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Abstract: Perivascular adipose tissue (PVAT) adheres to most systemic blood vessels in the body.
Healthy PVAT exerts anticontractile effects on blood vessels and further protects against cardiovascu-
lar and metabolic diseases. Healthy PVAT regulates vascular homeostasis via secreting an array of
adipokine, hormones, and growth factors. Normally, homeostatic reactive oxygen species (ROS) in
PVAT act as secondary messengers in various signalling pathways and contribute to vascular tone
regulation. Excessive ROS are eliminated by the antioxidant defence system in PVAT. Oxidative
stress occurs when the production of ROS exceeds the endogenous antioxidant defence, leading to
a redox imbalance. Oxidative stress is a pivotal pathophysiological process in cardiovascular and
metabolic complications. In obesity, PVAT becomes dysfunctional and exerts detrimental effects
on the blood vessels. Therefore, redox balance in PVAT emerges as a potential pathophysiological
mechanism underlying obesity-induced cardiovascular diseases. In this review, we summarise new
findings describing different ROS, the major sources of ROS and antioxidant defence in PVAT, as well
as potential pharmacological intervention of PVAT oxidative stress in obesity.
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1. Introduction

Obesity is now known as an epidemic worldwide, which has become a global public
health concern and burden [1]. Obesity is a well-known risk factor for cardiovascular
disorders like endothelial dysfunction, atherosclerosis, hypertension, and coronary artery
disease [2]. In 1991, the pioneering work of Soltis and Cassis suggested that perivascular
adipose tissue (PVAT), a functional specialised ectopic fat depot, acts as a critical modulator
of vascular physiology and pathology [3]. Indeed, accumulating data from both clinical and
experimental studies demonstrate that the dysfunction of PVAT is a causal link between
metabolic diseases and cardiovascular complications [4–6]. Most blood vessels, including
large arteries and veins, small and resistance vessels, and skeletal muscle microvessels, are
surrounded by PVAT [7]. PVAT stays in close proximity to the tunica adventitia of blood
vessels, serving as a pivotal endocrine and/or paracrine tissue that maintains cardiovas-
cular and metabolic homeostasis. PVAT contains both white and brown adipocytes [8].
Apart from adipocytes, endothelial cells, fibroblasts, immune cells extracellular matrix,
and adrenergic nerves endings are also present in PVAT. Depending on the vessel type
and region, PVAT may have different compositional, phenotypic, and functional aspects
throughout the vascular system [9,10]. The phenotype of PVAT has been extensively re-
viewed [11–15]. In recent decades, revealing the crosstalk between blood vessels and PVAT
has become a particular interest in the field of vascular biology. Apart from its structural
and mechanical roles in vascular support, PVAT is actively involved in vascular homeosta-
sis and contributes to vascular dysfunction associated with cardiovascular and metabolic
diseases.

A healthy PVAT Is known to exert anticontractile effects on blood vessels in both
animal models and humans [16,17]. PVAT, as a endocrine and/or paracrine tissue, reg-
ulates vascular function by releasing various vaso-active factors, including adipokines,
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chemokines, cytokines, hydrogen sulphide (H2S), nitric oxide (NO), and reactive oxygen
species (ROS) [7]. These vasoactive substances could enter the endothelial layer of the
vessel wall by diffusion or via the vasa vasorum or the small media conduit networks that
connect the media with the adventitia layer [9,18,19]. These factors produced from PVAT
include proinflammatory and anti-inflammatory molecules, which take part in various
cellular processes, including smooth muscle proliferation and migration, vascular tone,
inflammation, and oxidative stress in the vasculature [10,20].

Depending on the ‘health status’ of PVAT, it may elicit beneficial or harmful effects on
the vasculature [21]. In obesity, PVAT becomes dysfunctional and exerts detrimental effects
on the blood vessels [4–6]. The ‘obesity triad’ is proposed as the central mechanism in
obesity-induced PVAT dysfunction [7]. The obesity triad consists of the interactions among
PVAT hypoxia, inflammation, and oxidative stress. Among the triad, oxidative stress
is a pivotal pathophysiological process in cardiovascular and metabolic complications,
including obesity, type 2 diabetes, and hypertension. As oxidative stress is a key feature of
hypertension, it is also known to regulate redox-dependent inflammatory molecules [22].
Normally, homeostatic ROS act as crucial secondary messengers in different signalling
pathways of both innate and adaptive immune responses [23]. ROS can be generated from
the mitochondria, nicotinamide adenine dinucleotide phosphate oxidase (NOX) system,
and endothelial nitic oxide synthase (eNOS) uncoupling in PVAT [24]. Oxidative stress
occurs when the production of ROS exceeds the capacity of the endogenous antioxidant de-
fence, leading to a redox imbalance [24]. Oxidative stress can attenuate the anti-contractile
effect of PVAT [17]. Therefore, targeting oxidative stress in PVAT could be a therapeutic
strategy for preventing obesity-related cardiovascular diseases in the future. In this review,
we summarise recent findings (mainly based on a PubMed database search of the literature
from 2013 to 2023 using the keywords ‘PVAT’ and ‘oxidative stress’) on ROS-generating
systems and antioxidant defence in PVAT and oxidative stress in PVAT during obesity, and
we discuss the potential pharmacological treatments by targeting PVAT in cardiovascular
and metabolic diseases.

2. ROS-Generating Systems in PVAT

By far, the main described sources of ROS in PVAT are mitochondria, the NOX family
of NADPH oxidase, and eNOS uncoupling. Mitochondrial ROS in adipose tissues have
been well described, especially in brown and beige adipocytes [25], while adipocytes in
PVAT also generate mitochondrial ROS. Mitochondria are known as crucial intracellular
regulators of energy metabolism [26], and have emerged as organelles that play critical
roles in cellular responses to different stimuli [27]. It is known that adenosine triphosphate
(ATP) production in mitochondria can oxidise substrate by oxidative phosphorylation in
the electron transport chain (ETC) [28]. The ETC generates a proton motive force by pump-
ing protons from the matrix to the intermembrane space by oxidative phosphorylation.
Mitochondrial proton and electron leak may have major effects on mitochondrial coupling
efficiency and ROS production. Protons may re-enter the matrix without going through the
ATP synthase and losing ATP production [29]. Unpaired electrons can react with oxygen to
form ROS (mainly superoxide O2

−) [29]. Superoxide can then be dismutated to hydrogen
peroxide (H2O2) and generate hydroxide (OH−) and hydroxyl (OH•) radical by Fenton
reaction [29]. Less than a decade ago, Costa et al. first demonstrated the role of PVAT
mitochondria as a source of ROS [30]. Mitochondrial ROS have been implicated in the
regulation of vascular tone (vasoconstriction and vasodilation) [30–33], cell growth, and
migration [34]. By using oxidative phosphorylation uncouplers, the authors have demon-
strated that mitochondrial-derived ROS in thoracic PVAT can, at least partly, modulate the
contractility of vascular smooth muscles [30]. Mitochondrial uncoupling protein 1 (UCP-1)
is the hallmark of brown adipocytes and is responsible for cold- and diet-induced thermo-
genesis. In thoracic PVAT, the gene expression pattern is almost identical to brown adipose
tissue (BAT) in mice, and PVAT from human coronary artery also expresses UCP-1 [35]. A
recent study showed that a deficiency of UCP-1 led to an overproduction of mitochondrial
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ROS and exacerbated obesity-related vascular dysfunction and atherosclerosis [36]. In
addition, in a mice model of interleukin (IL)-18 knockout, ROS production in the PVAT
was augmented and accompanied by the deformation of PVAT mitochondria and PVAT
whitening [37]. These findings suggest that mitochondrial ROS may play important roles
in both vascular and PVAT homeostasis, while modulating mitochondrial biogenesis may
be critical in maintaining normal PVAT function.

In vasculature, the NOX family is one of the major sources of ROS [38]. NOX utilises
NADPH as an electron donor to catalyse the production of O2

− [39–41]. NOX2 is the
prototype NADPH oxidase, and it is a complex that comprises several subunits, including
Rac, p47phox, p40phox, p67phox, p22phox, and the catalytic subunit gp91phox [42]. Upon
stimulation, p47phox is phosphorylated, which triggers the complex formation of the
cytosolic subunits (p47phox, p40phox and p67phox) followed by translocation to the mem-
brane. This complex is then associated with gp91phox and p22phox to generate superoxide.
NOX1 is the first described and the closest NOX2 homologue [43]. Currently, there are
seven homologues of NOX identified in humans: NOX1-5 and dual oxidase (Duox1 and
2) [44,45]. NOX4 releases H2O2, while other NOX isoforms generate superoxide [46]. These
nonphagocytic NOXs produce superoxide constitutively and intracellularly [47]. NOX1,
NOX2, NOX4, and NOX5 are expressed in vascular cells [38], while only NOX1, NOX2,
and NOX4 are detected in PVAT [48] (Figure 1). So far, NOX5 has not been detected in
rodents, and there have been no reports on NOX5 in human PVAT. However, the detailed
role of NOX in PVAT is not well known. NOX-derived ROS in PVAT was first reported by
Gao et al. [49]. An inhibitor of NOX exerted greater inhibition on electrical field stimulation
(EFS)-induced contractions in PVAT-attached mesenteric arteries, which was associated
with the attenuation of EFS-induced superoxide generation from the PVAT [49]. The au-
thors also demonstrated that p67phox was localised in the cytoplasm and cell membrane
of adipocytes from mesenteric PVAT [49]. NOX-derived ROS in PVAT have been shown
to induce endothelial dysfunction by scavenging NO released from the endothelium and
modulating perivascular inflammation [50]. In a mice model of p22phox subunit overex-
pression, it was shown that the augmented hypertension was associated with enhanced
vascular ROS production and increased PVAT leukocyte infiltration [51]. On the other
hand, a mice model with NOX deficiency (such as p47phox subunit, NOX1, and NOX4)
showed beneficial effects against hypertension [52,53]. Surprisingly, a recent study reported
that the inhibition of NOX1/4 led to an increase in blood pressure associated with PVAT
inflammation and accelerated vascular aging in rats, which was also associated with the
upregulation of the expressions of proinflammatory chemokines (C-C motif chemokine
ligands CCL2 and CCL5) in the PVAT [54].

eNOS is a homodimer, heme-containing oxidoreductase that catalyses the conversion
of L-arginine and O2 to L-citrulline and NO [55]. NO is a crucial modulator in vascular
homeostasis, which is known to inhibit vascular smooth muscle proliferation and migration,
leukocyte adhesion, platelet aggregation, and inflammation [56]. The oxygenase domain of
eNOS binds with L-arginine and the cofactor tetrahydrobiopterin (BH4), while the reduc-
tase domain possesses sites for the electron donors NADPH, flavin adenine dinucleotide
(FAD), and flavin mononucleotide (FMN) [55]. The oxygenase and reductase domains
are connected by a calcium-complexed calmodulin binding site, while calcium-activated
calmodulin facilitates the interdomain electron transfer and NO synthesis. This reaction is
referred to as eNOS coupling in normal conditions [57]. The stabilisation of the eNOS dimer
is essential for eNOS coupling. The coupling of eNOS is dependent on the protein–protein
interaction and the availability of arginine and BH4. On the other hand, uncoupled eNOS
refers to the situation that the flavins electron transfer is uncoupled to L-arginine oxidation,
switching to superoxide production instead of NO [57]. Superoxide can then be quickly
converted to H2O2 by superoxide dismutase (Figure 2). Indeed, eNOS is expressed, but not
exclusively, in vascular endothelial cells. Recently, eNOS expression has been reported in
cells other than endothelial cells in vitro and in vivo. In particular, eNOS expression and
NO production have been detected in the adipocytes in aortic PVAT in both animal models
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and human samples [58–62]. The expression of eNOS in PVAT highly varies among the
anatomical localisations in the vascular system. Abdominal aortic PVAT seems to have a
lower eNOS expression compared to that of thoracic aortic PVAT, whereas the expression
of eNOS remains the same along the vessel wall itself [63]. In addition, unpublished data
from our group suggest a comparable level of eNOS expression between mesenteric PVAT
and thoracic aortic PVAT.
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Figure 1. NADPH oxidase in PVAT. So far, NOX1, NOX2, and NOX4 have been detected in PVAT.
NOX2 is the prototype NADPH oxidase, and it is a complex that comprises several subunits, including
Rac, p47phox, p40phox, p67phox, p22phox, and the catalytic subunit gp91phox. NOX1 is the
closest NOX2 homologue, which includes the catalytic subunit NOX1, subunit p22phox, Rac1,
NADPH oxidase activator 1 (NOXA1), and NADPH oxidase organiser 1 (NOXO1). NOXA1 is
structurally homologous to p67phox, while NOXO1 is structurally homologous to p47phox. NOX4
is a constitutively activated isoform that consists of catalytic subunit NOX4 and subunit p22phox.
Unlike other NOX, due to the rapid conversion, NOX4 generates hydrogen peroxide.
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Figure 2. PVAT eNOS uncoupling during obesity. During obesity, BH4 is oxidised to BH2. The
reduced availability of arginine and BH4 leads to the uncoupling of eNOS, which switches to produce
superoxide instead of NO.

3. Type of ROS in PVAT

Currently, there are different methods that have been used in studies to detect and
measure ROS levels. The most commonly used methods to detect ROS in PVAT and other
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tissues include chemiluminescent assays (e.g., 5-amino-2,3-dihydroxy-1,4-phthalayineidone
(luminol) is used to detect O2

−), fluorescent probes (e.g., dihydroethidium (DHE) and
MitoSOX are used to detect O2

−; Amplex red is used to detect H2O2; DCF-DA is used to
detect OH•), and electron paramagnetic resonance spin trapping (EPR is used to detect
O2

− or OH•) spectroscopy [64–68]. Each of these methods has their its specificities for
different ROS and limitations.

As mentioned above, significant production of O2
− and H2O2 within the PVAT has

been detected in various studies. H2O2 can be converted into hydroxide (OH−) and hy-
droxyl (OH•) radical by Fenton reaction, which can oxidase DNA and lipids and cause cell
damage [29,69]. In addition, O2

− can react with NO to generate a highly reactive nitrogen
species peroxynitrite (ONOO−), which is also a strong oxidant [70]. ROS production and
lipid peroxidation levels appear to be similar in the PVAT along the aorta [63], while it may
be different among the PVAT of different vascular beds. Under normal conditions, O2

−

favours vasoconstriction, while H2O2 contributes to vasodilatation via the activation of
the potassium channel and is considered an endothelium-derived hyperpolarising factor
(EDHF) [71]. Also, mitochondrial ROS can act as inter- and intracellular signals in vital
cellular processes, partly by oxidising redox-sensitive protein phosphatases and kinases,
which in turn modulate the phosphorylation of transcription factors or receptors. De-
pending on their cellular levels, ROS can be either beneficial or deleterious [27,72]. In the
presence of cardiovascular risk factors and in pathological conditions, the redox balance in
PVAT is disturbed, leading to ROS overproduction and causing oxidative damage to the
PVAT itself and the adjacent vessel walls. Indeed, most studies have only measured ROS
production in whole PVAT. It would be very helpful for future studies to investigate which
cell types in PVAT are responsible for ROS production in healthy conditions and under
pathological conditions.

4. Antioxidant Systems in PVAT

The maintenance of the ROS level is achieved by the endogenous antioxidant enzymes,
including superoxide dismutase (SOD), catalase, glutathione peroxide (GPx), glutathione
reductase (GR) peroxiredoxins (Prxs), and heme oxygenase (HO). These enzymes are
important antioxidant defences that can reduce the intracellular ROS burden [73]. Currently,
the antioxidant system in PVAT has received less attention in the studies of cardiovascular
and metabolic diseases (Figure 3).

SOD is a superoxide-scavenging enzyme that catalyses the dismutation of O2
− into

molecular oxygen and H2O2. PVAT expresses CuZn-SOD (SOD1), Mn-SOD (SOD2), and
EC-SOD (SOD3) [49,74]. In mice with interleukin (IL)-18 deficiency, the anti-contractile
function of PVAT was impaired in association with decreased SOD2 expression in deformed
mitochondria in PVAT and increased PVAT whitening [37]. However, mice with adipocyte-
specific SOD2 deficiency exhibited resistance to HFD-induced obesity and enhanced energy
expenditure [75]. This anti-obesity effect of SOD2 deletion in adipocytes was attributed to
the activation of mitochondrial biogenesis and the promotion of mitochondrial fatty acid
oxidation [75].

Catalase, mainly present in peroxisomes, eliminates excessive H2O2. Catalase expres-
sion in PVAT was reported [30,76]. In a study, the authors detected a decreased expression
of catalase in norephinephrine (NE)-stimulated PVAT, which was associated with increased
H2O2 (detected by Amplex Red) [30]. Extracellular catalase treatment has been shown to
reduce such H2O2 levels in PVAT [30]. Catalase-knockout mice exhibited increased weight
gain and higher fat mass under either normal chow (NCD) or high-fat diet (HFD) feeding
than the control [77] and exhibited a prediabetic phenotype [78]. Unfortunately, these
studies only reported the phenotype of white adipose tissue, without further investigating
the function of PVAT.

The GPx family reduces lipid hydroperoxides to alcohols and reduces free H2O2 to
water in a glutathione (GSH)-dependent reduction reaction, while GR acts as a scavenger
for OH•. The expressions of GPx and GR have been reported in PVAT [79,80]. In mice, the
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inhibition of GPx resulted in impaired insulin signalling and led to an accumulation of
GSH [79]. However, controversial results have been demonstrated in mice models of GPx
knockout. Mice lacking GPx-1 have been shown to be protected from high-fat diet-induced
insulin resistance [81]. HFD-induced glucose intolerance was improved in mice model with
both GPx-1 and catalase deficiency, which was associated with attenuated inflammation
and enhanced browning in visceral adipose tissues [82].
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Figure 3. Redox balance in PVAT. PVAT generates different types of ROS through multiple sources,
including mitochondria, NOX family of NADPH oxidase, and eNOS uncoupling. Physiological levels
of ROS are required for normal PVAT function. Excessive ROS are eliminated by the antioxidant
defence system in PVAT. These endogenous antioxidant enzymes, including superoxide dismutase
(SOD), catalase, glutathione peroxide (GPx), glutathione reductase (GR), peroxiredoxins (Prxs), and
heme oxygenase (HO), are important antioxidant defences that reduce the intracellular ROS burden.
Under normal conditions, O2

− favours vasoconstriction, while H2O2 contributes to vasodilatation
as an endothelium-derived hyperpolarising factor (EDHF). PVAT also releases nitric oxide (NO),
PVAT-derived contracting factors (PDCFs), and relaxing factors (PDRFs) and adipokines that are
responsible for modulating vascular tone and regulating vascular homeostasis. Healthy PVAT with a
balanced redox status is crucial to maintain the normal function of PVAT.

Prxs is a ubiquitous family of peroxidase enzyme that modulates the peroxide levels
within cells. The catalytic efficiency of Prxs is less than that of catalase [83], but the down-
regulation of Prxs may lead to a decrease in the rate of H2O2 catabolism [83]. Among the
six members of the Prxs family, Prx1 expression has been reported in human PVAT [84],
while the expressions of other Prxs remains to be elucidated. Indeed, Prx2 expression is up-
regulated during adipocyte differentiation, while the downregulation of Prx2 in adipocytes
increased ROS production and inhibited adipogenesis in vitro [85]. Prx3 is localised in
the mitochondria and is downregulated significantly in the adipose tissues of obese mice
and humans [86]. Prx3 knockout mice showed adipocyte hypertrophy and increased mito-
chondrial protein carbonylation in vivo, while Prx3 knockdown decreased mitochondrial
potential and downregulated adiponectin expression in adipocyte in vitro [86]. Therefore,
the expressions and activities of Prx2 and Prx3 in PVAT could be further investigated.

HO is an enzyme catalysing the oxidative degradation of heme to produce free iron,
carbon monoxide, and biliverdin. HO-1 is a stress-induced isoform, while HO-2 is a consti-
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tutive isoform. HO-1 expression in PVAT has been reported [87,88], while the expression of
HO-2 remains unclear. HO-1 overexpression, specifically in adipocyte, attenuated HFD-
induce obesity and vascular dysfunction [89]. On the other hand, adipocyte-specific HO-1
knockout exacerbated fasting hyperglycaemia and insulinemia in female mice [90]. Yet, the
direct effect of HO-1 manipulation in PVAT requires further investigation.

5. PVAT Oxidative Stress in Obesity

Obesity is a condition of excessive fat mass and subclinical inflammation. The preva-
lence of obesity has doubled worldwide over the past few decades, as well as the con-
comitant increase in obesity-associated cardiovascular diseases [91]. Obesity is a major
risk factor for cardiovascular and metabolic diseases, including type 2 diabetes, insulin
resistance, and hypertension [92]. In fact, endothelial dysfunction is not always evident
in obese patients in vitro, although they have a higher risk of developing hypertension,
cardiomyopathy, and stroke. Various studies have demonstrated that the anti-contractile
effects of PVAT are attenuated in obesity [4,58,76]. Indeed, PVAT dysfunction, but not
obesity itself, plays an important role in obesity-induced vascular disorders. In mice aortas,
the responses to vasodilators were not different between the aortas isolated from obese and
lean mice, while vasodilator responses were attenuated in the aortas isolated from obese
mice when PVAT was attached [58,62]. In addition, mesenteric arteries incubated with
thoracic PVAT from HFD-fed rats showed diminished endothelium-dependent relaxation
compared to those incubated with thoracic PVAT from NCD-fed rats [93]. This suggests
that the detrimental effects of obesity do not directly influence the intrinsic vascular re-
activity but rather the function of PVAT and PVAT dysfunction are closely related to the
development of obesity-associated vascular complications.

PVAT function in modulating vascular haemostasis has been extensively reviewed [11,12].
Under normal conditions, the physiological level of ROS is crucial to maintaining vascu-
lar homeostasis and is responsible for vascular responses, and excess ROS are antago-
nised by several antioxidant enzyme systems in PVAT, as mentioned above [49,74]. Pro-
inflammatory and pro-oxidative states in PVAT significantly altered the anti-contractile
effects and functions of PVAT under obese conditions [94]. For example, during obesity,
H2O2 might act as a PVAT-derived contractile factor [76]. PVAT dysfunction leads to the
imbalance of PVAT-derived vasoactive factors and affects vascular function [95].

In obesity, the mass of PVAT is increased and adipocytes become hypertrophy, resulting
in a shift to white adipose tissue-like characteristics of PVAT, accompanied by deformed
mitochondria [93]. Chronic inflammation is evident in obese PVAT, characterised by
the infiltration of dendritic cells and macrophage and the upregulation of inflammatory
cytokines, including monocyte chemoattractant protein-1 (MCP-1), tumour necrosis factor
alpha (TNF-α), IL-6, and the adipokine leptin [96,97]. On the other hand, the expression of
adiponectin, an anti-inflammatory adipokine, is reduced in obese PVAT [98]. Inflammation
in PVAT also stimulates the generation of O2

− and H2O2 by NOX, which promotes the pro-
contractile activity of the vessel wall. Also, hypertrophic adipocytes may exhibit insufficient
blood perfusion, which leads to local hypoxia in PVAT. The expression of the key modulator
of hypoxia, hypoxia-inducible factor alpha (HIF-1α), is increased in the adipose tissues of
obese subjects [99]. HIF-1α can stimulate the production of inflammatory mediators, such
as TNF-α and IL-6, and suppress the expression of adiponectin from PVAT [100]. In the
small mesenteric arteries of healthy Wistar rats, incubation with TNF-α and IL-6 led to the
loss of anti-contractile effects of mesenteric PVAT, whereas the induction of hypoxia led to
inflammation and dysfunction of mesenteric PVAT [17]. This hypoxia-induced mesenteric
PVAT dysfunction was restored by treatment with either IL-6 antibody, TNF-α antibody, or
exogenous catalase and SOD in vitro [17]. HFD-induced obese mice with TNF-α receptor
knockdown had reduced H2O2 generation in PVAT and sensitivity to phenylephrine(PE)-
induced vasocontraction, suggesting that oxidative stress is crucial to the pro-contractile
shift of PVAT [76]. In addition, the combination of inflammation and oxidative stress may
create a vicious cycle that further generates genetic and cardio-metabolic factors, leading to



Antioxidants 2023, 12, 1595 8 of 21

atherogenesis [101]. Therefore, oxidative stress in PVAT is a critical link between metabolic
diseases and cardiovascular complications.

Various studies have also demonstrated that obesity-induced PVAT dysfunction is
associated with increased ROS generation from different sources [4,58,76,97]. ob/ob mice
showed low activity of GPX and the upregulation of gamma-glutamylcysteine synthetase
(γ-GCS), resulting in high glutathione content in adipose tissues [79]. In a study, the ex-
pression of SOD2 was significantly reduced and catalase expression was increased in the
PVAT from obese mice. Interestingly, the SOD activity was increased, while there was no
change in the catalase activity in PVAT. These data suggest a compensatory mechanism for
increased ROS in obese PVAT [76]. The thoracic PVAT of obese mice lost its anti-contractile
effect and became dysfunctional, which was associated with increased levels of O2

− and
H2O2 detect by DHE, Amplex red, and lucigenin [76]. An excess of mitochondria-derived
ROS may be contribution by the oxidative stress in thoracic PVAT, as evidenced by a
significant reduction in the O2 consumption rate and the downregulation of UCP-1 and
SOD2 in this tissue [76]. In addition to mitochondrial ROS, eNOS uncoupling also con-
tributes to oxidative stress in thoracic PVAT. In the thoracic PVAT of obese mice, increased
arginase activity was detected, which resulted in eNOS uncoupling, while L-arginine sup-
plementation and arginase inhibition reversed the eNOS uncoupling [58]. In patients who
underwent bariatric surgery, obese-induced PVAT dysfunction was restored by increased
NO production and reduced TNF-α expression [102]. Moreover, thoracic PVAT-conditioned
media from obese mice induced H2O2 production in the aortas isolated from control mice
in vitro [96], suggesting that the secretome from obese PVAT could be pro-oxidant. The
abdominal aortic PVAT of HFD-fed mice exhibited increased mass, adipocyte hypertro-
phy, and increased levels of O2

− and H2O2 (evaluated by luminol chemiluminescence
technique) compared to NCD-fed mice [4]. The abdominal PVAT from HFD-fed mice was
dysfunctional and the abdominal aorta had impaired endothelium-dependent vasodilation
in the presence of obese abdominal PVAT. NOX has been suggested as a source of ROS
in obese abdominal aortic PVAT, which was evidenced by the upregulation of p67phox
subunit [4]. In long-term HFD-fed rats, increased expressions of cytochrome c oxidase, GPx,
and UCP-1 and a decreased expression of p22phox were detected in the aortic PVAT [103].
In the early stages of obesity, the overproduction of NO could preserve vascular func-
tion in mesenteric arteries [62]. However, in long-term HFD-induced obesity, mesenteric
PVAT became dysfunctional and prooxidant, which was associated with increased O2

−

production, increased NOX activity, and reduced SOD activity [97]. HFD-fed mice also
showed a reduced expression of SOD3 and glutathione levels in mesenteric PVAT [97]. The
dysfunction of mesenteric PVAT in long-term HFD-induced obese mice was attenuated by
incubation with exogenous sources of SOD and catalase, suggesting the generation of O2

−

and H2O2 in these dysfunctional mesenteric PVAT [84]. In addition, proteomic analysis of
PVAT from gluteal fat biopsy revealed a downregulation of SOD1 and PRX-1 expression in
obese individuals [84].

eNOS in PVAT plays an important role in obesity-induced vascular dysfunction [7,11],
and we have recently reviewed the detailed function of eNOS in PVAT both physiological
and pathological conditions [12]. Various studies using HFD and/or genetically modified
rodent models have demonstrated the pathophysiological role of eNOS expressed in PVAT
in modulating vascular tone, function, and homeostasis, inflammation, and oxidative
stress [58,104,105]. We have previously shown evidence of PVAT eNOS dysfunction and
eNOS uncoupling in mice with HFD-induced obesity [58]. At the early phase of HFD feed-
ing, there was adaptive NO overproduction from mesenteric PVAT in C57BL/6J mice [62],
while the expression of eNOS was reduced after long-term HFD feeding in the mesenteric
PVAT of obese rats [106] and in the thoracic PVAT of obese mice [97]. The basal production
of NO was reduced in the small arteries of obese patients compared to non-obese sub-
jects, while this reduction was only evident in PVAT-adhered and not in PVAT-removed
arteries [59]. The upregulation of arginase in obese PVAT reduces the bioavailability of
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L-arginine for NO production and leads to the uncoupling of eNOS [107], which in turn
produces O2

− and increases oxidative stress in PVAT [58].
Macrophages represent the key modulators of oxidative stress and inflammation in

PVAT. The upregulation of IL-6 and MCP-1 levels lead to the recruitment of monocytes
and macrophage in PVAT and the subsequent pathology of obesity-induced vascular
complications [108–110]. Also, a reduced adiponectin level in obese PVAT was associated
with increased macrophage infiltration [111]. In obese individuals, mineralocorticoid
receptors (MR) are activated and their ligand aldosterone is significantly increased [112].
Aldosterone is known to activate NOX [113] and induce eNOS uncoupling [114]. The
upregulation of MR increased H2O2 generation in adipocytes in vitro [115] and a blockade
of MR prevented both mitochondrial and PVAT dysfunction in obesity [116]. MR may
participate in PVAT dysfunction through the modulation of mitochondrial function [116].
Also, MR activation in PVAT macrophages may play a critical role in the pathogenesis of
obesity-induced vascular dysfunction, as demonstrated by the beneficial effects in myeloid
MR KO mice [117]. Therefore, MR activation is especially interesting in the context of
obesity-related cardiovascular and metabolic diseases.

The aldoketo reductase super-family catalyses the generation of sorbitol in the polyol
metabolic pathway of glucose metabolism. Aldose reductase, a member of the super-family,
may deplete the antioxidant glutathione system due to the scavenging of NADPH, which
in turn increases ROS production [118]. In a rat model of type 2 diabetes, the aortic PVAT
exhibited increased levels of markers of oxidative stress, including malonaldehyde and
aldose reductase activity, which were associated with reduced antioxidant defence [110].

Angiotensin II (Ang II) is the key component of the renin–angiotensin–aldosterone
system (RAAS), which has been extensively studied in vascular biology. Ang II medi-
ates the PVAT-associated contractile response to perivascular neuronal excitation [119],
while adipocyte RAAS is involved in adipogenesis and adipose tissue mass [120]. The
upregulation of Ang II during obesity may lead to adipose tissue dysfunction and induce
ROS production in PVAT [121]. In a rat model of heart failure, oxidative stress (measured
by DHE fluorescence) and reduced NO bioavailability have been shown to be associated
with the impaired anti-contractile effect of thoracic PVAT [122]. In a recent RNA sequenc-
ing study, the responses of different PVAT to Ang II have been investigated [123]. Upon
stimulation by Ang II, abdominal aortic PVAT showed a significant downregulation of
mitochondrial genes in oxidative phosphorylation and brown adipocyte markers and an
upregulation of inflammatory markers. In addition, Ang II induced even more significant
inflammation in both ascending and descending thoracic aortic PVAT [123]. Together, these
targets may emerge as possible mediators of oxidative stress in PVAT during obesity, and
further studies are warranted to elucidate the mechanisms (Figure 4).
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Figure 4. PVAT oxidative stress in obesity. Pro-oxidative state in PVAT significantly alters the anti-
contractile effects and functions of PVAT under obese conditions. Obese PVAT becomes hypertrophy
and increases whitening of adipocytes. Chronic inflammation and hypoxia are also hallmarks of
obese PVAT. In obese PVAT, the anti-contractile effect is lost and becomes pro-contractile. Increased
inflammatory cytokines, including MCP-1, TNF-α, and IL-6, are released from PVAT. Also, activation
of mineralocorticoid receptors (MR) and increased activity of aldose reductase are recently reported
in obese PVAT. The downregulation of UCP-1 in obese PVAT is associated with reduced mitochon-
drial biogenesis. Obese PVAT also produces less vasoprotective substances like adiponectin and
nitric oxide.

6. Pharmacological Prevention of PVAT Oxidative Stress

As discussed above, PVAT dysfunction and the associated vascular complications
in obese mice are highly associated with systemic inflammation and oxidative stress in
PVAT. Here, we summarise recent studies on potential strategies for targeting PVAT oxida-
tive stress.

6.1. Improving Antioxidant Defence

In general, the dismutation of mitochondrial H2O2, the inactivation of O2
−, and

the uncoupling of oxidative phosphorylation have been demonstrated to restore PVAT
function and attenuate PE-induced contraction in vessels with PVAT isolated from HFD-
fed mice [4,76]. In HFD-induced obese rats, the administration of antioxidative ethanolic
extract of Mangosteen pericarp (EEMP), which contains xanthone, has been shown to
normalise hypertrophic PVAT and reduce the expression of vascular cell adhesion molecule
1 (VCAM-1) to prevent arterial remodelling [124]. Treatment with an antioxidant, N-acetyl
cysteine, normalised the upregulation of angiotensinogen in ROS-treated adipose tissues in
both in vitro culture and in vivo obese mice models [125].

Treatment with either enalaprilat (an angiotensin-converting enzyme ACE inhibitor)
or candesartan (an Ang II type 1 receptor antagonist) reduced the PVAT-mediated O2

−-
induced vasocontraction in rat mesenteric arteries [119]. Also, chronic treatment with
quinapril (an ACE inhibitor) reduced the blood pressure and alleviated the potentiation
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effect of PVAT-mediated superoxide-induced contractions [119]. S-zofenopril, a sulph-
hydrylated ACE inhibitor, improved vascular function in spontaneous hypertensive rats,
which was associated with the potentiation of the H2S pathway [126]. The administration
of exogenous H2S inhibited the generation of ROS and suppressed vascular oxidative stress
in hypertensive rats [127]. The antioxidant effect of H2S may be attributed to the inhibition
of Ang II receptor type 1, the downregulation of NOX, and the upregulation of antioxidant
enzymes [128]. Atorvastatin decreases the level of coenzyme Q10, which is a cofactor of
H2S oxidation, leading to increased H2S levels. Atorvastatin treatment has been demon-
strated to improve the anti-contractile function of PVAT in spontaneously hypertensive
rats [129], while the administration of lipophilic atorvastatin increased H2S levels in PVAT
and prevented mitochondrial oxidation, which in turn improved the anti-contractile effect
of PVAT [130].

Melatonin (5-methoxy-N-acetyltryptamine) is a hormone that has antioxidant activity
by promoting direct free radical scavenging and the stimulation of antioxidant enzymes
such as SOD [131]. In mice models of accelerated aging, long-term treatment with melatonin
normalised the anti-contractile effects of PVAT and was associated with the increased
expressions of vasoprotective markers and decreased oxidative stress and inflammation in
PVAT [132]. In a recent study, the administration of melatonin restored the anticontractile
effect of aortic PVAT in obese rats by reversing the overproduction of ROS, reduced SOD
activity, and the decreased bioavailability of NO [133].

Polysaccharide peptides (PsPs) are protein-bound polysaccharide extracted from
plants and fungi. The anti-inflammatory, free radical scavenging, and antioxidant properties
of PsPs have been demonstrated in different studies [134]. Various studies have shown
that PsPs isolated from fungi can restore H2O2 level by upregulating SOD and catalase
expression in the PVAT of HFD-fed rats, which in turn prevents PVAT hypertrophy and
arterial remodelling [135,136].

Glucagon-like petide-1 (GLP-1) is a peptide that is mainly produced by the intestinal
cells and is known to improve cardiovascular health [137], improve endothelial function
in obesity [138], and stimulate fatty acid oxidation and insulin signalling pathways, thus
enhancing the antioxidant capacity [139]. An antioxidative GLP-1 analogue, liraglutide,
has been demonstrated to attenuate HFD-induced vascular dysfunction by modulating the
protein kinase A (PKA)-AMP-activated protein kinase (AMPK)-peroxisome proliferator-
activated receptor-gamma coactivator 1alpha (PGC-1α) pathway in obese mice [88]. Liraglu-
tide enhanced the HO-1/adiponectin axis and alleviated HFD-induced oxidative stress in
PVAT [88]. Similar findings were reported in another study where liraglutide increased
the antioxidant capacity by upregulating the Nrf2/HO-1 pathway in obese mice [88], and
alleviated the NLR family pyrin domain containing 3 (NLRP3) inflammasome-dependent
inflammation in PVAT by inhibiting nuclear factor (NF)-κB signalling [140]. Exendin-4,
another GLP-1 analogue, reduced the expressions of inflammatory and oxidative markers
(such as NOX4) in in vitro and in vivo experiments [141]. On the other hand, dipeptidyl
peptidase 4 (DPP-4), an enzyme secreted from PVAT, degrades GLP-1 and has been sug-
gested as a pathophysiological link between obesity and cardiovascular diseases [142]. DPP-
4 inhibitors have been shown to exert direct antioxidant effects in rodent models [143,144].
The administration of teneligliptin, a DPP-4 inhibitor, attenuated atherosclerosis progres-
sion in apolipoprotein E (ApoE) knockout mice by alleviating inflammation and oxidative
stress in both the vasculature and PVAT [145]. These studies suggest that enhancing GLP-1
activity and/or downregulating DPP-4 in PVAT may improve PVAT function by alleviating
inflammation and oxidative stress.

6.2. Restoring eNOS Function

PVAT dysfunction can be rescued by restoring the normal expression and function of
eNOS. In mice lacking low-density lipoprotein receptors (Ldlrs), thoracic PVAT exhibited
compensatorily increased eNOS expression and NO production, which protected against
impaired vasodilatation responses to acetylcholine and insulin [60]. Standardised Crataegus
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extract WS® 1442 is a dry extract from hawthorn leaves with flowers with antioxidative
properties [146]. Our lab has previously demonstrated that WS® 1442 treatment can restore
the vascular function in PVAT-attached aorta rings isolated from HFD-induced obese mice,
partly by reversing the reduced Akt (protein kinase B) phosphorylation, reduced eNOS
phosphorylation, and enhanced eNOS acetylation in PVAT [147].

The plasma levels of adiponectin and adiponectin expression in adipose tissues are
significantly diminished in eNOS global knockout mice [148]. Long-term adiponectin
treatment in HFD-fed rats normalised NO-dependent vasorelaxation, which was associated
with decreased PVAT inflammation and enhanced eNOS phosphorylation [149]. In a recent
study, treatment with methotrexate, an anti-inflammatory drug with antioxidant effects,
rescued endothelial and PVAT dysfunction and adipokine dysregulation via activating the
AMPK/eNOS pathway in PVAT [150]. Also, treatments with various modulators of AMPK
activity, including 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), diosgenin,
metformin, methotrexate, resveratrol, and salicylate, have been shown to increase the
anticontractile function of PVAT in different studies [151,152]. In addition, irisin, a newly
identified hormone secreted by myocytes, has been shown to attenuate PVAT dysfunction in
HFD-induced obese mice via the upregulation of the HO-1/adiponectin axis and browning
of the PVAT [87]. In another study, irisin improved endothelial function in obese subjects
via activation of the AMPK-eNOS pathway [153], suggesting that the administration of
irisin may improve PVAT function by activation of the AMPK-eNOS pathway in PVAT.

Moreover, the expression of eNOS was revealed in both BAT and isolated brown
adipocytes [154], whereas eNOS-derived NO has been shown to promote adiponectin
synthesis and play a crucial role in mitochondrial biogenesis [155]. These results suggest
that restoring eNOS function may also facilitate thermogenesis and browning in PVAT.

6.3. Restoring Mitochondrial Function and Browning of PVAT

During obesity, PVAT mainly displays white adipose tissue-like phenotypes, while
stimulating the white to brown characteristics or maintaining beiging in PVAT can be a
critical strategy to maintain and restore the function of PVAT. In obesity, PVAT resembles
white adipose tissue (WAT)-like phenotypes and is associated with augmented oxidative
stress and inflammation and reduced NO bioavailability. On the other hand, PVAT with
BAT-like phenotypes has been shown to ameliorate oxidative stress and inflammation.
Indeed, whitening and browning of PVAT are determined by the mitochondrial function
and biogenesis in adipocytes [156].

CDGSH iron-sulphur domain-containing protein 1 (mitoNEET) is a mitochondrial
membrane protein that is responsible for regulating the maximal capacity for electron
transport and oxidative phosphorylation. In other cell types, mitoNEET has been shown to
protect against oxidative stress, possibly by compensating the imbalance in the glutathione
system [157]. The expression of mitoNEET is regulated by thermogenic genes such as PGC-
1α. The overexpression of mitoNEET in PVAT significantly prevented arterial stiffness and
atherosclerosis [158,159]. In mice with mitoNEET overexpression, aortic PVAT exhibited
enhanced BAT-like phenotypes, as evidenced by the upregulation of brown adipocyte mark-
ers, and counterbalanced Ang II-induced inflammatory and oxidative effects in PVAT [123].
Therefore, potential mitoNEET ligands, including rosiglitazone and resveratrol, may be
used to target oxidative stress in PVAT, via restoring mitochondrial function [160].

In addition, cold acclimation is a well-studied stimulus to induce mitochondrial
biogenesis and browning in adipose tissues. Cold acclimation has been shown to attenu-
ate HFD-induced endothelial dysfunction and prevent atherosclerosis in mice, which is
associated with the downregulation of pro-inflammatory markers in PVAT [161]. Cold
acclimation stimulated the browning of the abdominal aortic PVAT in HFD-fed rats by
increasing the expressions of UCP-1 and PGC-1α while reducing the expressions of TNF-α,
IL-6, and p65 [162]. Also, cold acclimation stimulates glucose uptake and triglyceride
clearance in adipose tissues, which may defend against oxidative stress in PVAT [163,164].
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Exercise training has been shown to induce a thermogenic response and adipocyte
browning in rat PVAT, and it is associated with enhanced eNOS expression and diminished
oxidative stress [165–167]. Aerobic exercise training upregulated the protein expression
of antioxidant enzymes (including SOD1-3) and decreased ROS generation (measured by
DHE fluorescence) in PVAT, and there was an associated improvement in endothelium-
dependent vasorelaxation [168]. The beneficial effects of exercise training may be attributed
to the increased angiogenesis in PVAT, which improves blood flow, reduces hypoxia and
macrophage infiltration [169], and improves vascular function [170]. In addition, diet
restriction in male obese rats reduced adipokines and cytokines (including leptin, IL-6,
MCP-1, and TNF-α), immune cell infiltration, and the gene expressions of p22phox and
p47phox in thoracic PVAT [171]. Moreover, sustained weight loss has been shown to
restore PVAT function in obese models [84,102,106,171], possibly by improving the redox
status [171] and restoring eNOS expression and NO production in PVAT [106]. These
suggest that a healthy lifestyle (i.e., regular exercising, diet control, and weight loss)
may prevent and restore obese-induced cardiovascular complications via modulating
mitochondrial biogenesis, browning, and eNOS function in PVAT.

PGC-1α and peroxisome proliferator-activated receptor gamma (PPARγ) are important
therapeutic targets to restore mitochondrial biogenesis and PVAT function by modulating
the browning of adipocytes [172]. Important antioxidant enzymes, including Nrf2/HO-1,
are regulated through the PPARγ pathway [173]. PPARγ activation by its agonist, piogli-
tazone, attenuated obesity-induced arterial stiffening and reduced the inflammatory and
oxidative status of PVAT in ob/ob mice [174]. In a mice model of obesity and diabetes,
treatment with another PPARγ agonist, rosiglitazone, improved insulin sensitivity, in-
creased serum adiponectin levels, and reduced inflammation in adipose tissues [175]. The
expressions of inflammatory genes, including TNF-α, MCP-1, and macrophage antigen-1
(CD11b), in white adipose tissues were reduced in response to rosiglitazone [175].

7. Conclusions

PVAT has a unique role in modulating vascular homeostasis. In cardiovascular and
metabolic diseases, adipose tissues (especially PVAT) dysfunction make a notable contri-
bution to the associated vascular dysfunction. Different studies have provided evidence
suggesting that PVAT, in addition to the endothelium, plays a crucial role in the pathophys-
iology of obesity-induced cardiovascular diseases. In this review, we summarised different
ROS sources and the antioxidant defence systems in PVAT. Cardiovascular risk factors may
alter the redox balance in PVAT, while oxidative stress in PVAT is a crucial pathophysiolog-
ical mechanism of cardiovascular complications. Buffering ROS generation in the PVAT
may hinder the pathogenesis of obesity-related cardiovascular diseases (Figure 5).

The role of PVAT dysfunction in the pathophysiology of obesity-induced cardiovascu-
lar diseases represents a new direction for investigation. Conventional in vitro vascular
experiments have mainly been focused on PVAT-denuded vessels, while the function of
PVAT has not been focused on in in vivo animal studies. More information is needed to
discover novel therapeutic targets in PVAT. The generation of a suitable PVAT-specific
transgenic animal model would greatly help the progression of the research field. However,
the highly heterogenous origins and regional variations of PVAT in different vascular beds
are great challenges that need to be overcome for the creation of PVAT-specific transgenic
animal models.
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