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Abstract

Proteins play crucial roles in virtually all cellular processes, and their functions are of-
ten realized through interactions with other proteins via different interfaces. Thus, for
a comprehensive understanding of protein functions, it is important to investigate the
molecular mechanisms of protein-protein interactions (PPIs) by characterizing their
interaction interfaces. Unfortunately, due to most high-throughput assays detecting
only PPIs and not their interfaces, mechanistic information is scarce for most PPI
data.

The current thesis presents a collection of studies exploring the characterization
of different types of PPI interfaces in the human protein interactome. Domains and
motifs are two types of conserved functional modules that enable PPIs by forming
domain-domain interfaces (DDIs) and domain-motif interfaces (DMIs). Chapter 2
and Article I delved into the characterization of DMIs and DDIs in PPIs by leveraging
information from existing databases. Chapter 2 centered on automating the detection
and scoring of DMIs in PPIs through a computer program. Article I focused on
evaluating the DDIs annotated in the 3did database by manually curating a reference
dataset of DDIs and identifying useful features to further score them. The program
developed in Chapter 2 and the high-confidence DDIs from 3did were applied to PPIs
detected in the human protein interactome to characterize their interfaces.

AlphaFold-Multimer (AF-MM) is an artificial intelligence (AI)-based tool for pre-
dicting the structures of protein complexes. Article II and III investigated the use of
AF-MM to predict novel PPI interfaces. As there is a lack of a comprehensive as-
sessment of AF-MM and its metrics, Article II systematically benchmarked AF-MM’s
ability to predict different types of interfaces and established criteria for discriminat-
ing good from bad structural models. Testing AF-MM using sequences longer than
minimal interacting regions revealed that they are detrimental to AF-MM’s prediction
performance, prompting the development of a fragmentation-based approach to en-
hance AF-MM’s sensitivity. The approach was applied to PPIs detected in the human
protein interactome to predict their interfaces, and some predicted interfaces were ex-
perimentally validated. Similarly, article III applied the fragmentation approach on
a protein pair whose interaction is important for piRNA amplification. Subsequent
experimental validation also confirmed the interaction interface predicted by AF-MM.

This thesis provides various approaches to leverage existing knowledge on different
PPI interface types to predict PPI interfaces in the human protein interactome, paving
the way towards a mechanistically annotated human protein interactome.
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Zusammenfassung

Proteine spielen eine zentrale Rolle in nahezu allen zellulären Prozessen. Ihre Funk-
tionen werden dabei oft durch Interaktionen mit anderen Proteinen vermittelt, die
wiederum an verschiedenen Interaktionsflächen stattfinden. Für ein umfassendes Ver-
ständnis der Proteinfunktionen ist es demnach essentiell, diese Interaktionsflächen
zu analysieren, um die molekularen Mechanismen von Protein-Protein-Interaktionen
(PPIs) zu charakterisieren. Da die die meisten Hochdurchsatz-Assays nur der De-
tektion von PPIs dienen und nicht auch der ihrer Interaktionsflächen dienen, sind
mechanistische Informationen für die meisten PPIs nicht verfügbar.

Diese Dissertation unfasst eine Sammlung von Studien, die eine Charakterisierung
verschiedener Arten von PPI-Interaktionsflächen im menschlichen Interaktom anstreben.
Domänen und Motive sind zwei Arten von konservierten funktionalen Modulen, die
PPIs durch die Bildung von Domäne-Domäne-Interaktionsflächen (DDIs) und Domäne-
Motiv-Schnittstellen (DMIs) vermitteln. Kapitel 2 und Artikel I beschäftigen sich mit
der Charakterisierung von DMIs und DDIs in PPIs unter der Verwendung von Infor-
mationen aus bestehenden Datenbanken. Dabei konzentriert sich Kapitel 2 auf die
automatisierte Detektion und Bewertung von DMIs in PPIs durch ein Computerpro-
gramm. Artikel I setzt sich mit der Bewertung der in der 3did-Datenbank annotierten
DDIs auseinander, wobei ein Referenzdatensatz von DDIs manuell kuratiert und nüt-
zliche Merkmale zur weiteren Evaluierung identifiziert wurden. Das in Kapitel 2 en-
twickelte Programm und die als qualitativ hochwertig evaluierten DDIs aus 3did wur-
den im weiteren Verluaf genutzt um die Interaktionsflächen von PPIs im menschlichen
Interaktom zu charakterisieren.

AlphaFold-Multimer (AF-MM) ist ein auf kuünstlicher Intelligenz (KI) beruhendes
Programm zur Vorhersage der Strukturen von Proteinkomplexen. Artikel II und III un-
tersuchen die Verwendung von AF-MM zur Vorhersage neuer PPI-Interaktionsflächen.
In Anbetracht der fehlenden umfassenden Bewertung von AF-MM und seinen Mess-
variablen, hat Artikel II die Fähigkeit von AF-MM hinsichtlich der Vorhersage ver-
schiedener Interaktionsflächentypen systematisch bewertet und Kriterien zur Unter-
scheidung von guten und schlechten Struktur-modellen identifiziert. Tests von AF-
MM mit Sequenzen, die mehr als die minimalen Interaktionsregionen umfassten, er-
gaben, dass solche nachteilig für die Vorhersageleistung von AF-MM sind, was zur
Entwicklung eines fragmentierungsbasierten Ansatzes führte, um so die Sensitivität
von AF-MM zu erhöhen. Dieser Ansatz wurde auf die im menschlichen Interaktom
detektierten PPIs angewendet, um deren Interaktionsflächen vorherzusagen. Einige
dieser vorhergesagten Interaktionsflächen wurden gleichfalls experimentell validiert.
Artikel III wendet den entwickelten Fragmentierungsansatz auf ein Proteinpaar an,
dessen Interaktion essentiell für die piRNA-Amplifikation ist. Die anschließende exper-
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imentelle Validierung konnte ebenso die von AF-MM vorhergesagte Interaktionsfläche
bestätigen.

Diese Dissertation zeigt verschiedene Ansätze auf, um bestehendes Wissen über ver-
schiedene PPI-Interaktionsflächentypen zu nutzen, um schließlich PPI-Schnittstellen
im menschlichen Interaktom vorherzusagen, und ebnet so den Weg zu einem mecha-
nistisch annotierten menschlichen Interaktom.
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Chapter 1

Introduction

Given the massive amount of proteins encoded in any given genome, probing the func-
tions of proteins has been an objective of utmost importance in the field of molecular
biology for decades. As proteins interact with other proteins to mediate their cellular
functions, mapping the interactions between proteins have been a common approach to
study the functions of proteins. With the development of interaction assays for high-
throughput screening, the last decades have witnessed tremendous progress in the
mapping of protein-protein interactions (PPIs). For example, the yeast two-hybrid
(Y2H) assay is a simple and robust method for PPIs detection that was developed
for high-throughput screening during the early 1990s (Chien et al., 1991; Fields &
Song, 1989). Since its development, the assay has been employed by numerous re-
searchers to screen for PPIs across various proteomes (McCraith et al., 2000; Stelzl
et al., 2005; Uetz et al., 2000, 2006). The human reference interactions (HuRI) is the
largest binary PPI screen for the human proteome so far, detecting over 60,000 PPIs,
with many of them being mediated by poorly studied proteins (Luck et al., 2020). A
similar trend has also been observed in the advancement of mass spectrometry (MS)
technologies. MS-based approaches have also been utilized to study the co-complex
associations between human proteins (Huttlin et al., 2021) and yeast proteins (Gavin
et al., 2002; Krogan et al., 2006; Michaelis et al., 2023). These PPI networks are
collectively termed the interactome.

While the systematic nature of these PPI mapping efforts enabled the discovery
of PPIs mediated by many understudied proteins, a mechanistic description of the
interactome is currently lacking. To put this in context, only approximately 4% of
the interactions detected in HuRI have a structure solved at atomic resolution (Luck
et al., 2020). A mechanistic description of a PPI entails examining the interaction
interface between an interacting protein pair to determine the residues that are crucial
for the interaction. Such mechanistic insights into PPIs will allow one to decipher
the co-existence or mutual exclusivity of partner proteins in protein complexes and,
subsequently, how one can modulate them (Fuller et al., 2009; H. Lu et al., 2020; Nim
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et al., 2016; Wells & McClendon, 2007). Furthermore, the integration of mechanistic
information into PPIs will also shed light on the molecular functions of the PPIs,
as well as the molecular mechanisms of disease caused by pathogenic variants. That
said, a mechanistic description of the interactome is a prerequisite for a comprehensive
understanding of biological systems.

Various experimental approaches, such as mutational scanning, crystallography,
and protein fragmentation, exist to detect PPI interfaces at different resolutions (Araya
& Fowler, 2011; Green et al., 1954). Nonetheless, these methods are laborious and
resource-intensive. To exemplify this, the common crystallography approach to study
PPI interfaces involves dissolving proteins in an aqueous environment and saturat-
ing the protein solution using different methods until it reaches supersaturated state.
Once supersaturated, the protein crystals formed can be used to determine the macro-
molecular structures of the protein using various methods, such as X-ray diffraction
and cryogenic electron microscopy (cryo-EM) (McPherson & Gavira, 2014; Milne et
al., 2013). As of 2018, 89.5% of three-dimensional structures deposited in the Protein
Data Bank (PBD) were solved using crystallography, 8.5% using nuclear magnetic
resonance (NMR) technique, and 1.6% by 3D electron microscopy. Despite significant
growth in structures deposited in the PBD in recent years, only 0.02% of the unique
entries in the UniProtKB database have been linked to at least one structure in the
PDB (wwPDB consortium, 2019).

Owing to the complexity and difficulty of experimental approaches, computational
methods to predict PPI interfaces have become a field of active research in recent years.
There are different approaches to predict PPI interfaces, and they can be largely classi-
fied as sequence-based or structure-based. Sequence-based approach involves scanning
the primary sequences of a protein pair to detect potential interacting regions while
structure-based approach utilizes the three-dimensional structure of the protein pair
to find potential interacting sites. More recently, artificial intelligence (AI) algorithms
have been incorporated into many bioinformatic tools, including those for structural
modeling. These AI-powered tools can also be used to predict PPI interfaces. These
computational methods will be discussed in more detail in section 1.3. To validate
the predicted PPI interfaces, different assays can be used to probe PPI interfaces at
different resolutions. These experimental methods will be discussed in more detail in
section 1.4.
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1.1 Modular architecture of proteins

Interactions between proteins are made possible through conserved functional modules
embedded within their sequences. Intriguingly, many proteins possess multiple con-
served modules that enable them to interact with multiple partners. These modules
can be broadly classified into those with defined structure and those that lack a defined
structure. The former is commonly known as domains, which refers to a region in a
polypeptide chain that is capable of folding, often independently, into a tertiary struc-
ture. The latter is widely known as intrinsically disordered regions (IDRs) where short
linear motifs (SLiMs) (hereafter referred to as motifs) predominantly reside. Motifs
primarily exist in the cellular environment as flexible stretches of amino acids that
occasionally fold into a secondary structure upon binding to a globular domain. These
two types of functional modules will be discussed in more detail in the next sections.

In eukaryotes, 65-70% of their proteomes are made up of proteins that consist of
multiple modules (Ekman et al., 2005; Han et al., 2007). The interplay of these mod-
ules between proteins give rise to complex genotype-to-phenotype relationship. To
exemplify this, the well-characterized protein, p53, plays critical roles in many impor-
tant cellular processes, such as cell cycle regulation and progression, apoptosis, and
genomic stability. The 393 amino acid-long protein is composed of two transactivation
domains at the N terminus, followed by a DNA-binding domain, and a tetrameriza-
tion domain at the C terminus. The N terminal region is largely disordered with
many known motifs involved in degradation, phosphorylation, and docking scattered
throughout this disordered region (Canman et al., 1998; Sakaguchi et al., 2000; Shin
et al., 2015; Turenne & Price, 2001; Zacchi et al., 2002). Additionally, various nuclear
localization signals and docking motifs are also found in the C terminal disordered re-
gion (Gostissa et al., 1999; Liang & Clarke, 1999; Luciani et al., 2000; O’Keefe et al.,
2003; Sheng et al., 2006). While p53 represents a very well-studied protein as it has
been implicated in a broad range of cancers (Mantovani et al., 2019), it showcases the
modularity of proteins and the complex phenotypes that can arise from the intricate
interplay of functional modules (Figure 1.1).

The functional consequences of genetic variants can be pleiotropic, meaning that
the genetic variants of the same gene can cause different phenotypes (Gratten & Viss-
cher, 2016). In view of the modular nature of proteins, the pleiotropic effects of genetic
variants can be, at least partially, attributed to the specific regions of a protein that
they impact. In accordance, 50% of pathogenic variants were reported to affect only
a subset of a protein’s interactions while leaving other interactions intact, thereby
altering only a subset of a protein’s functions (Sahni et al., 2015). By modeling the
PPI interfaces of a filtered set of PPIs based on homology, Wang et al. (2012) also
reported a significant enrichment of in-frame disease mutations on PPI interfaces, sug-
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Figure 1.1: Domains and motifs as functional modules exemplified in p53 (not drawn to
scale). The numbers above and below the boxes denote the boundaries of the domains. The
top panel shows the modular architecture of p53. The bottom panel shows the full-length
structure of p53 predicted by AlphaFold. Domains in the structure are colored according to
their colors in the top panel. TAD stands for transactivation domain.

gesting that many mutations caused disease by perturbing PPIs. The same study also
compared in-frame disease mutation pairs that impact either the same or different
interaction interfaces, and revealed that mutation pairs affecting different interfaces
are more than twice as likely to cause distinct disorders. Furthermore, it was also
shown that pathogenic variants of neurodevelopmental genes are significantly enriched
in protein regions that fold into domains or function as motifs (Iqbal et al., 2023).
Together, these findings underpin the importance of deciphering the molecular mech-
anism of PPIs as they provide mechanistic insights into a protein’s function. These
insights are key to understanding and characterizing the functional effect of genetic
variants.

1.1.1 Folded domains

Biological roles

The concept of a protein domain was first proposed in 1973 by Wetlaufer and Ristow
after reviewing X-ray crystallographic studies of enzymes and immunoglobulins (Wet-
laufer & Ristow, 1973). Since then, the terminology has been used primarily to refer to
regions spanning 50 to 250 amino acids in a polypeptide chain that are usually capa-
ble of folding independently into a tertiary structure from the rest of the polypeptide
chain. The process of folding can be understood as the search within the conforma-
tional space to find the conformation with the lowest energy. This usually refers to the
sequestration of hydrophobic residues in a compact core while exposing hydrophilic
residues to the aqueous solvent. While most domains are self-stabilizing, for some
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smaller domains, such as zinc fingers, coordination with metal ions is necessary to sta-
bilize the fold. Domains form the functional units of a protein that enable the protein
to perform its cellular functions. For instance, the protein PNKP is a key player in
many DNA repair mechanisms such as non-homologous end-joining and base excision
repair (Weinfeld et al., 2011). PNKP is composed of three domains that are linked
by flexible linkers: a forkhead-associated (FHA) domain, a phosphatase domain, and
a kinase domain. The FHA domain recruits PNKP to DNA damage sites, while the
kinase and phosphatase domains catalyze the phosphorylation and dephosphorylation
of damaged DNA termini to ensure that they are compatible with downstream DNA
repair processes. In spite of these domains performing dissimilar molecular functions,
when linked together in a single polypeptide chain, they allow a protein, in this case
PNKP, to perform its important function in DNA repair pathways (Figure 1.2).

Phosphatase KinaseFHAN C

146 337

6 110 341 516

Figure 1.2: Domain architecture of PNKP. The top panel shows the domain architecture of
PNKP (not drawn to scale). The numbers above and below the boxes denote the boundaries
of the domains. The bottom panel shows the full-length structure of PNKP as predicted by
AlphaFold. Domains in the structure are colored according to their colors in the top panel.
FHA stands for forkhead-associated domain.

Being functional units with distinct molecular roles in the cell, domains also serve
as building blocks that natural selection acts on to create diverse molecular machinery.
Gene duplication and recombination events that occur over the course of evolution lead
to similar domains occurring in a wide range of seemingly unrelated proteins. The
shuffling and concatenation of domains in various permutations in turn allow proteins
to specialize in specific cellular function by combining the functionalities conferred
by different domains (Bagowski et al., 2010). For example, the Src homology 2 (SH2)
domain is a structurally conserved domain that binds phosphorylated tyrosine, and it is
found in a vast array of proteins that are involved in diverse signaling pathways. Albeit
involved in distinct cellular functions, the SH2 domains in these proteins essentially
perform the same role: linking and recruiting other signaling factors to form signal
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transduction complexes. Another interesting example is the zinc finger domain, a
structural motif characterized by its coordination with one or more zinc ions to stabilize
its fold. Owing to its ability to bind nucleic acids, the zinc finger domain recurs in many
transcription factors. While retaining its overall structural similarity, the sequences
of many zinc finger domains have diverged substantially over time to accommodate
functions beyond nucleic acid binding. For example, unlike other zinc finger domains
that bind to nucleic acids, the RING finger domain, commonly found in ubiquitin
ligases, binds instead to other proteins (Cassandri et al., 2017).

Databases of domains and tools to predict domains

With their relatively limited sizes and their ability to fold independently, domains are
readily identifiable from amino acid sequences using Hidden Markov models (HMMs).
HMMs are statistical representations that can be used to model multiple sequence
alignments (MSAs) and, therefore, detect sequence homology (Bystroff & Krogh,
2008). The versatility of HMMs lies in their ability to model entire alignments, in-
cluding divergent regions with insertions and deletions. This property of HMMs makes
them ideal to capture the evolutionarily conserved fingerprints in domain alignments.

There are several databases that make use of HMMs to identify domains in amino
acid sequences, but they differ in their approaches to prepare domain alignments for
HMMs construction. The CATH database provides a systematic and hierarchical
structural classification of protein structures that are deposited in PBD (Sillitoe et
al., 2020). Apart from structurally classifying domains, the database also generates
domain alignments for HMM building using representative structures of domains and
their sequences. Another database that performs a similar classification task on do-
mains is Structural Classification of Proteins (SCOP) (Andreeva et al., 2014, 2020).
In addition to structural information, SCOP also takes into account evolutionary re-
lationships of domains in its classification. It is worth noting that the classification of
protein structures by SCOP was largely manual with an emphasis on expert knowl-
edge, while CATH uses a semi-automated approach. The SUPERFAMILY database
uses the sequences of domains classified at the SCOP superfamily level to create do-
main alignments for HMM construction (Gough et al., 2001).

On the other hand, the Protein families (Pfam) and Simple Modular Architecture
Research Tool (SMART) databases do not rely on protein structures but focus instead
on protein and domain families that are defined based on sequence similarity (Letunic
et al., 2021; Mistry et al., 2021). However, while Pfam has a broad coverage thanks to
its automated sequence alignment building and HMM generation, SMART has a much
smaller coverage due to manual curation of its HMMs. Pfam was recently merged with
InterPro, and more than 21,000 Pfam HMMs are available in the InterPro database
(Paysan-Lafosse et al., 2023). Thanks to its wide coverage and comprehensible naming
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convention, using HMMs to detect the occurrences of domains in amino acid sequence
is now an important tool for molecular biologists to study the domain architecture of
proteins.

1.1.2 Intrinsically disordered regions

Biological roles

Due to the long-standing structure-function paradigm in structural biology, the in-
volvement of IDRs in biological processes was largely ignored until recent decades. The
paradigm originated from the studies of enzymes in the 1930s where scientists observed
that enzyme denaturation correlated with the loss of enzymatic activity (Northrop,
1930). This led to the parsimonious assumption that the three-dimensional structure
of a protein is a prerequisite for its function. Five decades later, a shift in the paradigm
was initiated with the discovery of protein segments that are essential for the function
of the protein but yielded no electron density for them to be observed in X-ray crys-
tallography studies. Substantiated by later NMR studies, the functionality of IDRs in
proteins is now widely accepted in the field of molecular biology (Dunker et al., 2001).
Further work also revealed that there exist also proteins that are fully disordered, and
they are termed intrinsically disordered proteins (IDPs).

Figure 1.3: The established and emerging paradigms of structure-function and disorder-
function. From (Babu, 2016).

Contrary to previous assumptions that IDRs are merely linkers between domains,
they are involved in a wide range of molecular processes. The processes span from
protein folding (To et al., 2023) to molecular recognition and drivers of subcellular
organization (Holehouse & Kragelund, 2023; Tompa, 2005). IDRs are prevalent in
eukaryotic proteomes, with 30-40% of residues in eukaryotic proteomes being in IDRs
(Holehouse & Kragelund, 2023). A comparative study between the amino acid com-
position of eukaryotic and prokaryotic IDRs further revealed that serine is specifically
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enriched in eukaryotic IDRs. Since serine phosphorylation is crucial in the regulatory
pathways in eukaryotes, its enrichment in eukaryotic IDRs hints at the regulatory role
of IDRs in eukaryotes (Basile et al., 2019; Iakoucheva et al., 2004). IDRs are also a key
feature of some scaffold proteins that serve to spatio-temporally coordinate interaction
partners in signaling events. The flexibility of IDRs is often thought to be one of the
key factors that enables proteins to interact with multiple partners (Cortese et al.,
2008). Indeed, a study on a subset of Caenorhabditis elegans proteins revealed a posi-
tive correlation between the presence of IDRs and the number of interacting partners
(Schlessinger et al., 2007). Besides, the extended nature of IDRs also exposes more
surface area per residue to the environment and, therefore, facilitates interaction with
more partners compared to ordered regions (Gunasekaran et al., 2003). The diverse
role of IDRs can be attributed to the plethora of motifs found in IDRs, and they will
be discussed in detail in the next section.

While the biological relevance of IDRs is becoming increasingly accepted, the ex-
perimental study of IDRs remains difficult for many reasons. Owing to their lack of
structure, direct measurement of their dynamic behavior requires sophisticated ex-
perimental setups such as NMR. which demands high level of technical expertise.
Moreover, many IDRs are context-dependent, with their propensity to be disordered
dependent on external conditions, such as pH, presence of post-translational modifica-
tions (PTM), among others (Mohan et al., 2009). As a result, various computational
tools have been developed to predict IDRs in proteins, and several databases have
been set up to contain experimentally verified and computationally predicted IDRs.

Databases of disordered proteins and regions, and tools to predict protein
disorder

DisProt is a database that contains standardized and easily accessible experimental
evidence for IDPs and IDRs. Besides disorder annotation, molecular functions and
structural transitions of IDPs and IDRs are also curated by experts through literature
survey. Currently, over 2,000 and 6,000 eukaryotic IDPs and IDRs are annotated in
DisProt.

Characterized by the absence of a compact core, IDRs are enriched with polar
amino acids and depleted of hydrophobic amino acids (Romero et al., 2001). The
difference in amino acid composition, as well as other factors such as flexibility, have
been leveraged to develop predictors of IDRs in protein sequences. For example, the
disorder predictor tool IUPred utilizes statistical potentials to quantify the tendencies
of amino acid pairs to form contacts that are observed in a collection of globular pro-
tein structures. The derived statistical potentials are then applied onto the individual
residues in an amino acid sequence to estimate their energies. Smoothed within a mov-
ing window centered on the calculated residue, residues that have favorable energies
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are predicted to be ordered while those with unfavorable energies are predicted to be
disordered (Mészáros et al., 2009, 2018).

Recently, the structure prediction tool AlphaFold2 (AF) achieved prediction ac-
curacies that are on par with experimental structures. As AF generates structural
models for full-length proteins, it also outputs a confidence score known as predicted
Local Distance Difference Test (pLDDT) for each amino acid in the predicted proteins.
The score ranges from 0 to 100, where a higher score indicates greater confidence in the
accuracy of a residue’s predicted position. Interestingly, the pLDDT score has been
shown to be highly correlated with the disorder propensity of residues, and therefore
it can serve as an excellent discriminator of residue-wise disorder (Wilson et al., 2022).
Similarly, the solvent accessible surface area (SASA) of each residue in AF-predicted
models is also highly correlated with the disorder propensity of residues. Predicting
residue disorder using pLDDT and SASA smoothed over a 20-residue window even
outperformed IUPred2A (the latest version of IUPred) in a benchmark study (Akdel
et al., 2022). AF has also been used for other applications, and they will be discussed
in later sections.

1.1.3 Short linear motifs

Biological roles

Motifs are short and linear stretches of amino acids that are typically around 10
residues long, and they are predominantly found in the IDRs of proteins. When
bound to its partner, some motifs adopt a secondary structure. An example of this
type of motif is the degradation signal with the pattern PxAxVxP (x denotes wildcard
positions where any amino acid is permitted) that is found in the degradation target
of the E3 ubiquitin-ligase, SIAH1. Known as the beta augmentation mechanism, the
degradation signal binds to SIAH1 by forming a beta strand parallel to the eight-
stranded beta sandwich fold of the substrate binding domain of SIAH1 (Figure 1.4)
(Santelli et al., 2005). Motifs are known to be degenerate, meaning that only three to
four residues are conserved in the motifs, such as the PxAxVxP motif in the previous
example, with solvent-facing residues being highly variable (Tompa et al., 2014; Van
Roey et al., 2014). The conserved residues contribute to most of the free energy
of binding and, therefore, determine the affinity and specificity of the interaction.
Conversely, for some motifs, certain amino acids are prohibited at particular positions
due to steric hindrance, while, for others, the motifs must be positioned at the termini
to be functional.

It is estimated that more than 100,000 binding motifs exist in the human pro-
teome alone, with many being so far uncharacterized (Tompa et al., 2014). The ones
that have been characterized so far are classified into six classes that reflect their bi-
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Figure 1.4: The binding of degradation signal PxAxVxP to E3 ubiquitin ligase, SIAH1,
through beta augmentation mechanism (PDB ID: 2A25). The degradation signal is colored
in cyan and the substrate binding domain of SIAH1 is colored as blue. The backbones of the
residues at the interface are shown in stick. Dashed lines represent unsolved residues in the
structure.

ological functions. The classes are modification sites, ligand binding sites, targeting
signals, degrons, docking sites, and cleavage sites. Examples of modification sites in-
clude PTM sites like phosphorylation and SUMOylation sites where the motifs are
subject to conjugation of moieties. Ligand binding sites refer to motifs that function
to recruit their binding partners to the motif-containing proteins. This binding event
often acts as an intermediate step in the formation of transient signaling complexes
that are formed by multiple proteins. Targeting signals that enable the proteins to be
trafficked to different cellular compartments are also a class of motif. They include
nuclear localization and export signals, as well as Golgi and endoplasmic reticulum
trafficking signals, among others. Another class of motif that functions as degradation
signal is known as degrons, and they are sometimes found at the termini of a protein.
Degrons are recognized by ubiquitin ligases. Upon recognition, the degron-containing
protein is tagged with ubiquitin and subsequently degraded by proteostasis machinery.
Docking sites, akin to degrons, facilitate substrate recognition by their respective en-
zymes. However, unlike degrons, the binding of docking site does not result in protein
degradation. Docking sites typically bind to enzymes at a location distinct from the
active site of the enzymes, allowing for the recruitment of enzymes without interfering
with the enzymatic reaction. Finally, the cleavage sites are also a class of motif which
is recognized and cleaved by proteases (Van Roey et al., 2014).

The fact that motifs are short and degenerate makes it possible that multiple
motifs overlap in a protein region, where they act as molecular switches in biological
pathways. Molecular switches are especially prevalent in signaling pathways, where the
signaling cascade must be tightly regulated (Van Roey et al., 2013). A classic example
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of molecular switching mechanisms is the phospho-degrons. For instance, phospho-
degrons are found in the protein IKBA, an important regulator of the TNF pathway.
Under physiological conditions, the master regulator of immune response, a family of
transcription factors named NFKB, is sequestered in the cytoplasm by IKBA. Upon
infection, the TNF pathway is activated, bringing about a cascade of signaling event
that eventually leads to the phosphorylation of IKBA. The phosphorylation of IKBA
at residues serine 32 and serine 36 creates a degradation signal that in turn leads to the
degradation of IKBA and the liberation of NFKB (Winston et al., 1999). The unbound
NFKB then translocates to the nucleus and activate the transcription of immune
response genes. Perhaps not so surprisingly, phospho-degron is also present in NFKB
that regulates its own activity (Christian et al., 2016). Along the same line, targeting
signals can also be occluded by phosphorylation-dependent binding. Such is the case in
the protein ADAM22, where the phosphorylation of its endoplasmic reticulum (ER)
retention signal leads to the binding of 14-3-3 proteins, thereby occluding the ER
retention signal. Phosphorylation of the targeting signal therefore prohibits the protein
from being retained in the ER, and instead, the protein is transported to the cell surface
(Gödde et al., 2006).

There are also molecular switching mechanisms that happen before translation,
where alternative splicing regulates the production of isoforms that lack certain mo-
tifs. For example, the serine/threonine-protein kinase NEK2 involved in cell division
has an alternative isoform where the C terminal degron is removed. As opposed to the
canonical isoform that is degraded in early mitosis, the absence of the degron allows
the alternative isoform to persist until late mitosis (Hames et al., 2001). While motifs
tend to bind weakly to their targets, multiple repeats of similar motifs can occur in the
disordered region of a protein, and collectively, they give rise to multivalent interac-
tions. Multivalency is a common mechanism that drives the formation of biomolecular
condensates in the size of micrometers via phase separation. The role of repeated
motifs in phase separation is extensively reviewed in Mitrea and Kriwacki (2016).

Databases of motifs and tools to predict motifs

The Eukaryotic Linear Motifs (ELM) database provides comprehensive information
on motifs by manually curating their experimental evidence (Kumar et al., 2024). In
addition to the previously mentioned six classes that reflect the biological functions of
motifs, ELM further classifies motifs based on their specific sequence characteristics,
functional properties, or binding domains. For example, among ligand-binding mo-
tifs (LIG class), they are further classified into different types based on their binding
domains, such as SH2 domain-binding motifs. ELM refers to these different types of
motifs as ELM classes, and individual motif instances are referred to as ELM instances.
Such classification of motifs also allows ELM to compile regular expressions for each
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motif type that it curates. While these regular expressions reflect the specificity deter-
minants of motifs, they also capture the conservation pattern of different motif types.
Therefore, these regular expressions can also be used to scan amino acid sequences for
putative motifs.

Another approach to capture the conserved patterns of similar motifs is through
the use of position-specific scoring matrices (PSSMs). The approach makes use of
a motif alignment to statistically model the specificity determinants of the motif by
weighing the observations of residues at each position to produce a PSSM. The PSSM
can then be used to find and score PSSM matches by quantifying the similarity between
the matches and the provided motif alignment. Each approach has its own pros and
cons. While PSSM allows matches that are similar to a well-studied motif consensus
and further scores the matches, the regular expression approach is more rigid and
treats all the matches as equal. Conversely, regular expressions can detect motifs of
variable length, but the same can only be achieved with PSSM when multiple PSSMs
of different lengths are used (Krystkowiak et al., 2018).

While the use of regular expressions or PSSMs is simple and straightforward, re-
lying solely on them to search for motif matches in the proteome often results in the
identification of non-functional matches, such as those occurring in folded domains.
This is particularly the case for phosphorylation sites where their regular expressions
tend to be so short that only the phosphorylated residue is invariant in the motif.
Although this reflects the general biology of PTM sites where the specificity is mainly
driven by docking motifs located elsewhere in the protein sequence, it significantly
complicates the computational detection of motifs in protein sequences. To overcome
this limitation, considerable effort has been invested in improving the accuracy of motif
detection algorithms.

Subject to selective pressure to preserve their functionality in biological systems,
motifs do not occur at random, and their evolutionary and physicochemical constraints
can be exploited to better detect functional motifs. Perhaps the most intuitive property
of functional motifs is their conservation across orthologs. With the Relative Local
Conservation (RLC) measurement developed by Davey et al. (2012), the conservation
of a putative motif can be quantified by scoring how conserved the individual residues
in the putative motif are relative to a window of flanking residues using an ortholog
alignment.

However, not all sequences have sufficient orthologs for alignment, and aligning
disordered regions can be challenging as they exhibit higher evolutionary flexibility
than ordered regions (Brown et al., 2002). Therefore, other physicochemical features
of putative motifs that do not require sequence alignment can further aid in detecting
functional motifs. To this end, as some motifs transition to a secondary structure upon
binding to a partner, the tool ANCHOR, developed by the same group as the disorder
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predictor IUPred, can be used to identify disordered regions with such propensity.
Operating on principle similar to that of IUPred, ANCHOR estimates the energy for
each residue based on its amino acid type and the amino acid composition of the local
sequential neighbourhood. The estimated energies are used to identify residues that
only form favorable interaction with their local sequential neighbors upon binding to
a globular partner (Dosztányi et al., 2009; Mészáros et al., 2009).

Another tool that serves similar purpose as ANCHOR is known as MoRFpred.
Instead of relying solely on energy estimation, this tool computes various features
representing the biochemical and physicochemical properties of each residue, such as
disorder, solvent accessibility, and flexibility. The computed features are then lever-
aged to train a support vector machine classifier to predict the likelihood of each
residue forming secondary structure upon binding to a partner (Disfani et al., 2012).
Many tools have included the aforementioned features in their motif detection algo-
rithms. For example, the webserver SLiMSearch utilizes motif consensus in the form of
regular expression to scan a proteome specified by a user for occurrences of the motif.
The motif matches are subsequently annotated with different attributes that relate to
common properties of known motifs, such as conservation and accessibility. The motif
matches, along with their annotations, are then displayed on a web interface for users
to inspect (Krystkowiak & Davey, 2017). Simiarly, the webserver PSSMSearch serves
a purpose akin to SLiMSearch but utilizes PSSMs instead of regular expressions.

Advancing motif discovery through experiments and bioinformatics

With the structure-function paradigm coming under scrutiny in recent years, it is
estimated that more than 100,000 motifs exist in the human proteome, many of which
remain to be discovered (Tompa et al., 2014). Comparing the 340 motif types currently
annotated in ELM to the more than 21,000 domain families described in InterPro,
based on Pfam HMMs, it is evident that we have only touched the surface of motif
biology with what we know so far compared to folded domains.

On the discovery of new motifs, high-throughput screens aimed at expanding the
repertoire of known motifs or identifying novel motifs can help to refine or define the
sequence patterns of the screened motifs. For example, Benz et al. (2022) utilizes phase
display library method to systematically screen for binding peptides in the unstruc-
tured regions of the human proteome against a selection of motif-binding domains.
In spite of clear limitations of the experimental technique, which is in vitro and only
protein fragments used, the results helped refine the sequence patterns of the screened
motifs and unveiled more than 2,000 human PPIs mediated by motifs, among which
close to 500 are mediated by poorly studied proteins.

Besides, given the challenges associated with experimenting on IDRs, the discovery
of motifs would also greatly benefit from a combination of computational and exper-
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imental approaches. Take the identified motifs from the study of Benz et al. (2022)
for example, apart from pattern refinement, the identified motifs can also be used
to train machine learning algorithms that can further improve motif prediction accu-
racy. With the growing awareness of the functional role of IDRs, the disorder-function
paradigm has emerged to explain the functionality of protein regions that lack a de-
fined structure. Needless to say, with the upscaling of experimental methods to higher
throughput and the incorporation of computational tools to detect motif occurrence,
the field of motif biology will continue to expand in the forthcoming years.
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1.2 Protein-protein interaction interfaces

Earlier research on PPI interfaces discovered that while hydrophobicity stabilizes PPIs,
shape and charge complementarity are crucial for the specificity of PPIs (Chothia &
Janin, 1975). Hydrophobicity contributes to the majority of the binding free energy,
and its effect is mediated through the exclusion of water upon the binding of proteins.
Upon the binding of two proteins, the entropy gained by water resulting from a re-
duced accessible protein surface area is sufficient to compensate for the entropy lost
by proteins. As the residues at PPI surfaces are as tightly packed as those inside a
protein, the sidechains of surface residues creates protrusions on the surface. With
these protrusions being matched by depressions on the binding partner, the shape
complementarity of PPIs contributes to the binding specificities of PPIs. On a more
fine-grained scale, the charged and polar residues at PPI interfaces also play a similar
role as shape complementarity as they ensure the proper formation of salt bridges and
hydrogen bonds between the proteins.

As mentioned previously, the conserved modules in proteins are key players in
mediating PPIs, and thus they form PPI interfaces. Of note, many domains, especially
those found in hub proteins, have multiple interfacial surfaces that enable them to bind
to different partners (W. K. Kim et al., 2006). The interfaces formed by interaction
between two domains or interaction between a domain and a motif are termed as
domain-domain interfaces (DDIs) and domain-motif interfaces (DMIs), respectively.
The properties of these two types of PPI interfaces, as well as available databases to
study them, are discussed in detail in the next sections. Other types of interfaces also
exist, and are briefly discussed in the section that follows. Different computational
methods have been developed to detect DDIs and DMIs in interacting proteins, and
they are discussed in the section section 1.3.

1.2.1 Domain-domain interfaces

Domains can interact with other domains or another copy of itself to form DDIs. DDIs
commonly involve multiple specific contacts that mediate interactions of relatively high
affinity, such as those found in stable protein complexes. A comparison between amino
acid frequencies at domain interfaces and domain cores has revealed that, while they
share physical properties such as charge and hydrophobicity, they differ in structural
composition and packing (Hadarovich et al., 2021). In other words, the specificity
determinants of DDIs mainly lie in the structural composition and packing of the
domains. Indeed, the packing of the indole sidechain of a tryptophan at the DDI of
the dimeric glutathione transferase is essential for the interaction and the catalytic
function of the transferase (Wallace et al., 2000).

The higher-order assemblies formed by DDIs are important for signaling processes.
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For example, the Toll/interleukin-1 receptor (TIR) domains are capable of interacting
with another copy of themselves. Upon the detection of pathogens, Toll-like receptors
(TLR) dimerize through their TIR domains. The dimerized TIR domains further
recruit more TIR domain-containing adaptor proteins, such as MyD88 and MAL, as
shown in Figure 1.5. Following the formation of the signaling complex, more factors are
recruited and eventually pro-inflammatory genes are activated (Clabbers et al., 2021).
Apart from mediating complex formation, DDIs are also involved in other processes.
For example, the junctions of DDIs can serve as catalytic sites for oligomeric enzymes
such as glutamine synthetase (Joo et al., 2018) and catalase (Zámocký & Koller, 1999).
DDI can also be important for substrate recognition, as in the case of the transcription
factor NarL where its dimerization mediated by a DDI is necessary for DNA binding
(Maris et al., 2002). In the case of multi-domain proteins, domains that are tethered
together in a single polypeptide chain by a flexible linker can also form intra-chain
DDIs. The DDIs formed by the neighbouring domains can alter the folding pathways
of the domains and therefore impact the stability of the protein (Dias et al., 2023;
Flaugh et al., 2005; Levy, 2017).

Figure 1.5: Higher-order assembly initiated and formed by the interaction between TIR
domains of different proteins upon the binding of pathogen-associated molecular patterns to
the LRR domain of Toll-like receptors. LRR, leucine-rich repeat domain; LPS, lipopolysac-
charide; TIR, Toll/interleukin-1 receptor domain; DD, death domain. From (Clabbers et al.,
2021). The right panel displays a DDI formed by TIR domains from Toll-like receptor 6
(PDB ID: 4OM7). Individual TIR domains are colored in green and cyan.

Databases of domain-domain interfaces

Owing to the stable interactions mediated by DDIs and the folded nature of domains,
three-dimensional structures of many protein complexes formed through interactions
between domains have been solved and deposited in the PDB. The contacts observed
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between the domains solved in these protein complexes have thus far served as a valu-
able source of experimental evidence for many DDIs. Several databases have utlized
this evidence to annotate and catalog DDIs. The iPfam database archives interac-
tions between Pfam domains based on known three-dimensional structures deposited
in the PDB. The database first annotates the protein sequences of PDB chains with
Pfam domains using HMMs. Subsequently, the database analyzes the contacts be-
tween different domains in the PDB chain to define the types of bonds between the
annotated domains. The types of bonds include covalent bonds, electrostatic bonds or
salt bridges, hydrogen bonds and van der Waals interactions, all of which are based on
the geometric and chemical properties of the atoms involved. Of note, an interaction
between two domains are defined as the presence of at least one bond between the
two domains. With all this information stored in the database, iPfam allows users to
inspect specific interactions between domains by visualizing them in two-dimensional
graphical displays or three-dimensional PBD structures. Alternatively, users can sub-
mit a protein sequence to the database to search for potential DDIs that can be
mediated by the domains in the protein. To achieve this, the server first annotates
user-provided protein sequence with Pfam domains, followed by conducting a search
within the database to look for DDIs mediated by the detected domains. The results
are then displayed on a webpage for users to inspect. The last update of iPfam was
in early 2014, and as of the time of writing this thesis, the database appears to be
outdated (Finn et al., 2014).

Another database that operates o a similar principle is the database of 3D Inter-
action Domains (3did) (Mosca et al., 2014). In addition to contact annotation, 3did
also scores the contacts by means of empirical potentials derived from a benchmark
dataset that consists of enzyme inhibitors, signaling complexes, cytokine receptors, an-
tibody/antigen complexes, and MHC complexes. Furthermore, statistical significance
for the annotated contacts is estimated based on a background of random sequences
(Aloy & Russell, 2003). it is worth noting that, unlike iPfam, 3did requires a minimum
of five contacts detected between a domain pair to consider the structure as evidence
for a DDI. Beyond DDIs, 3did also hosts a collection of DMIs with structural evidence
by implementing an elaborate DMI discovery pipeline to annotate structurally-solved
DMIs (Stein & Aloy, 2010). At the time of writing this thesis, 3did continues to receive
routine updates and has cataloged more than 15,000 types of DDI, with DDI contact
annotations derived from over 700,000 structures.

Indeed, the abundance of DDIs annotated in 3did represents a valuable resource
for predicting DDIs in PPIs, as demonstrated by numerous studies (Karan et al., 2023;
Luther et al., 2023; Mosca et al., 2013; Wang et al., 2012). Nonetheless, a closer ex-
amination on 3did revealed that many DDIs are supported exclusively by intrachain
evidence, meaning that the contacts between the domains are observed only when the
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two domains are linked together in a single protein chain. While there are studies sup-
porting the notion that intrachain and interchain DDIs share similarities in terms of
structure and physicochemical properties (Jones et al., 2000; Verma & Pandit, 2019),
domains tethered by a linker are more likely to associate with each other due to an
increase in the effective concentration of the linked domains (Dyla & Kjaergaard, 2020;
Sørensen & Kjaergaard, 2019). That said, DDIs with only intrachain evidence may
need additional evidence to assess their ability to mediate PPIs under physiological
conditions. Furthermore, a substantial amount of DDIs are observed to be in con-
tact only in homodimers. The symmetry of homodimers in crystal structures makes
it challenging to determine whether an observed interface is a genuine dimerization
interface or a non-specific interface induced by crystallization. Therefore, interpreting
DDIs from homodimers may require additional information such as sequence conser-
vation at a given interface and interface size to distinguish between crystal artifacts
and biologically relevant interface (Xu & Dunbrack, 2019). While 3did undoubtedly
offers a wealth of valuable information on potential DDIs for biologists, it is important
to remain mindful of the above-mentioned caveats.

Apart from annotating observed contacts in PDB structures to catalog DDIs, many
computational approaches have been developed to predict DDIs using various sources
of data, and they will be discussed in the later section Sequence-based detection
of binding regions. With all these DDIs predicted from various data sources, there
is a need to store them in a way that allows public users to easily assess them. The
DOMINE database was created to collect both experimentally supported DDIs and
those predicted by computational methods (Yellaboina et al., 2011). Besides gathering
DDIs with experimental evidence from iPfam and 3did, the database also includes
predicted DDIs from 12 other sources. Through a friendly web interface, users can
browse the collection of DDIs in the database by querying with a Pfam domain name
or a GO term. DOMINE was last updated in 2010 and currently contains a total of
26,219 DDIs mediated by 5,410 domains, with over 21,000 predicted by at least one
computational method.

1.2.2 Domain-motif interfaces

Most motifs mediate their functions by binding to globular domains found within the
same protein chain (intramolecular) or another protein chain (intermolecular), forming
the so-called DMIs. While interactions between domains often result in the formation
of stable complexes, interactions involving domains and motifs tend to lead to transient
complexes that play a pivotal role in regulatory functions. Since motifs exist as flexible
stretches of amino acid in their unbound state, their binding to a partner often results
in a significant entropy loss. The significant entropic penalty incurred upon binding
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to a partner makes the interactions that they mediate transient and reversible, both
of which are crucial in the regulatory network of a cell (Flock et al., 2014).

Intramolecular DMIs commonly function as an auto-inhibitory mechanism to reg-
ulate a protein’s activity. An example of an intramolecular DMI can be found in the
WASP protein. The WASP protein contains a GTPase-binding domain (GBD) at the
N terminus, which is important to initiate actin nucleation, and a C terminal motif
crucial for regulating the activity of WASP. Under basal conditions, the C terminal
motif binds to the GBD domain, closing the protein in an end-to-end manner, thereby
inhibiting its function in promoting actin nucleation (A. S. Kim et al., 2000). In con-
trast, intermolecular DMIs are involved in various biological functions, as mentioned
in the Short Linear Motifs section.

Domain-motif binding relationships can be promiscuous, with many domains ex-
hibiting a one-to-many binding relationship with various motifs. Many of these do-
mains originate from large domain families, and they possess capacity to bind multiple
types of motifs with varying degrees of binding preference. Considering that DMIs me-
diate interactions that are tightly regulated in signaling events, the seemingly promis-
cuous binding tendencies of these motif-binding domains raise questions about their
specificity. One way to ensure binding specificity is by using different motif-binding
pockets. Due to the folded nature of domains, some domains expose different motif-
binding pockets on its exterior, permitting different motifs to bind at distinct sites.
For example, the activator protein CDH1, which regulates the ubiquitin ligase activ-
ity and substrate specificity of the anaphase-promoting complex, APC/C, possesses a
WD40 repeat domain that can bind to different types of degron motifs through distinct
binding pockets (Figure 1.6). The degron motifs include the KEN-box, the D-box and
the ABBA motif (Di Fiore et al., 2015; He et al., 2013; D. Lu et al., 2014).

Although the use of different binding pockets explains motif-binding specificity of
the WD40 repeat domain, in the case of many other domains, such as kinase and SH2
domains, the same binding pockets are used to bind different types of motifs (Huang
et al., 2008; Mok et al., 2010). This hints at the presence of additional factors that
determine the motif-binding specificity of these domains. The key to their substrate
specificity can be found in the physicochemical composition of their binding pockets.
For instance, the sequence composition of the binding pockets in SH2 domains has
undergone substantial divergence through gene duplication events. Mutations accu-
mulating in the binding pockets of these duplicated copies of SH2 domains can help
fine-tune their substrate specificity. Over time, this evolutionary process refines the
individual duplicated copies of SH2 domains and enables them to specialize in binding
phosphorylated tyrosines flanked by distinct amino acids (Marasco & Carlomagno,
2020). Similarly, kinase domains have also evolved different catalytic clefts to ac-
commodate either bulkier tyrosine substrates or smaller serine/threonine substrates
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Figure 1.6: The binding of the WD40 domain of CDH1 to different motifs occurs through
distinct surfaces. Representative examples of motifs are listed on the left and right, and the
motifs in the structure are colored to match the colors of the listed motifs. From (Davey
et al., 2015).

(Ubersax & Ferrell Jr, 2007). Subsequent gene duplications, followed by diversifica-
tion of these kinase domains, resulted in increased specificities toward substrates with
even more nuanced sequence characteristics (Howard et al., 2014). Factors external to
a DMI can also enhance substrate specificity, such as the presence of docking motifs in
the substrate that helps increase the local concentration of the substrate in the vicinity
of a motif-binding domain. This is exemplified by the binding of CDK2-cyclinA com-
plex to its substrate, where the binding of the RxL docking motif precedes the binding
of the phosphorylation motif. This sequential binding process ensures the specificity
of the phosphorylation (Ubersax & Ferrell Jr, 2007).

Since motifs interact with domains on a relatively small interface, their binding
can be very prone to subtle changes in the amino acid composition or the shape of
the motif-binding pockets. As a result, motifs also co-evolve with domains under the
same selective pressure for specificity. For example, phosphorylation motifs targeted
by different mitotic kinases have been observed to be under opposing selective pres-
sures on specificity-determining residues. These opposing selective pressures ensure
that phosphorylation by different mitotic kinases remains exclusive to different phos-
phorylation motifs (Alexander et al., 2011). The co-evolution of domain and motif is
particularly salient in the case of the GYF domain binding to proline-rich sequences.
Although both proteins, CD2B2 and GIGYF1, possess a copy of the GYF domain,
they are found to bind to proline-rich sequences (PPPG-) that are followed by either
a hydrophilic or hydrophobic residue, respectively. Closer inspection of their solved
structures bound to proline-rich sequences, 1L2Z for CD2B2 and 7RUQ for GIGYF1,
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revealed that, albeit similar in overall structure, their GYF domains differ by a crucial
hydrophobic cavity that dictates their ability to bind proline-rich sequences followed
by a hydrophobic residue (Figure 1.7) (Freund et al., 2002; Sobti et al., 2023).

Motif sequence: PPPGHRV Motif sequence: PPPGLTN

Figure 1.7: The binding of the GYF domains of CD2B2 (left) and GIGYF1 (right) to
proline-rich sequences (PDB IDs: 1L2Z for CD2B2 and 7RUQ for GIGYF1). The domains
are shown in grey, and the sidechains of the motifs are displayed in sticks. Notice in 7RUQ
(right) that the leucine in the motif fits into a cavity in the GYF domain of GIGYF1, which
is not present in that of CD2B2.

Databases of domain-motif interfaces

In the adaptation of cellular machinery to increasing complexity in eukaryotes, the
degenerate nature of motifs and the large variety of motif-binding domains in the
proteome serve as the sandbox for evolution to tweak and fine-tune regulatory net-
works. Indeed, many interfaces involving motifs binding to folded domains have been
discovered, and they are annotated in the ELM database mentioned earlier in the
Short Linear Motifs section. However, in comparison to the vast amount of poten-
tial DDIs deposited in DDI databases, the number of annotated DMIs in the ELM
database is much more limited, with almost 4,300 DMIs annotated so far. Regardless,
the ELM database represents a highly comprehensive DMI database because the anno-
tated DMIs are manually curated by experts who corroborate the validity of evidence
that often comes from different experimental methods. The majority of DMI instances
annotated in the ELM database lack structural information, and mutation analyses
constitute the bulk of the experimental evidence. The absence of structural informa-
tion can be attributed to the transient nature of interactions mediated by DMIs and
the disordered nature of motifs, both of which make crystallographic studies on DMIs
an arduous task.

Since the binding of motifs is particularly contingent on the shape complementarity
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and physicochemical composition of the motif-binding pockets, structural information
on DMIs can provide important mechanistic insights into DMI-mediated interactions.
Furthermore, as motifs of the same type (or of the same ELM class) tend to bind to
their binding domains in a similar manner, structural insights from one DMI can be
readily transferred to another DMI formed by a different motif of the same type. That
said, using modeling software to leverage previously solved DMI structures to predict
the binding interfaces of new but similar DMIs can help overcome this challenge. Be-
cuase DMI-mediated interactions frequently participate in transient signaling events,
the investigation of DMIs will benefit from in vivo experimental methodologies capable
of detecting weak interactions in real-time. In section 1.4, I will discuss experimental
methods available to detect PPI interfaces mediated by DMIs.

1.2.3 Other types of interfaces

Other types of interface exist, such as disorder-disorder interfaces and coiled-coil inter-
faces. Examples of disorder-disorder interfaces includes the binding between the linker
histone protein H1, a highly disordered and positively charged protein with one folded
domain flanked by disordered regions, and the nuclear protein prothymosin-alpha, a
fully disordered and highly negatively charged protein. Mediated by their oppositely
charged disordered regions, the two proteins interact with high affinity and retain their
structural disorder even during the interaction (Borgia et al., 2018). Unfortunately,
current knowledge about interfaces formed exclusively by disordered regions is limited
compared to DDIs and DMIs due to the challenges in experimentally studying IDPs
and IDRs.

Coiled-coil interfaces are formed by bundles of amphipathic alpha helices that wind
into superhelical structures to bury their hydrophobic faces while exposing their hy-
drophilic faces. Unlike regular alpha-helices with a turn periodicity of 3.6 amino acids,
helices capable of forming coiled-coil interfaces have a turn periodicity of 3.5 amino
acids. These helices are formed from heptad repeats, where the first and the fourth
amino acids are hydrophobic while the others are polar. The length of coiled-coils
plays a crucial role in their molecular functions, such as serving as spacers to separate
functional domains or position substrates at a defined distance for enzymatic reac-
tions. Beyond serving as molecular spacers, coiled-coils are also important for various
molecular processes, including oligomerization, DNA binding and cleavage, and vesicle
tethering (Truebestein & Leonard, 2016). While coiled-coil interfaces are involved in a
significant number of molecular processes, crystallographic studies on them are often
hampered by their natural tendency to pack together. This tendency complicates the
interpretation of whether the packing is biological or induced by crystallization.

In the next section, I will discuss different strategies for computationally charac-
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terizing PPI interfaces.
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1.3 Computational strategies to predict protein in-

teraction interfaces

Many proteins interact with other proteins in their full-length forms to fulfill their
functional roles. Moreover, being the products of gene duplication and fusion events,
many proteins consist of multiple functional modules that act synergistically to per-
form their functions. Therefore, in an ideal scenario, the structural determination
of PPIs should be conducted using full-length proteins, as this approach would yield
the most comprehensive mechanistic information on the PPIs. However, the IDRs of
proteins are often too flexible to be crystallized for structural determination. As a
result, many protein complexes have been solved by fragmenting the proteins down to
their minimal interacting regions. This is particularly the case for DMIs as the com-
plexation of disordered peptides with their binding domains can help anchor and fix
the peptides for structural determination using crystallography. Such a fragmentation
approach is rather reductionistic as it overlooks the synergistic effects of the functional
modules. Thus, for a more holistic understanding of a protein’s function and to more
efficiently characterize the interaction interface between PPIs, it is advantageous to
employ a combined approach of sequence-based analysis and structural modeling.

The combined approach consists of two steps: 1) using a sequence-based interaction
interface prediction tool to detect potential interacting regions at the residue level
between a given pair of interacting proteins, 2) structurally modeling of the potential
interacting regions to pinpoint important inter-atomic interactions between residues at
the interface. To validate the predicted interaction interface, the modeled interface can
guide the design of mutations intended to perturb key contacts between the interacting
regions. A reduction in binding strength or the absence of binding between the mutated
proteins relative to the wild-type proteins is then indicative of the modeled interface
being responsible, or at least partially responsible, for mediating the interaction. This
approach effectively characterizes PPI interfaces without the need to solve the three-
dimensional structures of PPIs.

Databases like 3did and ELM annotate information about known interfaces. To
achieve step 1, these known interfaces can be leveraged to predict their occurrences
in interacting proteins In the following sections, I will discuss a method developed
by others to achieve step 1. I have also developed methods to achieve step 1, and
they are showcased in Chapter 2 and Chapter 3, Article I. Following step 1, step 2
consists of structurally modeling the predicted interfaces. Some options available to
achieve that purpose will be discussed. As mentioned earlier, many PPI interfaces
await characterization due to various reasons. To this end, I will discuss the use of
AlphaFold-Multimer (AF-MM), an AI-based structural modeling tool, to predict novel
PPI interfaces in interacting proteins. This strategy effectively achieves both steps 1
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and 2 concomitantly.

1.3.1 Sequence-based prediction of binding regions

Sequence-based detection of domain-motif interfaces

The detection of DMIs largely depends on accurately predicting the occurrence of
functional motifs. As discussed in the section Short linear motifs, much work in
the field of motif discovery has been dedicated to improving the accuracy of motif
detection algorithms. Although these properties of motifs are instrumental in assessing
the confidence of a motif match, it is important to note that they are not restricted
to specific interactions. To find DMIs in specific interactions, the domains detected in
the interacting partner need to be considered.

The interactions of Eukaryotic Linear Motif (iELM) webserver allows user to ex-
plore the PPIs of a user-submitted protein that are potentially mediated by DMIs.
iELM achieves this by querying the PPI database STRING with the user-submitted
protein and performing a DMI search on the returned PPIs. Alternatively, users
can also provide the webserver with a set of PPIs, and potential DMIs are searched
within the provided set of PPIs. iELM tackles the challenge of detecting DMIs using
a two-pronged approach. First, to better detect motif-binding domains, experimen-
tally annotated motif-binding domains are aligned with their orthologs to produce
HMMs specific to the motif-binding domains. Second, putative motifs are detected
by combining the motif discovery tool SLiMSearch (Krystkowiak & Davey, 2017) and
the disorder predictor IUPred (Dosztányi et al., 2005). The E-value returned from the
HMM match of motif-binding domains, along with the conservation score and disorder
score of detected motifs, is used to train a support vector machine to evaluate the de-
tected DMIs. Detected DMIs with template available in the PDB database are further
subjected to structural modeling by PepSite (Petsalaki et al., 2009). The modelled
DMIs are further used by PepSite to score the biophysical feasibility of the detected
DMIs. Of note, the iELM algorithm terminates further DMI search if potential DDIs
from 3did are found between a given pair of interacting proteins. The authors of
iELM reported an impressive performance: 84.8% sensitivity and 86.5% specificity on
its test set. Nonetheless, the benchmark could be overly optimistic, as the negative
data points in the test set outnumbers the positive data points by almost 30-fold. In
this scenario, the precision of iELM would be more informative, yet it was not reported
in the publication (Weatheritt, Luck, et al., 2012; Weatheritt, Jehl, et al., 2012). As
of the time of writing this thesis, the iELM webserver is no longer in use.
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Sequence-based detection of domain-domain interfaces

PPI data, apart from its purpose to study biological functions of proteins, have also
been used to infer DDIs. The underlying assumption is that if two domains are able
to interact and mediate PPI, then there should be an enrichment of PPIs containing
the domain pair in PPI networks. This is also known as the association method
developed by Sprinzak and Margalit (2001). The method defines interaction between
two domains as the fraction of PPIs containing the domain pair among all PPIs, with
overrepresented domain pairs indicating putative DDIs. To identify overrepresented
domain pairs, the ratio between the observed and expected frequencies of PPIs with
a given domain pair is computed and expressed as a log-odds value. While this is
a simple and sound approach to identify putative DDIs, the high log-odds values of
domain pairs involving domains that are rare in the PPI network should be interpreted
with caution. This is because their high log-odds values could simply be due to the
very low expected frequencies of the rare domains.

Several other studies have also investigated the idea of inferring DDIs through
PPI networks using different approaches. Deng et al. (2002), for example, used a
probabilistic model to infer DDIs using PPI data from yeast proteins. They first
annotated the proteins in the PPI data with Pfam domains, followed by applying the
maximum likelihood approach to estimate the probability of DDIs from the PPI data.
Owing to the lack of known DDIs at the time of publication, their approach to evaluate
the model was to use the DDIs inferred by the model to predict PPIs, and the accuracy
of model was evaluated as the accuracy of PPI prediction. To supplement more PPI
data, likely PPIs were generated by searching for proteins with similar expression
profiles. Nonetheless, the probabilistic model to infer DDI from PPI data suffered
from low specificity, possibly due to limited amount of PPI data, as reported by the
authors. Through a machine learning approach, other works have also leveraged PPI
data to identify potential DDIs (X.-W. Chen & Liu, 2005; X.-M. Zhao et al., 2010). In
brief, a set of PPIs was used as positive samples and a set of randomly generated PPIs
was used as negative samples. Following that, all possible domain combinations were
treated as features to discriminate between PPIs and non-PPIs. The likelihood of a
domain combination being a putative DDI was then assessed based on its contributions
to the discrimination of PPIs and non-PPIs. In essence, the inference of putative DDIs
was formulated as a feature selection task to predict PPIs. While X.-W. Chen and Liu
(2005) utilized a random forest (RF)-based method for this purpose, X.-M. Zhao et al.
(2010) developed a simple classifier that additionally downweighted DDIs occurring in
non-PPIs, as they were more likely to be false DDIs.

Other data sources, such as the coevolution of sequences of interacting proteins
(Kann et al., 2007), gene ontology (GO) (Liu et al., 2009) and phylogenetic profiling
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(Pagel et al., 2004), have also been utilized for predicting DDIs.

1.3.2 Structure-based prediction of protein interaction inter-

faces

Since many domains interact with their partners through amino acids that are not con-
tiguous in the protein chain, the application of sequence-based approaches is limited
when it comes to capturing the detailed mechanisms of PPIs. A detailed mechanis-
tic description of PPIs entails uncovering information like the binding surface on a
predicted domain and the sidechain orientation of interfacial residues, both of which
can only be revealed through structural modeling. Furthermore, as DMIs are espe-
cially prone to subtle differences in binding pockets, structural models of DMIs can
also greatly aid in inspecting the validity of DMIs predicted from sequence-based ap-
proaches. In the following sections, I will discuss different options available to struc-
turally model PPI interfaces.

Protein docking interface prediction

Analogous to the folding of a protein, packing of secondary structures between proteins
that lead to PPIs are also governed by physical forces. There exist tools that can
model PPI interfaces from the monomeric structures of the interacting proteins based
on similar physical principles. Known as protein docking, many computer programs
have been developed to optimally ’piece’ proteins together as a means to study their
interaction interface. The idea of protein docking traces back to as early as 1978
(Wodak & Janin, 1978). The most common approach to docking two proteins is
referred to as the rigid-body docking approach. This approach involves fixing one
protein while rotating and translating the partner around the fixed protein repeatedly
to generate putative protein complexes. Simultaneously, physical-chemical force fields
are applied to identify favorable interaction sites on the surfaces of the proteins. The
putative protein complexes are then scored using a variety of metrics that generally
reflect the shape and physicochemical complementarity of the proteins. The iterative
process of rigid-body docking makes the method time-consuming and difficult to scale
up for higher throughput. Furthermore, the accuracy of rigid-body docking approach
is largely hindered by the dynamic nature of proteins, particularly the conformational
changes in proteins induced by their binding partners. While most docking programs
nowadays can account for protein sidechain flexibility to some extent, perhaps the
most practical use of docking algorithms is on the conformational ensemble of proteins
obtained from NMR studies (Kaczor et al., 2018).
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Homology-aided interface prediction

Given that most proteins arise from the concatenation and recombination of conserved
functional modules in the genome, the idea of inferring the three-dimensional structure
of a PPI from available structures of homologous proteins is not new to the field of com-
putational structural biology. However, the lack of experimentally solved structures
was a significant stumbling block to comparative modeling. With the growing number
of experimentally solved protein complexes, only in recent years has the concept of
comparative modeling for PPIs become more feasible. To transfer structural informa-
tion from one PPI to its homologs, the key question is to what extent the interaction
interface is conserved among homologs with varying degrees of sequence similarity.
Aloy et al. (2003) used an extensive set of domain-domain interaction structures to
study the relationship between sequence similarity and interaction conservation in pro-
teins. It was shown that proteins with more than 30-40% sequence identity tend to
interact in the same way. Importantly, given that a binary interaction query leads
to two sequence comparisons to their homologs that returns two sequence identities,
the reported sequence identity refers to the minimum sequence identity among the two
sequence comparisons. This crucial insight paved the way for comparatively modeling.

Building on this discovery, Interactome3D, a tool that models the three-dimensional
structure of a given PPI based on solved structures of homologous proteins was de-
veloped (Mosca et al., 2013). The automated homology modeling pipeline begins
with querying several databases to collect structures for the individual proteins in a
user-provided interaction, followed by structures of interactions that share over 30% se-
quence identity with the user-provided protein pair to serve as templates. The pipeline
then evaluates the retrieved structures based on sequence similarity and coverage, as
well as the resolution of the structures. This assessment identifies the most suitable
templates for subsequent modeling by Modeller (Sali & Blundell, 1993). Of note, if
no experimental structures or modeling templates are found for an interaction, the
pipeline resorts to detecting domain matches by Pfam HMMs in the interactors and
identifying potential DDIs between the interactors that are annotated in 3did. The
structures of the potential DDIs then serve as the templates for the modeling of the in-
teraction. The tool is accessible to the public via a web interface and has the capacity
to model up to 3,000 interactions per day.

Machine learning-boosted interface prediction

While there are tools that model the interface between an interaction, there are also
tools that predict interfacial residues on the individual interactors. The latter is the
objective behind the development of the tool PredUs which relies on structural neigh-
bors to predict interfacial residues on monomeric protein structure (Zhang et al., 2011).
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Structural neighbours are defined as those that belong to the same family, superfamily,
or fold, based on their classifications in the SCOP database (Andreeva et al., 2008).
In addition to structural neighbours defined by SCOP, structural neighbours detected
by means of protein structure distance calculated from the structural alignment pro-
gram Ska are also included (Yang & Honig, 2000). In brief, given a protein structure
submitted by users, the tool identifies the interfacial residues of the protein structure
by searching for structural neighbours of the query protein involved in a complex and
subsequently mapping the interfacial residues of the neighbours onto the query protein.
For each structural neighbour, the mapped interfacial residues are used to generate
a contact map. Summing the individual contact maps produces a contact frequency
heatmap where higher contact frequency alludes to more conserved interface (Zhang
et al., 2010). The webserver of PredUs includes a support vector machine that uses
the contact frequency and solvent accessible surface areas of a given residue to further
score the likelihood of the residue being at an interface. A few years later, PredUs was
upgraded to PredUs 2.0 with higher accuracy. The update incorporated additional
features that relate to surface patches into the program using a Bayesian network
(Hwang et al., 2016).

Despite originally intended for PPI prediction and not interface prediction at the
residue level, the tool PrePPI has been shown to be able to predict PPI interfaces
(Zhang et al., 2012). To predict the interaction between a pair of user-submitted pro-
teins, PrePPI operates on a principle akin to that of Interactome3D, which models
the interface between the protein pair based on homology. The server first searches
for representative structures of the input sequences in PDB, including, if available,
the structures of the input sequences, and the structures of their homologs. Then
interacting chains showing the structural neighbours of the representative structures
are also searched in PDB to serve as templates for the modeling of the hypothetical
structure of the input sequences in complex. The modeling is accomplished by super-
imposing the representative structures on their corresponding structural neighbours in
the templates. Different scores are extracted from the modelled structure, including
the aforementioned PredUs score. These scores are then combined with other metrics
such as co-expression and functional similarity, among others, to predict the likelihood
of interaction between the protein pair. Although in the pipeline of PrePPI, interface
modeling primarily serves as a proxy to predict the likelihood of two proteins inter-
acting, the approach illustrates how existing structures in PDB can be leveraged to
model PPI interfaces or approximate interfacial residues. Indeed, the publication also
reported the prediction of a crucial residue at a modelled interface, which was later
verified in an experimental setting. The webserver of PrePPI allows user to inspect the
modelled interface of a query sequence pair. However, only the highest-scoring inter-
face is displayed, which limits the exploration of PPIs mediated by multiple interfaces.
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The first implementation of PrePPI excluded interfaces involving unstructured regions
owing to the lack of structural data for this type of interface. Subsequent updates to
the tool incorporated this type of interface as well as the use of structures predicted
by AF in the interface modeling pipeline (T. S. Chen et al., 2015; Petrey et al., 2023).

The field of AI has been making rapid strides in recent years, with algorithms that
surpass even human capability being developed at an unprecedented rate. With its
ability to identify patterns in existing data and applying them on unseen data to make
predictions, it was only a matter of time before AI extended its reach into structural
biology, a realm where data is plentiful. Though not the first tool to employ AI in
its workflow, the year 2020 marks an important breakthrough in the field of computa-
tional structural biology as the tool AF from Google Deepmind won the 14th Critical
Assessment of Structure Prediction (CASP14) competition by achieving prediction ac-
curacies that are on a par with experimentally solved structures (Jumper et al., 2021;
Pereira et al., 2021). The success of AF lies in its neural network architecture that
is designed to capture the evolutionary, physical, and geometric constraints of protein
structures. Trained on a vast amount of experimentally solved structures, the network
is capable of predicting the three-dimensional structures of proteins using solely their
amino acid sequences. In an effort to make the predicted structures available to the
public, a database has been set up that contains more than 360,000 predicted struc-
tures across 21 model organism proteomes, with the structural prediction of many
other proteins still ongoing (Varadi et al., 2022). Undoubtedly, the outstanding per-
formance of AF in predicting the monomeric structures of proteins has garnered a
significant amount of attention in the structural biology community, and many are
eager to explore further use of AF in areas beyond the structural prediction of protein
monomers.

The success of AF in accurately predicting the tertiary structures of proteins sug-
gests that AF has learned to emulate the process by which fundamental physical
forces drive protein folding. Since complex formation is merely the packing of sec-
ondary structures that is similarly governed by physical forces, it is logical to think
that AF may also be capable of predicting the structures of protein complexes. Indeed,
it did not take long until researchers devised a way to hijack AF for complex structure
prediction. This is achieved by concatenating protein sequences using poly-glycine
linker and pairing the MSAs of the individual sequences. This approach enables AF
to extract interchain co-evolutionary information for the structural prediction of the
proteins in complex (Bryant et al., 2022; Mirdita et al., 2022; Tsaban et al., 2022).
Using this approach, another group of researchers compared the accuracy of AF with a
traditional shape complementarity-based docking method on complexes that involved
DDIs and found that AF significantly outperforms the docking method. Addition-
ally, they also performed similar test on 14 complexes that involved disordered regions
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and found that AF generally performed well at predicting these complexes. However,
among these complexes, they noted that successful cases tend to be those driven by
largely hydrophobic interactions. On the contrary, the symmetric nature of the disor-
dered regions in these complexes has a detrimental effect on the performance of AF
(Akdel et al., 2022).

One year after the development of AF, Google Deepmind introduced a spin-off
version called AF-MM, that specializes in protein complex prediction (Evans et al.,
2022). To facilitate the extraction of interchain evolutionary information, AF-MM
adopts an approach similar to that of Bryant et al. (2022), deemed FoldDock, which
pairs the MSAs of the individual chains. On top of that, AF-MM was specifically
trained on protein complexes to further enhance its ability to predict the structures of
protein complexes. Indeed, Evans et al. (2022) reported that the prediction accuracy of
AF-MM stood out as the highest among other AF-based complex prediction methods,
including the method that concatenates the individual chains with a linker for complex
prediction using AF ((Mirdita et al., 2022)) and the method that docks AF-predicted
monomeric structures using ClusPro ((Kozakov et al., 2017)). While the comparison
of prediction accuracy between AF-MM and FoldDock would be intriguing as they
employ a similar approach for complex prediction, a direct comparison between the
two is challenging as AF-MM was developed using the dataset on which FoldDock was
tested (Bryant et al., 2022).

While the developers of AF-MM reported impressive performance, a closer inspec-
tion of the benchmark dataset revealed that it was composed of only complexes medi-
ated by DDIs. Considering the observation noted by Akdel et al. (2022) regarding the
influence of the nature of the interface on AF’s performance, it is crucial to systemati-
cally benchmark the performance of AF-MM using different types of interfaces, such as
DDIs and DMIs. The rationale behind conducting a systematic benchmark is twofold.
First, since AF-MM was trained on structures deposited in PDB, DDI structures are
likely overrepresented in its training data. To illustrate such imbalance of interface
types in PDB structures, 3did contains DDI annotations from over 700,000 structures
and DMIs from over 12,000 structures (Mosca et al., 2014). Second, although differ-
ent studies have tested the ability of AF and AF-MM to predict interfaces involving
disordered regions, there lacks a comprehensive assessment of AF-MM’s sensitivity,
specificity and potential biases for the prediction of complex structures. Moreover,
as AF-MM always produces structural models for a pair of sequences (or more, as
AF-MM is not limited to binary interactions), there lacks clear criteria to differentiate
between high and low-quality models. For instance, in spite of AF-MM outputting var-
ious metrics to evaluate the quality of the generated models, there is no threshold on
the metrics to define a good model. Setting a threshold on the metrics to discriminate
high from low quality models is paramount for the application of AF-MM.
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1.4 Experimental methods to validate protein inter-

action interfaces

A common approach to study PPI interfaces is by solving their three-dimensional
structures through techniques like crystallography and NMR. While these structural
determination methods can provide atomic-level details on PPI interfaces, they often
require extensive technical expertise and can be challenging to scale up for higher
throughput. Other methods, such as mutational scanning, can also elucidate mecha-
nistic details of PPI at the residue level. The mutational scanning approach is used
to identify residues at PPI interfaces that contribute significantly to binding, which
are known as hotspot residues. Hotspot residues are identified through scanning mu-
tagenesis, an experimental method that systematically substitutes the amino acids of
a protein chain or a region of interest with alanine or glycine. This substitution tests
the effect of removing the sidechain atoms beyond the alpha-carbon on the binding
free energy. With every substitution, binding free energy is measured to calculate the
change in binding free energy relative to the unsubstituted polypeptide chain, and the
positions where substitutions lead to an increase in binding free energy of 2.0 kcal/mol
are classified as hotspots (Moreira et al., 2007).

The concept of mutational scanning can be incorporated into interaction assays to
validate PPI interfaces without the need to determine their structures. To accomplish
this, a quantitative interaction assay can be employed to probe the binding strength of
a PPI using wild-type proteins. Subsequently, mutations are introduced at a predicted
PPI interface, and the binding strength between the mutated protein and its wild-
type partner is re-quantified. A reduction in binding strength compared to that of
the wild-type proteins, or the absence of binding between the mutated protein and its
wild-type partner, thus indicates that the predicted interface is responsible, or at least
partially responsible, for mediating the interaction. As interaction assays demand less
technical expertise than structural determination methods, this approach is also more
scalable. However, because the change in binding strength can be subtle, especially
in the case of point mutations, it is important that the interaction assay produces
a quantitative read-out that correlates with binding strength. While this strategy is
effective in circumventing many challenges associated with structural determination,
several concerns need to be addressed. Apart from interface disruption, introduced
mutations can also unfold, misfold or mislocalize a protein, all of which can lead to
the degradation of the protein. In this scenario, the absence of PPI is caused by the
reduced expression of the mutated protein, rather than the mutation perturbing the
interaction interface. Hence, the expression of mutated proteins needs to be measured
and monitored when they are used to validate predicted interfaces.

In the following sections, I will discuss different approaches to detect PPIs in vivo.
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Following that, specific interaction assays and their suitability for the aforementioned
strategy will also be discussed.

1.4.1 Binary methods vs co-complex methods

Numerous methods have been developed to detect PPIs in various approaches. These
methods can be broadly classified into binary methods or co-complex methods. Binary
methods rely on the co-expression of genetically tagged proteins to detect PPIs. When
the genetically tagged proteins interact, thereby bringing their genetic tags into close
proximity, different read-outs are produced to signal the presence of a PPI. Typical
read-outs include the reconstitution, activation or expression of reporter proteins, as
well as the emission of measurable wavelengths like fluorescence. The Y2H assay is
an example of binary methods (Chien et al., 1991; Fields & Song, 1989). This assay
makes use of a transcription factor that is physically split into its DNA-binding domain
and its transcription activation domain. The DNA-binding domain that is capable of
binding to the promoter region of a reporter gene is fused to a bait protein, while the
transcription activation domain is fused to a prey protein. Upon interaction of the bait
and prey proteins, the transcription factor is reconstituted and drives the expression
of a reporter gene. In a conventional Y2H setup, the presence of interaction between
the bait and prey is indicated by the requirement for the reporter gene for growth,
making yeast growth a read-out. Y2H serves as the conceptual predecessor to many
more potent binary PPI technologies that are subsequently developed.

On the other hand, co-complex methods typically involve either a single genetically
tagged protein or no tagged proteins at all. These methods generally include at least
one purification step, followed by the identification of co-purifying proteins using MS.
Affinity Purification—Mass Spectrometry (AP-MS) is one of the most common co-
complex methods, and it detects PPI by using a bait protein that is fused to an
affinity tag like the FLAG-tag or HA-tag (Ho et al., 2002). The affinity tag is used to
purify the bait protein from cell lysates, and other proteins that are co-purified in the
purification process are digested into peptides and subsequently identified using MS.
Nonetheless, as co-complex methods detect interactors of a bait protein by means of
co-purification. The identified interactors may not necessarily interact directly with
the bait protein, as their associations with the bait protein can be mediated by a third
interactor. Moreover, the cell lysis step in these methods may result in false negatives
by disrupting weaker interactions and false positives by bringing into contact proteins
that would not naturally encounter each other under physiological conditions due to
different subcellular localization.

Considering these limitations, co-complex methods, albeit quantitative and highly
sensitive, are less suitable for probing the interaction interface between proteins. Bi-
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nary methods, which are better at detecting PPIs mediated by direct contacts, are
more appropriate for the investigation of PPI interfaces. Both binary and co-complex
methods are extensively reviewed in Titeca et al. (2019).

Binary methods to probe protein interaction interfaces

Owing to its robustness and simplicity, Y2H has been employed by researchers to
study the interaction interface between proteins (Wang et al., 2012). However, there
are some clear disadvantages associated with the method. As the assay requires the re-
constitution of a transcription factor to produce a read-out, trafficking the proteins of
interest into the nucleus is thus necessary, and this is achieved by the nuclear localiza-
tion signals that are found in the DNA-binding and transcription activation domains
that are fused to the proteins of interest (Chien et al., 1991; Fields & Song, 1989).
However, such localization is often artificial for many proteins as they are sequestered
in the cell in different subcellular compartments under physiological conditions. That
said, the PPIs detected by Y2H should be carefully interpreted as a positive read-
out merely reflects that the tested proteins are capable of interacting on the basis of
physicochemical principles, such as shape complementarity and charge distribution.
The need for nuclear localization of the bait and prey proteins also dictates that the
assay is not suitable for the detection of proteins that are toxic to the cell if accu-
mulated in the nucleus. Besides, auto-activation is also a well-known issue in Y2H.
Common sources of auto-activation include transcription factors that natively have
transactivation function or non-transcription factors that possess cryptic transactiva-
tion domain (Shivhare et al., 2021). Testing PPIs between non-yeast proteins using
Y2H can also lead to false negatives. This is because, depending on the origin of the
proteins of interest, their interaction may never take place in a yeast setting due to the
absence of PTM or co-factors that enables their interaction. The quantification of the
binding strength of a PPI using Y2H is also often indirect, such as by measuring the
transcript level of the reporter gene (Maier et al., 2012). As Y2H is not equipped with
a direct way to monitor the expression of bait and prey, testing the effect of mutation
on the expression level of a protein is often achieved through other techniques. For
example, Wang et al. (2012) separately transfected mammalian cells with the open
reading frames (ORFs) of the mutated proteins to quantify their expressions using the
western blot technique. Taken together, while Y2H is a fairly straightforward assay to
test for interactions between proteins, its application in characterizing the interaction
interface between proteins is hindered by several factors, with the use of yeast back-
ground being one of the most significant caveats. Nevertheless, considering that the
biology of many proteins remains uncharted, having a reference for physically possible
PPIs is vital for future research, and the PPIs detected by Y2H can serve as a valuable
foundation for subsequent studies.
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Following principles similar to Y2H, many binary methods have been subsequently
developed to circumvent the shortcomings of Y2H. Examples of these methods include
the Mammalian Protein-protein Interaction Trap (MAPPIT) assay and the Kinase
Substrate Sensor (KISS) assay. Unlike Y2H that physically splits up a transcrip-
tion factor, MAPPIT and KISS functionally split up the JAK-STAT signal transduc-
tion pathway required for reporter protein transcription upon cytokine administration.
These methods have the advantage of operating in intact mammalian cells, therefore
providing a more optimal cellular context for testing PPIs that involve mammalian
proteins. MAPPIT makes use of a mutated cytokine receptor, such as Leptin receptor,
that can no longer recruit the STAT protein, rendering it deficient in signal transduc-
tion. To use the reconstitution of the signal transduction as read-outs for PPIs, the
bait protein is fused to the mutated cytokine receptor, and the prey protein is fused
to a cytokine receptor fragment with functional STAT docking sites. This way, under
the conditions that a ligand like erythropoietin or leptin is administered and an in-
teraction occurs between the bait and prey, JAK is recruited to the mutated cytokine
receptor to phosphorylate the docking sites that are fused to the prey, which in turn
leads to the recruitment of STATs. The recruited STATs are subsequently phosphory-
lated and activated by JAK. The activated STATs then homodimerize and migrate to
the nucleus to activate the transcription of a reporter gene (Eyckerman et al., 2001;
Lievens et al., 2011). While the system is elegant in its design, as JAK is anchored to
the plasma membrane, it restricts PPI detection to those happening near the plasma
membrane. Furthermore, with the bait being fused to a mutated cytokine receptor,
a relatively large transmembranal protein of over 1,000 amino acids, the interaction
between the bait and the prey can potentially be blocked due to steric hindrance.

KISS solves this by fusing the bait to the kinase-containing portion of TYK2, while
keeping the prey similarly fused to the cytokine receptor fragment. When the bait
and prey interact, the kinase domain of TYK2 phosphorylates the cytokine receptor
fragment of the prey, leading to the recruitment of STATs and its phosphorylation by
the kinase domain of TYK2 (Lievens et al., 2014). The downstream signaling cascade
resembles that of MAPPIT, where a reporter gene is eventually expressed. The use
of only the kinase-containing portion of TYK2 effectively eradicates the need for the
interaction between the bait and the prey to happen near the plasma membrane for
it to be detected. Moreover, KISS also uses a smaller tag which poses less risk of
false negatives caused by steric hindrance. The MAPPIT method has been used to
map PPI interfaces by using luciferase as the reporter gene and measuring luciferase
activity to probe the effect of mutation on the PPIs (Vyncke et al., 2019).

While earlier methods rely on reconstituting a signaling pathway and subsequent
reporter gene expression for read-outs, other methods offer more direct read-outs. Ex-
amples of these methods include the Förster resonance energy transfer (FRET) assay
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and the Bioluminescence resonance energy transfer (BRET) assay that detect PPIs
based on physical distance. As their names suggest, these methods detect PPIs through
non-radiative (without emitting photons) energy transfer from a donor molecule to an
acceptor molecule. Since this form of energy transfer only occurs when the donor-
acceptor pair is within a close distance, it serves as an effective probe for determining
the proximity of the donor-acceptor pair. The theoretical range for energy resonance is
10Å to 100Å, with the actual working range dependent on the type of donor-acceptor
pair and its in vivo applications (Weihs et al., 2020). Both FRET and BRET assays
incorporate this principle into their approach to detect PPIs.

This is achieved in FRET by fusing the bait and prey with a donor fluorophore and
an acceptor fluorophore, each having different excitation and emission wavelengths.
These fused constructs are then expressed in intact cells to test interactions between
the bait and prey. Upon interaction between the bait and prey, the energy emitted
by the donor fluorophore, following its excitation with light from the appropriate
wavelength, is transferred to the acceptor fluorophore. This energy transfer yields a
fluorescent signal at a different wavelength, serving as a read-out that indicates the
presence of interaction between the bait and prey. Conversely, when the bait and prey
do not interact, only the donor fluorophore emits fluorescence (Sekar & Periasamy,
2003). Operating on the same principle, BRET differs from FRET by fusing the bait
with a donor luciferase. The energy emitted by luciferase can similarly be transferred
to an acceptor fluorophore when in close proximity. The distance limit for energy
transfer in BRET is the same as FRET (Pfleger & Eidne, 2006). Since luciferase
oxidizes a substrate like coelenterazine to produce luminescence, the use of luciferase
as donor removes the need for external illumination.

Both FRET and BRET offer excellent time resolution for real-time study of tran-
sient PPIs in intact mammalian cells. As emphasized earlier, determining the expres-
sion levels of the bait and prey proteins is important when it comes to characterizing
their interaction interface(s) in order to understand the reason behind the absence
of an interaction. In FRET and BRET, direct and independent monitoring of bait
and prey expression levels is made possible thanks to the use of donors and acceptors
that have different emission wavelengths. In terms of practicality, BRET offers the
advantage of decoupling luminescence and fluorescence signals for the separate mea-
surement of bait and prey expression levels. In contrast, for the same purpose, FRET
requires reasonable separation of emission spectra between the donor and acceptor
fluorophores (Sekar & Periasamy, 2003). Furthermore, the use of BRET can also by-
pass certain practical issues associated with fluorescence-based technologies, such as
photobleaching and autofluorescence.

While the strategy of detecting PPIs through the spatially-restricted transfer of
resonance energy is ingenious, the major drawback of the strategy also lies in its
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stringent limitation in distance. Consequently, these methods are inherently sensitive
to the distance between and the relative orientation of the tags. Their sensitivity to
the aforementioned factors carries significant implications for their application. On the
one hand, these methods are particularly well-suited for the detection of direct PPI. On
the other hand, they might miss PPIs that involve larger proteins or multiple partners
as these can sterically hinder the transfer of energy, resulting in false negatives (Titeca
et al., 2019). Beyond the detection of PPIs, these methods have also been applied
to study the subcellular localization of detected interactions (Coulon et al., 2008; Del
Pozo et al., 2002).

The BRET assay has been used extensively in this thesis to validate the interaction
interfaces predicted by AF-MM, and it is included in the article presented in Chapter
4, Article II.
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1.5 Aims of the thesis

Many proteins interact with other proteins to perform their cellular functions. Many
PPIs have so far been detected using high-throughput interaction assays to study their
biological functions. However, these assays do not provide mechanistic information
on the detected PPIs, impeding our ability to study their molecular mechanisms.
Domains and motifs are important functional modules that enable proteins to interact
with others by forming DMIs and DDIs. Different databases annotate DMIs and DDIs
using diverse sources of experimental evidence, providing a way to map these interfaces
onto PPIs to generate mechanistic insights. Even though these annotated interfaces
can be readily mapped onto PPIs, it is important to note that the mapped interfaces
are not necessarily accurate, and precise detection of DMIs and DDIs poses distinct
challenges.

Owing to the short and degenerate nature of motifs, detecting them in protein
sequences often leads to stochastic matches. Consequently, reliable detection of motifs
requires additional information to assess their likelihood to be functional. The first
objective of this thesis was to develop a computer program to automate the detection
and scoring of DMIs in the sequences of interacting protein pairs. To achieve this, a
list of DMI types from ELM database was used for DMI matching and an machine
learning (ML) algorithm was trained to score DMI matches.

3did is a database that hosts a collection of DDI types by employing an automatic
pipeline to annotate DDIs based on observed contacts in PDB structures. While the
detection of domains with HMMs is generally accurate and DDI types from 3did can be
readily mapped onto PPIs, there is a need for a reference set to assess the accuracy of
DDIs mapped through this approach. The second objective was to identify a very high-
confidence subset of DDI types from 3did by manually curating a randomly selected
subset of DDI types. The reference set produced from this manual curation effort was
further utilized to identify features that can predict high-confidence DDI types.

The development of AF-MM has brought forth exciting possibilities for the char-
acterization of novel PPI interfaces through structural modeling. Although many
studies have tested the ability of AF-MM to predict different interface types, there is
a need for a comprehensive evaluation on AF-MM and its metrics for their sensitivity,
specificity and potential biases. The third objective was to comprehensively evalu-
ate AF-MM’s predictive capability and apply AF-MM to discover novel interaction
interfaces between proteins.
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Chapter 2

Development of a domain-motif
interface predictor

2.1 Introduction

Most PPIs in the human protein interactome lack interface information. The lack of
mechanistic information on these PPIs hinders our ability to investigate their molecular
functions. One approach to generate mechanistic insights into these PPIs is through
the use of structural modelling tool to model their interfaces. While this approach
can be fruitful for interfaces involving exclusively domains since a significant num-
ber of DDIs have been solved so far, it is not as applicable to DMIs as many DMIs
lack structural information. The detection of DMIs in PPIs will thus benefit from
a sequence-based approach where the occurrences of known DMI types are searched
within the sequences of interacting protein pairs. The ELM database contains a list
of high-quality DMI types that are curated based on experimental evidence of motifs.
Moreover, the database provides useful information that can be leveraged to detect
the occurrences of annotated DMI types, such as the regular expressions of curated
motif types and, in most cases, the HMMs of their corresponding binding domains.

iELM is a bioinformatic tool that detects DMIs in user-submitted PPIs, and its
working principle has been previously discussed in the section Sequence-based de-
tection of domain-motif interfaces. Drawing inspiration from iELM, I developed
a DMI predictor program that similarly automates the search of potential DMIs in
the sequences of interacting protein pairs and scores the returned DMI matches using
a machine learning algorithm (Weatheritt, Luck, et al., 2012; Weatheritt, Jehl, et al.,
2012). While there exists overlap between the workflow of the developed DMI predic-
tor and iELM, I have designed the program to operate differently in several aspects to
overcome the limitations of iELM. First, iELM discontinues further DMI search if it
can map any DDI type from 3did to a user-provided PPI. As the prediction of DMIs
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and DDIs should not be mutually exclusive, since they can act synergistically to medi-
ate an interaction, I have designed the DMI predictor to be agnostic to potential DDIs.
Consequently, the DMI predictor does not discontinue the search of DMIs in case of
detecting DDIs. Second, iELM builds HMMs specific to motif-binding domains by
using hand-curated sets of known motif-binding domain sequences. Such an approach
poses the risk of overfitting HMMs to a small and specific set of domains. Based on
observations from manual checking of DMI types and their instances available in the
ELM database, I discovered that HMMs from SMART detects motif-binding domains
more reliably than those of Pfam. With SMART creating HMMs not specifically for
the detection of motif-binding domains, this approach poses a lesser risk of overfitting.
Hence, SMART HMMs are opted for over Pfam HMMs when available. Lastly, the
evaluation of iELM was done on an imbalanced dataset, with the number of negative
data points outnumbering the positive data points by almost 30-fold. To ensure a
robust evaluation of the DMI predictor, the training as well as testing of the machine
learning algorithm were done on a balanced dataset.

To aid in scoring DMI matches, I also engineered new features using systematic
PPI networks and incorporated them into the machine learning model. The underlying
assumption is that if a motif match is functional, its binding domain would be sig-
nificantly enriched among the interaction partners of the motif-bearing protein. Such
enrichment of binding domains among interaction partners can be quantified and used
for DMI match scoring.

The DMI predictor requires only the UniProt accession identifiers of human inter-
acting protein pairs to run. The predictor has been applied to PPIs from HuRI to
characterize their interaction interfaces.
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2.2 Methods

Manual curation of domain-motif interface types

A list of DMI types was downloaded from the ELM DB (version 1.4, accessed on
29.09.2020) and checked manually for correct annotation of interacting domain(s) by
manual inspection of their solved structures, if available, to confirm their interactions.
Special cases exist and extra caution was taken when checking them. For example,
some DMI types require two domains to come together to form an interface where the
motif binds, and these cases were annotated accordingly. HMMs are widely used to
computationally predict the occurrence of domains in protein sequences. Since ELM
DB also annotates HMMs of interacting domains, prediction accuracies of HMMs from
SMART and Pfam database were compared, and the HMMs with better prediction
performance were selected for subsequent development of the DMI predictor. Further-
more, some domains are formed by tandem repeats, and most of these domains are
detected by SMART and Pfam as individual tandem repeats rather than the complete
domain. In these cases, the stoichiometry of tandem repeats required to form the
interacting domain of a given DMI type was annotated. The resulting list of 290 DMI
types was used for subsequent development of the DMI predictor.

Curation of domain-motif interface instances for positive refer-

ence set

A list of 20,396 reviewed human protein sequences was downloaded from SwissProt
(16.02.2021). A list of experimentally validated DMI instances was downloaded from
the ELM database, and the list served as the basis for the making of the positive ref-
erence set (PRS). The list was filtered for interactions involving only human proteins
from SwissProt. The DMI instances in the resulting list were then subject to further
processing by checking the annotated positions of motif and domain on the protein
pair. This was done by running pattern search in the sequence of the annotated pro-
tein using the regular expression of the motif type to confirm the motif’s positions in
the protein sequence. Similar step was performed on annotated domains by running
HMM search on the annotated protein using the HMM selected during the curation
of the DMI types list. If the reported positions of motif did not align with the match
returned from pattern search, the DMI instance would be deleted. Similarly, should
the reported domain not occur on the annotated protein through HMM search, the
DMI instance would be deleted as well. DMI instances formed by alternative isoforms
were converted to their canonical isoforms and manually checked to ensure that the
annotated motif sequence and match positions were still the same in canonical iso-
forms and the annotated domains were still detected. Additional DMI instances were
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obtained from our collaborator, Dr. Norman Davey, who curated DMI instances from
available crystal structure on PDB. Similar filtering processes were applied, and 98
DMI instances were subsequently included in the PRS. The resulting list contained
662 proteins that formed 898 DMI instances from 106 DMI types. The list served as
the PRS for the development of the DMI predictor.

Generation of random reference sets

Random reference set (RRS) was generated by randomly pairing proteins from the
downloaded list of SwissProt human proteins, while excluding known interacting pro-
tein pairs. Known interacting protein pairs were downloaded from IntAct on 24.02.2021
that consisted of 145,468 interactions from human proteins (Orchard et al., 2014). Mo-
tif matches and domain matches were detected in randomly paired proteins by running
regular expressions and HMMs search on the paired proteins. Potential DMIs were
then matched among the paired proteins to form DMI instances for RRS. As the
PRS was made up of a relatively small pool of proteins, different strategies to sam-
ple random protein pairs were tested to check for biases that could be learned by
the predictor from some inherent properties in the PRS. To this end, random protein
pairs were either sampled from the PRS protein pool or the whole human proteome
to allow for the comparison of prediction performance using different RRSs. Further-
more, potential biases could also come from the limited representation of DMI types
in the PRS. On the one hand, to ensure that prediction performance was measured
across many DMI types, one way to sample RRS DMI instances was to sample in a
uniform way to guarantee DMI type representation to the best possible extent in the
RRS. To sample DMI types uniformly, 5 DMI instances per DMI type were sampled
when PRS protein pool was used, and 3 DMI instances per DMI type were sampled
when the whole human proteome was used. On the other hand, the prediction of DMI
instances depends on the frequency of domains and regular expression matches, and
sampling DMI instances uniformly would not allow these features to contribute to the
outcome of the predictor. To this end, 1,000 DMI instances were sampled randomly
regardless of DMI types. This step ensured that the number of DMI instances in RRS
was roughly the same as that of PRS. Four versions of RRS, with triplicates of each
version, were generated in total by combining the strategies of sampling proteins and
DMI instances.
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Annotation of domain and motif features

Motif probability

The motif probability quantifies the degeneracy of a motif type by calculating the
likelihood of a regular expression matching in the disordered regions of proteins. The
motif probability of every motif type was retrieved from ELM.

Propensity to disorder and undergo secondary structure transition of motifs

The disorderedness of a protein region can be predicted using the IUPred tool (Mészáros
et al., 2018). The propensity of a motif match to undergo secondary structure tran-
sition can also be predicted using the ANCHOR2 tool (Mészáros et al., 2018). The
IUPred and ANCHOR2 scores of a motif match were quantified by averaging the
IUPred scores (short option) and ANCHOR2 scores across the amino acids of the
motif match.

Relative Local Conservation and variance of conservation of motifs

The RLC of motif matches was calculated following the Sigmotif formula from SLiMPrints
(Davey et al., 2012) using four types of conservation scores: conservation calculated
across orthologues from Quest for Orthologs (QFO), conservation on metazoan level,
conservation on the level of class (mammalia), and subphylum (vertebrata). The vari-
ance of conservation scores in a motif match was also calculated using the following
equation:

V ariance =

∑n
i=1(xi − µ)

n

where n is the number of defined positions in the motif, and xi is the conservation
score of i -th defined positions in the motif match. µ is the mean of conservation across
the defined positions in the motif match.

Enrichment of the motif-binding domain among interaction partners

PPI networks of motif-containing proteins were leveraged to probe the likelihood of
a motif match being functional in a protein. The idea is that if a motif match is
functional in a protein, then its binding domain should also be enriched among the
interaction partners of the protein compared to the background distribution of the do-
main in the complete PPI network. To this end, HuRI and literature-curated binary
PPI networks were downloaded from Luck et al. (2020) and combined to produce a
PPI network consisting of 13,722 proteins and 101,219 binary interactions. To account
for domain frequency and protein degree in the network, 1,000 random networks were
generated from the real network while maintaining the degree of the proteins observed
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in the real network. The enrichment of a motif-binding domain among the interaction
partners of a motif-containing protein was first quantified by counting the number of
interaction partners having the motif-binding domain. To compute the significance of
the observed domain enrichment, the generated random networks were used to count
the number of random interaction partners having the motif-binding domain, thereby
producing a background distribution for the domain enrichment. The p-value of the
observed domain enrichment was thus computed by calculating the fraction of ran-
dom networks having greater than or equal to the domain enrichment observed in the
real network. The z -score of the observed domain enrichment was also computed to
quantify the extent of enrichment observed in the real network. The z -score of domain
enrichment was calculated by subtracting the mean number of interaction partners
with the domain in the random networks from that observed in the real network and
dividing the result by the standard deviation of the number of interaction partners
with the domain in the random networks. In cases where the standard deviation in
the random networks is zero, the absolute difference between the number of interac-
tion partners with the domain observed in the real network and the mean number of
interaction partners with the domain in the random networks was calculated as the
z-score. During the training of the DMI predictor, interacting protein pairs in the PRS
were removed from the protein’s real network to avoid circularity in the calculation of
domain enrichment.

Overlap of motifs with domains

Some motif matches returned from regular expression search are found in regions that
are detected by HMMs to fold into domains, and these motif matches are unlikely to
be functional.

The domain overlap of a motif match was quantified by calculating the fraction of
residues in the motif match that overlap with a domain detected by HMMs.

Domain frequencies

As multiple occurrences of a domain can be detected in a given protein sequence,
two methods were employed to quantify the frequencies of motif-binding domains in
the human proteome from SwissProt. The first method quantifies domain frequencies
by calculating the fraction of proteins with at least one HMM match of the domain.
This feature was named domain frequency by protein. The second method quantifies
domain frequencies by calculating the number of domain HMMs matching in human
proteins divided by the total number of proteins in the human proteome. The second
method accounts for the domains that are formed by multiple tandem repeats as their
HMMs were produced for individual tandem repeats rather than the complete domain.
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This feature was named domain frequency in proteome. For DMI types that require
two domains to form an interface where the motif binds, the domain frequencies of the
two domains were averaged and used as features for the DMI predictor.

All features were calculated for every DMI instance in the PRS and RRS. Data
points with missing values were removed. These removed data points were either
without conservation score or PPI network information. After listwise deletion of
data points with missing values, 830 DMI instances were retained in the PRS. Similar
processing was applied to all versions of RRS, and the number of DMI instances
retained in the triplicates of the RRS versions ranged from 870 to 985, making a fairly
balanced dataset for the training of the RF model.

Model training

Each replicate of the RRS versions was combined with the PRS to train a RF model.
The combined dataset was stratified by labels (known and random DMI instances)
and split into a training and a test set with a ratio of 3:1. Subsequently, a RF model
with 1,000 decision trees was fitted on the training set, and the fitted RF’s accuracy
was then evaluated on the test set. Random seed was set at 0 for model building
for reproducibility. Predictive performances of fitted RFs were further evaluated by
means of ROC curve and PR curve. For each RRS version, ROC and PR curves aver-
aged across the triplicates of the RRS version were plotted by interpolation. Feature
importance was quantified as mean decrease in impurity by extracting the values from
the attribute ’feature_importances_’ from the fitted RF model. Similarly, feature
importance was also plotted by averaging feature importance of each model built with
the triplicates of each RRS version.

For the final model, the whole dataset was used to train an RF with 1,000 decision
trees with random seed set at 0. A median imputer was also fitted on the whole
dataset so that missing values in user input protein pairs can be imputed with the
median of the corresponding feature in the training data. The effect of imputation on
the accuracy of the predictor was tested by imputing masked values in the test set,
and the effect was found to be negligible. The dataset used to train the final model
was PRS combined with RRS generated by sampling 1000 DMI instances from the
human proteome.

Softwares and packages used

The software PyMOL (TM) Molecular Graphics System, Version 2.5.0. Copyright
(c) Schrodinger, LLC., was used for the visualization of solved DMI structures. All
codes were written in Python version 3.9 and analyses were done using Jupyter note-
books. The following Python libraries were used: re package for regular expression
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search, pandas (McKinney, 2010) for data analysis, and Matplotlib (Hunter, 2007) and
seaborn (Waskom, 2021) for data visualization, scikit-learn for model training, feature
importance analysis, and ROC and PR statistics (Pedregosa et al., 2011), scipy for
RLC calculations (Virtanen et al., 2020), igraph for network randomization (“Igraph
– Network Analysis Software”, n.d.).
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2.3 Results

Improving the binding domain annotations from ELM

While ELM provides binding domain information for almost all the motif types curated
in the database, there are some motif types for which such information is missing.
To thoroughly assess the binding relationship between motifs and domains, a list of
motif types and their binding domains (DMI types) was downloaded from ELM. I
manually checked through the list of DMI types to ensure that the correct domains
were annotated in the list. Throughout the manual checking process, I noticed the
HMMs of SMART were more accurate at detecting motif-binding domains than the
HMMs from Pfam. As a result, despite Pfam HMMs being the default in ELM, the
HMMs used in the subsequent development of the DMI predictor were defaulted to
SMART HMMs. Among the 290 DMI types that I checked, 63 had their domain
annotations changed (Figure 2.1A).

The reasons of change in annotation can be classified into four categories. The
majority of the changed annotations comes from improved annotation category where
the switch from Pfam HMMs to SMART HMMs results in better detection of the
binding domains. For example, Pfam often creates different HMMs for different sub-
types of a domain, such as Efhand and SH3 domains, while SMART creates HMMs
only on the domain level and not domain subtypes. While these Pfam HMMs that are
created for domain subtypes have higher specificity at the cost of sensitivity, SMART
HMMs that are less specific but more sensitive were opted over Pfam HMMs to ensure
that all motif-binding domains can be detected in the initial step of the pipeline for
subsequent DMI matching and scoring. Some motifs require two domains to first bind
to form a groove where the motifs fit into, and these cases are not always annotated
in ELM. These annotations were improved by including the second domain as an ad-
ditional binding domain, and they represent the trimeric annotation category. Five
motifs did not have binding domain information annotated in ELM. For these motifs,
the sequences of their binding partners were used to detect domain occurrences, and
their binding domain information was inferred by checking for enrichment of specific
domains in the binding partners. Three motifs had multiple domains annotated as
their binding domains, but some of them were not detected in the sequences of their
binding partners. For instance, the ELM class LIG_Actin_RPEL_3 has the HMM of
RPEL repeat (PF02755) annotated as one of the binding domain. This represents as
a wrong annotation because the annotated HMM is for the detection of RPEL repeat
and not the binding domain. The erroneous annotations were subsequently removed.
For more details on the manual checking, please refer to the Method section.
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Figure 2.1: The development of DMI predictor and its application on HuRI. A) Outcome of manual
checking performed on the list of DMI types downloaded from ELM. B) Schematic illustrating the
assembly of PRS and different versions of RRS. C) Annotation of features on the PRS and RRSs.
The schematic at the bottom illustrates the calculation of domain enrichment within the interaction
partners of a motif-bearing protein as additional features. D) ROC curve of RF models trained using
different sets of RRS. For each RRS version, ROC and PR curves averaged across the triplicates of
the RRS version were plotted by interpolation. E) Same as D but for PR curve of the RF models. F)
The importance of different features to the RF trained using the PRS combined with the RRSv4 as
quantified using mean decrease in impurity. G) Schematic showcasing the workflow of the developed
DMI predictor where the improved list of DMI types and the trained RF model are incorporated
into the DMI detection pipeline. The output of the pipeline presents the DMI matches and their
likelihoods to be functional in a tabular format. The predicted likelihoods are within the range of 0
to 1, where 1 indicates the highest likelihood to be functional. Circle represents domain matches and
rectangle represents motif matches. Same color of circles and rectangles represents DMI matches. H)
The developed DMI predictor was applied on PPIs that are detected in HuRI, and the scores of the
predicted DMIs are titrated over increasing cutoffs. Only the highest-scoring DMIs are considered in
this analysis. The dashed lines refer to the right y-axis, while the filled line refers to the left y-axis.
The red vertical line indicates the cutoff of 0.7 applied on the DMI scores to call a predicted DMI of
high-confidence.
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Datasets preparation and feature annotations for model training

and evaluation

To score the DMI matches detected in the pipeline, an RF model was trained and eval-
uated for its ability to score DMI matches (Figure 2.1B). To train and evaluate an RF
model, a PRS and an RRS were needed. The PRS was constructed using known DMI
instances that are deposited in ELM, consisting of 830 DMI instances. As negative
data are scarce in biology, random DMI instances were computationally generated by
randomly pairing proteins from the PRS and scanning for DMI occurrences to serve
as the RRS. However, as the PRS consists of a limited number of experimentally vali-
dated DMI instances – they pertain to only a subset of DMI types found in a limited
number of proteins – generating the RRS by randomizing protein pairs from the PRS
would thus also propagate the potential bias from the PRS to the generated RRS. To
address these potential biases, different RRS versions were created. Briefly, random
protein pairs were generated by either randomizing protein pairs from the PRS pro-
tein pool or from the whole human proteome in UniProt. Next, the DMI instances
detected in these randomized proteins were sampled either randomly, i.e., irrespective
of DMI types, or by controlling for a uniform number of DMI instances across all DMI
types. Combining the two ways of randomizing protein pairs and sampling for DMI
instances resulted in four RRS versions (Figure 2.1B). Each RRS version was gen-
erated three times to produce triplicates for quantification of statistical significance.
The number of random DMI instances in the different versions of RRS ranged from
870 to 985, making the number of positive and negative data points for model training
and evaluation fairly balanced.

Different motif-specific features and domain-specific features were annotated for
the DMIs from the PRS and different versions of the RRS. The ANCHOR and IUPred
scores were used to quantify the propensity of motifs to be disordered or undergo
secondary structure transition upon binding to a partner. The RLC scores and their
variance were quantified to assess the degree of motif conservation across orthologs.
The motif probability retrieved from ELM was used to quantify the degeneracy of
motif types based on their regular expressions. Two additional PPI network-based
features were also calculated to assess the likelihood of a motif being functional. The
underlying assumption is that if a motif match is functional, its binding domain would
be significantly enriched in the interaction partners of the motif-bearing protein. To
this end, for a given motif matching in a protein, I quantified the enrichment of its
binding domain in the interaction partners of the protein by means of calculating
the z -score and p-value of the observed enrichment. The frequencies of motif-binding
domains were also used as features (Figure 2.1C).

The PRS was combined with each of the four different versions of RRS and their
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features were used to train four RF models. The combined dataset was stratified by
label and split into a training and a test set with a ratio of 3:1. The performance
of the trained models, as evaluated on their respective test sets, is summarized in
Figure 2.1D and E. While similar performance was obtained using models trained on
different RRS versions, RRS version 4, generated through randomly sampling DMI
instances from random protein pairs from the human proteome, achieved the best
performance (Area under Receiver Operating Characteristics (ROC) and precision
recall (PR) curves 0.93). The contribution of different features to the performance
of the model trained using RRS version 4 is quantified as mean decrease in impurity
(Figure 2.1F). The conservation and disorder propensity of motifs ranked highest in
their contribution towards prediction outcome. The enrichment of the binding domain
of a motif as a feature ranked sixth in terms of importance towards prediction outcome.

Since RF models output a value corresponding to the number of trees within the
ensemble that predicts ’1’ for a given data point, this value can essentially be used as
a score to quantify the likelihood of a DMI match being functional. As RRS version
4 achieved the best performance, I established a cutoff score of 0.7 based on its test
set to call DMI matches of high-confidence. The cutoff corresponds to a sensitivity of
66.3% and a specificity of 97.2%.

Workflow of DMI predictor and its application on HuRI

As RRS version 4 demonstrated the best performance, I retrained an RF model using
all the data points in the PRS and the RRS version 4 for deployment in the DMI pre-
dictor pipeline (Figure 2.1G). Briefly, the pipeline operates on the UniProt identifiers
of a pair of interacting proteins. HMMs of motif-binding domains and regular expres-
sions of motifs are used to detect occurrence of motif-binding domains and motifs in
the sequences of the interacting proteins. Based on the improved list of DMI types, the
detected domains and motifs are matched to form DMI matches. The DMI matches
are then subject to feature annotations, followed by scoring by the RF model. The
DMI matches as well as their scores are returned by the pipeline, with higher score
indicating a higher likelihood to be functional.

The developed DMI predictor was applied onto HuRI to detect PPIs that are
potentially mediated by DMIs (Figure 2.1H). As expected by the degeneracy of motifs,
many DMI matches were detected in the PPIs from HuRI. Nonetheless, applying the
cutoff of 0.7 on the scores returned 13,406 high-confidence DMI matches that are found
in 3,195 interactions. Among the 3,195 interactions with at least one high-confidence
DMI match, more than half (54%) have their top-ranked DMI matches from the ligand
(LIG) class, and an additional 19.5% have their top-ranked DMI matches from the
modification (MOD). The enrichment of ligand-binding motifs and PTM sites among
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the interactions is consistent with previously published observations that Y2H-based
screens primarily detect regulatory and signalling-related PPIs (Lambourne et al.,
2022; Rolland et al., 2014). The DMI predictor is executed using an in-house script
and will be made available on GitHub in the near future.

As the predicted DMIs can elucidate the molecular mechanisms of disease mu-
tations, a colleague is currently investigating the functional consequences of genetic
variants using these predictions.
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2.4 Discussion

In this study, I developed a DMI predictor where the sequences of an interacting
protein pair are used to find occurrences of known DMIs. To reliably detect DMIs, I
used a list of DMI types annotated in ELM and further improved the list by manual
checking. Additionally, I also trained an RF model to score DMI matches, thereby
providing a quantitative assessment to the detected DMIs. Because negative data
are scarce in biology, a common approach is to randomize positive data to simulate
’negative’ data for the training of supervised machine learning models. Care was taken
while generating the ’negative’ data as potential biases could be propagated from the
positive data to the ’negative’ data. This study is unique in that potential biases
were addressed through the use of ’negative’ datasets that were generated in different
ways. Moreover, the training and evaluation of the models were performed using a
fairly balanced dataset and the precision of the models was also reported, making the
assessment more robust and comprehensive.

iELM reported a sensitivity of 84.8% and a specificity of 86.5% without reporting
the associated cutoff. Furthermore, the publication of iELM did not report the preci-
sion of its model, and the above evaluation was determined from a test set that was
heavily imbalanced, with the negative data points outnumbering the positive ones by
almost 30-fold. The developed DMI predictor achieved a similar specificity at around
85% sensitivity (Figure 2.1H), and it can recall around 70% of the known DMIs with
nearly 95% precision (Figure 2.1E). Notably, the DMI predictor managed to achieve
similar performance as iELM without using specific HMMs to detect motif-binding do-
mains. Switching from Pfam HMMs to SMART HMMs as well as using an RF model
likely significantly contributed to the excellent performance of the DMI predictor.

As it takes a motif and one or more domains to form a DMI, a clear limitation
of the study is the lack of domain-specific features. I explored the use of E values
that are returned from HMM matches as a feature but to no avail as the E values can
differ greatly between domains. Since the binding of motifs is highly contingent on
the physicochemical property of the motif-binding pockets on domains, the structures
of domains can provide useful information to the model. Nonetheless, since the DMI
predictor was developed before the release of AF, structural information on binding
domains was not always available during its development. With the release of AF
and its predicted structures, additional domain-specific features can now be incorpo-
rated into the DMI predictor. To this end, structural models predicted by AF can be
transformed into structural embeddings, and these vector representations can be used
as another set of features. Along the same line, given that AF-predicted monomeric
structures are nowadays publicly available, the AF-predicted structures of the domains
in the interaction partner of a motif-containing protein can also be superimposed to
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the structure of a domain known to bind to the detected motif type. This approach
effectively quantifies the structural similarity between a predicted motif-binding do-
main and a known motif-binding domain, and this structural similarity score can be
included as a domain-specific feature. Alternatively, detected DMI matches can also
be modelled by AF-MM, and the confidence metrics derived from the predicted models
can be used as features too. This method, however, may be impractical due to the
time-consuming nature of AF-MM modelling process. Perhaps a more pragmatic ap-
plication of AF-MM would be to model the structures of high-confidence DMI matches
for subsequent experimental validation. In terms of motif detection, the use of regular
expressions could also be overly strict, thereby leading to false negatives. An alterna-
tive approach is to use PSSMs that are less rigid for motif detection. As PSSMs allow
the quantification of the similarity between a match and the PSSM, this similarity
score can also be used as an additional feature. While ELM provides a probability
that reflects the degeneracy of a motif type, the probability represents the likelihood
of a regular expression matching in a disordered region, and not how similar a regular
expression match is to other known instances of the motif. Combining these two motif
detection approaches could potentially yield the highest number of predicted motifs
that can be subsequently matched with their binding domains and evaluated by the
downstream RF model.

Despite these limitations, the developed DMI predictor was able to achieve an
excellent performance. With this automated DMI prediction pipeline, one can gain
further mechanistic insights into interaction networks and formulate testable hypothe-
ses. For example, the high-confidence DMI matches can be experimentally validated,
thereby characterizing the interaction interfaces between interacting proteins. The
functional effects of genetic variants can also be more reliably predicted should they
impact regions where high-confidence DMI matches are detected by the pipeline. As
the detection of motifs is often plagued with stochastic matches, a strict cutoff was
selected to ensure high specificity. Depending on the application, the cutoff can be
adjusted to achieve a higher sensitivity. However, as the current prediction pipeline
operates only on human canonical sequences, future work to include sequences of
alternative isoforms as well as proteins from other proteomes is warranted. In sum-
mary, this study presents a DMI predictor that can be used to detect DMI matches
at large scale. This study furthermore laid out clear limitations and future directions
for sequence-based approaches in characterizing the interfaces of PPIs detected in the
human protein interactome.
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Chapter 3

Evaluation of the 3did database

3.1 Article I: A reference set of hand-curated domain-

domain interface types for high confident inter-

face predictions in protein interaction networks

Manuscript submitted to Bioinformatics Oxford Journal.

Summary

This project focused on producing a reference set of DDI types to evaluate the accuracy
of DDIs predicted in protein interaction networks.

The 3did database currently hosts a large collection of DDI types by annotating
DDIs based on their observed contacts in PDB structures. While 3did provides a direct
means to map DDIs onto protein interaction networks, there is currently no reference
set available to assess the accuracy of DDIs predicted using this approach. To evaluate
the DDI types annotated in the 3did database, a randomly selected subset of 80 DDI
types was manually inspected, resulting in 60% of the DDIs being approved. The main
reason for non-approval was the inaccuracies in the boundaries of domains detected
by HMMs. The manually inspected dataset also served as the training data to build
a logistic regression model. Various features derived from the dataset were tested for
their abilities to discriminate between approved and non-approved DDI types, and the
3did z-score was found to be the most predictive feature in our analysis. Nonetheless,
our result revealed that a stricter cutoff on the 3did z -score than that reported by
3did was necessary to achieve a satisfactory approval rate. Applying the stricter cutoff
on the DDI types from 3did, we subsequently mapped them to the PPIs in HuRI in
an attempt to characterize their interaction interfaces. In total, 342 DDI types were
mapped to HuRI, with 1,533 PPIs having at least one DDI types mapped to them.
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In summary, this project resulted in a valuable reference set of DDIs and provided
an accuracy estimate on the DDIs mapped onto protein interaction networks using
DDI types annotated in 3did.
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A reference set of hand-curated domain-domain interface types for high
confident interface predictions in protein interaction networks
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Abstract

Motivation: While the scientific community can map at increasing pace protein-protein

interactions (PPIs), we lack experimental methods at similar scale to provide structural

information on how these proteins interact with each other. Many PPIs are mediated by

folded domains binding each other. Various computational resources, such as 3did, infer

interacting domain types from observed contacts in protein structures. These

domain-domain interface (DDI) types can be used to predict DDI occurrences in protein

interactions. However, assessing the accuracy of these predictions is difficult because we

lack hand-curated reference sets of verified domain interactions and DDI types.

Results: To generate a reference set of DDI types, we manually inspected 80 randomly

selected DDI types from the 3did resource and approved 60% of them. We found

inaccuracies from Pfam Hidden Markov Model (HMM) domain matches often to be causative

for DDI type non-approval. Using this reference dataset and machine learning, we predicted

a subset of 2411 out of 5724 considered DDI types in 3did to be of high confidence with an

estimated approval rate and sensitivity of 80% and specificity of 73%. Applying this subset of

DDI types for DDI prediction to a dataset of 53000 human PPIs revealed predicted interfaces

for 1533 interactions functioning in proteostasis, gene regulation, kinase and small G-protein

signaling to name a few.

Contact: J.NavejaRomero@imb-mainz.de, K.Luck@imb-mainz.de

Keywords
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Introduction

Protein-protein interactions (PPIs) shape complex communication networks that modulate

essentially all molecular pathways within the cell (Braun & Gingras, 2012). A comprehensive

structural and functional understanding of these molecular interaction networks is thus a

prerequisite to study cellular mechanisms in health and disease (Vidal et al., 2011). While

the systematic mapping of protein interactomes is well advanced for many model organisms

including human, experimental methods lack in throughput to provide a structural resolution

of protein interactomes (Aloy et al., 2004; Huttlin et al., 2021; Luck et al., 2020; Michaelis et

al., 2023). Various computational approaches have been developed to predict interfaces of

known protein interactions. These include the collection of known interface types followed by

searching for the occurrence of these interface types in PPIs using Hidden Markov Models

(HMMs) or regular expressions (Mosca et al., 2013; Weatheritt et al., 2012). Alternatively,

enrichment for interaction modules such as folded domains or short linear motifs among the

interaction partners of a protein can be used to infer possible modes of binding (Huttlin et al.,

2015; Rolland et al., 2014). More recently, deep learning-based tools such as

AlphaFold-Multimer promise to predict occurrences of known as well as novel modes of

protein binding at a structural resolution (Evans et al., 2022). Of note, for any of these

approaches, a collection of bona fide interface types is essential, either for the prediction of

interfaces, the benchmarking of prediction approaches, or the determination whether a

predicted interface corresponds to a known or novel mode of binding.

A common mode of protein binding is mediated by folded domains binding each other

(Liddington, 2004; Wodak & Janin, 2002). Protein domains are independent folding units

with well-conserved sequences and structures. Typically, they are compact regions of

around 100 to 250 residues with a unique tertiary fold and a hydrophobic core (Janin &
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Wodak, 1983). Hundreds of different domain folds/types have emerged through the course

of evolution. Occurrences of the same domain type share specific sequence signatures,

which can be captured in HMMs. These HMMs can then be used to reliably predict domain

occurrences in protein sequences. The most comprehensive collection of HMMs for protein

domains is the Pfam database (recently merged with InterPro) (Finn et al., 2014;

Paysan-Lafosse et al., 2023). In an effort to generate a collection of domain-domain

interface (DDI) types, researchers used Pfam HMMs to scan protein sequences in structures

deposited in the PDB to identify domain occurrences and atomic contacts between them,

resulting in the 3did (3D interacting domains database) resource that currently hosts 14972

putative DDI types (Mosca et al., 2014). The definition of domain-domain contacts in 3did is

distance-based: A domain pair must exhibit at least five non-covalent contacts such as

hydrogen bonds, salt bridges, or van der Waals interactions to be considered a possible DDI

type (Stein et al., 2011). The accuracy of DDI type predictions using this approach strongly

depends on HMMs to accurately capture folded domains and their boundaries. However,

automatic HMM generation in Pfam is primarily based on protein sequence conservation,

likely limiting its ability to specifically predict folded domains with accurate boundaries.

Resources like DOMINE combined DDIs from 3did with DDI predictions from a variety of

different tools resulting in larger predicted DDI collections among which DDIs derived from

3did were deemed as the highest confidence (Yellaboina et al., 2011). Many computational

studies have also used 3did content to develop more sophisticated tools to predict interfaces

between proteins (Karan et al., 2022; Luther et al., 2023; Zhang et al., 2016; Zheng et al.,

2021). While there is no doubt that 3did and other DDI resources are very useful for the

scientific community, we lack understanding about the accuracy of DDI predictions in protein

interaction networks using these resources because we lack reference datasets of manually

curated domain-domain interactions and DDI types. However, reliable accuracy estimates

and low false positive rates are a prerequisite for experimentalists to trust in interface

predictions and embark on their experimental validation.
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To address this need and to identify a very high confidence subset of DDI types, we

manually curated 80 randomly selected DDI types from 3did and were able to approve 60%.

A considerable fraction of non-approved DDI types indeed resulted from incorrectly predicted

domain boundaries and HMMs not corresponding to folded domains. Exploring further

reasons for non-approval enabled identification of features that we used in a logistic

regression model to predict a subset of high confident DDI types in 3did. Applying this

subset of DDI types to a human protein interactome dataset for DDI prediction, we obtained

statistically more significant results compared to full 3did and annotated 1533 PPIs with

predicted DDIs of high confidence.

Results

Generation of a reference dataset of DDI types

To generate a manually curated reference set of DDI types, we aimed to randomly select a

subset of DDI types from 3did and subject the structures and corresponding publications to

manual inspection. In 3did residue contacts are computed between Pfam HMM matches

occurring in the same or different protein chains. 2220 DDI types in 3did (15%) have only

intrachain evidence. While there is evidence that some domain types found to be in contact

with each other within a protein chain can mediate a protein interaction when situated in

distinct protein chains (see also Discussion), it is impossible to evaluate intrachain DDI types

for this ability using available intrachain structures and corresponding publications. Given

limited manpower and time, we decided not to extend our manual curation to experimental

evidence beyond the solved structures and therefore opted to restrict the generation of a

reference dataset of DDI types to those with interchain evidence as reported in 3did.

One of the challenges in crystallography, the method that was used to determine the vast

majority of protein structures deposited in the PDB, is the discrimination of biological

contacts between protein molecules from those that are solely driven by the crystallization
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process. While so-called crystal contacts can hint at interfaces between proteins occurring

under high concentration conditions, for the generation of a high confidence set of DDI

types, we opted to exclude DDI types that are likely based on crystal contacts alone.

Discrimination between biological assemblies and crystal contacts is particularly difficult for

contacts observed between molecules of the same protein, i.e. homodimers, a task with

which even structural biology experts struggle (Elez et al., 2020; Schweke et al., 2023). We

found that 60% (7028) of the DDI types in 3did with at least one interchain interface in a PDB

structure are only derived from structures of homodimers, which we felt unconfident to

evaluate. This leaves us with 5724 DDI types with interchain evidence and at least one

structure with a heterodimeric interface, which we considered further for the generation of a

reference dataset of DDI types (Fig. 1A).

We randomly selected 80 hetero-protein DDI types with interchain evidence for manual

inspection. We approved a DDI type if there was at least one structure supporting that the

given PPI was mediated by contacts between both domains. In order to evaluate a DDI type,

we assessed the publication (if available) reporting a structure for evidence that the two

domains are mediating the PPI. We also inspected the residues observed to be in contact

with each other and their overlap with the corresponding Pfam HMM matches. We further

evaluated to which extent the HMM matches corresponded to folded domains and if most

contacts were mediated by residues belonging to these folded regions. Lastly, we also

evaluated to which extent the reported interface was observed in other structures as

reported in the ProtCID database (Fig. 1B, see also Methods).

3did computes a score and its significance as a z-score for every DDI type. These scores

reflect the significance of the interface in terms of type and number of contacts observed

between residues of both Pfam HMM matches in comparison to random observations. The

higher the score and z-score, the more reliable the DDI type. For each of the 80 selected

DDI types, we ranked all structures from the highest to the lowest 3did score and inspected

561



the top-ranked structures. We quickly realized that either the top-ranked structure was

approved or none of the structures were. We therefore evaluated at most the top two ranked

structures for every DDI type. In total, 95 structures were manually inspected with an

average of 2 hours spent per structure. This work resulted in the approval of 48 of 80

potential DDI types (60%) (Fig. 1C). Of note, non-approval of a DDI type does not

necessarily mean that this DDI type cannot mediate a PPI, but the available structural data

currently does not provide enough evidence. Detailed reasoning for approval and

non-approval is provided for every DDI type and inspected structure in Table S1.

Most often a DDI type was not approved because the observed domain-domain contacts

were considered too few to mediate the PPI (12 DDI types, Fig. 1D). In these cases, we

observed contacts between other domains or neighboring linear motifs in the same structure

that were much more likely to mediate the PPI. For example, a structure between the two

Bombyx mori proteins SP2 and SP3 shows a strong interaction between the Hemocyanin_M

domains of both proteins, which is also discussed in detail in the accompanying study (Hou

et al., 2014). The contact between the Hemocyanin_M domain in SP3 and the

Hemocyanin_C domain in SP2 is, however, very small (Fig. 1E). This interface is not further

discussed in the corresponding publication but is reported as a DDI type in 3did. In another

case, 3did reports a DDI type between the Plug domain of BtuB and the TonB_C domain of

TonB from Escherichia coli. The contact between both domains is minimal and involves part

of a disordered region, which is unlikely to belong to the fold of the Plug domain. The main

contact, which is well described in the literature, is established between a linear motif called

the Ton-box located N-terminal to the Plug domain, binding in beta-strand augmentation to

TonB_C (Fig. 1F) (Shultis et al., 2006). For nine other DDI types, the observed

domain-domain contacts were likely a result from crystallization only ( Fig 1D). For example,

for DDI types such as PF00019_PF00041 and PF12139_PF02910 the authors of the

respective publications studied the corresponding interfaces and dismissed their biological

relevance (Fritz et al., 2002; Healey et al., 2015).
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For five additional DDI types, reported contacts by 3did between protein fragments indeed

likely mediate the interaction observed in the structure, however, at least one of the two

interacting protein fragments does not correspond to a tertiary folded domain. For example,

the Pfam HMM Proteasome_A_N (PF10584) matches in the N-terminal disordered region of

PSMA4, which mediates binding to the AAA domain (PF00004) in protein PSMC1 (Fig. 1G).

In another case, the Pfam HMM corresponds to the known prolyl hydroxylation short linear

motif in hypoxia-inducible factors (HIFs) (Fig. 1H), which is recognized by VHL leading to the

ubiquitination and degradation of HIF (see also the entry DEG_ODPH_VHL_1 in the ELM

DB). The motif sits in a disordered region of HIFs. Of note, the Proteasome_A_N and HIF-1

HMMs are classified as “family” and “domain” HMM types by Pfam, respectively. We also

found a case where the Pfam HMM betaPIX_CC (PF16523) comprises a coiled-coil region

and a C-terminal PDZ-binding motif. The DDI reported by 3did is clearly mediated by the

linear motif in the protein ARHGEF7 binding in beta-strand augmentation to the PDZ domain

of SHANK1 (Fig. 1I). For five of the inspected DDI types we found that existing folds were

further engineered to bind new targets. Ankyrin repeat domains are commonly used to

develop DARPINs while V-set domains are used in antibodies and nanobodies to bind

antigens. DDI types PF00023_PF07686 and PF00571_PF07686 are two examples of such

synthetic interfaces, which should not be used to predict DDIs in physiological PPIs. Among

the 32 non-approved DDI types was also one instance (PF11831_PF08231) where reported

Pfam HMM and PDB chain annotations in 3did were wrong.

Feature annotation for machine learning

Given the considerable number of non-approved DDI types in our curation dataset, the time

needed to manually check a DDI type, and the considerable number of hetero-domain DDI

types with interchain structures in 3did, a clear need arises to computationally identify high

confident DDI types. To train a classifier for this task, we set out to determine features for

DDI types that would serve as input for the classifier. In our curation effort, the most
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important feature supporting a DDI type was its description in an accompanying publication

of the structure. We employed text mining to identify the co-occurrence of domain names in

abstracts but realized that available domain names from the Pfam database are rarely

similar (and essentially never identical) to domain names used by experimentalists studying

these domains (Table 1). We therefore had to exclude text mining of abstracts as a feature to

predict approval of DDI types.

In the manual curation process we found information provided by 3did and ProtCID to be

useful for the annotation of DDI types. From 3did we used as feature the 3did score and

z-score for each DDI type, the fraction of all reported structures for a given DDI type with

interchain evidence as well as the total number of reported structures and the number of

identified residue-residue contact pairs as defined by 3did. From ProtCID we extracted for a

given DDI type and corresponding ProtCID clusters the maximum number of distinct proteins

in a cluster, the minimal sequence identity between proteins from different structures in the

cluster, and the maximum number of crystal forms. All these ProtCID features can be

indicative of how often this type of DDI was observed between diverse protein sequences

that were crystallized under different conditions. The hypothesis is that the more often this

DDI was found in diverse structures, the less likely it is to be an artifact of the crystallization

process. Of these features, the 3did score and z-score, the fraction of structures with

interchain interfaces and the number of residue-residue contacts significantly differed in their

distribution between approved and non-approved DDI types (Fig S1A-H).

Previous studies indicated the potential use of PPI data for the identification of DDI types by

scoring for an enrichment of domain pairs in interacting proteins (Huttlin et al., 2015; Rolland

et al., 2014). To avoid study bias, we referred to two systematically generated human protein

interactome datasets either obtained from yeast two-hybrid screens (hereafter referred to as

the HuRI dataset) or from affinity purification coupled to mass spectrometry experiments

(hereafter referred to as the BioPlex dataset) (Huttlin et al., 2017; Luck et al., 2020). We
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computed for HuRI and BioPlex separately for each DDI type the number of interactions

between proteins with matches of the respective domain types and compared this count to

counts obtained from degree-controlled randomized networks. We determined z-scores,

which were used as a feature. Given the incompleteness of both networks and the restriction

to human PPIs, we were not able to compute these features for 16 out of 80 curated DDI

types because no proteins with matches of either of the domain types occurred in the

network. For the remaining 64 DDI types we observed that the z-score lacked significant

discriminatory power to distinguish between approved and non-approved DDI types (Fig.

S1I-J). Because of this lack of signal and because this feature was not available for a

considerable fraction of our DDI benchmark dataset, we decided to exclude this feature.

Numerous studies, including from our own lab, reported on the ability of AlphaFold-Multimer

(AF) to predict with reasonable accuracy the structure of interacting proteins (Akdel et al.,

2022; Bryant et al., 2022; Lee et al., 2023; Tsaban et al., 2022). We hypothesized that AF’s

ability to accurately predict the structure of a DDI might depend on the “strength” or likeliness

of that DDI to be able to mediate a PPI. Using AF, we generated a model for the top ranked

structure of a given DDI type and computed the DockQ score between the model and actual

structure to assess their similarity. The DockQ score and model confidence computed by AF

significantly differed between approved and non-approved DDI types (Fig. S1K-L) and were

thus selected as features.

To identify DDI types with structures whose interface is partially or fully mediated by

disordered regions, we computed the average of the IUPred values of the interface residues

using either full protein sequences or those resolved in the structures. We obtained mixed

statistical significances (Fig. S1M-N) and selected both as features. Of note, for the

aforementioned feature analyses as well as for the downstream modeling we removed all

DDI types from the benchmark dataset (5 in total) that involved an Ankyrin or V-set domain

since they are commonly used in protein design and thus most often, will not correspond to
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naturally occurring DDIs. The benchmark dataset with all feature annotations is available in

Table S2.

Given the small size of our DDI benchmark dataset in comparison to the large number of

hetero-domain DDI types in 3did, we assessed to which extent the mean of the annotated

features differed between both sets of DDI types and found that all features apart from the

3did score, 3did z-score, and number of residue-residue contacts did not significantly deviate

in their mean (Fig. S2).

Feature selection, training, and testing of logistic regression model

We analyzed the correlations among the features to sort out redundant variables (Fig.

S3A-B). Given the small training dataset, we opted to use logistic regression to predict DDI

approval. We refer to this model as the full model, because it includes the largest set of

variables (Table S3, Fig. S3B). To simplify the model we used backwards stepwise feature

selection to keep only the most informative variables. We also excluded the number of

intrachain structures from the model as its regression coefficient had a very large standard

error, its p-value was very close to 1, and it caused convergence issues (Table S3). The

resulting reduced model consisted of the 3did z-score, AF DockQ, and the IUPred score

(Table S3, Fig. S3C). We also tested a minimal model consisting only of the 3did z-score to

assess if addition of any of the features improved DDI approval prediction compared to using

the 3did z-score alone (Table S3). The full model fit significantly better than the minimal

model (p=0.007; chi-square test), whereas the reduced model was not significantly inferior to

the full one (p=0.336; chi-square test, Fig. 2A-C). We assessed the predictive power of the

models through ROC curve analysis using leave-one-out cross-validation (Fig. 2D). A

bootstrap test failed to identify significant differences in performance among the models

(minimal vs. full: p=0.58; minimal vs. reduced: p=0.32; full vs. reduced: p=0.61). The area

under the curve was 0.795, 0.807, and 0.772 for the full, reduced, and minimal model,

respectively. This suggests that, although the reduced model fits better the training data than
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the minimal model, at least with the current benchmark dataset we could not demonstrate a

significant improvement in prediction accuracy by the addition of further variables. The

overall predictive power of all three models when considering the optimal threshold was

found to be in the range of 78 to 81% sensitivity and 73 to 75% specificity.

The 3did z-score is a robust predictive feature in our analysis. The minimal model indicates

that every increase of the 3did z-score by one unit roughly doubles the odds of approval for

a DDI type (Table S3). The authors of 3did suggest using a 3did z-score of 2.3, which,

however, is not applied by default to 3did content. We found that a z-score cutoff of 2.3

results in an expected DDI type approval probability of 33%. Only much higher z-score

cutoffs of 4.47 and 5.30 can reach a desired approval probability of 80 and 90%,

respectively. Applying a 3did z-score cutoff of 2.3, 4.47, or 5.3 retains 87%, 46%, or 32% of

the hetero-protein DDI types with interchain evidence in 3did (Fig. 2E, Table S4).

Prediction of DDIs in the human protein interactome

The DDI type collection in 3did can be used to predict interfaces in protein interactions by

scanning the protein sequences of two interacting proteins for the presence of HMM

matches that correspond to domain types previously observed to interact with each other.

We applied this prediction strategy to the HuRI dataset and found that more stringent 3did

z-score cutoffs resulted in larger differences between the number of PPIs with a predicted

DDI in HuRI versus degree-controlled randomized networks (Fig. S4). This suggests that

higher 3did z-score cutoffs enrich for functional DDI types. Using a 3did z-score cutoff of

4.47 we predicted at least one DDI for 1533 PPIs in HuRI (Fig. 2F, Table S5). For 135 of

these PPIs, more than one possible DDI was predicted (Fig. 2G). In total, 342 DDI types

resulted in at least one prediction in HuRI and on average a DDI type was predicted to

mediate about 2 to 5 PPIs (Fig 2H). Focusing on the most commonly recurring DDI types

predicted in HuRI (Fig. 2F) we observe DDI types primarily associated with regulatory and

signaling interactions involving ubiquitin-like, BTB, Fbox, and Cullin domain interactions
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functioning in proteostasis, LSM domain interactions functioning in mRNA splicing,

helix-loop-helix, nuclear, and hormone receptor domain interactions functioning in gene

expression, as well as SH3, L27, Ras, kinase, and phosphatase-related domains functioning

more broadly in signal transduction. There were no PPIs with predicted DDIs known to be

part of stable protein complexes, which are more often thought to be mediated by DDIs

compared to other modes of protein binding. This along with previously published

observations indicates a primary detection of regulatory and signaling-related PPIs in

Y2H-based screens (Lambourne et al., 2022; Rolland et al., 2014).

Discussion

Protein interaction interface prediction involving those mediated by folded domains is a

challenge in computational structural biology that many scientists are trying to solve. To aid

in the prediction of highly confident DDIs in protein interactions, we established a reference

set of manually curated DDI types and used it to train a logistic regression model that

enabled prediction of likely high confidence DDI types in 3did. Of note, we based our

curation on DDI types with interchain evidence and contacts observed between

heterodimers. Among this subset, we predicted 2411 DDI types (46%) to be of high

confidence. Application of this filtered set of DDI types for DDI prediction on the HuRI protein

interactome resulted in a DDI prediction for 1533 PPIs. We had excluded all DDI types from

3did that were derived from structurally resolved homodimers due to particular difficulties in

distinguishing biological assemblies from crystal contacts for this class of PPIs. In the future,

specific models trained for this task could be incorporated to curate and rank this class of

DDIs (Schweke et al., 2023). We also systematically excluded DDI types that only have

structural evidence from intrachain contacts. We are aware of many intramolecular modes of

binding that, for example, serve functionally important autoinhibitory roles. There is also

evidence from studying mainly unicellular organisms that interacting domains from distinct

proteins in some species evolved via protein fusion to become part of a single protein chain
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in other species. Furthermore, artificial protein fusions are sometimes used in

crystallography to enhance crystallization. These types of evidence can be obtained by

extending the manual curation process to experimental studies beyond the solved

structures, enabling addition of a fraction of intrachain DDI types to the set of high confident

DDI types in the future. Future DDI curation and prediction efforts may also benefit from

incorporation of protein-protein interface features computed by PDBePISA (Krissinel &

Henrick, 2007).

We acknowledge that our DDI benchmark dataset is small due to limited time and manpower

available to curate DDI types. It is possible that because of the limited size of the training

and test dataset, significant differences between the trained models could not be observed.

This should also be taken into account when interpreting computed prediction performances.

Metrics derived from AF were among the few features that clearly separated approved from

non-approved DDI types. Due to limited computational resources we were not able at this

point to compute this feature across all DDI types in 3did but this is feasible for future

applications. The ability of AF to more accurately model protein interaction interfaces, if they

corresponded to biological assemblies, was also more recently reported elsewhere providing

further evidence for the use of AF in the scoring of interfaces deposited in the PDB

(Schweke et al., 2023). We noted in the curation process that the strongest evidence for

supporting a DDI type was obtained from publications accompanying the released

structures. However, efforts for the use of text mining to automatically extract such

information for incorporation into the logistic regression model failed because there is

essentially no consensus on the naming of folded domains. This analysis urges the scientific

community to develop standards for the naming of individual types of functional modules in

proteins.

A considerable fraction of DDI types were not approved during manual curation because a

HMM match did not correspond to a folded domain but rather a conserved disordered
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region. In other cases the HMM match comprised next to a folded domain a short disordered

region that often corresponded to a short linear motif, which was actually mediating the

interaction. Pfam HMMs are classified into family, domain, repeat, and signal types, all of

which are considered in the search for domain-domain contacts in 3did to the best of our

understanding. However, the Pfam HMMs that we found matching to disordered regions are

classified as family or domain type meaning that a restriction to these HMM types would not

have helped identifying these cases. These observations highlight often neglected limitations

from Pfam HMMs, which sometimes do not correspond to folded domains and whose match

boundaries often do not correspond to the actual boundaries of the folded regions. Now, with

a high confidence structural model from AF at hand for most protein sequences in UniProt,

the definition and classification of Pfam HMMs should be revisited and could be aligned with

structural annotations provided by CATH for example, to build a next generation of domain

type classifications and search algorithms (Bordin et al., 2023; Sillitoe et al., 2021; van

Kempen et al., 2023). Ultimately, such resources can be combined with a systematic

classification of interface types, which is ever more needed in the advent of

interactome-wide protein complex predictions thanks to advances in deep learning. Our

study highlighted limitations in currently available sets of DDI types and provided a

short-term solution as well as long-term perspectives towards a comprehensive and high

quality classification of interface types.

Methods

Computer code for the processing and analysis of all data apart from the modeling was

written in Python3 (version 3.9.5) in a Jupyter Notebook environment using the pandas,

numpy, matplotlib, seaborn and scipy libraries (Harris et al., 2020; Hunter, 2007; McKinney,

2010; Virtanen et al., 2020; Waskom, 2021).
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Processing of 3did content

3did content was downloaded from 3did.irbbarcelona.org/download/current/3did_flat.gz. The

downloaded file contains DDI interfaces identified in 3D structures of the PDB. Multiple

interfaces can be related to the same DDI type, if the same two domains are found to be in

contact with each other. Each interface is uniquely identified by the Pfam-Pfam combination

of the interacting domains, the PDB structure it was detected in as well as the ID(s) of the

chain(s) the domains were detected in. Furthermore, 3did provides their 3did score and

z-score for each interface, as well as the interacting residues for both domains involved in

the DDI type. The number of residue-residue contacts per DDI type was derived from the list

of contacting residues of the domains mediating the interaction for the interface with the

highest 3did score. Intrachain DDI types were defined as being supported only by structures

exhibiting intrachain interfaces. If both domains mediating the interaction had the same chain

ID, the interface was classified as intrachain. Homo-protein DDI types were defined to be

only supported by homodimeric interfaces between the same protein UniProt ID. To this end,

we retrieved the UniProt IDs of the proteins present in structures with interfaces formed by a

certain DDI type along with the respective chain IDs using the GraphQL-based API of the

RCSB PDB. If multiple interfaces of the same DDI type are present in one structure, we

selected the interchain interface with the highest 3did score of this structure. If no interchain

interface was present in a structure, the intrachain interface with the highest 3did score was

kept as the representative interface for the structure.

Development of a manual curation standard and manual curation

For the manual curation of the 80 randomly selected DDI types, we primarily relied on

assessing the publication(s) of the structures exhibiting a DDI interface (if they were

available). This was conducted by searching for a description of the DDI, either affirming the

interaction between the respective regions or identifying the contact as a crystallographic

artifact. We did not require the authors to refer to the specific Pfam domains but accepted
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the description of an interaction between the regions corresponding to the Pfam domains.

Furthermore, we evaluated information provided in the publication about interaction

stoichiometries, the localization of both proteins, and other functional background of the

interaction. This information was especially helpful to evaluate the DDI type, if the DDI itself

was not described in the publication. We also investigated whether the interacting proteins

were the result of synthetically engineered protein scaffolds or whether the structure

contained a specifically designed antibody binding its target protein. If the DDI was

described as a functional interface meditating the PPI within the publication, we considered

this as sufficient to evaluate the DDI type as approved. Following the assessment of the

publication(s), we continued the curation process by inspecting the residue-residue contacts

between the domains of the DDI using the PyMOL Molecular Graphics System (version

2.5.0). The ProtCID database provides metrics for interaction interfaces to aid in the

identification of protein contacts that likely originated from crystallization. ProtCID is based

on the assumption that conservation of biological assemblies among homologous proteins

identified in different crystal forms is unlikely to be the result of crystallization alone. They

provide clusters of interfaces present in PDB structures in at least two different crystal forms,

with further annotations including the PDB structures contributing to the cluster, the UniProt

IDs of the proteins in the structures, the minimal sequence identity of the proteins in the

cluster or the crystal forms of the PDB structures in the cluster. As the final step in our

manual curation, we queried the web server of the ProtCID database

(http://dunbrack2.fccc.edu/ProtCiD/default.aspx) with the Pfam-Pfam combination of a given

DDI type and checked for available clusters and derived the number of different crystal forms

as well as the minimal sequence identity. If there was a cluster existing that included the

curated structure(s) of the DDI type that had a minimal sequence identity < 80% and showed

at least 5 different crystal forms, we approved the cluster as supporting the DDI type. An

interface present in a PDB structure supporting a specific DDI type was finally approved, if

the related publication(s) described the interface to be able to mediate the respective

protein-protein interaction. In case the available literature did not refer to the interface at all,
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we approved an interface, if the detected residue-residue contacts between the Pfam

domains agreed with known stoichiometries and subcellular localizations of both proteins

(i.e. interfaces between extracellular hormones and intracellular domains of receptors were

not approved) and the contact between the domains provided a major interface for the

interacting proteins. Furthermore, we included ProtCID information, if available, to assess

whether the interface represents a crystal contact or a biologically relevant interaction. If

there was a related publication available that provided evidence for the interface to be the

product of crystallization or a synthetically engineered complex, we did not approve the

interface.

Feature annotation for machine learning

All features for the trained classifier derived from 3did were obtained from the 3did download

mentioned earlier. ProtCID cluster data for Pfam-Pfam interactions that was used as features

for model training was kindly provided by the Dunbrack lab. We downloaded the HuRI and

BioPlex dataset from the supplementary information from Luck et al. (2020) and removed all

homodimers prior to network randomization. 1000 degree-controlled randomized PPI

networks of each of the HuRI and BioPlex network were generated using the igraph library

degree_sequence() function in python. As the networks comprise only Ensembl gene IDs of

the interacting protein pairs, we used Bioconductor BiomaRt to map the Ensembl gene IDs

to their respective UniProt IDs. This was necessary to obtain annotations for proteins from

other resources such as UniProt. We downloaded the Pfam HMM matches for all Swiss-Prot

reviewed human proteins from Interpro (Paysan-Lafosse et al., 2023) along with their

UniProt IDs in a .json file, so that we could annotate the Pfam domains for every protein in

the HuRI and BioPlex networks based on their UniProt IDs. The z-scores for a given DDI

type for the HuRI and BioPlex network were computed separately by first determining the

number of PPIs in each respective network where both proteins matched the Pfam HMMs of

a given DDI type, followed by subtracting from this count the mean number of PPIs with the
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DDI observed in the randomized network. Then, the difference was divided by the standard

deviation of the PPI count from the randomized networks to derive the z-scores.

AlphaFold Multimer version 2.2.0 was used to generate models of the interaction between

the domains of a given DDI type. To this end, we used PyMOL (version 2.5.0) to select the

sequences in the structure that corresponded to both Pfam HMM matches for export. If the

HMM matches did not fully cover the folded regions of either domain then the sequence(s)

were extended, respectively, and an additional 10 residues added to the N- and C-terminus

of the domains prior to export. This was done to ensure that all residues important for the

fold of the domain were included as prior experience showed that AlphaFold models for

interacting proteins are hugely misled if the folds of the domains are not complete. These

sequences were used as input for model prediction by AlphaFold Multimer version 2.2.0. For

running AlphaFold, we used the default query databases provided by AlphaFold on its

GitHub page. The predictions were done using the full_dbs option and the use of template

was allowed by setting the flag max_template_date to 2020-05-14. We used CPUs to relax

the predicted models by toggling the flag use_gpu_relax to False. Five models were

predicted with a single seed per model by setting the flag

num_multimer_predictions_per_model to 1. The calculation of the DockQ score was done as

described by Basu & Waller (2016). For the computation of the fraction of disordered

residues at the interface, we used the structure of a DDI type with the highest 3did score and

retrieved IUPred2A values for the protein sequence used for crystallization as well as for the

full-length sequence of the proteins containing the domains forming a DDI using a local

installation of IUPred2A and the short disorder prediction mode (Mészáros et al., 2018). We

retrieved the sequences used for crystallization using PyMOL (version 2.5.0) and its

sequence export function. The full-length sequences were retrieved using the UniProt API.

We extracted the IUPred2A scores for the residues in both proteins that were listed as

contacting residues according to 3did and calculated the average IUPred2A score of those

residues to use as a feature, either using the sequences used for crystallization or the

full-length sequences. We used both sequence versions because sequence context can
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influence disorder prediction by IUPred. For assessment of statistical significance of the

individual features, a Mann-Whitney-U test was performed for the approved and

non-approved subsets of DDI types in the manual curation set.

Statistical modeling

Model training and analysis was performed with code written in R version 4.3.0. The logistic

regression and leave-one-out cross validation were performed using R base functions. Odds

ratios are obtained from the logistic model estimates through the function , where𝑓(𝑥) = 𝑒𝑥

, and is the estimate from the logistic model (Agresti, 2012). ROC curves and𝑒 ≈ 2. 72 𝑥

optimal thresholds for calculating sensitivity and specificity (determined using Youden’s

criterion) were computed using the package pROC version 1.18.2. The package glmtoolbox

version 0.1.7 was used to compute Hosmer-Lemeshow goodness-of-fit tests. All code is

available at https://github.com/KatjaLuckLab/DDI_manuscript including the feature table for

model training.
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Tables

Table 1. Examples of domain names in Pfam/InterPro and corresponding domain names
used in publications for selected DDI types in 3did indicated with their Pfam identifiers.
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Figures

Fig. 1. Classification of DDI types in the 3did database and manual curation. A) Schematic
describing the classification of DDI types from 3did and from which subset the sample of DDI
types were drawn for manual curation. B) Schematic describing the manual curation
procedure. C) Pie chart showing the fraction of approved and non-approved DDI types from
manual curation. D) Pie chart showing categories and fractions of non-approved DDI types.
E-I) Exemplary structures and domain architectures of protein pairs from non-approved DDI
types. Red lines mark the DDI as reported in 3did. Structures were obtained from PDB IDs
3wjm, 2gsk, 6epf, 6gfx, and 3l4f.
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Fig. 2. Model training and DDI prediction in HuRI. A-C) Empirical fit assessment is shown for
the full (A), reduced (B), and minimal model (C). The DDI training dataset was split in 10
groups by deciles and for each group the proportion of approved DDI types is shown. The
z-score threshold of 2.3 (y=0.31), 4.47 (y=0.8), and 5.30 (y=0.9) are plotted in blue, purple,
and red dashed lines, respectively in panel C. D) ROC curves for all three models computed
using leave-one-out cross-validation. E) Proportion of heteroprotein DDI types with
interchain evidence in 3did retained based on increasing 3did z-score cutoffs. F) Network of
PPIs from HuRI with predicted DDIs. Shown are PPIs with the most commonly predicted DDI
types. Edges are colored based on DDI type predictions. Predicted DDI types are indicated.
Nodes are labeled with gene symbols. G) Histogram showing the number of PPIs based on
how many different DDI types were predicted to occur in any given PPI (outliers excluded
from the plot). H) Histogram showing how many DDI types were predicted to occur in how
many PPIs.
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Supplementary Information

Fig. S1. Feature exploration to discriminate approved from non-approved DDI types. A-N)
Boxplots showing the distribution of approved and non-approved DDI types for different
features as indicated on the y-axis. Significances were computed using the Mann-Whitney-U
test.
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Fig. S2. Representativity analysis of features in manual curation DDI dataset in comparison
to the subset of hetero-protein DDI types with interchain evidence. A-L) The average value
in the different statistics for the curation dataset is shown as a red line overlaying the
distribution obtained by random sampling of the 3did DDI types with n=75.
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Fig. S3. Correlation matrices between features. A) Correlation matrix and hierarchical
clustering of all features considered in this study. To compute correlations, pairwise complete
data were used. B) Correlation matrix of the features used for model training. C) Pairwise
scatterplot of the features used in the reduced model.
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Fig. S4. Enrichment analysis for the number of PPIs in HuRI predicted with a DDI using
different subsets of DDI types based on increasing confidence as defined by indicated 3did
z-score ranges (A-D). Z-scores indicated in the plot represent enrichment over background
distribution. The number of PPIs with a predicted DDI were normalized by the number of DDI
types available in the corresponding subset.
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Chapter 4

Benchmarking AlphaFold-Multimer
and its application in characterizing
novel interfaces

4.1 Article II: Systematic discovery of protein inter-

action interfaces using AlphaFold and experimen-

tal validation

Summary

This project focused on benchmarking AF-MM and its metrics, and on applying it to
predict novel interaction interfaces between proteins.

AF-MM is an AI-based tool for the structural prediction of protein complexes.
Numerous studies have tested the ability of AF-MM to predict different interface
types. However, there is a lack of a comprehensive assessment of the sensitivity,
specificity, and potential biases of AF-MM and its metrics. Such an assessment of AF-
MM is paramount for its application in predicting PPI interfaces. To systematically
benchmark AF-MM’s ability to predict the structures of DMIs, we used a list of DMIs
whose structures were available, and their minimal interacting regions (a domain and
a motif) were subject to structure prediction by AF-MM. The predicted models were
evaluated in reference to the solved structures. We found that 35% of the DMIs were
predicted so accurately that even the sidechains of the motifs were correctly positioned,
and for another 32%, only the backbones but not the sidechains of the motifs were
correctly predicted.

Despite AF-MM outputting various metrics that evaluate the quality of the pre-
dicted models, no clear criteria are provided by AF-MM to deem a model to be of
high confidence. Different metrics were assessed for their abilities to discriminate be-
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tween known DMIs and randomly paired DMIs. Cutoff values on the best-performing
metrics were subsequently derived to achieve the optimal separation of good and bad
models. We then applied AF-MM on DMI instances annotated in ELM that lack struc-
tural information, and the predicted models were evaluated using the cutoff values.
Experimental validation was subsequently performed to verify one of the predicted
interfaces.

We further examined the effect of sequence length on prediction performance of AF-
MM, and found that sequence length had a detrimental effect on prediction accuracy.
This result led us to devise a strategy that fragments protein sequences into short
and overlapping fragments for AF-MM predictions. While this approach boosted the
sensitivity of AF-MM at detecting potential interaction interfaces between interacting
proteins, we also observed a decrease in AF-MM’s specificity. In spite of filtering the
models with the derived cutoff values, manual inspection of the high-scoring models
remained necessary to gauge their validity. Some of the high-scoring models were also
experimentally validated.

In summary, this project provided a thorough assessment of AF-MM and its met-
rics, explored the use of AF-MM to predict novel PPI interfaces, and highlighted
potential caveats in its application.
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Abstract

Structural resolution of protein interactions enables mechanistic
and functional studies as well as interpretation of disease variants.
However, structural data is still missing for most protein interac-
tions because we lack computational and experimental tools at
scale. This is particularly true for interactions mediated by short
linear motifs occurring in disordered regions of proteins. We find
that AlphaFold-Multimer predicts with high sensitivity but limited
specificity structures of domain-motif interactions when using
small protein fragments as input. Sensitivity decreased sub-
stantially when using long protein fragments or full length proteins.
We delineated a protein fragmentation strategy particularly suited
for the prediction of domain-motif interfaces and applied it to
interactions between human proteins associated with neurodeve-
lopmental disorders. This enabled the prediction of highly confident
and likely disease-related novel interfaces, which we further
experimentally corroborated for FBXO23-STX1B, STX1B-VAMP2,
ESRRG-PSMC5, PEX3-PEX19, PEX3-PEX16, and SNRPB-GIGYF1
providing novel molecular insights for diverse biological pro-
cesses. Our work highlights exciting perspectives, but also reveals
clear limitations and the need for future developments to maximize
the power of Alphafold-Multimer for interface predictions.
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Introduction

Protein-protein interactions (PPIs) are essential for the proper
functioning of essentially all cellular processes. The last decade has

seen tremendous progress in the systematic mapping of human
protein interactions enabling gene function prediction and the
study of genotype-to-phenotype relationships (Luck et al, 2020;
Drew et al, 2017; Huttlin et al, 2021). However, to understand the
molecular function of individual PPIs, co-existence or mutual
exclusivity of partner proteins in protein complexes, and the effect
of mutations on protein function, structural information on how
these proteins interact with each other is required. Unfortunately, a
structure at atomic resolution is only available for ~4% of known
human PPIs (Luck et al, 2020). Modular proteins interact with each
other using a variety of different functional elements such as stably
folded domains, intrinsically disordered polypeptide regions, short
linear motifs (hereafter referred to as motifs), or coiled-coil helices
forming domain-domain, domain-motif, disorder-disorder, or
coiled-coil interfaces for example. Resources such as 3did (Mosca
et al, 2014) or the ELM database (ELM DB) (Kumar et al, 2022)
collect observed contacts between domain types and between
domains and motifs, respectively. Such interface type collections
can be used to predict occurrences of known interface types in
protein interactions (Weatheritt et al, 2012; Mosca et al, 2013).
However, it is reasonable to expect that many more protein
interface types remain to be discovered. This is likely particularly
true for motif-mediated PPIs, which are anticipated to number in
the hundreds of thousands or millions (Tompa et al, 2014). Motifs
are short stretches of amino acids in disordered regions of proteins
that usually adopt a more rigid structure upon binding to folded
domains in interaction partners (Davey et al, 2012). Motif-
mediated interactions are of moderate binding affinity and thus,
are particularly suited to mediate dynamic cell regulatory and
signaling events (Van Roey et al, 2012). However, due to the
transient nature of their interactions and the disorderliness of
motif-containing proteins, this mode of binding is also expected to
be highly understudied. Systematically generated human protein
interactome maps (Luck et al, 2020; Huttlin et al, 2021) are likely a
treasure trove for the discovery of novel interface types, yet no good
experimental or computational methods exist to systematically map
or predict protein interaction interfaces at scale.
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The release of the neural network-based software AlphaFold (AF)
was not only a breakthrough for the prediction of monomeric structures
of proteins (Jumper et al, 2021) but multiple studies published shortly
thereafter also suggested the ability of AF to predict structures of
pairwise protein interactions and complexes. Sensitivities of around 70%
were reported using benchmark datasets of structurally resolved protein
interactions originally developed to evaluate docking methods (Akdel
et al, 2022; Bryant et al, 2022; Johansson-Åkhe et al, 2021;
preprint:Evans et al, 2021). Other studies focused on structures of
domain-motif interfaces to specifically evaluate AF’s ability to predict
structures for this mode of binding, reporting similar success rates
(Akdel et al, 2022; Johansson-Åkhe et al, 2021; Tsaban et al, 2022). Only
a few studies have also evaluated AF’s specificity for the prediction of
interface structures using controls such as random protein pairs or
mutation of motifs to poly-alanine stretches (Akdel et al, 2022;
Johansson-Åkhe et al, 2021; Tsaban et al, 2022). Different benchmark-
ing studies used different versions of AF and reported on different
metrics for their ability to distinguish good from bad structural models
(Bryant et al, 2022; O’Reilly et al, 2023; Tsaban et al, 2022;
preprint:Evans et al, 2021; Teufel et al, 2023). We generally lack a
comprehensive assessment of the latest AF releases and metrics across
different types of PPI interfaces for their sensitivity, specificity, and
potential biases for the prediction of complex structures.

In a landmark study, researchers applied AF onto 65,000 human
PPIs derived from a yeast two-hybrid-based interactome map
(hereafter referred to as HuRI) and highly confident co-complex
associations to structurally annotate the human interactome with AF-
derived models. High confidence models were obtained for about
3000 PPIs (Burke et al, 2023). The authors noted a smaller fraction of
highly confident structural models obtained for PPIs from the HuRI
dataset compared to the co-complex dataset and reported that
proteins in HuRI contain more intrinsic disorder and are less
conserved compared to proteins from co-complex datasets. AF model
confidence scores also increased for PPIs with proteins that are less
disordered and more conserved, indicating that AF predictions work
less well for PPIs mediated by interfaces involving disordered regions
such as domain-motif interfaces, which likely dominate the human
interactome (Tompa et al, 2014). However, AF benchmarking studies
reported similarly high success rates for domain-motif interfaces
compared to general docking benchmark datasets (Tsaban et al, 2022;
Akdel et al, 2022). These discrepancies in sensitivities could be a
result of two possible factors. First, they might point to differences in
AF performance if small interacting fragments are used for interface
prediction, as done in the benchmark studies, versus full length
sequences used for structure prediction in (Burke et al, 2023). Second,
these discrepancies could also point to difficulties of AF to predict
structures of interface types involving disordered regions that have
not been solved before, of which there are likely many in HuRI. It
remains to be addressed to what extent these two possible factors
contribute to the challenges encountered specifically for domain-
motif interface modeling.

Determination of accuracies of novel predicted interface
structures by AF ultimately requires experimentation. AF interface
predictions for individual PPIs have occasionally been experimen-
tally corroborated (Mishra et al, 2023; Bronkhorst et al, 2023). A
more systematic experimental confirmation of AF interface models
has been conducted using crosslinking mass spectrometry (XL-MS)
(Burke et al, 2023; O’Reilly et al, 2023). While in-cell XL-MS is a
very elegant approach to obtain experimental information on PPI

interfaces in unperturbed settings, it is still a method that is only
accessible to few experts in the field. Other experimental
approaches are needed, which can, ideally at high throughput,
confirm predicted interfaces for PPIs. In this study, we thoroughly
benchmarked the two most recent versions of AlphaFold-Multimer
(hereafter referred to as AF) for their ability to predict domain-
domain and domain-motif interfaces (DDIs and DMIs). We found
that prediction accuracies drop when using longer protein
fragments or full length proteins for interface predictions and
developed a strategy particularly suited for the prediction of novel
domain-motif interfaces in human PPIs. We applied this strategy to
62 PPIs from HuRI that connect disease-associated proteins and
experimentally assessed the obtained interface predictions for seven
PPIs using a plate-based bioluminescence resonance energy
transfer (BRET) assay (Trepte et al, 2018) combined with site-
directed mutagenesis. We identify novel interface types and report
on important limitations and sources of errors in AF-derived
structural models, which pave the way for future improvements in
the field.

Results

Evaluating AlphaFold’s accuracy for predicting domain-
motif interfaces

To thoroughly assess the ability of AF to predict structures of
binary protein complexes that are formed by a DMI, we extracted
information on annotated DMI structures from the ELM DB
(Kumar et al, 2022). We selected one representative structure per
motif class (136 structures in total), manually defined the minimal
domain and motif boundaries, and submitted the corresponding
protein sequence fragments for interface prediction to AF (Fig. 1A;
Dataset EV1). The domain sequences from this benchmark dataset
mostly shared 20–30% sequence identity (Appendix Fig. S1A). To
evaluate the accuracy of the predicted structural models, we
superimposed the actual structure and predicted model on their
domains and based on this superimposition, we computed the all
atom RMSD between the motif of the predicted model and the
actual structure (Fig. 1A). We found that 35% of the structural
models were so accurately predicted that even the side chains of the
motif were correctly positioned while for another 32% the
backbone but not the side chains of the motif were accurately
predicted. For 26% of the structures the motif was modeled into the
correct pocket, but in a wrong conformation, while, for the
remainder of the structures, AF failed to identify the right pocket
(Fig. 1A; Dataset EV1). A similar performance was obtained when
using the DockQ metric (Appendix Fig. S1B,C; Dataset EV1). This
performance is unaltered when using or switching off AF’s template
function (Fig. S1D,E). The use of DMI structures annotated by the
ELM DB enables us to explore potential differences in AF’s
performance regarding motif properties. We find no significant
differences in average model accuracy between different categories
of motif classes (two-sided Mann–Whitney test on all pairwise
combinations, n: DEG = 10, DOC = 21, LIG = 94, TRG = 9, MOD =
2, α = 0.05, test statistics of all pairwise combinations between 15
and 852, Appendix Fig. S1F), although the variance in model
accuracy appears to differ between the motif classes. Similarly, we
found no significant difference in prediction accuracy when
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stratifying by the secondary structure elements adopted by the
motifs (two-sided Mann–Whitney test on all pairwise combina-
tions, n: helix = 42, strand = 7, loop = 87, α = 0.05, test statistics of
all pairwise combinations between 184 and 2029, Appendix Fig.
S1G), nor by how hydrophobic, symmetric, or degenerate the motif

sequence is (Pearson r < abs(0.08), α = 0.05 Appendix Fig. S1H–J).
AF models display significantly more differences to structures
solved by other methods, i.e., NMR, than X-ray crystallography
(two-sided Mann–Whitney test, n: X-ray = 115, Others = 21,
p < 0.01, test statistics = 811, Appendix Fig. S1K) possibly because
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Figure 1. Benchmarking and application of AF for DMI interface prediction using minimal interacting fragments.

(A) Schematic illustrating the assembly of the DMI positive reference dataset and evaluation of AF prediction accuracies by superimposition of the solved and modeled
structures. Blue and cyan indicate the domain and motif in the native structure, respectively. Orange and yellow indicate the domain and motif in the modeled structure,
respectively. Proportion of structures of DMIs predicted by AF to different levels of accuracy is shown on the right. (B) Area under the Receiver Operating Characteristics
Curve (AUROC) for different metrics using the DMI benchmark dataset as positive reference and the following different random reference sets: Left, 1 mutation introduced
in conserved motif position; middle, 2 mutations introduced in conserved motif positions; right, random reshuffling of domain-motif pairs. Gray horizontal line indicates the
AUROC of a random predictor. (C) Superimposition of AF structural model for motif class MOD_SUMO_rev_2 (orange) with homologous solved structure (PDB:1KPS)
from motif class MOD_SUMO_for_1 (blue). The motif sequence used for prediction is indicated at the bottom, colored by pLDDT (dark blue=highest pLDDT). (D)
Superimposition of AF structural model for motif class CLV_C14_Caspase3-7 (orange) with homologous structure (PDB:5IAN) solved with a peptide-like inhibitor (blue).
The motif sequence used for prediction is indicated at the bottom, colored by pLDDT (dark blue=highest pLDDT). (E) AF prediction of a LIG_HCF-1_HBM_1 motif in
CREBZF (orange) binding to the beta-propeller Kelch domain of HCFC1 (gray). Mutated domain residues for experimental testing are colored in green. (F) Close up on the
interface shown between CREBZF and HCFC1 from (E). Coloring is the same as in (E). Key conserved motif residues are drawn as sticks. Mutated residues in the domain
and motif for experimental testing are labeled. (G) BRET titration curves are shown for wildtype interactions and mutant constructs for CREBZF-HCFC1 pairs for two
biological replicates, each with three technical replicates. Protein acceptor over protein donor expression levels are plotted on the x-axis determined from fluorescence and
luminescence measurements, respectively.

Chop Yan Lee et al Molecular Systems Biology

© The Author(s) Molecular Systems Biology 3

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on January 17, 2024 from

 IP 2a02:a210:4bb:7180:a0e5:6721:8917:1205.

92



NMR structures better represent structural dynamics that AF
cannot capture, since it was trained to predict the crystallized forms
of proteins.

The all-atom motif RMSD significantly anti-correlates with
various AF-derived metrics (Pearson r =−0.55, p-value < 0.05
Appendix Fig. S1L,M; Dataset EV1) suggesting that these metrics
are indicative of good versus bad structural models and can be used
for de novo interface predictions. To evaluate AF’s ability to
identify high confident structural models of DMIs, we generated
three different random DMI datasets. First, we randomly paired
domain and motif sequences from the positive reference dataset
taking into account that no motif sequence was paired with a
domain sequence from the domain type that the motif is known to
interact with. Second and third, we mutated one and two key motif
residues, respectively, to residues of opposite chemico-physical
properties. Based on the conservation of these key motif residues,
we assume that the mutations would be disruptive to binding, at
least when experimentally tested using minimal interacting protein
fragments. Receiver operating characteristic (ROC) and precision-
recall (PR) curves using the positive and random datasets (Fig. 1B;
Appendix Fig. S2A,B; Dataset EV2) show that the domain interface
residue pLDDT (for all metric definitions, see Methods) or the
number of atoms or residues predicted to be in contact with each
other, discriminated poorly between all reference datasets (AUC
around 0.64). Furthermore, we observed that all tested metrics
failed to discriminate interacting from non-interacting interfaces
when mutating one motif residue (max AUC 0.66). However, the
AF-derived metrics model confidence (preprint:Evans et al, 2021),
average interface residue pLDDT, average motif interface residue
pLDDT, pDockQ (Bryant et al, 2022), and iPAE (Teufel et al, 2023)
discriminated well between both reference datasets when rando-
mizing domain-motif pairs or introducing two motif mutations
(max AUC 0.86, ROC statistics and ideal cutoffs can be found in
Dataset EV2). We also evaluated whether the top 5 reported models
by AF tend to be more similar to each other when corresponding to
a correct structural model (Pozzati et al, 2022) and found that this
feature has moderate predictive power (Appendix Fig. S2C).

Application of AlphaFold for providing structural models
for motif classes without available structural data

After evaluating the accuracy of AF to predict DMIs using minimal
interacting regions, we aimed to use this setup for the prediction of
structural models for motif classes in the ELM DB for which no
structure of a complex has been solved yet. We identified 125 such
motif classes based on ELM DB annotations. Of those, we selected
all domain-motif instances where both the motif and the domain
were derived from human or mouse proteins and submitted the
corresponding domain and motif sequences for structure predic-
tion to AF (Dataset EV3). Using a motif chain pLDDT cutoff of >
70, we obtained confident structural models for 21 motif classes.
We manually inspected the structural models and noticed that even
though these ELM classes have no annotations with structures,
solved structures for an exact ELM instance or a very likely new
instance for the ELM class are available for 11 out of the 21 cases.
For most others, a close homolog structure had been solved, i.e., for
LIG_MYND_3 and LIG_MYND_1, a structure solved by NMR for
a LIG_MYND_2 interaction is available (Appendix Fig. S2D,E). For
MOD_SUMO_rev_2, a structure of a reversed motif is available

(and annotated as such in the MOD_SUMO_for_1 class). Here it is
interesting to see how very dissimilar binding modes (flexible for
MOD_SUMO_for_1, helical for MOD_SUMO_rev_2), are still able
to place the important binding residues in the same pockets
(Fig. 1C). For CLV_C14_Caspase3-7, the structure of the caspase
bound to peptide-like inhibitors has been solved (e.g. PDB:1F1J,
PDB:5IAN, PDB:6KMZ), and structures of more distant caspases
bound to a cleaved peptide substrate are also available. For
proteases, one great advantage of AF is the ability to model both the
catalytically active enzyme and an uncleaved substrate, which is
practically impossible to solve experimentally (Fig. 1D).

Finally, for LIG_HCF-1_HBM_1 we were not able to identify a
homologous structure in the PDB, hence, our AF-derived structural
models for this motif class are likely novel. Motifs of this class are
bound by the N-terminal beta-propeller Kelch domain of HCFC1
consisting of six Kelch repeats. Kelch domains have been shown to
bind to motifs at a number of different sites, and thus, without
prior knowledge, it is difficult to determine where the HCFC1-
binding motif (HBM) would bind. HCFC1 is a transcription factor
that associates with other transcription factors (Lu et al, 1997),
splice factors (Ajuh et al, 2002), and cell cycle regulators (Freiman
and Herr, 1997; Machida et al, 2009). We generated AF models of
high confidence for the HCFC1 Kelch domain interacting with
multiple motif instances that are annotated in the ELM DB. All
complexes show the tyrosine of the motif docked into a deep pocket
at the bottom/top of the Kelch domain (Fig. 1E,F; Appendix Fig.
S2F–H), with slight variations in how the tyrosine is exactly
positioned in the pocket (Fig. S2F–H). Based on clone availability
we selected the structural model between HCFC1 and CREBZF for
experimental validation. For this purpose, we used a BRET protein
interaction assay that is based on transient overexpression of two
proteins in HEK293 cells (Trepte et al, 2018). Both proteins are
expressed as fusion constructs either to the Nanoluc luciferase (the
donor) or mCitrine (the acceptor). Interaction of both proteins
results in a BRET from the oxidized substrate of the donor to the
acceptor molecule, if both are close enough to each other for the
BRET to occur (see Methods for details). We observed significant
binding and BRET saturation when assaying wildtype CREBZF and
HCFC1 proteins (Fig. 1G; Appendix Fig. S2I,J). Mutation of the
[DE]H.Y motif tyrosine to alanine (Y306A) or mutation of two
residues in the Kelch domain pocket (L257F, L138F), which are
modeled to be in contact with the motif tyrosine or histidine
residue (Fig. 1F), strongly reduced BRET signals indicating
weakening or loss of binding (Fig. 1G; Appendix Fig. S2I,J). A
pathogenic mutation (S225N, source ClinVar (Henrie et al, 2018))
close to the pocket slightly reduced expression levels of HCFC1 but
did not result in loss of binding (Fig. 1F,G; Appendix Fig. S2I,J).
Our experiments suggest that a potential pathogenic mechanism of
this mutation is not mediated via perturbed binding of partners to
the Kelch repeat domain pocket of HCFC1 that we identified in this
study. Unfortunately, no assertion criteria for the annotation of this
mutation to be pathogenic is provided by ClinVar meaning that the
mutation is either not pathogenic after all or its pathogenicity is
mediated via another perturbed function not tested in this study.
Collectively, these experimental results support the structural
models of the HCFC1 Kelch domain pocket - motif interaction
and overall provide highly confident structural models for multiple
motif classes of the ELM DB without available structural
information (Dataset EV4).
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Evaluation of AlphaFold’s ability to predict interfaces in
full length proteins

Most PPIs known to date have been identified using full length
protein sequences in systematic interactome mapping efforts. For
the vast majority of these PPIs, no fragment or interface
information is available. Thus, the question emerges how AF
would perform on DMI predictions when longer protein sequences
or full length proteins are submitted. To answer this question we
selected 31 DMI structures from the positive reference dataset used
above and generated random domain-motif pairs of those as
negative control. The selected structures were sampled from
different prediction accuracy categories (Fig. 1A; Dataset EV5).

We then gradually extended the motif and domain sequences by
first adding flanking disordered regions, then neighboring folded
domains before using the full length sequences (Fig. 2A).
Comparison of the motif RMSD computed for extended versus
minimal domain-motif pairs from the positive reference dataset
revealed that the addition of flanking disordered regions on the
motif or domain side sometimes slightly improved prediction
accuracies while the addition of neighboring structured domains or
the use of full length sequences led to a significant worsening of
model accuracies (Fig. 2B; Dataset EV5). Interestingly, despite the
fact that, for smaller extensions, model accuracies remained the
same or slightly improved as determined by motif RMSD, AF-
derived metrics such as the model confidence or average motif

Figure 2. Effect of protein fragment extensions on the accuracy of AF predictions.

(A) Workflow established to assess changes in AF performance upon protein fragment extension. Blue and cyan indicate the domain and motif in the native structure,
respectively. Orange and yellow indicate the domain and motif in the modeled structure, respectively. (B) Heatmap showing the fold change in motif RMSD before and
after extension where positive values indicate improved predictions from extension and negative values indicate worse prediction outcomes upon extension. (C) Heatmap
of the average model confidence for combinations of different motif and domain sequence extensions. (D) Optimal cutoffs derived for different metrics from ROC analysis
benchmarking AF different motif and domain extensions from the reference dataset used in A and random pairings of domain and motif sequences. pLDDT-related metrics
were divided by 100 for visualization purposes. (E, F) Superimposition of the structural model of the minimal (left, orange) or extended (right, yellow) motif sequence with
the solved structure (motif in blue) for two different motif classes as indicated on the top of each panel. The motif sequence from the solved structure is indicated at the
bottom. Motif residues are underlined, motif residues not resolved in the structure have a gray background. Sticks indicate the motif residues, domain surfaces are shown
in gray based on experimental structures. (G) Superimposition of the structural model of the minimal (orange) and extended (yellow) motif sequence with the solved
structure (motif in blue) for a motif instance from the motif class LIG_BIR_III. Motif sequence indicated as in (E). (H) Area under the Receiver Operating Characteristics
Curve (AUROC) for different metrics using the DDI benchmark dataset as positive reference and randomly shuffled domain-domain pairs as random reference. Gray
horizontal line indicates the AUROC of a random predictor.
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interface residue pLDDT gradually dropped with increasing
fragment length (Fig. 2C; Appendix Fig. S3A-C). ROC plots of
predictions for a benchmark consisting of the positive and random
domain-motif pairs revealed that, upon extension, the optimal
cutoff of model confidence and iPAE considerably changed as well
(Fig. 2D; Appendix Figs. S3D,E, S4A; Dataset EV6). This means
that different model confidence or iPAE cutoffs are to be used
depending on the length of the submitted protein sequences, which
is rather impractical and thus disfavors both metrics for DMI
predictions. The average motif interface residue pLDDT metric
appeared to be more robust with respect to fragment length. Based
on these results we chose this as the main metric and a cutoff of 70
to discriminate good from bad AF-generated DMI models
regardless of fragment length.

Extending motif sequences for interface prediction with
AlphaFold reveals important motif sequence context

Various studies have highlighted that flanking sequences of motifs
can influence binding affinities and specificities (Luck et al, 2012;
Bugge et al, 2020). Motif annotations in the ELM DB usually refer
to the core sequence of the motif, often because information on
putative roles of flanking sequences is missing. In the previous
section, we observed that some motif extensions notably improved
AF prediction accuracies. In the hope that these cases would point
to motifs with important sequence context, we manually inspected
eight predictions for which the motif RMSD decreased by more
than 1 Å when extending the minimal motif sequence once to the
left and right by the length of the motif (extension step 1 in Fig. 2A;
Appendix Fig. S4B).

By doing so interesting patterns emerged: The most prevalent
contribution to increased prediction accuracies is the stabilization of
the secondary structure of the motif contributed by both sidechain and
backbone atoms in the flanking regions, as shown for the interaction
involving the motif LIG_CAP-Gly_2 (Fig. 2E; Appendix Fig. S4C). For
the LIG_NBox_RRM_1 motif, AF placed a part of the domain into the
binding pocket rather than the motif, although the motif had the
correct helical conformation. Elongation of the motif extended this
helix, thereby increasing the interaction surface and eventually
pushing out the domain’s tail from the pocket (Fig. 2F). This fits
with other reports where AF has been shown to predict preferential
binding of competing motifs (Chang and Perez, 2023). For the
LIG_HOMEOBOX class prediction, the motif is positioned in the
wrong pocket unless flanking regions are included (Appendix Fig.
S4C). For DOC_MAPK_JIP1_4, motif extension results in an
extended motif conformation and consequently in a structural model
with lower overall RMSD (Appendix Fig. S4C). For the LIG_GYF
class, most models converge into an inverse orientation of the
backbone except for one of the extended motifs, which lies in the
binding pocket in the correct orientation (Appendix Fig. S4C). In
summary, these analyses point to motif classes whose sequence
boundaries could be refined.

Interestingly, for a motif instance from the LIG_BIR_III_2 class,
slight motif extensions actually led to a substantial decrease in
prediction accuracy. In this case, the motif is located at a neo-N-
terminus that is only revealed after cleavage of the protein by a
caspase (Fig. 2G). When the motif is extended in the context of the
full length protein, the residues now upstream of the previous neo-
N-terminus likely impede binding of the motif into the pocket due

to steric clashes. AF predicts the extended motif to bind in reversed
orientation and it is mostly pushed out of the pocket. This
highlights the importance of not only incorporating sequence
context but also knowledge about the biological context, wherever
possible, into AF modeling and model interpretation.

Evaluating AlphaFold’s performance for the prediction of
domain-domain interfaces

Folded domains can not only interact with motifs but also with
other folded domains forming so-called domain-domain interfaces
(DDIs). To enable simultaneous prediction of DDIs and DMIs in a
given protein interaction, we set out to evaluate AlphaFold’s
performance on DDI predictions using a reference dataset of 48
DDI structures that we manually curated out of random selections
of domain-domain contact pairs extracted from 3did (Mosca et al,
2014). As a negative dataset, we randomized the pairing of these
domains. Using ROC and PR statistics we found that AlphaFold
performed slightly worse on this DDI benchmark dataset compared
to its performance on DMIs (max AUC 0.73 vs. 0.86) (Fig. 2H;
Appendix Fig. S4D–F; Dataset EV7) but still showed significant
discriminative power. Interestingly, the best performing metric for
DDI predictions was the average interface pLDDT score with an
optimal cutoff of 75, which ranked fourth for DMI predictions.

Comparison of AlphaFold v2.2 with v2.3

During the course of our work, AF multimer version 2.3 was
released. To determine whether the new release improved DMI and
DDI prediction accuracies, we repeated all benchmarking with AF
v2.3 and found that motif RMSDs and other AF-derived metrics on
average improved compared to AF v2.2 when using minimal
interacting fragments (Appendix Fig. S5A–D; Dataset EV1, two-
sided Wilcoxon signed-rank test on motif all atom RMSD: n = 136,
W = 2413, p < 0.0001). AF v2.3 still showed a decrease in prediction
accuracy when using extended protein fragments but this decrease
was less pronounced compared to the corresponding decrease for
v2.2 (Appendix Fig. S5E,F; Dataset EV5). Despite these improve-
ments on the sensitivity side of AF, when benchmarked against
random datasets, overall prediction accuracies only slightly
improved compared to v2.2 (Appendix Fig. S5G,H; Appendix Fig.
S6A–C; Dataset EV2, EV6, EV7, EV8).

Application of AlphaFold for the discovery of novel
interfaces in protein interactions without any a priori
interface information

Since the use of larger or full length protein sequences leads to a
poor sensitivity for DMI predictions by AF, we devised the
following strategy for the use of AF for interface predictions for
known protein interactions: Using AF models of the full length
monomeric structures of both interacting proteins, we decided on
boundaries between structured domains and disordered regions
based on manual inspection (see Methods). We then fragmented
the disordered regions by designing overlapping fragments varying
in length from ten residues up to the length of the respective
disordered region (Fig. 3A). We then paired disordered with
ordered, and ordered with ordered fragments for interface
prediction by AF (Fig. 3A). To assess to which extent this

Molecular Systems Biology Chop Yan Lee et al

6 Molecular Systems Biology © The Author(s)

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on January 17, 2024 from

 IP 2a02:a210:4bb:7180:a0e5:6721:8917:1205.

95



fragmentation approach would lead to an increase in sensitivity but
also in false model predictions, we selected 20 out of the 31 DMI
structures that were previously used to investigate the effect of
fragment extension on prediction accuracies. We attempted model
prediction with the full length sequences of these 20 DMI pairs and
obtained a model for two of which only one met the motif interface
pLDDT cutoff and corresponded to an accurate prediction
(TRG_AP2beta_CARGO_1 in Fig. 3B; Dataset EV9, see methods
for details). We then switched to using fragment extension step 5
for motifs and/or 2 for domains (Fig. 2A) and obtained accurate

models for an additional 5 of the 20 DMI pairs. Applying the full
fragmentation approach onto all 20 DMI pairs resulted in accurate
model prediction for an additional 6 DMI pairs (Fig. 3B)
representing an increase in sensitivity for full length vs fragments
from 5 to 60%. We then shuffled the 20 DMI pairs to generate 20
random DMI pairs for which we performed the fragmentation
approach. As expected from an earlier estimated 20% false positive
rate (FPR) (Appendix Fig. S4A), 19 of the 20 random protein pairs
had at least one fragment pair that produced a model above the
motif interface pLDDT cutoff (Appendix Fig. S6D; Dataset EV9)
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Figure 3. AF prediction and experiments on PPIs connecting NDD proteins.

(A) Schematic of the fragmentation approach applied on a pair of interacting proteins, A and B. Proteins are fragmented into folded and disordered regions based on
manual inspection. Disordered regions are further fragmented. All disordered and folded fragments of one protein are paired with the folded regions of the other protein
and vice versa for AF prediction. (B) Accuracy measured in motif RMSD compared to native structures for models obtained from fragmenting proteins from 20 DMIs from
the positive reference dataset and comparison to model accuracy obtained when using (near) full length proteins for structure prediction (red crosses). Only models that
meet the cutoff for identifying high confident models are shown. Six DMIs did not result in any such model. The gray horizontal line indicates the RMSD cutoff used to
identify accurate models (see methods for details). (C) AF prediction outcome on 67 HuRI PPIs connecting NDD proteins. (D) PPI networks illustrating AF prediction
outcomes and experimental retesting of PPIs in BRET assay. (E) Number of PPIs connecting NDD proteins with structural models at indicated pDockQ cutoffs from (Burke
et al, 2023) grouped based on AF prediction outcomes using the fragmentation approach as shown in (C). (F) cBRET, total luminescence, and fluorescence for 28 PPIs
connecting NDD proteins that were tested in the BRET assay. Luminescence and fluorescence measurements indicate expression levels of NL and mCit fusion proteins,
respectively. Black horizontal lines indicate expression level and PPI detection cutoffs. The gray vertical line separates the detected (left) from undetected PPIs. Protein
pairs in bold indicate those selected for interface validation via site-directed mutagenesis. Error bars indicate STD of three technical replicates. Source data are available
online for this figure.
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indicating that predictions done using this fragmentation approach
can substantially increase sensitivity while also producing a
considerable number of false models using the established scoring
metrics. This needs to be taken into account when modeling new
interactions with this fragmentation strategy, as covered in the
following section.

We selected PPIs from HuRI that connect proteins associated
with neurodevelopmental disorders (NDDs) and subjected these to
our AF fragmentation pipeline to predict putative DMIs and DDIs.
For 51 out of 62 PPIs we obtained at least one structural model of
significant confidence (Fig. 3C,D). In retrospect, manual inspection
of the predictions obtained for these PPIs revealed that, for 9 PPIs,
a solved structure of the interface was already available. Reassur-
ingly, six out of these were accurately predicted by AF. For the
remainder of the PPIs, 12, 16, and 14 resulted in a likely correct,
questionable, or likely wrong prediction, respectively, based on
manual inspection of the models (Fig. 3C,D; Dataset EV10). Likely
wrong predictions were scored as such based on docking of the
protein partner into nucleic acid or metal ion binding or
catalytically active sites. We also considered structural models as
likely wrong, if different protein fragments of the partner were
predicted with similarly high scores to bind to the same pocket on
the domain. More detailed information can be found in Methods
and Appendix Text S1. Of note, for 8 of the 12 PPIs with a likely
correct prediction, AF predictions performed using the full length
proteins (Burke et al, 2023) did not result in a high confidence
prediction (Fig. 3E). 28 of the 62 PPIs were in our hands amenable
to experimental testing using the BRET assay introduced earlier
(see Methods for details). Significant BRET signals were observed
for 11 of these 28 PPIs (Fig. 3F). Of those, 7 PPIs were selected for
validating the predicted interfaces (Fig. 3D,F). The remaining four
PPIs were not further considered because for three of them a
structure already exists (CSNK2B-CSNK2A1, PNKP-XRCC4,
UBA5-GABRAPL2) and for the fourth interaction (KCTD7-
CUL3) we classified the predicted interface as likely wrong. Next,
we will first describe failures in validating predicted interfaces
followed by the successes.

For the interaction between PNKP and TRIM37, we obtained
high confident structural models involving two different interfaces.
AF predicted the PNKP FHA domain to bind to several disordered
stretches in TRIM37 (Fig. 4A) that are overall negatively charged.
These short regions were predicted to bind to a pocket on the FHA
domain that is known to bind phosphorylated threonines
(Durocher et al, 2000), which led us to conclude that these
predictions were likely wrong. AF also predicted the MATH
domain of TRIM37 to bind to two separate disordered putative
motifs located between the FHA domain and phosphatase domain
in PNKP (Fig. 4A–C). However, none of the mutants aimed at
disrupting the predicted interfaces (Fig. 4B) involving the MATH
domain showed a decrease in BRET signal compared to wildtype
(Fig. 4D; Appendix Fig. S7A) indicating that TRIM37 and PNKP do
not interact with each other via this interface.

AF predicted with high confidence binding of PSMC5 to the
hormone receptor domain of ESRRG via two distinct motifs
(Fig. 4E–G) with similarity to LxxLL motifs known to bind this type
of domain (LIG_NRBOX in ELM DB). We reproducibly found that
none of the motif mutations in PSMC5 decreased binding to
ESRRG compared to wildtype while both domain pocket mutations
led to a remarkable reduction in BRET signal (Fig. 4H; Appendix

Fig. S7B,C) indicating that PSMC5 might bind to ESRRG via this
pocket but not with the predicted motifs.

AF predicted a coiled-coil interface between STX1B and VAMP2
of moderate confidence (Fig. 5A,B). STX1B is a close homolog to
STX1A, which binds in a 4-helix bundle to VAMP2 together with
SNAP25 in a 1:1:2 stoichiometry, respectively, as observed by
crystallography (PDB:1N7S (Ernst and Brunger, 2003)). This
structure together with our predictions suggest that STX1B might
bind VAMP2 in a similar way. Indeed, removal of the single helical
SNARE domain in STX1B led to complete loss of binding to
VAMP2 (Fig. 5C; Appendix Fig. S8A,B). Interestingly, FBXO28 was
predicted by AF to bind to STX1B via a similar coiled-coil interface
involving an extended helix in FBXO28 and the SNARE domain in
STX1B (Fig. 5A,D). Here, deletion of the SNARE domain in STX1B
or of the extended helix in FBXO28 reproducibly reduced, but did
not abolish the interaction between STX1B and FBXO28 (Fig. 5E;
Appendix Fig. S8C,D). We identified three pathogenic or likely
pathogenic mutations in the SNARE domain of STX1B in ClinVar
of which V216E and G226R are associated with generalized
epilepsy with febrile seizures plus, type 9. Testing all three
mutations in the BRET assay we observed a drastic decrease in
binding for STX1B V216E to FBXO28 (Fig. 5F; Appendix Fig.
S8C,D). However, the measured effects of the mutations on the
FBXO28-STX1B interaction do not correlate with their location at
the predicted interface. V216E, for example, is not predicted to be
in contact with residues of FBXO28 (Fig. 5D). This indicates that
the actual predicted orientation of the two extended helices with
respect to each other is likely incorrect.

The fact that the deletion of the extended helix in FBXO28 or
the SNARE domain in STX1B reduced but did not abrogate binding
of both proteins to each other (Fig. 5E) suggests that a secondary
interface might exist. Indeed, AF predicted additional interfaces
between FBXO28 and STX1B involving folded and disordered
regions in both proteins (interfaces i and ii in Fig. 5A). Mutations
designed to disrupt these interfaces partially confirmed the
involvement of some of these regions in binding as assayed with
BRET (Appendix Fig. S8E–H). In addition, the pathogenic
mutation R348L in FBXO28 predicted to be at interface ii seemed
to increase binding to STX1B (Appendix Fig. S8I–L). In summary,
our experimental data indicate that multiple regions of FBXO28
and STX1B may be involved in the binding but the exact structural
details of this interaction remain to be elucidated. In the following
two sections, we will describe in more detail successful interface
validations for interactions involving PEX3, PEX19, and PEX16 as
well as SNRPB and GIGYF1.

PEX3, PEX19, and PEX16

The interaction interface between PEX19 and PEX3 has been
structurally resolved before and consists of an interaction between
an N-terminal motif in PEX19 that binds to the cytosolic alpha-
helical domain of PEX3 (PDB:3MK4, (Schmidt et al, 2010)). Using
corresponding protein fragments, AF predicted a structural model
that is highly similar to the solved structure (Fig. 5G; Appendix Fig.
S9A,B). We introduced mutations in the PEX19 motif and PEX3
pocket (Appendix Fig. S9A) and found that F29K in the motif
weakened but clearly maintained BRET binding signals indicating
the existence of a secondary binding site between both proteins
(Fig. 5H; Appendix Fig. S9C,D). Indeed, AF predictions with other
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Figure 4. Verification of interface predictions for TRIM37-PNKP and ESRRG-PSMC5.

(A) Schematic of the domain architecture of PNKP and TRIM37 with indication of top predicted interfaces. Numbers in blue indicate the motif interface pLDDT for the
respective interface. Roman numbering refers to structural models in (B) and (C). (B) Structural model of interface i shown in (A) with labeled residues that were mutated.
(C) Structural model of interface ii shown in (A). (D) BRET titration curves are shown for wildtype interaction and mutants for two biological replicates, each with three
technical replicates. Protein acceptor over protein donor expression levels are plotted on the x-axis determined from fluorescence and luminescence measurements,
respectively. The BRET trajectory could not be fitted because of an unusual saturation behavior (see methods for details). (E) Schematic of the domain architecture of
ESRRG and PSMC5 with indication of top predicted interfaces. Numbers in blue indicate the motif interface pLDDT for the respective interface. Roman numbering refers to
structural models in (F) and (G). (F) Structural model of interface iii shown in (E) with labeled residues that were mutated. (G) Structural model of interface iv shown in
(E). (H) BRET titration curves are shown for wildtype interaction and mutants of ESRRG-PSMC5 pairs for two biological replicates, each with three technical replicates.
Protein acceptor over protein donor expression levels are plotted on the x-axis determined from fluorescence and luminescence measurements, respectively. In panels
(B), (C), (F), and (G) motif sequences are indicated at the bottom. Gray letters indicate residues not predicted to bind. Source data are available online for this figure.
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disordered fragments of PEX19 paired with the PEX3 domain
resulted in highly confident models for interfaces involving a
binding pocket on PEX3 that is distal to the pocket where the
N-terminal PEX19 motif is known to bind. When using a protein
fragment that spans the full disordered N-terminal region of PEX19
(1–170), AF predicts the known PEX3-binding motif and helix 4

and 5 to dock into the primary and secondary pocket, respectively
(Fig. 5G,I), supporting simultaneous interaction via both interfaces.

While the interaction between PEX3 and PEX16 has been
described before, little is known about how both proteins interact
with each other. The monomeric AF model of PEX16 shows a
helical fold, which could in its entirety be transmembrane (TM).
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Between the putative TM helix 4 and 5 there is a large loop
(132–214), which was predicted by AF with very high confidence to
bind to a third pocket on the PEX3 domain, opposite to both
binding sites mentioned earlier for PEX19 (Fig. 5G,I,J). Of note,
different fragments of this loop as well as the entire PEX16 were
repeatedly predicted to bind in similar modes to PEX3, further
increasing the confidence in this prediction. Encouraged by these
results, we submitted all three full length PEX sequences for
complex prediction to AF and obtained a model that supports
simultaneous binding of PEX16 and PEX19 to PEX3 (Appendix
Fig. S9E). We individually mutated two residues in the PEX16 loop,
deleted the loop in its entirety (del162-192), and mutated two
residues on PEX3 (highlighted in Fig. 5J). Unfortunately, higher
expression levels of PEX16 seem to trigger degradation of PEX3
(Appendix Fig. S9F), which we did not observe for the same
constructs when co-expressed with PEX19 (Appendix Fig. S9G). As
a consequence, we could not obtain titration curves and BRET50
estimates but obtained reliable BRET signals for lower PEX3-
PEX16 DNA transfection ratios showing that the deletion as well as
both PEX3 mutants significantly decreased binding to PEX16
(Fig. 5K; Appendix Fig. S9H). Of note, these PEX3 mutants (R54S
and E272R) did not alter binding to PEX19, showing that the
overall structural integrity of PEX3 was not perturbed by these
mutations (Fig. 5H; Appendix Fig. S9D).

PEX3 and PEX19 are peroxin proteins that regulate peroxisome
homeostasis. PEX16 is believed to serve as an integral membrane-
bound receptor for PEX3 (Matsuzaki and Fujiki, 2008) while PEX3
is thought to serve as a docking site for PEX19 (Fujiki et al, 2006).
PEX19 in turn is a cytosolic carrier for peroxisomal membrane
proteins to the peroxisome (Fujiki et al, 2006). Combining results
from previously published functional studies with the structural
and experimental results obtained in this study, a model for a
trimeric complex between PEX3, PEX19, and PEX16 emerges
(Fig. 5L) where PEX16 fully inserts into the peroxisome membrane
via a fold that consists of seven helices (residues 19-286) with its
N-terminal end being cytosolic and its C-terminal end protruding
into the peroxisome. The extended loop between TM helix 4 and 5
reaches into the cytosol and docks onto PEX3, which is further
anchored into the peroxisomal membrane via its N-terminal TM
helix (residues 13–45). PEX19 docks onto PEX3, opposite to where
PEX16 is bound, via two interaction surfaces—one corresponding

to the known PEX3-binding motif in PEX19 and a second one
corresponding to a novel motif (residues 99–146) docking at a
hitherto unknown second binding site on PEX3 for PEX19. This
model explains how PEX3 is anchored to the peroxisomal
membrane via PEX16 and how PEX3 can bind very tightly
PEX19, which can then deliver PMPs to the peroxisome. Mutations
in any of the three PEX proteins are associated with severe
developmental phenotypes referred to as peroxisome biogenesis
disorders (Fujiki et al, 2022). The vast majority of the around 150
mutations annotated for the three proteins are uncharacterized
(Henrie et al, 2018), dozens of which fall into the predicted
interfaces. The structural models obtained from this work can
inform future studies aimed at characterizing the effects of these
mutations.

SNRPB and GIGYF1

AF predicted two different types of interfaces with high confidence
for the interaction between SNRPB and GIGYF1. The first interface
involves the LSM domain of SNRPB which was predicted to bind to
various fragments in the long disordered regions of GIGYF1
(Fig. 6A). These regions do not display any common sequence
pattern. The structure of SNRPB has been resolved as part of the
Sm ring complex that binds small nuclear RNA (PDB:4WZJ,
(Leung et al, 2011)) showing that the surface on the LSM domain
predicted to bind to disordered fragments of GIGYF1, is actually
engaged in binding LSM domains of other Sm proteins within the
complex (Fig. 6B). We thus conclude that these predictions are
likely wrong. The second type of interface predicted by AF involves
the GYF domain in GIGYF1 and multiple short disordered
fragments in the C-terminal region of SNRPB, which repeatedly
carry the sequence PPPGM(R) (Fig. 6A,C). We designed various
deletion constructs of SNRPB that would gradually remove more
and more of the repeated proline-rich motif. We observed, using
the BRET assay, that these deletion constructs gradually decreased
binding to GIGYF1 (Fig. 6D; Appendix Fig. S10A,B). We also
mutated the GYF domain pocket and found that W498E but not
L508F would decrease binding to SNRPB (Fig. 6D,E; Appendix Fig.
S10A–D). To further corroborate these findings we performed a co-
immunoprecipitation experiment, where endogenous GIGYF1
interacted with HA-tagged full length SNRPB (Fig. 6F). This

Figure 5. Verification of interface predictions for STX1B-FBXO28, STX1B-VAMP2, PEX3-PEX19, and PEX3-PEX16.

(A) Schematic of the domain architecture of STX1B, FBXO28, and VAMP2 with indication of top predicted interfaces. Numbers in blue indicate the motif interface pLDDT
(for order-disorder fragment pairs) or average interface pLDDT (for ordered-ordered fragment pairs) for the respective interface. Roman numbering refers to structural
models in (B), (D), Appendix Fig. S8E, and Appendix Fig. S8I. (B) Structural model of interface iv shown in (A). In panel (B) and (D), the chains are color-coded according
to the colors of the domains in (A). (C) BRET titration curves are shown for wildtype interactions and deletion constructs for two biological replicates, each with three
technical replicates. Protein acceptor over protein donor expression levels are plotted on the x-axis determined from fluorescence and luminescence measurements,
respectively. (D) Structural model of interface iii shown in (A) with tested pathogenic mutations labeled and colored in green. (E, F) BRET titration curves are shown for
wildtype interactions and deletion constructs for two biological replicates, each with three technical replicates. Protein acceptor over protein donor expression levels are
plotted on the x-axis determined from fluorescence and luminescence measurements, respectively. (G) Schematic of the domain architecture of PEX3, PEX19, and PEX16
with indication of top predicted interfaces. Numbers in blue indicate the motif interface pLDDT for the respective interface. Roman numbering refers to structural models
in (I), (J), and Appendix Fig. S9A. Region vi covers residues 1–170, which includes the previously reported N-terminal motif as well as three putative motifs suggested by
the AF models. (H) BRET titration curves are shown for wildtype interaction and mutants of PEX3-PEX19 pairs for three technical replicates. Protein acceptor over protein
donor expression levels are plotted on the x-axis determined from fluorescence and luminescence measurements, respectively. The left plot displays mutants aimed at
disrupting binding between PEX3-PEX19 while the right plot displays mutants aimed at disrupting the PEX3-PEX16 PPI why binding between PEX3-PEX19 should not be
altered. (I) Superimposition of structural models of interface vi (PEX3-PEX19) and vii (PEX3-PEX16) on the PEX3 domain. Note that modeling smaller fragments of PEX19
generates alternative interactions with the binding sites. (J) Structural model of interface vii shown in (G). (K) BRET values with subtracted bleedthrough for PEX3-PEX16
wildtype and various mutated constructs. Three technical replicates are shown. (L) Proposed model for how the trimeric complex of PEX3, PEX19, and PEX16 might
assemble at the peroxisomal membrane. Source data are available online for this figure.
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interaction appeared less pronounced upon truncation of the
C-terminal proline-containing region of SNRPB (Fig. 6F). This
further suggests that both proteins interact with each other in cells
and that this interaction is stabilized by the predicted interface.

During the course of these studies, a structure was published
(PDB:7RUQ, Sobti et al, 2023) showing binding of the GYF domain
of GIGYF1 to a motif of sequence PPPGL of the protein TNRC6C
confirming the binding mode predicted by AF where a hydrophobic
residue (M or L) inserts into a hydrophobic pocket and where the
proline residues contact the surrounding domain surface
(Fig. 6C,G). Interestingly, this hydrophobic pocket does not exist
in the previously solved structure of the GYF domain of CDBP2
binding to a proline-rich peptide that is flanked by positively

charged residues establishing important contacts with the domain
(PDB:1L2Z, (Freund et al, 2002)). This structure formed the basis
for the definition of the LIG_GYF motif class in the ELM DB. The
recently resolved structure of the GYF domain of GIGYF1 together
with our structural models and experimental validations argue for
an extension of the existing motif definition or definition of a new
motif subclass.

Discussion

AF has revolutionized the field of structural bioinformatics and has
sparked much excitement about its potential to predict structures of
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Figure 6. Verification of interface predictions for SNRPB-GIGYF1.

(A) Schematic of the domain architecture of SNRPB and GIGYF1 with indication of top predicted interfaces. Numbers in blue indicate the motif interface pLDDT for the
respective interface. Roman numbering refers to structural models in (B) and (C). (B) Structural model of interface ii shown in (A) (left) and in comparison a solved
structure (PDB:4WZJ) of the Sm ring complex (right) bound to RNA (orange). The LSM domain of SNRPB is shown in cyan. The position of the predicted motif (left) or
neighboring LSM domain of SNRPD3 (right) are indicated in gold. Black circles indicate the predicted interface in the model and corresponding interface in the complex on
the LSM domain of SNRPB. (C) Structural model of interface i shown in (A) with tested domain mutations labeled and colored green. The motif sequence is indicated at the
bottom. (D, E) BRET titration curves are shown for wildtype interactions, deletion constructs of SNRPB, and single point mutants in GIGYF1 for two biological replicates,
each with three technical replicates. Protein acceptor over protein donor expression levels are plotted on the x-axis determined from fluorescence and luminescence
measurements, respectively. (F) Cropped immunoblot of input (5%) and HA antibody immunoprecipitation (IP) performed in parental HEK cells (empty, untagged
negative control), Snrpb(full-length, 1-231)-2xHA-mNeonGreen, Snrpb(1-190)-2xHA-mNeonGreen expressed from a single locus in Flp-In™ T-REx™ 293 Cell Lines. The HA
antibody was used for detecting the immunoprecipitated Snrpb-proteins, endogenous GIGYF1 was detected with GIGYF1 antibody, GAPDH serves as a loading and
negative-IP control. The experiment was performed twice with equivalent outcome, one representative experiment is shown. (G) Solved structure (PDB:7RUQ) of the GYF
domain of GIGYF1 bound to a proline-rich motif in TNRC6C. The sequence of the motif in TNRC6C is indicated. Source data are available online for this figure.
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interacting proteins and bringing us closer to a structurally resolved
protein interactome. However, from existing studies it largely
remained unclear whether AF’s performance depends on the type
of interfaces and the length of submitted protein chains for
interface prediction, which metrics perform best in identifying
likely correct structural models of interfaces, how specific AF
predictions are, and to which extent highly confident structural
models can be experimentally corroborated. In this study, we
showed that AF performs similarly well for interfaces between
folded domains and interfaces formed between a folded domain
and a short linear motif. Using minimal interacting regions for
interface prediction we reached sensitivities of up to 80% similar to
previously published work (Tsaban et al, 2022; Johansson-Åkhe
et al, 2021). We thoroughly investigated AF’s FPR using random
domain-motif pairs and found it to be around 20%. However,
asking AF to discriminate binders from non-binders when motif
sequences carried one disruptive mutation, we found that
prediction accuracies were close to random. This points to an
important limitation in AF’s ability to predict binding specificities
and is in line with previous reports on AF’s inability to predict the
effect of mutations (Buel and Walters, 2022). Comparison of
different metrics to discriminate good from bad structural models
using either minimal interacting fragments or extensions revealed
the average interface pLDDT for DDI models and the motif
interface pLDDT for DMI models to be the most robust and best
performing metrics. However, when manually inspecting AF
predictions we found it useful to also consider AF’s model
confidence, suggesting that in the future a combination of different
metrics might be even more powerful to discriminate good from
bad structural models. The alignment depth has been previously
reported to somewhat influence model accuracy (Bryant et al,
2022). While this feature was not investigated here, it might serve
as a pre-filter to identify PPIs of high conservation for which
structural modeling will likely be more successful. Interestingly, the
number of residues or atoms predicted to be in contact with each
other was poorly predictive, in contrast to a previous report (Bryant
et al, 2022), confirming our observations that the tested AF versions
in this study will always put both chains in contact with each other
to create atomic contacts, and from visual inspection alone it is very
challenging to tell good from bad structural models apart. Of note,
observed differences in AF performance across studies likely
originate both from using different benchmark datasets and
different AF versions. Our study is unique in that it assesses
multiple metrics on two different classes of interfaces, DMIs and
DDIs, using two different AF versions. More work is needed to
develop benchmark datasets of coiled-coil and disorder-disorder
interfaces to also evaluate AF’s performance for these modes of
binding. Of note, our benchmark datasets almost exclusively
consisted of structures that AF has seen in the training process.
Interestingly, benchmark studies done with unseen structures
reported similar sensitivities (preprint:Bret et al, 2023) indicating
that AF is not strongly biased towards structures it has seen before.

We extensively explored the influence of protein fragment
length on AF’s performance and found that slight extensions of
minimal motif sequences can improve prediction accuracies.
Inspection of individual cases revealed novel information on
important motif sequence context that was so far missing in
corresponding motif entries at the ELM DB. However, longer
disordered fragments or fragments containing ordered and large

disordered regions generally decrease AF prediction accuracies as
also reported in a recent preprint (preprint:Bret et al, 2023).
Furthermore, optimal cutoffs for various metrics such as the model
confidence decreased when using longer protein fragments, making
them less robust for interface prediction with AF. When evaluating
performance differences for longer and shorter protein fragments
we identified three DMI pairs involving the motif classes
DEG_APCC_KENBOX_2, LIG_Pex14_3, and LIG_GYF, for
which, during fragment extension, a second known motif
occurrence was added to the fragment. This second motif was
selected by AF during interface prediction, displacing the original
motif and leading to a high RMSD score. We removed these
instances from the dataset when evaluating AF’s performance on
fragment extension but they point to biologically correct variability
in AF prediction outcomes due to existing multivalency of many
DMIs in protein interactions. Other work suggested that AF is able
to select the stronger binder among two motif occurrences (Chang
and Perez, 2023), which might at least in some cases guide AF
motif selections. However, in other cases this motif preference
might also hinder discovery of multivalency in PPIs. For example,
the use of smaller protein fragments for the protein pair SNRPB
and GIGYF1 enabled the discovery of a proline-rich repeat motif
in SNRPB.

In comparison to predictions made using full length proteins
(Burke et al, 2023) we found that protein fragmentation increased
the probability of obtaining a high confidence interface prediction,
especially for cases involving proteins with long disordered regions
such as GIGYF1. For smaller and more globular proteins like the
PEX proteins studied above, full length predictions can identify the
right binding sites but these can be further substantiated by
running additional predictions with smaller fragments. The
fragmentation approach increases the number of prediction runs
per protein pair from one to a couple hundred, depending on the
length and modularity of both proteins. The vast majority of these
fragment pairs should not interact. With a FPR of 20%, this means
that more actual non-interacting than truly interacting fragment
pairs will result in a high confidence prediction. A big challenge is
thus to identify likely correct interface predictions among the many
false ones. This is also illustrated by the prediction results that we
obtained for the seven protein pairs that we followed up
experimentally. Clearly, AF’s general limited specificity contributes
to these false predictions. We observed that additional sources of
error can arise from exposed intramolecular binding sites resulting
from fragmentation, incorrectly designed boundaries of folded
regions, and docking of protein fragments into enzymatic pockets
of metabolic enzymes or sites for metal ion, DNA, or RNA binding.
It seems that AF is overall well suited to find binding pockets on
folded domains. However, our work also clearly demonstrates that
AF is able to correctly dock the matching partner structure into
these pockets without the need for a pre-existence of both partner
structures in the bound conformation contrary to other state-of-
the-art docking algorithms. AF’s high sensitivity with respect to
intramolecular binding sites and wrongly fragmented folded
regions will make it particularly hard to fully automate the
fragment design process. Despite these challenges we found that
recurrent interface predictions from overlapping fragments can
help gain confidence in predictions, as also highlighted in a recent
study (Bronkhorst et al, 2023), since we rarely observed this
recurrence for likely wrong predictions.

Chop Yan Lee et al Molecular Systems Biology

© The Author(s) Molecular Systems Biology 13

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on January 17, 2024 from

 IP 2a02:a210:4bb:7180:a0e5:6721:8917:1205.

102



Given the reported uncertainties in AF predictions, even for
high confidence cutoffs, experimental validation is essential. The
BRET assay used here has been shown in previous studies to be
sensitive enough to quantify weakening of binding introduced by
point mutations and to detect motif-mediated PPIs (Ebersberger
et al, 2023; Trepte et al, 2018; Mo et al, 2022). Using the BRET
assay, we were able to detect 11 out of 28 PPIs from the HuRI
dataset. This retest rate is actually higher compared to retest rates
of gold standard PPI datasets used in the past to benchmark various
binary PPI assays including this BRET assay, attesting the overall
detectability of PPIs from HuRI (Braun et al, 2009; Trepte et al,
2018; Choi et al, 2019). The NL and mCit fusions used in the BRET
assay allowed us to monitor the expression levels of wildtype and
mutant constructs, which is important to rule out loss of binding
because of a destabilization of the protein. However, we cannot
exclude the possibility that some expressed mutants might still be
partially unfolded or mislocalized and thus, some loss of binding
detected in our study could be unspecific and not the result of a
specific perturbation of the predicted interface. Furthermore,
preservation of binding observed for some other mutants at the
predicted interface might result from the mutations not being
disruptive enough and thus, do not necessarily disprove the
predicted interface.

Despite these limitations, we were able to assess the validity of
seven interface predictions using experimentation. We discovered a
likely novel DMI type that mediates binding between PEX3 and
PEX16, and proposed a model for how PEX3, PEX16, and PEX19
form a trimeric complex at the peroxisomal membrane. We also
validated a variation of the LIG_GYF motif class in SNRPB that
mediates binding to GIGYF1 thereby potentially connecting mRNA
splicing with posttranscriptional control mechanisms. These results
confirm in principle that AF is able to predict novel interface types
and that it can be used to extend existing interface type definitions.
However, our experimental results also highlight clear limitations
of AF predictions. Our data suggests that FBXO28 and STX1B as
well as STX1B and VAMP2 interact via coiled-coil interfaces but
likely at higher stoichiometries and different conformations than
predicted. We confirmed the binding pocket in ESRRG but not the
predicted interfaces in PSMC5 and we could not substantiate
interface predictions for TRIM37 and PNKP. Highly confident
interface predictions were obtained for seven additional PPIs that
await experimental validation. In summary, we provided experi-
mental evidence and structural information for PPIs whose
disruption is likely associated with neurodevelopmental disorders.
This information can be explored in future studies aimed at
delineating potential molecular mechanisms causing disease. Our
study furthermore laid out clear limitations, perspectives, and
future needs in AI-based structure prediction to bring us closer to a
fully structurally annotated human protein interactome.

Methods

Selection of structures for DMI benchmark dataset

To gather a list of ELM classes with structural evidence and
annotate their minimal interacting fragments, we downloaded a
dataset of solved structures of all ELM classes from ELM DB on
08.10.2021 (ELM class version 1.4) for instances that are

annotated as true positives (Kumar et al, 2022). The structures
were subject to a series of manual inspections to check their
validity for further analysis. First, since AlphaFold can only model
the 20 standard amino acids, we excluded any structures with
post-translational modifications in the motif. Second, structures
that do not resolve all of the residues in a motif as curated by ELM
DB were excluded. Third, we restrict our studies to only binary
interactions, so DMIs that require more than two proteins to form
the binding interface were excluded. Likewise, DMIs with only
intramolecular interaction evidence were excluded. We manually
annotated the boundaries of the domains by visual inspection of
the structures. After this filtering, we identified 136 structures
from distinct ELM classes that formed our DMI benchmark
dataset (Dataset EV2).

Sequence identity of the domains in the DMI benchmark dataset
We took all the binding domains in the DMI benchmark dataset
and computed their pairwise sequence identity from a global
alignment without gap penalties. Matching residues were given a
score of 1, otherwise 0. The sum of these scores was divided by the
length of the longer sequence to compute the sequence identity.

Selection of structures for the DDI benchmark dataset

We randomly selected 80 pairs of Pfam domain types that were
described in the 3did resource (Mosca et al, 2014) to be in contact
with each other in solved structures in the Protein Data Bank
(PDB). We manually inspected all PDB entries listed to contain
contacts between instances of a given Pfam domain pair until we
found one that we considered a genuine domain-domain interac-
tion. These decisions were primarily based on the number of atomic
contacts observed and the validity that two folded domains were
interacting with each other. Out of the 80 selected Pfam domain
pairs, we identified 48 DDI types and 48 corresponding approved
DDI structural instances that we selected for the DDI benchmark
dataset. The sequences of the minimal interacting domain regions
were manually annotated by visual inspection of the structures and
used for prediction. A more detailed description of the curation
procedure and information on the pairs will be soon published
elsewhere (Geist et al, in preparation).

Generation of random reference sets with minimal
interacting regions

Mutating motif sequences
Key conserved residues of the motifs in the DMI benchmark dataset
were identified computationally using the regular expression of the
corresponding ELM class in the ELM DB and SLiMSearch
(Krystkowiak and Davey, 2017). The defined positions are any
positions in the regular expression that are not wildcards. To
mutate the key residues to the ones with opposite physico-chemical
properties, we substituted one or two key residues with the ones
that are of the largest Miyata distance (Miyata et al, 1979) (Dataset
EV2).

Randomizing pairings of known domain-motif interfaces
To simulate non-binding domain-motif pairs, we randomized the
pairings of known domain motif interfaces. As some domain types
can bind to motifs from distinct ELM classes, we manually checked
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that the randomized pairings did not coincide with actual domain-
motif interface types (Dataset EV2).

Randomizing pairings of known domain-domain interfaces
The pairings between known domain-domain interfaces were
randomized to form the random reference set for DDIs.

Generation of positive DMI reference set with
fragment extensions

Among the 136 solved structures that we selected previously, we
further filtered for structures that consist of only human proteins.
To test the potential effect of extension on DMIs that were
predicted with different accuracies in their minimal forms, we
selected 12 DMI types from the correct sidechain category, 8 DMI
types from the correct backbone category and 11 DMI types from
the correct pocket category as determined using the motif RMSD
calculation. In total, 31 DMI types were selected for extension.
Three additional DMI types were originally selected but later on
discarded because they contained secondary motif occurrences
complicating data analysis. The extensions were done on the
canonical sequence of the proteins used to solve the structure.
Motif extension 1 extended the motif sequence at both N and C
termini by n residues where n is the length of the known motif.
Motif extension 2 further extended the motif sequence by another n
residues at both termini. Motif extension 3 and 4 each extended the
motif sequence by 2n residues at both termini. Motif extension 5
extended the motif sequence by including neighboring domains
and motif extension 6 used the full-length protein sequence. On the
domain side, domain extension 1 extended the domain sequence to
include the disordered regions N- and C-terminally of the binding
domain until it reached neighboring domain(s) boundaries.
Domain extension 2 included the sequence region of the
neighboring domains and domain extension 3 used the full-
length protein sequence. In cases where the known motif or binding
domain is at the C terminus, we extended the motif or domain
sequence on only the N terminus and vice versa. There were some
cases where the last extension steps, motif extension 6 and domain
extension 3, extended the protein minimally (<20 residues N or C
terminal to the previous extension step). These cases were excluded
from the analysis. The dataset of extended DMIs is in Dataset EV5.
In total, 709 fragment pairs were submitted to AlphaFold. From
these, 632 and 616 were successfully modeled by AF v2.2 and v2.3,
respectively.

Generation of random DMI reference set with
fragment extensions

To generate a random reference set using the extensions, we
randomized the pairings of the 34 DMI types that we selected for
extensions and paired their extensions for prediction. Motif
extension 6 and domain extension 3 were excluded from the
pairing. The dataset of DMIs with random pairings and their
extensions can be found in Dataset EV6. In total, 612 predictions
were generated, among which 566 and 522 predictions were
successfully modeled by AF v2.2 and v2.3, respectively. Since motif
extension 6 and domain extension 3 were excluded from the
random reference set using the extensions, we also excluded them
from the positive reference set extensions during ROC analysis.

This resulted in 563 and 540 predictions from the positive reference
set extensions for AF v2.2 and v2.3, respectively.

Selection of reference datasets for comparison of AF
v2.2 with v2.3

All predictions for the minimal DMIs and the random DMIs
involving minimal fragments were successfully modeled by both
versions of AF. Some extensions from the positive reference set
were not successfully modeled by AF v2.2 and v2.3 due to failure
from HHblits. To compare AF v2.2 with v2.3, we used only
predictions that were successfully modeled by both versions of AF.
This resulted in 616 predictions from the extensions of the positive
reference set.

Evaluation of AF sensitivity and specificity when using
the fragmentation approach

Among the 34 DMIs selected for extension, we further selected 20
DMIs and retrieved the PPIs mediating these DMIs as the PRS and
randomized their pairing to form random domain-motif protein
pairs as the RRS. The 20 PPIs from the PRS and the 20 protein pairs
from the RRS were subjected to the fragmentation approach,
generating 8943 fragment pairs and 11,045 fragment pairs for the
PRS and RRS, respectively. All fragment pairs from the PRS and all
but one fragment pair from the RRS resulted in an AlphaFold
model. Models were deemed highly confident, if the disordered
fragment had a motif interface pLDDT of ≥70 or, in case of
ordered-ordered models, the average interface pLDDT scored ≥70.
To evaluate the sensitivity of the fragmentation approach, we
considered all models that met the above mentioned cutoffs and
which contained the motif and domain sequence. We super-
imposed the models onto the corresponding native structures using
the minimal domain and computed the RMSD between the
minimal motif residues in the native and modeled structure. A
model was deemed accurate if the motif RMSD was ≤5 Å. At this
cutoff the backbone of the native and modeled motif are well
aligned but not necessarily their side chains (see also RMSD
subsection below). We repeated the same procedure for each DMI
protein pair using full length sequences as input into AF for
modeling. In 18 cases AF did not return a model when using full
length sequences. Here, we used the largest protein fragments
instead for which AF returned a model. Information on the protein
pairs, prediction results, and statistics is available in Dataset EV9.

AlphaFold versions and runs

We used local installations of AlphaFold Multimer version 2.2.0
and 2.3.0 (preprint:Evans et al, 2021) for all protein complex
predictions with the following parameters:

--max_template_date=2020-05-14
--db_preset=full_dbs
--use_gpu_relax=False
For every AlphaFold run, five models were predicted with single

seed per model by setting the following parameter:
--num_multimer_predictions_per_model=1
The databases queried during AlphaFold predictions were

specified following the instructions from the github page of
AlphaFold
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(https://github.com/deepmind/alphafold#running-alphafold):
For running AlphaFold Multimer v2.2, the following databases

were queried:
--bfd_database_path=bfd_metaclust_clu_complete_id30_c90_-

final_seq.sorted_opt
--mgnify_database_path=alphafold_v220_databases/

mgy_clusters_2018_12.fa
--obsolete_pdbs_path=alphafold_v220_databases/pdb_mmcif/

obsolete.dat
--pdb_seqres_database_path=alphafold_v220_databases/

pdb_seqres/pdb_seqres.txt
--template_mmcif_dir=alphafold_v220_databases/pdb_mmcif/

mmcif_files
--uniprot_database_path=alphafold_v220_databases/uniprot/

uniprot.fasta
--uniclust30_database_path=alphafold_v220_databases/uni-

clust30/uniclust30_2018_08/uniclust30_2018_08
--uniref90_database_path=alphafold_v220_databases/uniref90/

uniref90.fasta
For running AlphaFold Multimer v2.3, the following databases

were queried:
--bfd_database_path=alphafold_v230_databases/bfd/

bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt
--mgnify_database_path=alphafold_v230_databases/mgnify/

mgy_clusters_2022_05.fa
--obsolete_pdbs_path=alphafold_v230_databases/pdb_mmcif/

obsolete.dat
--pdb_seqres_database_path=alphafold_v230_databases/

pdb_seqres/pdb_seqres.txt
--template_mmcif_dir=alphafold_v230_databases/pdb_mmcif/

mmcif_files
--uniprot_database_path=alphafold_v230_databases/uniprot/

uniprot.fasta
--uniref30_database_path=alphafold_v230_databases/uniref30/

UniRef30_2021_03
--uniref90_database_path=alphafold_v230_databases/uniref90/

uniref90.fasta
To test the effect of template use on prediction accuracy, the

following parameter setting was used to switch off the use of
templates during the prediction:

--max_template_date=1950-01-01
For the fragmentation approach, the multiple sequence align-

ments (MSAs) of a given protein fragment can be reused in
subsequent runs where the same fragment is involved. The MSAs
were first moved to the prediction output folder and the following
parameter was added to enable the reuse of MSAs.

--use_precomputed_msas=True
For efficient computing, we segregated the MSA generation part

by using only the CPUs and the model fitting part using the GPUs.

Calculation of metrics for structural models

Motif RMSD
We used the software PyMOL (TM) Molecular Graphics System,
Version 2.5.0. Copyright (c) Schrodinger, LLC., for the superimposition
of AlphaFold models with corresponding solved structures. First, we
used the align command to align the domain chain in AlphaFold
models with the domain chain in the solved structure. Then, we used
the rms_cur command to calculate the all-atom RMSD between the

motif chain in AlphaFold models and the motif chain in the solved
structure. To ensure that the RMSD calculation was done based on all
atom identifiers and without any outlier rejection refinement, the
arguments of the rms_cur command, matchmaker and cycles, were set
to 0. Prediction accuracy categories were defined based on motif RMSD
cutoffs: RMSD ≤ 2 Å for correct sidechain, between 2 Å and 5 Å for
correct backbone, between 5Å and 15 Å for correct pocket and >15 Å
for wrong pocket.

DockQ
The calculation of DockQ scores of AlphaFold models was done in
reference to their solved structures using the code available on the
github repository of DockQ (https://github.com/bjornwallner/
DockQ, (Basu and Wallner, 2016). DockQ classification was done
using the cutoffs provided by DockQ (DockQ: <0.23 for incorrect,
between 0.23 and 0.49 for acceptable, between 0.49 and 0.80 for
medium and ≥0.80 for high).

pDockQ
The calculation of pDockQ of AlphaFold models was done by
adapting the code available on the github repository from the
Elofsson lab (https://gitlab.com/ElofssonLab/FoldDock/-/blob/
main/src/pdockq.py, (Bryant et al, 2022)). The pDockQ score is
created by fitting a sigmoidal curve to the DockQ scores of a series
of AlphaFold predicted models. The score takes into account the
number of interface contacts as well as their pLDDT scores. Of
note, the calculation of pDockQ score takes Cβs (Cα for glycine)
from different chains within 8 Å from each other as interface
contacts which is different from our interface definition (see the
subsection below Domain chain and motif chain interface pLDDT
and average interface pLDDT).

iPAE
The calculation of iPAE of AlphaFold models was done by adapting
code available on the github repository https://github.com/fteufel/
alphafold-peptide-receptors/tree/main (Teufel et al, 2023). The iPAE is
the median predicted aligned error at the interface. The authors
consider residues in contact if their distance is below 0.35 nm (3.5 Å).
The iPAE score could not be calculated for models generated by
AlphaFold Multimer version 2.3.0 due to JAX dependency of the pickle
files generated by AlphaFold Multimer version 2.3.0.

Model confidence
The model confidence of AlphaFold models was extracted from the
ranking_debug json file. The model confidence is a weighted
combination of pTM and ipTM to account for both intra- and
interchain confidence:

model confidence ¼ 0:8 � ipTM þ 0:2 � pTM

Domain chain and motif chain interface pLDDT and average
interface pLDDT
Since AlphaFold conveniently stores the pLDDT confidence
measure for each residue in the B-factor field of the output PDB
files, the pLDDT of residues at the interface was parsed from the
output PDB files of AlphaFold. Residues at the interface are defined
as those that have at least one heavy atom that is less than 5 Å away
from any heavy atom of the other chain (calculated using the
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PyMOL API). The pLDDT of the residues at the interface from the
domain chain and motif chain was averaged to compute the
domain chain and motif chain interface pLDDT, respectively. The
pLDDT of all the residues from both chains was averaged to
compute the average interface pLDDT.

Residue-residue and atom-atom contacts
Following the interface definition above, the number of unique
residue-residue and atom-atom contacts were also quantified as
measurements to assess AlphaFold models.

Mean DockQ between predicted models
The top five models generated by AF, determined based on their
model confidence, were considered for computing this metric. To
quantify the similarity among the models, we computed DockQ
scores between all possible pairs of models by taking the higher
ranked model as the “template” model and lower ranked model as
the “predicted” model. The mean of these DockQ scores is taken as
the similarity among the models in a given prediction. This
calculation was done for AF models of minimal DMIs and their
randomizations for ROC analysis. The data were stored in Dataset
EV2.

Quantification of motif properties

Motif hydropathy score and symmetry score
By referring to the Kyte-Doolittle hydrophobicity scale, (Kyte &
Doolittle, 1982) the hydropathy scores of the amino acids in a given
motif were summed and averaged to compute the average
hydropathy of the motif. The average motif symmetry score was
computed by taking the sum of the absolute difference of
hydropathy scores between motif position n and n - motif length
+ 1 and division of this sum by half of the motif length:

Peptide symmetry score ¼
Pa

n¼1 Hn �Hx�nþ1ð Þj j
a

where x is the length of the motif and a is the floor division of x by 2.

Motif probability
The motif probability reflects the degeneracy of a given motif class
as quantified by its regular expression that is annotated in the ELM
DB. The motif probability was retrieved from the ELM DB
version 1.4.

Secondary structure elements of motifs
We extracted the secondary structure elements of motifs using the
PyMOL API. In cases where the motif adopts partial secondary
structure, such as loop-helix-loop or loop-strand-loop, they are
treated as helical or strand, respectively.

Selection of motif classes from ELM DB without
annotated structural instances and prediction with AF

By querying the ELM DB for all ELM classes, we retrieved a list of ELM
classes and the number of instances with a structure solved (column
#instances_in_PDB). We filtered for ELM classes with 0 instance-
s_in_PDB and selected 205 instances out of the filtered ELM classes for

AF prediction. The ELM instances were extended at both N and C
termini by n residues where n is the length of the ELM instance,
according to the benchmarking results. The minimal binding domains
of the ELM instances were detected in the interaction partner using
Pfam HMMs (Mistry et al, 2021). As the domain boundaries detected
by Pfam HMMs could be inaccurate, we also extended the domain
sequence at the N and C terminus by 20 residues to ensure that the
whole folded region was covered. The predictions were performed using
AF version 2.3.0. To select a subset of these motif classes, where we can
do experimental testing, we also used the InParanoid resource (Persson
& Sonnhammer, 2023) to map ELM instances where both proteins are
from mouse to their human orthologs. To verify that they indeed do not
have structural homologues in the PDB, we both used the SIFTS
mapping (Dana et al, 2019) between the Pfam domain in ELM and the
PDB and also looked at the ELM classes that were listed as homologs on
the ELM website.

Evaluation of effect of fragment extensions on AF
prediction accuracies

We superimposed the AF models generated with DMI extensions
onto the corresponding solved DMI structures to quantify AF
prediction accuracy using motif RMSD calculations. To this end,
we aligned the two structures on their minimal binding domains
and calculated the all-atom RMSD between the minimal motif in
the extension AF model and the minimal motif in the solved
structure. To determine potential differences in DMI prediction
accuracy when using minimal versus extended protein fragments,
we computed the log2 fold change of the all-atom motif RMSD
before and after extension.

Fold change in prediction accuracy ¼ log2
all atom RMSD motifminimal DMI

all atom RMSD motifextended DMI

� �

Fragment design and fragment pairing for
fragmentation approach

We first inspected the monomeric structural models from the
AlphaFold database (Varadi et al, 2022; Jumper et al, 2021) of both
interacting proteins to determine the boundaries of their ordered
and coiled-coil regions, which were also treated as “ordered”. All
regions that were not annotated as ordered were annotated as
disordered. In some cases, an extended loop with low pLDDT can
be found within an ordered region. As they can also potentially
carry a motif or mediate interactions in another way, these regions
were also annotated as disordered in addition to their annotation as
being part of a larger ordered region. The disordered regions of the
proteins were fragmented into fragment sizes of 10, 20 and 30
residues. To allow AF to sample continuous sequences, we also
generated another set of fragments of same sizes that overlap with
the previous fragments by sliding the sequence by half the size of
the fragment. The unfragmented disordered regions, as well as their
fragments, from one protein were then paired with the ordered
regions from its interacting partner and vice versa for prediction.
The ordered regions from both proteins were also paired for
prediction. We decided to manually define boundaries between
ordered and disordered regions because testing available code
developed for this purpose, like clustering using the PAE matrix,
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turned out to be too inaccurate. We observed that erroneous
removal of residues close to the domain borders that are still
contributing to the folding of a structured domain, can heavily
mislead AF predictions.

Selection of NDD proteins

A list of NDD genes was assembled using whole exome and whole
genome sequencing studies of cohorts of NDD patients from
Gene4Denovo (Zhao et al, 2020) and Deciphering Developmental
Disorders (DDD) study (Firth et al, 2011), respectively. From
Gene4Denovo, we selected genes linked to autism-spectrum
disorders (ASD), intellectual disability (ID), epilepsy (EE),
undiagnosed developmental disorders (UDD) and NDDs in
general. Genes with non-coding mutations as well as genes with a
false discovery rate (FDR) >= 0.05 were excluded. Similarly, in the
DDD study, genes associated with developmental disorders with a
neurological component, as well as genes found to be mutated in at
least three children with NDDs (labeled as confirmed genes) were
retained. The final list included 984 NDD-risk genes. We filtered
the HuRI network (Luck et al, 2020) for interactions mediated
exclusively by proteins from this NDD gene list resulting in 67 PPIs
excluding self-interactions. Since our fragmentation approach
generates many fragments, we did not consider PPIs involving
proteins that are more than 1500 amino acids in length, resulting in
a final list of 62 PPIs that were subjected to AF modeling.

Manual inspection of interface predictions for NDD-NDD
PPIs and selection for experimental validation

Paired fragments from NDD-NDD PPIs were predicted using AF
version 2.2 and the prediction results are stored in Dataset EV10.
Based on our benchmarking results, we started by manually
inspecting all NDD-NDD PPIs that obtained at least one structural
model with either a motif chain interface pLDDT of ≥70 for the
disordered fragment or with an average interface pLDDT ≥ 70 for
structural models with predicted ordered-ordered interfaces
(DDIs). However, during the course of these manual inspections,
we found that using in addition a model confidence of ≥0.7 for
ordered-ordered fragment pairs helped discriminating good from
bad structural models. We inspected the ranked_0 models for all
fragment pairs that met the above cutoffs but also inspected models
scoring somewhat below these cutoffs. For every NDD-NDD PPI
we used Interactome3D (Mosca et al, 2013) and PDB database
searches (https://www.rcsb.org/ (Berman et al, 2000)) to identify
whether a structure already existed for this PPI. In our evaluation of
the structural models we also considered if a certain interface was
recurrently predicted for different overlapping fragments because
this usually hints at increased confidences for the correctness of the
interface prediction. We furthermore explored the number and
kind of residue-residue contacts predicted by AF by visual
inspection of the structural models using PyMol. We searched for
functional annotations and existing structures for the monomers
using the PDB, ProViz (Jehl et al, 2016), SMART (Letunic et al,
2021), and the scientific literature to identify enzymatic pockets or
binding interfaces for DNA, RNA, or metal ions. Observations and
justifications for the final evaluation of the predictions for every
NDD-NDD PPI are provided in Appendix Supplementary Text S1.

Based on clone availability, we selected 49 of the 62 PPIs for
experimental validation of the predicted interfaces using the BRET
assay. For 30 of the 49 selected PPIs for experimental testing we
obtained sequence-confirmed clones with luciferase and mCitrine
fusions. For 28 of these PPIs both partners were expressed in our
experimental system as determined by total luminescence and
fluorescence measurements (Fig. 3D,F).

Softwares used

We used the software PyMOL (TM) Molecular Graphics System,
Version 2.5.0. Copyright (c) Schrodinger, LLC., for the visualization
and superimposition of AlphaFold models.

All codes were written in Python3 and analyses were done using
Jupyter notebooks. We used the Python libraries, Biopython (Cock
et al, 2009) for sequence similarity computation, pandas (McKin-
ney, 2010) for data analysis, and Matplotlib (Hunter, 2007) and
seaborn (Waskom, 2021) for data visualization. ROC and PR
statistics were calculated using the Python package sci-kit learn
(Pedregosa et al, 2012).

Cell line culture and maintenance

HEK293 cells were purchased from DSMZ (catalog number ACC305).
These cells were grown and maintained in DMEM (Thermo Fisher),
supplemented with 10% FBS (PAN-Biotech), 2mM glutamine (Thermo
Fisher) and 1% penicillin–streptomycin (Thermo Fisher). Cells were
incubated at 37 °C with 5% CO2. Subcultivation was performed with
1ml of 0.05% trypsin every 2–3 days for up to 40 passages. For each
passage 1–2 × 106 cells were seeded in T25 flasks (Sarstedt). Then, new
cells were thawed from stocks containing 2 × 106 cells in 1ml of growth
medium, supplemented with 10% DMSO (Sigma). Every 3 months cells
were checked for mycoplasma contamination using a PCR test (Dataset
EV11). The cell line was purchased from DSMZ four years ago,
expanded, aliquoted, and frozen. A new aliquot is thawed after every 40
passages. No further authentication of the cell line has been done.

Plasmid construction

Standard controls
The donor and acceptor vectors pcDNA3.1-cmyc-NL-GW
(Addgene plasmid ID #113446), pcDNA3.1-GW-NL-cmyc
(Addgene plasmid ID #113447), pcDNA3.1 GW-His3C-mCit,
pcDNA3.1 mCit-His3C-GW as well as controls pcDNA3.1-NL-
cmyc (Addgene plasmid ID #113442), pcDNA3.1-PA-mCit
(Addgene plasmid ID #113443) were kindly provided by the
Wanker Group (Max-Delbrück-Centrum für Molekulare Medizin,
Germany) (Dataset EV12). By default we cloned all ORFs of
interest into N-terminal NL and mCit fusion destination vectors
and occasionally also transferred ORFs into C-terminal fusion
vectors if N-terminal fusions did not result in sufficient BRET
signals but the interaction was of high interest to this study and
predicted interfaces were closer to the C-terminus. Trepte et al have
shown that testing protein pairs in different configurations
increases detection rates while maintaining low false detection
rates and that BRET signals are higher if fusions are close to the
actual interaction interface (Trepte et al, 2018; preprint:Trepte et al,
2021; preprint:Trepte et al, 2023).
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GATEWAY cloning procedure
Full-length wild-type human open reading frames (ORFs) being
cloned in GATEWAY entry vectors from the ORFeome collaboration
are stored as bacterial glycerol stocks. (ORFeome Collaboration, 2016)

1. The ORFs were inoculated in 96-well plates (Corning), with each
well containing 200 uL of LB medium and 100 µg/ml ampicillin.
The plate was incubated at 37 °C and left to shake overnight at
190 rpm.

2. In a 96-well PCR plate (Brand) 10 ng of each selected ORF was
used per 50 µl PCR reaction (denaturation at 98 °C for 10 s,
annealing at 55 °C for 30 s and extension at 72 °C for 3 min, 30
cycles of amplification) using phusion high-fidelity polymerase
(NEB) and primers annealing to the backbone of the plasmid
(forward: 5′TTGTAAAACGACGGCCAGTC and reverse: 5′
GCCAGGAAACAGCTATGACC).

3. The PCR products (6 µl per well) were confirmed through 96-well
E-gel with SYBR (Thermo Fisher, Catalog no G720801) using
25 µl of loading buffer (Thermo Fisher) and 20 µl of E-Gel 96
High range DNA marker (Thermo Fisher).

4. In a 96-well PCR plate 1 µl of each amplified PCR product
together with 200 ng of above-mentioned destination vectors were
directly used per 10 µl LR reaction using 4x LR clonase
(Invitrogen), thereby generating expression vectors.

5. The full 10 µl of LR reaction was transformed into chemically
competent DH5a cells (30 µl) in a 96-well PCR plate, then
recovered in 80 µl of pre-warmed SOC medium at 37 ˚C for 1 h
without shaking.

6. 70 µl of transformed bacteria was plated on 48-well square agar
plates and incubated at 37 °C overnight.

7. Afterwards, colonies were selected and inoculated into a 96 deep-
well plate containing 2 ml of LB medium and 100 µg/ml
ampicillin. The plate was then incubated at 37 ˚C with continuous
shaking at 700 rpm in the incumixer for 24 h.

8. The amplified vectors were extracted from the inoculated culture
using Plasmid Plus 96-well Miniprep kit (Qiagen). The
concentration of each vector was measured with a Nanophot-
ometer and diluted to 100 ng/µl. Next, 600 ng of insert was used
for full-length sequencing using the backbone primers (tag-
specific NanoLuc forward: 5′GAACGGCAACAAAATTATC-
GAC, mCitrine forward: 5′AGCAGAATACGCCCATCG and
reverse: 5′GGCAACTAGAAGGCACAGTC) and ORF-specific
primers (Dataset EV11) to fully cover the ORFs where it was
needed (Dataset EV12). All sequence-confirmed ORF sequences
used in this study are available in Dataset EV13.

Site-directed mutagenesis
The primers were manually designed using the following criteria:

1. For point mutation the primers should overlap the site of
mutation. The overlap should be 15–20 nucleotides (nt).

2. For the deletion the primers should be designed to exclude the
deletion site, but still overlap and the overlap should be as
mentioned in step 1.

3. Primer length should be in the range of 32–36 nt.
4. GC content should be between 40–60%.
5. Difference in melting temperature of primers should not

exceed 5 °C.

6. The primer ideally should start and end with guanine or cytosine.
7. The designed oligos were grouped by annealing temperature for

the next step.
8. In 96-well PCR plate 10 ng of DNA template together with oligos

were used per 50 µL of PCR reaction (denaturation at at 98 °C for
2 min, annealing for 15 s and extension at 72 °C for 5 min, 25
cycles of amplification) using phusion high-fidelity
polymerase (NEB).

9. 1 µL of DpnI (NEB) was added to the plate with PCR products
and incubated at 37 °C for 1 h. The reaction was stopped at 65 °C
for 20 min.

10. The PCR products (6 µl per well) were confirmed through 96-well
E-gel with SYBR (Thermo Fisher, Catalog no G720801) using
25 µl of loading buffer (Thermo Fisher) and 20 µl of E-Gel 96
High range DNA marker (Thermo Fisher).

11. 3 µL of digested PCR product was transformed into chemically
competent DH5a cells (30 µL) in a 96-well PCR plate, then
recovered in 80 µL of pre-warmed SOC medium at 37 °C for 1 h
without shaking.

12. 70 µL of transformed bacteria was plated on 48-well square agar
plates and incubated at 37 °C overnight.

13. Afterwards, colonies were selected and inoculated into a 96 deep-
well plate containing 2 ml of LB medium and 100 µg/ml
ampicillin. The plate was then incubated at 37˚C with continuous
shaking at 700 rpm in the incumixer for 24 h.

14. The amplified vectors were extracted from the inoculated
culture with Plasmid Plus 96-well Miniprep kit (Qiagen). The
concentration was measured with a Nanophotometer and
diluted to 100 ng/µl. Next, 600 ng of insert was used for full-
length sequencing using primers covering the mutation and
ORF-specific primers (Dataset EV11) to fully cover the ORF
length (Dataset EV12).

BRET assay

Transfection
HEK293 cells were grown and maintained in high-glucose (4.5 g/l)
DMEM (Thermo Fisher) for BRET assays. Media was supplemen-
ted with 10% fetal bovine serum (PAN-Biotech) and 1% Penicillin/
Streptomycin. Cells were grown at 37 °C, 5% CO2, and 85% RH.
Cells were subcultured every 2–3 days and transfected with
lipofectamine 2000 transfection reagent (Invitrogen) in Opti-
MEM medium (Thermo Fisher) using the reverse transfection
method according to the manufacturer’s instructions. For transfec-
tions, cells were seeded at a density of 4.0 × 104 cells per well in a
white 96-well microtiter plate (Greiner) in phenol-red-free, high-
glucose DMEM media (Thermo Fisher) supplemented with 5%
fetal bovine serum (Thermo Fisher). Transfections were performed
with a total DNA amount of 200 ng per well. If the expression
plasmid concentration amount was below 200 ng/well, pcDNA3.1
(+) was used as a carrier DNA to reach the total amount of DNA of
200 ng. All protein pairs were tested in both N-terminal fusion
orientations (NL-A with mCit-B and NL-B with mCit-A). The
following proteins were also tested as C-terminal fusions: CSNK2B-
NL, ESRRG-NL, CUL3-NL, PEX3-NL, PEX19-NL, PSMC5-NL,
PEX3-mCit, PEX19-mCit, PEX16-mCit, RORB-mCit, ESRRG-
mCit, PAX6-mCit, CSNK2B-mCit, PSMC5-mCit, KCTD7-mCit
(Dataset EV12).
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Measurement
The plate was incubated 2 days at 37 °C, 5% CO2, and 85% RH
before measurements. All measurements were done with the
Infinite M200 Pro microplate reader (Tecan). First, 100 µl of the
medium was aspirated from each well. The mCitrine fluorescence
(FL) was measured in intact cells (excitation/emission 513 nm/
548 nm) using a gain of 100. On rare occasions, the plate reader
recorded an overflow with these settings (i.e. for GIGYF1
constructs). In these cases, we repeated the measurement with
optimal gain settings and used a fluorescein control to normalize
fluorescence signals measured with different gain settings. For this
purpose, Fluorescein was obtained from Sigma-Aldrich (Catalog
No 46955-250MG-F) and used without further purification. A stock
solution of Fluorescein (1 mg/ml in Ethanol) was prepared by
dissolving 1.3 mg Fluorescein in 1.3 ml absolute ethanol. 100 µl of a
20 µg/ml solution of Fluorescein were added to an empty well
immediately before starting the fluorescence measurements. The
20 µg/ml solution of Fluorescein was obtained by preparing a 1:50
dilution in water of the stock solution. After measuring the
fluorescence, coelenterazine-h (PJK Biotech GmbH) was added to a
final concentration of 5 µM. The cells were briefly shaken for 15 s
and incubated for 15 min inside the plate reader at 37 °C. After
incubation, total luminescence was measured first followed by
short-wavelength (WL) and long-wavelength luminescence (LU)
measurements using the BLUE1 (370–480 nm) and the GREEN1
(520–570 nm) filters at 1000 ms integration time. Corrected BRET
ratios were calculated as described in (Trepte et al, 2018). Briefly,
for every transfected protein pair NL-A and mCit-B, the following
two control pairs were measured: NL-Stop with mCit-B and NL-A
with mCit-Stop. The maximal BRET from both control pairs was
subtracted from the actual test pair to correct for donor
bleedthrough, unspecific binding to the tags, and background
signal.

Determination of binding events in BRET assay
To determine whether a protein pair interacted in the BRET assay
or not, we used donor:acceptor DNA transfection ratios of 2:50 ng
in all cases except for PEX3-PEX16 where we used 8:25 and
PEX3:PEX19 where we used 8:50 ng DNA ratios due to low
expression levels of PEX3 and a degradation effect of higher PEX16
protein levels on PEX3 expression levels. We requested that
cBRETs determined at these transfection ratios were ≥0.05,
fluorescence measurements representing mCitrine fusion expres-
sion levels to be ≥500 units, and total luminescence measurements
representing NL fusion expression levels to be ≥50,000.

Saturation assay
For donor saturation experiments various donor DNA amounts (1,
2, 4 and 8 ng) encoding NL-fused proteins were co-transfected with
increasing amounts of acceptor DNA (12.5, 25, 50, 100, 200 ng)
encoding mCitrine-fused proteins. Fluorescence, total lumines-
cence, and BRET measurements were done as described before.
BRET measurements were corrected for bleedthrough using NL-
Stop transfections. Fluorescence and total luminescence measure-
ments were corrected for background signal using transfections
with pcDNA3.1(+) and subsequently used to estimate amounts of
expressed proteins and to plot acceptor/donor ratios on the x-axis
of titration plots.

Fitting of titration curves
Titration curves were fitted using the leastsq function from the
scipy.optimize python package (Virtanen et al, 2020) using the
model BRET = ((A/D) * BRETmax)/(BRET50 + (A/D)) described
in (Drinovec et al, 2012), which assumes a 1:1 binding mode, to
obtain estimates for the BRETmax and BRET50. Standard errors of
the BRET50 estimates were obtained from the variance-covariance
matrix, calculated by multiplying the fractional covariance matrix
(output by leastsq function) by the residual variance. Measuring BRET
signals in intact cells for increasing acceptor/donor protein expression
ratios results in an eventual saturation of the signal. Fitting this curve
allows extraction of the maximal BRET that can be reached and the
BRET50, which is the acceptor/donor ratio at which half of the
maximal BRET is obtained. The BRET50 is indicative of binding
affinity, in analogy to the IC50, however, its accurate estimation
requires saturation of the BRET to be observed in the experimental
system, which cannot always be achieved because of limited amounts
of DNA that cells can be transfected with. Alternatively, if mutations
are unlikely to change the overall structure of the fusion constructs and
do not alter expression levels compared to wildtype, single point BRET
measurements at acceptor/donor ratios prior to BRET saturation are
also indicative of changes in binding strength. The BRET titration
curves that we obtained for the PNKP-TRIM37 interaction clearly
deviated from the assumed 1:1 binding mode because at higher
acceptor:donor ratios we observed a sudden increase in BRET again
contrary to an expected saturation. The model could thus not be fitted
to the titration data.

Antibodies

Purified anti-HA.11 Epitope Tag, Clone: [16B12], Mouse, Mono-
clonal (Biolegend, BLD-901502), 1:2000.

Purified anti-GIGYF1, Rabbit, Polyclonal (BETHYL labora-
tories, Cat. #A304-132A-1), 1:1000.

GAPDH Loading Control Monoclonal Antibody (GA1R), HRP-
coupled (Thermo Fisher Cat. MA515738HRP), 1:3000.

Co-immunoprecipitation and western blot

Snrpb (full-length) and C-terminal truncation mutant (amino acids 1-
190) was cloned from mouse cDNA and ligated into pFRT-TO
destination plasmid using AscI and PacI restriction sites. The constructs
additionally contain C-terminal 2xHA and mNeonGreen tags. Flp-In™
T-REx™ 293 Cell Lines (Thermo Fisher, catalog number: R78007)
expressing Snrpb endogenously from a single locus were generated
according to the manufacturer’s instructions. In brief, pFRT-TO and
pOG44 plasmids were co-transfected and hygromycin-resistant colonies
were grown, picked and expanded. The Snrpb transgene expression was
validated by western blot, RT-qPCR, and immunofluorescence, which
showed that ectopic Snrpb-HA was expressed at levels highly similar to
the endogenous Snrpb protein.

For the co-immunoprecipitation experiments, 8 × 106 cells were
seeded in a 10 cm dish. The following day, expression of Snrpb-HA
was induced by adding 0.1 μg/mL Doxycycline (D9891, Sigma
Aldrich) to the culture medium. Parental cells not expressing any
HA-tagged transgene were used as a negative control of
immunoprecipitation. The next morning the cells were harvested
by scraping in culture media, followed by centrifugation and a
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single wash in ice-cold PBS. The whole cell extract was prepared by
15 min incubation on ice with 0.3 mL of lysis buffer (200 mM NaCl,
50 mM HEPES, pH 7.6, 0.1% IGEPAL, 10 mM MgCl2, 10%
Glycerol, Protease Inhibitor Cocktail (P8340, Sigma Aldrich),
Phosphatase Inhibitor (P5726, Sigma Aldrich) followed by 2 cycles
of sonication in a Bioruptor Plus (30 s on, 30 s off) and
centrifugation for 20 min at 16,000 × g. The extract was quantified
by a Bradford assay and 1 mg was used for immunoprecipitation,
for which the NaCl concentration was adjusted to 100 mM final
concentration by diluting with an equal volume of Lysis Buffer
containing 0 mM NaCl. 0.05 mg was set aside as input control (5%).
0.02 mL of Thermo Scientific™ Pierce™ Anti-HA Magnetic Beads
(Thermo Fisher Cat. 13464229) were incubated with 1 mg protein
extract for 1 h at 4 °C on a rotating wheel. The beads were washed
three times before eluting the immunoprecipitated proteins with
0.02 mL of 1 x NuPAGE™ LDS Sample Buffer by incubating at 42 °C
for 10 min while shaking at 800 rpm. Another 0.01 mL were used
for elution, were then combined making a total of 30 μL, which
were transferred to a fresh tube and to which 3 μL of 1 M DTT were
added. Input and immunoprecipitated eluates were then separated
on a 10% Tris-Glycine SDS PAGE using 1xMOPS buffer,
immunoblotted on 0.45 μm PVDF membranes (Tris-Glycin
Transfer Buffer, 10% Methanol, 300 mA, 1 hour), blocked with
5% milk in TBS-0.2% Tween for 30 min at RT. Primary antibodies
were incubated overnight at 4 °C on a rocker followed by washes
and incubation with secondary HRP-labeled antibodies (1 h at RT
in 5% milk, TBS-0.2% Tween). Blots were developed using Pierce™
ECL Western Blotting Substrate (Thermo Fisher Cat. 32209) or
SuperSignal West Femto Maximum Sensitivity Substrate Kit
(Thermo Fisher Cat. 34095) and imaged on a ChemiDoc MP V3
(Bio-Rad). The cell line was authenticated via X-Gal staining, qPCR
and Sanger Sequencing.

Data availability

The datasets and computer code produced in this study are
available in the following databases:

- Interaction data: submitted to the IMEx (http://
www.imexconsortium.org) consortium through IntAct (Del
Toro et al, 2022) and assigned the identifier IM-29904.

- Computer scripts for data processing and analysis: available at
GitHub under https://github.com/KatjaLuckLab/AlphaFold_
manuscript.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-023-00005-6.

Peer review information

A peer review file is available at https://doi.org/10.1038/s44320-023-00005-6
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Appendix Text S1. Summary of observations from the manual inspection of AlphaFold 
models generated from fragmentation approach on PPIs connecting NDD proteins. 
 
run14: PLP1-MFF 
Top prediction involves an ordered region from PLP1 and a disordered fragment from MFF, 
with a model confidence of 0.75. Looking at the predicted model, the peptide is tilted at an 
angle to the bundle of helices of PLP1, not like the usual coiled-coil interaction. No trend in 
increasing confidence with shorter fragments too. The interface does not look very convincing. 
While the disordered region in MFF is likely to be a functional motif, the 4-helix bundle domain 
in PLP1 that AF models it to bind to is known to be a transmembrane domain, so the binding 
site is actually buried inside the membrane. AF is also not very confident about the domain 
structure, especially for the parts that are at the membrane surface or outside of it. The 
prediction is likely wrong. 
 
run17: PAX6-CSNK2A1 
CSNK2A is a widely active kinase, involved in many processes. Overlapping fragments from 
PAX6 show trend of increasing confidence the shorter the fragment. CSNK2A1 is predicted to 
bind with its kinase domain (it doesn’t really has anything else than the kinase domain) to a 
peptide in PAX6 which seems to be a good looking linear motif, i.e. conserved, not part of a 
folded domain as predicted by AF and predicted by AF to form an alpha helix. The motif though 
overlaps with a putative NLS. The PAX6 motif is predicted to bind clearly to a pocket that 
exists in N-lobe of the kinase domain at the bottom of it, away from the catalytic side. Digging 
deeper, I found a structure, 1JWH, that shows that this is the pocket that is bound by CSNK2B, 
the regulatory subunit, that interacts with the catalytic subunit to form an active holoenzyme. 
This, however, does not eliminate the possibility that the AF prediction is right since the peptide 
looks like a functional motif. 
 
run18: PAX6-SET 
Top prediction is ordered-ordered, PAX6 Homeodomain and SET NAP domain. The structure 
6PAX shows the PAX domain consisting of two similar folds like the homeodomain bound to 
DNA but the three-helix bundles are not oriented in exactly the same way like in the 
homeodomain so I am having a hard time to see where the homeodomain would bind DNA; 
AF models the homeodomain interface with the NAP domain of SAP via a charged interface 
with a lot of positively charged residues on the homeodomain contacting a patch of negatively 
charged residues on the SAP domain. It could be that this patch of positively charged residues 
on the homeodomain would usually interact with the negatively charged backbone of DNA, 
but the predicted structure from AF looks interesting since the interface likely does not interfere 
with SET homodimerization (2E50). 
 
run19: PAX6-TLK2 
All predictions with >0.7 model confidence are paired with the Pkinase domain of TLK2 and 
they are all predicted to bind at the bottom of the beta barrel fold (N-lobe) of the kinase domain. 
However, almost all peptides come from very different regions in PAX6, no recurrent 
predictions here. 

When looking at the motif pLDDT metric then top predictions also involve two distinct 
motifs predicted to bind to the long helices in TLK2. However, AF predicts the two helices to 
form intramolecular contacts. By taking them apart into separate fragments it could be that 
intramolecular contact sites are now used for interface prediction.  
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The pair of interactions has a DMI predicted, MOD_GSK3_1 (PAX6 395-402). The 
peptide PAX6 394-404 was paired with the Pkinase domain but similar to the previous point, 
it is also put at the beta barrel fold in the N lobe and not the substrate binding site. 
 
run20: PAX6-NGLY1 
The PUB domain from Q96IV0, NGLY1, gives good model confidence, >0.8, in binding 
overlapping disordered fragments of P26367, PAX6. The PUB domain has been solved before 
alone (2CCQ), the catalytic domain has also been solved bound to RAD23 (2F4M); in the 
paper that published the PUB domain structure (Allen et al JBC 2006, 
10.1074/jbc.M601173200) they also did some mutational analysis to show that there is an 
interface on the PUB domain that binds the AAA ATPase domain of p97 but the experimental 
evidence looks not very convincing. Indeed, AF modelled the peptide from PAX6 to bind to an 
interface adjacent to the one found by Allen et al. There is indeed some hydrophobic pocket 
and the best 4 predictions comprise that peptide binding to this pocket, however, which 
hydrophobic residue of the peptide is docked into the pocket varies depending on the length 
of the peptide; I think that this region in PAX6 could indeed be a linear motif, it is adjacent to 
the homeobox domain but I don’t think that it is part of the homeobox domain. 
 
run21: PAX6-ESRRG 
Many short fragments with high model confidence that are scattered over the disordered 
region. The binding pocket on ESRRG is in the hormone receptor domain and is a known 
binding pocket for binding to L..LL motifs (ELMDB: LIG_NRBOX). 

According to ELMDB, the first and last L go into a hydrophobic pocket and all fragments 
of PAX6 with high model confidence have more or less two hydrophobic amino acids with 
three residues in between: PAX6 319-329: DTALTNTYSA, PAX6 203-213: RLQLKRKLQR, 
PAX6 374-384: PPHMQTHMNS, PAX6 198-208: DEAQMRLQLK, PAX6 128-148: 
GADGMYDKLR. 

Looking at structures with ESRRG and two different bound peptides: 1KV6 and 1TFC: 
NCOA1 686-700: RHKILHRLLQEGSPS, 2GPO and 2GPP: NRIP1 378-387: SLLLHLLKSQ, 
it furthermore became apparent that the hydrophobic residues right before both Leucines are 
also important for binding since they contact a hydrophobic patch on the other side of the 
pocket. However, none of the AlphaFold predicted motifs really fit, it is thus questionable 
whether they can actually bind the pocket. 

Structurally speaking, the peptide does not fit that nicely in the hydrophobic pocket. In 
2GPO and 2GPV, there is a triad of hydrophobic residues (V/L/I) making contact with the 
hydrophobic pocket on the domain but here only 2 residues are making contact. Therefore, it 
seems doubtful to me that this is a motif that can bind to the domain. 
 
run22: PAX6-QRICH1 
Difficult to dig deeper because QRICH1 has only one domain (DUF) that binds to C terminus 
peptide from PAX6. The high confidence peptide is 20 aa long and seems nice with 0.88 model 
confidence.  

The same DUF is also modelled with 0.76 confidence with a very long disordered 
region (85 aa) that is at the N terminus of PAX6. However, the predicted complex of this 
disordered region is quite odd, as it has many twists and turns that seem weird to me. 

Overall, these predictions look good but it’s hard to be very certain about it because 
nothing is known about the domain in QRICH1 and PAX6 has a long disordered C-terminal 
region full of S, T, but also some Ps and hydrophobics. 
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run23: PAX6-KCTD7 
The top prediction involves the disordered region of PAX6 (198-208) and BTB_2 domain of 
KCTD7, with 0.74 model confidence. No trend of increasing confidence when fragments 
shorten. InterPro describes this domain as one that multimerises for its protein function, e.g. 
KCTD1 as a transcriptional repressor (3DRX, solves KCTD5 that has a similar fold but shorter 
in length). Since BTB domain mediates the multimerisation of KCTD, it could be that it requires 
a certain stoichiometry for binding to its partner. In the HuRI database, KCTD7 was indeed 
detected to interact with itself. The two highest predicted models put both peptides into the 
same pocket and both peptides have some sequence similarity albeit from different regions in 
PAX6. These peptides were also predicted with high model confidence in other runs. Based 
on the structure 5FTA, BTB domains in their homodimerized form do expose the surface 
predicted in the top prediction. Therefore, the surface predicted to bind to the peptide would 
be available. Taken together, the prediction looks plausible. 
 
run24: TTC19-FH 
Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run25: PEX3-PEX16 
PEX3 and PEX16 are two proteins that seem to cooperate to help inserting new peroxisome 
membrane proteins (PMPs) into the peroxisome membrane. They do so via interaction 
between PEX3 and PEX19. PEX19 brings the PMPs to the peroxisome where PEX3 and 
PEX16 sit and mediate then further insertion of the cargo (this is described in review Smith 
and Aitchison 2013 Nature Rev Mol Cell Biol in Fig 2). However, there is also a study that 
describes how PEX16 localizes to ER and from there traffics to peroxisomes (Kim et al JCB 
2006). The structure 6AJB that has been solved for the interaction between PEX3 and PEX19 
was published by Sato et al EMBO J 2010 and describes how an N-terminal SLiM in PEX19 
binds to the domain of PEX3. They tried to crystalize the whole protein of PEX3 but only 
observed residues 52-368. The domain has the exact same fold as predicted by AF. The 
predicted cytosolic and peroxisomal localization of protein regions and the two TM helices that 
are shown in Uniprot seem to be wrong for PEX3 according to work cited in Sato et al. They 
summarize that the N-terminal region of PEX3 contains a targeting signal or anchor for PEX3 
to the peroxisomal membrane followed by the domain that is located in the cytosol. No 
structure has been solved yet for PEX16 but it seems likely that the prediction of two TM 
helices that are shown in UniProt in this protein is also wrong. AF predicts a globular domain 
containing the two TM helices and has a nicely exposed loop that carries the putative SLiM 
that AF predicted to bind to PEX3. It binds onto PEX3 on the opposite side to PEX19 binding, 
so PEX19 and PEX16 could bind simultaneously to PEX3. Further work on these interactions 
can be done by submitting the three protein sequences to AF to see what it does. Some other 
study observed interaction between PEX3 and PEX16 according to Uniprot but the interface 
really does not seem to have been looked at before nor the interaction studied in detail. All the 
fragments that contain the putative SLiM in PEX16 are predicted in the exact same way to 
bind to PEX3; always anchored via a conserved region sitting in PEX16 between residue 160 
and 190. Interestingly, the most conserved residues are also those that seem most important 
for binding. This smells really good. 
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run26: PEX3-PEX19 
This is a positive control interaction since the structure has been solved for this PPI (3AJB) 
and it is a well known and well studied PPI with an entry for it in the ELM DB: LIG_Pex3_1 
(L..LL...L..F). This ELM instance is indeed predicted by AF to be the highest model confidence. 
Another peptide from PEX19 121-141, FTSCLKETLSGL, scored equally high model 
confidence. It could be that this other predicted binding site is also true but I believe that it is 
rather an artefact from AF’s insensitivity to mutations. 
 
run27: GABARAPL2-UBA5 
The structure 6H8C shows binding of GABARAPL2 domain to LIR motif in UBA5. This motif 
is not listed on the ELM website for LIG_LIR_Gen_1 because it does not quite fit the regular 
expression which seems to be defined too narrowly. AlphaFold correctly predicts this interface 
but only as third highest based on model confidence just hitting the cutoff of 0.7 while using 
chainB_inf_avg_plddt it scores as fourth best prediction far below the cutoff (67). However, 
AF recurrently finds peptides including the motif following each other when ranked by model 
confidence or pLDDT. The top three motifs predicted to bind to GABARAPL2 are not finding 
the hydrophobic pocket that is filled by a key big hydrophobic residue in the motif and these 
peptides are also not recurrently predicted. So, I think these are wrong predictions. 
 
run28: GABARAPL2-LZTR1 
GABARAPL2 (P60520) has Atg8 domain that is known to bind motifs (LIG_LIR_Gen_1). The 
domain is modelled with high confidence to bind to different disordered fragments of 
interacting partner LZTR1 (Q8N653). The second top confident model (when ranked by model 
confidence) has an aromatic residue tucked into a deep pocket and a branched alipathic 
residue tucked into another shallow pocket. The top confident model has some kind of 
increasing trend in model confidence as fragments get shorter, with the shortest one getting 
the highest confidence. The highest confidence model has a nice increasing model confidence 
trend but it does not have an aromatic residue fitting into the deep pocket as it is known for 
LIG_LIR motifs. 

Looking at the structure 2LUE, the second top model LZTR1 46-52 GPFETVH looks 
more similar in sidechain positioning compared to 2LUE. Residues highlighted in bold get 
tucked into the mentioned pockets. This model seems more likely to be true than the best 
model. However, it also is predicted to bind in reverse order compared to structure 3WIM. 
 
run29: CUL3-KCTD7 
Has an ordered-ordered prediction with quite high confidence (0.66) but the contact interface 
is a tetramerization domain from KCTD7. Therefore it seems unlikely that it is a functional 
interface. 

Two N terminus disordered fragments from KCTD7 with > 0.7 model confidence when 
paired with the Cullin domain of CUL3. These two fragments are modelled to be binding at the 
same site of Cullin domain (the site where RING proteins bind to, 1LDJ). In the case of 1LDJ, 
the RING protein has a long disordered region inserted into the Cullin domain of CUL1, burying 
a series of hydrophobic residues in the long disordered region. However, the same binding 
site of the Cullin domain of CUL3 is a bit different, with more surface exposed than CUL1. In 
this case, the contacts modelled in KCTD7 16-26, with a triple Serine making contact with the 
Cullin domain, look plausible. The other high confidence peptide KCTD7 1-11, with triple 
Valine making contact with the Cullin domain, also looks plausible to me. 

119



In the structure of 1LDJ it is really amazing how the partner protein interacts with CUL1 
via beta-sheet augmentation but how this extra beta strand becomes part of the integral fold, 
it is kind of in the middle of the domain. I think AlphaFold feels that there is something missing 
and is trying to put a peptide there but the overall conformation of the domain is also different 
at places so that the predicted peptide does not sit at the same position like the one shown in 
1LDJ. AlphaFold predicts two different motifs of very different sequence from the N-terminus 
of KCTD7 to bind there. Given how different the sequences are, this adds another negative 
point towards questioning the specificity of these predictions. 
 
run30: PNKP-SYP 
Top prediction is a disordered fragment from SYP (7-19) paired with the kinase domain of 
PNKP. The binding surface is different from the nucleotide binding surface (1RC8). This 
binding interface looks plausible. It was later found that the kinase and phosphatase domain 
form a structural unit based on published structures. The run is modified to use the kinase and 
phosphatase domain as an ordered region for prediction with disordered fragments of SYP. 

The rerun with a fragment comprising the phosphatase and kinase domain now 
resulted in one prediction that makes the cutoff. This prediction puts a motif from SYP into the 
DNA binding pocket of the kinase domain (according to Bernstein et al Mol Cell 2005, 1RC8).  

There is another predicting docking a peptide from SYP into the FHA domain of PNKP. 
It puts it where FHA domains bind their phosphorylated peptides but the SYP peptide has no 
Ser or Thr. 
 
run31: PNKP-TRIM37 
The first prediction involving the combined kinase-phosphatase structure puts a peptide of 
TRIM37 into the binding pocket where the phosphatase domain would bind single stranded 
DNA. 

Following up is a prediction that involves a disordered region in PNKP binding to the 
surface of MATH domain of TRIM37 where MATH domain-binding peptides generally bind to. 
The PNKP peptide differs slightly in sequence from regular expression patterns described for 
MATH domains in the ELM database. This peptide in PNKP has a known phosphorylation site 
that stabilizes PNKP protein levels, making the peptide very interesting since this suggests a 
regulatory role of phosphorylation on the peptide. 

There is a second peptide of PNKP predicted to bind to the MATH domain also with 
high confidence but the sequence is quite different from the first one and very close to the 
phosphatase domain. There is also a prediction where the FHA domain of PNKP is predicted 
to bind to a peptide of TRIM37 but the peptide looks very different from known FHA-binding 
motifs (peptide with phosphorylated threonines), which is of course difficult to predict for AF. 
 
run32: PNKP-XRCC4 
XRCC4 and PNKP prediction, there is a peptide from XRCC4 that binds to the phosphatase 
domain with high confidence. But then I am not sure if this is right because it could be a false 
prediction of a small peptide easily fitting into the catalytic site of the phosphatase domain. 
There is a Serine in the peptide, so it is possible that this is where the phosphate group gets 
cleaved off by the phosphatase domain. After checking more, it is found that XRCC4 is known 
to bind to PNKP via a phosphorylated motif that binds to the FHA domain in PNKP. 

In principle, it would be better to make a rerun where the kinase and phosphatase 
domain are taken as one fragment since they form 1 structural unit but I think in this case it 
would not have changed anything. The best prediction put a peptide from XRCC4 into the 
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pocket of the phosphatase domain where it would bind the single-stranded DNA as seen in 
3U7G. Among the first 9 predictions AF put 7 different peptides from XRCC4 into the 
phosphatase, the others go to the kinase domain. The first prediction that involves the FHA 
domain of PNKP and contains the FHA-binding motif in the sequence fragment of XRCC4 has 
a confidence score of 60 and does not put the FHA-binding motif in the pocket but another 
negatively charged peptide in the sequence (the FHA pocket is very positively charged). The 
correct prediction where AF puts the FHA-binding motif in the right pocket has a confidence 
score of 0.58. 
 
run33: TNPO3-GCH1 
Top prediction involves the disordered region of GCH1 (16-26) and the superhelical structure 
of TNPO3, with model confidence 0.71. Since TNPO3 (transportin) is known to transport cargo 
into the nucleus by releasing the cargo via the competitive binding of GTP-bound Ran (2X19), 
the peptides from GCH1 are modelled to be at a binding site near where Ran binds in 2X19. 
It is therefore biologically sound where the peptides are modelled at. The binding site of the 
peptides from GCH1 is also lined with many arginines, making it very positively charged. The 
contact modelled by AF in the top prediction looks good, with many charge-charge interactions 
at the interface. The N terminus of GCH1 has many prolines that are conserved, with three 
repeats of PAEK or PEAK and two repeats of PPRP. 
 
run34: TNPO3-CAMK2G 
Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run35: GNAI3-GPSM2 
This interaction has been structurally solved (4G5S) and AlphaFold predicted the interface 
100% accurately. GPSM2 has multiple GoLoco motifs that AlphaFold predicts individually with 
high confidence to bind in the pocket on GNAI3. 
 
run36: SYT1-MIP 
Both are transmembrane proteins. The top prediction involves the linker between two C2 
domains of SYT1 and the MIP domain of MIP. MIP domain is also known as aquaporin domain 
(transmembrane). However, when the linker is fragmented, it receives lower confidence. I think 
this is unlikely to be the interaction interface. The linker could be a motif for some other 
interaction because of its moderately high plddt. There is a structure of a homodimer of SYT1, 
2R83, that shows that both C2 domains of one chain are actually interacting with each other 
and that the linker between both domains interacts with one domain. It is this linker where AF 
predicts that a peptide would bind to the porin domain of MIP; interestingly, AF predicts the 
two C2 domains to be independent from each other in the monomeric structure of SYT1, so 
either AF is wrong or crystallization introduced the packing of both domains against each other 
but I would rather believe the Xray structure and in this case the peptide would not be 
accessible to bind to the MIP domain. 
 
run37: FTSJ1-CERT1 
FTSJ domain of FTSJ1 is known to bind S-ADENOSYLMETHIONINE (see structure 1EJ0). 
The top predictions all look very different in that different regions or partially overlapping 
regions of CERT1 are docked into different sites onto the FTSJ domain. Sometimes the 
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peptide is docked into the catalytic pocket where the protein methylates adenosines on tRNAs 
but the peptide is also docked elsewhere. Because of these ambiguities, I believe that the 
predictions are questionable since they seem to lack specificity but I don’t think we can call 
them definitely wrong.  

Another interface was found involving CERT1 368-388, with model confidence 0.70. 
However, the contacts modelled are mostly backbone-to-backbone. I have previously noticed 
that AF tends to give higher confidence to complex modelled with secondary structure. So I 
think this is also a likely false interface. 
 
run38: CAMK2A-SOX5 
Kinase domain of CAMK2A with a disordered fragment predicted showed high confidence. 
The structure predicted by the highest confidence model is weird, with both beta sheet and 
helix structure. 
 Kinase domain of CAMK2A is likely serine threonine kinase and in kinase domain 
prediction, one has to be careful with the two lobes that bind substrate and ATP. It might be 
interesting to check other high scoring peptide to see if they have S/T that can be 
phosphorylated and check the crystal structure to find substrate binding pocket. The first two 
highest scoring peptides do not look convincing because the first one has no S/T in the peptide 
but it is fit into the catalytic cleft while the second one has positioned the sidechain of a T out 
of the cleft. The third highest scoring peptide (P35711 131-141) looks nice because it positions 
the sidechain of an S into the catalytic cleft. 
 The highest ranking peptides are essentially all over the place from SOX5 and I don’t 
think that AF can predict very well kinase-substrate interactions. Overall, the high-scoring 
predictions all do not look very convincing. 
 
run39: CAMK2A-CAMK2G 
Many high confidence predictions involving different regions in the protein pair. Among them, 
one ordered-ordered interface gives a really high confidence. The interface is a known DDI in 
3did with high zscore. The structure 3SOA only shows one CAMK2A monomer but the 
publication talks about a dodecamer for which one can download a model from the PDB as 
well. Looking at this dodecamer and the paper, it becomes clear that downstream of the kinase 
domain there is another domain referred to as hub domain in the paper which mediates 
oligomerization, together with the linker between the kinase and hub domain. The best AF 
prediction for the interaction between CAMK2A and CAMK2G involves both hub domains and 
is an accurate prediction of the interface seen in the dodecamer. 

The second best prediction made by AF involves the hub domain and a bit of the linker 
sequence from the other partner. Looking at the dodecamer, one can see that where the 
peptide is predicted to bind on the hub domain is part of the linker sequence bound from the 
same monomer, so an intra-molecular interaction. So, there is indeed some binding site but 
not for inter-molecular interaction. Because the linker sequences are different in the structure 
and canonical uniprot sequence it is very difficult to know which part of the linker is binding on 
the hub domain and whether this corresponds to the bit of the linker sequence predicted by 
AF to bind there. In the paper accompanying the 3SOA structure they also investigate how 
different linker sequences from different isoforms influence Ca-binding site accessibility and 
thus activation of the complex. There is evidence from 3 other studies that CAMK2G and 
CAMK2A interact with each other from co-IP experiments but these were large-scale studies. 
It is likely that no one has studied the interface between CAMK2G and CAMK2A and thus 
would be something new. 
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run40: ACTB-ACTG1 
Two actin proteins are predicted to have high confidence DDI. The interface itself that is 
predicted by AlphaFold looks very interesting, it indeed looks like a polymerization interface 
because both domains interact with opposite sites. interactome3D would model this interaction 
with the structure 4JHD as a template but this one looks quite different, it’s not the same 
interface and needs according to the authors a third protein for polymerization. Digging deeper 
in PDB for structures of ACTB, I found structure 6ANU which shows the same interface that 
AF predicted between ACTB and ACTG1, so the interface is probably right. 

This is also a very interesting case. Based on the review by Vedula and Kashina (J of 
Cell Signal 2018, 10.1242/jcs.215509), it is still an open question whether the different actin 
forms that exist in human can form heteropolymers or not. Some studies find this in vitro, other 
find intermingled homopolymers of beta and gamma actin. Both actins co-occur in many cell 
types while alpha-actin is more specifically expressed in muscle. It seems really tricky to solve 
this since actins are highly studied and actins are also super similar in their sequence, so it 
could be that in a somewhat artificial system, beta and gamma actin can interact because the 
interface residues are identical but in vivo they would rather not interact and rather form 
homopolymers. In the end, whether ACTB and ACTG1 indeed interact in vivo is the only open 
question. 
 
run41: RARB-PSMC5 
PSMC5 has been repeatedly modelled by AF to have a high confidence peptide that binds to 
partners with Hormone_recep domain. The peptide is 132-141 DPLVSLMMVE. Residues 
highlighted in bold are the ones tucked into the hydrophobic pocket. However, this peptide 
does not match with the consensus of LIG_NRBox (^PL..LL^P), especially in this peptide P 
precedes the first L. I am not sure why P is disallowed at first position as ELM has not 
described much about the sequence composition of the motif. I think it might be too early to 
reject this peptide because the highlighted residues are indeed hydrophobic and can serve 
similar functions as those in the regex. 

I looked at the HuRI network of PSMC5 too, and found that the interactors seem to be 
enriched with the Hormone_recep domain, making this interface even more plausible. 

 
run42: DCX-BICD2 
DCX has two DCX domains and all good predictions involve the N terminus DCX domain. The 
N terminus DCX domain is known to bind Tubulin. AF modelled a different interface on the N 
terminus DCX domain to bind to disordered fragments from BICD2.  

The DCX domains have a C-terminal part that is not confidently predicted by AF to be 
part of the fold. When excluding this part from the first DCX domain, AF models peptides to 
bind to the area where this last part is predicted to be located in the monomeric structure from 
AF. When we use a DCX domain that contains this last bit, then AF predicts other peptides 
from BICD2 to bind on the opposite side of DCX. There is no consistency in these predictions.  

There are no other predictions between ordered-ordered or disordered fragments 
binding to ordered domains in BICD2 that make the cutoffs. BICD2 however, also only consists 
of large helices. Nonetheless, it could be that both DCX domains together bind to one of these 
coiled coil helices in BICD2. 
 
run43: DCX-ZBTB10 
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A possible prediction involves the first DCX domain of DCX and a peptide of ZBTB10 261-271. 
This prediction is not influenced by the actual domain boundaries because the peptide is not 
docked into the pocket where a region a little C-terminal of the domain might bind to. This is 
the case for the second best prediction involving the first DCX domain and peptide 604-614. 
According to chainB inf avg plddt these are the only two prediction that make the cutoff when 
looking at chainB as a disordered region. ZBTB10 has a lot of disorder and probably many 
motifs. DCX has two DCX domains and a bit of disorder. Looking into available PDB structures 
then the DCX domains are known to bind to microtubules. There is one structure with the first 
DCX domain bound to microtubules (6RFD). It seems though that the pocket where ZBTB10 
261-271 is predicted to bind is not occupied in this complex. AF does not predict slightly 
extended versions of this peptide with reasonable confidence to bind to this pocket. 

A peptide was also predicted to bind in beta-sheet augmentation to the last beta strand 
of the BTB domain with reasonable model confidence and chainA_intf_avg_plddt scores but 
the ZBTB10 model might have its own beta strand C-terminal of the current domain 
boundaries that AF predicted to complement the last beta strand of the domain as predicted 
in the full length model of ZBTB10. 
 AF also predicts a contact between the ZnF domain of ZBTB10 and the first DCX 
domain but it does not look very likely and I think the ZnF fold is perturbed. 
 
run44: PSMC5-ESRRG 
The interaction has quite some high confidence predictions. The highest scoring peptide is 
P62195, PSMC5, 132-141, DPLVSLMMVE. The three hydrophobic residues make nice 
contacts with the hydrophobic pocket and surface of the domain. Another disordered fragment 
from PSMC5 binding to the same domain, IKKLWK, also looks promising. However, there is 
some possibility that these are artefacts because AF is not very specific when it comes to 
detecting single mutation in known motifs. The sequence alignments are not helpful 
unfortunately because the whole PSMC5 is super conserved. 
 Nonetheless, interaction between PSMC5 and ESRRG looks promising because the 
alternative name is thyroid hormone receptor-interacting protein 1, TRIP1. 
 
run45: PSMC5-RORB 
The highest confidence prediction involves a disordered fragment from PSMC5 and it is the 
same as run44. The ordered region from RORB is the same domain, hormone receptor 
domain, as run44.  

It is interesting to see AF predicting similar DMI with high confidence from two different 
proteins. Same observation as run44. 
 
run46: WAC-NFE2L2 
WAC and NFE2L2 are largely disordered. WAC has a WW domain. AF predicts recurrently a 
sequence close to the N-terminus of NFE2L2 to bind to the WW domain that are known to 
bind proline-rich motifs. The putative motif in NFE2L2 does not contain prolines and is not 
docked onto the WW domain in any way like other WW domains, e.g. 1EG4. These are likely 
wrong predictions. While the motif interface pLDDT is reasonably high for these predictions, 
the model confidence does not reach the 0.6. There are no other predictions that make the 
cutoff. 
 
run47: WAC-MOBP 
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Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run48: STX1B-FBXO28 
The top model has 0.76 model confidence that utilizes the disordered region 1-22 of STX1B 
and Fbox + helix bundle domain (63-221) of FBXO28. The interface involves the disordered 
region of STX1B forming a 310 helix structure with the helices from the Fbox domain. Note 
that the Fbox domain annotated by InterPro is from 61-109, while the ordered region that I 
used for prediction is 63-221. The Fbox domain is known to mediate PPI but it is not used by 
AF to model the interaction in this prediction. Region 1-22 of STX1B is conserved only in 
recent homologs. The plddt of the disordered region is low, <60 for all residues. 

The second top model has 0.75 model confidence that involves the syntaxin domain 
(23-237) of STX1B and disordered region 354-368 of FBXO28. The disordered region of 
FBXO28 is at the C terminus and conserved. However, the plddt of the peptide is low and 
adopts a 310 helix kind of structure. A slightly different prediction involving fragments of the 
proteins (27-219 STX1B and 345-363 FBXO28) returned 0.73 model confidence. The peptide 
adopts a helical structure but is placed on a different surface of the syntaxin domain. Although 
the peptide 345-363 has good plddt (mosty >60), I am not sure if this is the right interface. One 
prediction pairs the full length of STX1B with the disordered region 354-368 of FBXO28 and 
returned 0.71 model confidence. The interface is similar to that of the syntaxin domain (23-
237) of STX1B and disordered region 354-368 of FBXO28 with low plddt. This region 354-368 
in FBXO28 could be an nuclear localization signal (NLS), where ELMDB also predicts quite a 
few NLS, and therefore unlikely to be the interface for the interaction. 

Next top prediction has 0.749 model confidence that involves the C terminus of the 
syntaxin domain (220-232) of STX1B as disordered region and the Fbox + helices domain of 
FBXO28 (63-221). The interface is formed by the peptide adopting a helical structure with the 
Fbox + helices domain. The plddt of the peptide is good, with all residues above 60 plddt. 
Nonetheless, another prediction involving slightly longer peptide from the same region of 
STX1B has a much lower model confidence (0.55). The interface modelled is not exactly the 
same as it is a little bit shifted. Unsure if this is a good interface. 

I tried to find more molecular studies on the two proteins but I can’t find much. STX1B 
is known to function in docking of synaptic vesicles at presynaptic active zones while FBXO28 
probably recognizes and binds to some phosphorylated proteins and promotes their 
ubiquitination and degradation. Weirdly, STX1B is known to localize to membrane while 
FBXO28 has not much information on subcellular localization but studies have shown that it 
interacts with topoisomerase using its Fbox domain (the bundled helices are not needed for 
interaction). Out of all the predictions, I think STX1B 27-219 + FBXO28 345-363 and STX1B 
220-232 + FBXO28 63-221 are most likely to be the interface, as their peptides are modelled 
with good plddt and both achieved model confidence higher than 0.7. 
 
run49: STX1B-MMGT1 
Top prediction involves the Syntaxin domain of STX1B and the disordered region of MMGT1 
(23-31) with confidence 0.73. A slightly longer fragment has a slightly lower confidence but 
looking at the structure, the two peptides have different angles to the Syntaxin helical bundle. 
Since the interfaces modelled by AF differ a lot despite using the same peptide and its 
extended counterpart, the modelled interfaces do not look genuine. 
 

125



run50: STX1B-VAMP2 
Interactome3D models an interface between both proteins based on the structure 3HD7/3IDP 
where STX1A interacts with VAMP2. STX1A and STX1B are very similar in structure. 

STX1B is predicted in closed conformation, which we know because structures exist 
of STX1A bound to Munc18 where it is in this closed conformation with the long C-terminal 
helix comprising the SNARE domain folding back onto the syntaxin domain. However, when 
bound to VAMP2 we can see the open conformation where the long helix is made available 
to bind in coiled-coil like manner to VAMP2 and SNAP25 helices.  

Based on this available structural information we designed different fragments of the 
extended SNARE domain of variable length. VAMP2 is a short protein of 116 residues 
consisting of a long helix and about 30 disordered residues at the N-terminus. The most 
confident predictions obtained for these fragments is the one modeling a coiled-coil interaction 
between the extended SNARE domain and the helix of VAMP2 but the model confidence is 
slightly below the cutoff. Predictions with the disordered N-terminal region of VAMP2 remain 
far below cutoffs. 
 
run51: CSNK2A1-CSNK2B 
Nice prediction with overlapping fragments showing increasing model confidence. This 
interface has been solved before in two structures: 4DGL and 6Q38; prediction is highly 
accurate, and is probably a DMI that is not in ELM yet. 
 
run52: EBF3-EBF2 
Dimerization of the EBF family already known and solved (3MUJ). AF predicts the middle 
domain of both proteins called TIG as the dimerization interface as top prediction but in head 
to tail orientation while the structure 3MUJ shows head to head orientation. Followed closely 
up in terms of score (avg_intf_plddt) is the fragment comprising the TIG domain and the helix 
loop helix domain which are predicted accurately as seen in the structure. 
 The third best prediction involves the N-terminal DNA binding domain as the 
dimerization interface. Does not look so convincing to me but still got a very high score. The 
fourth best prediction is the helix-loop-helix domain alone as dimerization interface, still with a 
score of 90. There are more predictions that make the cutoff that involve various disordered 
regions of either protein and ordered fragments from the other involving interfaces used for 
dimerization but I guess that these predictions are likely wrong. 
 
run53: PEX12-TREX1 
The disordered region of PEX12 215-312 (98 residues long) is predicted with high confidence. 
One fragment of it achieved even higher confidence but when this fragment is further 
fragmentate, their confidence is not as high anymore. After checking the protein on InterPro, 
this domain is the exonuclease domain of TREX1 that binds to ssDNA (2OA8). In this crystal 
structure, it shows the pocket modelled by AF to bind PEX12 215-312 is bound to a ssDNA, 
with the phosphodiester bond of ssDNA making interactions with the backbone of the domain 
chain and some hydrophobic side chain (leucine) making hydrophobic interaction with the 
base of the nucleotide. Interestingly, AF seems to have memorized this crystal structure 
because the bound ssDNA has a curved structure and AF also models the long disordered 
region to have an odd curve. I think this interface is unlikely to be true because the bound 
magnesium ions coordinate with the oxygen in the phosphodiester bond of ssDNA and the 
modelled helix places hydrophobic sidechains to the cavity where magnesium ions bind. 

126



A very short fragment of PEX12 12-16 at the N terminus is modelled with high 
confidence with a very negatively charged pocket in the domain of TREX1. It is unusual to 
have a peptide binding pocket with such a high negative charge. Further checking revealed 
that this domain binds magnesium ion and nucleotides. The short fragment fits into the 
magnesium binding pocket and thus this is unlikely to be true. 
 
run54: PRKAR1A-PRKAR1B 
Best model is an ordered-ordered prediction with 0.83 confidence. It is a homo-DDI (RIIa 
domain) dimerization and has been solved in 2EZW. 

An additional disordered fragment (PRKAR1A 360-372) predicted with high model 
confidence but low pLDDT with the cyclic nucleotide binding domain of PRKAR1B. 
Referencing available structure of cNMP binding domain (1NE4), there are two beta barrel 
folds in the domain that bind to cyclic nucleotides. AF fits the disordered fragment on a 
hydrophobic surface near the beta barrel but not in the cNMP binding pocket. Although this 
could be another binding site, the binding makes little sense to me because the disordered 
fragment is at the C terminus of cNMP binding domain of PRKAR1A, meaning that the 
sequence would have to loop back to make this contact. In the previous bullet point, it seems 
very likely that the dimerization of the two proteins are mediated by the RIIa domain (N 
terminus), so it seems not so plausible to me that at the C terminus they make contact again. 
This is likely a false positive interface. 
 
run55: ASF1A-H4C8 
The interaction between both proteins has been solved (5C3I). However, this structure shows 
that the motif in H4 sits at the very C-terminus and binds in beta sheet augmentation to ASF1A 
in the same pocket like AF predicted but using an N-terminal peptide of H4. I think the problem 
is that the C-terminal region of H4 was made part of the domain of H4, which I agree was hard 
to see from looking at the monomeric AF structure for full length H4; I checked further down 
in the predicted structures but the first ordered-ordered prediction has a model confidence of 
0.25 and does not find this mode of binding either. One could rerun this by taking the C-
terminal peptide of H4 as disordered region just to see whether AF would then get it right but 
in principle this is a false positive prediction; the N-terminal peptide also shares no sequence 
similarity with the C-terminal motif. 
 
run56: RARS1-CCDC115 
There is only one prediction that makes the cutoff for model confidence or/and motif pLDDT. 
This prediction involves RARS1 1-21 as a disordered fragment that is modelled to bind as a 
helix to the two helix coiled-coil domain of CCDC115. A shorter fragment of the motif is placed 
elsewhere. The helix of CCDC115 to which the peptide is predicted to bind has more 
hydrophobic residues along the helix on that side so I would think that a longer partner chain 
would be able to bind there. Thus, this interface does not seem likely to be true. 
 
run57: UBE3A-TAT 
Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run58: VAMP4-MFF 
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Top prediction is two ordered regions that are both helical. Both proteins have only helical 
regions and the rest are disordered. Interestingly, despite the top predicted interface having 
only 0.71 model confidence, both chains have very high plddt for their residues at the interface 
(95 for VAMP4 and 90 for MFF). Because of their high plddt, it could be a genuine interface. 
The helix in VAMP4 definitely has an interface there because one side is rather hydrophobic 
while the other side is rather hydrophilic. MFF could bind there with its helix or via another 
helix that it has. The binding does not show that many nice contacts, i.e. some hydrophobic 
residues on the VAMP4 helix still remain exposed. 
 
run59: PEX16-MMGT1 
Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run60: PLP1-SLC16A2 
Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run62: SNRPB-GIGYF1 
GIGYF1 is a very long protein with many disordered regions. It has a GYF domain that is 
known to bind proline-rich sequences. SNRPB has many proline-rich sequences in its C 
terminus. Some proline-rich motifs are predicted with high pLDDT to bind the GYF domain 
(these are the top predictions). 

Another highly ranked prediction involves the LSM domain of SNRPB with various 
disordered fragments from GIGYF1. However, checking InterPro entry as well as structures 
showing LSM domain, it seems like LSM domain is predominantly involved in multimerization 
with other SNRP proteins to form the SMN complex involved in splicing (1H64). Therefore, the 
models involving this domain with disordered fragments look unlikely to be true to me. 

Digging deeper into the top predictions, comparing the binding modelled by AF 
between SNRPB 231-240 and GYF domain of GIGYF1 with 1L2Z, the peptide is oriented 
differently. However, from 3FMA, one can see different ways a peptide binds to the same 
surface of GYF. In 3FMA chain E and P show a similar way of binding to that modelled by AF. 
The peptide sequence in 3FMA is also different from 1L2Z, but importantly, there are three 
prolines in the peptide that always orient the same to the hydrophobic surface formed by the 
GYF motif on the GYF domain. This orientation of the 3 prolines is captured by AF.  

AlphaFold repeatedly predicts the PPGM motif in the same pocket. This motif occurs 
multiple times in the C-ter tail of SNRPB. On the ELM website, the LIG_GYF motif is described 
to bind proline-rich sequences and they also cite the structure 1L2Z but they say that flanking 
positively charged residues seem to be important for binding to the GYF domain. Indeed, in 
the crystal structure there are some negatively charged residues on the GYF domain. 
Interestingly, the GYF domain from GIGYF1 does not or only partially has those. It also differs 
in that it has a deeper hydrophobic pocket which is filled with a Trp in the crystal structure. So, 
it could well be that the GYF domain from GIGYF1 binds somewhat different proline-rich 
peptides. The interaction between GIGYF1 and SNRPB has not been described before other 
than in HuRI. Functionally, it would be probably a new connection because GIGYF1 is not 
known to function in splicing as far as I can see and thought to be localized to the cytoplasm. 
GIGYF1 however, has also interacted with SNRPA and SNRPC in HuRI. They also have 1 or 
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some more occurrences of the PPGM motif. If this mode of binding is true then it would be 
somewhat of a new mode of binding or in the most conservative case an extension of the 
known binding mode of LIG_GYF.  

Alignment of 1L2Z chain A (GYF domain) with the GYF domain from GIGYF1 (476-
535) shows that the sequences are not very conserved. Structural superimposition of the two 
GYF domains reveal that the overall fold is conserved, including the majority of the binding 
pocket except for the hydrophobic pocket filled with a W. The peptides of the two structures 
have their PPPG in similar orientation. Following this sequence is a M from SNRPB that is 
tucked into the hydrophobic pocket and H for 1L2Z that is exposed to the environment. The 
sequence that follows is R for both, with the one in SNRPB exposed to the environment and 
possibly forming a hydrogen bond with the Q on the domain, and that in CD2 (1L2Z) forming 
salt bridge with an E from the domain.  

Later a structure of the GYF domain of GIGYF1 was published binding to a similar 
motif found in TNRC6 further supporting the correctness of these predictions. 
 
run63: ARHGEF9-VEZF1 
Top prediction has 0.74 model confidence with the fragment from VEZF1 (375-385) making 
contact with the RhoGEF domain of ARHGEF9. The top predictions all put the peptide at the 
same binding site of the RhoGEF domain. In terms of conservation, all the peptides from 
VEZF1 are well conserved. Nonetheless, the prediction looks like a very questionable one, at 
least it seems like the predictions do not make use of the GTP/GDP binding pocket for which 
I did not find a structure that shows where it precisely is located but based on an abstract of 
an article and InterPro entries it seems to be between both structural entities that form one 
larger domain, the GEF domain and the PH domain (IPR000219). There is absolutely no 
consistency in the two peptides from VEZF1 selected to bind to the same surface on the GEF 
domain of ARHGEF9; VEZF1 also seems to be of very weird type, AF has a hard time to make 
sense out of this protein. 
 
run64: MIP-MFF 
Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run65: VEZF1-PRKAR1B 
Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run66: VEZF1-KCTD7 
Top prediction involves the disordered region of VEZF1 (360-380) and the BTB domain of 
KCTD7. The disordered region overlaps with the top prediction in run63 that models the 
interface between VEZF1 (375-385) and the RhoGEF domain of ARHGEF9. Despite AF 
modelling a 310 helix structure in the disordered region of VEZF1 (360-380), the contacts 
modelled at the interface do not look very convincing. It could be that the disordered region 
(360-385) is a functional motif for other interactions and AF detects that and tries to fit it into 
the domain. It could also be that, to form the binding interface, it needs multiple copies of BTB 
domain, which is not used in this prediction. The VEZF1 peptide is put in the same pocket like 
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the PAX6 peptides from run23 but the sequences look different, it is however the same peptide 
in VEZF1 like in the prediction with ARHGEF9. 
 
run67: APTX-FLAD1 
Has overlapping fragments with increasing confidence: APTX, N terminus disordered region 
5-12 and 6-13, paired with MoCF_biosynth or a domain of unknown type (not matched to a 
Pfam or SMART domain) that is between the MoCF and PAPS_reduct domain of FLAD1. It 
also predicts the same N-terminal region of APTX into the PAPS_reduct domain. The 
disordered fragments from the region 8-15 of APTX showed high confidence model confidence 
but below the cutoff pLDDT score when modelled with the PAPS_reduct domain of FLAD1. 
Checking the structure of PAPS_reduct domain in complex with adenosine phosphosulfate 
shows that the peptide is modelled by AF to be in the binding pocket of adenosine 
phosphosulfate. This is likely a false prediction. 

For the N-terminal part of APTX AF is quite confident when it models it into the MoCF 
domain or the other unknown domain of FLAD1. There are multiple predictions with different 
overlapping fragments that make the cutoff. However, AF is more confident with both metrics 
when the peptide is modelled into the MoCF domain. This domain has a pretty substantial 
pocket that is actually in the monomeric structure of FLAD1 occupied by another region of 
FLAD1 with low pLDDT.  However, when APTX 10-15 is used for modelling, the orientation of 
the peptide is reversed. MoCF_biosynth domain is known to trimerize for its activity and is 
known to bind molybdopterin. MoCF_biosynth binds molybdopterin on a site close to where 
AF models the peptide to be (refer to 1DI6, https://doi.org/10.1074/jbc.275.3.1814 that solves 
the structure of a bacterial protein with the same domain. They mentioned 49D and 82D to be 
important for catalytic activity) 

APTX with the unknown domain of FLAD1 does not reach the model confidence cutoff, 
only the motif pLDDT cutoff. It puts the same peptide as beta-sheet augmentation to the 
domain while in the predictions for the MoCF domain, the peptide is put in helical conformation. 

The only predictions where disordered regions in FLAD1 are predicted to bind to folded 
regions in APTX involve the FHA domain of APTX and correspond to two completely different 
disordered regions in FLAD1. 
 
run68: FBXO28-PSMC3 
Top prediction is coiled-coil interaction between regions from the two proteins that are 
modelled by AF monomer as long helices. The plddt of all residues are very high. This 
interaction looks convincing. The only problem is that one helix is shorter than the other, while 
for a common coiled coil interaction, both helices are usually equally long. 

The second best prediction based on model confidence involves a disordered region 
from FBXO28 (51-61). The modelled complex does not look convincing because the peptide 
is quite hydrophobic and the residues do not make much contact with the domain. The peptide 
is predicted to bind to the first domain of PSMC3 which as far as I was able to find, does not 
have catalytic activity. 

There are only these two predictions that make the cutoff for model confidence, none 
make the cutoff when looking for disordered regions in PSMC3 predicted to bind to FBXO28. 
The other way round there is the peptide mentioned above and a C-terminal disordered region 
of FBXO28 predicted to bind to the same first domain in PSMC3 but predicted to bind to a 
different side. The C-terminus of FBXO28 is very charged, maybe a localization signal. Both 
motifs in FBXO28 are somewhat recurrently predicted to bind to the domain in PSMC3. 
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run69: CAMK2G-ESRRG 
Many high confidence predictions in a disordered region of CAMK2G. The whole disordered 
region used as a fragment for prediction also returned high confidence (0.78). In this long 
disordered region, AF puts the third highest model confidence peptide in the domain pocket. 
The top three highest confidences are very similar in terms of confidence. The motif detected 
by AF resembles LIG_NRBOX with the motif L..LL. CAMK2G 300-310: LKGAILTTMLV -> 
looks plausible to me because the M is hydrophobic and it is possible to substitute for the role 
of L in the regex. CAMK2G 315-325: SAAKSLLNKKS -> Also possible but the A is fitted into 
a quite deep hydrophobic pocket where known structure (refer to run21) shows that it is L that 
gets fit into the pocket. A might have too short of a hydrophobic side chain to make a good 
contact with the deep pocket. CAMK2G 355-365: QEPAPLQTAME -> not so good IMO 
because the hydrophobic contact is less extensive as the peptide found above. Another 
interesting observation: CAMK2G 285-423 (139 aa) prediction resulted in 0.78 model 
confidence, which is very high for a disordered region that long. In this case, CAMK2G 300-
310 is fitted into the hydrophobic pocket, adding weight to the fact that this could be the correct 
peptide. This reminds me of the extension analysis with DMI where extension of motif can 
improve prediction results. 

A pairing of ordered-ordered region prediction returned high confidence (0.83). This 
involves Zn finger from ESRRG and CaMKII association domain at the C terminus of CAMK2G. 
The binding is close to but not in the Zn binding pocket, which is good. CaMKII association 
domain of CAMK2 has been shown to oligomerize with other CAMK2 in 1HKX. 

Looking at the monomeric structure of ESRRG and CAMK2G, it looks possible that the 
C terminus association domain of CAMK2G to bind to ESRRG via Zn finger domain of ESRRG 
and the hormone receptor domain of ESRRG binds to the long and disordered region 
separating the two domains found in CAMK2G. This makes a multi-site binding between two 
proteins and a very interesting case. 
 
run70: XRCC4-LIG4 
The structure for this interaction has been solved: 3II6 and 1IK9. Looking at the structure of 
3II6, the two proteins interact with each other via XRCC4 first forming a homodimer with its 
coiled-coil domain, then around the homodimer binds the tandem BRCT domains of LIG4. The 
BRCT domains are separated by a structurally less defined region that most likely forms two 
helices upon binding to XRCC4. Not sure if this can be seen as domain-motif or domain-
domain interaction, probably something in between. It is not so clear from the monomeric AF 
model of full length LIG4 that both BRCT domains form a functional unit but I guess one could 
have also made a fragment comprising both domains and the linker sequence. Runs so far 
were made with both BRCT domains individually and the linker sequence individually and 
further rerun has to be done by using the BRCT domain tandem as one structural unit. 

The top prediction involves a motif at the C-terminus of XRCC4 that is predicted to 
bind to the last BRCT domain of LIG4. I think the prediction is wrong because of the solved 
structure. The prediction also does not look like how other motifs bind to BRCT, i.e. the protein 
FANCJ (LIG_BRCT_BRCA_1). However, the C-terminus of XRCC4 certainly carries one or 
two motifs. One is annotated in Proviz as WD40 domain binding. The very C-terminus is a 
class 3 PDZ-binding motif. The whole region is very conserved. Maybe this is why AF tries to 
put peptides from this C-terminus in various domains, including the DNA ligase domain of 
LIG4 (fourth top prediction). So, the top two predictions involve this C-terminus and reach high 
confidences in both metrics (model confidence and intf_avg_plddt). 
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The third highest prediction involves the XRCC4 N-terminal domain plus one long helix 
(taken as one ordered region) and the 2nd BRCT domain. This interface is exactly the same 
interface that is seen in the structure 3II6 where part of the BRCT domain also contacts the 
XRCC4 helix. 

The 6th best prediction involves the linker between both BRCT domains and the 
XRCC4 helix. Despite the fact that XRCC4 is in monomeric form in our prediction and that the 
BRCT domains are missing, AF correctly models the contacts between the linker and the 
single XRCC4 domain as they can be seen in the structure 3II6. This model meets both cutoffs, 
for model confidence and pLDDT.  

Rerun using the BRCT domain tandem as one structural unit completed. The tandem 
BRCT fragment ranks 7th with the coiled coil XRCC4 fragment based on model confidence 
and second for ordered-ordered fragment pairs when ranked by avg interface plddt. The 
prediction that is still ranked first is the single BRCT domain binding to the coiled coil fragment 
(92 vs 89 avg intf plddt score). 
 
run71: TMEM237-MFF 
Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run72: HNRNPK-TH 
In the full length structural model of HNRNPK the first 2 KH domains are predicted to pack 
against each other using an interface that is also predicted to bind to the TH peptide 61-71. 
This region indeed overlaps with a Pfam HMM that seems to find some pattern in this 
disordered region but nothing is known about this “structural”(?) motif. It predicts 3 
occurrences of it in the N-terminal region of TH but the third one is the most conserved and 
this is the one predicted to bind to the second KH domain. Two other motifs overlapping with 
61-71 are also predicted to bind to this KH domain. The residues that are part of all three 
motifs are predicted to bind to the KH domain in the same way. One prediction below the 
model confidence cutoff predicts the motif to bind to the third KH domain but in a different way. 
 
run73: OTX2-RPS26 
Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run74: MFF-MMGT1 
Not inspected because none of the predictions returns model confidence or average interface 
pLDDT above cutoff (model confidence ≥ 0.7, ordered-disordered prediction with disordered 
fragment interface plddt ≥ 70; ordered-ordered prediction with intf_avg_plddt ≥ 75). 
 
run75: PUF60-TH 
The top prediction involves using both RRM domains of PUF60 as one ordered region and a 
disordered polyA peptide from TH. The peptide is put at the same position where the Nbox 
would bind as shown in the NMR structure 2KXH. However, the predicted peptide has some 
different sequence: solved structure: LxxAxxI, model: VxxAxxV, and there are no recurrent 
predictions. Another prediction involves the third RRM domain of PUF60 and another peptide 
in TH which tugs a Trp in a pocket but it does not look very convincing. 
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Prediction involving disordered fragments from PUF60 and ordered region 
(Biopterin_H domain) from TH returned a maximum of 0.78 model confidence. This is likely 
false interface because the short peptide is fit into the biopterin and iron binding pocket of the 
enzymatic domain (refer to run72 for example). The second best prediction is also fitted at the 
same site, therefore also likely a false interface. 

Interestingly, the disordered region of PUF60 302-461 is modelled with 0.69 model 
confidence with the Biopterin_H domain of TH. The long disordered region makes contacts 
with two regions of the domain, one at the iron binding site (likely false) and another coiled-
coil interaction at the C terminal helix of Biopterin_H domain. This coiled-coil interaction is 
repeated in a shorter disordered fragment of PUF60 (317-347, third best prediction (0.77), the 
same C terminal helix in the long disordered region). This coiled-coil interaction looks like a 
plausible interface. 

I tried finding more information about this ACT-like domain but to no avail. InterPro 
says that it homo-dimerizes using the beta strands like in 1Q5V, but the fold is not exactly the 
same. The ACT-like domain in TH is special in the way that the last beta strand is formed by 
its N and C termini by looping back to meet each other. I cannot find much information about 
this domain. 
 
run76: PUF60-QRICH1 
One long disordered region of PUF60 (1-128) is modelled with high model confidence with 
DUF of QRICH1. In this region, 111-121 is modelled at the interface. This region when 
fragmented from the long disordered region also showed high confidence (0.86). This 
fragment tucks a R into a very deep negatively charged pocket but the rest of the peptide 
seems to make questionable contact with the DUF domain. 

Top prediction with ordered region in QRICH1 and peptides in PUF60 either put the 
linker helix between the first two RRM domains or the N-terminal long helix in PUF60 or 
another helical peptide at 442-461 at two different places on the DUF domain. I think that the 
helical linker between both RRM domains is not accessible for this mode of binding because 
the key residues are making intramolecular contacts to the RRM domains in the AF monomer 
PUF60 model. 

3 different peptides are predicted to bind to the tandem PUF60 domain. In principle, 
the long disordered N-terminal region of QRICH1 is full of potential helical peptides of pattern 
hydrophobic-x-x-Ala-x-x-hydrophobic, which is the kind of peptide that is like the Nbox motif 
that can bind to PUF60 and the three different peptides are also predicted to bind to the same 
pocket. 

There are also 4 different peptides in QRICH1 predicted to bind to the third RRM 
domain. 
 
run77: MAB21L2-AP1S2 
The top prediction involves Clat_adaptor_s domain of AP1S2 with the disordered fragment 
(215-220) of MAB21L2 (78 motif pLDDT, 0.77 model confidence). The motif is predicted 
recurrently with variable length but the disordered region is generally very short because it is 
a loop within the domain of MAB21L2. AF also made a disulfide bridge between motif and 
domain. Not sure this is correct. Looking at the structure 1W63 that shows the large Ap1 
clathrin adaptor core complex where there is a fold similar to the one in AP1S2, one can see 
that the region where the peptide is predicted to bind would in principle be accessible for 
binding. This domain Clat_adaptor_s is known to bind motifs from ELMDB but no structure 
has been solved in terms of this domain and its bound peptide. The disordered fragments from 
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the previous point also do not match with any ELM class that binds to Clat_adaptor_s. Other 
good predictions use the Mab-21 domain of MAB21L2. Two overlapping disordered fragments 
(146-154, 0.68 and 153-157, 0.75) had good confidence with the domain but they are modelled 
to be at different binding sites, so it does not look likely to me that this is the binding region. 
 
run78: PRKAR1B-QRICH1 
The motif in PRKAR1B is at the very C-terminus of the protein and also matches a PDZ-
binding motif. There is only one prediction that makes the model confidence cutoff but it does 
not meet the pLDDT cutoff. The C-terminal peptide of PRKAR1B binds to the only domain of 
QRICH1 but extended or smaller versions of the motif are only predicted with very low score 
then to bind to the domain so no recurrence here. The prediction therefore looks unlikely to 
be functional. No other predictions make the pLDDT cutoff. 
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Appendix Figure S1. Benchmarking of AF on DMI interfaces using minimal interacting 
regions. 
A Pairwise sequence identity of domains in the DMI positive reference dataset. B Proportion 
of high, medium, acceptable and incorrect models predicted by AF from the positive 
reference dataset as classified by the DockQ score. C Scatterplot of DockQ vs motif RMSD 
for DMIs from positive benchmark dataset. Pearson r = -0.85, p-value < 0.0001. D-E Motif 
RMSD and DockQ scores of structures for DMIs from positive benchmark dataset predicted 
by AF with and without the use of templates. Motif RMSD: Pearson r = 0.81, p-value < 
0.0001. DockQ: Pearson r = 0.88, p-value < 0.0001. F Accuracy of AF DMI predictions 
stratified according to the annotated functional categories of DMIs in the ELM DB. 
DEG=degron, DOC=docking, LIG=ligand, TRG=targeting, MOD=modification. G Accuracy of 
AF DMI predictions stratified according to the secondary structure element formed by the 
motif in the solved structure. H-J Scatterplot of various motif features vs motif RMSD 
determined for models and structures of DMIs from positive benchmark dataset: H motif 
hydropathy, Pearson r = -0.03, p-value = 0.72, I motif symmetry, Pearson r = -0.08, p-value 
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= 0.38, J motif regular expression degeneracy, Pearson r = -0.04, p-value = 0.66. K 
Accuracy of AF DMI predictions stratified according to the method used to solve the 
structures in the benchmark dataset, Mann-Whitney-Wilcoxon test two-sided p-value = 0.017 
test statistics = 811 L Scatterplot of model confidence of predicted models vs motif RMSD 
determined from superimposing the predicted models with structures of DMIs from the 
positive benchmark dataset. Pearson r = -0.55, p-value < 0.0001. M Correlation matrix of 
different prediction variables and prediction outcomes. 
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Appendix Figure S2. Benchmarking and application of AF for DMI interface prediction 
using minimal interacting fragments. 
A Receiver operating characteristic (ROC) curve of various metrics extracted from AF 
models when using the DMI benchmark dataset as the positive reference and the following 
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sets as random reference: Left, 1 mutation introduced in conserved motif position; middle, 2 
mutations introduced in conserved motif positions, right, randomly shuffled domain-motif 
pairs. B Precision recall curve of various metrics determined for benchmark datasets as in A. 
C ROC curve of mean DockQ between the top five AF structural models returned for a given 
input, assessed using the DMI positive reference set and random pairings of domains and 
motifs as in A. The AUROC of the metric is indicated in the legend of the ROC curve.  D-E 
Superimposition of AF structural model for motif class LIG_MYND_1 (D) and LIG_MYND_3 
(E) (orange) with homologous solved structures (PDB:2ODD) from motif class LIG_MYND_2 
(blue). The motif sequence used for prediction is indicated at the bottom, colored by pLDDT 
(dark blue=highest pLDDT). F-H AF models for three motif instances (orange) of LIG_HCF-
1_HBM_1 predicted to bind into a pocket on the Kelch domain of HCFC1 (gray). Motif 
positions are indicated below the figures. The key tyrosines of the motif sequences are 
drawn as sticks. I BRET50 estimates from fitting titration curves shown in Fig 1G are plotted 
vs. BRET values that were corrected for bleedthrough and measured at a 2:50 ng DNA 
transfection ratio for wildtype and mutant CREBZF-HCFC1 pairs. Error bars indicate the 
standard error. Data is shown for two technical replicates for the first biological replicate and 
three technical replicates for the second biological replicate. J Fluorescence and total 
luminescence are shown for wildtype and mutant CREBZF-HCFC1 pairs measured at a 2:50 
ng DNA transfection ratio. Error bars indicate STD of two technical replicates for the first 
biological replicate and three technical replicates for the second biological replicate. Coloring 
as in I. 
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Appendix Figure S3. Effect of protein fragment extensions on the accuracy of AF 
predictions. 
A-C Heatmap of the average motif interface pLDDT (A), pDockQ (B), and iPAE (C) for 
combinations of different motif and domain sequence extensions using a positive reference 
set consisting of 31 DMI structures. Extensions like in Fig 2A. D ROC curves (top) and 
corresponding AUROC values (bottom) of various metrics extracted from AF models when 
using the DMI extension dataset split by different combinations of motif and domain 
extensions as indicated on the top of each graph. Gray horizontal line indicates the AUROC 
of a random predictor. E Precision recall curves (top) and area under the precision recall 
curve as quantified by average precision (bottom) for various metrics extracted from AF 
models determined for benchmark datasets as in D. 
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Appendix Figure S4. Effect of protein fragment extensions on the accuracy of AF 
predictions. 
A True and false positive rate (left and right, respectively) based on optimal cutoffs from Fig 
2D derived for different metrics from ROC analysis for benchmarking AF with different motif 
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and domain extensions from the reference dataset illustrated in Fig 2A and random pairings 
of domain and motif sequences. B Table indicating the motif RMSD achieved when using 
minimal (extension 0) or extended motif sequences for structure prediction for all inspected 
motif extension cases. Extension 1 refers to extension of the minimal motif sequence by the 
length of the motif to the left and right. Color coding indicates the accuracy classes of the 
respective structural models as shown in Fig 1A. C Superimposition of the structural model 
of the minimal (left, orange) or extended (right, yellow) motif sequence with the solved 
structure (motif in blue) for five different motif classes as indicated on the top of each panel. 
The motif sequence from the solved structure is indicated at the bottom of each panel. Motif 
residues are underlined, motif residues not resolved in the structure have a gray 
background. Sticks indicate the motif residues, domain surfaces are shown in gray based on 
experimental structures. D ROC curves of different metrics using the DDI benchmark dataset 
as positive reference and random shuffling of domain-domain pairs as negative reference. E 
Precision recall curves of different metrics extracted from AF models determined for 
benchmark datasets as in D. F Area under the precision recall curve as quantified by 
average precision for metrics extracted from AF models determined for benchmark datasets 
as in D. Gray horizontal line indicates the average precision of a random predictor. 
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Appendix Figure S5. Comparison of AF v2.2 and v2.3 prediction performance. 
A Scatterplot showing the motif RMSD obtained from structural models computed either with 
AF v2.2 or AF v2.3 using the minimal interacting regions of all annotated DMIs. B-D 
Scatterplots computed as in A showing the DockQ (B), model confidence (C), and motif 
chain interface pLDDT (D) for both AF versions. E-F Heatmaps showing the fold change in 
motif RMSD obtained for structural models from AF v2.2 (E) and AF v2.3 (F) upon domain 
or/and motif sequence extension compared to when using minimal interacting regions. 
Positive values indicate improved predictions from extension and negative values indicate 
worse prediction outcomes. G Scatterplots showing the AUROC obtained for different 
metrics derived from structural models from benchmarking AF v2.2 and AF v2.3 using the 
minimal interacting regions of all annotated DMIs or DDIs as the positive reference dataset 
and different random reference datasets: Left (DMI), 1 mutation introduced in conserved 

A B C

D

G

H

E F

0 1 2 3
Domain extension step

0

1

2

3

4

5

6

M
ot

if 
ex

te
ns

io
n 

st
ep

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

lo
g 2

(R
M

S
D

m
in

/R
M

S
D

ex
t)

0 1 2 3
Domain extension step

0

1

2

3

4

5

6

M
ot

if 
ex

te
ns

io
n 

st
ep

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

lo
g 2

(R
M

S
D

m
in

/R
M

S
D

ex
t)

0 20 40 60 80 100
AlphaFold MMv2.3

0

20

40

60

80

100

A
lp

ha
Fo

ld
 M

M
v2

.2

Motif chain interface pLDDT

0 10 20 30 40
AlphaFold MMv2.3

0

10

20

30

40

Al
ph

aF
ol

d 
M

M
v2

.2
Motif all atom RMSD (Å)

0.0 0.2 0.4 0.6 0.8 1.0
AlphaFold MMv2.3

0.0

0.2

0.4

0.6

0.8

1.0

A
lp

ha
Fo

ld
 M

M
v2

.2

Model confidence

0.0 0.2 0.4 0.6 0.8 1.0
AlphaFold MMv2.3

0.0

0.2

0.4

0.6

0.8

1.0

A
lp

ha
Fo

ld
 M

M
v2

.2

DockQ

Figure S5

AF v2.2 AF v2.3

0.2 0.4 0.6 0.8 1.0
AUROC AF-MMv2.3

0.2

0.4

0.6

0.8

1.0

A
U

R
O

C
 A

F-
M

M
v2

.2

1 mutation in motif

0.2 0.4 0.6 0.8 1.0
AUROC AF-MMv2.3

0.2

0.4

0.6

0.8

1.0
2 mutations in motif

0.2 0.4 0.6 0.8 1.0
AUROC AF-MMv2.3

0.2

0.4

0.6

0.8

1.0
Randomly paired DMI

Model confidence
Domain chain interface pLDDT
Motif chain interface pLDDT
Average interface pLDDT
pDockQ
Residue-residue contact
Atom-atom contact

0.2 0.4 0.6 0.8 1.0
AUROC AF-MMv2.3

0.2

0.4

0.6

0.8

1.0
Randomly paired DDI

0.2 0.4 0.6 0.8 1.0
AP AF-MMv2.3

0.2

0.4

0.6

0.8

1.0

A
P 

A
F-

M
M

v2
.2

1 mutation in motif

0.2 0.4 0.6 0.8 1.0
AP AF-MMv2.3

0.2

0.4

0.6

0.8

1.0
2 mutations in motif

0.2 0.4 0.6 0.8 1.0
AP AF-MMv2.3

0.2

0.4

0.6

0.8

1.0
Randomly paired DMI

Model confidence
Domain chain interface pLDDT
Motif chain interface pLDDT
Average interface pLDDT
pDockQ
Residue-residue contact
Atom-atom contact

0.2 0.4 0.6 0.8 1.0
AP AF-MMv2.3

0.2

0.4

0.6

0.8

1.0
Randomly paired DDI

142



motif position; middle-left (DMI), 2 mutations introduced in conserved motif positions, middle-
right (DMI), randomly shuffled domain-motif pairs; right (DDI), randomly shuffled domain-
domain pairs. Corresponding ROC curves for AF v2.2 and AF v2.3 are shown in Fig. S2A, 
S4D, and S6A. H Scatterplots as in G plotting the average precision (AP) obtained from PR 
curves from the same analysis as in G. Corresponding PR curves for AF v2.2 and AF v2.3 
are shown in Fig S2B, S4E and S6B. 
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Appendix Figure S6. Performance of different metrics derived from structural models 
when benchmarking AF v2.3 for DMI predictions. 
A ROC curves obtained for different metrics derived from structural models from 
benchmarking AF v2.3 using the minimal interacting regions of all annotated DMIs or DDIs 
as the positive reference dataset and different random reference datasets: Left (DMI), 1 
mutation introduced in conserved motif position; middle-left (DMI), 2 mutations introduced in 
conserved motif positions, middle-right (DMI), randomly shuffled domain-motif pairs; right 
(DDI), randomly shuffled domain-domain pairs. B PR curves computed for the same 
datasets and AF version as in A. C Optimal cutoff, true, and false positive rate derived for 
different metrics from ROC analysis for benchmarking AF v2.3 with different motif and 
domain extensions from the reference dataset used in Fig 2A and randomly shuffled domain 

Model confidence

Domain chain interface pLDDT

Motif c
hain interface pLDDT

Average interface pLDDT
pDockQ

0.0

0.2

0.4

0.6

0.8

1.0

O
pt

im
al

 c
ut

of
f

Model confidence

Domain chain interface pLDDT

Motif c
hain interface pLDDT

Average interface pLDDT
pDockQ

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Model confidence

Domain chain interface pLDDT

Motif c
hain interface pLDDT

Average interface pLDDT
pDockQ

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e 
P

os
iti

ve
 R

at
e

Minimal motif + Minimal domain (All)
Minimal motif + Minimal domain (Extended)
Minimal motif + Extended domain
Extended motif + Minimal domain
Extended motif + Extended domain

A

B

C

D

Figure S6

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
1 mutation in motif

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
2 mutations in motif

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Randomly paired DMI

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Randomly paired DDI

Model confidence
Domain chain interface pLDDT
Motif chain interface pLDDT
Average interface pLDDT
pDockQ
Residue-residue contact
Atom-atom contact
Random Predictor

CD2-CDC20

OCRL-NANOS1

ESR1-FUBP1

BUB1B-KEAP1

AP2B1-SF1

LRP6-NBR1

TP53-TNKS2

PABPC1-PHETA1

SH3BP5-GABARAPL1

PDCD6-PEX5

CNOT1-CASP9

CD2BP2-PDCD6IP

U2AF2-POLK

PEX14-NCOA2

DKK1-PUF60

MDM2-NFE2L2

PCNA-PAIP2

MAPK10-LDLRAP1

MCL1-USP7

XIAP-MDM2

Randomly paired proteins

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Fr
ac

tio
n 

of
 fr

ag
m

en
ts

ab
ov

e 
th

re
sh

ol
d

39 359 704 477 798 2149 336 357 85 144 488 429 867 1115 392
668

45

110 632

850

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

1 mutation in motif

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
2 mutations in motif

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Randomly paired DMI

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Randomly paired DDI

Model confidence
Domain chain interface pLDDT
Motif chain interface pLDDT
Average interface pLDDT
pDockQ
Residue-residue contact
Atom-atom contact
Random Predictor

144



-motif pairs. D Fraction of fragment pairs with structural models scoring above thresholds for 
20 randomly shuffled domain-motif pairs. Numbers on top of the bars indicate the total 
number of fragment pairs submitted for interface prediction to AF for each random protein 
pair. 
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Appendix Figure S7. Expression and BRET50 plots for TRIM37-PNKP and ESRRG-
PSMC5. 
A Fluorescence and total luminescence are shown for wildtype and mutant TRIM37-PNKP 
pairs measured at a 2:50 ng DNA transfection ratio. Error bars indicate STD of three 
technical replicates. Data is shown for two biological replicates. B BRET50 estimates from 
fitting titration curves shown in Fig 4H are plotted vs. BRET values that were corrected for 
bleedthrough and measured at a 2:50 ng DNA transfection ratio for wildtype and mutant 
ESRRG-PSMC5 pairs. Error bars indicate the standard error. Data is shown for three 
technical replicates for two biological replicates each. BRET50 estimates for the second 
biological replicate for the ESRRG_M437F-PSMC5 pair were omitted from the graph 
because they exceeded the upper y-axis limit. Roman labels refer to interfaces shown in Fig 
4E. C Fluorescence and total luminescence are shown for wildtype and mutant ESRRG-
PSMC5 pairs measured at a 2:50 ng DNA transfection ratio. Error bars indicate STD of three 
technical replicates. Data is shown for two biological replicates. 
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Appendix Figure S8. Structural models, expression, and BRET50 plots for STX1B-
FBXO28 and STX1B-VAMP2. 
A BRET50 estimates from fitting titration curves shown in Fig 5C are plotted vs. BRET 
values that were corrected for bleedthrough and measured at a 2:50 ng DNA transfection 
ratio for wildtype and mutant STX1B-VAMP2 pairs. Error bars indicate the standard error. 
Data is shown for three technical replicates for two biological replicates each. B 
Fluorescence and total luminescence are shown for wildtype and mutant STX1B-VAMP2 
pairs measured at a 2:50 ng DNA transfection ratio. Error bars indicate STD of three 
technical replicates. Data is shown for two biological replicates. C Data shown as in A for 
wildtype and mutant FBXO28-STX1B pairs relating to interface iii (Fig 5A,D). D Data shown 
as in B for wildtype and mutant FBXO28-STX1B pairs shown in C. E Structural model 
corresponding to interface i shown in Fig 5A. Mutated residues on the domain (green) and 
motif side are labeled. F BRET titration curves are shown for wildtype and mutant FBXO28-
STX1B pairs relating to interface i shown in E with two biological replicates, each with three 
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technical replicates. Protein acceptor over protein donor expression levels are plotted on the 
x-axis determined from fluorescence and luminescence measurements, respectively. G Data 
shown as in A for wildtype and mutant FBXO28-STX1B pairs relating to interface i. H Data 
shown as in B for wildtype and mutant FBXO28-STX1B pairs relating to interface i. I 
Structural model corresponding to interface ii shown in Fig 5A. Mutated residues on the 
domain (green) and motif side are labeled. J Data shown as in F for wildtype and mutant 
FBXO28-STX1B pairs relating to interface ii. K Data shown as in A for wildtype and mutant 
FBXO28-STX1B pairs relating to interface i. L Data shown as in B for wildtype and mutant 
FBXO28-STX1B pairs relating to interface i. 
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Appendix Figure S9. Structural models, expression, and BRET50 plots for PEX3-
PEX19 and PEX3-PEX16. 
A Structural model of PEX3-PEX19 corresponding to interface v as shown in Fig 5G. 
Mutated residues on the domain (green) and motif side are labeled. B Structure from 
PDB:3MK4 showing the PEX19 N-terminal motif bound to the PEX3 domain. C BRET50 
estimates from fitting titration curves shown in Fig 5H are plotted vs. BRET values that were 
corrected for bleedthrough and measured at a 2:50 ng (for PEX3 and PEX3_T90Q) or 8:50 
ng (for PEX3, PEX3_R54S, PEX3_E272R) DNA transfection ratio for wildtype and mutant 
PEX3-PEX19 pairs. Error bars indicate the standard error. Data is shown for three technical 
replicates. The left panel corresponds to mutant constructs that should disrupt binding while 
mutants shown in the right panel were aimed to disrupt binding to PEX16 and thus should 
not disrupt binding to PEX19. D Fluorescence and total luminescence are shown for wildtype 
and mutant PEX3-PEX19 pairs measured at a 2:50 or 8:50 ng DNA transfection ratio (see 
panel C). Error bars indicate STD of three technical replicates. E Structural model obtained 
with AF for the trimeric complex of PEX3 (gray), PEX19 (yellow), and PEX16 (orange) using 
full length sequences as input. F PEX3 expression levels measured in luminescence units 
plotted for co-transfections with increasing PEX16 protein amounts measured in 
fluorescence units. Error bars indicate STD of three technical replicates. G PEX3 expression 
levels measured in luminescence units plotted for co-transfections with increasing PEX19 
protein amounts measured in fluorescence units. Error bars indicate STD of three technical 
replicates. H Data shown as in D for wildtype and mutant constructs of PEX3-PEX16 pairs. 
Measures are taken for 2:25 ng DNA transfection ratios. 
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Appendix Figure S10. Expression and BRET50 plots for SNRPB-GIGYF1. 
A BRET50 estimates from fitting titration curves shown in Fig 6D are plotted vs. BRET 
values that were corrected for bleedthrough and measured at a 2:50 ng DNA transfection 
ratio for wildtype and mutant SNRPB-GIGYF1 pairs. Error bars indicate the standard error. 
Data is shown for three technical replicates for two biological replicates each. B 
Fluorescence and total luminescence are shown for wildtype and mutant SNRPB-GIGYF1 
pairs measured at a 2:50 ng DNA transfection ratio. Error bars indicate STD of three 
technical replicates. Data is shown for two biological replicates. Coloring as in A. C Data 
shown as in A for wildtype and mutant SNRPB-GIGYF1 pairs fitted from titration curves 
shown in Fig 6E. D Data shown as in B for wildtype and mutant SNRPB-GIGYF1 pairs 
shown in C. 
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4.2 Article III: An extended Tudor domain within

Vreteno interconnects Gtsf1L and Ago3 for piRNA

biogenesis in Bombyx mori

Summary

This project focused on characterizing the molecular mechanisms of PPIs involved in
the piRNA biogenesis.

Piwi-interacting RNAs (piRNAs) play a crucial role in preserving genome integrity
by silencing transposons. The piRNA population is known to expand through the
ping-pong amplification loop. Many proteins are involved in the amplification pro-
cess, but the molecular mechanism of the process is not fully understood. In silkworm
cells, we showed that the protein GTSF1L interacts with piRNA-loaded Ago3 and co-
localizes with unloaded Ago3 and Vreteno. Further biochemical analyses revealed that
GTSF1L was able to directly interact with Vreteno through its disordered C terminal
tail. By applying the fragmentation strategy presented in Chapter 4, Article II, we
generated a high-confidence structural model for the detected interface. Interestingly,
the structural model revealed a hydrophobic pocket on the Tudor domain that was
previously not known. Atomistic molecular dynamics simulations were also performed
using the structural model predicted by AF-MM, and the result further corroborated
the interface predicted by AF-MM. The predicted interface was experimentally vali-
dated.

In summary, this project demonstrated the use of AF-MM in deciphering the molec-
ular mechanisms of PPIs and the application of AF-MM models for more fine-grained
structural studies.
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Article

An extended Tudor domain within Vreteno
interconnects Gtsf1L and Ago3 for piRNA biogenesis
in Bombyx mori
Alfred W Bronkhorst1,* , Chop Y Lee2,3 , Martin M Möckel4, Sabine Ruegenberg4 ,

Antonio M de Jesus Domingues1,† , Sh�eraz Sadouki1, Rossana Piccinno5, Tetsutaro Sumiyoshi6,‡,

Mikiko C Siomi6 , Lukas Stelzl7,8 , Katja Luck3,** & Ren�e F Ketting1,9,***

Abstract

Piwi-interacting RNAs (piRNAs) direct PIWI proteins to transposons
to silence them, thereby preserving genome integrity and fertility.
The piRNA population can be expanded in the ping-pong amplifica-
tion loop. Within this process, piRNA-associated PIWI proteins
(piRISC) enter a membraneless organelle called nuage to cleave
their target RNA, which is stimulated by Gtsf proteins. The resulting
cleavage product gets loaded into an empty PIWI protein to form a
new piRISC complex. However, for piRNA amplification to occur, the
new RNA substrates, Gtsf-piRISC, and empty PIWI proteins have to
be in physical proximity. In this study, we show that in silkworm
cells, the Gtsf1 homolog BmGtsf1L binds to piRNA-loaded BmAgo3
and localizes to granules positive for BmAgo3 and BmVreteno. Bio-
chemical assays further revealed that conserved residues within
the unstructured tail of BmGtsf1L directly interact with BmVreteno.
Using a combination of AlphaFold modeling, atomistic molecular
dynamics simulations, and in vitro assays, we identified a novel
binding interface on the BmVreteno-eTudor domain, which is
required for BmGtsf1L binding. Our study reveals that a single
eTudor domain within BmVreteno provides two binding interfaces
and thereby interconnects piRNA-loaded BmAgo3 and BmGtsf1L.

Keywords Ago3; eTudor; Gtsf; piRNA; Vreteno

Subject Categories RNA Biology; Structural Biology
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The EMBO Journal (2023) 42: e114072

Introduction

Animal germ cells utilize the Piwi-interacting (pi)RNA pathway as a

mechanism to silence transposons, thereby maintaining genome sta-

bility and fertility (Czech et al, 2018; Ozata et al, 2019). A defective

piRNA pathway leads to transposon derepression, DNA damage,

gametogenesis defects, and sterility. The piRNA pathway can also

have non-transposon targets, such as in the silk moth Bombyx mori,

where piRNAs regulate sex determination (Kiuchi et al, 2014).

piRNAs are about 24–31 nucleotides in size and associate with

PIWI-clade Argonaute proteins to guide them to complementary tar-

gets (Ghildiyal & Zamore, 2009). Therefore, piRNAs are a key,

specificity-determining component of the Piwi pathway.

In Drosophila germ cells, precursor piRNAs (pre-pre-piRNAs) are

transcribed within large dual-strand clusters and exported from the

nucleus for subsequent processing within the cytoplasm (Brennecke

et al, 2007; Czech et al, 2018; Ozata et al, 2019). piRNAs can be

loaded into different PIWI proteins. Drosophila expresses three PIWI

proteins: Piwi, Aubergine (Aub), and Ago3. Piwi and Aub are pre-

dominantly loaded with antisense piRNAs, whereas Ago3 mostly

incorporates sense piRNAs (Brennecke et al, 2007; Gunawardane

et al, 2007). In the silkworm, only two cytoplasmic PIWI proteins

are expressed: Siwi and BmAgo3 (Kawaoka et al, 2009). Siwi-

associated piRNAs are mostly antisense and are responsible for the

cleavage of sense transposon mRNA, whereas BmAgo3 binds sense

piRNAs and triggers antisense piRNA precursor cleavage.

The current model for piRNA biogenesis suggests that cytoplas-

mic piRNA processing occurs through two interconnected mechanisms.
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One step of piRNA processing takes place within the nuage, a

germline-specific phase-separated structure that surrounds the

nuclear membrane. Here, piRNA-guided (called trigger piRNA)

endonuclease activity of one PIWI protein (e.g., Ago3) generates the

50 monophosphate end of a complementary piRNA precursor tran-

script (Han et al, 2015; Homolka et al, 2015; Mohn et al, 2015;

Gainetdinov et al, 2018). This so-called responder pre-piRNA is sub-

sequently incorporated into an unloaded PIWI protein (Drosophila

Aub or silkworm Siwi), which is often still too long at its 30-end. For
further pre-piRNA processing, the PIWI protein then migrates to the

mitochondrial outer membrane. Here, the second step of piRNA

processing is mediated by the endonuclease Zucchini (Zuc), which

mediates responder pre-piRNA 30-end formation by cleaving 50 to an

available uridine (Han et al, 2015; Mohn et al, 2015). Pre-piRNA 30-
end resection is further completed by trimming and methylation to

generate a mature piRISC complex (Horwich et al, 2007; Kawaoka

et al, 2011; Hayashi et al, 2016; Izumi et al, 2016). The mature

piRISC complex is liberated from the mitochondria into the cytosol

to cleave complementary RNA, resulting in target RNA degradation.

Alternatively, the mature piRISC complex (Aub or Siwi) can transit

back to the nuage (now serving as a trigger piRNA) to bind comple-

mentary target RNA. This initiates a new round of PIWI-catalyzed

responder piRNA biogenesis, leading to new piRISC formation. This

consecutive and continuous process of responder and trigger piRNA

production, which requires reciprocal cleavages by two paired PIWI

proteins, is called the piRNA amplification cycle (or ping-pong

loop). Thus, mature piRNAs within the ping-pong cycle are gener-

ated by the combined action of PIWI-slicing and Zuc-cleavage.

Notably, Zuc-mediated processing of the responder pre-piRNA 30-
end simultaneously generates the 50-end of a new pre-piRNA sub-

strate for phased piRNA biogenesis, which results in the production

of trailer piRNAs (Han et al, 2015; Mohn et al, 2015). Initiator and

responder piRNAs that are generated via the ping-pong cycle

increase the abundance of an existing pool of piRNAs, whereas the

Zuc-dependent trailer piRNAs expand the repertoire of piRNA

sequences. In Drosophila, phased piRNAs predominantly associate

with Piwi and translocate to the nucleus to induce transcriptional

gene silencing through the deposition of repressive chromatin marks

(Czech et al, 2018). Even though trailer piRNAs are produced, the

silkworm does not possess a nuclear piRNA-based silencing path-

way (Gainetdinov et al, 2018; Izumi et al, 2020).

Efficient piRNA amplification within the ping-pong cycle requires

that PIWI-mediated target cleavage is confined to molecular sur-

roundings that are compatible with an empty PIWI protein receiving

one of the cleavage products. It has been suggested that Tudor-

domain-containing proteins that reside in the nuage can provide

such an environment by acting as a molecular scaffold (Chen et al,

2011; Siomi et al, 2011). Tudor domains that harbor an aromatic

cage can bind to symmetrically dimethylated arginine residues

(sDMAs) on client proteins but can also establish sDMA-independent

protein interactions (Siomi et al, 2010; Chen et al, 2011). For exam-

ple, the Drosophila Krimper protein makes sure that cleavage prod-

ucts resulting from Aub-slicing are efficiently loaded into empty Ago3

(Sato et al, 2015; Webster et al, 2015). Krimper binds

sDMA-methylated piRISC-Aub via its aromatic cage-containing Tudor

domain, whereas an upstream Tudor domain within Krimper estab-

lishes the sDMA-independent interaction with empty Ago3 (Sato

et al, 2015; Webster et al, 2015; Huang et al, 2021). Likewise, the

multi-Tudor domain-containing protein Qin also promotes heterotypic

ping-pong between piRISC-Aub and empty, unmethylated Ago3

(Zhang et al, 2011, 2014). In silkworms, the handover of piRISC-Siwi-

cleaved target RNA to empty BmAgo3 is mediated by the RNA-

helicase Vasa (Xiol et al, 2014; Nishida et al, 2015). Notably, Vasa

contains intrinsically disordered regions that are involved in the for-

mation of phase-separated structures and seems to be the scaffold for

nuage formation (Nott et al, 2015). Moreover, the Vasa N-terminus is

strongly methylated, indicating that multivalent interactions with

Tudor domain-containing proteins also contribute to nuage assembly

(Kirino et al, 2010). Additional studies in silkworm revealed that

BmVreteno brings piRNA-loaded BmAgo3 and empty Siwi together

via their Tudor domains to allow new piRISC-Siwi formation (Nishida

et al, 2020). This may involve the dimerization of two BmVreteno

isoforms (BmVreteno-Long and -Short), where the BmVreteno-Long

isoform anchors the RNA target through its unique RRM domain.

Thus, BmVreteno also acts in the ping-pong cycle but has an opposite

role compared to Krimper and Qin, as it enforces Siwi loading instead

of BmAgo3 loading.

Recently, Arif et al (2022) reported that gametocyte-specific fac-

tor (Gtsf) proteins stimulate the catalytic activity of PIWI proteins.

Gtsf proteins act in the piRNA pathway in different species, includ-

ing flies, silkworms, and mice (Ipsaro & Joshua-Tor, 2022). In Dro-

sophila, Gtsf1 is required for piRNA-mediated transcriptional gene

silencing, but Gtsf1 is not essential for piRNA biogenesis (Dönertas

et al, 2013; Ohtani et al, 2013). In contrast, mouse Gtsf1 is involved

in piRNA amplification and associates with the mouse PIWI proteins

Miwi2 and Mili (Yoshimura et al, 2018). Moreover, mouse Gtsf1 can

enhance the piRNA-directed target cleavage of both Mili and Miwi

in vitro. Likewise, silkworm Gtsf1 associates with Siwi and was

found to enhance slicing activity (Chen et al, 2020; Arif et al, 2022;

Izumi et al, 2022). We note that the conditional cleavage by PIWI

proteins, which is dependent on Gtsf, provides an interesting possi-

bility to restrict target cleavage to conditions in which an empty

PIWI protein may be available to accept a cleavage product and to

prevent RNA cleavage in the absence of such empty PIWI proteins.

However, it is not known how the Gtsf-piRISC complex is brought

in physical proximity with empty PIWI and target RNA.

In this study, we show that silkworm Gtsf1-like (BmGtsf1L), a

Gtsf1 paralog, binds piRNA-loaded BmAgo3. The BmGtsf1L-

BmAgo3 piRISC interaction is stimulated by BmVreteno, a protein

known to aid Siwi loading following BmAgo3-mediated target cleav-

age. Surprisingly, we find that BmGtsf1L and BmAgo3 bind to the

same eTudor domain of BmVreteno. Using AlphaFold predictions,

we uncover a novel binding interface on this eTudor domain that

additionally accommodates BmGtsf1L binding. Thus, a single

eTudor domain within BmVreteno can serve as a molecular scaffold

and interconnect BmGtsf1L and piRISC-BmAgo3 to allow efficient

target cleavage only within a context that enables Siwi loading.

Results

BmGtsf1L associates with piRNA-loaded BmAgo3

A previous study showed that Gtsf1 is involved in piRNA-regulated

sex determination and transposon silencing in the silkworm (Chen

et al, 2020). The role of its paralog, BmGtsf1L, however, remained
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elusive. Alignment of Gtsf proteins from different species shows

that BmGtsf1L possesses two conserved CHHC-type zinc (Zn)

fingers followed by a short C-terminal tail (Fig EV1A). To find

potential binding partners of BmGtsf1L, we transiently expressed

HA-tagged BmGtsf1L in BmN4 cells and performed immunoprecip-

itation followed by quantitative mass spectrometry (IP/qMS).

Interestingly, many of the enriched proteins, such as BmAgo3,

BmVreteno, and Siwi, are known to play a role in piRNA biogene-

sis (Fig 1A and Dataset EV2). Next, we transiently expressed HA-

BmGtsf1L together with FLAG-tagged BmAgo3, BmVreteno, or

Siwi and confirmed that these candidates interact with BmGtsf1L,

both in the presence or absence of RNA (Fig 1B). Endogenous

BmAgo3 is also associated with transiently expressed BmGtsf1L

(Fig 1C).

Next, we generated an anti-BmGtsf1L monoclonal antibody,

which detected both endogenous as well as epitope-tagged

BmGtsf1L (Fig EV1B). Despite the low expression levels of

BmGtsf1L, we could detect endogenous BmGtsf1L specifically in

BmAgo3 precipitates (Fig 1D). Unfortunately, the BmGtsf1L anti-

body was not suitable for immunoprecipitation assays and did not

function in immunostainings. To be able to study BmGtsf1L func-

tion in further detail, we generated a BmN4 cell line stably expres-

sing HA-BmGtsf1L-eGFP. Using this stable cell line, we confirmed

that BmGtsf1L is mostly enriched in BmAgo3 IPs and hardly in Siwi

IPs (Fig 1E). Vice versa, BmAgo3 and Siwi were both co-precipitated

with BmGtsf1L, and again, we observed a stronger enrichment for

BmAgo3 (Fig 1F). Using stable cell lines expressing epitope-tagged

PIWI proteins (Fig EV1C), we could show that the increased affinity

of BmAgo3 for BmGtsf1L was not due to differences in PIWI anti-

body specificities (Fig EV1D). Moreover, BmSpn-E and BmQin were

also co-purified by BmGtsf1L, confirming our initial IP/qMS hits

(Fig 1A and F).

To reveal the loading status of endogenous BmAgo3 that associ-

ates with BmGtsf1L, we performed BmGtsf1L immunoprecipitation

followed by small RNA sequencing. BmGtsf1L-associated small RNA

profiles resembled those of BmAgo3-bound small RNAs, showing a

clear, defined peak of 27 nucleotides in size, a strong sense bias,

and enrichment for adenine at the 10th position (Figs 1G and H, and

EV1E). Together, these results indicate that BmGtsf1L associates

with piRNA-loaded BmAgo3.

Interestingly, BmVreteno has been shown to also interact with

piRNA-loaded BmAgo3, and to do so as a dimer (Nishida et al,

2020). Using an independently generated anti-BmVreteno antibody

that also detects the BmVreteno-Long (L) and BmVreteno-Short (S)

isoforms (Fig EV1F–H), we confirm that BmVreteno retrieves

BmAgo3 (Fig EV1I). Consistently, both BmVreteno isoforms were

also found in BmAgo3 precipitates (Fig EV1J). Next, we assessed

the interaction between BmGtsf1L and endogenous BmVreteno. This

revealed that BmGtsf1L also brings down both isoforms of endoge-

nous BmVreteno (Fig 1I). Likewise, BmGtsf1L is also co-precipitated

by BmVreteno (Fig 1J). Together, these data suggest that BmVre-

teno, BmGtsf1L, and piRNA-loaded BmAgo3 form a complex.

BmGtsf1L resides in BmAgo3 bodies

Nishida et al (2020) recently described that the formation of

BmAgo3 bodies is dependent on BmVreteno. To further analyze

whether BmGtsf1L also resides in BmAgo3 bodies we exploited fluo-

rescent lifetime imaging microscopy (FLIM). Using this technique,

we observed the co-localization of BmGtsf1L to BmAgo3-BmVreteno

▸Figure 1. BmGtsf1L associates with piRNA-loaded BmAgo3.

A Anti-HA immunoprecipitation on BmN4 cell lysates where either HA-BmGtsf1L or HA-eGFP was ectopically expressed. The experiment was performed using technical
duplicates to perform quantitative mass-spectrometry-based detection of peptides using stable dimethyl isotope labeling. A scatterplot showing the log2 converted
normalized ratio data for the individual label pairs. The threshold was set to 2-fold enrichment; known piRNA factors are indicated (red dots) as well as the bait pro-
tein (BmGtsf1L, green dot).

B Anti-HA immunoprecipitation on BmN4 lysates made from cells that were transfected with the indicated constructs either in presence or absence of RNase A/T1.
BmGtsf1L was immunoprecipitated followed by Western blot detection using the indicated antibodies. Expression of 3xFLAG-eGFP served as a negative control.

C Anti-HA immunoprecipitation of HA-BmGtsf1L or HA-eGFP from BmN4 cell lysates followed by immunodetection of endogenous BmAgo3. Anti-tubulin probing served
as a loading control.

D Immunoprecipitation using the indicated endogenous antibodies or using non-immune serum (n.i.) as a control in the presence or absence of na€ıve BmN4 cell lysates.
Oriole stain was used to detect the immunopurified BmAgo3 and Siwi complexes, whereas retrieval of endogenous BmGtsf1L was verified by Western blot.

E Immunoprecipitation of endogenous BmAgo3 and Siwi complexes on BmN4 cell lysates from the HA-BmGtsf1L-eGFP stable cell line, followed by Western blot detec-
tion using the indicated antibodies.

F GFP (BmGtsf1L) or control (Ctrl) immunoprecipitation on BmN4 cell extracts stably expressing HA-BmGtsf1L-eGFP was followed by Western blot detection using the
indicated antibodies.

G Small RNA size profiles of input samples and from anti-HA immunopurified complexes. Immunoprecipitations were performed in technical duplicates on BmN4 cell
lysates from cells that were transiently transfected, denoted in the two lines on the right-hand panels.

H Violin plot showing the log2 transformed strand bias of sense to antisense small RNAs from input and IP samples of technical duplicates. The mean strand bias is
indicated with the color code, where negative and positive values represent antisense and sense bias, respectively. The boxplot inside the data distribution shows the
summary of the data as follows: The top and bottom of the embedded box represent the 75th and 25th percentile of the distribution, respectively, and the line inside
the box represents the median; the lines extend to the smallest or largest observation that falls within a distance of the inter-quartile range (IQR), Q1–1.5 × IQR or
Q3 + 1.5 × IQR respectively.

I GFP (BmGtsf1L) and control immunoprecipitation, followed by Western blot detection of endogenous BmVreteno using an antibody that detects the two BmVreteno
isoforms.

J Reciprocal immunoprecipitation using endogenous anti-BmVreteno antibody or rabbit IgG as an isotype control, followed by immunodetection using the indicated
antibodies.

K Fluorescence lifetime imagining of BmN4 cells co-transfected with eGFP-BmVreteno, BmGtsf1L- mOrange2, and mCardinal-BmAgo3. Inset shows the zoom-in of the
boxed area. Two representative images of two biological experiments are shown. Scale bars:10 lm. Plots on the right show the intensity gray values for each channel
of the line that has been drawn in the inset frame. Quantification data can be found in Dataset EV4.

Source data are available online for this figure.
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marked granules (Fig 1K). Single transfection of the individual pro-

teins served as controls and revealed the specificity of each fluores-

cently tagged protein (Fig EV2A).

Interdependence of BmVreteno-BmAgo3-BmGtsf1L interaction

Next, we assessed the consequences of BmGtsf1L knockdown on

the interactions we described above. Knockdown of BmGtsf1L

followed by BmVreteno immunoprecipitation revealed that the

interaction between BmVreteno and BmAgo3 does not require

BmGtsf1L (Fig 2A). Vice versa, both isoforms of BmVreteno were

also still retrieved by BmAgo3 following BmGtsf1L depletion

(Fig 2B). These results indicate that the interaction between BmVre-

teno and BmAgo3 does not require BmGtsf1L.

To test whether BmAgo3 affects the interaction between

BmGtsf1L and BmVreteno, we analyzed their association following

efficient BmAgo3 knockdown. This revealed that the interaction

between BmGtsf1L and BmVreteno was reduced but not fully abro-

gated (Fig 2C). Given that no BmAgo3 was detected in this

BmGtsf1L IP, these results suggest that BmAgo3 enhances, but is

Figure 2. Interdependence of BmVreteno-BmAgo3-BmGtsf1L interaction.

dsRNA-mediated gene depletion on BmN4 cells, which stably express HA-BmGtsf1L-eGFP, followed by immunoprecipitation and Western blot detection.
A Luciferase (dsLuc) control knockdown and BmGtsf1L (dsBmGtsf1L) depletion, followed by IgG control or anti-BmVreteno immunoprecipitations and detection of

retrieved proteins by Western blot using the indicated antibodies. Anti-actin detection served as the loading control. An asterisk indicates detection of the antibody
light chain.

B Knockdown in BmN4 cells as described in panel (A), followed by non-immune (n.i.) serum control IP or anti-BmAgo3 IP and detection of retrieved proteins by Western
blot. Anti-tubulin probing was used as a loading control. An asterisk indicates detection of the antibody light chain.

C Knockdown of luciferase (dsLuc) or BmAgo3 (dsBmAgo3) in BmN4 cells. Immunoprecipitation using GFP (BmGtsf1L) or control (Ctrl) magnetic beads, followed by
Western blot detection using the indicated antibodies. Anti-actin probing was performed as a loading control.

D Immunoprecipitation and Western blot detection were performed as described in panel (C), but on BmN4 cell extracts from which endogenous BmVreteno was
depleted by dsRNA transfection.

E Knockdown of endogenous BmVreteno, followed by immunoprecipitation using anti-BmAgo3 antibodies or non-immune serum as a control. Western blot detection of
precipitated proteins was performed using the indicated antibodies and detection of anti-tubulin served as a loading control. Asterisk indicates detection of the anti-
body light chain.

F Model on the interconnection between BmGtsf1L, BmAgo3, and BmVreteno. The majority of BmGtsf1L is found in complex with BmVreteno. BmVreteno, which can
stimulate the BmGtsf1L-BmAgo3 interaction, whereas BmAgo3 also fosters the BmGtsf1L-BmVreteno interaction. BmVreteno exists as a long (L) and short (S) isoform,
which can interact with each other (Nishida et al, 2020) and is therefore schematically depicted as a heterodimer.

Source data are available online for this figure.
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not essential for the interaction between BmGtsf1L and BmVreteno.

Finally, we tested the effects of BmVreteno depletion on the

BmAgo3-BmGtsf1L interaction. While the dsRNA treatment strongly

affected BmVreteno levels, we were not able to fully eliminate it, as

evidenced by its presence in the BmGtsf1L IPs. Nevertheless, RNAi

against BmVreteno strongly diminished the amount of BmAgo3 that

was brought down by BmGtsf1L (Fig 2D), indicating that BmVre-

teno stimulates the interaction between BmGtsf1L and BmAgo3. We

note, however, that in reciprocal BmAgo3 immunoprecipitations,

small amounts of BmGtsf1L could be retrieved, independent of

BmVreteno knockdown status (Fig 2E). In this experiment no resid-

ual BmVreteno was detected in the IPs. We conclude that a small

fraction of BmGtsf1L binds BmAgo3 independent of BmVreteno, but

that the majority of BmGtsf1L is found in complex with BmVreteno

and that this stimulates the BmGtsf1L-BmAgo3 interaction (Fig 2F).

BmAgo3 interacts with BmVreteno eTD1 via methylated
arginine residues

BmVreteno contains two Tudor domains (TDs) that are confidently

predicted by Pfam and SMART Hidden Markov Models (HMMs)

(Letunic et al, 2021; Mistry et al, 2021). A third match of the Pfam

Tudor HMM around residue 500 exceeded the e-value threshold and

thus was not significant. Alignment of the two confidently predicted

Tudor domains to those of Drosophila Tudor-SN and Tudor-eTD11,

for which crystal structures have been resolved (Friberg et al, 2009;

Liu et al, 2010), indicates that BmVreteno TD1 contains an aromatic

cage (Fig EV2B). It is well known that aromatic cages within TD

domains can bind to methylated arginines of client proteins and

thereby mediate protein–protein interactions (Siomi et al, 2010;

Chen et al, 2011). When co-expressing BmVreteno with a BmAgo3

variant that cannot be methylated at its N-terminus (5RK), we lost

interaction between both (Fig EV2C), suggesting that arginine meth-

ylation is a prerequisite for its association with BmVreteno. This is

in line with previous work, which showed that the aromatic cage of

TD1 is involved in BmAgo3 interaction (Nishida et al, 2020).

In addition, a BmAgo3 piRNA-loading defective mutant

(YK > LE) also revealed a strong loss of interaction with BmVreteno

(Fig EV2C), which is in line with the observation that unloaded

BmAgo3 does not co-localize with BmVreteno and fails to form

BmAgo3 bodies (Nishida et al, 2020). This could indicate that

BmAgo3 becomes methylated only following piRNA-binding, which

has been observed for Drosophila Aubergine (Webster et al, 2015;

Huang et al, 2021). Notably, a BmAgo3 slicing mutant (DADH) does

not show loss of interaction with endogenous BmVreteno

(Fig EV2C). Taken together, our data, combined with the findings of

Nishida et al (2020), suggests that the aromatic cage of the BmVre-

teno TD1 domain mediates the interaction with the methylated N-

terminus of BmAgo3.

The BmGtsf1L C-terminus establishes an interaction with
BmVreteno

To understand how BmGtsf1L binds to BmVreteno, we tested which

region of BmGtsf1L interacted with endogenous BmVreteno. At the

same time, we also probed for BmAgo3. A BmGtsf1L fragment miss-

ing the N-terminal part, including the two CHHC Zn fingers, could

still retrieve BmVreteno as well as BmAgo3 (Fig 3A and B). By

contrast, deletion of the likely disordered BmGtsf1L C-terminus

completely abolished the interaction with BmVreteno, while it

allowed some interaction with BmAgo3 (Fig 3A and B). Studies in

Drosophila showed that aromatic residues within the C-terminus of

Gtsf1 regulate Piwi binding (Dönertas et al, 2013; Ohtani

et al, 2013). Therefore, we checked for the presence of aromatic res-

idues within BmGtsf1L and studied how the mutagenesis of these

residues would affect its interaction with either BmAgo3 or BmVre-

teno. The BmGtsf1L tyrosine residue mutant (Y88A) retrieved

BmAgo3 and BmVreteno to a similar extent as wildtype BmGtsf1L,

whereas mutation of the conserved tryptophan residue (W99A)

affected the BmAgo3 interaction and completely abrogated the inter-

action with BmVreteno (Figs 3A and C, and EV1A). The BmGtsf1L

double point mutant (YW > AA) displayed similar effects when

compared to the W99A single mutant. We could also show that

BmGtsf1L (W99A) remained uniformly distributed in the nucleus

and cytoplasm, even though BmAgo3 granules were still present

(Fig 3D and E). We thus identified the conserved tryptophan residue

(W99) within the C-terminal tail of BmGtsf1L to be essential for

interaction with BmVreteno and to enhance binding to BmAgo3.

BmVreteno directly interacts with BmGtsf1L

The above results prompted us to test the hypothesis that BmVre-

teno and BmGtsf1L interact directly. Using an E. coli expression sys-

tem, we succeeded in the expression and purification of full-length

BmVreteno-L, BmVreteno-S, and BmGtsf1L. Notably, GST-

BmVreteno was eluted as multimeric proteins from gel filtration col-

umns and associated with nucleic acids (Fig EV3A–C). Using these

proteins in GSH pull-down assays, we could show that BmGtsf1L

interacts directly with both isoforms of BmVreteno (Fig 3F). Further-

more, we could recapitulate the effects of the mutations described

above on the BmVreteno-BmGtsf1L interaction in vitro: recombinant

BmGtsf1L-W99A failed to interact with BmVreteno (Fig 3G). We

conclude that the C-terminal end of BmGtsf1L is sufficient to bind

directly to BmVreteno and that BmGtsf1L-W99 plays a crucial role

in this interaction.

BmGtsf1L binds to BmVreteno eTD1

We next analyzed which region of BmVreteno is involved in its

interaction with BmGtsf1L. Using truncation analysis, we found that

the C-terminal region of BmVreteno, containing the two PFAM/

SMART predicted TDs, was required (Fig EV3D and E). However,

purification of fragments containing individual predicted TD

domains to probe binding with BmGtsf1L failed. To improve frag-

ment design, we turned to AlphaFold as a novel artificial

intelligence-based tool for protein structure prediction. To our sur-

prise, AlphaFold confidently predicted three extended Tudor domain

folds within full length BmVreteno, which are also referred to as

TSN folds (Fig 4A and Dataset EV1) (Liu et al, 2010). Hereafter, we

refer to these three domains as AF-eTD0, 1, and 2, where AF-eTD0

corresponds to the newly identified eTD domain. The prediction of

this additional Tudor domain is in line with IUPred predictions

suggesting that this region is structured (Fig 4A). It also overlaps

with the nonsignificant Tudor HMM match from SMART/Pfam men-

tioned earlier. In addition, AlphaFold predicted with high confidence

the structures and boundaries of the RRM and MYND domains

6 of 20 The EMBO Journal 42: e114072 | 2023 � 2023 The Authors

The EMBO Journal Alfred W Bronkhorst et al

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on D

ecem
ber 21, 2023 from

 IP 134.93.170.227.

158



further upstream of the three eTD domains (Fig 4B). As indicated by

the predicted aligned error matrix, AlphaFold is very uncertain

about the relative orientation of the RRM, MYND, and

AF-eTD0 domain to the rest of the protein (Fig 4B). This suggests

that they are unlikely to establish intramolecular contacts with other

regions in BmVreteno, while AlphaFold is somewhat more certain

Figure 3. The BmGtsf1L C-terminus establishes a direct interaction with BmVreteno.

A Overview of BmGtsf1L domain architecture with two N-terminally located zinc fingers (ZnF1 and ZnF2, respectively). The two deletion variants used in panel (B) to
address binding to BmAgo3 and BmVreteno are also depicted (top). Alignment of BmGtsf1L to GTSF proteins from Drosophila. Conserved tryptophan (W) and tyrosine
(T) residues of DmGtsf1 that were shown to be involved in Ago3 interaction are boxed in magenta (Dönertas et al, 2013). BmGtsf1L contains another aromatic residue
(Y88) in its C-terminus (small magenta box), which is not conserved. Clustal Omega alignment was processed with Jalview software (bottom).

B GFP-IP (BmGtsf1L) on BmN4 cell extracts from cells that were transfected with full length (FL) BmGtsf1L-eGFP and with their deletion variants. Transfection of HA-
eGFP served as a control. Western blot was performed with indicated antibodies and Ponceau S staining served as a loading control.

C Same as in panel (B) but now BmGtsf1L-eGFP mutants, in which aromatic residues were substituted with alanine, were transfected.
D Single-plane confocal micrographs of BmN4 cells transfected with BmGtsf1L-eGFP wildtype (WT) or the W99A mutant together with mCherry-BmVreteno. Inset shows

the zoom-in of the boxed area. Scale bars – 4 lm.
E Single-plane confocal micrographs of BmN4 cells transfected with BmGtsf1L-eGFP wildtype (WT) or the W99A mutant together with mCherry-BmAgo3. Inset shows

the zoom-in of the boxed area. Scale bars – 4 lm.
F Analysis of the interaction between BmVreteno and BmGtsf1L by GSH pull-down assays. GST alone or GST-BmVreteno L/S was incubated with His-BmGtsf1L. Input

and elution fractions were analyzed by SDS-PAGE followed by Coomassie staining.
G In vitro GSH pull-down assay for GST alone or for GST-BmVreteno-L incubated with His-tagged BmGtsf1L variants. Proteins from the SDS-PAGE gel were detected by

Coomassie staining.

Source data are available online for this figure.
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about the predicted relative orientation of AF-eTD1 and AF-eTD2 to

each other. Based on the predicted AF-eTD boundaries, we designed

novel fragments carrying individual eTD domains to test if any of

these AF-eTDs mediate the binding to BmGtsf1L. BmN4 cells were

transfected with individual HA-eGFP-tagged AF-eTDs of BmVreteno

together with mCherry-3xFLAG-BmGtsf1L. Only BmVreteno AF-

eTD1 was retrieved in BmGtsf1L immunoprecipitations (Fig 4C).

Likewise, recombinant BmGtsf1L was only co-precipitated with now

purifiable GST-tagged BmVreteno-AF-eTD1 in vitro, while AF-eTD0

and AF-eTD2 could not bind BmGtsf1L (Fig 4D).

Figure 4.
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BmVreteno AF-eTD1 interacts with a C-terminal motif in
BmGtsf1L

Results from the previous sections indicate that a region around the

W99 residue in the disordered C-terminal tail of BmGtsf1L can bind

to AF-eTD1, pointing to the possibility that this interaction is medi-

ated by a so-called short linear motif-folded domain interaction

(Van Roey et al, 2014). Various reports suggest that AlphaFold has

some ability to predict domain-motif interfaces between two submit-

ted protein sequences (Akdel et al, 2022; Tsaban et al, 2022). How-

ever, prior to probing AlphaFold for interface prediction between

BmVreteno and BmGtsf1L, we first tested whether AlphaFold could

predict the structure of full-length BmGtsf1L with high confidence.

AlphaFold confidently predicted the two N-terminal Zn-finger

domains and a disordered C-terminal tail in line with Pfam/SMART

domain annotations and IUPred disorder propensity predictions

(Fig 4E and Dataset EV1). The superimposition of the BmGtsf1L Zn

fingers with the resolved structure of mouse Gtsf1 (PDB: 6X46)

showed a very similar overall structure (Fig 4F). Each MmGtsf1 Zn

finger coordinates the binding of an individual zinc ion (Ipsaro

et al, 2021). Displaying the zinc-coordinating residues of BmGtsf1L

revealed that AlphaFold accurately modeled these residues, despite

the fact that AlphaFold cannot model the zinc ions themselves

(Fig 4F).

Encouraged by these observations, we submitted full-length

BmGtsf1L and full-length BmVreteno for interface prediction by

AlphaFold. Unfortunately, predicted structural models were of very

low model confidence (at most 0.27) and docked the BmGtsf1L Zn

finger domains between AF-eTD0 and AF-eTD2 of BmVreteno in an

unlikely mode of binding that also contradicts our experimental

results (Dataset EV1).

Next, we submitted sequences of individual AF-eTDs from

BmVreteno with the full-length sequence of BmGtsf1L for interface

prediction. Interestingly, while predictions involving AF-eTD0 and

AF-eTD2 resulted again in low confidence predictions, structural

models involving AF-eTD1 resulted in substantially higher model

confidences (Fig 4G and Dataset EV1). Inspection of the structural

models revealed that AlphaFold predicted binding of a region

involving W99 in BmGtsf1L to AF-eTD1 exclusively (Fig 4H), in line

with our experimental data. Interestingly, AlphaFold docked W99 of

BmGtsf1L into a small hydrophobic pocket of AF-eTD1 that was dif-

ferent from the aromatic cage (see below). Indeed, BmGtsf1L can

still interact with BmVreteno in vitro when the aromatic cage was

disrupted (Fig 4I). This data would suggest that BmAgo3 and

BmGtsf1L both bind to BmVreteno AF-eTD1 while using different

interaction interfaces on AF-eTD1.

AF predicts BmGtsf1L motif binding to a novel hydrophobic
pocket on the BmVreteno AF-eTD1 domain

Despite these encouraging agreements between our experimental

data and AlphaFold predictions, the structural models of the inter-

face between AF-eTD1 and full-length BmGtsf1L were still only of

moderate model confidence (max. 0.64). To further gain in predic-

tion accuracies, we in silico fragmented the unstructured C-terminal

tail of BmGtsf1L (39 AA in length), starting off with a fragment of

five residues in length at the start, middle, and end of the C-terminal

tail and gradually extending these fragments by five residues in each

step (Fig 5A). We submitted each fragment individually for interface

prediction by AlphaFold with each of the three eTD domains of

BmVreteno. This resulted in 72 prediction runs in total (Table EV1).

Since the C-terminal fragments were overlapping among each other,

we were able to compute the fraction of prediction runs involving a

specific pair of residues from BmVreteno and BmGtsf1L where this

pair of residues was predicted to be in contact with each other. This

computed fraction was visualized as a heatmap between all residues

◀ Figure 4. BmVreteno AF-eTD1 interacts with a C-terminal motif in BmGtsf1L.

A Domain organization of BmVreteno is based on Pfam/SMART annotations (top) or domain annotations from AlphaFold predictions (bottom). IUPred predictions
(center) indicate structural disorder propensities for BmVreteno (values > 0.5 indicate disorder). Disorder scores and amino acid positions are shown on the X-axis and
Y-axis, respectively. Abbreviations: RRM = RNA recognition motif; MYND = Myeloid translocation protein 8, Nervy and DEAF-1; TD = Tudor domain; AF-
eTD = AlphaFold predicted extended Tudor domain.

B AlphaFold predicted the structure of full-length BmVreteno shown from different angles. Individual domains within the displayed structure are color coded as in panel
(A). The BmVreteno domain organization is displayed on top of the PAE matrix. The PAE plot displays the scored residues and aligned residues on the X-axis and Y-
axis, respectively. The expected position error in angstroms (�A) is color coded, where a dark green color indicates low PAE (high confidence) and a white color indicates
high PAE (low confidence).

C Transfection of BmN4 cells with mCherry-3xFLAG-BmGtsf1L together with individual eTD domains of BmVreteno, carrying an HA-eGFP tag. The transfection of HA-
eGFP served as a control. An RFP immunoprecipitation was performed on BmN4 lysates, and input as well as elution samples were resolved by SDS-PAGE. Proteins
were detected by Western blot using the indicated antibodies, and Ponceau S staining served as a loading control.

D Analysis of the interaction between individual eTDs of BmVreteno and BmGtsf1L by GSH pull-down assays. GST alone or GST-BmVreteno-AF-eTDs were incubated with
His-BmGtsf1L. Input and elution fractions were analyzed by SDS-PAGE, followed by Coomassie staining.

E Domain organization of BmGtsf1L is based on Pfam/SMART annotations (top) or domain annotations from AlphaFold predictions (bottom). IUPred predictions (center)
indicate structural disorder propensities for BmGtsf1L. Disorder scores and amino acid positions are shown on the X-axis and Y-axis, respectively. The more disordered
C-terminal tail was used for AlphaFold predictions (related to Fig 5). Abbreviation: ZnF1 = zinc finger 1; ZnF2 = zinc finger 2.

F Superimposition of the structure of the Zn fingers from MmGtsf1 (in gray, PDB: 6X46) with the predicted structure of the Zn fingers of BmGtsf1L by AlphaFold (in
cyan). Zinc-binding residues within MmGtsf1 and BmGtsf1L that coordinate zinc ion-binding are displayed as sticks.

G Bar chart showing the mean of the different model confidence scores that were obtained from AlphaFold predictions (Y-axis) using individual AF-eTDs of BmVreteno
(X-axis) that were paired with full-length BmGtsf1L (error bars indicate the standard deviation of the five predicted models).

H AlphaFold-predicted structures for each individual eTD of BmVreteno with full-length BmGtsf1L. The inset in the middle panel shows that the C-terminal tail of
BmGtsf1L establishes contacts with the ordered structure of BmVreteno AF-eTD1.

I Analysis of the interaction between BmVreteno-L full-length wildtype (WT) and the aromatic cage mutant (YYN > AAA) with BmGtsf1L by GSH pull-down assays. GST
alone, or GST-BmVreteno-L, was incubated with His-BmGtsf1L. Input and elution fractions were analyzed by SDS-PAGE followed by Coomassie staining.

Source data are available online for this figure.
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from BmVreteno AF-eTD domains that were observed to be at least

once in contact with a residue from the C-terminal tail of BmGtsf1L

and vice versa (Fig 5A). This residue-residue contact heat map

revealed a clear hotspot of residues within AF-eTD1 and residues in

BmGtsf1L, including W99, and residues close by that were consis-

tently predicted to be in contact with each other (Fig 5A). No such

hotspot was observed for AF-eTD0 and AF-eTD2 suggesting that

AlphaFold specifically predicted an interface between AF-eTD1 and

Figure 5.
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a motif in BmGtsf1L involving W99. Importantly, model confidences

reached 0.87 for these fragment pairs (Table EV1).

We superimposed the structural model involving AF-eTD1 and

the last 5 residues of BmGtsf1L (Table EV1) with the solved struc-

ture of eTD11 of the Drosophila Tudor protein in complex with a

synthetic peptide representing the methylated arginine residues of

Aubergine (PDB: 3NTH, Fig 5B) (Liu et al, 2010). This clearly shows

that the predicted interface between BmVreteno and BmGtsf1L does

not involve the aromatic cage and lies on the opposite site of AF-

eTD1. Closer inspection of the interface revealed that W99 of

BmGtsf1L is predicted to bind in a hydrophobic pocket formed by

the side chains of R742, K747, K749, L751, and I762 of AF-eTD1

(Fig 5C). Furthermore, the conserved D100 of BmGtsf1L is predicted

to be in contact with K722 and R742, suggesting charge–charge con-

tacts. This is also true for BmGtsf1L-D101 and BmVreteno-K747

(Fig 5C). To understand why AlphaFold predictions and experimen-

tal results suggest that BmGtsf1L motif-binding is specific to the AF-

eTD1 domain of BmVreteno, we superimposed the structural models

of all three AF-eTD domains. We observed that the described hydro-

phobic pocket as well as the aromatic cage are specific to AF-eTD1

(Fig EV4A).

To gain further confidence in the stability of the predicted inter-

face between BmGtsf1L and BmVreteno, we performed atomistic

molecular dynamics simulations using the AlphaFold structural

model involving AF-eTD1 of BmVreteno and the ten last residues of

BmGtsf1L as starting point. In nine out of ten 1 ls simulations, we

observed that W99 anchors the BmGtsf1L motif into the predicted

hydrophobic pocket of AF-eTD1 (Fig 5D). However, in one of the

ten simulations, W99 moves away from the shallow hydrophobic

pocket suggesting that additional contacts between both proteins

are required to further stabilize the interaction. Our contact analysis

of the ten simulation runs demonstrate that the flanking residues

I98, D100, and D101 also contribute to anchoring the BmGtsf1L

motif, whereas the remaining part of the BmGtsf1L peptide forms

fewer contacts with the AF-eTD1 domain and is highly dynamic

(Fig 5D and E). On average W99 is interacting with BmVreteno resi-

dues R742 and K749 as well as I762. Movie EV1, which visualizes

one of the ten trajectories, shows how W99 can be “sandwiched”

between the side chains of R742 and K749. The simulations also

suggested an important contribution of S744 in AF-eTD1 to

BmGtsf1L motif-binding by mostly interacting with W99 but also

with D100 (Fig 5E). S744 forms transient hydrogen bonds with I98

and D100 of BmGtsf1L (Figs 5E and EV4B and C), with the proton

of the S744 OH group interacting both with the carboxyl group of

the D100 side chain and the D100 backbone carbonyl (Fig EV4C).

Interestingly, W99 and D100 also display high conservation scores

across orthologous Gtsf sequences (Fig EV1A), suggesting that this

may be a conserved mode of binding.

Experimental verification of the AF-predicted BmGtsf1L-
BmVreteno interface

We set out to further probe this predicted mode of binding using

mutagenesis. To this end, we selected residues within AF-eTD1 that

contribute to forming the hydrophobic pocket or/and mediate inter-

action with the aspartate (D100, D101) residues in the BmGtsf1L

motif. Individual point mutations (R742S, S744D, K749S, L751A,

and I762A) were generated for which we hypothesized that these

would perturb the formation of the hydrophobic pocket. We also

generated a point mutant (I762W) in which the hydrophobic pocket

would be filled and as such would sterically hinder the binding of

BmGtsf1L. These mutations were also designed such that an overall

impact on the stability and folding of AF-eTD1 should be minimal.

Immunoprecipitations on BmN4 cell extracts derived from cells that

◀ Figure 5. The Gtsf1L motif binds to a novel hydrophobic pocket on the BmVreteno AF-eTD1 domain.

A AlphaFold-based domain organization of BmVreteno and BmGtsf1L and a schematic overview of the fragmentation approach of the C-terminus of BmGtsf1L.
BmGtsf1L fragments were paired for interface predictions with AlphaFold with each of the eTDs of BmVreteno (top). The frequency by which a pair of residues, one
from BmVreteno and one from BmGtsf1L, was predicted to be in contact with each other among all fragment pairs submitted to AlphaFold that contained this resi-
due pair is visualized as a heatmap for each individual eTD domain of BmVreteno. Only residues of BmVreteno and BmGtsf1L that were at least observed once to be
in contact with a partner residue are displayed on the X and Y-axis, respectively.

B Superimposition of eTudor11 from Drosophila Tudor (in dark blue, PDB: 3NTH) crystallized with a peptide containing a methylated arginine residue of Aubergine
(orange) with the structural model of AF-eTD1 (light blue) and the C-terminal five residue-long peptide of BmGtsf1L (in yellow). Peptide residues are represented as
sticks.

C Zoom-in on the novel hydrophobic binding pocket of BmVreteno AF-eTD1 (light blue) and contacts between the hydrophobic residues (shown as sticks) with
BmGtsf1L W99 and D100 residues (shown as yellow sticks).

D Contact map of BmVreteno AF-eTD1 with the BmGtsf1L 10-AA residue peptide, predicted by atomistic molecular dynamics simulations. The plot summarizes 10 runs
of one microsecond each. The blue color in the heatmap indicates a low relative frequency of contacts between the BmGtsf1L-BmVreteno residues, and red indicates
a high frequency of contacts. Marginal plots that display the relative frequency (rel freq) show the relative probability of a residue interacting with residues from the
binding partner, which is the sum of the probability for each column (for the sum of the contacts along the AF-eTD1 sequence) or row (for the sum of the contacts
along the BmGtsf1L 10-AA residue peptide sequence).

E Snapshot on the novel hydrophobic binding pocket of BmVreteno AF-eTD1 (blue) and contacts between residues R742, S744, K749, and I762 (shown as sticks) with
BmGtsf1L C-terminal 10-AA residues (shown as yellow sticks). The snapshot additionally displays the BmVreteno-S744 residue that can form a hydrogen bond with
the backbone carbonyl of BmGtsf1L-D100.

F Anti-RFP (BmGtsf1L) immunoprecipitation from BmN4 lysates made from cells that were transfected with HA-eGFP-tagged BmVreteno AF-eTD1 variants. Cells were
co-transfected with mCherry-BmGtsf1L. The transfection of HA-eGFP served as a control. Proteins from input and elution samples were resolved by SDS-PAGE,
followed by Western blot detection using the indicated antibodies. Ponceau-S staining served as a loading control.

G In vitro GSH pull-down assay for GST alone or for GST-BmVreteno-AF eTD1 variants incubated with His-tagged BmGtsf1L. Proteins from the input and elution frac-
tions are separated by SDS-PAGE and detected by Coomassie staining. For more sensitive detection, a fraction of the same input and elution samples were subjected
to gel electrophoresis in parallel followed by Western blot detection using anti-His antibodies.

H Model showing that a novel binding interface on BmVreteno AF-eTD1 facilitates the binding of BmGtsf1L (via the hydrophobic pocket) and BmAgo3 (aromatic cage).

Source data are available online for this figure.
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were co-transfected with BmGtsf1L and the panel of AF-eTD1

mutants, showed that the interaction between BmGtsf1L and AF-

eTD1 was abolished in all the variants that we tested (Fig 5F). Using

recombinant GST-tagged AF-eTD1 variants in GSH pull-down

assays, we also observed that the direct interaction between AF-

eTD1 and BmGtsf1L was strongly impaired by these mutations

(Fig 5G).

Finally, we studied the effect of these mutations on the

BmGtsf1L-BmVreteno interaction in the context of full-length pro-

teins. We assessed these interactions through co-IP experiments, as

well as via subcellular localization. Mutations within the hydropho-

bic pocket on AF-eTD1 were introduced into full -length BmVreteno

and were co-transfected with BmGtsf1L. By microscopy, it was

apparent that all the hydrophobic pocket mutants resulted in

nuclear BmGtsf1L localization (Fig EV4D). This indicates a loss of

binding, since BmVreteno wildtype overexpression results in

BmGtsf1L exclusion from the nucleus. In addition, we find that

BmGtsf1L is still present in granules of BmVreteno mutants, which

could be explained by the presence of endogenous BmVreteno that

can form a complex with the transiently expressed BmVreteno

mutant and suffices to recruit a small fraction of BmGtsf1L. Muta-

tion of the aromatic cage did not result in nuclear BmGtsf1L

(Fig EV4D), consistent with it not playing a role in

BmGtsf1L binding.

Immunoprecipitations of BmGtsf1L revealed that single point

mutations within the hydrophobic pocket had little effect on BmVre-

teno retrieval (Fig EV4E). More significant reduction in binding

could be observed for the serine (S744D) and isoleucine (I762W)

mutations that also showed the strongest effects in our in vitro assay

(Figs EV4E and 5E). A stronger loss of interaction was observed

when generating double mutants for the hydrophobic pocket resi-

dues that initially showed no or marginal effects when compared to

wildtype BmVreteno. We note that the full-length BmVreteno that

we transiently expressed likely still dimerizes or oligomerizes with

endogenous BmVreteno, which in turn would still be able to interact

with endogenous BmAgo3 (via the aromatic cage). This might lead

to the observed residual BmGtsf1L binding. Taken together, our data

reveal a novel binding interface on BmVreteno AF-eTD1 that facili-

tates the simultaneous binding of BmGtsf1L and BmAgo3 (Fig 5H).

Discussion

In this study, we show that one of the eTudor domains of BmVre-

teno acts on its own as a molecular scaffold to bring piRNA-loaded

BmAgo3 and BmGtsf1L in close proximity. BmGtsf1L slightly stimu-

lates BmAgo3-directed cleavage of an RNA target (Arif et al, 2022;

Izumi et al, 2022). Concurrently, BmVreteno provides an environ-

ment that promotes the handover of the cleaved target to empty

Siwi (Murakami et al, 2021). Therefore, we propose that the interac-

tions that we identify may help to restrict BmAgo3 cleavage to a

molecular surrounding in which its cleavage products can fuel

piRNA biogenesis, and to prevent futile BmAgo3 cleavage events.

As the targets of BmAgo3 are antisense transcripts, its cleavage

activity will not directly contribute to transposon silencing. Only

cleavage in the presence of empty Siwi protein will be beneficial to

transposon silencing. Therefore, making BmAgo3 cleavage depen-

dent on BmGtsf1L and confining this to the BmVreteno environment

would represent an effective way of optimizing BmAgo3 cleavage

effectivity.

While it has been revealed that BmVreteno can establish an envi-

ronment where piRNA-loaded BmAgo3 and empty Siwi are brought

together, it is not fully understood how empty Siwi is provided

(Nishida et al, 2020). Using our BmGtsf1L stable cell line, we did

detect an interaction between BmGtsf1L and Siwi, but clearly much

weaker than the BmAgo3-BmGtsf1 interaction. Our small RNA

sequencing results further suggests that BmGtsf1L interacts with

unloaded Siwi. Taken together, we hypothesize that Siwi is

retrieved as a tertiary interaction via BmVreteno. It is possible that,

in analogy to Drosophila Krimper, other eTudor domains of BmVre-

teno may bind unloaded Siwi (Sato et al, 2015; Webster et al, 2015).

Using AlphaFold modeling, we uncovered in total three eTudor

domains in BmVreteno. Two of these do not have an intact aromatic

cage, suggesting they may bind empty, unmethylated Siwi.

We and others have shown that BmVreteno is spliced into two

isoforms: Long (L) and Short (S). In addition, we know that these

two isoforms form heterodimers. In vitro RNA cross-linking experi-

ments have revealed that the RRM domain contained within

BmVreteno-L binds RNA (Nishida et al, 2020). Therefore, it is

tempting to speculate that the BmVreteno heterodimer can bring in

one target RNA molecule, which is then processed by BmAgo3 and

whose 30-end cleavage product is subsequently loaded onto empty

Siwi. Nonetheless, a single BmVreteno-L molecule could in principle

also recruit both BmAgo3, Siwi and at least one more protein, so the

question of why BmVreteno heterodimerizes remains unanswered.

BmVreteno homologs that are expressed within the germ cells of

flies (Vreteno), fish, and mice (Tdrd1) are all required for piRNA

biogenesis but have different domain organizations (Reuter et al,

2009; Vagin et al, 2009; Handler et al, 2011; Huang et al, 2011;

Zamparini et al, 2011). Drosophila and silkworm Vreteno contain an

RRM domain and a MYND domain followed by two or three eTudor

domains, respectively. Notably, the expression of two Vreteno

isoforms seems to be restricted to silkworm. However, in addition

to Vreteno, flies also express a Vreteno-like protein in their ovaries,

which is called Veneno (Brosh et al, 2022). DmVeneno has a very

similar domain architecture compared to DmVreteno but is lacking

an N-terminal RRM and, as such, mimics the domain organization

of the BmVreteno-S isoform (Nishida et al, 2020; Brosh et al, 2022).

Vreteno and Veneno orthologs can also be found in the mosquito

species Aedes aegypti. Here, Veneno acts as an adaptor protein that

brings the ping-pong partners Piwi5 and Ago3 in close proximity for

viral piRNA biogenesis (Joosten et al, 2019). It would be interesting

to study whether Veneno and Vreteno can dimerize and if they co-

localize within the nuage of flies and mosquitoes. The mouse and

fish Vreteno homologs (Tdrd1) also lack an RRM domain but con-

tain four eTudor domains instead, raising the question how target

RNA is provided within these complexes to facilitate de novo piRISC

assembly. Multivalent interactions within the nuage that are (in

part) established by Tudor domains may play an important

role here.

The above examples illustrate that many nuage-residing proteins

contain multiple eTudor domains, which contribute to the assembly

of this phase-separated structure through the formation of multiva-

lent interactions (Chen et al, 2011). Importantly, the depletion of a

single nuage component can affect nuage integrity and concurs with

a significant reduction in piRNA levels. Interestingly, however, in
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C. elegans most eTudor-domain-containing proteins that reside

in germ granules only harbor one eTudor domain. So how can a sin-

gle eTudor domain establish a binding platform to recruit multiple

proteins? In this study we reveal that a single eTudor domain (AF-

eTD1) of BmVreteno can do so by establishing dual binding inter-

faces. The aromatic cage facilitates the binding of piRNA-loaded,

methylated BmAgo3, whereas the hydrophobic pocket allows for

binding of BmGtsf1L. The BmGtsf1L C-terminal residues (W99,

D100) that are indispensable for binding to the BmVreteno hydropho-

bic pocket are broadly conserved. This indicates that Gtsf proteins

might have a preserved mode of binding, which corresponds to a

novel type of domain-linear motif interaction. However, more struc-

tural studies are needed to understand to which extent the hydropho-

bic pocket is conserved among other eTudor domains. Interestingly,

we recently uncovered another, novel binding interface on an eTudor

domain of the C. elegans protein TOFU-6 (Podvalnaya et al, 2023).

This implicates that eTudor domains are much more versatile in

establishing multivalent interactions than previously anticipated.

In this study, we developed a successful strategy based on Alpha-

Fold for the prediction of protein interaction interfaces involving lin-

ear motifs. We note that interface predictions by AlphaFold always

return the two protein fragments in contact with each other, making

it most of the time very difficult to distinguish good from bad struc-

tural models simply by visual inspection. Confidence in reported

structural models can be gained from metrics such as the model

confidence that is computed by AlphaFold and, as we showed, the

recurrent observation of residues predicted in contact with each

other when alternating the length of protein fragments submitted for

interface prediction. Our work also suggests that interface predic-

tions with AlphaFold using full-length proteins might be unsuccess-

ful but more systematic studies are needed to confirm this. Our

results further indicate that AlphaFold is able to extrapolate from

the training set of protein structures within the PDB to accurately

predict protein interaction interfaces it has never seen before.

Physics-based models such as molecular dynamics simulations as

we employed here also offer a route to investigate and critically

assess the importance of binding interfaces predicted by AlphaFold

(preprint: Zhang et al, 2023).

A recent study from Arif et al (2022) revealed that Gtsf proteins

contribute to the piRNA-guided endonuclease activity of PIWI pro-

teins in vitro. The authors proposed a model in which the binding of

Gtsf would induce a conformational change in the piRISC-PIWI com-

plex upon pairing with its RNA target. In addition, while our manu-

script was in preparation, another paper reported that BmGtsf1L

associates with BmAgo3 and modestly enhances its slicing activity,

whereas BmGtsf1 specifically increases Siwi endonuclease activity

(Izumi et al, 2022). Thus, the stimulation of catalytic activity of

PIWI proteins seems to be a conserved function of Gtsf proteins. We

note, however, that a molar excess of Gtsf was required to stimulate

PIWI slicing activity (Arif et al, 2022) and the stimulatory effect of

BmGtsf1L on BmAgo3 was relatively small (Izumi et al, 2022). We

hypothesize that the catalytic effects of Gtsf proteins on PIWI pro-

teins are generally enhanced by eTudor domains that interact with

both the loaded PIWI protein and a Gtsf protein, thereby effectively

restricting PIWI cleavage to those environments that contain the

required eTudor domain. Indeed, in flies and mouse, conserved aro-

matic residues within the C-terminus of Gtsf1, that we show to inter-

act with an eTudor domain, contribute to PIWI binding (Dönertas

et al, 2013; Ohtani et al, 2013; Yoshimura et al, 2018) and PIWI tar-

get cleavage kinetics (Arif et al, 2022). It is possible that these

reported interactions are in fact mediated via, or at least stimulated

by eTudor domains. To firmly test our hypothesis, piRISC kinetics

will need to be studied in settings that recapitulate the interactions

between PIWI, Gtsf and eTudor domains, using recombinant pro-

teins (Dönertas et al, 2013; Ohtani et al, 2013; Yoshimura

et al, 2018; Arif et al, 2022).

To conclude, our studies start to address the question of why

PIWI proteins evolved the requirement of a co-factor for target

cleavage. Given that other Argonaute proteins can efficiently cleave

target RNA without such co-factors, it seems reasonable to pose that

the Gtsf dependence of PIWI proteins serves a purpose. We propose

that Gtsf proteins are required to dictate where and possibly when

target RNAs are cleaved by PIWI proteins to allow for piRNA ampli-

fication. Interestingly, in flies and mouse Gtsf proteins also contrib-

ute to PIWI-induced transcriptional gene silencing. However, the

exact role of Gtsf1 in this process, which does not involve target

RNA cleavage, still remains elusive (De Fazio et al, 2011; Dönertas

et al, 2013; Ohtani et al, 2013; Yoshimura et al, 2018). Perhaps Gtsf

proteins restrict conformational changes of PIWI proteins upon tar-

get recognition to loci of strong homology, preventing the establish-

ment of transcriptional silencing at erroneous loci. Further studies

will be required to test these ideas.

Materials and Methods

BmN4 cell culture and transfection

BmN4 cells were cultured at 27°C in IPL-41 insect medium (Gibco)

supplemented with 10% FBS (Gibco) and 0.5% Pen-Strep (Gibco).

Twenty-four hours prior to transfection, ~4 × 106 cells were seeded

in a 10-cm dish (using one 10-cm dish for each condition). Cells

were transfected with plasmid DNA using X-tremeGene HP

(Roche) transfection reagent, according to the manufacturer’s

instructions. Seventy-two hours post transfection cells were

harvested, washed once in 5 ml ice-cold PBS and once more in

1 ml ice-cold PBS. Subsequently, cells were pelleted by centrifuga-

tion for 5 min at 500 g at 4°C and frozen at �80°C. The BmN4 cell

line was obtained from R. Pillai. BmN4 cells were obtained from

T. Kusakabe. Further details are available online (https://www.

cellosaurus.org/CVCL_Z634). It was not authenticated and was not

tested for mycoplasma.

RNAi in BmN4 cells

For preparation of dsRNA, template DNAs were prepared by PCR

using primers that contained flanking T7 promoter sequences.

Primers for preparation of dsRNA can be found in Supplementary

Materials (Dataset EV3). dsRNA was generated by in vitro transcrip-

tion using the HiScribe T7 kit (NEB), according to the manufac-

turer’s instructions. Transcribed RNA was purified by phenol/

chloroform extraction, precipitated with ethanol, and annealed in

water. For dsRNA-mediated gene knockdown, ~2 × 106 BmN4 cells

were transfected with 10 lg of dsRNA using X-tremeGene HP.

Seventy-two hours after transfection, cells were again transfected

with dsRNA and the dsRNA-treatment was repeatedly performed
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every 3 days for at least three times for BmGtsf1L depletion and four

times for BmVreteno or BmAgo3 knockdown.

Generation of stable cell lines

For the generation of 3xFLAG-eGFP, 3xFLAG-BmAgo3, and

3xFLAG-Siwi stable cell lines, ~4 × 106 BmN4 cells were seeded in a

10-cm dish. Cells were transfected with 10 lg of plasmid DNA

(Dataset EV3) and cultured under Puromycin (Gibco) selection

(5 lg/ml) for at least 4 additional weeks. Stable integration of plas-

mid DNA was verified by Western blot. The HA-BmGtsf1L-eGFP sta-

ble cell line was generated in a similar manner. All stable cell lines

are polyclonal.

Plasmid construction

For expression of plasmids in BmN4 cells, all genes were PCR ampli-

fied using BmN4 cDNA and then cloned into the pBEMBL vector

(kind git of Ramesh Pillai), which harbors an OpIE2 promoter and

an OpIE2 polyA tail (Xiol et al, 2012). The plasmids that were used

to generate stable cell lines additionally contain a puromycin cas-

sette, where the BmA3 promoter drives the expression of the

puromycin-N-acetyltransferase (pac) gene, followed by the OpIE2

polyA sequence.

For recombinant protein expression in E. coli, coding

sequences were cloned into the pET28a(plus) vector that contains

an N-terminal (HIS)6-tag or into the pGEX-6p vector for GST-tagged

protein expression (kind gift from H. Ullrich lab). All primers,

vector backbones, and detailed cloning strategies can be found in

Dataset EV3.

Immunoprecipitations

Directly before use, BmN4 cell pellets were thawed on ice and lysed

in 1 ml IP-150 Lysis Buffer (30 mM Hepes [pH7.4], 150 mM KOAc,

2 mM Mg(OAc)2, and 0.1% Igepal freshly supplemented with

EDTA-free protease inhibitor cocktail and 5 mM DTT) for 1 h by

end-over-end rotation at 4°C. Cells were further lysed by passing the

lysate 10 times through a 20-gauge syringe needle followed by five

passes through a 30-gauge needle. Cell debris was pelleted by centri-

fugation at 17,000 g for 20 min at 4°C. Supernatant fractions were

collected and subjected to immunoprecipitations. In case of RNase

treatment, 20 ll of RNaseA/T1 (Thermo Scientific, #EN0551) were

added to 1 ml of IP-150 lysis buffer prior to lysis (according to the

manufacturer’s instructions).

Immunoprecipitations were performed using PierceTM Anti-HA

Magnetic Beads (30 ll bead suspension per reaction, Thermo

Fisher, #88836), Anti-FLAG M2 Magnetic Beads (20 ll bead suspen-

sion per reaction, Sigma, #M8823) or GFP/RFP-Trap Magnetic Aga-

rose beads (15 ll bead suspension per reaction, Chromotek). When

using endogenous antibodies, 3 lg of affinity-purified antibodies

were coupled to 15 ll of pre-equilibrated Protein G Dynabeads

(30 ll bead suspension, Invitrogen) for one reaction. Normal rabbit

IgG (Cell Signaling, #2729) or mouse non-immune serum (n.i.)

served as controls. Beads and antibodies were incubated for 1 h at

4°C by end-over-end rotation in 500 ll of IP-150 Lysis Buffer. Bead-

conjugated antibodies were then washed three times in 1 ml of IP-

150 Lysis Buffer. Equilibrated beads were subsequently incubated

with the BmN4 cell lysate and incubated overnight by end-over-end

rotation at 4°C. The next day, immunoprecipitated complexes were

washed five times using 1 ml of IP-150 Lysis Buffer and were subse-

quently used for immunodetection using Western Blot analysis.

Western blot

Samples were prepared in 1× Novex NuPage LDS sample buffer

(Invitrogen) supplemented with 100 mM DTT and were heated at

95°C for 10 min prior to resolving on a 4–12% Bis-Tris NuPage

NOVEX gradient gel (Invitrogen) in 1× Novex NuPAGE MOPS SDS

Running Buffer (Invitrogen) at 140 V. For the detection of endoge-

nous BmGtsf1L, proteins were resolved on a 15% Bis-Tris polyacryl-

amide gel. Separated proteins were transferred to a nitrocellulose

membrane (Amersham) overnight at 20 V using 1× NuPAGE Trans-

fer Buffer (Invitrogen) supplemented with 10% methanol. The next

day, the membrane was blocked for 1 h in 1× PBS-Tween (0.05%)

supplemented with 5% skim milk and incubated for 1 h with pri-

mary antibodies diluted in blocking buffer (1:1,000 anti-Flag;

1:1,000 anti-GFP; 1:1,000 anti-HA; 1:1,000 anti-actin, 1:2,500 anti-

tubulin; 1:1,000 for all endogenous antibodies). Subsequently, the

membrane was washed three times for 5 min in PBS-Tween, prior

to 1 h incubation with the secondary antibody, using 1:10,000

IRDye 800CW Goat anti-mouse and IRDye 680LT Donkey anti-rabbit

IgG (LI-COR) and imaged on an Odyssey CLx imaging system (LI-

COR). Secondary antibodies used for chemiluminescence-based

detection were 1:1,000 rat monoclonal anti-mouse Ig HRP (Clone

eB144, Mouse TrueBlot ULTRA, Rockland #18-8817-30), 1:10,000

goat anti-rabbit IgG HRP-linked antibody (Cell Signaling Technol-

ogy, #7074), and 1:10,000 horse anti-mouse IgG, HRP (Cell Signal-

ing Technology, #7076). Chemiluminescence signals were detected

using ECL select Western Blotting detection reagent (Cytvia,

#GERPN2235) and imaged on a Fusion FX imaging system (Vilber).

Recombinant protein purification

GST alone as well as GST-3C-BmVreteno variants and fragments

were expressed from pGEX6p vectors. His6-thrombin-BmGtsf1L var-

iants were expressed in pET vectors. Transformed plasmids were

expressed in E. coli (BL21 DE3 codon+, Agilent) overnight at 18°C

using 0.5 mM IPTG in LB media. Cells were lysed in ice-cold lysis

buffer (30 mM Tris-Cl pH 8.0, 500 mM NaCl, 0.5 mM TCEP, 5%

glycerol, an EDTA-free complete protease inhibitor cocktail, and an

additional 10 mM imidazole pH 8.0 for BmGtsf1L purifications),

using a CF1 continuous flow cell disruptor from constant systems at

29 kpsi and cleared by centrifugation at 40,000 g for 30 min at 4°C.

Recombinant proteins were affinity-purified from cleared lysates

using a NGC Quest Plus FPLC system (Biorad) and GSTrap HP

(GST-tagged BmVreteno and GST), or HisTrap HP (His6-tagged

BmGtsf1L) 5 ml columns (Cytiva), according to the manufacturers

protocols. Eluted proteins were concentrated using Amicon spin

concentrators (Merck Millipore) and subjected to gel filtration

(Superdex 75 and 200 16/60 pg, Cytiva, in 25 mM Na-Hepes,

300 mM NaCl, 10% Glycerol, pH 7.4).

To obtain an untagged BmVreteno (181-386) antigen fragment

for immunization, the GST-tagged fragment from the affinity step

was digested with 3C protease (1:100 w/w) overnight at 4°C during

dialysis (30 mM Tris-Cl pH 8.0, 500 mM NaCl, 1 mM DTT, 5%
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glycerol). The digested protein was re-applied to a GSTrap HP 5 ml

column to absorb the free GST. The flow through from this step,

containing the untagged BmVreteno (181-386) antigen was concen-

trated using Amicon spin concentrators and subjected to gel filtra-

tion (Superdex 75 16/60 pg in PBS). Another round of free GST

absorption via GSTrap, followed by gel filtration (Superdex 75 16/

60 pg in PBS) was performed to remove residual free GST from the

untagged BmVreteno (181-386) antigen.

For all recombinant proteins, peak fractions after the final gel fil-

tration were pooled and protein concentration was determined by

using absorbance spectroscopy and the respective extinction coeffi-

cient at 280 nm, before aliquots were flash frozen in liquid nitrogen

and stored at �80°C.

GSH pull-downs

Glutathione Sepharose 4B beads (Cityva) were equilibrated (20 ll
beads suspension for each reaction) by three washes in PBS

containing 0.1% Triton-X100 (PBS-T), and the resin was pelleted by

mild centrifugation at 1,000 g for 2 min at 4°C. Next, 5 lM of GST-

BmVreteno was added to the beads together with 10 lM of His-

BmGtsf1L, and samples were incubated for 2 h by end-over-end

rotation at 4°C. Beads were pelleted by centrifugation at 1,000 g for

2 min at 4°C and washed three times with PBS-T. Finally, pelleted

beads were resuspended in 25 ll 1× Novex NuPage LDS sample

buffer (Invitrogen) supplemented with 100 mM DTT and were

heated at 95°C for 5 min prior to resolving (40% of the sample) on

a 4–12% Bis-Tris NuPage NOVEX gradient gel (Invitrogen) in 1×

Novex NuPAGE MES SDS Running Buffer (Invitrogen) at 180 V.

Proteins on the gel were visualized by staining with InstantBlue

Coomassie protein stain (Abcam).

Antibodies

Monoclonal antibodies for detection and/or immunoprecipitation of

endogenous Siwi, BmAgo3, BmSpn-E, and BmQin were a kind gift

from Mikiko Siomi (Nishida et al, 2015). Rabbit polyclonal anti-

bodies for BmAgo3 detection were provided by Ramesh Pillai (Xiol

et al, 2012).

The monoclonal anti-BmGtsf1L antibody was generated in the

Siomi lab by immunizing mice with purified GST-tagged full-length

BmGtsf1L. Fusing myeloma generated hybridomas as described pre-

viously (Nishida et al, 2015).

The rabbit polyclonal anti-BmVreteno antibody was generated by

immunizing rabbits with the affinity-purified BmVreteno (186–381)

antigen (Eurogentec). Two milliliters of sulfolink resin (Thermo

Fisher Scientific) were covalently conjugated with 3 mg of

GST-tagged BmVreteno (181-386) according to the manufacturer’s

protocol. Ten milliliters of final bleed of each rabbit serum were

incubated with 1 ml of GST-BmVreteno (181-386)-conjugated sulfo-

link resin at 4°C overnight while rotating. After incubation, the resin

was washed with PBS containing 0.1% Triton X-100, followed by a

wash with PBS in a gravity-flow poly-prep column (Biorad). Elution

of polyclonal antibody species was performed using low pH

(100 mM Glycine-Cl, 150 mM NaCl, pH 2.3), followed by immediate

neutralization of elution fractions with Tris-Cl pH 8.0. The eluted

antibodies were re-buffered using a PD-10 column (PBS, 10% glyc-

erol, 0.05% NaN3) and concentrated to 1 mg/ml using Amicon spin

concentrators before flash freezing in liquid nitrogen and storage at

�80°C.

Monoclonal anti-HA was produced in house (clone 12CA5, Core

Facility Protein Production). Rabbit polyclonal Anti-HA (Sigma-

Aldrich, #SAB4300603), mouse monoclonal anti-Flag M2 (Sigma-

Aldrich, #F3165), rabbit polyclonal anti-FLAG (Milipore, #F7425),

rabbit polyclonal anti-actin (Sigma-Aldrich, #A5060), mouse mono-

clonal anti-alpha Tubulin (clone B-5-1-2, Sigma-Aldrich, #T6074),

rabbit polyclonal anti-GFP (Origene, #TP401), and mouse monoclo-

nal anti-GFP (clone B-2, Santa Cruz, #sc-9996) are all commercially

available.

Sequence alignment

Clustal W (Larkin et al, 2007) and Jalview software (Waterhouse

et al, 2009) was used for protein alignment and visualization.

Microscopy

For co-localization studies, approximately 2 × 104 cells were seeded

per well in an 8-well l-slide (Ibidi, #80826). The next day, cells

were transfected with 100 ng of each corresponding plasmid using

X-tremeGene HP. Twenty-four hours post transfection, live cells

were fixed and imaged. Confocal imaging (Figs 1K and EV2A) was

performed using a STELLARIS 8 FALCON microscope (Leica Micro-

systems, Mannheim, Germany) equipped with a White Light Laser

(WLL). Images (512 × 512 pixel format, pixel size 180 nm) were

acquired with a 63×/1.40NA oil immersion objective, using: Chan-

nel 0: 488 nm excitation line and the emission band ranging from

500 to 540 nm using a detector HyD X2; Channel 1: 548 nm excita-

tion line and the emission band ranging from 560 to 590 nm using a

detector HyD X4; Channel 2: 600 nm excitation line and the emis-

sion band ranging from 620 to 750 nm using a detector HyD R5. A

sequential scan was performed line by line, and accumulation mode

was set to 300 to have enough photon counts for fluorescence life-

time imagining.

The Leica TCS SP5 with a 60× oil immersion objective lens was

used for images in Figs 3D and E, and EV4D.

All images were processed using FIJI (Schindelin et al, 2012) and

Adobe Illustrator software.

RNA isolation and small RNA sequencing

Per condition, one well of a 6-well plate was seeded with 6 × 105

BmN4 cells 24 h prior to transfection with either HA-eGFP, HA-

BmAgo3, HA-Siwi, or HA-BmGtsf1L using X-tremeGene HP transfec-

tion reagent. Seventy-two hours post transfection, cells were

harvested, and an anti-HA immunoprecipitation was performed as

described above. The experiment was performed in duplicate. Anti-

BmAgo3 and anti-Siwi IPs were performed in IP-500 (30 mM Hepes

[pH 7.4], 500 mM KOAc, 2 mM Mg(OAc)2, and 0.1% Igepal, freshly

supplemented with an EDTA-free protease inhibitor cocktail and

5 mM DTT). Immunopurified RNAs were extracted from beads by

adding 1 ml of Trizol LS (Invitrogen #10296028), according to the

manufacturer’s instructions. The lysate was incubated at RT for

5 min to allow complete dissociation of the nucleoprotein complex.

Next, 200 ll of chloroform was added to 1 ml of lysate, followed by

harsh mixing and centrifugation at 12,000 g for 15 min at 4°C.
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Another round of chloroform extraction was performed, and the

aqueous phase was transferred to a fresh tube to which 1 volume

(500 ll) of ice-cold isopropanol was added for RNA precipitation.

RNA pellets were washed twice in 1 ml of 70% ice-cold ethanol and

centrifuged at 7,500 g for 10 min at 4°C. The RNA pellet was air-

dried and dissolved in nuclease-free water.

NGS library prep was performed with NEXTflex Small RNA-Seq

Kit V3 following Step A to Step G of Bioo Scientific’s standard proto-

col (V16.06) using the NEXTFlex 30 SR Adaptor and 50 SR Adaptor

(50 rApp/NNNNTGGAATTCTCGGGTGCCAAGG/3ddC/ and 50

GUUCAGAGUUCUACAGUCCGACGAUCNNNN, respectively).

Libraries were prepared with a starting amount of 7 ng and ampli-

fied in 25 PCR cycles.

Amplified libraries were purified by running an 8% TBE gel and

size-selected for 15–35 nt.

Libraries were profiled on a high-sensitivity DNA chip on a 2100

Bioanalyzer (Agilent Technologies) and quantified using the Qubit

dsDNA HS Assay Kit, in a Qubit 2.0 Fluorometer (Life Technologies).

All samples were pooled in an equimolar ratio and sequenced on

1 Highoutput NextSeq 500/550 Flowcell, SR for 1× 84 cycles plus

7 cycles for the index read.

Bioinformatic analyses

The quality of raw sequenced reads was accessed with FastQC, Illu-

mina adapters were then removed with cutadapt (-O 5 -m 28 -M

45), reads with low-quality calls were filtered out with fastq qual-

ity_filter (-q 20 -p 100 -Q 33). Using information from unique mole-

cule identifiers (UMIs) added during library preparation, reads with

the same sequence (including UMIs) were collapsed to remove puta-

tive PCR duplicates using a custom script. Prior to mapping, UMIs

were trimmed (seqtk trimfq -b 4 -e 4) and library quality re-assessed

with FastQC. Reads were aligned against the silkworm (Bombyx

mori) genome assembly obtained from lepbase GCA_000151625.1

with bowtie v1.1.1 (-l 40 -n 2 -e 70 -m 1 –tryhard –best –strata –

chunkmbs 256 –phred33-quals). The locations of repeat elements

were also downloaded from lepbase, repeat masker scaffolds

(ASM15162v1), converted to genomic location with rmsk2bed.

These locations were used to select reads mapping to repeats by

intersecting with bedtools intersect (-wa -wb -bed -f 1.0 -

nonamecheck) with either the flags -s or -S to determine which

small RNAs map sense or antisense, respectively, to the annotated

repeats. After filtering, length profiles were obtained by summariz-

ing the length of these reads. Sense/antisense bias was determined

by calculating the ratio of reads mapping in the same or the opposite

strand for each annotated repeat - repeats with 10 or fewer mapped

reads were excluded. Nucleotide bias of piRNAs was determined by

summarizing the number of times a base is present in any given

piRNA (read sequence) position.

Mass-spectrometry

About 4 × 106 BmN4 cells were transfected with HA-tagged

BmGtsf1L or with HA-eGFP, which served as a control to detect

nonspecific binders. Cells were harvested 72 h post transfection and

an anti-HA immunoprecipitation was performed (as described

above) on 4 mg total protein lysate. The experiment was

performed using two technical duplicates to perform quantitative

mass-spectrometry based detection of unique peptides using stable

dimethyl isotope labeling (Hsu et al, 2003).

Protein in-gel digestion
Proteins were separated briefly in a 10% NuPAGE Bis-Tris gel,

stained with Coomassie blue, and cut into small gel cubes, followed

by destaining in 50% ethanol/25 mM ammonium bicarbonate.

Afterwards, proteins were reduced in 10 mM DTT at 56°C and alky-

lated by 50 mM iodoacetamide in the dark at room temperature.

Enzymatic digestion of proteins was performed using trypsin (1 lg
per sample) in 50 mM TEAB (triethylammonium bicarbonate) over-

night at 37°C. Following peptide extraction sequentially using 30

and 100% acetonitrile, the sample volume was reduced in a centrif-

ugal evaporator to remove residual acetonitrile. The sample volume

was filled up to 100 ll by adding 100 mM TEAB.

Dimethyl-labeling
Dimethyl-labeling was performed as previously reported (Boersema

et al, 2009). Briefly, the digested samples were labeled as “Light” or

“Heavy” by adding formaldehyde or formaldehyde-d2, respectively.

This was followed by addition of NaBH3CN. Thereafter, the samples

were incubated at room temperature with orbital shaking for 1 h.

The labeling reaction was quenched by adding ammonia solution.

Next, peptides were acidified with formic acid to reach pH ~3. The

paired-labeled samples were then combined. The resultant peptide

solution was purified by solid-phase extraction in C18 StageTips

(Rappsilber et al, 2003).

Liquid chromatography tandem mass spectrometry
Peptides were separated in an in-house packed 30-cm analytical col-

umn (inner diameter: 75 lm; ReproSil-Pur 120 C18-AQ 1.9-lm
beads, Dr. Maisch GmbH; heated at 40°C) by online reverse phase

chromatography through a 105-min nonlinear gradient of 1.6–32%

acetonitrile with 0.1% formic acid at a nanoflow rate of 225 nl/min.

The eluted peptides were sprayed directly by electrospray ionization

into a Q Exactive Plus Orbitrap mass spectrometer (Thermo Scien-

tific). Mass spectrometry measurement was conducted in data-

dependent acquisition mode using a top10 method with one full

scan (mass range: 300–1,650 m/z; resolution: 70,000, target value:

3 × 106, maximum injection time: 20 ms) followed by 10 fragmenta-

tion scans via higher energy collision dissociation (HCD; normalized

collision energy: 25%, resolution: 17,500, target value: 1 × 105,

maximum injection time: 120 ms, isolation window: 1.8 m/z). Pre-

cursor ions of the unassigned or +1 charge state were rejected. Addi-

tionally, precursor ions already isolated for fragmentation were

dynamically excluded for 20 s.

Mass spectrometry data processing and statistical analysis
Raw data files were processed by the MaxQuant software package

(version 1.5.2.8) (Cox & Mann, 2008) using its built-in Andromeda

search engine (Cox et al, 2011) and default settings. Spectral data

were searched against a target-decoy database consisting of the for-

ward and reverse sequences of the bait proteins (HA-eGFP and HA-

BmGtsf1L), Bombyx mori proteomes (UniProt 18,382 entries; NCBI

29,282 entries) downloaded on 8th January 2018, a collection of self-

cloned Bombyx mori genes (28 entries), and a list of 245 common

contaminants. Corresponding labels were selected for “Light”

(DimethLys0 and DimethNter0) and “Heavy” (DimethLys4 and
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DimethNter4) labels. A maximum of 3 labeled amino acids per pep-

tide were considered. Trypsin/P specificity was assigned. Carbami-

domethylation of cysteine was set as a fixed modification. Oxidation

of methionine and acetylation of the protein N-terminus were cho-

sen as variable modifications. A maximum of 2 missed cleavages

were tolerated. The minimum peptide length was set to be 7 amino

acids. The false discovery rate (FDR) was set to 1% for both peptide

and protein identifications.

For protein quantification, minimum ratio count of two was

required. Both the unique and razor peptides were used for quantifi-

cation. The “re-quantify” function was switched on. The “advanced

ratio estimation” option was also chosen. Downstream data analysis

was performed in R statistical environment. Reverse hits, potential

contaminants and protein groups “only identified by site” were fil-

tered out. Protein groups with at least two peptides including at

least one unique peptide were retained.

AlphaFold predictions

We used the following sequences for AlphaFold predictions:

BmGtsf1L:

MDDPFVSCPYNPIHRVPRSRLQRHIVKCEWINPTMIACPYNATHRY

TQED

MKFHVLNCPSKTSIFPIEKPPKTVASITTPKIILQKEYLPETDPNHEI

WDD

BmVreteno:

MSNHSRPQRRREWDPMRDDFNEHTYDVQYADDNAGEQVQLDHT

KLYIINI

PRGLSEDGIRAAFSKHGKVLSARLSKNPNKRFAIVQFETASEAKLA

MMKM

NGSEPLNLKISIAHKTIRKTQHDNKDRNYSTSRNGHCSRDEASSISS

KGW

NMRNLDDVMNNDEIDEIDDMIHEDHDDNLDLELDMLTLKQLKIK

EEQLMC

KRRLLLRHAEKRQVAPHSSAGRSVLPDGRIVVRNNANETDSAEVE

PSFAG

AGSESLKTPGLERNASRQCVKCGAPADWYCSRCAITPYCSQTCQT

RDWTE

RHKSVCHYLAPLKTAGGFEAEATSSKSVSNSTPMRSSHSPPTKQQR

GEAD

ETDNKAKNIQEPRQNYHRPSNSGPNKNIPGKNQDPRRPATSREAIE

EETE

ERGARNPKPAEATKDKHHPMNPVTFQRRQLKSNPVVDAQPAPREQ

QQPAA

TRAPEASPTEQRESTRRTLVPDRCLIDSLSEGDVVLVSVELKASECC

TKQ

GGYVCLSMHEKYESDYQKLCEDYVLDCEADSDEYKIITGDTFSYLSP

EDG

GWYRARALNTTMAALLDGSKVVYLRMNDKVKKLPAKYSGIPEFC

CVLNAD

VEVGLNLKCSLLSKTPNGFKVTLENVETEANVGEGEITRWIPEVDY

PPPV

KNVPVQRSVEIPEVPRPEIKNKSRVILVDATDVQRVFVRPADTRSQ

KAFD

NILQDVLLYGTTAEPLKEPPSKGQTVVSKYTDNLHYRALCKRTSVN

KNKY

LLEYIEYGNIEITQLNRLYPCPEHLSVTSLASLTSHVQLDTTVGELT

PRA

LEYIETIKEEEMILTLSSGGDTAQSGAALVNLTLVKNNDNVNKRIEE

LCT

PEWKKLELKGVDVIETERLMYGTALDYIELPAAPFDLQVLDEVGLD

SGNI

SGCPTNSDYVRYVMTKLPARMREYCESEFGRQPYLPAAEELCIAQ

LPPSS

EWHRAVVLEQILGPGGGTARVLFVDHGNVAEVPVSSLRKMLAEFV

TDLPA

VACQIVIEDFPKQATAEMLAKARRFMSGPDKARAAQLPVRGCDKQ

DVGIY

AIRVPELLEAMTE

We ran AlphaFold v2.2 (Jumper et al, 2021) for all monomeric

protein predictions and AlphaFold-Multimer v2.2 (preprint: Evans

et al, 2022) for all protein complex predictions with the following

parameters:

--max_template_date=2020-05-14

--db_preset=full_dbs

--use_gpu_relax=False

For every AlphaFold run, 5 models were predicted with one seed

per model by setting the following parameter:

--num_multimer_predictions_per_model=1

Out of the five models generated, we used only the model

ranked_0 for further processing and interpretation. We defined two

residues, one from each protein fragment, to be in contact with each

other in predicted AlphaFold models if at least one heavy atom from

one residue is less than 5 �A away from any heavy atom from the

other residue. Distance measurements between heavy atoms were

obtained using the function cmd.distance from PyMOL. The model

confidence was extracted from the ranking_debug json file. The PAE

matrix was extracted from the pickle file of the model. We used the

software PyMOL (TM) Molecular Graphics System, Version 2.5.0.

Copyright (c) Schrodinger, LLC., for the visualization and superim-

position of AlphaFold models. The superimposition of the structural

model involving AF-eTD1 and the last 5 residues of BmGtsf1L with

the solved structure 3NTH was done using the cealign command,

where AF-eTD1 was set as the mobile entity and the chain A of

3NTH as the target entity for superimposition. For the superimposi-

tion of AlphaFold-predicted BmGtsf1L with the solved structure

6X46, we extracted the two Zn fingers from AlphaFold-predicted

BmGtsf1L (residue 8–34 and 35–64 for the two Zn fingers, respec-

tively) and aligned them to the two Zn fingers from chain A of 6X46

(residue 14–41 and 48–75 for the two Zn fingers, respectively). The

align command was used for the superimposition where AlphaFold-

predicted BmGtsf1L Zn fingers were set as the mobile entities and

the Zn fingers from the first ensemble state of 6X46 as the target

entities.

IUPred predictions were obtained by submitting full-length

sequences to the webserver of IUPred2A (M�esz�aros et al, 2018) and

selecting the option IUPred2 long disorder (default) for disorder pro-

pensity predictions.

We used the Python libraries, pandas (McKinney, 2010) for data

analysis, and Matplotlib (Hunter, 2007) and seaborn (Waskom,

2021) for data visualization.

Molecular dynamics simulations

We ran atomistic molecular dynamics simulations using the Alpha-

Fold structural model involving AF-eTD1 of BmVreteno and the 10
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last residues of BmGtsf1L. We used the Amber99SB*-ILDN-q protein

force field (Hornak et al, 2006; Best & Hummer, 2009; Lindorff-

Larsen et al, 2010; Best et al, 2012) and the TIP4P-D water model

(Piana et al, 2015). Molecular dynamics simulations were run in

GROMACS 2021 (www.gromacs.org) (Abraham et al, 2015).

The protein-peptide complex was simulated in a rhombic dodeca-

hedron, with a minimum distance of 12 �A between protein atoms

and box edges. One hundred and fifty millimolar NaCl were added

to the solvated simulation system. The system was energy mini-

mized and equilibrated for 1 ns in using the Berendsen thermostat

and barostat at 300 K and 1 bar (Berendsen et al, 1984).

We run 10 independent simulations starting from the

equilibrated starting structure, each with a different set of initial

velocities. Each of the 10 simulations was run for 1 ls. The Bussi-

Donadio-Parinello thermostat was used to maintain a simulation

temperature of 300 K (Bussi et al, 2007). Parrinello-Rahman baro-

stat was employed to keep pressure at 1 bar (Parrinello & Rahman,

1981). Electrostatics were described by the particle mesh Ewald

method (PME). The cut-off for van der Waals interactions was 12 �A.

Simulations were analyzed with the MDAnalysis Python library

(Michaud-Agrawal et al, 2011; Gowers et al, 2016). Two residues

were deemed to be in contact if one pair of atoms was within 4.5 �A.

The contacts maps from the 10 simulation runs, which were started

from the same starting structured were averaged to produce a single

contact map. Hydrogen bonds were quantified as described by

Smith et al (2019).

Data availability

The datasets produced in this study are available in the following

databases: (i) The accession number for the smRNA-seq data gener-

ated in this study is PRJNA940809 (https://www.ncbi.nlm.nih.gov/

bioproject/PRJNA940809), (ii) Mass spectrometry proteomics data

is available at https://massive.ucsd.edu under accession ID MSV000

091404, (iii) All plasmids and reagents are available upon request.

Expanded View for this article is available online.
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Expanded View Figures

▸Figure EV1. BmGtsf1L and BmVreteno both interact with BmAgo3.

A Domain organization (top) and ClustalW alignment of GTSF proteins from different species. The alignment and conservation scores are depicted using the Jalview
software. Residues that are highlighted in blue reveal a 20% identity threshold

B Western blot detection using the mouse monoclonal anti-BmGtsf1L antibody on na€ıve BmN4 cell extracts or on BmN4 cells that were transfected with FLAG-
BmGtsf1L.

C Validation of stable integration of FLAG-Siwi, FLAG-BmAgo3, or FLAG-eGFP expression cassettes into BmN4 cells after extensive puromycin selection by Western blot
using the indicated antibodies. Anti-actin probing served as a loading control.

D Control or GFP (BmGtsf1L) immunoprecipitation on BmN4 cell extracts from FLAG-PIWI stable cells that were co-transfected with BmGtsf1L-eGFP. Western blot was
performed using the indicated antibodies, and anti-actin probing as well as Ponceau S staining served as loading controls.

E Nucleotide composition of small RNAs that were sequenced from input samples or from anti-HA immunoprecipitated samples.
F Pfam/SMART-based domain organization of the BmVreteno-Long and BmVreteno-Short isoforms, showing the RNA-recognition motif (RRM), Myeloid translocation

protein 8, Nervy and DEAF-1 (MYND) domain, and two C-terminal Tudor domains (TD).
G Western blot using the rabbit polyclonal anti-BmVreteno antibody on cell extracts from BmN4 cells that were either untransfected or transfected with HA-

BmVreteno (L)-FL. Anti-tubulin probing served as a loading control.
H Validation of anti-BmVreteno antibody specificity on cell extracts from BmN4 cells that were transfected four consecutive times with dsRNA against Luciferase (Luc)

or against BmVreteno.
I IgG or anti-BmVreteno immunoprecipitation on na€ıve BmN4 cells, followed by Western blot detection of endogenous BmVreteno and BmAgo3.
J Reciprocal IP on BmN4 cell extracts using non-immune (n.i.) serum or anti-BmAgo3 antibodies as well as endogenous BmVreteno antibodies for Western blot

detection of retrieved proteins.
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▸Figure EV2. BmAgo3 interacts with BmVreteno eTD1 via methylated arginine residues.

A Fluorescence lifetime imaging of BmN4 cells (using all channels) transfected with either eGFP-BmVreteno, BmGtsf1L- mOrange2, or mCardinal-BmAgo3. Inset shows
the zoom-in of the boxed area. Two representative images of two biological experiments are shown. Scale bars: 10 lm. Plots on the right show the normalized
intensity (gray values) for each channel of the line that has been drawn in the inset frame. Quantification data can be found in Dataset EV4.

B Multiple sequence alignments of Tudor domains expressed in BmVreteno and its orthologue in Drosophila (DmVret). In addition, eTudor11 from the Drosophila Tudor
protein as well as the eTudor domain of Drosophila Tudor-SN (p100), for which crystal structures have been resolved (PDB: 3NTH and 2WAC, respectively), were
included. Alignments were performed using Clustal Omega and processed using Jalview software. Aromatic cage residues are depicted as green boxes, and the
asparagine residue that is involved in directly binding to the methylated arginine residue (sDMA) is highlighted in yellow. Identical residues (*), conserved
substitutions (:) or substitutions by weakly similar residues (.) are indicated below the alignment.

C Anti-FLAG immunoprecipitation of FLAG-BmAgo3 variants that were transiently expressed in the HA-BmGtsf1L-eGFP stable BmN4 cell line. The transfection of
3xFLAG-mCherry served as a control. Immunoprecipitated proteins were analyzed by Western blot using the indicated antibodies, whereas Ponceau S staining served
as a loading control.
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▸Figure EV3. The BmGtsf1L C-terminus establishes an interaction with BmVreteno.

A Outlined strategy for the purification of recombinant GST-tagged BmVreteno-S, showing the profiles from the size-exclusion column (left) and the peak fractions that
were analyzed by SDS-PAGE followed by Coomassie staining (right).

B Similar to panel (A), but for GST-BmVreteno-L.
C Size-exclusion profiles of BmVreteno-S (left) and BmVreteno-L (right) to compare the shift in molecular weight before (green line) and after (blue line) 3C-mediated

cleavage of the GST tag.
D Pfam/SMART-based domain organization of the BmVreteno-Long isoform, showing the RNA-recognition motif (RRM), Myeloid translocation protein 8, Nervy and

DEAF-1 (MYND) domain, and two C-terminal Tudor domains (TD). In addition to the full-length (FL) BmVreteno, the C-and N-terminal truncation variants are
depicted and are used in panel (E) to analyze the interaction between BmGtsf1L and BmVreteno variants.

E Co-transfection of BmGtsf1L-eGFP with HA-BmVreteno truncation variants in which different domains were omitted. The transfection of HA-LacZ served as a control.
BmGtsf1L was retrieved by GFP-IP, and input and elution fractions were analyzed by SDS-PAGE, followed by Western blot using the indicated antibodies. Anti-actin
immunodetection served as a loading control.
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▸Figure EV4. The hydrophobic binding pocket is unique to BmVreteno AF-eTD1 and facilitates BmGtsf1L binding.

A Superimposition of the AlphaFold structural models of all three BmVreteno AF-eTD domains. The central inset (closed circle) shows the side view of the aromatic
cage, which is only present in AF eTD1 and indicated with a dashed circle. The top inset (closed circle) shows a top view of the novel interface, which is unique to AF
eTD1. The hydrophobic pocket is indicated with a dashed circle, and the enlarged view additionally shows the docked C-terminal motif of BmGtsf1L.

B Snapshot on the novel hydrophobic binding pocket of BmVreteno AF-eTD1 (blue) and contacts between the residues R742, S744, K749, and I762 (shown as sticks)
with BmGtsf1L C-terminal 10-AA residues (shown as yellow sticks). This snapshot displays the BmVreteno S744 residue that forms a hydrogen bond with the
backbone carbonyl of BmGtsf1L I98.

C Plots showing the distances between the atoms forming the four most important inter-chain hydrogen bonds of the side chain of BmVreteno S744 in two out of the
ten 1 ls simulation runs. The run presented in the upper panel displays the hydrogen bond between the side chain of S744 and the backbone carbonyl of BmGtsf1L
I98. The simulation presented in the bottom panel reveals that S744 is engaged in different interactions with BmGtsf1L residues I98 and D100. Overall, the
simulations reveal that some of the hydrogen bonds are transiently formed and broken.

D Single-plane confocal micrographs of BmN4 cells co-transfected with different eGFP-BmVreteno constructs (upper panel) and BmGtsf1L-mCherry (middle panel).
Yellow triangles indicate a formed granule. Scale bars: 4 lm.

E Transfection of BmN4 cells with BmGtsf1L-eGFP together with HA-BmVreteno-FL. The transfection of HA-LacZ served as a control. A GFP (BmGtsf1L)
immunoprecipitation was performed on BmN4 lysates, and input as well as elution samples were resolved by SDS-PAGE. Proteins were detected by Western blot
using the indicated antibodies, and anti-actin probing as well as Ponceau S staining served as a loading control.
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Chapter 5

Conclusions and future perspectives

5.1 Deciphering protein interaction interfaces: de-

tecting the known and charting the unknown

As many proteins interact with others to mediate their functions, the interactions
between proteins have been mapped extensively as a means to study their biological
functions. Nonetheless, without further mechanistic information on the detected PPIs,
it remains difficult to further probe their molecular functions. While significant effort
has been dedicated to developing efficient methods to detect functional motifs within
protein sequences, these methods only offer partial information on the molecular func-
tion of a PPI because potential binding domains in the interaction partner are not
considered. For an interaction-specific detection of motifs and their potential binding
domains, this thesis delved into the development of a DMI predictor that detects and
scores potential DMIs using the sequences of PPIs. The DMI predictor achieved sim-
ilar performance as iELM, another DMI detection program that is currently obsolete.
Notably, the similar performance was achieved with a considerably more simplified
workflow, therefore posing a lower risk of overfitting compared to iELM.

Owing to the folded nature of domains and the stable interactions that DDIs medi-
ate, structural information on DDIs is significantly more abundant compared to DMIs.
3did is one of the databases that makes use of this type of information to extensively
catalog DDIs. Article I investigated the quality of DDIs cataloged in 3did by manually
curating a randomly sampled subset of DDIs from 3did. The manual curation pro-
cess, albeit labor-intensive, provided us with important insights regarding features that
can aid in scoring predicted DDIs for their abilities to mediate PPIs. For instance, a
comparison between the AF-MM models of approved and non-approved DDIs revealed
that the AF-MM models of approved DDIs had a stronger tendency than non-approved
DDIs to resemble their respective solved structures. While the incorporation of this
feature to score DDIs is not feasible due to the time-consuming modelling process of
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AF-MM, the agreement between AF-MM and our evaluation was striking and fur-
ther substantiated our evaluation on the DDIs. On the other hand, perhaps not so
surprisingly, the publications accompanying the structures used by 3did to annotate
DDIs provided the most informative evidence to evaluate DDIs. While our attempt
on text mining yielded poor results, more sophisticated natural language processing
(NLP) methods are now available for further exploration. For example, zero-shot
learning approaches can be applied using large language models like Generative Pre-
trained Transformer (GPT) from OpenAI or Bidirectional Encoder Representations
from Transformers (BERT) from Google to classify publications based on whether
they discuss DDIs or not (“What’s the next Word in Large Language Models?”, 2023).
In our experience, the publications for a given DDI type either discuss the DDI type
or none at all, so classifying whether a publication talks about DDIs or not would be
sufficient to aid in scoring DDI types. Alternatively, the STRING database has an
elaborate text-mining pipeline designed to detect protein-protein associations by scan-
ning for the co-occurrence of protein names within scientific publications (Franceschini
et al., 2013; Szklarczyk et al., 2019). This text-mining pipeline can also be explored
for its potential application in detecting the co-occurrence of domain names. Regard-
less, this set of manually curated DDIs will definitely serve as a useful dataset for the
development and benchmarking of subsequent tools.

By applying the developed DMI predictor and a filtered list of DDI types to HuRI,
approximately 8% of the PPIs could be mapped with at least one interface of high-
confidence. Although Y2H-based screens primarily detect regulatory and signalling-
related PPIs that are more likely mediated by DMIs, the overwhelmingly large number
of PPIs that are not mapped with any known interfaces points to the fact that many
interface types remain uncharted, especially those involving motifs (Lambourne et al.,
2022; Rolland et al., 2014; Tompa et al., 2014). To detect these interfaces that are not
previously known, Article II and III investigated the use of AF-MM to model the inter-
action interfaces between known interacting proteins. With the finding that sequence
length is detrimental to AF-MM prediction performance, we devised the so-called frag-
mentation approach to boost AF-MM sensitivity. Albeit fruitful in some cases, using
the fragmentation approach to scan for potential interaction interfaces without prior
binding region information is too slow to be scaled up to higher throughput. One
way to circumvent this limitation is to incorporate tools that are capable of identify-
ing potential protein-binding regions into the fragmentation pipeline. An example of
such tools is PeSTo that uses a deep learning model to predict protein-binding sur-
faces on monomeric protein structures (Krapp et al., 2023). Alternatively, the DMI
detection pipeline developed in this thesis can also be modified to scan for potential
protein-binding regions. The degree of conservation of a protein region as well as
its propensity to be disordered and to undergo secondary structure transition are all
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useful indicators of the region’s capability to bind proteins. All these features can
be computed for all the amino acids in a given protein sequence, and they can be
subsequently used to score and identify putative protein-binding regions. To detect
the interfaces that are potentially formed by these putative protein-binding regions,
domains that are significantly enriched in the interaction partners can be paired with
the putative protein-binding regions for AF-MM modelling. While incorporating these
steps can narrow down likely protein-binding regions in a protein sequence to make
the fragmentation approach more efficient, another shortcoming of the approach is the
lack of specificity. In our experience, the primary source of false positives arises from
non-protein binding surfaces being modelled to bind to small peptides. Since PeSTo
also scores protein surfaces for their propensity to bind to different types of organic or
inorganic molecules, including amino acids, nucleic acids, and metal ions, integrating
these scores into the model evaluation step can help to filter out false positives. All
in all, using AF-MM to discover novel interfaces holds great potentials as it bypasses
the need for a reference list of interface types for interface searching. Nevertheless, for
its application to be scaled up to higher throughput, more work is warranted.

5.2 For a more user-friendly bioinformatic tool

Article II extensively benchmarked AF-MM across various aspects of structural mod-
elling. Among the benchmarked aspects, the length of input sequence was emphasized
as it carried important implications on the application of AF-MM on characterizing
PPI interfaces. One key result from this benchmark was that longer input sequence
led to worse prediction performance of AF-MM. In retrospect, given that many pro-
tein complexes have been solved using minimal interacting regions, such as a domain
complexed with a peptide or another domain, it is reasonable that AF-MM strug-
gles with interface prediction when sequences beyond minimal interacting regions are
used, especially the full-length sequences of multi-domain proteins. Accordingly, the
publication accompanying AF-MM also tested the accuracy of AF-MM using only
structures solved with minimal interacting regions. Nevertheless, since this informa-
tion is not explicitly stated in the publication, its clarity to non-expert users is not
always guaranteed. Similarly, in spite of AF-MM outputting various metrics to eval-
uate the models that it generates, it is not always clear what are the thresholds that
need to applied on the metrics to deem a model to be of high-confidence. To this end,
the benchmark also enabled the establishment of useful thresholds on different metrics
to discriminate between good and bad models. These thresholds are particularly valu-
able for non-expert users, as they facilitate a standard and unambiguous assessment
of the models.

An important aspect of assessing the performance of machine learning or AI mod-
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els is to use unseen data for model evaluation. While this was not addressed in our
investigation, an independent study conducted a similar benchmarking on AF-MM
using a smaller dataset of domain-motif complex structures that are previously unseen
by AF-MM during its training. Reassuringly, their findings were similar to those in
our investigation (Bret et al., 2024). Without a doubt, with their proven capability
to transform a massive amount of data into useful insights and testable hypotheses,
machine learning and AI models have been and will continue to be incorporated into
the workflow of bioinformatic tools whose purposes extend beyond PPI interface pre-
diction (Baek et al., 2024; Cheng et al., 2023; H. Zhao et al., 2024). For non-expert
users to derive the most benefit from these tools, it is imperative to consider potential
applications of the tools and benchmark them with use cases in mind.

5.3 Validating protein interaction interface using in-

teraction assay

The BRET assay has been used extensively in Article II to validate the interaction
interfaces predicted by AF-MM. To use BRET for the validation of predicted interfaces,
the proteins were first tested for their interactions in a mammalian cell line. Once the
interactions between the proteins were detected, we proceeded to design mutations
based on AF-MM models to perturb the predicted interfaces between the proteins. The
mutations were then introduced into the proteins, and their interactions were tested
again to probe the effect of the mutations on the binding of the proteins. A reduction
in binding strength or the absence of binding between the mutated protein and its
wild-type partner was thus indicative of the predicted interface being responsible, or
at least partially responsible, for the detected interaction.

Though designed with the intention of perturbing predicted interfaces, introduced
mutations can alter the localization of the proteins or affect the integrity and subse-
quently the expression of the proteins by misfolding the proteins. These possibilities
can also lead to a reduction or loss in binding, thereby confounding the results of the
study. While these possibilities are not fully addressed in Article II, future work that
incorporates microscopy imaging into the interface validation workflow can help to
elucidate the localization of mutant proteins. While the expression levels of mutant
proteins were always monitored in the study, it is important to note that misfolded
proteins are not always degraded and may remain expressed. To probe the integrity of
the mutated proteins, an elegant approach was demonstrated in the validation of the
predicted interface between PEX3 and PEX16 in Article II. In brief, PEX3 is known
to interact with PEX19 through a surface that is distal from the predicted interface
between PEX3 and PEX16. This information was leveraged to design mutations on
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the surface of PEX3 that are aimed at perturbing its interaction with PEX16 and not
PEX19. Since this surface is not involved in the interaction between PEX3 and PEX19,
mutations on this surface should not affect the interaction between PEX3 and PEX19,
unless the mutations lead to the misfolding of PEX3. Indeed, when these mutations
on PEX3 were tested against PEX16 and PEX19, it was found that they perturbed
the interaction with PEX16 and had no effect on the interaction with PEX19, indicat-
ing that the integrity of PEX3 was maintained despite the presence of the mutations.
Alternatively, the interactions between mutated proteins with protein chaperones like
HSP70 and HSP90 can also be checked as an indicator of protein misfolding induced
by mutations. Several studies have applied this approach to investigate the impact of
mutations on the conformational stability of proteins (Gracia et al., 2023; Sahni et al.,
2015).

While the BRET assay is, without a doubt, a potent quantitative interaction as-
say, its inherent sensitivity to the orientation and distance of the tags poses significant
technical hurdles for scaling up the method. Moreover, the location of the tags, either
at the N terminus or at the C terminus, can also block the interaction between the
proteins due to steric hindrance. The detection of interactions between transmem-
brane proteins is especially sensitive to these factors. To minimize these limitations,
we tested the PPIs using different configurations by fusing the tags at different termini
and selected the configuration with the highest BRET measurement for subsequent
interface validations. Besides, estimating the binding strength of a PPI using BRET
also requires saturating the donors with an increasing amount of acceptors. As the
number of BRET experiments scales with the number of mutations designed for in-
terface validation, such saturation experiments can drastically inflate the number of
BRET experiments to be performed. Taken together, the use of BRET assay to char-
acterize protein interaction interfaces can be efficient as it allows the simultaneous
monitoring of protein expression levels. Nonetheless, for it to be scaled up to a higher
throughput, the use of robotics may be necessary to handle the labor-intensive cloning
procedures and saturation experiments.

5.4 General outlook

This thesis has delved into different ways of predicting known and novel PPI interfaces
between interacting proteins. In doing so, we have gained profound insights into the
intricate interplay between different functional modules in proteins that facilitate their
interactions. Given the useful mechanistic insights that prediction tools like AF-MM
can provide, I anticipate greater inclusion of these tools in experimental workflows,
where they can generate hypotheses to guide experiments.

Another avenue worth exploring is the use of predicted protein structures to chart
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the structural space of PPI interfaces. Previous studies have suggested that PPI
interfaces are degenerate and have put forth an estimate of 10,000 unique PPI interfaces
based on available PDB structures (Aloy & Russell, 2004; Gao & Skolnick, 2010). It
would be interesting to revisit this estimate, given that highly accurate structural
models of proteins are now available thanks to AF.

Binary interaction assays like BRET have proven to be useful in validating PPI in-
terfaces. Nonetheless, many proteins are involved in multi-subunit protein complexes,
and the disruption of one interaction can have an effect on other interactions in the
complex. To obtain a holistic understanding of PPIs and their roles in biological sys-
tems, functional studies focusing on certain protein complexes or cellular pathways
will be instrumental.
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A., Wong, L. H., Zielinski, M., Sargeant, T., Schneider, R. G., Senior, A. W.,
Jumper, J., Hassabis, D., Kohli, P., & Avsec, Ž. (2023). Accurate proteome-
wide missense variant effect prediction with AlphaMissense. Science, 381 (6664),
eadg7492. https://doi.org/10.1126/science.adg7492

Chien, C. T., Bartel, P. L., Sternglanz, R., & Fields, S. (1991). The two-hybrid system:
A method to identify and clone genes for proteins that interact with a protein of
interest. Proceedings of the National Academy of Sciences, 88 (21), 9578–9582.
https://doi.org/10.1073/pnas.88.21.9578

Chothia, C., & Janin, J. (1975). Principles of protein–protein recognition. Nature,
256 (5520), 705–708. https://doi.org/10.1038/256705a0

Christian, F., Smith, E. L., & Carmody, R. J. (2016). The Regulation of NF-κB Sub-
units by Phosphorylation. Cells, 5 (1), 12. https://doi.org/10.3390/cells5010012

Clabbers, M. T. B., Holmes, S., Muusse, T. W., Vajjhala, P. R., Thygesen, S. J.,
Malde, A. K., Hunter, D. J. B., Croll, T. I., Flueckiger, L., Nanson, J. D.,
Rahaman, M. H., Aquila, A., Hunter, M. S., Liang, M., Yoon, C. H., Zhao, J.,
Zatsepin, N. A., Abbey, B., Sierecki, E., . . . Ve, T. (2021). MyD88 TIR domain
higher-order assembly interactions revealed by microcrystal electron diffraction
and serial femtosecond crystallography. Nature Communications, 12 (1), 2578.
https://doi.org/10.1038/s41467-021-22590-6

Cortese, M. S., Uversky, V. N., & Keith Dunker, A. (2008). Intrinsic disorder in scaffold
proteins: Getting more from less. Progress in Biophysics and Molecular Biology,
98 (1), 85–106. https://doi.org/10.1016/j.pbiomolbio.2008.05.007

190

https://doi.org/10.1007/978-1-59745-574-9_7
https://doi.org/10.1126/science.281.5383.1677
https://doi.org/10.1038/cddiscovery.2017.71
https://doi.org/10.1371/journal.pcbi.1004248
https://doi.org/10.1093/bioinformatics/bti721
https://doi.org/10.1093/bioinformatics/bti721
https://doi.org/10.1126/science.adg7492
https://doi.org/10.1073/pnas.88.21.9578
https://doi.org/10.1038/256705a0
https://doi.org/10.3390/cells5010012
https://doi.org/10.1038/s41467-021-22590-6
https://doi.org/10.1016/j.pbiomolbio.2008.05.007


Coulon, V., Audet, M., Homburger, V., Bockaert, J., Fagni, L., Bouvier, M., & Perroy,
J. (2008). Subcellular Imaging of Dynamic Protein Interactions by Biolumi-
nescence Resonance Energy Transfer. Biophysical Journal, 94 (3), 1001. https:
//doi.org/10.1529/biophysj.107.117275

Davey, N. E., Cowan, J. L., Shields, D. C., Gibson, T. J., Coldwell, M. J., & Edwards,
R. J. (2012). SLiMPrints: Conservation-based discovery of functional motif fin-
gerprints in intrinsically disordered protein regions. Nucleic Acids Research,
40 (21), 10628–10641. https://doi.org/10.1093/nar/gks854

Davey, N. E., Cyert, M. S., & Moses, A. M. (2015). Short linear motifs – ex nihilo
evolution of protein regulation. Cell Communication and Signaling, 13 (1), 43.
https://doi.org/10.1186/s12964-015-0120-z

Del Pozo, M. A., Kiosses, W. B., Alderson, N. B., Meller, N., Hahn, K. M., & Schwartz,
M. A. (2002). Integrins regulate GTP-Rac localized effector interactions through
dissociation of Rho-GDI. Nature Cell Biology, 4 (3), 232–239. https://doi.org/
10.1038/ncb759

Deng, M., Mehta, S., Sun, F., & Chen, T. (2002). Inferring Domain–Domain Interac-
tions From Protein–Protein Interactions. Genome Research, 12 (10), 1540–1548.
https://doi.org/10.1101/gr.153002

Di Fiore, B., Davey, N. E., Hagting, A., Izawa, D., Mansfeld, J., Gibson, T. J., &
Pines, J. (2015). The ABBA Motif Binds APC/C Activators and Is Shared
by APC/C Substrates and Regulators. Developmental Cell, 32 (3), 358–372.
https://doi.org/10.1016/j.devcel.2015.01.003

Dias, R. V. R., Pedro, R. P., Sanches, M. N., Moreira, G. C., Leite, V. B. P., Caruso,
I. P., de Melo, F. A., & de Oliveira, L. C. (2023). Unveiling Metastable En-
sembles of GRB2 and the Relevance of Interdomain Communication during
Folding. Journal of Chemical Information and Modeling, 63 (20), 6344–6353.
https://doi.org/10.1021/acs.jcim.3c00955

Disfani, F. M., Hsu, W.-L., Mizianty, M. J., Oldfield, C. J., Xue, B., Dunker, A. K.,
Uversky, V. N., & Kurgan, L. (2012). MoRFpred, a computational tool for
sequence-based prediction and characterization of short disorder-to-order tran-
sitioning binding regions in proteins. Bioinformatics, 28 (12), i75–i83. https :
//doi.org/10.1093/bioinformatics/bts209

Dosztányi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: Web server for the
prediction of intrinsically unstructured regions of proteins based on estimated
energy content. Bioinformatics (Oxford, England), 21 (16), 3433–3434. https:
//doi.org/10.1093/bioinformatics/bti541

Dosztányi, Z., Mészáros, B., & Simon, I. (2009). ANCHOR: Web server for predicting
protein binding regions in disordered proteins. Bioinformatics, 25 (20), 2745–
2746. https://doi.org/10.1093/bioinformatics/btp518

191

https://doi.org/10.1529/biophysj.107.117275
https://doi.org/10.1529/biophysj.107.117275
https://doi.org/10.1093/nar/gks854
https://doi.org/10.1186/s12964-015-0120-z
https://doi.org/10.1038/ncb759
https://doi.org/10.1038/ncb759
https://doi.org/10.1101/gr.153002
https://doi.org/10.1016/j.devcel.2015.01.003
https://doi.org/10.1021/acs.jcim.3c00955
https://doi.org/10.1093/bioinformatics/bts209
https://doi.org/10.1093/bioinformatics/bts209
https://doi.org/10.1093/bioinformatics/bti541
https://doi.org/10.1093/bioinformatics/bti541
https://doi.org/10.1093/bioinformatics/btp518


Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S.,
Oldfield, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausio, J., Nis-
sen, M. S., Reeves, R., Kang, C., Kissinger, C. R., Bailey, R. W., Griswold,
M. D., Chiu, W., Garner, E. C., & Obradovic, Z. (2001). Intrinsically dis-
ordered protein. Journal of Molecular Graphics and Modelling, 19 (1), 26–59.
https://doi.org/10.1016/S1093-3263(00)00138-8

Dyla, M., & Kjaergaard, M. (2020). Intrinsically disordered linkers control tethered
kinases via effective concentration. Proceedings of the National Academy of Sci-
ences, 117 (35), 21413–21419. https://doi.org/10.1073/pnas.2006382117

Ekman, D., Björklund, Å. K., Frey-Skött, J., & Elofsson, A. (2005). Multi-domain Pro-
teins in the Three Kingdoms of Life: Orphan Domains and Other Unassigned
Regions. Journal of Molecular Biology, 348 (1), 231–243. https://doi.org/10.
1016/j.jmb.2005.02.007

Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A.,
Bates, R., Blackwell, S., Yim, J., Ronneberger, O., Bodenstein, S., Zielinski,
M., Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, K., Jain, R.,
Clancy, E., . . . Hassabis, D. (2022, March 10). Protein complex prediction with
AlphaFold-Multimer. https://doi.org/10.1101/2021.10.04.463034

Eyckerman, S., Verhee, A., der Heyden, J. V., Lemmens, I., Ostade, X. V., Vandek-
erckhove, J., & Tavernier, J. (2001). Design and application of a cytokine-
receptor-based interaction trap. Nature Cell Biology, 3 (12), 1114–1119. https:
//doi.org/10.1038/ncb1201-1114

Fields, S., & Song, O.-k. (1989). A novel genetic system to detect protein–protein
interactions. Nature, 340 (6230), 245–246. https://doi.org/10.1038/340245a0

Finn, R. D., Miller, B. L., Clements, J., & Bateman, A. (2014). iPfam: A database of
protein family and domain interactions found in the Protein Data Bank. Nucleic
Acids Research, 42 (D1), D364–D373. https://doi.org/10.1093/nar/gkt1210

Flaugh, S. L., Kosinski-Collins, M. S., & King, J. (2005). Contributions of hydropho-
bic domain interface interactions to the folding and stability of human γD-
crystallin. Protein Science, 14 (3), 569–581. https : / / doi . org / 10 . 1110 / ps .
041111405

Flock, T., Weatheritt, R. J., Latysheva, N. S., & Babu, M. M. (2014). Controlling en-
tropy to tune the functions of intrinsically disordered regions. Current Opinion
in Structural Biology, 26, 62–72. https://doi.org/10.1016/j.sbi.2014.05.007

Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin,
J., Minguez, P., Bork, P., von Mering, C., & Jensen, L. J. (2013). STRING v9.1:
Protein-protein interaction networks, with increased coverage and integration.
Nucleic Acids Research, 41 (D1), D808–D815. https://doi.org/10.1093/nar/
gks1094

192

https://doi.org/10.1016/S1093-3263(00)00138-8
https://doi.org/10.1073/pnas.2006382117
https://doi.org/10.1016/j.jmb.2005.02.007
https://doi.org/10.1016/j.jmb.2005.02.007
https://doi.org/10.1101/2021.10.04.463034
https://doi.org/10.1038/ncb1201-1114
https://doi.org/10.1038/ncb1201-1114
https://doi.org/10.1038/340245a0
https://doi.org/10.1093/nar/gkt1210
https://doi.org/10.1110/ps.041111405
https://doi.org/10.1110/ps.041111405
https://doi.org/10.1016/j.sbi.2014.05.007
https://doi.org/10.1093/nar/gks1094
https://doi.org/10.1093/nar/gks1094


Freund, C., Kühne, R., Yang, H., Park, S., Reinherz, E. L., & Wagner, G. (2002).
Dynamic interaction of CD2 with the GYF and the SH3 domain of compart-
mentalized effector molecules. The EMBO Journal, 21 (22), 5985–5995. https:
//doi.org/10.1093/emboj/cdf602

Fuller, J. C., Burgoyne, N. J., & Jackson, R. M. (2009). Predicting druggable binding
sites at the protein–protein interface. Drug Discovery Today, 14 (3), 155–161.
https://doi.org/10.1016/j.drudis.2008.10.009

Gao, M., & Skolnick, J. (2010). Structural space of protein–protein interfaces is de-
generate, close to complete, and highly connected. Proceedings of the National
Academy of Sciences, 107 (52), 22517–22522. https://doi.org/10.1073/pnas.
1012820107

Gavin, A.-C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J.,
Rick, J. M., Michon, A.-M., Cruciat, C.-M., Remor, M., Höfert, C., Schelder,
M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D.,
. . . Superti-Furga, G. (2002). Functional organization of the yeast proteome by
systematic analysis of protein complexes. Nature, 415 (6868), 141–147. https:
//doi.org/10.1038/415141a

Gödde, N. J., D’Abaco, G. M., Paradiso, L., & Novak, U. (2006). Efficient ADAM22
surface expression is mediated by phosphorylation-dependent interaction with
14-3-3 protein family members. Journal of Cell Science, 119, 3296–3305. https:
//doi.org/10.1242/jcs.03065

Gostissa, M., Hengstermann, A., Fogal, V., Sandy, P., Schwarz, S. E., Scheffner, M.,
& Del Sal, G. (1999). Activation of p53 by conjugation to the ubiquitin-like
protein SUMO-1. The EMBO journal, 18 (22), 6462–6471. https://doi.org/10.
1093/emboj/18.22.6462

Gough, J., Karplus, K., Hughey, R., & Chothia, C. (2001). Assignment of homology to
genome sequences using a library of hidden Markov models that represent all
proteins of known structure11Edited by G. Von Heijne. Journal of Molecular
Biology, 313 (4), 903–919. https://doi.org/10.1006/jmbi.2001.5080

Gracia, B., Montes, P., Gutierrez, A. M., Arun, B., & Karras, G. I. (2023, September
15). Protein-Folding Chaperones Predict Structure-Function Relationships and
Cancer Risk in BRCA1 Mutation Carriers. https://doi.org/10.1101/2023.09.
14.557795

Gratten, J., & Visscher, P. M. (2016). Genetic pleiotropy in complex traits and diseases:
Implications for genomic medicine. Genome Medicine, 8 (1), 78. https://doi.
org/10.1186/s13073-016-0332-x

Green, D. W., Ingram, V. M., & Perutz, M. F. (1954). The Structure of Haemoglobin.
IV. Sign Determination by the Isomorphous Replacement Method. Proceedings
of the Royal Society of London. Series A, Mathematical and Physical Sciences,

193

https://doi.org/10.1093/emboj/cdf602
https://doi.org/10.1093/emboj/cdf602
https://doi.org/10.1016/j.drudis.2008.10.009
https://doi.org/10.1073/pnas.1012820107
https://doi.org/10.1073/pnas.1012820107
https://doi.org/10.1038/415141a
https://doi.org/10.1038/415141a
https://doi.org/10.1242/jcs.03065
https://doi.org/10.1242/jcs.03065
https://doi.org/10.1093/emboj/18.22.6462
https://doi.org/10.1093/emboj/18.22.6462
https://doi.org/10.1006/jmbi.2001.5080
https://doi.org/10.1101/2023.09.14.557795
https://doi.org/10.1101/2023.09.14.557795
https://doi.org/10.1186/s13073-016-0332-x
https://doi.org/10.1186/s13073-016-0332-x


225 (1162), 287–307. Retrieved October 13, 2023, from https://www.jstor.org/
stable/99481

Gunasekaran, K., Tsai, C.-J., Kumar, S., Zanuy, D., & Nussinov, R. (2003). Extended
disordered proteins: Targeting function with less scaffold. Trends in Biochemical
Sciences, 28 (2), 81–85. https://doi.org/10.1016/S0968-0004(03)00003-3

Hadarovich, A., Chakravarty, D., Tuzikov, A. V., Ben-Tal, N., Kundrotas, P. J., &
Vakser, I. A. (2021). Structural motifs in protein cores and at protein–protein
interfaces are different. Protein Science : A Publication of the Protein Society,
30 (2), 381–390. https://doi.org/10.1002/pro.3996

Hames, R. S., Wattam, S. L., Yamano, H., Bacchieri, R., & Fry, A. M. (2001). APC/C-
mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis
and depends upon a cyclin A-type D-box. The EMBO journal, 20 (24), 7117–
7127. https://doi.org/10.1093/emboj/20.24.7117

Han, J.-H., Batey, S., Nickson, A. A., Teichmann, S. A., & Clarke, J. (2007). The
folding and evolution of multidomain proteins. Nature Reviews Molecular Cell
Biology, 8 (4), 319–330. https://doi.org/10.1038/nrm2144

He, J., Chao, W. C. H., Zhang, Z., Yang, J., Cronin, N., & Barford, D. (2013). Insights
into Degron Recognition by APC/C Coactivators from the Structure of an
Acm1-Cdh1 Complex. Molecular Cell, 50 (5), 649–660. https ://doi .org/10 .
1016/j.molcel.2013.04.024

Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S.-L., Millar, A.,
Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I.,
Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B.,
. . . Tyers, M. (2002). Systematic identification of protein complexes in Saccha-
romyces cerevisiae by mass spectrometry. Nature, 415 (6868), 180–183. https:
//doi.org/10.1038/415180a

Holehouse, A. S., & Kragelund, B. B. (2023). The molecular basis for cellular func-
tion of intrinsically disordered protein regions. Nature Reviews Molecular Cell
Biology, 1–25. https://doi.org/10.1038/s41580-023-00673-0

Howard, C. J., Hanson-Smith, V., Kennedy, K. J., Miller, C. J., Lou, H. J., John-
son, A. D., Turk, B. E., & Holt, L. J. (2014). Ancestral resurrection reveals
evolutionary mechanisms of kinase plasticity (J. Ferrell, Ed.). eLife, 3, e04126.
https://doi.org/10.7554/eLife.04126

Huang, H., Li, L., Wu, C., Schibli, D., Colwill, K., Ma, S., Li, C., Roy, P., Ho, K.,
Songyang, Z., Pawson, T., Gao, Y., & Li, S. S.-C. (2008). Defining the Speci-
ficity Space of the Human Src Homology 2 Domain *. Molecular & Cellular
Proteomics, 7 (4), 768–784. https://doi.org/10.1074/mcp.M700312-MCP200

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science
& Engineering, 9 (3), 90–95. https://doi.org/10.1109/MCSE.2007.55

194

https://www.jstor.org/stable/99481
https://www.jstor.org/stable/99481
https://doi.org/10.1016/S0968-0004(03)00003-3
https://doi.org/10.1002/pro.3996
https://doi.org/10.1093/emboj/20.24.7117
https://doi.org/10.1038/nrm2144
https://doi.org/10.1016/j.molcel.2013.04.024
https://doi.org/10.1016/j.molcel.2013.04.024
https://doi.org/10.1038/415180a
https://doi.org/10.1038/415180a
https://doi.org/10.1038/s41580-023-00673-0
https://doi.org/10.7554/eLife.04126
https://doi.org/10.1074/mcp.M700312-MCP200
https://doi.org/10.1109/MCSE.2007.55


Huttlin, E. L., Bruckner, R. J., Navarrete-Perea, J., Cannon, J. R., Baltier, K., Ge-
breab, F., Gygi, M. P., Thornock, A., Zarraga, G., Tam, S., Szpyt, J., Gas-
saway, B. M., Panov, A., Parzen, H., Fu, S., Golbazi, A., Maenpaa, E., Stricker,
K., Thakurta, S. G., . . . Gygi, S. P. (2021). Dual proteome-scale networks re-
veal cell-specific remodeling of the human interactome. Cell, 184 (11), 3022–
3040.e28. https://doi.org/10.1016/j.cell.2021.04.011

Hwang, H., Petrey, D., & Honig, B. (2016). A hybrid method for protein–protein
interface prediction. Protein Science : A Publication of the Protein Society,
25 (1), 159–165. https://doi.org/10.1002/pro.2744

Iakoucheva, L. M., Radivojac, P., Brown, C. J., O’Connor, T. R., Sikes, J. G., Obradovic,
Z., & Dunker, A. K. (2004). The importance of intrinsic disorder for protein
phosphorylation. Nucleic Acids Research, 32 (3), 1037–1049. https://doi.org/
10.1093/nar/gkh253

Igraph – Network analysis software. (n.d.). Retrieved January 25, 2024, from https:
//igraph.org/

Iqbal, S., Brünger, T., Pérez-Palma, E., Macnee, M., Brunklaus, A., Daly, M. J., Camp-
bell, A. J., Hoksza, D., May, P., & Lal, D. (2023). Delineation of functionally
essential protein regions for 242 neurodevelopmental genes. Brain, 146 (2), 519–
533. https://doi.org/10.1093/brain/awac381

Jones, S., Marin, A., & M.Thornton, J. (2000). Protein domain interfaces: Characteri-
zation and comparison with oligomeric protein interfaces. Protein Engineering,
Design and Selection, 13 (2), 77–82. https://doi.org/10.1093/protein/13.2.77

Joo, H. K., Park, Y. W., Jang, Y. Y., & Lee, J. Y. (2018). Structural Analysis of
Glutamine Synthetase from Helicobacter pylori. Scientific Reports, 8, 11657.
https://doi.org/10.1038/s41598-018-30191-5

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tun-
yasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer,
C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S.,
Jain, R., Adler, J., . . . Hassabis, D. (2021). Highly accurate protein structure
prediction with AlphaFold. Nature, 596 (7873), 583–589. https://doi.org/10.
1038/s41586-021-03819-2

Kaczor, A. A., Bartuzi, D., Stępniewski, T. M., Matosiuk, D., & Selent, J. (2018). Pro-
tein–Protein Docking in Drug Design and Discovery. In M. Gore & U. B. Jag-
tap (Eds.), Computational Drug Discovery and Design (pp. 285–305). Springer.
https://doi.org/10.1007/978-1-4939-7756-7_15

Kann, M. G., Jothi, R., Cherukuri, P. F., & Przytycka, T. M. (2007). Predicting protein
domain interactions from coevolution of conserved regions. Proteins: Structure,
Function, and Bioinformatics, 67 (4), 811–820. https://doi.org/10.1002/prot.
21347

195

https://doi.org/10.1016/j.cell.2021.04.011
https://doi.org/10.1002/pro.2744
https://doi.org/10.1093/nar/gkh253
https://doi.org/10.1093/nar/gkh253
https://igraph.org/
https://igraph.org/
https://doi.org/10.1093/brain/awac381
https://doi.org/10.1093/protein/13.2.77
https://doi.org/10.1038/s41598-018-30191-5
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1007/978-1-4939-7756-7_15
https://doi.org/10.1002/prot.21347
https://doi.org/10.1002/prot.21347


Karan, B., Mahapatra, S., Sahu, S. S., Pandey, D. M., & Chakravarty, S. (2023).
Computational models for prediction of protein–protein interaction in rice and
Magnaporthe grisea. Frontiers in Plant Science, 13. Retrieved January 27, 2024,
from https://www.frontiersin.org/articles/10.3389/fpls.2022.1046209

Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A., & Rosen, M. K. (2000).
Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome
protein. Nature, 404 (6774), 151–158. https://doi.org/10.1038/35004513

Kim, W. K., Henschel, A., Winter, C., & Schroeder, M. (2006). The Many Faces of
Protein–Protein Interactions: A Compendium of Interface Geometry. PLOS
Computational Biology, 2 (9), e124. https ://doi .org/10 .1371/journal .pcbi .
0020124

Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., &
Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature
Protocols, 12 (2), 255–278. https://doi.org/10.1038/nprot.2016.169

Krapp, L. F., Abriata, L. A., Cortés Rodriguez, F., & Dal Peraro, M. (2023). PeSTo:
Parameter-free geometric deep learning for accurate prediction of protein bind-
ing interfaces. Nature Communications, 14 (1), 2175. https://doi.org/10.1038/
s41467-023-37701-8

Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu,
S., Datta, N., Tikuisis, A. P., Punna, T., Peregrín-Alvarez, J. M., Shales, M.,
Zhang, X., Davey, M., Robinson, M. D., Paccanaro, A., Bray, J. E., Sheung,
A., . . . Greenblatt, J. F. (2006). Global landscape of protein complexes in the
yeast Saccharomyces cerevisiae. Nature, 440 (7084), 637–643. https://doi.org/
10.1038/nature04670

Krystkowiak, I., & Davey, N. E. (2017). SLiMSearch: A framework for proteome-
wide discovery and annotation of functional modules in intrinsically disordered
regions. Nucleic Acids Research, 45, W464–W469. https://doi.org/10.1093/
nar/gkx238

Krystkowiak, I., Manguy, J., & Davey, N. E. (2018). PSSMSearch: A server for mod-
eling, visualization, proteome-wide discovery and annotation of protein motif
specificity determinants. Nucleic Acids Research, 46 (W1), W235–W241. https:
//doi.org/10.1093/nar/gky426

Kumar, M., Michael, S., Alvarado-Valverde, J., Zeke, A., Lazar, T., Glavina, J., Nagy-
Kanta, E., Donagh, J. M., Kalman, Z. E., Pascarelli, S., Palopoli, N., Dobson,
L., Suarez, C. F., Van Roey, K., Krystkowiak, I., Griffin, J. E., Nagpal, A.,
Bhardwaj, R., Diella, F., . . . Gibson, T. J. (2024). ELM—the Eukaryotic Linear
Motif resource—2024 update. Nucleic Acids Research, 52 (D1), D442–D455.
https://doi.org/10.1093/nar/gkad1058

196

https://www.frontiersin.org/articles/10.3389/fpls.2022.1046209
https://doi.org/10.1038/35004513
https://doi.org/10.1371/journal.pcbi.0020124
https://doi.org/10.1371/journal.pcbi.0020124
https://doi.org/10.1038/nprot.2016.169
https://doi.org/10.1038/s41467-023-37701-8
https://doi.org/10.1038/s41467-023-37701-8
https://doi.org/10.1038/nature04670
https://doi.org/10.1038/nature04670
https://doi.org/10.1093/nar/gkx238
https://doi.org/10.1093/nar/gkx238
https://doi.org/10.1093/nar/gky426
https://doi.org/10.1093/nar/gky426
https://doi.org/10.1093/nar/gkad1058


Lambourne, L., Yadav, A., Wang, Y., Desbuleux, A., Kim, D.-K., Cafarelli, T., Pons,
C., Kovács, I. A., Jailkhani, N., Schlabach, S., Ridder, D. D., Luck, K., Bian,
W., Shen, Y., Yang, Z., Mee, M. W., Helmy, M., Jacob, Y., Lemmens, I., . . .
Vidal, M. (2022, July 22). Binary interactome models of inner- versus outer-
complexome organisation. https://doi.org/10.1101/2021.03.16.435663

Letunic, I., Khedkar, S., & Bork, P. (2021). SMART: Recent updates, new develop-
ments and status in 2020. Nucleic Acids Research, 49 (D1), D458–D460. https:
//doi.org/10.1093/nar/gkaa937

Levy, Y. (2017). Protein Assembly and Building Blocks: Beyond the Limits of the
LEGO Brick Metaphor. Biochemistry, 56 (38), 5040–5048. https://doi.org/10.
1021/acs.biochem.7b00666

Liang, S. H., & Clarke, M. F. (1999). A bipartite nuclear localization signal is required
for p53 nuclear import regulated by a carboxyl-terminal domain. The Journal
of Biological Chemistry, 274 (46), 32699–32703. https://doi.org/10.1074/jbc.
274.46.32699

Lievens, S., Gerlo, S., Lemmens, I., De Clercq, D. J. H., Risseeuw, M. D. P., Van-
derroost, N., De Smet, A.-S., Ruyssinck, E., Chevet, E., Van Calenbergh, S.,
& Tavernier, J. (2014). Kinase Substrate Sensor (KISS), a Mammalian In Situ
Protein Interaction Sensor. Molecular & Cellular Proteomics : MCP, 13 (12),
3332–3342. https://doi.org/10.1074/mcp.M114.041087

Lievens, S., Peelman, F., De Bosscher, K., Lemmens, I., & Tavernier, J. (2011). MAP-
PIT: A protein interaction toolbox built on insights in cytokine receptor sig-
naling. Cytokine & Growth Factor Reviews, 22 (5), 321–329. https://doi.org/
10.1016/j.cytogfr.2011.11.001

Liu, M., Chen, X.-w., & Jothi, R. (2009). Knowledge-guided inference of domain–domain
interactions from incomplete protein–protein interaction networks. Bioinfor-
matics, 25 (19), 2492–2499. https://doi.org/10.1093/bioinformatics/btp480

Lu, D., Hsiao, J. Y., Davey, N. E., Van Voorhis, V. A., Foster, S. A., Tang, C., &
Morgan, D. O. (2014). Multiple mechanisms determine the order of APC/C
substrate degradation in mitosis. Journal of Cell Biology, 207 (1), 23–39. https:
//doi.org/10.1083/jcb.201402041

Lu, H., Zhou, Q., He, J., Jiang, Z., Peng, C., Tong, R., & Shi, J. (2020). Recent ad-
vances in the development of protein–protein interactions modulators: Mecha-
nisms and clinical trials. Signal Transduction and Targeted Therapy, 5 (1), 1–23.
https://doi.org/10.1038/s41392-020-00315-3

Luciani, M. G., Hutchins, J. R., Zheleva, D., & Hupp, T. R. (2000). The C-terminal
regulatory domain of p53 contains a functional docking site for cyclin A. Journal
of Molecular Biology, 300 (3), 503–518. https://doi.org/10.1006/jmbi.2000.3830

197

https://doi.org/10.1101/2021.03.16.435663
https://doi.org/10.1093/nar/gkaa937
https://doi.org/10.1093/nar/gkaa937
https://doi.org/10.1021/acs.biochem.7b00666
https://doi.org/10.1021/acs.biochem.7b00666
https://doi.org/10.1074/jbc.274.46.32699
https://doi.org/10.1074/jbc.274.46.32699
https://doi.org/10.1074/mcp.M114.041087
https://doi.org/10.1016/j.cytogfr.2011.11.001
https://doi.org/10.1016/j.cytogfr.2011.11.001
https://doi.org/10.1093/bioinformatics/btp480
https://doi.org/10.1083/jcb.201402041
https://doi.org/10.1083/jcb.201402041
https://doi.org/10.1038/s41392-020-00315-3
https://doi.org/10.1006/jmbi.2000.3830


Luck, K., Kim, D.-K., Lambourne, L., Spirohn, K., Begg, B. E., Bian, W., Brignall, R.,
Cafarelli, T., Campos-Laborie, F. J., Charloteaux, B., Choi, D., Coté, A. G.,
Daley, M., Deimling, S., Desbuleux, A., Dricot, A., Gebbia, M., Hardy, M. F.,
Kishore, N., . . . Calderwood, M. A. (2020). A reference map of the human
binary protein interactome. Nature, 580 (7803), 402–408. https://doi.org/10.
1038/s41586-020-2188-x

Luther, C. H., Brandt, P., Vylkova, S., Dandekar, T., Müller, T., & Dittrich, M. (2023).
Integrated analysis of SR-like protein kinases Sky1 and Sky2 links signaling
networks with transcriptional regulation in Candida albicans. Frontiers in Cel-
lular and Infection Microbiology, 13. Retrieved January 27, 2024, from https:
//www.frontiersin.org/articles/10.3389/fcimb.2023.1108235

Maier, R. H., Maier, C. J., Hintner, H., Bauer, J. W., & Önder, K. (2012). Quan-
titative real-time PCR as a sensitive protein–protein interaction quantifica-
tion method and a partial solution for non-accessible autoactivator and false-
negative molecule analysis in the yeast two-hybrid system. Methods, 58 (4), 376–
384. https://doi.org/10.1016/j.ymeth.2012.09.001

Mantovani, F., Collavin, L., & Del Sal, G. (2019). Mutant p53 as a guardian of the
cancer cell. Cell Death & Differentiation, 26 (2), 199–212. https://doi.org/10.
1038/s41418-018-0246-9

Marasco, M., & Carlomagno, T. (2020). Specificity and regulation of phosphotyrosine
signaling through SH2 domains. Journal of Structural Biology: X, 4, 100026.
https://doi.org/10.1016/j.yjsbx.2020.100026

Maris, A. E., Sawaya, M. R., Kaczor-Grzeskowiak, M., Jarvis, M. R., Bearson, S. M. D.,
Kopka, M. L., Schröder, I., Gunsalus, R. P., & Dickerson, R. E. (2002). Dimer-
ization allows DNA target site recognition by the NarL response regulator.
Nature Structural Biology, 9 (10), 771–778. https://doi.org/10.1038/nsb845

McCraith, S., Holtzman, T., Moss, B., & Fields, S. (2000). Genome-wide analysis of
vaccinia virus protein–protein interactions. Proceedings of the National Academy
of Sciences, 97 (9), 4879–4884. https://doi.org/10.1073/pnas.080078197

McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceed-
ings of the 9th Python in Science Conference, 56–61. https://doi.org/10.25080/
Majora-92bf1922-00a

McPherson, A., & Gavira, J. A. (2014). Introduction to protein crystallization. Acta
Crystallographica Section F: Structural Biology Communications, 70 (1), 2–20.
https://doi.org/10.1107/S2053230X13033141

Mészáros, B., Erdős, G., & Dosztányi, Z. (2018). IUPred2A: Context-dependent predic-
tion of protein disorder as a function of redox state and protein binding. Nucleic
Acids Research, 46 (W1), W329–W337. https://doi.org/10.1093/nar/gky384

198

https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1038/s41586-020-2188-x
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1108235
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1108235
https://doi.org/10.1016/j.ymeth.2012.09.001
https://doi.org/10.1038/s41418-018-0246-9
https://doi.org/10.1038/s41418-018-0246-9
https://doi.org/10.1016/j.yjsbx.2020.100026
https://doi.org/10.1038/nsb845
https://doi.org/10.1073/pnas.080078197
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1107/S2053230X13033141
https://doi.org/10.1093/nar/gky384


Mészáros, B., Simon, I., & Dosztányi, Z. (2009). Prediction of Protein Binding Regions
in Disordered Proteins. PLoS Computational Biology, 5 (5), e1000376. https:
//doi.org/10.1371/journal.pcbi.1000376

Michaelis, A. C., Brunner, A.-D., Zwiebel, M., Meier, F., Strauss, M. T., Bludau, I.,
& Mann, M. (2023). The social and structural architecture of the yeast protein
interactome. Nature, 624 (7990), 192–200. https://doi.org/10.1038/s41586-023-
06739-5

Milne, J. L. S., Borgnia, M. J., Bartesaghi, A., Tran, E. E. H., Earl, L. A., Schauder,
D. M., Lengyel, J., Pierson, J., Patwardhan, A., & Subramaniam, S. (2013).
Cryo-electron microscopy – a primer for the non-microscopist. The FEBS Jour-
nal, 280 (1), 28–45. https://doi.org/10.1111/febs.12078

Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M.
(2022). ColabFold: Making protein folding accessible to all. Nature Methods,
19 (6), 679–682. https://doi.org/10.1038/s41592-022-01488-1

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer,
E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D.,
& Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic
Acids Research, 49 (D1), D412–D419. https://doi.org/10.1093/nar/gkaa913

Mitrea, D. M., & Kriwacki, R. W. (2016). Phase separation in biology; functional
organization of a higher order. Cell Communication and Signaling, 14 (1), 1.
https://doi.org/10.1186/s12964-015-0125-7

Mohan, A., Uversky, V. N., & Radivojac, P. (2009). Influence of Sequence Changes
and Environment on Intrinsically Disordered Proteins. PLOS Computational
Biology, 5 (9), e1000497. https://doi.org/10.1371/journal.pcbi.1000497

Mok, J., Kim, P. M., Lam, H. Y. K., Piccirillo, S., Zhou, X., Jeschke, G. R., Sheridan,
D. L., Parker, S. A., Desai, V., Jwa, M., Cameroni, E., Niu, H., Good, M.,
Remenyi, A., Ma, J.-L. N., Sheu, Y.-J., Sassi, H. E., Sopko, R., Chan, C. S. M.,
. . . Turk, B. E. (2010). Deciphering Protein Kinase Specificity Through Large-
Scale Analysis of Yeast Phosphorylation Site Motifs. Science Signaling, 3 (109),
ra12–ra12. https://doi.org/10.1126/scisignal.2000482

Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2007). Hot spots—A review of the
protein–protein interface determinant amino-acid residues. Proteins: Structure,
Function, and Bioinformatics, 68 (4), 803–812. https://doi.org/10.1002/prot.
21396

Mosca, R., Céol, A., & Aloy, P. (2013). Interactome3D: Adding structural details to
protein networks. Nature Methods, 10 (1), 47–53. https ://doi .org/10.1038/
nmeth.2289

199

https://doi.org/10.1371/journal.pcbi.1000376
https://doi.org/10.1371/journal.pcbi.1000376
https://doi.org/10.1038/s41586-023-06739-5
https://doi.org/10.1038/s41586-023-06739-5
https://doi.org/10.1111/febs.12078
https://doi.org/10.1038/s41592-022-01488-1
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1186/s12964-015-0125-7
https://doi.org/10.1371/journal.pcbi.1000497
https://doi.org/10.1126/scisignal.2000482
https://doi.org/10.1002/prot.21396
https://doi.org/10.1002/prot.21396
https://doi.org/10.1038/nmeth.2289
https://doi.org/10.1038/nmeth.2289


Mosca, R., Céol, A., Stein, A., Olivella, R., & Aloy, P. (2014). 3did: A catalog of
domain-based interactions of known three-dimensional structure. Nucleic Acids
Research, 42 (D1), D374–D379. https://doi.org/10.1093/nar/gkt887

Nim, S., Jeon, J., Corbi-Verge, C., Seo, M.-H., Ivarsson, Y., Moffat, J., Tarasova,
N., & Kim, P. M. (2016). Pooled screening for antiproliferative inhibitors of
protein-protein interactions. Nature Chemical Biology, 12 (4), 275–281. https:
//doi.org/10.1038/nchembio.2026

Northrop, J. H. (1930). CRYSTALLINE PEPSIN : I. ISOLATION AND TESTS OF
PURITY. Journal of General Physiology, 13 (6), 739–766. https://doi.org/10.
1085/jgp.13.6.739

O’Keefe, K., Li, H., & Zhang, Y. (2003). Nucleocytoplasmic shuttling of p53 is essential
for MDM2-mediated cytoplasmic degradation but not ubiquitination. Molecular
and Cellular Biology, 23 (18), 6396–6405. https://doi.org/10.1128/MCB.23.18.
6396-6405.2003

Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter,
F., Campbell, N. H., Chavali, G., Chen, C., del-Toro, N., Duesbury, M., Du-
mousseau, M., Galeota, E., Hinz, U., Iannuccelli, M., Jagannathan, S., Jimenez,
R., Khadake, J., Lagreid, A., . . . Hermjakob, H. (2014). The MIntAct project—IntAct
as a common curation platform for 11 molecular interaction databases. Nucleic
Acids Research, 42 (D1), D358–D363. https://doi.org/10.1093/nar/gkt1115

Pagel, P., Wong, P., & Frishman, D. (2004). A Domain Interaction Map Based on
Phylogenetic Profiling. Journal of Molecular Biology, 344 (5), 1331–1346. https:
//doi.org/10.1016/j.jmb.2004.10.019

Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A.,
Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunić,
I., Marchler-Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan,
A. P., Rivoire, C., . . . Bateman, A. (2023). InterPro in 2022. Nucleic Acids
Research, 51 (D1), D418–D427. https://doi.org/10.1093/nar/gkac993

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12 (85),
2825–2830. Retrieved January 25, 2024, from http://jmlr.org/papers/v12/
pedregosa11a.html

Pereira, J., Simpkin, A. J., Hartmann, M. D., Rigden, D. J., Keegan, R. M., & Lupas,
A. N. (2021). High-accuracy protein structure prediction in CASP14. Proteins:
Structure, Function, and Bioinformatics, 89 (12), 1687–1699. https://doi.org/
10.1002/prot.26171

200

https://doi.org/10.1093/nar/gkt887
https://doi.org/10.1038/nchembio.2026
https://doi.org/10.1038/nchembio.2026
https://doi.org/10.1085/jgp.13.6.739
https://doi.org/10.1085/jgp.13.6.739
https://doi.org/10.1128/MCB.23.18.6396-6405.2003
https://doi.org/10.1128/MCB.23.18.6396-6405.2003
https://doi.org/10.1093/nar/gkt1115
https://doi.org/10.1016/j.jmb.2004.10.019
https://doi.org/10.1016/j.jmb.2004.10.019
https://doi.org/10.1093/nar/gkac993
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1002/prot.26171
https://doi.org/10.1002/prot.26171


Petrey, D., Zhao, H., Trudeau, S. J., Murray, D., & Honig, B. (2023). PrePPI: A
Structure Informed Proteome-wide Database of Protein–Protein Interactions.
Journal of Molecular Biology, 435 (14), 168052. https://doi.org/10.1016/j.jmb.
2023.168052

Petsalaki, E., Stark, A., García-Urdiales, E., & Russell, R. B. (2009). Accurate Predic-
tion of Peptide Binding Sites on Protein Surfaces. PLoS Computational Biology,
5 (3), e1000335. https://doi.org/10.1371/journal.pcbi.1000335

Pfleger, K. D. G., & Eidne, K. A. (2006). Illuminating insights into protein-protein
interactions using bioluminescence resonance energy transfer (BRET). Nature
Methods, 3 (3), 165–174. https://doi.org/10.1038/nmeth841

Rolland, T., Taşan, M., Charloteaux, B., Pevzner, S. J., Zhong, Q., Sahni, N., Yi,
S., Lemmens, I., Fontanillo, C., Mosca, R., Kamburov, A., Ghiassian, S. D.,
Yang, X., Ghamsari, L., Balcha, D., Begg, B. E., Braun, P., Brehme, M., Broly,
M. P., . . . Vidal, M. (2014). A Proteome-Scale Map of the Human Interactome
Network. Cell, 159 (5), 1212–1226. https://doi.org/10.1016/j.cell.2014.10.050

Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., & Dunker, A. K. (2001).
Sequence complexity of disordered protein. Proteins: Structure, Function, and
Bioinformatics, 42 (1), 38–48. https://doi.org/10.1002/1097-0134(20010101)42:
1<38::AID-PROT50>3.0.CO;2-3

Sahni, N., Yi, S., Taipale, M., Fuxman Bass, J. I., Coulombe-Huntington, J., Yang,
F., Peng, J., Weile, J., Karras, G. I., Wang, Y., Kovács, I. A., Kamburov,
A., Krykbaeva, I., Lam, M. H., Tucker, G., Khurana, V., Sharma, A., Liu,
Y.-Y., Yachie, N., . . . Vidal, M. (2015). Widespread Macromolecular Interac-
tion Perturbations in Human Genetic Disorders. Cell, 161 (3), 647–660. https:
//doi.org/10.1016/j.cell.2015.04.013

Sakaguchi, K., Saito, S., Higashimoto, Y., Roy, S., Anderson, C. W., & Appella, E.
(2000). Damage-mediated phosphorylation of human p53 threonine 18 through
a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. The
Journal of Biological Chemistry, 275 (13), 9278–9283. https://doi.org/10.1074/
jbc.275.13.9278

Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of
spatial restraints. Journal of Molecular Biology, 234 (3), 779–815. https://doi.
org/10.1006/jmbi.1993.1626

Santelli, E., Leone, M., Li, C., Fukushima, T., Preece, N. E., Olson, A. J., Ely, K. R.,
Reed, J. C., Pellecchia, M., Liddington, R. C., & Matsuzawa, S.-i. (2005). Struc-
tural analysis of Siah1-Siah-interacting protein interactions and insights into
the assembly of an E3 ligase multiprotein complex. The Journal of Biological
Chemistry, 280 (40), 34278–34287. https://doi.org/10.1074/jbc.M506707200

201

https://doi.org/10.1016/j.jmb.2023.168052
https://doi.org/10.1016/j.jmb.2023.168052
https://doi.org/10.1371/journal.pcbi.1000335
https://doi.org/10.1038/nmeth841
https://doi.org/10.1016/j.cell.2014.10.050
https://doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3
https://doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3
https://doi.org/10.1016/j.cell.2015.04.013
https://doi.org/10.1016/j.cell.2015.04.013
https://doi.org/10.1074/jbc.275.13.9278
https://doi.org/10.1074/jbc.275.13.9278
https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1074/jbc.M506707200


Schlessinger, A., Liu, J., & Rost, B. (2007). Natively Unstructured Loops Differ from
Other Loops. PLOS Computational Biology, 3 (7), e140. https://doi.org/10.
1371/journal.pcbi.0030140

Sekar, R. B., & Periasamy, A. (2003). Fluorescence resonance energy transfer (FRET)
microscopy imaging of live cell protein localizations. The Journal of Cell Biol-
ogy, 160 (5), 629–633. https://doi.org/10.1083/jcb.200210140

Sheng, Y., Saridakis, V., Sarkari, F., Duan, S., Wu, T., Arrowsmith, C. H., & Frappier,
L. (2006). Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nature
Structural & Molecular Biology, 13 (3), 285–291. https ://doi .org/10 .1038/
nsmb1067

Shin, J.-S., Ha, J.-H., Lee, D.-H., Ryu, K.-S., Bae, K.-H., Park, B. C., Park, S. G., Yi,
G.-S., & Chi, S.-W. (2015). Structural convergence of unstructured p53 family
transactivation domains in MDM2 recognition. Cell Cycle (Georgetown, Tex.),
14 (4), 533–543. https://doi.org/10.1080/15384101.2014.998056

Shivhare, D., Musialak-Lange, M., Julca, I., Gluza, P., & Mutwil, M. (2021). Removing
auto-activators from yeast-two-hybrid assays by conditional negative selection.
Scientific Reports, 11, 5477. https://doi.org/10.1038/s41598-021-84608-9

Sillitoe, I., Bordin, N., Dawson, N., Waman, V. P., Ashford, P., Scholes, H. M., Pang,
C. S. M., Woodridge, L., Rauer, C., Sen, N., Abbasian, M., Le Cornu, S., Lam,
S. D., Berka, K., Varekova, I. H., Svobodova, R., Lees, J., & Orengo, C. A.
(2020). CATH: Increased structural coverage of functional space. Nucleic Acids
Research, 49 (D1), D266–D273. https://doi.org/10.1093/nar/gkaa1079

Sobti, M., Mead, B. J., Stewart, A. G., Igreja, C., & Christie, M. (2023). Molecular
basis for GIGYF-TNRC6 complex assembly. RNA (New York, N.Y.), 29 (6),
724–734. https://doi.org/10.1261/rna.079596.123

Sørensen, C. S., & Kjaergaard, M. (2019). Effective concentrations enforced by in-
trinsically disordered linkers are governed by polymer physics. Proceedings of
the National Academy of Sciences, 116 (46), 23124–23131. https://doi.org/10.
1073/pnas.1904813116

Sprinzak, E., & Margalit, H. (2001). Correlated sequence-signatures as markers of
protein-protein interaction1 1Edited by G. von Heijne. Journal of Molecular
Biology, 311 (4), 681–692. https://doi.org/10.1006/jmbi.2001.4920

Stein, A., & Aloy, P. (2010). Novel Peptide-Mediated Interactions Derived from High-
Resolution 3-Dimensional Structures. PLOS Computational Biology, 6 (5), e1000789.
https://doi.org/10.1371/journal.pcbi.1000789

Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., Stroedicke,
M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abra-
ham, C., Bock, N., Kietzmann, S., Goedde, A., Toksöz, E., Droege, A., Kro-
bitsch, S., . . . Wanker, E. E. (2005). A Human Protein-Protein Interaction Net-

202

https://doi.org/10.1371/journal.pcbi.0030140
https://doi.org/10.1371/journal.pcbi.0030140
https://doi.org/10.1083/jcb.200210140
https://doi.org/10.1038/nsmb1067
https://doi.org/10.1038/nsmb1067
https://doi.org/10.1080/15384101.2014.998056
https://doi.org/10.1038/s41598-021-84608-9
https://doi.org/10.1093/nar/gkaa1079
https://doi.org/10.1261/rna.079596.123
https://doi.org/10.1073/pnas.1904813116
https://doi.org/10.1073/pnas.1904813116
https://doi.org/10.1006/jmbi.2001.4920
https://doi.org/10.1371/journal.pcbi.1000789


work: A Resource for Annotating the Proteome. Cell, 122 (6), 957–968. https:
//doi.org/10.1016/j.cell.2005.08.029

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Si-
monovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mer-
ing, C. v. (2019). STRING v11: Protein–protein association networks with in-
creased coverage, supporting functional discovery in genome-wide experimental
datasets. Nucleic Acids Research, 47, D607–D613. https://doi.org/10.1093/
nar/gky1131

Titeca, K., Lemmens, I., Tavernier, J., & Eyckerman, S. (2019). Discovering cellular
protein-protein interactions: Technological strategies and opportunities. Mass
Spectrometry Reviews, 38 (1), 79–111. https://doi.org/10.1002/mas.21574

To, P., Bhagwat, A. M., Tarbox, H. E., Ecer, A., Wendorff, H., Jamieson, Z., Trcek,
T., & Fried, S. D. (2023, June 25). Intrinsically Disordered Regions Promote
Protein Refoldability and Facilitate Retrieval from Biomolecular Condensates.
https://doi.org/10.1101/2023.06.25.546465

Tompa, P. (2005). The interplay between structure and function in intrinsically un-
structured proteins. FEBS Letters, 579 (15), 3346–3354. https://doi.org/10.
1016/j.febslet.2005.03.072

Tompa, P., Davey, N. E., Gibson, T. J., & Babu, M. M. (2014). A Million Peptide
Motifs for the Molecular Biologist. Molecular Cell, 55 (2), 161–169. https://doi.
org/10.1016/j.molcel.2014.05.032

Truebestein, L., & Leonard, T. A. (2016). Coiled-coils: The long and short of it. Bioes-
says, 38 (9), 903–916. https://doi.org/10.1002/bies.201600062

Tsaban, T., Varga, J. K., Avraham, O., Ben-Aharon, Z., Khramushin, A., & Schueler-
Furman, O. (2022). Harnessing protein folding neural networks for peptide–protein
docking. Nature Communications, 13 (1), 176. https://doi.org/10.1038/s41467-
021-27838-9

Turenne, G. A., & Price, B. D. (2001). Glycogen synthase kinase3 beta phosphorylates
serine 33 of p53 and activates p53’s transcriptional activity. BMC cell biology,
2, 12. https://doi.org/10.1186/1471-2121-2-12

Ubersax, J. A., & Ferrell Jr, J. E. (2007). Mechanisms of specificity in protein phos-
phorylation. Nature Reviews Molecular Cell Biology, 8 (7), 530–541. https://
doi.org/10.1038/nrm2203

Uetz, P., Dong, Y.-A., Zeretzke, C., Atzler, C., Baiker, A., Berger, B., Rajagopala,
S. V., Roupelieva, M., Rose, D., Fossum, E., & Haas, J. (2006). Herpesviral
Protein Networks and Their Interaction with the Human Proteome. Science,
311 (5758), 239–242. https://doi.org/10.1126/science.1116804

Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lock-
shon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y.,

203

https://doi.org/10.1016/j.cell.2005.08.029
https://doi.org/10.1016/j.cell.2005.08.029
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1002/mas.21574
https://doi.org/10.1101/2023.06.25.546465
https://doi.org/10.1016/j.febslet.2005.03.072
https://doi.org/10.1016/j.febslet.2005.03.072
https://doi.org/10.1016/j.molcel.2014.05.032
https://doi.org/10.1016/j.molcel.2014.05.032
https://doi.org/10.1002/bies.201600062
https://doi.org/10.1038/s41467-021-27838-9
https://doi.org/10.1038/s41467-021-27838-9
https://doi.org/10.1186/1471-2121-2-12
https://doi.org/10.1038/nrm2203
https://doi.org/10.1038/nrm2203
https://doi.org/10.1126/science.1116804


Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., John-
ston, M., Fields, S., & Rothberg, J. M. (2000). A comprehensive analysis of
protein–protein interactions in Saccharomyces cerevisiae. Nature, 403 (6770),
623–627. https://doi.org/10.1038/35001009

Van Roey, K., Dinkel, H., Weatheritt, R. J., Gibson, T. J., & Davey, N. E. (2013).
The switches.ELM Resource: A Compendium of Conditional Regulatory Inter-
action Interfaces. Science Signaling, 6 (269), rs7–rs7. https://doi.org/10.1126/
scisignal.2003345

Van Roey, K., Uyar, B., Weatheritt, R. J., Dinkel, H., Seiler, M., Budd, A., Gibson,
T. J., & Davey, N. E. (2014). Short Linear Motifs: Ubiquitous and Function-
ally Diverse Protein Interaction Modules Directing Cell Regulation. Chemical
Reviews, 114 (13), 6733–6778. https://doi.org/10.1021/cr400585q

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan,
D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool,
K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., . . . Ve-
lankar, S. (2022). AlphaFold Protein Structure Database: Massively expanding
the structural coverage of protein-sequence space with high-accuracy models.
Nucleic Acids Research, 50 (D1), D439–D444. https://doi.org/10.1093/nar/
gkab1061

Verma, R., & Pandit, S. B. (2019). Unraveling the structural landscape of intra-chain
domain interfaces: Implication in the evolution of domain-domain interactions.
PLOS ONE, 14 (8), e0220336. https://doi.org/10.1371/journal.pone.0220336

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J.,
Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones,
E., Kern, R., Larson, E., . . . SciPy 1.0 Contributors. (2020). SciPy 1.0: Funda-
mental algorithms for scientific computing in Python. Nature Methods, 17 (3),
261–272. https://doi.org/10.1038/s41592-019-0686-2

Vyncke, L., Masschaele, D., Tavernier, J., & Peelman, F. (2019). Straightforward
Protein-Protein Interaction Interface Mapping via Random Mutagenesis and
Mammalian Protein Protein Interaction Trap (MAPPIT). International Jour-
nal of Molecular Sciences, 20 (9), 2058. https://doi.org/10.3390/ijms20092058

Wallace, L. A., Burke, J., & Dirr, H. W. (2000). Domain–domain interface packing at
conserved Trp-20 in class α glutathione transferase impacts on protein stability.
Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular En-
zymology, 1478 (2), 325–332. https://doi.org/10.1016/S0167-4838(00)00023-6

Wang, X., Wei, X., Thijssen, B., Das, J., Lipkin, S. M., & Yu, H. (2012). Three-
dimensional reconstruction of protein networks provides insight into human

204

https://doi.org/10.1038/35001009
https://doi.org/10.1126/scisignal.2003345
https://doi.org/10.1126/scisignal.2003345
https://doi.org/10.1021/cr400585q
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1371/journal.pone.0220336
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3390/ijms20092058
https://doi.org/10.1016/S0167-4838(00)00023-6


genetic disease. Nature Biotechnology, 30 (2), 159–164. https ://doi .org/10 .
1038/nbt.2106

Waskom, M. L. (2021). Seaborn: Statistical data visualization. Journal of Open Source
Software, 6 (60), 3021. https://doi.org/10.21105/joss.03021

Weatheritt, R. J., Luck, K., Petsalaki, E., Davey, N. E., & Gibson, T. J. (2012). The
identification of short linear motif-mediated interfaces within the human inter-
actome. Bioinformatics, 28 (7), 976–982. https://doi.org/10.1093/bioinformatics/
bts072

Weatheritt, R. J., Jehl, P., Dinkel, H., & Gibson, T. J. (2012). iELM—a web server
to explore short linear motif-mediated interactions. Nucleic Acids Research,
40 (W1), W364–W369. https://doi.org/10.1093/nar/gks444

Weihs, F., Wang, J., Pfleger, K. D. G., & Dacres, H. (2020). Experimental deter-
mination of the bioluminescence resonance energy transfer (BRET) Förster
distances of NanoBRET and red-shifted BRET pairs. Analytica Chimica Acta:
X, 6, 100059. https://doi.org/10.1016/j.acax.2020.100059

Weinfeld, M., Mani, R. S., Abdou, I., Acetuno, R. D., & Glover, J. M. (2011). Tidying
up loose ends: The role of polynucleotide kinase/phosphatase in DNA strand
break repair. Trends in biochemical sciences, 36 (5), 262–271. https://doi.org/
10.1016/j.tibs.2011.01.006

Wells, J. A., & McClendon, C. L. (2007). Reaching for high-hanging fruit in drug
discovery at protein–protein interfaces. Nature, 450 (7172), 1001–1009. https:
//doi.org/10.1038/nature06526

Wetlaufer, D. B., & Ristow, S. (1973). Acquisition of Three-Dimensional Structure of
Proteins. Annual Review of Biochemistry, 42 (1), 135–158. https://doi.org/10.
1146/annurev.bi.42.070173.001031

What’s the next word in large language models? (2023). Nature Machine Intelligence,
5 (4), 331–332. https://doi.org/10.1038/s42256-023-00655-z

Wilson, C. J., Choy, W.-Y., & Karttunen, M. (2022). AlphaFold2: A Role for Disor-
dered Protein/Region Prediction? International Journal of Molecular Sciences,
23 (9), 4591. https://doi.org/10.3390/ijms23094591

Winston, J. T., Strack, P., Beer-Romero, P., Chu, C. Y., Elledge, S. J., & Harper,
J. W. (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates specifi-
cally with phosphorylated destruction motifs in IkappaBalpha and beta-catenin
and stimulates IkappaBalpha ubiquitination in vitro. Genes & Development,
13 (3), 270–283. https://doi.org/10.1101/gad.13.3.270

Wodak, S. J., & Janin, J. (1978). Computer analysis of protein-protein interaction.
Journal of Molecular Biology, 124 (2), 323–342. https://doi.org/10.1016/0022-
2836(78)90302-9

205

https://doi.org/10.1038/nbt.2106
https://doi.org/10.1038/nbt.2106
https://doi.org/10.21105/joss.03021
https://doi.org/10.1093/bioinformatics/bts072
https://doi.org/10.1093/bioinformatics/bts072
https://doi.org/10.1093/nar/gks444
https://doi.org/10.1016/j.acax.2020.100059
https://doi.org/10.1016/j.tibs.2011.01.006
https://doi.org/10.1016/j.tibs.2011.01.006
https://doi.org/10.1038/nature06526
https://doi.org/10.1038/nature06526
https://doi.org/10.1146/annurev.bi.42.070173.001031
https://doi.org/10.1146/annurev.bi.42.070173.001031
https://doi.org/10.1038/s42256-023-00655-z
https://doi.org/10.3390/ijms23094591
https://doi.org/10.1101/gad.13.3.270
https://doi.org/10.1016/0022-2836(78)90302-9
https://doi.org/10.1016/0022-2836(78)90302-9


wwPDB consortium. (2019). Protein Data Bank: The single global archive for 3D
macromolecular structure data. Nucleic Acids Research, 47 (D1), D520–D528.
https://doi.org/10.1093/nar/gky949

Xu, Q., & Dunbrack, R. L. (2019). Principles and characteristics of biological as-
semblies in experimentally determined protein structures. Current opinion in
structural biology, 55, 34–49. https://doi.org/10.1016/j.sbi.2019.03.006

Yang, A. S., & Honig, B. (2000). An integrated approach to the analysis and modeling
of protein sequences and structures. I. Protein structural alignment and a quan-
titative measure for protein structural distance. Journal of Molecular Biology,
301 (3), 665–678. https://doi.org/10.1006/jmbi.2000.3973

Yellaboina, S., Tasneem, A., Zaykin, D. V., Raghavachari, B., & Jothi, R. (2011).
DOMINE: A comprehensive collection of known and predicted domain-domain
interactions. Nucleic Acids Research, 39, D730–D735. https://doi.org/10.1093/
nar/gkq1229

Zacchi, P., Gostissa, M., Uchida, T., Salvagno, C., Avolio, F., Volinia, S., Ronai, Z.,
Blandino, G., Schneider, C., & Del Sal, G. (2002). The prolyl isomerase Pin1
reveals a mechanism to control p53 functions after genotoxic insults. Nature,
419 (6909), 853–857. https://doi.org/10.1038/nature01120

Zámocký, M., & Koller, F. (1999). Understanding the structure and function of cata-
lases: Clues from molecular evolution and in vitro mutagenesis. Progress in Bio-
physics and Molecular Biology, 72 (1), 19–66. https://doi.org/10.1016/S0079-
6107(98)00058-3

Zhang, Q. C., Deng, L., Fisher, M., Guan, J., Honig, B., & Petrey, D. (2011). PredUs: A
web server for predicting protein interfaces using structural neighbors. Nucleic
Acids Research, 39, W283–287. https://doi.org/10.1093/nar/gkr311

Zhang, Q. C., Petrey, D., Deng, L., Qiang, L., Shi, Y., Thu, C. A., Bisikirska, B.,
Lefebvre, C., Accili, D., Hunter, T., Maniatis, T., Califano, A., & Honig, B.
(2012). Structure-based prediction of protein–protein interactions on a genome-
wide scale. Nature, 490 (7421), 556–560. https://doi.org/10.1038/nature11503

Zhang, Q. C., Petrey, D., Norel, R., & Honig, B. H. (2010). Protein interface conserva-
tion across structure space. Proceedings of the National Academy of Sciences,
107 (24), 10896–10901. https://doi.org/10.1073/pnas.1005894107

Zhao, H., Du, H., Zhao, S., Chen, Z., Li, Y., Xu, K., Liu, B., Cheng, X., Wen, W., Li,
G., Chen, G., Zhao, Z., Qiu, G., Liu, P., Zhang, T. J., Wu, Z., & Wu, N. (2024).
SIGMA leverages protein structural information to predict the pathogenicity
of missense variants. Cell Reports Methods, 4 (1), 100687. https://doi.org/10.
1016/j.crmeth.2023.100687

Zhao, X.-M., Chen, L., & Aihara, K. (2010). A discriminative approach for identi-
fying domain–domain interactions from protein–protein interactions. Proteins:

206

https://doi.org/10.1093/nar/gky949
https://doi.org/10.1016/j.sbi.2019.03.006
https://doi.org/10.1006/jmbi.2000.3973
https://doi.org/10.1093/nar/gkq1229
https://doi.org/10.1093/nar/gkq1229
https://doi.org/10.1038/nature01120
https://doi.org/10.1016/S0079-6107(98)00058-3
https://doi.org/10.1016/S0079-6107(98)00058-3
https://doi.org/10.1093/nar/gkr311
https://doi.org/10.1038/nature11503
https://doi.org/10.1073/pnas.1005894107
https://doi.org/10.1016/j.crmeth.2023.100687
https://doi.org/10.1016/j.crmeth.2023.100687


Structure, Function, and Bioinformatics, 78 (5), 1243–1253. https://doi.org/
10.1002/prot.22643

207

https://doi.org/10.1002/prot.22643
https://doi.org/10.1002/prot.22643




Profile
An an aspiring data scientist with a profound interest in artificial intelligence and a solid background in 
bioinformatics, my professional journey includes the successful design of an automation program for search 
tasks, coupled with a random forest model to enhance search accuracy. Proficient in Python and SQL, I have a 
proven track record in the full lifecycle of machine learning models, from training to deployment, as well as 
the storage and analysis of complex data. I am eager to apply my skills to tackle real-world challenges in data 
science.

Professional Experience
Researcher                                                                                                                                April 2020 - present
Institute of Molecular Biology, Germany
• Built a program to automate search tasks and trained a machine learning model to score the search result.
• Benchmarked deep learning tools and developed approach to boost its sensitivity.
• Developed robust pipelines to process, store, analyse, and visualise complex biological data.
• Curated high quality dataset for the development of machine learning models.
• Demonstrated excellent leadership in supervising master's students for their theses.
• Provided data processing and analysis support to PhD student network and colleagues.

Skills
• Proficient in Python OOP and packages, including pandas, scipy and numpy for data wrangling and 

analysis; seaborn and matplotlib for data visualization; scikit-learn for machine learning models; and the 
API of bioinformatic tools for automation.

• Trained in MySQL for efficient data management and proficient in query formulation for data manipulation 
in relational databases.

• Experienced in machine learning statistics and techniques, such as confusion matrix, ROC and PR curve 
analysis, feature importance analysis, hyperparameter tuning with GridSearch, and k-fold cross- 
validation, among others.

• Competent in distilling complex concepts and presenting them to diverse audiences.
• Excellent communicator and team player in cross-disciplinary collaborations.
• Organized, adaptable, and down-to-earth with a steadfast commitment to learning.

Education
• Doctor of Philosophy in Life Science | Johannes Gutenberg University, Germany | April 2020 - present
• Master in Genetics and Evolution | University of Granada, Spain | September 2018 - September 2019
• Bachelor of Science | University of Melbourne, Australia | February 2015 - November 2017

Volunteering Experience 
Cultural Exchange in Trujillo, Peru                                                                   November 2016 - January 2017 
AIESEC Australia 
• Lived with a local host family and worked with international teams to promote environmental awareness and 

enhance local infrastructure.

Languages

CHOP YAN LEE
lcy9977@hotmail.com | +49 152 13858677 | Mainz, Germany

LinkedIn | GitHub

Chinese | Native English | Fluent Spanish | Fluent German | Basic


	Abstract
	Zusammenfassung

	Acknowledgement
	Acronyms
	Introduction
	Modular architecture of proteins
	Folded domains
	Intrinsically disordered regions
	Short linear motifs

	Protein-protein interaction interfaces
	Domain-domain interfaces
	Domain-motif interfaces
	Other types of interfaces

	Computational strategies to predict protein interaction interfaces
	Sequence-based prediction of binding regions
	Structure-based prediction of protein interaction interfaces

	Experimental methods to validate protein interaction interfaces
	Binary methods vs co-complex methods

	Aims of the thesis

	Development of a domain-motif interface predictor
	Introduction
	Methods
	Results
	Discussion

	Evaluation of the 3did database
	Article I: A reference set of hand-curated domain-domain interface types for high confident interface predictions in protein interaction networks

	Benchmarking AlphaFold-Multimer and its application in characterizing novel interfaces
	Article II: Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation
	Supplementary material

	Article III: An extended Tudor domain within Vreteno interconnects Gtsf1L and Ago3 for piRNA biogenesis in Bombyx mori
	Supplementary material


	Conclusions and future perspectives
	Deciphering protein interaction interfaces: detecting the known and charting the unknown
	For a more user-friendly bioinformatic tool
	Validating protein interaction interface using interaction assay
	General outlook

	Bibliography

