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Abstract: Methylenecyclobutanes are found to undergo
Wacker oxidation via a semi-pinacol-type rearrange-
ment. Key to a successful process is the use of tert-butyl
nitrite as oxidant, which not only enables efficient
catalyst turn-over but also ensures high Markovnikov-
selectivity under mild conditions. Thus, cyclopentanones
(26 examples) can be accessed in an overall good yield
and excellent selectivity (up to 97% yield, generally
>99 :1 ketone:aldehyde ratio). Stereochemical analysis
of the reaction sequence reveals migration aptitudes in
line with related 1,2-shifts. By introducing a pyox ligand
to palladium, prochiral methylenecyclobutanes can be
desymmetrized, thus realizing the first enantioselective
Wacker oxidation.

Introduction

Since its discovery in 1956,[1] the Wacker oxidation continues
to present an indispensable method to convert olefins into
carbonyls.[2,3] Traditionally, palladium chloride is used as the
catalyst and copper chloride mediates an aerobic re-
oxidation in an aqueous reaction medium. The sequence
works particularly well for monosubstituted alkenes, which
can either undergo ketone-selective[4] or aldehyde-
selective[5,6] oxidation based on the respective substrate bias
and applied reaction conditions (Scheme 1, top).[7] Internal
alkenes can also be addressed, even though highly regiose-
lective protocols are less frequent.[8] In contrast, Wacker
oxidation of 1,1-disubstiuted alkenes remains mostly unex-
plored with the exception of palladium-catalyzed intra-
molecular ring-closure from pendent hydroxy-groups, a
process that is generally referred to as Wacker-cyclization

(Scheme 1, middle).[9] While some rare reports describe
classical Wacker oxidation of 1,1-disubstituted alkenes
towards aldehydes,[10] ketones are generally not accessible
via this sequence due to a lacking β-hydrogen atom.
However, we speculated that when incorporating a formal
1,2-carbon shift within the Wacker oxidation, a rearranged
ketone would become accessible from a 1,1-disubstituted
alkene precursor (Scheme 1, bottom). Within this research
article, we summarize our results spanning from the
aforementioned hypothesis towards developing the first
highly efficient process.

Our detailed hypothesis on how to access the rearranged
ketones is outlined in Scheme 2. Based on the plethora of
mechanistic studies on hydroxypalladation of monosubsti-
tuted alkenes,[11] we assumed that a related process should
also be amenable to 1,1-disubstituted alkenes leading to a
respective intermediate of the general type I-1. While this
process might be reversible and generally not productive, I-1
shares some interesting similarities with the starting materi-
als of semipinacol rearrangements, namely a tertiary alcohol
with PdII as a latent leaving group in a 1,2-relationship.
Thus, a concerted 1,2-shift towards the rearranged Wacker-
type ketone can be anticipated (Scheme 2, top). Alterna-
tively, a stepwise 1,2-shift via β-carbon elimination and re-
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Scheme 1. Current scope and limitations of the Wacker oxidation.
FG= functional group.
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insertion across the alkene may also be plausible (Scheme 2,
bottom).

To achieve such a sequence, methylenecyclobutanes
(MCBs) were envisioned as ideal substrates due to the
wealth of palladium-catalyzed 1,2-shifts of alkenyl- and
alkynylcyclobutanols to the corresponding
cyclopentanones.[12–14] Furthermore, stoichiometric PdII

nitrite[15] was reported to promote oxidative ring expansion
of MCB to cyclopentanone providing further evidence that
— given a suitable oxidant can be identified — a Wacker
reaction of this type of 1,1-disubstituted alkene may be
realized. First hints about such a catalytic process were
disclosed by Boontanonda and Grigg in 1977, who described
an oxidative ring-expansion for three substrates.[16]

Results and Discussion

We commenced our survey on identifying suitable Wacker
conditions for MCB oxidation by using 3,3-diphenylmeth-

ylenecyclobutane (1a) as a model substrate (Table 1 high-
lights our major findings, for full optimization see Support-
ing Information). Under classical Wacker-Tsuji conditions
(entry 1), no conversion to the expected Wacker products
2a and 3a was observed. Switching the solvent to tBuOH
indicated a small but detectible amount of carbonylic
products (entry 2). While this result reveals the principial
feasibility of alkene oxidation, the required re-oxidation of
the accumulating Pd0 was unsuccessful in this case. To
address this limitation, a number of oxidants such as
benzoquinone (BQ) or tert-butyl hydroperoxide were
tested, albeit without improvement (entries 3 & 4). By
contrast, when using a palladium nitrite complex instead of
palladium chloride,[17] re-oxidation under aerobic conditions
using CuCl2 as mediator turned out to be successful. Thus,
the rearranged ketone 2a was obtained in 77% yield along
with 12% of the respective aldehyde 3a underpinning the
importance of nitrite for this oxidation (compare entry 5 to
entry 2). The solvent was found to be crucial for ketone-to-
aldehyde selectivity with improved results for alcohols such
as iPrOH or EtOH (entries 6 & 7). Similar observations
were recently made by Kang and co-workers.[7c] Unfortu-
nately, the improved ketone-selectivity came at the expense
of an overall drop in yield. However, it was found that the
activity can be restored by switching the oxidant to tBuONO
and the catalyst back to the commercially available palla-
dium dichloride acetonitrile complex providing 95% yield of
cyclopentanone 2a while completely suppressing the for-
mation of aldehyde side-product (entry 8). Successful re-
oxidation of Pd0 by alkyl nitrite has been previously
described.[18] Further evaluation of the reagents indicated
that tBuONO acts as the terminal oxidant in this process
(entry 9), water is required for efficient turn-over (entry 10),
and chloride is essential as counter-ion to the palladium
catalyst (entry 11). Finally, the reaction time could be

Scheme 2. Mechanistic hypothesis for the key rearrangement of the
Wacker oxidation of 1,1-disubstituted alkenes.

Table 1: Reaction optimization.

# Catalyst Oxidant (equiv) Solvent Yield [%] 2a :3a[a]

1 PdCl2 CuCl2 (0.4) O2 DMF/H2O – –
2 PdCl2(MeCN)2 CuCl2 (0.4)

[b] tBuOH 13 81 :19
3 PdCl2(MeCN)2 BQ (1.0) tBuOH <1 –
4 PdCl2(MeCN)2 tBuOOH (1.0) tBuOH 11
5 Pd(NO2)Cl(MeCN)2 CuCl2 (0.4)

[b] tBuOH 88 88 :12
6 Pd(NO2)Cl(MeCN)2 CuCl2 (0.4)

[b] iPrOH 44 91 :9
7 Pd(NO2)Cl(MeCN)2 CuCl2 (0.4)

[b] EtOH 18 >99 :1
8 PdCl2(MeCN)2 tBuONO (1.0) EtOH 95 >99 :1
9 PdCl2(MeCN)2 tBuONO (0.2) O2 EtOH 19 >99 :1
10[c] PdCl2(MeCN)2 tBuONO (1.0) EtOH 36 >99 :1
11 Pd(OAc)2 tBuONO (1.0) EtOH <1 –
12[d] PdCl2(MeCN)2 tBuONO (1.0) EtOH 95 >99 :1

Reactions were run on a 0.1 mmol scale in 1 mL of solvent [0.1 M] using 10 mol% of catalst. [a] Yield and selectivity of 2a and 3a was determined
by 1H NMR from the crude reaction mixture using mesitylene as an internal standard. [b] Atmospheric oxygen was used as the terminal oxidant.
[c] The reaction was run without the addition of water and under an Ar atmosphere. [d] Reaction was run with 5 mol% catalyst and stopped after
3 h.
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reduced to 3 h and the catalyst loading dropped to 5 mol%
without any loss in performance (entry 12).

To gain some insight into the origin of the oxygen atom
of 1a, 18O-labelled water was used as a mass-sensitive tracer
(Scheme 3a). To prevent any oxygen scrambling during
work-up and purification, the reaction was stopped by the
addition of excess sodium borohydride after 2 h. Thus,
cyclobutanol 4a was isolated as the sole product in 89%
yield. A 78% 18O-content was detected by mass spectrome-
try supporting an initial hydroxypalladation step. Next,
terminally 13C-labelled methylenecyclobutane 13C-1a was
subjected to the reaction sequence providing cyclopenta-
none 13C-2a in agreement with a 1,2-carbon shift. Any
attempts to trap an intermediate arising from a β-carbon
elimination, such as running the reaction under a CO
atmosphere, were unsuccessful. While this alludes to a
concerted 1,2-shift, it does not rule out a stepwise mecha-
nism as suggested in Scheme 2.[19]

After having studied the mechanism and critical reaction
parameters, we set out to explore the scope of the Wacker
oxidation (Scheme 4). 3-phenyl-MCB (1b) was a viable
substrate as indicated by the formation of 3-phenylcyclopen-
tanone 2b in 92% yield. Steric and electronic perturbation
at the phenyl ring was well tolerated under the optimized
conditions (2c–2h). Worth mentioning is bromo-substitution
(2h), which did not interfere with the transiently formed
Pd0. Heterocycles such as indole (2 i) were also compatible
with the oxidative reaction protocol. The reaction works
equally efficiently on a range of 3,3-disubstituted MCBs (2 j–
2m) and can be easily run on gram-scale with only minor
deviations (2 j). Spirocyclic (2n–2o) and fully saturated
cyclopentanones (2p) were furnished by the Wacker
oxidation in persistently �90% yield. Interestingly, cyano-
cyclopentanone 2q was isolated in a moderate 34% yield.
While the low yield can be explained by potential HCN
elimination and the volatility of the products, it is important
to note that in this single case small amounts (4%) of the
corresponding aldehyde were detected by NMR analysis of
the crude reaction mixture. In contrast, functional groups
such as protected amines, ethers, free alcohols, and esters
were also evaluated providing the respective cyclopenta-

nones 2r–2w in good to excellent yield without detectable
aldehyde formation. The reaction was also found to be
limited to methylenecyclobutanes as substrates. Smaller
rings such as methylenecyclopropanes, as well as larger rings
such as methylenecyclohexanes did not undergo ring
expansion under the optimized conditions and the unreacted
alkenes were detected in both cases (see Supporting
Information for further details).

After exploring the substrate scope, we became inter-
ested in the selectivity of the oxidation process. Not
surprisingly, the reaction was highly site-selective as indi-
cated by the oxidation of diene 1x to cyclopentanone 2x in
91% isolated yield (Scheme 5, top). Furthermore, 2-benzyl-
MCB 5 was used as a mechanistic probe to test theScheme 3. Labelling experiments to probe the mechanistic hypothesis.

Scheme 4. Reactions were run in EtOH [0.1 M] on a 0.3 mmol scale
using 5 mol% of catalyst, 1 equiv of tBuONO, and 30 equiv of H2O.
[a] Minor amounts of the respective aldehyde were formed for this
substrate. [b] Reaction run at a 0.18 mmol scale. [c] Isolated as ketone:
hemiketal mixture (66 :34 ratio).
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migration aptitudes of secondary vs. primary C� C bonds. A
minor preference for the C-3 functionalized cyclopentanone
6 over its C-2 counterpart 7 was witnessed indicating a faster
1,2-shift from the higher substituted bond (Scheme 4b, path
a). Prochiral MCBs such as 1j bear the potential for
enantioselective desymmetrization and prompted us to
evaluate a small ligand set (14 ligands were tested, see
Supporting Information for full details). As proof of
concept, pyridine-oxazoline (pyox) ligand L1 is highlighted,
which provides the cyclopentanone (+)-2 j in a 63 :37
enantiomeric ratio (er).[20] To push the reaction to a
reasonable conversion, raising the temperature to 78 °C and
replacing the chloride counterion with a perchlorate was
essential. This result not only resembles the first enantiose-
lective desymmetrization of a MCB, but also provides
further credibility to the key rearrangement occurring from
a palladium-mediated semipinacol shift.

Conclusion

In summary, ketone-selective Wacker oxidation of 1,1-
disubstituted alkenes was achieved via a semipinacol-type
rearrangement using strained MCBs. During the optimiza-
tion, tert-butylnitrite was found to play a crucial role in

activating the palladium catalyst through nitrite supply and
in mediating efficient re-oxidation of Pd0. Thus, a number of
cyclopentanones can be accessed with good functional group
tolerance and in only 3 h at 30 °C. The stereochemical
outcome of the reaction was studied and a suitable pyox-
ligand that allows desymmetrization of prochiral MCBs
identified. Thus, enantioselective Wacker oxidation, which
has been elusive until now, becomes possible providing a
new entry to cyclopentanones as widely useful chiral
building block.
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