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1 Introduction

1 Introduction

Quantum chemistry has nowadays gained a prominent role in chemical research thanks

to advances in methodological developments and increasing computing power. As a con-

sequence the areas of application of quantum chemistry have grown considerably, leading

to strong interactions between theoreticians and experimentalists.

The starting point in quantum chemistry is the Schrödinger equation which pro-

vides the basis for describing atoms and molecules. However, analytic solutions of the

Schrödinger equation can be found only for few model systems such as the hydrogen

atom or the hydrogen molecule ion H+
2 . Due to this fact the purpose of quantum chem-

istry is to find proper approximate numerical solutions. These solutions can be classified

by the accuracy obtained as well as the computational effort required. The application

of methods yielding highly accurate results with a quantitative determination of prop-

erties is limited to rather small molecules due to the demanding computational effort.

For larger molecular systems such as biomolecules or molecular clusters, more pragmatic

approaches need to be applied in order to make the computations affordable.

One of the most successful and accurate methods in quantum chemistry is coupled-

cluster (CC) theory.1–4 Within CC theory, a hierarchy of methods which systematically

converges towards the exact solution of the Schrödinger equation can be formulated.

The most commonly used approximations are the coupled-cluster method with single

and double excitations (CCSD),5 CCSD with a perturbative treatment of triple exci-

tations [CCSD(T)]6 and coupled-cluster singles, doubles, and triples (CCSDT).7–9 The

CCSD(T) method is in particular worth to be mentioned here as it has become the gold

standard due to its high accuracy in reproducing experimental values.10 For example,

CCSD(T) allows the computation of relative energies within chemical accuracy (about

4 kJ mol−1).10 The extension of the applicability of CC theory - in particular of the

CCSD(T) method - to larger systems is desirable and represents one of the current

challenges in quantum chemistry. However, this task is limited by the computational

resources available. Thus, in order to circumvent computational limitations, various im-

plementations of CC methods as CCSD and CCSD(T) have been presented which take

advantage of parallel computing.11–20

The CC methods mentioned above are based on the assumption that the wave func-
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1 Introduction

tion is well represented by a single electronic configuration. As one configuration or

determinant is used here as reference, these approaches are called single-reference meth-

ods. Despite the success of these single-reference CC (SRCC) methods, there are a large

number of problems for which the underlying assumption that the wave function is dom-

inated by one reference determinant breaks down. Biradical systems,21 bond breaking

processes,22 transition states,23 excited states,24 and transition metal compounds25 are

classic examples of problematic cases for SRCC calculations. An example where several

references are of importance is the bond stretching of hydrogen fluoride (HF). In Fig. 1.1

the corresponding potential energy surface (PES) is plotted together with the electronic

configuration of the valence orbitals. In the region of the equilibrium geometry (the

minimum of the PES) the highest occupied and lowest unoccupied molecular orbitals

(HOMO and LUMO, respectively) are the 3σ and 4σ orbitals. The 3σ orbital is dou-

bly occupied yielding a closed-shell singlet electronic configuration. When the bond is

stretched the 3σ and 4σ orbitals split into the 1s atomic orbital (AO) of the hydrogen

atom and the 2pz AO of fluorine. At larger distances these two AOs are singly occupied

yielding two doublets coupled to an open-shell singlet electronic configuration that needs

to be described by a linear combination of the two possible distributions of the electrons

as indicated at the right hand side of Fig. 1.1. Between the equilibrium structure and

the dissociation limit the aforementioned electronic configurations mix. Thus, a consis-

tent description of the whole PES requires the inclusion of all determinants that can be

generated by distributing two electrons in the corresponding two MOs.

Beside the necessity of using multireference methods for the description of the whole

PES of molecules, such approaches are also important when investigating the equilibrium

structure of a degenerate or quasi-degenerate system. An interesting class of compounds

where this is the case are biradical systems as they often represent intermediate species

in chemical reactions.26 However, in many cases, such intermediate species cannot be

observed in experiment due to their high instability and reactivity. To access these com-

pounds theoretically as well as to study the corresponding chemical reactions and reac-

tion paths, quantum chemical methods capable to deal with multireference cases need

to be used. The need of multireference methods becomes obvious when, for example,

biradical systems derived from pyridine by removing two hydrogen atoms are considered.

The existence of these compounds has been proven in experimental investigations.27,28

However, for the 2,6-isomer computational studies of these compounds yield either a

monocyclic or a bicyclic structure as depicted in Fig. 1.2. The monocyclic form contains

two radical centers (as in Fig. 1.2 the pictures of the two quasi-degenerate molecular
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Figure 1.1: Schematic representation of the potential energy surface of hydrogen flu-
oride (HF). The electronic configurations at the equilibrium structure (closed-shell sin-
glet) and for large bond distances (two doublets coupled to an open-shell singlet) are
shown for the valence orbitals. The electronic configuration at larger distances consists
of a linear combination of the two electronic occupations depicted.

orbitals demonstrate) which are missing in the bicyclic structure as the electrons form

a single bond. The equilibrium geometry obtained from a computation depends on the

method used as single-reference approaches are often not able to properly describe the

monocyclic form and thus favor the bicyclic geometry.29–31 Therefore, a consistent study

of all minima on the PES of such didehydrocompounds requires the use of multireference

approaches to identify the correct equilibrium structure.

In order to extend the applicability of SRCC methods to multireference problems two

different strategies have been applied. The first strategy consists in adapting the under-

lying theory of SRCC to treat special multireference problems. This can be achieved, for

example, by choosing one formal reference. One determinant in the MRCC calculation

is then identical to that determinant while the other ones are included by higher, i.e.,

triple, quadruple, . . ., excitations that lead to singly and doubly excited determinants

of the corresponding reference determinant32,33 (For other approaches see for example

Refs. 34,35). The second strategy that has been started in the late 70s, focuses on the de-

velopment of genuine MRCC methods. The first formulations presented within genuine
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Figure 1.2: Monocyclic and bicyclic structure of the 2,6-didehydropyridine molecule.
Depicted are the quasi-degenerate MOs of the monocyclic form as well as the MO cor-
responding to the additional single-bond in the bicyclic structure. (The corresponding
orbitals have been obtained in a RHF/cc-pCVTZ calculation using the Mk-MRCCSD/cc-
pCVTZ geometry.)

MRCC theory belong to the class of valence-universal or Fock-space (FS) MRCC.36,37 In

FS-MRCC theory an operator acts on a closed-shell reference generating determinants

with a variable number of electrons, i.e., beside determinants with the same number

of electrons also determinants containing more or less electrons. In this way ionization

energies, electron affinities, and excitation energies can be directly computed. Further-

more, multireference states become accessible. This is obvious when considering a state

that needs to be described by all determinants generated by distributing two electrons

in two MOs (similar to the situation when stretching the bond of the HF molecule).

Within the FS approach, this state, for example, can be reached by starting from the

closed-shell determinant of the double anion and removing two electrons in all possible

ways to obtain the various determinants. Later, Jeziorski and Monkhorst presented the

Hilbert-space or state-universal (SU) MRCC approach.38 SU-MRCC uses a generalized

version of the single-reference CC ansatz containing a set of important determinants,

the so-called model space, to describe the multireference problem. In this way solutions

of the Schrödinger equation for a given set of states is generated simultaneously. How-

ever, both the FS and SU approaches suffer from divergence problems in the iterative
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solution of the coupled-cluster equations. This phenomenon is generally attributed to

the so-called intruder state problem that arises when excited determinants drop in the

energy region of the determinants contained in the reference space and, thus, the energy

difference of the reference and excited determinants becomes very small.3 To avoid the

intruder state problem, state-specific (SS) MRCC approaches have been proposed39–43

for which the SU-MRCC has been slightly modified to focus on one electronic state at a

time. Furthermore, state-specific methods only need to satisfy the Schrödinger equation

for the state of interest and, therefore, are more flexible approaches that are probably

more accurate than state-universal methods.44 However, there is no unique way to define

a state-specific MRCC theory and, accordingly, different formulations are possible.45

Much effort has been devoted to the development of the so-called Brillouin-Wigner

(BW) MRCC ansatz.39,40 However, the BW-MRCC ansatz is not a size-extensive theory,

i.e., the energy does not scale properly with the increasing size of the system, necessi-

tating, as in configuration-interaction approaches,46 the consideration of size-extensivity

corrections.47 In contrast to the BW-MRCC approach, the state-specific MRCC method

suggested by Mukherjee and coworkers (Mk-MRCC)41,42 is a size-extensive theory. Based

on benchmark studies it could be shown that Mk-MRCC shows faster convergence to-

wards the full-configuration interaction (FCI) limit than BW-MRCC and yields more

accurate energies than SU-MRCC theory.44 Hanrath presented the exponential multiref-

erence wave function ansatz (MRexpT).43 In this approach the standard ansatz where

excited determinants are labeled with respect to the corresponding reference determi-

nant is replaced by a labeling where the amplitudes are indexed by the determinants

they are exciting to. As Hanrath pointed out,48 the MRexpT approach is more complex

and computationally demanding than the Mk-MRCC ansatz as the computational scal-

ing is worse.43 In light of these factors, this work focuses on the further development of

a state-specific MRCC theory based on the Mk-MRCC approach.

In comparison to SRCC, the Mk-MRCC ansatz not only introduces an additional

layer of complexity in the theoretical formulation, but also increases the computational

requirements. Therefore, applications of the Mk-MRCC method are usually limited to

model systems that are smaller than the molecules accessible to SRCC calculations.

This work deals with three points that considerably extend the routine application of

the Mk-MRCC method:

• Building an efficient MRCC algorithm for the computation of Mk-MRCC energies

and properties.
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• Developing analytic first derivatives for the routine location of equilibrium geome-

tries or transition states on the potential energy surfaces of systems with many

degrees of freedom.

• Developing a proper parallelization scheme as the high computational effort of the

Mk-MRCC approach necessitates calculations distributed on many computers.

This dissertation focuses on the three above topics and it is structured as follows:

In Chapter 2 the theoretical background for the treatment of multireference prob-

lems is presented and quantum chemical methods which are relevant for this work are

discussed. Furthermore, the general theory of analytic derivative techniques for the cal-

culation of electronic structures and molecular properties is introduced.

For the implementation of the theoretical approaches presented in this work, the

highly-efficient computer code CFOUR49 has been chosen as underlying program system.

However, CFOUR lacks a multireference algorithm to perform multireference coupled-

cluster computations in a routine way. The strategies used to obtain a multireference

coupled-cluster algorithm by adapting a single-reference code combined with an effi-

cient implementation capable to perform Mk-MRCC energy calculations are discussed

in Chapter 3.

For the computation of molecular properties, analytical derivatives have become a

standard tool in quantum chemistry increasing the range of applicability towards larger

systems. Chapter 4 deals with the derivation of analytic expressions for the energy gra-

dient of Mk-MRCC theory using a strategy analogous to the one used in single-reference

coupled-cluster theory. Explicit expressions and details for implementation of the first

derivative by adapting the single-reference infrastructure of CFOUR are presented for

the Mk-MRCCSD (Section 4.5) and Mk-MRCCSDT (Section 4.7) approximations.

Computations at the CCSDT or Mk-MRCCSDT level of theory, i.e., a full inclusion of

triple excitations, are always limited to relatively small systems due to the time-limiting

steps in the treatment of triple excitations. In Chapter 5 the strategy, implementation,

and benchmark investigation of a parallelization scheme of CCSDT and Mk-MRCCSDT

computations is presented. These developments allow to increase the size of the systems

for which the full treatment of triple excitations can currently be applied.

Finally, Chapter 6 summarizes the results presented in this work and provides an

outlook in the future development of MRCC theory.
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2 Theoretical Background

2.1 The Electronic Schrödinger Equation

The starting point for the description of atomic and molecular systems is the nonrela-

tivistic time-independent Schrödinger equation:

Ĥ Ψi = Ei Ψi . (2.1)

This eigenvalue equation yields the energy Ei and the wave function Ψi for a state i and

a given Hamiltonian Ĥ. The Hamiltonian contains all possible interactions of the nuclei

and electrons of a molecular system and is defined using atomic units as

Ĥ =−
∑
K

1

2mK

∇2
K︸ ︷︷ ︸−

∑
i

1

2
∇2
i︸ ︷︷ ︸

T̂n T̂e

−
∑
i,K

ZK
|ri −RK |︸ ︷︷ ︸+

∑
KL

ZKZL
|RK −RL|︸ ︷︷ ︸+

∑
i,j

1

|ri − rj|︸ ︷︷ ︸ .
V̂en V̂nn V̂ee

(2.2)

The first two terms in Eq. (2.2) are the kinetic energy contributions of the nuclei (T̂n)

and the electrons (T̂e), respectively. ∇2
K and ∇2

i represent the Laplacians with respect to

the coordinates of the nucleus RK and the electron ri, while mK is the mass of nucleus

K. The last three terms describe the Coulomb interactions of electrons and nuclei with

charge ZK . The individual contributions are the electron-nucleus (V̂en) attraction as

well as the nucleus-nucleus (V̂nn) and electron-electron (V̂ee) repulsion.

In order to separate the nuclear and electronic problems, the Born-Oppenheimer (BO)

approximation50 is introduced. The BO approximation consists in writing the total wave

function as a product of nuclear and electronic wave function Ψn(R) and Ψe(r,R):

Ψ = Ψn(R)Ψe(r,R) . (2.3)
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2 Theoretical Background

The nuclear wave function depends on the coordinates of the nuclei whereas the electronic

wave function [Ψe(r,R)] depends on the position of the electrons and parametrically on

the coordinates of the nuclei. Ψe(r,R) is determined as the solution of the electronic

Schrödinger equation

ĤeΨe(r,R) =
(
T̂e + V̂en + V̂ee

)
Ψe(r,R) = Ee(R)Ψe(r,R) . (2.4)

Once Ee(R) has been determined, Ψn(R) can be obtained from the nuclear Schrödinger

equation given as

ĤnΨn(R) =
(
T̂n + V̂nn + Ee(R)

)
Ψn(R) = EnΨn(R) . (2.5)

Due to the fact that usually an exact solution of the electronic Schrödinger equation is

not possible, a number of approximate approaches have been developed. Methods which

are relevant for this work are briefly discussed in the following sections.

2.2 Hartree-Fock Theory

In Hartree-Fock theory46 the electronic wave function of an N electron system is

approximated by a single Slater determinant:

Ψe(r) = (N !)−1/2 ·

∣∣∣∣∣∣∣∣∣∣
ϕi(1) ϕj(1) · · · ϕk(1)

ϕi(2) ϕj(2) · · · ϕk(2)
...

...
. . .

...

ϕi(N) ϕj(N) · · · ϕk(N)

∣∣∣∣∣∣∣∣∣∣
, (2.6)

which is the antisymmetric product of N spin orbitals (ϕi). The spin orbital ϕi(j)

depends on the spatial coordinates rj and the spin σj of the electron j, i.e.,

ϕi(rj, σj) = ϕi(j) = ϕi = |i〉 , (2.7)

and is often written in terms of a spatial orbital φi(rj) and a spin part ω(σj) as

ϕi(rj, σj) = φi(rj)ω(σj) . (2.8)

12



2 Theoretical Background

Using Eq. (2.6) and the variational principle the Hartree-Fock equations are obtained.

In canonical representation these equations are

F̂ |i〉 = εi |i〉 , i = 1, . . . , N , (2.9)

where εi denotes the energy of orbital i. The Fock operator,

F̂ = ĥ+
∑
i

(
Ĵi − K̂i

)
, (2.10)

consists of the one-electron operator ĥ as well as the Coulomb (Ĵj) and the exchange

operator (K̂j) which are defined via

ĥ(1) = −1

2
∇2

1 −
∑
K

ZK
|r1 −RK |

, (2.11)

Ĵjϕi(1) =

[∫
dτ2 ϕ

∗
j(2)

1

r12

ϕj(2)

]
ϕi(1) , (2.12)

K̂jϕi(1) =

[∫
dτ2 ϕ

∗
j(2)

1

r12

ϕi(2)

]
ϕj(1) , (2.13)

with the integration carried out over spin and spatial coordinates (τi=̂riσi). The Fock

operator represents an effective one-particle operator. The contribution of Ĵj describes

the Coulomb interactions of an electron with the mean field of the other electrons.

The Hartree-Fock exchange operator, K̂j, arises due to the antisymmetry of the wave

function.

The spatial orbitals φi are usually expanded as a linear combination of atomic orbitals

(LCAO), i.e.,

φi =
M∑
µ

cµiχµ . (2.14)

The basis functions χµ are normally chosen to be Gaussian functions and are weighted by

the coefficients cµi. Although the exact expansion requires in principle a summation over

an infinite number of atomic orbitals, for practical reasons the expansion (2.14) is trun-

cated to include only a certain number of terms. Inserting Eq. (2.14) in the Hartree-Fock

equations (2.9) yields the Roothaan-Hall equations,51,52 a generalized matrix eigenvalue

problem,

FC = SCε , (2.15)

13



2 Theoretical Background

with the coefficient matrix C defined as (C)µi = cµi. The elements of the overlap matrix

S are Sµν = 〈µ|ν〉 while the elements of the diagonal matrix ε can be identified with the

orbital energies. For the closed-shell case, the elements of the Fock matrix F are given

by

Fµν = hµν +
∑
λ,σ

Dλσ

[
〈µσ|νλ〉 − 1

2
〈µσ|λν〉

]
, (2.16)

with the one-particle density matrix Dλσ defined as

Dλσ = 2
∑
i

c∗λicσi , (2.17)

and the matrix element hµν as

hµν =

∫
dr1φ

∗
µ(1)ĥ(1)φν(1) . (2.18)

Here, the short hand notation for the two-electron integrals,

〈µσ|νλ〉 =

∫
dr1

∫
dr2φ

∗
µ(1)φ∗σ(2)

1

r12

φν(1)φλ(2) (2.19)

〈µσ|λν〉 =

∫
dr1

∫
dr2φ

∗
µ(1)φ∗σ(2)

1

r12

φλ(1)φν(2) , (2.20)

has been used. Eq. (2.15) can be solved using an iterative self-consistent procedure.46

At convergence the Hartree-Fock energy (EHF) is given as

EHF =
1

2

∑
µ,ν

Dνµ (hµν + Fµν) . (2.21)

In Hartree-Fock theory the Coulomb interaction is described only in a mean-field manner,

i.e., the motion of one electron depends on the mean field of the other electrons and not

on their individual position. While this is an approximation, the exchange correlation

due to the antisymmetric form of the wave function is treated exactly. The difference

of the exact energy (Eexact) and the Hartree-Fock energy is called the correlation energy

Ecorr:

Ecorr = Eexact − EHF . (2.22)
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2 Theoretical Background

2.3 Two-Configurational Self-Consistent Field Theory

When the assumption, that the wave function is dominated by one determinant, does

not hold, Hartree-Fock theory as presented in the previous section is not a suitable

starting point. For the treatment of multireference problems, single-reference Hartree-

Fock theory has been generalized to a wave function ansatz represented by a linear

combination of reference determinants Φi weighted by the coefficients ci:

Ψ =
∑
i

ciΦi , (2.23)

yielding the multiconfigurational self-consistent field (MCSCF) theory.53,54

A special case of MCSCF theory is the two-configurational self-consistent field (TC-

SCF) approach55 where the wave function is composed of a linear combination of two

closed-shell reference determinants Φt and Φs,

Ψ = ctΦt + csΦs , (2.24)

with the weighting coefficients ct and cs, also known as CI coefficients. The index s (t)

here denotes the determinant for which the active orbital s (t) is occupied, i.e.,

|Φt〉 =
∣∣(core)2φtφ̄t

〉
|Φs〉 =

∣∣(core)2φsφ̄s
〉
,

(2.25)

with φt (φ̄t) occupied by an electron with α (β) spin. (core)2 stands for the orbitals

outside the active space that are doubly occupied for both reference determinants. In

contrast to Hartree-Fock theory both the orbitals φi and the weighting coefficients need

to be determined via the variational principle. To obtain a set of equations for calculating

the CI coefficients, the energy functional Ẽ,

Ẽ = ETCSCF − λ(c2
t + c2

s − 1)

= c2
t

〈
Φt

∣∣∣Ĥ∣∣∣Φt

〉
︸ ︷︷ ︸+c2

s

〈
Φs

∣∣∣Ĥ∣∣∣Φs

〉
︸ ︷︷ ︸+2ctcs

〈
Φt

∣∣∣Ĥ∣∣∣Φs

〉
︸ ︷︷ ︸−λ(c2

t + c2
s − 1)

Htt Hss Hts ,

(2.26)

is minimized with respect to the CI coefficients where λ denotes the Lagrange multiplier

for the normalization condition of the coefficients. This yields a set of equations given

15
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by (
Htt Hst

Hst Hss

)(
ct

cs

)
= ETCSCF

(
ct

cs

)
. (2.27)

The determination of the orbitals φp can be carried out in an analogous way as in

Hartree-Fock theory by minimizing the energy with respect to the orbitals. For this

purpose the energy functional Ẽ can be extended by the orthonormality condition of the

orbitals yielding
˜̃E = Ẽ +

∑
i,j

(εij + εji) (〈i|j〉 − δij) , (2.28)

where εij and εji denote Lagrange multipliers. As the set of orbitals φq represents a com-

plete orthonormal basis, a new set of orbitals φ′p can be obtained via the transformation

φ′p =
∑
q

Uqpφq (2.29)

with the expansion coefficients Uqp. Inserting Eq. (2.29) into Eq. (2.28) for all orbitals

and differentiating the Lagrangian with respect to the coefficients Upq finally yields the

variational conditions given by

c2
tF

t
ai + c2

sF
s
ai = 0 (2.30)

c2
tF

t
at + ctcsK

s
at = 0 (2.31)

c2
sF

s
ti − ctcsKs

ti = 0 (2.32)

c2
tF

t
st − c2

sF
s
st + ctcsK

s
st − ctcsKt

st = 0 , (2.33)

where the Fock matrices Ft and Fs are defined as

F t
pq = hpq +

∑
j

(2 〈pj|qj〉 − 〈pj|jq〉) (2.34)

F s
pq = hpq +

∑
j

(2 〈pj|qj〉 − 〈pj|jq〉) . (2.35)

The sums include the index of the corresponding doubly occupied active orbital t and

s, respectively. The exchange matrices Kt and Ks contain the two-electron integrals,

Kt
pq = 〈pt|tq〉 (2.36)

Ks
pq = 〈ps|sq〉 . (2.37)
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To determine the orbitals via solving

FeffU = Feff
diagU , (2.38)

an iterative procedure may be used for which the effective Fock matrix Feff ,

Feff =


F eff
ij F eff

ti F eff
si F eff

ai

F eff
ti F eff

tt F eff
st F eff

at

F eff
si F eff

st F eff
ss F eff

as

F eff
ai F eff

at F eff
as F eff

ab

 , (2.39)

is set up containing individual blocks for different kind of indices, i.e., occupied-occupied,

occupied-active, occupied-virtual . . . The variational conditions [Eqs. (2.30) - (2.33)]

are used to build the off-diagonal blocks, i.e., virtual-occupied, virtual-active, active-

occupied and active-active, of the effective Fock matrix,

F eff
ai = c2

tF
t
ai + c2

sF
s
ai (2.40)

F eff
at = c2

tF
t
at + ctcsK

s
at (2.41)

F eff
ti = c2

sF
s
ti − ctcsKs

ti (2.42)

F eff
st = c2

tF
t
st − c2

sF
s
st + ctcsK

s
st − ctcsKt

st . (2.43)

When Feff is then diagonalized to obtain a new set of orbital coefficients Upq the varia-

tional conditions are fulfilled as the off-diagonal elements become zero. The remaining

diagonal blocks can in principle be freely chosen which only affects the convergence be-

havior of the iterative procedure. According to Eq. (2.29) Upq yields a new set of orbitals

that are used in conjunction with the CI coefficients to solve Eq. (2.27) and to construct

a new effective Fock matrix.

2.4 Coupled-Cluster Theory

To obtain the exact wave function the Hartree-Fock wave function |Ψ0〉 can be taken

as a starting point. |Ψ0〉 is constructed from the N energetically lowest spin orbitals,

where N denotes the number of electrons, that are obtained by solving the Roothaan-

Hall equations within a finite AO-basis consisting of M basis functions. Replacing the

N occupied spin orbitals (ϕi, ϕj, ϕk, . . .) of |Ψ0〉 by the nvrt = M − N virtual, i.e.,
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unoccupied, spin orbitals (ϕa, ϕb, ϕc, . . .) in all possible combinations, leads to a set of

further N -electron Slater determinants (Ψa
i ,Ψ

ab
ij , . . .), which spans a complete many-

electron basis for a given AO basis. Therefore, the exact non-relativistic electronic wave

function can be written in terms of these excited determinants.

This idea is used in coupled-cluster (CC) theory1–4,56–58 where the ansatz for the wave

function is chosen to be

|ΨCC〉 = eT̂ |Ψ0〉 . (2.44)

The cluster operator T̂ consists of single (T̂1), double (T̂2) up to N -tuple (T̂N) excitations

of electrons from occupied to virtual spin orbitals, i.e.,

T̂ = T̂1 + T̂2 + . . .+ T̂N . (2.45)

The excitation operators are defined as

T̂N =
1

(N !)2

N∑
i,j,k,...

nvrt∑
a,b,c,...

tabc...ijk... â
†
aâiâ

†
bâj â

†
câk . . . , (2.46)

where the contribution to the wave function of the excitations are weighted by the

amplitudes tabc...ijk... while â†a and âi denote second quantization creation and annihilation

operators, respectively. The exponential of the cluster operator is expanded in a Taylor

series giving

eT̂ = 1 + T̂ +
1

2
T̂ 2 +

1

6
T̂ 3 + . . . , (2.47)

showing that in contrast to configuration interaction (CI),59 the wave function is not

linear in the amplitudes due to the appearance of products of cluster operators. A

consequence of the exponential parametrization [(2.44)] is that coupled-cluster theory

is a size-consistent approach as the exponential eT̂AB of a compound system of non-

interacting subsystems A and B can be recast as

eT̂AB = eT̂A+T̂B = eT̂AeT̂B , (2.48)

where the exponentials eT̂A and eT̂B only act on the individual subsystems. Inserting the

coupled-cluster ansatz for the wave function (2.44) into the Schrödinger equation leads

to

ĤeT̂ |Ψ0〉 = EeT̂ |Ψ0〉 . (2.49)
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Due to the complexity and nonlinearity of the latter equation a variational solution is not

viable. Instead, Eq. (2.49) is solved by using projection techniques. Therefore, Eq. (2.49)

is first multiplied by e−T̂ from the left and then projected on the reference determinant

〈Ψ0| as well as all possible excited determinants
〈
Ψabc...
ijk...

∣∣ to obtain an expression for the

energy E and a set of equations to determine the amplitudes tabc...ijk..., i. e.,

〈
Ψ0

∣∣H̄∣∣Ψ0

〉
= E (2.50)〈

Ψabc...
ijk...

∣∣H̄∣∣Ψ0

〉
= 0 , (2.51)

where H̄ denotes the similarity-transformed Hamiltonian given by

H̄ = e−T̂ ĤeT̂ . (2.52)

These equations may be further simplified using the Baker-Campbell-Hausdorff (BCH)

expansion60 of H̄,

H̄ = Ĥ +
[
Ĥ, T̂

]
+

1

2!

[[
Ĥ, T̂

]
, T̂
]

+ . . . , (2.53)

which, due to the structure of the Hamiltonian having only one- and two-electron oper-

ators, truncates at the fifth term. A further analysis of the CC equations can be carried

out using Wick’s theorem or diagrammatic techniques.2,3 Using the complete cluster

operator in Eq. (2.46), i.e., a full coupled-cluster (FCC) ansatz, yields the exact solu-

tion of the Schrödinger equation which is equivalent to the full configuration-interaction

(FCI) wave function. However, due to the high computational cost, the FCC approach

is only applicable to very small systems. Thus, for practical reasons, the cluster operator

is truncated at a certain level of excitation. The resulting approximations, presented in

Table 2.1, are named according to the excitations included in the cluster operator. For

example, CCSD denotes “coupled-cluster singles and doubles” whereas CCSDT is the

acronym for “coupled-cluster singles, doubles and triples”. Derivations for various trun-

cation levels of the cluster operator as well as detailed expressions for implementation

are given in the literature.7,8,61–64

The computational scaling behavior of CCSDT prevents its application to relatively

small systems. In order to circumvent this drawback approximate approaches for the

treatment of triple excitations with a reduced scaling behavior have been developed. In

the most successful method, namely CCSD(T),6 the energy corrections are obtained via

perturbation theory arguments and by replacing the corresponding amplitudes by the

converged CCSD amplitudes. This correction is added to the CCSD energy. This means
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Table 2.1: Truncation scheme of the cluster operator T̂ , its corresponding naming and
the formal computational scaling with the size of the system.

T̂ = T̂1 + T̂2 CCSD O(N6)

T̂ = T̂1 + T̂2 + T̂3 CCSDT O(N8)

T̂ = T̂1 + T̂2 + T̂3 + T̂4 CCSDTQ O(N10)
...

that the computation of triples effects is performed in a noniterative manner. The CCSD

energy correction is defined by the fourth-order and one of the fifth-order terms yielding

the final CCSD(T) energy as

ECCSD(T) = ECCSD + E[4] + E[5] . (2.54)

For HF references, the individual contributions using spin-orbitals are defined via

E[4] =
1

36

N∑
ijk

nvrt∑
abc

tabcijkD
abc
ijk t

abc
ijk (2.55)

E[5] =
1

4

N∑
ijk

nvrt∑
abc

〈jk||bc〉 tai tabcijk , (2.56)

where Dabc
ijk consists of diagonal Fock matrix elements and is defined as

Dabc
ijk = fii + fjj + fkk − faa − fbb − fcc . (2.57)

The triples amplitudes tabcijk are determined via

Dabc
ijk t

abc
ijk =

∑
e

P (i/jk)P (a/bc)taejk 〈bc||ei〉+
∑
m

P (i/jk)P (a/bc)tbcmi 〈jk||ma〉 , (2.58)

where the doubles amplitudes (tabij ) are the converged amplitudes from CCSD. The per-

mutation operator P (i/jk) is defined as

P (i/jk)f(ijk) = f(ijk)− f(jik)− f(kji) , (2.59)

and 〈pq||rs〉 denotes the usual antisymmetrized two-electron integrals, i.e.,
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〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉 , (2.60)

in the molecular-orbital (MO) representation. In comparison to CCSDT, the formal

scaling is reduced by one power to O(N7). Additionally, the calculation of the (T)

correction represents a noniterative step for which the triples amplitudes do not need to

be stored.

2.5 State-Specific Multireference Coupled-Cluster

Theory

To obtain the exact wave function within CC theory an exponential operator is applied

to a reference function as presented in Eq. (2.44). This equation may be recast in a

more general way. The exact wave function |Ψ〉 may also be obtained by applying a

wave operator Ω̂ to a reference function
∣∣ΨP

〉
as

|Ψ〉 = Ω̂
∣∣ΨP

〉
. (2.61)

In the case of single-reference CC,
∣∣ΨP

〉
is usually chosen as a Hartree-Fock determinant

|Ψ0〉 while Ω̂ is defined by

Ω̂ = eT̂ |Ψ0〉 〈Ψ0| . (2.62)

For the development of a multireference method the wave operator from Eq. (2.62) needs

to be generalized. Jeziorski and Monkhorst (JM) proposed a general state-universal

approach38 where the wave operator is separated into individual contributions from

different reference determinants (Φµ),

Ω̂ =
d∑

µ=1

eT̂µ |Φµ〉 〈Φµ| , (2.63)

with T̂µ as a reference specific cluster operator and d as the number of reference deter-

minants. The reference function
∣∣ΨP

α

〉
of state α is then chosen as a linear combination

of reference determinants Φµ with weighting coefficients cαµ defined as

∣∣ΨP
α

〉
=
∑
µ

cαµ |Φµ〉 . (2.64)
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The wave operator from Eq. (2.63) acts on the approximate wave function
∣∣ΨP

α

〉
to

obtain the exact wave function for state α:

|Ψα〉 = Ω̂
∣∣ΨP

α

〉
=

d∑
µ=1

eT̂µ |Φµ〉 cαµ . (2.65)

The wave operator satisfies the Schrödinger equation for all d eigenstates, i.e.,

ĤΩ̂
∣∣ΨP

α

〉
= EαΩ̂

∣∣ΨP
α

〉
for α = 1, . . . , d . (2.66)

This approach yields the energy of all d states simultaneously and is referred to as state-

universal MRCC (SU-MRCC).

State-specific multireference coupled-cluster (SS-MRCC) approaches also rely on the

JM wave operator formalism. However, in contrast to SU-MRCC, the state-specific wave

operator, denoted by Ω̂α, acts on only one state α at a time and, thus, Eq. (2.66) is only

satisfied for that specific state.

The state-universal wave operator [Eq. (2.63)] as well as the state-specific variant

(Ω̂α) are written as a sum of exponential functions derived from reference determinants

Φµ that form a model space M of dimension d. When the model space contains all

determinants generated by distributing m electrons in nact orbitals, M is called a com-

plete model space (CMS). The cluster operator T̂µ, in analogy to SRCC [see Eq. (2.45)],

excites electrons from the occupied to the virtual spin orbitals of Φµ and is typically

truncated at a certain excitation level n

T̂µ = T̂ µ1 + T̂ µ2 + . . .+ T̂ µn , (2.67)

where the k-fold excitation operator T̂ µk is written as

T̂ µk =

occ(µ)∑
i<j...

vir(µ)∑
a<b...

tab...ij... (µ)â+
a âiâ

+
b âj . . . . (2.68)

To avoid redundancies, T̂µ is restricted to excitations that lead to determinants outside

the model space M and internal excitations that map Φµ onto M are set to zero. The

cluster operator T̂µ may be expressed in a more compact form as

T̂µ =
∑
q∈Q(µ)

tq(µ)τ̂q(µ), (2.69)
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by denoting the excitation indices with the compound index q. Here Q(µ) is the ex-

citation manifold for determinant Φµ and consists of all single, double, up to n-tuple

excitations starting from this determinant, excluding internal excitations, τ̂q(µ) is the op-

erator for excitation q (· · · â†bâj â†aâi), and tq(µ) is the corresponding amplitude [tab···ij··· (µ)].

The excited determinant Φq(µ) can then be written as

|Φq(µ)〉 = τ̂q(µ) |Φµ〉 , (2.70)

and the projection operator P̂ onto the model space as well as its orthogonal complement

Q̂ can be defined as

P̂ =
∑
µ

|Φµ〉 〈Φµ| , (2.71)

and

Q̂ = 1− P̂ . (2.72)

The Schrödinger equation [Eq. (2.66)] with the state-specific variant of the wave operator

(Ω̂α) is multiplied from the left by P̂ yielding

P̂ ĤΩ̂α

∣∣ΨP
α

〉
= EαP̂ Ω̂α

∣∣ΨP
α

〉
. (2.73)

Using the relations65

P̂ Ω̂α = P̂ (2.74)∣∣ΨP
α

〉
= P̂ |Ψα〉 (2.75)

P̂ P̂ = P̂ , (2.76)

Eq. (2.73) is recast as

Heff
∣∣ΨP

α

〉
= Eα

∣∣ΨP
α

〉
(2.77)

where Heff is defined by

Heff = P̂ ĤΩ̂α . (2.78)

The SS-MRCC energy Eα and the expansion coefficients cαµ are obtained from the eigen-

value equation ∑
ν

Heff
µνc

α
ν = Eαcαµ , (2.79)
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where the matrix elements of the effective Hamiltonian Heff
µν are defined as

Heff
µν =

〈
Φµ

∣∣∣ĤeT̂ν

∣∣∣Φν

〉
CMS
=
〈

Φµ

∣∣∣e−T̂νĤeT̂ν

∣∣∣Φν

〉
. (2.80)

The second equality in Eq. (2.80) holds only for a complete model space where

T̂ †ν |Φµ〉 = 0 . (2.81)

Eq. (2.81) holds due to two conditions. The first one is that intermediate normalization

is employed, i.e.,

1 =
〈
ΨP
α

∣∣Ψα

〉
=
〈

ΨP
α

∣∣∣Ω̂†∣∣∣ΨP
α

〉
=
〈

Ψα

∣∣∣P̂ Ω̂†P̂
∣∣∣Ψα

〉
=
∑
µ,ν,σ

〈
Ψα

∣∣∣Φµ

〉〈
Φµ

∣∣∣eT̂ †
ν

∣∣∣Φν

〉〈
Φν

∣∣∣Φσ

〉〈
Φσ

∣∣∣Ψα

〉
=
∑
µ,ν

〈
Ψα

∣∣∣Φµ

〉〈
Φµ

∣∣∣eT̂ †
ν

∣∣∣Φν

〉〈
Φν

∣∣∣Ψα

〉
=
〈

Ψα

∣∣∣P̂ ∣∣∣Ψα

〉
+
∑
µ

ν 6=µ

〈
Ψα

∣∣∣Φµ

〉〈
Φµ

∣∣∣eT̂ †
ν

∣∣∣Φν

〉〈
Φν

∣∣∣Ψα

〉
=
〈

Ψα

∣∣∣P̂ P̂ ∣∣∣Ψα

〉
+
∑
µ

ν 6=µ

〈
Ψα

∣∣∣Φµ

〉〈
Φµ

∣∣∣eT̂ †
ν

∣∣∣Φν

〉〈
Φν

∣∣∣Ψα

〉
=
〈

ΨP
α

∣∣∣ΨP
α

〉
+
∑
µ

ν 6=µ

〈
Ψα

∣∣∣Φµ

〉〈
Φµ

∣∣∣eT̂ †
ν

∣∣∣Φν

〉〈
Φν

∣∣∣Ψα

〉
︸ ︷︷ ︸ ︸ ︷︷ ︸ ,

1 0

(2.82)

where Eqs. (2.63), (2.65), (2.71), (2.75) and (2.76) have been used. The contribution of

the second term in the last line of Eq. (2.82) has to be zero in the case of intermediate

normalization and, therefore, the corresponding internal excitations need to be zero.

The second condition is that a complete model space is used. When using an incomplete

model space determinants outside the model space could be reached by applying T̂ †ν to

|Φµ〉 which would then be nonzero. Recasting the right-hand side of Eq. (2.80) and using

Eq. (2.81) yields〈
Φµ

∣∣∣e−T̂νĤeT̂ν

∣∣∣Φν

〉
=
〈
e−T̂

†
ν Φµ

∣∣∣ĤeT̂ν

∣∣∣Φν

〉
=
〈(

1 + T̂ †ν + . . .
)

Φµ

∣∣∣ĤeT̂ν

∣∣∣Φν

〉
=
〈

Φµ

∣∣∣ĤeT̂ν

∣∣∣Φν

〉
.

(2.83)
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In the following it will always be assumed that the model space is complete.i

For the derivation of the amplitude equations, Eq. (2.65) using the state-specific wave

operator [Ω̂α] is inserted into the Schrödinger equation yielding∑
µ

[
ĤeT̂µ |Φµ〉 cαµ − EαeT̂µ |Φµ〉 cαµ

]
= 0 . (2.84)

It is obvious here that the use of a state-specific form of the wave operator introduces

a redundancy problem: the number of equations that can be derived from Eq. (2.84) is

smaller than the number of t-amplitudes contained in the T̂µ operators. Thus, supple-

mentary conditions, the so-called sufficiency conditions, need to be introduced. However,

in SS-MRCC this choice of sufficiency conditions is not unique, and various approaches

are possible, for example the ansatz suggested by Mukherjee41,42 or Brillouin-Wigner

MRCC,40,67 which adopt different sufficiency conditions. For the case of Mk-MRCC the-

ory, Eq. (2.84) can be recast using the resolution of identity, 1̂ = eT̂µ(P̂ + Q̂)e−T̂µ , and

interchanging indices µ and ν as

∑
µ

[∑
ν

eT̂ν |Φµ〉Heff
µνc

α
ν + eT̂µQ̂H̄µ |Φµ〉 cαµ − EαeT̂µ |Φµ〉 cαµ

]
= 0 , (2.85)

with H̄µ = e−T̂µĤeT̂µ , in analogy to H̄ in SRCC theory, as a reference-specific similarity-

transformed Hamiltonian. The Mk-MRCC sufficiency conditions are chosen in such a

manner that Eq. (2.85) is satisfied by setting the individual terms in the summation over

µ to zero. In this way, a matching number of amplitudes and equations is ensured.41

After multiplication with e−T̂µ and projection onto the excited determinants Φq(µ), the

amplitude equations are resulting,

〈
Φq(µ)

∣∣H̄µ

∣∣Φµ

〉
cαµ +

∑
ν(6=µ)

〈
Φq(µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
Heff
µνc

α
ν = 0, (2.86)

with Ŷ µ,ν = e−T̂µeT̂ν . The first term of Eq. (2.86) is similar to the amplitude equations of

SRCC with the exception that this part is specific for a reference µ. Explicit expressions

for SRCC amplitude equations can be found in the literature.22,68 The second term is

the coupling term between amplitudes of determinant ν and µ. For the derivation of

iFormulations for incomplete model spaces, for example for Mk-MRCC, have been given by Pahari et
al. in Ref. 66.
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explicit expressions, the resolution of the identity with respect to reference µ,

Î = |Φµ〉 〈Φµ|+
occ(µ)∑
m

vrt(µ)∑
e

|Φe
m(µ)〉 〈Φe

m(µ)|

+
1

4

occ(µ)∑
mn

vrt(µ)∑
ef

∣∣Φef
mn(µ)

〉 〈
Φef
mn(µ)

∣∣+ . . .

(2.87)

is inserted in the coupling term. In the case of Mk-MRCCSD the coupling terms are

given by22 〈
Φa
i (µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
= tai (ν/µ)− tai (µ) , (2.88)

for single excitations and〈
Φab
ij (µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
= −tabij (µ) + P (ij)tai (µ)tbj(µ)− P (ij)P (ab)tai (µ)tbj(ν/µ)

+ tabij (ν/µ) + P (ij)tai (ν/µ)tbj(ν/µ) ,
(2.89)

for double excitations. For Mk-MRCCSDT, triples coupling terms need to be taken into

account. The expression for them is given by68

〈
Φabc
ijk(µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
= ∆tabcijk(ν/µ, µ) + P (i/jk)P (a/bc)∆tai (ν/µ, µ)∆tbcjk(ν/µ, µ)

+ P (abc)∆tai (ν/µ, µ)∆tbj(ν/µ, µ)∆tck(ν/µ, µ) .
(2.90)

The permutation operators P (ij) and P (i/jk) are defined via

P (ij)f(i, j) = f(i, j)− f(j, i) (2.91)

P (i/jk)f(i, j, k) = f(i, j, k)− f(j, i, k)− f(k, j, i) (2.92)

P (abc)f(a, b, c) = f(a, b, c)− f(b, a, c)− f(c, b, a)− f(a, c, b)

+ f(c, a, b) + f(b, c, a) .
(2.93)

In Eq. (2.90) the difference ∆tab...ij... (ν/µ, µ) has been introduced defined via

∆tab...ij... (ν/µ, µ) = tab...ij... (ν/µ)− tab...ij... (µ) . (2.94)
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The so-called common amplitudes of operator T̂ν and T̂µ are given by

tab...ij... (ν/µ) =


tab...ij... (ν) if i, j . . . ∈ occ(µ) and occ(ν)

and a, b . . . ∈ vir(µ) and vir(ν)

0 else .

(2.95)

The computational cost for solving the amplitude equations (2.86) is dominated by the

first term. The formal scaling is d ·N6 for Mk-MRCCSD and d ·N8 for Mk-MRCCSDT,

with d the number of reference determinants. The computational costs for calculating

the coupling terms in Eqs. (2.88) - (2.90) are d ·N2, d ·N4 and d ·N6, respectively. This

scaling is two orders of magnitudes smaller than the required time for the computation of

the single-reference term in Eq. (2.86). The ansatz for the Mk-MRCC approach yields

a size-extensive theory.ii This has been shown by Mahapatra et.al.42 by proving the

connectediii nature of the effective Hamiltonian [Eq. (2.80)] and the individual terms of

the amplitude equations [Eq. (2.86)].

Although the Mk-MRCC ansatz is one of the most promising candidates in the field

for routine application, the approach still has its deficiencies. The most significant

drawback is the lack of a full invariance of the energy with respect to rotations of the

orbitals.69,70 While rotations among doubly occupied and unoccupied orbitals leaves the

energy unchanged, the energy depends on rotations among active orbitals.22 However,

the origin of the lack of orbital invariance in Mk-MRCC theory is not clear. Li and

Paldus suggested that the invariance may arise from an inconsistent truncation of the

cluster operator T̂µ.71 When considering the singles and doubles truncation the cluster

operator generates different sets of excited determinants that only partly overlap, i.e.,

span(T̂ SD
µ |Φµ〉) 6= span(T̂ SD

ν |Φν〉) for µ 6= ν, (2.96)

where span(T̂ SD
µ |Φµ〉) denotes the set spanned by the excited determinants derived from

Φµ by applying the corresponding T̂ SD
µ . As a consequence of that, the Mk-MRCC wave

function (Ψα) does not satisfy the residual relation〈
Φl

∣∣∣(Ĥ − Eα
)∣∣∣Ψα

〉
= 0 (2.97)

iiA theory is called size-extensive if the correct scaling of the energy with the number of particles or
units in a system is guaranteed.

iiiA term is called connected if the individual factors share at least one index with another factor, e.g.,
in the CC energy equation the Hamiltonian shares at least one index with every cluster operator in
the expression.
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for all excited determinants Φl belonging to the set

Φl = ∪µ span(T̂ SD
µ |Φµ〉) , (2.98)

as has been pointed out in Ref. 48. Recently, the Mk-MRCCSDtq scheme has been

proposed, where, beside the full treatment of single and double excitations, only parts

of triple and quadruple excitations, i.e., only triple (quadruple) excitations that have

one (two) active and virtual index (indices) belonging to active space orbitals, are con-

sidered.70 The Mk-MRCCSDtq method has a computational scaling of d2 · N6 which

is d times larger than the scaling of Mk-MRCCSD preventing its routine application.

Using Mk-MRCCSDtq it has been demonstrated that an equal set of excited determi-

nants for each reference determinant does not guarantee orbital invariance.70 Another

question that has been raised by Das et. al. is the fact whether the accuracy of Mk-

MRCC is sufficient to describe the whole potential energy surface (PES). In comparison

to other methods, as for example multireference configuration interaction (MRCI), for

which the computational cost has the same magnitude, the accuracy observed is worse

for Mk-MRCC theory.69 However, it might be argued that due to the structure of the

JM ansatz the accuracy of these methods can only directly be compared if the MRCI

excitation manifold can be fully spanned for each individual T̂µ |Φµ〉.70

2.6 Molecular Properties as Analytical Derivatives

In chemistry molecules are characterized via their molecular properties, such as the

structure, vibrational frequencies, or nuclear magnetic shielding constants. In most

cases, molecular properties can be determined as derivatives of the energy with respect to

the corresponding perturbations.72 For example, first derivatives with respect to nuclear

displacements define the forces on nuclei which are needed to locate stationary points

(minima or transition states) on the potential energy surface. Furthermore, second

derivatives with respect to nuclear coordinates allow to characterize stationary points

as minima or transition states and to compute harmonic vibrational frequencies.72

Energy derivatives can be computed in quantum chemical calculations via numerical

or analytical techniques.72 Following the numerical strategy, the first derivative with

respect to a perturbation χ may be expressed as

dE

dχ

∣∣∣
x=x0

≈ E(x0 + ∆χ)− E(x0 −∆χ)

2∆χ
, (2.99)
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where ∆χ represents a finite change of the perturbation. However, the possible accuracy

when calculating the difference quotient is already limited for the computation of first

derivatives.72 This effect is even worse when higher derivatives are to be calculated. Fur-

thermore, the computational cost is relatively high as numerical differentiation requires

for example for gradients two additional energy calculations for each degree of freedom.

Analytic differentiation circumvents the mentioned problems. Here analytic expressions

for the derivatives are used. However, the necessary work for deriving and implementing

analytic expressions is higher than for numerical differentiation. Nevertheless, compu-

tation of the derivatives via analytic approaches increases the accuracy and reduces the

computational cost considerably. Therefore, analytic derivatives are nowadays used as

standard techniques in quantum chemistry.72–76

2.7 Analytic Gradients in Coupled-Cluster Theory

Since a major part of this work deals with the derivation of analytic first derivatives

for SS-MRCC theory using a similar strategy as in SRCC, analytic gradients for SRCC

are briefly discussed at this point. For the derivation of SRCC gradients an approach is

presented that can easily be extended to SS-MRCC.

To obtain expressions for the first derivatives of the energy it is convenient to exploit

the Hellmann-Feynman theorem,

dE

dχ
=

〈
Ψ

∣∣∣∣∣dĤdχ
∣∣∣∣∣Ψ
〉

, (2.100)

as only derivatives of the Hamiltonian need to be considered. Eq. (2.100) only holds

if the electronic energy E is stationary with respect to the variation of the wave func-

tion parameters.77 However, when using the energy expression from SRCC theory this

condition is not satisfied as the SRCC approach is non-variational. To circumvent this

problem the technique of Lagrange multipliers may be used to set up a Lagrangian Ẽ

which fulfills the stationarity condition. Within the SRCC approach a Lagrangian may

be constructed that has the form

Ẽ =
〈
Ψ0

∣∣H̄∣∣Ψ0

〉
+
∑
q

λq
〈
Ψq

∣∣H̄∣∣Ψ0

〉
. (2.101)

The first term of Eq. (2.101) corresponds to the CC energy expression [Eq. (2.50)], the

29



2 Theoretical Background

second one to the CC amplitude equations [Eq. (2.51)] multiplied by the corresponding

Lagrange multipliers λq. Eq. (2.101) may be rewritten in a shorter form,

Ẽ =
〈

Ψ0

∣∣∣(1 + Λ̂)H̄
∣∣∣Ψ0

〉
, (2.102)

where the de-excitation operator Λ̂ is given, in analogy to the cluster operator, by

〈Ψ0| Λ̂ =
∑
q

λq 〈Ψq| . (2.103)

Λ̂ = Λ̂1 + Λ̂2 + . . . (2.104)

Λ̂k =
1

(k!)2

occ∑
i,j...

vir∑
a,b...

λij...ab...â
+
i âaâ

+
j âb . . . . (2.105)

According to Eq. (2.102), Ẽ is stationary with respect to the λ-amplitudes when the

amplitude equations [Eq. (2.51)] are solved. The stationary condition of the t-amplitudes

is fulfilled by solving the so-called lambda equations

0 =
〈

Ψ0

∣∣∣(1 + Λ̂
)(

e−T̂ ĤeT̂ − ECC
)∣∣∣Ψq

〉
. (2.106)

Using the t- and λ-amplitudes obtained by solving the CC and lambda equations (Eqs.

(2.51) and (2.106), respectively), the SRCC gradient may then be formulated as

dẼ

dχ
=

〈
Ψ0

∣∣∣∣∣(1 + Λ̂)e−T̂
∂Ĥ

∂χ
eT̂

∣∣∣∣∣Ψ0

〉
. (2.107)

It is important to note that no derivatives of T̂ and Λ̂ need to be determined due to

the 2n + 1 and 2n + 2 rules10,78,79 provided that Ẽ is stationary. Eq. (2.107) may be

rewritten as
dẼ

dχ
=
∑
pq

Dpq
∂fpq
∂χ

+
∑
pqrs

Γpqrs
∂ 〈pq||rs〉

∂χ
, (2.108)

where the one- and two-particle density matrices Dpq and Γpqrs consist of contributions

due to the response of the t-amplitudes and the reference determinant,

Dpq = DCC
pq +Dref

pq (2.109)

Γpqrs = ΓCC
pqrs + Γref

pqrs . (2.110)
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The contributions due to the amplitude response, i.e., DCC
pq and ΓCC

pqrs, are

DCC
pq =

〈
Ψ0

∣∣∣(1 + Λ̂
)
e−T̂

{
a†paq

}
eT̂
∣∣∣Ψ0

〉
(2.111)

ΓCC
pqrs =

1

4

〈
Ψ0

∣∣∣(1 + Λ̂
)
e−T̂

{
a†pa

†
qasar

}
eT̂
∣∣∣Ψ0

〉
, (2.112)

while the contributionsDref
pq and Γref

pqrs are the standard one- and two-particle contribution

for a Slater determinant Ψ0.10 When one imagines that the perturbation is switched on

after the HF calculation, the orbitals are not changed by the perturbation leading to

an orbital-unrelaxed approach. The gradient is then defined by Eq. (2.108) containing

only derivatives of the corresponding AO integrals. Considering changes of the orbitals

due to the external perturbation yields to an orbital-relaxed approach. Here, the fact is

taken into account that the MO integral derivatives from Eq. (2.108) contain terms due

to the derivative of the MO coefficients in addition to the AO integral derivatives. To

separate these contributions, the derivatives of the AO one- and two-electron integrals

as well as the overlap matrix rotated into the MO basis are defined (hχpq, 〈pq||rs〉
χ and

Sχpq, respectively). The Fock-matrix derivative f
(χ)
pq (µ),

f (χ)
pq (µ) = hχpq +

occ(µ)∑
k

〈pk||qk〉χ , (2.113)

is introduced, which does not contain contributions due to the derivatives of the MO

coefficients cµp. The derivatives of the MO coefficient cµp are parametrized via80

∂cµp
∂χ

=
∑
q

Uχ
qpcµq . (2.114)

Using these definitions, Eq. (2.108) is then rewritten as

dẼ

dχ
=
∑
pq

Dpqf
(χ)
pq +

∑
pqrs

Γpqrs 〈pq||rs〉χ − 2
∑
pq

I ′pqU
χ
pq . (2.115)

The last term in Eq. (2.115) contains terms due to the derivative of the MO coefficients

with respect to the perturbation. Explicit expressions for the one-particle intermediate

I ′pq(µ) when using a RHF reference function can be found in Ref. 81 or in the Appendix.

To avoid explicit determination of the coefficients Uχ
pq and in this way reduce the compu-

tational effort, the last term in Eq. (2.115) is recast using the Z-vector method by Handy
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and Schaefer.82 Finally, an expression for the CC gradient in the AO representation is

obtained83 given by

dẼ

dχ
=

AO∑
µν

Dµνf
(χ)
µν +

AO∑
µνσρ

Γµνσρ 〈µν||σρ〉χ +
AO∑
µν

IµνS
χ
µν . (2.116)

Dµν , Γµνσρ and Iµν denote an effective one-particle density matrix, the two-particle

density matrix and an one-particle intermediate, respectively, expressed in the AO basis.

Explicit expressions of these matrices depend on the applied reference function and can

be found in Ref. 84 for restricted Hartree-Fock (RHF) references (see also the Appendix

for expressions of Iµν) as well as in Refs. 85 and 86 for the use of MCSCF orbitals.
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3 Development of an Efficient

Multireference Algorithm in CFOUR

In order to reduce the effort required to implement the Mk-MRCC method, it is

convenient whenever possible to take advantage of efficient program packages and adapt

the CC code therein. Mk-MRCC theory is well suited for such a strategy because

the amplitude equations [Eq. (2.86)] can be separated into a single-reference CC-like

term for each determinant corresponding to the similarity-transformed Hamiltonian of

SRCC theory and a coupling part.42 The single-reference CC-like term, representing

the time-determining step when solving for the amplitudes, is specific for a reference

Φµ. Therefore, to use a SRCC code, this term may be implemented by looping over all

reference determinants. Within this loop the corresponding coupling terms are added

to the intermediates.

3.1 Implementation of Mk-MRCCSD

The Mk-MRCC ansatz has been implemented in the quantum-chemical program pack-

age CFOUR49 using the expressions given in Section 2.5. For each reference determinant,

occupied and virtual orbitals are defined differently. However, the CFOUR code relies on

the separate storage and handling of molecular orbital integrals according to the type

of orbitals [e.g. 〈oo|oo〉 , 〈oo|ov〉 , 〈oo|vv〉 , . . . with o (v) denoting indices for occupied

(virtual) orbitals]. Therefore, a straightforward implementation would require the use

of multiple MO integral files which in turn would lead to a significant increase in disk

space requirements. To avoid this, a different strategy has been chosen in this work

which consists in doubling the MOs within the active space so that each active MO be-

longs to both occupied as well as virtual orbital spaces. For the case of an active space

of two orbitals (one occupied and one virtual) the duplication is illustrated in Fig. 3.1.

Thus, the whole calculation is based on one set of MO integral files. The active-space

orbital doubling is simply accomplished by enlarging the MO coefficient matrix before

the transformation of the integrals from the AO to the MO basis. Due to this duplication
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p_o 

q_v 

p_o 

p_v 

q_v 

q_o 

Figure 3.1: Schematic representation of the orbital duplication for an active space con-
taining two orbitals p and q (left-hand side). The indices o and v indicate occupied and
virtual orbitals with respect to a specific reference determinant. After the duplication
(right-hand side) p and q belong to both the occupied and virtual spaces of the reference
determinant.

X  X  X 

X  X  X 

X  X  X 

0  0  0 

1  1  0 

1  1  0 

0  0  0 

X  X  0 

X  X  0 

= 

all amplitudes  mask  allowed amplitudes 

allowed redundant 

active space 

Figure 3.2: Schematic representation of an allowed (green) and a redundant (blue)
single excitation within one reference determinant occurring due to the duplication of
MOs (top). The orbital depicted in green represents a virtual orbital for this specific
reference determinant while the orbital in blue is a redundant orbital due to the dupli-
cation. As a calculation yields all excitations the redundant ones need to be set to zero.
The redundant t1-amplitudes are eliminated in a computation by multiplication of each
amplitude with the corresponding element of a mask leaving only allowed excitations
(bottom). In the matrix depicted, rows denote virtual, columns occupied orbitals.
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X‘  X‘  X‘ 

X‘  X‘  X‘ 

X‘  X‘  X‘ 

X‘  X‘  X‘ 

X  X  X‘ 

X  X  X‘ 

X‘+Y  X‘  X‘+Y 

X  X  X‘ 

X+Y  X  X‘+Y 

0  0  0 

X  X  0 

X+Y  X  0 

‐t1(μ) 

+t1(ν/μ)  mask 

Figure 3.3: Schematic representation of the addition of the coupling terms to the t1
residuals when computing the amplitude equations for the system described in Fig. 3.2.
Symbols in green denote allowed, symbols in blue redundant elements. After computing
the SRCC part the top left matrix with the elements X’ is obtained. As t1(µ) belongs to
reference determinant µ only the green part is changed yielding the elements X. When
adding t1(ν/µ) allowed and redundant matrix elements are changed (denoted by Y) due
to the fact that the these amplitudes belong to a different reference ν. When applying
the mask as described in Fig. 3.2 the redundant elements are set to zero.

redundant excitations occur in the amplitude equations which are set to zero to obtain

only the proper elements for a certain reference determinant.

Following this approach, for each determinant Φµ the enlargement of the orbital space

results in redundant excitations as depicted schematically in Fig. 3.2 for a system con-

taining three occupied and three virtual orbitals after duplication. This is due to the

fact that all excitations from occupied to virtual orbitals, which include duplicated MOs,

are taken into account. The corresponding t-amplitudes need to be set to zero in each

iteration. For this purpose a mask containing elements equal to zero or one is created

for each reference determinant. The amplitudes are multiplied by the corresponding

element of the mask to give either zero or to retain the allowed value.

Before updating the amplitudes, the coupling terms need to be added. Since the am-

plitudes of all references are stored using the same orbital ordering there is no need to

resort them before computing the contribution of the coupling terms. These, as illus-
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trated in Fig. 3.3 for the t1-amplitude equations [Eq. (2.88)] of the system mentioned

before, contribute only to allowed elements or to elements which are set to zero at the

end as these are redundant excitations within this reference.

In Mk-MRCC theory the energy Eα and the weighting coefficients cαµ are obtained

by diagonalizing an effective Hamiltonian Heff . According to Eq. (2.80) the diagonal

elements of Heff are determined by adding the reference energy and the CC energy for

the corresponding reference determinant Φµ. The off-diagonal elements are obtained by

solving the SRCC amplitude equations [Eq. (2.51)] for projections on excited determi-

nants that are contained in the model space.

The flowchart in Fig. 3.4 summarizes the implementation of Mukherjee’s MRCC ansatz

using the SRCC code in CFOUR. The current implementation for Mk-MRCCSD has a

formal scaling of d · n2
on

4
v, where d represents the number of reference determinants,

no the number of occupied and nv the number of virtual orbitals, and is available for

RHF, unrestricted Hartree-Fock (UHF), TCSCF and restricted open-shell Hartree-Fock

(ROHF) open-shell singlet orbitals.

3.2 Implementation of Mk-MRCCSDT

For the implementation of Mk-MRCCSDT energies, the Mk-MRCCSD procedure

needs to be extended. After computing the SRCC part for the t1- and t2-amplitudes for

all reference determinants, the triples part of the code is entered looping over all deter-

minants. Within this loop, the SRCC contribution to the t3-amplitudes is calculated.

The basis scheme in the CFOUR algorithm for the formation of the t3-amplitudes in an

energy calculation including triple excitations is an outer loop over an index triple i, j, k

of the tabcijk-amplitudes.87 Blocks of a, b, c index triples are computed within this loop

one at a time. Afterwards, the coupling terms projected on triple excitations are added

and redundant amplitudes are set to zero by using a mask for the triples amplitudes.

In this way a new set of t3-amplitudes is obtained for each a, b, c-block which is directly

used to compute the corresponding triples contributions to the t1- and t2-amplitudes.

The additional steps for the computation of triples beyond Mk-MRCCSD are depicted

schematically in Fig. 3.4.
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input: MO coefficients
from SCF calculation

duplication of
active MOs

integral trans-
formation

compute SRCC
part for t1- and
t2-amplitude

equations

triples ?

form and
diagonalize Heff

add t1 and t2
coupling terms

use mask for
t1 and t2

amplitudes
converged

compute SRCC
part for t3-
amplitude
equations

add t3 cou-
pling terms

use mask for t3

compute triples
contributions
to t1-and t2-
amplitudes

end

update
amplitudes

no

yes

yes no

for
all
det.

for
all
det.

for
all
det.

Figure 3.4: Flowchart of a Mk-MRCC energy computation in CFOUR. Only these steps
are shown that need to be carried out after the underlying SCF calculation. Information
in red denote steps that have been implemented in order to adapt the SRCC code.
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4 Analytic First Derivatives for the

Mk-MRCC Ansatz

The development of analytic derivative techniques for the coupled-cluster singles and

doubles (CCSD) model,79,81,88–91 CCSD with a perturbative treatment of triple excita-

tions [CCSD(T)]84,92–96 and higher order CC models87,97–100 offers the possibility of rou-

tinely locating minima and transition states on the potential energy surface of molecules

and computing vibrational frequencies. However, analytic energy derivatives for mul-

tireference methods have been developed only for a few of the approaches proposed in the

literature. Szalay and Bartlett implemented analytic gradients for the two-determinant

CC method within the state-universal framework that is applicable to open-shell sin-

glet states.101 Fock space CC analytic gradients in an equation-of-motion (EOM) CC

formulation have been developed by Stanton and Gauss.102 Gradients for the spin-flip

EOM-CC ansatz, which is able to describe open-shell singlet states starting from a triplet

state reference, have been reported by Krylov and coworkers.103 Analytic first deriva-

tives have been also presented for active space CC methods using both Hartree-Fock and

multi-configurational SCF reference functions.99 Very recently, Pittner and Šmydke75

presented a formulation of analytic gradients for the state-universal and the BW-MRCC

approach67,104,105 together with a pilot implementation within a FCI program.

In the following the theory of analytic gradients for the state-specific Mk-MRCC

method is presented. Implementations within the Mk-MRCC singles and doubles (Mk-

MRCCSD) and Mk-MRCC singles, doubles and triples (Mk-MRCCSDT) approxima-

tion based on the algorithm for Mk-MRCC energy computations presented in Chap-

ter 3 are reported. The applicability of the gradient approach is demonstrated for Mk-

MRCCSD by geometry optimizations for 2,6-pyridyne (C5NH3) and the 2,6-pyridynium

cation (C5NH+
4 ) while for Mk-MRCCSDT investigations of the equilibrium structure

of ozone (O3), cyclobutadiene (C4H4) and a set of arynes, namely 2,6-pyridyne, the

2,6-pyridynium cation and m-benzyne (C6H4) are reported.
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4.1 The Lagrangian of the Mk-MRCC Ansatz

To derive analytic expressions for derivatives of the Mk-MRCC energy with respect

to an external perturbation χ, the Lagrangian technique77,78,106 is used. The first step

consists in constructing an appropriate energy functional using the technique of La-

grange multipliers. This functional, often referred to as Lagrangian, is in a second step

made stationary with respect to all parameters involved. The expression for the energy

gradient then takes a particularly simple form in which the only perturbed quantities

involved are the integral derivatives.

For the Mk-MRCC approach, the energy functional Ẽ is obtained by augmenting the

energy Eα with the constraints for the eigenvalue problem [Eq. (2.79)] and the amplitude

equations [Eq. (2.86)]. To these constraints correspond the Lagrange multipliers c̄αµ and

λq(µ) yielding the following form for Ẽ:

Ẽ =Eα +
∑
µ

c̄αµ

[∑
ν

Heff
µνc

α
ν − Eαcαµ

]
+
∑
µ

∑
q∈Q(µ)

c̄αµλq(µ)

[ 〈
Φq(µ)

∣∣H̄µ

∣∣Φµ

〉
cαµ +

∑
ν(6=µ)

〈
Φq(µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
Heff
µνc

α
ν

]
.

(4.1)

Note that c̄αµ is inserted here as a convenient prefactor in the Lagrange multipliers for

the amplitude equations in order to simplify the subsequent expressions.

To eliminate Eα from Eq. (4.1) it is required that cαµ and the Lagrange multipliers c̄αµ

satisfy the biorthonormality condition∑
µ

c̄αµc
α
µ = 1 , (4.2)

where the fact has been exploited that the normalization of the eigenvector cαµ is not

fixed by the eigenvalue problem in Eq. (2.79). Using Eq. (4.2) as a further constraint,

the energy functional is written as

Ẽ =
∑
µν

c̄αµH
eff
µνc

α
ν +

∑
µ

∑
q∈Q(µ)

c̄αµλq(µ)

[ 〈
Φq(µ)

∣∣H̄µ

∣∣Φµ

〉
cαµ

+
∑
ν(6=µ)

〈
Φq(µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
Heff
µνc

α
ν

]
− ε
[∑

µ

c̄αµc
α
µ − 1

]
,

(4.3)

where ε is the Lagrange multiplier for the biorthonormality condition, Eq. (4.2).
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It should be noted that Pittner and Šmydke75 presented a Lagrangian for the BW-

MRCC approach. At a first glance their energy functional [Eq. (15) in Ref. 75] seems

to be identical to the one given in Eq. (4.3), but there is a subtle difference. In BW-

MRCC theory, the Lagrange multipliers c̄αµ are simply the coefficients of the left-hand

eigenvector of the effective Hamiltonian Heff
µν , while this is not the case for the Mk-MRCC

method. The reason is the dependence of the amplitude equations, Eq. (2.86), on the

coefficients cαµ which renders an explicit determination of the corresponding Lagrange

multipliers necessary.

4.2 Mk-MRCC Energy Gradient Expression

The Mk-MRCC energy functional, Eq. (4.3), can be written in a more compact form by

introducing the deexcitation operator Λ̂µ and partitioning this operator into an external

and an internal component via

Λ̂µ = Λ̂ext
µ + Λ̂int

µ , (4.4)

with

Λ̂ext
µ =

∑
q∈Q(µ)

τ̂+
q (µ)λq(µ) , (4.5)

andi

Λ̂int
µ =

∑
ν(6=µ)

c̄αν
c̄αµ

[
1 +

∑
q∈Q(ν)

λq(ν)
〈

Φq(ν)
∣∣∣Ŷ ν,µ

∣∣∣Φν

〉]
|Φµ〉 〈Φν | . (4.6)

〈
Φq(ν)

∣∣∣Ŷ ν,µ
∣∣∣Φν

〉
in Eq. (4.6) denotes the coupling terms from the amplitude equations

[Eq. (2.86)]. Since the sum in Eq. (4.5) runs over all deexcitations except the internal

ones, Λ̂ext
µ contains no internal deexcitations, i.e.,〈

Φν

∣∣∣Λ̂ext
µ

∣∣∣Φµ

〉
= 0 , (4.7)

iIn Eq. (4.6) it is assumed that c̄αµ 6= 0. When c̄αµ is close to zero, convergence problems may occur.
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internal deexcitations are nevertheless introduced via Λ̂int
µ . With these definitions, the

Mk-MRCC Lagrangian is recast as

Ẽ =
∑
µ

c̄αµ

〈
Φµ

∣∣∣(1 + Λ̂µ)H̄µ

∣∣∣Φµ

〉
cαµ − ε

[∑
µ

c̄αµc
α
µ − 1

]
. (4.8)

The first derivative of the Mk-MRCC Lagrangian with respect to an external perturba-

tion χ then takes the following form:

dẼ

dχ
=
∑
µ

c̄αµ

〈
Φµ

∣∣∣∣∣(1 + Λ̂µ

)
e−T̂µ

dĤ

dχ
eT̂µ

∣∣∣∣∣Φµ

〉
cαµ . (4.9)

In Eq. (4.9), stationarity of Ẽ with respect to all wave function parameters (t-amplitudes

and coefficients cαµ) and Lagrange multipliers (λ-amplitudes, c̄αµ, and ε) has been assumed,

as in this way the 2n+ 1 and 2n+ 2 rules78 can be exploited to avoid the appearance of

the corresponding derivatives in the gradient expression.

4.3 Lambda Equations and Lagrange Multipliers c̄αµ in

the Mk-MRCC Approach

Invoking the stationary condition for the Mk-MRCC energy functional [Eq. (4.8)] with

respect to the amplitudes tq(µ) leads to the following set of equations

0 =
∂Ẽ

∂tq(µ)

= c̄αµ

〈
Φµ

∣∣∣ (1 + Λ̂µ

) [
H̄µ, τ̂q(µ)

] ∣∣∣Φµ

〉
cαµ +

∑
ν

c̄αν

〈
Φν

∣∣∣ ∂Λ̂int
ν

∂tq(µ)
H̄ν

∣∣∣Φν

〉
cαν .

(4.10)

The first term in Eq. (4.10) (formally) corresponds to the single-reference lambda equa-

tions for determinant Φµ, with the only difference that the Λ̂µ operator is defined ac-

cording to Eq. (4.4). The second term in Eq. (4.10) involves contributions due to the

coupling between different reference determinants and is present only in MRCC theory.

Additional equations also arise from the stationarity of the Mk-MRCC energy func-

tional with respect to the coefficients cαµ, a property that is not automatically guaranteed

due to the dependence of the amplitude equations, Eq. (2.86), on the coefficients cαµ.
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Differentiating Eq. (4.3) with respect to cαµ yields

0 =
∂Ẽ

∂cαµ

= c̄αµ

[
Heff
µµ − Eα −

∑
q∈Q(µ)

λq(µ)
∑
ν(6=µ)

〈
Φq(µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
Heff
µν

cαν
cαµ

]

+
∑
ν(6=µ)

c̄αν

[
Heff
νµ +

∑
q∈Q(ν)

λq(ν)
〈

Φq(ν)
∣∣∣Ŷ ν,µ

∣∣∣Φν

〉
Heff
νµ

]
,

(4.11)

where the fact that the Lagrange multiplier ε can be identified with Eα,ii and Eq. (2.86)

have been used to eliminate
〈
Φq(µ)

∣∣H̄µ

∣∣Φµ

〉
.

At this point it becomes obvious why the Lagrange multiplier c̄αµ has to be introduced

in Eq. (4.1). For the BW-MRCC approach, where the amplitude equations do not

depend on cαµ, the corresponding equation is simply the left-hand eigenvalue analog of

Eq. (2.79), with c̄αµ representing elements of the left-hand eigenvector. However, for the

general case this is not true, and c̄αµ must be identified as a “true” Lagrange multiplier.

In summary, Eq. (4.11) represents a linear system of the form∑
ν

c̄ανMνµ = 0 , (4.12)

where the elements of the matrix M are defined as

Mµµ = Heff
µµ − Eα −

∑
q

λq(µ)
∑
ν( 6=µ)

〈
Φq(µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
Heff
µν

cαν
cαµ

, (4.13)

Mµν = Heff
µν +

∑
q

λq(ν)
〈

Φq(ν)
∣∣∣Ŷ ν,µ

∣∣∣Φν

〉
Heff
νµ . (4.14)

To prove that the matrix M has a zero eigenvalue, in a first step Eq. (4.12) can be

multiplied from the right by cαµ and be summed over µ,∑
νµ

c̄ανMνµc
α
µ = 0 . (4.15)

iiThis is easily seen by differentiating Ẽ with respect to c̄αµ which leads to
∑
µH

eff
µνc

α
ν = εcαµ .
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Using the biorthonormality condition [Eq. (4.2)] yields the relation∑
νµ

c̄αµH
eff
νµc

α
µ = E

∑
µ

c̄αµc
α
µ = E . (4.16)

Together with the fact that the vectors c̄αµ and cαµ are biorthonormal and, thus, c̄αµc
α
ν = 0,

it can be shown that Eq. (4.12) has a non-trivial solution which provides the required

values for the Lagrange multipliers c̄αµ.

4.4 Density-Matrix Based Formulation of Mk-MRCC

Gradients

For the evaluation of Eq. (4.9) it is computationally advantageous to use a density-

matrix based approach.83,89 To exploit such an ansatz in the case of Mk-MRCC gradi-

ents, the Hamiltonian is specified for each reference determinant Φµ in second quantiza-

tion

Ĥ = Hµµ +
∑
pq

fpq(µ){a†paq}µ +
1

4

∑
pqrs

〈pq||rs〉 {a†pa†qasar}µ , (4.17)

where the strings {a†paq}µ and {a†pa†qasar}µ denote normal-ordered sequences iii of creation

(a†p, a
†
q) and annihilation (ar, as) operators defined with respect to Φµ as Fermi vacuum.

Hµµ in Eq. (4.17) is the diagonal contribution to the Hamiltonian due to the reference

determinant and the Fock-matrix elements fpq(µ) are defined as

fpq(µ) = hpq +

occ(µ)∑
k

〈pk||qk〉 , (4.18)

with the sum running over all spin-orbitals that are occupied in Φµ.

Inserting Eq. (4.17) into Eq. (4.9), the energy gradient is rewritten as

dẼ

dχ
=
∑
µ

c̄αµ

[∑
pq

Dpq(µ)
d fpq(µ)

dχ
+
∑
pqrs

Γpqrs(µ)
d 〈pq||rs〉

dχ

]
cαµ , (4.19)

iiiNormal-ordering of creation and annihilation operators with respect to a single Slater determinant
reference function means that all annihilation operators are located to the right of all creation
operators within the particle-hole formalism. In this formalism normal ordering is not defined relative
to a vacuum state but rather relative to a reference state Φ. The one-electron states occupied in Φ
are called “hole” states while those unoccupied in the reference are referred to as “particle” states.
For a complete discussion of normal ordering within coupled-cluster theory see Ref. 2.
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with the one- and two-particle density matrices Dpq(µ) and Γpqrs(µ) containing contri-

butions due to the response of the t-amplitudes and the reference determinant,

Dpq(µ) = DCC
pq (µ) +Dref

pq (µ) (4.20)

Γpqrs(µ) = ΓCC
pqrs(µ) + Γref

pqrs(µ) . (4.21)

The contributions due to the amplitude response, i.e., DCC
pq (µ) and ΓCC

pqrs(µ), are

DCC
pq (µ) =

〈
Φµ

∣∣∣(1 + Λ̂µ

)
e−T̂µ

{
a†paq

}
µ
eT̂µ

∣∣∣Φµ

〉
(4.22)

ΓCC
pqrs(µ) =

1

4

〈
Φµ

∣∣∣(1 + Λ̂µ

)
e−T̂µ

{
a†pa

†
qasar

}
µ
eT̂µ

∣∣∣Φµ

〉
, (4.23)

while the contributions Dref
pq (µ) and Γref

pqrs(µ) are the standard one- and two-particle

contribution for a single Slater determinant Φµ.10 It should be noted that with the

modified Λ̂µ operator defined in Eq. (4.4) the expressions for the density matrices given

above are the same as in single-reference CC theory.

In a further step the integral derivatives appearing in Eq. (4.19) may be decomposed

into a pure atomic-orbital (AO) integral and an orbital-relaxation contribution. For this

purpose, the derivatives of the AO one- and two-electron integrals rotated into the MO

basis are denoted with hχpq and 〈pq||rs〉χ. Then the derivatives of the MO coefficient cµp

are parametrized via80

∂cµp
∂χ

=
∑
q

Uχ
qpcµq . (4.24)

In addition, the Fock-matrix derivative f
(χ)
pq (µ),

f (χ)
pq (µ) = hχpq +

occ(µ)∑
k

〈pk||qk〉χ , (4.25)

is introduced which does not contain contributions due to the derivatives of the MO

coefficients cµp. Eq. (4.19) is then rewritten as

dẼ

dχ
=
∑
µ

c̄αµ

[∑
pq

Dpq(µ)f (χ)
pq (µ) +

∑
pqrs

Γpqrs(µ) 〈pq||rs〉χ − 2
∑
pq

I ′pq(µ)Uχ
pq

]
cαµ . (4.26)
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The last term in Eq. (4.26) arises from the orbital response with the one-particle inter-

mediate I ′pq(µ) defined by84

I ′pq(µ) = −1

2

{∑
r

fpr(µ)
[
Drq(µ) +Dqr(µ)

]
+
∑
rst

[
〈pr||st〉Γqrst(µ) + 〈rp||st〉Γrqst(µ) + 〈rs||pt〉Γrsqt(µ)

+ 〈rs||tp〉Γrstq(µ)
]}
−
∑
rs

〈pr||qs〉Drs(µ)δqi(µ) ,

(4.27)

where

δqi(µ) =

{
1 if q ∈ occ(µ)

0 otherwise
. (4.28)

To avoid explicit determination of the coefficients Uχ
pq, the last term in Eq. (4.26) is

usually reformulated using the Z-vector method by Handy and Schaefer.82 The final

expression for the Mk-MRCC gradient is then given in the AO representation as

dẼ

dχ
=
∑
µ

c̄αµ

[
AO∑
ρσ

Dρσ(µ)f (χ)
ρσ (µ) +

AO∑
ρστυ

Γρστυ(µ) 〈ρσ||τυ〉χ +
AO∑
ρσ

Iρσ(µ)Sχρσ

]
cαµ , (4.29)

with Sχpq as the derivative of the AO overlap matrix transformed into the MO basis.

Note that Dρσ(µ) represents here the relaxed one-particle density matrix and contains

contributions due to orbital relaxation, i.e., all terms arising from the derivatives of the

MO coefficients except the ones that belong to AO derivatives of the overlap matrix

Sχρσ, while Iρσ(µ), which is related but not identical to I ′pq(µ), represents elements of a

generalized energy-weighted density matrix. The exact definitions of these quantities

depend on the actual choice of the reference function. An appropriate discussion for

the case of reference determinants constructed from Hartree-Fock (HF) orbitals can be

found in Ref. 84, while the use of multi-configurational self-consistent-field orbitals has

been considered in detail in Refs. 85 and 86. As the main focus of this work lies on the

use of HF references, explicit expressions for Iρσ(µ) are provided in the Appendix for

this case.
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4.5 The Mk-MRCCSD approximation

In the singles and doubles approximation, the cluster operator of Eq. (2.69) is given

by

T̂µ = T̂ µ1 + T̂ µ2 , (4.30)

and the amplitude equations can be written as

〈
Φa
i (µ)

∣∣H̄µ

∣∣Φµ

〉
cαµ +

∑
ν( 6=µ)

〈
Φa
i (µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
Heff
µνc

α
ν = 0 , (4.31)

for single and

〈
Φab
ij (µ)

∣∣H̄µ

∣∣Φµ

〉
cαµ +

∑
ν(6=µ)

〈
Φab
ij (µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
Heff
µνc

α
ν = 0 , (4.32)

for double excitations, respectively. The coupling terms are the ones from Eqs. (2.88)

and (2.89). The corresponding lambda equations have the form

c̄αµ

〈
Φµ

∣∣∣ [1 + Λ̂µ

] [
H̄µ, τ̂

a
i (µ)

] ∣∣∣Φµ

〉
cαµ +

∑
ν

c̄αν

〈
Φν

∣∣∣ ∂Λ̂int
ν

∂tai (µ)
H̄ν

∣∣∣Φν

〉
cαν = 0, (4.33)

c̄αµ

〈
Φµ

∣∣∣ [1 + Λ̂µ

] [
H̄µ, τ̂

ab
ij (µ)

] ∣∣∣Φµ

〉
cαµ +

∑
ν

c̄αν

〈
Φν

∣∣∣ ∂Λ̂int
ν

∂tabij (µ)
H̄ν

∣∣∣Φν

〉
cαν = 0 . (4.34)

To derive expressions for the last term in Eqs. (4.33) and (4.34), Λ̂int
ν needs to be dif-

ferentiated with respect to tai (µ) and tabij (µ), which can be done using Eqs. (4.6), (2.88),

and (2.89). This yields

∑
ν

c̄αν

〈
Φν

∣∣∣∣ ∂Λ̂int
ν

∂tai (µ)
H̄ν

∣∣∣∣Φν

〉
cαν

= c̄αµ
∑
ν(6=µ)

[
− λia(µ) +

∑
n,f

λinaf (µ)tfn(µ)−
∑
n,f

λinaf (µ)tfn(ν/µ)

]
Heff
µν

cαν
cαµ
cαµ

+ c̄αµ
∑
ν(6=µ)

c̄αν
c̄αµ

[
λia(ν/µ)−

∑
n,f

λinaf (ν)tfn(ν) +
∑
n,f

λinaf (ν/µ)tfn(µ/ν)

]
Heff
νµc

α
µ

= c̄αµ
∑
ν(6=µ)

[
− λia(µ)Heff

µν

cαν
cαµ

+ Ci
a(µ, ν)

]
cαµ,

(4.35)
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and

∑
ν

c̄αν

〈
Φν

∣∣∣∣ ∂Λ̂int
ν

∂tabij (µ)
H̄ν

∣∣∣∣Φν

〉
cαν

= c̄αµ
∑
ν(6=µ)

[
− λijab(µ)Heff

µν

cαν
cαµ

+
c̄αν
c̄αµ
λijab(ν/µ)Heff

νµ

]
cαµ ,

(4.36)

with

Ci
a(µ, ν) =

[∑
n,f

λinaf (µ)tfn(µ)−
∑
n,f

λinaf (µ)tfn(ν/µ)

]
Heff
µν

cαν
cαµ

+
c̄αν
c̄αµ

[
λia(ν/µ)−

∑
n,f

λinaf (ν)tfn(ν) +
∑
n,f

λinaf (ν/µ)tfn(µ/ν)

]
Heff
νµ .

(4.37)

In these formulas the common lambda amplitudes

λij...ab...(ν/µ) =


λij...ab...(ν) if i, j . . . ∈ occ(µ) and occ(ν)

and a, b . . . ∈ vir(µ) and vir(ν)

0 else,

(4.38)

are defined in analogy to the common amplitudes tab...ij... (ν/µ).

Using Eqs. (4.35) and (4.36) the Mk-MRCCSD lambda equations (4.10) may be writ-

ten in a suitable form for implementation,

λia(µ)Da
i (µ) = Sia(µ) +

∑
ν(6=µ)

Ci
a(µ, ν) (4.39)

and

λijab(µ)Dab
ij (µ) = Sijab(µ) +

∑
ν(6=µ)

c̄αν
c̄αµ
λijab(ν/µ)Heff

νµ , (4.40)

with

Sia(µ) =
〈

Φµ

∣∣∣[1 + Λ̂µ

] [
H̄µ, τ̂

a
i (µ)

]∣∣∣Φµ

〉
+ λia(µ) [fii(µ)− faa(µ)] (4.41)

Sijab(µ) =
〈

Φµ

∣∣∣[1 + Λ̂µ

] [
H̄µ, τ̂

ab
ij (µ)

]∣∣∣Φµ

〉
+ λijab(µ) [fii(µ) + fjj(µ)− faa(µ)− fbb(µ)] .

(4.42)
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Here the contributions arising from the diagonal part of the Fock matrix have been

separated out. The denominator arrays Dab...
ij... (µ) are given by

Da
i (µ) = fii(µ)− faa(µ) + Eα −Heff

µµ (4.43)

Dab
ij (µ) = fii(µ) + fjj(µ)− faa(µ)− fbb(µ) + Eα −Heff

µµ , (4.44)

with the Fock-matrix elements fpq(µ) defined with respect to Φµ as the Fermi vacuum

[Eq. (4.18)].

4.5.1 Implementation

Based on the expressions given in the previous section, analytic Mk-MRCCSD energy

gradients have been implemented in the quantum-chemical program package CFOUR49

as depicted schematically in Fig. 4.1. As this represents the first step towards a complete

multireference CC treatment in the computation of analytic gradients, only the use of

two closed-shell reference determinants and restricted Hartree-Fock (RHF) orbitals is

discussed in this section. The extension to orbitals obtained for example from a TC-

SCF calculation will be discussed in the next section. The utilization of RHF orbitals

in selected MRCC applications may be justified by the well-known insensitivity of CC

theory to the choice of orbitals3 and the fact that orbital relaxation effects are treated

efficiently in CC theory via single excitations.3,107 The implementation has a formal

scaling of d · n2
on

4
v suitable for large-scale calculations.

In addition to the solution of the amplitude equations [Eq. (2.86)] and the eigen-

value problem in Eq. (2.79), Mk-MRCC gradient calculations require the solution of

the lambda equations [Eq. (4.10)] and of the equations for the Lagrange multipliers c̄αµ

[Eq. (4.12)]. As the latter two sets of equations depend on each other, they have to be

solved simultaneously. The lambda equations have been implemented in a similar way as

the amplitude equations with a contribution given in terms of the usual single-reference

part and an additional coupling term. The existing CCSD gradient code in CFOUR has

been exploited for this purpose using the same strategy as in the case of the amplitude

equations. The equations for the Lagrange multipliers c̄αµ are solved by diagonalizing the

matrix M and picking the left-hand eigenvector that corresponds to the zero eigenvalue.

For the density matrices the situation is even simpler, as the corresponding expres-

sions take the same form as those in the single-reference case,81 so that the code could

be used without modification. Again, it is only necessary to loop over the reference
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t-amplitudes from
energy calculation

compute c̄αµ

compute SRCC
part for λ1- and
λ2-amplitudes

triples ?

add coupling
terms for
λ1 and λ2

adjust internal λ

amplitudes
converged

compute one-
and two-particle
density matrices

transform
density matrices

to AO basis

contract densities
with fock-matrix

and integral
derivatives

sum up contri-
butions from all

determinants

obtain gradient

update
amplitudes

compute SRCC
part for λ3

equations

add coupling
terms for λ3

use mask for λ3

compute triples
contributions

to λ1- and
λ2-amplitudes

no

yes

no

yes
for
all
det.

for all det.for all det.

for all det.

Figure 4.1: Flowchart of a Mk-MRCC gradient computation in CFOUR. Only those
steps are shown that need to be carried out after the corresponding Mk-MRCC energy
calculation (see Fig. 3.4). Information in red denote steps that have been implemented
in order to adapt the SRCC code.
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determinants. Back transformation of the density matrices to the AO basis and the con-

traction with the AO integral derivatives are also carried out as in the single-reference

case.

For calculations based on HF orbitals, orbital relaxation can be treated by the Z-

vector method as described in Ref. 81. It is only noted that the full orbital invariance of

single-reference CC theory, i.e., invariance with respect to rotations within the occupied

and virtual orbital space as provided by the HF wave function, cannot be exploited in

the case of Mk-MRCC gradients. To circumvent this problem, the gradient calculations

are always based on perturbed canonical orbitals,93,94 i.e., those perturbed orbitals are

chosen that diagonalize the first derivative of the Fock matrix. With this choice it is

necessary to calculate only the diagonal elements of the occupied-occupied and virtual-

virtual block of the density matrix Dpq(µ) in Eq. (4.26) while the off-diagonal elements

are calculated as part of the orbital-relaxation contribution.

The implementation of analytic Mk-MRCCSD gradients has been checked by com-

paring analytically evaluated dipole moments and forces with the corresponding first

derivatives obtained using finite-difference techniques. The order of magnitude of the

maximum error observed is 10−10 a.u. for dipole moments and 10−7 a.u. for forces

corresponding to the maximum accuracy that could be obtained from numerical differ-

entiation.

4.5.2 Illustrative Examples for Mk-MRCCSD Gradients

The applicability of the analytic Mk-MRCCSD gradient approach is demonstrated

by investigating the equilibrium geometry of the 2,6-isomers of the didehydropyridinium

(pyridynium) cation and didehydropyridine (pyridyne). This choice of examples has been

motivated by the fact that the chemically interesting didehydroarenes (arynes)21,27,108,109

exhibit a strong biradical character and that their theoretical treatment remains a chal-

lenge until today. For the treatment of these degenerate systems, multireference ap-

proaches are the natural choice, but the application of these methods is not always

straightforward, as the different choice of active orbitals indicate,110,111 and is often ham-

pered by the size of the systems to be investigated.110–117 Furthermore, these methods

do not necessarily provide conclusive results when for example considering the deviation

of the computed energy splitting of o- and p-benzyne from experiment.110,111 Attempts

have been also undertaken to use high-level single-reference CC methods118,119 for the

investigation of arynes with an emphasis on the use of symmetry-broken unrestricted
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reference determinants as a pragmatic solution to the multireference problem in CC

theory.22,120 Another option within CC theory is the treatment by means of the spin-

flip equation-of-motion method.121 Furthermore, several studies can be found in the

literature which employ density-functional theory for the computational investigation

of arynes.30,122–126 The benzyne systems have been recently investigated using mul-

tireference CC methods in order to demonstrate the usefulness of the developed and

implemented Mk-MRCC schemes.22

The focus in the following will be on biradicals derived from pyridine, namely pyridyne

and protonated pyridyne. In this work the focus lies on the corresponding 2,6-isomers.

Due to their large number of degrees of freedom, pyridynes can be considered as good

examples to illustrate the use of analytic gradient techniques, as geometry optimization

based on single-point energy calculations would be very computationally demanding.

A particularly intriguing aspect of meta-arynes, as already mentioned in the intro-

duction, is the possibility that they may exist as monocyclic or bicyclic compounds.

While for meta-benzyne the bicyclic structure is understood to be an artifact displayed

at various levels of theory,127 the issue has not been settled in the case of the didehy-

drocompounds of heteroarenes and will be investigated in the following for 2,6-pyridyne

and the 2,6-pyridynium cation.

For both examples, two closed-shell determinants are used as reference with the or-

bitals taken from RHF calculations. The first, Φ1, corresponds to the HF solution,

while the second, Φ2, is obtained by replacing the highest-occupied MO (HOMO) in the

monocyclic form (a1 symmetry) by the lowest unoccupied MO (LUMO) (b2 symmetry).

The active orbitals are depicted in Fig. 4.2. In all calculations, C2v symmetry has been

imposed. The correlation-consistent, core-valence polarized basis sets cc-pCVXZ (X =

D,T) of Woon and Dunning were used in all computations.128 The transition states have

been located using the transition state search scheme as implemented in CFOUR.49

4.5.2.1 2,6-Pyridynium Cation (C5NH+
4 )

All calculations, except those at the HF-SCF level, yield for the 2,6-pyridynium cation

a monocyclic structure, which is depicted in Fig. 4.3.

The multireference character of the 2,6-isomer of the pyridynium cation is clearly

seen from the expansion coefficients obtained in the Mk-MRCC calculations. The corre-

sponding values are 0.91 for c1 and −0.41 for c2 (Mk-MRCCSD/cc-pCVTZ calculation

employing the reference determinants as described before) which means that the relative
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HOMO 

LUMO 

2,6‐pyridyne  2,6‐pyridynium cation 

Figure 4.2: The active orbitals of 2,6-pyridyne and the 2,6-pyridynium cation chosen
for the Mk-MRCC computations. The orbitals have been obtained in a RHF/cc-pCVTZ
calculation using the Mk-MRCCSD/cc-pCVTZ geometry.

contributions (c2
1 and c2

2, respectively) of the two reference functions are about 83 and

17%.

The optimized geometries obtained from Mk-MRCCSD calculations using the cc-

pCVDZ and cc-pCVTZ basis sets are reported in Tables 4.1 and 4.2 together with

results from single-reference approaches. While the HF-SCF approach leads, as already

mentioned, to a bicyclic structure (1.4959 Å for the C2C6 distance), this artifact is al-

ready corrected at the TCSCF level, which yields a monocyclic structure with a long

C2C6 distance of 2.2299 Å. The same is also observed in all electron-correlated calcu-

lations, which for this reason, do not differ dramatically in the obtained geometrical

structures. Still, some differences are noted, and in Fig. 4.3 as additional information

the C2C6 distance as obtained in the various CC calculations is provided. This distance,

together with the C2N1C6 angle, is a good indicator for the adequacy of the description

of the multireference character. From the values in Table 4.1 it is obvious that the

single-reference CCSD calculations are far from converged with respect to the electron-

correlation treatment. The change in the C2C6 distance due to triple excitations is
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CCSD               2.122 
CCSD(T)          2.204 
Mk‐MRCCSD 2.183 

CCSD               1.478 
Mk‐MRCCSD 1.483 

CCSD               1.818 
CCSD(T)          2.014 
Mk‐MRCCSD 2.017 

2,6‐Pyridynium Cation  2,6‐Pyridyne 

C3C5

C2C6

N1

C4

Figure 4.3: Optimized structures for 2,6-pyridyne and the 2,6-pyridynium cation com-
puted at the CCSD, CCSD(T) and Mk-MRCCSD levels of theory using the cc-pCVTZ
basis set. For 2,6-pyridyne both the monocyclic and bicyclic forms are shown. The
representative C2C6 bond distance is given in Å. RHF orbitals were used in all compu-
tations.

rather pronounced and thus renders the CCSD results questionable. On the other hand,

the magnitude of the triples corrections also sheds some doubts on the quality of the

CCSD(T) calculations. Clearly, single-reference CC approaches are not able to provide

a reliable description of the equilibrium geometry for the 2,6-pyridynium cation. The

Mk-MRCCSD results can be considered more appropriate in this respect. Neverthe-

less, the geometrical parameters from this computation turn out to be close to those

obtained at the CCSD(T) level. In addition to the standard single-reference CC results,

Table 4.1 also lists those obtained from CC treatments based on a symmetry-broken

unrestricted HF (UHF) determinant. It is noted that these CC calculations predict a

monocyclic structure, though the angle at the radical centers is somewhat wider. It is

impossible to rigorously judge the reliability of these symmetry-broken CC calculations,

as long as no reliable benchmark data are available. However, from a computational

point of view, symmetry-broken CC calculations are significantly more expensive than

the present Mk-MRCC calculations. Furthermore, they are seriously affected by spin

contamination (〈S2〉 = 1.028 at the CCSD/cc-pCVDZ level), thus making them less

53



4 Analytic First Derivatives for the Mk-MRCC Ansatz

Table 4.1: Geometrical parameters for the 2,6-isomer of the pyridynium cation
(C5NH+

4 ) as computed at various levels of theory using the cc-pCVDZ basis set. CCSD*
and CCSD(T)* indicate results obtained using a symmetry-broken UHF reference de-
terminant.

SCF TCSCF CCSD CCSD* CCSD(T) CCSD(T)* Mk-MRCCSD

bond lengths [Å]

N1C2 1.2993 1.3287 1.3370 1.3454 1.3502 1.3500 1.3418
C2C3 1.3592 1.3587 1.3738 1.3776 1.3814 1.3815 1.3734
C3C4 1.4290 1.3979 1.4127 1.4124 1.4174 1.4174 1.4127
N1H 1.0170 1.0060 1.0215 1.0232 1.0236 1.0248 1.0214
C3H 1.0763 1.0796 1.0929 1.0923 1.0949 1.0944 1.0929
C4H 1.0844 1.0820 1.0958 1.0953 1.0973 1.0972 1.0949
C2C6 1.4960 2.2299 2.1631 2.2755 2.2402 2.2723 2.2150

bond angles [◦]

C2N1C6 70.29 114.09 107.99 115.49 112.12 114.62 111.26
N1C2C3 164.11 126.75 130.81 125.64 127.65 126.15 128.43
C2C3C4 103.90 116.67 117.30 116.96 117.72 117.18 117.43
C3C4C5 113.69 119.07 115.79 119.32 117.14 118.72 117.02
C2C3H 128.65 120.47 119.78 120.64 119.84 120.44 120.01

reliable. Concerning the equilibrium geometries obtained at the DFT level, one signif-

icant disagreement is noted (]C2N1C6 = 104.3◦ for B3LYP/cc-pVDZ117 in comparison

to 111.26 ◦ for Mk-MRCCSD/cc-pCVDZ).

Table 4.2 documents the optimized geometries obtained using the larger cc-pCVTZ

basis set. The comparison between the CCSD, CCSD(T), and Mk-MRCCSD results lead

to similar conclusions as for the cc-pCVDZ basis. The observed changes when going from

cc-pCVDZ to cc-pCVTZ (e.g., CCSD: 1.45◦, CCSD(T): 1.19◦, and Mk-MRCCSD: 0.83◦

for the angle C2N1C6) are rather typical for basis-set effects.

4.5.2.2 2,6-Pyridyne (C5NH3)

In order to investigate the equilibrium geometry of 2,6-pyridyne, the geometry has

been optimized at the HF-SCF, CCSD, CCSD(T), and Mk-MRCCSD level using the

cc-pCVDZ and cc-pCVTZ basis set starting from a small (about 1.1 Å) and a large

C2C6 distance (about 2.2 Å) to locate stationary points corresponding to a monocyclic

and a bicyclic structure (see Fig. 4.3 and Tables 4.3 and 4.4). The results are visualized

54



4 Analytic First Derivatives for the Mk-MRCC Ansatz

Table 4.2: Geometrical parameters for the 2,6-isomer of the pyridynium cation
(C5NH+

4 ) as obtained at the CCSD, CCSD(T) and Mk-MRCCSD levels of theory using
the cc-pCVTZ basis set.

CCSD CCSD(T) Mk-MRCCSD

bond lengths [Å]

N1C2 1.3235 1.3375 1.3292
C2C3 1.3570 1.3647 1.3568
C3C4 1.3994 1.4041 1.3992
N1H 1.0105 1.0129 1.0102
C3H 1.0788 1.0811 1.0788
C4H 1.0818 1.0834 1.0807
C2C6 2.1214 2.2036 2.1834

bond angles [◦]

C2N1C6 106.54 110.93 110.43
N1C2C3 131.94 128.51 129.05
C2C3C4 117.02 117.59 117.27
C3C4C5 115.54 116.87 116.94
C2C3H 119.95 119.90 120.12

in Fig. 4.4 for the computations with the cc-pCVTZ basis.

While at the the HF-SCF level only the bicyclic structure is found, both CCSD and

Mk-MRCCSD calculations yield the monocyclic and the bicyclic forms. However, the

CCSD computations predict the bicyclic structure to be more stable by about 1.8 kcal

mol−1, whereas the Mk-MRCCSD approach favors the monocyclic form by more than

3.6 kcal mol−1. At the CCSD(T) level only the monocyclic isomer is found to be a

minimum on the potential energy surface. The geometry optimization for the bicyclic

form (i.e., the one starting with a short C2C6 distance) also converged to the monocyclic

structure. It is interesting to note that DFT, as HF-SCF calculations, leads to a bicyclic

structure (for example, the C2C6 distance is 1.561 Å for BPW91/cc-pVDZ), while the

complete-active-space SCF calculations in Ref. 30 provide a larger C2C6 distance than

the CCSD(T) and Mk-MRCCSD computations.

In the case of the monocyclic form of 2,6-pyridyne, the contributions of the two ref-

erence determinants in the Mk-MRCC calculations amount to about 86 and 14%, re-

spectively with c1 = 0.93 and c2 = −0.37 (Mk-MRCCSD/cc-pCVTZ calculation at the

equilibrium geometry). Again, both reference determinants have a large contribution
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Figure 4.4: Schematic representation of the energetic ordering of the monocyclic and
bicyclic forms as well as the corresponding transition state of 2,6-pyridyne as obtained
for various levels of theory using the cc-pCVTZ basis set. For all methods the energy is
given relative to the bicyclic form.

and 2,6-pyridyne should be considered as a system with rather strong multireference

character. To illustrate the influence of the multireference treatment the geometri-

cal parameters determined for the monocyclic form at the Mk-MRCCSD/cc-pCVDZ

and Mk-MRCCSD/cc-pCVTZ levels are compared with those obtained at the single-

reference CC level. The effect of the multireference treatment is again best monitored

by means of the C2N1C6 angle or, alternatively, the C2C6 distance. The CCSD treat-

ment yields here the smallest angle with 86.15◦ using the cc-pCVTZ basis set, while

CCSD(T) and Mk-MRCCSD calculations favor wider angles of 96.80 and 98.01 degrees,

respectively. Consistent with this finding, the CCSD approach yields a shorter C2C6 dis-

tance (1.8183 Å) than the CCSD(T) and Mk-MRCCSD calculations (2.0144 and 2.0170

Å, respectively). Again, these findings indicate the shortcomings of the single-reference

CC treatments and serve as argument in favor of the use of the present Mk-MRCCSD

approach.
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Table 4.3: Geometrical parameters for the monocyclic structure of 2,6-pyridyne (C5N3)
computed at the CCSD, CCSD(T) and Mk-MRCCSD levels of theory using the cc-
pCVDZ and cc-pCVTZ basis sets.

cc-pCVDZ cc-pCVTZ
CCSD CCSD(T) Mk-MRCCSD CCSD CCSD(T) Mk-MRCCSD

bond lengths [Å]

N1C2 1.3473 1.3596 1.3489 1.3313 1.3470 1.3361
C2C3 1.3892 1.3963 1.3896 1.3734 1.3801 1.3735
C3C4 1.4056 1.4098 1.4046 1.3936 1.3964 1.3908
C3H 1.0916 1.0940 1.0920 1.0771 1.0800 1.0777
C4H 1.0979 1.0995 1.0967 1.0838 1.0855 1.0825
C2C6 1.9139 2.0544 2.0469 1.8183 2.0144 2.0170

bond angles [◦]

C2N1C6 90.52 98.15 98.70 86.15 96.80 98.01
N1C2C3 143.20 137.09 136.91 146.94 138.12 137.45
C2C3C4 115.85 117.23 116.97 114.52 117.01 116.80
C3C4C5 111.40 113.22 113.55 110.93 112.93 113.49
C2C3H 119.91 119.48 119.72 120.74 119.51 119.78

Table 4.4 compares the results for the bicyclic form from CCSD and Mk-MRCCSD

computations. As the multireference character for this form is much smaller (i.e., the

weights of the two reference determinants in the Mk-MRCC calculations are about 99.9

and 0.1%), the agreement between single- and multireference CCSD results is much bet-

ter with respect to the monocyclic isomer.

Table 4.3 and 4.4 also illustrate basis-set effects on the computed geometrical pa-

rameters. As for the 2,6-pyridynium cation, these changes are in line with the usual

expectations when going from the smaller cc-pCVDZ to the larger cc-pCVTZ set, i.e.,

the bond lengths are shorter when using the larger basis set.

Finally, to calculate the height of the energy barrier at the CCSD and Mk-MRCCSD

levels of theory using the cc-pCVTZ basis, the corresponding transition states have

been determined by applying an eigenvector-following scheme129,130 as implemented in

CFOUR.49 The geometries obtained are reported in Table 4.5. The corresponding C2C6

distances are 1.7679 Å for CCSD as well as 1.6026 Å for Mk-MRCCSD and lie between

the ones of the monocyclic and bicyclic minimum of the PES. At the CCSD level, as

depicted in Fig. 4.4, the energy barrier from the bicyclic to the monocyclic structure is
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Table 4.4: Geometrical parameters for the bicyclic structure of 2,6-pyridyne (C5NH3)
computed at the CCSD and Mk-MRCCSD levels of theory using the cc-pCVDZ and
cc-pCVTZ basis sets.

cc-pCVDZ cc-pCVTZ
CCSD Mk-MRCCSD CCSD Mk-MRCCSD

bond lengths [Å]

N1C2 1.3524 1.3500 1.3374 1.3371
C2C3 1.3932 1.3919 1.3798 1.3800
C3C4 1.4237 1.4206 1.4114 1.4108
C3H 1.0898 1.0904 1.0753 1.0753
C4H 1.0984 1.0983 1.0838 1.0837
C2C6 1.5071 1.5427 1.4777 1.4830

bond angles [◦]

C2N1C6 67.72 69.69 67.07 67.36
N1C2C3 163.88 161.92 164.63 164.32
C2C3C4 106.41 107.58 105.90 106.12
C3C4C5 111.69 111.30 111.85 111.77
C2C3H 126.83 125.92 127.21 127.01

predicted to be 1.8 kcal mol−1. The PES from the transition state to the monocyclic

form is very flat with an energy difference of only 0.01 kcal mol−1. At the Mk-MRCCSD

level the situation is reversed. While the energy barrier from the bicyclic to the mono-

cyclic form is small with a height of 0.3 kcal mol−1, the energy difference of the transition

state and the monocyclic structure is 3.55 kcal mol−1.

4.6 Orbital Relaxation for TCSCF Orbitals

In the previous sections the Mk-MRCC approach has been applied using RHF or-

bitals. Although CC methods are rather insensitive to the choice of orbitals, strong

multireference cases in principle necessitate a proper treatment of the orbitals at the

MCSCF level of theory. The simplest possible MCSCF orbitals are those obtained from

TCSCF computations which also represent the most important case within this work.

The theoretical framework for Mk-MRCC gradient calculations using TCSCF orbitals

as well as an implementation in CFOUR has been worked out in the diploma thesis of

Thomas-Christian Jagau131 and is also reported in Ref. 132. The framework is briefly
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Table 4.5: Geometrical parameters for the transition state between the monocyclic and
bicyclic form of 2,6-pyridyne (C5NH3) as computed at the CCSD and Mk-MRCCSD
levels of theory using the cc-pCVDZ and cc-pCVTZ basis sets.

cc-pCVDZ cc-pCVTZ
CCSD Mk-MRCCSD CCSD Mk-MRCCSD

bond lengths [Å]

N1C2 1.3426 1.3459 1.3297 1.3308
C2C3 1.3889 1.3902 1.3735 1.3756
C3C4 1.4119 1.4164 1.3951 1.4022
C3H 1.0909 1.0907 1.0770 1.0771
C4H 1.0983 1.0982 1.0839 1.0839
C2C6 1.6996 1.6049 1.7679 1.6026

bond angles [◦]

C2N1C6 78.54 73.20 83.33 74.05
N1C2C3 153.63 158.56 149.40 157.84
C2C3C4 111.87 109.44 113.59 109.74
C3C4C5 110.46 110.81 110.69 110.79
C2C3H 122.59 124.45 121.36 124.28

discussed here as it is of importance in the following sections.

In Section 4.4 it has been demonstrated that the dependence on the used orbitals is

restricted to the last term of Eq. (4.26). Thus, when using orbitals different from RHF

in energy derivative computations, the gradient expression (4.26) remains the same but

the term containing the derivatives of the MO coefficients with respect to the perturba-

tion changes. The evaluation of this contribution to Mk-MRCC gradients requires, in

principle, the determination of the coefficients Uχ
pq by means of the orbitals used. In the

case of TCSCF orbitals, Uχ
pq is obtained by coupled-perturbed TCSCF (CPTCSCF)133

theory. The corresponding CPTCSCF equations may be written as(
Aoo Aoc

Aco Acc

)(
Uχ

o

cχ

)
=

(
Bχ

o

Bχ
c

)
, (4.45)

where Uχ
o denotes the vector of coefficients Uχ

pq and cχ the derivative of the TCSCF-CI

vector. All entries in Eq. (4.45) do not represent single elements but rather blocks

with the indices o and c denoting the orbital and CI part, respectively. The elements

of the perturbation-independent matrix A comprise two-electron integrals and Fock-
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matrix elements, whereas the elements of the perturbation-dependent vector Bχ include

derivatives of these quantities.

To reduce the computational effort the solution of the CPTCSCF equations is avoided

by using the Z-vector method as is done in Section 4.4 for RHF orbitals. With the

orthonormality condition

Uχ
pq + Uχ

qp + Sχpq = 0 , (4.46)

and the fact that those elements of Uχ which refer to redundant orbital pairs can be

chosen as

Uχ
pq = −1

2
Sχpq , (4.47)

the last term of Eq. (4.26) is reformulated as

−2
∑
pq

I ′pq(µ)Uχ
pq = −2

non∑
pq

Xpq(µ)Uχ
pq +

red∑
pq

Ipq(µ)Sχpq , (4.48)

where Xpq(µ) = I ′pq(µ)−I ′qp(µ) and the sums run over all TCSCF non-redundant (non)iv

and remaining pairs of orbitals (red), respectively. The first term on the right-hand side

of Eq. (4.48) is then recast using Eq. (4.45) as

−2

(
Xo

0

)T(
Uχ

o

cχ

)
= −2

(
Zo

Zc

)T(
Bχ

o

Bχ
c

)
, (4.49)

with the vector Z defined by(
Zo

Zc

)T(
Aoo Aoc

Aco Acc

)
=

(
Xo

0

)T

. (4.50)

Eq. (4.50) only contains perturbation-independent quantities. Thus, only one set of Z-

vector equations need to be solved instead of (3N − 6) CPTCSCF equations, where N

is the number of nuclei.131,132 Detailed expressions of the quantities presented in this

section are not relevant for the following discussion and, therefore, are not repeated here.

The reader is rather referred to Refs. 85 and 132–134.

ivRedundant orbital pairs of molecular orbitals are those for which rotations between the two molecular
orbitals does not affect the energy while all other orbital pairs are denoted as non-redundant.85 In
the case of TCSCF, non-redundant orbital pairs are those in the virtual-occupied, virtual-active and
active-occupied blocks of Uχ as well as the Uχpq element in the active-active block with p > q.132
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4.6.1 Effect of TCSCF Orbitals on Geometrical Parameters

The changes of geometrical parameters in Mk-MRCCSD geometry optimizations when

TCSCF instead of RHF orbitals are used are discussed in the following.132 The inves-

tigation of the 2,6-pyridynes (Section 4.5.2) is extended by computing the equilibrium

structure of the monocyclic form using a TCSCF reference function. The active space

RHF  TCSCF 

Figure 4.5: Active orbitals of 2,6-pyridyne obtained by optimizing the structures at
the Mk-MRCCSD/cc-pCVTZ level of theory using a RHF (left) and TCSCF (right)
reference wave function.

for the underlying TCSCF calculation has been chosen as described in Section 4.5.2

for the Mk-MRCCSD computation. The active orbitals are of a1 and b2 symmetry and

correspond to the HOMO and LUMO in a RHF calculation.

The resulting bond lengths and bond angles are presented in Table 4.6 in comparison

to the results obtained using RHF orbitals. The optimized geometries confirm that Mk-

MRCC in fact is insensitive to the choice of orbitals. As depicted in Fig. 4.5, the use of

TCSCF instead of RHF orbitals does not distinctly change the molecular structure. For

this example, the maximum change observed for the bond lengths is about 0.001 Å for

the N1C2 bond while the bond angles change at most by 1 degree (]C2N1C6). Regarding

the C2C6 distance (provided in Table 4.6), the difference between the RHF and TCSCF

results is one order of magnitude larger (0.012 Å) than for the bond lengths. The C2C6

distance is also an indicator for the relative influence of the reference determinants since

the first determinant (with the active orbital of a1 symmetry) favors short distances

while the second one favors longer distances (for a detailed discussion see Ref. 132). The
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Table 4.6: Geometrical parameters for the monocyclic structure of 2,6-pyridyne
(C5NH3) computed at the Mk-MRCCSD/cc-pCVTZ levels of theory using RHF and
TCSCF orbitals.

RHF TCSCF

bond lengths [Å]

N1C2 1.3361 1.3352
C2C3 1.3735 1.3738
C3C4 1.3908 1.3908
C3H 1.0777 1.0776
C4H 1.0825 1.0828
C2C6 2.0170 2.0297

bond angles [◦]

C2N1C6 98.01 98.94
N1C2C3 137.45 136.81
C2C3C4 116.80 116.82
C3C4C5 113.49 113.80
C2C3H 119.78 119.84

relative contribution of the second determinant is about 14 (16) % when RHF (TCSCF)

orbitals are used, which explains the slight lengthening of the C2C6 distance.

4.7 The Mk-MRCCSDT Approximation

The implementation of the Mk-MRCCSDT energy gradients requires an extension

of the Mk-MRCCSD approach. In the singles, doubles and triples approximation, the

cluster operator of Eq. (2.69) is given by

T̂µ = T̂ µ1 + T̂ µ2 + T̂ µ3 . (4.51)

The amplitude equations for singles and doubles can be written according to Eqs. (4.31)

and (4.32), where, in comparison to Mk-MRCCSD, additional terms due to contributions

of t3-amplitudes occur. The t3-amplitude equations take the form:

〈
Φabc
ijk(µ)

∣∣H̄µ

∣∣Φµ

〉
cαµ +

∑
ν( 6=µ)

〈
Φabc
ijk(µ)

∣∣∣Ŷ µ,ν
∣∣∣Φµ

〉
Heff
µνc

α
ν = 0 . (4.52)
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The corresponding singles and doubles lambda equations are Eqs. (4.33) - (4.34),

again, in comparison to Mk-MRCCSD, augmented by contributions due to t3- and λ3-

amplitudes, and

c̄αµ

〈
Φµ

∣∣∣ [1 + Λ̂µ

] [
H̄µ, τ̂

ab
ij (µ)

] ∣∣∣Φµ

〉
cαµ +

∑
ν

c̄αν

〈
Φν

∣∣∣ ∂Λ̂int
ν

∂tabcijk(µ)
H̄ν

∣∣∣Φν

〉
cαν = 0 (4.53)

for triples. Expressions for the last terms in Eqs. (4.33), (4.34) and (4.53) are obtained

by differentiating Λ̂int
ν with respect to tai (µ), tabij (µ) and tabcijk(µ), respectively, using the

expressions of the coupling terms for singles, doubles and triples [Eqs. (2.88) - (2.90)]

as well as Eq. (4.6). This yields

∑
ν

c̄αν

〈
Φν

∣∣∣ ∂Λ̂int
ν

∂tai (µ)
H̄ν

∣∣∣Φν

〉
cαν

= CMk-MRCCSD + c̄αµ
∑
ν(6=µ)

[
−
∑
mnef

λimnaef (µ)∆tefmn(ν/µ, µ)

−
∑
mnef

P (bc)λimnaef (µ)∆tem(ν/µ, µ)∆tfn(ν/µ, µ)

]
Heff
µν

cαν
cαµ
cαµ

+ c̄αµ
∑
ν(6=µ)

c̄αν
c̄αµ

[
+
∑
mnef

λimnaef (ν)∆tefmn(µ/ν, ν)

+
∑
mnef

P (bc)λimnaef (ν)∆tem(µ/ν, ν)∆tfn(µ/ν, ν)

]
Heff
νµc

α
µ ,

(4.54)

∑
ν

c̄αν

〈
Φν

∣∣∣ ∂Λ̂int
ν

∂tabij (µ)
H̄ν

∣∣∣Φν

〉
cαν

= CMk-MRCCSD + c̄αµ
∑
ν(6=µ)

[∑
me

−λijmabe (µ)∆tem(ν/µ, µ)Heff
µν

cαν
cαµ

+
c̄αν
c̄αµ

∑
me

λijmabe (ν)∆tem(µ/ν, ν)Heff
νµ

]
cαµ ,

(4.55)

and

∑
ν

c̄αν

〈
Φν

∣∣∣ ∂Λ̂int
ν

∂tabcijk(µ)
H̄ν

∣∣∣Φν

〉
cαν

= c̄αµ
∑
ν( 6=µ)

[
− λijkabc(µ)Heff

µν

cαν
cαµ

+
c̄αν
c̄αµ
λijkabc(ν/µ)Heff

νµ

]
cαµ ,

(4.56)
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where CMk-MRCCSD denotes terms already appearing in the Mk-MRCCSD gradient equa-

tions. The common lambda amplitudes are defined in Eq. (4.38).

4.7.1 Implementation

Based on the expressions given in the previous section, analytic Mk-MRCCSDT energy

gradients have been implemented in the quantum-chemical program package CFOUR49

as depicted in Fig. 4.1. The implementation extends the algorithm presented for Mk-

MRCCSD energy gradients and only additional steps necessary for the inclusion of triple

excitations are reported here. The implementation currently allows the use of two closed-

shell reference determinants and RHF or TCSCF orbitals. The algorithm is suitable for

large-scale calculations and has a formal scaling of d ·n3
on

5
v , where d represents the num-

ber of reference determinants, no the number of occupied and nv the number of virtual

orbitals.

The computation of the Mk-MRCCSDT gradients requires the calculation of the t3-

and λ3-amplitude equations as well as the triples contributions to the corresponding

singles and doubles amplitudes. The implementation of these contributions has been

described in Sec. 3.2.

The basic scheme in the CFOUR algorithm for the formation of the t3-amplitudes

in a CCSDT energy calculation is an outer loop over an index triple i, j, k of the tabcijk-

amplitudes.87,97 Blocks of a, b, c index triples are computed one at a time within the loop

and are stored on disk for the next iteration. Additionally, these i, j, k blocks are used

immediately to calculate the contributions to the t1- and t2-amplitude equations. For

Mk-MRCCSDT an outer loop over reference determinants is introduced together with

the computation of the corresponding coupling terms for the i, j, k blocks (For further

details see also Ref. 135).

Beside solving the amplitude equations [Eq. (2.86)], Mk-MRCC gradient calculations

require the solution of the lambda equations [Eq. (4.10)] and of the equations for the

Lagrange multipliers c̄αµ [Eq. (4.12)]. The lambda equations have been implemented in a

similar way as the amplitude equations with a contribution given in terms of the usual

single-reference part and an additional coupling term. The existing CCSDT gradient

code in CFOUR has been exploited for this purpose using the same strategy as in the

case of the amplitude equations. For the determination of the Lagrange multipliers c̄αµ

the triples contributions are added to the Mk-MRCCSD matrix M [Eqs. (4.13) and

(4.14)] and, subsequently, Eq. (4.12) is solved.
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The expressions for the density matrices have the same form as those in the single-

reference case,81,87,97 so that the code can be used without any modification. Back

transformation of the density matrices to the AO basis and contraction with the AO in-

tegral derivatives are also carried out as in the single-reference case. The corresponding

loops over reference determinants have already been introduced for the implementation

of Mk-MRCCSD gradients. In the current implementation based on HF or TCSCF or-

bitals, orbital relaxation can be treated by the Z-vector method as described in Section

4.6 as well as Refs. 131, 81, and 132.

The implementation of analytic Mk-MRCCSDT gradients has been checked in an anal-

ogous way as the corresponding Mk-MRCCSD first derivatives as described in Sec. 4.5.1.

4.7.2 Illustrative Examples for Mk-MRCCSDT Gradient

Calculations

To illustrate the applicability of the implemented analytic Mk-MRCCSDT gradients

three examples are given in the following. For all examples two closed-shell determinants

|Φ1〉 =
∣∣(core)2(valence− 2e−)2(HOMO)2

〉
(4.57)

and

|Φ2〉 =
∣∣(core)2(valence− 2e−)2(LUMO)2

〉
. (4.58)

are taken as references using orbitals from TCSCF calculations. HOMO (LUMO) cor-

responds to the highest-occupied (lowest-unoccupied) MO in a RHF calculation.

In the first example the equilibrium geometry of the ozone molecule (O3) is investi-

gated as this is a prototypical example for non-dynamical correlation effects and has been

widely studied in the literature (for a detailed overview concerning quantum-chemical

studies on ozone, see Ref. 136). Though O3 can be treated rather well with single-

reference CC methods if higher excitations are included, the rather large non-dynamical

correlation effects render a multireference treatment desirable.

The second example consists in the automerization process of cyclobutadiene (C4H4).

While for the rectangular equilibrium structure the wave function is dominated by one

reference determinant and may be described by single-reference methods, the square

transition state is a multireference problem due to the degeneracy of the frontier or-

bitals (b1g and b2g symmetry in D4h point group). For this reason the automerization of

cyclobutadiene has been extensively studied in the literature employing various multiref-
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erence methods.23,103,104,137–140 These theoretical investigations have focused not only on

the geometry parameters but also on the energy barrier of the automerization process.

As cyclobutadiene is a rather unstable compound, to the best of my knowledge, its ex-

perimental isolation has not been successful so far. Studies based on trapping reactions

only yield a rough estimate of the height of the automerization barrier.141

In the third example, the equilibrium geometries of didehydroarenes (arynes) are in-

vestigated. The strong biradical character of these systems has already been pointed

out in Section 4.5.2 thus motivating a proper multireference treatment. In this section

a study of 2,6-pyridyne, the 2,6-pyridynium cation and m-benzyne (C6H4), respectively,

is presented. The active orbitals chosen in this investigation are in all three cases of a1

and b2 symmetry.

4.7.2.1 Ozone (O3)

In the case of ozone, the contribution of the two reference determinants to the wave

function amount to 91 and 9%, respectively (the corresponding expansion coefficients

are c1 ≈ 0.95 and c2 ≈ −0.31 for the Mk-MRCCSDT/cc-pVTZ calculation at the

equilibrium geometry). Thus, the wave function has already substantial multireference

character.

In Table 4.7, the Mk-MRCCSDT geometry of O3 is compared to those obtained with

different single-reference CC methods and Mk-MRCCSD when using the cc-pVDZ and

cc-pVTZ basis.143 The CCSDT(Q) method144 includes quadruple excitations in a per-

turbative manner and can be considered of sufficient accuracy to serve as a standard

for comparison. The results obtained using the cc-pVDZ basis indicate that the bond

length increases when higher excitations are included [1.2584, 1.2828, and 1.2943 Å for

CCSD, CCSDT, and CCSDT(Q), respectively] and that the angle decreases (117.30,

116.50, and 116.21 ◦).

The geometrical parameters obtained from the Mk-MRCCSD approach (1.2759 Å and

115.95 ◦) are closer to the CCSDT(Q) result than the results from the corresponding

single-reference CCSD calculation. This can be taken as an indication that the explicit

consideration of the multireference character in the calculation leads to improved results.

On the other hand, the Mk-MRCCSD bond length is still too short in comparison to

CCSDT(Q). This indicates that an adequate treatment of dynamical electron correlation

at the Mk-MRCC level requires at least the inclusion of triple excitations.

The full inclusion of triple excitations at the Mk-MRCCSDT level further reduces
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Table 4.7: Geometrical parameters (bond length in Å and bond angle in degree)
of ozone (O3) computed at the CCSD, CCSDT, CCSDT(Q), Mk-MRCCSD and Mk-
MRCCSDT levels of theory using the cc-pVDZ (dz) and cc-pVTZ (tz) basis sets. For
the Mk-MRCC methods TCSCF orbitals have been used.

method basis R(OO) ](OOO)

CCSD
dz 1.2584 117.30
tz 1.2458 117.64

CCSDT
dz 1.2828 116.50
tz 1.2695 116.88

CCSDT(Q) dz 1.2943 116.21

Mk-MRCCSD
dz 1.2759 115.95
tz 1.2619 116.38

Mk-MRCCSDT
dz 1.2861 116.30
tz 1.2732 116.64

experiment142 1.2717 116.78

the deviation from the CCSDT(Q) results. The bond length and angle computed with

Mk-MRCCSDT (1.2861 Å and 116.30 ◦) are closer to the CCSDT(Q) value than the re-

sults obtained at the CCSDT levels of theory. This result supports the previous finding

that a well-balanced description of dynamical and non-dynamical correlation effects is

necessary for the computation of geometry parameters for the ozone molecule.47,145

Table 4.7 contains also results obtained for the cc-pVTZ basis. The comparison with

the single-reference results indicate that the same patterns are seen in the Mk-MRCCSD

and Mk-MRCCSDT calculations, i.e., the use of larger basis sets yields a shorter dis-

tance and a wider angle. Our best values, i.e., 1.2732 Å for the bond length and 116.64 ◦

for the angle obtained at the Mk-MRCCSDT/cc-pVTZ level of theory, are in excellent

agreement with experiment142 and deviates by just 0.0015 Å and 0.14 ◦, respectively.

4.7.2.2 Automerization of Cyclobutadiene (C4H4)

The cyclobutadiene molecule represents an antiaromatic system with two carbon-

carbon single bonds and two double bonds. Between the two equivalent rectangular

structures lies the square transition state. The height of the automerization barrier
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determines the interconversion of the two rectangular equilibrium structures. This au-

tomerization process of cyclobutadiene is depicted in Fig. 4.6.

C4 C3

C2C1

EA 

Figure 4.6: Schematic representation of the automerization of cyclobutadiene. De-
picted are the rectangular equilibrium structures and the square transition state. EA

represents the energy barrier.

Table 4.8: Geometrical parameters (bond lengths in Å and bond angle in degree) of
the cyclobutadiene (C4H4) molecule computed for the equilibrium structure. Geometries
have been obtained at the CCSD, CCSDT, Mk-MRCCSD and Mk-MRCCSDT levels of
theory using the cc-pVDZ basis set. For multireference calculations TCSCF orbitals
have been used.

method R(C1C2) R(C2C3) R(CH) ](HC1C2)

CCSD 1.5804 1.3543 1.0924 134.91
CCSDT 1.5784 1.3652 1.0941 134.93
Mk-MRCCSD 1.5708 1.3609 1.0923 134.91
Mk-MRCCSDT 1.5769 1.3660 1.0941 134.93

For the equilibrium geometry, the multireference character of the wave function is

rather small with contributions of the two reference determinants of 95% and 5% (the cor-

responding expansion coefficients are c1 ≈ 0.98 and c2 ≈ −0.22 for the Mk-MRCCSDT/cc-

pVDZ calculation at the equilibrium geometry). Table 4.8 summarizes the geometry
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Table 4.9: Bond lengths in Å of the square transition state of the automerization of the
cyclobutadiene (C4H4) molecule. Geometries have been obtained at the CCSD, CCSDT,
Mk-MRCCSD and Mk-MRCCSDT levels of theory using the cc-pVDZ basis set. For
multireference calculations TCSCF orbitals have been used.

method R(CC) R(CH)

CCSD 1.4565 1.0912
CCSDT 1.4645 1.0930
Mk-MRCCSD 1.4570 1.0913
Mk-MRCCSDT 1.4623 1.0931

parameters of the equilibrium structure obtained at the CCSD, CCSDT, Mk-MRCCSD

and Mk-MRCCSDT levels of theory using the cc-pVDZ basis set. Most pronounced

are the changes in the C1-C2 and C2-C3 bond lengths when using different methods.

Taking into account triple excitations by the CCSDT method, the CCSD bond lengths

(1.5804 and 1.3543 Å) are shortened by 0.002 Å in the case of C1-C2 and lengthened by

0.011 Å for C2-C3. The bond lengths obtained at the Mk-MRCCSD level are in both

cases shorter (by about 0.008 and 0.005 Å) than the CCSDT results. The inclusion of

triple excitations at the Mk-MRCCSDT level lengthens both C-C bonds by about 0.006

Å. For Mk-MRCCSDT the C1-C2 bond length lies then in between the CCSDT and Mk-

MRCCSD results while the C2-C3 bond length is slightly longer than the CCSDT result.

For C2-C3 Mk-MRCCSDT yields a bond length that is probably closer to the conver-

gence limit than CCSDT as the inclusion of triple excitations in both cases lengthens the

bond. For the C1-C2 bond such a statement is hardly possible as the trends are opposed

to each other for single-reference and multireference methods. The changes of the C-H

bond length and the H-C1-C2 angle show only a small dependence on the method used,

with maximum changes of 0.0018 Å and 0.02 ◦, respectively. The effect of a multirefer-

ence treatment on these parameters is rather small as it is obvious when comparing the

results of the single-reference and the corresponding multireference method.

More pronounced differences in the geometry are expected at the transition state of

the automerization process. Here, the two configurations become degenerate, thus pro-

viding equal contributions to the wave function. The results obtained for the geometry

at the transition state,v as given in Table 4.9, indicate that CCSDT predicts the C-C

vStarting from the square geometry of the transition state, the structure may be distorted in two
ways. One transforms the geometry to a rectangle, one to a rhombus.146 Optimizing the geometries
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Table 4.10: Automerization barrier (EA) of cyclobutadiene (in kcal mol−1) obtained for
geometries optimized at the CCSD, CCSDT, Mk-MRCCSD and Mk-MRCCSDT levels
of theory using the cc-pVDZ basis set as well as RHF orbitals for single-reference and
TCSCF orbitals for multireference computations.

method barrier height

CCSD 21.13
CCSDT 7.62
Mk-MRCCSD 7.79
Mk-MRCCSDT 7.87

bond length to be longer than CCSD by 0.008 Å. The Mk-MRCCSD bond length lies

in between the CCSD and CCSDT results and is predicted to be only 0.0005 Å longer

than the corresponding CCSD bond length. When accounting for triple excitations in

Mk-MRCC computations, the C-C bond is longer (by 0.0053 Å) than predicted by Mk-

MRCCSD but shorter (by 0.0022 Å) than the CCSDT result. Although these effects

are relatively small, it is interesting to note the reversed trend when comparing CCSD

and Mk-MRCCSD as well as CCSDT and Mk-MRCCSDT. Again, as for the equilib-

rium structure, the C-H bond length is less sensitive than the C-C bond length to the

method used with a maximum change of 0.0019 Å when comparing the CCSD and Mk-

MRCCSDT results.

The automerization barrier obtained at the different levels of theory is presented in

Table 4.10. While the energy barrier computed at the CCSD level (21.13 kcal mol−1)

is very large and seems, in comparison to the other results and the experimental esti-

mate, to be one order of magnitude too high, CCSDT predicts the barrier to be 7.62

kcal mol−1. However, if multireference effects are treated via the Mk-MRCC approach,

the barrier height is significantly improved (7.79 kcal mol−1) already within the singles

and doubles approximation, that is 0.17 kcal mol−1 larger than the CCSDT energy bar-

rier. For the Mk-MRCCSDT method, the barrier height is predicted to be 7.87 kcal

mol−1 which is 0.08 and 0.25 kcal mol−1 higher than the results obtained at the Mk-

MRCCSD and CCSDT level, respectively. A comparison to an experimental number

requires calculations in two different D2h subgroups of D4h symmetry. Therefore, two different sets
of MOs are required to follow the proper distortion from the D4h structure. For the computations
carried out at the D4h symmetry, the square structure has been slightly distorted by stretching one
of the C-C bonds by 10−6 Å in order to obtain the proper D2h molecular orbitals. This distortion
is very small and has only negligible effect on the computed geometries and energies.
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is hardly possible as only a rough estimate of the barrier height (1.6 - 10 kcal mol−1)

is reported in the literature.141 The only possible conclusion from this estimate is that

the results observed, except for CCSD, have the correct order of magnitude and lie

in the experimentally predicted range for the barrier height. It is interesting to note

that the results obtained at the Mk-MRCC level are always over 1 kcal mol−1 larger

than the corresponding barrier obtained at the BW-MRCC level of theory. The barrier

height is predicted to be 6.2-6.5 kcal mol−1 for BW-MRCCSD and 5.7-6.1 kcal mol−1

for BW-MRCCSD(T),137 depending on the size-extensivity correction used. Thus, the

perturbative triples correction for BW-MRCCSD lowers the energy barrier while a full

treatment of triple excitations within the Mk-MRCC model increases the barrier height.

For comparison, the multireference configuration-interaction method with singles and

doubles (MRCISD) yields an automerization barrier of 7.3 kcal mol−1.23

4.7.2.3 Arynes

The optimized structures for the arynes investigated, namely 2,6-pyridyne (C5NH3),

2,6-pyridynium cation (C5NH+
4 ) and m-benzyne (C6H4), are depicted in Fig. 4.7. Their

multireference character is evident from the expansion coefficients obtained in Mk-

MRCC calculations. The corresponding values are 0.92, 0.90 and 0.95 for c1 while

C5C3

C6C2

C4

C1

C5C3

C6C2

N1

C4

C5C3

C6C2

N1

C4

2,6‐pyridyne  2,6‐pyridynium cation  m‐benzyne 

CCSD               1.919 
CCSD(T)  2.059 
CCSDT           2.051 
Mk‐MRCCSD  2.062 
Mk‐MRCCSDT 2.066 

CCSD               2.167 
CCSD(T)  2.243 
CCSDT           2.229 
Mk‐MRCCSD  2.221 
Mk‐MRCCSDT 2.232 

CCSD               1.590 
CCSD(T)  2.127 
CCSDT           2.108 
Mk‐MRCCSD  2.097 
Mk‐MRCCSDT 2.122 

Figure 4.7: Optimized structures for 2,6-pyridyne, the 2,6-pyridynium cation and m-
benzyne computed at the CCSD, CCSDT, Mk-MRCCSD and Mk-MRCCSDT levels of
theory using the cc-pVDZ basis set. The representative C2C6 bond distance is in Å.
RHF (TCSCF) orbitals were used in single-reference (multireference) computations.

71



4 Analytic First Derivatives for the Mk-MRCC Ansatz

Table 4.11: Geometrical parameters (bond lengths in Å and bond angles in degree)
of the 2,6-pyridyne (C5NH3) obtained at the CCSD, CCSD(T), CCSDT, Mk-MRCCSD
and Mk-MRCCSDT levels of theory using the cc-pVDZ basis set as well as RHF orbitals
for single-reference and TCSCF orbitals for multireference computations.

CCSD CCSD(T) CCSDT Mk-MRCCSD Mk-MRCCSDT

R(N1C2) 1.3484 1.3604 1.3581 1.3491 1.3572
R(C2C3) 1.3908 1.3978 1.3970 1.3914 1.3971
R(C3C4) 1.4071 1.4112 1.4111 1.4062 1.4112
R(C3H) 1.0923 1.0947 1.0944 1.0926 1.0945
R(C4H) 1.0985 1.1000 1.0998 1.0977 1.0998
R(C2C6) 1.9192 2.0589 2.0508 2.0617 2.0655

](C2N1C6) 90.75 98.35 98.05 99.66 99.09
](N1C2C3) 143.02 136.95 137.26 136.26 136.53
](C2C3C4) 115.90 117.24 117.10 116.99 117.13
](C3C4C5) 111.43 113.27 113.24 113.84 113.58
](C2C3H) 119.89 119.49 119.57 119.80 119.67

−0.40, −0.44 and −0.32 for c2 (Mk-MRCCSDT/cc-pVDZ calculation employing the ref-

erence determinants as described above) which means that the relative contributions of

the two reference functions are about 84, 81 and 90% for the first reference while 16,

19 and 10% for the second one. These ratios of the individual contributions are more

or less identical to the ones obtained from the corresponding Mk-MRCCSD calculation

where 83, 81 and 90 % are observed for the first as well as 17, 19 and 10 % for the second

determinant.

To illustrate the influence of the multireference treatment, the geometrical param-

eters determined at the Mk-MRCCSD and Mk-MRCCSDT levels are compared with

those obtained at the single-reference CC level. The geometrical parameters obtained

are summarized in Tables 4.11 - 4.13. The effect of the multireference treatment is best

monitored by means of the C2N1C6 angle or, alternatively, the C2C6 distance. The CCSD

treatment yields for all three arynes the smallest C2N1C6 angle with 90.75, 108.12 and

71.33 ◦, while CCSD(T), CCSDT, Mk-MRCCSD and Mk-MRCCSDT calculations favor

wider angles. Consistent with this finding, the CCSD approach yields a shorter C2C6

distance for 2,6-pyridyne, the 2,6-pyridynium cation, and m-benzyne (1.9192, 2.1667 and

1.5902 Å) than the CCSD(T), CCSDT, Mk-MRCCSD and Mk-MRCCSDT calculations.

Again, these findings indicate the shortcomings of the single-reference CC treatments, in
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Table 4.12: Geometrical parameters (bond lengths in Å and bond angles in degree)
for the 2,6-isomer of the pyridynium cation (C5NH+

4 ) obtained at the CCSD, CCSD(T)
CCSDT, Mk-MRCCSD and Mk-MRCCSDT levels of theory using the cc-pVDZ basis
set as well as RHF orbitals for single-reference and TCSCF orbitals for multireference
computations.

CCSD CCSD(T) CCSDT Mk-MRCCSD Mk-MRCCSDT

R(N1C2) 1.3381 1.3511 1.3490 1.3429 1.3490
R(C2C3) 1.3754 1.3829 1.3815 1.3750 1.3810
R(C3C4) 1.4140 1.4187 1.4187 1.4143 1.4191
R(N1H) 1.0218 1.0239 1.0237 1.0221 1.0237
R(C3H) 1.0935 1.0954 1.0953 1.0936 1.0954
R(C4H) 1.0964 1.0978 1.0978 1.0962 1.0979
R(C2C6) 2.1667 2.2434 2.2293 2.2205 2.2324

](C2N1C6) 108.12 112.24 111.44 111.54 111.67
](N1C2C3) 130.72 127.58 128.22 128.27 128.08
](C2C3C4) 117.31 117.71 117.58 117.36 117.54
](C3C4C5) 115.82 117.18 116.97 117.19 117.08
](C2C3H) 119.78 119.85 119.90 120.13 120.01

Table 4.13: Geometrical parameters (bond lengths in Å and bond angles in degree) of
the m-benzyne (C6H4) obtained at the CCSD, CCSD(T), CCSDT, Mk-MRCCSD and
Mk-MRCCSDT levels of theory using the cc-pVDZ basis set as well as RHF orbitals for
single-reference and TCSCF orbitals for multireference computations.

CCSD CCSD(T) CCSDT Mk-MRCCSD Mk-MRCCSDT

R(C1C2) 1.3638 1.3891 1.3870 1.3809 1.3880
R(C2C3) 1.3939 1.3927 1.3920 1.3869 1.3919
R(C3C4) 1.4208 1.4149 1.4148 1.4098 1.4148
R(C1H) 1.0947 1.0915 1.0914 1.0897 1.0914
R(C3H) 1.0912 1.0958 1.0956 1.0938 1.0957
R(C4H) 1.0978 1.0998 1.0996 1.0976 1.0996
R(C2C6) 1.5902 2.1265 2.1084 2.0965 2.1224

](C2C1C6) 71.33 99.89 98.94 98.77 99.73
](C1C2C3) 160.23 135.28 136.06 136.26 135.44
](C2C3C4) 108.18 117.52 117.32 117.19 117.45
](C3C4C5) 111.85 114.51 114.30 114.34 114.50
](C2C3H) 125.95 120.40 120.47 120.56 120.46
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particular for m-benzyne, where CCSD yields a very small C2C6 distance corresponding

to a bicyclic structure.

The change in the C2C6 distance due to triple excitations is considerably more pro-

nounced for the single-reference methods than for Mk-MRCC. While the change in this

distance from CCSD to CCSDT is 0.1316, 0.0626 and 0.5182 Å, respectively, a differ-

ence of only 0.0038, 0.0119 and 0.0259 Å is observed when comparing Mk-MRCCSD and

Mk-MRCCSDT results. Interestingly, the C2C6 distance in 2,6-pyridyne computed at

the Mk-MRCCSD level lies between the CCSDT and Mk-MRCCSDT results. For the

other two compounds Mk-MRCCSD yields a distance that is slightly shorter than the

corresponding CCSDT result. The CCSD(T) method yields in all three cases a longer

C2C6 distance (by 0.0081, 0.0141 and 0.0181 Å, respectively) than CCSDT.
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5 Parallelization of CCSDT and

Mk-MRCCSDT

When aiming for quantitative accuracy it is essential to consider in the CC treatment

triple-excitation effects. While in most calculations triple excitations are often treated

using approximate schemes such as the CC singles and doubles (CCSD) approach with

a perturbative treatment of triples [CCSD(T)],6 the full inclusion of triple excitations

within the CC singles, doubles and triples (CCSDT)7,8 model has turned out to be

of importance in areas where quantitative accuracy is needed.10,147–152 The same holds

when applying multireference methods. Beyond the recently proposed Mk-MRCCSD(T)

approaches,137,153 explicit expressions for the implementation of full triples have been

presented within the Mk-MRCC framework in order to tackle multireference cases with

high accuracy.68 However, the application of CC methods including a full treatment of

triple excitations to larger chemical problems is hampered by the considerable increase

of computational effort with increasing number of electrons and basis functions. If N

represents a measure of the system size, the operation count and therefore the execu-

tion time scales as N8 for CCSDT and d · N8 for Mk-MRCCSDT with d denoting the

number of chosen reference determinants. In comparison the storage requirements for

intermediates and CC amplitudes only scales as N6 and d ·N6, respectively. Therefore,

the limiting factor of CCSDT calculations is the execution time and not the storage

requirement.

To circumvent limitations due to the execution time and motivated by the cheap com-

puting power available through computer clusters, several parallel implementations of

single-reference CC methods have been recently presented.11–20 For most of these paral-

lelization schemes additional tools have been developed. The parallelization in Ref. 12,

for example, is based on the use of Global Arrays (GA)154 as a parallelization tool. GA

simulates shared memory programming on distributed memory computer clusters by

striping large arrays across nodes. In view of the large memory and disk space available

nowadays, the striping of individual arrays may no longer be necessary. Therefore, an

alternative approach, namely Array Files (AF),155 has been developed where the whole

array is stored on a given node. The concept of AF has been used for a parallel im-
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plementation of CCSD energy calculations by Janowski et al.14 A highly sophisticated

parallel algorithm for the computation of CCSD(T) energies has been furthermore re-

ported by Olson et al. thereby combining distributed and shared memory techniques by

using the Distributed Data Interface (DDI/3).13,156 This implementation is tailored to

multiprocessor and multicore nodes connected via a dedicated communication network.

An ansatz which works without an additional layer of complexity provided by libraries

such as GA, AF or DDI/3 has been reported recently for the parallel calculation of CCSD

and CCSD(T) energies as well as analytic first and second derivatives.15 This scheme is

based on the message passing interface (MPI)157 and the adaptation of an efficient serial

algorithm to parallel environments where all nonparallel steps run redundantly on all

available processors at the same time.

In the field of MRCC theory, parallel algorithms are hardly found as MRCC cal-

culations are so far not considered a routine application. Only Piecuch and Land-

man reported a parallelization scheme for state-universal CCSD calculations.158 In this

scheme the underlying serial algorithm has been modified by parallelizing the most time-

determining steps using OpenMP.159

To the best of my knowledge, most of the parallel CC algorithms are so far only capa-

ble to compute perturbative treatments of triple excitations such as in CCSD(T). Par-

allel implementations for CCSDT or a corresponding multireference ansatz have been

reported for CCSDT within the general CC program of Kállay20 and the NWChem

program package18 which has been developed for computations using parallel super-

computers. In contrast to these approaches, a more practical approach is described in

this work based on the adaptation of an efficient serial algorithm that can be run on

workstation clusters. Furthermore, a detailed analysis of the time-determining steps for

a full treatment of triple excitations as well as the resulting parallel algorithm in the

quantum-chemical program package CFOUR49 is presented. The applicability of the

parallelization strategy is demonstrated by computations on N2O, ozone (O3), benzene

(C6H6) and 2,6-pyridyne (C5NH3). The hardware specifications of the computers used

for the calculations carried out in this chapter can be found in the appendix.
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5.1 Parallelization of CCSDT and Mk-MRCCSDT

Energy Computations

In the efforts to parallelize CCSDT and Mk-MRCCSDT energy calculations, the strat-

egy already described in Ref. 15 has been followed for the parallel computation of CCSD

and CCSD(T) energies as well as analytic first and second derivatives. To avoid the

communication of intermediate quantities, most of the quantities needed within the CC

iterations are stored completely on every node. Thus, the algorithm presented here is

tailored to cluster architectures with moderate hardware specifications as well as in-

expensive and rather slow standard interconnect structures such as Gigabit Ethernet.

Furthermore, is is assumed that enough fast memory and disk space are available locally

on every node to store the full set of t-amplitudes. In this way communication is mini-

mized as only the CC amplitudes need to be communicated.

In the actual algorithm, parts of the intermediates are contracted with the proper

t3-amplitudes to yield parts of the resulting quantities which, at the end of the parallel

operation, are broadcasted to all other nodes. The costs associated with the communi-

cation of the triples amplitudes thus scales as n3
occn

3
vrt for CCSDT and d · n3

occn
3
vrt for

Mk-MRCCSDT, where nocc (nvrt) denotes the number of occupied (virtual) orbitals.

This is two orders of magnitudes smaller than the required time for the computation

of the amplitudes which has a scaling of n3
occn

5
vrt and d · n3

occn
5
vrt, respectively. Disre-

garding communication latencies, the dominating steps have been implemented in such

a way that the total amount of communication between the parallel processes does not

depend on the number of involved processors due to the MPI routine used. Thus, the

distribution of the time-determining steps to different nodes reduces the overall walltime

significantly, particularly when larger examples are considered.

As for the parallelization of CCSD and CCSD(T) calculations,15 it is important to

identify the time-determining steps. CCSDT energy calculations are dominated by the

computation of the t3-amplitudes yielding a scaling of n3
occn

5
vrt. Furthermore, contribu-

tions of the t3-amplitudes to the t2-amplitude equations having a formal scaling of N7

need to be considered. Thus, the time spent for the calculation of the triples amplitudes

and the resulting contributions to the t2-amplitude equations increases more rapidly

with the number of basis functions than in the pure CCSD part (the scaling of CCSD

is n2
occn

4
vrt) which renders the triples part by far the time-determining step in CCSDT

calculations. This becomes obvious when considering the timings for a CCSDT energy
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Table 5.1: Timings (walltime in s) for the N2O molecule for one CC iteration and the
triples part within this iteration. The code has been parallelized outside or inside the
loop over occupied orbitals. The computation has been carried out at the CCSDT/cc-
pCVTZ level (129 basis functions). For the communication outside the loop the ratio of
the triples part to the whole CC iteration is given in parenthesis. On each node 1 cpu
has been used.

# nodes CC iter., outside CC iter., inside triples, outside triples, inside

1 1065 1062 1046 (98%) 1043
2 547 545 528 (97%) 526
4 288 289 269 (93%) 269
8 158 157 139 (88%) 138
16 93 94 74 (80%) 75

calculation, e.g., for the N2O molecule employing the cc-pCVTZ basis set128 (Table 5.1).

For this example the time spent in the triples part for a serial calculation is about 98 %

of a CC iteration.

The approach to parallelize the computation of the triple amplitudes starts with the

t3-amplitude equations given as

tabcijkD
abc
ijk =

〈
Φabc
ijk

∣∣∣e−T̂ [ĤN − Ĥ0

]
eT̂
∣∣∣0〉 , (5.1)

with

Ĥ0 =
∑
p

fpp{â†pâp} . (5.2)

The denominator array Dabc
ijk is defined as

Dabc
ijk = fii + fjj + fkk − faa − fbb − fcc (5.3)

where i, j, k, . . . denotes occupied and a, b, c, . . . virtual spin orbitals. The normal-ordered

Hamiltonian ĤN is given as

ĤN =
∑
pq

fpq
{
â†pâq

}
+

1

4

∑
pqrs

〈pq||rs〉
{
â†pâ

†
qâsâr

}
, (5.4)

with the Fock-matrix elements computed as
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fpq = hpq +
nocc∑
k

〈pk||qk〉 , (5.5)

from the one-electron integrals hpq and the antisymmetrized two-electron integrals 〈pq||rs〉.
The strings

{
â†pâp

}
,
{
â†pâq

}
and

{
â†pâ

†
qâsâr

}
denote normal-ordered sequences of creation

(â†p) and annihilation (âq) operators.

As described in Chapter 3, the basic feature in the serial CFOUR algorithm for the

formation of the t3-amplitudes in a CCSDT energy calculation is an outer loop over an

index triple i, j, k of the tabcijk-amplitudes (for a detailed description of the implementa-

tion see Refs. 87 and 97). Blocks of a, b, c index triples are computed within the loop

one at a time and stored on disk for the next iteration. In addition, these blocks are

used immediately to calculate the contributions to the singles and doubles amplitude

equations. A schematic representation of this algorithm is depicted in the upper box of

Fig. 5.1.

read old t3

do i,j,k
calculate new abc-block of t3

write abc-block of t3 to disk
compute t3 contributions to

t1- and t2-amplitudes
end do

read old t3

do i,j,k (parallelized)
calculate new abc-block of t3

write abc-block of t3 to temporary file
compute t3 contributions to t1- and t2-

amplitudes
end do
communicate t3 and write to disk
communicate contributions to t1 and t2

read old t3

do i,j,k (parallelized)
calculate new abc-block of t3

communicate t3

write communicated abc-blocks of t3 to disk
compute t3 contributions to t1- and t2-

amplitudes
end do
communicate contributions to t1 and t2

communication outside loop communication inside loop

1

Figure 5.1: Schematic representation of the two different parallelization strategies. The
serial algorithm (top) has been parallelized by communicating the triples amplitudes
outside (left) or inside (right) the loop over occupied orbitals i,j,k.

The Mk-MRCCSDT ansatz is implemented using the same loop structure over indices
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i, j, k. The triples amplitude equations of the Mk-MRCC ansatz are given as〈
Φabc
ijk(µ)

∣∣∣e−T̂µĤeT̂µ

∣∣∣Φµ

〉
cαµ +

∑
ν(6=µ)

〈
Φabc
ijk(µ)

∣∣∣e−T̂µeT̂ν

∣∣∣Φµ

〉
Heff
µνc

α
ν = 0 , (5.6)

The computational cost for Eq. (5.6) is given for d reference determinants as d ·n3
occn

5
vrt.

Within the Mk-MRCC approach the amplitude equations [Eq. (5.6)] can be separated

into a single-reference and a coupling part.42 The first part is very similar to Eq. (5.1)

with the only difference that all quantities are now specific for one reference determinant

µ. Consequently, the Mk-MRCC ansatz can be implemented within a single-reference

CC (SRCC) code as, for example, provided by the CFOUR package by looping over

the reference determinants and adding the coupling terms.31 This does not affect the

general structure of the algorithm for the calculation of the t3-amplitudes as mentioned

before. The only difference is an extra loop over reference determinants around the loop

over the index triples i, j, k and the additional coupling terms which are added inside

the i, j, k loop.

For a parallelization of the loop over the index triples i, j, k the t3-amplitudes and

the triples contributions to the t1- and t2-amplitudes computed on separate nodes need

to be communicated. For the communication of the triples amplitudes two different

strategies are possible as shown in Fig. 5.1. The t3-amplitudes are either written to

a temporary file and communicated outside the loop or communicated directly after

their computation inside the loop. The contributions to the t1- and t2-amplitudes are in

both cases computed within the same i, j, k loop and communicated outside the loop.

Using the strategy described above all triple terms and contributions are parallelized

simultaneously. Each parallel process has to calculate a similar amount of i, j, k index

triples which is then broadcasted to all other processors.

The performance of the two possible schemes is demonstrated via computations for

the N2O molecule at the CCSDT level of theory using the cc-pCVTZ basis (129 basis

functions).i The timings for one CC iteration and the respective triples part are given in

Table 5.1. It can be seen that the walltime for one CC iteration is reduced considerably

with increasing number of processors. Thus, the implementation will make calculations

at the CCSDT level that would take months feasible within days or weeks, provided

that an appropriate number of nodes is used. In addition, with a larger number of

nodes the triples part becomes less dominant in a CCSDT calculation. While for two

iThe absolute energy obtained is -184.572494 Hartree when using the geometry parameters:
R(NN)=1.1290 Å, R(NO)=1.1849 Å, ](NNO)=180.0 ◦.

80



5 Parallelization of CCSDT and Mk-MRCCSDT

0

2

4

6

8

10

12

14

16

sp
ee

du
p

0 2 4 6 8 10 12 14 16

number of nodes

optimal speedup
CC iteration, outside
CC iteration, inside
triples part, outside
triples part, inside

Figure 5.2: Parallel scaling of energy calculation at the CCSDT/cc-pCVTZ level of
theory for N2O. Depicted is the speedup for one CCSDT iteration and for the triples
part within this iteration. The t3-amplitudes are communicated either outside or inside
the loop over i, j, k indices. On each node 1 cpu has been used.

nodes 97 % of the time are spent computing triples contributions, it is reduced to 80

% on 16 nodes. The corresponding speedupii of the parallel algorithm is depicted in

Fig. 5.2. The speedup observed with increasing number of nodes is quite close to

the optimal one. With 16 nodes the speedup of one CCSDT iteration reaches values

between 11 and 12, while the triples part alone yields a speedup of 14. It is interesting to

note that the two outlined communication strategies for the t3-amplitudes (outside and

inside the i, j, k loop) show very similar performance. However, a careful investigation

of Fig. 5.2 indicates some preferences to the “outside communication”. Therefore, this

communication strategy is used in the following.

As the full inclusion of triple excitations in CC calculation is computational demanding

iiThe speedup is defined as the ratio of the serial execution time and the execution time on n nodes.
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Table 5.2: Timings (walltime in s) for one CC iteration of the computation for the N2O
molecule using approximate schemes of CCSDT. The computations have been carried out
using the cc-pV5Z basis set (273 basis functions). The speedups for the corresponding
computations are given in parentheses. On each node 1 cpu has been used.

# nodes CCSDT-1a CCSDT-1b CCSDT-2 CCSDT-3 CC3

1 596 605 650 660 667
2 311 (1.9) 318 (1.9) 356 (1.8) 373 (1.8) 373 (1.8)
4 170 (3.5) 175 (3.5) 214 (3.0) 231 (2.9) 229 (2.9)
8 99 (6.0) 102 (5.9) 142 (4.6) 158 (4.2) 157 (4.2)
16 64 (9.3) 67 (9.0) 106 (6.1) 123 (5.4) 123 (5.4)

due to its scaling behavior (N8), several approximate iterative schemes of CCSDT have

been developed, namely CCSDT-n (n=1a, 1b, 2, 3)160,161 and CC3.162 In these schemes

certain terms of the CCSDT amplitude equations are skipped so that the computational

scaling is reduced to N7. As these methods are implemented within the same i, j, k

loop in CFOUR their parallelization is straightforward, but should be mentioned at this

point. The timings for these methods obtained for the computation on N2O using the

cc-pV5Z basis143 (273 basis functions)iii are reported in Table 5.2. As for CCSDT the

walltime is reduced considerably when increasing the number of nodes used, e.g., the

calculation time for one iteration of the CCSDT-1a method is about 10 minutes on 1

node in comparison to about 1 minute on 16 nodes yielding a speedup of 9.3. The

speedup for 16 nodes observed here is smaller than for CCSDT which is explained by

the fact that these computations are less dominated by the triples part. While the time

spent calculating the triples contributions for the CCSDT-1a method is 95 % of the

whole CC iteration on 1 node (compared to 98 % for CCSDT using a smaller basis) it

is reduced to 58 % on 16 nodes (80 % for CCSDT).

The performance of the parallel computation of Mk-MRCCSDT energies is shown

for the ozone molecule. The computationiv has been performed using the cc-pCVTZ

basis set and two-configurational SCF orbitals (with the active-space orbitals having b1

and a2 symmetry) using the experimental geometry (R=1.2717 Å, ]=116.8 ◦).142 The

timings for one CC iteration and the corresponding triples part are given in Table 5.3.

iiiThe absolute energies obtained are (in Hartree): CC3: -184.595095, CCSDT-1a: -184.594467,
CCSDT-1b: -184.594525, CCSDT-2: -184.588903, CCSDT-3: -184.589449.

ivThe absolute energy obtained is -225.306818 Hartree.
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Figure 5.3: Parallel scaling of energy calculation at the Mk-MRCCSDT/cc-pCVTZ
level of theory for O3. Depicted is the speedup for one Mk-MRCCSDT iteration and for
the triples part within this iteration. The t3-amplitudes are communicated outside the
loop over i, j, k indices. On each node 1 cpu has been used.

Table 5.3: Timings (walltime in s) for the O3 molecule for one CC iteration and the
triples part within this iteration. The communication has been performed outside the
loop. The computation has been carried out at the Mk-MRCCSDT/cc-pCVTZ level
(129 basis functions). The ratio of the triples part to the whole CC iteration is given in
parenthesis. On each node 1 cpu has been used.

# nodes CC iter. triples part

1 5864 5811 (99%)
2 3065 3013 (98%)
4 1597 1544 (97%)
8 830 778 (94%)
16 436 384 (88%)
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The time for one CC iteration is considerably reduced with an increasing number of

processors yielding a computation time of about 7 minutes on 16 nodes in comparison

to 98 minutes on 1 node. The triples part of this calculation is even more dominant than

for a single-reference CCSDT case. For Mk-MRCCSDT the time spent in the triples part

is 99% on 1 node and 88% on 16 nodes (compared to 98% and 80% for CCSDT). The

speedup obtained for the Mk-MRCCSDT computations is displayed in Fig. 5.3. With

16 nodes the speedup observed lies between 13 and 14, while the triples part alone yields

a speedup of over 15. These speedups are even closer to the optimal speedup as the ones

obtained for the CCSDT calculation of N2O, thus, demonstrating the efficiency of the

parallelization scheme presented here for Mk-MRCCSDT computations.

5.2 Results and Discussion

In this section the overall performance and applicability of the parallelization scheme

is demonstrated. Results of two applications are presented that involve typical problems

in quantum chemistry for which the inclusion of triple excitation is desirable but so far

extremely time consuming.

5.2.1 The CCSDT Energy of Benzene

For the investigation of the energetics of molecules, such as the atomization en-

ergy, several schemes have been reported in the literature to achieve high-accuracy re-

sults.147,150,151 From these studies it is obvious that triple excitations are of importance

and that contributions beyond CCSD(T) due to a full treatment of triple excitations at

the CCSDT level of theory are non-negligible: the contribution from non-perturbative

triple excitations, approximated by the difference of CCSDT and CCSD(T) extrapolated

from triple- and quadruple-zeta quality basis sets is found for example to be crucial for

obtaining chemical accuracy (about 1 kcal/mol) for the molecules N2, C2H2, CO2, HCN,

O2 (see Ref. 151), as well as for vinyl chloride,163 cyclopropenylidene, propadienyli-

dene164 and many others. However, these computations are often very time consuming

and the applicability of these schemes thus is limited to rather small molecules. Using

the parallelization scheme presented here, high-level computations on larger molecules

as benzene or substituted benzenes become feasible.

To demonstrate the applicability of the parallelization scheme for medium-sized mole-

cules, benzene (with geometrical parameters R(CC)=1.3911 Å, R(CH)=1.0800 Å)165 has
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Figure 5.4: Parallel scaling of frozen-core energy calculation at the CCSDT/cc-pVTZ
level for benzene. Depicted is the speedup for one CCSDT iteration and for the triples
part within this iteration. The jobs have been distributed in a round-robin fashion.

been chosen as a typical representative example. The timings for the frozen-core (fc)

energy calculation at the CCSDT level of theory using the cc-pVTZ basis set143 are given

in Table 5.4. As for N2O, the walltime is reduced considerably with increasing number

of nodes. The walltime for one CC iteration on one node is about six hours whereas the

same computation on 16 nodes only requires about 25 minutes. Thus, the whole calcu-

lation is carried out within hours instead of days. In Fig. 5.4 the corresponding speedup

is visualized. In comparison to the results obtained for N2O (Fig. 5.2) the speedup for

benzene is closer to the optimal speedup. Using 16 nodes the speedup observed is 14

for one CC iteration and larger than 15 for the triples part (compare to 11-12 and 14 in

the case of N2O). Thus, the scaling of the total time with the number of processors is

improving for increasing system size (129 basis functions and 16 correlated electrons for

N2O, 264 basis functions and 30 correlated electrons for benzene) as the importance of
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Table 5.4: Timings (walltime in s) for one CC iteration for the benzene molecule and
the triples part within this iteration. The computation has been carried out at the
fc-CCSDT/cc-pVTZ level (264 basis functions). The jobs have been distributed in a
round-robin fashion.

# nodes CC iteration triples part

1 21669 21494
2 11036 10861
4 5866 5685
8 2986 2805
16 1542 1371
20 1302 1131
22 1209 1037
24 1327 1126
28 1160 963
32 1081 886
64 809 594

the parallelized, time-determining steps is even larger. It is worthwhile to note the drop

in the speedup when using 24 instead of 22 nodes. All the computations presented in

this section have been carried out on 22 nodes with four cores each. The jobs are dis-

tributed in a round-robin fashion, i.e., every node first obtains only one job. After that

all remaining jobs are distributed in the same way. This means that for computations

with up to 22 nodes only one core per node has been used. After that point at least

some of the nodes need to handle more than one job at a time, i.e., these nodes enter the

region of so-called symmetric multiprocessing. The influence of this on the computation

time is shown in Table 5.5 for a computation using 16 cores. The same calculation has

been carried out using a different number of cores per node. While using one core per

node the walltime observed is 25 minutes, the computation of one iteration takes about

five minutes longer when the number of cores is increased from one to two yielding a

speedup of 12 instead of 14. Increasing the number of cores per node again by one, the

computational effort grows by additional 9 minutes, lowering the speedup to nine. Thus,

when increasing the number of cores per node used in a calculation a loss of hardware

efficiency is observed which worsens with higher number of cores per node.
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Table 5.5: Timings (walltime in s) and corresponding speedup for one iteration in the
calculation of benzene at the fc-CCSDT/cc-pVTZ level (264 basis functions) when the
number of CPUs per node is increased. The computation has been performed using 16
cores.

# CPUs per node timing speedup

1 1542 14
2 1812 12
3 2360 9

5.2.2 The 2,6-Pyridyne (C5NH3) Molecule

The applicability of the parallelization scheme is further demonstrated by investigating

the 2,6-isomer of the didehydropyridine (pyridyne) studied in Section 4.5.2. This study

of the geometry of 2,6-pyridyne at the CCSD, CCSD(T) and Mk-MRCCSD level did

not provide a final answer for this class of molecules.31 While CCSD and Mk-MRCCSD

predicts both forms to be a minimum (with the monocyclic form to be more stable at the

Mk-MRCCSD level and the bicyclic form to be more stable for CCSD) CCSD(T) only

yields a minimum for the monocyclic structure. In order to narrow down the problem

high-level multireference ab-initio calculations are necessary. The recent development of

the Mk-MRCCSDT approach68 allows the inclusion of full triple excitations. However,

calculations at this level of theory are demanding and time consuming when proper basis

sets are to be used.

To extend the previous study of 2,6-pyridyne single-point energy calculations at the

Mk-MRCCSDT/cc-pVTZ level have been carried out. The geometries of the bicyclic and

the monocyclic form as well as the transition state are obtained at the Mk-MRCCSD/cc-

pCVTZ level (see Sec. 4.5.2.2). Two closed-shell determinants are used as reference as

explained in Sec. 4.5.2.

The resulting energies are depicted in Fig. 5.5. For comparison, the single-point en-

ergies computed at the fc-CCSD and fc-Mk-MRCCSD levels have been added to the

figure. The CCSD energy for the bicyclic form is lower (2.9 kcal mol−1) than that for

the monocyclic form. The energy of the transition state lies in between. Mk-MRCCSD

yields a lower energy for the monocyclic isomer (3.9 kcal mol−1) and a barrier of 0.2

kcal mol−1 from the bicyclic form. When the effect of triple excitations is included at

the CCSDT and Mk-MRCCSDT levels of theory the monocyclic form is found to be

87



5 Parallelization of CCSDT and Mk-MRCCSDT

CCSD 
2.9 kcal mol‐1 

Mk‐MRCCSD 
‐3.9 kcal mol‐1 

CCSDT 
‐4.6 kcal mol‐1 

Re
la
ti
ve
 E
ne

rg
y 

Mk‐MRCCSDT 
‐5.7 kcal mol‐1 

4.1  kcal mol‐1 

C2  C6 

Figure 5.5: Schematic representation of the energetic ordering of the monocyclic and
bicyclic forms of 2,6-pyridyne as obtained in frozen-core computations at the CCSD,
Mk-MRCCSD, CCSDT and Mk-MRCCSDT levels of theory using the cc-pVTZ basis
set and the RHF-Mk-MRCCSD/cc-pCVTZ geometries from Ref. 31. The energies are
given relative to the bicyclic form.

lower in energy than the bicyclic one. The energy computed at the Mk-MRCCSD/cc-

pCVTZ transition-state geometry lies in between. The inclusion of triple excitations at

the CCSDT level leads to an considerable stabilization of the monocyclic isomer (7.5

kcal mol−1). The additional stabilization at the Mk-MRCCSDT level is significantly

smaller (1.8 kcal mol−1).

These results indicate that the energy minimum of the bicyclic isomer of 2,6-pyridyne

may be an artifact of theory due to the lack of triple excitations. Interestingly, compu-

tations at the Mk-MRCCSD(T) level, where triple excitations are treated in an approx-

imate manner, yield comparable findings supporting this conclusion.153

As the calculations at the Mk-MRCCSDT level are computationally demanding they

have only been carried out using 8 and 16 nodes. The walltimes observed for the calcu-

lations are given in Table 5.6. The computation time for the monocyclic isomer is about

178 minutes on 8 nodes and about 102 minutes on 16 nodes yielding a speedup of 1.8.
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For the corresponding computation at the CCSDT level a speedup of 1.6 is observed.

Table 5.6: Timings (walltime in s) for one CC iteration for the energy computations of
2,6-pyridyne at geometries for the bicyclic and monocyclic form as well as the transition
state. The frozen-core calculations have been carried out on 8 nodes (using 1 cpu each)
employing the cc-pVTZ basis set (222 basis functions) and the Mk-MRCCSD/cc-pCVTZ
geometry.

bicyclic transition state monocyclic

Mk-MRCCSDT 10707 10718 10699
CCSDT 2529 2548 2526
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6 Summary

Coupled-cluster theory in its single-reference formulation represents one of the most

successful approaches in quantum chemistry for the description of atoms and molecules.

To extend the applicability of single-reference coupled-cluster theory to systems with

degenerate or near-degenerate electronic configurations, multireference coupled-cluster

methods have been suggested in the literature. However, many of the methods are not

formulated in a general way, i.e., they have been formulated to describe only specific

multireference problems (exceptions are for example the state-specific MRCC methods

such as the Mk-MRCC approach suggested by Mukherjee and coworkers,41,42 as well as

the BW-MRCC ansatz40 or the renormalized coupled-cluster approach166) and do not

represent black-box approaches. For only few of these MRCC theories there is an effi-

cient algorithm available, e.g., for Mk-MRCC (e.g., developed in this work or within the

PSI program package167) or BW-MRCC.40 Additionally, the lack of analytic derivatives

limits the application of such methods to small model systems when aiming for proper-

ties such as the equilibrium geometry.

This work deals with developments to overcome these limitations and to extend the

range of applicability of one of the most promising multireference coupled-cluster theo-

ries, namely the Mk-MRCC approach to larger molecular systems of chemical interest.

The strategies followed here cover areas such as the development of efficient algorithms,

analytic gradient techniques, and parallelization of calculations which now allow com-

putations on systems previously inaccessible by theory. The approaches developed here

have been tested and applied to chemically relevant systems. The following paragraphs

provide a detailed summary of the results presented in this thesis.

Development of an Efficient Multireference Algorithm

An efficient multireference algorithm has been implemented to perform Mk-MRCC

energy calculations within the singles and doubles (Mk-MRCCSD) and singles, dou-

bles, and triples (Mk-MRCCSDT) approximations. This algorithm exploits the special

structure of the Mk-MRCC working equations that allows to adapt existing efficient
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single-reference coupled-cluster codes and, thus, to reduce the work required for the

implementation. The algorithm has the correct computational scaling of d · N6 for

Mk-MRCCSD and d · N8 for Mk-MRCCSDT, where N denotes the system size and d

the number of reference determinants. The algorithm allows the use of a model space

containing determinants derived from distributing two electrons in two active orbitals.

Both methods can be used in conjunction RHF and TCSCF reference wave functions.

Additionally, UHF and ROHF open-shell singlet reference wave functions can be used

with Mk-MRCCSD.

Analytic First Derivatives for the Mk-MRCC Ansatz

The theory of analytic first derivatives for the Mk-MRCC method has been formu-

lated using a Lagrange formalism. The resulting equations have been separated in a

single-reference part and additional coupling terms. As in the case of energy computa-

tions, this represents an enormous advantage because it reduces the effort required to

implement the theory. The Mk-MRCC gradients within the singles and doubles (Mk-

MRCCSD) and singles, doubles and triples (Mk-MRCCSDT) approximation have been

implemented in the CFOUR package. The algorithm is capable of using RHF and TC-

SCF reference wave functions, and as for the energy calculation, the correct scaling of

d ·N6 for Mk-MRCCSD and d ·N8 for Mk-MRCCSDT has been achieved.

The applicability of analytic Mk-MRCC gradients has been demonstrated for vari-

ous compounds. While for 2,6-pyridyne, single-reference CCSD calculations predict the

bicyclic form to be the most stable one, the Mk-MRCCSD results favor the correct

monocyclic form, although a minimum for the bicyclic structure can still be found. This

finding indicates that for a correct description of the whole potential energy surface,

triple excitations should be included. The application of Mk-MRCC gradients for the

determination of geometry parameters of the ozone molecule indicate that a balanced

description of dynamical and non-dynamical correlation effects together with proper

basis-sets is necessary in order to correctly predict the equilibrium geometry. The devi-

ations to experiment obtained for geometry optimizations using Mk-MRCC are always

smaller than the deviations from the corresponding single-reference coupled-cluster cal-

culations. For example, the computation at the Mk-MRCCSDT/cc-pVTZ level for the

bond length (1.2732 Å) yield a deviation from experiment (1.2717 Å) of only 0.0015 Å.

The development of analytic gradients for Mk-MRCC offers the possibility of rou-
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tinely locating minima and transition states on the potential energy surface. It can be

considered as a key step towards routine investigation of multireference systems and

calculation of their properties.

Parallelization of Mk-MRCCSDT and CCSDT

As the full treatment of triple excitations in coupled-cluster calculations is rather time-

consuming a parallelization scheme for Mk-MRCCSDT and CCSDT energy calculations

has been outlined and implemented. A detailed analysis of CCSDT and Mk-MRCCSDT

energy computations indicates that these calculations are completely dominated by the

determination of the triples amplitudes and their contributions to the singles and doubles

amplitude equations. Starting from the highly efficient serial CFOUR computer code,

a program which can be used on workstation clusters by parallelizing the most time-

consuming steps of the algorithm, i.e., steps related to the triple amplitudes, has been

developed. The central aspect of the parallel implementation is the distributed compu-

tation of the triple amplitudes as well as their contributions to the single and double

amplitudes. In this way an algorithm is obtained for which sufficient local memory and

disk space are needed but which does not depend on high-speed network connections.

Benchmark calculations demonstrate the excellent scaling of computation time with an

increasing number of processors. For calculations on benzene at the CCSDT/cc-pVTZ

level (264 basis functions) and on ozone molecule at the Mk-MRCCSDT/cc-pCVTZ

level (129 basis functions) a speedup of about 14 is obtained when 16 nodes are used.

In this way Mk-MRCC computations for the 2,6-pyridyne with 222 basis functions have

become feasible and can be carried out in a reasonable amount of time, i.e., within days

or weeks instead of months or years. Thus, this kind of implementation opens the field

of application for Mk-MRCCSDT and CCSDT where high accuracy is decisive.

In summary, it can be stated that the work presented here represents an important step

in turning multireference coupled-cluster methods from a highly experimental field into

approaches which can be routinely applied to chemically relevant systems. This offers

the possibility to obtain the high accuracy provided by coupled-cluster approaches when

intermediates or transition states in chemical reactions are to be correctly described.

In this way, pathways on the potential energy surface that have not been accessible so

far by coupled-cluster methods can be investigated with the hope that this will yield a
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deeper insight into chemical reactions.

Although the Mk-MRCC approach has its deficiencies, such as the lack of energy in-

variance with respect to orbital rotations within the active space, Mk-MRCC theory has

opened the field of routine application of MRCC methods to chemical problems and the

number of publications concerning pure application of the method has been increased

in the last years.168–170 Furthermore, an efficient program capable to perform calcula-

tions at the Mk-MRCC level of theory allows for new developments for the treatment of

multireference problems, as for example the inclusion of relativistic effects, the investi-

gation of excited-state properties via response theory or the implementation of second

derivatives.

To overcome the problems of Mk-MRCC theory, it needs to be investigated in the fu-

ture whether it is necessary to modify the Mk-MRCC approach or to replace it by a new

theory. One possible strategy might be to retain the Jeziorski-Monkhorst ansatz and

use alternative sufficiency conditions that fulfill the desirable requirements without loss

of size-extensivity. Beside that, it would also be possible to follow a completely different

approach as, for example, the development of a theory based on an internally contracted

ansatz where only one universal exponential operator acts on a linear combination of

reference determinants. However, even if new methods will be developed to solve the

problems of the Mk-MRCC approach it is likely that the structure of the new approach or

the underlying equations might be similar to Mk-MRCC theory. Therefore, the knowl-

edge obtained from this work can directly be used to understand new approaches in

more detail which will considerably simplify the extension of the applicability of these

new methods.
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[144] Y. J. Bomble, J. Stanton, M. Kállay, and J. Gauss, J. Chem. Phys. 123, 054101

(2005).

[145] S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 110, 8233 (1999).

[146] W. T. Borden, E. R. Davidson, and D. Feller, J. Am. Chem. Soc. 103, 5725

(1981).

[147] A. G. Császár, W. D. Allen, and H. F. Schaefer, J. Chem. Phys. 108, 9751 (1998).

[148] A. Halkier, H. Larsen, J. Olsen, P. Jørgensen, and J. Gauss, J. Chem. Phys. 110,

734 (1999).

[149] J. A. Sordo, J. Chem. Phys. 114, 1974 (2001).

[150] A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, J. Chem. Phys. 125,

144108 (2006).

[151] M. E. Harding, J. Vázquez, B. Ruscic, A. K. Wilson, J. Gauss, and J. F. Stanton,

J. Chem. Phys. 128, 114111 (2008).

[152] D. Feller and K. A. Peterson, J. Chem. Phys. 131, 154306 (2009).

101



Bibliography

[153] F. A. Evangelista, E. Prochnow, J. Gauss, and H. F. Schaefer, J. Chem. Phys.

132, 074107 (2010).

[154] J. Nieplocha, R. J. Harrison, and R. Littlefield, In Proceedings of Supercomputing,

IEEE Computer Society Press: Washington, DC, 1994.

[155] A. R. Ford, T. Janowski, and P. Pulay, J. Comput. Chem. 28, 1215 (2007).

[156] R. M. Olson, M. W. Schmidt, M. S. Gordon, and A. P. Rendell, Enabling the

Efficient Use of SMP Clusters: The GAMESS/DDI Approach, In Supercomputing,

ACM/IEEE Conference: Phoenix, AZ, 2003.

[157] The MPIForum, MPI: a message passing interface, In Proceedings of the 1993

ACM/IEEE conference on Supercomputing, ACM Press: Portland, OR, USA,

1993.

[158] P. Piecuch and J. I. Landman, Parallel Comput. 26, 913 (2000).

[159] OpenMP Fortran Application Programming Interface, http://www.openmp.org.

[160] M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett, J. Chem. Phys. 83, 4041 (1985).

[161] J. Noga, R. J. Bartlett, and M. Urban, Chem. Phys. Lett. 134, 126 (1987).

[162] H. Koch, O. Christiansen, P. Jørgensen, A. S. de Merás, and T. Helgaker, J.

Chem. Phys. 106, 1808 (1997).
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A Technical Details

All calculations were carried out on a 22 node cluster. The cluster nodes were equipped

with two dual core Intel Xeon 5160 processors running at 3 GHz, 32 GB FB-DIMM

RAM, and 8 striped SATA disks. For the network communication the onboard Gigabit

Ethernet controller was used.

For the parallel implementation the message passing interface (MPI)157 is used. The

results presented here are obtained by using LAM/MPI.171,172 The communication of

the t3-amplitudes is done by the MPI BCAST subroutine. The triples contributions to

the t1- and t2-amplitudes are communicated using the MPI ALLREDUCE routine.
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B SRCC Gradients

B.1 Explicit Expression for the Orbital Response Part in

SRCC Theory

The one-particle intermediate I ′pq is defined by

I ′pq = −1

2

{
fpp

[
Dpq +Dqp

]
+
∑
rst

[
〈pr||st〉Γqrst + 〈rp||st〉Γrqst + 〈rs||pt〉Γrsqt

+ 〈rs||tp〉Γrstq
]}
−
∑
rs

〈pr||qs〉Drsδqi .

(B.1)

The last term is only apparent when the index q refers to an occupied orbital as indicated

by δqi:

δqi =

{
1 if q ∈ occ

0 otherwise
. (B.2)

The one-particle intermediate Iµν in its MO representation is given as

Iij = I ′′ij −
∑
e

∑
m

Dem (〈ei||mj〉+ 〈im||je〉) (B.3)

Iai = I ′′ai − fiiDai (B.4)

Iia = I ′′ia − fiiDai (B.5)

Iab = I ′′ab , (B.6)

with the intermediate I ′′pq:

I ′′pq =

{
I ′qp(µ) if (p, q) = (a, i)

I ′pq otherwise
. (B.7)
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C Mk-MRCC Gradients

C.1 Explicit Expression for the Orbital Response Part in

Mk-MRCC Theory

For the case of HF orbitals, the generalized energy-weighted density matrix in the MO

representation, Ipq(µ), is defined by

Iij(µ) = I ′′ij(µ)− 2
∑
e

∑
m

D(orb−resp)
em (µ) 〈ei||mj〉 (C.1)

Iai(µ) = Iia(µ) = I ′′ia(µ)−
∑
m

fim(µ)D(orb−resp)
ma (µ) (C.2)

Iab(µ) = I ′′ab(µ) , (C.3)

where the intermediate I ′′pq(µ) is given as

I ′′pq(µ) =

{
I ′pq(µ) if p < q

I ′qp(µ) if p > q
. (C.4)

D
(orb−resp)
em (µ) is obtained by solving the corresponding Z-vector equations.
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