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Abstract: Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss
of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these
disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an
imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving
cell death through apoptosis, autophagy, and inflammation. This review provides an overview of
ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber’s
hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis
(ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating
the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.

Keywords: oxidative stress; optic nerve; retinal ganglion cell; glaucoma; Leber’s hereditary optic
neuropathy; ischemic optic neuropathy; optic neuritis

1. Introduction

Optic nerve diseases encompass a wide range of disorders characterized by optic
nerve atrophy, resulting from the loss of retinal ganglion cells (RGCs) and leading to
sight-threatening conditions [1–3]. These pathologies include:

1. Glaucoma: Glaucoma has a worldwide prevalence of approximately 3.54% in the
population aged 40–80 years [4]. It is one of the leading causes of irreversible blindness
globally [5], along with cataract and age-related macular degeneration [6,7];

2. Hereditary optic neuropathies, such as Leber’s hereditary optic neuropathy (LHON):
LHON has a prevalence of 2–4 in 100,000 for complete penetrance [8–12]. In cases of
incomplete penetrance, the prevalence can reach 1 in 800 [13,14];

3. Anterior ischemic optic neuropathies (AION): This category includes arteritic forms,
like giant cell arteritis (GCA), which has a pooled prevalence of approximately 51.74 in
100,000 for individuals over the age of 50 [15]. Nonarteritic forms have a reported
prevalence of approximately 102.87 in 100,000 in the general population over the age
of 40 in the Republic of Korea [16];

4. Inflammatory diseases, such as optic neuritis: Optic neuritis has a prevalence of
around 115 in 100,000 in the age range of 20–45 years and approximately 115 in
100,000 overall [17–20];

5. Traumatic optic neuropathies: The overall incidence of traumatic optic neuropathies
ranges from 0.7% to 2.5% [21–24];

6. Dysthyroid optic neuropathies: These occur in 3–7% of individuals with Graves
orbitopathy, which itself has a prevalence of 90 to 300 in 100,000 [25–27];

7. Infiltrative optic neuropathies, such as leukemic optic neuropathy, which presents in
approximately 16% and 18% of all chronic and acute leukemia cases, respectively [28];
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8. Congenital anomalies of the optic nerve, such as optic nerve hypoplasia: The estimated
prevalence of optic nerve hypoplasia is between approximately 10.9 and 17.3 in
100,000 individuals under the age of 18 [29,30];

9. Nutritional and toxic optic neuropathies: The prevalence of these conditions varies
depending on social and geographical factors [31,32].

Glaucoma is the most prevalent optic nerve disease worldwide (Figure 1) [6,7]. LHON
has a low estimated prevalence for complete penetrance cases [8–12], while the prevalence
is much higher for carriers of mutation variants in the general population [13,14]. The
common underlying feature in all optic nerve diseases is the damage and loss of RGCs and
their axons, which gradually leads to optic nerve degeneration [3,33,34]. RGCs have high
energy requirements and are particularly susceptible to alterations in their energy supply,
mainly generated in the mitochondria through the electron transport chain (ETC) [35].
Oxidative stress plays a pivotal role in the pathophysiology of optic nerve diseases such
as glaucoma, LHON, and AION. Imbalances between reactive oxygen species (ROS) as
well as reactive nitrogen species (RNS) generation and antioxidant systems lead to reactive
species overproduction, adenosine triphosphate (ATP) insufficiency, irreversible cellular
injuries, and ultimately RGC loss [3,36–45].
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Figure 1. Prevalence (per 100,000) in some of the most frequent optic neuropathies. LHON: Leber’s
hereditary optic neuropathy; ON: optic neuritis; NA-AION: nonarteritic anterior ischemic optic
neuropathy; A-AION: arteritic anterior ischemic optic neuropathy; GCA: giant cell arteritis. * We
used a y-axis break in consideration of the remarkably higher prevalence of glaucoma compared to
all other optic nerve disorders. ** LHON prevalence in case of incomplete penetrance is meaningfully
higher than in complete penetrance due to the high frequency of the variant mutant carriers.

Considering the high global prevalence of glaucoma and the limited treatment options
available for most optic neuropathies [33], it becomes essential to explore new research
avenues and investigate novel therapeutic approaches. This review aims to shed light on
the role of oxidative damage in the pathophysiology of optic nerve diseases. Specifically, we
provide an overview of the current understanding of oxidative stress as a key pathological
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factor and explore its potential as a viable therapeutic target. We will especially focus
on four of the most prevalent and clinically challenging optic nerve diseases, glaucoma,
LHON, AION, and ON. Ultimately, our goal is to identify novel curative strategies that
may pave the way for improved treatment options in these conditions.

2. Anatomy and Perfusion of the Visual Pathway

The optic nerve, also known as the second cranial nerve [46], is composed of thin
(0.1 µm) and lengthy (~50 mm) RGC axons that extend from the retina to the lateral
geniculate nucleus, resulting in a soma/axon ratio of approximatively 1:10,000 [35]. Within
the retinal layers, these axons merge to form the retinal nerve fiber layer [47], which runs
parallel to the superficial blood vessels. The inner retina, including the outer plexiform layer
through the nerve fiber layer, is supplied by the central retinal artery. On the other hand, the
avascular outer retina, consisting of the outer nuclear layer and photoreceptors, receives its
blood supply through diffusion from the choriocapillaris. The choriocapillaris is nourished
by short posterior ciliary arteries, which branch from the ophthalmic artery [48,49]. Notably,
retinal oxygenation exhibits variability depending on light or dark conditions due to the
different oxygen demand of rods and cones. In humans, rods, which are responsible for
vision in low light, are present in approximately 120 million, while cones number around
6 million [50]. Consequently, retinal oxygen consumption is reduced by half in the presence
of light, attributed to the decreased activity of rods compared to cones [50].

Optic nerve axons account for approximately 38% of all axons within the central
nervous system [51]. Around 1.2 million RGC axons converge to form the optic nerve head
(ONH), also referred to as the optic papilla or optic disc. The ONH exhibits a brighter
central depression known as the optic cup [51–54]. Blood supply to the ONH in humans is
provided by the arterial circle of Zinn–Haller [48].

The optic nerve can be divided into four compartments: the intraocular segment
(1–2 mm), which includes the retinal nerve fiber layer (RNFL) and extends from the ONH to
the lamina cribrosa; the intraorbital segment (25–30 mm), which spans from the retrobulbar
tract to the optic canal; the intracanalicular segment (5–9 mm); and the intracranial segment
(9–10 mm), which extends from the optic canal to the optic chiasm [51]. Four distinct
regions can be identified within the optic nerve head: the nerve fiber layer, the prelaminar
region, the lamina cribrosa, and the retrolaminar region [47]. The lamina cribrosa serves
as a supportive structure for the RGC axons within the ONH [55,56] and consists of
approximately 200–300 porous apertures through which the optic nerve passes from the
sclera into the retrobulbar cavity [51]. Deformations of the lamina cribrosa may indicate
RGC loss and can signify the initial stages of glaucomatous optic neuropathy [57]. Once
beyond the lamina cribrosa, the optic nerve becomes myelinated by oligodendrocytes,
increasing its diameter from 1–2 mm to 3–4 mm [51]. The intraorbital, intracanalicular, and
intracranial segments receive their blood supply from the posterior ciliary arteries as well
as the circle of Willis [58].

The two optic nerves converge at the optic chiasm, where nerve fibers originating
from the nasal retina of each eye cross over to join the temporal fibers of the contralateral
eye [47,59,60]. The blood supply to the chiasm is provided by the circle of Willis [47,52].
From the chiasm, the RGC axons continue their course into the optic tract, which receives
perfusion from the posterior communicating and internal carotid artery [52]. Within the
optic tract, the nerve fibers undergo rearrangement to align with their corresponding
positions in the lateral geniculate nucleus [59]. Fibers carrying visual information from the
right visual field project to the left cerebral hemisphere and vice versa [59]. In the lateral
geniculate nucleus, the RGC axons synapse with the second-order neurons of the visual
pathway, organized in six layers consisting mainly of large and small neurons [47]. Some
fibers from the optic tract also synapse with the olivary pretectal nucleus, regulating the
pupillary light reflex [52,61]. Additionally, RGC axons containing melanopsin terminate in
the suprachiasmatic nucleus, a crucial center for controlling the circadian rhythms [47,61].
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The large and small axons of the lateral geniculate nucleus form optic radiation, which
initially projects anteriorly and then turns posteriorly, terminating in the occipital lobe
where the visual cortex (Brodmann area 17) is located [47,59]. These regions receive blood
supply from branches of the internal carotid artery (lateral geniculate nucleus and optic
radiation) and the posterior cerebral artery (visual cortex) [52]. In Figure 2, the perfusion
and the anatomy of the visual pathway are illustrated.

Antioxidants 2023, 12, x FOR PEER REVIEW 4 of 56 
 

terminate in the suprachiasmatic nucleus, a crucial center for controlling the circadian 
rhythms [47,61]. 

The large and small axons of the lateral geniculate nucleus form optic radiation, 
which initially projects anteriorly and then turns posteriorly, terminating in the occipital 
lobe where the visual cortex (Brodmann area 17) is located [47,59]. These regions receive 
blood supply from branches of the internal carotid artery (lateral geniculate nucleus and 
optic radiation) and the posterior cerebral artery (visual cortex) [52]. In Figure 2, the 
perfusion and the anatomy of the visual pathway are illustrated. 

 
Figure 2. Anatomy and perfusion of the visual pathway. LGN: lateral geniculate nucleus. 

An interesting aspect of the optic nerve anatomy is the presence of an unmyelinated 
portion in the RGCs [35]. In the unmyelinated compartment, specifically in the intraocular 
segment of the optic nerve, potential signals cannot be transmitted through saltatory 
conduction due to the absence of myelin [62]. To compensate for this limitation and enable 
rapid transmission, RGCs generate higher quantities of ATP in their axons to repolarize 
the plasma membrane [63]. Mitochondrial bidirectional transport (antero- and retrograde) 
along the axons plays a crucial role in this process. These organelles move toward regions 
with high energy demands, such as the unmyelinated portions, and ATP gradients are 
believed to guide this transport [35]. This mechanism may explain the specific 
vulnerability of RGCs to mitochondrial dysfunction, leading to the triggering of ROS 
production in a vicious cycle [44,63]. 

In this context, it is important to highlight the trophic role of myelin in the optic nerve 
sheath. Myelin has been shown to play a vital role in supplying nutrients to the axon, as 
the entire mitochondrial respiratory chain has been detected in the myelin sheath of the 
optic nerve [64]. This finding provides possible explanations for the link between myelin 
loss and axonal degeneration observed in neuropathies or demyelinating disorders [64]. 
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An interesting aspect of the optic nerve anatomy is the presence of an unmyelinated
portion in the RGCs [35]. In the unmyelinated compartment, specifically in the intraocular
segment of the optic nerve, potential signals cannot be transmitted through saltatory
conduction due to the absence of myelin [62]. To compensate for this limitation and enable
rapid transmission, RGCs generate higher quantities of ATP in their axons to repolarize
the plasma membrane [63]. Mitochondrial bidirectional transport (antero- and retrograde)
along the axons plays a crucial role in this process. These organelles move toward regions
with high energy demands, such as the unmyelinated portions, and ATP gradients are
believed to guide this transport [35]. This mechanism may explain the specific vulnerability
of RGCs to mitochondrial dysfunction, leading to the triggering of ROS production in a
vicious cycle [44,63].
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In this context, it is important to highlight the trophic role of myelin in the optic nerve
sheath. Myelin has been shown to play a vital role in supplying nutrients to the axon, as the
entire mitochondrial respiratory chain has been detected in the myelin sheath of the optic
nerve [64]. This finding provides possible explanations for the link between myelin loss and
axonal degeneration observed in neuropathies or demyelinating disorders [64]. A decrease
in myelin-related mitochondrial respiration may be one of the main triggers responsible
for neurodegenerative events [65]. With aging, there is a loss of structural integrity in the
myelin sheath, which can subsequently lead to axonal deterioration [66]. This process
may underlie various neurodegenerative pathologies, including Alzheimer’s disease, as
recent studies have suggested [67]. Therefore, an intriguing future therapeutic approach
for neurodegenerative disorders involves improving the integrity of the myelin sheath,
which could potentially slow disease progression [67]. In this regard, the comanipulation
of microglia and a specific signaling pathway, such as the G protein-coupled receptor
17 pathway in oligodendrocyte precursor cells, has been shown to induce robust myelina-
tion and promote axonal regeneration following injury [68]. Exploring these avenues may
also offer new therapeutic perspectives for other neurodegenerative diseases, including
optic neuropathies [69].

3. General Mechanisms of Nitro-Oxidative Stress in the Optic Nerve
3.1. Generation of Reactive Oxygen and Nitrogen Species

Mitochondria are vital intracellular organelles responsible for essential chemical reac-
tions that produce energy substrates [70,71]. In addition to their various cellular functions,
such as modulating intracellular calcium levels, synthesizing nucleotides, lipids, and amino
acids, and regulating apoptosis, mitochondria also generate ROS [70,72–74]. ROS, at basal
levels, serve as critical mediators of signaling pathways, including hypoxic and inflam-
matory pathways [44,70,75,76]. The fundamental function of mitochondria is to regulate
oxygen metabolism and produce energy in the form of ATP [70,71,77]. The electron trans-
port chain (ETC) within the inner mitochondrial membrane plays a central role in this
process [78]. Despite the efficiency of oxidative phosphorylation, electron leaks can oc-
cur, leading to the direct interaction of electron carriers with molecular oxygen (O2) in
the mitochondrial matrix. This interaction results in the donation of electrons and the
generation of superoxide (O2

•−) [71,77,79,80]. While mitochondria are recognized as the
main source of ROS in the cell, other significant sources include the enzymatic activities of
nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX) [3,79,81,82]. NOS generates nitric oxide (NO), while NOX (comprising
seven isoforms: NOX1, -2, -3, -4, -5, DUOX1, -2) transfers electrons from cytosolic NADPH
to molecular O2, generating O2

•− [83,84].
NO is a free radical that plays a pivotal role in various physiological functions [85].

It serves as a regulator of vascular tone [86–88]. Additionally, NO acts as a signaling
molecule in neurotransmission and as a regulator of gene transcription [89–94]. The pro-
duction of NO is facilitated by the activity of NOS, an enzyme that has three isoforms:
neuronal NOS (nNOS or NOS I); inducible NOS (iNOS or NOS II); and endothelial NOS
(eNOS or NOS III) [85,95]. NO rapidly and spontaneously reacts with O2

•− through a
“diffusion-limited reaction” [96,97]. As a result, a highly damaging RNS termed peroxyni-
trite (ONOO−) is generated [85,96,97]. Peroxynitrite contributes to the pathogenesis of
diverse retinal disorders, being also newly proposed as a critical factor in the pathogenesis
of glaucoma [98–100].

3.2. Oxidative Damage and Antioxidant Defense Systems

ROS and RNS play a physiological role in cellular responses to hypoxia, cell pro-
liferation, cell death, inflammation, or infection [44,76]. Immune cells, such as phago-
cytes, produce ROS, which provide reactions necessary for an appropriate killing of
pathogens [101,102]. Due to endogenous or exogenous trigger factors, the balance between
pro- and antioxidant systems can be critically undermined, resulting in nitro-oxidative
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stress. In this context, radicals begin to compete for paired electrons with intracellular
substrates [103], creating oxidative damage. Oxidative injuries are recognized to be a crucial
player in the pathogenesis of a variety of pathologies, including ocular diseases [36,104–107].
At the biomolecular level, three general forms of injuries caused by reactive species can
be distinguished: DNA lesions [108,109], protein alterations [110,111], and lipid peroxida-
tion [96,112]. The consequences of DNA damage are modifications in the expression of
proteins and the altered regulation of fundamental activities, like oxidative phosphoryla-
tion, according to the vicious cycle theory [113–115]. In this context, mitochondrial ROS
also induce activation of the nod-like receptor family pyrin domain-containing 3 (Nlrp3)
inflammasome, a key factor in pyroptotic cell death during inflammation [116].

Antioxidant systems are responsible for defending cells and tissues from the damaging
impact of reactive species, which are constantly produced as a “by-product” of oxidative
phosphorylation but also serve, at basal levels, physiological functions [76]. Enzymatic
antioxidants comprise SOD, catalase (CAT), glutathione peroxidase (GPX), glutathione-S-
transferase (GST), heme oxygenase (HO), peroxiredoxin, and thioredoxin [103,117–122].

Nonenzymatic antioxidants can be classified into direct and indirect agents. Direct
antioxidants react with ROS or RNS, “being sacrificed in the process of their antioxidant
actions” [123,124]. Free radical scavengers are, for example, glutathione (GSH) [125],
carotenoids [126], vitamin C (ascorbic acid) [127], and vitamin E (α-tocopherol) [128]. Alter-
natively, indirect antioxidants are molecules, such as vitamin C, that upregulate antioxidant
proteins, for example, via the nuclear factor erythroid-2-related factor 2 (Nrf2) [123,127] or
molecules, like α-lipoic acid [129]. Examples of antioxidant compounds adsorbed with the
food are resveratrol and betulinic acid [98,130,131].

3.3. Oxidative Stress in Retinal Ganglion Cells

The retina belongs to the metabolically most active organs in the human body [132]
and requires a relatively large amount of energy substrates [133], which makes it par-
ticularly vulnerable to energy insufficiency [134]. Oxygen supply is essential for retinal
function [135], and its consumption occurs very rapidly, like in the brain [136–138]. Hence,
conditions that can modify the supply of molecules, such as O2, necessary for the produc-
tion of energy substrates, like ATP, may rapidly generate significant damage in RGCs due
to their susceptibility to oxygen deficiency (Figure 3). Thus, an appropriate blood supply
via retrobulbar and retinal vessels is crucial for the proper function of RGCs. Studies in
retrobulbar blood vessels reported that ROS blunted endothelial function partially by re-
ducing the contribution of the NOS pathway to endothelium-dependent vasodilation [139].
Likewise, moderately elevated IOP induced endothelial dysfunction in retinal arterioles
together with RGC loss [140,141]. Zadeh et al. found in apolipoprotein E (ApoE)-deficient
mice that hypercholesterolemia caused oxidative stress and endothelial dysfunction in
retinal arterioles but did neither lead to increased ROS levels in the RGC layer nor to loss
of RGCs, indicative of compensatory effects [142]. In contrast, a study in pigs reported
that after only 12 min of ocular ischemia and 20 h of reperfusion, endothelial dysfunction,
retinal edema, and RGC loss occurred [143]. ROS generation due to ischemia/reperfusion
(I/R) injury is reported to be caused by diverse enzymes involved in the regulation of
oxidative metabolism, such as NOX2, xanthine oxidase (XO), uncoupled eNOS, and by
ETC dysfunction [143–146]. Hyperglycemia was also described to be a cause of endothelial
dysfunction and oxidative stress in the retina [147–149] via the involvement of NOX2 due
to the activation of the receptor of an advanced glycation end product (RAGE)-, mitogen-
activated protein kinase (MAPK)-, polyol-, protein kinase C (PKC)-, renin–angiotensin
system (RAS) signaling pathways [150–155].
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4. Oxidative Stress in Individual Optic Nerve Diseases
4.1. Glaucoma
4.1.1. General Aspects

The term “glaucoma” encompasses a group of optic nerve diseases that share similar
morphological characteristics but may have diverse origins. They represent the most
common optic nerve disorders [34,156,157], characterized by alterations in the ONH, which
include a decrease in the neuroretinal rim and an enlargement of the optic cup, leading
to deformation of the lamina cribrosa [34,158]. As a result, in the early stages, typical
visual field defects, which follow the arcuate pattern corresponding to the arrangement
of nerve fiber bundles, can be observed [159]. Elevated intraocular pressure (IOP) is
described as the primary risk factor, which can result from pathological resistance to
aqueous humor drainage through the trabecular meshwork (TM), causing mechanical stress
and compression on the axonal fibers and the ONH [160–162]. Glaucomatous disorders are
classified into primary forms, where there is no associated ocular disease, and secondary
forms, where known coexisting pathological processes (such as uveitis, neovascularization,
trauma, or lens-related conditions) lead to IOP elevation and thus to the development of
glaucomatous damage [34,160,163]. Primary and secondary forms are further divided into
open-angle glaucoma, which among others includes a subtype known as normal tension
glaucoma (NTG) and angle-closure glaucoma, in relation to the angle between the iris and
cornea in the anterior chamber [34,164,165]. Primary open-angle glaucoma (POAG), the
worldwide major form of glaucoma, describes a disorder where, under conditions of an
open chamber angle, structural damage to the optic nerve emerge silently, gradually, and
chronically [160]. While high IOP values can be a contributing factor in this disorder, it
is not always present in POAG. Elevated IOP is defined as a pressure value that exceeds
the 97.5th percentile for the population under consideration and is commonly assumed to
be a value higher than 21 mmHg [34,163]. However, it is important to note that elevated
IOP is recognized as a risk factor but not a diagnostic criterion for glaucoma [160,163]. In
fact, approximately 30–90% of POAG cases have IOP values below the 21 mmHg cutoff,
which is considered NTG. The prevalence of NTG varies significantly geographically [166].
Additionally, the term “ocular hypertension” (OHT) refers to a condition where elevated
IOP is detected without evidence of glaucomatous optic neuropathy [34]. Angle-closure
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glaucoma is considered an ocular emergency resulting from anatomical contact between
the iris and lens. This contact can cause obstruction of the aqueous humor outflow leading
to a condition known as pupillary block, present in approximately 90% of cases of primary
angle-closure glaucoma (PACG) [165,167]. In this context, a sudden and significant increase
in IOP occurs and can reach values as high as 60 to 80 mmHg [164]. PACG is estimated to
affect approximately 26% of the glaucoma population and is responsible for about half of
the cases of glaucoma-related visual loss worldwide [168–170].

The main risk factors for POAG include elevated IOP, advanced age, black race, my-
opia, and a positive family history [163]. On the other hand, risk factors for PACG include
hyperopia, shallow central anterior chamber depth, shallower limbal anterior chamber
depth, anteriorly positioned lens, increased lens thickness, small corneal diameter, and steep
corneal curvature, as well as high IOP values, advanced age, Asian ethnicity, and female
gender [168,171,172]. Elevated IOP is the only identified modifiable risk factor [173], and
reducing IOP is currently the only proven method to treat glaucoma effectively [171,174].
IOP has been considered a central factor in both the “mechanical” and “vascular” theories
proposed to explain the etiopathogenesis of glaucoma. According to the mechanical the-
ory, elevated IOP leads to the compression and deformation of RGC axons and the optic
nerve, ultimately resulting in cell death due to a reduced or blocked axoplasmic flow and a
deficit of cellular supply elements [175]. On the other hand, the vascular theory suggests
that decreased perfusion to the optic nerve causes ischemia in RGCs, leading to neurode-
generative damage [161]. A reduced blood supply may be a consequence of IOP-related
compression or the functional deficits of blood or vessels that supply the laminar regions
of the ONH [176]. Elevated IOP can be a result, for example, of pathological resistance in
the aqueous humor drainage process through the TM [162].

The primary goal of antiglaucomatous drugs is to lower IOP to a target level, which
is an acceptable range individually set to prevent disease progression [177]. Antiglauco-
matous drugs are generally administered topically as eye drops and can be categorized
into different classes based on their mechanism of action. Prostaglandin analogues, such as
latanoprost, increase uveoscleral and trabecular outflow, while β-blockers (e.g., timolol),
α2-adrenoceptor agonists (e.g., brimonidine), and carbonic anhydrase inhibitors (e.g., dorzo-
lamide) reduce aqueous humor production [173]. Additionally, α2- adrenoceptor agonists,
like brimonidine, clonidine, and epinephrine, can also increase trabecular outflow, similar
to prostaglandins [173]. Miotic agents, such as pilocarpine, widen the chamber angle, and
osmotically active drugs, like mannitol, increase water removal from the eye through the
systemic circulation when administered intravenously (IV) [173]. Moreover, pilocarpine
was reported to provide a neuroprotective effect through the activation of muscarinic
receptors [178]. In the case of PACG, the primary treatment is peripheral iridotomy, a laser
procedure that creates a full thickness opening in the iris to relieve pupillary blockage [179].
Additionally, osmotic substances, like mannitol, or carbonic anhydrase inhibitors, such as
acetazolamide, can be administered intravenously [173].

The economic implications of glaucoma have been extensively studied worldwide,
highlighting its significance as a critical social problem. Cost-of-illness studies have shed
light on the financial impact of glaucoma. For instance, a study conducted in the UK
in 2002 reported that over £300 million was spent on glaucoma-related expenses [180].
Similarly, an Australian review analyzed published randomized trials and population-
based studies since 1985, projecting that the total costs (including direct, indirect, and
costs related to the loss of well-being) for POAG in Australia would increase from AUD
1.9 billion in 2005 to AUD 4.3 billion in 2025 [181]. Examining the indirect costs of glaucoma,
a study from the UK investigated whether glaucoma can be a risk factor for falls. The
study found that between 2012 and 2018, 11.7% of hospital admissions for falls in a national
health service hospital were in patients with a secondary diagnosis of glaucoma [182].
Furthermore, a recent retrospective cohort conducted in the US, extrapolating data from
2015 to 2017 and based on a database of patients with POAG and ocular hypertension
(OHT), compared these two conditions. The study revealed that advanced stage POAG
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was associated with a higher risk of falls compared to OHT. Additionally, it was found that
the annual eye-related outpatient costs for POAG patients were higher (median: USD 516)
than for OHT patients (median: USD 344). Among patients with POAG, those in advanced
stages exhibited even higher annual eye-related costs (median: USD 639) compared to
those in moderate (median: USD 546) and mild (median: USD 476) stages [183]. Similarly,
a previous multicenter study conducted in Germany between 2009 and 2010, involving
2 university hospitals and 13 ophthalmological practices, reported that direct costs for
therapies were higher for glaucoma compared to OHT and were directly associated with
disease progression. The study highlighted that additional treatment changes necessitated
by uncontrolled IOP were the major contributors to the increased costs associated with
glaucoma. The study concluded that by effectively managing IOP over the long term and
avoiding advanced disease stages, both disease progression and associated costs could
be reduced [184]. In summary, publications on this topic consistently emphasize that
early first-line therapies play a vital role in reducing the economic burden of glaucoma.
By preventing disease progression to advanced stages, these early interventions can help
minimize the need for more expensive and sometimes less effective treatments, ultimately
alleviating the economic strain imposed by glaucoma [185].

4.1.2. Redox Parameters and Oxidative Stress Biomarkers in Glaucoma

Numerous studies have been conducted to gather evidence of altered redox status in
glaucoma by examining oxidant or antioxidant levels in various samples, including blood,
plasma, serum, aqueous humor, and the TM. Common systemic parameters used to assess
oxidative stress include total antioxidant status (TAS), total antioxidant capacity (TAC),
biological antioxidant potential (BAP), total reactive antioxidant potential (TRAP), and total
oxidant status (TOS). Biomarkers of oxidative stress, such as 8-hydroxy-2′-deoxyguanosine
(8-OHdG), poly-(adenosine diphosphate-ribose)-polymerase (PARP1), oxoguanine-DNA-
glycosylase (OGG1), and malondialdehyde (MDA), are indicative of DNA oxidative dam-
age, base excision repair activity, and lipid peroxidation.

An Indian study examining redox-related DNA damage in POAG patients reported
elevated levels of 8-OHdG levels in both plasma and aqueous humor. They also observed
a negative correlation between 8-OHdG levels and PARP1 and OGG1 levels, which were
concurrently lower [186]. Increased levels of 8-OHdG were also found in the TM of patients
with POAG, correlating with more severe visual field defects [187,188].

TAC levels were found to be lower in the serum and aqueous humor of glaucoma
patients, while MDA levels were increased [189]. Decreased levels of TAS [190] and
TRAP [179] were also observed in the aqueous humor of glaucoma patients. Lower TAS
levels were additionally found in the plasma samples of individuals with POAG, further
associated with an increasing cup-to-disc ratio, which indicates cup–disc enlargement and
retinal ganglion cell loss [191]. Studies on serum samples of glaucoma patients reported
lower BAP levels, correlating with lower RGC density in young males [192], more advanced
visual field loss [193], or higher IOP [194].

A meta-analysis on the redox parameters in glaucoma revealed a general increase in
oxidative stress parameters in both serum and aqueous humor, with MDA being the most
significant biomarker, suggesting its potential clinical utility [195]. Antioxidative markers
were found to be lower in serum, while aqueous humor showed an increase in antioxidant
defense, indicating a possible compensatory response to oxidative stress [195]. Similarly, a
recent meta-analysis on oxidative stress markers in glaucoma highlighted lower TAS levels
in blood and elevated levels of antioxidant enzymes, such as SOD, CAT, and GPX, in the
aqueous humor [196]. This systematic review also compared patients with POAG to those
with exfoliation glaucoma, the most common secondary form of POAG, characterized by
the deposition of fibrillar material in the anterior segment [197,198]. It reported no increase
in antioxidant defense in the aqueous humor of exfoliation glaucoma patients, along with a
decrease in TAS levels in the blood [196].
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RNS, including NO, were found to be increased in the aqueous humor of patients
with POAG and PACG [199]. A Spanish study examining both the TM and the aqueous
humor of POAG patients reported an upregulation in iNOS and downregulation in eNOS
in trabecular meshwork cells (TMCs). They also observed increased levels of MDA in the
aqueous humor, corresponding to an increase in visual field defects [200]. The authors of
this study suggested that the increased production of NO induced by iNOS may play a
role in the process of RGC death, potentially leading to an elevation in MDA levels in the
aqueous humor [200].

4.1.3. Oxidative Stress in the Pathogenesis of Glaucoma

To gain a better understanding on the role of reactive species in glaucoma, it is
important to discuss the anatomy and function of the TM and the detrimental impact
of ROS on these structures. The TM is located in the sclerocorneal angle and consists
of three layers: the uveal TM, the corneoscleral TM, and the juxtacanalicular TM, also
known as the cribriform TM region. This region is adjacent to the Schlemm’s canal, which
allows for the drainage of aqueous humor into the episcleral veins [201]. The TM plays
a crucial role in regulating IOP by controlling the outflow of aqueous humor. It allows
for the turnover of aqueous humor through drainage into superficial veins toward the
conjunctiva [201]. Any alterations in TM permeability, such as changes in TM structure, can
result in increased resistance to aqueous humor outflow, leading to elevated IOP. Studies
focusing on TMCs have investigated how increased IOP may develop in glaucoma patients.
These studies have shown that the oxidative balance in aqueous humor, which has been
found to be altered in individuals with glaucoma [179,202], can impact the structure and
function of TMCs, particularly the TM endothelial cells lining the Schlemm’s canal [203].
Elevated levels of ROS in the aqueous humor can trigger changes in the TM [162]. This can
occur through the fusion of TMCs, leading to trabecular thickening [204]. Additionally, ROS
can induce TMC apoptosis, resulting in TM disruption [203]. Alterations in the extracellular
matrix (ECM) can also occur, affecting the adhesion of endothelial TMCs to the ECM and
causing the TM to collapse [205]. In all of the cases, increased resistance to aqueous humor
circulation occurs, leading to elevated IOP [203]. In Figure 4, an anatomical overview of
the described organs, with focus on the anterior segment of the eye, is presented.

Oxidative damage contributes to axonal injuries, leading to the death of RGCs [37].
RGC loss may occur as a result of a process involving ROS, elevated IOP, mechanical
compression on RGC axons, or vascular compression of optic-nerve-perfusing vessels [40].
Our previous research in mice has demonstrated that already moderately elevated IOP
can impair vascular autoregulation and cause endothelial dysfunction in the retina, which
is associated with an upregulation in NOX2 [140]. Additionally, high hydrostatic pres-
sure and ischemia have been found to stimulate the release of tumor necrosis factor α

(TNF-α) from glial cells, activating apoptotic signaling pathways in RGCs [206]. TNF-α
released by active astrocytes, microglia, and Müller glial cells is one of the most significant
proinflammatory cytokines in glial neuroinflammation, mitochondrial dysfunction, and
oxidative stress [207]. Moreover, TNF-α can induce apoptosis through caspase-8 activa-
tion [207]. Mitochondrial dysfunction also plays a pivotal role in glaucomatous optic
disorders. Increased IOP has been shown to damage mitochondria, leading to mitochon-
drial fission and alterations in the expression of the OPA1 gene [208,209]. Via ROS-induced
activation of the transcription factor nuclear factor “kappa-light-chain-enhancer” of acti-
vated B-cells (NF-kB), mitochondria indirectly contribute to the initiation or amplification
of glial neuroinflammation processes [208], resulting in the production of inflammatory
cytokines. Furthermore, oxidized mitochondrial DNA and mitochondrial fragments re-
leased from microglia can activate inflammasomes [208]. Oxidative stress also disrupts
the glutamate/glutamine metabolism, leading to the neurotoxic extracellular accumula-
tion of glutamate [40]. Glutamate is released from dying RGCs and activated glia, and
the dysfunctional glial cells are unable to adequately buffer excessive extracellular glu-
tamate [40,210,211]. Additionally, oxidized substrates, such as advanced glycation end
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products (AGEs) and oxidized low density lipoproteins (oxLDLs) can act as “antigenic
stimuli”, inducing ROS production, triggering NF-kB activation, glial activation, neuroin-
flammation, and apoptosis [40,208]. In this context, the overproduction of ROS activates
the apoptosis signal-regulating kinase 1 (ASK-1) [212,213], which, in turn, activates the
p38/c-Jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK) axis. This
axis triggers the mitochondrial apoptotic pathway, characterized by the release of the
Bcl-2-associated X-protein (Bax) and cytochrome c into the cytosol, followed by apopto-
some formation (cytochrome c/apoptotic protease-activating factor 1(Apaf-1)/caspase-9),
ultimately leading to caspase-3 activation [212,214,215]. Moreover, hydrogen peroxide has
been described to activate the phosphoinositide 3-kinase (PI3K)/Ak strain transforming
(Akt) axis and reduce the intracellular concentration of the mammalian target of rapamycin
(mTor), promoting NF-kB activation [216].
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Apart from elevated IOP, other potential risk factors have been investigated in the
context of NTG. The “Collaborative Normal-Tension Glaucoma Study” (1998) examined the
effectiveness of IOP-lowering therapy in patients with NTG and concluded that although
reducing IOP can have a positive impact, it cannot prevent disease progression [217,218].
Recent reviews on NTG have focused on the multifactorial nature of the disease, consid-
ering various risk factors implicated in its pathogenesis, including translaminar cribrosa
pressure difference, fractal dimensions, neurovascular coupling, vascular dysregulation,
endothelial dysfunction, ocular perfusion pressure, and oxidative stress [166,218]. Regard-
ing vascular pathological aspects, Leung and Tham described NTG as part of a larger



Antioxidants 2023, 12, 1465 12 of 54

group of disorders known as small vessel diseases [166]. They focused on the correlation
between NTG and cerebral silent infarcts detected in patients with NTG [219–221]. CSI can
lead to hypoperfusion of the optic nerve head and hypoperfusion in the optic nerve head,
increasing the risk of NTG [166]. Additionally, arterial hypotonia, especially during night
time when blood pressure is reduced, may result in lower ocular perfusion pressure and
decreased blood supply to the ONH [218]. In this context, it is relevant to consider another
potential primary injury to RGCs independent of elevated IOP: tissue hypoxia, which can
be associated with pathogenic mechanisms in glaucoma [37]. During hypoxia, hypoxia-
inducible factor 1-alpha (HIF-1α) induces the transcription of various genes, including
those encoding the vascular endothelial growth factor (VEGF), heme oxygenase-1 (HO-1),
and inducible nitric oxide synthase (iNOS), aiming to increase oxygen supply to the affected
tissue [222,223]. However, HIF-1α also upregulates NOX, which generates ROS, creating
a vicious cycle of HIF-1α overexpression and ROS production [224,225]. The presence of
increased HIF-1α expression regions in the retina and optic nerve of glaucoma patients
was confirmed by Tezel and Wax, further supporting the pathogenic role of hypoxia in
glaucoma [226]. Hypoxic conditions primarily cause energy depletion and disrupt ionic
homeostasis, leading to increased ROS generation and inflammation [37,227], mediated by
the overproduction of ROS via NOX2 [228] and other sources, such as XO and cyclooxyge-
nase (COX) [229]. Additionally, activated glia release TNF-α, which, among other effects,
activates NF-kB, intensifying glial activation, neuroinflammation, and apoptosis through
caspase-mediated or caspase-independent signaling pathways [207,230].

Reviewing the literature on the pathogenesis of glaucoma (Figure 5), it becomes
evident that the pathways leading to RGC loss are redundant, intersect, and overlap,
making it challenging to identify a single initial cause-and-effect factor [40]. Ultimately, the
outcome appears to be a combination of “vicious cycles”, in which inflammation and ROS
interconnect and amplify each other.
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Figure 5. Model of etiopathogenesis in glaucomatous optic neuropathies. AH: aqueous humor;
TM: trabecular meshwork; TMC: trabecular meshwork cell; ONH: optic nerve head; OPA1: optic
atrophy 1 gene; TNF-α: tumor necrosis factor alpha; NF-kB: nuclear factor “kappa-light-chain-
enhancer” of activated B-cells; ATP: adenosintriphosphat; RGC: retinal ganglion cell; oxLDL: oxidized
low density lipoprotein; AGE: advanced glycation end product; pJNK: c-Jun N-terminal kinase;
pERK: extracellular-signal-regulated kinase.
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4.1.4. Interplay between Mitochondrial and ER Stress in TMCs and RGCs

Mechanical and vascular stress in glaucoma contribute to mitochondrial dysfunction [210],
which leads to calcium imbalance and interconnects with endoplasmic reticulum (ER) stress,
resulting in energy impairment and subsequent ROS generation. Numerous studies have
explored the relationship between the endoplasmic reticulum and mitochondria in the
pathogenesis of glaucoma. Understanding the main processes of this connection can help
trace intracellular pathways that contribute to TM dysfunction and RGC death.

The endoplasmic reticulum is an intracellular organelle with multiple functions, in-
cluding lipid synthesis, calcium storage, and protein processing. It regulates protein folding
to ensure proper functionality, facilitates protein transportation, and detects misfolded
proteins, which are then retained in the ER for degradation [231,232]. Various conditions,
such as hypoxia, oxidative stress, viral infections, nutrient depletion, protein mutations,
impaired glycosylation, or disrupted disulfide bond formation, can interfere with the
ER’s physiological functions. These disturbances can lead to ER saturation and the ac-
cumulation of misfolded proteins in the ER lumen, resulting in endoplasmic reticulum
stress [233–235]. ER stress activates multiple signaling pathways aimed at restoring cellular
homeostasis [231,234]. The unfolded protein response (UPR) is triggered in response to ER
stress and encompasses a range of signaling mechanisms designed to reduce protein syn-
thesis, enhance protein folding, and increase protein degradation [236]. Additionally, the
ER-associated degradation (ERAD) system is responsible for retro-transporting misfolded
proteins from the ER lumen to the cytosol for clearance through the ubiquitin-proteasome
system [234,237]. The UPR and ERAD are two independent quality-control mechanisms
that can interact to eliminate misfolded proteins and maintain protein folding homeosta-
sis [237]. The UPR can lead to either cell survival or apoptosis [235]. Prolonged activation of
the UPR pathways can shift the balance toward cell death [234]. Three main UPR regulators
have been extensively described: activating transcription factor (ATF)-6, inositol-requiring
protein 1 (IRE1), and protein kinase RNA-like endoplasmic reticulum kinase (PERK). These
transmembrane proteins with ER lumen domains serve as sensors of ER stress [235]. ATF-6
activates cascades to enhance the ER folding capacity, promote clearance of misfolded
proteins through ERAD, and may also have a proapoptotic effect [231,235,238]. IRE1 initi-
ates a pathway involving spliced X-box binding protein-1 (sXBP1), which promotes ERAD
components, ER folding proteins, and autophagy [231]. Furthermore, IRE1 activates JNK
through tumor necrosis factor receptor 2 (TNRF-2) and ASK1, leading to apoptosis [235],
as well as inflammation via NF-kB induction [239]. PERK activates eukaryotic initiation
factor 2α (eIF2α), which downregulates overall protein translation, indirectly protecting
the cell from protein misfolding [235]. PERK also upregulates activating transcription
factor 4 (ATF-4), which triggers the CCAAT/enhancer-binding protein (C/EBP) homol-
ogous protein (CHOP), exerting a proapoptotic function [240]. In this regard, Han et al.
demonstrated that a sustained activation of ATF-4 and CHOP increases protein synthesis
and leads to cell death through oxidative stress and ATP depletion [236]. These findings
align with previous research showing that CHOP deletion in multiple mouse models of
diabetes reduces oxidative stress [241]. A noteworthy aspect regarding the connection
between ER stress and ROS generation is the ER overload response, which is activated
when there is a high concentration of misfolded proteins in the ER lumen [234]. During
the ER overload response, a significant amount of calcium ions (Ca2+) may be released
from the ER, possibly through Ca2+ release channels, such as inositol 1,4,5-trisphosphate
receptor (IP3R) or ryanodine receptor (RyR) [231,234]. This process can result in increased
Ca2+ uptake from the ER to mitochondria, leading to the abnormal production of H2O2 and
disruption of the ETC, ultimately causing mitochondrial dysfunction [231,242]. Moreover,
UPR-related signaling can activate the endoplasmic reticulum oxidoreductin 1 (ERO1)
and NOX, which are involved in oxidative protein folding under normal physiological
conditions. However, in the context of ER stress, their activation can contribute to ROS
production in the stressed ER [231,243]. Lastly, ROS generation resulting from both ER
and mitochondrial dysfunction can activate NF-kB, a key transcription factor involved in
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inflammation and cell proliferation [244]. The main transductions in the interconnection
between ER and mitochondria are summarized in Figure 6.
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ER-related oxidative stress has been reported in both TMCs and RGCs in the context
of glaucomatous optic neuropathy. Studies on TMCs have demonstrated the involvement
of the PERK-eIF2α-ATF4-CHOP cascade in glaucomatous TM, both in human and murine
cells, highlighting the activation of this pathway in glaucoma [245–248]. Similarly, vari-
ous studies have described the implication of the PERK-eIF2α-ATF4-CHOP pathway in
RGC loss [249–252]. The recent literature has highlighted the potential of targeting the
PERK-eIF2α-ATF4-CHOP pathway as a therapeutic approach to prevent CHOP-related
oxidative stress and apoptosis, thereby mitigating the TM structure and function loss and
potentially reducing IOP elevation. Notably, in a recent study conducted by Gao et al., the
protective effect of valdecoxib, a selective COX-2 inhibitor commonly used in the treatment
of conditions such as osteoarthritis and rheumatoid arthritis was assessed against apoptosis
induced by ER stress. The study demonstrated that valdecoxib inhibits the ATF4-CHOP
pathway in “I/R-induced glaucoma-like” damaged cells, providing potential insights into
its therapeutic efficacy in glaucoma management [253].

4.2. Therapeutic Perspectives in Glaucoma
4.2.1. Therapeutic Potential of Natural Compounds in Glaucoma

Naturally occurring antioxidant compounds offer a diverse range of potential thera-
peutic options. One such compound is resveratrol, a polyphenol found in peanuts, berries,
grapes, and red wine, known for its anti-inflammatory and antioxidant properties in con-
ditions like cancer, neurodegeneration, and aging [254]. In human glaucomatous TMCs,
resveratrol has been reported to reduce the expression of proinflammatory molecules, such
as IL-1α and iNOS, while increasing the production of NO by elevating eNOS expression.
These effects contribute to its beneficial antioxidant effects in the TM [255]. Resveratrol is
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also an activator of suirtin1 (SIRT1), a nuclear NAD+-dependent deacetylase, highly rele-
vant for the regulation of several antioxidant genes, performed by triggering the Nrf2/ARE
(antioxidant response elements) pathway [256,257]. In an experimental rat model of glau-
coma, resveratrol was shown to delay the loss of RGCs [258]. Additionally, studies by Ye
and Meng have demonstrated that resveratrol protects RGCs from H2O2-induced apoptosis
by inhibiting proteins involved in MAPK cascades (p38, JNK, and ERK) and activating
antioxidant enzymes such as SOD, CAT, and GSH [259].

Another naturally occurring antioxidant molecule with promising characteristics is
curcumin. In chronic high IOP rat models, curcumin has been shown to decrease ROS
formation and prevent activation of apoptotic pathways by downregulating caspase-3, Bax,
and cyt c [260]. Moreover, in an ex vivo mouse model of optic nerve cut, curcumin has been
found to preserve RGC survival by preventing MAPK activation and inhibiting caspase-9
and caspase-3 activation [261].

Spermidine, a natural polyamine present in mushrooms and soybeans, possesses
antioxidant properties and has demonstrated the ability to improve RGC loss and visual
impairment in murine NTG models [262]. The same study also observed that spermi-
dine treatment in murine optic nerve injury models promoted RGC survival by sup-
pressing the ASK-1/p38/MAPK apoptotic pathway and inhibiting iNOS, particularly in
microglial cells [263].

Flavonoids, known for their free radical scavenging properties, have been extensively
studied. Extracts from the Gingko biloba L. plant, which contain over 70 different flavonoids,
have shown interactions with apoptotic pathway proteins such as p53, Bax, Bcl-2, caspase-3,
and caspase-9 [264]. These interactions suggest that Gingko biloba extracts may reduce RGC
damage in glaucoma by inhibiting H2O2-related apoptosis through pathways involving
p53, Bax/Bcl-2, and caspase-3/9 [265]. A dedicated clinical trial evaluated the use of
oral antioxidants for glaucoma, comparing extracts of Gingko biloba with α-tocopherol
for 3 months (NCT01544192), and completed phase III, reporting no clear clinical benefit
for the use of Gingko biloba [240]. Another flavonoid, coenzyme Q10, a natural lipophilic
compound, has demonstrated in murine glaucoma models its ability to reduce glutamate
excitotoxicity and oxidative stress, promoting RGC survival and preventing apoptotic cell
death by decreasing Bax expression and increasing the Bcl-2 associated agonist of cell death
(Bad) protein expression [266]. Currently, a clinical trial (NCT03611530) is underway to
evaluate the effect of a medical solution containing coenzyme Q10 and vitamin E on patients
with primary open-angle glaucoma (POAG) [267].

The α-lipoic acid (ALA) is a naturally occurring antioxidant molecule found in various
fruits and vegetables, as well as in the heart or liver of animals [268]. In murine glaucoma
models (DBA/2J), Inman et al. demonstrated that ALA reduces oxidative stress and
upregulates antioxidant agents such as HO-1 and NOS, possibly through the activation of
Nrf2 [268]. In a more recent prospective case-control study, an ALA-based solution (also
containing taurine, vitamins C and E, lutein, zeaxanthin, zinc, copper, and docosahexaenoic
acid) was found to increase TAS and to decrease MDA, a marker of lipid peroxidation, in
the plasma of patients with POAG [269].

Additionally, vitamin B3, also known as niacin, has been studied as a potential new
treatment for glaucoma due to its antioxidant properties [270]. A study conducted in
Korea revealed that patients with NTG have a lower intake of niacin compared to other
nutrients, suggesting a possible association between vitamin B3 deficiency and NTG
risk [271]. Williams et al. administrated nicotinamide (an amide form of niacin) to DBA/2J
mice and demonstrated both preventive and therapeutic effects against the development of
glaucoma, preserving the age-dependent reduction in nicotinamide adenine dinucleotide
(NAD), a crucial molecule for mitochondrial health [272]. In a recent randomized controlled
trial involving 57 patients with glaucoma, nicotinamide supplementation was shown to
improve inner retinal function [273].
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Currently, there is an ongoing randomized controlled trial (NCT04784234) evaluating
a mixture of curcumin, Ginkgo biloba extract, alpha-lipoic acid, coenzyme Q10, and other
naturally occurring compounds in 100 patients with POAG. The expected completion date
for this study is the end of 2023.

4.2.2. NOX Inhibitors

A novel and promising class of antioxidant medications for glaucoma are NOX in-
hibitors. These compounds offer a new strategy to counteract glaucomatous damage by
preserving RGCs from the detrimental effects of neuroinflammation and glial activation,
potentially complementing traditional IOP-lowering therapies [274]. Among these com-
pounds, GKT137831, also known as setanaxib, is particularly noteworthy. It acts as a
dual inhibitor of NOX1 and NOX4 and has demonstrated protective effects against retinal
inflammation and ischemia by reducing hypoxia-induced ROS generation [275]. Another
intriguing molecule in this class is GLX7013114, a specific NOX4 inhibitor. In a study in-
volving rats with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced
retinal excitotoxicity, intravitreal injections of GLX7013114 were found to attenuate glial
activation [276]. Moreover, a recent publication reviewed the role of NOX and NOX in-
hibitors in glaucoma, highlighting the significant relationship between NOX4 and TGF-β
in the fibrotic changes observed in glaucomatous TMCs, which contribute to functional
impairment and elevated IOP [274,277]. These NOX inhibitors offer exciting prospects in
antioxidant therapy for optic nerve diseases, as they target underlying mechanisms beyond
IOP regulation, aiming to protect RGCs and to mitigate neuroinflammatory processes. Con-
tinued research in this field holds promise for the development of innovative treatments
for glaucoma.

4.2.3. Exploring Nrf2 Activation for Antioxidant Therapy in Glaucoma

Exciting new prospects in antioxidant therapy for glaucoma involve the use of Nrf2
activators, which have the potential to provide benefits through their antioxidant and
anti-inflammatory properties. One example is trimetazidine, an anti-ischemic medication
that has been shown to activate the Nrf2-HO-1 pathway, leading to the inhibition of RGC
apoptosis [278]. Astaxanthin (AST), a potent natural antioxidant found in microalgae and
seafood, such as lobster, is another noteworthy compound in this context [279,280]. In a rat
model of elevated IOP, AST has been demonstrated to reduce apoptotic pathways [281]. In
mouse models of NTG, AST administration inhibited RGC degeneration and suppressed
RGC loss [282]. Li et al. showed that AST activates Nrf2 and HO-1 in RGCs of mouse
models, resulting in a decrease in RGC loss in glaucoma [283]. Sestrin2, a stress-induced
protein with antioxidant properties, has also shown promise in activating Nrf2 by inhibiting
the kelch-like ECH-associated protein 1 (Keap-1), thus protecting against RGC apoptosis in
mouse tissues [284]. Additionally, eye drops containing metformin, an antidiabetic drug,
have been demonstrated to preserve against fibrosis following glaucoma filtration surgery
in rodent models by activating the AMP-activated protein kinase (AMPK)/Nrf2 signaling
pathway [285]. A recent study in mice demonstrated that sustained intraocular release of
erythropoietin can counteract glaucomatous pathogenic processes by reducing superoxide
levels in the retina, upregulating antioxidant agents, and activating the Nrf2/ARE pathway
through MAPK signaling [286].

4.2.4. Rho Kinase Inhibitors in Glaucoma Treatment

The class of Rho-associated protein kinase (ROCK) inhibitors has shown promise in
glaucoma treatment. One notable ROCK inhibitor is netarsudil, which has been demon-
strated to reduce fibrosis in the TM, leading to improved aqueous humor outflow and
lowered IOP [287]. It has received clinical approval for use in the United States (2017)
and Europe (2019) as a 0.02% ophthalmic solution for once-daily topical application [288].
Another ROCK inhibitor, Y-27632, has been shown to upregulate antioxidant enzymes
such as CAT and to partially reduce ROS generation [289]. In addition to its beneficial
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effects on the TM, Y-27632 promotes phagocytosis in glaucomatous TM cells, leading to IOP
reduction [290]. Ripasudil, also known as Rho kinase inhibitor K-115, has been evaluated
in porcine retinal arterioles and shown to induce endothelium-independent relaxation and
inhibit endothelin-1 activity. These findings highlight its potential as a potential antiglau-
comatous medication [291]. The development of Rho kinase inhibitors offers a promising
avenue for glaucoma treatment. By targeting the ROCK pathway, these inhibitors improve
TM function, reduce fibrosis, and potentially lower IOP. Continued research and clinical
investigations will further elucidate their efficacy and safety for glaucoma patients.

4.2.5. ER Stress Antagonists: Potential Antioxidant Drugs

Another subgroup of potential antioxidant drug includes compounds that antagonize
ER stress. Among these compounds, 4-phenylbutyric acid (4-PBA) has been the subject
of several studies. Originally used in urea cycle disorders and later in the treatment of
cystic fibrosis in the 1990s [292,293], phenylbutyrate has been reported to attenuate ROS
production in activated microglia [294]. Additionally, 4-PBA has been found to reduce
oxidative stress caused by a high-fat diet or acute ammonia challenge by counteracting
ER stress [295]. Furthermore, 4-PBA has shown the ability to decrease ER stress and
prevent disease phenotypes in murine glaucoma models [296]. Importantly, it has also
been demonstrated to lower IOP by promoting ECM degradation through the activation of
matrix metalloproteinase (MMP)-9 [297].

4.2.6. Other Antioxidant Molecules

In addition to the previously mentioned compounds, several other antioxidant molecules
have shown potential therapeutic effects in glaucoma.

For example, edaravone, a medication primarily used against stroke and known for its
free radical scavenging properties [298] was described to suppress pJNK/p38 proapoptotic
pathways in glaucoma models [43], preserving RGCs from death [299,300].

Valproic acid (VPA), a widely used antiepileptic drug, has been shown to upregulate
antioxidant enzymes, such as SOD, CAT, and GPX, while inhibiting apoptotic pathways in
rodent models of retinal ischemia–reperfusion injuries [301]. In murine models of NTG,
VPA has been found to decrease oxidative stress and enhance RGC survival through a
pathway associated with ERK [302]. Additionally, a recent Swedish study using retina
explant models suggested that VPA possesses anti-inflammatory properties by reducing the
expression of proinflammatory cytokines and attenuating microglial changes, highlighting
its potential as an antineuroinflammatory drug in retinal diseases [303]. A randomized
controlled trial assessing the effectiveness of VPA in glaucoma patients reported an im-
provement in visual acuity among patients with advanced glaucoma [304].

N-acetylcysteine, a molecule with radical scavenger properties originally used as
antidote in cases of paracetamol overdose and more recently, as a mucolytic agent in bron-
chopulmonary disorders [305] has shown promise in mitigating retinal oxidative stress
caused by high IOP when combined with brimonidine therapy in rat models of OHT [306].
It has also been demonstrated to target the HIF-1α pathway via BNIP3 (Bcl2 interacting
protein 3) and the PI3K/Akt/mTOR pathway, thereby preventing hypoxia–mimetic in-
duced autophagy in RGCs [307]. In murine models of NTG, N-acetylcysteine suppressed
oxidative stress and autophagy in RGCs and increased levels of glutathione [308].

Rapamycin, a macrolide antibiotic with antineurodegenerative and neuroprotective
properties described in Alzheimer’s and Parkinson’s diseases [309,310], has been found
to enhance RGC survival in rodent glaucoma models. It achieves this by inhibiting the
production of NO and TNF-α in microglia through the modulation of NF-kB activity and
by maintaining Akt phosphorylation to inhibit RGC apoptosis [311].

Geranylgeranylacetone (GGA), a molecule used in the therapy of gastric ulcers and
known for its antioxidant features, has been shown to reduce oxidative stress in the retina
by triggering thioredoxin and heat shock proteins (Hsp)-72, thereby protecting against
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apoptosis [312]. In murine models of NTG, GGA has been demonstrated to decrease RGC
loss through the upregulation of Hsp-70 and a reduction in caspase-3 and -9 activities [313].

These findings highlight the potential of these antioxidant molecules in providing
neuroprotection and preserving retinal health in glaucoma.

4.3. Leber’s Hereditary Optic Neuropathy
4.3.1. General Aspects: Genetics, Clinical Presentation, and Current Therapeutic Options

Leber’s hereditary optic neuropathy (LHON) is a relatively rare disease compared
to glaucoma, but it is considered the most frequent mitochondrial DNA (mtDNA) disor-
der [314]. It follows a maternal inheritance pattern and primarily affects young males,
typically presenting between the ages of 15 and 35 [32]. The most prevalent mutations
associated with LHON are m.3460G>A, m.11778G>A, and m.14484T>C, which account for
approximately 90–95% of all cases [13]. These mutations affect the protein subunits of com-
plex I in the mitochondrial respiratory chain [315]. Among these mutations, m.11778G>A
is most frequently observed in Northern Europe, Australia, and Japan [8,12,316,317], while
m.14484T>C is more common among the French-Canadian population [318–320]. Studies
examining the complete penetrance of LHON have reported varying prevalence estimates
in Europe, ranging from 1 in 30,000 to 1 in 54,000, approximately 0.00002% of the popula-
tion [8–12]. A comprehensive Australian review, which accounted for incomplete disease
penetrance in variant carriers and used a well-characterized population-based control
cohort to minimize sampling bias, estimated a prevalence of 1 in 800 or approximately
0.00125% [13]. Similarly, another study using a similar methodology concluded that LHON
prevalence in the general population exceeds 1 in 1000 [14]. These findings suggest that
most LHON mutations remain silent until unknown triggers precipitate their conversion
from asymptomatic mutation carriers to symptomatic individuals [321]. Indeed, only
around 50% of males and 10% of females harboring a pathogenic mtDNA mutation effec-
tively develop the disease [315]. LHON also exhibits a gender bias, with males being more
likely to be affected than females [315]. This gender predisposition has been associated with
X-linked susceptibility loci [322,323]. Other studies have explored potential factors that
may explain the incomplete penetrance and have found that smoking and excessive alcohol
consumption are more common in individuals with LHON compared to asymptomatic
carriers [324]. Additionally, it has been suggested that vitamin B12 (cobalamin) deficiency
could accelerate the symptomatology in LHON carriers [325] and that regular screening
for vitamin B12 levels may be considered in LHON carriers and patients [314].

Clinically, LHON is highly disabling and leads to subacute bilateral irreversible vision
loss [315]. A recent study examining the quality of life in 17 LHON patients from differ-
ent countries (Germany, UK, France, and the US) described several daily life challenges
in, for example, physical capabilities, interpersonal relationships, work and recreational
activities, that significantly impact their well-being [326]. A cost-of-illness study focusing
on inherited retinal disorders (IRD) estimated that in 2019, the overall costs associated with
LHON amounted to USD 84–200 million and CAD 10–42 million in the US and Canada,
respectively [327]. Moreover, healthcare costs, including therapy expenses, represented
only 7% and 2% of the total costs in the US and Canada, respectively [327].

It is widely acknowledged that the treatment of LHON should ideally begin within
one year from the onset of visual loss [321,328]. In relation to disease progression, it is
divided into three stages starting from the onset [329]:

1. Subacute phase (<6 months): During this phase, patients commonly experience blurred
vision and impaired color perception without pain, and their pupillary reflex re-
mains unaffected [315]. Approximately 75% of cases initially experience visual loss in
one eye, with the contralateral eye becoming affected within a few weeks [315,330].
Fundoscopy may reveal axonal loss in the papillomacular bundle and circumpap-
illary telangiectasias. Perimetry often demonstrates typical centrocecal or central
scotomas [315,330,331]. Optical coherence tomography (OCT) may show swelling of
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the peripapillary RNFL. Magnetic resonance imaging (MRI) is commonly performed
for differential diagnosis [330];

2. Dynamic phase (6–12 months): During this stage, fundoscopic signs such as telangiec-
tasias and RNFL edema gradually regress [330];

3. Chronic phase (>12 months): In the chronic phase, there is a further decline in visual
acuity and visual field loss. Fundoscopic examinations may reveal optic nerve head
atrophy, while OCT may indicate thinning of the RNFL [330].

An innovative therapeutic approach for LHON has also been developed in the realm
of gene therapy. An example of this is lenadogene nolparvovec (Lumevoq©, Gensight
Biologics SA, Paris, France), which was administered via intravitreal injections and de-
signed to treat LHON caused by the m.11778G>A variant [332]. This drug utilizes a
replication-defective, single-stranded DNA recombinant adeno-associated virus vector of
serotype 2. It carries a codon-optimized complementary DNA encoding the human wild-
type subunit protein that is affected in the m.11778G>A variant [332]. The viral vector is
designed to deliver the therapeutic gene into the targeted cells, aiming to enable them
to produce the NADH dehydrogenase 4 (ND4) enzyme, which can cause restoration of
the ETC [333,334].

However, it is important to note that this drug has been withdrawn by the EMA as
of 20 April 2023, as it was found to be ineffective in improving outcomes for patients
with LHON (source: EMA website, https://www.ema.europa.eu/en/medicines/human/
withdrawn-applications/lumevoq (accessed on 17 July 2023).

An international consensus has established that idebenone (IDE), a synthetic analogue
of coenzyme Q10 (COQ10), is the first disease-specific antioxidative drug authorized by
the European Medicines Agency in 2015. It has been shown to provide benefits when
administered during the subacute or dynamic stages of LHON at a dosage of 900 mg/day.
However, it is not recommended for use during the chronic phase [328,329,335].

Extensive research has been conducted to discover medications that can restore the
ETC, which is crucial for ATP synthesis and maintaining a normal redox status [321]. In
this context, IDE functions as an electron carrier within the mitochondrial ETC, facilitat-
ing electron transfer from complex II to complex III and promoting ATP synthesis [336].
However, it is important to note that Jaber and Polster described IDE as a pro-oxidative
molecule that also inhibits complex I [336]. Additionally, Gueven et al. extensively re-
viewed the pro-oxidative properties of IDE and questioned the actual antioxidative activity
of this drug [337]. They compared studies that detected low nanomolar concentrations of
IDE in target tissues for only a short period of time with the majority of publications on
IDE, which reported the need for micromolar concentrations to achieve an antioxidative
effect [338–340]. One possible explanation for the apparent contradiction regarding the
low bioavailability of IDE is the suggestion of an indirect antioxidant effect through the
inhibition of NOX2, which normally produces damaging ROS, such as superoxide [341].
IDE may also activate different signaling pathways that increase the activity of SOD,
NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione (GSH), and glutathione peroxi-
dase (GPX), possibly through Nrf2, a transcription factor that regulates the expression of
SOD, NQO1, and GPX. Another proposed explanation for the rapid pharmacokinetics of
IDE focuses on the possibility that some of its metabolites, such as 6-(9-carboxynonyl)-2,3-
dimethoxy-5-methyl-1,4-benzoquinone (QS10), can also provide therapeutic effects [337].
In support of this hypothesis, a previous Italian study concluded that QS10, like IDE, can
bypass the defect in complex I and, unlike IDE, can replace the endogenous coenzyme
Q10 (CoQ10), potentially exhibiting even greater activity than IDE in diseases caused by
complex I defects or CoQ10 deficiency [342]. In Figure 7, direct and indirect effects of
idebenone are represented.

https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/lumevoq
https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/lumevoq
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4.3.2. Oxidative Stress in the Pathogenesis of Leber’s Hereditary Optic Neuropathy

Mitochondrial DNA mutations in LHON lead to a defective complex I, resulting
in impaired ETC activity [343]. Studies on fibroblast and cybrid mitochondria affected
by LHON mutations have shown varying levels of mitochondrial aerobic respiration al-
terations depending on the specific mutations [344]. Decreased respiration rates have
been reported as approximately 20–28% for m.3460G>A, 30–36% for m.11778G>A, and
10–15% for m.14484T>C [344]. Despite the impaired oxidative phosphorylation and re-
duced ATP production associated with complex I dysfunction, it is proposed that LHON
partially compensates for these deficiencies through glycolysis, an alternative energetic
pathway observed in human tissues. This compensation is suggested to maintain the
total cellular ATP concentration despite the severe decrease in complex I-related ATP
synthesis [343,345]. Hence, additional processes need to be considered to explain the
clinical manifestation of the disease. Carelli et al. proposed that decreased pH resulting
from defective complex I affects redox sites during aerobic respiration, leading to the
overproduction of ROS [345]. Studies on cells carrying LHON mutations have reported
increased levels of oxidative stress biomarkers, such as 8-OHdG, the reduced activity of
antioxidant systems, including glutathione reductase and Mn-SOD, and elevated levels
of oxidized glutathione (GSSG) [346–348]. Lin et al. demonstrated in a murine model of
mtDNA mutations that LHON mutations cause a systemic elevation in ROS production,
with chronic elevation in ROS generation observed in synaptosomes, optic nerves, and
RGCs, suggesting a more significant damaging role of oxidative stress compared to ATP
depletion [349]. Another study in mice aimed at establishing a murine model of LHON
found that a mutation in the subunit ND4 of complex I led to mitochondrial structure
disassembly, increased ROS levels, ONH swelling, and RGC apoptosis [350]. Additionally,
an alternative hypothesis suggests that altered permeability transition pores, possibly due
to Ca2+ and ROS-mediated depolarization of the mitochondrial membrane, may play a
role in LHON. These opened permeability transition pores in cybrid cells carrying LHON
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mutations could facilitate the release of cytochrome c from mitochondria to the cytosol,
activating the apoptotic pathway [351].

Dysfunctional complex I in LHON may lead to sensitization of permeability transition
pores primarily due to increased ROS generation and cytosolic Ca2+ overload. The reduced
ATP supply to the Ca2+ pumps in the ER membranes may contribute to the intracellular
Ca2+ overload by impairing Ca2+ uptake from the cytosol to the ER [351]. Consequently,
the death of RGCs in LHON is likely influenced by the altered redox status and intracellular
Ca2+ overload, with an emphasis on the role of ROS in triggering proapoptotic pathways
(Figure 8) [349,352–356]. Apoptosis in LHON has been described as mediated by caspases,
including the Fas-induced pathway involving caspase-8 [355,356]. The activation of caspase-
8 leads to the cleavage of protein Bid (BH3 interacting-domain death agonist), a component
of the Bcl-2 family, indirectly causing the release of cytochrome c from mitochondria.
Cytochrome c then binds to Apaf-1, along with caspase-9, forming a complex called the
“apoptosome.” The apoptosome subsequently activates caspase-3, which is responsible for
cellular disassembly and apoptosis. Additionally, caspase-independent pathways have
been observed in LHON, involving the release of cytochrome c, AIF (apoptosis-inducing
factor), and EndoG (endonuclease G) into the cytosol [357]. These apoptotic processes
contribute to the demise of RGCs in LHON.
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4.4. Therapeutic Perspectives in Leber’s Hereditary Optic Neuropathy

α-Tocotrienol quinone, also known as EPI-743, is a synthetic molecule classified as
a para-benzoquinone. It targets NQO1 and leads to the replenishment of intracellular
glutathione stores, thereby increasing antioxidant capabilities [358]. In vitro studies have
shown that EPI-743 is over one thousand-fold more effective than IDE in protecting cells
from oxidative stress [359]. An investigation into the effect of EPI-743 in LHON demon-
strated disease progression arrest and the reversal of vision loss in four out of five patients
treated with EPI-743 within 4 months of the onset of visual loss [360]. Another study in-
volving 12 patients with active phase LHON concluded that EPI-743 stabilized or improved
visual function in approximately 70% of the treated eyes [361]. However, larger trials in the
LHON population are needed to further validate these findings. Currently, EPI-743 is in
phase II of various clinical trials (NCT01370447; NCT04378075; and NCT02352896) aimed
at evaluating its effectiveness in primary mitochondrial disorders [362].
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Elamipretide, also known as MTP-131, Bendavia, or SS-31, is a relatively new
mitochondria-targeting peptide that has been shown to protect RGCs from oxidative
stress-induced apoptosis [363]. Other interesting molecules that modulate mitochondrial
redox status and enhance mitochondrial biogenesis include sonlicromanol (also known as
KH176) and KL1333 [362]. KL1333 is an NAD+ modulator that improves the NAD+/NADH
ratio and has been demonstrated to decrease lactate and ROS levels while increasing ATP
synthesis in fibroblasts from patients with MELAS (mitochondrial encephalopathy, lactic
acidosis, and stroke-like episodes) [364].

These emerging therapeutic options provide potential avenues for the treatment of
LHON by targeting oxidative stress and mitochondrial dysfunction.

4.5. Anterior Ischemic Optic Neuropathy
4.5.1. General Aspects: Prevalence, Clinical Presentation, and Current Therapies

Among optic nerve disorders, anterior ischemic optic neuropathies stand out as one of
the most complex and significant conditions. These conditions are classified into anterior
and posterior optic neuropathies (AION and PION), distinguished by the presence or
absence of disc edema, respectively [365]. They are further categorized into arteritic and
nonarteritic diseases based on the presence or absence of vasculitis, which results in reduced
perfusion to the optic nerve head [366]. Nonarteritic anterior optic neuropathy (NA-AION)
is the most common acute optic nerve disease in patients older than 50 years [367]. Clinical
presentations include sudden acute unilateral vision loss without pain. However, effective
treatments for these conditions remain challenging [16,367,368]. Giant cell arteritis (GCA)
is the most common subtype of arteritic anterior ischemic optic neuropathy (A-AION).
High intravenous corticosteroid doses serve as the first-line therapy for GCA [369]. It
is crucial to initiate rapid treatment once GCA is suspected [370]. A systematic review
predicts that by 2050, over 3 million individuals in Europe, North America, and Oceania
will suffer from giant cell arteritis primarily due to aging [371]. Additionally, the esti-
mated economic burden resulting from visual disability caused by GCA in the United
States is expected to exceed USD 76 billion by 2050 [371]. Clinically, GCA manifests in
individuals over 50 years old, presenting classic symptoms such as severe headaches, jaw
claudication, cutaneous allodynia, and, in the majority of patients, additional symptoms
like fever, weight loss, depression, and night sweats [370]. Despite the administration of
high steroid doses, including intravenous methylprednisolone 1000 mg/day for 3 days,
followed by a maintenance dose of 1 mg/kg of prednisone [372], the chances of visual
recovery in GCA-related visual loss remain very low [373]. Furthermore, the long-term use
of steroids is associated with various side effects and rebound syndrome, while GCA is
prone to relapse [374]. Consequently, there is a significant research need for new therapeutic
strategies, and immunomodulating therapies have emerged as promising avenues in the
treatment of GCA. One example of an immunomodulating therapy is tocilizumab (TCZ),
an interleukin-6 (IL-6) receptor antibody. TCZ has already received approval from the
National Institute for Health and Care Excellence and NHS England for the treatment of
refractory GCA [375]. However, the use of TCZ is restricted due to its known side effects,
including alterations in liver enzymes and cholesterol levels, gastrointestinal perforation,
infections, headaches, and arterial hypertension [376,377]. In the field of immunomodula-
tion, several new immunoglobulins are currently undergoing clinical trials for the treatment
of GCA [378].

Nonarteritic anterior ischemic optic neuropathies (NA-AION) occur as a result of
events that lead to hypoperfusion of the optic nerve head. A recent comprehensive meta-
analysis revealed several risk factors for NA-AION, including male gender, hypertension,
hyperlipidemia, diabetes mellitus, coronary heart disease, sleep apnea, factor V Leiden
heterozygosity, and a history of cardiovascular medication use [379]. Pathogenetically,
Hayreh SS. described that NA-AION involves hypoperfusion of the optic nerve head,
leading to hypoxia of the retinal ganglion cell axons. This, in turn, results in the stasis
of the axoplasmic flow and the generation of swollen axons [366]. Consequently, optic
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disc edema occurs, causing compression of the capillaries supplying the optic nerve head,
creating a vicious cycle. The primary trigger for the initial hypoperfusion of the optic nerve
head is typically a transient drop in blood pressure, often occurring during sleep, such
as nocturnal arterial hypotension or hypotension after sleeping during the day. Severe
occlusion of the internal carotid or ophthalmic artery rarely causes ocular ischemia in
NA-AION cases [366]. While embolic lesions can be an occasional cause of NA-AION,
they result in more extensive and permanent damage to the optic nerve head compared
to the hypotensive type [366]. The clinical onset of NA-AION is sudden and typically
affects a single eye, resulting in vision loss without pain, often discovered by patients upon
waking in the morning [380]. Fundoscopy and perimetry are essential diagnostic tools for
NA-AION. The Goldmann perimeter, in particular, helps detect classic visual field defects
in NA-AION. A study on 312 consecutive eyes reported central scotomas in nearly half of
the cases, with the absolute inferior nasal defect being the most commonly detected [381].

Therapeutic options for NA-AION remain a challenging clinical issue. The effective-
ness of steroids, whether administered orally or intravenously, is a subject of intensive
debate [382]. A large nonrandomized cohort study in the United States involving 696 eyes,
spanning from 1973 to 2000, suggested that systemic steroid treatment with oral prednisone
(80 mg per day) during the acute phase may increase the probability of visual acuity and vi-
sual field improvement after six months [383]. However, due to the nonrandomized nature
of this study and potential biases, the findings should be interpreted with caution [384].
Katz and Trobe extensively reviewed possible treatment strategies for NA-AION in both
conservative and surgical fields and concluded that optic nerve fenestration surgery is
ineffective and potentially harmful, while the efficacy of steroids remains uncertain [385].
In an Indian randomized controlled trial involving 38 patients with NA-AION, Saxena
et al. found that oral prednisolone at 80 mg per day reduced the duration of disc edema
and improved the electrophysiological parameters of the optic nerve but did not result in a
visual acuity benefit after six months [386]. One potential clinical approach is the use of
α2-adrenergic agonists, such as brimonidine, in the acute phase of AION through topical
application. A study investigating the neuroprotective effect of brimonidine on anterior
optic neuropathy in rodents (rAION) demonstrated a decrease in RGC loss in mice treated
with brimonidine in the acute phase, possibly through a reduction in VEGF-A and HIF-1α
expression [387]. These findings align with previous studies that also demonstrated the
effectiveness of brimonidine in the acute phase of rAION [388,389]. In summary, the signifi-
cant lack of effective treatments for NA-AION and its relatively high prevalence underscore
the urgent need for research in novel therapeutic approaches. Exploring the antioxidative
branch of treatment holds promising potential to make significant contributions in this
regard. By focusing on antioxidant strategies, new therapeutic avenues can be explored to
address the challenges posed by NA-AION.

4.5.2. Oxidative Stress in the Pathogenesis of Anterior Ischemic Optic Neuropathy

GCA is an autoimmune disorder characterized by granulomatous infiltration involving
T-cells and activated macrophages, including multinucleated giant cells, primarily observed
in the vascular wall of the aorta and its main branches [370,390–392]. Vascular aging is
considered one of the critical risk factors for GCA, as oxidative stress is believed to play
a significant role in its pathogenesis [370]. This is likely attributed to age-associated
mitochondrial dysfunction, leading to an increased ROS generation in endothelial cells and
vascular smooth muscle cells [391,393,394]. A study on GCA patients has demonstrated
the presence of neutrophils in the vascular lumen and adventitia tissues surrounding
the external lamina elastica of temporal arteries, producing high levels of extracellular
ROS [395]. Additionally, systemic oxidative stress parameters, such as TAC and MDA
levels, along with intracellular leukocyte ROS levels, were found to be elevated in GCA
patients [396], and the findings support the hypothesis that reactive species contribute to the
pathophysiology of GCA by inducing vascular stress in large and medium-sized vessels.
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In the pathogenesis of NA-AION, damage may arise as a consequence of hypoxia
in the optic nerve head. Cellular hypoxia resulting from glucose and oxygen depletion,
followed by reoxygenation during the ischemia/reperfusion (I/R) process, can lead to an
overproduction of reactive species [397–400]. It has been proposed that systemic corticos-
teroids are effective in the acute phase of NA-AION, as they suppress NF-kB activation
during inflammation [383]. NF-kB is a transcription factor that can be triggered by ROS-
related cascades, as described in the pathogenesis of glaucoma [40,208,401]. ROS have been
shown to cause immune-mediated neuronal injuries, disruption of the blood–optic nerve
barrier, apoptosis, and autophagy through damage to DNA, proteins, and lipids [402,403].
Studies have revealed that I/R injuries in ischemic neurons lead to somatic autophagy
of axonal mitochondria, resulting in increased retrograde movement and decreased an-
terograde movement of mitochondria, ultimately reducing the functional mitochondria
available for ATP synthesis [403]. Our laboratory’s study on short-term ischemia in porcine
models demonstrated hypoxia-related alterations characterized by the upregulation of
HIF-1α, VEGF-A, NOX2, iNOS, and high levels of ROS [143]. Supporting these findings, a
study on NOX2-deficient murine models (NOX2−/−) showed that these mice displayed
neuroprotection in retinal I/R injury scenarios [228].

Interestingly, a Turkish study investigating plasma samples from 18 newly diagnosed
NA-AION patients found no significant differences in systemic oxidative stress parameters,
including TOS and TAS, when compared to healthy controls [402]. However, genetic inves-
tigations have revealed an association between NA-AION and a loss-of-function deletion
in the gene GSTM1, which encodes one of the three isoforms of the antioxidative enzyme
glutathione-S-transferase (GST) [404,405]. Additionally, another study reported a higher
frequency of mitochondrial DNA mutations in NA-AION patients compared to controls,
suggesting that mitochondrial dysfunction may be a risk factor for NA-AION [406].

Based on the current literature and the pivotal role of hypoxia in NA-AION, some
studies have provided evidence that conditions leading to increased ROS generation may
contribute to the risk of developing NA-AION. These findings highlight the potential
involvement of ROS in the pathogenesis of this disease.

4.6. Therapeutic Perspectives in Anterior Ischemic Optic Neuropathy
4.6.1. Giant Cell Arteritis

Nuclear sirtuins, such as the before-mentioned SIRT1, are proteins that potentially
have an antioxidative impact on GCA. These enzymes inhibit inflammation and oxidative
stress by transcriptionally repressing various inflammation-related genes [407,408]. A re-
cent study observed SIRT1 downregulation and subsequent ROS generation in individuals
with GCA, suggesting a potential therapeutic effect of SIRT1 activators [396]. While im-
munomodulating molecules have been extensively investigated due to the autoimmune
nature of GCA, there is growing scientific interest in exploring new antioxidant molecules
such as nuclear sirtuins.

4.6.2. Nonarteritic Anterior Ischemic Optic Neuropathy

An investigation using rAION mice and intravitreal injections of the Rho-kinase in-
hibitor, E212, immediately after optic nerve infarction resulted in increased SOD activity,
decreased ROS levels, reduced oxidative stress, and preservation of the blood–retinal bar-
rier [409]. Our laboratory conducted a study on mice with I/R retinal injuries and found
that betulinic acid, a natural compound found in plane bark, leaves, and fruit peel, pre-
served vascular function, attenuated ROS formation, and upregulated SOD and HO-1 [131].
Oroxylin A, a bioactive flavonoid extracted from Scutellariae baicalensis Georgi, showed po-
tential protective effects in rAION by activating Nrf2, increasing HO-1 and NQO1 activity,
promoting RGC survival, maintaining RNFL thickness, and exhibiting anti-inflammatory
effects by reducing IL-6 and increasing TGF-β levels [410]. N-butylidenephthalide, another
molecule, demonstrated a neuroprotective role in rAION by inhibiting the NF-κB signaling
pathway [411]. Vitamin B3 (niacin) was found to provide neuroprotection from oxidative
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stress in rAION by activating Nrf2, increasing SOD expression, inhibiting mitochondrial
apoptosis, and reducing the inflammatory response through NF-κB inhibition [368].

Geranylgeranylacetone (GGA), previously mentioned as a promising molecule for
glaucoma therapies, was also tested in murine models of I/R retinal injury and demon-
strated a decrease in RGC death by inhibiting the p38 MAPK apoptotic pathway [412]. In a
more recent study, GGA was shown to induce an increase in Hsp70 levels, inhibiting glial
activation, autophagy, and apoptosis [413]. Astaxanthin, previously identified as a potential
antiglaucomatous drug, possesses antioxidant and antiapoptotic properties. Lin et al. found
that astaxanthin preserved visual function, increased RGC survival, and inhibited apoptosis
by blocking the Akt pathway in rAION [414]. Resveratrol, previously investigated for its
potential in preventing RGC loss in glaucoma, has also been studied in I/R injuries. It
was found to attenuate glial activation and RGC death by suppressing HIF-1α-VEGF-A
upregulation and activating the downregulation of the PI3K/Akt pathway [415]. Resvera-
trol also protects RGCs from ischemia-related injuries by increasing Opa1 expression [416].
Our recent research demonstrated that resveratrol prevents vascular dysfunction and RGC
death in I/R-induced murine models, possibly through the inhibition of the I/R-related
upregulation of NOX2 [98]. These findings highlight potential therapeutic approaches for
AION by targeting oxidative stress, inflammation, and mitochondrial dysfunction.

4.7. Optic Neuritis
4.7.1. General Aspects

Optic neuritis (ON) is an idiopathic inflammatory demyelinating disease of the optic
nerve [417,418], which can be associated with the neuromyelitis optica [419] or can also
appear as initial manifestation of multiple sclerosis, a chronic demyelinating disorder
of the central nervous system [420,421]. In addition, reported risk factors for ON are
granulomatous diseases, infections, and autoimmune pathologies [422]. In the pathogenesis
of ON are involved activated T-cells, which releasing an abnormal volume of inflammatory
cytokines, elicit demyelination and disruption of the blood–optic nerve barrier and lead to
the loss of retinal ganglion cells and ONH atrophy [44,419,423–425]. ON is described as the
major cause of acute optic nerve disorder in young patients [419], being commonly observed
between 20 and 45 years and predominantly in women, with a ratio of 3:1 [17,420,426]. Its
clinical presentation can occur through single or multiple episodes and usually consists
of a sudden and unilateral loss of visual acuity, afferent pupillary impairment, orbital
pain by eye movements and altered color perception, in the presence or absence of disc
edema [427]. Diagnostically, fundoscopy and OCT help to detect ONH-anomalies and
RNFL thinning, respectively. A study estimated that OCT can reveal thinning of the RNFL,
with an average reduction of 33% compared to controls and an average reduction of 27%
between impaired and unimpaired eyes of the same patient [428]. Furthermore, it has been
reported that RNFL thinning is visible in 85% of all patients suffering from ON within
3–6 months after the acute phase [429]. In addition, perimetry can evidence visual field
loss limited to the nerve fiber bundle region, with paracentral, partial arcuate, or arcuate
defects [430]. A cranial MRI scan is performed for differential diagnosis and to evaluate
the association with multiple sclerosis [420]. Current standard therapies of ON include
high intravenous steroid doses (1000 mg IV methylprednisolone) during acute phases,
which were reported to facilitate visual recovery, whereas oral prednisone alone is not
recommended, as it failed to show comparable improvements [431]. However, a systematic
review examining six clinical trials globally, including 750 patients affected by ON, did
not evidence beneficial effects neither through intravenous nor via oral steroid therapy,
compared with the placebo groups, in terms of the visual field, visual acuity, and contrast
sensitivity outcomes [432]. Alternatively, the use of intravenous immunoglobulins in acute
ON, which may be considered in steroid-refractory cases [433], failed anyway to provide
benefits for generalized practice [434,435].
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4.7.2. Oxidative Stress in the Pathogenesis of Optic Neuritis

Various investigations succeeded to provide evidence on an altered redox sta-
tus in the context of ON, using experimental autoimmune encephalomyelitis (EAE)
models [411,436–438] and an animal model originally established for multiple sclerosis,
often employed in experiments aimed to study optic neuritis [427]. Moreover, studies on
patients affected by ON showed significant ROS-related anomalies, such as an elevated
fraction of oxidized thiol [439] or reduced bilirubin serum levels [440], indicators of high
ROS generation and low antioxidant status, respectively. As mentioned before, similar to
NA-AION and LHON, ON loss-of-function deletions in the gene coding for the antiox-
idative enzyme glutathione-S-transferase were also detected [405], therefore emphasizing
a decreased antioxidant activity as a possible risk factor. As we previously highlighted
in glaucoma, an elevated ROS generation and active inflammatory grade are deeply in-
terconnected and tend to trigger and intensify each other in a process where NF-kB and
cytokines are fundamental pathomechanistic players [441]. In relation to ON, increased
ROS are responsible for myelin phagocytosis and stimulate changes in the permeability
of the blood–brain barrier, favoring migration and infiltration of active T-cells, which, in
turn, reflects in abnormal inflammation and augmented ROS production [439]. Oxidative
damage may possibly be an initiator for demyelination and neurodegeneration [439], which
finally drives to RGC loss [417].

More large studies designed to interpret the multiple aspects in the pathogenesis of
ON, including the role of oxidative stress, may deliver new knowledge for the design of
more effective pharmacological drugs to treat this disease.

4.8. Therapeutic Perspectives in Optic Neuritis

While a prompt administration of anti-inflammatory drugs during the acute phase
of optic neuritis (ON) may help preserve vision [442], the use of steroids alone has not
been shown to protect the optic nerve from inflammatory demyelination or prevent de-
generation of retinal ganglion cells (RGCs) [417,443]. Therefore, antioxidant approaches
have been explored to support nerve fiber integrity by counteracting inflammation and
demyelination, thus preventing RGC death [417,444]. In preclinical studies on ON models,
several major antioxidant targets have been investigated, including the activation of Nrf2
and the suppression of ROS-related proapoptotic signaling, such as blocking ASK-1 and
the pJNK/p38 pathway.

Dimethyl fumarate, a Nrf2 activator that has been licensed for the treatment of
relapsing-remitting multiple sclerosis in the US since 2013, has shown promising results
in experimental autoimmune encephalomyelitis (EAE) models, reducing the severity and
relapses of optic neuritis and preserving RGCs from cell death [444]. Gypenosides, an
extract from Gynostemma pentaphyllum, have demonstrated beneficial antioxidant effects
on the retina [445]. In a study on murine models of optic neuritis, gypenosides led to a
decrease in iNOS and COX2 expression while activating Nrf2, resulting in the upregulation
of HO and GPX, along with free radical scavenging and anti-inflammatory activities [446].
α-Lipoic acid, which potentially activates Nrf2 [268], has been investigated in EAE models,
showing increased RGC survival and anti-inflammatory effects [447]. However, a dedicated
trial on 31 patients with ON (NCT01294176) reported good tolerability after oral supple-
mentation (600 mg twice a day) of α-lipoic acid [448] but did not show significant benefits
in retinal nerve fiber layer thickness after 24 weeks compared to the placebo group [449].
Consequently, the trial ended in phase I due to insufficient recruitment [450]. As previously
mentioned, SIRT1, known to activate Nrf2, has also been studied [417]. In an EAE study, an
adeno-associated virus vector was utilized as a delivery vehicle to enhance SIRT1 expres-
sion, demonstrating that the selective upregulation of SIRT1 promotes RGC survival and
preserves axons from demyelination through intravitreal injection [417]. Another investiga-
tion explored the use of matrine, an extract from the herb Radix Sophorae Flavescentis, in
EAE models. Matrine induced an overexpression of SIRT1, the subsequent upregulation of



Antioxidants 2023, 12, 1465 27 of 54

Nrf2, and collectively resulted in mitochondrial biosynthesis, reduced ROS formation, and
the suppression of inflammation and demyelination [451].

The inhibition of ASK-1 also showed encouraging preclinical results in mitigating
oxidative-stress-induced RGC apoptosis. The ASK-1 inhibitor MSC2032964A has been
demonstrated to alleviate neuroinflammation and diminish optic nerve demyelination in
EAE murine models [452]. Spermidine, previously mentioned as a potential antioxidant
for glaucoma, also suppresses the ASK-1/p38/pJNK pathway [263] and has been reported
to reduce RGC apoptosis in EAE mice [453].

A recent publication investigated the effects of edaravone, previously mentioned,
in cultures and mice with neuromyelitis optica spectrum disorder and found that it pro-
moted remyelination through activation of the mTOR complex I (mTORC1) signaling
pathway [454]. Currently, there is an ongoing trial (NCT05540262) that aims to assess
the impact of edaravone in patients with optic neuritis who are positive for aquaporin-4
antibodies. The trial is expected to be completed by the end of 2024.

5. Other Rare Optic Neuropathies
5.1. Traumatic Optic Neuropathies
5.1.1. General Characteristics

Craniofacial traumas can directly or indirectly insult the optic nerve, leading to so-
called traumatic optic neuropathies (TONs) [455,456]. Direct traumas are caused by injuries
to the optic nerve through the intracranial fragmentation of bones or also through con-
tusion, causing anatomical disruption [457]. Indirect traumas occur when compression
and disruption of pial vessels cause a reduction in the vascular perfusion in the optic
nerve [458,459]. Moreover, a deformation of the skull at the optic canal, and more specif-
ically at its intracranial end, was reported to also be responsible for optic nerve injuries
in indirect traumas [460]. The most reported causes of TON are vehicle accidents, bicy-
cle accidents, falls, assaults, and sport injuries [24]. Indirect TON is more common than
direct forms and occurs in 0.5–5% of all closed head injuries and 2.5% of all midfacial
fractures [22,461,462]. In terms of diagnosis, a brain MRI scan is typically conducted [456].
Therapeutically, reported options for the treatment of traumatic optic neuropathy (TON)
include high-dose corticosteroids or surgical decompressions [456]. However, both of these
treatment approaches are accompanied by controversies due to the pharmacological side
effects of steroids or the potential complications associated with surgery [456,463]. Conse-
quently, exploring neuroprotective strategies to prevent optic nerve damage represents a
promising curative option with substantial potential for TON [456].

An emerging and intriguing area of research for traumatic and inflammatory optic
nerve disorders is neuromodulation based on biomedical ultrasound stimulation. This
field is continuously evolving, not only for the retina but also for other ocular structures,
such as the cornea and ciliary body [464]. Moreover, it extends beyond ophthalmology,
finding applications in fields like cardiology and the peripheral nervous system [465–469].
Retinal ultrasound stimulation is a promising therapeutic approach for TON [470]. Some
studies reported that curative strategies based on ultrasound may prevent oxidative-stress-
induced damage [471,472], even on retinal pigmental epithelial cells in vitro [473]. In
cases of complete RGC degeneration resulting from severe optic nerve trauma, ultrasound
neuromodulation may offer a potential noninvasive approach to restore vision. High-
frequency ultrasound can biochemically initiate localized neuronal responses, triggering
electrically evoked cortical potentials along the visual pathway [470,474]. Implantable
treatments, including a retinal stimulating piezo-array, are also being explored as wireless
retinal prostheses capable of eliciting visual percepts in cases of irreversible visual loss [475].
A study conducted on rabbits demonstrated that an intraneural electrode array positioned
in the intracranial segment of the optic nerve can generate selective activation patterns in
the visual cortex, sparking interest in the potential use of optic nerve prostheses for total
retinal detachment cases [474]. Another intriguing possibility is direct stimulation of the
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visual cortex bypassing the visual pathway, which was recently explored using hybrid
noninvasive ultrasound techniques [476].

5.1.2. Pathogenesis of Traumatic Optic Neuropathies: Role of Oxidative Stress and Ca2+

In murine models, traumatic optic neuropathy (TON) has been shown to be associated
with RGC loss, axonal degeneration, and visual impairment [477]. The pathomechanisms
potentially involved in RGC death include the disruption of the blood–brain barrier, lead-
ing to the infiltration of activated immune cells, such as macrophages and neutrophils.
These immune cells produce a significant amount of reactive oxygen species (ROS) and
cytokines, further activating microglia and causing damage to mitochondria and the endo-
plasmic reticulum [478–480]. Numerous studies on murine and rodent models of TON have
demonstrated an overproduction of ROS [481–483], as well as a decrease in the antioxidant
activity of SOD [470] and CAT [484,485]. Additionally, mitochondrial anomalies [486] and
disturbances in Ca2+ fluxes, which can occur concomitantly with ROS formation, have
been described [485]. Notably, the progression of damage in TON has been associated with
intracellular Ca2+ influx, observed after stretching axonal myelinated fibers of the optic
nerve, resulting in the dissolution of the axonal cytoskeleton [487]. An insightful review
discussed the interplay between endoplasmic reticulum (ER) stress and oxidative stress
in the pathophysiology of TON, highlighting the involvement of these two pathogenic
factors in optic nerve trauma-induced RGC loss [488]. In this context, a study by Hu et al.
on optic nerve crush models revealed an upregulation of the ER stress mediator protein
CHOP as a consequence of optic nerve injury, further demonstrating that its deletion can
prevent RGC death [489]. Consistent with these findings, other investigations on models
of traumatic brain injury have reported the overexpression of CHOP and induction of
ER stress, contributing to neurodegenerative processes following neurotrauma [490–492].
In summary, in line with existing literature, after an optic nerve insult, disruption of the
blood–optic nerve barrier may allow the infiltration of activated immune cells, resulting in
the generation of high concentrations of ROS and proinflammatory mediators. These events
ultimately lead to axonal degeneration, myelin damage, and culminate in mitochondrial
and ER stress, further exacerbating inflammation and triggering apoptotic RGC death.

5.1.3. Potential Antioxidants for Traumatic Optic Neuropathies

Numerous naturally occurring compounds have been tested for their antioxidant
properties in models of traumatic optic neuropathy (TON). For example, the ethanol
extract of Echium amoenum L. demonstrated antioxidant and anti-inflammatory effects
in optic nerve crush models. It was shown to inhibit glutamate-induced ROS formation,
reduce NF-kB activity, and decrease microglial activation and optic nerve damage [493].
Similarly, the ethanol extract of Lithospermum erythrorhizon in optic nerve crush models
was found to decrease ROS generation and lower the levels of proapoptotic proteins, such
as caspase-3 [494]. In experimental neurotrauma murine models, a high vitamin E diet
exhibited neuroprotective properties by preventing RGC death, reducing ROS levels, and
suppressing inflammasome activation [484]. Neuroglobin, a mammalian heme protein
with antioxidant features, was reported to enhance RGC survival and promote optic axon
regeneration in TON murine models [495–497].

Moreover, synthetic compounds have also been investigated in TON models. Carvedilol,
a nonselective β-adrenoreceptor blocker, was found to inhibit iNOS expression, ASK-1, and
the p38/MAPK pathways, subsequently reducing RGC apoptosis [498]. Polydopamine is a
polymer synthetically obtained through oxidation of the neurotransmitter dopamine [499]
and a major pigment of the naturally occurring eumelanin [500]. Polydopamine-based
nanoreactors were demonstrated to scavenge ROS in RGCs after optic nerve injury in mice,
as well as to mitigate microglial activation and to suppress ROS-related RGC apoptosis [501].
Galantamine is an FDA-licensed compound used in the treatment of Alzheimer’s disease,
which primarily acts as an acetylcholinesterase inhibitor but also has antioxidant [502,503]
and anti-inflammatory features [504]. This molecule was reported to protect against visual
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function deficiency, attenuate oxidative stress and inflammation, and inhibit axonal de-
generation in TON models [505]. Finally, the previously reported resveratrol, which can
activate SIRT1 and subsequently, Nrf2 [256,257], also appears to possess curative effects
in TON models. In fact, this compound showed protective effects on RGCs in optic nerve
crush models, attenuating oxidative stress [506]. In line with these findings, a recent inves-
tigation revealed that the regulation of the SIRT1/mTORC1 axis in the microglia has the
potential to mitigate optic-nerve-crush-induced RGC death [507].

Taken together, many publications have gathered evidence on promising preclini-
cal results in animal models of optic nerve trauma. However, an important factor to be
considered for the practical use of antioxidants after optic nerve trauma in humans is the
prompt administration of the drug after diagnosis [478]. A delay in this context may result
in unsuccessful effects of the medication due to the early activation of intracellular down-
stream transductions [478]. Thus, a combination of antioxidants and other medications
with possibly different targets may enhance the probability of effectiveness in contrasting
damage after optic nerve injuries [478]. Further investigations are warranted to test the
efficacy and safety of these molecules.

5.2. Compressive and Stretch Optic Neuropathies
5.2.1. General Features

Graves orbitopathy (GO) can cause dysthyroid optic neuropathy (DON), which is
due to optic nerve compression (found in over 90% of cases) through the extension of
extraocular muscles, orbital fat expansion and interstitial edema [508], or alternatively,
optic nerve stretching without compression (described in less than 10% of cases) [509].
DON is recognized as the most common form of compressive optic neuropathy, and its
main reported risk factors comprise advanced age, male gender, smoking, and diabetes
mellitus [509]. This disorder clinically manifests with central vision defects, altered color
perception, relative afferent pupillary defect, and mostly and typically through protrusio
bulbi, also known as exophthalmos, due to widening of the extraocular muscles, which
leads to restricted ocular motility [509]. The diagnostic features include (1) fundoscopy,
which can evidence compression-induced disc edema; (2) perimetry, which help detect
central scotomas; and (3) OCT, which can show RNFL thinning. Further, cranial MRI
or CT scans may help to differentiate compressive from stretch conditions [510]. The
gold standard therapy in DON caused by compression is a high intravenous dose of
methylprednisolone (0.5–1 g for 3 days), eventually followed by surgical decompression
in the case of insufficient corticosteroid response [511]. In the case of DON caused by
stretching, the surgical option becomes the first-line treatment [509]. Other reported
therapeutic options are biological drugs, such as teprotumumab and tocilizumab, and
orbital radiotherapy [511]. Although first-line therapies are largely assumed to be effective
to control symptoms and to prevent vision loss in DON, deterioration of the optic nerve
function, relapses of DON, and corticosteroid side effects or contraindications, induce the
search for new curative options [511].

5.2.2. Oxidative Stress in the Pathogenesis of Dysthyroid Optic Neuropathy

DON is a consequence of GO, an autoimmune inflammatory disorder, in which
through the stimulation of autoantibodies and interactions with activated T-cells, orbital
fibroblasts are triggered and induce diverse intracellular transductions, such as the MAPK
pathway with downstream NF-kB activation, as well as the PI3K/Akt axis, collectively
inducing the abnormal generation of proinflammatory cytokines, such as IL-1α, IL-1β,
IL-6, IL-8, macrophage chemoattractant protein-1 (MCP-1), and transforming growth
factor (TGF)-β [508,512]. Moreover, orbital fibroblasts differentiate into adipocytes and
myofibroblasts, further producing glycosaminoglycan, a component of connective tissues,
responsible, through its deposition, for muscle enlargement, together with hyaluronic
acid [513]. Investigations have also demonstrated that indicators of oxidative damage are
increased in blood and urine, as well as in the orbital fibroblasts of patients with GO. In the
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blood of patients affected by GO, elevated levels of H2O2 were demonstrated as well as of
lipid hydroperoxides (ROOHs) and the further enhanced activities of SOD and CAT, while
GPX activity was reduced [514]. Biomarkers of oxidative stress, such as 8-OHdG and MDA,
as well as intracellular ROS were elevated in the orbital fibroblasts of patients with GO
compared to healthy controls [515]. High concentrations of MDA and 8-OHdG were also
found in the tears of patients with GO, particularly in the active phases of the disease [516].
Another study reported that positive urinary 8-OHdG correlates with disease activity
and that smoking as risk factor has a higher influence on the elevation of 8-OHdG [517].
In this regard, an in vitro investigation on the orbital fibroblasts of patients affected by
GO, exposed to cigarette smoke extracts, showed that fibroblasts react to cigarette smoke
components through the aberrant inducement of oxidative stress, as well as through the
elevation of TGF-β and IL-1 [518]. These studies globally evidenced that oxidative stress
is present in GO and possibly indicate that ROS have a role in the pathophysiology of
this disorder. In this context, hypotheses on the impact of ROS in the pathogenesis of GO
were formulated and proven in some studies. For example, O2

•− was suggested to trigger
a retro-ocular fibroblast proliferation in patients with GO [519]. In addition, H2O2 was
shown to stimulate the production of TGF-β and IL-1 in GO orbital fibroblasts [520].

Altogether, from the existing literature, we can extrapolate that ROS, IL-1, and TGF-β
play critical roles in the stimulation and progression of inflammation, in the fibroblastic
differentiation, and in the deposition of connective tissue components in GO, which collec-
tively lead to remodeling events that cause compression of the optic nerve in DON [521].

5.2.3. Antioxidant Candidates in Dysthyroid Optic Neuropathy

Some molecules with antioxidant characteristics showed encouraging results in ded-
icated investigations for mild stages of GO [508]. A relevant example is represented by
selenium, a natural compound with antioxidant and anti-inflammatory properties [522],
present in nuts, shrimps, eggs, meat, and cereals, among others [523]. This molecule was
assessed in the orbital fibroblasts of patients with GO and was shown to inhibit fibroblastic
proliferation and release proinflammatory cytokines, such as TNF-α, and the ROS-induced
production of hyaluronic acid [524]. In line with these findings, another in vitro investiga-
tion on orbital fibroblasts affected by GO confirmed the suppressing action of selenium
against ROS formation, hyaluronan production, and the release of inflammatory media-
tors [525]. A dedicated trial on 159 patients with mild GO tested the potential curative
effects of selenium supplementations and proved an improvement in symptoms as well
as quality of life, together with a slowed-down disease progression after selenium-based
therapy, ultimately recommending a six-month treatment through selenium supplementa-
tion in patients with mild GO of short duration [526,527]. However, the administration of
selenium should be considered in relation to selenium intake from the diet, which, in turn,
varies in accordance with different geographical locations [523]. Hence, the detection of
selenium concentrations in serum should occur preliminary to prevent a high selenium
intake, which may also produce side effects [521,528].

Quercetin, an antioxidant flavonoid found, for example, in fruits and vegetables and
used in traditional Chinese medicine [529], was reported to decrease ROS formation as well
as to inhibit adipogenesis in primary cultured orbital fibroblasts obtained from GO patients
exposed to cigarette smoke extracts [530]. In addition to the demonstrated antioxidative
effect, quercetin was also described as a significant anti-inflammatory molecule in orbital
fibroblasts affected by GO, suppressing IL-1-related inflammation as well as hyaluronan
formation and adipogenetic processes [531].

Other natural compounds which also showed an effective antioxidant activity in orbital
fibroblasts from patients with GO in preclinical studies are ascorbic acid in combination with
N-acetyl-L-cysteine and melatonin [532] and β-carotene [533]. Furthermore, pentoxifylline
was tested in preclinical [534] and clinical investigations [535,536], showing the promising
effects contrasting the glycosaminoglycan production from orbital fibroblasts in both.
However, the same trial which the confirmed curative effects of selenium in 159 patients
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with GO, also tested pentoxifylline and did not conclude an equivalent effectiveness for
this class of molecules in GO [526].

The before-mentioned resveratrol was also investigated in fibroblasts with GO, show-
ing a decrease in ROS levels and suppressing adipogenesis in vitro [537].

Additionally, synthetic existing compounds were tested as potential antioxidants in
GO. In this regard, allopurinol in combination with nicotinamide showed promising results
in vitro, reducing ROS formation in fibroblasts [538], as well as in clinical trials, positive
impacting on the severity of the disorder [539]. Enalapril, a widespread antihypertensive
drug, also possesses antioxidant features [540,541] and in vitro, displayed decreased cell
proliferation and reduced hyaluronic acid levels in both the orbital fibroblasts affected by
GO and the control fibroblasts [542]. A dedicated trial confirmed encouraging preclinical
results in 12 patients with mild GO treated with enalapril for 6 months, concluding a
beneficial impact on the clinical course and disease progression [543].

After reviewing existing publications on this theme, it appears reasonable that antiox-
idants may be considered a promising additional therapy in combination with corticos-
teroids to improve the quality of life of patients and slow down disease progression, as
well as reduce the severity of the inflammation in GO [521].

5.3. Infiltrative Optic Neuropathies

Infiltrative processes of the optic nerve likewise generate RGC degeneration. An
example is the leukemic optic neuropathy, mainly associated with acute lymphoblastic
leukemia [544–546]. The involvement of the optic nerve in leukemic cases remains, how-
ever, a rare circumstance, which may mostly appear in relapses and late in the disease
course [547,548]. The optic nerve head affected by infiltration may dangerously mimic a disc
edema, a pathological sign detected by a large variety of different optic neuropathies [549].
In a fundoscopic examination, ONH can show irregular and nodular conformations [549].
Visual impairment is typically due to the neoplastic infiltration of ONH, which causes
nerve fibers and vascular compressions [550]. Diagnostically, an MRI scan of the brain is
essential for early detection and to possibly rapidly begin an appropriate therapy [551].
Pathogenetically, in relation to the possible direct involvement of oxidative stress in the
pathophysiology of these pathologies, the current literature presents no dedicated studies
on the argument.

5.4. Congenital Anomalies of the Optic Nerve

Optic nerve congenital anomalies also constitute a subgroup of optic neuropathies
and include, for example, optic nerve hypoplasia and optic disc colobomas [552,553], the
latter with a reported prevalence in children of ~8.9 in 100,000 [554]. Visual impairment in
this large group of disorders may appear isolated or as part of a systemic malformation
syndrome [555]. Congenital visual defects or visual loss are commonly associated with this
devastating class of disorders [555]. No studies were performed to analyze the pathogenetic
roles of ROS in these diseases.

5.5. Nutritional and Toxic Optic Neuropathies

Nutritional deficits, such as in case of vitamin B12 (cyanocobalamin), B1 (thiamine),
or B9 (folic acid) deficiency, as well as intoxications, caused, for example, by ethambutol,
amiodarone, or antibiotics, such as chloramphenicol [556–558], may cause optic nerve
disorders. The prevalence of these pathologies is variable and typically depends on so-
cial, economic, geographical, and historical factors [31,32]. Some examples are the optic
neuropathy in prisoners of the Japanese during World War II [559], the Cuban epidemic
optic neuropathy [560], and the Tanzanian epidemic optic neuropathy [561], all of which
were caused by metabolic deficiencies. Interestingly, nutritional optic neuropathies are
currently becoming increasingly common as a consequence of bariatric surgery as well as
strict vegetarian and vegan diets, thereby awaking scientific interest [32]. Nutritional optic
neuropathies are usually caused by the deficiency of molecules which are crucial for the
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normal functionality of mitochondria, such as diverse subtypes of vitamin B [562]. Both
intoxications or vitamin deficiencies usually manifest with optic disc pallor and anomalies
in the papillomacular nerve fiber bundle and symptomatically through reduced color
perception and detectable visual field defects, corresponding to the central or cecocentral
scotomas, as observed in cases of LHON [556,562]. For example, toxic optic neuropathies
caused by a chronic intake of chloramphenicol can mimic an acute stage of LHON [558].
Chloramphenicol can suppress mitochondrial protein synthesis, inducing an alteration
in the mitochondrial structure and subsequently, dysfunction, with decreasing ATP and
increasing ROS, which collectively reflect in LHON-like symptoms [563].

Possible treatments in these disorders obviously depend on the etiology. Indeed,
nutritional optic neuropathies can be treated through vitamin B supplementations [564,565].
Toxic optic neuropathies should be treated rapidly after diagnosis through stopping the
drug therapy in the case of pharmacological etiology and stopping smoking or alcohol con-
sumption [557]. In this context, the dedicated studies also demonstrated the effectiveness
of erythropoietin in improving visual acuities in patients affected by methanol-related toxic
optic neuropathies [566,567].

6. Conclusions and Future Directions

Optic nerve disorders pose significant challenges due to their prevalence, severity,
and economic implications for patients and the healthcare system. The development and
proposal of new effective curative strategies are crucial in addressing these conditions. The
field of antioxidative research has garnered increasing scientific interest, with numerous
studies demonstrating promising preclinical results. Oxidative stress has emerged as a
potential therapeutic target in animal models of glaucoma, LHON, AION, and ON. Clin-
ical translations of these findings have already begun, as evidenced by the licensing of
idebenone for LHON. However, considering the relative novelty of these potential antiox-
idants and the unknown aspects of their tolerability in humans, the careful planning of
clinical studies is necessary. The high prevalence of glaucoma worldwide suggests that
the cost-effective use of new antioxidant medications is feasible. Nonetheless, large-scale
trials are imperative to ensure the applicability and long-term safety of these treatments
for a large population of patients. The severity and rarity of conditions such as LHON
may prompt exploration of new pharmacological avenues, including the antioxidant ap-
proach, as demonstrated by the development of idebenone [329]. Similarly, the lack of
effective drugs for AION highlights the need to explore new directions, including the
“antioxidant opportunity”.

Despite several positive findings in preclinical investigations, many potential an-
tioxidant drugs have failed to progress beyond phase II in the corresponding clinical
trials [568–570]. Currently, only a limited number of clinical studies are planned in the an-
tioxidant field. Recent studies have examined the reasons for these failures, which include
the low bioavailability of antioxidants, limited tissue targeting, poor antioxidant capacity,
and high drug dosing that may be toxic for human use [571]. Additionally, some clinical
investigations may have been limited by slow disease progression, such as in the case of
glaucoma, resulting in long follow-up periods and a lack of sensitive biomarkers [568].
Significant efforts are currently being made to develop efficient drug delivery systems to
enhance the translational success of potential antioxidants [445,446]. Alternative clinical
trial designs, such as adaptive clinical trials, offer flexibility by allowing modifications
based on predefined criteria [572,573].

In conclusion, the findings of our review have compiled significant preclinical evidence
supporting the potential of targeting oxidative stress as a therapeutic approach in animal
models of optic nerve diseases. These results highlight the importance of further advancing
clinical trials in this research area, as they hold immense potential to bridge the current gap
between preclinical and translational applications. By implementing and refining clinical
trials, we can move closer to harnessing the benefits of oxidative stress modulation for the
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treatment of optic nerve diseases, ultimately improving patient outcomes and advancing
therapeutic strategies in this field.
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