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Abstract

Supernovae are among the most energetic events occurring in the universe and are so
far the only verified extrasolar source of neutrinos. As the explosion mechanism is still
not well understood, recording a burst of neutrinos from such a stellar explosion would
be an important benchmark for particle physics as well as for the core collapse models.
The neutrino telescope IceCube is located at the Geographic South Pole and monitors
the antarctic glacier for Cherenkov photons. Even though it was conceived for the
detection of high energy neutrinos, it is capable of identifying a burst of low energy
neutrinos ejected from a supernova in the Milky Way by exploiting the low photo-
multiplier noise in the antarctic ice and extracting a collective rate increase. A signal
Monte Carlo specifically developed for water Cherenkov telescopes is presented. With
its help, we will investigate how well IceCube can distinguish between core collapse
models and oscillation scenarios. In the second part, nine years of data taken with the
IceCube precursor AMANDA will be analyzed. Intensive data cleaning methods will
be presented along with a background simulation. From the result, an upper limit on
the expected occurrence of supernovae within the Milky Way will be determined.

Kurzbeschreibung

Supernovae gehören zu den energiereichsten Ereignissen des Universums und stellen die
einzig gesicherte extrasolare Neutrinoquelle dar. Da der Mechanismus der Explosion
nicht ausreichend verstanden ist, wäre die Messung eines Ausbruchs von Neutrinos aus
einem solchen Ereignis ein wichtiger Test, sowohl für die Explosionsmodelle als auch
für die Elementarteilchenphysik. Das sich am Geographischen Südpol befindende Neu-
trinoteleskop IceCube weist Tscherenkow-Photonen im antarktischen Gletscher nach.
Obwohl es für die Detektion hochenergetischer Neutrinos konzipiert wurde, ist es we-
gen des niedrigen Sensorrauschens im Eis möglich, den Neutrinoausbruch einer Super-
nova in der Milchstraße über eine kollektive Ratenerhöhung nachzuweisen. Mit einem
speziell für Wasser-Tscherenkow-Teleskope entwickelten Signal-Monte-Carlo wird un-
tersucht, inwiefern IceCube in der Lage ist, zwischen verschiedenen Supernovamodellen
und Oszillationsszenarien zu unterscheiden. In einem zweiten Teil werden die mit dem
IceCube-Vorläufer AMANDA aufgezeichneten neun Jahre an Informationen analysiert.
Nach intensiver Datenbereinigung und Entwicklung einer Untergrundsimulation wird
eine obere Grenze auf die erwartete Anzahl an Supernovae in der Milchstraße gesetzt.
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Introduction

Der gerade Weg ist der kürzeste,

aber es dauert meist am längsten, bis

man auf ihm zum Ziele gelangt.

Georg Christoph Lichtenberg

Astronomy is the oldest of all natural sciences dating back to the very beginning of
human history. It was revolutionized during the Renaissance with the proposal of the
heliocentric system by Nicolaus Copernicus and the development of the telescope by
Hans Lippershey, Sacharias Jansen and Jacob Metius. The mathematical and physical
tools have continuously evolved, and nowadays, astronomy is a rich scientific field
with many different approaches. In addition to classical astronomy with its optical
telescopes, radio and gamma ray detectors are now among the most successful “eyes”
pointed to the sky. In the past two decades fundamentally new techniques such as the
search for gravitational waves or the detection of neutrinos have been developed and
added to the repertoire.

Supernovae are the most prominent objects that can appear among the stars as
they are capable of outshining whole galaxies for a few months before dimming out.
The first sighting of a supernova dates back to 185 AD, when Chinese astronomers
discovered a new light source near the direction of Alpha Centauri. Today we know
that supernovae herald the final stage in the life of massive stars. When the fusion
processes powering these cosmic furnaces fizzle out, they collapse and the density in
their cores reaches nuclear levels. At this point, an incompressible object is formed and
infalling matter is reflected; a shock wave ensues. Modern simulations indicate that
this shock stalls due to energy losses and is only revived by momentum deposition
from neutrinos. While little is known about the mechanism driving the supernova,
it can be taken as granted that neutrinos play an important role in this process. In
1987, the first and so far only extrasolar neutrino source was discovered; the supernova
SN1987A. This event marked the birth of neutrino astronomy.

As of today, there exist many neutrino detectors optimized for the identification
of astrophysical sources. IceCube and its precursor AMANDA are among the most
prominent, aiming at the detection of high energy neutrinos. Both experiments consist
of light sensors brought deep down into the antarctic glacier to detect Cherenkov light
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Introduction

indirectly produced by neutrinos. AMANDA consisted of 677 optical sensors and its
construction was finished in the year 2000. It took data until the beginning of 2009,
when it was decommissioned. The construction of IceCube started in 2005 and upon
its completion in 2011, it will consist of 5160 light sensors. Even in its unfinished state
it is already apparent that its capacity to outperform AMANDA is tremendous. Both
neutrino telescopes are aimed at high neutrino energies. However, the dark noise rates
of the light sensors deployed in the antarctic glacier are so low that it is possible to
identify small rate changes by investigating the pulse distribution in all modules for
collective deviations from their mean. As a supernova neutrino burst would increase
the pulse rates in all sensors at the same time, its detection is feasible with both
AMANDA and IceCube.

Little is known about the supernova mechanism, and the measurement of a neu-
trino signature would be a great scientific opportunity. It might help to determine the
dynamics and processes driving the explosion and would even allow a closer investi-
gation of the neutrino properties. IceCube would be able to reach the best statistical
accuracy worldwide when measuring a neutrino light curve from a supernova at the
galactic center. To investigate the possibilities, a simulation routine which implements
numerous supernova models and allows the modulation of the neutrino fluxes with
various oscillation effects was developed. Using this signal Monte Carlo, the ability to
discern different supernova models as well as signatures of neutrino oscillations will be
investigated.

AMANDA was running for nine years and recorded a large amount of information.
As it was based on the same principle as IceCube, it can be considered a demanding test
case for the supernova search. Careful quality checks and data cleaning of the complete
set of nine years of data will be performed to ensure stable and reliable information.
With background and signal simulations especially written for the supernova search,
an upper limit on the number of supernovae in the Milky Way will be determined.

The field of activity of the author also included maintenance of the AMANDA su-
pernova data acquisition in the years 2007-2008, extension of the system to enable
more reliable message transfer to the Supernova Early Warning System (SNEWS) and
creation of a monitoring system for the AMANDA supernova stream. An analysis of
the AMANDA sensor pulse rates with respect to GRB 080319B was performed, but no
correlated events were found. Furthermore, to understand the AMANDA noise behav-
ior, the recorded data was subjected to Fast Fourier Transforms (FFT) and a profiling
analysis where the average magnitude of data before and after high significance events
were investigated. As neither of these approaches yielded results that were helpful in
understanding the noise, they are not discussed here.

This thesis is ordered as follows. In chapter 1, we will lay the theoretical ground-
work. First, the supernova process and the current models as well as the role of
neutrinos will be described. Second, we will put our focus on neutrinos, describe them
in the framework of the Standard Model and investigate their properties. A major
part will be the investigation of neutrino oscillations in the supernova environment. In
chapter 2, AMANDA and IceCube will be presented along with their detection prin-
ciple and compared to competing experiments. We will then focus on the interaction
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processes which allow detection of supernova neutrinos. Chapter 3 will present the
supernova simulation routine developed specifically for the supernova search. It will
be used to investigate the performance of IceCube with respect to different models and
oscillation scenarios. Finally, in chapter 4 the data taken with the AMANDA telescope
will be examined. Careful quality considerations and a consistent background Monte
Carlo including external perturbations from atmospheric muons will be presented. The
chapter will close with the derivation of an upper limit for the number of supernova
explosions in the Milky Way.

3



Introduction

4



1 Theory

A process cannot be understood by

stopping it. Understanding must

move with the flow of the process,

must join it and flow with it.

Frank Herbert

This chapter will lay some theoretical groundwork necessary to motivate and under-
stand the analyses presented in this thesis. First, we will focus on the evolution of a
massive stars ending in a supernova explosion. After presenting the current state of re-
search, we will describe neutrinos and their interaction processes. Neutrino oscillations
in the supernova environment will be considered in the last section.

1.1 Supernovae

The most energetic events observable in our universe are the cataclysmic deaths of
massive stars, capable of outshining their whole host galaxy. In 1934, the astronomers
and physicists Walter Baade and Fritz Zwicky coined the term supernova to describe
these sudden luminous outbursts in the sky and hypothesized them being the transition
phase between normal and neutron stars [1].

It was a supernova that marked the birth of neutrino astronomy. On February
24, 1987, the light of the dying blue supergiant Sanduleak (-69° 202a) reached the
Earth from the Magellanic Cloud and could be seen with the naked eye. It was
titled SN1987A, and its neutrinos were the first and so far only ever observed from an
extrasolar source.

In this section we will shortly describe the evolution of a massive star up to its final
stage, the supernova. The explosion mechanism is considered in more detail, and an
overview of current research will be given.

1.1.1 The Life of a Star

1.1.1.1 The Birth

As this is a very complex subject, we will only shortly outline the formation of stars.
For an extensive treatment, refer to e.g. [2].
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1 Theory

Stars are born in interstellar clouds of gas and dust spanning many parsecs1, called
Giant Molecular Clouds (GMC). They consist mostly of hydrogen and, to a lesser ex-
tent, some heavier elements synthesized in previous stellar populations and supernova
explosions.

When the gravitational pull exceeds the stabilizing thermal pressure of the gas, the
cloud begins to collapse2; density and pressure increase. In the beginning, photons
can still escape and carry away much of the energy released during contraction. At
densities of ∼ 10−13 g/cm3, the medium becomes opaque, preventing further cooling by
radiative emission. Gas pressure increases due to rising temperatures and the collapse
decelerates. A proto-star is formed.

When the temperature reaches 1800K, the molecular hydrogen is dissociated, using
up kinetic energy and thus decreasing temperature and gas pressure. The equilibrium
shifts to gravitational pull, and the collapse accelerates. After the complete dissoci-
ation of hydrogen, temperature and gas pressure rise again, and the collapse slows
down. If temperatures reach 6000K, ionization of hydrogen reduces the pressure, and
the collapse can proceed. Density and temperature increase, the collapse decelerates
another time; a young stellar object (YSO) forms. Over the course of the next ∼ 106 a,
it slowly accretes matter, and the core temperature continues to rise. When it exceeds
∼ 106 K, fusion of deuterium starts and the star enters its T-Tauri phase. At core
temperatures of ∼ 3.5 · 107 K, hydrogen burning starts; the star enters its main phase.

1.1.1.2 Burning Stages

The stars of our universe have been observed to group according to their luminosity
and surface temperature. Figure 1.1 shows the so-called Hertzsprung-Russel diagram.

For a star, the burning stages it will go through and which kind of death it must
endure are primarily determined by the initial mass. A second, albeit less significant
factor is its metallicity. The higher it is, the higher the photonic opacity and thus the
higher the mass loss rate which determines the composition of the outer layers3.

A star is governed by the struggle between gravitational pull on the stellar matter
and the compensatory thermal pressure of the fusion processes at its core. During
the stable burning phases, these forces are in equilibrium. However, if the fuel in
the core runs out, the fusion in the central regions stops, and the star begins to
contract. Pressure and temperature increase and depending on the previously burned
fuel and the strength of the gravitational pressure, further burning stages can be
ignited. Note that while a new fusion cycle is reached in the core, the former burning
still continues in the envelope. The more massive the star, the higher the pressure inside
the core that can be reached by contraction. Consequently, higher energy thresholds
can be overcome to ignite the next burning phase as depicted in table 1.1. This cycle
ends with the depletion of silicon as fusion processes for the iron group would be

11 pc ≈ 3.26 light-years.
2Mostly, the collapse is triggered by external influences such as shock waves of nearby supernovae

or the radiative pressure of newly born stars.
3Stars can lose their hydrogen and even their helium envelope to stellar winds.
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Figure 1.1: Hertzsprung-Russel diagram
The diagram, taken from [3] and slightly modified. L describes the luminosity of a star
in solar units. The spectral type (B,A,...) is a classification based on the temperature
of the stellar atmosphere. A star starts out on the main sequence. Upon igniting
helium burning, it will leave its current branch and move to the next higher one.
The White Dwarfs on the lower left were low mass stars like our sun that could not
ignite the next burning phase; they collapsed to a compact object made up mostly
of electron-degenerate matter. Stars of the O class are the hottest and most massive.
The diagram does not show them as this spectral type is located left of the B class.

Fuel Ash Duration T/109 K ρ/g/cm Lγ/Lγ,⊙ Lν/Lν,⊙

H He 11My 0.035 5.8 28000 1.8 · 103

He C, O 2My 0.18 1.4 · 103 44000 1.9 · 103

C Ne, Mg 2 ky 0.81 2.8 · 105 72000 3.7 · 105

Ne O, Mg 0.7 y 1.6 1.2 · 107 75000 1.4 · 108

O, Mg Si, S, Ar, Ca 2.6 y 1.9 8.8 · 106 75000 9.1 · 108

Si, S, Ar, Ca Fe, Ni, Cr, Ti 18 d 3.3 4.8 · 107 75000 1.3 · 1011

core collapse neutron star ∼ 1 s > 7.1 > 7.3 · 109 75000 > 3.6 · 1015

Table 1.1: Burning stages of a massive star. The values were taken from [4].
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endothermic. With each new burning phase fuel usage, core temperature and density
as well as photonic and neutrino luminosities increase4 [4]. Stars with masses greater
than 11M⊙

5 can undergo the complete fusion cycle while stars with masses in the
range of 8M⊙ − 11M⊙ are in a transition region [5].

The reactions going on during the different burning stages will be outlined in the
following paragraphs. For more details, refer to e.g. [5, 6].

Main Sequence and Helium Burning

The spectral type (B,A,...) classifies stars by their surface temperature. The first
two stages in the fusion cycle are the most common ones and not unique to massive
stars. Our sun is still in the hydrogen burning phase and will start on helium after the
current fuel is depleted. As its mass is not sufficient to reach the advanced stages, it
will end as a white dwarf.

Hydrogen Burning is the most common fusion cycle going on in the universe. As
depicted in table 1.1, it is the first and the longest stage; stars in this phase are on
the main sequence branch. Hydrogen burning is governed by two separate reactions.
The first one - the proton-proton chain - is most important for low mass stars, fusing
hydrogen into helium without a catalyst. However, if the stellar mass exceeds 1.3M⊙,
the CNO-cycle (and side channels thereof) becomes dominant6 [7] (the break-even is
at ∼ 1.7 · 107 K). The cycle proceeds via the following steps:

p+ 12C −→ 13N + γ

e+ + 13N −→ 13C + ν

p+ 13C −→ 14N + γ

p+ 14N −→ 15O + γ

e+ + 15O −→ 15N + ν

p+ 15N −→ 12C + α .

Helium Burning is the next stage in the fusion cycle. It is the last phase that can
still be identified in the Hertzsprung-Russel diagram and drives stars populating the
region above the main sequence. The two principal reactions are:

α+ α+ α −→ 12C

and

α+ 12C −→ 16O + γ .

4More energy is lost through neutrinos in later burning stages, necessitating a faster burning of the
fuel to maintain the equilibrium.

5M⊙ = 1.99 · 1030 kg describes the mass of the sun.
6In stars of the first generation (the earliest stars), the abundance of heavy elements was still

insignificant so that hydrogen burning had to occur through the proton-proton chain.

8



1 Theory

  
  
  
  
  
  
  
  
  
  
  
P
ro

m
in

e
n
t 
C

on
st

itu
ents

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 i
n
 Z

on

es

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   

   
   

   
   

   
    

    
     

         
                                              Shell B

u
rn

in
g

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   

   
   

   
   

   
    

    
     

       
                                                        ¹H

 →
 ⁴H

e

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   

   
   

   
   

    
     

       
                                          ⁴H

e →
 ¹²C

, ¹⁶O

  
  
  
  
  
  
  
  
  
  
   

   
   

   
    

       
                      ²⁰N

e →
 ¹⁶O

  
  
  
  
   

   
         ²⁸Si →

 ⁵⁶N
i  

  
  
  
  
  
  
  
  
  
  
  
  
  
   

   
   

   
    

     
         

                               ¹²C
 →

 ²⁰N
e

  
  
  
  
  
  
  
   

   
   

     
                 ¹⁶O

 →
 ²⁸S

i

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   

   
   

   
   

   
    

     
       

                                             Stella
r S

u
rfa

c
e

  
  
  
  
  
  
  
  
  
  
  
H

, 
H

e
, 
2
%

 C
N

O
, 0

.1
%

 Fe

  
  
  
  
  
  
  
  
  
  
  
  
  
H
e
, 
2
%

 ¹
⁴N

  
  
  
  
  
  
  
 ¹

²C
, 
¹⁶

O
, 2

%
 ²²

Ne

  
  
  
¹⁶

O
, 
²⁰

N
e
, 
²³

N
a, ²

⁴M
g

  
 ¹

⁶O
, 
²⁴

M
g,

 ²³
Na

  
  
  
²⁸

Si

Fe Core

Figure 1.2: Onion model of a massive star at the end of its life
The figure depicts the internal structure of a star which has reached its final burning
stage. While the growing iron core is inert, the fusion processes continue in the enve-
lope. Of course, the fusion regions are not as cleanly separated as one might assume
from the figure. They mix at the transition regions. The figure was inspired by [6].

Advanced Burning Stages

Of course, the fusion processes do not halt in the whole star when the fuel in the center
is depleted. Rather, they relocate themselves into the envelope leading to an onion
structure of the star (see figure 1.2). All following burning stages happen so quickly
that the outside evolution of fails to keep up. To an observer, advanced stages are only
identifiable through convection bringing up core material to the surface.

Carbon Burning follows up on the helium phase. The principal reaction fuses two
12C into a highly excited 24Mg∗ which primarily decays through

12C + 12C −→ 24Mg∗ −→ 23Mg + n

−→ 20Ne + α

−→ 23Na + p

with the last two having about the same branching ratios and the first one only 0.1% ∼
5%.

Due to interaction with protons, neutrons and α-particles, the core composition after
carbon burning is dominated by 16O (ashes from helium burning), 20Ne and 24Mg.

Neon Burning ignites before the temperature required for oxygen fusion is reached.
The net reaction is given by

20Ne + 20Ne −→ 16O + 24Mg .

The composition after neon burning is chiefly 16O, 24Mg and 28Si.

9



1 Theory

Oxygen Burning is the next phase in the cycle. At the conditions governing a massive
star (T ∼ 2 · 109 K), photodisintegration of 16O is less important7 than oxygen fusion
which proceeds via the following steps:

16O + 16O −→ 32S∗ −→ 31S + n

−→ 31P + p

−→ 30P + d

−→ 28Si + α .

At the end of the day, 28Si and 32S are the prime constituents of the core.

Silicon Burning heralds the end of the star. Instead of a straightforward fusion
process, silicon burning is characterized by photodisintegration and subsequent rear-
rangement. 32Si is photodissociated into α-particles which then add up to the quasi-
equilibrium group above 32Si. Eventually, most of the material becomes concentrated
in the tightly bound iron group. The silicon abundance decreases; burning stops.

1.1.2 The Death of a Star

After fuel at the stellar core is depleted, the star begins to collapse. If the conditions
are right, its life ends in a cataclysmic explosion called supernova.

Observational Classification

Supernovae are classified by the characteristics of their observed light curves (see [8]
for a detailed review). The first distinction is made between type I (no hydrogen lines)
and type II (strong hydrogen lines).

Type I supernovae are subdivided in three categories. Type Ib (helium lines) are
believed to be stars having lost their hydrogen envelope, while type Ic (no helium
lines) are assumed to have lost their helium envelope as well. A very special case
are the type Ia supernovae which are characterized by strong absorption from Silicon
with no hydrogen or helium line. Their explosion mechanism is completely different
from the core collapse discussed below. According to current research, a white dwarf
in a binary system accretes matter from its partner until the Chandrasekhar mass8

is reached; at this point the star undergoes a thermonuclear explosion from which no
remnant remains. Due to the uniformity of their light curves, type Ia supernovae are
used as standard candles in astronomy [9].

The most common supernovae are of type IIP. They show prominent Balmer lines9

and a plateau in the light curve for ∼ 100 d in which the density of expanding envelope

7For explosive oxygen burning (T ∼ 3 · 109 K − 4 · 109 K), both can occur at comparable rates.
8This is the limit up to which an inactive stellar core can support its own mass. When it is exceeded,

the gravitational energy becomes to great and the object collapses.
9The Balmer series denominates the spectral line emissions of the hydrogen atom.
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Figure 1.3: Spectra of supernova light emission [8]
AB magnitudes are defined as −2.5 log f − 48.6 with the flux f given in erg

s cm2 Hz . One
can clearly see the different absorption lines described in the text.

slowly decreases and becomes transparent, allowing the photons trapped inside to
slowly escape. Also featuring hydrogen lines but lacking Balmer absorption lines are
type IIL supernovae. As opposed to type IIP, their light curve drops in a linear fashion.
It is believed that these stars have lost most of their atmosphere before the explosion
sets in. See figure 1.3 for some light spectra.

Mass and Metallicity

Just as the life of a star is determined by initial mass and metallicity so is its death.
While a certain mass is necessary to drive the collapse, the thickness of the stellar
envelope shortly before the explosion is the primary factor defining the light curve
of the ensuing supernova. As the metallicity “directly“ influences the mass loss rate
(see e.g. [10]), it is a governing factor for the conditions in pre-supernova star. The
dependence on the metallicity goes so far as to determine whether a star ends in a
supernova or fails in its explosion, directly forming a black hole10. It also influences
the kind of remnant that is left behind (see diagram 1.4 for more details and [11, 12]
for a discussion).

10Note that while the term direct black hole is often used, it can be misleading. The star does not
directly form a black hole but goes through the first stages of a supernova. As the proto neutron
star collapses to a black hole before the shock revival, the supernova fails.

11



1 Theory

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

SN Ib/c

weak SN Ib/c

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

no BH

pair SN
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

pu
ls

. p
ai

r 
(B

H
)

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

S
N

 IIL/b

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

SN IIp

w
ea

k 
S

N
 II

p
BH by fallback

(weak SN)

B
H

 b
y 

fa
llb

ac
k

(w
ea

k 
S

N
)

iro
n 

co
re

 c
ol

la
ps

e

O
/N

e/
M

g 
co

re
 c

ol
la

ps
e

lo
w

 m
as

s 
st

ar
s 

−−
 w

hi
te

 d
w

ar
fs

direct black hole

direct black hole

di
re

ct
 b

la
ck

 h
ol

e

no H envelope

25 60 100 14040

initial mass (solar masses)

9 10

ab
ou

t s
ol

ar
m

et
al

−f
re

e

34 260

m
et

al
lic

ity
 (

ro
ug

hl
y 

lo
ga

rit
hm

ic
 s

ca
le

)

Figure 1.4: Supernova types of non-rotating massive single stars
Note that opposed to this picture, the lower mass limit for supernovae is not strictly
at 9M⊙. Modern simulations show that stars with masses of 8M⊙ − 10M⊙ can
undergo a electron capture supernova (titled O/Ne/Mg core collapse in the picture, see
section 1.1.2.3 for more details). Rotation can further enhance the mass loss, therefore
smearing out the transition regimes. Stars above 100M⊙ and below 260M⊙ experience
pair-instability. During the contraction igniting oxygen burning, thermal pressure is
dissipated into electron-positron pair production. Because of this sudden instability,
the contraction is accelerated and the oxygen burning much enhanced, leading to a
sudden increase of nuclear reaction rates. Abrupt bursts of counter-pressure lead to
pulses for stars < 140M⊙. For stars > 140M⊙, complete disruption and explosion
of the star, leaving no remnant [13], can be the consequence. The figure was taken
from [11].
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1.1.2.1 The Neutrino-Driven Core Collapse Mechanism

In the following paragraphs, the standard model of core collapse will be presented.
When the fuel inside of the star is exhausted, an inactive core is formed and continues

to grow until its internal pressure can no longer oppose the gravitational forces; the
core contracts. This time, no further fusion cycle can be initialized so that the density
increases up to the nucleon level where the collapse stops; a proto neutron star (PNS)
is formed. The infalling envelope bounces on the PNS and reverses its momentum.
A shock wave which propagates to the outside of the collapsing star forms. However,
instead of leading to the final explosion, this shock stalls in all current simulations,
discarding the so-called prompt shock scenario11. Of the different approaches to revive
this shock, the neutrino-driven mechanism, first proposed in [14], is the most commonly
accepted. This standard scenario of core collapse can be split in six stages which will
be outlined in the following (see also [15, 4]).

Onset of the Core Collapse

In the inactive iron core, the pressure which opposes the gravitation is dominated by
a degenerate gas of relativistic electrons. The core is stable up to the Chandrasekhar
limit

MCh = 5.83Ȳ 2
e

[
1 +

(
s̄e

πȲe

)2
]

(1.1)

with Ȳe describing the mean electron fraction per baryon and s̄e the mean electron
entropy. Typical values place this limit at ∼ 1.44M⊙.

Due to the ongoing fusion processes, matter accumulates on the inactive core and its
mass continues to grow. At densities of ∼ 1010 g/cm3 and temperatures of ∼ 1010 K,
the Fermi energy of the electrons µe = 11.1MeV is higher than the mass difference
between 56Mn and 56Fe and thus electron capture on the Fe nuclei occurs via the
reaction

56Fe + e− −→ 56Mn + νe − 3.7MeV .

The electron fraction is reduced; the Chandrasekhar limit decreases, and the star starts
to contract. When Temperatures reach T & 5 · 109 K, photo dissociation of iron nuclei
occurs via

γ + 56Fe −→ 13α + 4n− 124.4MeV , (1.2)

absorbing thermal energy and thus decreasing the electron entropy and thermal pres-
sure. Consequently, electron degeneracy grows and electron capture on nucleon and
protons becomes important:

11In the prompt explosion model the initial shock drives the explosion.
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e− + p −→ n+ νe ,

e− +N(Z,A) −→ N(Z − 1, A) + νe .

During all these reaction, the produced neutrinos can still leave the core and thus
reduce the electron fraction. Consequently, the Chandrasekhar limit drops further;
the collapse is now irrevocable. This initial phase is illustrated in the first panel of
figure 1.5.

Collapse and Neutrino Trapping

The iron core collapse starts out on a free-fall time scale of the order of ∼ 0.04 s. The
outer regions of the core are at first unaffected by the internal contraction. When
pressure rises due to increasing density, the internal collapse velocity becomes propor-
tional to the radius. At this time, the outer core is in free fall and reaches supersonic
speeds.

Up to now, the electron neutrinos produced could freely escape from the star. As
soon as the central density reaches 1011 − 1012 g/cm3, coherent scattering on nuclei
and nucleons,

νe +A −→ νe +A and

νe + n, p −→ νe + n, p ,

becomes important. Furthermore, the electron neutrinos fall into a β-equilibrium,

e− + p←→ n+ νe , (1.3)

with the degenerate electron gas. The mean free path of the neutrinos drops signifi-
cantly and the time scale on which they can leave the star exceeds the time scale of
the collapse. Neutrinos become effectively trapped in the core and will be entrained
by the infalling matter.

As density decreases to the outside of the star, it stands to reason that above a
certain radius neutrinos can freely escape. This surface is called the neutrinosphere
and is defined as the radius at which the “optical” neutrino depth (the mean number
of times the neutrinos is scattered) is 2/3. It can be determined to

Rν ≈ 1.0 · 107 cm

(
Eν

10MeV

)
. (1.4)

Neutrinos above this radius can freely escape and are responsible for the first rise in
neutrino luminosities (see below).

This phase of the collapse is shown in the upper right diagram in figure 1.5.

14



1 Theory

0.5

R [km]

eν

e

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

ν

1.00.5

Si

M(r) [M ]

eν

eν

eν

M(r) [M ]

eν

eν

eν

eν

eν

Fe, Ni

M(r) [M ]

R   ~ 3000

eν

eν

eν

ν

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

e

Ch
M(r) [M ]~ M

Fe, Ni

Si

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

0.5 1.0

R [km]

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Si

R [km]

M(r) [M ]

Fe, Ni

0.5 1.0

Si

R [km]

R [km]

R [km]

Si

1.0M(r) [M ]

Si−burning shell Si−burning shell

Si−burning shellSi−burning shell

νe,µ,τ ,νe,µ,τ

R  ~ 100g

Fe

,µ,τe,ν,µ,τeν

α, n

,µ,τe,ν,µ,τeν

RFe

RFe

( δ>∼

δ

ο)

RFe

δ

c o)2∼

δ<

formation
shock 

radius of

gR  ~ 100

α, n
α,n,

seed
12

9Be,
C,

eν

RFe

position of
shock

formation

RFe

ν

Neutrino Trapping

Shock Stagnation and    Heating,

,µ,τe,ν,µ,τeν

~ 10

free n, p

ν
νe

e

1.3 1.5

R  ~ 50ν

p

n

sR  ~ 200

FeR

10

10

10

10

2

3

4

5

R   ~ 10ns

R
31.4

ν

He

Ni

α

Si

PNS

r−process?

n, p

O

p
free n,

Fe

Ni

Rν

hcM

~ 100

Bounce and Shock Formation

nuclear matter

~ 10

nuclei

(t ~ 0.11s,  

1.3 1.5

R  ~ 50ν

Explosion  (t ~ 0.2s)
sR  ~ 200

PNS gain layer
cooling layer

R   ~ 10ns

R
1.4

ν

Neutrino Cooling and Neutrino−

PNS

Driven Wind  (t ~ 10s)

n, p

nuclear matter
nuclei

Shock Propagation and    Burst

R  ~ 100 kms

Rν

(t ~ 0.12s)

heavy nuclei
hcM

δ

c(t ~ 0.1s,     ~10¹² g/cm³)(t ~ 0)
Initial Phase of Collapse

Figure 1.5: Schematic representation a core collapse
The panels (taken from [16]) describe the dynamical conditions in their upper halves
with the arrow sizes describing the velocities and the y-axis the radius. The lower
halves show the nuclear composition and the weak interaction indicated along with
the mass information on the x-axis. RFe, Rs, Rν , Rg and Rns describe the radius
of the iron core, the position of the shock front, the neutrinosphere, the gain radius
and the size of the neutron star, respectively. The individual panels are more closely
discussed in the text.
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Core Bounce and Prompt Shock

When the density inside the collapsing core reaches nuclear levels (∼ 3 · 1014 g/cm3),
the degeneracy pressure12 stops the collapse. An incompressible object - the proto
neutron star (PNS) - forms in the center of the inner core. Matter falling on its surface
is promptly stopped and its impulse is inverted; an outward moving shock forms (see
the first diagram in the second row of figure 1.5).

On its way towards the outer core, the shock front traverses the infalling matter and
dissociates the nuclei into free nucleons, consuming ∼ 8.8MeV/A. The shock is slowed
down and a huge amount of νe generated by the electron capture on free protons,

e− + p −→ n+ νe ,

gathers just behind the shock front. As the shock moves past the radius of the neutri-
nosphere, the medium becomes permeable for the neutrinos, and they can escape. The
neutrino eruption timescale is of the order of the shock propagation, and the so-called
deleptonization or breakout burst has a typical full width half maximum of 5− 7ms. It
features in all modern supernova simulations (the models are considered more closely
in section 1.1.2.3) and carries 3.3 − 3.5 · 1053 erg/s [17] (see the last diagram in the
second row of figure 1.5).

As the electron degeneracy is not high in the hot post-shock region, pair-production
and thus and positron capture on neutrons become possible:

e+ + n −→ p+ ν̄e . (1.5)

In addition to these reactions, which can only produce electron neutrinos, processes
such as

e− + e+ −→ νe,µ,τ + ν̄e,µ,τ and

N +N ′ −→ N +N ′ + νe,µ,τ + ν̄e,µ,τ

increase the neutrino luminosities of all flavors in the region above the PNS.

Shock Stall and Delayed Explosion

Through dissociation of the infalling matter and the escaping neutrinos, most of the
energy driving the shock front is lost, and the shock stalls at 100 ∼ 200 km. All current
supernova models confirm this picture, discarding the prompt shock the model [18].

The proto neutron star at the center of the forming supernova is still very hot and
continues accreting matter. Its cooling proceeds mainly by neutrino pair production
which slowly diffuse to the outside of the star. On their way out, they pass through
the stalled shock front and deposit energy via the reactions

12Due to the Pauli exclusion principle, fermions cannot occupy the same quantum states. Therefore,
matter can no longer be compressed when all quantum states are filled. The exception to this rule
is the formation of a black hole which cannot yet be quantum-mechanically described.
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νe + n −→ e− + p and

ν̄e + p −→ e+ + n .

If the energy transfer (typically ∼ 10% [19]) is high enough, the shock is revived and
the supernova explodes. This mechanism is called delayed explosion and it develops on
a timescale ∼ 100ms. Initially, the idea of energy deposition via neutrino interactions
was proposed by [14], and the delayed explosion was first simulated in [20].

The mechanism of the delayed explosion is highly sensitive to the competition of neu-
trino heating between neutrinosphere and gain radius13 and neutrino cooling between
gain radius and shock front. It is a self-energizing process. The stronger the heating,
the more the velocity of the infalling matter is reduced by neutrino absorption and the
time for reheating grows. Even more neutrinos can deposit their energy, and the shock
front expands, again increasing the time the matter stays in the heating zone. On the
other hand, if the cooling processes are too strong, the matter infall speeds up due
neutrino emission and thereby the time available for reheating decreases; no explosion
occurs (for a detailed discussion refer to [19]). See the first panel on the lowest row of
figure 1.5 for a schematic view.

Proto Neutron Star (PNS) Cooling

After formation of the proto neutron star, the central object becomes gravitationally
decoupled from the envelope. In the first 0.1 s to 0.5 s after bounce it shrinks from
∼ 150 km to ∼ 20 km due to neutrino emission from its low-density outer layer. Be-
cause of the compression, the exterior heats up. During this time, the PNS continues
to accrete matter, adding to its mass and so its total neutrino emission.

Afterward follows the Kelvin-Helmholtz evolution14, during which the PNS cools
down. It can be split in two stages. While the heat on the outside propagates into the
core, raising the temperature to a maximum of ∼ 25MeV within 10 s ∼ 15 s, the excess
neutrinos still trapped inside diffuse from the central region to the outer layers, leading
to further deleptonization (see the last panel in figure 1.5). In the next ∼ 10 s − 40 s
the neutron star cools down to ∼ 5MeV and finally becomes transparent for neutrinos
(references [21, 22] cover these processes in detail).

13The gain radius is the radial position where neutrino heating of the stellar matter by neutrino
capture and cooling through neutrino emission are equal.

14The Kelvin-Helmholtz mechanism is an astronomical process that occurs while the surface of a star
or planet cools down via the reactions

e
−

+ e
+

−→ νe,µ,τ + ν̄e,µ,τ and

N + N
′

−→ N + N
′
+ νe,µ,τ + ν̄e,µ,τ

with the latter being dominant. Because the drop in temperature occurs through emission of
e.g. neutrinos, the internal pressure of the object drops, and it contracts. Thus, the released
gravitational energy leads to a rise of the temperature at the core.
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Figure 1.6: Neutrino luminosities of a one-dimensional supernova model
The graphic shows the calculated neutrino luminosities for all flavors. Solid black is the
energy carried away by the electron neutrino and dashed red denotes the electron anti-
neutrinos. The remaining flavors are depicted in dotted blue as current simulations
make no difference between the non-electron flavors. For details, refer to the text.

Neutrino Signature

As we saw above, neutrinos play a strong role in the supernova process. It stands
to reason that the neutrino emission during a supernova explosion carries important
information on the physical processes during the core collapse. Figure 1.6 shows the
neutrino luminosities taken from the one-dimensional simulation of a 15M⊙ super-
nova [23]. While this is only one example for a model, it is useful to illustrate the
fundamental features in the supernova neutrino emission.

The neutrinos created before the shock wave reaches the neutrinosphere are trapped
in the core. Only those created above the neutrinosphere and those statistical excep-
tions that are able to leave the opaque region contribute to the neutrino luminosity;
the emissions rise only slowly. When the shock wave reaches the neutrinosphere the
neutrinos trapped before, especially those created by the deleptonization, can escape;
we see a strong peak in the electron neutrino luminosity. During the accretion phase,
neutrinos of all flavors are created. The luminosity rises for all neutrinos and due to the
heating process and the infalling matter, a plateau forms. When the shock is driven
out, the accretion drops and the proto neutron star cooling dominates the emissions.

As seen in figure 1.6, the neutrinos produced during the collapse are expected to
carry energies O(10MeV). In the time directly after supernovae could also be the
source of high energy neutrinos. Theory links supernova explosions of the types Ib
and Ic to gamma-ray bursts (GRBs)15 [24] which are expected to radiate neutrinos

15GRBs denote highly energetic flashes of electromagnetic radiation. They can last between a few
seconds and some minutes.
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with energies of O(100TeV) [25]. Aside from this possibility, O(TeV) neutrinos could
be produced during the much later shock breakout from the progenitor star when the
supernova becomes optically visible (∼ 10 h after the core collapse) [26]. Neither of
these will be considered in this work.

1.1.2.2 Black Hole Formation

If a proto neutron star created in a supernova accretes enough matter, it can grow
so heavy that internal pressure cannot support it against its gravitational pull16; it
collapses into a black hole. The time at which this threshold is exceeded can signifi-
cantly change the evolution of the supernova. For the current stellar population17, the
formation rate of black holes is expected to be in the order of 10% − 25% (see [29]).
Two scenarios exist for the formation of black holes during supernova evolution.

As seen in figure 1.4, most current stars form black holes through fallback. After
shock revival, the central object continues accreting matter until, ∼ 10 − 15 s post-
bounce [27], it grows heavier than the neutron star mass limit, and it collapses to a
black hole. This marks an intense break in all emanations from the PNS; neutrino
luminosity drops to zero. However, the optical emissions can still be observed because
the explosion has already been triggered.

If a star has enough mass before collapse, it can take a more direct way to the
formation of a black hole. Because of the large envelope, the matter infall during
accretion is much more extreme than in the normal case and hinders the shock front
expansion. As above, when the mass limit of the neutron star is reached, the object
collapses to a black hole, halting all emanations. Here, however, this happens before
shock revival and removes the engine driving the neutrino heating; the supernova fails.
Figures 1.7 show neutrino luminosities and mean energies for this case as simulated
in [30].

Note that from the considerations in section 1.1.2 failed supernovae would be much
rarer than bright supernovae for several reasons. First, massive stars are much scarcer
and burn out much faster, so the probability to detect one during our lifetime is
significantly reduced. Second, as most stars currently formed are relatively metal-rich
their outer layers are blown of by strong stellar winds, and thus, failed supernovae
become even more unlikely. However, because failed supernovae are difficult to detect,
the assumption of their scarcity is not yet confirmed. A survey of the disappearance
of supergiants [32] is expected to shed some further light on this question.

1.1.2.3 Supernova Models

As the model of the delayed explosion due to neutrino heating is the most prominent
at the moment, we will put our focus on this mechanism. Again, the initial mass of
the star determines the details of the supernova explosion. For massive stars at the

16The maximal mass the neutron star can support is believed to be ∼ 1.5 M⊙ − 3M⊙. However, it
strongly depends on the composition of the neutron star (see [27, 28] for more details).

17These stars have about solar metallicity and are called Population I stars.
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Figure 1.7: Neutrino emanations of a failed supernova
Above figures show the collapse of a 40M⊙ star, a failed supernova. In the beginning,
the neutrinos show the same signatures as in figure 1.6. However, luminosities and
energies drop to zero at the time of black hole creation. The data was kindly provided
by K. Sumiyoshi [31]. Note that the simulation is stopped before the final black
hole forms as the code cannot handle singularities. Electron neutrino luminosities and
energies are depicted in solid black, the electron anti-neutrino characteristics in dashed
red and the non-electron flavors in dotted blue. The Shen equation of state was used
for this simulation (see later in this section).

lower end of the mass spectrum (8M⊙ − 10M⊙), already spherically symmetric one-
dimensional models lead to an explosion. Higher mass stars only end in a supernova
in multi-dimensional simulations with sophisticated neutrino transport, however, the
different modeling groups see significant differences in this regime. The extension of
the simulations to three dimensions is hoped to shed some further light. Note that in
most discussed models, a non- or slowly rotating single star is used as progenitor.

Electron Capture Supernovae

In the case of stars with masses of 8M⊙ − 10M⊙, it was at first thought that the
explosion would proceed through a prompt shock [33, 34]. However, new simulations
show that these cores actually explode via the neutrino heating mechanism [35]. Tech-
nically, the collapse proceeds in the same manner as for iron core supernovae. Electron
captures on oxygen and magnesium cores trigger the collapse by reducing the electron
fraction and thus the Chandrasekhar mass. As the star mass is insufficient to trigger
neon burning, no counter-force stops the contraction [36]. Just like in iron core su-
pernovae, the shock front stalls due to mass accretion, however, because of the much
thinner envelope, the infall of matter rapidly decreases, easing the expansion of the
shock front. The neutrinos streaming of the PNS can now accelerate the shock front
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Figure 1.8: Neutrino emanations of an electron capture supernova
Above figures show the collapse of a 8.8M⊙ star; an electron capture supernova. The
neutrino signatures was kindly provided H.-Th. Janka [38]. As before, electron neu-
trino luminosities and energies are illustrated in solid black, electron anti-neutrino
characteristics in dashed red and non-electron flavors in dotted blue. Again, the Shen
equation of state was used for the simulation (see below).

more efficiently, and trigger the explosion even in one-dimensional models. Figures 1.8
show neutrino luminosities and mean energies as simulated in [37].

Standing Accretion Shock Instability (SASI)

Of course, the one-dimensional modeling of a supernova is a strong simplification of
the real conditions. As first pointed out in [39], the hot bubble behind the shock
front is bound to be convectively unstable as neutrino production is not uniform. The
inclusion of hydrodynamic effects yielded some promising results, namely the faint
explosion of a 11.2M⊙ star. The larger mass infall of heavier stars, however, dampens
the shock propagation and thus inhibits the supernova evolution [40].

As recently discovered, the explosion is aided by the instability of the shock towards
non-radial deformation - the so called standing accretion shock instability (SASI) [41].

During reheating, an “advective-acoustic cycle” develops because vorticity pertur-
bations at the shock front disrupt the matter falling onto the proto neutron star.
Acoustic waves propagate back up to the shock front where they entail further per-
turbation in the infalling matter and thus reinforce the disturbances; a feedback loop
develops (see [42] for more details). Bi-polar sloshing, driving the shock front to oscil-
late between contraction and expansion is the consequence. Since part of the matter in
the shock front is pushed further out by this motion, the time it stays in the neutrino
heating zone increases, strengthening the neutrino energy deposition and ultimately
leading to an explosion. The SASI develops in all current two-dimensional simulations
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Figure 1.9: Neutrino emanations of a failed supernova
Above figures show the emanations of the simulated collapse of a 15M⊙ star. The data
used was taken from [23]. Electron neutrino luminosities and energies are depicted in
solid black, electron anti-neutrino characteristics in dashed red and all remaining in
dotted blue. The Lattimer-Swesty equation of state was used for this simulation (see
below).

covering 180◦ (see e.g. [40, 43, 44, 45, 46]). Due to the strong oscillations inside the
supernova, the explosion itself can be highly asymmetric (see [46]), leading to a large
impulse transfer to the central object. Observations of high-velocity neutron stars
support this mechanism (see e.g. [47]).

Some of the current simulation results featuring exploding stars > 10M⊙ can be
found in [48] (15M⊙) and [49] (12M⊙, 15M⊙, 20M⊙ and 25M⊙). However, the mod-
eling results are quite different in explosion onset and strength. Figures 1.9 show
neutrino luminosities and mean energies as simulated in [23].

Three-dimensional simulation efforts have just started and will certainly further the
understanding of the supernova process (see e.g. [50, 49]).

Equation of State (EoS)

During the life of a star, its evolution is determined primarily by nuclear and elec-
tromagnetic reactions between the nuclei within. However, above a temperature of a
few 100 keV, the reactions mediated by electromagnetic and strong interaction balance
out with their reverse reaction, forming a nuclear statistical equilibrium (NSE). The
nuclear composition is now independent on the interaction types. Only the weak force
is able to change the conditions in the core as neutrinos can still leave the star. When
the core becomes opaque for neutrinos, weak interactions go into equilibrium as well
(see [16] for more detail).

The equation of state (EoS) describes the thermodynamical quantities as function
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of temperature, density and electron-to-nucleon ratio. Three are most commonly used
in the supernova modeling community.

The Lattimer-Swesty equation of state describes leptons and photons as ideal Fermi
and Bose gases, respectively. Nuclei are modeled in the compressible liquid drop
picture. A heavy nucleus in a unit cell is surrounded by a gas made of protons,
neutrons and alpha-particles. For more details refer to [51]. It has been the standard
EoS for more than a decade.

Wolff and Hillebrandt derived an equation of state from temperature-dependent
Hartree-Fock calculations and self-consistent mean field models for the nucleon-nucleon
interactions (see [34] for details).

The third equation of state - the Shen EoS - is based on the relativistic mean
field theory using a Thomas-Fermi spherical cell model and the relativistic Brückner-
Hartree-Fock theory (details can be found in [52]).

For a more detailed discussion on the differences between the equation of states
see [16].

1.1.2.4 Alternative Models of the Supernova Mechanism

While the neutrino heating mechanism is promising, there exist further approaches to
explain the supernova explosion (see [15, 49] for a discussion).

Rotation and Magnetic Fields

So far, most supernova simulations consider only non- or slowly rotating stars without
magnetic fields. Rapid rotation of the supernova precursor, however, would also lead
to large anisotropies and explain the asymmetric explosion as well as fast-rotating
neutron stars. A detailed discussion of the influence of rotation can be found in
e.g. [53]. Another open question is the influence of strong magnetic fields on the
supernova dynamics (see e.g. [54]) as they can significantly influence the dynamics of
core collapse.

Acoustic Mechanism

In [43, 44] it was found that anisotropies inside the accretion regime drives the proto
neutron star to oscillate which leads to the emission of sound waves into the supernova
environment. By the momentum of the acoustic flux, the accretion streams are pushed
to the other side of the PNS thus anti-correlating average sound emission and matter
accretion. As in the case of the SASI (see above), a feedback loop develops with the
oscillations of the PNS feeding turbulences and asymmetries in the accretion streams
who in turn excite further oscillations of the PNS. The oscillations and thus the shock
wave emissions of the proto neutron star grow so large that the stalled shock front of
the supernova is driven out, leading to an explosion. Note that this mechanism has
not been confirmed by other groups so far.
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QCD Phase Transition

It has been theorized that white dwarfs and neutron stars contain new states of bary-
onic matter, such as a quark condensate (see e.g. [55]). The density of such a matter
state would be higher than that of normal nuclear matter, thus leading to a smaller
radius of the neutron star. If this phase transition happens shortly after the core
bounce, a further contraction of the PNS and thus a second shock wave ensues which
could trigger the explosion [56]. This mechanism has first been proposed in [57].

1.1.2.5 SN1987A

On February 24, 1987, two independent sightings of a bright object were made by
Ian Shelton at the Las Campanas Station of Toronto University at about 05:31 and
independently by Nelson Jones at the Aukland Observatory at about 8:53 [58]. It was
the first supernova discovered in the year 1987 and was thus called SN1987A. The
light curve characterized it as a type II explosion [59]. Sanduleak -69° 202a, a blue
supergiant at a distance of (51.4±1.2) kpc [60] in the Large Magellanic Cloud (LMC),
was noted to be its precursor [59]. It is believed to have had a binary companion [61].
Figure 1.10 shows the relevant sky section before and shortly after the supernova
explosion.

As of this date, no remnant of the supernova explosion could be identified. A strong
pulsar can be excluded as residue because matter fallback should now be so much
reduced that such an object would no longer be obscured [62]. Possibilities that could
not be ruled out yet are a black hole induced by later fallback with a weak accretion
disk, a quark or strange star with low luminosity or a slowly rotating neutron star
with a weak field [63, 64].

SN1987A is the best observed supernova in astronomy and the closest observed
since Keplers supernova in 1604. It also marked the beginning of neutrino astronomy
and is the only source of extrasolar neutrinos discovered up to date. The Irvine-
Michigan-Brookhaven water Cherenkov experiment detected a burst of eight neutrinos
with energies of 20 − 40MeV spaced over an interval of 6 s, the first event occurring
at 7:35:41.37 UT [66]. Kamiokande-II recorded 11 neutrino signatures18 in a time
interval of 13 s with energies between 7.5 to 36MeV with the first being at 7:35:35
UT [67, 68]. Unfortunately, the timing information between the two experiments is not
certain. Figure 1.11 shows the recorded neutrino times and energies. Five coincident
signal events within 9.1 s were reported by the Baksan collaboration [69]. However,
this result remains questionable as the fiducial volume of the detector is an order of
magnitude smaller than for the other two [70].

Just based on the 19 neutrinos observed from SN1987A, it was e.g. possible to pose
the following constraints on the neutrino properties [15]:

mν < (19 − 30) eV , τνe ≥ 1.25 · 10−2mν

Eν
s , Qνe < 10−17 e . (1.6)

18Kamiokande-II detected 12 events, the sixth, however, was below the energy threshold of 7.5 MeV.
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Figure 1.10: Optical Observations of Sanduleak -69° 202a
The two pictures from the Anglo-Australian Observatory have been taken from [65]
and slightly modified. The right one was shot on February the 5th, 1987 and the right
one at March the 10th, 1987.
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Figure 1.11: Neutrinos from SN1987A recorded by Kamiokande-II and IMB
The blue circles illustrate the neutrinos recorded by Kamiokande-II, the red triangles
the ones recorded by IMB. In the figure it is assumed that the first neutrino events
of the two experiments were synchronous. The difference in energies recorded by IMB
and Kamiokande-II is due to different detection thresholds of the experiments.

25



1 Theory

1.1.3 Supernova Rate

The rate of supernovae is first and foremost dependent on the age of the galaxy under
investigation as old galaxies feature few to no star forming regions. Because of their
higher mass, supernova precursors have a much shorter lifetime than an average star
and thus older galaxies (e.g. elliptical ones) have no heavy stars left which could end
in a core-collapse. Of course, this reasoning holds only true for core collapses and not
supernovae of type Ia.

When talking about the explosion rate in our galaxy, one has to take into account
that much of the Milky Way is occluded from our point of view. In fact, it has
been found by simulations that to explain the five supernovae observed in the last
millennium19, one has to assume 39 supernova explosions. From observation of other
galaxies, the expected number of supernovae per century in the Milky Way can be
derived to 1.6 − 3.2 per century with the unknown shape of our galaxy being the
main uncertainty [71]. [72] estimates the supernova rate by detecting gamma-rays
from radioactive 26Al to be 1.9 ± 1.1 per century. Considering that ∼ 85% of these
are due to a core-collapse, one can expect a neutrino burst every ∼ 47 y [71]. Faint
and failed supernovae could of course raise this expectation. However, a value above
six per century would lead to significant overproduction of iron compared to current
measurements.

1.1.4 Supernova Precursor Distribution

To facilitate the search for neutrino bursts from core collapses with AMANDA and
IceCube, the knowledge of the distance distribution of supernova precursors is very
important. In [73] the distribution of stars in the Milky Way as given in [74] was used
to estimate the supernova distance. However, this distribution is no clear indicator
for the occurrence of supernovae as only few stars are massive enough to end in an
explosion. [75] studied the distribution of pulsars and OB stars20 and [76] used this
data to derive a distribution of expected supernovae as seen from Earth. Figure 1.12
shows the two distributions.

19These were the SN1006 (appearing in the Lupus constellation, it was the brightest supernova
ever observed; type Ia), SN1054 (Crab, type II), SN1181 (Cassiopeia, type II), SN1572 (Tycho’s
supernova, type Ib) and SN1604 (Keplers supernova, type Ia).

20OB stars are hot massive stars of spectral types O or B which are rather short-lived. Due to their
low lifetime, their occurrence is expected to be correlated to supernovae.
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Figure 1.12: Distributions for stellar deaths
The solid black line displays the star distribution as calculated by Bahcall and Soneira
(data taken from [77]). As stars ending their lives in supernova explosions are more
massive than average stars, the supernova precursor distribution is expected to deviate
from this function. The red distribution, given in [76], has been compiled using hot
massive stars and neutron stars and should thus reflect the occurrence of core collapses
more accurately. Note that the distribution do not take into account the spiral arms
of the Milky Way.

27



1 Theory

1.2 Neutrinos

As AMANDA and IceCube are aimed at neutrinos, we will now put our focus on these
particles.

We will start by placing neutrinos in the context of the Standard Model of particle
physics and then describe their properties and interactions. Finally, we will examine
neutrino oscillations in the context of supernovae.

1.2.1 Neutrinos and the Standard Model of Particle Physics

1.2.1.1 The Standard Model of Particle Physics

The Standard Model of particle physics (SM) is a quantum field theory describing the
known elementary particles and their interactions. It includes the strong, electromag-
netic and weak but not the gravitational coupling. The strong is the most powerful
of the four, but due to self-coupling of its interaction particles, it is confined to small
ranges. The coupling constant of the electromagnetic force is two orders of magnitude
smaller with a strength decreasing as ∼ r−2, the massless photon being its carrier.
A further three orders of magnitude separate the weak interaction from the electro-
magnetic one. Because of the heavy mass of its interaction particles, the W± and Z0

bosons, it is also finite in range. The gravitation, with a coupling constant ∼ 10−38

times the strong one, can be neglected in the particle picture.
Mathematically, the Standard Model is a gauge theory21 based on the local sym-

metry group SU(3)C × SU(2)L × U(1)Y . The subscripts C, L and Y denote color,
left-handed chirality and hypercharge. SU(3)C describes the color symmetry and is
responsible for strong interactions. As it has eight generators, there are eight gauge
bosons - the gluons - which mediate the strong coupling. From the three generators
of the left-handed chirality symmetry group, SU(2)L, and the one for the hypercharge
symmetry, U(1)Y , derive three massive - W± and Z0 - and one massless - the γ -
gauge bosons responsible for electroweak coupling. All interaction parameters, except
for the coupling constants, are fixed by the respective symmetry groups.

The fundamental mathematical tools of the Standard Model are Lagrange densities
L. From these, equations of motions (e.o.m.) for the physical observables can be
derived by inserting L in the Euler-Lagrange-Equations.

The Standard Model features twelve elementary spin 1/2 particles - the fermions -
and thirteen particles with integral spin - the bosons. The fermions are divided in
those carrying a color charge, the quarks, and the ones without, the leptons. Flipping
the sign of the electric charge provides the anti-particles known in the SM. The spin 1
interaction bosons are the eight gluons, the photon, the W± and the Z0. The scalar
Higgs boson H has spin 0 and mediates no interactions. It is necessary in the SM to
provide mass to the particle zoo. Figure 1.13 illustrates the model.

21In other words, a theory whose physical observables do not change under local transformations.
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Figure 1.13: Standard model of particle physics
The left block (12 in all) shows the fermions with spin 1/2 and the right one the 12
vector bosons with spin 1, the gluon g featuring eight times. The scalar spin 0 Higgs
is not shown in this picture. The values inscribed were taken from [78].

1.2.1.2 Electroweak Coupling

The three generators of the SU(2)L group, called the weak isospin, are subsequently
denoted as Ia with a = 1, 2, 3 and satisfy the angular momentum commutation re-
lations. In the two-dimensional representation they can be described by the Pauli
matrices σa. For the hypercharge symmetry group U(1)Y , the generator Y is related
to the charge operator Q by the Gell-Mann-Nishijima relation Q = I3 + Y

2 .
The weak force is different from all other interactions insofar as it only interacts

with left-handed (negative helicity) particles and right-handed (positive helicity) anti-
particles. Other interactions have not been observed, making this force maximally
parity violating. It stands to reason to split fermion fields f in right- and left-handed
fields:

f = fL + fR with fR/L =
1± γ5

2
f (1.7)

and γ5 = γ0γ1γ2γ3 where γi represent the Dirac matrices. Neglecting the masses, the
Lagrange density for the leptons in absence of fields can be written as

Llepton,free =
(
ν̄l , l̄

)
L
i/∂

(
νl

l

)

L

+ l̄R /∂ lR (1.8)

with l being the lepton flavor, /∂ = γµ∂µ and l̄, ν̄l = γ0l, γ0νl.
As stated before, the Lagrange density must remain invariant under the local trans-

formation
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f(x)→ f ′(x) = USU(2)L
(x) UU(1)Y

(x) f(x) (1.9)

with the operators

USU(2)L
(x) = exp

(
i~χ(x) · ~σ

2

)
and

UU(1)Y
(x) = exp

(
iλ(x)

Y

2

)
. (1.10)

Here, we have chosen the two-dimensional representation of the SU(2) by taking ~σ =
(σ1, σ2, σ3) as generators. The functions ~χ(x) and λ(x) govern the transformation and
need to be differentiable.

Inserting the transformed fields into equation 1.8, we see that the Lagrange density
does not remain unchanged. To ensure its invariance, we redefine the derivative as

∂µ −→ Dµ = ∂µ − ig
~σ

2
· ~Wµ(x)− ig′Y

2
Bµ(x) (1.11)

with the fields ~Wµ(x) and Bµ(x) transforming as

~Wµ(x) −→ ~W ′
µ(x) = ~Wµ(x) +

1

g
∂µ~χ(x) + ~χ(x)× ~Wµ(x) and

Bµ(x) −→ B′
µ(x) = Bµ(x) +

1

g′
∂µλ(x) . (1.12)

The Lagrange density then reads as

Llepton =
(
ν̄l , l̄

)
L
i /D

(
νl

l

)

L

+ l̄R /D lR −
1

4
~Wµν · ~W µν − 1

4
Bµν · ~Bµν . (1.13)

The gauge boson fields ~Wµ(x) and Bµ(x) are related to the known bosons mediating
the interactions by

W±
µ =

1√
2

(
W 1

µ ± iW 2
µ

)
,

Z0
µ = cos θWW

3
µ − sin θWBµ and

Aµ = sin θWW
3
µ + cos θWBµ (1.14)

with the Weinberg angle θW defined as cos θW = MW

MZ
and evaluated to sin2 θW ≈

0.23119 ± 0.00014 [78]. Under these conditions, the photon described by Aµ does not
couple to the neutrino.

30



1 Theory

1.2.2 Neutrino Properties

Because they only interact via the weak and the gravitational force22 neutrinos take a
special place in the standard model. As stated above, they have spin 1/2 and carry no
electric charge. Neutrinos have a weak isospin of 1/2 with the third component being
1/2 for neutrinos and −1/2 for anti-neutrinos.

As they can be observed through the weak force alone, only left-handed neutrinos
and right-handed anti-neutrinos are known so far. In theory, right-handed neutrinos
and left-handed anti-neutrinos are possible, however, as they will only interact through
gravitation, their direct detection remains impossible for the time being. They supply
natural candidates for sterile neutrinos which, depending on their mass, abundance
and variety, could compose a significant fraction of Dark Matter [81].

While neutrino masses are taken to be zero within the Standard Model, oscillation
experiments have proven this to be incorrect23, necessitating extensions to the SM. Just
as quarks, the propagation eigenbasis is different from the one describing interactions
through weak forces. In analogy to the CKM matrix in the quark sector, neutrino
flavor eigenstates relate to mass eigenstates through a mixing matrix, the so-called
Maki-Nakagawa-Sakata (MNS) matrix:



| νe〉
| νµ〉
| ντ 〉


 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





| ν1〉
| ν2〉
| ν3〉




(1.15)
with cij = cos θij, sij = sin θij, the mixing angles θij and a phase factor δ responsible
for CP-violation. As δ has only little impact on neutrino oscillations and is so far
undetermined, we will take it as zero for the remainder of this work24.

Note that we have taken the neutrinos to be Dirac particles. In the Majorana case25,
two additional phases would apply to the matrix. For supernova neutrino detection,
the particle type is not expected to make a significant difference because it does not
affect neutrino oscillations and has no measurable impact on the interactions in the
detector.

The experimental values determined so far are (see [78] for a compilation and [84,
85, 86] for the experimental measurements):

22Of course, this is only the case if the neutrino has no magnetic moment (current upper limit:
0.54 · 10−10 µB) and no electric charge (current upper limit: 3.7 · 10−12e) ([79, 80, 78]).

23The first compelling experimental confirmation of neutrino oscillations was found by SNO [82].
24According to [83], a non-vanishing CP-violating phase could lead to modifications to the non-

electron (anti-)neutrino fluxes and even to the electron (anti-)neutrino fluxes from supernovae if
muon and tauon (anti-)neutrino fluxes differ at the neutrinosphere.

25A Majorana fermion is its own anti-particle. For neutrinos, this means that νL ≡ ν̄L and ν̄R ≡ νR.
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sin2 2θ12 = 0.87 ± 0.03
[
θ12 = (34.4+1.3

−1.2)
◦
]

,

sin2 2θ23 > 0.92 [ 36.8◦ < |θ23| < 53.2◦ ] and

sin2 2θ13 < 0.19 [ |θ13| < 12.9◦ ] .

(1.16)

The second set of parameters relevant for neutrino mixing and oscillation are the
mass differences. Current experiments set them to (again, see [78] for a compilation
and [84, 87] for the experimental results):

∆m2
21 = 7.59+0.19

−0.21 · 10−5 eV2 ,

|∆m2
32| = (2.43 ± 0.13) · 10−3 eV2 and

|∆m2
31| ≈ |∆m2

32| . (1.17)

Note that the sign of ∆m2
32 is yet unknown, leading to the hierarchy problem sketched

in figure 1.14. The normal hierarchy is taken to be m1 < m2 < m3 while the inverted
is m3 < m1 < m2.

Due to the small mass differences, the absolute masses are constrained by the small-
est experimental limit given by the electron neutrino with mνe < 2.3 eV [88, 78]. From
cosmological constraints26 one can derive a limit on the summed mass of all neutrino
flavors. Depending on the cosmological model used, namely the standard model of
cosmology, ΛCDM, or a more general model with a dark energy equation of state pa-
rameter w (wCDM), the neutrino masses can be restricted to 0.28 eV or 0.59 eV at
95% confidence [78, 90].

1.2.3 Neutrino Interactions

It is essential to understand the interactions of neutrinos with matter for production
and detection processes. As mentioned above, neutrinos interact through the weak
and gravitational forces only. For our purposes, only the former is relevant.

In the following paragraphs, we will shortly outline the theory behind the interaction
processes. For a detailed review refer to specialized books such as [91].

1.2.3.1 Charged Current Interactions

The Lagrange density for the charged current interactions can be written as

26In the early universe neutrino energies decreased to non-relativistic levels much later than ordinary
matter and thus did not influence the gravitational fields during radiation domination. Large scale
structures formed during the matter-radiation equality time frame when dark matter collapsed
gravitationally. For this reason, free streaming neutrinos lead to a suppression of small scale
fluctuation compared to large scale fluctuations [89].
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Figure 1.14: Neutrino hierarchy problem
The figure sketches the two possible cases for the hierarchy of the neutrino masses
with the colors showing the contribution of the flavors to each vacuum state. Red
(always at the left) depicts the electron, green (the middle) the muon and blue the
tauon neutrino flavor.

LCC
L =

ig√
2
(jµ

W−W
−
µ + jµ

W+W
+
µ ) (1.18)

with the charged currents

jµ
W− =

∑

α

ν̄α γ
µ (1− γ5) lα +

∑

(q+,q−)

q̄− γ
µ(1− γ5) q+ and (1.19)

jµ
W+ = (jµ

W−)† =
∑

α

l̄α γ
µ (1− γ5) να +

∑

(q+,q−)

q̄+ γ
µ(1− γ5) q− (1.20)

and summing over all lepton α = e, µ, τ and quark flavors (q+, q−) =
(u′, d′), (c′, s′), (t′, b′). The primes denote that we are dealing with the weak and not
the mass quark eigenstates. The first term of the negatively charged current, equa-
tion 1.19, describes the conversion of a lepton to its corresponding neutrino and, by
crossing symmetry, the conversion of an anti-neutrino into the respective anti-lepton,
both under emission of a W−. The hermitian conjugate completes the interaction by
the positively charged current, equation 1.20, namely the conversion of an anti-lepton
into an anti-neutrino and the conversion of a neutrino into the respective lepton under
emission of a W+. We get the reactions for the quark sector from the second terms of
equations 1.19 and 1.20, namely q− → q+ +W−, q̄+ → q̄− +W−, q+ → q− +W+ and
q̄− → q̄+ +W+. Note that the weak charged current is the only possibility for quark
flavor conversion.
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1.2.3.2 Neutral Current Interactions

The Lagrange density for the neutral current is given by

LNC
L = − g

2 cos θW
jµZZµ + Lγ

L (1.21)

with the second term being the QED Lagrangian. The weak neutral current jµZ,L is
given by

jµZ,L = f̄ γµ (gf
V − g

f
A) f (1.22)

for the fermion f . The vectorial and axial couplings are defined as

gf
V = gf

L + gf
R = If

3 − 2qf sin θW and (1.23)

gf
A = gf

L − g
f
R = If

3 (1.24)

where gf
L and gf

R denote the coupling to the left- and right-handed particles respectively

(e.g.: gν
R = 0). qf denotes the electric charge and If

3 the third component of the weak
isospin. Equation 1.22 describes all fermion annihilation and pair production processes
and momentum transfers via the Z0.

1.2.4 Neutrino Oscillations

In the case of neutrinos, the mass eigenstate is different from the weak interaction or
flavor eigenstate. Because the detection process works only through weak forces and
neutrinos travel the distance from source to detector as mass eigenstate, neutrinos can
well be detected as another flavor than they were produced in.

Neutrinos ejected during the Supernova explosion undergo multiple oscillation
phases. The most notable ones are induced by the matter potential and self-
interactions. More exotic scenarios such as neutrino conversions due to interaction
of a hypothetical neutrino magnetic moment with the magnetic field of the supernova
(see e.g. [92]) will not be discussed in this work.

Precise predictions concerning the oscillations must remain incomplete as the small-
est mixing angle θ13 and the mass hierarchy are still unknown. We will investigate the
effect the different parameterizations can have on a supernova signal detected by Ice-
Cube. Studies already began in [93] will be expanded by further oscillation scenarios.

The goal of this section is to give basic theoretical insight in the oscillation mecha-
nisms taking place in a supernova. We will start with the well known vacuum oscil-
lations. From there, we will expand to the common description of the matter driven
oscillations and its repercussions for supernova neutrinos. For the understanding of
collective neutrino oscillations, a geometrical approach, the matrix density formalism
and its associated neutrino flavor isospin (NFIS) picture, will be introduced.

The general considerations hereafter follow [91]. More specialized cases such as
oscillations in supernovae and collective oscillations were taken from multiple references
and are cited when relevant.
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1.2.4.1 Vacuum Oscillations

The neutrino flavor eigenstates α = e, µ, τ relate to the neutrino mass eigenstates
k = 1, 2, 3 in the following way:

| να〉 =
∑

k

U∗
αk | νk〉 . (1.25)

Uαk is the MNS matrix shown in equation 1.15. From the Schrödinger equation we
know the time development of a neutrino flavor eigenstate to be:

| να(t)〉 =
∑

k

U∗
αke

−iEkt | νk〉 . (1.26)

The probability for a neutrino of the initial flavor α at t = 0 to be found in the state
β at a given time t can be derived by combining equations 1.25 and 1.26. This yields:

Pα→β(t) = |ψαβ(t)|2 with

ψαβ(t) = 〈νβ | να(t)〉 =
∑

k

Uαke
−iEktU∗

βk . (1.27)

As we are only interested in the ultra-relativistic cases, Ek ≈ E +
m2

k

2E , the conversion
probability simplifies to (omitting some steps):

Pα→β(t) =
∑

k,j

U∗
αkUβkUαjU

∗
βj exp

(
−i

∆m2
kj

2E
t

)
(1.28)

with ∆m2
kj = m2

k −m2
j (note: as c ≡ 1, the distance source detector L ≡ t).

Note that some simplifications made in this section break universality.
First, we assume that we are not sensitive to the different mass contributions

(ν1, ν2, ν3) to the flavor states (νe, νµ, ντ ). This holds true for all present neutrino
experiments.

All the massive neutrino components making up a neutrino flavor are presumed to
have the same momentum. While this simplification need not hold true, the momentum
is irrelevant for the derivation of oscillation probabilities.

The assumption of time and distance between source and detection being equal is
also somewhat problematic. In quantum theory particles are generally described by
wave packets. We imply a group velocity close to the speed of light. Due to different
masses, the group velocities of the massive neutrinos differ which could again lead
to oscillations. However, as the detection length is generally much smaller than the
oscillation length L, the wave packets overlap coherently and the simplified approach
is sufficient.

1.2.4.2 Neutrino Oscillations in Matter

In this section we will introduce the effect of matter on neutrino oscillations for the
two flavor case and consider the repercussions in the supernova environment.
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General Considerations

While neutrino oscillations in matter are in principal analogous to vacuum oscillations,
the decisive parameters are dependent on the propagation medium. Due to forward
scattering, the effective masses of neutrinos can change in matter. As the interaction
potentials differ by neutrino type, the mass differences, the mixing angles and thus
the oscillation behavior between the flavors change. At densities defined by the mix-
ing parameters, the probability for flavor conversion can become large while it might
normally be inhibited. This is the so-called Michejew-Smirnow-Wolfenstein (MSW)
effect.

For illustration purposes, we will restrict ourselves to νe and νµ. Later in this section,
it will become evident that this restriction is sufficient for the supernovae case.

Let us focus on the Schrödinger equation for the wave function ψαβ(t) (see equa-
tion 1.27 for the definition):

i
d

dx
~ψα(x) = HF

~ψα(x) (1.29)

with HF being the Hamiltonian in the flavor basis. When neutrinos travel through
matter they are affected by charged and neutral currents. As NC interactions influ-
ence all flavors in the same way, their contributions to HF can be neglected when
discussing neutrino oscillations. In ordinary matter forward scattering through the
charged current can only occur for the electron flavor, and thus, the Hamiltonian has
to be modified by the potential VCC =

√
2GFNe. For two neutrinos, this equation can

be written as (for details on the derivation, see appendix A.1):

i
d

dx

(
ψee

ψeµ

)
=

1

4E

(
−∆m2 cos 2θ +ACC ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ −ACC

)(
ψee

ψeµ

)
. (1.30)

ACC describes the charged current interactions and is related to the potential VCC and
the neutrino energy E by ACC = 2EVCC.

The Hamiltonian can be diagonalized to

HF → U †
MHFUM = HM = H†

M =
1

4E
diag(−∆m2

M,∆m
2
M) (1.31)

with the effective mass difference and the mixing angle in matter of

∆m2
M ≡

√
(∆m2 cos 2θ −ACC)2 + (∆m2 sin 2θ)2 ,

sin 2θM ≡ ∆m2 sin 2θ

∆m2
M

and cos 2θM ≡
∆m2 cos 2θ −ACC

∆m2
M

. (1.32)

The neutrino eigenvectors of this Hamiltonian constitute an eigenbasis different from
the vacuum one. Its base vectors will be called νM

1 for the light and νM
2 for the heavy

neutrino in analogy to the vacuum basis.
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Resonance Condition: At an electron density of

NR
e =

∆m2 cos 2θ

2
√

2GFE
, (1.33)

we get a matter potential of

AR
CC = ∆m2 cos 2θ . (1.34)

At exactly this point, cos 2θM becomes zero, the mass difference ∆m2
M goes to its

minimal value, and consequently, mixing becomes maximal. Whether the resonance
exists in the neutrino or in the anti-neutrino sector depends on the value of θ. Since
in normal matter ACC ≥ 0, a mixing angle θ ≤ π/4 would allow for a resonance in the
neutrino sector while for θ > π/4 the resonance would be in the anti-neutrino sector.

We now consider the contribution of the flavor α to the matter eigenstate i at
distance x, Pνα→νi

(x) = |φαi(x)|2, for α = e:

~ψe(x) =

(
ψee

ψeµ

)
=

(
cos θM sin θM
− sin θM cos θM

)(
φe1

φe2

)
= UM

~φe(x) . (1.35)

Putting this into equation 1.29, we get:

i
d

dx
~φe(x) =

(
HM − iU †

M

d

dx
UM

)
~φe(x)

=
1

4E

(
−∆m2

M −4iE d
dxθM

4iE d
dxθM ∆m2

M

)
~φe(x) . (1.36)

If matter density is not constant, d
dxACC 6= 0 and therefore d

dxθM 6= 0. Transitions
between νM

1 and νM
2 become possible.

Adiabatic Evolution: We define the adiabaticity parameter as:

γ ≡ ∆m2
M

4E d
dxθM

=
(∆m2

M)2

2E sin 2θM| d
dxACC|

. (1.37)

If the matter density changes slowly γ ≫ 1, and the transitions between νM
1 and νM

2

are negligible. The survival probability Pνe→νe can be derived to

P adiabatic
νe→νe

=
1

2
+

1

2
cos 2θM(0) cos 2θM(x)

+
1

2
sin 2θM(0) sin 2θM(x) cos

(∫ x

0

∆m2
M(y)

2E
dy

)
. (1.38)

For most cases, the matter density at detection is neglectable and the oscillation param-
eters are given by ACC(xdet) ≈ 0, θM(xdet) ≈ θ and ∆m2

M(xdet) ≈ ∆m2. Furthermore,
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due to the finite detector resolution, P has to be integrated over ∆x and ∆E. It
follows that

〈P adiabatic
νe→νe

〉 = 1

2
+

1

2
cos 2θM(0) cos 2θ . (1.39)

Maximum Violation of Adiabaticity: While the adiabatic evolution is the one side
of the medal, the other one is called maximal violation of adiabaticity. Here, γ from
equation 1.37 has to be minimal, meaning d

dxγ ≈ 0 which is the case for large density
slopes. The resulting condition is:

(
3 cos 2θM sin 2θM(

d

dx
ACC)2 + ∆m2 sin 2θ

d2

dx2
ACC

) ∣∣∣∣
x=xMVA

= 0 . (1.40)

Note that generally the point of maximal violation of adiabaticity is not at the same
coordinates as the resonance point, defined by cos 2θM

∣∣
x=xres

= 0. However, for small
mixing one can approximate xMVA by xR.

If the propagation through the star is non-adiabatic, neutrino transitions νM
1 ⇄ νM

2

occur. They are maximal at xMVA and with γ → 0 we get full neutrino conversion.
Neutrino evolution in matter can best be understood with the help of a level crossing
diagram as shown in figure 1.15.

Matter Driven Oscillations in Supernovae

In this section we will consider matter driven oscillations in the supernova environment.
We will first make some general comments and then follow up with the discussion of
the simple case of a static density profile. However, as the assumption of a static
profile is not tenable, we will also consider density changes due to the propagation of
a simple shock wave through stellar matter.

All current detectors sensible to supernova neutrinos are unable to distinguish be-
tween muon and tauon neutrinos which is why mixing in this regime need not be
considered. As most neutrino transitions in a supernova occur in the resonance layers,
ρres±∆ρres, the treatment is much simplified. Equation 1.33 shows that the resonance
densities are governed by the neutrino mass differences. This leads to [94]:

ρres ≈ 1.4 · 106 g

cm3

(
∆m2

1 eV2

)(
10MeV

E

)(
0.5

Ye

)
cos 2θ (1.41)

with Ye being the electron fraction, i.e. the number of electrons per nucleon.
Taking a look at the mass differences, we note that we need only consider two

resonances: a heavy one, called H-resonance, determined by |∆m2
32| ≈ |∆m2

31| with

ρH,15MeV ∼ 2000 − 2300
g

cm3
(1.42)

and a light one, called L-resonance, governed by |∆m2
21| with
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                   adiabatic

    
    

    
    

    
 non-adiabatic

Figure 1.15: Level crossing diagram
E describes the eigenvalue of the Hamiltonian and Ne the electron density. The neutri-
nos are created in their flavor eigenstate at high density. Due to the matter interactions,
the electron neutrino state consists mostly of the high mass eigenstate. During the
propagation out of the star (from the right to the left), the density and therefore the
effective potential acting on the electron neutrino decreases until the two states have
approximately the same eigenvalues (at NR

e ). Depending on the vacuum mixing angles
and the density slope, we then have adiabatic or non-adiabatic propagation transitions.
In the first case, the neutrinos stay in their mass eigenstates and we follow the solid
lines in the diagram (this is the case for solar neutrinos). In the case of maximally
violated adiabaticity, full conversion occurs and the neutrinos follow the dotted line at
the resonance density NR

e .
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ρL,15MeV ∼ 25
g

cm3
. (1.43)

Note that these densities were calculated for neutrino energies of 15MeV and an elec-
tron fraction of 0.5.

The probability for neutrino conversion to occur is called the crossing or flip proba-
bility and given by the modified Landau-Zener formula [95]:

Pc =
exp(−π

2γF )− exp(−π
2γF/ sin2 θ)

1− exp(−π
2γF/ sin2 θ))

(1.44)

with F being a complicated function, defined by the density profile and the mixing
angle.

Crossing Probability for a Simple Density Profile: The considerations in this para-
graph closely follow reference [94]. From the conditions on the onset of the core
collapse, an approximate density profile of the supernova precursor can be derived to
be [96]:

ρ ∝ r−n (1.45)

with n ≈ 3. Equation 1.44 can be simplified by assuming F = 1−tan2 θ as in the sun27.
In the following discussion, we will focus on the H-resonance. The same argumentation
can also be applied to the L-resonance. With

γ = γ(r = rH) =
∆m2

13 sin2 2θ13

2E cos 2θ13
∣∣ d
dr lnNe

∣∣
H

(1.46)

the crossing probability is calculated to be

PH =
exp(πkHsH cos2 θ13)− 1

exp(πkHsH)− 1
(1.47)

with the neutrino wave number kH = ∆m2
13/2E and the density scale factor at the

resonance point of sH =
∣∣ d
dr lnNe(r)

∣∣−1

r=rH
=
∣∣ d
dr lnV (r)

∣∣−1

r=rH
. For the simple density

profile as in equation 1.45, the potential can be written as

V (r) = V0

(
r

R⊙

)−n

(1.48)

with the radius of the sun R⊙.
As in [97], we assume V0 = 1.5 · 10−14 eV. Due to the large exponent, equation 1.47

reduces to the Landau-Zener limit which can be further simplified to:

27While the sun follows a density profile ρ ∝ e−r, the differences to the crossing probability are
minimal [97].
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Figure 1.16: Energy dependence of the crossing probability for a fixed sin2 2θ13 of 2 ·
10−4

Pc ≈ exp
(
kHsH sin2 θ13

)
= exp

(
−A

(
∆m2

13

E

) 2
3 sin2 θ13

(cos 2θ13)
1
3

)
(1.49)

with A = 5.73 · 106
(

MeV
eV2/c4

) 2
3
.

Figure 1.16 shows the energy dependence of the crossing probability for sin2 2θ13 =
2 · 10−4. As only an upper limit is known for sin2 2θ13, we release this parameter in
figure 1.17. Three regions become evident:

• Adiabatic region (I): If sin2 2θe3 & 10−3 then Pc ≈ 0. In this case, most neutrinos
stay in their respective matter eigenstate. Figure 1.17 shows this region in the
color blue.

• Transition region (II): For 10−5 . sin2 2θe3 . 10−3, Pc changes with energy.
Hence, neutrino conversion occurs. The color transition regime (blue to red) in
figure 1.17 displays this case.

• Strong violation of adiabaticity (III): If sin2 2θe3 . 10−5 then Pf ≈ 1 and thus
most neutrinos will switch their matter eigenstate. Figure 1.17 shows these
transitions as red.

The energy spectrum of supernova neutrinos spans about one order of magnitude (see
section 1.1.2.3). If one uses the restraints on the neutrino oscillation parameters (see
section 1.2.2), one notes that the L-resonance always happens adiabatically. As the
H-resonance depends on the yet unknown θ13 angle, it can fall into any of the three
regions.
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Figure 1.17: Crossing probability for neutrinos at the H resonance
The regions are the adiabatic regime (I), the transition region (II) and the case of
maximal violation of adiabaticity (III).
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(a) Normal hierarchy (b) Inverted hierarchy

Figure 1.18: Level crossing diagram for neutrino evolution in supernova
As before, E describes the eigenvalue of the Hamiltonian and Ne the electron density.
Details on these diagrams can be found in the text.

Neutrino Evolution in a Star To understand the neutrino evolution through the star,
let us examine the Hamiltonian:

H =
M2

2E
+ V =

1

2E



m2

ee + 2EV m2
eµ m2

eτ

m2
eµ m2

µµ m2
µτ

m2
eτ m2

µτ m2
ττ


 . (1.50)

Since rotations in the (νµ−ντ ) subspace do not affect the physics [98], the Hamiltonian
can be simplified to:

H =
1

2E



m2

ee + 2EV m2
eµ′ m2

eτ ′

m2
eµ′ m2

µ′µ′ 0

m2
eτ ′ 0 m2

τ ′τ ′


 . (1.51)

In high density, V ≫ m2
ij/2E, the mixing contributions to the electron neutrino mass

can be neglected, yielding

H = diag(V,m2
µ′µ′ ,m2

τ ′τ ′) . (1.52)

Thus, (νe, ν
′
µ, ν

′
τ ) are the matter eigenstates.

One can easily create the corresponding level crossing diagrams shown in figure 1.18.
However, due to the unknown neutrino mass hierarchy two cases have to be considered.

Let us start with the normal mass hierarchy, m1 < m2 < m3. The electron neutrinos
get created inside the neutrinosphere (at the rightmost in the diagram) and travel in
their flavor state which is at these high densities equivalent to the heaviest mass state
νM
3 . νµ′ and ντ ′ are in the νM

1 and νM
2 mass states28. As the density decreases (we

28While the muon and tauon neutrinos start out in a coherent mixture of mass eigenstates, this
coherence gets broken by a differing potential due to the different masses of the µ and τ leptons.
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proceed to the left) so does the potential V , and we arrive at the first resonance region
where m2

ee + 2EV ≈ m2
τ ′τ ′ . At lower densities, electron neutrinos consist mainly

of the state νM
2 and the ντ ′ of the νM

3 state. Further decreasing density leads to
m2

ee + 2EV ≈ m2
µ′µ′ where the same switch occurs between the mass states of νe and

νµ′ . In the anti-neutrino sector (sketched by the negative densities with propagation
going from left to right) the potential V has a negative sign. The ν̄e get created as ν̄M

1

and the effective mass continuously stays below the masses of the other flavors. No
crossings occur.

In the case of the inverted hierarchy, m3 < m1 < m2, things look different. Again,
the electron neutrinos are created in a state equivalent to the heaviest mass eigenstate,
now νM

2 . νµ′ and ντ ′ are mainly made up of νM
1 and νM

3 . With decreasing density, we
reach the point m2

ee+2EV ≈ m2
µ′µ′ and switch the mass states so that νµ′ is equivalent

to νM
2 and νe to νM

1 . However, we will reach m2
ee + 2EV ≈ m2

τ ′τ ′ in the anti-neutrino
sector only. Here, the ν̄e start out as being equivalent to the lightest ν̄M

3 state. After
resonance, the ν̄e match ν̄M

1 , having switched with ν̄τ ′ .
Using the level crossing diagrams, we can easily derive the neutrino composition

leaving the star. Let us describe the neutrino fluxes emitted at the neutrinosphere by
F 0

e for electron and F 0
x = F 0

µ′ = F 0
τ ′ for the muon and tauon neutrinos. Note that we

assume the same fluxes for all non-electron neutrinos. Analogously, we describe the
anti-neutrinos by F̄ 0

e and F̄ 0
x . Within the star, the neutrinos travel in their matter

eigenstates νM
i and due to the steady decrease in density leave the star in their vacuum

mass eigenstates νi. The same goes for anti-neutrinos.
Generally, the neutrino fluxes leaving the star can be expressed as

Fi = aiF
0
e + (1− ai)F

0
x and

F̄i = āiF̄
0
e + (1− āi)F̄

0
x (1.53)

with
(−)
ai being the contribution to the vacuum eigenstate i from the initial electron

neutrino flux.
Using the level crossing diagrams shown in figure 1.18, the contributions can easily

be derived for all fluxes. All that needs to be done is to follow the respective lines
and apply the crossing probability PH/L at each resonance. The results are shown in
table 1.2.

a1 a2 a3 ā1 ā2 ā3

Normal Hierarchy PLPH PH − PLPH (1− PH) 1 0 0
Inverted Hierarchy PL (1− PL) 0 PH 0 (1− PH)

Table 1.2: Contribution of the initial electron (anti-) neutrinos to the vacuum flux.

The flux of electron neutrinos at Earth is determined by

Fe =
∑

i

|Uei|2Fi . (1.54)
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Using the unitarity condition
∑

i |Uei|2 = 1, we can write:

Fe = pF 0
e + (1− p)F 0

x with p ≡
∑

i

|Uei|2ai (1.55)

and accordingly for the anti-neutrinos.
The fluxes for the non-electron neutrinos Fµ and Fτ are easy to calculate, thanks to

flux conservation:

Fµ + Fτ = 2Fx = (1− p)F 0
e + (1 + p)F 0

x . (1.56)

As already mentioned before, the L-resonance is always crossed adiabatically due to
the mixing angle θ12 (see also figure 1.17). Therefore, PL ≈ 0 (see figure 1.17 at the
value given in equation 1.16).

Again distinguishing between normal and inverted hierarchy, we derive the results
shown in table 1.3.

p p̄

Normal Hierarchy PH|Ue2|2 + (1− PH)|Ue3|2 |Ue1|2
Inverted Hierarchy |Ue2|2 P̄H|Ue1|2 + (1− P̄H)|Ue3|2

Table 1.3: Contribution of the initial electron (anti-) neutrinos to the electron neutrino
flux at Earth.

However, as θ13 still covers a wide range, the crossing probability PH can fall into any
of the regions depicted in figure 1.17. Remember, these were the adiabatic regime (I)
where PH ≈ 0, the non-adiabatic regime (II) where 0.1 < PH < 0.9 and the maximally
violated adiabaticity (III) with PH ≈ 1. Under the assumption that cos θe3 ≈ 1 and
|Ue3|2 ≪ |Ue2|2, we arrive at the results in table 1.4

It must be stressed that while the results for region II are strongly dependent on
the density profile and must be used with care, regions I and III can be used nearly
universally.

Region I Region II Region III

p p̄ p p̄ p p̄

Normal Hierarchy |Ue3|2 cos2 θe2 PH sin2 θe2 cos2 θe2 sin2 θe2 cos2 θe2

Inverted Hierarchy sin2 θe2 |Ue3|2 sin2 θe2 P̄H cos2 θe2 sin2 θe2 cos2 θe2

Table 1.4: Contribution of the initial electron (anti-) neutrinos to the electron neutrino
flux at Earth for different mixing angles θ13

Region I is the adiabatic domain where sin2 2θ13 > 10−3, Region II the non-adiabatic
case with 10−5 < sin2 2θ13 < 10−3 and Region III the completely non-adiabatic interval
with sin2 2θ13 < 10−5.
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Figure 1.19: Schematic density profile in the presence of forward and reverse shock [99]

Supernova Shock Wave: Of course, the approximation of a static environment
within the supernova is untenable. The first and most striking disruption is the prop-
agation of the shock front through the stellar envelope. As matter falls inward to
the proto neutron star, it is swept up by the outward moving shock, and steps form
in the density profile. Seen from the outside, the first one is encountered directly at
the shock front. Additional density steps develop behind it as stellar matter driven by
neutrino-heating collides with the forward shock. Due to the negative velocity gradient
caused by this clash, a reverse shock and thus a density step traveling back to the PNS
forms when the wind speed starts exceeding the local speed of sound. In the collision
region where the heated matter is reflected from the forward shock, a further density
jump called the contact discontinuity can develop. Figure 1.19 shows a schematic of
the shock front.

These features appear even in simple 1-D supernova models [100]. As one can
expect, the multidimensional models show much more complex environments, featuring
bubbles and turbulences due to hydrodynamics. However, in this work we will only
investigate the simple case just specified.

The propagation of the shock front through the envelope can strongly influence the
neutrino oscillation cases as the varying density gradients have a direct impact on the
adiabaticity parameter. At the front of forward and reverse shocks and the contact
discontinuity, the density gradients are very steep, leading to a large d

dxACC and thus
a small γ. During the passage of the shock wave through the resonance region, full
neutrino conversion will occur, and consequently, in all cases except the maximally
violating one, we can expect changes to the crossing probability.

According to [101], the neutrino conversion during an abrupt change in density from
ρa to ρb follows
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Pc = sin2(θa − θb) . (1.57)

1.2.4.3 Collective Neutrino Oscillations

For the understanding of collective oscillation, the Neutrino Flavor IsoSpin (NFIS)
formalism is essential. After a short sketch of the NFIS picture, we will introduce
the effects of neutrino self-interactions. More details on this topic can be found in
appendix A.2.

Neutrino Flavor IsoSpin (NFIS)

The NFIS formalism is derived from the description of neutrinos with the density
matrix

ρ̂(x) =
∑

α

| να(x)〉Wα〈να(x) | . (1.58)

As all 2 × 2 matrices can be decomposed into X = 1
2 (tr(X)1 +

∑
k tr(Xσk)σk) with

the Pauli matrices σi, it becomes possible to describe neutrinos and their Hamiltonians
by vectors. For neutrinos these are the neutrino flavor isospins ~sν which are linked to
the detection probabilities of a specific flavor at the point x via

Pνe(x) =
1

2
+ ~sν · ~eF

3 and

Pνµ(x) =
1

2
− ~sν · ~eF

3 . (1.59)

The Hamiltonian vectors are given by

~HF
V = (− sin 2θ, 0, cos 2θ) ,

~HF
e = (0, 0,

√
2GFNe) and

~HF
eff ≡ µV

~HV + ~He . (1.60)

Consistently applying the density matrix formalism and mapping it to the NFIS picture
converts equation 1.29 to

d

dx
~sν = ~sν × ~Heff (1.61)

which is equivalent to the precession of a gyroscope or a spin in a magnetic field.
This analogy will come in handy for the understanding of collective neutrino oscil-

lations.
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Generalities of Neutrino Self-Interactions

Due to the high neutrino density in the supernova environment, neutrino-neutrino
interactions, which could normally be neglected, play an important role.

The two major oscillation modes will be considered in this section. Synchronized
oscillation occur if the neutrino gas is dominated by a single flavor, leading to the
ensemble behaving as a single neutrino with energy Esync. The second case is the
bi-polar mode where mixed neutrino gases form disparate blocks and may fall into
an (anti-) aligned state. Last, we will examine the special case of the supernova
environment. The depicted approach closely follows the one in [102].

If large numbers of (anti-)neutrinos propagate together, their Hamiltonian has to be
modified by a contribution describing their forward scattering on each other. For the
ith neutrino, this contribution is

Hνν,i = −~σ
2
·
∑

j

µij (nν,j~sν,j − nν̄,j~sν̄,j) (1.62)

with nν,i being the number density of the flavor of neutrino i, µij = −2
√

2GF(1 −
cos Θij) and Θij the angle between the ith and jth neutrino. Writing ~sν,j and ~sν̄,j as
~sj and −~sj respectively and decomposing the Hamiltonian, we get

d

dt
~si = ~si ×


µV,i

~HV + ~He +
∑

j

µijnj~sj


 (1.63)

with the sum going over both neutrinos and anti-neutrinos and

µV,i ≡
{

+∆m2/2E for neutrinos
−∆m2/2E for anti-neutrinos .

(1.64)

We further define the total effective energy

E ≡ −
∑

i

ni~si · (µV,i
~HV + ~He)−

1

2

∑

i,j

µijninj~si · ~sj . (1.65)

Note that E is not equivalent to the physical neutrino energies. From equation 1.63
follows d

dt~si ⊥ ~si and thus as long as d
dt
~Heff ≈ 0 one finds

d

dt
E ≈ 0 . (1.66)

For simplification we will assume an isotropic neutrino gas, leading to

µij → µν ≡ −2
√

2GF . (1.67)

If we define

~S ≡
∑

j

nj~sj , (1.68)
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the total effective energy simplifies to

E = −
∑

i

µV,ini~si · ~HV −
µν

2
~S2 . (1.69)

Synchronized Oscillations

We will first discuss the simple case of a single neutrino flavor without matter back-
ground and then use the method of the co-rotating frames to generalize this picture.

Pure Neutrino Gas without Matter: We assume Ne = 0 and a finite energy range
of |µV,i| ≤ |µV,i|max. The equation of motion (e.o.m.) 1.63 for ~si thus results in

d

dt
~si = ~si × (µV,i

~HV + µν
~S) . (1.70)

We obtain the respective e.o.m. for the NFIS of the combined gas ~S by summing over
all neutrinos

d

dt
~S =

∑

i

µV,ini~si × ~HV . (1.71)

We now assume a very dense neutrino gas so that |µν
~S| ≫ |µV,i|max. From equa-

tions 1.69, 1.66 and |~si · ~HV| ≤ 1
2 follows

E ≃ −µν

2
~S 2 ≃ const . (1.72)

Consequently, the magnitude of the total NFIS stays approximately the same. The
e.o.m. of ~si reduces to

d

dt
~si ≃ ~si × µν

~S , (1.73)

meaning that the individual ~si’s precess around the total NFIS ~S with a common
angular frequency of

ων ≡ |µν
~S| . (1.74)

If we take a look at the time frame 2π/ων ≪ δt ≪ 2π/ωsync, the individual NFIS

average out to ~si ≃ (~si · ~S)~S. Inserting this into equation 1.71, the e.o.m. simplify to

d

dt
~S ≃ ωsync

~S × ~HV (1.75)

with

ωsync = 〈µV〉 ≡
∑

i

µV,ini~si · ~S
~S2

. (1.76)

Thus, the neutrino ensemble behaves as a single neutrino with energy ωsync.
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General Synchronized Neutrino Systems Using co-rotating reference frames with
angular velocity of e.g. −Ω ~HV, one can relate more general neutrino ensembles or
even a matter background to the simple case just discussed. Essentially, the behavior
in these cases is equivalent to a pure neutrino gas without matter background. Refer
to appendix A.2.2 for more details.

Bi-Polar Oscillations

No synchronization occurs if we have equal numbers of say νe, νµ, ν̄e and ν̄µ. However,
because the neutrino gas consists of two distinct NFIS blocks, collective oscillations
can still occur.

Simple System without Matter: Consider a simple system consisting only of νe

and ν̄e in equal number densities nν with energies µV+ = −µV− = µV for all
(anti-)neutrinos. Summing equation 1.63 over all neutrinos and anti-neutrinos, re-
spectively we get

d

dt
~Sν = ~Sν ×

(
µV

~HV + µν
~Sν̄

)
and

d

dt
~Sν̄ = ~Sν̄ ×

(
−µV

~HV + µν
~Sν

)
(1.77)

with the definitions

~S+ ≡ ~Sν + ~Sν̄ and ~S− ≡ ~Sν − ~Sν̄ . (1.78)

The equations of motion for this case are given by

d

dt
~S+ = µV

~S− × ~HV and

d

dt
~S− = µV

~S+ × ~HV + µν
~S− × ~S+ . (1.79)

To investigate the evolution of a neutrino ensemble, it is expedient to examine its
overall mass eigenstate given by sVν,3 = ~Sν · ~eV3 ∼ cos ϑ. As the calculations are quite
complex, we will discuss only the results at this point. For more details refer to
appendix A.2.3.1.

In normal hierarchy as well as low neutrino densities ϑ is delimited by the vacuum
mixing angle and the neutrinos stay in their initial state. At medium densities, the
range the angle can take increases and neutrino conversion become more likely. The
exceptional consequences of the self-coupling become only evident at high and very high
neutrino densities. Here, the angle ϑ becomes large, allowing the neutrino ensembles
to decouple from their initial state; oscillations can occur. This goes so far that the
neutrinos can completely swap their states even for very small mixing angles.
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General Bi-Polar Neutrino Systems: The modus operandi for the generalization
in bi-polar case is the same as in the synchronized case. Details can be found in
appendix A.2.3.2.

If one consistently applies this technique to mixed neutrino gases with two flavors
and different energies, the swapping between the ensembles becomes dependent on the
energies. Table 1.5 shows the possibilities.

Hierarchy νe − ν̄e ν̄µ − νµ νe − νµ ν̄µ − ν̄e

∆m2 > 0 Never Always Eνe > Eνµ Eν̄µ < Eν̄e

∆m2 < 0 Always Never Eνe < Eνµ Eν̄µ > Eν̄e

Table 1.5: Conditions for bi-polar neutrino swapping of mono-energetic neutrino
systems.

Again, the presence of matter does not significantly modify the behavior of the
neutrino ensembles.

Collective Neutrino Oscillations in the Supernova Environment

It should be noted that this is a very active and rapidly developing field, and the
considerations hereafter are far from complete, even at the current time. Much is still
unknown about these phenomena. For example, the current state-of-the-art supernova
simulations do not include neutrino self-interaction processes or neutrino oscillations,
and it is not at all certain that these effects can be neglected.

Shortly above the neutrinosphere, the neutrino density is so large that a synchronized
ensemble forms which behaves as a single neutrino with the energy Esync. However,
in this region, the density of the ordinary matter is so high that the mixing angles are
strongly suppressed and thus flavor-lepton numbers are nearly perfectly conserved. As
the neutrinos propagate to the outside, the synchronized system breaks down and bi-
polar alignment is achieved. As sketched before, in the case of inverted mass hierarchy
full flavor conversion can occur even for very small mixing angles. Matter only slightly
affects the bi-polar oscillation behavior in the supernova environment (see also [103]).

A further complication in the supernova picture is that the uniform distribution of
the propagation directions breaks down. While so far we only considered neutrinos with
a fixed emission angle Θ, this is only an approximation. However, the consideration
of multiple trajectories does not seem to provide significantly new output [104]. As
further investigations are not yet available, we will restrict ourselves to the single-angle
approximation.

The considerations in this section closely follow [105].
We assume an isotropic neutrino gas described by neutrino flavor isospins ~si. Unlike

before, however, the neutrino energies have continuous spectra. We replace the NFIS
vectors ~si by polarization vectors at given energies ~Pω with ω > 0 describing the
neutrinos and ω < 0 the anti-neutrinos. In analogy to ~S+ we define
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~D ≡
∫ ∞

−∞
sign(ω)~Pω dω . (1.80)

Note that ~D is analogous to ~S+ and not ~S− because ~sν̄ has a minus sign in front when
expressed in terms of ~sν whereas ~Pω does not. The quantity Dz is linked to the net
lepton number of the neutrino gas.

Starting from equation 1.63, we go to the co-rotating frame with angular velocity
− ~He to eliminate the matter potential, replace ~si by ~Pω, multiply the equation with
sign(ω) and integrate it over the whole spectrum. We arrive at

d

dt
~D = ~HV × ~M . (1.81)

We note the similarity between this result and the equation for ~S+ given in 1.79 if
µV

~S− → ~M ≡
∫∞
−∞ sign(ω)ω ~sω dω. The differences originate from the continuous

energy spectra.
From equation 1.81, we see that d

dt(
~D · ~HV) = 0 at all times. As Dz describes the

neutrino flavor lepton number, only pair-transformations are possible. Furthermore,
the mixing angle shortly above the neutrino sphere is small so that interaction and
mass eigenbasis practically coincide. Collective transformations in this regime can
consequently only happen in the form νeν̄e → νxν̄x.

Deleptonization Peak For the onset of core-collapse, one has to carefully examine
the above argumentation as it strongly deviates from the later conditions. In the first
milliseconds the luminosity is completely dominated by νe while all other neutrino
types are strongly suppressed. The bi-polar condition, i.e. neutrino numbers of the
same order, is not met and one expects only synchronized oscillations. Thus, we can
assume the absence of collective effects in the starting signal.

Post-Breakout Phase Excluding the deleptonization burst, neutrinos are produced
in approximately the same amounts within the star, with the only difference between
the flavors being the spectra. As collective oscillations can only happen in pairs, a
so-called spectral split can occur. For instance, the spectra of the νe and νx will swap
up to a certain energy and above the original spectra obtain. Furthermore, multiple
spectral splits can occur (see [106, 107]).

For the purposes of simulating the effects of these splits on our signal, we will use
the results published in [107] and kindly provided by I. Tamborra [108]. The energy
spectra in this simulation are assumed to be thermal:

Φα(E) =
2βα

3ζ3

(βαE)2

eβαE + 1
(1.82)

with βα = c+
〈Eα〉

and c+ = 7π4

180ζ3
= 3.151 and mean energies of

〈Eνe〉 = 10MeV , 〈Eν̄e〉 = 12MeV and 〈Eνx〉 = 15MeV . (1.83)
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(b) Self-interactions

Figure 1.20: Collective oscillations of the supernova neutrinos
Solid black illustrates the energy spectrum of the electron flavor, dotted red the spec-
trum of the non-electron flavors. In the case of self-interactions, the spectra swap at
≈ 6MeV.

with a total luminosity of Ltot = 1053 erg/s exponentially decaying on a timescale of
τ ≃ 3 s. The luminosity fractions lα = Lα/Ltot were modified in steps of 10%.

The flavor evolution is investigated in the two neutrino case (comparison with [109]
has shown that the three flavor evolution is essentially the same) with a mixing angle
of:

sin 2θ13 = 10−6 . (1.84)

Figure 1.20 shows the spectra before and after oscillation for neutrinos and figure 1.21
the spectra for anti-neutrinos, both for luminosity equipartition Lνe = Lν̄e = Lνx =
Lν̄x . In the neutrino case, one can clearly observe the spectral split at ≈ 6MeV. The
anti-neutrinos are nearly completely converted as the split is at ≈ 1MeV.

1.2.4.4 Oscillation Sequence in the Supernova

The order by which neutrinos undergo oscillations inside a supernova is primarily
determined by the density gradient of the precursor star. One can distinguish two
cases.

Iron Core

In the case of most supernovae, the precursor stars have formed an iron core and
feature large masses in a thick matter envelope. The H and L resonance regions
are far above the neutrinosphere (∼ 1000 km for the H resonance) while the collective
effects dominate up to ∼ 200 km. Close to the PNS, the neutrinos form a synchronized
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Figure 1.21: Collective oscillations of the supernova anti-neutrinos
Solid black illustrates the energy spectrum of the electron flavor, dotted red the spec-
trum of the non-electron flavors. In the anti-particle case, the spectra swap almost
completely (the split is at ≈ 1MeV).

ensemble for which oscillation effects are strongly suppressed because of high matter
densities. Above ∼ 50 km, the synchronization breaks down and a bi-polar ensemble
is formed. Spectral splits as discussed above can be the consequence [102].

O-Ne-Mg Core

While most supernovae have an iron core, about 30% of the progenitors have masses of
8M⊙−10M⊙ with cores consisting of oxygen, neon and magnesium. These feature only
very small mass envelopes with steep density gradients where the H and L resonance
will be passed before the neutrino ensemble breaks apart [110]. In such a case, the
neutrinos pass the resonances while still in the synchronized mode. Naively seen, this
would mean they oscillate like a neutrino with the energy Esync would. However, as
noted in [111], the interplay between matter and self-interaction can lead to special
signatures in the neutronization burst. We do not consider this effect because IceCube
is not able to discern the deleptonization peak for anything other than very close-by
supernovae [93].
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Astronomy compels the soul to look

upwards and leads us from this

world to another.

Plátōn

In the following chapter, we will first motivate and explain neutrino telescopes in
general and then move to the examples of AMANDA and IceCube. A description of
the supernova data acquisition (SNDAQ) setup follows. Thereafter, we will continue
with a detailed examination of the interactions between neutrinos and ice which will
help us to estimate the expected signal of a supernova.

2.1 Neutrino Telescopes

For astronomy, the small weak interaction cross section of neutrinos has its pros and
cons.

Because neutrinos are hard to identify, telescopes aimed at their detection require
huge effective masses to record even a few events. Furthermore, due to the detection
principle, the angular resolution (e.g. > 0.6◦ for IceCube) is much inferior to classical
astronomy (e.g. < 0.1 arcsec for the Hubble telescope).

On the other hand, neutrinos allow us to look inside stars while photons are mainly
radiated from their surface. Neutrinos would provide us with fundamentally new in-
formation, helping to better understand the processes driving the universe. Examples
are supernovae as described in section 1.1 or neutrinos radiated from the sun. More-
over, the detection of extra-terrestrial neutrinos can provide a better understanding
of the characteristics of these particles. Examples are the solution of the solar neu-
trino problem or the constraining of neutrino parameters with the supernova neutrinos
recorded in 1987 (see section 1.1.2.5). Another advantage of neutrinos is that they are
not diverted from their path. Photons can be absorbed by dust clouds or get lost in
the light of other stars (e.g. no stellar objects behind the galactic core are visible).
Looking for charged particles is no real alternative as they are deviated from their
original track by galactic magnetic fields thus losing all direction information unless
the energy exceeds ∼ 1019 eV [112].
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2.1.1 Principle of Neutrino Telescopes

Neutrino telescopes are neutrino detectors aimed at astrophysics observations. In
astronomy the most important observable is the source location, necessitating a good
angular resolution. Contrary to photons, the direct observation of neutrinos remains
unfeasible. They have to be identified via their reaction products.

When they travel through matter, neutrinos have a small chance of producing a
lepton via charged current interaction with nuclei. Provided that the initial energy
is sufficiently high, the charged lepton will then travel at nearly the vacuum speed of
light and will normally exceed the speed of light in the medium. Due to the Cherenkov
effect (see section 2.3.2), photons will be produced along the lepton track, allowing the
reconstruction of its path by recording snapshots of the photon front.

These considerations set the key requirements for a neutrino telescope. For one,
due to the small cross sections, a large amount of material is required to increase the
interaction probability. As the detection principle is based on Cherenkov radiation,
the material has to be optically transparent. To keep the costs manageable, it is best
to use natural material as interaction mass and seed it with light sensors. Due to
cost considerations and abundances, the most manifest candidate material for such an
experiment is water, and thus, all neutrino telescopes past, present and planned are
set either in water or ice. Neutrino telescopes are mostly placed deep below the surface
to provide shielding from atmospheric radiation. Otherwise, the low neutrino reaction
rates would be impossible to separate from the background of atmospheric muons.

Because the angle between neutrino and produced lepton decreases with the energy
of the incoming particle, e.g. for νµ → µ the angle is < 1◦ at 10TeV, neutrino
telescopes are aimed at energies of 10GeV and beyond [113].

The best candidate for astronomy are the muon neutrino and its anti-particle. High
energy muons have a sufficiently long lifetime for detection and show a large pen-
etration depth in matter. The much lighter electrons quickly lose their energy to
electromagnetic cascades and bremsstrahlung. While this facilitates a reliable energy
resolution, the angle is only poorly resolved. Another candidate would be tau neutri-
nos. However, tauons have a very short lifetime, greatly complicating their detection
(their average track length is ∼ 50m at 106 GeV). Tau (anti-)neutrinos show a char-
acteristic signature in the detector, initiating electromagnetic cascades at the tauon
creation and decay points. If the two cascades can be separated, this phenomenon is
called a double bang.

For the case of supernova neutrino detection, the electron flavor is the most relevant.
Because the energies involved are in the order of 10MeV (see section 1.1.2.3), no other
leptons can be produced in charged current interactions.

2.1.2 Neutrino Telescopes in the Ice

We will now consider the neutrino telescopes AMANDA (Antarctic Muon And Neu-
trino Detector Array) and its successor IceCube. They are the only experiments of
their type using ice as detection medium and are the tools of the same collaboration.
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Both telescopes were built at the geographic South Pole for the following reasons:

• One of the purest natural deposits of optically transparent materials that can be
found on Earth is the antarctic glacier. With a thickness of ∼ 3 km at the South
Pole, it provides good shielding against charged atmospheric radiation, making
neutrino astronomy possible.

• In 1956, the US Navy constructed the first station at South Pole. Since then,
it has been continuously upgraded (with the Dome in 1975 and the Elevated
Station in 2003) so that it supplies an extensive and reliable infrastructure. As
of now it is run by the United States Antarctic Program (USAP) and continues
to provide good support for scientific programs, facilitating the construction of
the AMANDA and IceCube array.

• A further bonus of the southern location is its possibility to complement neu-
trino telescopes in the northern hemisphere such as ANTARES or the upcoming
KM3NET (see section 2.1.3).

AMANDA and IceCube consist essentially of nothing more than Photomultipliers
(PMTs) monitoring the ice for Cherenkov light induced by charged leptons. To in-
stall sensors in the ice, holes are drilled deep into the glacier. This is done in two
steps. First, a hole is melted into the firn ice1 using a heating coil. Once a depth of
50m ∼ 100m is reached, the hole is extended down to ∼ 2.5 km with the main drill.
This piece of equipment is nothing more than a nozzle spraying hot water on the ice.
The melt water is pumped up to the surface where it is heated and pumped back into
the drill, closing the loop. After the final depth has been reached, the light sensors are
attached to thick wire ropes and lowered into the hole which then gradually refreezes
over the next few weeks2.

2.1.2.1 AMANDA

Construction History

Work on the AMANDA telescope started in the austral summer 1991/92, and it ran
until the beginning of 2009 when it was decommissioned. The main constituents of
the detector were Hamamatsu R5912-02 photomultipliers (PMTs) installed in a glass
pressure housing and connected to the surface by an electrical cable, providing high
voltage and transmitting the PMT signal. A more detailed description of the sensors
will be provided later. The AMANDA telescope has been continuously extended up
to the year 2000:

Test modules: In the antarctic summer of 1991/92, eight optical modules were
brought into the ice. Four were deployed at a depth of 150m and four at 800m.

1The first 50 ∼ 100 m of the glacier consist of a layer of packed old snow that has recrystallized and
compacted into a substance denser than the surface snow.

2The refreezing process starts on top of the hole and slowly works its way downward. It can take
anywhere between two weeks and two months.
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AMANDA-A: 1993/94, the first four strings with 80 modules were installed at 800m−
1000m below the surface. Unfortunately, at these depths, the high density of air
bubbles lead to scattering lengths . 1m, inhibiting the reliable reconstruction of
muon tracks. After installation of the later strings, AMANDA-A was no longer
used.

AMANDA-B4: The next phase of the telescope was termed AMANDA-B and later
AMANDA-II. During the austral summer of 1995/96, the collaboration installed
four strings with 86 modules in total at depths of 1500m−2000m. One string was
placed at the center, the three others were deployed in a circle of 35m radius. For
the first section of the detector, the signal transfer was provided by coaxial cables
which, due to their high dispersive properties, showed strong pulse distortion.
The PMTs were put into glass spheres constructed by the company Billings
and featured the lowest noise rates of all AMANDA modules (200Hz ∼ 400Hz)
albeit at a lower transparency in the UV-region. These sensors are termed the
B4 generation.

AMANDA-B10: In the antarctic summer 1996/97, 216 optical modules on six strings
were plunged into the glacier placed in a circle of 60m radius with AMANDA-B4
at its center. For this phase, the PMTs were enclosed in glass spheres provided
by the company Benthos, showing better transparency properties. Due to higher
radioactive impurities in the glass, the background rates for these was much
higher than in the B4-generation (1 kHz−1.5 kHz). With the usage of twisted pair
cables, pulse distortion and dead weight could be reduced although at the cost
of strong cross talk in the transmission and inferior electromagnetic shielding.

AMANDA-B13: 1997/98, AMANDA was extended by 3 strings with 126 sensors in
total. Together with the later B19 generation, B13 makes up the outer circle with
a radius of 100m. The modules have the same properties as the B10 generation.
Signal transfer was done by optical fibers, eliminating cross talk, pulse distortion
and electromagnetic interferences. However, the optical fibers proved vulnerable
to the freezing process.

AMANDA-B19: AMANDA underwent the final construction phase in the antarctic
summer of 1999/2000. It gained 249 additional optical modules on six strings.
The type of PMTs remained the same; however, the glass was changed to a purer
batch, decreasing the noise rates to 600Hz ∼ 1000Hz. Unfortunately, string 17
got stuck during deployment and froze above its final destination. Because of the
low scattering lengths at its location, it could not be used for track reconstruction.

Figure 2.1 shows a schematic of the AMANDA detector. More details on the AMANDA
telescope can be found e.g. in [114, 115, 116, 117].
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Figure 2.1: Schematic of the AMANDA detector, taken from [115] and slightly
modified
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Figure 2.2: Schematic of an AMANDA OM, taken from [3] and slightly modified
The plug on the upper left of the schematic drawing provides the connection to the
surface. It is also the Achilles’ heel of the module. Water break-ins are most likely
to happen here and the freezing process can damage this component. The wire rope
holding the modules is attached to the fitting shown in the middle of the illustration.

The Optical Module (OM)

As stated before, the main components of a water Cherenkov telescope are the light
sensors or PMTs. During deployment and later refreezing the optical module is exposed
to extreme stress. The deepest sensors have to resist pressures of up to 250 bar and
more during freezing. To resist the pressure and to protect the electronics, the 8 inch
(20.3 cm) PMTs were encased into 12.5mm thick glass spheres with materials chosen
for their resistance as well as for their transparency and purity. The latter is especially
important for supernova detection as already small traces of radioactive elements can
significantly increase the dark noise rates. As mentioned above, three different glass
types were used. When the collaboration switched from Billings to Benthos, the trade-
off was between better transparency and higher radioactive contamination. While this
substitution might have been worthwhile for track reconstruction, it was unfortunate
for supernova detection. The reduced 40 K fraction of the B19 generation reduced the
dark noise somewhat and lead to better supernova sensitivities for these modules.

Another important constituent of an optical module is a silicon gel that fixes the
PMT and provides optical coupling between the sensor and its envelope. If the space
between the glass sphere and the PMT were left empty, Fresnel losses3 would have
reduced the detection efficiency. The gel was chosen so that it remains viscous down
to −93◦C.

A schematic for an AMANDA optimal modules is shown in figure 2.2. More details
on OMs can be found e.g. in [118, 119] and references therein.

3When light moves between media with different refractive indices, it is partially reflected on the
transition regions. A clever choice of media can strongly reduce the losses.
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2.1.2.2 IceCube

Due to the extensive experience collected during the construction of AMANDA, Ice-
Cube proceeded in a much more orderly fashion. The principle of the detector remains
the same albeit with a few improvement mainly in the light sensors but also the in-
stallation planning. For AMANDA, the whole deployment phase, not counting the
refreezing, took ∼ 7 d (e.g. string 16). In IceCube the strings can be installed in
∼ 2.5 d.

Construction History

When finished, the main IceCube detector will feature 80 strings, placed at distances
of ∼ 125m and arranged in a hexagonal grid with light sensors at depths between
1450m − 2450m. Each of these 80 strings holds 60 digital optical modules (DOMs)
vertically placed in 17m intervals. This spacing binds the detectable energy to be
above ∼ 100GeV.

It was later decided to extend IceCube by a low energy extension called DeepCore
which consists of six strings with 60 DOMs each. The first difference to the standard
strings is the DOM spacing. Each string holds 10 modules at shallow depths between
1750m and 1850m and 50 between 2100m and 2450m at a 7m spacing. The hori-
zontal distance between the strings is ∼ 70m. Overall, this geometry lowers the muon
detection threshold to ∼ 10GeV [120]. For DeepCore, an improved PMT with higher
quantum efficiency (30% ∼ 40% more compared to the standard DOMs) was chosen.

The deployment of IceCube started in the austral summer of 2004/05 with string
21. During the next season, this number was brought up to 9 and in 2006/07 to 22
strings, exceeding the whole AMANDA array. In 2007/08, 18 strings were installed,
bringing the total to 40 and in 2008/09, 19 more were brought into the ice, among
them the first DeepCore string. In 2009/10, the remaining 5 strings of the low energy
extension were installed along with 15 additional standard strings. IceCube stands
now at a total of 73+6 strings (IceCube+DeepCore) and will be completed during the
upcoming season.

In addition to the in-ice setup, IceCube also features a surface array called IceTop
aimed at cosmic ray air showers. It is made up of pairs of frozen water tanks, separated
by ∼ 10m and located ∼ 25m around the top of each string. Their high noise rates
make them uninteresting for the purpose of supernova detection.

Figure 2.3 shows a schematic of the IceCube array as of July 2010. For more detailed
information on the detector, refer e.g. to [121, 93].

The Digital Optical Module (DOM)

In principle, the light sensors used in IceCube are the same as the ones integrated into
AMANDA. However, they differ in important technical details.

The first and most striking distinction is the data handling. In AMANDA the
PMTs sent their registered pulses directly to the surface where they were analyzed
and processed. In IceCube this no longer holds true. Each IceCube module features

62



2 Detector

Figure 2.3: Schematic of the IceCube telescope, taken from [122] and slightly modified
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Figure 2.4: Schematic of an IceCube module, taken from [122]
In principle, an IceCube sensor is build the same as an AMANDA OM. Additional
features are the electronics which digitize and preprocess the pulses, the flasher boards
used for calibration purposes and the mu-metal mesh which is intended to shield the
DOM from the ambient magnetic field of the Earth and its fluctuations. The HV
divider transforms the incoming low voltage to the high voltage needed by the PMT.

an autonomous data acquisition and transmits the recorded data in digitized form.
While this introduces a potential weakness in the module, this is more than offset
by the absence of cross talk, electromagnetic interferences and pulse distortion on the
way up. Furthermore, the introduction of local coincidence checks between neighboring
DOMs becomes possible.

Second, larger PMTs with diameters of 10 inch (25.4 cm) have been used in IceCube.
They are housed in glass spheres with a 13 inch (32 cm) diameter and 12.7mm thick-
ness. As stated before, the modules used in DeepCore are more efficient (30% ∼ 40%
with respect to the standard DOMs [120]). The typical average dark noise rate of a
standard IceCube DOM is ∼ 540Hz. Each DOM is also equipped with a 12 on-board
flasher LEDs which can emit predefined pulses of light and are used for calibration
and verification tasks.

Third, the modules are only provided with low voltage (96V) which is locally trans-
formed to the high voltage necessary to power the PMT (1300 − 1500V). This way,
instabilities in the South Pole power plant do not transmit to the sensors.

Figure 2.4 shows a schematic drawing of an IceCube DOM. More details on the
modules can be found e.g. in [93, 121, 123].

2.1.3 Neutrino Telescopes in Water

The first working neutrino telescope was set in the lake Baikal and is called Baikal
Deep Underwater Neutrino Telescope. Construction was started in 1993 and finished
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in 1998. It sports 200 optical modules.
ANTARES (Astronomy with a Neutrino Telescope and Abyss environmental RE-

Search) has approximately the same size of AMANDA and is located in the Mediter-
ranean Sea of the coast of Toulan in France. Its construction was finished in 2008, two
years after deployment of the first string. It features 900 optical modules.

KM3NeT (KM3 Neutrino Telescope) will be the first km3 neutrino detector con-
structed in water. In a way, it will be the northern cousin of IceCube. The technical
design report has not been made public at the time of writing.

It has to be noted that of the neutrino telescopes discussed above, only AMANDA
and IceCube are able to observe a supernova burst due to their low background noise
rates. When constructed, KM3NeT may be able to identify supernovae in the Milky
Way.

2.1.4 Neutrino Detectors Sensitive to Supernovae

The most prominent neutrino detector to be named at this point is Super-Kamiokande.
Like Kamiokande-II, it is located in the Kamioka mine in Japan and consists of a large
tank of 50000 t of water which was originally monitored by 11146 photomultipliers.

Similar in design was the Sudbury Neutrino Observatory (SNO). It consisted of 1000 t
of heavy water, monitored by 9600 light sensors. It ran from 1999 to 2006 and is now
being extended to SNO+, using a liquid scintillator as detection medium.

The BOREXino experiment is located at Gran Sasso and consists of a tank filled
with 300 t liquid scintillator of the form CnH2n+2. Its main goal is the study of the
7Be neutrino flux from the sun.

A somewhat different setup has been used for the Large Volume Detector (LVD),
also located in Gran Sasso. It consists of an array of 840 stainless steel tanks, sized
1.0 × 1.0 × 1.5m3 and also filled with a liquid scintillator.

All of these experiments would be able to detect a neutrino burst from a supernova in
the Milky Way. They are specifically set up for the detection of low energy neutrinos,
making the determination of energy, flavor and even rough directionality possible.
All detectors covered in this section, with the exception of SNO, contribute to the
Supernova Early Warning System (SNEWS)4.

2.2 Data Acquisition

As the amount of information produced by AMANDA and IceCube is very large, the
data is reduced and only interesting events are stored. For AMANDA some, and for
IceCube all the raw data has been saved to tapes which can be accessed in case of
need.

4This network collects data from neutrino experiments and aims to alert the astronomical community
to an upcoming supernova.
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2.2.1 Muon Data Acquisition

As mentioned before, the main goal of neutrino telescopes is the reconstruction of muon
tracks induced by neutrinos. To a lesser degree it can also be used to identify elec-
tromagnetic cascades induced by electron neutrinos, complex energy deposits typical
for tau neutrinos or other signatures such as induced by e.g. magnetic monopoles. To
this end, the arrival times of the Cherenkov front at the optical modules are recorded.
Using different reconstruction methods, this information can be used to reconstruct
the track of the charged particle. Note that unless the whole signature resides inside
the detector only the local energy deposit can be ascertained.

The triggering conditions used for event storage are customizable. In AMANDA as
well as IceCube the multiplicity trigger demanding a certain amount of PMT pulses
within a preset time window is the main trigger.

One of the problems in identifying muon neutrino signatures is the atmospheric muon
background. While most of the atmospheric radiation is shielded by the ice, highly
energetic muons and muon bundles can still reach the detector array and induce light.
Therefore, all neutrino telescopes try to reconstruct upward going tracks from particles
having crossed the earth as only neutrinos or exotic particles can be expected from this
direction. Unfortunately, the downgoing muons cannot always be distinguished from
the upgoing tracks, even with complicated and computationally intensive filters. Most
of the background in a neutrino search thus consists of misreconstructed atmospheric
muons.

For more information on this topic, refer to e.g. [124, 117, 115] for AMANDA
and [121, 125] for IceCube.

2.2.2 Supernova Data Acquisition (SNDAQ)

Supernova detection with a neutrino telescope is fundamentally different from the track
reconstruction just described. The light sensors are too far apart to reconstruct the
paths of charged leptons created by O(10MeV) neutrinos.

However, a supernova explosion within our galaxy would induce an intense burst
of neutrinos crossing the ice and producing light. As the noise rates in AMANDA
and IceCube are low, it becomes possible to identify the additional rate by using the
optical modules not as separate units but as a large combined counter for coherent
rate increase.

The principle is the same for both AMANDA and IceCube. The pulses are collected
in scalers and sent to a computer where they are synchronized and combined. An
analysis algorithm then extracts a collective rate increase by the method described
in 4.1.1. If a significant number of pulses is seen in a predefined time window, we have
a supernova candidate and the Supernova Data AcQuisition (SNDAQ) records the data
in a finer time resolution and sends out alarms to the IceCube Collaboration as well as
the SNEWS network. While the SNDAQ is essentially the same, the implementations
are quite different for the two experiments.
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AMANDA: In the AMANDA case, the pulses were counted on the surface and di-
rectly sent to an analysis computer which was independent of the standard data acqui-
sition. The raw data was recorded in a 10ms binning and rescaled to 0.5 s for real time
analysis. If a supernova candidate was identified, it was stored in the 10ms resolution;
otherwise only the 0.5 s stream was kept. For more details on the data taking refer
to [3] and for the analysis implemented in the SNDAQ refer to [73].

IceCube: For the IceCube array, the data pulses are recorded on the DOM itself
and transmitted to the standard data acquisition. This provides a data file containing
asynchronously counted pulses in 1.634ms5 from each DOM. The SNDAQ reads the
file and rebins the rates to 2ms to synchronize the data streams of the modules. From
here on, the procedure is the same as it was for AMANDA with the exception that
candidates are stored in 2ms resolution. The raw files in 1.634ms binning are archived
on tape. More information on this system can be found in [93].

2.2.3 Artificial Dead Time

When looking at the background noise rates of the modules, it becomes apparent that
∼ 60% of the pulses are correlated. Afterpulses up to 11ms after the initial hits are
due to gas ionization in the PMT. However, this is only one part of the picture as
electrons or positrons created by radioactive decay traversing the glass with energies
of > 0.2MeV can ionize or excite the respective atoms. This can entail consecutive
photon emission, leading to delayed pulses.

Because it was assumed that this kind of correlation was restricted to noise pulses, it
was decided to introduce an artificial dead time, suppressing the background relative to
the expected signal. Extensive studies have been performed in [73, 126] for AMANDA,
and an artificial dead time of ∼ 250µs has been deemed optimal. A similar approach
has been used for IceCube in [93]. However, recent examinations cast some doubt on
the absence of afterpulses for signal hits. The upcoming thesis by T. Griesel [127]
closely inspects the local coincidence data in which background plays little to no role.
The studies indicate that signal pulses show a significant amount of correlation.

2.3 Low Energy Neutrino Detection in AMANDA/IceCube

We will now describe the processes which allow for the detection of low energy neutri-
nos.

2.3.1 Neutrino Interactions in the Ice

Since the detection principle is based on Cherenkov radiation, we are interested in
reactions producing charged particles. For a detailed examination of the possible
contributions refer e.g. to [128].

5This results from the size of the counter (2 bit) and the clock latency of 40MHz.
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Figure 2.5: Feynman diagram of the inverse β+ decay

As we will see below, the main rate stems from the electron anti-neutrinos. It is
important to note that because of the energy scale involved in the supernova processes
only electron neutrinos can interact via the charged current. The energies are just too
low for the production of charged non-electron leptons.

2.3.1.1 Inverse β-Decay

The leading reaction channel for the neutrino detection by far, accounting for ∼ 96%
of the expected rate (using the model [35] and disregarding oscillations), is the inverse
β-decay:

ν̄e + p −→ n + e+ . (2.1)

Figure 2.5 shows the corresponding Feynman diagram.
In the MeV range the calculation of the scattering matrix up to the third order is

sufficient to reach an uncertainty smaller than 1%. A simple approximation for the
cross section

σ(Eν̄e , Ee+) = |~pe+|Ee+ E
−0.07056 +0.02018 ln Eν̄e− 0.001953 ln3 Eν̄e
ν̄e

× 10−47 m2 (2.2)

has been found to match this precision for neutrinos energies Eν̄e . 300MeV [129].
For the calculation of the rate, we will need the differential form of the cross section

d

dEe+

σ(Eν̄e , Ee+) = σ(Eν̄e , Ee+) δ(Ee+ − 〈Ee+〉) . (2.3)

The energy of the positron Ee+ and thus the respective momentum |~pe+ | =√
(E2

e+ −m2
e) is not discrete but has a continuous spectrum. Its mean energy can

be derived to be

〈Ee+〉 ≈ (Eν̄e − δ)
(

1− Eν̄e

Eν̄e +mp

)
(2.4)

with the proton mass mp, the electron mass me, the neutron mass mn and
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δ =
m2

n −m2
p −m2

e

2mp
. (2.5)

Neutron Capture

The neutron produced by the inverse β-decay is quickly reabsorbed in ice. For thermal
energies, neutron capture in water is dominated by reactions on hydrogen [130]:

n + 1H −→ 2H + γ . (2.6)

The reaction emits a photon with an energy of 2.225MeV (the binding energy of the
deuterium nucleus). When the photon travels through ice, it can undergo Compton
scattering thereby inducing a relativistic electron whose energy follows the distribu-
tion [131]

p(Ee−) ∼ (Eγ − Ee−)−2E−2
γ

−(2 + 2
Eγ

me
−
E2

γ

m2
e

)(Eγ − Ee−)−1E−3
γ

+

(
1 +

Eγ

me

)2

E−4
γ − m−2

e E−3
γ Ee− . (2.7)

Just as the positrons from inverse β-decay, this electron will produce light. With the
above energy distribution, it will be possible to estimate the photon production from
neutron capture in section 2.4.3.1.

2.3.1.2 Electron Scattering

An additional contribution to the neutrino signal (∼ 3% for model [35] disregarding
oscillations) is caused by the scattering of neutrinos on electrons in ice:

(−)
να + e− −→ e− +

(−)
να . (2.8)

Figures 2.6 show the processes that have to be taken into account for the scattering
on electrons.

For νe and ν̄e, this reaction can be mediated by the charged as well as the neutral
current. In the cases α = µ, τ , only the neutral current can contribute as the weak
force conserves the lepton number.

Under the assumption of momentum transfer ≪ m2
W±,Z0, the differential cross sec-

tion in the leading order looks as follows [132]:

d

dy
σν(e−,e−)ν(Eν , Ee) =

2G2
FmeEν

π

(
ε2∓ + ε2±(1− y)2 − ε+ε−

me

Eν
y

)
(2.9)

69



2 Detector

Figure 2.6: Feynman diagrams for the scattering of neutrinos on electrons

with y = (Ee −me)/Eν and 0 ≤ y ≤ ymax = (1 + me

2Eν
)−1. The upper index on the ε

stands for neutrino the lower one for anti-neutrino interactions, respectively. They are
defined as

ε+ = − sin2 θW (2.10)

and

ε− =

{
−1

2 − sin2 θW for electron neutrinos

1
2 − sin2 θW for non-electron neutrinos .

(2.11)

Radiative corrections can be neglected at these energies as they only rise above ∼ 1%
at O(GeV) [132].

2.3.1.3 Interaction with Oxygen

All interactions with 16O contribute to the overall rate by ∼ 1% (for model [35] disre-
garding oscillations). Of these, the most relevant reactions for the neutrino detection
in a water Cherenkov telescope are the inverse β+ and β− decays (see figures 2.5
and 2.7):

νe + O −→ X + e− and

ν̄e + O −→ X + e+ . (2.12)
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Figure 2.7: Feynman diagram of the inverse β− decay

The most prominent interaction channels of neutrinos on 16O have been calculated
in [133] and it was found in [134] that νe(

16O,X)e− can approximately be described
by the function

σνe(16O,X)e− = 4.7 · 10−44 m2

[(
Eνe

MeV

)0.25

− 15 0.25

]6

. (2.13)

For the energy threshold of these reactions we assume 15.4MeV as given in [128] for
the subreaction νe(

16O, 16F)e−.
As no analytic formula or fit for ν̄e(

16O,X)e+ was found in the literature, the data
from [133] was fitted by the author (see figure 2.8). The resulting function is

σν̄e(16O,X)e+ = 2.1·10−44 m2×





[(
Eν̄e

MeV

)0.22
− 8.4 0.22

]6.8

, for Eν̄e < 42.3MeV

[(
Eν̄e

MeV

)0.26
− 16.8 0.26

]4.2

, for Eν̄e ≥ 42.3MeV .

(2.14)
As energy threshold for all these reactions we assume 11.4MeV as given in [128] for
the subreaction ν̄e(

16O, 16N)e+.
For the lepton energy, we assume the initial neutrino energy minus the reaction

threshold.
The uncertainty in the oxygen cross section is rather large and estimated to

∼ 30% [135]. Charged current reactions on other isotopes like 18O, 17O and deuterium
(∼ 10% of the total oxygen cross section) are not accounted for. Note that neutral
current interactions on 16O might be quite important, possibly increasing the light
oxygen reactions by 3 ∼ 4 times. Because this would raise the detection efficiency
for electron neutrinos and thus might facilitate the detection of the deleptonization
burst, efforts to include these reactions in the simulation are currently ongoing.

The energy dependent cross sections discussed in the above section are shown in fig-
ure 2.9.
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The figure shows the cross section for the interaction of a single (anti-)neutrino with
an H2O molecule. The values are scaled to the number of targets and νx stands for all
non-electron flavor neutrinos.
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Figure 2.10: Schematic representation of the Cherenkov effect

2.3.2 Cherenkov Effect

While traversing a dielectric medium, a charged particle polarizes the surrounding
atoms and/or molecules, leading to the emission of electromagnetic waves. If the
charged particle travels faster than the phase speed of light of the medium, the waves
overlap constructively under a characteristic emission angle of cos θc = [β n(λ)]−1.

Here, c is the vacuum phase velocity of light, βc the speed of the particle and n(λ)
the refraction index which depends on the wavelength λ. Figure 2.10 illustrates the
Cherenkov effect. In order to produce light the particle has to exceed the threshold
βthr = 1/n(λ). With a refraction index of nice = 1.3195 at λ = 400nm [136], this sets
a minimum total energy for electrons in ice of 0.783MeV.

The photons are emitted with a spectrum described by the Frank–Tamm formula:

dN

dxdλ
=

2πα

λ2

(
1− 1

β2n(λ)2

)
. (2.15)

dN is the number of photons emitted in a wavelength interval of dλ over a distance
dx. α ≈ 1/137 is the fine structure constant.

2.4 Signal Estimation

2.4.1 Effective Volume for Photon Detection

One of the most important ingredients for the estimation of a signal induced by su-
pernova neutrinos is the effective volume for photons, V γ

eff . Naively, it tells us in which
volume a photon needs to be produced to be detected by an optical module. It is de-
rived from the probability P to detect a photon depending on the distance ~ρ between
light source and sensor and module acceptance a:

V γ
eff(~ρ) =

∫ ∫ ∫
P γ(~ρ, a)dV = 4π

∫ ∞

0
P γ(ρ, a)ρ2dρ . (2.16)
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In the second step, we made the assumption of spherical symmetry for the detection
probability which is not strictly true. However, for the case of supernova detection,
we are interested in the mean signal increase and are thus able to account for the
non-uniformity by using a sensor acceptance averaged over the detection angle. To
determine an effective volume for photon detection, knowledge of the properties of
antarctic ice and the DOM response is of paramount importance. Because the neces-
sary inputs cannot be described analytically, the effective volume was determined with
simulations as delineated in the following section.

2.4.1.1 Ice Properties

The AMANDA/IceCube Collaboration has developed a software package called Pho-
tonics which describes the propagation of photons from source to sensor [137].

Properties of Bulk Ice:

The bulk ice is the pristine glacial ice covering most of Antarctica. At the depths where
the optical modules are placed, air bubbles are no longer a problem. In hundreds
of millennia they have formed an air hydrate phase6 nearly perfectly matching the
refractive index of the ice. The main cause for scattering are dust molecules that
accumulated over the past ages7.

To get a handle on the ice properties, extensive measurements have been per-
formed by the AMANDA/IceCube Collaboration. Light sources were embedded in
the AMANDA telescope to emit well-defined photon bundles and their detection sig-
natures were examined [139]. In IceCube each DOM has a flasher board capable of
lighting up the detector and providing three dimensional information on light prop-
agation in ice. These measurements were taken one step further with a dust logger
shown schematically in figure 2.11 (for more details see [140]). Using this information,
it was possible to map the absorption and scattering coefficients of the ice.

The IceCube detector extends over prominent dust layers, the one at 2050m depth
being the most pronounced. Figure 2.12 shows the coefficients describing the ice. Both
are essential to describe the propagation of light in the detector.

Ice in the Drill Hole

A further complication is the ice in the drill hole. Contrary to the ambient bulk ice,
it consists of water that has only just been frozen and retains many more bubbles; it
has a much higher scattering coefficient than the ambient ice. Extensive analyses have
been performed (see [141]) and the results have been implemented in Photonics.

6In this phase the gas molecule are trapped within the crystalline ice. For light, air hydrate and ice
are nearly indistinguishable.

7They originate from Earth’s deserts and volcanic activities and were carried to the deep south by
strong winds in the upper atmosphere [138].
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Figure 2.11: Schematic view of a dust logger in use
The figure, taken from [140], shows a dust logger in a drill hole. It sends out light
into the ice, perpendicular to its axis. Light sensors in the device measure the photons
reflected by back scattering off the ice or scattering on the dust particles and bubbles
in the ice. Brushes keep the light from directly reaching the respective PMTs. Using
the time and intensity differences between emitted and collected light, the dust and
bubble concentrations can be extrapolated.

Figure 2.12: Properties of the deep ice at South Pole [139]
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2.4.1.2 DOM Properties

As the state-of-the-art simulations are performed using the IceCube modules, we will
focus on their properties and derive the conversion factors for AMANDA modules in
section 4.5.

The simulation package used in the collaboration to generate the DOM response,
ROMEO [142], includes the PMT quantum efficiencies, the detection threshold for
photo electrons and the transmittances of glass and gel.

2.4.1.3 Photonics Result

To determine the effective volume for photons, light induced by 10GeV muons (equiv-
alent light production as O(10MeV) electrons) were generated. Propagation of the
photons was then tracked with Photonics and the sensor response simulated using
ROMEO [143]. The depth dependent results are shown in figure 2.13.

For the calculations in this thesis, we will use the mean effective volume as derived
with the actual ice model AHA in 20m resolution [144]:

V γ
eff,I3 = 0.1575m3 . (2.17)

The error on the mean of 2% contributes to the systematics. Further sources of un-
certainty are the hole ice (∼ 1%) and the bulk ice properties (∼ 6%) as well as the
finite binning in Photonics (∼ 1%) and the DOM sensitivity (∼ 10%). Furthermore,
there exists no consensus on how much signal is masked by DOM cables. The effects
vary by ∼ 3% in the simulations which we take as another uncertainty. Investigations
to lower these uncertainties are ongoing. Pooling all of the above together, we arrive
at a total of ∼ 12%. More details on the systematics can be found in [145].

2.4.2 Light Yield of an Electron/Positron

During its propagation through the ice, an electron or positron carrying
1MeV ∼ 100MeV loses its energy mainly to ionization and bremsstrahlung, creating
delta electrons and photons. The light quanta interact dominantly through Compton
scattering, photo effect and pair production.

When trying to determine the light yield of an electron or positron, one has to take
into account all of the above reactions and the resulting particles (e.g. the photons
from positron annihilation). Charged secondary particles can produce Cherenkov light
just as well as the initial lepton. In [73], a GEANT4 based simulation was written to
solve this problem and a linear correlation between the distance the charged leptons
travel while being above the Cherenkov threshold and the initial mean kinetic energy
was found (see figure 2.14).

The relationship was determined to be [73]

d(Ee+) = (0.577 ± 0.005)
cm

MeV
·Θ(Ee+ − Ech) · (Ee+ − Ech) (2.18)
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The depth dependent effective volumes were calculated using two different ice models;
the most recent (the AHA model [144]) is displayed in two different resolutions of the
ice properties. One can easily distinguish the dust layers where the effective volumes
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with the Cherenkov threshold Ech. For electrons, the factor is slightly larger with
(0.580 ± 0.005) cm

MeV . Comparisons between GEANT4 and ESTAR as well as the in-
trinsic cross section uncertainties place the systematic error at . 5% [145]. Note that
the simulation was only run for leptons with kinetic energies above 1MeV, and conse-
quently, the behavior close to the Cherenkov threshold is unclear. However, as leptons
with these low energies contribute little to the signal, the overall uncertainty due to
the linear extrapolation is of the order of ∼ 1%.

With the formula for the Cherenkov radiation given in equation 2.15 and the as-
sumption β ≈ 1, one can determine the number of photons with wavelengths between
300 nm − 600 nm produced per positron:

NγC
= (187.7 ± 1.7)

1

MeV
·Θ(Ee+ − Ech) · (Ee+ − Ech) . (2.19)

From the effective volume for photon detection (see equation 2.17) and the number
of photons produced by a lepton, we can easily derive the detection efficiency for an
electron or positron by making a few assumptions. First, we take the probability
for a sensor to be hit more than one photon from the same source as zero. In most
datasets this is trivially true, because an artificial dead time τ ≥ 8µs is applied. For
the remaining data, this case can still be neglected since the probability to detect two
or more photons from the same source is more than one order of magnitude smaller
than the probability for the detection of a single photon, even below distances of one
meter. Second, we assume that the effective volumes do not overlap. For a typical
case of a 15MeV positron, the maximal probability for two modules to detect light
from the same source is 2 · 10−5 (for more details refer to [127]).

When combining equation 2.17 with 2.19, the effective volume for positron detection
can be determined to

V e±

eff,I3(Ee±) = V e±

eff,0 ·Θ(Ee± − Ech) · (Ee± − Ech) with

V e+

eff,0 = (29.6 ± 0.7± 3.8)
m3

MeV
(2.20)

The systematic uncertainty of 13% is derived by combining all uncertainties from DOM
description, ice model (see section 2.4.1.3) and lepton propagation.

2.4.3 Expected Rate

To estimate the rate increase expected for a supernova neutrino burst, we need the
neutrino flux emitted by the star Φν, the energy dependent differential cross sections

d
dEe

σ(Eν , Ee) and the energy distribution of the neutrinos fν(Eν). These inputs have
to be combined and integrated, first, over the possible electron/positron energies to
weight the effective volume with the electron/positron spectrum and second, over the
neutrino energies accounting for the spectra emitted from the supernova. For the rate
seen by a single optical module we obtain
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R = nice Φν

∫ ∞

Ethr

dEνfν(Eν)

∫ ∞

0
dEe±

d

dEe±
σ(Eν , Ee±)V e±

eff,I3(Ee±) (2.21)

with Ethr being the energy threshold for the reaction.
We now separately consider the contributions for each interaction.

2.4.3.1 Inverse β-Decay

We insert the differential cross section 2.3 in 2.21 and obtain

Rν̄e(p,n)e+ = nice Φν̄e

∫ ∞

Ethr

fν̄e(Eν̄e)σν̄e(p,n)e+(Eν̄e , 〈Ee+〉)V e+

eff ,I3(〈Ee+〉) dEν̄e (2.22)

with the mean positron energy 〈Ee+〉 as given in equation 2.4.
The electron anti-neutrino spectrum and the energy dependent cross sections are

multiplied and integrated numerically. We thus avoid a restriction to analytical spec-
tral functions and further allow for the incorporation of neutrino oscillations which
alter the shape of the spectrum (e.g. the spectral split due to collective oscillations
considered in section 1.2.4.3).

Neutron Capture

We assume that each neutron produced in an inverse β-decay leads to a capture process
on a 1H atom, emitting a gamma with 2.225MeV which in turn transfers a significant
amount of energy to an electron. With the energy distribution from equation 2.7, the
derivation of the mean energy is straightforward. However, we need to account for the
Cherenkov threshold Ech as electrons below will not produce light. First, we derive
the mean energy the electron carries while producing Cherenkov photons:

〈Ee−〉ch =

∫ ∞

Ech

p(Ee−) (Ee− − Ech) dEe− . (2.23)

Not all electrons will be scattered in this energy interval. It is therefore necessary to
derive the ratio above the threshold:

ǫ =

∫∞
Ech

p(Ee−) dEe−∫∞
0 p(Ee−) dEe−

. (2.24)

Knowing the mean kinetic energy above the Cherenkov threshold and the ratio of
relevant electrons, the effective average energy for the detection can be determined to
be

Ee−,eff = ǫ 〈Ee−〉ch . (2.25)
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Note that this estimation only works because the photon production is linearly depen-
dent on particle energy (see equation 2.19). For the case of a photon with 2.225MeV
we determine

〈Ee−〉ch = 1.057MeV and ǫ = 0.899 . (2.26)

The weighted mean kinetic energy is:

Ee−,eff = 0.951MeV . (2.27)

In the simulation this value can simply be added to the total energy of the positron
from inverse β-decay.

We estimate the total uncertainty on the light production of neutron capture to be
∼ 10%. As it contributes only slightly to the light production of a supernova burst
(< 10%), it does not increase the overall error of ∼ 1% on the light from inverse beta
decay.

2.4.3.2 Electron Scattering

In case of neutrino-electron scattering, the situation is more complicated. The dif-
ferential cross section given in equation 2.9 is not linearly dependent on the electron
energy [132].

Let us consider the integral over the electron energies:

∫ ∞

Ech

dy

dEe−

d

dy
σν(e−,e−)ν(Eν , Ee)(Eν , y) (Ee− − Ech) dEe− . (2.28)

We used ν to represent all neutrino and anti-neutrino flavors.
As y = (Ee −me)/Eν , we can insert Ee− = yEν +me and dy/dEe− = 1/Ee− . y is

restrained within ych ≤ y ≤ ymax = (1 + me

2Eν
)−1 with ych ≥ 0. The integral transforms

to

∫ ymax

ych

d

dy
σν(e−,e−)ν(Eν , Ee)(Eν , y) (y − ych)Eν dy . (2.29)

For now, we discard the coefficients and perform the integral

∫ ymax

ych

(
ε2∓ + ε2±(1− y)2 − ε+ε−

me

Eν
y

)
(y − ych)Eν dy . (2.30)

The integration is pretty straightforward and results in

∫
. . . =

[
y4

4
ε2± −

y3

3

(
2ε2± + ε+ε−

me

Eν
+ ε2±ych

)

+
y2

2

(
ε2∓ + ε2± + 2ε2±ych + ε+ε−

me

Eν
ych

)

−y
(
(ε2± + ε2∓)ych

) ]ymax

ych

Eν . (2.31)
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As above, the rate increase of a single OM is derived to be

Rν(e,e)ν = niceV
e−

eff,0 Φν

∫ ∞

0
dEν fν̄e(Eν̄e)

2G2
FmeEν

π

∫
. . . . (2.32)

2.4.3.3 Interaction with Oxygen

The energy of the lepton resulting from the interaction Ee is taken to be discrete and
the differential cross section is approximated in the same way as done in equation 2.3
for the inverse β-decay. We insert the mean positron energy instead of the whole
spectrum and estimate the rate to be

Rν(O,X)e = niceV
e
eff,0 Φν

∫ ∞

Ethr

fν(Eν)σν(O,X)e(Eν , 〈Ee〉) (Eν − Ethr − Ech) dEν .

(2.33)

2.4.4 SN 1987a

In previous works [73, 146, 114] the signal recorded from the supernova 1987a has been
used as data based estimate for a signal. We will do the same in this section.

Kamiokande-II recorded NKII = 11 positrons in a time span of 15 s. As the inverse
β-decay is by far the most important reaction type and all detected leptons were
positrons, we disregard other possibilities. To rescale the signal of SN 1987A to the rate
increase seen by an AMANDA/IceCube OM in the case of a supernova at distance d,
we compare the expected event rates and then modify them by the supernova distance:

NAII/I3 = NKII

Rν̄e(p,n)e+,AII/I3

Rν̄e(p,n)e+,KII

(
d52 kpc

d

)2

. (2.34)

To correctly reweight the events to AMANDA/IceCube, one has to take into account
the neutrino energy spectrum and the trigger efficiency of Kamiokande. The estimated
rate increase due to inverse β-decay for an AMANDA/IceCube OM is given by equa-
tion 2.22. For the case of Kamiokande-II, one has to modify the approach because
the effective volume for detection of charged leptons is not linearly dependent on the
energy but proportional to Kamiokande’s detection efficiency ǫ(Ee).

Rν̄e(p,n)e+,KII = nKIIV
e
eff,0,KII Φν̄e

∫ ∞

0
fν̄e(Eν̄e)σν̄e(p,n)e+(Eν̄e , 〈Ee+〉) ǫ(〈Ee+〉) dEν̄e .

(2.35)
Note that instead of using the effective volume of Kamiokande-II V e

eff,0,KII, we will use
the detector mass mKII = 2140 t. For the AMANDA/IceCube case, the corresponding
value is V e

eff,0ρice with a density of the antarctic ice of ρice = 916.8 kg/m3 [147].
The electron trigger efficiency was taken from [68] and fitted with the function

ǫ(Ee) = Θ(Ee − E0) ǫmax (1− e−a(Ee−E0)) . (2.36)
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The parameters of the fit were determined to be E0 = 5.9MeV, ǫmax = 0.92 and
a = 0.38MeV−1. In addition, Kamiokande-II had a trigger threshold of 20 detected
photons which corresponded to a minimum electron/positron energy of 7.5MeV.

A further uncertainty in the scaling is the energy distribution of the neutrinos. A
strong discrepancy exists between the Kamiokande-II and the IMB measurements,
making a joint fit problematic. There exists currently no consensus on the spectrum
of the neutrinos. One Suggestion is a Maxwell-Boltzmann spectrum with a pinching
factor α [148]:

fν̄e(Eν̄e) =
(α+ 1)(α+1)

Γ(α+ 1)

Eα
ν̄e

〈Eν̄e〉(α+1)
exp

{
−(α+ 1)

Eν̄e

〈Eν〉

}
(2.37)

with the possible parameter settings (α = 0, 〈Eν̄e〉 = 5.4), (α = 2, 〈Eν̄e〉 = 11.2) or
(α = 4, 〈Eν̄e〉 = 14.2).

Another proposal is a modified Fermi-Dirac distribution [149]:

fν̄e(Eν̄e) =
1

T 3

E2
ν̄e

1 + exp {E/T − η} (2.38)

with T = 3.77MeV and η = 0.531.
Due to the complicated shape of the combined functions, the integrations were

performed numerically. The expected signals per IceCube DOM for a SN 1987A type
supernovae at 10 kpc distance are shown in table 2.1.

Fit Performed [148], α = 0 [148], α = 2 [148], α = 4 [149]

Additional Hits 128.9 122.2 121.5 122.5

Table 2.1: Additional hits counted per IceCube DOM in the first 15 s caused by a SN
1987A like supernova at 10 kpc distance

The first line denotes the reference the fit was taken from (with a characterizing pa-
rameter if necessary) and the second the increase in rate over 15 s. More information
can be found in the text.

The overall error from the counting statistics of 11 hits amounts to ∼ 30% and has
to be applied to all of the values in the table. As the energy spectra also influence the
rates, we assume a further systematic uncertainty of 10%.
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3 Supernova Signatures in IceCube

Opportunities multiply as they are

seized.

Sūn Wŭ

Many different models and predictions exist for the neutrino flux from supernovae. A
major task of this work was the design, revision and extension of the so-called Unified
Supernova Simulation Routine (USSR). In the following chapter, we will first present
the software suite and describe the approach used to simulate the detector response for
supernova neutrinos. Next, a likelihood technique to discriminate models is introduced
and applied to several signal predictions. Last, we determine the resolution of the
neutrino burst arrival time.

3.1 Unified Supernova Simulation Routine (USSR)

To simulate supernova signatures in IceCube, one first has to decide which level of
simulation detail is necessary. There exist two main approaches in the collaboration.

One is the simulation of the individual interaction vertices and the propagation of
the produced particles within the detector volume. It is the most precise and thorough
ansatz, but it is also slow and thus unsuitable for the investigation of many different
models and scenarios.

A simpler and much faster way of estimating the signal is to predetermine an effective
volume for the detection of leptons and use it to derive an average detector response.
This Ansatz follows the standard IceCube procedure for photon propagation and is
well tested in many analyses. We feel these benefits far outweigh the possible loss of
precision.

It should be stressed that the main uncertainties for both approaches reside in the
ice description, the knowledge of the (D)OM properties, the interaction cross sections
and - most important - the supernova model.

The Unified Supernova Simulation Routine is a C++ based, object-oriented frame-
work intensively using the ROOT analysis library [150]. It provides the average ex-
pected signal a light sensor submerged in water or ice detects during an arriving su-
pernova burst. The software suite was written by A. Piégsa [93], T. Griesel [127] and
the author. Its mode of operation is schematically shown in figure 3.1 and will be
described in the following section.
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Figure 3.1: Flowchart of the supernova simulation routine
The boxes correspond to the respective software modules and are explained in more
detail in the text.
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3.1.1 Supernova Model Processing

At the most basic level, the simulation routine needs the neutrino flux properties of
the supernova, namely the luminosity and the spectral information for each neutrino
flavor.

3.1.1.1 Luminosities and Mean Energies

In its current release1 the data is read in from ASCII files2. Luminosities Lν should
be furnished in erg/s and the mean energies 〈Eν〉 in MeV as function of time t in s.
The requested input format is

[t] [Lνe ] [Lν̄e ] [Lνx ] [〈Eνe〉] [〈Eν̄e〉] [〈Eνx〉]
or

[t] [Lνe ] [Lν̄e ] [Lνx ] [Lν̄x ] [〈Eνe〉] [〈Eν̄e〉] [〈Eνx〉] [〈Eν̄x〉] .

Elements of a line are separated by a space character and lines starting with a # are
ignored.

As the internal binning of the USSR is not necessarily correlated to the timings
of the input, the model data is interpolated linearly and stored internally. The time
binning of the USSR is customizable (default is 0.1ms).

3.1.1.2 Neutrino Spectra

At present, the simulation supports two ways of reading in neutrino spectra.
First and most commonly used is the description of the spectra with the analytic

function [151]

fα(E) =
(α+ 1)−(α+1)

Γ(α+ 1)

Eα

〈E〉(α+1)
e
−(α+1) E

〈E〉 . (3.1)

As before, the necessary parameters are read from ASCII files. The energy distribution
is specified with the keyword “function:” followed by a string conforming to a one-
dimensional ROOT function (TF1) [150]. This allows an easy implementation of new
spectral forms. Note that the first parameter is always the mean energy read in from
the luminosity file (see above). Further parameters p1, p2, . . . are specified in the
following lines in the format

1The inclusion of shock wave propagation and collective oscillations required the handling of numer-
ical energy spectra. A major code revision was necessary to accommodate these demands. Fur-
thermore, the new version also allows for mixing angles in the ranges of 10−5 < sin2 2θ13 < 10−3

and signal preprocessing to reduce CPU time and enable mass production. In parallel, the code
was moved to an object-oriented, modular design. Development of the Khrushchev release was a
major task of this thesis.

2The American Standard Code for Information Interchange is a character-encoding scheme based on
the ordering of the English alphabet. ASCII files are also referred to as plain text files.
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[t] [p1,νe ] [p1,ν̄e ] [p1,νx] [p2,νe ] [p2,ν̄e ] [p2,νx ] . . .

or

[t] [p1,νe ] [p1,ν̄e ] [p1,νx] [p1,ν̄x] [p2,νe ] [p2,ν̄e ] [p2,νx ] [p2,ν̄x ] . . .

It should be noted that the time bins of the spectral information do not have to be
synchronous with the luminosity and energy information. Missing data is interpolated.

The second possibility is the inclusion of a time independent spectrum. While
this approximation is not realistic, it was introduced to study the effect of collective
oscillations as no time-dependent spectra were available at the time. Again, the data
is read in from ASCII files and should be in the format

[E] [Fνe ] [Fν̄e ] [Fνx ] [Fν̄x ] (3.2)

with the energy E given in MeV and the fluxes Fν given in 1/(MeVcm2s). An extension
to spectral information available in tabulated form would only require extensions to
the read-in mechanism. However, at the time being no input data requiring such a
step is available.

All spectra are either calculated or interpolated to match the energy resolution
requested (default is 0.1MeV). Note that the neutrino energy distributions can also
be arbitrarily combined with other models.

3.1.1.3 Model Buffer

Internally, the simulation buffers the neutrino luminosities, fluxes and mean energies
for νe, ν̄e, νx and ν̄x as well as the total flux for all time bins (default resolution is
0.1ms).

The spectral information is filled into histograms with customizable energy range
and resolution (default is the interval [0, 100]MeV in steps of 0.1MeV) for each time
bin.

3.1.1.4 Available Models

At the time of writing, the USSR has 16 different model predictions available (see
section 1.1.2.3 for a general explanation):

• The Lawrence Livermore model is a one-dimensional simulation of a 20M⊙ star
and one of the few that extends up to large times post-bounce (15 s). Its explosion
had to be aided by external influences. For more information on this model refer
to [152]. Only rough spectral information is available.

• Next is a collapsing 8.8M⊙ star simulated by the Garching group in two-
dimensions up to ∼ 0.8 s post-bounce. It has been processed with the Lattimer-
Swesty and the Wolff-Hillebrandt equations of state. More information on this
model can be found in [35].
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• In [23] a 15M⊙ star was simulated up to ∼ 0.38 s post-bounce. Calculations were
run in one and two dimensions for the Lattimer-Swesty and Wolff-Hillebrandt
equations of state. For the two-dimensional case, the available luminosities are
the average over the northern hemisphere and the emission from the north pole.
No specific spectral information is available up to date.

• Objects with stellar masses of 40M⊙ which end in failed supernovae were mod-
eled in [30]. The simulations run up to the point where a singularity, a black
hole, develops. At this point, the processing is stopped to avoid a program crash.
The model is available for the Shen and the Lattimer-Swesty equations of state.

• A 10M⊙ star was simulated in [56] with and without a QCD phase transition.
Again, no spectral information is available.

• The neutrino signal of a type Ia supernova was predicted in [153]. Unfortunately,
the signal turns out to be far to small to be detected at distances above 100 pc.
No spectral information is available.

• The last model included so far is also the newest. Again, it is the collapse of
a 8.8M⊙ star, but this time simulated in one dimension and still leading to an
explosion. A Shen equation of state was used in the calculations and the simu-
lations were run with a reduced and a full set of neutrino interactions (neutrino
opacities). The models extend up to 25 s and 9 s, respectively. A detailed de-
scription can be found in [37]. The parameters of the spectral function 3.1 were
provided by the simulation authors [38].

If nothing else is specified, the energy spectra were provided with the model and fitted
with function 3.1. For the case that no spectral information is available, the mean
energies of the requested model are combined with the distribution parameters of a
reference model (default is [35] in the Lattimer-Swesty equation of state).

Adding new models to the USSR is a simple and straightforward process. Model and
spectrum have to be prepared according to sections 3.1.1.1 and 3.1.1.2 and supplied
to the USSR.

3.1.2 Neutrino Oscillations

Details on the oscillation of neutrinos in the supernova environment can be found in
section 1.2.4.

MSW effect, shock wave propagation and vacuum mixing is accounted for by it-
eratively applying the probabilities derived in section 1.2.4.2 to the neutrino fluxes.
As the conversion probabilities can depend on the neutrino energies, they are han-
dled as histograms and multiplied bin by bin with the neutrino flux spectra. The
simulation allows for normal and inverted hierarchies and any value of θ13. If
10−5 < sin2 2θ13 < 10−3, the density profile given in equation 1.45 is used for deriva-
tion of the MSW effects. For shock propagation, time dependent density gradients are
provided by [99, 154] in 0.1 s steps up to 15 s after bounce. The effects of forward and
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reverse shock as well as the contact discontinuity are included in the USSR. Oscillation
effects induced by the propagation through the Earth are also included (refer to [93]).

As collective oscillations require careful tracking and modeling of the neutrino prop-
agation in the supernova, no consistent mechanism to account for the self-interactions
can be implemented in the USSR. To estimate the effects, modified neutrino spectra
were included in the simulation. In [107], neutrino self-interactions were simulated for
37 different partitions of neutrino luminosity (Lνe : Lν̄e : 4Lνx) in the early supernova
phase for an inverted neutrino hierarchy with sin2 2θ13 = 10−6. For each case, we were
provided with the initial and final spectra [108]. Assuming these are constant over
time, they can be used to estimate the effect of collective oscillations in IceCube.

3.1.3 Neutrino Interactions

The simulation includes all cross sections presented in section 2.3.1 as histograms. To
estimate the expected signal, the cross sections are multiplied bin by bin with the
neutrino spectra and integrated over the energies (see section 2.4.3).

3.1.4 Signal Preprocessing

Estimating the signal for the requested time and energy resolution can take quite a
while. Therefore, the model signatures are preprocessed and stored in a root file. When
requesting the expectation for a supernova, the preprocessed signature is read from file
and multiplied by the number of H2O molecules in ice, the effective volume constant
V e

eff,0 and divided by 4πR2
SN with RSN being the supernova distance in meters. This

enables fast usability of the models and allows the generation of large statistics.

3.2 Simulating a Detector Response

The USSR provides the signal expectations of a given supernova model for any available
oscillation scenario. For the simulation of a detector response, specific parameters like
the number of DOMs or the dead time have to be applied afterward. As already shown
in [93], the investigation of the summed DOM rates is a good observable for supernova
signature in IceCube.

3.2.1 DOM Rates

The first ingredient necessary to estimate the detector response is the DOM noise.
For the average IceCube sensor we extract a mean rate of

µI3 = 284.9Hz and σI3 = 26.2Hz (3.3)

from the data of 2008. Studying the first DeepCore string deployed (string 83), we
extract

µDC = 358.9Hz and σDC = 36.0Hz (3.4)
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from the year 2009 for high efficiency modules.
Assuming 4800 standard and 360 DeepCore PMTs and correcting by an estimated

failure rate of 2%, we obtain an average detector noise of

µall = 1.4669 · 106 Hz and σall = 1.9 · 103 Hz . (3.5)

3.2.2 Dead Time

Next, the effect of dead time has to be taken into account. For each PMT hit, a dead
time window opens during which no further events can be registered. Assuming a time
interval ∆T , an overall mean rate of µ in and a dead time τ , we experience a sensitivity
loss of

ε =
∆T − µ∆Tτ

∆T
= 1− τµ . (3.6)

The overall mean rate is given by µ = µBG + µSN. Note that while we know the
background noise level µBG of the DOMs after dead time, this is not the case for the
signal estimation. From our simulation routine, we are provided with the raw PMT
signal µ′SN before τ has been applied. To obtain the expected rate seen by the DOMs,
we have to modify the simulation output to accommodate µSN = εµ′SN. We insert this
relation in equation 3.6 and obtain

ε = 1− τ(µBG + εµ′SN) . (3.7)

The dead time efficiency factor results in

ε =
1− τ µBG

1 + τ µ′SN

. (3.8)

3.2.3 Finalizing the Detector Response

Now we have all we need to generate the detector response. We estimate the supernova
signal using the program described above (section 3.1) and assume the effective volume
from equation 2.20. Calculating the average rate increase for the whole detector is
straightforward. For the standard PMTs, we multiply the individual rate estimation
µSN by the number of sensors NI3, and for DeepCore, we apply a factor of ǫDC = 1.35
before scaling the signal to all high efficiency modules NDC. Note that NI3 and NDC

are already corrected by the estimated module failure rate of 2% as in section 3.2.1.
The expected detector signal is then

µSN,I3+DC = NI3 µSN + ǫDCNDC µSN (3.9)

Using a normal distribution with the parameters given in equation 3.5, we first generate
background rates and add a random number drawn from a Poisson distributed around
µSN,I3+DC.
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Figure 3.2: Detector response to supernovae of different masses (10 kpc)
The supernova signatures follow the Lawrence-Livermore model (LL) with 20M⊙, a
SASI simulation by Garching with 15M⊙ (SASI) ending at 0.38 s post-bounce and two
ONeMg cores with 8.8M⊙ calculated in one and in two-dimensions also by Garching
(ONeMg 1D and ONeMg 2D). For more details and pertaining references, refer to
section 3.1.1.4. All signatures are shown for a normal hierarchy.

3.2.3.1 Model Signatures

We will now take a look at the IceCube signatures of some of the models.
Figure 3.2 compares the detector signals for the Lawrence-Livermore model, a SASI

driven explosion simulated by the Garching group and two electron capture supernovae
also simulated by Garching. We see that the SASI simulation shows stronger signals
than the ONeMg cores which is likely due to the higher precursor mass. Of course,
the Lawrence-Livermore model has an even higher mass and features a stronger signal
still, however, this might well be due to different codes used to simulate the explosion.

In figure 3.3 we take a closer look at the SASI fluctuations for the averaged flux as
well as the emissions from the north pole of the star. At close distances the modulations
in the signal are evident. If one moves to e.g. 10 kpc, the fluctuations are difficult to
distinguish from the noise (see also [127]).

Figure 3.4 shows the neutrino signals induced by failed supernovae. They are much
stronger than all of the exploding models investigated so far, and we see a clear differ-
ence between the two equations of state.

3.2.3.2 Response to Oscillation Scenarios

As investigated in [93], the assumed neutrino mass hierarchy and the value of the
θ13 mixing angle can have a serious impact on the detector response. In this section

91



3 Supernova Signatures in IceCube

Time Post-Bounce / s
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
O

M
 H

its
 (

2m
s 

bi
nn

in
g)

3000

3500

4000

4500

5000

5500

6000

Figure 3.3: Detector response to supernovae showing the SASI (5 kpc)
Both lines display a Garching simulation with 15M⊙ at (5 kpc). Black dotted denotes
the averaged neutrino luminosity over the northern hemisphere of the star. Solid red
shows the emissions from the North Pole only, where fluctuations from the SASI are
more apparent. A closer investigation of this model is performed in [127]. Details and
references can be found in section 3.1.1.4. All signatures assume normal hierarchy.
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Figure 3.4: Detector response to failed supernovae (10 kpc)
The illustration displays the signatures of two failed supernovae assuming the equations
of state from Shen (BH-SH) and Lattimer-Swesty (BH-LS) along with the detector
response to a Lawrence-Livermore (LL) explosion. See section 3.1.1.4 for details on
the models. All signatures assume a normal mass hierarchy.
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Figure 3.5: Matter oscillations for different neutrino mass hierarchies
The lines show a Lawrence-Livermore like supernova at 10 kpc distance under the as-
sumption of a normal mass hierarchy or a mixing angle conforming to sin2 2θ13 < 10−5

as well as an inverted hierarchy with sin2 2θ13 > 10−3. It is neutrinos leaving the star
in the ν̄1 state that will primarily be detected. In case of an inverted mass hierarchy
with sin2 2θ13 > 10−3, the spectra of ν̄e and ν̄x are swapped, and thus, a stronger
signal is induced in IceCube.

the repercussion of some of the oscillation scenarios discussed in section 1.2.4 will be
illustrated.

Figure 3.5 displays the effect of MSW oscillations. For an inverted mass hierarchy
paired with a large θ13 mixing angle (sin2 2θ13 > 10−3) the neutrinos undergo adiabatic
evolution. This means that neutrinos produced as ν̄x arrive at Earth in the ν̄1 state, and
because this state has the highest ν̄e contribution, they dominate the signal. For the
Lawrence-Livermore model as well as most others, neutrinos created in the non-electron
flavor have higher energies than neutrinos created in the electron flavor. Consequently,
the signal is stronger than for e.g. a small mixing angle (sin2 2θ13 < 10−5).

Figure 3.6 displays the effects of shock wave propagation in a Lawrence-Livermore
model. Again, the interesting features reveal themselves for the inverted mass hierarchy
paired with a large θ13 mixing angle (sin2 2θ13 > 10−3). Note that the considerations in
the following paragraph assume these neutrino properties. As the shock wave changes
the density profile, it breaks adiabaticity and neutrino conversions will occur when the
shock passes the resonance layers. This leads to time modulated oscillation probabil-
ities and thus changes in the neutrino luminosity. For the single forward shock, ν̄x

convert to the ν̄3 state when the shock reaches the H-resonance. Because they would
normally leave the star as ν̄1, the signal decreases. When the reverse shock is switched
on, neutrinos can switch their state twice, raising the signal when compared to the
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Time Post-Bounce / s
4 6 8 10 12 14

D
O

M
 H

its
 (

50
0m

s 
bi

nn
in

g)

740

745

750

755

760

765

310×

Static Density Profile

Forward + Reverse Shock

Forward Shock

No Matter

(b) Detector response at 10 kpc
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(c) Detector response at 5 kpc

Figure 3.6: Neutrino oscillations due to shock wave propagation
Again, the simulations show the Lawrence-Livermore model. For a discussion, see the
text.

forward shock.
Figure 3.7 illustrates the changes due to self-interaction for the case of luminosity

equipartition (Lνe : 4Lνx : Lν̄e = 1 : 4 : 1). As described in section 1.2.4.3, high
neutrino densities can lead to swaps in the energy spectra and thereby modulate the
neutrino signature. Because of the approach used to estimate the effects of collective
oscillations (see section 3.1.2), we see only a difference in scale and not in shape.

3.3 Separating Supernova Signals

To determine the performance of IceCube, a quantitative measure for the discrepancies
between detector signatures of different models or oscillation scenarios is necessary.

Assume that we have signal hypotheses sA and sB. Further assume a recorded
number of hits (nA) for hypothesis A. We calculate the logarithmic likelihood sums
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Figure 3.7: Signature of collective oscillations
The figure shows the effect of collective oscillations for an ONeMg supernova accord-
ing to [35] with a Lattimer-Swesty equation of state and luminosity equipartition
(Lνe : 4Lνx : Lν̄e = 1 : 4 : 1). Assuming “no self-interactions” is equivalent to a nor-
mal hierarchy. As stated in section 1.2.4.3, a mixing angle of sin2 2θ13 = 10−6 and
fixed neutrino spectra were assumed.

− lnLA =
1

N

N∑

i=1

(
nA

i − sA
i

σA
i

)2

and − lnLB =
1

N

N∑

i=1

(
nA

i − sB
i

σB
i

)2

(3.10)

where N is the number of bins to be tested and σ2 the expected variance, i.e.
σ2

background + σ2
signal. Before calculating the likelihood sums, we subtract the back-

ground expectation µBG from n as well as s and scale both signatures to the same
number of entries. We are thus independent on the absolute normalization. Figure 3.8
shows an example for this approach.

To exclude a model, we first have to find a hypothesis A which describes the data.
We determine the distributions of − lnL for the description (hypothesis A) as well as
the model to be tested (hypothesis B) by running toy Monte Carlos. Having the two
distributions, we next investigate how well they are separated. For this purpose, we
determine the width σA and the mean µA of the distribution for hypothesis A and the
10% quantile lB,10% of the distribution for hypothesis B (see figure 3.9). We define
the separability or discrimination power s as

s =
lB,10% − µA

σA
. (3.11)
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Figure 3.8: Comparison between hypotheses
The figure shows a simulated detector response to a Lawrence-Livermore model. Hy-
pothesis A is the signal prediction given by the USSR Monte Carlo. We want to
compare it to the assumption of a one-dimensional ONeMg core collapse model (hy-
pothesis B). To do this, we calculate the differences between detector response and
hypothesis for both expectations bin by bin. When summed over all bins, this gives
us the logarithmic likelihood for each hypothesis (see figure 3.9).
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Figure 3.9: Example for a distribution of − lnL
The distributions show the logarithmic likelihood differences for 10000 simulations at
13 kpc for the detector response and hypotheses conforming to figure 3.8. A detailed
description of the method is given in the text.

96



3 Supernova Signatures in IceCube

3.3.1 Model Comparisons

To demonstrate the capabilities of IceCube, we compare several model predictions. As
test cases, we take the predictions for Lawrence-Livermore (LL), the failed supernovae
with both equations of state and two ONeMg core collapse models, one in 1D with full
neutrino opacities and one in 2D with a Lattimer-Swesty equation of state (for details,
see section 3.1.1.4). The models are simulated with the USSR and then compared using
the likelihood technique as described above. For a given detector response, we derive
the capability to reject a wrong hypothesis in function of the distance. Figure 3.10
shows the rejection power for different kinds of supernovae. Note that these values are
the optimal case, as the method assumes a perfect knowledge of the model shapes.

When looking at failed supernovae, the luminosity cutoff makes an identification
much easier when comparing over large enough time spans (see figure 3.11). However,
because of the stellar void in-between the edge of the Milky Way (∼ 30 kpc) and
the Large Magellanic Cloud (∼ 50 kpc), one does not really profit from the good
separability.

We can clearly see that IceCube would be quite helpful in testing supernova models.
While ONeMg collapses would lead to small signals, they could still be used to exclude
supernova hypotheses up to > 10 kpc at 5σ at 90% confidence. If the explosion of
a heavy star conforming to the Lawrence-Livermore signal would be recorded, the
rejection capabilities would exceed > 20 kpc at 5σ. Detection of a failed supernova
with high mass would extend this range up to the Small Magellanic Cloud at ∼ 61 kpc.
More model comparisons, especially the SASI and the QCD phase transition, are
covered in [127].

3.3.2 Shock Wave Comparisons

In section 1.2.4.2 we saw that neutrino oscillations can alter the detector signature of
a core collapse and we showed some examples in section 3.2.3.2. The impact of the
matter oscillations in case of static density profiles of supernovae was already examined
in [93] and will be extended by [127]. However, an investigation of neutrino properties
with the MSW effect alone is quite model dependent.

Shock waves on the other hand, are common to all supernovae. However, the way
the shock wave develops and then travels to the outside is largely unknown since asym-
metric propagations and turbulences as well as bubbles are likely. As no simulations
in two or three dimensions exist for these late times, we restrict ourselves to the simple
1D example calculated in [99].

Because the shock wave modulation only becomes apparent at times & 4 s post-
bounce, we need a model which includes the cooling phase. The only available candi-
dates are the Lawrence-Livermore and the 1D ONeMg simulations. As the shock wave
was simulated for an iron core, its propagation is much slower than it would be in the
ONeMg case3. We will use the Lawrence-Livermore model as a baseline and modify it

3The envelope of the precursor to an ONeMg supernova is thinner and, therefore, features a steeper
density gradient. A shock wave will consequently travel much faster than in an iron core collapse.
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(a) Lawrence-Livermore model
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(b) 1D ONeMg core collapse (full ν-opacities)
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(c) 2D ONeMg core collapse (LS-EoS)
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(d) Failed supernova (LS-EoS)
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Figure 3.10: Capability to reject supernova models
Each plot demonstrates the rejection capabilities for a supernova of a certain type. The
tests were performed for the first 0.55 s of the signal. As the dead time can modify the
shapes at close distances, the separation power of strong signals from failed supernovae
increases up to 10 kpc. For each model 10000 detector responses were simulated in
1 kpc steps.
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Figure 3.11: Capability to reject supernova models
The figures can be interpreted in the same way as figure 3.10. Here, the initial 1.8 s
of the burst were compared. As we now include the neutrino luminosity cutoff at
black hole formation, slight timing mismatches between hypothesis and signal caused
by binning effects can lead to increased likelihood values and thus lower separabilities
for very close-by supernovae. However, even in the worst case scenario the rejection
capability never drops below 90σ. Again, 10000 detector responses were simulated per
model in 1 kpc steps.

99



3 Supernova Signatures in IceCube

Distance / kpc
5 6 7 8 9 10 11 12

σ
S

ep
ar

at
io

n 
C

ap
ab

ili
ty

 / 

0

10

20

30

40

50

60

70

σ5

Inverted Tested Against Normal

Normal Tested Against Inverted

(a) Forward shock
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(b) Forward + reverse shock

Figure 3.12: Discernability of neutrino properties through the supernova shock wave
These figures show the ability to discriminate against a certain neutrino oscillation
scenario. Normal denotes the case of normal hierarchy or sin2 2θ13 < 10−5 while
inverted stands for inverted mass hierarchy paired with sin2 2θ13 > 10−3. We always
simulate a certain scenario, e.g. the inverted case, and test it against its opposite.
Thus, we could reject the normal hierarchy and sin2 2θ13 < 10−5 at 5σ if we would
detect a signal conforming to the inverted case for a supernova at 10 kpc. As above,
for each scenario 10000 detector responses were simulated in 1 kpc steps.

accordingly.
To investigate the neutrino properties, we consider four scenarios. In case of a

normal hierarchy or a small θ13 mixing angle (sin2 2θ13 < 10−5), the detector signa-
ture is unchanged. However, in case of an inverted mass hierarchy and large mixing
(sin2 2θ13 > 10−3), the propagating shock wave changes the detector response from the
static density case. Figure 3.6 showed the expected signals. The rejection capabilities
are shown in figure 3.12.

Using this method, the determination of the neutrino hierarchy is possible for close-
by supernovae. Assuming an inverted mass hierarchy and large mixing, one would
be able to reject the cases of normal hierarchy and small mixing with > 5σ up to
supernova distances of 10 kpc for a single forward shock and 8 kpc for a combination
of forward and reverse shock. If one assumes normal hierarchy or small mixing, the
case of inverted hierarchy with large mixing could be rejected at > 5σ up to 9 kpc and
7 kpc, respectively.

Note that we assume that the neutrino signature is smooth during the cooling phase
of the PNS. Model predictions seem to support this, however, simulations of these late
times have only been done in 1D so far.
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3.3.3 Comparing Collective Oscillation Scenarios

As stated in section 3.1.2, the current implementation of collective neutrino oscillations
has to assume constant energies and flux fractions. Therefore, neutrino flavors will not
retain the characteristic features by which it was so far possible to separate them.
Comparing the signal shapes is therefore pointless.

Another possibility would be to compare the signal at different time intervals. As
mentioned in section 1.2.4.3, bi-polar oscillations do not emerge during the delep-
tonization peak. The detector response would therefore remain the same, independent
of whether collective oscillations occur or not. Comparing the first ∼ 10ms, to the
accretion phase, t ∈ [0.1 s, 0.8 s], it might be possible to separate the scenarios if the
models are known in detail. Unfortunately, there are only few DOM hits during the
deleptonization phase, and thus, the counting error inhibits such an approach. Even
at 1 kpc the statistical errors would be larger than the estimated effect.

The one method that remains is the comparison of the total number of hits, i.e.
including the absolute normalization of the models. As the self-interaction modulated
spectra available to the USSR were compiled for the early supernova phase only, we
investigate an interval of t ∈ [0.1 s, 0.8 s]. We use the 2D ONeMg simulation with the
Lattimer-Swesty equation of state as a reference model. For each of the 37 different
sets of modulated spectra (see section 3.1.2), we derive the relative the differences
between oscillated and non-oscillated counts, ncoll and nnorm:

f =
nnorm − ncoll

nnorm
. (3.12)

The relative flux differences for all luminosity ratios assuming model [35] as reference
can be found in table 3.1.

H
H

H
H

HH
lνe

4lνx 1 2 3 4 5 6 7 8

1 -43% -38% -31% -23% -13% 0% 0% 0%
2 -61% -58% -53% -46% -35% -10% 0% X
3 -69% -65% -59% -46% -18% -1% X X
4 -73% -65% -52% -27% 16% X X X
5 -69% -57% -35% -14% X X X X
6 -63% -44% -1% X X X X X
7 -54% -16% X X X X X X
8 -34% X X X X X X X

Table 3.1: Differences between signals with and without collective oscillations
The table shows the differences in DOM counts when comparing oscillated with non-
oscillated fluxes according to equation 3.12. lνe and 4lνx describe the luminosity frac-
tions of νe and νx. lν̄e can be derived from the equation lνe + lν̄e + 4lνx = 1. In case
of equipartition, we would expect a signal difference of 9%.

When comparing f to its uncertainty σf, we can derive the resolution we could achieve
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Figure 3.13: Separability for collective oscillations
The x-axis denotes the neutrino luminosity ratios which are an important factor when
determining the consequences of collective oscillations. The colors show the relative
flux difference f in units of σf. With increasing distance, f decreases with respect to
the counting errors. Thus, the difference in DOM hits becomes less noticeable.

with IceCube if a reliable supernova model was found and the distance could be fixed.
Figure 3.13 shows the optimal separabilities versus supernova distance. Depending
on the neutrino luminosity fractions, differences in DOM hits can be observed for all
stars in the Milky Way. However, most models show equal luminosities in all neutrino
flavors and can therefore only be separated up to 8 kpc at 5σ.

When comparing only the number of PMT hits, one is strongly dependent on the
understanding of the model and the detector. A systematic error in the derivation
of the expected detector response will limit the possibility to distinguish signatures
that only differ by a small overall normalization. E.g. if the expected difference in
PMT hits is smaller than the systematic error, collective oscillation effects cannot be
discerned in IceCube (this is the case for luminosity equipartition).
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Figure 3.14: Start time reconstruction for an ONeMg core collapse at 5 kpc distance

3.4 Signal Start Reconstruction

In a future supernova signal the precise knowledge of the burst arrival time would be
a very important parameter. It could be used for a triangulation with two or three
detectors or the reconstruction of supernova properties such as the duration of the
accretion phase.

To derive the time resolution of the signal onset, we simulate a large number of
supernovae at varying distances and apply a fit of the form

θ(t− t0)
(
1− e(t−t0)τ

)
. (3.13)

Here, τ is a free parameter and t0 is the signal start. Figure 3.14 shows an example in
the 2ms binning.

Automatically fitting the signatures of supernovae at varying distances is not
straightforward. For the fit to succeed, sensible starting parameters have to be found.
The most successful approach was to fit the signal with a combined function consisting
of a rising exponential as in equation 3.13 and a decaying exponential from the signal
maximum on. Using the resulting parameters as a seed, the signal reconstruction lead
to much better results.

Several models were simulated with normal and inverted hierarchies, mixing angles
and distances and the signal onsets reconstructed. These were compared to the sim-
ulated start times and filled into histograms. The resolution is then determined from
the width of the resulting distribution (see figure 3.15). Figure 3.16 shows that the
resolution is a function of distance and can be described by

∆t(d) = a∆t+ b∆t2 . (3.14)
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Figure 3.15: Difference between reconstructed and simulated start times for an ONeMg
collapse at 5 kpc.
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Figure 3.16: Time resolution with fit
This graph displays the time resolution of fits performed on ONeMg core collapse (2D)
detector responses for normal neutrino mass hierarchy. It was fitted with the polyno-
mial given in equation 3.14.
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Figure 3.17: Fitted time resolutions for ONeMg collapses
Solid red denotes the 1D model with full neutrino opacities, broken blue the 1D model
with the reduced interaction set and dashed black the two-dimensional model (for de-
tails, see section 3.1.1.4). The lower set of lines shows the inverted hierarchy case with
large mixing and the upper set the time resolution for normal hierarchy (equivalent to
a small mixing angle). The higher precision for the inverted case is due to a steeper
gradient during signal start (see also [93]).

In the simulation only electron capture supernovae were used as they show the lowest
signal and thus provide the most conservative resolution. The fit results are shown in
figure 3.17 and in table 3.2.

Simulation Type
Normal Spectra Inverted Spectra
a/ ms

kpc b/ ms
kpc2 a/ ms

kpc b/ ms
kpc2

2D Simulation 0.098 0.030 -0.031 0.027
Reduced Neutrino Interactions 0.072 0.031 -0.032 0.025

Full Neutrino Opacities 0.036 0.040 -0.023 0.024

Table 3.2: Parameters of the fits to the onset times
Normal and inverted spectra denote the cases of normal hierarchy or small mixing and
inverted hierarchy with large mixing, respectively.

Finally, we need to take a look at the relative offset between fitted and simulated signal
start. Figure 3.18 shows the differences for the one-dimensional simulation with full
neutrino opacities. The offset depends on the distance of the supernova because small
structures like the deleptonization peak vanish at larger distances, and will therefore
not influence the fit anymore. At large distances, the signal disappears in the noise.
The shape and even the relative differences are very similar for all simulations exam-
ined. For a supernova at unknown distance, one would have to assume a systematic
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Figure 3.18: Offset of time reconstruction

uncertainty of ∼ 4ms. If, however, the distance can be determined (typically 5%-10%
using optical methods and ∼ 5% using the deleptonization burst [17]), the offset can
be corrected for.

3.5 Systematic Uncertainties

The detector specific uncertainties are shown in table 3.3. Earth matter oscillations,
which were not considered in this thesis, can lead to a reduced number of PMT hits
depending on neutrino mass hierarchy, θ13 mixing angle and direction of the supernova.
[93] considered these effects in great detail.

As no benchmark exists for the supernova models, we do not estimate a systematic
uncertainty. It is expected to be quite large.

Systematical uncertainty Estimate / % Source

Effective photon volume ∼ 12 2.4.1.3
e± track length ∼ 5 2.4.2
Cross section for ν̄e(p, n)e+ (scaled to total rate) ∼ 1 2.4.3.1
Cross section for ν(e, e)ν (scaled to total rate) ∼ 1 2.3.1.2
Cross section for ν(O,X)e (scaled to total rate) ∼ 3 2.3.1.3
Earth matter oscillations −8 [93]

Total +13 /− 16 -

Table 3.3: Uncertainties on the signature predictions
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All things appear and disappear

because of the concurrence of causes

and conditions. Nothing ever exists

entirely alone; everything is in

relation to everything else.

Siddhārtha Gautama

AMANDA collected a large amount of supernova data in its nine years of operation.
One of the main goals of this work was the implementation of effective filtering methods
to clean the data sample and search for supernova signatures.

4.1 Analysis Approach

To identify a supernova neutrino burst, a robust observable that effectively describes
collective rate increases in the light sensors is essential. While the simple sum of sensor
rates is a reasonable observable in the case of IceCube (see [93]), the same cannot be
said for AMANDA (see section 4.4). The method described in the following was first
introduced in [146] and later applied by [73]. It is optimized for signals small compared
to the background level which is true for most supernova explosions in our galaxy.

4.1.1 Theory

We measure a pulse rate ri of a given optical module i by counting a number of pulses
ni in a time window ∆t:

ri =
ni

∆t
(4.1)

with i ranging from 1 to the total number of optical modules NOM. Figure 4.1 shows
the distribution of pulses within 10min and demonstrates that it can satisfactorily be
described by a normal distribution. In section 4.2 it will become clear that this is
not the case if the observed time frame extends beyond O(10min). However, for the
calculation of the collective rate deviation, the approximation with Gaussian shapes is
essential.

The collective rate deviation ∆µ of all OM noise rates ri from their individual mean
rate µi is obtained by maximizing the likelihood function
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Figure 4.1: Pulses recorded by OM #001 during 10min
The Gaussian fit to the pulse distribution results in µ = 105.8, σ = 11.3 and a reduced
χ2 = 1.2.

L(∆µ) =

N(D)OM∏

i=1

1√
2π σi

exp

{
−(ri − (µi + ǫi ∆µ))2

2σ2
i

}
(4.2)

for the fluctuation hypothesis ∆µ. ǫi denotes the relative sensitivity in-between the
modules1 and σi the standard deviation of the OM rates. Minimizing − lnL leads to

∆µ = σ2
∆µ ·

NOM∑

i=1

ǫi (ri − µi)

σ2
i

, with σ2
∆µ =

(
NOM∑

i=1

ǫ2i
σ2

i

)−1

. (4.3)

For simplicity, we will later investigate the significance of the collective rate deviation
defined as

s ≡ ∆µ/σ∆µ . (4.4)

As a supernova signal is expected to produce light in the whole detector, we will need
a measure for the compatibility of a collective rate deviation ∆µ with an isotropic and
homogeneous illumination. The logical choice for such a value is the χ2:

χ2(∆µ) =

NOM∑

i=1

(
ri − (µi + ǫi ∆µ)

σi

)2

. (4.5)

1For the case of AMANDA, the differences in glass transmittances between the first OM generation
(B4) and the later generations are crucial. For IceCube, it will account for the different quantum
efficiencies of the DeepCore and the standard modules.
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In order to suppress high rate deviations due to anisotropic illuminations, we will later
place a cut on the χ2-confidence of data point.

All necessary values are described by simple, well defined sums and can easily be
calculated during run time2. In [73] three different time binnings have been imple-
mented:

0.5 s: This is the finest binning available to the analysis.

4 s: As argued in [155], the neutrinos of SN1987A are roughly compatible with an
exponentially decaying rate of τ = 3 s. The optimal time frame for the detection
of such a signal is ≈ 3.8 s. With 0.5 s binning, a value of 4 s is closest.

10 s: The largest binning was chosen in accordance to the time frame where most
neutrinos from SN1987A were detected.

These time windows are not necessarily optimal for current supernova models. We will
later rebin the data to obtain a better detection efficiency.

As already mentioned before, the formulas given in this section are optimal for the
case of small signals, i.e. ∆µ≪ µi. If the rate deviation reaches the order of the noise
level or above, the following replacement has to be made:

σ2
i → σ2

i + (ǫiσ∆µ)2 . (4.6)

Unfortunately, ∆µ can no longer be determined analytically for this case. Investiga-
tions looking for the best approach to deal with large signals are currently ongoing.
We will neglect the repercussions for now as in most supernova scenarios, the rate in-
crease becomes only problematic at very short distances (e.g. 1 kpc for the Lawrence-
Livermore model), corresponding to a very small fraction of explosions (< 1%).

4.1.2 Estimates for Mean and Standard Deviation

For the calculation of collective rate deviations via equation 4.3, the mean µi and the
standard deviation σi need to be determined. Effective estimates can be derived by
calculating the mean value 〈ri〉 and the variance 〈(ri− < ri >)2〉.

These statistical estimates provide insight on the background characteristics of the
modules. A dataset used for average estimation should fulfill three criteria:

• If possible, the data should be symmetrical around the bin being analyzed.

• The time frame around the investigated data point should be excluded.

• While the reference set should be much longer than the expected signal, it should
also be sufficiently short to follow slow rate changes, e.g. from seasonal variations
in the muon rates.

2Unfortunately, this is not the case for the smaller time binnings of 10 ms for AMANDA and 2ms

for IceCube. Here, the pulse distributions have to be described by the Poisson function and the
resulting equations can no longer be be solved analytically (see [116]).
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Figure 4.2: Recorded pulses of OM #001 during run 1000 in year 2002
The reduced χ2 of the fit with the Gauss function is 7.2 with parameters of µ = 105.9
and σ = 11.2.

In this and previous works a data buffer of 10min length was used. It is large
compared to the expected signal length of ∼ 15 s and still compatible with the Gaussian
expectation (see figure 4.1). In most cases, the buffer will be symmetrically placed
around the bin being investigated with the exception of run start and stop. At present,
60 s around the analyzed data point are symmetrically excluded from the average
building.

4.2 OM pulse distribution

If one examines the OM pulses in a time windows significantly larger than 10min,
asymmetries become evident. Figure 4.2 shows the same OM as before, now for 12 h
of data taking. The pulses show a clear skewing to the right and can no longer be
approximated by a normal distribution.

Let us increase the relevant time span even further. From the pulses recorded for
OM #001 in the year 2002 (see figure 4.3), the skewing to the right becomes more
obvious. We also notice that a Poissonian distribution would be to slim to describe
the measurements.

Figure 4.4 shows the fano factors σ/
√
µ of the pulse distributions for the B10-19

generations for three different settings of the dead time τ . We see that a higher τ
leads to a more Poissonian shape and thus conclude that the broadening of the pulse
distributions is related to afterpulses (see section 2.2.3).

111



4 AMANDA Supernova Search

Pulses per 0.5s
40 60 80 100 120 140 160 180

O
cc

ur
en

ce
 (

bi
n 

w
id

th
: 1

)

1

10

210

310

410

510

610

Gauss Fit

Poisson Fit

Figure 4.3: Recorded pulses of OM #001 during the year 2002
For a mean pulse rate of 〈r001〉 = 104.8 as in this example, we would expect a standard
deviation of 〈(r001 − 〈r001〉)2〉 =

√
〈r001〉 = 10.2 which is too small when compared

with the actual value of 11.4.
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Figure 4.4: Distribution of the OM pulse fano factors for the years 2001 (τ = 8µs),
2002 (τ = 246µs) and 2003 (τ = 0)

112



4 AMANDA Supernova Search

4.3 The Dataset

The available data spans the years 2000 to 2008. Not all of this data has been taken
under the same conditions.

In the years 2000 and 2001, only a fraction of the B13 modules were attached to
the SNDAQ and the artificial dead time was set to τ = 8µs. In 2003, strings 11-13
and 17 were included in the supernova stream. 2003, most of 2005 and the beginning
of 2006 the data taking did not use any artificial dead time at all due to software
instabilities3. Table 4.1 shows the dead times τ for the available data. Furthermore,
trigger settings of the DAQ hardware have been changed from time to time, introducing
further differences into the data. Unfortunately, most of these reconfigurations were
not properly recorded so that they could only be reconstructed from rate changes of
the individual OMs.

Year τ / µs

2000 & 2001 0.008
2002 0.246
2003 0.0
2004 0.256
2005 0.256 / 0.0
2006 0.0 / 0.256

2007 & 2008 0.256

Table 4.1: Dead time settings for the available data.

Note that for 2005 we will not investigate the data taken with τ > 0, because it
only extended from January 1 to March 14. The maintenance phases and construction
works (see section 4.4.1.2) leave us with 14 days of data; an insufficient period to do
reliable quality estimations.

Adding up the data from all years, we arrive at a total detector uptime of 6.3 a.

4.4 Quality Inspection

Unfortunately, the AMANDA data shows strong fluctuations and a poor stability. For
all datasets, a careful inspection of many quality parameters is necessary to ensure a
stable and reliable data stream. As many changes to the detector were made over the
years, each set can be quite different (see section 4.3), and thus, separate checks are
necessary for each data taking period.

The majority of the cut optimizations has to be done visually because the large dif-
ferences in the data stability between the years do not allow an automatized approach.

3In 2003, a completely new version of the SNDAQ was installed [3] which had to be patched in 2005
to handle messages to SNEWS [73]. In the process a bug in the artificial dead time setting was
introduced.
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4.4.1 OM Stability Checks

Qualification or disqualification procedures of optical modules discard sensors when
their behavior differs from the bulk of all OMs. Depending on the cut, modules are
removed only for a single bin, for a whole run or the entire dataset.

4.4.1.1 Online Tests

The first cuts applied to the datasets are performed online [73] and aim at enforcing
compatibility between the pulse distributions and the expected Gaussian shape. Mod-
ules failing these checks are removed from the analysis for the investigated bin and
rechecked for the next one.

Mean Rate

Modules with averages µi strongly deviating from the bulk of the data is marked as
bad. Due to the exclusion window around the analyzed bin, a signal would not affect
the average rates at the time of interest. The cuts applied to the mean rates of all
the datasets are shown in table C.1 with the percentage of OMs disqualified (refer to
figure C.1 for an example).

Fano Factor

The fano factor or broadening factor σi/
√
µi can be seen as a measure for the compat-

ibility of a distribution with a Poissonian shape. For a simple counting experiment,
one would expect a fano factor close to unity. However, due to correlated afterpulses
(see also section 2.2.3), the broadening factors are mostly larger than one. Table C.2
shows the cuts applied over the years.

Skewness

Last of the OM quality checks performed in real time are cuts on the skewness. It is
the third standardized central moment of a distribution and defined by

si =
(ri − µi)

3

σ3
i

. (4.7)

A skewness of zero describes a perfectly symmetrical distribution such as the normal
distribution. The cuts applied on the absolute skewness are shown in table C.3.

4.4.1.2 Scaler Malfunction During Run

While investigating the fluctuations of the number of active channels, it became evident
that during data taking the number of channels sending no data (rate smaller than
10Hz) increased. The state was always back to normal at the beginning of each
SNDAQ run. Figure 4.5 shows a representative case.
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Figure 4.5: Number of OMs with fewer than 10Hz in run 6201 from year 2006 versus
the time after run start

Regrettably, this always happened with different channels and scalers. As this prob-
lem does not occur within IceCube, we suspect it was hardware-induced. Bugs in
the DAQ code are unlikely, because the supernova data acquisition software of both
experiments is all but identical. The only AMANDA hardware that could directly be
affected by the SNDAQ were the supernova scalers.

Stability in the analysis is enforced by demanding a minimal pulse rate for each OM.
Any sensors which drop below 10Hz are excluded for the complete run.

4.4.1.3 Offline Requirements on OM Distributions

In the next step, we will place additional requirements on the individual pulse distri-
butions to remove OMs which deviate from the norm. Note that the raw rates cannot
be used for the investigation of the noise distributions because they are highly un-
stable. Typical examples are OMs falling silent during a run (see section 4.4.1.2) or
rate jumps induced by a VLF (Very Low Frequency) antenna in 2004 (see figure 4.6).
We therefore use data cleaned by the online cuts from section 4.4.1.1 and remove the
dead channels mentioned in section 4.4.1.2. As the online analysis and the raw data
streams are separate, a program was written which synchronizes them, enabling one
to investigate the raw rates of OMs being tagged as stable.

OM Uptime

The first step is to take a look at the amount of data collected by each OM. Only
if enough data is available, an investigation of the pulse distribution is done (see
figure 4.7). A minimal lifetime was required for each OM (see table C.4).
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Figure 4.6: VLF jumps of OM 200 in the year 2004
During 2004, a VLF antenna was installed at pole which induced strong rate jumps
in a large part of the optical modules. As the signal was periodic it could easily be
removed from the data. By the end of 2004, a VLF filtering was installed and later
data was no longer affected.
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Figure 4.7: Uptime of the OMs in the year 2002
Shown is the time the individual modules were active, judged stable and thereby
contributing to the online analysis. Using this histogram, a minimum uptime of 9·106 s
was required for each OM.
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Fits

As demonstrated in 4.2, neither Gauss nor Poisson functions can be used to properly
describe the pulse distributions. Many different statistical functions were tried and it
was found that shifted, broadened Poisson and shifted lognormal functions are best at
describing the OM pulse distributions.

The first candidate, the modified Poisson, is described by:

p(x;λ, s, a) =
λa(x−s)e−λ

Γ(a(x− s)) . (4.8)

Fixing the broadening at a = 1 much improved the results compared to a Poissonian,
but still only about half of the OMs could be fitted sufficiently well. Allowing the
broadening as a fit parameter lead to much better results. However, the given function
is unable to fit the pulse distributions for datasets without dead time and its central
moments can not be easily derived.

We now take a closer look at the other candidate, the lognormal distribution. It
performed well during all fits (independent of τ) especially after introducing a shift
parameter s:

p(x;µ, σ, s) =
1

(x+ s)σ
√

2π
exp

{
−(ln(x+ s)− µ)2

2σ2

}
. (4.9)

Contrary to the modified Poisson, the central moments of the lognormal distribution
can be easily derived (see appendix B). Expectation value and variance are given by
equation B.6:

〈x〉 = eµ+ σ2

2 − s and

V (x) = (eσ
2 − 1)e2µ+σ2

.

Applying a lognormal fit to the pulses recorded with OM #001 in the year 2002 yields
figure 4.8.

While most of the time, lognormal fits to the rates perform well, there are exceptions
to this rule. Some OMs show increased or decreased rates during prolonged periods,
leading to warped distributions. Said OMs seem otherwise well behaved which is
why their complete disqualification from the dataset would be unjustified. Instead of
investigating the absolute rates we subtracted the rate average of each individual run,
〈ri〉run, from the data before performing the fits. Figure 4.9 shows the two distributions
for OM #211 of year 2002.

For each dataset, lognormal fits were applied, their reduced χ2 plotted into separate
histograms and a maximal reduced χ2 determined (figure 4.10 shows the reduced χ2

for the year 2002). Table C.5 shows the maximal allowed reduced χ2 for each dataset
along with the number of OMs lost.
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Figure 4.8: Lognormal fit to rate deviations of OM #001 from year 2002
The fit resulted in a reduced χ2 of 2.1 and yielded the parameters µ = 5.57, σ = 0.043
and s = 261.3. Note that it was applied only to the central ±5σ of the distribution.
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(b) Pulse deviations from average

Figure 4.9: Rates and rate deviations of OM #211 in the year 2002
Clearly a lognormal fit on the left-handed distribution would disqualify the OM. How-
ever, the right-handed histogram shows that this module is quite usable.
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Figure 4.10: Reduced χ2 of lognormal fits of the year 2002
The dashed red line shows the cut at χ2/n.d.f. = 2.5. This requirement removes 28 of
390 OMs for the year 2002.

Tails

While the lognormal fits generally perform quite well on the data, they are insensitive
to effects in the tails. However, strong fluctuations outside the bulk of the data can
significantly influence our collective rate deviation observable. We therefore decided
to place another cut based on the perturbation of the data.

Figure 4.11(a) shows OM #056 where an acceptable fit could be performed, but
strong perturbations remain. To quantify these, we remove the inner 99.99% of the
lognormal distribution from the recorded pulse distribution (see 4.11(b)). The absolute
of the remaining data is summed up and divided by the number of entries of the initial
pulse distribution. We get the probability for data lying outside 99.99% of the expected
lognormal. For each dataset, these probabilities are histogrammed and cuts are applied
(see figure 4.12 for the year 2002).

Table C.6 shows the cuts applied to all datasets with the number of OMs removed.

4.4.1.4 OM Activity

As seen in section 4.4.1.1, the number of OMs active in the SNDAQ can change within
a run. Because we want to keep the data as stable as possible, it is important to
restrict the number of OM fluctuations. Figure 4.13 shows the number of times OMs
were reactivated during the runs of year 2002. To increase stability, we demand that
no OM gets requalified more than a given number of times during a run. If an OM
exceeds its allowed number of activations, it is disqualified for the whole run. Table C.7
shows the requirements for all the datasets.
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(a) Recorded pulses with a lognormal fit applied
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data and lognormal approximation

Figure 4.11: OM #211 in the year 2002
Just from the fit to the pulse distribution (see left figure) the OM would be qualified
for the analysis with a reduced χ2 of 2.2. However, the distribution shows a long tail.
The picture on the right side displays the difference between the recorded pulses and
the lognormal expectation. As we are only interested in perturbances in the tails,
entries in the inner 99.99% of the distribution, the interval [−45.6, 52.0], have been set
to zero.
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Figure 4.12: Perturbation Probabilities for the OMs of the year 2002
The dotted red line shows the cut of 10−5, removing 8 OMs from this dataset.
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Number of Activations per OM in all Runs
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Figure 4.13: Number of times an OM is activated during a run in 2002
The histogram shows the number of activations for each OM in each run of the year
2002. The more often an OM is switched on or off, the more it fluctuates. For 2002,
a cut has been placed at 90 activations per OM during a run.

4.4.1.5 Rate Drops in OMs

During the investigation of the data, it was found that from time to time the rates
dropped significantly below the expectation, but did not go all the way down (see
figure 4.14). Generally, OMs showing this sort of behavior should be excluded by
the online cuts. However, at the fringes of the moving average window, and in the
exclusion zone at its center, the data will not be disqualified. Such drastic drops of the
OM rates influences the statistical observables and the collective mean rate deviations.

To eliminate this problem, an additional OM disqualification process is applied.
With the lognormal fits from above, we have an expectation for the pulse rate of each
OM. With these, we define a minimal allowed rate such that measuring a number of
counts below this value happens in average once every ten years. In the example given
in figure 4.14, the lower rate limit would result in 144 pulses per 0.5 s.

Sometimes the rates of a very large number of OMs drop simultaneously, leading to
them all being removed. Due to the cut on the number of OMs qualified in the next
section, the whole run might be dropped. To avoid this, the data is cleaned around
the offending times by removing the related moving average window (10min) if more
than ten OMs show intense rate drops.

4.4.2 Active channels

As the number of OMs qualified during the analysis is another measure of detector
stability, a minimal number of active channels is required. Figure 4.15 shows the
number of active channels during the year 2002, and table C.8 summarizes the cuts
applied to all datasets with and amount of data lost.
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Figure 4.14: OM #440 during run 0939 of year 2002
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Figure 4.15: Number of OMs active in the analysis during 2002
The cut at 320 OMs applied to the dataset of 2002 is depicted by the dashed red line.
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4.4.3 Cuts on Anisotropic Illuminations

A strong rate increase in a single qualified OM will raise the collective rate deviation,
and consequently, an indication for the isotropy of an illumination in the ice is essential.
The χ2 defined in equation 4.5 is one possibility. However, it must be investigated
whether this method is sufficiently sensitive for the supernova search.

To test the performance of the χ2 cut, background was simulated and random rate
outbursts were added. By modifying the strength of the signal and the number of
modules chosen to burst, it was possible to investigate the pros and cons of the χ2-
method. The signals were applied starting from 10 OMs and were raised in steps of 10
modules. The burst strengths were varied from 10Hz to 150Hz in 10Hz increments.
As we are interested in the number of times the system is triggered by an anisotropic
signal, we look for data with a significance s higher than 6.0 with a χ2 residing in
100%, 99.9% and 90% intervals. Figure 4.16 shows the results. While the χ2 cut
is very efficient for a few loud modules, it is less so if a significant amount of OMs
contribute. In case of AMANDA already 40 bursting modules can lead to a false
trigger. At first glance this might seem like a statistically unlikely number, however, it
is little more than the number of OMs on a single string. This might become a problem
when fluctuations in the power supply or static discharges due to strong surface winds
influence the equipment.

A further problem that immediately meets the eye, is the reduction of triggers for
large numbers of modules bursting at high rates when constraining the χ2 confidence.
Because the supernova search is primarily aimed at small signals from distant su-
pernovae, we assumed an illumination small compared to the noise level in the χ2

definition. As already stated in section 4.1.1, the equations for the collective rate de-
viation and the χ2 (equations 4.3 and 4.5) should be modified in the case of larger
signals. As the resulting formulas are not analytically solvable and the bulk of all
potential supernovae are quite distant, we will stick to the current method.

To improve on the χ2 discrimination, many different approaches were tried:

• Modules with extreme rates were removed from the data sample; the differences
between the original and the cleaned significance was investigated.

• The difference between median and mean of the individual rate deviations
ǫi(ri − µi) was tested.

• For each signature, the extreme 50% (minimal and maximal) were compared to
the inner 50% of the rate deviation distributions.

• The width, skewness and kurtosis of the individual rate deviation distribution
were examined.

• Kolmogorov-Smirnoff tests of the rate deviations with a Gaussian and reference
data points were performed.

• Spatial isotropy was examined with a center of gravity test and a clustering
approach.
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(a) No χ2 cut
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(b) χ2
∈ 99.9%
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Figure 4.16: Performance of the χ2 discrimination
The probability for a burst to reach a significance s higher than 6.0 while remaining
in the requested χ2 interval is given by the color. White denotes a probability of zero.
During the investigation, 358 number of modules were simulated.
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Neither of these methods performed better than the χ2 cut which is why it will be
used in the supernova search.

4.4.4 Time Stamps

In this step, we place some basic requirements on the timing information of the data.
First, the time stamps are required to show sensible numbers. Especially at run

start, the timings are often out of range (e.g. the day of year becomes greater than
1000). Second, the bins are required to have the correct time difference from their
neighbors, i.e. 500ms. Approximately ∼ 4.6% of the data is discarded in this way.

4.4.5 Run Disqualification

Pole Seasons

During the austral summer, many maintenance and calibration operations were per-
formed, leading to unstable data during these periods. For this reason, only data from
beginning of March to end of October was used. While the polar season is usually
finished by mid-February, work on the detector hardware and software often continued
for a few weeks. Unfortunately, very few of these operations were logged, so a precise
exclusion is impossible.

Time Instabilities

Runs which loose more than 30% of their data to the time stamp cleaning described
in section 4.4.4 are rejected. 71 files, most of them from 2008, did not pass this test.

Flasher Runs

For the muon track search, the correct knowledge of detector geometry and ice prop-
erties is essential. Therefore, calibration runs using artificial light sources as described
in section 2.1.2.2 are routinely performed for the IceCube detector. As these can il-
luminate the ice around AMANDA, the respective periods have to be excluded from
the analysis. Since installment in 2005, 252 runs from the AMANDA SNDAQ were
synchronous to flasher activities.

Scanning Runs

Unfortunately, even after the above quality requirements, many runs still show unex-
pected and pathological behavior. Some examples are shown in figure 4.17.

Obviously, data of this kind should be excluded from any analysis. Many approaches
for an automatic discrimination of unstable runs have been tried, but none performed
satisfactorily. Unfortunately, the monitoring written for the standard data taking [156]
was not synchronous with the supernova data and does not cover the same times (e.g.
the years 2007 and 2008 do not feature at all). It was therefore decided to scan the
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(d) Run 7152

Figure 4.17: Significance over time for some unstable runs from the year 2007
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Figure 4.18: Normalized rate sum of simulated toy supernovae averaged over 1min
using only data with s ∈ [−3, 3].

The runs contain more than ten supernova candidates with significances & 15.

AMANDA supernova runs by eye. As one needs to stay unbiased with respect to
supernova candidates, a direct check of rate deviation or significance is excluded.

Instabilities in the data taking can be expected to last longer than a few seconds,
i.e. longer than the relevant timescale for a supernova and might influence the moving
averages µi to which the actual rates are compared (see equation 4.3). The most
direct and thorough approach would be the examination of the noise behavior of all
OMs as a function of time. Such a method would have to be automatized and might
be introduced in the future. At present, however, we will restrict ourselves to the
examination of the sum of raw rates, excluding data above a predefined significance.

The simple ansatz R =
∑N(D)OM

i=1 ri is not a robust quantity in AMANDA. Instead of
the simple sum of raw rates, we will take the rate deviation from their mean (ri−µi),
weighted with their relative efficiency ǫi and normalize the sum to the number of active
modules NAC:

R =
1

NAC

NAC∑

i=1

ǫi(ri − µi) . (4.10)

For the stability examinations, we rebin the data to 1min. To ensure that no potential
supernova candidates are included, we require that all data points contributing have
a significance inside the interval s ∈ [−3, 3].

Before the checks, we run a toy Monte Carlo to ensure that supernova candidates
are not affected. As a test signal, an exponentially decaying signal with a decay
constant of τ = 3 s was used. About 1000 runs were simulated, each containing 5 ∼ 10
supernovae with signal strengths up to 60 kHz. As seen in figure 4.18, the typical
average normalized rate deviations are unaffected.

We then proceed to exclude all runs which show steep rises, drops, significant clusters
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Figure 4.19: Normalized rate deviation averaged over 1min for the unstable runs shown
in figure 4.17

of outliers or periodic fluctuations. The average normalized rate deviations of the
unstable runs shown in figure 4.17 are displayed in figure 4.19.

Out of 5664, 883 runs were excluded from the data due to unstable rates.

4.5 Longterm Rate Development

As mentioned in section 4.3, the conditions of the data taking changed with the years.
To quantify the differences, be they man-made or naturally induced, we take a look at
the average pulse rates. We notice jumps between datasets taken with different dead
times τ but also between rates recorded with the same τ (see figure 4.20). These latter
are caused by altered settings in the muon DAQ, such as increased pulse discrimination

128



4 AMANDA Supernova Search

UTC
31/12/00 31/12/02 31/12/04 31/12/06 31/12/08

P
ul

se
s 

pe
r 

0.
5s

120

140

160

180

200

Figure 4.20: Mean pulse rates of OM #006, averaged over 24 h, for all the years

thresholds4. Years 2007 and 2008 yield the only datasets that are consistent, because
work on the AMANDA muon data acquisition was discontinued at the end of 2006.

In spite of the jumps in the data, one notices slight changes as function of the seasons.
Figure 4.21 shows the mean pulse rates of OM #003 using the dataset from the years
2007 and 2008 in a resolution of 24 hours. One observes a clear seasonal variation which
is caused by the changing conditions in the atmosphere. With the antarctic summer,
temperature increases, leading to expansion of the air and, therefore, lower density.
Accordingly, pions produced by charged cosmic radiation have a larger mean free path
in the upper atmosphere and therefore a higher decay probability. The number of
atmospheric muons, the decay products of pions, is about 10% larger in summer than
in winter (for more information on this subject see [157]). As the background pulses
registered by the OMs also includes Cherenkov light caused by high energy muons, the
OM rates will necessarily change with the seasons.

It was found that the variation of the pulse rates can be well described by a cosine
function plus a constant and an exponential decay [93]:

〈nOM〉(t) = nconst + ndec e
− t

τ + natm cos

(
2π

T
(t− t0)

)
. (4.11)

nconst describes the constant part of the background. It is composed of thermal noise,
radioactive decay of long-lived isotopes and the average muon noise. The second
element of the equation 4.11 denotes a slowly decreasing component of the background,
which is not yet clearly understood. Parts are due to the freezing process, hereafter
radioactive decay of isotopes with small lifetimes and degradation of the optical gel
may also play a role. Last, the cosine function describes the fluctuations due to the
changing muon rates. Figure 4.21 shows an OM fitted with this function.

4The pulse discrimination thresholds define the level above which a pulse will be counted. They were
the same for both data acquisitions, and if they were altered, the noise rates changed accordingly.
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Figure 4.21: Mean pulse rates of OM #003 with cosine fit
The figure shows the mean pulse rate of OM #003 from mid 2007 to end 2008 in a
resolution of 24 h. One sees a strong seasonal variation due to changing muon rates.
The data has been fitted with function 4.11.

Unfortunately, only data taken with the modules of the B4 generation are stable
enough to apply these longterm fits. The B10 and B13 modules have much larger
spreads and are notoriously unstable, making them unusable for this purpose (fig-
ure 4.22 shows typical OMs of this generation). Another option would be the less
noisy B19 OMs, however, their rates were quite erratic in the years 2007 and 2008.
After selecting the OMs by visual inspection, only 30 of 112 B19 OMs remain (for
comparison: 36 of 40 are usable in the case of the B4 generation).

Since the only seasonal variation known to affect the OM rates is in the muon
production, the size of the constant natm should be directly proportional to the de-
tection efficiency of the modules and the transparency of the surrounding ice. As few
AMANDA modules are sufficiently stable, the efficiency cannot be determined individ-
ually for all modules. In [93] similar fits have been performed on data from the years
2007 and 2008 for IceCube DOMs. Figure 4.23 shows the mean variation amplitude
versus depth for AMANDA and IceCube modules.

As expected, the amplitudes and thus the efficiencies are depth dependent because
of the dust layers segmenting the ice (see section 2.4.1.1). The more dust in the vicinity
of a module, the less light it can detect.

As the IceCube data is much more reliable due to better longterm stability and
higher statistics, the IceCube depth dependence will later be used to determine the
relative muon efficiencies of the modules for the background Monte Carlo. One can
further use this data to determine a conversion factor between the IceCube DOMs
and the AMANDA sensors. For this purpose, the AMANDA modules are replaced
by IceCube modules at the relevant depths and a weighted average is calculated. It
is then compared with the average of the original modules. The mean effects from
seasonal variations for the AMANDA modules is given by:
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Figure 4.22: Mean pulse rates in 24 h resolution of typical B10/13 OMs
Fits according to equation 4.11 were applied and succeeded with reduced χ2 of ≈ 0.3.
However, in both cases, the rate development shows large instabilities and thus, the
fits cannot be seen as reliable.

〈natm,B4〉 = 0.46 ± 0.02 and

〈natm,B19〉 = 0.61 ± 0.04 . (4.12)

Replacing the AMANDA modules with IceCube DOMs, we get:

〈natm,B4→I3〉 = 0.80± 0.02 and

〈natm,B19→I3〉 = 0.82± 0.04 . (4.13)

This yields the conversion factors:

ǫI3/B4 = 1.75 ± 0.08 and

ǫI3/B19 = 1.34 ± 0.10 . (4.14)

ǫI3/B4 reflects the difference between the cathode areas of 8 inch and 10 inch, the
AMANDA and IceCube discriminator thresholds and differences in optical transmit-
tances.

One can also determine the conversion factor between B4 and B19 of ǫB4/B19 =
0.76 ± 0.07. This compares well with a calculation based glass transmittances of
ǫB4/B19 = 0.745 [73].

Using these two determinations of ǫB4/B19, we estimate the systematic uncertainty
to be ∼ 5%.

131



4 AMANDA Supernova Search

Depth / m
1600 1800 2000 2200 2400

S
ea

so
na

l V
ar

ia
tio

n 
of

 M
ea

n 
P

ul
se

s 
pe

r 
0.

5s

0

0.2

0.4

0.6

0.8

1

1.2
I3

B4

B19

Figure 4.23: Seasonal variations of sensor pulses per 0.5 s versus module depth
Shown is the average constant of the cosine describing the seasonal muon variation,
natm, over its depth. The plot is segmented in 17m bins because the IceCube DOMs
have exactly this distance from each other. The red squares show the average seasonal
variation of the IceCube modules deployed up to season 06/07, with roughly 20 entries
per bin (according to 22 strings). The thick black lines show the B4 modules and the
empty blue squares the B19 modules. For the AMANDA modules we obtain mostly
only one entry per bin with a maximum of three. The ice structures are apparent.
One also sees that the effect of muons is smaller in B19 and even smaller in B4 OMs
when compared to IceCube.
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Figure 4.24: Significances of a run from 2002 with a simple background Monte Carlo
The filled red area shows the recorded supernova significances of run 0990, the blue
line is the result from a simple Monte Carlo based on lognormal OM rate distributions
only and the dash-dotted black line is a fit with a normal function with a fixed σ = 1.

4.6 Background Simulation

One fundamental problem in most experiments is understanding the background.
In a first approach to understand the noise behavior, we simulate the distribution of

the significance s (as defined in equation 4.4) using only the lognormal functions found
to describe the individual OM pulse (see section 4.4.1.3). In absence of external signals
one would naively expect s to follow a normal distribution with unit width centered
at zero. Figure 4.24 compares the recorded significances to a normal distribution
with σ = 1 and to the simple background simulation just described. As we see,
neither the naive expectation nor the simple background simulation match the data.
Simulating the detector background is not straightforward because the recorded pulse
distributions do not only contain uncorrelated thermal and radioactive noise but also
correlated illuminations from muons. While the seasonal of the muon rates changes
can be neglected in our examinations, the statistical fluctuations can not.

The broadening in the data can be ascribed to fluctuations in the muon rates by
synchronizing the muon data acquisition (µDAQ) and the SNDAQ. The µDAQ stores
the full sample of muon tracks detected, except for the hit patterns, as nanoDST data.
We count the amount of muons recorded during one 0.5 s SNDAQ bin and compare this
number to the normalized rate deviation R as defined in equation 4.10. In figure 4.25
one can clearly see a strong correlation between these two measurements5.

5While this approach turned out to be simple for the year 2004, it was not so for all datasets. At first,
no correlation could be found in 2002. It later turned out that the time stamps of the supernova
data preceded the muon data by 1 s, hiding any connection.
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Figure 4.25: Average normalized rate deviation and average significance versus the
number of muons counted in a 0.5 s SNDAQ bin for the year 2004

For this figure, the muon measurements have been synchronized with the supernova
data stream. Average values have been calculated for each number of muons detected
and plotted into a profile histogram. The left figure confirms that more muons in
the detector lead to collectively higher rates recorded by the SNDAQ which in turn
leads to an increased significance as seen on the right. Because the significance is
determined from comparison of the rates with a moving average of 10min, seasonal
variation do not play a role. The different behavior in the tails is likely due to quirks
in the detector. Examples are problems in the µDAQ, cross-talk in the cables or OMs
with unphysically high or low rates. Those perturbations do not always reflect back
on the SNDAQ because of the completely separate data cleaning.

It follows that the OM background distribution is a combination of the dark noise
generated by its direct environment and the inherent noise behavior of the sensor on
the one side and the Cherenkov light produced by atmospheric muons on the other.
While the first phenomena are completely uncorrelated between the OMs, the latter
can cause an overall rate increase in the whole detector. Fluctuations in the muon rates
can therefore lead to a broadening of the significance distribution. Hence, one cannot
simply use the lognormal shapes for single OMs as they have been derived earlier. A
simulation using only these functions to generate the sensor hits, while correct for a
single module, does not account for the correlated hits caused by muons. In addition,
it is not possible to simply add the muon hits, because the individual OM distributions
already include them, just not in a correlated fashion.

The optimal way to run a background simulation would be to simulate the dark noise
of each OM individually and then add the correlated hits induced by cosmic radiation.
While the underlying dark noise distribution is unknown, it can be estimated.
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4.6.1 Estimation of Dark Noise Distribution

Let us consider the following scenario: We have two distributions from which random
numbers are drawn. These are added up, and lead to a resulting lognormal distribution
describing our OM noise.

We assume that the unperturbed noise distribution follows a lognormal function
while the muon hit distribution follows a Poisson distribution. We further assume that
the combination of a dominating lognormal and a subdominant Poisson distribution
again yields a lognormal (numerical simulations show that this approach is sufficient
for our purposes).

A complication found in the data is that the expectation value of the Poisson dis-
tribution will change over time. The muon rate is known to have an overall variation
of 20% over the whole year (for more details, refer to [157]). However, this is easily
overcome as the muon rate changes little over the time of a single run. The back-
ground simulation can, therefore, determine the dark noise distribution for each run
individually.

In the case at hand, we have a sum of two independent random variables. Such
a problem is best investigated with the method of characteristic functions. Φx(k) is
defined as the Fourier transform of the probability density function f(x) [158],

Φx(k) =

∫ ∞

−∞
eikxf(x)dx . (4.15)

Note that there is a one-to-one correspondence between the p.d.f. and the characteristic
function so that knowledge of one is equivalent to the other.

Consider a counting experiment governed by N independent distributions
f1(x1), f2(x2), ..., fN (xn) with the observable being defined by z =

∑N
i=1 xi. The

corresponding characteristic function Φz(k) is then calculated as follows:

Φz(k) =

∫ ∞

−∞
. . .

∫ ∞

−∞
exp

(
ik

N∑

i=1

xi

)
f1(x1) . . . fN (xN )dx1 . . . dxN

=

∫ ∞

−∞
eikx1f1(x1)dx1 . . .

∫ ∞

−∞
eikxNfN (xN )dxN

= Φ1(k) . . .ΦN (k) . (4.16)

The combined p.d.f. can then be obtained from Φz(k) using the inverse Fourier trans-
form:

f(z) =
1

2π

∫ ∞

−∞
e−ikzΦz(k)dk . (4.17)

In the present case, we have two underlying randomly distributed variables, namely
the dark noise rates x and the muon hits y, which are summed up to the total noise z.
We know the distribution of z and have a good estimate for y. Using equation 4.16,
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we can, derive the characteristic function of x:

Φx(k) =
Φz(k)

Φy(k)
. (4.18)

Note that the characteristic function of the lognormal is not clearly defined and the
above equation cannot be reduced to a simple distribution. Even though this method
does not provide an analytical solution, it could be applied numerically. Unfortunately,
this approach would require a factor ∼ 100 more statistics than available.

However, if we assume that the OM dark noise can be described by a lognormal func-
tion, we can take a different approach. Using the description of the OM pulses f(z) (see
section 4.4.1.3) and the Poisson distribution of the muon hits f(y) (see sections 4.6.2
and 4.6.3), we can derive the central moments of the dark noise distribution f(x) from
the equations (see appendix B.2):

µz = µx + µy ,

σ2
z = σ2

x + σ2
y and

S(z) =
S(x)V (x)

3
2 + S(y)V (y)

3
2

V (x)
3
2

. (4.19)

With the knowledge of the three relations derived in appendix B.3,

µ =
1

2

(
lnV − ln(eσ

2 − 1)− σ2
)

,

σ2 = ln


 3

√
S2 + 2 + S

√
S2 + 4

2
+

3

√
S2 + 2− S

√
S2 + 4

2
− 1


 and

s = −E + eµ+ σ2

2 , (4.20)

the parameters of the dark noise lognormal can be calculated.
To test the validity of this approach, we randomly generated lognormal functions

with parameters µ ∈ [5, 7] and σ ∈ [0.015, 0.08], following the distribution of the fit
results of the year 2002. The shift s was chosen so that the mean would be within
100 and 900. Values were randomly drawn from this distribution and added to values
drawn from a Poisson distribution with a mean varied between 2 and 10. These values
were filled into a histogram which was in turn fitted by a lognormal. Using the above
approach, the initial lognormal was “retro-engineered” and used to generate yet another
histogram. This histogram was compared to one generated from the initial lognormal
with a χ2 test. For each histogram, 2 ·107 entries, equivalent to ≈ 116 d of data taking,
were simulated. Figure 4.26 shows the reduced χ2 of ∼ 500 such tests. While the “retro
engineered” and initial parameters can show differences, especially in the shift s, the
derived functions describe the initial ones well.
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Figure 4.26: Reduced χ2 difference between initial and retro engineered lognormal

4.6.2 Muon Influence on OM Pulse Rates

Next, the light induced by muons has to be considered by the simulation. Again,
this is not straightforward. The nanoDST data composes only a subsample of the
muons traversing the detector because the µDAQ is subject to an inherent dead time
of ≈ 1.8ms, and each track has to feature at least 24 hit modules. Furthermore, hit
selections and hit cleaning methods are used on the data sample before storing.

4.6.2.1 Mean Muon Rate

The first input needed to simulate the muon influence on the SNDAQ background is
the number of muons lighting up the detector.

The mean muon rate seen by AMANDA-II depends on the time of the year. To
derive the relative size of the seasonal fluctuation we used the cleaned and filtered
nanoDST datasets of 2003, 2004 and 2005 that were prepared for the correlation of
muon and meteorological data. The year 2002 was excluded as it features a steep rise
in mid-September due to an unusual splitting of the ozone hole. More information on
the meteorological analysis can be found in [157]. Each dataset was fitted with the
function

Rµ(t) = R0 + εR0 cos

(
2π

T
(t− t0)

)
. (4.21)

The resulting parameters can be found in table 4.2, and the fit for the year 2005 is
shown in figure 4.27.

As the µDAQ provides only an estimate of the muons traversing the detector, this
fit provides us with the relative variation of muons but not the total number. To derive
the absolute normalization, we need to simulate the detector response to atmospheric
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year ε T/d t0/d

2003 0.078 407 1
2004 0.072 382 11
2005 0.081 429 −19

average 0.077 ± 0.004 406 ± 19 −2± 13

Table 4.2: Fit parameters to mean muon rate measurements.
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Figure 4.27: Seasonal variation of mean muon rate in the year 2005

muons without trigger thresholds or µDAQ dead time. The Monte Carlo written for the
AMANDA-II standard analysis6 simulates lepton production in the atmosphere using
dCORSIKA7 and propagates the resulting muons through the ice using the Muon
Monte Carlo (MMC, for more information refer to [163]). The detector response is
simulated with AMASIM [164] and the OM hit pattern stored in a so-called f2k -
file (for more details on the simulation chain, refer to e.g. [159]). Four settings for
the atmosphere are available in dCORSIKA: antarctic spring (October 1), summer
(December 31), autumn (March 31) and winter (July 1). Running the Monte Carlo
with these configurations using the detector setup of 2005 and fitting the results with
the relative variation of muon rates, we determine R0 to be R0 = 279.4 ± 0.5 muons
per 0.5 s bin.

Note that the assumed cosine function is only a rough estimate for the seasonal
muon rate fluctuation. It would be more precise to use the average muon rate counted
by the µDAQ and rescale it to the total muon rate. Unfortunately, there are two major

6This refers to point source searches like [124], investigations of cosmic rays (e.g. [159]) and other
track related analyses such as [160, 117].

7COsmic Ray SImulations for KAscade is a software package which simulates air showers induced
by cosmic rays. It was initially written for the KASCADE experiment [161]. dCORSIKA is an
adaption to the AMANDA/IceCube experiments [162].
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Figure 4.28: Distribution of OMs triggered by muons
Depending on whether the dataset to be simulated was taken with or without dead
time, the NChannel or the NHit distribution is relevant.

caveats to such an approach, especially with AMANDA. First, the factor to scale the
recorded tracks to the actual number of muons in the detector is unknown, and the
programs necessary to fully run the Monte Carlos with its reconstruction and filtering
algorithms have compatibility issues with modern computer systems8. Second, even if
this factor would be known, a rescaling would face the problem that the muon data is
not as exhaustive as the supernova data. A significant fraction of the muon stream is
missing or only present in bad quality when compared to the supernova stream. Such
an approach might be feasible with IceCube were the two DAQs are synchronous, the
simulation software well maintained and the data much cleaner.

4.6.2.2 OM Pulses Induced by Muons

Next, we must determine the number of OMs that are triggered by a muon. Contrary
to point source analyses, it is unimportant to know which OM is triggered by which
track. We only need to count the number of OMs hit by photons induced from muons
within a time bin and distribute the counts among the modules taking their relative
efficiencies into account.

The number of OM hits per muon is described by the NChannel and NHit dis-
tributions9, can be determined from the simulation chain described in section 4.6.2.1.
Figure 4.28 shows the distributions of sensors triggered within 32µs. The distributions
were fitted with rather complex functions, consisting of up to eight exponentials.

8The utility controlling the simulation chain, simuperl, uses modules compiled for 32 bit machines.
As modern systems are based on 64 bit, the standard installation is not usable anymore. Unfor-
tunately, recompiling the whole program is inhibited by software incompatibilities on up-to-date
computer configurations.

9While the NChannel distribution includes only the first photon hit in each OM, the NHit distribution
contains also subsequent ones. Both values store only pulses within a trigger window of 32 µs.
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To determine the relative muon detection efficiencies of the OMs, one can use the
longterm behavior as discussed in section 4.23. An OM which has a higher efficiency
will necessarily show higher seasonal fluctuations than one which is less sensitive. The
efficiencies depend chiefly on the OM depth (due to muon absorption and dust layers)
and the module type.

4.6.3 Background Simulation Procedure

In summary, the background simulation needs the following input quantities:

• The lognormal functions describing the rate deviations which were determined
for the OM quality checks introduced in section 4.4.1.3.

• The development of the mean muon rate (see section 4.6.2.1).

• The distribution of OMs triggered by light from muons as presented in sec-
tion 4.6.2.2.

• The relative muon efficiencies of all modules derived from their longterm behavior
(see section 4.5).

We go through the following steps for each run:

1. We reconstruct the individual OM distributions by adding the OM run averages
〈ri〉run to the rate deviation lognormals 4.4.1.3..

2. With the cosine fit determined in section 4.6.2.1, we deduce the mean muon rate
for the simulated run.

3. The mean pulses caused by muons in each OM 〈Nµ,i〉 are deduced by multiplying
the relative muon efficiencies ǫµ,i with the mean muon rate µµ and the average
number of OMs triggered by a muon 〈NPMT〉, i.e. 〈Nµ,i〉 = µµǫµ,i〈NPMT〉.

4. Assuming a Poisson distribution with an expectation value of 〈Nµ,i〉, the dark
noise distributions are “retro-engineered” according to section 4.6.1.

Now, the simulation can start with the Monte Carlo production. For each bin, we

• simulate the dark noise of all OMs (using the dark noise lognormal),

• draw the number of muons in the detector (assuming a Poisson distribution),

• draw the number of OMs hit for each muon (assuming the distributions in fig-
ure 4.28 according to the dead time setting),

• distribute the muon hits among the OMs (according to their relative efficiencies)
and

• apply the analysis.
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Figure 4.29: Supernova significances of run 0990 from year 2002 with muon modulated
Monte Carlo

Figure 4.29 shows the comparison of the sample data from run 0990 from year 2002
with the muon modulated Monte Carlo and figure 4.30 the significance distribution
of 2002 with Gaussian fits and background Monte Carlo as well as a more detailed
comparison.

4.6.4 Adjustments to the Background Simulation

While the new Monte Carlo performs well for most datasets, discrepancies remain. As
stated above, the NChannel and NHit distributions were simulated for the detector
configuration of 2005. However, the performance in the years can be quite different
because important settings were changed between the seasons (e.g. the muon DAQ
trigger thresholds). Running the full simulation chain for all datasets is in principle
feasible but not meaningful for two reasons. First, work on the µDAQ was discontinued
end of 2006 and consequently, no configurations for 2007 and 2008 are implemented
in the Monte Carlo. Second, the uncertainties are rather large. The programs do not
use Photonics, raising the ice systematics to ∼ 12%. Uncertainties in OM sensitivity
and calibration are ∼ 7.8% and ∼ 5%, respectively [117]. Furthermore, the error on
the description of the primary cosmic ray spectrum can be as large as ∼ 30% [160].
Adding up these numbers, we obtain a total uncertainty of ∼ 34%. To be independent
of these systematics we chose to optimize the Monte Carlo year per year.

As an adjustment, we introduce a multiplier scaling the number of OM hits triggered
by muons and optimize this factor for each dataset separately. A subsample of runs
was chosen as reference from each year (∼ 3%), and for each run the background was
simulated using multiple adjustment settings. Then, the difference between standard
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Figure 4.30: Significance distribution for 2002 and the expected background
The left figure shows the significance distribution (filled red area) along with the naively
expected Gaussian with σ = 1 (dotted green line), a Gaussian fit with σ = 1.15 (broken
blue line) and the background Monte Carlo (solid black line). On the right, the data
is divided by the Monte Carlo expectations. The muon modulated Monte Carlo best
describes the measurements.

deviations of the simulated and the measured significance distributions, σdata − σbg,
was calculated for each factor tested and an average determined. Next, the difference in
standard deviations was plotted against the multiplier and fitted with a polynomial of
second order (see figure 4.31 for an example). The factor setting where σdata−σbg = 0
was taken as optimal. With this approach the background is tuned only for the bulk of
the distribution but not in the tails which are sensitive to supernova signals. Table 4.3
shows the adjustment factors determined for the respective datasets.

Year Factor

2000 1.30
2001 1.44
2002 0.98
2003 1.34
2004 0.89

2005 ndt 1.34
2006 ndt 0.70
2006 dt 0.86
2007 0.77
2008 0.92

Table 4.3: Adjustments to the number of hits in the background simulation

For the most part, the differences in the adjustment factors can be well understood

142



4 AMANDA Supernova Search

Muon Rate Multiplier
0 0.5 1 1.5 2

bgσ
 -

 
da

ta
σ

-0.4

-0.3

-0.2

-0.1

0

0.1

Figure 4.31: Tuning the background Monte Carlo for the year 2007
The difference of the standard deviations between data and background Monte Carlo,
σdata − σbg, is calculated for multiple settings of the muon rate multiplier. Each
adjustment factor is averaged over ∼ 15 runs, and with the help of a polynomial of
second order, the optimal value where σdata − σbg = 0 is determined.

by looking at the changes in detector configuration and thresholds. In the year 2000,
we start with a dead time of 8ms and a mean muon rate of 54Hz. For 2001, the
µDAQ trigger thresholds were changed, so that this year shows an average rate of
61Hz, and consequently, the adjustment factor increases. 2002, a dead time of 246µs
was introduced and so it is not surprising that the factor for this dataset is completely
different. A change in 2003 when compared to 2001 or 2002 is also to be expected,
knowing that four more strings were read out by the SNDAQ and that no dead time was
applied. The drop in factor between 2002 and 2004 can be retraced to a new detector
setup (more OMs) and the decreased muon rate (66Hz instead of 69Hz). The rise from
2004 to 2005 doesn’t come as a surprise either because no dead time was applied in
2005. The drop to 2006, however, is not as easily understood. As opposed to the other
years the 2006 data taken without dead time expands only from March to mid June
(the first two months are discarded because of quality requirements). Consequently,
the optimization can only be performed for a much smaller interval than the other
years which might be one reason for the low value. By the end of 2006, the muon DAQ
was switched off and one can only speculate to what extend this affected the trigger
thresholds. From 2007 to 2008, part of the SNDAQ electronics had to be disconnected
because of power shortage and thus the number of OMs contributing to the supernova
stream was reduced, resulting in the last change of factor.

Keep in mind that we optimized the background Monte Carlo only for a small
subsample and that the function we use to describe the seasonal changes in the muon
rate is not ideal. The data available from AMANDA is not stable enough for a more
exhaustive approach as might be possible with IceCube. For more information on the
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muon rates in both detectors, refer to [157].
A second caveat is that the Monte Carlo does not simulate external perturbations

from anything other than muons. While one tries to remove detector instabilities with
the quality inspection discussed earlier, it cannot be guaranteed that the final data
sample is clean. Unfortunately, the repercussions of some external influences such as
instabilities of the power plant or static discharges in cables caused by gusty winds are
unknown; no data is available to allow for a closer inspection.

4.6.5 Environmental Influences on the Module Rates

Muons are not the only external influences that lead to modulated rates. In the scope
of this work, the sensor rates have been correlated with magnetic field strengths and
photometric measurements of the ionosphere.

The electrodynamics of the upper atmosphere at South Pole is studied by the AGO
project10 using optical and radio wave auroral imagers, magnetometers and narrow and
wide band radio receivers [165]. For our purposes, we access the available magneto- and
photometer data and synchronize it with the supernova stream. The measurements
are available in 10min resolution and consist of the vertical and horizontal components
for the magnetic field and optical emissions at 427.8 nm and 630 nm wavelengths. Due
to the large time binning, it is unlikely that we will see dependencies between the
supernova significances and the AGO data. We will therefore calculate the normalized
rate sums according to equation 4.10 and plot them as a profile histogram.

Figure 4.32 shows the dependence of the mean normalized rate deviation versus
the recorded magnetic field strength. The photometer measurements are shown in
figure 4.33. A correct quantification of these dependencies would only be possible
using data in finer time resolution. As these are not available, only muon modulations
are included in the background Monte Carlo.

4.7 Signal Simulation

To determine the detection probability for supernovae in the Milky Way, we need to
simulate the signatures core collapse would induce in AMANDA.

As signal input, we will use the simulation routine USSR presented in section 3.1.
The average signal expectation per OM will be modified by the dead time (if applicable)
and OM efficiency and then used as a basis to generate a random Poisson number which
is added to the background simulation documented in section 4.6 and subjected to the
standard analysis as presented in section 4.1.1.

Simulation-wise, the main difference between AMANDA and IceCube are the dif-
ferent effective volumes. As the parameters of the AMANDA OMs are much less well
known than those of the IceCube DOMs, we will use the average effective volume
of IceCube as derived in section 2.4 and downscale it to the AMANDA case using

10Automatic Geophysical Observatories

144



4 AMANDA Supernova Search

Horizontal Component of Magnetic Field / nT
-100 0 100 200 300 400 500 600

A
ve

ra
ge

 N
or

m
al

iz
ed

 R
at

e 
D

ev
ia

tio
n 

pe
r 

0.
5s

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) Horizontal component

Vertical Component of Magnetic Field / nT
-300 -200 -100 0 100 200 300 400

A
ve

ra
ge

 N
or

m
al

iz
ed

 R
at

e 
D

ev
ia

tio
n 

pe
r 

0.
5s

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Vertical component
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Figure 4.32: Average normalized rate deviations versus the magnetic field
As for the recorded muons (see figure 4.25), the supernova data is synchronized with
the external data and for each time window featuring a certain magnetic field value, the
OM rate sum is averaged and plotted into a profile histogram. For all magnetic field
components shown, we see a clear correlation with the summed rates. The increase in
OM hits is likely induced by magnetic field related changes in the electron collection
efficiency of the PMT and can therefore not be expected to be as simple as in the
muon case. In IceCube the dependencies should be much smaller because the DOMs
are shielded by a µ-metal mesh.
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Figure 4.33: Average normalized rate deviations versus photon flux
For these plots, the same approach as in figure 4.32 was used for the photon fluxes. It
is unclear, whether the rates are directly influenced by the electric fields or whether
the correlation appears through a related variation of the magnetic field.

the conversion factors determined from the longterm behavior of the modules (see
section 4.5).

In the case of AMANDA each dataset can feature a significantly different configu-
ration of contributing modules. However, the effective volumes remain very similar as
can be seen in table 4.4.

Time Span 2000-2001 2002-2004 2005 2006-2008

V e
eff,B10−19 / m3/MeV 24.2 ± 2.0 24.2 ± 1.9 24.2 ± 2.0 24.0 ± 2.0

Table 4.4: Effective volumes of B10-19 modules

We will use the average value of V e
eff,B10−19 ≈ 24.1m3/MeV as an effective volume for

the simulation. The respective values for the B4 generation were derived to be V e
eff,B4 =

(18.6±2.1)m3/MeV (with exception of the year 2007, were it was (18.7±2.1)m3/MeV).

4.8 Supernova Search

We will now determine the optimal search parameters for the supernova search and
then sift the data for signals.

4.8.1 Search Windows

To obtain the optimal sensitivity for supernova detection, it is wise to adapt the
length of the search window to the model we are looking for. Implementing as many
rebinnings as possible in the SNDAQ would be the best way to go. However, this
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approach would require reprocessing of the complete set of data and Monte Carlo and
thus increase the storage requirements beyond our current capacity. Therefore, we will
estimate rebinned significances using the ∆traw = 0.5 s time windows.

For illustration purposes, we start with a rebinning factor of N = 2, i.e. we add up
the data at t and t + 0.5 s. As µi and σi are calculated for 10min time windows, we
can assume that µi(t) ≈ µi(t + 0.5 s) and σi(t) ≈ σi(t + 0.5 s). Note that due to the
exclusion window, a signal should not change this approximation. Adding up the two
bins, µi and σi change as µi → 2µi and σi →

√
2σi. From equation 4.3, we conclude

that σ∆µ →
√

2σ∆µ and consequently, ∆µ transforms as follows:

∆µ → 2σ2
∆µ

NOM∑

i=1

ǫi
2σ2

i

[ri(t) + ri(t+ ∆traw)− 2µi]

= ∆µ(t) + ∆µ(t+ ∆traw) . (4.22)

Extending this to N rebinnings is trivial. If we normalize the rate deviations to a
single bin and use an average value for the error, we obtain:

∆µN =
1

N

N−1∑

j=0

∆µ(t+ j∆traw) and

σ∆µ,N =
1

N
√
N

N−1∑

j=0

σ∆µ(t+ j∆traw) . (4.23)

To keep binning effects to a minimum, we use the above as a moving average.

4.8.2 Expectations

In order to examine the recorded data in a blinded way, we have to investigate the
expected background and the signal Monte Carlo first.

4.8.2.1 Identification of Supernova Candidates

The optimization of the probability to detect a supernova in the Milky Way requires
the reduction of false alarms while at the same time keeping the detection efficiency
as high as possible.

Expected Background

First, we run the background Monte Carlo as introduced in 4.6 to produce at least 200
times the amount of data that was recorded.

If one assumes that the significance s is a measure for a signal induced by a core
collapse, it is reasonable to introduce a threshold ξ above which a measurement will
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be defined as a potential supernova. Using the background Monte Carlo, we deduce
the expected number of false candidates at a given ξ and a detector uptime T to be

µBG =

∫∞
ξ f(s)ds
∫∞
−∞ f(s)ds

T (4.24)

with f(s) being the significance distribution.
The caveat at this point is the finite amount of statistics available from the back-

ground simulation. Only few high significance events are present in the distribution
which leads to steps when optimizing the discovery threshold. To circumvent this
problem, Gaussian tail fits were performed to the simulated noise rate distributions.

Detection Efficiency

The detection probability for a supernova depends strongly on its distance, its type
and the neutrino parameters. For this work, five different scenarios were examined:

• A scaled SN1987A flux with a signal following an exponential decay with τ = 3 s,

• signatures according to the Lawrence-Livermore model for normal hierarchy,

• one-dimensional ONeMg core collapse models with full neutrino opacities for
normal hierarchy and

• failed supernovae for two equations of state with inverted hierarchy and large
mixing angle.

More details on the chosen models can be found in section 3.1.1.4. The scaled SN1987A
flux was chosen for comparability with previous works while the Lawrence-Livermore
and ONeMg simulations represent a good choice for normal supernovae as both cover
a large time frame and span a good range of possible core collapses due to their large
mass difference. In the case of the failed supernovae, the equations of state leads to a
difference in the duration of the signal which then influences the detection probability.
For all models, the neutrino oscillation parameters were chosen so that the signal is
at its minimum value, thus yielding a conservative prediction. For the distances of
supernovae, the distribution given in [76] was used (see also section 1.1.4).

To derive the detection probability, we simulate a supernova neutrino burst according
to section 4.7 and deduce the significance s expected in AMANDA. All core collapses
with s above the threshold ξ can be observed. The detection efficiency or Milky Way
coverage ǫ at a significance threshold of ξ is given by

ǫ(ξ) =

∫∞
ξ N(s)ds
∫∞
0 N(s)ds

(4.25)

with N(s) being the number of supernovae showing the significance s.
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Figure 4.34: Detection probability of Lawrence-Livermore like supernovae in the Milky
Way

About 12000 supernovae have been simulated for the year 2002 configuration with
random distance. The x-axis denotes the significance of the bin containing most of the
signal from a core collapse.

Figure 4.34 shows the distribution of the significances of Lawrence-Livermore like
core collapse in the Milky Way. The detection efficiency for supernovae in our galaxy
in function of the significance threshold is displayed in figure 4.35.

It immediately meets the eye that failed supernovae start out at lower efficiencies,
even though their neutrino signal is much higher(see section 3.2.3.1). As already noted
in section 4.4.3, the present definition of the χ2 cut removes very strong bursts. The
supernova search routine used in this analysis is optimized for small signals and does
not perform as well for intense neutrino bursts (see section 4.1.1 and 4.4.3).

Obviously, a suitable choice of the χ2 confidence interval can greatly increase the
detection efficiency and therefore improve the upper limit. However, one has to be
careful as a looser cut might lead to more false candidates. Figure 4.36 shows different
settings for Lawrence-Livermore and failed supernovae. For common supernovae, we
will use a confidence interval of 90% as it minimizes the danger of false alerts at low
cost in efficiency. Failed supernovae on the other hand, lead to much higher signals
which is why a large confidence interval would be best. To still be able to derive a
meaningful limit for this case, we choose to restrict the χ2 confidence to 99.999%.
As the background simulation does not include strong anisotropic perturbations from
single OMs, the approach used for standard supernovae is not reliable here. Instead
we place a cut at ξ = 15 where the bulk of signals higher than 5σ resides (> 90% for
the Lattimer-Swesty and > 95% for the Shen equations of state).
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Figure 4.35: Fractions of Milky Way in range against the significance threshold ξ for
each model at a χ2 confidence of 99%.

The lines give the probability to detect a modeled core collapse of a certain type versus
the significance cut ξ. LL describes the Lawrence-Livermore model, BH-SH and BH-LS
the failed supernovae with the Shen and Lattimer & Swesty equations of state. ONeMg
is the one-dimensional electron capture core collapse with full neutrino opacities and
SN1987A represents the scaled flux of the detected Kamiokande-II neutrinos.
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Figure 4.36: Supernova detection efficiency for different χ2 confidence intervals
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Figure 4.37: Average detection efficiencies
The average detection efficiencies for the supernova search are clearly model dependent.
Depending on the supernova signal assumed in the simulation, the optimal rebinnings
can be quite different.

Next, we investigate which time window is optimal for which supernova model.
Figure 4.37 shows the average detection efficiencies of supernovae in the Milky Way
for each rebinning with the detector configuration of 2002. It meets the eye that the
optimal window sizes are smaller than expected (e.g. 3 s for the SN1987A scaling
instead of 4 s). The reason is actually quite simple. When building rebinned data
from the 0.5 s data stream, the requested number of adjacent bins is combined. This
means that when one 0.5 s data point is disqualified, e.g. because of a bad χ2 or wrong
time stamps, all larger rebinnings holding this bin are also removed. Consequently,
the larger one makes the rebinning the fewer bins are available and signal is lost; the
supernova sensitivity drops.

The optimal time binnings are 1 s for the Lawrence-Livermore and the ONeMg
models, 3 s for the SN1987A scaling and 0.5 s for the failed supernovae.

4.8.2.2 Best Possible Upper Limit

The derivation of an upper limit for the rate of supernovae in the Milky Way is more
involved than first meets the eye. In principle, all that needs to be done is to deter-
mine a number of supernova candidates and scale it to the detection efficiency of core
collapses in the Milky Way. However, the dataset represents a single measurement and
thus provides only a snapshot of the supernova occurrence while we are interested in
the mean rate. To place an upper limit on the expected rate of supernovae, one has
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to define a confidence level α at which the value is reliable.
Assume that the probability to find n supernova candidates follows the Poisson

distribution

P (n|µBG + µSN) =
(µBG + µSN)n e−(µBG+µSN)

n!
(4.26)

with an expectation for false alarms of µBG and the unknown supernova rate µSN.
Assuming that we find n0 candidates in our dataset, we derive the value µα

SN which
describes the maximal number of expected supernova signals in our data at a confidence
level of α to be:

α ≤
∞∑

n=n0+1

P (n|µα
SN) . (4.27)

As the above equation is not analytically solvable, we determine µα
SN with the Feldman-

Cousins table implemented in the ROOT framework [150, 166].
Next, we scale this value to the supernova sensitivity and the detector lifetime. If

we assume a galaxy coverage ǫ and an uptime T , we can translate the limit derived
from the data to an overall value for the Milky Way µα

SN,MW with the relation

µα
SN,MW = µα

SN / (ǫ T ) . (4.28)

As the trigger threshold ξ determines the expected background as well as the efficiency,
a clever choice is of the essence.

Optimal Detection Threshold

For the determination of the lowest upper limit, the trigger threshold has to be chosen
in a way that combines a minimal background with a maximal detection efficiency. To
this end, we calculate the expected background and the detection efficiency for different
settings of ξ. Under the assumption of a null hypothesis (µSN,MW = 0), we perform the
supernova search 10000 times for each ξ by drawing random Poisson numbers around
µBG+µSN and determine the theoretical upper limit. For each setting of ξ, we take the
averages of these values and fill them into a profile histogram as shown in figure 4.38.
The minimum is then taken as the optimal significance threshold ξ.

Note that the correct choice of the assumed background distribution is very impor-
tant. It has to cover the same amount of time as the recorded data because otherwise,
the expected false trigger rate would not be compatible. Unfortunately, we cannot
pool the measurements of the respective years together because the distributions differ
(see section 4.3). Instead, the cut optimization has to be performed for each year sepa-
rately, but as the probability for a false trigger increases with uptime, the background
expectations have to be scaled to the lifetime of the whole dataset.

As already stated in section 4.6.4, the simulation can only approximate the seasonal
variations of muon production and does include any other external perturbations like
e.g. power fluctuations or static discharges due to weather conditions. Unfortunately,
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Figure 4.38: Determination of the best upper limit on the number of supernovae in the
Milky Way in 2002

The significance threshold is optimized for Lawrence-Livermore like supernovae assum-
ing the null hypothesis of noise only. Lifetime, background and detection efficiencies
are those of the year 2002 configuration.

AMANDA is rather unstable with respect to these influences and there are many
outliers in the distributions (see e.g. [157]). To further reduce the differences between
simulated and recorded data, we modify ξ if the measured spread of the significances is
different from the estimated background. This tunes the threshold only with respect
to the bulk of the distribution and not the tails where the signal is expected. The
adjustment is performed in the following way:

ξ → ξ′ = ξ + ξ (σdata − σMC) . (4.29)

In a last step, a constant shift of 0.1 is added to ξ to ensure independence from binning
effects. As evident from figure 4.38, a slight relocation to the right does not have a
strong effect on the optimal limit, contrary to a relocation to the left. It has to be
stressed that all these corrections were fixed before looking at the data to avoid any
bias.

For the optimal significance thresholds and the respective detection efficiencies, refer
to tables C.10 and C.11, respectively.

Remaining Candidates

Now, we unblind the data and apply the significance thresholds. When the significance
of a data point rises above ξ, it is classified as a trigger and blanks out the data for
the following 100 s. Table 4.5 shows the remaining candidates and figure 4.39 displays
the one found in 1 s time resolution.
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LL ONeMg SN1987A BH-LS BH-SH

0.5s 6 7 7 0 0
1.0s 1 1 1 0 0
1.5s 0 2 0 0 0
2.0s 0 0 0 0 0
2.5s 0 0 0 0 0
3.0s 0 0 0 0 0

Table 4.5: Number of supernova candidates found in the data of the years 2000-2008.
The optimal search window sizes for the respective models are marked in bold.
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(b) May 20, 2005, minutes after 14:00

Figure 4.39: Supernova candidate
The candidate features a significance just above 7σ; all qualification values are fine.
The plot to the right is a closeup of the candidate.

Despite the large number of quality checks presented in section 4.4, a lot of candi-
dates remain in the 0.5 s binning. While it may seem that the cuts are too soft, one
has to remember that more than one half of the detector uptime was already rejected,
and further tightening the cuts would result in even greater lifetime loss. Besides, all
quality parameters previously introduced were investigated and the candidates were
also correlated with the muon DAQ; no data showed any conspicuous behavior. It
might have been interesting to look for power fluctuations at the time of occurrence;
unfortunately, no such information was recorded by the collaboration. The number of
candidates for the time binning chosen as optimal before looking at the data, however,
is low.
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Upper Limits

The upper limits on the average number of supernovae per year is shown in table 4.6
for each investigated model and a choice of rebinnings.

LL ONeMg SN1987A BH-LS BH-SH

0.5s 5.1 12.7 7.4 1.0 0.8
1.0s 2.1 4.8 2.5 1.1 0.9
1.5s 1.4 7.7 1.5 1.4 1.1
2.0s 1.7 3.8 1.6 1.5 1.3
2.5s 2.1 4.7 1.8 1.6 1.4
3.0s 2.5 5.9 2.0 1.8 1.5

Table 4.6: Upper limits on the expected number of supernovae per year.
The optimal search window sizes for the respective models are marked in bold.

It meets the eye, that the best lowest limits do not reflect the optimal search win-
dow sizes. In the case of recorded supernova candidates, this is trivial. However, the
SN1987A scaling shows its lowest upper limit at 1.5 s instead of 3 s. Again, the reason
is to be found in the asymmetric data loss when discarding 0.5 s bins. In the measure-
ments, the disqualified data points are not as uniformly distributed as they are in the
Monte Carlo, and thus the uptimes for larger rebinnings drop even faster than in the
simulations (see table C.9).

Systematic Uncertainties

To the systematics given in section 3.5, we have to add the uncertainties on the con-
version factor between AMANDA and IceCube modules (∼ 5%, see section 4.5) and
the one on the supernova precursor distribution (∼ 10%, see section 1.1.4).

When we look for specific model we do not assume an error because we have no
benchmark. In this case, the total systematic uncertainty is ∼ +17

−20%.
For the assumption of a scaled SN1987A flux, we have to add an uncertainty of

∼ 32% as given in section 2.4.4 and add a further 20% for the unknown signal shape
(we assumed a signal ∼ e−t/3 s). In total, we arrive at a systematic error of ∼ +41

−42%.

Outlook to IceCube

For IceCube, the supernova data taking started in 2007, and it is already clear from the
measurements recorded with the unfinished detector that stability and data quality are
much superior to AMANDA (see [93]). This is due to many reasons. First, in IceCube,
the external power supply provides low voltage to the modules which then transform
it to high voltage locally. This approach inhibits external power fluctuations from
influencing the rates. It is not clear whether an unstable power supply is responsible
for the instabilities in AMANDA, however, it seems safe to assume that this is the
reason for at least some of the perturbations. Second, pulse information recorded
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by a DOM is digitized locally and only then sent to the surface. In AMANDA, the
signals had to travel ∼ 2 km before being read out and could be strongly influenced by
crosstalk or environmental effects on their way up (see e.g. [117]). Third, muon and
supernova data acquisition are synchronized which allows the considerable effort spent
on monitoring of the standard DAQ to be translated to the data taken by the SNDAQ.
And last but far from least, IceCube has an order of magnitude more modules which
clearly leads to a much higher stability when investigating correlated fluctuations.
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Conclusion

This work focuses on the detection of supernova explosions with the AMANDA and
IceCube neutrino telescopes. Even if the experiments are not designed for low energy
neutrinos, they will provide interesting results if a core collapse occurs within the Milky
Way.

To ensure the quantative analysis of possible supernova signatures, a Monte Carlo
program which simulates core collapse neutrino bursts in the AMANDA and IceCube
detectors was developed. The software so far includes 16 different supernova model
predictions and can easily be extended. Furthermore, it allows to choose between
many oscillation scenarios, such as MSW effects, shock wave modulations and collec-
tive oscillations induced by neutrino self-interactions. It includes settings for normal
and inverted mass hierarchy and permits free choice of the θ13 mixing angle. Due
to the object-oriented coding style, further extension of the software by additional
models, new oscillation scenarios or different neutrino interactions in ice can be easily
implemented.

For this thesis, the simulation results were used to investigate the IceCube detector
response A likelihood method is presented which uses the shapes of the neutrino time
series to distinguish quantitatively between different supernova models. IceCube per-
forms well in discerning predictions and will certainly provide important information
for the understanding of the supernova mechanism once a core collapse in the Milky
Way is recorded. Depending on the kind of supernova observed, the range to reject
models extends from 10 kpc for faint signals of electron capture core collapses up to the
Small Magellanic Cloud for the very strong signals of failed supernovae. Distinguishing
between neutrino hierarchies is more complicated as the explosion process needs to be
well understood to evaluate the subtle differences. Using the shock wave propagating
through the supernova envelope, the separation of inverted neutrino mass hierarchy
paired with a large large θ13 mixing angle (sin2 2θ13 > 10−3) from the remaining cases
is possible up to 7 kpc − 10 kpc with > 5σ. It has to be stressed, however, that this
method relies on assumptions about the explosion process which need not be true.
The effect of neutrino self-interactions on the IceCube signal can only be studied by
falling back on the comparison of absolute rates. Depending on the relative ratio of
neutrino luminosities in the supernova, changes induced by collective oscillations might
be observable over the entire Milky Way.

The second core theme of this work was the thorough analysis of the data that was
recorded by the AMANDA detector in the years 2000 to 2009. In a first step, the
pulse rates were subjected to quality checks, removing unstable sensors with multiple
methods. The overall stability of AMANDA turned out to be rather poor, especially
when compared to IceCube. After carefully cleaning the data, it became apparent
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that the background contains a significant fraction of correlated noise. As the same is
observed for IceCube, detector induced fluctuations can only play a minor role. The
data was compared to measurements of environmental parameters such as the strength
of the magnetic field and other external effects. It turned out that the correlated light
production is mainly caused by atmospheric muons despite the strong suppression of
the flux by the ice overburden. A Monte Carlo was developed that generates uncorre-
lated noise hits with lognormal functions and adds estimates of the light produced by
muons.

With the signal Monte Carlo, signatures of different model predictions were simu-
lated and added to the background. After deriving the detection efficiency for super-
novae in the Milky Way and combining this information with the expected noise level,
it was possible to derive an upper limit on the number of supernovae in our galaxy.
Depending on the assumed supernova type and model, this limit varies between 0.8
per year for a failed supernova and 3.8 per year for the collapse of an ONeMg core.
When assuming a neutrino flux modeled after SN1987A, we determine an upper limit
of 2.0 core collapses per year. Note that supernovae may be hidden by dust or behind
the galactic core prohibiting an optical observation.

On n’est jamais abouti. Il y aura

toujours quelque chose à faire, une

autre couleur à visiter.

Jean Reno
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A.1 Neutrinos Propagation in Matter

When propagating through matter, neutrinos are affected by forward scattering
through charged and neutral current interactions. These will be considered in the
following section (see [91] for a detailed discussion).

Charged Current Interactions:

As the particles W± carry charge but at the same time preserve lepton flavor, inter-
actions are only possible between leptons of the same type. In a supernova only the
interactions between electron flavors need to be taken into account:

HCC
eff =

GF√
2

[
ν̄e(x)γ

ρ(1− γ5)νe(x)
] [
ē(x)γρ(1− γ5)e(x)

]
. (A.1)

The charged current potential is given as

V e
CC =

√
2GFNe . (A.2)

GF is the Fermi coupling constant and Ne stands for the electron number density.

Neutral Current Interactions:

The neutral current interaction, featuring the Z0, acts on all three neutrino types in
the same manner. Its effective Hamiltonian is

HNC
eff =

GF√
2

∑

α=e,µ,τ

[
ν̄α(x)γρ(1− γ5)να(x)

]∑

f

[
f̄(x)γρ(g

f
V 1− g

f
V γ

5)f(x)
]

. (A.3)

gf
V is the vectorial coupling of the neutrinos to a fermion f . Using the Hamiltonian,

the neutral current contribution to the effective potential is determined to be:

V α
NC =

√
2GFNf g

f
V . (A.4)

with Nf standing for the density of fermions f in matter.
Because the number of electrons and protons in the star is approximately the same

and ge
V = −gp

V , their contribution cancels. Thus, only neutrons have to be considered.
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Combining the Interactions:

Combining charged and neutral current interactions, we get a total effective potential
for the neutrinos of:

V α
eff =

√
2GF(Neδαe −

1

2
Nng

n
V ) . (A.5)

Note that the potential for the anti-neutrinos has the opposite sign: V̄ α
eff = −V α

eff .
Again, we define the probability for a neutrino να of the flavor α = e, µ, τ at t = 0

to oscillate to a neutrino νβ(t) as Pνα→νβ
(t) = |ψαβ(t)|2 with ψαβ(t) = 〈νβ | να(t)〉.

With the Schrödinger equation, we get

i
d

dt
ψαβ(t) = 〈νβ | i

d

dt
| να(t)〉 = 〈νβ | H | να(t)〉 . (A.6)

We split the Hamiltonian in a vacuum and an interaction term and obtain the equations

H0 | νk〉 = Ek | νk〉 and HI | να〉 = Vα | να〉 . (A.7)

In the ultra-relativistic case (E ≫ m), one can write:

i
d

dx
ψαβ(x) = (p+

m2
1

2E
+ VNC)ψαβ(x)

+
∑

γ

(
∑

k

U∗
αk

∆m2
k1

2E
Uγk + δαeδγeVCC

)
ψαγ(x) . (A.8)

As the first part of the equation affects all neutrinos flavors the same, it is irrelevant
for neutrino oscillations. Thus, it suffices to look at:

i
d

dx
~ψα(x) = HF

~ψα(x) , (A.9)

with

HF =
1

2E
(UM2U † +A) , (A.10)

~ψα ≡



ψαe

ψαµ

ψατ


 , M2 ≡




0 0 0
0 ∆m2

21 0
0 0 ∆m2

31


 and A ≡



ACC 0 0

0 0 0
0 0 0


 , (A.11)

and ACC ≡ 2EVCC.
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A.2 Neutrinos Self-Interactions

A.2.1 Density Matrix Formalism

The following section aims at explaining the density matrix and the NFIS picture.
More details can be found in [91].

For simplicity, we will stay in the two-neutrino picture. The following considerations
can be extended to three neutrinos, however, at the cost of lucidity.

A neutrino ensemble can be described by the density matrix:

ρ̂(x) =
∑

α

| να(x)〉Wα〈να(x) | . (A.12)

Wα are statistical weights of the neutrinos in the initial ensemble and have to satisfy∑
αWα = 1. Summing the density matrix over all neutrino flavors gives:

tr(ρ̂(x)) ≡
∑

α

〈να | ρ̂(x) | να〉 = 1 . (A.13)

One can derive the probability to detect a neutrino of the flavor β at x to be:

Pβ(x) = tr(ρ̂(x) | νβ〉〈νβ |) = 〈νβ | ρ̂(x) | νβ〉 = ρF
ββ(x) . (A.14)

As (ρ̂F(x))† = ρ̂F(x) and (HF(x))† = HF(x), it follows that

i
d

dx
ρ̂F(x) =

[
HF(x), ρ̂F(x)

]
. (A.15)

Like before, the Hamiltonian can be converted from the flavor eigenbasis to the matter
eigenbasis HM = U †

MHFUM, thus diagonalizing it. Analogously, the density matrix in

the matter eigenbasis is ρ̂M = U †
Mρ̂

FUM. Equation A.15 becomes:

i
d

dx
ρ̂M(x) =

[
HM(x), ρ̂M(x)

]
− i
[
U †

M

d

dx
UM, ρ̂

M(x)

]
. (A.16)

Let us now go to the two flavor case. Every 2 × 2 matrix can be decomposed by
X = 1

2 (tr(X)1 +
∑

k tr(Xσk)σk). Due to equation 1.30 tr(HF) = 0 and thereby

Heff ≡ HV +He = −1

2
~σ · (µV

~HV + ~He) ≡ −
1

2
~σ · ~Heff . (A.17)

Let us now take a look at the Hamilton vectors in the flavor basis:

~HF
V = (− sin 2θ, 0, cos 2θ) ,

~HF
e = (0, 0,

√
2GFNe) and

~HF
eff = µV

~HV + ~He , (A.18)

with µV ≡ ∆m2

2Eν
and the definitions from 1.32.
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Applying the same conversion for the density matrix, we obtain:

ρ̂F =
1

2
± ~σ · ~sν with ~sF

ν ≡ ±
1

2




2Re(ρF
eµ)

2 Im(ρF
eµ)

ρF
ee − ρF

µµ


 , (A.19)

with + describing the neutrino and − the anti-neutrino. Using the relation[
~a · ~σ,~b · ~σ

]
= 2i~σ · (~a×~b) equation A.16 can be expressed as

d

dx
~Pν = ~Pν × ~Heff . (A.20)

This equation of motion is equivalent to the precession of a gyroscope with an angular
momentum ~Pν around ~Heff with an angular frequency of | ~Heff |. The Ehrenfest the-
orem tells us that the quantum mechanical description of a system is equivalent to
the classical one after replacing the classical values by the expectation values of the
respective operators. We define the neutrino flavor isospin:

~sν ≡ ψ†
ν

~σ

2
ψν =

~Pν

2
and ~sν̄ ≡ ψ†

ν̄
~σ

2
ψν̄ = −

~Pν̄

2
. (A.21)

The minus sign in the second term comes from the equivalent representation in the
anti-particle range. The equation of motion is the same as A.20, namely

d

dx
~sν = ~sν × ~Heff . (A.22)

It is equivalent a spin ~sν in a magnetic field ~Heff .
~sν is correlated to the probability of finding the respective neutrino in its flavor

eigenstate by

Pνe(x) = ρF
ee(x) =

1

2
+ ~sν · ~eF

3 and

Pνµ(x) = ρF
µµ(x) =

1

2
− ~sν · ~eF

3 . (A.23)

Let’s take a look at solar neutrinos. At the point of creation (t, x = 0), no neutrino
mixing has yet occured, meaning that the off-diagonal elements ρF

ηξ are zero. This is
equivalent to the initial conditions

~sF
ν (0) =

1

2




0
0

We −Wµ


 −→ ~sM

ν (0) =
1

2
(We −Wµ)




sin 2θM
0

cos 2θM


 . (A.24)

The equations of motion can then be solved to:
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~sM
ν (x) =

1

2
(We −Wµ)




sin 2θM cosωx
sin 2θM sinωx

cos 2θM


 . (A.25)

The evolution of the angle between ~sν and ~Heff can be derived to be

d

dx

(
~sν · ~Heff

|~sν || ~Heff |

)
=

~sν

|~sν |
· d

dx

(
~Heff

| ~Heff |

)
=

~sν

|~sν |
· d

dx
~eM
3 =

d

dx
cos 2θM . (A.26)

The contributions to the light or heavy mass eigenstates can now be written analo-
gously to equation A.23

PL(x) =
1

2
+ ~sν · ~eM

3 =
1 + cos 2θM

2
and

PH(x) =
1

2
− ~sν · ~eM

3 =
1− cos 2θM

2
. (A.27)

We now derive the adiabatic condition in the NFIS picture. Consider a timescale
δt & 2π/| ~Heff |. During δt the NFIS ~sν has completed at least one cycle around ~Heff .
If the change of angle of ~Heff is small during this time, δφ ≪ 2π, then ~sν averages to
(~sν ·~eM

3 )~eM
3 . Because of ~eM

3 · d
dt~e

M
3 = 0 and equation A.26, the angle θM stays constant.

According to equation A.27, no neutrino transitions can occur and we have adiabatic
transitions. The relevant condition is:

δφ2 =

(
~eM
3 × (~eM

3 +
d

dt
~eM
3 δt)

)2

=

∣∣∣∣
d

dt
~eM
3

∣∣∣∣
2

. (A.28)

As ~eM
3 = ~Heff/| ~Heff | (because it is an eigenvector of the propagation states) and

δt & 2π/| ~Heff |
∣∣∣∣
d

dt
~eM
3

∣∣∣∣ =
~̇Heff × ~Heff

| ~Heff |2
≪ | ~Heff | . (A.29)

In words, this means that the rate of change of ~Heff is much smaller than the rotation
of ~sν around ~Heff .

We will now qualitatively retrace the neutrino evolution in the sun using the
density matrix formalism. Note that the third matter basis vector is given as
~eM
3 = − sin 2θM~e

F
1 + cos 2θM~e

F
3 .

At the creation point of the neutrinos, the density is greater than the resonance
density Ne > NR

e and thus cos 2θM < 0. Here, the neutrinos are completely in their
flavour eigenstate, e.g. νe, and thus parallel to ~eF

3 . ~eM
3 has a negative sign on its ~eF

3

component, meaning that the electron neutrinos would mostly consist of the heavy
νM
2 neutrinos. If Ne ≫ NR

e , then cos 2θM and consequently θM ≈ π/4 leading to the
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(a) Ne > NR
e (b) Ne < NR

e

Figure A.1: Adiabatic neutrino evolution
The left picture shows the neutrino flavour isospin at high, the right at low densities.
For a detailed explanation see the text.

νe being mostly in the νM
2 state. As they propagate, the ~sν vector starts precessing

around ~Heff which is parallel to ~eM
3 .

If Ne < NR
e and cos 2θM > 0, ~eM

3 has a positive sign in front of its ~eF
3 component.

Consequently, νe are mostly made up of νM
1 . As the neutrino leaves the star, Ne → 0

and the oscillation parameters converge to their vacuum value θM → θ and ∆m2
M →

∆m2.
There are two possibilities to investigate, the adiabatic propagation and the maximal

violation of adiabaticity.
Adiabatic neutrino evolution is schematically shown in figure A.1. If the density

changes slowly, the angle between ~Heff and ~sν changes little, while θM changes its
sign. In the spin picture this means that the rotation speed of ~sν around ~Heff and thus
~eM
3 is much higher than the speed of change in angle between ~Heff and ~eF

3 . ~Heff drags
~sν along. Neutrinos created as electron neutrinos with large contribution of the heavy
state leave the star as such and will mainly be detected as muon neutrinos.

However, if the density changes rapidly, the change in ∢( ~Heff~sν) is large (sketched
in figure A.2). In the case of maximal violation of adiabaticity, a flip occurs and
SM

3 → −SM
3 . The change in angle between ~Heff and ~eF

3 is much faster than the
rotation speed of ~sν around ~Heff . In the spin picture this means that because of the
slow precession, ~sν stays in place while ~Heff and thus ~eM

3 switch the sign relative to
~eF
3 . Consequently, neutrinos created as νe, consisting largely of νM

2 , convert to the ν1

state on their way out of the star. They will mainly be detected as electron neutrinos.
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(a) Ne > NR
e (b) Ne < NR

e

Figure A.2: Neutrino evolution in the case of maximally violated adiabaticity
The left picture shows the neutrino flavour isospin at high, the right at low densities.
For a detailed explanation see the text.

A.2.2 General Synchronized Neutrino Systems

This section aims at describing the generalization of the simple case of a synchronized
neutrino ensemble starting from the considerations in section 1.2.4.3. For a more
complete approach refer to [102].

General Synchronized Systems in Absence of Matter

Consider a co-rotating reference frame, rotating with an angular velocity of −Ω ~HV.
The e.o.m. 1.70 and 1.71 then take the form

d

dt
~̃si = ~̃si × (µ̃V,i

~HV + µν
~̃
S) and

d

dt
~̃
S =

∑

i

µ̃V,ini
~̃si × ~HV , (A.30)

with

µ̃V,i ≡ µV,i − Ω . (A.31)

As ~S and
~̃
S are the same vectors in different reference frames, synchronization in one

frame entrains synchronization in all frames. Take e.g. electron anti-neutrinos with

166



A Details on Neutrino Oscillations

~s = −1
2~e

f
3 and µV = −∆m2/2E. By performing a rotation with Ω = −∆m2/E, we

replace ν̄e by νµ.

We saw before that |µν
~S| ≫ |µV,i|max is the condition for synchronization of a

neutrino system. From the technique of co-rotating frames it becomes evident that
|µV,i|max is not uniquely defined. The spread of the neutrino energies ∆µ, however,
is a property intrinsic to all possible co-rotating frames. One can conclude that the
condition for synchronization of the neutrino gas is

|µν
~S| ≫ ∆µV , (A.32)

with the spread

∆µV ≡
(µV,i)max − (µV,i)min

2
. (A.33)

Synchronized Systems in Matter

If we assume a fixed matter background, the e.o.m. 1.70 and 1.71 modify to

d

dt
~si = ~si × (µV,i

~HV + ~He + µν
~S) and

d

dt
~S =

∑

i

µV,ini~si × ~HV + ~S × ~He . (A.34)

In the case where | ~He| ≫ |〈µV〉|, the ~HV-term can be neglected. If we consider a co-
rotating frame with an angular frequency of − ~He, we see that the total NFIS ~S stays
fixed and the ~si precess around it. Ergo, all neutrinos remain in their initial state.

The case where |µν
~S| ≫ | ~He| ∼ |〈µV〉| can be treated like the one without matter

as the e.o.m. for ~si stay the same, namely equation 1.73, the individual NFIS’s still
precess around ~S. However, equation 1.71 alters to

d

dt
~S ≃ ~S × ~Heff , (A.35)

with ~Heff ≡ 〈µV〉 ~HV + ~He. Because this equation is equivalent to A.22, it follows that
a neutrino gas with a total NFIS ~S behaves just as a single NFIS with ~sν = ~S/2|~S| and
µV = 〈µV〉 would in the same matter background. With definition 1.64 we conclude
that for (∆m2〈µV〉) > 0 this behavior is equivalent to a neutrino (or an anti-neutrino
for < 0) with energy Esync ≡ |∆m2/2〈µV〉|.

A.2.3 Bi-Polar Neutrino Systems

This section tries to provide a comprehensive approach to bi-polar systems. More
details can be found in [102].
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A.2.3.1 Simple System without Matter

For simplicity, we start with a system consisting of only νe and ν̄e in equal number
densities nν with energies µV+ = −µV− = µV for all (anti-)neutrinos. We sum equation
1.63 over all neutrinos and anti-neutrinos respectively and get

d

dt
~Sν = ~Sν ×

(
µV

~HV + µν
~Sν̄

)
and

d

dt
~Sν̄ = ~Sν̄ ×

(
−µV

~HV + µν
~Sν

)
. (A.36)

With the definitions of

~S+ ≡ ~Sν + ~Sν̄ and ~S− ≡ ~Sν − ~Sν̄ , (A.37)

we arrive at the equations of motion

d

dt
~S+ = µV

~S− × ~HV and

d

dt
~S− = µV

~S+ × ~HV + µν
~S− × ~S+ . (A.38)

The initial conditions where no mixing has yet occurred, are given by

~Sν(0) =
nν

2
~eF
3 , ~Sν̄(0) = −nν

2
~eF
3 (A.39)

and thus

~S+(0) = 0 and

~S−(0) = nν~e
F
3 = nν(sin 2θ~eV

1 + cos 2θ~eV
3 ) . (A.40)

From these and from equation A.38, one can derive that ~S+ changes only in the ~eV
2 -

direction. As ~eV
3 ≡ ~HV we get

~S+ · ~eV
1 = ~S+ · ~eV

3 = ~S− · ~eV
2 = 0 . (A.41)

To understand the evolution of the neutrinos as a gas, we need to follow the develop-
ment along the ~eV

3 -direction. As seen from A.41, it is given by

sVν,3 = −sVν̄,3 =
~S− · ~eV

3

2nν
=
|~S−| cos ϑ

2nν
, (A.42)

with ϑ being the angle between ~S− and ~HV = ~eV
3 .

To derive the behavior of this angle, we look at the total energy. As said before, it
is constant and thus equation 1.65 simplifies to

E = −µV
~S− · ~HV −

µν

2
~S 2
+ = −µVnν cos 2θ . (A.43)
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From this, we derive that

~S− · ~HV = |~S−| cos ϑ = nν cos 2θ − µνnν

2µV

~S 2
+ . (A.44)

It can be seen from equations 1.79 that ~S 2
+ + ~S 2

− = n2
ν is constant. With equation A.43

and the definitions

s− ≡ |~S−|
nν

and

ncri
ν ≡ 2µV

µν
cos 2θ (A.45)

we derive the angle ϑ:

cos ϑ = cos 2θ

[(
1− nν

ncri
ν

)
1

s−
+

(
nν

ncri
ν

)
s−

]
. (A.46)

Note that the neutrino interaction potential is delimited by µν < 0 (equation 1.67).
s− describes the alignment of the system with the maximal value 1 standing for full
anti-alignment of all neutrinos and anti-neutrinos and s− > 0.

In case of normal mass hierarchy, µV > 0 and thus ncri
ν < 0 leading to 1 ≥ cos ϑ ≥

cos 2θ. Consequently, −2θ ≤ ϑ ≤ 2θ, indicating that flavor mixing can maximally
reach the vacuum level. For small vacuum mixing, the neutrinos stay close to their
initial state.

The circumstances are much more involved for the inverted mass hierarchy where
µV < 0. We have to consider three distinct cases and the different behavior of the
respective derivative

d

ds−
cos ϑ = cos 2θ

[
−
(

1− nν

ncri
ν

)
1

s2−
+

nν

ncri
ν

]
. (A.47)

nν/n
cri
ν < 1/2: In this case, d

ds−
cosϑ ≤ 0 and thus −2θ ≤ ϑ ≤ 2θ. We have the same

situation as in the normal hierarchy case.

1/2 < nν/n
cri
ν < 1: At s− ∼ 1 the derivative is positive but decreases to zero and

below as s− becomes smaller. We have a maximal angle ϑmax and cos ϑmax ≤ cosϑ ≤
cos 2θ. ϑ starts out at 2θ, increases to ϑmax and then decreases again as s− becomes
smaller. This motion of ~S− is mirrored in the other half of the plane defined by ~eV

1

and ~eV
3 .

1 ≤ nν/n
cri
ν : The derivative is always positive and thus −1 ≤ cos ϑ ≤ cos 2θ. The

angle oscillates around 2θ and 2π − 2θ. In the limit nν/n
cri
ν ≫ 1 the neutrinos are

forced into full anti-alignment as s− ∼ 1 and thus full conversion of νe and ν̄e can
occur, even if θ ≪ 1.
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ê
v
x

ê
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z

ê
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Figure A.3: Path described by ~sν in the vacuum basis [102]
The solid line depicts the track of ~sν for the normal, the dashed line the inverted
hierarchy for the case 1/2 < nν/n

cri
ν < 1.

The track described by ~sν is the intersection of the paraboloid surface defined equa-
tion A.43 with ~HV · ~S− = 2nν = 2nνs

V
ν,3 and S 2

+ = 2n2
νs

2
ν,2 and the sphere defined by

~S2
ν = ~S2

+ + ~S2
− = const. It is shown in figure A.3.

With eF
3 = sin 2θ~eV

1 +cos 2θ~eV
3 , equation A.42, eF

1 ⊥ eF
3 and trigonometric relations,

the flavor evolution can be determined to:

sFν,3 = ~sν · ~eF
3 =

s−
2

cos(ϑ− 2θ) . (A.48)

The oscillation period in the bi-polar case can be estimated as follows. In the limit
nν/n

cri
ν ≫ 1 the second equation of 1.79 tells us that ~S− rotates around ~S+ with

a frequency of |µν |〈|~S+|〉. From the first equation in 1.79 one can derive that the
change of |~S+| is proportional to ~S− ~HV and thus also dependent on ϑ. The maximal
value |~S+| can thus reach is T |µV

~S−| and the minimum would be zero. Consequently,
〈|~S+|〉 ∼ |~S−|T ≃ |µV|nν . For the bi-polar period we derive

Tbi ∼
1√

nν |µVµν |
. (A.49)

A.2.3.2 General Bi-Polar Neutrino Systems

The same approach used for the generalization of synchronized systems can be used
for the bi-polar case.
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General Bi-Polar Systems in Absence of Matter

We consider a system having different energies for e.g. νe and ν̄e. We define the
Hamiltonian vector as

~H± ≡
µV+ ± µV−

2
~HV , (A.50)

with the µV+ the energy of the neutrino starting with ~s = +1
2~e

F
3 (i.e. the νe) and µV−

the energy of the neutrino starting as ~s = −1
2~e

F
3 (i.e. the ν̄e). The equations of motion

in this case are

d

dt
~S+ = ~S+ × ~H+ + ~S− × ~H− and

d

dt
~S− = ~S− × ~H+ + ~S+ × ~H− + µν

~S− × ~S+ . (A.51)

When going to the co-rotating frame with angular velocity of− ~H+, the above equations

reduce to equations A.37 for
~̃
S+ and

~̃
S−.

All relevant of neutrino mixing e.g. νe − ν̄e, ν̄µ − νµ, νe − νµ and ν̄µ − ν̄e can be
reduced to the simple system without matter discussed before. The governing value
for this case is the energy difference between the neutrino types. The different possible
mixing scenarios are shown in table A.1. The remaining mixing possibilities cannot
form distinct NFIS blocks and thus no bi-polar oscillations can occur.

hierarchy νe − ν̄e ν̄µ − νµ νe − νµ ν̄µ − ν̄e

∆m2 > 0 never always Eνe > Eνµ Eν̄µ < Eν̄e

∆m2 < 0 always never Eνe < Eνµ Eν̄µ > Eν̄e

Table A.1: Conditions for bi-polar neutrino swapping of mono-energetic neutrino
systems.

Bi-Polar Systems with Matter Background

If we assume a matter background, ~H+ modifies to

~H+ ≡
µV+ + µV−

2
~HV + ~He . (A.52)

~H− stays the same as before and is decomposed into the vectors ~H−⊥ and ~H−‖ which

are defined as being perpendicular and parallel to ~H+. As we change into the co-
rotating frame with angular velocity − ~H+, we obtain equation similar to the e.o.m.
A.38, however, with time-dependent Hamiltonian vectors:
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d

dt
~̃
H−⊥ =

~̃
H−⊥ × ~H+ and

d

dt
~̃
H−‖ = 0 . (A.53)

If we have a very large matter background,
~̃
H−⊥ will rotate rapidly and the NFIS blocks

will not be able to follow it. Its effect will thus stay small and, with the replacement

of µV → ~̃
H−‖, it can be treated like the simple case with no matter background.

In case of a νe − ν̄e system with a smaller but still large matter background, the

NFIS blocks would initially be aligned with ~He ≈ ~H+. While
~̃
H−⊥ acts to break

this alignment its effects are small because on the one hand the effect of
~̃
H−⊥ gets

smaller as the angle between
~̃
S and

~̃
H−‖ increases and on the other hand

~̃
H−‖ acts as

a restoring force. Again, we arrive at similar conditions as in the simplified case with

µV
~HV → ~̃

H−‖.
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B Properties of the Shifted Lognormal

Function

The lognormal function describes a set of random variables x whose natural logarithm
are normally distributed. In addition to the standard lognormal function, we need to
include an additional parameter, a shift in x, to describe the noise hit distribution (see
section 4.4.1.3):

p(x;µ, σ, s) =
1

(x+ s)σ
√

2π
exp

(
−(ln(x+ s)− µ)2

2σ2

)
. (B.1)

B.1 Derivation of the Moments

As a shifted lognormal is not commonly used, we will derive its moments in this section.
The nth moment a distribution is defined as:

〈xn〉 =

∫ ∞

−s
xn p(x;µ, σ, s)dx . (B.2)

Note that the integration range is restricted by the definition range of the shifted log-
normal function. In the case of s = 0, the moments are easily found by the substitution
y = lnx:

〈xn〉 =

∫ ∞

0

xn

xσ
√

2π
exp

(
−(lnx− µ)2

2σ2

)
dx

=

∫ ∞

0

1

σ
√

2π
exp

(
−(y − µ)2

2σ2
− ny

)
dy

=

∫ ∞

0

1

σ
√

2π
exp

(
−(y − (µ+ nσ2)2

2σ2
+ nµ+

n2

2
σ2

)
dy

= enµ+ n2

2
σ2

(B.3)

However, a general formula for the moments is not easily defined if s 6= 0. We therefore
consider the first three moments and derive the expectation value, the variance and
the skewness:

〈x〉 =

∫ ∞

−s

x

(x+ s)σ
√

2π
exp

(
−(ln(x+ s)− µ)2

2σ2

)
dx (B.4)

The Substitution y = x+ s leads to

174



B Properties of the Shifted Lognormal Function

〈x〉 = −s+

∫ ∞

0

y

yσ
√

2π
exp

(
−(ln y − µ)2

2σ2

)
dx (B.5)

Using equation B.3 we get

〈x〉 = eµ+ σ2

2 − s (B.6)

as the expectation value. The variance results in:

V (x) =

∫ ∞

−s

(x− 〈x〉)2
(x+ s)σ

√
2π

exp

(
−(ln(x+ s)− µ)2

2σ2

)
dx

=

∫ ∞

0

(y − eµ+ σ2

2 )2

yσ
√

2π
exp

(
−(ln y − µ)2

2σ2

)
dx . (B.7)

Which is equal to the Variance at s = 0:

V (x) = (eσ
2 − 1)e2µ+σ2

. (B.8)

Since the skewness is defined by

S(x) =
〈(x− 〈x〉)3〉
V (x)

3
2

, (B.9)

it is obvious that the shift parameter s cancels as in equation B.7. The skewness of
the shifted lognormal is found to be:

S(X) = (eσ
2
+ 2)

√
eσ2 − 1 . (B.10)

B.2 Connection between Moments of Independent
Distributions

When having two randomly distributed values and adding them up, the resulting
expectation value and variance are well known. However, as we intend to determine
the parameters of a shifted lognormal, we need three different input equations. We
will therefore proceed to derive a relation between skewnesses.

We assume that the two known underlying distributions are described by the char-
acteristic functions Φx(k) and Φy(k). We know that (see also equation 4.16)

Φz(k) = Φx(k)Φy(k) . (B.11)

The moments of a probability distribution function can be derived from the charac-
teristic function as follows:
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dm

dkm
Φx(k)

∣∣∣∣
k=0

=

∫
(ix)meikxf(x)dx

∣∣∣∣
k=0

= im〈xm〉 . (B.12)

In the general case, we get

∫
zmeikzf(z)dz

∣∣∣∣
k=0

=

∫ ∫
(x+ y)mei(x+y)kf(z)dxdy

∣∣∣∣
k=0

(B.13)

leading to 〈zm〉 = 〈(x+y)m〉. The relationship for the expectation values 〈z〉 = 〈x〉+〈y〉
can be seen trivially, as:

〈x+ y〉 = 〈x〉+ 〈y〉 . (B.14)

The variance, the second central moment, is only slightly more complicated with:

〈(z − 〈z〉)2〉 = 〈(x+ y − 〈x+ y〉)2〉
= 〈x2 + y2 + 〈x+ y〉2 + 2xy − 2x〈x+ y〉 − 2y〈x+ y〉〉 . (B.15)

Using 〈xnym〉 = 〈xn〉〈ym〉 and 〈x+ y〉 = 〈x〉+ 〈y〉 leads to:

V (z) = 〈(z − 〈z〉)2〉 = 〈x2〉 − 〈x〉2 + 〈y2〉 − 〈y〉2 = V (x) + V (y) . (B.16)

Finally let us consider the skewness:

〈(z − 〈z〉)3〉 = 〈z3〉 − 3〈z2〉〈z〉 + 2〈z〉3

= 〈(x+ y)3〉 − 3〈(x+ y)2〉〈(x+ y)〉+ 2〈(x+ y)〉3

= 〈x3〉+ 3〈x2〉〈y〉+ 3〈x〉〈y2〉+ 〈y3〉
−3
(
〈x2〉〈x〉+ 2〈x〉2〈y〉+ 〈x〉〈y2〉+ 〈x2〉〈y〉+ 2〈x〉〈y〉2 + 〈y2〉〈y〉

)

+2
(
〈x〉3 + 3〈x〉2〈y〉+ 3〈x〉〈y〉2 + 〈y〉3

)

= 〈x3〉 − 3〈x2〉〈x〉+ 2〈x〉3 + 〈y3〉 − 3〈y2〉〈y〉+ 2〈y〉3

= 〈(x− 〈x〉)3〉+ 〈(y − 〈y〉)3〉 . (B.17)

Consequently, the third central moment of two randomly distributed variables simply
adds up. For the skewness, this means:

S(z) =
S(x)V (x)

3
2 + S(y)V (y)

3
2

V (x)
3
2

. (B.18)
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B.3 Derivation of the Defining Lognormal Parameters

We will now proceed to derive the parameters describing of a shifted lognormal from
its statistical moments.

The expectation value, the variance and the skewness for a shifted lognormal were
given in B.6, B.8 and B.10 respectively.

We will start with the skewness as it features only the σ. Taking the square of
equation B.10 leads to:

S2 = e3σ2
+ 3e2σ2 − 4 . (B.19)

This is a cubic equation and theoretically be solved by 3 solutions. However, those are
imaginary and as such uninteresting for our purpose. The remaining real solution is:

σ2 = ln


 3

√
S2 + 2 + S

√
S2 + 4

2
+

3

√
S2 + 2− S

√
S2 + 4

2
− 1


 . (B.20)

This leads to

µ =
1

2

(
lnV − ln(eσ

2 − 1)− σ2
)

(B.21)

and

s = −E + eµ+ σ2

2 . (B.22)
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As dead time setting changed within the years 2005 and 2006, we tag the datasets by
“dt” (data taken with dead time) and “ndt” (data taken without dead time).

Dataset
Allowed mean rates / Hz

Disqualified OMs
B4 B10 B13 B19

2000 200 - 400 850 - 1250 1 - 0 550 - 850 26.0%
2001 200 - 450 950 - 1400 1 - 0 600 - 900 20.4%
2002 150 - 300 550 - 800 1 - 0 350 - 550 16.6%
2003 200 - 450 1000 - 1550 800 - 1450 600 - 900 26.6%
2004 150 - 300 550 - 800 550 - 750 350 - 550 32.7%

2005 ndt 250 - 500 1000 - 1500 750 - 1500 600 - 950 27.4%
2006 ndt 250 - 450 1000 - 1500 900 - 1400 600 - 950 30.4%
2006 dt 150 - 300 550 - 850 450 - 800 350 - 550 29.3%
2007 150 - 300 500 - 750 450 - 800 300 - 550 26.0%
2008 150 - 300 550 - 750 1 - 0 350 - 550 20.4%

Table C.1: Cuts applied to the OM mean rates
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Figure C.1: OM mean rates as measured in 2007
Mean rates between February 26 and October 17, 2007, derived according to sec-
tion 4.1.2.
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Dataset Binning [s]
Allowed fano factors

Loss
B4 B10 B13 B19

2000
0.5 1.2 - 1.8 1.3 - 2.0 0.5 - 0.0 1.4 - 2.1 0.2%
4 1.1 - 2.0 1.2 - 2.3 0.5 - 0.0 1.3 - 2.4 0.3%
10 0.9 - 2.2 1.0 - 2.5 0.5 - 0.0 1.0 - 2.6 0.02%

2001
0.5 1.0 - 2.1 1.0 - 2.2 0.5 - 0.0 1.0 - 2.2 0.2%
4 0.9 - 2.3 1.1 - 2.5 0.5 - 0.0 1.0 - 2.6 0.2%
10 0.8 - 2.5 0.9 - 2.9 0.5 - 0.0 0.9 - 2.8 0.2%

2002
0.5 0.9 - 1.3 0.8 - 1.3 0.5 - 0.0 0.8 - 1.4 0.2%
4 0.8 - 1.6 0.7 - 1.5 0.5 - 0.0 0.8 - 1.6 0.3%
10 0.6 - 1.7 0.6 - 1.7 0.5 - 0.0 0.6 - 1.8 0.3%

2003
0.5 1.4 - 2.1 1.5 - 2.3 1.6 - 2.3 1.5 - 2.4 0.4%
4 1.2 - 2.3 1.4 - 2.6 1.4 - 2.6 1.4 - 2.6 0.5%
10 1.0 - 2.6 1.1 - 2.8 1.2 - 2.8 1.1 - 2.8 0.6%

2004
0.5 0.9 - 1.5 0.8 - 1.3 0.9 - 1.3 0.8 - 1.4 1.3%
4 0.8 - 1.6 0.7 - 1.5 0.8 - 1.5 0.8 - 1.6 1.4%
10 0.6 - 1.7 0.6 - 1.7 0.6 - 1.7 0.7 - 1.8 1.4%

2005 ndt
0.5 1.4 - 2.1 1.5 - 2.3 1.6 - 2.3 1.4 - 2.4 1.2%
4 1.3 - 2.4 1.4 - 2.6 1.4 - 2.6 1.3 - 2.6 1.5%
10 1.1 - 2.7 1.1 - 2.9 1.1 - 2.9 1.1 - 2.9 1.5%

2006 ndt
0.5 1.4 - 2.1 1.5 - 2.3 1.5 - 2.3 1.5 - 2.4 1.1%
4 1.3 - 2.7 1.3 - 2.6 1.4 - 2.6 1.4 - 2.7 1.4%
10 1.2 - 2.8 1.2 - 2.9 1.2 - 2.9 1.2 - 2.9 1.5%

2006 dt
0.5 0.8 - 1.4 0.8 - 1.3 0.8 - 1.4 0.9 - 1.4 1.3%
4 0.7 - 1.6 0.7 - 1.5 0.7 - 1.5 0.8 - 1.6 1.5%
10 0.6 - 1.7 0.6 - 1.7 0.6 - 1.7 0.7 - 1.8 1.5%

2007
0.5 0.8 - 1.5 0.9 - 1.3 0.9 - 1.3 0.9 - 1.4 0.2%
4 0.8 - 1.5 0.8 - 1.5 0.8 - 1.6 0.7 - 1.6 0.3%
10 0.6 - 1.7 0.6 - 1.9 0.6 - 1.8 0.7 - 1.8 0.02%

2008
0.5 0.8 - 1.6 0.8 - 1.4 0.5 - 0.0 0.8 - 1.4 0.2%
4 0.8 - 1.5 0.7 - 1.5 0.5 - 0.0 0.8 - 1.6 0.2%
10 0.6 - 1.8 0.6 - 1.8 0.5 - 0.0 0.6 - 1.8 0.2%

Table C.2: Cuts applied to the OM fano factors
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Dataset Binning [s]
Maximal skewness

Loss
B4 B10 B13 B19

2000
0.5 0.6 0.5 0.0 0.5 0.3%
4 0.8 0.8 0.0 0.8 0.1%
10 1.1 1.1 0.0 1.1 0.4%

2001
0.5 0.7 0.5 0.0 0.5 0.3%
4 0.8 0.8 0.0 0.8 0.1%
10 1.1 1.1 0.0 1.1 0.1%

2002
0.5 0.5 0.4 0.0 0.4 0.1%
4 0.7 0.7 0.0 0.7 0.1%
10 1.0 1.0 0.0 1.0 0.1%

2003
0.5 0.7 0.5 0.5 0.5 0.3%
4 0.9 0.8 0.8 0.8 0.1%
10 1.1 1.1 1.0 1.1 0.1%

2004
0.5 0.5 0.4 0.4 0.5 0.1%
4 0.8 0.8 0.8 0.8 0.05%
10 1.1 1.1 1.1 1.1 0.1%

2005 ndt
0.5 0.7 0.6 0.6 0.6 0.3%
4 0.9 0.8 0.8 0.8 0.1%
10 1.1 1.1 1.1 1.1 0.1%

2006 ndt
0.5 0.7 0.5 0.5 0.6 0.4%
4 0.9 0.8 0.8 0.8 0.2%
10 1.1 1.1 1.1 1.1 0.1%

2006 dt
0.5 0.5 0.4 0.4 0.5 0.1%
4 0.9 0.8 0.8 0.8 0.001%
10 1.1 1.1 1.1 1.1 0.001%

2007
0.5 0.5 0.4 0.4 0.4 0.3%
4 0.9 0.7 0.8 0.8 0.1%
10 1.1 1.1 1.1 1.1 0.4%

2008
0.5 0.5 0.4 0.0 0.5 0.3%
4 0.8 0.8 0.0 0.8 0.1%
10 1.1 1.1 0.0 1.2 0.1%

Table C.3: Cuts applied to the absolute skewness
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Year Minimum uptime / 106 s Number of OMs disqualified

2000 5.0 17
2001 6.0 34
2002 9.0 19
2003 4.0 30
2004 5.0 11

2005 ndt 9.0 20
2006 ndt 5.0 18
2006 dt 4.5 39
2007 5.5 39
2008 9.0 31

Table C.4: Cut on the OM uptime for all datasets.

Year Maximal reduced χ2 Number of OMs disqualified

2000 2.2 25
2001 6.0 28
2002 2.5 28
2003 2.0 24
2004 6.0 31

2005 ndt 2.4 36
2006 ndt 2.6 23
2006 dt 2.0 18
2007 3.5 33
2008 4.0 27

Table C.5: Cut on the reduced χ2 of the lognormal fit to the OMs for each dataset.

Year Perturbation ratio / 10−5 Number of OMs disqualified

2000 2.5 16
2001 3.0 14
2002 1.0 8
2003 2.6 33
2004 3.6 32

2005 ndt 2.3 35
2006 ndt 2.5 45
2006 dt 1.7 8
2007 2.5 7
2008 1.6 14

Table C.6: Cut on the OM perturbation probability for each dataset
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Year Allowed activations per run

2000 100
2001 100
2002 90
2003 90
2004 160

2005 ndt 200
2006 ndt 180
2006 dt 90
2007 220
2008 250

Table C.7: Maximally allowed OM activations per run

Year Minimal number of active OMs Amount of data lost

2000 280 3.1%
2001 300 0.9%
2002 320 2.9%
2003 365 4.0%
2004 330 1.7%

2005 ndt 375 4.8%
2006 ndt 370 2.3%
2006 dt 370 1.9%
2007 365 6.3%
2008 275 2.5%

Table C.8: Minimal required number of active OMs

χ2 ∈ 90% χ2 ∈ 99.999%

0.5s 3.0 a 3.5 a
1.0s 2.7 a 3.5 a
1.5s 2.4 a 3.4 a
2.0s 2.2 a 3.4 a
2.5s 1.9 a 3.4 a
3.0s 1.7 a 3.4 a

Table C.9: Lifetimes for each rebinning and χ2 setting.
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LL ONeMg SN1987A BH-LS BH-SH

2000 6.9 6.9 6.9 15.0 15.0
2001 7.0 6.9 7.0 15.0 15.0
2002 7.6 7.4 7.5 15.0 15.0
2003 6.7 6.9 6.8 15.0 15.0
2004 7.4 7.4 7.6 15.0 15.0

2005 ndt 6.9 6.9 6.9 15.0 15.0
2006 ndt 6.9 6.9 6.8 15.0 15.0
2006 dt 7.6 7.4 7.5 15.0 15.0
2007 7.6 7.3 7.4 15.0 15.0
2008 7.3 7.1 7.3 15.0 15.0

Table C.10: Significance cuts on the optimal rebinnings

LL ONeMg SN1987A BH-LS BH-SH

2000 71% 25% 60% 80% 93%
2001 62% 22% 57% 68% 88%
2002 87% 38% 90% 75% 80%
2003 61% 22% 64% 59% 82%
2004 86% 37% 77% 74% 81%

2005 ndt 59% 43% 54% 63% 87%
2006 ndt 57% 21% 53% 63% 87%
2006 dt 90% 41% 91% 76% 81%
2007 89% 42% 91% 77% 82%
2008 87% 38% 79% 78% 82%

Average 75% 34% 72% 71% 84%

Table C.11: Detection efficiencies at the optimal rebinnings
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