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Abstract

Elastic electron-proton scattering has been a time-honored tool to provide basic information on
general properties of the proton, such as its charge distribution. At leading order, this process
is described by the exchange of one photon. In recent years, two experimental approaches,
with and without polarized protons, gave strikingly different results for the ratio of the electric
to magnetic proton form factors. Even more recently, a mysterious discrepancy ("the proton
radius puzzle") has been observed in the extraction of the proton charge radius from the
muonic hydrogen versus hydrogen spectroscopy and elastic electron-proton scattering. In these
experiments, two-photon exchange (TPE) contributions are the largest source of the hadronic
uncertainty.

In the present work, the forward virtual Compton scattering is calculated within a disper-
sive formalism to determine TPE corrections. One of the amplitudes requires a subtraction
function, which is estimated based on experimental data. Exploiting these results, the TPE
correction to the Lamb shift for the 2S level in muonic hydrogen is evaluated. Within a disper-
sion relation approach for the lepton-proton amplitudes, the hadronic TPE correction to the
hyperfine splitting of the S energy levels is also determined.

The TPE correction in the elastic lepton-proton scattering is given by a sum of diagrams with
proton and with inelastic intermediate states. At low energies, the former yields the main TPE
correction. Comparing a box graph model with the dispersion relations at fixed momentum
transfer, we find agreement when performing one subtraction. Fixing the subtraction point
to the TPE fit of data performed by the MAMI/A1 Collaboration, the contribution from the
inelastic intermediate states in the electron-proton scattering is estimated. Additionally, a new
method of analytical continuation of the elastic contribution to TPE amplitudes is developed.

At low momentum transfer, the inelastic intermediate states are included approximating
the hadronic part of the TPE box graph by the near-forward unpolarized virtual Compton
scattering which has the proton structure functions as input. The resulting TPE are compared
with the empirical fit. Subsequently, the study is extended to larger momentum transfer. For
this purpose, the pion-nucleon intermediate state in the dispersion relation approach is studied.

A further part of this work is devoted to the muon-proton scattering experiment (MUSE),
which was proposed to compare the elastic scattering of electrons and muons on the proton
target and to measure the proton charge radius in the muon-proton scattering. The sub-percent
level of the experimental accuracy requires an account of TPE corrections. In this work, the
proton TPE box graph for the muon-proton process is evaluated for the kinematics of the
proposed experiment. Approximating the doubly virtual Compton tensor by the near-forward
form, the inelastic TPE correction is quantified. Additionally, the contribution of the subtrac-
tion function, relevant because of the muon mass as compared to the beam energy, is studied in
detail. The evaluated TPE correction provides the necessary input for the forthcoming MUSE
experiment.
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Zusammenfassung

Die elastische Elektron-Proton-Streuung ist eine bewährte Methode, um Basisinformation der
allgemeinen Eigenschaften des Protons zu ermitteln, wie zum Beispiel seine Ladungsverteilung.
Dieser Prozess wird in niedrigster Ordnung durch einen Einphotonenaustausch beschrieben.
In den letzten Jahren haben zwei experimentelle Ansätze, mit und ohne polarisierte Proto-
nen, auffallend unterschiedliche Ergebnisse für das Verhältnis aus dem elektrischen und dem
magnetische Formfaktors des Protons gegeben. Jüngst wurde in der Messung des Protonen-
ladungsradius im muonischen Wasserstoff im Vergleich zur Wasserstoffspektroskopie und zur
elastischen Elektron-Proton-Streuung eine mysteriöse Diskrepanz ("das Rätsel des Protonra-
dius") beobachtet. In diesen Experimenten ist der Beitrag des Zweiphotonenaustausches (TPE,
engl. two-photon exchange) die größte hadronische Unsicherheitsquelle.

In der vorliegenden Arbeit wird ein Dispersionsformalismus entwickelt um die TPE Korrek-
turen zu beschreiben aus der vorwärts virtuellen Compton Streuung. Eine der Amplituden
in diesem Formalismus erfordert die Berechnung einer Subtraktionsfunktion anhand von Ex-
perimentellen Daten. Auf diesem Beitrag gestützt wird die entsprechende TPE-Korrektur zur
Lamb-Verschiebung für das 2S-Niveau sowie zum hyperfeinen Aufspalten des S-Energieniveaus
in muonischem Wasserstoff ausgerechnet.

Die TPE Korrektur in der elastischen Leptonen-Protonen Streuung ist gegeben als die Summe
aus den Diagrammen mit dem Proton und inelastischen Zwischenzustände. Bei niedrigen En-
ergien liefert ersteres die größten TPE-Korrekturen. Beim Vergleich eines hadronischen Mod-
ells mit nichtsubtrahierten Dispersionsrelationen bei festgehaltener Übertragung des Impulses
wird vorgeschlagen, die subtrahierte Dispersionsrelation in der Elektron-Proton-Streuung zu
verwenden. Ausgehend vom Subtraktionspunkt einer empirischen TPE-Anpassung der Daten
der MAMI/A1-Kollaboration wird der Beitrag der inelastischen Zwischenzustände abgeschätzt.
Zusätzlich wird eine neue Methode zur analytischen Fortführung des elastischen Beitrags zu
den TPE-Amplituden entwickelt. Bei niedriger Impulsübertragung werden die inelastischen
Zwischenzustände eingeschloßen und der hadronische Beitrag zur TPE-Boxdiagramms durch
den vorwärts unpolarisierten virtuellen Compton-Streuungsprozess angeglichen und mit der
empirischen Angleichung verglichen. Aufbauend darauf wird die Theorie auch auf größere Im-
pulsübertragungen erweitert. Zu diesem Zweck wird der Pion-Nukleon Zwischenzustand im
Dispersions Relations-Ansatz untersucht.

Ein weiterer Teil dieser Arbeit wird dem Myon-Proton-Streuungsexperiment (MUSE) gewid-
met, das vorgeschlagen wurde, um die elastische Streuung der Elektronen und Myonen auf
dem Protonentarget zu vergleichen und, um den Protonenladungsradius in der Myon-Proton-
Streuung zu messen. Das Subprozent-Niveau der experimentellen Genauigkeit verlangt eine
Berücksichtigung des TPE-Beitrages. In dieser Arbeit wird das TPE-Boxdiagramm für den
Myon-Proton-Prozess für die Kinematik des vorgeschlagenen Experiments evaluiert. Durch
eine Angleichung des doppelt virtuellen Compton-Tensors mit der Form in Vorwörtrichtung
wird die inelastische TPE-Korrektur quantifiziert. Darüberhinaus wird der Beitrag der Sub-
traktionsfunktion im Detail untersucht, die wegen der beträchtlichen Masse des Myons relevant
ist. Die evaluierte TPE-Korrektur wird wesentlich sein bei der Auswertung des bevorstehenden
MUSE-Experiments.
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Chapter 1

Introduction

1.1 Standard model of particle physics

The development of science in the 20th century allowed us to understand and test nature at
very small length scales up to 10�18 m. At first, the Quantum Mechanics became the standard
framework in atomic physics accounting correctly for the non-relativistic effects on the scale
of 10�10 m by a solution of the Schrödinger equation. Later, the unification of the principles
of Quantum Mechanics and Special Relativity, resulting in the celebrated Dirac equation [1],
allowed us to describe the fine structure of atomic spectra and to predict the existence of
antiparticles. Paul Dirac (1902 - 1984) and Erwin Schrödinger (1887 - 1961) received the
Nobel prize in physics for their discoveries in 1933. The existence of antiparticles was confirmed
starting from the observation of positron [2] in cosmic rays in 1932 by Carl Anderson (1905
- 1991), who shared the Nobel prize in 1936 for this discovery. However, the attempts to
apply in Quantum Mechanics the widely used perturbation theory to the quantized fields lead
to divergences at higher orders. Additionally, from the experimental side the more precise
measurements of the shift of energy levels in hydrogen [3], known as the Lamb shift nowadays,
and of the electron anomalous magnetic moment [4] revealed unexplained discrepancies. For
their measurements, Willis Lamb (1913 - 2008) and Polykarp Kusch (1911 - 1993) received
the Nobel prize in 1955. The theoretical and experimental problems triggered the theoretical
development of Quantum Electrodynamics, the theory describing the interaction of light and
matter, starting with computations of Hans Bethe (1906 - 2005) [5]. As a consequence, in the
following theoretical works [6–13] the covariant and gauge invariant formulation of Quantum
Electrodynamics (QED) based on the abelian symmetry group U(1) was developed. For their
fundamental work with significant impact for the physics of elementary particles, Sin-Itiro
Tomonaga (1906 - 1976), Julian Schwinger (1918 - 1994) and Richard Feynman (1918 - 1988)
received the Nobel prize in 1965. QED was the first experimentally tested renormalizable
Quantum Field Theory (QFT), and became a paradigm for the theoretical description of other
fundamental interactions in nature.

The description in terms of QFT became very useful after the discovery of numerous particles
from the atmospheric cosmic rays and later on from particle accelerators. The increasing
number of discovered particles and measurements of their properties in the 1950th called for
a classification of them and a description of their interactions. This led to the development of
the Standard Model of elementary particles that describes electromagnetic, weak and strong
forces in a closed and self-consistent way. We show all particles in the Standard Model and
the tree-level interactions among them in Fig. 1.1 [14]. The strong interaction is symmetric
under the non-abelian SU(3)C gauge symmetry group and takes place between quarks and
gluons. The latter ones are the self-interacting particles of the Yang-Mills SU(3)C theory.
This fact causes the vanishing of the strong interaction coupling constant at high energies
(asymptotic freedom). For the discovery of this feature of Quantum Chromodynamics (QCD)
Gross, Politzer and Wilczek received the Nobel prize in 2004. Due to an increase of the
coupling constant at low energies, the perturbation theory in QCD is not applicable in this
region. Only a numerical solution on a space-time lattice and phenomenological effective field
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Chapter 1 Introduction

theory descriptions can give quantitative predictions at low energies. All quarks participate
in U(1)Y hypercharge interaction. Left-handed quarks participate also in the weak interaction
entering it as SU(2)W doublets. The weak interaction is mediated by Yang-Mills W gauge
bosons while the hypercharge interaction is mediated by the B boson. Left-handed leptons
with corresponding left-handed neutrinos and the Higgs field also participate in the U(1)Y
hypercharge interaction and weak interaction as SU(2)W doublets. For the unified description
of the weak and electromagnetic interactions Weinberg, Glashow and Salam received the Nobel
prize in 1979. The Higgs field is a self-interacting complex scalar field with an SU(2)W⇥U(1)Y
symmetric potential. At very high energies all fields of the Standard Model, except for the
Higgs field, are massless, and the theory is symmetric under SU(3)C ⇥SU(2)W ⇥U(1)Y gauge
symmetry. However, when the Higgs field selects the minimum of its potential, the symmetry
breaks to SU(3)C ⇥ U(1)EM. W 0 and B bosons can be combined in the photon, which is
U(1)EM gauge boson, and massive U(1)EM neutral Z0 field, while W± bosons became massive
and charged under U(1)EM. All Standard Model fermions, except for neutrinos, receive masses
through the interaction with the Higgs field.

Figure 1.1: Standard model of elementary particles and its tree-level interactions. W and Z
bosons couple to all SM fermions at tree level, photon (�) couples only to charged
particles, i.e., all fermions except for neutrinos, and gluons couple to quarks only.
Gluons, W/Z and Higgs bosons are self-interacting particles, the photon couples to
W± bosons. The Higgs boson has non-zero couplings with all massive particles. The
values of masses are approximately indicated. For most recent values see Review
of Particle Physics (Particle Data Group Collaboration) [15].
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1.1 Standard model of particle physics

The theoretical foundations of the Standard Model were established in 1960th and 1970th
in complementary works of experimental and theoretical groups. The discovery of the charm
quark in 1974 was expected [16] and predicted from the GIM mechanism [17] that explained the
suppression of the Flavor Changing Neutral Currents in a consistent way. The GIM mechanism
allowed to put limits on the mass of the charm quark before its discovery. Observing that
CP-violation in decays of neutral kaons could not be explained in a model with four quarks,
Kobayashi and Maskawa [18] generalized the Cabbibo matrix with two quark families, which
relates free and weakly interacting quark eigenstates, into the Cabibbo-Kobayashi-Maskawa
(CKM) matrix with three families of quarks. They have predicted bottom and top quarks by
this extension. For these studies Kobayashi and Maskawa obtained the Nobel prize in 2008 after
the discovery of the bottom quark in 1977 at Fermilab [19] and top quark in 1994-1995 by the
D0 and CDF experiments at Fermilab [20,21]. Prior to the top quark observation, its mass was
bounded from the precision measurements of the W/Z masses through electroweak radiative
corrections. The account of radiative corrections became possible after works of t’Hooft and
Veltmann [22], who had shown the renormalizability of the gauge theories. They were awarded
the Nobel prize in 1999 for this work.

The most complicated and powerful machine in the history of particle physics, Large Hadron
Collider (LHC), was built with the aim to discover the Higgs boson, the last unobserved particle
from the Standard Model. The first beam was steered around the 27 km path in 2008. It is
remarkable that the predictive power of the Standard Model and results of searches from LEP
at CERN and Tevatron at Fermilab allowed tuning LHC to search for a particle in the particular
mass range exploiting the values of experimental parameters in the electroweak sector within the
machinery of radiative corrections. After test runs and data taking, the discovery of the Higgs
boson [23, 24] in the decay channel into two photons, which provided an experimentally clean
signal, was announced on July 4, 2012 validating the Standard Model. For their theoretical
proposal of a mechanism explaining the origin of mass of subatomic particles, which have been
confirmed 50 years after the original ideas, François Englert and Peter Higgs received the Nobel
prize in 2013.

Despite a self-consistent description of the overwhelming amount of the existing experimental
data in particle physics, the Standard Model cannot explain all observed phenomena. All three
neutrino flavors are assumed to be massless in the Standard Model. However, in 1998 the
Super-Kamiokande experiment had discovered the neutrino flavor oscillations in atmospheric
neutrinos [25] and in 2001 the oscillations were confirmed measuring the flux of solar neutrinos
at Sudbury Neutrino Observatory [26]. These results indicated that neutrinos are massive
particles. A new broad field of experimental and theoretical studies was opened. The leaders
of these two research groups, Arthur B. McDonald and Takaaki Kajita, were awarded the Nobel
prize for the discovery of neutrino oscillations in 2015.

The evidence of particle physics beyond the Standard Model makes it fascinating and chal-
lenging to find and study any experimental deviations from the theoretical predictions. There-
fore, such deviations attract a lot of theoretical and experimental attention. For example, the
recent unexpected 750 GeV diphoton excess at LHC at 3.6� [27] (2.6� [28]) level, seen by
ATLAS (CMS), lead to more than hundred theoretical papers within the first month after the
official announcement of this preliminary result. Another active field of theoretical and exper-
imental activity arose after the measurement of the anomalous magnetic moment of the muon
with sub-ppm precision with a result that differs from the theoretical prediction by (2.2�2.7)�
standard deviations [29,30]. The improved theoretical analysis [31,32] increased this difference
to (3.6�3.7)� and new experiments at Fermilab [33] and J-PARC [34] are planned with the aim
to improve on the precision and to indicate the possible sign of new physics. The most signifi-
cant discrepancy so far is related to measurements of the proton charge radius from the Lamb
shift in muonic hydrogen and elastic electron-proton scattering experiments. The largest un-
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Chapter 1 Introduction

certainty in the theoretical input for these two problems comes from the hadronic physics. The
latter describes QCD at low energies in the non-perturbative regime and investigates hadrons
as particle states. Such effective description often depends on a particular model and requires
experimental information as an input. This thesis aims to decrease the model dependence and
uncertainties in the typical analysis of experimental data on the proton structure at the low
energy precision frontier.

1.2 Proton and its electromagnetic structure

The first transmutation of one nucleus into another one was performed in 1917 at the Victoria
University of Manchester, UK, by the group of Ernest Rutherford (1871 - 1937). Using alpha
radiation and pure nitrogen they had converted the nitrogen nuclei into the oxygen nuclei
through the reaction 14N + ↵ ! 17O + p. Rutherford had identified the hydrogen atoms in
the products of the reaction by similarity with the products of the scattering of ↵ particles on
hydrogen atoms. This result had shown that the nitrogen nucleus contains the hydrogen nuclei
as constituents. Following the Prout’s hypothesis (1815) Rutherford had assumed that all other
nuclei also contain the hydrogen nuclei as a building block since the latter was known as the
lightest nucleus and masses of the heavier nuclei were approximately given by the integers of
the hydrogen mass. A new particle was named by Rutherford as a proton in 1920 and was
considered as a fundamental particle until the experimental evidence of the anomalously large
magnetic moment of the proton. The group of Otto Stern (1888 - 1969) at the University of
Hamburg in 1933 had measured the value of the magnetic moment that was in contradiction
with the Dirac theory. This result indicated the composite nature of the proton. Otto Stern
received the Nobel prize in 1943 partly for this discovery.

In view of the Stanford linear electron accelerator program, which expected to have a high-
intensity beam of relativistic electrons, Marshall Rosenbluth (1927 - 2003) had derived the
cross section expression for the elastic scattering of relativistic electrons on the spherically
symmetric proton in the assumption of the exchange of one virtual photon [35]. In 1953, the
increase of electron beam energy at the Stanford University and the University of Michigan
to hundreds MeV and consequently the decrease of the De Broglie wavelength of electrons
allowed to probe the nucleus structure and to measure the charge densities and radii of nuclei.
In 1954, the similar experiments on hydrogen were initiated by the group of Robert Hofstadter
(1915 - 1990). These experiments demonstrated that the proton has a finite size and allowed
to extract the Dirac FD and Pauli FP proton form factors (FFs) from the Rosenbluth cross
section expression at different electron scattering angles [36].1 For his pioneering studies of
electron scattering in atomic nuclei and discovery concerning the structure of nucleons Robert
Hofstadter received the Nobel prize in 1961 [37].

The other way to access the electromagnetic proton FFs was proposed by Akhiezer and Rekalo
[38, 39], and separately by Dombey [40,41]. They studied the polarization observables instead
of unpolarized scattering in order to precisely determine the nucleon FFs. The development of
the recoil polarization technique as well as the implementation of polarized targets at electron
scattering facilities led to the possibility of a second method of proton FFs extraction. Such
experiments access the ratio µpGE/GM

2 directly from the ratio of the asymmetries with the
transverse and longitudinal nucleon polarization in the elastic electron-nucleon scattering. The
longitudinally polarized electron beam is used in these measurements. For squared momentum
transfers Q2 up to 8.5 GeV2, over the past 15 years this ratio has been measured in a series

1The unit fermi (1 fm = 10�15 m) was first introduced in Ref. [36].
2Nowadays it is more convenient to work in terms of the Sachs electric GE and magnetic GM FFs [42–44]

as they enter the Rosenbluth expression without the interference term GEGM . The Sachs form factors are
normalized to the proton electric charge and magnetic moment µP as GE(0) = 1, GM (0) = µP .
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1.2 Proton and its electromagnetic structure

Figure 1.2: Ratio µpGE/GM extracted by Rosenbluth method (green rhombi and hollow circles)
and by recoil polarization technique (star and solid triangles, circles, squares).

of experiments at Jefferson Laboratory (JLab), Newport News [45–48], with plans to extend
these measurements in the near future at the JLab 12 GeV facility to even larger Q2 values [49].
The measurements in the polarization transfer experiments gave strikingly different results in
comparison with the available data from the Rosenbluth separation method for the FF ratio at
Q2 & 1 GeV2, see Fig. 1.2 [50]. Two-photon exchange (TPE) processes have been proposed as
a plausible solution to resolve this puzzle [51, 52], see Refs. [53, 54] for a review. Estimates for
TPE processes were studied in a variety of different model calculations, see e.g. Refs. [51,55–66],
and first phenomenological extractions of TPE observables based on available data were given
in Refs. [67–72]. Furthermore, dedicated experiments to directly measure TPE observables at
large momentum transfer Q2 & (1 � 2) GeV2 have been performed in recent years measuring
the polarization transfer [73]. The ratio of the cross sections of the electron-proton to positron-
proton elastic scattering, which deviates from unity due to the TPE correction entering the
electron and positron scattering with different signs, can be used for an extraction of the TPE
correction. With improved precision in comparison with first experiments [74] this ratio was
measured at the VEPP-3 storage ring in Novosibirsk [75, 76] and by the CLAS Collaboration
at JLab [77–79], while the analysis of the OLYMPUS experiment at DESY is ongoing [80,81].

The leading deviations of a proton from the spherical shape are described in terms of scalar
electric ↵E and magnetic �M polarizabilities [82]. In analogy to the classical electrodynam-
ics, these are just coefficients between the applied electric (magnetic) field and the induced
electric (magnetic) dipole moment. Polarizabilities provide a leading order correction to the
Compton scattering on a proton. They are extracted experimentally from the precise mea-
surements of the angular distribution of the unpolarized Compton scattering at low energy
experiments [83] subtracting the contribution where the proton moves as a whole due to its
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Chapter 1 Introduction

charge and magnetization (Born contribution) [84]. The sum ↵E + �M can be determined
from the total photoabsorption cross section with the help of Baldin sum rule [85] that has its
foundation in dispersion theory. With the development of the chiral perturbation theory, the
scalar electromagnetic polarizabilities of nucleons are also predicted theoretically [86,87]. The
current values of the proton magnetic dipole polarizability, which are used in this thesis, are
shown in Fig. 1.3 [88].

Figure 1.3: The magnetic dipole polarizability of the proton. The dispersion relation result [89]
is compared with the experimental value [15], the prediction of B�PT [90], fits of
experimental data using the heavy baryon chiral perturbation theory (HB�PT) and
the baryon chiral perturbation theory (B�PT).

At larger energies, other particles than the proton can be created resulting in the so-called
inelastic final state in both ep and �p scattering. Such process is phenomenologically described
in terms of the inelastic proton structure functions. The typical cross section shape in the region
of first inelastic states reflects a resonance structure. The data in this region had shown that
the resonance excitations were quite large with a small non-resonant background. Up to now,
the most precise data on the proton structure functions in this region comes from the series of
experiments at JLab [91,92]. The first inelastic state contains the nucleon and the pion as the
lightest meson and is studied in detail by the measurement of polarization observables. The
data on the photo- and electroproduction of pions is fitted by the partial-wave analysis under
the assumption that all relevant resonances have a Breit-Wigner form. These fits are collected
into such solutions as MAID [93,94] and SAID [95]. The most precise experimental data on the
pion electroproduction in the resonance region is coming from JLab at Newport News, MAMI
at Mainz, ELSA at Bonn, MIT-Bates at Cambridge (US), and on the pion photoproduction
from LEGS at Brookhaven and GRAAL at Grenoble.

Above the resonance region the ep scattering with significant energy transfer to a proton is
called the deep inelastic scattering (DIS). Most likely other particles than the proton are created
in the final state. Already the first results from the electron accelerator (1967-1972), which
allowed to operate the electron beam with an energy up to 21 GeV, at Stanford University
had shown that deep inelastic structure functions exhibit the scaling behavior, suggested by
Bjorken [96]. In the limit of high energy and high momentum transfer the proton structure
functions depend only on one variable (momentum transfer) rather than the two variables
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1.3 Proton charge radius puzzle

allowed by kinematics. These features were explained in the naive parton model developed
by Feynman [97]. Afterward, Callan and Gross have derived the relation between the proton
structure functions in the quark model and thereby have shown that partons were particles
of spin-1/2 [98]. The new constituents were identified with the quarks from the Gell-Mann
or Zweig model of hadrons (1964) [99, 100]. For the pioneering experimental investigations
concerning deep inelastic scattering of electrons on nucleons that lead to the development of
the quark model, J. Friedman, H. Kendall and R. Taylor received the Nobel prize in 1990 [101].
Later, the precise measurements of the proton structure functions in DIS region were performed
with the HERA (Hadron-Electron Ring Accelerator) accelerator at DESY, Hamburg (1992-
2007).

1.3 Proton charge radius puzzle

The most elementary quantity that characterizes the proton electromagnetic structure is its
root mean square (rms) charge radius RE . The conventional definition of the charge radius is
given by

R2
E = �6

dGE(Q2)

dQ2

�

�

�

�

Q2=0

. (1.1)

Already the scattering experiments of Rutherford had estimated the order of the proton size
RE ⇠ 1 fm. The first measurements of the proton radius as a FF slope were performed
by Hofstadter’s group [102]. However, they assumed the same behavior of the Dirac and
Pauli proton FFs and the extracted value RE = 0.74(24) fm has quite large uncertainty.
The most precise measurement of the proton charge radius from the scattering experiments
was performed by the A1 Collaboration at MAMI [103, 104]. The resulting value is given by
RE = 0.879(8) fm [104].3

The proton charge radius can be extracted by a second independent method. The leading
finite size correction to the Lamb shift in the hydrogen S states is proportional to R2

E and can
be evaluated using the scattering result for the charge radius. The problem can be inverted, and
one can extract RE from the spectroscopy measurements. The increasing experimental accuracy
by an order of magnitude of the atomic transitions measurements in electronic hydrogen in the
1990th [111] required to account for the mentioned proton structure corrections and allowed to
perform the radius extraction. The hydrogen spectroscopy results are in a fair agreement with
the results from the electron-proton scattering. The proton size measurements by the second
method were realized also in experiments with muons. The Bohr radius in muonic hydrogen
is 186 times smaller than in electronic hydrogen leading to a strongly enhanced (by the third
power of the lepton mass) sensitivity to the proton structure. The spectroscopy experiments
at PSI with muonic hydrogen were planned with the aim to increase the precision of the
proton charge radius measurement by an order of magnitude [112]. It came as a big surprise
that extractions of the radius from muonic hydrogen Lamb shift measurements performed by
the CREMA Collaboration [113, 114] (RE = 0.84087(39) fm) are in strong contradiction, by
around 7 standard deviations, with values obtained from the shifts of energy levels in electronic
hydrogen and deuterium [115] (RE = 0.8758(77) fm) and with elastic electron-proton scattering
experiments, see Fig. 1.4 as an illustration of these results. The so-called "proton radius puzzle"
has triggered a large activity and is the subject of intense debate, see e.g. Refs. [116–118] for
recent reviews.

3Note that the revised analyses of the electron-proton scattering data in Refs. [105–107] gave a result consistent
with the muonic hydrogen value RE ⇡ 0.84 fm , while the result of analyses in Refs. [108–110] is in agreement
with the value of Ref. [104].
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PSI, µH
Antognini et al.
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Figure 1.4: The proton charge radius results from different experimental techniques. The upper
value corresponds with the analysis of the electron-proton scattering data performed
by the A1 Collaboration at MAMI [104]. The revised extraction with account of
the JLab form factor ratio µPGM/GE measurements at low Q2 [119] is indicated
as "JLab scatt". The CODATA value [115] is given by the combined result from
the electronic hydrogen and deuterium spectroscopy. The lowest value is obtained
from the muonic hydrogen Lamb shift measurement performed by the CREMA
Collaboration at PSI [114].

In order to clarify whether the discrepancy is coming from the proton itself, from muons or
from the theoretical treatment of the bound states in QED, experiments with light nuclei are
required. The high precision results of the 1S-2S splitting from the isotope shift measurement
in ordinary electronic hydrogen and deuterium [120] allow to extract the difference between the
deuterium (Rd) and proton charge radii very accurately. In combination with the CODATA-
2010 proton charge radius value [115] (RE = 0.8775(51) fm) the deuterium radius is given by
Rd = 2.1424(21) fm that is 5 times more precise than the value coming from the scattering data
Rd = 2.130(10) fm. The precision of the electron-deuteron scattering experiments is planned
to be increased by ongoing experiments at Mainz [118, 121]. The muonic deuterium Lamb
shift measurements has already been performed at PSI [122]. The obtained deuterium radius
combined with the electronic isotope shift yields a smaller value of the proton charge radius,
similar to the one from muonic hydrogen. The muonic deuterium radius is 3.5� away from
the electronic spectroscopy result. Also new Lamb shift experiments with µ4He+ and µ3He+

have been recently performed by the CREMA Collaboration at PSI [118, 123] and seem to be
in agreement with corresponding electron-proton scattering results.

In the field of elastic electron-proton scattering, new high-precision unpolarized scattering
experiment at very low Q2 (PRad) is being performed at JLab [124]. They plan to measure
the electron-proton scattering at very small Q2 values down to 10�4 GeV2 and hope to achieve
a sub-percent model-independent extraction of the proton charge radius. The extraction of
proton FFs at very low Q2 at MAMI is also being pursued using the initial state radiation
(ISR) technique [125]. The energy of the incoming electron can be decreased due to ISR
causing a quite small value of Q2. The first results of this experiment [126] show a good
agreement with the form factors extraction from the elastic electron-proton scattering [104].
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1.4 Motivation and Outline

To shed further light on this puzzle, several new scattering experiments involving muons are
also being planned. Among them few experiments aim to test the lepton universality in the
interaction of lepton with a proton. One can compare the elastic scattering of electrons and
muons on the proton target and measure the proton charge radius in the elastic muon-proton
scattering in a similar way as it was done in the elastic electron-proton scattering [35, 104].
Such an elastic scattering experiment is presently being planned by the MUSE Collaboration
at PSI [127]. However, the information from a quite large range of momentum transfers can be
required to test the consistency of FF fit [128,129]. Complementary, one can also compare the
electron and muon pair photoproduction on the proton target as proposed in Ref. [130]. By
measuring the µ�µ+ over e�e+ production with a 10�3 accuracy on a ratio of cross sections,
such experiment has the potential to distinguish between both proton radius values.

1.4 Motivation and Outline

The limiting accuracy in extracting the proton charge radius from the Lamb shift measurements
in muonic atoms is due to the TPE hadronic correction.4 To evaluate this correction, one
considers the TPE graph in the forward kinematics neglecting the external particles momenta
that are suppressed by the fine structure constant ↵ = e2/(4⇡) ⇡ 1/137. The TPE correction
is expressed in terms of the forward doubly virtual Compton scattering (VVCS) amplitudes,
which has been estimated phenomenologically in Refs. [131–137]. The input was used in terms
of the unpolarized proton structure functions and a model for the subtraction function of the
forward VVCS which causes the main theoretical uncertainty. The attempt to explain the
proton radius puzzle with an enhanced subtraction function at large photon virtuality was
made in Ref. [138]. The estimates from the non-relativistic QED effective field theory [139],
as well as from the chiral effective field theory [140–143] include evaluation of the subtraction
function at low photon virtuality. The total TPE corrections to the Lamb shift were found
to be in the 10-15 % range of the total discrepancy for the proton charge radius extractions
between electron data and muonic hydrogen spectroscopy, see Ref. [88] for a detailed summary.
The intriguing subtraction function, in principle, can be determined with an account of the
high-energy proton structure functions data [136,144,145].

In Chapter 2, we extract the subtraction function at low photon virtuality from the high-
energy DIS HERA data [146, 147] assuming the absence of a constant term at infinity and
estimate its contribution to the Lamb shift in muonic hydrogen [144].

The other recent experimental achievement in the field of atomic spectroscopy is the measure-
ment of the 2S hyperfine splitting (HFS) in muonic hydrogen by the CREMA Collaboration at
PSI [114]. Also the new measurements of the 1S hyperfine splitting (HFS) in muonic hydrogen
and µ3He+ with 1 ppm precision were proposed by the CREMA Collaboration [148]. Such an
impressive precision requires an additional theoretical studies of the TPE correction, which has
the relative size of (6 � 7) ⇥ 10�3 in µH.

We introduce the forward lepton-proton scattering amplitudes and derive dispersion relations
with the same steps as the derivation of sum rules for Compton or light-by-light scattering
[149,150]. Furthermore, we express the TPE corrections to the Lamb shift and HFS of S energy
levels through the forward TPE amplitudes at threshold. Due to a pure convergence, we are not
able to express the correction to the Lamb shift through the experimental information within
dispersion relations for the lepton-proton amplitudes, but the correction to the HFS is entirely
expressed through the proton spin structure. The resulting HFS correction agrees with the
standard approach of Iddings, Drell and Sullivan et al. [53, 137, 151–160], subject to validity
of the Burkhardt-Cottingham sum rule [161]. However, the contribution of each channel to

4The TPE hadronic correction to the Lamb shift in electronic hydrogen is few orders of magnitude lower than
the current experimental accuracy due to the suppression by the electron mass.
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the TPE correction in the present approach, which is based on the on-shell information only,
differs from the literature result. We reevaluate the elastic, phenomenological �(1232) [65] and
polarizability TPE correction to S-level HFS in H and µH.

The sub-percent level of precision in the scattering experiments also calls for studies of
the higher order effects, as the corrections to the scattering cross sections are suppressed by
one power in ↵ and also in the few % range. Modern measurements partially account for
the hadronic correction through the radiative corrections which include the graph with the
exchange of two photons [162,163] where one of these photons is soft. Although the corrections
to the Coulomb distortion in the elastic electron-proton scattering were found to be small in
the low-Q2 region [164], a high precision extraction of the proton radii, especially its magnetic
radius, calls for an assessment of the model dependence of the TPE corrections.5

In Chapter 3 we introduce the general formalism of the elastic lepton-proton scattering fol-
lowing Refs. [52, 167–169] and relate TPE amplitudes with measured observables. Afterward,
in Chapter 4 we pay an additional attention to TPE corrections from the intermediate proton
state [170, 171]. We describe the evaluation of the TPE diagram in a box graph model with
the on-shell form of proton-photon vertices and present the results for the TPE correction in
the kinematics of the MUSE experiment for the case of electron- and muon-proton scattering.
We write down dispersion relations for TPE amplitudes in the elastic electron-proton scatter-
ing [59], which do not require assumptions about the off-shell vertex, and generalize them to
the case of the massive lepton scattering. We also propose the method of an analytical con-
tinuation to the unphysical region for the imaginary parts of TPE amplitudes with the proton
intermediate state, which has the advantage to be valid for any parametrization of the elastic
proton FFs. Furthermore, we provide a detailed comparison of the proton intermediate state
TPE contribution in the dispersion relation method with the box graph model. In order to
minimize the model dependence due to unknown or poorly constrained contributions from other
intermediate states, we propose and apply the subtracted dispersion relation formalism in the
electron-proton scattering. The subtraction constant, which encodes the less well-constrained
physics at high energies, is fitted to the available data [104]. We apply the developed formalism
in the kinematical region of the CLAS data [77, 79] and make a prediction for the OLYMPUS
experiment [81].

In the region of very low momentum transfer, the total TPE correction (sum of the proton
and inelastic TPE) can be determined model-independently. In Chapter 5, we study the low
momentum transfer limit [144, 172]. The leading term in the momentum transfer expansion
of the TPE correction to the unpolarized electron-proton scattering cross section arises from
the scattering of the relativistic massless electron on a point charged target [173]. This result
in the electron-proton scattering was reproduced by R. W. Brown as the leading term in the
expansion of the proton intermediate state TPE in Ref. [174]. He has also found that the
subleading Q2 ln2 Q2 term entirely arises from this expansion, while the subleading Q2 ln Q2

term contains also the contribution from the inelastic TPE. The inelastic Q2 ln Q2 term can
be expressed in terms of an energy integral over the total photoabsorption cross section on a
proton target [166, 174]. In this work, we approximate the proton line of the TPE diagram in
form of the near-forward VVCS tensor. Such approximation allows to reproduce the leading
terms of the low-Q2 expansion in the elastic electron-proton scattering [174] and generalize
it to the case of massive lepton. We extend the low-Q2 limit of the inelastic TPE beyond
the leading Q2 ln Q2 term. We show that the subtraction function in the forward Compton
scattering is negligible in the elastic electron-proton scattering regardless of the near-forward
approximation and evaluate its contribution to the unpolarized muon-proton scattering. The

5Note that the TPE correction coming from the Coulomb photons [165] and inelastic intermediate states [166]
can also be important in the extraction of the electric charge radius according to Refs. [165,166].
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1.4 Motivation and Outline

residual TPE correction is presented as a double integral of the unpolarized proton structure
functions over the virtual photon energy and virtuality. We compare our results for the total
TPE correction in the electron-proton scattering with the TPE fit of Ref. [104], the recent
data from CLAS [79], VEPP-3 [76] and extrapolate our calculation to the low-Q2 region of
the OLYMPUS experiment [81]. Subsequently, we provide estimates for the upcoming MUSE
experiment.

We next turn to the study of TPE corrections with inelastic intermediate states at larger
momentum transfers. The inclusion of inelastic intermediate states in the model dependent
way was performed in Refs. [65, 175, 176]. Dispersion relations estimates in the region of
large momentum transfer were performed in Refs. [64, 66]. In Chapter 6 we study the pion-
nucleon intermediate states TPE contributions to the elastic electron-proton scattering in the
dispersion relation framework exploiting the invariant amplitudes of the pion electroproduction
from MAID. We firstly provide a detailed comparison of the P33 channel TPE with the near-
forward calculation in the region of low momentum transfer. We present the framework how
such calculations can be extended to include all ⇡N intermediate states.

We finish with conclusions and outlook in Chapter 7.
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Chapter 2

Forward lepton-proton scattering and two-photon
exchange (TPE) corrections to atomic energy levels

We start this thesis with studies of the elastic lepton-proton scattering in forward kinematics,
see Fig. 2.1 for notations. We introduce the forward amplitudes and relate the imaginary parts
of these amplitudes to experimental cross sections. For the TPE contribution, we write down
dispersion relations (DRs) and express the spin-dependent amplitudes through the proton spin
structure functions. We describe the forward VVCS tensor and provide an empirical estimate
of the subtraction function in the spin-independent Compton amplitude T1. Afterward, we
estimate the subtraction function contribution to the Lamb shift of the 2S energy level in
muonic hydrogen. We also express the TPE correction to the HFS in hydrogen-like atoms in
terms of the proton spin structure functions in the DR approach and provide its evaluation for
the 1S energy level correction in the electronic and muonic hydrogen.

Figure 2.1: Forward elastic lepton-proton scattering.

2.1 Forward lepton-proton scattering

Elastic lepton-proton scattering in forward kinematics l(k, h) + p(p,�) ! l(k, h0) + p(p,�0),
where h(h0) denote the incoming (outgoing) lepton helicities and �(�0) the corresponding proton
helicities respectively, is described by just one kinematical variable, e.g., the lepton energy in
the proton rest frame (laboratory frame) !. In this frame the particle momenta are given by
p = (M, 0), k = (!,k), with the proton (lepton) mass M (m). The squared energy in the
lepton-proton center-of-mass (c.m.) reference frame s is expressed in terms of the lepton energy
in the lab frame ! as

s = (p + k)2 = M2 + 2M! + m2. (2.1)

The forward elastic lp scattering is described by three non-vanishing independent helicity
amplitudes Th0�0,h�, see Fig. 2.1 for the notations of kinematics and helicities,

T++,++, T+�,+�, T��,++, (2.2)

with the positive helicity denoted by + and the negative helicity by �. Two amplitudes describe
processes without flip of helicities, while the amplitude T��,++ corresponds to the simultaneous
flip of the lepton and proton helicities conserving the total angular momentum.
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atomic energy levels

The contribution with exchange of a fixed number of photons, which are connected to the
lepton (proton) line, to the following three amplitudes has definite even-odd property with
respect to the crossing ! ! �!:

f± (!) = 1
2

�

T++++ ± T+�+�
�

, (2.3)
g (!) = 1

2T��++. (2.4)

The Lorentz structure of the forward amplitude is then given by

Th0�0,h� (!) =
f+ (!)

4Mm
ū
�

k, h0�u (k, h) N̄
�

p,�0
�

N (p,�)

� mf� (!) + !g (!)

8Mk2 ū
�

k, h0� �µ⌫u (k, h) N̄
�

p,�0
�

�µ⌫N (p,�)

+
!f� (!) + mg (!)

4Mk2 ū
�

k, h0� �µ�5u (k, h) N̄
�

p,�0
�

�µ�5N (p,�) , (2.5)

with u (ū) the lepton spinor, k the lepton momentum in the lab frame, N (N̄) the proton
spinor, �µ⌫ = 1

2 [�
µ, �⌫ ], the spinors are normalized as

ū (k, h) u (k, h) = 2m, N̄ (p,�) N (p,�) = 2M. (2.6)

We provide expressions for the helicity spinors used in this thesis in Appendix A and the
relation between the invariant amplitudes and possible observables in the forward lepton-proton
scattering in Appendix B.

In order to establish the even-odd properties for the invariant amplitudes under the crossing
! ! �!, we first perform the crossing on the lepton line and relate amplitudes of the lepton-
proton scattering f l�p(!) in the physical region (! > 0) to amplitudes of the antilepton-proton
scattering f l+p(�!) in the unphysical region (! < 0). Writing the general form of the amplitude
as1

T (!) =
3
X

i=1

Ai (!) ū(k0, h0)Oiu(k, h)N̄(p0,�0)OiN(p,�), (2.7)

with O = (1, �µ⌫ , �µ�5), we observe that after the replacement in the lepton line k ! �k, the
amplitude transforms to

T c (!) =
3
X

i=1

Ai (�!) ū(�k0, �h0)Oiu(�k, �h)N̄(p0,�0)OiN(p,�). (2.8)

We can rewrite the lepton spinor u in terms of the antilepton spinor v as u (�k, �h) =
��2v⇤ (k, h), where we exploit the same form u for the antilepton spinor as only particles
or antiparticles participate in scattering. The expression for the helicity amplitude is given by

T c (!) =
3
X

i=1

Ai (�!) vT
�

k0, h0� �+2 �0Oi�2v
⇤ (k, h) N̄(p0,�0)OiN(p,�). (2.9)

Transposing the lepton line, we obtain:

T c (!) =
3
X

i=1

Ai (�!) v̄ (k, h) �0
�

�+2 �0Oi�2
�T

v
�

k0, h0� N̄(p0,�0)OiN(p,�). (2.10)

1We distinguish the initial and final particles momenta in order to exploit the same steps of derivation for the
case of non-forward scattering in Section 3.2.
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2.1 Forward lepton-proton scattering

The tensor structure of Eq. (2.5) transforms to

T c (!) = �f+ (�!)

4Mm
v̄ (k, h) v

�

k0, h0� N̄(p0,�0)N(p,�)

� mf� (�!) � !g (�!)

8Mk2 v̄ (k, h) �µ⌫v
�

k0, h0� N̄(p0,�0)�µ⌫N(p,�)

� �!f� (�!) + mg (�!)

4Mk2 v̄ (k, h) �µ�5v
�

k0, h0� N̄(p0,�0)�µ�5N(p,�), (2.11)

which corresponds to the scattering of the antilepton off the proton.
According to crossing properties we can write amplitudes for the scattering of antilepton

f l+p in terms of the lepton scattering amplitudes f l�p as

f l+p
+ (!) = f l�p

+ (�!) , (2.12)

f l+p
� (!) = �f l�p

� (�!) , (2.13)

gl
+p (!) = gl

�p (�!) , (2.14)

where ! is treated as a complex variable. The perturbative contributions with odd number
of photons connected to the lepton (antilepton) line have different sign in the amplitudes of
the lepton-proton and antilepton-proton scattering as compared with the contributions with
an even number of photons, which have the same sign. We express the scattering amplitudes
in terms of the contributions with even f (2n)� (!) and odd f (2n�1)� (!) number of photons
connected to the lepton line, e.g.:

f l±
� (!) =

1
X

n=1

⇣

f (2n)�
� (!) ± f (2n�1)�

� (!)
⌘

, (2.15)

and obtain the following crossing relations for the contributions of graphs with n exchanged
photons on the real ! axis:

fn�
+ (!) = (�1)n

�

fn�
+ (�!)

�⇤
, (2.16)

fn�
� (!) = � (�1)n

�

fn�
� (�!)

�⇤
, (2.17)

gn� (!) = (�1)n (gn� (�!))⇤ . (2.18)

The optical theorem establishes the relation between the imaginary part of the forward
amplitudes and the total inclusive cross sections of lp collisions:

=f± (!) = M |k| (�++ (!) ± �+� (!)) , (2.19)
=g (!) = 2M |k| ��k (!) � �? (!)

�

, (2.20)

where �h� is the inclusive cross section with the incoming lepton helicity h and the incoming
proton helicity �; �? (�k) is the inclusive cross section with lepton and proton polarized
transversely and perpendicular (parallel) to each other. We express the latter cross sections in
terms of the proton structure functions (SFs) up to the order ↵2 in Section 2.3 and obtain the
imaginary parts of TPE amplitudes in the leading ↵ order with Eqs. (2.19-2.20).

The elastic (proton) contribution to the inclusive cross section is infrared divergent. This
divergence should be subtracted in a proper way in all three amplitudes. We realize this
subtraction for the case of amplitudes at threshold in Section 2.6.
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2.2 Dispersion relations for forward TPE amplitudes

Assuming analyticity of the forward amplitudes in the entire complex !-plane, except for the
branch cuts along the real axis extending from threshold to infinity, see Fig. 2.2, we can write
down the standard DRs:

<
⇢

f± (!)
g(!)

�

=
1

⇡

0

@

�m 
�1

+

1 
m

1

A

d!0

!0 � !
=
⇢

f±(!0)
g(!0)

�

, (2.21)

where
�

stands for the principal-value integration.

Figure 2.2: Complex plane of the lepton energy !.

Usually, the crossing relates the amplitude of the particle scattering with the amplitude of the
antiparticle scattering [177,178]. Nevertheless, for the TPE amplitudes, we exploit the crossing
in one channel due to the charge independence of the TPE contributions. Using properties of
the TPE amplitudes under the crossing ! ! �!, see Eqs. (2.16-2.18), we write down DRs
valid in the leading ↵ order:

<f2�
+ (!) =

4M

⇡

1 
m

!0|k0|� (!0)

!02 � !2
d!0, (2.22)

<f2�
� (!) =

2M!

⇡

1 
m

|k0| (�++ (!0) � �+� (!0))

!02 � !2
d!0, (2.23)

<g2� (!) =
4M

⇡

1 
m

!0|k0| ��k (!0) � �? (!0)
�

!02 � !2
d!0. (2.24)

These DRs are written for amplitudes in one channel contrary to the DRs for the forward
proton-proton scattering [177–179].

The high-energy behavior of the total unpolarized inclusive cross section requires a subtrac-
tion in the DR for the amplitude f2�

+ , e.g., at point !s:

<f2�
+ (!) � <f2�

+ (!s) =
4M

�

!2 � !2
s

�

⇡

1 
m

!0|k0|� (!0)

(!02 � !2) (!02 � !2
s)

d!0. (2.25)
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2.3 Relation of the forward TPE amplitudes to the proton structure functions

The lepton-proton DRs were checked in the leading QED order, see Appendix D for details.
However, the Regge behavior of the proton SF F1 makes the inclusive cross-section � divergent
due to the virtual photons with high energy in the lab frame. Consequently the DR for lepton-
proton amplitudes can not be exploited for the inelastic TPE contribution to the unpolarized
amplitude f+.

The DRs of Eqs. (2.23-2.25) have the same form as DRs for the light-by-light scattering [150].

2.3 Relation of the forward TPE amplitudes to the proton struc-
ture functions

In this Section, we first express the total inclusive cross sections in terms of the experimentally
measured proton SFs. Exploiting these relations, we express the real parts of the forward TPE
amplitudes (see Fig. 2.3 for kinematics of forward TPE) as integrals over the photon energy
⌫� in the lab frame and photon virtuality Q2.

Figure 2.3: Two-photon exchange graph in forward kinematics.

A common way to express the differential inelastic e�p scattering cross section assumes the
exchange of one photon. The differential cross section is given by the contraction of the leptonic
tensor Lµ⌫ and the hadronic tensor Wµ⌫ [15]. It is proportional to the phase space of the final
lepton (with 4-momentum k0 =

�

!0,k0� in the lab frame) and given by

d� =
e4

4M
p
!2 � m2

d3k0

(2⇡)32!0 (4⇡)Lµ⌫Wµ⌫ , (2.26)

with the unit of electric charge e. The kinematics are traditionally described by the kinematical
Bjorken variable xBj, the variable y related to the energy transferred by the virtual photon
relative to the beam energy and the momentum transfer Q2:

xBj =
Q2

2(p · q)
, y =

(p · q)

(p · k)
=

Q2

2xBjM!
, Q2 = �q2 = �(k � k0)2. (2.27)

The leptonic tensor is evaluated in QED. It is given by

Lµ⌫ = 2
�

kµk0⌫ + k0µk⌫ + (m2 � (k · k0))gµ⌫ � im"µ⌫⇢�q⇢s�
�

, (2.28)

where sµ is the lepton spin vector: sµsµ = �1, (s · k) = 0. The general Lorentz and gauge
invariant structure of the hadronic tensor Wµ⌫ , which preserves parity and charge conjugation
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invariance, is given by

Wµ⌫ =

✓

�gµ⌫ +
qµq⌫
q2

◆

F1

�

⌫� , Q
2
�

+
p̂µp̂⌫
(p · q)

F2

�

⌫� , Q
2
�

+ i"µ⌫↵�
Mq↵

(p · q)



S�g1
�

⌫� , Q
2
�

+

✓

S� � (S · q)

(p · q)
p�
◆

g2
�

⌫� , Q
2
�

�

, (2.29)

with p̂µ = pµ � (p·q)
q2

qµ, the virtual photon energy in the laboratory frame ⌫� = (p · q) /M and
the proton SFs F1

�

⌫� , Q2
�

, F2

�

⌫� , Q2
�

, g1
�

⌫� , Q2
�

, g2
�

⌫� , Q2
�

, which are extracted from
the experimental data. The proton spin 4-vector satisfies: S2 = �1, (S · p) = 0.

The total unpolarized cross section is given by

d2�

d⌫�dQ2
=

⇡↵2

(Q2)2
2

!2 � m2

✓

Q2 � 2m2

M
F1

�
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2
�

+

✓

2!2

⌫�
� 2! � Q2

2⌫�

◆

F2

�

⌫� , Q
2
�

◆

.

(2.30)

This expression reduces to the known expression [15] in the massless limit.
Consider a scattering of longitudinally polarized leptons on the proton polarized in the lepton

momentum direction �h� = �+� and the scattering on the proton polarized in the opposite
direction �h� = �++ with the proton (lepton) spin vector in the laboratory frame Sµ = (0, ��k̂)
(sµ = (|k|,!k̂)/m) and k̂ = k/|k|. For the cross sections difference we obtain:

d2�++ � d2�+�
d⌫�dQ2

=
4⇡↵2

⌫�MQ2

!

!2 � m2

⇢

� Q2

⌫�!
g2
�

⌫� , Q
2
�

+

✓

2 � Q2

2(!2 � m2)

✓

1 +
2⌫�m2

Q2!

◆✓

1 +
2⌫�!

Q2

◆◆

g1
�

⌫� , Q
2
�

�

.

(2.31)

This expression reduces to the known expression [15], [180] in the massless limit.
Consider the scattering of transversely polarized leptons on transversely polarized protons.

Denoting the averaged over the azimuthal angle cross section �? (�k) for scattering with
perpendicular (parallel) spin vectors of lepton (sµ = (0, cos�l, sin�l, 0)) and proton (Sµ =
(0, cos�p, sin�p, 0)),2 i.e., �l � �p = ±⇡/2 (�l � �p = 0) for the perpendicular (parallel) con-
figuration, we obtain:

d2�? � d2�k
d⌫�dQ2

=
2⇡m↵2

⌫�MQ2

1

!2 � m2

�

2g2
�

⌫� , Q
2
�

+

✓

1 +
!⌫�

!2 � m2

✓

1 +
m2⌫�
!Q2

+
Q2

4⌫�!

◆◆

g1
�

⌫� , Q
2
�

�

. (2.32)

Consequently, a measurement of the inclusive e�p cross sections accesses the proton spin SFs
g1 and g2.

The elastic scattering cross sections l�p ! l�p are obtained by substitution of the inelastic
SFs by the elastic contribution to them:

2The nontrivial relation �? = � holds for the lepton-proton scattering. We have obtained this relation in
one-photon exchange (OPE) approximation of Eq. (2.26) and have proved it by the direct cross sections
evaluation for the case of elastic scattering and by exploiting the symmetry properties of the helicity ampli-
tudes for the scattering to arbitrary channel lp ! lX.
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F el
1

�

xBj, Q
2
�

=
1

2
G2

M

�

Q2
�

� (1 � xBj) , (2.33)

F el
2

�

xBj, Q
2
�

=
G2

E

�

Q2
�

+ ⌧PG2
M

�

Q2
�

1 + ⌧P
� (1 � xBj) , (2.34)

gel1
�

xBj, Q
2
�

=
1

2
FD

�

Q2
�

GM

�

Q2
�

� (1 � xBj) , (2.35)

gel2
�

xBj, Q
2
�

= �1

2
⌧PFP

�

Q2
�

GM

�

Q2
�

� (1 � xBj) , (2.36)

where FD(Q2), FP (Q2), GE(Q2), GM (Q2) are the Dirac, Pauli, Sachs electric and magnetic
proton form factors and ⌧P = Q2/(4M2).

As a test, we also calculated the narrow � production cross sections, which are obtained by
substitution of the inelastic structure functions by the � contribution to them:

F�
1

�

xBj, Q
2
�

=
1

2
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� (M + M�)2 ⌧P
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M2
� � M2 + Q2
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3 (G⇤
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� (x� � xBj) , (2.37)
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(2.38)

g�1
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xBj, Q
2
�

+
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8
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� (M + M�)2 ⌧P

M�M
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(2.39)

g�2
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=
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M�M
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M2
� � M2 + Q2

��1G⇤
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M )2 � 3 (G⇤

E)2 + 6G⇤
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� (x� � xBj) , (2.40)

where G?
E(Q2), G?

M (Q2), G?
C(Q2) are the electric, magnetic and Coulomb form factors of Jones

and Scadron [181], which are functions of Q2 only, M� denotes the �-particle mass, with the
following convenient notations:

x� =
Q2

Q2 + M2
� � M2

, Q2
± = Q2 + (M� ± M)2 . (2.41)

Substituting the expressions for the inclusive cross sections of Eqs. (2.30-2.32) into the DRs,
see Eqs. (2.23-2.24), changing the integration order, as detailed in Appendix C, and expressing
the spin-dependent forward TPE amplitudes in terms of the proton SFs, we obtain:
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, (2.42)
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where we have introduced the notations:

|k| =
p

!2 � m2, |k0| =
q

!2
0 � m2, (2.44)

!0 = m
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p
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⌘

, (2.45)

⌧l =
Q2

4m2
, ⌧P =

Q2

4M2
, ⌧̃ =

⌫2�
Q2

. (2.46)

Furthermore, in Eqs. (2.42, 2.43) the elastic threshold ⌫thr is given by ⌫thr = 0.
The leading TPE correction to the atomic energy levels is given by the values of the ampli-

tudes at threshold ! = m. The TPE amplitudes f2�
� , g2� at threshold can then be expressed

in terms of the proton spin SFs as
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(2.47)

g2� (m) = �16↵2
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with

⇢(⌧) = ⌧ �
p

⌧(1 + ⌧). (2.49)

2.4 Forward doubly virtual Compton scattering (VVCS) tensor

On the other hand the forward TPE amplitude can be evaluated considering the lower blob of
the TPE graph in Fig. 2.3 as a forward doubly virtual Compton scattering (VVCS) process
on a proton (see Fig. 2.4): �⇤ (q,�1) + N (p,�) ! �⇤ (q,�2) + N (p,�0). The forward VVCS
amplitude T�

2

�0,�
1

� can be written in terms of the forward VVCS tensor Mµ⌫ as

T�
2

�0,�
1

� = "⌫ (q,�1) "
⇤
µ (q,�2) · N̄

�

p,�0
�

(4⇡Mµ⌫)N (p,�) , (2.50)

where "⌫ , "⇤µ denote the virtual photon polarization vectors, N, N̄ the proton spinors, and
�1,�2 (�,�0) the photon (proton) helicities.

The forward VVCS tensor Mµ⌫ can be expressed as the sum of a symmetric (spin-independent)
Mµ⌫

S and an antisymmetric (spin-dependent) Mµ⌫
A parts:

Mµ⌫ = Mµ⌫
S + Mµ⌫

A , (2.51)
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Mµ⌫
S =
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Mµ⌫
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2)

�

,

(2.53)

with the forward Compton amplitudes T1, T2, S1, S2, which enter Eq. (2.51) in a gauge-
invariant way, e.g., qµMµ⌫ = q⌫Mµ⌫ = 0, and â = �µaµ. The antisymmetric tensor can be
written in a scalar form when the initial and final protons have the same spin 4-vector Sµ:

Mµ⌫
A =

i

M
✏µ⌫↵� q↵S� S1(⌫� , Q

2) +
i

M3
✏µ⌫↵� q↵

⇣

(p · q) S� � (S · q) p�
⌘

S2(⌫� , Q
2).

(2.54)

Figure 2.4: Forward VVCS process.

Performing the crossing of the photon lines, we obtain the symmetry properties of the forward
Compton amplitudes:

T1(⌫� , Q
2) = T1(�⌫� , Q2), T2(⌫� , Q

2) = T2(�⌫� , Q2), (2.55)
S1(⌫� , Q

2) = S1(�⌫� , Q2), S2(⌫� , Q
2) = �S2(�⌫� , Q2). (2.56)

Applying the optical theorem for the scalar form of the forward VVCS tensor, we relate its
imaginary part to the hadronic tensor Wµ⌫ by

=Mµ⌫ =
e2

4M
Wµ⌫ , (2.57)

The absorptive parts of the forward VVCS amplitudes T1, T2, S1, S2 are related to the proton
structure functions F1, F2, g1, g2 by

=T1(⌫� , Q
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2). (2.59)

The real part of the even amplitude T1 can be expressed through a subtracted dispersion
relation as

<T1(⌫� , Q
2) = <TBorn

1 (⌫� , Q
2) + Tsubt
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� , (2.60)
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with the pion-proton inelastic threshold: ⌫inelthr = m⇡ +
�

m2
⇡ + Q2

�

/ (2M), where m⇡ denotes
the pion mass, and Tsubt

1 (0, Q2) is the subtraction function at zero photon energy ⌫� = 0, which
we have conveniently defined relative to the Born contribution as specified below. The real part
of the spin-independent even amplitude T2 can be obtained from an unsubtracted DR:
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The real part of the spin-dependent amplitudes S1 (even amplitude) and S2 (odd amplitude)
also can be reconstructed within unsubtracted DRs:
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Assuming the vanishing high-energy behavior of the S2 Compton amplitude:
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, (2.64)

we can also write down the unsubtracted DR for the even amplitude ⌫�S2
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[182]:
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Polarizabilities in Compton scattering are conventionally defined by separating the Compton
amplitudes into Born and non-Born parts. The Born contributions to the forward VVCS
amplitudes TBorn

1 , TBorn
2 , SBorn

1 , SBorn
2 ,
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Note that in the derivation of DRs as given in Eqs. (2.60-2.65) the elastic (on-shell pro-
ton pole) term contribution is given by only the first term of Eqs. (2.66-2.70). This pole

26



2.4 Forward doubly virtual Compton scattering (VVCS) tensor

contribution differs from the Born term by

TBorn
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For the amplitudes T2 and S2 the pole and Born terms are identical.
Note that for the amplitude T1, which has to be subtracted, the difference between the Born

and pole terms is an energy (⌫�) independent function. We therefore have absorbed it in the
definition of Tsubt

1 (0, Q2), which in Eq. (2.60) is defined as

Tsubt
1 (0, Q2) ⌘ T1(0, Q2) � TBorn

1 (0, Q2) ⌘ Q2�(Q2). (2.74)

The advantage of expressing the amplitude T1 w.r.t. to its Born contribution, results from the
fact that the non-Born amplitude in Eq. (2.74) starts at Q2, and is usually parametrized in
terms of polarizabilities, i.e., the function �(Q2) at Q2 = 0 is given by the magnetic polariz-
ability �M : �(0) = �M [135,141].

Note, furthermore, that when subtracting from DR for the amplitude ⌫�S2

�

⌫� , Q2
�

of Eq.
(2.65) the DR for the amplitude S2

�

⌫� , Q2
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of Eq. (2.63) multiplied by ⌫� , we obtain the
"superconvergence relation". It is known as the Burkhardt-Cottingham sum rule:
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It has a simple form for the proton structure function g2 expressed as a function of the Bjorken
variable xBj:

1ˆ

0

dxBj g2
�

xBj, Q
2
�

= 0. (2.76)

2.4.1 Empirical estimate of T1 subtraction function
We start this Section by discussing an empirical estimate of the subtraction function Tsubt

1 (0, Q2),
or equivalently the function �(Q2) defined through Eq. (2.74), at non-zero Q2 from the exper-
imental information about the inelastic electron-proton scattering.

Following the idea of Refs. [183, 184], the subtraction function can be obtained from an
unsubtracted dispersion relation for the amplitude T1(⌫� , Q2)�TR

1 (⌫� , Q2), where TR
1 denotes

a Regge amplitude which is chosen such as to match the high-energy behavior of the amplitude
T1, i.e., T1�TR

1 ! 0 for ⌫� ! 1.3 The function TR
1 is chosen as a sum over the leading Regge

trajectories:
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3This assumes that T
1

(⌫� , Q
2) does not have a fixed J = 0 pole behavior when ⌫� ! 1.
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with the intercept ↵0 > 0, ⌫0 is an arbitrary hadronic scale, and �↵
0

(Q2) are the Regge residues.
Using Eqs. (2.58), the imaginary part of TR

1 yields the corresponding Regge structure:

FR
1 (⌫� , Q

2) ⌘ M

⇡↵
=TR

1 (⌫� , Q
2) =

X

↵
0

>0

�↵
0

(Q2) (⌫� � ⌫0)
↵
0 ⇥ (⌫� � ⌫0)

+
X

↵
0

>1

�↵
0

(Q2)↵0⌫0 (⌫� � ⌫0)
↵
0

�1 ⇥ (⌫� � ⌫0) . (2.78)

The Regge residues �↵
0

(Q2) can be obtained by performing a fit to inclusive electroproduction
data on a proton. In our work we use the Donnachie-Landshoff (DL) high-energy fit [146] to
obtain the proton structure function F1 as

F1(⌫� , Q
2) �!

⌫��

X

↵
0

>0

�↵
0

(Q2)⌫↵0

� , (2.79)

where the values of the Regge intercepts ↵0 and the residue functions �↵
0

(Q2) are detailed in
Appendix E.

By comparing Eq. (2.78) and (2.79) we notice that the second term in Eq. (2.78) is chosen
such that for the Regge trajectory with 1 < ↵0 < 2 ("Pomeron"):

F1(⌫� , Q
2) � FR

1 (⌫� , Q
2) ⇠

⌫��
⌫↵0

�2
� , (2.80)

whereas for the Regge trajectory with 0 < ↵0 < 1 (Reggeon):

F1(⌫� , Q
2) � FR

1 (⌫� , Q
2) ⇠

⌫��
⌫↵0

�1
� . (2.81)

This ensures that in all cases the quantity [F1(⌫� , Q2) � FR
1 (⌫� , Q2)] ! 0 when ⌫� ! 1.

Consequently, one can write down an unsubtracted dispersion relation for T1 � TR
1 at fixed

Q2 as

T1(⌫� , Q
2) � TR

1 (⌫� , Q
2) = Tpole

1 (⌫� , Q
2) +

2

⇡

 
d⌫ 0

⌫ 0= ⇥

T1(⌫ 0, Q2) � TR
1 (⌫ 0, Q2)

⇤

⌫ 02 � ⌫2�
. (2.82)

Using Eqs. (2.58, 2.71, 2.74), this yields an expression for Tsubt
1 (0, Q2) which expressed in terms

of the squared invariant mass variable W 2 ⌘ (p + q)2 = 2M⌫ 0 + M2 � Q2 as

Tsubt
1 (0, Q2) = TR

1 (0, Q2) +
↵

M
F 2
D(Q2)

+
2↵

M

1 
s
thr

F1

�

(W 2 � M2 + Q2)/(2M), Q2
�� FR

1

�

(W 2 � M2 + Q2)/(2M), Q2
�

W 2 � M2 + Q2
dW 2,

(2.83)

where the lower integration limit in Eq. (2.83) sthr is given by

sthr = min
�

s0 ⌘ 2M⌫0 + M2 � Q2, W 2
thr = (M + m⇡)2

�

, (2.84)

corresponding with a branch cut of F1 starting at W 2
thr and a branch cut of FR

1 starting at
s0. Eq. (2.83) allows to quantitatively estimate the subtraction function given the structure
function F1, the Regge fit determining FR

1 of the form of Eq. (2.78), as well as the corresponding
value of TR

1 (0, Q2) which follows from Eq. (2.77) as

TR
1 (0, Q2) = �2⇡↵

M

X

↵
0

>0

�↵
0

(Q2)

sin⇡↵0
(⌫0)

↵
0 � 2⇡↵

M

X

↵
0

>1

↵0⌫0�↵
0

(Q2)

sin⇡ (↵0 � 1)
(⌫0)

↵
0

�1 , (2.85)
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and is also fully determined by the Regge fit.
In our numerical evaluation of Eq. (2.83), we describe the proton structure function F1 in the

resonance region by the fit performed by Christy and Bosted (BC) [91]. This fit is valid in the
following region of kinematical variables: 0 < Q2 < 8 GeV2, and W 2 < 9.61 GeV2 ⇡ 10 GeV2.
For the dispersion integral in Eq. (2.83) we connect the BC fit with the DL high-energy fit
starting from W 2 = 10 GeV2. The latter fit is described in Appendix E. The resulting proton
structure function F1 is shown in Fig. 2.5 as it enters the integral of Eq. (2.83). We add a
3 % error band to the BC fit [91] and use the same error estimate for all Regge pole residues.
We notice that at low values of Q2, both fits either overlap or are very close to the matching
point W 2 ⇡ 10 GeV2. With increasing values of Q2 there is an increasing mismatch in both
fits around W 2 = 10 GeV2. This is to be expected because the BC fit has not accounted
for the HERA high-energy data, and the DL fit has not accounted for the lower W data.
Even though a combined fit of all data would be very worthwhile, or a smooth interpolating
procedure between the BC and DL fits could easily be performed, for our purpose we will only
need data at a lower value of Q2 up to about 1 GeV2. For this purpose, we can just split the
W 2 integral entering Eq. (2.83) in a region W 2 < 10 GeV2, where we will use the BC fit, and
a region W 2 > 10 GeV2, where we will use the DL fit.
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Figure 2.5: Fits of the proton structure function F1 used in our estimates entering the dispersion
integral in Eq. (2.83).

In Fig. 2.6, we demonstrate explicitly the vanishing high-energy behavior of the quantity
F1 � FR

1 , which is the necessary condition for the unsubtracted DR of Eq. (2.83) to hold.
We furthermore provide another consistency check of our numerical implementation. As the

Regge function TR
1 of Eq. (2.77) has an arbitrary scale ⌫0 (or equivalently s0), the total result

should not depend on the specific choice of this parameter. We demonstrate this in Fig. 2.7,
where we illustrate how the s0 dependence of the individual contributions in Eq. (2.83) adds
up to yield the total result which is independent of s0.
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Figure 2.6: High-energy behavior of the function F1 � FR
1 for the fixed value s0 = 1 GeV2.
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Figure 2.7: The contribution of the individual terms in Eq. (2.83) to Tsubt
1 (0, 0) as func-

tion of s0. Dashed curve: the dispersion integral contribution from the BC fit
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thr
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1 . Dashed double-dotted curve: the contribution
from the real part TR

1 (0, 0) according to Eq. (2.85). Solid curve: sum of all terms
in Eq. (2.83), yielding the s0-independent value of Tsubt

1 (0, 0).

In Fig. 2.8 we present the empirically extracted subtraction function Tsubt
1 (0, Q2) of Eq.

(2.83). The subtraction function Tsubt
1 (0, Q2) should vanish linearly when Q2 ! 0 according

to Eq. (2.74). This general property, therefore, provides a quality check on the accuracy of an
empirical determination as described above. One notices from Fig. 2.8 that the value of Tsubt

1

at Q2 = 0 is compatible with zero within 1 � 1.5 �. We like to notice however that at present
such empirical determination can unfortunately only give the correct order of magnitude of
Tsubt
1 (0, Q2). This is partly due to the non-perfect match between the proton F1 fits for the

resonance region and the large W region, as we have shown in Fig. 2.5. Despite this caveat,
it seems however that with increasing Q2, Tsubt

1 (0, Q2) changes sign in the range somewhere
between 0.1 - 0.4 GeV2, which may be an indication of the range up to which the ChPT based
results can be used. To provide a more accurate determination of the functional dependence
of Tsubt

1 (0, Q2), a combined fit of all proton F1 structure function data over the whole range of
W , incorporating the Regge behavior at large W , would be desirable. At intermediate values
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of Q2, below and around 1 GeV2, this will also require more accurate data in the intermediate
W range between 3� 10 GeV. In the lower end of this range, such data can be provided by the
JLab 12 GeV facility.
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Figure 2.8: The empirical subtraction function of Eq. (2.83).
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Figure 2.9: The empirical estimate for the magnetic polarizability �(Q2) based on Eqs. (2.74,
2.83).

Using our empirical determination of Tsubt
1 (0, Q2), we can extract �(Q2) dividing Tsubt

1 (0, Q2)
by Q2 according to Eq. (2.74). For the purpose of combining our empirical estimate of
Tsubt
1 (0, Q2) with the empirical value of �(0) as determined from the real Compton scattering,

we use the central curve in the empirically determined error band of Tsubt
1 (0, Q2) (green band in

Fig. 2.8) to extract �(Q2) in the range Q2 > 0.15 GeV2, and extrapolate it by a linear function
to the PDG value of �M at Q2 = 0. The smooth error bands are obtained connecting the
empirical dispersion result, denoted by �d(Q2), at Q2

d = 0.2 GeV2 to the linear extrapolation
of the magnetic polarizability value, denoted by �l(Q2), at Q2

l = 0.1 GeV2,

�(Q2) = �l
�

Q2
�

⇥
�

Q2
l � Q2

�

+ �d
�

Q2
�

⇥
�

Q2 � Q2
d

�

+

c1�l
�

Q2
�

+ c2f
�

Q2
�

�d
�

Q2
�

1 + f (Q2)
⇥
�

Q2
d � Q2

�

⇥
�

Q2 � Q2
l

�

, (2.86)

31



Chapter 2 Forward lepton-proton scattering and two-photon exchange (TPE) corrections to
atomic energy levels

where f(Q2) is a function as entering the Fermi-Dirac distribution, defined as

f
�

Q2
�

= e
2Q2�Q2

d

�Q2

l

2a
0 , (2.87)

and the constants c1, c2, a0 were chosen as those that preserve the regularity and smoothness of
error bands. The resulting function �(Q2) is displayed in Fig. 2.9. As this function encodes both
the empirical information on the magnetic polarizability at Q2 = 0, as well as the structure
function information at larger Q2, we will use this function in the following to provide an
empirical estimate for the subtraction function contribution to the TPE correction in the Lamb
shift of the muonic hydrogen 2S energy level in Section 2.6.1 and in the elastic muon-proton
scattering at small momentum transfer in Section 5.5.

2.5 Forward TPE amplitudes through forward VVCS amplitudes

In this Section, we express the forward lepton-proton TPE amplitude in terms of the forward
VVCS amplitudes and compare these expressions with the results of DR analysis of Sections
2.2, 2.3.

The forward lepton-proton scattering TPE amplitude can be expressed in terms of the for-
ward VVCS amplitude Mµ⌫ as

T 2� (!) = e2
ˆ

id4q

(2⇡)3
L̃µ⌫N̄(p,�0)Mµ⌫N(p,�)

(q2)2
, (2.88)

with the forward leptonic tensor L̃µ⌫ :

L̃µ⌫ = ū
�

k, h0�
 

�µ
k̂ � q̂ + m

(k � q)2 � m2
�⌫ + �⌫

k̂ + q̂ + m

(k + q)2 � m2
�µ
!

u (k, h) . (2.89)

Substituting the expression for the forward VVCS amplitude of Eqs. (2.51-2.53), we obtain:

T 2� (!) = � ū(k, h0)u(k, h)N̄(p,�0)N(p,�)

4Mm

8↵

M

ˆ
id4q

⇡2

M2 (k · q)2 (2T1 � T2) + q2
⇣

M2m2T1 � (k · p)2 T2

⌘

+ 2 (k · p) (k · q) (p · q) T2
⇣

q4 � 4 (k · q)2
⌘

(q2)2

� ↵

ˆ
id4q

⇡2
ū(k, h0){�µ⌫ , q̂}q2u(k, h)N̄(p,�0)

�

M{�µ⌫ , q̂}S1 + 2�µ⌫q2S2

�

N(p,�)

4M2
⇣

q4 � 4 (k · q)2
⌘

(q2)2
.

(2.90)

Performing now the tensor decomposition in the arbitrary frame, we obtain for the TPE am-
plitudes:

f2�
+ (!) = �8↵

M

ˆ
id4q

⇡2

M2 (k · q)2 (2T1 � T2) + q2
⇣

M2m2T1 � (k · p)2 T2

⌘

+ 2 (k · p) (k · q) (p · q) T2
⇣

q4 � 4 (k · q)2
⌘

(q2)2
,

(2.91)

g2� (!) =
4m↵

M2

ˆ
id4q

⇡2

⇣

M2q2 � M2(k·q)2+m2(p·q)2�2(k·p)(k·q)(p·q)
!2�m2

⌘

S1 + 2q2 (p · q) S2
⇣

q4 � 4 (k · q)2
⌘

q2
, (2.92)
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f2�
� (!) = � 8↵

M3

ˆ
id4q

⇡2
⇣

M2q2 + M2(k·q)2+m2(p·q)2�2(k·p)(k·q)(p·q)
!2�m2

⌘

(k · p) S1 + M2 (k · q)
�

(p · q) S1 + q2S2

�

⇣

q4 � 4 (k · q)2
⌘

q2
.

(2.93)

These expressions in the proton rest frame at threshold are given by

f2�
+ (m) = 8↵Mm2

ˆ
id4q

⇡2

�

Q2 � 2⌫2�
�

T1(⌫� , Q2) � �

⌫2� + Q2
�

T2(⌫� , Q2)
�

Q4 � 4m2⌫2�
�

Q4
, (2.94)

f2�
� (m) = �g2�(m) =

8m↵

3M

ˆ
id4q

⇡2

�

⌫2� � 2Q2
�

MS1(⌫� , Q2) � 3Q2⌫�S2(⌫� , Q2)
�

Q4 � 4m2⌫2�
�

Q2
.(2.95)

The result for the spin-independent amplitude f2�
+ (m) is in agreement with Ref. [135]. While

the result for the spin-dependent amplitude f2�
� (m), multiplied by a factor 3/2, coincide with

the HFS correction of Refs. [53, 137,151–160].
It is instructive to compare the HFS evaluation cutting only the lower blob of the TPE graph

with the DR evaluation of Sections 2.2 and 2.3, see Fig. 2.10.

Figure 2.10: Forward elastic lp scattering with cut of both fermions lines (left panel) and with
cut of the proton line only (right panel).

Exploiting the DRs for the spin-dependent Compton amplitudes S1 and S2 of Eqs. (2.62,
2.63) and performing the Wick rotation we obtain the same expression for the amplitude f2�

� (m)
at threshold, see Eq. (2.47), as with DRs for the forward lp amplitudes. However, if one uses
the DR for the amplitude ⌫�S2 [88], the result coincide with the amplitude expression �g2�(m)
of Eq. (2.48).

Evaluating the sum of the spin-dependent lepton-proton TPE amplitudes in the DR ap-
proach, see Eqs. (2.47, 2.48), we obtain:

g2�(m) + f2�
� (m) = 64↵2Mm

1ˆ

0

dQ2

Q4
⇢ (⌧l)

1ˆ

0

dxBjg2
�

xBj, Q
2
�

= 0, (2.96)

that is a trivial relation due to the Burkhardt-Cottingham (BC) sum rule of Eq. (2.76).
We proved that the forward TPE amplitudes evaluated within the DR approach for the lp

scattering coincide with the amplitudes evaluated with a help of DRs for the forward VVCS
process when accounting for the BC sum rule. However, the contribution of individual TPE
intermediate states differs in these two approaches, which we will study in detail in Section
2.6.2.
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2.6 TPE corrections to hydrogen energy levels

In the lp center-of-mass reference frame the TPE forward scattering amplitude T 2� is expressed
in terms of the invariant amplitudes f2�

+ , f2�
� , g2� as

T 2�(!) = f2�
+ (!) + 4g2� (!) s · S + 4

�

f2�
� (!) + g2� (!)

�

s · k̂ S · p̂, (2.97)

with s (S) and k̂ (p̂) the lepton (proton) spin and momentum direction vectors. This decom-
position often arises in the analysis of the non-relativistic forward neutron-proton scattering,
see e.g. Ref. [179].

2.6.1 TPE correction to Lamb shift in hydrogen-like atoms
It is then easy to see that, considering T 2� as correction to the Coulomb potential, its effect
on the nS-state energy level is given by

�EnS = � | nS (0) |2
4Mm

f2�
+ (m) , (2.98)

with | nS(0)|2 = ↵3m3
r/(⇡n3) - the non-relativistic squared wave function of the hydrogen atom,

where mr = Mm/(M + m) is the reduced mass of the lepton and proton bound state. Using
the DR for f2�

+ with only the elastic part of the unpolarized cross section and subtracting
the accounted TPE contribution in hydrogen wave functions, as well as the OPE finite size
correction, we reproduce the non-relativistic limit of the TPE contribution:

�EnS = �8m4
r↵

5

⇡n3

1ˆ

0

dQ2

Q5

�

G2
E(Q2) � 2G0

E(0)Q2 � 1
�

, (2.99)

This correction yields the third Zemach moment term [88].
The TPE contribution due to the subtraction function provides a correction to the 2S-

2P muonic hydrogen Lamb shift, which is the largest hadronic uncertainty in this precise
quantity [113,114]. Using the ChPT based results for �(Q2) as input, this TPE correction was
estimated in Refs. [141, 142] and found to be too small to resolve the proton radius puzzle.
According to Eqs. (2.94, 2.98) this correction is given by

�Esubt
2S = �2↵| nS (0) |2m

ˆ
id4q

⇡2

�

Q2 � 2⌫2�
�

Tsubt
1 (0, Q2)

�

Q4 � 4m2⌫2�
�

Q4
. (2.100)

Performing the Wick rotation and hyper-angular integration it can be expressed as [135]

�Esubt
2S = 4↵| nS (0) |2

1ˆ

0

dQ

Q2

�

2⇢ (⌧l)
p
⌧l +

p
1 + ⌧l

�

Tsubt
1 (0, Q2). (2.101)

The correction from the empirically determined subtraction function in Section 2.4.1 to the
2S energy level in the muonic hydrogen, after integration up to Q2 = 1 GeV2, yields:4

�Esubt
2S ⇡ 2.3 ± 1.3 µeV, (2.102)

which is in fair agreement, though slightly smaller than the estimate of Birse et al. [141]:
�Esubt

2S ⇡ 4.2 ± 1.0 µeV. Our result of Eq. (2.102) is also within errors of the analogous
evaluation of Ref. [136], where authors assumed the existence of a J = 0 fixed pole.

4Note that for the total TPE correction to the muonic hydrogen 2S level one needs to add to the subtraction
function contribution also the dispersive contribution, which was evaluated based on data in Ref. [135].
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2.6.2 TPE correction to hyperfine splitting (HFS) in hydrogen-
like atoms

The TPE contribution to the S-level HFS �EHFS
nS is expressed in terms of the relative correction

�HFS and the leading order S-level HFS EHFS,0
nS (Fermi energy) as

�EHFS
nS = �HFSE

HFS,0
nS , (2.103)

EHFS,0
nS =

8

3

m3
r↵

4

Mm

µP

n3
, (2.104)

with the proton magnetic moment µP ⇡ 2.793.
Considering the spin part of T 2� as correction to the Hamiltonian of the lepton-proton spin-

spin interaction, we express the leading TPE proton structure correction to the S-level HFS in
terms of the amplitudes f2�

� , g2� at threshold (! = m):

µP e2�HFS = �g2� (m) +
1

2
f2�
� (m) . (2.105)

The TPE correction to the S-level HFS �0 of Refs. [53,137,152–160] can be obtained adding
g2�(m) + f2�

� (m) = 0 to Eq. (2.105):

µP e2�0 =
3

2
f2�
� (m) . (2.106)

Consequently, we have verified the TPE correction to HFS of S energy levels. In the follow-
ing, we study the difference in the individual channel contribution to HFS correction between
the traditional HFS expressions and the DR approach based on the forward lepton-proton
amplitudes.

Traditionally the proton intermediate state TPE correction to HFS �el
0 is expressed as a

sum of the Zemach correction �Z, with subtraction of the TPE contribution which is already
accounted for in the hydrogen wave functions, and the recoil correction �p

R:

�el
0 = �Z + �p

R, (2.107)
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, (2.108)
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, (2.109)

with �1(⌧) = �3⌧ + 2⌧2 + 2(2 � ⌧)
p

⌧(1 + ⌧).
We express the elastic TPE contribution to the S-level HFS �el

HFS in the lepton-proton am-
plitudes DR framework, with subtraction of the TPE contribution which is already accounted
for in the hydrogen wave functions, in terms of the proton electric and magnetic form factors
as

�el
HFS =

↵

⇡µP

1ˆ

0
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2GE
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(2.110)
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We reproduce the Zemach correction [151] as the non-relativistic limit of the elastic HFS
correction �el

HFS. The proton non-pole term �
F2

P

HFS arising from the non-pole part of the Born
amplitude SBorn

1 of Eq. (2.68) is given by

�
F2

P

HFS =
↵

⇡µP

m

M

1ˆ

0

dQ

Q
�1(⌧l)F

2
P

�

Q2
�

, (2.111)

was eliminated from the TPE contribution to HFS in Refs. [159, 160], see last term in Eq.
(2.107). In our approach the non-pole term does not appear, and therefore does not need to
be subtracted by hand. The remaining difference between expressions of Eq. (2.107) and Eq.
(2.110) is given by the elastic contribution to the amplitude g2�(m) + f2�

� (m).
Traditionally the polarizability correction �pol

0 is given by [159,160]
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We express the inelastic ↵5-correction to the S-level HFS in the lepton-proton amplitudes
DR approach in terms of the proton inelastic spin SFs g1 and g2 as

�inel
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1ˆ

0

dQ2

Q2

1ˆ

⌫inel
thr

d⌫�
⌫�

[2 + ⇢ (⌧l) ⇢ (⌧̃)] g1
�

⌫� , Q2
�

+ [2 � ⇢ (⌧l) ⇢ (⌧̃) /⌧̃ ] g2
�

⌫� , Q2
�

p
⌧̃
p

1 + ⌧l +
p
⌧l

p
1 + ⌧̃

,
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It differs from �pol
0 by the absence of the �

F2

P

HFS contribution, which allows to expand the HFS
integrand near Q2 = 0 in terms of polarizabilities, and by the contribution from the spin SF
g2 to the amplitude g2�(m) + f2�

� (m).

2.6.3 Polarizability correction evaluation
For the numerical evaluation of the polarizability correction we subtract the leading moment of
the spin structure function g1 and separate contributions from the g1 and g2 structure functions
as [88]

�pol
0 = �pol

1 + �pol
2 , (2.114)
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with the first moment of the g1 structure function given by

I1
�

Q2
�

=
2M2

Q2

x
0ˆ

0

g1
�

x, Q2
�

dx, I1(0) = �(µP � 1)2

4
. (2.117)

In order to evaluate the contribution from 4I1 + F 2
P we approximate I1

�

Q2
�

= I1 (0) +
I 01 (0) Q2 up to QI

1

= 0.25 GeV, with the low energy constant I 01 (0) = (7.6 ± 2.5) GeV�2

[185], and afterward we exploit the spin SFs data parametrization from Refs. [92, 186] (JLab
parametrization). We show the correspondent Q2 dependence of 4I1 + F 2

P in Fig. 2.11.
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Figure 2.11: JLab HFS integrand from 4I1 + F 2
P , corresponding with the first integral in Eq.

(2.115), connected to the low-Q2 behavior. Left panel: electronic hydrogen, right
panel: muonic hydrogen.

For the remaining polarizability correction �pol
1 and �pol

2 coming from g1 and g2 we use
the JLab parametrization only, which is in a fair agreement with the MAID model [94] in the
region of small Q2, see Fig. 2.12 for details.
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Figure 2.12: MAID and JLab integrand in the g1 integral of Eq. (2.115) and the g2 integral of
Eq. (2.116). Left panel: electronic hydrogen, right panel: muonic hydrogen.

We add the uncertainties coming from the Pauli form factor FP [104], spin structure func-
tions g1, g2 and the parameter I 01(0) in quadrature under the HFS integrand and treat the
uncertainties coming from the two Q integration regions in the �1 and 4I1 + F 2

P evaluations
as uncorrelated uncertainties.

We present the results for the HFS correction to the 1S energy level in eH (2S in µH) in Table
2.1 (2.2). Though the contributions from the g1 and g2 structure functions slightly differ with
a previous evaluation of Ref. [160], the resulting polarizability correction is in a fair agreement
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with results of Ref. [160]: �pol
0 = 11.0 ± 3.8 peV in eH and �pol

0 = 8.0 ± 2.6 µeV in µH.
The source of small difference in the central value can be in the overestimated polarizability
correction due to the large phenomenological value of I 01(0), which does not match the data
in Fig. 2.11.

eH 4I1 + F 2
P g1 �pol

1 �pol
2 �pol

0

�E1S , peV 11.6 ± 2.8 1.17 ± 0.65 13.8 ± 2.8 �2.61 ± 0.8 11.2 ± 3.0

Table 2.1: Contributions to the 1S HFS correction in eH.

µH 4I1 + F 2
P g1 �pol

1 �pol
2 �pol

0

�E2S , µeV 9.17 ± 2.09 0.61 ± 0.35 9.78 ± 1.91 �1.48 ± 0.44 8.30 ± 1.96

Table 2.2: Contributions to the 2S HFS correction in µH.

Within the dispersion relation approach, see Eqs. (2.23, 2.106), we express the polarizability
correction �pol

0 directly in terms of the measurable inclusive inelastic lp cross sections difference
as
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with the pion production threshold !thr = m + m⇡(2M + 2m + m⇡)/(2M).

2.6.4 Resulting HFS correction evaluation
For the numerical evaluation of the HFS corrections from the proton intermediate state and the
�

F2

P

HFS part of the polarizability correction �pol
0 we exploit the elastic form factor parametriza-

tions from Refs. [67, 104]. We make two evaluations for the 1-� band curves coming from the
elastic proton form factor uncertainties of Ref. [104], where a global analysis of form factor
data with account of TPE corrections for Q2 < 10 GeV2 was performed. We estimate the
uncertainty as a half of a difference between these two curves. For the numerical evaluation of
the inelastic HFS correction we exploit the spin SFs data parametrization from Refs. [92, 186]
in the region of large Q2. In the region of low-Q2 we expand the Q2-integrand from the proton
spin SFs in terms of small x and account for the leading non-vanishing moments:
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with the moments of the proton spin SFs:
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I(3)1

�

Q2
�

=
8M4

Q4

x
0ˆ

0

x2g1
�

x, Q2
�

dx �!
Q2!0

Q2M2

2↵
�0, (2.122)

I(3)2

�

Q2
�

=
8M4

Q4

x
0ˆ

0

x2g2
�

x, Q2
�

dx �!
Q2!0

Q2M2

2↵
(�LT � �0) , (2.123)

with x0 = Q2/(2M⌫ inelthr ) and the low energy constants values [185]:

�LT = (1.34 ± 0.17) ⇥ 10�4 fm4, (2.124)
�0 = (�1.01 ± 0.13) ⇥ 10�4 fm4, (2.125)

I 01 (0) = (7.6 ± 2.5) GeV�2. (2.126)

In Fig. 2.13 we show the integrand IHFS(Q) entering the HFS correction:

�HFS =

1ˆ

0

IHFS(Q)dQ, (2.127)
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Figure 2.13: Q-dependence of the integrand IHFS (Q) entering the HFS. A comparison is given
of the integrand based on DR for the lp amplitudes and based on Compton am-
plitudes (SF). Left panel: electronic hydrogen, right panel: muonic hydrogen.

in the case of eH and µH. The low-Q behavior based on the moments of the proton spin SFs
of Eqs. (2.117, 2.121-2.123) IsrHFS and the high-Q behavior based on the data IdHFS are almost
independent of the way to evaluate the HFS. While in the region 0.2 GeV . Q . 0.5 GeV the
HFS evaluation with DRs for the lepton-proton amplitudes (�HFS = �el

HFS + �inel
HFS) and the

traditional HFS evaluation (�HFS = �0 = �el
0 + �pol

0 ) slightly differ (for Q > 0.5 GeV both
methods agree within 2.5%). The available parametrization of the proton spin SFs [186] (JLab)
satisfy the Burkhardt-Cottingham sum rule sufficiently enough. New data in this kinematical
region will be also very useful for the HFS evaluation. In order to avoid any model dependence,
we connect the two model-independent regions by the function of the Fermi-Dirac distribution
type:

IHFS(Q) = IsrHFS (Q) ⇥ (Qsr � Q) + IdHFS (Q) ⇥ (Q � Qd) +

c1IsrHFS (Q) + c2f (Q) IdHFS (Q)

1 + f (Q)
⇥ (Q � Qsr) ⇥ (Qd � Q) , (2.128)

with f(Q) given by

f (Q) = e
2Q�Q

sr

�Q
d

2a
0 . (2.129)
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Furthermore, Qsr = 0.2 GeV, Qd = 0.5 GeV, a0 = 0.1 GeV, and the constants c1, c2, Qsr, a0
were chosen as those that preserve the regularity and smoothness of the integrand IHFS(Q).

In the low-Q region, we make two evaluations for the 1-� bands of the elastic proton form
factors from Ref. [104]. We add the combined uncertainty from �0, �LT , I 01 (0) linearly. For
the larger Q > (0.013 � 0.017) GeV region, we make evaluation for the central values of the
proton elastic form factors and add the uncertainty of the proton elastic form factors to the
uncertainties from �0, �LT , I 01 (0) in quadrature. The boundary Q value is chosen as the value
that leads to the same uncertainties in the proton intermediate state HFS contribution in both
ways of the error estimate described in this paragraph. For the larger Q > 0.5 GeV region, we
add the uncertainty of the proton spin structure function parametrization in quadrature to the
uncertainties coming from the proton elastic form factors. We connect the high-Q integrands
Id by two curves to the 1-� boundaries in the low-Q region Isr. We estimate the uncertainty
from the difference between the integral of Eq. (2.127) for these two curves, which are shown
in Fig. 2.14 for eH (µH), and take the averaged central value. In the region Q2 > 10 GeV2, the
sizable contribution comes only from the µP term in Eqs. (2.108-2.110) and doesn’t introduce
any sizable additional uncertainty.
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Figure 2.14: HFS integrand IHFS (Q) in the evaluation by DRs for lp amplitudes with error
bands. Left panel: electronic hydrogen, right panel: muonic hydrogen.

We evaluate the proton TPE correction to the HFS in the DR approach either for Compton
amplitudes or for lepton-proton amplitudes and present results for the Zemach correction,
recoil correction and the �

F2

P

HFS contribution in Table 2.3. We also present the result of the
polarizability correction �pol

0 evaluation described in Section 2.6.3.

106�, eH 103�, µH
Zemach, �Z �39.59(75) �7.36(14)
Recoil, �p

R 5.31(12) 0.8476(8)
Total elastic, �el

0 �34.29(75) �6.51(14)
Total elastic, �el

HFS �43.40(74) �7.03(14)
Non-pole �

F2

P

HFS 22.53(7) 1.11(1)
Polarizability, �pol

0 1.91(51) 0.363(86)
Total �HFS within lp DRs �32.80(1.56) �6.22(29)

Total, �HFS = �el
0 + �pol

0 [159] �32.38(91) �6.15(16)

Table 2.3: Finite-size TPE correction to hyperfine splitting of S energy levels in eH and µH.
The Fermi energy HFS is 5.86785 µeV for the 1S level in eH and 182.4432 meV for
the 1S level in µH.
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The evaluation of the resulting HFS correction is performed for the sum of elastic and
inelastic contributions using the traditional expressions and the expressions based on the DRs
for lp amplitudes. The latter lead to twice smaller uncertainties. However, both evaluations
agree within errors, which is a good test of the proton spin structure function g2 parametrization
for this calculation. The leading Zemach correction is a bit smaller than the evaluation based
on the typical proton form factors parametrization in Ref. [159] due to the suppressed low Q2

behavior of the magnetic proton form factor measured by the A1 Collaboration at MAMI [104].
Both ways of the TPE correction evaluation as a sum �el

0 + �pol
0 and as a sum �el

HFS + �inel
HFS

are in agreement.
The evaluation of the elastic �el

0 and polarizability �pol
0 correction in sum [159] has smaller

uncertainty than the evaluation of the total TPE correction described above. However, we do
not account for the third moments of the proton spin structure functions in this case and also
add uncertainties coming from two integration regions in quadrature, while in the first method
the integration of the resulting uncertainty is performed.

1st moment
3rd moment

μH

10
4  I g

2, G
eV

-1

0

−1

−2

Q, GeV
0 0.1 0.2 0.3

Figure 2.15: Contribution of the g2 structure function to the HFS integrand IHFS (Q) in muonic
hydrogen when the first moment or the third moment are replaced by the low-
energy constants, 0 and �LT � �0 respectively.
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hydrogen. Right panel: Relative contribution of 4I1 + F 2
P and third moments of

the proton spin structure functions to the HFS integrand in muonic hydrogen.
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Now we study the polarazability correction to HFS in µH in detail. The account of the
third moments of the spin structure function in the low Q2 integration region increases the
polarizability correction. We obtain the result within uncertainties of our previous evaluation
�pol

0 = 395 ± 103 ppm. The larger central value of the polarizability correction is explained
by the change of sign in the low-Q2 behavior of the g2 contribution, see Fig. 2.15, as well as
by the increased contribution from the g1 structure function. In the following Figs. 2.16 we
compare the contribution of the 4I1 + F 2

P as well as the contribution of the next term in the
moments expansion with the total polarizability integrand. The main uncertainty comes from
the pure knowledge of I1(0)0. The contribution from the low-energy constants �0 and �LT is
negligible and can not be distinguished in Figs. 2.16.

2.6.5 Overview of 1S HFS measurement in µH

In view of the forthcoming high-precision measurement of the 1S HFS in muonic hydrogen
at PSI with 1 ppm precision [148], we also provide the corresponding estimates of the HFS
correction from the TPE graph in Table 2.4. The uncertainty of our estimate is 164 times larger
than the expected experimental accuracy. The uncertainty of the polarizability contribution is
1.5 times smaller than the uncertainty of the Zemach term and dominated by pure knowledge of
I 01(0). The forthcoming data from EG4, SANE and g2p experiments at JLab on the proton spin
structure functions g1, g2 [187–189] will improve the knowledge of the polarizability correction.
The precise measurements of the proton electric and magnetic form factors in the low-Q2

region [190] will allow to decrease the uncertainty of the Zemach term.

� (ppm), µH uncertainty (ppm)
Zemach, �Z �7360 140
Recoil, �p

R 847.6 0.8
Polarizability, �pol

0 363 86
Total, �HFS = �el

0 + �pol
0 �6149 164

Table 2.4: Finite-size TPE correction to hyperfine splitting of the S energy levels in µH.

The Zemach correction can be evaluated accounting for the measured values of the proton
charge and magnetic radii. We split the Q-integration in the Zemach contribution at a small
enough scale Q0 and exploit the radii expansion at low Q2 as
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with the approximate value Q0 . (0.2 � 0.4) GeV and the definition of the proton radii:
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Consequently, after accounting for all contributions at the 1 � 10 ppm level, the forthcoming
measurement can constrain the low-Q2 TPE contribution to HFS �structure with the following
combination of proton radii and I 01(0):

�structure = �4↵

3⇡

✓

mrQ0

�

R2
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M

�

+
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M
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, (2.132)

42



2.6 TPE corrections to hydrogen energy levels

where ⌧l is taken at the point Q = QI
1

⇠ (0.1 � 0.3) GeV up to which we use the low energy
expansion of I1(Q2) and

h(⌧) = (9 � 4⌧) ⌧2 +
15

2
ln
�p
⌧ +

p
1 + ⌧

�� 1

2

�

15 + 22⌧ � 8⌧2
�

p

⌧ (1 + ⌧). (2.133)
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Chapter 3

Elastic lepton-proton scattering and TPE corrections

In this Chapter, we describe the elastic lepton-proton scattering in the non-forward kinematics.
We first discuss the kinematical variables. For the region of quite low energies, we describe
the formalism of helicity amplitudes based on the discrete symmetries in QFT. We relate
the forward and non-forward amplitudes and provide the crossing properties for the lepton-
proton scattering amplitudes. We write down the unpolarized cross section expressions in the
case of the massive lepton-proton scattering in the OPE approximation and account for the
leading TPE effects. Subsequently, we obtain the corresponding relations in the limit of small
electron mass relevant for electron-proton scattering experiments. We give a description of the
experimental knowledge of the elastic proton FFs at low momentum transfer. We also provide
well-known expressions for some experimentally accessed polarization observables in the elastic
electron-proton scattering with an account of TPE amplitudes and generalize them to the case
of massive lepton.

3.1 Kinematics of massive lepton scattering

Elastic lepton-proton scattering l(k, h) + p(p,�) ! l(k0, h0) + p(p0,�0), where h(h0) denote the
incoming (outgoing) lepton helicities and �(�0) the corresponding proton helicities respectively,
(see Fig. 3.1) is completely described by 2 Mandelstam variables, e.g., Q2 = �(k � k0)2 - the
squared momentum transfer, and s = (p + k)2 - the squared energy in the lepton-proton
center-of-mass (c.m.) reference frame.

Figure 3.1: Elastic lepton-proton scattering.

The squared momentum transfer is expressed in terms of the lepton scattering angle ✓cm in
the c.m. reference frame by

Q2 = �(k � k0)2 =
⌃(s, M2, m2)

2s
(1 � cos ✓cm), (3.1)

with the kinematical triangle function ⌃(s, M2, m2) ⌘ (s � (M + m)2)(s � (M � m)2) = ⌃s.
In terms of the laboratory frame momenta p = (M, 0), k = (!,k), k0 = (!0,k0), p0 =

(E0
p,k � k0) the invariant variables are expressed as

Q2 = 2M(! � !0), (3.2)
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s = M2 + 2M! + m2, (3.3)
⌃s = 4M2k2. (3.4)

The laboratory frame scattering angle ✓lab and the momentum transfer are also given by

cos ✓lab =
!!0 � m2 � M(! � !0)

|k||k0| , (3.5)

Q2 = 2M
k2(M + ! sin2 ✓lab �

p

M2 � m2 sin2 ✓lab cos ✓lab)

(! + M)2 � k2 cos2 ✓lab
. (3.6)

For the MUSE muon beam momenta |k| = 0.115 GeV, |k| = 0.153 GeV, and |k| =
0.210 GeV [127] the kinematically allowed momentum transfer is 0 < Q2 < ⌃s/s, or 0 <
Q2 < 0.039 GeV2, 0 < Q2 < 0.066 GeV2 and 0 < Q2 < 0.116 GeV2 respectively. For the scat-
tering angles of the experiment 200 < ✓lab < 1000 the momentum transfer varies in the region
0.0016�0.026 GeV2, 0.0028�0.045 GeV2 and 0.0052�0.080 GeV2 respectively. In the case of
electron scattering with the same momenta and experimental scattering angles the momentum
transfer varies in the region 0.0016�0.027 GeV2, 0.0028�0.046 GeV2 and 0.0052�0.082 GeV2.

It is convenient to introduce the averaged momentum variables P = (p + p0)/2, K =
(k + k0)/2, the u-channel squared energy u = (k � p0)2 and the crossing symmetric variable
⌫ = (s�u)/4 = (K·P ) which changes sign with s $ u channel crossing. The crossing symmetric
variable can be expressed in terms of the laboratory frame variables as ⌫ = M(!+!0)/2. Instead
of the Mandelstam invariant s or the crossing symmetric variable ⌫, one can use the virtual
photon polarization parameter ". In terms of Q2 and ⌫ the photon polarization parameter is
expressed as

" =
16⌫2 � Q2(Q2 + 4M2)

16⌫2 � Q2(Q2 + 4M2) + 2(Q2 + 4M2)(Q2 � 2m2)
. (3.7)

It varies between "0 = 2m2/Q2 and 1 for the fixed momentum transfer Q2 > 2m2 and between
1 and "0 for the fixed momentum transfer Q2 < 2m2. The high energy limit corresponds to
" = 1. The value of the critical momentum transfer Q2 = 2m2, corresponding to " = 1 for
all possible beam momenta, is given by Q2 ' 0.022 GeV2 for muon beams. This value is
inside the MUSE kinematical region for all three nominal beam momenta. " has the physical
interpretation of the degree of the virtual photon longitudinal polarization in the case of the
one-photon exchange.

3.2 Invariant amplitudes and formalism of helicity amplitudes

To describe the lepton-proton scattering, there are 16 helicity amplitudes Th0�0,h� with arbitrary
positive or negative helicities h, h0,�,�0 = ± in Fig. 3.1. It is convenient to work with helicity
amplitudes in the c.m. reference frame. The discrete symmetries of QCD and QED (parity
and time-reversal invariance) leave just six independent amplitudes:

T1 ⌘ T++,++, T2 ⌘ T+�,++, T3 ⌘ T+�,+�,

T4 ⌘ T�+,++, T5 ⌘ T��,++, T6 ⌘ T�+,+�. (3.8)

The helicity amplitudes for the l�p elastic scattering can be expressed by the sum of six
different tensor structures and generalized FFs (Lorentz invariant amplitudes) that are com-
plex functions of two independent kinematical variables. It is common to divide the helicity
amplitudes into a part without lepton helicity flip which survives in the lepton massless limit
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3.2 Invariant amplitudes and formalism of helicity amplitudes

T non�flip, and the part with lepton helicity flip T flip which is proportional to the mass of the
lepton [167,169] (where the T matrix is defined as S = 1 + i T ):

T non�flip
h0�0,h� =

e2

Q2
ū(k0, h0)�µu(k, h) · N̄(p0,�0)

✓

�µGM (⌫, Q2) � Pµ

M
F2(⌫, Q

2)

◆

N(p,�)

+
e2

Q2
F3(⌫, Q

2)ū(k0, h0)�µu(k, h) · N̄(p0,�0)
�.KPµ

M2
N(p,�), (3.9)

T flip
h0�0,h� =

e2

Q2

m

M
ū(k0, h0)u(k, h) · N̄(p0,�0)

✓

F4(⌫, Q
2) +

�.K

M
F5(⌫, Q

2)

◆

N(p,�)

+
e2

Q2

m

M
F6(⌫, Q

2)ū(k0, h0)�5u(k, h) · N̄(p0,�0)�5N(p,�). (3.10)

The helicity amplitudes can be expressed in terms of the generalized FFs and vice versa. Using
the Jacob and Wick [191] phase convention for the spinors (see explicit expressions in Appendix
A), the helicity amplitudes Th0�0,h� for elastic lepton-proton scattering in the c. m. reference
frame are expressed in terms of the generalized FFs by

⌃s⇠
2T1

e2
= 2(

⌃sQ2

⌃s � sQ2
+ s � M2 � m2)GM � 2(s � M2 � m2)F2 +

(s � M2 � m2)2

M2
F3

+4m2F4 + 2m2 s � M2 � m2

M2
F5,

M⌃s⇠
T2

e2
= 2M2(s � M2 + m2)GM � ((s � m2)2 � M4)F2 + ((s � M2)2 � m4)F3

+2(s + M2 � m2)m2F4 + 2(s � M2 + m2)m2F5,

⌃s⇠
2T3

e2
= 2(s � M2 � m2)(GM � F2) +

(s � M2 � m2)2

M2
F3 + 4m2F4

+2
m2(s � M2 � m2)

M2
F5,

⌃s

m
⇠
T4

e2
= �2(s + M2 � m2)(GM � F2) � ((s � m2)2 � M4)

M2
F3 � 2(s � M2 + m2)F4

�((s � M2)2 � m4)

M2
F5,

M⌃s

m

T5

e2
= �4M2sGM + (s + M2 � m2)2F2 � (s2 � (M2 � m2)2)(F3 + F4) � ⌃sF6

�(s � M2 + m2)2F5,
M⌃s

m

T6

e2
= 4M2sGM � (s + M2 � m2)2F2 + (s2 � (M2 � m2)2)(F3 + F4) � ⌃sF6

+(s � M2 + m2)2F5, (3.11)

with

⇠ =

s

Q2

⌃s � sQ2
. (3.12)

We consider the azimuthal angle of the scattered lepton to be � = 0. Notice that follow-
ing the Jacob-Wick phase convention [191], the azimuthal angular dependence of the helicity
amplitudes is in general given by Th0�0,h�(✓,�) = ei(⇤�⇤0)�Th0�0,h�(✓, 0), with ⇤ = h � � and
⇤0 = h0 � �0.
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Chapter 3 Elastic lepton-proton scattering and TPE corrections

The relations of Eqs. (3.11) can be inverted to yield the generalized FFs in terms of the
helicity amplitudes as

e2GM =
1

2
(T1 � T3),

⌃se
2F2 = �2m2M2T1 � M(

�

s � M2
�2 � m4)⇠T2 � M2⌘(m)T3

+2mM2
�

s � M2 + m2
�

⇠T4 � mM
�

s � m2 � M2
�

(T5 � T6),

⌃s

M2
e2F3 = �(s � M2 � m2)T1 � 2M

�

s � M2 + m2
�

⇠T2 + ⇢3T3

+2m
�

s + M2 � m2
�

⇠T4 � 2mM(T5 � T6),

⌃s

M
e2F4 = �M

�

s � M2 � m2
�

T1 � (
�

s � m2
�2 � M4)⇠T2 + M⇢3T3

+
M(

�

s � M2
�2 � m4)

m
⇠T4 �

�

s � M2 � m2
�2

2m
(T5 � T6),

⌃s

M2
e2F5 = 2M2T1 + 2M

�

s + M2 � m2
�

⇠T2 + ⌘(M)T3 �
�

s � m2
�2 � M4

m
⇠T4

+
M

�

s � M2 � m2
�

m
(T5 � T6),

e2F6 = � M

2m
(T5 + T6), (3.13)

with

⇢3 =
s3 � 2s2

�

M2 + m2
�

+
�

M2 � m2
�2 �

s � Q2
�

⌃s � sQ2
� M2 � m2,

⌘(m) =
2m2

�

⌃s + sQ2
�

+ ⌃sQ2

sQ2 � ⌃s
. (3.14)

Exploiting the relations of Eqs. (2.3, 3.13), we can express the forward spin dependent
amplitudes f�, g in terms of the generalized FFs in the forward limit Q2 ! 0 as1

f�(!) = e2GM (M!, Q2 = 0), (3.15)

g(!) = �e2
m

M
F6(M!, Q2 = 0). (3.16)

The contributions beyond the exchange of one photon (and other graphs with Q2 = 0 pole),
e.g., TPE amplitudes, to all six non-forward amplitudes satisfy the following model-independent
relations in the forward limit:

GM

�

⌫, Q2 = 0
�

+
⌫

M2
F3

�

⌫, Q2 = 0
�

+
m2

M2
F5

�

⌫, Q2 = 0
�

= 0, (3.17)

GM

�

⌫, Q2 = 0
�� F2

�

⌫, Q2 = 0
�

+
⌫

M2
F3

�

⌫, Q2 = 0
�

= 0, (3.18)

F4

�

⌫, Q2 = 0
�

+
⌫

M2
F5

�

⌫, Q2 = 0
�

= 0, (3.19)

F3

�

⌫, Q2 = 0
�� F4

�

⌫, Q2 = 0
�

+ F6

�

⌫, Q2 = 0
�

= 0. (3.20)

We obtain these relations in Appendix F analyzing the forward limit of the expressions for the
helicity amplitudes in terms of invariant amplitudes, see Eqs. (3.11). Consequently among six
non-forward TPE amplitudes only two amplitudes are independent in the forward limit.

1The TPE contribution to the unpolarized helicity amplitude (T
1

+ T
3

)2� ⇠ Q�1 at low Q due to the leading
contribution from the scattering of two point-like charges. Subtracting the divergent contributions one can
determine the residual amplitude f

+

consistently as described in Appendix F.

48



3.3 One-photon exchange approximation

From the other hand, the unitarity provides constraints on the high-energy behavior of the
invariant amplitudes:

F2

�

⌫ ! 1, Q2
�

, F3

�

⌫ ! 1, Q2
�

, F5

�

⌫ ! 1, Q2
�

. 1

⌫
, (3.21)

GM

�

⌫ ! 1, Q2
�

+
⌫

M2
F3

�

⌫ ! 1, Q2
�

. 1

⌫
, (3.22)

GM

�

⌫ ! 1, Q2
�

, F4

�

⌫ ! 1, Q2
�

, F6

�

⌫ ! 1, Q2
�

. const, (3.23)

which are obtained in Appendix G analyzing the high-energy limit of the invariant amplitudes
expressions of Eqs. (3.13).

Performing the crossing ⌫ ! �⌫ in the lepton (proton) line and rewriting the lepton (proton)
spinors in term of the anti-lepton (anti-proton) spinors with the same steps as in Eqs. (2.7-
2.10), we obtain the symmetry properties of the invariant amplitudes on the real ⌫ axis with
the number n of exchanged photons:

Gn�
M (⌫, Q2) = �(�1)n

�Gn�
M (�⌫, Q2)

�⇤
, (3.24)

Fn�
2 (⌫, Q2) = �(�1)n

�Fn�
2 (�⌫, Q2)

�⇤
, (3.25)

Fn�
3 (⌫, Q2) = (�1)n

�Fn�
3 (�⌫, Q2)

�⇤
, (3.26)

Fn�
4 (⌫, Q2) = (�1)n

�Fn�
4 (�⌫, Q2)

�⇤
, (3.27)

Fn�
5 (⌫, Q2) = �(�1)n

�Fn�
5 (�⌫, Q2)

�⇤
, (3.28)

Fn�
6 (⌫, Q2) = (�1)n

�Fn�
6 (�⌫, Q2)

�⇤
. (3.29)

3.3 One-photon exchange approximation

In the OPE approximation, the two non-zero generalized FFs in l�p elastic scattering GM and
F2 can be expressed in terms of the Dirac FD and Pauli FP FFs with the following expression
for the helicity amplitude [192]:

T 1� =
e2

Q2
ū(k0, h0)�µu(k, h) · N̄(p0,�0)

✓

�µFD(Q2) +
i�µ⌫q⌫
2M

FP (Q2)

◆

N(p,�), (3.30)

that is just a product of lepton and proton currents shown in Fig. 3.2. It is customary in

Figure 3.2: Elastic lepton-proton scattering in the OPE approximation.

experimental analysis to work with Sachs magnetic and electric FFs:

GM = FD + FP , GE = FD � ⌧PFP , (3.31)
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Chapter 3 Elastic lepton-proton scattering and TPE corrections

where ⌧P is defined as in Eqs. (2.46). For non-relativistic systems, such as atomic nuclei,
the Sachs electromagnetic proton FFs have the physical interpretation as Fourier transforms
of the density of the electric charge and magnetization [193]. For relativistic systems, an
analogous interpretation is only possible in the infinite momentum frame [193]. In the OPE
approximation, the invariant amplitudes defined in Eqs. (3.9), (3.10), can be expressed in
terms of the proton FFs G1�

M = GM (Q2), F1�
2 = FP (Q2), F1�

3 = F1�
4 = F1�

5 = F1�
6 = 0. The

exchange of more than one photon gives corrections of order O(↵), with ↵ = e2/(4⇡) ' 1/137,
to all these amplitudes.

The unpolarized differential cross section in the OPE approximation in the laboratory frame
is given by

✓

d�1�
d⌦

◆

lab

=
1

64⇡2M2

|k0|
|k|

M

M + ! � !0 |k|
|k0| cos ✓lab

1

4

X

spin

|T 1� |2, (3.32)

with the lepton solid angle ⌦. Averaging over the spin states of incoming and outgoing particles
we obtain in the laboratory frame:

✓

d�1�
d⌦

◆

lab

=
↵2

2M

|k0|
|k|

1

M + ! � !0 |k|
|k0| cos ✓lab

1 � "0
1 � "

✓

G2
M +

"

⌧P
G2

E

◆

, (3.33)

an analogue of the Rosenbluth expression [170, 194, 195] in agreement with Ref. [196]. The
unpolarized differential cross section can equivalently be written in the compact form:

d�1�
dQ2

=
⇡↵2

2M2k2

1 � "0
1 � "

✓

G2
M +

"

⌧P
G2

E

◆

. (3.34)

3.4 Two-photon exchange contributions

The TPE correction to the unpolarized elastic lepton-proton scattering cross section is given by
the interference between the OPE amplitude and the sum of box and crossed-box graphs with
two photons. The correction in the leading ↵ order �2� can be defined through the difference
between the cross section with account of the exchange of two photons and the cross section
in the 1�-exchange approximation �1� by

� = �1� (1 + �2�) . (3.35)

The leading TPE correction to the elastic l�p scattering can be expressed in terms of the TPE
invariant amplitudes as

�2� =
2

G2
M + "

⌧P
G2

E

⇢

GM<G2�
1 +

"

⌧P
GE<G2�

2 +
1 � "

1 � "0

✓

"0
⌧P

⌫

M2
GE<G2�

4 � GM<G2�
3

◆�

,

(3.36)

where we defined for convenience the following amplitudes:

G2�
1 = G2�

M +
⌫

M2
F2�
3 +

m2

M2
F2�
5 , (3.37)

G2�
2 = G2�

M � (1 + ⌧P )F2�
2 +

⌫

M2
F2�
3 , (3.38)

G2�
3 =

m2

M2
F2�
5 +

⌫

M2
F2�
3 , (3.39)

G2�
4 = F2�

4 +
⌫

M2(1 + ⌧P )
F2�
5 . (3.40)
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According to Eqs. (3.17-3.19) in the forward limit these amplitudes satisfy:

G1

�

⌫, Q2 ! 0
�

, G2

�

⌫, Q2 ! 0
�

, G4

�

⌫, Q2 ! 0
� ! 0. (3.41)

Consequently, the TPE correction to the unpolarized cross section vanishes in the forward
limit.

In the high-energy limit, corresponding with

⌫ ! 1,
1 � "

1 � "0
! (1 + ⌧P )

Q2M2

2⌫2
+ O

✓

1

⌫4

◆

, (3.42)

the invariant amplitudes behavior is constrained by the unitarity, see Appendix G, as

G1

�

⌫ ! 1, Q2
�

, G2

�

⌫ ! 1, Q2
�

. 1

⌫
, (3.43)

G3

�

⌫ ! 1, Q2
�

, G4

�

⌫ ! 1, Q2
�

. const. (3.44)

Consequently, the TPE correction to the unpolarized cross section vanishes also in the high-
energy limit.

Amplitudes G1 and G2 have the same symmetry properties on the real ⌫ axis as the amplitude
GM w.r.t. ⌫ ! �⌫:

Gn�
1 (⌫, Q2) = �(�1)n

�Gn�
1 (�⌫, Q2)

�⇤
, (3.45)

Gn�
2 (⌫, Q2) = �(�1)n

�Gn�
2 (�⌫, Q2)

�⇤
. (3.46)

3.5 Scattering in the limit of massless electrons and proton form
factors data

The momentum transfer accessed by current experiments down to Q2 & 0.001 GeV2 [103,104] is
still much larger than the squared electron mass, so that to very good approximation electrons
can be treated as massless particles. All traditional expressions for the elastic electron-proton
scattering can be obtained taking the limit m ! 0 from the expressions above.

The virtual photon polarization parameter " varies between 0 and 1, indicating the degree of
the longitudinal polarization of virtual photon in case of one-photon exchange. It is customary
to use this parameter in experiment. In terms of Q2 and ⌫, " is then defined as

" =
16⌫2 � Q2(Q2 + 4M2)

16⌫2 + Q2(Q2 + 4M2)
=

✓

1 + 2(1 + ⌧P ) tan2 ✓lab
2

◆�1

. (3.47)

The expression for the momentum transfer in case of the massless lepton is simplified to

Q2 =
(s � M2)2

s
sin2 ✓cm

2
= 2!!0(1 � cos ✓lab). (3.48)

All amplitudes with electron helicity flip are suppressed by the electron mass. Only three
independent helicity amplitudes (in the c.m. reference frame) of Eq. (3.11) survive in the limit
of massless electrons. Following the Jacob-Wick [191] phase convention, these amplitudes,
T1, T2, T3, can be expressed through the generalized FFs as

T1 =
2e2

Q2

⇢

su � M4

s � M2

✓

F2 � GM � s � M2

2M2
F3

◆

+ Q2GM

�

,

T2 = �e2
p

M4 � su

MQ

⇢

F2 + 2
M2

s � M2
(F2 � GM ) � F3

�

,

T3 =
2e2

Q2

su � M4

s � M2

⇢

F2 � GM � s � M2

2M2
F3

�

. (3.49)
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The invariant amplitudes can in turn be expressed through the helicity amplitudes as [197]

e2GM =
1

2
{T1 � T3} ,

e2F2 =
MQp

M4 � su

⇢

�T2 + T3
MQp

M4 � su

�

,

e2F3 =
M2

s � M2

⇢

�T1 � T2
2MQp
M4 � su

+ T3

✓

1 + Q2 s + M2

M4 � su

◆�

. (3.50)

In the OPE approximation the unpolarized cross section is given by the Rosenbluth expres-
sion [35]:

d�1�
dQ2

=
⇡↵2

2M2!2

1

1 � "

✓

G2
M +

"

⌧P
G2

E

◆

. (3.51)

This expression allows to extract the proton FFs by the Rosenbluth separation method. One
can use the data for a cross section measurement at fixed Q2 and vary the incoming electron
energy. The charge FF GE is customary determined from the radiatively corrected "-slope,
and the magnetic FF GM is extracted from the radiatively corrected offset at " = 0 of the cross
section when plotted as function of ". The first data [36] were described by the simple dipole
form:

GE(Q2) =
1

⇣

1 + Q2

⇤2

⌘2 , GM (Q2) =
µP

⇣

1 + Q2

⇤2

⌘2 , (3.52)

with ⇤2 = 0.71 GeV2. The approximation of Eqs. (3.52) is a reasonable approximation, at
least, in the region of small momentum transfers Q2 < 1 GeV2. We use it as a leading order
estimate for the evaluation of the TPE corrections with the proton intermediate state.

However, the modern FFs extractions performed by A1 Collaboration at MAMI, Mainz, use
directly the expressions of Eq. (3.51) and functional parametrizations of FFs in order to avoid
the unnecessary kinematical limitations due to the Rosenbluth separation [104]. The over-
all normalization of FFs is fixed to the well-known proton charge, GE(0) = 1, and magnetic
moment, GM (0) = µP . It was controlled experimentally [104] by the explicit luminosity mea-
surement using an extra spectrometer. It is convenient to present the FFs normalized to the
standard dipole form of Eqs. (3.52). The best fit to the recent Mainz data in comparison with
fits to the older data and experimental results is shown in Figs. 3.3, 3.4 [104].

The extraction of the proton FFs, which enter the cross section expression in the leading
↵ order, requires an account of the radiative corrections. The standard framework of the
radiative corrections in unpolarized elastic lepton-proton scattering is described in Refs. [162,
163, 195]. The vacuum polarization correction, the lepton vertex correction and the lepton
Bremsstrahlung correction are evaluated model-independently in QED, while corrections with
the off-shell photon-proton vertex: the proton vertex correction and the proton Bremsstrahlung
correction, introduce a model dependence due to the assumption of the on-shell form of the
photon-proton vertex [198]. Additionally, the proton vertex correction does not account for the
inelastic hadronic states at large photon loop momenta. The ultraviolet (UV) divergence of the
lepton vertex correction and the lepton self-energy is absorbed into the charge, mass and field
renormalization constants, while the proton vertex correction is UV finite due to the vanishing
high-Q2 behavior of the proton elastic FFs. The finite part of the external fermions self-energy
correction is believed to be zero. The TPE graph is accounted in the approximation of one
soft photon by the IR divergent expression that is distinct in Ref. [162] and Ref. [163]. In this
work, we follow the Maximon and Tjon (MaTj) [163] prescription approximating the photon
momenta in the numerator of the TPE loop integral only.
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3.5 Scattering in the limit of massless electrons and proton form factors data

Figure 3.3: The form factors GE and GM , normalized to the standard dipole form, as a function
of Q2. Black line: Best fit to the new Mainz data; blue area: statistical 68 %
confidence band; light blue area: experimental systematic error; green outer band:
variation of the Coulomb correction by ±50%.

Figure 3.4: Same as Fig. 3.3, but for the FFs ratio µPGE/GM .
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Chapter 3 Elastic lepton-proton scattering and TPE corrections

All IR divergences in the elastic scattering amplitudes are canceled at the cross section level
when summing with the inclusive soft photon radiation that should be taken into account due
to the finite resolution of a real experiment. This statement for the scattering cross sections and
decay rates is known as Bloch-Nordsieck theorem [199] in QED and as Kinoshita-Lee-Nauenberg
theorem [200, 201] in the Standard Model. The IR divergence in the lepton (proton) vertex
correction is canceled by the lepton (proton) Bremsstrahlung correction, the IR part of the TPE
correction is canceled in sum with the interference of the lepton and proton Bremsstrahlung
corrections.

In Ref. [104] the IR-finite part of the TPE correction was approximated by the first TPE
result obtained by McKinley and Feshbach [173]. They evaluated the TPE contribution, cor-
responding with Coulomb photon couplings to the static proton (i.e., two �0 vertices). This
so-called Feshbach term contribution to �2� , denoted by �F , can be expressed through the
scattering angle in the laboratory frame ✓lab and the lepton velocity v as

�F = ⇡↵v
sin ✓lab/2 (1 � sin ✓lab/2)

1 � v2 sin2 ✓lab/2
. (3.53)

The residual cross section contribution was parametrized in Ref. [104] by the two-parameters
linear function in ":

�2� � �F = �a(1 � ") ln(1 + bQ2), (3.54)

that vanishes in the forward limit (" ! 1) and reproduces the logarithmic Q2 behavior [67].
With account of the phenomenological TPE of Eq. (3.54) FFs fits were performed over a wide
Q2 region [104].

In the following, we consider the correction to observables due to TPE which are corrections
of order e2. The correction to the unpolarized elastic e�p cross section of Eq. (3.36) is expressed
in terms of TPE amplitudes by
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(3.55)
Other accessible observables, which are influenced by real parts of TPE amplitudes, are

double polarization observables with a polarization transfer from the longitudinally polarized
electron to the recoil proton. The longitudinal polarization transfer asymmetry is defined as

Pl =
d� (h = +, �0 = +) � d� (h = +, �0 = �)

d� (h = +, �0 = +) + d� (h = +, �0 = �)
, (3.56)

and the transverse polarization transfer asymmetry is given by

Pt =
d� (h = +, S0 = S?) � d� (h = +, S0 = �S?)

d� (h = +, S0 = S?) + d� (h = +, S0 = �S?)
, (3.57)

with the spin direction of the recoil proton S0 = ±S? in the scattering plane transverse to its
momentum direction.

The following ratio is measured experimentally [73]:
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(3.58)
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3.5 Scattering in the limit of massless electrons and proton form factors data

Experimental data on the longitudinal polarization transfer allows to reconstruct [73] its
value relative to the OPE (Born) result PBorn

l :
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= 1 � 2"

1 + "
⌧P

G2

E
G2

M

1 + ⌧P
⌧P

GE

G3
M

⇣

F2<G2�
M � GM<F2�

2

⌘

� 2"

1 + "
⌧P

G2

E
G2

M

✓

"

1 + "

✓

1 � G2
E

⌧PG2
M

◆

+
GE

⌧PGM

◆

⌫

M2

<F2�
3

GM
. (3.59)

For further use, it will be convenient to work with amplitudes G2�
1 , G2�

2 defined in the lepton
massless limit as

G2�
1 = G2�

M +
⌫

M2
F2�
3 , (3.60)

G2�
2 = G2�

M � (1 + ⌧P ) F2�
2 +

⌫

M2
F2�
3 . (3.61)

In terms of these amplitudes, the TPE correction to the unpolarized e�p cross section is
given by
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, (3.62)

and the polarization transfer observables can be written as
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Pl

PBorn
l

= 1 � 2"

1 + "
⌧P

G2

E
G2

M

(

GE

⌧PGM

<G2�
2

GM
� G2

E

⌧PG2
M

<G2�
1

GM

+

✓

"

1 + "
+

1

1 + "

G2
E

⌧PG2
M

◆

⌫

M2

<F2�
3

GM

)

. (3.64)

Accounting for the relations between TPE amplitudes in the forward and high-energy limits of
Eqs. (3.21, 3.41, 3.43), the TPE correction to the measured form factors ratio of Eq. (3.63)
vanishes in both limits.

The measurement of the vanishing in OPE approximation single spin asymmetry allows to
cross-check theoretical TPE calculations. The asymmetry in the scattering of the unpolarized
electrons on the polarized normal to the scattering plane protons (S = ±Sn) is called the target
normal single spin asymmetry An [197,202]:

An =
d� (S = Sn) � d� (S = �Sn)

d� (S = Sn) + d� (S = �Sn)
, (3.65)

and the asymmetry in the interaction of the polarized normal to the scattering plane electrons
(with the spin direction of the initial electron: s = ±sn) on the unpolarized target is called the
beam normal single spin asymmetry Bn [169,202]:

Bn =
d� (s = sn) � d� (s = �sn)

d� (s = sn) + d� (s = �sn)
. (3.66)
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Chapter 3 Elastic lepton-proton scattering and TPE corrections

The asymmetries of Eqs. (3.65, 3.66) are given by the imaginary parts of the TPE amplitudes
at the leading ↵ order as
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Accounting for amplitudes with lepton helicity flip and lepton mass dependence in the kine-
matical factor, we provide also expressions for the single spin asymmetries of Eqs. (3.65, 3.66)
in the case of massive lepton scattering:
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Note that the amplitude G2�
4 introduced in Eq. (3.40) appears also in the expression for the

unpolarized cross section [170] for finite lepton mass, see Eq. (3.36) for details. The contribution
to An, Bn and �2� which is linear in the amplitude F2�

6 vanishes [170, 203]. The amplitude
F2�
6 only shows up in double polarization observables, e.g., the transverse polarization transfer

observable value relative to the Born result PBorn
t is given by
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Chapter 4

TPE corrections from proton intermediate state

At very low energies, where the probability to excite the proton is very small, the TPE process
can be described to good approximation as photons interacting with the distributed charge
and magnetic moment. The contribution with the proton intermediate state is expected to
be dominant at low energies and should be studied separately as it contains the explicit pole
from the proton propagator in the VVCS amplitudes. The correction to the unpolarized cross
section �2� is proportional to the real parts of TPE amplitudes. In this Chapter, we describe
two ways to access these real parts theoretically. One can model the photon-proton vertex
with the off-shell proton and evaluate the loop integral, see Section 4.1 for details of such
calculation. The model-independent way is possible within DR approach described in Section
4.2, where we also propose the novel method of the analytical continuation of the elastic
TPE amplitudes. In the following Section 4.3 we compare two calculations for the proton
intermediate state contribution. Afterward, we provide predictions for the upcoming MUSE
experiment in Section 4.4. We finish with the model-independent description of the electron-
proton scattering data within the subtracted DR formalism in Section 4.5 that allows estimating
the TPE contribution from the unaccounted inelastic states. We provide the subtracted DR
predictions for the kinematics of the CLAS and OLYMPUS experiments.

4.1 Box graph model

In this section, we use a box graph model to estimate the TPE correction to elastic lepton-
proton scattering at low momentum transfer. For such kinematics, we expect the dominant
contribution to be given by the TPE direct box and crossed box diagrams with proton inter-
mediate state, as shown in Fig. 4.1.

Figure 4.1: Direct and crossed TPE diagrams in elastic lp scattering.

The helicity amplitudes corresponding with the TPE direct and crossed graphs are indepen-
dent of the lepton charge and can be expressed as
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where P and K are defined as in Section 3.1, �µ denotes the virtual photon-proton-proton
vertex, and the notation â ⌘ �µaµ was used. We introduce a small photon mass µ to regulate
the IR singularities. The invariant amplitudes entering Eqs. (3.36, 3.62) can be expressed as
combination of helicity amplitudes with the help of Eqs. (3.13, 3.50).

We perform the box diagram calculation with the assumption of an on-shell form of the
virtual photon-proton-proton vertex,

�µ(Q2) = �µFD(Q2) +
i�µ⌫q⌫
2M

FP (Q2), (4.2)

for two models. In the first model the proton is treated as a point particle with charge and
anomalous magnetic moment, i.e., the Dirac and Pauli FFs in Eq. (4.2) have the following
form:

FD(Q2) = 1, FP (Q2) = µP � 1. (4.3)

The second model is more realistic and is based on the dipole form for the proton electromag-
netic FFs of Eqs. (3.52). We call the TPE correction in the box graph model the Born TPE
correction, as it is given by the Born contribution to the VVCS tensor in the proton line of the
TPE graphs.

Due to the photon momentum in the numerator of the term proportional to the FF FP in Eq.
(4.2), the high-energy (HE) behavior of the amplitudes can be different depending on whether
FD or FP enters the vertex. We denote the contribution with two vector couplings by FDFD,
two tensor couplings by FPFP, and the contributions from the mixed case by FDFP, see Fig.
4.2. In Section 4.2.2 we discuss the HE behavior of the invariant amplitudes in the case of
point-like couplings and in the model with dipole form of electromagnetic FFs. The inclusion
of FFs leads to ultraviolet (UV) finite results for the invariant amplitudes.

We use LoopTools [204, 205] to evaluate the four-point integrals and derivatives of them, as
well as to provide a numerical evaluation of the invariant amplitudes. Some technical details
for the calculation in massless electron scattering on proton are described in Appendix H.
The calculation is performed with the subtraction of the IR divergent terms according to the
Maximon and Tjon prescription [163]. The TPE amplitude G2�

M in the case of scattering of two
point charges (i.e., FDFD contribution with FD = 1) has the IR divergent term:
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, (4.4)

with ⌃u ⌘ ⌃(u, M2, m2) = (u � (m + M)2)(u � (m � M)2). In electron-proton scattering the
IR divergent term simplifies to
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4.1 Box graph model

Figure 4.2: The different contributions to the proton box diagram, depending on the different
virtual photon-proton-proton vertices. The vertex with (without) the cross denotes
the contribution proportional to the FP (FD) FF. The different diagrams show the
FDFD (upper left panel), FPFP (upper right panel) and FDFP (lower panels) vertex
structures.

When including FFs, the FDFD vertex structure gives rise to an IR divergence in the amplitudes
G2�
M , G2�

1 , G2�
2 which is given by
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whereas the FDFD contribution to the amplitudes F2�
2 , F2�

3 , F2�
4 , F2�

5 and F2�
6 is IR finite.

The FDFP vertex structure gives rise to IR divergences in the amplitudes G2�
M , G2�

1 as well as
F2�
2 which are given by
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The correspondent IR divergence in the amplitude G2�
2 is given by

GIR, F
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F
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2 = �⌧PFP (Q2)GIR, point
M , (4.8)

whereas the FDFP contribution to the amplitudes F2�
3 , F2�

4 , F2�
5 , F2�

6 is IR finite. Finally,
the FPFP vertex structure contribution to all TPE amplitudes is IR finite. All plots with TPE
amplitudes are made with the subtraction of the IR divergent piece of Eqs. (4.6-4.8).

When combining all IR divergent pieces, Eq. (3.36) yields the IR divergent TPE correction
to the unpolarized l�p cross section:
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In case of the electron-proton (e�p) scattering the IR divergent TPE correction to the unpo-
larized cross section of Eq. (3.62) simplifies to
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⇡
ln
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Q2
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ln
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. (4.10)
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In order to compare with data, which are radiatively corrected, we subtract Eq. (4.10) (Eq. (4.9))
in the cross section formula of Eq. (3.62) (Eq. (3.36)). This is in agreement with the Maximon
and Tjon (MaTj) prescription for the soft photon TPE contribution, i.e., �MaTj

2�, soft = �IR2� , see
Eq. (3.39) of Ref. [163]. Note that the Pt/Pl, Pl/PBorn

l , An and Bn polarization observables,
Eqs. (3.63, 3.64, 3.69, 3.70), are free of IR divergencies.

We have checked the model-independent relations of Eqs. (3.17-3.20) between the TPE
amplitudes in the forward limit separately for the FDFD, FDFP and FPFP vertex structures in
the box graph model.

4.2 Dispersion relation (DR) framework

In this Section, we describe the details of the DR framework for the evaluation of the TPE
amplitudes paying additional attention to the proton intermediate state contribution. The
DR framework allows evaluating the TPE contribution using the on-shell one-photon exchange
(OPE) information as an input. As the intermediate state is on its mass shell in the DR
approach, it avoids additional model dependent assumptions about the off-shell interaction
vertex. However, there are few standard complications in this approach. First of all, it requires
the convergence of the DR integrals. Secondly, even for the convergent DR integrals the real
part of amplitude can not be fully reconstructed as it was shown for the proton intermediate
state contribution to the forward TPE amplitudes in Section 2.6.2. Additionally, in the non-
forward scattering the allowed kinematical region of experiments does not always cover the full
range of the DR integral, and the analytical continuation to the unphysical region is required.
We describe the way to avoid these complications for the case of the proton intermediate state
in this Section.

4.2.1 Unitarity relations
The imaginary parts of the invariant amplitudes can be obtained with the help of the unitarity
equation for the scattering matrix S (with S = 1 + iT ):

S+S = 1, T+T = i(T+ � T ). (4.11)

In the c.m. reference frame we can reconstruct the imaginary part of the TPE helicity amplitude
=T 2�

h0�0,h� in the leading order in ↵ by the phase space integration of the product of the OPE
amplitudes from the initial to intermediate state T 1�

hel,h� and from the intermediate state to
final state T 1�

h0�0,hel:

=T 2�
h0�0,h� =
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X
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n
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ˆ
d3qi

(2⇡)3
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2Ei
(T 1�
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⇤T 1�

hel,h�(2⇡)4�4(k + p �
X

i

qi), (4.12)

with the momentum of the intermediate particle qi = (Ei,qi), the sum goes over all possible
number n of intermediate particles and all possible helicity states (denoted as "hel"). Unitarity
relations allow to relate the imaginary part of the TPE amplitude to the experimental OPE
input in a model-independent way.

The forward limit can be easily obtained from Eq. (4.12). Following the Jacob-Wick phase
convention [191], we can factorize the dependence on the azimuthal angle of the intermediate
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lepton �1 in the integrands of unitarity relations as
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The helicity (⇤) phase factor e�i⇤�
1 coming from the intermediate state cancels between the two

OPE amplitudes, and we obtain the �1 dependence only from the external states. Performing
the lepton azimuthal angle integration first, we obtain that the amplitudes T2, T4, T6 vanish in
the forward limit reflecting the conservation of the angular momentum. Other relations for the
amplitudes T1, T3, T5 give precisely the optical theorem in the forward limit, see Eqs. (2.19,
2.20) of Chapter 2.

We first consider the unitarity relations of Eq. (4.12) for the proton intermediate state contri-
bution, which by definition only involves on-shell amplitudes in the 1�-exchange approximation.
The unitarity relations are represented in Fig. 4.3.

Figure 4.3: Unitarity relations for the case of the elastic intermediate state contribution.

In the c.m. reference frame, the lepton energy !cm and the momentum |kcm| are given by

!cm =
s � M2 + m2

2
p

s
, |kcm| =

p
⌃s

2
p

s
. (4.19)

The lepton initial (k), intermediate (k1) and final (k0) momenta are given by:1

k = (!cm, 0, 0, |kcm|), (4.20)
k1 = (!cm, |kcm| sin ✓1 cos�1, |kcm| sin ✓1 sin�1, |kcm| cos ✓1), (4.21)
k0 = (!cm, |kcm| sin ✓cm, 0, |kcm| cos ✓cm), (4.22)

with the intermediate lepton angles ✓1 and �1.

1In the lepton massless limit !
cm

= |k
cm

| = (s�M2)/(2
p
s).
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Chapter 4 TPE corrections from proton intermediate state

We also introduce the relative angle between the 3-momenta of intermediate and final leptons
as k1 · k0 ⌘ cos ✓2, with cos ✓2 = cos ✓cm cos ✓1 + sin ✓cm sin ✓1 cos�1.

The imaginary parts of the elastic contribution to the TPE helicity amplitudes are given as
an integral over the intermediate lepton angle by
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The imaginary parts of the invariant amplitudes are given by relations of Eqs. (3.13) (Eqs.
(3.50) in the massless lepton limit). The integrand in the unitarity relations can be expressed
as a product of the OPE amplitudes with kinematical phases. Afterward, we exploit Eq. (4.23)
for the numerical evaluations.

In case of the massless electron-proton scattering we obtain the following quite simple ex-
pressions:
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where the phases �, �0, �̃, �̃0 are defined in Eq. (I.1) of Appendix I. The momentum transfers
Q2

1 and Q2
2 correspond with the scattering from initial to intermediate state and with the

scattering from intermediate to final state respectively. The OPE amplitudes, which were
defined in Eq. (4.24) by explicitly taking out all kinematical phases, can be obtained from
Eq. (3.49) after substitution of the invariant amplitudes by the corresponding FFs: GM !
GM , F2 ! FP , F3 ! 0 and are given by
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�
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e2
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su � M4

s � M2
(FP � GM ) . (4.25)

We perform calculations separately for FDFD, FDFP and FPFP vertex structures (see Fig.
4.2) for both FF models described in Eqs. (3.52, 4.3). For the point-like model, we obtain
analytical expressions for the imaginary part of TPE amplitudes. The imaginary parts of the
invariant amplitudes due to the FDFD vertex structure in the direct box graph are given by
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4.2 Dispersion relation (DR) framework

The imaginary parts of the invariant amplitudes due to the mixed FDFP vertex structure are
given by
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The imaginary parts of the invariant amplitudes due to the FPFP vertex structure are given
by
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We checked that the numerical calculations of the imaginary part of the invariant amplitudes
are in agreement with predictions for the target normal spin asymmetry An [197], given by Eq.
(3.67), for the model with dipole form of electromagnetic FFs [202].

4.2.2 Dispersion relations and high-energy behavior
Assuming the analyticity of TPE amplitudes in the complex ⌫ variable one can write down
the Cauchy’s theorem for the fixed Q2 value and relate the real and imaginary part through
DRs. The TPE amplitudes have branching points in complex ⌫-plane on the real axis at
the particle production thresholds. As usual in DR analyses, we relate the imaginary part
of TPE amplitudes (discontinuity across the cuts extending from the branching points up to
infinity) to the experimental information. The dispersive integral starts from the threshold ⌫thr
corresponding with the branching point. The threshold corresponding with the elastic cut due
to the proton intermediate state is located at s = (M + m)2 or ⌫thr = Mm � Q2/4, so there is
an integration region with intersection of s- and u-channel cuts when Q2 > 4Mm, in case of
the electron-proton scattering experiments the cut intersection always happens. The threshold
corresponding with the first inelastic cut due to the pion-nucleon intermediate states is given
by s = (M + m + m⇡)2 or ⌫thr = Mm + (M + m)m⇡ + m2

⇡/2 � Q2/4. The intersection of the
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Chapter 4 TPE corrections from proton intermediate state

cuts for ep scattering (m ⇡ 0) happens for Q2 > 0.55 GeV2. The threshold positions in case
of the muon-proton (electron-proton) scattering are shown in Fig. 4.4 (Fig. 4.5).

The TPE amplitudes G2�
M (⌫, Q2), F2�

2 (⌫, Q2), F2�
5 (⌫, Q2), G2�

1 (⌫, Q2), G2�
2 (⌫, Q2) are odd

functions under ⌫ ! �⌫, and the amplitudes F2�
3 (⌫, Q2), F2�

4 (⌫, Q2), F2�
6 (⌫, Q2) are even.

The amplitudes which are odd in ⌫, Godd, satisfy the DR:

<Godd(⌫, Q2) =
2⌫

⇡

1 
⌫
thr

=Godd(⌫ 0, Q2)

⌫ 02 � ⌫2
d⌫ 0. (4.29)

The amplitudes which are even in ⌫, Geven, satisfy the DR:

<Geven(⌫, Q2) =
2

⇡

1 
⌫
thr

⌫ 0
=Geven(⌫ 0, Q2)

⌫ 02 � ⌫2
d⌫ 0. (4.30)

The imaginary part in Eqs. (4.29, 4.30) is taken from the s-channel discontinuity only. The
Cauchy’s theorem can be applied only when the function on the contour at infinity vanishes.
Consequently, the unsubtracted DRs as given by Eqs. (4.29, 4.30) can only be written down
for functions with appropriate high-energy (HE) behavior.

Traditionally, the Regge theory helps to estimate the HE behavior of the invariant ampli-
tudes. However, Pomeron and mesons do not directly couple to leptons. Consequently, the HE
behavior in the Regge analysis is approximate. In the high energy limit ⌫ ! 1 with a fixed
Q2, the helicity amplitudes behavior is given by the Pomeron and meson Regge trajectories
T1 ' T3 ⇠ ⌫xP ⇠ ⌫1.08, T2 ' T4 ' T5 ' T6 ⇠ ⌫xM with 0 < xM < 0.5. The HE behavior of the
invariant amplitudes is given by the leading exponent in Eqs. (3.13). The leading contribution
from the Pomeron trajectory drops out from the amplitudes GM , F3, resulting at GM ⇠ ⌫xA

with xA < 1.08. The main contribution to GM amplitude is given by the axial vector exchange,
so we conclude xA < 0. The HE Regge behavior of the amplitudes F2, F3, F4, F5 is given
by F2 ⇠ ⌫xM�1, F3 ⇠ ⌫xP�2, F4 ⇠ ⌫xM , F5 ⇠ ⌫xM�1 with xM � 1 < �0.5. Equivalently, the
amplitudes G1 and G2 introduced in Eqs. (3.37, 3.38) have the HE behavior: G1, G2 ⇠ ⌫xP�1.
The main contribution to F6 comes from the axial vector exchange, therefore F6 ⇠ ⌫xA with
xA < 0, the vector exchange contribution to F6 is 0 for all energies. The expected HE expo-
nents for the invariant amplitudes are collected in Table 4.1. Based on such Regge arguments,

GM F2, F5 F3 F4 F6 G1, G2

xA < 0 xM - 1 < - 0.5 xP � 2 < -0.9 xM > 0 xA < 0 xP � 1

Table 4.1: The value of the HE exponent ⌫x based on the Regge phenomenology.

we can expect applicability of the unsubtracted DR for all amplitudes except for F4, G1 and
G2. Note that the Regge arguments do not constrain the HE behavior of the TPE correction
to the measured observables due to the non-vanishing behavior of G1 and G2.

We will next discuss the HE behavior of the invariant amplitudes for the case of the box dia-
gram calculation with the proton intermediate state, which is explained in detail in Section 4.1.
We consider first the virtual photon-proton-proton vertices as point couplings. Furthermore we
consider three contributions, whether both vertices correspond with vector couplings (referred
to as FDFD structure), both vertices correspond with tensor couplings (FPFP structure), or
whether one vertex corresponds with a vector and the second vertex with a tensor coupling
(FDFP structure), as it is shown in Fig. 4.2.
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4.2 Dispersion relation (DR) framework

In general, the HE behavior (⌫ � Q2, M2, m2) of the TPE amplitudes can be parametrized
as G2�(⌫) ' ⌫� (c1 + c2⌫⇢ ln ⌫) with ⇢  0, where the parameters can be extracted with a help of
the fit to the calculation. In Tables 4.2-4.4, we show the extracted value of the leading power �
for the different invariant amplitudes and for the different cases of virtual photon-proton-proton
vertices.

The amplitudes G2�
M , F2�

3 , F2�
6 are UV divergent in the case of the point-like proton with

two magnetic vertices (FPFP). The divergent piece is given by

GUV
M = � ⌫

M2
FUV
3 =

⌫

M2
FUV
6 . (4.31)

GM F2 F3 F4 F5 F6 G1 G2 F4 � F6

� for =G2� 0 -2 -1 -1 -2 -1 -1 -1 -1
� for <G2� 0 -1 -1 -1 -1 -1 -1 -1 -1

Table 4.2: The value of the leading power � in the HE fit of the different invariant amplitudes
(upper row: imaginary parts, lower row: real parts) according to the form G2�(⌫) '
⌫� (c1 + c2⌫⇢ ln ⌫) with ⇢  0, for the box diagram model with point-like FDFD

vertex structure.

GM F2 F3 F4 F5 F6 G1 G2 F4 � F6

� for =G2� 0 -1 -1 0 -1 0 -1 -1 -1
� for <G2� 0 -1 -1 0 -1 0 -1 -1 0

Table 4.3: Same as Table 4.2, but for the box diagram model with point-like FDFP vertex
structure.

GM F2 F3 F4 F5 F6 G1 G2 F4 � F6

� for =G2� 0 -1 -1 0 -1 0 0 0 -1
� for <G2� 1 -1 0 0 -1 0 0 0 0

Table 4.4: Same as Table 4.2, but for the box diagram model with point-like FPFP vertex
structure.

For the case of FDFD (and FDFP in elastic electron-proton scattering) vertex structure, one
notices that the behavior of all amplitudes is sufficient to ensure unsubtracted DRs. However,
the dispersive integral for the amplitudes F2�

4 , F2�
6 does not converge for the case of FDFP

and FPFP vertex structures. For the case of two magnetic vertices (FPFP structure), we notice
that the TPE amplitudes F2�

2 , F2�
5 , F2�

3 +F2�
6 , G2�

1 , G2�
2 are sufficiently convergent to satisfy

an unsubtracted DR. Also after the UV regularization the amplitude G2�
M (F2�

3 , F2�
6 , F2�

4 ) has
a real part which is behaving as ⌫ (⌫0) respectively, which in both cases leads to a constant
contribution due to the contour at infinity in the Cauchy’s integral formula. This constant
term cannot be reconstructed from the imaginary part of the amplitude. The same constant
term appears in the amplitude F2�

4 � F2�
6 , which has a convergent DR integral for the case of

FDFP and FPFP vertex structures. To partially avoid such unknown contributions, we use in
our following calculations instead of the amplitudes G2�

M and F2�
2 the amplitudes G2�

1 and G2�
2 ,
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Chapter 4 TPE corrections from proton intermediate state

defined in Eqs. (3.37, 3.38). As is clear from Tables 4.2-4.4, the amplitudes G2�
1 and G2�

2 are
expected to satisfy the unsubtracted DR.

The inclusion of the proton FFs of Eqs. (3.52) gives a more realistic description of the
proton electromagnetic properties and, usually, improves the HE behavior of TPE amplitudes.
We study the HE behavior of TPE amplitudes in the model with dipole FFs and present the
extracted value of the leading power � from the HE fit in the following Tables 4.5-4.7

GM F2 F3 F4 F5 F6 G1 G2

� for =G2� 0 -2 -1 -1 -2 -1 0 0
� for <G2� -1 -1 -2 -2 -1 -2 -1 -1

Table 4.5: The value of the leading power � in the HE fit of the different invariant amplitudes
(upper row: imaginary parts, lower row: real parts) according to the form G2�(⌫) '
⌫� (c1 + c2⌫⇢ ln ⌫) with ⇢  0, for the box diagram model with FDFD vertex structure
and dipole FFs.

GM F2 F3 F4 F5 F6 G1 G2

� for =G2� 0 0 -1 -1 -2 -1 0 0
� for <G2� -1 -1 -2 0 -1 0 -1 -1

Table 4.6: Same as Table 4.5, but for the box diagram model with FDFP vertex structure.

GM F2 F3 F4 F5 F6 G1 G2

� for =G2� 0 -1 -1 -1 -2 -1 0 0
� for <G2� 1 -1 0 0 -1 0 -1 -1

Table 4.7: Same as Table 4.5, but for the box diagram model with FPFP vertex structure.

All TPE amplitudes are UV finite in the box graph model with dipole proton FFs. Now the
unsubtracted dispersive integral for the amplitudes F2�

4 , F2�
6 converges for all vertex structures.

However the amplitudes G2�
M and F2�

3 , F2�
6 , F2�

4 have a real part which is behaving as ⌫
and ⌫0 respectively in the case of FPFP vertex structure, consequently one can not use the
unsubtracted DR for these amplitudes. Additionally, the real part of the amplitudes F2�

4 and
F2�
6 , in the case of FDFP vertex structure, behaves as ⌫0. This constant is not reconstructed

within unsubtracted DRs.
All TPE amplitudes discussed above are expected to satisfy the once-subtracted DR that

can be formally obtained by subtraction at a low-energy point ⌫0 in Eqs. (4.29, 4.30):

<Godd(⌫, Q2) � <Godd(⌫0, Q
2) =

2⌫
�

⌫2 � ⌫20
�

⇡

1 
⌫
thr

=Godd(⌫ 0, Q2)
�

⌫ 02 � ⌫2
� �

⌫ 02 � ⌫20
�d⌫ 0, (4.32)

<Geven(⌫, Q2) � <Geven(⌫0, Q
2) =

2
�

⌫2 � ⌫20
�

⇡

1 
⌫
thr

⌫ 0=Geven(⌫ 0, Q2)
�

⌫ 02 � ⌫2
� �

⌫ 02 � ⌫20
�d⌫ 0. (4.33)

For the amplitudes G2�
M , F2�

3 , F2�
4 , F2�

6 , which are even in ⌫, in the case of the lepton-proton
scattering and for which an UV regularization has to be performed in the box diagram model
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4.2 Dispersion relation (DR) framework

when using point-like couplings, we will in the following compare the unsubtracted DR with a
once-subtracted DR. The unknown subtraction constant in the F2�

3 amplitude in the case of
the electron-proton scattering can be fixed to the electron-proton scattering data [104].

It is also instructive to study the possible HE behavior of the real part of the amplitude G
reconstructed within the unsubtracted DR. We start with the case of the odd amplitude Godd

and assume in the following the HE behavior, sufficient for the convergence of the DR integral,
of the imaginary part =Godd(⌫, Q2) ' ⌫� (c1 + c2 ln ⌫) with the integer �  0. It is convenient
to represent the unsubtracted DR integral of Eq. (4.29) as a sum of two integrals with the
large separation scale ⌫0: ⌫ � ⌫0 � Q2, M2, m2. Above this scale, we expect the imaginary
part to behave as =Godd(⌫, Q2) = ⌫� (c1 + c2 ln ⌫). The corresponding real part is then given
by

<Godd(⌫, Q2) ' � 2

⇡⌫

⌫
0ˆ

⌫
thr

=Godd(⌫ 0, Q2)d⌫ 0 +
2⌫�

⇡

1ˆ

x
0

⌘ ⌫
0

⌫

x�
⇣

c1 + c2 ln x
x
0

+ c2 ln ⌫0
⌘

x2 � 1
dx.

(4.34)

The leading HE behavior of the first integral is given by 1/⌫. The logarithmic term x� ln(x/x0)
from the second integral leads to the HE behavior of the real part: ⌫0 for � = 0, (ln2 ⌫)/⌫ for
� = �1 and ⌫�1 for all other integer � < �1. Finally, the term with x� from the second integral
leads to the leading HE behavior of the real part given by (ln ⌫)/⌫ for � = �1 and 1/⌫ for all
other values of �. Consequently, the correspondent exponent �̃ in the HE behavior of the odd
amplitude <Godd(⌫, Q2) ' ⌫�̃

�

c̃1 + c̃2 ln ⌫ + c̃3 ln2 ⌫
�

, reconstructed within the unsubtracted
DR, in general have the upper bound �̃  �1 and can be constant only in the case of the
logarithmic leading behavior of the imaginary part =Godd(⌫, Q2) ⇠ ln ⌫. These properties are
represented in Tables 4.2-4.7 for all odd TPE amplitudes, when we expect the unsubtracted
DR to be valid in the box graph model.

We next turn to the even amplitudes. We assume the HE behavior, sufficient for the con-
vergence of the DR integral, of the imaginary part =Geven(⌫, Q2) ' ⌫� (c1 + c2 ln ⌫) with the
integer �  �1. The unsubtracted DR integral of Eq. (4.30) can then be written as

<Geven(⌫, Q2) ' 2

⇡⌫2

⌫
thrˆ

⌫
0

⌫ 0=Geven(⌫ 0, Q2)d⌫ 0 +
2⌫�

⇡

1ˆ

x
0

⌘ ⌫
0

⌫

x�+1
⇣

c1 + c2 ln x
x
0

+ c2 ln ⌫0
⌘

x2 � 1
dx.

(4.35)

The leading HE behavior of the real part of the first integral is given by a power ⌫�2. The
logarithmic term x�+1 ln(x/x0) from the second integral reflects in the HE behavior of the real
part: ⌫�1 for � = �1, (ln2 ⌫)/⌫2 for � = �2 and ⌫�2 for all other integer � < �2. The term
x�+1 from the second integral leads to the leading HE behavior given by (ln ⌫)/⌫2 for � = �2
and 1/⌫2 for all other values of �. Consequently, the HE behavior of the real part of the even
amplitude in the unsubtracted DR analysis is expected to be vanishing. The above mentioned
properties are represented in Tables 4.2-4.7 for the even amplitudes that are expected to satisfy
the unsubtracted DR in the box graph model.

According to studies above, the real part of the TPE amplitude reconstructed within un-
subtracted dispersion relations vanishes or behaves as a constant at high energies. The latter
is possible only for the odd amplitude with the logarithmic behavior of the imaginary part.
Consequently, the unsubtracted dispersion relation evaluation does not contradict the unitarity
constraints of Eqs. (3.21-3.23, 3.43, 3.44) when exploiting the unitarity consistent imaginary
parts as an input.
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Chapter 4 TPE corrections from proton intermediate state

The HE behavior of the invariant amplitudes in Tables 4.2-4.7 provides the vanishing behavior
of the corresponding TPE correction to the unpolarized lepton-proton scattering cross section
of Eqs. (3.36, 3.55) and to the polarization transfer observable Pt/Pl of Eq. (3.63) except
for the case of FPFP vertex structure in the model with point-like proton. Accounting for the
constant HE behavior of the amplitudes G1, G2 imaginary parts in the case of arbitrary vertex
structure except for the point-like FPFP structure, the dispersion relation analysis also gives
the vanishing HE behavior of the discussed above observables.

4.2.3 Analytical continuation into the unphysical region for pro-
ton intermediate state

To evaluate the dispersive integral at a fixed value of momentum transfer Q2 we have to know
the imaginary part of the invariant amplitude from the threshold in energy upwards. The
imaginary part evaluated from the unitarity relations by performing a phase space integration
over physical angles covers only the "physical" region of integration. The invariant amplitudes
also have an imaginary part outside the physical region as long as one is above the threshold
energy. Accounting for only the contribution of the physical region to the invariant amplitudes
is in contradiction with the results obtained from the direct box graph evaluation for the
electron-muon scattering [206]. Starting from the imaginary part of the invariant amplitude
in the physical region, we will now discuss how to continue it analytically into the unphysical
region. To illustrate the physical and unphysical regions, we show in Fig. 4.4 the Mandelstam
plot for the elastic muon-proton scattering.

−0.3 −0.2 −0.1 0.1 0.2 0.3 ν, GeV2

0.1

0.2

0.3

0.4
Q2, GeV2

s = (M + m + m�)2u = (M + m + m�)2 u = (M + m)2 s = (M + m)2

Figure 4.4: Physical and unphysical regions of the kinematical variables ⌫ and Q2 (Mandelstam
plot) for the elastic muon-proton scattering. The hatched blue region corresponds to
the physical region, the long-dashed green lines give the elastic threshold positions,
the short-dashed brown lines give the inelastic threshold positions. The horizontal
red curve indicates the line at fixed Q2 along which the dispersive integrals are
evaluated. For Q2 & 0.4 GeV2 (Q2 & 1 GeV2) the s- and u-channel elastic (pion-
nucleon) cuts overlap.
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4.2 Dispersion relation (DR) framework

The boundary of the physical region is defined by the hyperbola:

⌫ = ⌫ph ⌘ Mm
p

1 + ⌧P
p

1 + ⌧l, (4.36)

with ⌧l and ⌧P defined as in Eqs. (2.46). Therefore, the evaluation of the dispersive integral for
the elastic intermediate state contribution to the TPE amplitudes for Q2 > 0 always requires
the information from the unphysical region. Note that the intersection between the backward
angle branch of the hyperbola of Eq. (4.36) and the line s = (M + m + m⇡)2 describing
the first inelastic threshold corresponds with Q2

th = m⇡(2m + m⇡)(2M + m⇡)(2(M + m) +
m⇡)/(M + m + m⇡)2 (indicated by the red horizontal line in Fig. 4.4). For Q2 < Q2

th '
0.150 GeV2, an analytical continuation into the unphysical region is only required for the
evaluation of the cut in the box diagram due to the proton intermediate state. For Q2 larger
than this value, also the evaluation of the cut due to the ⇡N inelastic intermediate states
requires an analytical continuation into the unphysical region. Fortunately, the kinematically
allowed momentum transfer region of the MUSE experiment Q2 < 0.116 GeV2 does not require
an analytical continuation for inelastic contributions to TPE amplitudes and the method of
analytical continuation discussed in this Section allows to account for all contributions from
the unphysical region.

The Mandelstam plot with physical and unphysical regions for the elastic electron-proton
scattering is shown in Fig. 4.5.

−0.15 −0.10 −0.05 0.05 0.10 0.15 ν, GeV2

0.1

0.2

Q2, GeV2

s = (M + m + m�)2u = (M + m + m�)2 u = (M + m)2 s = (M + m)2

Figure 4.5: Same as Fig. 4.4, for the elastic electron-proton scattering.

In the massless lepton limit the physical region is bounded by the hyperbola:

⌫ = ⌫ph ⌘ M2
p

⌧P (1 + ⌧P ) =

p

Q2(Q2 + 4M2)

4
. (4.37)

An analytical continuation of TPE amplitudes into the unphysical region is only required
for the evaluation of the cut in the box diagram due to the proton intermediate state for
Q2 < m2

⇡(2M + m⇡)2/(M + m⇡)2 ' 0.064 GeV2 (indicated by the red horizontal line in
Fig. 4.5). For larger Q2 values, also the evaluation of the ⇡N inelastic intermediate states
contribution requires an analytical continuation into the unphysical region.
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We next discuss the integration region entering the unitarity relations for the case of the pro-
ton intermediate state contribution. The momentum transfers for the OPE processes entering
the r.h.s. of the unitarity relations of Eqs. (4.23, 4.24) are given by

Q2
1 =

⌃s

2s
(1 � cos ✓1) , Q2

2 =
⌃s

2s
(1 � cos ✓2) . (4.38)

The indices 1, 2 correspond to scattering from initial to intermediate state and from inter-
mediate to final state. The momentum transfer Q2 obtains its maximal value for backward
scattering ✓ = 1800. If Q2

1 is maximal (i.e., ✓1 = 1800), then Q2
2 can be evaluated as

Q2
1 = Q2

max =
⌃s

s
, Q2

2 =
⌃s

s
� Q2. (4.39)

The phase space integration in Eq. (4.24) maps out an ellipse in the Q2
1, Q2

2 plane, where
the position of the major axis depends on the elastic scattering angle (or Q2). The centre of
the ellipse is located at Q2

1 = Q2
2 = Q2

max/2 ⌘ Q2
c . For forward and backward scattering, the

ellipse reduces to a line: Q2
1 = Q2

2 for ✓cm = 00, and Q2
2 = Q2

max � Q2
1 for ✓cm = 1800. In Fig.

4.6, we show the physical integration regions for different kinematics in elastic electron-proton
scattering. Note that the ellipses are enclosed in rectangular boxes of sizes Q2

1, Q
2
2  Q2

max, see
Fig. 4.6.

We will now demonstrate the procedure of analytical continuation on the example of the
integral which corresponds with one denominator (originating from one of photon propagators)
on the r.h.s. of the unitarity relations in Eq. (4.24). The phase space integration entering the
unitarity relations can be expressed in terms of the elliptic coordinates ↵ and � (see Appendix
J) as

ˆ
g(Q2

1, Q
2
2)d⌦1

Q2
1,2 + µ2

⇠
1ˆ

0

d↵̃

2⇡ˆ

0

d�
g
�

Q2
c(a + b cos�� c sin�), Q2

c(a + b cos�+ c sin�)
�

a + b cos�⌥ c sin�
,

(4.40)

with

a = 1 +
2sµ2

⌃s
, b =

p

1 � ↵̃2

s

1 � sQ2

⌃s
, c =

p

1 � ↵̃2

s

sQ2

⌃s
.

The angular integration can be performed on a unit circle in a complex plane with z = ei�:

2⇡ˆ

0

d�
g(Q2

1, Q
2
2)

a + b cos�� c sin�
= �i

˛
g(Q2

1, Q
2
2)

b + ic

2dz

(z � z1)(z � z2)
,

2⇡ˆ

0

d�
g(Q2

1, Q
2
2)

a + b cos�+ c sin�
= �i

˛
g(Q2

1, Q
2
2)

b � ic

2dz

(z � z3)(z � z4)
, (4.41)

with poles position given by

z1,2 =
1

b + ic
(�a ±

p

a2 � (1 � ↵̃2)), (4.42)

z3,4 =
1

b � ic
(�a ±

p

a2 � (1 � ↵̃2)). (4.43)
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Figure 4.6: The phase space integration regions entering the unitarity relations for the case of
a proton intermediate state in TPE graph of the elastic electron-proton scattering.
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In the physical region ⌃s > sQ2, the integral is given by the residues of the poles z1, z3 ("+"
sign in Eqs. (4.42, 4.43)), see Fig. 4.7.
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Figure 4.7: The moduli of the pole positions in the physical region entering the angular integral
in Eqs. (4.41) for the laboratory electron energy ! = 0.3 GeV and µ = 10�6 GeV.
Note that these moduli do not depend on the momentum transfer Q2. The poles
z1 and z3 are inside the unit circle of integration (|z| = 1) for all values of ↵̃.
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Figure 4.8: Imaginary part of the poles in the unphysical region entering the angular integral
in Eqs. (4.41) for the laboratory electron energy ! = 0.3 GeV, µ = 10�6 GeV
and Q2 = 0.35 GeV2 (for which b0 = 0.78 and c0 = 1.27). The poles lie on the
imaginary axis in the unphysical region. The pole z3 is outside the unit circle for
the values ↵̃ < ↵̃0 = 0.61. The intersections of the new contour of integration
with the imaginary axis are shown by the horizontal solid lines, corresponding with
values c0 � b0 ' 0.49 (upper line) and �c0 � b0 ' 2.05 (lower line) respectively.
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4.2 Dispersion relation (DR) framework

In the unphysical region ⌃s < sQ2, the positions of the poles change with respect to the
unit circle (Fig. 4.8), so the integral has a discontinuity at the transition point. To avoid the
discontinuities, we define an analytical continuation by deforming the integration contour so
as to include the poles z1 and z3. The integration can be done on the circle of the radius c0
and the centre �ib0 as

2⇡ˆ

0

f(ei�)d� =

˛

|z|=1

�if(z)
dz

z
!

˛

z=c
0

ei��ib
0

�if(z)
dz

z
, (4.44)

with
c0 =

p

sQ2/⌃s, b0 =
p

�1 + sQ2/⌃s.

For the value ↵̃ = 0, when the expression in brackets of Eqs. (4.42, 4.43) approaches its
minimum, the positions of the poles of interest (for small photon mass parameter µ ! 0) are
given by

z1 =
i

b0 + c0

✓

1 � 2µ

r

s

⌃s

◆

= i (c0 � b0)

✓

1 � 2µ

r

s

⌃s

◆

,

z3 =
i

b0 � c0

✓

1 � 2µ

r

s

⌃s

◆

= �i (c0 + b0)

✓

1 � 2µ

r

s

⌃s

◆

. (4.45)

These poles lie inside the deformed contour of integration which intersects the imaginary axis
at =z = c0 � b0 and =z = �c0 � b0 respectively. We show in Fig. 4.9 that with the growth of
photon mass parameter µ the poles move further away from the boundary of the integration
region and therefore lie inside the new contour of integration.
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Figure 4.9: Same as Fig. 4.8 for ↵̃ = 0 as function of µ.

The deformed contour includes poles from both photon propagators, consequently the pro-
cedure of analytical continuation works also for the second photon propagator in the unitarity
relations of Eqs. (4.24). Therefore, through analytical continuation, the unitarity relations are
able to reproduce the imaginary part of the invariant amplitudes in the unphysical region also.
As a cross-check of our procedure, we show the imaginary part of the amplitude G2�

M for the case
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Chapter 4 TPE corrections from proton intermediate state

of electron-muon scattering in Fig. 4.10, as calculated using the analytically continued phase
space integral, and compare it with the direct loop graph evaluation as explained in Section
4.1 [206]. We find a perfect agreement between both calculations, justifying our analytical
continuation procedure for the calculation based on unitarity relations.

unitarity relations
box graph model

⌫ph

=G
2
�

M

0.02

0.01

0

−0.01

ν, GeV2
−0.02 0 0.02 0.04 0.06 0.08

Figure 4.10: Comparison between two evaluations of the imaginary part of the invariant am-
plitude G2�

M for e�µ� scattering for Q2 = 0.1 GeV2 corresponding with ⌫ph =
0.03 GeV2. Dashed-dotted curve: box graph evaluation; solid curve (coinciding):
evaluation based on the unitarity relations. The region ⌫ > ⌫ph (⌫ < ⌫ph) corre-
sponds with the physical (unphysical) region respectively.

A more realistic description of the proton is obtained by including electromagnetic FFs of
the dipole form. This induces additional poles for the time-like region Q2

i < 0 in the unitarity
relations Eq. (4.24):

GM ⇠ 1

(Q2
i + ⇤2)2

, FP ⇠ 1

(Q2
i + 4M2)(Q2

i + ⇤2)2
. (4.46)

These poles arise from the dipole mass parameter ⇤ (Q2
i +⇤2 = 0) and from the "kinematical"

pole (Q2
i + 4M2 = 0). These poles can be treated in a similar way as the poles in Eqs.

(4.42, 4.43) through the replacement µ ! ⇤ or µ ! 2M . These poles lie on the same line
in the complex z plane as the z1, z2, z3, z4 poles. As soon as ⇤ > µ, 2M > µ, the new
poles satisfy |z01| < |z1|, |z03| < |z3|, |z02| > |z2|, |z04| > |z4|. From Fig. 4.9, where the µ
dependence of the pole positions in the unphysical region is shown, we see that our procedure
of analytical continuation does not change the position of the new poles with respect to the
deformed integration contour after the transition to the unphysical region. We can therefore
conclude that the outlined procedure of analytical continuation is also valid for the calculation
with proton FFs that have poles in the time-like region.
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4.3 Comparison of DR approach and box graph model for proton intermediate state

4.3 Comparison of DR approach and box graph model for proton
intermediate state

In this Section, we compare the model calculation of the proton intermediate state contribution
to TPE amplitudes of Section 4.1 with the evaluation within the DR formalism of Section 4.2.

The results for the real and imaginary parts of the amplitudes for the case of the FDFD

(FDFP and FPFP) vertex structure in the proton model with dipole FFs are compared in Figs.
4.11 - 4.16 (Figs. 4.17 - 4.22 and Figs. 4.23 - 4.28). We show the unitarity relations calculation
of the imaginary parts of the invariant amplitudes both in physical and unphysical regions. For
the latter, we use the analytical continuation as outlined in Section 4.2.3. For the imaginary
parts, we see a perfect agreement between the unitarity relations calculations and the box graph
evaluation both in physical and unphysical regions. This is to be expected as the imaginary
parts of the invariant amplitudes correspond with an intermediate state in the box diagram
which is on its mass shell. Therefore, only on-shell information enters the imaginary parts.

For the real parts, we use the unsubtracted DRs at fixed Q2 of Eqs. (4.29, 4.30). By
comparing the DR results with the loop diagram evaluation for FDFD vertex structure of the
real parts (for the sum of direct and crossed box diagrams), we see from Figs. 4.11 - 4.16
that they nicely agree over the whole physical region of ⌫, as it was expected form the HE
behavior studies of Section 4.2.2. Also the real parts of the amplitudes G2�

M , F2�
2 , F2�

3 , F2�
5

evaluated in the box graph model in the case of FDFP vertex structure are in agreement with
the unsubtracted DR results, see Figs. 4.17 - 4.19, 4.21 for details. However, the result for the
real parts of the amplitudes F2�

4 , F2�
6 in the box graph model is shifted by a constant from the

result of unsubtracted DR approach as it can be seen from Figs. 4.20, 4.22. Consequently, the
real parts of the amplitudes F2�

4 , F2�
6 in the case of FDFP vertex structure2 are in agreement

between two types of evaluation, if one uses the once-subtracted DR. In the case of FPFP vertex
structure,3 the unsubtracted DRs reproduce the box diagram model results for the amplitudes
G2�
1 , G2�

2 , F2�
5 , as it is shown in Figs. 4.23, 4.24, 4.27. While the results for the real parts of

the amplitudes F2�
4 , F2�

6 and F2�
3 , shown in Figs. 4.25, 4.26, 4.28, are shifted by a constant.

Consequently, all real parts of the TPE amplitudes in the box graph model are reconstructed
using once-subtracted DRs. The three amplitudes G2�

1 , G2�
2 , F2�

5 among the five TPE ampli-
tudes, which are required for the evaluation of the cross section correction by Eq. (3.36),
are reconstructed in the box graph model within the unsubtracted DR. These results were ex-
pected from the HE behavior studies in Section 4.2.2. The DR analysis for the even amplitudes
F2�
3 , F2�

4 , F2�
6 requires one subtraction. One of these amplitudes, the helicity-flip amplitude

F2�
4 , contributes to the unpolarized lepton-proton scattering with massive leptons only. There

is no available experimental data to fix this constant. However, the imaginary part of the
amplitude F2�

4 is directly related to the beam normal spin asymmetry by Eqs. (3.68, 3.70).
We also compare the TPE amplitudes for the case of the electron-proton scattering in detail.

As in the general case of the massive lepton-proton scattering the imaginary parts of all TPE
amplitudes are the same in the box graph model and in the unitarity relations based evaluation
both in physical and unphysical regions. The real parts of all three independent amplitudes
(e.g., G2�

M , F2�
2 , F2�

3 ) in the box graph model are reconstructed within the unsubtracted DR in
the case of FDFD and FDFP vertex structures. We present this comparison in Appendix K. In
the case of FPFP vertex structure we show the results for the amplitudes G2�

1 and G2�
2 in Figs.

4.29, 4.30. These amplitudes are UV finite in the model calculation with a point-like proton.
While the real part of the F2�

3 amplitude requires an UV regularization in the point-like model.

2The amplitudes F2�
4

, F2�
6

are UV finite in the case of the point-like proton with F
D

F
P

vertex structure.
3The amplitudes G2�

M , F2�
3

, F2�
6

are UV divergent in the case of the point-like proton with F
P

F
P

vertex
structure, see Eq. (4.31).
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Figure 4.11: Imaginary part (left panel) and real part (right panel) of the invariant amplitude
G2�
M for the FDFD vertex structure with dipole FFs in muon-proton scattering for

Q2 = 0.03 GeV2. The vertical line in the left panel corresponds with the boundary
between physical and unphysical regions, i.e., ⌫ph ⇡ 0.128 GeV2.
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Figure 4.12: Same as Fig. 4.11, but for the invariant amplitude F2�
2 .
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Figure 4.13: Same as Fig. 4.11, but for the invariant amplitude F2�
3 .
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Figure 4.14: Same as Fig. 4.11, but for the invariant amplitude F2�
4 .
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Figure 4.15: Same as Fig. 4.11, but for the invariant amplitude F2�
5 .
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Figure 4.16: Same as Fig. 4.11, but for the invariant amplitude F2�
6 .
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Figure 4.17: Imaginary part (left panel) and real part (right panel) of the invariant amplitude
G2�
M for the FDFP vertex structure with dipole FFs in muon-proton scattering for

Q2 = 0.03 GeV2. The vertical line in the left panel corresponds with the boundary
between physical and unphysical regions, i.e., ⌫ph ⇡ 0.128 GeV2.
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Figure 4.18: Same as Fig. 4.17, but for the invariant amplitude F2�
2 .
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Figure 4.19: Same as Fig. 4.17, but for the invariant amplitude F2�
3 .
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Figure 4.20: Same as Fig. 4.17, but for the invariant amplitude F2�
4 .
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Figure 4.21: Same as Fig. 4.17, but for the invariant amplitude F2�
5 .
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Figure 4.22: Same as Fig. 4.17, but for the invariant amplitude F2�
6 .

79



Chapter 4 TPE corrections from proton intermediate state

unsubtracted DR
box graph model

<G
F

P
F

P
1

−2×10−4

0

2

4×10−4

ν, GeV2
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

unitarity relations
box graph model

⌫ph

=G
F

P
F

P
1

−2×10−4

0

2

4

6×10−4

ν, GeV2
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17

Figure 4.23: Imaginary part (left panel) and real part (right panel) of the invariant amplitude
G2�
1 for the FPFP vertex structure with dipole FFs in muon-proton scattering for

Q2 = 0.03 GeV2. The vertical line in the left panel corresponds with the boundary
between physical and unphysical regions, i.e., ⌫ph ⇡ 0.128 GeV2.
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Figure 4.24: Same as Fig. 4.23, but for the invariant amplitude G2�
2 .
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Figure 4.25: Same as Fig. 4.23, but for the invariant amplitude F2�
3 .
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Figure 4.26: Same as Fig. 4.23, but for the invariant amplitude F2�
4 .
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Figure 4.27: Same as Fig. 4.23, but for the invariant amplitude F2�
5 .
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Figure 4.28: Same as Fig. 4.23, but for the invariant amplitude F2�
6 .
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Figure 4.29: Imaginary part (left panel) and real part (right panel) of the invariant amplitude
G2�
1 for the FPFP vertex structure with dipole FFs in electron-proton scattering for

Q2 = 0.1 GeV2. The vertical line in the left panel corresponds with the boundary
between physical and unphysical regions, i.e., ⌫ph = 0.15 GeV2.
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Figure 4.30: Same as Fig. 4.29, but for the invariant amplitude G2�
2 .
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Figure 4.31: "-dependence of the real part of the invariant amplitude F3 in the case of FPFP

vertex structure with dipole FFs in electron-proton scattering for Q2 = 0.1 GeV2.
Left panel: comparison of the box diagram evaluation with unsubtracted DR.
Right panel: comparison between the box diagram and DR evaluations when per-
forming one subtraction. The calculations are shown for two different subtraction
points: ⌫0 = 1 GeV2, and ⌫0 = 2 GeV2.
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Consequently, the DR for the amplitude F2�
3 requires one subtraction. The resulting sub-

traction term cannot be reconstructed from the imaginary part of the amplitude F2�
3 . This

term describes the contribution of physics at high energies to low-energy processes.4 The re-
sults for the real part of the invariant amplitude F2�

3 in the case of FPFP vertex structure with
dipole FFs are shown in Fig. 4.31 as a function of the photon polarization parameter ", which
is related to ⌫ as

⌫ =

r

1 + "

1 � "
⌫ph, (4.47)

with ⌫ph defined in Eq. (4.37). One firstly notices from Fig. 4.31 (left panel) that the calculated
real part of F2�

3 in the box graph model does not agree with the amplitude reconstructed using
unsubtracted DRs. Although the box diagram calculation for F2�

3 is convergent for the FPFP

vertex structure when using on-shell vertices with dipole FFs, we like to stress that this result
is model dependent. We notice however that after performing one subtraction, we find an
agreement between the DR calculation and the box diagram model evaluation, see right panel
of Fig. 4.31.
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Figure 4.32: Real parts of G2�
1 , G2�

2 , and F2�
3 in the elastic electron-proton scattering evaluated

through unsubtracted DRs, as function of the upper integration limit ⌫max. The
plot shows the relative deviation of each amplitude from its value at ⌫max = 1,
denoted by F(1), where F stands for G2�

1 , G2�
2 , F2�

3 . All results are for the FPFP

vertex structure with dipole FFs.

4The overall pre-factor 1/Q2 in the amplitudes decomposition of Eqs. (3.9), (3.10) provides the vanishing
contribution from all possible lepton-proton counter-terms at Q2 = 0. That is the reason of the agreement
between two types of evaluation of the all channels TPE correction to the hydrogen HFS in Chapter 2.
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Chapter 4 TPE corrections from proton intermediate state

To test the numerical convergence for different kinematical situations, we show in Fig. 4.32
the contributions to the real parts of G2�

1 , G2�
2 , and F2�

3 evaluated through unsubtracted DRs,
as function of the upper integration limit in the DR. We see from Fig. 4.32 that for the case
of FPFP vertex structure with dipole FFs, the convergence of unsubtracted DRs is slowest at
large (small) values of " for G2�

2 (G2�
1 ) respectively, while at intermediate values of " the slowest

convergence occurs for F2�
3 .

4.4 Muon-proton scattering experiment (MUSE) predictions

Using the TPE box graph evaluation from Sections 4.1, 4.2, we are able to make predictions of
the leading proton intermediate state contribution in the elastic muon-proton scattering. We
present in Fig. 4.33 the predictions for �2� in the box graph model of Section 4.1 (Born TPE)
in terms of the different vertex structures for the kinematical region of the MUSE experiment
described in Section 3.1. This experiment aims to measure the scattering of electrons and
positrons, muons and antimuons on a proton target in order to test the lepton universality,
to access the TPE correction directly and to extract the proton charge radius from the muon
scattering data.
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Figure 4.33: TPE correction to the unpolarized elastic µ�p cross section evaluated within the
box graph model (Born TPE) for three nominal muon beam momenta. The total
correction is shown by the black solid curves, the contribution from the FDFD

structure of photon-proton-proton vertices is shown by the red dashed curves, the
contribution from the FDFP structure by the green dashed-dotted curves, and the
contribution from the FPFP structure by the blue dotted curves.

One notices from Fig. 4.33 that the FPFP vertex structure does not contribute significantly
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4.4 Muon-proton scattering experiment (MUSE) predictions

to the cross section, while the main contribution comes from the FDFD vertex structure. The
contribution from the FDFP vertex structure rises when increasing the momentum transfer.
This contribution is significant only for the largest values of the momentum transfer of the
MUSE experiment. In magnitude, the TPE correction varies between 0.25 % and 0.5 %.

As the TPE correction depends on the proton FFs, we also investigated the change when using
dipole FFs versus proton electric FF of the form: GE(Q2) = (1 � 0.14265 ⇥ Q2)GM (Q2)/µP ,
obtained accounting for the polarization transfer data [207] by the linear in Q2 term. We
obtain that 1 > �2�(GE from [207])/�2�(dipole GE) > 0.95, 0.96, 0.965 in µ�p scattering
for the beam momenta k = 115 MeV, 153 MeV, 210 MeV respectively and 1 > �2�(GE

from [207])/�2�(dipole GE) > 0.992, 0.988, 0.981 in e�p scattering for the same beam momenta.
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Figure 4.34: Born TPE correction to the unpolarized cross section for three different muon
beam momenta. The TPE correction to elastic µ�p scattering is shown by the
blue solid curves. The black dashed-dotted curves show the elastic e�p scattering
correction. The elastic µ�p scattering correction without account of muon helicity
flip is shown by the red dashed curves.

We show a comparison between the TPE corrections to elastic electron-proton and elastic
muon-proton scattering in Fig. 4.34. One sees that the TPE correction in the case of the
muon-proton scattering is up to a factor three smaller than the correction in the case of the
electron-proton scattering with the same lepton beam momenta. The contribution of the
helicity-flip amplitudes F2�

4 , F2�
5 plays a significant role for µ�p scattering in the kinematical

region of the proposed experiment. It contributes with a sign, opposite from the contribution of
the amplitudes without helicity flip, and significantly reduces the correction. We found that for
the higher momentum transfer Q2 ⇠ 1�2 GeV2 the contribution of helicity flip amplitudes does
not play a significant role and the predictions for elastic µ�p scattering only slightly deviate
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from the predictions for elastic e�p scattering, in agreement with the findings of Ref. [194].
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Figure 4.35: TPE correction to the unpolarized elastic µ�p cross section evaluated for three
nominal muon beam momenta within the unsubtracted DR framework. The total
correction is shown by the black solid curves, the contribution from the FDFD

structure of photon-proton-proton vertices is shown by the red dashed curves, the
contribution from the FDFP structure by the green dashed-dotted curves, and the
contribution from the FPFP structure by the blue dotted curves. For comparison,
the evaluation in the box diagram model (Born TPE) is shown by the double-
dotted black curve.

On the following plots in Fig. 4.35 we present the prediction for �2� within unsubtracted
DRs in terms of the different vertex structures and compare it with the box graph model
results. The contribution from the FDFD vertex structure in the unsubtracted DR formalism
is the same as in the box graph model. The negative contribution from the FPFP vertex
structure can not be neglected in the unsubtracted DR formalism due to the sizable difference
in FF

P

F
P

4 amplitude comparing to the box graph model. The contribution from the FDFP

vertex structure in the unsubtracted DR evaluation is negative as opposed to the box graph
model contribution. The difference between two evaluations is given mainly by the amplitude
F2�
4 . Moreover, the unsubtracted DR evaluation of only the elastic intermediate state TPE

contribution in the forward limit yields: G2�
4

�

⌫, Q2 ! 0
� 6= 0. Consequently, such calculation

does not satisfy the expected vanishing low-Q2 behavior of the cross section, see Section 3.4
for details. The correct evaluation of this amplitude within DRs requires the Q2-dependent
subtraction function. In absence of data to fix this constant, the box graph model estimate
of the TPE correction from the proton intermediate state may be used as a first guidance on
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the size of TPE. However, the MUSE experiment will be able to provide measurements for all
three beam momenta in the region 0.0052 GeV2 < Q2 < 0.027 GeV2 allowing, in principle, to
fix the subtraction points to data.

4.5 Subtracted DR formalism: comparison with ep data

We next discuss predictions for unpolarized cross section and polarization transfer observables
in the elastic electron-proton scattering and compare them with existing data.

For a phenomenological evaluation of the TPE contribution to elastic electron-proton scat-
tering, we like to minimize any model dependence due to higher energy contributions. In a full
calculation, such contributions arise from the inelastic states which always will require some
approximate treatment to which we will turn in Chapters 5 and 6. To minimize any such uncer-
tainties and to provide a more flexible formalism when applied to data, we propose to consider
a DR formalism with one subtraction for the amplitude F2�

3 . The subtraction constant will
be obtained by a fit to the elastic electron-proton scattering observables, in the region where
precise data are available.

We next discuss the implementation of such a subtracted DR formalism for the TPE con-
tribution and provide a detailed comparison to different observables. The TPE correction to
the unpolarized elastic electron-proton scattering cross section in Eq. (3.62) can be expressed
as the sum of a term evaluated using an unsubtracted DR and a term arising from the FPFP

contribution to F2�
3 , which we will evaluate by performing a subtraction:

�2� = �02� + f
�
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and
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The polarization transfer observables of Eqs. (3.63, 3.64) can also be expressed as the model
independent terms (Pt
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)0, ( Pl
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The predictions for the elastic electron-proton scattering observables can be made with one
subtraction point at ⌫ = ⌫0, which we express as
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where <FF
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3 (⌫0, Q2) is calculated using the subtracted DR, and where
we determine the subtraction function <FF

P

F
P

3 (⌫0, Q2) through �2�(⌫0, Q2), which has to be
obtained from the experiment, as
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We can then insert this subtraction term (for every fixed value of Q2) into Eqs. (4.51, 4.52)
and make predictions for the ⌫ or ✏ dependence of these observables as
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In the following, we determine the subtraction term from the unpolarized cross section mea-
surements [104], and show our predictions for the different observables. The TPE correction to
the unpolarized elastic electron-proton scattering evaluated in the model calculation of Section
4.1, with the Feshbach term subtracted, is shown in Fig. 4.36 for a small value of ". It is
seen from Fig. 4.36 that the departure of the TPE correction from the Feshbach term strongly
increases with increasing Q2. This is mainly due to the contribution from the FPFP vertex
structure.
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Figure 4.36: Model prediction for the TPE correction �2� � �F , with �F is the Feshbach term
of Eq. (5.1), for " = 0.01.
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To compare our DR results for the proton intermediate state contribution with the data, we
perform, for every fixed value of Q2, one subtraction for the amplitude F2�

3 with the subtraction
point fixed by one cross section result, which we take from Ref. [104]. For comparison, we also
show the result for the box diagram model in Fig. 4.37. The difference between the results for
different choices of the subtraction point corresponds to the uncertainty of our procedure. We
would like to notice that for Q2 larger than around 1 GeV2 the account of inelastic intermediate
states becomes increasingly important. Additionally, a description in terms of intermediate
hadronic states ceases to be valid for large momentum transfer: due to the scattering off
individual quarks, one will go over into a partonic picture [55,56,61,62,69].
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Figure 4.37: Subtracted DR based prediction for the TPE corrections �2� � �F , in compar-
ison with the Born TPE, unsubtracted DR prediction, for " = 0.01, and with
the parametrization of experimental data [104], for " = 0 (blue band). The
subtracted DR predictions are shown for three choices of the subtraction point:
"0 = 0.2, 0.5, 0.8.
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Figure 4.38: " dependence of the Born TPE correction to the unpolarized cross section for the
elastic electron-proton scattering for different momentum transfers.

89



Chapter 4 TPE corrections from proton intermediate state

We next discuss in more detail the TPE evaluations using proton intermediate state only
to test the validity of this approximation. At low momentum transfer, the model calculation
approaches the Feshbach limit, and is in agreement with the experimental results and previous
evaluations performed by Blunden, Melnitchouk and Tjon [51], see Fig. 4.38 for our results.
The TPE correction to the unpolarized elastic electron-proton scattering evaluated in the box
diagram model of Section 4.1 is shown in Fig. 4.39 as a function of " for the momentum transfers
Q2 = 0.05 GeV2 and Q2 = 1 GeV2.
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Figure 4.39: Model prediction for the TPE correction for Q2 = 0.05 GeV2 (upper panel) and
Q2 = 1 GeV2 (lower panel). Solid curve: full box diagram model (Born TPE)
result; dashed-dotted curve: FDFD vertex contribution only. The experimental
results from the MAMI/A1 Collaboration [104] are shown by the blue bands.
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We also investigate the change in the input of TPE calculation exploiting the proton electric
FF of the form: GE(Q2) = (1�0.14265⇥Q2)GM (Q2)/µP [207]. We obtain at Q2 = 0.05 GeV2

that 1 < �2�(GE from [207])/�2�(dipole GE) < 1.045 and at Q2 = 0.5 GeV2 that 0.94 < �2�(GE

from [207])/�2�(dipole GE) < 1 respectively with the largest deviation observed at forward
angles.
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Figure 4.40: Subtracted DR based predictions for the TPE corrections for Q2 = 0.05 GeV2

(upper panel) and Q2 = 1 GeV2 (lower panel), in comparison with the unsub-
tracted DR prediction as well as with the Born TPE. The subtracted DR curves
correspond with three choices for the subtraction points: "0 = 0.2, 0.5, 0.8. The
blue bands correspond with the experimental result from the fit of Ref. [104].
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We next show our predictions at low momentum transfer based on the subtracted DR frame-
work. As seen from Fig. 4.40, the subtracted DR result describes the data better in the region
of intermediate ". For higher " values, i.e., higher energies, the contribution of inelastic inter-
mediate states becomes important and the agreement between theory and experiment becomes
worse. One also notices clear deviations at lower values of ". This may arise due to the as-
sumption in the experimental TPE analysis of a linear "-behavior for the difference �2� � �F .
The theoretical calculations show non-linear behavior in " for this region.

For Q2 ⇡ 0.206 GeV2, the CLAS Collaboration has recently performed measurements of the
ratio of e+p to e�p elastic scattering cross section [77]. Its deviation from unity is directly
related to the TPE corrections. Furthermore, the ratio Pt/Pl was measured for momentum
transfer values Q2 = 0.298 GeV2 [119] and Q2 = 0.308 GeV2 [208] in Hall A at JLab. In
Figs. 4.41, 4.42 we show the theoretical estimates for physical observables based on the sub-
tracted DR prediction. We fix the subtracted amplitude F2�

3 according to Eq. (4.56), by using
the unpolarized cross section analysis of Ref. [104] at one point in " as input. We choose the sub-
traction point "0 = 0.83, which is in the "-range of both experiments. For both observables we
use the FFs from the Pt/Pl measurement of Ref. [119]. We extract the TPE correction �2� from
the CLAS data of the cross section ratio R2� = �(e+p)/�(e�p) by �2� ⇡ (1+�even)⇥(1�R2�)/2,
where �even ⇡ �0.2 is the total charge-even radiative correction factor according to Ref. [77].
Note that for the CLAS data, which have been radiatively corrected according to the Mo and
Tsai (MT) procedure [162] in Ref. [77], we applied the correction �MT

2�, soft � �MaTj
2�, soft to the data

in order to compare them relative to the Maximon and Tjon (MaTj) procedure which we fol-
low in this paper. The uncertainty band shown for the subtracted DR analysis arises from the
experimental uncertainty entering through the subtraction. We conclude from Figs. 4.41, 4.42
that all measurements are in agreement for low momentum transfer and the TPE corrections
in the CLAS data and the Pt/Pl measurements of Refs. [77], [119] are described by the elastic
contribution within the errors of the experiments.
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Figure 4.41: Comparison of the subtracted DR prediction for the TPE correction for Q2 =
0.206 GeV2 with the data [77], with the unsubtracted DR prediction and with the
Born TPE. The subtraction point used in the DR analysis is "0 = 0.83.
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Figure 4.42: Comparison of the subtracted DR prediction for the ratio R = �µp
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for
Q2 = 0.298 GeV2 with the data [119, 208], with the unsubtracted DR prediction
and with the Born TPE. The subtraction point used in the DR analysis is "0 =
0.83.
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Figure 4.43: Comparison of the subtracted DR prediction for the TPE correction for Q2 =
0.85 GeV2 (left panel) and Q2 = 1.45 GeV2 (right panel) with the data [79], with
the unsubtracted DR prediction and with the Born TPE. The value of "0 in the
subtracted DR analysis indicates the subtraction point which was used.

We show the similar comparison with the recent CLAS data from the measurement of R2�

at larger momentum transfer Q2 ⇡ 0.85 GeV2 and Q2 ⇡ 1.45 GeV2 [79] in Fig. 4.43. We
take the subtraction point from the fit of Ref. [104]. With account of the proton intermediate
state only the measured TPE correction is in agreement with an empirical fit [104]. The
comparison with the VEPP-3 data renormalized [76] according to the empirical fit of Ref. [104]
is shown in Fig. 4.44. The experimental points at Q2 = 0.298 GeV2 and Q2 = 1.51 GeV2

are in agreement with the Born TPE. The measured TPE correction is in agreement with an
empirical fit [104] for Q2 > 0.8 GeV2. The subtracted DR is able to describe all points. The
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subtracted DR prediction for the OLYMPUS experiment [81], which measures the ratio of e+p
to e�p cross section R2� exploiting the 2 GeV lepton beam, is shown in Fig. 4.45. According
to it, the TPE correction vanishes at Q2 = 0 and changes the sign somewhere in the region
0.3 GeV2 . Q2 . 1.2 GeV2. The largest TPE correction corresponds to larger momentum
transfer values of the experiment. The experiment has finished the data taking period in the
kinematical region 0.4 GeV2 < Q2 < 2.2 GeV2 and the analysis is going to be finished soon.

VEPP-3 (2015)
A1 Coll.
Born TPE
subtracted DR (ε0 = 0.8)
subtracted DR (ε0 = 0.5)
subtracted DR (ε0 = 0.2)

� 2
�
,%

0

0.5

−0.5

−1.0

−1.5

−2.0

Q2, GeV2
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 4.44: TPE correction measurements of Ref. [76] in comparison with the subtracted DR
prediction, the Born TPE and empirical fit of Ref. [104] evaluated for the exper-
imental (Q2, ") values. The VEPP-3 [76] data points correspond to the follow-
ing kinematics: Q2 = 0.298 GeV2, " = 0.932; Q2 = 0.83 GeV2, " = 0.404;
Q2 = 0.976 GeV2, " = 0.272; Q2 = 1.51 GeV2, " = 0.449.
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Figure 4.45: The subtracted DR prediction for the TPE correction in the scattering of 2 GeV
electron beam on a proton target (OLYMPUS [81]) in comparison with the Born
TPE and the unsubtracted DR result.
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We next discuss the polarization transfer observables for momentum transfer Q2 ⇡ 2.5 GeV2,
where data have been taken both for Pt and Pl separately [72,73]. In our theoretical predictions,
we use the proton FFs taken from the Pt/Pl ratio measurement. To evaluate the TPE invariant
amplitudes, we use the dipole FFs as an input. The comparison with the data for the ratio
Pt/Pl is shown in Fig. 4.46. As one sees, the present data for Pt/Pl [73] does not allow to
extract a TPE effect, indicating a cancellation between the three TPE amplitudes for this
specific observable. The comparison with the data [73] for the absolute polarization transfer
observable Pl/PBorn

l [73] is also shown in Fig. 4.46. It shows that the point at " = 0.635
with Pl/PBorn

l = 1.007 ± 0.005 is consistent with the proton contribution only, but the point
at " = 0.785 with Pl/PBorn

l = 1.023 ± 0.006 requires further theoretical investigations, e.g.,
account of inelastic intermediate states which are relevant at these larger momentum transfers.
The specific property of the subtracted DR analysis for the ratio Pl/PBorn

l is the divergence
of the errors for " ! 1 as 1/

p
1 � ". The divergent behavior is inherited from the function

h(⌫, Q2) ⇠ ⌫ ⇠ 1/
p

1 � " entering the Eq. (4.58) in the product with the subtraction point
uncertainty.
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Figure 4.46: Comparison of the subtracted DR predictions for the ratio R = �µp

q

1+"
" ⌧P

Pt
Pl

(left panel) and Pl/PBorn
l (right panel) for Q2 = 2.5 GeV2 with the data of

Ref. [73], with the unsubtracted DR prediction and with the Born TPE. The
subtraction point used in the DR analysis is "0 = 0.785.

For a phenomenological extraction of TPE amplitudes, it is useful to define the following
TPE amplitudes:

⌥M = <
 

G2�
M

GM

!

, ⌥E = <
 

G2�
M � (1 + ⌧P )F2�

2

GM

!

,

⌥1 = <
 

G2�
1

GM

!

, ⌥2 = <
 

G2�
2

GM

!

, ⌥3 =
⌫

M2
<
 

F2�
3

GM

!

. (4.59)

These amplitudes have been extracted [72] from the experimental data at Q2 = 2.5 GeV2.
In Fig. 4.47, we show the results for the elastic contribution to the amplitudes ⌥1 and ⌥2,

which coincide with the Born TPE in case of these amplitudes. The amplitude ⌥2 calculated
within the box graph model is in agreement with the amplitude extracted from the experimental
data in the covered by experiment region (" ⇠ 0.6� 0.9). The amplitude ⌥2 is at the per mille
level. While the amplitude ⌥1 is at the percent level and deviates from the experimental result
for smaller " values.
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Figure 4.47: "-dependence of the amplitude ⌥1 (left panel) and ⌥2 (right panel) for Q2 =
2.5 GeV2. The light band corresponds with the phenomenological extraction of
Ref. [72]. Solid curve: Born TPE.

In Fig. 4.48, we show the subtracted DR results for the amplitudes ⌥3, ⌥M and ⌥E . We take
the subtraction point from the unpolarized cross section measurements [104]. The subtracted
DR analysis of these amplitudes leads to the 1/

p
1 � " divergence of the errors for " ! 1 as in

the case of the ratio Pl/PBorn
l due to the factor ⌫ coming with the subtracted amplitude F3. The

amplitudes evaluated within the box graph model are different with the amplitudes extracted
from experimental data in the region of available data (" ⇠ 0.6�0.9). We expect that inelastic
intermediate states can lead to a large contribution for momentum transfer Q2 ⇠ 2.5 GeV2

and explain at least some part of this discrepancy.
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Figure 4.48: "-dependence of the amplitudes ⌥3 (upper panel), ⌥E (central panel) and ⌥M

(lower panel) for Q2 = 2.5 GeV2. The light band corresponds with the phe-
nomenological extraction of Ref. [72]. The dark (blue) band is the subtracted
DR result for the proton intermediate state, with subtraction point "0 = 0.785.
The size of the band reflects the uncertainty of the data at the subtraction point,
according to Eqs. (4.56, 4.59).
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Chapter 5

Low-Q2 limit of TPE correction including inelastic
intermediate states

In this Chapter, we account for all inelastic intermediate states in the region of low momentum
transfer approximating the proton side of the TPE graph by the near-forward unpolarized
doubly virtual Compton scattering. We first reproduce the low momentum transfer expansion
of the Born TPE in the elastic electron-proton scattering and generalize it to the case of massive
lepton in Section 5.1. Deriving this expansion in the near-forward approximation in Sections 5.2
and 5.3, we confirm the validity of the approximation for the proton TPE contribution. Inelastic
states contribution is given by the subtraction function in the unpolarized forward Compton
amplitude T1 and unpolarized proton structure functions F1, F2. In the elastic electron-proton
scattering, the subtraction function contribution is suppressed by the square of the electron
mass. We study its contribution in the muon-proton scattering in Section 5.5 and evaluate the
resulting TPE correction from the heavy-baryon, the baryon chiral perturbation theory and
empirically determined subtraction functions. Furthermore, we reproduce the leading Q2 ln Q2

term of the inelastic TPE in the electron-proton scattering and evaluate the proton structure
functions contribution numerically in Section 5.6. We compare the total TPE correction, the
sum of the Born TPE and inelastic TPE in the near-forward approximation, with the TPE
fit performed by the MAMI/A1 Collaboration and the experimental data points from CLAS
and VEPP-3. We also make predictions for the MUSE kinematics and low-Q2 region of the
OLYMPUS experiment.

5.1 Low-Q2 expansion of elastic TPE correction

5.1.1 Elastic e�p scattering
The limit of low momentum transfer is relevant to extract the proton charge radius from
elastic scattering data. In the forward limit, corresponding with Q2 ! 0 and " ! 1, the TPE
correction to the cross section is given by Coulomb photons from the FDFD structure of virtual
photon-proton-proton vertices. This result was first obtained for the electron-proton scattering
in the Dirac theory as the first order cross section correction by McKinley and Feshbach [173],
see Eq. (3.53) for the whole analytical expression. In case of the elastic electron-proton
scattering the Feshbach correction simplifies to

�F =
↵⇡ sin ✓

lab

2

1 + sin ✓
lab

2

⇡ ↵⇡
p

1 � "p
1 � "+

p
1 + "

. (5.1)

It is instructive to provide some analytical expressions for �2� in the forward limit resulting
from the FDFD vertex contribution to the full box diagram calculation.

For the case of electron scattering off massless quarks (taken with unit charge) the TPE
correction is given by [56]
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with y =
p

1 � "/
p

1 + " and Q2 = 4y⌫. In the forward limit (Q2 ! 0 and " ! 1, at finite ⌫)
we recover the Feshbach term and find large logarithmic correction terms in (1 � "):
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, (5.3)

where the IR divergent TPE is given by the massless limit of Eq. (4.10) and the limit of the
Feshbach correction is given by

�F ! ↵⇡Q

2!
. (5.4)

For the case of forward scattering off a massive point particle we also give the analytical
form of the momentum transfer expansion of the FDFD vertex contribution for the model
with point particles. In the forward direction, only the contribution from the amplitude G2�

2

defined in Eq. (3.38) survives since �2� ! 2<G2�
2 in the forward limit. The FDFD point vertex

contribution to the imaginary part of G2�
2 is obtained from Eqs. (4.26) as
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with ⌫ph as defined in Eq. (4.37). Using the dispersion relation of Eq. (4.29), we can express
the real part of GF

D

F
D

2 in the forward limit (for Q2 ⌧ M2, M2!2/s) in terms of Q2 and the
electron beam energy ! in the laboratory frame as
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. (5.6)

Note that we can equivalently express Eq. (5.6) through the variable " using the kinematical
relation Q/! ' p

2(1 � "), which holds in the forward direction. Eq. (5.6) then allows to
directly express �2� in the forward direction as

�2� � �IR2� �! �F +
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, (5.7)

where the leading finite term (proportional to Q/!) is obtained as the limit of the Feshbach
correction term �F , and where subleading logarithmic correction terms are also shown. We
found that our forward limit result of Eq. (5.7) agrees with an expression obtained some time
ago [174] by the direct evaluation of the loop integrals. We can similarly study the contributions
of the FDFP and FPFP vertex structures to the amplitude G2�

2 in the case of a point-like proton
comparing their imaginary parts =GF

D

F
P

2 and =GF
P

F
P

2 with the expression for the FDFD vertex
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structure =GF
D

F
D

2 of Eq. (5.5). The corresponding imaginary parts can be obtained from
Eqs. (4.27, 4.28) as
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The Feshbach correction and the subleading logarithmic terms in the real part of the amplitude
GF

D

F
D

2 , Eq. (5.6), arise from the logarithmic term in Eq. (5.5). Analogous terms are suppressed
by the pre-factor Q2/M2 in the imaginary parts for the FDFP and FPFP vertex structures in
comparison with the FDFD vertex structure. The additional logarithmic term in Eq. (5.9) also
leads to corrections of higher order in Q in comparison with Eq. (5.6).

In Fig. 5.1, we compare the limit of the Feshbach correction with the full box diagram calcu-
lation of �2� for point-like proton at low momentum transfers and beam energies corresponding
with experiments at MAMI and JLab. One sees that at low Q2, the leading TPE contribution
is given by the FDFD vertex structure, and approaches the Feshbach term in the forward di-
rection. We furthermore see that at low Q2, the leading corrections to the Feshbach result are
given by the logarithmic terms given in Eq. (5.7).

In Fig. 5.2, we compare the analogous results using the dipole model for the proton FFs.
It is instructive also to provide expressions for the real parts of all other TPE amplitudes

in the case of FDFD vertex structure in the forward limit. Subtracting the IR divergent terms
in the amplitudes GF

D

F
D

1 , GF
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F
D

M , see Eqs. (4.6, 5.6), and the finite constant terms in the
amplitudes GF
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D

M and FF
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3 , we obtain the following leading Q2-dependent terms:1
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These expressions are in agreement with the low-Q2 expansion of the amplitudes obtained
by the direct box graph evaluation in case of the FDFD vertex structure. Consequently, the
Q, Q2 ln Q2, Q2 ln2 Q2 terms are model independent results which should be respected by any
hadronic TPE calculation.

5.1.2 Elastic µ�p scattering
In this Section, we start by studying the quality of some approximate expressions for the proton
contribution in the low-Q2 limit in case of the massive lepton-proton scattering, for which an
analytical form can be provided.

1The constant terms in the electron-proton scattering amplitudes at vanishing Q2 are related by
FFDFD

2

(⌫, Q2 = 0) = 0 and GFDFD
M (⌫, Q2 = 0) + ⌫/M2FFDFD

3

(⌫, Q2 = 0) = 0.
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Figure 5.1: The forward limit of the TPE correction to the unpolarized electron-proton scat-
tering cross-section in the model with a point-like proton for ! = 0.18 GeV (upper
panels) and ! = 1.1 GeV (lower panels). For clarity, the contribution relative to
the Feshbach term is shown on the right panels for the logarithmic correction term
of Eq. (5.7), for the total FDFD vertex contribution to the box diagram (Dirac par-
ticle), and for the full box diagram calculation, also including the FDFP and FPFP

contributions (point-like proton).
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Figure 5.2: The forward limit of the TPE correction in the model with dipole proton FFs for
! = 0.18 GeV (left panel) and ! = 1.1 GeV (right panel).
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5.1 Low-Q2 expansion of elastic TPE correction

The leading term of the momentum transfer expansion of the TPE correction �2� of Eq. (5.4)
is modified by the recoil correction due to the final lepton mass:

�F ! ↵⇡Q

2!

⇣

1 +
m

M

⌘

. (5.14)

We present the derivation of this leading term in the momentum transfer expansion of the TPE
correction in Appendix L.

As a next step, one may consider the TPE correction in the scattering of two point-like
Dirac particles (corresponding with two �µ couplings). When studying the low-Q2 expansion
Q2 ⌧ m2, M2, M2|k|2/s, of the TPE correction in the elastic muon-proton scattering with a
point-like proton �QED

2� neglecting its magnetic moment, we find the analogue of the Feshbach
term of Eq. (5.14), the IR divergent piece �IR2� , and a logarithmic correction:
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where |k| is the muon momentum in the lab frame.
We also provide the more general expansion of �QED

2� in the low-Q2 limit Q2 ⌧ M2, M2|k|2/s,
where Q2 needs not be very small relative to the squared lepton mass. For such expansion, the
leading Q2 terms are given by
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where Li2(x) denotes the dilogarithm function. The leading IR divergent piece is given by Eq.
(5.16). The two limits of the function C(m, Q2), when m ! 0 and when Q2 ! 0, are of a
special interest:

C(m ! 0, Q2) =
1
2 ln2 m2

Q2

+ 2⇡2

3

16⇡2Q2
,

C(m, Q2 ! 0) =
1

32mQ
+

�2 + ln Q2

m2

32⇡2m2
. (5.19)

In the limit Q2 ⌧ m2, the result of Eq. (5.17) reduces to the expression of Eq. (5.15).
When taking the massless limit m2 ⌧ Q2 of Eq. (5.17), we also recover the expression of Eq.
(5.7) [172,174].
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Chapter 5 Low-Q2 limit of TPE correction including inelastic intermediate states

We show in Fig. 5.3 (left panel) the comparison between the Feshbach term, the TPE
contribution for point-like Dirac particles, and the TPE for a point-like proton, with an inclusion
of the magnetic moment contribution. It is seen that the Feshbach correction of Eq. (3.53)
with an account of the recoil correction factor (1 + m/M) describes the result for point-like
Dirac particles quite well in the kinematics of the MUSE experiment.

We also show in Fig. 5.3 (right panel) the effect of the proton FFs, according to the full
numerical calculation of Ref. [170]. In the low Q2 kinematics of the MUSE experiment, the
inclusion of the FFs provides a reduction of the TPE by around 40 % at Q2 ⇡ 0.025 GeV2,
consequently one should use the full numerical calculation of Section 4.1 [170] (corresponding
with the Born TPE result in Fig. 5.3) in MUSE kinematics.

Born TPE
finite size Dirac particle
Feshbach

� 2
�
,%

dipole FFs
k = 115 MeV

0

0.2

0.4

0.6

Q2, GeV2
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point-like proton
Dirac particle
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� 2
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point-like

k = 115 MeV
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0.75

Q2, GeV2
0 0.005 0.0150.010 0.020 0.025

Figure 5.3: Left panel: TPE correction in elastic muon-proton scattering for the case of a
point-like proton neglecting the contribution from FPFP vertex structure, compared
with the case where one neglects the magnetic moment (Dirac particle), as well as
the Feshbach result (corresponding with Coulomb photon exchange). Right panel:
TPE correction for the case of the proton with electric and magnetic form factors
of the dipole form. We compare the box graph calculation with the Feshbach term
corrected by the recoil correction 1 + m/M .

In the forward direction, only the amplitudes G2�
2 , G2�

4 defined in Eqs. (3.38, 3.40) contribute
to the leading powers of the TPE correction of Eq. (3.36). The resulting correction �2� is
approximated in the forward limit as

�2� ! 2<
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M!
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4

◆

. (5.20)

We provide the leading terms in the low-Q2 expansion, Q2 ⌧ M2, M2|k|2/s, for the real
parts of TPE amplitudes in the case of FDFD vertex structure after subtraction of the IR
divergent terms from Eqs. (4.6):
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According to Eqs. (3.18, 3.19) the amplitudes GF
D

F
D

2 and GF
D

F
D

4 have no constant term in the
low-Q2 expansion.

Subtracting the IR divergent and constant terms that are related by Eqs. (3.17-3.20), we
obtain the leading Q2-dependent terms as
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These results were obtained as the low-Q2 limit of the TPE box and crossed box graphs in the
elastic scattering of a massive lepton on a point charge. Taking the limit Q2 � m2, we obtain
Eqs. (5.11-5.13).

5.2 TPE correction in terms of VVCS amplitudes

In this Section, we express the TPE correction �2� in terms of the VVCS tensor and study
the TPE correction in detail for the case of the proton intermediate state contribution. The
exchange of two photons contributes to the elastic lepton-proton scattering through the TPE
diagram shown in Fig. 5.4.
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Chapter 5 Low-Q2 limit of TPE correction including inelastic intermediate states

Figure 5.4: Two-photon exchange (TPE) diagram.

The lower blob in Fig. 5.4 is given by the doubly virtual Compton scattering (VVCS) process
on a proton (see Fig. 5.5): �⇤ (q1,�1)+N (p,�) ! �⇤ (q2,�2)+N (p0,�0). The VVCS amplitude
T�

2

�0,�
1

� can be written in terms of the VVCS tensor Mµ⌫ as

T�
2

�0,�
1

� = "⌫ (q1,�1) "
⇤
µ (q2,�2) · N̄

�

p0,�0
�

(4⇡Mµ⌫)N (p,�) , (5.29)

where "⌫ , "⇤µ denote the virtual photon polarization vectors, N, N̄ the proton spinors, and
�1,�2 (�,�0) the photon (proton) helicities. The initial and final virtual photon momenta q1
and q2 are related to the momentum transfer q and the loop variable q̃ in Fig. 5.4 by

q1 = q̃ +
q

2
, q2 = q̃ � q

2
. (5.30)

Figure 5.5: Non-forward doubly virtual Compton scattering (VVCS) process.

The TPE correction, �2� of Eq. (3.35), for the lepton-proton (l�p) scattering is in general
given by the interference of the one-photon exchange T 1� and the two-photon exchange T 2�

amplitudes,
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The OPE expression in the denominator of Eq. (5.31) is given by
X

spin
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where GE (GM ) are the proton electric (magnetic) form factors respectively, and with kine-
matical quantities ⌧P and "0 defined as in Sections 2.3, 3.1. The interference between the OPE
and TPE amplitudes in the numerator of Eq. (5.31) can be expressed as
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Furthermore, the VVCS tensor Mµ⌫ reads, in the notation of Refs. [209,210],2 as

Mµ⌫ = ↵
X

i2J
Bi

�

q21, q
2
2, q1 · q2, q̃ · P

�

Tµ⌫
i ,

J = {1, ..., 21} \ {5, 15, 16} , (5.34)

where the 18 independent tensors Tµ⌫
i were constructed to be gauge invariant, and the non-Born

parts are free of kinematical singularities and constraints, following the procedure outlined in
Ref. [211]. The invariant amplitudes Bi satisfy definite transformation properties with respect
to photon crossing as well as charge conjugation combined with proton crossing as detailed in
Refs. [209, 210]. The lack of knowledge of the amplitudes Bi for the doubly-virtual case does
not allow one to evaluate the TPE correction in the general case. However, in the limit of
low momentum transfer one can approximate the lower VVCS process by the forward virtual
Compton scattering, which is studied experimentally relatively well.

In the following, we firstly study the TPE correction to the unpolarized elastic lepton-proton
scattering cross section coming from the proton intermediate state in the low-Q2 limit. This
will set the stage to apply the formalism subsequently for inelastic intermediate states. The
correction of Eqs. (5.7, 5.15, 5.17) can be obtained by the graph with two Dirac structures �µ
in the photon-proton-proton vertices. The VVCS tensor Mµ⌫

QED in this case is given by the sum
of three nonvanishing terms [209–211]:

Mµ⌫
QED = ↵

⇣

BQED
2 Tµ⌫

2 + BQED
10 Tµ⌫

10 + BQED
17 Tµ⌫

17

⌘

. (5.35)

The amplitudes BQED
2 , BQED

10 , BQED
17 and the expressions for the corresponding tensors are

given in Appendix M.
The leading contribution to the TPE correction is obtained by the contribution from the

unpolarized VVCS amplitude BQED
2 only. Neglecting the subleading terms in the momen-

tum transfer expansion in case of the proton intermediate state (i.e., taking the limit Q2 ⌧
M2, sQ2/⌃s), the leading terms in the Q2 expansion for a Dirac point particle can then be
obtained from

2Note, however, that our convention for the photon field four-momenta indices µ and ⌫ (see Fig. 5.5) is
opposite to Refs. [209], [210], which changes the sign of the tensors that are antisymmetric under µ $ ⌫.
Conveniently, we use the amplitudes Bi with an overall "�" sign relative to the notation of Refs. [209,210].
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where we have introduced the propagator notations:

⇧±
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1

(P ± q̃) � M2
, ⇧±

K =
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(K ± q̃) � m2
, ⇧±
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. (5.37)

The expression in Eq. (5.36) reproduces all terms in the low-Q2 expansion of Eq. (5.17).
The spin-dependent structures BQED

10 Tµ⌫
10 and BQED

17 Tµ⌫
17 give rise to higher powers in Q2 in

the expansion of the TPE correction in comparison with the contribution of the unpolarized
structure BQED

2 Tµ⌫
2 . Consequently, the leading Q2 terms in the expansion coming from the

graph with two vertices �µ is reproduced in a correct way with Eq. (5.36). As an example, we
describe the derivation of the Feshbach correction limit, see Eqs. (5.4, 5.14), in Appendix L.

The VVCS tensor for a Dirac point particle corresponding with all three structures of Eq.
(5.35) results in the TPE correction �QED

2� given by
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5.3 Near-forward approximation of VVCS

The VVCS amplitudes B1, B2, B3, B4, B19 contribute to the unpolarized forward virtual
Compton scattering tensor.

The full proton intermediate state contribution from the unpolarized VVCS amplitudes is
described by two nonvanishing amplitudes,
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with Q2
1 ⌘ �q21, Q2

2 ⌘ �q22, the kinematical relation (q1 · q2) = �
⇣

Q̃2 � Q2

4

⌘

, and the usual
notations:

M ⌫̃ = (P · q̃) , Q̃2 = �q̃2. (5.41)

These amplitudes contribute to the VVCS tensor of Eq. (5.34) with the following tensor
structures:

Tµ⌫
1 = � (q1 · q2) gµ⌫ + qµ1 q⌫2 , (5.42)

Tµ⌫
2 = �4 (P · q̃)2 gµ⌫ � 4 (q1 · q2) PµP ⌫ + 4 (P · q̃) (P ⌫qµ1 + Pµq⌫2 ) . (5.43)

The other unpolarized amplitudes vanish in the Born approximation, i.e.:

BBorn
3 = 0, BBorn

4 = 0, BBorn
19 = 0. (5.44)

When evaluating the TPE correction, one can simplify the calculation by using explicitly
gauge invariance, i.e., qµ2Lµ⌫↵ = 0 and q⌫1Lµ⌫↵ = 0 for the virtual photon momenta q1, q2.
Consequently, we can use the identities:

qµ1Lµ⌫↵ = qµLµ⌫↵, q⌫2Lµ⌫↵ = �q⌫Lµ⌫↵. (5.45)

Approximating the arguments of proton form factors as: Q2
1 ⇡ Q2

2 ⇡ Q̃2 � Q2/4, the B1 and
B2 Born contributions can be obtained from the effective near-forward VVCS tensor,

Mµ⌫
⇣

⌫̃, Q̃2
⌘

=

 

�gµ⌫ +
qµq⌫

Q̃2 � Q2

4

!

T1

✓

⌫̃, Q̃2 � Q2

4

◆

+
1

M2

 

Pµ +
M ⌫̃

Q̃2 � Q2

4

qµ
! 

P ⌫ � M ⌫̃

Q̃2 � Q2

4

q⌫
!

T2

✓

⌫̃, Q̃2 � Q2

4

◆

.

(5.46)

The expression of Eq. (5.46) gives the correct forward limit, when q = 0. For a Dirac point
particle, we checked that Eq. (5.46) corresponds with the exact result for the unpolarized
VVCS tensor when replacing FD

�

Q2
� ! 1 and FP

�

Q2
� ! 0 in Eqs. (2.66) and (2.67). At low

Q2, it leads to Eq. (5.36) and gives the leading terms in the low-Q2 expansion of the proton
contribution to �2� of Eq. (5.17). We call the approximation of Eq. (5.46) the near-forward
approximation.

We now turn to the inelastic contributions to the unpolarized forward Compton amplitudes
T1, T2. They are expressed in terms of the VVCS invariant amplitudes Bi in the forward
kinematics by
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. (5.48)
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In this work, we choose the tensor form of Eq. (5.46) to describe the inelastic TPE correction
and only keep the amplitudes B1 and B2 in the region of small momentum transfer.

We describe the VVCS invariant amplitudes Bi
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�
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where we use the approximation q21 ⇡ q22 ⇡ �Q̃2 + Q2/4.
The near-forward approximation allows one to exactly obtain the first two terms of the inelas-

tic TPE expansion in the elastic electron-proton scattering coming from the proton structure
functions F1 and F2:

�inel2� ⇡ a (!) Q2 ln Q2 + b (!) Q2. (5.50)

In our calculation, we keep the Q2 dependence in all kinematical factors, but we do not pretend
on the exact validity of our approximations beyond the expansion of Eq. (5.50) due to the
contribution of doubly virtual Compton amplitudes besides B1 and B2. The near-forward
approximation of Eq. (5.46) is valid only in the region of small momentum transfer Q2. In
Section 5.6.2, we explicitly study the range in Q2 over which such expansion is expected to
provide a good approximation.

We obtain the TPE correction substituting the near-forward approximation of the VVCS
tensor of Eq. (5.46) into the general expression for the cross section correction �2� of Eq.
(5.31):
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. (5.51)

The forward VVCS amplitudes T1, T2 are related to the experimentally measured unpolarized
proton structure functions F1, F2 by dispersion relations of Eqs. (2.60, 2.61), see Section 2.4
for details. It is convenient to rewrite these DRs in terms of the squared invariant mass variable
W 2 ⌘ (P + q̃)2:
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<T1(⌫̃, Q̃
2) = <TBorn

1 (⌫̃, Q̃2) + Tsubt
1 (0, Q̃2)

+
2⌫̃2
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1̂

W 2
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e2MF1
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W 2 � P 2 + Q̃2
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(P + q̃)2 � W 2 + i"
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(P � q̃)2 � W 2 + i"
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(5.52)

<T2(⌫̃, Q̃
2) = <TBorn

2 (⌫̃, Q̃2) +
1
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1̂

W 2
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e2MF2

⇣

(W 2 � P 2 + Q̃2)/(2M), Q̃2
⌘

dW 2
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(P + q̃)2 � W 2 + i"
⌘⇣

(P � q̃)2 � W 2 + i"
⌘ ,

(5.53)

with the pion-proton inelastic threshold: W 2
thr = (M + m⇡)2 ⇡ 1.15 GeV2.

In order to evaluate the inelastic TPE contribution using the forward non-Born VVCS am-
plitudes, we need the information on the proton structure functions F1 and F2 as well as to
specify the subtraction function Tsubt

1 (0, Q̃2). We evaluate the subtraction function contri-
bution in Sections 5.4, 5.5 and the dispersive contribution due to the unpolarized structure
functions F1 and F2 in Section 5.6.2.

5.4 Subtraction function contribution in ep scattering

Before discussing the proton structure functions contribution to �2� , we first discuss the sub-
traction term in the T1 amplitude in the elastic electron-proton scattering regardless of the
near-forward approximation of Eq. (5.46). The subtraction function Tsubt

1 (0, Q̃2) is expressed
in terms of only two VVCS amplitudes B1 and B3 as

Tsubt
1 (0, Q̃2) = �↵ �B1

�

Q2
�

Q2 + B3

�

Q2
�

Q4
�

, (5.54)

with the relevant VVCS tensor structures given by

Tµ⌫
1 = � (q1 · q2) gµ⌫ + qµ1 q⌫2 , (5.55)

Tµ⌫
3 = q21q

2
2g

µ⌫ + (q1 · q2) q⌫1qµ2 � q21 + q22
2

(q⌫1qµ1 + q⌫2qµ2 ) +
q21 � q22

2
(q⌫1qµ1 � q⌫2qµ2 ) .(5.56)

The TPE correction due to the subtraction term, �subt2� , arising from the amplitudes B1, B3, is
obtained from Eq. (5.31) as

�subt2� ⇠
ˆ

id4q̃

(2⇡)4

✓

B1⇧
+
Q⇧�

Q

✓

Q̃2 +
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4
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K

⇥
⇢

Q2

4
(P · q̃) (K · q̃) � (K · P ) (K · q̃)2

�

⌘ I1 + I2. (5.57)

We express the loop integral of the first term of Eq. (5.57), denoted by I1, as

I1 =
Q2

4

ˆ
id4q̃

(2⇡)4
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+
Q⇧�
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4

◆
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K = aK (K · P ) ,

(5.58)

where we have defined aK as

aKKµ =
Q2

16

ˆ
id4q̃

(2⇡)4
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B1⇧
+
Q⇧�

Q

✓

Q̃2 +
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4
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◆

q̃µ
�
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K

�

. (5.59)
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On the other hand, since K2 = Q2/4 in the electron massless limit, we can rewrite the integral
I1 as

I1 = (K · P )

ˆ
id4q̃

(2⇡)4

✓

B1⇧
+
Q⇧�

Q

✓

Q̃2 +
Q2

4

◆

+ B3

◆

(K · q̃)2 ⇧+
K⇧�

K , (5.60)

which exactly cancels the integral I2 from the second term in Eq. (5.57). Consequently, the
subtraction function contribution to unpolarized elastic electron-proton scattering vanishes in
the limit of massless electrons.

It is instructive to study the subtraction function contribution to the TPE amplitude T 2� of
elastic lepton-proton scattering, accounting for a finite lepton mass. The amplitude is given by

T 2� = e2
ˆ

id4q̃

(2⇡)3
L̃µ⌫N̄(p0,�0)Mµ⌫N(p,�)

⇣

�

q̃ � q
2

�2 � µ2
⌘⇣

�

q̃ + q
2

�2 � µ2
⌘ , (5.61)

with the leptonic tensor:

L̃µ⌫ = ū
�

k0, h0�
 

�µ
K̂ � ˆ̃q + m

(K � q̃)2 � m2
�⌫ + �⌫

K̂ + ˆ̃q + m

(K + q̃)2 � m2
�µ
!

u (k, h) . (5.62)

We study the TPE contribution due to the VVCS amplitude B1 first. The � (q1 · q2) gµ⌫

term contribution is given by

�e4
ˆ

id4q̃

(2⇡)4
B1

✓

2m

✓

q̃2 +
Q2

4

◆

ūu + 4 (K · q̃) ūˆ̃qu

◆

· �N̄N
�

✓

q̃2 +
Q2

4

◆

⇧+
K⇧�

K⇧+
Q⇧�

Q.

(5.63)

Using the gauge symmetry in the tensor Tµ⌫
1 , the qµ1 q⌫2 term contribution is expressed as

e4Q2

ˆ
id4q̃

(2⇡)4
B1

⇣

2 (K · q̃) ūˆ̃qu
⌘

· �N̄N
�

⇧+
K⇧�

K⇧+
Q⇧�

Q. (5.64)

Denoting

e4Q2

ˆ
id4q̃

(2⇡)4
B1 · �2 (K · q̃) q̃µ

�

⇧+
K⇧�

K⇧+
Q⇧�

Q = a(1)K Kµ, (5.65)

the contribution of the qµ1 q⌫2 term is given by

ma(1)K (ūu) · �N̄N
�

. (5.66)

Note that, according to the symmetry properties of the VVCS amplitudes [209], the expansion
of Eq. (5.65) also contains no qµ term for the case of VVCS amplitude B1

�

q21, q
2
2, (q1 · q2) , (P · q̃)

�

subtracted at an arbitrary point ⌫0: (P · q̃) = M⌫0. The amplitude B3 contributes through
only one tensor structure q21q

2
2g

µ⌫ in the similar way as the amplitude B1 contributes through
the structure � (q1 · q2) gµ⌫ .

We conclude that the T1 subtraction function contributes to the (ūu) · �N̄N
�

term in the
elastic lepton-proton scattering amplitude.3 This contribution is suppressed by the lepton
mass. In the language of effective field theories, the chiral (or axial) symmetry on the lepton
side forbids the (ūu)·�N̄N

�

type structure for massless electrons, and therefore the contribution
of the subtraction function vanishes in the massless lepton limit.

3That is equivalent to a subtraction in the dispersion relation for the F
4

invariant amplitude.
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5.5 Subtraction function contribution in µp scattering

In the present Section we discuss the TPE correction due to the subtraction function Tsubt
1 (0, Q̃2)

in the elastic muon-proton scattering. For this purpose, we compare three different estimates
for �(Q̃2) defined through Eq. (2.74). At low Q2 we use existing estimates from heavy-baryon
and baryon chiral perturbation theory and compare them with an empirical determination of
�(Q̃2) based on the high-energy behavior of the Compton amplitude, which is described in
Section 2.4.1.

5.5.1 Heavy-baryon Chiral Perturbation Theory subtraction func-
tion

Firstly, we show the fit of Ref. [141] obtained by matching the heavy-baryon chiral perturbation
theory (HBChPT) result to a dipole behavior:

�(Q̃2) =
�M

⇣

1 + Q̃2/⇤2
⌘2 , ⇤ = 530 � 842 MeV, (5.67)

with the value of the magnetic polarizability �M = (2.5±0.4)⇥10�4 fm3 taken from PDG [15].
For the purpose of showing error bands in our numerical estimates, we choose the lower and
upper edges of such bands to correspond with the values: ⇤ = 530 MeV, �M = 2.1⇥ 10�4 fm3

and ⇤ = 842 MeV, �M = 2.9⇥ 10�4 fm3 respectively. The resulting bands for Tsubt
1 (0, Q̃2) are

shown in Fig. 5.6, and correspondingly for �(Q̃2) in Fig. 5.7 (blue bands).
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Figure 5.6: The empirical subtraction function of Eq. (2.83) in comparison with the subtraction
functions from HBChPT of Birse et al. [141], and from BChPT [142].

5.5.2 Baryon Chiral Perturbation Theory subtraction function
Secondly, we also show the prediction for �(Q̃2) resulting from the covariant baryon chiral
perturbation theory (BChPT) [142], with � decomposed as

�(Q̃2) = �⇡N (Q̃2) + ��(Q̃2) + �⇡�(Q̃2), (5.68)

with �⇡N (Q̃2) the O(p3) diamagnetic polarizability contribution from ⇡N loops given by Eq.
(22) of Ref. [142], ��(Q̃2) the paramagnetic contribution of the �-resonance to the magnetic
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Chapter 5 Low-Q2 limit of TPE correction including inelastic intermediate states

polarizability [90] and �⇡�(Q̃2) the O(p7/2) at p ' m⇡ diamagnetic polarizability contribution
from ⇡� loops [90].

In Fig. 5.6 (Fig. 5.7), we compare the heavy-baryon and baryon ChPT predictions for
Tsubt
1 (0, Q̃2) (�(Q̃2)) with the empirical determinations from Section 2.4.1. Notice that the

HBChPT value of �(0) is taken from a fit to data (PDG 2014) whereas the baryon ChPT
value of �(0) results from the sum of the positive paramagnetic part due to the s-channel �-
excitation ��(0) ' 7 ⇥ 10�4 fm3, and the negative diamagnetic part due to ⇡N and ⇡� loops,
i.e., �⇡N (0) = �2 ⇥ 10�4 fm3 and �⇡�(0) = �1.2 ⇥ 10�4 fm3.

empirical result
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Figure 5.7: The empirical estimate for the magnetic polarizability �(Q̃2) based on Eqs. (2.74,
2.83) and including the constraint from the experimental value �M = �(0) compared
with the HBChPT result of Birse et al. [141] normalized to the PDG value �(0) =
(2.5 ± 0.4) ⇥ 10�4 fm3 [15], and with the BChPT result [142].

5.5.3 TPE correction from the subtraction function
Using Eqs. (5.31 - 5.33), we can now estimate the TPE correction due to the Tsubt

1 (0, Q̃2)
contribution to the first term in the near-forward VVCS tensor, see Eq. (5.46) for the form of
decomposition of this tensor. Performing the traces in Eq. (5.33) explicitly, the subtraction
function results in the following TPE correction in the region of small momentum transfers:
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4
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,

(5.69)

where the lepton (photon) propagators ⇧±
K (⇧±

Q) are defined as in Eqs. (5.37). The second
term within the curly brackets of Eq. (5.69) can be simplified to yield the expression:
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,

(5.70)
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making explicit the overall proportionality of �subt2� to the squared lepton mass m2.
The integration in Eq. (5.70) is performed through a Wick rotation, as detailed in Appendix

N, and the resulting TPE correction is given by

�subt2� =
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4⇡
,

(5.71)

in terms of the dimensionless variable x = 4Q̃2/Q2 with the weighting function f (x, a):
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, (5.72)

with

z =
1 � x �

q

(1 + x)2 + 4ax

2
p

1 + a
, xmin = � �

p
1 + a � p

a
�2

, a =
4m2

Q2
. (5.73)

At low momentum transfers the result of Eq. (5.71) starts from a term proportional to Q2. We
show the x (or Q̃2) dependence of the weighting function of Eq. (5.72) in Fig. 5.8.
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Figure 5.8: The weighting function f of Eq. (5.72) for the range of Q2 values of the MUSE
experiment.

It was speculated in Ref. [138] that in order to explain the proton radius puzzle it would
require a huge enhancement of �(Q̃2) at large Q̃2. In order to account for the experimentally
observed discrepancy on �E2S of around 310 µeV [118], it would require an around two orders of
magnitude larger TPE correction than the naturally expected result from the ChPT estimates.
For this purpose, an ad-hoc subtraction function, proposed to be added as an extra contribution
on top of the ChPT based subtraction functions discussed above, was conjectured in Ref. [138]
with the following functional form:

�extra(Q̃
2) =

 

Q̃2

M2
0

!2
�M

⇣

1 + Q̃2/⇤2
0

⌘5 , M0 = 0.5 GeV, ⇤0 = 3.92 GeV. (5.74)
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In such scenario, the large Q̃2 region would also dominate the TPE correction to the elastic
muon-proton scattering, and the integral of Eq. (5.71) would be approximated by

�subt2�,0 ⇡ � 3m2GE

"G2
E + ⌧PG2

M

1 � "

1 � "0

(K · P )

⇡M

1ˆ

0

�(Q̃2)
dQ̃2

Q̃2
⇡ �3Q2m2

2⇡!

1ˆ

0

�(Q̃2)
dQ̃2

Q̃2
, (5.75)

where the last step gives the approximate expression in the limit Q2 ⌧ M2, M!, !2. This ap-
proximation corresponds in magnitude with the result of Ref. [138] for µ�p scattering, however
it differs by an overall sign.

In Fig. 5.9 we compare the TPE correction to elastic muon-proton scattering (for MUSE
kinematics) due to the above discussed ChPT as well as empirically determined subtraction
functions. To estimate the size of uncertainties of the BChPT result [142], we plot a band
corresponding with a variation of the upper integration limit in Eq. (5.71) between Q̃2 =
0.9 � 5 GeV2. We notice that the HBChPT and BChPT results are in agreement within their
uncertainties. The TPE correction due to the empirically extracted subtraction function is also

Feshbach
Miller
BChPT πN+ Δ+ πΔ
Birse et al.
empirical result|� 2
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Figure 5.9: Subtraction function contribution to the TPE correction in elastic muon-proton
scattering for the muon lab momentum k = 153 MeV. Blue band: result for the
HBChPT based subtraction function [141]. Pink band: result for the BChPT based
subtraction function [142]. Green band: result based on the empirical subtraction
function, corresponding with the result shown in Fig. 5.7. Solid curve: result based
on the conjectured subtraction function of Ref. [138]. The (black) dashed-dotted
curve is the Feshbach term of Eq. (3.53) for a point-like Dirac particle corrected
by the recoil factor (1 + m/M). The sign labels on the curve show the sign of the
corresponding expressions for µ�p scattering.

shown in Fig. 5.9, giving a similar though slightly smaller result. This can be understood as the
empirically determined �(Q̃2) changes sign as function of Q̃2. The region of Q̃2 contributing
to the above result is shown in Fig. 5.10. One sees that the TPE integral has largely converged
for an upper integration limit value of around Q̃2

max ⇠ 1 GeV2.
In Fig. 5.9, we furthermore also show the TPE correction to elastic muon-proton scattering

resulting from the subtraction function conjectured in Ref. [138] to explain the proton radius
puzzle through enhancing the TPE corrections by nearly two orders of magnitude. Even though
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Figure 5.10: The dependence of the integral of Eq. (5.71) on the upper integration limit Q̃2
max

for three different estimates of the subtraction function �(Q̃2) as described in the
text.

the weighting functions entering the TPE corrections in the muonic hydrogen Lamb shift and
the elastic muon-proton scattering are different, one notices from Fig. 5.9 that the subtraction
function of Ref. [138] also yields a nearly two order of magnitude larger TPE correction for
the elastic muon-proton scattering. To put this in perspective, we also display in Fig. 5.9 the
model independent estimate of the elastic TPE contribution, which has to be added on top of
the inelastic TPE contribution, and which is due to the Feshbach term of Eq. (3.53) corrected
by the recoil factor (1 + m/M). One notices that the use of such large subtraction function
would yield an inelastic TPE correction to elastic muon-proton scattering which in magnitude
already would exceed the elastic Feshbach contribution around Q2 = 0.02 GeV2, and would
increase further with increasing Q2.

5.6 TPE correction from unpolarized proton structure functions

In this Section, we evaluate the inelastic TPE correction coming from the unpolarized proton
structure functions �F1

,F
2

2� . Using Eqs. (5.31, 5.32) and working out the traces in Eq. (5.33),
the corresponding contributions from the unpolarized proton structure functions F1 and F2 to
�inel2� are given by
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with the following notations:
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(K · q̃) P 2 � (P · q̃) (K · P )
�

,

D = �1

4

0

B

@

P 2 +
(P · q̃)2Q2

⇣

Q̃2 � Q2

4

⌘2

1

C

A

�

Q2 (P · q̃) � 4 (K · P ) (K · q̃)
�

� 1

2
(P · q̃)

Q̃2 � 3Q2

4

Q̃2 � Q2

4

⇣

4 (K · P )2 � Q2P 2
⌘

. (5.78)

We express the resulting correction �F1

,F
2

2� as a two-dimensional integral over the unpolarized
proton structure functions F1 and F2:

�F1

,F
2

2� = �F1

2� + �F2

2� =

ˆ
dW 2dQ̃2

⇢

w1

⇣

W 2, Q̃2
⌘

F1

✓

W 2, Q̃2 � Q2

4

◆

+w2

⇣

W 2, Q̃2
⌘

F2

✓

W 2, Q̃2 � Q2

4

◆�

. (5.79)

To obtain the result of Eq. (5.79), starting from Eqs. (5.76) and (5.77), we perform the
integration, using two choices of Breit frames with the aim to cross check the method and
its application. In a first choice, which we denote as P -frame, the kinematics of the external
particles is defined by

K =
⇣

K0, 0, 0, | ~K|
⌘

, P = P (1, 0, 0, 0) , q = Q (0, 1, 0, 0) . (5.80)

In a second choice, which we denote as K-frame, the kinematics of the external particles is
defined by

K = K (1, 0, 0, 0) , P =
⇣

P0, 0, 0, |~P |
⌘

, q = Q (0, 1, 0, 0) . (5.81)

In either of these frames, we evaluate the weighting functions w1, w2 by performing a Wick
rotation in Eqs. (5.76) and (5.77) in the complex q̃0 variable plane. The resulting TPE
correction is given by the sum of the integral along the imaginary q̃0 axis and the contributions
from the poles which are crossed by the integration contour.4 In addition to the photon and
lepton propagator poles, there exist the hadronic poles coming from the dispersion relation
propagators:

⇧±
H =

1

(q̃ ± P )2 � W 2
. (5.82)

The pole positions are shown in Fig. 5.11.
The integration contour does not cross the photon poles ⇧q. The expressions of Eqs. (5.76)

and (5.77) are symmetric with respect to the change of integration variable q̃ ! �q̃. Exploiting
4The contribution of these poles to the Lamb shift of atomic energy levels is discussed in Appendix O.
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5.6 TPE correction from unpolarized proton structure functions

Figure 5.11: The position of the q̃0 poles for different propagators. The lepton poles (⇧K) and
hadronic poles (⇧H) contribute only in a limited region of integration variables.

this symmetry, we only need to calculate the residues of the upper half plane poles and double
the result. The leptonic pole ⇧�

K and the hadronic pole ⇧�
H are moving poles; they contribute

in the limited region of W 2, Q̃2 variables. We show the corresponding regions in Fig. 5.12 (Fig.
5.13) in case of the electron-proton (muon-proton) scattering for the limit of low-Q2 scattering.
We provide the expressions for the regions of these poles contributions and weighting functions
w1, w2 in Appendix P.

Figure 5.12: Integration ranges for the different contributions to �F1

,F
2

2� in electron-proton scat-
tering.

119



Chapter 5 Low-Q2 limit of TPE correction including inelastic intermediate states

Figure 5.13: Integration ranges for the different contributions to �F1

,F
2

2� in muon-proton scat-
tering.

5.6.1 The leading Q2 lnQ2 inelastic TPE correction in ep scatter-
ing

In this Section, we describe the way to obtain the leading Q2 ln Q2 inelastic TPE contribu-
tion to the unpolarized cross section in elastic electron-proton scattering in terms of the total
photoabsorption cross section �T [174] in our approach. For the region of small momentum
transfer, we exploit the approximation [182]:

F1

⇣

W 2, Q̃2
⌘

⇡ (P · q̃)

⇡e2
�T

�

W 2
�

, (5.83)

F2

⇣

W 2, Q̃2
⌘

⇡ Q̃2

⇡e2
�T

�

W 2
�

. (5.84)

In the P -frame, the leading correction is coming from the leptonic pole, whereas in the
K-frame, it originates from the hadronic pole. We present its derivation in the K-frame.

The pole q̃0 = P0 �
r

⇣

~P � ~̃q
⌘2

+ W 2 contributes in the invariant mass region W 2 < P 2
0 ⇡

4 (K · P )2 /Q2. For the leading contribution, we consider the W 2 integration up to infinity.
For the case of small momentum transfer values, the integration region in the Q̃2 variable is
given by

↵0Q
2  Q̃2  16 (K · P )2

Q2
, (5.85)

with

↵0 =

✓

W 2 � M2

4 (K · P )

◆2

. (5.86)

We can replace the upper integration limit by infinity, but the approximation of Eqs. (5.83)
and (5.84) in terms of the photoabsorption cross section is valid only up to some hadronic scale
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5.6 TPE correction from unpolarized proton structure functions

⇤, which reproduces the Q̃2 behavior of unpolarized structure functions.5 In the present work,
we go beyond such approximation and directly use the unpolarized proton structure functions
F1, F2 with their Q̃2 dependence as an input. The integration region Q̃2 > ⇤2 does not
contribute to the term proportional to Q2 ln Q2, and therefore we integrate up to the squared
hadronic scale ⇤2.

The logarithmic term comes from the region Q̃2 � Q2. Accounting also for the pole condition
(P · q̃) =

⇣

P 2 � Q̃2 � W 2
⌘

/2 � Q2, we get:

�F1

2� =
2Q2e2

(K · P )
<

1̂

W 2

thr

dW 2

ˆ
d3~̃q

(2⇡)3
Kq̃0

�

⇧�
K � ⇧+

K

�

Q̃4

F1

⇣

W 2, Q̃2
⌘

P0 � q̃0
, (5.87)

�F2

2� = 4Q2e2<
1̂

W 2

thr

dW 2

ˆ
d3~̃q

(2⇡)3
(P · q̃)

�

⇧�
K � ⇧+

K

�� (K · P )
�

⇧�
K + ⇧+

K

�

Q̃4
⇣

W 2 � P 2 + Q̃2
⌘

F2

⇣

W 2, Q̃2
⌘

P0 � q̃0
.

(5.88)

With an account of the proton structure functions approximation of Eqs. (5.83) and (5.84)
the leading term of the TPE correction expansion is expressed as

�F1

2� = � Q4

(K · P )2
<

1ˆ

W 2

thr

dW 2

16⇡3
�T

�

W 2
�

⇤2ˆ

↵
0

Q2

dQ̃2 (P · q̃)

Q̃4

�

L�
1 � L+

1

�

, (5.89)

�F2

2� =
Q2K

(K · P )
<

1ˆ

W 2

thr

dW 2

4⇡3
�T

�

W 2
�

⇤2ˆ

↵
0

Q2

dQ̃2 (K · P )
�

L�
0 + L+

0

�� (P · q̃)
�

L�
0 � L+

0

�

Q̃2 (P · q̃)
,

(5.90)

with the following integrals:

L±
0 =

q̃M
0ˆ

0

dq̃0⇧
±
K = �

q̃M
0ˆ

0

dq̃0

Q̃2 ⌥ Qq̃0
= ± 1

Q
ln

W 2 � P 2 ⌥ 2 (K · P )

W 2 � P 2
, (5.91)

L±
1 =

q̃M
0ˆ

0

q̃0dq̃0⇧
±
K = �

q̃M
0ˆ

0

q̃0dq̃0

Q̃2 ⌥ Qq̃0
⇡ Q̃2

Q2

✓

ln
W 2 � P 2 ⌥ 2 (K · P )

W 2 � P 2
± 2 (K · P )

W 2 � P 2

◆

,

q̃M0 =
2 (K · P )

W 2 � P 2

Q̃2

Q
. (5.92)

Performing the Q̃2 integration, we obtain the leading logarithmic contributions,

�F1

2� =
Q2

8⇡3
ln

✓

Q2

⇤2

◆

1̂

W 2

thr

dW 2

M!

✓

W 2 � P 2

4M!
ln

2 (K · P ) + P 2 � W 2

2 (K · P ) � P 2 + W 2
+ 1

◆

�T (W 2),

(5.93)

5Note that the numerical evaluation of Ref. [166] corresponds with a specific choice of the hadronic scale,
⇤2 =

�
W 2 �M2

�
2

/
�
M2 + 2M!

�
.
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�F2
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Q2

8⇡3
ln

✓

Q2

⇤2

◆

1̂

W 2

thr

dW 2

M!
ln

(W 2 � P 2)2

(2 (K · P ) + P 2 � W 2) (2 (K · P ) � P 2 + W 2)
�T (W 2)

+
Q2

4⇡3
ln

✓

Q2

⇤2

◆

1̂

W 2

thr

dW 2

W 2 � P 2
ln

2 (K · P ) + P 2 � W 2

2 (K · P ) � P 2 + W 2
�T (W 2), (5.94)

which sum up to the known expression of Ref. [174].
When also accounting for the Q2 terms in the expansion of Eq. (5.79) for the TPE correction,

the hadronic scale ⇤ dependence in Eqs. (5.93) and (5.94) drops out.
Our numerical studies of the inelastic TPE contribution in elastic muon-proton scattering

indicate that, in the limit Q2 ⌧ m2, M2, M!, the momentum transfer expansion starts with
a Q2 term and contains no Q2 ln Q2 type of non-analyticity . This is unlike the above described
elastic electron-proton scattering case, where in the limit m2 ⌧ Q2 ⌧ M2, M! a non-analytic
behavior of the type Q2 ln Q2 is present [172,174].

5.6.2 Numerical evaluation of structure functions contribution
Having verified the leading Q2 ln Q2 contribution for the inelastic TPE in the electron-proton
scattering, we next discuss the numerical evaluation of Eq. (5.79) including the Q̃2 dependence
of the structure functions.

As a numerical check, we evaluate the weighting functions w1 and w2, see Eq. (5.79), both in
the K-frame and P -frame for the correction to electron-proton scattering in Figs. 5.14 (Figs.
5.15 in case of the muon-proton scattering). When adding the integral along the imaginary axis
with the pole contributions, we checked that we obtain the same result in both frames. Despite
the finite Q̃2 ranges of the poles contribution, which are distinct in the K- and P -frames, the
resulting weighting functions are continuous. The boundaries of the K-pole region and the
lower boundary of the P -pole region, shown in Figs. 5.12, 5.13, are covered by Figs. 5.14, 5.15.
The weighting functions w1 and w2 have a singularity at Q̃2 = Q2/4, when the photons are
on their mass shell in our approximation, i.e., q21 = q22 = 0. The weighting function w2 has
a discontinuity in the first derivative at Q̃2 = 0, where the integral along the imaginary axis
starts to contribute.

We perform the Q̃2 integration first and express the resulting TPE correction from the
unpolarized proton structure functions �F1

F
2

2� in terms of the W 2 integral as

�F1

F
2

2� =

1̂

W 2

thr

f (W ) dW 2. (5.95)

In Fig. 5.16, we present the result for the W 2 integrand in the elastic electron-proton (e�p)
scattering for different inputs of proton structure functions and compare our full calculation
with the approximation of Eqs. (5.93) and (5.94) with ⇤ ⇡ 0.6 GeV. To describe the Q̃2

dependence of the unpolarized structure functions, we use the empirical fit performed by Christy
and Bosted (BC) [91], while for the logarithmic approximation in Fig. 5.16, we also use the
SAID Partial-Wave Analysis Facility [95] for the photoabsorption cross section. The BC fit is
valid in the region 0 < Q̃2 < 8 GeV2, M + m⇡ < W < 3.1 GeV. This fit is not very accurate
in the threshold region near Q̃2 = 0, although it is still compatible with the error bars of the
photoproduction cross sections. We checked that difference between using the SAID and BC
fit in the region W < 1.15 GeV and 0.9⇥Q2/4 < Q̃2 < 1.1⇥Q2/4 only amounts to the relative
change in �F1

F
2

2� at the 3 %-4 % level for the kinematics shown in Fig. 5.16. For the result of
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Figure 5.14: The weighting functions of Eq. (5.79), with the absolute value plotted and where
the sign labels show the corresponding signs of w1 and w2 for e�p scattering. As
a check, the weighting functions are evaluated in two frames, yielding exactly the
same result. The kinematics is chosen as shown in the figure. In the upper panels,
the weighting functions w1 and w2 are shown in the region �Q2
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2 and
in the lower panels for Q2
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Figure 5.16: W 2 integrand f of Eq. (5.95) for two different external kinematics in elastic
electron-proton scattering. The integrand with the unpolarized proton structure
functions from BC [91] is shown by the blue solid curve. The leading logarithmic
correction in the approximation of Eqs. (5.93) and (5.94) with ⇤ = 0.6 GeV and
the photoabsorption cross section from the fit of BC (SAID [95]) is shown by the
blue dashed (the red dash-dotted) curves. The dominant ⇡N -channel contribution
is shown for the SAID fit by the red dotted curve, which only differs in a visible
way from the red dashed-dotted curve for W > 1.3 GeV.

�F1

F
2

2� beyond the Q2 ln Q2 approximation, we use the BC fit for the region 0 < Q̃2 < 12 GeV2,
where the integrand behaves in a smooth way. The relative contribution to �F1

F
2

2� from the
uncovered by data region 8 < Q̃2 < 12 GeV2 is expected to be smaller than 0.1%. We perform
the W 2 integration up to W = 4 GeV. The extrapolation from W = 3.1 GeV (upper bound of
the BC fit) to W = 4 GeV leads to an additional relative contribution to �F1

F
2

2� of less than 2%.
We have also checked on the SAID parametrization that the region W > 4 GeV has a relative
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5.6 TPE correction from unpolarized proton structure functions

contribution to �F1

F
2

2� of less than 2 %-3 %, when interpolating the SAID parametrization to
the Regge behavior. The main inelastic TPE contribution is given by the ⇡N -channel. The
singular peak at W 2 = M2 +2M! corresponds to the quasireal photon singularity (when both
photons in the two-photon box are quasireal and collinear with either lepton). This singularity
appears only in the electron-proton scattering for the beam energies above the pion production
threshold.

In order to clarify the validity of the inelastic TPE estimates in electron-proton scattering,
we study numerically the low-Q2 expansion of the �F1

F
2

2� coming from the F1 and F2 structure
functions. In Fig. 5.17, we present the ratio between the TPE correction �F1

F
2

2�

�

Q2
�

and
the low-Q2 fit �F1

F
2

,fit
2�

�

Q2
�

in the form of Eq. (5.50) for the energies of available data. We
compare the Q2/!2 and Q2/ (M!) expansions. We perform the fit in either the variable Q2/!2

or Q2/ (M!) in a range which is 100 times smaller than the range displayed in Fig. 5.17. The
comparison of our full calculation with such a fit over an extended range provides us then with a
quantitative argument on the Q2 range where such an expansion holds. If we use as a criterion
that the full calculation stays within 10% of the fit, we can see from Fig. 5.17 that for energies
corresponding with available data an expansion of the type of Eq. (5.50) holds for Q2 . !2

and requires Q2 . (M!) /5. We expect the same type of expansion for the TPE contributions
from other amplitudes and stress on the validity of such criterion only in the limited region of
beam energies.
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Figure 5.17: Q2 dependence of ratio of the inelastic TPE correction �F1

F
2

2� to the low-Q2 fit of
the form �F1

F
2

,fit
2� = a (!) Q2 ln Q2 + b (!) Q2. The ratio is shown as function of

Q2/ (M!) on the left panel and Q2/!2 on the right panel.

In Figs. 5.18, 5.19 we compare the W dependence of the integrand f (W ) in Eq. (5.95) for
the µ�p and e�p elastic scattering processes. We find that the Q̃2 integrations in the elastic
muon-proton scattering are well saturated when performed up to Q̃2 = 8 GeV2, which is the
largest value covered by the BC fit. As a test, we extended the BC fit beyond its fit region
and found that the relative contribution from the region 8 GeV2 < Q̃2 < 12 GeV2 is smaller
than 0.015 %. Figs. 5.18, 5.19 show results in different kinematical regions corresponding
with the MUSE experiment. The TPE corrections to e�p are sizably larger than for the µ�p
case at low Q2. With increasing Q2, the µ�p TPE corrections increase, as is evident from the
result at lower beam momentum in Fig. 5.19, where at Q2 = 0.03 GeV2 both corrections reach
similar sizes. We furthermore notice the absence of the quasi-real photon singularity for the
µ�p scattering. To estimate the inelastic TPE correction to elastic muon-proton scattering,
we find that the W integration in Eq. (5.95) is well saturated when performed up to 3.1 GeV,
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Figure 5.18: W dependence of the integrand f (W ) which determines the inelastic TPE correc-
tion, as given by Eq. (5.95). The integrand is shown for the case of elastic e�p
and µ�p scattering. The external kinematics (indicated on the plots) correspond
with the MUSE experiment.
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Figure 5.19: Same as Fig. 5.18, but for the lepton momentum k = 115 MeV.
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which is the largest value covered by the BC fit. When again extending the BC fit beyond its
fit range, for the purpose of a test, we checked that the relative contribution from the region
3.1 GeV < W < 4 GeV to �F1

F
2

2� is smaller than 1.5 %. We estimate the uncertainties of
the numerical integration coming from the integration regions outside the BC fit and from the
inaccuracies in the BC fit at 5 � 6 % level.

5.7 TPE correction at low-Q2

5.7.1 Correction to e�p cross section
The resulting inelastic TPE correction as a function of Q2 for the beam energy ! = 0.18 GeV
corresponding to the lower energy range at MAMI is shown in Fig. 5.20. We compare the
Feshbach term for point-like particles, the Born TPE correction of Section 4.1, the approxima-
tion of Eqs. (5.93) and (5.94) with ⇤ ⇡ 0.6 GeV and the result of Ref. [166]. The difference
between both Q2 ln Q2 curves comes from the term of order Q2 and appears due to the different
choices of ⇤. The approximation of Eqs. (5.93) and (5.94) implies the same hadronic scale
for all intermediate states, while the hadronic scale in Ref. [166] depends on the intermediate
state. We present our results for the total TPE correction including the Q̃2 dependence in the
structure functions and extrapolate them to the region Q2 & M!. Increasing the momentum
transfer, the inelastic TPE correction shows a clear departure from the Q2 ln Q2 term reducing
the latter value. With an account of the inelastic intermediate states, the TPE correction in the
low-Q2 region comes closer to the Feshbach correction in comparison with the TPE correction
in a box graph model only (Born TPE). The inelastic TPE correction has the same order of
magnitude and the opposite sign in comparison with the proton form factor effects in the Born
TPE.

We compare the TPE corrections as a function of the " variable for Q2 = 0.05 GeV2

(Q2 = 0.25 GeV2) in Fig. 5.21 (5.22). The inelastic excitations compensate the proton form
factor effects, and the resulting TPE correction comes closer to the Feshbach term. For the
small momentum transfer Q2 = 0.05 GeV2, where we expect the validity of the near-forward
approximation for " & 0.7 or Q2/ (M!) . 1/5, our calculation is in good agreement with the
empirical TPE fit of Ref. [104] in the region " > 0.35 � 0.4 as one notices from Fig. 5.21.
One should definitely account for contributions beyond the near-forward approximation and
unpolarized proton structure functions for smaller " values. We show the region of small "
with the aim to illustrate the characteristic features of our calculation. In the limit " ! 0 the
inelastic TPE correction vanishes.6 Increasing the momentum transfer, as shown in Fig. 5.22,
the predicted TPE correction is found to be in reasonable agreement with the empirical fit of
Ref. [104], confirming the proton charge radius values extracted with this TPE correction.

We compare the experimental TPE correction results from measurements of the ratio of
elastic e+p to e�p scattering cross section of Refs. [76, 79] with the empirical fit of Ref. [104],
the Born TPE and total TPE in the near-forward approximation in Fig. 5.23. The CLAS data
is in agreement with the total TPE correction in the near-forward approximation. However,
the VEPP-3 data point of Ref. [76] is in better agreement with the Born TPE result and
agrees with the total TPE only after the renormalization [76] according to the empirical fit
of Ref. [104]. We also extrapolate our calculation in the near-forward approximation to the
low-Q2 region of the OLYMPUS experiment [81] kinematics in Fig. 5.23. The sign change of
the TPE correction at Q2 ' 0.59 GeV2 is in agreement with the subtracted DR prediction of
Fig. 4.45.

6The inelastic TPE amplitude of Eq. (5.61) in the near-forward approximation contributes only to F
2

and F
4

invariant amplitudes. In the elastic ep scattering the F2�
2

contribution to the unpolarized cross section of
Eq. (3.55) enters with a factor " and, consequently, vanishes in the backward limit " ! 0.
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Figure 5.20: Q2 dependence of the TPE correction �2� to e�p ! e�p for electron lab energy
! = 0.180 GeV (for which the kinematically allowed region is Q2 < 0.094 GeV2).
The Feshbach term for point-like particles, the Born TPE of Section 4.1 based on
the box graph evaluation with dipole form factors, and the total TPE correction
as the sum of Born TPE and inelastic TPE are presented (upper panel). The
inelastic contribution is compared with the leading logarithmic approximation of
Eqs. (5.93) and (5.94) with ⇤ = 0.6 GeV and the result of Ref. [166] (lower
panel). The experimental input for the proton structure functions is taken from
the Christy-Bosted fit [91]. The vertical dashed lines restrict the region of validity
of the expansion for the inelastic term Q2 . (M!) /5 as follows from Fig. 5.17.
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Figure 5.21: Same as Fig. 5.20, but for the fixed value Q2 = 0.05 GeV2 as function of " in com-
parison with the empirical TPE fit using the data of Ref. [104] (A1 Collaboration,
blue bands).

130



5.7 TPE correction at low-Q2

A1 Coll.
Feshbach
Born TPE
finite size Dirac particle
total TPE

Q2 = 0.25 GeV2
� 2

�
,

%

0

0.5

1.0

1.5

ε
0.2 0.4 0.6 0.8 1.0

inelastic TPE
inelastic Q2 lnQ2 (Λ= 0.6 GeV)
inelastic Q2 lnQ2, Gorchtein

Q2 = 0.25 GeV2

� 2
�
,

%

0

0.1

0.2

0.3

0.4

ε
0.2 0.4 0.6 0.8 1.0

Figure 5.22: Same as Fig. 5.21, but for the fixed value Q2 = 0.25 GeV2.
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Figure 5.23: TPE correction measurements of Refs. [76, 79] in comparison with the total TPE
given as a sum of the Born TPE and inelastic contributions in the near-forward
approximation (shown by stars), the Born TPE (shown by squares) and empirical
fit of Ref. [104] evaluated for the experimental (Q2, ") values. The Born TPE
(dashed curve) and total TPE result (solid curve) are also shown for the kine-
matics of the OLYMPUS experiment [81] with 2 GeV lepton beam as a function
of the momentum transfer. The CLAS [79] data points correspond to the fol-
lowing kinematics: Q2 = 0.23 GeV2, " = 0.92; Q2 = 0.34 GeV2, " = 0.89;
Q2 = 0.45 GeV2, " = 0.89. The VEPP-3 [76] data point corresponds to
Q2 = 0.298 GeV2, " = 0.93. This point was renormalized [76] according to
the empirical fit of Ref. [104].

5.7.2 Correction to µ�p cross section
The resulting inelastic TPE corrections to the elastic µ�p scattering cross section are shown
in Figs. 5.24 as a function of Q2 for three values of muon beam momentas, corresponding with
the MUSE kinematics. We notice that for the low momentum transfer corresponding with the
MUSE kinematics, the inelastic TPE corrections to elastic µ�p scattering are very small, at
these low Q2 values in the range of �2� ⇠ 0.05 %. This is well below the anticipated cross
section precision of around 1 % of the MUSE experiment. Furthermore, we notice that the
TPE corrections due to the subtraction function and the dispersive F1, F2 structure functions
integrals come with opposite signs, leading to a partial cancellation.

We present in Figs. 5.25 the total TPE correction as a sum of the Born TPE correction of
Section 4.1, corresponding with a proton intermediate state, and the inelastic TPE of this work
using the empirically estimated subtraction function of Section 2.4.1. We compare our result
with the Feshbach term of Eq. (3.53) for a point-like Dirac particle corrected by the recoil factor
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Figure 5.24: TPE correction for elastic µ�p scattering for three different muon lab momenta
as planned in the MUSE experiment. The TPE correction due to the subtrac-
tion function is shown for three subtraction function inputs: Birse et al. [141]
(blue bands), BChPT [142] (solid curves), and the empirical determination as de-
scribed in Section 2.4.1 (green bands). The inelastic TPE correction due to the
dispersion integrals over the proton structure functions F1 and F2 is shown by the
dashed-dotted curves. The resulting total inelastic TPE correction (sum of both)
is shown by the pink bands using the empirically extracted subtraction function
of Section 2.4.1 and accounting for a 6 % uncertainty in �F1

F
2

2� .
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Figure 5.25: The total TPE correction for elastic µ�p scattering is shown as sum of the Born
TPE, the TPE correction from the F1 and F2 proton structure functions and
the TPE correction from the empirically estimated subtraction function of Sec-
tion 2.4.1. It is compared with the Feshbach term for point-like particles, see Eq.
(3.53), corrected by the recoil factor (1 + m/M), the Born TPE correction from
Section 4.1 and the e�p total TPE correction.
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5.7 TPE correction at low-Q2

(1 + m/M), with the Born TPE correction, and with the corresponding TPE correction for
elastic e�p scattering of Section 5.7.1. In contrast to the electron-proton scattering case, where
the subtraction function contribution is negligible [172] as it is proportional to the lepton mass
squared, in the muon-proton scattering the inelastic proton structure function contribution
is partially cancelled by the T1 subtraction function resulting in a very small inelastic TPE
correction for the MUSE kinematics. Only with increased lepton beam energy or when going
to larger Q2 values one needs to start accounting for the inelastic TPE correction, which shifts
the total correction a little closer to the Feshbach result.
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Chapter 6

⇡N intermediate state TPE contribution

In order to provide theoretical predictions for the TPE correction to elastic lp scattering at
arbitrary scattering angles, we now turn to the study of the TPE correction due to the ⇡N
intermediate state within dispersion relations. We firstly discuss the production of pions in
the lepton-proton scattering in Sections 6.1, 6.2. Subsequently we use the unitarity relations
in Section 6.3 to construct the imaginary part of the TPE amplitude arising from the ⇡N
intermediate state. In Section 6.4, a DR analysis is performed analogous as in Chapter 4
to reconstruct the real part. We present first results for the ⇡N intermediate state TPE
contribution to electron-proton scattering coming from the P33 partial wave, corresponding
with the �(1232) resonance contribution.

6.1 Kinematics of pion production in lepton-proton scattering

The production of pions in the scattering of leptons off a proton target l(k, h) + p(p,�) !
l(k1, h1) + p(p1,�1) + ⇡0(p⇡) or l(k, h) + p(p,�) ! l(k1, h1) + n(p1,�1) + ⇡+(p⇡), see Fig. 6.1,1
is completely described by five kinematical variables. We conventionally use the squared energy
s = (p + k)2 in the lepton-proton c.m. frame, the squared momentum transfer on the lepton
line Q2 = �q2 = �(k � k1)2, which is just the photon virtuality in the one-photon exchange
approximation, the momentum transfer variable on the nucleon line t = (p1 � p)2, the squared
invariant mass of the pion-nucleon system W 2 = (p1 + p⇡)2 and one relative angle between the
electron and hadron production planes.

Figure 6.1: Pion production in the lepton-proton scattering.

We study the kinematics of the pion production in the lepton-proton c.m. reference frame,
as we exploit this frame relating the lepton-proton helicity amplitudes to invariant amplitudes
in Sections 3.2, 3.5. The initial (final) lepton energy !cm (!1) and the momentum |kcm| (|k1|)
are given by

!cm =
s � M2 + m2

2
p

s
, |kcm| =

p
⌃s

2
p

s
, (6.1)

1We define the final lepton and nucleon momenta and helicities with the index "1" in order to use them as the
intermediate state in the unitarity relation.
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Chapter 6 ⇡N intermediate state TPE contribution

!1 =
s � W 2 + m2

2
p

s
, |k1| =

p

⌃(s, W 2, m2)

2
p

s
, (6.2)

with ⌃s defined as in Section 3.1.
The initial (k) and final (k1) lepton 4-momenta are given by2

k = (!cm, 0, 0, |kcm|), (6.3)
k1 = (!1, |k1| sin ✓1 cos�1, |k1| sin ✓1 sin�1, |k1| cos ✓1), (6.4)

with the lepton scattering angles ✓1 and �1.
The pion 4-momentum p⇡ = (E⇡, ~p⇡) can be expressed in terms of the pion angles ✓⇡, �⇡ as

~p⇡ = p⇡ (sin ✓⇡ cos�⇡, sin ✓⇡ sin�⇡, cos ✓⇡) ,

E⇡ =
p

~p 2
⇡ + m2

⇡. (6.5)

The relative angle between the final lepton and pion ⇥⇡ =
⇣

k̂1 · p̂⇡
⌘

is given by

cos ⇥⇡ = sin ✓1 sin ✓⇡ cos (�1 � �⇡) + cos ✓1 cos ✓⇡. (6.6)

The initial (p) and final (p1) nucleon 4-momenta are given by

p =

 

s + M2 � m2

2
p

s
, 0, 0, �

p

⌃(s, M2, m2)

2
p

s

!

, (6.7)

p1 = (E1, ~p1), ~p1 = �~k1 � ~p⇡, E1 =
q

~p 2
1 + M2. (6.8)

We firstly analyze the special cases in the phase space of the final particles. The minimum
of the final lepton momentum |k1| = 0 corresponds to the geometric configuration, when the
pion and nucleon are moving in opposite directions, i.e.:

E⇡ + E1 =
p

s � m ⌘
p

s̃, (6.9)

p⇡ = p1 =

p

⌃ (s̃, M2, m2
⇡)

2
p

s̃
. (6.10)

The maximum of |k1| corresponds to the minimum of W 2 = (M + m⇡)2. It is reached for
the case of the same pion and nucleon momentum directions, which is opposite to the lepton
momentum direction, i.e., cos ⇥⇡ = �1. The corresponding particle momenta are given by

|k1| = kmax
1 =

p

⌃ (s, (M + m⇡)2, m2)

2
p

s
, (6.11)

p1 =
M

M + m⇡
kmax
1 , (6.12)

p⇡ =
m⇡

M + m⇡
kmax
1 . (6.13)

Accounting for the energy conservation, we obtain the following expression for the pion
momentum:

p±⇡ = �
✓

W 2 � M2 + m2
⇡

W 2 + k2
1 sin2 ⇥⇡

◆

k1 cos ⇥⇡

2
±
q

⌃(W 2, M2, m2
⇡) � 4m2

⇡k2
1 sin2 ⇥⇡

W 2 + k2
1 sin2 ⇥⇡

p
s � !1

2
. (6.14)

2In the lepton massless limit !
cm

= |k
cm

| = (s�M2)/(2
p
s), !

1

= |k
1

| = (s�W 2)/(2
p
s).
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6.1 Kinematics of pion production in lepton-proton scattering

In the kinematical region s⌃(W 2, M2, m2
⇡) � m2

⇡⌃(s, W 2, m2), only the solution p+⇡ is positive.
In the region s⌃(W 2, M2, m2

⇡)  m2
⇡⌃(s, W 2, m2), both solutions are positive and can be

realized. In this case, the pion can be scattered only into the backward cone w. r. t. the lepton
momentum direction, ⇥⇡ > ⇥0

⇡ > ⇡
2 , with the cone boundary ⇥0

⇡ given by

sin2 ⇥0
⇡ =

s⌃(W 2, M2, m2
⇡)

m2
⇡⌃(s, W 2, m2)

, (6.15)

and two distinct geometric configurations are possible. For ⇥0
⇡ > ⇡/2, this corresponds with

Wmin value, above which a physical solution exists, of (in the lepton massless limit):

W 2
min =

M2 + m2
⇡ cos2 ⇥0

⇡

s � m2
⇡ sin2 ⇥0

⇡

s +
2Mm⇡s

s � m2
⇡ sin2 ⇥0

⇡

r

1 +
⌃ (s, M2, m2

⇡)

4M2s
sin2 ⇥0

⇡. (6.16)

The bifurcation value of the pion-nucleon invariant mass W 2
0 , corresponding to sin2 ⇥0

⇡ = 1, is
given by

W 2
0 =

s + M2 � m2
⇡ � m2

s � m2
⇡

m⇡

p
s +

sM2 � m2
⇡m2

s � m2
⇡

�p
s�M+m+m⇡

(M + m⇡)2. (6.17)

This value is given by the pion-nucleon threshold W 2
0 = (M +m⇡)2 for the beam energy at the

pion production threshold, i.e., s = (M + m + m⇡)2, and grows with increasing lepton beam
energy.
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Figure 6.2: Pion momentum as a function of the invariant mass W of the ⇡0p state in the
pion electroproduction process with the electron beam energy ! = 0.18 GeV (left
panel) and ! = 1.1 GeV (right panel). The vertical dashed line of W0 indicates
the invariant mass value below which there exist two distinct solutions for the pion
momentum.

We show the dependence of p⇡ on the invariant mass W of the pion-nucleon state (⇡0p) for
the typical kinematics of experiments in Fig. 6.2. At the lowest MAMI energy (! = 0.18 GeV),
corresponding with W0 ⇡ 1.07331 GeV and Wthr ⇡ 1.07325 GeV, the contribution of the region
with two solutions is negligible. While at larger beam energies, both solutions should be taken
into account.
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6.2 Invariant amplitudes for pion electroproduction

We are going to evaluate the ⇡N channel TPE contribution to the real parts of the lepton-proton
invariant amplitudes, see Fig. 6.3. The dispersive evaluation of these contributions requires the
pion production amplitudes in the OPE approximation as an input. Moreover, the experimental
extraction of the pion production amplitudes is performed in the OPE approximation. For the
corresponding input, we consider the production of pions by the virtual photon [212–214] as it
is implemented in the MAID model [93, 94].

Figure 6.3: TPE graph with ⇡N intermediate state.

Accounting for gauge invariance as well as a parity conservation in strong and electromagnetic
interactions, the pion production by the virtual photon can be completely described by six
independent helicity amplitudes. The same amplitudes describe the interaction of the lepton
electromagnetic current with the pion production current. The conventional Lorentz invariant
expression for the pion production amplitude T 1�

⇡N is given by

T 1�
⇡N = � e

Q2
ū(k1, h1)�µu(k, h) · N̄(p1,�1)J

µ
⇡N (p⇡; p1,�1; p,�)N(p,�), (6.18)

with the pion production current Jµ
⇡N expressed as a sum of six covariants Mµ

i :

Jµ
⇡N (p⇡; p1,�1; p,�) =

6
X

i=1

Ai

�

W 2, t, Q2
�

Mµ
i , (6.19)

Mµ
1 = �1

2
i�5 (�µq̂ � q̂�µ) , (6.20)

Mµ
2 = 2i�5

✓

Pµ q · (p⇡ � 1

2
q) � (p⇡ � 1

2
q)µ q · P

◆

, (6.21)

Mµ
3 = �i�5 (�µ q · p⇡ � q̂pµ⇡) , (6.22)

Mµ
4 = �2i�5 (�µ q · P � q̂Pµ) � 2M Mµ

1 , (6.23)
Mµ

5 = i�5
�

qµ q · p⇡ + Q2pµ⇡
�

, (6.24)
Mµ

6 = �i�5
�

q̂qµ + Q2�µ
�

, (6.25)

with P = (p + p1) /2 and invariant amplitudes Ai which are completely described by three
Mandelstam variables, e.g., W 2, Q2 and t. This form of the amplitude is manifestly gauge
invariant, i.e., each covariant Mµ

i satisfies qµMµ
i = 0. For the numerical implementation we

exploit the invariant amplitudes Ai from the MAID model (version 2007) [93, 94].3

3The covariants Mµ
i depend only on kinematics of the pion photoproduction process �?N ! ⇡N .
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We exploit also the conjugated amplitude for the second photon in Fig. 6.3. The nucleon
current enters it in the complex conjugated form:

�

N̄(p1,�1)J
µ
⇡N (p⇡; p1,�1; p,�)N(p,�)

�⇤
= N̄(p,�)J̃µ

⇡N (p⇡; p1,�1; p,�)N(p1,�1),(6.26)

with the conjugated pion production vector:

J̃µ
⇡N (p⇡; p1,�1; p,�) =

6
X

i=1

A⇤
i

�

W 2, t, Q2
�

M̃µ
i , (6.27)

and covariants:

M̃µ
1 = �Mµ

1 , M̃µ
2 = Mµ

2 , M̃µ
3 = �Mµ

3 ,

M̃µ
4 = �Mµ

4 , M̃µ
5 = Mµ

5 , M̃µ
6 = �Mµ

6 . (6.28)

6.3 Unitarity and DRs

To obtain the imaginary parts of the TPE amplitudes we exploit the unitarity relations from
Section 4.2.1. In case of the ⇡N intermediate state the unitarity relations of Eqs. (4.12), see
Fig. 6.4, are simplified to [197]

=T 2�
h0�0,h� =

ˆ
e2d3~k1

(2⇡)34!1

ū(k0, h0)�µ
⇣

k̂1 + m
⌘

�⌫u(k, h) · N̄(p0,�0)Wµ⌫ (p0,�0; k1; p,�) N(p,�)

Q2
1Q

2
2

,

(6.29)

with the expression for the non-forward hadronic tensor:

Wµ⌫
�

p0,�0; k1; p,�
�

=

ˆ
d3~p1

(2⇡)32E1

ˆ
d3~p⇡

(2⇡)32E⇡
(2⇡)4�4(k + p � k1 � p1 � p⇡)

⇥
X

�
1

J̃µ
⇡N (p⇡; p1,�1; p

0,�0)J⌫
⇡N (p⇡; p1,�1; p,�). (6.30)

Figure 6.4: Unitarity relations for the case of the ⇡N intermediate state contribution.

The momentum transfers of the OPE processes entering the r.h.s. of the unitarity relations
of Eq. (6.29) are given by

Q2
1 =

�

s � M2 + m2
� �

s � W 2 + m2
�� 4m2s

2s
�
p

⌃s⌃ (s, W 2, m2)

2s
cos ✓1, (6.31)

Q2
2 =

�

s � M2 + m2
� �

s � W 2 + m2
�� 4m2s

2s
�
p

⌃s⌃ (s, W 2, m2)

2s
cos ✓2, (6.32)
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which are simplified in the case of the massless lepton scattering to

Q2
1 =

�

s � W 2
� �

s � M2
�

2s
(1 � cos ✓1) , Q2

2 =

�

s � W 2
� �

s � M2
�

2s
(1 � cos ✓2) . (6.33)

The momentum transfers region is bounded by an ellipse in the Q2
1, Q2

2 plane, similar to the
ellipse in Section 4.2.3 in case of the elastic intermediate state. The maximal value of the
momentum transfers Q2

1, Q2
2 is given by Q2

max =
�

s � W 2
� �

s � M2
�

/s. Consequently, the size
of the ellipse depends now on the ⇡N invariant mass. We show this dependence in Fig. 6.5.
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Figure 6.5: The relation between the invariant mass W and the size of the momentum trans-
fers integration region Q2

max entering the unitarity relations for the case of a ⇡N
intermediate state in the TPE graph of the elastic electron-proton scattering. The
kinematics is chosen as shown in figure.

The elastic TPE contribution of Section 4.2.1 is obtained by replacing in the hadronic tensor
of Eq. (6.30) the pion production current by the proton current and changing the phase space
integration as

Jµ
⇡N (p⇡; p1,�1; p,�) ! GM�

µ � FP
Pµ

M
, (6.34)

ˆ
d3~p1

(2⇡)32E1

ˆ
d3~p⇡

(2⇡)32E⇡
(2⇡)4�4(k + p � k1 � p1 � p⇡) ! 2⇡�(W 2 � M2). (6.35)

For the ⇡N intermediate state we perform the numerical integration in the following variables:

W 2, ✓1, �1, ✓⇡, �⇡. (6.36)
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6.3 Unitarity and DRs

The expression for the imaginary part simplifies to

=T 2�
h0�0,h� =

e2

64⇡3

ˆ
dW 2d⌦1

|~k1|p
s

1

Q2
1Q

2
2

⇥ū(k0, h0)�µ
⇣

k̂1 + m
⌘

�⌫u(k, h) · N̄(p0,�0)Wµ⌫
�

p0,�0; k1; p,�
�

N(p,�), (6.37)

with the hadronic tensor:

Wµ⌫
�

p0,�0; k1; p,�
�

=
X

�
1

ˆ
p2⇡d⌦⇡

(4⇡)2
J̃µ
⇡N (p⇡; p1,�1; p0,�0)J⌫

⇡N (p⇡; p1,�1; p,�)

p⇡ (
p

s � !1) + E⇡k1 cos(k̂1, p̂⇡)
. (6.38)

In the kinematical region s⌃(W 2, M2, m2
⇡)  m2

⇡⌃(s, W 2, m2) we have to sum over both so-
lutions for p⇡, see Eq. (6.14). Performing the numerical integration, we obtain the imaginary
parts of the lepton-proton TPE amplitudes in the leading ↵ order within Eqs. (3.13) and
(3.50).

The pion electroproduction amplitudes in MAID are available in the restricted kinematical
region W < Wmax = 2.5 GeV. Consequently we integrate over the whole phase space in the
unitarity relation of Eq. (6.37) in the region of the crossing symmetric variable:

⌫ < ⌫0 =
W 2

max + 2mWmax � M2

2
� Q2

4
, (6.39)

with ⌫0 ⇡ 2.67 GeV2 at Q2 = 0.05 GeV2. For larger ⌫ > ⌫0, we truncate the W integration at
W = Wmax accounting only for the available kinematical region in MAID. Consequently, the
imaginary parts of invariant amplitudes will have a discontinuity at the point ⌫ = ⌫0.

We first limit ourselves to the �-resonance region, which corresponds to the P33
4 partial

wave in MAID. We present the resulting P33 partial wave contribution to imaginary parts of
the electron-proton TPE amplitudes GP

33

1 , GP
33

2 , GP
33

M , FP
33

3 for Q2 = 0.05 GeV2 in Fig. 6.6.
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Figure 6.6: Imaginary part of P33 partial wave contribution to the electron-proton TPE ampli-
tudes GP

33

1 , GP
33

2 (left panel) and GP
33

M , FP
33

3 (right panel) for momentum transfer
Q2 = 0.05 GeV2.

We checked that the numerical calculations of the imaginary part of the invariant amplitudes
are in reasonable agreement with the analogous evaluation of the ⇡N channel contribution to
the target normal spin asymmetry An [197] of Eq. (3.67). Our result is shown in Fig. 6.7. We
also checked numerically that the amplitudes G1, G2, F2 vanish in the limit Q2 ! 0 and the
amplitudes GM , F3 remain finite in agreement with Eqs. (3.17, 3.18, 3.41).

4L
2I2J

is the partial wave with the pion angular momentum L = 1, isospin I = 3/2 and spin J = 3/2.
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Figure 6.7: P33 partial wave contribution to the target normal single spin asymmetry for mo-
mentum transfer Q2 = 0.05 GeV2.

Having specified the imaginary parts, we next evaluate the DRs of Eqs. (4.29) and (4.30) to
obtain the real parts of the electron-proton TPE amplitudes. The results are shown in Figs.
6.8-6.11 for different values of the upper integration limit in the DR ⌫max.
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Figure 6.8: Real part of the P33 partial wave contribution to the electron-proton TPE amplitude
GP

33

1 for momentum transfer Q2 = 0.05 GeV2 for different values of the upper
integration limit in the DR ⌫max = 2.67, 5, 6 GeV2. On the left (right) panel we
show amplitudes as function of the ⌫ (") variable.
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6.4 ⇡N P33 partial wave contribution to TPE in e�p scattering
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Figure 6.9: Same as Fig. 6.8, but for electron-proton TPE amplitude GP
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Figure 6.10: Same as Fig. 6.8, but for electron-proton TPE amplitude GP
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6.4 ⇡N P33 partial wave contribution to TPE in e�p scattering

Substituting the real parts of TPE amplitudes into Eq. (3.62), we obtain the unsubtracted DR
result for the electron-proton scattering cross section correction. We estimate the uncertainties
of the DR calculation by varying the upper integration limit ⌫max in the range ⌫0 < ⌫max <
6 GeV2, and show the corresponding error band in Fig. 6.12. We furthermore compare in
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Chapter 6 ⇡N intermediate state TPE contribution

Fig. 6.12 the P33 partial wave DR result with the P33 partial wave contribution in the near-
forward approximation of Chapter 5 (the upper integration region is restricted by MAID to
W = 2 GeV).
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Figure 6.12: ⇡N P33 partial wave TPE correction within the unsubtracted DRs is compared
with the near-forward approximation for Q2 = 0.05 GeV2 and the subtracted DR
prediction in the near-forward approximation with a subtraction point ("0 = 0.8)
fixed to the unsubtracted DR (⌫max = 6 GeV) calculation. The region to the
right of the vertical dashed line denotes the validity region of the near-forward
approximation.

In Fig. 6.13, we compare the near-forward approximation corresponding to the F2 tensor
structure with the unsubtracted DRs contribution of the amplitude F2 (the W integration is
restricted to W = 2 GeV). Two methods are in a reasonable agreement over the whole " region.
Consequently, the difference in Fig. 6.12 is given by GM and F3 contributions.
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Figure 6.13: Same as Fig. 6.12, but for the contribution of the invariant amplitude F2 within
unsubtracted DRs.
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6.4 ⇡N P33 partial wave contribution to TPE in e�p scattering

We next perform the subtracted DR analysis in the assumption of the dominant contribution
coming from the TPE amplitude F2, which is the only non-vanishing amplitude in the near-
forward approximation. In this case, the TPE correction to the unpolarized elastic electron-
proton scattering cross section of Eq. (3.55) can be expressed as

�2�
�

⌫, Q2
� ⇡ ⇣

�

⌫, Q2
�<F2�

2

�

⌫, Q2
�

, (6.40)

with

⇣
�

⌫, Q2
�

= �2(1 + ⌧P )GE

G2
E + ⌧P

" G2
M

. (6.41)

Fixing the subtraction constant in the model evaluation �02�
�

⌫, Q2
�

to the unsubtracted DR
result �DR

2�

�

⌫0, Q2
�

, we can predict the TPE correction for other values of ⌫ by

�2�
�

⌫, Q2
�

= �02�
�

⌫, Q2
�

+
⇣
�

⌫, Q2
�

⇣ (⌫0, Q2)

�

�DR
2�

�

⌫0, Q
2
�� �02�

�

⌫0, Q
2
��

. (6.42)

We present our subtracted DR prediction in Fig. 6.12. Such analysis is valid only in the
region to the right from the vertical dashed line, where we observe a reasonable agreement
between both methods of the P33 channel TPE evaluation. This indicates on the necessity of
the subtraction also in the amplitude F2�

2 accounting for the ⇡N intermediate state.
In Fig. 6.14 we compare the inelastic TPE evaluated in the near-forward approximation of

Chapter 5 with the BC fit (valid for W < 3.1 GeV), P33 partial wave and ⇡N contributions
from the MAID (valid for W < 2 GeV) as well as a combination of the MAID and BC fit
(2 GeV < W < 3.1 GeV) as an input, denoted in Fig. 6.14 by ⇡N MAID (W < 2 GeV) + SF.
One notices that the main inelastic TPE contribution is given by the ⇡N channel and that the
relative contribution of the ⇡N channel to the total inelastic result decreases for larger ".
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Figure 6.14: Evaluating in the near-forward approximation of Eqs. (5.76, 5.77), the P33 partial
wave and full ⇡N TPE corrections with input from MAID are compared with
the inelastic TPE based on the BC fit and with the calculation based on the
combination of the MAID and BC fit (2 GeV < W < 3.1 GeV), denoted by
⇡N MAID (W < 2 GeV) + SF, for Q2 = 0.05 GeV2. The region to the right of the
vertical dashed line denotes the validity region of the near-forward approximation.
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Chapter 6 ⇡N intermediate state TPE contribution

In Fig. 6.15 we compare the sum of the proton and P33 partial wave contributions (with an
upper integration limit ⌫max = 6 GeV2) within the unsubtracted DR framework with the total
TPE, elastic TPE and empirical TPE fit [104]. In the forward (large ") region, the pion-nucleon
P33 partial wave accounts up to half of the inelastic TPE correction.
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Figure 6.15: Unsubtracted DR evaluation of ⇡N TPE correction from the P33 partial wave in
comparison with the elastic TPE and sum of Born and total inelastic TPE in the
near-forward approximation for Q2 = 0.05 GeV2.

The account of the P33 partial wave in the subtracted DR formalism of Section 4.5 allows
to reduce the model-dependent uncertainty as it is shown in Fig. 6.16. The remaining dis-
agreement between the prediction and the empirical fit calls for an account of other ⇡N partial
waves and higher lying channels (⇡⇡N, ...).
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Figure 6.16: Subtracted DR based prediction for elastic and ⇡N TPE correction from the P33

partial wave for Q2 = 0.05 GeV2 in comparison with the elastic TPE correction
within the subtracted DR formalism of Section 4.5. The subtracted DR curves
correspond with two choices for the subtraction points: "0 = 0.2, 0.8.
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Chapter 7

Conclusion and outlook

The precision of modern experiments in atomic spectroscopy and elastic lepton-proton scat-
tering is well below the size of the TPE correction, which contributes the largest theoretical
uncertainty. This correction also plays an important role in the proton form factor puzzle at
large momentum transfer, partially resolving it. To improve on the precision of the proton
charge radius extractions, we studied and evaluated the correction from the diagram with two
exchanged photons to various physical observables at zero and low momentum transfers.

The hadronic correction from the TPE box graph to the atomic S energy levels at leading ↵
order is determined by the box diagram in the forward kinematics. One evaluates this correction
considering DRs for the forward doubly virtual Compton scattering (VVCS) tensor. Firstly, we
classified the lepton-proton scattering amplitudes in the forward kinematics and expressed the
TPE correction in terms of the forward virtual Compton amplitudes. This calculation requires
the input of one subtraction function which we estimated. We furthermore calculated its TPE
effect on the Lamb shift of the 2S energy level in muonic hydrogen from the inelastic electron-
proton scattering data in the resonance and deep inelastic scattering regions combined with
the experimental value of the proton magnetic polarizability. It was found that the extracted
subtraction function is compatible in magnitude with the chiral perturbation theory calculation.
Our evaluation of the Lamb shift correction, �Esubt

2S ⇡ 2.3 ± 1.3 µeV, is in a fair agreement,
though slightly smaller than the estimate of Birse and McGovern: �Esubt

2S ⇡ 4.2 ± 1.0 µeV,
due to the sign change in the empirically estimated subtraction function. The upcoming JLab
12 GeV data will furthermore improve on the precision of our evaluation. With dispersion
relations for the forward lepton-proton scattering amplitudes, we have expressed the O(↵5)
TPE proton structure correction to the S-level HFS in hydrogen-like atoms in terms of the
experimentally accessible inclusive cross sections of lp scattering. Dispersion relations provide
a new way to determine the HFS correction explicitly accounting for the double spin-flip lepton-
proton amplitude. The result for the individual channel HFS contribution is distinct with the
standard approach. However, when accounting for contributions from all possible channels
through the Burkhardt-Cottingham sum rule both methods agree. We have reevaluated the
TPE correction to HFS in the electronic and muonic hydrogen connecting the region with small
photons virtualities, which is expressed through moments of the proton spin structure functions
(SFs), to the region with larger photons virtualities, where the precise data (parametrizations)
exist. The resulting HFS correction value is similar to the previous evaluations with slightly
smaller uncertainties. The precise experimental (theoretical) knowledge of the proton spin SFs,
the proton magnetic form factor and moments of the proton spin structure functions at low
momentum transfer is required to reduce the model dependence and uncertainties in the HFS
evaluation further, which be crucial in the analysis of the 1S HFS measurement at PSI. The
developed formalism can be generalized for the evaluation of the TPE correction to levels with
other orbital angular momentum and for the studies of the �Z box diagram contribution to
the atomic energy levels. The evaluation of the forward TPE amplitudes at threshold can be
used as a model independent way to obtain the parameters of the effective interaction between
the lepton and the proton at low energies.

Next, we described the helicity formalism of the elastic lepton-proton scattering. We ex-
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Chapter 7 Conclusion and outlook

pressed the TPE correction �2� to the unpolarized elastic lepton-proton scattering in terms
of the invariant amplitudes. We expressed all six non-forward TPE amplitudes at Q2 = 0 in
terms of two forward lepton-proton amplitudes and proved the vanishing behavior of the TPE
correction �2� . Subsequently, we described the lepton massless limit and provided the known
expressions for the TPE correction to the cross section and double polarization observables. We
also obtained the expressions for the single spin asymmetries for the massive lepton scattering.

In the small momentum transfer region, the main contribution to TPE correction is coming
from the proton intermediate state. We have evaluated this contribution in a dispersion rela-
tion approach and compared it with the box graph model (Born TPE), based on the on-shell
electromagnetic vertices. The imaginary parts are the same in both approaches. However, the
real parts differ in two helicity-flip amplitudes and one helicity conserving amplitude F2�

3 . With
the aim to minimize the model dependence and decrease the contribution from the high-energy
region in analysis of the electron-proton scattering data, we applied the subtracted dispersion
relation for the amplitude F2�

3 . We took the subtraction point from an empirical fit to data.
Choosing different subtraction points, we quantitatively estimated the contribution from the
inelastic intermediate states. However, the data fit is not trustable in the region of low mo-
mentum transfer and small ", where the data is not available. Going to large Q2, the slope of
the TPE correction in the region " ! 1 is predicted to change sign. We provided predictions
for kinematics of the OLYMPUS experiment based on the subtracted DR formalism with the
proton intermediate state. The existent CLAS data [77,79] were found to be in agreement with
the empirical TPE fit of the A1 Collaboration at MAMI [104] accounting only for the proton
intermediate state. Additionally, we have developed a new method of analytical continuation
of the elastic TPE amplitudes. The advantage of this method is that it performs the analytical
continuation within a broad range of the proton form factors parametrizations as an input.

Besides the Born TPE, we accounted for the inelastic TPE by using the VVCS tensor in a
near-forward approximation and expressed the corresponding TPE correction as an integral over
the unpolarized proton structure functions. We checked that this approximation reproduces
the existing results for the low momentum transfer expansion of the TPE correction. It allows
to go beyond the known expansion accounting for the momentum transfer dependence of the
proton structure functions. In the near-forward approximation the TPE correction was found
to be in good agreement with the empirical TPE fit of the A1 Collaboration at MAMI [104],
CLAS measurements [79] and VEPP-3 data point at low Q2 [76] normalized to the empirical
TPE fit. Increasing the momentum transfer, the TPE correction starts to deviate from the
data fit, still following its shape. We also extrapolated the resulting TPE to low-Q2 region of
the OLYMPUS experiment [81].

In order to make theoretical estimates of the inelastic TPE correction at larger momentum
transfer and arbitrary scattering angles, we next exploited a DR framework. We evaluated
the contribution from the P33 partial-wave of pion electroproduction, corresponding with the
�(1232) resonance, within DRs. We took the invariant amplitudes of the pion electroproduc-
tion from the MAID partial-wave analysis. The dispersive evaluation gave results of the same
order as the near-forward approximation in the region of its applicability. The latter approx-
imation is in a reasonable agreement with the contribution of the amplitude F2�

2 (or G2�
2 in

the G2�
1 , G2�

2 , F2�
3 decomposition) to the cross section correction evaluated within unsubtracted

DRs over the whole " region at low momentum transfers. The P33 partial-wave accounts for up
to half of the inelastic TPE correction. The next step will be to evaluate the contribution from
other ⇡N partial waves numerically and to extend the DR formalism to the region of larger
momentum transfers.

With the aim to evaluate the correction in the proposed muon-proton scattering experiment
(MUSE), we extended the general formalism of TPE corrections in the elastic unpolarized
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scattering to the case of the finite mass lepton. As a first step, we have evaluated the Born
TPE correction. The estimates for the TPE correction to the muon-proton scattering cross
section vary between 0.25% and 0.5%. These estimates are up to a factor three smaller, as
compared with TPE corrections for the case of elastic electron-proton scattering for the same
beam momenta. This is due to the contribution of lepton helicity-flip amplitudes, which has
an opposite sign as compared with the contribution of non-flip amplitudes and significantly
reduces the correction. Our calculations reproduced the expected low momentum transfer
limit of TPE in muon-proton scattering. The inelastic intermediate states were studied within
the near-forward approximation. Contrary to the case of massless lepton-proton scattering,
the subtraction function of the unpolarized forward Compton scattering contributes to the
TPE correction due to the sizable muon mass scale. We have evaluated this contribution
from the chiral perturbation theory and from the empirically estimated subtraction function.
This contribution is comparable in magnitude to the unpolarized proton structure functions
contribution and has an opposite sign. In MUSE kinematics, the elastic TPE contribution
largely dominates, and the size of the inelastic TPE is within the anticipated error of the
forthcoming data.

All performed calculations will be relevant as radiative corrections in elastic lepton-proton
scattering experiments improving on the precision of the form factor measurements at low
momentum transfer and extractions of proton radii by the MUSE Collaboration, PRad exper-
iment at JLab and other experiments. TPE corrections will also be relevant in the precise
determination of the proton magnetic radius by the MAGIX experiment at MESA (Mainz) as
well as for the measurement of the weak mixing angle by the P2 experiment at MESA.
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Appendix A

Dirac spinors in the Jacob-Wick phase convention

The solution of the free Dirac equation in the momentum space
⇣

k̂ + m
⌘

u(k, h) = 0 describes

a lepton with the four-momentum k(k0,~k) and the helicity h. In the Dirac representation, the
solution is given by

u(k, h) =

✓ p
k0 + m ⇥ �h (✓,�)

h
p

k0 � m ⇥ �h (✓,�)

◆

, (A.1)

with the particle momentum ~k = |~k| (sin ✓ cos�, sin ✓ sin�, cos ✓) and the helicity eigenstates
�h:

�+ =

✓

cos ✓
2

ei� sin ✓
2

◆

, �� =

✓ �e�i� sin ✓
2

cos ✓
2

◆

. (A.2)

The solution is normalized as u+(k, h0)u(k, h) = 2k0�h,h0 . The corresponding solution for the
antiparticle is given by

v(k, h) =

✓ �p
k0 � m ⇥ ��h (✓,�)

h
p

k0 + m ⇥ ��h (✓,�)

◆

. (A.3)

According to the Jacob and Wick [191] phase convention, the helicity eigenstates of a proton
�̃� at rest are defined reverse to the helicity eigenstates of a lepton:

�̃+ =

✓ �e�i� sin ✓
2

cos ✓
2

◆

, �̃� =

✓

cos ✓
2

ei� sin ✓
2

◆

. (A.4)

The proton spinor is then given by

N(p,�) =

✓ p
p0 + M ⇥ �̃� (✓,�)

�
p

p0 � M ⇥ �̃� (✓,�)

◆

, (A.5)

with the following normalization: N+(p,�0)N(p,�) = 2p0��,�0 .
The relations of Eqs. (3.11, 3.49) are derived in the center of mass frame. In this frame the

kinematical factors in spinors are expressed in terms of the Mandelstam variable s as

k0 + m =
(
p

s + m)2 � M2

2
p

s
, k0 � m =

(
p

s � m)2 � M2

2
p

s
, (A.6)

p0 + M =
(
p

s + M)2 � m2

2
p

s
, p0 � M =

(
p

s � M)2 � m2

2
p

s
. (A.7)
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Appendix B

Forward lepton-proton scattering observables

The forward elastic scattering cross section in the c.m. reference frame is given by

d�

d⌦
(✓ = 0) =

|f+(!)|2 + |f�(!)|2 + 2|g(!)|2
64⇡2(M2 + 2M! + m2)

. (B.1)

All possible single-spin asymmetries are zero in the forward scattering. We denote the
lepton spin asymmetry in scattering on the polarized proton as A and in scattering on the
unpolarized proton with the polarization transfer to the final proton as P . The asymmetries
for the longitudinally polarized lepton and the longitudinally polarized proton in the forward
scattering are expressed as

Al =
d�+� � d���
d�+� + d���

= �2
< �

f+f⇤
�
�

+ |g|2
|f+|2 + |f�|2 + 2|g|2 ,

Pl =
d�+� � d���
d�+� + d���

= �2
< �

f+f⇤
�
�� |g|2

|f+|2 + |f�|2 + 2|g|2 . (B.2)

The asymmetries for the transversely polarized lepton and the transversely polarized proton in
the forward scattering are expressed as

At =
d�"" � d�"#
d�"" + d�"#

= 2
< ((f+ + f�) g⇤)

|f+|2 + |f�|2 + 2|g|2 ,

Pt =
d�"" � d�"#
d�"" + d�"#

= 2
< ((f+ � f�) g⇤)

|f+|2 + |f�|2 + 2|g|2 . (B.3)

The asymmetries in the case of one transverse and one longitudinal polarizations vanish.
The elastic cross section at threshold is given by the S wave only, therefore it is an angular

independent quantity. From the other hand, the total elastic cross section at threshold is
expressed in terms of the scattering length a as � = 4⇡a2 that is related to the forward
amplitudes by

a2 =
|f+(m)|2 + |f�(m)|2 + 2|g(m)|2

64⇡2(M + m)2
. (B.4)

We also define the triplet scattering lengths for the elastic scattering of the state with parallel
(anti-parallel) fermions spin directions along the beam line at,1 (at,0) and the singlet (averaged
triplet) scattering length as (at). The scattering length a is expressed in terms of the singlet
and triplet scattering lengths as

a2 =
1

4
a2s +

3

4
a2t =

1

4

�

a2s + a2t,0 + 2a2t,1
�

. (B.5)

We express the triplet (at, at,0, at,1) and singlet (as) scattering lengths in terms of the double
spin asymmetries as
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a2s = (1 � Al � 2At) a2, (B.6)
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1 +
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3
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3
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◆

a2, (B.7)

a2t,1 =
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1 +
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Al � 1

3
At
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a2, (B.8)

a2t,0 =
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1 � 2

3
Al +

5

3
At

◆

a2. (B.9)

The above expressions of this Appendix are valid in scattering of two fermions of arbitrary
nature. For example, in the case of neutron-proton scattering.

In elastic lepton-proton scattering, it is convenient to decompose the forward scattering
amplitudes into a sum of OPE and TPE contributions. The TPE amplitudes, except for
<f2�

+ , are obtained with DRs and unitarity relations described in Sections 2.1, 2.2. The OPE
amplitudes are real and given by

f1�
� = e2µP , (B.10)

g1� = 0. (B.11)

The vacuum polarization correction is zero in the forward scattering. The lepton vertex cor-
rection does not change the amplitude g, modifies the amplitude f� by the lepton anomalous
magnetic moment al: �f� = ale2 and contributes to the amplitude f+. The proton vertex
correction with the proton intermediate state contributes to f� and f+ amplitudes [163]. The
contribution of inelastic intermediate states is expected to be small, however, this correction
requires an additional theoretical investigation. We combine all orders contributions to the
amplitude <f+. Therefore, the forward amplitudes are completely expressed in terms of the
total inclusive cross sections, see Eqs. (2.19, 2.20, 2.23, 2.24), at O(↵2) up to the one unknown
spin-independent amplitude <f+.
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Appendix C

Forward invariant amplitudes in terms of the proton
structure functions

Substituting expressions for the inclusive cross sections of Eqs. (2.30-2.32) into DRs, see Eqs.
(2.22-2.24), we change the integration order and express the forward TPE amplitudes in terms
of the proton SFs:
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with the DR master integrals (we introduce the cut-off ⇤ in the divergent integrals):
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The reasonable result for the proton or narrow � contribution, when we are allowed to change
the ! and Q2, ⌫� integration order, is given by the once-subtracted dispersion relation of Eq.
(2.25). It can be obtained from Eq. (C.1) by <f2�

+ (!) � <f2�
+ (!s). The ⌫� integrals for the

spin-dependent amplitudes of Eqs. (2.42, 2.43) are convergent. In this Appendix we express
also the TPE amplitude <f2�

+ directly in terms of the proton SFs:
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For the amplitude f2�
+ (!) we write only the regular part of the unsubtracted DR, i.e., we drop

the !-independent terms with ln ⇤, ⇤ in the divergent integrals I02 , I03 , see Eqs. (C.6, C.7).
Due to the Regge behavior of the F1 proton structure function given by the Pomeron ex-

change, the ⌫� integrals are divergent, and the DR for the amplitude f2�
+ is not applicable for

the inelastic intermediate states TPE.
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Appendix D

Forward DRs verification in Quantum
Electrodynamics

In this Appendix, we verify the lepton-proton forward dispersion relations in QED. We recon-
struct the real parts of TPE amplitudes with the relations of Eqs. (2.23-2.25) and compare
them to the sum of the direct and crossed box graphs. The OPE helicity amplitude T 1� for
the lepton scattering off the charged point proton, see Fig. 3.2, is given by

T 1� =
e2

Q2 + µ2
ū(k0, h0)�µu(k, h)N̄(p0,�0)�µN(p,�). (D.1)

We introduce the finite mass µ with the aim to have no deal with IR divergences.
The relevant OPE cross sections are given by
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The high energy behavior of the relevant cross sections in the OPE approximation is following:

�1�(!) ⇠
!�

!0, �1�++(!) � �1�+�(!) ⇠
!�

!�1 ln!, �1�? (!) � �1�k (!) ⇠
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The unsubtracted DR for the amplitude f2�
+ of Eq. (2.22) is divergent as !. Therefore, we use

the subtracted DR of Eq. (2.25) for this amplitude.
The helicity amplitude corresponding with the TPE direct box graph T 2� is given by

T 2� = �e4
ˆ

id4q

(2⇡)4
ū(k, h0)�µ(k̂ � q̂ + m)�⌫u(k, h)N̄(p,�0)�µ(p̂ + q̂ + M)�⌫N(p,�)

((p + q)2 � M2) ((k � q)2 � m2) (q2 � µ2) (q2 � µ2)
. (D.5)

We find the contribution of the direct box graph to the forward amplitudes f2�,dir
+ , f2�,dir

� with
exchange of two photons (see Fig. 2.3) multiplying the fermion spinors by the spin projection
operators. Then we sum over all possible polarizations evaluating the traces of the Dirac
matrices. The direct amplitudes f2�,dir

+ , f2�,dir
� are given by
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(D.7)

with the lepton and proton spin vectors in the laboratory frame s = (|k|, 0, 0, !)/m and
S = (0, 0, 0, �1). For the double spin-flip amplitude g2�,dir we use the decomposition in
terms of the scalar integrals, since the evaluation of traces can not be exploited here due to the
different spin directions of initial and final fermions. Furthermore, we repeat the same steps
for the crossed box graph contribution.

The optical theorem of Eqs. (2.19, 2.20), the once-subtracted DR for the amplitude f2�
+ of

Eq. (2.25), the unsubtracted DRs for the amplitudes f2�
� , g2� of Eqs. (2.23, 2.24) and the

amplitudes properties of Eqs. (2.16-2.18) under the crossing ! ! �! were checked comparing
to the sum of the direct and crossed box graphs.
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Appendix E

Regge poles residues of the proton structure function
F1 from high-energy data

The high-energy limit (⌫� very large at fixed Q2) of the proton structure function F1 is often
parameterized through a Regge pole fit as

F1(⌫� , Q
2) �!

⌫��

X

↵
0

�0

�↵
0

(Q2)⌫↵0

� , (E.1)

where �↵
0

(Q2) are the leading Regge poles residues, which can be extracted from the high-
energy inclusive electron-proton scattering data. We will determine these residues from the
Donnachie-Landshoff (DL) fit [146] to data for the proton structure function F2 in the region
of very small Bjorken variable xBj ⌘ Q2/ (2M⌫�):
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where
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with parameters values (using GeV units for all mass scales) [146]:

A0 = 0.00151, A1 = 0.658, A2 = 1.01,

Q2
0 = 7.85, Q2

1 = 0.6, Q2
2 = 0.214,

"0 = 0.452, "1 = 0.0667, "2 = �0.476. (E.6)

The F1 structure function in the high-energy region is then obtained as

F1(⌫� , Q
2) �!

⌫��

M⌫�
Q2

F2(⌫� , Q2)

1 + R
, (E.7)

where R ⌘ ��pL /��pT is the ratio of longitudinal to transverse virtual photon absorption cross
sections on a proton. We will use the experimental result R0 = 0.23 ± 0.04 at Q2 > 1.5 GeV2

from the H1 and ZEUS Collaborations [147], and approximate R in our numerical estimates
by the following expression, independent of W 2 ⌘ 2M⌫� + M2 � Q2:

R = R(Q2) = R0⇥
�

Q2 � 1.5 GeV2
�

+ RBC(Q2)⇥
��Q2 + 1.5 GeV2

�

, (E.8)
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where RBC(Q2) is value obtained in the Christy and Bosted fit [91] evaluated at W 2 ⇡
2.63 GeV2.1 The latter corresponds with the W 2 value for which the ratio R from the BC fit
RBC(Q2 = 1.5 GeV2) ⇡ 0.23, and thus goes over into the H1/ZEUS value at Q2 > 1.5 GeV2.
We use the relative uncertainties from the data of Ref. [147] in the whole Q2 region. We show
the resulting functional form of R(Q2) in Fig. E.1, and compare its value with the data from
Refs. [215–217] in the range Q2 < 1.5 GeV2. We notice that our parameterization of R yields
a good agreement with the data.

R(Q2)
p and d data

R

0

0.2

0.4

0.6

Q2, GeV2
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure E.1: Q2 dependence of the ratio R = ��pL /��pT . The experimental result R0 = 0.23±0.04
in the region Q2 > 1.5 GeV2 from H1 and ZEUS [147] is connected with the ratio
taken from the BC fit [91] (central curve). The error band reflects the experimental
uncertainty in the value of R from the fit to the H1 and ZEUS data. The data
points are taken from Refs. [215–217].

Adopting the above Regge parameterization for F2, with the ratio R from Eq. (E.8), we
obtain from Eq. (E.7) for F1 the following Regge pole residues entering Eq. (E.1):

�1+"i(Q
2) =

1

2

fi(Q2)

1 + R(Q2)

✓

2M

Q2

◆1+"i

. (E.9)

1The Q2 expansion of the ratio R in the Christy and Bosted fit starts from Q4 term instead of Q2. The ratio
enters our evaluation in the combination 1 + R and does not influence our results significantly due to the
small absolute value of R. The evaluation of the correction to physical observables in Chapters 2 and 5 at
low-Q2 region relies on the magnetic polarizability value but not on the ratio R.
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Appendix F

Relations between TPE amplitudes in the forward
limit

In this Appendix, we study the forward limit of the invariant amplitudes beyond the OPE
approximation, and contributions with Q2 = 0 poles, exploiting the helicity amplitudes expres-
sions through the invariant amplitudes of Eqs. (3.11). The Q2-expansion of coefficients allows
to obtain the following expressions for the helicity amplitudes:
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The unitarity, |Ti| . 1, and the amplitudes expressions of Eqs. (3.13) provide the convergent
low-Q2 behavior of all invariant amplitudes entering Eqs. (F.1-F.6). The absence of the
divergent in Q terms in all helicity amplitudes leads to
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These equations and the conservation of the total angular momentum, i.e., T6 (Q2 ! 0) = 0, al-
low to write down four model-independent relations for the lepton-proton scattering amplitudes
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in the forward limit beyond the contributions with Q2 = 0 pole:
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The following relations between two amplitudes are valid:
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The TPE amplitudes G2�
M

�

⌫, Q2 = 0
�

, F2�
6

�

⌫, Q2 = 0
�

in the forward limit are directly related
to the forward amplitudes f2�

� , g2� by means of Eqs. (3.15, 3.16). Consequently, all TPE
amplitudes in the forward limit can be reconstructed from the experimental data on the proton
spin structure functions.

In order to obtain the spin-independent forward amplitude f2�
+ one should subtract the

divergent in Q behavior in a proper way that requires additional studies in general case. The
knowledge of the Q2-slope of the invariant amplitudes G2�
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5 is also required:
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The amplitudes Q2-slope term is just a slope of the TPE correction �2� of Eqs. (3.36, 5.20).
The evaluation of the TPE correction to the Lamb shift within Eq. (2.98) requires to take the
second limit ! ! m and can be performed only when limits Q2 ! 0 and ! ! m commute.
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Appendix G

Relations between TPE amplitudes in the high-energy
limit

We study the high-energy limit, corresponding to ⌫ ! 1, of the invariant amplitudes beyond
the OPE approximation, exploiting the invariant amplitudes expressions of Eqs. (3.13) and
the amplitudes definitions of Eqs. (3.37-3.40). The leading terms in the ⌫ ! 1 expansion are
given by

e2GM =
1

2
(T1 � T3), (G.1)

e2F2 = �M

2⌫
(QT2 + m (T5 � T6)) + O

✓

1

⌫2

◆

, (G.2)

e2F3 = �M2

2⌫
(T1 � T3) + O

✓

1

⌫2

◆

, (G.3)

e2F4 = � M

2m
(T5 � T6) + O

✓

1

⌫

◆

, (G.4)

e2F5 = � M2

2m⌫
(QT4 � M (T5 � T6)) + O

✓

1

⌫2

◆

, (G.5)

e2F6 = � M

2m
(T5 + T6), (G.6)

e2G1 = � Q

8⌫
(4MT2 � Q (T1 + T3)) + O

✓

1

⌫2

◆

, (G.7)

e2G2 =
Q

8M⌫

�

MQ (T1 + T3) + Q2T2 + 4MmT4 + mQ (T5 � T6)
�

+ O
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1
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◆

, (G.8)

e2G3 = �e2GM + O

✓

1

⌫

◆

, (G.9)

e2G4 = � Q

8Mm (1 + ⌧P )
(4MT4 + Q (T5 � T6)) + O

✓

1

⌫

◆

. (G.10)

Accounting for the unitarity condition |Ti| . 1, we obtain the constraints of Eqs. (3.21-3.23,
3.43, 3.44) on the HE behavior of the invariant amplitudes:

F2

�

⌫ ! 1, Q2
�

, F3

�

⌫ ! 1, Q2
�

, F5

�

⌫ ! 1, Q2
�

. 1

⌫
, (G.11)

GM

�

⌫ ! 1, Q2
�

+
⌫

M2
F3

�

⌫ ! 1, Q2
�

. 1

⌫
, (G.12)

GM

�

⌫ ! 1, Q2
�

, F4

�

⌫ ! 1, Q2
�

, F6

�

⌫ ! 1, Q2
�

. const, (G.13)

G1

�

⌫ ! 1, Q2
�

, G2

�

⌫ ! 1, Q2
�

. 1

⌫
, (G.14)

G3

�

⌫ ! 1, Q2
�

, G4

�

⌫ ! 1, Q2
�

. const. (G.15)

In the model with point-like proton described in Eqs. (4.3), these constraints are valid for
FDFD and FDFP vertex structures. However, the amplitudes GM , F3, G1, G2 violate unitarity
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Appendix G Relations between TPE amplitudes in the high-energy limit

in the case of FPFP vertex structure. In the proton model with dipole electromagnetic form
factors described in Eqs. (3.52), these relations are always violated by the imaginary part of
the amplitudes G1, G2, by the imaginary part of the amplitude F2 in the case of FDFP vertex
structure1 and by the real part of the amplitudes GM , F3 in the case of FPFP vertex structure.
In case of the inelastic intermediate states, these relations are expected to be valid.

1Note that the proper subtraction of the IR divergent piece, which has a constant HE limit of the imaginary
part and vanishing limit (1/⌫) of the real part, can restore the unitarity in the case of F

D

F
D

and F
D

F
P

vertex structures.
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Appendix H

Box diagram results in terms of the LoopTools
integrals: massless lepton scattering

We describe the details of the box diagram calculation for the point-like model below. The
helicity amplitude from the direct TPE diagram Tdir is given by Eqs. (4.1) and has the following
structure:

Tdir = N0Adir + N↵A↵
dir + N↵�A↵�

dir + N↵��A
↵��
dir + N↵���A

↵���
dir , (H.1)

⇣

Adir, A
↵
dir, A

↵�
dir, A

↵��
dir , A↵���
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⌘

= i

ˆ
d4k1
(2⇡)4

⇣

1, k↵
1 , k↵

1 k�
1 , k↵

1 k�
1 k�

1 , k↵
1 k�

1 k�
1k�

1

⌘

⇣

(k1 � P � K)2 � M2
⌘

�

k2
1 � m2

�

⇣

�

k1 � K � q
2

�2 � µ2
⌘⇣

�

k1 � K + q
2

�2 � µ2
⌘ , (H.2)

with N - spinor expression with free indices. The contraction is done with momenta from the
expansion of the integrals Adir, A↵

dir, ... in terms of the on-shell momenta. These integrals are
invariant under the replacement q ! �q and can be expressed as

A↵
dir = as(P + K)↵ + aPP↵,

A↵�
dir = ass(P + K)↵(P + K)� + asPP [↵,(P + K)�] + aPPP↵P � + aqqq

↵q� + a00g
↵� ,

A↵��
dir = asss(P + K)↵(P + K)�(P + K)� + aPPPP↵P �P � + as00g

[↵,�,(P + K)�]

+ assPP [↵,(P + K)�,(P + K)�] + asPPP [↵,P �,(P + K)�] + aPqqq
[↵,q�,P �]

+ aP00g
[↵,�,P �] + asqqq

[↵,q�,(P + K)�],

A↵���
dir = assss(P + K)↵(P + K)�(P + K)�(P + K)� + aPPPPP↵P �P �P � + aqqqqq

↵q�q�q�

+ asssPP [↵,(P + K)�,(P + K)�,(P + K)�] + asPPPP [↵,P �,P �,(P + K)�]

+ assPPP [↵,P �,(P + K)�,(P + K)�] + a0000g
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+ aPP00g
[↵,�,P �,P �] + aqq00g
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+ asPqq(P + K)[↵,P �,q�,q�] + aPPqqq
[↵,q�,P �,P �] + assqqq

[↵,q�,(P + K)�,(P + K)�],

(H.3)

where all non-equivalent permutations are accounted only once. The integrals as, ap, ... can be
expressed through the LoopTools four-point functions:

D
⇣

p21, p22, p23, p24, (p1 + p2)
2 , (p2 + p3)

2 , m2
1, m2

2, m2
3, m2

4

⌘

, (H.4)

with the following kinematics:

m1 = m, m2 = µ, m3 = M, m4 = µ,

p1 = �k0, p2 = �p0, p3 = p, p4 = k,

p12 ⌘ (p1 + p2)2 = s, p23 ⌘ (p2 + p3)2 = t,

k1 = �k0, k2 = �(P + K), k3 = �(P + K) + p = �k. (H.5)
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Appendix H Box diagram results in terms of the LoopTools integrals: massless lepton
scattering

Exploiting the relations between the LoopTools four-point functions:

D1 = D3, D11 = D33, D12 = D23, D001 = D003,

D111 = D333, D113 = D133, D112 = D233, D223 = D122, (H.6)

we express the integrals in the tensor decomposition of Eqs. (H.3) as

aP = 2D1, aS = �2D1 � D2, aqq = 1
2 (D11 � D13) ,

aPP = 2 (D11 + D13) , aSS = 2 (D11 + D12 + D13 + D23) + D22,
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aP00 = 2D001, aS00 = �2D001 � D002,
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aqqs = 1
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aqq00 = 1
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aqqqq = 1
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assPP = D1111 + 4D1112 + 8D1113 + 2D1122 + 12D1123 + 6D1133 + 2D1223 + D3333, (H.7)

up to an overall factor �⇡2/(2⇡)4.
Among the LoopTools four-point functions the following are IR divergent:

D1, D11, D111, D1111. (H.8)

Others are IR free. The only UV divergent four-point function is D0000.
The result for the FDFD vertex structure of virtual photon-proton-proton vertices for the

direct diagram is given by
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F2�
2 = �2M2e2Q2 (app + asp) , (H.10)
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The result for the FDFP vertex structure for the direct diagram is given by
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The result for the FPFP vertex structure for the direct diagram is given by
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(H.17)

The crossed diagram contribution to the invariant amplitudes can be obtained from the direct
diagram by the replacement s ! u, and with a sign according to the crossing relations of Eqs.
(3.24-3.29).

We now describe the details of the calculation for the dipole form of electric and magnetic
FFs , see Eqs. (3.52). The Pauli and Dirac FFs have the following expressions:

FP = � (µP � 1)⇤44M2

(q2 � ⇤2)2(q2 � 4M2)
,

FD =
µP⇤4

(q2 � ⇤2)2
+

(µP � 1)⇤44M2

(q2 � ⇤2)2(q2 � 4M2)
. (H.18)

The amplitudes for the case of dipole form of electromagnetic FFs can be obtained from the
point-like model expressions after differentiation of the photon propagators with respect to the
IR parameter µ2 and replacement of this parameter either by ⇤2 or by 4M2. The two terms with
different order of vector and tensor couplings for the case of the FDFP vertex structure are not
the same in this calculation and should be considered separately. Also the tensor expressions
for the integrals A are not symmetric under the replacement q ! �q in case of both terms for
the FDFP vertex structure. We perform the Passarino-Veltman decomposition [218] in terms
of the LoopTools momenta in this case.
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Appendix I

Phases entering the unitarity relations

The unitarity relation phases entering Eq. (4.24) can be expressed in terms of the Mandelstam
variables as

cos�0 =
1

p

4Q2Q2
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, (I.1)

with

x ⌘ 1

2
(1 + cos ✓cm) = 1 � sQ2

⌃s
,

x1 ⌘ 1

2
(1 + cos ✓1) = 1 � sQ2

1

⌃s
,

x2 ⌘ 1

2
(1 + cos ✓2) = 1 � sQ2

2

⌃s
. (I.2)
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Appendix J

Different integration coordinates in the unitarity
relations

The boundaries of the ellipse mentioned in Section 4.2.3 correspond to cos2 �1 = 0. Defining
z1 ⌘ cos ✓1, z2 ⌘ cos ✓2, z ⌘ cos ✓cm, the ellipse equation is given by

1 � z2 � z21 � z22 = �2zz1z2, (J.1)

The coordinates z1, z2 can be rotated by 450, so that the new coordinate system coincides with
the axes of the ellipse:

z̃1 = � 1p
2
(z1 + z2), z̃2 =

1p
2
(z1 � z2). (J.2)

The z̃2-axis corresponds to the line Q2
1 = Q2

2, whereas the z̃1-axis corresponds to the line
Q2

2 = Q2
max � Q2

1. The phase space integration in terms of new coordinates is expressed as

ˆ
d⌦ = 2

1ˆ

�1

d cos ✓1

⇡ˆ

0

d�1 =
2p

1 � z2

ˆ
dz̃1dz̃2

1

|↵̃| , (J.3)

with ↵̃ ⌘ sin ✓1 sin�1. The ellipse equation is then given by

z̃21
1 + z

+
z̃22

1 � z
= 1. (J.4)

The integration of Eq. J.3 maps out the whole surface of the ellipse. It is therefore convenient
to introduce the elliptic coordinates ↵̃,� as

z̃1 =
p

1 � ↵̃2
p

1 + z cos(�),

z̃2 =
p

1 � ↵̃2
p

1 � z sin(�), (J.5)

which satisfy

z̃21
1 + z

+
z̃22

1 � z
= 1 � ↵̃2. (J.6)

The photons virtualities Q2
1, Q2

2 are symmetric in terms of the elliptic coordinates ↵̃,�. The
phase space integration in terms of these elliptic coordinates can then be expressed as

ˆ
d⌦ =

2p
1 � z2

ˆ
dz̃1dz̃2

1

|↵̃| = 2

1ˆ

0

d↵̃

2⇡ˆ

0

d�. (J.7)
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Appendix K

Comparison of DR approach and hadronic model for
the proton intermediate state in the electron-proton

scattering.

We compare the real and imaginary parts of the TPE amplitudes for the typical kinematics
of the elastic electron-proton scattering experiments. As it was discussed in Section 4.3 all
imaginary parts of the TPE amplitudes in the box graph model coincide with the imaginary
parts evaluated with a help of the unitarity relations. The real parts of all TPE amplitudes in
the box graph model are the same as the real parts in the unsubtracted DR approach in the
case of FDFD and FDFP vertex structures, as it is shown in Figs. K.1-K.6.

We can see from Fig. K.7 that the real part of the amplitude G2�
M in the case of FPFP vertex

structure differs between the hadronic model and unsubtracted DR evaluation. It also shows
the convergence of the DR result at HE limit, when " ! 1, and the divergence of <GFPFP

M in
the hadronic model.

unsubtracted DR
box graph model

<G
F

D
F

D
M

0

0.002

0.004

0.006

ε
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

unitarity relations
box graph model

⌫ph

=G
F

D
F

D
M

−0.02

−0.01

0

ν, GeV2
0 0.05 0.10 0.15 0.20 0.25 0.30

Figure K.1: Imaginary part (left panel) and real part (right panel) of the invariant amplitude
G2�
M for the FDFD vertex structure with dipole FFs in electron-proton scattering for

Q2 = 0.1 GeV2. The vertical line in the left panel corresponds with the boundary
between physical and unphysical regions, i.e., ⌫ph = 0.15 GeV2.
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Appendix K Comparison of DR approach and hadronic model for the proton intermediate
state in the electron-proton scattering.

unsubtracted DR
box graph model

<F
F

D
F

D
2

0.001

0.002

0

ε
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

unitarity relations
box graph model

⌫ph

=F
F

D
F

D
2

−0.006

−0.004

−0.002

ν, GeV2
0 0.05 0.10 0.15 0.20 0.25 0.30

Figure K.2: Same as Fig. K.1, but for the invariant amplitude F2�
2 .
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Figure K.3: Same as Fig. K.1, but for the invariant amplitude F2�
3 .
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Figure K.4: Imaginary part (left panel) and real part (right panel) of the invariant amplitude
G2�
M for the FDFP vertex structure with dipole FFs in electron-proton scattering for

Q2 = 0.1 GeV2. The vertical line in the left panel corresponds with the boundary
between physical and unphysical regions, i.e., ⌫ph = 0.15 GeV2.
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Figure K.5: Same as Fig. K.4, but for the invariant amplitude F2�
2 .
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Figure K.6: Same as Fig. K.4, but for the invariant amplitude F2�
3 .
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Figure K.7: Same as Fig. 4.29, but for the invariant amplitude G2�
M .
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Appendix L

Evaluation of the forward limit of the Feshbach
correction

The leading term in the low momentum transfer (Q) expansion of �2� comes from terms of the
following type in Eq. (5.36):

�QED
2� ! �16MQ2e2

!

ˆ
id4q̃

(2⇡)4
⇧+

P⇧�
P⇧+

K⇧�
K⇧+

Q⇧�
Q

✓

q̃2 +
Q2

4

◆

(K · q̃)2 . (L.1)

We perform the integration in Euclidean space in this Appendix. The Euclidean coordinates
q̃E can be expressed through the Minkowski coordinates

⇣

⌫̃, ~̃q
⌘

by

q̃E
⇣

q̃0E , ~̃qE
⌘

= q̃E
⇣

�i⌫̃, ~̃q
⌘

, (aE · bE) = � (a · b) , (L.2)

where we use the index "E" for the notation of vectors in Euclidean space.
The leading term of the Feshbach correction can then be cast into the form:

�02� =
MQ2e2
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ˆ
d4q̃E

(2⇡)4
�

⇧�
P + ⇧+

P

�

⇣

⇧+
Q + ⇧�

Q

⌘

⇧Q, (L.3)

with ⇧Q = 1/
⇣

q̃2E + Q2

4 + µ2
⌘

. We can expand ⇧±
P,Q as Gegenbauer polynomials (Cn (z))

generating functions:
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, (L.4)

with
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Q
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2x
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, µ̃2 = 4µ2/Q2. (L.5)
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Appendix L Evaluation of the forward limit of the Feshbach correction

Using the Gegenbauer polynomials value Cn (0) = (�1)n/2·(1 + (�1)n) /2 and the orthogonality
relation for vectors q, x, y in Euclidean space:

ˆ
d⌦ (q̂) Cn (q̂x̂) Cm (q̂ŷ) =

2⇡2

n + 1
�m,nCn (x̂ŷ) , (L.6)

the integral of Eq. (L.3) simplifies to the following expression:
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For x ! 0 the product zMzµ ! Q
2M

⇣

1 � µ̃2

1+µ̃2

⌘

is IR finite. Numerically the result of the

integral does not depend on small Q
M and µ̃2 values, so we can neglect terms of order µ̃2, Q

M .
The resulting TPE correction is given by
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reproducing the low-Q2 behavior of the Feshbach correction, see Eq. (5.4).
Accounting also for the suppressed by the lepton mass term in Eq. (5.36),
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we reproduce the low-Q2 behavior in case of the massive lepton scattering of Eq. (5.14):
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Appendix M

Some VVCS amplitudes and tensor structures

The three non-vanishing VVCS amplitudes for the case of two Dirac couplings �µ in the photon-
proton-proton vertices in Fig. (5.5) are given by

BQED
2 =

1

M
⇧+

P⇧�
P ,

BQED
10 = � 1

2M
⇧+

P⇧�
P ,

BQED
17 = �(P · q̃)

M
⇧+

P⇧�
P , (M.1)

with the propagator notations of Eqs. (5.37), and the relevant VVCS tensor structures have
the following form:

Tµ⌫
2 = �4 (P · q̃)2 gµ⌫ � 4 (q1 · q2) PµP ⌫ + 4 (P · q̃) (P ⌫qµ1 + Pµq⌫2 ) ,
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Appendix N

Subtraction function TPE correction: evaluation of
integrals

The first integral in the subtraction function TPE correction of Eq. (5.70) is of the type:

I1 =

ˆ
id4q̃

(2⇡)4
g(Q̃2)⇧+

Q⇧�
Q⇧+

K⇧�
K , (N.1)

where g(Q̃2) is given by
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4
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. (N.2)

Accounting for the symmetry q̃ ! �q̃, the integral I1 can be expressed as
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⌘ . (N.3)

The azimuthal angle integration is trivial, the polar angle integration gives the same result for
both terms in Eq. (N.3), such that the integral I1 can be written as

I1 =

ˆ
id4q̃

(2⇡)4
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4

⌘ . (N.4)

We evaluate the integral conveniently in the lepton Breit frame defined by

K = K (1, 0, 0, 0) , q = Q (0, 0, 0, 1) , (N.5)

and perform the integral through a Wick rotation. The integration contour crosses the lepton
propagator poles in this frame during the Wick rotation, as detailed in Section 5.6 [172]. The
integral of Eq. (N.4) is given by the sum of the integral along the imaginary axis, which we
denote by IW1 , and the lepton pole contribution, which we denote by Ip1 .

The integral along the imaginary axis IW1 can be evaluated by the Gegenbauer polynomial
technique, see Appendix L for some technical details [172]. It results in an integral over the
dimensionless variable x ⌘ 4Q̃2/Q2:
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, (N.6)

with the notations of Eq. (5.73).
The contribution of the pole q̃0 = K �

p

q̃2 + m2 + i" which is enclosed by the Wick rotation
contour to the integral I1 is given by
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Appendix N Subtraction function TPE correction: evaluation of integrals

with a defined in Eq. (5.73). Note that the lower integration limit in Eq. (N.7) is given by

xmin = � �

p
1 + a � p

a
�2

, (N.8)

which has limits xmin ! �1 for m2 ⌧ Q2, and xmin ! � Q2

16m2

for Q2 ⌧ m2.
Subsequently, we evaluate the second integral in Eq. (5.70):
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Performing similar steps as for the I1 integral we obtain:
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The integral from the first term can be obtained from the I1 integral of Eqs. (N.6, N.7) with

g(Q2) = � 1
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The integral from the second term of Eq. (N.10) can be performed by the Gegenbauer polyno-
mial technique for the angular integration. The result is given by
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(N.12)

with n = 1 for x < 1 and n = 0 for x > 1.
Summing up all contributions we obtain the result of Eq. (5.71).
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Appendix O

Contribution from the Wick rotation pole to the Lamb
shift of S energy levels

The leading contribution from TPE graphs to the Lamb shift of atomic S energy levels starts
at order O(↵5). In this Appendix, we prove the vanishing contribution of Wick rotation pole
in this order.

Substituting the near-forward approximation of the VVCS tensor, see Eq. (5.46) and Section
5.3, into the general expression for the TPE amplitude of Eq. (5.61), we obtain:
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The spin-independent amplitude is evaluated exploiting the following spinor relations:
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1

2
Tr
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1

2

X

spin
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1

2
Tr

⇣

(q̂ ˆ̃q � ˆ̃qq̂)P̂
⇣

K̂ + M
⌘⌘

= 0. (O.2)

Therefore, the forward unpolarized lepton-proton scattering amplitude, which reproduces
f2�
+ (!) of Eq. (2.91) in the forward limit Q2 ! 0, can be expressed as
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Appendix O Contribution from the Wick rotation pole to the Lamb shift of S energy levels
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✓
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B
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C
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K
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(K · q̃) T2

✓
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4

◆

9

>

=

>

;

. (O.3)

Studying the pole q̃0 = K �
p

q̃2 + m2 contribution in the K-frame, where it contributes for
q̃ < Q/2, we can use the low-energy expansion of the forward VVCS amplitudes:

T1

✓

⌫̃, Q̃2 � Q2

4

◆

⇡ (↵E + �M ) ⌫̃2 + �M

✓

Q̃2 � Q2

4

◆

⇡ �2m�M q̃0, (O.4)

T2

✓

⌫̃, Q̃2 � Q2

4

◆

⇡ (↵E + �M )

✓

Q̃2 � Q2

4

◆

⇡ �2m (↵E + �M ) q̃0. (O.5)

Accounting for the symmetry q ! �q property of the integral and performing the azimuthal
and polar angle integrations, we obtain for the resulting K-pole contribution to the unpolarized
TPE amplitude in the leading Q2 ⌧ M2, m2 order:

T 2�
�

m, Q2
� ! 8↵↵EMmQ

1ˆ

0

xdx
1 � x2

1 + x2
ln

1 + x

1 � x
. (O.6)

Due to the momentum transfer in the numerator, the pole contribution is suppressed by ↵.
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Appendix P

TPE correction in terms of the unpolarized proton
structure functions

In this Appendix, we present the expressions for the pole contributions as well as the contri-
bution from the integral along the imaginary axis to the weighting functions w1, w2, which
appear in the TPE correction of Eq. (5.79).

We first present the results in the P -frame, defined by Eq. (5.80). The contribution to the

weighting functions w1, w2 arising from the leptonic pole q̃0 = K0 �
r

⇣

~K � ~̃q
⌘2

+ m2 in the
P -frame is given by
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⇣
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⇡
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⇣
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⌘

=
2↵
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M
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1

| ~K|
1

Q̃2 + Q2

4
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W 2 � P 2 + Q̃2
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(P.1)

with coefficients Ã + B̃ and C̃ + D̃ following from Eqs. (5.78) as
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4
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In Eq. (P.2), q̃n0 stands for the sum of two integrals with either ± signs:

q̃n0 !
q̃+
0ˆ

0 or q̃�
0

dq̃0
r

⇣

Q̃2 � Q2
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4| ~K|2

⇣

Q̃2 � Q2

4 + 2q̃0K0
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(P.3)

The integration regions are given by

0  q̃0  q̃+0 for
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, (P.4)
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with

q̃±0 =
K0

2

✓
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K2

◆

� K0Q̃2

2K2
± | ~K|

2K2

r

⇣

(K + m)2 + Q̃2
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(K � m)2 + Q̃2
⌘

. (P.5)

We do not consider the hadronic pole in the P -frame. It contributes only in the region of
large momentum transfer:

Q2 � 8Mm⇡

⇣

1 +
m⇡

2M

⌘

⇡ 1.09 GeV2. (P.6)

The contribution to the weighting functions arising from the integral along the imaginary
axis in the P -frame is given by
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with the notations:
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and master integrals:
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with

c = Q̃2 � Q2

4
+ 2K0q̃0, g2 = 4 ~K2Q̃2 sin2  . (P.10)

The integral along the imaginary axis contributes in the range 0  Q̃2  1.
As a check of our calculations, we also provide the expressions evaluated in the K-frame,

defined by Eq. (5.81). The leptonic pole q̃0 = K �
p

q̃2 + m2 contribution to w1, w2 evaluated
in the K-frame is given by
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with the notations:
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in terms of the integrals of Eqs. (P.9), where

c± = W 2 � P 2 + Q̃2 ⌥ 2P0q̃0, c0 = W 2 � P 2 + Q̃2, g2 = 4
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The Q̃2 integration region is given by
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4
. (P.14)

The contribution to w1, w2 arising from the hadronic pole q̃0 = P0 �
r
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the K-frame is given by
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with the notations:
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and master integrals:
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The integration region is given by
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The contribution to the weighting functions arising from the integral along the imaginary
axis in the K-frame is given by
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with the notations of Eqs. (P.12, P.13) and integrals of Eqs. (P.9). The integral along the
imaginary axis contributes in the range 0  Q̃2  1.

In numerical evaluations of the TPE correction, we use the analytical expressions for the
master integrals of the poles contributions. The integration over the hyperangle  for the
integral along the imaginary axis is performed numerically.

The experimentally inaccessible region �Q2/4 < Q̃2 < 0, corresponding with negative
Q̃2 values, is present in the Q̃2 integration. For this relatively small region, we approxi-
mate the unpolarized proton structure functions by the following relations: F1

⇣

W 2, �Q̃2
⌘

⇡
F1

⇣

W 2, Q̃2
⌘

, F2

⇣

W 2, �Q̃2
⌘

⇡ �F2

⇣

W 2, Q̃2
⌘

, according to the approximation of Eqs. (5.83)
and (5.84).
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