamic responses can be observed. One fast response which leads to a rough alignment
of the layers and a slow response during which a fine tuning of the alignment takes place.
For the region of the lowest frequencies, region IV, two mechanisms have been proposed,
grain rotationandirreversible rocking[KK94]. In this region the shear flow couples to larger
domains, the grains, as a whole. Therefore it is likely that those grains, which are misaligned
to the selected direction, are able to respond with aligning to it with a rotation. The grains
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are thought as rigid regions which rotate without any disturbance of the inner order. This
mechanism is referred to as grain rotation.
Irreversible rocking describes a similar process of quick alignment of misaligned grains and
is supposed to be the main process during the fast response to the shear excitation. An orien-
tational dependence of the viscoelastic properties is thought to be the cause that oscillatory
shear could produce a “wagging” or “rocking of the lamellar normal [KK94]. This motion
may not be completely reversed over one cycle which leads to a new orientation during every
cycle. A final steady state is reached if no rocking can take place any more or if the rocking
becomes reversable. Irreversible rocking and the rotation of grains do not explain the dynam-
ics and elimination of defects in the system, since focal conics, e.g., can only be destroyed by
rupture of lamellae. Winey et al. have shown that shear flow–alignment leads to a reduction
in the number of focal conics in a lamellar DBCP melt [WPLW93a].

Hencedefect migrationis another concept which certainly takes place in regime IV but is
very likely to be found in the other regions, too. Since grains are misaligned, defects occur
at the grain boundaries. During the alignment processes (especially grain rotation) the de-
fects enclosing the grains migrate, build up little disordered regions, which then order and
themselves align (either parallel or perpendicular).

In region I shear flow exerts the biggest effect on the nanostructure of the system. A (of-
ten re-) alignment to the perpendicular orientation takes place. First works explained this
transition by the concept ofselective meltingof existing lamellae, which are broken apart
by undulations, and a rebuilding of them in the perpendicular orientation [KTB+92]. This
concept would result in a fast destruction of any orientation but perpendicular accompanied
by an equally fast growing orientational order in that direction. At a later stage only a few
barely misaligned layers remain which are then more slowly aligned. Further experiments on
the kinetics of the orientation in this region showed that the dynamics is twofold [CKS+97].
First a fast process deletes all transverse orientation, but parallel and perpendicular orienta-
tions of the lamellae survive as well as all orientation in between. In a second slower process
the perpendicular end alignment is reached. This can be described best by aselective elimi-
nationof transverse oriented grains and aselective creationof perpendicular aligned regions
[GKC+96, GKKS96].

Region II and III are characterized by the distortion of the single chain conformation by the
shear field. The pathways leading this regions are different.Domain dissolutionis a concept
which is valid in both cases. It describes the destruction of small unfavorable oriented regions
which are then converted progressively into parallel layers. In order to account for the fact
that different DBCP behave differently, Patel et al. introduced the concept ofviscoelastic
contrast[PLWW95]. In this region PS–PI are well aligned while PEP–PEE DBCP show no
alignment at all. The difference between both substances is that PS–PI have very different
local viscosities and are in the contrary to PEP–PEE not entangled. Region II is located near
region one up to frequencies 10ω′c. After an initial fast process only parallel, perpendicular
and layer–orientation in between have survived. In the following slow process the parallel
orientation is favored and the all perpendicular orientation vanish. In the contrary at high
shear frequencies in a fast response all layers except those which are parallel to transverse
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1. Complex Fluids under Shear

oriented are destroyed. In a further slow process a parallel alignment is established and the
transverse orientation vanishes.

In the next chapter theoretical approaches are discussed, but already at this point should
be clear that a complete theoretical understanding has not been reached. Actually it seems
that there is a long road to go, since not all experimental observations can be interpreted
consistently.

Global Behavior in Experimental Results?

Assuming that in a certain regime, which has to be defined (and has first of all nothing to
do with the previouly mentioned four regime graph), large strain amplitudes and low shear
frequencies have the same effect on a sheared sample as small strain amplitudes and high
frequencies, the magnitudėγi = γ0ω where the strain amplitudeγ0 has been multiplied by
the shear frequencyω, will be interpreted as an effective strain rate. Further, areduced
temperatureτ can be defined in the following way

τ ≡ T −TODT

TODT
(1.1)

whereTODT is the equilibrium order–disorder transition temperature.

Revisiting the experimental data obtained in the experiments presented in [KTB+92, KTB93,
KK94, GKKS95, GKC+96, GKKS96, CIK+97, WPLW93a, WPLW93b, LMTAW99] and
plotting them with reduced temperatureτ andeffective strain ratėγeff = γ0ω, one should be
able to distinguish between regions of disordered and of parallel and perpendicular aligned
samples. This approach of collecting all the experimental data into a unique picture is dif-
ferent from the one used by Chen et al. [CK98b]. The result is shown in figure 1.2. Mainly
three regions can be seen. The disordered region lies above a line of points which were
taken from [KTB+92, KTB93] (white area in the plot). Koppi et al. investigated in those
publications the behavior of the order–disorder transition as a function of shear frequency at
a fixed strain amplitude. In those experiments a PEP-PEE melt with a molecular weight of
50 kg/mol was investigated. Their samples showed always a perpendicular orientation below
the non–equilibrium ODT temperature. This region lies in the middle between the disordered
and parallel ones, at least above an effective strain rate ofγ̇e≥ 0.8. At lower strain rates par-
allel oriented samples were found by [WPLW93a, WPLW93b] which might be related to
the method of preparation of those. Winey et al. used pressed samples which means that
the are partly prealigned in the parallel orientation. Under weak shear this orientation might
be metastable, although they see an increase in the alignment towards parallel. The parallel
region is found at the lower values of the reduced temperature,τ ≤−0.2.

Remarkably, data regardless of composition and molecular weight fit into the diagram. It
seems that for this plot it does not matter whether the samples are composed of PEP-PEE or
PS-PI or whether the molecular weight is 7 kg/mol or 50 kg/mol.
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Figure 1.2.: Plot of various findings in shear experiments [KTB+92, KTB93, KK94, GKKS95,
GKC+96, GKKS96, CIK+97, WPLW93a, WPLW93b, LMTAW99] via the reduced temperatureτ

vs. the strain amplitudeγ0 times the shear frequencyω. Three different regimes can be distinguished,
disordered and perpendicular and parallel orientation.

1.2. Multi Lamellar Vesicles

There are lamellar phases in other complex fluid than DBCP present as mentioned in the pro-
logue and lyotropic systems belong to these. Diat and coworkers investigated the behavior of
a quaternary mixture of water, sodium dodecyl sulfate (SDS), octanol, and sodium chloride.1

Those systems were investigated under different compositions, temperatures, and strain rates.

Diat et al. showed that two lamellar phases in parallel orientation are stationary phases under
shear flow. They are separated by a phase which turned out to be one of the most strik-
ing features of lyotropic system, the occurrence of a multi lamellar vesicle phase [DRN93b,
DRN93a, DRN95]. These objects, also calledonionsandspherulites, are a closed compact
assembly of mono disperse lamellar bilayers. This phase forms at intermediate strain rates
and can exhibit a long range order due to a quasi–crystallization of the spherulite structure
[DRN95]. Figure 1.3 shows a sketch of such an object. The size of the vesicles is dependent
on the shear rate and may vary from a few microns to a tenth of a micron, as the applied shear
rate increases [DRN95]. Bernheim–Grosswasser and coworkers recently managed to encap-
sulate an enzyme with a spherulite and to transport it through a cell membrane [BGUG+00].

There is a lack of theoretical description of the onion phase and the mechanism for the evolu-

1A typical composition is in weight 85.6% of water containing 20g/l of NaCl, 6.5% of SDS, and 7.9% of
octanol.
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1. Complex Fluids under Shear

Regime Mechanism Short Description Reference

I selective melting Selection of one direction of the oth-
ers, melting of the non–aligned re-
gions, and rebuilding in the selected
alignment

[KTB+92]

selective creation Isotropic regions order aligned to the
selected direction.

[CIK+97]

selective elimina-
tion

Misaligned regions are destroyed by
the shear flow. They are thought to
recreate via selective creation.

[CIK+97]

II viscoelastic con-
trast

Accounting for the effect of very dif-
ferent viscosities of PS (nearTg) and
PI (far aboveTg), respectively differ-
ent entanglement effects in PEP–PEE
blocks.

[PLWW95]

II+III domain dissolution Dissolution of whole domains as an ef-
fect of shear flow. Occurs primarily in
PEP–PEE systems where no ordering
of any kind survives.

[WPLW93a, MW89]

chain distortion Distortion of and coupling to the local
chain conformation by shear flow.

IV grain rotation Rotation of grains in order to align to
the selected direction. Grains rotate as
rigid objects.

[MW89]

irreversible rocking A quick partial alignment of mis-
aligned grains which continuously
change their viscoelastic properties due
to the new direction relative to the
shear flow.

[KK94]

all defect migration Movement and elimination of defects [KK94]

Table 1.1.: Overview on proposed mechanism for shear flow alignment of DBCP melts.

tion are still under debate, since there is no formalism describing the strong coupling between
flow and structure in these complex fluids [DRN93a].

Panizza e.a. state that in complex fluid flow cannot be assumed uniform at all scale, since
the characteristic lengths of these fluids are large [PCCR98]. That is the reason why a good
analysis has to take into account the coupling between flow and details of the fluid. The
relationship of viscoelastic properties to the micro structure of the fluid seems to be very
important also in the present case.
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Figure 1.3.: Sketch of a multi lamellar vesicle. Sheets of
bilayers are folded around a core. Their size can vary
from a few microns to a tenth of a micron.

In their experiments they find four regime while shearing which are sketch in figure 1.4.

-1
-1

-11s 10s 100s

Figure 1.4.: Four regimes of occurrence of onions in a lyotropic system under shear (see text).

1. At low shear rates,̇γ ≈ 1s−1, no characteristic patterns are found.

2. At shear rateṡγ > 1s−1 onion with no long range order occur. For shear rates 10s−1 <

γ̇ < 50s−1 a so called layering transition (LT) can be found. The onions arrange in
planes and exhibit a hexagonal ordering. The LT has no effect on the onion size which
stays at 3-4µm.

3. At shear rates beyond the LT the size of the onions decreases slowly.

4. For a shear rate oḟγ ≈ 200s−1 a jump in the onion size can be found. The much bigger
onions order.

Roux and coworkers stopped shearing but the pattern stayed the same. They could even
enhance the pattern by applying low amplitude oscillatory shear to the sample. This behavior
could be observed for different temperatures in the range from 20◦C to 28◦C. Stationary
state have been studied, very little known about the transient behavior [PCCR98].
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1. Complex Fluids under Shear

Those findings are quite unexpected and not intuitive if the shear profile is really linear
throughout the sample. There are no evidences why the onion size should grow or jump
to a large size at such high shearing rates.

There are many other groups which investigate this specific subject by different means.
Among them one has certainly to mention the Richtering group from Freiburg (now Kiel),
Germany (e.g. [RJWP96, JJPW98, JJW98, ZLT+99]), the Hoffmann group in Bayreuth,
Germany (e.g: [HU98, BGHM98]).

Unfortunately it seem not to be possible to investigate those structures with the simulation
approach which will be introduced in chapter three. The size of even small onions is that
big that millions of particles are needed just in order to build up a few. Hence this thesis
concentrates on the problems arising from lamellar structure and their transitions to other
orientations.

1.3. Experimental Setups and Methods

There are different possibilities to apply shear to a sample in an experiment. But all of these
methods have all in common that the shear strain is acting on the surfaces of the sample and
a momentum flow is imposed by that. It is assumed that the response is linear a laminar flow
is present and hence a linear profile is the result of the shear stress2.

There are three different geometries which are mainly used and have already been mentioned
in the previous sections. Those are theplate–to–plate, thecone–to–plateand theCouettege-
ometries. In the following the way how shear is exerted to a sample is briefly outlined. Since
many groups use home brew extensions of industrial rheometers, such as the ones by compa-
nies like Rheometrics (http://www.rheometrics.com/) or Bohlin (http://www.bohlin.de/), the
reader may refer to papers and home-pages of the experimental groups for details.

Figure 1.5 shows the sketch of a Couette cell. Here, the sample fills the small gap between

ω

Sample

Rotator

Stator

Figure 1.5.: Sketch of a Couette cell. A static cylin-
dric decanter (stator) contains a inner cylinder (rotator),
which can be rotated with an angle velocityω. The
space between the two cylinders is filled with the liquid
sample and their gap is usually small. This geometry
is usually used for constant strain rate experiments on
lyotropic systems.

an outer static cylindric container and an inner cylinder. This inner cylinder is pivoted and
due to its rotation a shear profile can be induced to the system. The height of such a cell is
about 50 mm, and the width of the gap lies in the range of 1 mm. The gap can be varied
by exchanging the inner cylinder. In principle many kinds of shear field can be exposed

2This is not true in all cases as discussed in chapter 6.
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to the sample but usually the strain rate or the shear stress is kept constant. Such cells are
predominantly used for the investigation of low–viscosity liquids like lyotropic systems and
diblock copolymer solutions in their laminar regime (in context with the work described
earlier). Roux and coworkers find their onion structures using this kind of cells [DRN93a].
But also Taylor eddies can be found if the rotation of the inner cylinder is high enough [Sti89]
and the turbulent regime is reached, which is beyond the scope of the present work.

In figure 1.6 a plate–to–plate and a cone–to–plate geometry have been sketched. In this

ω

Stator

Rotator

Sample

ω

Stator

Rotator

Sample

Figure 1.6.: Sketch of plate to plate (upper sketch) and
cone to plate (lower sketch) geometries. Here bottom
plate serves as the stator, the upper plate or the cone re-
spectively, are movable and hence named rotator. The
space between them is filled by the highly viscous sam-
ple and also their gap is quite small. Both geometries
are usually used for the rheometrical investigation of di-
block copolymers under oscillatory shear. The cone–to–
plate geometry allows constant strain along its radius.

geometry the sample is located between two plates. The upper plate rotates (rotator) the
lower one is static (stator). In the cone–to–plate geometry the cone is usually the rotator. Both
geometries are used for rheometric investigation of high viscous substances such as diblock
copolymer melts. They are usually investigated with oscillatory shear at large amplitudes
(LAOS) or at low strains of constants strain rate. In oscillatory experiments, the strain is
measured from the center to the outer rim of the plate and hence measured in percent. The
gap is again only a few millimeters thick and the sample has to be pressed in order to fit.
Since most samples are below their glass transition the plates are heatable.

Figure 1.3 shows a picture of a rheometer installed at the Institut Laue-Langevin.

Figure 1.7.: Experiment installed at the Institut
Laue-Langevin. the stress controlled Bohlin CVO
rheometer on the instrument D11. This allows
to obtain SANS data from samples under various
shear conditions: controlled shear stress or con-
trolled shear rate, simple shear, oscillatory shear,
and creep. The rheological data are obtained si-
multaneously. [ZLR99]
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2. Theoretical Approaches

The last chapter was dedicated to the various findings in experiments where shear was applied
to systems that exhibit a lamellar phase. Especially, in the case of diblock copolymer melts
many mechanisms were suggested which may describe the reorientation and alignment sce-
narios found in those systems. But it is less obvious what happens during the transition from
a lamellar state to the onion phase in lyotropic systems. Not even an elucidative suggestion
for a possible understanding of that effect exists.

Most approaches to analytic explanations of the role of shear flow in lamellar systems there-
fore are limited to the case of diblock copolymers, especially diblock copolymer melts. A
reason for this might be the availability of precise equilibrium descriptions, e.g., the ap-
proaches by Leibler [Lei80] and Fredrickson and Helfand [FH87]. Especially, the last one is
of interest since it describes a diblock copolymer melt in the vicinity of the order–disorder
transition where most experiments under shear are performed.

Another class of systems where a reorientation of the orientation of lamellae under shear is
found are SmecticA liquid crystals (LC). Their equilibrium structure is usually described
on the coarse grained level of the properties of their lamellae. The treatment of the micro-
structural physics is neglected in favor of the behavior of its superstructure. In contrast to the
statistical analysis of the DBCP case a hydrodynamic description is applied. For a complete
treatment of the equilibrium properties of SmecticA LC the reader is referred to [dGP93,
deG72].

All theoretical approaches to the problem of shear exerted on lamellar systems (or systems
which are in the vicinity of a lamellar phase in equilibrium) face the difficulty in analyz-
ing fluid mechanics and micro-structural mechanics simultaneously. In the following two
approaches are presented in which the micro-structural dynamics are neglected. Both treat
the fluid as a viscoelastic homogeneous medium. The disadvantage is that they fail to de-
scribe flow induced micro-structural changes and inhomogeneities that may modify material
properties dramatically.

The chapter is organized as follows. First the theoretical description of SmecticA liquid
crystals, especially the energy contribution of the layer structure to the Hamiltonian of the
system is briefly reviewed. Then the ansatz by Auernhammer and coworkers which is based
on the hydrodynamic description of the layered structure of SmecticA LC is described.
This is followed by a short analysis of how shear in a complex fluid can be described by
thermodynamic expressions. This is different to the hydrodynamic treatment, since here
the shear is described by its action on the micro-structure rather than on the director field.

19
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The response of the shear stress and strain is discussed and the shear moduliG′ andG′′ are
introduced. Finally, the predictions of Fredrickson, Cates, and Milner for the shear induced
transition from the isotropic state to a lamellar phase are presented.

2.1. Introduction to the Theory of Smectic A Liquid Crystals

A brief introduction of the theory of nematic and smectic phases is given on which the theory
of Auernhammer’s et al. work is based. The intention of this section is certainly not to fully
present the theory of smectic liquid crystals. The treatment here is restricted on the aspects
that are needed to describe the proposed mechanisms. A complete treatment on the subject
of smectic LC can be found elsewhere [dGP93].

2.1.1. Elastic Properties

The elasticity of a material is defined as the ratio between applied static stress and strain
produced in that material. The dynamic response to the stress is determined by the viscos-
ity. Elastic properties of liquid crystals (LC) are a characteristic feature, since stress results
directly in orientational anisotropy of the material. Elastic constants in LC depend on two
fundamental structural features: the anisotropy and the orientational order.

For sufficiently small forces the response of the system (deformation) is linear (Hooke’s law).
The forceF per unit area is then related to the relative extensionx/ l (x: elongation,l : length
of a slab of material:

F

A
= k

x

l
. (2.1)

The elastic energy is then given by

Fel.=
∫

Fdx= 1
2V k γ 2, (2.2)

whereγ = x/ l denotes the strain. Figure 2.1 sketches the situation.

F

l x

A

Figure 2.1.: Deformation of a slab of material. A
force F is acting on an areaA and elongates the
material of lengthl by the factorx/ l .

The new positions of the particles atEr α andEr β under applied stress can be written as

(Er α)′ = Er α+ Eu (Er β)′ = Er β + Ev. (2.3)
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For small strain this can be rewritten as

vi = ui + duj

drαi
r βj , (2.4)

wherer αβi = r αi − r βi and the indicesi and j denote the spatial components. Now a strain
tensor can be defined as

γi j = duj

drαβi

. (2.5)

The diagonal elements of this tensor measure the extensional strain alongx, y andz-axes, the
off-diagonal elements are a measure of the shear strain.γi j can be splitted into its symmetric
and its anti-symmetric part

γi j = 1
2

[
(γi j +γ j i )+ (γi j −γ j i )

]
. (2.6)

A totally anti-symmetric tensor refers to a pure rotation without any distortion. The symmet-
ric part describes the changes in the relative position of the particles within a sample under
strain. This part vanishes for nematics while in smectics and columnar phases the transitional
order results in some non-zero components in the symmetric part of the strain tensor.

The applied stress to a body is given by the force per unit area. This force may contain
components perpendicular and parallel to that area. Those are the normal stress (pressure)
and the shear stress. For any direction there is one normal and two shear stress components.
This set of forces can be described in terms of the stress tensor

σi j = ni Fj

A
, (2.7)

whereFj denotes the force acting on an element of areaA which is normal toni . The diag-
onal components are the pressure, the off-diagonal represent the shear stress. In equilibrium
the normal forces on opposite faces must have equal absolute values and the torque must be
zero.

The stress and the strain tensors which are both of second rank are related by a fourth rank
tensor, the elasticity

σi j = νi j ,kl γkl . (2.8)

The intrinsic symmetry of the stress and strain tensors reduce the number of components of
the elasticity tensor to 36. This tensor is symmetric with respect of permutations of pairs of
indices,νi j ,kl = νkl,i j , which reduces the number of components further to 21. The comma in
the tensor representation denotes this symmetry property. For small strains the elastic energy
density can be written as

Fel.= 1
2νi j ,klγi j γkl . (2.9)

For a homogeneous strain in the absence of any torque both,σi j as well asγi j are symmetric
tensors having six independent componentsσα =∑6

β=1ναβγβ.
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The angular displacement of a unit vector at positionEr from its equilibrium orientation is
given by

n′i = ni + dni

dr j
r j

= ni +γi j r j . (2.10)

For simplicity En is from now on considered to be parallel to the z-axis.γiz can then be
neglected and the non-vanishing elements represent

director splay=̂ layer bend γxx= dnx

dx
γyy= dny

dy

director twist (not possible
in smectic systems)

γxy= dny

dx
γyx = dnx

dy

director bend=̂ layer splay γzx= dnx

dz
γzy= dny

dz
The elastic energy density is then

Fel.= 1
2

6∑
i, j=1

ki j γiγ j , (2.11)

where the torsional elastic constantsk11, k22, andk33, and the saddle splayk24 follow from
the elasticity tensor to be the only remaining independent components. Terms containingk24

do not contribute to the free energy for configurations where the director is within a plane or
parallel to it, which is true for SmecticA LCs. With eq. (2.11) and those assumptions the
energy density is given by

Fel.,nematic = 1
2

[
k11(γxx+γyy)

2+k22(γxy−γyx)
2+k33(γzx−γxz)

2
]

= 1
2

[
K1(∇ · En)2+ K2(En ·∇ × En)2+ K3(En×∇× En)2

]
. (2.12)

For SmecticA the only homogeneous strain supported is an extension or compression per-
pendicular to the layers. Bend and twist strains involve changes in the layer spacing which
has a very high energy barrier. Those term are higher order contributions and are here ne-
glected. Hence the energy density is

Fel.,smectic= 1
2

[
B

(
duz

dz

)2

+ K1(∇ · En)2
]
, (2.13)

whereu denotes the layer displacement. Note that the bending energy term is of the same
order as the director splay term, since the director and the layer displacement are coupled by
n̂=−∇u.
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2.1.2. Fluctuations

Neglecting static distortions (from interfaces or external fields) the conformation with the
lowest free energy exhibits a director with one uniform orientation. The director is likely to
fluctuate about its equilibrium value due to thermal excitations. These fluctuations are e.g.
responsible for the turbidity of some LC at room temperature. Especially at transition points
those fluctuations are big and hence some experimentalists call these points “clearing points”
since the samples are clear at temperatures below these points.

The director’s orientational disorder can be formally represented by defining an order param-
eter

Qij = 1
23〈ni n j − δi j 〉. (2.14)

This expression is referred to as the nematic order parameter [dGP93].1 Spatial variations of
the director can be expressed in terms of Fourier components of the wave vectorEq

ni (Eq)= V−1
∫

d3r ni (Er ) ei Eq·Er . (2.15)

Small distortions from a director axisz can be written in the Fourier componentsnx(Eq) and
ny(Eq). The normal modes of the excitation of wave lengthλ= 2π/q can be obtained by(

n1(Eq⊥)
n2(Eq⊥)

)
= 1

q2
⊥

(
qx qy

−qy qx

) (
nx

ny

)
, (2.16)

whereEq⊥ denotes wave vectors perpendicular to the equilibrium director direction.qx and
qy are its components in this contexts. The normal moden1(Eq⊥) refers to splay and bend
deformations while the normal moden2(Eq⊥) accounts for twist bending. The latter one van-
ishes for SmecticA LCs. The free energy density can now be written in terms of the normal
modes:

Fel.= 1
2

∑
q

λ1 (n1(Eq⊥))2+λ2 (n2(Eq⊥))2, (2.17)

whereλ1 = K1 q2
⊥ + K3 q2

‖ andλ2 = K2 q2
⊥ + K3 q2

‖ . The fluctuations are assumed to be
small. Therefore according to the equipartition theorem, the average contributions of each
mode is supposed to be proportional tokBT/2

〈(n1(Eq⊥))2〉 = kBT

Vλ1(q2
⊥)

and 〈(n2(Eq⊥))2〉 = kBT

Vλ2(q2
⊥)
. (2.18)

Eq. (2.18) are valid for nematics, since they incorporate the elastic constantsK2 and K3

which are neglectable for SmecticA . The left equation in (2.18) will be used to obtainK1

from a simulation (see chapter 5).
1A smectic order parameter can be defined, too. But since the simulations will deal with particles, which are

unable to form a nematic phase and rather exhibit a lamellar, SmecticA phase, the nematic order parameters
suffices to distinguish between isotropic and smectic order. The main advantage of the application of the
nematic order parameter is, that it can be obtained with much less effort than the smectic one. (See next
chapter.)
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2. Theoretical Approaches

2.2. Shearing of a Layered System

There is a common characteristic all systems discussed in the first chapter regardless of chem-
ical origin exhibit: a lamellar phase. Auernhammer et al. [ABP00] investigated the case
where shear is applied to a system with lamellae parallel oriented to the shear plane. They in-
troduced a simple model in order to explain the destabilization of the layers under shear flow
which was observed e.g. by Wiesner and coworkers [ZW95, HDTU99]. This description is
based on a derivation of the macroscopic hydrodynamic equation and an analysis of its linear
stability. Auernhammer and coworkers show that parallel layers are unstable above a certain
critical shear rate and exhibit undulations along the vorticity direction.

In the following the main ideas of Auernhammer et al. are presented. First the energetic
contributions of layers and director tilt are discussed. The Gibbs relation and a set of balance
equations serve as a starting point for the derivation of the description of shear flow alignment
and its consequences.

The predictions of their theory are compared qualitatively and quantitatively to simulation
results in a later chapter (5).

2.2.1. Analytic Description

First the energy contributions of a SmecticA LC are considered. The analytic theory makes
the following assumptions

• All layered systems are isomorphic to SmecticA LC.

• Polymeric degrees of freedom are neglected.

• A possible coupling of thermal fluctuation of the layers to the shear flow is neglected.

These assumptions are in general not applicable to diblock copolymers, where fluctuations
are likely to play an important role in the destabilization of layers. Figure 2.2 shows an ide-
alized geometry of an shear experiment. Infinite layers of a mono-domain SmecticA LC of
thicknessd are shown. The upper plate atz=+d/2 is moving with a velocityv0/2 while the
lower plate atz=−d/2 is moving in the opposite direction with−v0/2. The resulting shear
rate is hencėγ = v0/d assuming a linear velocity profile. One can now define a layer normal
denoted byp̂ and a director as in nematics denoted byn̂. Layer normal and director are usu-
ally defined to be parallel [dGP93]. Auernhammer and coworkers drop this assumption and
considern̂ and p̂ as independent variables coupled elastically so that in equilibriumn̂ ‖ p̂.
The motivation for this view arises from the widely known coupling between shear flow and
the direction of the nematic phase. Exposed to a shear flow a homeotropically aligned ne-
matic LC feels a torque on the director. The response is described by the flow alignment
parameterλ. At a given shear rate it determines whether the molecules show a tendency to
simply tilt or whether they start to tumble. Auernhammer et al. assume that that torque is
also present in a SmecticA LC and that it is balanced by the elastic coupling betweenn̂ and
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x

z

−d
2

d
2

v0
2 −→

←−− v0
2

v /2
0

lower plate

upper plate

-d/2

d/2

-v /2
0

Figure 2.2.: Idealized geometry of a shear experiment. The thick lines denote the upper and lower
plate atd/2 and−d/2 respectively. They are moving in opposite directions with a relative velocity of
v0. Thex–axis points along the flow direction and thez–axis is direction of the velocity gradient.

p̂. That balance leads to a finite angle of the director and therefore to a component in flow
direction which means that the director flow aligns. This flow alignment results in an effec-
tive dilatation of the layers. The system answers to the dilatation above a certain threshold
with a development of undulations.

p̂
n̂

−d
2

d
2

v0
2 −→

←−− v0
2

p̂
n̂

Figure 2.3.: A finite angle between the layer normalp̂ and the director̂n leads to an effective reduction
of the layer thickness.

Now the energy density is introduced which describes the system. The standard notation for
the energy density is given by equation

Fel.,nematic= 1
2 K1 (∇ · n̂)2+ 1

2 K2 [n̂ · (∇× n̂)]2+ 1
2 K3 [n̂× (∇× n̂)]2 (2.12)

which represent splay, twist, and bend deformations, respectively, as shown in the previous
section.

Besidesn̂ and p̂ it is very convenient to introduce the variableu which describes the layer
displacement in z-direction̂p= ∇(z−u)

|∇(z−u)| . The lowest order terms were in the previous section
expressed by

Fel.,smectic= 1
2 K

[(
∂2

∂x2
+ ∂2

∂y2

)
u

]2

+ 1
2 B0

(
∂

∂z
u

)
(2.13)
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−d
2

d
2

y

z

⊙ v0
2

⊗− v0
2

v /2
0

lower plate

upper plate

-d/2

d/2

-v /2
0

Figure 2.4.: Development of undulations in the vorticity direction. The undulation amplitude is largest
in the bulk and vanishes towards the bounding plates. The wave vector is oriented along the vorticity
direction. Note that the figure shows they–z–projection.

These terms describe the curvature and the dilatation of the layers. Rigid rotations ofn̂
together withp̂ do not contribute to the energy density, relative rotation ofn̂ versusp̂ might.
Assuming a small angle betweenn̂ and p̂ Auernhammer et al. introduced the term

1
2 B1(n̂× p̂)2 (2.19)

This term is not hydrodynamic, since it does not vanish in the limit of small wave number
excitations (i.e.q→ 0). So it leads dynamically to a relaxation and not to diffusive behavior
in the long wave length limit.

The following common simplifications have been made by Auernhammer and coworkers

• Bend deformation are higher order gradient corrections to dilatation. If the angle be-
tweenn̂ and p̂ is small, bend is neglected

• In the hydrodynamics of smectics twist deformation are forbidden. Thus, forn̂ close
to p̂, any twist ofn̂ has to be very small and is neglected.

• A curvature of the layers is very similar to a splay deformation of the director, so only
the latter one is kept.

The derivation of the hydrodynamics equations usually involves two steps. First the Gibbs–
Duhem relation is written down and the thermo-dynamical forces, which are defined via
this relation, are expanded into the hydrodynamic variables. In a second step one expresses
the currents (and quasi–currents) appearing in the conservation laws by the thermodynamic
forces in order to close the system of hydrodynamic equations [PB96].

In the treatment of Auernhammer et al. the following Gibbs relation is used

dε = dε0+9i d(∇i u)+h′i dni +8i j d(∇ j ni ) (2.20)

which includes the terms which arise due to nematic and smectic order.E9, Eh′ and8 are the
conjugate quantities to∇u, n̂ and∇n̂.
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Quantities like mass or momentum can only be transported not created. Hence the balance
equations can directly be written down. The mass conservation is given by

∂
∂t ρ+∇i j i = 0, (2.21)

the momentum conservation by
∂
∂t gi +∇ j (vi gj )+∇ jσi j = 0, (2.22)

and the energy conservation by

∂
∂t ε+∇i [vi (ε+ p)]+∇i j εi = 0. (2.23)

σ denote the stress tensor,Ej ε the energy current andp the pressure.

Further, similar balance equations account for the broken symmetry in a SmecticA liquid
crystal or the increase of entropy due to irreversible dynamics.

∂
∂t ni +v j∇i ni +Yi = 0 (2.24)
∂
∂t u+v j∇ j u+ Z = 0 (2.25)

∂
∂t σ +∇i (viσ )+∇i j σi = R

T (2.26)

Here,σ denotes the entropy density,T is the temperature andEj σ , EY, andZ are the (quasi–)
currents associated withσ , n̂, andu respectively. The pressure is given via the Gibbs–Duhem
relation

p=−ε+µρ+Tσ + EvEg (2.27)

where the chemical potentialµ is the conjugate quantity to the mass densityρ. The dissipa-
tion function is given as a positive definite quadratic form of the forces

R= 1
2γ
−1
1 hi δ

⊥
i j h j + 1

2νi j kl∇ j vi∇lvk+ 1
2κi j ∇i T∇ j T + 1

2λp(∇i9i )
2 (2.28)

whereγ1 is the rotational viscosity,νi j kl the viscous stress tensor,κi j the thermal conductivity,
λp the permeation coefficient,δ⊥i j = δi j − ni n j the transverse Kronecker symbol andhi =
δε
δni
= h′i −∇ j8i j is the variation of the energy density with respect to the director. The

dissipation functionR can be interpreted as the energy per unit time and volume dissipated
into the microscopic degrees of freedom. Hence the termR/T is the entropy production
term.

It is important to note that in the present modeln̂ and p̂ are coupled viaB1 and but are not
necessarily parallel, especially if shear is applied. In that case, whenn̂ and p̂ enclose a small
angle as depicted in figure 2.3, the effective thickness of the layer reduces.

Following the standard procedure described in [PB96], Auernhammer et al. split the currents
and quasi–currents in the balance equations in two parts, reversible and irreversible ones.
From the Gibbs relation a set of macroscopic equations containing several phenomenological
coefficients can now be derived.

The analysis of that set was done in two steps. First the flow field and the director were
determined assuming that the layers are unchanged by the shear flow (i.e. stay parallel to the
plates and keep their thickness). This assumption holds for weak shear flows. In a second step
undulations of̂n and p̂ with a wave vector parallel to the vorticity direction were investigated.
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Shear Flow Alignment

Auernhammer and coworkers find the following behavior for the director under weak shear
flow. For the limit of weak shear flow a linear velocity profile can be assumed,

Ev = γ̇ zêx (2.29)

which satisfies linear momentum conservation. The quasi–currentEY has to vanish, assuming
a steady state and hencen̂ to be constant. This leads with the given velocity profile to a
director tilt, given by [ABP00][

λ+1

2
−λnx

2

]
γ̇ = B1

γ1
nx

√
1−nx

2+ B0

γ1

[
nx(1−

√
1−nx

2)
]
. (2.30)

Taking into account only the linear terms which is justified in a situation where the angle
betweenn̂ and p̂ is small, yields

nx = γ̇ γ1

B1

1+λ
2

(2.31)

Onset of Undulation

In Auernhammer’s treatment the layer normalp̂ and the director need not necessarily to be
parallel. As a consequence that if a small angle betweenp̂ and n̂ leads to a projection of
the director in normal direction with a length less than unity. So the layer thickness cannot
be constant, they shrink. Since the occupied volume is constant, space has to be filled. This
could be done by insertion of a new layer if the shrinkage is large enough. The insertion
process, however, has a huge energy barrier, since it relies on the formation and evolution
of defect structures. For the given bounded system the layers start to undulate which costs
much less energy [ABP00].

The critical values of the onset of undulation were derived by Auernhammer and cowork-
ers. They assume in accordance following and Ben–Abrahams [OBA82] that undulation will
be found in the vorticity direction since shear does not affect this direction directly. The
derivatives inz–direction are replaced by

∂

∂z
u→ ∂

∂z
u− 1

2

(
∂

∂y

)2

(2.32)

so that the apparent dilatation can be expressed by

δl

l
≈ 1

2

(
∂

∂y

)2

(2.33)

wherel is the layer thickness andδl is its increase according to the deviation ofp̂ from its
equilibrium valuep̂0. In other words, the layer thicknessl is dependent on the alignment
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angle of the director. With increasing alignment angle the thicknessl decreases from its
equilibrium valuel + δl . Speaking of a reducedl and its “increase”δl intends to point out
the parallel to the theory of a SmecticA elongated along its director. The ansatz for the
undulation has to incorporate the fact that they have to vanish at the plates confining the
system. Auernhammer et al. use

u= Acos
(
π
d z
)
cos(qyy)+ 1

2n2
xz, (2.34)

with the amplitude of the undulationsA. The behavior of the layer normal is hence given by

p̂= qy Acos
(
π
d z
)
sin(qyy)êy+ êz+ . . . (2.35)

Since the energy barrier is too high to form undulation at weak shear rates there is a finite
onset of value. Auernhammer et al. determine this value and its critical parameters. The
values for the critical strain ratėγc, the critical flow component of the directornx,c and the
wave vectorqy,c of the resulting wave in vorticity direction are given by

q2
y,c =

π

d

√
B0

K
(2.36)

n2
x,c = 4

B0

B0−2B1

π

d

√
K

B0
(2.37)

γ̇c = 4

1+λ
B1

γ1

√√√√ B0

B0−2B1

π

d

√
K

B0
(2.38)

Limits of the Description

The above theory is able to describe the effect of shear flow on a parallel oriented sample of
SmecticA LC. It predicts an undulation instability at higher strain rates. The main limit of
this treatment is the inability to fully describe a transition from a parallel to a perpendicular
orientation of the layers. Such a description has to include nonlinear effects and variations of
the order parameter which are both neglected by Auernhammer et al.

The model includes elements of smectic as well as nematic descriptions. So by a suitable
choice of the moduliB0 and B1 one can either obtain a nematic or a smectic theory. This
does not imply that the transition from nematic to smectic order is described by this approach
correctly and this was not intended.

2.3. Viscoelastic Response to Shear Flow

Again the case is considered, where shear is applied to a system in its liquid phase. It is
assumed that the shear stress remains quite small and that the reaction by the system can be
described by linear equations.
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Viscoelastic properties of fluids are described by the relation between the stress tensorσi j and
the velocity gradient tensor∇iv j . In a simple, incompressible fluid the following equation
holds:

σi j = η(∇iv j (t)+∇ jvi (t)) (2.39)

where the proportional factorη is the shear viscosity. This expression is very similar to the
simplified treatment of the stress strain relation 2.8. The single value viscosity represents
an isotropic elasticity tensor. But it is not the same, since the gradient in the shear flow is
equivalent with the rate of a strain deformation and not the strain itself. The strain rate is
denoted byγ̇ in the following and related to the strain by the integral expression

γ (t)=
∫ t

0
dt′γ̇ (t ′) (2.40)

in the case of a uni-directional velocity gradient.

In polymeric systems the stress-strain relation is usually much more complicated and in gen-
eral not linear. Therefore the stress has to be expressed by a functional:

σi j = Fi j [γ̇i j ] for γ̇i j (t
′) with t ′ < t (2.41)

Assuming that the perturbation by the velocity gradient is small enough the relation between
the stress and the velocity gradient is dominated by its linear terms and can be approximated
by

σi j ≈
∫ t

−∞
G(t− t ′)(γ̇i j (t)+ γ̇ j i (t)). (2.42)

This equation includes only one material functionG(t) which is called the shear relaxation
modulus, whose Fourier transform is accessible in experiments.

For simplicity, as in the last sections, shear flows of the following form are considered

vx(Er , t)= γ̇ (t)rz vy,vz = 0, (2.43)

whereγ̇ (t) denotes the time dependent shear rate.

Hence the shear stress can be written as a linear function inγ̇ (t) and equation (2.42) reduces
to

σxz(t)=
∫ t

−∞
dt′ G(t− t ′)γ̇ (t ′). (2.44)

Assuming the above mentioned linear regime, there are three possibilities how to apply shear
to a sample in an experiment which will be described now. In two of them the applied shear
strain is controlled while in the other one the shear stress is kept constant.

Stepwise strain

In the first scenario, which is considered here, shear is switched on in form of a step function
at t0. As the strain stays constant in the long time limit (no further deformation of the sample
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takes place), the stress relaxes. Here the shear rate is not time dependent and reduces to a
constantγ̇ (t)= γ̇ = const. This defines the steady shear viscosityη:

η = 1

γ̇
σxz. (2.45)

Shear is applied to the unsheared sample starting at timet = 0. That means that the shear
strain performs a step from zero to its steady state value and is given by

γ (t)=
{

0 t < 0

γ0 t ≥ 0.
(2.46)

The response of the shear stress is only determined by the time behavior of the shear relax-
ation modulus,

σxz(t)= γ0G(t) (2.47)

Hence the external force is applied for an infinite time starting att = 0 to the system. The
situation is depicted in figure 2.5.

t0

γ (t)

t t0

σ (t)

t

Figure 2.5.: Sketch of a stepwise shear applied to a sample. The strain step takes place att = 0. The
stress follows the excitation and relaxes afterwards.

Oscillatory shear

The next possibility is to apply shear oscillatory in time. Here the sample is strained by an
excitation of a certain frequency and amplitude. The stress answers with the same period but
with a shifted phase. In an oscillatory shear experiment a sinoidal shear strain is applied to
the sample leading to the followin shear rate

γ̇ (t)= γ̇0cos(ωt)= γ̇0 <(eiωt ) (2.48)

The response to this function is defined by the complex shear modulusG∗

σxz(t)= γ̇0<
(

G∗(ω)
iω

eiωt

)
(2.49)

It is convenient to measure the complex shear modulusG∗(ω) in experiments, since this is
a magnitude which varys with frequency for most polymers. Its real partG′(ω) is named
storage and its complex partG′′(ω) loss modulus. The situation is sketched in figure 2.6
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γ (t)

t

σ (t)

t

Figure 2.6.: Oscillatory shearing. The strain is applied with a given amplitude and frequency. The
shear stress follows with a shift in phase.

Constant stress – creep

As the last considered example, the strain rate is kept constant. This is equivalent to a constant
stress exerted to the sample if it responds truly viscoelastic.2 The strain itself grows then
linearly in time (at least for longer times).

In a creep experiment things are a little bit different. The shear stress is given by

σ0=
∫ t

0
dt′G(t− t ′)

dγ (t ′)
dt′

(2.50)

and is time independent. Here a constant shear field is applied from a timet = 0 on. The
shear strain grows monotonically in time

γ (t)= σ0

∫ iδ+∞

−iδ−∞
dω

2π

eiω t

ωG∗(ω)
(2.51)

while the strain ratėγ , the slope of shear strain, is constant in the long time behavior. The
behavior of the system is determined by the complex shear relaxation modulusG∗(ω)

G∗(ω)= iω
∫ ∞

0
dt (1− iωt+ . . .)G(t)

= iωg0+ω2g1+ . . .
(2.52)

with

g0=
∫ ∞

0
dt G(t) and g1=

∫ ∞
0

dt G(t)t (2.53)

So the shear strain can be rewritten as an approximation ing1 andg0

γ (t)= σ0

(
t

g0
+ g1

g0
2

)
(2.54)

2In experiment were a chemical reaction, e.g. a sol–gel transition, takes place which alters the viscoelastic
properties a constant stress shear might result in a constant strain and zero strain rate in the long time limit.
In such cases the dependence of the shear stress on the strain rate is no longer linear.
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And the shear viscosity can be determined by

η0=
∫ ∞

0
dt G(t)= lim

ω→0

G′′(ω)
ω

(2.55)

The termg1/g2
0 is called the steady state compliance and often denoted byJ0

e . It is obvious
that it is given by

J(0)e =
∫ ∞

0
dt G(t)t

/[∫ ∞
0

dt G(t)

]2

= lim
ω→0

G′(ω)
G′′(ω)

(2.56)

The situation is depicted in figure 2.7.

σ (t)

t

γ (t)

t

σ0J(0)e

Figure 2.7.: Constant stress. In this experiment constant stress is applied to the sample. The strain
grows linearly in the long time limit and hence the strain rate is constant.

Remarks

The considerations in this section certainly hold for homo-polymeric liquids. For diblock
copolymer melts especially below the order–disorder transition temperature those are not
necessarily valid any more. Below this transition a micro-phase separation takes place which
results in a broken symmetry of the system. Therefore the viscosity cannot be represented by
a single value any more. Instead a viscosity tensor is needed as it was initially mentioned in
the first section. Nevertheless in many oscillatory shear experiments, e.g. [CK98a], the loss
and storage moduli are measured even in the ordered phase. Comparison of these moduli
with measurements in the disordered phase (if available) givehints of where to find, e.g.,
orientational transitions.

In the following a brief introduction of Helfand and Fredricksons treatment of diblock copoly-
mers is given, followed by Fredricksons treatment of those systems under shear.

2.4. Diblock Copolymer Description

Brazovskii suggested a model for the investigation of binary systems [Bra75]. This model
was slightly generalized in order to be able to apply it to diblock copolymer melts [Lei80].
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The Hamiltonian is in the same universality class as the one for weakly anisotropic antifer-
romagnets, fluids near the Rayleigh–B´ernad instability, and liquid crystals near the nematic–
smecticC transition (see [FH87] and references therein). All these system are characterized
by having fluctuations in the vicinity of a shell of nonzero wave vectors. By the help of the
modified Hamiltonian one is able to predict all micro-phase separated states seen experimen-
tally. Nevertheless the model has some limitations in comparison to the experiment. E.g., it
neglects polydispersity and assumes that the blocks have the same statistical segment length.
The disadvantage for the comparison with the present simulations might be that it presumes
a huge number of segments in each block,NA� 1 andNB� 1.

Two variables describe completely the equilibrium thermodynamics in Leibler’s mean field
theory. The product of the dimensionless Flory parameter and the chain lengthχN accounts
for the enthalpic interaction between the different statistical segments of type A and B. The
second variable is the compositionf , the fraction of type A segments of all chains. In the
case of a symmetric DBCP,f = 1/2. The mean field theory predicts a second order phase
transition from the disordered to the lamellar phase for the case of a symmetric DBCP melt.
Leibler’s theory proved to be inaccurate to describe especially this transition without further
extension. Fredrickson and Helfand [FH87] enhanced his approach by the introduction of
fluctuation corrections. They find among other things that the order–disorder transition for
symmetric DBCP is of first order.

Based on the Brazovskii model Cates and Milner [CM89] investigated the role of steady shear
flow on the isotropic to lamellar transition. This transition is of first order. In their work they
showed the important role of shear flow in the suppression of fluctuations in compositions
raising the transition temperature. Their theory is not capable of distinguishing between per-
pendicular and parallel alignment of the lamellae [Fre94]. They argued that a perpendicular
orientation should be favored since the composition fluctuations with wave vectors in the
vorticity direction are least affected by the shear flow.

With some physically motivated modifications Fredrickson was able to extend the Cates and
Milner ansatz towards the distinction of both orientation regimes [Fre94]. The main idea
was the incorporation of different viscosities of the blocks since in experiments copolymers
like PS-PI have indeed very different bulk properties especially since in the experiments
PS blocks are close to the glass temperature,Tg. In addition he accounts for the fact, that
fluctuations about the mean composition pattern are correlated in orientation with the lamellar
normal.

The generalized Brazovskii model for diblock copolymers is outlined in section 2.4.1. The
main ideas of the extension to shear flow is presented in section 2.4.2.
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2.4.1. The Description of Diblock Copolymers

For the description of the spontaneous micro-phase separation of a scalar order parameter,
Brazvskii’s Hamiltonian can be applied in its generalized form

H[ψ ] = 1
2

∫
q

[
τ + (q−q0)

2
]
ψ(Eq)ψ( E−q)−

∫
q
h(q)ψ(−q)

+ 1
4!

∫
q1

∫
q2

∫
q3

λ({Eqi })ψ(Eq1)ψ(Eq2)ψ(Eq3)ψ(−Eq1− Eq2− Eq3)

(2.57)

where the abbreviations
∫

q ≡
∫

d3q/(2π)3 and{qi } ≡ {q1,q2,q3,−q1−q2−q3} have been
used.

The generalization in comparison to the original formulation lies in the treatment ofλ which
is no longer a constant any more and depends on the wave vectors instead. A diblock copoly-
mer melt can be described by the scalar order parameterψ(Er , t)= ρA(Er , t)− f whereρA(Er , t)
is the local volume fraction of type A monomers andf its volume average, since the melt
is assumed to be incompressible and the densities of A and B monomers are hence not in-
dependent.ψ(Er , t) represents the local composition nearEr at timet .3 ψ(Eq, t) is the Fourier
transform ofψ(Er , t). The conjugate fieldh(Er , t) is a contribution to states with non–zero
values of〈ψ(Er , t)〉 and hence vanishes for symmetric BCP melts which are considered here.

Leibler et al. investigated the Hamiltonian using the random–phase approximation [Lei80].
They were able to show that the Hamiltonian covers the different morphologies known from
experiments. Even in the vicinity of the order–disorder transition temperature the theoretical
work of Fredrickson and Helfand [FH87] was in quantitative agreement with the micro-phase
separation transition in experiments [BF90].

Now a few words to the details of the Hamiltonian. The quadratic term describes the se-
lection of a wave numberq0 for the condensation of the order parameter without preference
of any condensation direction. The wave length 2π/q0 accounts for the lowest free energy
composition fluctuations.τ is the reduced temperature in the mean field, which vanishes at
the spinodal

τ = T −TMF
c

TMF
c

. (2.58)

Due to symmetry considerations no terms of odd order can occur. So the next order is quar-
tic and provides a stabilizing non–linearity. Mean field theory is not capable of describing
the transition since fluctuations of the order parameter diverge as the hypothetical transition
temperatureτ is reached,

〈ψ2(x)〉 =
∫

q
[τ + (q−q0)

2]−1 ' q2
0

2π
√
τ

(2.59)

The assumption of independent Gaussian fluctuations of the condensing order parameter in
the entire spherical shell of direction of the condensation leads to its divergence [MM93]. The

3In emulsionsψ represents the volume fraction of solvent “inside” and “outside” the bilayer
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2. Theoretical Approaches

stabilizing quartic term is hence essential to describe the transition. Brazovskii showed that
the system undergoes a fluctuation induced first order transition as the mean field transition
temperatureτ is approached (τ → 0) at a suppressed temperature [Bra75].

Nematic or Smectic/Lamellar Phase?

Morse and Milner showed by the use of two complementary methods that there is no pos-
sibility of a nematic order in a system described by the Brazovskii model [MM93]. They
investigated both, the isotropic to smectic transition where they considered the stability of
the isotropic phase, and the low temperature smectic phase. In the first case they found a
possibility for a transition from the isotropic to the nematic phase at temperatures below the
isotropic–smectic transition. In the second case they were able to prove that the smectic
phase is stable over the whole range of validity of the parameters in the Brazovskii model
and no nematic phase can be found.

2.4.2. Diblock Copolymers under Shear

Based on the description of diblock copolymer systems, which is given in the previous sec-
tion, Fredrickson [Fre86, Fre94] and Cates and Milner [CM89] investigated the effect of
shear flow in symmetric A-B DBCP melts. In the following the dynamics of such a melt
is described by two coupled, fluctuating hydrodynamic equations.4 The concentration field
ψ(Er , t) is coupled to the continuum fieldEu(Er , t), which describes the velocity of the melt.

Fluctuating hydrodynamic equations are similar to those of conventional hydrodynamics ex-
cept for the fact that a certain stochastic noise term is added to them. This noise term is
introduced to mimic the coupling of the hydrodynamic variables to a thermal bath. The noise
statistics have to obey a certain fluctuation-dissipation theorem and a quantitative theory is
obtained for describing spontaneous fluctuations in the hydrodynamic variables about equi-
librium [Fre94].

Concentration Dynamics

The concentration equation for the fieldψ(Er , t) is given by

∂tψ =−Eu ·∇ψ−µδH
δψ
+ ζ (2.60)

whereEr is the position,Eu the velocity field andµ the Onsager coefficient.ζ is a thermal
white noise with the first and second momentum given by

〈ζ(Er , t)〉 = 0 〈ζ(Er , t)ζ(Er ′, t ′)〉 = 2µδ(Er −Er ′)δ(t− t ′) (2.61)

4This approach can be generalized to any composition of DBCP by introducing the relative length of the A
block f
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It has the form of a generalized convection-diffusion equation inψ(Er , t) augmented by an
appropriate Langevin-type noise source. The steady state distribution of the concentration
fluctuations are given by the Boltzmann expression

P[ψ ] ∝ exp(−H[ψ ]) (2.62)

The coarse grained HamiltonianH is taken to be the standard one for the description of
diblock-copolymer melts described in the previous section

H[ψ ] = 1
2

∫
q

[
τ + (q−q0)

2
]
ψ(Eq)ψ( E−q)

+ 1
4!

∫
q1

∫
q2

∫
q3

λ({Eqi })ψ(Eq1)ψ(Eq2)ψ(Eq3)ψ(−Eq1− Eq2− Eq3)

(2.63)

τ denotes again the reduced temperature which vanishes at the mean field spinodal.q0 is
a wave vector with wave length2πq0

, which accounts for the lowest free energy composition
fluctuation of a diblock copolymer melt. The Onsager coefficientµ is for simplicity taken to
be constant. In generalµ is a function of the wave vectorEq the shear frequencyω and possibly
of the concentration field in strong inhomogeneous situations. So the theory is limited to the
case of low frequency dynamics near the order–disorder transition (ω→ 0, q→ q0,ψ→ 0).
ψ is a conserved variable and eq. (2.60) is only appropriate in the caseq ≈ q0 > 0.

Approximative Hydrodynamics

Eq. (2.60) describes the dynamics of the concentration fieldψ . The local velocity field
u which incorporates the shear is only prescribed at the boundaries of the melt. Since it
is locally correlated withψ , the model must be completed by the prescription of this local
correlation. This is done by a momentum balance equation.

The system is assumed to be locally incompressible and hence

∇ · Eu= 0 (2.64)

Assuming slow flows and high copolymer viscosities, the fluid inertia can be neglected, and
the momentum balance equation takes the form

∇ j

[
η(ψ)(∇ j ui +∇i u j )

]−∇i P−ψ∇i
δH
δψ
= 0 (2.65)

whereη is the shear viscosity andP the pressure field. The first expression represents the
viscous stress, the second the pressure, and the last the osmotic stress. The osmotic stress
is formally the same as in the case of a binary fluid. It produces back-flows that support the
lamellar spacing 2π/q0.

With the neglection of inertial terms and random stresses an adiabatic approximation is ap-
plied. This approximation implies that the velocity field relaxes instantaneously to a value
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2. Theoretical Approaches

consistent with the local concentration field which is supported by the fact that viscosities in
DBCP are high. Eq. (2.65) is hence suitable for slow flows, for high shear rates it has to be
augmented by a term accounting for the finite relaxation time of the copolymers.

In the following only the first two terms of the Taylor expansion of the shear viscosityη in
the concentration field,ψ , are considered:

η(ψ)= η0+η1ψ(Er , t) (2.66)

The Onsager coefficient,µ, is treated as a renormalized phenomenological parameter and
the osmotic term in eq. (2.65) is omitted in order to keep the theory as simple as possible
[Fre94]. η0 is the shear viscosity of the homogeneous melt of mean compositionf , andη1

denotes the first derivative in the composition field.

Omitting the osmotic term in eq. (2.65), Eqs. (2.65) and (2.64) are solved as an expansion to
second order in(η1/η0)ψ , while the externally imposed shear stress is taken to be constant.
It turned out to be convenient to separate the velocity fieldEu into two parts:

Eu(Er )= Eu0(Er )+ Ev(Er ) (2.67)

The termEv represents the local deviations ofEu from Eu0. The shear flow in zeroth order in
εψ ≡ η1/η0ψ is given by

Eu0= γ̇ x̂ z (2.68)

Now, a shear stressσxz is imposed externally. Theṅγ , the shear rate of the homogeneous
system, is given by

γ̇ = σxz/η0 (2.69)

Substituting the Fourier transform ofv(Er ) v(Ek) = ∫ dr exp(i EkEr )v(Er ) into eq. (2.65) leads to
a nonlinear integral equation forv(Ek). The pressure term can be eliminated by application of
the transverse projection operator

Ti j (k̂)= δi j − k̂i k̂ j (2.70)

wherek̂= Ek/|k| is a unit vector in the direction ofEk.

The expansion of the resulting integral equation to second order inεψ ≡ η1/η0ψ leads to

vi (Ek)=− i εγ̇

k
ψ(Ek)

[
Tix (k̂)k̂z+Tiy(k̂)k̂x

]
+ i ε2γ̇

kV

∑
q

ψ(Eq)ψ(Ek− Eq)[ f (1)i − f (2)i ]
(2.71)

with

f (1)i = (k̂ · q̂)Ti j (k̂)
[
Tix (q̂)q̂z+Tiy(q̂)q̂x

]
(2.72)

f (2)i =
[
q̂i − k̂i (k̂ · q̂)

]{
[k̂x− q̂x(k̂ · q̂)]qz+ [k̂z− q̂z(k̂ · q̂)]qx

}
(2.73)
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The Einstein summation convention is applied over repeated indices.

Eq. (2.71) can now be used to obtain an expression for the Fourier transform of the local
velocity gradient tensorEij (Er )=∇ j ui in the melt:

Eij (Ek)= γ̇ δixδ j yVδk,0− ik j vi (Ek)
= γ̇ δixδ j yVδk,0− εγ̇ ψ(Ek)k̂ j

[
Tix(k̂)k̂z+Tiy(k̂)k̂x

]
+ ε2γ̇ k̂ j

1

V

∑
q

ψ(Eq)ψ(Ek− Eq)[ f (1)x − f (2)x ]

(2.74)

In the following Eij will be approximated by its volume average. Hence an effective shear
rateγ̇e is introduced:

γ̇e= 1
V lim

k→0
Exz(k)= γ̇

(
1+ ε2

V2
lim
k→0

∑
q

ψ(Eq)ψ(Ek− Eq)k̂z[ f (1)x − f (2)x ]

)
, (2.75)

where the identity limk→0ψ(Ek) = 0 has been used. Within the current approximation the
velocity field is now given by

Eu(Er )= γ̇ex̂ y (2.76)

γ̇e is an average shear rate which differs fromγ̇ if ε andψ are both non-zero.

γ̇e andEu are both time dependent since the concentration field exhibits stochastic dynamics.
Thus, as the concentration field evolves in time, the velocity field responds to it and this in
turn influences the further evolution of the concentration field through the convective term
in eq. (2.60). Fredrickson et al. treatγ̇e as a constant in the steady state and employ the
preaveraged expression

γ̇e= γ̇
(

1+ ε2

V2
lim
k→0

∑
q

〈ψ(Eq)ψ(Ek− Eq)〉k̂z[ f (1)x − f (2)x ]

)
(2.77)

according to the probability distribution functional ofψ , P[ψ, t ].

The coupling betweenψ andEu is produced by the gradients in the osmotic stress as well as
by the assumption of a composition dependent shear viscosity.

Fokker–Planck equation and cumulants

The Fokker Planck equation for (2.60) is given by

∂t P[ψ, t ] =
∫

k

δ

δψ(Ek)
[
µ

(
δ

δψ(−Ek) +
δH

δψ(−Ek)
)
− γ̇ekx

δ

δkz
ψ(Ek)

]
P[ψ, t ] (2.78)

[CM89, Fre94] This equation cannot be solved exactly because of the quartic term inH[ψ ]
but a variety of techniques are available for an appropriate treatment [Ris89].
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2. Theoretical Approaches

Zwanzig introduced a scheme to solve the problem by developing a hierarchy of equations for
the cumulant moments ofP[ψ, t ]. Equations of motion using∂t P[ψ, t ] are then derived for
the cumulants. The resulting equations for the first two cumulants, neglecting higher order
terms which has been proved to be accurate in equilibrium studies of ODT [FH87, BF90] are
given by [Fre94]

C(Ek, t)= 〈ψ(Ek, t)〉 (2.79)

S(Ek, t)= V−1
[
〈ψ(Ek, t)ψ(−Ek, t)〉− 〈ψ(Ek, t)〉〈ψ(−Ek, t)〉

]
(2.80)

The first cumulant (Eq. 2.79) describes the space time evolution of the average (lamellar)
composition pattern. Leibler [Lei80] proved that this expression can be approximated near
ODT by a single harmonic expression

C(Ek, t)= a(t)V(δEk,q0n̂+ δ−Ek,q0n̂) (2.81)

whereq0 is the wave number that characterizes the period of the sinusoidal pattern.n̂ is the
unit normal to the lamellae anda(t) a time dependent amplitude. In generaln̂ is free to point
towards any direction. In the case of applied shear to the system Onuki et al. and Cates et al.
[OK79, CM89] showed, that any lamellar structure with annx 6= 0 is not stable and will be
rotated and/or dilated. So only layers withn̂= (0,nz,nz) are stable under shear.

The equation of motion for the first cumulant is given by

∂ta= µh−µτa− 1
2µa3λ(−q0n̂,q0n̂,−q0n̂,q0n̂)

− 1
2µa

∫
q
λ(−q0n̂,q0n̂,−Eq, Eq) S(Eq, t) (2.82)

Fredrickson introduced here a chemical potentialh which is the thermodynamical conju-
gate to the Fourier coefficient ofψ with wave vectorq0n̂. This is of use further below and
ultimatelyh= 0.

The second cumulant describes the statistical evolution of fluctuations about the mean lamel-
lar pattern. Its equation of motion is given by

∂t S(Ek, t)= γ̇ekx
∂

∂kz
S(Ek, t)+2µ−2µ

(
τ + (k−q0)

2+λ(−Ek, Ek,−q0n̂,q0n̂)a2

+1
2

∫
q
λ(−Ek, Ek,−Eq, Eq)S(Eq, t)

)
S(Ek, t)

(2.83)

By the help of the expressions for the equation of motion for the first two cumulants the right
hand side of equation (2.77) for the effective shear rate can be evaluated. The result for the
case of steady shear (no time dependence) is given by

γ̇e= γ̇
(

1+2a2ε2n2
z+ ε2

∫
q

S(Eq)[q̂2
xn2

z+ q̂znz(q̂ · n̂)(1−4q̂2
x)
])
. (2.84)
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Figure 2.8.: Sketch of the functional behavior of the
effective shear ratėγe. γ̇e assumes its largest value
for a parallel orientation of the lamellae and reduces
to the reference homogeneous system shear rate for
perpendicular lamellae.

γ̇e governs the fluctuation dynamics in the weakly ordered lamellar phase throughS(Ek, t) and
it depends on the orientation of the lamellae relative to the shear plane.

Figure 2.8 sketches the case of a fixed shear stressσxz,

• γ̇e has its largest value for parallel lamellae, wheren̂= ẑ and

• γ̇e reduces to the reference homogeneous system shear rate for perpendicular lamellae
with n̂= ŷ.

The physical interpretation of this fact is that strata with lower viscosity are permitted to
respond to the fixed stress by floating at higher shear rate [Fre94, CM89]. This is a kind of
multivalued stress strain relation on a microscopic scale. Figure 2.9 sketches this situation.
The enhancement oḟγe over γ̇ depends on the square of the magnitude of the viscosity

Figure 2.9.: Shear on layers with different viscosi-
ties. Layers with lower visocsity are permitted to
respond to the fixed stress by floating at higher
shear rate.

difference between the components,ε, as well as on the amplitude of the composition pattern
a:

γ̇e− γ̇
γ̇
∝ ε2a2. (2.85)

The quartic coefficient in eq. (2.84) has a very complicated dependence on the wave vectors
Ek andEq and the angle between them [Lei80]. But the fluctuations inS(Ek, t) are dominant near
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2. Theoretical Approaches

the critical shell|Ek| = q0 which opens the possibility to restrict both,Ek andEq to have magni-
tudes equal toq0, i.e. λ(−Ek, Ek,−Eq, Eq) ' λ(−q0k̂,q0k̂,−q0q̂,q0q̂). The angular momentum
dependence can be approximated by

λ(−Ek, Ek,−Eq, Eq)' λ[1−β(q̂ · k̂)2], (2.86)

whereλ andβ are positive constants that can be determined by fitting these expression to
Leibler’s numerical calculations ofλ({Eqi }) [MM93].

The fact thatβ > 0 and the form of the coupling ofa andS in equations (2.82) and (2.83)
implies that fluctuations with a wave vector near the wave vector of the average pattern,
q0n̂, are energetically preferred. Such an anisotropic fluctuation spectrum has been observed
experimentally on oriented diblock copolymers by the means of neutron scattering [BF90].
In the followingλ andβ are treated as phenomenological parameters that could be obtained
either by microscopic calculations or by fitting to experimental results. Additionally, the
angular dependence ofλ is weak so thatβ� 1 [Lei80].

Hence the simplified equations of motions for the first two cumulants are

∂ta = µh−µτa− 1
2µa3λ(1−β)− 1

2µλa
∫

q

[
1−β(n̂ · q̂)2]S(Eq, t), (2.87)

∂t S(Ek, t) = γ̇ekx
∂

∂kz
S(Ek, t)+2µ−2µ

(
τ + (k−q0)

2+λ[1−β(n̂ · k̂)2]a2

+1
2λ

∫
q

[
1−β(k̂ · q̂)2]S(Eq, t))S(Ek, t). (2.88)

Now it is suitable to introduce some abbreviations and define derived quantities. Following
Cates and Milner [CM89] the first quantity is the fluctuation integral which occurs in both
equations of motion

σ (k̂)≡ 1
2

∫
q

[
1−β(n̂ · q̂)2]S(Eq). (2.89)

The next expression accumulates theEk-dependent and independent terms

r − k̂ ·e· k̂≡ τ +λa2[1−β(n̂ · k̂)2]+σ (k̂). (2.90)

e is a symmetric second rank tensor whose elements can be read of from the right hand side.
r is defined as the sum of thek̂ independent terms:

r = τ +λa2+ 1
2λ

∫
q

S(Eq) (2.91)

The equations of motion (2.87) and (2.88) reduce at steady state to

h= a(r − n̂ ·e· n̂)− 1
2λ(1−β)a3, (2.92)[

r − k̂ ·e· k̂+ (k−q0)
2]S(Ek)− γ̇e

2µ
kx

∂

∂kz
S(Ek)= 1. (2.93)
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These equations combined with eq. (2.84) and the abbreviations provide a closed set of
equations for the lamellar amplitudea, the inverse osmotic susceptibilityr , the fluctuation
anisotropye, and the fluctuation spectrum (scattering function)S(Ek) under conditions of
steady shear flow. Onuki and Kawasaki [OK79] integrated eq. (2.88) by the method of
characteristics, yielding

S(Ek)= µ
∫ ∞

0
exp

(
−µ

∫ t

0
ds{r − k̂(s) ·e· k̂s+ [k(s)−q0]2}

)
, (2.94)

whereEk(s) is a wave vector along the following path,

kx(s)≡ kx ky(s)≡ ky kz(s)≡ kz+ 1
2 γ̇eskx (2.95)

Equilibrium analysis

In equilibrium, i.e., forγ̇ = γ̇e= 0, the above treatment reveals similar results as obtained in
an earlier work by Fredrickson and Helfand [FH87]. The difference to that work lies in the
introduction of an angular dependence ofλ({qi }), but nevertheless for values ofβ � 1 both
theories are in qualitative and quantitative agreement. It has been shown that the temperature
of the order–disorder transitionτc is reduced in comparison to its mean field value due to
fluctuations. This classifies the transition to be first order.

The equilibrium structure factor is obtained from eq. (2.93) by neglecting the convective
term,

S0(Ek)= [r − k̂ ·e· k̂+ (k−q0)
2]−1. (2.96)

S0(Ek) can now be substituted into eq. (2.90) and (2.92) which yields coupled algebraic equa-
tions forr ande. For smallr (near the equilibrium ODT) and to first order inβ those integrals
can be performed analytically,

ei j = β(λa2ni n j + 1
3αλr−1/2δi j ), (2.97)

r = τ +λa2+αλr−1/2+ 1
6αλr−3/2eii , (2.98)

whereα = q2
0/(4π) andeii denotes the trace overe. Eq. (2.97) directly indicates thate is

of the order ofβ. Hence terms incorporatinge can be neglected as well which leads to the
equilibrium expression for the scattering and the susceptibility function [Fre94],

S0(Ek) = [r − (k−q0)
2]−1 (2.99)

r = τ +λa2+αλr−1/3, (2.100)

which are identical to that derived by Fredrickson and Helfand [FH87]. For the determination
of τt , the equilibrium transition temperature, the time dependent equation of state (2.82) can
be written as a function of a thermodynamical potential (free energy)8(a),

∂ta= µh− 1
2µ

∂

∂a
8(a). (2.101)
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This equation can be solved and yield to first order inβ

8(a)= 1

2λ
(r 2− r 2

0)+α
(
1− 1

2β
)
(r 1/2− r 1/2

0 )− 1
4λ(1+β)a4+ 1

2βτα(r
−1/2− r 1/2

0 )

+ 1
6βα

2λ(r−1− r−1
0 ),

(2.102)

wherer is given by eq. (2.97) and eq. (2.98). For an implicit value ofa one obtains the
lamellar phase while fora= 0 the corresponding disordered state is given. The ODT can be
found by finding the valuea = am wheream is the value that minimizesφ(a). Fredrickson
[Fre94] and Fredrickson and Helfand [FH87] find the transition temperature at

τt =−2.0308(αλ)2/3, (2.103)

with the amplitude
at = 1.4554α1/3λ−1/6. (2.104)

Since fluctuations are present, the ODT is suppressed to temperatures below the mean field
ODT τt = 0 and the transition is of first order.

Strong Shear Analysis

Now the behavior of the DBCP model under strong shear conditions is investigated. Strong
shear means the asymptotic limit of high shear rates, whereγ̇e→∞. In order to investigate
the stability of the lamellar directions under that conditions one has to investigate the struc-
ture factorS(Ek) and and the fluctuation integralσ (k̂), which then makes the stability of the
lamellar pattern in the high shear limit assessable.

First, an approximation for the steady state structure factor eq. (2.94) in this regime is given.
This regime is characterized byS(Ek) being independent onei j andr for γ̇e→∞ [CM89,
Fre94]. Onuki and Kawasaki [OK79] find for the largeγ̇e behavior ofS(Ek) the expression

S(Ek)' c0

(
µα1/2

γ̇e|kx||kz| ,
)2/3

(2.105)

with the constantc0 = 1/3(48π)1/30(1/3) ≈ 4.75304. This expression is valid foṙγ →∞
and for mostk̂ except those one for a narrow region neark̂z = 0 which proves to be of no
consequence in the following [Fre94]. Cates and Milner give an expression that interpolates
between the equilibrium structure factor eq. (2.96) and the one for the strong shear limit,

S(Ek)'
(

r − k̂ ·e· k̂+ (k−q0)
2+ 1

c0

(
γ̇e|kx||kz|
µα1/2

)2/3
)−1

. (2.106)

Next the fluctuation integralσ (k̂) is considered. For this purpose eq. (2.106) is inserted into
eq. (2.89). This yields for largėγe in the leading order (iṅγe) [CM89]

σ (k̂)=
√

c0

(2π)2/3
(αλ)2/3

(
γ̇ ∗

γ̇e

)1/3

[ I1−β(I2k̂
2
x+ I3k̂

2
y+ I2k̂

2
z)], (2.107)
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where a characteristic frequencyγ̇ ∗ ≡ λµα1/2 has been introduced.I1, I2, and I3 are con-
stants given by

I1≡ 1

4π

∫
dq̂|qx|−1/3|qz|−1/3 ≈ 2.18225, (2.108)

I2≡ 1

4π

∫
dq̂|qx|5/3|qz|−1/3 ≈ 0.219123, (2.109)

I3≡ 1

4π

∫
dq̂|qx|−1/3|qy|2|qz|−1/3≈ 0.35249. (2.110)

Now the stability of the disordered phase is investigated in the high shear limit. The amplitude
of the lamellar pattern is in this phase identically zero,a = 0. Eq. (2.77) shows that the
effective shear ratėγe approaches asymptotically the homogeneous shear rateγ̇ for γ̇e→∞.
Eq. (2.96) tells that a divergence inS(Ek) can only occur for̂kx =0. So the stability limit of the
disordered phase is reached when fluctuations with wave vectorsEk oriented in the y–z plane
with wave length 2π/q0 occur. The spinodal corresponds to the conditionr − k̂ ·e· k̂= 0, so
the reduced temperature can evaluated by inserting eq. (2.107) into eq. (2.90):

τS(k̂)=−0.93774(αλ)2/3(D∗/D)1/3[ I1−β(I3k̂2
y+ I2k̂

2
z)]. (2.111)

SinceI2 < I3, it follows that the first spinodal instability occurs fork̂ oriented along they–
direction, which means that the lamellae are oriented perpendicular to the shear flow [Fre94].
This prediction is in correspondence with the conjecture by Cates and Milner [CM89] that
fluctuations near̂kz = 1 should be unstable.

In order to describe the sequence of dynamical transitions that occur as a homogeneous
DBCP melt is cooled while subjected to strong steady shear, an expression for the poten-
tial 8 (eq. (2.102)) is required. Pattern withnx = 0 are stable under steady shear. The
equation of motion (2.87) can hence be written in its potential form of (2.82) regardless of
the shear rate,

∂ta= µh− 1
2µ

∂

∂a
8(a) (2.101)

In the equilibrium analysis this potential can be identified with a free energy. Now, under
steady shear this is no longer correct, but it is nevertheless useful. The construction of eq.
(2.101) allows that minima of8 with respect toa still correspond to permissible steady states
of the sheared copolymer melt [Fre94], are taken on given a sufficient time. The equation of
state (eq. (2.92) in approximation for high shear rates can be written in the form

h=−A(En)a+ B(En)a3, (2.112)

where

A(En) = τS(En)− τ (2.113)

B(En) = 1
2λ(1−β)+ 2

3ε
2n2

yτS(En). (2.114)
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2. Theoretical Approaches

In these expressions the spinodal termτS (eq. (2.111)) has been inserted andγ̇e was replaced
by eq. (2.77). The fluctuation integral, which is subdominant at high shear rates, has been
neglected [Fre94]. Now,8 can be constructed yielding

8(En)=
{

0 A(En) < 0

−A(En)2/(2B(En)) A(En)≥ 0
(2.115)

By aligning En along the corresponding directions, parallel and perpendicular, expressions for
8par=8(ẑ) and8per=8(ŷ) can be derived,

8par=− (τ − τsz)
2

λ(1−β)+ (4/3)ε2τsz
for (τ − τsz)≥ 0 (2.116)

8per=−(τ − τsy)
2

λ(1−β) for (τ − τsy)≥ 0 (2.117)

whereτsn = τ(n̂) is the reduced temperature of the corresponding direction given by eq.
(2.111).

The full path of transitions is shown in fig. 2.10 by a sketch of the behavior of8par and8per.
For temperatures which exceedτsy, the melt is found to be disordered. Whenτ is lowered
to τsy the ODT occurs and the system transforms into a lamellar phase with perpendicular
alignment of its strata (light gray area). This phase transition is of first order for any given
huge but finite value oḟγe. In the limit of γ̇ →∞ the transition is continuous. At a tem-
perature ofτsz the stability limit of the parallel aligned phase is reached (dotted line). Since
the denominator of8par is smaller than the one of8per, both functions intersect at a point
denoted byτp. Here the transition from perpendicular alignment to parallel (dark gray area)
takes place. The transition temperatureτp can be evaluated from eqs. (2.116) and (2.117),

τp = (τsy− τsz)λ(1−β)+ (2/3)τ 2
szε

2

(2/3)τ 2
szε

2
, (2.118)

and it is straightforward to check thatτp ≤ τsz for any ε and γ̇ � 1 [Fre94]. Forγ̇ →
∞ the transition temperature is dominated by the term−βλ/ε2. This means for the case
of blocks with nearly equal viscosity,ε→ 0, that the transition temperature drops to very
low temperatures. In contrast the perpendicular to parallel transition raises near the parallel
stability limit τsz for rheological very different blocks.

Weak Shear Analysis

Now as the equilibrium properties (γ̇ /γ̇ ∗ = 0) and the behavior under high shear (γ̇ /γ̇ ∗ � 1)
are known, the intermediate, low shear regime is faced. Fredrickson et al. found that is
suffices to solve equations to second order inγ̇e [Fre94].

The structure factor eq. (2.93) can be rewritten by the help of the equilibrium formulation
eq. (2.96),

S(Ek)= S0(Ek)+
(
γ̇e

2µ

)
S0(Ek)kx

∂

∂kz
S(Ek). (2.119)
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Figure 2.10.: Schematic sketch of the potential8(n̂) as a function of the reduced temperatureτ in the
high shear regimėγ →∞. The curve starting atτsy depicts8(k̂y), the potential for perpendicular
orientations. At temperatures aboveτsy the system is disordered, below it shows perpendicular align-
ment. The curve starting at pointτsz, depicts8(k̂z), the potential for parallel orientation. Both curves
8(k̂z) and8(k̂y) intersect atτp. At this point the orientation changes from perpendicular at higher
temperatures to parallel below. The vertical solid line separates the ordered and disordered states. It
account for the stability limit of the perpendicular phase. At the dotted one the stability limit of the
parallel state is reached.

Note thatS0(Ek) depends onr ande which themselves contain term of orders ofγ̇e. Iteration
of eq. (2.119) and keeping the second order terms inγ̇e yield

S(Ek)≈ S0(Ek)+ γ̇e

2µ
S0(Ek)kx

∂

∂kz
S0(Ek)+

(
γ̇e

2µ

)2

S0(Ek)k2
x

∂

∂kz

(
S0(Ek) ∂

∂kz
S0(Ek)

)
. (2.120)

All the terms do not contribute to the fluctuation integralσ (Ek) can be omitted that:

S(Ek)'S0(Ek)+2

(
γ̇e

2µ

)
S3

0(
Ek)k̂xTzi(k̂)ei j k̂ j −

(
γ̇e

2µ

)2

S4
0(
Ek)k2

x{
2k̂2

z+
(

2βλ
q2

k2

)[
r k̂znz(k̂ · En)−n2

z+ (k̂ · En)2−4k2
z(k̂ · En)2

]}
,

(2.121)

where eq. (2.97) has been used to substituteei j . This expression retains all terms of first
order inβ and ofO(γ̇ 2

e ).

The evaluation of the fluctuation integral to the same orders inβ and γ̇ 2
e can be undertaken

using the following partitioning,

σ (Ek)= σ0(Ek)+
(
γ̇e

2µ

)
σ1(Ek)+

(
γ̇e

2µ

)2

σ2(Ek) (2.122)

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

4

7



0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

4

8
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whereσ0(Ek) can be deduced from the equilibrium result eq. (2.97),

σ0(Ek)= αλr−1/2
[
1− 1

3β k̂ · k̂︸︷︷︸
=1

]+ 1
6αλr−3/2eii (2.123)

Fredrickson et al. find that the first order termσ1(Ek) vanishes identically [Fre94]. The deriva-
tion of second order term devours a considerable effort [Fre94] The expression completly
valid for high molecular weight copolymers is given by

σ (Ek)=aλr−1/2
[
1− 1

3βk̂k̂
]
+ 1

6αλr−3/2eii −
(
γ̇e

2µ

)2

λα2r−7/2 2π5!!
6!!

{
1
15

−β ( 1
35(k

2
x+k2

y)+ 1
105k

2
z

)+ 7β

2r

[
1
45αλr−1/2+λa2

(
1
35n2

y+ 1
105n

2
z

)]} (2.124)

This result can now be used to derive coupled equations for the inverse susceptibilityr and
the anisotropy factore in the weak shear limit. Fredrickson et al. [Fre94] find for the inverse
susceptibility

r = τ +λa2+aλr−1/2+ 1
6aλr−3/2eii −

(
γ̇e

2γ̇ ∗

)2
(λα)3

r 7/2

× 2π5!!
6!!

{
1
15+ 7

2β

[
1
45αλr−3/2+ λa2

r

(
1
35n2

z+ 1
105n

2
y

)]}
.

(2.125)

and for the anisotropy

ei j = β(λa2ni n j + 1
3αλr−1/2δi j )−

(
γ̇e

2γ̇ ∗

)2
2π5!!

6!!

(
1
35(δixδ j x + δizδ j z)+ 1

105δiyδ j y

)
(2.126)

where again the characteristic shear rateγ̇ ∗ = λµα1/2 has been used. It is apparent from those
equations that the fluctuation terms are smallest for the parallel orientation. That means that
one has to expect parallel aligned lamellae at and below the ODT for weak shear.

2.4.3. A Limitation of the Theory

The coupling between the shear field and the concentration gradient is described in equation
(2.61) by the term−Eu ·∇9. The shear field has the formEu0= γ̇ x̂ z (equation 2.68) and hence
it does not exhibit any other components than one intox–direction. Parallel and perpendic-
ular aligned layers have a concentration gradient direction perpendicular to thex–direction.
This means that those orientations and any inbetween couple to the shear field only by fluc-
tuations and are thus hardly influenced by shear in the scope of that theory.
So it is only possible for the theory to describe perpendicular and parallel oriented lamel-
lae as a result of an alignment process form other orientations. A transition from parallel
to perpendicular and vice versa can hardly be described satisfying. A second coupling of
some orientation variable other than the concentration gradient seem to be necessary to fully
describe the reordering.
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Figure 2.11.: Schematic phase diagram of theτ–γ̇ /γ̇ ∗–plane. In the weak shear limit only a disorder–
parallel transition is present at the transition temperatureτt (γ̇ /γ̇

∗) while in the strong shear limit
an area of perpendicular orientation can be found belowτsy(γ̇ /γ̇

∗). The dotted line atτsz(γ̇ /γ̇
∗)

represents the stability limit of the parallel oriented phase in the strong shear limit. In this regime a
further transition from perpendicular to parallel can be found atτp.
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3. The Simulation Methods

3.1. Molecular Dynamics

Molecular Dynamics(MD) is a method of simulating equilibrium and transport properties of
classical many particle systems. Classical in this sense means that all particles interact in the
limits of classical mechanics. In a MD simulation Newton’s equations of motion

mi
d2

dt2
Er i =

∑
j , i 6= j

Fi j =−∇
∑
j , i 6= j

Ui j (3.1)

are solved for each single particle.mi is mass of particlei . The potentialUij denotes the
sum of all two body interactions of particlesi and j . Three and more body interactions
are neglected here. Eq. (3.1) represents either 3N second order linear differential equations
(LDE) or 6N first order, whereN denotes the number of particles in the system. The set of
first order LDE is given by

d

dt
Epi =

∑
j , i 6= j

Fi j (3.2)

d

dt
Er i = Epi (3.3)

That set is now solved (integrated) numerically. Numerical integration has to retain the es-
sential physics of the system as time-reversibility and conservation of linear and angular
momentum. Depending on the system ensemble, thermodynamic variables like kinetic en-
ergy or temperature have also to be kept constant. There is a huge variety of symplectic
integrators which fulfill that task. They are very stable and allow are large time step. A
convenient choice for an integrator is the famous velocity Verlet integrator in its lowest order
scheme which is broadly applied [AT87].

This section now proceeds as follows. First thevelocity Verletintegrator is introduced and
the updating scheme for an constant energy ensemble is developed. Then it is shown how
a standard MD simulation is coupled to a heat bath via the Langevin thermostat method to
establish a constant temperature ensemble.
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3. TheSimulation Methods

3.1.1. The Integrator

As stated above, an integrator is needed, which incorporates certain features as time-reversibility
and momentum conservation. Among those features are:

• speed, which is a nice feature to have but not really important since most of the time
is spend within the force calculation loop.

• accuracy for large time steps, which certainly is more important, since longer time
steps mean fewer evaluation of the interactions. This often goes along with an increase
in the memory need due to the storage of higher derivatives.

• low memory need, since the simulation of large system sizes is only possible if all
available memory in the targeted machine can be used efficiently. This might reduce
the maximum time step.

• energy conservationis definitely an important criterion. One might distinguish be-
tween two kinds of conservation, short time and long time. Sophisticated higher order
schemes often have an excellent energy conservation for short times while they exhibit
an undesirable long term drift. Verlet style algorithm show only a fairly good short
time behavior but a little long term drift [FS96].

• time reversibility is a important feature likewise. True Hamiltonian dynamics leaves
the magnitude of any volume element in phase space unchanged, but many numerical
schemes, in particular those that are not time reversible, do not reproduce this area–
preserving property [FS96]. Therefore time non–reversible algorithms are not energy
conserving at least in the long term limit. Reversible algorithms will conserve the
volume in phase space. This is compatible with long term energy conservation.

The Verlet integrator incorporates most of the above features.

• It is really fast but as mentioned this does not really matter.

• It requires as little memory as possible which allows in principle the simulation of large
systems.

• It is not very accurate for large time step which requires more frequent updates of the
interactions.

• It exhibits a little long term drift.

• It is time reversible and area conserving.

Although the Verlet algorithm does not conserve the total energy exactly, strong evidence
indicates that it does conserve a pseudo–Hamiltonian approaching the true Hamiltonian in
the limit of infinite short time-steps [FS96].



3.1. Molecular Dynamics

Tuckerman, Berne, and Martyna [TBM92] showed how to systematically derive an time re-
versible, area preserving MD algorithm from the Liouville formulation of classical mechan-
ics. Such a derivation for the Verlet algorithm is reviewed in the following.

Considering a set ofN particles with positionsEr i , massmi and momentaEpi the Liouville
Operator is given by

i L =
∑

i

( Epi

mi

∂

∂Er i
+ EFi

∂

∂ Epi

)
(3.4)

The time development of an arbitrary observableA(t)= A({Er i (t)},{ Epi (t)}) can be expressed
by

d

dt
A = i L A (3.5)

⇔ A(t) = ei L t A(0) (3.6)

{Er i (t)} and{ Epi (t)} denote the dependency on the whole ensemble of particles. The right hand
side of eq. (3.6) can in principle only be solved by the exact integration of the equations
of motion. The operatorL itselves incorporates a sum of non-commutating operators so a
factorization ofL has to be done in an appropriate way. Using the Trotter identity one can
split L into

ei L t = lim
s→∞

(
ei L p t/2ei L r t ei L p t/2

)s
(3.7)

whereL p denotes the momentum andL r the coordinate part ofL :

i L p =
∑

i

Fi
∂

∂ Epi
i L r =

∑
i

Epi

mi

∂

∂Er i
(3.8)

For a small discrete time step1t eq. (3.7) can be rewritten as

ei L1t = ei L p1t/2ei L r 1tei L p1t/2+O(1t4) (3.9)

Applying ei L p t/2 to the observable A leads to

ei L p1t/2A

( {Er i (t)}
{ Epi (t)}

)
= A

( {Er i (t)}
{ Epi (t)+ Epi (t+1t/2)}

)
(3.10)

In the next stepei L r t/2 is applied to the above

ei L r 1t A

( {Er i (t)}
{ Epi (t)+ Epi (t+1t/2)}

)
= A

( {Er i (t)+Er i (t+1t)}
{ Epi (t)+ Epi (t+1t/2)}

)
, (3.11)

and in the final step

ei L p1t/2A

( {Er i (t)+Er i (t+1t)}
{ Epi (t)+ Epi (t+1t/2)}

)

= A

( {Er i (t)+Er i (t+1t)}
{ Epi (t)+ Epi (t+1t/2)+ Epi (t+1t/2)}

) (3.12)
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3. TheSimulation Methods

From this factorization one can easily deduce an algorithm which is known as thevelocity
Verlet updating scheme:

Er i (t+1t) = Er i +1t
Epi (t)

mi
+ (1t)2

2mi

EFi ({Er j (t)}) (3.13)

Epi (t+1t) = Epi (t)+ 1
21t

[ EFi ({Er j (t)})+ EFi ({Er j (t+1t)})
]

(3.14)

For the updating of the total momentum one finds

ei L1t
∑

i

Epi (t)=
∑

i

Epi (t+1t)

=
∑

i

Epi (t)+ 1
21t

∑
i

[ EFi ({Er j (t)})+ EFi ({Er j (t+1t)})
] (3.15)

And as forces always add up to zero if no external field is applied, the total momentum is
exactly conserved.

3.1.2. Coupling to a Heat Bath

In a MD simulation the time average of a sufficiently long trajectory is related to a suitable
statistical ensemble average. The above updating scheme represents the micro–canonical
ensemble but in many cases it is more convenient to use constant temperature instead of
constant energy simulation.

Constant temperature thermodynamically can be introduced by coupling a system to a heat
bath. There are various method to modify the updating scheme and simulate in the canonical
ensemble (see. [AT87, FS96]). The present work follows for theNV Tensemble the approach
by Grest and Kremer [GK86]. In this approach instead of Newton’s equation of motion, a set
of Langevin equations is solved, which is given by

mi
d2

dt2
Er i = EF({Er i })−0Er i + Eζi (t) (3.16)

with Eζi (t) being aδ–correlated Gaussian noise source1 and its first and second moments given
by

〈Eζi (t)〉 = 0 and 〈Eζi (t)Eζi (t
′)〉 = 6kBT0δi j δ(t− t ′) (3.17)

The balance between the friction force and the stochastic force is governed by the fluctuations–
dissipation theorem.

The integration scheme for the evolution of a molecular system simulated with MD in the
NV Tensemble is shown in box 3.1

1The noise is not really Gaussian since only the first two moments are given. For a real Gaussian noise higher
moments equal zero. Nevertheless the term is commonly used in this context.
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Box 3.1Velocity Verlet Updating scheme

1. Er

Ep

EF

Update of the particle momenta:
Epi (t+1t/2)= Epi (t)+1t/2 EFi (t)

2. Er

Ep

EF

Update of the particle positions:
Er i (t+1t)= Er i (t)+1t Ep(t+1t/2)

3. Er

Ep

EF

Calculation of the interaction:
EF(t+1t)= EF({Er i (t+1t)},{ Epi (t+1t/2)})

4. Er

Ep

EF

t t + 1t
2 t +1t

Update of the particle momenta:
Epi (t+1t)= Epi (t+1t/2)+1t/2 EFi (t+1t)
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3. TheSimulation Methods

3.2. Constant Pressure Molecular Dynamics

Sometimes it is more convenient to use theNpTensemble rather thanNV T. This is espe-
cially the case when one intents to explore e.g. the fluid–solid phase transition where under
constant pressure conditions a jump in the density occurs. A two phase coexistence is hence
avoided.

There have been several ways proposed to introduce constant pressure to MD. Quite often
the Berendsen thermostat [BPv+84] is applied. But this thermostat has the disadvantage that
the rescaling of the velocities leads to an iso-kinetic ensemble which does not reproduce the
correct behavior at phase transition where large fluctuations are involved.

Another choice is the Anderson method [And80] which produces the correctN P H en-
semble. This method and an extension by Kolb and D¨unweg [KD99] which leads to the
NpTensemble, is presented below. But first the question is answered how to measure the
pressure in a system with periodic boundary conditions.

3.2.1. The Virial Equation

Clausius virial function is defined as

V(Er N)=
N∑
i

Er i · EFi (3.18)

whereFi is the total force acting on particlei . The ensemble average is given by

〈V〉 = lim
τ→∞

1

τ

∫ τ

0
dt

N∑
i

Er i · EFi

=−3NkBT (3.19)

Now the virial function can be separated into two parts: oneVint , arises from the forces
between particles; the other,Vext, originates from the external forces. Let the particles be
confined in a cubic box of lengthL = V1/3, the external forces are related in a simple way to
the pressure exerted by the walls of areaS= L2. Their contribution to the virial function is
Vext=−3PSL=−3PV. So one can deduce from eq. (3.19)

PV = NkBT + 1

3
〈Vint 〉

= NkBT + 1

3

〈
N∑
i

Er i (t) · FN [Er N
i (t)]

〉
(3.20)

And the well knownvirial equationis obtained

βP

ρ
= 1+ β

3N

〈
N∑
i

Er i (t) · FN [Er N
i (t)]

〉
(3.21)

whereρ denotes the number density andβ the inverse temperature.
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3.2.2. Pressure and Molecular Systems

To relate pressure to a molecular system one usually relays on the virial theorem from clas-
sical dynamics. The derivation of the virial theorem for a system ofN atoms starts with the
quantity

I = 1

2

N∑
i

mEr i · Er i (3.22)

which is a measure of the shape of the object formed by the N atoms, the moment of inertia.
The second derivative in time gives

d2I

dt2
=

N∑
i

mĖr 2
i +

N∑
i

Ër i · Er i (3.23)

Using Newton’s second law on the right hand side and averaging over time gives

〈
d2I

dt2

〉
=m

〈
N∑
i

Ėr 2
i

〉
+
〈

N∑
i

EFi · Er i

〉
(3.24)

Now in the usual development either external fields or container walls preserve the shape of
the N-particle object (the shape measured byI ), if not at each instant, then at least on a time
average. That means that the lhs equals zero and the forceFi on the rhs divides into internal
and external terms.

Periodic boundary conditions (PBC) are applied to the simulation systems and there are nei-
ther walls nor external forces to preserveI , and the usual derivation of the virial theorem
appears to be problematic. J.M. Haile [Hai92] gives an alternative derivation in which the
pressure is interpreted as a momentum flux. His main idea is followed now.

Momentum Flux Based Derivation

A cubic region of space is considered, with sideL and VolumeV = L3 occupied byN
particles. In molecular dynamics simulation this is the usual shape of the primary cell. The
ensemble of particles is at equilibrium with zero total linear momentum. Now let us consider
a virtual planar surface of areaA= L2 inserted perpendicular to the x-Axis into the system
(see fig. 3.1). The pressure can be defined as the force per unit area acting normal to the
surface,

Px = Fx

A

= 1

A

d(mvx)

dt
(3.25)

Thus the pressure can be interpreted as a momentum flux through a unit area of the surface
in unit time. In general, this flux is composed of two parts, the momentum carried by the
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3. TheSimulation Methods

Figure 3.1.: Virtual surface inserted perpen-
dicular to the x-axis into the cubic box.

particlesPm as they cross the surface area duringdt, and the momentum transferred as a
result of forces acting between particles that lie on different sides of the surface.

The momentum flux caused by movements of the particles can be described as follows.

〈Pmx〉 ≡
〈∫

mvxvx
N

V
f (vx, t)dvx

〉

= Nm

V

〈
vx

2
〉

(3.26)

Repeating the procedure for the y- and z- direction, as well, the total convective contribution
to the pressure can formed and the ideal–gas law thereby obtained,

〈Pm〉 = 2N

3V

[〈Ekx〉+ 〈Eky〉+ 〈Ekz〉
]= 2N

3V
〈Ek〉 (3.27)

Now the momentum flux is considered, caused by intermolecular forces. LetPf x be the total
force per unit area acting normal to the surfaceA where the forces are caused by particles on
one side interacting with particles on the other one. The forces are pairwise additive andPf x

can then be written

Pf x = 1

A

∑
i

′∑
j

′′
Fi j ,x (3.28)

The first sum runs over all particles on the left side of the surface, the second over all particles,
which are on the right side. Now an average over all possible location of the virtual surface
is made. One obtains

P f x = 1

AL

∫ L

0

∑
i

′∑
j

′′
Fi j ,xdx (3.29)

The integral can be approximated by a sum over all particles in the following way. Assum-
ing the particles have been labeled sequentially from 1 toN as their x-position increases
from zero toL, one can definexk,k+1 = xk+1− xk. Note, that only interactions of particles
contribute toP f x which are on different side of the surface. So one can write

P f x = 1

V

N−1∑
k=1

k∑
i=1

N∑
j=k+1

Fi j ,xxk,k+1 (3.30)
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A rearrangement of the above sum leads to

P f x = 1

V

N−1∑
i=1

N∑
j=i+1

Fi j ,x

j∑
k=i

xk,k+1︸ ︷︷ ︸
xi j

(3.31)

= 1

V

N−1∑
i=1

N∑
j=i+1

Fi j ,xxi j (3.32)

An average over time is taken, which leads to

P f x = 1

V

〈
N−1∑
i=1

N∑
j=i+1

Fi j ,xxi j

〉
(3.33)

Repeating the procedure for the other axes leads to analogous expressions for〈P f y〉 and
〈P f z〉. Altogether on obtains

〈Pf 〉 = 1

3V

〈∑∑
i< j

EFi j · r i j

〉
(3.34)

which is the virial. Combining (3.27) and (3.34) gives the complete expression for the pres-
sure,

P = 2N

3V
〈Ek〉+ 1

3V

〈∑∑
i< j

EFi j · r i j

〉
(3.35)

whereEk is the kinetic energy per particle. The pressure can also be expressed in its tensor
form which is sensible if it is not isotropic:

Pαβ = 2N

3V
〈Ek,αβ 〉+ 1

3V

〈∑∑
i< j

EFi j ,α · r i j ,β

〉
(3.36)

whereEk,αβ =∑i mi vi,αvi,β .

3.2.3. Constant–Pressure Molecular Dynamics

Andersen [And80] suggested a method for performing MD in the isobaric–isoenthalpic (NPH)
ensemble. He presented a scheme for introducing energy fluctuations into MD in order to fix
the temperatureT rather than the energyE. He showed that trajectory averages are equal to
the canonical (NV T) ensemble averages. He also suggested a way of introducing adiabatic
volume fluctuations such that the pressureP and the enthalpyH instead of volumeV and
energyE are constant. This latter approach is followed now.

To simulate under constant pressure,P, the simulation box extension,EL, needs to be a vari-
able. Following Anderson’s implementation the dynamics ofEL are specified by Hamiltonian
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3. TheSimulation Methods

equations of motion. Therefore a canonical conjugate variable has to be introduced, the pis-
ton momentum and its artificial mass. This mass has no direct physical meaning but defines
the time scale of the fluctuations. With this approach the box dynamics are subjected to the
micro-canonical ensemble. Kolb and D¨unweg [KD99] extended this approach. They coupled
the box dynamics to a heat bath and so the temperature is retained for the box. By doing this
the original Anderson’s NPH method is converted into aNpTmethod.

The Andersen Extended System

The method involves the coupling of the system to an external variable, the volume of the
simulation boxV . This coupling mimics the action of a piston on real systems. The piston
has a ’mass’Q and is affiliated with a kinetic energy

Ekin = 1

2
Q

(
dV

dt

)2

. (3.37)

The potential energy is then given
Epot= PV (3.38)

whereP is the specified pressure of the system.

The coordinates and momenta are related to the system via a dynamical scaling of space and
time by an additional variable. Assuming a cubic box, this variable is its lengthL:

Er i = LEsi (3.39)

For the velocities one obtains
Ėr i = L Ėsi + L̇Esi (3.40)

The last term is omitted in order to permit independent fluctuations ofL andEsi . The Lagrange
function of the system is given by

L=
∑

i

L2 mi

2
Ėsi

2−
∑
i< j

Ui j + 1

2Q
52

V + PV, (3.41)

whereUij is the interaction potential of particlesi and j . It is simple to derive the Hamilto-
nian of the system by a Legendre transformation

H=
∑

i

1

2L2mi
Eπ2+

∑
i< j

Ui j + 1

2Q
52

V + PV (3.42)

where

5V = ∂L
∂ V̇
= QV̇, Eπi = ∂L

∂ Ėis
=mi L

2Ėsi , (3.43)

are the conjugate momenta. The Hamilton equations of motions

Ėsi = 1

L2mi
Eπi Ėπ = L Efi

V̇ = 1

Q
5V 5̇V = P− P

(3.44)
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where Efi denotes the force acting on particlei , andP is the “instantaneous” pressure given
by

P = L

dV

∑
i< j

Efi j Esi j + 1

dL2V

∑
i

1

mi
Eπ2

i (3.45)

where Efi j is the force between particlei and j andEsi j = Esi −Esj .

Kolb and Dünweg [KD99] extended the equations of motion by a stochastic and a dissipative
term

Ėπ = L

(
Efi − γ0

Lmi
Eπi +

√
kBTγi Eζi (t)

)
(3.46)

5̇V = P− P− γv
Q
5V +

√
kBTγVζV(t) (3.47)

where the first and second moments have been chosen

〈ζ αi 〉 = 〈ζv〉 = 0
〈ζ αi ζ βj 〉 = 2δi j δαβδ(t− t ′)

〈ζV (t)ζV(t ′)〉 = 2δ(t− t ′)
(3.48)

and the cross correlation term

〈ζ αi (t)ζV (t
′)〉 = 0 (3.49)

It can easily be proven that this choice leads to theNpTensemble by having a look at the
resulting partition function.

Again the Liouville formalism is applied quite similar to theNV TMD case in order to de-
velop a velocity Verlet type updating scheme. Since the motions of the box and the particles
have to be considered independently the Liouville operator splits up in four parts:

i L1 = −
∑

i

L Efi
∂

∂ Eπi
=−

∑
i

Efi
∂

∂ Epi
(3.50)

i L2 = −(P− P)
∂

∂5V
(3.51)

i L3 = −5V

Q

∂

∂V
(3.52)

i L4 = −
∑

i

Eπi

L2mi

∂

∂Esi
=
∑

i

Epi

mi

∂

∂Er i
(3.53)

Since usually the conventional variablesEr and Ep are used it is convenient to replaceEsi and Eπi

accordingEr i = LEsi and Epi = L−1Eπi . The instantaneous pressure is then given by the normal
expression equation (3.35).

Updating scheme is given as follows.
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3. TheSimulation Methods

1. Update of the particle momenta:

V5PEr Ep Ef
t

t+ 1t
2

t +1t

Ep′i = Epi (t)+ 1t
2
Efi (t)

2. Calculation of the internal pressure:

V5PEr Ep Ef
t

t+ 1t
2

t +1t

P(t + 1t
2 )= P(Er i (t), Ep′i (t+ 1t

2 ))

3. Update of the piston momentum:

V5PEr Ep Ef
t

t+ 1t
2

t +1t

5V(t+ 1t
2 )=5V(t)+ (P− P) 1t

2

4. Adjustment of the box volume:

V5PEr Ep Ef
t

t+ 1t
2

t +1t

V(t+ 1t
2 )+=Q−15V(t+ 1t

2 )
1t
2

5. Update of the particle positions:

V5PEr Ep Ef
t

t+ 1t
2

t +1t

Er ′i = Er i (t)+ L2(t)
L2(t+1t/2)

Ep′i
mi
1t

6. Adjustment of the box volume:

V5PEr Ep Ef
t

t+ 1t
2

t +1t

V(t+1t)+=Q−15V(t+ 1t
2 )

1t
2
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7. Rescaling of the current potitions and momenta:

V5PEr Ep Ef
t

t+ 1t
2

t+1t Er i (t+1t)= L(t+1t)
L(t) Er ′i ,

Ep′′i = L(t)
L(t+1t) Ep′i

8. Calculation of the new forces:

V5PEr Ep Ef
t

t+ 1t
2

t+1t

f (t+1t)= f (Er i (t+1t), Ep′′i )

9. Calculation of the internal pressure:

V5PEr Ep Ef
t

t+ 1t
2

t+1t

P(t +1t)= P(Er i (t+1t), Ep′′i

10. Update of the piston momentum:

V5PEr Ep Ef
t

t+ 1t
2

t+1t

5V(t+1t)+=(P− P) 1t
2

11. Update of the particle momenta

V5PEr Ep Ef
t

t+ 1t
2

t+1t

Epi (t+1t)= Ep′′i + 1t
2
Efi (t+1t)

3.2.4. Anisotropic Rescaling of the Box Shape

The given algorithm rescales the box isotropicly, and hence its edges conserve the relative
dimensions:Lα/Lβ are constant forα,β = {x, y,z}. In some cases it is favorable and maybe
desirable that the box takes on another shape than the initial (e.g. cubic) one.

The problem one encounters is that the layers are often misaligned since the layer spacing
is not consumerable with the box dimensions. In order to obtain a perfect aligned layered
system, so that the layer normal is parallel to one of the normals to the box face, one usually
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3. TheSimulation Methods

has to measure the equilibrium distance of the layers, to set up a layered structure initially,
and to equilibrate this system before performing further simulations. This work is concerned
with complex fluids, so methods like the one suggested by Parinello and Rahman [PR80],
which was developed for solids, is not applicable, since the box may become quite elongated
in the absence of restoring forces. Even if the box–like shape of the box is not changed, it
may take on quite extraordinary and unphysical shapes. Is there a physical method in order
to avoid the system running into those states? Let us develop the equations of motions for a
NpT algorithm, which allows the box to change its lengthsLx, L y, andLz independently.

The Hamiltonian equations of motions (3.44) have two expressions which determine the
box size,V̇ = Q−15V and5̇V = P − P. The instantaneous pressure can be written as the
sum of the partial pressuresP = (px+ py+ pz), wherepα are the diagonal components of
the pressure tensor (3.36). The derivative of the volume in time has to be rewritten as the
derivative of each box dimension

V̇ = ∂

∂t
(LxL yLz)

= V

(
L̇ x

Lx
+ L̇ y

L y
+ L̇z

Lz

) (3.54)

Naturally each box dimensionLα has its own conjugate momentum5α. Assuming5V =∑
α 5α, the momenta are obtained by the comparison of the coefficients in the according

Hamiltonian equation of motion

5α = QV
L̇α
Lα

(3.55)

Their derivative in time is then given by

∂

∂t
5α = pα− 1

3
P (3.56)

This treatment allows an independent rescaling of the box dimensions while keeping the box–
shape. This does not protect one from obtaining pan cake or elongated rectangular shapes
during the course of the simulation. One possibility to avoid this is to stick to constant volume
and allow the box to reshape according to it. In some simulations presented below one was
only interested in keeping the pressure constant in one or two directions. This opens the
opportunity to rescale only this particular direction according to the above rules.

3.2.5. Choice of the Parameters

In the harmonic approximation an atom vibrates in the mean field of its surrounding neigh-
bors. Its frequencyωE is called the Einstein frequency. This frequency can be defined via
the expansion of the velocity auto correlation function

〈Evi (t) · Evi (0)〉 = 〈v2
i 〉− 1

2〈v̇2
i 〉

= 〈v2
i 〉(1− 1

2ω
2
Et2+·· · ) (3.57)
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and is given by

ω2
E =

1

3mi
〈∇Eri U 〉 (3.58)

where∇Eri accounts for the derivatives with respect to the particle positions andU is the
pairwise additive interaction potential. This is exactly the frequency which governs the time-
step applied to any MD simulation. A typical rule of thumb state1t = (1/50)(2π/ωE).

The piston oscillates within a constant temperature ensemble if a weak friction and random
force is applied. The frequency�E of the piston can be estimated quite easily via the isother-
mic compressibility [KD99],

κT =− 1

V

∂

∂p
V = 1

V kBT
(〈V2〉− 〈V〉2), (3.59)

controls the relation between pressure fluctuationsδP =P− p and volume fluctuationsδV =
V −〈V〉 via

δP =− 1

κT V
δV (3.60)

Using the Hamilton equations of motion (3.44) one obtains a second order differential equa-
tion,

d2

dt2
δV =− 1

κT QV
δV (3.61)

which is the equation for a harmonic oscillator with the frequency,

�2
E =

1

κT QV
(3.62)

On the one hand the mass of the piston has to be chosen large enough in order to keep
�E ≤ ωE, so that the box oscillation occur on time-scales lower than or equal to atomic
oscillations. On the other hand the box should be able to adjust its volume fast enough.
So�E must not be too small. Kolb and D¨unweg suggested an optimum piston mass for
the resonance condition�E = ωE [KD99]. The similar frequencies of the atoms and the
box result in a efficient and fast energy transfer between them, and so quickly to a well
equilibrated system. Often the piston massQ is been chosen larger than that in order to
separate the time scales of the box and the molecular system.

Note, that the piston mass scales with the inverse system size.

3.3. The Shearing Algorithm

There are several shearing algorithms. Certainly the most often used one is the SLLOD al-
gorithm invented by Evans and Morriss [EM90]. This algorithm is based on the Lees and
Edwards boundary conditions methods for applying shear to a system with periodic bound-
ary conditions in equilibrium. The Lees and Edwards method has the main disadvantage
that it has a lack of contact with response theory. Evans and Morriss improved this method
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3. TheSimulation Methods

by eliminating many disadvantages and especially that lack of contact with response the-
ory. But from the programmers perspective one main disadvantage remains, the difficulty
to apply Lees and Edwards boundary conditions to a parallel program which uses domain
decomposition as its parallelization paradigm.

Müller-Plathe (FMP) introduced in 1999 a new algorithm based on momentum transport
[MP99]. The idea to this algorithm originates from non–equilibrium molecular dynamics
(NEMD) methods for obtaining thermal conductivities and Soret coefficients. Such an algo-
rithm was extended and applied to the easy calculation of shear viscosities.

In the following first the Lees Edwards boundary conditions are briefly reviewed, then the
original algorithm by FMP is introduced and the small changes applied to it are described.

3.3.1. Lees-Edwards Boundary Conditions

The Lees Edwards boundary conditions modify the periodic boundaries in such a way that
the system responds with a planar Couette flow. Figure 3.2 gives an impression of how this
algorithm works. The reader may consider the cell denoted asE as the basic simulation cell.
All other cells are hence its periodic images. The lower left corner of cellE may define the
origin of the system.
Now shear is applied to the system in the following way. The upper row of image cellsA to
C shown in the figure is moving at a constant velocityvx = γ̇ L to the right, the lower row
to the left accordingly. Particles moving out of the top of the simulation box have to reenter
the box with a rescaled position and velocity at the bottom and vice versa. This movement
of particles out of and into the simulation cell induces a linear shear profile which is stable in
time. Particles within the simulation box have coordinates 0< {x, y,z} < L. Following the
Evans and Morriss [EM90] the laboratory velocity of the particle is given by

Evi = Eci + Eu(Er i ) (3.63)

whereEci denotes the thermal or peculiar velocity of particlei and Eu(Er i ) the coordinate de-
pending streaming velocity. In the situation of simple shear flow in x-direction with a gradient
in y-direction the streaming velocity is given byEu(Er i ) = γ yi x̂. At t = 0 the usual periodic
replication is appliedEr i = (Er i ) modL. The modulus modL in this sense stands for the
backfolding of the coordinates to the original simulation box with, e.g.

xfolded= xunfolded−anint(xunfolded/L) (3.64)

for the x-coordinate. The particleEr i has imagesEr ′i = Er i + L ŷ andEr ′′i = Er i − L ŷ in y direction.
At time t when the image cells have moved, their position has changed:

Er i (t) = Er i (0)+
∫ t

0
ds (Eci +γ yi x̂) (3.65)

Er ′i (t) = Er ′i (0)+
∫ t

0
ds(Eci +γ y′i x̂) (3.66)

Er ′′i (t) = Er ′′i (0)+
∫ t

0
ds(Eci +γ y′′i x̂) (3.67)
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γ L ts =
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v =x - γ

v =x γ L

L

Figure 3.2.: Schematic view of Lees Edwards periodic boundary conditions for a planar Couette flow.
E denotes the simulation cell surrounded by its periodic imagesA to I. As shear flow is applied, the
images in the upper row are moving with a velocityvx = γ̇ L while the lower is moving into the
opposite direction.

By definition the thermal velocities are all equal. Replacing the primed parts by their un-
primed equivalents one obtains

Er ′i (t) = Er i (0)+ L ŷ+γ Lt x̂ (3.68)

Er ′′i (t) = Er i (0)+ L ŷ−γ Lt x̂ (3.69)

Now, if Er i moves out of the bottom of the simulation box it is replaced by the image particle
at Er ′i , if Er i moves out of the top it is replaced by the image particle atEr ′′i . In the modulus
notation

Er new
i = (Er ′i ) modL = (Er i +γ Lt x̂) modL (3.70)

Er new
i = (Er ′′i ) modL = (Er i −γ Lt x̂) modL (3.71)

The velocities have to be rescaled, too

vnew
i = d/dt rnew

i = Ėr i +γ L x̂ particle moving out of the bottom (3.72)

vnew
i = d/dt rnew

i = Ėr i −γ L x̂ particle moving out of the top (3.73)

There are certain difficulties in using this algorithm, since

• shear flow takes time to develop. The time is approximately the traversal time for a
sound wave crossing the primitive cell.
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3. TheSimulation Methods

• it cannot be used to study time dependent flows.

• it lacks contact with response theory.

• it is very difficult to parallize under the domain decomposition paradigm.

The SLLOD fictitious force method introduced by Evans and Morris [EM90] solves some of
these problems. It couples the shear flow to each molecules instead to rely on the modified
boundary conditions. By doing this the impose a linear shear profile onto the system which
is a disadvantage in the investigation of multivalued stress–strain relations.
Another achievement of the SLLOD method is the application of a suitable thermostatting
method in order to keep the NVT ensemble. In the following an alternative to the SLLOD
algorithm by Müller–Plathe’s [MP99] is described.

3.3.2. Physical Details of the FMP Algorithm

As shown in the previous chapters, the shear viscosity is the elastic constant which couples
a velocity gradient to a shear stress. For simplicity is is assumed that the velocity gradient
tensor∇iv j has only one non–zero component∇zvx. Then the following momentum flux of
momentum inz–direction, jz(px) exists, which can be written as

jz(px)=−η∇zvx (3.74)

A flux like this can always be described as transport through an surfaceA perpendicular to its
direction within a time intervalt . Given a certain strain rate and therefore a known velocity
gradient, the shear viscosityη can be determined, if the flux is known.

The momentum flux is imposed in M¨uller-Plathe’s algorithm in an unphysical way. The
simulation box is subdivided intoN slabs along the shear gradient directionzwith a thickness
1d, as shown in figure 3.3. The middle slab2 at positionz= Lz/2 and the bottom slab at

Figure 3.3.: Sketch of the shear algorithm. The sim-
ulation box is subdivided inz–direction into slabs
of thicknessd. The middle slab and the bottom
slab are picked out (see text). The particles mov-
ing most against the preferred directions exchange
their momenta. The system responds with a back-
flow of the exchange momentum which imposes a
shear profile.

position z= 0 are picked out. Both slab get a preferred direction of flow, e.g. the middle

2It could be the top slab if some special kind of Lees–Edwards boundary conditions are applied.



3.3. The Shearing Algorithm

slab the positive flow direction and the bottom slab the direction reverse to it. In M¨uller–
Plathe’s algorithm, one looks now for the particle in each slab, which is moving most against
the preferred direction. Once they are found, their momentum components in flow direction
are exchanged. Let nowi be the particle in the middle slab, andj be the particle in the
bottom slab. By doing that exchange, a momentum of1px = pi,x − pj ,x is transferred from
the bottom slab to the middle slab. Those exchanges can take place periodically and the total
transferred momentum is the sum of all momentum transfersPz =∑1px. The response
of the system to this non–equilibrium excitation is now a momentum flux into the opposite
direction via a physical mechanism, the friction. In a steady state transport and flux are equal:

jz(px)= Pz

2L yLxt
(3.75)

Note that the factor 2 arises because of the periodicity of the given system.

The momentum flux leads to a continuous velocity gradient in the fluid. The mean velocity
of each slab is given by the average over the particles belonging to it

vx(n)= 〈vx,i |i∈slab(n)〉 (3.76)

If the momentum transport rate is not too high, the velocity profile is linear for a sheared
fluid. In this case the error for the local strain rate can be easily obtained by linear regression.
This error propagate into the measurement of the shear viscosityη. Note that the fluxjz(px9
is exactly known. In case the velocity profile is non–linear the efficiency the momentum
transfer is not uniform across the system. The system shows a velocity profile as sketched in
Figure 3.4 (b).

vx(z)

z

(a)

vx(z)

z

(b)

Figure 3.4.: Sketch of velocity profiles induced by the momentum transport and backflow in the system.
(a) shows a normal linear profile, (b) a non–linear one (see text).

3.3.3. Implementatory Details

The basic scheme works as follows:

1. Measuring of the mean velocity within the middle and the bottom slab. During this
process theN particles moving most against the preferred direction are found and the
moments and particles IDs are stored in a special array, which is finally sorted from
lowest to highest value in the moment entry (or vice versa in the bottom slab).
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3. TheSimulation Methods

2. The numberNexchangeof moments which have to be exchanged in order to maintain the
target shear rate is calculated.

3. The moments of theNexchangeparticles are exchanged.

The above works only for a single-processor environment. For a parallel execution com-
munication between the processors sharing the same slab and the ones containing middle or
bottom slab is necessary.

In the following the behavior of the processors dealing with the bottom slab is described. The
processors containing the middle slab perform the action analog. The processing units (PU)
sharing the bottom slab form a communication group. They have a master PU which handles
communication with the master PU of the middle slab PUs. Each PU searches for its local
slowest particles. During this procedure all momenta are summed up. This sum plus the
number of local particles is reported to the master PU as depicted by the following sketch.

∑
vglobal, Nglobal

∑
vlocal, Nlocal

∑
vlocal, Nlocal

∑
vlocal, Nlocal . . .

Master PU

Slaves: PU 1 PU 2 PU 3

Now the master PU is able to calculate the mean slab velocity. This value is exchanged with
the master PU of the middle slab. The PUs of the bottom slab now send their unpreferred
momenta to the master PU which sort them and stored the origin of each momentum as well.

Slaves: PU 1

10 6 2 . . .

PU 2

9 8 3 . . .

PU 3

7 5 4 . . . . . .

10 9 8 7 · · ·
PU 0 - Master
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The master PU exchanges this sorted array with the master PU of the middle slab. Then
it starts to calculate the number of momenta which have to be exchanged. This number is
broadcasted to the communication group.

Nexch

Nexch Nexch Nexch . . .

Master PU

Slaves: PU 1 PU 2 PU 3

Now each member of the group receives the sorted array of exchange velocities and the origin
information for the old array.

Slaves: PU 1

-10 -9 -8 -7

PU 2

-10 -9 -8 -7

PU 3

-10 -9 -8 -7 . . .

-10 -9 -8 -7 · · · · · ·
PU 0 - Master

The PUs browse now through the array, look for the occurrence of their own index in the
origin field and replace the velocity of the corresponding particle by the new one.

3.4. Dissipative Particle Dynamics

Dissipative particle dynamics (DPD) is a quite novel method for the simulation of complex
fluid systems such as colloidal or polymeric suspension, immiscible mixtures etc. first in-
troduced by Hoogerbrugge and Koelman [HK92, KH93]. The aim was to develop a method
which is highly efficient for the simulations at time-scales where hydrodynamics plays a role
but still keeps track of single fluid particles instead of solving continuum equations. DPD
simulations deal with soft spheres whose motion is governed by certain collision rules. The
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introduction of bead-spring like interaction [SHM95] make the simulation of polymers pos-
sible, too.

DPD is essentially based on a molecular dynamics simulation in the NVE ensemble but
the force between the particles has, in addition to a conservative partFC, a dissipative part
represented as a Brownian dash-pot, which enables the simulation of a NVT-like ensemble.
That dash-pot damps out the relative approaching velocity and introduces a noise term that
keeps the system at constant temperature. In terms of Hoogerbrugger et. al. [HK92, KH93]
the damping part of the dash-pot is denoted byF D and the stochastic part byF R. Español and
Warren [EW95] analyzed the relation between both parts. Groot and Warren discussed the
physical meaning of that relation and elucidated the negative consequence of what happens if
one does not follow the relation [GW97]. Since, the dash-pot acts on the relative approaching
velocity, it conserves linear as well as angular momentum.

The construction of the momentum conservation make the thermostat interesting for appli-
cation in non–equilibrium cases. The Langevin thermostat presented in section 3.1 is profile
biased since it assumes that all particles are in equilibrium and arenot subjected to any shear
flow. The DPD–thermostat is by construction biased free. So it is perfectly suitable to be
applied in a non–equilibrium molecular dynamics (NEMD) simulation.

In the following it is briefly describe how the basic DPD algorithm works and then how the
thermostat is acquired for MD simulation method.

3.4.1. The DPD Thermostat

Considering again a set of interacting particles whose time evolution is governed by Newton’s
equation of motion

d

dt
Er i = Evi

d

dt
Evi = Efi (3.77)

with forces acting pairwise
EFi =

∑
j 6=i

( EFC
i j + EF D

i j + EF R
i j

)
(3.78)

where EFC, EF D, and EF R denote the conservative, the dissipative, and the random force re-
spectively. For convenience the mass of each particle is put equal to one. The conservative
force in the DPD algorithm originates from a soft-core potential and is chosen as [Esp98]

EFC
i j =

{
ai j (1− r i j ) · Êr i j r i j < rc

0 r i j ≥ rc
(3.79)

whereÊr i j denotes the unity vector ofEr i j . ai j is the maximum repulsion for two particlesi and
j .

The dissipative or drag force in the formulation of Espa˜nol and Warren [EW95] is given by

EF D
i j =−γwD(r i j )(Êr i j · Ewi j )Êr i j (3.80)
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and the random force by
EF R
i j = σwR(r i j )θi j Êr i j (3.81)

wD andwR are r -dependent weight functions vanishing forr ≥ rc. Evi j = Evi − Ev j is the
approaching velocity, andθi j a randomly fluctuating variable with Gaussian statistics with its
first and second moments

〈θi j (t)〉 = 0 〈θi j (t)θkl(t
′)〉 = (δikδ j l + δil δ j k)δ(t− t ′) (3.82)

EF D and EF R act along the line of centers and conserve linear and angular momentum. There
is an independent random function for each pair of particles. Espa˜nol and Warren [EW95]
showed how these quantities are related. The aim is to derive the Fokker-Planck equation that
corresponds to the stochastic differential equations (SDEs) (3.77). The above requirement
for the forces in general (Galilean invariance and transformation as a vector under rotations)
and the linear dependence ofEF D in the momentum and the independence ofEF R on the
same implies that the Fokker–Planck equation has a drift term linear in the variable and a
diffusion term independent of the variable. The resulting Fokker Planck equation takes the
form [EW95]

∂

∂t
ρ({Er i },{ Epi }; t)= (Lc+L D)ρ({Er i },{ Epi }; t) (3.83)

whereρ({Er i },{ Epi }; t) is the temporal evolution of the distribution function of the position and
momenta of all particles, and with

LC ρ({Er i },{ Epi }; t)=−
[∑

i

Epi

m

∂

∂Er i
+
∑

i

EFC
i j

∂

∂ Epi

]
ρ({Er i },{ Epi }; t)

L D ρ({Er i },{ Epi }; t)=
∑
i, j 6=i

r̂ i j
∂

∂ Epi

[
γwD(r i j )(r̂ i j · Evi j )

+σ
2

2
w2

R(r i j )r̂ i j

(
∂

∂ Epi
− ∂

∂ Epj

)]
ρ({Er i },{ Epi }; t)




(3.84)

The relation betweenwD andwR quantities is given by [EW95]

wD(r )= [wR(r )]2 (3.85)

and that one of them can be chosen arbitrarily. Their usual choice is

wD(r )= [wR(r )]2 =
{
(rc− r )2 r < rc

0 r ≥ rc
(3.86)

Groot and Warren [GW97] propose the following velocity Verlet updating scheme:

1. Er i (t+1t)= Er i (t)+1t Evi (t)+1/2(1t)2 Efi (t)

2. Ẽvi (t+λ1t)= Evi (t)+λ1t Efi (t)

3. Efi (t+1t)= Efi (Er i (t+1t), Ẽvi (t+1t))

4. Evi (t+1t)= Evi (t)+1/21t ( Efi (t)+ Efi (t+1t)
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3. TheSimulation Methods

whereλ is a so called fudge factor. The actual velocity Verlet algorithm for conventional MD
is represented withλ = 1/2. The DUD-forces (drag force) is velocity dependent which is
not consistent with the formulation of the velocity Verlet algorithm. Therefore a prediction
for the velocity, denoted bỹEv is made in step 2. This prediction is corrected afterwards in
step 4. Physical measurements of magnitudes only depending on the coordinates differences
can be made after step 2 while velocity depending magnitudes like temperature are measured
after step 4. The algorithm would be exact toO(1t2) at λ = 1/2 if there were no random
or dissipative force. The order of the proposed algorithm becomes unclear [GW97]. A false
prediction of the velocities would clearly lead to a wrong temperature.

Since in the following simulations the time-step is small due to the use of hard core poten-
tials rather than soft potentials, commonly applied in DPD simulations, the uncertainty in
Ẽv is negligible in the sense of the above discussion. Hence the conventional velocity Verlet
updating scheme can be applied safely, as tests of the method will show (see below).

NPT Ensemble and the DPD–Thermostat

The DPD method is developed to work in the NVT ensemble. Sometimes it is more suitable
to switch to the NPT ensemble even in a non–equilibrium simulation. Therefore the NPT–
ensemble method presented in section 3.2.3 was combined with the DPD thermostat.3 The
updating scheme is identical with that already presented except in one respect. The noise–
friction term, which accounts for the standard Langevin thermo-stating, has been removed
and a dissipative and random force have been added, in order to couple the particles to the
DPD–thermostat.

3.4.2. Implementatory Details

The implementation of the updating scheme is simple. More difficult is to account for the
correct calculation of the random–pair forces in a parallel program. The original version of
the program uses ghost–particle frames around the complete simulation cell.

The original version of the program [PK98] has a ghost shell or halo frame surrounding the
whole particle cell which resides on a processing unit (PU). Particles in the shell, the so–
called ghost particles, are the images of particles on neighboring PU which are in interaction
distance with the local cell. This ghost shell is also used to establish periodic boundary
conditions. As in normal MD all forces are only position depended ghost particles or short
ghosts hold only the current positions of their originating particles but not velocities or forces.
This concept is sketched in figure 3.5. Following P¨utz and Kolb, the forces are for simplic-
ity evaluated twice for each particle–ghost interaction. This was done in order to save the
communication overhead created by necessary a necessary force broadcast if the evaluation
would only occur once. Memory, which was certainly not the important argument, is saved,
too.

3To the authors knowledge this is the first time that NPT–ensemble simulation with the DPD–method are carried
out. It is also conceivable that a standard DPD simulation can be carried out in the NPT–ensemble.
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Figure 3.5.: 2D simplification of the simulation cell
with its surrounding ghost shell. Particlesi and
j are depicted together with their ghostsg(i ) and
g( j ).

b b

i g(i )
bb

jg( j )

Inner cell
Ghost shell

In the case of DPD there is an additional communication need for the velocities, since the
DPD–forces are velocity dependent. This increases the amount of data transfered. The dou-
ble evaluation of forces makes it necessary to rethink the concept of applied ghost particles.
A double evaluation means in the case of random forces two random number of the same in-
teraction. This does not match with momentum conservation. The solution is a single sided
ghost frame which covers all particle interaction exactly once. This decreases the amount of
positions and velocities to be broadcasted. The disadvantages are that after the interaction
loop all the forces of ghost particles have to be broadcasted back to their original particle
and for the correct evaluation of observables depending on velocities it might be necessary
to introduce a third communication step for the exchange of the new velocities after the final
velocity update in the Verlet updating scheme. Figure 3.6 depicts the new case.

3.5. A Comparison between the DPD and Langevin
Thermostatting Methods

In the previous sections it has been argued that the Langevin thermostat is not applicable for
shear flow simulations in theNV Tensemble.
In the following a test simulation of a pure Lennard–Jones fluid system containingN = 2048
particles is discussed, which shows an increase of the shear–viscosityη as a function of the
friction ζ .

The simulation was carried out in theNV Tensemble using the FMP shear algorithm. The
system has been equilibrated without shear fort = 20004. The friction has been varied in the
interval 0.01≤ ζ < 10. Then shear with a strain rate ofγ̇ = 0.1 has been switch on and sim-
ulation with the different values of the friction have been carried out using first the Langevin
thermostat and in a second run the DPD thermostat. Figure 3.7 shows the simulation results.
The× symbols refer to the classical MD simulation using the Langevin thermostat. With in-
creasing friction, the shear viscosity increases as well in this case. But a close coupling to the
heat bath should not exhibit a direct effect on the shear viscosity in this non–equilibrium sit-
uation. The simulation with applying the DPD thermostat does not show such that behavior.

4Lennard Jones units will be used in this section.
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Figure 3.6.: Inner cell and its surrounding half–shell
of ghosts particles in a 2D simplification (left).
Below a 3D sketch of the ghost halo is shown as it
is implemented in the parallel program.

b b

i
bb

jg( j )

Inner cell
Ghost shell

Inner cell

Ghost shell

This result is plotted with the+–symbols and does not show any influence in the observed
range of friction.

The friction constants in the case of the Langevin thermostat and DPD thermostat cannot be
directly compared, since their influence is by construction different. But nevertheless, the
non–linear behavior in the Langevin case even for low values of the friction (values near
ζ = 1.0) which are broadly applied in equilibrium situations sounds a note of caution.

2.4

2.6

2.8

3

3.2

3.4

3.6

0.01 0.1 1 10

η

ζ

Figure 3.7.: Friction dependence of the shear vis-
cosity. The shear viscosity,η, is plotted as a
function of the friction constant,ζ . The ×–
Symbols refer to a classical MD simulation us-
ing the Langevin thermostatting method, the+–
Symbols denote the results of the same simulation,
except that the DPD thermostat has been applied.
The lines serve as a guide for the eye.



4. The Simulation Model

4.1. Development of the Model

4.1.1. Interactions

The basic ingredients of the model are particles which interact through spherically symmetric
potentials. These potentials should be continuous, in order to facilitate a standard Molecular
Dynamics procedure like the Verlet algorithm [AT87], and short–ranged, in order to keep the
number of force calculations at a minimum. A convenient choice for this is a Lennard–Jones
(LJ) potential that is truncated at the minimum, and shifted:

UL J =

 4ε

[(σ
r

)12−
(σ

r

)6+ 1

4

]
r ≤ 21/6σ

0 r ≥ 21/6σ

(4.1)

This potential has found widespread applications for the simulation of bead–spring models
for polymers [GK86, KG90]. Here,ε sets the energy scale andσ the length scale. Henceforth
Lennard–Jones units are used whereε = σ = 1. The massm of the particles is also set
to unity, such that time is measured in units ofτ = (σ 2m/ε)1/2. A typical dense system
is characterized by a particle density ofρ = 0.85, and temperaturekBT = 1. This dense
repulsive Lennard–Jones fluid will be the reference system from which the model will be
constructed. The pair correlation function (PCF)g(r ), i. e. the normalized density–density
correlation function, withg(r )→ 1 for r →∞, is shown in Fig. 4.1 for this system (red
graph, the reader may disregard the other graphs for a moment).

As a minimal model for amphiphilic molecules, only dimers of different species are consid-
ered.

From the polymer simulations it is known that it is computationally efficient to link the dimers
via anharmonic FENE (“finitely extensible nonlinear elastic”) springs with spring constantk
and maximum extensionR0:

UF E N E=


 −

1
2k R2

0 ln

[
1−

(
r

R0

)2
]

r < R0

∞ r ≥ R0

. (4.2)

While for the polymer simulations usually the valuesk = 30 and R0 = 1.5 are applied
[GK86], here a somewhat weaker attraction,k = 5, R0 = 2, is used. The reason is that it
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is intended to adjust the typical bond length to the typical interparticle distance in the dense
Lennard–Jones fluid, see below. By this match it is ensured that the model will also allow
for an ensemble where the connectivity is not fixed, but the bonds are created and deleted be-
tween monomers. If the length scales would not fit, attempts of such processes would much
too frequently be rejected.

0
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1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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0

0.5

1

1.5
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U

r

Figure 4.1.: Pair correlation functions. The red graph shows the pair correlation function of
a pure Lennard–Jones fluid. The others refer to different values of the potential depthφ =
0.0,0.5,1.0,1.5,2.0 (see eq. (4.3)). The curve with the largest oscillations refers toφ = 2.0. The
inset shows the corresponding potentials.

Furthermore, the model needs to include different interactions between A and B particles,
in order to distinguish them and drive the tendency towards phase separation. The simplest
model has identical interactions for A–A and for B–B contacts, while an A–B contact is more
repulsive, or less attractive, and thus unfavorable. Ideally, one would like to do this via re-
pulsive potentials only, for example by increasing the pre-factor in Eq. 4.1 for A–B contacts,
the advantage being twofold: Firstly, one would stick to a very short interaction range, and
thus to few force calculations, and secondly the system would not exhibit a gas–liquid tran-
sition, which is not of interest per se, and would only introduce an unwanted complication
into the system. Actually, this approach has been very successful to model the phase separa-
tion of polymer blends, and the micro-phase separation of block copolymers [GLKG96]. In
that case, however, a very small difference in the interaction is already sufficient to drive the
phase transition, as the polymerization strongly reduces the translational entropy, resulting
in Tc ∝ N, whereTc is the critical temperature, andN the degree of polymerization. Con-
versely, a low–molecular weight system would need a quite strong repulsion between A and
B in order to access phase separation. Note that it is computationally more efficient to vary
the interaction strength to drive the phase transition, rather than the temperature — the po-
tentials are optimized such that the Molecular Dynamics, with its interplay between potential
energy and kinetic energy, runs best forkBT = 1. Tests have then shown that actually such a
strong repulsion is needed that a very small time step is necessary, which again is inefficient.
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For this reason, it has been resorted to the second choice, and included an attractive tail be-
tween the A–A pairs and the B–B pairs, while the A–B contacts are just subject to the purely
repulsive Lennard–Jones potential.

For the choice of the attractive tail, the following considerations are important:

1. In the general spirit of a minimal model, the presence of several molecular length
scales, which might lead to competition, frustration, etc., should be avoided. So the
typical interparticle distance is choosed to be the same for A–A, B–B, and A–B bonds.
In other words: The additional attractive tail should not substantially distort the pair
correlation functiong(r ) of the original repulsive Lennard–Jones fluid, at least with
respect to the positions of the maxima and minima. Guided by the same idea, we had
already adjusted the parameters of the bond potential, Eq. 4.2.

2. The tail should be rather short–ranged, for reasons of efficiency.

3. In order to avoid instabilities in Molecular Dynamics simulations, the potential should
be continuous, and have continuous first derivatives.

For these reasons, the potential should remain unchanged for 0< r < 21/6, while the attrac-
tive tail should reach fromr = 21/6 to the first minimum ofg(r ) (which occurs roughly at
r = 1.5, as seen from Fig. 4.1), such that only the first neighbor shell is included in the inter-
action. Such a potential will then of course allow for a gas–liquid transition, and, even more
importantly, favor crystallization into an fcc structure, since any frustration effects between
length scales have been deliberately avoided. These issues will be considered in the next
section in more detail. The tail should thus have zero derivative atr = 21/6 and atr = 1.5,
while it should have the values zero atr = 1.5, and−φ at r = 21/6, whereφ is the depth of
the attractive part, and is used by us as the independent parameter by which the system is
driven into the ordered phase. Using a shifted cosine wave inr 2, one thus obtains

UL J cos=




4

[(
1

r

)12

−
(

1

r

)6

+ 1
4

]
−φ r ≤ 21/6

1
2φ
[
cos(αr 2+β)−1

]
21/6 ≤ r ≤ 1.5

0 r ≥ 1.5

, (4.3)

whereα andβ are determined as the solutions of the linear set of equations

21/3α+β = π (4.4)

2.25α+β = 2π, (4.5)

i. e. α = 3.1730728678 andβ =−0.85622864544.

As an alternative, a third–order polynomial inr 2 was also considered,

Up/φ = A+ r 2(B+ r 2(C+ r 2D)), (4.6)
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where the same requirements yieldA=7.979574673,B=−17.52538691,C=10.84948485,
D = −2.060727237. However, in benchmarks it was found that this potential is only a
few percent faster than the cosine version, the reason being that the trigonometric functions
are implemented as fast hardware instructions on the processors used (Compaq Alpha EV5,
EV56, EV6, EV67, and Intel Pentium II and III). Therefore the original version was kept,
Eq. 4.3. All results that follow will exclusively refer to this potential.

Figure 4.1 shows the resultingg(r ) of a monomer fluid ofN = 10000 particles who are all
subject toUL J cos. Whileφ = 0 is the original repulsive Lennard–Jones fluid, the amplitude is
systematically increasing withφ. However, the position of the maxima and minima is nearly
unchanged, as desired.φ = 2.0 is close to the fluid–solid transition (see below).

Figure 4.2 comparesg(r ) to the bond lengths which result from the FENE potential, Eq. 4.2,
at a typical state pointφ = 1.5. It is seen that also these lengths match quite nicely.

0.9 1.9
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2e+03
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1

2

3

g(r)

Figure 4.2.: Histogram of bond
lengths for a system of dimers at
ρ = 0.85, φ = 1.5, compared to the
pair correlation functiong(r ) of a
monatomic system at the same state
point.

4.1.2. Computational details

The simulation method applied is Molecular Dynamics (MD). Chapter 3 gives a short overview
on MD. For stabilization purposes, a Langevin thermostat [DGK98] is used. The equations
of motion are given by

mËr i =−E∇i U −0Ėr i ,+Eζi (t), (4.7)

where the friction coefficient0 and the strength of the random noiseEWi (t) are related via the
the fluctuation dissipation theorem:

〈Eζi (t) · Eζ j (t
′)〉 = 6kBT0δi j δ(t− t ′). (4.8)

U denotes the sum over all interactions of the beadi , and the temperature is always fixed
at the valuekBT = 1.0. The equations of motion are integrated by using a velocity Verlet
updating scheme [AT87]. The simulations were carried out in the constant volume (NVT)
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as well as in the constant pressure (NPT) ensemble. For the NPT ensemble simulation a
modified velocity Verlet algorithm was used, and the “box” degree of freedom coupled to a
Langevin heat bath as well [KD99]. The time step used in the simulation was1t = 0.01.
The friction constant is set to the small value0 = 0.5, thus ensuring that the dynamics is not
too far away from the Hamiltonian limit. For a reasonable choice of parameters for the NPT
ensemble, see Ref. [KD99]. The simulation box was always cubic with periodic boundary
conditions. We used a highly optimized domain decomposition scheme in order to run the
simulations in parallel on a Cray T3E [PK98].
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Figure 4.3.: Number of Molecular Dynamics steps per particle per CPU second on two different hard-
ware platforms as indicated in the figure. Systems of pure monomers at densityρ = 0.85 with different
ranges of interactionr were studied: Purely repulsive LJ potential (r = 21/6), attractive cosine poten-
tial for r = 1.5,2.0,2.5, and standard LJ potential cut off atr = 2.5 (� symbols). The cosine potential
was run at strengthφ = 1.5; the system size was alwaysN = 1000 particles.

Figure 4.3 shows that indeed the strategy of confining the interaction range to the first neigh-
bor shell pays off in terms of computational efficiency: While the purely repulsive system is
clearly by far the fastest, only a factor of two is lost in speed when increasing the interaction
range to 1.5. If we would have used the “canonical” interaction range 2.5, then the loss would
rather be a factor of eight.

The algorithm was augmented by a Monte Carlo (MC) procedure. In order to study the
un-mixing of unlike monomers, a semi–grand-canonical ensemble was used where the total
number of particles is fixed, while the fraction of A (or B) particles is allowed to fluctuate,
such that the chemical potential difference1µ is being held fixed. For symmetry reasons,
the un-mixing occurs at1µ = 0. The fluctuations in composition are then facilitated via
stochastic “flips”, which can change an A particle to a B particle, or vice versa [GLKG96].
This was implemented via a simple single spin flip algorithm using the standard Metropolis
[MRR+53] criterion.
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Furthermore, one might also think about the analogous procedure for dimers (an A-B dimer is
“flipped” to a B-A dimer, or vice versa). Such a scheme would certainly somewhat speed up
the equilibration when a lamellar structure is formed. However, this is far less important than
for un-mixing: An un-mixing system without the MC procedure would exhibit a conserved
order parameter and hence “hydrodynamic slowing down”, i. e. the necessity of transport
over macroscopic distances. Conversely, in the case of the formation of a lamellar structure,
the order parameter is not conserved, such that only local rearrangements are necessary.
hence such dimer flips were not implemented, since they would have required substantial
communication in the parallel program, whose data structure builds directly on that of Ref.
[PK98], where the elementary units are the monomers, such that a dimer can be crossing
processor boundaries.

4.2. Simulation Results

4.2.1. Identical Monomers

The simplest system to study consists only of monomers which are all identical. Figure
4.4 gives a rough sketch of the expected phase diagram in the(φ,P)–plane, P denoting
the pressure. Both a gas–liquid transition as well as a fluid–solid transition are expected,
although the gas–liquid transition must not necessarily occur [Fre99]. Since the main interest

gas
liquid

solid

fluid

φ

P

Figure 4.4.: Qualitative sketch of the expected phase di-
agram of a system of pure monomers in theφ–pressure
plane. The existence of the gas–liquid line was not
proven numerically, but is strongly expected. All tran-
sition lines are of first order; the gas–liquid line ends
in a critical point. Furthermore, the diagram shows
the path along which the fluid–solid transition (dashed
line) was studied.

lies in the investigation of the behavior at densities near the typical valueρ = 0.85, it has not
been attempted to answer this question and map out the phase diagram as a whole. Instead
φ was varied at constant pressureP = 1.0. Test runs in the NVT ensemble had shown
that this is a typical pressure for a dimer system at the typical high density near the order
disorder transition (ODT), see below. The results indicate that along this chosen path only
a fluid–solid transition occurs. This transition was located by obtaining a hysteresis loop of
the density as a function ofφ. First a system ofN = 500 particles was run, started in its
fluid phase. The potential depthφ was increased systematically, until a jump in the density
was observed, after which it was decreased again. The final configuration of the previous
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run was always used as initial configuration for the nextφ value. In each run the system
was first equilibrated and then an average of the data was taken over a limited run time of
t = 2000. Figure 4.5 shows the resulting hysteresis loop; besides theN = 500 data a system
containingN = 10000 particles was also studied (with the same observation time) near the
transition, which was necessary to obtain good accuracy in the metastable states. It was
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Figure 4.5.: Hysteresis loop of the density
ρ as a function of the potential depthφ,
at constant pressureP = 1.0, for N =
500 particles (× and+), andN = 10000
(∗ and�). The vertical line marks the
most likely transition value ofφ.

not attempted to locate the fluid–solid transition very accurately (this would have required
thermodynamic integration or finite–size scaling [D¨un96]), but it is quite clear that it occurs
for 1.8<φ < 2.2. Therefore, the simulations of the amphiphilic systems should clearly avoid
such largeφ values.

The solid phase is further characterized by a strongly reduced diffusion. Figure 4.6 shows
the mean square displacement (MSD) of a single particle as a function of time for differentφ

values along the path it was studied. To this end anN = 500 particle system was simulated in
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Figure 4.6.: Mean square displacement
for different values of the potential depth
φ. The diffusion in the crystalline state
is much slower than in the fluid state.

the NVT ensemble, starting off from the final configurations of the corresponding NPT run.
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4. TheSimulation Model

The diffusion constant is extracted from the long–time behavior via the Einstein relation ind
spatial dimensions (hered = 3)

D = lim
t→∞

1

2dt
〈(Er (t)−Er (0))2〉, (4.9)

resulting in the values given in Table 4.1. Note that the mean square displacement has to
be measured in the center–of–mass reference frame of the overall system, which diffuses as
well. While diffusive behavior is observed without any problems in the fluid phase, it turns
out that at the state point in the solid phase (φ = 2.4) the mobility is actually so small that the
leaving of the local “cage” was not observed on the time scale of the simulation; hence there
an upper bound for the diffusion constant cam be given here.

φ 1.4 1.5 1.7 1.9 2.4
D 33.9 · 10−3 26.4 · 10−3 15.1 · 10−3 8.74 · 10−3 0.177 · 10−3

Table 4.1.: Pure fluid system diffusion constants for different values of the potential depthφ.

Details of the crystal structure are revealed by the static structure functionS(q), which is
shown in figure 4.7 forφ = 2.4 in comparison toφ = 1.4,1.8,2.0 in the liquid state for
an N = 10000 system along the path studied. One clearly sees a much more pronounced
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Figure 4.7.: Structure factor for systems with different values of the potential depthφ = 1.4 (+), 1.8
(×), 2.0 (∗) and 2.4 (�). Configurations withφ ≤ 2.0 exhibit a fluid–like structure, while systems
with higher values definitely show an crystal with fcc order.

structure with long–range order. The position of the peaks is compatible with an fcc crystal
[Kit95]. Moreover, a determination of the number of nearest neighbors via integration over
the first peak ofg(r ) yields the value 12, as expected for the fcc structure. Though the density
data indicate thatφ = 2.0 is still liquid, the empirical Hansen–Verlet criterion [HV69], which
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states that crystallization occurs as soon as the first maximum ofS(q) exceeds the value 2.8,
would already assign this state point to the solid phase.

4.2.2. Binary Mixture

For a system which contains rather two different species A and B, the phase behavior be-
comes more complicated, since at large values ofφ the two species will un-mix (macro–
phase separation, MPS). The qualitative phase diagram which is expected is drawn in figure
4.8. The MPS was studied in the semi–grand–canonical ensemble for a system at fixed den-
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mixed
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unmixed

Figure 4.8.: Qualitative sketch of the expected phase diagram of a binary system of pure monomers
in theφ–pressure plane, for fixed composition. The diagram is partly speculative, since it was not
checked if un–mixing also occurs for the gas phase. It is also not clear if the solid phase favors or
disfavors un–mixing relative to the fluid phase. The transition line between the one–phase and the
two–phase state is of first order, except for the case of composition 1/2, where, due to the symmetry
of the model, the transition is of second order. The dashed line denotes the path along which the
un–mixing transition (constant volume) was studied.

sity ρ = 0.85 as a function ofφ. This situation is qualitatively depicted in figure 4.9. It is
particularly important to know if the MPS occurs for smallerφ than crystallization – other-
wise no fluid phase in the unmixed state would exist, and it would be quite unlikely that a
dimer system exhibits a fluid lamellar phase.

The order parameter is given bym= NA − NB and can vary from−N to +N. According
to the usual theory of finite–size scaling [D¨un96], the ratio of the second and first moments,
〈m2〉/〈|m|〉2, plotted as a function ofφ for different system sizes, should intersect at one point
which is a very good estimate forφc. Two different system sizes were studies, containing
N = 2000 andN = 4000 particles. The moment’s ratios are plotted in figure 4.10, from
whichφc ≈ 0.62 can be estimated. One should expect that the ODT for a dimer system will
occur at valuesφ > φc.
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∆µ

φ

Ntot =
V = const

const Figure 4.9.: Sketch of the un–mixing phase diagram in the
plane(φ,1µ), where1µ is the chemical potential differ-
ence between species A and B. The first–order line occurs
at1µ = 0, for reasons of A–B symmetry, and ends at an
Ising–like critical pointφc.
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Figure 4.10.: Second moment – first mo-
ment ratio for a binary systems in the
semi–grand-canonical ensemble at den-
sity ρ = 0.85 as a function ofφ. The
crosses denote a binary system contain-
ing N = 2000, and the stars one with
N = 4000 particles.

4.2.3. Dimeric Systems

A system of A–B dimers allows for three independent order parameters within the liquid
phase. First of all, the molecules can orient along a spontaneously selected axis (the director),
without distinguishing between A and B. If no additional ordering would occur, then such
a phase would be nematic. Nematic ordering is measured via the symmetric and traceless
Saupe tensor [dGP93] (refer to chapters 1 and 2):

Qij = 3

2

(
r̂ i r̂ j − 1

3
δi j

)
, (4.10)

wherei and j are Cartesian indices,δi j is the Kronecker symbol, and̂r denotes a unit vector
along the molecular axis. In the isotropic phase the volume average (or ensemble average)
of Qij is identically zero, while in the uniaxial nematic phaseQij has the three eigenvalues
(S,−S/2,−S/2), whereS> 0 is the nematic order parameter, which at most can assume
the valueS= 1 corresponding to the perfectly ordered state. In the simulation the volume
average ofQij was measured, at any particular time, and the largest eigenvalue determined.
The time average of these defines the numerical estimate forS.
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Furthermore, there can be breaking of translational invariance and the formation of a smec-
tic phase. In a SmecticA phase, the sheets are perpendicular to the director. This can be
measured by studying the density–density correlation function (or the structure factor) along
the director, which is “crystalline” with long–range order, and perpendicular to it, where the
structure is fluid–like.

Finally, there can also be a rearrangement of the A–B molecules along the director axisn̂:
The vector from A to B can either point with identical probabilities in the direction+n̂ and
−n̂ (disordered state), or prefer one particular direction (ordered state).

In the lamellar phase, all three types of ordering occur simultaneously, while the isotropic
phase is disordered with respect to all order parameters. In principle, it would be possi-
ble that additional phases were stable, where only some, but not all, order parameters were
nonzero. However, this is not expected for those parameters, and indeed not found in the sim-
ulations. The expected qualitative phase diagram is thus shown in figure 4.11, where also the
path along which the order–disorder transition was studied at constant volume and constant
number of dimers is shown.
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solid
disordered

Figure 4.11.: Qualitative sketch of the expected phase
diagram of a system of A–B dimersφ–pressure plane.
Again, the diagram is partly speculative. The dashed
line denotes the path along which the order–disorder
transition (constant volume) was studied. All transition
lines are of first order.

It is clear that the ODT must be of first order, since already nematic ordering enforces first–
order behavior, as is known from symmetry analysis and Landau–deGennes theory [dGP93].
There is thus a slight problem with studying the ODT in the constant–volume ensemble:
Strictly spoken, one must expect that the isotropic and lamellar phases have different densi-
ties at coexistence, and therefore phase separation (i. e. un-mixing of the isotropic and the
lamellar phase) must occur. However, it is expected that the density difference is so small
that the phases will not un–mix unless the system is extremely large: For a small system, the
free energy penalty of introducing an interface into the system will outweigh the bulk free
energy gain obtained from phase separation. Indeed, it was checked, that both the coexisting
phases, which we found via hysteresis loops forS (see below), have practically the same
pressure at the same state points. This shows that the approach is consistent within the given
numerical resolution. For high–accuracy studies however, this issue must be kept in mind.
The constant–pressure ensemble was not used since it is computationally more expensive and
less easy to handle.
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4. TheSimulation Model

Another criticism against the constant–volume ensemble might arise from the potential in-
compatibility of the linear box sizeL with the smectic layer spacingd, i. e. the fact thatL/d
is usually not an integer when the system chooses its optimum value ford. However, the
system has also the freedom to rotate the director with respect to the box. Considering, for
simplicity, a two–dimensional system with tilt angleα between the sheets and the box axis, it
is clear that tanα must be some rational numberp/q (p andq denoting the minimum integer
values) in order to obtain a finite number of sheets, which is then justq. On the other hand,
cosα = L/(dq) and thusd/L =√p2+q2/q2. For largeL there will always be numbersp
andq such that the condition is satisfied to a high degree of accuracy; hence the criticism is
not valid. For figure 4.12, which shows a typical configuration deep in the lamellar phase,
first the sheet thickness was measured and then the system size was adjusted in order to fit
the sheets nicely. The number of dimersN = 48668 at densityρ = 0.85, which will be con-

Figure 4.12.: Typical configuration for a potential depth
of φ = 1.3. The system is composed of 48668 A–B
dimers at densityρ = 0.85.

sidered in what follows, results from such considerations. Figure 4.13 shows the hysteresis
loop in S for this system (each state point was observed for 2000 LJ time units); the ODT is
thus localized at roughlyφ = 1.2.

The important point is that the ODT occurs at a much smallerφ value than that what was
found previously for crystallization. Though the dimerization might favor crystallization
compared to the monomeric system (it reduces the translational entropy), the effect is prob-
ably not that strong, and hence one must expect that the observed lamellar phase is indeed
fluid, which is necessary for the model to be useful for real amphiphilic systems. Neverthe-
less, this was checked via
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Figure 4.13.: Svalue as a function of the potential depthφ. The plusses denote the way fromφ = 0 to
largerφ, the crosses the reverse direction. The solid gray line serves as a guide for the eye

• the structure factor measured in the direction of the director, which is indeed a liquid–
crystal–like (see Fig. 4.14), whereq0= 3.36 was found, and hence the layer spacing is
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Figure 4.14.: Structure factor of a system ofN = 48668 dimers atρ = 0.85,φ = 1.3 in the direction of
the director.q0= 3.36. In order to enhance the quality of the plot and reduce the error, the scattering
vector was choosen to deviate with a tiny amount around the director directionz, kx ≤ 0.01 and
ky ≤ 0.01.

hereλ= 2π/q0 = 3.73. Due to fluctuation of the layers, the structure function shows
nearq0 rather a power-law decay than a delta function peak. This effect is referred to
as Landau–Peierls instability since the second moment of the layer displacement,〈u2〉,
diverges for infinite systems (see [dGP93, CL95]).
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4. TheSimulation Model

• the structure factor in the directions perpendicular to the director, which clearly shows
fluid structure (see Fig. 4.15), and

0

0.5

1

1.5

2

2.5

1 2 3 4

S(
q ⊥

)

q⊥

Figure 4.15.: Structure factor of a system ofN = 48668 dimers atρ = 0.85,φ = 1.3 in the directions
perpendicular to the director.

• the diffusion behavior (see Fig.4.16): While the in–plane diffusion (measured via the
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Figure 4.16.: Mean square displacements for different values of the potential depthφ, inter–plane and
in–plane in comparison.

mean square displacement in the directions perpendicular to the director) is nearly un-
hindered, with quite similar behavior as in the liquid phase of the monomers, the inter–
plane diffusion is strongly reduced, similar to the behavior in the monomer crystal.
The resulting diffusion constants are listed in Table 4.2.
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φ 1.2 1.4 1.5
Din-plane 14.5 · 10−3 11.9 · 10−3 9.72 · 10−3

Dinter-plane 1.3 · 10−3 0.6 · 10−3 0.6 · 10−3

Table 4.2.: Diffusion constants for dimeric systems.Din-planedenotes the two–dimensional diffusion
constants within a layer in the lamellar phase.Dinter-planerepresents the diffusion perpendicular to the
layers.

4.3. Conclusions

A new simple continuum simulation model for the investigation of amphiphilic and co–
polymeric systems has been introduced. This model is capable of reproducing the essential
physical characteristics in the targeted area of interest. All interactions are short ranged;
therefore the number of interacting pairs is relatively small, resulting in good computational
efficiency.

The structure of the monomeric fluid is hardly affected by the attractive tail compared to the
purely repulsive Lennard–Jones fluid. The binary fluid of two disliking components phase
separates; this occurs for roughly the same strength of interaction as the order–disorder tran-
sition of the dimeric liquid into the lamellar phase, where the dimers are made of both particle
types. No indication for any other ordered fluid phase for the dimer system was found. Both
from structural analysis and from the observation of fast two–dimensional diffusion, it was
demonstrated that the lamellar phase is still fluid; crystallization occurs for stronger interac-
tions. The diffusion constants of the pure fluid and the one within layers of dimers are within
the same order of magnitude under same conditions.

With that choice of the short–ranged interaction potentials it is possible to simulate large sys-
tem sizes much more efficiently than with other models like those of Refs. [GL98, LMTZ94].
Moreover, it is quite versatile in that it can be applied to a large variety of physical situations,
avoiding lattice artifacts, while changes in the molecular architecture etc. are easy to imple-
ment.
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5. Shear, flow alginment, and undulation
instablility

5.1. Introduction

System under investigation

Several different systems will be used for the investigation of the effect of shear flow to the
proposed model in the last chapter. One of the systems is the lamellar system containing
97336 particles as 48668 dimers which has been previously been shown (section 4.2.3).

The system has been quenched below ODT to a value of the potential depthφ = 1.27. The
lamellae are oriented parallel to thex-y plane, hence the director is pointing parallel to the
z-coordinate. Figure 5.1 shows the starting conformation for simulation runs in order to
analyze the flow alignment behavior. Shear is applied withz as gradient direction andx as

Figure 5.1.: Starting conformation con-
taining 48668 dimers. The orientation of
the lamellae is parallel to thex-y-plane.
The left picture shows a conformation
snapshot. The right one sketches the di-
rection of shear flow along thex–axis.

flow direction. The simulations were performed in both the NVT ensemble and the NpT
ensemble. Using constant volume the particle density wasρ = 0.85. The simulation runs
were performed at different strain rates over two decadesγ̇ = [0.001,0.1]. Flow alignment,
orientational dependence as well as stress-strain-rate behavior were investigated. Another
system containingN = 10000 particles (5000 dimers) will be described later in section 5.3.2.
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This Chapter

The chapter is organized as follows. Since for the non–equilibrium theory by Auernhammer
et al. [ABP00] some equilibrium properties are important it starts with a determination of
the bending modulus for the simulation system in equillibrium. Then the weak shear limit is
investigated. The flow alignment of the director in the linear response regime is observed. At
higher strain rates the onset of undulation is analyzed. This is compared to smectic A confor-
mations which are dilated in direction of the layer normal (at no shear). For the whole strain
rate interval response in form of shear stress is analyzed. A possible mechanism for flow
alignment and undulations on molecular level will be proposed, which seems to be supported
by simulation results. It is discussed subsequently. At high strain rates the orientational
change from parallel to perpendicular is investigated and compared to the analytic theory by
Fredrickson et al. [Fre94]. A summary and outlook conclude the chapter.

5.2. Shear Flow Simulations

5.2.1. Director Splay Modulus - Layer Bending Modulus

The layer bending modulusK is an equilibrium parameter and accounts for the energy cost
of the bending of a layer. It is very similar to the director splay modulus in nematics. As
shown before, the splay term in the elastic energy of nematics is equal to the bending term in
smectics (section 2.1), since the relation between the displacement of the smectic strata and
the director is given bŷn=−∇u.

In the analytic treatment by Auernhammer et al. [ABP00] the ratio of the bending and the
compression modulus,K/B0, occurs quite often. The next sections deals with comparison
between simulation results and that theory, and hence if those moduli are known in advance,
a consistency check could be made. As discussed below it is very difficult to determine the
compression modulus since no layer description is available. But nevertheless it is possible
to obtain the bending modulusK .

In a simulation on molecular level it is easier to identify the direction of the molecular axis’
and hence the director,n̂, as their ensemble average than to measure the fluctuation amplitude
of the layers,u. So the equilibrium fluctuations of the director were used in order to obtain
K .

The free energy cost of the layer bending as part of the elastic energy term equation 2.13 is
given by

Fbend= 1
2 K

[(
∂

∂x
+ ∂

∂y

)
n

]2

With the help of the Fourier transform of this expression,Fbend= K q2⊥n2, the director’s
fluctuations can be investigated. Equation (2.17) relates the first normal mode with the layer
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bending modulus by

〈[n1(Eq⊥)
]2〉 = kBT

V

1

K1q⊥2

For the simulation the fluctuations of the director can be directly analyzed from a set of equi-
librium runs. In those runs the system was well oriented with layers within the x–y–plane.
Since the preferred axis of the director was hence chosen along the z–axis, the normal modes
have to be expressed in terms of the director components perpendicular to its equilibrium
orientation, thex andy components.

〈[n1(Eq⊥)
]2〉 = 1

V

1

q⊥4

〈[∫
d3r

(
qxnx(Er )+qyny(Er )

)
ei Eq⊥Er

]2
〉

(5.1)

For the layer bending modulus one obtains

K ≡ y(q)= q⊥2kBT

〈. . .〉 (5.2)

where〈. . .〉 stands for the right hand side of eq. (5.1). The above identity betweenK and
the functiony(q) only holds if the latter one is constant. A linear fit can now be applied to
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Figure 5.2.: Determination of the layer bending
modulusK . The points are an average over 50
conformations. The line is a linear fit on the
short wave length dataq > 2.0 producingK =
6.6.

the data, which consists of an average overy(q⊥) of 50 conformations, in order to obtain the
layer bending modulusK . For the investigated system the layer bending modulus was found
to beK = 6.6.

There is an alternative method for the determination ofK and B respectively. For single
membranes and mono-layers the measurement of the fluctuation amplitude inz–direction is
possible. Recently two similar methods have been suggested by Laradji et al. [LM00] and
Goetz et al. [GGL99, GL98]

Laradji et al. investigated a mono-layer of model–DBCP in a mixture of A and B homopoly-
mers. They introduced plaquettes into their simulation system whosex–y–position was fixed
on a grid. Those plaquettes were only able to move along thez-direction and their position
was updated every time step depending on thez–position of the nearest A– and B–monomers.
By doing this they were able to measure the height functionu(x, y) and hence the bending
modulus of their mono-layers.
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Goetz et al. [GGL99] analyzed the density profile of their conformations and hence were
able to determine middle sheet of their bilayer. By doing this they can record the necessary
data for the analysis of the height functionu(x, y).

The result presented in this subsection is consistent with the results issued by Laradji et al.
[LM00] and Goetz et al. [GGL99] as it lies the same order of magnitude of theirs. But the
differences are obvious and a further comparison is not sensible, since this result is based on
another model Hamiltonian and a smectic rather than a mono- or bi-layer system.

Unfortunately their methods are not applicable in the present case. A dimer melt below ODT
exhibits more than one stratum and it is likely that within a short time the plaquettes would
not refer to the same layer any more. In principle it is possible to record a density profile but
the identification of specific layers is a difficult task. One has to apply methods like voronoi
tesselation in order to obtain a correct representation. The existing roughness due to the
shortnes of the model molecules of the sheets makes that task no easier. The next and even
more difficult problem is, to follow those layers in time, so that the fluctuations inu(x, y) are
recordable.

In turn it is conceivable that the method applied here to obtain the value of the bending
modulus does work for measurements in single layer systems as well. In that case the effort
for the determination of the bending modulus is considerable lower.

5.2.2. Flow Alignment

The flow alignment of the director is the key effect in Auernhammers et al. treatment of
SmecticA LCs under shear [ABP00]. It leads in their picture to an effective shrinkage of the
layers which can under low energy cost only be balanced by undulations in order to keep the
layer spacing constant. Auernhammer et al. find that undulations along the vorticity direction
are possible above a certain threshold as discussed in chapter 2. In a simulation both the flow
alignment of the director as well as the onset of undulations are be observable.

The flow alignment as a function of the strain rate was investigated in a simulation series with
a system containingNs= 48668 dimers. A parallel oriented conformation of a system, which
has been described in the introduction to this chapter, was exposed to shear flow. Starting
with a strain rate ofγ̇ = 0.001 the system was successively exposed to higher and higher
strain rates up tȯγ = 0.1. The final conformation of each run serves as the initial one for
the next simulation. Two step sizes were followed, a step size of1γ̇ = 0.005 with values
belonging to path 1 (× symbols) and a smaller step size of1γ̇ = 0.002 recorded as path 2 (+
symbols). In the scope of this section only the strain rate where a parallel orientation exists
are of interest (̇γ < 0.04), larger strain rates will be discussed later.

Figure 5.3 displays the results in form of a graph where the flow–component of the director,
nx, is plotted versus the strain rate,γ̇ . At low values of the strain rate (γ̇ < 0.01) the in–flow
component of the director, grows linearly. This is the range where one can easy determine
the ratio

R1 = γ1

B1

λ+1

2
, (5.3)
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Figure 5.3.: Flow alignment of the director. The in flow component,x–component, of the director,n,
is shown as a function of the strain rate,γ̇ . Path 1 and path 2 belong to different step sizes in the
increase of the strain rate (see text). The error bars denote the standard deviation of an average over
ten independent conformations.

since the flow alignment expression reduces to

nx = R1 γ̇

From the simulation data a value ofR1 = 9.9± 0.3 is obtained. If the region for a fit is
increased tȯγ = 0.02 the error inR1 increases andχ2 is fairly large. That means that the
measured values lie not very well on the assumed curve in that case. Figure 5.4 visualizes
this observation. A grey highlighted area sketches the misfit of the initial result for higher
strain rates.
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Figure 5.4.: The slope of the flow component of the director,
nx is linear only for very low values of the strain rate,γ̇ . This
complicates the determination of the elastic constant ratioR1
(see text). The gray highlighted area sketches the disagree-
ment of the fit of a straight line to the low strain rate data
points.

The onset of undulation can be located at a strain rate ofγ̇ = 0.02≡ γ̇c. Conformations below
this value show apart from the flow alignment of the director no further observable response
to the shear exerted on them. At values aboveγ̇c, undulations can be observed. There is
a difference in the direction of undulations for the runs using a small and a larger pace of
the strain rate increase. If one follows path 1, stepsize1γ̇ = 0.005, undulations along the
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5. Shear,flow alginment, and undulation instablili ty

vorticity direction develop. This is sketched in figure 5.5, left illustration. Their amplitude
grows with increasing strain rate. Their wave number is determined by the box length in
that direction, due to the periodicity of the system. Hence can only be a multiple of it. The
wave length is found to match the box extension. Without any obvious influence the flow
component of the director grows further with increasing strain rate.

Path 1 Path 2

flow direction

Figure 5.5.: Sketch of the different behav-
ior of path 1 and 2. Conformations of path
2 show undulations along the flow direction
for strain rates of 0.02< γ̇ < 0.03, confor-
mations of path 1 do not.

Exactly this is not the case for the simulation runs following path 2.nx drops just at the
onset by a few percent and both pathways split. With a further increase of the strain ratenx

grows again. An investigation of the conformational ’appearance’ reveals that conformation
along path 2 show near but beyond the onset of undulation not only a wave vector parallel to
the vorticity direction but also a wave vector in flow direction. Compare to figure 5.5, right
illustration.

A wave vector parallel to the flow direction has not been considered by the analytic theory
so far. Those undulations inx–direction get smaller and smaller with further increased strain
rate and vanish again aṫγ ≈ 0.03. Near this strain rate both pathways rejoin. Figure 5.6
shows simulation snapshots of typical undulating conformations of path 1 and 2.

The analytic theory [ABP00] describes the dependence of the component of the director
parallel to the flow direction by the following equation, which was introduced in chapter 2:[

λ+1

2
−λnx

2

]
γ̇ = B1

γ1
nx

√
1−nx

2+ B0

γ1

[
nx(1−

√
1−nx

2)
]

(2.30)

Unfortunately this equation cannot be resolved in the way that the director’sx–component is
a function of the shear rate. Nevertheless the equation can be solved for the strain rate as a
function of the directorsx–component,̇γ (nx), yielding

γ̇ =
{

B1
γ1

nx

√
1−nx

2+ B0
γ1

[
nx(1−

√
1−nx

2)
]}[

λ+1
2 −λnx

2]−1
(5.4)

Using R1 from above and introducing the following abreviations:

A=
√
λγ1

B1
, B̃ = B0

B1
−1, (5.5)

equation 5.4 can be rewritten as

v ≡ Aγ̇ = u

R1−u2
+ B̃

2A2

u3

R1−u2
, (5.6)
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Path 1 Path 2

Figure 5.6.: Simulation snapshots of undulating conformations. The left one belongs to path 1 and
shows a conformation aṫγ = 0.025 with no undulations in flow direction (which points along the
partly hidden sign at the bottom). The right snapshot shows a conformation of path 2 right beyond the
onset of undulation aṫγ = 0.025 where the amplitude of the excitation in flow direction is found to
be largest.

where the transformationu=√λγ1/B1nx has been made.

Equation 5.6 provides the means for a linear fit ofB̃ with additional parametersA and R1

which have to be guessed in advance. A guess forR1 is known from the previous analysis of
the linear regime. The fit reveals forA= 1.6 the best fit inB̃ ≈ 9 but it does not depend that
strong on the value ofA. Therefore it is quite difficult to give a trustful estimate for the error
in B̃ which might be quite large. The resulting graph for the current fit is shown in figure 5.7
in the left plot, green line. The data set used for the fit was limited to the range below the
onset of undulation aṫγc = 0.02 since the theoretical prediction is valid up to this strain rate.
Above the onset, as it can be seen in the right graph of figure 5.7 (marked as region II), the
function does not fit the data points. This is not very surprising since the theory has not been
developed to be able to predict the flow alignment in that region. The blue line in the right
graph shows a third order polynominal which has also been fitted to the data points in region
I. It matches a little bit better to the path 1 data of region II, but there is no real theoretical
basis for such a functional form.

Figure 5.7 shows a plot of the flow component of the direcetor,nx, as a function of the shear
rate, γ̇ , and a fit of another third order polynominal. This time the fit was carried out over
the whole range of data belonging to path 1 in region I and II. The fit renders the functional
form of the data points until a strain rate ofγ̇ = 0.03, where path 1 and path 2 rejoin, quite
well. Nevertheless both, this and the previous fit of a third order polynominal, can only serve
as an assumption for the analytical form of the flow alignment.

In the range of the validity of the theory (region I) the functional form equation (5.6) and
hence eq. (5.4) fit the data very well, if one disregards the metioned problem with the weak
dependence ofA on the fit for a moment. In the next sectionA will be determined from the
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Figure 5.7.: Both graph show the shear rate,γ̇ , plotted as a function of the flow component of the
director,nx. The lines in the plots are fits to the data points below the onset of undulation. The
green line is the fit of equation (5.6) to that data range. The blue line in the right plot is a third order
polynominal fitted to the same data range. It was left out in the left plot since it is in that range very
similar to the fit of (5.6). The I and II in the right plot mark the regimes where no undulations of the
parallel oriented sample can be found (I:γ̇ < 0.02) and beyond the onset of undulation (II:γ̇ > 0.02).
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Figure 5.8.: In the right graph the date are plotted in the
natural way,nx as a function ofγ̇ . The line is again
a fit of a third order polynominal but this time fitted to
the full data range belonging to path 1.

temporal behavior of the director to shear flow and a new fit will be made.

5.2.3. Onset of undulation

The onset of undulations is of specific interest for the analytic theory as it is governed by
elastic constants and system dependent magnitudes. Compression and bending modulus,B0

andK , determine in combinations with the coupling of the director to the layer normal,B1,
this onset. Together with the rotational viscosityγ1, as well as the flow alignment parameter,
λ, in a linear approximation a set of critical values for the onset of undulations can be derived
(see also eqs. 2.36-2.38).

γ̇c = B1

(1+λ)γ1
nx,c (2.38′)

relates the director’s flow component to the critical shear rate at the onset of undulation.
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The critical wave number eq. (2.36) is dependent on the thickness of the system, given byd
in the analytic theory. In principle the simulation system has infinitely extended through the
periodic boundary conditions. So there are no bounding plates here. In the analytic theory
the distanced is assumed to be fairly large. The corresponding length of the simulation cell
is Lz. But if the cell is not cubic, the maximum wave length is limited byL y, since the
undulations develop in the vorticity direction of the system beyond the onset. So equation
(2.36) might be rewritten following the above considerations as

q2
y,c =

π

d

√
B0

K
=
(

2π

L y

)2

. (2.36′)

Hence, the strain rate at the onset is given by

γ̇c = 4
B1

(1+λ)γ1

√
B0

B0−2B1

4π2

L2
y

∝ 1

L y
, (5.7)

if the linear approximation holds. In any case the critical flow alignment of the director is
then

nx,c= 4π

√
B0

B0−2B1

1

L y
, (5.8)

which is valid even for the non-linear regime. In principle the proportionality betweenγ̇c or
nx,c and they–extension of the box is measurable, if that exists as predicted. Unfortunately,
there have been no undulations observed in other configurations of smaller system size. For
a system which exhibits undulations the extension iny–direction, the flow–component of
the director has to double. For theN = 97336 systemnx,c = 0.16 is found, which would
result inn′x,c= 0.32 for half the system size. Before those values can be reached, the parallel
orientation of the layers is not stable any more. This indicates that for the investigation of
the proportional behavior large system sizes (millions of particles) have to be considered.
For the simulation of those system sizes an extensive amount of computing time has to be
invested. Beside the intensive use of mega–computers other “problems” were found to be
present in those systems which will be reported in the next chapter. Therefore this intention
was abandoned.

In section 5.2.2 it was mentioned that two directions of undulations are observable. Since
the theory has only considered a wave vector iny–direction, the flow direction cannot be
analyzed. In the same section undulation were found to exists for a certain regime (regime
II) starting a strain rate,̇γ > γ̇c= 0.02. The value oḟγc was found by visual inspection of the
according conformational snapshots for the existence of undulations.

Figure 5.9 shows the nematic order parameter as a function of the strain rate for values of
strain rates belonging to regime I and II (0< γ̇ < 0.04), the regimes where a parallel orienta-
tion of the lamellae is stable as discussed earlier. The order of the system in regime I seems
to increase slightly towards the onset of undulation. If this effect is real, it is very week and
might occur due to growing energy barrier for the molecules to fluctuate inz–direction as
the flow align with increasing strain rate. Directly beyond the onset of undulation the or-
der within the system is increased by 7%. That increase is surprising since undulations are
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Figure 5.9.: Director alignment valueS as a
function of strain rate. Beyond the onset of un-
dulation, γ̇ > γ̇c = 0.02, up to values oḟγ =
0.03 an increased order of the system in com-
parison with values below the onset can be ob-
served.

present which should reduce the order. This might give insight into the way the layers un-
dulate. Figure 5.10 shows two possibilities to achieve an undulating sheet, one with reduced
total order, and one with increased. The lower sketch of figure 5.10 shows the possible layer

y

z

Figure 5.10.: Two possibilities for layers to undulate.
The upper sketch shows an undulation where the single
molecules do not follow the wave. They stay aligned as
denoted by the red arrows. The order can be increased
since fluctuations in direction of the wave are due to en-
ergy concerns less favorable. The lower sketch shows a
similar situations, but the molecules follow the the wave
so that their axis’ projections into the shown plane are par-
allel to the wave normal. This reduces the order within the
sheet.

bend as an effect of the undulation wave. The molecules are oriented along the normal of the
wave, as shown in the sketch. This disturbs the overall alignment along thez–direction and
leads to a lower value in the nematic order parameter,S, which is used as a measure of order
within the system. In the upper sketch of 5.10 the molecules align along the undulation wave
but their molecular axises and hence the director stays aligned in thez–direction. This effect
does not diminish the nematic order parameter,S. Due to an increased number AB contacts
the fluctuations of molecules could be slightly suppressed which would lead to a higher or-
der in the system and would explain the jump in to higher values ofS in the graph of figure
5.9. It is possible to obtain the information on how the layers undulate from the conforma-
tions directly. For that purpose the conformations were analyzed in slabs with extensions
(Lx,1L y,Lz), where1L y ' 2. The director of each slab was calculated and the resulting
components in vorticity direction,ny(y) are plotted in figure 5.11. The graph shows a clear
undulation in this components. That means that the molecules are aligned the layer normal
and do not stay parallel to thez–direction. Hence the lower picture of figure 5.10 sketches the
situation correctly. Unfortunately that cannot explain the increase in order within the system
at the onset.

In section 5.2.2 as well as above it was mentioned that not only undulation in vorticity direc-
tion but also undulation in flow direction occur which have not been investigated in Auern-
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Figure 5.11.: Undulation of the vorticity
component of the director,ny. The graph
showsny as a function ofy. The values
are obtained as averages overx–z–slices
as depicted in the inset. The clear un-
dulation inny allows only the lower pic-
ture of figure 5.10 as an explanation of
the way layers undulate. There are two
sets of data depicted in the graph. The
crosses,×, denote a conformation at a
point of time t = 0, the plusses,+, be-
long to a succeeding conformation after
1t = 900.

hammer’s et al. approach, yet. Those undulations can be analyzed in a similar way as the
undulations in vorticity direction but this time the conformation is sliced inx–direction as
depicted in the inset of figure 5.12. Here undulations can be seen in the flow component of
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Figure 5.12.: Undulation of the flow com-
ponent of the director,nx. The graph
showsnx as a function ofx, where its
values have been obtained by averaging
overy–z–slices as sketched by the inset.

the director,nx(x). The average of this sinusoidal function equals the mean valuenx mea-
sured previously. Interestingly, the undulation wave is not stationary but it moves with the
flow. The plusses (+) denote data obtained from a conformation at timet = 0. The crosses
(×) belong to the same conformations evolved in time for1t = 900. A shift in the position is
visible from the graph of figure 5.12. Unfortunately only very few conformations of each run
were written, so that the trajectory of the undulation wave and hence its traveling velocity is
not available.

For the onset of undulation several scenarios are imaginable. Three of them are sketched in
figure 5.13. Sketch (a) shows a linear increase of the amplitude beyond the onset, while (b)
depicts a square root like increase. Both, (a) and (b), belong to forward bifurcating systems.
(c) shows a different behavior and exhibit some kind of hysteresis, denoted by the arrows.
Such behavior is called a backwards bifurcation.

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

1

0

3



0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

1

0

4

5. Shear,flow alginment, and undulation instablili ty

(a)

Ay

γ̇

γ̇c

(b)

Ay

γ̇

γ̇c

(c)

Ay

γ̇

γ̇c

Figure 5.13.: Possible scenarios for a bifurcation. Each graph shows a sketch of the behavior of the
amplitude of the director undulation in vorticity directionAy as a function of the strain rate,γ̇ .

The present system is now analyzed in order to determine the type of bifurcation it shows.
The undulation amplitude as a function of the strain rate can be evaluated from the data of
nx(x) andny(y). Figure 5.14 shows the result. The data points denoted by the plusses (+)
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Figure 5.14.: Undulation amplitude as a function of strain rateγ̇ . The plusses (+) denote the amplitude
of undulations with the wave vector parallel to the vorticity direction, the crosses (×) belong to the
undulation amplitudes in flow direction. Each points represents an average of amplitudes originating
from ten independent configurations. A clear onset of undulations can be observed atγ̇c = 0.02.

show the behavior of the amplitude of undulation wave in vorticity (y) direction, the one
denoted by the×–symbols belong to the amplitude of the wave in flow (x) direction. Each
point represents an average of amplitude values originating from ten independent configura-
tions. The sharp onset of undulations atγ̇c= 0.02 suggests that the present system belongs to
the group of backwards bifurcating ones. This suggestion is indeed true as simulation in the
reverse direction reveal. The purple boxes (�) and blue asterisks (∗) are the result of these
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simulation. The�–symbols are the ampitudes of undulation iny–direction with decreasing
strain rate, the∗–symbols are that of thex–direction. Since those undulation amplitudes to
not vanish, a backwards bifurcation is present.
This is in disagreement with the theories assumption. Auernhammer’s and coworker’s [ABP00]
theory is based on a treatment of dilated systems which show a forward bifurcation.

In the next subsection the type of bifurcation for a dilated simulation system will be checked.

5.2.4. Stretch Dilation of layers

Shear flow on a smectic system, the flow alignment of the director and the effective shrinkage
of the layers can be seen as a dilatation of the whole system. A thermotropic SmecticA LC
on which is cautiously dilated along its director direction shows an increased layer spacing,
space which has to be filled. This is done by undulations as seen in experiments [] if a certain
dilatation is exceeded. Auernhammer’s et al. theory is partly based on the detailed analytical
description [] of this experiment. From the work in [ABP00] an expression can be derived
which connects the critical dilatation at the onset of undulation,αc, with the same elastic
constants used before [SADK]:

αc =
(

2π

L y

)2 K1

B

1

1+ K1(2π/L y)2

B1

(5.9)

In the spirit of those experiments the initial conformation of the standard system with layers
oriented parallel to thex-y-plane was elongated along thez-direction. In a first simulation
run the density of the system was decreased with the elongation (non–isochoric case). In
a second run the density was conserved,Lx and Lz rescaled accordingly (isochoric case).
Figure 5.15 display the results for the non–isochoric dilatation simulations. The onset of
undulation can here be observed for a dilation slightly belowα= 6%. The simulation covered
only a few values of the dilationα, just enough in order to check whether the system is
forward bifurcating as found in the experimental system [RD77], or backwards like seen
in the previous section. The increase of the amplitude just beyond the onset of undulation
suggests that the system is indeed a forward bifurcating one, as it can be seen in the left
graph of figure 5.15. There is obviously no sudden jump to high values ofA. At higher
values ofα (α > 0.08), a dissolution of layers takes place as indicated by the drop in the
order parameter (right graph in figure 5.15. Figure 5.16 shows conformational snapshots of
dilatation simulation withα = 0.06 (left image) andα = 0.07 (right image). From the waves
and the knots on the top of the shown box, the amplitude could be estimated, if one considers
the system as a set of oscillating membranes which are confined by the box. But the method
to obtain the amplitude via the director of specific chosen slabs used in this chapter should
be more exact.

Figure 5.17 shows the very similar results for the isochoric case.

In the contrary to the behavior under shearflow the order within the system starts to decrease
at the onset of undulation in both cases. This indicates that the presence of shear flow must
have some ordering effect itself, which has still has to be found.
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Figure 5.15.: Simple (non–isochoric) dilatation of a smectic model system. Left: The Amplitude of
undulations inx– andy–direction as a function of the dilatationα. Right: Strength of disorder in the
system measured by the nematic order parameterS as a function of the dilatationα. The lines serve
as guides for the eye.

5.2.5. Stress vs. strain rate

The stress in shear flow - shear gradient plane,σxz was investigated as a funtion of the strain
rateγ̇ . Figure 5.18 displays the results.

Three different regimes can be identified. Regime I is the regime of low strain rates,γ̇ <0.02,
where the parallel oriented samples show no undulations in any direction. For these strain
rates the stress increases linearly. The transition area from regime I to regime II is located
at 0.02≤ γ̇ < 0.025. Here the parallel oriented samples show undulations in both, flow and
vorticity direction but the stress increases further on linearly. So the onset of undulation
which lies atγ̇c = 0.02 has been passed without having a visible influence on the stress
behavior. Forγ̇ > 0.025 the stress increases not linear any more until it reaches its local
maximumσxz= 0.55 at a strain rate oḟγ = 0.04 which is the stability limit for the parallel
orientation. In regime III no parallel orientation is found to be stable. Beyond the stability
limit the stress drops to a much lower value,σxz= 0.41 and the sample is now peperndicular
oriented. With further increased strain rate the stress increases again but with a lower slope
than for the parallel oriented conformations in regime I and II. The reverse path from high
strain rates and a perpendicular orientated sample to lower strain rates was investigated, as
well. The stress decreases with decreasing strain rate and rejoins the forward path at the
origin.

The stress for the sheared sample in perpendicular orientation is lower than the stress in the
parallel one within the range of coexistence of both orientations, regions I and II. That means
that two strain rates are possible for each value of the stress. One strain rate for a parallel
orientation and one for a perpendicular one. A sheared system with constant stress is hence
able to respond with parallel and perpendicular bands within the system which are floating
with different velocities and hence different strain rates. This is sketched in figure 5.19. The
upper part of the system in that figure shows a parallel orientations for a suitable shear rate
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Figure 5.16.: Snapshots of conformations dilated withα= 0.06 (left image) andα= 0.07 (right image).
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Figure 5.17.: Isochoric dilatation of a smectic
model system. Again the undulation amplitude
in x– and y– direction is shown as a function
of the dilatation,α. The onset of undulation
seems to have not moved far compared to the
non–isochoric case. The line serve as a guide
for the eye.

γ̇1. The lower part has a perpendicular orientation and an even higher strain rateγ̇2 > γ̇1,
so that the stress is the same in both parts. The occurance of such shear bands has been
discussed by McLeish and Ball in [MB86]. There are several experiments were shear bands
have been observed in systems which are different from the considered one [BC97]. If such
a conformation as sketched in figure 5.19 exists and can be found in a simulation it might be
interesting to look at the boundary between the parallel and perpendicular parts, too. This
boundary will certainly be rich in defect structures.

A similar phase coexistence between an isotropic an a perpendicular oriented phase hase
been found in simulation and will be discussed in the next chapter.
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Figure 5.18.: The shear stress,σxz, as a function of the strain rate,γ̇ . The red plusses (+) denote the
path along increasing values of the strain rate, the green crosses (×) the path in the opposite direction.
The blue line in the plot emphasizes the linear respone for lower strain rates (γ̇ < 0.03). The purple
line serves as a guide for the eye along the data points of a perpendicular orientation. In regime I and
II a coexistence of perpendicular and parallel oriented conformation can be found. In the second one
the paralell oriented conformation exhibit undulations but not in the first one. In regime III only a
perpendicular orientation is found.

5.3. The mechanism of undulations

5.3.1. Questions and suggestions

Why can undulations develop in systems under shear? In the theoretical picture by Auern-
hammer et al. [ABP00] there is an effective shrinkage of the lamellae caused by the flow
alignment of the director. This shrinkage can beyond some critical strain rate most easily
be compensated by undulation. The previous simulations are able to support the theoretical
picture and clearly show undulations.

x

z y

vx

z

γ̇1

γ̇2

Figure 5.19.: Sketch of the coexistence of two different
orientations under shear. The upper part of the sample
shows a parallel orientation and an according strain rate
γ̇1. The lower part exhibits a perpendicular orientation
and a higher strain rate than the one in the uppper part,
γ̇2 > γ̇1. The stress in such a system is the same in the
upper and the lower part.



5.3. The mechanism of undulations

But what happens on the molecular level? Since the director flow aligns, also the majority
of the molecules have to flow align. But when they do so they feel their neighbors in flow
direction because of geometrical constraints more stronger than without shear. Figure 5.20
sketches the situation. In equillibrium ((a) in the figure) the molecules are in average oriented

(a)

(b)

(c)
α d

α d

d

l

β l

l

z

x

Figure 5.20.: Effect of shear flow on molecules. (a) shows a rough
sketch of the ideal equillibrium situations where no shear is applied.
The molecular axis’ point along the layer normal. The layer posesses
a lengthl into the flow direction and a widthd. (b) Shear is exerted
on the system, the molecules tilt and an effective shrinkage of the
layer byα < 1 takes place. As the length of the layerl is kept con-
stant the pressure componentpxx increases. A rearrangement of the
layer is necessary to reach isotropic pressure conditions again, un-
dulation may occur. (c) In a system which allows its extention into
flow–direction to be rescaled, an extention of the layer inx–direction
by a factorβ > 1 should be observable. No undulations should occur
in this case.

along the normal of the lamellae. The corresponding equillibrium layer thickness is denoted
by d and the equillibrium extension of the layer inx–direction, which will be the flow di-
rection under shear is applied, is denoted byl . If now shear is applied to the system the
molecules in average will flow align, which has been observed in the previous sections. This
flow alignment leads to an effective shrinkage of the layer thickness by a factorα < 1. Due to
the tilt of molecules neighbors in flow direction are in closer contact than in equillibrium ((b)
in the figure), especially for dimers the number of A–B contacts is increased. This results in
a higher pressure component in flow direction,pxx. In order to counterbalance the inhomo-
geneous stress distribution molecules have to be reordered, and the density of molecules iny
direction is increased, which increases the pressure in that direction, too.pxx and pyy have
now values above their equillibrium ones. In the case of long moleculespzz is drecreased
due to the effective shrinkage of the layers. For short molecules this effect should be reduced
due to the increase of number of A–B contacts which also leads to an additional pressure
component inz–direction which is neglectible for long molecules. If the pressure imbalance
between thex–y–directions and thez–direction is large enough, the energy barrier which
prohibits undulations of the stack of layers can be overcome and such evolve, preferable in
the y–direction. This direction is favoured since

If the system is now able to extend its layers along the flow direction as needed in order
keep pxx near its equillibrium one, the tendency to show undulations should be suppressed
((c) in the figure). An additional balancing of the pressure inz–direction could make the
delvelopment of undulation impossible. Even if only the pressurez–direction was kept con-
stant, while in the other direction NVT ensemble rules are applied, undulations should be
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surpressed in favour of a realignment of the layers

5.3.2. The system

In order to test the assumption a system ofN = 10000 particles (5000 dimers) was investi-
gated. The initial conformation was set up in a way that it contains 11 bilayers of dimers.
These bilayers need a reasonable amount of space and so the box has to be cuboid with differ-
ent lengths of the edges. (TheN = 97336 system which is cubic, supports 13 bilayers.) In or-
der to allow undulations the box size was choosen to have a larger extension intoy–direction
than into the flow–direction. The box with are given byEL = (10.572666,26.431664,43.761238).

So the initial system had already been set up in a layered structure and was quenched and
equillibrated for a total time oft ≈ 20000. The ensemble which was used in this simulation is
a kind of mixture between a realNpTensemble and aNV Tone. The box is free to fluctuate
in z–direction and its height was controlled by the pressure componentσzz which was kept
constant. In the other directions no rescaling was made so that the extentions of the box and
hence its base were kept at the presetted values. This ensemble will be denoted asNpzT .
Figure 5.21 shows a conformational snapshot of such a run att = 20000. The layer normal

y

z

x

Figure 5.21.: The image shows a configuration snapshot taken
at timet = 20000[L J] during the equillibration. It was sim-
ulated under some kind of special NpT ensemble where the
box was free to fluctuate inz–direction, butx andy direction
were fixed (see text). It stays under the given pressure value of
pzz= 0.33 constant.

points along thez–axis and hence the lamellae stay parallel to thex-y–plane. The density of
the system is withρ =0.82 slightly lower than in the previous usedN= 97336 conformations
(ρ = 0.85).

5.3.3. Investigation of the undulation mechanism

The system described in the previous section was exposed to shear flow with different strain
rates. During the simulation runs of a duration oft = 5000[L J] each. In difference to the
procedure in the case of theN = 97336 system, section 5.2.2, for each run at a certain strain
rate the same initial equillibrium conformation was used. The reason for that will become ap-
parent later in this section. Following the argumentation of section 5.3.1 the director should
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flowalign, the pressure in flow as well as in vorticity direction should increase. No undula-
tions should show up by two reasons. On the one hand the freedom of the box to adjust its
length in gradient–direction, in order to keep the according pressure component,pzz, con-
stant, on the other hand since the system might be too small following the consideration to
equation (5.8).

If the picture in section 5.3.1 is correct, thez–extention of the box,Lz, should hardly be
effected by the existence of shear flow and stay constant. This was tested for the strain rate
γ̇ = 0.01 and the results are collected in the graphs of figure 5.22. The graph shows the
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Figure 5.22.: Evolution of the height of the simulation
box, Lz, in time in a shear simulation under strain rate
γ̇ = 0.01. The height of the box decreases as defects
enable the structure to reformate and build up tilted lay-
ers (see text).

time evolution of the variable box height during one simulation run.For a duration of nearly
1t = 4000 the height stays constant. Then it drops until the end of the run. Figure 5.23
shows for this strain rate snapshots of the evolution of the simulation in time. Until nearly

t

initial conformationt = 0 defectst ' 4000 tilted layerst ' 5000

Figure 5.23.: The left image shows a snapshot the starting conformation for a simulation run under
shear with a strain rate oḟγ = 0.01. It stays under the given pressure value ofpzz= 0.33 constant.
Unit t ' 4000 a parallel orientation of the layers survives. Then defects develop which lead to a rear-
rangement of the layers whithin1t = 1000. The right image shows the final conformation exhibiting
tilted layers.

t = 4000 the system shows a perfect parallel aligned lamellar system. Then defects develop
and allow the reorientation of layers. Until the end of the simulation run the lamellae have
reoriented and reordered.
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This behavior is perfectly consistent with the proposed mechanism of section 5.3.1 and hence
with the . The layers need more space in their plane and tilted layer provides this space. When
more space is available their effective thickness is lower and in that special isobaric ensemble
(NpzT ), as argued previously, thez–extension of the box is reduced, which is aparent from
the data. Until the layers start to reorient their effective thickness cannot be reduced. Hence,
besides the shear flow alignment of the director, the system remains in a meta stable state
which is later destroyed by the evolution of defects which finally results in the new order.

In a pureNV Tensemble simulation defects do not have this reordering effect on the su-
perstructure, as seen before (section 5.2.2). In the contrary the may produce under certain
circumstances two phase coexistences, known as shear bands, which are going to be dis-
cussed in the next chapter. The present simulations reveal undulations as the only method
under shear flow to compensate the effective shrinkage of the layers if the bending energy
can be overcome.

This holds also for pureNpTensemble simulations which has been checked both with the
present system and the system used in section 5.2.2.

5.4. The Phase Transitions

Cates and Milner [CM89] and Fredrickson [Fre94] investigated the effect of shear on the
order–disorder transition of DBCPs. They showed that in their model an isotropic to perpen-
dicular transition occurs for high shear rates if the block are not too different.

Figure 5.24 shows again the phase diagram predicted by Fredrickson et al. which has been
described in chapter 2. It exhibits in for values of the reduced strain rateγ̇ /γ̇ ∗> 1 two phase
transition, a disordered–perpendicular, and a perpendicular–parallel. The stability limit for
the parallel orientation ends within the perpendicular regime. At temperatures belowτsz and
aboveτp a perpendicular orientation is stable and a parallel orientation at least meta–stable.

In the simulation runs it turned out that a parallel orientation of the lamellae is stable for
a very long time. No parallel–perpendicular transition has been observered for low strain
rates (strain rates below and slightly above the onset of undulation). But an intropic to per-
pendicular transition is observable. A perpendicular orientation is stable for all investigated
strain rates where a single orientation was present. (Phase coexistence (shear bands) will be
discussed in the next chapter.) If Fredrickson’s theory is applictable to the present situations,
the model covers a region in the predicted phase diagram, where parallel and perpendicular
orientations are both stable and the perpendicular one is favoured. Such a region is indeed
present in Fredrickson’s phase diagram. In figure 5.24 it is marked with a black spot. The
lower reduced temperatures where a parallel orientation alone is stable may not be reachable,
since the fluid–solid transition seems to lie above it.
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γ̇ /γ̇ ∗ →

τ
↑

τt

τsy

τsz

τp

1

parallel

perpendicular

disordered

τsy

τsz

τp

Figure 5.24.: The left sketch shows Fredrickson’s picuture of the world in the reduced temperature –
reduced strain rate diagram as seen in figure 2.11. The right sketch is a magnification of the the upper
rigth part of the previous one.τsy andτsz are the stability limits for the perpendicular orientation and
the parallel respectively.τp is the transition point for a perpendicular–parallel transition (see text).
The black spot highlights the region where the present simulation model should live (see text).

5.4.1. The Parallel to Perpendicular Transition

As seen in section 5.2.2 the parallel aligned orientation is stable for shear ratesγ̇ < 0.4
within the scope of the simulations. But the perpendicular orientation of the simulation
conformations is more stable as seen in section 5.2.5 and there is no transition perpendicular–
parallel which could be observed.

Experiments on diblock copolymers reveal both a perpendicular to parallel as well as a paral-
lel to perpendicular transition, as mentioned in chapter 1. The analytic theory by Fredrickson
et al. [Fre94] allows a parallel to perpendicular transition for DBCP system where both
blocks have nearly the same viscosity, which is the case for the presented dimer–model.

The simulations to section 5.2.2 exhibit a transition from a parallel to a perpendicular orien-
tation, too. It can be found at strain ratesγ̇ > 0.04, where the parallel oriented phase starts
to become instable. Figure 5.25 shows the decrease of the director inz-direction and its in
increase iny-direction with rising strain rate. The lines in the plot serve as a guide for the
eye.

The z-componentnz of the director stay nearly constant until the transition is reach. It de-
creases rapidly to zero mean. They-componentny stays zero until the transition and jumps
to high values beyond it. It does not reach its maximum value within the simulated time since
some undulation in the shear gradient direction are present. The final conformation of strain
rate γ̇ = .05 was therefore simulated much longer and one can observe that the ondulation
vanish and a steady state is reached. This undulation inz–direction can be observed in other
investigated systems as well.

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

1 1

3



0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

1 1

4

5. Shear,flow alginment, and undulation instablili ty

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04 0.05 0.06

n y
, n

z

 •γ

I II III

Figure 5.25.: Directorsz and y componentnz

andny as a function of the strain ratėγ . The
lines serve as a guide for the eye. The regimes I
and II are again the ones where a parallel orien-
tation is (meta-) stable, in III only a perpendic-
ular orientation can be found.

Figure 5.26 shows succesive snapshots of conformation during their reorientation from par-
allel to perpendicular aligned layers at a strain rateγ̇ = 0.045. One can observe the evolution
of defects in the layer structure. The layered structure fluctuates and the layers themselve
rearrange in the perpendicular orientation without actually breaking up totally. The system
shown here is the one investigated in the previous section. The strain rate was slowly in-
creased toγ̇ = 0.04 where the parallel orientation is still stable. Then the strain rate was
set toγ̇ = 0.045 and the transition could be observed. The rearrangement in theN = 97336
particle system at the same strain rate looks very similar.

Comparing the snapshots of figure 5.26 with the proposed mechanisms in the first chapter
one might speak of grain rotation with defect migration, as the mechanisms which drive the
transition. The grain rotation mechanism was proposed for low frequencies and medium
strain (γ0≈ 0.5). In the simulation steady shear is applied and so the mechanism intuitively
seems to be the one for the description of the transition. But much larger system sizes and
defined grains are necessary to prove or disprove the picture rather than snapshots with a
view to the time evolution within an arbitrary slice.

Back to the simulation, one can observe, if the strain rate is increased quite drastically, e.g.,
from γ̇ = 0.02 to γ̇ = 0.05 the intermediate configurations show no order. The lamellar
structure is completly dissolved as it can be seen from measurements of the nematic order
parameter and it takes quite long to build up a new perpendicular structure.

5.5. Conclusion and Outlook

The intention of this chapter was to test the two most promising theories which have been
developed for the description of shear exerted on layered structures.

Steady shear was hence exerted to a model system within several simulation runs. A flow
alignment of the director was found as predicted by Auernhammer et al. [ABP00]. In agree-
ment with Auernhammer et al. [ABP00] the existence of an effective shrinkage of the layer
thickness which in turn leads to undulations, has been found

The wave vectors of these undulations point in both, flow and vorticity direction, but the
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Figure 5.26.: Conformation snapshots of a transition from parallel to perpendicular orientation of
the lamellae (left top to right bottom). They–z–plane of each conformation is shown. The initial
conformation exhibits parallel oriented strata with undulation. During the transition defects evolve and
smaller grains of different orientation can be observed. The final conformation is then perpendicular
oriented. The elasped time between two consecutive conformations ist = 1000.
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flow direction has not been checked for the occurrence of undulations by Auernhammer et
al., before, and they have been seen for the first time in the presented simulations. It could
be shown that the undulation wave in flow directions travels with time. Due to the low time
resolution of the specific simulation runs in time, the trajectory has not been sampled. This
might be interesting to have a look at it in future work. The behavior of the system below
the onset of those matches the predictions by Auernhammer et al qualitatively. But it was
found that the undulations are backwards bifurcating which makes it difficult to identify the
onset as the predicted onset in Auernhammer’s et al. theory. There a forward bifurcating
system was assumed, since dilatation experiments, on whose description the theory is based,
show this behavior. The model system exhibits a forward bifurcation for dilatations which
is in coincidence with experiments and their description. An increase of the nematic order
parameter at the onset of undulations in the case of shear was observed, but has not been
understood, so far.

An analysis of the stress – strain rate behavior of the system reveals the possibility of coex-
isting orientations, so called shear bands, as discussed by McLeish and Ball in [MB86], and
found in wormlike micelle systems by Britton and coworkers [BC97]. Indeed, a coexistence
of isotropic and peperndicular aligned layers have been found and will be discussed in the
next chapter.

A mechanism for the occurence of undulation on molecular level has been proposed and
successly tested. But further more intense tests are necessary to support or disprove this
mechanism ultimately.

Besides those condiserations and simulations an efficient method for the determination of
the bending modulus was found, which will certainly be applied to various systems which
exhibit layer structures and where a director can be defined.

In chapter 2 Fredricson et al.[Fre94, CM89] consideration about diblock copolymers were
briefly reviewed. They state, that if both blocks in a diblock copolymer have the same bulk-
viscosity, those copolymers should favour a perpendicular orientation when exposed to a
shear flow. The dimeric systems in the simulations were designed to be symmetric in A– and
B–block interactions. They have the same homopolymeric properties (A-fluid and B-fluid)
and hence the same bulk viscosities. Those systems favour the perpendicular orientation and
hence the theoretical prediction in this sence is fully supported. Note the fact that dimers
are certainly not of the length which has been initially considered by the theory. In order to
obtain a full view about the position of the present model in Fredrickson’s phase diagram, it
is necessary to introduce a possibility to alter the viscosities of the blocks which in principle
can be done be the introduction of differen interaction strengthsφAA andφB B, of the AA and
BB interactions.

In the first chapter several possible mechanism for the reorientation and alignment of layered
structures, developed by several experimentalists, were described. The proposed mechanism
’defect migration’ is certainly present in the reorganisation process of layered structures un-
der shear flow. It is likely that grain rotation mechanism has been observed as well. Certainly
it is worth to identify grains in during the realignment process and follow there behavior as
time evolves. Since it is difficult to identify grains this task includes a considerable effort.



6. Shear bands

6.1. What are shear bands?

Shear banding is a phenomenon of coexisting regions of different strain rate. These regions,
which are calledshear bands, are separated by sharp interfaces. Usually such bands occur in
systems of complex fluids under shear, whose dimensions are much larger than the molecular
length. In those systems the super structure of the fluid interacts with the flow field and
structural changes affect the viscosity of the fluid, which in turn modifies the flow field as
seen in section 5.2.5.

Experimental examples for complex fluids with the ability to show shear bands range from
lyotropic systems over entangled polymer melts to liquid crystals. Bagley et al. [BCW58]
found a discontinuity in the flow curve of polyethylene (PE). Vinogradov et al. [Vin72,
Vin73] investigated the flow behavior of polymers in cylindric tubes. They found a behavior
which they called spurt effect. Figure 6.1 sketches this effect. The complex fluid (e.g. a PE

plugtube

high strain phase

v

p
Figure 6.1.: Sketch of the spurt effect. A complex fluid
is pressed through a tube under high pressurep. The
Poiseuille flow regime is left and two phases coexist, a
plug with no velocity gradient (blue) and a phase of high
shear gradient (red).

melt) is pressed through a tube under high pressure. It leaves the Poiseuille flow regime and
separates into two phases, a plug which exhibits no velocity gradient and a phase under high
shear strain.

Shear bands have been found in various systems since then. E.g, in worm like micelles have
been investigated by the Callaghan group [MC97, BC97, FC00]. They find a coexistence of
an isotropic region with a well ordered one. Mair et al. [MC97] especially find that there
may be not only a single interface but multiple interfaces. Liquid crystal systems have been
investigated by Bonn et al. [BMG+98]. Their systems show inhomogeneities along both the
flow as well as the vorticity direction.

Figure 6.2 sketches the situation of a non-monotonic stress strain rate relation, which is be-
lieved to be the reason for the occurrence of shear banding flows. For low strain rates the
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γ̇0 γ̇A γ̇1 γ̇2 γ̇B γ̇3

σmin

σmax

Figure 6.2.: Sketch of a non-monotonic stress
strain rate relation. Shown is the stress,σ , as
a function of the strain rate,̇γ . The newto-
nian flow regime lies below a strain ratėγ1,
at which the stress takes on a local maximum.
The region of decreasing stress,γ̇1< γ̇ < γ̇2,
is unstable. Systems with such strain rates
separate into a high and low strain rate band
under the same shear stress.σ(γ̇A) = σ(γ̇B)

(see text).

stress is a monotonic increasing function and its maximum is reached atγ̇1. Beyond that
point the stress decreases. In the polymer theory of Doi and Edwards, this behavior was
interpreted as a complete alignment of the polymers to the exerted shear flow andσ (γ̇1) is
there a global maximum [DE86]. But in experiments it has been observed that in some sys-
tems the stress increases again at a strainγ̇2. The regions of decreasing stress at strain rates
γ̇1 < γ̇ < γ̇2 was found to be unstable. The system separates into two different phases with
different strain rateṡγA andγ̇B but equal stressσ (γ̇A)= σ (γ̇B). This behavior has been de-
scribed for the case of entangled polymer melts by McLeish et al. [MB86], who have added
a correction to the theory by Doi and Edwards [DE86].

But since then there has been significant amount of theoretical activity in this area. In the
context of worm like micelles Spenley et al. considered shear banding as the result of muti-
valued stress strain curve [SCM93, SYC96]. Homogeneous steady states are seen as unstable
and the system separate into low and high shear rate phases.

Another class of work deals with fact that equilibrium phase transitions are shifted by the
presence of shear. In this case the stress strain curve is effectively multivalued, and the high
and low shear bands correspond to the coexisting equilibrium phases, which have different
rheological constitutive behaviors [GF99, OL97]. This class will not be of relevance in this
chapter.

Figure 6.1 shows a sketch of the spurt effect. Figure 6.3 sketches a similar situation for the
case of a Couette or plate–to–plate like geometry. Here two phases under high shear are
present (red areas) which kind of shield the plug from the moving plates. It turns out that

upper plate

lower plate

plug

high shear area

Figure 6.3.: Sketch of shear bands with plug flow. In a
Couette cell or a plate–to–plate like geometry a complex
fluid is sheared under high stress. Similar to the spurt
effect (compare figure 6.1) a plug of material (blue) with
no velocity gradient can be found in coexistence with
two high sheared areas (red).

such a situation can be achieved within a simulation study. In section 5.2.5 it was argued
that due to a non–monotonic behavior in the stress–strain rate curve a coexistence of parallel
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and perpendicular aligned lamellae is possible. In a simulation study shear was applied to
a large dimeric system (N ≈ 2,000,000) which was found to exhibit shear bands and plug
flow under certain conditions. The occurrence and structure of those will be treated in the
next sections.

6.2. Systems under Investigation

Two different system sizes have been investigated on the occurrence of shear bands. The
largesystem contains nearly 2,000,000 particles (N = 1,990,656) and themediumsystem
is made up ofNS = 48668 dimers. The aspect ratio of the large system is not equal one,
since the initial intention was to investigate they–z–plane best for the occurrence of possible
wave vectors in those directions. The ratio for the large system is 1 : 3 : 3. Figure 6.4 shows

Figure 6.4.: Snapshot of the large system, size comparison with the medium system and directions of
flow. On the left a “large” system containingN = 1,990,656 particles is shown after a quench to
φ = 1.3 and an equilibration fort = 2000.
The middle shows a simple size comparizon of the “medium” system containingN = 97336 particles.
It is embedded into the frame of the large system.
The right image shows the direction of shear flow in the large system. Again the sign at the bottom is
parallel to the flow–direction (x), the vertical is thez–axis.

at the left a conformation snapshot of the large system after a period of time,t = 2000, of
equilibration. It shows a lamellar disordered structure which is certainly not in equilibrium.
The middle image shows a size comparison between the large and the medium system. A
conformation snapshot of a medium system is embedded into the frame of a large system.
The right image shows the direction of shear for the large system. The flow–direction is again

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

1 1

9



0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

1

2

0

6. Shearbands

along the sign at the bottom of the image.

6.3. Shear Bands in Simulations

In first simulation runs the large system has been quenched fromφ = 0 to φ = 1.27 and
sheared at the same time with strain rates ofγ̇ = 0.001,γ̇ = 0.005, andγ̇ = 0.01.1

The systems at the two smaller strain rates behave as expected. They show the usual transition
from the lamellar disordered state to a perpendicular orientation including defects and the
velocity profile is linear. The situation is very different for the simulation with strain rate
γ̇ = 0.01. The system shows in addition to the perpendicular alignment process of parts of
the conformation an growing inhomogeneity in other parts. The velocity profile is not linear
any more, it exhibits two different regions, regions of very low and quite high strain rate.
Shear bands have occurred. Finally, one observes that there are two blocks moving with the
same velocity,|vx|, separated by small regions with a large velocity gradient. The results of
the analysis of this final conformation are accumulated in figure 6.5.

The first graph of figure 6.5 shows the density profile of the conformation in shear gradient
direction. The density is highest in the ordered phases (ρ ≈ 0.9) and very low in the middle
of the disordered regions (ρ < 0.75). This situation is reflected in the behavior of the order
parameter,S(z), which is plotted in the second graph,×-Symbols. It takes on its maximum
values in the regions of high density and shows nearly no order in the regions of low density.
This leads to the preliminary conclusion, that the low density phase is completely disordered,
as one directly assumes from a view to these regions in snapshot of the conformation. Having
a look at the flow and gradient components of the director within the disordered regions, one
observes here for the flow and for the shear gradient components,nx andnz non–zero values.
The vorticity component of the director,ny, completely follows the behavior ofS(z), high
values in the ordered phase (of course, a perpendicular orientation is present), and low values
in the disordered one. Which supports the conclusion, that the low density phases are not
oriented. The bottom plot shows the non–linear velocity profile. It clearly reveals that two
plugs are moving in opposite direction absorbed in the low density regions.

The situation turns out to be similar in many things but different in some other in the fol-
lowing situation. A large system is exposed to shear after is has been quenched toφ = 1.27
and equilibrated for some time,1t = 1200, which leads to a lamellar disordered state. After
further1t ≈ 5000 the configuration shown in figure 6.6 was reached.

This final conformation of the simulation run was then analyzed in the same way as the
previous one. The velocity profilevx(z) shows regions of no shear gradient (for 0< z< 35,
60< z< 95, andz> 180) similar to figure but these regions are smaller. Hence the regions
exhibiting a shear gradient are larger but the strain rate in this region is nearly the same as in
the previous case.The density profile now shows a trough profile with a pronounced bottom.
The high density regions can in comparison with the order parameterS(z) be identified as

1This simulation have been performed in the microcanonical ensemble, since the DPD-thermostat was available
at that time. All others are performed under constant temperature with the DPD–thermostat.
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Figure 6.5.: Analysis of a conformation
(N = 1,990,656) snapshot. The local
density, the director’s components, the
nematic order parameter, and the veloc-
ity in flow direction are plotted as a func-
tion of the system hight,z (velocity gra-
dient direction). The system which was
simulated in theNV E–ensemble and
exhibits shear bands in form of a perpen-
dicular aligned smectic plug and a non–
smectic phase at lower density with a
high velocity gradient. All bands are not
equal in width. The above snapshot im-
ages the molecular structure within the
system. Obviously, the system contains
many defect structures.
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Figure 6.6.: Analysis of a conformation
snapshot at1t = 5380 and strain rate
γ̇ = 0.03. Graphs of different magni-
tudes as a function of the velocity gra-
dient direction,z, are plotted on the left
and above an image of the conforma-
tion snapshot is shown. The system
clearly exhibits shear bands in form of
a plug with no velocity gradient and a
second phase with a high velocity gradi-
ent. The density in the smectic phases
is higher than in the non–smectic ones.
Surprisingly the director shows on aver-
age noy–component in the non–smectic
regions, whereas the alignment of the
smectic one is clearly perpendicular ori-
ented.
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smectic ordered regions, the low density regions show no layered structure. The direction
of the smectic regions is again perpendicular, as seen from the behavior of the directors
components in this regions. Surprisingly, the director shows noy–component in the non–
smectic regions. If those regions were completely disordered, it should take on some value
which reflects the main orientation of the molecules at this point of time. So a value around
zero is surprising, since the values ofny(z) have been quite low in the disordered region in the
previous case, too. This could be an indication for an ordering of the molecules, which might
reside on average in the flow–shear–gradient plane. Since the flow direction is involved, each
molecule has either to tumble or to rotate around an axis along the vorticity direction. This
will be investigated now.

The Disordered Looking Phase

In order to test the above assumptions about a possible rotation or tumbling of the molecules,
the time evolution of the motion of the molecules in the disordered phase has to be investi-
gated. The magnitudeEm(t), defined as follows,

Em1(t− t0)≡ 〈Eni (t)× Eni (t0)〉, (6.1)

carries information about a possible tumbling or rotation of the molecular axises on average.
Eni (t) denotes the molecular axis of dimeri at timet and the brackets stand for the average
over all molecules in the system followed by the average over all time slices of lengtht . For
convenience,t0 = 0 in the following. m1(t) ≡ | Em1(t)| should be constant for long times if

± Em(t)

Eni (0)

Eni (t)
± Em(t)

Eni (t)

Eni (0)

Figure 6.7.: Tumbling and rotation of a molecule. Left: The two different orientations of the molecu-
lar axises result in a vectorEm(t) ≡ Eni (t)× Eni (0). A simple average over allEm(t) has only non–zero
components if the molecules have some kind of order (see text).
Right: A molecule tumbles around its mean rotation plane (violet plane in the sketch). So the magni-
tude Em(t) is distributed around the rotation plane’s normal and its variance can be measured. An out of
plane rotation of many molecules around one main–plane is also possible and cannot be distinguished
in the averaging process.

the molecules rotate uncorrelated. An uncorrelated rotation should occur since the molecules
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are likely to interact. A correlated rotation would result in a oscillatory functional behavior
of m1(t). If m1(t→∞) equals zero, it is still possible that the molecules tumble. This can
then be detected by using the second moment,

(m2)i (t− t0)≡ 〈(Enm(t)× Enm(t0))i )
2〉. (6.2)

For computational reasons2 the medium system has been checked for the rotation of molecules
in the disordered looking region. Also this system exhibits shear bands under high strain
rates. In the contrary to the large systems it does not show plug flow but regions of different
strain rate are present. Figure 6.8 shows velocity profile andS-value as a function of the
shear gradient direction. In the low strain rate regions (0< z< 8, 22< z< 28 and 43< z)

-1
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1

0 10 20 30 40 50
0

0.25

0.5

vx S

z

Figure 6.8.: Velocity profile and S value for a
medium system under high shear strain. The
non–linear velocity profile (×–symbols) ex-
hibits low strain rate regions for 0< z< 8,
22< z< 28 and 43< z and in those regions
the smectic order is high. The other regions
of high strain rate seem to be disordered.

high S values are present and perpendicular aligned lamellae can be found inspecting the
components of the director (Those are not displayed, but the reader may convince himself by
having a look at the conformation snapshot of figure 6.10). The high strain rate regions look
disordered.

But before the magnitudeEm1 is investigated, it should be worth having a closer look at the
time evolution of the director’s components in the disordered phase. Figure 6.9 shows graphs
of the each director components,ni (i = x, y,z), as a function of the gradient directions for
different points of time. Obviously, theni do not vary significantly, even for a long period
of time. This behavior is normal for an ordered phase which does not change its orientation
during the span of time, but it is remarkable that the behavior is the same for the disordered
regions. TheS-value is very low in this regions so the variation of the molecular axises to
the direction of the director is large. But it still seems that there is some kind of order even if
this effect is weak. This behavior will be analyzed further in combination with the following
results.

Figure 6.10 displays the results of the proposed analysis towards a rotation or tumbling of at
least some of the molecules. Again a plot of the order parameterSas a function of the shear

2A conformation ofN= 1,990,656 particles including positions and velocities has a size of roughly 50 MBytes.
Writing this amount of data every few time steps to a disk consumes much time and space, transferring those
data across the Internet costs many hours.
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Figure 6.9.: Director components at different
points of time. The different components of
the director,nx(z), ny(z), andnz(z) are plot-
ted for different points of time. Remarkable,
the components in the disordered regions are
match for all points of time as if the regions
are ordered.

gradient direction is shown (upper left) in order to facilitate locating the disordered looking
regions. The plot in the upper right shows the different components ofEm(z), obtained from
consecutive pairs of conformations with1t = 2. The green×–symbols and the blue∗–
symbols denote the flow componentmx and the gradient componentmz. These average out
to zero which means that there is no common rotation in any plane with layer normals parallel
to x̂, ẑ, or any vector inbetween. The graph formy(z) shows values for frommx andmz in
the high strain regions. In the lower left graphmy(z) is plotted for different time differences
ranging1t = 0.1 to1t = 5 (see legend).my is growing with increasing spans of time but its
growth rate slows down. In order to see when a plateau was reached or an oscillation takes
place, the system has to be observed for longer time spans. Figure 6.11 shows the maximum
values ofmy as a function of the time spant . my,max(t) grows with time until it reaches a
maximum att = 15 and decreases again to zero fort = 100. There is obviously a correlation
of particle movements for a limited amount of time (t = 15) which decays afterwards and
the particles move uncorrelated for long times. This excludes the possibility of a correlated
rotation of molecules in the disordered phase. But it also excludes a steady rotation of all
molecules. What remains is a tendency that molecules are preferred rotated by the shear field
within the flow–shear–gradient plane.

Back to the values of the directors components in this phase. Thex– andz–component are
remarkable similar. So the director points along the shear field with angle of a 45 degree, and
this does not change in time. The director is the eigenvector to the largest eigenvalue of the
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Figure 6.10.: Tumbling of dimers in the medium size system. The upper left graph shows again the
S-value as a function of the shear gradient direction,z. The vorticity component of the magnitudeEm
is plotted asmy(z) in the lower left graph for several time steps, as shown in the legend. The values
for my increase in the regions of lowS-values with time. For1t = 2.0 all components ofEm(z) are
plotted in the upper right graph. The flow and the shear gradient components,mx (×-Symbol) andmz

(∗-Symbol) fluctuate around zero in all regions of the system. From a snapshot of the configuration
on can distinguish ordered, highS-value, regions and lowS-value regions which look disordered.

true3 nematic order parameterQ, which was defined by

Qij = 3
2

(〈
n̂i n̂ j

〉− 1
3δi j

)
. (4.10)

Now the molecular axises in equilibrium can be written asn̂= (cosφ sinϑ,sinφ sinϑ,cosϑ).
Due to the presence of the shear flow thex–coordinate has a constant shift,x′ = x+αz, and
hence the molecular axises are given by

n̂′i =

 cosφ sinϑ+α cosϑ

sinφ sinϑ
cosϑ


 . (6.3)

3see chapter 2
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Figure 6.11.: my as a function of the time span.
The maximum values ofmy grow with increasing
time span until they reach a plateau.

Supposing that̂ni and n̂ j are independent and uncorrelated (isotropic phase), in the above
equation (eq. (4.10)) the average can be carried out separately:

〈
n̂i n̂ j − 1

3δi j

〉= 〈n̂i 〉〈n̂ j 〉− 1

3
δi j (6.4)

For a continuum one can easily now deduce the matrix

Q=

 (α/(2π))2 0 α/(2π)

0 0 0
α/(2π) 0 1


 (6.5)

The eigenvector to the largest eigenvalue points along(1,0,1), the same direction which has
been found for the director in the disordered looking phase.

Hence, the disordered looking phase is indeed disordered but it exhibits short time corre-
lations, and the found director components are the same which one expects for shear flow
conditions and an isotropic phase.

Shear Crystallization

In the beginning of this section it was pointed out, that the medium system does not exhibit
plug flow, but the large system, as seen in the previous section do. The evolution of plug flow
in the large system simulated atγ̇ = 0.03 is shown in figure 6.12.

The time evolution of the velocity profile is shown in the left graph, the evolution of the
density profile is plotted in the right one. With the occurrence of plug flow, which can be
identified by the occurrence of non–gradient regions, the density profile clearly shows troughs
(for 1t > 2000). The high density regions exhibit values ofρ > 0.9 which should be beyond
the equilibrium solid–fluid transition. The start to those high values can be observed in
the two peaks at1t = 1200. This implies thatshear crystallizationsets in, and the plugs are
crystallized material, while the shear happens in the low density, fluid phase. This observation
certainly has to be investigated in more detail.
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Figure 6.12.: The evolution of plug flow. The left graph shows the time evolution of the velocity profile
vx(z). It evolves from a shear banded profile to a plug flow profile. The right graph shows the density
profile as a function of the shear gradient direction. Troughs are developing as the velocity profile
shows plug flow.

6.4. Defects and Defect Structures

Especially the large systems show various defect structures in their ordered regime. These
defect structures might be similar to those which occur in real diblock-copolymer systems.
On the snapshots of the conformation one can easily observe different tilt boundaries. Gido
and Thomas [GT94] investigated those types of boundaries in lamellar diblock copolymer
systems and ditinguish between three morpholohgies: Thechervron(denoted C), theomega
(denoted�) and theT-junction type (denoted T). Figure 6.13 sketches these boundary mor-
phologies. The chevron boundary, right sketch in the figure, is a continuous bend of the

Figure 6.13.: The three tilt boundaries found by Gido et al. [GT94], the chevron, the�-type and the
T-junction.

lamellae structure across the grain boundary. (Grains are regions of equal orientation of
lamellae.) A variant of this chevron type is the omega tilt boundary which shows some kind
of � shaped bends directly at the grain boundary. These type of boundary is observed at
higher tilt angles than the continuous bend. At the third type of boundary, the T–junction,
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lamellae on the one side simply terminate. This allows the highest possible tilt angle.

At least two of those boundary structures are observable in the conformation snapshots as
well, chevrons and T-junctions. Figure 6.14 shows magnifications of regions exhibiting in-
teresting grain boundaries of a conformation snapshot. a) is a magnification of an upper left

b) d)

a) c)

Figure 6.14.: Defects structures in the large system

part of the conformation snapshot, which is located near the disordered band structure. It
shows clearly chevron structures in its middle right part. From the middle to the lower left
three lamellae are tilting under a little higher angle than the previous describes chevrons.
Some of those bend looks� shaped but in direction from the lower middle to the upper left
they break apart, as they approach the disordered shear band. b) shows a magnification of
multiple T–junctions in its lower part. Vertical lamellae terminate at the grain boundary, hor-
izontal continue. In c) apart from chevron like structures tilt boundaries can be found which
are not mentioned by Gido and Thomas in [GT94]. They might be described as U-shapes and
have been oberserved by Polis and Winey in [PW96] where kink band structures have been
observed in a diblock copolymer melt under steady shear. Here a lamella terminates and is
sourounded by others in a U-shape structure.

All of the mentioned structures are present in magnification d). In the lower right part a
U-shape type boundary is followed by boundaries of�-type.

There are certainly not only defect structures in form of tilt boundaries present in the systems.
Focal conics, e.g., could occur as well, but they are at least not visible on the shown snapshots
of figure 6.14 and the figure of the previous section 6.3 and 6.6.
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6.5. Conclusion

One of the intrinsic properties of the shear algorithm is, that it leaves it to the system to
choose the best velocity profile. Usually this profile is linear as seen in the previous chapter,
but under certain condition it is possible, that the system chooses a non–linear profile and
shear bands occur.

Shear bands and plug flow have been observed in simulations as a coexistence of well or-
dered perpendicular aligned lamellae and an isotropic phase. This isotropic phase was found
to exhibit a large shear gradient while the odered region show only a weak or even no velocity
change along thez–direction.
The behavior of the director in the isotropic phase raises the question if there might be some
order hidden. The investigation of a newly introduced order parameter revealed a correlation
of the molecular rotation lasting for some time. The molecules are found to exhibit a ten-
dency to be preferably rotated by the shear field within the flow–shear–gradient plane. So
the disordered phase is indeed isotropic but it reveals short time correlated movements of the
molecules.

Onother remarkable observation is that similar strain rates can be found in the disordered re-
gions of the different investigated large systems under high strain rates, and the plugs showed
hence different widths.

These plugs, again, have been found to be shear crystallized structures. The process of the
crystallization could be observed, but the time resolution of the conformational snapshots
was too low in order to see the starting of this process. Here more work is needed in order to
make established statements about the mechanism.

The shear crystallized regions show defect structures as they can be observed by TEM images
of diblock copolymer melts. In order to count and automatically classify defect structures
in crystalline and fluid systems a program has been developed which is in principle able
to identify a defect and follow the time evolution via a triangulation of the sheets. But the
roughness of the layers in the fluid phase produces unfortunately dectection errors. This could
be compensated by using longer molecules which show a lower roughness of the interfaces
and hence an enhanced layer coherence and reduced failure of defect detection.



Conclusion

A novel simulation model for the investigation of complex fluids such as amphiphiles and
diblock copolymers has been introduced. It is much more effective in molecular dynamics
simulation than present models due to the limitation in the range of interaction. The equi-
librium properties of this model have been tested in order to avoid complications such as an
application in the unwanted neighborhood to a phase transition. It was shown that this model
is well suited to investigate the intended problems.

A parallelized version of an existing shearing algorithm was developed and extended to sup-
port a steady strain rate. Especially this shearing algorithm has the advantage over commonly
applied ones that it does not imply any velocity profile. Since most equilibrium thermostat-
ting methods are not valid under non–equilibrium conditions, the DPD thermostat which
incorporates the requirements of a non–equilibrium method has been parallelized and imple-
mented, as well. The combination of both algorithms is a powerful tool for the investigation
of non–equilibrium properties of the model system.

It has been shown that the theoretical work on smectic LC under shear flow by Auernhammer
et al. [ABP00] is qualitatively in good agreement with the results found due to the computer
simulations. There is even a quantitative agreement of theory and simulation in some parts.
In others it has been shown that some assumptions in the theory turned out to be a little
oversimplified. These findings will be taken into account for an extension of the theory
(which is under development at the time these letters are written).
But most important, it could be confirmed that indeed undulations are the mechanism to
compensate an effective dilatation for the case of a present shear flow as well as for a stretch
deformation.

The comparison of simulation results with another theoretical approach by Fredrickson et al.
[Fre94] has not revealed any disagreement, although the model does not meet the theory’s
assumptions in many points. But more intense work is certainly needed in order to complete
such a comparison, which seems to be sensible on the basis of the obtained results.

For high strain rates shear bands, plug flow, and shear crystallization could be observed for
the first time in a simulation. An isotropic band was found to ingest the most of the shear
strain and an ordered phase moved as a plug. But since shear band are best observable in
large systems containing millions of particles, only a limited understanding of the ongoing
processes were reached.
It is certainly a good idea to resume work especially on this field which is likely to lead
to an enhanced understanding of these kind of problems which are present for nearly every
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E. Conclusion

complex fluid.

The investigation of non–equilibrium of complex fluids by simulation requires due to the
presence of many length scales large system sizes. Fortunately the parallelization of densed
systems is simple and parallelized algorithms for shear and thermostatting could be devel-
oped and implemented. But nevertheless the simulation of those system sized as the investi-
gated need an considerable amount of computing time and data space. This has to be taking
for further investigation.

Outlook and Perspective

In the conclusion of the fifth chapter is has been suggested, that changing the symmetry in
the interaction to different values of the potential depth for AA and BB interaction might
lead to a prove or disprove of Fredrickson theory in relation to this model. A disprove in
the for this model does not mean that this theory might not work for diblock copolymers in
general, since the present model does not match all assumptions of the theory. So a small test
simulation has been carried out with the smallN = 10000 particle system. The parameters
for AA and BB interactions have been choosen to beφAA = 1.0, which is lower than before,
andφBB = 1.5 which is higher than before. So a viscoelastic contrast in the sense of Winey
et al. has been introduced. That system has been set up in a parallel alignment of its lamellae
and exposed to shear flow. The strain rate was increased in1γ̇ = 0.005 steps until̇γ = 0.095
has been reached. This strain rate is roughly double the rate of the parallel to perpendicular
transition of the symmetric interaction system (section 5.4). But in this system incorporating
the unsymmetry in the like particle interaction, the layers are stillparallel aligned. Hence the
parallel orientation of the lamellae is more stable than without a viscoelastic contrast. This is
observation is in perfect agreement with experiments and theory.
But further work is needed now to find the precise location of the phase transition as a func-
tion of the viscosity difference of the particle types.

Though throughout this work only model dimer melts were considered, the introduced model
is of course able to model other kinds of molecules as well. Binary and ternary system are
thinkable including monomers of type A and B as solvent particles and more complicated
types of amphiphiles. In the following simulation a microemulsion with a so–called bola sur-
factant of the structure ABBBBA was simulated. The system is a binary system of A–fluid
and the surfactant with an concentrationcs = 0.4. The total system containsN = 27000 par-
ticles. Figure E.1 shows a configuration snapshot of this system. The interaction parameters
were choosenφφAA = φBB = 1.3.

These two points show that there are plenty of possibilities of further investigations in equi-
librium as well as out–of–equilibrium on the basis of this model.



Summary of the Important Points of the Work

• A novel model for the efficient simulation of amphiphilic system has been introduced.

• Nearly a full agreement with non–equilibrium liquid crystal theory could be seen. Un-
dulations are the mechanism to compensate an effective dilatation for the case of a
present shear flow as well as for a stretch deformation.

• No disagreement with non–equilibrium diblock copolymer theory has been found.

• The occurence of shear bands has been observed in simulations for the first time.

Figure E.1.: Snapshot of a bola surfactant system. The system is binary and contains type A–fluid
monomers (not shown) and ABBBBA-type bola surfactants of concentrationcs = 0.4. The cubic
system containsN = 27000 particles and was simulated withφAA = φBB = 1.3. (A particles yellow,
B particles blue)
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Pursuing it with eager feet, Until it joins some
large way Where many paths and errands meet
And whither then? I cannot say
Bilbo Baggins [Tol54]





A. List of Abbreviations and Symbols

Table A.1.: Abbreviations and Symbols

A,B types of monomers
BCP block copolymer

DBCP diblock copolymer
DPD dissipative particle dynamics
FMP Florian Müller Plathe

LAOS large amplitude oscillatory shear
LC liquid crystal

LDE linear differential equation
MD molecular dynamics

NEMD non–equilibrium molecular dynamics
ODT order disorder transition
PBC periodic boundary conditions
PE polyethylene

PEE polyethylethylene
PEP polyethylpropylene
PI polyisoprene
PS polystylrol

SAXS small angle x-ray scattering
SANS small angle neutron scattering
TEM transmission electron microscope

A area
B0 layer compression modulus
B1 coupling between director and layer normal
γi j strain tensor
γ̇ strain rate, shear rate
γ̇i intrinsic strain rate
γ̇e effective strain rate

137



γ̇ ∗ reduced strain rate
d layer thickness
η shear viscosity
EF force

Fel. elastic free energy
G∗ complex shear modulus
G′ storage modulus
G′′ loss modulus
H Hamiltonian
K layer bending modulus
k spring constant
K1 director splay modulus
K2 director twist modulus
K3 director bending modulus
ki scattering vector
Li simulation box extension
L Liouville operator
L Langrangian
mi mass of particlei
ni director
ω shear frequency

P[. . .] distribution functional
P instantaneous pressure
p pressure
Epi momentum of particlei
5 conjugate momentum of the simulation box
Eπi conjugate momentum of particlei
9 concentration field
Q box mass

Qij nematic order parameter
qi scattering vector

S(Ek) scattering function
S degree of order
si reduced coordinates
σi j stress tensor
τ reduced temperature

Uij interaction potential between particlei and j
Eu total velocity including fluctuations
V volume



V virial
Evi velocity of particlei
Ev0, Eu0 shear fields
ζ friction constant
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