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Abstract

This work explores a wide range of data analysis and signal processing methods for
different possible applications in atmospheric measurements. While these methods
and applications span a wide area of disciplines, the evaluation of applicability and
limitations and the results of this evaluation show many similarities.
In the first study, a new framework for the temporal characterization of airborne
atmospheric measurement instruments is provided. Allan-Werle-plots are applied to
quantify dominant noise structures present in the time series. Their effects on the drift
correction capabilities and measurement uncertainty estimation can be evaluated via
simulation. This framework is applied to test flights of an airborne field campaign
and reveals an appropriate interval between calibration measurements of 30 minutes.
During ground operation, the drift correction is able to reduce the measurement un-
certainty from 1.1 % to 0.2 %. Additional short-term disturbances during airborne
operation increase the measurement uncertainty to 1.5 %.
In the second study, the applicability and limitations of several noise reduction meth-
ods are tested for different background characteristics. The increase in signal-noise-
ratio and the added bias strongly depend on the background structure. Individual
regions of applicability show almost no overlap for the different noise reduction meth-
ods.
In the third study, a fast and versatile Bayesian method called sequential Monte Carlo
filter is explored for several applications in atmospheric field experiments. This al-
gorithm combines information provided via the measurements with prior information
from the dominant chemical reactions. Under most conditions the method shows
potential for precision enhancement, data coverage increase and extrapolation. Limi-
tations are observed that can be analyzed via the entropy measure and improvements
are achieved via the extension by an additional activity parameter.
In the final study, state-of-the-art neural network architectures and appropriate data
representations are used to reduce the effect of interference fringes in absorption spec-
troscopy. Using the neural network models as an alternative to linear fitting yields
a large bias which renders the model approach not applicable. On the task of back-
ground interpolation the neural network approach shows robust de-noising behavior
and is shown to be transferable to a different absorption spectrometer setup. Appli-
cation of the interpolation to the test set lowers the detection limit by 52 %.
This work highlights the importance of in-depth analysis of the effects and limitations
of advanced data analysis techniques to prevent biases and data artifacts and to de-
termine the expected data quality improvements. An elaboration of the limitations
is particularly important for deep learning applications. All presented studies show
great potential for further applications in atmospheric measurements.
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Zusammenfassung

In dieser Doktorarbeit wird eine breite Palette von Datenanalyse- und Signalverar-
beitungsmethoden für verschiedene mögliche Anwendungen für atmosphärische Mes-
sungen untersucht. Während diese Methoden und Anwendungsfälle verschiedene
Disziplinen umfassen, lassen sich viele Gemeinsamkeiten in der Analyse von Anwend-
barkeit und Limitierungen sowie den Ergebnissen dieser Analyse aufzeigen.

Ein neues Verfahren für die zeitliche Charakterisierung von flugzeuggetragenen atmo-
sphärischen Messungen wird in der ersten Studie definiert. Mithilfe von Allan-Varianz
Graphen werden dominante Hintergrundstrukturen der Zeitreihe quantifiziert. In Si-
mulationen können die Effekte dieser Strukturen auf die Driftkorrektur und Schätzung
der Messunsicherheit erforscht werden. Das neue Verfahren wurde auf Daten von
Testflügen einer Flugmesskampagne angewandt und bestätigte ein ausreichendes Inter-
vall von Kalibrierungen von 30 Minuten. Während des Bodenbetriebs konnte durch die
Driftkorrektur die Messunsicherheit von 1.1 % auf 0.2 % gesenkt werden. Zusätzliche
kurzweilige Störungen während des Flugbetriebs erhöhten die Messunsicherheit auf
1.5 %.

In einer zweiten Studie wurden die Anwendbarkeit und die Limitierungen verschiede-
ner Methoden zur Rauschunterdrückung für unterschiedliche Hintergrundstrukturen
getestet. Die Verbesserung des Signal-Rausch-Verhältnisses und das Bias zeigen dabei
eine starke Abhängigkeit von der Hintergrundstruktur. Bereiche der Anwendbarkeit
für die individuellen Methoden zeigen kaum Überlappungen.

Der sequentielle Monte Carlo Filter, eine schnelle und vielseitige Methode aus der
Bayes’schen Statistik, wird in einer dritten Studie für mehrere Anwendungen in at-
mosphärischen Feldmessungen untersucht. Der Algorithmus vereint Informationen aus
den Messungen mit bekannten chemischen Reaktionen. In den meisten Fällen zeigt
diese Methode großes Potential für die Verbesserung von Präzision, Datenabdeckung
und Extrapolation. Mithilfe der Entropie können Limitierungen der Methode unter-
sucht werden und die Einführung eines zusätzlichen Parameters führt zu verbesserter
Robustheit.

In der letzten Studie werden Architekturen von neuronalen Netzwerken auf dem
neuesten Stand der Technik und entsprechende Repräsentierung von Daten verwen-
det, um die Effekte von Etalon Interferenzen auf Absorptionsspektren zu verringern.
Als Alternative für lineare Regression wird wegen eines hohen Bias keine gute An-
wendbarkeit erzielt. Als Alternative zur linearen Interpolation von Hintergrundspek-
tren zeigen die neuronalen Netzwerke robuste Ergebnisse zur Rauschunterdrückung.
Mit geringem Trainingsaufwand können diese Netzwerke auch auf ein anderes Spek-
trometer angewandt werden. Im Test-Datensatz wurde das Detektionslimit um 52 %
gesenkt.
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Zusammenfassung

Die Resultate dieser Doktorarbeit heben hervor, wie wichtig eine detaillierte Ana-
lyse der Effekte und Limitierungen von Datenanalysemethoden ist, um Artefakte und
Verzerrungen zu verhindern und die Verbesserungen der Datenqualität abzuschätzen.
Die Analyse der Limitierungen ist besonders wichtig in Anwendungen von tiefen
neuronalen Netzwerken. Alle Studien zeigen darüber hinaus großes Potential für
zukünftige Anwendungen in atmosphärischen Messungen.
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1 Introduction

The earth’s atmosphere features complex interactions between trace gases, aerosol
particles, clouds and sunlight. Understanding these processes is necessary to develop
highly accurate models that can predict the sources and effects of climate change and
air pollution. Insights into the complex chemical system can be gained via coordinated
field measurements of several chemical and meteorological parameters.

Atmospheric chemistry measurements feature a wide range of different experimental
conditions. The requirements to temporal resolution, temporal stability, precision and
sensitivity depend greatly on the particular species and circumstances and can range
over several orders of magnitude. One method capable of providing the necessary
requirements for several trace gases is laser absorption spectroscopy. This particular
method has been significantly improved on a hardware basis during the last decades
[1, 2, 3, 4, 5], but the software data analysis is mostly based on conventional and
basic mathematics and statistics. Many new frameworks for data analysis including
artificial neural networks have been established recently. Some have already covered
applications to laser absorption spectroscopy [6, 7, 8], but the data analysis of state-
of-the-art measurements still relies on conventional approaches [9].

An important milestone in environmental data science is the work by C. Torrence and
G.P. Compo, ”A practical guide to wavelet analysis”, published 1998 in the Bulletin
of the American Meteorological Society [10]. This article reports the application of
the advanced data analysis technique called continuous wavelet transform (CWT) to
the oceanography field El Nino-Southern Oscillation. Their article features a step-by-
step practical guide to the analysis done along with important remarks, extensions
and limitations. This work has been recognized by over 10,000 citations1 in research
articles that apply wavelet transforms in various disciplines.

What separates the work by Torrence and Compo from the numerous studies de-
veloped during the last decades? This characteristic can be explored in a simple
mathematical consideration:

Definition. An experiment E records data D to gain information about an observable
Y . The data is prone to various noise sources and experimental limitations. A possible
reconstruction X of the target observable can be obtained from the recorded data via
signal processing C. The variableX follows some probability distribution that depends
on the observable, the experiment and the signal processing. Performance metrics M

1Web of Science, 24th July 2023
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1 Introduction

can be defined that quantify the capability of X to reconstruct Y .

E : Y → D

C : D → X

X ∼ P (Y,E,C)

0 ≤ M(Y,X)

Example. The QCLAS-instrument (quantum cascade laser absorption spectroscopy)
TRISTAR2 [11] E records Wavelength Modulation Spectroscopy (WMS) spectra D
of a trace gas mixing ratio Y . Fluctuations in laser power and frequency, tempera-
ture and pressure inside the absorption cell, optical noise, detector noise, interference
with other absorbing molecules and data acquisition electronics induce noise to the
acquired spectra D. The mixing ratio is reconstructed via linear fitting against a cal-
ibration spectrum to obtain X. The probability distribution can be mostly assumed
Gaussian with combined relative and absolute noise effects that may be expressed by
the precision P and the detection limit DL of the instrument:

σ2X = DL1σ
2 +X2P2

Definition. (Continued). An advanced analysis technique C∗ provides an alternative
reconstruction X∗ of the observable. The performance compared to the classical
approach C can be expressed by comparison of metrics M . In contrast to the classical
approach, advanced analysis techniques are often accompanied by parameters λ that
have to be chosen accordingly to provide the desired denoising properties: C∗ = C∗

λ.
Since X and X∗ depend on E, the performance increase of C∗ may also depend on E.
Under certain experimental conditions there even might not exist a set of parameters
λ that provide a performance increase.

Therefore, a research article that reports a performance increase of a specific set of
C∗, λ and E does not show that C∗ is applicable for any experiment with similar
conditions. The strengths and limitations of C∗ have to be elaborated to provide
this information. Most of the studies that implement advanced analysis techniques
focused on their specific experimental setup. This may impact the significance of the
applicability and the limitations of the method presented since only a small portion of
the possible search space is explored. This may have an effect on the of reproducibility
in other experiments and is therefore associated to the number of citations and the
benefit for the scientific community.
A special tool in data scientific tasks is the subfield of machine learning called deep
learning, that has lead to many breakthroughs in artificial intelligence research during
the last decades and started a new AI hype. Applications have been spreading to
many disciplines and are ubiquitous in the public media [12]. Considering the defi-
nitions above, a challenge for the application of neural networks in natural sciences
arises. In deep learning, the search space of λ is very large. The parameters include

2Tracer in-situ TDLAS (tunable diode laser absorption spectrometer) for atmospheric research
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model topology, size, optimizer choice and learning rate. Therefore it is not possible
to prove that for a certain scenario E there exists no neural network C∗

λ that pro-
vides a performance increase compared to the classical approach. In the literature,
only positive examples of neural network applications are reported, as it can never be
excluded that a different setup of λ might achieve the desired outcome. Furthermore,
due to the black box properties of neural networks, the explainability and trustwor-
thiness of neural networks is widely discussed [13, 14]. Thus, critical discussion of the
limitations is mandatory.
The goal of this dissertation is the qualitative and quantitative evaluation of the appli-
cability of recent analysis methods to atmospheric measurements. A primary focus is
pointed to the data analysis of spectra produced by the WMS instrument TRISTAR.
Designed and fine-tuned methods can also be evaluated using a different spectrometer
and multiple trace gases. The study will put special emphasis on advanced analysis
methods based on neural networks. The thesis is organized as follows: Chapter 2 cov-
ers the relevant theory and methods of atmospheric measurements and deep learning.
Chapter 3 describes the TRISTAR instrument in detail and applies data scientific
methods to the characterization of its temporal stability. Chapter 4 consists of a
published article which aims to compare different advanced analysis techniques under
different experimental conditions. Chapter 5 consists of a published article that intro-
duces a novel statistical method to improve data quality in atmospheric measurements.
In Chapter 6 neural network architectures are explored as an alternative to conven-
tional fitting and interpolation in absorption spectroscopy applications. Chapter 7
discusses the key results of the individual studies and provides an outlook regarding
future applications and opportunities.
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2 Theory and Methods

2.1 Atmospheric Measurements

Atmospheric measurements provide insights into mixing ratios and number concentra-
tion of trace gases and aerosol particles, respectively, photolysis frequencies and me-
teorological properties, e.g., wind velocity, ambient temperature and pressure, cloud
coverage and precipitation. Typical measurement modes are remote sensing tech-
niques aboard satellites, continuous ground based measurements and field campaigns
at ground stations or aboard moving platforms, e.g., vehicles, aircraft, weather bal-
loons, drones and ships. The goals of atmospheric measurements are the investigation
of hazardous air pollution and the improvement of our understanding of chemical pro-
cesses, furthermore the validation of weather and climate models for better weather
forecasting and climate modeling, particularly modeling of global warming and cli-
mate change [15]. Measurement techniques feature optical spectroscopy approaches
[16], mass spectrometry [17], chemiluminescence [18], fluorimetry [19] and many oth-
ers. Depending on the measured species and measurement platform, different re-
quirements are needed regarding measurement precision, accuracy, time resolution,
selectivity, in-situ or sample collection, autonomous or manual operation [15].

This section features a short description of trace gases and their dynamics in the tro-
posphere as well as a description of measurement uncertainty and its composition.
Sect. 2.2 provides a detailed description of Infrared Absorption Spectroscopy tech-
niques. Details about other measurement techniques as well as further processes in the
atmosphere, e.g., heterogeneous reactions, particle formation and aerosol interactions
are not discussed in this thesis. Suggestions for the interested reader include Heard et
al. (2006) [20] that features an extensive elaboration of common and state-of-the-art
atmospheric measurement techniques and their challenges, and Seinfeld and Pandis
(1998) [21], who present the dynamics of trace gases and aerosol particles throughout
the atmosphere.

2.1.1 Trace gases in the troposphere

The mixing ratio χ defines the relative contribution to the total air volume of a
particular gas species and can be related to the concentration c through the ideal gas
law:

χ =
V

Vair
=

n

Vair

RT

p
=
RT

p
c (2.1)

The earth’s atmosphere mainly consists of nitrogen (N2) and oxygen (O2), with
χ = 0.79 and χ = 0.20, respectively. However, local and global properties of the
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2 Theory and Methods

atmosphere, e.g., chemical reactions, particle formation, radiative forcing and air pol-
lution are driven by trace gases which are much less abundant. The greenhouse effect
is dominated by tropospheric carbon dioxide (CO2), methane (CH4), ozone (O3), ni-
trous oxide (N2O) and water vapour (H2O). Some of these compounds only contribute
to the total air in the parts per billion volume (ppbv) range. Atmospheric chemistry
in the troposphere is driven by chemical reaction with radicals with typical mixing
ratios in the parts per trillion volume (pptv) range [21].
Junge (1974) [22] reported an anti-proportionality between the atmospheric variability
of a trace gas and its residence time in the troposphere. This highlights how studying
the mixing ratios of low abundant gases can shed light on the dominant dynamical
processes in the troposphere. The temporal change of the concentration of a trace gas
g can be described by several contributions, with the (photo-)chemical production P ,
the (photo-)chemical loss L, transport T , emission E and deposition D:

d

dt
cg = P (g)− L(g) + E(g)−D(g)± T (g) (2.2)

By assuming a steady state and calculating the dominant production and loss contri-
butions via (photo-)chemical reactions, deviations from the steady state due to other
chemical reactions, emission, deposition and transport can be investigated [23]. Min-
imizing the uncertainty of these processes has an impact on the quality and accuracy
of global climate and chemistry model forecasts.
The variety of different reactive species enables a large number of possible chemical
reactions. This creates several competing pathways in the cycles and catalysis of trace
gases which dictate the net effect of the interplay of these reactions. An example of
this phenomenon is visible in the oxidation of CH4 and volatile organic compounds
(VOC). CH4 forms the methyl peroxy radical CH3O2 through reaction with the OH
radical and subsequent combination with O2. This intermediate either reacts with NO
or HO2 to form HCHO or methylhydroperoxide (CH3OOH), respectively [21]. The
former reaction yields an HO2 radical which can be recycled to OH by reaction with
NO. Ozone is then formed via photolysis of NO2. The dominant pathway dictates
the net ozone production of the system [24]. The described reactions are summarized
in reactions (R1) through (R5).

CH4 + OH
O2−→ CH3O2 + H2O (R1)

CH3O2 + HO2 −→ CH3OOH + O2 (R2)

CH3O2 + NO
O2−→ HCHO + NO2 + HO2 (R3)

HO2 + NO −→ NO2 + OH (R4)

NO2 + hν
O2−→ NO + O3 (R5)

Ozone itself is a greenhouse gas, an air pollutant and the primary source of the OH
radical in the troposphere [25]. Thus, measuring an ensemble of trace gases partic-
ipating in these processes is required to understand the dominant chemistry and its
effects on air pollution and global climate [21].

6



2.1 Atmospheric Measurements

2.1.2 Measurement Uncertainty in Atmospheric Measurements

Measurement devices always feature some uncertainties that emerge from statistical
and systematic effects of the measurement procedure. The total measurement un-
certainty is a composition of several different types of errors that each contribute
differently. A very important distinction to be made are the separation of statistical
and systematic errors, which is equivalent to the distinction between precision and
accuracy as in the picture of a marksman and a shooting target described in Heard et
al. [15]. Statistical error, or variance, or precision, refers to a spread around the mean
value of an ensemble of measurements X. Systematic error, or bias, or accuracy, refers
to the deviation of the mean value from the true value Y . Often the mean squared
error (MSE) is defined as the sum of variance and squared bias:

MSE = E
[
(X − Y )2

]
= Var(X) +

(
X̄ − Y

)2
(2.3)

Signal processing techniques try to minimize the MSE to accomplish both objectives,
low variance and low bias, at once. However, if further data analysis and processing is
intended, low bias is preferred over low variance since further averaging has no effect
on the bias. Therefore, biased data might lead to wrong conclusions. Thus, signal
correction can be useful that lowers the bias while increasing the statistical error σ.

Example. A measurement device aboard an aircraft detects the mixing ratio through
the concentration of a trace gas inside a measurement cell operated at cabin pres-
sure. However, the pressure directly influences the conversion from concentration into
mixing ratio according to the ideal gas law. Thus, a bias is introduced into the mea-
surement that correlates cabin pressure to mixing ratio. For pressure correction, a
pressure sensor is attached to the measurement cell. The statistical error of the pres-
sure sensor contributes to the total statistical uncertainty in order to decrease the
systematic error.

Typically the precision P is defined as the relative statistical error. This implies (2.4a),
but other power dependencies of σX from X are possible. In a counting experiment,
for example, the noise is scaled through (2.4b). In most applications, the major
contributions can be split into relative and absolute noise, where the detection limit
(DL) (2.4c) refers to the noise present at zero mixing ratio and therefore refers to the
capability of the measurement device to distinguish a signal from background noise.
McManus et al. [26] refer to light and dark noise, and proportional noise, with respect
to absolute and relative noise sources, respectively.

σX = PX (2.4a)

σX ∼
√
X (2.4b)

σX
X≈0
=: DL1σ (2.4c)

The detection limit DL is often given with an additional factor of 2

DL2σ = 2 ·DL1σ,

7



2 Theory and Methods

which allows for an alternative interpretation of the detection limit from the perspec-
tive of hypothesis testing. A measured data point X reported from the instrument is
tested against the null hypothesis H0 that the true value is 0 and X is just a random
fluctuation of the instrument. With a significance threshold of approximately 5 %,
values that are less than DL2σ away from 0 cannot reject H0.

Another important property of uncertainties is the time dependency. Variations in
ambient parameters that influence the instrument sensitivity lead to drifts. These
drifts in sensitivity, if uncorrected, worsen the accuracy of the measurement. Regular
measurements of calibration gas enables linear correction of these drifts, exchang-
ing the systematic deviation with additional statistical uncertainty. This additional
uncertainty, however, cannot be lowered through further averaging and sets a limit
to the statistical error. Thus, the relative measurement uncertainty depends on the
integration time τ by

σX(τ)2

X2
=

P2

τ
+ R2, (2.5)

where R refers to the reproducibility of the calibrations. The same logic applies to
absolute measurement uncertainty: Drifts in the instrument offset have to be corrected
via background or zero measurements. These corrections enable more accurate low-
signal measurements but determine the final detection limit.

Thus, a full description of the instrument performance for an atmospheric measure-
ment device has to contain the following metrics:

� The time-independent relative error R

� The time-dependent relative error P at a certain τ

� The accuracy (e.g. due to provided measurement error of the primary calibration
gas source)

� The time-independent and time-dependent parts of the detection limit DL

2.2 Infrared absorption spectroscopy

A method proven capable of measuring trace gases in the atmosphere is laser absorp-
tion spectroscopy. It has been described in detail, for instance, in [1, 5, 27].

Absorption spectroscopy makes use of quantum-mechanical transitions in specific en-
ergy levels of molecules. While atomic transitions typically lie in the ultraviolet and
visible region of the spectrum of light, molecules can be identified from rotation-
vibrational transitions that span from near infrared (NIR) to mid infrared (MIR).
Each transition is broadened through natural broadening due to the natural lifetime
of the excited state, yielding a Lorentzian profile. The transition line is further broad-
ened through Doppler broadening and pressure broadening, that yield a mixture of a
Gaussian and a Lorentzian profile, respectively. The absorption line corresponds to

8



2.2 Infrared absorption spectroscopy

a convolution of the Gaussian profile αG and the Lorentzian profile αL and is called
Voigt profile αV .

αG(λ) ∼ exp

(
−(λ− λ0)2

2σ2

)
(2.6)

αL(λ) ∼ 1

1 +
(
λ−λ0
γ

)2 (2.7)

αV (λ) = αG ∗ αL (2.8)

In absorption spectroscopy the concentration of a molecule of interest is measured
from the absorption at the transition wavelength λ0. According to the Lambert-Beer-
law (2.9), the strength of the absorption can be approximated linearly if the optical
depth D is small enough. The optical depth is the product of the absorption strength
S, the concentration c in molec/cm3 of the absorber along the beam path, the length
of the beam path L and the beam width A.

I(λ) = I0 exp (−αV (λ)D) ≈ I0 (1− αV (λ)D)

⇒ ∆I ≃ I0αV (λ)D
(2.9)

For a high precision measurement it is crucial to maximize the optical depth as it
directly translates to the signal amplitude. The absorption strength can be opti-
mized via careful line selection. In principle, picking the transition with the highest
available absorption strength is optimal, but interferences with other transition lines
nearby have to be considered as well as the availability of a light source in the corre-
sponding frequency region. The beam intensity per area depends on the light source
used. Picking a higher power laser source yields an increased signal strength. The
length of the beam path can be increased by geometric design of the absorption cell.
However, a very big absorption cell is impractical in most applications and requires a
high gas flow to ensure a reasonable temporal resolution. Special mirror alignments
enable multiple passes through the absorption cell without beam interference. These
multipass absorption cells (MPCs) range from the White cell [2] and the astigmatic
Herriott cell [3, 28] to more complicated setups [29]. However, a high quality coating
of the mirrors is mandatory that maximizes the reflectivity R of the surface for the
target wavelength. Otherwise, the reduction of the beam intensity due to an increased
number of reflections N mitigates the positive effect of an enhanced path length:

∆I ≃ I0RNαV (λ)cSALN ∼ RNN (2.10)

In atmospheric sciences, two major modes of measurement operation are dominant.
The first approach uses direct absorption techniques. This way, determination of the
gas mixing ratio is possible without the need of calibration gas, since both the intensity
I0 and the intensity difference ∆I are measured which enables the determination of
the optical depth. Challenges of this operation mode are interferences of abundant
gases in the open optical path and baseline corrections [30]. The second approach
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2 Theory and Methods

uses wavelength modulation to measure a harmonic of the absorption profile instead.
Wavelength modulation suppresses baseline drift and open optical path absorption but
requires a more complicated operation and makes calibration against a gas standard
necessary [9].

Additionally to a scanning sweep, the laser frequency ν is modulated with a higher
frequency sine-wave, typically in the range 1 - 100 kHz. The modulation depth a can
be expressed by the dimensionless parameter m and the line width γ.

ν = ν0 + a cos(Ωt) = ν0 +mγ cos(Ωt) (2.11)

The detector signal is then demodulated with a synchronized sine-wave with n times
the modulation frequency Ω. Integration or low-pass filtering yields the n-th harmonic
of the absorption line Hn. Wavelength modulation spectroscopy is sometimes also
called harmonic detection and derivative spectroscopy, since the n-th harmonic is
closely related to the n-th derivative of the absorption profile [5].

Hn(ν) =

∫ π
Ω

0
αV (ν +mγ cos(Ωt)) cos(nΩt) dt (2.12)

The order n governs the shape of the harmonic, signal strength and the bandwidth.
A decent trade-off between bandwidth and signal strength is achieved via n = 2 and
called 2f -spectroscopy. As a result of the experimental realization of the wavelength
modulation in tunable diode lasers, an additional amplitude modulation of the laser
intensity comes into effect that slightly distorts the harmonics up to the order 2. This
phenomenon is called residual amplitude modulation [27]. In industrial gas sensing,
the need for a calibration standard can be discarded through the use of nf/1f tech-
niques that adjust for laser intensity changes [31].

2.2.1 Optical etalon interference fringes

Relative uncertainty in infrared absorption spectroscopy is dominated by effects that
linearly scale the intensity difference (2.10). These include variations in cell pressure
and temperature, laser intensity and detector sensitivity. Small variations caused
by the physical expansion of gas due to cell pressure and temperature can be easily
corrected. This requires negligible influence to line broadening and line strength.
Experimental setups such as nf/1f spectroscopy enable correction for laser intensity
and detector sensitivity variations [31]. Fast variations can be suppressed through
higher integration times. Slow drifts can be suppressed via regular calibrations with
the reference gas.

Absolute uncertainty limits the minimal optical depth an infrared absorption spec-
trometer is able to distinguish from background noise. While noise sources such as
detector noise, laser shot noise and electronic noise are small compared to the absorp-
tion signals achieved by commonly used laser, detector and MPC setups, the main
absolute limitation is caused by optical etalon interference fringes. These emerge from
standing waves in the optical path between two reflecting surfaces with distance ℓ and
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2.2 Infrared absorption spectroscopy

refractive index n of the medium and cause repeating Lorentzian peaks with a free
spectral range (FSR)

∆νFSR =
c

2nℓ
(2.13)

and finesse

F =
∆νFSR

∆νc
, (2.14)

where ∆νc refers to the width of the Lorentzian peak. In the low finesse limit, the
fringes contribute an ensemble of sinusoidal interferences whose FSR may occupy the
same frequency range as the absorption spectrum. The origin of fringes has been
theoretically discussed [30, 32, 26, 33] and several studies have explored experimental
techniques [34, 5, 27] and signal processing [35, 36, 37] to reduce the impact of fringes.
Under some experimental conditions, there may be the possibility to filter the fringe if
the FSR is much lower than the contributing frequencies to the absorption profile [36].
If the fringe pattern can easily be split into a small number of additive sine-waves, a
Levenberg-Marquardt fit might approximate the background to reasonable precision
for a fringe reduction [8]. However, in most ambient measurements, the fringes inter-
fere and produce a rather complicated background pattern [32, 33]. Here, a fitting
routine becomes unstable and filtering techniques also fail [8]. A common counterac-
tion are regular measurements of absorption-free signals by flooding the measurement
cell with purified gas and background subtraction from ambient measurements [38, 9].
This method requires temporal stability of the fringe pattern between consecutive
background measurements and lowers the overall duty cycle.
Since the FSR depends on the distance between the reflecting surfaces, tiny changes
due to ambient changes in temperature, pressure, or acceleration can influence the
shape and position of the fringes. These ambient changes are ubiquitous in field
experiments, especially aboard moving platforms, e.g. aircraft. Top-performing in-
struments feature temperature stabilization [11, 38, 9] and pressure stabilization [9] of
the optical setup to reduce influence on fringe stability and allow for a lower detection
limit and duty cycle.

2.2.2 Allan-Werle-Plots

Werle et al. [39] have introduced Allan-Werle-plots as a method for investigating time
dependencies in spectroscopic measurements. Many publications [38, 29] report the
temporal stability of their setup using such Allan-Werle-plots. However, many more
insights can be gained as reported in [32].
The Allan variance or two-sample-variance consists of the mean squared difference
between adjacent data points for different integration times τ :

σx(τ)2 =
1

2

M−2∑
k=0

(xk+1(τ)− xk(τ))2 (2.15)

xk(τ) =
1

τ

∫ (k+1)τ

t=kτ
x(t)dt (2.16)
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2 Theory and Methods

The Allan variance of uncorrelated, white noise decreases proportional to τ−1. Brow-
nian noise, or random walk noise, increases with τ . The latter refers to random drifts
in the data. When plotting the Allan variance versus the integration time, these are
the major contributions that limit the maximum integration time [39]. However, other
noise contributions also influence the structure of the Allan-Werle-plot. As shown by
Werle [32], flicker noise or 1/f noise contributes a constant noise floor. Sinusoidal
variations in the data lead to the aliasing pattern

σ2 ∼ sin (πτf)4

(πτf)2
, (2.17)

where f refers to the frequency of the sine wave. Figure 2.1 shows an exemplary
Allan-Werle-plot of data simulated via the following setup:

ht = ht−1 + ϵB

ft = F−1

(
ϵF

2 ln(2)ω

)
xt = 100 + ht + ϵW + sin (2πtf) + ft

with ϵB ∼ N (0, 0.042), ϵW ∼ N (0, 22), f = 512−1, ϵF = 0.4

Figure 2.1: Allan-Werle-plot of simulated data containing white noise, random walk, flicker
and sinusoidal contributions. The individual contributions are drawn separately in black
(white noise), green (random walk), yellow (flicker) and blue (sinusoidal). The total
Allan variance (red) is the sum of the individual variances. At a particular integration
time, the Allan variance is dominated by specific contributions. In this case, at low
integration time the white noise dominates. At intermediate integration times the Allan
variance is dominated by flicker and sinusoidal contributions. For high integration times
the random walk drifts take over.
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2.3 Deep Learning

Figure 2.2: Schematic of a fully connected neural network. The nodes of each layer are drawn
as circles, the weights are drawn as straight lines between the nodes. The opacity of
the lines encodes the weight values. The shown FCNN consists of an input layer with
size 16, hidden layers of sizes 10, 10 and 8, and a single output neuron. The image was
created using [40].

2.3 Deep Learning

Machine learning is the field of data-driven optimization of complicated functions that
can be applied in classification and artificial intelligence tasks. Deep learning is a novel
subspace of that field which focuses on deep artificial neural networks (DNN). The
word deep refers both to the depth of the network due to its number of layers, and to
the depth of the representation that is built onto several layers of abstraction. Neural
networks have a long and interesting history in neuroscience and computer science.
Some of the key concepts of state-of-the-art deep learning have been developed 40
to 60 years ago. A comprehensive description of the field and its history is, e.g.,
given in the first chapter of the book by Goodfellow et al. (2016) [41]. The field of
deep learning contains many advanced tools and practices that have been evaluated in
practice and allow for an efficient training procedure and high inference performance
[42, 43, 44, 45, 46, 47, 48]. In this quickly evolving field the best practices and network
architectures are constantly changing. A comprehensive explanation of commonly
used model design techniques will not be given in this section as it is beyond the scope
of this thesis. This section will give a brief introduction on the most recent wave of
neural networks and discuss common implementations and applications relevant for
the field of this thesis.

The feed-forward multi-layer-perception (MLP) is the most primitive building block of
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neural networks. It consists of iterated linear transformations represented via matrix
multiplications Wk and a following non-linearity σ called activation function. The
outputs of a layer yk are inputs to the subsequent layer yk+1. A schematic is shown
in Figure 2.2.

yk+1 = σ (Wkyk) (2.18)

In the MLP architecture each node (neuron) of a layer is connected to each node of
the next layer, thus, it is also called fully-connected neural network (FCNN). Since
the weight matrices scale up with the product of the adjacent number of neurons,
complex FCNNs become harder to train and are prone to overfitting. Overfitting is
the phenomenon when the machine learning algorithm does not generalize the target
distribution but instead adapts to specific features of the training samples [42]. It is
analogous to memorizing facts by heart versus understanding the underlying structure.

Figure 2.3: Schematic of convolutional neural network. The size of the rectangles encodes
the width and height of the image. The stacked rectangles refer to the color maps and
feature maps, respectively. In the beginning of the CNN the small squares show the
effect of filters acting at each position in the images individually through equivariant
operations, e.q., convolution filters and local pooling operations. At the end of the CNN
a global pooling operation reduces the feature maps to a one-dimensional vector and a
fully connected layer is applied to obtain the output. The image was created using [40].

Convolutional neural networks (CNN) replace the full matrix multiplications with
convolutions of filters which kernel sizes are small compared to the dimension of the
input data. These convolution filters share the same weights at each position in the
image. This leads to a much lower number of weights and incorporates a translational
symmetry. The layer output is equivariant under translations of the input image
position. CNNs greatly improved the performance of image processing tasks [49, 50,
51, 52]. A schematic of a CNN is shown in Figure 2.3.
Recurrent neural networks (RNNs) include layers with hidden vectors that are modi-
fied and fed back into the layer for each input in a sequence. This enables time series
and sequence processing and has been state of the art in natural language processing
(NLP) before transformers were introduced. Several types of RNN building blocks
were proposed. A major contribution was the long-short-term memory cell (LSTM)
proposed by Hochreiter et al. [53]. It features a second hidden vector for longer cor-
relation times. Recurrent neural networks require a lot of memory for training since
the whole sequence is unfolded in the training process.
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The attention mechanism was introced by Vaswani et al. [54]. There a query se-
quence gates the actual input sequence to focus on important parts of the sequence
at a time. This development quickly became state-of-the-art in NLP and lead to
similar architectures which use self-attention called transformer [55, 56, 57]. Trans-
former architectures dominate generative artificial intelligence applications like GPT
(generative pre-trained transformer) [58].

2.3.1 Applications of neural networks

Neural network applications, inspired by the human brain’s structure,
have revolutionized technology and science, driving breakthroughs in di-
verse fields such as image recognition, natural language processing, and
autonomous systems.

– ChatGPT1 [59]

Neural networks feature many ground-breaking applications in various fields, e.g.,
image recognition [50], artificial intelligence [60] and – as demonstrated by OpenAI’s
chatbot ChatGPT – natural language processing [58].

Image recognition tasks range from classification [50, 57] over image segmentation
[44, 61] to generation of images [47]. Most recent advancements in image generation
enable high resolution image generation and image modification from text prompts
[62]. Figure 2.4 shows example pictures generated from a diffusion model2. Image
recognition is useful for various applications, e.g., medical diagnosis [44, 63] and au-
tonomous driving [64].

A famous application that has impacted the media and industry in early 2023 is
natural language processing. Transformer architectures [55] based on the attention
mechanism [54] sparked the era of large language models that can generate seemingly
human-like text and are able to hold conversations [58, 12]. Chatbots similar to
ChatGPT have been integrated into industry applications, e.g. personal assistants
and customer support [65, 12], and are highly discussed in education [66].

2.3.2 Applications in atmospheric sciences and spectroscopy

Several studies have also explored applications of neural networks to spectroscopy
tasks and atmospheric sciences. These applications can be grouped into different
categories, dependent on the objective of the neural network used.

A typical application of machine learning in general is classification. Liu et al. [67]
explored shallow CNN architectures for detection of extreme weather phenomena from
global climate reanalysis datasets. Pham et al. [68] applied a neural network to pixel-
based estimation of landslide susceptibility. Acquarelli et al. [69] applied CNNs to

1ChatGPT (GPT-3.5) response to prompt ”Write a 1-2 sentence paragraph that introduces into
neural network applications”

2https://stablediffusionweb.com/
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Figure 2.4: Example images generated from a diffusion model2 [62] from the prompt ”intro-
duction to neural network applications”.

classify spectroscopic data acquired from Fourier-Transform Infrared (FTIR), Near-
Infrared (NIR) and Raman spectroscopy. Xia et al. [70] also used CNNs to distinguish
NIR and Mid-Infrared (MIR) spectra obtained from several plastics.

Another application category in atmospheric sciences is forecasting. Ong et al. [71]
applied recurrent neural networks to the forecasting of PM2.5 in Japan from environ-
mental data. Li et al. [72] used the more advanced LSTM architecture to forecast
PM2.5 in downtown Beijing. Gil et al. [73] studied the ozone formation from HONO
measured via QCL absorption spectrosopy. In their study they experimented with
concentration estimation of HONO via artificial neural networks from meteorological
data and nitrogen oxides, NO and NO2.

Special applications in quantitative tasks are surrogate models and inversions. These
refer to simple neural networks trained from synthetic data generated from expen-
sive and lengthy calculations to speed up the process. An important example is the
reconstruction in tomography absorption spectroscopy as reported, e.g., in [74, 75].
Reconstruction of the target is a complex non-linear problem requiring computation-
ally expensive calculations. While the training of neural networks requires a lot of
computation, the inference is comparably light-weight. This way, a surrogate model
capable to deliver the output to a complex calculation with desired precision, but far
less computation time, is beneficial in time-critical tasks. Rankine et al. [76] use a
similar approach to rapidly predict X-ray spectra.

Some studies even experiment with neural networks to directly fit absorption spectra
to gas concentration. Nicely et al. [8] conducted a simulation study that used a
shallow neural network for fringe reduction in direct absorption spectroscopy. They
synthesized a mixture of a CO2 absorption line and a discrete number of pre-defined
etalon fringe patterns. In their proof-of-concept study they successfully showed a de-
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noising behavior but also discussed a limiting bias introduced by the network. Other
studies, e.g., Tian et al. [77], report a good linearity of a direct fit performed by a
neural network for high SNR input spectra.

2.3.3 Limitations of neural networks

Since the inner structure of neural networks is completely determined by the train-
ing process, it is challenging to reason how a network functions. The performance is
therefore determined by the quality of the training data. Misbehavior of neural net-
works on unseen data may originate from poor training data quality or poor training
objective.
During training process, the distribution of training data is mapped to an output that
minimizes the loss function. If inference data is distributed differently, the network
may output unexpected results. This phenomenon is called out-of-distribution error.
In classification tasks, wrong labels may be returned with high confidence despite
the sample originating from a different distribution [78, 79, 80]. The training data
may also contain undesired biases which will effect the network behavior. Sexism
and discrimination towards certain groups and populations have been reported in
machine learning applications due to biased training examples [81, 14]. Thus, careful
preparation of the training data is necessary to handle these challenges. Elaboration
of possible inference data encountered is necessary to evaluate the risk of out-of-
distribution errors.
The loss function or the training objective may be poorly chosen or may not be
appropriate for the task. Macroscopic objectives, e.g., generalization capability and
other objectives that cannot be described by analytic functions, cannot be ensured via
good training performance. An example is the notorious overfit: While the researcher
aims for a classifier with high generalization abilities to determine the different input
classes, the network may instead memorize features of the training samples to achieve
the best possible classification accuracy but renders itself unable to achieve similar
performance on unseen data [42]. Vague objectives that cannot easily be described
analytically are a major challenge in AI safety [80]. Before deploying neural networks
in applications, deviations from the true objective and the minimized loss function
need to be evaluated.
Another concerning phenomenon that limits the trustworthiness of neural networks
are adversarial attacks. The inner structure of a neural network can be exploited to
influence the output class by applying structured, but tiny variations to the input [79].
Several studies have covered defense mechanisms against this vulnerability [46, 82].
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Abstract

Allan-Werle-plots are an established tool in infrared absorption spectroscopy to quan-
tify temporal stability, maximum integration time and best achievable precision of a
measurement instrument. In field measurements aboard a moving platform, however,
long integration times reduce time resolution and smooth atmospheric variability. A
high accuracy and time resolution are necessary as well as an appropriate estimate
of the measurement uncertainty. In this study, Allan-Werle-plots of calibration gas
measurements are studied to analyze the temporal characteristics of a Quantum Cas-
cade Laser Absorption Spectrometer (QCLAS) instrument for airborne operation. Via
least-squares fitting the individual noise contributions can be quantified and different
dominant regimes can be identified.

Through simulation of data according to the characteristics from the Allan-Werle-
plot, the effects of selected intervals between in-flight calibrations can be analyzed.
An interval of 30 min is found sufficient for successful drift correction during ground
operation. The linear interpolation of the sensitivity increases the accuracy and lowers
the measurement uncertainty from 1.1 % to 0.2 %. Airborne operation yields similar
results during segments of stable flight but additional flicker and sinusoidal contribu-
tions. Simulations verify an appropriate interval of 30 min in airborne operation. The
expected airborne measurement uncertainty is in the range 0.8 % to 2.4 %.
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3.1 Introduction

Allan-Werle-plots have become a major tool in infrared spectroscopy applications for
the characterization of instrumental stability and performance for field experiments
[84, 38, 29, 85, 86, 87, 88]. Werle et al. [39] originally applied the two-sample-
variance, or Allan Variance, to tunable diode laser absorption spectroscopy (TDLAS)
to determine the maximum integration time and minimum achievable precision at this
integration time.

However, a large maximum integration time is not necessarily needed in field ex-
periments. For many species, the atmospheric variability is much higher than the
instrument uncertainty [22]. In this case, averaging the data to a lower time reso-
lution filters atmospheric features of the time series. In field experiments aboard a
moving platform, e.g. aircraft-borne or drone-borne field experiments, a high temporal
resolution is needed to enable localization of the measurements [89] and further data-
driven analysis, e.g. calculation of fluxes via eddy covariance and wavelet transforms
[90, 91, 92]. Furthermore, determination of the instrumental properties in the labora-
tory or in a stationary environment may not be transferable to in-flight performance
[9].

According to Werle (2011) [32] many more features of the instrumental temporal
dependencies can be extracted from an Allan-Werle-plot. Apart from uncorrelated,
white noise, and random walk drifts, other noise contributions, e.g. flicker noise and
sinusoidal interferences can be determined. This study will characterize instrumen-
tal temporal dependencies of the TRISTAR (tracer in-situ TDLAS for atmospheric
research) instrument described in [11, 93, 38, 94] and investigate differences in the
performance during ground and airborne operation. Using the information provided
via Allan-Werle-plots, suitable repetition times of in-flight calibrations and their im-
plication to measurement uncertainty estimation will be discussed.

3.2 The TRISTAR instrument

The TRISTAR instrument has been originally designed by Wienhold et al. (1998) [11]
as a three-channel TDLAS that accumulates three laser beam paths via beam splitters
[11] and in a later design via pneumatic moving mirrors [93]. The combined beam
path is guided though an astigmatic White cell [2, 11] with a base length of 0.5 m and
128 passes. The outgoing beam is split into a signal and reference beam and both are
focused to individual detectors. A reference cell filled with a high concentration of the
target gas is inserted into the reference beam path to enable line determination and
line locking via laser current offset adaption. The instrument has been successfully
deployed in various aircraft campaigns [95, 96, 38, 97] aboard a Learjet 35A and the
High Altitude Long-range (HALO) Gulfstream G550 research aircraft. During these
campaigns a range of trace gases has been measured including CO, CH4, HCHO, NO2

and N2O. Measurement uncertainties of 0.5 %, 0.5 % and 0.7 % have been achieved for
CO, N2O and CH4, respectively [38].
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During 25 years of operation, various modifications have been applied to the original
setup, including a major revision since the last reported experimental setup by Tadic
et al. (2017) [94]. The cryogenic cooling system has been abolished by replacing
individual components that were cooled via liquid nitrogen, i.e. lasers and detectors,
by thermoelectrically cooled components. The three-laser setup has been replaced
by single-laser operation which increases data coverage of the target species. While
these measures might decrease the optimal performance and limit the diversity of
data output, a simpler instrument maintenance and more autonomous operation can
be achieved. The latter is enabled by substituting the V25 electronics and DOS PC by
a National Instruments real time controller paired with an ARK Windows PC running
a LabView real time application and graphical user interface. Establishing a PC-based
user interface enables remote operation via internet and reduces the required training
time for airborne operators in aircraft measurement campaigns. Autonomous and
remote operation has been demonstrated during the ground-based field experiment
at the German Taunus Observatory in 2021 [98], requiring only maintenance and
calibration gas source exchange as on-site activities.

3.2.1 Optics and gas flow

A room temperature quantum cascade laser (RT-QCLAS) inside a high heat load
(HHL) housing (AlpesLasers, Switzerland) is driven in cw-mode and emits a divergent
beam. The beam is captured and focused onto a first focal point via a three-mirror
telescopic optics (IPM Freiburg). Via a pair of an off-axis parabolic (OAP) and
elliptic (OAE) mirror the beam is converted into a parallel beam with a width of
approximately 14 mm. The large beam waist makes the setup less sensitive to aerosol
particles and imperfections on the mirrors and turbulence in the optical path.

Several planar mirrors guide the path to the entrance of the White cell. There the
parallel beam is focused to a second focal point using another pair of an OAE and
OAP mirror. Then the divergent beam is injected through wedged CaF2 windows into
the double corner cube White cell, where it gets reflected 128 times.

The White cell has a length of 0.5 m and holds a volume of 3 l. The cell is drained by
a scroll vacuum pump set to a constant gas flow of 3 slm (standard liters per minute).
On the top of the cell a movable valve operated by a step motor regulates the cell
pressure to 50 hPa. The inlet is connected to a T-junction, where calibration gas
can be injected by a mass flow controller (Bronkhorst). Excess calibration gas exits
through the ambient air inlet. A detailed schematic of the tubing is given in Tadic et
al. (2017) [94], Figure 2.

The outgoing beam is focused on a third focal point and converted back into a parallel
beam using another pair of OAE and OAP mirrors. The parallel beam is split via
a CaF2 beam splitter (50:50) into signal and reference beam. The reference beam is
further passed through a reference cell filled with high concentration of the target gas.
Both parallel beams are focused via coated CaF2 lenses with focal length of 40 mm
onto room-temperature photovoltaic infrared detectors (VIGO systems, Poland). All
optical components are mounted on a rigid aluminum plate that is electrically heated
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to ensure thermal stability. This makes the optical setup less sensitive to distance
variations caused by thermal fluctuations.

3.2.2 Electronics and data processing

The instrument runs autonomously inside a NI LabView real time application on the
real time controller (NI cRIO 9038). The software controls pump, inlet and MFC and
writes data to disk. Through the FPGA module the scanning ramp and modulation
is set at a clock frequency of 250 kHz with a modulation frequency of 31.25 kHz and a
scanning frequency of 60 ramps per second. The ramp and modulation are input to
the laser controller that operates the QCL at a set temperature and laser base current
to obtain a laser frequency near the absorption central frequency.

The detector output is digitally demodulated at twice the modulation frequency for
2f wavelength modulation spectroscopy (WMS). The raw signal is down-sampled by
a CIC-stage to reduce the amount of data. Individual spectra of the increasing (up)
and the decreasing (down) part of the triangular scanning frequency are averaged
separately to obtain a time resolution of 1 Hz. The averaged up and down spectra are
saved to disk and further processed for online operation.

The described configuration of modulation frequency, scanning frequency and time
resolution can be adjusted to the needs of the experimental requirements.

Throughout the experiments carried out in this study, the QCL is operated near
2190 cm−1, where a strong line pair of CO and N2O is located [99]. The scanning
range is optimized to enable simultaneous measurements of both species.

The saved data is post-processed using custom code written in IGOR Pro (Wavemet-
rics). The raw signal is filtered using a IIR low-pass filter, the line centers and widths
are determined from the reference signal and the spectra are linearly fit against the
most stable absorption spectrum obtained during a calibration measurement.

3.2.3 Instrumental performance measures

The total measurement uncertainty is composed of several metrics that each contribute
differently to the limitation of the measurement device. The systematic error is defined
by the accuracy and describes the overall deviation of all data points from the true
value. Since the TRISTAR device uses the relative measurement mode of WMS, the
uncertainty of the conversion factor from arbitrary units to mixing ratio contributes
to the accuracy. The accuracy depends on the calibration gas mixing ratio uncertainty
as determined in the laboratory or provided by the gas standard supplier.

The systematic deviations caused from drifts can be mitigated by regular calibrations.
Considering changes in relative sensitivity, the drifts can be corrected via linear inter-
polation of the reciprocal mixing ratios. This interpolation scheme requires that the
drift speed is not faster than the interval between calibrations. The reproducibility
R refers to the relative spread of the calibrations over a complete measurement. This
uncertainty cannot be lowered by further averaging.
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The precision P refers to the relative statistical error at a given integration time after
drift correction. It is obtained from the relative standard deviation of the calibration
measurements. The total relative error at native time resolution is a combination of
P and R:

σχ
χ

=
√

P2 + R2 (3.1)

The detection limit refers to the lowest mixing ratio distinguishable from noise. It
is estimated from the standard deviation of absorption-free gas injected into the ab-
sorption cell. By interpreting the precision as pure absolute error, the precision at the
mixing ratio of the calibration gas gives an upper boundary and a worst case estimate
to the detection limit.
Werle et al. [39] define the Allan variance as the mean squared difference between
adjacent data batches for different integration times τ :

σχ(τ)2 =
1

2

M−2∑
k=0

(χk+1(τ)− χk(τ))2 (3.2)

χk(τ) =
1

τ

∫ (k+1)τ

t=kτ
χ(t)dt (3.3)

As reported in [32], plotting the Allan variance as a function of the integration time
(Allan-Werle-plot) provides insight into the temporal characteristics of an absorption
spectroscopy measurement. The maximum integration time τmax refers to the mini-
mum in the Allan-Werle-plot where the trade-off between the decrease from the inte-
gration of white noise and the build-up from integration of drifts is optimal. Consid-
ering only uncorrelated white noise σW and random walk noise σB the Allan-variance
σ2 and τmax can be modeled as

σ2(τ) =
σ2W
τ

+
σ2B
2
τ and (3.4)

τmax =
√

2
σW
σB

, (3.5)

respectively.

3.3 Ground operation inside the HALO aircraft

The TRISTAR instrument is part of the TRIHOP rack that also carries the hydrogen
peroxide and higher organic peroxide monitor HYPHOP [19]. The rack is mounted into
the research aircraft HALO. The inlet is connected to a T-junction that may provide
scrubbed cabin air during zero cycles. Scrubbing is shut off during CO measurements.
The calibration gas tube is connected to a 6 l composite bottle (AUER). During ground
operation the measurement devices run on external power while the aircraft auxiliary
power unit and main engine remain shut off. As a consequence the integrated air
conditioning of the aircraft also remains off and air conditioning has to be provided
externally by ventilation. This lead to a slowly increasing temperature inside the
aircraft over a whole day of ground operation up to 35 ◦C cabin temperature.
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3.3.1 Performance of calibration gas measurement

Several functional tests were carried out during ground operation. Determining the
precision and long-term stability of the instrument is important to estimate the ex-
pected performance during the research flights. In order to collect suitable data the
cell was flushed with calibration gas regularly and also for longer time periods. Ex-
tended measurements of calibration gas provide a good estimate of the statistical
measurement uncertainty directly from the standard deviation. A time series and
corresponding Allan-Werle-plot of such an extended period of calibration gas mea-
surement is shown in Figure 3.1. Calibration gas was injected over a period of 2
hours. The absolute and relative standard deviation of the measurement are 1.7 ppbv
and 1.1 %, respectively. The Allan-variance σ2(τ) can successfully be modeled by pure
noise σW and drift σB contributions. The optimal fit parameters are given in the fig-
ure caption of Figure 3.1 and the maximum integration time results to 20 s according
to (3.5).

Figure 3.1: Calibration gas measurement during ground operation inside the HALO aircraft.
Left: time series of the 2 hour segment of calibration gas. Right: Corresponding Allan-
Werle-plot with fit to (3.4). The optimal fit parameters are σW = (0.4293±0.0022) ppbv
and σB = (0.0309± 0.0004) ppbv.

3.3.2 Performance of ambient gas measurement

Determining the measurement uncertainty as indicated in the previous section is not
possible during ambient measurements, however, since the standard deviation is a
mixture of atmospheric variability and instrument uncertainty. Instrument drifts are
also hard to distinguish from changes in the mixing ratios of the sampled air masses.
Determining an appropriate interval of calibrations to minimize the effect of drifts and
estimate the measurement uncertainty is a non-trivial task during field experiments
and airborne field experiments, especially.

Using the Allan-Werle-plot in Figure 3.1, similar data can be simulated that shares the
temporal characteristics obtained from the measurement. This can be achieved with
the following simulation setup, where χ0 refers to the mixing ratio of the calibration
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gas.

ht = ht−1 + ϵB (3.6)

χt = χ0 + ht + ϵW (3.7)

with ϵB ∼ N (0, σ2B),

ϵW ∼ N (0, σ2W )

A resulting time series can be found in Figure 3.2. Starting from this simulated data,
points can be artificially flagged as calibration and ambient to simulate the effect of
different intervals between calibrations during a real field measurement scenario. The
effects on the correction of the drifts and the estimation of the true measurement
uncertainty can be studied. For each individual simulation, R is calculated from the
spread of the means of the flagged calibrations. The reciprocal means are interpolated
to estimate the sensitivity drift. The interpolated sensitivity is multiplied to the
amplitudes to obtain the drift-corrected amplitude. P is obtained from the relative
standard deviation of the drift-corrected calibration amplitudes. The relative standard
deviation of the corrected amplitudes which are flagged ambient, on the other hand,
gives a good estimate of the residual measurement uncertainty (RMU) due to drifts
and noise present in the data. An optimal interval between calibrations will decrease
the RMU until P is reached. The estimated measurement uncertainty (EMU) as
defined in (3.1) should optimally be close to the true relative standard deviation of
the simulated dataset.
Figure 3.3 shows the described metrics for different intervals between calibrations.
The observable features match the expectations: If the calibration frequency is too
low, the drifts cannot be successfully corrected. Thus, the RMU is close to the original
measurement uncertainty. Furthermore, the EMU is very unstable since there are too
few calibration measurements in total. With more calibrations both of these effects
are reduced. The EMU approximates the original measurement uncertainty better
and the RMU decreases. In principle, more calibrations are always advantageous.
However, more calibrations also result in less ambient measurements and a high cali-
bration gas consumption. An empirical choice is made that subdivides the calibration
frequencies into three regimes: Too many calibrations only contribute diminishing re-
turns while decreasing the duty cycle, too few calibrations cause the effects described
at the beginning of this paragraph, and the appropriate choice lies in the middle.
The appropriate region is chosen within 10τmax and 100τmax, where τmax refers to the
maximum integration time derived from the Allan-Werle-plot.
Accordingly a calibration interval of 30 min lies within the desired regime. On another
day of ground operation, regular calibrations were carried out at that interval. The
resulting values for R and P are 1.0 % and 0.2 %, respectively, and accurately esti-
mate the total measurement uncertainty. Furthermore, a successful correction for the
random walk drifts can be assumed considering the results of the simulation shown in
Figure 3.3. The residual measurement uncertainty of the ambient data can therefore
be estimated with the precision P, reducing the uncertainty from a value of 1.1 % to
0.2 % as a consequence of regular calibrations.
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Figure 3.2: Example simulation process carried out to retrieve the metrics P, R, RMU and
EMU. Top left: Simulated time series with flagged ambient (red) and calibration (blue)
segments. Bottom left: individual means of flagged calibrations. The standard devi-
ation of these values is used to calculate R. Top right: Interpolated sensitivity that
is connected to the reciprocal of the calibration means. Bottom right: Drift-corrected
time series. The standard deviation of the data flagged calibration yields P, the stan-
dard deviation of the data flagged ambient yields RMU.

3.4 Airborne operation

In the previous section, the instrument has been characterized during ground operation
aboard the HALO aircraft. An appropriate interval for calibrations has been chosen
that effectively corrects for random walk drifts and allows for a reduction of the
measurement uncertainty. Now the question arises: Is the ground-based performance
transferable to airborne operation?

In order to study the instrument response to disturbances caused by airborne opera-
tion, e.g., vibration, acceleration, orientation and pressure, a test flight was performed
where TRISTAR was constantly measuring calibration gas. The data acquired can be
used to qualitatively and quantitatively analyze the effects of this new environment
to the instrumental performance.

Figure 3.4 shows the time series and the corresponding Allan-Werle-plot of this test
flight. The time series indicates different environmental conditions throughout the
flight. During takeoff and landing periods, rapid accelerations impact the optical
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Figure 3.3: Performance metrics for different intervals between calibrations. The simulation
was repeated 100 times. The solid lines indicate the mean values and the shaded areas
indicate the standard deviations of each metric for the 100 repetitions. The metrics
shown are R (green), P (blue), RMU (red) and EMU (yellow). The black horizontal
line shows the total measurement uncertainty of the simulated time series. The black
vertical lines separate the three regimes a): too many calibrations, b): appropriate
interval between calibrations and c): too few calibrations. The spikes in the results
originate from discrete changes in the number of calibrations that fall inside the total
number of data points in the time series for each given calibration interval.

setup and lead to distortions in the signal. At high altitudes, the pressure regulation
of the inlet starts to oscillate and results in oscillations of the gas concentration. In
post processing these oscillations can be corrected by assuming a linear dependence on
the cell pressure. On intermediate flight levels the system is more stable. Therefore,
calculating the Allan variance for the complete data set is no longer meaningful, as
the experimental conditions and the underlying distribution is changing. Thus, the
Allan variance is calculated individually for the different conditions derived from the
time series and metadata.

The Allan variance of the total data set is a combination of the individual variances.
This obstructs the information extractable in the individual Allan-Werle-plots. The
takeoff and landing phase is dominated by a strong sine wave and drift that are
caused by the mechanical system reacting and recovering from the strong changes
in acceleration. The high altitude section is dominated by a strong sine wave that
matches the oscillations caused by the pressure regulation. The flight segments on
intermediate flight levels are quite stable. During these segments a series of left and
right turns and various altitude changes were carried out to study the instrument
performance.

Again, the Allan variances are fit against theoretical models to quantify the temporal
features. This time the composition is more complex, so pure white noise and random
walk is not sufficient to reproduce the measured features. Flicker noise σF is added
that acts as a noise floor according to [32]. Sinusoidal variations contribute a term
proportional to Asin and dependent on the period Tsin. Additionally, constrained
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Figure 3.4: Calibration gas measurement during test flight #01 on the 22nd of November,
2022. The data is segmented according to changes in the environmental conditions
into the takeoff and landing phase (yellow), first plateau segment (green), high altitude
segment (blue), second plateau segment (grey), complete data set (red). Left: time
series of the 5 hour flight, separated into these segments, plotted against the left axis
and GPS altitude (black) plotted against the right axis. Right: Corresponding Allan-
Werle-plots with fits to (3.8). The optimal fit parameters are summarized in Table 3.1.

random walk noise that behaves like white noise for longer time spans is introduced
with amplitude AMH and transition time TMH. The theoretical model results in (3.8),
and the most appropriate fit is chosen with the least number of parameters. The
resulting fit parameters are summarized in Table 3.1.
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(3.8)

Parameter First Plateau Second Plateau High Altitude Landing

σW [ppbv] 0.421± 0.007 0.456± 0.005 – –
σB [ppbv] 0.0230± 0.0013 – – –
σF [ppbv] 0.189± 0.006 0.1918± 0.0025 – 0.552± 0.008

Asin [ppbv] 0.385± 0.014 0.730± 0.022 3.31± 0.04 7.03± 0.37
Tsin [s] 144± 5 897± 26 12.82± 0.06 251± 17

AMH [ppbv] – – 1.68± 0.04 –
TMH [s] – – 3.07± 0.17 –

Table 3.1: Optimal fit parameters of each Allan-Werle-plot shown in Figure 3.4 when fitting
against (3.8). Parameters marked – are neglected since they do not contribute major
features of the Allan variance.

During the stable segments the values extracted from the Allan-Werle-plots for the
white noise and random walk contributions are similar to the values obtained from the
Allan-Werle-plot of the ground operation. This indicates similar effects influencing the
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instrumental performance on both modes of operation. Features exclusive to airborne
operation are manifested through additional flicker and sinusoidal contributions during
the stable segments. More noticeable features are visible in the time series and enable
segmentation of the time series.
Similar to the analysis carried out in the previous section, data was simulated that
follows the temporal characteristics of the two stable segments of the flight. The results
of the simulation procedure is shown in Figure 3.5. Since the Allan Variance in these
cases contains flicker and sinusoidal components, the results differ from the simulation
results of the ground operation. The flicker and sinusoidal components contribute
further short-term uncertainties that increase the RMU on shorter periods even with
high frequency of calibrations. Thus, the measurement uncertainty on ambient data
can no longer be estimated based on the precision only but needs to be approximated
by the EMU (3.1). Accurate estimation of the EMU is again possible within the
appropriate regime of calibration intervals. This regime can again be calculated from
(3.5) and lies inbetween 10τmax and 100τmax. For the first plateau segment, τmax is
equal to 26 s. For the second plateau segment, no value for σB could be extracted from
the Allan-Werle plot. A time interval of 30 min again lies inside the desired range.

Figure 3.5: Performance metrics for different intervals between calibrations. The simulation
was repeated 100 times. Left: First plateau segment of Testflight #1. Right: Second
plateau segment of Testflight #1. The solid lines indicate the mean values and the
shaded areas indicate the standard deviations of each metric for the 100 repetitions.
The metrics shown are R (green), P (blue), RMU (red) and EMU (yellow). The black
horizontal line shows the total measurement uncertainty of the simulated time series.
The black vertical lines (only applies to left plot) separate the three regimes a): too
many calibrations, b): appropriate interval between calibrations and c): too few cal-
ibrations. The spikes in the results originate from discrete changes in the number of
calibrations that fall inside the total number of data points in the time series for each
given calibration interval.

During a second test flight, the operation of the TRISTAR instrument was switched
to an operation scheme used in real research flights. This way the instrumental be-
havior during gas switching and pressure regulation at different altitudes were tested.
Ambient gas measurements were carried out and regular calibration measurements
were performed for drift correction and measurement uncertainty determination.
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3 Temporal Stability and Instrument Performance of an airborne QCLAS

The time series of Testflight #2 is shown in Figure 3.6. The precision P and re-
producibility R as evaluated from the repeated calibrations are equal to 0.35 % and
1.50 %, respectively. The estimated measurement uncertainty lies between the relative
standard deviation of the total Testflight #1 and the reduced data set, where takeoff
and landing phase are discarded. These values are equal to 1.5 %, 2.4 % and 0.76 %,
respectively.

Figure 3.6: Ambient and calibration gas measurement during Testflight #02 on the 25th of
November, 2022. The plot shows the ambient mixing ratio (red), calibration gas mixing
ratio (blue) plotted against the left axis and GPS altitude (black) plotted against the
right axis.

3.5 Summary and Conclusion

Allan-Werle-plots have become a key tool in infrared absorption spectroscopy to in-
vestigate the temporal stability of a measurement instrument. However, these plots
are commonly used to determine the maximum integration time and the best achiev-
able precision. In this study, Allan-Werle-plots were used to analyze the temporal
characteristics of the newest iteration of the TRISTAR instrument both for ground
operation inside the research aircraft and for airborne operation. Determination of
the instrumental stability through the maximum integration time is not beneficial
due to the desired time resolution during research flights. Obviously, such unstable
measurement environment like a moving aircraft can lead to strong drifts.
Instead, the Allan-Werle-plots were used to identify the dominant noise types present
during the measurement. Via least-squares fitting the contributions of white noise,
random walk noise, flicker noise, meta-stable random walks and sinusoidal contribu-
tions were obtained for the different measurement conditions.
Simulation of data that recreates the characteristics observed in the Allan-Werle-plots
allowed for an extensive analysis of the choice of the interval between calibrations.
Several metrics were defined to identify the capability of the procedure to correct for
drifts and estimate the true measurement uncertainty. An interval of 30 min was found
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sufficient for complete drift correction during ground operation. Thus, estimation of
the measurement uncertainty with only the precision was enabled. The expectations
were verified using a second data set with the appropriate calibration frequency.
The same analysis was carried out using data from two test flights. Segmentation of
the time series according to the sudden changes in the measurement conditions enabled
resolution of the dominant noise types for each individual segment during the flight.
Dominant sinusoidal contributions were observed during a high altitude segment due
to oscillations in the absorption cell pressure regulation. Low-frequency contributions
dominated the takeoff and landing phases. Investigation of stable segments during
the flight showed similar characteristics to ground operation. This designated suffi-
cient intervals between calibrations of 30 min during research flights for measurement
uncertainty estimation and drift correction. However, apparent flicker and sinusoidal
contributions lead to a lowered accuracy for reasonable calibration frequencies. There-
fore, the measurement uncertainty had to be estimated considering the reproducibility
of calibrations. A second test flight verified the estimated measurement uncertainty
for the chosen calibration frequency.
The results of this study show yet another great application of Allan-Werle-plots to in-
crease the understanding and the accuracy of infrared absorption spectrometers. The
implications for drift correction and measurement uncertainty are also transferable to
other measurement instruments for trace gase measurements.
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Abstract

In this study, the applicability and limitations of several statistical and mathematical
methods for noise reduction in wavelength modulation spectroscopy are analyzed.
Background noise is simulated for different frequencies and frequency confinement.
The noise is added to an absorption line of varying amplitude. The noise reduction
methods (NRMs) are applied to the simulated signals and their performances are
analyzed and compared. All NRMs show great increase in signal to noise ratio (SNR)
while keeping bias low under certain conditions of the simulated signal. For each NRM
the subspace of best performance is summarized and highlighted. Little to no overlap
is found between these subspaces. Therefore, the optimal NRM strongly depends on
measurement conditions and NRM quality cannot be compared in a general context.

4.1 Introduction

Tunable diode laser or quantum cascade laser absorption spectroscopy (TDLAS /
QCLAS) using wavelength modulation spectroscopy (WMS) have become major tools
for molecule detection in various disciplines due to their high flexibility, time reso-
lution, sensitivity, precision and selectivity. Main applications are atmospheric mea-
surements of trace gases and combustion process controls in industry [101, 27, 31].
Advancements in laser technology like the quantum cascade laser (QCL) [4] and the
implementation of multi pass absorption cells [2, 3] have lead to major improvements
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of the technique in the last decades. The main limitations for precision and mini-
mum detectable mixing ratios are laser disturbances, power or frequency drifts and
optical noise patterns [1, 39, 7]. These noise patterns often have an underlying domi-
nant frequency and a varying phase. The frequency can lie in the same region as the
absorption signal, depending on the optical setup.

Many new data analysis techniques for noise reduction have been adapted to ab-
sorption spectroscopy experiments during the last decades and were reviewed several
times in a qualitative manner [7, 6]. These methods range from signal analysis and
denoising via time-frequency transformations [36, 102] to adaptive statistical meth-
ods [35, 37]. However, most recent publications of state-of-the-art experiments still
rely on basic data analysis established in the last century [31, 9]. This may originate
from the specific design of these analysis methods for their target experiment; thus,
leaving questions unanswered about the experimental requirements and limitations.
This paper attempts to compare a few prominent and also lesser known noise reduc-
tion methods (NRM) via simulation of a wide array of possible noise shapes. The
goal to reach is a quantitative statement about the experimental conditions necessary
for the given NRM to increase the signal-to-noise-ratio (SNR), while simultaneously
maintaining a low bias.

This paper is organized as follows: In Sect. 4.2 an overview of the analyzed NRMs
is given and small modifications to ensure compatibility are explained. In Sect. 4.3
the simulation procedure is shown. Finally the simulation results are analyzed and
interpreted.

4.2 Noise reduction methods

First, the theory of WMS is described in short. According to the Lambert-Beer law
the transmitted intensity I through an absorbing medium for small optical density
can be approximated by:

I(ω) ≈ I0 (1− α(ω)) (4.1)

where I0 is the transmitted intensity without absorption and α(ω) is the absorption
profile. α approaches a Gaussian profile for low pressure and a Lorentzian or Cauchy
profile for high pressure. In intermediate cases the profile can be expressed as a
convolution of both, a so called Voigt profile:

αV (ω) = αG(ω) ∗ αL(ω)

∼ exp

(
−(ω − ω0)

2

2σ2

)
∗ 1

1 +
(
ω−ω0

γ

)2 (4.2)

In WMS the frequency ω is modulated with a modulation depth a and modulation
frequency Ω and the signal is subsequently demodulated using an analog or digital
lock-in amplifier set to an integer multiple of the modulation frequency nΩ. Therefore
the retrieved signal S is proportional to the nth harmonic Hn of the cosine series of
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the absorption profile:

S ∼ Hn(ω) =

∫
α (ω + a cos(Ωt)) cos(nΩt)dt (4.3)

More detailed derivations have been given several times in the literature and can be
found for example in [27, 1, 6]. In the course of this paper the second harmonic is used
as most methods considered in this study were originally designed for second harmonic
detection. It is depicted in Figure 4.1. In principle this study can be conducted using
other harmonics, normalization schemes [31] or direct absorption, as well.

4.2.1 Wiener filter

Werle et al.[35] have described the implementation of an adaptive finite impulse re-
sponse filter (FIR), the Wiener filter. It is calculated for each measurement spec-
trum X by a least squares algorithm, minimizing the mean square error between the
measurement spectrum and a synthesized version by convolution of the filter with a
calibration spectrum C. Thus, knowledge about the target signal is used to optimize
the FIR.

Xi =

m∑
k=−m

γkCi+k (4.4)

A free parameter of this method is the filter size m. The appropriate value has to be
chosen by a measurement of known mixing ratio.

4.2.2 Singular value decomposition

A simple statistical approach was proposed by Mappe-Fogaing et al.[37] that assumes
a stable and dominant absorption signal compromised by an unstable background. By
performing a singular value decomposition (SVD) on a batch of measured spectra the
signal is split into eigenvectors. Under the right circumstances some of the eigenvectors
contain signal information, while the rest contains only noise.

The singular value decomposition decomposes a matrix X with dimension N × M
into the basis of normalized wavelets V , corresponding singular values Σ and the
propagation matrix U .

X = UΣV T (4.5)

In their paper a decent initial signal to noise ratio is given so the signal information
is stored in the first eigenvectors. They choose the appropriate effective dimension of
the data set empirically. Naturally this becomes a very difficult task when SNR is low.
To adapt to the simulation conducted in this paper, Pearson correlation coefficients
between each normalized wavelet and a reference spectrum are calculated and only
the first m eigenvectors, sorted by their correlation coefficients, are considered during
reconstruction. This procedure extends the empirical approach from the original paper
but requires optimization of the free parameter m. The dimension has to be chosen
during the calibration phase.
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4.2.3 Discrete wavelet transform

Denoising techniques based on the discrete wavelet transform (DWT) have become
widely used in signal processing, feature extraction and image denoising [103, 104].
The continuous wavelet transform is a time-frequency transformation similar to the
Fourier transform [105]. It is defined by a convolution of the signal x with modified
versions of a special function called mother wavelet ψ, that is scaled by the parameter
a and translated by the parameter b:

W(a, b) =

∫
ψ∗
(
t− b
a

)
x(t)dt (4.6)

Employing the redundancy of this procedure, Daubechies [106] carefully designed
special wavelets and evaluated only discrete scales. This way the transform no longer
has a two-dimensional result but has the same dimension as the input. With Mallats
algorithm this procedure now becomes an iterative convolution with discrete filter
banks to decompose the signal into approximation and detail coefficients [107]. Based
on this representation of the original signal several studies have shown applications
for removal of trends and suppression of noise for a given signal, also for TDLAS
[108, 109, 6]. A study by Li et al. [36] has successfully applied the noise reduction
based on Steins unbiased risk estimator (SURE) [110] with the non-negative Garrote
threshold [111] on WMS. In their study they compared several wavelets and maximum
decomposition levels and retrieved the optimal choice for their experimental setup.
Hence, the choice of wavelet and maximum decomposition level is a free parameter
and has to be chosen during calibration.

4.2.4 Fourier domain analysis

Another approach utilizing time-frequency transformation has been proposed by Hart-
mann et al. [102]. They take advantage of the linear decrease of the logarithmic power
spectrum of a Cauchy profile and interpolate discrete disturbances to this slope caused
by sinusoidal background, effectively removing the fringe patterns. They emphasize,
however, that the technique required fine tuning of signal and noise for this procedure
to work that easily.

A number of adjustments have to be made for this method to be used fully auto-
matically on second harmonic Voigt profiles. The absorbance of a measured signal is
calculated by performing a masked linear fit of the power spectrum of the measured
signal to the power spectrum of a second harmonic Voigt, acquiring the parameters
from a reference spectrum. Alternatively it can be fit directly to the power spectrum
of the measured reference. The mask is a free parameter with left and right boundary
index. Depending on the background structure the background is more or less con-
fined in the frequency domain. This way the mask would be able to ignore points in
the power spectrum influenced by the background and only consider noise free parts
of the signal power spectrum.

Regarding the emphasis on the special requirements by the authors it can be seen here
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that improper choice of the mask or a background that is not at all confined to a small
bandwidth can lead to unforeseen consequences if this method is applied blindly.

4.2.5 Empirical mode decomposition

The empirical mode decomposition (EMD) is an adaptive decomposition scheme that
splits a signal into its intrinsic mode functions (IMF) with the same number of zero
crossings as extreme points [112]. Meng et al. [113] have applied Savitzky-Golay filters
to the IMFs and reconstructed the signal using the Pearson correlation coefficients of
the filtered IMF and the original signal as a weight. They have shown in their study
that this method called EMD-FCR (Filter-Correlation-Reconstrunction) outperforms
Wiener filters and DWT noise reduction for their particular experimental setup. A
drawback of this method is the high computational effort. In addition, the order and
window size of the Savitzky-Golay filter have to be optimized during the calibration
phase as they are free parameters.
The FCR part was modified slightly for this simulation since the Pearson correlation
with the original signal enhances noise instead of suppressing it in cases of very low
SNR. As a modification the correlation coefficients are evaluated against a reference
spectrum instead, similar to the SVD method.

4.2.6 Artificial neural network

A feed-forward neural network consists of layers of affine transformations that are
separated by a non-linear function called activation. This can be expressed by a
matrix multiplication of the input xi with a weight Matrix Wi and addition of a bias
vector bi, where i is the layer number. The result of this operation is then pointwise
evaluated using the activation function σ:

yi = σ(Wixi + bi) (4.7)

During the training phase the output is compared to the target value via a metric
called loss function. The weight matrix parameters wi,jk and biases bi,k are optimized
by propagation of the gradient of the loss backwards through the network. Many
sophisticated improvements to model design, loss functions, optimization, learning
and prevention of overfitting have been made in the last few years. This paper will
not cover any more details on this topic since this is not the main focus of this study.
Here we refer to reviews and books about this field [41, 52].
A simple artificial neural network has been proposed by Nicely et al. [8] as a proof
of concept for optical fringe reduction. The model design of the authors is kept very
simple as they emphasize their goal being only to proof the concept of applicability.
Clearly the model is not optimally chosen for the given task and does not learn very
fast.
For the simulation in this study eight identical networks were trained on different
subspaces of the target simulation and the choice of one specific network is set as a
free parameter to be optimized during calibration. Each model is trained on synthetic
data for 250 epochs with 214 iterations each.
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Figure 4.1: Reference 2f wavelength modulated spectrum of Voigt profile of carbon monoxide
transition at at wave number 2190.02 cm−1 for a pressure of 50 hPa, a temperature of
293 K and modulation depth 2.2·HWHM, scaled to a maximum amplitude of 1 (blue),
0.5 (red) and 0.1 (green).

4.3 Simulation

For the simulation a measurement scheme is chosen that mimics real experimental
conditions and allows for optimization of the free parameters of the NRMs. The
measurement scheme requires three different kinds of input data:

� Reference: A noise-free absorption spectrum. In experiments this could be ei-
ther a very high concentration measurement or a simulation using the HITRAN
database [114]. However, deviations of the used spectrum from the real under-
lying noise-free spectrum of the experiment can lead to undesired effects. In
the simulation the reference is used to initialize some of the NRMs and also to
calculate the absorbance.

� Calibration: A noisy spectrum with known mixing ratio. This could be a
measurement used for instrument characterization or a calibration during field
experiments. This data will be used to optimize free parameters of the NRMs
for the given background signal.

� Ambient: Target noisy spectrum to be denoised.

As reference a Voigt profile is calculated using data from the HITRAN database [114].
The chosen absorption profile is an idealized absorption spectrum of carbon monoxide
at wave number 2190.02 cm−1 for a pressure of 50 hPa and a temperature of 293 K
[115]. The number of points is set to 29 = 512, the line is centered at 28 and the
scale is adjusted so that the Gaussian width σ caused by Doppler Broadening is set to
16. The modulation depth is set to 2.2·HWHM according to the studies of Reid and
Labrie [116]. The resulting 2f modulated spectrum is numerically calculated using
(4.3) and is shown in Figure 4.1 for several amplitudes.

The noisy part of the spectrum ñfcis generated as a function of two parameters:
frequency f and noise complexity c. The Fourier power spectrum is set to a Gaussian of
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Figure 4.2: Example spectra for different noise parameters. Complexity c is set to 0.01, 0.1
and 1 in plot a), b) and c), respectively. In all plots the blue line, green line and red
line corresponds to a frequency of 20, 23 and 26, respectively.

mean f and width f ·c and the positive angles are sampled from a uniform distribution
between −π and π. The negative frequency angles are set to the negation of the
positive angles to acquire a purely real signal after inverse Fourier transform. The
complexity parameter c is a measure of the contribution to the noise by neighboring
frequencies. For high values of c and f the noise becomes almost white, e.g. c > 4
and f > 512.
The resulting time signal is then normalized to σ = 1. Afterwards the reference
spectrum is weighted with the third simulation parameter, the amplitude s, and added
to the signal. Examples with s = 0 are shown in Figure 4.2.

ñfc = F−1
f (t)

[
exp

(
−(f ′ − f)2

2f2c2

)
· eiϕ

]
(4.8)

with ϕ ∈ U(−π, π)

nsfc =

(
ñfc√

Var [ñfc]

)
+ s · x (4.9)

Now the three parameters are discretized along logarithmic scales to form a 643 cube
consisting of 218 = 262, 144 individual triplets. The signal amplitude, frequency and
complexity range from 0.01 to 100, 20 to M/2 = 28 and 0.01 to 1, respectively. For
each triplet 32 calibration spectra are generated for free parameter optimization and
1024 ambient spectra are simulated. A simple grid search is used to optimize the
free parameters. In possible future simulations more sophisticated approaches can
be applied to speed up the procedure; e.g. some publications propose algorithms
to efficiently choose the optimum window of a Savitzky-Golay filter which is used
in the EMD-FCR [117, 118]. The NRM is applied to the N ambient spectra using
the optimized parameters. The absorbance ai is retrieved by a final linear fit to the
reference spectrum. These absorbances are then compared to the true amplitude s
and the mean squared residual (MSR) and also the mean residual squared (MRS) are
returned. The MSR and MRS are defined as follows:
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MSR =
1

N

∑
i

(s− ai)2 (4.10)

MRS =

(
s− 1

N

∑
i

ai

)2

(4.11)

This procedure is repeated for each NRM and also run once without noise reduction
as a baseline. This is important since a least squares linear fit already shows great
noise reduction properties under certain background conditions.

4.4 Simulation results

For more clarity the resulting values from the simulation MSR and MRS can be
expressed by two different measures:

∆S = 10 log10

(
MSR0

MSR

)
(4.12)

β =

√
MRS

s
· 100 % (4.13)

MSR0 is the baseline MSR without noise reduction. Now ∆S describes the increase
in SNR in the unit of decibels (dB) and the bias β describes the relative deviation of
the sample mean from the true value in percent. Note that in extreme cases the SNR
increase can be negative and the bias can reach values above 100 %. These performance
measures are displayed by individual animations, where each frame shows an image
plot of the fc-plane at a certain signal amplitude s which is increased from frame to
frame from 0.01 to 100. The animations can be found in the electronic supplementary
material1. As an example the Fourier Domain Analysis method (FDA) is evaluated
explicitly in the following subsection, as it shows a variety of different characteristics.
Then the performances of all NRMs is summarized and compared.

4.4.1 Case study: Fourier domain analysis

The resulting SNR increase and corresponding bias are shown in Figure 4.3 for several
signal amplitudes s. In the first image at s = 0.01 the SNR increase gradually grows
from 30 dB at highest frequency to about 60 dB at a frequency of 25 for complexity
values below 0.2. There ∆S evolves into a stripe pattern of several overlapping discrete
lines. Here ∆S ranges up to over 70 dB. Below frequency 23 the SNR increase of the
stripes drops slightly and the pattern is overlaid with a smooth 40 dB region that
tapers down at higher complexity. Finally ∆S increases again at lowest frequency.
Meanwhile β is mostly close to zero for low complexities. The bias in the overlying
smooth region at low frequency ranges from 20 % to 50 %, however. The bias is greatly

1Electronic supplementary material is available in the online version of [100].
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4.4 Simulation results

Figure 4.3: Sequence of image plots of SNR increase (left) and bias (right) of the FDA
algorithm in the fc-plane for different signal amplitudes, increasing from top to bottom.
Each plot sequence has a shared color map ranging from 0 dB to 70 dB and 0 to 100 %,
respectively. White pixels in the SNR increase plot indicate points, where the bias is
100 % or above. Depending on the experimental requirements the method should only
be applied when high SNR increase is achieved while maintaining a low bias.
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4 Applicability of Advanced Noise Reduction Methods

enhanced at high complexity, especially at low frequency, where it reaches values above
100 %.

Obviously at high complexity the part of the Fourier spectrum containing the signal
information is dominated by noise. The bias is reduced for low complexity but still
significant for low frequencies. Here the noise interferes with the first peak of the
Fourier power spectrum. At frequencies above 23 the algorithm effectively ignores
parts of the power spectrum that differ from the underlying signal. The stripy pattern
corresponds to discrete changes to the boundary indices of the mask chosen in the
calibration phase. The gradual decrease for higher frequencies probably does not
originate from the NRM but from the baseline performance of the least squares linear
fit, which acts as a low pass filter and therefore performs better on higher frequency
noise.

In the second plot at s = 0.22 the SNR increase has shrunk uniformly while the
described patterns stay the same. This also follows from the baseline performance
increasing with higher signal, hence lowering the ratio between absolute SNR and
baseline SNR. The bias starts to tend to zero at high frequency and high complexity.
The higher frequencies have lower impact on the method since all signal information
is contained in the lower frequency components.

As displayed in the next image at s = 4.64 this process continues. The SNR increase
is now constrained to the 22 - 24 frequency region while β is close to zero almost
everywhere. Only the overlying smooth region at low frequency and low complexity
shows bias values up to 10 %. At the same time the SNR increase starts to rise at this
region.

The final image at s = 100 supports this new characteristic. While bias and SNR
increase have gone down to zero almost everywhere, SNR increase grows to about
40 dB in the former biased region at low frequency and low complexity. A cause could
be an increased capability to reconstruct the low frequency part of the power spectrum
from the higher frequency features due to the high signal. This implies that up to
s ≈ 5 only the first peak in the power spectrum may have been used by the algorithm.

As a summary the FDA method performs extraordinary well at complexity below 0.2
and in the frequency range 23 - 25 and also at lower frequencies for high input SNR.
The described features are visualized in Figure 4.4. Here the method is applied to
example spectra for three different settings.

4.4.2 Performance summary

Interpreting the information from the animations given in the electronic supplemen-
tary material, the other NRMs are evaluated in a similar manner as the case study
from the previous section. These results will not be discussed in such detail at this
point but are instead summarized to limit the extent of this paper.

The Wiener filter achieves an SNR increase up to 19 dB for frequency between 24

and 26 and complexity below 0.2, independent of signal amplitude s. Similar to the
gradual decline of ∆S for higher frequencies due to baseline performance, this method
performs better for lower frequencies inside the described region. The bias differs from
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4.4 Simulation results

Figure 4.4: Examples of simulated signal (dashed green), noise (solid blue) and result of the
FDA NRM (solid red) for three different variable settings. The lower subplots each show
the residual (reconstruction minus true spectrum). The chosen values of the variables
s, f , and c and the resulting SNR increase ∆S and β are given as follows: a) s = 0.03,
f = 16, c = 0.1, ∆S = 47 dB, β = 4.7 ·10−3 %; b) s = 0.03, f = 2, c = 0.1, ∆S = 39 dB,
β = 32 %; c) s = 10, f = 2, c = 0.1, ∆S = 19 dB, β = 0.34 %. As mentioned in the
text ∆S and β strongly depend on variable setting.

zero significantly only at very low frequency or high complexity.

The NRM based on SVD performs best at signals below 1, complexity below 0.08 and
two different frequency ranges. At frequencies higher than 23 the method shows no
significant performance gain compared to the baseline, between 1.4 and 22 β grows to
values of 60 %. In this intermediate region the noise is too close to the signal to be
distinguished.

The Discrete Wavelet Transform with Stein Threshold shows noisy SNR increase in-
dependent from input signal s for complexity below 0.2. Some broad bands emerge at
frequencies equal to a power of two above 25 where ∆S reaches values above 90 dB.
In this region the bias is always close to zero. The noisy SNR increase corresponds to
a noisy choice of wavelet family and order in the calibration phase.

The method called EMD-FCR shows high bias for almost all parameter combinations.
Obviously the output is lowered drastically if the noise free spectrum does not match
with an IMF since the filtered IMFs are multiplied by the correlation coefficient. In
the simulation even at high signals s the absorption spectrum is split into two or more
IMFs very often. Here a thresholding scheme instead of a weighted sum could lead
to better performance. However, at signal amplitude between 0.02 and 0.2 a narrow
region of low bias and ∆S above 10 dB propagates along a curved path through the
fc−plane. Here it seems the EMD separates signal from background and maps the
absorption signal into a single IMF.

The final NRM analyzed is the combined set of simple artificial neural networks
(ANN). Although the base model is primitively designed and was not optimized for
this special task, the results show an average SNR increase of 15 dB and average bias
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4 Applicability of Advanced Noise Reduction Methods

below 1 % for signal amplitude between 1.4 and 17, frequency below 22 and complex-
ity below 0.26. The performance coincides with a particular network choice during
calibration phase.

Figure 4.5 shows an overview of the best performance for each NRM in the fc-plane.
The corresponding mean values for ∆S and β are given in the figure caption.

Figure 4.5: Highlights of the best performances of the analyzed NRMs in the fc-plane. The
mean SNR increase and bias is given for the rectangular regions or the line trajectory,
respectively: Wiener: ∆S = 7.3 dB, β = 8.7 · 10−4 %; SVD: high frequency region:
∆S = 24.9 dB, β = 2.0 %; low frequency region: ∆S = 40.9 dB, β = 5.6 %; DWT-
SURE: ∆S = 10.6 dB, β = 1.2 · 10−5 %; FDA: ∆S = 38.2 dB, β = 7.1 · 10−3 %;
EMD-FCR: ∆S = 14.3 dB, β = 4.9 %; ANN: ∆S = 15.0 dB, β = 1.0 %. Rectangles
filled with a stripe pattern indicate negative values of ∆S.

4.4.3 Remarks

Now some flaws of the simulation will be mentioned which influence the results of this
paper.

� The reference spectrum and added signal is assumed to be noise-free and stable
over time. Distortions and drifts in real experiments can influence the perfor-
mance of some of the NRMs. Prominent effects that can cause distortions in
experimental conditions that have not been considered are residual amplitude
modulation [27], the phase shift between wavelength modulation and intensity
modulation [119] and the non-linearity of (4.1).
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4.5 Conclusion

� Although the simulated noise covers a big range of noise characteristics, it is
only an idealization of real background structures. Only fringe-like noises with
a dominant frequency have been considered. Thus, the performance of some
NRMs may vary depending on the background structure.

� Since the number of simulated ambient spectra is finite, this paper only gives
statistical estimates of expected results.

� Since the number of simulated calibration spectra is finite, the grid search not
always chooses the optimal free parameters. This could result in an underesti-
mation of performance.

4.5 Conclusion

There is no best noise reduction method for wavelength modulation spectroscopy.
Parameters like the dominant noise frequency, noise power spectrum confinement and
input signal strength can vastly influence the performance of some methods and lead
to distortions of the output. A proper algorithm has to be carefully chosen according
to the experimental setup. The results from this paper can help predict possible
performances given the noise parameters for a particular setup. Each analyzed method
showed different behavior for the simulation parameters. Although some NRMs were
altered slightly to fit the simulation conditions, all of them were able to outperform
the least squares linear fit by at least 10 dB without introducing large biases. The
best performances were highlighted and little to no overlap of these best performance
ranges were found. This result could explain the odd phenomenon that the methods
outperformed other established techniques in the studies in which they were proposed,
sometimes leading to apparent contradictions between different studies.
While a quantitative comparison for a large space of noisy input shapes was given,
many questions arose or were left unanswered. There are infinitely many more noise
shapes to be tested. The effect of distortions to the noise free spectrum were ignored.
The choice of free parameters and small adaptions to the methods could be improved.
Finally there is still a long way to be able to identify and evaluate the best noise
reduction method under experimental conditions, but this paper tries to take a first
big step.
A follow-up study is planned to further analyze and quantify the results given in
this paper under several experimental conditions. The methods will be tested for two
different absorption spectrometers (different noise patterns) and several different trace
gases (varying initial signal to noise ratios).
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Abstract

In this study, we explore the applications and limitations of sequential Monte Carlo
(SMC) filters to field experiments in atmospheric chemistry. The proposed algorithm
is simple, fast, versatile and returns a complete probability distribution. It combines
information from measurements with known system dynamics to decrease the un-
certainty of measured variables. The method shows high potential to increase data
coverage, precision and even possibilities to infer unmeasured variables. We extend
the original SMC algorithm with an activity variable that gates the proposed reac-
tions. This extension makes the algorithm more robust when dynamical processes
not considered in the calculation dominate and the information provided via measure-
ments is limited. The activity variable also provides a quantitative measure of the
dominant processes. Free parameters of the algorithm and their effect on the SMC
result are analyzed. The algorithm reacts very sensitively to the estimated speed of
stochastic variation. We provide a scheme to choose this value appropriately. In a
simulation study O3, NO, NO2 and jNO2 are tested for interpolation and de-noising
using measurement data of a field campaign. Generally, the SMC method performs
well under most conditions, with some dependence on the particular variable being
analyzed.
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5.1 Introduction

Insight into the complex chemical system of the atmosphere is often achieved by
conducting coordinated field experiments where an ensemble of trace gases, meteo-
rological variables, physical properties and aerosol compositions are measured that
comprehensively characterize the sampled air masses [121, 122, 123]. Field campaigns
track variables along a spatiotemporal trajectory and are prone to local and tempo-
ral events. These are not resolvable by satellite measurements or chemical-transport
models.

Quantitative analysis of data from field campaigns is often hindered by low data
quality and insufficient data coverage of all parameters needed at each time step.
The latter may result from poor instrumental time resolution, sporadic instrument
failures, measurement duty cycles or instrument calibration. Assuming uncorrelated
data loss of just 10 % per instrument, a field experiment with 10 different measurement
instruments would lose 65 % of simultaneous data.

The reconstruction or enhancement of time steps with lost data or poor data quality is
not easily achievable. Linear interpolation and moving average filters act as low pass
filters that dampen high frequency variations of the measured variables. Thus, the
main advantage of the field measurement compared to remote sensing is suppressed.
The calculation of missing data with photostationary state (PSS) calculations works
for many species, but introduces a bias as all other processes are disregarded without
an estimate of reconstruction error [124]. Using the outputs of chemical-transport
models as replacements lowers the local and temporal resolution. The latter approach
also contradicts the goal of some field campaigns that try to evaluate model predictions
[125].

Sequential Monte Carlo (SMC) methods have become a useful tool in combining prior
knowledge of a dynamical system with noisy measurements. Originally applied to tra-
jectory reconstruction [126, 127], this method has become a major tool in meteorology
for data assimilation to a theoretical model [128, 129]. In these fields, the SMC model
is applied to enhance the performance of a trusted model with additional information
provided by noisy measurements.

Ensemble Monte Carlo methods have been used in relation to atmospheric chemistry
measurements where they enabled the estimation of dynamics [130], reactions [131]
or emission sources [132, 133]. Other novel applications cover enhancements of neural
networks and machine learning methods [134, 135].

The goal of this work is to explore the SMC method in the enhancement of data
quality, data coverage and in the augmentation of data to include unmeasured species
in a system of measured atmospheric variables that are connected via known chemical
reactions. The focus is shifted from the enhancement of model outputs as in most
recent studies [129] towards data quality enhancement as originally intended [136].
Enhanced data quality enables a more comprehensive data analysis of field campaign
measurement data. Several applications will be tested on measurements taken in July
2021 at the Taunus Observatory, Kleiner Feldberg, Germany [98]. The study will focus
on the chemical system of ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2) and
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the photolysis frequency of NO2 (jNO2).

In the following section, the basic theory of the SMC method will be explained. In
Sect. 5.3, the underlying chemistry of the considered system and the measurement
techniques used to derive the dataset will be described. In Sect. 5.4, several experi-
ments using the measured data and the SMC method will be conducted and discussed.

5.2 Sequential Monte Carlo

The N -dimensional state vector of a system is defined as xtn =: xn ∈ RN at time steps
tn (n ∈ {1..L}). This vector contains all unknown or hidden true values in the system.
This state vector evolves partly deterministically according to a transition function fn
and partly stochastically by addition of some noise wn. The counterpart of xn is the
measurement vector yn ∈ RM that contains all available measurements at time step
tn. The elements of the state vector and the measurement vector are connected via
an auxiliary function hn that depends on the state vector and measurement noise vn.
The functions f and h can also depend on auxiliary parameters u that are considered
to be exact.

5.2.1 Basic procedure

The implementation of an SMC algorithm requires a known conditional probability
distribution function (PDF) p(yn|xn) that can be easily calculated and a procedure
to sample from the prior PDF [137]:

p(x̂n) = p(xn|xn−1). (5.1)

where the distribution p(xn|xn−1) contains prior information about the dynamics
of the state vector and p(yn|xn) describes the probability of a measurement given
a particular realization of the state vector xn. The latter probability distribution
encodes the uncertainty of the measurement instruments.

Applying Bayesian theory, the posterior PDF results from the calculation of the ex-
pression:

p(xn) = p(xn|yn) =
p(yn|x̂n)p(x̂n)

p(yn|y0:n−1)
, (5.2)

where p(yn|y0:n−1) depends on all previous information. Now the process can be
considered Markovian as the dependence on all previous information can be described
by direct dependence on the most recent time step only: p(yn|y0:n−1) = p(yn|yn−1).
This distribution is most likely not a retractable expression [138]. An exception is
the Kalman filter [139] that requires the transition function f and the measurement
function h to be linear with purely Gaussian-distributed state and measurement noise.
These conditions are not met in a system of chemical reactions as the reactions can
be highly nonlinear and abundances of molecules follow a probability distribution
function (PDF) that is 0 for negative abundances.
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The main idea to overcoming this numerical limitation in SMC filters is the approxi-

mation of the PDF of xn with a finite number of samples x
(i)
n (particles). The PDF

of the state vector is approximated by the empirical distribution:

p(xn) ≈ 1

K

K∑
i=1

δ
(
xn − x(i)

n

)
, (5.3)

where K represents the number of particles and δ denotes the Dirac measure. If the
particles are sampled from the true PDF, the empirical PDF approximates the true
PDF for K → ∞. Given that the initial particles were sampled according to p(x0)
this can be ensured by sequential updating of the particles followed by a bootstrap
filter. The particles are updated by application of the transition function to form the
prior PDF:

x̂(i)
n = fn(x

(i)
n−1, w

(i)
n ) ∼ p(xn|xn−1). (5.4)

Then a weight is calculated for each particle that is related to the distance of the
particle to the measurement:

q(i) =
p(yn|x̂(i)

n )∑K
j=1 p(yn|x̂(j)

n )
. (5.5)

The posterior distribution is then approximated by bootstrap resampling [137, 138]
from the prior particles according to their individual weight q(i). This is implemented
by calculation of the cumulative sum of all weights and choosing the kth particle where
a uniform random variable u(i) is less or equal to the cumulative sum up to the kth
particle:

u(i) ∼ U(0, 1), (5.6)

x(i)
n = x̂(k)

n where u(i) ≤
k∑

j=1

q(j), (5.7)

p(xn) ≈ 1

K

K∑
i=1

δ(xn − x(i)
n ). (5.8)

5.2.2 Auxiliary particle filter

This approximation assumes that K is large enough. The main challenge of the
method is the possibility of the particles to collapse into a single mode [140]. It is pos-
sible that a single particle carries a weight very close to 1 while all other particles carry
weights close to 0. In these cases, the posterior approaches a δ-distribution without
any statistics. In the literature, there are many approaches to counter this problem,
maintaining similar weights for all particles [129]. This is especially important for
high-dimensional problems such as data assimilation, as the number of particles has
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to grow exponentially with the size of the measurement vector M [140]. A common
approach [138, 129] suggests sampling from a proposal distribution q(xn|y0:n) instead
of the prior, that nudges the particles into the direction of the posterior before ap-
plying the bootstrap filter. Pitt and Shephard [127] described a method they called
Auxiliary Particle Filter where they define the proposal PDF as

q(x(i)
n |y0:n) = p(µ(i)

n |yn), (5.9)

where µ is a likely draw from the prior PDF. This can be achieved by a simplified
version of the transition function fn without a stochastic part. For each particle an
intermediate weight λ(i) is calculated and afterwards R > K samples are drawn from
the particles where

p(j = i) ∝ λ(i) with j ∈ {1..R}. (5.10)

The prior is then constructed from this mixture prior analogous to Eq. (5.4). For the
posterior evaluation the weights (5.5) have to be rescaled by the first stage weights
(5.10) to compensate the introduced bias before applying the bootstrap filter (5.7).
This method can still lead to weight collapse but increases the statistics and efficiency
of the SMC method as the particles of the posterior empirical PDF are less likely to
be degenerate by construction [129]. Recently Fearnhead and Künsch [141] and van
Leeuwen et al. [129] reviewed several novel approaches to counter this problem for
high dimensional systems such as weather forecasting; Pulido and van Leeuwen [142]
proposed a particle flow formalism that completely counters weight collapse [143].
These methods will however not be considered in more detail, since they are typically
dealing with N ∼ 109 and M ∼ 107, while a measurement field campaign lies in the
range N,M < 100. Due to the high dimension of the former systems, it is very likely
that several measurements differ from the prediction by many standard deviations.
As mentioned above, the goal in those cases is to optimize a trusted model with
the information provided via noisy measurements. In our case, the centerpiece of
the system is the observation. The results from our SMC algorithm should never
disagree with the measurements but should rather assist the observations, finding a
more precise estimate of a variable that is similar to a weighted average of several
measurements.
Further weight-maintaining adaptions to the SMC method can be considered for future
applications. For now, weight collapse will be tracked throughout the experiments as
a metric. In this study, the following entropy will be considered:

H(x̂n) = −
K∑
i=1

λ(i)n log
(
λ(i)n

)
, (5.11)

H(xn) = −
K∑
i=1

q(i)n log
(
q(i)n

)
, (5.12)

where H is close to its maximum value log(K) or log(R), respectively, when all parti-
cles share similar weights. The maximum value is reached if and only if the measure-
ment does not contribute any additional information. The effective dimension R∗ of
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a posterior can be approximated by exp(H) where a total collapse to a single particle
corresponds to H → 0 and R∗ → 1. Low entropy is not necessarily a tracer for poor
performance of the SMC method but might indicate vast deviations of the actual
chemical system from the considered model. An example might be sudden emission
of relevant trace gases, changes in wind direction or other local effects.

5.3 Chemical reactions and measurements

This study focuses on the interplay between tropospheric O3, NO and NO2. According
to Leighton [144] and Nicolet [145] the concentrations of these trace gases reach a
steady state for a few minutes during daytime. The relevant reactions are

O3 + NO → O2 + NO2, (R6)

NO2 + hν → NO + O, (R7)

O + O2 + M → O3 + M, (R8)

where Reaction (R8) can be considered fast compared to Reaction (R7). The reaction
coefficient kO3,NO =: k1 is taken from [146]. The photolysis frequency jNO2 varies
between ca. 0 at night and several 10−3s−1. The photostationary state is reached
when

k1 [O3] [NO] = jNO2 [NO2] . (5.13)

Under atmospheric conditions, this photostationary state is additionally affected by
peroxy radicals predominantly originating from the oxidation of volatile organic com-
pounds (VOCs) by e.g. OH or O3. Both hydroperoxy (HO2) and organic peroxy
radicals (RO2) convert NO to NO2 (Reactions R9 and R10). In addition, further
chemical reactions, direct emission, deposition and transport processes influence this
steady state [147, 148, 124]:

NO + HO2 → NO2 + OH, (R9)

NO + RO2 → NO2 + RO. (R10)

The coordinated measurements (TO21 campaign) took place in July and August 2021
on the Kleiner Feldberg mountain (826m, 50° 13’ 18” N, 8° 26’ 45” E), Germany,
located in a rural, forested region under anthropogenic influence from several large
cities within a radius of ca. 35km. This site has previously been used for field cam-
paigns and is described in more detail in [149] and [150]. NO and NO2 were measured
via a photolysis-chemiluminescence detector described in [151] and [18]. jNO2 was
calculated from actinic flux measurements by a spectral radiance detector (MetCon
GmbH) [152]. Ozone was measured by two commercial UV absorption monitors (2B
Technologies). Several other trace gases and chemical variables were measured during
the campaign that will not be considered in this study. An in-depth discussion of
all measurements in this campaign can be found in [98]. Meteorological data were
provided by a weather station of the German Weather Service (DWD) on the summit.
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5.3 Chemical reactions and measurements

5.3.1 SMC setup

The setup used in this study is based on the following definition: the state vector x
and the measurement vector y are both four-dimensional and encode the mixing ratio
of O3, NO and NO2 in units of parts per billion volume (ppbv) and the photolysis
frequency jNO2 in s−1. Therefore, the auxiliary function h simplifies to the identity.
The transition function f is composed of an initial randomization of each dimension
that follows a lognormal distribution and numerical integration of the differential
equation resulting from the chemical reactions. The parameters of the distribution
are chosen so that the mean and standard deviation are equal to the current value and
a given standard deviation σ0, respectively. The choice of a lognormal distribution
for chemical systems has been discussed, e.g., in [153], and solves the problem of
otherwise possible negative values for the abundances. With the scheme proposed
here, the lognormal distribution approximates a Gaussian distribution as the standard
deviation becomes smaller than the mean. Reactions (R6) and (R7) result in the
differential equation:

d

dt
x =


−k1 [O3] [NO] p

kBT + jNO2 [NO2]

−k1 [O3] [NO] p
kBT + jNO2 [NO2]

−jNO2 [NO2] + k1 [O3] [NO] p
kBT

0

 , (5.14)

where kB is Boltzmann’s constant that converts the reaction coefficient to units of
parts per billion by volume per second ppbv−1s−1 at given pressure p and temperature
T . These values will be input into the calculation as auxiliary variables for each time
step. The parameters p, T and k1 will be set as fixed values and their uncertainties will
not be considered. However, any deviations from the true values can be compensated
via the initial randomization. The function used to calculate the weights as in Eq.
(5.5) is defined as the product of Gaussian kernels:

p(yn|x̂n) ∝
M∏

m=1

exp

(
−(x̂n,m − yn,m)2

2σ2n,m

)
, (5.15)

where σn,m is constructed by

σ2n,m = DL2
m + (Pmx̂n,m)2 , (5.16)

using the characteristic detection limit DL and precision P for each instrument. In
cases of missing measurements, the factor is set to 1. To ensure numerical stability,
Eq. (5.15) in the actual algorithm is replaced by

log (p(yn|x̂n)) =

M∑
m=1

−(x̂n,m − yn,m)2

2σ2n,m
. (5.17)

The model output is constructed from full Bayesian inference to convert the approx-
imate probability distribution to an estimate for the state and an estimate of the
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error:

xn = Exn∼p(xn) [xn] ≈ 1

K

K∑
i=1

x(i)
n , (5.18)

∆xn =
√

Vxn∼p(xn) [xn] ≈

(
1

K − 1

K∑
i=1

(x(i)
n − xn)2

) 1
2

. (5.19)

5.3.2 Model extension

In each iteration the individual particles will evolve towards the photostationary state
where Eq. (5.14) equals 0. This state corresponds to the photostationary state for
a given NOx = NO + NO2, Ox = O3 + NO2 and j. Particles which are close to
the measurement then have high probability to be sampled. If no measurement is
available, all particles have an equal chance of being sampled. Therefore, the posterior
will shift towards the photostationary state in the unsupervised state. This behavior
can cause high biases in combination with low uncertainty on the prediction if no
measurements are available and, at the same time, the chemistry is dominated by
processes not regarded in the algorithm. During nighttime, the photolysis frequency
of NO2 is 0 so other sources of NO, e.g., emissions from soil or plants play a dominant
role [154]. An example of this effect can be found in the supplement.
Thus, we extend the state vector described in the previous section with an additional
variable η ∈ {0, 1} so that x∗ = (x, η). This variable will be called activity and gates
the differential equation according to

d

dt
x∗ = η

d

dt
x. (5.20)

Now each particle can be either active or passive if η = 1 or 0, respectively. If the
chemical reactions incorporated into Eq. (5.14) dominate the chemistry, it is more
likely that active particles survive and vice versa. A small probability pη to switch
activity is included into the randomization phase to prevent mode collapse. This
way the algorithm can turn chemical processes on and off, whichever is more likely
according to the measurements. Additionally, the mean value of η can give insights
into the relative importance of the chemical processes incorporated.
Figure 5.1 shows the diel profile of η for the complete dataset in comparison with the
diel average of jNO2 , along with a box-whisker plot. For low photolysis frequencies,
the activity lies close to 0 and sharply increases with higher actinic flux. At j ≈ 0.003
s−1, the median activity rises above 50 % and later saturates at around 90 %. The
10 % and 25 % quantiles suggest a very skewed distribution at noon. This indicates
deviations from the PSS calculation due to other processes, e.g., Reaction (R9).

5.3.3 Comparison with constrained box-model calculations

Similar calculations have been conducted using observationally constrained box-mod-
els [155, 23, 98] in which a selection of measured parameters (e.g., trace gas mixing
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Figure 5.1: Left: diel profile of photolysis frequency jNO2
(green) and activity η (blue)

averaged for each minute interval. Time is in UTC. Right: Box-Whisker plot of activity
as a funtion of photolysis frequency. The markers and dotted line mark the median,
boxes range from the 25 % quantile to 75 % quantile, the whiskers mark the 10 % and
90 % quantiles, respectively. The black dashed line marks the transition from passive to
active regime η > 0.5. A clear nonlinear correlation is visible. Although the correlation
is nonlinear the Pearson correlation coefficient equals 0.67.

ratios and photolysis rates) are used as time-dependent inputs for a detailed chemi-
cal reaction scheme. Physical effects, e.g., deposition and uptake can be adjusted to
best replicate measured outputs [98]. Sensitivity studies can be conducted by a vari-
ation of reaction rates and other parameters [23]. Typically, these model calculations
have runtimes in the order of seconds for a full dataset, dependent on the number of
reactions.

From a qualitative perspective, these calculations have some similarities with the
SMC method. However, in our case, the choice of appropriate constraints is based on
Bayesian theory and the quantitative measurement uncertainty. Sensitivity studies are
automatically obtained due to the description of the state as a probability distribution.
Unconsidered effects can be compensated via stochastic variability. Also, measurement
errors are not directly propagated to the output since the measurement vector is
separated from the state vector. In the limit of low constraint uncertainties and full
chemical description of the system, the outputs of SMC and box-model calculations
converge. In other cases, the latter may be used to prepare a full SMC run, benefiting
from its low runtime, and enables detailed chemical investigation of the system [23].

5.4 Experiments

In order to study the effect of the SMC method on time series of chemical systems, sev-
eral experiments were conducted on the measurement. The capability of the method
to interpolate missing data points was tested by artificially discarding data and com-
paring the reconstruction of the SMC algorithm with the original measurement. The
result is evaluated using the mean square error (MSE), and the squared error divided
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by the standard deviation (χ2):

MSE =
1

L

∑
n

(xn − yn)2, (5.21)

χ2 =
1

L

∑
n

(
xn − yn

∆xn

)2

. (5.22)

This will be described in more detail in Sect. 5.4.1 and 5.4.2. Another possible ap-
plication is enhancement of the precision of a measurement within a system. For this
test, white noise is added to the observed data. The reconstruction is also analyzed
in terms of MSE and χ2. The model is performing well if the MSE is close to the
uncertainty of the measurement and χ2 is close to 1. Finally we discuss the possibility
to augment the dataset to include unmeasured variables.
We give a depiction of the algorithm used in Sect. 5.4.1 and 5.4.2 in Algorithm 1.

Algorithm 1 Auxiliary particle filter in a O3, NO, NO2, jNO2 , η system.

Require: x = (O3,NO,NO2,jNO2 , η)
for all time steps tn do
Auxiliary phase

µ(i) ← x
(i)
n−1 + ẋ

(i)
n−1 ∆t using (5.14),(5.20)

Calculate λ(i) ← p(yn|µ(i)) using (5.17)

Sample R random particles x(j) from x
(i)
n−1 weighted by λ(i)

Randomization phase
for all particles x(j) do
for all ξ ∈ {O3,NO,NO2,jNO2} do

Resample ξ from lognormal distribution with mean ξ and standard deviation
σ0,m

end for
Switch η to 1− η with probability pη = 0.025

end for
x(j) ← x(j) + ẋ(j)∆t using (5.14), (5.20)
Calculate q(j) ← p(yn|x(j)) using (5.17)

Rescale by auxiliary weights q(j) ← q(j)

λ(i)

Sample K random particles x(i) from x(j) weighted by q(j)

x
(i)
n ← x(i)

end for

5.4.1 Interpolation

The SMC method is tested as an alternative to interpolation of missing data by
randomly discarding sections of data with interval size T . This process is repeated
for each dimension of the state vector i.e. each molecule and the photolysis frequency.
Then the missing data are reconstructed.
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Figure 5.2: Example result of SMC used for interpolation. NO mixing ratio as a function of
time (UTC) for an arbitrary day of the field campaign. Original measurement (black),
measurement with artificial gaps (blue), PSS calculation (yellow), SMC ensemble mean
(red) and ±1σ-interval (shaded gray region).

The algorithm described at the beginning of this section is applied to the whole
dataset. Missing data in each dimension are automatically interpolated since the
algorithm returns a value for x at all time steps. The uncertainty is given by the
standard deviation of the ensemble of particles (5.19). If data are missing in some
dimension, the likelihood of the particles is less sparse. This leads to survival of more
particles and a higher spread of the posterior. Hence, the standard deviation and the
entropy increase. Once measurement data are available again, only data points close
to the measurements will be sampled. Entropy and standard deviation decrease again.
If the mean of the distribution strongly deviates from the measurement at this point,
only a few particles survive and both entropy and standard deviation become very
small. The resulting standard deviation underestimates the uncertainty of the model
at this point. The requirements for the approximation of the posterior with the finite
sample of particles does not hold anymore. Therefore, data points where the entropy
is small will be discarded. Since there are effectively less particles left to sample from
than samples to be drawn, this threshold is set to

H(xn) < log(K)⇔ R∗ < K (5.23)

After a low entropy incident, the ensemble may require a few iterations to converge
again. Considering this effect and discarding additional points may increase the data
accuracy while lowering data coverage. Throughout this analysis no additional points
were discarded. In applications, the number of low entropy events may be reduced
using an increased ensemble size which requires a longer runtime.
Figure 5.2 shows an example plot of NO with random artificial data gaps of 30 min that
have been interpolated by the SMC method. Depending on activity, the SMC ensemble
mean either tends towards the PSS equilibrium or stays approximately constant, while
the ensemble spreads and increases the standard deviation. This spreading happens
fast in the beginning of a data gap and slows down afterwards. This might follow the
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Figure 5.3: MSE of the SMC estimation as a function of artificial data gap size to study the
interpolation capabilities. Mean MSE as lines and markers and standard deviation as
shaded region for the ensemble of repetitions. The plot shows the results of all variables:
ozone (red), NO (green), NO2 (yellow) and jNO2

(blue). Note that the unit of MSE is
arbitrary to fit all variables in one plot. The unit is parts per billion by volume squared
(ppbv2) for the MSE of trace gases and inverse seconds squared (s−2) for the MSE of
the photolysis frequency. The dashed black lines show power-law fits (y = Axpow) fitted
to the intermediate regions. The fit estimate for pow is given in the annotation.

√
N behavior of a sum of normally distributed variables. In this example plot, the

spreading speed matches the behavior of the system so that the measurement at the
end of a data gap lies within the ±1σ interval.

This procedure was repeated for each species and a wide range of data gaps between
1 min and 1 d. The data gaps were shuffled eight times for each setup to achieve
better statistics. Figure 5.3 shows the resulting MSE. For low gap sizes, the MSE
stays constant. This constant corresponds to the base deviation of the SMC estimate
from the unaltered measurement. This value is expected to be larger than 0, since the
model combines the prior knowlegde with the measurement and therefore introduces
a small bias. We will call this bias the intrinsic model bias.

With increasing gap size, the MSE starts to increase. In Figure 5.3, it is clearly
visible that the slope varies strongly with different variables. This slope corresponds
to the power-law coefficient of MSE with larger gap size. In the uninformative case of
linear interpolation and Brownian noise, this slope is equal to 1. A lower power-law
coefficient indicates an effective contribution of information through the remaining
measurements considered. This coefficient is close to 1 for ozone. Therefore, this
method is not capable of estimating the course of ozone in cases of instrument failure
considering this particular system. This is not a strong limitation since ozone can be
measured precisely enough with commercial instruments. However, one should keep
this limit in mind in other systems where a species cannot be effectively described by
the chemistry of the remaining variables in the system.

At very high gap sizes, the MSE jumps to higher values and the standard deviation
also increases. This indicates a higher sensitivity to the particular data gap position.
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In the limit, the SMC estimate approaches the PSS calculation since no additional in-
formation can be provided via measurements. For the variables that can be estimated
by PSS reasonably well, the MSE does not increase anymore at the largest gap sizes.

The second performance measure χ2 also increases with larger gap size, but the slope
is more sensitive to the actual dynamics of the dataset. If the PSS gives a reasonable
estimate of a value but at the same time conflicts with another important process, the
SMC estimate follows the PSS and predicts a very low standard deviation. The actual
measurement can be multiple standard deviations away from the SMC estimate, thus
a high value of χ2 is reached. For NO and jNO2 this is most likely the case due to an
additional NO source from soil and an additional NO sink via Reaction (R9). Here
χ2 reaches high values before the 2 h mark. A plot can be found in the Supplement.

5.4.2 Precision enhancement

In this section, the SMC method is applied to artificially noised measurements to
test the capability of reconstructing the original signal. The SMC method combines
the prior knowledge given by the system dynamics and the precisely measured vari-
ables with the remaining information provided by the noisy measurement. If the prior
overlaps with the likelihood, the result will be a more precise estimate of the noised
variable. If the prior is far away from the measurement due to another process domi-
nating the system, e. g., during the night, the posterior will be close to the likelihood.
An example plot is shown in Figure 5.4. Here, normally distributed noise is applied to
the NO2 measurement. The expected different effects at daytime and nighttime are
clearly visible. During the night, the SMC result follows the structure of the measure-
ment while PSS outputs unrealistic values. The noise is reduced only by regularization
of the variability through σ0. This effect will be discussed in more detail later. At
daytime, the SMC estimate lies between measurement and PSS calculation with a
strong tendency towards the photostationary state.

Algorithm 1 is applied again to the noised datasets to obtain values for MSE, χ2 and
also the baseline MSE. The latter value in fact equals the square of the noise added.
Figure 5.5 shows the results of this experiment. In all cases, the MSE is constant
for low noise. It is dominated by the intrinsic model bias. With increasing noise,
the MSE starts to rise once the baseline MSE reaches the intrinsic model bias. At
this point though, the MSE increases less steeply than the baseline MSE. Therefore,
the additional information provided by the system dynamics successfully decreased
the noise. At the same time, the value for χ2 starts to increase. The SMC estimate
becomes overly confident as the prediction according to the dynamics can no longer
be falsified by measurement accuracy. The MSE and χ2 start to saturate when the
limit of extrapolation is reached.

A similar plot showing the resulting values of χ2 is shown in Figure 3 in the Supple-
ment. The value of χ2 of the photolysis frequency decreases at the beginning, until
the added noise gets close to the detection limit. Up to this point, the increased
uncertainty during the night influences the uncertainty of the SMC estimate which
decreases χ2. For O3, the system starts to diverge at high uncertainty. Again, this
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Figure 5.4: Example result of the SMC method used for de-noising. NO2 mixing ratio
as a function of time (UTC) for an arbitrary day of the field campaign. Original
measurement (black), measurement with artificial noise (blue), PSS calculation (yellow),
SMC ensemble mean (red) and ±1σ-interval (shaded gray region).

indicates that ozone cannot be completely reconstructed from the PSS calculation us-
ing only the considered molecules. Thus, the application of the method for de-noising
is limited when other processes dominate.

5.4.3 Extrapolation

The state vector can also be appended with an unmeasured variable. If this variable
is strongly coupled to measured variables through the system dynamics, the SMC
calculation can give reasonable estimates. This problem can also be interpreted as the
limit of infinitely large data gaps or measurements with infinite uncertainty.

Figure 5.6 shows an example plot of jNO2 . The SMC result corresponds with the
photostationary state calculation, as expected. Additionally, the SMC method is
aware of the actual speed of the chemical reactions and is regularized via σ0 with
regards to the speed of unconsidered effects. In the example plot, the estimation
shows only moderate agreement with the actual measurement. This discrepancy can
be explained by other effects interfering with the system, e.g., NO emission from soil
during the nighttime or other sinks of NO such as Reactions (R9) and (R10).

One has to be careful, however, if multiple unknown variables are coupled. In the case
that a small variation in one can be compensated by variation of another variable,
the system is singular and will most likely diverge to unrealistic values within a few
iterations.

5.4.4 Free system parameters

The performance of the SMC method can change under variation of important free
parameters. The most basic parameter is the measurement error σn,m that relates to
the detection limit DL and precision P via Eq. (5.16). This parameter governs how
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Figure 5.5: MSE of the SMC estimation as a function of artificial noise to study the precision
enhancement abilities.The MSE units are represented by lines and markers and the
standard deviation by the shaded region for the ensemble of repetitions. The plot
shows the results of all variables: ozone (red), NO (green), NO2 (yellow) and jNO2

(blue). Note that the units of MSE and artificial noise are arbitrary to display all
variables in one plot. The unit of the noise is ppbv for the trace gases and inverse
seconds s−1 for the photolysis frequency. The unit of MSE is the square, respectively.
The solid black line indicates the baseline MSE (MSE = noise2)

far particles are allowed to spread from the measurement. An overestimation of this
error will bias the algorithm output towards the prior estimate, an underestimation
will bias the output towards the measurement. However, σn,m can easily be chosen ap-
propriately if the values of DL and P match the actual performance of the instrument
during the measurement.

The switching probability pη has to be tuned for a reasonable performance. If pη is
too high, activity is not dominated by inheritance but by random switching. The
algorithm will output values similar to the system where activity is set to 1 but with
slightly slower dynamics enabled. This also leads to unstable behavior. If pη is too
small, it is hard to switch from one state to another. Therefore, the algorithm will
become unstable if the environmental conditions switch too fast. Examples are given
in the Supplement for the interpolation of the photolysis frequency.

The standard deviation of the prior σ0 has to be chosen carefully. It encodes the
expected speed of variation of the system due to stochastic and unconsidered effects.
This regularizes the resulting time series to low frequencies. If an appropriate value is
chosen for this standard deviation, the algorithm already shows nice de-noising char-
acteristics for each individual variable in x, even if no system dynamic is considered
at all. This effect has been reported, e.g., by Riris et al. [156] and Leleux et al. [157],
for applications of a simple Kalman filter to mixing ratios of trace gases. Therefore,
one might encounter seemingly good performance of this algorithm when in fact the
result is just dominated by the expected speed of variations.

If the value chosen is too small, the system cannot reproduce rapid changes that
do not originate from the chosen dynamic. Figure 5.7 shows an example plot for the
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Figure 5.6: Example result of SMC method used for inference. Photolysis frequency j as a
function of time (UTC) for an arbitrary day of the field campaign. Original measure-
ment (black), PSS calculation (yellow), SMC ensemble mean (red) and ±1σ-interval
(shaded gray region).

photolysis frequency. The system cannot catch up with the speed of sunrise and sunset
and decouples from the measurement. If the value is chosen too high, the standard
deviation is increased. This can lead to a flattened out probability distribution that
effectively reduces the statistics of appropriate particles and therefore can also lead to
unstable behavior.

Here, we propose the analysis of the entropy as a measure. If σ0 is too small, the
distribution is very condensed and all particles get similar weights. The entropy
approaches a constant value. If the value is too high, the distribution spreads out and
particles at the edge of the distribution get much lower weights than particles at the
center. The entropy decreases with increased σ0. A proper choice of this parameter
lies in the transition region from constant entropy to decreasing entropy. An example
plot can be found in Figure 10.

Throughout this study, each σ0 is calculated for each step from a constant and a linear
contribution similar to Eq. (5.16), where σ0,const and σ0,rel are obtained from a linear
fit of the measured difference between consecutive samples vs the measurement itself.
This choice falls into the transition region mentioned before. Additional elaborations
with regards to this parameter as well as the used σ0 values can be found in the
Supplement.

5.5 Conclusions

In this study, we demonstrate that the SMC method is a very versatile method that can
effectively enhance data quality of atmospheric field measurements. We have shown
satisfactory results when applied to data coverage increase, precision enhancement and
inference of unmeasured variables. The algorithm is composed of simple steps and only
introduces simplified chemical dynamics into a system of measurements. This way,
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Figure 5.7: Variation of the free parameter σ0 and its exemplary effect on the inference of
jNO2

. σ0,rel is decreased by a factor of 3. Photolysis frequency j as a function of time
(UTC) for an arbitrary day of the field campaign. Original measurement (black), PSS
calculation (yellow), SMC ensemble mean (red) and ±1σ-interval (shaded gray region).

the data quality can be enhanced without precise knowledge of complex reactions and
processes such as emission, uptake, deposition or mixing with other air masses. The
algorithm automatically detects deviations from the proposed simple dynamics by
switching from the active state to the passive state. This ensures stability and gives
quantitative insights about the underlying dominant processes. Furthermore, the
entropy value encodes the information gained through the measurement and therefore
the missing information in the prior estimate.

Along with several benefits over other approaches, we also explored the limitations
of this method. Without the model extension by the activity variable η, the algo-
rithm can produce unrealistic estimates when the system dynamics deviate from the
proposed reactions. Variables that follow the proposed dynamics quite well and only
differ slightly will lead to an underestimation of the standard deviation. Variables that
do not follow the proposed dynamics at all do not benefit from the system dynamics
but will be regularized with regards to the speed of possible variations. In this case,
the algorithm is very sensitive to the proposed values of σ0. This free parameter has
to be chosen very carefully. However, a proper value can be chosen by the analysis of
observed variations and entropy.

The proposed method should not be seen as a replacement for PSS calculations, box-
model calculations, model estimates or actual measurements, but it is an extension
to the arsenal of numerical analysis for measurements in atmospheric chemistry. It
provides many desirable properties as it is very simple, and returns salvageable higher
moments of the estimated distribution while requiring a low runtime. A single run
with the described setup and the whole 32 d dataset took 18 min of runtime on an
8-core desktop PC.

An open question is the stability of the algorithm when applied to a more complicated
system with a higher dimension. Repeating the technical procedure of this study using
a higher-dimensional system is restricted by data coverage and data quality in existing
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datasets. We suggest that many applications of this method for different chemical
systems are necessary in the future to fully rate the potential of the SMC method in
the analysis of atmospheric chemistry field experimental data.
In general, we emphasize the versatility and high potential of this algorithm. Under
the right circumstances, the SMC method can be utilized to enhance data quality
and data coverage to allow for a more comprehensive data analysis of field campaign
measurement data. However, we suggest conducting similar experiments when applied
to a new system of variables. In particular, if the method is applied to a system of
precise measurements along with a single imprecise, irregular or nonexistent measure-
ment, the latter variable should be analyzed with regards to interpolation capability,
precision enhancement ability and sensitivity to hyper parameters before conclusions
can be drawn from the SMC result. These tests could be conducted on modeled data
or on a different dataset where the same variables were measured.

64



6 Neural Network Architectures for
Absorption Spectroscopy

An earlier version of this chapter was uploaded as ”Neural Network Architectures
for Absorption Spectroscopy” to the preprint server Research Square [158] under the
terms of the Creative Commons CC BY license: https://creativecommons.org/

licenses/by/4.0/.
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Abstract

State-of-the-art neural network architectures in image classification and natural lan-
guage processing were applied to interference fringe reduction in absorption spec-
troscopy by interpreting the data structure accordingly. A model was designed for
temporal interpolation of background spectra and a different model was created for
gas concentration fitting. The networks were trained on experimental data provided
by a wavelength modulation spectroscopy instrument and the best performing archi-
tectures were analyzed further to evaluate generalization performance, robustness and
transferability. A BERT-styled fitter achieved the best performance on the validation
set and reduced the mean squared error of fitted amplitude by 99.5 %. However, anal-
ysis of the de-noising behavior showed large biases. A U-Net styled convolutional
neural network reduced the mean squared error of the interpolation by 93.2 %. Eval-
uation on a test set provided evidence that the combination of model interpolation
and linear fitting was robust and the detection limit was improved by 52.4 %.

Transferring the trained interpolator model to a different spectrometer setup showed
no chaotic out-of-distribution effects. Additional fine-tuning further increased the
performance.

Neural network architectures cannot be generally applied to all absorption spec-
troscopy tasks. However, given the right task and the data representation, robust
performance increase is achievable.
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6.1 Introduction

Artificial neural networks and deep learning have contributed to major breakthroughs
in several applications like image classification, segmentation, generation of images
and text, natural language processing (NLP) and many more. These new frameworks
outperform conventional machine learning algorithms in many disciplines [52, 41, 44,
47, 55].

However, they cannot be trivially applied to regression tasks in natural sciences. In
contrast to most conventional data analysis methods, hyperparameter optimization
often needs complete retraining of the neural network and is therefore associated with
high computational effort. Error estimation of the output is a research field on its own
[159] and the model prediction can react chaotically to tiny deviations of the input
[79]. Deep learning applications often differ from regression tasks with respect to their
goal, constrains and requirements [41].

Nonetheless, several studies have successfully applied neural networks to spectroscopy
tasks and reported performance increases compared to conventional approaches. Ap-
plications feature classification of spectroscopic data obtained from Raman spec-
troscopy and other spectroscopic techniques [69, 70], speeding up expensive calcula-
tions via surrogate models for nonlinear tomography [74, 75] and spectrum prediction
[76], and concentration estimation [8, 160, 77]. Nicely et al. [8] used a shallow neural
network for fringe reduction in direct absorption spectroscopy using simulated data.
Tian et al. [77] report a good linearity of a direct fit performed by a neural network
for high SNR input spectra. In our recent study we observed good performance of a
neural network based noise reduction scheme for a specific noise structure where all
tested conventional methods fell short [100].

This study will focus on absorption spectra obtained via wavelength modulation spec-
troscopy but the main considerations should be transferable to direct detection meth-
ods or other data acquisition schemes, as well. The main noise sources of wavelength
modulation spectroscopy instruments can be split into relative and absolute contribu-
tions. The relative contributions cause disturbances proportional to the concentration
of the measured species in the cell, e. g. variations in pressure, temperature, laser
power and detector sensitivity. The main absolute limitation is often caused by noto-
rious etalon fringe patterns that emerge from reflective surfaces of the optics [39, 7].
Other possible noise sources can be interference with absorption of other molecules,
laser and detector stability or signal processing electronics. This study will, however,
focus mainly on the reduction of noise resulting from interference fringe patterns.
The procedures described may also be able to remove other noise types, as long as the
requirements in subsection 6.2.3 are fulfilled.

6.1.1 Neural Networks Overview

The basic architecture of an artificial neural network (ANN) consists of iterated lay-
ers yk of linear transformations implemented via matrix multiplications Wk and a
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following non-linearity σ [41]:

yk+1 = σ (Wkyk) (6.1)

Theoretically this architecture can approximate any function using only a single in-
termediate (”hidden”) layer [161, 162, 163]. Advanced architectures try to optimize
the ability of the model to learn and to generalize while being very efficient in time
and memory.

A first breakthrough in image recognition tasks was achieved via convolutional neural
networks (CNN) [164]. The matrix multiplications are replaced with convolutions of
small filters whose weights are shared between all positions in the image [51]. This
operation also ensures translation equivariance of the model output with regards to the
input image [41]. Together with normalization schemes to overcome internal covariate
shift [43], shortcut paths to decrease gradient decay [45] and randomization patterns
to lower the chance of overfitting [42], models were constructed that outperformed
human predictions for image classification tasks.

Vaswani et al. [54] introduced the transformer, a new architecture for NLP that builds
on a mechanism called attention, where a query sequence gates the input sequence to
focus on important parts. This method lead to other similar architectures that have
become state-of-the-art in NLP, such as the bidirectional encoder representation from
transformers (BERT) [55]. Others adjusted the transformer-based architectures for
image classification and achieved comparable results to state-of-the-art convolutional
architectures [56, 57].

The field of deep learning is fast evolving and state-of-the-art candidates are constantly
changing. Researchers seeking to apply deep learning to their discipline may not need
to design whole neural network topologies themselves, but rather adjust already tested
state-of-the-art networks to their need. Results may benefit from focusing on finding
the appropriate already available state-of-the-art model. A drawback of this approach,
though, is the vast size of state-of-the-art models.

6.1.2 Opportunities for Neural Networks

These fringe patterns can interfere with the frequency region of the signal. In our
previous study we reported different behavior and performance of several noise reduc-
tion methods depending on this interference. Many conventional methods are based
on frequency separation of signal and background and therefore only show great per-
formance if this interference is small. Otherwise the method will produce a high bias.
We reported, however, an improved performance of a neural network based approach
in a region of high interference [100].

This behavior can be motivated in an example: Suppose an absorption spectrum is
obstructed by a pure sinusoidal background modulation and some white noise. When
fitted, the resulting spectrum will show high variations depending on the phase of the
sine background. Conventional numerical noise reduction schemes that act on the fre-
quency domain will not be able to reconstruct the original signal but will most likely
dampen the result towards zero. However, if the structure of the background is known
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a priori, noise reduction is very efficient. In this example the structure of the back-
ground can be extracted from the edge of the spectrum by a curve fit and the obtained
sine can be subtracted from the noised spectrum. Of course, such a simple example of
background can simply be removed by applying established experimental techniques,
e.g., lock-in amplification. However, the background structure in a real experiment is
often more complex. It cannot be easily removed via experimental techniques and the
fitting parameters cannot be easily fit. A machine learning algorithm, though, could
learn the distribution of background structures and infer the interference with the
signal. This approach requires the background structure to have a sparse distribution
and be stable over the whole absorption spectrum.

Another conventional approach to reduce the impact of etalon fringe patterns is reg-
ular determination of background spectra and an interpolation scheme [38, 9]. If the
background structure changes point-wise and slow enough, this approach will give pre-
cise estimates of the underlying background structure of a measured spectrum. The
interpolated spectrum can be subtracted from the measurement and will yield great
noise reduction. In a second example a problem of this approach will be discussed:
Assume the background structure does not change point-wise but along the frequency
axis. If e.g. the phase changes in the order of half a cycle between two background
measurements, the result of the interpolation will vastly differ from the true back-
ground structure. Given a priori knowledge about the speed of the phase shift, the
background can be reconstructed again with high precision. In practice obtaining this
a priori knowledge can be very hard as a realistic background has a much more com-
plex structure and could consist of several phase changing periodic structures or beat
interferences. Also the true shape of the fringe pattern could be obscured by aliasing
effects [33]. Again a machine learning algorithm could learn the distribution of these
structures and yield a better interpolation scheme to reconstruct the background.

In section 6.2 possible interpretations of the data in order to motivate appropriate
model architectures are discussed. In section 6.3 the spectrometer is described in
more detail and the training data acquisition and processing is presented. In section
6.4 the performances are discussed for the training process, validation set evaluation,
test set evaluation and further transfer applications.

6.2 Neural Network Architectures

As motivated in the introduction, two different machine learning objectives will be
considered: concentration fitting (6.2) and temporal interpolation (6.3), with spec-
trum size N , number of spectra for each measurement C and sequence interval T .
The fitter F directly fits an absorption spectrum to obtain the trace gas concentra-
tion. The interpolator I gets a temporal sequence that contains regular background
measurements and reconstructs the evolution of the background in the inbetween re-
gion.
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F : Z −→ A Z ∈ RN×C A ∈ R1 (6.2)

I : X −→ Y X ∈ RT×N×C Y ∈ RT×N×C (6.3)

6.2.1 Possible Fitting Architectures

Although the input to the fitting task is one-dimensional (disregarding the feature
axis) increasing the dimension to two by a redundant linear transformation might
be beneficial. This enables the application of models that have proven themselves
on popular image classification benchmarks. In this study the continuous wavelet
transform (CWT) with the DOG2 wavelet is used to scale up the spectra to RN×J×C

with J = 128. The continuous wavelet transform has been very successful in envi-
ronmental sciences [10, 103], but similar behavior can be expected for other linear
transformations. An example plot of a CWT-transformed spectrum can be found in
Figure 6.1.

Figure 6.1: Example plot of a CWT-transformed spectrum, taken from the validation set.
Values smaller than zero are colored red, values larger than zero are colored blue. The
plot suggests how to interpret the data as image-like. The anisotropy of the image is
visible, with high frequency noise at the lower end of the scaling axis, signal at the higher
end of the scaling axis and left-right-centered along the spectral axis, and obstructing
fringes in the same scaling range but isotropic along the spectral axis. The SNR of the
underlying spectrum is 3.2.

Now, the data can be interpreted in different ways: a N×J image of the whole wavelet
spectrum or an N -dimensional sequence of J-dimensional vectors.
If data is considered as image-like, a CNN architecture can be used. A novel family of
efficient and effective CNNs is EfficientNetV2 [48], from which the smallest iteration
EfficientNetV2B0 (EffV2) will be used for performance reasons. A CNN architec-
ture iteratively extracts features of the image yk and scales down using convolutional
(Conv) blocks that contain pooling operations and strided convolutions.

yk+1 = Conv (yk) (6.4)
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In classification tasks the final layer is globally reduced and fed through a shallow
fully connected neural network (FCNN). The result is then softmaxed to retrieve the
probability for each class. In this case, though, the output needs to represent the
concentration of the trace gas, therefore the final output is not passed through an
activation layer. This way the output can be any real number.

However, as mentioned earlier, a CNN is translation invariant with respect to its input
- in image processing the algorithm should not depend on the global position of the
object. In the data described there is an anisotropy: The signal is left-right-centered
and occupies a distinct part of the wavelet scaling, while noise is isotropic and can
appear differently throughout the scaling dimension. The vision transformer (ViT)
[57] decomposes a picture of shape RN×J×C into patches of shape RP×P and flattens
the pixels to obtain data of shape RN/P ·J/P×P 2·C . These patches are embedded via
a linear transformation. The patch embedding is then added to a learned positional
encoding that represents the position of the patches with regards to the complete
image. Afterwards the architecture is very similar to BERT [55] and contains of
iterated transformer (Trans) blocks containing attention layers:

yk+1 = Trans (yk) (6.5)

With the attention mechanism, the model can learn global dependencies and structure
of the data due to a higher receptive field [56]. The final layer of the transformer can
again be globally reduced and fed into the FCNN.

Additionally, a hybrid architecture will be considered composed of an EffV2 backbone
consisting of the first 5 blocks of the model, whose output is linearly transformed and
directly fed to a ViT as patch embeddings. Dosovitskiy et al. reported similar perfor-
mance of both approaches and found a similarity in function of the first transformer
layers to the CNN backbone. The backbone will extract local features of the image
that can be processed globally by the transformer [57].

If the data is considered as sequence-like, the transformer architecture can be applied
directly. In this case the data is simply reshaped to RN×(J ·C) and fed into a BERT-
styled architecture [55]. Table 6.1 summarizes these approaches and gives a small
overview of the chosen size.

Task Model Data Interpretation Mechanism Parameters

fitter

EffV2 [48] image Conv 6.3 M
ViT [57] image Trans 10.2 M

Hybrid [57] image Conv/Trans 5.2 M
BERT [55] sequence Trans 10.1 M

interpolator
U-Net [44, 48] image Conv 11.6 M

ViT [57] image Trans 9.9 M
BERT [55] sequence Trans 10.1 M

Table 6.1: Summary of utilized model architectures and number of parameters.
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6.2.2 Possible Interpolation Architectures

The interpolator also gets 2D inputs: temporal sequences of spectra. The spectra at
the beginning and the end and also at regular distances throughout the sequence are
considered pure background and are point-wise interpolated to fill the intermediate
temporal region. Also the spectral edges of this intermediate region is kept as no
absorption signal is to be expected here. An example can be found in Figure 6.2.
Again the data can be interpreted image-like or sequence-like but this time with a
different objective.

Figure 6.2: Example plot of a temporal background spectrum sequence (left) and estimation
via linear interpolation along the time axis (right). The black boxes mark interpolated
regions. The temporal interpolation anchors and spectral edges are left unchanged.
Values smaller than zero are colored red, values larger than zero are colored blue. The
plot suggests how to interpret the task similar to image reconstruction. The objective
is to reconstruct the original sequence (left) from the linear interpolation (right).

If data is considered as image-like, the U-Net variant can be used, that has been
utilized for segmentation tasks [44] or image noise reduction [165]. The down-scaling
part of the U-Net is constructed from a subset of the EffV2 and the inverse of the initial
EffV2. In the inverse part every downscaling operation is replaced by an upscaling
operation to obtain outputs with the original dimension.
Another approach would be again a ViT styled segmentation followed by a transformer
architecture. The final patches can be linearly transformed and concatenated back to
the original shape of the picture. A hybrid architecture is not considered here since
the U-Net architecture already requires a lot of memory.
If data is again considered sequence-like, a linear transformation can be applied to
each N × C vector. In contrast to the CWT a learnable linear transformation is
used here since the dimension does not need to be increased in this case. This linear
embedding can then be input to a BERT styled model. The output is again fed
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to a linear transformation and gets reshaped to match the desired output. In their
original paper the authors introduced a masked language model (MLM) where words
were randomly replaced by a missing token and their model was pre-trained in an
unsupervised fashion to learn natural language structure [55]. In the example given
here most of the data is missing, but the target output can be slowly transformed to
the desired input by increasing the number of interpolated spectra in the intermediate
region to speed up the initial learning period. This procedure is also applied to the
image-like representations.

6.2.3 Remarks

In summary several ways to interpret the data have been considered and appropriate
established neural network architectures have been chosen for each interpretation. It
is important to emphasize here that different performances of these models do not
indicate advantages of one model architecture or data interpretation over the other.
No proofs or evidence of a specific model type to be favored can be given, as these are
only single random examples. The performance depends very much on the choice of
hyper-parameters like optimizer setup, learning rate value and schedule or number of
parameters. Taking into account several ways to understand data may lead to good
performance without sensitive variations of hyper-parameters and emerging biases as
a consequence.
All procedures motivated in this section and in the introduction require several char-
acteristics of the underlying background structure for the neural network approach to
work accordingly. All of these requirements are fulfilled for the specific spectrometer
setup used in this study with regards to interference fringe patterns as a main noise
source. The procedures might show similar performance on other noise sources, if
these requirements are also met there:

� Sparse noise distribution. All possible noise shapes must follow a sparse
probability distribution compared to independent white noise. Otherwise no
prior information about noise structure can be extracted from background mea-
surements.

� Local stability. The noise structure needs to be locally stable so reconstruction
is possible from the absorption-free parts of the data.

� Global stability. The noise structure needs to be stable over time, otherwise
the prior information needed for reconstruction changes and the network needs
to be retrained. If the structure changes too fast, retraining is needed before
desirable performance can be achieved.

6.3 Experimentation and Network Training

The experiment conducted for this study is based on the instrument TRISTAR re-
ported in [11, 38]. It is driven by a room temperature quantum cascade laser [4] from
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Alpes Lasers operated near the formaldehyde (HCHO) transition at 1759.72 cm−1

[166]. The laser beam is guided into a 50 cm long White Cell [2] where it gets reflected
128 times to yield an effective path length of 64 m. The beam exits the cell and is split
by a beam splitter into two separate paths. One beam is guided through a reference
cell filled with the substance of interest at high concentration. Both beams are fo-
cused on identical infrared detectors from VIGO Systems. The laser is modulated by
a slow triangle wave that scans through the absorption spectrum and a fast sine wave
that is demodulated at twice frequency by the data acquisition FGPA. The resulting
spectrum is similar to the second derivative of the absorption profile, depending on
the modulation depth. In the experiment each data point consists of C = 2 spectra,
one from the increasing part of the triangle wave and one from the decreasing part,
with N = 512 points each.

Experimental data of the instrument is gathered for 14 days. The instrument inlet is
connected to an air purifier to remove the substance of interest, in this case HCHO.
The reference cell is filled with a high concentration of HCHO. The detector channel
without reference cell detects absorption-free spectra that only consist of the inter-
ference fringe background structure. Spectra acquired at this detector will be called
BGD. The detector channel with inserted reference cell can be assumed fringe-free
due to the high concentration signal. Spectra acquired at this detector will be called
REF. Only the last 82 % of this data is used for training.

Training data for the interpolator is created using sequences of BGD. A sequence X
is input to a network that gets 4 seconds of spectra every 63 seconds and does point-
wise linear interpolation in the intermediate region. The interpolation anchors and
64 points at both edges of the spectrum are left unchanged. Then this array of shape
RT×N×C is normalized for each subarray in C while mean and standard deviation
are stored. This prepared matrix is fed through the interpolator and the output is
rescaled by the standard deviation and translated according to the mean that was
stored before. The loss is calculated as mean-squared-error (MSE) loss between this
final matrix Y and the input sequence X.

Training data for the fitter is created using random pairs of BGD and REF. Two
log-uniform distributed values A, S are drawn for the concentration and the signal-
noise-ratio (SNR). The input to the network Z is a linear combination of BGD and
REF with

Z = A REF +
A

S
BGD (6.6)

First this input is normalized and the standard deviation is stored. Then the CWT is
performed that transforms to a dimension of RN×J×C . The CWT result is fed through
the fitter to obtain a single value. This value is rescaled by the standard deviation
stored. The loss is calculated as MSE loss between this rescaled output value and the
value A. For additional investigation two instances of fitters are trained for different
SNR ranges.

For validation, sequences of BGD and pairs of BGD and REF along with pre-deter-
mined random values are taken from the first 9-18 % of the measurement data. The
best iteration of each interpolator or fitter, respectively, is then applied to the test
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set. The test set consists of a sequence of BGD and injections of calibration gas
into the measurement cell from the first 9 % of the measurement time. Variation and
point-wise accuracy of background and calibration signal can then be determined and
compared to a conventional approach.

Each network is trained on a HPC cluster hosting several NVIDIA V100 GPUs. The
training process is parallelized through the distributed learning scheme Horovod [167].

6.4 Results and Discussion

In this section the performance of the described model architectures will be discussed.

6.4.1 Training Performance

Figure 6.3: Training metric (upward triangle) and validation metric (downward triangle) of
interpolator models based on BERT (red), VIT (yellow) and UNET (blue) architecture:
Left: Loss (mean squared error); Right: MAE (mean absolute error)

As already mentioned in Section 6.2, the interpolator was trained on an easier task
during the first 10 epochs for a more efficient training process. A random portion
of spectra in the input sequence were exchanged by the corresponding spectra in the
target sequence. This procedure reinterprets the MLM from BERT or an autoencoder
application to enable faster learning of the underlying distribution. The amount of
exchanged spectra was linearly decreased towards zero in epoch 10. All model archi-
tectures show decreasing training loss and error metrics while validation metrics do
not show major indications for overfitting. Figure 6.3 shows losses and mean absolute
error of the interpolator models. Additional plots can be found in the appendix. For
further investigation of the robustness, several ablation studies [57] were performed
where the number of parameters of each model was reduced by scaling down the fea-
ture axes. The scaled down models achieved faster convergence speeds while resulting
in similar final metrics. Example plots can also be found in the appendix.
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Figure 6.4: Evaluation of fitter models trained on low SNR range and comparison to linear
fit. Red boxes indicate 25%-quantile, median and 75%-quantile; red whiskers indicate
10% and 90% quantile. Blue diamonds show the mean, blue whiskers (if provided) show
one standard deviation. Left: absolute squared error between prediction and true value.
Maxima are in the order 104. Right: predicted amplitude of pure background spectra.

6.4.2 Validation Set Performance

Although different performances during training might suggest the most suitable
model choice for each application, these metrics only provide guidance during the
training process. Model performance should always be derived from experiments that
more closely reassemble real applications. Thus, the models are evaluated in more
detail using the validation sets.
The fitter model is evaluated by calculating the absolute squared error between model
prediction and true signal amplitude of each spectrum in the validation set. For the
investigation of small signal behavior the pure background spectra are also input to
the model to obtain predicted zero amplitudes.

Figure 6.5: Fitter squared error as a function of input SNR. Linear fit in red, low SNR
trained BERT variant prediction in blue. Boxes indicate 25%-quantile, median and
75%-quantile; whiskers indicate 10% and 90% quantile. Diamonds and lines show the
mean. For better visualization the BERT plot is slightly offset along the x-axis.
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Figure 6.4 shows an overview of the evaluation results for the fitters trained on a
low SNR range. The BERT-styled variant shows the least combination of bias and
variance for the zero amplitude while performing similar to the EffV2 and Hybrid
variant overall. The mean squared error over the validation set is reduced by 99.5 %
and the mean squared error on pure background spectra by 97.4 %. The absolute
squared error can be further investigated depending on the input SNR. This is depicted
in Figure 6.5. The BERT variant outperforms linear fitting in the low SNR regime by
1-2 orders of magnitude but falls short in the high SNR range.

The fitters trained on a high SNR range fail to outperform linear fitting and perform
poorly for SNR values below their training data. A large bias is introduced when
fitting pure background spectra due to the lack of low signal examples in their training
distribution. Detailed plots similar to the ones shown in the low SNR example can be
found in the appendix.

Figure 6.6: Point-wise squared error between prediction and true spectra of interpolator
models and comparison to linear interpolation. Red boxes indicate 25%-quantile, me-
dian and 75%-quantile; red whiskers indicate 10% and 90% quantile. Blue diamonds
show the mean, blue whiskers show one standard deviation.

The interpolator models are evaluated by calculating point-wise squared errors be-
tween predicted background spectra and measured background. The evaluation result
is shown in Figure 6.6. Here the U-Net variant clearly shows the best performance.
The mean squared error is reduced by 93.2 %. This does not necessarily indicate an
advantage of this exact model architecture compared to a transformer type, since
further hyper-parameter optimizations can result in increased training efficiency and
model performance. The behavior of the U-Net variant is analyzed in more detail by
calculating the point-wise squared errors in dependence of the distance of the spec-
trum from the nearest interpolation anchor. This relation can be found in Figure 6.7.
In the case of a stable, slowly changing background, the linear interpolation would
give best estimations near the anchors, which is the case in this dataset. The model
prediction shows no dependency on the distance to the nearest anchor and reduces
the error evenly over the sequence.
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Figure 6.7: Point-wise squared error as a function of distance to nearest interpolation anchor.
Linear interpolation in red, U-Net variant prediction in blue. Boxes indicate 25%-
quantile, median and 75%-quantile; whiskers indicate 10% and 90% quantile. Diamonds
and lines show the mean. For better visualization the U-Net plot is slightly offset along
the x-axis.

6.4.3 Denoising Behavior

Despite the extraordinary mean squared error reduction from application of the fitter
model, the denoising behavior shows undesirable properties that introduces disadvan-
tages compared to classical linear fitting. In the low SNR limit the variance of the
linear method is very large compared to the signal amplitude. It is shown in Figure 6.8
that the fitter model introduces a small bias while substantially reducing the variance.
This leads to an effective reduction of the MSE. However, the bias is comparable to
the signal amplitude which renders the method almost useless in applications.

A possible explanation of this behavior is a poorly chosen loss function. While the
loss is reduced, the actual objective is not reached. Alternative explanations are non-
optimal model and optimizing schemes or an impossible task. For the investigation of
the loss function, a variation of the experiment is conducted where instead of estimat-
ing the absolute concentration, the final layer is activated using the sigmoid function
and the model is trained to distinguish pure background spectra from absorption spec-
tra with an SNR of 0.01. Figure 6.9 shows the training performance of this model. The
accuracy of the validation set shows no significant performance increase compared to
random guessing. Thus, either the combination of model architecture and optimizing
scheme is not optimal or the distinction between background and low SNR signal is
not possible. The latter is the case if the data does not match the requirements given
in Sect. 6.2.3. More specifically, the noise structure might not be locally stable or not
sparse enough for the fitter task.

The interpolator shows desirable properties in the denoising behavior. In Figure 6.10
the deviation from the true value of both approaches is depicted. The example from
Section 6.2 is used. While coarse structures are visible in the difference between linear
interpolation and original spectra, the residual structure of the model interpolation is
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Figure 6.8: Denoising behavior of the fitter model. Estimated amplitude against true value
for the linear fit (red) and the low-SNR fitter model output using the BERT-styled
variant (blue) for a low SNR example batch with 256 spectra. The black solid line
refers to a perfect fit y = x. The MSE values for this example batch are 121 and 59 for
the linear fit and the fitter model, respectively. Despite the improvement in MSE, the
fitter model produces a large bias which makes the estimation less meaningful.

much less correlated. This indicates effective learning of the underlying distribution
and successful reconstruction.

For the rest of this chapter, only the interpolator will be considered.

6.4.4 Test Set Performance

The test set is evaluated using experimental performance metrics instead of model
loss. This allows further quantification of the performance and generalization ability
of each method. In absorption spectroscopy experiments, key parameters that limit
the instrument performance are the reproducibility of calibrations due to temporal
drifts, the relative precision, and the detection limit. The reproducibility of calibra-
tions is retrieved by first averaging individual calibration intervals and calculating the
standard deviation of these averages. It is a measure for long-term drifts and stability.
The precision is the relative standard deviation of all calibration amplitudes after cor-
rection of the long-term drifts. The detection limit is two times the standard deviation
of background amplitudes. Since only absorption-free gas was measured during the
experiment, the detection limit can be evaluated using spectra marked as background
as well as spectra marked as ambient.

Figure 6.11 gives an overview of the resulting experimental performance metrics. Sim-
ilar to the validation set results the model-based approach achieve a better detection
limit than the linear approach. Applying the interpolator model and a linear fit
achieves a very robust reduction of detection limit as both the absolute and the rela-
tive errors are reduced.

Example time series of background and calibration amplitudes are shown in Fig-
ure 6.12. Again, very robust behavior can be observed for the combination of inter-
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Figure 6.9: Training metric (red upward triangle) and validation metric (blue downward
triangle) of classifier model based on EffNet architecture. Left: Loss (binary crossen-
tropy); Right: accuracy

Figure 6.10: Denoising behavior of the interpolator model. Difference between the example
of the temporal background spectrum sequence shown in Figure 6.2 and the linear
interpolation along the time axis (left) and the interpolator model output using the
U-Net variant (right).

polator model and linear fit. This indicates evidence that the proposed interpolator
architecture provides robust noise reduction.

6.4.5 Transferability

An important question left unanswered is the transferability of the networks. What
kind of output is created if a different spectrometer is used? Is a similar performance
increase possible? Will the result contain chaotic artifacts due to out-of-distribution
problems?

To answer these questions, the trained model is applied to a different QCL absorption
spectrometer which utilizes a 20 cm long Herriott Cell configuration with 182 passes
[3, 28] and is operated at the carbon monoxide (CO) transition at 2190.02 cm−1 [99].
Data acquisition and detectors are similar, but the experiment is driven at a different
modulation and sweeping frequency.

Evaluation data for the interpolator was gathered by flooding the absorption cell with
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Figure 6.11: Experimental performance metrics for the different interpolation techniques.
Reprod: reproducibility of calibrations; DetLim (BGD): detection limit (2σ) evaluated
at spectra marked background; DetLim (AMB): detection limit (2σ) evaluated at spec-
tra marked ambient.

nitrogen. Zero gas was measured for 70 hours. Application of the pre-trained ver-
sion directly resulted in similar performance than linear interpolation. This indicates
that the transferred model may require additional fine-tuning to achieve a good per-
formance, while it does not result in chaotic artifacts. For fine-tuning, the first 7
hours of nitrogen measurement were taken as new training and validation data and
the pre-trained interpolator model was trained further for 10 epochs, which results in
0.8 % of fine-tuning iterations compared to pre-training iterations. A comparison of
the evaluation is shown in Figure 6.13.

6.5 Summary and Conclusion

In this study several possible applications of neural networks to absorption spec-
troscopy experiments were tested by interpreting the data structure in a way that
several state-of-the-art neural network architectures can achieve good performance.
These architectures were chosen from image classification and natural language pro-
cessing tasks. A model for interpolation of background spectra and a model for gas
concentration fitting of absorption spectra were created. Each neural network was
trained on measured data and showed good generalization performance. The best
performing instance of each task was further evaluated using test data and data from
a different type of absorption spectrometer.

Fitters trained on a high SNR range did not outperform linear fitting. The best
performing fitter trained on a low SNR range was of the BERT-type. It decreased the
mean squared error on the validation set by 99.5 % and the mean squared error on pure
background spectra by 97.4 %. However, undesirable denoising behavior was observed
that rendered the method unusable. Training a classifier with the same architecture
showed that this behavior was not caused by a poor choice of loss function but is caused
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Figure 6.12: Examples of amplitude results for different interpolation techniques. Top:
Example result during zero gas measurement. Grey regions indicate declaration of the
spectra as background. Bottom: Example result during calibration gas injection.

either by insufficient architecture and optimizing scheme or an impossible objective.
Considering the human-level performance in image recognition and natural language
processing tasks of the chosen architectures, the objective might not be possible due
to the strong interference of signal and background. However, due to the large search
space and choice of hyper-parameters this can only be speculated.
The best performing interpolator was of the U-Net type and reduced the mean squared
error of the validation set by 93.2 %. It showed less dependence on the distance from
the nearest interpolation anchor than the linear interpolation. The combination of
model interpolation and linear fitting showed very robust behavior and decreased the
relative error by 8.2 % and the detection limit by 52.4 % on the test set.
It was shown that the interpolator model can be transferred to a different spectrom-
eter without chaotic out-of-distribution effects. However, the performance of the pre-
trained model on the different setup does not match the performance on the original
spectrometer setup and may become worse than conventional approaches. The per-
formance can be enhanced via fine-tuning on new data. Using just 0.8 % fine-tuning
iterations in relation to initial training iterations, the interpolator mean squared error
was reduced by 36.3 % compared to the conventional approach.
In conclusion, using state-of-the-art architectures is no guarantee to obtain a well
performing neural network if the task is not appropriate. But, interpreting the task in
multiple ways to include many state-of-the-art architectures can make the application
less sensitive to specific properties of a chosen network and speed up the architecture
design significantly.
In this study only 2f -wavelength modulation spectroscopy was considered, but the
concept should also work for other absorption spectroscopy data acquisition schemes
due to the similarities of the spectral features and the dominant noise sources. More
fine-tuning may be required in this case.
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Figure 6.13: Performance comparison of linear approaches to interpolator model transferred
to the alternative spectrometer. Point-wise squared error between background spectra
and interpolation reconstruction with linear interpolation, pre-trained variant and fine-
tuned variant. Red boxes indicate 25%-quantile, median and 75%-quantile; red whiskers
indicate 10% and 90% quantile. Blue diamonds show the mean, blue whiskers show one
standard deviation.
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This PhD study explored a wide range of data analysis and signal processing methods
for different possible applications in atmospheric measurements. The analysis meth-
ods featured time-frequency analysis, Bayesian statistics and machine learning. The
investigated applications featured time series processing of an atmospheric dataset,
data quality estimation of a measurement instrument and absorption spectrum pro-
cessing of infrared absorption spectroscopy. This selection of various data processing
tasks and analysis methods spans several scientific disciplines, but many global prop-
erties of the evaluation scheme and the implications for atmospheric measurements
were observed.

Before applying advanced signal processing techniques to a measurement instrument,
the characteristics limiting the data precision and accuracy have to be determined. In
the first study (Chapter 3), studying the data analysis with Allan-Werle-plots revealed
quantitative properties of the dominant noise structures present in the time series and
their effects on the drift correction capabilities and measurement uncertainty estima-
tion. Limitations of the Allan-Werle-plot became obvious when the data set was not
segmented into individual sections that matched the changes in environmental setup.
Applying Allan-Werle-plots directly to dynamically influenced time series decreases
the interpretability of the analysis and cannot resolve the dominant noise structures.
Elaboration of these noise structures can determine the limiting properties of the
measurement device.

The TRISTAR instrument is limited by interference fringe patterns that contribute
sinusoidal variations of the time series and cannot be completely reduced via inter-
polation of calibration measurements. Possible improvements in data quality may
be achieved by either applying advanced signal processing to the absorption spectra
before calculating the mixing ratios, or by post-processing of the time series to reduce
the deviation from the true value.

In the second study (Chapter 4), noise reduction methods that act on the absorp-
tion spectrum were tested. Despite the numerous publications that report perfor-
mance increases from such advanced signal processing methods, the actual perfor-
mance strongly depends on the properties of the signal and background spectrum.
Studying the effects of various noise reduction methods for different background spec-
trum characteristics revealed confined regions of applicability that showed little over-
lap. Only considering the reduction of MSE lead to wrong assumptions of applicability
if a large bias is introduced in return. The properties of a noise reduction method
have to be evaluated on the target background structure before application is possible.
Constraints with respect to the bias of the method have to be considered for the target
application.
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The dominant free spectral range of the fringes present in the TRISTAR device ob-
struct the frequency range of the absorption spectrum. Thus, noise reduction via
classical approaches such as statistical or time-frequency analysis are not possible.
Only the application of neural networks could provide a performance increase by in-
ducing learned prior information about the noise structure to the signal processing.
However, this method is expected to introduce a bias into the processed data.
In the third study (Chapter 5), post-processing of time series of atmospheric measure-
ments was tested. The statistical and numerical method called Sequential Monte Carlo
filter was explored as a new method for time series processing. In a Bayesian way the
information provided by the chemical reactions of a system of variables can be used
to form a prior estimation of the state. The measurements with their corresponding
uncertainties provide the likelihoods to refine this prior and obtain a corrected time
series that considers the chemical reactions and weights the different uncertainties
accordingly. Experiments for interpolation, noise reduction and extrapolation were
conducted that each showed reasonable performances, but limitations were also ob-
servable. A former iteration of the algorithm resulted in divergence of some variables
when the proposed dynamics do not match the dominant chemical processes. This
issue was mitigated via the introduction of an activity parameter. The choice of free
parameters provides a challenge to the method since some parameters have a strong
impact on the results.
Application to time series obtained via measurements of the TRISTAR device brings
some difficulties. The study results indicate that similar experiments are necessary
to fully analyze sets of other atmospheric variables. The set of measurable species
does not contain the variables analyzed in the study. Dynamical models containing
HCHO feature a lot of reaction processes and will increase the complexity of the
system. Application to airborne measurements is most likely not possible since fast
exchange of the sampled air masses break the Markov condition that each data point
is connected to the previous one. Hence, this method needs further testing before it
can be useful to increase the data quality of the TRISTAR device.
In the fourth study (Chapter 6) the proposed idea to use neural networks for noise
reduction in absorption spectra was tested in depth. Novel neural network architec-
tures, e.g., convolutional neural networks and transformers, were considered that have
shown promising results in image recognition and natural language processing tasks.
Using neural networks as an alternative to linear interpolation between background
measurements and as an alternative to linear fitting of the mixing ratio was tested.
For both tasks the input data was interpreted in various ways to obtain image or
sequence-like data. Up to four different neural network architectures were trained to
increase the choice of well performing models. The outputs of the fitter models con-
tained large biases which rendered the model approach not applicable despite showing
a great increase in MSE. A similar denoising behavior was also observed in Chapter 4.
Subsequent tests with a classifier objective rejected the possibility of a poorly chosen
loss function. As mentioned in Chapter 1, it cannot be excluded that a different model
architecture or optimizing scheme might achieve a better outcome due to the vast size
of the search space. Considering the chosen architectures that outperform humans
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in image recognition tasks, it may be assumed that the target objective cannot be
solved. The interpolator model showed more appropriate denoising behavior and was
shown to be transferable to a different absorption spectrometer. Application of the
interpolator to the test set lowered the detection limit by a factor of 2.
In summary, all advanced analysis methods analyzed show potential for application
in various tasks in atmospheric measurements and infrared absorption spectroscopy.
However, all of them are limited to specific properties of the input data and target
objectives. In depth analysis of these limitations are mandatory to prevent biases and
false conclusions emerging in the data.
As an outlook, many future studies based on the research done are possible. These in-
clude detailed modeling of the noise structure of the TRISTAR instrument, application
of the Allan-Werle-plot to other airborne measurement instruments, further testing
and application of the SMC method, transfer of the neural network architectures to
other spectrometers.
Many open problems and challenges presented in the conclusions are connected to
the interference fringe patterns that limit the minimum detectable concentration of
absorption spectrometers. Building a physical model to reproduce the observed pat-
terns can lead to new insights in the field and implications to the optical design and
possible data processing schemes.
Additionally, some new approaches to data quality analysis and improvements are
presented that can have a great impact on the analysis, description and optimization
of atmospheric measurement instruments. Spreading the utility of Allan-Werle-plots
from the field of infrared absorption spectroscopy to other experiment designs, e.g.,
mass spectrometers, laser induced fluorescence or luminescence detection, can help
investigating the temporal characteristics and measurement uncertainties in field ex-
periments. Establishing the SMC method as a typical tool in atmospheric chemistry
data analysis may open new doors to the quantitative determination of unknown pa-
rameters and improvements of overall data quality. Improvements in the data quality
of atmospheric measurements will lead to a better understanding of chemical processes
in the atmosphere and increase the accuracy of global circulation models to predict
weather, climate and air pollution.
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1 Chemical reactions and formulas

The reactions given in Sect. 2.1.1 consist of these individual reactions [21]:

CH4 + OH → CH3 + H2O (R11)

CH3 + O2 + M → CH3O2 + M (R12)

CH3O2 + NO → CH3O + NO2 (R13)

CH3O2 + HO2 → CH3OOH + O2 (R14)

CH3O + O2 → HCHO + HO2 (R15)

NO2 + hν(λ < 424 nm) → NO + O (R16)

O + O2 + M → O3 + M (R17)

2 Supplement to Chapter 3
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3 Supplement to Chapter 4

Electronic supplementary material to Chapter 4 is available in the online version of
[100].

4 Supplement to Chapter 5

Figure A1: Visualization of the effect of the activity parameter η. The SMC shows undesired
behavior when data is missing and the provided transition function does not correspond
to the dominant system dynamics. This problem is shown on an example of the SMC
used for interpolation of ozone. O3 mixing ratio as a function of time (UTC) for an
arbitrary day of the field campaign. Original measurement (black), measurement with
artificial gaps (blue), PSS calculation (yellow), SMC ensemble mean (red) and ±1σ-
interval (shaded grey region). Top: The basic algorithm described in section 5.3.1
without activity parameter η is used. When ozone data is missing during the night,
the algorithm quickly decreases the resulting mixing ratio to values close to the PSS.
Bottom: The extended algorithm 1 with activity parameter η is used. Its average value
is plotted in green. At sunset the system becomes passive and the algorithm does not
use the provided chemistry anymore. The stochastic part of the prior dominates and
ozone no longer vanishes where no data is provided.
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Figure A2: χ2 of the SMC estimation as a function of artificial data gap size to study
the interpolation capabilites. Mean χ2 as lines and markers and standard deviation as
shaded region for the ensemble of repetitions. The plot shows the results of all variables
ozone (red), NO (green), NO2 (yellow) and jNO2

(blue).

Figure A3: χ2 of the SMC estimation a function of artificial noise to study the precision
enhancement abilities. Mean χ2 as lines and markers and standard deviation as shaded
region for the ensemble of repetitions. The plot shows the results of all variables ozone
(red), NO (green), NO2 (yellow) and jNO2 (blue).
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Figure A4: Variation of the free parameter σ0 and its exemplary effect on the interpolation
of NO. σ0,const is decreased (top) and increased (bottom) by a factor of 10. NO mixing
ratio as a function of time (UTC) for an arbitrary day of the field campaign. Original
measurement (black), measurement with artificial gaps (blue), PSS calculation (yellow),
SMC ensemble mean (red) and ±1σ-interval (shaded grey region).

Figure A5: Variation of the free parameter σ0 and its exemplary effect on the denoising
of NO2. σ0,const is decreased (top) and increased (bottom) by a factor of 10. NO2

mixing ratio as a function of time (UTC) for an arbitrary day of the field campaign.
Original measurement (black), measurement with artificial noise (blue), PSS calculation
(yellow), SMC ensemble mean (red) and ±1σ-interval (shaded grey region).
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Figure A6: Variation of the free parameter σ0 and its exemplary effect on the inference of
jNO2

. σ0,rel is increased by a factor of 3. Photolysis frequency j as a function of time
(UTC) for an arbitrary day of the field campaign. Original measurement (black), PSS
calculation (yellow), SMC ensemble mean (red) and ±1σ-interval (shaded grey region).

Figure A7: Variation of the free parameter pη and its exemplary effect on the interpolation
of jNO2

. pη is decreased (top) and increased (bottom) by a factor of 10. Photolysis
frequency j as a function of time (UTC) for an arbitrary day of the field campaign.
Original measurement (black), measurement with artificial gaps (blue), PSS calculation
(yellow), SMC ensemble mean (red) and ±1σ-interval (shaded grey region), average
activity (green).
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Figure A8: Variation of the free parameter σ0,const and its exemplary effect on the interpo-
lation of NO. The median entropy is plotted for several runs as a function of each free
parameter setting.

Figure A9: Variation of the free parameter σ0,const and its exemplary effect on the denoising
of NO2. The median entropy is plotted for several runs as a function of each free
parameter setting.
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Figure A10: Variation of the free parameter σ0,rel and its exemplary effect on the inference
of jNO2

. The median entropy is plotted for several runs as a function of each free
parameter setting. In this particular case the entropy shows a maximum and decreases
again with lower σ0.

Variable Detection Limit Precision [%] σ0,const σ0,rel [%]

O3 2 ppbv 2 0.68 ppbv 0.3
NO 7 pptv 4 4.6 pptv 6.6
NO2 10 pptv 12 18 pptv 2.7
jNO2 3 · 10−6 s−1 10 1.5 · 10−5 s−1 6

Table A2: System parameters used throughout the study. Detection Limit and Precision are
taken from the measurement datasets. Note that the photolysis frequency is only cal-
culated from solar radiation. The contribution from diffuse radiation is not considered.
The σ0 parameters are retrieved from linear fits of the difference between consecutive
measurements vs the measurement value. Additional parameters are the switching
probability pη = 2.5%, the ensemble size K = 1000 and the auxiliary ensemble size
R = 10000.
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Figure A11: Training metric (upward triangle) and validation metric (downward triangle) of
high-SNR fitter models based on BERT (red), VIT (yellow), Hybrid (grey) and EffV2
(blue) architecture: Left: Loss (mean squared error); Right: MAE (mean absolute
error)

Figure A12: Training metric (upward triangle) and validation metric (downward triangle)
of low-SNR fitter models based on BERT (red), VIT (yellow), Hybrid (grey) and EffV2
(blue) architecture: Left: Loss (mean squared error); Right: MAE (mean absolute
error)
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Figure A13: Ablation study. Training loss (upward triangle) and validation loss (downward
triangle) of high-SNR fitter models based on VIT. Original model size performance in
blue and reduced parameter versions in light blue, pink, red in the order of smaller
model sizes.

Figure A14: Ablation study. Training loss (upward triangle) and validation loss (downward
triangle) of low-SNR fitter models based on VIT. Original model size performance in
blue and reduced parameter versions in light blue, pink and red in the order of smaller
model sizes.
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Figure A15: Ablation study. Training loss (upward triangle) and validation loss (downward
triangle) of interpolator models based on UNET. Original model size performance in
blue and reduced parameter versions in purple and red in the order of smaller model
sizes.

Figure A16: Evaluation of fitter models trained on high SNR range and comparison to linear
fit. Red boxes indicate 25%-quantile, median and 75%-quantile; red whiskers indicate
10% and 90% quantile. Blue diamonds show the mean, blue whiskers (if provided) show
one standard deviation. Left: absolute squared error between prediction and true value.
Maxima are in the order 101. Right: predicted amplitude of pure background spectra.
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Figure A17: Fitter squared error as a function of input SNR. Linear fit in red, high SNR
trained EffV2 variant prediction in blue. Boxes indicate 25%-quantile, median and
75%-quantile; whiskers indicate 10% and 90% quantile. Diamonds and lines show the
mean. For better visualization the EffV2 plot is slightly offset along the x-axis.

98



Bibliography

[1] P. Werle, Spectrochimica Acta Part A: Molecular and Biomolecular Spec-
troscopy 54(2), 197 (1998)

[2] J.U. White. Optical system providing a long optical path (1957)

[3] D. Herriott, H. Kogelnik, R. Kompfner, Applied Optics 3(4), 523 (1964)

[4] J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science
264(5158), 553 (1994). DOI 10.1126/science.264.5158.553

[5] A. Fried, D. Richter, Infrared Absorption Spectroscopy (Blackwell Publishing
Ltd, 2006), chap. 2, pp. 72–146. DOI 10.1002/9780470988510.ch2. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/9780470988510.ch2

[6] J. Li, B. Yu, W. Zhao, W. Chen, Applied Spectroscopy Reviews 49(8), 666
(2014)

[7] Z. Wang, P. Fu, X. Chao, Applied Sciences 9(13), 2723 (2019)

[8] J. Nicely, T. Hanisco, H. Riris, Journal of Quantitative Spectroscopy and Ra-
diative Transfer 211, 115 (2018)

[9] D. Richter, P. Weibring, J.G. Walega, A. Fried, S.M. Spuler, M.S. Taubman,
Applied Physics B 119(1), 119 (2015)

[10] C. Torrence, G.P. Compo, Bulletin of the American Meteorological Society
79(1), 61 (1998). DOI 10.1175/1520-0477(1998)079⟨0061:APGTWA⟩2.0.CO;2

[11] F. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. Harris, J. An-
ders, R. Grisar, M. Knothe, W. Riedel, et al., Applied Physics B 67(4), 411
(1998)

[12] J. Rudolph, S. Tan, S. Tan, Journal of Applied Learning and Teaching 6(1)
(2023)
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M. Shiraiwa, A.J. Huisman, Atmospheric Chemistry and Physics 17(12), 8021
(2017)

[132] S. Guo, R. Yang, H. Zhang, W. Weng, W. Fan, International Journal of Heat
and Mass Transfer 52(17-18), 3955 (2009)

[133] A. Wawrzynczak, P. Kopka, M. Borysiewicz, in Parallel Processing and Ap-
plied Mathematics, ed. by R. Wyrzykowski, J. Dongarra, K. Karczewski,
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