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A B S T R A C T

We introduce a new model of activity to study the structural and dynamical
properties of mixtures of active and passive particles with molecular
dynamics simulations. The limit of no activity corresponds to the passive
continuous Asakura-Oosawa model. This model, which has an entropy-driven
phase separation, consists of two particle types: colloids and polymers. In this
thesis the colloids are made self-propelled by introducing an active force, which
acts in the direction of mean velocity of the surrounding colloids, similar to the
well-known Vicsek model. The addition of activity is shown to facilitate phase
separation. Di�erent thermostats are applied to study their in�uence on the
active non-equilibrium system. Using an integral equation theory approach,
a mapping of the active onto a passive model is performed. The resulting
potential is studied via molecular dynamics simulations and facilitates phase
separation as well.

The active model exhibits a second order phase transition from a disordered
phase to an ordered state in which most of the colloids align. We apply the
subbox method to determine the critical point of the system from simula-
tions in the canonical ensemble, using an order parameter that depends on
�uctuations of the particle number. This approach is shown to work with
an equilibrium model. Extensive simulations are performed to determine the
critical point of the active model. This is done by assuming initially that the
law of rectilinear diameter still applies in a non-equilibrium system. The �rst
determination of the critical point is then improved iteratively. The critical
point of our active system with an active force fA = 10 is ηcrit

col = 0.103(4) and
ηcrit

pol = 0.264(10). We show that the law of rectilinear diameter is not followed
close to the critical point and provide a simulation approach to account for this.
An explanation of how the activity could in�uence the position of the critical
point is given by using an order parameter known from the Vicsek model.

With the knowledge of the critical point two critical exponents of the active
system are calculated. From the phase diagram we determine the critical
exponent of the magnetisation β = 0.30(3), which is in good agreement
with the 3D Ising universality of the underlying passive system. However, the
critical exponent of the correlation length ν = 0.82 di�ers somewhat from the
corresponding exponent in the 3D Ising universality class.
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Z U S A M M E N FA S S U N G

Ein neues Modell für Aktivität wird eingeführt, um mit Hilfe von Molekulardy-
namik-Simulationen deren Ein�uss auf Struktur und Dynamik einer Mischung
von aktiven und passiven Teilchen zu untersuchen. Der Grenzfall keiner Aktivi-
tät entspricht dem passiven kontinuierlichen Asakura-Oosawa-Modell. Dieses
Modell besteht aus zwei Teilchensorten: Kolloiden und Polymeren und kann,
bedingt durch entropische Entmischung, in zwei Phasen separieren. In dieser
Arbeit werden die Kolloide mit einer aktiven Kraft, welche in Richtung der
durchschnittlichen Geschwindigkeit benachbarter Kolloide zeigt und vergleich-
bar mit dem Vicsek-Modell ist, versehen. Dies erleichtert die Phasentrennung
der Mischung. Verschiedene Thermostate werden verwendet und deren Ein�uss
auf das aktive Modell untersucht. Das aktive Modell wird durch einen Integral-
gleichungsansatz auf ein passives abgebildet, welches mit Molekulardynamik-
Simulationen untersucht wird und ebenfalls die Phasentrennung erleichtert.
Das aktive Modell hat einen Phasenübergang zweiter Ordnung von einer ho-
mogenen Mischung zu zwei separierten Phasen, wobei sich die Kolloide dann
überwiegend in dieselbe Richtung bewegen. Um den kritischen Punkt eines
Systems im kanonischen Ensemble zu bestimmen, das einen von der Teilchen-
zahl�uktuation abhängigen Ordnungsparameter hat, wird die Unterboxmetho-
de verwendet. Es wird gezeigt, dass diese Methode für ein Modell im Gleichge-
wicht funktioniert. Um den kritischen Punkt des aktiven Systems zu bestimmen,
werden umfangreiche Simulation durchgeführt. Dazu wird zunächst angenom-
men, dass das Nichtgleichgewichtssystem dem Gesetz des geradlinigen Durch-
messers folgt. Der somit bestimmte kritische Punkt wird anschließend iterativ
verbessert. Der kritische Punkt des aktiven Systems mit einer aktiven Kraft von
fA = 10 ist gegeben durch ηcrit

col = 0.103(4) und ηcrit
pol = 0.264(10). Es wird ge-

zeigt, dass das System nahe dem kritischen Punkt dem Gesetz des geradlinigen
Durchmessers nicht folgt. Außerdem wird eine mögliche Erklärung gegeben,
wie die Aktivität die Position des kritischen Punktes beein�usst. Dazu wird der
Ordnungsparameter des Vicsek-Modells verwendet.
Mit Hilfe des kritischen Punktes werden zwei kritische Exponenten des aktiven
Systems berechnet. Der kritische Exponent der Magnetisierung β = 0.30(3)

wird aus dem Phasendiagramm bestimmt und stimmt mit dem Exponenten
aus der 3D-Ising-Universalitätsklasse des zugrunde liegenden passiven Modells
überein. Der kritische Exponent der Korrelationslänge ν = 0.82 unterscheidet
sich allerdings etwas von dieser Universalitätsklasse.
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1I N T R O D U C T I O N

“The goal of statistical mechanics is to elucidate physical phenomena occurring
on the macroscopic scale as a result of the interactions among microscopic con-
stituents” [5]. With this description it becomes directly clear why computer sim-
ulations are an important tool in statistical mechanics as they allow direct access
to the microscopic properties of the particles and their surroundings. By setting
these quantities and measuring macroscopic observables one can gain insight
as to how the system is a�ected by the underlying potentials and properties. It
is this �exibility, combined with increasing computer capabilities and sophis-
ticated algorithms, that has established computer simulations as an important
�eld of research bridging and supplementing experiments and theory.

Macroscopic systems can undergo remarkable transformations by changing
from one phase into another, which has fascinated scientist for centuries [6].
Beside the classic phases: solid, liquid and gas, many more have been reported,
like superconductivity, super�uidity, magnetic ordering, cosmological quark
con�nement, helix-coiling of proteins and many more [7]. Phase transitions
can have a signi�cant impact on physical properties of the system. For example
one can swim in water, however the same technique is of no use in ice or
vapour. With the knowledge of the phase diagram of speci�c materials new
applications for materials can be discovered and novel techniques can be
created. The magnetic resonance imaging (MRI) used in hospitals, for example,
needs superconductive magnets to reach the necessary magnetic �elds. The
principle of phase transitions has since been applied not only to physical
systems but is used in other �elds, e. g. economic and social systems [8, 9], as
well.

When systems such as �ock of birds [10], or school of �sh [11] are studied, the
observed collective motion resulting from the combined motion of the individ-
ual animals is reminiscent of phase separation seen in passive equilibrium sys-
tems. These systems, where the 3D position has to be reconstructed from images,
are di�cult to modify and rely on observation of huge �ocks or schools. It is,
however, possible to create systems arti�cially, e. g. colloidal rollers [12], which
become self-propelled due to Quincke rotation [13] in an external electric �eld.
All of these systems have in common that they are out of equilibrium and their
constituents can thus be collectively called: “Active particles”.



2 introduction

Active particles are intrinsically non-equilibrium systems which have some
means of self-propulsion. This can be a motor or �agellum, but can also
be induced from the outside, e. g. via vibrations [14, 15] or light [16]. In all
cases some form of energy is converted into kinetic energy that results in
the self-propulsion. This general de�nition leads to a large variety of systems
on di�erent scales, that are considered active. Beside the rather big animal
systems already mentioned, active particles can also be found on a micrometer
scale. Such systems include actin �laments [17], and microtubules [18] that are
moved by motor proteins in a plane and can be observed via microscopes. Some
bacteria are able to propel themselves and can show a density dependent phase
separation [19, 20]. It is even possible to alter microorganisms and make them
thereby active, e. g. by attaching an arti�cial, magnetically activated �agellum
[21].

In soft matter systems colloids play an important role as a model system since
they provide an ideal environment to compare experiment, computer simula-
tion, and theory. For active particles this is no exception and a variety of self-
propelled systems have been studied. Colloidal systems that are driven from the
outside, e. g. by shining light on the solution, allow for direct comparison of the
active and the passive system [22–24]. Another approach is to provide the fuel
necessary for the self-propulsion in the solution [25–27]. In these examples the
solution contains hydrogen peroxide and the active constituents are so-called
Janus-type particles, where one hemisphere is coated with platinum. The con-
ducting hemisphere acts as catalyst for the reaction of hydrogen peroxide to
water and oxygen and thus “consumes” the fuel, which in turn propels the par-
ticle forward.

There are di�erent ways to model active particles. One of the �rst models is
the so-called Vicsek model [28]. Here, a point-like particle travels at a constant
velocity and interacts with other constituents only by adjusting its direction of
movement to match the orientation of the mean velocity of neighbouring par-
ticles. This 2D model shows an order-disorder phase transition, depending on
the average error with which the particles choose their new direction. Another
way to model active particles are active Brownian particles (ABPs). Here the
constituents have volume exclusion and their direction of self-propulsion dif-
fuses rotationally [29]. The phase separation in this model can be explained by
self-trapping of the particles [30, 31]. This generally happens when the rate of
accumulating new constituents at the formed cluster is higher than the rota-
tional di�usion of the swimming direction. One can also use inelastic collisions
in order to generate active particles, when the energy loss of the collisions is
compensated by having the particles self-propel until they exceed a predeter-
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mined maximal velocity [32]. All of these systems have in common, that they
introduce a phase separation. This phase transition is consequently referred to
as motility-induced phase separation (MIPS) [33].

It is clear that these active systems are di�erent from the passive equilibrium
systems that are usually studied in statistical mechanics. Therefore, care has to
be taken when methodologies from statistical mechanics are applied to active
particles [34, 35]. However, the similarity of the phase behaviour is apparent as
well. For this reason we are going to study the di�erences and similarities of a
classical equilibrium system and an active counterpart in this thesis. To do so,
we will reiterate the basic idea of statistical mechanics, the applied algorithms
and the theory of phase transitions in Chapter 2. Instead of directly using an
active model we will �rst discuss a passive model that already contains a phase
transition in Chapter 3. In Chapter 4 the passive model from before is extended
by a term that is related to the Vicsek model [28]. The active model will include
the passive model in the limit of low activity. Therefore it is ensured that the
active model, at least for small activities, will also feature a phase transition. Af-
ter studying the active model we attempt a mapping onto a passive model using
integral equation theory in Chapter 5. In Chapter 6 we discuss how the criti-
cal point of a test system in equilibrium can be determined. For this we review
an already existing technique to analyse a canonical simulation when �uctua-
tions in the particle number are the driving e�ect for the phase separation. We
extend this technique by methods used in grand canonical simulations. In Chap-
ter 7 we apply the discussed procedures to the active model from Chapter 4 and
determine the critical point. With the critical point we calculate two critical ex-
ponents of the active system in Chapter 8 and compare them with the exponents
found for the passive model. Chapter 9 summarises the results obtained in this
thesis and provides an outlook for future work.





2T H E O R Y

2.1 statistical mechanics

2.1.1 De�nitions and averaging

The idea of computer simulations of soft matter is to study many-particle sys-
tems. In such a simulation the user has access to the velocities and positions
of all particles. From this information properties and thermodynamic variables
can be computed. There are two approaches to this task: ensemble averaging
typically used in Monte Carlo (MC) simulations and time averaging typically
used in MD simulations. Both methods follow a similar line of thought which
is illustrated in the following. Analogously to Frenkel and Smit in [36] we start
with a quantum mechanical system. We have an Hamiltonian H that describes
the system. For every energy eigenstate the relation H |i〉 = Ei |i〉, where Ei is
the energy of state |i〉, holds. Systems of interest have typically many degrees
of freedom (e. g. O(1023)). As a consequence, many di�erent states will have
the same energy. Therefore, the quantityΩ(E, V,N) is introduced to count the
degeneracy of states with the same energy E of a system withN particles in the
volume V . At this point we assume that each of the states inΩ(E) has the same
probability to be found. Now we want to �nd the probability that a system A is
in one speci�c state |i〉 with energy Ei for a system in thermodynamic equilib-
rium with a bath system B. System B has to have an energy EB = E − Ei with
the degeneracyΩB(E−Ei), so that the probability to �nd systemA in this state
is given by

Pi =
ΩB(E− Ei)∑
jΩB(E− Ej)

. (2.1)

If the internal energy of the bath is much larger than in A we can compute the
Taylor expansion of lnΩB(E− Ei) around E.

lnΩB(E− Ei) = lnΩB(E) − Ei
∂ lnΩB(E)

∂E
+O(E2i ) (2.2)

We de�ne

β(E,N, V) =

(
∂ lnΩB(E)

∂E

)
N,V

=
1

kBT
(2.3)
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and insert Equations 2.2 and 2.3 in Equation 2.1 which gives us the probability
to �nd system A in state |i〉 with energy Ei in thermodynamic equilibrium

Pi =
exp (−Ei/kBT)∑
j exp (−Ej/kBT)

. (2.4)

Note, that the denominator of Equation 2.4 is often referred to as partition func-
tion Z

Z =
∑
j

exp (−Ej/kBT) , (2.5)

which is the sum over all states and serves as a normalisation, so that the prob-
ability to �nd the system in any state is equal to one. The partition function is
closely related to the Helmholtz free energy F

F = −kBT lnZ . (2.6)

We can now compute the thermal average of an observable A

〈A〉 =
∑
i exp (−Ei/kBT) 〈i|A|i〉∑

j exp (−Ej/kBT)
, (2.7)

where 〈i|A|i〉 is the expectation value of A in state |i〉. Since we are interested
in �nding the statistical average in classical systems, we change the summation
of all states in Equation 2.5 to an integration over all coordinates and momenta
and get the classical partition function for a system with N indistinguishable
particles

Zclassical =
1

h3NN! ·
∫
dpNdrN exp

{
−βH(rN,pN)

}
. (2.8)

Therefore we can determine the average of any observable in the classical limit
of Equation 2.7 as

〈A〉 =
∫
dpNdrN exp

{
−βH(rN,pN)

}
A(rN,pN)∫

dpNdrN exp {−βH(rN,pN)}
, (2.9)

which gives us the thermodynamic average of the observableA dependent only
on the positions r and momenta p.

2.1.2 Ergodicity

The average presented in Equation 2.7 and Equation 2.9 is the so-called ensem-
ble average. A variant of it is typically used in MC simulations. In an experiment
however, this way of averaging is often not accessible. Instead a time evolution
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of the averaging quantity is observed. The same idea is also used in MD simula-
tions, where the equations of motion are solved for each particle. The resulting
average is thus

A = lim
t→∞

1

t

∫ t
0

dt ′A(r,p; t ′) . (2.10)

The idea on which statistical physics is based is the so-called “ergodic hypothe-
sis” which states that both methods of averaging yield the same result

A = 〈A〉 . (2.11)

2.2 algorithms

In classical MD simulations the goal is to solve Newtons equations of motion.
On a computer, only discrete time steps are available. The numerical integration
will therefore need a certain level of approximation. The smaller the time step
of the integration the better the approximation will be, however, a computer has
a �nite numerical resolution, meaning that for too small time steps, numerical
errors will occur. Depending on the problem in question di�erent algorithms
are available. Two of the most common algorithms to study classical soft matter
systems are depicted in the following.

2.2.1 Euler algorithm

The Taylor expansion of the position ~r(t + ∆t) ≡ r(t + ∆t) around ∆t = 0 is
de�ned as follows:

r(t+ ∆t) = r(t) + v(t)∆t+
F(t)

2m
∆t2 +

∆t3

3!
...
r(t) +O(∆t4) . (2.12)

If we cut this expansion after the ∆t2 term we get the so-called Euler algorithm.
The error of this algorithm is therefore of the orderO(∆t3). As one can imagine
this algorithm is easy to implement and rather fast. On the downside the scheme
is not reversible, that means if we replace the velocities~vi(t) with −~vi(t) we do
not trace the trajectory back even with perfect numerical stability. Since New-
tons equations of motion are reversible, it is desirable to have the same for the
integration scheme as well. Additionally, the Euler algorithm does not preserve
the area in phase space which a normal Hamiltonian would and it can have a
long term energy drift. Therefore this algorithm is never used for microcanon-
ical (NVE) simulations and for NVT simulations it is most of the time replaced
by the more common Velocity Verlet algorithm. We will use the Euler algorithm
when discussing active Brownian particles (ABPs) in Section 4.6.
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2.2.2 Velocity Verlet algorithm

We start once again with the Taylor expansion of the position~r(t+∆t) ≡ r(t+
∆t) as in Equation 2.12 and neglect terms of orderO(∆t3) and higher. However,
we change the integration scheme to a half time step process consisting of four
steps:

1. Calculate the intermediate velocity

v

(
t+

1

2
∆t

)
= v(t) +

1

2m
F(t)∆t (2.13)

2. Calculate the new positions from the intermediate velocities

x(t+ ∆t) = x(t) + v

(
t+

1

2
∆t

)
∆t (2.14)

3. Calculate the new forces from the new positions

F(t+ ∆t) = −∇U(x(t+ ∆t)) (2.15)

4. Calculate the new velocities

v(t+ ∆t) = v

(
t+

1

2
∆t

)
+

1

2m
F(t+ ∆t)∆t (2.16)

Since we can insert Equation 2.13 into Equations 2.14 and 2.16 we can eliminate
the half time step and thus calculate the new positions and update the velocities
as

r(t+ ∆t) = r(t) + v(t)∆t+
F(t)

2m
∆t2 (2.17)

v(t+ ∆t) = v(t) +
F(t) + F(t+ ∆t)

2m
∆t , (2.18)

where F(t + ∆t) are the new forces calculated with the new positions before
the velocities are updated. Computationally this algorithm is as fast as the Euler
algorithm, since the new forces F(t+∆t) can be reused in the next update step
as the old forces, thus only the memory usage is a bit higher.

It can be shown that the local error in the position is nowO(∆t4) which means
the Velocity Verlet algorithm is more exact than the Euler algorithm from be-
fore. More importantly, this algorithm is reversible and preserves the area of
the phase space. While the true Hamiltonian cannot be simulated, a so-called
“shadow-” or “pseudo-” Hamiltonian is followed, which converges to the true
Hamiltonian in the limit of in�nitely small time steps.
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2.2.3 Periodic boundary conditions

In the algorithms discussed above the forces between all particles are taken into
account. A computer can handle only a �nite number of particles which at the
time is way lower than in a typical experiment (� O(1023)). In order to not

Figure 2.1: Visualisation of the applied periodic boundary condition in two dimensions.
The simulation box is shown in the middle and is surrounded by image cells.

only simulate surface e�ects, we apply periodic boundary conditions (pbc). This
means we create image simulation boxes all around the original box and let
the particles interact with their neighbours. A two dimensional sketch of these
image cells is shown in Figure 2.1. This technique is typically applied when
the forces have a certain cut-o� radius and thus the interaction of a particle
with its own image can be avoided by choosing the size of the simulation box
accordingly.
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2.3 phase transitions

2.3.1 Order parameter

For a phase transition we can typically de�ne a parameter that is zero in the less
or non ordered phase and non-zero in the other. A liquid-gas phase transition is
described by the di�erence between the density of the liquid and the gas phase

m = ρliquid − ρgas . (2.19)

For an Ising ferromagnet the order parameter is the spontaneous magnetisation

m =

∑
i σi∑
i |σi|

, (2.20)

where σi = ±1 represents a spin on a lattice.

2.3.2 Ehrenfest classi�cation

Phase transitions are classi�ed according to Ehrenfest by the �rst derivative of
the free energy as a function of other thermodynamic variables that diverges.
An example for a �rst order transition is the freezing of liquid water. While
freezing one has to cool the system without changing the temperature thereof
(latent heat), resulting in a discontinuity in the internal energy. An example for
a second order phase transition is the gas-liquid phase transition at the critical
point. If we derive the free energy by the temperature the resulting entropy is
still continuous, however the entropy derived by the temperature resulting in
the heat capacity is discontinuous. Thus the phase transition is of second order.

cv = T

(
∂S

∂T

)
V

= −T

(
∂2F

∂T2

)
N,V

(2.21)

2.3.3 Phase diagrams

Phase transitions can occur if one of several di�erent thermodynamic variables
is varied. Therefore, we can use the dependence of those variables with each
other to extract a “functional” dependence. Such a plot is called a phase dia-
gram. In Figure 2.2 two representations of the water phase diagram are shown,
the well known temperature-pressure and the density-temperature diagram. In
this sketch the lines are �rst order transitions between the respective phases. A
special point in this diagram is the critical point in which the liquid-gas coexis-
tence line ends. At this point a second order phase transition occurs.
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Figure 2.2: Sketch of two phase diagrams for water. (a) The classical temperature-
pressure phase diagram and (b) the density-temperature phase diagram. In both
graphs the triple point (t) (green) and the critical point (c) (red) are shown.

Predicting the phase diagram from the microscopic interactions is an important
task of statistical mechanics [37]. While the system of water is very complex,
we can construct model systems with much simpler phase diagrams. The most
common example is the Ising ferromagnet with the Hamiltonian

H = −Jnn
∑
nn

σiσj − h
∑

σi . (2.22)

Where Jnn > 0 is the interaction constant between neighbouring spins σ, and
h is an external �eld. If h is changed at a constant temperature T < Tc a �rst
order phase transition can be observed at h = 0, where all spins change their
orientation. For h = 0 the system has a second order phase transition at T = Tc
from a paramagnetic to a ferromagnetic phase.

2.3.4 Universality

In the phase separated state the thermodynamic properties can be written in
terms of a power law of the driving variable for the phase separation. For the
Ising system this is a function of the temperature. The relations are then as
follows [6]:

M =M0ε
β , (2.23)

χ = χ0ε
−γ , (2.24)

C = C0ε
−α , (2.25)

ξ = ξ0ε
−ν , (2.26)

with ε = Tc−T
Tc

.M is the magnetisation, χ the susceptibility, C the speci�c heat,
and ξ the correlation length. α, β, γ, and ν are the critical exponents of the
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system. These relations are only valid for ε → 0. In the 2D Ising model the
values can be calculated analytically [38]. For the 3D Ising model no analytic
solution has been found yet, but the exponents have been determined to high
accuracy with computer simulations [39]. Higher dimensions have a mean �eld
character [37]. In Table 2.1 the critical exponents of the Ising system are shown
for di�erent dimensionality. Systems with the same critical exponents belong to

Ising exponents d = 2 d = 3 d = 4

α 0 0.11 0
β 1

8
0.33 1

2

γ 7
4

1.24 1
ν 1 0.63 1

2

Table 2.1: Critical exponents of the Ising model in various dimensions. Note, that the
upper critical dimension of the Ising model is d = 4. All higher dimension will have
the same exponents as those are a result of a mean �eld theory.

the same universality class [40].

2.3.5 Finite size scaling

Near the critical point the correlation length ξ diverges as indicated in Equa-
tion 2.26. In a �nite system the maximum correlation length that can be reached
is limited by the linear dimension L of the �nite-size system, thus for ξ → L it
makes sense to de�ne a scaling variable x as

ξ ∝ L 2.26∝ ε−ν

⇐⇒ ε ∝ L− 1
ν

=⇒ x := εL1/ν . (2.27)

We can rescale Equation 2.23 to M =M0(x)L
−β/ν. At the critical point x = 0,

the scaling function becomes a constant M0(0) = const which is no longer
system size dependent. This means that if we calculate e. g. the magnetisation as
a function of temperature for various system sizes, we could collapse all curves
onto a master curve by rescaling the axes to ε → L1/νε and M → MLβ/ν.
For small x all data would approach a constant, which is an estimate forM0(0)

[37]. However, this makes the proper determination of the critical point rather
tedious, as one has to precisely know the critical exponents and simulate close
to the critical point from both directions.
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A similar approach is to use higher moments of the order parameter. The Binder
cumulant is de�ned as

U4 =

〈
m4
〉

〈m2〉2
. (2.28)

For the Ising model without external �eld the order parameter is the magnetisa-
tion, and we thus get

U4 =

〈
M4
0(x)L

−4β/ν
〉

〈M2
0(x)L

−2β/ν〉2
=

〈
M4
0(x)

〉
〈M2

0(x)〉
2

, (2.29)

which means that the cumulant is independent of the system size at the critical
point. Far away of the critical point the value of the cumulant depends on the
system size, however for reasonable big systems we can determine the limit of
the cumulant. For the non-ordered phase the order parameter goes to zero be-
cause of its de�nition, therefore we divide the fourth moment of a zero mean
Gaussian distribution

(
3σ4
)

by the second moment squared
(
(σ2)2

)
. In the or-

dered phase we get a bimodal distribution of the order parameter. If the system
is big enough and we are far enough away from the critical point, both peaks
will be fully separated and sharply peaked [41]. This means that both moments
tend to the same value. To summarise, for L→∞ we get

U4 →
{
3 in the non-ordered phase e.g. T > Tc

1 in the ordered phase e.g. T < Tc
. (2.30)

2.3.6 Critical slowing down & Correlation

As already mentioned, close to a second order phase transition the correlation
length ξ diverges. When the correlation length is comparable to the system size
L we get �nite size e�ects in our simulation as discussed above. Before this hap-
pens the simulation can be a�ected by critical slowing down. Since the correla-
tion of measured quantities is getting larger. Thus observables measured close
to the critical point will generally have a larger error bar or have to be averaged
over a substantially longer time. One way to determine this e�ect is by calculat-
ing a correlation of an observable with itself. This is also called autocorrelation
and can be calculated as

Cor(X(t), τ) =
〈(X(t) − µ)(X(t+ τ) − µ)〉

σ2
, (2.31)

where X is an observable, µ is the mean value of X, and σ is the standard de-
viation of X. Since Cor(X(t), τ) = Cor(X(t),−τ) typically only the positive
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branch of Cor(X(t), τ) is shown. The values of the autocorrelation function
will be in the interval [−1, 1], where 1 indicates full correlation, −1 indicates
anti-correlation, and 0 indicates no correlation.
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3.1 continuous asakura-oosawa model

The original Asakura-Oosawa (AO) model [42] is composed of two components
which we call colloids and polymers in the following. The colloids have a hard-
sphere interaction with each other as well as with the polymers, whereas the
polymers behave like ideal gas particles in respect with each other and are in
our case slightly smaller than their colloid counterparts. This leads to a phase
separation caused by depletion forces, as it becomes entropically favourable for
the colloids to cluster together and thus leave more free volume for the polymers
to explore. Hence, this simple, purely repulsive model shows phase separation
driven only by the density (or the packing fraction) of the two particle types.
The AO model was later extended by Zausch et al. [43] to a continuous version
by introducing a soft polymer potential and replacing the hard-sphere inter-
actions by Weeks-Chandler-Andersen (WCA) potentials [44]. By changing the
interactions to continuous potentials, it becomes possible to perform MD simu-
lations. For this reason the model is typically referred to as continuous Asakura-
Oosawa (cAO) model. The resulting potentials are shown in Equation 3.1-3.3
with cc referring to the colloid-colloid, cp to the colloid-polymer, and pp to the
polymer-polymer interaction.

Ucc(r) =

 4εcc

[(σcc
r

)12
−
(σcc
r

)6
+
1

4

]
, r < rcc

0 otherwise
(3.1)

Ucp(r) =

 4εcp

[(σcp
r

)12
−
(σcp
r

)6
+
1

4

]
, r < rcp

0 otherwise
(3.2)

Upp(r) =

 8εpp

[
1− 10

(
r

rpp

)3
+ 15

(
r

rpp

)4
− 6

(
r

rpp

)5]
, r < rpp

0 otherwise
(3.3)

As all three potentials describe a two body interaction, we use the abbreviation
r = |~ri −~rj| for the distance between two interacting particles i and j. For our
simulations we choose εcc = εcp = 1, εpp = 0.0625, σcc = 1, σcp = 0.9, and
σpp = 0.8. The cuto� radii are determined as rcc = 21/6σcc, rcp = 21/6σcp,
and rpp = 21/6σpp. This corresponds to the parameters used in [43]. A plot of
those potentials can be seen in Figure 3.1.
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Figure 3.1: Plot of the potentials given in Equations 3.1, 3.2 and 3.3 where cc stands
for the colloid-colloid, cp for the colloid-polymer and pp for the polymer-polymer
interaction. The Barker-Henderson diameter dcc, as calculated in Equation 3.4, and
dcp = 0.9 · dcc are shown as dotted lines.

It has been shown by Barker and Henderson [45], that potentials which diverge
for small radii can be mapped to hard-sphere potentials with an e�ective diam-
eter d by using

dcc =

rcc∫
0

[
1− e−

Ucc(r)
kBT

]
dr (3.4)

T=1.0≈ 1.0156σcc .

The same approach can be done for the colloid-polymer interaction as well, and
one �nds dcp = 0.9 · dcc. For the polymer-polymer interaction such an ap-
proach is not possible as the soft potential is not diverging, instead we de�ne
the e�ective polymer diameter analogously to [43] as dpp = 0.8 · dcc.
From the e�ective diameter an e�ective volume of the hard sphere is calculated
and thus we de�ne a packing fraction for the colloids and the polymers as

ηcol =
π

6
d3cc ρcol ≈ 0.5484 σ3cc ρcol (3.5)

ηpol =
π

6
d3pp ρpol ≈ 0.2808 σ3cc ρpol . (3.6)
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Since the phase separation depends solely on the packing fractions of the two
particle types, we get the phase diagram by plotting ηcol against ηpol. In a grand
canonical ensemble on can introduce a so-called polymer reservoir packing frac-
tion ηrpol [46–48] which is given by

ηrpol =
π

6
d3pp · e

µp
kBT , (3.7)

with µp being the chemical potential of the polymers.

We use the cAO model in this work and extend it later with an additional poten-
tial to make the colloids behave as active particles. This extension will contin-
uously pump energy in the system. Therefore, a simulation in the microcanon-
ical ensemble is not possible and we need a thermostat to remove excess en-
ergy (see Section 3.4 and Chapter 4). Furthermore, it is not obvious whether one
can include such an extension in the pair potentials. We will attempt a map-
ping in Chapter 5, but for now we expect that we cannot calculate the Barker-
Henderson diameter as in Equation 3.4. To still be able to compare our results
with the passive model we �rst have to test the in�uence that a changed temper-
ature or friction has on this model (Sections 3.4 and 3.5). For these comparisons
we will use the phase diagram of the cAO model which will be determined as
described in Section 3.3.

3.2 reduced units

In the previous section we started already to express all length dependencies
as multiples of σcc which takes the role of a length unit. Since σcc = 1 in the
simulation, it makes sense to replace, e. g. all packing fractions by a unitless rep-
resentation η∗α = ηα/σ

3
cc. A similar approach can be used for other quantities

as well. In the rest of the thesis we will set the massm, εcc and kB to unity and
express all quantities by their reduced form while omitting the asterisk.

3.3 determining the phase diagram

A short introduction into the importance of phase diagrams to characterise sys-
tems with a phase transition is given in Section 2.3.3. To determine the phase
diagram in the cAO model we simulate state points that are clearly in the two
phase region. That means the packing fraction of both colloids and polymers
should be high enough so that a phase separation is observed. If the resulting
�nite size phase is a so-called slab, meaning that the colloid and polymer liquids
are separated by �at interfaces, the correct equilibrium packing fractions can be
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ηgcol ηcol ηlcol

gas liquid

p

pco

Figure 3.2: Schematic drawing of the pressure dependence on the colloid packing frac-
tion in a �nite size system at coexistence conditions. If the number of colloids is
steadily increased, one starts with a homogeneous mixture of gaseous colloids and
liquid polymers. By adding more colloids to the system the pressure increases until
a liquid droplet is formed by the colloids. Which is then followed by a cylinder and
ultimately results in a slab. If one goes on increasing the number of colloids, a poly-
mer cylinder forms embedded in a colloid liquid, followed by a polymer sphere in a
colloid liquid and ultimately a homogeneous liquid is reached and the phase transi-
tion is completed. In an in�nite system one would not obtain those phases, instead
the pressure would increase to the coexistence pressure pco and remain there until
the packing fraction of the colloids exceeds ηlcol. Idea adopted from [49].

read o� in the resulting phases. In Figure 3.2 possible �nite size structures are
sketched for varying colloid packing fractions. To ensure that the slab con�gu-
ration is the favoured structure over a long range of packing fractions we use an
elongated simulation box geometry. As the system tries to reduce the interfacial
tension the resulting slab is always oriented perpendicular to the elongated axis,
which simpli�es the analysis. Here, we chose the z-axis.

Once the system is in a phase separated state, the equilibrium packing fractions
are determined. This results in two points for the phase diagram

(
ηgcol

∣∣∣ηlpol

)
and

(
ηlcol

∣∣∣ηgpol

)
, where l stands for liquid and g for gas. This is done for one

example in Figure 3.3. Figure 3.3(a) shows that the slab geometry is reached for
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Figure 3.3: Simulation of continuous Asakura-Oosawa model with ηcol = 0.15 and
ηpol = 0.46 in a system of Lx = Ly = 12σ and Lz = 48σ. (a) One exemplary
simulation snapshot showing that the �nite size geometry is a slab. (b) Density dis-
tribution averaged over a long simulation run, by shifting the centre of mass of the
colloids to z = 0. The values for the phase diagram are extracted by a linear �t to
the plateaus as indicated by the black and yellow lines. In this graph the linear �t
results in the points (0.337|0.044) and (0.011|0.787), which are used in the phase
diagram in Figure 3.4.

this combination of ηcol, ηpol. The density distribution can now be accumulated
for independent snapshots where the centre of mass of the colloids is always
shifted to z = 0. This is done in Figure 3.3(b). From the formed plateaus one
can determine the equilibrium packing fractions in both regions. This results
in two points that are used in the phase diagram in the next section. Repeating
this procedure for di�erent packing fractions will result in the phase diagram
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(Figure 3.4). Note, that �nite size e�ects and critical slowing down as discussed
in Sections 2.3.5 and 2.3.6 a�ect how close one can get to the critical point. With
this technique, one will therefore always have a region around the critical point
which cannot be sampled.

3.4 temperature dependence

The Velocity Verlet algorithm outlined in Section 2.2.2 solves Newton’s equa-
tion of motion in the NVE ensemble. To allow for �uctuations in energy (NVT
ensemble), a thermostat has to be added. There are several thermostats in the lit-
erature to choose from with di�erent strengths and weaknesses. Some of them
will be discussed in Section 4.4. For now we choose the Langevin thermostat
to control the temperature of the passive system. This means that we have to
solve:

m~̈ri = −~∇U− γm~̇ri +
√
2γkBTm ~Ri(t) , (3.8)

with m = 1 being the particles’ mass for all particle types, γ = 1 is a damping
coe�cient or friction, U is the interparticle potential, T = 1 is the temperature
and ~R is a zero-mean unit-variance Gaussian white noise. We use a Velocity
Verlet algorithm with a time step ∆t = 0.002t0, with t0 =

√
σ2ccm/εcc similar

to the one discussed in Section 2.2.2. The modi�ed Velocity Verlet algorithm
reads then:

~ri(t+ ∆t) = ~ri(t) +~vi(t)∆t
(
1− ∆t

γ

2

)
+
∆t2

2m
~Gi(t) (3.9)

~vi(t+ ∆t) =
~vi(t)

(
1− ∆tγ

2

)
+ ∆t
2m

(
~Gi(t) + ~Gi(t+ ∆t)

)
(
1+ ∆tγ

2

) , (3.10)

where ~Gi(t) = −~∇U +
√
2γkBTm ~Ri(t) is the total force. This algorithm

is motivated by the so-called BBK integrator [50] which can be written in a
position-velocity representation [51] and then be further reduced to a full time
step integration.

To check the correctness of our simulation code we compare the phase diagram
for the passive model with data obtained from MC simulations [43]. In the re-
gions far from the critical point both coincide nicely as can be seen in Figure 3.4.
Since the correlation length ξ is determined by the smallest length scale of the
simulation box, the correctness close to the critical point is limited by the small-
est length scale as the correlation length diverges. To get closer to the critical
point one has thus to use a bigger system.
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Figure 3.4: Comparison of the results of the cAO model obtained with MC (blue) (data
from [43]) and MD simulations (green). The MD data is generated in a system with
Lx = Ly = 12σ and Lz = 48σ. The phase diagram does not change for higher
temperatures T as long as one accounts for an adjusted Barker-Henderson diameter
(see Equation 3.4) (cyan). If one does not change the e�ective diameter dcc the phase
diagram shifts to higher packing fractions (red).

In Figure 3.4 we calculate the phase diagram for di�erent temperatures. It is
clear that the cAO model is not temperature sensitive as long as one calculates
the correct Barker-Henderson diameter. However, if the e�ective pair potential
is not known, as in the active case, the Barker-Henderson formalism cannot be
applied. Therefore, we note that a higher temperature shifts the phase diagram
to higher packing fractions if the e�ective diameter is unchanged. This is also
what one would naively expect as a higher kinetic energy prevents the colloids
from clustering.

3.5 friction dependence

The Langevin thermostat introduces another parameter which can be chosen
independently from the temperature; the friction γ. Since the friction neither
enters the equations of the potentials nor changes the Barker-Henderson diam-
eter, one would not expect it to have an in�uence on the passive system. This
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is shown in Figure 3.5. However, it is likely that an active system which is by
de�nition not in equilibrium behaves di�erently.
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Figure 3.5: Comparison of the e�ect of di�erent values for the friction γ for the passive
cAO model. All values of γ result in the same phase diagram.
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4.1 constructing an active system from the passive model

4.1.1 The active Vicsek model

To compare an active with a passive model, we want to remain as close as possi-
ble to the passive model discussed in Chapter 3. Ideally, the new model contains
the equilibrium result as a limit of one parameter that describes the activity of
the system and can be changed continuously. This will allow us to directly com-
pare the two models and study the e�ect the added activity has on the system.

A well-known model for active particles is the Vicsek model [28, 52], which
was introduced to study the structure and dynamics of clustering active parti-
cles. This can be achieved by applying an alignment rule to the self-propelled
particle so that it moves in a similar direction as neighbouring particles. This
alignment is well motivated for macroscopic systems, as birds would not want
to crash into each other. In microscopic systems it can be interpreted as steric
interaction or hydrodynamic e�ects [53]. In [53] a Vicsek-like model is used to
successfully compare experiments of self-propelled bacteria with simulations.
The Vicsek model generates correlations between active particles, which leads
to a clustering e�ect and introduces a phase separation that is not present in
the passive model. It is worth noting that self-propelled particles do not in gen-
eral enhance clustering. While there are observations where phase separation
is induced by motility [54], the contrary has been observed as well [55].

We construct the active model by adding a variation of the Vicsek model [28] on
top of the passive cAO model. For that we still solve the Langevin Equation 3.8
�rst just as in the passive model. The resulting velocity is then modi�ed by
an additional force ~fi which is acting on the active particle i as determined by
Equation 4.1.

~fi = fA ·
〈~vj〉R
〈|~vj|〉R

(4.1)

The constant force is set to fA = 0 for the polymers and fA = 10 for the colloids,
if not stated otherwise. <>R denotes the average in a sphere of radius R, with
R =

√
2 rcc being the cut-o� radius for what is considered a neighbour. Note,
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that the colloids interact only with neighbouring colloids, but that the velocity of
the colloid itself is also respected. Therefore a non interacting particle is pushed
in its direction of motion, hence is self-propelled. Additionally the active force
~fi introduces an alignment and thus a correlation between the active particles
which is similar to the alignment rule in the original Vicsek model.

For the implementation of this model we keep the integration algorithm as de-
�ned in Equations 3.9 and 3.10 and update the velocities after this Velocity Verlet
step by

~vact(t+ ∆t) = ~v(t+ ∆t) +
∆t

m
~fi(~r(t+ ∆t),~v(t+ ∆t)) , (4.2)

where ~v(t + ∆t) is the velocity determined by the Velocity Verlet step. Note
that this is technically no longer a Velocity Verlet algorithm, as the active force
can only be calculated when both the positions ~r and velocities ~v are known.
Therefore the half time step of the velocity which is used in the derivation of
the Velocity Verlet algorithm (compare with Section 2.2.2) would have an unde-
�ned active force. We solve this problem by integrating the system as before and
change the velocity once the position and velocities are known. One can think
of this as a run and tumble update of the particles. In each integration step the
particles are �rst treated as if they were passive and are moved according to the
potentials (run), then they are in�uenced by the surrounding active particles and
their direction or in this case their velocity is updated (tumble). This algorithm
still has the advantages of the Velocity Verlet algorithm for the passive update.
The active part is integrated as an Euler algorithm, similar to the standard inte-
gration for other active particles as well e. g. [56]. An alternative interpretation
is to treat the active interaction as kind of an “activity thermostat”. In each time
step the velocities are adjusted according to the average velocity of surrounding
particles. Independent of the interpretation this update method has the passive
system as its limit for fA → 0 and the correct integration method is regained
for no active force which was the initial goal.

4.1.2 Steady state

With this additional directed force heat is pumped into the system and the tem-
perature will no longer be the same as the initial temperature set by the thermo-
stat. Instead the system will have an increased temperature Tactive > T as can be
seen in Figure 4.1, where the active colloids carry most of the heat. Once Tactive

is reached, the temperature does no longer increase. While the active particles
are still pumping energy into the system, the thermostat is now removing the
same amount. While this state is clearly not the same as an equilibrium state,
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Figure 4.1: “Equilibration” of temperature distinguished by particle type and as a total at
the state point ηcol = 0.15 and ηpol = 0.30. The initial temperature of the thermostat
is set to Tinit = 1.0 and is shown by the black dashed line. The average temperatures
for this state point after the system has reached the steady state are: 〈Tcol〉 = 27.3,
〈Tpol〉 = 1.6 and 〈Ttot〉 = 6.9.

one can still expect that static observables, like e. g. the density distribution, do
no longer change with time. Therefore we call this state a steady state.

In the cAO model the temperature plays only a minor role. As shown before the
main reason for a phase separation is the entropic attraction of the colloids at
high enough densities. But since the hard sphere interactions got replaced by a
smooth potential in order to be able to perform MD simulations we will have a
temperature dependence if we do not adjust the Barker-Henderson diameter as
discussed in Section 3.1. Unfortunately, the Barker-Henderson approach from
Equation 3.4 cannot be applied to the Vicsek potential since it is not a pairwise
interaction. Therefore, the increased temperature should lead to phase separa-
tion at higher packing fractions as displayed in Figure 3.1. Instead Figure 4.2
shows that the addition of activity leads to phase separation at lower densities
due to the clustering e�ect of the Vicsek interaction. This indicates that the in-
creased temperature plays a minor role compared to the clustering e�ect of the
active model. The clustered colloids move through the system and collect the
remaining free colloids, which drives the phase separation. The melting of such
a cluster is repressed by the alignment rule from Equation 4.1.
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Figure 4.2: Comparison of the cAO with the active model. The phase separation happens
earlier if we switch on the Vicsek model (fA = 10). The simulation box has the
dimension Lx = Ly = 12σ and Lz = 48σ.

We have introduced a model of activity that mostly depends on one parameter
fA that controls the activity of the system. If we set fA = 0 for both particle
types we regain the passive model. Thus the constructed model will return the
passive results for fA → 0. For active forces greater than zero the temperature
can no longer be held at the initial value but rises until a steady state is reached.
We have shown that such a temperature increase would in principle hamper
phase separation in the underlying passive cAO model. Nevertheless, in the ac-
tive model phase separation is facilitated which is due to the clustering e�ect of
the Vicsek model.

4.1.3 Choice of cut-o� radius

In the de�nition of the active model the cut-o� radius R, which is determining
what is considered a neighbour, is introduced as a free parameter. Since the inter-
action radius determines the average number of velocities over which the Vicsek
update averages, it is clear that the choice ofRwill in�uence the clustering e�ect
of the active model. However, the strength of the interaction is only dependent
on the active force fA so that the interaction radius has only a minor in�uence.
In Figure 4.3 the phase diagrams for various interaction radii are shown. Since
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Figure 4.3: Phase diagram for various values of the interaction radius R at a constant
active force of fA = 10. The green and blue dots correspond to the green and blue
data points in Figure 4.2 respectively. Larger radii lead to faster phase separation,
but the e�ect is rather small, especially in the colloid rich branch. The polymer-rich
branch is shown magni�ed in the inset.

the di�erences are only minor, the polymer-rich branch is magni�ed in the inset.
A bigger cut-o� radius facilitates phase separation, but slows the computation
down, since one has to account for bigger cells in the simulation program. A
small cut-o� radius leads to a big discrepancy of the colloid-rich and colloid-
deprived branch as shown exemplary for R = rcc. The polymer-rich branch
can no longer be distinguished from the passive branch, but due to the self-
interaction of the colloids, the colloid-rich branch is nearly unchanged. There-
fore the passive model for which R = 0 is di�erent from the limit of R→ 0. This
is due to the fact that the particles remain self-propelled for R > 0 since they
still see themselves as a neighbour. Hence it is not a good idea to replace fA by
R as the parameter to describe the activity of the system and we set R =

√
2 ·rcc

for all following simulations.

4.1.4 Active Model with noise term

The Vicsek model can be further altered to yield more forms of activity by adding
a noise term ν to Equation 4.1. After calculating the active force and the direc-
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tion in which it should apply, the direction is rotated randomly in the interval
ν · φ,φ ∈ [−π, π]. In the original Vicsek model this is motivated as an uncer-
tainty or error with which, e. g. , a bird would choose its direction to match the
direction of neighbouring birds [28]. Therefore, the noise ν is the order param-
eter in the original Vicsek model.
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Figure 4.4: Variation of the noise ν. For ν = 0 we get the phase diagram as discussed
before. Due to the clustering e�ect of the Vicsek model the phase separation happens
at lower packing fractions.ν = 1 results in a randomly distributed active force which
results in the same phase diagram as the passive system. The temperature is equal
to the initial temperature T = 1 of the thermostat.

In Figure 4.4 two values of the noise are shown. For ν = 0 we get the same
results as before, while for ν = 1 we recover the passive system, as the force is
now no longer directed but distributed randomly, and the thermostat manages
to cool the system to the desired temperature. For values in between the phase
diagram will change accordingly.

This addition to the model is not pursued in the rest of the thesis for two reasons:
On the one hand the change of the noise parameter ν has a similar e�ect on the
phase diagram as a change of the active force fA, as can be seen in Figure 4.2 and
which will be further discussed in Section 4.2.2. On the other hand the addition
of a noise term can hardly be motivated in our model. In the classical Vicsek
model the particles are ideal point-like particles that only interact via a neigh-
bouring rule similar to Equation 4.1, while in our model the noise is generated
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by the interacting particles themselves. The noise will therefore be set to ν = 0

for all following simulations.

4.1.5 Other implementations of a Vicsek-like model

There are several other ways one could implement a Vicsek-like model. Two
of these options are brie�y introduced here, but we will not pursue them any
further in this thesis.

First we look at an implementation closer to the original Vicsek model, where
the velocities are rotated in the neighbour update. For that we still calculate the
mean direction of the neighbouring velocities as in Equation 4.1. But instead of
the update in Equation 4.2 we rotate the calculated velocities to match the mean
direction:

~vact(t+ ∆t) = f̂i · |~v(t+ ∆t)| . (4.3)

It turns out that this update method leads to a lot of noise in the system and no
proper phase separation can be observed. The main reason why this method is
unsuited as an implementation is that if two particles overlap they get a strong
kick to separate from the potential forces, but since the velocity is then rotated
they do not necessarily separate which leads to even more noise and energy in
the system. Due to the Velocity Verlet algorithm we use for the passive update,
the particles will not get stuck with each other, since the force enters the calcu-
lation of positions directly as well. In contrast to the model we are using this
method does not pump energy into the system directly. Thus it might be better
suited for other applications.

Alternatively, we look into a method that only treats the divergence of a particle
from the collective motion. Again, we keep Equation 4.1 to determine the mean
direction and replace the velocity update in Equation 4.2 by Equation 4.4.

~vact(t+ ∆t) = ~v(t+ ∆t) +
∆t

m
·
(
~fi − (v̂(t+ ∆t) · ~fi) · v̂(t+ ∆t)

)
.

(4.4)

The particle itself is always included in this average and thus the resulting av-
erage direction will be similar to the current velocity of the particle if inside a
cluster. Therefore it can be expected that this model will generally have slower
dynamics than the active models from before as the correction terms will be
small for aligned particles. A particle without any neighbours will now behave
as a passive particle, since the orthogonal component will vanish, thus we no
longer are looking at self-propelled particles. This prevents a cluster of aligned
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Figure 4.5: Phase diagram for the cAO model (blue), the Vicsek-like model from Sec-
tion 4.1.1 (green) and the here discussed model where we only look at the orthogo-
nal component of the Vicsek force (red). The orthogonal model will cross the phase
boundaries of the other models at some point, since the polymer-rich branch is be-
low the other branches, while the colloid-rich is above.

particles to speed up, as only the noise of the collective motion is treated. The
orthogonal correction to their velocity will nonetheless still lead to a collective
motion, while the temperature of the system remains at the initial set value for
the thermostat. Again this way of implementing a Vicsek-like model could be
better suited for certain applications. The phase diagram, which can be seen in
Figure 4.5, changes dramatically for this implementation of the Vicsek model.
For the same active force fA = 10 the polymer-rich branch is deeper than in
the active model, while the colloid-rich branch is even higher than in the passive
case. So that we can speak of a completely di�erent model. While we retain the
passive model in the limit of fA → 0we get a crossing for the phase boundaries
for higher active forces which is unfavourable for the studies we intend to do.
Therefore we stick to the Vicsek-like model described in Section 4.1.1.

As a general remark: one could always remove the self-propelled nature of a
model by rescaling the active velocity ~vact to match the norm of the passive
velocity.

~vact(t)→
|~v(t)|

|~vact(t)|
·~vact(t) (4.5)
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With that it is possible to study collective motion without self-propulsion.

4.2 comparison with the passive model

4.2.1 Friction dependence

In Chapter 3 we have seen the dependence of the passive model on friction and
temperature. With the de�nition of active particles we can now look at how
those dependencies change by varying some parameters. We start by looking at
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Figure 4.6: Variation of γ for the active model with fA = 10. Changing the value of
γ a�ects where we are on the phase boundary, when starting from the same ini-
tial values of ηcol and ηpol. However, the overall structure of the phase diagram is
unchanged.

di�erent damping factors γ from Equation 3.8, which obviously do not change
the passive system (Figure 3.5). In Figure 4.6 the phase diagram of the active
system is shown for di�erent values of γ. The in�uence on the phase boundaries
is minor, in a sense that we appear to get the same locus for the phase diagram.
However, starting from the same initial con�gurations can lead to di�erent �nal
points on the phase boundary. For γ = 0.5we are at the lower values of γ = 1.0

in the colloid rich phase, while we are way above the higher values of γ = 1.0

in the polymer rich phase. For γ = 2.0 the result is not as extreme, but still
noticeable. These results indicate that the choice of the friction parameter γ
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could a�ect the position of the critical point in the active model. While this is
an intriguing idea we will see later how di�cult the determination of the critical
point in this model is, thus the variation of the friction is not included and γ is
set to unity for the rest of this work.

4.2.2 Active force dependence

Next we look at the in�uence di�erent forces fA in Equation 4.1 will have on
the phase diagram. In Figure 4.7 one can see that for an active system with

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
ηcol

0.0

0.2

0.4

0.6

0.8

1.0

η
po

l

fA = 0

fA = 5

fA = 10

Figure 4.7: Variation of fA. For higher colloid numbers one can clearly see that fA = 5

(green) is in between the passive model fA = 0 (blue) and the “more” active system
with fA = 10 (red).

f ′A = fA/2 the phase diagram is located somewhere in between the passive
and the previous active case as expected. Higher forces hence facilitate phase
separation. Forces larger than fA = 10 were not considered because even for
fA = 10 both branches of the phase diagram are already close to the axis and
the intermediate regime cannot be sampled due to �nite size e�ects close to the
potential critical point.

Starting with the same colloid and polymer number and varying the active force
we can determine the evolution of the passive system to the active system. This
is done exemplary for a con�guration with ηcol = 0.12 and ηpol = 0.40 in



4.2 comparison with the passive model 33

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
ηcol

0.0

0.2

0.4

0.6

0.8

1.0

η
po

l

fA = 0

fA = 5

fA = 6

fA = 7

fA = 8

fA = 9

fA = 10

Figure 4.8: Variation of fA for the same starting con�guration of ηcol = 0.12 and
ηpol = 0.40 in a Lx = Ly = 12 and Lz = 48 simulation box. For fA = 0 and
fA = 10, the whole phase diagram is shown for comparison.

Figure 4.8. The evolution is not linear in force, since for higher forces we are
already close to the axes, while for smaller forces we get into a regime which is
already in the vicinity of the critical point of the passive system.

The in�uence of the temperature on the active system is the topic of the fol-
lowing sections, as the de�nition of temperature in non-equilibrium systems is
challenging and the results might depend on the chosen thermostat.

4.2.3 Di�erences to the passive model

We have shown so far that the active model features a similar phase separation
as the passive model. However due to the clustering nature of the active model
this phase separation occurs earlier. Of course, the Vicsek update will e�ect
the dynamics of the system as well. For this we will examine the mean square
displacement (MSD), which we calculate for the colloids as

MSD =
〈
|~ri(t) −~ri(0)|

2
〉

. (4.6)

For a system in equilibrium one expects to reach a di�usive regime where the
MSD is linear in time after a short time of ballistic motion where the MSD scales
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Figure 4.9: The mean square displacement for the active model with fA = 10,
ηcol = 0.05 and di�erent values of ηpol which are mentioned in the legend. The
system size is L = 12. For a high colloid concentration the linear regime appears
later.

with time squared. In Figure 4.9 three di�erent polymer packing fractions are
studied for a �xed colloid packing fraction of ηcol = 0.05. All simulated state
points are in the homogeneous phase of the active system. The higher the active
particle concentration, the later the linear regime is reached. For ηpol = 0.05we
just left the ballistic regime and a lot longer simulation would be necessary to
get to the linear regime. Therefore, the active model introduces an increase in
the time scale of �uctuations.

Additionally, we determine the time evolution of the average velocity �uctuation
of the colloids. For that we look at a con�guration in the one phase region as
well as one that is clearly phase separated. In the one phase region we expect the
average velocity to be independent of the spatial component. In contrast the slab
should be stable in regards to its normal axis once the two phases are separated.
In Figure 4.10 both cases are shown. For Figure 4.10(a) only the x component is
shown, as y and z follow the same trend. The time average is < vx >= 0.25

while the standard deviation is σ(vx) = 2.9. Thus the active model enhances
the amplitude of the velocity �uctuations. In Figure 4.10(b) the same analysis
is done in a phase separated system where the �uctuations are greatly reduced,
while the averages are no longer necessarily close to zero. The results for this
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Figure 4.10: The evolution of the average velocity with time for a con�guration in the
(a) one phase region ηcol = 0.05, ηpol = 0.05 in a system with L = 12 and (b) the
phase separated case ηcol = 0.15, ηpol = 0.20 in a system with Lx = Ly = 12 and
Lz = 48 in this case the cluster moves along the x-direction.

example can be seen in Table 4.1. The fact that the velocity component normal

α < vα > σ(vα)

x 7.7 0.2

y −0.4 1.0

z 0.0 0.1

Table 4.1: The mean velocities and the respective standard deviations for the data shown
in Figure 4.10(b)

to the interface does not vary, indicates that we indeed simulate a steady state
with the slab as a stable �nite size structure. The velocity components parallel to
the interface carry the heat that the active model introduces to the system. Due
to the strong alignment the cluster, once formed, can hardly change its direction,
thus the �uctuation decreases compared to the one phase region. The direction
the cluster travels is therefore determined shortly after initialisation and can be
either in x- or y-direction.

4.3 can we define a temperature?

When we introduced the active model we stated that the alignment rule pumps
energy into the system and thus the temperature rises, ignoring at �rst how the
temperature would be de�ned. For that we will �rst recall how the temperature
is de�ned in equilibrium and then formulate a de�nition for our steady state.
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In a system in thermodynamic equilibrium the temperature is de�ned by the
equipartition theorem [57].〈

xm
∂H

∂xn

〉
= δmnkBT (4.7)

Here x is a generalised coordinate andH(~q,~p) is the Hamiltonian of the system:

H(~q,~p) =
∑ ~p2i

2m
+ V(~q) , (4.8)

where V is the potential energy of the system. Typically one chooses the gener-
alised momenta ~p and gets with Equation 4.7

kBTinst =

〈
pm

∂H

∂pm

〉
=
1

3

〈
~p2

m

〉
=
2

3
〈Ekin〉 . (4.9)

This is a temperature which can be recorded at no extra cost since the veloci-
ties and therefore the momenta are known in every integration step, hence the
name instantaneous temperature Tinst. All similar de�nitions will result in the
same average for the temperature of a system in equilibrium, which is why typ-
ically only this de�nition is considered. However, even in equilibrium di�erent
de�nitions of temperature might converge di�erently towards the equilibrium
value, and thus can give an indication on how long it takes the system to reach
an equilibrium state [58].

We want to additionally use a temperature that is not based on the momenta
but on the generalised positions of the particles instead. One possible tempera-
ture that only depends on the relative positions is the so-called con�gurational
temperature Tconf [58]:

kBTconf =

〈 N∑
i=1

~F2i

−
N∑
i=1

~∇~Fi

〉
=

〈
N∑
i=1

∑
j6=i

(
∂U

∂xij

)2〉
〈
N∑
i=1

∑
j6=i

∂2U

∂x2ij

〉 , (4.10)

with N being the number of particles, Fi the force acting on particle i, U the
potential and xij the distance of the particle pair. The proof that this is indeed a
correct de�nition of temperature (for NVE and NVT ensemble) and a more gen-
eral form of the equipartition theorem can be found in [58]. Similar de�nitions of
temperature have been applied successfully in the past even in non-equilibrium
systems, e. g. [59].

In a non-equilibrium system the question of how to measure the temperature
arises. While the equipartition theorem is no longer ful�lled and thus the dif-
ferent methods to determine the temperature will have a di�erent average, the
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temperature can still give us an indication as to what is happening in the system.
In our model two di�erent temperatures are present if the phases are separated:
the temperature of the polymers which is close to the one set by the thermostat
and the temperature of the phase separated colloids which is way higher. This
distribution of temperature will be discussed in the next section. For now we
will monitor the “standard” de�nition of temperature as de�ned in Equation 4.9
and refer to it as Tinst. This leads to quite high temperatures for the active par-
ticles in their steady state. We also calculate the con�gurational temperature
as de�ned in Equation 4.10 [58]. With this method we measure a signi�cantly
lower overall temperature in our active system (as can be seen in Figure 4.11(a)),
while the temperature in the passive case remains (obviously) unchanged (see
Figure 4.11(b)). This indicates that the activity, as one would expect, is mostly in
the kinetic part of the energy, while the con�gurations are similar to the ones
in the passive case.

4.4 comparison of different thermostats

In an equilibrium system a thermostat has to be chosen in a way that the cor-
rect thermodynamics, e. g. , the canonical ensemble are preserved and that the
dynamics of the system remain realistic. For this task various thermostats are
used in MD simulations with di�erent advantages and disadvantages. A good
thermostat will not change the thermodynamics of a system in equilibrium, but
it can have a considerable impact on a non-equilibrium system. To measure a
static observable, e. g. the density distribution, one needs to have a system that
is in a steady state, so that the static variable is no longer changing as a func-
tion of time. This state however, will depend on the thermostat that was used to
reach it. Therefore, the choice of the thermostat plays an important role. In our
model the thermostat has to somehow remove the induced heat, but also leave
the collective motion induced by the active particles undisturbed.

In the following we will look at three di�erent thermostats. Namely the
Langevin thermostat [37], the Lowe-Andersen thermostat [60] and an imple-
mentation of a multi-particle collision dynamics (MPCD) thermostat [61]. Of
course this is not an exclusive list of thermostats, but rather what we have
already tested.
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4.4.1 Langevin thermostat

The Langevin thermostat has already been described in Section 3.4 for the cAO
model and in Section 4.1.1 for the active model. As a quick reminder, we want
to solve

m~̈ri = −~∇U− γm~̇ri +
√
2γkBTm ~R(t) , (3.8)

withm = 1 being the mass for all particle types, γ = 1 being a damping coe�-
cient,U is the particle potential, T = 1 is the temperature and ~R is a δ correlated
noise by using a Velocity Verlet (VV) algorithm with a time step ∆t = 0.002. In
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Figure 4.11: Comparison between the two methods to measure the temperature of all
particles with the Langevin Thermostat (Tinitial = 1.0). For a system with Lx =

Ly = 20 and Lz = 30 at the state point ηcol = 0.15 and ηpol = 0.4. (a) In the
active case the temperature can be lowered signi�cantly by measuring it with the
con�gurational temperature instead. Still the active particles lead to a higher over-
all temperature, this is expected as they are still putting energy into the system. (b)
For the passive case both methods result in the initial temperature of Tinit = 1.0.

the active case Equation 4.2 is used after each VV update to adjust the velocities
depending on the velocities of their neighbouring particles.

In Figure 4.11 and all following initial tests for a thermostat we study a state
point in the two phase region of the system. This has the advantage, that we can
directly compare whether working thermostats result in the same two points for
the phase diagram. Of course, once we �nd a working thermostat we will still
have to calculate the full phase diagram again.

By applying a Langevin thermostat to the active system we get a steady state for
our active model. The temperature is clearly above the initial set temperature
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of Tinit = 1.0 as can be seen in Figure 4.11(a), nonetheless the clustering e�ect
induced by the Vicsek model can be seen in Figure 4.2.

4.4.2 Lowe-Andersen thermostat

Next we take a look at the so-called Lowe-Andersen thermostat [60]. This ther-
mostat was proposed by Lowe in 1999 and origins from the dissipative particle
dynamics (DPD) thermostat which conserves momentum (and thereby hydro-
dynamics) and enhances viscosity. We construct a list of all pairs of particles
for which rij < rc. Here rc is a prede�ned interaction radius for the thermo-
stat analogous to the interaction radius in DPD. For each pair we decide, with a
probability Γ∆t, where Γ is a “bath collision” frequency, whether to draw a new
relative velocity from a Maxwell distribution to thermalise the system. For each
pair of particles whose velocities are to be thermalised we work on the compo-
nent of the velocity parallel to the line of centres (to conserve angular momen-
tum) and generate a relative velocity ~v ′ij · r̂ij from a distribution ξij

√
2kBT/m.

To impose this new relative velocity on the particles, and conserve momentum,
we update the velocities pairwise:

~v ′i = ~vi + ~∆ij (4.11)
~v ′j = ~vj − ~∆ij (4.12)

with 2~∆ij = r̂ij
(
~v ′ij −~vij

)
· r̂ij . (4.13)

Figure 4.12 shows the results obtained with the Lowe-Andersen thermostat. Un-
fortunately, this thermostat does not lead to a steady state for the active sys-
tem. Instead the colloids are accelerating, which in turn means the temperature
is diverging. While the Lowe-Andersen thermostat conserves momentum, our
model of activity does not, thus the thermostat cannot reduce the additional en-
ergy put into the system in every simulation step. Even with the other proposed
implementations of a Vicsek-like model this thermostat would not work, since
alignment rule of the Vicsek model will violate the conservation of momentum.
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Figure 4.12: Comparison between the active and passive model with the Lowe-Andersen
thermostat. At the same state point and system size as for the Langevin thermo-
stat in Figure 4.11. (a) The con�gurational temperature is even lower than with
the Langevin thermostat used before (see Figure 4.11(a)) and approaches the initial
temperature of Tinit = 1.0. Unfortunately, the thermostat does not reach a steady
state and the kinetic energy diverges, as shown by the green curve. Note that two
di�erent y axes are used and the divergence in the kinetic energy is of the order of
107 after only a few thousand time steps already, which of course means that we
cannot use this thermostat for our studies. (b) For the passive case both methods
show the initial temperature of Tinit = 1.0.

4.4.3 Maxwell-Boltzmann thermostat

We test a Maxwell-Boltzmann (MBS) thermostat [61] which explicitly simu-
lates solution particles. The thermostat is based on the multi-particle collision
dynamic (MPCD) algorithm [62] which conserves the momentum locally and
thereby has hydrodynamic interactions on scales greater than the so-called col-
lision cells. The algorithm can be divided in two di�erent steps:

1. Streaming step: The solvent particle positions and velocities are updated
by the standard Velocity Verlet algorithm.

~ri(t+ τ) = ~ri(t) +~vi(t)τ (4.14)
~vi(t+ τ) = ~vi(t) (4.15)

Note that the solvent particles behave like ideal gas particles, hence they
do not interact with each other. ms = 0.025 · mcol is the mass of the
solvent particles and τ is the collision time step, which relates to the MD
time step ∆t as τ = I ·∆t with I being a positive integer, which we set to
I = 4.
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2. Collision step: The velocities of all solvent particles in each cell are up-
dated by a rotation of their relative velocities:

~vi = ~u+ R(α)δ~vi . (4.16)

Here ~u is the mean velocity in the cell, δ~vi = ~vi−~u and R(α) is a rotation
matrix with angle α = 90◦ around a randomly chosen rotation axis. In
this step the �uid particles (colloids and polymers) are integrated as well.
By associating them to the respective solvent cells the mean velocity ~u of
the cell is calculated as the mass weighted average of all velocities. This
leads to a momentum transfer from the �uid to the solvent. The velocity
of the �uid particles is updated in the same way as the velocity of the
solvent particles (see equation 4.16). This leads to a momentum transfer
from the solvent to the �uid particles. The collision step is the only point
the two particle species interact. Until the next collision the �uid particles
are treated via the Velocity Verlet algorithm.
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Figure 4.13: Comparison between the two methods to measure the temperature with
the Maxwell-Boltzmann thermostat. For a system with Lx = Ly = 12 and Lz = 48
at the state point ηcol = 0.15 and ηpol = 0.4. (a) The con�gurational temperature
as well as the kinetic temperature yield the correct initial temperature of Tinit = 1.0.
Also, there is no more di�erence to the passive case which is shown in (b). A steady
state is reached for both, the active and the passive case.

To get the Maxwell-Boltzmann thermostat one has to change the rule in the
collision step from before. Instead of only rotating the velocities in the col-
lision step, they are now rotated and rescaled by a factor ξ which depends
on two types of kinetic energies, the relative local kinetic energy of the cell



42 active model

Ekin = 1
2

∑
imi(∆~vi)

2 and the target local kinetic energy E ′kin which is taken
from a gamma distribution:

P(E ′kin) =
1

E ′kinΓ(f/2)

(
E ′kin
kBT

)
e−E

′
kin/(kBT) . (4.17)

Here f is the number of degrees of freedom of the system and Γ(x) is the gamma
function. The rescaling factor ξ is then calculated as ξ =

√
E ′kin
Ekin

. During each
collision step the particle velocities are then rescaled as ∆~vi → ξ∆~vi.
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Figure 4.14: Phase diagram of the passive system and the active system (fA = 10) cooled
by the Maxwell-Boltzmann thermostat. The clustering e�ect of the Vicsek-like ac-
tive particles vanishes and we regain the passive behaviour of the system.

In Figure 4.13 we can see that the thermostat manages to cool the system to the
set temperature in both the active and the passive case. However, the thermostat
is so rigorous that the e�ect of the active particles is lost, and we get the same
phase diagram as for the passive model as shown in Figure 4.14. Therefore, we
cannot use this thermostat either.
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4.4.4 Conclusion

We have tested three thermostats to check their e�ect on the active model. To
reach a steady state the thermostat needs to remove energy from the system,
which is put in by the constant force of the active Vicsek model. Since this
model is not conserving momentum thermostats which do are not working, as
was demonstrated in Section 4.4.2 with the Lowe-Andersen thermostat. Also,
a thermostat should not destroy the clustering e�ect of the active particles. In
fact a too restrictive thermostat can completely remove any e�ect the active
model might have. An example for this behaviour is the Maxwell-Boltzmann
thermostat as discussed in Section 4.4.3. The Langevin thermostat is a fairly
simple thermostat which removes heat from the system via a friction term and
conserves the local ordering of the active particles. It is the only thermostat we
have tested that ful�ls the demands of reaching a steady state. There are other
thermostats one could try like Berendsen [63], Andersen [64], or Nosé-Hoover
thermostat [65], but for this work we will stick with the Langevin thermostat.
Note, that for other active models [66–68] or non-equilibrium systems [69] the
here discarded thermostats work as intended. We do not discredit those ther-
mostats, but merely state that they do not work for the active system discussed
in this work for the above mentioned reasons. Other active models like e. g. ac-
tive Brownian particles [70–72] include the thermostat in their de�nition, and
for the rest of this thesis we will do the same and state that the active system as
de�ned here uses the Langevin thermostat.

4.5 temperature distribution

Figure 4.1 indicates that the active particles carry almost all of the heat. This
raises the question as to how this heat is distributed over the phase separated
system. To study the temperature distribution of the colloids in our system we
use two approaches. In both cases we follow the trajectory of an already phase
separated steady state of a system well inside the two phase region. The simu-
lation box is expanded in z direction to enforce the formation of a slab. During
each analysis step all particles are shifted in a way that the centre of mass of the
colloids coincides with z = 0. The velocity of the particles is then recorded in a
spatial histogram of the z axis.
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In the �rst approach (compare with Figure 4.15) we use Equation 4.18 to deter-
mine an overall temperature histogram.

T(z;α) = 2

3kB

〈
Nz∑
i

1

2
mv2i,α

〉
, (4.18)

with Nz being the number of colloids in this bin. If Nz = 0 we do not count
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Figure 4.15: Results for the kinetic energy relation as de�ned in Equation 4.18 for a
steady state with ηcol = 0.15 and ηpol = 0.30 in a system with Lx = Ly = 12σ

and Lz = 48σ. In this plot both particle types are considered, for a representation
distinguishing between colloids and polymers see Figure A.1. The colloid slab in
this example moves in x-direction. The initial temperature Tinit = 1 is shown by
the dashed black line. If we average the temperature over all bins we get 〈T〉 = 14.5.

the bin to the overall statistics. We distinguish each axis α, so that we generate
three di�erent histograms. This results in a distribution which shows that the
colloid slab carries nearly all the heat of the system, while in the polymer rich
phase the temperature is close to the one set by the thermostat. This is to be
expected since the energy is pumped into the system via the colloids, therefore
the temperature in the colloid gas (or polymer liquid) phase should be lower.

For the second approach we assume that the colloids, which are spatially close
to each other, travel in the same direction. The local mean velocity, indicated by
<>z, should thus be subtracted as shown in Equation 4.19. This phenomenon
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is similar to the �ying ice cube e�ect known from equilibrium MD simulation
which is an artefact due to velocity rescaling [73].

T(z;α) = 2

3kB

〈
Nz∑
i

1

2
m (vi,α − 〈v(α)〉z)

2

〉
(4.19)

The distribution shown in Figure 4.16 indicates that the clustered colloids travel
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Figure 4.16: Results for the second approach using Equation 4.19 for the same steady
state as in Figure 4.15. Again both particle types are treated, while Figure A.1 shows
the individual contributions. The initial temperature Tinit = 1 is shown by the
dashed black line. If we average the temperature over all bins we get 〈T〉 = 1.8

which is slightly lower than the con�gurational temperature for the same system:
Tconf = 2.2.

mostly in the same direction so that most of the heat is generated at the inter-
face of the two particle types. Note that the overall temperature is still slightly
higher than the initially set temperature of the thermostat but even lower than
the con�gurational temperature. A plot distinguishing the two particle types is
shown in the appendix in Figure A.1. It shows that indeed the colloids carry
most of the heat and cannot be cooled to the initially set temperature even in
the colloid gas phase. The polymers in their dense phase reach T = 1. In the
colloid rich phase they are dragged along and thus have a higher temperature
as well.
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4.6 active brownian particles

A di�erent, more common way to introduce activity into a system is the active
Brownian particle (ABP) model. It has recently become of interest in statistical
mechanics as a model system that induces phase separation in hard spheres
[70–72]. We want to compare this model to the active Vicsek model. Jonathan
Siebert has implemented a model for ABPs in our shared simulation code, which
we extend to include the polymers as passive Brownian particles. The colloids
in our system are then treated as ABPs. In this model the integration scheme
has to be changed to an Euler algorithm with a time step of ∆t = 2 · 10−5. The
equations of motion are:

~̇ri = vA~ei +
Dt

kBT
~Fi +

√
2Dt~R1(t) (4.20)

~̇ei =
√
2Dr~R2(t)× ~ei , (4.21)

where ~ei is the direction of the particle, ~Fi is the total force on the particle,
Dt = 1 is the translational di�usion coe�cient,Dr = 3Dt/σ2cc is the rotational
di�usion coe�cient, and ~R1 and ~R2 are zero-mean unit-variance Gaussian white
noises. The active velocity vA is set to vA = 0 for the polymers and vA = 10

for the active colloids. In Figure 4.17 the e�ect of both models of activity on
the phase diagram is compared. While the Vicsek-like activity facilitates phase
separation, the active Brownian particle activity hinders it for vA = 10. How-
ever this value for the active velocity is far below the typical velocities at which
self-trapping occurs [70–72]. For this small active velocity the con�gurational
temperature changes only slightly. A system with ηcol = 0.15 and ηpol = 0.90

has a temperature of Tconf = 1.06, thus the hindrance of phase separation is most
likely due to the self-propelled motion of the ABPs. It is possible that higher ac-
tive velocities lead to an e�ect similar to self-trapping in this model as well. In
fact there could exist a region in which an increase in active velocity vA in-
duces stronger phase separation. This has been observed for active Brownian
particles, even the reentrant of such phases is possible [74]. In [74] the authors
show that starting from a phase separated state one can reach a homogeneous
state for higher active velocities before entering a phase separated state again for
even higher velocities. We have scanned through active velocities starting from
vA = 10 up to vA = 400 but have not observed such a behaviour. It should be
noted that for vA = 400 the same con�guration as before has a temperature of
Tconf = 6.6. This could prevent the phase separation due to the temperature de-
pendence of the underlying cAO model. Therefore, the usage of ABPs is limited
in this model, as one cannot tell if the reason for phase separation is dominated
by the changed temperature or by the collective motion. For small active veloc-
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Figure 4.17: Comparison of the Vicsek-like activity (fA) with the active Brownian parti-
cle activity (vA). The curves with fA = 0 and vA = 0 are the corresponding passive
systems. As expected they fall onto the same curve, although there are small devia-
tions in the low colloid region. While the Vicsek model (fA = 10) enhances phase
separation the active Brownian particle model (vA = 10) makes phase separation
more di�cult.

ities we can still summarise that phase separation is hindered because of the
self-propelled particles.





5M A P P I N G T O A PA S S I V E M O D E L

In an attempt to understand the phase behaviour of the non-equilibrium model
with an equilibrium approach we develop a mapping of the active model onto a
passive one using integral equation theory (IET) in [2] and [4]. This procedure
is reiterated in this chapter. The IET modelling and calculations have been per-
formed by Sergei Egorov, while the simulations shown have been performed by
the author.

5.1 integral eqation theory

5.1.1 Ornstein-Zernike Equation

The Ornstein-Zernike (OZ) equation expresses the total correlation of two parti-
cles by the direct correlation of the two combined with an indirect contribution.
In the following the equation will be motivated without giving the full deriva-
tion, which is beyond the scope of this thesis but can be found in the literature
e. g. [75, 76].

We consider a system that interacts via a pair potentialU(|~r2−~r1|). For simplic-
ity’s sake we assume that this potential is homogeneous and isotropic, thus we
can write U(|~r2 −~r1|) = U(r12) with r12 = |~r2 −~r1|. It makes sense to de�ne
the total correlation function of two particles as

h(r12) = g(r12) − 1 , (5.1)

where g(r12) is the radial distribution function.

g(r) =
1

ρ
〈
N∑
i 6=0

δ(r− ri)〉 (5.2)

Formally we can then di�erentiate between the direct and the indirect in�uence
of particle one and two. The direct in�uence will be written as c(r12). The indi-
rect in�uence involves at least one additional particle three. Therefore, we will
write it as the direct in�uence of particle one with three and the total correlation
of particle three with particle two c(r13)h(r32). Since the position of the third
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particle is arbitrary, this e�ect has to be weighted by the density and averaged
over all possible positions. This gives us the OZ equation:

h(r12) = c(r12) + ρ

∫
dr3c(r13)h(r32) . (5.3)

This equation could now be solved recursively, replacing h(r32) by c(r32) +
ρ
∫
dr3dr4c(r34)h(r42) and so on. Instead we replace r13 with r12 − r32 and

get

h(r12) = c(r12) + ρ

∫
dr32c(r12 − r32)h(r32) (5.4)

= c(r12) + ρ(c ∗ h)(r12) . (5.5)

In Equation 5.5 we used the de�nition of a convolution. By using the convolution
theorem the equation can be written down in Fourier space

ĥ(k) = ĉ(k) + ρĥ(k)ĉ(k) , (5.6)

which leads to

ĥ(k) =
ĉ(k)

1− ρĉ(k)
or ĉ(k) =

ĥ(k)

1+ ρĥ(k)
. (5.7)

This means that in order to solve the OZ equation we need to determine h(r) or
c(r) (or their Fourier transforms) and thus need an additional equation which
is typically referred to as a closure relation.

5.1.2 Ornstein-Zernike Closures

In order to solve the Ornstein-Zernike equation we need to choose a closure
relation. Some of the common approximations will be discussed here.

5.1.2.1 Percus-Yevick equation

The density distribution function g(r) can be written as

g(r12) = exp [−βw(r12)] (5.8)

with w(r12) being the potential of mean force, which can be related to the un-
derlying pair potential in the limit of in�nite dilution

u(r) = lim
ρ→0

w(r) . (5.9)
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Alternatively, g(r) can be expressed as a power series of the density ρ

g(r12) = exp [−βu(r12)]
(
1+

∞∑
n=1

ρngn(r12)

)
, (5.10)

where exp [−βu(r12)] denotes the direct interaction between the two particles
one and two. The higher order terms where particle one a�ects particle two over
one or more intermediate particles are weighted by the density ρ.
In Section 5.1.1 we have introduced c(r12) as the direct correlation between
particle one and two. This means we can formally write

c(r12) = gtotal(r12) − gindirect(r12) . (5.11)

In Equation 5.11 we substitute gtotal(r12) by Equation 5.8. To estimate
gindirect(r12) we divide gtotal(r12) from Equation 5.8 by the �rst Taylor expan-
sion of Equation 5.10 around small ρ, which is the direct interaction. Thus only
gindirect(r12) remains and we get an approximation of Equation 5.11 as

c(r) = e−βw(r) − e−β[w(r)−u(r)] . (5.12)

By introducing the functions

y(r) = eβu(r)g(r) and f(r) = e−βu(r) − 1 (5.13)

we can rewrite Equation 5.12 and get the typical notation for the Percus-Yevick
(PY) approximation

c(r) = g(r) − y(r) = f(r)y(r) . (5.14)

If we put this result together with Equation 5.1 back into the OZ equation, Equa-
tion 5.3, we get the PY equation

h(r12) = c(r12) + ρ

∫
dr3c(r13)h(r23)

⇐⇒ h(r12)
5.14
= f(r12)y(r12) + ρ

∫
dr3f(r13)y(r13)h(r23)

⇐⇒ g(r12) − 1
5.1
= f(r12)y(r12) + ρ

∫
dr3f(r13)y(r13)h(r23)

⇐⇒ y(r12)
5.13
= 1+ ρ

∫
dr3f(r13)y(r13)h(r23) . (5.15)

This approximation was �rst introduced by Percus and Yevick [77].
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5.1.2.2 Hypernetted-chain equation

For the hypernetted-chain (HNC) equation we start with the same premise as
before, but expandgindirect in Equation 5.12 by a Taylor expansion aroundw(r) =
u(r) that we terminate after the �rst order. Thus we approximate c(r) as

c(r) = e−βw(r) − 1+ β [w(r) − u(r)]

5.13
= g(r) − 1− lny(r) . (5.16)

If we insert Equation 5.16 back into the OZ equation, Equation 5.3, we get the
HNC equation [75]

lny(r) = ρ
∫
dr3 [h(r13) − lng(r13) − βu(r13)]h(r23) . (5.17)

5.1.2.3 Modi�ed Hypernetted-chain equation

The HNC approximation, Equation 5.16, can be extended by an unknown func-
tion d(r12) to make it exact [78].

c(r) = g(r) − 1− lny(r) + d(r) (5.18)

The solution of Equation 5.18 for a potential u(r) − 1
β
di(r) gives us the exact

g(r) for a potential φ(r) ≈ u(r) + 1
β
[d(r) − di(r)], where d(r) is the exact

function and di(r) is an assumed function (e. g. di(r) = 0 as in the HNC ap-
proximation). We know that the radial distribution function is proportional to

gdi(r) ∝
∫

exp [−βu(r) + di(r)]dr (5.19)

and thus if di(r) > dj(r) it directly follows that gdi(r) > gdj(r). With this we
can deduce that∫ [

gdi(r) − gdj(r)
][
di(r) − dj(r)

]
dr > ε ∼ 0 (5.20)∫ [

gexact(r) − gest(r)
][
dexact(r) − dest(r)

]
dr > ε ∼ 0 . (5.21)

Equation 5.21 can now be used to iteratively increase the accuracy of function
dest(r) if both radial distribution functions gexact and gest are known. This pro-
cedure is called the modi�ed HNC approximation [78].

5.2 boltzmann inversion

In Section 5.1 we have discussed how a correlation function (e. g. the radial dis-
tribution function) can be constructed via an integral equation theory. For that
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we solve the OZ equation together with a chosen closure relation and get the
total correlation function which is related to the radial distribution function by
Equation 5.1.

In an attempt to map the active model onto a passive model consisting of only
pair potentials, we have now to perform an inversion to get from the calculated
correlation function back to a pair potential. A well-known method for this is
the so-called iterative Boltzmann inversion (IBI) [79]. Here we iteratively adjust
the pair potentialUi(r) to �t the calculated gi(r) to the “real” (simulated) radial
distribution function gsim(r)

Ui+1(r) = Ui(r) − αkBT ln
[
gi(r)

gsim(r)

]
, (5.22)

where α is a damping factor smaller than one. As an initial guess for Equa-
tion 5.22 we can use

U0(r) = −kBT ln[gsim(r)] . (5.23)

The IBI approach can be state point dependent, and is improved by a multistate
IBI algorithm [80]. For that we put in additional data in form of radial distribu-
tion functions at other state points, and average over the N states we use. The
resulting iterative algorithm is then:

Us,0(r) = −
1

N

∑
s

kBTs ln[gssim(r)] (5.24)

Us,i+1(r) = Us,i(r) −
1

N

N∑
s=1

αs(r)kBTs ln
[
gsi(r)

gssim(r)

]
, (5.25)

where s is the number of the state and as(r) is a state dependent damping factor.

5.3 effective potentials

5.3.1 Estimation of the radial distribution functions

We determine the radial distribution functions gsim(r) of all interactions far from
the critical point in the homogeneous region and use the OZ equation 5.7 to
relate these pair correlations to the total correlation functions. These relations
with the OZ equations are exact but for the closure functions. In case of the here
discussed active system both the colloid-colloid and the colloid-polymer poten-
tials are highly repulsive and diverge for small distances, while the polymer-
polymer potential converges to a �xed value at r = 0. This makes this system
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highly asymmetric and there is no default way to choose the closure in such a
system. Therefore, several di�erent known closures where tested: hypernetted-
chain (HNC), modi�ed HNC, Percus-Yevick (PY) and thermodynamically consis-
tent Rogers-Young closure [75, 77, 78, 81]. We then choose the empirically best
working closure for each pair correlation by comparing the results with the
simulated radial distribution function of the interaction. For the colloid-colloid
potential we use the modi�ed HNC closure, the colloid-polymer and polymer-
polymer OZ equations are closed by a PY closure.

5.3.2 Inversion to �nd the e�ective potentials

The resulting radial distribution functions are inverted via the iterative Boltz-
mann inversion [80] as discussed in Section 5.2. Here we use the simulated ra-
dial distribution functions gsim(r) as “target” and iteratively adjust the e�ective
potentials until the di�erence between IET calculated gIET(r) and simulated is
minimised. This has been done by using only the simulation data from one state
point [79] as well as with several di�erent state points [80] to test the robust-
ness of this approach. In Figure 5.1 the resulting radial distribution functions
are compared to the originally measured ones, other state points are shown in
the appendix in Figures A.2 and A.3. It is di�cult to match all radial distribu-
tion functions. Therefore, we choose to put the emphasis on the colloid-colloid
and colloid-polymer interactions, as we expect them to be the responsible in-
teractions for the in�uence of the activity, while the polymer-polymer interac-
tion is only changed indirectly by the active colloids. Still the polymer-polymer
distribution function deviates clearly from gsim

pp (Figure 5.1) and the deviation
increases with increasing polymer concentration (Figures A.2 and A.3). We can
therefore expect that the resulting passive potential will not give the same re-
sults as the active system for higher polymer concentration.

5.3.3 Results for the IET potential

With the IET approach it is possible to replace the colloid-colloid as well as
the colloid-polymer interaction by e�ective now passive potentials as shown in
Figure 5.2.
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Figure 5.1: The radial distribution function g(r) for a state point with ηcol = 0.10 and
ηpol = 0.05 as measured by simulating the active system (sim) and as estimated by
IET calculations (IET) for the colloid-colloid (cc), colloid-polymer (cp) and polymer-
polymer (pp) interaction. The radial distribution functions obtained from simulation
and IET agree nicely for the colloid-colloid and colloid-polymer interaction. The not
matched gIET

pp di�ers clearly from the simulation.
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Figure 5.2: The potentials obtained via IET calculations are shown together with their
respective �t. The colloid-colloid interaction is cut-o� at rcc = 3, while the colloid-
polymer potential, is cut-o� at the �rst crossing of the x-axis. Since the attraction
between colloids and polymers for longer range is most likely an artefact of the
inversion. U�t

cc(r) is de�ned in Equation 5.26, U�t
cp(r) in Equation 5.27.
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U�t
cc(r) = εcc·

[
11.8164 ·

(σcc
r

)12
− 118.642 ·

(σcc
r

)10
+318.727 ·

(σcc
r

)9
− 392.529 ·

(σcc
r

)8
+240.715 ·

(σcc
r

)7
− 59.8517 ·

(σcc
r

)6
]
· (r− rcc)

4

10−4 + (r− rcc)
4

(5.26)

U�t
cp(r) = εcp·

[
27.9968 ·

(σcp
r

)12
− 304.967 ·

(σcp
r

)10
+707.509 ·

(σcp
r

)9
− 707.090 ·

(σcp
r

)8
+343.246 ·

(σcp
r

)7
− 66.5698 ·

(σcp
r

)6
]
· (r− rcp)

4

10−8 + (r− rcp)
4

(5.27)

With σcc = σcp = εcc = εcp = 1, rcc = 3.0 and rcp = 1.41213. The
polymer-polymer interaction remains unchanged (see Equation 3.3). The poten-
tials compared to the formerly used ones can be seen in Figure 5.3. The colloid-
polymer interaction becomes more repulsive, this can be seen in the increasing
Barker-Henderson diameter d�t

cp ≈ 0.9193 as well. The colloids are now attrac-
tive for other colloids and their Barker-Henderson diameter is getting smaller
d�t
cc ≈ 0.9648. The clustering of the colloids is therefore enhanced and we ex-

pect sharp interfaces, due to the repulsive nature of the colloid-polymer interac-
tion. Note, that we do not actually do any adjustments to the Barker-Henderson
diameters, but leave them as they were for the active model since these are the
values the mapping was done for. The here calculated diameters are just to quan-
tify the changes in the potentials.

The �tted potentials di�er slightly from the calculated potentials using IET (com-
pare with Figure 5.2). Therefore, we once again compare the e�ective potentials
to the actual potentials by calculating the radial distribution functions. The re-
sults can be seen in Figure 5.4 and for di�erent state points in the appendix
Figures A.4 and A.5. The agreement is very good for the �rst peek in the radial
distribution function. For higher distances slight deviations are visible. It is note-
worthy that gpp agrees for both methods, while no change was introduced to
the polymer-polymer potential compared to Figure 5.2.



5.4 phase diagrams 57

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r [σcc]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

U
[k

BT
]

U�t
cc

UWCA
cc

U�t
cp

UWCA
cp

Upp

Figure 5.3: Plot of the �tted potentials obtained from IET where cc stands for the colloid-
colloid, cp for the colloid-polymer and pp for the polymer-polymer interaction. The
original WCA potentials are shown for comparison (purple, orange). The Barker-
Henderson diameter dcc of the original potential UWCA

cc and 0.9 dcc are shown as
dotted lines.

5.4 phase diagrams

From the analytically determined radial distribution functions the structure fac-
tors can be determined as

Sαβ(~k) = 1+ ρ

∫
ei

~k·~rgαβ(~r)d~r , (5.28)

where α and β stands for c or p. At the spinodal line, the line at which spon-
taneous phase separation occurs, the structure factors diverge for k = 0, thus
S−1αβ(

~k = ~0) = 0. Therefore, we determine the spinodal line by starting from a
certain colloid packing fraction and increasing the number of polymers until all
three structure factors are equal to zero. The spinodal line is always above the
binodal (phase diagram) except at the critical point where they have the same
value.

Alternatively, we can use the �tted potentials to determine the phase diagrams
with MD simulations. Here we can either choose to use the �tted colloid-colloid
interaction only or use both �ts together. A comparison of the resulting phase
diagrams can be seen in Figure 5.5. The e�ective potentials overestimate the at-
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Figure 5.4: The radial distribution function g(r) for a state point with ηcol = 0.10 and
ηpol = 0.05 as measured by simulating with the e�ective potentials (e�) and the
active model (sim) for the colloid-colloid (cc), colloid-polymer (cp) and polymer-
polymer (pp) interaction.

tractive e�ect of the Vicsek model regardless of which version we look at (IET,
only ue�

cc, or ue�
cc + u

e�
cp). However, the constructed potentials give consistent

results in a way that they all seem to be reasonably similar to each other. In the
colloid-rich side of the phase diagram the active system overlaps nicely with
both mappings. The di�erences between the active and the mapped passive po-
tentials are directly correlated to the di�erences between the estimated and the
simulated radial distribution functions, which cannot be neglected. Especially
for the polymer-polymer interaction we get large di�erences for small distances.
This induces an uncertainty into the left arm of our phase diagrams where the
polymer concentration tends to be high. Another reason that the active phase di-
agram is not properly reproduced is that the Vicsek model introduces more than
pair wise interaction while the IET approach tries to approximate the clustering
e�ect with only pair potentials. This means, that with all constructed potentials
we expect to be in the 3D Ising universality class, when studying the system via
simulations, while the active system might belong to another universality class
if at all.
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Figure 5.5: Comparison of the resulting phase diagrams. The spinodal calculated via IET
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cyan for the �tted potentials. The e�ect of the colloid-polymer interaction on the
phase diagram is minor, as the red and cyan points di�er only slightly. However,
while the red points are consistently below the purple ones, as expected, the cyan
points intersect in both branches. The IET potentials phase separate too fast com-
pared to the “real” active system (green).
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Before we determine the critical point of the active system, we need to devise
the methods to do so and con�rm that they are working. For that we will look
at a test system in equilibrium where we have literature values for the critical
point and know the universality class. However, we will keep the limitations
of the active system in mind, so that we can then extend the methods to non-
equilibrium.

The �rst problem is that we do not know the universality class and therefore
the critical exponents. This means we have to determine the critical point with-
out knowledge of the universality class. The second problem is that while for
the grand canonical (µVT) ensemble the �nite size scaling as described in Sec-
tion 2.3.5 gives a reliable method to determine the critical point, our active model
can only be simulated in the canonical (NVT) ensemble.

6.1 block distribution analysis

One approach to determine the critical point for equilibrium systems in a NVT
ensemble is the so-called block distribution analysis [82–85]. A sketch of this
method can be seen in Figure 6.1. Here we divide our big, cubic NVT system

SL

L

Figure 6.1: Sketch of the block distribution
method in two dimensions. The NVT
simulation box with length S is divided
into N2 = 9 subboxes. In each of the
subboxes with area L2 one can calculate
the particle numbers and thus the pack-
ing fraction each step. Here the yellow
spheres represent the slightly larger col-
loids and the black spheres depict the
polymers.
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with length S by an integer N in many small, cubic systems with length L. In
these subboxes the particle number is allowed to �uctuate, which results in a
“quasi” µVT ensemble. Each of these small systems has its own density ρi from
which we can determine the �rst moments to calculate the Binder cumulant:

m2 =
1

N3

∑
i

(ρi − ρ̄)
2 (6.1)

m4 =
1

N3

∑
i

(ρi − ρ̄)
4 (6.2)

UN =
〈m4〉
〈m2〉2 . (6.3)

The value of ρ̄ is a constant given by the complete NVT system. As all parti-
cles have to be in a subbox this implies for the densities of the subboxes ρ̄ =
1
N3

∑
i ρi. Note that in Equations 6.1 and 6.2 the moments are already averaged

over all subboxes while in Equation 6.3 the average is calculated over indepen-
dent simulation snapshots [84, 85]. With this method the same NVT trajectory
can be used to compute all subbox systems simultaneously. This reduces the
computation time substantially.

To test the implementation and get a feeling for the method, we use it on a cut
and shifted Lennard-Jones system (Equation 6.4) similar to [85, 86].

ULJ(r) =

 4ε

[(σ
r

)12
−
(σ
r

)6
+

127

16384

]
, r < 2 · 6

√
2σ

0 otherwise
(6.4)

In [85] Watanabe et al. used simulation boxes as big as S = 128σ to determine
the critical point. In this model the critical point is expected to be at Tc = 0.999
and ρcrit = 0.320 [86]. Since our active particle simulation is already time con-
suming we are rather interested in how much smaller we can choose the simu-
lation box while still determine the critical point with reasonable accuracy. In
a two dimensional Lennard-Jones system already 4096 particles were enough
to determine the critical temperature with good precision [84]. Therefore, we
choose S = 24σ and simulate the system along its rectilinear diameter.

1

2
(ρgas + ρliquid) = a · T + b (6.5)

The coexistence densities of this well studied system are known and taken from
[86]. As the critical density is around ρcrit ≈ 0.3, this corresponds to roughly the
same number of particles as in the two dimensional system from Rovere et al.
[84].
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Figure 6.2: Density distribution for di�erent subbox sizes (a) below and (b) above the
critical temperature. The probability is normed so that the integral over the curve is
one.

In Figure 6.2 two density distributions at di�erent temperatures around the crit-
ical point are shown. For T < Tc a double peak in the density distribution is
seen, while for T > Tc a single peak remains.

For the analysis one has to select the subbox sizes. In [84] the authors estimate
that the subbox size L should be chosen in a way that ξ � L � S, where ξ is
the correlation length and thus a priori unknown but constant. Unfortunately,
there is no direct way to choose the correct subbox sizes. Surely, the remaining
subbox volume should not be too small, since the �uctuation of the density, if
one particle more or less is in the subbox, is getting bigger. Thus, the resolution
of the density is e�ectively reduced and the distribution becomes Poissonian
instead of Gaussian. On the other hand the subbox should not be too big, as
there are too few subboxes then and the correlation between them is increasing.
Therefore, the overall explored phase space gets to narrow and thus the µVT
ensemble is not properly studied. Also, it will take very long for an individual
particle to leave the subbox. Therefore, we choose the subbox sizes empirically,
by only using subboxes that show the correct behaviour far from the critical
point. In this model this means that for temperatures T � Tc the smallest sub-
box has to have the largest value for the cumulant and the biggest subbox the
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Figure 6.3: Cumulant intersection of the block-distribution method on a cubic simula-
tion with S = 24σ over a broad temperature range. The dotted lines are guide to the
eye.

lowest, whereas the behaviour switches for temperatures T � Tc. With this
criteria we choose to use the subboxes with N = 5, 6, 7. This corresponds, at a
density of ρ = 0.32, to an average number of 13 − 35 particles in each subbox.
In Figures 6.3 and 6.4 it can be seen that the behaviour far from the critical point
is as predicted.

In Figure 6.3 the crossing of the cumulants for di�erent subbox sizes can be seen.
However, in Figure 6.4 it is evident that the three cumulants do not cross in one
point. Potential reasons include:

• Fluctuations of the temperature because of the thermostat. It is possible
to switch the thermostat o� and simulate the system in the NVE ensemble
to reduce this error [85], but since we will not be able to do this for the
active model, we neglected it.

• Fluctuations because of the low amount of particles inside a subbox due
to the small size of these subboxes (LN=7 ≈ 3.4σ, LN=6 = 4.0σ, LN=5 =

4.8σ). For the active system we try to address this problem by simulating
a bigger NVT system.

Still we get an approximation of the critical point by taking the mean of all three
intersections, which results in Tc = 0.994(9). This is reasonably close to the lit-
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Figure 6.4: Zoom into the relevant part of the cumulant intersection. The red curve lies
indeed beneath the green curve after their crossing. In this zoom it is obvious that
the three cumulants do not cross in one point. From the three crossings the critical
temperature Tc = 0.994(9) can be determined which is in good agreement with the
literature value of Tc = 0.999 [86].

erature value of Tc = 0.999 [86]. Note that the value of the critical cumulantUcrit

is not the value one would obtain from a grand canonical simulation of a system
belonging to the 3D Ising universality class. Since the boundary conditions are
no longer periodic for the subboxes, a change is expected. Similar di�erences to
the cumulant were observed in [87] for a two dimensional Ising system and in
[85] for a slightly di�erent three dimensional Lennard-Jones system.

6.2 determination of the coexistence densities

In the previous section we have discussed a method to determine the critical
point, if the coexistence densities are known. Unfortunately, we do not know
the coexistence densities, or rather packing fractions, of the active system. We
could use the rule of equal area under the density distribution curve to check if
we are already at the correct density or in which direction we have to adjust the
simulation. This has been done exemplary for the data shown in Figure 6.2. Here,
we would determine the coexistence densities as shown in Table 6.1. The errors
are determined as the distance to the next bin of the density distribution and are
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T ρN=5 ρN=6 ρN=7 ρlit

0.900 0.344(9) 0.34(2) 0.35(2) 0.341

1.050 0.307(9) 0.31(2) 0.30(2) 0.311

Table 6.1: Coexistence densities calculated with the equal area method for Figure 6.2.
The literature values are taken from [86].

thus depending on the size of the subbox. The results are in good agreement with
the literature. However, a method where the error can be reduced by statistics
would be preferred.

In [88] Kim et al. have shown that the coexistence densities of a system can be
determined from grand canonical simulations without knowledge of Tc or the
universality class. The authors use a �nite size parameterQL as in Equation 6.6,
which is the inverse cumulant. L is the size of the cubic subbox.

QL =
1

UL
=
〈m2〉2L
〈m4〉L

(6.6)

In the limit of L→∞ the �nite size parameterQL → 1
3

in a single phase region
andQL → 1 at coexistence. The coexistence density is given by the position of
the maximal QL.

We extend this idea to the block distribution method and apply it to the Lennard-
Jones test system for di�erent temperatures. In Figure 6.5 the functional depen-
dence of QL can be seen. As predicted, QL → 1

3
for high densities as the sys-
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Figure 6.5: QL of various densities for a Lennard Jones system at T = 0.900.
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tem phase separates. For small densities the same behaviour is expected but not
reached. This is due to the fact that the subboxes are nearly all empty. At a den-
sity ρ = 0.01 we have only 138 particles in the simulation box which have to
be distributed over 125− 343 subboxes. This uncertainty for low density is also
seen in µVT simulations [88]. The maximum value for all three subboxes is at
a density ρ = 0.340(7) which is close to the literature value of ρlit = 0.341

[86]. We have done a similar analysis at other temperatures which can be seen
in Table 6.2. The agreement has to be appreciated. For this method the error is

T ρcoex ρlit

0.900 0.340(7) 0.341

0.930 0.33(1) 0.334

0.997 0.324(4) 0.321

0.999 0.321(1) 0.320

Table 6.2: Coexistence densities calculated from the described method compared to the
literature values in [86] determined by grand canonical simulations.

depending on the step size with which the overall number of particles is modi-
�ed to reach the next density. Thus, the coexistence density can be determined
with the same resolution in each subbox.

With these two methods combined we could now calculate the critical point of
the Lennard-Jones test system without knowledge of the universality class of the
system, or the coexistence densities. One would �rst determine the rectilinear
diameter by determining the coexistence densities for di�erent temperatures as
in Table 6.2 and then determine the cumulant intersection as in Figure 6.3.
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The determination of the critical point in a non-equilibrium system is quite dif-
�cult. For systems under shear one �nds that the system changes its behaviour
to mean �eld [89, 90]. For active particles, to our knowledge, only in the clas-
sical Vicsek model the critical point has been determined successfully [28, 91].
It should be noted that this was a heavily discussed issue, and the continuous
phase transition from unordered to ordered state was questioned [92]. It was
later shown that the way the noise is implemented in the classical Vicsek model
can change the order of the phase separation [93, 94]. For the determination of
the critical point numerous simulations at di�erent system sizes, densities and
noise values had to be performed. In other models the critical point in the ac-
tive case turned out to be at in�nite density and could thus not be determined
directly via simulation [95].

The way we have introduced the active Vicsek model has the advantage that
even the passive model already has a phase transition, which we know is of
second order. Since the active model is then imposed on top of this, the transi-
tion is likely shifted but expected to be of second order as well. However, this
model is computationally more complex to simulate. Therefore, to determine
the critical point, we apply the discussed methods from Chapter 6. It should be
noted that the methods discussed here apply not only to this model, but could
be used on any active or passive model that features a second order phase transi-
tion. Jonathan Siebert is currently analysing the active Brownian particle (ABP)
model using techniques described in this section and the results look promising.

In this chapter we will determine the critical point of the active system. As men-
tioned above, this task is quite di�cult, and the determination was done with
an iterative approach. In the following we will reiterate the performed steps.
Starting from a simulation along the rectilinear diameter as determined from
the phase diagram we get an estimate for ηcrit

col and ηcrit
pol . We then correct the es-

timation for ηcrit
pol , under the assumption that ηcrit

col is correct, from independent
simulations in the homogeneous phase. In further independent simulations ηcrit

pol
is determined from the cumulant intersection that goes through the estimated
critical point. Finally, we show that the extrapolations from the homogeneous
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phase to the correct ηcrit
pol result, within the error, in the same ηcrit

col that was orig-
inally determined.

7.1 simulations along the rectilinear diameter

It has been shown that the law of rectilinear diameter applies to the passive cAO
model [96]. For now we assume

1

2
· (ηgas

pol + η
liquid
pol ) =

a

2
· (ηgas

col + η
liquid
col ) + b . (7.1)

In Figure 7.1 the �t is shown for the phase diagram of the active system. We
estimate the slope to be a = 3.84(2). Note that it is an assumption that our
active system follows a law of rectilinear diameter and that we do not aim to
prove this here, we just use it as an estimate for the coexistence packing fractions
for now.
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Figure 7.1: Fit of the rectilinear diameter as an estimation of the coexistence packing
fractions.

We then analyse the system along the �tted line with the block distribution
method from Chapter 6. The procedure changes slightly as to what has been
discussed before for the Lennard-Jones system. Instead of the density ρ an a



7.1 simulations along the rectilinear diameter 71

priori unknown linear combination ηd = ηcol+ληpol of ηcol and ηpol is the order
parameter of the system

m = η
liquid
d − η

gas
d . (7.2)

By simulating along the rectilinear diameter we assume that we are at the cor-
rect coexistence packing fractions and thus a modi�cation of ηcol and ηpol must
change ηd. For the rest of this section we will therefore use ηcol as the driving
variable for the phase transition, and implicitly adjust ηpol so that we remain on
the line of rectilinear diameter.
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Figure 7.2: Density distribution for di�erent subbox sizes (a) below and (b) above the
critical packing fraction. The probability is normed so that the integral over the
curve is one.

If we look at the density distribution of the colloids in the subboxes below and
above the critical point (Figure 7.2), we get the expected behaviour from Sec-
tion 2.3.5. Below the critical packing fraction the density distribution has a sin-
gle Gaussian peak. Above the critical packing fraction the distribution becomes
bimodal with a sharp peak at ρ = 0 and a second peak at higher density. The
width of the peaks increases for smaller subbox sizes. The double peak structure
above the critical colloid packing fraction is not as nicely developed as for the
Lennard-Jones test in Figure 6.2. This could potentially lead to di�culties for
the cumulant intersection, as the cumulant is expected to decrease in the two
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phase region due to the increasing distance of the two peaks. For now, we pro-
ceed and calculate the cumulants for di�erent values of ηcol and ηpol. We anal-
yse the system for various subbox sizes in Figure 7.3. The subbox sizes range
from LN=16 = 3.0 to LN=8 = 6.0 and are thus from a slightly larger interval
compared to the passive Lennard Jones system from before. For the state point
closest to the cumulant intersection (ηcol = 0.10 and ηpol = 0.14) are on average
5− 39 colloids and 13− 108 polymers in each subbox.
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Figure 7.3: Intersection of the cumulants in a S = 48σ cubic simulation box. Similar to
the intersection of the cumulants in a passive Lennard Jones system not all subboxes
cross in the same point. In total ten crossing points are present from which the
critical colloid packing fraction can be determined as ηcrit

col = 0.103(4).

The value of the cumulant is already very close to the single phase limit of
UN → 3. Therefore, the selection rule of the subboxes becomes di�cult. Analo-
gously to the Lennard-Jones case before, the subboxes should be clearly distinct,
if we are far away from the critical point. For ηcol � ηcrit

col this is the case and
the biggest subbox also has the highest cumulant, as one would expect.N = 16

and N = 14 are only for high colloid packing fractions (ηcol > 0.16) statisti-
cally distinguishable from each other, so that it is di�cult to determine at which
point these two cross. Therefore, an argument could be made to leave N = 16

out of the discussion. But for now we keep the smallest subbox, as it follows the
prede�ned criteria for choosing the correct subbox sizes. For ηcol � ηcrit

col we are
already at so small densities that the cumulant is close to three. At ηc = 0.08
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the values for the cumulant for the shown system sizes are in the correct order
and the statistical errors indicate that all subboxes are fully separated.

To get an estimate for the statistical error of the cumulant UN we �rst com-
pute the mean of both moments separately. Then the standard deviations are
divided by the square root of the number of uncorrelated snapshots. For that
the autocorrelation, as discussed in Section 2.3.6, of the moments is analysed.
In Figure 7.4 the autocorrelation of both moments for individual subboxes at
ηcol = 0.10 can be seen. After t = 103 the autocorrelation is close to zero. Due
to the time step of ∆t = 0.002 this corresponds to 5 · 105 MD steps, after which
we use the block distribution method and average the calculated cumulants. The
example shown is close to the critical packing fraction of the colloids in a region
where the system is a�ected by critical slowing down. The correlation times for
systems further away from the critical packing fraction are uncorrelated even
faster and we use t = 100 as correlation time for them.
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Figure 7.4: The autocorrelation of the moment (a) m2 and (b) m4 for various subbox
sizes in a system with S = 48σ and ηcol = 0.10.

Similar to the test system before, the cumulants in Figure 7.3 do not cross in
a single point. From the ten crossings we estimate the critical point to be at
ηcrit

col = 0.103(4) at a cumulant UN = 2.88(3). The critical polymer packing
fraction can then be extracted from the rectilinear diameter ηcrit

pol = 0.15(2). This
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estimate for the critical point is shown in Figure 7.5 in relation to the phase
diagram with the estimated error.

Note that we do not claim that this is the critical point of this active system.
Instead this would be the critical point if the system followed the law of recti-
linear diameter which, at this point, we do not know. In the calculation of the
error of the critical point we neglected the possible error of the �tted rectilinear
diameter. It is, however, a good indication that the active model gives a similar
slope as the passive model, which follows the law of rectilinear diameter [96].
In Figure 7.5 the rectilinear diameter of the passive system as obtained with our
simulation is shown. The critical point as determined in [43] falls nicely onto
the linear �t. As a matter of fact, this result could motivate a mapping of the
active system onto a passive one as attempted in Chapter 5, since the slope is
hardly changing. This could indicate that a mapping on a di�erent pair potential
might result in a similar phase diagram, e. g. a more repulsive potential or even
just a lower overall temperature.
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Figure 7.5: Comparison of the rectilinear diameter of the active and passive system. The
data for the passive system (pas) is shown in blue, the critical point of the passive
system is represented as a black downwards pointing triangle. The data for the active
system (act) is shown in green, the critical point of the active system is represented
as a black upwards pointing triangle. The slopes of the �tted data are comparable.
The critical point of the passive system falls onto the linear �t.
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7.2 corrections to the critical point

From the simulations along the rectilinear diameter of the system we can extract
further information. Not only can we calculate the cumulant for the colloids as
done previously, but the cumulant of the polymers can be determined analo-
gously. If the system followed the law of rectilinear diameter, both cumulants
would intersect for the same simulated state point. However, even if this is not
the case, we can extract valuable information from this crossing.

In [84] Rovere et al. have shown for a Lennard-Jones system that the cumulant
crossing of the temperature is to some degree independent from the density of
the system, thus Tc and ρc can, to a degree, be determined independently. In the
active model this corresponds to ηcrit

col and ηcrit
pol . We can determine both from the

same data as we can treat the simulation as a colloid gas-liquid phase transition
and a polymer gas-liquid phase transition and the rectilinear diameter which we
simulated can be projected onto either. The crossing of the cumulants for the col-
loid system is shown in Figure 7.3, the same data is analysed for the polymer sys-
tem in Figure 7.6. The intersection corresponds to the critical packing fraction.
Note that in Figure 7.6 all subboxes, except for the biggest subbox considered
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Figure 7.6: Estimation for the critical packing fraction of the polymers ηcrit
pol from the cu-

mulant intersections from the same data as used in Figure 7.3. From the ten crossings
we estimate ηcrit

pol = 0.278(8).
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(N = 8), cross nearly in a single point. However, due to the slope of the es-
timated rectilinear diameter, the resolution of the polymer packing fraction is
worse than for the colloid packing fractions from before. The cumulants do not
separate fully after the crossing, as the estimated statistical error is big. This is
due to the high density at which the crossing occurs and thus worse statistics
compared to the points at low density. Also, the value of the cumulant is big and
one observes large �uctuations in the moments.

In Figure 7.7 the critical packing fractions are shown on the estimated rectilin-
ear diameter. From both an estimate for the actual critical point can be extracted.
Note that we assume that we simulate reasonably close to the actual value and
thus do not change the result. This is most likely true for ηcrit

col , where the di�er-
ence of both values corresponds to a di�erence in the density of ∆ρ = 0.06 and
∆ρ/ρ ≈ 23% and is thus comparable to [84]. However, for ηcrit

pol , the di�erence
is huge (∆ρ = 0.44 and ∆ρ/ρ ≈ 45%). Thus, we have to determine the critical
packing fraction for the polymers in another way. At this point we conclude that
the active system does not follow the law of rectilinear diameter as the passive
system would.
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Figure 7.7: Determination of the critical point from the “independent” cumulant inter-
sections of the colloids and polymers. For ηcrit

col the x error is estimated from the
cumulant intersection, while the y error is estimated from the uncertainty of the
rectilinear diameter �t and vice versa for ηcrit

pol . The estimated critical point inherits
then both uncertainties of the respective cumulant intersections.
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7.3 extrapolating from the homogeneous phase

7.3.1 Maximal QL

In the previous section the critical packing fractions were determined from the
same set of data. While the colloid packing fractions are reasonably close to each
other, this is not true for the polymer packing fractions. Thus, an alternative way
to determine the critical polymer packing fraction is needed.

We take a look at the phase diagram and determine the slopes of pairs of points
representing coexistence states in the phase diagram. These slopes correspond
to the constant temperature simulations we have performed for the Lennard-
Jones system in Section 6.2. Therefore, we expect a simulation along such a
slope to yield the coexistence packing fractions. Since in the case of the active
model the slopes change due to the curvature of the phase diagram, we extrap-
olate the determined slopes to the estimated critical colloid packing fraction
and �nd m ≈ −2. We simulate various state points of the active system on

0.00 0.05 0.10 0.15 0.20 0.25
ηcol

0.0

0.1

0.2

0.3

0.4

0.5

η
po

l

phase diagram
rectilinear diameter
ηinit

col = 0.090
ηinit

col = 0.100
ηinit

col = 0.110
ηcrit

col

critical point

Figure 7.8: Magni�ed phase diagram of the active system around the critical point. The
black line is the rectilinear diameter as determined before. The dashed black line is
the elongation thereof into the one phase region. For several points on this line we
simulate along a �xed slope of m = −2.0 to determine the order parameter. Exem-
plary, the simulated data points for ηinit

col = 0.090 (cyan), ηinit
col = 0.100 (magenta) and

ηinit
col = 0.110 (yellow) are shown.
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lines in the one phase region in the vicinity of the critical point with the slope
m = −2. Note, that it is an assumption that the slope in the vicinity of the criti-
cal point is not changing. However, the variation is probably small as the slopes
cannot cross each other. The crossing of the slopes with the rectilinear diam-
eter (or its extension below the critical point) are used as identi�cation of the
slope and referred to as ηinit

col . Three such slopes with the simulated data points
are shown in Figure 7.8 exemplary. For each data point shown we simulate a
cubic system with S = 48σ. These simulations are “equilibrated” for one day.
The production runs take ten days per point. The results are then analysed with
the block distribution method. Since the system can now only move on those
lines, the point closest to the ideal ηd will be favoured. Points that are far away
should still follow the already discussed trend

QL(ηc)→
1

3

{
ηc � ηcritc

ηc � ηcritc

. (7.3)
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Figure 7.9: QL for various colloid packing fractions ηcol on a slope withm = −2 in the
phase diagram starting from an initial point on the elongated rectilinear diameter of
(0.095/0.123). The maximum for subboxes with N < 13 is at ηmax

col = 0.090, which
corresponds to a polymer packing fraction of ηmax

pol = 0.133. The maxima of smaller
subboxes cannot be distinguished from the tail which is slightly above the expected
value of 1/3 shown as dashed grey line.
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Analogously to Section 6.2 we can calculate QL and determine the coexistence
packing fractions on each simulated slope. An example is shown in Figure 7.9
for an initial packing fraction of ηinit

col = 0.095. Similar to Figure 6.5 the smallest
subbox is below bigger subboxes for low densities and has a larger QL value
for higher packing fractions. For simulations where the system is dilute the ex-
pected value of QL = 1/3 is not reached, while for big packing fractions the
value of QL saturates at a value which is higher than expected. More impor-
tantly, a maximum is only reached for big subboxes when the critical point is
approached. Close to the critical point we can calculate the points in the phase
diagram for which QL reaches a maximum. Extrapolating these points to the
critical colloid packing fraction, as determined by the intersection of the cumu-
lants, results in a correction to the previously calculated critical point. Note, that
this correction should be understood as indication in which direction, if at all,
the critical point may have to be corrected. This is due to the fact that those
simulations are very close to the critical point and thus potentially su�er from
�nite size e�ects.

In Figure 7.10 we have determined the phase points where QL is maximal for
some values close to the critical point. For subbox sizes that still feature a maxi-

0.00 0.05 0.10 0.15 0.20 0.25
ηcol

0.0

0.1

0.2

0.3

0.4

0.5

η
po

l

phase diagram
rectilinear diameter
critical point
N = 8

N = 9

N = 10

N = 11

N = 12

Figure 7.10: Extrapolation of the position of the maximalQL towards the critical colloid
packing fraction (dashed grey line) for subboxes that are big enough to feature a
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the same colour. From the extrapolation we estimate ηcrit

pol = 0.223(35).
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mum we �nd a linear behaviour which di�ers from the rectilinear diameter as ex-
pected. These points can be extrapolated and the crossing of this slope with the
previously determined critical colloid packing fraction can be computed. This
results in an extrapolated critical polymer packing fraction (obtained from the
average of the extrapolated lines crossing ηcrit

col ) of

ηcrit;QL
pol = 0.223(35) . (7.4)

Note that the error bars given in Figure 7.10 are determined by the distance to
the next simulated point on the same slope and are not respected in the extrap-
olation. Due to the big error bars the uncertainty of this extrapolation is large.
However, we can still extract the general information that the critical point as
determined in Section 7.1 is probably at a polymer packing fraction which is a
bit lower than what we extracted from the cumulant crossing. Since the slope of
the extrapolation decreases for smaller subboxes we cannot exclude �nite size
e�ects.

7.3.2 Locus of maximal susceptibility

Since the approach in the section before is prone to error due to the change in
the slope and it only works for a subset of the determined subboxes, we look
at an alternative way to determine the correct order parameter. For that we use
the method of maximal susceptibility. Since the susceptibility in an in�nite sys-
tem diverges at the critical point, one can �nd a maximum in the susceptibility
for each slope through the phase diagram that crosses the rectilinear diameter.
Determining the maximum of susceptibility on a variety of such slopes results
in a locus of maximal susceptibility that goes through the critical point [97–99].

In the cAO model multiple susceptibilities can be de�ned. In a grand canonical
simulation one can extract all susceptibilities from the two dimensional proba-
bility distribution P(Ncol, Npol) [43]. Using the subbox distribution method this
graph can be computed. In the one phase region one expects the distribution to
be a bivariate Gaussian in the variables Ncol − 〈Ncol〉 and Npol − 〈Npol〉. From
it we extract two di�erent susceptibilities: the susceptibility of the colloids χcol

and the susceptibility of the order parameter χ+:

• χcol can be related to the two dimensional probability distribution
P(Ncol, Npol) by determining the highest probability for a pair of particle
numbers and then calculating the variance for constant Npol.

χcol
∣∣
Npol=const =

σ2col
Ntot

=
1

Ntot

(
〈N2col〉− 〈Ncol〉2

)
(7.5)

Ntot is the average total number of particles in a subbox.
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• χ+ can be extracted from the half-width half-maximum (HWHM) along
the main axis of the bivariate Gaussian. For that we �t the probability
distribution with an ellipse where the probability to �nd the combina-
tion of colloids and polymers is at half the value of the maximum. The
main axis of this ellipse is the HWHM of the order parameter. For the or-
der parameter susceptibility χ+ we use that the HWHM is proportional
to the variance. In case of a Gaussian distribution, which we will not
have close to the critical point, the proportionality constant would be
HWHM =

√
2 ln(2)σ.

χ+ ∝
(HWHM)2

Ntot
(7.6)

An example of the two dimensional probability distribution for three di�erent
state points on the same slope is shown in Figure 7.11. For each distribution
an ellipse �t is performed to determine the main axis of the distribution. The
most likely colloid-polymer pair Pmax(Ncol, Npol) is increasing in the number of
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Figure 7.11: The two dimensional probability distribution P(Ncol, Npol), for di�erent
state points on the same slope (ηinit

col = 0.110) and a subbox size of L = 4.8. The
black line is determined by �tting P(Ncol, Npol) = 0.5 · Pmax(Ncol, Npol) with an
ellipse. For the sake of visibility points with a probability lower than 15% of the
maximum probability are not shown.
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colloids and decreasing in the number of polymers when going from a low pack-
ing fraction of colloids to a higher (Figure 7.11 (a) to (c)), indicated by the black
centre. Combined, this results in a decreasing average total number of particles
in the subbox. But as the main axis of the ellipse, and thus the HWHM, is also
shrinking continuously, the order parameter susceptibility has a maximum for
intermediate packing fractions.

Figure 7.12. Since we get hysteresis e�ects in the vicinity of the critical point,
and due to the �nite size of our system, we will get a one phase region even if
we are already in the two phase region. Therefore, the analysis could be done
around the critical point in both phases. However, the simulations are getting
slower close to the critical point due to critical slowing down and due to the
increased density of the system.

For both susceptibilities we can determine the maximal susceptibility on each
slope. Analogously to the previous section, these values, for which we know the
colloid and polymer packing fraction, can be extrapolated to the critical colloid
packing fraction.
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Figure 7.12: Extrapolation of the maximum χcol(L) towards the critical colloid packing
fraction (dashed grey line). The error bars are given by the distance to the next
simulated point on the same slope but are not respected in the extrapolation. The
dashed lines correspond to the linear �t to the data points of the same colour. The
critical polymer packing fraction is determined as ηcrit; χcol

pol = 0.258(5).
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For χcol this has been done in Unlike for QL this works for every considered
subbox size. Close to the critical point a divergence from the linear behaviour
can be observed, which is most likely due to critical slowing down of the simu-
lation. The extrapolation suggests that the critical polymer packing fraction is
higher than determined by extrapolatingQL but lower than the one determined
by the cumulant crossing. It is important to note that we do not observe a depen-
dence of the susceptibilities to the size of the subbox. Instead, the �tted slopes
are similar to each other and in no particular order.

If we extrapolate the order parameter susceptibility instead, we are very close to
the estimated critical point as can be seen in Figure 7.13. All crossings have the
critical polymer packing fraction, determined from the cumulant intersection,
in their respective error bar, but tend to lie slightly below. With this method
a better estimate of the critical point can be achieved. However, it should be
noted that since an additional �t is necessary to determine χ+, the method has
a higher uncertainty than simply calculating χcol. The error of the �t could be
reduced by �tting multiple ellipses to the probability distribution and using the
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Figure 7.13: Extrapolation of the maximum χ+(L), as de�ned in Equation 7.6, towards
the critical colloid packing fraction (dashed grey line). The error bars are given
by the distance to the next simulated point on the same slope but are not consid-
ered in the extrapolation. The dashed lines correspond to the linear �t to the data
points of the same colour. The critical polymer packing fraction is determined as
η

crit; χ+

pol = 0.264(10).
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mean HWHM. With this approach more points from the distribution would be
considered and the statistical accuracy could be improved.

In the following we use

ηcrit
col = 0.103(4)

ηcrit
pol = 0.264(10) (7.7)

as our estimate for the critical point. As indicated before, ηcrit
col is obtained from

the crossing of the cumulants, whereas ηcrit
pol is obtained from the arithmetic mean

of the �nite-size χ+ estimates. Note that this estimate for ηcrit
pol is consistent with

the result obtained from the cumulant crossing (ηcrit
pol = 0.278(8)) and from the

extrapolation of χcol (ηcrit
pol = 0.258(5)). The extrapolation ofQL only worked for

a subset of subboxes and showed a trend following the sizes of the subboxes.

7.4 constant critical colloid packing fraction

Another independent method to determine the critical polymer packing fraction
is to simulate the system at a constant colloid packing fraction ηcrit

col . Compared
to Section 7.2 this has two advantages: The simulation includes the critical point,
and is not just close to it, and the simulations are faster compared to the same
polymer packing fractions from before because the colloid packing fractions are
lower in the two phase region. From this simulations we can calculate the cumu-
lant for the polymers UL(ηpol) and compute their intersection point. This has
been done in Figure 7.14. We �nd that ηcrit

pol = 0.268(8) which is slightly below
the previously determined value (ηpol = 0.278(8)), although the error bars still
overlap. Compared with the results from the extrapolations from the homoge-
neous phase, where we �nd that ηcrit

pol = 0.264(10) we get a nice agreement. A
similar analysis could now be done for a constant critical polymer packing frac-
tion, where an intersection at the critical colloid packing fraction is expected.
This will be addressed in future studies.

So far, we have motivated the use of ηcrit
col = 0.103(4) as the correct colloid

packing fraction because of the relatively small divergence of the two inter-
section points of the cumulant method from each other. Of course, we can
now revisit the extrapolation from Section 7.2 and extrapolate the suscepti-
bilities χcol and χ+ to the here determined critical polymer packing fraction
ηcrit

pol = 0.268(8). With this we �nd that our initial assumption was correct,
as we estimate ηcrit; χcol

col = 0.105(2) and ηcrit; χ+

col = 0.104(2). In this estimate
we neglected the error in ηcrit

pol , thus the given error for the extrapolated ηcol

is too low. But since we already have a good agreement with the cumulant
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intersection a better estimate for the error is not needed. Note, that this
determination is done with completely independent data compared to the
crossing of the cumulants in Section 7.1.
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Figure 7.14: Cumulant intersection for a simulation at constant colloid packing fraction
ηcol = 0.103. The cumulant behaviour shows the expected steady change of the
polymer cumulant compared to the behaviour in Figure 7.6. The inset show the
intersection region magni�ed. The dashed lines are guide to the eye. From the in-
tersection one extracts ηcrit

pol = 0.268(8).

7.5 coupling of the activity and the order parameter

We have seen that the system deviates from the rectilinear diameter determined
from the phase diagram. In this section a possible explanation for this behaviour
is discussed. It is possible that the activity of the system couples to the order
parameter. In the classical Vicsek model the order parameter is de�ned similarly
to Equation 7.8 [28].

ϕ =

∣∣∣∣ N∑
i=1

~vi

∣∣∣∣
N∑
i=1

|~vi|

(7.8)

This order parameter thus indicates if the velocities of the colloids in the system
are fully aligned (ϕ = 1) or if the direction of motion is random (ϕ = 0).
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In the two phase region of our model ϕ should change along the slope of the
order parameter, as more colloids in the system account for a larger colloid-rich
phase and thus more aligned velocities. In the one phase region, this dependence
should not exist. For state points far from the critical point we have already
shown in Section 4.2.3 that this is the case. However, getting close to the critical
point means that the dependency has to change and approach the two phase
behaviour. For all simulations along the slope of m = −2 we �nd that this is
the case.ϕ is rising constantly with rising colloid numbers and approaches one
for the most extreme cases simulated. Thus, there already exists a system wide
velocity correlation of the colloids before a phase separation is observed.

ηc ϕ ηc ϕ ηc ϕ

0.048 0.07 0.090 0.78 0.114 0.88

0.057 0.51 0.095 0.81 0.124 0.91

0.067 0.62 0.100 0.83 0.133 0.93

0.076 0.70 0.105 0.85 0.143 0.95

0.086 0.76

Table 7.1: ϕ for various colloid packing fractions ηc on a slope with m = −2 in the
phase diagram starting from an initial point on the elongated rectilinear diameter of
(0.095/0.123).

In Table 7.1 ϕ is shown exemplary for the simulation with ηinit
col = 0.095. Note

the enormous jump between the �rst two measured values in the table where
ϕ changes from 0.07 to 0.51. As can be seen for high colloid packing fractions
ϕ goes to one, indicating that all velocities are aligned. Therefore, the activity
might in�uence the order parameter in this model. Such a coupling cannot be
reproduced by a mapping to a passive system, as this is a purely non-equilibrium
e�ect.

7.6 giant number fluctuation

It has been shown in experiments, simulations and theory [100–102] that in ac-
tive systems the �uctuation of the particle number of the active constituents
behaves di�erently than in a system in equilibrium. The �uctuation can be ex-
pressed as

〈∆N〉 =
√
〈N2〉− 〈N〉2 ∝ 〈N〉αp , (7.9)

where αp describes the �uctuation. In an equilibrium system one expects, far
from the critical point, that the exponent in Equation 7.9 is αp = 1

2
, due to
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the law of large numbers. However, in close vicinity to the critical point, this
exponent will increase because of percolating structures.
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Figure 7.15: Giant number �uctuation in the passive Lennard-Jones system with S = 24

close to the critical point. All possible subboxes between L = 2.0 and L = 8.0 are
analysed. The lines correspond to the �tted exponents and agree nicely with all
subbox sizes. The exponent αp is decreasing for higher temperature as expected,
but is clearly above αp = 0.5 (black line) for a temperature that already shows a
single peak in the density distribution Figure 6.2(b).

In our case this �uctuation can be computed with the block distribution method.
An example is shown in Figure 7.15 for the passive Lennard-Jones test system
studied earlier. For that we analyse the long trajectories from Section 6.1 and
compute

〈N〉 = ρcol · L3 (7.10)

〈∆N〉 =

√√√√ 1

Nsub

Nsub∑
i

(Ncol;i − 〈N〉)2 , (7.11)

whereNsub = S
3/L3 is the total number of subboxes the system is divided into

and Ncol;i is the number of colloids in the ith subbox.
For all temperatures shown in Figure 7.15 the exponent αp > 0.5, even though
the density distribution in Figure 6.2(b) looks already Gaussian. This means that
in our case the distinction between giant number �uctuations due to the activity
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and due to the vicinity to the critical point cannot be made. However, we report
that even for systems far away from the critical point we see an exponent αp >
0.5. As an example we show the results for di�erent state points in Figure 7.16.
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Figure 7.16: Giant number �uctuation in the active Vicsek model for di�erent colloid
and polymer packing fractions. The simulated state points are mentioned in the
legend, denoted as point pairs (ηcol|ηpol). The cubic NVT system has a length
S = 48. The data points correspond to all possible subbox sizes between L = 2.1

and L = 16.0. The black line corresponds to an exponent αp = 0.5. The coloured
lines are the �tted exponents of the data point of the same colour and it has to be
appreciated that the scaling works for all subboxes considered.

We plan to further study this phenomenon in the future. For that we will look
at di�erent �uctuations, in order to separate the e�ects introduced by activity
and those introduced by the critical point. A prime candidate is the velocity.
As we have seen already in Figure 4.10(a) the velocity distribution has a much
higher amplitude compared to a passive system. This indicates that one can
use the velocity components to analyse the �uctuations induced by an active
system. For that we could separate the velocity into components parallel and
perpendicular to the mean velocity.

〈∆v‖〉 =
√
〈∆v2‖〉− 〈∆v‖〉2 ∝< N >α1 (7.12)

〈∆v⊥〉 =
√
〈∆v2⊥〉− 〈∆v⊥〉2 ∝< N >α2 (7.13)
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One would expect that α1 6= α2 for the active system, while the passive system
would always ful�l α1 = α2 as there is no preferred direction of motion. Similar
order parameters have been discussed by Toner et al. [103–105].





8U N I V E R S A L I T Y ?

The Ising universality class is probably one of the best studied universality
classes and it has been shown that a lot of di�erent systems share it. One of
those systems is the continuous Asakura-Oosawa (cAO) model [43] which we
used as a basis for our active model.

The classical Vicsek model on the other hand is, due to its minimal character, a
candidate for a universality class for active particles itself [92, 106]. The critical
exponents for the 2D classical Vicsek model [106, 107] di�er from the 2D Ising
exponents [38].

Since the phase transition of our active model is also present in the passive case
we assume that for small active forces fA we recover the 3D Ising universality
class. However, for larger values of fA a divergence from those exponents is
possible. In the following we will try to determine two critical exponents for
our active system with fA = 10. It should be noted that those exponents are
extremely dependent on the value of the critical point, and thus should only be
regarded as �rst estimation until the critical point is known with higher accu-
racy. For now we use ηcrit

col = 0.103(4) and ηcrit
col = 0.268(8) as the critical point

of the active system as determined in Chapter 7.

8.1 determination of the critical exponent β

With the critical point and the phase diagram we can now calculate the critical
exponent β. In Equation 2.23 the critical exponent was introduced as

M = M0ε
β . (2.23)

In this model M is the distance between a pair of points
(
η

gas
col

∣∣∣ηgas
pol

)
and(

η
liquid
col

∣∣∣ηliquid
pol

)
in the phase diagram, and thus

M =

√(
η
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col − η
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)2
+
(
η
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pol

)2
, (8.1)

while ε will be the shortest distance to the critical point
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+
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In Figure 8.1 M, calculated from the phase diagrams in Figure 4.2, is plotted
against ε which was determined with the respective critical points (for the pas-
sive case we use the literature value from [43]) in a log-log plot. For the passive
case we recover the 3D Ising value β = 0.32(1) [108], which is to be expected
as the passive model belongs to the Ising universality class [96]. The active case
has a value of β = 0.30(3) and is thus close to the value of the 3D Ising uni-
versality class as well. Even though the �t in Figure 8.1 matches the data points
nicely, we have to assign a big uncertainty to the critical exponent for the active
system. This is due to the error bars of the critical point, which in turn a�ects the
determination of ε. In order to account for that, we have calculated ε for various
critical points (within the error bars) and repeated the �t. We then choose the
error forβ in a way that it contains all possible slopes. To get a better estimation
of the critical exponent β we have to determine the critical point with higher
precision �rst. For bigger ε we get a divergence from the linear behaviour, and
we thus do not account for them in the �t. But we expect the system to follow
this power law only for small ε anyway.

10−1 100

ε

10−1

100

101

M

passive
β = 0.32(1)
active
β = 0.30(3)

Figure 8.1: Comparison of the critical exponent β of the active and the passive model.
The points are the respective values as extracted from the phase diagrams in Fig-
ure 4.2, while the line represents a �t from which the critical exponent β is deter-
mined.
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8.2 determination of the critical exponent ν

To determine the critical exponent ν we use the cumulant intersection of the
colloids. The slope of the cumulants at the critical point can be extracted from
Figure 7.3. It is expected that dUL

dηcol
scales with L as [109]

dUL

dηcol
∝ L 1ν . (8.3)

The slope around the critical point does not change rapidly. Therefore, we as-
sume that the error we make by determining the slope numerically is small.
However, the slope in Figure 7.3 is negative. Therefore, we rewrite Equation 8.3
by using the de�nition of QL (Equation 6.6) to

dQL

dηcol
∝ L− 1

ν

ν · ln
(
dQL

dηcol

)
∝ ln

(
1

L

)
. (8.4)

The critical exponentν can now be determined by a �t. This is done in Figure 8.2.

10−1 100 101

dUL
dηcol

10−1

100

1 L

ν = 0.82

Figure 8.2: Fit of the critical exponent ν of the active model. The points are the respec-
tive values for the subboxes N = 8, 10, 11, 12, 13, 14, 16, while the line represents
a �t from which the critical exponent ν is determined. The subboxes N = 8 and
N = 16 are not accounted for in the �t as they clearly di�er from the power law.
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We �nd ν = 0.82, which di�ers from the 3D Ising value of νIsing = 0.63 [39].
However, we have to leave out the subboxes N = 8 and N = 16 as they do not
follow the linear behaviour in the log-log plot. Instead only the intermediate
subbox sizes N = 10 to N = 14 are �tted.

The critical exponent ν can be used to rescale the cumulants for di�erent system
sizes and project them onto a single master curve around the critical point. This
is done by changing the x-axis in Figure 7.3 from ηcol to (ηcol − η

crit
col ) · L

1
ν . Such
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Figure 8.3: Collapse of the cumulant intersection from Figure 7.3 onto a master curve
using the critical exponent ν = 0.82 as determined in Figure 8.2.

a collapse has been done in Figure 8.3. While the cumulants fall nicely onto
one curve it should be stated that the same collapse for the Ising value of ν
does not appear to be signi�cantly worse. This collapse is shown in Figure 8.4.
Therefore, we cannot conclude that the active system does not belong to the
Ising universality. To answer this question more simulations around the critical
point have to be performed and the statistical error has to be reduced further.
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Figure 8.4: Collapse of the cumulant intersection from Figure 7.3 onto a master curve
using the critical exponent νIsing = 0.63.
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We have introduced a model of activity to study the non-equilibrium e�ects
on the phase behaviour with computer simulations. For that a passive model
that already features a phase separation is used as a basis. The active model
is then imposed onto the passive and care has been taken to ensure that the
passive model is obtained as one limit of the active model. By doing so, it is
guaranteed that we understand the phase separation in the limit of in�nitesimal
small activity.

The active model proposed in this thesis features an enhanced phase separation
compared to the original equilibrium model. This is due to the alignment force
of the Vicsek model, which induces a velocity correlation in the active specimen
and thus leads to the formation of clusters. This correlation leads to large ampli-
tudes in the mean velocity for a system in the homogeneous phase, whereas the
active particles in the phase separated system align their velocities perpendicu-
lar to the interface and thus reduce the interaction with the passive polymers.

We have shown in Chapter 4 that the active force fA can be used to control the
enhancement of phase separation and that the original phase diagram can be
obtained in the limit of fA = 0.

In Section 4.4 it has been shown that the active model has to be de�ned with
a speci�c thermostat to handle the constant energy input into the system. In
the current form, one can therefore not study the e�ect of hydrodynamic inter-
actions, at least not in the proposed way by using a Maxwell-Boltzmann ther-
mostat. A possible solution has been presented in Section 4.1.5 by changing
the active model from self-propelled particles to non-propelled but keeping the
alignment rule. The system would still be out of equilibrium, but we have found
indications that the enhancement in phase separation might not be preserved.
Future studies are planned, in which we will look at a temperature dependent
phase transition, like for example in the Lennard-Jones model, and use only the
orthogonal component of the active force. To keep the temperature constant one
might need to rescale the active velocity afterwards as mentioned in the general
remark.

We have seen that the active system features an interesting temperature pro�le,
if one respects the local mean velocity. The clustered active particles carry only
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slightly more heat than the surrounding polymer bath. However, at the inter-
face where active and passive particles interact, heat is generated. This friction,
induced by the fast moving active particles close to the slow passive ones, can
explain the enhanced phase separation as it is entropically favourable to sepa-
rate the two di�erent speeds. Additionally, this friction could lead to a higher
“interfacial tension”, since it would reduce the area where active and passive par-
ticles interact. This could also explain why we did not observe any �nite-size
structures for high active forces except for the slab con�guration. The question
of interfacial tension will be researched separately in the future.

Together with collaborators we have seen that a mapping of the active model
to the passive one works to some extent. With integral equation theory (IET)
we have been able to correctly reproduce the colloid-rich branch of the phase
diagram. The mapping and the simulated polymer-rich branch do not agree,
which is most likely due to the structural di�erence of the polymer-polymer
interaction, which has not been mapped. The dynamic properties can, of course,
not be included in such a mapping. This is why one would only expect a partial
agreement between the mapped and the real system in the �rst place.

We have given a description how the critical point of a system can be determined
in a canonical (NVT) simulation by analysing �uctuations in subboxes of vary-
ing sizes. This recipe is tested on an equilibrium system and the critical point
has been determined with good agreement compared to grand canonical (µVT)
simulations. It should once again be emphasised that this method is general, and
thus is expected to work for any active (or passive) system that features a sec-
ond order phase transition. With this method we have determined the critical
point of our active system. For that we have simulated a large system with a
constant particle number, volume and temperature and have divided it in many
smaller systems of the same volume. In these small systems the particle num-
ber can �uctuate and a quasi grand canonical system is sampled. These simula-
tions have been analysed using multiple well-known methods from equilibrium
physics which have been discussed and tested on a test system �rst. We have
argued that the colloid packing fraction we have determined from the cumulant
intersection of state points close to the critical point is the correct critical col-
loid packing fraction. The critical polymer packing fraction has been improved
iteratively. With the independent data and the correct critical polymer packing
fraction we could subsequently show that the critical colloid packing fraction
has been determined correctly. Thus we have gotten consistent results for the
critical point of the active system and have found that there is a deviation from
the passive model, as the law of rectilinear diameter is not followed in the vicin-
ity of the critical point. Instead we assume that a coupling between the order
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parameter of the passive system and the activity occurs, which in turn shifts
the critical point. We have proposed the order parameter of the original Vicsek
model as one way to explain this coupling. In future studies we will test other
order parameters as well, a prime candidate is the velocity �uctuation in direc-
tion of the mean velocity compared to the �uctuation perpendicular to it. This
order parameter is unique to the active system, whereas we have seen that the
particle number �uctuation can also be induced by the critical point.

Finally, we have determined two critical exponents β and ν. The active and pas-
sive system might share the same value for β. This is an indication that the
active system is still in the same universality class as the passive one, which is
3D Ising. However, ν deviates from the 3D Ising value. At this point we can-
not de�nitely state whether or not the active system belongs to the 3D Ising
universality class. For that we will have to investigate all critical exponents in
the future and determine the critical point with higher accuracy still. This will
be a challenge, as a lot more simulations will be necessary, e. g. to determine
the critical exponent of the susceptibility γ one would have to very accurately
determine the maximum in the susceptibility. The data we have measured in
Section 7.3.2 is not detailed enough to determine γ reliably. This is due to the
sharp peak in the susceptibility, which induces a big error in the actual value of χ.
However, the position of the maximum can be determined with good accuracy.

We have seen that the critical point in active systems can be determined and for-
mulated a generic approach that can be used for other models as well. Currently,
Jonathan Siebert is working with the same methods in order to determine the
critical point for an ABP model and the preliminary results look promising.

Knowing the critical point of a system provides interesting insight. First it shows
that one indeed has a second order phase transition. It also allows us to classify
the active system, as we can now compute the critical exponents and thus test to
which, if any, universality class the system belongs. Of course, there is still more
work to be done, but other non-equilibrium systems have shown that there are
universality classes speci�c to their activity [110]. It would be of great interest if
such an universality class could also be found for self-propelled particles. Also,
this could lead to better models to study active systems further as one could
then construct a simple model for self-propelled particles that has the same uni-
versality class, similar to the Ising model for equilibrium soft matter.
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Figure A.1: Temperature distribution for a steady state with ηcol = 0.15 and ηpol = 0.30

in a system with Lx = Ly = 12σ and Lz = 48σ. The initial temperature Tinit = 1

is shown by the dashed black line in all plots. The red line shows the results for
the x axis, green the y axis, blue the z axis. The purple line is the total temperature
distribution. (a) and (b) show the same results as in Figures 4.15 and 4.16. (c) is the
global, (d) the local temperature distribution for the colloids only, while in (e) the
global and (f) the local temperature distribution for the polymers are shown. The
colloids carry most of the heat in the system, and do not cool down to the initial
temperature independent of the analysis method we use. Interestingly (d) indicates
that the colloids are cooler if clustered together than in the gas phase. The polymers
have the initial temperature in their dense phase, but are dragged along in the colloid
rich phase. To improve the polymer statistics in (f) we would have to analyse much
larger trajectories as the number of polymers in the colloid rich phase is only small.
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Figure A.2: The radial distribution function g(r) for a state point with ηcol = 0.15 and
ηpol = 0.05 as measured by simulating the active system (sim) and as estimated by
IET calculations (IET) for the colloid-colloid (cc), colloid-polymer (cp) and polymer-
polymer (pp) interaction.
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Figure A.3: The radial distribution function g(r) for a state point with ηcol = 0.20 and
ηpol = 0.05 as measured by simulating the active system (sim) and as estimated by
IET calculations (IET) for the colloid-colloid (cc), colloid-polymer (cp) and polymer-
polymer (pp) interaction.



IV appendix

0 1 2 3 4 5

r

0.0

0.5

1.0

1.5

2.0

2.5

g
(r

)

ge�
cc(r)

ge�
cp(r)

ge�
pp(r)

gIET
cc (r)

gIET
cp (r)

gIET
pp (r)

Figure A.4: The radial distribution function g(r) for a state point with ηcol = 0.15 and
ηpol = 0.05 as measured by simulating with the e�ective potentials (e�) and the
active model (sim) for the colloid-colloid (cc), colloid-polymer (cp) and polymer-
polymer (pp) interaction.
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Figure A.5: The radial distribution function g(r) for a state point with ηcol = 0.20 and
ηpol = 0.05 as measured by simulating with the e�ective potentials (e�) and the
active model (sim) for the colloid-colloid (cc), colloid-polymer (cp) and polymer-
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