Aus der Klinik für Anästhesiologie der Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Der Nutzen des Oxygen Reserve Index für die Erfolgskontrolle der Präoxygenierung erwachsener Patienten im Rahmen der PRIORI-Studie

Inauguraldissertation

zur Erlangung des Doktorgrades der

Medizin

der Universitätsmedizin

der Johannes Gutenberg-Universität Mainz

Vorgelegt von

Timo Leichenich

aus Köln

Mainz, 2024

Wissenschaftlicher Vorstand: Univ.-Prof. Dr. med. U. Förstermann

Tag der Promotion: 16. April 2024

Für meine Eltern,

für eure großartige Unterstützung auf meinem Lebensweg.

Von Herzen Danke!

Das in dieser Dissertationsschrift gewählte generische Maskulinum bezieht sich zugleich auf die männliche, die weibliche und andere Geschlechteridentitäten.

Inhaltsverzeichnis

Ab	okürzun	gsverzeichnis	I
Ab	bildung	gsverzeichnis	IV
Та	bellenv	erzeichnis	V
Fo	rmelvei	rzeichnis	VI
1	Einleit	tung	1
2	Literat	turdiskussion	5
- 2	1 Dia	Sauerstoffkaskade – Os auf seinem Weg im Körner	5
2	211	Warum ist Sauerstoff für den Menschen so wichtig?	5
	2.1.1	Die Lunge – Von der Inspiration bis zur Alveole	5
	2.1.2	Der arterielle Sauerstoff – Von Oxygenierung bis zum Gewebe	6
	2.1.0	Sauerstoff im Gewebe – Von Aufnahme his Extraktion	0 8
	215	Der venöse Sauerstoff – Was bleibt nach dem aeroben Stoffwechsel?	0
2	2 Dia	Sauerstoffspeicher des menschlichen Körners	۰ و
2	.2 Dic		
2	.3 Die	Präoxygenierung	. 10
	2.3.1	Der Einzug der Präoxygenierung in internationale sowie nationale Leitlinien	. 10
	2.3.2	Die Rationale der Präoxygenierung – Apnoe nach Raumluttatmung	. 11
	2.3.3	Die Praoxygenierung und der wachsende Sauerstoffspeicher im Korper	. 12
	2.3.4	Besondere Patientengruppen im Rahmen der Praoxygenierung	. 13
	2.3.5	Die Präoxygenierung – Techniken im klinischen Alltag	. 15
	2.3.6	Einflussfaktoren auf die Praoxygenierung	. 15
	2.3.7	Bestehende und mögliche Überwachungsmethoden der Präoxygenierung	. 17
2	.4 Die	endtidale Sauerstoffkonzentration	. 19
	2.4.1	Die messtechnischen Grundlagen unter physiologischen Bedingungen	. 19
	2.4.2	Der klinische Einsatz zur Erfolgskontrolle der Präoxygenierung	. 19
2	.5 Dei	r arterielle Sauerstoffpartialdruck	. 23
	2.5.1	Die Funktionsweise der Clark`schen Elektrode	. 23
	2.5.2	Der klinische Einsatz des PaO2 zur Erfolgskontrolle der Präoxygenierung	. 24
2	.6 Die	partielle Sauerstoffsättigung	. 25
	2.6.1	Die Funktionsweise der Pulsoxymetrie	. 25
	2.6.2	Der klinische Einsatz zur Erfolgskontrolle der Präoxygenierung	. 29
2	.7 Dei	r Oxygen Reserve Index	
~	2.7 1	Das Funktionsprinzip	. 30
	2.7.2	Mögliche klinische Grenzen des Funktionsprinzips des ORI	. 32

Inhaltsverzeichnis

	2.7	7.3	Relevante Erkenntnisse bisheriger ORI-Studien	34
3	Ма	ateri	al und Methoden	45
3.	1	Das	s Studiendesign	45
3	2	Die	Finschluss- und Ausschlusskriterien	45
ວ. ວ	- 2	Die	nrimären, eskundären und tertiären Zielneremeter	16
J.		-		40
3.	4	Der	Studienzeitplan	46
3.	5	Das	s Versuchsmaterial	47
	3.5	5.1	Allgemeiner Überblick	47
	3.5	5.2	Masimo RAD-97 [™] Pulse CO-Oxymeter®	48
	3.5	5.3	Masimo RD rainbow Lite SET [™] -1 Adt Sensoren	48
	3.5	5.4	ABL90 Flex Analysator	49
	3.5	5.5	Dräger Pallas	50
	3.5	5.6	Phillips IntelliVue MX800 Patientenmonitor	50
3.	6	Die	Datenerhebung	52
3.	7	Die	Statistik	54
	3.7	7.1	Die Fallzahlplanung	54
	3.7	7.2	Die Datenauswertung	55
4	Erg	gebi	nisse	57
4.	1	Die	allgemeinen Patientencharakteristika	57
4	2	Der		59
ч.	ے م	2 1	Wie zuverlässig detektiert ein $ORI \le 0.02$ einen $PaO_0 \le 100 \text{ mmHg}^2$	59
	4.2	2.2	Wie zuverlässig detektiert ein ORI > 0.98 einen $PaO_2 > 200 \text{ mmHg}^2$	61
4	ч. <u>*</u>	<u> </u>	where d is a descent of the order of the d of the d of the d of the d of the d of the d of the d of the d of the d of the d of the d of the d of the d of the d of the d of the d of the d of the d of the d o	01
4.	3 11	Der		63
	4.	5. I	Die Korrelationsanalyse von PaO ₂ und ORI	63
	4.3	3.Z	Der ORI als Trend des PaO ₂ wahrend der Praoxygenierung	63
	4.	3.3	Der zeitliche Zusammennang der SpO2 und des ORI	64
4.	4	Der	tertiäre Endpunkt	66
	4.4	4.1	Die Messparameter vor und nach Präoxygenierung im Vergleich	66
	4.4	4.2	Die Messparameter zur Erfolgskontrolle der Präoxygenierung im zeitlichen V	erlauf
				69
5	Dis	skus	ssion	73
5.	1	Disl	kutierende Einordnung der Ergebnisse	73
	5.1	1.1	Der Zusammenhang zwischen ORI und PaO ₂	73

Inhaltsverzeichnis

Ę	5.1.2 Die Detektionsgenauigkeit der Grenzen des ORI-sensiblen PaO2-Bereichs 76								
į	5.1.3 Der ORI als Trend des PaO ₂								
Ę	5.1.4	Die	zusätzliche	nichtinvasive	Überwachungszeit	vom	ORI	während	der
		Prä	ioxygenierung]					81
5.2	Sel	bstkrif	tik und Limitat	ionen					83
5.3	Sch	nlussfo	olgerung						85
6 Z	Zusam	nment	fassung						87
7 L	V Literaturverzeichnis								
8 4	Anhan	ıg							95
8.1	Sau	uersto	off – Formeln ι	und Zusammen	hänge				95
8.2	8.2 Das Whitepaper "Oxygen Reserve Index (ORI [®])"								
8.3	8.3 Die individuellen SpO ₂ - und ORI-Messverläufe der Patienten								
8.4	Dat	enerh	nebungsböger	n der PRIORI-S	tudie				107
9 [9 Danksagung 110								
10 1	[abell	ariscl	her Lebensla	uf	Fehle	er! Textr	narke	nicht defin	iert.

Abkürzungsverzeichnis

Α.	Arteria
Aa.	Arteriae
AaDO ₂	alveoloarterielle Sauerstoffpartialdruckdifferenz
AC-Komponente	pulsatile arterielle Absorption oder Wechselstrom-Komponente (engl.: <i>alternating current</i>)
ASA	American Society of Anesthesiologists
avDO ₂	arteriovenöse Sauerstoffgehaltsdifferenz
AWMF	Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.
BGA	Blutgasanalyse
BMI	Body Mass Index
bzw.	beziehungsweise
ca.	circa
cHb	Hämoglobinkonzentration
CICV	"can't intubate can't ventilate"-Situation
СО	Kohlenstoffmonoxid
CO ₂	Kohlenstoffdioxid
COHb	Carboxyhämoglobin
CRF	Datenerhebungsbogen (engl.: case report form)
DAS	Difficult Airway Society
DC-Komponente	nicht-pulsatile Komponente oder Gleichstrom-Komponente (engl.: <i>direct current</i>)
DGAI	Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e. V.
DO ₂	Sauerstoffangebot
EKG	Elektrokardiogramm
engl.	Englisch
etCO ₂	endtidale Kohlenstoffdioxidkonzentration
etO ₂	endtidale Sauerstoffkonzentration
FAO ₂	alveoläre Sauerstofffraktion
FiO ₂	inspiratorische Sauerstofffraktion
FRC	funktionelle Residualkapazität (engl.: functional residual capacity)
HHb	desoxygeniertes Hämoglobin
HZV	Herzzeitvolumen
IABD	invasiver arterieller Blutdruck

Abkürzungsverzeichnis

IQR	Interquartilsabstand (engl.: interquartile range)
kg	Kilogramm
kg / m²	Kilogramm pro Körpergröße zum Quadrat
KG	Körpergewicht
KI	Konfidenzintervall
I	Liter
LED	lichtemittierende Diode
l / min	Liter / Minute
MAD	mittlerer arterieller Blutdruck
MetHb	Methämoglobin
mg/dl	Milligramm/Deziliter
min	Minute
ml	Milliliter
ml / dl	Milliliter pro Deziliter
ml / min	Milliliter pro Minute
ml O ₂ / g	Milliliter Sauerstoff pro Gramm
ml O ₂ / I	Milliliter Sauerstoff pro Liter
mmHg	Millimeter-Quecksilbersäule
MW	Mittelwert
n	Anzahl
N ₂	Stickstoff
Nm	Nanometer
O ₂	Sauerstoff
O ₂ Hb	oxygeniertes Hämoglobin — <u>Vorsicht:</u> Radiometer kürzt die arterielle fraktionelle Sauerstoffsättigung mit O ₂ Hb ab!
OP	Operation
ORI	Oxygen Reserve Index
PAO ₂	alveolärer Sauerstoffpartialdruck
PaCO ₂	arterieller Kohlenstoffdioxidpartialdruck
PACO ₂	alveolärer Kohlendioxidpartialdruck
PaO ₂	arterieller Sauerstoffpartialdruck
pAVK	periphere arterielle Verschlusskrankheit
PI	Perfusionsindex
PiO ₂	inspiratorischer Sauerstoffpartialdruck
PO ₂	atmosphärischer Sauerstoffpartialdruck

Abkürzungsverzeichnis

POCT	patientennahe Sofortdiagnostik (engl.: Point-of-Care Testing)
PPV	positiver prädiktiver Wert
рН	Potenzials des Wasserstoffs
PvO ₂	venöser Sauerstoffpartialdruck
Q1	25%-Perzentil
Q3	75%-Perzentil
RQ	respiratorischer Quotient
RSI	Blitzeinleitung (engl.: Rapid Sequence Induction)
®	registrierte (eingetragene) Marke
S	Sekunde
S.	Seite
SAP	Patientenverwaltungssoftware
SaO ₂	fraktionelle Sauerstoffsättigung
SD	Standardabweichung
SET	Signal Extraction Technology [®]
sO ₂	invasive arterielle partielle Sauerstoffsättigung (Radiometer)
SOP	Standardvorgehensweise (engl.: standard operating procedure)
SpO ₂	partielle Sauerstoffsättigung
SvO ₂	periphervenöse Sauerstoffsättigung
to	Zeitpunkt vor Präoxygenierung
t ₁₈₀	Zeitpunkt 180 s nach Beginn der Präoxygenierung
ТМ	engl.: trade mark für eingetragene / nicht eingetragene Marken
VHF	Vorhofflimmern
VO ₂	Sauerstoffaufnahme (auch Sauerstoffverbrauch)
z. B.	zum Beispiel
S°	Gard Celsius
95%-KI	95%-Konfidenzintervall

Abbildungsverzeichnis

Abbildung 1	Die Sauerstoffkaskade	9
Abbildung 2	Die endtidalen Sauerstoff- und Stickstoffkonzentrationen vor und währe der Präoxygenierung	nd 13
Abbildung 3	Die Sauerstoffanreicherung in den unterschiedlichen Kompartimenten d Körpers	les 13
Abbildung 4	Die Apnoezeit bis zum Erreichen einer Hypoxie ohne und mit vorangegangener Präoxygenierung	14
Abbildung 5	Die unterschiedlichen Messorte der Messmethoden	18
Abbildung 6	Die Clark'sche Elektrode zur direkten PaO ₂ -Messung	24
Abbildung 7	Die Absorptionsspektren der unterschiedlichen Hämoglobinspezies	27
Abbildung 8	Die Transformation in Prozentwerte der SpO ₂ im Rahmen der Pulsoxymetrie	28
Abbildung 9	Die Sauerstoffbindungskurve	29
Abbildung 10	Die arterielle und venöse Sauerstoffsättigung unter steigendem Sauerstoffpartialdruck	31
Abbildung 11	Der allgemeine Studienablauf	47
Abbildung 12	Die Datenerhebung	53
Abbildung 13	Die Wertepaare (PaO ₂ und ORI) zum Zeitpunkt t ₀	60
Abbildung 14	Die Wertepaare (PaO ₂ und ORI) zum Zeitpunkt t ₁₈₀	62
Abbildung 15	Der ORI als Trend des PaO ₂ zwischen den Zeitpunkten t_0 und t_{180}	63
Abbildung 16	Der zeitliche Zusammenhang der SpO ₂ und des ORI während der Präoxygenierung	65
Abbildung 17	Die kontinuierlichen nichtinvasiven Parameter etO ₂ , SpO ₂ und ORI im Zeitverlauf der Präoxygenierung	69
Abbildung 18	Boxplots – Die endtidale Sauerstoffkonzentration im Zeitverlauf der Präoxygenierung	70
Abbildung 19	Boxplots – Die partielle Sauerstoffsättigung im Zeitverlauf der Präoxygenierung	70
Abbildung 20	Boxplots – Der Oxygen Reserve Index im Zeitverlauf der Präoxygenieru	ing
		71
Abbildung 21	Boxplots – Der arterielle Sauerstoffpartialdruck im Zeitverlauf der Präoxygenierung	72

Tabellenverzeichnis

Tabelle 1	Die Sauerstoffspeicher unterschiedlicher Körperkompartimente im Vergleich
Tabelle 2	Patientencharakteristik
Tabelle 3	Diagnosen und durchgeführte Eingriffe aller Patienten 58
Tabelle 4	Kreuztabelle der 60 gepaarten Messungen des PaO ₂ und des ORI zum Zeitpunkt t_0
Tabelle 5	Sensitivität von ORI ≤ 0.02 für PaO₂-Werte < 100 mmHg zum Zeitpunkt t₀ 59
Tabelle 6	Spezifität von ORI ≤ 0.02 für PaO ₂ < 100 mmHg zum Zeitpunkt t₀59
Tabelle 7	Der positive prädiktive Wert für ORI \leq 0.02 und PaO ₂ < 100 mmHg zum Zeitpunkt t ₀
Tabelle 8	Kreuztabelle der 60 gepaarten Messungen des PaO ₂ und des ORI zum Zeitpunkt t_{180} 61
Tabelle 9	Sensitivität von ORI \geq 0.98 für eine erfolgreiche Präoxygenierung (PaO ₂ - Werte > 200 mmHg) zum Zeitpunkt t ₁₈₀ 61
Tabelle 10	Spezifität von ORI ≥ 0.98 für einen richtig detektierten PaO2 > 200 mmHg zum Zeitpunkt t18061
Tabelle 11	Der positive prädiktive Wert für ORI \geq 0.98 und eine vorliegende erfolgreiche Präoxygenierung (PaO ₂ -Werte > 200 mmHg) zum Zeitpunkt t ₁₈₀ 61
Tabelle 12	Pearson-Korrelationskoeffizient für PaO ₂ und ORI beider Messzeitpunkte $(t_0; t_{180})$ aller Patienten (120 eingeschlossene gültige Fälle)
Tabelle 13	Die Zunahme des ORI und des PaO ₂ zwischen den Zeitpunkten t_0 und t_{180}
Tabelle 14	Zeitpunkte des zeitlichen Zusammenhangs der SpO ₂ und des ORI 64
Tabelle 15	Invasiver arterieller Blutdruck66
Tabelle 16	Nichtinvasive Messparameter66
Tabelle 17	Invasive Messparameter67
Tabelle 18	Oxygraphie und Kapnographie67

Formelverzeichnis

Formel 1	Die partielle und fraktionelle Sauerstoffsättigung im Vergleich	26
Formel 2	Das Bouguer-Lambert-Beer'sche Gesetz	26
Formel 3	Die Verhältniswertbildung der Pulsoxymetrie	27

In Deutschland wird die Anzahl jährlich durchgeführter Intubationsnarkosen aktuell auf 17 Millionen geschätzt (1). Während der Narkoseeinleitung erfolgt regelhaft das Atemwegsmanagement. Hierbei kann es zu Schwierigkeiten und Komplikationen kommen. Zum aktuellen Zeitpunkt gibt es in Deutschland noch keine Audit-Projekte, wie das britische National Audit Project 4 (2) oder die dänische Anästhesiedatenbank (3), aus denen deutschlandweite Daten zum Auftreten von Komplikationen während des Atemwegsmanagements herangezogen werden können. Die Auftrittswahrscheinlichkeit wurde in bisherigen Studien von Kheterpal et al. und Langeron et al. anhand von großen Patientenkollektiven untersucht. Hiernach tritt eine schwierige Maskenbeatmung in 2 Prozent (%) bis 5 % der durchgeführten Atemwegssicherungen auf. Zu einer unmöglichen Maskenbeatmung kommt es hingegen in 0,15 % der Fälle (4-6). Des Weiteren wird, auf Grundlage der bisherigen Studien, das Auftreten einer schwierigen direkten Laryngoskopie und schwierigen Intubation auf 1,5 – 8,0 % der durchgeführten Atemwegssicherungen geschätzt (7, 8). Zu einer unerwarteten "can't intubate can't ventilate"-Situation (CICV) kann es in 0,008 – 0,004 % der Fälle während einer Atemwegssicherung kommen (4-6). Diese Ergebnisse deuten darauf hin, dass der Großteil des durchgeführten Atemwegsmanagements in der klinischen Routine erfolgreich durchgeführt wird. Jedoch sind die Folgen der oben beschriebenen Schwierigkeiten potenziell immens. So ist die CICV für über 25 % aller anästhesiologischen Todesfälle ursächlich. Zudem kommt es bei notfallmäßig durchgeführten Atemwegssicherungen im Vergleich zu elektiven deutlich häufiger zu Schwierigkeiten und Komplikationen (2).

Um Entsättigungen bzw. hypoxische Zustände während der Atemwegssicherung zu vermeiden, sollte eine Präoxygenierung durchgeführt werden. Die S1-Leitlinien "Atemwegsmanagement" und "prähospitales Atemwegsmanagement", erstellt durch die deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e. V. (DGAI) (9, 10), sowie die veröffentlichen S1-Leitlinien der britischen *Difficult Airway Society (DAS)* (11) und der *American Society of Anesthesiologists (ASA)* (12), empfehlen ausdrücklich die Durchführung der Präoxygenierung bei allen Patienten.

Erfolgt im Rahmen der Atemwegssicherung beispielweise vor einer Intubationsapnoe eine Präoxygenierung mit 100 % Sauerstoff (O₂), können in der funktionellen Residualkapazität (englisch (engl.) *functional residual capacity* [FRC]) der Lunge circa (ca.) 2.250 Milliliter (ml) O₂ bei einem 75 Kilogramm (kg) schweren Erwachsenen zusätzlich gespeichert werden (13, 14). Hiernach kann bei einem Erwachsenen der zusätzlich angelegte Sauerstoffspeicher in der FRC für eine apnoische Oxygenierung von bis zu 9 Minuten (min) unter Idealbedingungen ausreichen. So kommt es unter Apnoe erst nach 10 min zu einem Abfall des arteriellen

Sauerstoffpartialdrucks (PaO₂) in hypoxische Bereiche und nicht bereits nach 1 min, wie unter vorheriger Raumluftatmung. Patientengruppen mit geringerer FRC bzw. größerem gewichtsbezogenen Sauerstoffverbrauch (VO₂) profitieren ebenfalls stark von der Präoxygenierung. Bei Schwangeren kann die Zeit bis zur drohenden Hypoxie von 40 Sekunden (s) auf 6,5 min gesteigert werden (13). Bei Kleinkindern und Frühgeborenen verlängert sich diese von 20 s und 10 s auf 3,5 min und 2 min (13). Durch eine suffizient durchgeführte Präoxygenierung wird in der klinischen Praxis eine deutlich längere Apnoezeit von Patienten während der Atemwegssicherung toleriert. Zudem wird in den oben beschriebenen Situationen, in denen Schwierigkeiten bzw. Probleme bei der Atemwegssicherung und Beatmung auftreten, vorgebaut.

Die suffiziente Durchführung der Präoxygenierung kann mithilfe verschiedener Methoden bzw. Messwerten unterschiedlich gut beurteilt werden. Allerdings ist eine exakte Kontrolle des Erfolgs der Präoxygenierung im klinischen Alltag nicht möglich (15-18).

Die pulsoxymetrisch gemessene partielle Sauerstoffsättigung (SpO₂) ist, während der Präoxygenierung bzw. bei einem steigenden PaO₂ über 100 Millimeter-Quecksilbersäule (mmHg) in hyperoxische Sauerstoffbereiche, in ihrer diagnostischen Aussagekraft begrenzt. Hier werden durch die Pulsoxymetrie SpO₂-Werte von > 98 % angezeigt, unabhängig davon, ob der PaO₂ 80 oder 673 mmHg beträgt. Grund hierfür ist der sigmoidale Verlauf der Sauerstoffbindungskurve bzw. der Zusammenhang zwischen dem vorherrschenden PaO₂ und der resultierenden Sauerstoffsättigung des Hämoglobins. Ab einem PaO₂ > 100 mmHg ist das Hämoglobin an seinen Bindungsstellen vollständig mit Sauerstoff gesättigt. Ein weiterer Anstieg des PaO₂ führt demzufolge nicht mehr zu einer Änderung der SpO₂ und die Kontrolle der Präoxygenierung bzw. des PaO₂-Anstiegs ist nicht mehr möglich. Unter normoxischen und hyperoxischen Bedingungen bietet somit eine konstante SpO₂ > 98 % nur eine eingeschränkte Sicherheit, die durch einen abrupten Sättigungsabfall nicht vorhersehbar beendet werden kann (13). Die SpO₂ zeigt mit einem Abfall von > 98% auf 75 % an, dass der Sauerstoffspeicher in der FRC bzw. im Körper erschöpft ist und eine Oxygenierung des gemischtvenösen Blutes in der Lunge fortan ausbleibt (13).

Fehlerhafte Messwerte der Pulsoxymetrie können in der Gegenwart von dysfunktionalen Hämoglobinderivaten, geringer Perfusion, Patientenbewegung, diagnostischen Farbstoffen und starkem Umgebungslicht auftreten und schränken die Aussagekraft zusätzlich ein (13, 19).

Die Messung der endtidalen Sauerstoffkonzentration (etO₂) kann als Positivnachweis einer korrekt durchgeführten Präoxygenierung dienen und wird in den nationalen und internationalen Leitlinien empfohlen (9-12). Die etO₂-Messung steht in den klinisch genutzten Beatmungsgeräten zur Verfügung. Am Anästhesiearbeitsplatz zählt diese mitunter zu den wichtigsten Überwachungsparametern. Um eine exakte Messung zu erhalten, muss das

System des Anästhesiekreisteils dicht sein. In der Praxis ist dies nicht immer möglich, da vor allem im Bereich zwischen Patientengesicht und Maske Undichtigkeiten auftreten können. Demzufolge ist die Messung fehlerbehaftet und zudem nicht in allen klinischen Situationen vorhanden (15).

Die Messung des PaO₂ ist für die Überwachung des pulmonalen Gasaustausches unverzichtbar. Der PaO₂ kann im Rahmen einer Blutgasanalyse (BGA) unter hypoxischen, normoxischen sowie hyperoxischen Bedingungen bestimmt werden. Unter der Annahme, dass es im Bereich der Alveolen und Lungenkapillaren zu einem Partialdruckausgleich kommt, können Rückschlüsse auf die angereicherte bzw. gespeicherte Sauerstoffmenge in der FRC vorgenommen werden.

Die im Rahmen der BGA durchgeführte PaO₂-Messung weist, trotz ihrer Stellung als klinischer Goldstandard der PaO₂-Überwachung, Nachteile auf. Die Probenentnahme ist invasiv, diskontinuierlich und die Messung erfordert Zeit, wodurch klinisch angezeigte Reaktionen bzw. Maßnahmen nur verzögert durchgeführt werden können. Dazu kommen die generellen Risiken einer arteriellen Kanülierung, wie zum Beispiel (z. B.) die Infektion oder ein Hämatom im Bereich der Punktionsstelle oder die Ischämie distaler Extremitäten (18, 20, 21).

Szmuk et al. untersuchten 2014 in einer Pilotstudie erstmals den Nutzen der periphervenösen Sauerstoffsättigung (SvO₂) während der Narkoseeinleitung mithilfe eines nichtinvasiven Klebesensors und eines CO-Oximeters. Hierfür wurde der Oxygen Reserve Index (ORI), ein dimensionsloser Index der Firma Masimo (Irvine, Kalifornien, Vereinigte Staaten von Amerika), eingesetzt. Dieser basiert auf der Annahme, dass die SvO₂, im leicht hyperoxischen Sauerstoffbereich (PaO₂ > 100 mmHg), maßgeblich für die nichtinvasiv ermittelte Änderung der Hintergrundlichtabsorption verantwortlich ist. Grund hierfür ist der steigende Anteil an physikalisch gelöst transportiertem O₂ im arteriellen Blut, der einen zunehmenden Teil des O₂-Bedarfs deckt, wohingegen die Freisetzung des O₂ aus dem Hämoglobin abnimmt. Unter konstantem Sauerstoffverbrauch des Gewebes sowie einem gleichbleibenden Herzzeitvolumen (HZV) steigt, mit einem zunehmenden Sauerstoffangebot bzw. PaO₂, die SvO_2 an. Die arterielle Sauerstoffsättigung (SaO₂) steigt bis zu einem PaO₂ von 100 mmHg an, aber bewirkt im darüberliegenden PaO2-Bereich keine weitere Absorptionsänderung im Messsensorbereich.

Mit insgesamt vier Wellenlängen wird messtechnisch eine Änderung der Hintergrundabsorption im PaO₂-Bereich von 100 bis 200 mmHg detektiert, wovon der Hersteller ausgeht, dass diese die SvO₂ darstellt. Dabei schließt der Hersteller, in Abhängigkeit von der ermittelten SvO₂, auf den vorliegenden PaO₂, indem der ORI den PaO₂-Bereich von 100 bis 200 mmHg mit Indexwerten von 0.00 bis 1.00 abbilden soll. Er wurde als eine nichtinvasive und kontinuierliche Größe entwickelt, um die Beurteilung von Patienten unter zusätzlicher Sauerstofftherapie ergänzend zur Pulsoxymetrie zu ermöglichen (22).

Bislang nutzten Kliniker zur Kontrolle einer Sauerstofftherapie bzw. der Präoxygenierung primär die invasive und diskontinuierliche arterielle Blutgasanalyse (BGA) bzw. die etO₂-Messung. Der ergänzende Einsatz des ORI kann die kontinuierliche und nichtinvasive Sichtbarkeit des Sauerstoffstatus in höhere PaO₂-Bereiche ermöglichen, als dies bislang mit der Pulsoxymetrie möglich war. Hierdurch können neue Einsatz- bzw. Überwachungsalternativen während der Präoxygenierung entstehen.

In bisherigen Studien wurde der ORI in unterschiedlichen klinischen Situationen, z. B. während der Blitzeinleitung (engl.: *Rapid Sequence Induction* [RSI]), der konventionellen Narkoseeinleitung, der Einlungenbeatmung, der Allgemeinanästhesie und an freiwilligen Probanden untersucht. Die Autoren beobachteten starke positive Korrelationen zwischen dem ORI und dem PaO₂ (23-26). Weiter untersuchten sie die Trendfähigkeit des ORI in Bezug auf einen fallenden oder steigenden PaO₂ (23, 27) sowie eine zusätzliche Vorwarnzeit vor einer drohenden Hypoxie (22, 28-31).

Im Rahmen dieser Dissertation wird der Nutzen des ORI zur klinischen Erfolgskontrolle einer Präoxygenierung sowie sein Einsatz als kontinuierliche und nichtinvasive Überwachungsalternative untersucht.

Vor diesem Hintergrund wird im primären Endpunkt überprüft, wie zuverlässig ein ORI ≤ 0.02 einen PaO₂ < 100 mmHg und ein ORI ≥ 0.98 einen PaO₂ > 200 mmHg detektiert.

Die vorliegende Arbeit untersucht außerdem drei sekundäre Endpunkte. Neben der Korrelationsanalyse von ORI und PaO₂ und der Analyse des ORI-Trends, wird die mögliche zusätzliche nichtinvasive und kontinuierliche Überwachungszeit unter Verwendung des ORI während der Präoxygenierung ermittelt.

Im tertiären Endpunkt werden die Messwerte der etO₂, der SpO₂, des PaO₂ und des ORI im zeitlichen Verlauf der Präoxygenierung ausgewertet.

2 Literaturdiskussion

2.1 Die Sauerstoffkaskade – O₂ auf seinem Weg im Körper

2.1.1 Warum ist Sauerstoff für den Menschen so wichtig?

Sauerstoff (O₂) ist die Grundlage des aeroben Stoffwechsels und elementar für die Aufrechterhaltung des menschlichen Lebens. Durch Diffusion, Konvektion und einen bestehenden Partialdruckgradienten gelangt O₂ aus der Umgebungsluft durch die Atemwege in das alveoläre Gas, das arterielle Blut, die Kapillaren, die peripheren Gewebe und schließlich in die Mitochondrien der Zelle. Die schrittweise Abnahme des Sauerstoffpartialdrucks wird in der Literatur als Sauerstoffkaskade bezeichnet und stellt die treibende Kraft des O₂ auf seinem Weg dar (32). Unter pathologischen Umständen können einzelne Schritte der Sauerstoffkaskade erhöht sein und die Sauerstoffversorgung der Mitochondrien beeinträchtigen. Die Gesamtheit des Sauerstoffweges im menschlichen Körper ist komplex und wird in der Wissenschaft zum Teil mithilfe von Modellen beschrieben (33). In der vorliegenden Arbeit wird sich auf die relevanten Aspekte der Präoxygenierung sowie die untersuchten Parameter beschränkt und diese chronologisch nach der Sauerstoffkaskade (siehe Abbildung 1, S. 9) besprochen.

2.1.2 Die Lunge – Von der Inspiration bis zur Alveole

Bei der Inspiration von Raumluft atmet der Mensch trockene erdatmosphärische Luft, hauptsächlich bestehend aus 79 Prozent (%) Stickstoff (N₂) und 21 % O₂ sowie einem geringen Teil andere Gase und Kohlenstoffdioxid (CO₂), ein. Nach dem Dalton-Gesetz (34) ist der Gasdruck eines bestimmten Gases eines Gasgemisches, hier die Umgebungsluft, das Produkt aus dem Gesamtgasdruck und dessen Volumenanteils (siehe Anhang 8.1, S. 95). Der atmosphärische Sauerstoffpartialdruck (PO₂) beträgt hiernach, bei einem normalen Umgebungsdruck von 760 mmHg auf 0 Metern über Meereshöhe, 160 mmHg (siehe Abbildung 1, S. 9).

Das inspirierte Raumluftgasgemisch wird in den Atemwegen mit Wasser angefeuchtet. Dieses verdampft und übt den sogenannten Wasserdampfdruck, der bei 37 Grad Celsius (°C) Körpertemperatur bei 47 mmHg liegt, aus. Der Anteil des O₂ am inspirierten Gasgemisch sinkt, da der Alveolardruck nicht über den Umgebungsdruck von 760 Millimeter Quecksilbersäule (mmHg) ansteigen kann und der Wasserdampf Teil des Gasgemisches geworden ist. Der inspiratorische O₂-Partialdruck (PiO₂) beträgt 149 mmHg (siehe Abbildung 1, S. 9 und Anhang 8.1, S. 95).

Die feuchte Inspirationsluft trifft nun auf die im Totraum verbliebene Alveolarluft, die abgeatmetes CO₂ der vorherigen Exspiration mit einem beispielsweise angenommenen alveolären CO₂-Partialdruck (PACO₂) von 40 mmHg enthält. Zusammen mit N₂ bilden O₂ und

CO₂, unter Vernachlässigung der Edelgase, die "neue" Alveolarluft. Der alveoläre O₂-Partialdruck (PAO₂) wird durch viele Faktoren beeinflusst (siehe Abbildung 1, S. 9). Die wichtigsten Einflussfaktoren sind der Atmosphärendruck, die inspiratorische Sauerstofffraktion (FiO₂), die alveoläre Ventilation, der Sauerstoffverbrauch (VO₂), der PACO₂, das Verhältnis zwischen CO₂-Abgabe und O₂-Aufnahme in der Lunge (respiratorischer Quotient RQ) und das Herzzeitvolumen (HZV). Mit zunehmender Höhe über Meereshöhe sinkt der PAO₂ direkt proportional zum Atmosphärendruck. Eine ansteigende bzw. fallende FiO₂ bewirkt eine Zunahme bzw. Abnahme des PAO₂. Die alveoläre Ventilation beschreibt die Frischluftmenge, die pro Minute in die Alveolen gelangt und zum Gasaustausch zur Verfügung steht. Die Atemfrequenz sowie das Atemzugvolumen bestimmen die Höhe der alveolären Ventilation. Nehmen Atemfrequenz und Atemzugvolumen zu, steigt die alveoläre Ventilation und somit der PAO₂ an. Die alveoläre Ventilation verhält sich direkt proportional zum aktuell vorliegenden VO₂. Eine ausreichende alveoläre Ventilation ist daher notwendig, um einen bestimmten PAO₂ aufrechtzuerhalten. Der Einfluss des PACO2 sowie des RQ auf den PAO2 kommen in der alveolären Gasgleichung zum Ausdruck (siehe Anhang 8.1, S. 95). Nach der alveolären Gasgleichung beträgt der PAO₂ 102 mmHg unter Raumluftatmung in Ruhe und unter Berücksichtigung der vorhergenannten Einflussfaktoren (siehe Abbildung 1, S. 9). Eine kurzzeitige Abnahme des HZV sorgt für einen vorübergehenden Anstieg des PAO2. Die Sauerstoffextraktion des Gewebes nimmt ebenfalls durch eine HZV-Abnahme zu, sodass der gemischt venöse Sauerstoffgehalt abfällt und der alveoläre Sauerstoffentzug in Richtung Blut wieder auf das Niveau vor der HZV-Abnahme ansteigt. Eine erhöhte Sauerstoffmenge wird pro pulmonalem Blutvolumen aufgenommen und kompensiert das verringerte HZV. Langfristig hat das HZV keinen Einfluss auf den PAO₂, wodurch es nicht in der alveolären Gasgleichung berücksichtigt wird (siehe Anhang 8.1, S. 95).

2.1.3 Der arterielle Sauerstoff – Von Oxygenierung bis zum Gewebe

Der anschließende transpulmonale Gasaustausch erfolgt zwischen Alveole und Kapillare und ist abhängig von der Diffusionsfläche, der Diffusionsstrecke und der Kontaktzeit des Erythrozyten mit der alveolokapillären Membran. Die O₂-Aufnahme in die Lungenkapillare, auch Oxygenierung genannt, wird durch die alveolokapilläre O₂-Partialdruckdifferenz angetrieben. Es erfolgt kein kompletter Partialdruckausgleich zwischen Alveole und Kapillare. Physiologisch ist eine sogenannte alveoloarterielle Sauerstoffpartialdruckdifferenz (AaDO₂) von 10 – 20 mmHg bei einem Lungengesunden unter Raumluftatmung anzunehmen (35). Der beschriebene Schritt der Sauerstoffkaskade ist von hoher klinischer Relevanz, da eine erhöhte AaDO₂ eine häufige Ursache der arteriellen Hypoxämie darstellt. Das Ausmaß der AaDO₂ wird von unterschiedlichen Faktoren beeinflusst. Neben dem Alter haben das vorherrschende Ventilations-Perfusions-Verhältnis sowie das Shuntvolumen, die FiO₂ und das HZV auf die AaDO₂ Einfluss. Mit zunehmendem Alter steigt die AaDO₂ an. Eine bestehende

Lungenerkrankung, die zu einem erhöhten Shuntvolumen oder einem Ventilations-Perfusions-Missverhältnis führen kann, erhöht die AaDO₂ zusätzlich. Mit zunehmender FiO₂ kann die AaDO₂ auf bis zu 70 mmHg bei einer FiO₂ von 1,0 ansteigen (35). Der Einfluss des HZV auf die AaDO₂ erscheint auf den ersten Blick nach dem Fick'schen Prinzip als einfach antiproportional. Betrachtet man die AaDO₂ nach Umrechnung in die Partialdruckdifferenz, ist die antiproportionale Beziehung zwischen AaDO₂ und infolge HZV der Sauerstoffbindungskurve nicht mehr gegeben und stellt sich als komplexe nichtlineare Beziehung dar (32). Durch ein zunehmendes bzw. abnehmendes HZV nimmt das Shuntvolumen gleichsinnig zu bzw. ab. Dieser Umstand verkompliziert den Einfluss zwischen HZV und AaDO₂ zusätzlich. Unter Berücksichtigung der beschriebenen Einflussfaktoren ergibt sich unter Raumluftatmung bei einem jungen lungengesunden Patienten ein PaO₂ von etwa 92 - 82 mmHg (siehe Abbildung 1, S. 9 und Anhang 8.1, S. 95).

Nachdem relevante Einflussfaktoren der AaDO₂ und somit des PaO₂ besprochen wurden, ist die Beziehung zwischen PaO₂ und der im Blut transportierten Sauerstoffmenge von entscheidender Bedeutung für die O₂-Versorgung des Körpers.

Der Großteil der transportierten Sauerstoffmenge erfolgt chemisch gebunden an das Hämoglobin. Die Beziehung zwischen dem PaO_2 und der fraktionellen Sauerstoffsättigung (SaO_2) beschreibt die Sauerstoffbindungskurve, deren Verlauf die chemischen Reaktionen zwischen O_2 und Hämoglobin beim jeweiligen PaO_2 darstellt. Der mithilfe der Sauerstoffbindungskurve quantifizierte Zusammenhang zwischen PaO_2 und SaO_2 legt, zusammen mit der Hämoglobinkonzentration (cHb) und der Bindungskapazität von 1,34 Milliliter Sauerstoff pro Gramm (ml O_2 / g) Hämoglobin, die Menge des chemisch gebundenen Sauerstoffs im Blut fest. Der pH-Wert sowie die Temperatur beeinflussen als wichtige Einflussfaktoren maßgeblich die Lage der Sauerstoffbindungskurve. Eine Rechtsverschiebung der Sauerstoffbindungskurve, infolge eines sinkenden Potenzials des Wasserstoffs (pH-Wert) bzw. einer steigenden CO₂-Konzentration oder einer Temperaturerhöhung, erschwert die O_2 -Aufnahme im arteriellen Blut, da ein höherer PaO₂-Wert benötigt wird, um eine vergleichbare SaO₂ zu erreichen.

Ein kleiner Anteil des O_2 wird physikalisch gelöst im Blutplasma und im Zytoplasma der roten Blutkörperchen transportiert. Nach dem Gesetz von Henry (36) werden bei dem oben angenommenen Pa O_2 in etwa 3 Milliliter Sauerstoff pro Liter (ml O_2 / l) Blut physikalisch gelöst transportiert. Mit 21 ml O_2 / l Blut ist dagegen der O_2 -Transport chemisch gebunden am Hämoglobin um das Siebenfache höher als der physikalisch gelöste Transport und sorgt für den Großteil des Sauerstofftransportes im Körper. Die im arteriellen Blut chemisch sowie physikalisch gelöste Sauerstoffmenge wird als arterieller Sauerstoffgehalt (Ca O_2) bezeichnet. Das dem Körper bzw. dem Gewebe zur Verfügung stehende Sauerstoffangebot (D O_2) ergibt sich aus dem Produkt des Ca O_2 und dem HZV.

2.1.4 Sauerstoff im Gewebe – Von Aufnahme bis Extraktion

In den Kapillaren erfolgt die chemische Freisetzung des O2 aus dem Hämoglobin in Abhängigkeit des vorherrschenden Sauerstoffpartialdruckes (siehe Abbildung 9, S. 29). Es schließt sich die Diffusion des herausgelösten chemischen und dem im Blut physikalisch gelösten O₂ durch die Kapillarwand bis zum Mitochondrium der Zelle an. Die Diffusionsstrecke kann bis zu 200 Mikrometer betragen und ist im Vergleich zur Lunge deutlich größer. Dies erklärt den großen Abfall des Sauerstoffpartialdruckes von der Stufe des "arteriellen Blutes" auf die Stufe "Mitochondrium" der Sauerstoffkaskade (siehe Abbildung 1, S. 9). Der resultierende Sauerstoffpartialdruck im Gewebe ist klinisch nicht exakt bestimmbar aufgrund verschiedenster Einflussfaktoren, zu denen der PaO₂, das Verhältnis von DO₂ und VO₂, die Gewebeperfusion, die Gewebeheterogenität sowie die Entfernung von der Kapillare bis zur Zelle gehören. Die Gewebeoxygenierung kann mithilfe des Krogh-Modells schematisch dargestellt werden und dient ausschließlich als Annäherung der physiologischen Bedingungen, da die Quantifizierung bzw. die Bestimmung des Sauerstoffpartialdruckes im Gewebe äußerst schwierig ist (37). Um die allgemeine Sauerstoffversorgung des Gewebes abschätzen zu können, kann man das DO2 ins Verhältnis zum VO2 setzen und erhält die Sauerstoffextraktion. Nimmt das Verhältnis aus DO₂ zu VO₂ ab bzw. zu, kann das auf eine abnehmende bzw. gesteigerte Sauerstoffversorgung des Gewebes hindeuten. In dieser Arbeit wird unter Raumluftatmung und körperlicher Ruhe ein DO₂ von 1000 Milliliter pro Minute (ml/min) sowie ein VO₂ von 250 ml/min angenommen, wodurch die Sauerstoffextraktion bei 25 % liegt. Für die Ermittlung des DO2 des Gewebes wird meist zusätzlich die arteriovenöse Sauerstoffgehaltsdifferenz (avDO₂) in Milliliter pro Deziliter (ml/dl) angegeben.

2.1.5 Der venöse Sauerstoff – Was bleibt nach dem aeroben Stoffwechsel?

Grundsätzlich kann man die venöse Sauerstoffsättigung (SvO₂) aus der Sauerstoffextraktion des Gewebes ableiten. Für die oben angenommenen Werte des DO₂, des VO₂ (vergleiche Kapitel 2.1.4, S. 8) und der resultierenden Sauerstoffextraktion von 25 % kann vereinfacht unter Raumluftatmung, körperlicher Ruhe und einer SaO₂ von 97 %, eine SvO₂ von ca. 72 % angenommen werden. Unter Berücksichtigung der Sauerstoffbindungskurve (siehe Abbildung 9, S. 29) liegt der venöse Sauerstoffpartialdruck (PvO₂) im Bereich von 40 mmHg (siehe Abbildung 1, S. 9). Analog zum CaO₂ kann, anhand der SvO₂, des PvO₂ sowie der cHb der venöse Sauerstoffgehalt (CvO₂) bestimmt werden.

Literaturdiskussion

Abbildung 1 Die Sauerstoffkaskade

Dargestellt sind die Stufen der Sauerstoffkaskade (rot beziehungsweise blau) ausgehend vom Sauerstoffpartialdruck in der Umgebungsluft (PO₂) bis hin zum Sauerstoffpartialdruck der Mitochondrien (PmO₂) bzw. des venösen Systems (PvO₂). Ausgewählte Einflussfaktoren (grau) sind schematisch der jeweiligen Stufe zugeordnet. Die Abbildung wurde erstellt nach dem Vorbild von Lumb (32).

Legende: AaDO₂ alveoloarterielle Sauerstoffpartialdruckdifferenz; $avDO_2$ arteriovenöse Sauerstoffpartialdruckdifferenz; FiO₂ — inspiratorische Sauerstofffraktion; HZV — Herzzeitvolumen; mmHg -Quecksilbersäule; PACO₂ alveolärer Kohlendioxidpartialdruck; Millimeter ____ PAO_2 alveolärer Sauerstoffpartialdruck; PaO₂ — arterieller Sauerstoffpartialdruck; PiO₂ — inspiratorischer Sauerstoffpartialdruck; PmO2 — mitochondrialer Sauerstoffpartialdruck; PO2 — atmosphärischer Sauerstoffpartialdruck; PvO2 — venöser Sauerstoffpartialdruck; RQ — Respiratorischer Quotient; Shunt — Shuntvolumen; V_A — alveoläre Ventilation; VO_2 — Sauerstoffverbrauch; V/P — Ventilations-Perfusions-Verhältnis

2.2 Die Sauerstoffspeicher des menschlichen Körpers

Die Speichermöglichkeiten des O_2 sind im Körper begrenzt und in den einzelnen Kompartimenten verschieden ausgeprägt. In der Literatur existieren unterschiedliche Angaben, von denen in Tabelle 1 (siehe S. 10) eine Auswahl dargestellt ist (13, 32, 38). Der Weg des O_2 ist von der O_2 -Aufnahme in der Lunge bis zum VO_2 im Mitochondrium als Fließgleichgewicht zu verstehen. Die O_2 -Partialdruckdifferenz zwischen Lunge bzw. funktioneller Residualkapazität (FRC) und den Mitochondrien stellt die treibende Kraft hierfür dar (vergleiche Abbildung 1, S 9). Bei O_2 -Abgabe aus einem O_2 -Speicher (siehe Tabelle 1, S. 10) an den nächsten bzw. an die Mitochondrien, wird die gleiche Menge O_2 aus dem vorherigen O_2 -Speicher bzw. O_2 aus Kompartimenten einer höheren Stufe der Sauerstoffkaskade aufgenommen.

	Einatmung von Raumluft			Einatmung von 100 % O ₂		
Kompartimente	Lumb	Zander	Brandis	Lumb	Zander	Brandis
(Volumen in ml)	(2016)	(2002)	(1997)	(2016)	(2002)	(1997)
Lunge (FRC)	450	235	270	3000	2500	1825
Blut	850	750	820	950	-	910
Myoglobin	200*	\$ 300*	200*	200*	-	200*
Gewebsflüssigkeit	50	, 000	45	100	-	50
Gesamt	1550	1285	1335	4250	-	2985

 Tabelle 1
 Die Sauerstoffspeicher unterschiedlicher Körperkompartimente im Vergleich

Dargestellt sind die geschätzten bzw. modellhaft berechneten O₂-Speichervolumen in Milliliter der jeweiligen Kompartimente absteigend nach Sauerstoffpartialdruck der ausgewählten Autoren Lumb (32), Zander (13) und Brandis (38).

<u>Legende</u>: FRC — funktionelle Residualkapazität; ml — Milliliter; O_2 — Sauerstoff; % — Prozent; * — diese gespeicherten Sauerstoffvolumina sind äußerst schwer zu mobilisieren; - — Sauerstoffvolumina wurden nicht angegeben;) — zusammengefasster Sauerstoffspeicher

2.3 Die Präoxygenierung

2.3.1 Der Einzug der Präoxygenierung in internationale sowie nationale Leitlinien

Täglich gehen die, im Rahmen der Allgemeinanästhesie durchgeführten, endotrachealen Intubationen mit einer meist muskelrelaxansinduzierten Apnoe einher. Unter Verwendung anderer Atemwegssicherungstools, wie z. B. einer Larynxmaske, kommt es durch die Induktionsanästhesie ebenfalls zu einer Apnoe. Unter dem Begriff der Apnoe wird das Sistieren der pulmonalen Ventilation verstanden. Die Oxygenierung des gemischtvenösen Blutes findet während der Apnoe für eine nicht eindeutig vorhersagbare Zeit, in Abhängigkeit vom gespeicherten O₂ in der FRC, weiterhin statt. Die vorangestellte Präoxygenierung wird hierbei als Strategie zur Verlängerung der Apnoezeit angewendet.

Im Jahre 2003 wurde erstmal die Präoxygenierung in einer Leitlinie der American Society of Anesthesiologists (ASA) zur Verlängerung der Apnoezeit im Rahmen des Atemwegsmanagement empfohlen (39). Zander zeigte 2005, dass die Durchführung der Präoxygenierung mit den aktuellen Kreissystemen im Operationssaal weitaus längere Apnoezeiten ermöglicht, als bislang angenommen wurde (40). Jedoch ist bis heute die Vorhersage einer sicheren Apnoezeit, d.h. eine Apnoe ohne drohende Hypoxie, nicht genau möglich. Eine Vielzahl an Faktoren haben Einfluss auf die sichere Apnoezeit, wie z.B. der PAO₂ zu Apnoebeginn, der vorherrschende VO₂, die Lage der Sauerstoffbindungskurve, die Größe der FRC und das Ausmaß des Rechts-Links-Shunts (13, 32).

Bis 2009 wurde die Präoxygenierung als Standardvorgehen bei nicht nüchternen Patienten (41) und bei Patienten mit einem erwartet schweren Atemweg (39) etabliert. Mertzlufft et. al., Benumof et al. und Tanoubi et al. plädierten für eine routinemäßige Präoxygenierung bei allen

Patienten (42-44). Hierauf folgten von 2015 bis 2022 Aktualisierungen nationaler und internationaler Leitlinien mit generellen Empfehlungen zur routinemäßigen Präoxygenierung (11, 12, 45).

2.3.2 Die Rationale der Präoxygenierung – Apnoe nach Raumluftatmung

Während einer Apnoe mit erhaltener Herzkreislauffunktion wird der VO₂ aus den verschiedenen O₂-Speichern absteigend nach vorherrschendem Sauerstoffpartialdruck gedeckt (vergleiche Kapitel 2.2, S. 9 sowie Kapitel 2.1.1, S. 5). Die Kinetik der Bereitstellung des O₂ während der Apnoe ist komplex und viele einzelne Faktoren wirken bzw. wechselwirken. Unterschiedliche mathematische und computergestützte Modelle versuchen die tatsächlichen physiologischen Gegebenheiten möglichst wiederzugeben und kommen zu abweichenden Ergebnissen (46). Für die Rationale der Präoxygenierung ist die klinisch nutzbare Sauerstoffmenge bis zum Auftreten einer Hypoxie, wie sie Zander 2002 beschreibt, entscheidend (13). Daher werden seine Daten in der vorliegenden Arbeit verwendet. Zwischen den Autoren besteht Einigkeit darüber, dass die FRC der Lunge das größte Potenzial für die Speicherung von zusätzlich inspiriertem O₂ besitzt (13, 32, 47).

Setzt die Apnoe bei einem 75 Kilogramm (kg) schweren Erwachsenen nach vorheriger Raumluftatmung (FiO₂ = 0,21) ein, stehen nach Zander circa (ca.) 235 ml O₂ in der FRC der Lunge (vergleiche Tabelle 1, S.10) zur Blutoxygenierung zur Verfügung (40). Unter Annahme eines VO₂ von 250 ml / min erfolgt die Blutoxygenierung für in etwa eine Minute, bis auch diese sistiert (32). Das in den Lungenkapillaren ankommende gemischtvenöse Blut gelangt fortan ohne Oxygenierung zurück zum Herzen (13). Dieser Zeitpunkt wird klinisch durch den Abfall der pulsoxymetrisch gemessenen partiellen Sauerstoffsättigung (SpO₂) auf einen gemischtvenösen Wert von 75 % sichtbar (40). Die Situation einer Hypoxie wäre eingetreten. Hierbei ist zu beachten, dass es bei Entsättigungen unter SpO₂-Werte < 90 % zu einem rapiden und schnellen Abfall kommt. Dies ist an der sehr steil verlaufenden Sauerstoffbindungskurve in diesem Bereich zu ersehen (48). Nachdem der O₂ aus der FRC utilisiert wurde, können bis zu einer Anoxie weitere 750 ml O₂ aus dem Blut sowie weitere 300 ml O₂ aus der Bindung an Myoglobin und frei gelöst im Gewebe für die Mitochondrien der peripheren Zellen bereitgestellt werden (vergleiche Tabelle 1, S. 10).

Die Aufrechterhaltung der Oxygenierung ist während des Atemwegsmanagements entscheidend für die Patientensicherheit. Die Patienten wären bei einer Entsättigung bis in hypoxische Bereiche (SpO₂ \leq 75 %) dem Risiko von Herzrhythmusstörungen, hämodynamischer Dekompensation, hypoxischer Hirnschädigung und dem Tod ausgesetzt (48, 49).

2.3.3 Die Präoxygenierung und der wachsende Sauerstoffspeicher im Körper

Um die im vorherigen Abschnitt beschriebenen Entsättigungen bzw. hypoxischen Zustände während der Atemwegssicherung zu vermeiden, sollte eine Präoxygenierung durchgeführt werden (siehe Kapitel 2.3.2, S. 11). Ziel dieser Maßnahme ist die O₂-Anreicherung im Körper, um den VO₂ mithilfe der O₂-Speicher zu decken und die Zeit einer sicheren Apnoe bzw. für das Atemwegsmanagement zu verlängern.

Zu Beginn der Präoxygenierung beträgt die FiO₂ im Rahmen der normalen Raumluftatmung 0,21. Zu diesem Zeitpunkt nimmt der N₂ mit 78 % den größten Anteil in der Einatemluft ein. Folglich ist ein hoher N₂-Anteil in der FRC wiederzufinden. Atmet ein Patient beispielsweise 100 % O₂ inspiratorisch ein (FiO₂ = 1,0), so reichert sich dieser in der FRC der Lunge an und im Gegenzug wird N₂ ausgewaschen (siehe Abbildung 1, S. 9). Hierdurch wird deutlich, weshalb in der englischsprachigen Literatur der Begriff *Denitrogenation* synonym für die Präoxygenierung verwendet wird. Die zeitliche Zunahme der O₂-Konzentration in der Lunge folgt einer exponentiellen Funktion (50), die sich aus dem Verhältnis der FRC zur alveolären Ventilation ableiten lässt (siehe Abbildung 2, S. 9).

Es ist nicht möglich, das gesamte Volumen der FRC mit O2 anzureichern, da Kohlendioxid (CO₂) und Wasserdampf nicht eliminiert bzw. ausgewaschen werden können (vergleiche Abbildung 2, S. 9). Dies liegt an der kontinuierlichen basalen CO₂-Produktion im menschlichen Körper und der immer wiederkehrenden Anfeuchtung der Inspirationsluft. Maximal ist eine alveoläre Sauerstofffraktion (FAO₂) von 88,2 % bzw. eine endtidale Sauerstoffkonzentration (etO₂) von 94,4 % erreichbar (siehe Anhang 8.1, S 96). Die Differenz zwischen FAO₂ und etO₂ kommt durch Trocknung des endexspiratorischen Gases im Rahmen der etO2-Messung zustande. Bei einem Barometerdruck der Umgebungsluft von 760 mmHg ist ein PAO₂ 673 mmHg theoretisch maximal möglich (siehe Anhang 8.1, S 95). Während der Präoxygenierung kann somit ein maximaler PaO₂ von 603 bis 648 mmHg erreicht werden (13). Die Differenz zwischen dem PAO₂ und dem PaO₂ von 25 – 70 mmHg ist auf die AaDO₂ zurückzuführen (siehe Kapitel 2.1.3, S. 6). Bei einem 75 kg schweren Erwachsenen können, unter Annahme einer FRC von 3.000 ml, maximal 2.500 ml O₂ intrapulmonal (siehe Tabelle 1, S. 10) gespeichert werden (13). Bei einem angenommenen VO₂ von 250 ml / min in körperlicher Ruhe, kann die Zeit bis zum Eintreten einer Hypoxie (SpO₂ \leq 75 %) während der anschließenden Apnoe bei einem Erwachsenen bis auf das Zehnfache verlängert werden (siehe Abbildung 4, S. 13) (13, 40).

Während der Präoxygenierung wird im Blut sowie im Gewebe zusätzlicher O₂ gespeichert (siehe Tabelle 1, S. 10 und Abbildung 3, S. 13). Im Vergleich zum gespeicherten O₂-Volumen in der FRC, ist das O₂-Volumen im Blut und Gewebe sehr gering und von untergeordneter klinischer Bedeutung (13, 32, 47).

Abbildung 2 Die endtidalen Sauerstoff- und Stickstoffkonzentrationen vor und während der Präoxygenierung

Dargestellt sind die endtidalen Konzentrationsverläufe des Stickstoffs (gelb) und des Sauerstoffs (blau) in Abhängigkeit der Präoxygenierungsdauer, durchgeführt mit einer inspiratorischen Sauerstofffraktion von 1,0. Die Abbildung wurde erstellt nach dem Vorbild von Nimmagadda et al. (50).

Legende: FRC — funktionelle Residualkapazität; min — Minute; ml — Milliliter; s — Sekunde(n); % — Prozent

Abbildung 3 Die Sauerstoffanreicherung in den unterschiedlichen Kompartimenten des Körpers Dargestellt ist die Sauerstoffanreicherung im Gewebe (gelb), im Blut (rot), in der funktionellen Residualkapazität (blau) sowie im gesamten Körper (grau) über den Zeitverlauf der Präoxygenierung. Die Abbildung wurde erstellt nach dem Vorbild von Campbell et al. (14). Legende: FRC — funktionelle Residualkapazität; ml — Milliliter; s — Sekunde(n)

2.3.4 Besondere Patientengruppen im Rahmen der Präoxygenierung

Bei Schwangeren kommt es durch die intraabdominelle Volumenzunahme zu einem Zwerchfellhochstand. Hieraus resultiert eine um 20 % kleinere FRC (13), wodurch das gespeicherte Sauerstoffvolumen in der Lunge abnimmt. Die Apnoezeit ist folglich, im Vergleich zu einer nichtschwangeren Frau, deutlich verkürzt (siehe Abbildung 4, S. 13). Ein bei Schwangeren um bis zu 20 % höherer VO₂ verkürzt die Zeit bis zum Einsetzen einer Hypoxie zusätzlich (13). Nach Raumluftatmung kommt es bei Schwangeren innerhalb von 40 Sekunden (s) Apnoezeit zu einer Hypoxie (siehe Abbildung 4, S. 13).

Auch bei adipösen Patienten und Patienten mit Ileus ist eine verkleinerte FRC zu beobachten. Hier kann in der Lunge aufgrund des resultierenden Platzproblems weniger O₂ gespeichert werden. Es kommt, wie zuvor bei schwangeren Frauen, zu einem früheren Einsetzen einer Hypoxie.

Eine weitere Risikogruppe bilden Kinder, Kleinkinder und besonders Frühgeborene. Sie haben eine erheblich kleinere FRC und zusätzlich einen deutlich höheren gewichtsbezogenen VO₂. Die klinische Konsequenz wird deutlich, wenn man den O₂-Speicher unter Raumluftatmung der Gruppen vergleicht. Dieser ist beim Erwachsenen nach ca. 1 min, bei einem Kleinkind nach 20 s und beim Frühgeborenen bereits nach ca. 10 s aufgebraucht (siehe Abbildung 4, S. 13) (13).

Nach Brandt et al. stellen kardial erkrankte Patienten eine zusätzliche Risikogruppe dar. Sie zeigen eine höhere Hypoxiegefährdung infolge eingeschränkter Kompensationsmöglichkeiten. Bei dieser Patientengruppe besteht, aufgrund der Hyperoxie im Rahmen der Präoxygenierung, die Gefahr von Koronarspasmen sowie Nebenwirkungen wie eine Erhöhung des peripheren Gefäßwiderstandes und die Zunahme einer Myokardischämie vermutlich aufgrund unphysiologischer Verteilungsmuster des O₂. Diese potenziellen Risiken der Hyperoxie unterliegen dem Sicherheitsaspekt einer suffizient durchgeführten Präoxygenierung, sodass eine Präoxygenierung unter Vermeidung einer Hyperventilation durchzuführen ist (51).

Abbildung 4 Die Apnoezeit bis zum Erreichen einer Hypoxie ohne und mit vorangegangener Präoxygenierung

Dargestellt ist die Apnoezeit von Frühgeborenen (rot), Kleinkindern (orange), Schwangeren (grün) und Erwachsenen (blau) bis zum Erreichen einer partiellen Sauerstoffsättigung von 75 % ohne (Viereck) und mit vorangegangener Präoxygenierung mit 100 % Sauerstoff (Kreis). Die Abbildung wurde erstellt nach dem Vorbild von Zander et al. (13).

<u>Legende</u>: min — Minute(n); % — Prozent

2.3.5 Die Präoxygenierung – Techniken im klinischen Alltag

Es gibt verschiedene Techniken, die zur Präoxygenierung verwendet werden können, wobei zwei für den klinischen Einsatz von der Deutschen Gesellschaft für Anästhesie & Intensivmedizin (DGAI) (9, 10) sowie der britischen *Difficult Airway Society (DAS)* (11) empfohlen werden. Zum einen kann unter Tidalvolumenatmung und zum anderen alternativ durch aufeinander folgende maximaltiefe Atemzüge, unter Mobilisation der Vitalkapazität, die Präoxygenierung durchgeführt werden.

Bei der Tidalvolumenatmung wird der spontan atmende Patient aufgefordert, mit seinem Atemzugvolumen das mit einer Beatmungsmaske vorgehaltene Frischgas einzuatmen. Die Präoxygenierung wird beendet, wenn das $etO_2 > 90$ % beträgt, was in der Regel nach 3 - 5 min eintrifft (siehe Abbildung 3, S. 13). Bei der Präoxygenierungstechnik durch Mobilisation der Vitalkapazität wird der Patient achtmal in einer Minute aufgefordert, maximaltief ein- und wieder auszuatmen. Vergleichsstudien zeigen, dass nach etwa einer Minute, unter Mobilisation der Vitalkapazität, vergleichbare etO_2 -Werte, wie bei der Tidalvolumenatmung, erzielt werden, da die alveoläre Ventilation deutlich höher ist (44, 52). Während der Präoxygenierung folgt die Sauerstoffanreicherung in der Lunge einem exponentiellen Wachstumsmuster (siehe Abbildung 2, S. 13), das zeitlich abhängig vom Verhältnis aus FRC und alveolärer Ventilation ist. Steigt die alveoläre Ventilation an, gelangt mehr O₂ in die FRC und das Verhältnis sinkt, wodurch die Sauerstoffanreicherung in der Lunge schneller erfolgt. Bei der Präoxygenierungstechnik durch Mobilisation der Vitalkapazität wurde eine leichte Hypokapnie beobachtet (53), das bei kardial vorerkrankten Patienten als ungünstig erscheint (siehe Kapitel 2.3.4, S. 13).

Im Rahmen der klinisch durchgeführten Präoxygenierung wird der O₂ generell über eine dicht sitzende Beatmungsmaske und ein angeschlossenes Anästhesiesystem appliziert (9). Aufgrund des geringen Totraumvolumens im Anästhesiesystem sowie der Verwendung eines hohen Frischgasflusses (\geq 10 l/min) kann eine Rückatmung der Exspirationsgase vermieden werden (11, 54).

Für die präklinische Präoxygenierung sollte eine Beatmungsmaske mit Demandventil und Reservoir verwendet werden, um eine $FiO_2 = 1,0$ bei der Sauerstoffapplikation zu erreichen (10).

2.3.6 Einflussfaktoren auf die Präoxygenierung

Die Präoxygenierung kann durch viele verschiedene Faktoren beeinträchtigt sein. Im Folgenden wird auf eine Auswahl an Einflussfaktoren näher eingegangen. Dabei wird nicht auf den bereits in den vorangegangenen Kapiteln beschriebenen Einfluss der FRC (Kapitel 2.3.3, S. 12 und Kapitel 2.3.4, S. 13), der alveolären Ventilation (siehe Kapitel 2.1.2, S. 5 und

Kapitel 2.3.3, S. 12) sowie der Präoxygenierungstechnik (siehe Kapitel 2.3.5, S. 15) eingegangen.

Die Höhe der FiO₂ ist einer der wichtigsten Einflussfaktoren der Präoxygenierung. In klinisch genutzten Beatmungsgeräten wird eine geeignete FiO₂, entweder direkt durch Einstellen der FiO₂ oder aber indirekt durch den Frischgasfluss erreicht. Über die geeignete FiO₂ während der Präoxygenierung wird kontrovers diskutiert. Die Verwendung einer FiO₂ = 1,0 führt, im Vergleich zu einer FiO₂ < 1,0, klinisch zu einer größeren Sauerstoffreserve in der FRC und somit zu einer längeren Apnoezeit und einem erhöhten Schutz vor einer Hypoxie (vergleiche Kapitel 2.3.3, S. 12). Es werden jedoch bei der Verwendung einer $FiO_2 = 1,0$ vermehrt Resorptionsatelektasen beobachtet, die die alveoläre Ventilation verringern (55). Die DGAI empfiehlt daher die Verwendung von reinem O_2 (Fi O_2 = 1,0) während der Präoxygenierung Nutzen-Risiko-Abwägung und weist auf die Entstehung aenerell nach von Resorptionsatelektasen hin (9). Bei Notfallpatienten mit erhaltener oder insuffizienter Spontanatmung und keinem chronisch stark erhöhtem PACO₂, empfiehlt die DGAI die Präoxygenierung mit höchstmöglicher O₂-Kozentration bzw. höchstmöglichem Fluss (10). Die DAS (11) sowie die ASA empfehlen eine FiO₂ von 1.0 während der Präoxygenierung.

Die Lagerung des Patienten kann einen Einfluss auf das gespeicherte Sauerstoffvolumen während bzw. nach Präoxygenierung haben. Die Rückenlage gilt eher als ungeeignet, da es dem Patienten in dieser Position nicht so leicht gelingt, ausreichend tiefe Atemzüge durchzuführen. In Rückenlage sind die dorsalen Lungenabschnitte anfällig für einen atelektatischen Kollaps, wodurch der Sauerstoffspeicher in der Lunge bzw. FRC abnehmen kann (56, 57). Das Gewicht der Bauchdecke kann das Zwerchfell um bis zu 4 cm nach kranial verlagern und die FRC um ca. 33 % verringern (32). Dixon et al. sowie Altermatt et al. beobachteten bei adipösen Patienten, dass die Oberkörperhochlagerung von 25 Grad, im Vergleich zur Rückenlagerung, die Apnoezeit nach Präoxygenierung verlängert (56, 57). Hingegen konnten Smith et al. bei gesunden Patienten in 45 Grad Oberkörperhochlagerung, im Vergleich zur Rückenlage, keine Unterschiede bei der etO₂ sowie der SpO₂ nachweisen (58). Die klinisch relevanten Auswirkungen der Lagerung auf das Volumen der FRC wurde in der Studie von Smith et al. nicht untersucht. Aus den Studienergebnissen resultieren die Empfehlungen der DGAI (9) sowie der DAS (11), bei adipösen Patienten eine Präoxygenierung mit 25 Grad erhöhtem Oberkörper durchzuführen. Zusätzlich wird bei adipösen Patienten und einer nicht zufriedenstellenden Präoxygenierung der Einsatz einer nichtinvasiven Beatmung, z.B. "Continuous Positive Airway Pressure" (CPAP)-Beatmung, von der DGAI (9) sowie der DAS (11) empfohlen. Unter Verwendung der CPAP-Beatmung wird die FRC der Patienten aufrechtgehalten, das Verhältnis von FRC zur alveolären Ventilation verbessert, was in einer besseren sowie schnelleren Sauerstoffanreicherung in der FRC sowie in höheren etO₂-Werten am Ende der Präoxygenierung zum Ausdruck kommt (59).

Literaturdiskussion

Eine undicht sitzende Beatmungsmaske kann ebenfalls zu einer geringeren Sauerstoffanreicherung in der FRC, infolge einer herabgesetzten FiO₂, führen. Bei bärtigen oder zahnlosen Patienten kann es klinisch besonders schwierig sein, die Beatmungsmaske dicht am Patientengesicht zu platzieren (47). Farmery et al. zeigten bei einem 70 kg schweren Patienten anhand von sukzessiven Erniedrigungen der FiO₂ vor der Intubationsapnoe, wie sie bei Systemundichtigkeiten vorkommt, den verkürzenden Effekt auf die Apnoezeit (60). Somit ist bei der Durchführung der Präoxygenierung auf eine möglichst dicht sitzende Beatmungsmaske zu achten.

Der Erfolg der Präoxygenierung ist stark mit einer möglichst fehlerfreien Durchführung und den beschriebenen sowie weiteren Einflussfaktoren verbunden. Dies macht deutlich, wie wichtig eine Überwachung der Präoxygenierung im klinischen Alltag ist.

2.3.7 Bestehende und mögliche Überwachungsmethoden der Präoxygenierung

Der Erfolg der Präoxygenierung kann im klinischen Alltag anhand verschiedener Parameter beurteilt werden (Abbildung 5, S. 18). Zum einen kann mithilfe der Oxigraphie der steigende Sauerstoffanteil in der FRC der Lunge durch Messung des etO₂ überwacht werden (61, 62). Zum anderen kann der zu erwartende PaO₂-Anstieg im Rahmen einer BGA während der Präoxygenierung beurteilt werden (63). Die Pulsoxymetrie kann durch die SpO₂-Messung bis zum Zeitpunkt der vollständigen Hämoglobinsättigung, den Präoxygenierungsfortschritt widerspiegeln, ist aber ab dann in der Aussagekraft eingeschränkt (64). Nach Fleming et al. und Tsymbal et al. könnte der ORI zusätzlich zur Erfolgskontrolle der Präoxygenierung beitragen (28, 31).

Dargestellt sind die unterschiedlichen Messmethoden (graue Kästen) sowie die Messgrößen (grüne, blaue und rote Kästen) zur übersichtlichen Einordnung auf dem Weg des Sauerstoffs zum Endorgan und wieder zurück zur Lunge. Legende: avDO₂ — arteriovenöse Sauerstoffgehaltsdifferenz; BGA — Blutgasanalyse; CaO₂ bzw. CvO₂ — arterieller bzw. venöser Sauerstoffgehalt; cHb — Hämoglobinkonzentration; etO₂ — endtidale Sauerstoffkonzentration; HZV — Herzzeitvolumen; ORI — Oxygen Reserve Index; PaO₂ bzw. PvO₂ — arterieller bzw. venöser Sauerstoffpartialdruck; PAO₂ — alveolärer Sauerstoffpartialdruck; SaO₂ bzw. SvO₂ — arterielle bzw. venöse Sauerstoffsättigung; SpO₂ — partielle Sauerstoffsättigung; VO₂ — Sauerstoffverbrauch

2.4 Die endtidale Sauerstoffkonzentration

2.4.1 Die messtechnischen Grundlagen unter physiologischen Bedingungen

Die Messung der etO_2 erfolgt im Rahmen der Oxygraphie durch ein Massenspektrometer in der Exspirationsluft des Patienten. Hierfür wird nach dem Nebenstromverfahren (siehe Kapitel 3.5.5.2, S. 50) ein Teil des Exspirationsgases aus dem Exspirationsschenkel des Beatmungsschlauches in einen separaten Probenschlauch abgeleitet. Ein elektrochemischer Messwandler wandelt den Primärstrom, das O₂ in der Exspirationsluft, in ein messbares elektrisches Signal um. Hierfür wird das Prinzip einer galvanischen Zelle bzw. einer Clark'schen-Elektrode genutzt (siehe Abbildung 6, S. 24) (65). Der in der Clark'schen-Elektrode gemessene elektrische Strom ist proportional zum bestehenden etO₂ in der Exspirationsluft. Am Ende eines normalen Exspirationsvolumens (Atemzugvolumen 0,5 Liter (I)) repräsentiert die etO₂ annähernd die O₂-Konzentration der FRC bzw. die FAO₂.

Nach den Empfehlungen der DGAI ist die Messung der Konzentrationen von O₂, CO₂ und der volatilen Anästhetika, falls verwendet, während der Allgemeinanästhesie bzw. Inhalationsnarkose sicherzustellen (66). Dies geht zudem aus den wesentlichen Leistungsmerkmalen der aktuellen DIN-Norm (DIN EN ISO 80601-2-55) für die eingesetzten Überwachungsgeräte in der Allgemeinanästhesie hervor (67).

2.4.2 Der klinische Einsatz zur Erfolgskontrolle der Präoxygenierung

Die et O_2 spiegelt die O_2 -Konzentration in der FRC bzw. des Alveolarraumes wider und kann die klinische Überwachung des Aufbaus des O_2 -Speichers in der FRC kontinuierlich und nichtinvasiv abbilden. Theoretisch ist ein exponentieller FAO₂-Anstieg von 13,2 % unter Raumluftatmung auf bis zu 88,2 % während Atmung von 100 % O_2 während der Präoxygenierung möglich (13, 14).

Grundsätzlich liegt der gemessene etO_2 -Wert über der FAO₂ in der FRC der Lunge. Die messtechnische Trocknung des endexspiratorischen Gases im Rahmen der etO_2 -Messung sorgt für den Wegfall des Wasserdampfanteils von ca. 6,5 % bzw. 47 mmHg (siehe Anhang 8.1, S. 95). Während der Präoxygenierung mit einer FiO₂ von 1,0 (100 %) kann die FAO₂ auf 0,89 (89 %) bzw. die etO_2 auf 95 % maximal ansteigen (13).

Die DGAI (9, 10), die DAS (11) und die ASA (12) empfehlen eine etO₂ > 90 % als Zielpunkt einer durchgeführten Präoxygenierung.

Eine etO₂ von mehr als 90 % wird in der täglichen klinischen Praxis, während der Präoxygenierung, nicht immer erzielt. Dies kann klinisch auf vielfältige Gründe, wie z.B. die Undichtigkeit zwischen der Beatmungsmaske und des Patientengesichts, eine inadäquate Patientenlagerung und patienteneigene Faktoren, beispielsweise eine Adipositas, oder auch bei kritisch kranken Patienten auf pulmonale Einschränkungen, zurückgeführt werden. Die

britische DAS empfiehlt in ihren "Guidelines for the management of tracheal intubation in critically ill adults" einen etO₂-Wert von > 85 % als Ziel bei der Durchführung der Präoxygenierung (54).

Die etO₂-Messung ist anfällig für Messfehler. Der undichte Sitz der Beatmungsmaske ist klinisch die häufigste Ursache von fehlerhaften etO₂-Messungen sowie unzureichenden (etO₂ < 90 %) Präoxygenierungen (siehe Kapitel 2.3.5, S. 15 und Kapitel 2.3.6, S. 15). Die Gesichtsbehaarung (Bart), anatomische Besonderheiten (Zahnlosigkeit) und die manuellen Fertigkeiten des Anästhesisten haben einen großen Einfluss auf die Dichtigkeit der Beatmungsmaske. Das ausgeatmete Gasgemisch entweicht über die undichte Stelle der Beatmungsmaske und steht nicht mehr vollständig zur Messung zur Verfügung (15). Es resultiert eine fehlerhafte etO₂-Messung. Geringe Undichtigkeiten sind klinisch meist schwer zu erkennen.

Ein geringes Atemzugvolumen kann zu falsch hohen Messwerten der etO₂ führen. Ist dieses Volumen nur geringfügig größer als die Volumina des angeschlossenen Beatmungsgerätes und des funktionellen Totraums, so ist der Großteil des inspirierten Gases das Exspirationsgas des vorherigen Atemzuges. Hier besteht somit ein kleines Verhältnis zwischen alveolärer Ventilation und FRC (vergleiche Kapitel 2.3.3, S. 12). Um dies zu vermeiden, sollte der durchführende Arzt bei der Exspiration auf einen positiven regelgerechten Kurvenverlauf der Kapnographie und einen ausreichend hohen Frischgasfluss achten (vergleiche Kapitel 2.3.5, S. 15) (47). Zudem sollte sich der Reservoirbeutel bei jeder Inspiration einziehen bzw. bei jeder Exspiration ausdehnen. Diese Anhaltspunkte bekräftigen, dass die Messung der etO₂ das alveoläre Gasgemisch und nicht den O₂-Frischgasfluss und das Totraumgas detektieren (15). In der sich an die Präoxygenierung anschließenden Apnoephase nimmt der O₂-Anteil nicht perfundierter Lungenanteile bzw. der funktionelle Totraum nicht am Gasaustausch teil. Der im funktionellen Totraum enthaltene O2-Anteil gelangt, während der Präoxygenierung, in Exspirationsluft zurück, die nicht repräsentativ für den PAO₂ im Bereich der am Gasaustausch beteiligten Lungenanteile ist. Hinzukommen wissenschaftliche Beobachtungen, die die Vermutung nahelegen, dass der Euler-Liljestrand-Mechanismus, der als Schutzvorgang das intrapulmonale Shuntvolumen verringert, im Rahmen der Präoxygenierung bzw. bei hohen FiO₂-Werten aufgehoben wird (68). Der Euler-Liljestrand-Mechanismus stellt sicher, dass der größte Teil des in der Lunge ankommenden Blutes in die Lungenbereiche zirkuliert, in denen eine ausreichende Belüftung stattfindet, um eine effiziente Gasaustauschfunktion zu gewährleisten und das Rechts-Links-Shuntvolumen möglichst gering zu halten. Es wird davon ausgegangen, dass auch weniger gut belüftete Lungenareale im Verlauf der Präoxygenierung hohe O2-Konzentrationen aufweisen, das eine Relaxation der glatten Muskelzellen der pulmonalen Gefäße fördert und somit die Perfusion in minderbelüfteten Bereichen zunimmt. Die resultierenden patientenindividuellen Ventilations-Perfusions-Verhältnisse sowie das

vorherrschende Shuntvolumen können bei der etO2-Messung folglich nicht berücksichtigt werden.

Eine weitere Einschränkung der Aussagekraft der etO₂-Messung liegt bei pulmonalen Gasaustauschstörungen vor. Hier kommt es zu einer Erhöhung der AaDO₂ (siehe Kapitel 2.1.3, S. 6). Ursachen können beispielsweise eine vorliegende Pneumonie, ein *Acute Respiratory Distress Syndrome*, Atelektasen sowie Resorptionsatelektasen sein. Zudem wird die AaDO₂ mit zunehmendem Alter, ansteigender FiO₂, steigendem intrapulmonalen Rechts-Links-Shunt und einer Ventilations-Perfusions-Störung größer (35), wobei sich die genannten Einflussfaktoren zum Teil auch gegenseitig bedingen (siehe Kapitel 2.1.3, S. 6). Die resultierende vergrößerte AaDO₂ hat zur Folge, dass trotz hohem PAO₂, der PaO₂ deutlich niedriger ist (35). Diese Umstände verdeutlichen, dass mithilfe der etO₂-Messung nicht ohne Einschränkungen auf den PaO₂ und über den Zusammenhang der Sauerstoffbindungskurve auf die SaO₂ geschlossen werden kann.

Außerhalb der Klinik, z. B. bei präklinischen Notfallintubationen, sind die verwendeten Beatmungsgeräte mit dieser Messmethode nicht ausgestattet und folglich ist keine etO₂-Messung möglich.

Materialtechnische Probleme können ebenfalls zu fehlerhaften bzw. ungenauen etO₂-Messungen führen. Die Probengasleitung des Nebenstromprinzips (siehe Kapitel 2.4.1, S. 19) kann abknicken und durch Feuchtigkeit sowie Sekret verlegt oder sogar verstopft werden. Dies kann den Verlauf der etO₂-Messungen maßgeblich beeinflussen oder sogar unmöglich machen. Zudem sollten Desinfektionen der Probenschläuche unterlassen werden, da dies die innere Oberfläche stark aufraut, Verwirbelungen erzeugt und somit die Signalqualität erheblich beeinflusst. Grundsätzlich ist vor Gebrauch darauf zu achten, dass das Probenschlauchmaterial für die etO₂-Messungen zugelassen ist. Ist dies nicht der Fall, kann es ebenfalls zu Messfehlern kommen, infolge z. B. durch Absorptionen an der Materialoberfläche von Narkosegasen (69).

Die etO₂-Messung bringt im Gegensatz zu den bislang genannten Einschränkungen oder Schwächen auch folgende Vorteile mit sich.

Grundsätzlich steht die etO₂-Messung in den klinisch genutzten Beatmungsgeräten der Intensivstationen und der OP-Bereiche meist ausnahmslos zur Verfügung (DIN EN ISO 80601-2-55) (67).

Während einer effizienten Präoxygenierung sollte es zu einem sukzessiven Anstieg des PAO₂ und folglich der etO₂ kommen (siehe Abbildung 2, S. 13). Ist die Präoxygenierung hingegen nicht suffizient, bleibt der in Leitlinien empfohlene etO₂-Anstieg > 90 % aus (9-12). Die etO₂ kann somit dem Kliniker eine sofortige Rückmeldung geben, ob die Präoxygenierung erfolgreich ist. Er kann, falls dies nicht zutrifft, geeignete Maßnahmen, wie z. B. die Kontrolle der Maskendichtigkeit oder etwaige andere Fehlerquellen, zeitnah ausfindig machen. Zudem

können auch patientenbedingte bzw. erkrankungsbedingte Faktoren als Ursache einer nicht ausreichenden Präoxygenierung entdeckt werden. Hierfür könnten weitere Maßnahmen oder auch eine nichtinvasive Beatmung in Betracht gezogen werden (70). In einer aktuellen Interventionsstudie von Oliver et al. zeigt die Verwendung der etO2-Messung in zwei Notaufnahmen einen positiven Effekt auf die Effektivität der Präoxygenierung. Hierbei konnten die behandelnden Teams die verwendeten Präoxygenierungstechniken, z. B. den Einsatz einer Maske ohne Rückatmung oder einer Beutelventilmaske, frei wählen. Bei den 100 Teilnehmern der Interventionsgruppe, bei denen die etO₂-Messung verwendet werden durfte, lag der etO2-Wert zum Zeitpunkt der Einleitung bei 90 % (Median; Interquartilsabstand (IQR) 9). In der Kontrollgruppe, in der die etO₂-Messung nicht genutzt werden konnte, lag der etO2-Wert zum Zeitpunkt der Einleitung bei 80 % (Median; IQR 25). Die Autoren beobachteten eine Differenz von 10 % der etO2-Messwerte nach Präoxygenierung und während der anschließenden Apnoe sowie einen Rückgang der Prävalenz der Hypoxie von 18 % in der Kontrollgruppe auf 8 % in der Interventionsgruppe. Sie schlussfolgerten, dass die Verwendung der etO₂-Messung während der Präoxygenierung die Prävalenz der Hypoxämie und die damit verbundenen Komplikationen verringern kann (71).

Wird der etO₂-Zielwert von > 90 % (9-12) nicht innerhalb der gewohnten Präoxygenierungszeit von drei bis fünf Minuten erreicht, kann dies auf patientenbedingte Ursachen hindeuten, wenn die Durchführung der Präoxygenierung keine Mängel aufweist (61). Samain et al. beobachteten während dreiminütiger Präoxygenierung eine Patientengruppe mit Lungenemphysem im Vergleich zu einer zweiten Patientengruppe, die keins aufwies. Der etO₂-Wert der Patientengruppe mit Emphysem lag nach dreiminütiger Präoxygenierung mit 82 % (Mittelwert; SD ± 0,06) signifikant niedriger als in der Patientengruppe ohne Emphysem mit 91% (Mittelwert; SD ± 0,02) (61). Die Autoren führen das erniedrigte etO₂ bei Patienten mit Lungenemphysem auf inhomogene Ventilations-Perfusions-Verhältnisse zurück. Die Autoren begründeten dies damit, dass die schlecht ventilierten Lungenanteile (niedriges Ventilations-Perfusions-Verhältnis) während der Präoxygenierung zuletzt denitrogenisiert werden und für eine erniedrigte etO₂ auch noch nach drei Minuten im Vergleich zu Patienten ohne Emphysem sorgen (61).

Die etO₂-Messung dient bei aktuellen Vergleichsstudien der bestehenden und auch der möglichen neuen Präoxygenierungstechniken als Endpunkt für den Erfolg der erzielten Präoxygenierung (72-77). Bengtsson et al. untersuchten die Beziehung zwischen der etO₂ und dem PAO₂ und beobachteten eine starke Korrelation (r = 0.98; Anzahl (n) = 104; p < 0.001) während der Präoxygenierung.

Abschließend ist festzuhalten, dass ein sukzessiv ansteigendes etO₂ auf eine O₂-Anreicherung in der FRC hindeutet (siehe zudem Kapitel 2.3.3, S. 12) und daher als Positivnachweis einer Präoxygenierung zur Überwachung eingesetzt werden kann. Es ist zu betonen, dass die etO₂

Literaturdiskussion

ausschließlich den Volumenanteil und nicht das absolute gespeicherte Sauerstoffvolumen in der FRC widerspiegelt. Somit kann keine Vorhersage über die sichere Apnoezeit in der Phase der Atemwegssicherung getroffen werden, sondern nur, dass das FRC-Volumen maximal denitrogenisiert bzw. aus > 90 % O₂ besteht. Die Aussagekraft der etO₂-Messung kann durch Messfehler meist infolge eines undichten Maskensitzes eingeschränkt sein. Auch wenn ein starker Zusammenhang zwischen PAO₂ und etO₂ in der Literatur beschrieben wurde, lässt die etO₂ keine genaue Aussage über den arteriell verfügbaren O₂ zu. Hierbei nehmen die AaDO₂ sowie ihre unterschiedlichen und zum Teil gegenseitig bedingenden Einflussfaktoren eine entscheidende Rolle ein und sind der Grund, weshalb nicht von der etO₂ auf den arteriell verfügbaren O₂ geschlossen werden kann. Zudem ist die Messung der etO₂ flächendeckend nur auf Intensivstationen und in Operationssälen möglich. Präklinisch sind die Beatmungsgeräte nicht mit einer etO₂-Messung ausgestattet.

2.5 **Der arterielle Sauerstoffpartialdruck**

2.5.1 Die Funktionsweise der Clark`schen Elektrode

Der PaO₂ spiegelt den Druck des O₂ im arteriellen Blut wider. Die Messung arterieller, venöser oder auch kapillärer Proben erfolgt mithilfe der "pO₂-Elektrode nach Clark" (siehe Abbildung 6, S. 24), die in den klinisch genutzten BGA-Geräten verbaut ist (65). Die "pO₂-Elektrode nach Clark" setzt sich aus einer Kathode und einer Anode zusammen, die von Elektrolytflüssigkeit umgeben sind. Die Kathode besteht aus einer Platinelektrode, die von einer sauerstoffdurchlässigen Membran umschlossen ist. Kommt die "pO₂-Elektrode nach Clark" in Kontakt mit einer Sauerstoffquelle, beispielsweise dem arteriellen Blut, diffundiert der O₂ durch die sauerstoffdurchlässige Membran und reagiert mit der Kathodenoberfläche. Dabei findet eine Reduktion des O₂ statt, bei dem Elektroden freigesetzt werden. Die Anode (Bezugselektrode) nimmt diese Elektroden auf, wodurch es zu einem Elektronenfluss von der Kathode zur Anode kommt. Dieser Vorgang erzeugt eine messbare elektrische Spannung, die proportional zum PaO₂ in der untersuchten arteriellen Blutprobe ist. Die Umwandlung der gemessenen Spannung in die Einheit mmHg des PaO₂ erfolgt anhand einer Kalibrierungskurve. Die Analysezeit beträgt insgesamt ca. 60 s.

Abbildung 6 Die Clark'sche Elektrode zur direkten PaO₂-Messung Dargestellt ist hier das Messprinzip des arteriellen Sauerstoffpartialdrucks mithilfe der Messelektrode nach Clark im Rahmen der Blutgasanalyse. Die Abbildung wurde erstellt nach dem Vorbild von Gonzalez et al. (78). <u>Legende</u>: I — Stromstärke; KCI — Kaliumchlorid; O₂ — Sauerstoff; V — Volt

2.5.2 Der klinische Einsatz des PaO2 zur Erfolgskontrolle der Präoxygenierung

Der PaO₂ gilt als Goldstandard zur Beurteilung der Sauerstoffversorgung des Gewebes bzw. des Körpers (vergleiche Kapitel 2.1.4, S 8). In Bezug auf die beschriebene Sauerstoffkaskade im Körper wird deutlich, dass der PaO₂ von den Einflussfaktoren vorheriger Stufen der Sauerstoffkaskade abhängig ist (siehe Kapitel 2.1.1, S 5). Hier sind beispielsweise die FiO₂, der transpulmonale Gasaustausch, das alveoläre Ventilations-Perfusions-Verhältnis und die AaDO₂ zu nennen. Während der Präoxygenierung wirken sich Veränderungen der Einflussfaktoren vorheriger Stufen der Sauerstoffkaskade auf den PaO₂ aus. Ebenso kann der PaO₂ bei nicht suffizient durchgeführter Präoxygenierung mit einem Abfall bzw. einem geringeren Anstieg als erwartet auf diese Probleme hindeuten (79).

Der PaO₂ liegt bei Raumluftatmung (FiO₂ = 0,21) im Bereich von in etwa 75 bis maximal 100 mmHg (35). Während der Präoxygenierung atmet der Patient hohe Sauerstoffkonzentrationen ein (beispielsweise $FiO_2 = 1$). Der PAO₂ steigt an und in Abhängigkeit zur AaDO₂ ist ebenfalls ein PaO₂-Anstieg zu erwarten (vergleiche Kapitel 2.3.3, S. 12). Es wird vermutet, dass die hohe FiO₂ während der Präoxygenierung dem Euler-Liljestrand-Mechanismus in der Lunge entgegenwirkt und zu einem veränderten Ventilations-Perfusions-Verhältnis führt (vergleiche Kapitel 2.4.2, S. 19) (68). Es resultiert eine zunehmende AaDO₂, welche ein Maß für den transpulmonalen Gasaustausch darstellt. Sie beträgt bei Inspiration von Raumluft altersabhängig 10 – 20 mmHg und kann bei einer $FiO_2 = 1,0$ auf bis zu 25 – 70 mmHg ansteigen (35).

Zudem nehmen Veränderung in der Größe der FRC, z. B. durch die Lagerung des Patienten zur Präoxygenierung und bestehende pulmonale Vorerkrankungen, Einfluss auf den PaO₂ (siehe Kapitel 2.3.6, S. 15).

Der PaO₂-Messbereich klinisch genutzter BGA-Geräte erstreckt sich von 10 bis 550 mmHg und ermöglicht so eine Beurteilung des PaO₂ im hypoxischen bis einschließlich hyperoxischen Sauerstoffbereich. Der theoretisch maximal erreichbare PaO₂ von 648 bis 603 mmHg (siehe Kapitel 2.3.3, S. 12) während Präoxygenierung kann nicht genau mithilfe der BGA detektiert werden. Für Werte über dem angegebenen Messbereich gibt das BGA-Gerät "PaO₂ > 550 mmHg" an.

Für die Bestimmung des PaO₂ im Rahmen der BGA ist eine arterielle Probengewinnung durch Einmalpunktion oder Etablierung eines arteriellen Zugangs erforderlich. Die Analysezeit bzw. die Zeit bis zum Erhalt des Ergebnisses machen mehrere Messungen oder ein kontinuierliches Monitoring einer dreiminütigen Präoxygenierung klinisch nicht möglich (siehe Kapitel 3.6, S. 52). Die Zeit, die nach der Probengewinnung bis zum Erhalt des Ergebnisses verstreicht, beträgt in der Studie von Keiniger et al. je nach verwendetem Probennehmer (siehe Radiometer Aspirator im Kapitel 3.5.1 S. 47) und BGA-Gerät zwischen 184 s (Median; Bereich 600 - 123 s) und 223 s (Median; Bereich 810 – 148 s) (80). In der Zeit von der Blutentnahme bis zum Ergebnis kann es jedoch aufgrund z. B. einer undichten Maske, zu einer sinkenden FiO₂ und folglich zu einer regredienten Denitrogenisierung bis hin zu einem PaO₂-Abfall gekommen sein. Im geschilderten Beispiel wird ein PaO₂-Abfall mit der invasiven und nichtkontinuierlichen BGA leicht übersehen.

Bei der Verwendung eines BGA-Geräts zur PaO₂-Messung ist die Zeit vor der eigentlichen Probenmessung in die Ergebnisbeurteilung einzubeziehen. Die Präanalytik ist definiert als Phase vor der eigentlichen Probenanalyse. Hierzu zählen unter anderem die Probenentnahme und Probenvorbereitung. Fehler in dieser Phase können fehlerhafte Ergebnisse zur Folge haben, insbesondere im Bereich der Blutgase bzw. dem PaO₂ (siehe Kapitel 3.5.4, S. 49).

Insgesamt lässt sich zusammenfassen, dass mithilfe der BGA die PaO₂-Messung über den Großteil des O₂-Bereichs von Hypoxie, Normoxie bis einschließlich der Hyperoxie, eine Erfolgskontrolle der Präoxygenierung bzw. eine Beurteilung der O₂-Versorgung des Gewebes anhand des PaO₂ sehr präzise möglich ist. Jedoch ist eine kontinuierliche Überwachung bzw. Erfolgskontrolle aufgrund der invasiven Blutentnahme sowie der unregelmäßigen und verzögerten Ergebnisse nicht möglich. Hinzukommen die generellen Risiken einer arteriellen Kanülierung mit einer Infektion der Punktionsstelle sowie einer Ischämie distaler Extremitäten.

2.6 Die partielle Sauerstoffsättigung

2.6.1 Die Funktionsweise der Pulsoxymetrie

Die Pulsoxymetrie stellt heutzutage den Mindeststandard zur O₂-Überwachung unter kontinuierlicher nichtinvasiver transkutaner Detektion der SpO₂ im Blut dar (siehe Formel 1,

S. 26). Die SpO₂ beschreibt den prozentualen Anteil des oxygenierten Hämoglobins (O₂Hb) an der Summe von O₂Hb und desoxygeniertem Hämoglobin (HHb). Diese Hämoglobinderivate ermöglichen den reversiblen O₂-Transport, weshalb die SpO₂ auch als funktionelle Sauerstoffsättigung bezeichnet wird.

$$SpO_2 = \frac{O_2Hb}{O_2Hb + HHb} * 100 \qquad SaO_2 = \frac{O_2Hb}{O_2Hb + HHb + MetHb + COHb} * 100$$

Formel 1 Die partielle und fraktionelle Sauerstoffsättigung im Vergleich

Dargestellt ist der Zusammenhang, aus dem sich die partielle bzw. die fraktionelle Sauerstoffsättigung ergibt. Es werden ausschließlich die funktionalen Hämoglobinderivate bei der Berechnung der partiellen Sauerstoffsättigung im Gegensatz zur fraktionellen Sauerstoffsättigung berücksichtigt.

<u>Legende</u>: COHb — Carboxyhämoglobin; HHb — desoxygeniertes Hämoglobin; MetHb — Methämoglobin; O₂Hb — oxygeniertes Hämoglobin; SaO₂ — fraktionelle Sauerstoffsättigung; SpO₂ — partielle Sauerstoffsättigung

Die dysfunktionalen Hämoglobinderivate, Methämoglobin (MetHb) und Carboxyhämoglobin (COHb) werden nicht bei der Pulsoxymetrie bzw. SpO₂-Messung berücksichtigt. Neuere Multiwellenlängen-CO Oxymeter können zwischen O₂Hb, HHb, MetHb und COHb differenzieren und dadurch die sogenannte fraktionelle Sauerstoffsättigung (SaO₂) messen.

Die Pulsoxymetrie beruht auf dem Prinzip, dass elektromagnetische Strahlung, die ein Medium durchdringt, von diesem absorbiert wird. Unter Berücksichtigung des Bouguer-Lambert-Beer'schen Gesetzes (siehe Formel 2, S. 26) ist die transmittierte Lichtintensität abhängig vom wellenlängenspezifischen Extinktionskoeffizienten, der Stoffkonzentration und der Schichtdicke des Mediums (81).

$$I = I_0 e^{-\varepsilon_{\lambda} * c * d} \qquad E_{\lambda} = \log_{10} \left(\frac{I_0}{I} \right) = \varepsilon_{\lambda} * c * d$$

Formel 2 Das Bouguer-Lambert-Beer´sche Gesetz

Dargestellt ist das Bouguer-Lambert-Beer´sche Gesetz (81) einmal für die Intensität des transmittierten Lichts und einmal umgeformt für den wellenlängenabhängigen Extinktionskoeffizienten.

Die Extinktion, auch optische Dichte genannt, ist ein Maß für die Intensitätsabschwächung bzw. Absorption des Lichts mit einer bestimmten Wellenlänge. Die funktionalen Hämoglobinderivate weisen unterschiedliche Extinktions- bzw. Absorptionsspektren auf (siehe Abbildung 7, S. 27). Die absorbierte Lichtmenge von rotem Licht (660 Nanometer (nm)) ist beim HHb um das Zehnfache höher als beim O₂Hb. Wohingegen O₂Hb nahinfrarotes Licht (880 – 950 nm) besser absorbiert als HHb (18).

Aus diesem Grund kommen in klinisch genutzten Pulsoxymeter zwei Lichtwellen mit der Wellenlänge 660 nm und 940 nm zur Anwendung. Dabei sind die unterschiedliche Absorption und die gute Gewebedurchdringung des infraroten und des roten Lichts ein rein messtechnischer Zufall.

Die Absorption des O₂Hb und HHb ändert sich im zeitlichen Messverlauf während jedes kardialen Zyklus aufgrund der Zunahme und Abnahme des arteriellen Blutvolumens bzw. der zyklischen Änderung der Wegstrecke bzw. Dicke (siehe Formel 3.1, S. 27).

<u>Legende</u>: *c* — Konzentration des durchstrahlten Mediums; *d* — Schichtdicke des durchstrahlten Mediums; e — Eulersche Zahl; E_{λ} — wellenlängenabhängige Extinktion; ε_{λ} — wellenlängenabhängiger Extinktionskoeffizient; *I* — Intensität des transmittierten Lichts; *I*₀ — Intensität des eingestrahlten Lichts; *log*₁₀ — dekadischer Logarithmus

Abbildung 7 Die Absorptionsspektren der unterschiedlichen Hämoglobinspezies Dargestellt sind die Extinktionskoeffizienten des Oxyhämoglobins (rot) und des Dexoxyhämoglobins (blau) als Funktion abhängig von der Wellenlänge des verwendeten Lichts. Die Abbildung wurde erstellt nach dem Vorbild von Chan et al. (19).

<u>Legende:</u> HHb — Desoxyhämoglobin; I/mol*cm — Liter pro Stoffmenge mal Zentimeter; nm — Nanometer; O_2Hb — Oxyhämoglobin

Absorption wird in der Literatur als pulsatile Komponente Diese oder Wechselstrom-Komponente (engl.: alternating current [AC-Komponente]) bezeichnet (19). Die Absorption des restlichen, nichtarteriellen Volumens an der Messstelle, wird der nichtpulsatilen Komponente oder Gleichstrom-Komponente (engl.: direct current [DC-Komponente]) zugeordnet. Stellt man die Extinktion bzw. Transmission des Lichts an der Messstelle des Pulsoxymeters in Abhängigkeit der Zeit graphisch dar, erhält man das Photoplethysmogramm, das umgangssprachlich als "Pulsoxymeterkurve" bekannt ist.

Die Extinktion wird in Abhängigkeit der vorherrschenden Konzentrationen von O₂Hb und HHb, den jeweiligen wellenlängenspezifischen Extinktionskoeffizienten für beide Wellenlängen des Pulsoxymeters, als Quotient berechnet (siehe Formel 3.2, S. 27). Dies wird jeweils zusätzlich für die ACund DC-Komponente durchgeführt. um die arteriell bedinaten Absorptionsänderungen zu berücksichtigen. Ein Mikroprozessor im Pulsoxymeter berechnet dieses doppelte Verhältnis als Verhältniswert R über eine Zeitabfolge aufeinanderfolgender Pulse (siehe Formel 3, S. 27) (82).

$$Ratio(R) = \frac{E(\lambda_{Red})}{E(\lambda_{IR})} = \frac{[c_{O_2Hb} * \varepsilon_{O_2Hb}(\lambda_{Red}) + c_{HHb} * \varepsilon_{HHb}(\lambda_{Red})] * d}{[c_{O_2Hb} * \varepsilon_{O_2Hb}(\lambda_{IR}) + c_{HHb} * \varepsilon_{HHb}(\lambda_{IR})] * d} (3.1)$$

Ratio of Ratios =
$$\frac{E(\lambda_{Red})}{E(\lambda_{IR})} = \frac{\frac{\Delta I_{Red}}{I_{Red}}}{\frac{\Delta I_{IR}}{I_{IR}}} = \frac{\frac{AC_{Red}}{DC_{Red}}}{\frac{AC_{IR}}{DC_{IR}}}$$
(3.2)

Formel 3 Die Verhältniswertbildung der Pulsoxymetrie

Dargestellt ist zum einen der herzzyklusunabhängige Verhältniswert (R) und zum anderen das Verhältnis der Verhältniswerte der Wechselstrom- und Gleichstrom-Komponente

<u>Legende:</u> AC — Wechselstrom-Komponente; c — Konzentration; d — Schichtdicke; DC — Gleichstrom-Komponente; E — Extinktion; ε — Extinktionskoeffizient; HHb — Desoxyhämoglobin; I — Intensität des transmittierten Lichtes; IR — infrarotes Licht; ΔI — Intensitätsänderung; O₂Hb — Oxyhämoglobin; Red — rotes Licht

Hiernach greift das herkömmliche Pulsoxymeter auf eine Kalibrierungskurve zurück. Diese wurde anhand von gesunden Probanden empirisch bei einer SpO₂ zwischen 70 % und 100 % während der Entwicklung der herkömmlichen Pulsoxymetrie generiert (83). Dieser Schritt ermöglicht die Transformation der Verhältniswerte in die Ausgabeform (%) der SpO₂-Werte.

Abbildung 8 Die Transformation in Prozentwerte der SpO₂ im Rahmen der Pulsoxymetrie Dargestellt ist der Vorgang der Umwandlung aus errechneten Verhältniswerten in die Ausgabewerte der partiellen Sauerstoffsättigung innerhalb des Pulsoxymeters. Die Abbildung wurde erstellt nach dem Vorbild von Chan. et al. (19). Legende: IR — infrarotes Licht; Red — rotes Licht; SpO₂ — partielle Sauerstoffsättigung

Betrachtet man zwei Fälle der Absorptionsverhältnisse wird es deutlicher. Im ersten Fall ist die Amplitude der Rotlichtabsorption größer als die Infrarotabsorption. Der Verhältniswert ist groß und liegt weit links in der oben abgebildeten Grafik (siehe Abbildung 8, S. 28). Direkter ausgedrückt, bedeutet eine hohe Rotlichtabsorption auch eine hohe Konzentration an HHb und folglich eine niedrigere SpO₂. Im zweiten Fall ist die Amplitude der Infrarotabsorption größer. Folglich ist mehr O₂Hb an der Messstelle zugegen und der Verhältniswert R ist klein. Der zugehörige Wert der SpO₂ ist demnach hoch.

Durch die aufgeführten Messtechniken und zugrundeliegenden Annahmen ist es mit der Pulsoxymetrie bzw. SpO₂ möglich, eine relativ gute Schätzung der tatsächlichen SaO₂ zu erhalten. Es wird aber deutlich, dass ein adäquater Puls im Bereich der Messstelle für die reibungslose Arbeitsweise der Pulsoxymetrie unabdingbar ist.

Die Pulsoxymetrie wird heutzutage klinisch flächendeckend als nichtinvasive und kontinuierliche in-vivo Messung angewendet. Sie kann aber auch in-vitro mithilfe heutiger BGA-Geräte bestimmt werden (21). Die Pulsoxymetrie revolutionierte nach ihrer Einführung in der Medizin ab 1980 die nichtinvasive Überwachung der O₂-Versorgung von Patienten. Studien der letzten Jahrzehnte zeigen, dass die Verwendung der Pulsoxymetrie frühzeitig drohende bzw. akute Hypoxien erkannte und sie meist nicht übersehen wurden. Dies führte in der Vergangenheit zu einem Rückgang der hypoxiebedingten Morbidität sowie Mortalität. Die Pulsoxymetrie ist heutzutage in der Überwachung einer Anästhesie der fest etablierte Mindeststandard (84).

In den letzten Jahren wurde das bislang genutzte Messprinzip bzw. Pulsoxymetermodell durch die Firma Masimo[®] (Irvine, Kalifornien, Vereinigte Staaten von Amerika) vor allem durch

Entwicklungen in der Messwertverarbeitung und der Messtechnik weiterentwickelt. In der vorliegenden Untersuchung wird die SpO₂-Technologie der Firma Masimo[®] verwendet. Die bis dahin verwendeten Pulsoxymeter aller Hersteller fußten auf dem Pulsoxymetermodell mit der Annahme, dass das arterielle Blut die einzige pulsierende lichtabsorbierende Komponente (AC-Komponente) darstellt. In Situationen schlechter Perfusion und Patientenbewegungen kam es häufig zu Fehlalarmen (85). Die bislang durchgeführten Vergleichsstudien zwischen der Masimo Signal Extraction Technology [®] (SET[®]) Pulsoxymetrie und Pulsoxymetern anderer Hersteller zeigten weniger Fehlalarme und genauere Messwerte der neueren bzw. weiterentwickelten Pulsoxymetern (86, 87). Die SET[®]-Pulsoxymetrie geht davon aus, dass nicht nur arterielles, sondern auch venöses Blut pulsieren kann. Daher fußt die SET[®]-Verarbeitungssoftware ausschließlich auf der Annahme, dass arterielles Blut eine höhere Oxygenierung aufweist als venöses Blut.

2.6.2 Der klinische Einsatz zur Erfolgskontrolle der Präoxygenierung

Während der Durchführung einer Präoxygenierung wird sukzessiv O_2 in der FRC der Lunge angereichert. O_2 diffundiert in die Lungenkapillare, bis sich ein annähernder Partialdruckausgleich zwischen Alveolarraum und Kapillare eingestellt hat. Demzufolge sollte der Pa O_2 während der Präoxygenierung über die Pa O_2 -Werte von 70 – 100 mmHg, die altersund patientenabhängig unter Raumluftatmung (Fi O_2 = 0,21) vorherrschen, ansteigen.

Ein PaO₂-Anstieg im Bereich von 80 mmHg und höher geht mit einem nur geringen SpO₂-Anstieg einher. Grund hierfür ist der S-förmige Verlauf der Sauerstoffbindungskurve (siehe Abbildung 9, S. 29).

Abbildung 9 Die Sauerstoffbindungskurve

Dargestellt ist der Zusammenhang zwischen dem Sauerstoffpartialdruck und der Sauerstoffsättigung im hypoxischen und normoxischen Sauerstoffbereich. Die Abbildung wurde erstellt nach dem Vorbild von Collins et al (88).

<u>Legende:</u> mmHg — Millimeter-Quecksilbersäule; % — Prozent

In dieser Situation ist ein Großteil aller funktionalen Hämoglobinderivate mit molekularem Sauerstoff gesättigt. Unter Fortführung der Präoxygenierung steigt der PaO₂ weiter an, währenddessen das Pulsoxymeter hierfür durchweg Werte ≥ 98 % anzeigt (89). Dabei kann der PaO₂ im Verlauf der Präoxygenierung bis auf Werte von 603 bis 648 mmHg ansteigen (siehe Kapitel 2.3.3, S. 12). Der Anstieg der SpO₂ von 98 % auf 100 % kann den vergleichsweisen großen PaO₂-Anstieg nicht adäquat abbilden. Die Pulsoxymetrie ist demzufolge während der Präoxygenierung bzw. einem steigenden $PaO_2 > 100 \text{ mmHg}$ in ihrer diagnostischen Aussagekraft hyperoxische Bereiche in hinsichtlich des zugrundeliegenden Messprinzips begrenzt (16).

Zudem gibt eine konstante SpO₂ > 98 % unter normoxischen und hyperoxischen Bedingungen nur eine eingeschränkte Sicherheit, die durch einen abrupten Sättigungsabfall nicht vorhersehbar beendet werden kann (13). Die Hyperoxie stellt somit klinisch generell die Hauptlimitation der Pulsoxymetrie dar.

Zusammenfassend ist festzustellen, dass die Pulsoxymetrie ausschließlich als Negativnachweis der Präoxygenierung eingesetzt werden kann, da wegen des zugrundeliegenden Messprinzips die Überwachung hyperoxischer Zustände nicht möglich ist. Eine diagnostische Aussage über eine erfolgreiche Präoxygenierung ist anhand einer SpO₂ > 98 % nicht möglich, da hier der PaO₂ in einem großen Bereich zwischen 100 und 648 mmHg liegen kann. Mit einem SpO₂-Abfall auf < 98 % bzw. auf 75 % wird jedoch angezeigt, dass der Sauerstoffspeicher in der FRC zu Neige geht bzw. erschöpft ist und eine Oxygenierung des gemischtvenösen Blutes in der Lunge fortan ausbleibt.

2.7 Der Oxygen Reserve Index

2.7.1 Das Funktionsprinzip

Der ORI ist ein von der Firma Masimo[®] entwickelter Index, der für eine Anwendung im leicht hyperoxischen Sauerstoffbereich (PaO₂ > 100 mmHg bis PaO₂ < 200 mmHg) konzipiert ist. Er basiert auf einem nicht veröffentlichten Algorithmus und soll eine nichtinvasive Überwachung von Patienten, die zusätzlich O₂ erhalten, ermöglichen. Hierbei kommt der sogenannte RD rainbow Lite SETTM-Sensor (siehe Kapitel 3.5.3, S. 48) zum Einsatz, der im Gegensatz zu einem herkömmlichen Pulsoxymetriesensor vier statt zwei Lichtwellenlängen verwendet. Laut Hersteller, können hierdurch Änderungen der SvO₂ aufgrund einer veränderten Hintergrundlichtabsorption im Bereich der Messstelle detektiert werden. Der Hersteller nutzt den Umstand, dass unter physiologischen Bedingungen die SvO₂ unter normoxischen und leicht hyperoxischen Sauerstoffbedingungen weiter ansteigt, wenngleich die SaO₂ ab einem PaO₂ von 100 mmHg ihr Maximum mit Werten von 100 % erreicht und nicht weiter zunimmt (siehe Abbildung 10, S. 31). Dies bedeutet, dass die pulsatile Gesamtabsorption ab diesem Moment nicht mehr durch eine ansteigende SaO₂ im Bereich der Messstelle zu erklären ist. Zunehmend stellt sich eine physiologische Bedingung ein, in der das Sauerstoffangebot den VO₂ in der Peripherie bzw. am Organ weiter übersteigt. Der zunehmende Anteil an physikalisch gelöst transportiertem O₂ im arteriellen Blut deckt einen größeren Teil des O₂-Bedarfs, wodurch die Freisetzung des O₂ aus dem Hämoglobin abnimmt und die SvO₂ ansteigt. Nach dem Funktionsprinzips des ORI (siehe Anhang Kapitel 8.1, S. 95) ist die weiter proportional zum PaO₂ steigende SvO₂ im PaO₂-Bereich von 100 bis 200 mmHg allein für die Änderung der Gesamtabsorption verantwortlich. Auf dieser Annahme des Herstellers basiert der Versuch mithilfe des ORI, die nichtinvasive Detektion des PaO₂-Verlaufes im Bereich von 100 bis 200 mmHg abzubilden. Laut Hersteller erreicht die SvO₂ ein Maximum bei einem PaO₂ von etwa 200 mmHg. Das Funktionsprinzip des ORI beruht auf dem Fick'schen Prinzip (siehe Anhang 8.2, S. 97). Daher werden vom Hersteller ein konstanter VO₂ und ein konstantes HZV vorausgesetzt, damit der proportionale Zusammenhang zwischen der SvO₂ und PaO₂ im PaO₂.Bereich 100 – 200 mmHg gegeben ist.

Abbildung 10 Die arterielle und venöse Sauerstoffsättigung unter steigendem Sauerstoffpartialdruck Dargestellt ist der Verlauf der arteriellen (rot) und venösen (blau) Sauerstoffbindungskurve. Im Bereich der Hypoxie und Normoxie kann, im Rahmen der Pulsoxymetrie mithilfe der Absorptionsänderung infolge einer Änderung der arteriellen Sauerstoffsättigung, die partielle Sauerstoffsättigung gemessen werden. Im Bereich der Hyperoxie (Sauerstoffpartialdruck > 100 mmHg) nimmt die venöse Sauerstoffsättigung, weiter zu. Hierdurch bewirkt die Änderung der venösen Sauerstoffsättigung eine Änderung der Absorption des einfallenden Lichtes der vier lichtemittierenden Dioden des Messsensors. Laut Hersteller ist es hiernach möglich, die Messsignale zu extrahieren und Änderungen des arteriellen Sauerstoffpartialdrucks durch Änderungen der venösen Sauerstoffsättigung an der Messstelle zu detektieren. Die postkapilläre venöse Sauerstoffsättigung unterscheidet sich in den peripheren Geweben (siehe Kapitel 2.7.2, S. 32) und wird hier beispielhaft zwischen 60 % und 70 % dargestellt. Die Abbildung wurde erstellt nach dem Vorbild von Scheeren et al. (90).

<u>Legende:</u> mmHg — Millimeter-Quecksilbersäule; ORI — Oxygen Reserve Index; PaO₂ — arterieller Sauerstoffpartialdruck; % — Prozent

2.7.2 Mögliche klinische Grenzen des Funktionsprinzips des ORI

Der ORI kann im klinischen Einsatz an seine Grenzen kommen, wenn der VO₂ bzw. die avDO und das HZV nicht konstant sind und somit die Voraussetzungen des Fick'schen Prinzips nicht gegeben sind (siehe Anhang 8.1, S. 95). Es ist zu betonen, dass der Hersteller Masimo[®] die ORI-Technologie nur in Teilen veröffentlicht hat und der nicht veröffentlichte Teil ist ein geschützter Algorithmus. Dies ist zu sehen anhand des Whitepapers "Oxygen Reserve Index (ORI[®])" (siehe Anhang Kapitel 8.1, S. 95). Im Folgenden kann dieser Umstand dazu führen, dass fälschlicherweise Einflussfaktoren vermutet werden, die mit dem Wissen des exakten Algorithmus zur Kalkulation des ORI nicht als solche identifiziert worden wären.

Situationen, in denen es zu einer Abweichung der avDO₂ kommt, können die Aussagekraft des ORI deutlich einschränken. Der ORI schließt, wie in vorherigen Kapiteln beschrieben, auf Grundlage der SvO₂, auf den PaO₂. Ein Anstieg der avDO₂ wird bei einem Abfall des HZV, bei Fieber, bei einem pH-Abfall, bei einer Vasodilatation und bei einer Steigerung des VO₂ im Gewebe beobachtet. Eine Abnahme der avDO₂ erfolgt hingegen bei einem Anstieg des HZV, einer Hypothermie, einem pH-Anstieg sowie einer Vasokonstriktion (91). Unter diesen Umständen könnte der ORI fälschliche Schlüsse auf Grundlage der SvO₂ in Hinblick auf den PaO₂ ziehen. Interessant ist in diesem Kontext, dass eine vorliegende Hyperoxie zu einer niedrigeren Herzfrequenz und zu einer systemischen Vasokonstriktion, nach den Beobachtungen von Asfar et al., führen kann (92).

Für die reibungslose Funktionsweise des ORI ist eine ausreichende venöse Perfusion wichtig. Das Ausmaß der venösen Absorption ist von der Perfusion an der Messstelle des ORI-Klebesensors abhängig. Im Funktionsprinzip des ORI bilden die nichtinvasiv detektierte venöse Absorption und die venöse Perfusion ein Produkt. Masimo gibt die venöse Perfusion als einen Faktor deutlich kleiner 1 an (siehe Anhang Kapitel 8.1, S. 95).

Die kutane Perfusion ist sehr variabel, da die Haut eine große Rolle in der Thermoregulation des Körpers spielt. Unter körperlicher Ruhe und Thermoneutralität (27 °C) beträgt die Hautdurchblutung bei einem Erwachsenen rund 6 % des HZV (1/3 I / min). Die spezifische Durchblutung beträgt hierbei 10 – 20 ml/min/100g. Die Hautdurchblutung kann unter starkem Einfluss von Kälte auf 1 ml/min/100g fallen und unter starkem Wärmeeinfluss auf etwa maximal 150 – 200 ml/min/100g ansteigen (111). Die Haut besitzt sehr ausgeprägte Venengeflechte, die folglich große Blutmengen aufnehmen können bei erhöhter Perfusion. Diese ist weitgehend über die arterielle Durchblutung reguliert. Bei einem hohen Sympathikustonus steigt der Tonus der Arteriolen und führt zu einer Vasokonstriktion. Durch diese Widerstandserhöhung gelangt weniger Blut in die Mikrozirkulation und die venöse Perfusion nimmt ab. Minderperfusion kann zu einer Mikrozirkulationsstörung führen. Hierbei liegt eine verminderte Sauerstoffextraktion vor, die eine erhöhte SvO₂ verursacht (112).

32

Zudem befinden sich im Bereich der Akren bzw. Finger arteriovenöse Anastomosen (im Nagelbett ca. 500 / cm²), die fast ausschließlich noradrenerg (vasokonstriktorisch) vom hypothalamischen Wärmezentrum gesteuert werden. Sie besitzen in Ruhe einen niedrigen Tonus, reagieren aber auf lokale Temperaturunterschiede. Unter Wärmeeinfluss dilatieren sie und unter Kälteeinfluss konstringieren sie (113).

Darüber hinaus zeigten, wie bereits erwähnt, Asfar et al., dass eine Hyperoxie die Herzfrequenz senken und zu einer systemischen Vasokonstriktion führen kann (92).

All diese beschriebenen Umstände bzw. das Ausmaß der venösen Perfusion können möglicherweise die Funktionsweise des ORI beeinträchtigen.

Einflussfaktoren der Sauerstoffbindungskurve, wie z. B. der pH-Wert, die Temperatur und das Vorhandensein von Dyshämoglobinen können ebenfalls die Aussagekraft des ORI beeinflussen (93).

Es ist zu beachten, dass die Sauerstoffsättigung des Blutes vom Gefäßabschnitt, dem Organsystem sowie dem Bestimmungsort abhängt. Da Masimo die ORI-Messung mithilfe des Klebesensors am Finger durchführt, wird hier messtechnisch die SvO₂ detektiert. Die SvO₂ liegt im postkapillären Bereich der Haut bei etwa 88 % im Ruhezustand und unter Thermoneutralität. Im postkapillären Bereich der Muskeln beträgt sie etwa 71 % (94). Limitationen venöser Sättigungen, besonders zentralvenöse (70 - 75 %) und gemischtvenöse (75 %) Sauerstoffsättigungen, sind trotz ihres hohen Stellenwertes in der Intensivmedizin zu beachten. Metzger et al. weisen darauf hin, dass eine hochnormale SvO₂ nicht darauf schließen lassen sollte, dass kein pathologisches Verhältnis zwischen O₂-Angebot und O₂-Verbrauch vorliegt. Umgekehrt kann das Vorliegen einer niedrigen SvO₂ (< 65 %) auf eine erhöhte Sauerstoffausschöpfung, eine kardialen Problematik mit erniedrigtem HZV oder eine Hypovolämie zurückzuführen sein (95).

Die SvO₂ ist, neben den bisher genannten Einflüssen, auch von der Körpertemperatur abhängig. Mehrere Studien zeigten, dass sich die SvO₂ umgekehrt proportional zur Körpertemperatur verhält (93). Klinische Situationen, wie bei der Wiedererwärmung nach der Hypothermiephase unter Verwendung der Herz-Lungen-Maschine oder nach therapeutischer Hypothermie infolge eines Herzkreislaufstillstandes, führen zu einem Abfall der SvO₂ (95). Hiernach stellt sich die Frage, ob eine abkühlende Extremität bzw. kühle Finger während der Narkoseeinleitung, verhältnismäßig ähnliche Einflüsse auf die venöse Sättigung besitzen könnte.

Die in diesem Absatz beschriebenen Einschränkungen bzw. Umstände könnten, auf den Zusammenhang zwischen der SvO₂ und ORI übertragen, die Aussagekraft des ORI beeinflussen. Dabei ist jedoch festzuhalten, dass die Wahl der SvO₂ im Gegensatz zum PvO₂ als positiv zu werten ist. Im venösen Bereich der Sauerstoffbindungskurve reagiert die SvO₂ viel schneller als der PvO₂ (siehe Kurvenverlauf Abbildung 10 und Kapitel 2.7.1, S. 31)

33

Liegt bei einem Patienten eine Anämie vor, sinkt der Anteil an O₂Hb und HHb proportional hierzu. Die nichtinvasiven Technologien der Pulsoxymetrie bzw. des ORI nehmen sich das Bouguer-Lambert-Beer-Gesetz messtechnisch zur Hilfe. Dieses berücksichtigt nicht die Streuung der Lichtwellen durch menschliches Gewebe im Strahlengang. Die verwendeten Kalibrierungskurven bzw. die R-Wertbildungen (siehe Kapitel 2.6.1, S. 25) sowie die Entwicklung des ORI wurden bei gesunden, nicht anämischen Patienten durchgeführt. Die Anzahl der Erythrozyten im Strahlengang des Messsensors beeinflusst die Lichtstreuung. Diese ist bei anämischen Patienten geringer. Somit ändert sich die Weglänge der gemessenen Lichtwellen an der Messstelle zwischen den lichtemittierenden Dioden (LED) und der Photodiode. Dieser messtechnische Zusammenhang während einer schweren Anämie mit gleichzeitiger Hypoxie führt zu einer Verzerrung der R-Werte. Folglich unterschätzt der SpO₂-Wert die vorliegende SaO₂ (96). Die fehlerhafte Abweichung bzw. die Richtung des Fehlers ist im Rahmen einer Frühwarnung vor drohender Hypoxie von Vorteil. Inwieweit der ORI-Wert von dem Vorliegen einer Anämie beeinflusst wird, ist bislang unklar.

2.7.3 Relevante Erkenntnisse bisheriger ORI-Studien

2.7.3.1 Einführung

Der ORI wurde nach seiner Markteinführung 2014 in verschiedenen klinischen Situationen und im Rahmen einiger Studien untersucht. In der folgenden Darstellung bisheriger Studienergebnisse wird sich der Übersicht halber auf die für das Thema der vorliegenden Dissertationsschrift relevanten Punkte beschränkt. Zu Beginn werden die Ergebnisse erfolgter Zusammenhangsanalysen zwischen ORI und PaO₂ dargestellt. Darauf aufbauend werden die Erkenntnisse aus Studien zur zusätzlichen Warnzeit des ORI vor drohender Hypoxie und zur Überwachung klinisch durchgeführter Sauerstofftherapien beschrieben. Daran anknüpfend werden Erkenntnisse über das Erreichen eines sogenannten ORI-Plateaus, über ausgewählte individuelle *Cut-off-*Werte des ORI für bestimmte PaO₂-Werte und über *Cut-off-*Werte des ORIsensiblen PaO₂-Bereichs dargestellt. Zum Schluss werden die bisherigen relevanten Ergebnisse für den klinischen Einsatz bzw. den Nutzen des ORI zur Erfolgskontrolle der Präoxygenierung zusammengefasst.

2.7.3.2 Der Zusammenhang zwischen PaO₂ und ORI

In mehreren Studien wurden Zusammenhangsanalysen zwischen dem ORI und dem PaO₂ durchgeführt (23-26). Hierbei wurde untersucht, wie gut der ORI messtechnisch die Absorptionsänderung der SvO₂ schätzt und hierüber auf den vorherrschenden PaO₂ zurückschließt (siehe Anhang 8.2, S. 97). Der PaO₂ wurde mittels arterieller BGA, dem

aktuellen klinischen Goldstandard zur Messung der Blutgase im hyperoxischen Sauerstoffbereich, ermittelt. Zeitgleich wurde der ORI vom Monitor dokumentiert bzw. retrospektiv aus dem Speicher des Monitors ausgelesen. Bei der folgenden Darstellung der Studien werden beide Messwerte (PaO₂, ORI) zu einem definierten Messzeitpunkt als Messpaar bezeichnet.

Applegate et al. stellten fest, dass die beobachteten Messpaare von insgesamt 106 erwachsenen Patienten über den gesamten PaO_2 -Messbereich (100 – 648 mmHg) keinen linearen Zusammenhang aufwiesen. Eine örtliche Gewichtung unter Einschluss aller Messpaare, bei denen der $PaO_2 \le 240$ mmHg betrug (1087 von 1553 Fällen) ergab eine positive lineare Korrelation (Korrelationskoeffizient = 0,536). Die Analyse der restlichen Messpaare mit einem $PaO_2 > 240$ mmHg (466 von 1553 Fällen), zeigte einen Korrelationskoeffizient von 0,0016 und somit keinen linearen Zusammenhang zwischen dem PaO_2 und dem ORI auf (26).

Koishi et al. bestätigten die Ergebnisse von Applegate et al. nach Analyse von 68 Messpaaren, bei denen der PaO_2 ebenfalls \leq 240 mmHg betrug. Hierbei wurde eine starke Korrelation mit einem Korrelationskoeffizient von 0,671 beobachtet. Es kam jedoch bei 5 der 15 beobachteten erwachsenen Patienten einschränkend zeitweise zu Trendabweichungen, die sich innerhalb von 30 s normalisierten (25).

Auch Yoshida et al. erhielten unter Einbezug von 69 Messpaaren erwachsener Patienten, bei denen der $PaO_2 \le 240$ mmHg betrug, eine positive Korrelation mit einem Korrelationskoeffizient von 0,706. Darüber hinaus lag in dieser Studie die Konkordanzrate des ORI-Trends und des PaO_2 -Trends bei 100 % (23). Dies bedeutet, dass während der Beobachtung ein steigender bzw. fallender PaO_2 übereinstimmend mit einem steigenden bzw. fallenden ORI beobachtet wurde.

Vos et al. grenzten die Zusammenhangsanalyse, im Vergleich zu den bisher genannten Autoren, auf den vom Hersteller als ORI-sensiblen bezeichneten Bereich ($PaO_2 \ge 100 \text{ mmHg}$; $PaO_2 \le 200 \text{ mmHg}$) ein. Hierzu wurden an 20 gesunden Probanden mit jeweils zwei parallel verwendeten Sensoren 630 Messpaare erhoben. Für den jeweiligen Sensor wurden Korrelationskoeffizienten von 0,78 und 0,83 und ein Mittelwert beider Sensoren von 0,84 berechnet. Unter Einbezug von 474 Messpaaren, bei denen die zeitliche Änderung des PaO_2 mindestens 10 mmHg und des ORI 0.10 betrug, wurde eine Konkordanzrate von 94 % (95%-Konfidenzintervall (95%-KI): 92 – 96) beobachtet. Die Autoren folgerten, dass der Trend beider Größen in 94 % der Fälle übereinstimmte. Jedoch kann einem bestimmten ORI-Wert kein exakter PaO_2 zugeordnet werden. Bei identischem PaO_2 beobachteten Vos et al. interindividuell sowie beim selben Patienten an zwei verschiedenen Messstellen sehr

35

unterschiedliche Werte des ORI (24). Daher erscheint ein exakter Rückschluss auf die jeweiligen PaO₂-Werte nach diesen Beobachtungen nicht möglich.

Vos et al. untersuchten ebenfalls den Zusammenhang zwischen ORI und dem venösen Sauerstoffpartialdruck (PvO₂) und fanden keine signifikante Korrelation im ORI-sensitiven PaO₂-Bereich (24).

Zusammenfassend ist festzuhalten, dass studienübergreifend ein nach Cohen starker Zusammenhang (97) zwischen ORI und PaO₂ mit Korrelationskoeffizienten von 0,536, 0,671 und 0,706 für PaO₂-Werte \leq 240 mmHg und 0,78 und 0,83 für PaO₂-Werte \leq 200 mmHg (vergleiche Kapitel 4.3.1, S. 63) beobachtet wurde. Im Bereich PaO₂ > 240 mmHg konnte hingegen keine hinreichende Korrelation beider Größen nachgewiesen werden (26). Die beschriebenen Konkordanzraten des ORI-Trends in Bezug auf fallende bzw. steigende PaO₂-Werte lagen zwischen 100 % und 94 % (23, 24). Dies spricht für eine gute Vorhersage des ORI für einen gleichgerichteten Abfall bzw. Anstieg des PaO₂ im Wertebereich von 100 bis 240 mmHg (23, 25, 26) bzw. bis 200 mmHg (24). Wohingegen vorübergehende Trendabweichungen beobachtet wurden, die den starken Zusammenhang zwischen ORI und PaO₂ kurzfristig einschränken können (25).

2.7.3.3 Die zusätzliche Warnzeit vor drohender Hypoxie

Wenn Patienten in klinisch indizierten Situationen O₂ erhalten und hierunter ein Oxygenierungsproblem auftritt, bleibt dies unter Verwendung der Pulsoxymetrie so lange unentdeckt, bis der PaO₂ auf Werte unter 100 mmHg abfällt. Auf Grundlage der zuvor beschriebenen Ergebnisse der Korrelationsanalyse, der Konkordanzrate und des Funktionsprinzips des ORI (vergleiche Kapitel 2.7.3.2, S. 34 und 2.7.1, S. 30), sollte der ORI in diesen Fällen frühzeitiger als die SpO₂ auf eine drohende Hypoxie hinweisen können. Die ORI-Messsoftware besitzt hierfür eine herstellerspezifische Alarmfunktion, die auf absoluten ORI-Werten als auch auf fraktionierten Änderungsraten (nicht näher beschrieben) beruht. Einige Studien nutzten diese Funktion, andere hingegen definierten individuelle Alarmgrenzen für den ORI und die SpO₂. Die Studien zu diesem Untersuchungsaspekt wurden vornehmlich im Rahmen der Narkoseeinleitung bzw. der endotrachealen Intubation und zu einem kleinen Teil während der Einlungenbeatmung durchgeführt (22, 25, 27-31).

Bei Szmuk et al., Fleming et al. und Tsymbal et al. erfolgte, nach den Vorgaben des Studiendesigns im Rahmen der Narkoseeinleitung, eine Präoxygenierung, gefolgt von einer endotrachealen Intubation. Anschließend bestand eine Apnoephase, in der es zum provozierten PaO₂-Abfall kam. Szmuk et al. beobachteten an 25 pädiatrischen Patienten, dass

der softwareeigene ORI-Alarm eine drohende Entsättigung 31,5 s (Median; IQR: 19 – 34,3) vor einem SpO₂-Abfall auf 98 % erkannte (22).

Fleming et al. beobachteten an 37 erwachsenen Herzpatienten, unter Verwendung des softwareeigenen ORI-Alarms, einen SpO₂-Abfall auf 97 % und ähnlicher Messdaten, dass der ORI 48 s (Median; IQR: 40,4 - 62,0) früher als die SpO₂ vor einer drohenden Hypoxie alarmierte (28). Fleming et al. stellten jedoch fest, dass bei der Anhebung der SpO₂-Alarmgrenze auf 98 %, vergleichend zu Szmuk et al., Fleming et al. und Tsymbal, der ORI 29,4 s (Mittelwert (MW); 95%-KI: 23,8 – 39,0) früher vor einer drohenden Hypoxie warnte als ein SpO₂ (28).

Tsymbal et al. untersuchten vergleichend an 36 adipösen und 36 normalgewichtigen Erwachsenen den softwareeigenen ORI-Alarm und den SpO₂-Abfall auf \leq 97%. Der ORI alarmierte in der adipösen Patientengruppe 46,5 s (MW; 95%-KI: 36,0 – 59,0) und in der normalgewichtigen Patientengruppe 87 s (MW; 95%-KI: 77,0 – 109) früher als der SpO₂-Abfall auf \leq 97% (31).

Alle drei Studien kamen zu dem Ergebnis, dass die Verwendung des ORI eine verlängerte bzw. zusätzliche Warnzeit gegenüber der alleinigen Verwendung der SpO₂ aufwies. Fleming et al. und Tsymbal et al. stellten einschränkend fest, dass die einzelnen ORI-Abnahmeraten, folglich die zusätzliche Warnzeit, der jeweiligen Patientengruppen stark variierten (28, 31). Der ORI alarmierte bei allen Patienten der drei Studien, bevor die SpO₂ 98 % bzw. 97 % erreichte. Tsymbal et al. zeigten, dass die zusätzliche ORI-Warnzeit der adipösen im Vergleich zur normalgewichtigen Patientengruppe um 54 s (MW; 95%-KI: 38 – 74) verkürzt war (31). Generell zeigen die Ergebnisse der beschriebenen Studien, dass der ORI als nichtinvasive Ergänzung zur SpO₂ nützlich ist, um eine drohende Hypoxie frühzeitiger zu erkennen.

In den Studien von Yoshida et al. und Hille et al. wurde der ORI und die SpO₂ während der Präoxygenierung und der sich anschließenden endotrachealen Intubation im Rahmen der Narkoseeinleitung bzw. Intubation auf einer Intensivstation aufgezeichnet (29, 30). Fiel die SpO₂ um \geq 1 % vom Spitzenwert bei Yoshida et al. ab oder betrug die SpO₂ < 97 % im Rahmen der endotrachealen Intubation bei Hille et al., wurden diese Fälle untersucht.

Yoshida et al. beobachteten in 10 von 13 Fällen, in denen der ORI 32,5 s (Median; IQR: 18,8 - 51,3) vor der SpO₂ alarmierte. Der ORI-Alarm wurde hier definiert als ein Abfall um 0.05 vom Plateau- oder Spitzenwert (siehe Kapitel 2.7.3.5, S. 40). Der ORI fiel in den 3 übrigen Fällen (23 %) erst 15 s (Median; IQR: 9,5 - 29,0) nach der SpO₂ ab und führte nicht zu einer vorzeitigen ORI- Warnung (29).

Hille et al. beschrieben 20 Fälle zwischen Ende der Präoxygenierung und der erfolgreichen endotrachealen Intubation, in denen die SpO₂ < 97 % betrug. In 10 von 20 Fällen zeigte die SpO₂ < 97% an, bevor der ORI überhaupt auf bzw. über die definierte ORI-Alarmgrenze von

0.40 angestiegen war. Hier konnte aufgrund der studiendesigntechnischen Alarmgrenzenwahl für den ORI keine zusätzliche Warnzeit beobachtet werden. In den übrigen 10 Fällen ging ein definierter ORI-Alarm 81 s (Median; IQR: 34 - 146) einer SpO₂ < 97 % voraus (30).

Yoshida et al. und Hille et al. untermauerten die Erkenntnisse von Szmuk et al., Fleming et al. und Tsymbal et al. zum Aspekt der zusätzlichen Warnzeit unter Verwendung des ORI in der klinischen Praxis der RSI im Rahmen der Narkoseeinleitung und der endotrachealen Intubation auf der Intensivstation. Sie zeigten auf, dass der ORI einige Fälle drohender Hypoxie im jeweiligen definierten Studiendesign nicht vor einem SpO₂-Abfall detektieren konnte (29, 30).

Saugel et al. vermuteten in ihrer Übersichtsarbeit auf Grundlage der oben aufgeführten Studienerkenntnisse, dass der ORI während eines endotrachealen Intubationsversuchs eine sichere Apnoezeit besser quantifizieren könne, um ihn rechtzeitig abzubrechen. Bevor ein erneuter Versuch gestartet wird, könnte so erst, mittels Gesichtsmaskenbeatmung, wieder eine ausreichende Sauerstoffreserve aufgebaut werden, bevor es zu einer schweren Hypoxämie kommt. Bei übergewichtigen Patienten, Patienten mit schwierigen Atemwegen oder Säuglingen und Kindern würde dies von Vorteil sein und die Patientensicherheit erhöhen (98).

Koishi et al. und Alday et al. untersuchten den Nutzen des ORI während der Einlungenbeatmung im Rahmen thoraxchirurgischer Eingriffe, da hier mitunter eine hohe Inzidenz an Hypoxien auftritt (25, 27).

Koishi et al. beobachteten bei 15 erwachsenen Patienten, dass der ORI 30 s früher als die SpO₂ vor einer drohenden Hypoxie warnte. Ein Abfall der SpO₂ unter 1 % des Höchstwertes bzw. ein Abfall um 0.05 vom höchsten ORI-Wert wurden als Alarmzeitpunkte festgelegt (25).

Alday et al. zeigten an 40 thoraxchirurgischen Patienten, dass 645 s (Median; IQR: 366 - 1.020) nach Beginn der Einlungenbeatmung die SpO₂ auf Werte < 90 % fiel. Ein ORI von 0.00 wurde bereits nach 354 s (Median; IQR: 279,25 - 549,25) erreicht. Während beidseitiger mechanischer Beatmung der Lungen in Rückenlage, sagte der ORI mit einer Sensitivität von 63,6 % (MW; 95%-KI: 31,6 - 87,6) und einer Spezifität von 93,1 % (MW; 95%-KI: 75,8 - 98,8) eine Hypoxie voraus. Absolut zeigte der ORI 0.00 in 7 der 11 Hypoxiefälle an. Der ORI prognostizierte 1 min nach Beginn der Einlungenbeatmung eine Hypoxie mit einer Sensitivität von 9,1 % (MW; 95%-KI: 0,48 - 42,88) und einer Spezifität von 89,7 % (MW; 95%-KI: 71,5 - 97,3). Anhand der errechneten negativen Vorhersagewerte von 71,8 bis 87,1 % (MW; 95%-KI: 54,9 - 85,0 bis 69,2 - 95,8) über den gesamten Beobachtungszeitraum hinweg, schrieben die Autoren dem ORI zusätzlich eine Fähigkeit zur Vermeidung von Hyperoxien zu (27).

Die Autoren schlossen auf eine hilfreiche Einsatzmöglichkeit des ORI im Rahmen der Einlungenbeatmung, um die FiO₂ individuell anzupassen und unnötig hohe

Sauerstoffkonzentrationen zu vermeiden. Darüber hinaus könnte der ORI zur frühzeitigen Erkennung einer Verschlechterung der O₂-Versorgung beitragen (25, 27).

Ishida et al. stellten 2021 in ihrer Übersichtsarbeit zusätzlich heraus, dass Maßnahmen, wie z. B. die Durchführung von Rekrutierungsmanövern oder die Anpassung vom positiven endexspiratorischen Druck, durch Erreichen bestimmter ORI-Werte frühzeitig bzw. rechtzeitig erfolgen können (99).

Zusammenfassend ermöglicht der ORI nach den dargestellten Studienergebnissen eine zusätzliche Warnzeit vor drohender Hypoxie. Diese kann je nach Patientengruppe unterschiedlich lange ausfallen.

2.7.3.4 Reduktion der Hyperoxie bei klinisch durchgeführten Sauerstofftherapien

Während einer Präoxygenierung, einer maschinellen Beatmung oder vergleichbaren klinischen Situationen, in denen Patienten zusätzlich O₂ erhalten, wird unter physiologischen Bedingungen ein PaO₂-Anstieg auf über 100 mmHg erwartet. Hierbei wurde ein ORI-Anstieg in den bisherigen Studien bzw. Situationen beobachtet und beschrieben (22, 24, 27-31, 100). Wie bereits im vorherigen Kapitel 2.7.3.3 in den Schlussfolgerungen von Koishi et al. und Alday et al. angeklungen, kam die Frage auf, ob der ORI dazu beitragen könne, zu hohe PaO₂-Werte bzw. eine übermäßige Hyperoxie unter Sauerstofftherapie zu reduzieren.

Kumagai et al. teilten in ihrer Studie zur Vermeidung einer postoperativen Hyperoxie 50 Patienten nach einer Brustoperation randomisiert entweder einer ORI-basierten oder der herkömmlichen Sauerstofftherapiegruppe zu. In der herkömmlichen Therapie wurde kontinuierlich 4 l/min O₂ über den gesamten Messzeitraum nach erfolgreicher Extubation appliziert. Die ORI-basierte Therapie begann ebenfalls mit einer Sauerstoffrate von 4 l/min. Diese wurde bei einem ORI > 0.00 sukzessiv reduziert, bis der ORI = 0.00 erreicht wurde. Hier betrug die Sauerstoffrate 1,5 I/min (Median; IQR 0,5 – 3,0). Zum Zeitpunkt der Entlassung aus dem Aufwachraum lag der PaO₂ mit 117,3 mmHg (MW; SD \pm 26,8) in der ORI-basierten Therapiegruppe deutlich niedriger als in der herkömmlichen Therapiegruppe mit 170,0 mmHg (MW; SD ± 42,8). In der ORI-basierten Therapiegruppe betrug die Sauerstoffrate 1,0 I/min (Median; IQR 0,5 – 3,0) und der PaO₂ 107,5 mmHg (MW; SD ± 16,5) am postoperativen Morgen. Im Gegensatz dazu lag bei der herkömmlichen Therapiegruppe weiterhin die konstante Sauerstoffrate von 4.0 l/min und ein zugehöriger PaO₂ von 157.1 mmHg (MW; SD ± 28,4) vor. Hieraus schlussfolgerten die Autoren, dass die Verwendung vom ORI zur Titration der postoperativen Sauerstoffgabe nützlich sei, auch wenn kein signifikanter Unterschied im Outcome der Patienten beobachtet wurde (101).

Saraçoğlu et al untersuchten 2021 die Höhe der gewählten FiO₂ während einer Einlungenbeatmung an insgesamt 103 Patienten randomisiert in 4 Studiengruppen. Hierbei wurde zu Beginn der Einlungenbeatmung die FiO₂ von 60 % standardmäßig eingestellt. Anschließend konnte in den vier Gruppen, unter Zuhilfenahme unterschiedlicher Messwerte, die FiO₂ frei gewählt werden. In Gruppe 1 und 2 erfolgte die Einstellung der FiO₂ mithilfe der SpO₂- sowie PaO₂-Werte, wobei in Gruppe 1 eine Low-Flow und in Gruppe 2 eine Normal-Flow-Anästhesie durchgeführt wurde. In Gruppe 3 und 4 standen zusätzlich der ORI sowie ein nichtinvasiv gemessener Sauerstoffgehalt zu den SpO₂- und PaO₂-Werten zur Einstellung der FiO₂ zur Verfügung. Analog zu den ersten beiden Gruppen erfolgte in Gruppe 3 eine Low-Flow- und in Gruppe 4 eine Normal-Flow-Anästhesie.

Die mittleren FiO₂-Werte betrugen 71,6 % (MW; SD ± 12,25) in Gruppe 1, 74,64 % (MW; SD ± 16,66) in Gruppe 2, 62,8 % (MW; SD ± 13,08) in Gruppe 3 und 56,4 % (MW; SD ± 11,5) in Gruppe 4. Hierbei fiel auf, dass die Gruppen 3 und 4 deutlich geringere mittlere FiO₂-Werte aufwiesen. Zudem waren die Verwendungszeiten von FiO₂-Werten > 60 % ebenfalls in den Gruppen 3 und 4 kürzer. Sie betrug 67,6 min (MW; SD ± 97,5) in Gruppe 1, 97,32 min (MW; SD ± 99,7) in Gruppe 2, 39,2 min (MW; SD ± 74,1) in Gruppe 3 und 22,4 min (MW; SD ± 49,4) in Gruppe 4.

Die Gruppe 3 wies, unter Verwendung der Low-Flow-Anästhesie (1 I/min), der SpO₂, des ORI sowie eines nichtinvasiv gemessenen Sauerstoffgehalts, im Vergleich zu allen anderen Gruppen, die niedrigsten PaO₂-Werte während der Einlungenbeatmung auf. Daraus schlossen die Autoren, dass unter Verwendung des ORI zusätzlich zur SpO₂ und zur PaO₂-Messung ein geringeres Hyperoxierisiko besteht (102). Generell steigt mit Zunahme des PaO₂ bzw. dem Ausmaß der Hyperoxie die Wahrscheinlichkeit potenziell schädlicher Auswirkungen der Hyperoxie, wie die Bildung reaktiver Sauerstoffspezies, die Entstehung von Zellschäden und die Aktivierung von Entzündungsprozessen (103).

Nach den Studienergebnissen von Kumagai et al. sowie Saraçoğlu et al. kann der Einsatz des ORI während der zusätzlichen Gabe von O₂ dazu beitragen, eine übermäßige Hyperoxie in den untersuchten klinischen Situationen zu reduzieren (101, 102).

2.7.3.5 Das ORI-Plateau

In einigen bisherigen Studien fiel auf, dass unter sukzessiver Steigerung des PaO_2 auf Werte \geq 200 mmHg, der ORI nicht 1.00 erreichte (28, 29, 31). Der ORI verweilte unterdessen auf einem niedrigeren Indexwert. Trotz Steigerung der FiO₂ bzw. des Sauerstoffflusses verblieb der ORI auf einem Plateau und überstieg dieses in der darauffolgenden Zeit nicht (vergleiche Kapitel 4.3.3, S. 64). Yoshida et al. beobachteten 2018, dass der ORI in 14 von 16 Fällen, während der Präoxygenierung, ein Plateau erreichte. Die Zeit bis zum Erreichen des Plateaus betrug 95 s (Median; IQR: 80 – 115) und der ORI betrug 0.50 (Median; IQR: 0.42 – 0.57) nach 3 min. In den verbleibenden 2 von 16 Fällen erreichte der ORI kein Plateau, sondern stieg oder fiel weiterhin. Die Autoren vermuteten, dass das Erreichen des Plateaus auf einen Zustand hindeutet, in dem die Oxygenierung des Patienten maximiert wurde. Folglich könnte dies ein neuer Indikator für eine angemessene Präoxygenierung bei der Durchführung einer RSI sein (29).

Saugel et al. erachteten daraufhin in ihrer Übersichtsarbeit den Einsatz des ORI zur Überwachung und Optimierung der Präoxygenierung vor der Einleitung einer Vollnarkose für sinnvoll. Das Erreichen eines Plateaus könnte, den Autoren nach, die Bestätigung einer ausreichenden Präoxygenierung liefern. Andererseits ermöglicht der ORI unter Umständen, diejenigen Patienten zu identifizieren, bei denen die standardmäßige Präoxygenierung unzureichend ist und sie von zusätzlichen Präoxygenierungsmaßnahmen profitieren würden. Die Autoren erhofften sich von der Anwendung des ORI eine verbesserte Patientensicherheit sowie eine individualisierte Sauerstofftherapie (98).

Niwa et al. vermuteten, im Rahmen ihres Case Reports zum ORI-Einsatz während einer Trachealstenteinlage, dass die Fortsetzung der Sauerstoffverabreichung, bis der ORI ein Plateau erreicht, ebenso zur Patientensicherheit beitragen könne (104).

Fleming et al. verwendeten nachfolgend in ihrer Studie das Erreichen des jeweiligen ORI-Plateauwertes für eine Dauer von 30 s als Ziel, um die Präoxygenierung zu beenden. Auch hier wurden unterschiedlich hohe Plateauwerte für den ORI zwischen den einzelnen Patienten beobachtet. Zwischen einem hohen ORI-Plateauwert und einer längeren Vorwarnzeit bzw. einem niedrigeren ORI-Plateauwert und einer kürzeren Vorwarnzeit einer drohenden Hypoxie war kein Zusammenhang zu erkennen (28).

Tsymbal et al. definierten ebenfalls das Erreichen eines ORI-Plateaus als Ziel der Präoxygenierung bzw. Reoxygenierung (31).

Ishida et al. stellten 2021 in einer Übersichtsarbeit heraus, dass es im Rahmen der ORI-Messung durch eine Softwareaktualisierung des Readical-7 Messmonitors und der RD rainbow Lite SET[™]-Sensoren, in den meisten Fällen zu einem Plateau bei 1.00 käme. Weiterhin wurden jedoch unterschiedliche Spitzenwerte für den ORI bei den einzelnen Patienten beobachtet (99).

Hirata et al. beobachteten 2021 im Gegensatz zu den Aussagen von Ishida et al., dass es in der untersuchten Stichprobe im Median zu einem Plateauwert von 0.60 kam und die Spitzenbzw. Plateauwerte der einzelnen Patienten unterschiedlich hoch waren (100). Es ist festzuhalten, dass bislang genannte Ursachen für das Erreichen des beobachteten ORI-Plateaus von den obigen Autoren vermutet wurden, aber die zugrundeliegende Ursache bislang nicht identifiziert werden konnte.

2.7.3.6 Die untersuchten Cut-off-Werte des ORI

Nachdem Autoren aufgrund ihrer Beobachtung, sowie Masimo selbst, davon abrieten, einzelne ORI-Werte und nicht relative Änderungen zu verwenden, kam die Frage auf, ob jedoch ab einem bestimmten Schwellenwert bzw. *Cut-off*-Wert, generell bei allen Patienten, ein gewisser PaO₂ erreicht sei (23, 26, 105).

Applegate et al. untersuchten 2016 die gemessenen Messpaare in Hinblick auf *Cut-off*-Werte des ORI für bestimmte PaO₂. Wenn der ORI > 0.24 betrug, lagen alle gemessenen PaO₂ über 100 mmHg. Wenn der ORI > 0.55 betrug, lagen 96,6 % aller zugehörigen PaO₂ \geq 150mmHg (26).

Yoshida et al. suchten 2020 ebenfalls nach einem optimalen *Cut-off*-Wert des ORI für einen $PaO_2 > 150$ mmHg, der in ihrem Studiendesign zur Vorhersage einer Hyperoxie dienen sollte. Ein *Cut-off*-Wert des ORI von 0.21 sagte mit einer Sensitivität von 95 % und einer Spezifität von 75,5 % einen $PaO_2 > 150$ mmHg am besten voraus, im Gegensatz zu den Beobachtungen von Applegate et al. (23).

Bellini et al. führten ihre Studie an insgesamt 28 Eseln durch, da es bei diesen, ähnlich wie bei Pferden (106), im Rahmen der Allgemeinanästhesie, häufig zu Fehlanpassungen der Ventilation, der Perfusion und zu einem verringerten PaO_2 bis hin zu einer Hypoxämie kommen kann (107). Nach Auswertung von 106 gepaarten Messungen stellten die Autoren fest, dass ein ORI > 0.00 bzw. > 0.10 und > 0.30 auf einen $PaO_2 > 100 \text{ mmHg}$, > 150 mmHg und > 200 mmHg mit einem negativen Vorhersagewert von > 94 % hinweisen konnte. Hieraus schlossen die Autoren, dass der ORI einen nichtinvasiven Hinweis auf die genannten *Cut-off*-Wert geben, aber die BGA zur Beurteilung der Oxygenierung nicht ersetzen kann (105).

Zum jetzigen Zeitpunkt ermöglicht keiner der untersuchten *Cut-off*-Werte des ORI eine zuverlässige bzw. für alle untersuchten Patienten zutreffende Vorhersage über die Mindesthöhe des PaO₂-Wertes.

2.7.3.7 Die *Cut-off-*Werte des ORI-sensiblen PaO₂-Bereichs

Neben dem individuell definierten *Cut-off*-Wert von Applegate et al., Yoshida et al. sowie Bellini et al. wurde zudem untersucht, wie gut der ORI PaO₂-Werte in Bezug auf seinen PaO₂-sensiblen Bereich (PaO₂ \geq 100 mmHg; PaO₂ \leq 200 mmHg) abgrenzt.

Hierzu untersuchten Vos et al. 2019 mit einem standardisierten Ablauf von FiO₂-Einstellungen zwischen 0,14 und 1,00 die Intervalle PaO₂ < 100 mmHg, 100 – 200 mmHg und > 200 mmHg. Die Autoren beobachteten einen ORI von 0.00 in 374 Fällen. Bei 56 % lag der PaO₂ < 100 mmHg. Hingegen betrug der PaO₂ ≥ 100 mmHg in 44 % der Fälle und der hierbei höchste beobachtete PaO₂ bei 171 mmHg. Ein ORI von 0.01 sagt, laut den Autoren, mit einer Sensitivität von 99 % (95%-KI: 98 – 100) und einer Spezifität von 82% (95%-KI: 77 – 87) einen PaO₂ < 100 mmHg voraus (vergleiche Kapitel 4.2.1, S. 59). Die Autoren ermittelten keinen *Cut-off*-Wert für die obere Grenze des ORI-sensiblen Bereichs (PaO₂ > 200 mmHg) (vergleiche Kapitel 4.2.2, S. 61). Hierfür wurde eine breite Streuung der 258 beobachteten ORI-werte als Grund genannt (24).

2.7.3.8 Der ORI als Alternative für die etO₂-Messung?

Hirata et al. untersuchten den Zusammenhang zwischen ORI und der etO₂-Messung während der Präoxygenierung mit einer dichtsitzenden Maske unter Tidalvolumenatmung 19 gesunder Patienten. Hierbei stellten die Autoren ein linear gemischtes Modell beider Größen auf. Sie erhielten eine Abhängigkeit des ORI von der etO₂-Messung. Eine Zunahme der etO₂ um 17,4 % (MW; 95%-KI: 15,1 – 19,6) führte in der beobachteten Stichprobe zu einer Erhöhung des ORI um 0.10.

In Situationen, in denen die etO₂-Messung eingeschränkt bzw. fehlerhaft oder nicht vorhanden ist, könnte der ORI nach den Autoren als neuer bzw. alternativer Index eingesetzt werden (100).

2.7.3.9 Der klinische Einsatz zur Erfolgskontrolle der Präoxygenierung

Durch die zusätzliche O₂-Gabe, während der Präoxygenierung, gelangt der PaO₂ in den für konzipierten leicht hyperoxischen Sauerstoffbereich den ORI (PaO₂ > 100 bis $PaO_2 < 200 \text{ mmHg}$) und sogar darüber hinaus ($PaO_2 > 200 \text{ mmHg}$). Es wurde bereits in vielen Studien ein Anstieg des ORI in diesen Situationen beschrieben (22, 24, 27-31, 100). Im Rahmen der Zusammenhangsanalysen zwischen ORI und PaO₂ berichteten die Autoren von einer positiven bzw. stark positiven Korrelation mit Korrelationskoeffizienten von 0,536, 0,671 und 0,706 für PaO₂-Werte \leq 240 mmHg bzw. 0,78 und 0,83 für PaO₂-Werte \leq 200 mmHg. Im PaO₂-Bereich über den genannten Grenzwerten wurde keine hinreichende Korrelation zwischen beiden Größen festgestellt (24-26, 108). Mehrere Autoren beobachteten einen Zustand, in dem der ORI ein Plateau bzw. einen Spitzenwert erreichte (siehe Kapitel 4.3.3, S. 64). Hieraus schloss man, dass der ORI in diesen Fällen auf eine maximierte Oxygenierung der Patienten hindeute (29, 104). Zudem könnte der ORI diejenigen Patienten identifizieren,

bei denen die standardmäßige bzw. die bisher durchgeführte Präoxygenierung bzw. Oxygenierung unzureichend ist und sie von zusätzlichen Maßnahmen profitieren würden (98). Hieraus leiteten einige Autoren mögliche Einsätze während der Präoxygenierung einer Narkoseeinleitung sowie bei einer RSI ab. Andere verwendeten in nachfolgenden Studien das Erreichen des patientenindividuellen ORI-Plateauwerts für eine Dauer von 30 s oder allein das Erreichen als Ziel, um die Präoxygenierung zu beenden (28, 31).

Zudem wurden in mehreren Studien eine um ca. 30 s verlängerte bzw. zusätzliche ORI-Warnzeit vor einer drohenden Hypoxie gegenüber der alleinigen Verwendung der SpO₂ beobachtet (22, 28, 31, 109).

Einige Autoren und auch der Hersteller raten davon ab, einzelne ORI-Werte zu verwenden. Vielmehr sollten relativen Änderungen des ORI Beachtung geschenkt werden (siehe Kapitel 4.3.2, S. 63). Bei ein und demselben PaO₂ können die ORI-Werte interindividuell sowie an zwei unterschiedlichen Messstellen bei ein und derselben Person sehr unterschiedlich sein (24). Die beschriebenen Konkordanzraten des ORI-Trends in Bezug auf fallende bzw. steigende PaO₂-Werte lagen, unter Ausschluss kleiner Wertschwankungen bzw. definierter Messungenauigkeiten, zwischen 94 % und 100 % und weisen auf eine gute Trendvorhersage des im PaO₂-Bereich von 100 bis 240 mmHg bzw. bis 200 mmHg hin. Zeitweise wurden hier Trendabweichungen des ORI vom PaO₂ beobachtet, die für etwa 30 s andauerten und die Aussagekraft des ORI einschränkten (25). Jedoch kam die Frage auf, ob ab einem bestimmten Cut-off-Wert des ORI generell bei allen Patienten ein gewisser PaO₂ erreicht sei. Hierzu wurden zum einen individuell definierte Cut-off-Werte der Autoren untersucht. Zum anderen wurde ermittelt, wie gut der ORI PaO₂-Werte in Bezug auf seinen PaO₂-sensiblen Bereich $(PaO_2 \ge 100 \text{ mmHg}; PaO_2 \le 200 \text{ mmHg})$ abgrenzt (vergleiche Kapitel 4.2, S. 59). Ein ORI von 0.01 wurde mit einer Sensitivität von 99 % (95%-KI: 98 – 100) und einer Spezifität von 82 % (95%-KI: 77 – 87) als der beste Cut-off-Wert für einen $PaO_2 < 100 \text{ mmHg ermittelt}$. Hingegen ermittelten die Autoren keinen Cut-off-Wert für die obere Grenze des ORI-sensiblen Bereiches $(PaO_2 > 200 \text{ mmHg})$, da hier die ORI-Werte eine breite Streuung aufwiesen (24).

Die in Bezug auf die Erfolgskontrolle der Präoxygenierung relevanten Ergebnisse bisheriger Studien zeigen generell ein gewisses Potenzial des ORI für den klinischen Einsatz auf. Im Rahmen dieser Dissertationsschrift wird der Einsatz während der Präoxygenierung weiterführend untersucht (siehe Kapitel 4.2 - 4.3, S. 59 - 63) und mit den aktuellen klinischen Methoden, der etO₂-Messung, der Pulsoxymetrie und der PaO₂-Messung verglichen (siehe Kapitel 4.4, S. 66).

3 Material und Methoden

3.1 Das Studiendesign

Die PRIORI-Studie ist eine prospektive monozentrische Beobachtungsstudie der Klinik für Anästhesiologie der Universitätsmedizin der Johannes Gutenberg-Universität Mainz. Ziel der Studie war es herauszufinden, inwieweit der ORI, neben dem etO₂, dem PaO₂ und der SpO₂, zur Erfolgskontrolle der Präoxygenierung eingesetzt werden kann. Im Rahmen der Studie wurden Herzkreislaufparameter, Oxygenierungsparameter, zerebrale Parameter sowie Patientenstammdaten aufgezeichnet. Die Studie wurde im OP-Bereich der Gefäßchirurgie durchgeführt, da hier ein Großteil der Patienten einen arteriellen Zugang zur invasiven arteriellen Blutdruckmessung (IABP) und zur arteriellen BGA aufgrund der Eingriffsart bzw. des zu erwartenden Blutverlusts, der OP-Länge sowie bestehender Vorerkrankungen erhält.

Die PRIORI-Studie wurde in Übereinstimmung mit der Deklaration von Helsinki über ethische Grundsätze für die medizinische Forschung am Menschen von 1964 und ihrer aktuellsten Revision entwickelt (110). Ein positives Votum wurde bei der Ethikkommission der Landesärztekammer Rheinland-Pfalz eingeholt (Antragsnummer 2019-14-362) und die Studie unter *clinicaltrials.gov* (NCT04596215) registriert.

Die vorliegende Dissertationsschrift beschäftigt sich mit dem primären Endpunkt der PRIORI-Studie. Hierbei wurde der Nutzen des ORI für die Erfolgskontrolle der Präoxygenierung erwachsener Patienten untersucht. Nach durchgeführter Fallzahlberechnung (siehe Kapitel 3.7.1, S. 54) sollten 60 Patienten für diesen Untersuchungspunkt eingeschlossen werden.

3.2 Die Einschluss- und Ausschlusskriterien

Die Patienten wurden nach folgenden Kriterien ein- beziehungsweise (bzw.) ausgeschlossen.

Die Einschlusskriterien waren:

- die Indikation für einen elektiven Eingriff in Allgemeinanästhesie mit IABP
- ein Alter ≥ 18 Jahren
- eine vorliegende schriftliche Einwilligungserklärung des Patienten.

Die Ausschlusskriterien waren:

- eine Kategorisierung als Notfallpatient
- Patienten mit der Indikation einer fiberoptischen Wachintubation, die somit nicht mit einer dicht sitzenden Maske präoxygeniert wurden

• eine fehlende Einwilligungsfähigkeit.

3.3 Die primären, sekundären und tertiären Zielparameter

Der primäre Endpunkt der vorliegenden Dissertationsschrift bestand darin, zu evaluieren, wie zuverlässig der ORI ≤ 0.02 einen PaO₂ < 100 mmHg vor (Messzeitpunkt t₀) und wie zuverlässig der ORI ≥ 0.98 einen PaO₂ > 200 mmHg nach (Messzeitpunkt t₁₈₀) dreiminütiger Präoxygenierung detektierte (siehe Kapitel 4.2, S. 59).

Die vorliegende Arbeit untersucht außerdem drei sekundäre Endpunkte. Neben der Korrelationsanalyse von ORI und PaO₂, der Analyse des ORI-Trends, wurde die mögliche zusätzliche nichtinvasive und kontinuierliche Überwachungszeit unter Verwendung des ORI während der Präoxygenierung ermittelt (siehe Kapitel 4.3, S. 63).

Im Rahmen des tertiären Endpunkts sollten die etO₂, die SpO₂, der ORI und der PaO₂ im Zeitverlauf der Präoxygenierung (Messzeitpunkte t₀ bis t₁₈₀) ausgewertet und dargestellt werden. Darüber hinaus wurden vor und nach Präoxygenierung Herzkreislauf- und Oxygenierungsparameter dokumentiert. Zu den tertiären Zielparametern zählten daher der systolische bzw. diastolische invasive arterielle Blutdruck (IABD systolisch, IABD diastolisch), der mittlere arterielle Blutdruck (MAD), das Elektrokardiogramm (EKG), die SpO₂, der ORI, der Perfusionsindex (PI), der PaO₂, der PaCO₂, die arterielle fraktionelle Sauerstoffsättigung (O₂Hb), die invasive arterielle partielle Sauerstoffsättigung (sO₂), die CHb, die etO₂ sowie die endtidale Kohlenstoffdioxidkonzentration (etCO₂) (siehe Kapitel 4.4, S. 66).

3.4 Der Studienzeitplan

Jeder Patient durchlief einen vorgegebenen und standardisierten Zeitplan von insgesamt zwei aufeinanderfolgenden Tagen. Die in diesem Zeitraum erhobenen Daten wurden schriftlich auf Datenerhebungsbögen (engl.: *case report form* [CRF]) dokumentiert (siehe Anhang Kapitel 8.4, S. 107). Dabei wurde für den ersten Tag der CRF *"Baseline"* und für den zweiten Tag der CRF *"OP-Tag"* verwendet.

Am ersten Tag, dem Tag vor der geplanten Operation, fand das Patientenscreening statt (siehe Abbildung 11, S. 47). Hierzu wurden Patienten aus dem OP-Plan, erstellt mit der klinikinternen Patientenverwaltungssoftware (SAP[®]), anhand der Ein- und Ausschlusskriterien für den Studieneinschluss identifiziert (siehe Kapitel 3.2, S. 45). Es erfolgte ein standardisiertes Aufklärungsgespräch. Dabei wurde eine erneute Prüfung der Ein- und Ausschlusskriterien anhand der Patientenakte und des Aufklärungsgespräches vorgenommen. Den Patienten

wurde anschließend die Studieninformation ausgehändigt und Bedenkzeit eingeräumt. Hiernach erfolgte die schriftliche Patienteneinwilligung. Die Teilnahme war freiwillig und die Einwilligung konnte jederzeit ohne Angabe von Gründen widerrufen werden.

Am zweiten Studientag, dem OP-Tag, wurden die eingeschlossenen Patienten im Rahmen der Studie beobachtet. Das genaue Procedere der Datenerhebung wird weiter unten (siehe Kapitel 3.6, S. 52) beschrieben.

Die schriftlich erhobenen Daten des CRF *"Baseline*" und "OP-Tag" (siehe Anhang Kapitel 8.4, S. 107) wurden nach der Datenerhebung digital in eine Microsoft Excel[®] Datei (Version 16.56) übertragen und nach visueller Dateneingabekontrolle gespeichert. Es folgte ein Datenimport in IBM[®] SPSS[®] Statistics Version 27 mit einer anschließenden Plausibilitätsprüfung.

Abbildung 11 Der allgemeine Studienablauf

Dargestellt ist der allgemeine Studienablauf beginnend mit dem Patientenscreening und endet mit der Ergebniserstellung. <u>Legende:</u> CRF — Datenerhebungsbogen; n — Anzahl an Studienpatienten; OP — Operation; SAP[®] — Patientenverwaltungssoftware

3.5 Das Versuchsmaterial

3.5.1 Allgemeiner Überblick

Die folgenden Materialien der Firma Masimo (Irvine, Kalifornien, Vereinigte Staaten von Amerika) wurden für die Erhebung des ORI, der SpO₂ und des PI nach den Herstellervorgaben verwendet (111):

 Masimo RD rainbow Lite SET[™]-1 Adt Sensor (Artikelnummer: 4042; Chargennummer: 18DBA (50 Stück) und 17NRR (10 Stück))

- Masimo LightShield Einweg (Artikelnummer: 2357)
- Masimo RD rainbow SET[™]-Patientenkabel (Artikelnummer: 4256)
- Masimo Rad-97TM Pulse CO-Oxymeter[®] (Artikelnummer: 9738)

Die folgenden Materialien der Firma Radiometer (Krefeld, Deutschland) wurden für die Erhebung der Parameter O₂Hb, sO₂, PaO₂, PaCO₂ und cHb und nach den Richtlinien der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen verwendet (112):

- Radiometer ABL90 Flex (Artikelnummer: 28688)
- Radiometer safePIVO Aspirator (Artikelnummer: 956-622)

Alle weiteren verwendeten Materialien, wie der Philips IntelliVue MX800 sowie Materialien für die IABP und weitere, wurden unabhängig von der vorliegenden Dissertationsschrift aufgrund klinischer Indikation bzw. der DIN-Norm (DIN EN ISO 80601-2-55) im Rahmen der Allgemeinanästhesie verwendet (67). Aus diesem Grund werden diese nicht explizit hier aufgeführt und beschrieben.

3.5.2 Masimo RAD-97[™] Pulse CO-Oxymeter®

Der Masimo Rad-97[™] Pulse CO-Oxymeter[®] (Rad-97) ist ein kompakter und mobiler Patientenüberwachungsmonitor zur Überwachung pulsoxymetrischer sowie puls-CO-oxymetrischer Parameter.

In der vorliegenden Arbeit wurde hiervon der ORI, der PI und die SpO₂ aufgezeichnet und dokumentiert. Der ORI und die SpO₂ wurden bereits beschrieben (siehe Kapitel 2.7.1, S. 30 und Kapitel 2.6.1, S. 25). Der PI ist ein Maß für die Perfusion an der Messstelle des Sensors. Er stellt den Quotienten aus der pulsatilen (AC-Komponente) und der nichtpulsatilen (DC-Komponente) Komponente des plethysmographischen Messsignals dar (siehe Kapitel 2.6.1, S. 25). Der Indexwert wird in Prozent ausgegeben und liegt zwischen 0,02 bis 20 %. Nach aktuellen Studienerkenntnissen beeinflussen der periphere Blutfluss und der Gefäßtonus maßgeblich den PI (113).

3.5.3 Masimo RD rainbow Lite SET[™]-1 Adt Sensoren

Dieser Sensor ist ein sogenannter *Fold-over-Style*-Sensor, der durch aufgedruckte Sensorgraphiken das Anlegen, Entfernen und Neuanlegen erleichtert sowie auf die Position der LEDs und des Detektors des Sensors hinweist. Er ist mit vier LEDs unterschiedlicher Wellenlängen, die nicht öffentlich bekannt sind, ausgestattet und wird in dieser Arbeit für die Messung des ORI, der SpO₂ und des PI eingesetzt.

Material und Methoden

Die Applikation am Finger, empfohlen wird der Ringfinger, erfolgt ähnlich eines Fingerkuppenpflasters. Zuerst wird im Bereich palmar der intermedialen und distalen Phalanx das kabelfreie Klebesensorende aufgeklebt. Dort befindet sich die Photodiode (Detektor) des Sensors. Anschließend wird der Klebesensor über den Verlauf der Fingerkuppe umgeschlagen. Dadurch kommen die LEDs im kabelnahen Klebesensoranteil dorsal gegenüber der Photodiode zum Liegen.

3.5.4 ABL90 Flex Analysator

Der ABL90 Flex ist ein kassettenbasierter Blutgasanalysator. International hat man sich zunehmend auf die Bezeichnung *Point-of-Care-Testing (POCT)*-Analysator, anstelle von Blutgasanalysator, verständigt, da diese Geräte im heutigen klinischen Alltag weitaus mehr als die Blutgase messen. Hiermit werden diagnostische Untersuchungen, die nicht im Zentrallabor, sondern in unmittelbarer Patientennähe bzw. Bettnähe durchgeführt werden, bezeichnet.

Aus einem Probenvolumen können im ABL90 Flex 17 Parameter analysiert werden. Je nach bestimmter Messgröße werden unterschiedliche Messmethoden bzw. Sensoren eingesetzt. Mithilfe des Radiometers ABL90 Flex wurden die Parameter O₂Hb, sO₂, PaO₂, PaCO₂ und cHb im Rahmen der Datenerhebung gemessen. Das Radiometer ABL90 Flex vertritt in der vorliegenden Untersuchung die Gruppe moderner Multiwellenlängen-CO-Oxymeter. Die Funktionsweise ist in der wissenschaftlichen Literatur hinreichend beschrieben (21, 114).

Es ist unbedingt zu beachten, dass die Hersteller der Multiwellenlängen-CO-Oxymeter unterschiedliche Symbole bzw. Abkürzungen für die Messparameter verwenden. Bei Radiometer wird die fraktionelle Sauerstoffsättigung (SaO₂) als "O₂Hb" und die partielle Sauerstoffsättigung (SpO₂) als "sO₂" bezeichnet. Um Verwechslungen vorzubeugen, wurde, die in dieser Dissertationsschrift arteriell gemessene fraktionelle Sauerstoffsättigung, unmissverständlich als SaO₂ abgekürzt. Die pulsoxymetrisch gemessene partielle Sauerstoffsättigung wurde als SpO₂ bezeichnet. Im Bereich der Ergebnisse bzw. der Messparameter werden die Bezeichnungen von Radiometer (O₂Hb, sO₂) verwendet, um diese von den anderen Messparametern abzugrenzen.

Bei der Verwendung eines BGA-Geräts ist die Zeit vor der eigentlichen Probenmessung in die Ergebnisbeurteilung einzubeziehen. Die Präanalytik ist definiert als Phase vor der eigentlichen Probenanalyse. Hierzu zählen unter anderem die Probenentnahme und Probenvorbereitung. Fehler in dieser Phase können fehlerhafte Ergebnisse der POCT-Analyse zur Folge haben, insbesondere im Bereich der BGA. Im Rahmen der Datenerhebung wurde auf die fehlerfreie Durchführung geachtet.

49

3.5.5 Dräger Pallas

3.5.5.1 Allgemein

Mithilfe des Dräger Pallas[®] (Drägerwerk AG & Co. KGaA, Lübeck, Deutschland) wurde die Präoxygenierung sowie die etO₂- und die etCO₂-Messung im Rahmen der Datenerhebung und anschließend die Beatmung der Patienten durchgeführt.

Der Dräger Pallas[®] zählt zu den halbgeschlossenen Systemen. Hierbei erfolgt die Rückführung der Exspirationsgase nach CO₂-Elimination. Dabei ist das Ausmaß der Rückatmung abhängig von der Höhe des Frischgasflusses. Je größer der Frischgasfluss, desto kleiner die Rückatmung. Wählt man den Frischgasfluss zwei- bis dreifach größer als das Atemminutenvolumen des Patienten, werden die Exspirationsgase nicht erneut inspiriert, da es auf dem kürzesten Weg über das Überdruckventil entweicht. Definitionsgemäß spricht man hier von einem halboffenen System, wenn der Frischgasfluss größer als das Atemminutenvolumen ist (115).

3.5.5.2 Die Messung der endtidalen Sauerstoffkonzentration und endtidalen Kohlenstoffdioxidkonzentration

Die etO₂-Messung erfolgt im Bereich des Exspirationsschenkels vor dem CO₂-Absorber des Kreissystems des Dräger Pallas[®]. Hierfür wird patientennah, zwischen Tubus bzw. Beatmungsmaske und Y-Stück, das zu analysierende Gas abgesaugt und über einen separaten Probenschlauch der Messzelle zugeleitet. Dies wird als Nebenstromverfahren bezeichnet. Der Gasfluss im Probenschlauch liegt im Bereich von 50 bis 250 ml / min. Der Sauerstoffpartialdruck der Ausatemluft wird mithilfe sogenannter elektrochemischer Messwandler ermittelt.

Die Messtechnik der endtidalen Parameter wurde bereits ausführlich in der Wissenschaft beschrieben und als Messmethode im Rahmen der Literaturdiskussion aufgrund der Fragestellung dieser Dissertationsschrift bereits eingeführt (siehe Kapitel 2.4.1, S. 19). Vor der Nutzung des Dräger Pallas[®] wurde die Checkliste des Herstellers sowie der Selbsttest durchgeführt. Nur nach erfolgreichem Abschluss bzw. erfolgreicher Qualitätskontrolle wurde das Narkosegerät zur Datenerhebung eingesetzt.

3.5.6 Phillips IntelliVue MX800 Patientenmonitor

Der Phillips IntelliVue MX800 Patientenmonitor (Koninklijke Philips N.V., Amsterdam, Niederlande) diente im Rahmen der Datenerhebung zur Darstellung und Dokumentation der Parameter IABD systolisch, IBD diastolisch und MAD. Der Blutdruck im arteriellen Leitungssystem wurde mithilfe eines Druckaufnehmers in ein elektrisches Messsignal

Material und Methoden

umgewandelt. Über das Multi-Parameter-Modul erfolgte die Integration des elektrischen Messsignals in den Monitor. Es erfolgte der sogenannte "Nullabgleich" mit der Druckreferenz der Atmosphäre, um im Anschluss den korrekten intraarteriellen Blutdruck des Patienten während der Datenerhebung gewährleisten zu können.

3.6 **Die Datenerhebung**

Nach der Ankunft des Patienten im OP-Saal, erfolgte die Anlage der regulären allgemeinanästhesiologischen Vitalparameter (RR, EKG und SpO₂). Hierzu wurde der Philips IntelliVue MX800 angeschlossen. Zeitgleich nach klinikinterner erfolgte, Standardvorgehensweise (Standard Operating Procedure [SOP]), die aus medizinischen und chirurgischen Gründen indizierte Anlage eines arteriellen Zugangs der Arteria (A.) radialis. Die im Folgenden erhobenen Daten wurden auf dem CRF "OP-Tag" dokumentiert. Anhand des Philips IntelliVue MX800 wurden die Parameter IABD systolisch, IABD diastolisch, MAD und das EKG erhoben. Anschließend wurde auf derselben Seite wie der arterielle Zugang der Masimo RD rainbow Lite SETTM-1 Adt Klebesensor am Digitus manus III der Hand aufgeklebt und mit dem Masimo LightShield Einweg gegen Umgebungslicht abgeschirmt. Der angebrachte Klebesensor wurde mithilfe des Masimo RD rainbow SETTM-Patientenkabels mit dem Masimo Rad-97[™] Pulse CO-Oxymeter[®] verbunden. Über diesen erfolgte die Erhebung der Parameter SpO₂ und ORI. Die Parameter O₂Hb, sO₂, PaO₂, PaCO₂ und cHb wurden aus der arteriellen Blutprobe der A. radialis gewonnen und mithilfe des POCT-Gerätes ABL90 FLEX analysiert. Das Dräger Pallas® Narkosegerät wurde für die Durchführung der Präoxygenierung und anschließend zur Beatmung verwendet. Hierüber wurden die Parameter der Oxymetrie (etO₂, etCO₂) gemessen.

Zu Beginn der eigentlichen Datenerhebung wurden die Parameter zum Zeitpunkt vor Präoxygenierung (t₀) im CRF "OP-Tag" dokumentiert (IABD, MAD, EKG, SpO₂, ORI, PI, O₂Hb, sO₂, PaO₂, PaCO₂, cHb, etO₂, etCO₂). Hierzu erfolgte die Entnahme und umgehende Analyse der ersten arteriellen Blutprobe aus der A. radialis, an der Seite, an der die Sensoren angebracht waren. Alle weiteren Parameter wurden anhand der oben beschriebenen Geräte dokumentiert.

Der betreuende Anästhesist startete die Präoxygenierung des Patienten. Hierbei wurden die etO_2 , die SpO₂ und der ORI fünfzehnsekündlich über den Zeitraum von 3 min bzw. 180 s $(t_0 - t_{180})$ Präoxygenierung dokumentiert. Für die Durchführung der Präoxygenierung wurde das halbgeschlossene Kreissystem Dräger Pallas[®] mit einer möglichst dichtsitzenden Maske verwendet. Um ein gutes Auswaschen von N₂ zu gewährleisten, erfolgte die Präoxygenierung unter dreiminütiger Tidalvolumenatmung bei einem Frischgasfluss von 10 l/min O₂ (75).

Nach 180 s durchgeführter Präoxygenierung wurden die Parameter zum Zeitpunkt nach Präoxygenierung (t₁₈₀), im CRF "OP-Tag" als "zum Zeitpunkt 3 min nach Start der Präoxygenierung" (siehe Anhang Kapitel 8.4, S. 107) bezeichnet, dokumentiert (IABD, MAD, EKG, SpO₂, ORI, PI, O₂Hb, sO₂, PaO₂, PaCO₂, cHb, etO₂, etCO₂). Hierzu erfolgte die Entnahme der zweiten arteriellen Blutprobe aus der A. radialis und die umgehende Analyse durch das POCT-Gerät ABL90 Flex. Daran schloss sich die Intubation und Fortführung der

Narkose an nach SOP der Klinik für Anästhesiologie der Universitätsmedizin der Johannes Gutenberg-Universität Mainz.

Abbildung 12 Die Datenerhebung

Dargestellt sind die einzelnen definierten Schritte der Datenerhebung. Hierbei sind die durchgeführten Maßnahmen (grün), die arteriellen Blutentnahmen (orange) und die jeweiligen Messungen der Parameter (gelb) in zeitlicher Reihenfolge aufgeführt.

<u>Legende:</u> [ABD - invasiver arterieller Blutdruck; MAD - mittlerer arterieller Druck; EKG - Elektrokardiogramm; SpO₂ - nichtinvasive partielle Sauerstoffsättigung; ORI - Oxygen Reserve Index; PI - Perfusionsindex; O₂Hb - invasive arterielle fraktionelle Sauerstoffsättigung; sO₂ - invasive arterielle partielle Sauerstoffsättigung; PaO₂ - arterieller Sauerstoffpartialdruck; PaCO₂ - arterieller Kohlenstoffdioxidpartialdruck; CHb - Hämoglobinkonzentration; etO₂ - endtidale Sauerstoffkonzentration; etCO₂ - endtidale Kohlenstoffdioxidkonzentration; CRF - "case report form" (Datenerhebungsbögen)

3.7 Die Statistik

3.7.1 Die Fallzahlplanung

Das primäre Ziel bzw. der primäre Endpunkt sollte untersuchen, wie zuverlässig ein ORI \leq 0.02 einen PaO₂ < 100 mmHg und wie zuverlässig ein ORI \geq 0.98 einen PaO₂ > 200 mmHg detektiert.

Zum Zeitpunkt t₀ sollte bei fast allen Patienten der $PaO_2 < 100 \text{ mmHg}$ vorliegen (hohe Prävalenz). Es wurde keine Präoxygenierung begonnen und ausschließlich Raumluft (FiO₂ = 0,21) eingeatmet. Daher sollte hier der ORI = 0.00 und unter Berücksichtigung der Messungenauigkeit ≤ 0.02 betragen.

Zum Zeitpunkt t_{180} wurde bei mindestens 90 % der Patienten angenommen, dass der PaO₂ > 200 mmHg beträgt. Hier wurde nach dem Prinzip der Denitrogenisierung der Sauerstoffanteil in der Lunge von circa 21 % (t₀) sukzessiv gesteigert. Dies sollte unweigerlich zu einem Anstieg des PaO₂ führen. Folglich müsste ORI = 1.00 bzw. unter Berücksichtigung der Messungenauigkeit ORI ≥ 0.98 zum Zeitpunkt t₁₈₀ anzeigen.

Der Anteil der Patienten, für die die oben beschriebenen Fälle zutreffen, sollte bestimmt werden. Hierzu wurde die relative Häufigkeit und ein 95%-KI gebildet.

Für den Messzeitpunkt t_0 wurde angenommen, dass die Wahrscheinlichkeit für einen "richtigen" ORI-Wert 90 % bzw. 0.9 beträgt. Bei der ermittelten Fallzahl (n) von n = 60 liegen die Grenzen des 95%-KI von der beobachteten relativen Häufigkeit mit 99,4 % Sicherheit bei maximal 0.1. In diesem Fall ließe sich folglich die Zuverlässigkeit vom ORI mit ± 10 % genau bestimmen. Ist hingegen die Wahrscheinlichkeit für einen "richtigen" ORI-Wert 80 % bzw. 0.8, so ist mit 96,9 % Sicherheit die Genauigkeit ± 11 %. Auch bei einer tatsächlichen Wahrscheinlichkeit von 50 % bzw. 0.5 des ORI ist mit mehr als 99 % Sicherheit das 95%-KI nicht breiter als ± 13 %.

Für den Messzeitpunkt t_{180} am Ende der dreiminütigen Präoxygenierung wurde angenommen, dass 90 % (n = 54) der Patienten einen PaO₂ > 200 mmHg erreichen. Mit dieser Anzahl ergab sich eine Zuverlässigkeit von 0.9, dass der Abstand der Grenzen des 95%-KI von der beobachteten relativen Häufigkeit mit 96 % Sicherheit maximal 0.1 ist. Beträgt die Wahrscheinlichkeit nur 80 % bzw. 0.8, so ist die Genauigkeit ± 11 % mit einer Sicherheit von 92,3 %. Auch bei 50 % bzw. 0.5 Zuverlässigkeit ist das 95%-KI mit 99 % Sicherheit nicht breiter als ± 13 %.

Nach eingehender Fallzahlplanung wurde die endgültige Fallzahl von n = 60 festgelegt und mit SAS 9.4 PROC POWER durchgeführt. Die Simulationen für die betrachteten Szenarien ergaben eine Überdeckungswahrscheinlichkeit von 93,4 % bis 96,4 %.

3.7.2 Die Datenauswertung

Im Rahmen des primären Endpunktes wurde untersucht, wie zuverlässig ein ORI \leq 0.02 einen PaO₂ < 100 mmHg und ein ORI \geq 0.98 einen PaO₂ > 200 mmHg detektiert. Für die Untersuchung wurden Kreuztabellen erstellt sowie die Testgütekriterien Sensitivität, Spezifität und prädiktive Werte berechnet.

Im Rahmen des sekundären Endpunktes wurde zu Beginn der Zusammenhang der Größen PaO₂ und ORI im Hinblick auf Stärke und Richtung untersucht. Hierzu wurde eine Korrelationsanalyse mit IBM[®] SPSS Statistics 27 durchgeführt. Es wurde der Pearson-Korrelationskoeffizient gebildet, da beide Größen metrisch skaliert sind.

Als weiterer sekundärer Endpunkt wurde der Trend des ORI und des PaO₂ zwischen den beiden Messzeitpunkten (t₀; t₁₈₀) untersucht und graphisch dargestellt.

Als letzter sekundärer Endpunkt wurde für jeden Patient eine Graphik mithilfe von Microsoft[®] Excel 16.56 erstellt, die die nichtinvasive Überwachungszeit der beiden Größen SpO2 und ORI während der Präoxygenierung darstellt. Abschließend wurde eine Graphik mit allen Messergebnissen der beiden Parameter aus den jeweiligen Medianen, 25%- (Q1) sowie 75%-Perzentilen (Q3) der fünfzehnsekündlichen Messzeitpunkte erstellt. Die Zeit bis zum Erreichen einer SpO₂ \geq 98 % während der Präoxygenierung wurde als SpO₂-Überwachungszeit festgelegt (vergleiche Kapitel 2.6.2, S. 29). Als ORI-Anstieg wurde der Zeitpunkt, an dem der ORI > 0.00 betrug, gewählt. Hierbei wurde der Zeitraum von SpO₂ \ge 98 % bis zum Beginn des ORI-Anstiegs als ORI-Latenz definiert. Erreichte der ORI einen über 30 s konstanten Wert, so wurde dies als ORI-Plateau definiert, wobei eine Ungenauigkeit bzw. Schwankung von 0.05 toleriert wurde. Wenn der ORI bereits während der Präoxygenierung einen um > 0.05 höheren ORI-Wert aufwies, wurde dies nicht als Plateaufall anerkannt. Für den Fall, dass der ORI ein Plateau erreichte, wurde die Zeit von Beginn der Präoxygenierung bis zum Plateau als ORI-Plateau festgelegt. Die ORI-Überwachungszeit wurde berechnet aus der Differenz zwischen dem Zeitpunkt des Erreichens des Plateaus bzw. dem Beobachtungszeitraumende und dem Zeitpunkt des ORI-Anstiegs.

Im Rahmen des tertiären Endpunktes wurden die Patientencharakteristika und Messverläufe aller erhobenen Parameter übersichtlich und einführend für den primären und sekundären Endpunkt dargestellt. Hierfür wurde der jeweilige Median, die *IQR*, das Minimum bzw. das Maximum sowie relative Häufigkeiten bzw. prozentuale Anteile errechnet. Die erhobenen Herzkreislaufparameter und Oxygenierungsparameter (IABD systolisch, IABD diastolisch, MAD, SpO₂, ORI, PI, O₂Hb, sO₂, PaO₂, PaCO₂, cHb, etO₂, etCO₂) wurden ausgewertet und im Vergleich beider Messzeitpunkte (t₀; t₁₈₀) tabellarisch dargestellt. Der Parameter EKG wurde nach dem Vorliegen eines Sinusrhythmus (SR), eines Vorhofflimmerns (VHF) sowie eines Schrittmacherrhythmus (SM) ausgewertet. Die beschriebene Darstellung der Messparameter

Material und Methoden

wurde für einen allgemeinen Überblick der Messergebnisse während der Präoxygenierung durchgeführt. Hiernach wurden die nichtinvasiven Parameter (etO₂, SpO₂ und ORI) zur Kontrolle der Präoxygenierung zu jedem Messzeitpunkt (t_{0-180}) analysiert und für alle 60 Patienten zusammengefasst als Boxplots für den jeweiligen Messzeitpunkt dargestellt. Hieraus wurde ein Diagramm mit allen nichtinvasiven Parametern zusammen, sowie für jeden einzeln, erstellt. Der PaO₂ wurde anschließend nach demselben Vorgehen ausgewertet und für die beiden Messzeitpunkte t_0 und t_{180} als Boxplot dargestellt.

4 Ergebnisse

4.1 Die allgemeinen Patientencharakteristika

Im Rahmen der untersuchten Fragestellung wurden 81 Patienten nach erster Prüfung durch den Studienarzt als geeignet befunden und aufgesucht. 19 dieser Patienten wurden vor der eigentlichen Beobachtung aus unterschiedlichen Gründen ausgeschlossen (siehe Abbildung 11, S. 47). In zwölf Fällen wurde die OP kurzfristig verschoben und am neuen OP-Zeitpunkt war eine Beobachtung organisatorisch nicht möglich. Fünf Patienten konnten nicht beobachtet werden, da die OP parallel zu ebenfalls eingeschlossenen Patienten stattfand. Es musste ein Patient nach erneuter Prüfung aufgrund des Nichterfüllens der Einschlusskriterien ausgeschlossen werden. Ein Patient lehnte die Teilnahme ab. Demnach wurden 61 Patienten in die Beobachtungsstudie eingeschlossen. Von der Analyse der erhobenen Daten wurde ein Patient aufgrund von unvollständigen Messdaten ausgeschlossen, da hier eine sofortige BGA-Messung aufgrund einer automatischen Wartung des POCT-Gerätes nicht möglich war. Schlussendlich wurden 60 Patienten im Rahmen der Beobachtungsstudie analysiert. Die Ergebnisse werden im Folgenden dargestellt.

Die allgemeinen Patientencharakteristika sind in Tabelle 2 (siehe S. 58) dargestellt. Das Studienkollektiv bestand aus 13 (22 %) weiblichen und 47 (78 %) männlichen Patienten. Das Alter der Patienten lag zwischen 41 und 89 Jahren und betrug im Median 71 Jahre. Der Großteil (65 %) der eingeschlossenen Patienten gehörte nach präoperativer Einschätzung der Gruppe ASA III an. Im Median betrug der *Body Mass Index* (BMI) 27,13 Kilogramm pro Körpergröße zum Quadrat (kg/m²).

Die Diagnosen sowie die durchgeführten operativen Eingriffe sind in Tabelle 3 (siehe S. 58) aufgeführt. Die Hälfte der Patienten wies eine periphere arterielle Verschlusskrankheit (pAVK) auf (n = 30). Die nach den gestellten Diagnosen am meisten durchgeführte OP war die periphere Thrombendarteriektomie.

Ergebnisse

Tabelle 2 Patientencharakteristik Patienten (n)	60
Männer	47 (78 %)
Frauen	13 (22 %)
Alter (Jahre)	
Median (IQR)	71 (15)
Minimum – Maximum	41 – 89
Körpergewicht (kg)	
Median (IQR)	83 (20)
Minimum – Maximum	45 – 130
BMI (kg/m²)	
Median (IQR)	27,13 (5,72)
Minimum – Maximum	16,73 – 40,12
16 – 17	1 (2 %)
18,5 – 25	15 (25 %)
25 – 30	25 (42 %)
> 30	19 (32 %)
ASA-Klassifikation	
ASA I	0 (0 %)
ASA II	11 (18 %)
ASA III	39 (65 %)
ASA IV	10 (17 %)

Die hier dargestellten Daten werden, sofern nicht anders gekennzeichnet, als Anzahl (Prozent) angegeben. Die

Prozentangaben können abweichen aufgrund von Rundungen. <u>Legende:</u> ASA – englisch "American Society of Anesthesiology"; BMI – Body-Mass-Index; IQR – englisch "interquartile range"; kg – Kilogramm; kg/m² – Kilogramm pro Körpergröße zum Quadrat; n – Anzahl; % – Prozent

Tabelle 3	Diagnosen	und durchgeführte	Eingriffe aller Patienten
-----------	-----------	-------------------	---------------------------

Patientendiagnose	n (%)
pAVK mit Stenose und / oder Verschluss	30 (50)
Aortenaneurysma	10 (17)
Stenose und/oder Endarterienthrombus der A. carotis interna	10 (17)
Bypassverschluss bzwdegeneration	7 (12)
Migration oder Verschluss eines aortalen Stentgrafts	3 (5)

Operativer Eingriff	
Periphere Bypassanlage	14 (23)
Periphere Thrombendarteriektomie	29 (48)
Einlage eines iliacalen Stentgrafts	3 (5)
Einlage eines aortalen Stentgrafts	15 (25)
Bypass-Reoperation	3 (5)

Die Daten werden als Anzahl (Prozent) angegeben. Die Prozentangaben können abweichen aufgrund von Rundungen sowie kombinierter operativer Eingriffe.

Legende: A. – lateinisch Arteria, Arterie; n – Anzahl; pAVK – periphere arterielle Verschlusskrankheit; % – Prozent

4.2 Der primäre Endpunkt

4.2.1 Wie zuverlässig detektiert ein ORI \leq 0.02 einen PaO₂ < 100 mmHg?

Bei 57 Patienten lag der PaO₂ unter 100 mmHg zum Zeitpunkt t₀ unter Raumluftatmung (siehe Abbildung 13, S. 60 und Tabelle 4, S. 59). Die übrigen drei Patienten wiesen einen PaO₂ > 100 mmHg zum Zeitpunkt t₀, infolge einer durchgeführten Sauerstofftherapie, auf. Der ORI detektierte mit einer Sensitivität von 100 % (95%-KI: 94 – 100) einen PaO₂ < 100 mmHg bzw. einen PaO₂-Wert unterhalb des ORI-sensiblen PaO₂-Bereichs (siehe Tabelle 5). Die Spezifität des ORI betrug hierbei 33 % (95%-KI: 1 – 91; siehe Tabelle 6). Wenn der ORI \leq 0.02 in der beobachteten Stichprobe anzeigte, betrug der tatsächliche PaO₂ zu 95 % (95%-KI: 86 – 99) auch kleiner 100 mmHg (positiv prädiktiver Wert (PPV; siehe Tabelle 7).

Tabelle 4	Kreuztabelle der 60	gepaarten	Messungen des	PaO ₂ und des	ORI zum Zeitpunl	kt to
-----------	---------------------	-----------	---------------	--------------------------	-------------------------	-------

		ORI (Indexwert)			Gesamt
		≤ 0,02	[> 0,02; < 0,98]	≥ 0,98	Gesam
PaO ₂ (mmHg)	< 100	57	0	0	57
	100 – 200	2	1	0	3
Gesamt		59	1	0	60

<u>Legende</u> mmHg – Millimeter-Quecksilbersäule; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck

Tabelle 5 Sensitivität von ORI ≤ 0.02 für PaO₂-Werte < 100 mmHg zum Zeitpunkt t₀

PaO ₂ < 100 mmHg	Beobachtete Häufigkeit (%)	Kumulierte Häufigkeit (%)	95%-KI ^A
ORI ≤ 0,02	57 (100)	57 (100)	0,94; 1,00
ORI > 0,02	0 (0)	0 (0)	

<u>Legende</u>: kumulierte Häufigkeit – Summe der Häufigkeiten; ^A – Clopper-Pearson Exakt; 95%-KI – 95%-Konfidenzintervall; mmHg – Millimeter-Quecksilbersäule; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck; % – Prozent

Tabelle 6 Spezif	fität von ORI ≤ 0.02 fi	ür PaO₂ < 100 mmHg	g zum Zeitpunkt t ₀
------------------	-------------------------	--------------------	--------------------------------

PaO ₂ < 100 mmHg	Beobachtete Häufigkeit (%)	Kumulierte Häufigkeit (%)	95%-KI ^A
ORI > 0,02	1 (33,33)	3 (100)	0,008; 0,91
ORI ≤ 0,02	2 (66,66)	2 (66,66)	

Legende: ^A – Clopper-Pearson Exakt; 95%-KI – 95%-Konfidenzintervall; mmHg – Millimeter-Quecksilbersäule; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck; % – Prozent

Tabelle 7Der positive prädiktive Wert für ORI ≤ 0.02 und PaO2 < 100 mmHg zum Zeitpunkt t₀

ORI ≤ 0,02	Beobachtete Häufigkeit (%)	Kumulierte Häufigkeit (%)	95%-KI ^A
PaO ₂ < 100 mmHg	57 (95)	60 (100)	0,86; 0,99
PaO ₂ > 100 mmHg	3 (5)	3 (5)	

Legende: ^A – Clopper-Pearson Exakt; 95%-KI – 95%-Konfidenzintervall; mmHg – Millimeter-Quecksilbersäule; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck; % – Prozent

Dargestellt sind die Messpaare des ORI und des arteriellen Sauerstoffpartialdrucks zum Zeitpunkt vor Präoxygenierung (t₀). Die sekundäre Abzisse und die darunterliegenden transparent-roten Flächen stellen die erwarteten Intervalle (ORI ≤ 0.02 ; 0.02 < ORI < 0.98; $ORI \geq 0.98$) dar, in denen der ORI bei vorliegendem PaO₂ (PaO₂ < 100; PaO₂ > 100 - 200; PaO₂ > 200) liegen sollte. PaO₂ in der Einheit mmHg und ORI als einheitsloser Index von 0.00-1.00 aufgeführt.

<u>Legende</u>: mmHg – Millimeter-Quecksilbersäule; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck

4.2.2 Wie zuverlässig detektiert ein ORI \ge 0.98 einen PaO₂ > 200 mmHg?

Nach dreiminütiger Präoxygenierung (t_{180}) wurde bei 45 von 60 Patienten ein PaO₂ > 200 mmHg beobachtet (siehe Tabelle 8). Der PaO₂ lag bei den restlichen 15 Patienten zwischen 100 und 200 mmHg.

Ein PaO₂ > 200 mmHg wurde bei 31 % (95%-Kl 18 – 47) der Patienten mit einem ORI \ge 0.98 detektiert (Sensitivität; siehe Tabelle 9). Bei 80 % (95%-Kl 52 – 96) der Patienten erkannte der ORI einen PaO₂ < 200 mmHg (Spezifität; siehe Tabelle 10). Der ORI zeigte \ge 0.98 bei 82 % (95%-K 56 – 96) der Patienten an, bei denen ein PaO₂ > 200 mmHg (PPV; siehe Tabelle 11) gemessen wurde.

		≤ 0,02	[> 0,02; < 0,98]	≥ 0,98	Gesamt
	< 100	0	0	0	0
PaO ₂ (mmHg)	100 – 200	0	12	3	15
	> 200	1	30	14	45
Gesamt		1	42	17	60

Tabelle 8 Kreuztabelle der 60 gepaarten Messungen des PaO₂ und des ORI zum Zeitpunkt t₁₈₀

<u>Legende</u>: mmHg – Millimeter-Quecksilbersäule; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck

Tabelle 9Sensitivität von ORI \geq 0.98 für eine erfolgreiche Präoxygenierung (PaO2-Werte > 200 mmHg)zum Zeitpunkt t_{180}

PaO ₂ > 200 mmHg	Beobachtete Häufigkeit (%)	Kumulierte Häufigkeit (%)	95%-KI ^A
ORI ≥ 0,98	14 (31,1)	45 (100)	0,18; 0,47
ORI < 0,98	31 (68,9)	31 (68,9)	
1 1 1 1 1 1 1 1 1			0.00) / //

<u>Legende</u>: kumulierte Häufigkeit – Summe der Häufigkeiten für die detektierten Fälle (ORI \geq 0.98) und die übersehenen Fälle (ORI < 0,98); ^A – Clopper-Pearson Exakt; 95%-KI – 95%-Konfidenzintervall; mmHg – Millimeter-Quecksilbersäule; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck; % – Prozent

Tabelle 10 Spezifität von ORI ≥ 0.98 für einen richtig detektierten PaO2 > 200 mmHg zum Zeitpunkt t18	mmHg zum Zeitpunkt t18	PaO2 >	detektierten	richtig	einen	0.98 für	n ORI ≧	Spezifität vo	Tabelle 10
---	------------------------	--------	--------------	---------	-------	----------	---------	---------------	------------

PaO ₂ < 200 mmHg	Beobachtete Häufigkeit (%)	Kumulierte Häufigkeit (%)	95%-KI ^A
ORI < 0,98	12 (80)	15 (100)	0,52; 0,96
ORI ≥ 0,98	3 (20)	3 (20)	

Legende: ^A – Clopper-Pearson Exakt; 95%-KI – 95%-Konfidenzintervall; mmHg – Millimeter-Quecksilbersäule; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck; % – Prozent

Tabelle 11 Der positive prädiktive Wert für ORI \geq 0.98 und eine vorliegende erfolgreiche Präoxygenierung (PaO₂-Werte > 200 mmHg) zum Zeitpunkt t₁₈₀

ORI ≥ 0,98	Beobachtete Häufigkeit (%)	Kumulierte Häufigkeit (%)	95%-KI A
PaO ₂ > 200 mmHg	14 (82,4)	17 (100)	0,57; 0,96
PaO ₂ < 200 mmHg	3 (17,6)	3 (17,6)	

Legende: ^A – Clopper-Pearson Exakt; 95%-KI – 95%-Konfidenzintervall; mmHg – Millimeter-Quecksilbersäule; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck; % – Prozent

Dargestellt sind die Messpaare des ORI und des arteriellen Sauerstoffpartialdrucks (rote Punkte) 180 Sekunden nach Beginn der Präoxygenierung (t_{180}). Auf der Abszisse ist der PaO₂ und auf der Ordinate ist der ORI aufgetragen. Zusätzlich sind die, unter Berücksichtigung der Messungenauigkeit, erwarteten ORI-Werte auf der sekundären roten Abszisse für das ORI-sensible PaO₂-Intervall (100 mmHg > PaO₂ <200 mmHg) und die daran angrenzenden Intervalle (PaO₂ < 100 mmHg und PaO₂ > 200 mmHg) auf der sekundären roten Abszisse dargestellt. Die erwarteten ORI-Werte (ORI ≤ 0.02; 0.02 < ORI < 0.98; ORI ≥ 0.98) wurden aus dem Funktionsprinzip und den Herstellerangaben des ORI abgeleitet und dienen hier als Einordnung der beobachteten ORI-Werte (siehe Anhang 8.1, S. 95). Der PaO₂ ist in der Einheit mmHg und der ORI ist als einheitsloser Index von 0.00 - 1.00 aufgeführt. Legende: mmHg – Millimeter-Quecksilbersäule; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck

4.3 Der sekundäre Endpunkt

4.3.1 Die Korrelationsanalyse von PaO₂ und ORI

Der Pearson-Korrelationskoeffizient $r_{(PaO2,ORI)}$ betrug 0,712 (95%-KI 0,609 – 0,789; p < 0,001) unter Einbezug aller 120 Wertepaare zu beiden Zeitpunkten (t_0 ; t_{180}) für die Größen PaO₂ und ORI.

Tabelle 12Pearson-Korrelationskoeffizient f
ür PaO2 und ORI beider Messzeitpunkte (t_0 ; t_{180}) aller Patienten(120 eingeschlossene g
ültige F
älle)

Pearson	Wert	ASE	т	р
PaO ₂ ; ORI	0,712	0,044	11,025	< 0,001

<u>Legende:</u> ASE – asymptotischer Standardfehler; ORI – Oxygen Reserve Index; p - p-Wert (Signifikanzwert); PaO₂ – arterieller Sauerstoffpartialdruck; T – Teststatistik, die die Nullhypothese testet, ob beide Variablen signifikant zusammenhängen

4.3.2 Der ORI als Trend des PaO₂ während der Präoxygenierung

Bei 59 Patienten stieg der ORI mit einem zunehmendem PaO_2 an. Der ORI blieb bei einem Patienten bei 0.00, trotz steigendem PaO_2 . Der PaO_2 nahm während der Präoxygenierung zwischen t₀ und t₁₈₀ um 194 mmHg (Median; IQR: 185) und der ORI um 0.60 (Median; IQR: 0.64) zu (siehe Abbildung 15, S. 63 und Tabelle 13, S. 64).

Abbildung 15 Der ORI als Trend des PaO₂ zwischen den Zeitpunkten t₀ und t₁₈₀ Dargestellt sind die Messpaare (ORI; PaO₂) für die Zeitpunkte vor (graue Punkte) und nach (rote Punkte) dreiminütiger Präoxygenierung (t₀; t₁₈₀). Das Messpaar für den Zeitpunkt t₀ ist über einen gestrichelten Trendpfeil mit dem zugehörigen Messpaar für den Zeitpunkt t₁₈₀ verbunden. <u>Legende:</u> PaO₂ – arterieller Sauerstoffpartialdruck; ORI – Oxygen Reserve Index; mmHg – Millimeter-Quecksilbersäule

n = 60	Median	Q1	Q3
Delta PaO ₂ (mmHg)	194	126	311
Delta ORI	0,60	0,36	0,60

<u>Legende</u>: Delta — Differenzwert aus t_{180} -Messwert und t_0 -Messwert; mmHg – Millimeter-Quecksilbersäule; n – Patientenanzahl; ORI – Oxygen Reserve Index; PaO₂ – arterieller Sauerstoffpartialdruck; Q1 – 25%-Perzentil; Q3 – 75%-Perzentil

4.3.3 Der zeitliche Zusammenhang der SpO2 und des ORI

Die Abbildung 16 (siehe S. 65) zeigt den medianen Messverlauf der SpO₂ und des ORI während der Präoxygenierung. Die individuellen Messverläufe der SpO₂ und des ORI von jedem Patienten sind aufgrund der Übersicht im Anhang zu finden (siehe Kapitel 8.3, S. 101). Zu Beginn der Präoxygenierung stieg die SpO₂ von einem Ausgangswert von 96 % (Median; IQR: 3) an. Nach 45 s (Median; IQR: 45) erreichten die SpO₂ Werte \geq 98 % (Median; IQR: 3; siehe Tabelle 14). Mit einer Latenz von 15 s (Median; IQR: 45) bzw. 60 s nach Beginn der Präoxygenierung begann der ORI anzusteigen. Der ORI betrug bei einem Patienten nie > 0.00. Bei zwei anderen Patienten stieg der ORI an, bevor die SpO₂ \geq 98 % anzeigte.

Bei 52 der 60 Patienten erreichte der ORI 120 s (Median; IQR: 56) nach Präoxygenierungsbeginn ein Plateau (siehe Kapitel 3.7.2, S. 55). Ein ORI-Plateauwert < 0.98 wurde bei 33 von 60 Patienten zum Zeitpunkt t_{180} beobachtet. Bei 23 von diesen 33 Patienten (70 %) lag der zeitgleich ermittelte PaO₂ über 200 mmHg. Der PaO₂ lag bei den übrigen 10 Patienten unter 200 mmHg. Der ORI erreichte ein Plateau mit einem Indexwert > 0.98 bzw. 1.00 zum Zeitpunkt t_{180} bei 19 von 60 Patienten. 15 dieser 19 Patienten (79 %) wiesen zeitgleich einen PaO₂ über 200 mmHg auf. Bei den restlichen 4 Patienten lag der PaO₂ unter 200 mmHg. Bei acht Patienten stieg bzw. fiel der ORI bis zum Ende des Beobachtungszeitraums und erreichte kein Plateau. Die ORI-Überwachungszeit betrug 45 s (Median; IQR: 60).

Größe	Median (Q1; Q3) (s)	Minimum – Maximum (s)
SpO₂ ≥ 98 %	45 (30; 90)	0 – 135
ORI-Latenz	15 (0; 45)	-75 – 90
ORI-Anstieg	75 (60; 90)	0 – 135
ORI-Überwachungszeit	45 (15; 75)	0 – 150
ORI-Plateau	120 (94; 150)	0 – 165

Tabelle 14 Zeitpunkte des zeitlichen Zusammenhangs der SpO2 und des ORI

Für die Definitionen der Größen ORI-Latenz, ORI-Anstieg, ORI-Überwachungszeit und ORI-Plateau siehe Kapitel 3.7.2, S. 55.

<u>Legende</u>: ORI – Oxygen Reserve Index; Q1 – 25%-Perzentil; Q3 – 75%-Perzentil; s – Sekunde(n); SpO₂ – partielle Sauerstoffsättigung; % – Prozent

Abbildung 16 Der zeitliche Zusammenhang der SpO₂ und des ORI während der Präoxygenierung Dargestellt ist der nichtinvasive Messverlauf der SpO₂ und des ORI während der Präoxygenierung. Für die Definitionen der Größen ORI-Latenz, ORI-Anstieg, ORI-Überwachungszeit und ORI-Plateau siehe Kapitel 3.7.2, S. 55.

<u>Legende:</u> ORI – Oxygen Reserve Index; Q1 – 25%-Perzentil; Q3 – 75%-Perzentil; s – Sekunde(n); SpO₂ – partielle Sauerstoffsättigung; % – Prozent

4.4 Der tertiäre Endpunkt

4.4.1 Die Messparameter vor und nach Präoxygenierung im Vergleich

Die erhobenen Herzkreislaufparameter und Oxygenierungsparameter (IABD systolisch, IABD diastolisch, MAD, SpO₂, ORI, PI, O₂Hb, sO₂, PaO₂, PaO₂, cHb, etO₂, etCO₂) sind in Tabelle 15 bis Tabelle 18 nach den verwendeten Messinstrumenten gruppiert zum Zeitpunkt vor Präoxygenierung (t₀) und nach 3 min Präoxygenierung (t₁₈₀) dargestellt.

Invasiver arterieller Blutdruck (IABD)	Median	IOR	Minimum	Maximum
Phillips Monitor	Woalan	IGIT	ivii iirioiti	Maximum
Systolischer IABD (mmHg)				
to	161	43,75	92	239
t ₁₈₀	161	49,50	96	232
Diastolischer IABD (mmHg)				
to	67	15,50	36	98
t ₁₈₀	67	17,75	41	97
Mittlerer arterieller Blutdruck (MAD) (mmHg)				
to	98	19,00	62	140
t ₁₈₀	99	21,75	67	144

Tabelle 15 Invasiver arterieller Blutdruck

<u>Legende</u>: IABD – invasiver arterieller Blutdruck; IQR – Interquartilsabstand; MAD – mittlerer arterieller Blutdruck; mmHg – Millimeter-Quecksilbersäule; t_0 – Zeitpunkt vor Präoxygenierung; t_{180} – Zeitpunkt 180 Sekunden nach Beginn der Präoxygenierung

Nichtinvasive Messparameter Masimo Radical 97	Median	IQR	Minimum	Maximum
SpO ₂ (%)				
to	96	3	86	100
t ₁₈₀	100	0	98	100
ORI (Indexwert)				
to	0,00	0,00	0,00	0,41
t ₁₈₀	0,62	0,64	0,00	1,00
Perfusionsindex (PI)				
to	2,40	2,68	0,42	8,90
t ₁₈₀	2,15	2,10	0,33	7,70

Tabelle 16 Nichtinvasive Messparameter

<u>Legende</u>: IQR – Interquartilsabstand; ORI – Oxygen Reserve Index; PI – Perfusionsindex; SpO₂ – partielle Sauerstoffsättigung; t_0 – Zeitpunkt vor Präoxygenierung; t_{180} – Zeitpunkt 180 Sekunden nach Beginn der Präoxygenierung; % – Prozent

Invasive Messparameter	Median	IOR	Minimum	Maximum
Radiometer ABL90 Flex	Wodian	IGIN	ivii iiridiii	Maximum
O ₂ Hb (%)				
t ₀	95,00	3,65	85,60	98,30
t ₁₈₀	99,10	0,30	97,30	99,40
sO ₂ (%)				
to	95,80	3,57	86,30	99,00
t ₁₈₀	99,90	0,40	98,10	100,50
PaO ₂ (mmHg)				
t ₀	77,20	19,25	53,70	123,00
t ₁₈₀	271,50	184,00	119	550
PaCO ₂ (mmHg)				
to	36,60	4,90	24,00	53,70
t ₁₈₀	35,50	8,70	21,20	69,90
cHb (mg/dl)				
to	13,90	2,58	8,30	17,10
t ₁₈₀	13,90	2,60	7,90	16,90

<u>Legende</u>: cHb – Hämoglobinkonzentration; IQR – Interquartilsabstand; mg/dl – Milligramm/Deziliter; mmHg – Millimeter-Quecksilbersäule; O_2Hb – oxygeniertes Hämoglobin; PaCO₂ – arterieller Kohlenstoffdioxidpartialdruck; PaO₂ – arterieller Sauerstoffpartialdruck; sO₂ – invasive arterielle partielle Sauerstoffsättigung; SpO₂ – partielle Sauerstoffsättigung; t₀ – Zeitpunkt vor Präoxygenierung; t₁₈₀ – Zeitpunkt 180 Sekunden nach Beginn der Präoxygenierung; % – Prozent

Tabelle 18	Oxvaraphie	und Kapnographie
rubene ro	Oxygrupine	und Kapnographic

Oxygraphie und Kapnographie Dräger Pallas	Median	IQR	Minimum	Maximum
etO ₂ (%)				
to	62	17	32	98
t ₁₈₀	78	18	33	97
etCO ₂ (%)				
to	22	12	0	38
t ₁₈₀	24	9	0	42

<u>Legende</u>: IQR – Interquartilsabstand; etCO₂ – endtidale Kohlenstoffdioxidkonzentration; etO₂ – endtidale Sauerstoffkonzentration; t_0 – Zeitpunkt vor Präoxygenierung; t_{180} – Zeitpunkt 180 Sekunden nach Beginn Präoxygenierung; % – Prozent

Der IABP sowie der MAD unterscheiden sich zu beiden Messzeitpunkten (t_0 ; t_{180}) im Median nicht. Die SpO₂ nimmt zwischen beiden Messzeitpunkten im Median um 4 % auf 100 % (t_{180}) zu. Der ORI steigt von 0.00 (Median; IQR: 0.00) zum Zeitpunkt t_0 auf 0.62 (Median; IQR: 0.64) zum Zeitpunkt t_{180} an. Der ermittelte PI nimmt zwischen beiden Messzeitpunkten um 0,25 im Median ab. Die SaO₂ (O₂Hb) nimmt, analog zur SpO₂, um 4 % zu und beträgt zum Zeitpunkt

 t_{180} 100 % (Median; IQR: 0). Der PaO₂ beträgt zum Zeitpunkt t_0 77,20 mmHg (Median; IQR: 19,25) und zum Zeitpunkt t_{180} 271,50 mmHg (Median; IQR: 184). Der PaCO₂ wird zum Zeitpunkt t_0 mit 36,60 mmHg (Median; IQR 4,9) und zum Zeitpunkt t_{180} mit 35,50 mmHg (Median; IQR: 8,7) gemessen. Die IQR des PaO₂ zum Zeitpunkt t_{180} ist größer als zum Zeitpunkt t_0 . Beim PaCO₂ ist ebenfalls eine IQR-Zunahme zwischen t_0 und t_{180} zu erkennen. Die mediane cHb ist zu beiden Messzeitpunkten gleich bei 13,90 mg/dl (Median; IQR 2,60). Die etO₂ beschreibt über den Verlauf beider Messzeitpunkte einen medianen Anstieg von 16 %. Zum Zeitpunkt t_0 beträgt die etO₂ 62 % (Median; IQR: 17) und zum Zeitpunkt t_{180} 78 % (Median; IQR 18). Die etCO₂ liegt zum Zeitpunkt t_0 bzw. t_{180} bei 22 % (Median; IQR 12) bzw. 24 % (Median; IQR 9).

Während der Präoxygenierung befanden sich 53 Patienten im Sinusrhythmus, wohingegen drei eine absolute Arrhythmie bzw. ein Vorhofflimmern (VHF) und vier Patienten einen Schrittmacherrhythmus aufwiesen.

4.4.2 Die Messparameter zur Erfolgskontrolle der Präoxygenierung im zeitlichen Verlauf

4.4.2.1 Die Gruppe der kontinuierlichen nichtinvasiven Parameter

In Abbildung 17 sind als einführender Überblick die Messverläufe der etO₂, der SpO₂ und des ORI im zeitlichen Zusammenhang während der dreiminütigen Präoxygenierung ($t_0 = 0$ s bis $t_{180} = 3$ min = 180 s) dargestellt.

Abbildung 17 Die kontinuierlichen nichtinvasiven Parameter etO₂, SpO₂ und ORI im Zeitverlauf der Präoxygenierung

Hier sind die Messverläufe der Parameter etO₂ (grün), SpO₂ (blau) und ORI (rot) im Median sowie das Q1 und Q3 (gestrichelte Linien) der jeweiligen Parameter dargestellt.

<u>Legende:</u> etO_2 – endtidale Sauerstoffkonzentration; ORI – Oxygen Reserve Index; s – Sekunde(n); SpO₂ – partielle Sauerstoffsättigung; % – Prozent; Q1 — 25%- Perzentil; Q3 — 75%-Perzentil

In Abbildung 18 und Abbildung 19 (siehe S. 70) sind die Messverläufe der etO₂, der SpO₂ sowie des ORI einzeln dargestellt. Der Übersicht halber wurden die 60 Messwerte zu jedem Messzeitpunkt (t₀ bis t₁₈₀) in jeweils einem Boxplot zusammengefasst.

Die etO₂ beträgt zu Beginn (Boxplot 0, t_0) der Präoxygenierung 62% (Median; IQR: 17). Im Verlauf steigt der etO₂-Wert sukzessiv auf 79 % (Median; IQR: 16) an. Folglich liegt die etO₂ bei 30 Patienten über 79 % bzw. bei 15 der Patienten über 85 % (Boxplot "180", t_{180}) nach dreiminütiger Präoxygenierung.

Abbildung 18 Boxplots – Die endtidale Sauerstoffkonzentration im Zeitverlauf der Präoxygenierung Hier ist der Messverlauf der etO₂ zu allen fünfzehnsekündlichen Messzeitpunkten jeweils als Boxplot ($t_0 - t_{180}$) für alle Studienpatienten (n = 60) dargestellt. Der Median des jeweiligen Messzeitpunktes ist als schwarze Linie innerhalb der Box dargestellt. Der Interquartilsabstand (interquartile range [IQR]) wird durch die Box abgebildet. Die Whisker enthalten alle weiteren Werte vom Q1 bzw. Q3 bis zu einem maximalen Abstand von 1,5 IQR. Ausreißer sind als Kreis gekennzeichnet und liegen im Bereich 1,5 IQR bis 3,0 IQR vom Q1 bzw. Q3 entfernt. Extreme Ausreißer sind als Stern gekennzeichnet und liegen im Bereich größer als 3,0 IQR vom Q1 bzw. Q3 entfernt.

<u>Legende:</u> etO_2 – endtidale Sauerstoffkonzentration; s – Sekunde(n); % – Prozent; Q1 — 25%- Perzentil; Q3 — 75%-Perzentil

Zu Beginn der Präoxygenierung (Boxplot 0, t₀) beträgt die SpO₂ 96 % (Median; IQR: 3). Nach 90 s (Boxplot 90) durchgeführter Präoxygenierung steigt die SpO₂ auf 100 % (Median; IQR: 1) an. Nach 180 s Präoxygenierung liegt sie bei 100 % (Median; IQR: 0). Absolut zeigt die SpO₂ bei 48 Patienten 100 %, bei 8 Patienten 99 % und bei 4 Patienten 98 % an.

Abbildung 19 Boxplots – Die partielle Sauerstoffsättigung im Zeitverlauf der Präoxygenierung Hier ist der Messverlauf der SpO₂ zu allen fünfzehnsekündlichen Messzeitpunkten jeweils als Boxplot ($t_0 - t_{180}$) für alle Studienpatienten (n = 60) dargestellt. Der Median des jeweiligen Messzeitpunktes ist als schwarze Linie innerhalb der Box dargestellt. Der Interquartilsabstand (IQR) wird durch die Box abgebildet. Die Whisker enthalten alle weiteren Werte vom Q1 bzw. Q3 bis zu einem maximalen Abstand von 1,5 IQR. Ausreißer sind als Kreis gekennzeichnet und liegen im Bereich 1,5 IQR bis 3,0 IQR vom Q1 bzw. Q3 entfernt.

<u>Legende:</u> n – Anzahl; s – Sekunde(n); SpO₂ – partielle Sauerstoffsättigung; t_0 – Zeitpunkt vor Präoxygenierung; t_{180} – Zeitpunkt 180 Sekunden nach Beginn der Präoxygenierung; Q1 — 25%- Perzentil; Q3 — 75%-Perzentil

Zu Beginn der Präoxygenierung (Boxplot 0, t₀) beträgt der ORI bei 59 Patienten 0.00. Bei einem Patienten betrug der ORI 0.41. Dieser Patient war sauerstoffpflichtig und erhielt 5 l/min O₂ über eine O₂-Maske. Innerhalb der ersten 60 s ist bei 10 von 60 Patienten ein ORI-Anstieg beobachtet worden (siehe Abbildung 20). Ab 60 s durchgeführter Präoxygenierung wurde bei 29 von 60 Patienten ein ORI-Anstieg beobachtet. Nach 120 s Präoxygenierung betrug der ORI 0.50 (Median; IQR: 0.72). Folglich wiesen 30 von 60 Patienten zu diesem Zeitpunkt einen ORI \geq 0.50 auf. Nach 180 s (t₁₈₀) durchgeführter Präoxygenierung wurde ein ORI von 0.63 (Median; IQR: 0.72) beobachtet. Demnach lagen 30 der 60 ORI-Werte über bzw. auf 0.63 und 15 auf 1.00 (siehe obere Begrenzung der Box bzw. Q3 des Boxplots 180 s in Abbildung 20). Insgesamt erreichten 19 (32 %) Patienten einen ORI von \geq 0.98 nach 180 s Präoxygenierung.

Abbildung 20 Boxplots – Der Oxygen Reserve Index im Zeitverlauf der Präoxygenierung Hier ist der Messverlauf des ORI zu allen fünfzehnsekündlichen Messzeitpunkten jeweils als Boxplot ($t_0 - t_{180}$) für alle Studienpatienten (n = 60) dargestellt. Der Median des jeweiligen Messzeitpunktes ist als schwarze Linie innerhalb der Box dargestellt. Der Interquartilsabstand (IQR) wird durch die Box abgebildet. Die Whisker enthalten alle weiteren Werte vom Q1 bzw. Q3 bis zu einem maximalen Abstand von 1,5 IQR. Ausreißer sind als Kreis gekennzeichnet und liegen im Bereich 1,5 IQR bis 3,0 IQR vom Q1 bzw. Q3 entfernt. <u>Legende:</u> ORI – Oxygen Reserve Index; s – Sekunde(n); t_0 – Zeitpunkt vor Präoxygenierung; t_{180} – Zeitpunkt 180 Sekunden nach Beginn der Präoxygenierung; Q1 — 25%- Perzentil; Q3 — 75%-Perzentil

4.4.2.2 Der invasive diskontinuierliche Parameter – Der arterielle Sauerstoffpartialdruck

In Abbildung 21 ist die Verteilung des PaO_2 aller 60 Patienten zu beiden Messzeitpunkten (t_0 ; t_{180}) als Boxplots dargestellt. Der PaO_2 beträgt zum Zeitpunkt t_0 77,20 mmHg (Median; IQR: 19,25) und zum Zeitpunkt t_{180} 271,50 mmHg (Median; IQR: 184).

Abbildung 21 Boxplots – Der arterielle Sauerstoffpartialdruck im Zeitverlauf der Präoxygenierung Dargestellt sind die Messwerte des arteriellen Sauerstoffpartialdrucks aller Patienten (n = 60) als Boxplots für die definierten Messzeitpunkte vor und nach dreiminütiger Präoxygenierung (t₀; t₁₈₀). Der Median des jeweiligen Messzeitpunkts ist als schwarze Linie innerhalb der Box dargestellt. Der Interquartilsabstand (IQR) wird durch die Box abgebildet. Die Whisker enthalten alle weiteren Werte vom Q1 bzw. Q3 bis zu einem maximalen Abstand von 1,5 IQR. Ausreißer sind als Kreis gekennzeichnet und liegen im Bereich 1,5 IQR bis 3,0 IQR vom Q1 bzw. Q3 entfernt.

<u>Legende:</u> mmHg – Millimeter-Quecksilbersäule; PaO_2 – arterieller Sauerstoffpartialdruck; s – Sekunde(n); Q1 – 25%- Perzentil; Q3 – 75%-Perzentil

Zum Zeitpunkt t₀ ist ein Ausreißer mit einem PaO₂ von 123 mmHg des sauerstoffpflichtigen Patienten dargestellt. Zwei weitere Patienten waren ebenfalls sauerstoffpflichtig und wiesen PaO₂-Werte von über 100 mmHg auf (oberer Whisker des Boxplots reicht über 100 mmHg hinaus). Insgesamt erhielten drei Patienten zum Zeitpunkt t₀ O₂ aufgrund ihrer individuellen Erkrankung. Bei 45 Patienten betrug der PaO₂ 199,75 mmHg und mehr zum Zeitpunkt t₁₈₀ (Q1). Bei den verbleibenden 15 Patienten lag der PaO₂ zum selben Zeitpunkt unter diesem Wert des Q1. Nach dreiminütiger Präoxygenierung fiel auf, dass sich der IQR im Vergleich zum Messzeitpunkt t₀ verzehnfacht hatte bzw. dass die PaO₂-Messwerte der jeweiligen Patienten deutlich breiter variierten und folglich unterschiedlich hohe Werte erzielt werden konnten.

Im Rahmen der vorliegenden Dissertationsschrift wurde die primäre Frage untersucht, ob sich ein ORI ≥ 0.98 für einen PaO₂ > 200 mmHg zur klinischen Erfolgskontrolle einer Präoxygenierung eignet bzw. die Effektivität einer Präoxygenierung kontinuierlich und nichtinvasiv gemessen werden kann. Bei einem Drittel der beobachteten Fälle konnte ein ORI ≥ 0.98 einen validen Hinweis auf eine suffiziente Präoxygenierung entsprechend einem PaO₂ > 200 mmHg geben.

Demzufolge ist der Einsatz des untersuchten *Cut-off*-Wertes ORI \ge 0.98 als alleinige klinische Erfolgskontrolle auf Grundlage der vorliegenden Ergebnisse dieser Arbeit nicht anzuraten.

5.1 Diskutierende Einordnung der Ergebnisse

5.1.1 Der Zusammenhang zwischen ORI und PaO₂

Im sekundären Endpunkt der vorliegenden Dissertationsschrift wurde der Zusammenhang zwischen dem ORI und dem PaO₂ untersucht. Unter Einbezug aller 120 erhobenen Wertepaare (PaO₂ und ORI) vor und nach dreiminütiger Präoxygenierung (t_0 ; t_{180}) wurde ein starker Zusammenhang (97) mit einem Pearson-Korrelationskoeffizient $r_{(PaO2;ORI)}$ von 0,712 (95%-KI: 0,609 – 0,789; p < 0,001) zwischen ORI und PaO₂ beobachtet.

In der Studie von Applegate et al. wurde ebenfalls von einer positiven Korrelation anhand von 1087 Wertepaaren berichtet. Hier war der Zusammenhang zwischen ORI und PaO₂ mit einem Korrelationskoeffizienten von 0,536 nicht so stark wie in der vorliegenden Dissertationsschrift. Koishi et al., Yoshida et al. und Vos et al. zeigten hingegen mit Korrelationskoeffizienten von 0,671 (25), 0,706 (23) und 0,78 sowie 0,83 (24) eine deutlich bessere Übereinstimmung mit den Ergebnissen der vorliegenden Arbeit.

Die leicht bis stärker abweichenden Korrelationskoeffizienten können auf die Auswahl der verwendeten Wertepaare zur Zusammenhangsanalyse zurückzuführen sein. Applegate et al., Koishi et al. und Yoshida et al. schlossen ausschließlich Wertepaare mit einem $PaO_2 \le 240$ mmHg für die Korrelationsanalyse ein und begründeten diese Entscheidung damit, dass für die Wertepaare mit einem $PaO_2 > 240$ mmHg kein linearer Zusammenhang beobachtet wurde (23, 25, 26). Vos et al. verwendeten ausschließlich Messpaare, bei denen der PaO_2 zwischen 100 und 200 mmHg betrug und somit im vom Hersteller angegebenen ORI-sensiblen PaO_2 -Bereich lagen (24). Der ORI beruht laut Hersteller auf der Änderung der Hintergrundabsorption infolge einer ansteigenden SvO_2 unter normoxischen und leicht hyperoxischen O_2 -Bedingungen im PaO_2 -Bereich von 100 - 200 mmHg. Grenzt man die Korrelationsanalyse auf diesen PaO_2 -Bereich ein, ist ein besserer Zusammenhang zu erwarten. Dieser Umstand kann möglicherweise die höheren Korrelationskoeffizienten von

0,78 und 0,83 der beiden parallel untersuchten ORI-Sensoren von Vos et al. erklären (24). In der vorliegenden Dissertationsschrift wurden alle beobachteten Wertepaare in die Korrelationsanalyse einbezogen. Trotz der zum Teil unterschiedlich vorgenommenen Korrelationsanalysen bzw. leicht abweichenden Korrelationskoeffizienten, besteht für den klinischen Einsatz des ORI, in Übereinstimmung mit den Ergebnissen bisheriger Studien, ein starker Zusammenhang zwischen ORI und PaO₂ (23-26). Hiernach ist ein klinisch beobachteter ORI-Anstieg bzw. Abfall ein guter Hinweis für einen gleichgerichteten PaO₂-Anstieg bzw. Abfall.

Bei der Betrachtung bisheriger Studiendesigns fällt auf, dass die Zusammenhangsanalysen auf Grundlage unterschiedlicher klinischer Rahmenbedingungen erfolgten. In unterschiedlichen klinischen Situationen können, wie in den folgenden Studiendesigns beschrieben, verschiedene FiO₂-Werte resultieren, die einen unterschiedlichen Einfluss auf den PaO₂ sowie auf die avDO₂ und somit auch auf den ORI haben können.

In der hier vorliegenden Arbeit wurden zu definierten Zeitpunkten, vor Beginn der Präoxygenierung (t_0 ; FiO₂ = 0,21, 3 Patienten abweichend FiO₂ > 0,21) und nach dreiminütiger Präoxygenierung (t_{180} ; FiO₂ = 1,00), im Rahmen der Narkoseeinleitung, die Wertepaare erhoben. Beim ersten Messzeitpunkt (t_0) ist, unter der Annahme der Raumluftatmung, ein PaO₂ < 100 mmHg zu erwarten (siehe Kapitel 2.1.3, S. 6), wohingegen beim zweiten Messzeitpunkt (t_{180}) nach Präoxygenierung ein PaO₂ > 100 mmHg in der Regel vorliegt.

Die Autoren bisheriger Studien definierten Messzeitpunkte während der Allgemeinanästhesie zu klinisch indizierten Zeitpunkten einer BGA (26), 5 min vor einer durchgeführten Einlungenbeatmung und alle 3 min während einer Einlungenbeatmung (25), nach Erreichen zuvor definierter Indexwerte des ORI (23), unter Raumluftatmung und nach vordefinierten Abfolgen bzw. Erhöhungen und Reduktionen auf FiO₂-Werte zwischen 0,03 und 0,36 (24). Das Funktionsprinzip des ORI beruht auf dem Fick'schen Prinzip (siehe Anhang 8.2, S. 97), wonach der VO₂ im Gewebe gleich dem Produkt aus HZV und avDO₂ ist. Nach den Beobachtungen von Asfar et al. führt eine Hyperoxie zu einer niedrigen Herzfrequenz sowie zu einer Vasokonstriktion (92). Im Rahmen der Präoxygenierung bzw. FiO₂-Werten über 0,21 kann es zu einer Hyperoxie kommen, die über ein sinkendes HZV zu einer Erhöhung der avDO₂, aber auch über eine resultierende Vasokonstriktion zu einem Abfall der avDO₂ führen kann.

Inwieweit die SvO₂ und somit der ORI durch das Vorliegen unterschiedlicher FiO₂-Werte bzw. einer Hyperoxie beeinflusst wird, ist bisher nicht bekannt und kann Einfluss auf den Zusammenhang von ORI und PaO₂ sowie auf die Funktionsweise des ORI haben. Daher sollten Ergebnisse aus bisherigen Studien nicht ohne weiteres auf andere klinische Situationen übertragen werden, auch wenn ein starker Zusammenhang zwischen ORI und PaO₂ in den klinischen Situationen der beschriebenen Studien vorlag.

Der Zusammenhang vom ORI und PaO₂ kann möglicherweise durch unterschiedliche Messorte vom ORI und der Entnahmestelle der BGA beeinflusst werden.

In der vorliegenden Arbeit wurde bei der Datenerhebung darauf geachtet, dass die arterielle BGA bzw. der PaO₂ aus der A. radialis auf der Unterarmseite gewonnen wurde, an dessen Hand der Masimo RD rainbow Lite SET[™]-1 Adt Klebesensor aufgeklebt worden war. Ähnlich gingen Vos et al. vor, indem hier die invasive arterielle Blutentnahme (A. radialis) sowie der ORI-Wert an derselben Extremität erhoben wurden. Die Autoren Koishi et al., Yoshida et al und Applegate et al. legten die genauen Erhebungsorte nicht dar (23, 25, 26). Bei Applegate et al. wurden bis zu 6 Sensoren abgeleitet. Vor diesem Hintergrund muss mindestens ein Sensor bzw. ORI nicht an der gleichseitigen Hand, in Bezug auf die arterielle Blutentnahme, abgeleitet worden sein (26). Die große Variabilität der kutanen Blutperfusion im Bereich des Messortes ist bekannt (113) und kann möglicherweise die unterschiedlichen Messwerte der ORI-Sensoren bei ein und demselben Patienten bzw. demselben PaO₂ erklären (vergleiche Kapitel 2.7.2, S. 32). Dabei ist die venöse Perfusion zum Großteil über die arterielle Durchblutung reguliert. Besteht beispielsweise durch Aufregung bzw. Stress ein erhöhter Sympathikotonus, so kann es im Bereich der Arteriolen zu einer Vasokonstriktion kommen. Dies hat zur Folge, dass weniger Blut in die Mikrozirkulation gelangt, wodurch die venöse Perfusion abnimmt. Hierdurch können die lokal unterschiedlichen Perfusionsverhältnisse zu unterschiedlichen ORI-Werten bei ein und demselben PaO₂ führen. Nach Severinghaus et al. kann eine bestehende Minderperfusion zu einer lokalen Mikrozirkulationsstörung führen, das eine Abnahme der Sauerstoffextraktion und einen Anstieg der SvO₂ zur Folge haben kann (114). Im Fall einer Mikrozirkulationsstörung würden die Voraussetzungen der Funktionsweise des ORI nicht erfüllt sein, da das HZV sowie die Sauerstoffextraktion bzw. der VO2 nicht konstant sind. Fehlerhafte ORI-Messwerte könnten möglicherweise die Folge sein. 50 % der in dieser Arbeit beobachteten Patienten wiesen eine pAVK auf (vergleiche Kapitel 4.1, S. 57). Diese Vorerkrankung bzw. weitere kardiovaskuläre Erkrankungen und hieraus resultierende arterielle Perfusionsstörungen können möglicherweise den ORI bzw. den Zusammenhang von ORI und PaO₂ beeinflusst haben und sollten in zukünftigen Studien überprüft werden.

Alles in allem sollte darauf geachtet werden, dass der Messsensor des ORI nicht an Stellen klinisch sichtbarer Perfusionsstörungen aufgeklebt wird. Hierbei kann der gleichzeitig über den Messsensor abgeleitete PI eine Hilfestellung sein. Der PI ist ein Maß für die Perfusion an der Messstelle und wird aus dem Quotienten der pulsatilen und der nichtpulsatilen Komponente des plethysmographischen Messsignals gebildet (siehe Kapitel 2.6.1). Nach aktuellen Studienerkenntnissen beeinflussen der periphere Blutfluss und der Gefäßtonus maßgeblich den PI, der zwischen 0,02 bis 20% liegen kann, wobei ein PI > 1% als gut erachtet wird (113). Die Verwendung absoluter ORI-Messwerte für den intra- oder interindividuellen Vergleich ist nicht empfehlenswert.

5.1.2 Die Detektionsgenauigkeit der Grenzen des ORI-sensiblen PaO2-Bereichs

5.1.2.1 Die untere Grenze

Der Hersteller Masimo[®] gibt das Intervall von PaO_2 100 mmHg bis 200 mmHg als "ORIsensiblen" an. Hieraus leitet sich die Frage ab, wie gut der ORI einen $PaO_2 < 100$ mmHg detektiert und somit klinisch vor einer drohenden Hypoxie bzw. insuffizienten Präoxygenierung warnen kann.

In der Stichprobe der vorliegenden Arbeit detektierte der ORI jeden (n = 57) PaO₂ < 100 mmHg und somit unterhalb des ORI-sensiblen PaO₂-Bereichs mit einem ORI \leq 0.02 (Sensitivität 100 %; 95%-KI: 94 – 100). Aufgrund der geringen Anzahl (n = 3) an PaO₂-Werten im ORI-sensiblen PaO₂-Bereich zum Messzeitpunkt t₀ ist eine adäquate Schätzung der Spezifität anhand der beobachteten Daten nicht möglich. Dies unterstreicht das sehr große 95%-KI der errechneten Spezifität für einen PaO₂ < 100 mmHg bei einem ORI \leq 0.02 (Spezifität 33 %; 95%-KI: 1 – 91). Wenn der ORI \leq 0.02 anzeigte, betrug der tatsächliche PaO₂ zu 95 % (95%-KI: 86 – 99) auch < 100 mmHg (PPV).

Vos et al. beobachteten im Vergleich an 20 gesunden Patienten eine größere Anzahl von 374 Wertepaaren und identifizierten einen ORI von 0.01 mit einer Sensitivität von 99 % (95%-KI: 98 - 100) und einer Spezifität von 82 % (95%-KI: 77 - 87) als den optimalen *Cut-off*-Wert zur Anzeige eines $PaO_2 < 100 \text{ mmHg}$ (24). Die beobachteten Unterschiede von Vos et al. und die der hiesigen Beobachtung in Bezug auf die positiven Vorhersagewerte eines $ORI \le 0.02$ bzw. 0.00 für einen $PaO_2 \le 100$ mmHg, können zum Teil auf die unterschiedlichen Häufigkeiten für einen PaO₂ < 100 mmHg in den untersuchten klinischen Situationen zurückgeführt werden. Die Wahrscheinlichkeit für einen $PaO_2 < 100 \text{ mmHg}$ liegt in der Stichprobe dieser Dissertationsschrift vermutlich deutlich über der von Vos et al, da der Großteil der Patienten zum Messzeitpunkt to Raumluft (FiO₂ = 0,21; 3 Patienten abweichend $FiO_2 > 0,21$) atmete. Vos et al. hingegen variierten die FiO_2 zwischen 0,14 und 1,00 und wählten aus allen Messwertpaaren diejenigen aus, bei denen der PaO₂ < 100 mmHg betrug (24). Applegate et al. untersuchten ebenfalls die untere Grenze des ORI-sensiblen PaO₂-Bereichs. Hierbei versuchten die Autoren einen ORI-Wert zu ermitteln, bei dem alle PaO₂-Werte über 100 mmHg lagen. Bei einem ORI > 0.24 wurde dies beobachtet. Das bedeutet, dass im Intervall ORI 0.00 bis ORI 0.24 ein $PaO_2 > 100 \text{ mmHg}$ nicht unbedingt anzunehmen ist, auch wenn der ORI dies suggeriert. In einem Drittel der Fälle (n = 88) betrug der PaO₂ < 100 mmHg und in etwa zwei Drittel der Fälle (n = 137) \geq 100 mmHg, während ORI Werte zwischen 0.00 bis 0.24 annahm (26). Yoshida et al. beobachteten, übereinstimmend mit den Ergebnissen von Applegate et al., in 69 Fällen an 20 Patienten einen $PaO_2 < 100 \text{ mmHg}$, als der ORI zeitgleich um den Wert 0.20 anzeigte (23).

Abschließend lässt sich sagen, dass ein ORI 0.01 (24) bzw. ≤ 0.02 mit einer hohen Sensitivität und einer guten Spezifität einen $PaO_2 < 100 \text{ mmHg}$ und somit einen PaO_2 unterhalb des ORI-sensiblen PaO₂-Bereichs detektiert. Der PPV des ORI ist je nach Prävalenz für einen $PaO_2 < 100 \text{ mmHg bzw. klinischer Situation zwischen 56 \% und 95 \% (24) zu verorten. Im sich$ anschließenden Intervall ORI 0.00 bis ORI 0.20 (23) bzw. ORI [0.00 - 0.24] (26) sind nach den aktuellen Studien (26) in etwa zwei Drittel der zugehörigen PaO₂ Werte > 100 mmHg. Hier treten noch in einem Drittel der Fälle ein $PaO_2 < 100 \text{ mmHg}$ auf. Erst ab einem ORI > 0.24 kann, nach heutiger Studienlage (26), von einem zeitgleichen $PaO_2 > 100 \text{ mmHg}$ ausgegangen und PaO₂-Werte unterhalb des ORI-sensiblen PaO₂-Intervalls ausgeschlossen werden. Vor dem Hintergrund der beschriebenen Studienergebnisse (23, 24, 26) sowie Studien zur Vorwarnzeit vor drohender Hypoxie (22, 25, 27-31) kann der ORI zum Erkennen von drohenden bzw. bestehenden Hypoxien dienen, aber auch bei einer Sauerstofftherapie eingesetzt werden. Während der Sauerstofftherapie kann ein PaO₂ > 100 mmHg und somit eine gewisse Sicherheitsreserve in der Sauerstoffversorgung des Gewebes möglicherweise mithilfe des ORI sichergestellt werden, aber auch eine übermäßige Hyperoxie nach dem Vorbild von Kumagai et al. vermieden werden (101).

5.1.2.2 Die obere Grenze

Für den Einsatz des ORI während der Präoxygenierung oder einer allgemeinen Sauerstoffgabe stellt sich die Frage, wie gut der ORI einen $PaO_2 > 200$ mmHg detektiert und somit klinisch einen nichtinvasiven Hinweis auf eine Hyperoxie geben kann.

Die Ergebnisse der vorliegenden Arbeit zeigen, dass ein ORI \ge 0.98 nach dreiminütiger Präoxygenierung (t₁₈₀) nur in einem Drittel der Fälle in der beobachteten Stichprobe einen PaO₂ > 200 mmHg richtig erkannt hat. Im Einklang hierzu beobachteten Vos et al., dass bei einem PaO₂ > 200 mmHg eine breite Streuung der zugehörigen ORI-Werte von ca. 0.30 bis 1.00 vorlag (24). Applegate et al. berichteten für einen PaO₂ > 240 mmHg von ähnlichen Beobachtungen (26) , wie Vos et al. Hiernach kann die Vermutung aufgestellt werden, dass der Anstieg der SvO₂ individuell variabel zu sein scheint und möglicherweise Bedingungen während der Hyperoxie an der Messstelle (siehe Kapitel 5.1.1 S. 74) ursächlich für die breite Streuung der ORI-Werte sein können. Dies sollte weiter untersucht werden.

Der ORI ist aktuell nicht in der Lage, PaO_2 -Werte über der oberen Grenze des ORI-sensiblen PaO_2 -Bereichs sicher abzugrenzen. Daraus folgt die Konsequenz, dass der ORI für den klinischen Einsatz einer nichtinvasiven Detektion eines $PaO_2 > 200$ mmHg, während der Präoxygenierung oder einer Sauerstofftherapie, nicht empfehlenswert ist.

5.1.2.3 Das ORI-Plateau

In den bisherigen Studien sowie *Case Reports* fiel neben der breiten Streuung der ORI-Werte für $PaO_2 > 200 \text{ mmHg}$ (24) auf, dass unter sukzessiver PaO_2 -Steigerung, der ORI nicht immer 1.00 erreichte (28, 29, 31, 116). Trotz einer Steigerung der FiO₂ bzw. des Sauerstoffflusses, einhergehend mit einem PaO_2 -Wert über 200 mmHg, verblieb der ORI auf einem Plateau unterhalb von 1.00 und überstieg dieses in der darauffolgenden Zeit nicht.

Yoshida et al. beschrieben 2018, dass der ORI in 14 der 16 untersuchten Fälle, während der Präoxygenierung im Rahmen einer RSI, nach 95 s (Median; IQR: 80 - 115) ein Plateau erreichte. Der ORI betrug hierbei nach 3 min 0.50 (Median; IQR: 0.42 - 0.57, Bereich 0.17 - 0.75). Die Autoren vermuteten auf Grundlage dessen, dass das Erreichen eines ORI-Plateaus auf einen Zustand maximaler Oxygenierung hindeuten kann. Daher sehen die Autoren ein großes Einsatzpotenzial zur Überwachung einer RSI (29).

Greift man die Vermutung von Yoshida et al. auf und überträgt diese auf die vorliegende Dissertationsschrift, so könnte dies erweiterte Erkenntnisse liefern. Geht man davon aus, dass der ORI ein Plateau erreicht, da er messtechnisch nicht mehr steigen kann, könnte dies im Umkehrschluss nach dem Funktionsprinzip (siehe Anhang Kapitel 8.1, S. 95) bedeuten, dass der PaO₂ > 200 mmHg beträgt. Ein ORI-Plateauwert von > 0.98 würde, nach der Vermutung von Yoshida et al., in 79 % der beobachteten Fälle dieser Arbeit einen PaO₂ > 200 mmHg richtig voraussagen. Ein ORI-Plateauwert von < 0.98 würde hingegen in 70 % der beobachteten Fälle einen PaO₂ > 200 mmHg richtig voraussagen. Um diese Hypothesen sicher prüfen zu können, müsste man beim Erreichen des ORI-Plateaus den PaO₂ messen und nicht erst zum Zeitpunkt t₁₈₀ (siehe Kapitel 3.6, S. 52).

Hiernach könnte die Vermutung aufgestellt werden, dass das Erreichen eines ORI-Plateaus deutlich besser als ein absoluter *Cut-off*-Wert der oberen Grenze, klinisch verwendet werden kann. Einschränkend ist jedoch zu betonen, dass in der hier durchgeführten Beobachtung die Wahrscheinlichkeit für einen $PaO_2 > 200 \text{ mmHg}$ nach der Präoxygenierung (t_{180}) mit 75 % hoch ausfällt. Diese hat einen maßgeblichen Einfluss auf die oben genannten Vorhersagewerte (79 % und 70 %) und bedeutet, dass die Vorhersagewerte für einen $PaO_2 > 200 \text{ mmHg}$ bei Erreichen eines Plateaus nach dreiminütiger Präoxygenierung nicht unbedenklich auf andere klinische Situationen übertragbar sind. In Fällen, in denen ein Oxygenierungsproblem nicht klar auszuschließen ist, kann das Erreichen des ORI-Plateaus < 0.98, nach den hier erhobenen Daten, nicht sicher als zuverlässiger Endpunkt für eine Präoxygenierung eingesetzt werden.

Nach der bisherigen Studienlage ist nicht sicher zu sagen, wann der ORI einen Plateauwert < 0.98 bei einem PaO₂ > 200 mmHg erreicht oder wann ein Oxygenierungsproblem besteht und infolgedessen der ORI nicht weiter ansteigt. Der *Case Report* von Ray et al. verdeutlicht diese, für den klinischen Einsatz bedeutende Problematik. Sie berichteten über ein 13 Tage

altes Neugeborenes mit Trachealriss. Hierbei kam es ebenfalls zu einem Plateau bzw. vorzeitigem Anstiegsende mit einem ORI-Wert < 0.98 während der Präoxygenierung. Der PaO₂ lag unter 200 mmHg und während der endotrachealen Intubation fiel die SpO₂ auf 78 % ab. Nach erfolgreicher chirurgischer Trachealrissversorgung wurde ein ORI von 1.00 erreicht (117). Kaur et al. vermuteten in ihrem *Case Report* bei einem Atemwegsmanagements eines 1,5 Jahre alten Mädchens mit Ösophagusperforation bei der OP einer tracheo-ösophagealer Fistel, dass der Plateauwert vom ORI 0.64 mit einer zugrundeliegenden begrenzten Atemreserve vereinbar sei (118).

Insgesamt kann festgehalten werden, dass es klinisch nicht allein anhand eines gleichbleibenden ORI möglich ist entweder auf ein ORI-Plateau und somit einen $PaO_2 > 200 \text{ mmHg}$ oder auf ein Oxygenierungsproblem zu schließen.

Tsymbal et al. verwendeten das Erreichen des ORI-Plateaus in ihrem Studiendesign als Endpunkt der Präoxygenierung sowie für die mechanische Beatmung nach erfolgter Intubation. Hierbei wurde bislang nicht diskutiert, weshalb das Plateau, nach Präoxygenierung im Median, sowie der IQR höher bzw. größer war als in der anschließenden mechanischen Beatmung (31).

Eine Abnahme der FRC nach Narkoseeinleitung kann ursächlich für einen geringeren PaO₂ bzw. ein niedrigeres ORI-Plateau sein. In der Literatur ist, je nach verwendetem Narkosemedikament, eine FRC-Reduktion von 15 - 20 % beschrieben worden, die generell innerhalb der ersten Minuten der Narkose auftritt (32, 119). Veränderungen im Bereich der muskulären Aktivität sorgen nach Narkoseeinleitung zu einer Kranialisation und zum anderen zu einer Veränderung der Krümmung des Diaphragmas. Infolge der Reduktion des endexspiratorischen Tonus des Diaphragmas nimmt die FRC ab (32). Interessant ist zudem, dass die Plateauhöhe in der adipösen Studiengruppe von Tsymbal et al. deutlich niedriger ausfiel als in der normalgewichtigen Studiengruppe (31). Dies könnte ebenfalls durch eine zusätzliche Reduktion der FRC durch das Vorliegen einer Adipositas (32) bedingt sein (vergleiche Kapitel 2.3.4, S. 13). Betrachtet man die vorliegende Studienpopulation, so fällt ein medianer BMI von 27 kg/m² (Median; IQR: 6; Bereich: 17 – 40) auf, wodurch die beobachtete Höhe des ORI-Plateaus beeinflusst worden sein kann. In bisherigen Studien variierte der BMI der untersuchten Studienpopulationen zudem nicht unerheblich. In der Studie von Applegate et al. weist das Patientenkollektiv einen ähnlichen medianen BMI auf, wie in der vorliegenden Arbeit (26). Yoshida et al. und Koishi et al. betrachteten hingegen Studienpopulationen mit einem geringeren BMI von 24,0 kg/m² (Mittelwert; SD \pm 3,2) und 23,5 kg/m² (Mittelwert; SD \pm 3,7) (29), die eher im Bereich der Patienten mit einem normalen BMI (BMI 19 – 25 kg/m²) wie bei Tsymbal et al. lagen (31). Auf Grundlage dieser Erkenntnis könnten bei den hier untersuchten Fragestellungen die Patientencharakteristika einen Einfluss auf den Nutzen des ORI haben. Dabei stehen nach den Beobachtungen von Fleming et al. die absolute Höhe des

79

ORI-Plateauwertes und die Länge der Vorwarnzeit provozierter Hypoxien in keinem Zusammenhang (28).

Insgesamt kann festgehalten werden, dass es möglicherweise infolge unterschiedlicher klinischer Situationen (Spontanatmung vs. Maschinelle Beatmung in Narkose) bzw. physiologischer Gegebenheiten (FRC-Reduktion) zu Unterschieden in der Höhe des ORI-Plateaus bei ein und demselben Patienten sowie infolge verschiedener Patientenmerkmale (hoher BMI) zwischen Patienten kommen kann. Bisherige Beobachtungen reichen für den Nachweis eines eindeutigen Zusammenhangs aber nicht aus.

Zusammenfassend ist, nach der Diskussion verschiedener Aspekte des ORI-Plateaus, festzuhalten, dass der ORI, aus unterschiedlichen bzw. unbekannten Gründen, nicht bei jedem Patienten unter sukzessivem PaO₂-Anstieg über 200 mmHg, einen Wert von > 0.98 bzw. 1.00 erreicht. Patientenmerkmale, wie z. B. eine Adipositas oder messtechnische bzw. softwaretechnische Gründe, können ursächlich für das ORI-Plateau sowie die Höhe sein. Während klinisch durchgeführter Präoxygenierungen, bei denen kein Anhalt für eine patientenbedingte Ursache eines Plateaus bzw. vorzeitigen Anstiegsendes vorliegt, könnte das Erreichen eines Plateaus besser einen $PaO_2 > 200 \text{ mmHg}$ als einen absoluten ORI-Wert von > 0.98 vorhersagen. Mehrere Umstände sorgen dafür, dass zum jetzigen Zeitpunkt eine kritische bzw. zurückhaltende Empfehlung gegenüber der Verwendung des Plateaus eingenommen werden sollte. Zum einen ist die Stichprobe dieser Arbeit klein (n = 60) und besteht aus einer Gruppe von gefäßchirurgischen Patienten. Zum anderen ist der geringe wissenschaftliche Kenntnisstand hierüber bzw. der geschützte und unveröffentlichte ORI-Algorithmus ein einschränkender Umstand. Fälle, in denen der ORI aufgrund patientenbedingter Ursachen (eingeschränkte Oxygenierung) nicht weiter steigt, könnten leicht übersehen und fehlinterpretiert werden. Daher ist die Vorgehensweise von Fleming et al., das Erreichen und Verweilen über 30 s auf dem jeweiligen patientenindividuellen Plateau als Endpunkt einer durchgeführten Präoxygenierung zu verwenden, als kritisch zu sehen und zum jetzigen Zeitpunkt nicht in der klinischen Praxis empfehlenswert (28).

5.1.3 Der ORI als Trend des PaO₂

Im Rahmen des sekundären Endpunkts dieser Arbeit wurde der ORI als Trend des PaO_2 zwischen den beiden Messzeitpunkten t₀ und t₁₈₀ untersucht.

Vos et al. haben zur Analyse der Konkordanz bzw. der übereinstimmenden Beurteilung des ORI und der invasiven PaO₂-Messung Konkordanzraten an 20 gesunden Probanden bestimmt. Änderung des ORI von < 0.10 und des PaO₂ von < 10 mmHg wurden von der Analyse ausgeschlossen und insgesamt 474 Messwertpaare innerhalb des ORI-sensiblen PaO₂-Bereichs eingeschlossen. Die Autoren errechneten eine Konkordanzrate von 94 %

(95%-KI: 92 - 96) und schrieben dem ORI eine gute Trendfähigkeit in Bezug auf PaO₂-Änderungen im ORI-sensiblen PaO₂-Bereich zu (24). Yoshida et al. berechneten, nach dem Vorbild von Vos et al, eine vergleichbare Konkordanzrate von 100 % auf Grundlage ihrer beobachteten Daten (23).

Im Einklang mit den beschriebenen Ergebnissen von Vos et al. und Yoshida et al., zeigte ein steigender Trend des ORI in der vorliegenden Arbeit, bei 59 von 60 Patienten eine Zunahme des PaO₂ richtig an. Bei einem Patienten betrug der ORI durchweg 0.00. Inwieweit es bei diesem Patienten zu einer fehlerhaften Kalibrierung nach Sensoranlage gekommen ist, wie sie Tsymbal et al. bei 3 normalgewichtigen und vier adipösen Patienten beschrieb (31), ist jedoch unklar.

Zusammenfassend ist festzuhalten, dass ein steigender bzw. fallender ORI-Trend einen steigenden bzw. fallenden PaO₂ voraussagen kann. Der Hersteller Masimo[®] weist zudem daraufhin, dass der ORI in seiner derzeitigen Form als "Trend"-Variable und nicht als gleichwertiges Maß für den PaO₂ konzipiert ist. Der ORI kann in der klinischen Praxis als kontinuierlicher nichtinvasiver Hinweis für einen fallenden bzw. steigenden PaO₂ eingesetzt werden und kann die invasive und diskontinuierliche BGA ergänzen.

5.1.4 Die zusätzliche nichtinvasive Überwachungszeit vom ORI während der Präoxygenierung

In der klinischen Praxis kommt die Pulsoxymetrie während der Präoxygenierung im Rahmen der zunehmenden Hyperoxie schnell an ihre Grenzen (siehe Kapitel 2.6.2, S. 29). Hier kann unter Zuhilfenahme des ORI möglicherweise die nichtinvasive Überwachung des peripheren Sauerstoffangebotes bis in höhere PaO₂-Bereiche erfolgen.

In der vorliegenden Arbeit betrug die SpO₂ 45 s (Median; IQR: 60) nach dem Start der Präoxygenierung \ge 98 %. Ab diesem Zeitpunkt ist, aufgrund des sigmoidalen Kurvenverlaufs der Sauerstoffbindungskurve, eine nichtinvasive Aussage über die Höhe des PaO₂ mithilfe der Pulsoxymetrie nur noch bedingt möglich (89). Bislang ist klinisch eine nichtinvasive Überwachung ab diesem Zeitpunkt nur mit der etO₂-Messung möglich. Mit einer Latenz von 15 s (Median; IQR: 45), nach dem die SpO₂ \ge 98 % erreichte, konnte anhand des ORI-Anstiegs für weitere 45 s (Median; IQR: 60) ein nichtinvasiver Hinweis eines weiter steigenden PaO₂ erfolgen. In dieser Situation wird der Nutzen des Funktionsprinzips des ORI deutlich (siehe Anhang Kapitel 8.1, S. 95). Nachdem die SaO₂ bzw. die SpO₂ spätestens ab einem PaO₂ = 100 mmHg bei 100 % bzw. \ge 98 % verweilt, steigt die SvO₂ in dieser Situation, laut Hersteller, weiter an und erreicht in etwa bei einem PaO₂ von 200 mmHg ein Maximum. Der ORI scheint dies zu detektieren und schließt hierüber auf den vorliegenden PaO₂.

Hieraus kann man für die klinische Praxis ableiten, dass eine Präoxygenierung fortgeführt werden soll, solange der ORI weiter ansteigt. Verweilt der ORI während der Präoxygenierung

aber auf einem Plateau < 1.00, könnte anhand der in den Leitlinien empfohlenen etO₂ > 90% (9-12) abgeschätzt werden, inwieweit der ORI eine ausreichende Präoxygenierung anzeigt. Denn der ORI konnte, nach den Daten dieser Arbeit, mit einem Plateauwert < 0.98 nur in 70 % einen PaO₂ > 200 mmHg richtig vorhersagen (siehe Kapitel 5.1.2.3, S. 78). Steigt der ORI während der Präoxygenierung auf 1.00 an und verweilt dort, bestünde auch hier in der klinischen Praxis nach aktueller Studienlage die Notwendigkeit, die Präoxygenierung erst zu beenden, wenn die etO₂ > 90% (9-12) beträgt. Denn nach den Beobachtungen der vorliegenden Arbeit sagt ein ORI-Plateauwert > 0.98 bei nur 79% der untersuchten Patienten einen PaO₂ > 200 mmHg richtig vorher (siehe Kapitel 5.1.2.3, S. 78). Diese Überlegungen sollten in zukünftigen Studien untersucht werden, da das alleinige Erreichen des ORI-Plateaus als Endpunkt einer durchgeführten Präoxygenierung, wie dies Tsymbal et al. in ihrer Studie vornahmen (31), nach aktueller Studienlage, keine ausreichende Sicherheit vor einer drohenden Hypoxie während der anschließenden Atemwegssicherung bietet.

5.2 Selbstkritik und Limitationen

Aufgrund des monozentrischen Studiendesigns kann nicht davon ausgegangen werden, dass die Stichprobe repräsentativ ist. Zudem ist die Generalisierbarkeit der Ergebnisse aufgrund der kleinen Studienpopulation (n = 60) und der selektiven Stichprobenauswahl durch definierte Einschlusskriterien der Patienten eingeschränkt (siehe Kapitel 3.2, S. 45). Die vorliegenden Ergebnisse und die hieraus abgeleiteten Schlussfolgerungen sind auf das untersuchte Patientenkollektiv sowie vergleichbare Patienten anwendbar. Hingegen sind die erlangten Erkenntnisse nicht auf Patienten mit anderen Grunderkrankungen uneingeschränkt übertragbar. Dennoch ist die Verwendung dieser Studienpopulation für die Funktion der vorliegenden Dissertationsschrift als Pilotstudie (siehe Kapitel 3.1, S. 38) und die Überprüfung der primären und sekundären Endpunkte nach vorheriger eingehender Fallzahlplanung vertretbar (siehe Kapitel 3.7.1 S. 54).

Das Studiendesign weist methodische Schwächen auf. Der Studieneinschluss erfolgte nicht nach dem Zufallsprinzip, sondern nach den vorher definierten Einschlusskriterien. In Anbetracht des Vergleichs der Sensitivität sowie Spezifität der untersuchten Messmethoden erscheint das gewählte Studiendesign jedoch als angemessen. Allerdings wurden bei parallel durchgeführten Narkoseeinleitungen zweier eingeschlossener Studienpatienten einer der beiden Studienpatienten nach keinem festen Protokoll ausgewählt bzw. sekundär ausgeschlossen. Systematische Irrtümer in der Auswahl, sogenannte *Selection Bias*, können dadurch bedingt sein. Die ausschließlich im Bereich der gefäßchirurgischen Abteilung der Universitätsmedizin der JGU Mainz erfolgte Patientenrekrutierung, bedingt die Untersuchung einer spezifischen Patientengruppe. Risikofaktoren für Gefäßerkrankungen wie Übergewicht, Rauchen, Bluthochdruck, Fettstoffwechselstörungen und ein Diabetes mellitus, sind höchst wahrscheinlich in der vorliegenden Studienpopulation deutlich häufiger anzutreffen als in der Gesamtbevölkerung. Inwieweit die Vorerkrankungen der untersuchten Studienpopulation Einfluss auf den ORI bzw. auf die Messung gehabt haben, ist nicht bekannt.

Aufgrund der geringen Studiengröße konnten, neben dem PaO₂, keine weiteren möglichen Einflussfaktoren des ORI, wie z.B. die Fingerperfusion, die Körpertemperatur, die cHb, der BMI, das Alter oder das Vorliegen von bestimmten Vorerkrankungen, untersucht werden. Dabei ist nicht bekannt, wodurch der ORI alles beeinflusst wird und folglich konnten in der vorliegenden Arbeit *Confounding*-Variablen nicht berücksichtigt bzw. unzureichend kontrolliert werden. Dies kann zu Verzerrungen bei der Zusammenhangsanalyse von ORI und PaO₂ geführt haben.

Bei der Datenerhebung können methodische Schwächen identifiziert werden (siehe Kapitel 3.6, S. 52). Im Rahmen der BGA können, trotz Vorsichtsmaßnahmen, präanalytische Fehler nicht vollständig vermieden werden. Infolge der arteriellen Punktion kann es zu einer

Vasokonstriktion gekommen sein, die möglicherweise Einfluss auf die Perfusion an der Messstelle und somit auf den ORI haben kann. Aber auch eine nicht komplett dichtsitzende Beatmungsmaske können die etO₂-Messung verfälscht haben.

Im Rahmen der Datenauswertung kann es ebenfalls zu unentdeckten methodischen Einschränkungen gekommen sein (siehe Kapitel 3.7.2, S. 55).

Die beschriebenen Einschränkungen sind bei der Übertragung bzw. Generalisierung der hier erlangten Erkenntnisse auf andere klinische Situationen zu beachten.

Für die Analyse der Trendfähigkeit und die sich hieraus ergebende zusätzliche nichtinvasive Überwachungszeit wären rückblickend mehr als zwei Messzeitpunkte begrüßenswert gewesen (siehe Kapitel 4.3.2, S. 63 und Kapitel 4.3.3, S. 64). Resultierend hieraus hätte eine höhere Anzahl an Wertepaaren generiert werden können. Dies hätte höchstwahrscheinlich eine höhere Evidenz bzw. erweiterte Erkenntnisse zur ORI-Trendfähigkeit zur Folge gehabt. Bei der Studienplanung erschien es, aufgrund der Durchführung als Pilotstudie sowie der dreiminütigen Präoxygenierung, als nicht realisierbar, eine höhere Anzahl an Wertepaaren zu erheben. Daher sollten in der Zukunft an größeren Stichproben während der Präoxygenierung die Trendfähigkeit des ORI und die mögliche nichtinvasive Überwachungszeit untersucht werden.

Zudem sah das Studiendesign eine SvO₂-Bestimmung mithilfe einer venösen BGA an der Sensorhand nicht vor. Auch wenn in einer bisherigen Studie zwischen dem PvO₂ und ORI keine Korrelation bestand (24), hätte dies mehr Aufschluss über den ORI geben können. Daher sollten in zukünftigen Studien Parameter wie der PvO₂, die SvO₂, die Perfusion und weitere Parameter, die die lokalen Messbedingungen im Bereich des ORI-Sensors charakterisieren und möglicherweise beeinflussen, erhoben werden, um neue Grenzen bzw. Potenziale des ORI zu identifizieren.

5.3 Schlussfolgerung

Im Rahmen des primären Endpunkts zeigte sich, dass der im Vorfeld definierte *Cut-off-*Wert ORI ≥ 0.98 zur Erfolgskontrolle einer dreiminütigen Präoxygenierung klinisch nicht empfehlenswert ist. Nach dreiminütiger Präoxygenierung (t₁₈₀) wurden nur ein Drittel der Patienten mit einem PaO₂ > 200 mmHg richtig erkannt. Hierbei wurde eine breite Streuung der ORI-Werte an der oberen Grenze des ORI-sensiblen PaO₂-Bereichs (PaO₂ > 200 mmHg) beobachtet. Der zuvor definierte *Cut-off-*Wert ORI ≤ 0.02 detektierte alle PaO₂-Werte < 100 mmHg.

Die im sekundären Endpunkt durchgeführte Korrelationsanalyse von ORI und PaO₂ zeigt, in Übereinstimmung mit bisherigen Studien, einen starken Zusammenhang. Darüber hinaus stieg der Trend des ORI während der Präoxygenierung bei fast allen Patienten mit zunehmendem PaO₂ an, außer bei einem Patienten. Diese Beobachtungen deuten auf eine gute Trendfähigkeit des ORI für einen steigenden PaO₂ während der Präoxygenierung hin. Unter Verwendung des ORI, als nichtinvasive "Trend"-Variable des PaO₂, konnte die Präoxygenierung entweder bis zum Ende der definierten dreiminütigen Präoxygenierungszeit oder bis zu einem ORI von 1.00 oder bis zum Erreichen eines ORI-Plateaus nichtinvasiv überwacht werden. Mehr als die Hälfte der beobachteten Patienten erreichten ein Plateau mit einem ORI < 0.98 vor Ende der Präoxygenierung. Eine genauere Untersuchung dieser Fälle war aufgrund des Studiendesigns nicht möglich.

Um entstandene Einschränkungen im Bereich der Generalisierbarkeit, der Aussagekraft und der verwendeten Methoden für die Zukunft zu minimieren, werden folgende Empfehlungen vorgeschlagen.

Der Einschluss einer größeren Studienpopulation bzw. einer höheren Anzahl an ORI-Werten ist für detailliertere, zukünftige Fragestellungen anzuraten. Darüber hinaus sollten zusätzliche Parameter ausgewählt werden, die die vorherrschenden Messbedingungen weiter spezifizieren und mögliche einflussnehmende Effekte auf den ORI aufdecken. Hiermit sind z. B. Parameter gemeint, die einen unmittelbaren Einfluss auf die periphervenöse Sättigung (SvO₂) haben und möglicherweise hierdurch die Aussagekraft des ORI einschränken. Die Erhebung des PvO₂ erwies sich bereits als unzureichend (24) und ist, aufgrund der SBK der SvO₂, als unterlegen anzusehen. Hierbei wäre zudem die Bestimmung der avDO₂ aus der venösen und arteriellen BGA möglich. Inwieweit die avDO₂ Einfluss auf den ORI hat, könnte hierdurch untersucht werden. Darüber hinaus könnte der mögliche Einfluss der Perfusion, der peripheren Vasokonstriktion, des HZV, der HZV-Variabilität, der Temperatur an der Messstelle sowie eine vorliegende Hypovolämie auf die Genauigkeit des ORI untersucht werden. Die aufgeführten Parameter können nach dem aktuellen Kenntnisstand sowie dem veröffentlichten

Funktionsprinzip des ORI im klinischen Einsatz den ORI sowie dessen Aussagekraft möglicherweise beeinflussen.

Interessant wäre in der Zukunft zu untersuchen, ob ein Zusammenhang zwischen der SvO₂, einer peripher venösen BGA-Probe an der Sensorhand des ORI und dem ORI besteht. So könnte untersucht werden, ob der ORI auf der Änderung der SvO₂ im PaO₂-Bereich 100 - 200 mmHg, wie der Hersteller es behauptet, basiert oder ob andere Umstände bzw. die zuvor genannten Parameter im Gewebe für eine zunehmende Hintergrundabsorption sorgen.

Abschließend ist festzuhalten, dass der ORI während der Präoxygenierung die etablierten Parameter etO₂ und PaO₂ bei der Erfolgskontrolle der Präoxygenierung unterstützen kann. In unklaren Fällen sollte weiterhin der PaO₂ mittels invasiver arterieller BGA erhoben werden, da der ORI keine Rückschlüsse auf absolute PaO₂-Werte zulässt und der aktuelle wissenschaftliche Kenntnisstand über mögliche Einflussfaktoren begrenzt ist. Dennoch erwies sich der ORI, während der Präoxygenierung, als ein guter nichtinvasiver und kontinuierlicher Hinweis für einen ansteigenden bzw. fallenden PaO₂, was zur Verbesserung der Sicherheit beitragen kann.

6 Zusammenfassung

Die Kontrolle einer suffizienten Durchführung der Präoxygenierung bereitet klinisch Probleme. Die Messung der endtidalen Sauerstoffkonzentration ist aufgrund häufig auftretender Undichtigkeiten zwischen Patientengesicht und Beatmungsmaske fehleranfällig. Während der Präoxygenierung ist die Aussagekraft der Pulsoxymetrie aufgrund der vorliegenden Hyperoxie eingeschränkt. Die invasive Messung des arteriellen Sauerstoffpartialdrucks (PaO₂) kann unter hypoxischen, normoxischen und hyperoxischen Bedingungen bestimmt werden. Sie stellt jedoch eine invasive und nichtkontinuierliche Messmethode dar.

Seit 2014 wird die Detektion bzw. der klinische Nutzen der periphervenösen Sauerstoffsättigung während der Sauerstofftherapie in der Wissenschaft untersucht und diskutiert. Hierzu wird der Oxygen Reserve Index (ORI), ein dimensionsloser Index der Firma Masimo, eingesetzt. Laut Hersteller führt die ansteigende venöse Sauerstoffsättigung zu einer Änderung der Hintergrundabsorption im Bereich des Messsensors. Hierdurch versucht der Hersteller, den PaO₂ von 100 bis 200 mmHg mit ORI 0.00 bis 1.00 nichtinvasiv und kontinuierlich zu schätzen bzw. abzubilden.

Ziel der vorliegenden Arbeit war es, den Nutzen des ORI zur Erfolgskontrolle der Präoxygenierung bei 60 gefäßchirurgischen Patienten zu untersuchen.

Hierfür wurde im primären Endpunkt festgestellt, wie zuverlässig ein ORI \leq 0.02 einen PaO₂ < 100 mmHg und ein ORI \geq 0.98 einen PaO₂ > 200 mmHg detektiert. Im sekundären Endpunkt wurde eine Korrelationsanalyse von ORI und PaO₂, eine Analyse des ORI als PaO₂-Trend sowie die mögliche zusätzliche nichtinvasive und kontinuierliche Überwachungszeit unter Verwendung des ORI untersucht.

Insgesamt wurden alle Messwerte an 60 Patienten vor und während der Durchführung einer dreiminütigen Präoxygenierung erhoben. Hierbei detektierte ein ORI \ge 0.98 einen PaO₂ > 200 mmHg nur in einem Drittel der Fälle am Ende der Präoxygenierung. Hingegen erkannte ein ORI \le 0.02 jeden vorliegenden Fall, bei dem der PaO₂ < 100 mmHg vor der Präoxygenierung betrug. Die Korrelationsanalyse von ORI und PaO₂ zeigte einen starken Zusammenhang beider Größen. Bei 59 der 60 Patienten stieg der Trend des ORI mit einem zunehmenden PaO₂ an. Während der Präoxygenierung konnte die mediane nichtinvasive Überwachungszeit der Pulsoxymetrie von 45 s unter Verwendung des ORI um zusätzliche 45 s erweitert werden.

Die Ergebnisse der untersuchten primären und sekundären Fragestellungen deuten darauf hin, dass der zuvor definierte *Cut-off-*Wert ORI \ge 0.98 für einen PaO₂ > 200 mmHg zur Erfolgskontrolle nach dreiminütiger Präoxygenierung in der klinischen Praxis nicht zu empfehlen ist. Jedoch ermöglicht der ORI eine längere nichtinvasive Überwachungszeit und

Zusammenfassung

kann als Trend des PaO₂ als ein zusätzlicher nichtinvasiver Hinweis eines steigenden PaO₂ während der Präoxygenierung eingesetzt werden.

7 Literaturverzeichnis

- Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI), Berufsverband Deutscher Anästhesisten e.V. (BDA). Weltanästhesietag in Corona-Zeiten - 17 Millionen Narkosen pro Jahr - Kapazitäten an Pandemie anpassen - Anästhesisten kümmern sich um Nachhaltigkeit. Pressemitteilung vom 13.10.2020 [zitiert am 01.12.2022]. URL: https://www.dgai.de/aktuelles/pressemitteilungen/744weltanaesthesietag-in-corona-zeiten-17-millionen-narkosen-pro-jahr-kapazitaeten-anpandemie-anpassen-anaesthesisten-kuemmern-sich-um.
- Cook TM, Woodall N, Harper J, Benger J. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 2: intensive care and emergency departments. Br J Anaesth. 2011;106(5):632-42.
- 3. Antonsen K, Rosenstock CV, Lundstrøm LH. The Danish Anaesthesia Database. Clin Epidemiol. 2016;8:435-8.
- 4. Kheterpal S, Han R, Tremper KK, Shanks A, Tait AR, O'Reilly M, et al. Incidence and predictors of difficult and impossible mask ventilation. Anesthesiology. 2006;105(5):885-91.
- 5. Langeron O, Masso E, Huraux C, Guggiari M, Bianchi A, Coriat P, et al. Prediction of difficult mask ventilation. Anesthesiology. 2000;92(5):1229-36.
- 6. Kheterpal S, Healy D, Aziz MF, Shanks AM, Freundlich RE, Linton F, et al. Incidence, predictors, and outcome of difficult mask ventilation combined with difficult laryngoscopy: a report from the multicenter perioperative outcomes group. Anesthesiology. 2013;119(6):1360-9.
- 7. Lavery GG, McCloskey BV. The difficult airway in adult critical care. Crit Care Med. 2008;36(7):2163-73.
- 8. Adnet F, Racine SX, Borron SW, Clemessy JL, Fournier JL, Lapostolle F, et al. A survey of tracheal intubation difficulty in the operating room: a prospective observational study. Acta Anaesthesiol Scand. 2001;45(3):327-32.
- Piepho T, Cavus E, Noppens R, Byhahn C, Dörges V, Zwissler B, et al. S1 Leitlinie: Atemwegsmanagement, Airwaymanagement: Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF)- Ständige Kommission Leitlinien. 2015 [zitiert am 20.08.2023]. URL: https://www.awmf.org/uploads/tx_szleitlinien/001-

028I_S1_Atemwegsmanagement_2015-04-abgelaufen.pdf.

- Timmermann A, Böttiger BW, Byhahn C, Dörges V, Eich C, Gräsner JT, et al. S1 Leitlinie: prähospitales Atemwegsmanagement: Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF)- Ständige Kommission Leitlinien. 2019 [zitiert am 20.08.2023]. URL: https://www.awmf.org/uploads/tx_szleitlinien/001-040I_S1_Praehospitales-Atemwegsmanagement_2019-03_1.pdf.
- 11. Frerk C, Mitchell VS, McNarry AF, Mendonca C, Bhagrath R, Patel A, et al. Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. Br J Anaesth. 2015;115(6):827-48.
- 12. Apfelbaum JL, Hagberg CA, Connis RT, Abdelmalak BB, Agarkar M, Dutton RP, et al. 2022 American Society of Anesthesiologists Practice Guidelines for Management of the Difficult Airway. Anesthesiology. 2022;136(1):31-81.
- 13. Zander R. Der pulmonale Sauerstoff-Speicher Physiologie und klinischer Nutzen. Anästhesiol Intensivmed Notfallmed Schmerzther. 2002;37(1):34-8.
- 14. Campbell IT, Beatty PC. Monitoring preoxygenation. Br J Anaesth. 1994;72(1):3-4.
- 15. Benumof JL, Herway ST. High End-Tidal Oxygen Concentration Can Be a Misleading Sole Indicator of the Completeness of Preoxygenation. Anesth Analg. 2017;124(6):2093.
- 16. Severinghaus JW. Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol Respir Environ Exerc Physiol. 1979;46(3):599-602.
- 17. Beasley R, McNaughton A, Robinson G. New look at the oxyhaemoglobin dissociation curve. Lancet. 2006;367(9517):1124-6.

- 18. Cousins TR, O'Donnell JM. Arterial cannulation: a critical review. AANA J. 2004;72(4):267-71.
- 19. Chan ED, Chan MM, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respir Med. 2013;107(6):789-99.
- 20. Dillon JB, Darsie ML. Oxygen for acute respiratory depression due to administration of thiopental sodium. J Am Med Assoc. 1955;159(11):1114-6.
- Luppa PB, Martin J. Blutgasanalyse. In: Luppa PB, Schlebusch H, Hrsg. POCT -Patientennahe Labordiagnostik. 2. Auflage. Berlin Heidelberg: Springer-Verlag. 2012;80-98.
- 22. Szmuk P, Steiner JW, Olomu PN, Ploski RP, Sessler DI, Ezri T. Oxygen Reserve Index: A Novel Noninvasive Measure of Oxygen Reserve--A Pilot Study. Anesthesiology. 2016;124(4):779-84.
- 23. Yoshida K, Isosu T, Noji Y, Ebana H, Honda J, Sanbe N, et al. Adjustment of oxygen reserve index (ORi) to avoid excessive hyperoxia during general anesthesia. J Clin Monit Comput. 2020;34(3):509-14.
- 24. Vos JJ, Willems CH, van Amsterdam K, van den Berg JP, Spanjersberg R, Struys M, et al. Oxygen Reserve Index: Validation of a New Variable. Anesth Analg. 2019;129(2):409-15.
- 25. Koishi W, Kumagai M, Ogawa S, Hongo S, Suzuki K. Monitoring the Oxygen Reserve Index can contribute to the early detection of deterioration in blood oxygenation during one-lung ventilation. Minerva Anestesiol. 2018;84(9):1063-9.
- 26. Applegate RL 2nd, Dorotta IL, Wells B, Juma D, Applegate PM. The Relationship Between Oxygen Reserve Index and Arterial Partial Pressure of Oxygen During Surgery. Anesth Analg. 2016;123(3):626-33.
- 27. Alday E, Nieves JM, Planas A. Oxygen Reserve Index Predicts Hypoxemia During One-Lung Ventilation: An Observational Diagnostic Study. J Cardiothorac Vasc Anesth. 2020;34(2):417-22.
- 28. Fleming NW, Singh A, Lee L, Applegate RL 2nd. Oxygen Reserve Index: Utility as an Early Warning for Desaturation in High-Risk Surgical Patients. Anesth Analg. 2021;132(3):770-6.
- 29. Yoshida K, Isosu T, Noji Y, Hasegawa M, Iseki Y, Oishi R, et al. Usefulness of oxygen reserve index (ORi[™]), a new parameter of oxygenation reserve potential, for rapid sequence induction of general anesthesia. J Clin Monit Comput. 2018;32(4):687-91.
- 30. Hille H, Le Thuaut A, Canet E, Lemarie J, Crosby L, Ottavy G, et al. Oxygen reserve index for non-invasive early hypoxemia detection during endotracheal intubation in intensive care: the prospective observational NESOI study. Ann Intensive Care. 2021;11(1):112.
- Tsymbal E, Ayala S, Singh A, Applegate RL 2nd, Fleming NW. Study of early warning for desaturation provided by Oxygen Reserve Index in obese patients. J Clin Monit Comput. 2021;35(4):749-56.
- 32. Lumb AB, Thomas C. Nunn's Applied Respiratory Physiology. 8. Auflage. Amsterdam: Elsevier. 2016.
- 33. Bassingthwaighte JB, Raymond GM, Dash RK, Beard DA, Nolan M. The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion: The Pathway for Oxygen. Adv Exp Med Biol. 2016;876:103-10.
- 34. Dalton J. Experimental essays on the constitution of mixed gases ; on the force of steam or vapour from water and other liquids in different temperatures, both in a Torricellian vacuum and in air ; on evaporation ; and on the expansion of gases. Manchester Literary and Philosophical Society. 1798:535-602.
- 35. Scharffenberg M, Laux G, Gama de Abreu M. Lungenphysiologie und Beatmung in Allgemeinanästhesie. In: Rossaint R, Werner C, Zwißler B, Hrsg. Die Anästhesiologie. 4. Auflage. Berlin: Springer. 2019;741-71.
- 36. Henry W, Banks J. III. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Philosophical Transactions of the Royal Society of London. 1803;93:29-274.
- 37. Krogh A. The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J Physiol. 1919;52(6):391-408.

- 38. Brandis K. The physiology viva: questions & answers. Willowvale, Queensland: Alderbury House. 1997.
- 39. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology 2003;98(5):1269-77.
- 40. Zander R. Physiologie und klinischer Nutzen einer Hyperoxie. Anästhesiol Intensivmed Notfallmed Schmerzther. 2005;40(10):616-23.
- 41. Wylie WD. The use of muscle relaxants at the induction of anaesthesia of patients with a full stomach. Br J Anaesth. 1963;35:168-73.
- 42. Mertzlufft F, Krier C. Präoxygenierung ein Muss! Aber wie? Anästhesiologie Intensivmedizin Notfallmedizin Schmerztherapie. 2001;36(8):451-3.
- 43. Benumof JL. Preoxygenation: best method for both efficacy and efficiency. Anesthesiology. 1999;91(3):603-5.
- 44. Tanoubi I, Drolet P, Donati F. Optimizing preoxygenation in adults. Can J Anaesth. 2009;56(6):449-66.
- 45. Piepho T, Cavus E, Noppens R, Byhahn C, Dörges V, Zwissler B, et al. S1-Leitlinie Atemwegsmanagement. Der Anaesthesist. 2015;64(11):859-73.
- 46. Farmery AD. Simulating hypoxia and modelling the airway. Anaesthesia. 2011;66(2):11-8.
- 47. Nimmagadda U, Salem MR, Crystal GJ. Preoxygenation: Physiologic Basis, Benefits, and Potential Risks. Anesth Analg. 2017;124(2):507-17.
- 48. Davis DP, Hwang JQ, Dunford JV. Rate of decline in oxygen saturation at various pulse oximetry values with prehospital rapid sequence intubation. Prehosp Emerg Care. 2008;12(1):46-51.
- 49. Mort TC. The incidence and risk factors for cardiac arrest during emergency tracheal intubation: a justification for incorporating the ASA Guidelines in the remote location. J Clin Anesth. 2004;16(7):508-16.
- 50. Nimmagadda U, Salem MR, Joseph NJ, Lopez G, Megally M, Lang DJ, et al. Efficacy of preoxygenation with tidal volume breathing. Comparison of breathing systems. Anesthesiology. 2000;93(3):693-8.
- 51. Brandt L, Rudlof B, Merkelbach D. Prä-Oxygenation: Anspruch und Wirklichkeit. Anasthesiol Intensivmed Notfallmed Schmerzther. 1994;29(4):227-30.
- 52. Pandit JJ, Duncan T, Robbins PA. Total oxygen uptake with two maximal breathing techniques and the tidal volume breathing technique: a physiologic study of preoxygenation. Anesthesiology. 2003;99(4):841-6.
- 53. Nimmagadda U, Chiravuri SD, Ramez Salem M, Joseph NJ, Wafai Y, Crystal GJ, et al. Preoxygenation with Tidal Volume and Deep Breathing Techniques: The Impact of Duration of Breathing and Fresh Gas Flow. Anesth Analg. 2001;92(5):1337-41.
- 54. Higgs A, McGrath BA, Goddard C, Rangasami J, Suntharalingam G, Gale R, et al. Guidelines for the management of tracheal intubation in critically ill adults. Br J Anaesth. 2018;120(2):323-52.
- 55. Hedenstierna G, Tokics L, Reinius H, Rothen HU, Östberg E, Öhrvik J. Higher age and obesity limit atelectasis formation during anaesthesia: an analysis of computed tomography data in 243 subjects. Br J Anaesth. 2020;124(3):336-44.
- 56. Dixon BJ, Dixon JB, Carden JR, Burn AJ, Schachter LM, Playfair JM, et al. Preoxygenation is more effective in the 25 degrees head-up position than in the supine position in severely obese patients: a randomized controlled study. Anesthesiology. 2005;102(6):1110-5.
- 57. Altermatt FR, Muñoz HR, Delfino AE, Cortínez LI. Pre-oxygenation in the obese patient: effects of position on tolerance to apnoea. Br J Anaesth. 2005;95(5):706-9.
- 58. Smith SJ, Harten JM, Jack E, Carter R, Kinsella J. Pre-oxygenation in healthy volunteers: a comparison of the supine and 45° seated positions*. Anaesthesia. 2010;65(10):980-3.
- 59. Delay JM, Sebbane M, Jung B, Nocca D, Verzilli D, Pouzeratte Y, et al. The effectiveness of noninvasive positive pressure ventilation to enhance preoxygenation in morbidly obese patients: a randomized controlled study. Anesth Analg. 2008;107(5):1707-13.
- 60. Farmery AD, Roe PG. A model to describe the rate of oxyhaemoglobin desaturation during apnoea. Br J Anaesth. 1996;76(2):284-91.

- 61. Machlin HA, Myles PS, Berry CB, Butler PJ, Story DA, Heath BJ. End-tidal oxygen measurement compared with patient factor assessment for determining preoxygenation time. Anaesth Intensive Care. 1993;21(4):409-13.
- 62. Berry CB, Myles PS. Preoxygenation in healthy volunteers: a graph of oxygen "washin" using end-tidal oxygraphy. Br J Anaesth. 1994;72(1):116-8.
- 63. Baraka AS, Taha SK, Aouad MT, El-Khatib MF, Kawkabani NI. Preoxygenation: comparison of maximal breathing and tidal volume breathing techniques. Anesthesiology. 1999;91(3):612-6.
- 64. Heier T, Feiner JR, Lin J, Brown R, Caldwell JE. Hemoglobin desaturation after succinylcholine-induced apnea: a study of the recovery of spontaneous ventilation in healthy volunteers. Anesthesiology. 2001;94(5):754-9.
- 65. Clark LC, Jr., Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 1953;6(3):189-93.
- 66. Beck G, Becke K, Biermann E, Deja M, Hofer H, Iber T, et al. Mindestanforderungen an den anästhesiologischen Arbeitsplatz. Empfehlungen der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin e.V. und des Berufsverbandes Deutscher Anästhesisten e.V. Anästh Intensivmed 2013;54:39-42.
- Deutsches Institut für Normung. DIN EN ISO 80601-2-55:2019-03: Medizinische elektrische Geräte - Teil 2-55: Besondere Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale von Überwachungsgeräten für Atemgase (EN ISO 80601-2-55:2018). Berlin: Beuth Verlag GmbH. 2019;79.
- 68. Dumas JP, Bardou M, Goirand F, Dumas M. Hypoxic pulmonary vasoconstriction. Gen Pharmacol. 1999;33(4):289-97.
- 69. Boemke W. Kapnometrie, Atem- und Anästhesiegase. In: Kochs E, Zacharowski K, Hrsg. Anästhesievorbereitung und perioperatives Monitoring. Stuttgart: Thieme. 2015;122-33.
- 70. Vourc'h M, Baud G, Feuillet F, Blanchard C, Mirallie E, Guitton C, et al. High-flow Nasal Cannulae Versus Non-invasive Ventilation for Preoxygenation of Obese Patients: The PREOPTIPOP Randomized Trial. EClinicalMedicine. 2019;13:112-9.
- 71. Oliver M, Caputo ND, West JR, Hackett R, Sakles JC. Emergency physician use of endtidal oxygen monitoring for rapidsequence intubation. J Am Coll Emerg Physicians Open. 2020;1(5):706-13.
- 72. Hanouz JL, Lhermitte D, Gérard JL, Fischer MO. Comparison of pre-oxygenation using spontaneous breathing through face mask and high-flow nasal oxygen: A randomised controlled crossover study in healthy volunteers. Eur J Anaesthesiol. 2019;36(5):335-41.
- 73. Hayes-Bradley C, Lewis A, Burns B, Miller M. Efficacy of Nasal Cannula Oxygen as a Preoxygenation Adjunct in Emergency Airway Management. Ann Emerg Med. 2016;68(2):174-80.
- 74. McQuade D, Miller MR, Hayes-Bradley C. Addition of Nasal Cannula Can Either Impair or Enhance Preoxygenation With a Bag Valve Mask: A Randomized Crossover Design Study Comparing Oxygen Flow Rates. Anesth Analg. 2018;126(4):1214-8.
- 75. Nimmagadda U, Chiravuri SD, Salem MR, Joseph NJ, Wafai Y, Crystal GJ, et al. Preoxygenation with tidal volume and deep breathing techniques: the impact of duration of breathing and fresh gas flow. Anesth Analg. 2001;92(5):1337-41.
- 76. Tan PCF, Millay OJ, Leeton L, Dennis AT. High-flow humidified nasal preoxygenation in pregnant women: a prospective observational study. Br J Anaesth. 2019;122(1):86-91.
- 77. Nimmagadda U, Salem MR, Joseph NJ, Miko I. Efficacy of preoxygenation using tidal volume and deep breathing techniques with and without prior maximal exhalation. Can J Anaesth. 2007;54(6):448-52.
- 78. Gonzalez AL, Waddell LS. Blood Gas Analyzers. Top Companion Anim Med. 2016;31(1):27-34.
- 79. Brandt L, Rudolf B. Physiologie der Apnoe. 2007 [zitiert am 20.08.2023]. URL: https://www.ai-online.info/abstracts/pdf/dacAbstracts/2007/Beitrag_Brandt.pdf.
- 80. Kieninger M, Zech N, Mulzer Y, Bele S, Seemann M, Künzig H, et al. Optimierung von Blutgasanalysen auf der Intensivstation: Reduzierung präanalytischer Fehler und Verbesserung der zeitlichen Abläufe. Anaesthesist. 2015;64(5):365-72.

- 81. Bouguer P. Essai D'Optique Sur La Gradation De La Lumière. Paris: Light Zoom Lumière. 1729.
- 82. Mannheimer PD. The light-tissue interaction of pulse oximetry. Anesth Analg. 2007;105(6):10-7.
- 83. Schnapp LM, Cohen NH. Pulse oximetry. Uses and abuses. Chest. 1990;98(5):1244-50.
- 84. Pedersen T, Nicholson A, Hovhannisyan K, Møller AM, Smith AF, Lewis SR. Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev. 2014.
- 85. Moller JT, Johannessen NW, Espersen K, Ravlo O, Pedersen BD, Jensen PF, et al. Randomized evaluation of pulse oximetry in 20,802 patients: II. Perioperative events and postoperative complications. Anesthesiology. 1993;78(3):445-53.
- 86. Barker SJ, PhD M. "Motion-Resitant" Puls Oximetry: A Comparison of New and Old Models. Anesth Analg. 2002;95(4):967-72.
- 87. Goldman JM, Petterson MT, Kopotic RJ, Barker SJ. Masimo signal extraction pulse oximetry. J Clin Monit Comput. 2000;16(7):475-83.
- 88. Collins JA, Rudenski A, Gibson J, Howard L, O'Driscoll R. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve. Breathe (Sheff). 2015;11(3):194-201.
- 89. Zander R. Der pulmonale Sauerstoff-Speicher Physiologie und klinischer Nutzen. Anästhesiol Intensivmedn Notfallmed Schmerzther. 2002;37(1):34-8.
- 90. Scheeren TWL, Belda FJ, Perel A. The oxygen reserve index (ORI): a new tool to monitor oxygen therapy. J Clin Monit Comput. 2018;32(3):579-80.
- Jochen H, Harald G. Arterio-venöse Sauerstoffgehaltsdifferenz (avDO2). In: Formeln und Scores in Anästhesie, Intensivmedizin, Notfallmedizin und Schmerztherapie. Hinkelbein J, Genzwürker H. Hrsg. 2. Auflage. Berlin: Medizinisch Wissenschaftliche Verlagsgesellschaft 2016;7-8.
- 92. Asfar P, Singer M, Radermacher P. Understanding the benefits and harms of oxygen therapy. Intensive Care Med. 2015;41(6):1118-21.
- 93. Götberg M, van der Pals J, Olivecrona GK, Götberg M, Koul S, Erlinge D. Mild hypothermia reduces acute mortality and improves hemodynamic outcome in a cardiogenic shock pig model. Resuscitation. 2010;81(9):1190-6.
- 94. Lang H. Blutgasanalyse. Beatmung für Einsteiger: Theorie und Praxis für die Gesundheits- und Krankenpflege. Berlin Heidelberg: Springer Verlag. 2016;197-215.
- 95. Mezger V, Balzer F, Habicher M, Sander M. Venöse Sättigung. Medizinische Klinik -Intensivmedizin und Notfallmedizin. 2017;112(6):492-8.
- 96. Severinghaus JW, Koh SO. Effect of anemia on pulse oximeter accuracy at low saturation. J Clin Monit. 1990;6(2):85-8.
- 97. Cohen J. A power primer. Psychol Bull. 1992;112(1):155-9.
- 98. Saugel B, Belda FJ. The Oxygen Reserve Index in anesthesiology: a superfluous toy or a tool to individualize oxygen therapy?. Minerva Anestesiol. 2018;84(9):1010-2.
- 99. Ishida Y, Okada T, Kobayashi T, Uchino H. ORi™: a new indicator of oxygenation. J Anesth. 2021;35(5):734-40.
- 100. Hirata N, Nishimura M, Chaki T, Yoshikawa Y, Yamakage M. Comparison between oxygen reserve index and end-tidal oxygen concentration for estimation of oxygenation during pre-oxygenation via a tight-fitted face mask: A prospective observational study. Eur J Anaesthesiol. 2021;38(3):313-5.
- 101. Kumagai M, Kurihara H, Ishida K, Komatsu H, Suzuki K. The Oxygen Reserve Index as a determinant of the necessary amount of postoperative supplemental oxygen. Minerva Anestesiol. 2021;87(4):439-47.
- 102. Saraçoğlu A, Yamansavci Şirzai E, Yildizeli B, Yüksel M, Aykaç ZZ. Oxygen Reserve Index Guided Oxygen Titration in One Lung Ventilation With Low Fresh Gas Flow. Turk J Med Sci. 2021;51(5):2413-19.
- 103. Singer M, Young PJ, Laffey JG, Asfar P, Taccone FS, Skrifvars MB, et al. Dangers of hyperoxia. Crit Care. 2021;25(1):440.
- 104. Niwa Y, Shiba J, Fujita H, Oka R, Takeuchi M. Oxygen reserve index (ORi[™]) contributes to prediction of hypoxemia and patient safety during tracheal stent insertion using rigid bronchoscopy: a case report. J Clin Monit Comput. 2019;33(6):1011-4.

Literaturverzeichnis

- 105. Bellini L, Dzikiti BT, De Benedictis GM, Algarin Sepulveda FR, Maney JK. Oxygen reserve index as a noninvasive indicator of arterial partial pressure of oxygen in anaesthetized donkeys: a preliminary study. Vet Anaesth Analg. 2021;48(3):388-92.
- 106. Auckburally A, Nyman G. Review of hypoxaemia in anaesthetized horses: predisposing factors, consequences and management. Vet Anaesth Analg. 2017;44(3):397-408.
- 107. Maney JK, Durham HE, Jr., Goucher KP, Little EL. Induction of anesthesia and recovery in donkeys sedated with xylazine: a comparison of midazolam-alfaxalone and midazolam-ketamine. Vet Anaesth Analg. 2018;45(4):539-44.
- 108. Yoshida K, Isosu T, Noji Y, Ebana H, Honda J, Sanbe N, et al. Adjustment of oxygen reserve index (ORi[™]) to avoid excessive hyperoxia during general anesthesia. J Clin Monit Comput. 2020;34(3):509-14.
- 109. Cheng HW, Yeh CY, Chang MY, Ting CK, Chang PL. How early warning with the Oxygen Reserve Index (ORi[™]) can improve the detection of desaturation during induction of general anesthesia?. J Clin Monit Comput. 2021;36(5):1379-85.
- 110. World Medical Association. WMA Declaration of Helsinki Ethical Principles For Medical Research Involving Human Subjects. 2013 [zitiert am 20.08.2023]. URL: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/.
- 111. Masimo C. Operator's Manual: Rad-97 Pulse CO-Oximeter. 2022 [zitiert am 20.08.2023]. URL: https://techdocs.masimo.com/globalassets/techdocs/pdf/lab-9275d_master.pdf.
- 112. Bundesärztekammer. Neufassung der Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen – Rili-BÄK. Deutsches Ärzteblatt International. 2019;116:51-52.
- 113. Elshal MM, Hasanin AM, Mostafa M, Gamal RM. Plethysmographic Peripheral Perfusion Index: Could It Be a New Vital Sign? Front Med (Lausanne). 2021;8:651909.
- 114. Severinghaus JW, Astrup PB. History of blood gas analysis. Int Anesthesiol Clin. 1987;25(4):1-224.
- 115. Voigt E. Effektivität eines herkömmlichen Kreissystems zur Prä-Oxygenierung. Anasthesiol Intensivmed Notfallmed Schmerzther. 1994;29(4):231-3.
- 116. Yoshida K, Isosu T, Imaizumi T, Obara S, Murakawa M. Oxygen Reserve Index (ORI) as an alarm for oxygenation deterioration in pediatric tracheostomaplasty: A case report. Paediatr Anaesth. 2019;29(11):1151-3.
- 117. Ray S, Kulkarni KS, Dave NM, Chincholi I. The utility of the oxygen reserve index[™] in a neonate undergoing re-exploration of a tracheoesophageal fistula. Indian J Anaesth. 2018;62(3):233-4.
- 118. Kaur A, Ray S, Dias R, Rajan K. Facilitation of delayed sequence intubation with oxygen reserve index monitoring in a child with esophageal perforation. Can J Anaesth. 2021;68(12):1826-7.
- 119. Rutherford JS, Logan MR, Drummond GB. Changes in end-expiratory lung volume on induction of anaesthesia with thiopentone or propofol. Br J Anaesth. 1994;73(5):579-82.
- 120. Masimo C. Whitepaper Oxygen Reserve Index. 2020 [zitiert am 20.08.2023]. URL: https://www.masimo.co.uk/technology/co-oximetry/ori/.

8 Anhang

8.1 Sauerstoff – Formeln und Zusammenhänge

Nach den Dalton-Gesetz (34) ist der Partialdruck eines Gases (P(Gas)) gleich dem Produkt aus Gesamtdruck des Gasgemisches (Pgesamt) und dem fraktionellen Gasanteil (FGAS). Für den Sauerstoff in der Raumluft gilt:

$$P(Gas) = Pgesamt * FGAS$$
 $PO_2 = 760 * 0,209 = 159[mmHg]$

Der inspiratorische Sauerstoffpartialdruck (PiO_2) ist gleich dem Produkt aus Umgebungsluftdruck (PB) nach Abzug des Wasserdampfdrucks (PH_2O) und dem inspirierten fraktionellen Gasanteil des Sauerstoffs (FiO_2):

$$Pi(Gas) = (PB - PH_2O) * FiO_2$$
 $PiO_2 = (760 - 47) * 0,209 = 149 [mmHg]$

Der alveoläre O₂-Partialdruck (PAO₂) kann mithilfe der alveolären Gasgleichung bestimmt werden:

$$PAO_2 = PiO_2 \times \frac{PACO_2}{RQ} + \left[PACO_2 \times FiO_2 \times \frac{1 - RQ}{RQ}\right]$$

Der Term in den eckigen Klammern [] beschreibt einen Korrekturfaktor von ca. 2 mmHg und ist für den klinischen Gebrauch vernachlässigbar. Der Respiratorische Quotient (RQ) beschreibt das Verhältnis aus CO₂-Abgabe ($\dot{V}CO_2$) und O₂-Aufnahme ($\dot{V}O_2$). Unter Standardbedingungen STPD beträgt die $\dot{V}O_2$ eines Erwachsenen 250 ml / min und die $\dot{V}CO_2$ 230 ml / min und somit der RQ 0,85.

$$RQ = \frac{\dot{V}CO_2}{\dot{V}O_2}$$
 $RQ(STPD) = \frac{230}{250} = 0.85$

Aufgrund der schnellen Äquilibrierung in der Lunge kann der alveoläre dem arteriellen CO_2 -Partialdruck gleichgesetzt werden. Es wird ein $PaCO_2 = 40$ mmHg angenommen.

$$PAO_2 = PiO_2 - \frac{PaCO_2}{RQ} \qquad PAO_2(Raumluftatmung) = 149 - \frac{40}{0.85} = 102 \ mmHg$$

Die alveoläre Sauerstofffraktion (FAO_2) ist das Verhältnis aus vorherrschendem PAO₂ und dem Umgebungsluftdruck (*PB*). Für Raumluftatmung sowie maximale Präoxygenierung gilt:

$$FAO_2 = \frac{PAO_2}{PB} \qquad PAO_2(max) = (PB - PH_2O - PCO_2) = 760 - 47 - 40 = 673 \ [mmHg]$$

$$FAO_2(Raumluft) = \frac{102}{760} = 0,1342 \approx 13\%$$
 $FAO_2(max) = \frac{(673)}{760} = 0,8855 \approx 89\%$
Bei der Messung der endtidalen Sauerstoffkonzentration (etO_2) fällt der PH_2O durch messtechnische Trocknung weg und es ergibt sich eine Differenz zwischen FAO_2 und etO_2 :

$$etO_2 = \frac{(760 - 40)}{760} = 0,9473 \approx 95\%$$

Die alveoloarterielle O₂-Partialdruckdifferenz ($AaDO_2$) ergibt sich aus der Partialdruckdifferenz der Alveole und dem arteriellen Blut der Lungenvene.

$$AaDO_2 = PAO_2 - PaO_2$$

Unter Annahme einer $AaDO_2$ von 10 - 20 mmHg beim Lungengesunden unter Raumluftatmung (35) lässt sich der zu erwartende PaO_2 berechnen bzw. abschätzen.

$$PaO_2 = PAO_2 - AaDO_2$$

$$PaO_2 = 102 mmHg - 10 bis 20 mmHg = 92 bis 82 mmHg$$

Der arterielle Sauerstoffgehalt (CaO_2) setzt sich aus einem chemisch an das Hämoglobin gebundenen Sauerstoffanteil und einen physikalisch gelösten Anteil zusammen.

$$CaO_2 = \left(cHb\left[\frac{g}{dl}\right] * 1,34\left[\frac{ml}{g}\right] * SaO_2\right) + \left(PaO_2[mmHg] * 0,0031\left[\frac{1}{mmHg} * \frac{ml}{dl}\right]\right)$$

Das im Gewebe zur Verfügung stehende Sauerstoffangebot (DO_2) ergibt sich aus dem Produkt des Herzzeitvolumen (HZV) und des arterielle Sauerstoffgehalt (CaO_2).

$$DO_2 = HZV * CaO_2$$

Die Sauerstoffextraktion des Gewebes ist gleich dem Quotienten aus DO_2 und VO_2 . Häufig wird statt dieser die arteriovenöse Sauerstoffgehaltsdifferenz ($avDO_2$), die die Differenz aus arteriellem und venösem Sauerstoffgehalt ist, angegeben.

$$avDO_2 = CaO_2 - CvO_2$$

Der venöse Sauerstoffgehalt (CvO_2) setzt sich aus einem chemisch an das Hämoglobin gebundenen Sauerstoffanteil und einen physikalisch gelösten Anteil zusammen.

$$CvO_2 = \left(cHb\left[\frac{g}{dl}\right] * 1,34\left[\frac{ml}{g}\right] * SvO_2\right) + \left(PvO_2[mmHg] * 0,0031\left[\frac{1}{mmHg} * \frac{ml}{dl}\right]\right)$$

8.2 Das Whitepaper "Oxygen Reserve Index (ORI®)"

Das folgende Dokument entstammt der britischen Herstellerseite und erläutert den ORI (120).

Oxygen Rese	rve Index	(ORI™)
-------------	-----------	--------

SUMMARY

Pulse oximetry (SpO2) provides noninvasive and continuous visibility to arterial blood oxygenation in hypoxia (less than normal oxygenation) and normoxia (normal oxygenation) but cannot assess hyperoxia (higher than normal oxygenation). During supplemental oxygen administration, clinicians often use the partial pressure of oxygen (PaO2) to assess hyperoxia but this requires blood gas analysis that is intermittent and delayed. Between invasive sampling, changes in PaO2 cannot be assessed and therefore unexpected hypoxia or unintended hyperoxia can occur.

ORI provides real-time visibility to oxygenation status in moderate hyperoxic range (PaO2 of approximately 100 to 200 mm Hg). ORI is intended to supplement, not replace, SpO2 monitoring and PaO2 measurements. As an "index" parameter with a unit-less scale between 0.00 and 1.00, ORI can be trended and has optional alarms to notify clinicians of changes in a patient's oxygen status.

In patients receiving supplemental oxygen such as those in surgery, conscious sedation, or the intensive care unit, ORI may provide an advance warning of an impending hypoxic state or indication of an unintended hyperoxic state when used in conjunction with PaO2 measurements. In this way, ORI may enable proactive interventions to avoid hypoxia and unintended hyperoxia.

RELATIONSHIP BETWEEN OXYGEN SATURATION AND PARTIAL PRESSURE OF OXYGEN IN THE BLOOD

A patient's oxygen status can generally be classified into one of the following three categories¹:

- > Hypoxia (less than normal oxygenation)
- > Normoxia (normal oxygenation)
- > Hyperoxia (higher than normal oxygenation)

Arterial oxygen saturation (SaO2) is defined as the percentage of haemoglobin molecules bound with oxygen and is measured by analysing arterial blood gas samples. Pulse oximetry provides a noninvasive and continuous monitoring of oxygen saturation (SpO2) in the hypoxic and normoxic states but cannot assess hyperoxia (higher than normal oxygenation). The partial pressure of oxygen (PaO2) is the pressure exerted by oxygen when dissolved in plasma. During supplemental oxygen administration, clinicians often use the partial pressure of oxygen (PaO2) to assess hyperoxia, but this requires blood gas analysis that is intermittent and delayed. Between invasive sampling, changes in PaO2 cannot be assessed and therefore unexpected hypoxia or unintended hyperoxia can occur. The oxyhaemoglobin dissociation curve shown in Figure 1, can be used to visually represent these ranges through the graphical relationship between SaO2/SpO2 and PaO2.

Figure 1. The oxyhaemoglobin dissociation curve illustrates the relationship between Sa02/Sp02 and Pa02. Sa02 and Sp02 are not able to assess the hyperoxic range due to the flatting of the Sa02/ Sp02 curve. Pa02 can be used as an indication of oxygenation throughout all ranges; however, measurements are both intermittent and delaved.

OXYGEN RESERVE INDEX (ORI)

ORI is a noninvasive and continuous parameter intended to provide insight into a patient's oxygen status in moderate hyperoxic range (PaO₂ >100 and <200 mm Hg) which we define as a patient's oxygen "reserve". ORI is an "index" with a unit-less scale between 0.00 and 1.00. ORI can be trended and has optional alarms to notify clinicians of changes in a patient's oxygen reserve. ORI is an index that is intended to supplement, not replace SaO₂/SpO₂ and PaO₂. When utilised in conjunction with SpO₂ monitoring (as demonstrated in figure 2), ORI may extend the continuous and noninvasive visibility of a patient's oxygen status into ranges previously unmonitored in this fashion.

Figure 2. Range of oxygenation monitoring that can be assessed with SaO2/SpO2, ORI, and PaO2. SaO2/SpO2 can assess hypoxia and normoxia, PaO2 can assess all ranges of oxygenation, and SpO2 with ORI provides real-time visibility from hypoxia to the moderate hyperoxic state.

ORI—OPERATIONAL PRINCIPLE

The Fick principle relates oxygen consumption (VO₂) with cardiac output (CO) and oxygen content of arterial blood (CaO₂) and deoxygenated venous blood (CvO₂).²

$$VO_2 = CO \times (CaO_2 - CvO_2)$$

Substituting the oxygen content equation for the arterial (CaO₂) and venous (CvO₂) blood, we are left with the following equation (where SvO₂ is the oxygen saturation in the venous blood, and PvO₂ is the partial pressure of oxygen in the venous blood³):

This equation can be modified via oxygen saturation equations to the following format:

VO2 = CO x (1.34 Hb x (SaO2 - SvO2) + 0.003 x (PaO2 - PvO2)) Equation 1.

WHITEPAPER

The oxygen dissociation curve (Fig 1.) provides a relationship between SaO2 and PaO2 as given by the equation below.

$$SaO_2 = f(PaO_2)$$
 and $SvO_2 = f(PvO_2)$ Equation 2

Substituting Equation 2 in Equation 1, we get:

$$VO_2 = CO \times (1.34 \times (f(PaO_2) - SvO_2) + 0.003 \times (PaO_2 - f^{-1}(SvO_2)))$$

Hence, for a constant oxygen consumption and cardiac output, SvO_2 is directly proportional to PaO_2 , as f (defined in Equation 2) is an increasing function as shown in Figure 1. This results in the following relationship:

SvO₂ \propto PaO₂ for constant VO₂, CO Equation 3.

Pulse oximeters work by measuring the absorption of pulsatile blood at the measuring site (finger). Pulsatile changes are observed at the arteries, capillaries and in the venules, though to a lesser degree in the venules. A pulse oximeter absorption measurement at wavelength λ , denoted by $A(\lambda)$, is thus affected by both arterial and venous blood absorption changes.

$A(\lambda) = A_{\alpha}(\lambda) + \alpha A_{\nu}(\lambda)$ where $\alpha <<1$ and α is dependent on perfusion at the measurement site Equation 4.

In the absence of dyshaemoglobins:

$$A_{a}(\lambda) = SaO_{2} \times A_{a}^{O_{2}Hb}(\lambda) + (100 - SaO_{2}) \times A_{a}^{HHb}(\lambda)$$
 Equation 5.

 $A_{\nu}(\lambda) = SvO_2 \times A_{\nu}^{O_2 H b}(\lambda) + (100 - SvO_2) \times A_{\nu}^{H H b}(\lambda)$ Equation 6.

where $A_{a}^{O_{2}Hb}$ is the absorption of oxy-haemoglobin in arterial blood.

 $A_{v^{D_2Hb}}$ is the absorption of oxy-haemoglobin in venous blood.

 A_{a}^{HHb} is the absorption of deoxy-haemoglobin (reduced) in arterial blood.

 A_{v}^{HHb} is the absorption of deoxy-haemoglobin (reduced) in venous blood.

Substituting Equation 5 and Equation 6 into Equation 4:

$$A(\lambda) = (SaO_2 \times A_a^{\mathcal{O}, Hb}(\lambda) + (100 - SaO_2) \times A_a^{\mathcal{H}, Hb}(\lambda)) + \alpha (SvO_2 \times A_v^{\mathcal{O}, Hb}(\lambda) + (100 - SvO_2) \times A_v^{\mathcal{H}, Hb}(\lambda))$$
Equation 7.

Combining Equation 3 and Equation 7, we observe that $A(\lambda)$ changes as a function of PaO2.

As PaO2 increases beyond 100mm Hg, SvO2 continues to increase, eventually saturating at around 200 mm Hg. This results in a change in $A(\lambda)$ and therefore making it possible to detect changes in PaO2 up to 200mm Hg.

ORI may be affected by factors such as VO2, CO (as determined by Fick equation), pH, temperature, and the presence of dyshaemoglobins (oxyhaemoglobin dissociation curve) and the amount of perfusion (venous pulsation).

ORI VALIDATION / ACCURACY SPECIFICATION

In an IRB-approved study conducted at Masimo per ISO-80601 guidelines, 11 healthy consenting adults underwent a variety of interventions to change their PaO2 and SpO2 levels. A total of 1,885 paired sets of both ORI and PaO2 were collected. Mild hyperoxia was defined as a PaO2 <150 mm Hg. Moderate hyperoxia was defined as PaO2 \geq 150 mm Hg. An ORI value of 0.3 provides \geq 85% sensitivity and \geq 80% specificity for a PaO2 <150 mm Hg.

ORI STUDY IN SURGICAL PEDIATRICS

In a recent study from the University of Texas Southwestern, researchers evaluated ORI in pediatric patients undergoing surgical procedures requiring intubation and general anaesthesia. The researchers reported that ORI provided an average 40 second advance notice before a patient reached an SpO2 of 98%, and a 52 second advance notice before the a patient reached an SpO2 of 92%.⁵ The authors concluded "For this reason, ORI's ability to measure changes in oxygen reserve and alarm during a rapid decrease could help clinicians respond with needed interventions sooner," and "The ORI alarm provides an increased warning time for avoiding potential hypoxia and could help in optimising the oxygenation before and during prolonged intubation."

ORI CLINICAL APPLICATION

In patients receiving supplemental oxygen such as those in surgery, conscious sedation, or the intensive care unit, ORI may provide an advance warning of an impending hypoxic state or indication of an unintended hyperoxic state when used in conjunction with PaO2 measurements. In this way, ORI may enable proactive interventions to avoid hypoxia and unintended hyperoxia.

EXAMPLE OF ORI DURING INTUBATION IN HIGH-RISK PEDIACTRIC SURGERY

As shown in Figure 5, ORI levels rise as FiO2 levels are titrated up prior to intubation

Figure 5. ORI levels drop prior to SaO2 lower FiO2 administration and intubation, and rise during re-oxygenation

REFERENCES

¹ Fischbach FT, Dunning MB III, eds. (2009). Manual of Laboratory and Diagnostic Tests, 8th ed. Philadelphia: Lippincott Williams and Wilkins.⁴ Cuschleri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, Pamukov N, Horst HM. Central venous-arterial carbon dioxide difference as an indicator of cardia: index. Intensive Care Medicine. 2005. 31 (6): 818–22. ³ Mahutte CK1, Jaffe MB, Sassoon CS, Wong DH. Cardiac output from carbon dioxide production and arterial and venous commerty.⁴ Orgen Reserve Index: Board Study, Test Report. Masime Corporation, data on file, 2014. ⁵ Szmuk P, Steiner J, Olomu P, Dela Cruz BS, Sessier D. Oxygen Reserve Index: A New Noninvasive Method of Oxygen Reserve Index: Means and B. American Society of Anesthesiologists, 2014. BOC12.

Regulatory Notice:

ORI is CE Mark and not currently available for sale in the United States.

For professional use. See instructions for use for full prescribing information, including indications, contraindications, warnings, precautions and adverse events.

Masimo U.S. Tel: 1 877 4 Masimo info-america@masimo.com Masimo International Tel: +41 32 720 1111 info-international@masimo.com

8.3 Die individuellen SpO₂- und ORI-Messverläufe der Patienten

8.4 Datenerhebungsbögen der PRIORI-Studie

PR	ION				CRF Baseline							
	□□.□ □ .20□□											
	Heutiges Datum		Code (wird von S	Studienleitur	ng vergeben)							
Pat	entenetikett		Geplante OP:									
			Geplantes OP-Datum:									
		E1: Indikation für Allgemeinanästh	🗌 ja	nein								
1.	Einschlusskriterien (alle Punkte müssen mit <u>ja</u> beantwortet sein)	E2: Alter ≥ 18 Jah	🗌 ja	nein								
		E3: Schriftliche Ei Patientin	ja	nein								
		A1: Alter < 18 Jah	nre	🗌 ja	nein							
		A2: Notfallpatien	ja	l nein								
2.	Ausschlusskriterien (alle Punkte müssen mit <u>nein</u> beantwortet sein)	A3: Patienten, mi fiberoptische Wa mit einer dicht sit werden	ja	nein								
		A4: Schwangersc	🗌 ja	🗌 nein								
_		A5: fehlende Einv	🗌 ja	nein								
3.	Patienteninformation ausgeh	ja	nein									
4.	EINWIIIigungserklarung unter	SCNreiben (Datum und	Name nicht vorausfüllen!)	ја								
5.	(SAP: ans Narkoseprotokoll h	🗌 ја	nein									
6.	Studienunterlagen in der ASS	🗌 ja	nein									

Name des Studienarztes	Unterschrift des Studienarztes

PRIORI_CRF Baseline V1.0_2019_05_22

Seite 1 / 1

PRIORI-Studie

CRF OP-Tag

Heutiges Datum

Code (wird von Studienleitung vergeben)

1 – Patientenstammdaten

Verdacht auf	OSAS	🗆 ja	🗆 neir	า	BMI				kg/m ²
Gesicherte OS	AS-Diagnose	🗆 ja	🗆 neir	۱	Bartträger		🗆 ja	🗆 nein	
Mallampati-Score			Zahnstatus	□ Eigen und fest Zahnstatus □ Teilprothese □ Vollprothese					
Thyreomenta	ler Abstand <	6 cm			🗆 ja 🗆 neir	n			
EF	%	Vitiu	m:		EKG	SI	R□	AA/VHF □ gehäuft ES □	SM 🗆
COPD			🗆 ja	🗆 nein	Gold Grad	□ 1	□ 2	□3 □4	

ggf. Sufentanil zur Anlage der "Wacharterie": 🛄 µg

2 – Baseline unter Raumluft

Oxygenierungsdaten (Zeitpunkt der Messung: __:__ Uhr)

SpO ₂ (Philips Monitor)		%	SpO ₂ (Radical 97)	%
PI (Philips Monitor)			ORI (Radical 97)	
Applikationsort Sensor			PI (Radical 97)	
SpO ₂ (Nellcor)		%	Applikationsort Sensor	
Applikationsort Sensor			Invasive Blutdruckmessung	
s_aO_2 (aus art. BGA)		%	p _a O ₂ (aus art. BGA)	mmHg
Hb (aus art. BGA)		g/dl	p _a CO ₂ (aus art. BGA)	mmHg
etO ₂ (Narkosegerät)			etCO ₂ (Narkosegerät)	
Herz-Kreislaufparan	neter			
MAP (Philips Monitor)		mmHg	EKG:	
PI (Philips Monitor)			SR	ehäuft ES 🗆
Zerebrale Paramete	e r			
NIRS	L	R	BIS	

PRIORI_CRF OP-Tag V1.0_2019_05_22

Seite 1/3

PRIORI-Studie

CRF OP-Tag

3 – Präoxygenierung

dicht sitzende Maske – Oberkörper 30 ° Hochlagerung Flow 10 l/min O2 -

4 – zum Zeitpunkt 1 min nach Start der Präoxygenierung

SpO ₂ (jeweils in 15-Sekunden-Schritten)											
%	%	%	%	%	%	%	%	%	%	%	%
ORI (jeweils in 15-Sekunden-Schritten)											
etO ₂ (je	eweils in	15-5еки	nden-Sc	nritten)							
%	%	%	%	%	%	%	%	%	%	%	%
70	70 70 70 70 70 70 70 70 70 70 70										
Leckagevolumen nach einer, zwei und drei Minuten											

		,				
I						
I						
I						
l						
1						

5 - zum Zeitpunkt 3 min nach Start der Präoxygenierung

Oxygenierungsdaten (Zeitpunkt der Messung: __:_ Uhr) % SpO₂ (Radical 97) SpO₂ (Philips Monitor) % PI (Philips Monitor) ORI (Radical 97) Applikationsort PI (Radical 97) Sensor Applikationsort SpO₂ (Nellcor) % Sensor Applikationsort Invasive Sensor Blutdruckmessung s_aO₂ (aus art. BGA) % p_aO₂ (aus art. BGA) mmHg Hb (aus art. BGA) g/dl p_aCO₂ (aus art. BGA) mmHg etO₂ (Narkosegerät) etCO₂ (Narkosegerät) Herz-Kreislaufparameter MAP (Philips Monitor) mmHg PI (Philips Monitor) NA 2/50 Perfusor ml/h Start seit __: __ Uhr Zerebrale Parameter NIRS R BIS L PRIORI_CRF OP-Tag V1.0_2019_05_22 Seite 2 / 3

9 Danksagung

An dieser Stelle möchte ich allen Personen, die mich bei der Anfertigung meiner Dissertation unterstützt haben, meinen großen Dank aussprechen.

Mein herzlicher Dank gilt und für das Engagement bei der Durchführung der PRIORI-Studie sowie die Unterstützung beim Anfertigen dieser Dissertation.

Außerdem möchte ich mich bei allen **Mitarbeitern** der Klinik für Anästhesiologie der Universitätsmedizin der Johannes Gutenberg-Universität Mainz, die bei der Narkoseeinleitung und im Rahmen der PRIORI-Studie mitgewirkt haben, bedanken.

Des Weiteren gilt mein Dank allen **Teilnehmerinnen und Teilnehmern** der PRIORI-Studie. Durch ihre hohe Bereitschaft zur Teilnahme war die Durchführung der Studie erst möglich.

Für die Durchsicht der Arbeit und die konstruktiven Verbesserungsvorschläge danke ich

sowie

Danksagung

Danksagung