
Citation: More, P.; Ngaffo, J.A.M.;

Goedtel-Armbrust, U.; Hähnel, P.S.;

Hartwig, U.F.; Kindler, T.; Wojnowski,

L. Transcriptional Response to

Standard AML Drugs Identifies

Synergistic Combinations. Int. J. Mol.

Sci. 2023, 24, 12926. https://doi.org/

10.3390/ijms241612926

Academic Editors: Athanasios

G. Papavassiliou and

Alessandro Fatica

Received: 20 July 2023

Revised: 7 August 2023

Accepted: 16 August 2023

Published: 18 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Transcriptional Response to Standard AML Drugs Identifies
Synergistic Combinations
Piyush More 1,* , Joëlle Aurelie Mekontso Ngaffo 1,2, Ute Goedtel-Armbrust 1, Patricia S. Hähnel 3,4,
Udo F. Hartwig 4,5 , Thomas Kindler 3,4 and Leszek Wojnowski 1

1 Department of Pharmacology, University Medical Center, Johannes Gutenberg-University,
55131 Mainz, Germany; joelle.mekontso@leibniz-inm.de (J.A.M.N.); goedtela@uni-mainz.de (U.G.-A.);
wojnowsk@uni-mainz.de (L.W.)

2 Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
3 University Cancer Center (UCT) Mainz, Johannes Gutenberg-University, 55131 Mainz, Germany;

p.haehnel@uni-mainz.de (P.S.H.); thomas.kindler@unimedizin-mainz.de (T.K.)
4 Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University,

55131 Mainz, Germany; uhartwig@uni-mainz.de
5 Research Center of Immunotherapy, University Medical Center, Johannes Gutenberg-University,

55131 Mainz, Germany
* Correspondence: piyusmor@uni-mainz.de

Abstract: Unlike genomic alterations, gene expression profiles have not been widely used to refine
cancer therapies. We analyzed transcriptional changes in acute myeloid leukemia (AML) cell lines in
response to standard first-line AML drugs cytarabine and daunorubicin by means of RNA sequenc-
ing. Those changes were highly cell- and treatment-specific. By comparing the changes unique to
treatment-sensitive and treatment-resistant AML cells, we enriched for treatment-relevant genes.
Those genes were associated with drug response-specific pathways, including calcium ion-dependent
exocytosis and chromatin remodeling. Pharmacological mimicking of those changes using EGFR
and MEK inhibitors enhanced the response to daunorubicin with minimum standalone cytotoxicity.
The synergistic response was observed even in the cell lines beyond those used for the discovery,
including a primary AML sample. Additionally, publicly available cytotoxicity data confirmed the
synergistic effect of EGFR inhibitors in combination with daunorubicin in all 60 investigated cancer
cell lines. In conclusion, we demonstrate the utility of treatment-evoked gene expression changes
to formulate rational drug combinations. This approach could improve the standard AML therapy,
especially in older patients.
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1. Introduction

Drug combinations provide an effective way to tackle the resistance of cancer cells
to individual drugs and to reduce side effects by means of dose reduction. Taking acute
myeloid leukemia (AML) as an example, the combination of cytarabine and daunorubicin
forms the first-line induction therapy that achieves complete remission in 80% of the
patients [1]. But most older patients, which form most AML cases, are unfit to receive this
standard therapy due to toxicities associated with high-dose cytarabine [2]. Second-line,
less toxic therapies consisting of hypomethylating agents, such as azacitidine, has been
approved for such cases [3]. Another limitation of the standard induction therapy is that
up to 35% of patients with favorable risk profiles and 80% of patients with unfavorable
risk profiles eventually relapse, limiting the use of the standard drug combination due
to acquired resistance [4,5]. Hence, identifying safer and optimal drug combinations is a
major need to improve AML treatment outcomes, especially in older patients.

The typical approach to identifying drug combinations includes high-throughput
in vitro and/or ex vivo drug cytotoxicity screening. However, the experimental evaluation
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of hundreds of drugs and their combinations is laborious. Hence novel predictive methods
are required to shortlist the most promising candidates that can be verified experimentally.
Gene expression profiles have been underutilized in clinical practice to formulate drug
combinations compared to somatic mutations. For example, the standard AML therapy
is supplemented in carriers of FLT3, IDH1/2, and BCL2 mutations by targeted drugs [6].
However, the use of gene expression profiles has been limited in defining the molecular
identity of cells. Recently, pre-treatment gene expression profiles have been demonstrated
to improve AML classification [7]. These transcriptomics-derived sub-groups were even
associated with distinct prognoses and drug sensitivities. Gene expression profiles have also
been explored to identify specific biomarkers defining AML aggressiveness, the likelihood
of relapse, and to predict the treatment response [8–10].

However, such gene expression-based markers are still far away from clinical imple-
mentation. Crucially, their utility in treatment refinements has not been explored, although
it is known that the transcriptional effects contribute to the drug’s anticancer activity [11].
The most likely reason for the lack of clinical translation is that treatment-relevant gene
expression profiles become apparent only after the treatment onset. Considering that
chemotherapeutic drugs typically inhibit cancer cells by altering multiple molecular pro-
cesses, capturing their effect on global transcription possesses immense potential in drug
repurposing [12]. Thus, we have shown that the transcriptional changes in response to
topoisomerase II poison etoposide enhance its cytotoxic effects mediated via primary
DNA double-strand breaks. We further utilized these transcriptional changes to identify
etoposide combination partners [13].

In the present work, we analyzed the transcriptional response of AML cells to first-line
drugs cytarabine and daunorubicin as monotherapies and in combination by perform-
ing RNA sequencing. By comparative analysis, we identified response-defining gene
expression signatures that were mimicked pharmacologically to identify potential novel
daunorubicin-based combinations.

2. Results
2.1. AML Cell Lines Exhibit Variable Response to Standard Drugs

We treated HL60, MOLM13, and OCIAML3 cells with cytarabine (0.1 µM), daunoru-
bicin (0.02 µM), and their combination (0.1 µM cytarabine + 0.02 µM daunorubicin) for
24 h. CellTiter-Glo-based cell cytotoxicity measurements revealed differential sensitivity
of these cells to individual drug treatments. HL60 cells exhibited the lowest response
to daunorubicin treatment (percentage cell death 7 ± 7.02), while OCIAML3 did not re-
spond to cytarabine treatment (Figure 1A). On the other hand, MOLM13 cells responded
to both cytarabine (percentage cell death 66.6 ± 5.6) and daunorubicin (percentage cell
death 91.8 ± 4.7) treatments. All three cell lines responded similarly to the combination of
cytarabine and daunorubicin (percentage cell death 77.7 ± 25.2, 89.5 ± 10.9, and 86.6 ± 1.3
for HL60, MOLM13, and OCIAML3, respectively).
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Figure 1. Response of AML cell lines to standard drugs. (A) Percentage cell death and (B) number of
gene expression change in 3 AML cell lines in response to treatments with cytarabine, daunorubicin,
and their combination for 24 h compared to DMSO. Percentage cell death was measured using
CellTiter-Glo assay, and gene expression changes were identified from RNA-Seq.

2.2. Cytotoxic Response of AML Cells Correlates with the Transcription Response

To understand the transcriptional basis for drug sensitivity and synergy, we quantified
gene expression by performing total RNA sequencing after treatment with cytarabine
and daunorubicin as monotherapies and after the combination therapy. We compared
these profiles with DMSO-treated cells to identify the gene expression changes. Most
transcriptional changes in AML cells were gene inductions (average 79%); as opposed to
gene repressions (average 21%). This proportion was consistent across both individual
treatments and the combination treatment (average percentage of down-regulated genes
21.7, 20.1, and 21.1 and average percentage of up-regulated genes 78.3, 79.9, and 78.9 for
cytarabine, daunorubicin, and combination, respectively). The total number of differentially
expressed genes correlated with the percentage of cell death in response to drug treatments.
HL60 cells responded least to the daunorubicin treatment and exhibited the least number
of differentially expressed genes (1806) compared to cytarabine (3552) and the combination
(4608). The highest number of differentially expressed genes in response to the combination
was associated with the highest cytotoxicity (Figure 1A,B).

Similarly, OCIAML3 cells with no response to cytarabine treatment exhibited only
six differentially expressed genes. MOLM13 cells also exhibited an increasing number of
differentially expressed genes with increasing cytotoxicity to cytarabine, daunorubicin,
and the combination. This indicated that the cytotoxic response was reflected by the
transcriptional response of AML cell lines to the treatments.

To further understand the role of gene expression changes in drug-mediated cyto-
toxicity, we investigated the down-regulation of the genes essential for cell survival. We
obtained the list of genes essential for the survival of HL60, OCIAML3, and MOLM13 cells
from an RNAi-based cell viability screen DepMap [14,15]. Several essential genes turned
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out to be down-regulated. In MOLM13 and OCIAML3 cells, daunorubicin down-regulated
the highest number of essential genes (510 and 15, respectively; Supplementary Figure S1).
In contrast, in daunorubicin-resistant HL60 cells, daunorubicin down-regulated the least
number of essential genes (45) compared to 137 by cytarabine and 270 by the combination
treatment. Analogously in cytarabine-resistant OCIAML3 cells, no essential gene was
down-regulated by cytarabine treatment. These results suggested the involvement of gene
expression changes in driving cytotoxic response besides the primary action of the drug.

2.3. Transcription Response of AML Cells Vary between Individual Drugs and the Combination

To investigate the similarities between standard AML drugs and their combination
at the transcriptional level, we compared the differentially expressed genes across the
three AML cell lines. There were, on average 4% down-regulated and 20% up-regulated
genes common to all treatments (Figure 2). In HL60 cells, the transcriptional response to
cytarabine and the combination treatment was more comparable (31.2% down- and 65.1%
up-regulated genes common) than the response to cytarabine and daunorubicin (7.8%
down- and 33.5% up-regulated genes common) and daunorubicin and the combination
(7.4% down- and 33.9% up-regulated genes common). In contrast, the transcriptional
response of MOLM13 and OCIAML3 cells showed the most overlap between daunorubicin
and the combination (55% down- and 53.6% up—regulated genes common in MOLM13
and 17.7% down- and 43.5% up-regulated genes common in OCIAML3) (Figure 2). These
were also the cell lines with higher cytotoxic response to daunorubicin than HL60 cells
(Figure 1A). On average, the proportion of differentially expressed genes from individual
drugs in the combination was 32.8%, 57.3%, and 17.7% for down- and 67.2%, 58%, and
43.6% for up-regulated genes in HL60, MOLM13, and OCIAML3 cells respectively.
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Figure 2. Cell-wise overlapping gene expression changes. The Venn diagrams (unscaled) represent
the overlaps among gene expression changes after treatment with cytarabine, daunorubicin, and
the combination for 24 h in each AML cell line. In each panel, gene expression changes from all
3 treatments account for 100%.

The comparison between different AML cell lines revealed few similarities. There were
0%, 0.1%, and 0.1% common down-regulated genes and 0%, 2.9% and 2.8% common up-
regulated genes after cytarabine, daunorubicin and the combination treatment, respectively,
across 3 AML cell lines (Supplementary Figure S2). Regarding cytarabine response, HL60
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and MOLM13 cells were more comparable (9.7% down- and 24% up-regulated genes
common) than cytarabine-resistant OCIAML3 cells. A similar trend was observed with
daunorubicin and the combination treatments, where HL60 and MOLM13 cells were more
comparable than OCIAML3 cells (Supplementary Figure S2). In general, AML cell lines
exhibited low overlap among the treatments.

2.4. Pathway Annotation of the Gene Expression Changes

Because the transcriptional effect of standard AML drugs and their combination was
unique to every cell line, we investigated the associated biological processes to understand
further the mechanism of action of individual drugs and the synergy between them. We
performed functional enrichment analysis using the clusterProfiler R package to identify
biological processes affected by the treatments. The specific pathways were considered to
be affected by the treatment if they were affected in all three cell lines by the combination
treatment or affected in at least two cell lines by individual treatments. The reasoning
behind this approach was that we observed the cytotoxic response to the combination
treatment by all cell lines, but at least one cell line was resistant to the individual treatments.

We observed the involvement of processes related to cell adhesion and migration,
cell activation, chemotaxis, cell differentiation, IL6 production, and phosphorylation after
treatment with both individual treatments and the combination treatment in all 3 AML cell
lines (Figure 3A). We further identified pathways uniquely affected by specific treatments.
Pathways involved in calcium ion homeostasis, ERK1 and ERK2 signaling, and pyrimidine
catabolic processes were activated in response to cytarabine and the combination treatment
but not to the daunorubicin treatment (Supplementary Table S1). Daunorubicin and the
combination treatment affected IL-6 production. There were certain pathways affected by
specific treatments and in specific cell lines. In MOLM13 cells, the genes down-regulated
after daunorubicin treatment were enriched for the pathways associated with DNA dam-
age and repair processes, such as double-strand break repair, DNA damage checkpoint
signaling, and histone phosphorylation (Figure 3B). These pathways were not associated
with daunorubicin-treated HL60 cells. Analogously in MOLM13 and OCIAML3, but not in
HL60 cells, genes up-regulated by daunorubicin treatment were involved in cell activation
and differentiation processes (Figure 3C). Functional enrichment analysis using g: Profiler
revealed the association of several transcriptional factors with the treatment. Notably, only
transcription factors AP-4, p53, SMAD4, and THAP1 were associated with daunorubicin-
treated OCIAML3 cells, and no transcription factor was associated with the OCIAML3 cells
treated with the combination treatment (Supplementary Figures S3 and S4).

We then formed a network map of daunorubicin-affected biological processes by
clustering overlapping gene sets. The clustering showed that the processes related to
leukocyte activation and differentiation were predominantly affected by the daunorubicin
treatment in MOLM13 and OCIAML3 cells (Figure 4). Interestingly, only HL60 cells
exhibited activation of phosphatidylinositol 3-kinase (PI3K) pathway after daunorubicin
treatment. PI3K-related pathways were not affected in HL60 by the combination treatment
(Supplementary Figure S5).
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treatments. The bars represent the number of genes associated with a particular pathway averaged
across all three treatments. (B) Biological processes related to down-regulated and (C) up-regulated
genes after daunorubicin treatment for 24 h.
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Figure 4. Gene network enrichment map. A network organizing enriched biological processes into a
network with edges connecting overlapping gene sets. The network clustered mutually overlapping
gene sets together. The clusters represent enriched biological processes after daunorubicin treatment
in 3 AML cell lines. The highlighted cluster (dashed red ellipse) indicates the activation of PI3K
pathway-related processes in only HL60 cells.

2.5. Gene Expression Changes Predict Daunorubicin Combination Partners

To further understand the lower response of HL60 cells to daunorubicin treatment, we
compared its transcriptional response with that of the daunorubicin-sensitive MOLM13
and OCIAML3 cells. We constructed profiles of gene expression changes depicting either
response (DNRResponse) or resistance (DNRResist) to daunorubicin treatment. These
profiles were constructed assuming the gene expression changes associated with a positive
treatment response would have only occurred in daunorubicin-sensitive MOLM13 and
OCIAML3 cells. Conversely, the gene expression changes related to a lack of treatment
response would have only occurred in daunorubicin-resistant HL60 cells. DNRResist
profile consisted of 132 gene inductions and 64 gene repressions, which occurred in HL60
cells after treatment with daunorubicin only and were absent after both daunorubicin
and the combination treatment in the other two cell lines (Supplementary Table S2). On
the other hand, the DRNResponse profile consisted of 43 gene inductions and two gene
repressions observed in OCIAML2 and MOLM13 cells but absent from HL60 cells after both
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daunorubicin and the combination treatment (Supplementary Table S3). We then analyzed
the biological pathways associated with DNRResist and DNRResponse profiles. The genes
induced in the DNRResist profile were associated with calcium ion-dependent exocytosis
and lipid biosynthetic processes, while gene inductions from the DNRResponse group
were associated with nucleosome and chromatin assembly (Supplementary Table S4).

We then hypothesized that the response of HL60 cells to daunorubicin treatment
could be enhanced by inhibiting the DNRResist profile and mimicking the DNRResponse
profile by adding appropriate drug combinations. To predict the most suitable combination
partners, we compared the DNRRes and DNRResponse profiles with the gene expression
changes associated with other drug treatments using the CLUE platform. We specifically
searched for the drugs with opposite transcriptional responses as that of the DNRRes profile
and similar transcriptional responses as that of the DNRResponse profile. We discovered
that the transcriptional responses to HDAC, tubulin, RAF, P38 MAPK, and PARP inhibitor
were similar to DNRRes, while the response of EGFR, MEK, aurora kinase, and HSP
inhibitor and calcium channel blocker was opposite to that of the DNRRes signature
(Figure 5A and Supplementary Tables S5 and S6). We predicted these drug classes to be
ideal combination partners, assuming the involvement of DNRRes genes in daunorubicin
resistance.
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Figure 5. Predicted daunorubicin combinations and their validation. (A) Top 5 drug classes predicted
to exhibit either synergistic or antagonist response in combination with daunorubicin. Predicted
combinations showed a similar transcriptional response to the DNRResponse profile and an opposite
transcriptional response to the DNRResist profile. (B) Contour plots with the demonstrated effect of
combining daunorubicin with MEK inhibitor PD98059 in HL60 and primary AML cells, respectively.
(C) Pie charts represent either synergistic or antagonist response of 60 cancer cell lines to combining
daunorubicin with either EGFR or HDAC inhibitors. Data was obtained from the NCI ALMANAC
drug combination screen.

2.6. Predicted Combinations Exert Synergistic Response in AML Cells

To validate the predicted combinations, we measured the cytotoxic response of HL60,
MOLM13, OCIAML3, and primary AML cells to PD98059, a MEK inhibitor, daunorubicin,
and their combination. This was compared with the combination of vorinostat, an HDAC
inhibitor and a non-ideal candidate combined with daunorubicin (Figure 5A). The CellTiter
Glo assay revealed a highly synergistic response to PD98059 and daunorubicin combination
(BLISS independence score 16.8), as opposed to the combination of vorinostat and daunoru-
bicin (BLISS independence score 3.3) (Supplementary Figure S6C). Interestingly, PD9809
synergized with daunorubicin with very little standalone cytotoxicity (92% cells viable at
the highest tested concentration of 12.5 µM) (Supplementary Figure S7). Furthermore, a
primary AML sample exerted a synergistic response (BLISS independence score 2.6) over
a wide concentration range of the PD98059 and daunorubicin combination (Figure 5B).
MOLM13 cells also exhibited a synergistic response to the combination treatment (BLISS
independence score 1.7, Supplementary Figure S6A).

On the contrary, OCIAML3 cells exhibited an antagonist response at a lower con-
centration of PD98059 (BLISS independence score −1.5, Supplementary Figure S6B). To
validate other predicted combination partners in various cancer cell lines, we interrogated
the publicly available data of large-scale combination screens. We obtained the data for
the combinations of daunorubicin with EGFR and HDAC inhibitors in 60 cancer cell lines.
All 60 cancer cell lines exhibited a synergistic response to combining daunorubicin and
EGFR inhibitors (Figure 5C and Supplementary Table S7). On the contrary, there were
only 29 cancer cell lines with synergistic response and 13 cancer cell lines with antagonist
response to the combination of daunorubicin and HDAC inhibitors.

To understand the role of gene mutations in gene expression-based drug combinations,
we analyzed their correlation by fitting an ANOVA model. For pan-cancer analysis (using
56 cancer cell lines), there were 59 genetic alterations with significant association with
increased daunorubucin-EGFR inhibitor synergy (Supplementary Table S8). Among these,
NUP107, PATZ1, SBNO2, SRRT, ZNF324B, ZNF595, and ZNF646 were associated with the
regulation of transcription and IGF1R, and PRKCD were associated with the cellular re-
sponse to chemicals (Supplementary Figure S8). We further analyzed the top ten frequently
mutated genes in AML (obtained from cBioportal). None of these genes was significantly
associated with the extent of daunorubicin-EGFR inhibitor synergy, as evident from the
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comparable number of cell lines with higher and lower synergy against respective muta-
tions (Supplementary Table S9). Among these, eight cell lines with DNMT3A mutations
exhibited a higher daunorubicin-EGFR inhibitor synergy than only three cell lines with a
lower synergy. There were 13 cell lines harboring SRSF2 mutation with a lower synergy as
opposed to 8 cell lines with a higher synergy.

3. Discussion

We assessed the effect of the most widely used first-line AML drugs, cytarabine and
daunorubicin, on transcription profiles. This led to the identification of EGFR and MEK
inhibitors as the most suitable combination partners for daunorubicin. These combinations
had a synergistic effect when combined with daunorubicin, with minimal toxicity when
deployed alone. These findings underscore the importance of transcriptional response
in drug-mediated cytotoxicity and their utility in formulating better drug combinations.
Further preclinical investigations are needed to compare personalized gene expression
changes-based combinations with standard combinations which could expand the treat-
ment options for older AML patients that are not eligible for intensive therapy or for
relapsed cases.

Cytarabine and daunorubicin, the most widely used AML drugs, interfere with DNA
synthesis in proliferating cells. Cytarabine, like deoxycytosine, gets incorporated in DNA
and causes single-strand breaks during the S phase. Uncorrected single-strand breaks
are converted to double-strand breaks leading to cell death. Daunorubicin inhibits the
topoisomerase II enzyme leading to double-strand breaks, which also cause cell death.
Mechanistically, gene repressions would be expected to reflect direct DNA damage at the
pertinent gene loci.

In contrast, we observed the predominance of gene inductions in response to cy-
tarabine and daunorubicin treatments. The transcriptional response to DNA damage is
highly specific to the type of drug and to the resulting nature of the DNA damage. In
the case of UV irradiation and bulky adducts, local and global transcriptional reduction
is observed because of RNA polymerase II suppression via post-translational modifica-
tions and proteasomal degradation [16,17]. On the other hand, transcriptional suppression
after anthracycline treatments is limited to the site of actual damage [18,19]. This is also
consistent with our previous observation that the transcriptional response of AML cells to
etoposide, a topoisomerase II poison, treatment also exhibited predominant gene induc-
tion [13]. Hence, most gene expression changes we observed after treatment with AML
standard drugs were likely secondary, warranting further investigation to identify those
contributing to cytotoxicity.

Pathway analysis revealed the activation of treatment-relevant processes, including
chemotaxis, leukocyte migration, differentiation, and migration. Along with its cytotoxic
effect, cytarabine has been known to induce AML cell differentiation at lower doses [20].
We also identified certain pathways which were treatment-specific. Cytarabine and the com-
bination treatment resulted in the activation of ERK signaling and pyrimidine metabolism.
IL-6 production was activated in response to daunorubicin and the combination treatment.

Interestingly IL-6 was not associated with HL-60 cells which exhibited poor response
to daunorubicin treatment. However, these cells showed IL-6 activation after the com-
bination treatment. This indicates the involvement of proinflammatory cytokines in re-
sponse to standard chemotherapeutics. The standard “7 + 3” AML treatment activates
pro-inflammatory cytokines [21]. NF-kB signaling activates pro-inflammatory cytokines,
including IL-6 [22,23]. A recent study demonstrated activation of NF-kB signaling in 50%
of AML patients 48 h after the standard treatment [24]. The absence of an inflammatory
response in the case of HL60 cells could indicate an inadequate treatment response. This
is most likely due to the deletion of TP53 in HL60 cells, a major regulator of the DNA
damage response [25]. Loss of TP53 can sustain cell growth via activated RAF/MEK/ERK
signaling [26]. This is evident from activating the PI3K pathway only in HL60 cells af-
ter daunorubicin treatment. Phosphorylation and subsequent activation of PI3K have
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been associated with resistance to anthracyclines, including daunorubicin [27]. This may
have contributed to the daunorubicin resistance in HL60, which was overridden by the
combination treatment with EGFR and MEK inhibitors.

Instead of targeting the aforementioned processes individually, we derived a compre-
hensive profile of gene expression changes depicting either response or the lack of response
to daunorubicin in AML cells. By comparing gene expression changes after individual
treatments and their combination across all three AML cell lines, we identified potential
daunorubicin combination partners. Experimental validation confirmed the synergistic
response of EGFR and MEK inhibitors. EGFR, a tyrosine kinase, is known to be involved in
various cancers, including breast and non-small cell lung cancer, because of its proliferative
and anti-apoptotic activities [28]. EGFR is rarely mutated in AML patients. However, its
expression is associated with poor AML prognosis [29,30]. Clinical trials show limited
applicability of EGFR inhibitors as standalone agents in AML patients [31,32]. Our data
indicates that EGFR inhibitors are ideal candidates to be combined with daunorubicin,
most likely via inhibition of daunorubicin-activated PI3K signaling.

MAP-ERK kinases (MEKs) are serine/threonine kinases that respond to stress signal-
ing and are involved in cell survival and apoptosis [33]. MEKs are frequently dysregulated
in AML and myelodysplastic syndrome (MDS), making them attractive targets for ther-
apeutic interventions [34]. Previous reports have shown that MEK inhibitors sensitize
cancer cells by inhibiting ERK1/2, which is usually activated by daunorubicin-mediated
phosphorylation [35–37]. We observed a synergistic response of HL60 cells to the combi-
nation of PD98059, a MEK inhibitor specifically inhibiting MEK1-mediated activation of
MAPK, and daunorubicin. Interestingly, PD98059 exhibited very little standalone toxicity,
indicating that the synergistic response is most likely via modulating opposing biological
processes. MEK inhibitors are also being explored in various clinical trials as standalone
agents (clinical trial NCT02089230) and combinations (clinical trialös NCT02105350 and
NCT02041481). Clinically, MEK inhibitors are considered non-effective as a standalone
agent [38–40]. This is consistent with our observation that MEK inhibitor PD98059 is not
cytotoxic alone, even at high dosages. MEK inhibition as a combination strategy in addition
to the standard “7 + 3” (clinical trial NCT02049801) or azacitidine and venetoclax (clinical
trial NCT04487106) is currently being investigated for relapsed or refractory AML cases in
several clinical trials [41].

Currently, gene mutations play a critical role in guiding the choice of AML drugs [6,42].
Our gene expression-based combinations of daunorubicin and EGFR inhibitors did not
correlate with the most common AML mutations, including FLT3, IDH2, and NRAS. This
indicates that the synergistic effects of the daunorubicin and EGFR inhibitors could be
applicable to a wide number of AML samples. In most cases, the targeted drugs are insuffi-
cient as a single agent and need to be combined with existing classical drugs [6]. Hence,
the effectiveness of EGFR inhibitors as “add-ons” to the targeted therapy supplemented
with daunorubicin needs to be evaluated. The broader activity of daunorubicin-EGFR
inhibitor combinations is also evident from the pan-cancer analysis. In this case, we
found IGF1R and PRKCD mutations associated with increased sensitivity to the combi-
nation. Insulin-like growth factor 1 receptor (IGF1R) is a tyrosine kinase associated with
cell growth and survival. It is also involved in the DNA damage tolerance pathway by
rescuing DNA damage-stalled replication fork [43]. Protein kinase C delta (PRKCD) is a
serine/threonine-protein kinase involved in several processes, including DNA damage
response and apoptosis, and is also associated with EGFR signaling [44,45]. The enhanced
synergy of cancer cells harboring PRKDC mutation to the daunorubicin-EGFR inhibitor
combination could result from inhibiting nonhomologous end joining-mediated DNA
double-strand breaks repair [44]. To summarize, we show that the response of AML
cells to the standard chemotherapeutic drugs comprises more than DNA double-strand
break-mediated gene repression. Most transcriptional changes seem to be secondary to
the double-strand breaks. These transcriptional changes play a vital role in understanding
the response, or non-response, to the standard AML drugs. Importantly, transcriptional
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changes allow the identification of synergistic combinations which could be widely appli-
cable due to their limited standalone toxicity.

An apparent limitation of this work is the use of a small cohort of AML cell lines.
However, this approach better represents a clinical scenario where individual patients
need to be evaluated for the best possible drug treatment. Crucially, the combinations
identified in our study were experimentally confirmed as synergistic. Furthermore, the
analysis of previously published drug combination screens confirmed the synergistic effect
of the combinations beyond the cell lines in which they were predicted [46,47]. Such
transcriptional response-based combinations could be of huge advantage, especially for
patients that can’t tolerate intensive chemotherapy and for refractory cases that don’t
respond to standard combination therapy. To refine the treatment of such aggressive AML
cases, further preclinical investigations using ex vivo samples and in vivo, mouse models
are required to capture heterogeneity in treatment-evoked gene expression changes. The
described approach applies to other cancer drugs and types of cancers, including solid
tumors. The major limitation of this approach is the unavailability of gene expression
changes before initiating the treatment. This can be addressed by using pre-existing non-
responding samples for discovering drug combinations. As seen from our data, gene
expression change-based drug combinations are applicable beyond the samples used for
their discovery. Furthermore, we believe that further computational advances will facilitate
the prediction of the transcriptional response to retrospectively formulate personalized drug
combinations, bypassing the need to monitor such gene expression changes in patients. We
envision personalised drug combinations based on the predicted gene expression changes
to improve significantly current chemotherapy regimens.

4. Materials and Methods
4.1. Cell Culture and Drugs Treatment

Acute Myeloid Leukemia (AML) cell lines HL-60, MOLM-13, and OCI-AML3 were
purchased from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ,
Braunschweig, Germany). Cell lines were maintained at 37 ◦C and 5% CO2 in appropri-
ate media (HL60 and MOLM13 in RPMI medium (Sigma-Aldrich, Darmstadt, Germany)
containing 10% heat-inactivated FBS (Biochrom, Berlin, Germany) and OCIAML3 in alpha-
MEM medium (Sigma-Aldrich, Darmstadt, Germany) containing 20% heat-inactivated
FBS). Cell lines were routinely verified for mycoplasma contamination using Venor®GeM
Mycoplasma Detection Kit (Sigma-Aldrich, Darmstadt, Germany). Cell lines were authenti-
cated by Multiplexion, Germany. The inhibitors cytarabine, daunorubicin, and vorinostat
were purchased from Selleckchem (Houston, TX, USA). The MEK inhibitor PD98059 was
purchased from Merck, Darmstadt, Germany.

4.2. Primary Patient Samples

Heparin-treated bone marrow samples were obtained from patients with AML treated
at the University Medical Center (Mainz, Germany). Informed consent was obtained in
accordance with the Declaration of Helsinki, and all the laboratory experiments using
primary samples were approved by the local ethics committee. Mononuclear cells were
maintained for 48 h in Iscove’s modified Dulbecco’s media containing BIT (15%), beta-
mercaptoethanol (20 µM), stem cell factor (100 ng/mL), FLT3-L (50 ng/mL), interlukin 3
(20 ng/mL), GM-CSF (20 ng/mL), thrombopoietin (50 ng/mL), stemregenin 1 (0.75 µM),
UM171 (35 nM), and penicillin-streptomycin (1%) [48]. Afterwards, the cells were treated
with drugs for 24 h in Iscove’s modified Dulbecco’s media containing 20% FBS.

4.3. CellTiter-Glo Cell Toxicity Assay

Cell viability in response to drug treatments was measured using CellTiter Glo® 2.0
assay (Promega, Walldorf, Germany) according to the manufacturer’s instructions. In short,
5000 cells were seeded per well in a 96-well plate containing 100 µL media and treated
with cytarabine (0.1 µM) and daunorubicin (0.02 µM) alone and in combination for 24 h.
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After the treatment, 100 µL Glo reagent was added to each well, and chemiluminescence
was measured after 10 min incubation in the dark at room temperature. The percentage
of cell death was calculated by comparing the luminescence of drug-treated cells with the
DMSO-treated cells (considered 100% viable).

4.4. RNA Extraction and Library Preparation

The effect of drugs cytarabine and daunorubicin on AML cell transcription profiles
was determined by RNA-Sequencing as described before [13]. In short, 1 × 106 cells were
seeded in a 6-well plate containing 5 mL media and treated with cytarabine (0.1 µM) and
daunorubicin (0.02 µM) alone and in combination for 24 h. Total RNA was then isolated
using Trizol (Thermo Fisher Scientific, Braunschweig, Germany), Monarch Total RNA
Miniprep kit (New England Biolabs, Frankfurt, Germany), and DNase I Digest kit (VWR
PEQLAB GmbH, Erlangen, Germany) according to manufacturer’s instructions. Samples
with RIN ≥ 5.8 were sequenced on a NovaSeq PE150 platform at the Novogene Company
Limited (Cambridge, UK) at a depth of 30 million reads.

4.5. RNA-Seq and Downstream Analysis

The quality of raw sequencing reads was assessed using FastQC version 0.11.9 (Babra-
ham Bioinformatics, Cambridge, UK) [49]. The transcripts from the RNA-Seq reads
were quantified using the decoy-aware selective alignment mode of the Salmon (version
1.8.0) [50]. The reference transcriptome and genome assemblies (GRCh38) were obtained
from Ensembl. The entire genome sequence was used as the decoy sequence by concate-
nating this genome at the end of the transcript sequences (coding and non-coding) and
populating the decoy file with chromosome names. The quantified transcript counts were
summed to gene counts using the tximeta package (version 1.14.0) in R [51,52]. These
counts were used to identify differentially expressed genes between drug- and DMSO-
treated cells using R’s edgeR package (version 3.38.1) [53]. Genes exhibiting log2 fold
change greater than |1| with a false discovery rate below 0.05 were considered significant
for downstream analyses. RNA-Seq counts and raw sequencing reads are available at GEO
accession number GSE227269 [54]. The list of genes essential for AML cell survival was
obtained from the CRISPR-Cas9 screen from the Cancer Dependency Map (DepMap) portal
(Broad Institute, Cambridge, MA, USA) [14,15]. The pathways associated with gene ex-
pression changes were identified using the clusterProfiler package in R (version 4.4.4) [55].
Functional enrichment analysis was performed using g:Profiler (version e108_eg55_p17)
using the “multiquery” option [56]. All associations with p-adjusted values below 0.05
were considered significant.

4.6. Daunorubicin Combination Identification

To identify transcription profile-based drug combinations, gene expression changes
after monotherapy and combination therapy were compared across 3 AML cell lines. We
reasoned that by comparing treatment-evoked gene expression changes in responsive cells
with non-responsive cells, we could enrich sensitivity-defining genes that could be targeted
to enhance the cytotoxic response. The daunorubicin-resistant (DNRResist) profile was
derived from HL60 cells using gene expression changes after only daunorubicin treatment
which was absent in MOLM13 and OCIAML3 cells after both daunorubicin and the combi-
nation treatments. Analogously, the daunorubicin-response (DNRResponse) profile was
constructed using gene expression changes common to MOLM13 and OCIAML3 cells
which were absent in HL60 cells after both daunorubicin and the combination treatments.
The DNRResist and DNRResponse profiles were submitted to the online CLUE platform to
identify other drugs and genetic modulations with similar transcriptional responses [57].
Normalized connectivity score was used to identify perturbations with either similar (score
> 0) or opposite (score < 0) transcriptional response. The overlapping perturbations between
an opposite transcriptional response to the DRNResist profile and a similar transcriptional
response to the DNRResponse profile were further filtered to remove ambiguous discov-
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eries (e.g., perturbations with similar effect after knockdown as well as overexpression
and perturbations with a similar effect as both DNRResist and DNRResponse profiles).
To further enrich the true positives, inhibitors with similar transcriptional effects as their
target gene counterparts were selected. The potential daunorubicin combination partners
were then ranked based on the observed transcriptional effect in the number of cell lines.

4.7. Daunorubicin Combination Verification

To validate the predicted combination partners, the viability of HL60 cells was mea-
sured in response to the combinations of PD98059 (MEK inhibitor) and vorinostat (HDAC
inhibitor) with daunorubicin using a 5 × 3 concentration matrix. Similarly, the viability
of MOLM13, OCIAML3, and a primary AML sample was measured in response to the
combination of PD98059 and daunorubicin. The cell viability was calculated using the
CellTitre Glo assay described above (section CellTiter-Glo cell toxicity assay). The effect
of the combination was evaluated using the Bliss independence test of the SynFinder por-
tal [58]. The combination with the BLISS score above 0 was considered synergistic, while a
negative BLISS score was considered an antagonistic effect. To validate other predicted com-
bination partners and evaluate the broader applicability of these combinations, a large drug
combination screen NCI ALMANAC was accessed using the database DrugComb [46,47].
The average BLISS score was calculated for each class of the inhibitor to identify synergistic
combinations.

4.8. Statistical Association of the Drug Synergy with Genomic Markers

To investigate whether the mutational background of cancer cell lines influences the
synergistic response of gene expression-based drug combinations, we correlated genomic
markers by fitting an ANOVA model [59,60]. We obtained the genome sequencing-based
gene mutation data for 56 pan-cancer cell lines from the Cell Model Passports portal [61].
We utilized average BLISS synergy scores of EGFR inhibitors in combination with daunoru-
bicin for pan-cancer analysis. An ANOVA model was fitted to calculate the effect size for
each gene-drug association, and the resulting p-values were corrected using the Tibshirani-
Storey method implemented in the GDSCTools python package (version 1.0.1) [62]. The
default threshold for p-value (0.001) and FDR (25%) was used to identify significant as-
sociations. The ten most frequently mutated genes in AML patients were obtained from
cBioPortal [63,64]. The volcano plot was constructed using the EnhancedVolcano package
(version 1.14.0) in R [65]. Based on the BLISS synergy scores, the top 50% of cell lines were
referred to as those with higher synergy and the bottom 50% as those with lower synergy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241612926/s1.

Author Contributions: Conceptualization, P.M., T.K. and L.W.; Data curation, P.M. and P.S.H.; Formal
analysis, P.M., J.A.M.N. and U.G.-A.; Funding acquisition, P.M. and T.K.; Investigation, P.M., T.K.
and L.W.; Methodology, P.M., J.A.M.N., U.G.-A., T.K. and L.W.; Project administration, P.M., T.K.
and L.W.; Supervision, U.F.H., T.K. and L.W.; Writing—original draft, P.M., U.F.H., T.K. and L.W.;
Writing—review & editing, P.M., P.S.H., U.F.H., T.K. and L.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG) grant to P.M.
and T.K. (project number: 448405134).

Institutional Review Board Statement: All the laboratory experiments using primary patient sam-
ples were approved by the local ethics committee of the University Medical Center Mainz.

Informed Consent Statement: Informed consent was obtained in accordance with the Declaration
of Helsinki.

Data Availability Statement: The RNA sequencing data included in this work have been deposited
in NCBI’s Gene Expression Omnibus (GEO) database with the accession number GSE227269 (https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE227269, accessed on 13 March 2023).

https://www.mdpi.com/article/10.3390/ijms241612926/s1
https://www.mdpi.com/article/10.3390/ijms241612926/s1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE227269
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE227269


Int. J. Mol. Sci. 2023, 24, 12926 15 of 17

Acknowledgments: We thank Hartmut Kleinert from the Department of Pharmacology, University
Medical Center Mainz, Germany, for providing a high-performance computer for data analysis.
We greatly acknowledge the Mogon supercomputer facility at the Johannes Gutenberg University
Mainz (https://hpc.uni-mainz.de, accessed on 1 June 2022) for granting the computing time for
high-throughput analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Daver, N.; Wei, A.H.; Pollyea, D.A.; Fathi, A.T.; Vyas, P.; DiNardo, C.D. New Directions for Emerging Therapies in Acute Myeloid

Leukemia: The next Chapter. Blood Cancer J. 2020, 10, 107. [CrossRef] [PubMed]
2. Palmieri, R.; Paterno, G.; De Bellis, E.; Mercante, L.; Buzzatti, E.; Esposito, F.; Del Principe, M.I.; Maurillo, L.; Buccisano, F.;

Venditti, A. Therapeutic Choice in Older Patients with Acute Myeloid Leukemia: A Matter of Fitness. Cancers 2020, 12, 120.
[CrossRef] [PubMed]

3. Dombret, H.; Seymour, J.F.; Butrym, A.; Wierzbowska, A.; Selleslag, D.; Jang, J.H.; Kumar, R.; Cavenagh, J.; Schuh, A.C.; Candoni,
A.; et al. International Phase 3 Study of Azacitidine vs Conventional Care Regimens in Older Patients with Newly Diagnosed
AML with >30% Blasts. Blood 2015, 126, 291–299. [CrossRef] [PubMed]

4. De Lima, M.; Roboz, G.J.; Platzbecker, U.; Craddock, C.; Ossenkoppele, G. AML and the Art of Remission Maintenance. Blood Rev.
2021, 49, 100829. [CrossRef] [PubMed]

5. Kantarjian, H.M.; Kadia, T.M.; DiNardo, C.D.; Welch, M.A.; Ravandi, F. Acute Myeloid Leukemia: Treatment and Research
Outlook for 2021 and the MD Anderson Approach. Cancer 2021, 127, 1186–1207. [CrossRef] [PubMed]

6. Döhner, H.; Wei, A.H.; Löwenberg, B. Towards Precision Medicine for AML. Nat. Rev. Clin. Oncol. 2021, 18, 577–590. [CrossRef]
[PubMed]

7. Cheng, W.-Y.; Li, J.-F.; Zhu, Y.-M.; Lin, X.-J.; Wen, L.-J.; Zhang, F.; Zhang, Y.-L.; Zhao, M.; Fang, H.; Wang, S.-Y.; et al. Transcriptome-
Based Molecular Subtypes and Differentiation Hierarchies Improve the Classification Framework of Acute Myeloid Leukemia.
Proc. Natl. Acad. Sci. USA 2022, 119, e2211429119. [CrossRef] [PubMed]

8. Small, S.; Oh, T.S.; Platanias, L.C. Role of Biomarkers in the Management of Acute Myeloid Leukemia. Int. J. Mol. Sci. 2022, 23,
14543. [CrossRef]

9. Walker, C.J.; Mrózek, K.; Ozer, H.G.; Nicolet, D.; Kohlschmidt, J.; Papaioannou, D.; Genutis, L.K.; Bill, M.; Powell, B.L.; Uy, G.L.;
et al. Gene Expression Signature Predicts Relapse in Adult Patients with Cytogenetically Normal Acute Myeloid Leukemia. Blood
Adv. 2021, 5, 1474–1482. [CrossRef]

10. Zhu, Y.-M.; Wang, P.-P.; Huang, J.-Y.; Chen, Y.-S.; Chen, B.; Dai, Y.-J.; Yan, H.; Hu, Y.; Cheng, W.-Y.; Ma, T.-T.; et al. Gene Mutational
Pattern and Expression Level in 560 Acute Myeloid Leukemia Patients and Their Clinical Relevance. J. Transl. Med. 2017, 15, 178.
[CrossRef]

11. Palve, V.; Liao, Y.; Remsing Rix, L.L.; Rix, U. Turning Liabilities into Opportunities: Off-Target Based Drug Repurposing in Cancer.
Semin. Cancer Biol. 2021, 68, 209–229. [CrossRef] [PubMed]

12. Wu, P.; Feng, Q.; Kerchberger, V.E.; Nelson, S.D.; Chen, Q.; Li, B.; Edwards, T.L.; Cox, N.J.; Phillips, E.J.; Stein, C.M.; et al.
Integrating Gene Expression and Clinical Data to Identify Drug Repurposing Candidates for Hyperlipidemia and Hypertension.
Nat. Commun. 2022, 13, 46. [CrossRef] [PubMed]

13. More, P.; Goedtel-Armbrust, U.; Shah, V.; Mathaes, M.; Kindler, T.; Andrade-Navarro, M.A.; Wojnowski, L. Drivers of Topoiso-
merase II Poisoning Mimic and Complement Cytotoxicity in AML Cells. Oncotarget 2019, 10, 5298–5312. [CrossRef] [PubMed]

14. Tsherniak, A.; Vazquez, F.; Montgomery, P.G.; Weir, B.A.; Kryukov, G.; Cowley, G.S.; Gill, S.; Harrington, W.F.; Pantel, S.;
Krill-Burger, J.M.; et al. Defining a Cancer Dependency Map. Cell 2017, 170, 564–576.e16. [CrossRef]

15. Behan, F.M.; Iorio, F.; Picco, G.; Gonçalves, E.; Beaver, C.M.; Migliardi, G.; Santos, R.; Rao, Y.; Sassi, F.; Pinnelli, M.; et al.
Prioritization of Cancer Therapeutic Targets Using CRISPR-Cas9 Screens. Nature 2019, 568, 511–516. [CrossRef]

16. Silva, E.; Ideker, T. Transcriptional Responses to DNA Damage. DNA Repair 2019, 79, 40–49. [CrossRef] [PubMed]
17. Steurer, B.; Janssens, R.C.; Geijer, M.E.; Aprile-Garcia, F.; Geverts, B.; Theil, A.F.; Hummel, B.; van Royen, M.E.; Evers, B.; Bernards,

R.; et al. DNA Damage-Induced Transcription Stress Triggers the Genome-Wide Degradation of Promoter-Bound Pol II. Nat.
Commun. 2022, 13, 3624. [CrossRef] [PubMed]

18. Gregersen, L.H.; Svejstrup, J.Q. The Cellular Response to Transcription-Blocking DNA Damage. Trends Biochem. Sci. 2018, 43,
327–341. [CrossRef]

19. Wei, F.; Hao, P.; Zhang, X.; Hu, H.; Jiang, D.; Yin, A.; Wen, L.; Zheng, L.; He, J.Z.; Mei, W.; et al. Etoposide-Induced DNA Damage
Affects Multiple Cellular Pathways in Addition to DNA Damage Response. Oncotarget 2018, 9, 24122–24139. [CrossRef]

20. Tomic, B.; Smoljo, T.; Lalic, H.; Dembitz, V.; Batinic, J.; Batinic, D.; Bedalov, A.; Visnjic, D. Cytarabine-Induced Differentiation of
AML Cells Depends on Chk1 Activation and Shares the Mechanism with Inhibitors of DHODH and Pyrimidine Synthesis. Sci.
Rep. 2022, 12, 11344. [CrossRef]

21. Récher, C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front. Oncol. 2021, 11, 623952. [CrossRef] [PubMed]
22. Hoesel, B.; Schmid, J.A. The Complexity of NF-KB Signaling in Inflammation and Cancer. Mol. Cancer 2013, 12, 86. [CrossRef]

[PubMed]

https://hpc.uni-mainz.de
https://doi.org/10.1038/s41408-020-00376-1
https://www.ncbi.nlm.nih.gov/pubmed/33127875
https://doi.org/10.3390/cancers12010120
https://www.ncbi.nlm.nih.gov/pubmed/31906489
https://doi.org/10.1182/blood-2015-01-621664
https://www.ncbi.nlm.nih.gov/pubmed/25987659
https://doi.org/10.1016/j.blre.2021.100829
https://www.ncbi.nlm.nih.gov/pubmed/33832807
https://doi.org/10.1002/cncr.33477
https://www.ncbi.nlm.nih.gov/pubmed/33734442
https://doi.org/10.1038/s41571-021-00509-w
https://www.ncbi.nlm.nih.gov/pubmed/34006997
https://doi.org/10.1073/pnas.2211429119
https://www.ncbi.nlm.nih.gov/pubmed/36442087
https://doi.org/10.3390/ijms232314543
https://doi.org/10.1182/bloodadvances.2020003727
https://doi.org/10.1186/s12967-017-1279-4
https://doi.org/10.1016/j.semcancer.2020.02.003
https://www.ncbi.nlm.nih.gov/pubmed/32044472
https://doi.org/10.1038/s41467-021-27751-1
https://www.ncbi.nlm.nih.gov/pubmed/35013250
https://doi.org/10.18632/oncotarget.27112
https://www.ncbi.nlm.nih.gov/pubmed/31523390
https://doi.org/10.1016/j.cell.2017.06.010
https://doi.org/10.1038/s41586-019-1103-9
https://doi.org/10.1016/j.dnarep.2019.05.002
https://www.ncbi.nlm.nih.gov/pubmed/31102970
https://doi.org/10.1038/s41467-022-31329-w
https://www.ncbi.nlm.nih.gov/pubmed/35750669
https://doi.org/10.1016/j.tibs.2018.02.010
https://doi.org/10.18632/oncotarget.24517
https://doi.org/10.1038/s41598-022-15520-z
https://doi.org/10.3389/fonc.2021.623952
https://www.ncbi.nlm.nih.gov/pubmed/33692956
https://doi.org/10.1186/1476-4598-12-86
https://www.ncbi.nlm.nih.gov/pubmed/23915189


Int. J. Mol. Sci. 2023, 24, 12926 16 of 17

23. Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-KB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [CrossRef]
[PubMed]

24. Jakobsen, I.; Sundkvist, M.; Björn, N.; Gréen, H.; Lotfi, K. Early Changes in Gene Expression Profiles in AML Patients during
Induction Chemotherapy. BMC Genom. 2022, 23, 752. [CrossRef] [PubMed]

25. Abuetabh, Y.; Wu, H.H.; Chai, C.; Al Yousef, H.; Persad, S.; Sergi, C.M.; Leng, R. DNA Damage Response Revisited: The P53
Family and Its Regulators Provide Endless Cancer Therapy Opportunities. Exp. Mol. Med. 2022, 54, 1658–1669. [CrossRef]
[PubMed]

26. Drosten, M.; Sum, E.Y.M.; Lechuga, C.G.; Simón-Carrasco, L.; Jacob, H.K.C.; García-Medina, R.; Huang, S.; Beijersbergen, R.L.;
Bernards, R.; Barbacid, M. Loss of P53 Induces Cell Proliferation via Ras-Independent Activation of the Raf/Mek/Erk Signaling
Pathway. Proc. Natl. Acad. Sci. USA 2014, 111, 15155–15160. [CrossRef] [PubMed]

27. Brown, K.K.; Toker, A. The Phosphoinositide 3-Kinase Pathway and Therapy Resistance in Cancer. F1000Prime Rep. 2015, 7, 13.
[CrossRef]

28. Abourehab, M.A.S.; Alqahtani, A.M.; Youssif, B.G.M.; Gouda, A.M. Globally Approved EGFR Inhibitors: Insights into Their
Syntheses, Target Kinases, Biological Activities, Receptor Interactions, and Metabolism. Molecules 2021, 26, 6677. [CrossRef]

29. de Almeida, L.Y.; Rego, E.M. Is the EGFR Pathway Relevant for the Pathogenesis but Not for Treatment of Acute Myeloid
Leukemia? J. Cancer Metastasis Treat. 2021, 7, 57. [CrossRef]

30. Nath, S.; Bhattacharyya, J.; Sarma, P.P.; Saxena, R.; Sazawal, S.; Barman, M.P.; Saikia, K.K. The Prognostic Impact of Epidermal
Growth Factor Receptor (EGFR) in Patients with Acute Myeloid Leukaemia. Indian J. Hematol. Blood Transfus. 2020, 36, 749–753.
[CrossRef]

31. Dalle, I.A.; Cortes, J.E.; Pinnamaneni, P.; Lamothe, B.; Duque, A.D.; Randhawa, J.; Pemmaraju, N.; Jabbour, E.; Ferrajoli, A.;
Wierda, W.G.; et al. A Pilot Phase II Study of Erlotinib for the Treatment of Patients with Relapsed/Refractory Acute Myeloid
Leukemia. Acta Haematol. 2018, 140, 30–39. [CrossRef] [PubMed]

32. Machado, C.B.; de Pinho Pessoa, F.M.C.; da Silva, E.L.; da Costa Pantoja, L.; Ribeiro, R.M.; de Moraes Filho, M.O.; de Moraes,
M.E.A.; Montenegro, R.C.; Burbano, R.M.R.; Khayat, A.S.; et al. Kinase Inhibition in Relapsed/Refractory Leukemia and
Lymphoma Settings: Recent Prospects into Clinical Investigations. Pharmaceutics 2021, 13, 1604. [CrossRef] [PubMed]

33. Wada, T.; Penninger, J.M. Mitogen-Activated Protein Kinases in Apoptosis Regulation. Oncogene 2004, 23, 2838–2849. [CrossRef]
[PubMed]

34. He, M.; Jia, Y.; Wang, Y.; Cai, X. Dysregulated MAPK Signaling Pathway in Acute Myeloid Leukemia with RUNX1 Mutations.
Expert Rev. Hematol. 2022, 15, 769–779. [CrossRef] [PubMed]

35. Marampon, F.; Ciccarelli, C.; Zani, B.M. Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to
Potentiate Tumour Responses to Radiation. Int. J. Mol. Sci. 2019, 20, 2530. [CrossRef] [PubMed]

36. Merchant, M.; Moffat, J.; Schaefer, G.; Chan, J.; Wang, X.; Orr, C.; Cheng, J.; Hunsaker, T.; Shao, L.; Wang, S.J.; et al. Combined
MEK and ERK Inhibition Overcomes Therapy-Mediated Pathway Reactivation in RAS Mutant Tumors. PLoS ONE 2017, 12,
e0185862. [CrossRef] [PubMed]

37. Laurent, G.; Jaffrézou, J.-P. Signaling Pathways Activated by Daunorubicin. Blood 2001, 98, 913–924. [CrossRef] [PubMed]
38. Takahashi, S. Combination Therapies with Kinase Inhibitors for Acute Myeloid Leukemia Treatment. Hematol. Rep. 2023, 15,

331–346. [CrossRef]
39. Jain, N.; Curran, E.; Iyengar, N.M.; Diaz-Flores, E.; Kunnavakkam, R.; Popplewell, L.; Kirschbaum, M.H.; Karrison, T.; Erba, H.P.;

Green, M.; et al. Phase II Study of the Oral MEK Inhibitor Selumetinib in Advanced Acute Myelogenous Leukemia: A University
of Chicago Phase II Consortium Trial. Clin. Cancer Res. 2014, 20, 490–498. [CrossRef]

40. Maiti, A.; Naqvi, K.; Kadia, T.M.; Borthakur, G.; Takahashi, K.; Bose, P.; Daver, N.G.; Patel, A.; Alvarado, Y.; Ohanian, M.; et al.
Phase II Trial of MEK Inhibitor Binimetinib (MEK162) in RAS-Mutant Acute Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk.
2019, 19, 142–148.e1. [CrossRef]

41. Desikan, S.P.; Ravandi, F.; Pemmaraju, N.; Konopleva, M.; Loghavi, S.; Jabbour, E.J.; Daver, N.; Jain, N.; Chien, K.S.; Maiti, A.;
et al. A Phase II Study of Azacitidine, Venetoclax, and Trametinib in Relapsed or Refractory Acute Myeloid Leukemia Harboring
RAS Pathway-Activating Mutations. Acta Haematol. 2022, 145, 529–536. [CrossRef] [PubMed]

42. Kayser, S.; Levis, M.J. The Clinical Impact of the Molecular Landscape of Acute Myeloid Leukemia. Haematologica 2023, 108,
308–320. [CrossRef] [PubMed]

43. Poreba, E.; Durzynska, J. Nuclear Localization and Actions of the Insulin-like Growth Factor 1 (IGF-1) System Components:
Transcriptional Regulation and DNA Damage Response. Mutat. Res. Rev. Mutat. Res. 2020, 784, 108307. [CrossRef] [PubMed]

44. Chen, Y.; Li, Y.; Xiong, J.; Lan, B.; Wang, X.; Liu, J.; Lin, J.; Fei, Z.; Zheng, X.; Chen, C. Role of PRKDC in Cancer Initiation,
Progression, and Treatment. Cancer Cell Int. 2021, 21, 563. [CrossRef] [PubMed]

45. Yamada, K.; Kizawa, R.; Yoshida, A.; Koizumi, R.; Motohashi, S.; Shimoyama, Y.; Hannya, Y.; Yoshida, S.; Oikawa, T.; Shimoda,
M.; et al. Extracellular PKCδ Signals to Epidermal Growth Factor Receptor for Tumor Proliferation in Liver Cancer Cells. Cancer
Sci. 2022, 113, 2378–2385. [CrossRef]

46. Holbeck, S.L.; Camalier, R.; Crowell, J.A.; Govindharajulu, J.P.; Hollingshead, M.; Anderson, L.W.; Polley, E.; Rubinstein, L.;
Srivastava, A.; Wilsker, D.; et al. The National Cancer Institute ALMANAC: A Comprehensive Screening Resource for the
Detection of Anticancer Drug Pairs with Enhanced Therapeutic Activity. Cancer Res. 2017, 77, 3564–3576. [CrossRef] [PubMed]

https://doi.org/10.1038/sigtrans.2017.23
https://www.ncbi.nlm.nih.gov/pubmed/29158945
https://doi.org/10.1186/s12864-022-08960-4
https://www.ncbi.nlm.nih.gov/pubmed/36376859
https://doi.org/10.1038/s12276-022-00863-4
https://www.ncbi.nlm.nih.gov/pubmed/36207426
https://doi.org/10.1073/pnas.1417549111
https://www.ncbi.nlm.nih.gov/pubmed/25288756
https://doi.org/10.12703/P7-13
https://doi.org/10.3390/molecules26216677
https://doi.org/10.20517/2394-4722.2021.108
https://doi.org/10.1007/s12288-020-01274-z
https://doi.org/10.1159/000490092
https://www.ncbi.nlm.nih.gov/pubmed/30071517
https://doi.org/10.3390/pharmaceutics13101604
https://www.ncbi.nlm.nih.gov/pubmed/34683897
https://doi.org/10.1038/sj.onc.1207556
https://www.ncbi.nlm.nih.gov/pubmed/15077147
https://doi.org/10.1080/17474086.2022.2108015
https://www.ncbi.nlm.nih.gov/pubmed/35902358
https://doi.org/10.3390/ijms20102530
https://www.ncbi.nlm.nih.gov/pubmed/31126017
https://doi.org/10.1371/journal.pone.0185862
https://www.ncbi.nlm.nih.gov/pubmed/28982154
https://doi.org/10.1182/blood.V98.4.913
https://www.ncbi.nlm.nih.gov/pubmed/11493433
https://doi.org/10.3390/hematolrep15020035
https://doi.org/10.1158/1078-0432.CCR-13-1311
https://doi.org/10.1016/j.clml.2018.12.009
https://doi.org/10.1159/000525566
https://www.ncbi.nlm.nih.gov/pubmed/35717939
https://doi.org/10.3324/haematol.2022.280801
https://www.ncbi.nlm.nih.gov/pubmed/36722402
https://doi.org/10.1016/j.mrrev.2020.108307
https://www.ncbi.nlm.nih.gov/pubmed/32430099
https://doi.org/10.1186/s12935-021-02229-8
https://www.ncbi.nlm.nih.gov/pubmed/34702253
https://doi.org/10.1111/cas.15386
https://doi.org/10.1158/0008-5472.CAN-17-0489
https://www.ncbi.nlm.nih.gov/pubmed/28446463


Int. J. Mol. Sci. 2023, 24, 12926 17 of 17

47. Zagidullin, B.; Aldahdooh, J.; Zheng, S.; Wang, W.; Wang, Y.; Saad, J.; Malyutina, A.; Jafari, M.; Tanoli, Z.; Pessia, A.; et al.
DrugComb: An Integrative Cancer Drug Combination Data Portal. Nucleic Acids Res. 2019, 47, W43–W51. [CrossRef] [PubMed]

48. Pabst, C.; Krosl, J.; Fares, I.; Boucher, G.; Ruel, R.; Marinier, A.; Lemieux, S.; Hébert, J.; Sauvageau, G. Identification of Small
Molecules That Support Human Leukemia Stem Cell Activity Ex Vivo. Nat. Methods 2014, 11, 436–442. [CrossRef]

49. Andrews, S. FASTQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 3 June 2022).

50. Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon Provides Fast and Bias-Aware Quantification of Transcript
Expression. Nat. Methods 2017, 14, 417–419. [CrossRef]

51. R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022.
52. Love, M.I.; Soneson, C.; Hickey, P.F.; Johnson, L.K.; Pierce, N.T.; Shepherd, L.; Morgan, M.; Patro, R. Tximeta: Reference Sequence

Checksums for Provenance Identification in RNA-Seq. PLoS Comput. Biol. 2020, 16, e1007664. [CrossRef]
53. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital

Gene Expression Data. Bioinformatics 2010, 26, 139–140. [CrossRef] [PubMed]
54. Edgar, R. Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository. Nucleic Acids Res. 2002,

30, 207–210. [CrossRef] [PubMed]
55. Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. ClusterProfiler 4.0: A Universal

Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [CrossRef] [PubMed]
56. Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A Web Server for Functional Enrichment

Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47, W191–W198. [CrossRef] [PubMed]
57. Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al.

A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171, 1437–1452.e17. [CrossRef]
[PubMed]

58. Ianevski, A.; Giri, A.K.; Aittokallio, T. SynergyFinder 3.0: An Interactive Analysis and Consensus Interpretation of Multi-Drug
Synergies across Multiple Samples. Nucleic Acids Res. 2022, 50, W739–W743. [CrossRef] [PubMed]

59. Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Gonçalves, E.; Barthorpe, S.; Lightfoot,
H.; et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 2016, 166, 740–754. [CrossRef] [PubMed]

60. Garnett, M.J.; Edelman, E.J.; Heidorn, S.J.; Greenman, C.D.; Dastur, A.; Lau, K.W.; Greninger, P.; Thompson, I.R.; Luo, X.; Soares,
J.; et al. Systematic Identification of Genomic Markers of Drug Sensitivity in Cancer Cells. Nature 2012, 483, 570–575. [CrossRef]

61. Van der Meer, D.; Barthorpe, S.; Yang, W.; Lightfoot, H.; Hall, C.; Gilbert, J.; Francies, H.E.; Garnett, M.J. Cell Model Passports—A
Hub for Clinical, Genetic and Functional Datasets of Preclinical Cancer Models. Nucleic Acids Res. 2019, 47, D923–D929. [CrossRef]

62. Cokelaer, T.; Chen, E.; Iorio, F.; Menden, M.P.; Lightfoot, H.; Saez-Rodriguez, J.; Garnett, M.J. GDSCTools for Mining Pharmacoge-
nomic Interactions in Cancer. Bioinformatics 2018, 34, 1226–1228. [CrossRef]

63. Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al.
The CBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov.
2012, 2, 401–404. [CrossRef]

64. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al.
Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the CBioPortal. Sci. Signal. 2013, 6, pl1. [CrossRef]

65. Blighe, K.; Rana, S.; Lewis, M. EnhancedVolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling. R
Package Version 1.14.0. 2022. Available online: https://github.com/kevinblighe/EnhancedVolcano (accessed on 28 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/nar/gkz337
https://www.ncbi.nlm.nih.gov/pubmed/31066443
https://doi.org/10.1038/nmeth.2847
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1371/journal.pcbi.1007664
https://doi.org/10.1093/bioinformatics/btp616
https://www.ncbi.nlm.nih.gov/pubmed/19910308
https://doi.org/10.1093/nar/30.1.207
https://www.ncbi.nlm.nih.gov/pubmed/11752295
https://doi.org/10.1016/j.xinn.2021.100141
https://www.ncbi.nlm.nih.gov/pubmed/34557778
https://doi.org/10.1093/nar/gkz369
https://www.ncbi.nlm.nih.gov/pubmed/31066453
https://doi.org/10.1016/j.cell.2017.10.049
https://www.ncbi.nlm.nih.gov/pubmed/29195078
https://doi.org/10.1093/nar/gkac382
https://www.ncbi.nlm.nih.gov/pubmed/35580060
https://doi.org/10.1016/j.cell.2016.06.017
https://www.ncbi.nlm.nih.gov/pubmed/27397505
https://doi.org/10.1038/nature11005
https://doi.org/10.1093/nar/gky872
https://doi.org/10.1093/bioinformatics/btx744
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1126/scisignal.2004088
https://github.com/kevinblighe/EnhancedVolcano

	Introduction 
	Results 
	AML Cell Lines Exhibit Variable Response to Standard Drugs 
	Cytotoxic Response of AML Cells Correlates with the Transcription Response 
	Transcription Response of AML Cells Vary between Individual Drugs and the Combination 
	Pathway Annotation of the Gene Expression Changes 
	Gene Expression Changes Predict Daunorubicin Combination Partners 
	Predicted Combinations Exert Synergistic Response in AML Cells 

	Discussion 
	Materials and Methods 
	Cell Culture and Drugs Treatment 
	Primary Patient Samples 
	CellTiter-Glo Cell Toxicity Assay 
	RNA Extraction and Library Preparation 
	RNA-Seq and Downstream Analysis 
	Daunorubicin Combination Identification 
	Daunorubicin Combination Verification 
	Statistical Association of the Drug Synergy with Genomic Markers 

	References

